
DSP56KCCUM/D
Document Rev. 2.0, 07/1999

Motorola DSP56000 Family
Optimizing C Compiler

User’s Manual, Release 6.3

Suite56, OnCe, and MFAX are trademarks of Motorola, Inc.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no
warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does
Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims
any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may
be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual
performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer
application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the
rights of others. Motorola products are not designed, intended, or authorized for use as components in systems
intended for surgical implant into the body, or other applications intended to support life, or for any other application in
which the failure of the Motorola product could create a situation where personal injury or death may occur. Should
Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify
and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims,
costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that
Motorola was negligent regarding the design or manufacture of the part.

Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative
Action Employer.

All other tradenames, trademarks, and registered trademarks are the property of their respective owners.

© Copyright Motorola, Inc., 1999. All rights reserved.

Motorola v

Chapter 1
Introduction

1.1 Overview. 1-1
1.2 Error Codes. 1-4
1.3 Notation. 1-4
1.4 Manual Organization. 1-5

Chapter 2
Installation Guide

2.1 Introduction. 2-1
2.2 Installation On An MS-DOS Machine (80386 or 80486). 2-1
2.3 Standard Installation On A SUN. 2-3
2.4 Alternate Installation On A SUN. 2-4
2.5 Test Program. 2-4

Chapter 3
Control Program Options

3.1 Overview. 3-1
3.2 G56k Command Line Options. 3-5
3.2.1 Preprocessor Phase Options. 3-7
3.2.2 Compile Phase Options. 3-20
3.3 Assemble Phase Options. 3-30
3.4 Link Phase Options. 3-31

Chapter 4
About g56k

4.1 Introduction. 4-1
4.2 Identifiers. 4-1
4.3 Predefined Preprocessor Macro Names. 4-1
4.4 Data Types and Sizes. 4-1
4.4.1 Integral Data Types. 4-2
4.4.2 Floating-point Types. 4-3
4.4.2.1 Floating-point Format Description . .. 4-3
4.4.2.2 Comparison with IEEE STD 754-1985 Standard. 4-5

Table of Contents

vi Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

4.4.3 Pointer Types . .. 4-7
4.5 Register Usage. 4-8
4.6 Memory Usage. 4-9
4.6.1 Activation Record. .4-10
4.6.2 Global/Static Data. .4-13
4.7 Compiler Naming Conventions. .4-13
4.8 Subroutine Call Sequence. .4-14
4.8.1 Caller Sequence. .4-14
4.8.2 Callee Sequence. .4-15
4.8.3 Return Sequence. .4-15
4.9 Software Support for Aritmetic Routines4-15
4.10 Run-time Safety4-16
4.10.1 Memory Allocation Checks. .4-16
4.10.2 Run-time Stack Checks. .4-17
4.11 Optimization Techniques Implemented. .4-17
4.11.1 Register Promotion and Lifetime Analysis. .4-17
4.11.2 Common Sub-expression Elimination4-17
4.11.3 Constant Propagation/Folding. .4-18
4.11.4 Dead Code Elimination. .4-18
4.11.5 Tail Merging.4-18
4.11.6 Strength Reduction. .4-19
4.11.7 Loop Invariant Code Motion. .4-19
4.11.8 Hardware DO Loop Instruction. .4-19
4.11.9 Loop Rotation. .. .4-20
4.11.10 Jump Optimizations. .4-20
4.11.11 Instruction Combination. .4-20
4.11.12 Leaf Routine Detection. .4-21
4.11.13 Function In-lining. .4-21
4.11.14 Instruction Scheduling / Microcode Compaction.4-21

Chapter 5
Mixing C and Assembly Language

5.1 Overview. 5-1
5.2 In-line Assembly Code. 5-1
5.2.1 Instruction Template. 5-3
5.2.2 Output/Input Operands. 5-5
5.2.3 Explicit Register Saving. 5-7
5.2.4 In-line Assembly Code Examples. 5-8
5.2.5 Controlling Labels Generated by the Compiler. .5-17
5.2.5.1 Calling Assembly Subroutines. .5-17

Motorola vii

5.2.5.2 Calling C Subroutines from Assembly Code. .5-18
5.2.5.3 Referencing Assembly Global Variables from C.5-20
5.2.5.4 Referencing Global C Variables from Assembly Language. 5-21
5.2.6 Specifying Registers for Variables. .5-22
5.2.7 Optimizer Effects on Code. .5-22
5.3 #pragma Directive .. .5-22
5.4 Out-of-line Assembly Code. .5-25
5.4.1 General Template. .5-26
5.4.1.1 Prologue5-27
5.4.1.2 Save all registers. .5-27
5.4.1.3 Main Program. .5-28
5.4.1.4 Restore all registers. .5-28
5.4.1.5 Epilogue5-29
5.4.1.6 Out-of-line Assembly Code Example. .5-29
5.4.2 Global C and Static Variables in C. .5-33
5.4.3 Using Run-time Stack for Local Data5-34
5.4.4 Calling C Routines. .5-35
5.4.5 Optimization Techniques. .5-36

Chapter 6
Software-Hardware Integration

6.1 Overview. 6-1
6.2 Run-Time Environment Specification Files. 6-1
6.3 crt0 File. 6-2
6.4 Bootstrapping the C program. 6-2
6.5 Memory Configuration and Management . .. 6-3
6.6 Interrupt Vectors . .. 6-6
6.7 Miscellaneous Code. 6-8
6.8 Signal File. 6-9
6.9 Signal() .6-10
6.9.1 Raise(). .6-11
6.10 Setjmp File. .6-12
6.11 Host-Supported I/O (printf (), et al). .6-12
6.11.1 DSP functions __send () and __receive (). .6-13
6.11.2 The Host-Side I/O Driver. .6-13
6.11.3 Communication between the Host and DSP. .6-13

viii Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

Appendix A
Programming Support

A.1 Standard ANSI Header Files. A-1
A.2 ANSI C Library Sub-routines. A-2
A.2.1 Hosted vs. Non-Hosted Library Routines. A-2
A.3 Forcing Library Routines Out-of-line. A-2
A.4 Function Descriptions. A-4
A.4.1 abort—Force abnormal program termination. A-9
A.4.2 abs—Absolute value of integer. .A-10
A.4.3 acos—Arc cosine. .A-11
A.4.4 asin—Arc sine .. .A-12
A.4.5 atan—Arc tangent. .A-13
A.4.6 atan2—Arc tangent of angle defined by point y/x.A-14
A.4.7 atexit—Register a function for execution at normal program termination . A-15
A.4.8 atof—String to floating point. .A-16
A.4.9 atoi—String to integer. .A-17
A.4.10 atol—String to long integer. .A-18
A.4.11 bsearch—Perform binary search. .A-19
A.4.12 calloc—Dynamically allocate zero-initialized storage for objects.A-20
A.4.13 ceil—Ceiling function. .A-22
A.4.14 clearerr—Clear any error indicators associated with a specified stream . . . A-22
A.4.15 cos—CosineA-23
A.4.16 cosh—Hyperbolic cosine. .A-23
A.4.17 div—integer division with remainderA-24
A.4.18 exit—Terminate program normally. .A-25
A.4.19 exp—Exponential, ex. .A-26
A.4.20 fabs—Absolute value of a double. .A-26
A.4.21 fclose—Close a stream. .A-27
A.4.22 feof—Test the end-of-file indicator of a specified stream.A-28
A.4.23 ferror—Test the error indicator of a stream. .A-29
A.4.24 fflush—Flush all pending output associated with a stream.A-29
A.4.25 fgetc—Read a character from the specified stream.A-30
A.4.26 fgetpos—Get value of file position indicator associated with a stream. . . . A-31
A.4.27 fgets—Read a string from the specified stream. .A-32
A.4.28 floor—Floor function. .A-33
A.4.29 fmod—Floating point remainder. .A-33
A.4.30 fopen—Open a named file on the host’s disk. .A-34
A.4.31 fprintf—Write formatted output to a stream. .A-36
A.4.32 fputc—Write a single character to a stream. .A-36
A.4.33 fputs—Write a string to a stream. .A-37

Motorola ix

A.4.34 fread—Read data directly from a stream. .A-38
A.4.35 free—Free storage allocated by calloc, malloc, and reallocA-39
A.4.36 freopen—Open named file on disk, to be accessed via specified stream . . A-40
A.4.37 frexp—Break a floating point number into mantissa and exponent.A-41
A.4.38 fscanf—Read formatted input from a stream. .A-42
A.4.39 fseek—Set the file position indicator associated with a streamA-44
A.4.40 fsetpos—Set the file position indicator associated with a stream.A-45
A.4.41 ftell—Get the file position indicator associated with a streamA-46
A.4.42 fwrite—Write data directly to a stream .. .A-47
A.4.43 getc—Read a character from the specified stream.A-48
A.4.44 getchar—Read a character from standard input. .A-48
A.4.45 gets—Read a string from standard input. .A-49
A.4.46 isalnum—Test for alphanumeric character. .A-50
A.4.47 isalpha—Test for alphabetic character. .. .A-51
A.4.48 iscntrl—Test for control character. .A-52
A.4.49 isdigit—Test for numeric character. .A-52
A.4.50 isgraph—Test for printing character, excluding space and tabA-54
A.4.51 islower—Test for lower-case alphabetic characters.A-54
A.4.52 isprint—Test for printing character, excluding ’\t’.A-55
A.4.53 ispunct—Test for punctuation character. .A-56
A.4.54 isspace—Test for white-space character. .A-56
A.4.55 isupper—Test for upper-case alphabetic character.A-57
A.4.56 isxdigit—Test for hexadecimal numeric character.A-58
A.4.57 labs—Absolute value of a long integer .. .A-58
A.4.58 ldexp—Multiply floating point number by 2. .A-59
A.4.59 ldiv—Long integer division with remainder. .A-60
A.4.60 log—Natural logarithm, base e. .A-61
A.4.61 log10—Base ten logarithm. .A-62
A.4.62 longjmp—Execute a non-local jumpA-63
A.4.63 malloc—Dynamically allocate uninitialized storage.A-64
A.4.64 mblen—Length of a multibyte character. .A-64
A.4.65 mbstowcs—Convert multibyte string to wide character stringA-66
A.4.66 mbtowc—Convert a multibyte character to a wide characterA-68
A.4.67 memchr—Find a character in a memory area. .A-70
A.4.68 memcmp—Compare portion of two memory areas.A-71
A.4.69 memcpy—Copy from one area to another. .A-72
A.4.70 memmove—Copy storage. .A-73
A.4.71 memset—Initialize memory area. .A-74
A.4.72 modf—Break a double into it’s integral and fractional parts.A-75
A.4.73 perror—Print error message. .A-76

x Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

A.4.74 pow—Raise a double to a power. .A-77
A.4.75 printf—Print to standard output. .A-78
A.4.76 putc—Write a single character to a stream. .A-83
A.4.77 putchar—Write a character to standard output. .A-84
A.4.78 puts—Write a string to standard output .. .A-85
A.4.79 qsort—Quick sort. .A-86
A.4.80 raise—Raise a signal. .A-87
A.4.81 rand—Pseudo- random number generator. .A-88
A.4.82 realloc—hange size of dynamically allocated storage area.A-88
A.4.83 remove—Remove a file from the diskA-90
A.4.84 rename —Rename a file on the diskA-90
A.4.85 rewind—Reset the file position indicator to the beginning of the file. A-90
A.4.86 scanf—Read formatted input from standard input.A-91
A.4.87 setjmp—Save reference of current calling environment

for later use by longjmp. .A-92
A.4.88 setbuf—Read formatted input from standard input.A-93
A.4.89 setvbuf—Alter stream buffering. .A-94
A.4.90 signal—Set up signal handler. .A-94
A.4.91 sin—Sine. .A-95
A.4.92 sinh—Hyperbolic Sine. .A-96
A.4.93 sprintf—Print to a string. .A-96
A.4.94 sqrt—Square root. .A-97
A.4.95 srand—Seed the pseudo-random number generator.A-98
A.4.96 sscanf—Read formatted input from a string. .A-98
A.4.97 strcat—Concatenate two strings. .A-99
A.4.98 strchr—Find first occurrence of a character in a string.A-100
A.4.99 strcmp—Compare two strings. .A-100
A.4.100 strcoll—Compare two strings based on current locale.A-102
A.4.101 strcpy—Copy one string into anotherA-102
A.4.102 strcspn—Compute length of prefix of one string

consisting entirely of characters not from another.A-104
A.4.103 strerror—Map error code into an error message string.A-105
A.4.104 strlen—Determine length of a stringA-106
A.4.105 strncat—Concatenate a portion of one string to another.A-106
A.4.106 strncmp—Compare a portions of two strings. .A-108
A.4.107 strncpy—Copy a portion of one string into another.A-109
A.4.108 strpbrk—Find first occurrence of a character from one string in another . A-110
A.4.109 strrchr—Find last occurrence of a character from one string in another . . A-111
A.4.110 strspn—Compute length of prefix of one string

consisting entirely of characters from another.A-112

Motorola xi

A.4.111 strstr—Find the first occurrence of one string in another.A-112
A.4.112 strtod—String to double. .A-114
A.4.113 strtok—Break string into tokens. .A-115
A.4.114 strtol—String to long integer. .A-116
A.4.115 strtoul—String to unsigned long integer. .A-118
A.4.116 strxfrm—Transform a string into locale-independent form.A-120
A.4.117 tan—TangentA-120
A.4.118 tanh—Hyperbolic tangent. .A-121
A.4.119 tmpfile—Create a temporary binary file. .A-121
A.4.120 tmpnam—Create a temporary file name. .A-122
A.4.121 tolower—Convert uppercase character to lowercase.A-122
A.4.122 toupper—Convert lowercase character to uppercase.A-123
A.4.123 ungetc—Push a character back onto an input stream.A-124
A.4.124 vfprintf—Write formatted output to a stream using a va_listA-124
A.4.125 vprintf—Write formatted output to standard output using a va_list.A-125
A.4.126 vsprintf—Write formatted output to a string using a va_listA-126
A.4.127 wcstombs—Convert wchar_t array to multibyte string.A-126
A.4.128 wctomb—Convert wchar_t character to multibyte characterA-128

Appendix B
DSP56000/DSP56001 Instruction Set

and Assembler Directive Summary

B.1 Overview. B-1
B.2 Instruction Set. B-1
B.2.1 Arithmetic Instructions. B-1
B.2.2 Logical Instructions. B-2
B.2.3 Bit Manipulation Instructions. B-3
B.2.4 Loop Instructions. B-3
B.2.5 Move Instructions. B-4
B.2.6 Program Control Instructions. B-4
B.3 Directive Summary. B-5
B.3.1 Assembly Control. B-5
B.3.2 Symbol Definition. B-6
B.3.3 Data Definition/Storage Allocation. B-6
B.3.4 Listing Control and Options. B-6
B.3.5 Object File Control. B-7
B.3.6 Macros and Conditional Assembly. B-7
B.3.7 Structured Programming. B-8

xii Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

Appendix C
Utilities

C.1 Utility Programs. . .. C-1
C.1.1 asm56000—Motorola DSP56000/DSP56001 COFF Assembler. C-1
C.1.1.1 asm5600 Options. C-2
C.1.2 cldinfo—Memory size information from Motorola DSP COFF object file. . C-4
C.1.3 cldlod—Motorola COFF to LOD Format converter. C-5
C.1.4 cofdmp—Motorola DSP COFF File Dump Utility. C-5
C.1.4.1 cofdmp Options. C-5
C.1.5 dsplib—Motorola DSP COFF Librarian. C-6
C.1.5.1 dsplib Options. C-6
C.1.6 dsplnk—Motorola DSP COFF Linker . .. C-7
C.1.6.1 dsplnk Options. C-8
C.1.7 gdb56—GNU Source-level Debugger for DSP56000/DSP56001.C-11
C.1.7.1 gdb56 Options. .C-11
C.1.8 run56—Motorola DSP56000/DSP56001 Simulator Based

Execution Device.. .C-12
C.1.8.1 run56 Options. .C-12
C.1.9 srec—Motorola DSP S-Record Conversion Utility.C-13
C.1.9.1 srec Options. .C-13

Appendix D
GNU Debugger (GDB)

D.1 Introduction. D-1
D.1.1 Commands Not Implemented. D-1
D.1.2 DSP56000 Family Differences / Specific Requirements. D-1
D.1.3 Summary of GDB. D-3
D.1.4 GNU General Public License. D-3
D.1.5 Preamble. D-3
D.1.6 Terms and Conditions. D-4
D.1.7 No Warranty. . .. D-6
D.1.8 End of Terms and Conditions. D-7
D.2 Input and Output Conventions. D-8
D.3 Specifying GDB’s Files. .D-10
D.3.1 Specifying Files with Arguments. .D-10
D.3.2 Specifying Files with Commands. .D-10
D.4 Compiling Your Program for DebuggingD-12
D.5 Running Your Program Under GDB. .D-12
D.5.1 Your Program’s Arguments. .D-13
D.5.2 Your Program’s Environment. .D-13

Motorola xiii

D.5.3 Your Program’s Working DirectoryD-14
D.5.4 Your Program’s Input and Output. .D-14
D.5.5 Debugging an Already-Running Process. .D-15
D.5.6 Killing the Child Process. .D-16
D.6 Stopping and Continuing. .D-16
D.6.1 Signals. .D-16
D.6.2 BreakpointsD-18
D.6.2.1 Setting Breakpoints. .D-18
D.6.2.2 Deleting Breakpoints. .D-19
D.6.2.3 Disabling Breakpoints. .D-20
D.6.2.4 Break Conditions. .D-21
D.6.2.5 Commands Executed on BreakingD-22
D.6.2.6 “Cannot Insert Breakpoints” ErrorD-24
D.6.3 Continuing. .D-25
D.6.4 Stepping. .D-25
D.7 Examining the Stack. .D-27
D.7.1 Stack FramesD-27
D.7.2 Backtraces. .D-28
D.7.3 Selecting a Frame. .D-29
D.7.4 Information on a Frame. .D-30
D.8 Examining Source Files. .D-30
D.8.1 Printing Source Lines. .D-30
D.8.2 Searching Source Files. .D-32
D.8.3 Specifying Source Directories. .D-32
D.9 Examining DataD-33
D.9.1 ExpressionsD-33
D.9.2 Program Variables. .D-34
D.9.3 Artificial Arrays. .D-35
D.9.4 Format options .. .D-35
D.9.5 Output formats .. .D-37
D.9.5.1 Examining Memory. .D-38
D.9.6 Automatic Display. .D-40
D.9.7 Value HistoryD-41
D.9.8 Convenience Variables. .D-42
D.9.9 Registers. .D-43
D.9.9.1 ExamplesD-44
D.10 Examining the Symbol Table. .D-44
D.11 Altering Execution.. .D-45
D.11.1 Assignment to Variables. .D-46
D.11.2 Continuing at a Different Address. .D-46

xiv Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

D.11.3 Giving the Program a Signal. .D-47
D.11.4 Returning from a Function. .D-48
D.12 Canned Sequences of Commands. .D-48
D.13 User-Defined Commands. .D-48
D.13.1 Command Files. .D-49
D.13.2 Commands for Controlled Output. .D-49
D.14 Options and Arguments for GDB. .D-50
D.14.1 Mode Options. .. .D-50
D.14.2 File-specifying Options. .D-51
D.14.3 Other Arguments. .D-51
D.15 Using GDB under GNU Emacs. .D-52

Appendix E
Additional Support

E.1 Motorola DSP Product Support. E-2
E.2 DSP56000CLASx Assembler/Simulator. . .. E-2
E.2.1 Macro Cross Assembler Features:. E-3
E.2.2 Simulator Features:. E-3
E.3 DSP320to56001 Translator. E-4
E.3.1 DSP320to56001 Translator Features: . .. E-4
E.4 DSP56000ADSx Application Development Systems (ADS). E-4
E.4.1 DSP56000ADS ADS Hardware Features:. E-4
E.4.2 DSP56000ADSx ADS Software Features:. E-5
E.4.2.1 Support Integrated Circuits:. E-5
E.5 Dr. BuB Electronic Bulletin Board. E-6
E.5.1 Motorola DSP News. .E-14
E.5.2 Motorola Field Application Engineers. .. .E-14
E.5.3 Design Hotline – 1-800-521-6274. .E-14
E.5.4 DSP Applications Helpline– (512) 891-3230. .E-14
E.5.5 DSP Marketing Information – (512) 891-2030. .E-15
E.5.6 DSP Third-Party Support Information – (512) 891-3098.E-15
E.5.7 DSP University Support – (512) 891-3098. .E-15
E.5.8 DSP Training Courses – (602) 994-6900. .E-15
E.5.9 Reference Books and Manuals. .E-16
E.5.10 General DSP:E-16
E.5.11 Digital Audio and Filters:. .E-17
E.5.12 C Programming Language:. .E-18
E.5.13 Controls:. .E-19
E.5.14 Graphics:. .E-19
E.5.15 Image Processing:. .E-21

Motorola xv

E.5.16 Motorola DSP Manuals:. .E-21
E.5.17 Numerical Methods:. .E-21
E.5.18 Pattern Recognition:. .E-22
E.5.19 Speech:. .E-23
E.5.20 Telecommunications:. .E-23

xvi Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

Motorola xvii

3-1 DSP56KCC Options. 3-4

4-1 Identifier Length Limits. 4-1

4-2 Predefined Macro List and Explanation. 4-2

4-3 Integral Data Type Sizes and Ranges. 4-2

4-4 Floating-point Data Type Sizes and Ranges. 4-3

4-5 Floating-point Format Description . .. 4-5

4-6 Comparison of DSP56KCC and IEEE 754-1985. 4-6

4-7 Pointer Size and Range. 4-8

4-8 DSP56000 Family Processor Registers. 4-8

4-9 DSP56KCC Registers and Usage 4-9

4-10 Floating-point Arithmetic. 4-16

4-11 48-bit Long Integer Arithmetic. 4-16

5-1 Operand Constraints/Modifiers Associations. 5-7

5-2 reg_save Names. 5-8

5-3 Output and Input Operands for Section 5-3. 5-9

A-1 ANSI Standard Header Files. A-1

A-2 In-Line Library Routines. A-3

A-3 Function Descriptions. A-4

A-4 Argument Range/Output Range. A-14

A-5 Mode Arguments. A-34

A-6 Conversion Specifyers. A-42

A-7 ANSsbI Flags. A-79

A-8 Conversion Characters. A-80

B-1 Arithmetic Operations. B-1

B-2 Logical Operations. B-2

B-3 Bit Manipulation Instructions. B-3

B-4 Loop Operation Instructions. B-3

List of Tables

xviii Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

B-5 Move Operation Instructions. B-4

B-6 Program Control Instructions. B-4

B-7 Assembly Control Directives. B-5

B-8 Control Symbol Directives. B-6

B-9 Storage Allocation Directives. B-6

B-10 Output Listing Directives. B-6

B-11 Object file Directives. B-7

B-12 Conditional Assembly Directives. . .. B-7

B-13 Programming Directives. B-8

C-1 asm56000 Command Line Options .. C-3

C-2 cofdmp Command Line Options C-5

C-3 cldinfo Command Line Options. C-7

C-4 dsplnk Command Line Options. C-9

C-5 gdb56 Command Line Options. .C-11

C-6 run56 Command Line Options. .C-12

C-7 srec Command Line Options. .C-13

D-1 GDB File Commands. .D-11

D-2 Environment Variables. .D-14

D-3 Working Directory Commands. .D-14

D-4 KeywordsD-17

D-5 Breakpoints .. .D-18

D-6 Deleting Breakpoints Commands.D-20

D-7 Disabling Breakpoint Commands.D-20

D-8 Stepping Commands. .D-25

D-9 Backtraces. .. .D-28

D-10 Frame Commands. .D-29

D-11 Frame Command. .D-30

D-12 List Commands. .D-31

D-13 Single Source Line Commands. .D-31

D-14 Directory Commands. .D-33

D-15 GDB Operators. .D-34

Motorola xix

D-16 Print Output Format Letters. .D-37

D-17 Memory Output Format Letters. .D-38

D-18 Print Output Format Letters. .D-38

D-19 Display Commands. .D-41

D-20 Info Commands. .D-42

D-21 Convenience Variables. .D-43

D-22 Symbol-File Commands. .D-45

D-23 Define Commands. .D-48

D-24 Controlled Output Commands. .D-50

D-25 Mode Options. .D-51

D-26 File Specifying Options. .D-51

D-27 Emac Commands. .D-52

E-1 User Support. E-1

E-2 Available Software. E-6

xx Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

Motorola xxi

1-1 Motorola Software Development System. 1-2

4-1 Mantissa and Exponent Data Range of C Floating Point 4-4

4-2 Default Program Memory Configuration. 4-10

4-3 Activation Record. 4-11

4-4 Default Data Memory Configuration. 4-12

4-5 Run-time Stack Growth. 4-13

6-1 Environment Memory Configuration. 6-4

List of Figures

xxii Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

Motorola xxiii

2-1 Test Program. 2-4

3-1 Lib56cy.clb .. 3-5

3-2 G56_EXEC_PREFIX. 3-5

3-3 Test New Version of DSP56000/1 C. 3-5

3-4 Test New Version of ANSI C Library. 3-6

3-5 Test New Version of DSP56KCC. . .. 3-6

3-6 Generate a Preprocessed File. 3-6

3-7 Compile file.c / Generate Executable Ouput File. 3-6

3-8 Preprocess Program Foo.c. 3-7

3-9 Compile and Run Program Dsp.c 3-8

3-10 Program Dsp.c. 3-9

3-11 Preprocess C Source Program Foo.c.. 3-9

3-12 CPP Output .. 3-10

3-13 -I Option Used to Include the File “myinclude.h”. 3-11

3-14 Test Program “file.c”. 3-12

3-15 Program Greeting.c Prints Message .. 3-14

3-16 Program Big.c. 3-15

3-17 Program Big.c. 3-15

3-18 Test Program Test.c. 3-16

3-19 -v Option 3-18

3-20 DEBUG Flag. 3-19

3-21 -Wcomment Option. 3-19

3-22 R4. 3-22

3-23 Program Foo.c. 3-23

3-24 -mx-memory Option. 3-24

3-25 Generate an optimized assembly language file
(test.asm) of the C source program (test.c).. 3-26

3-26 Generate an optimized assembly language filetest.asm 3-26

3-27 -W. 3-27

List of Examples

xxiv Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

3-28 -Wimplicit. .3-28

3-29 -Wreturn-type. .3-28

3-30 -Wunused3-29

3-31 Pass a single option to the assembler.. .3-31

3-32 Pass multiple options to the assembler.. .3-31

3-33 -crt file .3-32

3-34 Pass a single option to the linker.3-32

3-35 Pass multiple options to the linker.. .. .3-32

3-36 -lLIBRARY .3-32

3-37 -r CTLFILE.. .3-33

5-1 reg_save 5-8

5-2 instruction_template. 5-9

5-3 operand_id .. 5-9

5-4 OES Modifier j. .5-10

5-5 OES Modifier e. .5-10

5-6 OES Modifier h. .5-10

5-7 OES Modifier k .5-11

5-8 OES Modifier g. .5-11

5-9 OES Modifier g. .5-12

5-10 OES Modifier i. .5-12

5-11 OES Modifier f. .5-13

5-12 OES Modifier p and q. .5-13

5-13 Input Expression / Output Expression. .5-14

5-14 Read-Only Operand. .5-14

5-15 Write-Only Operand. .5-14

5-16 Read-Write Operand. .5-14

5-17 Read-Write Operand. .5-15

5-18 Multiple Instruction — Single-Line .. .5-15

5-19 Multiple Instruction — Multiple-Line. .5-15

5-20 Mulitple Use of _ _asm(). .5-15

5-21 Line Separation. .5-16

5-22 Instruction Template Label. .5-16

Motorola xxv

5-23 Program DSP56001 SCI Timer. .5-17

5-24 Calling Assembly from C. .5-18

5-25 Calling C from Assembly. .5-19

5-26 Calling C from Assembly. .5-19

5-27 Generate Data with Assembly Language. .5-20

5-28 Access Data with C. .5-20

5-29 Generate Data with C. .5-21

5-30 4-tap FIR Filter. .5-21

5-31 General Template for Out-of-line Assembly Code.5-30

5-32 Global Label in Assembly Language. .5-33

5-33 Global Variable Declaration. .5-33

5-34 Changing a Global Label. .5-34

5-35 Run-time Stack Allocation. .5-34

5-36 Run-time Stack Deallocation. .5-35

5-37 Calling C Routines. .5-35

5-38 ReadX / ReadY Routines. .5-37

6-1 DSP56000/DSP56001 Operation Mode Change. 6-3

6-2 C Bootstrap Code Location Change .. 6-3

6-3 Fast Stack . .. 6-5

6-4 Fast Heap . .. 6-6

6-5 User-defined Interrupt Vector Table. 6-7

6-6 Interrupt Service Routine. 6-8

6-7 Sample Host-Side Glue Code. .6-15

A-1 abort . A-9

A-2 abs. .A-10

A-3 acos. .A-11

A-4 asin. .A-12

A-5 attan .A-13

A-6 attan2 .A-14

A-7 atexit. .A-15

A-8 atof .A-16

A-9 atoi .A-17

xxvi Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

A-10 atol .A-18

A-11 bsearch. .A-19

A-12 calloc. .A-21

A-13 ceil .A-22

A-14 clearerr. .A-22

A-15 cos. .A-23

A-16 cosh. .A-23

A-17 div. .A-24

A-18 exit .A-25

A-19 exp .A-26

A-20 fabs. .A-27

A-21 fclose. .A-27

A-22 feof .A-28

A-23 fflush. .A-29

A-24 fgetc .A-30

A-25 fgetpos. .A-31

A-26 fgets .A-32

A-27 floor .A-33

A-28 fmod .A-33

A-29 fopen. .A-35

A-30 fprintf .A-36

A-31 fputc .A-36

A-32 fputs .A-37

A-33 fread. .A-38

A-34 free .A-39

A-35 freopen. .A-40

A-36 frexp .A-41

A-37 fscanf .A-43

A-38 fseek. .A-44

A-39 fsetpos. .A-45

A-40 ftell .A-46

A-41 fwrite. .A-47

Motorola xxvii

A-42 getc. .A-48

A-43 getchar. .A-49

A-44 gets. .A-49

A-45 islnum. .A-50

A-46 isalpha. .A-51

A-47 iscntrl .A-52

A-48 isdigit .A-53

A-49 isgraph. .A-54

A-50 islower .A-55

A-51 isprint .A-55

A-52 ispunct. .A-56

A-53 isspace. .A-57

A-54 isupper .A-57

A-55 isxdigit .A-58

A-56 labs. .A-59

A-57 ldexp. .A-59

A-58 ldiv .A-60

A-59 log. .A-61

A-60 log10. .A-62

A-61 longjmp. .A-63

A-62 malloc. .A-64

A-63 mblem. .A-65

A-64 mbstowcsA-67

A-65 mbtowc. .A-69

A-66 memchr. .A-70

A-67 memcmpA-71

A-68 memcpyA-72

A-69 memmoveA-73

A-70 memset. .A-74

A-71 modf .A-75

A-72 perror .A-76

A-73 pow. .A-77

xxviii Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

A-74 printf .A-82

A-75 putc. .A-83

A-76 putchar. .A-84

A-77 puts. .A-85

A-78 qsort .A-86

A-79 raise. .A-87

A-80 rand. .A-88

A-81 realloc. .A-89

A-82 remove. .A-90

A-83 rename. .A-90

A-84 rewind. .A-91

A-85 scanf. .A-91

A-86 setjmp. .A-92

A-87 signal. .A-95

A-88 sin. .A-95

A-89 sinh. .A-96

A-90 sprintf .A-97

A-91 sqrt .A-97

A-92 srand. .A-98

A-93 strcat. .A-99

A-94 strchr. .A-100

A-95 strcmp. .A-101

A-96 strcpy .A-103

A-97 strcspn. .A-104

A-98 strerror .A-105

A-99 strlen. .A-106

A-100 strncat. .A-107

A-101 strncmp. .A-108

A-102 strncpy. .A-109

A-103 strbrk. .A-110

A-104 strrchr. .A-111

A-105 strspn. .A-112

Motorola xxix

A-106 strstr .A-113

A-107 strtod. .A-114

A-108 strtok. .A-115

A-109 strtol .A-117

A-110 strtoul .A-119

A-111 tan. .A-120

A-112 tanh. .A-121

A-113 tmpnam. .A-122

A-114 tolower. .A-123

A-115 toupper. .A-123

A-116 ungetc. .A-124

A-117 vfprintf .A-125

A-118 vprintf .A-125

A-119 vsprintf .A-126

A-120 wcstombsA-127

A-121 wctomb. .A-129

xxx Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

Overview

Motorola Introduction 1-1

Chapter 1
Introduction

1.1 Overview

The DSP56KCC GNU based C cross-compiler is the latest high-level language
development system for the Motorola DSP56000 family of digital signal processors
(DSP). It includes:

• an integrated control program — g56k

• an ANSI compliant C language preprocessor — mcpp

• an ANSI optimizing C compiler — g56-cc1

• a DSP56000 common object file format (COFF) assembler — asm56000

• a COFF linker — dsplnk

• a COFF librarian — dsplib

• a source level debugger for C — gdb56

• a simulator based execution program — run56

• various object file manipulation tools — srec, cldlod, cofdmp

This integrated software system runs on a variety of machines and operating systems,
including the IBM PC� (80386 family and above — 386sx, 486, etc.), and Sun SPARC�

workstations.

The compiler implements the full C language as defined inAmerican National Standard
for Information Systems - Programming Language - C, ANSI X3.159-1989. It accepts one
or more C language source files as input and generates a corresponding number of
assembly language source files which are suitable as inputs to the DSP56000 COFF
assembler. The compiler automatically implements numerous optimizations which
simplifies implementing fast and efficient DSP algorithms.

The C language preprocessor is an implementation of the ANSI standard which includes
support for arbitrary text file inclusion, macro definition and expansion, and conditional
compilation. The preprocessor exists as a separate program and may be used as a
general-purpose macro preprocessor.

The compiler control program,g56k, is the standard compiler interface used to control the
sequence of operations required to compile a program. This control program allows the
user to select a wide variety of control options which affect the four compilation phases —

1-2 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

Overview

preprocessing, compiling, assembling, and linking. The control program parses the
command line options, and invokes the required sub-programs on the specified files.

Figure 1-1. Motorola Software Development System

C Source
Files

COFF
Assembler

COFF
Linker

COFF
Librarian

ANSI C
Compiler

run56 sim56000gdb56

User
Defined
Libraries

ANSI
C

Library

ANSI
C

Library

ads56000

Execution Devices

User’s Input Files

Asm
Files

Target
System

ANSI C
Preprocessor

srec

Optional

User
Provided
PROM

Programmer
utility

Conversion

Overview

Motorola Introduction 1-3

Object files are stored using the COFF format. COFF stands forCommon Object File
Format.Utilities such as Cldinfo and Cldlod may be used to gain visibility into object
files.

1. Given a list of C source files from the user (see Figure 1-1) and options to apply to
those files, the control program runs each file through the C preprocessor and the C
compiler. The compiler creates individual assembly language source files for each
C source file provided on the command line.

2. The control program then sends the compiler output from these files to the
assembler, in addition to any assembly language files specified by the user on the
G56k command line.

3. The assembler output is routed to the linker for final processing. The linker tries to
resolve all unresolved link-time symbols with the standard (and any explicitly
requested) C libraries. The COFF linker object file output may then be directed to
any of several execution devices. Notice that the assembler can also be used to
create library files which can be included in a user defined library.

4. The execution devices shown in Figure 1-1 are:

a. RUN56 which allows the DSP56000/1 code (in COFF format) to be executed
on the host computer’s CPU

b. GDB56 which is a debugging tool for trouble-shooting the compiled application

c. SIM56000 which is a complete DSP56000/1 simulator that can be used to
execute the compiled application (in either COFF format or .lod file format) and
allow examination of registers and memory

d. ADS56000 is the development system hardware that can then be used to load
and execute the compiled application (in either COFF format or .lod file format)
on the ADS development system

e. The target system shown is the user’s custom DSP system.

Note: The three execution devices in the shaded boxes are not part of the C compiler
software. The COFF linker output can be used by these execution devices
directly. The conversion utility Srec (see Figure 1-1) can be used to convert the
executable file from the COFF Linker to a suitable format for PROM burning.
These PROMs can then be used on the ADS development system or the user’s
target system. The PROM programmer, ADS development system and user’s
target system are not part of the DSP56KCC compiler.

The DSP56000 family represents a departure from more conventional architectures on
which other implementations of the C language are based. Also, the nature of DSP
applications dictates that a greater measure of control be provided to the programmer in
specifying the constraints of the run-time environment. For these reasons, the components

1-4 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

Error Codes

of the development system include options for handling separate memory spaces, stack
initialization, chip operating modes and other issues.

The purpose of this manual is to:

1. Provide detailed installation procedures for both UNIX based systems and
MS-DOS based systems. This manual explains how to install and operate the
DSP56KCC ANSI C compiler development system in a hosted environment.

2. Provide an overview of the compiler operation. It also includes information on
combining C modules with assembly language programs and advanced topics
pertaining to compiler run-time characteristics.

3. Provide reference information on compiler options, ANSI library routines, and
utilities.

This manual assumes a familiarity with the C programming language, with the host
machine and operating system environment. It also assumes that the programmer
understands how to create and edit C language source files on this host system. For more
information on the C language and other DSP56000/1 development tools, see the
references listed in Appendix D.

1.2 Error Codes

The error messages generated by the compiler are intended to be complete without
additional explanation. Since the compiler produces a detailed description of the problem
rather than an error code, these error messages have not been reproduced in this manual.

1.3 Notation

The following notation will be used in this text.

1. A prompt is indicated in this manual by:
C:\>

2. An example of an MS-DOS directory name is:
\USR\DIRECTORY

3. The contents of an MS-DOS directory are examined by entering:
C:\> DIR

4. The contents of an MS-DOS file are displayed by entering:
C:\> TYPE FILE

5. The program “HELLO.EXE” would be executed by the command line:
C:\> HELLO

Manual Organization

Motorola Introduction 1-5

1.4 Manual Organization

Installation details are provided in Chapter 2, the compiler operation is described in
Chapters 3-6 and reference information is in Chapter 3 and Appendices A-E. The contents
of each chapter and each appendix are described below.

Chapter 1, "Introduction," describes the overall organization of the DSP56KCC compiler
system. It also details the structure of this document, and conventions followed herein.

Chapter 2, "Installation Guide," describes the installation and organization of
DSP56KCC. It details how to set up an operating environment on the host system by
defining global environment variables and includes a step-by-step installation procedure.

Chapter 3, "Control Program Options," discusses the four passes of the compilation
process with particular attention to the functions of the compiler control program G56k.
This chapter includes a list of the compiler invocation options along with example
command lines for different memory and program configurations.

Chapter 4, "About g56k," provides information on the compiler run-time environment,
including explanations of compiler register and memory usage, stack frame architecture,
stack overflow checking, and defining/referencing of absolute memory locations.
Additionally, this chapter covers implementation issues such as data type sizes.

Chapter 5, "Mixing C and Assembly Language," discusses the methods for using
assembly language in conjunction with C language programs. It covers the inclusion of
assembly language within a C source file and also describes linking assembly language
modules with C modules and linking C modules with assembly language modules.

Chapter 6, "Software-Hardware Integration," describes how to modify a program’s
run-time environment, how to write software to handle interrupts, and the
setjmp/longjmp ANSI library routines.

Appendix A, "Programming Support," provides a complete description and brief example
for every ANSI library subroutine distributed with the C compiler.

Appendix B, "DSP56000/DSP56001 Instruction Set and Assembler Directive Summary,"
provides a brief overview of the assembly language instructions and assembler directives.

Appendix C, "Utilities," provides DSP56000/1 Assembler manual pages for each of the
supporting programming utilities provided with the compiler.

Appendix D, "GNU Debugger (GDB)," provides a description of software, hardware,
support telephone numbers, and suggested reading for the C language and various areas of
DSP.

1-6 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

Manual Organization

Appendix E, "Additional Support," , provides information on how you can obtain further
support from Motorola and third party companies.

Installation On An MS-DOS Machine (80386 or 80486)

Motorola Installation Guide 2-1

Chapter 2
Installation Guide

2.1 Introduction

This chapter describes installation on MS-DOS and Sun computers. Two installation
procedures are detailed for the Sun. The first procedure uses the default location for the
files. The second procedure allows the user to select the directory where the compiler’s
files will be located. Only one procedure is needed for MS-DOS machines.

The various parts of the compiler reside in a directory tree named DSP. The default
location for the DSP directory tree is /usr/local on UNIX systems. If this default location
is acceptable, then perform the standard installation; if it is not acceptable, then perform
the alternate installation. The alternate installation procedure allows the user to install the
DSP directory tree anywhere.

2.2 Installation On An MS-DOS Machine (80386 or 80486)
1. Insert the supplied floppy labeled “Disk 1” into floppy drive “A:”.

2. Change to floppy drive “A”, with the command “A:”.

3. Run the install program, Install.exe. This installation program will ask questions
about the computer being used and about where the compiler’s directory tree, DSP,
is to reside.

4. Add all new lines of code specified by Install into theautoexec.bat file. The
only difference between the standard and alternate installation procedure on the PC
is whether or not the default output drive or default location is selected. If the
defaults are not selected, an environment variable named DSPLOC must be set in
theautoexec.bat file. The Install program will provide directions. The lines to
be added to theautoexec.bat file follow:

f. TERMCAP must be set to the current location of <compiler’s dsp directory
tree>\dsp\etc\termcap:

SET TERMCAP=<DSP location>\DSP\ETC\TERMCAP
for example, if the directory <compiler’s dsp directory tree> is d:\usr\mydir, then
the line to be added is

SET TERMCAP=D:\USR\MYDIR\DSP\ETC\TERMCAP
g. TERM must be set to indicate the type of display to be used (probably

nansi-mono):

SET TERM=NANSI-MONO

2-2 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

Installation On An MS-DOS Machine (80386 or 80486)

h. DSPLOC need only be set if the default output drive or the default location is
not chosen. If DSPLOC is set, it must be set to the location of the dsp directory
tree. For example, if the user installed the compiler’s directory tree DSP in the
directory D:\usr\mydir, then DSPLOC would need to be set as D:\usr\mydir:

SET DSPLOC=<compiler’s dsp directory tree>
if the directory <compiler’s dsp directory tree> is d:\usr\mydir, then

SET DSPLOC=D:\USR\MYDIR
5. Make sure that <compiler’s dsp directory tree>\dsp\bin is included in the path

instruction. This is needed bycommand.com if it is to find G56k. If the default
drive and path were chosen, then the path C:\dsp\bin would need to be added as
follows:

PATH ...;C:\DSP\BIN;...

If, for example the compiler’s dsp directory tree was installed in C:\usr\mydir, then
C:\usr\mydir\dsp\bin would need to be added as follows:

PATH ...;C:\USR\MYDIR\DSP\BIN;...
6. Make sure that other DOS memory managers do not interfere with the DOS

extended memory manager for G56k. The compiler uses its own DOS extended
memory manager calleddos4gw.exe , and this memory manager may not work if
a different memory manager is already installed. Although this DOS extender is
DPMI 0.9 compliant, It is recommended that initially all other DOS extended
memory managers be removed, in order to test the installation. The DOS extended
memory manager dos4gw.exe is called during the compiler’s execution, and
requires at least 2M bytes of RAM. This memory manager uses hard drives for the
swap space for the memory management. By default, the swap space location is the
C drive and the size of the swap space is 16 Mbytes.

7. The DOS environment DOS4GVM controls the configuration of the DOS extended
memory management, and the environment DOS4GVM has the following format.

[option[#value]] [option[#value]]

The possible parameters for the option are:

MINMEM The minimum amount of RAM
managed by the memory manager.
Default value is 512KB.

MAXMEM The maximum amount of RAM
managed by the memory manager.
Default value is 4MB.

Standard Installation On A SUN

Motorola Installation Guide 2-3

As an example, the following line in the autoexec.bat file will enable an 8MB swap
file with automatic deletion of the swap file:

SET DOS4GVM=DELETESWAP VIRTUALSIZE#8192
The following line will use F drive for the swap space instead of the current drive.

SET DOS4GVM=DELETESWAP SWAPNAME#F:\BIG.SWP
8. There is aREAD.MEfile included in the package and it should be read for any

recent changes in the installation on compiler itself.

2.3 Standard Installation On A SUN
1. Insert the supplied first floppy diskette into the tape drive.

2. Login asroot .

3. Enter the command: cd /usr/local.

4. Enter the command: bar xZvf /dev/rfd0. If the floppy drive must be accessed via a
different device file thanrfd0 , then use the appropriate device for your system.

5. Logout.

6. Make sure that all users add /usr/local/dsp/bin to their path. This enables the shell
to find the control program G56k and other programs in the DSP56KCC
distribution package.

SWAPNAME The swap file name for the
memory manager uses for the swap
space. Default is DOS4GVM.SWP
on the current drive.

DELETESWAP Specifies that the swap file should
be deleted after memory
management.

VIRTUALSIZE The size of the virtual memory
space. Default is 16MB. The value
should be entered as numeric value
of KB.

MINMEM The minimum amount of RAM
managed by the memory manager.
Default value is 512KB.

2-4 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

Alternate Installation On A SUN

2.4 Alternate Installation On A SUN
1. Insert the supplied first floppy diskette into the floppy drive.

2. Login asroot , or as yourself, if access permissions allow.

3. Inside the shell, use the commandcd to go to the directory where the compiler’s
DSP directory tree is to reside. For this example, assume that the compiler is to be
installed in /usr/mydir (referred to by <compiler’s DSP directory tree> here).

4. Make sure that you have write permission in the directory.

5. Enter the command:bar xZvf /dev/rfd0 . If the floppy drive must be accessed via a
different device file thanrfd0 , then use the appropriate device for your system.

6. Make sure that every user adds <compiler’s DSP directory tree>/dsp/bin to their
path. In this example, the path /usr/mydir/dsp/bin would be added to everyone’s
path.

7. Make sure that every user sets the environment variable DSPLOC to the path
leading to theDSPdirectory tree which is the directory <compiler’s dsp directory
tree>. In this example, DSPLOC would be set to /usr/mydir. Note that DSPLOC
would not be set to /usr/mydir/dsp.

2.5 Test Program

The following test program is intended to be a very simple check to see if the installation
has been completed correctly. The program should be put in a file named “hello.c”. The
control program, G56k, compiles the program in the file “hello.c” and generates the output
file “a.cld”. Do not enter theC:> as it is simply a prompt indicating that this line should be
entered from the keyboard. The command run56 executes the program in the file “a.cld”
and the result is to print “hello world.” on the computer screen.

Example 2-1. Test Program

#include <stdio.h>

main ()

{

printf (“hello world.\n”);

}

C:\> g56k hello.c

C:\> run56 a.cld

hello

Overview

Motorola Control Program Options 3-1

Chapter 3
Control Program Options

3.1 Overview

Program G56k is thecontrol programfor Motorola’s optimizing C compiler for the
DSP56000/DSP56001 family of digital signal processors. The program G56k automates
control of the four C compiler phases – preprocessing, compiling, assembling, and linking.
The program G56k utilizes a command syntax similar to those adopted by UNIX utilities.
The G56k syntax is:

g56k [options] files

where:

1. [options] is one or more of the options found in this chapter. One difference
between G56k and UNIX-style utilities is that the combination of multiple single
character options is not allowed. For example, “-O -g” instructs the compiler to
generate an optimized executable with source level debug information, whereas
“-Og”, which is acceptable to UNIX-style compilers is not acceptable to G56k.

2. “file …” is the file(s) to be processed. Program G56k accepts input filenames
suffixed with “.c” (ANSI C source files), “.i” (preprocessed C source files), “.asm”
(DSP56000/DSP56001 assembly code), and “.cln” (COFF link files). The control
program processes each file according to this suffix. The G56k output is controlled
by the specific set of command line options provided. For instance, if no command
line arguments are provided, the compiler will generate a COFF load file “a.cld”. If
the-c option is invoked, the compiler will generate a COFF link file suffixed with
“.cln”. A complete description of the command line options, with examples, is
provided in Section 3.2.

Note: It is strongly recommended that g56k always be used to invoke the C compiler
utilities rather than individually executing them.

A standard directory search list is consulted by G56k for:

3-2 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

Overview

1. Each of the four executables,

i. MCPP– the C compiler preprocessor,

j. G56-CC1– the C compiler/optimizer,

k. ALO56 –the assembly language optimizer,

l. ASM56000 – the DSP56000/DSP56001 assembler,

m. DSPLNK – the DSP56000/DSP56001 linker.

2. Start-up file,crt056*.cln . Where* is a single character (x, y or l; i.e., x data
memory, y data memory or long data memory) to denote the memory model.

3. ANSI C library,lib56c*.clb . Where* is a single character (x, y or l) to denote
the memory model.

This standard directory search list for UNIX systems is:

1. /usr/local/dsp/bin/

2. /usr/local/dsp/lib/

3. /lib/

4. /usr/lib/

5. ./

The standard MS-DOS directory search list for the path set up in Section 2.2 is:

1. C:\dsp\bin

2. C:\dsp\lib

3. C:

4. C:\dos

5. other directories in the path name

Note that if the environment variable DSPLOC is set, the value of DSPLOC will be
substituted for 1 and 2 above.

Table 3-1 lists all the user selectable options used byg56k. They are grouped to show
what program uses each option. All of these options are described in detail later in this
chapter; however, these lists provide an overview of what options are available. Notice
that there is a -v option listed under bothg56kCommand Options and Preprocessor Phase
Options. This is actually the same option but it is used by these two programs in different
ways (see Section 3.2 and Section 3.2.1).

Under compile phase options, there is a group of -f options; these are the machine
independent optimization options whereas the -m options below are the optimization

Overview

Motorola Control Program Options 3-3

options specific to the DSP56000/1. Although these various methods of optimization are
all effective, they may have side effects which are undesirable in specific cases, e.g. an
optimization option may increase code speed at the cost of increased memory usage. It is
often preferable to trade memory space for speed, but in cases where the extra memory
space is not available, this particular optimization could not be used.

The various compiler phases will report errors; however, the user has the option to turn off
all warnings using-w and can enable additional warnings individually or as a group using
-wall. The warnings which are not enabled by-wall are those listed below-wall in
Table 3-1, “DSP56KCC Options,” on page 3-4.

3-4 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

Overview

Table 3-1. DSP56KCC Options

g56k
Command

Line Options

Preprocesso
r Phase
Options

Assemble Phase
Options

Link Phase
Options

Compile Phase
Options

-Bdirectory
-bPREFIX
-o FILE
-v

-C
-DMACRO
-DMACRO=D
EFN
-E
-IDIR
-I-
-i FILE
-M
-MM
-nostdinc
-pedantic
-P
-v
-UMACRO
-Wcomment
-Wtrigraphs

-asm string
-c

-crt file
-j string
-lLIBRARY
-r MAPFILE

-alo
-fno-opt
-fno-peephole
-fno-strength-reduce
-fno-defer-pop
-fforce-addr
-finline-functions
-fcaller-saves
-fkeep-inline-functio
ns
-fwritable-strings
-fcond-mismatch
-fvolatile
-ffixed-REG
-g
-O
-m56002
-mno-dsp
-mno-do-loop-gener
ation
-mno-linv-plus-biv-pr
omotion
-mp-mem-switchtabl
e
-mstack-check
-mx-memory
-my-memory
-ml-memory
-pedantic
-Q
-S
-w
-W
-Wimplicit
-Wreturn-type
-Wunused
-Wswitch
-Wall
-Wshadow
-Wid-clash-LEN
-Wpointer-arith
-Wcast-qual
-Wwrite-strings

G56k Command Line Options

Motorola Control Program Options 3-5

3.2 G56k Command Line Options

The default options are:

1. Use strict ANSI syntax.

2. Perform all machine dependent and independent optimizations.

3. Use trigraphs.

4. Locate data in the Y data memory space.

-Bdirectory

Add directoryto the standard search list and have it searched first. This can also be
accomplished by defining the environment variable G56_EXEC_PREFIX. Note
that only one additional directory can be specified and that the-B option will
override the environment variable.

Example 3-1. Lib56cy.clb

To test a new version of the ANSI C library, lib56cy.clb, which is installed as
\dsp\new\lib56cy.clb use:

C:\> g56k -B\dsp\new\ file.c -o file.cld

Example 3-2. G56_EXEC_PREFIX

Using the G56_EXEC_PREFIX environment variable to have the same effect as
Example 3-1, include in the .cshrc or .login files:

set G56_EXEC_PREFIX=C:\DSP\NEW\
and then execute:

C:\> g56k file.c -o file.cld

Example 3-3. Test New Version of DSP56000/1 C

To test a new version of the DSP56000/1 C preprocessor before permanent installation,
install a new MCPP program as c:\tmp\new\mcpp and then execute:

C:\> g56k -Bc:\tmp\new\ testfile.c

-bPREFIX

Direct G56k to search for compilation phases, start-up files and libraries whose
names are prefixed with the wordPREFIX.Note that only one additional prefix can
be specified. This is very similar to the-B option.

3-6 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

G56k Command Line Options

Example 3-4. Test New Version of ANSI C Library

Test a new version of the ANSI C library, lib56cy.clb, installed as
c:\dsp\lib\new-lib56cy.clb.

C:\> g56k -bnew- file.c -o file.cld

Example 3-5. Test New Version of DSP56KCC

Test a new version of the DSP56KCC preprocessor before permanent installation.

install the new MCPP program as c:\dsp\bin\new-mcpp and
C:\> g56k -bnew- testfile.c

-o FILE

SelectFILE as the output file. This applies to all phases of the compiler. When the
-o flag is not in use, the following file names are used by the compiler as the default
output file names depending upon the compile options as follows:

wherestdout is “standard output” and prints to the console.

Example 3-6. Generate a Preprocessed File

Only generate a preprocessed file (do not invoke the compiler, assembler or linker) and
put the results infile.i .

C:\> g56k -E file.c -o file.i

Example 3-7. Compile file.c / Generate Executable Ouput File

Compilefile.c and generate the executable output file,fft.cld . If an output name is
not given, the default file name isa.cld .

C:\> g56k file.c -o fft.cld

-E (preprocess only) stdout

-S (compile only) foo.asm

-c (no linkage) foo.cln

complete process a.cld

G56k Command Line Options

Motorola Control Program Options 3-7

-v

Verbose mode. The compiler control program announces to Stderr all commands
that it attempts to execute for each phase of the compilation process. This
command is also used by the preprocessor to print the software version
information. If the-E option is selected,-v will only enable the verbose mode,
otherwise it will enable the verbose mode and print the version information.

3.2.1 Preprocessor Phase Options

The options listed below control the C preprocessor, which is run on each C source file
before actual compilation. Some options described only make sense when used in
combination with the-E option (preprocess only), as the requested preprocessor output
may be unsuitable for actual compilation. The default option is to use ANSI C syntax. For
example, if the-IDIR option is not specified then ANSI specifies that the current working
directory will be searched first for user defined “include” files.

-C

Tell the preprocessornot to discard comments. This option is only valid when used
in conjunction with the-E option.

Example 3-8. Preprocess Program Foo.c

This example preprocesses a simple program, foo.c, without discarding comments.

C:\> type foo.c
/*

* This COMMENT won’t be deleted.
*/

main()
{

printf("Hello, DSP56000\n");
}

C:\> g56k -E -C foo.c
1 "foo.c"
/*

* This COMMENT won’t be deleted.
*/

main()
{

printf("Hello, DSP56000\n");
}

3-8 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

G56k Command Line Options

-DMACRO

Define the preprocessor macro MACRO with a constant value of “1”. This is
equivalent to making MACRO a constant set to one.

Example 3-9. Compile and Run Program Dsp.c

Compile and run a simple program, Dsp.c, and enable or disable a printed message
depending on the macro definition given at the command line.

C:\> type dsp.c
#include <stdio.h>
main()
{
#ifdef DSP56000

printf("message: DSP56000.\n");
#else

printf("message: DSP56001.\n");
#endif
}

C:\> g56k -DDSP56000 dsp.c
C:\> dir

a.cld dsp.c

C:\> run56 a.cld
message: DSP56000.

C:\> g56k dsp.c
C:\> ls

a.cld dsp.c
C:\> run56 a.cld

message: DSP56001.

-DMACRO=DEFN

Define preprocessor macro MACRO as DEFN.

G56k Command Line Options

Motorola Control Program Options 3-9

Example 3-10. Program Dsp.c

The program Dsp.c uses the macro FROM_COMMAND_LINE which prints a message to
the standard output using a message code given on the command line.

C:\> type dsp.c
#include <stdio.h>
main()
{

printf("message code: %d.\n", FROM_COMMAND_LINE);
}

C:\> g56k -DFROM_COMMAND_LINE=56000 dsp.c
C:\> dir

a.cld dsp.c

C:\> run56 a.cld
message code: 56000.

-E

The input source file will only be preprocessed through CPP and the output results
will be sent to the standard output. See the-O option to save the output into a
named file.

Example 3-11. Preprocess C Source Program Foo.c

This example shows how to preprocess the C source program Foo.c and send the results to
the standard output.

C:\> type foo.c
#define DELAY 1000
main()
{

int cnt = DELAY;
while(cnt--);

}
C:\> g56k -E foo.c

1 "foo.c"

main()
{

int cnt = 1000 ;
while(cnt--);

}

3-10 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

G56k Command Line Options

Example 3-12. CPP Output

The CPP output can be saved into file "foo.i " by using the-o option.

C:\> type foo.c
#define DELAY 1000
main()
{

int cnt = DELAY;
while(cnt--);

}

C:\> g56k -E foo.c -o foo.i
C:\> dir

foo.c foo.i

C:\> type foo.i
1 "foo.c"

main()
{

int cnt = 1000 ;
while(cnt--);

}

-IDIR

The control line of the C source program of the form

#include <filename>
will cause the replacement of that line by the entire contents of the filefilename.
This is normally referred to as “file inclusion”. The named file is searched for in a
sequence of implementation-dependent directories. The standard include directory
for this compiler is /usr/local/dsp/include. Similarly, a control line of the form

#include “filename”
searches first in the current working directory, and if that fails, then searches as if
the control line were #include <filename >.

The option-IDIR directs the C compiler to include the directory DIR in addition to
the standard include directory. For the file inclusion <filename >, the compiler
searches first in the DIR directory and if that fails, then searches
/usr/local/dsp/include. For the file inclusion “filename ”, the compiler searches
first in the DIR directory and if that fails, then searches the current working
directory, and if that fails also, then searches /usr/local/dsp/include.

G56k Command Line Options

Motorola Control Program Options 3-11

A delay program Foo.c uses delay constantDELAY which is defined in the include file,
myinclude.h . The program uses the control line #include “myinclude.h ” to include
the definition of the constantDELAY . Without any option the include file should be
located in the currently working directory since it is not in the standard include directory.
Assuming that the include file“ myinclude.h ” is desired to be in the directory ./inc, the
following sequence of the commands explains how the-I option is used to include the file
myinclude.h in the ./inc directory with the control line #include “myinclude.h ” in the
Foo.c program.

Example 3-13. -I Option Used to Include the File “myinclude.h”

C:\> dir
foo.c inc/

C:\> dir inc
myinclude.h

C:\> type foo.c
#include "myinc.h" /* this is the control line to

include it */
main()
{

int cnt;
cnt = DELAY;
while(cnt--); }

C:\> type inc\myinc.h
#define DELAY 100

C:\> g56k -I.\inc foo.c
C:\> dir

a.cld foo.c inc/

-I-

This option is always used in conjunction with the-IDIR option and limits the file
search to look for file inclusions#include “ filename ”, whereas-IDIR alone
directs C compiler to search the directory DIR for both file inclusion <filename>
and “filename”. Any directories specified with-I options beforethe-I- option are
searched only for the case of#include “filename” ; they are not searched for
#include <filename> .

If additional directories are specified with-I options afterthe-I- option, these
directories are searched for both#include “filename” and#include

<filename> directives.

3-12 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

G56k Command Line Options

As an example, the sequence of the options

-IDIRA -I- -IDIRB
directs C compiler to use both the directoriesDIRA andDIRB for the file inclusion
“ filename ” and DIRB only for file inclusion <filename >.

Note: The-I- option inhibits the use of the current directory as the first search
directory for#include “filename” . There is no way to override this effect
of -I- . However, the directory which is current when the compiler is invoked
can be searched by using-I . This is different from the preprocessor’s default
search list, but it is often satisfactory.-I- does not inhibit the use of the standard
system directories for header files. Thus,-I- and-nostdincare independent.

A test program File.c is used to test a file operationfopen() which is, in this example,
desired to be developed for a DSP56000/1 system. The file include <stdio.h> is used as if
it is in the standard include directory. The file is desired to be developed or debugged, and
it is located in the user working directory ./mysys. This example shows how to use-IDIR
and-I- combination to test file inclusion <filename >. Notice that the-I./inc -I-
-I./mysysoption specifies the Inc directory only for the file inclusion “cnt.h ” and mysys
directory for the file inclusion <stdio.h >.

Example 3-14. Test Program “file.c”

C:\> dir
file.c inc/ mysys/

C:\> dir inc
cnt.h

C:\> dir mysys
stdio.h

C:\> type file.c
#include <stdio.h>
#include “cnt.h”
main()
{

int delay = COUNT;
FILE *fp;
fp = fopen(“myfile”, “w”);
while(--delay);

}
C:\> type inc\cnt.h

#define COUNT 25

G56k Command Line Options

Motorola Control Program Options 3-13

C:\> type mysys\stdio.h
typedef struct FILE { /* FILE data structure to develop
*/

char name[10];
char buffer[1024];

} FILE;
FILE *fopen(char *, char *); /* new function to develop

*/

C:\> g56k -I.\inc -I- -I.\mysys -E file.c
1 ”file.c”
1 ”.\mysys\stdio.h”1
typedef struct FILE {

char name[10];
char buffer[1024];

} FILE;
FILE*fopen(char*,char*);
1 ”file.c”2
1 ”.\inc\cnt.h”1
2 ”file.c”2

main()
{

int delay = 25;
FILE *fp;
fp = fopen (“myfile”, ”w”);
while (--delay);

}

Notice that the file inclusion “cnt.h” is from the directory ./inc as shown in the line # 1
“.\inc\cnt.h” 1 and the file inclusion <stdio.h> is from the directory .\myinc as shown in
the line # 1 “.\myinc\stdio.h” 1.

-i FILE

Process FILE as an input, discarding the resulting output, before processing the
regular input file. Because the output generated from FILE is discarded, the only
effect of-i FILE is to make the macros defined in FILE available for use in the
main input.

3-14 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

G56k Command Line Options

Example 3-15. Program Greeting.c Prints Message

The program Greeting.c prints a simple message using the macro MESSAGE. The file
macros.c contains the macro definition, i.e. the actual message. The only role of the file
macros.c is to provide the macro definitions and will not affect any other code or data
segments.

C:\> dir
macros.c greeting.c

C:\> type macros.c
#define MESSAGE "Hello, world."

C:\> type greeting.c
#include <stdio.h>
main()
{

printf("Greeting: %s\n", MESSAGE);
}

C:\> g56k -i macros.c greeting.c
C:\> run56 a.cld

Greeting: Hello, world.

-M

Cause the preprocessor to output the makefile rules to describe the dependencies of
each source file. For each source file, the preprocessor outputs one make-rule
whose target is the object file name for that source file and whose dependencies are
all the files needed to generate the object target file. This rule may be a single line
or may be continued with ‘\’-newline if it is long.-M implies-E with makefile
rules.

G56k Command Line Options

Motorola Control Program Options 3-15

Example 3-16. Program Big.c

The program Big.c, which prints the larger of two integers, uses the macro greater (x,y)
which is defined in the filegreater.h . A command line output using the-M option can
be used for makefile utilities. For more information on how to use this dependency check
the make utility information in any UNIX utility manual.

C:\> dir
big.c greater.h

C:\> type big.c
#include <stdio.h>
#include "greater.h"
main()
{

printf("big:%d\n", greater(10,20));
}

C:\> type greater.h
#define greater(x,y) ((x)>(y)?(x):(y))

C:\> g56k -M big.c
big.o : big.c \dsp\include\stdio.h

\dsp\include\ioprim.h \dsp\include\stdarg.h greater.h

-MM

Like -M but the output mentions only the header files described in the#include

“FILE” directive. System header files included with#include <FILE> are
omitted.-MM implies-E with makefile rules.

Example 3-17. Program Big.c

The program Big.c, which prints the larger of two integers, uses the macro greater (x,y)
defined in the filegreater.h . The-MM option is used to generate a makefile rule.
Notice that the rule that generates an output file appended by “.o” can be modified to
generate “.cld” which is required for the Motorola Cross C Compiler.

C:\> dir
big.c greater.h

C:\> type big.c
#include <stdio.h>
#include "greater.h"
main()
{

printf("big:%d\n", greater(10,20));
}

3-16 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

G56k Command Line Options

C:\> type greater.h
#define greater(x,y) ((x)>(y)?(x):(y))

C:\> g56k -MM big.c
big.o : big.c greater.h

C:\> dir
big.c greater.h makefile text

C:\> type makefile
a.cld : big.o

g56k big.o
big.o : big.c greater.h

g56k -c -o big.o big.c
C:\> make

g56k -c -o big.o big.c
g56k big.o

C:\> run56 a.cld
big:20

-nostdinc

Do not search the standard system directories for file inclusions. Only the
directories specified with-I options (and the current directory, if appropriate) are
searched.

Using both-nostdinc and-I- options, all directories from the search path except
those specified can be eliminated.

Example 3-18. Test Program Test.c

A test program, Test.c, is used to test a new version of the functionprintf() which is
declared in a new header fileinc/stdio.h . The directive #include <stdio.h> causes the
program to use stdio.h; however, it would normally find it in the standard search directory,
/usr/local/dsp/include/. Using the-nostdinc option prevents the standard search directory
from being searched and allows the-l option to point to the correct directory.

C:\> dir
inc/ test.c

C:\> dir inc
stdio.h

C:\> type test.c

G56k Command Line Options

Motorola Control Program Options 3-17

#include <stdio.h>
main()
{

printf("Hello, there.\n");
}

C:\> type inc\stdio.h
void printf(char *);

C:\> g56k -nostdinc -I.\inc -E test.c
1 "test.c"
1 ".\inc\stdio.h" 1
void printf(char *);
1 "test.c" 2

main()
{

printf("Hello, there.\n");
}

-pedantic

The -pedantic option is used by both the preprocessor and the compiler (see
-pedantic in the section 3.2.2, “Compile Phase Options.” for an explanation of this
option).

-P

Only run the source file through the C preprocessor. This option sends the output to
a file with a .i suffix. This output file does not include # line information in the
output file.

-v

Output preprocessor version information. The primary purpose of this command is
to display the software version. This information is needed when calling the
Motorola DSP helpline for assistance (see Appendix D — Additional Support for
the helpline phone number). Although information pertaining to the internal flags
and switch settings is included in this information, it is not intended for use by the
programmer and may be misleading. This command is also used by the command
program to initiate the verbose mode of operation.

3-18 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

G56k Command Line Options

Example 3-19. -v Option

The-v option is selected using the control program G56k. The version numbers for G56k,
MCPP and G56-cc1 are printed. This information is showing the commands that the
control program invokes along with the selected options. In this case it is showing the
default options plus the-v option. However, the user should not invoke these programs
independently but should always use the control program to invoke them.

C:\> dir
foo.c

C:\> g56k -v foo.c
g56k version Motorola Version: g1.11 -- GNU 1.37.1

c:\dsp\bin\mcpp -v -undef -D__Y_MEMORY -trigraphs
-$ -D__STRICT_ANSI__ -D__DSP56K__ -D__OPTIMIZE__
foo.c cca00527.cpp

GNU CPP version 1.37.1
c:\dsp\bin\g56-cc1 cca00527.cpp -ansi

-fstrength-reduce -quiet -dumpbase foo.c -O -version
-o cca00527.asm

GNU C version 1.37.1 Motorola DSP56000/1 Motorola
Version: g1.11 compiled by GNU C version 1.37.1.

default target switches: -mdsp
-mlinv-plus-biv-promotion -mdo-loop-generation
-my-memory -mcall-overhead-reduction -mrep
-mreload-cleanup -mnormalization-reduction

c:\dsp\bin\asm56000 -c -B foo.cln -- cca00527.asm
c:\dsp\bin\dsplnk -c -B a.cld

--c:\dsp\lib\crt056y.cln foo.cln -L
c:\dsp\lib\lib56cy.clb
C:\> dir

a.cld foo.c

-UMACRO

Undefine macro MACRO.

G56k Command Line Options

Motorola Control Program Options 3-19

Example 3-20. DEBUG Flag

An application program, Test.c, is being tested and some portions of the code need to be
debugged. The flag DEBUG may be turned on or off through the command line with the
-D and-U options respectively. This flag can then be used inside the program to
enable/disable debugging features within the program.

C:\> dir
debug.c

C:\> type debug.c
#include <stdio.h>
main()
{
#ifdef DEBUG

printf("debug: a message.\n");
#endif

printf("normal operation.\n");
}

C:\> g56k -UDEBUG debug.c
C:\> run56 a.cld

normal operation.

-Wcomment

Warn the user whenever the comment start sequence/* appears within a comment.

Example 3-21. -Wcomment Option

A comment is enclosed with /* and */ and therefore is ignored by the preprocessor. Any
number of leading /*’s are permitted within the comment and will not be reported;
however, a warning message can be enabled by using the-Wcomment option.

C:\> dir
foo.c

C:\> type foo.c
/* foo.c */
main() { /* begin */

int d = 1000; /* /* delay */
while(d--); /* /* main /* loop */

} /* end */

C:\> g56k -Wcomment foo.c
foo.c:3: warning: ‘/*’ within comment

3-20 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

G56k Command Line Options

foo.c:4: warning: ‘/*’ within comment
foo.c:4: warning: ‘/*’ within comment

C:\> g56k foo.c

-Wtrigraphs

Warn if any trigraphs are encountered (Trigraphs are sequences of three characters
which are replaced by a single character. These trigraph sequences enable the input
of characters that are not defined in the Invariant Code Set as described in ISO
646:1983, which is a subset of the seven-bit ASCII code set.).

3.2.2 Compile Phase Options

The default options are:

1. Perform all machine dependent and independent optimizations.

2. Donot run the assembly language optimizer (alo56).

3. Do not generate debugging information.

4. Locate data only in the Y data memory space.

-alo

Run the assembly language optimizer on the assembly language output ofG56-cc1.
This improves the utilization of parallel moves.

-fno-opt

Disable all optimizations.

-fno-peephole

Disable the peephole portion of optimization.

-fno-strength-reduce

Disable the optimizations of loop strength reduction and elimination of iteration
variables as well as DSP56000/1 specific looping optimizations (DO instruction
usage, etc.).

G56k Command Line Options

Motorola Control Program Options 3-21

-fno-defer-pop

By default, the compiler will try to defer (delay) restoring the stack pointer upon
the return of a function call. The purpose of deferring restoration of the stack
pointer is to reduce code size and decrease execution time; however, the stack
penetration may increase (see theDSP56000 Family Manualfor information on
stack overflow).

Examples of function calls that will not incur deferred pops whether or not the
-fno-defer-pop option is specified are:

• calls as function arguments

• calls in conditional expressions

• calls inside a statement expression

-fforce-addr

Force memory address constants to be copied into registers before doing arithmetic
on them. The code generated with this option may be better or it may be worse
depending on the source code. This option forces memory addresses into registers
which, in turn, may be handled as common sub-expressions.

-finline-functions

Attempt to insert all simple functions in-line into their callers. The compiler
heuristically decides which functions are simple enough to merit this form of
integration.

If all calls to a given function are inserted, and the function is declared static, then
the function is no longer needed as a separate function and normally is not output as
a separate function in assembly code.

-fcaller-saves

Enable values to be allocated in registers that will be overwritten by function calls
by emitting extra instructions to save and restore the registers around such calls.
Such allocation is done only when it seems to result in better code than would
otherwise be produced.

-fkeep-inline-functions

Output a separate run-time callable version of the function even if all calls to a
given function are integrated and the function is declared static.

3-22 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

G56k Command Line Options

-fwritable-strings

Store string constants in the writable data segment without making them unique.
This is for compatibility with old programs which assume they can write into string
constants. Writing into string constants is poor technique;constantsshould be
constant.

-fcond-mismatch

Allow conditional expressions with mismatched types in the second and third
arguments. The value of such an expression is void.

-fvolatile

Consider all memory references through pointers to be volatile.

-ffixed-REG

Treat the register named REG as a fixed register; generated code should never refer
to it (except perhaps as a stack or frame pointer). Legal values for REG are:

r1, r2, r3, r4, r5, r7

This flag should be usedsparinglyas it can have devastating results on the code
generated.

Example 3-22. R4

Reserve r4 for later special purpose.

C:\> g56k -O -ffixed-r4 file.c -o file.cld

Warning
C code that utilizes library code can produces
non-deterministic results, as the libraries have been written to
utilize the complete set of registers.

-g

Produce COFF debugging information for Gdb56, the GDB cross debugger for the
DSP56000/DSP56001.

A key feature afforded by the use of the GNU C compiler (G56k) teamed with the
GNU source level debugger (Gdb56) is that the programmer is allowed to generate
optimized code with debug information (select options-g -O) making it possible
for the programmer to debug optimized code directly. Due to the optimizations
performed, it is possible that variables will not be defined (unused variable

G56k Command Line Options

Motorola Control Program Options 3-23

elimination), statements may not be executed (dead code elimination), and code
may be executed early (code motion). This is a partial list of the oddities that may
be encountered when debugging optimized code. However, the improved code
performance due to optimization normally out weighs the problems encountered.

Example 3-23. Program Foo.c

The program Foo.c has a bug. In this application the line i *= 2 should be i += 2. In order
to use the symbolic debugger, Gdb56, to locate this problem, the-g option is used when
Foo.c is compiled. This causes the compiler to generate additional information used by the
debugger.

C:\> ls
foo.c

C:\> type foo.c
main()
{

int i = 100;
i *= 2;

}

C:\> g56k -g foo.c
C:\> dir

a.cld foo.c
C:\> gdb56 a.cld

-O

Perform machine dependent and independent optimizations. This is the default
mode of the compiler.

Invoking the compiler with the optimizer may cause compile times to increase and
require more system memory.

Invoking the compiler without the optimizer should be done only when the
programmer requires additional flexibility while debugging code. An example of
such flexibility includes the ability to assign new values to declared c variables.
Additionally, non-optimized code takes register usage clues from the storage class
specifier register, something not done with the optimizer invoked.

Disabling the optimizer is done via-f options listed above.

-m56002

Enables the generation of DSP56002 instructions.

3-24 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

G56k Command Line Options

-mno-dsp-optimization

Disables all Motorola optimizer enhancements.

-mno-do-loop-generation

DisableDO instruction usage by optimizer.

-mno-biv-plus-linv-promotion

Disable the promotion of address expressions to address registers within loops.
This optimization transforms array base address plus induction variable
expressions into auto-increment/decrement style memory references.

-mp-mem-switchtable

Forces the compiler to locate all switch tables in P memory.

-mstack-check

Generateextrarun-time code to check for run-time stack collision with the heap.
This option causes run-time execution times to increase dramatically.

-mx-memory

Direct the compiler to locate data in the X data memory space. Memory modes
cannot be mixed, i.e. only one of-mx-memory, -my-memoryor -ml-memorymay
be selected.

Example 3-24. -mx-memory Option

An application is programmed to utilize only the DSP56001 X data memory space and
therefore must be compiled using the-mx-memory option.

C:\> ls
x.c

C:\> type x.c
void function(int a, int b);
int X;
main()
{

int arg1,arg2;
function(arg1, arg2);

}
void function(int a, int b)
{

X = a + b;

G56k Command Line Options

Motorola Control Program Options 3-25

}

C:\> g56k -S -mx-memory x.c
C:\> dir

x.asm x.c

-my-memory

Direct the compiler to locate data in the Y data memory space. This is the default
memory mode. Memory modes cannot be mixed, i.e. only one of-mx-memory,
-my-memoryor -ml-memorymay be selected.

-ml-memory

Direct the compiler to locate data in the L data memory space. This has 2 side
effects.

1. A performance increase for 48-bit data code (long, float, and double).

2. This requires that the X and Y memory spaces be evenly populated.

Memory modes cannot be mixed, i.e. only one of-mx-memory, -my-memoryor
-ml-memorymay be selected.

-pedantic

Issue all the warnings demanded by strict ANSI standard C; reject all programs that
use forbidden extensions.

Without this option, certain GNU extensions and traditional C features are
supported. With this option, they are rejected. Valid ANSI standard C programs
will compile properly with or without this option.

-pedantic does not cause warning messages for use of the alternate keywords
whose names begin and end with “_ _”.

-Q

Direct the compiler to execute in verbose mode.

-S

Compile to DSP56000/1 assembly code with the original C source lines as
comments but do not assemble. The assembly language output is placed into a file
suffixed .asm.

3-26 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

G56k Command Line Options

Example 3-25. Generate an optimized assembly language file (test.asm) of the C
source program (test.c).

C:\> dir
test.c

C:\> type test.c
#include <stdio.h>
main()
{

int i = 100;
printf("value:%d\n", i++);

}

C:\> g56k -S test.c
C:\> dir

test.asm test.c

Example 3-26. Generate an optimized assembly language file test.asm .

C:\> g56k -O -S test.c

-w

Inhibit all warning messages.

-W

Print extra warning messages for the following events:

• An automatic variable is used without first being initialized.

This warning is possible only when the optimizer is invoked during compilation
(default). The optimizer generates thedata flowinformation required for reporting.

This warning will only occur for variables that are candidates for register
promotion. Therefore, they do not occur for a variable that is declared volatile,
whose address is taken, or whose size is other than 1 or 2 words (integral and float
data types). Warnings will not occur for structures, unions or arrays, even when
they are in registers.

There may be no warning about a variable that is used only to compute a value that
is never used because such computations may be deleted by data flow analysis
before the warnings are printed.

Spurious warnings may be avoided by declaring functions that do not return as
volatile.

• A nonvolatile automatic variable may be changed by a call to longjmp.

This warning also requires that the optimizer be invoked.

G56k Command Line Options

Motorola Control Program Options 3-27

The compiler sees only the calls tosetjmp . It cannot know wherelongjmp will
be called; in fact, a signal handler could call it at any point in the code. As a result,
a warning may be issued even when there is no problem becauselongjmp cannot
be called at the place which would cause a problem.

A function can return either with or without a value. (Falling off the end of the
function body is considered returning without a value.) For example, this function
would evoke such a warning:

foo (a)
{

if (a > 0)
return a;

}
Spurious warnings can occur because GNU CC does not realize that certain
functions (including ‘abort’ and ‘longjmp’) will never return.

• An expression-statement contains no side effects.

Example 3-27. -W

Extra warning messages are wanted to help find potential problems in a test function,
foo(), which is programmed to return a value only if a > 0.

C:\> dir
foo.c

C:\> type foo.c
int foo(int);
main()
{

int i;
foo(i);

}
int foo(a)
{

if(a > 0)
return a;

}
C:\> g56k -W foo.c

foo.c: In function main:
foo.c:4: warning: ‘i’ may be used uninitialized in this

function
foo.c: In function foo:
foo.c:11: warning: this function may return with or

without a value

3-28 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

G56k Command Line Options

-Wimplicit

Warn whenever a function is implicitly declared.

Example 3-28. -Wimplicit

The function foo() is declared implicitly in the program foo.c, the -Wimplicit option will
generate a warning message for this situation.

C:\> dir
foo.c

C:\> type foo.c
main()
{

foo();
}
int foo(){}

C:\> g56k -Wimplicit foo.c
foo.c: In function main:
foo.c:3: warning: implicit declaration of function

‘foo’
C:\> dir

a.cld foo.c

-Wreturn-type

Warn whenever a function is defined with a return-type that defaults to int. Also
warn about any return statement with no return-value in a function whose
return-type is not void.

Example 3-29. -Wreturn-type

The function foo() is declared as a function that should return an integer but in this case
does not return an integer. The-Wreturn-type option generates a warning message in this
situation.

C:\> dir
foo.c

C:\> type foo.c
int foo(), main();
int main()
{

return foo();
}

G56k Command Line Options

Motorola Control Program Options 3-29

int foo(){}

C:\> g56k -Wreturn-type foo.c
foo.c: In function foo:
foo.c:6: warning: control reaches end of non-void

function

C:\> dir
a.cld foo.c

-Wunused

Warn whenever a local variable is unused aside from its declaration, whenever a
function is declared static but never defined and whenever a statement computes a
result that is explicitly not used.

Example 3-30. -Wunused

The file foo.c contains an undefined static function, unused local variable, and a dead
statement. The-Wunusedoption will issue warnings to indicate these situations.

C:\> dir
foo.c

C:\> type foo.c
static int foo();
main()
{

int x;
2+3;

}
C:\> g56k -Wunused foo.c

foo.c: In function main:
foo.c:5: warning: statement with no effect
foo.c:4: warning: unused variable ‘x’
foo.c: At top level:
foo.c:1: warning: ‘foo’ declared but never defined

C:\> dir
a.cld foo.c

3-30 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

Assemble Phase Options

-Wswitch

Warn whenever a switch statement has an enumeration type of index and lacks a
case for one or more of the named codes of that enumeration. (The presence of a
default label prevents this warning.) case labels outside the enumeration range also
provoke warnings when this option is used.

-Wall

All of the above-W options combined. The remaining-W options described below
are not implied by-Wall because certain kinds of useful macros are almost
impossible to write without causing those warnings.

-Wshadow

Warn whenever a local variable shadows another local variable.

-Wid-clash-LEN

Warn whenever two distinct identifiers match in the first LEN characters. This may
help prepare a program that will compile with certain obsolete compilers.

-Wpointer-arith

Warn about anything that depends on the sizeof a function type or of void. GNU C
assigns these types a size of 1, for convenience in calculations with void * pointers
and pointers to functions.

-Wcast-qual

Warn whenever a pointer is cast so as to remove a type qualifier from the target
type. For example, warn if a const char * is cast to an ordinary char *.

-Wwrite-strings

Give string constants the type const char[LENGTH] so that copying the address of
one into a non-const char * pointer will generate a warning. These warnings help at
compile time to find code that can try to write into a string constant, but only if
const in declarations and prototypes have been used carefully.

3.3 Assemble Phase Options

This group of assemble phase options is the sub-set of the available assembler options that
are compiler oriented (see theMotorola DSP56000 Macro Assembler Reference Manual
for a complete option list). The default option is to add to the standard search list the
directory that the C compiler writes its output into and then search that directory first.

Link Phase Options

Motorola Control Program Options 3-31

-asm string

Pass the argumentstring directly to Asm56000, the DSP56000/1 assembler.

Example 3-31. Pass a single option to the assembler.

C:\> g56k -asm -v file.c

Example 3-32. Pass multiple options to the assembler.

C:\> g56k -asm “-v -OS,CRE” file.c

-c

Compile and/or assemble the source files, suppressing the link phase. This option
generates corresponding output files suffixed “.cln”. Affected input files are
suffixed with “.c” and “.asm”.

3.4 Link Phase Options

The options listed below control the link phase of the compilation process. This group of
link phase options is the sub-set of the available linker options that are compiler oriented
(see theMotorola DSP56000 Linker/Librarian Reference Manualfor a complete option
list). The-crt and-l options locate the file provided as an argument by searching a
standard list of directories, see section 3.1, “Overview.” for this directory list. The default
option is to add the C compiler output directory into the standard search list and search
that directory first.

-crt file

Replace the default start-up file (crt056.cln) with file. G56k searches the
standard list of directories to find the start-up file. In addition, any directory defined
using the-B option or the G56_EXEC_PREFIX environment variable will be
searched. For additional information, see Chapter 6.

3-32 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

Link Phase Options

Example 3-33. -crt file

Compile the C program foo.c with the crt0 file crt.asm. Notice that the crt0 filecrt.asm

should be assembled before use since the option-crt takes .cln file not .asm file.

C:\> dir
crt.asm foo.c
C:\> g56k -c crt.asm
C:\> dir
crt.cln crt.asm foo.c
C:\> g56k -crt crt.cln foo.c

-j string

Pass the argument string directly to dsplnk, the DSP56000/1 linker.

Example 3-34. Pass a single option to the linker.

C:\> g56k -j -v file.c

Example 3-35. Pass multiple options to the linker.

C:\> g56k -j “-v -i” file.c

-lLIBRARY

Search the standard list of directories for a library file namedlibLIBRARY.clb .
The linker automatically expandsLIBRARYfrom the option command into
libLIBRARY.clb and uses this file as if it had been specified precisely by name.

Example 3-36. -lLIBRARY

Compile the source code using the special dsp application library. Searching the standard
list of directories for a library namedlibdspaps.clb .

C:\> g56k -O file.c -ldspaps

-r CTLFILE

Search the standard list of directories for the memory control fileCTLFILE to be
passed as an argument to the DSP56000/1 relocatable linker. This control file will
be used as a table to locate object files sections to be linked. For more detailed
information, see the-R options and the section on “Memory Control File” in the
Motorola Linker/Librarian Reference Manual.

Link Phase Options

Motorola Control Program Options 3-33

Compile the source codemain.c anddata.c with the memory configuration described
in the control filemap.ctl . Notice that the sectionmain_c of the program Main.c is
located at the memory addressp:$3000 and the section of data_c of the data data.c is
located at the memory addressy:$5000 . See chapter 5 for detailed information on the
in-line assembly code (_ _ asm(...)).

Example 3-37. -r CTLFILE

C:\> type map.ctl
sectionmain_c p:$3000
section data_c y:$5000

C:\> type data.c
int data = 0x1; /* test value */

C:\> type main.c
extern int data;
main()
{

int i;
for(i = 0; i < 10; i++)

_ _asm(“rol %0” : “=D” (data) : “0”
(data));

}

C:\> g56k -j “-mmap.map” -r map.ctl main.c data.c

C:\> type map.map
...
Y Memory (default)
Start End Length Section
5000 5000 1 data_c
...
P Memory (default)
Start End Length Section
3000 3008 9 main_c
...

3-34 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

Link Phase Options

Data Types and Sizes

Motorola About g56k 4-1

Chapter 4
About g56k

4.1 Introduction

The DSP56000 digital signal processors are designed to execute DSP oriented calculations
as fast as possible. As a by-product, they have an architecture that is somewhat
unconventional for C programming. Because of this architecture, there are characteristics
of the compiler, and the code generated by the compiler, that the programmer must
understand in order to take full advantage of the DSP56KCC programming environment.
All programmers, whether they are familiar with DSP or not, should understand the
DSP56000 family architecture before attempting to program it in C. The following
sections provide important information on data types, storage classes, memory and
register usage, and other topics which will be useful to the DSP56000 application
developer programming in C.

4.2 Identifiers

An identifier is defined as a sequence of letters, digits and underscore characters (‘_’). The
first character must be a letter or underscore. DSP56KCC identifier length limits are listed
in Table 4-1.

4.3 Predefined Preprocessor Macro Names

DSP56KCC supports and expands all ANSI defined macros and three additional
non-ANSI predefined macro names. Table 4-2 lists the macros and their explanation.

4.4 Data Types and Sizes

Due to the word orientation of the DSP56000 family (24-bit words), all data types are
aligned on word boundaries. This has several side effects, one of which is thatsizeof
(char) is equal to sizeof(int).

Table 4-1. Identifier Length Limits

Identifier Storage Class Length

Global/Static (External Linkage) 255

Auto unlimited

4-2 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

Data Types and Sizes

4.4.1 Integral Data Types

The type char, unsigned char, signed char, short int, int, long int and the enumerated types
comprise the integral data types. The type sizes and ranges are defined in Table 4-3.

Table 4-2. Predefined Macro List and Explanation

MACRO ANSI Explanation

_ _LINE_ _ YES The line number of the current source line (a decimal
constant).

_ _FILE_ _ YES The name of the source file (a character string).

_ _DATE_ _ YES The compilation date (a character string of the form “Mmm
dd yyyy” e.g., Jul 22 1991).

_ _TIME_ _ YES The compilation time (a character string of the form
“hh:mm:ss”).

_ _STDC_ _ YES Decimal constant 1, indicates ANSI conformation.

_ _DSP56K_ _ NO Decimal constant 1, indicates that code is being generated
for the DSP56000/DSP56001 Digital Signal Processor.

_ _VERSION_ _ NO The version number of the compiler (a character string of
the form “d.dd.d”).

_ _INCLUDE_LEVEL_ _ NO Decimal constant, indicates the current depth of file
inclusion.

Table 4-3. Integral Data Type Sizes and Ranges

Data Type Size (words) Min value Max value

char 1 -8388608 8388607

unsigned char 1 0 0xFFFFFF

short 1 -8388608 8388607

unsigned short 1 0 0xFFFFFF

int 1 -8388608 8388607

unsigned int 1 0 0xFFFFFF

long 2 -140737488355328 140737488355327

Data Types and Sizes

Motorola About g56k 4-3

4.4.2 Floating-point Types

In DSP56KCC, the C data types float and double are both implemented as single precision
(see Table 4-5). DSP56KCC does not implement the IEEE STD 754-1985 standard format
for binary floating-point arithmetic. A description of the format and a comparison with the
IEEE standard follow.

4.4.2.1 Floating-point Format Description

Figure 4-1 illustrates the floating -point format used in DSP56KCC. Figure 4-1a shows
that the exponent and mantissa occupy consecutive memory locations. Figure 4-1b is in
number line format and shows the fractional nature of the mantissa and the fact that, due to
the nature of a fractional arithmetic mantissa, the numbers between -0.5 and +0.5 (except
for zero) are not needed and are therefore reserved. Figure 4-1c shows the range used by
the exponent in this implementation. Notice how this compares with the IEEE
implementation shown in Table 4-6. Figure 4-1d is a combined number line showing the
range of numbers which can be represented in DSP56KCC. The mantissa $C00000 (-0.5)
is not included as the smallest negative floating-point number because the normalization
routine automatically detects the two leading ones and decrements the exponent which, if
at $003FFF, will result in an underflow. Therefore, the smallest negative mantissa has
been set to $BFFFFF (-0.916). Table 4-5 lists the specific floating-point format
information for DSP56KCC and is a tabular version of the information in Figure 4-1.

Table 4-4. Floating-point Data Type Sizes and Ranges

Data Type Size (words) Min value Max value

float 2 1.175494351e-38 3.402823466e+38

4-4 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

Data Types and Sizes

Figure 4-1. Mantissa and Exponent Data Range of C Floating Point

$0
00

00
0

$F
F

F
F

F
F

Positive MantissaNegative Mantissa

$7
F

F
F

F
F

$8
00

00
0

$4
00

00
0

$3
F

F
F

F
F

$B
F

F
F

F
F

$C
00

0
00

-1
.0

00
00

00

-0
.5

00
00

03

0.
00

00
00

0

0.
50

00
00

0

0.
99

99
99

7

0.
49

99
99

7

-0
.5

00
00

00

-0
.0

00
00

03

$0
00

00
1

0.
00

00
00

3

Reserved Reserved

M
an

tis
sa

V
al

ue
(H

ex
)

(D
ec

im
al

)

Exponent

$7
F

F
F

F
F

$0
00

00
0

$0
03

F
F

F
$0

04
00

0

2
-8

19
2

2
81

92

Reserved

E
xp

on
en

tV
al

ue
(H

ex
)

(D
ec

im
al

)

(a) Floating-point Data Arrangement in Memory

(b) Mantissa Data Range

Exponent
Mantissa

Floating-Point Data addr
addr+1

(c) Exponent Data Range

E = $003FFF
M = $800000

E = $000000
M = $BFFFFF

E = $000000
M = $400000

E = $003FFF
M = $7FFFFF

Largest
Negative Number
-1.00 x 2+8192

-0.109 x 10+2817

Smallest
Negative Number
-0.5 x 2-8192

-0.916 x 10-2816

Largest
Positive Number
+0.999 x 2+8192

+0.109 x 10+2817

Smallest
Positive Number
+0.5 x 2-8192

+0.916 x 10-2816
= = = =

0

Note: E = Exponent and M = Mantissa

(d) Mantissa and Exponent Data Range

Data Types and Sizes

Motorola About g56k 4-5

4.4.2.2 Comparison with IEEE STD 754-1985 Standard

Since the IEEE floating-point arithmetic standard is well publicized, it is useful to
compare these two floating-point formats. The DSP56KCC floating-point format differs
from the IEEE standard primarily in its handling of floating-point exceptions. Other
differences are noted in Table 4-6. Conversion between the IEEE standard format and
DSP56KCC format is straightforward.

As shown in Table 4-6, the DSP56KCC mantissa precision is one bit less than the IEEE
single precision format. This is the result of using two’s complement arithmetic in the
DSP56000/DSP56001. The DSP56KCC exponent width is three bits more than the IEEE
double precision format. This provides an extremely large (approximately 100,000 dB)
dynamic range which eliminates exponent overflow for most applications. If exponent
overflow occurs, the result is limited to the maximum representable floating-point number
of the correct sign. If exponent underflow occurs, the result is limited to the minimum
representable floating-point number, which is zero. Although the DSP56KCC format does
not provide the arithmetic safety offered by the IEEE standard, it avoids extensive error
checking and exceptions in favor of real-time execution speed and efficient
implementation on the DSP56000/DSP56001. All exception conditions are handled
in-line (i.e., an exception routine is not invoked) according to predefined rules. The reason
for this is the fact that real-time systems must continue to process data non-stop. It is not
possible to stop execution until the application program determines a solution to the
problem and corrects it and so there is no choice but to provide an output with some
amount of error should an exception occur.

Table 4-5. Floating-point Format Description

IEEE Format Characteristic DSP56KCC Value

Decimal Value m * 2(e - ebias)

Mantissa 24-bit two’s complement, normalized fractional mantissa. This gives a
precision of approximately 7 decimal digits. A hidden leading 1 is not
implemented in this format (see Figure 4-1).

Largest Positive Mantissa $7FFFFF

Smallest Positive Mantissa $400000

Floating-point Zero Mantissa $000000

Smallest Negative Mantissa $BFFFFF

Largest Negative Mantissa $800000

Reserved Mantissas $000001 through $3FFFFF and $C00000 through $FFFFFF

4-6 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

Data Types and Sizes

Note:

1. No distinct exponents are reserved for plus infinity, minus infinity, Not-a-Number
(IEEE NaN), minus zero or denormalized numbers as is done in IEEE format.

2. All reserved mantissas are illegal since they represent denormalized mantissas.

3. If the 15th bit is set, exponent overflow has occurred.

4. If the 16th bit is set, exponent underflow has occurred.

exponent 14-bit exponent (unsigned integer, biased by ebias = $1FFF). Stored as
a 24-bit unsigned integer with 10 leading zeros. The 14-bit exponent
used by DSP56KCC provides a larger dynamic range than IEEE double
precision format.

Largest exponent (biased) $003FFF = 2+8192

Smallest exponent (biased) $000000 = 2-8192

Reserved exponents $004000 through $FFFFFF

Table 4-6. Comparison of DSP56KCC and IEEE 754-1985

CHARACTERISTIC
DSP56KCC

FORMAT IEEE FORMAT

Mantissa Precision 23 bits 24 bits

Hidden Leading One No Yes

Mantissa Format 24-bit Two’s
Complement
Fraction

23-bit Unsigned
Magnitude Fraction

Exponent Width 16 bits (14 bits used) 8 bits
11 bits

Maximum Exponent +8192 +127 (8 bit case)
+1023 (11 bit case)

Minimum Exponent -8191 -127 (8 bit case)
-1022 (11 bit case)

Exponent Bias +8191 +127 (8 bit case)
+1023 (11 bit case)

Format Width 48 bits 32 bits (8 bit case)
64 bits (11 bit case)

Table 4-5. Floating-point Format Description

IEEE Format Characteristic DSP56KCC Value

Data Types and Sizes

Motorola About g56k 4-7

One major difference is the use of affine arithmetic in the IEEE standard versus the use of
saturation arithmetic in the DSP56KCC format. Affine arithmetic gives separate identity
to plus infinity, minus infinity, plus zero and minus zero. In operations involving these
values, finite quantities remain finite and infinite quantities remain infinite. In contrast,
DSP56KCC format gives special identity only to unsigned zero. This format performs
saturation arithmetic such that any result out of the representable floating-point range is
replaced with the closest floating-point representation. Since the dynamic range of this
format is quite large, it is adequate for most applications.

The IEEE floating-point standard provides extensive error handling required by affine
arithmetic, denormalized numbers, signaling Not-a-Numbers (NaNs) and quiet NaNs. It
postpones the introduction of computational errors by using internal signaling and user
traps to process each exception condition. Computational errors will be introduced by the
application program if the calculation is completed instead of aborting the program. The
DSP56KCC format introduces computation errors when an exception occurs in order to
maintain real-time execution. An error flag (L bit in CCR) is set to inform the application
program that an exception has occurred. This bit will remain set until reset by the
application program. The user can then eliminate the exception by algorithm
modifications.

4.4.3 Pointer Types

With DSP56KCC, all pointers are 16-bits (see Table 4-7). When computing addresses
with integer arithmetic, only the least significant 16-bits are relevant.

Rounding Round to Nearest Round to Nearest
Round to +/- Infinity
Round to Zero

Infinity Arithmetic Saturation Limiting Affine Operations

Denormalized Numbers No (Forced to Zero) Yes (with Min Exp)

Exceptions Divide by Zero
Overflow
Negative Square
Root

Invalid Operation
Divide by Zero
Overflow
Underflow
Inexact Arithmetic

Table 4-6. Comparison of DSP56KCC and IEEE 754-1985

CHARACTERISTIC
DSP56KCC

FORMAT
IEEE FORMAT

4-8 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

Register Usage

4.5 Register Usage
The DSP56000 family digital signal processor register set is shown in
Table 4-8. DSP56KCC uses all of the registers listed in Table 4-8 with
the exception of the M n address modifier registers.

Table 4-7. Pointer Size and Range

Data Type Size (words) Min value Max value

pointers 1 0 0xFFFF

Table 4-8. DSP56000 Family Processor Registers

Data ALU

xn Input Registers x1, x0 (24-bits)

yn Input Registers y1, y0 (24-bits)

an Accumulator Registers a2 (8-bits), a1, a0 (24-bits)

bn Accumulator Registers b2 (8-bits), b1, b0 (24-bits)

x Input Register x (x1:x0, 48-bits)

y Input Register y (y1:y0, 48-bits)

a10 Input Register a10 (a1:a0, 48-bits)

b10 Input Register b10 (b1:b0, 48-bits)

a Accumulator a (a2:a1:a0, 56-bits)

b Accumulator b (b2:b1:b0, 56-bits)

Address ALU

rn Address Registers R0-R7 (16-bits)

nn Address Offset Registers N0-N7 (16-bits)

mn Address Modifier Registers M0-M7 (16-bits)

Memory Usage

Motorola About g56k 4-9

Warning
The mn address modifier registers are not used directly by
DSP56KCC. Some of these registers are implied whenever
any address registers (r0 - r7) are referenced either in C library
or in C. While assembly code can access and use these
registers, the programmer must restore them to their previous
state ($FFFF) before returning control to DSP56KCC. Failing
to do so will cause unpredictable errors when DSP56KCC
accesses these registers.

The programmer is required to preserve any registers that are directly used inin-line and
in out-of-lineassembly language code (see Chapter 5,Mixing C and Assembly Language).
Table 4-9 outlines the compiler’s usage of each register.

4.6 Memory Usage

Memory can be partitioned in several ways to provide high-speed operation and additional
off-chip memory expansion. Program and data memory are separate and the data memory
is divided into two separate 24-bit wide memory spaces, X and Y which can be combined
to form a third 48-bit wide memory space, L.

DSP56KCC generates code that can utilize Xor Y or L data memory. By default, the Y
memory model is selected. Each separate memory model is supported by separate
run-time libraries that have been written and compiled/assembled to handle each memory
space. See Chapter 3,Control Program Options, for examples of the-mx-memory,

Table 4-9. DSP56KCC Registers and Usage

Register Usage

r0 Frame Pointer

r6 Stack Pointer

r1 - r5, r7 Register promotion by the optimizer

n0 - n7 Code generator temporary

m0 - m7 Used by compiler; keep this as $FFFF

a 48-bit function return value. float, double, or long

a1 24-bit and 16-bit return value. Integer or pointer

b, x, y 48-bit register promotion by optimizer

x1, x0, y1, y0 24-bit register promotion by optimizer

4-10 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

Memory Usage

-my-memory and-ml-memory command-line options for changing target memory
spaces.

By default, the compiler expects that each memory space is fully populated and several
global C variables are defined (see Chapter 6 —Software-Hardware Integrationfor
information about customizing the memory configuration). Figure 4-2 and Figure 4-4
illustrate the default program and data memory configuration.

The L memory model is recommended for best performance when long, float or double
data types are extensively used.

Figure 4-2. Default Program Memory Configuration

4.6.1 Activation Record

An activation record is the run-time representation of a C subroutine. A typical
DSP56KCC activation record consists of the following elements and is illustrated in
Figure 4-3:

1. Parameter data space. Information passed to C subroutines is stored in a parameter
data space which is similar to the local data space (see Figure 4-3). However, the
data is in reverse order and each parameter is referenced via a negative offset from
the frame pointer. Actual parameters are pushed onto the activation record in
reverse order by the calling subroutine.

2. Old frame pointer. Once the called subroutine has completed execution, the frame
pointer will be updated with this value.

Program Area

jsr Fabort

jmp F_ _start

31

3

2

1

0

jsr Fabort

jsr Fabort

jsr Fabort

•
•
•

Interrupt
Table

Top_Of_Memory
$FFFF Max

Memory Usage

Motorola About g56k 4-11

3. Return address — which is pushed on the DSP’s system stack high (ssh) register.
This is the return address to the calling subroutine. The return address isnot saved
for subroutines that have been determined to be a leaf. A leaf subroutine is one that
makes no subroutine calls.

4. Local data space. The location of C variables that have a lifetime that extends only
as long as the subroutine is active and that couldnot be explicitly promoted to
register storage class by the optimizer.

Note: The frame pointer (r0) points to the first element in the local data space.

5. Register spill and compiler temporary space. This area is utilized by the compiler to
store intermediate results and preserve registers.

Note: The Stack Pointer (r6) points to the next available data memory location.

Figure 4-3. Activation Record

Each subroutine called puts a new copy of the subroutine activation record in the run-time
stack and returning from the subroutine removes the activation record. The run-time stack
is described in Figure 4-4, “Default Data Memory Configuration,” on page 4-12. The
variables shown in the bottom of the “X or Y memory option selected” memory are
controlled by the crt0 file. For example, theF_ _fp_shift variable is typically 23 words but
can be changed by the user or may vary with later releases of this compiler. When the L
memory option is selected, the heap, run-time stack, global/static data and data that is
more than 24 bits in length will occupy one word in L memory i.e., 48-bit memory. 16-bit

•
•
•

param N

param 1
param 2

old frame pointer

return address (ssh)

local data

register spill/temp area Stack Pointer
R6

Frame Pointer
R0

Higher Memory

Lower Memory

(1 word)

(1 word)

4-12 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

Memory Usage

and 24-bit data memory will occupy only one word in Y memory. DSIZE is set by the
linker and points to the top address of the global and static data. DSIZE is used by the crt0
file as the default initial stack pointer.

The dynamic run-time stack growth is illustrated in Figure 4-5. In this example, there is
one activation record as execution of the sample C code begins. This activation record is
pushed onto the stack and a new activation record is built with a dynamic link to the old
frame pointer. When the function returns, the function’s activation record is popped and
the original activation record is restored to its original place on the stack.

Figure 4-4. Default Data Memory Configuration

Global/Static Data

F_ _fp_shift (23 words)

F_ _time (1 word)

Ferrno (1 word)

F_ _stack_safety (1 word)

F_ _mem_limit (1 word)

TOP_OF_MEMORY
$FFFF Max

F_ _break (1 word)

F_ _y_size (1 word)

Heap

Run-Time Stack

X or Y Memory Option Selected L (X:Y) Memory Option Selected

Predefined
in crt0

16- and 24-bit
data memory

48-bit
memory

Heap

Run-Time Stack

Global/Static Data
Dsize

Compiler Naming Conventions

Motorola About g56k 4-13

Figure 4-5. Run-time Stack Growth

4.6.2 Global/Static Data

By default, global and static data elements are located below the run-time stack and each
element is referenced by a unique label that is known at compile-time (see Chapter 6,
Software-Hardware Integrationfor additional information).

4.7 Compiler Naming Conventions

The compiler uses five different internal label formats and a special section naming
format. These six separate formats simplify the procedures to combine hand written
assembly language and C language statements. Use of these formats also makes compiler
generated assembly language listings easier to read. It is strongly recommended that the
programmer avoid using labels with these formats.

L# Local labels. Generally the targets of conditional and
unconditional jumps. Where # is a decimal digit.

LC# String Constant labels. The data memory location for C
string constants, such as “string constant”.

func_1
activation

record

main
activation

record

main
activation

record

main
activation

record

dynamic
link

Execution Begins func_1 called func_1 complete

main()
{

func_1();
}

Sample C code

old frame
pointer

new frame
pointer

4-14 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

Subroutine Call Sequence

4.8 Subroutine Call Sequence

Each time a C language subroutine is called, a strict calling convention is followed. The
subroutine calling sequence is broken down into three sub-sequences that are strictly
defined. The three sub-sequences are caller, callee and return sequence.

Note: This calling convention must be followed when writing in-line or out-of-line
assembly language subroutines that call subroutines written in C.

4.8.1 Caller Sequence

Thecaller portion of the subroutine calling sequence is responsible for:

1. Pushing arguments onto the activation record (in reverse order).

2. Actual subroutine call (jsr).

3. Stack pointer adjustment.

Additional caller sequence when the subroutine called will return a structure:

4. Allocate space in the caller’s activation record to store the return structure.

F<identifier> Global C variables, global subroutines, static C
variables and static subroutines. A static C variable or
subroutine is one which is not visible to any C code
outside the file in which it has been declared, thus
making it possible to reuse variable names across file
boundaries. Whereidentifier is the variable or
subroutine name.

F_ _<identifier># Variables static to a function.

ASM_APP_# In-line assembly code delimiters. Required to allow the
programmer to define and use local labels (labels
beginning with an underscore character ‘_’).

<filename_c> Section names. The contents of each assembly language
file generated by the compiler are contained in a unique
section. Wherefilenameis the file name minus any ‘.’
extensions.

L# Local labels. Generally the targets of conditional and
unconditional jumps. Where # is a decimal digit.

Software Support for Aritmetic Routines

Motorola About g56k 4-15

5. Pass the return value address in accumulator a.

4.8.2 Callee Sequence

During the initial portion of the subroutine calling sequence, thecalleeis responsible for:

1. Saving return address (ssh) and the old frame pointer (R0).

2. Updating frame and stack pointers.

3. Saving the following registers, as required, B1, B0, X1, X0, Y1, Y0, R1 - R5 and
R7.

4.8.3 Return Sequence

During the final portion of the subroutine calling sequence, thecalleeis responsible for:

1. Placing the return value in accumulator a.

2. Testing the return value. This optimizes the case where function calls are
arguments to conditional operators.

Additional calleesequence when the subroutine called will return a structure:

3. The return value is not passed in accumulator a. A copy of the return structure is
placed into the space allocated in the caller’s activation record and pointed to by
accumulator A.

4.9 Software Support for Aritmetic Routines

The DSP56000 family architecture provides full hardware support for all 24-bit arithmetic
operations, and partial support for 48-bitintegeroperations. Support for all float/double
and a portion of the 48-bit long is provided via special software library routines. These
special library routinesdo notpass arguments to the routines according to the normal
subroutine calling convention, instead, each routine has its arguments passed in the A and
B accumulators and the result returned in the A accumulator, limiting the overhead
involved in the call/return sequence. See Table 4-10 and Table 4-11 for a list of the
routines supported in software. All but two of these routines restore all registers used
except for the A accumulator which contains the result. The two routines that do not
restore the registers areF_ _uldiv andF_ _ulmod which use the registers according the C
standard shown in Table 4-9.

4-16 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

Run-time Safety

4.10 Run-time Safety

DSP56KCC provides two methods for providing run-time memory utilization checks. The
first method, memory allocation check, is automatic. The second method, run-time stack
probes, is provided by selecting the command-line argument-mstack-check.

4.10.1 Memory Allocation Checks

Memory allocation checks are provided during every call to the run-time library routines
malloc, calloc and realloc. This automatic run-time check determines when the heap is
about to collide with the run-time stack. When this occurs, the library routine returns a
NULL pointer and sets the global variableerrno to ENOMEM .

Table 4-10. Floating-point Arithmetic

Routine Source Module

fadd_ba fadd56.asm

fsub_ba fsub56.asm

fmpy_ba fmpy56.asm

fdiv_ba fdiv56.asm

fneg_a fneg56.asm

fcmp_a fcmp56.asm

Table 4-11. 48-bit Long Integer Arithmetic

Routine
Source Module

div_ba idiv56.asm

mod_ba imod56.asm

udiv_ba uidiv56.asm

umod_ba uimod56.asm

lmpy_ba l_mpy56.asm

ldiv_ba l_div56.asm

lmod_ba l_mod56.asm

F_ _uldiv ulongdivmod.c

F_ _ulmod ulongdivmod.c

Optimization Techniques Implemented

Motorola About g56k 4-17

4.10.2 Run-time Stack Checks

If the programmer does not use malloc, calloc or realloc there is no automatic run-time
collision check. A tool is provided to allow the programmer to check the code during
debugging to see if a stack collision is likely to occur when the code is executing
normally. By selecting the-mstack-checkoption on the command-line, the compiler is
instructed to generate extra code to watch the stack and heap and detect when the run-time
stack is about to collide with the heap. This may be important when writing code for
embedded applications. When/if a stack collision occurs, the execution device, such as
RUN56, will report that the collision occurred.

Note: All run-time libraries provided have been compiled/assembled without the stack
checking option. Thus it is possible to have a run-time stack/heap collision
during execution of library routines.

4.11 Optimization Techniques Implemented

This section provides a brief overview of the optimization techniques currently
implemented by DSP56KCC. DSP56KCC implements most machine-independent C
language optimization techniques as well as machine-specific optimizations. By default,
the control program G56k enables all levels of optimization (see Chapter 3, “Control
Program Options.”)

4.11.1 Register Promotion and Lifetime Analysis

The compiler automatically identifies all variables that are candidates for promotion to the
register storage class. Using standard data flow techniques, lifetime analysis is performed
to determine the best variables for promotion. When variable lifetimes do not overlap,
more than one variable may be promoted to a single register.

4.11.2 Common Sub-expression Elimination

A Common Sub-Expression, or CSE, is created when two or more statements compute the
same value. When CSEs are detected during data flow analysis, the compiler eliminates all
but one of the computations and propagates the result. A classic example of a CSE is the
array element assignment from another array,

array_1[index + 1] = array_2[index + 1];

where the expression “index + 1” is the CSE.

This optimization is especially effective as CSEs become candidates for register
promotion.

4-18 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

Optimization Techniques Implemented

4.11.3 Constant Propagation/Folding

Propagation of constants is detected during data flow analysis and is simply the
replacement of variable references with constant references when possible. For example,

a = 3;
/* block of C code with no references to a */
func_call (a + 709);

becomes:

/* block of C code */
func_call (3 + 709);

Constant folding is the replacement of run-time computations with compile-time
computations. This optimization works well with constant propagation, as it exposes many
new opportunities for folding.

The example above would be further transformed to:

/* block of C code */
func_call(712);

4.11.4 Dead Code Elimination

During data flow analysis, the compiler detects when the results of C expressions are
never used. When this is detected, the offending C statements are eliminated from code
generation. This includes (1) the initialization of variables that are not referenced in the
subroutine and (2) the situation where the variables next reference is not an assignment.

To guarantee code generation, a volatile type specifier can be used to declare the left side
of the expression.

main()
{
int volatil e i = 0, j = 1;
}

The example above generates code to initialize variables i and j even though they are not
used anywhere else. Without the key word volatile, the optimizing C compiler will
eliminate the two local variables because they are not referenced anywhere in the main
function.

4.11.5 Tail Merging

When two or more conditional blocks of code have similar ending sequences, the sections
of code are rewritten to generate similar code only once.

Optimization Techniques Implemented

Motorola About g56k 4-19

This is a space saving optimization technique. For example:

4.11.6 Strength Reduction

Strength reduction replaces expensive operators with less expensive operators. This
optimization method is very machine specific. For instance, a popular strength reduction
for many compilers is to replace a multiplication by a constant with a series of shifts,
additions and subtractions. The exact opposite is the case on the DSP56000/DSP56001,
however since a series of left shifts is replaced with a single multiply by a constant power
of 2.

4.11.7 Loop Invariant Code Motion

Loop Invariant Code Motion is a method in which all C expressions that yield the same
result each time through the loop are moved outside of the loop and are executed once
prior to entering the loop.

4.11.8 Hardware DO Loop Instruction

The DSP56000 family architecture provides a method in hardware to perform zero
overhead looping via thedo instruction. DSP56KCC may exchange the standard
increment/compare/conditional jump sequence with a singledo instruction (this is called
do loop promotion) when the following conditions are met:

1. The body of the loop containsno subroutine calls,

2. The loop is entered from the top, i.e., nogoto labelentries.

3. No conditional exits from the loop are allowed.

4. The loop’s induction variable is only altered in the body of the loop once per
iteration. Please note that this includes any modifications to the induction variable
within the actualfor or while statement.

if (a>b)

{

b = a;
}

func (a);

if (a>b)

{
b = a;
func (a);
}
else
func (a);

becomes

4-20 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

Optimization Techniques Implemented

4.11.9 Loop Rotation

Loop rotationis the elimination of the code generated to check the loop’s entry conditions.
When a loop fails to qualify fordo looppromotion i.e., it does not meet the four conditions
listed above, it will qualify for loop rotation if the length of the loop is known at
compile-time, for example:

for (i = 0 ; i < 10 ; i ++)

The loop created with thisfor statement will always be executed at least one time.
Therefore, the “is i < 10?” test does not have to be run the first time through the loop and
as a result, can be eliminated during the first pass through the loop only. If the result of the
first test cannot be predetermined then it cannot be eliminated. In the example below, the
number of loops is a variable (and therefore cannot be predetermined) that may equal zero.

for (i = 0 ; i < j ; i ++)

4.11.10 Jump Optimizations

All cases of jumps (conditional and unconditional) to unconditional jumps are eliminated
to create a single jump and target label.

4.11.11 Instruction Combination

Instruction combination replaces several operators with a single, less expensive operator.
This optimization method is very machine specific.

Sequences that are commonly combined by the optimizer include:

1. Integer add/multiply becomes amac instruction.

2. Integer subtract/multiply becomes amac instruction.

3. A memory reference combined with a pointer adjustment becomes an
autoincrement or autodectrementaddressing mode. This is very powerful when
combined with register promotion and do loop promotion. For example,

for (i = 0 ; i < 10 ; i ++)
{

array_1[i] = array_2[i];
}

thefor loop becomes ado instruction, the array references are promoted to address
registers and the induction variable is eliminated with array pointer advancement done via
theautoincrement addressing mode.

Optimization Techniques Implemented

Motorola About g56k 4-21

4.11.12 Leaf Routine Detection

A leaf routine is a subroutine that makes no further subroutine calls. When the compiler
identifies such routines, the prologue and epilogue code are optimized (no save and restore
of thessh).

4.11.13 Function In-lining

When explicitly requested via the command-line option-finline-function , the compiler
will replace calls to subroutines with an in-line copy of the subroutine if the subroutine
meets these requirements:

1. The subroutine must be a non-volatile leaf function.

2. The subroutine must be in the same module.

3. The definition must precede use of the subroutine.

Function in-lining eliminates the overhead associated with subroutine calls and provides
additional opportunities for the optimizer and register allocator to further increase code
quality. Function in-lining can also be performed explicitly by the programmer by
utilizing the additional non-ANSI function type specifier_ _inline. By default, many
run-time libraries are in-lined by the compiler.

Note: The function in-lining method can cause program memory requirements to
grow significantly. See Appendix A,Programming Support, for instructions on
disabling library routine in-lining.

4.11.14 Instruction Scheduling / Microcode Compaction

The command line switch-alo causes an assembly language optimizer (alo56) to be run,
using the assembly code emitted by the compiler as input. This optimizer attempts to
compact multiple operations into a single instruction word, while simultaneously avoiding
the pipeline hazards exposed by the address generation unit. Because this optimizer mixes
together instructions from different C language statements, debugging code compiled with
-alo may be more difficult.

4-22 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

Optimization Techniques Implemented

In-line Assembly Code

Motorola Mixing C and Assembly Language 5-1

Chapter 5
Mixing C and Assembly Language

5.1 Overview

In cases where the DSP56000/DSP56001 programmer requires direct access to the
hardware or greater performance at the inner-loop of an algorithm, C programs can be
mixed with assembly programs. This chapter describes two methods for combining C and
assembly language source code. The first is the in-line method which is a convenient way
to put assembly code into the compiler output via the non-ANSI C directive_ _asm().The
second is the out-of-line method, a generic method of combining C and assembly
language source files.

Warning
Before mixing C and assembly, read and understand Chapter
4, About G56k, and the DSP56000 Family Manual.
Attempting to write programs for this DSP without knowledge
of the chip and how the compiler utilizes registers, memory,
defines labels, etc. may generate unsatisfactory results.
However, with an understanding of the DSP architecture and
how this implementation of C uses it, programming should be
straightforward.

Labels which begin with a double underline (e.g.,_ _asm ()) in this manual have a space
between the double underlines to visually separate them. Do not separate the leading
double underlines with a space when coding them (i.e.,code _ _asm () as __asm

()).

5.2 In-line Assembly Code

In-line assembly code is assembly code that is inserted inside a C statement in a C source
file. Since assembly code is generated from this C statement directly, the C statement
looks like assembly code in the C source and is referred to asin-line assembly code. All of
the assembly code to be generated is visible at the C source-level and it is often convenient
to intermix assembly code with a C source program in this fashion.

5-2 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

In-line Assembly Code

Typically, in-line assembly code is used when:

1. Inserting a small amount of assembly code directly into the compiler output i.e.,
inner loop kernels.

2. Writing fast assembly language routines to be called by C subroutines. This
eliminates the need to manage data referencing, register saving and allocation, and
function call/return overhead.

The key word_ _asmis introduced as an extension to the ANSI C language standard and
this key word is used like a function call to specify the in-line assembly code generation
rule discussed below.

The in-line assembly statement syntax is:

_ _asm (“instruction_template”: output_operands: input _operands:

reg_save);

where:

1. instruction_template is a string used to describe a sequence of assembly code
instructions that are to be inserted into the compiler output stream. It may specify
arguments, which are listed in output_operands and input_operands. It does this via
a substring called an operand expansion string (OES). An OES starts with a ‘%’.
OES and instruction_template interpretation is described in Section 5.2.1.

2. output_operandsare optional operands used to provide specific output
information to the compiler. Each output_operand string is separated by a comma
and should begin with the character ‘=’. As an example, the output_operand “=A”
(cptr) means “the C variable cptr will get its value from this output operand, which
will be in an address register”. See Section 5.2.2 for more details.

3. input_operandsare optional operands to provide specific input information to the
compiler. Each input_operand is separated by a comma and may include a C
variable. As an example, the input_operand “A” (cptr) means “the value of this
input operand will be taken from the C variable cptr, and placed in an address
register”. Again, full descriptions of the input and output operands can be found in
Section 5.2.2.

4. reg_savespecifies registers that are to be explicitly reserved for the_ _asm ()
statement. The registers to be saved must be named as strings such as ”a” and “b”.
Each register is separated by a comma (see Section 5.2.3 for additional
information) The compiler assumes that all data residing in the reg_save registers
will be invalidated by the_ _ asm ()statement.

In-line Assembly Code

Motorola Mixing C and Assembly Language 5-3

5.2.1 Instruction Template

The first argument of the_ _asm()extension is the instruction template or assembler
instruction template. This instruction template is mandatory, and describes the line or lines
of assembly language to be placed into the compiler’s assembly language output (see
Section in Section 5.2.4). This template is not parsed for assembly language syntax
violations and is simply written to the compiler output. As a result, the compiler will not
detect assembly-time errors. These errors will be caught by the assembler.

More than one assembly instruction can be put into a single instruction template by using
the line separator “\n”. The line separator, or newline, can be utilized as in a normal C
statement. The line continuation sequence, a “\” followed by an immediate newline, is
particularly useful when an instruction template contains an assembly instruction that is
too long to fit in one source line (see Section 5-18 and Section in Section 5.2.4). Other C
language character constants such as “\t”, “\f”, etc. can also be used in the instruction
template.

In many situations, it is desirable to use the values of C variables and/or expressions
directly in the instruction template. Since all memory and register accesses are
accomplished through variables, manipulating memory and registers directly using
assembly code requires knowledge of their locations. Without optimizations, the current
value of a variable will be maintained in memory at a specific address. However, an
optimizing C compiler such as DSP56KCC may retain a variable in a register and perform
operations on that variable without updating the memory location corresponding to the
variable between operations. This enhances the performance of the compiled code but
makes accessing variables in memory risky. In order to guarantee that the correct value of
a variable is returned when it is referenced, a mechanism called operand expansion string
(OES) is provided.

The OES allows a variable to be securely accessed even though its current location is
unknown. The operand expansion string is a substring of the instruction template and
begins with the character “%”. This string is usually two or three characters long and
provides the compiler with special information about an operand, and how its reference
should be printed. An OES must reference only one C variable or expression, which in
turn must be listed in either one or both operand lists (see Section 5.2.2). The OES is
parsed by the compiler and gives sufficient information to allow the variable to be
correctly referenced by the assembly language instruction in the instruction template.
Most examples in Section 5.2.4 include an OES.

The OES syntax is:

% [modifier] operand_id_number

5-4 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

In-line Assembly Code

where:

1. modifier is a single optional character which specifies a particular class of
operand. The available modifiers are ‘j ’, ‘ e’, ‘ h’, ‘ k’, ‘ g’, ‘ i’, ‘ f’, ‘ p’, and ‘q’.

j—an offset register (nx) associated with the corresponding address registers
(rx). Since the offset register is paired with the address register, the allocated
offset register has the same index as the address register (see Section in Section
5.2.4).

e—a1 or b1, upper word of the destination registersa or b (see Section in
Section 5.2.4).

h—a0 or b0, lower word of the destination registersa or b (see Section in
Section 5.2.4).

k—a2 or b2, extension register of the destination register,a or b (see Section
in Section 5.2.4).

g—Select the 24-bit portion of the 48-bit ALU register (x or y) that is not
occupied by data pointed to by the operand id — e.g., if the operand id points to
x0 thenx1 is selected and similarlyx1→x0, y0→y1, y1→y0 (see Section and
Section 5-9 in Section 5.2.4).

i—strip the0 or 1 from the allocated register name i.e.,a1→a, a0→a, b1→b,
b0→b (see Section in Section 5.2.4).

f—insert the memory space identifier (x or y) for the memory location (see
Section in Section 5.2.4).

p—generate an immediate 16-bit constant without # sign (see Example in
Section 5.2.4).

q—generate an immediate 24-bit constant without # sign (see Section in
Section 5.2.4).

2. operand_id_numberspecifies the operand location in the operand descriptor list
(see Section in Section 5.2.4). The operand descriptor list is a concatenation of the
output operands and input operands (see Section 5.2.2). The first operand is labeled
zero and there can be up to 31 more operands in the list. More than one instruction
template can be used if more than 32 operands are needed.

In-line assembly code can also be used to insert a label directly into the compiler output. A
label without any white spaces in the in-line assembly code instruction template will
guarantee that the same template label will be in the compiler output (see Section). Care
should be taken not to use labels that the C compiler generates. Using the same labels as
the C compiler will cause a duplicate label error (see Section 4.7, "Compiler Naming
Conventions," on page 4-13.)

In-line Assembly Code

Motorola Mixing C and Assembly Language 5-5

5.2.2 Output/Input Operands

The operand list is a concatenation of output and input operands which the OES can access
via the operand_id_number (see Section 5.2.1). Output or input operands consist of
operands separated by a comma (‘,’). Each operand should be associated with a C
expression and its operand constraint described below.

A colon, ‘:’, is used to separate the assembler instruction template from the first output
operand. A second colon separates the final output operand from the first input operand. A
third colon can be used to separate the input operands from the optional fieldreg_save.
Two consecutive colons are required when only input operands are needed in the operand
list, leaving us with the empty list of output operands.

The operand syntax is:

“[=]operand_constraint” (C_expression)
where:

1. = differentiates input and output operands. All output operands must use this
character first.

2. operand constraint is a single character that describes the type of resource
(memory or register) that an operand is to be loaded into or read from. Each
operand constraint has an optional set of modifiers that may be applied in the
instruction template.

3. C_expression is any valid C expression defined by the ANSI C standard. The C
expression can be either l-value or r-value. Any output operand should use the
l-value to specify the memory location to store the data.

The available operand constraints are “A”, “ D”, “ R”, “ S”, “ i” and “m”. All of these
constraints originate from the DSP56000 family architecture; therefore, a full
understanding of these constraints requires that the programmer understand this
architecture. The constraints are:

A —One of the Address Registers (rx , where x = 0 through 7; see Section 5 of
theDSP56000 Family User’s Manual) will be allocated to the C expression (see
“OES modifier j: The following in-line assembly code is used to generate
executable assembly code. Notice that the actual register selection is totally
dependent on the C compiler but the register selected (r3 in this example) is
guaranteed to be related to the C expression used (in this case cptr, see Section
5.2).” on page 10). The C expression will be promoted to this register. Typically
the C expression should be a pointer to be assigned to an address register. The
OES modifier,j , can only be associated with operand constraintA (see Section
5.2.1).

5-6 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

In-line Assembly Code

D —One of the 56-bit accumulators (a or b which are referred to as Destination
Registers; see Section 4 of theDSP56000/DSP56001 User’s Manual) will be
allocated to the C expression (see “OES modifier e: The modifier e can be used
to generate the assembly code below because a1 is the upper part of register A.”
on page 10 through “OES modifier k: The k modifier can be used to generate
the following assembly code because a2 is the extension portion of register A.”
on page 11). The C expression will be promoted to this register. Care must be
exercised to make sure the size of the C expression is consistent with the
accumulator length. The OES modifiers ‘e’, ‘ h’ and ‘k ’ can be associated with
operand constraint D (see Section 5.2.1).

R —One of the Input Registers (x0 or y0 which are also called Multiplier
Registers; see Section 4 of theDSP56000/DSP56001 User’s Manual) will be
allocated to the C expression (see “OES modifier i: The modifier can be used to
generate the following assembly code because x is a register without a 0 or 1
portion.” on page 12). The C expression will be promoted to this register. The
OES modifiers ‘g’ and ‘i’ can only be associated with operand constraint R (see
Section 5.2.1).

S —One of the Input Registers (x0, x1, y0 or y1 which are also called Source
Registers; see Section 4 of theDSP56000/DSP56001 User’s Manual) will be
allocated to the C expression (see Example 5-13 on page 5-14 through
Example 5-17 on page 5-15). The C expression will be promoted to this
register. The OES modifiers “g” and “i” can only be associated with operand
constraintS (see Section 5.2.1).

i —An immediate constant; a constant is generated in the form of #constant if
no modifier is specified. Withp or q modifier, the value is generated without
the # sign. The value is the 16-bit constant withp modifier, and 24-bit constant
with q modifier (see Example 5-12).

m —A memory location will be allocated to the C expression (see
Example 5-11). The DSP56000/DSP56001 has four memory spaces: X, Y, L
and P but the C compiler may only use the X, Y or L memory spaces for this
expression. The OES modifier ‘f’ can only be associated with operand
constraint m (see Section 5.2.1).

number —Inherit all memory or register characteristics of the operand
indicated by theoperand id number (see Example 5-3). This constraint is
usually used for read/write operands which are declared by using the same C
variable as both the input and output operand.

The operand is sometimes referred to as a read-only operand if it is used only as input (see
Example 5-14) and it is called a write-only operand if it is used only as an output (see

In-line Assembly Code

Motorola Mixing C and Assembly Language 5-7

Example 5-15). In most of cases, the operand is used as both an input and an output
operand (see Example 5-16 and Example 5-17). In these cases the operand should be
described as both. Since output operands should be listed first, the operand id number is
determined when the input operand is declared. The id number will be used as the operand
constraint of the input operand.

Section lists the operand constraints and their related modifiers.

5.2.3 Explicit Register Saving

It is possible to manually perform register allocation, in fact this may simplify the process
of converting an existing body of DSP56000/DSP56001 assembly language subroutines to
in-line assembly code. The programmer need only identify each register explicitly
referenced in the assembly code and list them in thereg_saveargument region (see
Section 5.2). This guarantees that the content of each register is preserved across_ _asm()
calls. Use of registersr0 andr6 is prohibited in the assembly code because they are
reserved for the C compiler during run-time wherer0 is the frame pointer andr6 is the
stack pointer. Registers Mn are used by the compiler as temporary registers and Nn are not
used by the C compiler at all. As a result, these registers do not need to be saved unless the
programmer uses them in assembly code. If they are used in assembly code, they should
only be used as local variables.

Explicit register saving is done through specifying the registers to be saved. A string is
used to specify each register. The valid register names are listed in Table 5-2.

Table 5-1. Operand Constraints/Modifiers Associations

Operand Constraint Modifier

A -Address Register (rx) %j -Rn’s paired offset register

D -Destination Register (a,b) %e
%h
%k

-Upper word (a1, b1)
-Lower word (a0, b0)
-Extension (a2, b2)

R -Multiplier Register (x0,y0) %g
%i

-Select other register portion
-Strip 0/1 from register name

S -Source Register (x0,x1,y0,y1) %g
%i

-Select other register portion
-Strip 0/1 from register name

i -Constant (#number) %p
%q

-16 bit immediate value
- 24 bit immediate value

m -Memory Location %f -Memory space identifier

number -Any one of above %(corresponding modifier

5-8 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

In-line Assembly Code

An example forreg_saveis a program performing an IIR filter operation which is based
on the Dr. BuB IIR filter program “iir1.asm”. The program data structure is the same as
the Dr. BuB program and data is passed through the C variable “data”. Pointers “sptr” and
“cptr” are used to point to static variables.

Example 5-1. reg_save

reg_save: This in-line assembly code is converted from the Dr. BuB IIR filter program
usingreg_save. This program is based on Y Memory Model, and there are other in-line
assembly features used here for the demonstration of the reg save. Section 5.2.4 may need
to be referenced for the other feature of the in-line assembly.

iir1(int data, int* sptr, int* cptr)
{

_ _asm volatile (“move %0,a\n\
move %1,r1\n\
move %2,r4\n\
move y:(r1)+,x0\n\
move y:(r4)+,y0\n\
mac x0,y0,a y:(r4)-,y0\n\
move y:(r1),x1\n\
macr x1,y0,a x0,y:(r1)-\n\
move a,y:(r1)” : /* no output */ : “D” (data), “A”

(sptr), “A” (cptr) :
“a”, “x1”, “x0”, “y0”, “r1”, “r4”);

}

5.2.4 In-line Assembly Code Examples

The examples in this section illustrate the practical application of the_ _asm()extension.
The main purpose of this section is to show how to write in-line assembly code. Since
these examples are intended to illustrate the information presented earlier in this chapter,
references to the appropriate subjects have been included.

Example 5-2 illustrates the use of the in-line assembly code “instruction_template”. Since
this in-line assembly code directly clears register A, the programmer should check to be
sure that the contents of A are not needed.

Table 5-2. reg_save Names

Register Type Valid Names

Accumulator “a”,”b”

Input “x0”, “x1”, “y0”, “y1”

In-line Assembly Code

Motorola Mixing C and Assembly Language 5-9

Example 5-2. instruction_template

Instruction_template: The following are a few examples of how to utilize the instruction
template in in-line assembly code. This feature allows the generation of any valid
assembly instruction and it is probably the most frequently used feature in in-line
assembly coding.

_ _asm(“clr a”); /* clears the register A */
_ _asm(“move #$10, a2”); /* load the register A2 with
the hex value 10 */
_ _asm(“HCR EQU $FFE8”); /* equate the Host Control
Register to

$FFE8 */

A pseudo operand will be used to illustrate use of the OES operand id number. The pseudo
operand functions as an input or output operand. Example 5-3 uses five pseudo operands:
V, W, X, Y and Z each of which is referenced by operand ids0, 1, 2, 3 and4, respectively.
The pseudo operands are used as in the OES “%0”, “ %1”, “ %2”, “ %3” and “%4”.
Table 5-3 shows which operands in Example 5-3 are input or output operands.

Example 5-3. operand_id

Instruction template withoperand_id: In order to illustrate how to use output or input
operands, pseudo operands V, W, X, Y, and Z are used. Theoperand_id listed in this
example can be used as part of aninstruction_template.

_ _asm(“instruction_template” : V, W, X : Y, Z);

Example 5-3 through Example 5-12 illustrate the use of OES modifier (see Section 5.2.1).

Table 5-3. Output and Input Operands for Section 5-3

operand id pseudo operand operand type OES

0 V output %0

1 W output %1

2 X output %2

3 Y input %3

4 Z input %4

5-10 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

In-line Assembly Code

Example 5-4. OES Modifier j

OES modifierj : The following in-line assembly code is used to generate executable
assembly code. Notice that the actual register selection is totally dependent on the C
compiler but the register selected (r3 in this example) is guaranteed to be related to the C
expression used (in this case cptr, see Section 5.2).

In-line Assembly code:

char *cptr;
_ _asm(“move (%0)+%j0”::“A”(cptr));

Assembly Code Generated:

move (r3)+n3

Example 5-5. OES Modifier e

OES modifiere: The modifierecan be used to generate the assembly code below because
a1 is the upper part of register A.

In-line Assembly code:

int foo;
_ _asm(“move #$ffffff,%e0”:“=D”(foo));

Assembly Code Generated:

move #$ffffff,a1

Example 5-6. OES Modifier h

OES modifierh: Theh modifier can be used to generate the following assembly code
because a0 is the lower part of register A.

In-line Assembly code:

int foo;
_ _asm(“move #$ffffff,%h0”:“=D”(foo))

Assembly Code Generated:

move #$ffffff,a0

In-line Assembly Code

Motorola Mixing C and Assembly Language 5-11

Example 5-7. OES Modifier k

OES modifierk: Thek modifier can be used to generate the following assembly code
because a2 is the extension portion of register A.

In-line Assembly code:

int foo;
_ _asm(“move #$ff,%k0”:“=D” (foo));

Assembly Code Generated:

move #$ff,a2

Example 5-8. OES Modifier g

OES modifierg: Swap the most significant 24-bit portion and the least significant 24-bit
portion of 48-bit registers xand y to allow the OR instruction to operate on an entire 48-bit
register.

/*
* The following assembly code could be generated

(note that the
* optimizer may vary the code actually generated).

move x1,a1
move x0,x1
move a1,x0

*
* The variable foo can be allocated to either x0 ,

x1 , y0 , or y1
* by using the operand constraint S. The swap

operation can
* be applied to the register allocated to the

variable foo by
* using the following in-line assembly code.
*
*/

main()
{

int foo;
_ _asm volatile ("move %g0,a1" : : "S" (foo));
_ _asm volatile ("move %0,%g0" : "=S" (foo) : "0"

(foo));
_ _asm volatile ("move a1,%0" : "=S" (foo));

}

5-12 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

In-line Assembly Code

Example 5-9. OES Modifier g

OES modifierg: Program bit checker looks to see if any bit in the 48-bit registers x or y is
a one. In this case, Bit Checker looks to see whether the variable foo which is placed in
either the xor yregister is all zeros or contains a one. The result is stored in register a1. If
register a1 is not 0x000000, then foo has one or more bits set to one.

/*
* The variable foo can be allocated to either the x or

y register by using
* the operand constraint S. The OR instruction only

operates on 24-bit
* registers so that to OR the x register with another

register, x1 must
* be ORed separately from x0 . The same applies for

the y register.
*/

main()
{

long volatile foo;

_ _asm volatile (“clr a”);
_ _asm volatile (“or %0,a” :: “S” (foo));
_ _asm volatile (“or %g0,a” :: “S” (foo));

}

Example 5-10. OES Modifier i

OES modifieri: The modifier can be used to generate the following assembly code
because x is a register without a 0 or 1 portion.

In-line Assembly code:

int foo;
_ _asm(“move l:<$0,%i0” : “=R”(foo));

Assembly Code Generated:

move l:<$0, x

In-line Assembly Code

Motorola Mixing C and Assembly Language 5-13

Example 5-11. OES Modifier f

OES modifierf: The f modifier can be used to generate the following assembly code.
Assuming that Y memory space is used and the memory location of the variable “foo” is
233, then the desired memory space indicator “y” will be automatically generated by the f
modifier.

In-line Assembly code:

int foo;
_ _asm(“move #$ffffff,%f0”: “=m” (foo));

Assembly Code Generated:

move #$ffffff,Y:233

Example 5-12. OES Modifier p and q

OES modifierp, andq: This in-line assembly code programs the SCI of DSP56001 by
setting up the SCI registers located at X:$FFF0 and X:$FFF2. You may use modifier p for
any 16-bit value.

#define SCR 0xFFF0
#define SCCR 0xFFF2
#define V_SCR 0x2000
#define V_SCCR 0x013F
main()
{

_ _asm(“movep %0,x:%q1” : : “i” (V_SCR), “i” (SCR));
_ _asm(“movep %0,x:%q1” : : “i” (V_SCCR), “i” (SCCR));

}
Assembly Code Generated:

movep #>$002000,x:65520
movep #>$00013f,x:65522

5-14 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

In-line Assembly Code

Example 5-13. Input Expression / Output Expression

Input Expression / Output Expression: This in-line assembly code uses the pseudo
assembly mnemonic “asm_instruction” and refers to two C expressions:
output_expression and input_expression. This example illustrates how to interpret the
operand constraint (see Section 5.2.2) and operand id (see Section 5.2.1 and Example 5-3).
The example implies that the C expression output_expression is expanded with constraint
D and is an output of the assembly code instruction asm_instruction. Similarly, the C
expression input_expression is expanded with constraint S and used as an input to the
assembly code instruction asm_instruction.

_ _asm(“asm_instruction %1,%0” : “=D”
(output_expression) : “S” (input_expression));

Example 5-14. Read-Only Operand

Read-Only Operand: This in-line assembly code uses the pseudo assembly mnemonic
“asm_instruction” and usesinput_expressionas a read-only operand.

_ _asm(“asm_instruction %0” :: “S” (input_expression));

Example 5-15. Write-Only Operand

Write-Only Operand: This in-line assembly code uses the pseudo assembly mnemonic
“asm_instruction” and uses output_expression as a write-only operand.

_ _asm(“asm_instruction %0” :“=D”(output_expression));

Example 5-16. Read-Write Operand

Read-Write Operand: An addition is programmed using in-line assembly code and the C
expression result is used as a read-write operand. The variable, foo, is used as a read only
operand. Notice that operand constraint ‘0’ was used to reference the add instructions
second source operand which is also the destination operand (see the
DSP56000/DSP56001 User’s Manual— Appendix A for the syntax of the add
instruction).

int foo, result;
_ _asm(“add %1,%0” : “=D” (result) : “S” (foo), “0”
(result));

In-line Assembly Code

Motorola Mixing C and Assembly Language 5-15

Example 5-17. Read-Write Operand

Read-Write Operand: The same result will be obtained as in Example 5-16. Notice how
the operand id is changed according to the placement of the C variables.

int foo, result;
_ _asm(“add %2,%0” : “=D” (result) : “0” (result), “S”
(foo));

Example 5-18. Multiple Instruction — Single-Line

Multiple Instruction — Single-Line: An in-line assembly program which places a value
(e.g. $709) in register a and negates the result is written in one line. This one line will
generate two lines of assembly code in the C compiler output.

_ _asm(“move #$709,A\n neg A”);

Example 5-19. Multiple Instruction — Multiple-Line

Multiple Instruction — Multiple-Line: The two lines of in-line assembly code in this
example have the same effect as the one line in Section 5-18. Notice that using two lines
increases the in-line assembly code readability. The line continuation character ‘\’ used at
the end of the in-line assembly codes first line makes this possible.

_ _asm(“move #$709,A\n\
neg A”);

Example 5-20. Mulitple Use of _ _asm()

Multiple use of_ _asm(). This example and Example 5-21 are done in-line with the
compiler performing all register allocation and all operands are referenced via C
expressions.This in-line program is a single memory space version of the Dr. BuB IIR
filter program iir1.asm. The method used to write this in-line assembly program is to use
an_ _asm()statement for each assembly language instruction.

int iir1(int data, int* sptr, int* cptr)
{

int state1, state2, coef;
_ _asm (“move y:(%1)+,%0” : “=R” (state1) : “A” (sptr)

);
_ _asm (“move y:(%1)+,%0” : “=R” (coef) : “A” (cptr)

);
_ _asm (“mac %2,%3,%0\ty:(%4)-,%1”
: “=D” (data), “=R” (coef)
: “R” (state1), “1” (coef), “A” (cptr), “0” (data));
_ _asm (“move y:(%1),%0” : “=S” (state2) : “A” (sptr)

);
_ _asm (“macr %1,%2,%0\t%3,y:(%4)-”

5-16 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

In-line Assembly Code

: “=D” (data)
: “S” (state2), “R” (coef), “R” (state1), “A” (sptr));
_ _asm (“move %0,y:(%1)” : : “D” (data), “A” (sptr));

return data;
}

Example 5-21. Line Separation

Line Separation. This in-line program is functionally identical to Section except that line
separation is used to insert the entire assembly language program (Dr. BuB IIR filter
program, iir1.asm) into a single_ _asm()statement. Notice how much easier it is to read
the program.

int iir1(int data, int* sptr, int* cptr)
{

int state1, state2, coef;
_ _asm ("\n\

move y:(%4)+,%2\n\
move y:(%5)+,%1\n\
mac %8,%7,%0\ty:(%5)-,%1\n\
move y:(%4),%3\n\
macr %9,%7,%0\t%8,y:(%4)-\n\
move %6,y:(%4)":

“=D” (data), “=R” (coef), “=R” (state1), “=S”
(state2):

“A” (sptr), “A” (cptr), “0” (data), “1”
(coef),“2” (state1),

“3” (state2));
return data;

}

Example 5-22. Instruction Template Label

Instruction Template Label: The following in-line assembly code which generates the
label “foo” uses a return character “\n” to insure that there is no white space in front of the
label.

_ _asm(“\nfoo”);

In-line Assembly Code

Motorola Mixing C and Assembly Language 5-17

Example 5-23. Program DSP56001 SCI Timer

Program DSP56001 SCI Timer: The SCI timer can be programmed so that a SCI interrupt
service routine is accessed periodically. The following in-line assembly program is based
on the SCI timer described in section 11.2 of the DSP56000/DSP56001 User Manual.

_ _asm(“\nSCR EQU $FFF0”);
_ _asm(“\nSCCR EQU $FFF2”);
_ _asm(“\nIPR EQU $FFFF”);
main()
{

_ _asm(“move #0,r7\n\
movep #$2000,x:SCR\n\
movep #$013f,x:SCCR\n\
movep #$C000,x:IPR\n\
andi #$fc,mr\n\

\nEND jmp END”);
_ _asm (“org p:$001c\n\

move (r7)+\n\
nop”);

}

5.2.5 Controlling Labels Generated by the Compiler

Using the_ _asm()keyword, it is possible for the programmer to override the compilers
label generation conventions for subroutines and global variables. This may be useful for:

1. Calling assembly language subroutines.

2. Calling C subroutines from assembly code.

3. Referencing assembly language global variables from C.

4. Referencing global C variables from assembly code.

5.2.5.1 Calling Assembly Subroutines

Calling a subroutine or function requires using a label that points to the subroutine or
function. The C compiler uses a predetermined labeling convention (see Section 4.7,
"Compiler Naming Conventions," on page 4-13), and does not generate arbitrary labels
like most assembly programs. In order to call assembly subroutines labeled in an arbitrary
fashion,_ asm()can be used to overwrite the C convention label with an arbitrary label.

To illustrate how to use the_ _asmdirective for this purpose, Section 4-7 reads the data
at x memory location $100 and y memory location “y+2”. For test purposes, the y memory
space is filled with the integer sequence 0 through 9 and the x memory space is left
uninitialized. Theprintf() statement prints the data returned from the functions
ValOfX(100) and ValOfY(y+2). These two functions are constructed in assembly code
and reside in another file. The two assembly subroutines, ReadX and ReadY, are written

5-18 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

In-line Assembly Code

using the out-of-line assembly technique described in Section 5.4. The listings for ReadX
and ReadY are shown in Example 5-38 in Section 5.4.5.

By using the statement

extern int ValOfX() _ _asm(“ReadX”), ValOfY() _
_asm(“ReadY”);

all C compiler generated function labels forValOfX() andValOfY() are replaced by the
labels ReadX and ReadY, respectively.

Example 5-24. Calling Assembly from C

Calling assembly from C. This C program (called test.c) can be used to examine the data
in x or y memory by calling assembly routines “ReadX” or “ReadY”. Notice that the
assembly code for ReadX and ReadY is listed in Section 5-38 of Section 5.4.5.

C:\> type test.c

#include <stdio.h>
extern int ValOfX() _ _asm(“ReadX”), ValOfY() _
_asm(“ReadY”);
unsigned Y[] = {0x1,0x2,0x3,0x4,0x5,0x6,0x7,0x8,0x9};
main()
{

printf(“<%x><%x>\n”, ValOfX(100), ValOfY(Y+2));
}

The following two command lines test Section .

C:\> g56k test.c memread.asm
C:\> run56 a.cld

5.2.5.2 Calling C Subroutines from Assembly Code

Any C program can be called from an assembly program to test the assembly program data
or utilize built-in standard C libraries such as floating-point operations. Calling a C
subroutine from assembly code requires using the C subroutine calling convention (see
Section 4.8, "Subroutine Call Sequence," on page 4-14 and Section 5.4.4, "Calling C
Routines," on page 5-35) and matching the C function labels. The in-line-assembly
directive,_ _asm(), can be used as shown in Section to change the C program labels.

In-line Assembly Code

Motorola Mixing C and Assembly Language 5-19

Example 5-25. Calling C from Assembly

Calling C from assembly. This C subroutine (called C_print.c) uses the standard C library
routine,printf() , to print the input argument as a string.

C:\> type c_print.c
#include <stdio.h>
int C_printf() _ _asm(“print”);
C_printf(char *msg)
{
printf(“%s\n”, msg);
}

Example 5-26. Calling C from Assembly

Calling C from assembly. This assembly program (calledgreeting.asm) prints the
message “greeting: hello, there ” on the screen. It uses the C subroutine,printf () ,
to print this message. Notice that the assembly program name is Fmain because the control
program, G56k, uses the default start-up filecrt056y.cln andcrt056y.cln uses
Fmain to start up the main program (see Chapter 6 in this manual).

C:\> type greeting.asm

section greeting
org y:

LC0 dc “greeting: hello,there.”,$00
org p:
global Fmain

Fmain move ssh,y:(r6)+
move r1,y:(r6)+
move #LC0,r1
move r1,y:(r6)+
jsr print
move (r6)-
move y:-(r6),r1
move y:-(r6),ssh
rts
endsec

The following two command lines are used to test two programs:c_print.c and
greeting.asm.

C:\> g56k greeting.asm c_print.c
C:\> run56 a.cld

5-20 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

In-line Assembly Code

5.2.5.3 Referencing Assembly Global Variables from C

The data in assembly language programs must be accessible to C programs to take full
advantage of the DSP56000 family architecture since the C language cannot access all of
the DSP56000 features directly. One way to access this data is through global data which
can be defined in assembly language and accessed in the C program environment. This
feature is particularly useful to allocate modulo buffers for C variables. Detailed
information on modulo buffers can be found in theDSP56000/DSP56001 User’s Manual,
Section 5 — Address Generation Unit and Address Modes.

Example 5-27. Generate Data with Assembly Language

Generate data with assembly language. The data file, sqtbl.asm, is generated in assembly
language and consists of the squares of the numbers 0 - 8. Notice that directives BSC, DC,
DS, DSM and DSR (see Section 6.3 of theMotorola DSP56000 Macro Assembler
Reference Manual) can be used depending on the application.

C:\> type sqtbl.asm

section data
global table
org y:

table dc 0,1,4,9,16,25,36,49,64
endsec

Example 5-28. Access Data with C

Access data with C. This test program (called test.c) prints the value of52 on the screen.

C:\> type test.c
#include <stdio.h>
extern int SQUARE[] _ _asm(“table”);
main()
{
printf(“square of %d is %d\n”, 5, SQUARE[5]);
}

The following two command lines for Example 5-28 test the two programssqtbl.asmand
test.c.

C:\> g56k test.c sqtbl.asm
C:\> run56 a.cld

In-line Assembly Code

Motorola Mixing C and Assembly Language 5-21

5.2.5.4 Referencing Global C Variables from Assembly Language

One DSP56KCC feature is that global data in a C program is available to assembly
language programs. This feature is particularly useful when the data to be processed by an
assembly language program is generated by the C program. Example 5-29 provides
coefficients that are used in Example 5-30.

Example 5-29. Generate Data with C

Generate data with C. Data file,data.c , is generated by a C language program and
contains the coefficients of an average filter which takes the average of the last four input
data.

% cat data.c
/*
* data.c
*/
int Cwaddr[] _ _asm(“waddr”);
int Ccaddr[] _ _asm(“caddr”);
int NTAP _ _asm(“N_1”);

int Cwaddr[4];
int Ccaddr[] = { 0x200000, 0x200000, 0x200000, 0x200000
};
int NTAP = 4;

Example 5-30. 4-tap FIR Filter

4-tap FIR filter — Access data with assembly language: This FIR filter reads an input
sample from memory location Y:input and writes the filtered output to memory location
y:output. The input data array is stored in X memory starting at waddr and the FIR
coefficients are stored in Y memory starting at caddr. Notice that the memory space for
waddr and caddr is allocated in the C routine described in Example 5-29.

% cat fir.asm
org p:
move #waddr,r0
move #caddr,r4
move y:N_1,m0
move m0,m4

movep y:input,x:(r0)

clr a x:(r0)+,x0y:(r4)+,y0
rep #n-1

5-22 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

#pragma Directive

mac x0,y0,a x:(r0)+,x0y:(r4)+,y0
macr x0,x0,a (r0)-

movep a,y:output

end

C:\> g56k -S data.c
C:\> g56k -c fir.asm
C:\> g56k -c data.asm
C:\> g56k fir.cln data.cln

5.2.6 Specifying Registers for Variables

DSP56KCC allows the programmer to identify a specific register for local and global
variables, but due to the limited number of registers available, this may not have a positive
effect on run-time performance. With this in mind, this feature should be used sparingly.

Both global and local variables are candidates for promotion to specific registers and
syntactically they look the same:

register int *ptr _ _asm(“r5”);

By specifying a specific register for a local or global variable, the programmer is reserving
the register for the variable’s entire scope (global for the entire program, local for the
function in which they are declared). This means that the compiler will not use the register
for any other purpose and the registerwill not be saved and restoredby the C function
call.

5.2.7 Optimizer Effects on Code

All in-line assembly code is visible to the optimizer and as such it is possible that the
optimizer will convert it into a new form or eliminate it entirely if it is determined to be
unreachable or dead. In order to guarantee that code is not removed by the optimizer, the
ANSI keyword volatile must be used.

_ _asm volatile (…);

5.3 #pragma Directive

The purpose of this section is to explain the proper techniques for manipulating the
assembler’s run-time and load-time counters while programming in the C language.

Currently the Motorola DSP assemblers allow the programmer to specify both a run-time
location and a load-time location for any object; however, there is no corresponding
concept within C. The generic #pragma facility is used to add this capability rather than

#pragma Directive

Motorola Mixing C and Assembly Language 5-23

extending the C language. Users now have complete freedom in specifying both the
run-time and load-time counters for any static or global object. These directives may be
used with either code or data.

This flexibility is achieved by allowing the user to modify any of eight counter strings
maintained by the compiler — two for each memory space: x, y, l and p. When an object is
or defined, the current values of those counter strings are bound to that object.

Syntax for the pragma directive is

#pragma counter_string argument

C function or data storage definition

#pragma counter_string

where

1. The two#pragmastatements must encase the entire definition.

2. counter_string in the first #pragma specifies which phase (run or load time) and
memory space is to be affected. It can bex_run, y_run, l_run , p_run, x_load,
y_load, l_load, or p_load. The memory model used in the C compiler should
match the memory model specified bycounter_string. Note that thep_run and
p_load counter_stringswill always have an effect.

3. The argument in the first#pragma is the string that will be passed as either the
runtime or load-time argument to the org assembler directive. This address, which
is optional, is of the formx:address_valuewhere x is the counter associated with
thex, y, l, or p memory, andaddress_valueis the value to be initially assigned to
that counter. As an example,p:$300 might be used for the counter stringp_load.

4. The C function or data storage definition is a declaration that reserves storage.

5. The second counter_string should be the same as the firstcounter_string and will
return the memory specification to the default setting.

If and only if the memory space of the counter string in the #pragma directive matches the
memory model of the C compiler, then the compiler will insert an assembly org statement
of the form:

(1) org a:runtime_address,b:loadtime_address

or

(2) org a:runtime_address

5-24 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

#pragma Directive

where“a” is the run time counter andruntime_addressis the optional initial value for that
counter, as specified in the “argument” to#pragma.

“b” is the load time counter andloadtime_addressis the optional initial value for that
counter, as specified in the “argument” to#pragma.

The following two examples illustrate that the load time counter is optional. See the
section on the ORG statement in theMotorola DSP56000/DSP56001 Assembler Manual
for a complete description and list of options.

Notice that the pragma directive run-time counter string will only affect the run-time
address and the pragma directive load-time counter string will only affect the load-time
address.

As a simple example, assuming that y-memory model (or default memory model) is used
(see Chapter 3 to change the memory model to be used), the following C segment

#pragma y_load x:$100
int coeff[5] = {0x19999a, 0x200000, 0x266666, 0x2ccccd,
0x333333};
#pragma y_load

produces the following assembly language code:

globalFcoeff
orgy:,x:$100
Fcoeff
dc 1677722
dc 2097152
dc 2516582
dc 2936013
dc 3355443

Notice that the second #pragma directive will remove the affect of the first memory
specification, i.e.,#pragma y_loadx:$100, and the rest of the code generated by the C
compiler will be in the default memory area (see Chapter 3 in order to change this default
memory model).

The above example code will be loaded in the X memory location $100, and it should be
copied to the Y memory space upon system start-up. When burning a PROM, only one
memory space is desired to be used, as an example, P memory space, so that only one
PROM is enough for both data and program. In such case, both the data and the program
will be burned in the PROM and the data should be moved to the data memory space
(either, X, Y or L memory space depending on the program) upon system start-up.

Out-of-line Assembly Code

Motorola Mixing C and Assembly Language 5-25

Let’s assume that the coefficients of the above example is desired to be in the program
space when burning the PROM. Then the following C segment

#pragma y_load p:$100
int coeff[5] = {0x19999a, 0x200000, 0x266666, 0x2ccccd,
0x333333};
#pragma y_load

produces the following assembly language code:

global Fcoeff

org y:,p:$100
Fcoeff
dc 1677722
dc 2097152
dc 2516582
dc 2936013
dc 3355443

The above assembly code will be loaded into the P memory space at p:$100 for the PROM
burning, and it should be copied to the L memory space before the actual program is
executed. Manipulating the assembler’s run-time and load-time counters requires a
thorough understanding of the underlying assumptions about memory layout, which are
made by the compiler (see Chapter 6).

Note: Incorrect use of this feature may cause compile-time, link-time and even
run-time errors.

5.4 Out-of-line Assembly Code

Out-of-line assembly code is assembly code written in a separate source file that is called
from a C program. Separating the assembly code and C code in this way provides a
powerful and flexible interface to the DSP56000 family architecture. This out-of-line
method may be used to convert existing assembly subroutines, write new subroutines
completely in assembly language or access both data spaces (X and Y). The key advantage
of out-of-line assembly code is that it provides a complete assembly programming
environment for the DSP56000 family whereas the in-line assembly code must follow the
C programming environment rules.

Writing out-of-line assembly code requires a complete understanding of the C Cross
Compiler and the DSP56000 family architecture. For out-of-line assembly code to be
callable from a C program, the following five basic elements should be included in the
assembly source file in sequence.

5-26 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

Out-of-line Assembly Code

1. C subroutine entry code (prologue code).

2. Save all registers to be used.

3. Main program.

4. Restore all registers used.

5. C subroutine exit code (epilogue code).

Each of these steps can be programmed as a macro; however, using generic macros can
unnecessarily increase the size of the resulting assembly code program. The DSP’s ability
to move data in parallel with arithmetic operations provides opportunities to significantly
optimize the assembly code by combining steps within a macro and by combining the
code of two or more macros.

In order to illustrate the steps listed above, the out-of-line assembly code template is
described first and each element of the template is then explained in detail. After
reviewing the five elements, some optimization techniques are discussed.

5.4.1 General Template

The following template is a generic form used to make the C function “foo”. There are
five distinct elements in the template which are numbered as above. The actual code for
the prologue and epilogue is shown but the “Save all registers to be used”, “Main
Program”, and “Restore all registers used” are listed as comments because their actual
code depends on the main program.

global Ffoo ; prologue:
Ffoo ; sets up entry point (C
function address),

move r0,y:(r6)+ ; updates frame pointer (r0)
and saves

lua (r6)+,r0 ; return address
move ssh,y:(r6)+ ;

; Save all registers to be used
; Main Program
; Restore all registers used

move y:-(r6),ssh ; epilogue:restores return
address, updates

move y:-(r6),r0 ; restores return address,
updates

tst a ; frame pointer (r0), and
updates the SR with

; the contents of register A
rts

Out-of-line Assembly Code

Motorola Mixing C and Assembly Language 5-27

5.4.1.1 Prologue

The first two lines of the prologue make the assembly program visible to the C program so
that the subroutine or function is callable from the C program. In this case, any one of the
following C statements can be used to access out-of-line assembly code.

foo();
x = foo();
x = foo(arg1, arg2, arg3);

The first function call assumes that the C function does not use any arguments and does
not return any values. The second only returns a value which is the same data type as the
variable x. The last call assumes that the C function uses the three arguments: arg1, arg2
and arg3 and then returns the value x.

The rest of the prologue saves the old frame pointer, updates the current frame pointer and
saves the return address. The return address is saved when the JSR instruction pushes the
hardware stack which saves the program counter in the high 16 bits of the system stack
i.e., SSH. This section of the prologue provides bookkeeping for the C compiler activation
record. Detailed information on the structure of the activation record can be found in
Section 4.6.1, "Activation Record," on page 4-10. After this prologue, the R0 register is
the frame pointer and R6 is the stack pointer.

5.4.1.2 Save all registers

All registers used in the main program should be saved before the main program changes
them. This step is the second element of the template — “Save all registers to be used”.

In order to save the registers, R6 is used as a stack pointer. The stack grows upward and
the current stack pointer (R6) points to the next element above the top of stack. The
following statement saves one register to the top of stack and sets the stack pointer to the
next available stack location.

move x0,y:(r6)+

Two registers, y1 and x1, can be saved with the following statements:

move y1,y:(r6)+
move x1,y:(r6)+

Since saving and restoring the registers are the subroutine’s responsibility, the order of
saving the registers should be in accordance with their restoration. The restore process
should be exactly the reverse order of the register saving sequence.

5-28 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

Out-of-line Assembly Code

5.4.1.3 Main Program

The main C function program accesses the parameters passed, executes the operations on
the parameters and returns a value. Passing parameters is done through the activation
record which has been pushed onto the stack. The activation record frame pointer is
pointed to byr0 and the first parameter is placed 3 locations below the frame pointer (see
Section 4.6.1, "Activation Record," on page 4-10). The parameters are arranged in
reversed order. For example, the following statement should be used to move the first
single word parameter to registerr3.

move #-3,n0 ; the first parameter location
move y:(r0+n0),r3 ; load it to r3.

Assuming the first three parameters are one word long, the following statements move the
second and third parameters to registersr4 andr5, respectively.

move #-4,n0
move y:(r0+n0),r4
move #-5,n0
move y:(r0+n0),r5

5.4.1.4 Restore all registers

The stack pointer,r2, is needed to restore the registers. The following code will restore
one register. At this point in the function’s execution, the stack pointer points to the
location above the last saved register, hence the pre-decrement.

move y:-(r2),x0 ; restore

The restoring procedure can be simplified if more than one register is to be restored.
Restoring registers x0, x1, y0 and y1 can be done by the statements below.

move (r2)-
move y:(r2)-,x0
move y:(r2)-,x1
move y:(r2)-,y0
move y:(r2),y1

After the function has finished, a return value can be passed to the caller. Any 32-bit or
16-bit value must be returned through register a. If the return value is larger than 32 bits,
then the compiler allocates the proper amount of buffer space and register a1 becomes the
pointer to this buffer space upon callee execution. It is the callee’s responsibility to copy
any return values from the buffer whose address resides in register a1. This is the method
used for returning structs.

Out-of-line Assembly Code

Motorola Mixing C and Assembly Language 5-29

5.4.1.5 Epilogue

The out-of-line template epilogue is the reverse of the prologue. The epilogue restores the
return address and updates the frame pointer, R0. Notice that the stack pointer, R6, should
be decremented before each move operation. In addition, register A is tested to update the
SR register. This testing is a part of the C compiler code generation feature and should be
included (see Section 5.4.5 for optimization).

5.4.1.6 Out-of-line Assembly Code Example

The following example illustrates using the general template as well as the fact that the
DSP56000/DSP56001 performs fractional arithmetic. Assume that section mod1 contains
two C callable subroutines,mac01()andmac02()and sectionmod2contains a single C
callable subroutine,mactwo(). The two functionsmac01()andmac02()take one
argument each andmactwo() takes two arguments. These functions perform
multiplication according to the following formulas and return their results:

Note that multiplication on the DSP56000/DSP56001 treats data as fractions; however,
the C programming environment does not support a fractional data type. Therefore data
will be passed as integers from the C programming environment and will be treated as
fractional data in the DSP56000/DSP56001. This can be an advantage if fractional
arithmetic is desired since this is normally difficult to accomplish in C. Note that the
calling routine must ensure arg is in range to prevent overflow.

The following function declarations (ANSI standard) can be used to declare functions
which are known to perform fractional arithmetic. Internally, the size of integers is the
same as the size of fractions.

int mac01(int);
int mac02(int);
int mactwo(int, int);

mac01(arg) calculates arg * 0.01

mac02(arg) calculates arg * 0.02

mactwo(arg1,
arg2)

calculates arg1 * arg2

5-30 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

Out-of-line Assembly Code

These three functions can be called as follows:

int fractvalue;
fractvalue = mac01(0x123456); /* the value 0x123456 is
0.142222166 in fractional */
fractvalue = mactwo(0x123456, 0x0147ae); /* 0x0147ae is
0.001 */

The conversion between fractional data and integer data (in hex form) can be performed
using the evaluate command in the DSP56000 simulator.

Example 5-31. General Template for Out-of-line Assembly Code

General Template for Out-of-line Assembly Code: The two sections of this out-of-line
assembly code are mod1 and mod2. The first section implements:

1. mac01(arg)which takes a fractional argument and returns 0.01 times the argument
and

2. mac02(arg)which takes a fractional argument and returns 0.02 times the
argument.

The second section implementsmactwo(arg) which takes two fractional arguments and
returnsarg1*arg2.

; section mod1:
; int mac01(int arg);
; takes a fractional argument and returns 0.01 *
argument.
; int mac02(int arg);
; takes a fractional argument and returns 0.02 *
argument.

section mod1
global Fmac01

Fmac01
move r0,y:(r6)+ ; prologue
lua (r6)+,r0
move ssh,y:(r6)+
move x1,y:(r6)+ ; save register X1
move y0,y:(r6)+ ; save register Y0
move n0,y:(r6)+ ; save register n0
move #-3,n0
move y:(r0+n0),x1 ; argument
move #0.01,y0 ; operand 0.01
clr a
macr x1,y0,a ; main program: calculates

multiplication of
; x1 and y0

Out-of-line Assembly Code

Motorola Mixing C and Assembly Language 5-31

move y:-(r6),n0 ; restore register n0
move y:-(r6),y0 ; restore register Y0
move y:-(r6),x1 ; restore register X1
move y:-(r6),ssh ; epilogue
move y:-(r6),r0
tst a
rts
global Fmac02

Fmac02
move r0,y:(r6)+ ; prologue
lua (r6)+,r0
move ssh,y:(r6)+

move x1,y:(r6)+ ; save register X1
move y0,y:(r6)+ ; save register Y0
move n0,y:(r6)+ ; save register n0
move #-3,n0
move y:(r0+n0),x1 ; argument
move #0.02,y0 ; operand 0.02
clr a
macr x1,y0,a ; main program: calculates

multiplication of
; x1 and y0

move y:-(r6),n0 ; restore register n0
move y:-(r6),y0 ; restore register Y0
move y:-(r6),x1 ; restore register X1

move y:-(r6),ssh ; epilogue
move y:-(r6),r0
tst a
rts
endsec

; section mod2
; int mactwo(int arg1, int arg2);
; takes two fractional arguments and returns
arg1 * arg2.

section mod2

global Fmactwo
Fmactwo

move r0,y:(r6)+ ; prologue
lua (r6)+,r0

5-32 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

Out-of-line Assembly Code

move ssh,y:(r6)+
move x1,y:(r6)+ ; save register X1
move y0,y:(r6)+ ; save register Y0
move n0,y:(r6)+ ; save register n0

move #-3,n0
move y:(r0+n0),x1 ; the first argument
move #-4,n0
move y:(r0+n0),y0 ; the second argument
clr a
macr x1,y0,a ; main program:

; calculates multiplication of
x1 and y0

move y:-(r6),n0 ; restore register n0
move y-:(r6),y0 ; restore register Y0
move y:-(r6),x1 ; restore register X1

move y:-(r6),ssh ; epilogue
move y:-(r6),r0
tst a
rts
endsec

The DSP56KCC control program, G56k, should be used to assemble the out-of-line
assembly code. The two sections of this code, mod1 and mod2, can be put in the same file
or in separate files.The following command lines and source files provide a test for the
case where each program is in a separate file.

C:\> type main.c

#include <stdio.h>
int mac01(int), mac02(int), mactwo(int,int);
main()
{
printf(“%x, %x\n”, mac01(0x123456), mactwo(0x123456,
0x0147ae));
printf(“%x, %x\n”, mac02(0x123456), mactwo(0x123456,
0x28f5c));
}

C:\> g56k main.c mod1.asm mod2.asm
C:\> run56 a.cld

2e9a, 2e9a
5d35, 5d35

Out-of-line Assembly Code

Motorola Mixing C and Assembly Language 5-33

5.4.2 Global C and Static Variables in C

The global C variables are accessed using labels generated by the C compiler. Any
variables that are static to an assembly language subroutine will be accessed the same
way. These variables are placed into memory at compile-time and are referenced
symbolically according to the labels automatically generated by the compiler. However, it
is possible to override the default labels by using the_ _asm()keyword as explained in
Section 5.2.5, "Controlling Labels Generated by the Compiler,".

For example, using the default labeling convention, the global integer,Ginteger which
can be declared within the C statement “extern int Ginteger;” is loaded into the input
register x0 in assembly code as follows:

move y:FGinteger,x0

When declaring C global variables in an assembly language file, the programmer must be
careful to follow the label generating convention or use the_ _asm() keyword to report to
the compiler that the labeling convention has been changed. In both cases, the assembler
directive global is used to export the labels to the C files. DO NOT use the XDEF/XREF
pair of directives. NOTE that it is the programmers responsibility toallocatespace for the
global variables declared in this manner. In the example below, this is done with the
assembler directive dc. Also, ANSI C requires that all global variables be initialized to
zero if they are not explicitly initialized.

Example 5-32. Global Label in Assembly Language

Global Label in Assembly Language. This example shows assembly code that defines a
global integer (named FGinteger) which is normally accessed as Ginteger in the C
environment and FGinteger in the assembly programming environment.

FGinteger dc $0
globalFGinteger

Example 5-33. Global Variable Declaration

Global Variable Declaration. This is the C code equivalent to Section which defines the
global integer Ginteger.

extern int Ginteger;

5-34 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

Out-of-line Assembly Code

Example 5-34. Changing a Global Label

Changing a Global Label. This example shows C code that generates a global integer
(Ginteger) which is accessed as Ginteger in both the C environment and the assembly
programming environment.

extern int Ginteger _ _asm(“Ginteger”);
Which will appear in assembly language code as:

Ginteger dc $0
global Ginteger

5.4.3 Using Run-time Stack for Local Data

The run-time stack may be used when the programmer requires a temporary data space for
automaticstyle variables — i.e., local variables in subroutines. Using the run-time stack
requires additional steps in the prologue and epilogue sections. It is the subroutine’s
responsibility to automatically allocate and deallocate the stack at run-time.

In the prologue, an extra step is required to save the run-time stack space. Keeping in mind
that the stack pointermust always point to the next available stack location, the stack
space isallocatedby advancing the stack pointer by the amount of space required. One
way to allocate this space is shown in the Section .

Example 5-35. Run-time Stack Allocation

Run-time stack allocation: This code segment can be inserted in the general template
prologue for out-of-line assembly code. Notice that “size” in the move statement below
should be replaced with the appropriate constant.

move #size ,n6; the stack size needed
nop ; wait until n6 is available to operate

on r6
move (r6)+n6 ; allocate the run-time stack for

locals

Referencing the data space can then be accomplished using negative offsets from the stack
pointer or via initialized address registers. There are many alternatives to these methods
but they are all similar.

In the epilogue, an extra step is required to restore the stack pointer — i.e., deallocate the
run-time local stack. This is simply the reverse of the allocation process in the prologue.

Out-of-line Assembly Code

Motorola Mixing C and Assembly Language 5-35

Example 5-36. Run-time Stack Deallocation

Run-time stack deallocation: This code segment can be inserted in the general template
epilogue for out-of-line assembly code. Notice that “size” in the move statement below
should be replaced with the appropriate constant.

move #size ,n6; the stack size used before
nop ; wait until n6 is available to operate on r6
move (r6)-n6 ; deallocate the run-time stack

There are many ways to do this, one simple optimization would be to advance the n6 load
instruction in the program to eliminate the nop.

5.4.4 Calling C Routines

C routines are routines that are callable by a C program and may be written in either C or
assembly language. When writing assembly language subroutines, it may be necessary to
call library routines that have been provided or that have been written by the programmer
— e.g., a call tosin() or printf() . In order to do this, the programmer must follow 3 steps:

1. Push arguments onto the run-time stack in reverse order.

2. Make the subroutine call.

3. Restore the stack pointer.

The following example assumes that the four parameters to be passed to the C function
foo() are located in registers a1, b1, x0 and x1; respectively. The first four lines of
assembly code push the arguments onto the run-time stack in reverse order. Thejsr
statement makes the subroutine call and the last two statements restore the stack pointer.

Example 5-37. Calling C Routines

Calling C Routines. The C function,foo(), is called from the following assembly code.
Functionfoo() is declared as intfoo(int, int, int, int) ;

move x1,y:(r6)+ ; pushing arguments onto
move x0,y:(r6)+; run-time stack in reverse
move b1,y:(r6)+; order
move a1,y:(r6)+
jsr Ffoo ; subroutine call
move #4,n6 ; the stack size restored.
nop
move (r6)-n6 ; restore it.

5-36 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

Out-of-line Assembly Code

5.4.5 Optimization Techniques

The general template for out-of-line assembly code provides a clean template to build C
callable functions. However, the DSP56000 family microprocessor chips have powerful
features such as multiple instruction execution (multiply and accumulate) and parallel data
move operations that may allow additional optimization. After constructing the out-of-line
assembly code from the general template, some hand-optimization can be performed by
combining several assembly statements.

Information about these optimization techniques can be obtained from the
DSP56000/DSP56001 User’s Manual. Some optimization techniques which are related to
the C compiler are discussed in this section but additional optimization can be achieved
using the architectural features described in the user’s manual.

The R0 register (which is updated by the out-of-line assembly code template prologue) is
required only when parameters are passed to the C function. If there are no parameters to
be passed, then the following two assembly code lines are not required and can be omitted:

move r0,y:(r6)+
lua (r6)+,r0

The return address (SSH) was saved in the out-of-line assembly code prologue but it is
only required when a C function calls another C function. A C function is called a leaf
function if it does not call any other C function. In leaf functions, the return address is not
needed and does not have to be saved.

Similarly the epilogue can be optimized in the same way as the prologue. For any leaf
function or non parameter C function, the epilogue size can be reduced by eliminating:

move y:-(r6),ssh; for a leaf C function

or

move y:-(r6),r0; for a non-parameter C function

The test statement “tst a” in the epilogue can be eliminated if the function does not return
any values. The test statement may be required due to the C compiler’s optimization
features since it provides condition flags for anif statement in a function call. For
example, if the out-of-line assembly function foo() is used in the statementif(foo()) { },
then the C compiler will not generate code to test the return value when ajcc statement is
issued. This is primarily because the C compiler uses the condition flags which were
executed at the end of the epilogue offoo().

A variety of optimizations can be achieved by combining the move instructions and main
program code to utilize parallel moves (see Section 5.4.5 and Section 5-38 which point out
possible optimizations in the comments). These and other DSP56000 specific

Out-of-line Assembly Code

Motorola Mixing C and Assembly Language 5-37

optimizations can dramatically improve the quality of the application specific library
routines. A careful review of theDSP56000/DSP56001 User’s Manualwill be worthwhile
for efficient library development.

Example 5-38. ReadX / ReadY Routines

ReadX / ReadY Routines. This out-of-line assembly program (called memread.asm) reads
the contents of x or y memory and returns the data to the caller. The ReadX subroutine
returns the x memory space contents pointed to by the input argument and the ReadY
subroutine returns the y memory contents.

section memread
org p:
global ReadX ; prologue

ReadX

mover 0,y:(r6)+;
lua (r6)+,r0 ;
move r1,y:(r6)+; save register r1
move #-3,n0 ; the first parameter
move x:(r0+n0),r1 ;
move x:(r1),a; main program

; restore register & epilogue
move y:-(r6),r1 ; Note: r6 decrement can
tst a y:-(r6),r0; be a parallel move in the
rts ; main program.

global ReadY ; prologue

ReadY

move r0,y:(r6)+ ;
lua (r6)+,r0 ;
move r1,y:(r6)+ ; save register r1
move #-3,n0 ; the first parameter
move y:(r0+n0),r1 ;
move y:(r1),a ; main program

; restore register & epilogue
move y:-(r6),r1 ; Note: r6 decrement can
tst a y:-(r6),r0 ; be a parallel move in the
rts ; main program.
endsec

5-38 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

Out-of-line Assembly Code

Run-Time Environment Specification Files

Motorola Software-Hardware Integration 6-1

Chapter 6
Software-Hardware Integration

6.1 Overview

This chapter explains how the run-time environment may be changed and provides
examples of some changes and their effects. The run-time environment provided with the
compiler assumes, as a default, that the simulator is the target execution device. Several
aspects of the default run-time environment must be altered in order to adapt the compiler
to work with a custom hardware configuration.

The files which are alterable are discussed and classified according to effect. Aspects of
the run-time environment such as: bootstrapping, interrupts and memory management are
addressed individually.

6.2 Run-Time Environment Specification Files

The run-time environment is specified by three assembly language files: crt056[x,y,l].asm,
signal56[x,y,l].asm and setjmp56[x,y,l].asm where x, y, or l denote the memory model
(see chapters 2 and 4). These files may need to be modified if the run-time environment is
to be customized.

Thecrt0 file contains parameters which specify the C bootstrap code, memory
configuration, memory management, interrupt vectors and other miscellaneous code. This
file must be modified to match the software and hardware configuration because the
memory configuration and interrupt vectors are determined by the hardware. The
information in this manual on the crt0 file applies to DSP56KCC Version g1.11. The crt0
file may be different for other versions of this compiler.

The signal file, which is equivalent to a hardware interrupt, is implemented in the C
environment. The signal file contains the code and data structures used to implement the
signal() andraise() library functions. Changing this file is not recommended unless
necessary since any change to this file requires detailed knowledge of the DSP56000
family interrupt mechanism in addition to the signal and raise functions. This file is
closely tied to the signal.h file.

Thesetjmp file contains code which implements the functionssetjmp() andlongjmp().
This file will probably never need to be modified unless the signal file is changed;
however, if either thesetjmp file or setjmp.h are modified, the code in both files must be
made consistent. The source code forsetjmp() andlongjmp() is provided with
DSP56KCC to allow modification should the signal mechanism need to be changed.

6-2 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

crt0 File

The operation ofsetjmp() andlongjmp() is described in Section 6.10 and detailed
implementation information can be obtained from the files provided with DSP56KCC.

6.3 crt0 File

The following subsections describe the various functions of thecrt0 file.

6.4 Bootstrapping the C program

The processor enters a C program through the C bootstrap code in thecrt0 file. The C
bootstrap code incrt0 provides the C environment required to execute a C program. This
environment includes a global data area, static data area, stack area, heap area, function
calling mechanism, etc. This environment must be established before C programs will
execute correctly.

The following steps are normally taken to initialize the processor to execute C code:

1. Jump from the chip reset vector to the C bootstrap code labeled atF_ _start in
ctr0 . Remember that the mode select pins on the chip control the chip operating
mode when leaving reset which, in turn, controls the reset vector address (see the
Motorola DSP56000/DSP56001 User’s Manualfor more details).

2. Configure all hardware registers needed (i.e,. omr, host port, etc.). This is also a
proper place to initialize any non-C related data structures or peripheral hardware
such as the bcr, Port B and Port C.

3. Load the Stack Pointer, r6, with a pointer to the base of the stack. Remember that
the stack grows up (the value in the stack pointer gets greater as data is pushed).
The value of DSIZE is generated by the linker and is the first address above the
statically allocated data (C global and static variables). By default, this value is
used as the initial stack pointer.

4. Optional: Initialize the frame pointer, r0. This may be of use to some debuggers
when stack back traces are performed. Program execution will not be affected if
this initialization is omitted.

5. Callmain() with instructionjsr Fmain . Notice that the label is Fmain and there
are no parameters passed to the main function. The normal C compiler start-up
passes two arguments but g56k does not pass any arguments because DSP56KCC
does not support a particular hosted environment.

The bootstrap code is followed with the labelF_ _crt0_end. This label is used by Gdb56
and run56 to detect program termination.

Memory Configuration and Management

Motorola Software-Hardware Integration 6-3

Note: Labels which begin with a double underline (e.g., _ _crt0_end) in this manual
have a space between the double underlines to visually separate them. Do not
separate the leading double underlines with a space when coding them (i.e.,
code _ _crt0_end as __crt0_end).

Example 6-1. DSP56000/DSP56001 Operation Mode Change

Mode 2 has a reset vector of $E000 which must contain a jmp to the C program bootstrap
code. Adding the following code segment to the crt0 file will change the bootstrap mode
to Mode2.

section mode2_reset
org p:$e000
jmp F_ _start; jump to the C start-up program.
endsec

Example 6-2. C Bootstrap Code Location Change

Hardware was designed to have a 256 byte ROM monitor located in the program memory
space starting at $0000 and ending at $FF. Program RAM starts at location p:$100. The
following changes to thecrt0 file will change the beginning location of the C bootstrap
code to the first available RAM location (p:$100). The DS statement allocates program
space starting at p:$0000 and lets the ROM be located at address p:$0000. The org
statement places the C bootstrap code at memory location p:$100.

Change this portion of the crt0 file:

org p:
F_ _start
to:

org p:$0000
ds $100
org p:$100

F_ _start

6.5 Memory Configuration and Management

The DSP56000 family supports three memory spaces: program memory (p memory), x
and y data memories. The DSP56000 family design philosophy is to support concurrent
access to these memory spaces to accelerate DSP operations. The C programming
language does not support separate memory spaces but instead treats memory as a single
memory space. As a result, there is a difference between hardware memory organization
and C memory utilization.

6-4 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

Memory Configuration and Management

DSP56KCC provides three different memory models to minimize these differences. They
are the x memory model, y memory model and l memory model. Selection of the
appropriate memory model is made using the -m option of the control program, G56k (see
Section 3.2.2, "Compile Phase Options," on page 3-20). The memory configuration for
each memory model is discussed later in this section. Thecrt0 file can be modified to
configure memory for any hardware design.

There are four data segments in the C programming environment. These are the program
segment, global-static data segment, stack data segment and heap data segment. The
program segment is located in program memory. The three data segments can be located
in x memory, y memory or l memory space (which is a concatenation of x and y memory)
depending on the memory model used.

Figure 6-1. Environment Memory Configuration

As indicated in Section 5.1, "Overview," on page 5-1, global and static data reside at the
bottom of the available data memory and the top address of the global and static data area,
which is called DSIZE, is set by the linker. The constant TOP_OF_MEMORY is defined
to indicate the top of the entire available memory.

The two data segments, heap and stack, are located as shown Section 5.1, "Overview," on
page 5-1. The stack is located so that it can grow up and the heap is located so that it can
grow down. There are two locations used to indicate the initial values for the heap pointer
and stack pointer. These locations are_ _y_sizeand_ _break and are initialized in the
crt0 file as DSIZE and TOP_OF_MEMORY, respectively.

X MEMORY MODEL

Global / Static

Stack

Heap

_ _y_size

_ _break

X:TOP_OF_MEMORY

DSIZE

Y MEMORY MODEL

Global / Static

Stack

Heap

Y:

L MEMORY MODEL

Global / Static

Stack

Heap

L:

Stack Pointer

Memory Configuration and Management

Motorola Software-Hardware Integration 6-5

In summary, two variables_ _y_sizeand_ _breakand the constant TOP_OF_MEMORY
are used to configure the data segment. The program segment is configured using the org
statement in thecrt0 file. The variable,_ _y_size, should be initialized with the initial
stack pointer and the variable,_ _break, should be initialized with the initial heap pointer.

Warning
The stack and heap regions must not contain on-chip
peripheral memory or the static or global data regions. Also,
no region may be reconfigured after the C main function is
called. Variables_ _y_sizeand_ _breakshould not be altered
by an arbitrary function since they are utilized by system level
libraries such as malloc and free.

Example 6-3. Fast Stack

In this example, the stack is required to reside in an 8k SRAM starting at L:$4000. The
following program reserves the stack space using org and ds statements and sets the initial
stack pointer to the SRAM stack area.

Add this section to thecrt0 file:

section fast_ram
org L:$4000
ds $2000
endsec

Change the following line of C bootstrap code in thecrt0 file:

move y:F_ _y_size,r6
to:
move #$4000,r6

6-6 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

Interrupt Vectors

Example 6-4. Fast Heap

The heap is required to reside in an 8k SRAM starting at L:$4000. The following program
reserves the heap space using org and ds statements and sets the initial heap pointer to the
SRAM heap area.

Add this section to thecrt0 file:

section fast_ram
org L:$4000
ds $2000
endsec

Change the following line of C bootstrap code in thecrt0 file:

TOP_OF_MEMORY equ $ffbe

to:

TOP_OF_MEMORY equ $5fff

Sometimes hardware configurations map more than one memory space into a single
physical memory. Other implementations partially populate various address spaces
leaving holes. Some may have different regions with fast memory and slow memory. All
of these special cases can usually be handled by modifying thecrt0 file.

When multiple memory spaces are mapped into a single physical memory, the memory
must be partitioned among the memory spaces. A way to restrict the linker from
overlapping these memory spaces is needed. For example, suppose that both the Y and P
spaces are mapped into the same 64k physical RAM and need to be partitioned with the
low 48k for program memory and the high 16k for data memory.

The linker can be restricted from allocating across holes in physical memory by using the
org andds directives to confiscate those addresses. Note that the linker may not
automatically take advantage of memory which is present between holes. It may be
required to manually place assembly language data structures to utilize this memory.

6.6 Interrupt Vectors

The interrupt vector locations for the DSP56000 family (a.k.a. “interrupt source” in
Section 8 of theDSP56000/DSP56001 User’s Manual) contain one or two instructions
each to be executed when the interrupt assigned to that location occurs. There are 32
interrupt vectors available, all of which should be initialized with some value to avoid
undefined behavior resulting from an unexpected interrupt.

Interrupt Vectors

Motorola Software-Hardware Integration 6-7

Thecrt0 file contains code to initialize these interrupt vectors. By default, all vectors are
initialized with the instructionjsr Fabort . The first element of the vector table, which
is the hardware RESET interrupt, is initialized with the instructionjmp F_ _start. The
purpose of the C functionabort(), which is labeled as Fabort in the assembly
environment, is to stop program execution and leave the chip in the STOP mode. TheF_
_start label is the program address of the C program bootstrap code which calls the C
main() function after execution.

Interrupt vectors that are to be used must be reprogrammed to point to the interrupt service
routines instead of theabort() function. Initialization of the interrupt vectors in thecrt0

file reduces the size of the resulting application program and may increase its speed.

The followingcrt0 code segment (called section reset) is the default interrupt vector
table initialization.

section reset
org p:$0
jmp F_start
org p:$2
dup 31
jsr Fabort
endm
endsec

The interrupt vector table can be changed to point to user-provided interrupt service
routines instead of theabort() routine in this portion ofcrt0 . Example 6-5 illustrates how
to initialize pointers to these user-provided interrupt service routines.

Example 6-5. User-defined Interrupt Vector Table

Assume the hardware supports all interrupts and each interrupt service routine is located at
the address labeled interruptXX (where XX is the value of the interrupt vector). The
following code initializes the interrupt vector table. Each service routine starting at
interruptXX can be programmed in assembly language as shown in Section .

section reset
org p:$0
jmp F_start
jsr interrupt02
jsr interrupt04
jsr interrupt06
jsr interrupt08
…
jsr interrupt3e
endsec

6-8 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

Miscellaneous Code

Example 6-6. Interrupt Service Routine

Interrupt Service Routine: This service routine updates the global variable F_ _time at
each SCI timer interrupt. The SCI timer period can be set by programming the SCCR (see
Section 11.2.2.3 of theDSP56000/DSP56001 User’s Manual). This program is based on
the y memory model and the SCI interface control registers (X:FFF0 and X:FFF2) should
be initialized for proper SCI timer operation (see Section 11.2 in the
DSP56000/DSP56001 User’s Manualfor detailed information on the SCI operation).

section interrupt
org p:
global interrupt1c
interrupt1c
move (r6)+ ; secure the stack pointer

; (refer to section 5.4.1.4)
move r2,y:(r6) ; save the r2 register
move y:F_ _time,r2 ; retrieve the variable _ _time
move (r2)+ ; increment the variable
move r2,y:F_ _time ; save the result
move y:(r6)-,r2 ; restore the r2 register
rti ; return from interrupt service
endsec

Notice that fast interrupts can also be programmed by modifying thecrt0 file in the same
way as for the long interrupts (see Chapter 8 of theDSP56000/DSP56001 User’s Manual
for more information on fast and long interrupts).)

6.7 Miscellaneous Code

There are other data structures and code related to the run-time environment in the crt0
file. They are:

1. Error code variable,errno , is a global integer used to record failure codes in C
library calls. This error code variable will exist if C library calls are used. This
variable can be utilized as a debugging aid in order to check which error code is
returned from the C function calls.

2. Heap-stack checking window variable,_ _stack_safety, is a global variable
declared in the crt0 file that is used by the heap allocation routines,malloc(),
calloc() andrealloc() to avoid heap-stack growth collisions. If the distance
between the bottom of the heap and the top of the stack is less than the value
contained in_ _stack_safety, then the heap allocation routine will return an error
code indicating that no more memory is available. The value may be set as required

Signal File

Motorola Software-Hardware Integration 6-9

by the application since the window_ _stack_safetyis declared as a global
variable.

3. Memory limit variable,_ _mem_limit, is a global variable declared in the crt0 file
and used by the library routinebrk() to disallow any meaningless memory
requests. This variable should have the same value as_ _break upon entry into
main(). For information on how to use the functionbrk() , refer to Appendix B in
this manual.

4. Dynamic time variable,_ _time, is a global variable declared in thecrt0 file and
used as a volatile timer counter by the simulator. This variable is updated by the
DSP56000 simulator (run56) every clock cycle. Examining this variable allows the
programmer to determine program execution time. This variable is only used by the
simulator and can be omitted when the program is to be executed by hardware.

5. Host I/O stub functions,_ _send()and_ _ receive(),are defined incrt0 and are
called by the standard I/O library functions. The providedcrt0 file only has stub
functions, as both Gdb56 and run56 watch these addresses and perform all I/O
directly.

6. Floating-point shift table,_ _fp_shift, is a pointer used by floating-point library
functions. This pointer may be removed if the application does not use
floating-point.

All of these variables, constants, functions and pointers are related to the run-time
environments that are used by C library functions and must be properly set.

6.8 Signal File

The hardware level interrupt mechanism (see section 8.3 of theDSP56000/DSP56001
User’s Manual) is more efficient than thesignal() function. However, in many cases
interrupts can be handled in the C environment and it is often more preferable to do so.
There are two functions,signal() andraise(), used to support programming interrupt
service routines in C. These functions are not associated with thecrt0 file. Although
they are more complicated than the simple hardware interrupt vector table discussed in
Section 6.6 (see section 8.2 of theDSP56000/DSP56001 User’s Manual) they provide
very handy tools for the C programmer. A thorough knowledge of thesignal() function
and the C environment is needed in order to modify thesignal() function. This section
describes how thesignal() function is currently implemented.

6-10 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

Signal()

6.9 Signal()

Thesignal() function is passed two arguments:

1. A signal number — On the DSP56000 family processor, the signal number
corresponds directly to the interrupt vector address. Notice that the signal number
is not an integer sequence but is an even number.

2. A function pointer— The function pointer passed is assumed to belong to a C
function either generated by this compiler or by assembly code.

Signal() performs the following three steps when binding the specified signal number and
function:

1. The instructionjsr F_ _c_sig_goto_dispatch+<signal number>is placed into the
interrupt table location specified by the signal number.

2. The function pointer passed is entered into the table_ _c_sig_handlers, which is
used to store pointers to C signal handlers, indexed by the signal number.

3. The old signal handler address is returned.

Once the signal number and specified function are bound, the instruction

jsrF_ _c_sig_goto_dispatch+<signal number>

is executed upon receiving the interrupt, where theF_ _c_sig_goto_dispatchvariable is
the starting address of a table of

jsrF_ _c_sig_dispatch

instructions and eachjsr instruction points to an interrupt service routine. The
pseudo-function_ _c_sig_dispatch()is used to calculate the actual C interrupt routine.

All registers are saved before the_ _c_sig_dispatch()function calls the C signal handler.
Pseudo function_ _c_sig_dispatch()then calculates the signal number using the return
address program counter of the ssh. Since the signal number is the same as the interrupt
vector address, each entry of the_ _c_sig_goto_dispatchtable corresponds to an interrupt
vector. The pseudo function uses the signal number to fetch the actual C signal handler
from the_ _c_sig_handlerstable which is the C function pointer table.

Once the C signal handler is fetched from the_ _c_sig_handlertable, its entry is replaced
with the default signal handler SIG_DFL. This replacement is in compliance with the
ANSI standard and forces the next signal service to abort. In most situations, this feature is
not needed because any given interrupt will always invoke the same interrupt service
routine. Resettingsignal()after each C service routine or modifying this file so that it does
not replace the table entry with SIG_DFL will change the interrupt service scheme.

Signal()

Motorola Software-Hardware Integration 6-11

Modification of the signal file is only recommended when optimization of the service time
is critical to the application.

Upon return from the C signal handler, all the registers are restored. Finally, therti

instruction is executed to return to the code that was executing when the interrupt
occurred. Notice two factors in this scheme,

1. all registers are saved and restored before and after the C signal handler and

2. therti instruction is executed by the_ _c_sig_dispatch()function.

Warning
The signal handler must not contain therti instruction at the
end of the program regardless which language is used to
program the interrupt. The signal handler does not need to
save or restore any context or registers. The function_
_c_sig_dispatch()will not act like a normal C function
because it never returns to its caller. Instead, it will return to
the code that was executing when the interrupt happened by
executing therti instruction.

Assembly language interrupt handlers can coexist with C signal handlers. The code in the
signal file will not alter any interrupt vector except the one specified by the signal number
passed to thesignal() function (see the first of the three steps above). The C signal
interface could be used with an assembly routine but would be unnecessarily slow. To use
an assembly language interrupt handler, alter the vector (e.g., interrupt 08) with ajsr to it
(e.g., jsr interrupt 08)or use a fast interrupt routine.

6.9.1 Raise()

Theraise() function is used to simulate an interrupt. The code inraise() simply calls the
entry in_ _c_sig_goto_dispatchthat is matched to the interrupt vector specified by the
signal number passed.

The ANSI standard signal handlersSIG_DFL, SIG_ERR andSIG_IGN are
implemented by the hand-coded functions_ _sig_dfl(), _ _sig_err()and _ _sig_ign(),
respectively.

1. SIG_DFL notes that the interrupt happened by incrementing_ _sig_drop_count
and then returns.

2. SIG_ERR callsabort() and never returns.

3. SIG_IGN returns without any effect (i.e., ignore).

6-12 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

Setjmp File

The mechanisms used to implement the C signal interface may be altered to fit a particular
hardware application. Any series of alterations applied to the signal file must leave an
implementation conforming to the ANSI standard X3.159 for C. Alteration of the signal
file is done at one’s own risk and is not generally advised. Again, the contents of the signal
file must remain consistent with the include filesignal.h .

6.10 Setjmp File

The functionssetjmp() andlongjmp() are implemented in thesetjmp file. Thesetjmp()
function stores the current process status (i.e., the current execution context) in a buffer
that is passed. Thelongjmp() function is used to restore the process status to the execution
context which was saved bysetjmp().

Saving the current execution context is done by saving the stack pointer, the return
program counter value, the frame pointer and all of the callee-save registers into the
buffer. The buffer that is passed tosetjmp() should have enough space for the saving
process. The structurejmp_buf defined in setjmp.h allocates the buffer space needed for
the operation. The functionsetjmp() always returns a zero.

The functionlongjmp() takes two arguments, an environment buffer and a return value. It
restores all registers from the buffer passed, including the frame pointer and stack pointer.
It then places the return value passed into accumulator A and sets the ccr to reflect the
return value just stored in accumulator A. The functionlongjmp() discards the return
program counter on the hardware stack and jumps to the address pointed to by the program
counter stored in the buffer.

This file must conform to the include filessetjmp.h andlongjmp.h . Since these two
algorithms are very straightforward, modification of the file may be not needed. If
modification is absolutely necessary, then the ANSI standard of the functionssetjmp()
andlongjmp() should be followed.

6.11 Host-Supported I/O (printf (), et al)

The library provided with DSP56KCC includes a full implementation of the ANSI C
standard input and output routines. These routines already work with Gdb56 and run56,
and can easily be embedded in custom applications. Anywhere that formatted I/O is
desired, these library routines can be included to simplify development. The entire suite of
routines is based upon a simple communication protocol between the DSP and a host
resident I/O driver, so porting the entire system to custom hardware is trivial.

Host-Supported I/O (printf (), et al)

Motorola Software-Hardware Integration 6-13

6.11.1 DSP functions __send () and __receive ()

All standard I/O functions, no matter how complicated, are built upon two simple
communication functions,__send (), and__receive (). __send ()sends a message to the
I/O driver code residing on the host.__receive ()retrieves a message from that same
driver. Implementing these two functions is all that need be done on the DSP in order to
support standard I/O on custom hardware.

It is assumed that some sort of hardware communication channel exists between the host
and the DSP.__send ()and__receive ()implement a simple message passing mechanism
on top of such a channel.__send ()accepts two arguments: the address of the buffer to
send, and the number of words to draw from that buffer.__receive ()accepts the address
of a buffer in which to place the received message as its single argument. All of the
interactions between the host and DSP are driven by the library code running on the DSP;
because the DSP is in control, it knows the size of return messages from the host,
rendering a count argument to the function__receive ()superfluous.__send ()and
__receive ()are as simple as they seem; the complexity of the standard I/O package is
embedded in the host-side driver and the lib56c[xyl].clb library routines.

6.11.2 The Host-Side I/O Driver

The application running on the host must have the provided I/O driver embedded in it. The
driver is written in C, and uses typically available library routines such asopen (), close (),
read (), andwrite () to perform the actions requested by the DSP. The I/O code is written
as an event-driven state machine, so that the host side application can perform
concurrently with the DSP when the DSP is not requesting I/O activity. In fact, the I/O
driver on the host may be interrupt driven.

The host-side driver consists of the code in dsp/etc/hostio.h and dsp/etc/hostio.c. The meat
of the package consists of two functions,init_host_io_structures ()and
process_pending_host_io (), and two buffershio_sendandhio_receive. The function
init_host_io_structures () is called to initialize host-side driver data structures before
DSP execution is commenced. The bufferhio_sendis used to send messages to the DSP,
andhio_receiveis used to receive messages from the DSP. The function
process_pending_host_io ()considers the current state of the buffers and its own internal
state, and then performs any required buffer modification or host I/O.

6.11.3 Communication between the Host and DSP

The messages passed between the DSP and the host’s I/O driver are defined in the file
dsp/include/ioprim.h. All sequences of communication are initiated by the DSP as a direct
result of a call to a standard I/O function. Each standard I/O call may initiate a series of

6-14 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

Host-Supported I/O (printf (), et al)

messages between the DSP and the host, with the host eventually returning a message
containing the completion status of the original request. The file dsp/include/ioprim.h is
included by both the host-side I/O driver, and the standard I/O library code; it defines the
constant definitions used in the aforementioned messages. A typical series of events and
messages that comprise a standard I/O call might look like this:

1. The application running on the DSP makes a call tofopen ().

2. The library code in lib56c[xyl].clb calls__send (), with a buffer that contains the
code DSP_OPEN, the flags, the mode, and the string length of the path.

3. The host receives the message into the bufferhio_receive, sets its valid flag, and
callsprocess_pending_host_io (). The state machine inside
process_pending_host_io ()notes that it is now in the middle of an open file
request, records the values from the first message, and then returns. At this point,
code written by the application developer must check the valid flag of the buffer
hio_send; in this case, the bufferhio_sendhas not been marked valid.

4. The library code in lib56c[xyl].clb calls__send ()again, this time sending the path.

5. Again, the host receives the message into the bufferhio_receive, and calls
process_pending_host_io ()after setting the buffer’s valid flag.

6. process_pending_host_io ()uses the information from the two messages to
perform the file open. It then builds an operation status message, places it in the
buffer hio_send, and sets that buffer’s valid flag.process_pending_host_io ()
resets its internal state and returns.

7. The host checks the buffer valid flag onhio_send, sees that it is true, and transmits
the message to the DSP.

8. The library code running on the DSP finishes thefopen () call and returns.

On the host side of the interface, the application writer must write the code that exchanges
data with the DSP, the code that callsprocess_pending_host_io (), and the code that
checks buffer valid flags. On the DSP side of the interface, the application writer must
write the routines__send ()and__receive (). The communication between the DSP and
the host is always initiated by the DSP and always follows a predetermined pattern,
depending on the initial message. Because this communication is so simple, the code that
callsprocess_pending_host_io ()can also be quite simple.

Example 6-7is ahypotheticalnon-reentrant interrupt handler written in C. It uses two
functions,peek ()andpoke (), to access some sort of hardware communication device
connected to the DSP. The functionspeek ()andpoke () aren’t provided; they’re simply
an abstraction for host-side hardware access. This code assumes that the DSP sends the
size of a message directly before sending a message. CHECK_BUFFER_SIZE is a macro

Host-Supported I/O (printf (), et al)

Motorola Software-Hardware Integration 6-15

defined in dsp/etc/hostio.h. It should always be used to ensure that the bufferhio_receive
is large enough to handle the incoming message. Finally, this example assumes that the
functionsignal () is available to register interrupt handlers.

This code doesn’t have to be implemented in an interrupt driven manner; periodic polling
could be used as well. The critical issues are that the communication must be reliable, and
that the system must not deadlock; the latter is easy to ensure, given the simple nature of
the communication protocol.

Example 6-7. Sample Host-Side Glue Code

void interrupt_driven_io ()
{
int i;

/* get the size of the message from the DSP. */
int size = peek (IN_PORT);

/* make sure that hio_receive is large enough. */
CHECK_BUFFER_SIZE (& hio_receive, size);

/* read the message via hardware, into the buffer. */
for (i = 0; i < size; ++ i)
{
hio_receive.buffer[i] = peek (IN_PORT);
}

/* mark the buffer as valid, perform any requested I/O.
*/

hio_receive.valid_p = TRUE;
process_pending_host_io ();

/* if the driver wants to send to the DSP, then do so
now. */

if (hio_send.valid_p)
{
for (i = 0; i < hio_send.length; ++ i)
{
poke (OUT_PORT, hio_send.buffer[i]);
}
hio_send.valid_p = FALSE;
}

/* re-register this handler for future DSP message
interrupts. */

signal (SIG_IN_PORT, interrupt_driven_io);
}

6-16 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

Host-Supported I/O (printf (), et al)

Motorola Programming Support A-1

Appendix A
Programming Support

A.1 Standard ANSI Header Files

Each function provided in the ANSI C librarylib56c[xyl].clb is declared with the
appropriate prototype in aheader, whose contents are made available by the#include

preprocessing directive. In addition to function prototypes, the header also defines all
type andMACROdefinitions required for ANSI conformance. Table A-3 lists the ANSI
standard header files:

In general, header files may be included in any order and as often as desired with no
negative side effects. The one exception occurs when including<assert.h >. The
definition of the assert macro depends on the definition of the macroNDEBUG.

The contents of the standard header files provided areexactlyas described by the ANSI
document X3.159-1989 dated December 14, 1989.

Table A-1. ANSI Standard Header Files

Header Files

<assert.h> <locale.h> <stddef.h>

<ctype.h> <math.h> <stdio.h>

<errno.h> <setjmp.h> <stdlib.h>

<float.h> <signal.h> <string.h>

<limits.h> <stdarg.h> <time.h>

A-2 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

A.2 ANSI C Library Sub-routines

There are three library images provided with each compiler,

• lib56cx.clb — x memory model

• lib56cy.clb — y memory model

• lib56cl.clb — l memory model

Each library contains all of the ANSI defined sub-routines compiled and/or assembled for
the specific memory model. The C and assembly language source for each library routine
is distributed free of charge with the compiler.

A.2.1 Hosted vs. Non-Hosted Library Routines

Some of the standard ANSI defined routines perform I/O. Programs that use these
functions will not encounter problems when run usinggdb56 or run56 . Extra work may
be needed to port hosted I/O routines to custom hardware configurations. Non-hosted
routines will not encounter any problems on custom hardware.

For a description ofrun56 , see Appendix C, “Utilities.” .

A.3 Forcing Library Routines Out-of-line

For performance reasons, several run-time library routines have been created to be used
in-line by the compiler. The compilerin-linesa sub-routine by replacing the occurrence of
the sub-routine call with the body of the sub-routine itself. This provides execution time
benefits:

1. Eliminates sub-routine call overhead. This is a substantial portion of the run-time
for small library routines.

2. Exposes more optimization opportunities to the optimizer.

The library routines in Table A-2 are automatically in-lined by the compiler when their
header file is included:

Motorola Programming Support A-3

When it is necessary to disable this feature, possibly for debugging or decreasing program
size, simply do one of the following.

1. Add the following line to each C module (or once to a common header file)

#undef ROUTINE_NAME

where ROUTINE_NAME is the library routine that must be
forced out-of-line. For example, to force the library routine
ceil out-of-line:

#undef ceil

2. Use the command-line option-U , see Chapter 3,Control Program Options. This
will force the library routine to be called for this compilation. If the code is
re-compiled, the-U option must be used again.

C:\> g56k -Uceil file.c

3. Donot include the header file.

Table A-2. In-Line Library Routines

Header: ctype.h
Header:
math.h

Header:
stdlib.h

Header:
string.h

isalnum isalpha iscntrl isdigit ceil abs strcmp

isgraph islower isprint ispunct fabs labs strcpy

isspace isupper isxdigit tolower floor — —

toupper — — — fmod — —

A-4 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

A.4 Function Descriptions

Table A-3 describes each function in complete detail. The synopsis provides the syntax of
the function and the options section discusses each option in detail. Many function
descriptions also include references to related functions and an example of how to use the
function. The list shown below provides an abbreviated description of each function.

Table A-3. Function Descriptions

Function Description

abort Force abnormal program termination.

abs Absolute value of integer.

acos Arc cosine.

asin Arc sine.

atan Arc tangent.

atan2 Arc tangent of angle defined by point y/x.

atexit Register a function for execution upon normal program termination.

atof String to floating point.

atoi String to integer.

atol String to long integer.

bsearch Perform binary search.

calloc Dynamically allocate zero-initialized storage for objects.

ceil Ceiling function.

clearerr Clear error indicators associated with a stream.

cos Cosine.

cosh Hyperbolic cosine.

div integer division with remainder.

exit Terminate program normally.

exp Exponential, ex.

fabs Absolute value of a double.

fclose Close a stream.

feof Test the end-of-file indicator of a stream.

ferror Test the error indicator of a stream.

Motorola Programming Support A-5

fflush Flush all output pending on a stream.

fgetc Read a character from a stream.

fgetpos Retrieve the current value of the file position indicator of a stream.

fgets Read a string from a stream.

floor Floor function.

fmod Floating point remainder.

fopen Open a named file on the disk, to be accessed via a stream.

fprintf Write formatted output to a stream.

fputc Write a character to a stream.

fputs Write a string to a stream.

fread Read unformatted input from a stream.

free Free storage allocated by calloc, malloc, and realloc.

freopen Open a named file on the disk, to be accessed via a stream.

frexp Break a floating point number into mantissa and exponent.

fscanf Read formatted input from a stream.

fseek Set a stream’s file position indicator.

fsetpos Set a stream’s file position indicator.

ftell Retrieve the current value of a stream’s file position indicator.

fwrite Write unformatted output to a stream.

getc Read a character from a stream (this may be a macro).

getchar Read a character from the stream stdin (this may be a macro).

gets Read a string from the stream stdin.

isalnum Test for alphanumeric character.

isalpha Test for alphabetic character.

iscntrl Test for control character.

isdigit Test for numeric character.

isgraph Test for printing character, excluding space and tab.

islower Test for lower-case alphabetic characters.

Table A-3. Function Descriptions (Continued)

Function Description

A-6 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

isprint Test for printing character, excluding ‘\t’.

ispunct Test for punctuation character.

isspace Test for white-space character.

isupper Test for upper-case alphabetic character.

isxdigit Test for hexadecimal numeric character.

labs Absolute value of a long integer.

ldexp Multiply floating point number by a power of two.

ldiv Long integer division with remainder.

log Natural logarithm, base e.

log10 Base ten logarithm.

longjmp Execute a non-local jump.

malloc Dynamically allocate uninitialized storage.

mblen Length of a multibyte character.

mbstowcs Convert multibyte string to wide character string.

mbtowc Convert a multibyte character to a wide character.

memchr Find a character in a memory area.

memcmp Compare portion of two memory areas.

memcpy Copy from one area to another.

memmove Copy from one area to another (source and destination may overlap).

memset Initialize memory area.

modf Break a double into it’s integral and fractional parts.

perror Print error message indicated by errno.

pow Raise a double to a power.

printf Write formatted output to the stream stdout.

putc Write a character to a stream (this may be a macro).

putchar Write a character to the stream stdout (this may be a macro).

puts Write a string to the stream stdout.

qsort Quick sort.

Table A-3. Function Descriptions (Continued)

Function Description

Motorola Programming Support A-7

raise Raise a signal.

rand Pseudo- random number generator.

realloc Change size of dynamically allocated storage area.

remove Remove a file from the disk.

rename Rename a file on the disk.

rewind Reset the file position indicator of a stream to the beginning of the file on the disk.

scanf Read formatted input from the stream stdin.

setjmp Save a reference of the current calling environment for later use by longjmp.

setbuf Associate a buffer with a stream.

setvbuf Associate a buffer with a stream, while also specifying the buffering mode and buffer size.

signal Set up signal handler.

sin Sine.

sinh Hyperbolic Sine.

sprintf Write formatted output to a string.

sqrt Square root.

srand Seed the pseudo-random number generator.

sscanf Read formatted input from a string.

strcat Concatenate two strings.

strchr Find first occurrence of a character in a string.

strcmp Compare two strings.

strcoll Compare two strings based on current locale.

strcpy Copy one string into another.

strcspn Compute the length of the prefix of a string not contained in a second string.

strerror Map error code into an error message string.

strlen Determine length of a string.

strncat Concatenate a portion of one string to another.

strncmp Compare a portions of two strings.

strncpy Copy a portion of one string into another.

Table A-3. Function Descriptions (Continued)

Function Description

A-8 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

strpbrk Find the first occurrence of a character from one string in another.

strrchr Find the last occurrence of a character in a string.

strspn Compute the length of the prefix of a string contained in a second string.

strstr Find the first occurrence of one string in another.

strtod String to double.

strtok Break string into tokens.

strtol String to long integer.

strtoul String to unsigned long integer.

strxfrm Transform a string into locale-independent form.

tan Tangent.

tanh Hyperbolic tangent.

tmpfile Create a temporary binary file on the disk to be referenced via a stream.

tmpnam Generate a unique, valid file name.

tolower Convert uppercase character to lowercase.

toupper Convert lowercase character to uppercase.

ungetc Push a character back onto a specified input stream.

vfprintf Write formatted output to a stream, using a va_list.

vprintf Write formatted output to the stream stdout, using a va_list.

vsprintf Write formatted output to a string, using a va_list.

wcstombs Convert wchar_t array to multibyte string.

wctomb Convert wchar_t character to multibyte character.

Table A-3. Function Descriptions (Continued)

Function Description

Motorola Programming Support A-9

A.4.1 abort—Force abnormal program termination
#include <stdlib.h>
void abort(void);

The abort function causes the program to terminate abnormally unless the signal
SIGABRTis being caught and the signal handler does not return. The unsuccessful
termination value, -1, is returned to the host environment (gdb56, run56). Theabort

function will not return to its caller.

Refer to the following sections for more information:

• Section A.4.18, “exit—Terminate program normally,” on page A-25

• Section A.4.90, “signal—Set up signal handler,” on page A-94

Example A-1. abort

#include <stdio.h>
#include <stdlib.h>

void main()
{
printf(“-- make abort call --\n”);
abort();
printf(“this line not reached\n”);
}

prints to standard output:
-- make abort call --

A-10 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

A.4.2 abs—Absolute value of integer
#include <stdlib.h>
int abs(int j);

Theabs function returns the absolute value ofj .When the header filestdlib.h is
included, the default case will bein-line [see section A.3, “Forcing Library Routines
Out-of-line.”]

Refer to the following sections for more information:

• Section A.4.20, “fabs—Absolute value of a double,” on page A-26

• Section A.4.57, “labs—Absolute value of a long integer,” on page A-58

Example A-2. abs

#include <stdio.h>
#include <stdlib.h>

void main()
{
int neg = -709;
printf("-- abs(%d) == %d --\n", neg,abs(neg));
}

prints to standard output:
-- abs(-709) == 709 --

Motorola Programming Support A-11

A.4.3 acos—Arc cosine
#include <math.h>
double acos(double x);

Theacos function computes the principle value of the arc cosine ofx in the range [0.0,
π], wherex is in radians. Ifx is not in the range [-1, +1], a domain error occurs, errno is set
to EDOMand a value of 0.0 is returned.

Refer to the following sections for more information:

• Section A.4.15, “cos—Cosine,” on page A-23

Example A-3. acos

#include <stdio.h>
#include <math.h>

void main()
{
double point;

for (point = -0.8 ; point < 1.0 ; point += 0.2)
{
printf("%f ", acos(point));
if (point >= 0.0) printf("\n");
}
}

prints to standard output:
2.498090 2.214290 1.982310 1.772150 1.570790 1.369430
1.159270
0.927295
0.643501
0.000345

A-12 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

A.4.4 asin—Arc sine
#include <math.h>
double asin(double x);

The asin function computes the principle value of the arc sine ofx in the range [-π/2,
+π/2], wherex is in radians. Ifx is not in the range [-1, +1], a domain error occurs, errno is
set toEDOMand a value of 0.0 is returned.

Refer to the following sections for more information:

• Section A.4.91, “sin—Sine,” on page A-95

Example A-4. asin

#include <stdio.h>
#include <math.h>

void main()
{
double point;

for (point = -0.8 ; point < 1.0 ; point += 0.2)
{
printf("%f ", asin(point));
if (point >= 0.0) printf("\n");
}
}

prints to standard output:
-0.927295 -0.643501 -0.411516 -0.201357 -0.000000 0.201357
0.411516
0.643501
0.927295
1.570450

Motorola Programming Support A-13

A.4.5 atan—Arc tangent
#include <math.h>
double atan(double x);

Theatan function computes the principle value of the arc tangent ofx in the range [-π/2,
+π/2], wherex is in radians.

Refer to the following sections for more information:

• Section A.4.117, “tan—Tangent,” on page A-120

Example A-5. attan

#include <stdio.h>
#include <math.h>

void main()
{
double point;

for (point = -0.8 ; point < 1.0 ; point += 0.2)
{
printf("%f ", atan(point));
if (point >= 0.0) printf("\n");
}
}

prints to standard output:
-0.674740 -0.540419 -0.380506 -0.197395 -0.000000 0.197395
0.380506
0.540419
0.674740
0.785398

A-14 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

A.4.6 atan2—Arc tangent of angle defined by point y/x
#include <math.h>
double atan2(double y, double x);

Theatan2 function computes the principle value of the arc tangent ofy/x using the signs
of both arguments to determine the quadrant of the return value. If both arguments are
zero,errno is set toEDOMand 0.0 is returned. See Table A-4.

Refer to the following sections for more information:

• Section A.4.5, “atan—Arc tangent,” on page A-13

• Section A.4.117, “tan—Tangent,” on page A-120

Example A-6. attan2

#include <stdio.h>
#include <math.h>

void main()
{

printf("atan2(7.09,7.09) == %f\n", atan2(7.09,7.09));
printf("atan2(-7.09,7.09) == %f\n", atan2(-7.09,7.09));
printf("atan2(7.09,-7.09) == %f\n", atan2(7.09,-7.09));
printf("atan2(-7.09,-7.09) == %f\n",atan2(-7.09,-7.09));

}

prints to standard output:
atan2(7.09, 7.09) == .785398
atan2(-7.09, 7.09) == -.785398
atan2(7.09, -7.09) == 2.356194
atan2(-7.09, -7.09) == -2.356194

Table A-4. Argument Range/Output Range

Argument Range Output Range

y ≥ 0.0, x ≥ 0.0 [0.0, π/2]

y ≥ 0.0, x < 0.0 [π/2, π]

y < 0.0, x < 0.0 [-π, -π/2]

y < 0.0, x ≥ 0.0 [-π/2, 0.0]

Motorola Programming Support A-15

A.4.7 atexit—Register a function for execution at normal program
termination

#include <stdlib.h>
int atexit(void (*func)(void));

Theatexit registers a functionfunc that will be called at normal program execution.
The registered function is called without arguments and returns nothing.

A total of 32 functions may be registered and will be called in the order in which they
were registered. Theatexit function returns zero if registration succeeds and a non-zero
value for failure.

Refer to the following sections for more information:

• Section A.4.18, “exit—Terminate program normally,” on page A-25

Example A-7. atexit

#include <stdio.h>
#include <stdlib.h>

void main()
{
atexit(func_1);
atexit(func_2);
printf("-- testing atexit --\n");
}

void func_1(void)
{
printf ("first function called\n");
}

void func_2(void)
{
printf ("second function called\n");
}

prints to standard output:
-- testing atexit --
second function called
first function called

A-16 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

A.4.8 atof—String to floating point
#include <stdlib.h>
double atof(const char* nptr);

Theatof function converts the string pointed to bynptr t a o double. If the result can not
be represented, the behavior is undefined. This is exactly equivalent to:

strtod (nptr, (char **) NULL);

Refer to the following sections for more information:

• Section A.4.9, “atoi—String to integer,” on page A-17

• Section A.4.10, “atol—String to long integer,” on page A-18

• Section A.4.112, “strtod—String to double,” on page A-114

• Section A.4.114, “strtol—String to long integer,” on page A-116

• Section A.4.115, “strtoul—String to unsigned long integer,” on page A-118

Example A-8. atof

#include <stdio.h>
#include <stdlib.h>

void main()
{
printf("atof(\"7.09\") == %f\n", atof("7.09"));
}

prints to standard output:
atof("7.09") == 7.090000

Motorola Programming Support A-17

A.4.9 atoi—String to integer
#include <stdlib.h>
int atoi(const char* nptr);

Theatoi function converts the string pointed to bynptr to an integer. If the result can
not be represented, the behavior is undefined. This is exactly equivalent to:

(int) strtol (nptr, (char **) NULL, 10) ;

Refer to the following sections for more information:

• Section A.4.8, “atof—String to floating point,” on page A-16

• Section A.4.10, “atol—String to long integer,” on page A-18

• Section A.4.112, “strtod—String to double,” on page A-114

• Section A.4.114, “strtol—String to long integer,” on page A-116

• Section A.4.115, “strtoul—String to unsigned long integer,” on page A-118

Example A-9. atoi

#include <stdio.h>
#include <stdlib.h>

void main()
{
printf("atoi(\"709\") == %d\n", atoi("709"));
}

prints to standard output:
atoi("709") == 709

A-18 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

A.4.10 atol—String to long integer
#include <stdlib.h>
long atol(const char* nptr);

Theatol function converts the string pointed to bynptr to a long integer. If the result
can not be represented, the behavior is undefined. This is exactly equivalent to:

strtol (nptr, (char **) NULL, 10);

Refer to the following sections for more information:

• Section A.4.8, “atof—String to floating point,” on page A-16

• Section A.4.9, “atoi—String to integer,” on page A-17

• Section A.4.112, “strtod—String to double,” on page A-114

• Section A.4.114, “strtol—String to long integer,” on page A-116

• Section A.4.115, “strtoul—String to unsigned long integer,” on page A-118

Example A-10. atol

#include <stdio.h>
#include <stdlib.h>

void main()
{
printf("atol(\"709\") == %ld\n", atol("709"));
}

prints to standard output:
atol("709") == 709

Motorola Programming Support A-19

A.4.11 bsearch—Perform binary search
#include <stdlib.h>
void bsearch(const void* key, const void* base,
size_t nmemb, size_t size,
int (*compare) (const void*, const void*));

Thebsearch function searches an array onnmembobjects (the initial element of which is
pointed to bybase) for an element that matches the object pointed to bykey. The size of
each element is specified bysize. The contents of the array must be in ascending order
according to a user supplied comparison function,compare . Thecompare function is
called with two arguments that must point to thekey object and to an array member, in
that order. Also,compare must return an integer that is less than, equal to, or greater than
zero for thekey object to be respectively considered less than, equal to or greater than the
array element.
Refer to the following sections for more information:

• Section A.4.79, “qsort—Quick sort,” on page A-86

Example A-11. bsearch

#include <stdio.h>
#include <stdlib.h>

char* stuff[6] =
{
"bald", "driving", "feet”, "flintstone", "fred", "on"

};

int compare (const void *key, const void *aelement)
{
return (strcmp(*(char*) key, *(char*) aelement));
}

void main()
{
char* p;
char* key = "bald";

p = bsearch(&key, stuff, 6, sizeof(char*), compare);
if (p)

{
printf("YES, fred flintstone drives on bald feet\n");

}

else
{
printf("NO, sam the butcher brings alice the meat\n");
}
}

prints to standard output:
YES, fred flintstone drives on bald feet

A-20 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

A.4.12 calloc—Dynamically allocate zero-initialized storage for
objects

#include <stdlib.h>
void* calloc(size_t nmemb, size_t size);

Thecalloc function allocates space for an array ofnmembobjects, each of whose size is
size. The space is initialized to all bits equal zero. If space can not be allocated,calloc

returns a NULLpointer.

Refer to the following sections for more information:
• Section A.4.35, “free—Free storage allocated by calloc, malloc, and realloc,” on

page A-39
• Section A.4.63, “malloc—Dynamically allocate uninitialized storage,” on page

A-64
• Section A.4.82, “realloc—hange size of dynamically allocated storage area,” on

page A-88
• alloca—Allocate storage in the stack frame.

Motorola Programming Support A-21

Example A-12. calloc

#include <stdio.h>
#include <stdlib.h>

int* iptr;

/* allocate space for 709 integers */
void main()
{
iptr= (int*) calloc(709, sizeof(int));

if (iptr != NULL)
{
/* check first entry for zero initialization */
if (*iptr != 0)
{
printf("error: calloc failed to initialize\n");
}

else
{
printf("success: calloc ok\n");
}
}

else
{
printf("error: calloc failed\n");
}
}

prints to standard output:
success: calloc ok

A-22 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

A.4.13 ceil—Ceiling function
#include <math.h>
double ceil(double x);

Theceil function returns the smallest integer greater than or equal tox.

When the header filemath.h is included, the default case will bein-line [see section A.3,
“Forcing Library Routines Out-of-line.”]

Refer to the following sections for more information:

• Section A.4.28, “floor—Floor function,” on page A-33

Example A-13. ceil

#include <stdio.h>
#include <stdlib.h>

void main()
{
printf("ceil(7.09) == %f\n", ceil(7.09));
}

prints to standard output:
ceil(7.09) == 8.000000

A.4.14 clearerr—Clear any error indicators associated with a
specified stream

#include <stdio.h>
void clearerr (FILE *stream);

Theclearerr function clears the end-of-file and error indicators for the specified
stream.

Example A-14. clearerr

#include <stdio.h>

void main ()
{
FILE *stream = tmpfile (); /* initially empty. */

clearerr (stream);
printf (“end-of-file indicator is: %d\n”, feof (stream));
}

prints to standard output:
end-of-file indicator is: 0

Motorola Programming Support A-23

A.4.15 cos—Cosine
#include <math.h>
double cos(double x);

Thecos function computes and returns the cosine ofx, measured in radians.

Refer to the following sections for more information:

• Section A.4.3, “acos—Arc cosine,” on page A-11

Example A-15. cos

#include <stdio.h>
#include <math.h>

void main()
{

printf("cos(45.0) == %f\n", cos(45.0));
}

prints to standard output:
cos(45.0) == 0.525322

A.4.16 cosh—Hyperbolic cosine
#include <math.h>
double cosh(double x);

Thecosh function computes and returns the hyperbolic cosine ofx. If the value ofx is too
large, a range error occurs, setting errno toERANGEand causescosh to returnHUGE_VAL.

Refer to the following sections for more information:

• Section A.4.92, “sinh—Hyperbolic Sine,” on page A-96

• Section A.4.118, “tanh—Hyperbolic tangent,” on page A-121

Example A-16. cosh

#include <stdio.h>
#include <math.h>

void main()
{

printf("cosh(3.1415) == %f\n", cosh(3.1415));
}

prints to standard output:
cosh(3.1415) == 11.590883

A-24 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

A.4.17 div—integer division with remainder
#include <stdlib.h>
div_t div(int numer, int denom);

Thediv function computes the quotient and remainder of the division of the numerator
numer by the denominatordenomand returns them in a structure of typediv_t . If the
result can not be represented, the behavior is undefined.

Refer to the following sections for more information:

• Section A.4.59, “ldiv—Long integer division with remainder,” on page A-60

Example A-17. div

#include <stdio.h>
#include <stdlib.h>

void main()
{
div_tresult;
intnumer = 709, denom = 56;

result = div(numer, denom);
printf("quotient == %d\t", result.quot);
printf("remainder == %d\n", result.rem);
}

prints to standard output:
quotient == 12remainder == 37

Motorola Programming Support A-25

A.4.18 exit—Terminate program normally
#include <stdlib.h>
void exit(int status);

Theexit function causes normal program termination to occur. Any functions registered
with the functionatexit are called in the order in which they where registered.status is
returned to the environment (gdb56 , run56). If more than one call is made toexit , the
result is undefined.

Refer to the following sections for more information:

• Section A.4.1, “abort—Force abnormal program termination,” on page A-9

• Section A.4.7, “atexit—Register a function for execution at normal program
termination,” on page A-15

Example A-18. exit

#include <stdio.h>
#include <stdlib.h>

void main()
{
printf("-- exit test --\n");
exit (0);/* return with 0 status */
printf("Error: exit made this unreachable\n");
}

prints to standard output:
-- exit test --

A-26 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

A.4.19 exp—Exponential, e x

#include <math.h>
double exp(double x);

Theexp function computes and returns ex. If the value ofx is too large, a range error
occurs with errno being set toERANGEandexp returnsHUGE_VAL. If the value ofx is too
small, a range error will also occur with errno being set toERANGEand exp returns 0.0.

Refer to the following sections for more information:

• Section A.4.58, “ldexp—Multiply floating point number by 2,” on page A-59

• Section A.4.74, “pow—Raise a double to a power,” on page A-77

Example A-19. exp

#include <stdio.h>
#include <math.h>

void main()
{
printf("exp(7.09) == %f\n", exp(7.09));
}

prints to standard output:
exp(7.09) == 1199.907686

A.4.20 fabs—Absolute value of a double
#include <math.h>
double fabs(double x);

Thefabs function computes and returns the absolute value of doublex.

When the header filemath.h is included, the default case will bein-line [see section A.3,
“Forcing Library Routines Out-of-line.”]

Refer to the following sections for more information:

• Section A.4.2, “abs—Absolute value of integer,” on page A-10

• Section A.4.57, “labs—Absolute value of a long integer,” on page A-58

Motorola Programming Support A-27

Example A-20. fabs

#include <stdio.h>
#include <math.h>

void main()
{
double pos, neg = -7.09;

pos = fabs(neg);
printf("-- absolute value of %d == %d --\n", neg, pos);
}

prints to standard output:
-- absolute value of -7.090000 == 7.090000 --

A.4.21 fclose—Close a stream
#include <stdio.h>
int fclose (FILE *);

The functionfclose flushes all output on the specified stream, and disassociates the
stream from the file on the host. The functionfclose returnsEOFif there are any
problems, otherwise 0.

Refer to the following sections for more information:

• Section A.4.31, “fprintf—Write formatted output to a stream,” on page A-36

Example A-21. fclose

#include <stdio.h>

void main()
{
fprintf (stdout, “see me second”);
fprintf (stderr, “see me first\n”);
fclose (stdout);
}

prints to combined standard error and standard output:
see me first
see me second

Note that stdout is by default line buffered, while stderr is not. The
call to fclose
causes the pending output on stdout to be flushed.

A-28 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

A.4.22 feof—Test the end-of-file indicator of a specified stream
#include <stdio.h>
int feof (FILE *);

The functionfeof function tests the end-of-file indicator associated with the specified
stream. It returns non-zero if and only if the end-of-file indicator is set.

Refer to the following sections for more information:

• Section A.4.30, “fopen—Open a named file on the host’s disk,” on page A-34

• Section A.4.39, “fseek—Set the file position indicator associated with a stream,”
on page A-44

• Section A.4.31, “fprintf—Write formatted output to a stream,” on page A-36

Example A-22. feof

#include <stdio.h>

void main()
{
FILE *somefile = fopen (“somefile”, “rb+”);
(void) fseek (somefile, 0L, SEEK_END);
(void) fgetc (somefile);
fprintf (stdout, “are we at the file’s end? %s\n”,
feof (somefile) ? “yes” : “no”);
}
prints to standard output:
are we at the file’s end? yes

Motorola Programming Support A-29

A.4.23 ferror—Test the error indicator of a stream
#include <stdio.h>
int ferror (FILE *);

The functionferror function tests the error indicator associated with the specified
stream. It returns non-zero if and only if the error indicator is set.ferror should be used
following one or more stream I/O function calls.

A.4.24 fflush—Flush all pending output associated with a stream
#include <stdio.h>
void fflush (FILE*);

The functionfflush causes any pending output associated with the specified stream to
be written to the output device.

Refer to the following sections for more information:

• Section A.4.31, “fprintf—Write formatted output to a stream,” on page A-36

Example A-23. fflush

#include <stdio.h>

void main()
{
fprintf (stdout, “see me second”);
fprintf (stderr, “see me first\n”);
fflush (stdout);
}

prints to combined standard error and standard output:
see me first
see me second

Note that stdout is by default line buffered, while stderr is not. The
call to fflush
causes the pending output on stdout to be flushed.

A-30 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

A.4.25 fgetc—Read a character from the specified stream
#include <stdio.h>
int fgetc (FILE *stream);

The functionfgetc will retrieve the next input character from the specified stream. If the
stream is associated with a file on the disk, then the file position indicator is advanced. On
error,fgetc returnsEOF.

Refer to the following sections for more information:

• Section A.4.32, “fputc—Write a single character to a stream,” on page A-36

Example A-24. fgetc

#include <stdio.h>

void main ()
{
char value = (char) fgetc (stdin);

while (EOF != value)
{
fputc (value, stdout);
value = (char) fgetc (stdin);
}
}

will echo all characters from standard input to standard output until
the input is
exhausted.

Motorola Programming Support A-31

A.4.26 fgetpos—Get value of file position indicator associated with a
stream

#include <stdio.h>
int fgetpos (FILE *stream, fpos_t *pos);

The functionfgetpos fetches the value of the file position indicator associated with
stream and stores it in the object pointed to bypos . fgetpos returns zero if it was
successful. The value of the file position indicator is meaningless except as an argument to
the function fsetpos.

Refer to the following sections for more information:
• Section A.4.30, “fopen—Open a named file on the host’s disk,” on page A-34
• Section A.4.39, “fseek—Set the file position indicator associated with a stream,”

on page A-44
• fsetpos—Set the value of the file position indicator associated with a stream.

fsetpos is equivalent to fseek (stream, pos, seek, set).

Example A-25. fgetpos

#include <stdio.h>

void main ()
{
FILE *preexisting = fopen (“already.here”, “r”);
fpos_t pos;

(void) fgetpos (preexisting, & pos);
(void) fseek (preexisting, 0L, SEEK_END);
(void) fsetpos (preexisting, & pos);
}

will open a hypothetical pre-existing file on the disk, record the
initial position in pos, seek to the end of the file, and finally
restore the initial value of the file position indicator.

A-32 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

A.4.27 fgets—Read a string from the specified stream
#include <stdio.h>
char *fgets (char *s, int n, FILE *stream);

The functionfgets will read at mostn -1 characters from the specified stream.fgets

will not read past a newline character. The characters are stored in memory starting at the
location pointed to bys. fgets returnss if it was successful,NULLotherwise.fgets will
update the file position indicator for any characters read.

Refer to the following sections for more information:

• Section A.4.33, “fputs—Write a string to a stream,” on page A-37

• Section A.4.85, “rewind—Reset the file position indicator to the beginning of the
file,” on page A-90

Example A-26. fgets

#include <stdio.h>

void main ()
{
FILE *disk_file = fopen (“newfile”, “a+”);
char one_line[64];

fputs (“read this line\n” “but not this line.\n”, disk_file);
rewind (disk_file);
fgets (one_line, 64, disk_file);
fputs (one_line, stdout);
}

will open a new file on the disk named “newfile”. Two lines will be
written to the new file, and the first line will be read back using
fgets. The retrieved line is then printed to standard output as follows:

read this line

Motorola Programming Support A-33

A.4.28 floor—Floor function
#include <math.h>
double floor(double x);

The floor function returns the largest integer not greater thanx.

When the header filemath.h is included, the default case will bein-line [see section A.3,
“Forcing Library Routines Out-of-line.”]

Refer to the following sections for more information:

• Section A.4.13, “ceil—Ceiling function,” on page A-22

Example A-27. floor

#include <stdio.h>
#include <math.h>

void main()
{
printf("floor(7.09) == %f\n", floor(7.09));
}
prints to standard output:
floor(7.09) == 7.000000

A.4.29 fmod—Floating point remainder
#include <math.h>
double fmod(double x, double y);

The fmod function computes and returns the floating point remainder r ofx/y. The
remainder, r, has the same sign asx andx == i * y + r, where |r| < |y|. If x andy can not be
represented, the result is undefined.

When the header filemath.h is included, the default case will bein-line [see section A.3,
“Forcing Library Routines Out-of-line.”]

Example A-28. fmod

#include <stdio.h>
#include <math.h>

void main()
{
printf("fmod(-10.0, 3.0) == %f\n", fmod(-10.0, 3.0));
}

prints to standard output:
fmod(-10.0, 3.0) == -1.00000000

A-34 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

A.4.30 fopen—Open a named file on the host’s disk
#include <stdio.h>
void fopen (const char *filename, const char *mode);

Thefopen function attempts to open a named file for access via a stream. Iffopen is
able to open the specified file, then the new stream associated with that file is returned. If
fopen fails, then it returnsNULL. Themode argument indicates the type of the stream, and
how the stream may be accessed as shown in Table A-5:

Note: Opening a file that does not exist will fail ifr is the first character in themode

string. When opened, the stream is initially line buffered.

Table A-5. Mode Arguments

Argument Stream

“r” text type, read only,

“w” text type, write only,

“a” text type, append only (write after end of current file),

“rb” binary type, read only,

“wb” binary type, write only,

“ab” binary type, append only (write after end of current file),

“r+” text type, read and write,

“w+” text type, read and write (any pre-existing file is destroyed),

“a+” text type, append only (read/write after end of current file),

“rb+” binary type, read and write,

“wb+” binary type, read and write (any pre-existing file is destroyed),

“ab+” binary type, append only (read/write after end of current file).

Motorola Programming Support A-35

Refer to the following sections for more information:

• Section A.4.33, “fputs—Write a string to a stream,” on page A-37

• Section A.4.27, “fgets—Read a string from the specified stream,” on page A-32

• Section A.4.31, “fprintf—Write formatted output to a stream,” on page A-36

Example A-29. fopen

#include <stdio.h>

void main ()
{
FILE *stream = fopen (“file.new”, “w”);
char data[64];

fprintf (stream, “verify this\n”);
fclose (stream);

stream = fopen (“file.new”, “r”);
fgets (data, 64, stream);
fputs (data, stdout);
}

This example opens an new text file, writes to the associated stream,
and closes that stream. It then reopens the file and displays the first
line of that file on standard output:

verify this

A-36 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

A.4.31 fprintf—Write formatted output to a stream
#include <stdio.h>
int fprintf (FILE *stream, const char *format, ...);

The functionfprintf functions exactly like the functionprintf , except that the output
is directed to the specified stream rather than being automatically directed to standard
output. Please use the description of argument values in the description of theprintf

function.

Refer to the following sections for more information:

• Section A.4.31, “fprintf—Write formatted output to a stream,” on page A-36

Example A-30. fprintf

#include <stdio.h>

void main ()
{
fprintf (stdout, “hello world\n”);
}

Will cause the following output to be printed to standard output:

hello world

A.4.32 fputc—Write a single character to a stream
#include <stdio.h>
int fputc (int c, FILE *stream);

The functionfputc writes the characterc to the specified stream.

Example A-31. fputc

#include <stdio.h>

void main ()
{
fputc ((int) ‘S’, stdout);
fputc ((int) ‘h’, stdout);
fputc ((int) ‘a’, stdout);
fputc ((int) ‘d’, stdout);
fputc ((int) ‘r’, stdout);
fputc ((int) ‘a’, stdout);
fputc ((int) ‘c’, stdout);
fputc ((int) ‘k’, stdout);
fputc ((int) ‘\n’, stdout);
}

Will cause the following output to be printed to standard output:

Shadrack

Motorola Programming Support A-37

A.4.33 fputs—Write a string to a stream
#include <stdio.h>
int fputs (const char *s, FILE *stream);

The functionfputc writes the strings to the specified stream. The trailing ‘\0’ in s is not
written to the stream.

Example A-32. fputs

#include <stdio.h>

void main ()
{
fputs (“hand me down pumas\n”, stdout);
}

Will cause the following output to be printed to standard output:

hand me down pumas

A-38 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

A.4.34 fread—Read data directly from a stream
#include <stdio.h>
size_t fread (void *ptr, size_t size, size_t nmemb, FILE *stream);

The function fread reads raw data from the specified stream. The data is stored in memory
starting with the location pointed to byptr . The quantity of data issize * nmemb.

fread returns the number of elements successfully read.

Refer to the following sections for more information:

• Section A.4.31, “fprintf—Write formatted output to a stream,” on page A-36

• Section A.4.30, “fopen—Open a named file on the host’s disk,” on page A-34

Example A-33. fread

Assume that the disk file “professor” has as its contents the following
string, including the trailing ‘\0’:

“What’s another word for pirate treasure?”

The following C program uses fread:

#include <stdio.h>

void main ()
{
FILE *booty = fopen (“professor”, “r”);
char buffer[64];

fread (buffer, 63, sizeof (char), booty);
fprintf (stdout, buffer);
}

and will cause the following output to be printed to standard output:

What’s another word for pirate treasure?”

Motorola Programming Support A-39

A.4.35 free—Free storage allocated by calloc, malloc, and realloc
#include <stdlib.h>
void free(void* ptr);

Thefree function causes the space pointed to byptr to be deallocated. Once deallocated
it is available to be used again by future dynamic memory allocation requests. Ifptr is
NULL, free returns immediately. If the space pointed to byptr has already been
deallocated by a previous call tofree or realloc , the behavior is undefined.

Refer to the following sections for more information:

• Section A.4.12, “calloc—Dynamically allocate zero-initialized storage for
objects,” on page A-20

• Section A.4.63, “malloc—Dynamically allocate uninitialized storage,” on page
A-64

• Section A.4.82, “realloc—hange size of dynamically allocated storage area,” on
page A-88

Example A-34. free

#include <stdio.h>
#include <stdlib.h>

void main()
{
char* alloc;
if ((alloc = (char*) malloc(709)) == NULL)
{
printf("malloc error\n");
exit (-1);
}

/* free 709 words of memory */
free(alloc);
}

A-40 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

A.4.36 freopen—Open named file on disk, to be accessed via
specified stream

#include <stdio.h>
FILE *freopen (const char *filename, const char *mode, FILE *stream);

The functionfreopen opens the named disk file in the same manner asfopen . However,
freopen associates that file with the specified stream. If successful,freopen returns its
argumentstream , and if unsuccessful, it returnsNULL. The range of acceptable values
for themode argument are the same as those forfopen .

Refer to the following sections for more information:

• Section A.4.75, “printf—Print to standard output,” on page A-78

Example A-35. freopen

#include <stdio.h>

void main ()
{
freopen (“diskfile”, “w”, stdout);
printf (“hello world\n”);
}

This example redirects standard output to a file on the disk via
freopen . The “hello world” output will not appear on the normal standard
output device, but rather in the file “diskfile”.

Motorola Programming Support A-41

A.4.37 frexp—Break a floating point number into mantissa and
exponent

#include <math.h>
double frexp(double value, int* exp);

The frexp function breaks a floating point number into a normalized fraction (the
mantissa) and an integral power of 2 (the exponent). Thefrexp function returns the
mantissa and stores the exponent in the integer object pointed to byexp . The mantissa is
returned with a magnitude in the range [1/2, 1] or zero, such that value equals the mantissa
times 2*exp. If value is zero, both the exponent and mantissa are zero.

Refer to the following sections for more information:

• Section A.4.72, “modf—Break a double into it’s integral and fractional parts,” on
page A-75

Example A-36. frexp

#include <stdio.h>
#include <stdlib.h>

void main()
{
int exp;
double mant;

mantissa = frexp(70.9, &exponent);
printf("mantissa == %f\texponent == %d\n", mant, exp);
}

prints to standard output:
mantissa == 0.553906exponent == 7

A-42 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

A.4.38 fscanf—Read formatted input from a stream
#include <stdio.h>
int fscanf (FILE *stream, const char *format, ...);

The functionfscanf reads input from the specified stream. It uses the stringformat as a
guide for interpreting the input and storing values in memory. Subsequent arguments to
fscanf are used as pointers to objects in memory that will receive the input values read
from the stream.

The format string is composed of directives. These are parsed from left to right from the
format string, and indicate how the input from the specified stream should be processed.

If fscanf fails to apply a directive, then it returns. Directives are composed of either
white-space characters or normal characters. White space character sequences indicate
that fscanf should read input from the specified stream up to the first non-white-space
character. Directives that consist of non-white-space characters are processed in the
following manner: input is read from the specified stream until the input character is not a
member of the set of characters comprising the directive. Finally, directives can be
conversion specifications; these directives begin with the ‘%’ character. They describe
how fscanf should parse input, and howfscanf should synthesize a value to be stored
in memory.

Conversion specifications are processed as follows. First, the stream is read until all
white-space characters have been exhausted, unless ‘[‘, ‘c’, or ‘n’ is part of the conversion
specification. Second, a value is derived from the input stream according to the conversion
specifier. A conversion specifier may be one of the following as shown in Table A-6:

Table A-6. Conversion Specifyers

Conversion
Specifyer

Description

‘d’ match a signed, decimal integer.

‘i’ match a signed integer, whose base is determined in the same manner as a C integer constant.

‘o’ match an octal integer.

‘u’ match an unsigned, decimal integer.

‘x’ match a signed, hexadecimal integer. (‘X’ is also valid).

‘e’,’f’,’g’ match a floating-point number. (‘E’ ,’F’ and ’G’ are also valid).

‘s’ match a sequence of non-white-space characters, essentially scan a token string.

‘[‘ match a non-empty sequence of characters from a set of expected characters, which are
bounded by a following ‘]’ .

Motorola Programming Support A-43

fscanf returnsEOFif an input failure is detected before any conversions take place.
Otherwise it returns the number of assignments made. Note that an optional assignment
suppression character ‘*’ may follow the initial ‘%’. This character will causefscanf to
discard the converted value without advancing along the list of object pointers.

Refer to the following sections for more information:

• Section A.4.86, “scanf—Read formatted input from standard input,” on page A-91

• Section A.4.96, “sscanf—Read formatted input from a string,” on page A-98

Example A-37. fscanf

(a) The following program will, assuming that the input pending on standard input is “my
98”, store the three characters ‘m’, ‘y’, ‘\0’ will be stored in word[], and 98 will be stored
in number.

#include <stdio.h>

void main ()
{
char word[8];
int number;
fscanf (stdin, “ %s %d”, word, & number);
}

(b) The following program will, assuming that the input pending on
standard input is “yall come”, store the following five characters in
the array word: ‘y’, ‘a’, ‘l’, ‘l’, ‘\0’.

#include <stdio.h>

void main ()
{
char word[8];
fscanf (stdin, “%[lay]”, word);
}

‘c’ match a sequence of characters, as specified by the field width. As a default, scan only one
character.

‘n’ don’t match anything, just store the number of characters read from the input stream during this

call to fscanf .

‘%’ match a ‘%’ character.

Table A-6. Conversion Specifyers (Continued)

Conversion
Specifyer

Description

A-44 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

A.4.39 fseek—Set the file position indicator associated with a stream
#include <stdio.h>
int fseek (FILE *stream, long int offset, int whence);

The functionfseek will set the file position indicator associated with the specified
stream, according to the values of offset plus an initial value indicated bywhence . Initial
values derived ofwhence values are as follows:

SEEK_SET—The initial value is the beginning of the file.
SEEK_CUR—The initial value is the current position in the file.
SEEK_END—The initial value is the end of the file.

The value ofoffset must either be zero or the value returned by a call toftell .

Refer to the following sections for more information:

• Section A.4.30, “fopen—Open a named file on the host’s disk,” on page A-34

• Section A.4.25, “fgetc—Read a character from the specified stream,” on page A-30

• Section A.4.21, “fclose—Close a stream,” on page A-27

Example A-38. fseek

The following function will read the last character in a text file specified by the parameter
name.

#include <stdio.h>

char last_in_file (char *name)
{
FILE *tmp = fopen (name, “r”);
char return_value;

(void) fseek (tmp, -1L, SEEK_END);
return_value = (char) fgetc (tmp);
fclose (tmp);
return return_value;
}

Motorola Programming Support A-45

A.4.40 fsetpos—Set the file position indicator associated with a
stream

#include <stdio.h>
int fsetpos (FILE *stream, const fpos_t *pos);

The function fsetpos will change the file position indicator associated with the specified
stream. The value ofpos must be the return value from a prior call tofgetpos . Note that
a successful call tofsetpos will undo any effect of an immediately precedingungetc

on the same stream. If it is successful,fsetpos returns zero.

Refer to the following sections for more information:

• Section A.4.26, “fgetpos—Get value of file position indicator associated with a
stream,” on page A-31

Example A-39. fsetpos

#include <stdio.h>

void main ()
{
FILE *preexisting = fopen (“already.here”, “r”);
fpos_t pos;

(void) fgetpos (preexisting, & pos);
(void) fseek (preexisting, 0L, SEEK_END);
(void) fsetpos (preexisting, & pos);
}

will open a hypothetical pre-existing file on the disk, record the
initial position in pos, seek to the end of the file, and finally
restore the initial value of the file position indicator.

A-46 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

A.4.41 ftell—Get the file position indicator associated with a stream
#include <stdio.h>
long int ftell (FILE *stream);

The functionftell will return the value of the file position indicator for the specified
stream. The return value is usable only by the function fseek.ftell returns -1L.

Refer to the following sections for more information:

• Section A.4.30, “fopen—Open a named file on the host’s disk,” on page A-34

• Section A.4.34, “fread—Read data directly from a stream,” on page A-38

• Section A.4.77, “putchar—Write a character to standard output,” on page A-84

• Section A.4.39, “fseek—Set the file position indicator associated with a stream,”
on page A-44

Example A-40. ftell

#include <stdio.h>

main ()
{
FILE *stream = fopen (“file.abc”, “r”);
long int beginning = ftell (stream);
char send;

(void) fread (& send, sizeof (char), 1, stream);
putchar (send);
fseek (stream, beginning, SEEK_SET);
(void) fread (& send, sizeof (char), 1, stream);
putchar (send);
}

will read and print the first character in the file “file.abc” twice.
ftell is used to reset the file position indicator to the beginning of
the file.

Motorola Programming Support A-47

A.4.42 fwrite—Write data directly to a stream
#include <stdio.h>
size_t fwrite (const void *ptr, size_t size, size_t nmemb, FILE *stream
);

The functionfwrite writes raw data to the specified stream. The data is drawn from
memory starting with the location pointed to byptr . The quantity of data issize *

nmemb. fwrite returns the number of elements successfully written.

Example A-41. fwrite

#include <stdio.h>

main ()
{
char message[] = “hand me down pumas”;

fwrite (message, sizeof (char), strlen (message), stdout);
}

will write the message “hand me down pumas” onto standard output.

A-48 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

A.4.43 getc—Read a character from the specified stream
#include <stdout.h>
int fgetc (FILE *stream);

getc is equivalent tofgetc , except thatgetc may be implemented as a macro. If such is
the case, the argumentstream may be evaluated more than once. This only becomes a
problem if evaluation of the argument has side effects.

Refer to the following sections for more information:

• Section A.4.25, “fgetc—Read a character from the specified stream,” on page A-30

• Section A.4.32, “fputc—Write a single character to a stream,” on page A-36

Example A-42. getc

#include <stdio.h>

void main ()
{
char value = (char) getc (stdin);

while (EOF != value)
{
fputc (value, stdout);
value = (char) getc (stdin);
}
}

will echo all characters from standard input to standard output until
the input is exhausted.

A.4.44 getchar—Read a character from standard input
#include <stdio.h>
int getchar (void);

The functiongetchar reads the next character from standard input. If there is no pending
input,getchar returnsEOF, otherwise the read character is cast to typeint and returned.

Refer to the following sections for more information:

• Section A.4.32, “fputc—Write a single character to a stream,” on page A-36

Motorola Programming Support A-49

Example A-43. getchar

#include <stdio.h>

void main ()
{
char value = (char) getchar ();

while (EOF != value)
{
fputc (value, stdout);
value = (char) getchar ();
}
}

will echo all characters from standard input to standard output until
the input is exhausted.

A.4.45 gets—Read a string from standard input
#include <stdio.h>
char *gets (char *s);

The functionfgets will read characters from standard input, and place them sequentially
in memory, starting with the location pointed to bys. gets will not read past a newline
character, or past the end of the file. The characters are stored in memory starting at the
location pointed to bys. gets returnss if it was successful,NULLotherwise.gets will
update the file position indicator for any characters read. Ifgets encounters the end of
file on its first read of standard input,NULL is returned.gets does not append a ‘\0’ to the
array of characters read.

Refer to the following sections for more information:

• Section A.4.27, “fgets—Read a string from the specified stream,” on page A-32

• Section A.4.78, “puts—Write a string to standard output,” on page A-85

Example A-44. gets

#include <stdio.h>

void main ()
{
char line_buffer[BUFSIZ];

puts (gets (line_buffer));
}

will echo a newline-terminated line of input from standard input onto
standard output. Note that gets doesn’t read past the newline; puts
supplies one by definition.

A-50 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

A.4.46 isalnum—Test for alphanumeric character
#include <ctype.h>
int isalnum(int c);

The isalnum function returns a nonzero value for any alphabetic or numeric character;
zero is returned in the false case. This function is provided both as an in-line and
out-of-line function.

When the header filectype.h is included, the default case will bein-line [see
section A.3, “Forcing Library Routines Out-of-line.”]

Example A-45. islnum

#include <stdio.h>
#include <ctype.h>

void main()
{
if ((isalnum(’c’)) && (isalnum(’1’)))
{
printf("c, 1 -- alpha and numeric\n");
}

if (! (isalnum(’@’)))
{
printf("@ -- neither alpha nor numeric\n");
}
}

prints to standard output:
c, 1 -- alpha and numeric
@ -- neither alpha nor numeric

Motorola Programming Support A-51

A.4.47 isalpha—Test for alphabetic character
#include <ctype.h>
int isalpha(int c);

The isalpha function returns a nonzero value for any alphabetic character; zero is
returned in the false case. This function is provided both as an in-line and out-of-line
function.

When the header filectype.h is included, the default case will bein-line [see
section A.3, “Forcing Library Routines Out-of-line.”]

Example A-46. isalpha

#include <stdio.h>
#include <ctype.h>
void main()
{
if ((isalpha(’c’)))
{
printf("c -- alpha\n");
}
if (! (isalpha(’@’)) && ! (isalpha(’1’)))
{
printf("@, 1 -- non alpha\n");
}
}
prints to standard output:
c -- alpha
@,1 -- non alpha

A-52 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

A.4.48 iscntrl—Test for control character
#include <ctype.h>
int iscntrl(int c);

The iscntrl function returns a nonzero value for any control character; zero is returned
in the false case. A control character is any character that isNOTa letter, digit,
punctuation, or ‘ ’ (the space character). This function is provided both as an in-line and
out-of-line function.

When the header filectype.h is included, the default case will bein-line [see
section A.3, “Forcing Library Routines Out-of-line.”]

Example A-47. iscntrl

#include <stdio.h>
#include <ctype.h>

void main()
{
/* check the "beep" character */
if ((iscntrl(0x07)))
{
printf("\"beep\" (0x07) -- control character\n");
}

if (! (iscntrl(’@’)))
{
printf("@ -- not control character\n");
}
}

prints to standard output:
"beep" (0x07) -- control character
@ -- not control character

A.4.49 isdigit—Test for numeric character
#include <ctype.h>
int isdigit(int c);

Theisdigit function returns a nonzero value for anydecimalcharacter; zero is returned
in the false case. This function is provided both as an in-line and out-of-line function.

When the header filectype.h is included, the default case will bein-line [see
section A.3, “Forcing Library Routines Out-of-line.”]

Motorola Programming Support A-53

Example A-48. isdigit

#include <stdio.h>
#include <ctype.h>

void main()
{
if ((isdigit(’1’)))
{
printf("1 -- is a decimal character\n");
}

if (! (isdigit(’f’)))
{
printf("f -- not a decimal character\n");
}
}

prints to standard output:
1 -- is a decimal character
f -- not a decimal character

A-54 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

A.4.50 isgraph—Test for printing character, excluding space and tab
#include <ctype.h>
int isgraph(int c);

The isgraph function returns a nonzero value for any printable character, excluding
space (‘ ’) and tab (‘\t’); zero is returned in the false case. This function is provided both as
an in-line and out-of-line function.

When the header filectype.h is included, the default case will bein-line [see
section A.3, “Forcing Library Routines Out-of-line.”].

Example A-49. isgraph

#include <stdio.h>
#include <ctype.h>

void main()
{
/* check the "beep" character */
if (! (isgraph(’ ’)))
{
printf("space -- not \"graph\" character\n");
}

if ((isgraph(’f’)))
{
printf("f -- \"graph\" character\n");
}
}

prints to standard output:
space -- not "graph" character
f -- "graph" character

A.4.51 islower—Test for lower-case alphabetic characters
#include <ctype.h>
int islower(int c);

The islower function returns a nonzero value for any lower-case alphabetic character;
zero is returned in the false case. This function is provided both as an in-line and
out-of-line function.

When the header filectype.h is included, the default case will bein-line [see
section A.3, “Forcing Library Routines Out-of-line.”]

Motorola Programming Support A-55

Example A-50. islower

#include <stdio.h>
#include <ctype.h>

void main()
{
if ((islower(’a’)))
{
printf("a -- lower case character\n");
}

if (! (islower(’F’)))
{
printf("F -- not a lower case character\n");
}
}

prints to standard output:
a -- lower case character
F -- not a lower case character

A.4.52 isprint—Test for printing character, excluding ’\t’
#include <ctype.h>
int isprint(int c);

The isprint function returns a nonzero value for any printable character, excluding the
tab character (’\t’); zero is returned in the false case. This function is provided both as an
in-line and out-of-line function.

When the header filectype.h is included, the default case will bein-line [see
section A.3, “Forcing Library Routines Out-of-line.”]

Example A-51. isprint

#include <stdio.h>
#include <ctype.h>
void main()
{
if ((isprint(’ ’)))
{
printf("space -- \"print\" character\n");
}
if (! (isprint(’\t’)))
{
printf("tab -- not \"print\" character\n");
}
}
prints to standard output:
space -- "print" character
tab -- not "print" character

A-56 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

A.4.53 ispunct—Test for punctuation character
#include <ctype.h>
int ispunct(int c);

The ispunct function returns a nonzero value for any punctuation character; zero is
returned in the false case. A punctuation character is one that is printable, not a digit, not a
letter, and not a space (‘ ’ or ‘\t’).This function is provided both as an in-line and
out-of-line function.

When the header filectype.h is included, the default case will bein-line [see
section A.3, “Forcing Library Routines Out-of-line.”]

Example A-52. ispunct

#include <stdio.h>
#include <ctype.h>

void main()
{
if ((ispunct(’ ’)))
{
printf("space -- \"print\" character\n");
}

if (! (ispunct(’\t’)))
{
printf("tab -- not \"print\" character\n");
}
}

prints to standard output:
space -- "print" character
tab -- not "print" character

A.4.54 isspace—Test for white-space character
#include <ctype.h>
int isspace(int c);

The isspace function returns a nonzero value for any standard white-space character;
zero is returned in the false case. The standard white-space characters are space (‘ ’), form
feed (‘\f’), new-line (‘\n’), carriage return (‘\r’), horizontal tab (‘\t’), and vertical tab (‘\v’).
This function is provided both as an in-line and out-of-line function.

When the header filectype.h is included, the default case will bein-line [see
section A.3, “Forcing Library Routines Out-of-line.”].

Motorola Programming Support A-57

Example A-53. isspace

#include <stdio.h>
#include <ctype.h>

void main()
{
if ((isspace(’ ’)))
{
printf("space -- white-space character\n");
}

if (! (isspace(’@’)))
{
printf("@ -- not white-space character\n");
}
}

prints to standard output:
space -- white-space character
@ -- not white-space character

A.4.55 isupper—Test for upper-case alphabetic character
#include <ctype.h>
int isupper(int c);

The isupper function returns a nonzero value for any upper-case alphabetic character;
zero is returned in the false case. This function is provided both as an in-line and
out-of-line function.

When the header filectype.h is included, the default case will bein-line [see
section A.3, “Forcing Library Routines Out-of-line.”].

Example A-54. isupper

#include <stdio.h>
#include <ctype.h>
void main()
{
if ((isupper(’F’)))
{
printf("F -- upper-case character\n");
}
if (! (isupper(’f’)))
{
printf("f -- not an upper-case character\n");
}
}
prints to standard output:
F -- upper-case character
f -- not an upper-case character

A-58 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

A.4.56 isxdigit—Test for hexadecimal numeric character
#include <ctype.h>
int isxdigit(int c);

The isxdigit function returns a nonzero value for any hexadecimal digit; zero is
returned in the false case. This function is provided both as an in-line and out-of-line
function.

When the header filectype.h is included, the default case will bein-line [see
section A.3, “Forcing Library Routines Out-of-line.”].

Example A-55. isxdigit

#include <stdio.h>
#include <ctype.h>

void main()
{
if ((isxdigit (’F’)))
{
printf("F -- hexadecimal character\n");
}

if (! (isxdigit (’G’)))
{
printf("G -- not a hexadecimal character\n");
}
}

prints to standard output:
F -- hexadecimal character
G -- not a hexadecimal character

A.4.57 labs—Absolute value of a long integer
#include <stdlib.h>
long int labs(long int j);

The labs function returns the absolute value of the long integerj .

Refer to the following sections for more information:

• Section A.4.2, “abs—Absolute value of integer,” on page A-10

Motorola Programming Support A-59

Example A-56. labs

#include <stdio.h>
#include <stdlib.h>

void main()
{
long int j = -19089709l;

printf("labs(-19089709l) == %ld\n", labs(j));
}

prints to standard output:
labs(-19089709l) == 19089709

A.4.58 ldexp—Multiply floating point number by 2
#include <math.h>
double ldexp(double x, int exp);

The ldexp function returnsx * 2exp. If the result exceedsHUGE_VAL, errno is set to
ERANGEand the valueHUGE_VALis returned with the same sign asx.

Refer to the following sections for more information:

• Section A.4.19, “exp—Exponential, ex,” on page A-26

• Section A.4.74, “pow—Raise a double to a power,” on page A-77

• Section A.4.19, “exp—Exponential, ex,” on page A-26

• Section A.4.74, “pow—Raise a double to a power,” on page A-77

Example A-57. ldexp

#include <stdio.h>
#include <math.h>

void main()
{
printf("ldexp(7.09,4) == %f\n", ldexp(7.09,4));
}

prints to standard output:
ldexp(7.09,4) == 113.440000

A-60 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

A.4.59 ldiv—Long integer division with remainder
#include <stdlib.h>
ldiv_t ldiv(long int numer, long int denom);

Theldiv function computes the quotient and remainder of numer / denom and returns the
result in a structure of typeldiv_t . If the result cannot be represented, the result is
undefined.

Refer to the following sections for more information:

• Section A.4.17, “div—integer division with remainder,” on page A-24

Example A-58. ldiv

#include <stdio.h>
#include <stdlib.h>

void main()
{
ldiv_tresult;
longnumer = 709, denom = 56;

result = ldiv(numer, denom);
printf("quotient == %ld\t", result.quot);
printf("remainder == %ld\n", result.rem);
}

prints to standard output:
quotient == 12remainder == 37

Motorola Programming Support A-61

A.4.60 log—Natural logarithm, base e
#include <math.h>
double log(double x);

The log function computes the natural logarithm ofx. If the value ofx is less than zero,
errno is set toEDOMand the valueHUGE_VALis returned. Ifx is equal to zero, errno is set
to ERANGEand the valueHUGE_VALis returned.

Refer to the following sections for more information:

• Section A.4.19, “exp—Exponential, ex,” on page A-26

• Section A.4.61, “log10—Base ten logarithm,” on page A-62

Example A-59. log

#include <stdio.h>
#include <math.h>

void main()
{
printf("log(7.09) == %f\n", log(7.09));
}

prints to standard output:
log(7.09) == 1.958685

A-62 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

A.4.61 log10—Base ten logarithm
#include <math.h>
double log10(double x);

Thelog10 function computes the natural logarithm ofx. If the value ofx is less than zero,
errno is set toEDOMand the valueHUGE_VALis returned. Ifx is equal to zero, errno is set
to ERANGEand the valueHUGE_VALis returned.

Refer to the following sections for more information:

• Section A.4.19, “exp—Exponential, ex,” on page A-26

• Section A.4.60, “log—Natural logarithm, base e,” on page A-61

Example A-60. log10

#include <stdio.h>
#include <math.h>

void main()
{
printf("log10(7.09) == %f\n", log10(7.09));
}

prints to standard output:
log10(7.09) == 0.850646

Motorola Programming Support A-63

A.4.62 longjmp—Execute a non-local jump
#include <setjmp.h>
void longjmp(jmp_buf env, int val);

The longjmp function restores the calling environment referenced byenv which must
have been initialized by a previous call tosetjmp . If there has been no invocation of
setjmp , or if the function containing the call tosetjmp has terminated execution before
the call tolongjmp , the behavior is undefined.

Upon completion oflongjmp , program execution continues as if the corresponding call
to setjmp had returned with a valueval; if val is zero, 1 is returned.

Global andvolatile-typevariables have values as of the timelongjmp was called; all
register and non-volatile automatic variables will have indeterminate values.

For more information, see Chapter 6, “Software-Hardware Integration.”

Refer to the following sections for more information:

• Section A.4.87, “setjmp—Save reference of current calling environment for later
use by longjmp,” on page A-92

Example A-61. longjmp

#include <stdio.h>
#include <setjmp.h>

jmp_buf env;

void func(void)
{
longjmp(env, -709);
}

main()
{
if (setjmp(env) != 0)
{
printf("-- longjmp has been called --\n");
exit(1);
}
printf("-- setjmp called --\n");
func();
}

prints to standard output:
-- setjmp called --
-- longjmp called --

A-64 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

A.4.63 malloc—Dynamically allocate uninitialized storage
#include <stdlib.h>
void* malloc(size_t size);

Themalloc function returns a pointer to the lowest word of a size word block of storage;
whensizeexceeds the amount of memory available,malloc returnsNULL.

Refer to the following sections for more information:

• Section A.4.12, “calloc—Dynamically allocate zero-initialized storage for
objects,” on page A-20

• Section A.4.35, “free—Free storage allocated by calloc, malloc, and realloc,” on
page A-39

• Section A.4.82, “realloc—hange size of dynamically allocated storage area,” on
page A-88

• alloca—Allocate storage in the stack frame.

Example A-62. malloc

#include <stdio.h>
#include <stdlib.h>

void main()
{
char *char_array;

if((char_array=(char*) malloc(709*sizeof(char))) == NULL)
{
printf("error: not enough memory\n");
exit(1);
}
else
{
printf("-- space for 709 chars allocated OK --\n");
}
}

prints to standard output:
-- space for 709 chars allocated OK --

A.4.64 mblen—Length of a multibyte character
#include <stdlib.h>
int mblen(const char* s, size_t n);

Themblen function determines the number of characters in themultibytecharacter
pointed to bys. Themblen function is equivalent to

mbtowc ((wchar_t*) 0, s, n);

Motorola Programming Support A-65

1. If s is aNULLpointer,mblen returns a zero. Ifs is notNULL, mblen returns

2. zero ifs points to a NULL character,

3. the number of characters that comprise the multibyte character, or

4. -1 if an invalid multi-byte character is formed.

In no case will the return value exceedn or theMB_CUR_MAX macro.

Refer to the following sections for more information:

• Section A.4.66, “mbtowc—Convert a multibyte character to a wide character,” on
page A-68

• Section A.4.128, “wctomb—Convert wchar_t character to multibyte character,” on
page A-128

Note: The DSP56000/DSP56001 does not provide byte addressing, thus characters
always require an entire word of memory each. One way to better utilize data
memory (with a run-time cost) is to combine the ANSI data typewchar_t and
the special ANSImultibyteandwide characterlibrary routines.

Example A-63. mblem

#include <stdio.h>
#include <stdlib.h>

char* gstr = NULL;

void main()
{
int max = MB_CUR_MAX;
char* strnull = gstr;
char* str1 = "709";

printf("mblen(strnull,5)==%d\n", mblen(strnull,5));
printf("mblen(str1, max) == %d\n", mblen(str1,max));
printf("mblen(\"abcdef\",5) == %d\n", mblen("abcedf",5));
printf("mblen(\"abcdef\",2) == %d\n", mblen("abcedf",2));
}

prints to standard output:
mblen(strnull, 5) == 3
mblen(str1, 5) == 3
mblen("abcdef", 5) == 3
mblen("abcdef", 2) == 2

A-66 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

A.4.65 mbstowcs—Convert multibyte string to wide character string
#include <stdlib.h>
int mbstowcs(wchar_t* pwcs, const char* s, size_t n);

Thembstowcs function converts the character string pointed to bys into a wide character
string pointed to bypwcs . Each character of themultibytestring is converted as if by the
mbtowc function. At most,n characters will be converted and stored in the wide character
string. Multibyte characters that follow aNULLcharacter will not be examined or
converted. Ifs andpwcs overlap, the behavior is undefined.

If an invalid character is encountered,mbstowcs returns (size_t) -1. Otherwise,
mbstowcs returns the number of characters converted, not including the terminating
NULLcharacter.

Refer to the following sections for more information:

• Section A.4.127, “wcstombs—Convert wchar_t array to multibyte string,” on page
A-126

Note: The DSP56000/DSP56001 does not provide byte addressing, thus characters
always require an entire word of memory each. One way to better utilize data
memory (with a run-time cost) is to combine the ANSI data typewchar_t and
the special ANSI multibyte and wide character library routines.

Motorola Programming Support A-67

Example A-64. mbstowcs

#include <stdio.h>
#include <stdlib.h>

wchar_t warray[10];

void main()
{
char array = "abcdedgh";
char* ptr = array;
int convert;

convert = mbstowcs(warray, array, 10);

printf("unpacked array looks like:\n");
while (*ptr != 0)
{
printf("%0.6x ", *ptr++);
}
printf("\n\n");

printf("%d chars packed, packed array looks like:\n");
ptr = warray;
while (*ptr != 0)
{
printf("%0.6x ", *ptr++);
}
printf("\n");
}

prints to standard output:
unpacked array looks like:
000061 000062 000063 000064 000065 000066 000067 000068

8 chars packed, packed array looks like:
616263 646566 676800

A-68 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

A.4.66 mbtowc—Convert a multibyte character to a wide character
#include <stdlib.h>
int mbtowc(wchar_t* pwc, const char* s, size_t n);

Thembtowc function examines themultibyte(i.e., multi-character) string pointed to bys
and converts it into a wide character (wchar_t). At most,n and never more than
MB_CUR_MAXcharacters froms will be examined and converted.

If s is aNULLpointer,mbtowc returns zero. Ifs is notNULL, mbtowc returns

1. zero ifs points to aNULLcharacter,

2. the number of characters that comprise the multibyte character, or

3. -1 if an invalid multibyte character is formed.

In no case will the return value exceedn or theMB_CUR_MAXmacro.

Refer to the following sections for more information:

• Section A.4.64, “mblen—Length of a multibyte character,” on page A-64

• Section A.4.65, “mbstowcs—Convert multibyte string to wide character string,” on
page A-66

• Section A.4.128, “wctomb—Convert wchar_t character to multibyte character,” on
page A-128

Note: The DSP56000/DSP56001 does not provide byte addressing, thus characters
always require an entire word of memory each. One way to better utilize data
memory (with a run-time cost) is to combine the ANSI data typewchar_t and
the special ANSI multibyte and wide character library routines.

Motorola Programming Support A-69

Example A-65. mbtowc

#include <stdio.h>
#include <stdlib.h>

void main()
{
wchar_t wide = 0;
char* mbstr = "abcde";
int convert;

convert = mbtowc((wchar_t*) NULL, mbstr, 2);
printf("%d chars packed. wide == %0.6x\n", convert, wide);

convert = mbtowc(&wide, mbstr, strlen(mbstr));
printf("%d chars packed. wide == %0.6x\n", convert, wide);

convert = mbtowc(&wide, mbstr, 2);
printf("%d chars packed. wide == %0.6x\n", convert, wide);
}

prints to standard output:
2 chars packed. wide == 000000
3 chars packed. wide == 616263
2 chars packed. wide == 006162

A-70 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

A.4.67 memchr—Find a character in a memory area
#include <string.h>
int memchr(const void* s, int c, size_t n);

Thememchr function finds the first occurrence ofc (converted to an unsigned char) in the
memory area pointed to bys. The terminating null character is considered to be part of the
string. Thememchr function returns a pointer to the located char or aNULLpointer if the
character is not found.

Refer to the following sections for more information:

• Section A.4.109, “strrchr—Find last occurrence of a character from one string in
another,” on page A-111

• Section A.4.102, “strcspn—Compute length of prefix of one string consisting
entirely of characters not from another,” on page A-104

• Section A.4.108, “strpbrk—Find first occurrence of a character from one string in
another,” on page A-110

• Section A.4.109, “strrchr—Find last occurrence of a character from one string in
another,” on page A-111

• Appendix A.4.110, “strspn—Compute length of prefix of one string consisting
entirely of characters from another,” on page A-112

Note: Due to the word orientation of the DSP56000/DSP56001, there is no way to
accurately implement an ANSI version ofmemchr for the l memory model.

Example A-66. memchr

#include <stdio.h>
#include <string.h>

void main()
{
char*string = "fred flintstone driving on bald feet";
char*result;

/* locate the occurance of ’b’ */
result = memchr(string, ’b’, strlen(string));
printf("-- %s --\n", result);
}

prints to standard output:
-- bald feet --

Motorola Programming Support A-71

A.4.68 memcmp—Compare portion of two memory areas
#include <string.h>
int memcmp(const void* s1, const void* s2, size_t n);

Thememcmpfunction compares the firstn words of the object pointed to bys1with the
first n words of the object pointed to bys2, comparison is lexicographical. Thememcmp

function returns zero if the two areas compared are equal, a value greater than zero ifs1 is
greater, or a value less than zero ifs1 is smaller.

Refer to the following sections for more information:

• Section A.4.106, “strncmp—Compare a portions of two strings,” on page A-108

Note: Due to the word orientation of the DSP56000/DSP56001, there is no way to
accurately implement an ANSI version ofmemcmpfor the l memory model.

Example A-67. memcmp

#include <stdio.h>
#include <string.h>

struct test
{
char cartoon[20];
int value;
}g1 = { "flintstones", 709 },
g2 = { "flintstones", 709 },
g3 = { "jetsons", 709 };

void main()
{
if (memcmp(&g1, &g2, sizeof(struct test)) != 0)
{
printf("error: flintstones differ\n");
}
else
{
printf("-- flintstones are flintstones --\n");
}
if (memcmp(&g1, &g3, sizeof(struct test)) != 0)
{
printf("-- flintstones are not jetsons --\n");
}
else
{
printf("error: flintstones are NOT jetsons\n");
}
}
prints to standard output:
-- flintstones are flintstones --
-- flintstones are not jetsons --

A-72 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

A.4.69 memcpy—Copy from one area to another
#include <string.h>
int memcpy(void* s1, const void* s2, size_t n);

Thememcpy function copiesn words from the area referenced bys2 into the area
specified bys1. If the source and destination areas overlap, the results are undefined. The
memcpyfunction returns the value ofs1.

Refer to the following sections for more information:

• Section A.4.107, “strncpy—Copy a portion of one string into another,” on page
A-109

• Section A.4.101, “strcpy—Copy one string into another,” on page A-102

Example A-68. memcpy

#include <stdio.h>
#include <string.h>

struct test
{
char cartoon[20];
int value;
}g1, g2 = { "flintstones", 709 };

void main()
{
memcpy(&g1, &g2, sizeof(struct test));
printf("-- I watch the %s --\n", g1.cartoon);
}

prints to standard output:
-- I watch the flintstones --

Motorola Programming Support A-73

A.4.70 memmove—Copy storage
#include <string.h>
int memmove(void* s1, const void* s2, size_t n);

Thememmovefunction copiesn words from the area referenced bys2 into the area
specified bys1. The copy is done by first placing then words into a temporary buffer and
then moving the temporary buffer into the final location, this allows the source and
destination areas to overlap.

Refer to the following sections for more information:

• Section A.4.69, “memcpy—Copy from one area to another,” on page A-72

Example A-69. memmove

#include <stdio.h>
#include <string.h>

struct test
{
char cartoon[20];
int value;
} g1, g2 = {"flintstones", 709 };

void main()
{
memmove(&g1, &g2, sizeof(struct test));
printf("-- I watch the %s --\n", g1.cartoon);
}

prints to standard output:
-- I watch the flintstones --

A-74 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

A.4.71 memset—Initialize memory area
#include <string.h>
int memset(void* s, int c, size_t n);

Thememset function copies the valuec (converted to anunsigned char) into the firstn
words of the object pointed to bys.

Refer to the following sections for more information:

• Section A.4.69, “memcpy—Copy from one area to another,” on page A-72

Note: Due to the word orientation of the DSP56000/DSP56001, thel memory model
version ofmemset may not act as expected when attempting to initialize double
size elements (the x memory portion is unaffected).

Example A-70. memset

#include <stdio.h>
#include <string.h>

structtest
{
charcartoon[20];
int value;
}

void main()
{
struct test local;

/* auto struct local is initialized to all nines */
memset(&local, 9, sizeof(struct test));

/* random check */
if (local.cartoon[7] != 9)
{
printf("error: memset busted\n");
}
else
{
printf("-- memset OK --\n");
}
}

prints to standard output:
-- memset OK --

Motorola Programming Support A-75

A.4.72 modf—Break a double into it’s integral and fractional parts
#include <math.h>
double modf(double value, double* iptr);

Themodf function brakesvalue into its fractional and integral parts. Themodf function
returns the fractional portion ofvalue and stores the integral portion in the double object
pointed to byiptr .

Refer to the following sections for more information:

• Section A.4.37, “frexp—Break a floating point number into mantissa and
exponent,” on page A-41

Example A-71. modf

#include <stdio.h>
#include <math.h>

void main()
{
double result;

printf("-- fractional == %f\t", modf(7.09, &result);
printf("integral == %f --\n", result);
}

prints to standard output:
-- fractional == 0.090000 integral == 7.000000 --

A-76 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

A.4.73 perror—Print error message
#include <stdio.h>
void perror(const char* s);

Theperror function prints out the strings followed by “: ” and the error message
associated witherrno .

Refer to the following sections for more information:

• Section A.4.103, “strerror—Map error code into an error message string,” on page
A-105

Example A-72. perror

#include <stdio.h>
#include <math.h>

void main()
{
double result;

result = asin(7.09);

if (result == 0.0 && errno == EDOM)
{
perror("asin perror test");
}
}

prints to standard output:
asin perror test:domain error

Motorola Programming Support A-77

A.4.74 pow—Raise a double to a power
#include <math.h>
double pow(double x, double y);

Thepow function computes and returnsxy. If x is zero andy is less than zero, a domain
error occurs setting errno toEDOMand returning 0.0. If |xy| is greater thanHUGE_VAL,
errno is set toERANGEandHUGE_VALis returned.

Refer to the following sections for more information:

• Section A.4.19, “exp—Exponential, ex,” on page A-26

• Section A.4.58, “ldexp—Multiply floating point number by 2,” on page A-59

Example A-73. pow

#include <stdio.h>
#include <math.h>

void main()
{
printf("-- pow(2.0, 2.0) == %f --\n", pow(2.0, 2.0));
}

prints to standard output:
-- pow(2.0, 2.0) == 4.000000 --

A-78 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

A.4.75 printf—Print to standard output
#include <stdio.h>
int printf(const char* format, …);

Theprintf function formats and writes a string to the standard output. Interpreting the
format specifierformat left to right.

The format specifier,format , consists of ordinary characters, escape sequences, and
conversion specifications. The conversion specifications describe how arguments passed
to printf are converted for output. All non-conversion specifying portions offormat

are sent directly to the standard output. If the number of arguments passed is less than
specified by theformat string,printf will write non-deterministic garbage to the
standard output. If too many arguments are provided toprintf , the extras will be
evaluated but otherwise ignored.

A conversion specification is introduced by the character% , and has the following form:

%[flags][field width][. precision][size]conversion character

where flags, field width, precision, h, l, L are optional.

Flags are for justification of output and printing of signs, blanks, decimal points, octal and
hexadecimal prefixes. Multiple flags may be utilized at once. The ANSI flags are as
shown in Table A-7:

Motorola Programming Support A-79

Each conversion takes place incharacter fields. The minimum size of the field can be
specified with the field width. If the converted result contains fewer characters than
specified by field width, the result will be left padded with spaces by default(seeflags
above). The field width takes the form of a decimal integer or an asterisk ‘*’. When the
field width is an asterisk, the value is to be taken from an integer argument that precedes
the argument to be converted.

Precision specifies the minimum number of digits to appear for the d, i, o, u, x, X
conversions, the number of digits appear after the decimal point character for e, E, and f
conversions, the maximum number of significant digits for the g and G conversions, or the
maximum number of characters to be written from a string in the s conversion.The
precision takes the form of a ‘.’ followed by ‘*’, or by an optional decimal integer; if only
the period is specified, the precision is taken to be zero.If precision appears with any other
conversion character, the behavior is undefined.

Size specifies the argument size expected. There are three size specifiers defined by ANSI.
The h specifies that the argument for the conversion characters d, i, o, u, x, or X will be
unsigned short. The l specifies that the argument for the conversion characters d, i, o, u, x,
or X will be long integer. The L specifies that the argument for the conversion characters
e, E, f, g, or G will be long double.

Table A-7. ANSsbI Flags

Flag Description

- Left justify the result within the field. The default is right justified .

+ The result of a signed conversion will always have a sign (+ or -). The default case
provides only for -.

space If the first character of a signed conversion is not a sign, or if a signed conversion
results in no characters, a space character will be prefixed to the result. If the space
and the + flags both appear, the space flag is ignored. The default mode is no
space .

The result is converted to an alternate form specified by the conversion character.
For o conversion, it forces the first digit of the result to be a zero. For x (or X)
conversion, the non-zero result will have 0x (0X) prefixed to it. For e, E, f, g, and G
conversions, the result will always contain a decimal point character, even if no digits
follow it. Additionally for g and G, trailing zeros will not be removed.

0 For d, i, o, u, x, X, e, E, f, g, and G conversions, leading zeros (following any
indication of sign or base) are used to pad to the field width; no space padding is
performed. If the 0 and - flags both appear, the 0 flag will be ignored.

A-80 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

There are 16 conversion characters; each is described in Table A-7.

Table A-8. Conversion Characters

Conversion Character Description

d, i The int argument is printed as a signed decimal number. The precision specifies
the minimum number of digits to appear; if the value being printed can be
represented in fewer digits, it is expanded with leading zeros. The default precision
is 1. The result of printing a zero with precision zero is no characters (this is
independent of padding specified by field width).

o The unsigned int argument is printed as an unsigned octal number. When
used in association with the # flag, 0 will be prefixed to non-zero results. The
precision specifies the minimum number of digits to appear; if the value can be
represented in fewer digits, it will be expanded with leading zeros. The default
precision is 1. The result of printing a zero with precision zero is no characters
(this is independent of padding specified by field width).

u The unsigned int argument is printed as an unsigned decimal number. The
precision specifies the minimum number of digits to appear; if the value can be
represented in fewer digits, it will be expanded with leading zeros. The default
precision is 1. The result of printing a zero with precision zero is no characters
(this is independent of padding specified by field width).

x, X The unsigned int argument is printed as an unsigned hexadecimal
number. Hexadecimal alpha characters (a,b,c,d,e,f) will be printed in lower case
when x is used and in upper case when X is used. When used in association with
the # flag, 0x will be prefixed to the result (0X in the X case). Precision specifies
the minimum number of digits to appear; if the value can be represented in fewer
digits, it will be expanded with leading zeros. The default precision is 1. The result
of printing a zero with precision zero is no characters (this is independent of
padding specified by field width).

f The double argument is printed out in decimal notation of the form [-]ddd.ddd,
where precision specifies the number of digits to follow the decimal point. The
default precision 6. When precision is 0 and the # flag is not specified, no decimal
point character will be printed. A decimal digit will always follow at least one digit.
The value printed is rounded to the appropriate number of digits.

e, E The double argument is printed out in the form [-] d.ddde±dd, where precision
specifies the number of digits to follow the decimal point. The default precision 6.
When precision is 0 and the # flag is not specified, no decimal point character will
be printed. A decimal digit will always follow at least one digit. The exponent
always contains at least two digits.

g, G The double argument is printed in the f, e, or E form. The f form is used unless
the exponent to be printed is less than -4 or greater than the precision . If precision
is zero, the printed value consists of no characters (this is independent of padding
specified by field width). Trailing zeros are removed from the fractional portion of
the result; a decimal point character is printed only if it is followed by a digit.

c The int argument is printed as an unsigned character.

Motorola Programming Support A-81

On successful completion,printf returns the an integer equal to the number of
characters printed. On failure,printf returns an integer less than 0.

Refer to the following sections for more information:

• Section A.4.86, “scanf—Read formatted input from standard input,” on page A-91

• Section A.4.96, “sscanf—Read formatted input from a string,” on page A-98

• Section A.4.93, “sprintf—Print to a string,” on page A-96

s The argument is a pointer to a character string ((char*)). Characters from the
string are printed up to (but not including) a terminating null character or until
precision characters have been printed. If precision is not explicitly specified or is
greater than the length of the string, the string will be printed until the null character
is encountered.

p The argument is a pointer to the void data type ((void*)). The value of the of the
pointer is printed out as a hexadecimal digit.

n The argument is a pointer to an integer ((int*)) which is the number of characters

printed so far by the current call to printf .

% Print the percent character, %. Note that the complete specifier is %%.

Table A-8. Conversion Characters (Continued)

Conversion Character Description

A-82 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

Example A-74. printf

#include <stdio.h>

char* lib_name = "printf";
void main()
{
int i = 709;
double d = 7.09;

printf("Show several %s examples\n", lib_name);
printf("\tintegers:\n");
printf("\t\toctal == %o\n", i);
printf("\t\toctal == %#.9o ", i);
printf("(force leading 0 and zero pad)\n");
printf("\t\tdecimal == %d\n", i);
printf("\t\tdecimal == % d (force leading blank)\n", i);
printf("\t\thex == %x\n", i);
printf("\t\thex == %#X (force leading 0X)\n", i);
printf("\tfloating point:\n");
printf("\t\tdouble == %f\n", d);
printf("\t\tdouble == %e\n", d);
}

prints to standard output:
Show several printf examples
integers:
octal == 1305
octal == 000001305 (force leading 0 and zero pad)
decimal == 709
decimal == 709 (force leading blank)
hex == 2c5
hex == 0X2C5 (force leading 0X)
floating point:
double == 7.090000
double == 7.090000e+00

Motorola Programming Support A-83

A.4.76 putc—Write a single character to a stream
#include <stdio.h>
int putc (int c, FILE *stream);

The functionputc writes the characterc to the specified stream. It is identical to the
function fputc , except thatputc may be implemented as a macro. This means that
arguments toputc may be evaluated more than once. This is only a problem for function
arguments that have side effects when evaluated.

Refer to the following sections for more information:

• Section A.4.32, “fputc—Write a single character to a stream,” on page A-36

Example A-75. putc

#include <stdio.h>

void main ()
{
putc ((int) ‘S’, stdout);
putc ((int) ‘h’, stdout);
putc ((int) ‘a’, stdout);
putc ((int) ‘d’, stdout);
putc ((int) ‘r’, stdout);
putc ((int) ‘a’, stdout);
putc ((int) ‘c’, stdout);
putc ((int) ‘k’, stdout);
putc ((int) ‘\n’, stdout);
}

Will cause the following output to be printed to standard output:

Shadrack

A-84 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

A.4.77 putchar—Write a character to standard output
#include <stdio.h>
int putchar(int c);

Theputchar function prints a character to standard output.

Refer to the following sections for more information:

• Section A.4.44, “getchar—Read a character from standard input,” on page A-48

• Section A.4.45, “gets—Read a string from standard input,” on page A-49

• Section A.4.78, “puts—Write a string to standard output,” on page A-85

Example A-76. putchar

#include <stdio.h>

char* str = "bald feet\n";

void main()
{
while (*str != ’\0’)
{
putchar (*str++);
}
}

prints to standard output:
bald feet

Motorola Programming Support A-85

A.4.78 puts—Write a string to standard output
#include <stdio.h>
int puts(const char* s);

Theputs function prints a string to standard output, appending a newline character. The
puts function returns a zero if operation is successful and a non-zero value on failure.

Refer to the following sections for more information:

• Section A.4.44, “getchar—Read a character from standard input,” on page A-48

• Section A.4.45, “gets—Read a string from standard input,” on page A-49

• Section A.4.77, “putchar—Write a character to standard output,” on page A-84

Example A-77. puts

#include <stdio.h>

char* str = "bald feet";

void main()
{
puts (str);
}

prints to standard output:
bald feet

A-86 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

A.4.79 qsort—Quick sort
#include <stdlib.h>
void qsort(void* base, size_t nmemb, size_t size,
int (*compar) (const void*, const void*));

Theqsort function sorts an array ofnmembobjects of sizesize , pointed to bybase.

The array is sorted in ascending order according to a comparison function pointed to by
compar which is called with two pointers to the array members. Thecompar function
must return an integer less than, equal to, or greater than zero if the first argument is
considered to be respectively less than, equal to, or greater than the second argument.

Example A-78. qsort

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

char* stuff[] = {
"fred", "flintstone", "driving", "bald", "on", "feet"
};

static int compare(const char** a1, const char** a2)
{
return(strcmp(*a1, *a2));
}

main()
{
int i;

qsort(stuff, (size_t)6, (size_t)sizeof(char*), compare);

for (i = 0 ; i < 6 ; i++)
{
printf("%s\t", stuff[i]);
}

printf("\n");
}

prints to standard output:
balddrivingfeetflintstonefredon

Motorola Programming Support A-87

A.4.80 raise—Raise a signal
#include <signal.h>
int raise(int sig);

Theraise function sends the signalsig to the executing program and returns 0 if
successful or non-zero if unsuccessful. Seesignal.h for list of available signals and
their default actions.

For more information, see Chapter 6, “Software-Hardware Integration.”

Refer to the following sections for more information:

• Section A.4.90, “signal—Set up signal handler,” on page A-94

Example A-79. raise

#include <stdio.h>

void main()
{
int onintr();

signal (SIGINT, onintr);
raise(SIGINT);
}

onintr()
{
printf("caught SIGINT, see ya ...\n");
exit(-9);
}

prints to standard output:
caught SIGINT, see ya ...

A-88 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

A.4.81 rand—Pseudo- random number generator
#include <stdlib.h>
int rand(void);

Therand function computes and returns a sequence of pseudo-random integers in the
range of 0 to 32767.

Refer to the following sections for more information:

• Section A.4.95, “srand—Seed the pseudo-random number generator,” on page
A-98

Example A-80. rand

#include <stdio.h>

void main()
{
/* seed the random number sequence */
srand(1638);

/* spew out random numbers in the range 0 to 709 */
for (; ;)
{
printf("%d", (rand()) % 709);
}
}

prints to standard output:
545 174 307 657 220 267 66 47 651 268 284 338 35 615 403 etc.

A.4.82 realloc—hange size of dynamically allocated storage area
#include <stdlib.h>
int realloc(void* ptr, size_t size);

Therealloc function changes the size of the storage area pointed to byptr to size .
The contents of the storage area are unchanged. If the new storage area is larger, the value
of the new area is indeterminate. Ifptr is null, realloc acts likemalloc . If ptr was
not dynamically allocated or the area was previously deallocated by a call tofree , the
behavior is undefined.

If realloc is unable to allocate the new size storage area, a null pointer is returned and
the original storage area is unchanged.

Refer to the following sections for more information:

• Section A.4.12, “calloc—Dynamically allocate zero-initialized storage for
objects,” on page A-20

Motorola Programming Support A-89

• Section A.4.35, “free—Free storage allocated by calloc, malloc, and realloc,” on
page A-39

• Section A.4.63, “malloc—Dynamically allocate uninitialized storage,” on page
A-64

• alloca—Allocate storage in the stack frame.

Example A-81. realloc

#include <stdio.h>

void main()
{
char* str;

if ((str = (char*) malloc((size_t) 15)) == NULL)
{
error("malloc failed");
exit (-8);
}

strcpy(str, "short string");
printf("%s\n", string);

/* allocate space for 40 character string */
if ((str = (char*)realloc(str, 40*sizeof(char)))== NULL)
{
perror("realloc test");
exit (-9);
}

strcat(str, " becomes a long string");
printf("%s\n", str);
}

prints to standard output:
short string
short string becomes a long string

A-90 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

A.4.83 remove—Remove a file from the disk
#include <stdio.h>
int remove (char *filename);

The functionremove will eliminate the file associated with the specified filename. The
effect of this call on open files may vary from host to host, and is considered undefined.

Example A-82. remove

#include <stdio.h>

void main()
{
remove (“foo.exe”);
}

will remove the file “foo.exe” on the disk, if such a file exists.

A.4.84 rename —Rename a file on the disk
#include <stdio.h>
int rename (const char *old, const char *new);

The functionrename disassociates the a disk file from the nameold , and associates it
with the namenew. The behavior of this call is undefined if there already exists a file
associated with the namenew. rename returns zero if it is successful. If it fails, the file
remains associated with the old name, and is not altered in any way.

Example A-83. rename

#include <stdio.h>

void main()
{
rename (“old.exe”, “new.exe”);
}

will rename the file “old.exe” to “new.exe”, provided that “old.exe”
actually exists on the disk. Note that “old.exe” will cease to exist.

A.4.85 rewind—Reset the file position indicator to the beginning of
the file

#include <stdio.h>
void rewind (FILE *stream);

The functionrewind will reset the file position indicator associated with the specified
stream. Any pending error is also cleared.

Refer to the following sections for more information:

Motorola Programming Support A-91

• Section A.4.26, “fgetpos—Get value of file position indicator associated with a
stream,” on page A-31

• fsetpos—Set the file position indicator value associated with a stream.

Example A-84. rewind

#include <stdio.h>

void main ()
{
FILE *preexisting = fopen (“already.here”, “r”);

putchar (fgetc (preexisting));
rewind (preexisting);
putchar (fgetc (preexisting));
}
will print the first character in the file “already.here” onto standard
output twice.

A.4.86 scanf—Read formatted input from standard input
#include <stdio.h>
int scanf (char *format, ...);

The functionscanf is equivalent to thefscanf function, except that input is always read
from standard input. Please use the description of argument values in the description of the
fscanf function.

Refer to the following sections for more information:

• Section A.4.38, “fscanf—Read formatted input from a stream,” on page A-42

Example A-85. scanf

See the manual entry for fscanf for examples. The only difference
between scanf and fscanf is that scanf does not require a FILE*
argument; stdin is implied.

A-92 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

A.4.87 setjmp—Save reference of current calling environment for
later use by longjmp

#include <setjmp.h>
int setjmp(jmp_buf env);

Thesetjmp function saves its calling environment inenv for later use bylongjmp . If
the return is direct fromsetjmp , the value zero is returned. If the return is from the
longjmp function, the value returned is non-zero.

For more information, see Chapter 6, “Software-Hardware Integration.” .

Refer to the following sections for more information:

• Section A.4.62, “longjmp—Execute a non-local jump,” on page A-63

Example A-86. setjmp

#include <stdio.h>
#include <setjmp.h>

jmp_buf env;

void func(void)
{
longjmp(env, -709);
}

void main()
{
if (setjmp(env) != 0)
{
printf("-- longjmp has been called --\n");
exit(1);
}
printf("-- setjmp called --\n");
func();
}

prints to standard output:
-- setjmp called --
-- longjmp called --

Motorola Programming Support A-93

A.4.88 setbuf—Read formatted input from standard input
#include <stdio.h>
void setbuf (FILE *stream, char *buf);

If buf is NULL, the specified stream will be unbuffered. If buf is non-NULL, then the
stream will be fully buffered with a buffer of sizeBUFSIZ. Note thatsetbuf must be
used only before any other operations are performed on the specified stream, and that the
stream argument must be associated with an opened file. Callingsetbuf is equivalent to
calling setvbuf using_IOBUF for themode argument, andBUFSIZ for thesize

argument.

Refer to the following sections for more information:

• Section A.4.89, “setvbuf—Alter stream buffering,” on page A-94

A-94 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

A.4.89 setvbuf—Alter stream buffering
#include <stdio.h>
int setvbuf (FILE *stream, char *buf, int mode, size_t size);

The functionsetvbuf is used to alter the way a specified stream is buffered. It must only
be used before any other operation is performed on the specified stream. The argument
mode determines the buffering policy:

_IOFBF—Use the full size of the buffer in the most efficient way.

_IOLBF —Use a line buffering policy: flush on newlines.

_IONBF—Do not buffer the stream at all.

The argumentsize specified the buffer size for this stream. The pointerbuf , if
non-NULL, may be used for stream buffering. Ifbuf is NULL, thensetvbuf will allocate
any needed buffer.

Refer to the following sections for more information:

• Section A.4.88, “setbuf—Read formatted input from standard input,” on page A-93

A.4.90 signal—Set up signal handler
#include <setjmp.h>
void (*signal(int sig, void (*func)(int))) (int);

Thesignal function chooses one of three ways in which to handle the receipt of signal
sig .

1. If the value offunc is the macroSIG_DFL, default handling for the signal will
occur.

2. If the value offunc is the macroSIG_IGN , the signal is ignored.

3. Otherwise,func is a pointer to a function that will be called on the receipt of signal
sig .

When a signal occurs, the signal handler forsig is reset toSIG_DFL; this is equivalent to
making the callsignal (sig, SIG_DFL). The functionfunc terminates by executing
thereturn statement or by calling theabort , exit , or longjmp function. If the
function func terminates with areturn statement, execution continues at the point the
signal was caught. Note that if the value ofsig wasSIGFPE, the behavior is undefined.

Also note that in order to continue catching signalsig , the signal handler must reissue the
signal call.

For more information, see Chapter 6, “Software-Hardware Integration.” .

Motorola Programming Support A-95

Refer to the following sections for more information:

• Section A.4.80, “raise—Raise a signal,” on page A-87

Example A-87. signal

#include <stdio.h>

void main()
{
int onintr();

signal (SIGINT, onintr);
raise(SIGINT);
}

onintr()
{
printf("caught SIGINT, see ya ...\n");
exit(-9);
}

prints to standard output:
caught SIGINT, see ya ...

A.4.91 sin—Sine
#include <math.h>
double sin(double x);

Thesin function computes and returns the sine ofx, measured in radians.

Refer to the following sections for more information:

• Section A.4.4, “asin—Arc sine,” on page A-12

Example A-88. sin

#include <stdio.h>
#include <math.h>

void main()
{

printf("sin(45.0) == %f\n", sin(45.0));
}

prints to standard output:
sin(45.0) == 0.850904

A-96 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

A.4.92 sinh—Hyperbolic Sine
#include <math.h>
double sinh(double x);

Thesinh function computes and returns the hyperbolic sine ofx, measured in radians.
When the value ofx is too large,errno will be set toERANGEand the return value will be
HUGE_VALwith the sign ofx.

Refer to the following sections for more information:

• Section A.4.16, “cosh—Hyperbolic cosine,” on page A-23

• Section A.4.118, “tanh—Hyperbolic tangent,” on page A-121

Example A-89. sinh

#include <stdio.h>
#include <math.h>

void main()
{

printf("sinh(3.1415) == %f\n", sinh(3.1415));
}

prints to standard output:
sinh(3.1415) == 11.547661

A.4.93 sprintf—Print to a string
#include <stdio.h>
int sprintf(char* s, const char* format, …);

Thesprintf function is equivalent toprintf except thats specifies a string that the
generated output is printed to rather than standard output. A null character is written at the
end of the string. Thesprintf function returns the number of characters written to the
string.

Refer to the following sections for more information:

• Section A.4.75, “printf—Print to standard output,” on page A-78

Motorola Programming Support A-97

Example A-90. sprintf

#include <stdio.h>

void main()
{
char buffer[256];
char* bptr = buffer;
char* str = "strings";
int i = 709, count;
double d = 7.09;

bptr += sprintf(bptr,"testing sprintf with:\n");
sprintf(bptr, "\tstrings\t(%s)\n%n", str, &count);
bptr += count;
bptr += sprintf(bptr, "\thex digits\t%x\n", i);
bptr += sprintf(bptr, "\tfloating point\t%f\n", d);

puts(buffer);
}

prints to standard output:
testing sprintf with:
strings(strings)
hex digits2c5
floating point7.090000

A.4.94 sqrt—Square root
#include <math.h>
double sqrt(double x);

Thesqrt function computes and returns the nonnegative square root ofx. If x is less than
zero,errno is set toEDOMand 0.0 is returned.

Example A-91. sqrt

#include <stdio.h>
#include <math.h>

void main()
{
double = 50.2681;

printf("sqrt(50.2681) == %.2f\n", sqrt(d));
}

prints to standard output:
sqrt(50.2681) == 7.09

A-98 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

A.4.95 srand—Seed the pseudo-random number generator
#include <stdlib.h>
void sqrt(unsigned int seed);

Thesrand function uses the argument as a seed for a new sequence of pseudo-random
numbers to be returned byrand . Whensrand is called with the same argument, the
sequence of pseudo-random numbers will be repeated. Ifsrand is not called, the default
seed is 1.

Refer to the following sections for more information:

• Section A.4.81, “rand—Pseudo- random number generator,” on page A-88

Example A-92. srand

#include <stdio.h>

void main()
{
/* seed the random number sequence */
srand(1638);

/* spew out random numbers in the range 0 to 709 */
for (; ;)
{
printf("%d", (rand()) % 709);
}
}

prints to standard output:
545 174 307 657 220 267 66 47 651 268 284 338 35 615 403 etc.

A.4.96 sscanf—Read formatted input from a string
#include <stdio.h>
int sscanf (const char *s, const char *format, ...);

The functionsscanf reads formatted input from the string arguments, according to the
format stringformat . The operation ofsscanf is identical to fscanf except that input is
read from a string.

Refer to the following sections for more information:

• Section A.4.38, “fscanf—Read formatted input from a stream,” on page A-42

Motorola Programming Support A-99

A.4.97 strcat—Concatenate two strings
#include <string.h>
char* strcat(char* s1, const char* s2);

Thestrcat function appends a copy of the string pointed to bys2 (including the
terminating null character) to the end of the string pointed to bys1. The first character of
the second string is written over the first strings terminating character. Thestrcat

function returns a pointer tos1.

Refer to the following sections for more information:

• Section A.4.105, “strncat—Concatenate a portion of one string to another,” on page
A-106

Example A-93. strcat

#include <stdio.h>
#include <string.h>

void main()
{
char bigstr[80] = "string 1";
char smallstr[20] = " string 2";

printf("concatinate (%s) and (%s)\n", bigstr, smallstr);
(void) strcat(bigstr, smallstr);
puts(bigstr);
}

prints to standard output:
concatinate (string 1) and (string 2)
string 1 string 2

A-100 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

A.4.98 strchr—Find first occurrence of a character in a string
#include <string.h>
char* strchr(const char* s, int c);

Thestrchr function locates the first occurrence ofc (converted to a char) in the string
pointed to bys. The terminating null character is considered part of the string. The
strchr function returns a pointer to the located character or a null pointer if the character
is not found in the string.

Refer to the following sections for more information:

• Section A.4.67, “memchr—Find a character in a memory area,” on page A-70

• Section A.4.102, “strcspn—Compute length of prefix of one string consisting
entirely of characters not from another,” on page A-104

• Section A.4.108, “strpbrk—Find first occurrence of a character from one string in
another,” on page A-110

• Appendix A.4.110, “strspn—Compute length of prefix of one string consisting
entirely of characters from another,” on page A-112.

Example A-94. strchr

#include <stdio.h>
#include <string.h>

void main()
{
char* string = "fred flintstone driving on bald feet";
char* found;

found = strchr(string, ’b’);
puts(found);
}

prints to standard output:
bald feet

A.4.99 strcmp—Compare two strings
#include <string.h>
int strcmp(const char* s1, const char* s2);

Thestrcmp function compares the string pointed to bys1to the string pointed to bys2. If
strings1is lexicographically greater than, equal to, or less thans2; an integer respectively
greater than, equal to, or less than zero will be returned. The comparison of two strings of
unequal length in which the longer string contains the smaller string yields the results that
the longer string comparesgreater than.

Motorola Programming Support A-101

i.e. strcmp("xxx", "xxxyz") < 0orstrcmp("xxxyz", "xxx") > 0

When the header file string.h is included, the default case will be in-line [see section A.3,
“Forcing Library Routines Out-of-line.”]

Refer to the following sections for more information:

• Section A.4.68, “memcmp—Compare portion of two memory areas,” on page
A-71

• Section A.4.100, “strcoll—Compare two strings based on current locale,” on page
A-102

• Section A.4.106, “strncmp—Compare a portions of two strings,” on page A-108

Example A-95. strcmp

#include <stdio.h>
#include <string.h>

void main()
{
if (strcmp("xxx", "xxxyz") < 0)
{
puts("xxx is less than xxxyz");
}
else
{
puts("xxx is greater than xxxyz");
}

if (strcmp("xxxyz", "xxx") < 0)
{
puts("xxxyz is less than xxx");
}
else
{
puts("xxxyz is greater than xxx");
}

if (strcmp("xxxyz", "xxxyz") == 0)
{
puts("xxxyz is equal to xxxyz");
}
}

prints to standard output:
xxx is less than xxxyz
xxxyz is greater than xxx
xxxyz is equal to xxxyz

A-102 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

A.4.100 strcoll—Compare two strings based on current locale
#include <string.h>
int strcoll(const char* s1, const char* s2);

Thestrcoll function compares the string pointed to bys1to the string pointed to bys2,
both strings are interpreted using theLC_COLLATEcategory of the current locale. If string
s1is lexicographically greater than, equal to, or less thans2, an integer greater than, equal
to, or less than zero will be returned. The comparison of two strings of unequal length in
which the longer string contains the smaller string yields the result that the longer string
comparesgreater than.

For DSP56KCC, strcoll functions exactly likestrcmp .

Refer to the following sections for more information:

• Section A.4.116, “strxfrm—Transform a string into locale-independent form,” on
page A-120

• Section A.4.99, “strcmp—Compare two strings,” on page A-100

A.4.101 strcpy—Copy one string into another
#include <string.h>
int strcpy(char* s1, const char* s2);

Thestrcpy function copies the characters of strings2, including the terminating
character, into the string pointed to bys1. If the strings overlap, the behavior is undefined.
The value ofs1 is returned.

When the header filestring.h is included, the default case will bein-line [see
section A.3, “Forcing Library Routines Out-of-line.”].

Refer to the following sections for more information:

• Section A.4.69, “memcpy—Copy from one area to another,” on page A-72

• Section A.4.71, “memset—Initialize memory area,” on page A-74

• Section A.4.107, “strncpy—Copy a portion of one string into another,” on page
A-109

Motorola Programming Support A-103

Example A-96. strcpy

#include <stdio.h>
#include <string.h>

void main()
{
char string[80];
char* sptr;

strcpy(string, "-- no bald feet for george jetson --");
puts(sptr);
}

prints to standard output:
-- no bald feet for george jetson --

A-104 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

A.4.102 strcspn—Compute length of prefix of one string consisting
entirely of characters not from another

#include <string.h>
int strcspn(const char* s1, const char* s2);

Thestrcspn function computes and returns the length of the prefix of the string pointed
to by s1 that consists entirely of characters not found in the string pointed to bys2.

Refer to the following sections for more information:

• Section A.4.67, “memchr—Find a character in a memory area,” on page A-70

• Section A.4.98, “strchr—Find first occurrence of a character in a string,” on page
A-100

• Section A.4.108, “strpbrk—Find first occurrence of a character from one string in
another,” on page A-110

• Section A.4.109, “strrchr—Find last occurrence of a character from one string in
another,” on page A-111

Example A-97. strcspn

#include <stdio.h>
#include <string.h>

void main()
{
int i;

i = strcspn("azbyfghjki", "fkjeughtrg");
printf("-- prefix length == %d --\n", i);
}

prints to standard output:
-- prefix length == 4 --

Motorola Programming Support A-105

A.4.103 strerror—Map error code into an error message string
#include <string.h>
char* strerror(int errnum);

Thestrerror function mapserrnum to an error message string. A pointer to the string
is returned. The string returnedshould not be modifiedby the programmer.

Refer to the following sections for more information:

• Section A.4.73, “perror—Print error message,” on page A-76

Example A-98. strerror

#include <stdio.h>
#include <string.h>

void main()
{
int i = 0;
char* s;

while ((s = strerror(i ++)) != NULL)
{
printf("\tmessage %d:\t%s\n", i, s);
}
}

prints to standard output:
message 1:domain error
message 2:range error
message 3:out of heap memory
message 4:bad format for conversion string

A-106 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

A.4.104 strlen—Determine length of a string
#include <string.h>
size_t strlen(const char* s);

Thestrlen function computes and returns the number of charactersproceedingthe
terminating character.

Example A-99. strlen

#include <stdio.h>
#include <string.h>

void main()
{
char* s = "is your name michael diamond?";

printf("strlen(\"%s\") == %d\n", s, strlen(s));
}

prints to standard output:
strlen("is your name michael diamond?") == 29

A.4.105 strncat—Concatenate a portion of one string to another
#include <string.h>
char* strncat(char* s1, const char* s2, size_t n);

Thestrncat function appends, at most, n characters from the string pointed bys2to the
end of the string pointed to bys1. The first character of the second string is written over
the first strings terminating character and a new terminating character is appended. The
strncat function returns a pointer tos1. If s1does not haven words allocated past the
terminating character, the behavior is undefined.

Refer to the following sections for more information:

• Section A.4.97, “strcat—Concatenate two strings,” on page A-99

Motorola Programming Support A-107

Example A-100. strncat

#include <stdio.h>
#include <string.h>

void main()
{
char bstr[80] = "string 1";
char sstr[20] = " string 2";

printf("paste 5 chars of (%s) on to (%s)\n", sstr, bstr);
(void) strncat(bstr, sstr, 5);
puts(bigstr);
}

prints to standard output:
paste 5 chars of (string 2) on to (string 1)
string 1 stri

A-108 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

A.4.106 strncmp—Compare a portions of two strings
#include <string.h>
int strncmp(const char* s1, const char* s2, size_t n);

Thestrncmp function comparesn characters of the string pointed to bys2with the string
pointed to bys1. If string s1 is lexicographically greater than, equal to, or less thans2; an
integer respectively greater than, equal to, or less than zero will be returned.This is similar
to strcmp .

Refer to the following sections for more information:

• Section A.4.99, “strcmp—Compare two strings,” on page A-100

Example A-101. strncmp

#include <stdio.h>
#include <string.h>

void main()
{
char bigstr[80] = "string 1";
char smallstr[20] = "string 2";

if (strncmp(bigstr, smallstr, 5) == 0)
{
printf("-- strncmp ok --\n");
}
else
{
printf("?? strncmp error ??\n");
}
}

prints to standard output:
-- strncmp ok --

Motorola Programming Support A-109

A.4.107 strncpy—Copy a portion of one string into another
#include <string.h>
char* strncpy(char* s1, const char* s2, size_t n);

Thestrncpy function copies exactlyn characters from a string pointed to bys2 into a
string pointed to bys1. If strlen (s2) is less thann, the strings1 is null padded. If
strlen (s2) is greater than or equal ton, no null termination character is copied tos1.
Thes1pointer is returned.

Note: The behavior of non null terminated strings is undefined.

Refer to the following sections for more information:

• Section A.4.69, “memcpy—Copy from one area to another,” on page A-72

• Section A.4.101, “strcpy—Copy one string into another,” on page A-102

Example A-102. strncpy

#include <stdio.h>
#include <string.h>

void main()
{
char bigstr[80] = "string 1";
char smallstr[20] = "spanky 2";

(void) strncpy(bigstr, smallstr, 6);
puts(bigstr);
}

prints to standard output:
spanky 1

A-110 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

A.4.108 strpbrk—Find first occurrence of a character from one string
in another

#include <string.h>
char* strpbrk(char* s1, const char* s2);

Thestrpbrk function finds the first occurrence ofanycharacter in the string pointed to
by s2 in the string pointed to bys1. If a character is found, a pointer to the character is
returned. If a character is not found, a null pointer is returned.

Refer to the following sections for more information:

• Section A.4.67, “memchr—Find a character in a memory area,” on page A-70

• Section A.4.98, “strchr—Find first occurrence of a character in a string,” on page
A-100

• Section A.4.102, “strcspn—Compute length of prefix of one string consisting
entirely of characters not from another,” on page A-104

• Section A.4.109, “strrchr—Find last occurrence of a character from one string in
another,” on page A-111

• strrchr —Find the last occurrence of a character in a string.

• Appendix A.4.110, “strspn—Compute length of prefix of one string consisting
entirely of characters from another,” on page A-112

Example A-103. strbrk

#include <stdio.h>
#include <string.h>

void main()
{
char* string = "abcde random characters fghijkl";
char* fndstr = "klmnopqr";
char* found;

if ((found = strpbrk(string, fndstr)) != NULL)
{
puts(found);
}

else
{
puts("can’t find a character");
}
}

prints to standard output:
random characters fghijkl

Motorola Programming Support A-111

A.4.109 strrchr—Find last occurrence of a character from one string
in another

#include <string.h>
char* strpbrk(char* s1, const char* s2);

Thestrrchr function locates the last occurrence ofc (converted to a char) in the string
pointed to bys. The terminating null character is considered part of the string.strrchr

returns a pointer to the located character, or a null pointer if the character is not found in
the string.

Refer to the following sections for more information:

• Section A.4.67, “memchr—Find a character in a memory area,” on page A-70

• Section A.4.98, “strchr—Find first occurrence of a character in a string,” on page
A-100

• Section A.4.102, “strcspn—Compute length of prefix of one string consisting
entirely of characters not from another,” on page A-104

• Section A.4.108, “strpbrk—Find first occurrence of a character from one string in
another,” on page A-110

• Appendix A.4.110, “strspn—Compute length of prefix of one string consisting
entirely of characters from another,” on page A-112

Example A-104. strrchr

#include <stdio.h>
#include <string.h>

void main()
{
char* string = "fred flintstone driving on bald feet";
char* found;

found = strrchr(string, ’f’);
puts(found);
}

prints to standard output:
feet

A-112 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

A.4.110 strspn—Compute length of prefix of one string consisting
entirely of characters from another

#include <string.h>
int strspn(const char* s1, const char* s2);

Thestrcspn function computes and returns the length of the prefix of the string pointed
to by s1 that consists entirely of characters found in the string pointed to bys2.

Refer to the following sections for more information:

• Section A.4.67, “memchr—Find a character in a memory area,” on page A-70

• Section A.4.98, “strchr—Find first occurrence of a character in a string,” on page
A-100

• Section A.4.108, “strpbrk—Find first occurrence of a character from one string in
another,” on page A-110

• Section A.4.109, “strrchr—Find last occurrence of a character from one string in
another,” on page A-111

Example A-105. strspn

#include "stdio.h"
#include "string.h"
void main()
{

int i;
i= strspn("fghjkiazby","fkjeughtrg");
printf("%d\n",i);

}

/*result will be 5 */

A.4.111 strstr—Find the first occurrence of one string in another
#include <string.h>
char* strstr(const char* s1, const char* s2);

Thestrstr function locates the first occurrence of the string pointed to bys2(excluding
the termination character) in the string pointed to bys1. If the strings2 is found, a pointer
to it is returned. If the strings2is not found, a null pointer is returned. Ifs2has a length of
zero, a pointer tos1 is returned.

Motorola Programming Support A-113

Example A-106. strstr

#include <stdio.h>
#include <string.h>

void main()
{
char* string = "abcdef random characters ghijkl";
char* fndstr = "random";
char* found;

if ((found = strstr(string, fndstr)) != NULL)
{
puts(found);
}
else
{
puts("can’t find the string");
}
}

prints to standard output:
random characters ghijkl

A-114 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

A.4.112 strtod—String to double
#include <stdlib.h>
double strtod(const char* nptr, char** endptr);

Thestrtod function converts and returns the string pointed to bynptr to floating point
number. Firststrtod decomposesnptr into three sections;

1. an initial, possibly empty, sequence of white space characters,

2. a subject in the form of a floating point constant; and

3. a final string of one or more unrecognized characters, including the terminating
null character of the input string.

If the first unrecognized character isnot NULL, a pointer to that character is stored into the
object thatendptr points to. If the string is empty or the subject contains no floating
point constant description, zero is returned.

Refer to the following sections for more information:

• Section A.4.8, “atof—String to floating point,” on page A-16

• Section A.4.9, “atoi—String to integer,” on page A-17

• Section A.4.10, “atol—String to long integer,” on page A-18

• Section A.4.114, “strtol—String to long integer,” on page A-116

• Section A.4.115, “strtoul—String to unsigned long integer,” on page A-118

Example A-107. strtod

#include <stdio.h>
#include <stdlib.h>

void main()
{
char* string = "7.09strtod stopped";
char* stopped;
double result;

result = strtod(string, &stopped);
printf("string == (%s)\n", string);
printf("result == %f\n", result);
printf("stop string == (%s)\n", stopped);
}

prints to standard output:
string == (7.09strtod stopped)
result == 7.089998
stop string == (strtod stopped)

Motorola Programming Support A-115

A.4.113 strtok—Break string into tokens
#include <stdlib.h>
char* strtok(char* s1, const char* s2);

Thestrtok function breaks the string pointed to bys1into tokens and each token is
delimited by characters from the string pointed to bys2. The first call in the sequence has
s1as its first argument and is followed by calls with a null pointer as the first argument.
The separator string,s2,may be different from call to call. If a token is not found, a null
pointer is returned. If a token is found, a null terminated token is returned.

Example A-108. strtok

#include <stdio.h>
#include <string.h>

void main()
{
char* str1 = "$% t̂his#is string\tnumber!one.";
char str2[] = "?a???b,,,#c";
char* token;

while ((token = strtok(str1, "$%^#\t! ")) != NULL)
{
printf("%s ", token);
str1 = NULL;
}

printf("\n");

token = strtok(str2, "?"); printf("%s ", token);
token = strtok(NULL, ","); printf("%s ", token);
token = strtok(NULL, "#,"); printf("%s\n", token);

if ((token = strtok(NULL, "?")) != NULL)
{
printf("error: strtok busted\n");
}
}

prints to standard output:
this is string number one.
a ??b c

A-116 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

A.4.114 strtol—String to long integer
#include <stdlib.h>
long int strtol(const char* nptr, char** endptr, int base);

Thestrtol function converts and returns the string pointed to bynptr to a long integer.
First strtol decomposesnptr into three sections;
1.an initial, possibly empty, sequence of white space characters,
2.a subject in the form of an integer constant; and
3.a final string of one or more unrecognized characters, including the terminating null
character of the input string.

If the first unrecognized character isnotNULL, a pointer to that character is stored in to the
object thatendptr points to. If the string is empty or the subject contains no
floating-point constant description, zero is returned.

If baseis between 2 and 36, the expected form of the long integer subject is a sequence of
letters and digits with the radix specified by base. The lettersa (or A) throughz (or Z) are
ascribed values 10 to 35; only letters whose value is less thanbaseare valid. Ifbaseis 16,
0x or 0X may optionally proceed the long integer subject. Ifbaseis zero, the long integer
subject determines its own base.

Leading 0x, or 0Xbase == 16

Leading 0base == 8

otherwisebase == 10

If the value of the return value is too large to be expressed by a long int,errno is set to
ERANGEandLONG_MAXis returned.

Refer to the following sections for more information:

• Section A.4.8, “atof—String to floating point,” on page A-16

• Section A.4.9, “atoi—String to integer,” on page A-17

• Section A.4.10, “atol—String to long integer,” on page A-18

• Section A.4.112, “strtod—String to double,” on page A-114

• Section A.4.115, “strtoul—String to unsigned long integer,” on page A-118

Motorola Programming Support A-117

Example A-109. strtol

#include <stdio.h>
#include <string.h>

void main()
{
char* hexstr = "0xabcdef709hexstr stopped";
char* decstr = "709709709decstr stopped";
char* octstr = "012341234octstr stopped";
char* stopped;
long result;

printf("result\t\tstop string\n");
result = strtol(hexstr, &stopped, 16);
printf("%lx\t\t%s", result, stopped);

result = strtol(decstr, &stopped, 10);
printf("%ld\t\t%s", result, stopped);

result = strtol(octstr, &stopped, 8);
printf("%lo\t\t%s", result, stopped);
}

prints to standard output:
resultstop string
abcdef709hexstr stopped
709709709decstr stopped
12341234octstr stopped

A-118 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

A.4.115 strtoul—String to unsigned long integer
#include <stdlib.h>
unsigned long int strtoul(const char* nptr, char** endptr, int base);

Thestrtoul function converts and returns the string pointed to bynptr to a long
integer. Firststrtoul decomposesnptr into three sections; an initial, possibly empty,
sequence of white space characters, a subject in the form of an integer constant; and a final
string of one or more unrecognized characters, including the terminating null character of
the input string.

If the first unrecognized character isnotNULL, a pointer to that character is stored in to the
object thatendptr points to. If the string is empty or the subject contains no floating
point constant description, zero is returned.

If baseis between 2 and 36, the expected form of the long integer subject is a sequence of
letters and digits with the radix specified by base. The lettersa (or A) throughz (or Z) are
ascribed values 10 to 35; only letters whose value is less thanbaseare valid. Ifbaseis 16,
0x or 0X may optionally proceed the long integer subject. Ifbaseis zero, the long integer
subject determines its own base.

Leading 0x, or 0Xbase == 16

Leading 0base == 8

otherwisebase == 10

If the value of the return value is too large to be expressed by a long int,errno is set to
ERANGE, andULONG_MAXis returned.

Refer to the following sections for more information:

• Section A.4.8, “atof—String to floating point,” on page A-16

• Section A.4.9, “atoi—String to integer,” on page A-17

• Section A.4.10, “atol—String to long integer,” on page A-18

• Section A.4.114, “strtol—String to long integer,” on page A-116

• Section A.4.112, “strtod—String to double,” on page A-114

Motorola Programming Support A-119

Example A-110. strtoul

#include <stdio.h>
#include <string.h>

void main()
{
char* hexstr = "0xabcdef709hexstr stopped";
char* decstr = "709709709decstr stopped";
char* octstr = "012341234octstr stopped";
char* stopped;
unsigned long result;

printf("result\t\tstop string\n");
result = strtol(hexstr, &stopped, 16);
printf("%lu\t\t%s", result, stopped);

result = strtol(decstr, &stopped, 10);
printf("%lu\t\t%s", result, stopped);

result = strtol(octstr, &stopped, 8);
printf("%lu\t\t%s", result, stopped);
}

prints to standard output:
resultstop string
2883516169hexstr stopped
709709709decstr stopped
12341234octstr stopped

A-120 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

A.4.116 strxfrm—Transform a string into locale-independent form
#include <string.h>
size_t strxfrm(char* s1, const char* s2, size_t n);

Thestrxfrm function transforms the string pointed to bys2and places the resulting
string in the array pointed to bys1. The transformation is such that if thestrcmp function
is applied to the two transformed strings, it returns a value greater than, equal to, or less
than zero, corresponding to the result of thestrcoll function applied to the same two
original strings. No more thann characters are placed intos1, including the terminating
null character. Ifs1ands2overlap, the behavior is undefined.

Thestrxfrm function returns the length of the transformed string excluding the
terminating null character. If the value returned isn or more, the contents ofs1are
indeterminate.

Refer to the following sections for more information:

• Section A.4.100, “strcoll—Compare two strings based on current locale,” on page
A-102

• Section A.4.106, “strncmp—Compare a portions of two strings,” on page A-108

Note: DSP56KCC only supports the standard locale, so no transformation is done.

A.4.117 tan—Tangent
#include <math.h>
double tan(double x);

Thetan function computes and returns the tangent ofx, wherex is in radians.

Refer to the following sections for more information:

• Section A.4.5, “atan—Arc tangent,” on page A-13

• Section A.4.6, “atan2—Arc tangent of angle defined by point y/x,” on page A-14

Example A-111. tan

#include <stdio.h>
#include <math.h>

void main()
{
printf("tan(45) == %f\n", tan(45));
}

prints to standard output:
tan(45) == 1.619775

Motorola Programming Support A-121

A.4.118 tanh—Hyperbolic tangent
#include <math.h>
double tanh(double x);

The tanh function computes and returns the hyperbolic tanget ofx,

tanh(x) == sinh (x) / cosh (x)

If the value ofx is too large,errno is set toERANGEand the valueHUGE_VALis returned
with the sign ofx.

Refer to the following sections for more information:

• Section A.4.16, “cosh—Hyperbolic cosine,” on page A-23

• Section A.4.92, “sinh—Hyperbolic Sine,” on page A-96

Example A-112. tanh

#include <stdio.h>
#include <math.h>

void main()
{
printf("tanh(45) == %f\n", tanh(45));
}

prints to standard output:
tanh(45) == 1.000000

A.4.119 tmpfile—Create a temporary binary file
#include <stdio.h>
FILE *tmpfile (void);

The function tmpfile will create a temporary file on the disk. The file will be automatically
removed when the program terminates. The file will be opened with the mode “wb+”. If
tmpfile fails, it returns aNULLpointer.

Refer to the following sections for more information:

• Section A.4.120, “tmpnam—Create a temporary file name,” on page A-122

A-122 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

A.4.120 tmpnam—Create a temporary file name
#include <stdio.h>
char *tmpnam (char *s);

The functiontmpnam will create a string that could be used as a unique temporary file
name. This function may be called as many asTMP_MAXtimes. Each time it will return a
different string. If the arguments is NULL, thentmpnam will return an internal static
buffer that may be clobbered by subsequent calls. If s is non-NULL, then it must point to a
writable buffer of at leastL_tmpnam characters.

Refer to the following sections for more information:

• Section A.4.119, “tmpfile—Create a temporary binary file,” on page A-121

Example A-113. tmpnam

#include <stdio.h>

void main ()
{
char buffer[L_tmpnam];

(void) fopen (tmpnam (buffer), “w+”);
}

will create a temporarytextfile on the disk. Note that unlike whentmpfile is called, one
must remove any files created usingfopen andtmpnam.

A.4.121 tolower—Convert uppercase character to lowercase
#include <ctype.h>
int tolower(int c);

Thetolower function converts uppercase to lowercase. If c is an uppercase letter, return
the corresponding lowercase letter; otherwise returnc.

When the header filectype.h is included, the default case will bein-line [see
section A.3, “Forcing Library Routines Out-of-line.”].

Motorola Programming Support A-123

Example A-114. tolower

#include <stdio.h>
#include <ctype.h>

void main()
{
printf("tolower(’A’) == %c\n", tolower(’A’));
printf("tolower(’z’) == %c\n", tolower(’z’));
printf("tolower(’#’) == %c\n", tolower(’#’));
}

prints to standard output:
tolower(’A’) == a
tolower(’z’) == z
tolower(’#’) == #

A.4.122 toupper—Convert lowercase character to uppercase
#include <ctype.h>
int toupper(int c);

The toupper function converts lowercase to uppercase. If c is a lowercase letter, return
the corresponding uppercase letter; otherwise returnc.

When the header filectype.h is included, the default case will bein-line [see section
A.3, Forcing Library Routines Out-of-line].

Example A-115. toupper

#include <stdio.h>
#include <ctype.h>

void main()
{
printf("toupper(’A’) == %c\n", toupper(’A’));
printf("toupper(’z’) == %c\n", toupper(’z’));
printf("toupper(’#’) == %c\n", toupper(’#’));
}

prints to standard output:
toupper(’A’) == A
toupper(’z’) == Z
toupper(’#’) == #

A-124 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

A.4.123 ungetc—Push a character back onto an input stream
#include <stdio.h>
int ungetc (int c, FILE *stream);

The functionungetc converts the argumentc to anunsigned char , and pushes it back
onto the specified input stream. Pushed characters will be read back in reverse order by
any functions reading from said stream. If a call is made to a file positioning function,
such asfseek , all pushed characters will be lost. Only one call toungetc before a read
from the stream is allowed.EOFcannot be pushed.ungetc returnsEOFupon failure,
while the converted value is returned upon success.

Refer to the following sections for more information:

• Section A.4.119, “tmpfile—Create a temporary binary file,” on page A-121

Example A-116. ungetc

#include <stdio.h>

void main ()
{
char peek = getchar ();
putchar (peek);
ungetc (peek, stdin);
putchar (getchar ());
}

will print the first character from standard input twice on standard
output.

A.4.124 vfprintf—Write formatted output to a stream using a va_list
#include <stdio.h>
int vfprintf (FILE *stream, const char *format, va_list arg);

The functionvfprintf is exactly the same as the functionfprintf except that an
existingva_list is used in place of a series of arguments. The macrova_start must
have been invoked on the argument arg before the call tovfprintf is made.vfprintf

returns the number of characters printed. On error,vfprintf returns a negative value.

Refer to the following sections for more information:

• Section A.4.31, “fprintf—Write formatted output to a stream,” on page A-36

Motorola Programming Support A-125

Example A-117. vfprintf

#include <stdio.h>

int printf (const char *format, ...)
{
va_list ap;
int result;

va_start (ap, format);
result = vfprintf (stdout, format, ap);
va_end (ap);
return result;
}

is essentially the library function printf .

A.4.125 vprintf—Write formatted output to standard output using a
va_list

#include <stdio.h>
int vprintf (const char *format, va_list arg);

The functionvprintf is exactly the same as the functionprintf except that an existing
va_list is used in place of a series of arguments. The macrova_start must have been
invoked on the argument arg before the call tovprintf is made.vprintf returns the
number of characters printed. On error,vprintf returns a negative value.

Refer to the following sections for more information:

• Section A.4.75, “printf—Print to standard output,” on page A-78

Example A-118. vprintf

#include <stdio.h>

int printf (const char *format, ...)
{
va_list ap;
int result;

va_start (ap, format);
result = vprintf (format, ap);
va_end (ap);
return result;
}

is essentially the library function printf .

A-126 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

A.4.126 vsprintf—Write formatted output to a string using a va_list
#include <stdio.h>
int vsprintf (char *s, const char *format, va_list arg);

The functionvsprintf is exactly the same as the functionprintf except that an
existingva_list is used in place of a series of arguments. The macrova_start must
have been invoked on the argument arg before the call tovsprintf is made.vsprintf

returns the number of characters printed. On error,vsprintf returns a negative value.

Refer to the following sections for more information:

• Section A.4.93, “sprintf—Print to a string,” on page A-96

Example A-119. vsprintf

#include <stdio.h>

int sprintf (char *s, const char *format, ...)
{
va_list ap;
int result;

va_start (ap, format);
result = vsprintf (s, format, ap);
va_end (ap);
return result;
}

is essentially the library function sprintf .

A.4.127 wcstombs—Convert wchar_t array to multibyte string
#include <stdlib.h>
size_t wcstombs(char* s, const wchar_t* pwcs, size_t n);

Thewcstombs function converts a wide character string pointed to bypwcs into the
character string pointed to bys. Each character of the wide character string is converted
into the correspondingmultibytecharacter as if by thewctomb function. Conversion will
stop whenn total characters have been converted or a null character is encountered. Ifs
andpwcs overlap, the behavior is undefined.

If an invalid character is encountered,wcstombs returns (size_t) -1. Otherwise,
wcstombs returns the number of characters converted not including the terminatingNULL

character, if any.

Note: The DSP56000/DSP56001 does not provide byte addressing, thus characters
always require an entire word of memory each. One way to better utilize data
memory (with a run-time cost) is to combine the ANSI data typewchar_t and
the special ANSI multibyte and wide character library routines.

Motorola Programming Support A-127

Example A-120. wcstombs

#include <stdio.h>
#include <stdlib.h>

char array[16];
wchar_t wstr[10] = L"abcdefgh";

void main()
{
char* ptr = (char*) wstr;
int convert;

convert = wcstombs(array, wstr, 10);

printf("packed array:\n");
while (*ptr != 0)
{
printf("%0.6x ", *ptr++);
}
printf("\n\n");

printf("%d chars extracted, unpacked array:\n");
ptr = array;
while (*ptr != 0)
{
printf("%0.6x ", *ptr++);
}
printf("\n");
}

prints to standard output:
packed array:
616263 646566 676800

8 chars extracted, unpacked array:
000061 000062 000063 000064 000065 000066 000067 000068

A-128 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

A.4.128 wctomb—Convert wchar_t character to multibyte character
#include <stdlib.h>
int wctomb(char* s, wchar_t wchar);

Thewctomb function examines and converts the wide characterwchar into a string of
characters pointed to bys. At most,MB_CUR_MAXcharacters will be stored ins.

If s is aNULLpointer,wctomb returns zero. Ifs is notNULL, wctomb returns the number
of characters that comprise the converted multibyte character unless an invalid multibyte
character is detected in which case a -1 will be returned.

Refer to the following sections for more information:

• Section A.4.64, “mblen—Length of a multibyte character,” on page A-64

• Section A.4.65, “mbstowcs—Convert multibyte string to wide character string,” on
page A-66

• Section A.4.66, “mbtowc—Convert a multibyte character to a wide character,” on
page A-68

Note: The DSP56000/DSP56001 does not provide byte addressing, thus characters
always require an entire word of memory each. One way to better utilize data
memory (with a run-time cost) is to combine the ANSI data typewchar_t and
the special ANSI multibyte and wide character library routines.

Motorola Programming Support A-129

Example A-121. wctomb

#include <stdio.h>
#include <stdlib.h>

char mbarray[8];

void main()
{
wchar_t wide = L’abc’;
char* ptr = array;
int convert;

convert = wctomb(array, wide);

printf("packed char looks like:\n");
printf("%0.6x\n\n", wide);

printf("%d extracted chars looks like:\n", convert);
while (*ptr != 0)
{
printf("%0.6x ", *ptr++);
}
printf("\n");
}

prints to standard output:
packed char looks like:
616263

3 extracted chars looks like:
000061 000062 000063

A-130 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

Motorola DSP56000/DSP56001 Instruction Set and Assembler Directive Summary B-1

Appendix B
DSP56000/DSP56001 Instruction Set
and Assembler Directive Summary

B.1 Overview

This appendix is intended to assist the C programmer in understanding the C compiler’s
output. For a more in-depth discussion of assembler and assembly language issues, see the
DSP56000/DSP56001 Digital Signal Processor User’s Manualor the
DSP56000/DSP56001 Assembler User’s Manual.

B.2 Instruction Set

Instructions can be grouped by function into six types:

1. Arithmetic instructions

2. Logical instructions

3. Bit manipulation instructions

4. Loop instructions

5. Move instructions

6. Program control instructions

B.2.1 Arithmetic Instructions

The instructions used for arithmetic operations are as shown in Table B-1:

Table B-1. Arithmetic Operations

Arithmetic
Operations

Description

ABS Absolute value

ADC Add long with carry

ADD Add

B-2 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

B.2.2 Logical Instructions

The instructions used for logical operations are as shown in Table B-2:

ADDL Shift left then add

ADDR Shift right then add

ASL Arithmetic shift accumulator left

ASR Arithmetic shift accumulator right

CLR Clear accumulator

CMP Compare

CMPM Compare magnitude

DIV Divide iteration

MAC Signed multiply—accumulate

MACR Signed multiply—accumulate and round

MPY Signed multiply

MPYR Signed multiply and round

NEG Negate accumulator

NORM Normalize accumulator iteration

RND Round accumulator

SUB Subtract

SUBL Shift left then subtract

SUBR Shift right then subtract

Tcc Transfer conditionally

TFR Transfer data ALU register

TST Test

Table B-2. Logical Operations

Logical Operations Description

AND Logical AND

ANDI AND Immediate with control register

Table B-1. Arithmetic Operations

Arithmetic
Operations

Description

Motorola DSP56000/DSP56001 Instruction Set and Assembler Directive Summary B-3

B.2.3 Bit Manipulation Instructions

The instructions used for bit manipulation are as shown in Table B-3:

B.2.4 Loop Instructions

The instructions used for loop operations are as shown in Table B-4:

EOR Logical exclusive OR

LSL Logical shift accumulator left

LSR Logical shift accumulator right

NOT Logical complement on accumulator

OR Logical inclusive OR

ORI OR immediate with control register

ROL Rotate accumulator left

ROR Rotate accumulator right

Table B-3. Bit Manipulation Instructions

Instruction Description

BCLR Bit test and clear

BSET Bit test and set

BCHG Bit test and change

BTST Bit test on memory

JCLR Jump if bit clear

JSET Jump if bit set

JSCLR Jump to subroutine if bit clear

JSSET Jump to subroutine if bit set

Table B-4. Loop Operation Instructions

Instruction Description

DO Start hardware loop

ENDDO Exit from hardware loop

Table B-2. Logical Operations

Logical Operations Description

B-4 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

B.2.5 Move Instructions

The instructions used for move operations are as shown in Table B-5:

B.2.6 Program Control Instructions

The instructions used for program control are as shown in Table B-6:

Table B-5. Move Operation Instructions

Instruction Description

LUA Load updated address

MOVE Move data

MOVEC Move control register

MOVEM Move program memory

MOVEP Move peripheral data

Table B-6. Program Control Instructions

Instruction Description

Jcc Jump conditionally

JMP Jump

JScc Jump to subroutine conditionally

JSR Jump to subroutine

NOP No operation

REP Repeat next instruction

RESET Reset on-chip peripheral devices

RTI Return from interrupt

RTS Return from subroutine

STOP Stop processing (low power stand-by)

SWI Software interrupt

WAIT Wait for interrupt (low power stand-by)

Motorola DSP56000/DSP56001 Instruction Set and Assembler Directive Summary B-5

B.3 Directive Summary

Directives can be grouped by function into seven types:

1. Assembly control

2. Symbol definition

3. Data definition / storage allocation

4. Listing control and options

5. Object file control

6. Macros and conditional assembly

7. Structured programming

B.3.1 Assembly Control

The directives used for assembly control are as shown in Table B-7:

Table B-7. Assembly Control Directives

Directive Description

COMMENT Comment line(s)

DEFINE Define substitution strings

END End of source program

FAIL Programmer generated error message

INCLUDE Include secondary file

MSG Program generated message

ORG Initialize memory space and location counters

RADIX Change input radix for constants

RDIRECT Remove directive / mnemonic from assembler table

UNDEF Undefine DEFINE symbol

WARN Programmer generated warning message

B-6 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

B.3.2 Symbol Definition

The directives used to control symbol definition are as shown in Table B-8:

B.3.3 Data Definition/Storage Allocation

The directives used to control constant data definition and storage allocation are as shown
in Table B-9:

B.3.4 Listing Control and Options

The directives used to control the output listing are as shown in Table B-10:

Table B-8. Control Symbol Directives

Directive Description

ENDSEC End section

EQU Equate symbol to a value

SET Set symbol to a value

SECTION Start section

XDEF External section symbol definition

XREF External section symbol reference

Table B-9. Storage Allocation Directives

Directive Description

BSC Block storage of a constant

DC Define constant

DS Define storage

DSM Define modulo storage

DSR Define reverse carry storage

Table B-10. Output Listing Directives

Directive Description

LIST List the assembly

LSTCOL Set listing field widths

NOLIST Stop assembly listing

OPT Assembler options

Motorola DSP56000/DSP56001 Instruction Set and Assembler Directive Summary B-7

B.3.5 Object File Control

The directives used to control the object file are as shown in Table B-11:

B.3.6 Macros and Conditional Assembly

The directives used for macros and conditional assembly are:

PAGE Top of page / define page size

PRCTL Send control string to printer

STITLE Initialize program sub—title

TITLE Initialize program title

Table B-11. Object file Directives

Directive Description

COBJ Comment object code

IDENT Object code identification record

SYMOBJ Write symbol information to object file

Table B-12. Conditional Assembly Directives

DUP Duplicate a sequence of source lines

DUPA Duplicate sequence with arguments

DUPC Duplicate sequence with characters

ENDIF End of conditional assembly

ENDM End of macro definition

EXITM Exit macro

IF Conditional assembly directive

MACLIB Macro library

MACRO Macro definition

PMACRO Purge a macro definition

Table B-10. Output Listing Directives

Directive Description

B-8 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

B.3.7 Structured Programming

The directives used for structured programming are as shown in Table B-13:

Table B-13. Programming Directives

Directive Description

.BREAK Exit from structured loop construct

.CONTINUE Continue next iteration of structured loop

.ELSE Perform following statements when .IF false

.ENDF End of .FOR loop

.ENDI End of .IF condition

.ENDL End of hardware loop

.ENDW End of .WHILE loop

.FOR Begin .FOR loop

.IF Begin .IF condition

.LOOP Begin hardware loop

.REPEAT Begin .REPEAT loop

.UNTIL End of .REPEAT loop

.WHILE Begin .WHILE loop

Motorola Utilities C-1

Appendix C
Utilities

C.1 Utility Programs

There are nine utility programs available with the DSP56KCC Rev. g1.11 compiler. They
are:

1. asm56000

2. cldinfo

3. cldlod

4. cofdmp

5. dsplib

6. dsplnk

7. gdb56

8. run56

9. srec

These programs are described in detail in the following pages.

C.1.1 asm56000—Motorola DSP56000/DSP56001 COFF Assembler
asm56000 [-A] [-B [< objfil >]] [-D <symbol > <string >] [-F <argfil >]
[-G][-I <ipath >] [-L [< lstfil >]] [-M <mpath >] [-O <opt >[, < opt > ...]]
[-R <rev > [, < rev >...]] [-V] [-Z] <files...>

asm56000is a program that processes source program statements written in DSP56000
assembly language, translating these source statements into object programs compatible
with other DSP56000 software and hardware products.

files is a list of operating system compatible file names including optional pathnames. If
no extension is supplied for a given file, the assembler will first attempt to open the file
using the file name as supplied. If that is not successful, the assembler appends.asm to the
file name and tries to open the file again. If no path is given for a particular file, the
assembler will look for that file in the current directory. The list of files will be processed

C-2 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

sequentially in the order given and all files will be used to generate the output listing and
object file.

The assembler will redirect the output listing to the standard output if it is not redirected
via the -L command line option described below. Error messages will always appear on
the standard output regardless of any option settings. Note that some options (-B and -L)
allow a hyphen as an optional argument which indicates that the corresponding output
should be sent to the standard output stream. Unpredictable results may occur if, for
example, the object file is explicitly routed to standard output while the listing file is
allowed to default to the same output stream.

C.1.1.1 asm5600 Options

Any of the following command line options may be specified. These can be in any order
but must precede the list of source file names. Option letters may be entered in either
upper or lower case.

Option arguments may immediately follow the option letter or may be separated from the
option letter by blanks or tabs. However, an ambiguity arises if an option takes an optional
argument. Consider the following command line:

asm56000 -bmain io

In this example it is not clear whether the filemainis a source file or is meant to be an
argument to the -B option. If the ambiguity is not resolved, the assembler will assume that
main is a source file and attempt to open it for reading. This may not be what the
programmer intended.

There are several ways to avoid this ambiguity. If main is supposed to be an argument to
the -B option, it can be placed immediately after the option letter, without intervening
white space:

asm56000 -bmain io

If there are other options on the command line besides those that take optional arguments,
the other options can be placed between the ambiguous option and the list of source file
names:

asm56000 -bmain-v io

Motorola Utilities C-3

Alternatively, two successive hyphens may be used to indicate the end of the option list:

asm56000 -b --main io

In this case the assembler interpretsmainas a source file name and uses the default
naming conventions for the -B option. Table C-1 lists the different Command Line
Options that can be used with asm5600:

Table C-1. asm56000 Command Line Options

Option Description

-A indicates that the assembler should operate in absolute mode, creating a load file (.cld) if the
-B option is given. By default, the assembler produces a link file (.cln) which is subsequently
processed by the Motorola DSP linker.

-B[<objfil>] This option specifies that an object file is to be created for assembler output. objfil can be
any legal operating system file name, including an optional pathname. A hyphen may also be
used as an argument to indicate that the object file should be sent to the standard output.

If a path is not specified, the file will be created in the current directory. If no file name is
supplied, the assembler will use the basename (file name without extension) of the first file
name encountered in the source input file list. The resulting output file will have an extension
of .cln unless the -A option is given in which case the file will have a .cld extension. If the -B
option is not given, then the assembler will not generate an object file. The -B option should
be specified only once.

-D<symbol>
<string>

This is equivalent to a source statement of the form:

DEFINE <symbol> <string>

string must be enclosed in quotes if it contains any embedded blanks. Note that if quotes are
used, they must be passed to the assembler intact, e.g. some host command interpreters will

strip quotes from around arguments. The -D<symbol> <string> sequence may
be repeated as often as desired.

-F<argfil> This option indicates that an external file should be read for further command arguments. It is
useful in host environments where the command line length is restricted. argfil must be
present on the command line, but can be any legal operating system file name including an
optional pathname.

The file may contain any legal command line options, including the -F option itself. The
arguments need be separated only by white space (spaces, tabs, or newlines). A semicolon
(;) on a line following white space causes the rest of the line in the file to be treated as a
comment.

-G Send source file line number information to the object file. This option is valid only in
conjunction with -B command line option. The generated line number information can be
used by debuggers to provide source-level debugging.

-I<ipath> When the assembler encounters include files, the current directory (or the directory specified
in the INCLUDE directive) is first searched for the file. If it is not found and the -l option is
supplied, the assembler prefixes the file name (and optional pathname) specified in the
INCLUDE directive with ipath and searches the newly formed directory pathname for the file.
The -I<ipath > sequence may be repeated as many times as desired. The directories will be
searched in the order given on the command line.

C-4 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

C.1.2 cldinfo—Memory size information from Motorola DSP COFF
object file.

cldinfo file

cldinfo is a utility that reads an absolute or relocatable Common Object File Format
(COFF) file and produces a formatted display of the program memory size, data memory
size and the programs starting address.

-L[<lstfil>] This option specifies that a listing file is to be created for the assembler output. lstfil can be
any legal operating system file name including an optional pathname. A hyphen also may be
used as an argument to indicate that the listing file should be sent to the standard output.

If a path is not specified, the file will be created in the current directory. If no file name is
supplied, the assembler will use the basename (file name without extension) of the first file
name encountered in the source input file list. The resulting output file will have an extension
of .lst. If the -L option is not given, then the assembler will route the listing output to the
standard output. The -L option should be specified only once.

-M<mpath> This is equivalent to a source statement of the form:

MACLIB <mpath>

The -M<mpath > sequence may be repeated as many times as desired. The directories will
be searched in the order specified on the command line.

-O<opt>[,<opt>...] opt can be any of the options that are available with the assembler OPT directive. If multiple
options are supplied, they must be separated by commas. The -O<opt > sequence may be
repeated for as many options as desired.

-R<rev>[,<rev>...] Run the assembler without the specified processor revision level enhancements. This is for
backward compatibility so that the assembler will flag new constructions as illegal. rev can be
any of the revision specifiers given below, but must be appropriate for the target processor.

ProcessorRevision
DSP56000C

If multiple revision levels are supplied, they must be separated by commas. The -R<rev>
sequence may be repeated as many times as desired.

-Z This option causes the assembler to strip symbol information from the absolute load file.
Normally symbol information is retained in the object file for symbolic reference purposes.
Note that this option is valid only when the assembler is in absolute mode via the -A
command line option and when an object file is created (-B option).

-V Indicates that the assembler should be verbose during processing, displaying a progress
report as it assembles the input files. The assembler will show the beginning of each pass
and when files are opened and closed. The information is sent to the standard error output
stream.

Table C-1. asm56000 Command Line Options

Option Description

Motorola Utilities C-5

file is an operating system compatible file name. Only a single file name may be
supplied, and it must be explicit; there is no default extension for the input file.

C.1.3 cldlod—Motorola COFF to LOD Format converter
cldlod cldfile > lodfile

cldlod is a utility that converts a binary COFF object file into an ascii LOD file.

cldfile is an operating system compatible file name which contains COFF information.
Only a single file name may be supplied, and it must be explicit; there is no default
extension for the input file.

lodfile is an LOD file.

C.1.4 cofdmp—Motorola DSP COFF File Dump Utility
cofdmp [-cfhlorstv] [-d file] files

cofdmp is a utility that reads an absolute or relocatable COFF file and produces a
formatted display of the object file contents. The entire file or only selected portions may
be processed depending on command line options. The program also can generate either
codes or symbolic references to entities such as symbol type or storage class.

file is an operating system compatible file name. Only a single file name may be
supplied, and it must be explicit; there is no default extension for the input file.

C.1.4.1 cofdmp Options

Any of the following command line options listed in Table C-2, may be given . Option
letters may be entered in either upper or lower case. If no option is specified, the entire
object file is dumped.

Table C-2. cofdmp Command Line Options

Option Description

-c Dump the object file string table. This information may not be available if the object file has been
stripped.

-d Dump to output file.

-f Dump the file header of the object file.

-h Dump the object file section headers.

-l Dump the object file line number information. This information may not be available if the object file has
been stripped.

-o Dump the object file optional header.

C-6 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

C.1.5 dsplib—Motorola DSP COFF Librarian
dsplib [-a | -c | -d | -l | -r | -u | -v | -x] [-f< argfil >] library [files...]

dsplib is a utility that allows separate files to be grouped together into a single file. The
resulting library file can then be used for linking by the Motorola DSP Cross Linker
program or for general-purpose archival storage.

library is an operating system compatible file name (including optional pathname)
indicating the library file to create or access. If no extension is supplied, the librarian will
automatically append.clb to the file name. If no pathname is specified, the librarian will
look for the library in the current directory.

files is a list of operating system compatible file names. For input operations the file
names may also contain an optional pathname; the path is stripped when the file is written
to the library. For output operations only the file name should be used to refer to library
modules.

If no arguments are given on the command line, the librarian enters an interactive mode
where multiple commands may be entered without exiting the program. The syntax for the
interactive mode iscommand library [files...]wherecommandis an action corresponding
to one of the options listed below,library is the library name, andfiles is the optional
(based on the action requested) list of files/modules upon which to operate. For example
the commandadd foo bar.clnadds the modulebar.cln to the libraryfoo. Because
interactive input is taken from the standard input channel of the host environment, it is
possible to create a batch of librarian commands and feed them to the program for
execution via redirection. For more information on interactive commands, invoke the
librarian without any arguments and enterhelp.

C.1.5.1 dsplib Options

Only one of the following command line options listed in Table C-3 may be given for each
invocation of the librarian. Option letters may be entered in either upper or lower case. If
no option is given, the librarian operates as if the-U option were specified.

-r Dump the object file relocation information. This information is available only in relocatable object files.

-s Dump the object file raw data contents.

-t Dump the object file symbol table.

-v Dump the object file symbolically, expanding bit flag, symbol type, and storage class names.

Table C-2. cofdmp Command Line Options

Option Description

Motorola Utilities C-7

C.1.6 dsplnk—Motorola DSP COFF Linker
dsplnk [-B [<lodfil >]] [-F< argfil >] [-I [-L< library >] [-M<mapfil >] [-N]
[-O<mem>[<ctr >][<map>] :< origin >] [-P< lpath >] [-R<ctlfil >] [-Z]
[-U<symbol >] [-V] [-X <opt>[, <opt>...]] [-Z] <files... >

dsplnk is a program that processes relocatable link files produced by the DSP
assemblers, generating an absolute load file which can be

1. loaded directly into the Motorola DSP simulator or

2. converted to Motorola S-record format for PROM burning.

files is a list of operating system compatible file names including optional pathnames. If
no extension is supplied for a given file, the linker will first attempt to open the file using
the file name as supplied. If that is not successful the linker appends.cln to the file name
and tries to open the file again. If no pathname is supplied for a given file, the linker will

Table C-3. cldinfo Command Line Options

Option Description

-a This option adds the modules in the file list to the named library. The library file must exist and the
modules must not already be in the library.

-c Create a new library file and add any specified modules to it. If the library file already exists, an
error is issued.

-d Delete named modules from the library. If the module is not in the library, an error is issued.

-f<argfil> This option indicates that an external file should be read for further command arguments. It is
useful in host environments where the command line length is restricted. argfil must be present
on the command line but can be any legal operating system file name, including an optional
pathname.

argfil is a text file containing module names to be passed to the librarian. The names need be
separated only by white space (spaces, tabs, or newlines). A semicolon (;) on a line following
white space causes the rest of the line to be treated as a comment.

-l List library contents. This option lists the module name as contained in the library header, the
module size (minus library overhead), and the date and time the file was stored into the library.
The listing output is routed to standard output so that it may be redirected to a file if desired.

-r This option replaces the named modules in the given library. The modules must already be
present in the library file.

-u This option updates the specified modules if they exist in the library; otherwise it adds them to the
end of the library file.

-v This option displays the librarian version number and copyright notice.

-x Extract named modules from the library. The resulting files are given the name of the modules as
stored in the library module header. All files are created in the current working directory.

C-8 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

look for that file in the current directory. The list of files will be processed sequentially in
the order given and all files will be used to generate the load file and map listing.

Note that some options (-B and-M) allow a hyphen as an optional argument which
indicates that the corresponding output should be sent to the standard output stream.
Unpredictable results may occur if, for example, the object file is explicitly routed to
standard output while the listing file is allowed to default to the same output stream.

C.1.6.1 dsplnk Options

Any of the following command line options may be specified. These can be in any order
but must precede the list of link file names (except for the-L option). Option letters may
be specified in either upper or lower case.

Option arguments may immediately follow the option letter or may be separated from the
option letter by blanks or tabs. However, an ambiguity arises if an option takes an optional
argument. Consider the following command line:

dsplnk -b main io

In this example it is not clear whether the file main is a link file or is meant to be an
argument to the-B option. If the ambiguity is not resolved, the linker will assume that
main is a link file and attempt to open it for reading. This may not be what the programmer
intended.There are several ways to avoid this ambiguity. If main is supposed to be an
argument to the-B option, it can be placed immediately after the option letter without
intervening white space:

dsplnk -bmain io

If there are other options on the command line besides those that take optional arguments
the other options can be placed between the ambiguous option and the list of link file
names.

dsplnk -b main -v io

Alternatively, two successive hyphens may be used to indicate the end of the option list:

dsplnk -b -- main io

In this case the linker interpretsmainas a link file name and uses the default naming
conventions for the-B option. Table C-4 lists the different Command Line Options that
can be used with dsplnk:

Motorola Utilities C-9

Table C-4. dsplnk Command Line Options

Option Description

-B[<objfil>] This option specifies a name for the object file generated by the linker. objfil can be any
legal operating system file name including an optional pathname. A hyphen may also be
used as an argument to indicate that the object file should be sent to the standard output.

If a pathname is not given, the file will be created in the current directory. If no file name is
supplied or if the -B option is not given, the linker will use the basename (file name without
extension) of the first file name encountered in the link input file list. The resulting output file
will have an extension of .cld. The -B option should be specified only once.

-F<argfil> This option indicates that an external file should be read for further command arguments. It
is useful in host environments where the command line length is restricted. argfil must be
present on the command line but can be any legal operating system file name, including an
optional pathname.

The file may contain any legal command line options including the -F option itself. The
arguments need be separated only by white space (spaces, tabs, or newlines). A
semicolon (;) on a line following white space causes the rest of the line to be treated as a
comment.

-I Under normal operation, the linker produces an absolute load file as output. If the -I option
appears on the command line, the linker combines the input files into a single relocatable
link file suitable for a subsequent linker pass. No absolute addresses are assigned and no
errors are issued for unresolved external references.

-L<library> The linker ordinarily processes a list of link files which each contain a single relocatable
code module. If the -L option is encountered, the linker treats the accompanying pathname
as a library file, and searches the file for any outstanding unresolved references.

If a module is found in the library that resolves an outstanding external reference, the
module is read from the library and included in the load file output. The linker continues to
search a library until all external references are resolved or no more references can be
satisfied within the current library. The linker searches a library only once: when it is
encountered on the command line. Therefore, the position of the -L option on the command
line is significant.

-M[<mapfil> This option specifies that a map file is to be created. mapfil can be any legal operating
system file name including an optional pathname.

If a pathname is not given, the file will be created in the current directory. If no file name is
supplied, the linker will use the basename (file name without extension) of the first file name
encountered in the link input file list. The resulting output file will have an extension of .map.
The linker will not generate a map file if the -M option is not specified. The -M option should
be specified only once.

-N Indicates that the linker should ignore case in symbol names. Ordinarily the linker is
sensitive to upper and lower case letters in symbol names. If the -N option is supplied the
linker maps all symbol characters to lower case.

C-10 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

-O<mem>[<ctr>][<
map>]:<origin>

By default, the linker generates instructions and data for the load file beginning at absolute
location zero for all DSP memory spaces. This option allows the programmer to redefine
the start address for any memory space and associated location counter.mem is one of the
single-character memory space identifiers (X, Y, L, and P). The letter may be upper or
lower case. The optional ctr is a letter indicating the high (H) or low (L) location counters. If
no counter is specified, the default counter is used. map is also optional and signifies the
desired physical mapping for all relocatable code in the given memory space. It may be I for
internal memory, E for external memory, or B for bootstrap memory (valid only in P program
memory space). If map is not supplied, then no explicit mapping is presumed.The origin is
a hexadecimal number signifying the new relocation address for the given memory space.
The -O option may be specified as many times as needed on the command line.

-P<lpath> When the linker encounters a library specification on the command line, the current
directory (or the directory given in the library specification) is first searched for the library
file. If it is not found and the -P option is supplied, the linker prefixes the file name (and
optional pathname) provided in the library specification with lpath and searches the newly
formed directory pathname for the file. The directories will be searched in the order given
on the command line.

-R[<ctlfil>] This option indicates that a memory control file is to be read to determine the absolute
placement of sections in DSP memory. ctlfil can be any legal operating system file name
including an optional pathname.If a pathname is not given, an attempt will be made to open
the file in the current directory. If no file name is supplied, the linker will use the basename
(file name without extension) of the first file name encountered in the link input file list,
appending an extension of .ctl. If the -R option is not specified, then the linker will not use a
memory map file. The -R option should be specified only once.

-U<symbol> Causes symbol to be entered into the unresolved external reference table. This is useful
when the initial or only link file is a library. Since there are no external references when the
linker is invoked, the -U option may be used to force inclusion of a library module that
resolves the undefined reference. The -U option may be specified as often as desired.

-V Indicates that the linker should be verbose during processing, displaying a progress report
as it links the input files. The linker will show the beginning of each pass and when files are
opened and closed. The information is sent to the standard error output stream.

-X<opt>[,<opt>,...,
<opt>]

The -X option directs the linker to perform a little bit of different operation than standard
operation of the linker.The options are described below with their different operations
performed. All options may be preceded by NO to reverse their meaning. The -X<opt>
sequence can be repeated for as many options as desired.

Option Meaning
XC Relative terms from different sections used in an expression cause an error
RSV Reserve special target processor memory areas (e.g. DSP96000 DMA)
AEC Check form of address expressions
RO Allow region overlap
ESO Do not allocate memory below ordered sections
ASC Enable absolute section bounds checking

-Z The linker strips source file line number and symbol information from the input file. Symbol
information normally is retained for debugging purposes. This options has no effect if
incremental linking is being done (see the -l option).

Table C-4. dsplnk Command Line Options

Option Description

Motorola Utilities C-11

C.1.7 gdb56—GNU Source-level Debugger for DSP56000/DSP56001
gdb56 [-s SYMFILE] [-e EXECFILE] [-se FILE] [-c COREFILE] [-x FILE]
[-d directory] [-nx] [-q] [-batch] [-fullname] [-help] [-tty TTY]
[-cd DIR] <name> <core>

gdb56 is a source-level symbolic debugger for C programs created by Richard Stallman
for the GNU Project and distributed by the Free Software Foundation.gdb56has
something of the flavor of the UNIX source-level debuggerdbx but has more features and
power.

gdb56 is invoked with the shell commandgdb56. Once started, it reads commands from
the terminal until given the quit command.nameis the name of the executable program,
andcore, if specified, is the name of the DSP56000/DSP56001state fileto be examined or
have execution resumed.

gdb56has been modified to run with both software and hardware DSP56000/DSP56001
execution devices.

C.1.7.1 gdb56 Options

The following command-line options listed in Table C-5 can be used to more precisely
specify the files to be debugged. All the options and command line arguments given are
processed in sequential order. The order makes a difference when the-x command is used.

Table C-5. gdb56 Command Line Options

Option Description

-s SYMFILE Read symbol table from file SYMFILE.

-e EXECFILE Use EXECFILE as the executable file to execute when appropriate and for examining pure data
in conjunction with a core dump.

-se FILE Read symbol table from FILE and use it as the executable file.

-c COREFILE Analyze the core dump COREFILE.

-x file Execute GDB commands from file.

-d directory Add directory to the path to search for source files.

-batch Run in batch mode. Exit with code 1 after processing all the command files specified with -x
(and .gdbinit, if not inhibited). Exit also if, due to an error, gdb56 would otherwise attempt to read
a command from the terminal.

-fullname This option is used when Emacs runs GDB as a subprocess. It tells GDB to produce the full file
name and line number each time a stack frame is displayed (which includes each time the
program stops).

-help Print command-line argument summary.

-tty TTY Use TTY for input/output by the program being debugged.

C-12 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

SEE ALSO

Appendix E — GNU Debugger (GDB)

C.1.8 run56—Motorola DSP56000/DSP56001 Simulator Based
Execution Device.

run56 [-b BCR_VALUE] [-s STATE_FILE] [-tx] [file]

run56 is a COFF object file execution utility that provides operating system style hooks
to supporthostedANSI run-time library routines such asprintf() .

file is an operating system compatible file name. Only a single file name may be supplied
and it must be explicit; there is no default extension for the input file.

C.1.8.1 run56 Options

Table C-6 lists the different Command Line Options that can be used with run56:

-cd DIR Change current directory to DIR.

The following additional command-line options can be used to affect certain aspects of the behavior of gdb56 :

-nx Don’t execute commands from the init files .gdbinit. Normally, the commands in these files are
executed after all the command options and arguments have been processed.

-q Do not print the version number on start-up.

Table C-6. run56 Command Line Options

Option Description

-b BCR_VALUE Use BCR_VALUE to set the DSP56000/DSP56001 bus control register. Default bcr value is 0.

-s STATE_FILE Resume the execution of the DSP56000/DSP56001 state file STATE_FILE.

-t Update global C variable __time at each clock tick. Used to benchmark code.

-x Indicates the input file was generated from the x memory model of C compiler. The C compiler
may use x, y or l memory model for the compilation (refer to the option -m of the C compiler), and
this option directs the run56 program to use the X memory space for data buffer. Without this
option, y memory model or L memory model is assumed.

Table C-5. gdb56 Command Line Options

Option Description

Motorola Utilities C-13

C.1.9 srec—Motorola DSP S-Record Conversion Utility
srec [-b | -w] [-m| -s] [-l] [-r] <files ...>

srec converts Motorola DSP.cld and.lod format files into Motorola S-record files. The
S-record format was devised for the purpose of encoding programs or data files in a
printable form for transportation between computer systems. Motorola S-record format is
recognized by many PROM programming systems.

files is a list of operating system compatible file names. If no pathname is specified for a
given file,srecwill look for that file in the current directory. If the special character ‘-’ is
used as a file namesrecwill read from the standard input stream. The list of files will be
processed sequentially in the order given.

C.1.9.1 srec Options

Only one of the following command line options listed in Table C-7 may be given for each
invocation of the librarian. Option letters may be entered in either upper or lower case. If
no option is given, the librarian operates as if the-U option were specified.

Table C-7. srec Command Line Options

Option Description

-b Use byte addressing when transferring load addresses to S-record addresses. This means
that load file DATA record start addresses are multiplied by the number of bytes per target
DSP word and subsequent S1/S3 record addresses are computed based on the data byte
count. The -b and -w options are mutually exclusive.

-l Use double-word addressing when transferring load addresses from L space to S-record
addresses. This means that load file DATA records for L space data are moved unchanged
and subsequent S1/S3 record addresses are computed based on the data word count divided
by 2. This option should always be used when the source load file contains DATA records in L
memory space.

-m Split each DSP word into bytes and store the bytes in parallel S-records. The -m and -s options
are mutually exclusive.

-r Write bytes high to low, rather than low to high. This option has no effect when used with the
-m option.

-s Write data to a single file, putting memory space information into the address field of the S0
header record. The -m and -s options are mutually exclusive.

-w Use word addressing when transferring load addresses to S-record addresses. This means
that load file DATA record start addresses are moved unchanged and subsequent S1/S3
record addresses are computed based on the data word count.

C-14 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

Motorola GNU Debugger (GDB) D-1

Appendix D
GNU Debugger (GDB)

D.1 Introduction

Appendix E contains the GNU Debugger Manual. This preface to the GDB manual
describes the differences between the standard gdb source level debugger and the gdb56
debugger that uses the Motorola DSP56000 family simulator.

A short description of the way the simulator is embedded ingdb56 will help explain some
of the differences. The DSP56000 device is simulated by the same non-display version of
the simulator program that is supplied with the DSP56000 Development Software. The
simulator is linked with the gdb program. When a program is executed on the simulated
DSP56000, it is done via direct function calls to the simulator library functions rather than
via ptrace calls to an inferior process as in other versions of gdb.

D.1.1 Commands Not Implemented
1. The attach and detach commands are not implemented because the simulator

program is linked directly to the gdb56 program. As a result, there is no ability to
attach or release a separately running simulation.

2. The core-file command is not implemented at this time.

All other commands work as documented in theGDB Manual for the gnu Source-Level
Debugger, Third Edition, October 1989. Some enhancements, listed below, were
necessary to accommodate operation using the DSP56000.

D.1.2 DSP56000 Family Differences / Specific Requirements
1. Since the DSP56000 has three memory spaces, it will sometimes be necessary to

use one of the prefixes “p:”, “x:”, or “y:” in front of an address in order to
examine or modify the specific memory space. The debugger symbol information
already has the proper memory space designator accompanying each symbol
address so symbolic namesdo notrequire a memory space prefix; however,

D-2 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

Introduction

addresses entered as numeric constantsrequirethe prefix for x or y memory.P
memory is the default.

2. The gdb56 debugger operates with COFF format “.cld” files generated by the
DSP56000 COFF Assembler and Linker programs. The gdb56 subdirectory
“m56kinc” contains header files which define the COFF structures used by gdb56
as well as other device-specific header files.

3. The gdb56 evaluator and display routines have been enhanced to handle the 48 bit
long values and special format floating-point values used by the DSP56000.

4. The simulation is able to halt at breakpoints without actually breaking the pipeline
activity of the device and without actually inserting breakpoint code into the device
memory. As a result, the simulator can maintain an accurate record of the device
execution time regardless of the number of inserted breakpoints. The cycle count is
maintained in the variable $cyc.

5. The normal gdb program uses.gdbinit as the default initialization file at start-up
whereasgdb56 uses.gdbinit56.

GDB Manual
The GNU Source-Level Debugger

Third Edition, GDB version 3.4
October 1989

Richard M. Stallman
Copyright� 1988, 1989 Free Software Foundation, Inc.

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the
conditions for verbatim copying, provided also that the section entitled “GNU General
Public License” is included exactly as in the original, and provided that the entire resulting
derived work is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another
language, under the above conditions for modified versions, except that the section
entitled “GNU General Public License” may be included in a translation approved by the
author instead of in the original English.

Introduction

Motorola GNU Debugger (GDB) D-3

D.1.3 Summary of GDB

The purpose of a debugger such as GDB is to allow you to execute another program while
examining what is going on inside it. We call the other program “your program” or “the
program being debugged”.

GDB can do four kinds of things (plus other things in support of these):

1. Start the program, specifying anything that might affect its behavior.

2. Make the program stop on specified conditions.

3. Examine what has happened, when the program has stopped, so that you can see
bugs happen.

4. Change things in the program, so you can correct the effects of one bug and go on
to learn about another without having to re-compile first.

GDB can be used to debug programs written in C and C++. Pascal support is being
implemented, and Fortran support will be added when a GNU Fortran compiler is written.

D.1.4 GNU General Public License

Version 1, February 1989

Copyright�1989 Free Software Foundation, Inc.
675 Mass Ave., Cambridge, MA 02139, USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

D.1.5 Preamble

The license agreements of most software companies try to keep users at the mercy of those
companies. By contrast, our General Public License is intended to guarantee your freedom
to share and change free software---to make sure the software is free for all its users. The
General Public License applies to the Free Software Foundation’s software and to any
other program whose authors commit to using it. You can use it for your programs, too.

When we speak of free software, we are referring to freedom, not price. Specifically, the
General Public License is designed to make sure that you have the freedom to give away
or sell copies of free software, that you receive source code or can get it if you want it, that
you can change the software or use pieces of it in new free programs; and that you know
you can do these things.

D-4 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

Introduction

To protect your rights, we need to make restrictions that forbid anyone to deny you these
rights or to ask you to surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of a such a program, whether gratis or for a fee, you
must give the recipients all the rights that you have. You must make sure that they, too,
receive or can get the source code. And you must tell them their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone
understands that there is no warranty for this free software. If the software is modified by
someone else and passed on, we want its recipients to know that what they have is not the
original, so that any problems introduced by others will not reflect on the original authors’
reputations.

The precise terms and conditions for copying, distribution and modification follow.

D.1.6 Terms and Conditions
1. This License Agreement applies to any program or other work which contains a

notice placed by the copyright holder saying it may be distributed under the terms
of this General Public License. The “Program”, below, refers to any such program
or work, and a “work based on the Program” means either the Program or any work
containing the Program or a portion of it, either verbatim or with modifications.
Each licensee is addressed as “you”.

2. You may copy and distribute verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and appropriately
publish on each copy an appropriate copyright notice and disclaimer of warranty;
keep intact all the notices that refer to this General Public License and to the
absence of any warranty; and give any other recipients of the Program a copy of
this General Public License along with the Program. You may charge a fee for the
physical act of transferring a copy.

3. You may modify your copy or copies of the Program or any portion of it, and copy
and distribute such modifications under the terms of Paragraph 1 above, provided
that you also do the following:

— cause the modified files to carry prominent notices stating that you changed the
files and the date of any change; and

Introduction

Motorola GNU Debugger (GDB) D-5

— cause the whole of any work that you distribute or publish, that in whole or in
part contains the Program or any part thereof, either with or without
modifications, to be licensed at no charge to all third parties under the terms of
this General Public License (except that you may choose to grant warranty
protection to some or all third parties, at your option).

— If the modified program normally reads commands interactively when run, you
must cause it, when started running for such interactive use in the simplest and
most usual way, to print or display an announcement including an appropriate
copyright notice and a notice that there is no warranty (or else, saying that you
provide a warranty) and that users may redistribute the program under these
conditions, and telling the user how to view a copy of this General Public
License.

— You may charge a fee for the physical act of transferring a copy, and you may at
your option offer warranty protection in exchange for a fee.

Mere aggregation of another independent work with the Program (or its derivative) on a
volume of a storage or distribution medium does not bring the other work under the scope
of these terms.

4. You may copy and distribute the Program (or a portion or derivative of it, under
Paragraph 2) in object code or executable form under the terms of Paragraphs 1 and
2 above provided that you also do one of the following:

— accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Paragraphs 1 and 2 above; or,

— accompany it with a written offer, valid for at least three years, to give any third
party free (except for a nominal charge for the cost of distribution) a complete
machine-readable copy of the corresponding source code, to be distributed
under the terms of Paragraphs 1 and 2 above; or,

— accompany it with the information you received as to where the corresponding
source code may be obtained. (This alternative is allowed only for
noncommercial distribution and only if you received the program in object code
or executable form alone.)

Source code for a work means the preferred form of the work for making modifications to
it. For an executable file, complete source code means all the source code for all modules
it contains; but, as a special exception, it need not include source code for modules which
are standard libraries that accompany the operating system on which the executable file
runs, or for standard header files or definitions files that accompany that operating system.

D-6 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

Introduction

5. You may not copy, modify, sublicense, distribute or transfer the Program except as
expressly provided under this General Public License. Any attempt otherwise to
copy, modify, sublicense, distribute or transfer the Program is void, and will
automatically terminate your rights to use the Program under this License.
However, parties who have received copies, or rights to use copies, from you under
this General Public License will not have their licenses terminated so long as such
parties remain in full compliance.

6. By copying, distributing or modifying the Program (or any work based on the
Program) you indicate your acceptance of this license to do so, and all its terms and
conditions.

7. Each time you redistribute the Program (or any work based on the Program), the
recipient automatically receives a license from the original licensor to copy,
distribute or modify the Program subject to these terms and conditions. You may
not impose any further restrictions on the recipients’ exercise of the rights granted
herein.

The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the present
version, but may differ in detail to address new problems or concerns.

8. Each version is given a distinguishing version number. If the Program specifies a
version number of the license which applies to it and “any later version”, you have
the option of following the terms and conditions either of that version or of any
later version published by the Free Software Foundation. If the Program does not
specify a version number of the license, you may choose any version ever
published by the Free Software Foundation.

9. If you wish to incorporate parts of the Program into other free programs whose
distribution conditions are different, write to the author to ask for permission. For
software which is copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our decision will be
guided by the two goals of preserving the free status of all derivatives of our free
software and of promoting the sharing and reuse of software generally.

D.1.7 No Warranty
1. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO

WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING
THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE
PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE

Introduction

Motorola GNU Debugger (GDB) D-7

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL
NECESSARY SERVICING, REPAIR OR CORRECTION.

2. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED
TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER
PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS
PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING
ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL
DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA
BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR
THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH
ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

D.1.8 End of Terms and Conditions

Appendix: How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to
humanity, the best way to achieve this is to make it free software which everyone can
redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start
of each source file to most effectively convey the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.

Copyright (C) 19yy name of author

This program is free software; you can redistribute it and/or modify it under the terms of
the GNU General Public License as published by the Free Software Foundation; either
version 1, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.

D-8 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

Input and Output Conventions

You should have received a copy of the GNU General Public License along with this
program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave., Cambridge,
MA 02139, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an
interactive mode:

Gnomovision version 69, Copyright (C) 19yy name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.

This is free software, and you are welcome to redistribute it under certain conditions; type
‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of
the General Public License. Of course, the commands you use may be called something
other than ‘show w’ and ‘show c’; they could even be mouse-clicks or menu
items---whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any,
to sign a “copyright disclaimer” for the program, if necessary. Here a sample; alter the
names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program ‘Gnomovision’ (a
program to direct compilers to make passes at assemblers) written by James Hacker.

signature of Ty Coon, 1 April 1989

Ty Coon, President of Vice

That’s all there is to it!

D.2 Input and Output Conventions

GDB is invoked with the shell command ‘gdb’. Once started, it reads commands from the
terminal until you tell it to exit.

A GDB command is a single line of input. There is no limit on how long it can be. It starts
with a command name, which is followed by arguments whose meaning depends on the
command name. For example, the commandstepaccepts an argument which is the
number of times to step, as instep 5. You can also use thestepcommand with no
arguments. Some command names do not allow any arguments.

Input and Output Conventions

Motorola GNU Debugger (GDB) D-9

GDB command names may always be abbreviated if the abbreviation is unambiguous.
Sometimes even ambiguous abbreviations are allowed; for example, ‘s’ is specially
defined as equivalent tostepeven though there are other commands whose names start
with ‘s’. Possible command abbreviations are often stated in the documentation of the
individual commands.

A blank line as input to GDB means to repeat the previous command verbatim. Certain
commands do not allow themselves to be repeated this way; these are commands for
which unintentional repetition might cause trouble and which you are unlikely to want to
repeat. Certain others (list and ‘x’) act differently when repeated because that is more
useful.

A line of input starting with ‘#’ is a comment; it does nothing. This is useful mainly in
command files (See section Command Files).

GDB indicates its readiness to read a command by printing a string called the prompt. This
string is normally ‘(gdb)’. You can change the prompt string with the ‘set prompt’
command. For instance, when debugging GDB with GDB, it is useful to change the
prompt in one of the GDBs so that you tell which one you are talking to.

set prompt newprompt

Directs GDB to usenewpromptas its prompt string henceforth.

To exit GDB, use thequit command (abbreviated ‘q’). Ctrl-c will not exit from GDB, but
rather will terminate the action of any GDB command that is in progress and return to
GDB command level. It is safe to type Ctrl-c at any time because GDB does not allow it to
take effect until a time when it is safe.

Certain commands to GDB may produce large amounts of information output to the
screen. To help you read all of it, GDB pauses and asks you for input at the end of each
page of output. Type RET when you want to continue the output. Normally GDB knows
the size of the screen from on the termcap data base together with the value of the TERM
environment variable; if this is not correct, you can override it with the ‘set screensize’
command:

set screensize lpp
set screensize lpp cpl

Specify a screen height of lpp lines and (optionally) a width of cpl characters. If you omit
cpl, the width does not change.

If you specify a height of zero lines, GDB will not pause during output no matter how long
the output is. This is useful if output is to a file or to an editor buffer.

D-10 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

Specifying GDB’s Files

Also, GDB may at times produce more information about its own workings than is of
interest to the user. Some of these informational messages can be turned on and off with
the ‘set verbose’ command:

set verbose off

Disables GDB’s output of certain informational messages.

set verbose on

Re-enables GDB’s output of certain informational messages.

Currently, the messages controlled by ‘set verbose’ are those which announce that the
symbol table for a source file is being read (see section File Commands, in the description
of the command ‘symbol-file’).

D.3 Specifying GDB’s Files

GDB needs to know the file name of the program to be debugged, both in order to read its
symbol table and in order to start the program. To debug a core dump of a previous run,
GDB must be told the file name of the core dump.

D.3.1 Specifying Files with Arguments

The usual way to specify the executable and core dump file names is with two command
arguments given when you start GDB. The first argument is used as the file for execution
and symbols, and the second argument (if any) is used as the core dump file name. Thus,

gdb progm core

specifies ‘progm’ as the executable program and ‘core’ as a core dump file to examine.
(You do not need to have a core dump file if what you plan to do is debug the program
interactively.)

See section Options, for full information on options and arguments for invoking GDB.

D.3.2 Specifying Files with Commands

Usually you specify the files for GDB to work with by giving arguments when you invoke
GDB. But occasionally it is necessary to change to a different file during a GDB session.
Or you may run GDB and forget to specify the files you want to use. In these situations the
GDB commands to specify new files are useful.

Specifying GDB’s Files

Motorola GNU Debugger (GDB) D-11

Table D-1. GDB File Commands

Command Description

exec-file filename Specify that the program to be run is found in filename. If you do not specify a
directory and the file is not found in GDB’s working directory, GDB will use the
environment variable PATH as a list of directories to search, just as the shell
does when looking for a program to run.

symbol-file filename Read symbol table information from file filename. PATH is searched when
necessary. Most of the time you will use both the ‘exec-file’ and ‘symbol-file’
commands on the same file.
‘symbol-file’ with no argument clears out GDB’s symbol table.
The ‘symbol-file’ command does not actually read the symbol table in full right
away. Instead, it scans the symbol table quickly to find which source files and
which symbols are present. The details are read later, one source file at a time,
when they are needed.
The purpose of this two-stage reading strategy is to make GDB start up faster.
For the most part, it is invisible except for occasional messages telling you that
the symbol table details for a particular source file are being read. (The ‘set
verbose’ command controls whether these messages are printed; see section
User Interface).
However, you will sometimes see in backtraces lines for functions in source
files whose data has not been read in; these lines omit some of the information,
such as argument values, which cannot be printed without full details of the
symbol table.
When the symbol table is stored in COFF format, ‘symbol-file’ does read the
symbol table data in full right away. We haven’t bothered to implement the
two-stage strategy for COFF.

core-file filename Specify the whereabouts of a core dump file to be used as the “contents of
memory”. Note that the core dump contains only the writable parts of memory;
the read-only parts must come from the executable file.
‘core-file’ with no argument specifies that no core file is to be used.
Note that the core file is ignored when your program is actually running under
GDB. So, if you have been running the program and you wish to debug a core
file instead, you must kill the sub-process in which the program is running. To
do this, use the ‘kill’ command (see section Kill Process).

add-file filename address The ‘add-file’ command reads additional symbol table
information from the file filename. You would use this when that file has been
dynamically loaded into the program that is running. address should be the
memory address at which the file has been loaded; GDB cannot figure this out
for itself.
The symbol table of the file filename is added to the symbol table originally
read with the ‘symbol-file’ command. You can use the ‘add-file’ command any
number of times; the new symbol data thus read keeps adding to the old. The
‘symbol-file’ command forgets all the symbol data GDB has read; that is the
only time symbol data is forgotten in GDB.

D-12 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

Compiling Your Program for Debugging

D.4 Compiling Your Program for Debugging

In order to debug a program effectively, you need to ask for debugging information when
you compile it. This information in the object file describes the data type of each variable
or function and the correspondence between source line numbers and addresses in the
executable code.

To request debugging information, specify the ‘-g’ option when you run the compiler.

The Unix C compiler is unable to handle the ‘-g’ and ‘-O’ options together. This means
that you cannot ask for optimization if you ask for debugger information.

The GNU C compiler supports ‘-g’ with or without ‘-O’, making it possible to debug
optimized code. We recommend that you always use ‘-g’ whenever you compile a
program. You may think the program is correct, but there’s no sense in pushing your luck.

GDB no longer supports the debugging information produced by giving the GNU C
compiler the ‘-gg’ option, so do not use this option.

D.5 Running Your Program Under GDB

To start your program under GDB, use the ‘run’ command. The program must already
have been specified using the ‘exec-file’ command or with an argument to GDB (see
section Files); what ‘run’ does is create an inferior process, load the program into it, and
set it in motion.

The execution of a program is affected by certain information it receives from its superior.
GDB provides ways to specify this information, which you must do before starting the
program. (You can change it after starting the program, but such changes do not affect the
program unless you start it over again.) This information may be divided into three
categories:

info files Print the names of the executable and core dump files currently in use by GDB,
and the file from which symbols were loaded.
While all three file-specifying commands allow both absolute and relative file
names as arguments, GDB always converts the file name to an absolute one
and remembers it that way.
The ‘symbol-file’ command causes GDB to forget the contents of its
convenience variables, the value history, and all breakpoints and auto-display
expressions. This is because they may contain pointers to the internal data
recording symbols and data types, which are part of the old symbol table data
being discarded inside GDB.

Table D-1. GDB File Commands

Command Description

Running Your Program Under GDB

Motorola GNU Debugger (GDB) D-13

• Thearguments.

You specify the arguments to give the program as the arguments of the ‘run’
command.

• Theenvironment.

The program normally inherits its environment from GDB, but you can use the
GDB commands ‘set environment’ and ‘unset environment’ to change parts of the
environment that will be given to the program.

• Theworking directory.

The program inherits its working directory from GDB. You can set GDB’s working
directory with the ‘cd’ command in GDB.

After the ‘run’ command, the debugger does nothing but wait for your program to
stop. See section Stopping.

Note that once your program has been started by the ‘run’ command, you may
evaluate expressions that involve calls to functions in the inferior. See section
Expressions. If you wish to evaluate a function simply for its side affects, you may
use the ‘set’ command. See section Assignment.

D.5.1 Your Program’s Arguments

The arguments to your program are specified by the arguments of the ‘run’ command.
They are passed to a shell, which expands wildcard characters and performs redirection of
I/O, and thence to the program.

‘run’ with no arguments uses the same arguments used by the previous ‘run’.

The command ‘set args’ can be used to specify the arguments to be used the next time the
program is run. If ‘set args’ has no arguments, it means to use no arguments the next time
the program is run. If you have run your program with arguments and want to run it again
with no arguments, this is the only way to do so.

D.5.2 Your Program’s Environment

The environment consists of a set of environment variables and their values. Environment
variables conventionally record such things as your user name, your home directory, your
terminal type, and your search path for programs to run. Usually you set up environment
variables with the shell and they are inherited by all the other programs you run. When
debugging, it can be useful to try running the program with different environments
without having to start the debugger over again.

D-14 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

Running Your Program Under GDB

D.5.3 Your Program’s Working Directory

Each time you start your program with ‘run’, it inherits its working directory from the
current working directory of GDB. GDB’s working directory is initially whatever it
inherited from its parent process (typically the shell), but you can specify a new working
directory in GDB with the ‘cd’ command.

The GDB working directory also serves as a default for the commands that specify files
for GDB to operate on as listed in Table D-3. See section Files.

D.5.4 Your Program’s Input and Output

By default, the program you run under GDB does input and output to the same terminal
that GDB uses.

Table D-2. Environment Variables

Variable Description

info environment varname Print the value of environment variable varname to be given to your
program when it is started. This command can be abbreviated ‘i env
varname’.

info environment Print the names and values of all environment variables to be given
to your program when it is started. This command can be
abbreviated ‘i env’.

set environment varname value
set environment varname = value

Sets environment variable varname to value, for your program only,
not for GDB itself. value may be any string; the values of
environment variables are just strings, and any interpretation is
supplied by your program itself. The value parameter is optional; if it
is eliminated, the variable is set to a null value. This command can
be abbreviated as short as ‘set e’.
For example, this command:

set env USER = foo
tells the program, when subsequently run, to assume it is being run
on behalf of the user named ‘foo’.

delete environment varname
unset environment varname

Remove variable varname from the environment to be passed to
your program. This is different from ‘set env varname =’ because
‘delete environment’ leaves the variable with no value, which is
distinguishable from an empty value. This command can be
abbreviated ‘d e’.

Table D-3. Working Directory Commands

Command Description

cd directory Set GDB’s working directory to directory.

pwd Print GDB’s working directory.

Running Your Program Under GDB

Motorola GNU Debugger (GDB) D-15

You can redirect the program’s input and/or output using ‘sh’-style redirection commands
in the ‘run’ command. For example,

run > outfile

starts the program, diverting its output to the file ‘outfile’.

Another way to specify where the program should do input and output is with the ‘tty’
command. This command accepts a file name as argument, and causes this file to be the
default for future ‘run’ commands. It also resets the controlling terminal for the child
process, for future ‘run’ commands. For example,

tty /dev/ttyb

directs that processes started with subsequent ‘run’ commands default to do input and
output on the terminal ‘/dev/ttyb’ and have that as their controlling terminal.

An explicit redirection in ‘run’ overrides the ‘tty’ command’s effect on input/output
redirection, but not its effect on the controlling terminal.

When you use the ‘tty’ command or redirect input in the ‘run’ command, only theinput
for your programis affected. The input for GDB still comes from your terminal.

D.5.5 Debugging an Already-Running Process

Some operating systems allow GDB to debug an already running process that was started
outside of GDB. To do this, you use the ‘attach’ command instead of the ‘run’ command.

The ‘attach’ command requires one argument, which is the process-id of the process you
want to debug. (The usual way to find out the process-id of the process is with the ps
utility.)

The first thing GDB does after arranging to debug the process is to stop it. You can
examine and modify an attached process with all the GDB commands that ordinarily
available when you start processes with ‘run’. You can insert breakpoints; you can step
and continue; you can modify storage. If you would rather the process continue running,
you may use the ‘continue’ command after attaching GDB to the process.

When you have finished debugging the attached process, you can use the ‘detach’
command to release it from GDB’s control. Detaching the process continues its execution.
After the ‘detach’ command, that process and GDB become completely independent once
more, and you are ready to ‘attach’ another process or start one with ‘run’.

If you exit GDB or use the ‘run’ command while you have an attached process, you kill
that process. You will be asked for confirmation if you try to do either of these things.

D-16 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

Stopping and Continuing

The ‘attach’ command is also used to debug a remote machine via a serial connection. See
section Attach, for more info.

D.5.6 Killing the Child Process

kill

Kill the child process in which the program being debugged is running under GDB.

This command is useful if you wish to debug a core dump instead. GDB ignores any core
dump file if it is actually running the program, so the ‘kill’ command is the only sure way
to make sure the core dump file is used once again.

It is also useful if you wish to run the program outside the debugger for once and then go
back to debugging it.

The ‘kill’ command is also useful if you wish to re-compile and re-link the program, since
on many systems it is impossible to modify an executable file which is running in a
process. But, in this case, it is just as good to exit GDB, since you will need to read a new
symbol table after the program is re-compiled if you wish to debug the new version, and
restarting GDB is the easiest way to do that.

D.6 Stopping and Continuing

When you run a program normally, it runs until it terminates. The principal purpose of
using a debugger is so that you can stop it before that point; or so that if the program runs
into trouble you can investigate and find out why.

D.6.1 Signals

A signal is an asynchronous event that can happen in a program. The operating system
defines the possible kinds of signals, and gives each kind a name and a number. For
example, SIGINT is the signal a program gets when you type Ctrl-c; SIGSEGV is the
signal a program gets from referencing a place in memory far away from all the areas in
use; SIGALRM occurs when the alarm clock timer goes off (which happens only if the
program has requested an alarm).

Some signals, including SIGALRM, are a normal part of the functioning of the program.
Others, such as SIGSEGV, indicate errors; these signals are fatal (kill the program
immediately) if the program has not specified in advance some other way to handle the
signal. SIGINT does not indicate an error in the program, but it is normally fatal so it can
carry out the purpose of Ctrl-c: to kill the program.

Stopping and Continuing

Motorola GNU Debugger (GDB) D-17

GDB has the ability to detect any occurrence of a signal in the program running under
GDB’s control. You can tell GDB in advance what to do for each kind of signal.

Normally, GDB is set up to ignore non-erroneous signals like SIGALRM (so as not to
interfere with their role in the functioning of the program) but to stop the program
immediately whenever an error signal happens. You can change these settings with the
‘handle’ command. You must specify which signal you are talking about with its number.

info signal

Print a table of all the kinds of signals and how GDB has been told to handle each one.
You can use this to see the signal numbers of all the defined types of signals.

handle signalnum keywords...

Change the way GDB handles signalsignalnum. The keywords say what change to make.

To use the ‘handle’ command you must know the code number of the signal you are
concerned with. To find the code number, type ‘info signal’ which prints a table of signal
names and numbers.

The keywords allowed by the handle command can be abbreviated. Table D-4 lists their
full names:

Table D-4. Keywords

Keyword Description

stop GDB should stop the program when this signal happens. This implies the ‘print’ keyword as well.

print GDB should print a message when this signal happens.

nostop GDB should not stop the program when this signal happens. It may still print a message telling
you that the signal has come in.

noprint GDB should not mention the occurrence of the signal at all. This implies the ‘nostop’ keyword as
well.

pass GDB should allow the program to see this signal; the program will be able to handle the signal,
or may be terminated if the signal is fatal and not handled.

nopass GDB should not allow the program to see this signal.When a signal has been set to stop the
program, the program cannot see the signal until you continue. It will see the signal then, if
‘pass’ is in effect for the signal in question at that time. In other words, after GDB reports a
signal, you can use the ‘handle’ command with ‘pass’ or ‘nopass’ to control whether that signal
will be seen by the program when you later continue it.You can also use the ‘signal’ command to
prevent the program from seeing a signal, or cause it to see a signal it normally would not see,
or to give it any signal at any time. See section Signaling.

D-18 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

Stopping and Continuing

D.6.2 Breakpoints

A breakpointmakes your program stop whenever a certain point in the program is
reached. You set breakpoints explicitly with GDB commands, specifying the place where
the program should stop by line number, function name or exact address in the program.
You can add various other conditions to control whether the program will stop.

Each breakpoint is assigned a number when it is created; these numbers are successive
integers starting with 1. In many of the commands for controlling various features of
breakpoints you use the breakpoint number to say which breakpoint you want to change.
Each breakpoint may beenabledor disabled; if disabled, it has no effect on the program
until you enable it again.

The command ‘info break’ prints a list of all breakpoints set and not deleted, showing their
numbers, where in the program they are, and any special features in use for them. Disabled
breakpoints are included in the list, but marked as disabled. ‘info break’ with a breakpoint
number as argument lists only that breakpoint. The convenience variable $_ and the
default examining-address for the ‘x’ command are set to the address of the last breakpoint
listed (see section Memory).

D.6.2.1 Setting Breakpoints

Breakpoints are set with the ‘break’ command (abbreviated ‘b’). You have several ways to
say where the breakpoint should go as shown in Table D-5.

Table D-5. Breakpoints

Command Description

break function Set a breakpoint at entry to function function.

break + offset
break - offset

Set a breakpoint some number of lines forward or back from the position at which
execution stopped in the currently selected frame.

break linenum Set a breakpoint at line linenum in the current source file. That file is the last file
whose source text was printed. This breakpoint will stop the program just before
it executes any of the code on that line.

break filename:linenum Set a breakpoint at line linenum in source file filename.

break filename:function Set a breakpoint at entry to function function found in file filename. Specifying a
file name as well as a function name is superfluous except when multiple files
contain similarly named functions.

break *address Set a breakpoint at address address. You can use this to set breakpoints in parts
of the program which do not have debugging information or source files.

Stopping and Continuing

Motorola GNU Debugger (GDB) D-19

D.6.2.2 Deleting Breakpoints

It is often necessary to eliminate a breakpoint once it has done its job and you no longer
want the program to stop there. This is calleddeletingthe breakpoint. A breakpoint that
has been deleted no longer exists in any sense; it is forgotten.

With the ‘clear’ command you can delete breakpoints according to where they are in the
program. With the ‘delete’ command you can delete individual breakpoints by specifying
their breakpoint numbers. See Table D-6.

It is not necessary to delete a breakpoint to proceed past it. GDB automatically ignores
breakpoints in the first instruction to be executed when you continue execution without
changing the execution address.

break Set a breakpoint at the next instruction to be executed in the selected stack
frame (see section Stack). In any selected frame but the innermost, this will
cause the program to stop as soon as control returns to that frame. This is
equivalent to a ‘finish’ command in the frame inside the selected frame. If this is
done in the innermost frame, GDB will stop the next time it reaches the current
location; this may be useful inside of loops.
GDB normally ignores breakpoints when it resumes execution, until at least one
instruction has been executed. If it did not do this, you would be unable to
proceed past a breakpoint without first disabling the breakpoint. This rule applies
whether or not the breakpoint already existed when the program stopped.

break ... if cond Set a breakpoint with condition cond; evaluate the expression cond each time the
breakpoint is reached, and stop only if the value is nonzero. ‘...’ stands for one of
the possible arguments described above (or no argument) specifying where to
break. See section Conditions, for more information on breakpoint conditions.

tbreak args Set a breakpoint enabled only for one stop. args are the same as in the ‘break’
command, and the breakpoint is set in the same way, but the breakpoint is
automatically disabled the first time it is hit. See section Disabling.
GDB allows you to set any number of breakpoints at the same place in the
program. There is nothing silly or meaningless about this. When the breakpoints
are conditional, this is even useful (see section Conditions).

Table D-5. Breakpoints

Command Description

D-20 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

Stopping and Continuing

D.6.2.3 Disabling Breakpoints

Rather than deleting a breakpoint, you might prefer todisableit. This makes the
breakpoint inoperative as if it had been deleted, but remembers the information on the
breakpoint so that you canenableit again later.

You disable and enable breakpoints with the ‘enable’ and ‘disable’ commands, specifying
one or more breakpoint numbers as arguments. Use ‘info break’ to print a list of
breakpoints if you don’t know which breakpoint numbers to use.

A breakpoint can have any of four different states of enablement:

• Enabled. The breakpoint will stop the program. A breakpoint made with the ‘break’
command starts out in this state.

• Disabled. The breakpoint has no effect on the program.

• Enabled once. The breakpoint will stop the program, but when it does so it will
become disabled. A breakpoint made with the ‘tbreak’ command starts out in this
state.

• Enabled for deletion. The breakpoint will stop the program, but immediately after it
does so it will be deleted permanently.

You change the state of enablement of a breakpoint with the following commands as
shown in Table D-7:

Table D-6. Deleting Breakpoints Commands

Command Description

clear Delete any breakpoints at the next instruction to be executed in the selected
stack frame (see section Selection). When the innermost frame is selected,
this is a good way to delete a breakpoint that the program just stopped at.

clear function
clear filename:function

Delete any breakpoints set at entry to the function function.

clear linenum
clear filename:linenum

Delete any breakpoints set at or within the code of the specified line.

delete bnums... Delete the breakpoints of the numbers specified as arguments.

Table D-7. Disabling Breakpoint Commands

Command Description

disable breakpoints bnums...
disable bnums...

Disable the specified breakpoints. A disabled breakpoint has no
effect but is not forgotten. All options such as ignore-counts,
conditions and commands are remembered in case the
breakpoint is enabled again later.

Stopping and Continuing

Motorola GNU Debugger (GDB) D-21

Aside from the automatic disablement or deletion of a breakpoint when it stops the
program, which happens only in certain states, the state of enablement of a breakpoint
changes only when one of the commands above is used.

D.6.2.4 Break Conditions

The simplest sort of breakpoint breaks every time the program reaches a specified place.
You can also specify aconditionfor a breakpoint. A condition is just a boolean expression
in your programming language. (See section Expressions). A breakpoint with a condition
evaluates the expression each time the program reaches it, and the program stops only if
the condition is true.

Break conditions may have side effects, and may even call functions in your program.
These may sound like strange things to do, but their effects are completely predictable
unless there is another enabled breakpoint at the same address. (In that case, GDB might
see the other breakpoint first and stop the program without checking the condition of this
one.) Note that breakpoint commands are usually more convenient and flexible for the
purpose of performing side effects when a breakpoint is reached (see section Break
Commands).

Break conditions can be specified when a breakpoint is set, by using ‘if’ in the arguments
to the ‘break’ command. See section Set Breaks. They can also be changed at any time
with the ‘condition’ command:

condition bnum expression

Specifyexpressionas the break condition for breakpoint numberbnum. From now on, this
breakpoint will stop the program only if the value ofexpressionis true (nonzero, in C).
expressionis not evaluated at the time the ‘condition’ command is given. See section
Expressions.

enable breakpoints bnums...
enable bnums...

Enable the specified breakpoints. They become effective once
again in stopping the program, until you specify otherwise.

enable breakpoints once bnums...
enable once bnums...

Enable the specified breakpoints temporarily. Each will be
disabled again the next time it stops the program (unless you
have used one of these commands to specify a different state
before that time comes).

enable breakpoints delete bnums...
enable delete bnums...

Enable the specified breakpoints to work once and then die.
Each of the breakpoints will be deleted the next time it stops the
program (unless you have used one of these commands to
specify a different state before that time comes).

Table D-7. Disabling Breakpoint Commands

Command Description

D-22 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

Stopping and Continuing

condition bnum

Remove the condition from breakpoint numberbnum. It becomes an ordinary
unconditional breakpoint.

A special case of a breakpoint condition is to stop only when the breakpoint has been
reached a certain number of times. This is so useful that there is a special way to do it,
using the ignore count of the breakpoint. Every breakpoint has an ignore count, which is
an integer. Most of the time, the ignore count is zero, and therefore has no effect. But if the
program reaches a breakpoint whose ignore count is positive, then instead of stopping, it
just decrements the ignore count by one and continues. As a result, if the ignore count
value is n, the breakpoint will not stop the next n times it is reached.

ignore bnum count

Set the ignore count of breakpoint numberbnumto count. The next count times the
breakpoint is reached, it will not stop.

To make the breakpoint stop the next time it is reached, specify a count of zero.

cont count

Continue execution of the program, setting the ignore count of the breakpoint that the
program stopped at to count minus one. Thus, the program will not stop at this breakpoint
until the count’th time it is reached.

This command is allowed only when the program stopped due to a breakpoint. At other
times, the argument to ‘cont’ is ignored.

If a breakpoint has a positive ignore count and a condition, the condition is not checked.
Once the ignore count reaches zero, the condition will start to be checked.

Note that you could achieve the effect of the ignore count with a condition such as
‘$foo-<= 0’ using a debugger convenience variable that is decremented each time. See
section Convenience Vars.

D.6.2.5 Commands Executed on Breaking

You can give any breakpoint a series of commands to execute when the program stops due
to that breakpoint. For example, you might want to print the values of certain expressions,
or enable other breakpoints.

commands bnum

Specify commands for breakpoint numberbnum. The commands themselves appear on
the following lines. Type a line containing just ‘end’ to terminate the commands.

Stopping and Continuing

Motorola GNU Debugger (GDB) D-23

To remove all commands from a breakpoint, use the command ‘commands’ and follow it
immediately by ‘end’; that is, give no commands.

With no arguments, ‘commands’ refers to the last breakpoint set.

It is possible for breakpoint commands to start the program up again. Simply use the
‘cont’ command, or ‘step’, or any other command to resume execution. However, any
remaining breakpoint commands are ignored. When the program stops again, GDB will
act according to the cause of that stop.

If the first command specified is ‘silent’, the usual message about stopping at a breakpoint
is not printed. This may be desirable for breakpoints that are to print a specific message
and then continue. If the remaining commands too print nothing, you will see no sign that
the breakpoint was reached at all. ‘silent’ is not really a command; it is meaningful only at
the beginning of the commands for a breakpoint.

The commands ‘echo’ and ‘output’ that allow you to print precisely controlled output are
often useful in silent breakpoints. See section Output.

For example, here is how you could use breakpoint commands to print the value of x at
entry to foo whenever it is positive.

break foo if x>0

commands

silent

echo x is\040

output x

echo \n

cont

end

One application for breakpoint commands is to correct one bug so you can test another.
Put a breakpoint just after the erroneous line of code, give it a condition to detect the case
in which something erroneous has been done, and give it commands to assign correct
values to any variables that need them. End with the ‘cont’ command so that the program
does not stop, and start with the ‘silent’ command so that no output is produced.

D-24 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

Stopping and Continuing

Here is an example:

break 403

commands

silent

set x = y + 4

cont

end

One deficiency in the operation of automatically continuing breakpoints under Unix
appears when your program uses raw mode for the terminal. GDB switches back to its
own terminal modes (not raw) before executing commands, and then must switch back to
raw mode when your program is continued. This causes any pending terminal input to be
lost.

In the GNU system, this will be fixed by changing the behavior of terminal modes.

Under Unix, when you have this problem, you might be able to get around it by putting
your actions into the breakpoint condition instead of commands. For example

condition 5 (x = y + 4), 0

specifies a condition expression (See section Expressions) that will change x as needed,
then always have the value 0 so the program will not stop. Loss of input is avoided here
because break conditions are evaluated without changing the terminal modes. When you
want to have nontrivial conditions for performing the side effects, the operators ‘&&’, ‘||’
and ‘?...:’ may be useful.

D.6.2.6 “Cannot Insert Breakpoints” Error

Under some operating systems, breakpoints cannot be used in a program if any other
process is running that program. Attempting to run or continue the program with a
breakpoint in this case will cause GDB to stop it.

When this happens, you have three ways to proceed:

1. Remove or disable the breakpoints, then continue.

2. Suspend GDB, and copy the file containing the program to a new name. Resume
GDB and use the ‘exec-file’ command to specify that GDB should run the program
under that name. Then start the program again.

3. Re-link the program so that the text segment is non-sharable, using the linker
option ‘-N’. The operating system limitation may not apply to non-sharable
executables.

Stopping and Continuing

Motorola GNU Debugger (GDB) D-25

D.6.3 Continuing

After your program stops, most likely you will want it to run some more if the bug you are
looking for has not happened yet.

cont

Continue running the program at the place where it stopped.

If the program stopped at a breakpoint, the place to continue running is the address of the
breakpoint. You might expect that continuing would just stop at the same breakpoint
immediately. In fact, ‘cont’ takes special care to prevent that from happening. You do not
need to delete the breakpoint to proceed through it after stopping at it.

You can, however, specify an ignore-count for the breakpoint that the program stopped at,
by means of an argument to the ‘cont’ command. See section Conditions.

If the program stopped because of a signal other than SIGINT or SIGTRAP, continuing
will cause the program to see that signal. You may not want this to happen. For example,
if the program stopped due to some sort of memory reference error, you might store
correct values into the erroneous variables and continue, hoping to see more execution;
but the program would probably terminate immediately as a result of the fatal signal once
it sees the signal. To prevent this, you can continue with ‘signal 0’. See section Signaling.
You can also act in advance to prevent the program from seeing certain kinds of signals,
using the ‘handle’ command (see section Signals).

D.6.4 Stepping

Steppingmeans setting your program in motion for a limited time, so that control will
return automatically to the debugger after one line of code or one machine instruction.
Breakpoints are active during stepping and the program will stop for them even if it has
not gone as far as the stepping command specifies.

Table D-8. Stepping Commands

Command Description

step Continue running the program until control reaches a different line, then stop it and return
control to the debugger. This command is abbreviated ‘s’.
This command may be given when control is within a function for which there is no debugging
information. In that case, execution will proceed until control reaches a different function, or is
about to return from this function. An argument repeats this action.

step count Continue running as in ‘step’, but do so count times. If a breakpoint is reached or a signal not
related to stepping occurs before count steps, stepping stops right away.

D-26 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

Stopping and Continuing

next Similar to ‘step’, but any function calls appearing within the line of code are executed without
stopping. Execution stops when control reaches a different line of code at the stack level
which was executing when the ‘next’ command was given. This command is abbreviated ‘n’.
An argument is a repeat count, as in ‘step’.
‘next’ within a function without debugging information acts as does ‘step’, but any function
calls appearing within the code of the function are executed without stopping.

finish Continue running until just after the selected stack frame returns (or until there is some other
reason to stop, such as a fatal signal or a breakpoint). Print value returned by the selected
stack frame (if any).
Contrast this with the ‘return’ command (see section Returning).

until This command is used to avoid single stepping through a loop more than once. It is like the
‘next’ command, except that when ‘until’ encounters a jump, it automatically continues
execution until the program counter is greater than the address of the jump.
This means that when you reach the end of a loop after single stepping though it, ‘until’ will
cause the program to continue execution until the loop is exited. In contrast, a ‘next’ command
at the end of a loop will simply step back to the beginning of the loop, which would force you
to step through the next iteration.
‘until’ always stops the program if it attempts to exit the current stack frame.
‘until’ may produce somewhat counterintuitive results if the order of the source lines does not
match the actual order of execution. For example, in a typical C for-loop, the third expression
in the for-statement (the loop-step expression) is executed after the statements in the body of
the loop, but is written before them. Therefore, the ‘until’ command would appear to step back
to the beginning of the loop when it advances to this expression. However, it has not really
done so, not in terms of the actual machine code.
Note that ‘until’ with no argument works by means of single instruction stepping, and hence is
slower than ‘until’ with an argument.

until location Continue running the program until either the specified location is reached, or the current
(innermost) stack frame returns. This form of the command uses breakpoints, and hence is
quicker than ‘until’ without an argument.

stepi
si

Execute one machine instruction, then stop and return to the debugger.
It is often useful to do ‘display/i $pc’ when stepping by machine instructions. This will cause
the next instruction to be executed to be displayed automatically at each stop. See section
Auto Display.
An argument is a repeat count, as in ‘step’.

nexti
ni

Execute one machine instruction, but if it is a subroutine call, proceed until the subroutine
returns.
An argument is a repeat count, as in ‘next’.
A typical technique for using stepping is to put a breakpoint (see section Breakpoints) at the
beginning of the function or the section of the program in which a problem is believed to lie,
and then step through the suspect area, examining the variables that are interesting, until the
problem happens.
The ‘cont’ command can be used after stepping to resume execution until the next breakpoint
or signal.

Table D-8. Stepping Commands (Continued)

Command Description

Examining the Stack

Motorola GNU Debugger (GDB) D-27

D.7 Examining the Stack

When your program has stopped, the first thing you need to know is where it stopped and
how it got there.

Each time your program performs a function call, the information about where in the
program the call was made from is saved in a block of data called astack frame. The frame
also contains the arguments of the call and the local variables of the function that was
called. All the stack frames are allocated in a region of memory called thecall stack.

When your program stops, the GDB commands for examining the stack allow you to see
all of this information.

One of the stack frames isselectedby GDB and many GDB commands refer implicitly to
the selected frame. In particular, whenever you ask GDB for the value of a variable in the
program, the value is found in the selected frame. There are special GDB commands to
select whichever frame you are interested in.

When the program stops, GDB automatically selects the currently executing frame and
describes it briefly as the ‘frame’ command does (see section Frame Info, Info).

D.7.1 Stack Frames

The call stack is divided up into contiguous pieces calledstack frames, or framesfor short;
each frame is the data associated with one call to one function. The frame contains the
arguments given to the function, the function’s local variables, and the address at which
the function is executing.

When your program is started, the stack has only one frame, that of the function main.
This is called theinitial frame or theoutermostframe. Each time a function is called, a
new frame is made. Each time a function returns, the frame for that function invocation is
eliminated. If a function is recursive, there can be many frames for the same function. The
frame for the function in which execution is actually occurring is called theinnermost
frame. This is the most recently created of all the stack frames that still exist.

Inside your program, stack frames are identified by their addresses. A stack frame consists
of many bytes, each of which has its own address; each kind of computer has a convention
for choosing one of those bytes whose address serves as the address of the frame. Usually
this address is kept in a register called theframe pointer registerwhile execution is going
on in that frame.

GDB assigns numbers to all existing stack frames, starting with zero for the innermost
frame, one for the frame that called it, and so on upward. These numbers do not really

D-28 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

Examining the Stack

exist in your program; they are to give you a way of talking about stack frames in GDB
commands.

Many GDB commands refer implicitly to one stack frame. GDB records a stack frame that
is called theselectedstack frame; you can select any frame using one set of GDB
commands, and then other commands will operate on that frame. When your program
stops, GDB automatically selects the innermost frame.

Some functions can be compiled to run without a frame reserved for them on the stack.
This is occasionally done with heavily used library functions to save the frame setup time.
GDB has limited facilities for dealing with these function invocations; if the innermost
function invocation has no stack frame, GDB will give it a virtual stack frame of 0 and
correctly allow tracing of the function call chain. Results are undefined if a function
invocation besides the innermost one is frameless.

D.7.2 Backtraces

A backtrace is a summary of how the program got where it is. It shows one line per frame,
for many frames, starting with the currently executing frame (frame zero), followed by its
caller (frame one), and on up the stack. See Table D-6.

If the function is in a source file whose symbol table data has been fully read, the
backtrace shows the source file name and line number, as well as the arguments to the
function. (The program counter value is omitted if it is at the beginning of the code for that
line number.)

If the source file’s symbol data has not been fully read, just scanned, this extra information
is replaced with an ellipsis. You can force the symbol data for that frame’s source file to
be read by selecting the frame. (See section Selection).

Table D-9. Backtraces

Backtrace Description

backtrace
bt

Print a backtrace of the entire stack: one line per frame for all frames in the stack.
You can stop the backtrace at any time by typing the system interrupt character, normally
Control-C.

backtrace n
bt n

Similar, but print only the innermost n frames.

backtrace - n
bt -n

Similar, but print only the outermost n frames.
The names ‘where’ and ‘info stack’ are additional aliases for ‘backtrace’.
Every line in the backtrace shows the frame number, the function name and the program counter
value.

Examining the Stack

Motorola GNU Debugger (GDB) D-29

Here is an example of a backtrace. It was made with the command ‘bt 3’, so it shows the
innermost three frames.

#0 rtx_equal_p (x=(rtx) 0x8e58c, y=(rtx) 0x1086c4)
(/gp/rms/cc/rtlanal.c line 337)
#1 0x246b0 in expand_call (...) (...)
#2 0x21cfc in expand_expr (...) (...)
(More stack frames follow...)

The functions expand_call and expand_expr are in a file whose symbol details have not
been fully read. Full detail is available for the function rtx_equal_p, which is in the file
‘rtlanal.c’. Its arguments, named x and y, are shown with their typed values.

D.7.3 Selecting a Frame

Most commands for examining the stack and other data in the program work on whichever
stack frame is selected at the moment. Here are the commands for selecting a stack frame;
all of them finish by printing a brief description of the stack frame just selected.See Table
D-10.

All of these commands end by printing some information on the frame that has been
selected: the frame number, the function name, the arguments, the source file and line
number of execution in that frame, and the text of that source line. For example:

#3 main (argc=3, argv=??, env=??) at main.c, line 67
67 read_input_file (argv[i]);

After such a printout, the ‘list’ command with no arguments will print ten lines centered
on the point of execution in the frame. See section List.

Table D-10. Frame Commands

Frame Description

frame n Select frame number n. Recall that frame zero is the innermost (currently executing)
frame, frame one is the frame that called the innermost one, and so on. The
highest-numbered frame is main’s frame.

frame addr Select the frame at address addr. This is useful mainly if the chaining of stack frames has
been damaged by a bug, making it impossible for GDB to assign numbers properly to all
frames. In addition, this can be useful when the program has multiple stacks and
switches between them.

up n Select the frame n frames up from the frame previously selected. For positive numbers n,
this advances toward the outermost frame, to higher frame numbers, to frames that have
existed longer. n defaults to one.

down n Select the frame n frames down from the frame previously selected. For positive numbers
n, this advances toward the innermost frame, to lower frame numbers, to frames that
were created more recently. n defaults to one.

D-30 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

Examining Source Files

D.7.4 Information on a Frame

There are several other commands to print information about the selected stack frame as
listed in Table D-11.

D.8 Examining Source Files

GDB knows which source files your program was compiled from, and can print parts of
their text. When your program stops, GDB spontaneously prints the line it stopped in.
Likewise, when you select a stack frame (see section Selection), GDB prints the line
which execution in that frame has stopped in. You can also print parts of source files by
explicit command.

D.8.1 Printing Source Lines

To print lines from a source file, use the ‘list’ command (abbreviated ‘l’). There are
several ways to specify what part of the file you want to print.

Table D-11. Frame Command

Command Description

frame This command prints a brief description of the selected stack frame. It can be abbreviated
‘f’. With an argument, this command is used to select a stack frame; with no argument, it
does not change which frame is selected, but still prints the same information.

info frame This command prints a verbose description of the selected stack frame, including the
address of the frame, the addresses of the next frame in (called by this frame) and the next
frame out (caller of this frame), the address of the frame’s arguments, the program counter
saved in it (the address of execution in the caller frame), and which registers were saved in
the frame. The verbose description is useful when something has gone wrong that has
made the stack format fail to fit the usual conventions.

info frame addr Print a verbose description of the frame at address addr, without selecting that frame. The
selected frame remains unchanged by this command.

info args Print the arguments of the selected frame, each on a separate line.

info locals Print the local variables of the selected frame, each on a separate line. These are all
variables declared static or automatic within all program blocks that execution in this frame
is currently inside of.

Examining Source Files

Motorola GNU Debugger (GDB) D-31

Table D-12 shows the forms of the ‘list’ command most commonly used:

Table D-13 shows the ways of specifying a single source line--all the kinds of linespec.

Table D-12. List Commands

Command Description

list linenum Print ten lines centered around line number linenum in the current source file.

list function Print ten lines centered around the beginning of function function.

list Print ten more lines. If the last lines printed were printed with a ‘list’ command, this prints
ten lines following the last lines printed; however, if the last line printed was a solitary line
printed as part of displaying a stack frame (see section Stack), this prints ten lines
centered around that line.

list - Print ten lines just before the lines last printed.Repeating a ‘list’ command with RET
discards the argument, so it is equivalent to typing just ‘list’. This is more useful than
listing the same lines again. An exception is made for an argument of ‘-’; that argument is
preserved in repetition so that each repetition moves up in the file.In general, the ‘list’
command expects you to supply zero, one or two linespecs. Linespecs specify source
lines; there are several ways of writing them but the effect is always to specify some
source line. Here is a complete description of the possible arguments for ‘list’:

list linespec Print ten lines centered around the line specified by linespec.

list first , last Print lines from first to last. Both arguments are linespecs.

list , last Print ten lines ending with last.

list first , Print ten lines starting with first.

list + Print ten lines just after the lines last printed.

list - Print ten lines just before the lines last printed.

list As described in the preceding table.

Table D-13. Single Source Line Commands

Command Description

linenum Specifies line linenum of the current source file. When a ‘list’ command has two
linespecs, this refers to the same source file as the first linespec.

+offset Specifies the line offset lines after the last line printed. When used as the second
linespec in a ‘list’ command that has two, this specifies the line offset lines down
from the first linespec.

- offset Specifies the line offset lines before the last line printed.

filename : linenum Specifies line linenum in the source file filename.

function Specifies the line of the open-brace that begins the body of the function function.

D-32 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

Examining Source Files

The default examine address for the ‘x’ command is changed to the starting address of the
line, so that ‘x/i’ is sufficient to begin examining the machine code (see section Memory).
Also, this address is saved as the value of the convenience variable $_ (see section
Convenience Vars).

D.8.2 Searching Source Files

There are two commands for searching through the current source file for a regular
expression.

The command ‘forward-searchregexp’ checks each line, starting with the one following
the last line listed, for a match for regexp. It lists the line that is found. You can abbreviate
the command name as ‘fo’.

The command ‘reverse-searchregexp’ checks each line, starting with the one before the
last line listed and going backward, for a match for regexp. It lists the line that is found.
You can abbreviate this command with as little as ‘rev’.

D.8.3 Specifying Source Directories

Executable programs do not record the directories of the source files from which they
were compiled, just the names. GDB remembers a list of directories to search for source
files; this is called the source path. Each time GDB wants a source file, it tries all the
directories in the list, in the order they are present in the list, until it finds a file with the
desired name.

Note: The executable search path isnot used for this purpose. Neither is thecurrent
working directory, unless it happens to be in the source path.

When you start GDB, its source path contains just the current working directory. To add
other directories, use the ‘directory’ command as shown in Table D-14.

filename : function Specifies the line of the open-brace that begins the body of the function function
in the file filename. The file name is needed with a function name only for
disambiguation of identically named functions in different source files.

* address Specifies the line containing the program address address. address may be any
expression.One other command is used to map source lines to program
addresses.

info line linenum Print the starting and ending addresses of the compiled code for source line
linenum.

Table D-13. Single Source Line Commands

Command Description

Examining Data

Motorola GNU Debugger (GDB) D-33

.

Because the ‘directory’ command adds to the end of the source path, it does not affect any
file that GDB has already found. If the source path contains directories that you do not
want, and these directories contain misleading files with names matching your source
files, the way to correct the situation is as follows:

1. Choose the directory you want at the beginning of the source path. Use the ‘cd’
command to make that the current working directory.

2. Use ‘directory’ with no argument to reset the source path to just that directory.

3. Use ‘directory’ with suitable arguments to add any other directories you want in the
source path.

D.9 Examining Data

The usual way to examine data in your program is with the ‘print’ command (abbreviated
‘p’). It evaluates and prints the value of any valid expression of the language the program
is written in (for now, C). You type

print exp

where exp is any valid expression, and the value of exp is printed in a format appropriate
to its data type.

A more low-level way of examining data is with the ‘x’ command. It examines data in
memory at a specified address and prints it in a specified format.

D.9.1 Expressions

Many different GDB commands accept an expression and compute its value. Any kind of
constant, variable or operator defined by the programming language you are using is legal
in an expression in GDB. This includes conditional expressions, function calls, casts and

Table D-14. Directory Commands

Command Description

directory dirnames ... Add directory dirname to the end of the source path. Several directory names may
be given to this command, separated by whitespace or ‘:’.

directory Reset the source path to just the current working directory of GDB.
This requires confirmation.Since this command deletes directories from the search
path, it may change the directory in which a previously read source file will be
discovered. To make this work correctly, this command also clears out the tables
GDB maintains about the source files it has already found.

info directories Print the source path: show which directories it contains.

D-34 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

Examining Data

string constants. It unfortunately does not include symbols defined by preprocessor
#define commands.

Casts are supported in all languages, not just in C, because it is so useful to cast a number
into a pointer so as to examine a structure at that address in memory.

GDB supports three kinds of operator in addition to those of programming languages as
shown in Table D-15:

D.9.2 Program Variables

The most common kind of expression to use is the name of a variable in your program.

Variables in expressions are understood in the selected stack frame (see section Selection);
they must either be global (or static) or be visible according to the scope rules of the
programming language from the point of execution in that frame. This means that in the
function

foo (a)

int a;

{

bar (a);

{

int b = test ();

bar (b);

}

}

the variable a is usable whenever the program is executing within the function foo, but the
variable b is visible only while the program is executing inside the block in which b is
declared.

Table D-15. GDB Operators

Operator Description

@ ‘@’ is a binary operator for treating parts of memory as arrays. See section Arrays, for more
information.

:: ‘::’ allows you to specify a variable in terms of the file or function it is defined in. See section
Variables.

{type} addr Refers to an object of type type stored at address addr in memory. addr may be any
expression whose value is an integer or pointer (but parentheses are required around
non-unary operators, just as in a cast). This construct is allowed regardless of what kind of data
is officially supposed to reside at addr.

Examining Data

Motorola GNU Debugger (GDB) D-35

As a special exception, you can refer to a variable or function whose scope is a single
source file even if the current execution point is not in this file. But it is possible to have
more than one such variable or function with the same name (if they are in different source
files). In such a case, it is not defined which one you will get. If you wish, you can specify
any one of them using the colon colon construct:

block::variable

Here block is the name of the source file whose variable you want.

D.9.3 Artificial Arrays

It is often useful to print out several successive objects of the same type in memory; a
section of an array, or an array of dynamically determined size for which only a pointer
exists in the program.

This can be done by constructing an artificial array with the binary operator ‘@’. The left
operand of ‘@’ should be the first element of the desired array, as an individual object.
The right operand should be the length of the array. The result is an array value whose
elements are all of the type of the left argument. The first element is actually the left
argument; the second element comes from bytes of memory immediately following those
that hold the first element, and so on. Here is an example. If a program says

int *array = (int *) malloc (len * sizeof (int));

you can print the contents of array with

p *array@len

The left operand of ‘@’ must reside in memory. Array values made with ‘@’ in this way
behave just like other arrays in terms of subscripting, and are coerced to pointers when
used in expressions. (It would probably appear in an expression via the value history, after
you had printed it out.)

D.9.4 Format options

GDB provides a few ways to control how arrays and structures are printed.

info format

Display the current settings for the format options.

set array-max number-of-elements

If GDB is printing a large array, it will stop printing after it has printed the number of
elements set by the ‘set array-max’ command. This limit also applies to the display of
strings.

D-36 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

Examining Data

set prettyprint on

Cause GDB to print structures in an indented format with one member per line, like this:

$1 = {

next = 0x0,

flags = {

sweet = 1,

sour = 1

},

meat = 0x54 “Pork”

}

set prettyprint off

Cause GDB to print structures in a compact format, like this:

$1 = {next = 0x0, flags = {sweet = 1, sour = 1}, meat = 0x54 “Pork”}

This is the default format.

set unionprint on

Tell GDB to print unions which are contained in structures. This is the default setting.

set unionprint off

Tell GDB not to print unions which are contained in structures.

For example, given the declarations

typedef enum {Tree, Bug} Species;

typedef enum {Big_tree, Acorn, Seedling} Tree_forms;

typedef enum {Caterpiller, Cocoon, Butterfly}
Bug_forms;

struct thing {

Species it;

union {

Tree_forms tree;

Bug_forms bug;

} form;

};

struct thing foo = {Tree, {Acorn}};

Examining Data

Motorola GNU Debugger (GDB) D-37

with ‘set unionprint on’ in effect ‘p foo’ would print

$1 = {it = Tree, form = {tree = Acorn, bug = Cocoon}}

and with ‘set unionprint off’ in effect it would print

$1 = {it = Tree, form = {...}}

D.9.5 Output formats

GDB normally prints all values according to their data types. Sometimes this is not what
you want. For example, you might want to print a number in hex, or a pointer in decimal.
Or you might want to view data in memory at a certain address as a character string or an
instruction. These things can be done with output formats.

The simplest use of output formats is to say how to print a value already computed. This is
done by starting the arguments of the ‘print’ command with a slash and a format letter.
The format letters supported are listed in Table D-16:

For example, to print the program counter in hex (see section Registers), type

p/x $pc

Note that no space is required before the slash; this is because command names in GDB
cannot contain a slash.

To reprint the last value in the value history with a different format, you can use the ‘print’
command with just a format and no expression. For example, ‘p/x’ reprints the last value
in hex.

Table D-16. Print Output Format Letters

Format Letters Description

‘x’ Regard the bits of the value as an integer, and print the integer in hexadecimal.

‘d’ Print as integer in signed decimal.

‘u’ Print as integer in unsigned decimal.

‘o’ Print as integer in octal.

‘a’ Print as an address, both absolute in hex and then relative to a symbol defined as an address
below it.

‘c’ Regard as an integer and print it as a character constant.

‘f’ Regard the bits of the value as a floating point number and print using typical floating point
syntax.

D-38 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

Examining Data

D.9.5.1 Examining Memory

The command ‘x’ (for ‘examine’) can be used to examine memory without reference to
the program’s data types. The format in which you wish to examine memory is instead
explicitly specified. The allowable formats are a superset of the formats described in the
previous section.

‘x’ is followed by a slash and an output format specification, followed by an expression
for an address. The expression need not have a pointer value (though it may); it is used as
an integer, as the address of a byte of memory. See section Expressions for more
information on expressions. For example, ‘x/4xw $sp’ prints the four words of memory
above the stack pointer in hexadecimal.

The output format in this case specifies both how big a unit of memory to examine and
how to print the contents of that unit. It is done with one or two of the following letters:

These letters listed in Table D-17 specify just the size of unit to examine:

Many assemblers and cpu designers still use ‘word’ for a 16-bit quantity, as a holdover
from specific predecessor machines of the 1970’s that really did use two byte words. But
more generally the term ‘word’ has always referred to the size of quantity that a machine
normally operates on and stores in its registers. This is 32 bits for all the machines that
GDB runs on.

‘g’ Examine giant words (8 bytes).

These letters, as listed in Table D-18, specify just the way to print the contents:

Table D-17. Memory Output Format Letters

Format Letters Description

‘b’ Examine individual bytes.

‘h’ Examine halfwords (two bytes each).

‘w’ Examine words (four bytes each).

Table D-18. Print Output Format Letters

Format Letter Description

‘x’ Print as integers in unsigned hexadecimal.

‘d’ Print as integers in signed decimal.

‘u’ Print as integers in unsigned decimal.

‘o’ Print as integers in unsigned octal.

Examining Data

Motorola GNU Debugger (GDB) D-39

If either the manner of printing or the size of unit fails to be specified, the default is to use
the same one that was used last. If you don’t want to use any letters after the slash, you can
omit the slash as well.

You can also omit the address to examine. Then the address used is just after the last unit
examined. This is why string and instruction formats actually compute a unit size based on
the data: so that the next string or instruction examined will start in the right place. The
‘print’ command sometimes sets the default address for the ‘x’ command; when the value
printed resides in memory, the default is set to examine the same location. ‘info line’ also
sets the default for ‘x’, to the address of the start of the machine code for the specified line
and ‘info breakpoints’ sets it to the address of the last breakpoint listed.

When you use RET to repeat an ‘x’ command, it does not repeat exactly the same: the
address specified previously (if any) is ignored, so that the repeated command examines
the successive locations in memory rather than the same ones.

You can examine several consecutive units of memory with one command by writing a
repeat-count after the slash (before the format letters, if any). The repeat count must be a
decimal integer. It has the same effect as repeating the ‘x’ command that many times
except that the output may be more compact with several units per line. For example,

x/10i $pc

prints ten instructions starting with the one to be executed next in the selected frame. After
doing this, you could print another ten following instructions with

x/10

in which the format and address are allowed to default.

‘a’ Print as an address, both absolute in hex and then relative to a symbol defined as an address
below it.

‘c’ Print as character constants.

‘f’ Print as floating point. This works only with sizes ‘w’ and ‘g’.

‘s’ Print a null-terminated string of characters. The specified unit size is ignored; instead, the unit is
however many bytes it takes to reach a null character (including the null character).

‘i’ Print a machine instruction in assembler syntax (or nearly). The specified unit size is ignored;
the number of bytes in an instruction varies depending on the type of machine, the opcode and
the addressing modes used.

Table D-18. Print Output Format Letters (Continued)

Format Letter Description

D-40 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

Examining Data

The addresses and contents printed by the ‘x’ command are not put in the value history
because there is often too much of them and they would get in the way. Instead, GDB
makes these values available for subsequent use in expressions as values of the
convenience variables $_ and $__.

After an ‘x’ command, the last address examined is available for use in expressions in the
convenience variable $_. The contents of that address, as examined, are available in the
convenience variable $__.

If the ‘x’ command has a repeat count, the address and contents saved are from the last
memory unit printed; this is not the same as the last address printed if several units were
printed on the last line of output.

The specialized command ‘disassemble’ is also provided to dump a range of memory as
machine instructions. The default memory range is the function surrounding the program
counter of the selected frame. A single argument to this command is a program counter
value; the function surrounding this value will be dumped. Two arguments specify a range
of address (first inclusive, second exclusive) to be dumped.

D.9.6 Automatic Display

If you find that you want to print the value of an expression frequently (to see how it
changes), you might want to add it to the automatic display list so that GDB will print its
value each time the program stops. Each expression added to the list is given a number to
identify it; to remove an expression from the list, you specify that number. The automatic
display looks like this:

2: foo = 38

3: bar[5] = (struct hack *) 0x3804

showing item numbers, expressions and their current values.

If the expression refers to local variables, then it does not make sense outside the lexical
context for which it was set up. Such an expression is printed only when execution is
inside that lexical context. For example, if you give the command ‘display name’ while
inside a function with an argument name, then this argument will be displayed whenever
the program stops inside that function, but not when it stops elsewhere (since this
argument doesn’t exist elsewhere). See Table D-19.

Examining Data

Motorola GNU Debugger (GDB) D-41

D.9.7 Value History

Every value printed by the ‘print’ command is saved for the entire session in GDB’s value
history so that you can refer to it in other expressions.

The values printed are given history numbers for you to refer to them by. These are
successive integers starting with 1. ‘print’ shows you the history number assigned to a
value by printing ‘$num = ‘ before the value; here num is the history number.

To refer to any previous value, use ‘$’ followed by the value’s history number. The output
printed by ‘print’ is designed to remind you of this. Just $ refers to the most recent value in
the history, and $$ refers to the value before that.

For example, suppose you have just printed a pointer to a structure and want to see the
contents of the structure. It suffices to type

p *$

If you have a chain of structures where the component ‘next’ points to the next one, you
can print the contents of the next one with this:

Table D-19. Display Commands

Command Description

display exp Add the expression exp to the list of expressions to display each time the
program stops. See section Expressions.

display/ fmt exp For fmt specifying only a display format and not a size or count, add the
expression exp to the auto-display list but arranges to display it each time in
the specified format fmt.

display/ fmt addr For fmt ‘i’ or ‘s’, or including a unit-size or a number of units, add the
expression addr as a memory address to be examined each time the program
stops. Examining means in effect doing ‘x/fmt addr’. See section Memory.

undisplay dnums...
delete display dnums...

Remove item numbers dnums from the list of expressions to display.

disable display dnums... Disable the display of item numbers dnums. A disabled display item is not
printed automatically, but is not forgotten. It may be re-enabled later.

enable display dnums... Enable display of item numbers dnums. It becomes effective once again in
auto display of its expression, until you specify otherwise.

display Display the current values of the expressions on the list, just as is done when
the program stops.

info display Print the list of expressions previously set up to display automatically, each
one with its item number, but without showing the values. This includes
disabled expressions, which are marked as such. It also includes expressions
which would not be displayed right now because they refer to automatic
variables not currently available.

D-42 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

Examining Data

p *$.next

It might be useful to repeat this command many times by typing RET.

Note: The history records values, not expressions.

If the value of x is 4 and you type this command:

print x
set x=5

then the value recorded in the value history by the ‘print’ command remains 4 even though
the value of x has changed. See Table D-20.

D.9.8 Convenience Variables

GDB providesconvenience variablesthat you can use within GDB to hold on to a value
and refer to it later. These variables exist entirely within GDB; they are not part of your
program, and setting a convenience variable has no effect on further execution of your
program. That’s why you can use them freely.

Convenience variables have names starting with ‘$’. Any name starting with ‘$’ can be
used for a convenience variable, unless it is one of the predefined set of register names
(see section Registers).

You can save a value in a convenience variable with an assignment expression, just as you
would set a variable in your program. Example:

set $foo = *object_ptr

would save in $foo the value contained in the object pointed to by object_ptr.

Using a convenience variable for the first time creates it; but its value is void until you
assign a new value. You can alter the value with another assignment at any time.

Convenience variables have no fixed types. You can assign a convenience variable any
type of value, even if it already has a value of a different type. The convenience variable as
an expression has whatever type its current value has.

Table D-20. Info Commands

Command Description

info values Print the last ten values in the value history, with their item numbers. This is like ‘p $$9’
repeated ten times, except that ‘info values’ does not change the history.

info values n Print ten history values centered on history item number n.

info values + Print ten history values just after the values last printed.

Examining Data

Motorola GNU Debugger (GDB) D-43

info convenience

Print a list of convenience variables used so far, and their values. Abbreviated ‘i con’.

One of the ways to use a convenience variable is as a counter to be incremented or a
pointer to be advanced. For example:

set $i = 0
print bar[$i++]->contents
...repeat that command by typing RET.

Some convenience variables are created automatically by GDB and given values likely to
be useful. See Table D-21.

D.9.9 Registers

Machine register contents can be referred to in expressions as variables with names
starting with ‘$’. The names of registers are different for each machine; use ‘info registers’
to see the names used on your machine. The names $pc and $sp are used on all machines
for the program counter register and the stack pointer. Often $fp is used for a register that
contains a pointer to the current stack frame, and $ps is used for a register that contains the
processor status. These standard register names may be available on your machine even
though the info registers command displays them with a different name. For example, on
the SPARC, info registers displays the processor status register as $psr but you can also
refer to it as $ps.

GDB always considers the contents of an ordinary register as an integer when the register
is examined in this way. Some machines have special registers which can hold nothing but
floating point; these registers are considered floating point. There is no way to refer to the
contents of an ordinary register as floating point value (although you can print it as a
floating point value with ‘print/f $regname’).

Some registers have distinct “raw” and “virtual” data formats. This means that the data
format in which the register contents are saved by the operating system is not the same one
that your program normally sees. For example, the registers of the 68881 floating point
coprocessor are always saved in “extended” format, but all C programs expect to work

Table D-21. Convenience Variables

Convenience
Variable Description

$_ The variable $_ is automatically set by the ‘x’ command to the last address examined (see
section Memory). Other commands which provide a default address for ‘x’ to examine also set
$_ to that address; these commands include ‘info line’ and ‘info breakpoint’.

$__ The variable $__ is automatically set by the ‘x’ command to the value found in the last address
examined.

D-44 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

Examining the Symbol Table

with “double” format. In such cases, GDB normally works with the virtual format only
(the format that makes sense for your program), but the ‘info registers’ command prints
the data in both formats.

Register values are relative to the selected stack frame (see section Selection). This means
that you get the value that the register would contain if all stack frames farther in were
exited and their saved registers restored. In order to see the real contents of all registers,
you must select the innermost frame (with ‘frame 0’).

Some registers are never saved (typically those numbered zero or one) because they are
used for returning function values; for these registers, relativization makes no difference.

info registers

Print the names and relativized values of all registers.

info registers regname

Print the relativized value of registerregname. regnamemay be any register name valid
on the machine you are using, with or without the initial ‘$’.

D.9.9.1 Examples

You could print the program counter in hex with

p/x $pc

or print the instruction to be executed next with

x/i $pc

or add four to the stack pointer with

set $sp += 4

The last is a way of removing one word from the stack, on machines where stacks grow
downward in memory (most machines, nowadays). This assumes that the innermost stack
frame is selected. Setting $sp is not allowed when other stack frames are selected.

D.10 Examining the Symbol Table

The commands described in this section allow you to make inquiries for information about
the symbols (names of variables, functions and types) defined in your program. This
information is found by GDB in the symbol table loaded by the ‘symbol-file’ command; it
is inherent in the text of your program and does not change as the program executes. See
Table D-22.

Altering Execution

Motorola GNU Debugger (GDB) D-45

D.11 Altering Execution

Once you think you have find an error in the program, you might want to find out for
certain whether correcting the apparent error would lead to correct results in the rest of the
run. You can find the answer by experiment, using the GDB features for altering execution
of the program.

For example, you can store new values into variables or memory locations, give the
program a signal, restart it at a different address, or even return prematurely from a
function to its caller.

Table D-22. Symbol-File Commands

Command Description

whatis exp Print the data type of expression exp. exp is not actually evaluated, and any
side-effecting operations (such as assignments or function calls) inside it do not
take place. See section Expressions.

whatis Print the data type of $, the last value in the value history.

info address symbol Describe where the data for symbol is stored. For a register variable, this says
which register it is kept in. For a non-register local variable, this prints the
stack-frame offset at which the variable is always stored.
Note the contrast with ‘print &symbol’, which does not work at all for a register
variables, and for a stack local variable prints the exact address of the current
instantiation of the variable.

ptype typename Print a description of data type typename. typename may be the name of a type,
or for C code it may have the form ‘struct struct-tag’, ‘union union-tag’ or ‘enum
enum-tag’.

info sources Print the names of all source files in the program for which there is debugging
information.

info functions Print the names and data types of all defined functions.

info functions regexp Print the names and data types of all defined functions whose names contain a
match for regular expression regexp. Thus, ‘info fun step’ finds all functions
whose names include ‘step’; ‘info fun ^step’ finds those whose names start with
‘step’.

info variables Print the names and data types of all variables that are declared outside of
functions (i.e., except for local variables).

info variables regexp Print the names and data types of all variables (except for local variables) whose
names contain a match for regular expression regexp.

info types Print all data types that are defined in the program.

info types regexp Print all data types that are defined in the program whose names contain a match
for regular expression regexp.

printsyms filename Write a complete dump of the debugger’s symbol data into the file filename.

D-46 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

Altering Execution

D.11.1 Assignment to Variables

To alter the value of a variable, evaluate an assignment expression. See section
Expressions. For example,

print x=4

would store the value 4 into the variable x, and then print the value of the assignment
expression (which is 4).

All the assignment operators of C are supported, including the incrementation operators
‘++’ and ‘--’, and combining assignments such as ‘+=’ and ‘<<=’.

If you are not interested in seeing the value of the assignment, use the ‘set’ command
instead of the ‘print’ command. ‘set’ is really the same as ‘print’ except that the
expression’s value is not printed and is not put in the value history (see section Value
History). The expression is evaluated only for side effects.

Note that if the beginning of the argument string of the ‘set’ command appears identical to
a ‘set’ sub-command, it may be necessary to use the ‘set variable’ command. This
command is identical to ‘set’ except for its lack of sub-commands.

GDB allows more implicit conversions in assignments than C does; you can freely store
an integer value into a pointer variable or vice versa, and any structure can be converted to
any other structure that is the same length or shorter.

To store values into arbitrary places in memory, use the ‘{...}’ construct to generate a
value of specified type at a specified address (see section Expressions). For example,
{int}0x83040 would refer to memory location 0x83040 as an integer (which implies a
certain size and representation in memory), and

set {int}0x83040 = 4

would store the value 4 into that memory location.

D.11.2 Continuing at a Different Address

Ordinarily, when you continue the program, you do so at the place where it stopped, with
the ‘cont’ command. You can instead continue at an address of your own choosing, with
the following commands:

jump linenum

Resume execution at line numberlinenum. Execution may stop immediately if there is a
breakpoint there.

Altering Execution

Motorola GNU Debugger (GDB) D-47

The ‘jump’ command does not change the current stack frame, or the stack pointer, or the
contents of any memory location or any register other than the program counter. If line
linenumis in a different function from the one currently executing, the results may be
bizarre if the two functions expect different patterns of arguments or of local variables.
For this reason, the ‘jump’ command requests confirmation if the specified line is not in
the function currently executing. However, even bizarre results are predictable based on
careful study of the machine-language code of the program.

jump * address

Resume execution at the instruction at addressaddress.

You can get much the same effect as the jump command by storing a new value into the
register $pc. The difference is that this does not start the program running; it only changes
the address where it will run when it is continued. For example,

set $pc = 0x485

causes the next ‘cont’ command or stepping command to execute at address 0x485, rather
than at the address where the program stopped. See section Stepping.

The most common occasion to use the ‘jump’ command is when you have stepped across
a function call with next, and found that the return value is incorrect. If all the relevant
data appeared correct before the function call, the error is probably in the function that just
returned.

In general, your next step would now be to rerun the program and execute up to this
function call, and then step into it to see where it goes astray. But this may be time
consuming. If the function did not have significant side effects, you could get the same
information by resuming execution just before the function call and stepping through it.
To do this, first put a breakpoint on that function; then, use the ‘jump’ command to
continue on the line with the function call.

D.11.3 Giving the Program a Signal
signal signalnum

Resume execution where the program stopped, but give it immediately the signal number
signalnum.

Alternatively, if signalnumis zero, continue execution without giving a signal. This is
useful when the program stopped on account of a signal and would ordinary see the signal
when resumed with the ‘cont’ command; ‘signal 0’ causes it to resume without a signal.

D-48 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

Canned Sequences of Commands

D.11.4 Returning from a Function

You can cancel execution of a function call with the ‘return’ command. This command
has the effect of discarding the selected stack frame (and all frames within it), so that
control moves to the caller of that function. You can think of this as making the discarded
frame return prematurely.

First select the stack frame that you wish to return from (see section Selection). Then type
the ‘return’ command. If you wish to specify the value to be returned, give that as an
argument.

This pops the selected stack frame (and any other frames inside of it), leaving its caller as
the innermost remaining frame. That frame becomes selected. The specified value is
stored in the registers used for returning values of functions.

The ‘return’ command does not resume execution; it leaves the program stopped in the
state that would exist if the function had just returned. Contrast this with the ‘finish’
command (see section Stepping), which resumes execution until the selected stack frame
returns naturally.

D.12 Canned Sequences of Commands

GDB provides two ways to store sequences of commands for execution as a unit:
user-defined commands and command files.

D.13 User-Defined Commands

A user-definedcommand is a sequence of GDB commands to which you assign a new
name as a command. This is done with the ‘define’ command. See Table D-23.

You may use the ‘document’ command again to change the documentation of a command.
Redefining the command with ‘define’ does not change the documentation.

Table D-23. Define Commands

Command Description

define commandname Define a command named commandname. If there is already a command by that
name, you are asked to confirm that you want to redefine it.The definition of the
command is made up of other GDB command lines, which are given following the
‘define’ command. The end of these commands is marked by a line containing ‘end’.

document commandname Give documentation to the user-defined command commandname. The command
commandname must already be defined. This command reads lines of
documentation just as ‘define’ reads the lines of the command definition, ending with
‘end’. After the ‘document’ command is finished, ‘help’ on command commandname
will print the documentation you have specified.

User-Defined Commands

Motorola GNU Debugger (GDB) D-49

User-defined commands do not take arguments. When they are executed, the commands
of the definition are not printed. An error in any command stops execution of the
user-defined command.

Commands that would ask for confirmation if used interactively proceed without asking
when used inside a user-defined command. Many GDB commands that normally print
messages to say what they are doing omit the messages when used in user-defined
command.

D.13.1 Command Files

A command file for GDB is a file of lines that are GDB commands. Comments (lines
starting with ‘#’) may also be included. An empty line in a command file does nothing; it
does not mean to repeat the last command, as it would from the terminal.

When GDB starts, it automatically executes its init files, command files named ‘.gdbinit’.
GDB reads the init file (if any) in your home directory and then the init file (if any) in the
current working directory. (The init files are not executed if the ‘-nx’ option is given.) You
can also request the execution of a command file with the ‘source’ command:

source filename

Execute the command filefilename.

The lines in a command file are executed sequentially. They are not printed as they are
executed. An error in any command terminates execution of the command file.

Commands that would ask for confirmation if used interactively proceed without asking
when used in a command file. Many GDB commands that normally print messages to say
what they are doing omit the messages when used in a command file.

D.13.2 Commands for Controlled Output

During the execution of a command file or a user defined command, the only output that
appears is what is explicitly printed by the commands of the definition. This section
describes three commands useful for generating exactly the output you want as listed in
Table D-24.

D-50 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

Options and Arguments for GDB

D.14 Options and Arguments for GDB

When you invoke GDB, you can specify arguments telling it what files to operate on and
what other things to do.

D.14.1 Mode Options

Table D-25 lists possible Mode Optionts:

Table D-24. Controlled Output Commands

Command Description

echo text Print text. Non-printing characters can be included in text using C
escape sequences, such as ‘\n’ to print a newline. No newline will be
printed unless you specify one. In addition to the standard C escape
sequences a backslash followed by a space stands for a space. This
is useful for outputting a string with spaces at the beginning or the
end, since leading and trailing spaces are trimmed from all arguments.
Thus, to print “and foo = ‘’ , use the command ‘‘echo \ and foo = \ ‘’
A backslash at the end of text can be used, as in C, to continue the
command onto subsequent lines.
echo This is some text\n\
which is continued\n\
onto several lines.\n
produces the same output as
echo This is some text\n echo which is continued\n
echo onto several lines.\n

output expression Print the value of expression and nothing but that value: no newlines,
no ‘$nn = ‘. The value is not entered in the value history either. See
section Expressions for more information on expressions.

output/ fmt expression Print the value of expression in format fmt. See section Output
formats, for more information.

printf string, expressions... Print the values of the expressions under the control of string. The
expressions are separated by commas and may be either numbers or
pointers. Their values are printed as specified by string, exactly as if
the program were to execute

printf (string, expressions...);
For example, you can print two values in hex like this:

printf “foo, bar-foo = 0x%x, 0x%x\n”, foo,
bar-foo
only backslash-escape sequences that you can use in the string are
the simple ones that consist of backslash followed by a letter.

Options and Arguments for GDB

Motorola GNU Debugger (GDB) D-51

D.14.2 File-specifying Options

All the options and command line arguments shown in Table D-26 are processed in
sequential order. The order makes a difference when the ‘-x’ option is used.

D.14.3 Other Arguments

If there are arguments to GDB that are not options or associated with options, the first one
specifies the symbol table and executable file name (as if it were preceded by ‘-se’) and
the second one specifies a core dump file name (as if it were preceded by ‘-c’).

Table D-25. Mode Options

Mode Option Description

‘-nx’ Do not execute commands from the init files ‘.gdbinit’. Normally, the commands in these files are
executed after all the command options and arguments have been processed. See section
Command Files.

‘-q’ “Quiet”. Do not print the usual introductory messages.

‘-batch’ Run in batch mode. Exit with code 0 after processing all the command files specified with ‘-x’
(and ‘.gdbinit’, if not inhibited). Exit with nonzero status if an error occurs in executing the GDB
commands in the command files.

‘-fullname’ This option is used when Emacs runs GDB as a subprocess. It tells GDB to output the full file
name and line number in a standard, recognizable fashion each time a stack frame is displayed
(which includes each time the program stops). This recognizable format looks like two ‘\032’
characters, followed by the file name, line number and character position separated by colons,
and a newline. The Emacs-to-GDB interface program uses the two ‘\032’ characters as a signal
to display the source code for the frame.

Table D-26. File Specifying Options

Options Description

‘-s file’ Read symbol table from file file.

‘-e file’ Use file file as the executable file to execute when appropriate, and for examining pure data in
conjunction with a core dump.

‘-se file’ Read symbol table from file file and use it as the executable file.

‘-c file’ Use file file as a core dump to examine.

‘-x file’ Execute GDB commands from file file.

‘-d
directory’

Add directory to the path to search for source files.

D-52 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

Using GDB under GNU Emacs

D.15 Using GDB under GNU Emacs

A special interface allows you to use GNU Emacs to view (and edit) the source files for
the program you are debugging with GDB.

To use this interface, use the command M-x gdb in Emacs. Give the executable file you
want to debug as an argument. This command starts GDB as a subprocess of Emacs, with
input and output through a newly created Emacs buffer.

Using GDB under Emacs is just like using GDB normally except for two things:

• All “terminal” input and output goes through the Emacs buffer. This applies both to
GDB commands and their output, and to the input and output done by the program
you are debugging.

This is useful because it means that you can copy the text of previous commands
and input them again; you can even use parts of the output in this way.

All the facilities of Emacs’s Shell mode are available for this purpose.

• GDB displays source code through Emacs. Each time GDB displays a stack frame,
Emacs automatically finds the source file for that frame and puts an arrow (‘=>’) at
the left margin of the current line.

Explicit GDB ‘list’ or search commands still produce output as usual, but you probably
will have no reason to use them.

In the GDB I/O buffer, you can use these special Emacs commands as listed in Table
D-27:

Table D-27. Emac Commands

Commands Description

M-s Execute to another source line, like the GDB ‘step’ command.

M-n Execute to next source line in this function, skipping all function calls, like the GDB ‘next’
command.

M-i Execute one instruction, like the GDB ‘stepi’ command.

C-c C-f Execute until exit from the selected stack frame, like the GDB ‘finish’ command.

M-c Continue execution of the program, like the GDB ‘cont’ command.

M-u Go up the number of frames indicated by the numeric argument (see section Arguments,
Numeric Arguments, emacs, The GNU Emacs Manual), like the GDB ‘up’ command.

M-d Go down the number of frames indicated by the numeric argument, like the GDB ‘down’
command.

Using GDB under GNU Emacs

Motorola GNU Debugger (GDB) D-53

In any source file, the Emacs command C-x SPC (gdb break) tells GDB to set a breakpoint
on the source line point is on.

The source files displayed in Emacs are in ordinary Emacs buffers which are visiting the
source files in the usual way. You can edit the files with these buffers if you wish; but
keep in mind that GDB communicates with Emacs in terms of line numbers. If you add or
delete lines from the text, the line numbers that GDB knows will cease to correspond
properly to the code.

D-54 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

Using GDB under GNU Emacs

Motorola Additional Support E-1

Appendix E
Additional Support
User support from the conception of a design through completion is available from
Motorola and third-party companies as shown in Table E-1:

Table E-1. User Support

Support Motorola Third Party

Design - Data Sheets
- Application Notes
- Application Bulletins
- Software Examples

- Data Acquisition Packages
- Filter Design Packages
- Operating System Software
- Simulator

Prototyping - Assembler
- Linker
- C Compiler
- Simulator
- Application Development System (ADS)
- In-Circuit EmulatorDebug
- Cable for ADS

- Logic Analyzer with DSP56000/DSP56001
ROM Packages
- Data Acquisition Cards
- DSP Development System Cards
- Operating System Software
- In-Circuit Emulator
- Debug Software

Design Verification - Application Development System (ADS)
- In-Circuit Emulator
- Simulator

- Data Acquisition Packages
- Logic Analyzer with DSP56000/DSP56001
ROM Packages
- Data Acquisition Cards
- DSP Development System Cards
- Application-Specific Development Tools
- Debug Software

E-2 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

The following is a partial list of the support available for the DSP56000/DSP56001.
Additional information can be obtained through Dr. BuB or the appropriate support
telephone service.

E.1 Motorola DSP Product Support
• DSP56000CLASx Design-In Software Package which includes:

Relocatable Macro Assembler
Linker
Simulator (simulates single or multiple DSP56000/DSP56001s)
Librarian

• 56KCCx Full ANSI Compliant C Compiler

• DSP320to56001 Translator Software

• DSP56000/DSP56001 Applications Development System (ADS)

• Support Integrated Circuits

• DSP Bulletin Board (Dr. BuB)

• Motorola DSP Newsletter

• Motorola Technical Service Engineers (TSEs)
See your local telephone directory for the Motorola Semiconductor Sector sales
office telephone number.

• Design Hotline

• Applications Assistance

• Marketing Information

• Third-Party Support Information

• University Support Information

E.2 DSP56000CLASx Assembler/Simulator

The macro cross assembler and simulator run on:

1. IBM� PCs and clones using an 80386 or upward compatible processor

2. Macintosh� computers with a NU-BUS� expansion port

3. SUN computer

4. NeXT� computer

Motorola Additional Support E-3

E.2.1 Macro Cross Assembler Features:
• Production of relocatable object modules compatible with linker program when in

relocatable mode

• Production of absolute files compatible with simulator program when in absolute
mode

• Supports full instruction set, memory spaces, and parallel data transfer fields of the
DSP56000/DSP56001

• Modular programming features: local labels, sections, and external
definition/reference directives

• Nested macro processing capability with support for macro libraries

• Complex expression evaluation including boolean operators

• Built-in functions for data conversion, string comparison, and common
transcendental math functions

• Directives to define circular and bit-reversed buffers

• Extensive error checking and reporting

E.2.2 Simulator Features:
• Simulation of all DSP56000 family DSPs

• Simulation of multiple DSP56000 family DSPs

• Linkable object code modules:

— –Nondisplay simulator library

— –Display simulator library

• C language source code for:

— –Screen management functions

— –Terminal I/O functions

— –Simulation examples

• Single stepping through object programs

• Conditional or unconditional breakpoints

• Program patching using a single-line assembler/disassembler

• Instruction, clock cycle, and histogram counters

• Session and/or command logging for later reference

• ASCII input/output files for peripherals

• Help-line display and expanded on-line help for simulator commands

E-4 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

• Loading and saving of files to/from simulator memory

• Macro command definition and execution

• Display enable/disable of registers and memory

• Hexadecimal/decimal/binary calculator

E.3 DSP320to56001 Translator

E.3.1 DSP320to56001 Translator Features:
• Translates any TMS32010 linked object code to DSP56001 source assembler code

• Two modes of operation:

— Translates to DSP56001 source assembler code for optimization and assembly
using DSP56000CLASx

— Translates and runs “as is” directly and immediately on the DSP56000ADSx

• C language DSP320to56001 source code is provided in addition to IBM PC/XT/AT
object code to allow:

— User modification for TMS32020 or TMS320C25 translation

— User compilation to accommodate different host platforms

E.4 DSP56000ADSx Application Development Systems
(ADS)

E.4.1 DSP56000ADS ADS Hardware Features:
• Full-speed 27 MHz operation

• Multiple application development module (ADM) support with programmable
ADM addresses

• 8Kx24 (expandable to 32Kx24)user-configurable RAM for DSP56000/DSP56001
code development

• 1Kx24 monitor ROM expandable to 4Kx24

• 96-pin Euro-card connector making all DSP56001 pins accessible

• In-circuit emulation capabilities when used with the DSP56KEMULTRCABL
cable

• Separate berg pin connectors for alternate accessing of serial or host/DMA ports

• ADM can be used in stand-alone configuration

• No external power supply needed when connected to a host platform

Motorola Additional Support E-5

E.4.2 DSP56000ADSx ADS Software Features:
• Single/multiple stepping through DSP56000/DSP56001 object programs

• Up to 99 conditional or unconditional breakpoints

• Program patching using a single-line assembler/disassembler

• Session and/or command logging for later reference

• Loading and saving files to/from ADM memory

• Macro command definition and execution

• Display enable/disable of registers and memory

• Debug commands supporting multiple ADMs

• Hexadecimal/decimal/binary calculator

• Host operating system commands from within ADS user interface program

• Multiple OS I/O file access from DSP56000/DSP56001 object programs

• Fully compatible with the DSP56000CLASx design-in software package

• On-line help screens for each command and DSP56000/DSP56001 register

E.4.2.1 Support Integrated Circuits:
• 8Kx24 Static RAM

• DSP56ADC16 16-bit, 100-kHz analog-to-digital converter

• DSP56401 AES/EBU processor

• DSP56200 FIR filter

E-6 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

E.5 Dr. BuB Electronic Bulletin Board

Dr. BuB is an electronic bulletin board providing free source code for a large variety of
topics that can be used to develop applications with Motorola DSP products. The software
library includes files including FFTs, FIR filters, IIR filters, lattice filters, matrix algebra
routines, companding routines, floating-point routines, a software debug monitor, and
others. In addition, the latest product information and documentation (including
information on new products and improvements on existing products) is posted. Questions
concerning Motorola DSP products posted on Dr. BuB are answered promptly. Access to
Dr. BuB is through the following phone numbers:

(212A – 300/1200 Baud) (512) 891-DSP1
(V.22 – 1200 Baud)... (512) 891-DSP2
(V.22bis – 2400 Baud).. (512) 891-DSP3
Format: 7 data bits, even parity, 1 stop bit
User ID=guest

Table E-2 is a partial list of the software available on Dr. BuB.

Table E-2. Available Software

Document ID Version Synopsis Size

Audio:

rvb1.asm 1.0 Easy-to-read reverberation routine 17056

rvb2.asm 1.0 Same as RVB1.ASM but optimized 15442

stereo.asm 1.0 Code for C-QUAM AM stereo decoder 4830

stereo.hlp 1.0 Help file for STEREO.ASM 620

dge.asm 1.0 Digital Graphic Equalizer code from 14880

Codec Routines:

loglin.asm 1.0 Companded CODEC to linear PCM data conversion 4572

loglin.hlp Help for loglin.asm 1479

loglint.asm 1.0 Test program for loglin.asm 2184

loglint.hlp Help for loglint.asm 1993

linlog.asm 1.1 Linear PCM to companded CODEC data conversion 4847

linlog.hlp Help for linlog.asm 1714

Motorola Additional Support E-7

DTMF Routines:

clear.cmd 1.0 Explained in read.me file 119

data.lod 1.0 421

det.asm 1.0 Subroutine used in IIR DTMF 5923

dtmf.asm 1.0 Main routine used in IIR DTMF 10685

dtmf.mem 1.0 Memory for DTMF routine 48

dtmfmstr.asm 1.0 Main routine for multichannel DTMF 7409

dtmfmstr.mem 1.0 Memory for multichannel DTMF routine 41

dtmftwo.asm 1.0 10256

ex56.bat 1.0 94

genxd.lod 1.0 Data file 183

genyd.lod 1.0 Data file 180

goertzel.asm 1.0 Goertzel routine 4393

goertzel.lnk 1.0 Link file for Goertzel routine 6954

goertzel.lst 1.0 List file for Goertzel routine 11600

load.cmd 1.0 46

tstgoert.mem 1.0 Memory for Goertzel routine 384

sub.asm 1.0 Subroutine linked for use in IIR DTMF 2491

read.me 1.0 Instructions 738

Fast Fourier Transforms:

sincos.asm 1.2 Sine-Cosine Table Generator for FFTs 1185

sincos.hlp Help for sincos.asm 887

sinewave.asm 1.1 Full-Cycle Sine wave Table Generator Macro 1029

sinewave.hlp for sinewave.asm 1395

fftr2a.asm 1.1 Radix 2, In-Place, DIT FFT (smallest) 3386

fftr2a.hlp Help for fftr2a.asm 2693

fftr2at.asm 1.1 Test Program for FFTs (fftr2a.asm) 999

fftr2at.hlp Help for fftr2at.asm 563

Table E-2. Available Software

Document ID Version Synopsis Size

E-8 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

fftr2b.asm 1.1 Radix 2, In-Place, DIT FFT (faster) 4290

fftr2b.hlp Help for fftr2b.asm 3680

fftr2c.asm 1.2 Radix 2, In-Place, DIT FFT (even faster) 5991

fftr2c.hlp Help for fftr2c.asm 3231

fftr2d.asm 1.0 Radix 2, In-Place, DIT FFT (using DSP56001 sine-cosine
ROM tables)

3727

fftr2d.hlp Help for fftr2d.asm 3457

fftr2dt.asm 1.0 Test program for fftr2d.asm 1287

fftr2dt.hlp Help for fftr2dt.asm 614

fftr2e.asm 1.0 1024 Point, Non-In-Place, FFT (3.39ms) 8976

fftr2e.hlp Help for fftr2e.asm 5011

fftr2et.asm 1.0 Test program for fftr2e.asm 984

fftr2et.hlp Help for fftr2et.asm 408

dct1.asm 1.1 Discrete Cosine Transform using FFT 5493

dct1.hlp 1.1 Help file for dct1.asm 970

fftr2cc.asm 1.0 Radix 2, In-place Decimation-in-time complex FFT macro 6524

fftr2cc.hlp 1.0 Help file for fftr2cc.asm 3533

fftr2cn.asm 1.0 Radix 2, Decimation-in-time Complex FFT macro with
normally ordered input/output

6584

fftr2cn.hlp 1.0 Help file for fftr2cn.asm 2468

fftr2en.asm 1.0 1024 point, not-in-place, complex FFT macro with normally
ordered input/output

9723

fftr2en.hlp 1.0 Help file for fftr2en.asm 4886

dhit1.asm 1.0 Routine to compute Hilbert transform in the frequency
domain

1851

dhit1.hlp 1.0 Help file for dhit1.asm 1007

fftr2bf.asm 1.0 Radix-2, decimation-in-time FFT with 13526

block floating point

fftr2bf.hlp 1.0 Help file for fftr2bf.asm 1578

fftr2aa.asm 1.0 FFT program for automatic scaling 3172

Table E-2. Available Software

Document ID Version Synopsis Size

Motorola Additional Support E-9

Filters:

fir.asm 1.0 Direct Form FIR Filter 545

fir.hlp Help for fir.asm 2161

firt.asm 1.0 Test program for fir.asm 1164

iir1.asm 1.0 Direct Form Second Order All Pole 656

IIR Filter

iir1.hlp Help for iir1.asm 1786

iir1t.asm 1.0 Test program for iir1.asm 1157

iir2.asm 1.0 Direct Form Second Order All Pole IIR Filter with Scaling 801

iir2.hlp Help for iir2.asm 2286

iir2t.asm 1.0 Test program for iir2.asm 1311

iir3.asm 1.0 Direct Form Arbitrary Order All Pole IIR Filter 776

iir3.hlp Help for iir3.asm 2605

iir3t.asm 1.0 Test program for iir3.asm 1309

iir4.asm 1.0 Second Order Direct Canonic IIR Filter (Biquad IIR Filter) 713

iir4.hlp Help for iir4.asm 2255

iir4t.asm 1.0 Test program for iir4.asm 1202

iir5.asm 1.0 Second Order Direct Canonic IIR Filter with Scaling (Biquad
IIR Filter)

842

iir5.hlp Help for iir5.asm 2803

iir5t.asm 1.0 Test program for iir5.asm 1289

iir6.asm 1.0 Arbitrary Order Direct Canonic IIR Filter 923

iir6.hlp Help for iir6.asm 3020

iir6t.asm 1.0 Test program for iir6.asm 1377

iir7.asm 1.0 Cascaded Biquad IIR Filters 900

iir7.hlp Help for iir7.asm 3947

iir7t.asm 1.0 Test program for iir7.asm 1432

lms.hlp 1.0 LMS Adaptive Filter Algorithm 5818

transiir.asm 1.0 Implements the transposed IIR filter 1981

Table E-2. Available Software

Document ID Version Synopsis Size

E-10 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

transiir.hlp 1.0 Help file for transiir.asm 974

Floating-Point Routines:

fpdef.hlp 2.0 Storage format and arithmetic representation definition 10600

fpcalls.hlp 2.1 Subroutine calling conventions 11876

fplist.asm 2.0 Test file that lists all subroutines 1601

fprevs.hlp 2.0 Latest revisions of floating-point lib 1799

fpinit.asm 2.0 Library initialization subroutine 2329

fpadd.asm 2.0 Floating point add 3860

fpsub.asm 2.1 Floating point subtract 3072

fpcmp.asm 2.1 Floating point compare 2605

fpmpy.asm 2.0 Floating point multiply 2250

fpmac.asm 2.1 Floating point multiply-accumulate 2712

fpdiv.asm 2.0 Floating point divide 3835

fpsqrt.asm 2.0 Floating point square root 2873

fpneg.asm 2.0 Floating point negate 2026

fpabs.asm 2.0 Floating point absolute value 1953

fpscale.asm 2.0 Floating point scaling 2127

fpfix.asm 2.0 Floating to fixed point conversion 3953

fpfloat.asm 2.0 Fixed to floating point conversion 2053

fpceil.asm 2.0 Floating point CEIL subroutine 1771

fpfloor.asm 2.0 Floating point FLOOR subroutine 2119

durbin.asm 1.0 Solution for LPC coefficients 5615

durbin.hlp 1.0 Help file for DURBIN.ASM 2904

fpfrac.asm 2.0 Floating point FRACTION subroutine 1862

Functions:

log2.asm 1.0 Log base 2 by polynomial approximation 1118

log2.hlp Help for log2.asm 719

log2t.asm 1.0 Test program for log2.asm 1018

Table E-2. Available Software

Document ID Version Synopsis Size

Motorola Additional Support E-11

log2nrm.asm 1.0 Normalizing base 2 logarithm macro 2262

log2nrm.hlp Help for log2nrm.asm 676

log2nrmt.asm 1.0 Test program for log2nrm.asm 1084

exp2.asm 1.0 Exponential base 2 by polynomial approximation 926

exp2.hlp Help for exp2.asm 759

exp2t.asm 1.0 Test program for exp2.asm 1019

sqrt1.asm 1.0 Square Root by polynomial approximation, 7 bit accuracy 991

sqrt1.hlp Help for sqrt1.asm 779

sqrt1t.asm 1.0 Test program for sqrt1.asm 1065

sqrt2.asm 1.0 Square Root by polynomial approximation, 10 bit accuracy 899

sqrt2.hlp Help for sqrt2.asm 776

sqrt2t.asm 1.0 Test program for sqrt2.asm 1031

sqrt3.asm 1.0 Full precision Square Root Macro 1388

sqrt3.hlp Help for sqrt3.asm 794

sqrt3t.asm 1.0 Test program for sqrt3.asm 1053

tli.asm 1.1 Linear table lookup/interpolation routine for function
generation

3253

tli.hlp 1.1 Help for tli.asm 1510

bingray.asm 1.0 Binary to Gray code conversion macro 601

bingrayt.asm 1.0 Test program for bingray.asm 991

rand1.asm 1.1 Pseudo Random Sequence Generator 2446

rand1.hlp Help for rand1.asm 704

Lattice Filters:

latfir1.asm 1.0 Lattice FIR Filter Macro 1156

latfir1.hlp Help for latfir1.asm 6327

latfir1t.asm 1.0 Test program for latfir1.asm 1424

latfir2.asm 1.0 Lattice FIR Filter Macro (modified modulo count) 1174

latfir2.hlp Help for latfir2.asm 1295

latfir2t.asm 1.0 Test program for latfir2.asm 1423

Table E-2. Available Software

Document ID Version Synopsis Size

E-12 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

latiir.asm 1.0 Lattice IIR Filter Macro 1257

latiir.hlp Help for latiir.asm 6402

latiirt.asm 1.0 Test program for latiir.asm 1407

latgen.asm 1.0 Generalized Lattice FIR/IIR Filter Macro 1334

latgen.hlp Help for latgen.asm 5485

latgent.asm 1.0 Test program for latgen.asm 1269

latnrm.asm 1.0 Normalized Lattice IIR Filter Macro 1407

latnrm.hlp Help for latnrm.asm 7475

latnrmt.asm 1.0 Test program for latnrm.asm 1595

Matrix Operations:

matmul1.asm 1.0 [1x3][3x3]=[1x3] Matrix Multiplication 1817

matmul1.hlp Help for matmul1.asm 527

matmul2.asm 1.0 General Matrix Multiplication, C=AB 2650

matmul2.hlp Help for matmul2.asm 780

matmul3.asm 1.0 General Matrix Multiply-Accumulate, C=AB+Q 2815

matmul3.hlp 1.0 Help for matmul3.asm 865

Reed-Solomon Encoder:

readme.rs 1.0 Instructions for Reed-Solomon coding 5200

rscd.asm 1.0 Reed-Solomon coder for DSP56000 simulator 5822

newc.c 1.0 Reed-Solomon coder coded in C 4075

table1.asm 1.0 Include file for R-S coder 7971

table2.asm 1.0 Include file for R-S coder 4011

Sorting Routines:

sort1.asm 1.0 Array Sort by Straight Selection 1312

sort1.hlp Help for sort1.asm 1908

sort1t.asm 1.0 Test program for sort1.asm 689

sort2.asm 1.1 Array Sort by Heapsort Method 2183

sort2.hlp Help for sort2.asm 2004

Table E-2. Available Software

Document ID Version Synopsis Size

Motorola Additional Support E-13

sort2t.asm 1.0 Test program for sort2.asm 700

Speech:

lgsol1.asm 2.0 Leroux-Gueguen solution for PARCOR (LPC) coefficients 4861

lgsol1.hlp Help for lgsol1.asm 3971

durbin1.asm 1.2 Durbin Solution for PARCOR (LPC) coefficients 6360

durbin1.hlp Help for durbin1.asm 3616

adpcm.asm 1.0 32 kbits/s CCITT ADPCM Speech Coder

adpcm.hlp 1.0 Help file for adpcm.asm 14817

adpcmns.asm 1.0 Nonstandard ADPCM source code 54733

adpcmns.hlp 1.0 Help file for adpcmns.asm 9952

Standard I/O Equates:

ioequ.asm 1.1 Motorola Standard I/O Equate File 8774

ioequlc.asm 1.1 Lower Case Version of ioequ.asm 8788

intequ.asm 1.0 Standard Interrupt Equate File 1082

intequlc.asm 1.0 Lower Case Version of intequ.asm 1082

Tools and Utilities:

srec.c 4.10 Utility to convert DSP56000 OMF format to SREC. 38975

srec.doc 4.10 Manual page for srec.c. 7951

srec.h 4.10 Include file for srec.c 3472

srec.exe 4.10 Srec executable for IBM PC 22065

sloader.asm 1.1 Serial loader from the SCI port for the DSP56001 3986

sloader.hlp 1.1 Help for sloader.asm 2598

sloader.p 1.1 Serial loader s-record file for download to EPROM 736

parity.asm 1.0 Parity calculation of a 24-bit number in accumulator A 1641

parity.hlp 1.0 Help for parity.asm 936

parityt.asm 1.0 Test program for parity.asm 685

parityt.hlp 1.0 Help for parityt.asm 259

Table E-2. Available Software

Document ID Version Synopsis Size

E-14 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

E.5.1 Motorola DSP News

The Motorola DSP News is a quarterly newsletter providing information on new products,
application briefs, questions and answers, DSP product information, third-party product
news, etc. This newsletter is free and is available upon request by calling the marketing
information phone number listed below.

E.5.2 Motorola Field Application Engineers

Information and assistance for DSP applications is available through the local Motorola
field office. See your local telephone directory for telephone numbers or call
(512)891-2030.

E.5.3 Design Hotline – 1-800-521-6274

This is the Motorola number for information pertaining to any Motorola product.

E.5.4 DSP Applications Helpline– (512) 891-3230

Design assistance for specific DSP applications is available by calling this number.

dspbug Ordering information for free debug monitor for
DSP56000/DSP56001

882

The following is a list of current DSP56200 related software:

p1 1.0 Information on 56200 Filter Software 6343

p2 1.0 Interrupt Driven Adaptive Filter Flowchart. 10916

p3 1.0 “C” code implementation of p2 25795

p4 1.0 Polled I/O Adaptive Filter Flowchart 10361

p5 1.0 “C” code implementation of p4 24806

p6 1.1 Interrupt Driven Dual FIR Filter Flowchart. 9535

p7 1.0 “C” code implementation of p6 28489

p8 1.0 Polled I/O Dual FIR Filter Flowchart 9656

p9 1.0 “C” code implementation of p8 28525

Table E-2. Available Software

Document ID Version Synopsis Size

Motorola Additional Support E-15

E.5.5 DSP Marketing Information – (512) 891-2030

Marketing information including brochures, application notes, manuals, price quotes, etc.
for Motorola DSP-related products are available by calling this number.

E.5.6 DSP Third-Party Support Information – (512) 891-3098

Information concerning third-party manufacturers using and supporting Motorola DSP
products is available by calling this number. Third-party support includes:

Filter design software
Logic analyzer support
Boards for VME, IBM-PC/XT/AT, MACII, SPARC, HP300
Development systems
Data conversion cards
Operating system software
Debug software

Additional information is available on Dr. BuB and in DSP News.

E.5.7 DSP University Support – (512) 891-3098

Information concerning university support programs and university discounts for all
Motorola DSP products is available by calling this number.

E.5.8 DSP Training Courses – (602) 994-6900

There are two courses available for the DSP56000 Family:

1. Introduction to the DSP56000/DSP56001 (MTTA5) which is a 4.5-hour audio-tape
course on the DSP56000/DSP56001 architecture and programming.

2. Introduction to the DSP56000/DSP56001 (MTT31) which is a four-day
instructor-led course and laboratory covering the details of the
DSP56000/DSP56001 architecture and programming.

Additional information is available by writing:

Motorola SPS Training and Technical Operations
Mail Drop HW68
P. O. Box 21007
Phoenix, Arizona 85036

or by calling the number above. A technical training catalog is available which describes
these courses and gives the current training schedule and prices.

E-16 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

E.5.9 Reference Books and Manuals

A list of DSP-related books is included here as an aid for the engineer who is new to the
field of DSP. This is a partial list of DSP references intended to help the new user find
useful information in some of the many areas of DSP applications. Many books could be
included in several categories but are not repeated.

E.5.10 General DSP:
ADVANCED TOPICS IN SIGNAL PROCESSING
Jae S. Lim and Alan V. Oppenheim
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1988

APPLICATIONS OF DIGITAL SIGNAL PROCESSING
A. V. Oppenheim
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1978

DISCRETE-TIME SIGNAL PROCESSING
A. V. Oppenheim and R. W. Schafer
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1989

DIGITAL PROCESSING OF SIGNALS THEORY AND
PRACTICE
Maurice Bellanger
New York, NY: John Wiley and Sons, 1984

DIGITAL SIGNAL PROCESSING
Alan V. Oppenheim and Ronald W. Schafer
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1975

DIGITAL SIGNAL PROCESSING: A SYSTEM DESIGN
APPROACH
David J. DeFatta, Joseph G. Lucas, and William S. Hodgkiss
New York, NY: John Wiley and Sons, 1988

FOUNDATIONS OF DIGITAL SIGNAL PROCESSING
AND DATA ANALYSIS
J. A. Cadzow
New York, NY: MacMillan Publishing Company, 1987

HANDBOOK OF DIGITAL SIGNAL PROCESSING
D. F. Elliott
San Diego, CA: Academic Press, Inc., 1987

Motorola Additional Support E-17

INTRODUCTION TO DIGITAL SIGNAL PROCESSING
John G. Proakis and Dimitris G. Manolakis
New York, NY: Macmillan Publishing Company, 1988

MULTIRATE DIGITAL SIGNAL PROCESSING
R. E. Crochiere and L. R. Rabiner
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1983

SIGNAL PROCESSING ALGORITHMS
S. Stearns and R. Davis
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1988

SIGNAL PROCESSING HANDBOOK
C.H. Chen
New York, NY: Marcel Dekker, Inc., 1988

SIGNAL PROCESSING – THE MODERN APPROACH
James V. Candy
New York, NY: McGraw-Hill Company, Inc., 1988

THEORY AND APPLICATION OF DIGITAL SIGNAL
PROCESSING
Rabiner, Lawrence R., Gold and Bernard
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1975

E.5.11 Digital Audio and Filters:
ADAPTIVE FILTER AND EQUALIZERS
B. Mulgrew and C. Cowan
Higham, MA: Kluwer Academic Publishers, 1988

ADAPTIVE SIGNAL PROCESSING
B. Widrow and S. D. Stearns
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1985

ART OF DIGITAL AUDIO, THE
John Watkinson
Stoneham. MA: Focal Press, 1988

DESIGNING DIGITAL FILTERS
Charles S. Williams
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1986

DIGITAL AUDIO SIGNAL PROCESSING AN
ANTHOLOGY

E-18 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

John Strawn
William Kaufmann, Inc., 1985

DIGITAL CODING OF WAVEFORMS
N. S. Jayant and Peter Noll
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1984

DIGITAL FILTERS: ANALYSIS AND DESIGN
Andreas Antoniou
New York, NY: McGraw-Hill Company, Inc., 1979

DIGITAL FILTERS AND SIGNAL PROCESSING
Leland B. Jackson
Higham, MA: Kluwer Academic Publishers, 1986

DIGITAL SIGNAL PROCESSING
Richard A. Roberts and Clifford T. Mullis
New York, NY: Addison-Welsey Publishing Company, Inc.,
1987

INTRODUCTION TO DIGITAL SIGNAL PROCESSING
Roman Kuc
New York, NY: McGraw-Hill Company, Inc., 1988

INTRODUCTION TO ADAPTIVE FILTERS
Simon Haykin
New York, NY: MacMillan Publishing Company, 1984

MUSICAL APPLICATIONS OF MICROPROCESSORS
(Second Edition)
H. Chamberlin
Hasbrouck Heights, NJ: Hayden Book Co., 1985

E.5.12 C Programming Language:
C: A REFERENCE MANUAL
Samuel P. Harbison and Guy L. Steele
Prentice-Hall Software Series, 1987.

PROGRAMMING LANGUAGE - C
American National Standards Institute,
ANSI Document X3.159-1989
American National Standards Institute, inc., 1990

Motorola Additional Support E-19

THE C PROGRAMMING LANGUAGE
Brian W. Kernighan, and Dennis M. Ritchie
Prentice-Hall, Inc., 1978.

E.5.13 Controls:
ADAPTIVE CONTROL
K. Astrom and B. Wittenmark
New York, NY: Addison-Welsey Publishing Company, Inc.,

1989

ADAPTIVE FILTERING PREDICTION & CONTROL
G. Goodwin and K. Sin
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1984

AUTOMATIC CONTROL SYSTEMS
B. C. Kuo
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1987

COMPUTER CONTROLLED SYSTEMS: THEORY &
DESIGN
K. Astrom and B. Wittenmark
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1984

DIGITAL CONTROL SYSTEMS
B. C. Kuo
New York, NY: Holt, Reinholt, and Winston, Inc., 1980

DIGITAL CONTROL SYSTEM ANALYSIS & DESIGN
C. Phillips and H. Nagle
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1984

ISSUES IN THE IMPLEMENTATION OF DIGITAL
FEEDBACK COMPENSATORS
P. Moroney
Cambridge, MA: The MIT Press, 1983

E.5.14 Graphics:
CGM AND CGI
D. B. Arnold and P. R. Bono
New York, NY: Springer-Verlag, 1988

COMPUTER GRAPHICS (Second Edition)
D. Hearn and M. Pauline Baker
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1986

E-20 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

FUNDAMENTALS OF INTERACTIVE COMPUTER
GRAPHICS
J. D. Foley and A. Van Dam
Reading MA: Addison-Wesley Publishing Company Inc.,
1984

GEOMETRIC MODELING
Michael E. Morteson
New York, NY: John Wiley and Sons, Inc.

GKS THEORY AND PRACTICE
P. R. Bono and I. Herman (Eds.)
New York, NY: Springer-Verlag, 1987

ILLUMINATION AND COLOR IN COMPUTER
GENERATED IMAGERY
Roy Hall
New York, NY: Springer-Verlag

POSTSCRIPT LANGUAGE PROGRAM DESIGN
Glenn C. Reid - Adobe Systems, Inc.
Reading MA: Addison-Wesley Publishing Company, Inc.,
1988

MICROCOMPUTER DISPLAYS, GRAPHICS, AND
ANIMATION
Bruce A. Artwick
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1985

PRINCIPLES OF INTERACTIVE COMPUTER GRAPHICS
William M. Newman and Roger F. Sproull
New York, NY: McGraw-Hill Company, Inc., 1979

PROCEDURAL ELEMENTS FOR COMPUTER
GRAPHICS
David F. Rogers
New York, NY: McGraw-Hill Company, Inc., 1985

RENDERMAN INTERFACE, THE
Pixar
San Rafael, CA. 94901

Motorola Additional Support E-21

E.5.15 Image Processing:
DIGITAL IMAGE PROCESSING
William K. Pratt
New York, NY: John Wiley and Sons, 1978

DIGITAL IMAGE PROCESSING (Second Edition)
Rafael C. Gonzales and Paul Wintz
Reading, MA: Addison-Wesley Publishing Company, Inc.,

1977

DIGITAL IMAGE PROCESSING TECHNIQUES
M. P. Ekstrom
New York, NY: Academic Press, Inc., 1984

DIGITAL PICTURE PROCESSING
Azriel Rosenfeld and Avinash C. Kak
New York, NY: Academic Press, Inc., 1982

SCIENCE OF FRACTAL IMAGES, THE
M. F. Barnsley, R. L. Devaney, B. B. Mandelbrot, H. O.

Peitgen,
D. Saupe, and R. F. Voss
New York, NY: Springer-Verlag

E.5.16 Motorola DSP Manuals:
MOTOROLA DSP56000 LINKER/LIBRARIAN
REFERENCE MANUAL
Motorola, Inc., 1991.

MOTOROLA DSP56000 MACRO ASSEMBLER
REFERENCE MANUAL
Motorola, Inc., 1991.

MOTOROLA DSP56000 SIMULATOR REFERENCE
MANUAL
Motorola, Inc., 1991.

MOTOROLA DSP56000/DSP56001 USER’S MANUAL
Motorola, Inc.,1990.

E.5.17 Numerical Methods:
ALGORITHMS (THE CONSTRUCTION, PROOF, AND
ANALYSIS OF PROGRAMS)

E-22 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

P. Berliout and P. Bizard
New York, NY: John Wiley and Sons, 1986

MATRIX COMPUTATIONS
G. H. Golub and C. F. Van Loan
John Hopkins Press, 1983

NUMERICAL RECIPES IN C - THE ART OF SCIENTIFIC
PROGRAMMING
William H. Press, Brian P. Flannery,
Saul A. Teukolsky, and William T. Vetterling
Cambridge University Press, 1988

NUMBER THEORY IN SCIENCE AND
COMMUNICATION
Manfred R. Schroeder
New York, NY: Springer-Verlag, 1986

E.5.18 Pattern Recognition:
PATTERN CLASSIFICATION AND SCENE ANALYSIS
R. O. Duda and P. E. Hart
New York, NY: John Wiley and Sons, 1973

CLASSIFICATION ALGORITHMS
Mike James
New York, NY: Wiley-Interscience, 1985
Spectral Analysis:

STATISTICAL SPECTRAL ANALYSIS, A
NONPROBABILISTIC THEORY
William A. Gardner
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1988

THE FAST FOURIER TRANSFORM AND ITS
APPLICATIONS
E. Oran Brigham
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1988

THE FAST FOURIER TRANSFORM AND ITS
APPLICATIONS
R. N. Bracewell
New York, NY: McGraw-Hill Company, Inc., 1986

Motorola Additional Support E-23

E.5.19 Speech:
ADAPTIVE FILTERS – STRUCTURES, ALGORITHMS,
AND APPLICATIONS
Michael L. Honig and David G. Messerschmitt
Higham, MA: Kluwer Academic Publishers, 1984

DIGITAL CODING OF WAVEFORMS
N. S. Jayant and P. Noll
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1984

DIGITAL PROCESSING OF SPEECH SIGNALS
Lawrence R. Rabiner and R. W. Schafer
Englwood Cliffs, NJ: Prentice-Hall, Inc., 1978

LINEAR PREDICTION OF SPEECH
J. D. Markel and A. H. Gray, Jr.
New York, NY: Springer-Verlag, 1976

SPEECH ANALYSIS, SYNTHESIS, AND PERCEPTION
J. L. Flanagan
New York, NY: Springer-Verlag, 1972

SPEECH COMMUNICATION – HUMAN AND MACHINE
D. O’Shaughnessy
Reading, MA: Addison-Wesley Publishing Company, Inc.,

1987

E.5.20 Telecommunications:
DIGITAL COMMUNICATION
Edward A. Lee and David G. Messerschmitt
Higham, MA: Kluwer Academic Publishers, 1988

DIGITAL COMMUNICATIONS
John G. Proakis
New York, NY: McGraw-Hill Publishing Co., 1983

E-24 Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

Motorola I-i

Symbols

#pragma 5-22
.cld 3-1
.cln 3-1
_ 6-9
_ _asm

multiple instructions 5-3
_ _asm() 5-2
_ _asm() reg_save 5-7
_ _c_sig_goto_dispatch 6-10
_ _c_sig_handlers 6-10
_ _DATE_ _ 4-2
_ _DSP56K_ _ 4-2
_ _FILE_ _ 4-2
_ _fp_shift 6-9
_ _INCLUDE_LEVEL_ _ 4-2
_ _LINE_ _ 4-2
_ _mem_limit 6-9
_ _receive 6-9
_ _send 6-9
_ _sig_dfl 6-11
_ _sig_drop_count 6-11
_ _sig_err 6-11
_ _sig_ign 6-11
_ _stack_safety 6-8
_ _STDC_ _ 4-2
_ _time 6-9
_ _TIME_ _ 4-2
_ _VERSION_ _ 4-2

Numerics

80386 2-1
80486 2-1

A

a.cld 2-4
abort A-9
abs A-10
Accumulator Registers 4-8
acos A-11
Address Offset Registers 4-8
Address Registers 4-8
affine arithmetic 4-7
-alo 3-4, 3-20, 4-21
alo561 3-2, 3-20, 4-21

ANSI 1-1
asin A-12
-asm option 3-4, 3-31
asm56000 C-1
atan A-13
atan2 A-14
atexit A-15
atof A-16
atoi A-17
atol A-18
autoexec.bat 2-1, 2-3

B

-B option 3-4, 3-5
-b option 3-4, 3-5
bar 2-3, 2-4
brk() 6-9
bsearch A-19

C

-C option 3-4, 3-7
-c option 3-4, 3-31
calloc 6-8, A-20
ceil A-22
char 4-2
cldinfo C-4
cldlod C-5
cofdmp C-5
COFF 1-3, 3-1
compiler’s dsp directory tree 2-1, 2-2, 2-4
control line 3-10
control program 3-1
cos A-23
cosh A-23
counter_string 5-23
-crt option 3-4, 3-31
crt0 6-1

D

-D option 3-4, 3-8
Data ALU 4-8
DELETESWAP 2-3
denormalized numbers 4-7
div A-24
div_ba 4-16
DOS extended memory manager 2-2

Index

I-ii Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

DOS4GVM 2-2
DOS4GVM.SWP 2-3
dos4gw.exe 2-2
DSIZE 6-2
dsp 2-1
dsplib C-6
dsplnk C-7
DSPLOC 2-1, 2-2, 2-4

E

-E option 3-4, 3-9
errno 4-16, 6-8
exit A-25
exp A-26
exponent 4-6

F

F_ _uldiv 4-16
F_ _ulmod 4-16
fabs A-26, A-27, A-28, A-29
fadd_ba 4-16
-fcaller-saves option 3-4, 3-21
fcmp_a 4-16
-fcond-mismatch option 3-4, 3-22
fdiv_ba 4-16
-ffixed-REG option 3-4, 3-22
-fforce-addr option 3-4, 3-21
file inclusion 3-10
-finline-functions option 3-4, 3-21
-fkeep-inline-functions option 3-4, 3-21
float 4-3
floor A-29, A-30, A-31, A-32, A-33, A-48, A-49
fmod A-33
fmpy_ba 4-16
fneg_a 4-16
-fno-defer-pop option 3-4, 3-21
-fno-opt option 3-4, 3-20
-fno-peephole option 3-4, 3-20
-fno-strength-reduce option 3-4, 3-20
Frame Pointer 4-9
frame pointer 4-11, 6-2
free A-34, A-36, A-37, A-38, A-39, A-40, A-47, A-83
frexp A-41, A-42
fsub_ba 4-16
-fvolatile option 3-4, 3-22
-fwritable-strings option 3-4, 3-22

G

-g option 3-4, 3-22
G56_EXEC_PREFIX 3-5, 3-31
g561c 2-3

G56K 3-1
GDB56 3-22
gdb56 C-11
global assembler directive 5-33

H

hello.c 2-4
host port 6-2

I

-I option 3-4, 3-10, 3-11
-i option 3-4, 3-13
identifier length limits 4-1
IEEE P754-1985 4-3
in-line assembly

instruction template 5-3
in-line assembly code 5-1
Input Registers 4-8
install.exe 2-1
int 4-2
interrupt vectors 6-1
isalnum A-45, A-46, A-50
isalpha A-51
iscntrl A-52
isdigit A-52
isgraph A-54
islower A-54
isprint A-55
ispunct A-56
isspace A-56
isupper A-57
isxdigit A-58

J

-j option 3-4, 3-32

L

-l option 3-4, 3-32
l_load 5-23
l_run 5-23
labs A-58
ldexp A-59
ldiv A-60
ldiv_ba 4-16
lmod_ba 4-16
lmpy_ba 4-16
log A-61
log10 A-62
long 4-2
longjmp 3-26, 6-1, 6-12, A-63

Motorola I-iii

M

-M option 3-4, 3-14
-m56002 3-23
malloc 6-8, A-64
Mantissa 4-5
map files 3-32
MAXMEM 2-2
MB_CUR_MAX A-128
mblen A-64
mbstowcs A-66
mbtowc A-68
memchr A-70
memcmp A-71
memcpy A-72
memmove A-73
memset A-74
MINMEM 2-2
-ml-memory option 3-4, 3-24, 3-25
-MM option 3-4, 3-15
-mno-biv-plus-linv-promotion option 3-4, 3-24
-mno-do-loop-generation option 3-4, 3-24
-mno-dsp-optimization option 3-4, 3-23, 3-24
mod_ba 4-16
modf A-75
Modifier Registers 4-8
-mp-mem-switchtable 3-24
-mstack_check option 3-4, 3-24, 4-17
-mx-memory option 3-4, 3-24, 3-25
-my-memory option 3-4, 3-24, 3-25

N

NaNs 4-7
-nostdinc option 3-4, 3-16

O

-O option 3-4, 3-23
-o option 3-4, 3-6
omr 6-2
Option, Assemble

-asm string 3-31
-c 3-31

Option, Command line
-Bdirectory 3-5
-bPREFIX 3-5
-o FILE 3-6
-v 3-7

Option, Compile
-fcaller-saves 3-21
-fcond-mismatch 3-22
-ffixed-REG 3-22
-fforce-addr 3-21

-finline-functions 3-21
-fkeep-inline-functions 3-21
-fno-defer-pop 3-21
-fno-opt 3-20
-fno-peephole 3-20
-fno-strength-reduce 3-20
-fvolatile 3-22
-fwritable-strings 3-22
-g 3-22
-ml-memory 3-25
-mno-biv-plus-linv-promotion 3-24
-mno-do-loop-generation 3-24
-mno-dsp-optimization 3-23, 3-24
-mstack_check 3-24
-mx-memory 3-24
-my-memory 3-25
-O 3-23
-pedantic 3-25
-Q 3-25
-S 3-25
-W 3-26
-w 3-26
-Wall 3-30
-Wcast-qual 3-30
-Wid-clash-LEN 3-30
-Wimplicit 3-28
-Wpointer-arith 3-30
-Wreturn-type 3-28
-Wshadow 3-30
-Wswitch 3-30
-Wunused 3-29
-Wwrite-strings 3-30

Option, Link
-crt file 3-31
-j string 3-32
-lLIBRARY 3-32
-r MAPFILE 3-32

Option, Preprocessor
-C 3-7
-DMACRO 3-8
-DMACRO=DEFN 3-8
-E 3-9
-I- 3-11
-i FILE 3-13
-IDIR 3-10
-M 3-14
-MM 3-15
-nostdinc 3-16
-P 3-17
-pedantic 3-17
-UMACRO 3-18
-v 3-17
-Wcomment 3-19
-Wtrigraphs 3-20

I-iv Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

out-of-line calling C routines 5-35

P

-P option 3-4, 3-17
p_load 5-23
p_run 5-23
-pedantic option 3-4, 3-17, 3-25
perror A-76
pow A-77
pragma 5-22
printf A-78
putchar A-84
puts A-85

Q

-Q option 3-4, 3-25
qsort A-86

R

-r option 3-4, 3-32
raise 6-1, A-87
rand A-88
realloc 6-8, A-88
RUN56 1-3
run56sim 2-4, C-12

S

-S option 3-4, 3-25
setjmp 3-27, 6-1, 6-12, A-90, A-92
short 4-2
SIG_ERR 6-11
SIG_IGN 6-11
signal 6-1, A-94
signal file 6-9
sin A-95
sinh A-96
sizeof 4-1
sprintf A-96
sqrt A-97, A-98
srec C-13
stack pointer 4-9, 4-11, 6-2
standard directory search list 3-2
standard include directory 3-10
strcat A-98, A-99
strchr A-100
strcmp A-100
strcoll A-102
strcpy A-102
strcspn A-104, A-112
strerror A-105
strlen A-106

strncat A-106
strncmp A-108
strncpy A-109
strpbrk A-110, A-111
strstr A-112
strtod A-114
strtok A-115
strtol A-116
strtoul A-118
strxfrm A-120
SWAPNAME 2-3

T

tan A-120
tanh A-121
TERM 2-1
TERMCAP 2-1
tolower A-121, A-122
toupper A-123

U

-U option 3-4, 3-18
udiv_ba 4-16
unsigned char 4-2
unsigned int 4-2
unsigned short 4-2

V

-v option 3-4, 3-7, 3-17
VIRTUALSIZE 2-3
volatile 3-26, 5-22

W

-W option 3-4, 3-19, 3-26
-w option 3-26
-Wall option 3-4, 3-30
-Wcast-qual option 3-4, 3-30
wcstombs A-124, A-125, A-126
wctomb A-128
-Wid-clash-LEN option 3-4, 3-30
-Wimplicit option 3-4, 3-28
-Wpointer-arith option 3-4, 3-30
-Wreturn-type option 3-4, 3-28
-Wshadow option 3-4, 3-30
-Wswitch option 3-4, 3-30
-Wunused option 3-4, 3-29
-Wwrite-strings option 3-4, 3-30

X

x_load 5-23

Motorola I-v

x_run 5-23
XDEF assembler directive 5-33
XREF assembler directive 5-33

Y

y_load 5-23
y_run 5-23

I-vi Motorola DSP56000 Family Optimizing C Compiler User’s Manual Motorola

Name _________________________ Company Name________________________

Street__________________________City_______________ zip code___________

Phone________________________ Date__________________________________

Version Number:_____________ Serial Number_____________________________

Rate the impact of this problem (select those applicable).

Shut down system Software development halted

Needs eventual fix Suggested enhancement

Describe the system used with this product (include PC manufacturer, Operating sys-
tem type and version, memory size, and configuration.

Describe the problem and give details on how it can be reproduced, and any sugges-
tions on how it can or may be fixed. Use extra sheets if needed.

DSP56KCC Optimizing C Compiler Trouble Report
DSP Applications Assistance – (512) 891-3230

We welcome your comments and suggestions. They help us provide you with better prod-
uct documentation. Mail completed form to:

Motorola Inc.

6501 Wm. Cannon Drive West

Austin, Texas 78735-8598

Attn: Digital Signal Processors

1. Did you find errors in the manual? Please give page number and a description of
each error.

2. Is anything missing or damaged?

3. Did you find the manual clear and easy to use? Please comment on specific
sections that you feel need improvement.

4. What sections of this manual do you consider most important/least important.

DSP56KCC Optimizing C Compiler User’s Manual Report Form

	Title Page
	Table of Contents
	List of Tables
	List of Figures
	List of Examples
	Chapter�1 Introduction
	1.1 Overview
	1.2 Error Codes
	1.3 Notation
	1.4 Manual Organization

	Chapter�2 Installation Guide
	2.1 Introduction
	2.2 Installation On An MS-DOS Machine (80386 or 80486)
	2.3 Standard Installation On A SUN
	2.4 Alternate Installation On A SUN
	2.5 Test Program

	Chapter�3 Control Program Options
	3.1 Overview
	3.2 G56k Command Line Options
	3.2.1 Preprocessor Phase Options
	3.2.2 Compile Phase Options

	3.3 Assemble Phase Options
	3.4 Link Phase Options

	Chapter�4 About g56k
	4.1 Introduction
	4.2 Identifiers
	4.3 Predefined Preprocessor Macro Names
	4.4 Data Types and Sizes
	4.4.1 Integral Data Types
	4.4.2 Floating-point Types
	4.4.3 Pointer Types

	4.5 Register Usage
	4.6 Memory Usage
	4.6.1 Activation Record
	4.6.2 Global/Static Data

	4.7 Compiler Naming Conventions
	4.8 Subroutine Call Sequence
	4.8.1 Caller Sequence
	4.8.2 Callee Sequence
	4.8.3 Return Sequence

	4.9 Software Support for Aritmetic Routines
	4.10 Run-time Safety
	4.10.1 Memory Allocation Checks
	4.10.2 Run-time Stack Checks

	4.11 Optimization Techniques Implemented
	4.11.1 Register Promotion and Lifetime Analysis
	4.11.2 Common Sub-expression Elimination
	4.11.3 Constant Propagation/Folding
	4.11.4 Dead Code Elimination
	4.11.5 Tail Merging
	4.11.6 Strength Reduction
	4.11.7 Loop Invariant Code Motion
	4.11.8 Hardware DO Loop Instruction
	4.11.9 Loop Rotation
	4.11.10 Jump Optimizations
	4.11.11 Instruction Combination
	4.11.12 Leaf Routine Detection
	4.11.13 Function In-lining
	4.11.14 Instruction Scheduling / Microcode Compaction

	Chapter�5 Mixing C and Assembly Language
	5.1 Overview
	5.2 In-line Assembly Code
	5.2.1 Instruction Template
	5.2.2 Output/Input Operands
	5.2.3 Explicit Register Saving
	5.2.4 In-line Assembly Code Examples
	5.2.5 Controlling Labels Generated by the Compiler
	5.2.6 Specifying Registers for Variables
	5.2.7 Optimizer Effects on Code

	5.3 #pragma Directive
	5.4 Out-of-line Assembly Code
	5.4.1 General Template
	5.4.2 Global C and Static Variables in C
	5.4.3 Using Run-time Stack for Local Data
	5.4.4 Calling C Routines
	5.4.5 Optimization Techniques

	Chapter�6 Software-Hardware Integration
	6.1 Overview
	6.2 Run-Time Environment Specification Files
	6.3 crt0 File
	6.4 Bootstrapping the C program
	6.5 Memory Configuration and Management
	6.6 Interrupt Vectors
	6.7 Miscellaneous Code
	6.8 Signal File
	6.9 Signal()
	6.9.1 Raise()

	6.10 Setjmp File
	6.11 Host-Supported I/O (printf (), et al)
	6.11.1 DSP functions __send () and __receive ()
	6.11.2 The Host-Side I/O Driver
	6.11.3 Communication between the Host and DSP

	Appendix�A Programming Support
	A.1 Standard ANSI Header Files
	A.2 ANSI C Library Sub-routines
	A.2.1 Hosted vs. Non-Hosted Library Routines

	A.3 Forcing Library Routines Out-of-line
	A.4 Function Descriptions
	A.4.1 abort—Force abnormal program termination
	A.4.2 abs—Absolute value of integer
	A.4.3 acos—Arc cosine
	A.4.4 asin—Arc sine
	A.4.5 atan—Arc tangent
	A.4.6 atan2—Arc tangent of angle defined by point y/x
	A.4.7 atexit—Register a function for execution at normal program termination
	A.4.8 atof—String to floating point
	A.4.9 atoi—String to integer
	A.4.10 atol—String to long integer
	A.4.11 bsearch—Perform binary search
	A.4.12 calloc—Dynamically allocate zero-initialized storage for objects
	A.4.13 ceil—Ceiling function
	A.4.14 clearerr—Clear any error indicators associated with a specified stream
	A.4.15 cos—Cosine
	A.4.16 cosh—Hyperbolic cosine
	A.4.17 div—integer division with remainder
	A.4.18 exit—Terminate program normally
	A.4.19 exp—Exponential, ex
	A.4.20 fabs—Absolute value of a double
	A.4.21 fclose—Close a stream
	A.4.22 feof—Test the end-of-file indicator of a specified stream
	A.4.23 ferror—Test the error indicator of a stream
	A.4.24 fflush—Flush all pending output associated with a stream
	A.4.25 fgetc—Read a character from the specified stream
	A.4.26 fgetpos—Get value of file position indicator associated with a stream
	A.4.27 fgets—Read a string from the specified stream
	A.4.28 floor—Floor function
	A.4.29 fmod—Floating point remainder
	A.4.30 fopen—Open a named file on the host’s disk
	A.4.31 fprintf—Write formatted output to a stream
	A.4.32 fputc—Write a single character to a stream
	A.4.33 fputs—Write a string to a stream
	A.4.34 fread—Read data directly from a stream
	A.4.35 free—Free storage allocated by calloc, malloc, and realloc
	A.4.36 freopen—Open named file on disk, to be accessed via specified stream
	A.4.37 frexp—Break a floating point number into mantissa and exponent
	A.4.38 fscanf—Read formatted input from a stream
	A.4.39 fseek—Set the file position indicator associated with a stream
	A.4.40 fsetpos—Set the file position indicator associated with a stream
	A.4.41 ftell—Get the file position indicator associated with a stream
	A.4.42 fwrite—Write data directly to a stream
	A.4.43 getc—Read a character from the specified stream
	A.4.44 getchar—Read a character from standard input
	A.4.45 gets—Read a string from standard input
	A.4.46 isalnum—Test for alphanumeric character
	A.4.47 isalpha—Test for alphabetic character
	A.4.48 iscntrl—Test for control character
	A.4.49 isdigit—Test for numeric character
	A.4.50 isgraph—Test for printing character, excluding space and tab
	A.4.51 islower—Test for lower-case alphabetic characters
	A.4.52 isprint—Test for printing character, excluding ’\t’
	A.4.53 ispunct—Test for punctuation character
	A.4.54 isspace—Test for white-space character
	A.4.55 isupper—Test for upper-case alphabetic character
	A.4.56 isxdigit—Test for hexadecimal numeric character
	A.4.57 labs—Absolute value of a long integer
	A.4.58 ldexp—Multiply floating point number by 2
	A.4.59 ldiv—Long integer division with remainder
	A.4.60 log—Natural logarithm, base e
	A.4.61 log10—Base ten logarithm
	A.4.62 longjmp—Execute a non-local jump
	A.4.63 malloc—Dynamically allocate uninitialized storage
	A.4.64 mblen—Length of a multibyte character
	A.4.65 mbstowcs—Convert multibyte string to wide character string
	A.4.66 mbtowc—Convert a multibyte character to a wide character
	A.4.67 memchr—Find a character in a memory area
	A.4.68 memcmp—Compare portion of two memory areas
	A.4.69 memcpy—Copy from one area to another
	A.4.70 memmove—Copy storage
	A.4.71 memset—Initialize memory area
	A.4.72 modf—Break a double into it’s integral and fractional parts
	A.4.73 perror—Print error message
	A.4.74 pow—Raise a double to a power
	A.4.75 printf—Print to standard output
	A.4.76 putc—Write a single character to a stream
	A.4.77 putchar—Write a character to standard output
	A.4.78 puts—Write a string to standard output
	A.4.79 qsort—Quick sort
	A.4.80 raise—Raise a signal
	A.4.81 rand—Pseudo- random number generator
	A.4.82 realloc—hange size of dynamically allocated storage area
	A.4.83 remove—Remove a file from the disk
	A.4.84 rename —Rename a file on the disk
	A.4.85 rewind—Reset the file position indicator to the beginning of the file
	A.4.86 scanf—Read formatted input from standard input
	A.4.87 setjmp—Save reference of current calling environment for later use by longjmp
	A.4.88 setbuf—Read formatted input from standard input
	A.4.89 setvbuf—Alter stream buffering
	A.4.90 signal—Set up signal handler
	A.4.91 sin—Sine
	A.4.92 sinh—Hyperbolic Sine
	A.4.93 sprintf—Print to a string
	A.4.94 sqrt—Square root
	A.4.95 srand—Seed the pseudo-random number generator
	A.4.96 sscanf—Read formatted input from a string
	A.4.97 strcat—Concatenate two strings
	A.4.98 strchr—Find first occurrence of a character in a string
	A.4.99 strcmp—Compare two strings
	A.4.100 strcoll—Compare two strings based on current locale
	A.4.101 strcpy—Copy one string into another
	A.4.102 strcspn—Compute length of prefix of one string consisting entirely of characters not from...
	A.4.103 strerror—Map error code into an error message string
	A.4.104 strlen—Determine length of a string
	A.4.105 strncat—Concatenate a portion of one string to another
	A.4.106 strncmp—Compare a portions of two strings
	A.4.107 strncpy—Copy a portion of one string into another
	A.4.108 strpbrk—Find first occurrence of a character from one string in another
	A.4.109 strrchr—Find last occurrence of a character from one string in another
	A.4.110 strspn—Compute length of prefix of one string consisting entirely of characters from another
	A.4.111 strstr—Find the first occurrence of one string in another
	A.4.112 strtod—String to double
	A.4.113 strtok—Break string into tokens
	A.4.114 strtol—String to long integer
	A.4.115 strtoul—String to unsigned long integer
	A.4.116 strxfrm—Transform a string into locale-independent form
	A.4.117 tan—Tangent
	A.4.118 tanh—Hyperbolic tangent
	A.4.119 tmpfile—Create a temporary binary file
	A.4.120 tmpnam—Create a temporary file name
	A.4.121 tolower—Convert uppercase character to lowercase
	A.4.122 toupper—Convert lowercase character to uppercase
	A.4.123 ungetc—Push a character back onto an input stream
	A.4.124 vfprintf—Write formatted output to a stream using a va_list
	A.4.125 vprintf—Write formatted output to standard output using a va_list
	A.4.126 vsprintf—Write formatted output to a string using a va_list
	A.4.127 wcstombs—Convert wchar_t array to multibyte string
	A.4.128 wctomb—Convert wchar_t character to multibyte character

	Appendix�B DSP56000/DSP56001 Instruction Set and Assembler Directive Summary
	B.1 Overview
	B.2 Instruction Set
	B.2.1 Arithmetic Instructions
	B.2.2 Logical Instructions
	B.2.3 Bit Manipulation Instructions
	B.2.4 Loop Instructions
	B.2.5 Move Instructions
	B.2.6 Program Control Instructions

	B.3 Directive Summary
	B.3.1 Assembly Control
	B.3.2 Symbol Definition
	B.3.3 Data Definition/Storage Allocation
	B.3.4 Listing Control and Options
	B.3.5 Object File Control
	B.3.6 Macros and Conditional Assembly
	B.3.7 Structured Programming

	Appendix�C Utilities
	C.1 Utility Programs
	C.1.1 asm56000—Motorola DSP56000/DSP56001 COFF Assembler
	C.1.2 cldinfo—Memory size information from Motorola DSP COFF object file.
	C.1.3 cldlod—Motorola COFF to LOD Format converter
	C.1.4 cofdmp—Motorola DSP COFF File Dump Utility
	C.1.5 dsplib—Motorola DSP COFF Librarian
	C.1.6 dsplnk—Motorola DSP COFF Linker
	C.1.7 gdb56—GNU Source-level Debugger for DSP56000/DSP56001
	C.1.8 run56—Motorola DSP56000/DSP56001 Simulator Based Execution Device.
	C.1.9 srec—Motorola DSP S-Record Conversion Utility

	Appendix�D GNU Debugger (GDB)
	D.1 Introduction
	D.1.1 Commands Not Implemented
	D.1.2 DSP56000 Family Differences / Specific Requirements
	D.1.3 Summary of GDB
	D.1.4 GNU General Public License
	D.1.5 Preamble
	D.1.6 Terms and Conditions
	D.1.7 No Warranty
	D.1.8 End of Terms and Conditions

	D.2 Input and Output Conventions
	D.3 Specifying GDB’s Files
	D.3.1 Specifying Files with Arguments
	D.3.2 Specifying Files with Commands

	D.4 Compiling Your Program for Debugging
	D.5 Running Your Program Under GDB
	D.5.1 Your Program’s Arguments
	D.5.2 Your Program’s Environment
	D.5.3 Your Program’s Working Directory
	D.5.4 Your Program’s Input and Output
	D.5.5 Debugging an Already-Running Process
	D.5.6 Killing the Child Process

	D.6 Stopping and Continuing
	D.6.1 Signals
	D.6.2 Breakpoints
	D.6.3 Continuing
	D.6.4 Stepping

	D.7 Examining the Stack
	D.7.1 Stack Frames
	D.7.2 Backtraces
	D.7.3 Selecting a Frame
	D.7.4 Information on a Frame

	D.8 Examining Source Files
	D.8.1 Printing Source Lines
	D.8.2 Searching Source Files
	D.8.3 Specifying Source Directories

	D.9 Examining Data
	D.9.1 Expressions
	D.9.2 Program Variables
	D.9.3 Artificial Arrays
	D.9.4 Format options
	D.9.5 Output formats
	D.9.6 Automatic Display
	D.9.7 Value History
	D.9.8 Convenience Variables
	D.9.9 Registers

	D.10 Examining the Symbol Table
	D.11 Altering Execution
	D.11.1 Assignment to Variables
	D.11.2 Continuing at a Different Address
	D.11.3 Giving the Program a Signal
	D.11.4 Returning from a Function

	D.12 Canned Sequences of Commands
	D.13 User-Defined Commands
	D.13.1 Command Files
	D.13.2 Commands for Controlled Output

	D.14 Options and Arguments for GDB
	D.14.1 Mode Options
	D.14.2 File-specifying Options
	D.14.3 Other Arguments

	D.15 Using GDB under GNU Emacs

	Appendix�E Additional Support
	E.1 Motorola DSP Product Support
	E.2 DSP56000CLASx Assembler/Simulator
	E.2.1 Macro Cross Assembler Features:
	E.2.2 Simulator Features:

	E.3 DSP320to56001 Translator
	E.3.1 DSP320to56001 Translator Features:

	E.4 DSP56000ADSx Application Development Systems (ADS)
	E.4.1 DSP56000ADS ADS Hardware Features:
	E.4.2 DSP56000ADSx ADS Software Features:

	E.5 Dr. BuB Electronic Bulletin Board
	E.5.1 Motorola DSP News
	E.5.2 Motorola Field Application Engineers
	E.5.3 Design Hotline – 1-800-521-6274
	E.5.4 DSP Applications Helpline– (512) 891-3230
	E.5.5 DSP Marketing Information – (512) 891-2030
	E.5.6 DSP Third-Party Support Information – (512) 891-3098
	E.5.7 DSP University Support – (512) 891-3098
	E.5.8 DSP Training Courses – (602) 994-6900
	E.5.9 Reference Books and Manuals
	E.5.10 General DSP:
	E.5.11 Digital Audio and Filters:
	E.5.12 C Programming Language:
	E.5.13 Controls:
	E.5.14 Graphics:
	E.5.15 Image Processing:
	E.5.16 Motorola DSP Manuals:
	E.5.17 Numerical Methods:
	E.5.18 Pattern Recognition:
	E.5.19 Speech:
	E.5.20 Telecommunications:

