

Introduction •

Architectural Overview and Bus Structure •

Memory Spaces •

Data Arithmetic Logic Unit III
Address Generation Unit and'Address Modes·· Ell

Program Controller Ell
Instruction Set Introduction III

Processing States Ell
PortA III
Port B III
Port C III

Instruction Set Details __

Benchmark Programs Ell
Additional Support lEI

Index

• Introduction

III Architectural Overview and Bus Structure

lEI Memory Spaces

• Data Arithmetic Logic Unit

• Address Generation Unit and Address Modes

• Program Controller

• Instruction Set Introduction

• Processing States

• PortA

III PortB

III Port C

• Instruction Set Details

• Benchmark Programs

III Additional Support

II Index

DSP56000/DSP56001

DIGITAL SIGNAL PROCESSOR
USER'S MANUAL

Motorola reserves the right to make changes without further notice to any products herein
to improve reliability, function or design. Motorola does not assume any liability arising out
of the application or use of any product or circuit described herein; neither does it convey
any license under its patent rights nor the rights of others. Motorola products are not author­
ized for use as components in life support devices or systems intended for surgical implant
into the body or intended to support or sustain life. Buyer agrees to notify Motorola of any
such intended end use whereupon Motorola shall determine availability and suitability of its
product or products for the use intended. Motorola and @ are registered trademarks of
Motorola, Inc. Motorola, Inc. is an Equal Employment Opportunity/Affirmative Action
Employer.

©MOTOROLA INC., 1990

Paragraph
Number

TABLE OF CONTENTS

Title

Section 1
Introduction

Page
Number

1.1 Origin of the DSP56000 Architecture .. 1-1
1.2 Summary of DSP56000 Family Features 1-7
1.3 Manual Organization. 1-9

2.1
2.2
2.2.1
2.2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.9.1
2.9.2
2.9.3
2.9.4
2.9.5
2.10
2.10.1
2.10.1.1
2.10.1.2
2.10.2
2.10.2.1
2.10.2.2
2.10.2.3
2.10.2.4
2.10.2.5
2.10.2.6
2.10.2.7
2.10.3
2.10.3.1

MOTOROLA

Section 2
Architectural Overview and Bus Structure

Data Buses .. .
Address Buses

Internal Bus Switch
Bit Manipulation Unit

Data ALU .. .
Address Generation Unit .. .
X Data Memory
Y. Data Memory .. .
Program Memory
Program Controller
I n put/Output .. .

Expansion Port (Port A) .. .
General-Purpose I/O (Ports B and C)
Host Interface
Serial Communication Interface
Synchronous Serial Interface

Signal Description ~
Port A Address and Data Bus .. .

Address (AO-A15) .. .
Data (DO-D23) .. .

Port A Bus Control .. .
Program Memory Select (PS)
Data Memory Select (DS) .. .
X/V Select (X/V) .. .
Read Enable (RD) .. .
Write Enable (WR)
Bus Request/Bus Strobe (BR/BS)
Bus GrantlWait (BG/WT)

Interrupt and Mode Control
Mode Select AlExternallnterrupt RequestA (MODA/IROA) and

Mode Select B/External Interrupt Request B (MODB/IROB) ..

DSP56000/DSP56001 USER'S MANUAL

2-3
2-3
2-3
2-3
2-4
2-5
2-5
2-5
2-6
2-6
2-6
2-7
2-7
2-7
2-8
2-8
2-9
2-9
2-9
2-10
2-10
2-10
2-10
2-10
2-10
2-10
2-10
2-11
2-11

2-11

iii

Paragraph
Number

2.10.3.2
2.10.4
2.10.4.1
2.10.4.2
2.10.4.3
2.10.5
2.10.5.1
2.10.5.2
2.10.5.3
2.10.5.4
2.10.5.5
2.10.5.6
2.10.6
2.10.6.1
2.10.6.2
2.10.6.3
2.10.7
2.10.7.1
2.10.7.2
2.10.7.3
2.10.7.4
2.10.7.5
2.10.7.6

3.1
3.2
3.2.1
3.2.2
3.2.3
3.2.4
3.2.4.1
3.2.4.2
3.2.4.3
3.2.4.4
3.2.5
3.3
3.3.1
3.3.2
3.3.3
3.3.4

iv

TABLE OF CONTENTS (Continued)

Page
Title Number

Reset (RESET)~ ... 2-11
Power and Clock................ 2-11

Power (VCC), Ground (GND) ... 2~12
External Clock/Crystal Input (EXTAL)................................. 2-12
Crystal Output (XTAL) ... 2-12

Host Interface ~... 2-12
Host Data Bus (HO-H7) .. 2-12
Host Address (HAO-HA2) ... 2-12
Host ReadIWrite (HR/W) ... 2-12
Host Enable (HEN) .. 2-12
Host Request (HREQ) ~ 2-12
Host Acknowledge (HACK) 2-13

Serial Communications Interface.. 2-13
Receive Data (RXD). 2-13
Transmit Data (TXD) ... 2-13
Serial Clock (SCLK).. 2-13

Synchronous Serial Interface.. 2-13
Serial Control Zero (SCO) 2-13
Serial Control One (SC1) .. 2-13
Serial Control Two (SC2)............ 2-14
SSI Serial Clock (SCK) ... 2-14
SSI Receive Data (SRD)..... 2-14
SSI Transmit Data (STD) .. 2-14

Section 3
Memory Spaces

Overvie.w... 3-1
DSP56000 Memory Introduction.. 3-1

X Data Memory... 3-1
Y Data Memory... 3-2
Program Memory... 3-3
Chip Operating Modes.. 3-3

Single-Chip Mode (Mode 0).. 3-4
Mode 1 .. 3-4
Normal Expanded Mode (Mode 2) 3-4
Development Mode (Mode 3).. 3-5

Security ROM Version (DSP56000)... 3-5
DSP56001 Memory Introduction... 3-6

X Data Memory... 3-7
Y Data Memory.. 3-8
Program Memory... 3-8
Bootstrap ROM (DSP56001 Only)... 3-8

DSP56000/DSP56001 USER'S MANUAL MOTOROLA

Paragraph
Number

3.3.5
3.3.5.1
3.3.5.2
3.3.5.3
3.3.5.4

4.1
4.1.1
4.1.2
4.1.3
4.1.4
4.1.5
4.1.5.1
4.1.5.2
4.2
4.3
4.4

5.1
5.1.1
5.1.2
5.1.3
5.1.4
5.1.5
5.2
5.2.1
5.2.2
5.2.3
5.3
5.3.1
5.3.1.1
5.3.1.2
5.3.1.3
5.3.1.4
5.3.1.5
5.3.1.6
5.3.1.7

MOTOROLA

TABLE OF CONTENTS (Continued)

Page
Title Number

Chip Operating Modes.. 3-8
Single-Chip Mode (Mode 0).. 3-9
Special Bootstrap Mode (Mode 1) 3-9
Normal Expanded Mode (Mode 2) 3-12
Development Mode (Mode 3) .. 3-13

Section 4
Data Arithmetic Logic Unit

Overview and Data ALU Architecture 4-1
Data ALU Input Registers (X1, XO, Y1, YO) 4-3
MAC and Logic Unit... 4-3
Data ALU Accumulator Registers (A2, A1, AO, B2, B1, BO) 4-5
Accumulator Shifter... 4-6
Data Shifter/Limiter.. 4-6

Limiting (Saturation Arithmetic)............ 4-6
Scaling... 4-8

Data Representation and Rounding.................................... 4-8
Data ALU Programming Model.. 4-11
Data ALU Summary ... 4-11

Section 5
Address Generation Unit and Addressing Modes

AGU Architecture
Address Register Files (Rn) .. .
Offset Register Files (Nn) .. .
Modifier Register Files (Mn)
Address ALU ;
Address Output Multiplexers

Programming Model
Address Register Files (RO-R3 and R4-R7)
Offset Register Files (NO-N3 and N4-N7)
Modifier Register Files (MO-M3 and M4-M7)

Addressing
Address Register Indirect Modes .. .

No Update
Postincrement by 1 .: .. .
Postdecrement by 1 :
Postincrement by Offset Nn
Postdecrement by Offset Nn .. .
Indexed by Offset Nn
Predecrement by 1 .. .

DSP56000/DSP56001 USER'S MANUAL

5-1
5-2
5-3
5-3
5-3
5-4
5-4
5-5
5-5
5-5
5-5
5-6
5-7
5-8
5-8
5-9
5-9
5-10
5-11

v

Paragraph
Number

5.3.2
5.3.2.1
5.3.2.2
5.3.2.3
5.3.2.4

6.1
6.2
6.2.1
6.2.2
6.2.3
'6.2.4
6.3
6.4
6.4.1
6.4.2
6.4.2.1
6.4.2.2
6.4.2.3
6.4.2.4
6.4.2.5
6.4.2.6
6.4.2.7
6.4.2.8
6.4.2.9
6.4.2.10
6.4.2.11
6.4.2.12
6.4.3
6.4.3.1
6.4.3.2
6.4.3.3
6.4.3.4
6.4.3.5
6.4.4
6.4.5
6.4.6
6.4.7
6.4.7.1
6.4.7.2

vi

TABLE OF CONTENTS (Continued)

Page
Title Number

Address Modifier Types 5-11
Linear Modifier (Mn=$FFFF) ; 5-12
Modulo Modifier (Mn=MODULUS-1) 5-13
Reverse-Carry Modifier (Mn=$OOOO) 5-17
Address-Modifier-Type Encoding Summary....................... 5-19

Section 6
Program Controller

Overview... 6-1
Program Controller Architecture... 6-2

Program Decode Controller.. 6-2
Program Address Generator.. ... 6-3
Program Interrupt Controller 6-3
Instruction Pipeline... 6-6

Clock Oscillator... 6-7
Programming Model ;..................... 6-7

Program Counter... 6-8
Status Register.. 6-8

Carry (Bit 0)..... 6-9
Overflow (Bit 1).. 6-9
Zero (Bit 2)............. 6-10
Negative (Bit 3) 6-10
Unnormalized (Bit 4) ... 6-10
Extension (Bit 5)... 6-10
Limit (Bit 6) 6-10
Interrupt Masks (Bits 8 and 9) 6-10
Scaling Mode (Bits 10 and 11)........ 6-11
Trace Mode (Bit 13) .. 6-11
Reserved Status (Bits 7, 12, 14) 6-11
Loop Flag (Bit 15) ... 6-11

Operating Mode Register ... 6-12
Chip Operating Mode (Bits 0 and 1) 6-13
Data ROM Enable (Bit 2) .. 6-13
STOP Delay (Bit 6).. 6-13
External Memory Access (Bit"7)....................................... 6-14
Reserved OMR Bits (Bits 3-5 and 8-23)........................ 6-14

Loop Address Register 6-14
Loop Counter Register .. 6-15
System Stack.. 6-15
Stack Pointer Register... 6-15

Stack Pointer (Bits 0-3).. 6-16
Stack Error Flag (Bit 4)... 6-16

DSP56000/DSP56001 USER'S MANUAL MOTOROLA

Paragraph
Number

6.4.7.3
6.4.7.4
6.4.8

7.1
7.2
7.2.1
7.2.2
7.2.2.1
7.2.2.2
7.2.2.3
7.2.3
7.2.4
7.2.4.1
7.2.4.2
7.2.4.3
7.2.4.4
7.2.4.4.1
7.2.4.4.2
7.2.4.4.3
7.2.4.4.4
7.2.5
7.2.5.1
7.2.5.1.1
7.2.5.1.2
7.2.5.2
7.2.5.3
7.2.5.3.1
7.2.5.3.2
7.2.5.3.3
7.2.5.3.4
7.2.5.3.5
7.2.5.3.6
7.2.5.3.7
7.2.5.4
7.3
7.3.1
7.3.2
7.3.3
7.3.4
7.3.5
7.3.6

MOTOROLA

TABLE OF CONTENTS (Continued)

Title
Page

Number

Underflow Flag (Bit 5) 6-17
Reserved Stack Pointer Register Bits (Bits 6-23).................. 6-17

DSP56000/DSP56001 Programming Model Summary................. 6-17

Section 7
Instruction Set Introduction

Syntax
Instruction Formats

Operand Sizes .. .
Data Organization in Registers ,

Data ALU Registers .. .
AGU Registers .. .
Program Control Registers ,

Data Organization in Memory .. .
Operand References .. .

Program References ,
Stack References
Register References
Memory References

X Memory References
Y Memory References
L Memory References
YX Memory References

Addressing Modes .. .
Register Direct Modes .. .

Data or Control Register Direct
Address Register Direct

Address Register Indirect Modes
Special Addressing Modes .. .

Immediate Data
Absolute Address
Immediate Short .. .
Short Jump Address
Absolute Short .. .
liD Short .. .
Implicit Reference .. .

Addressing Modes Summary
Instruction Groups : ,

Arithmetic Instructions
Logical Instructions
Bit Manipulation Instructions
Loop Instructions .. .
Move Instructions
Program Control Instructions

OSP56000/0SP56001 USER'S MANUAL

7-1
7-3
7-3
7-4
7-4
7-4
7-5
7-7
7-8
7-9
7-9
7-9
7-9
7-9
7-9
7-9
7-9
7-10
7-10
7-11
7-11
7-11
7-11
7-11
7-11
7-11
7-13
7-13
7-13
7-13
7-18
7-18
7-19
7-19
7-20
7-20
7-22
7-24

vii

Paragraph
Number

8.1
8.1.1
8.1.2
8.2
8.2.1
8.2.1.1
8.2.1.2
8.2.1.3
8.2.2
8.2.2.1
8.2.2.2
8.2.3
8.2.4
8.2.5
8.2.6
8.2.7
8.3
8.4
8.5

9.1
9.2
9.2.1
9.2.2
9.2.3
9.3
9.3.1
9.3.2
9.3.2.1
9.3.2.2
9.3.2.3
9.3.2.4

TABLE OF CONTENTS (Continued)

Page
Title Number

Section 8
Processing States

Normal Processing State... 8-1
Instruction Pipeline..... 8-1
Summary of Pipeline-Related Restrictions............................... 8-6

Exception Processing State (Interrupt Processing) 8-8
Interrupt Sources... 8-9

Hardware Interrupt Sources.. 8-9
Software Interrupt Sources... 8-11
Other Interrupt Sources 8-14

Interrupt Priority Structure ... 8-16
Interrupt Priority Levels 8-16
Exception Priorities within an IPL..................................... 8-17

Instructions Preceding the Interrupt Instruction Fetch ~ 8-18
Interrupt Types ... : 8-18
Interrupt Arbitration 8-19
Interrupt Instruction Fetch. 8-20
Interrupt' Instruction Execution.. 8-20

Reset Processing State............. 8-27
Wait Processing State......... 8-36
STOP Processing State 8-38

Section 9
Port A

Port A Interface... 9-1
Port A Timing......................... 9-8

Port A Wait States -................. 9-10
Bus Control Register............... 9-12
Bus StrobeIWait Pins.. 9-12

Bus Arbitration... 9-15
Bus RequestlBus Grant ~....... 9-15,
Shared Memory.. 9-16

Bus Arbitration Using Only BRIBG with Internal Contro!........ 9-16
Bus Arbitration Using Only BRIBG with External Control 9-16
Bus Arbitration Using BRIBG and BSIWT with No Overhead.. 9-18
Signaling Using Semaphores.... 9-20

Section 10
Port B

10.1 General-Purpose I/O ... 10-2
10.1.1 Programming Parallel tiD ... 10-4
10.1.2 Port B Parallel liD Timing ; 10-4

viii DSP56000/DSP56001.USER'S MANUAL MOTOROLA

Paragraph
Number

10.2
10.2.1
10.2.2
10.2.2.1
10.2.2.1.1
10.2.2.1.2
10.2.2.1.3
10.2.2.1.4
10.2.2.1.5
10.2.2.1.6
10.2.2.2
10.2.2.2.1
10.2.2.2.2
10.2.2.2.3
10.2.2.2.4
10.2.2.2.5
10.2.2.2.6
10.2.2.2.7
10.2.2.3
10.2.2.4
10.2.2.5
10.2.2.6
10.2.2.7
10.2.3
10.2.3.1
10.2.3.2
10.2.3.2.1
10.2.3.2.2
10.2.3.2.3
10.2.3.2.4
10.2.3.2.5
10.2.3.2.6
10.2.3.2.7
10.2.3.3
10.2.3.3.1
10.2.3.3.2
10.2.3.3.3
10.2.3.4
10.2.3.4.1
10.2.3.4.2
10.2.3.4.3
10.2.3.4.4
10.2.3.4.5
10.2.3.4.6

MOTOROLA

TABLE OF CONTENTS (Continued)

Title
Page

Number

Host Interface (HI) .. 10-7
Host Interface - DSP CPU Viewpoint 10-9
Programming Model - DSP CPU Viewpoint, 10-10

Host Control Register (HCR) , 10-11
HCR Host Receive Interrupt Enable (HRIE) Bit 0 10-12
HCR Host Transmit Interrupt Enable (HTIE) Bit 1 10-12
HCR Host Command Interrupt Enable (HCIE) Bit 2 10-12
HCR Host Flag 2 (HF2) Bit 3 10-12
HCR Host Flag 3 (HF3) Bit 4 10-12
HCR Reserved Bits (Bits 5, 6, and 7) 10-13

Host Status Register (HSR) ... 10-13
HSR Host Receive Data Full (HRDF) Bit 0 10-13
HSR Host Transmit Data Empty (HTDE) Bit 1 10-13
HSR Host Command Pending (HCP) Bit 2 10-14
HSR Host Flag 0 (HFO) Bit 3 10-14
HSR Host Flag 1 (HF1) Bit 4 10-14
HSR Reserved Bits (Bits Q and 6) 10-14
HSR DMA Status (DMA) Bit 7 10-14

Host Receive Data Register (HRX) 10-14
Host Transmit Data Register '(HTX) 10-14
Register Contents after' Reset .. 10-15
Host Interface DSP CPU Interrupts 10-15
Host Pqrt 'usage Consiqerations - DSP Side 10-15

Host Interface - Host Processor Viewpoint 10-16
Programming Model - Host Processor Viewpoint 10-17
Interrupt Control Register (lCR) .. 10-18

ICR Receive Request Enable (RREO) Bit 0 10-19
ICR Transmit Request Enable (TREO) Bit 1 10-19
ICR Reserved Bit (Bit 2) .. 10-19
fCR Host Flag 0 (HFO) Bit 3 .. 10-20
ICR Host Flag 1 (HF1) Bit 4 .. 10-20
ICR Host Mode Control (HM1 and HMO) Bits 5 and 6 10-20
ICR Initialize Bit (lNIT) Bit 7 10-21

Command Vector Register (CVR) 10-22
CVR Host Vector (HV) Bits 0-4 10-22
CVR Reserved Bits (Bit 5 and 6) 10-22
CVR Host Command Bit (HC) Bit 7 10-22

Interrupt Status Register (lSR) ... 10-23
ISR Receive Data Register Full (RXDF) Bit 0 10-23
ISR Transmit Data Register Empty (TXDE) Bit 1 10-23
ISR Transmitter Ready (TRDY) Bit 2 10-23
ISR Host Flag 2 (HF2) Bit 3 , 10-24
ISR Host Flag 3 (HF3) Bit 4 .. 10-24
ISR Reserved Bit (Bit 5) .. 10-24

DSP56000/DSP56001 USER'S MANUAL ix

Paragraph
Number

10.2.3.4.7
10.2.3.4.8
10.2:3.5
10.2.3.6
10.2.3.7
10.2.3.8
10.2.4
10.2.4.1
iO.2.4.2
10.2.4.3
10.2.4.4
10.2.4.5
10.2.4.6
10.2.5
10.2.5.1
10.2.5.2
10.2.5.3
10.2.5.4
10.2.5.5
10.2.6
10.2.6.1
10.2.6.2
10.2.6.2.1
10.2.6.2.2
10.2.6.2.3
10.2.6.2.4
10.2.6.3
10.2.6.3.1
10.2.6.3.2
10.2.6.3.3
10.2.6.3.4
10.2.6.4
10.2.6.5

11.1
11.1.1
11.1.2
11.2
11.2.1
11.2.1.1
11.2.1.2

x

TABLE OF CONTENTS (Continued)

Title
Page

Number

ISR DMA' Status (DMA) Bit 6 10-24
ISR Host Request (HREO) Bit 7 10-24

Interrupt Vector Register (IVR) ... 10-25
Receive Byte Registers (RXH, RXM, RXL) 10-25
Transmit Byte Registers (TXH, TXM, TXL) 10-25
Registers after Reset : ... 10-25

Host I nterface Pi ns : .. 10-26
Host Data Bus (HO-H7) .. 10-26
Host Address (HAO-HA2) ... 10-26
Host ReadlWrite (HRIW) ... 10-27
Host Enable (HEN) .. 10-27
Host Request (HREO) .. 10-27
Host Acknowledge (HACK) ... 10-27

Servicing the Host Interface ... 10-27
HI Host Processor Data Transfer 10-28
HI Interrupts Host Request (HREO) 10-28
Polling ... 10-30
Servicing Non-DMA Interrupts ... 10-30
Servicing DMA Interrupts ... 10-31

HI Application Examples .. 10-31
HI Initialization ... 10-31
Polling/Interrupt Controller Data Transfer 10-31

Host to DSP - Data Transfer 10-35
Host to DSP - Command Vector 10-40
Host to DSP - Bootstrap Loading Using the HI 10-43
DSP-to-Host Data Transfer .. 10-44

DMA Data Transfer ... 10-48
Host-to-DSP Internal Processing 10-49
Host-to-DSP DMA Procedure 10-50
DSP-to-Host Internal Processing 10-53
DSP-to-Host DMA Procedure 10-54

Example Circuits .. 10-54
Host Port Usage Considerations - Host Side 10-56

Section 11
Port C

General-Purpose I/O (Port C) .. 11-1
Programming Parallel I/O ... 11-1
Port C. Parallel I/O Timing .. 11-6

Serial Communication Interface (SCI) ... 11-8
SCI I/O Pins .. : 11-9

Receive Data (RXD) ... 11-9
Transmit Data (TXD) ... 11-9

DSP56000/DSP56001 USER'S MANUAL MOTOROLA

Paragraph
Number

11.2.1.3
11.2.2
11.2.2.1
11.2.2.1.1
11.2.2.1.2
11.2.2.1.3
11.2.2.1.4
11.2.2.1.5
11.2.2.1.6
11.2.2.1.7
11.2.2.1.8
11.2.2.1.9
11.2.2.1.10
11.2.2.1.11
11.2.2.1.12
11.2.2.1.13
11.2.2.1.14
11.2.2.2
11.2.2.2.1
11.2.2.2.2
11.2.2.2.3
11.2.2.2.4
11.2.2.2.5
11.2.2.2.6
11.2.2.2.7
11.2.2.2.8
11.2.2.3
11.2.2.3.1
11.2.2.3.2
11.2.2.3.3
11.2.2.3.4
11.2.2.3.5
11.2.2.4
11.2.2.4.1
11.2.2.4.2
11.2.2.5
11.2.3
11.2.4
11.2.5
11.2.6
11.2.7
11.2.7.1
11.2.7.2
11.2.8

MOTOROLA

TABLE OF CONTENTS (Continued)

Title
Page

Number

SCI Serial Clock (SCLK) ~ 11-9
Programming ModeL : 11-9

SCI Control Register (SCR) : 11-11
SCR Word Select (WDSO, WDS1, WDS2) Bits 0, 1, and 2 11-11
SCR SCI Shift Direction (SSFTD) Bit.3, •........................ 11-12
SCR Send Break (SBK) Bit 4 : !, •••••••••••••••••••••••• 11-12
SCR Wakeup Mode Selec((WAKE) Bit 5 11-15
SCR Receiver Wakeup Enable (RWU) Bit 6 11-15
SCR Wired-OR Mode Select (WOMS) Bit 7 11-16
SCR Receiver Enable (RE) Bit 8 ~.~ 11-16
SCR Transmitter Enable (TE) Bit 9 11-16
SCR Idle Line InterrU'pt E'nable (IL1Ej Bit 10 11-16
SCR SCI Receive Interrupt Enable (RIE) Bit 11 11-17
SCR SCI Transmit Interrupt Enable (TIE) Bit 12 11-17
SCR Timer Interrupt Enable (TMIE) Bit 13 11-17
SCR Reserved '(Bit 14) , 11-18
SCR SCI Cloc.kfolarity (SCKP) Bit 15 11-18

SCI Status Register (SSR) ... 11-18
SSR Transmitter Empty (TRNE) Bit 0 11-1~
SSR Transmit Data Register Empty (TDRE) Bit 1 11-18
SSR Redeive Data Register Full (RDRF) Bit 2 11-19
SSR Idle Line Flag (IDLE) Bit 3 11-19
SSR,Overrun Error Flag (OR) Bit 4 11-19
SSR P~rity Error (PE) Bit 5 .. ~ 11-19
SSR Framing Error Flag (FE) Bit 6 11-20
SSR Received Bit 8 (R8) Address Bit 7 11-20

SCI dock Control Register (SCCR) 11-20
SCCR Clock Divider (CD11-CDO) Bits 11-0 11-21
SCCR Clock Out Divider (COD) Bit 12 11-21
SCCR SCI Clock Prescaler (SCP) Bit 13 11-22
SCCHReceive Clock Mode Source Bit (RCM) Bit 14 11-22
SCCR Transmit Clock Source Bit (TCM) Bit 15 "1-22

SCI Data Registers .. 11-23
SCI Receive Reg isters .. 11-23
SCI Transmit Registers · 11-24

Prea.mble, Break, and Data Transmission Priority 11-25
Register Contents After Reset ... 11-25
SCI Initialization; .. 11-26
SCI Exceptions .. 11-28
SynchronoLis Data .. 11-32
Asynchronous Data ; ... 11-39

Asynchronous Data Reception ... 11-39
Asynchronous Data Transmission 11-41

Multidrop... 11-47

DSP56000/DSP56001 USER'S MANUAL xi

Paragraph
Number

11.2.8.1
11.2.8.2
11.2.8.3
11.2.8.4
11.2.8.5
11.2.9
11.2.10
11.3
11.3.1
11.3.1.1
11.3.1.2
11.3.1.3
11.3.1.4
11.3.1.5
11.3.1.6
11.3.2
11.3.2.1
11.3.2.1.1
11.3.2.1.2
11.3.2.1.3
11.3.2.1.4
11.3.2.2
11.3.2.2.1
11.3.2.2.2
11.3.2.2.3
11.3.2.2.4
11.3.2.2.5
11.3.2.2.6
11.3.2.2.7
11.3.2.2.8
11.3.2.2.9
11.3.2.2.10
11.3.2.2.11
11.3.2.2.12
11.3.2.2.13
11.3.2.2.14
11.3.2.2.15
11.3.2.3
11.3.2.3.1
11.3.2.3.2
11.3.2.3.3
11.3.2.3.4
11.3.2.3.5
11.3.2.3.6

xii

TABLE OF CONTENTS (Continued)

Title
Page

Number

Transmitting Data and Address Characters 11-49
Wired-OR Mode ... 11-53
Idle Line Wakeup .. 11-53
Address Mode Wakeup .. 11-53
Multidrop Example ... 11-56

SCI Timer ... 11-61
Example Circuits .. 11-64

Synchronous Serial Interface (SSI) .. 11-66
SSI Data and Control Pins .. 11-67

Serial Transmit Data Pin (STD) .. 11-68
Serial Receive Data Pin (SRD) ... 11-69
Serial Clock (SCK) ... 11-69
Serial Control Pin (SCO) ... 11-71
Serial Control Pin (SC1) ... 11-71
Serial Control Pin (SC2) ... 11-72

SSI Interface Programming Model ... 11-72
SSI Control Register A (CRA) .. 11-72

CRA Prescale Modulus Select (PM7-PMO) Bits 0-7 11-72
CRA Frame Rate Divider Control (DC4-DCO) Bits 8-12 11-76
CRA Word Length Control (WLO, WL 1) Bits 13 and 14 11-76
CRA Prescaler Range (PSR) Bit 15 11-76

SSI Control Register B (CRB) ... 11-76
CRB Serial Output Flag 0 (OFO) Bit 0 11-77
CRB Serial Output Flag 1 (OF1) Bit 1 11-77
CRB Serial Control 0 Direction (SCDO) Bit 2 i 11-77
CRB Serial Control 1 Direction (SCD1) Bit 3 11-77
CRB Serial Control 2 Direction (SCD2) Bit 4 11-77
CRB Clock Source Direction (SCKD) Bit 5 11-79
CRB Shift Direction (SHFD) Bit 6 11-79
CRB Frame Sync Length (FSLO and FSL1) Bits 7 and 8 11-79
CRB Sync/Async (SYN) Bit 9 11-79
CRB Gated Clock Control (GCK) Bit 10 11-79
CRB SSI Mode Select (MOD) Bit 11 11-80
CRB SSI Transmit Enable (TE) Bit 12 11-80
CRB SSI Receive Enable (RE) Bit 13 11-80
CRB SSI Transmit Interrupt Enable (TIE) Bit 14 11-81
CRB SSI Receive Interrupt Enable (RIE) Bit 15 11-81

SSI Status Register (SSISR) .. 11-81
SSISR Serial Input Flag 0 (IFO) Bit 0 11-81
SSISR Seial Input Flag 1 (lF1) Bit 1 11-82
SSISR Transmit Frame Sync Flag (TFS) Bit 2 11-82
SSISR Receive Frame Sync Flag (RFS) Bit 3 11-82
SSISR Transmitter Underrun Error Flag (TUE) Bit 4 11-82
SSISR Receiver Overrun Error Flag (ROE) Bit 5 11-83

OSP56000/0SP56001 USER'S MANUAL MOTOROLA

Paragraph
Number

11.3.2.3.7
11.3.2.3.8
11.3.2.3.9
11.3.2.3.10
11.3.2.3.11
11.3.2.3.12
11.3.2.3.13
11.3.3
11.3.4
11.3.5
11.3.6
11.3.7
11.3.7.1
11.3.7.1.1
11.3.7.1.2
11.3.7.1.3
11.3.7.1.4
11.3.7.1.5
11.3.7.2
11.3.7.2.1
11.3.7.2.2
11.3.7.3
11.3.7.3.1
11.3.7.3.2
11.3.7.4
11.3.7.4.1
11.3.7.4.2
11.3.8
11.3.9

MOTOROLA

TABLE OF CONTENTS (Concluded)

Title
Page

Number

SSISR SSI Transmit Data Register Empty (TDE) Bit 6 11-83
SSISR SSI Receive Date Register Full (RDF) Bit 7 11-83
SSI Receive Shift Register ... 11-83
SSI Receive Data Register (RX) 11-84
SSI Transmit Shift Register 11-84
SSI Transmit Data Register (TX) 11-84
Time Slot Register (TSR) .. 11-84

Operational Modes and Pin Definitions 11-87
Registers After Reset .. 11-88
SSI Initialization ... 11-88
SSI Exceptions .. 11-92
Operating Modes - Normal, Network, and On-Demand 11-93

Data/Operation Formats ... 11-96
Normal/Network Mode Selection 11-96
Continuous/Gated Clock Selection 11-96
Synchronous/Asynchronous Operating Modes 11-99
Frame Sync Selection .. 11-107
Shift Direction Selection ... 11-107

Normal Mode Examples "'"'''''''''''''''''''''''''''',''''''''''''''' 11-107
Normal Mode Transmit .. : ... 11-113
Normal Mode Receive .. 11-114

Network Mode Examples ... 11-118
Network Mode Transmit ... 11-122
Network Mode Receive .. 11-124

On-Demand Mode Examples ... 11-127
On-Demand Mode - Continuous Clock 11-128
On-Demand Mode - Gated Clock 11-128

Flags " 11-133
Example Circuits .. 11-"38

Appendix A
Instruction Set Details

Appendix B
Benchmark Programs

Appendix C
Additional Support

Index

OSP56000/0SP56001 USER'S MANUAL xiii

xiv DSP56000/DSP56001 USER'S MANUAL MOTOROLA \

LIST OF ILLUSTRATIONS

Figure Page
Number Title Number

1-1 Analog Signal Processing .. 1-2
1-2 Digital Signal Processing ... 1-3
1-3 DSP Hardware Origins .. 1-7
1-4 DSP Block Diagram .. 1-7
1-5 DSP56000 Block Diagram... 1-8

2-1 DSP56000 Block Diagram... 2-2
2-2 DSP56001 Block Diagram... 2-2
2-3 DSP56000/DSP56001 Functional Signal Groups 2-9

3-1 DSP56000 Memory Map :....................................... 3-2·
3-2 Memory Map for DSP56000 Mode 0: Single-Chip Mode................. 3-4
3-3 Memory Map for DSP56000 Mode 2: Normal Expanded Mode 3-5
3-4 Memory Map for DSP56000 Mode 3: Development Mode...... 3-6
3-5 DSP56001 Memory Map................. ... 3-7
3-6 Memory Map for DSP56001 Mode 0: Single-Chip......................... 3-10
3-7 Memory Map for DSP56001 Mode 2: Normal Expanded Mode 3-11
3-8 Memory Map for DSP56001 Mode 3: Development Mode............... 3-13

4-1 DSP56001 Block Diagram... 4-1
4-2 Data ALU... 4-2
4-3 MAC Unit... 4-4
4-4 Saturation Arithmetic.. 4-7
4-5 Bit Weighting and Alignment of Operands.......................... 4-9
4-6 Integer-to-Fractional Data Conversion... 4-9
4-7 Integer/Fractional Number Comparison........................ 4-10
4-8 Integer/Fractional Multiplication Comparison 4-10
4-9 Convergent Rounding ... 4-12
4-10 DSP56000/DSP56001 Programming ModeL : 4-13

5-1 DSP56001 Block Diagram... 5-1
5-2 AGU Block Diagram ... 5-2
5-3 AGU Programming Model... 5-4
5-4 Address Register Indirect - No Update........................ 5-7
5-5 Address Register Indirect - Postincrement 5-8
5-6 Address Register Indirect - Postdecrement.. .. ~............................ 5-9
5-7 Address Register Indirect - Postincrement by Offset Nn................ 5-10
5-8 Address Register Indirect - Postdecrement by Offset Nn 5-11
5-9 Address Register Indirect - Indexed by Offset Nn 5-12

MOTOROLA DSP56000/DSP56001 USER'S MANUAL xv

Figure
Number

5-10
5-11
5-12
5-13
5-14
5-15

6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
6-9
6-10

7-1
7-2
7-3
7-4
7-5
7-6
7-7
7-8
7-9 .
7-10
7-11 .
7-12
7-13
7-14
7-15
7-16

8-1
8-2
8-3
8-4
8-5
8-6
8-7
8-8
8-9

xvi

LIST OF ILLUSTRATIONS (Continued)

Page
Title Number

Address Register Indirect - Predecrement q-13
Circular Buffer... 5-14
Linear Addressing with a Modulo Modifier...................... 5-15
Modulo Modifier Example.. 5-16
Bit-Reverse Address Calculation Example.................................... 5-19
Address Modifier Summary... 5-21

DSP56001 Block Diagram............ 6-1
DSP56000/DSP56001 Program Contro"er ~.......................... 6-2
Fast and Long Interrupt Examples.................... 6-5
Three-Stage Pipeline... 6-7
Program Controller Programming Model ,' ~........... 6-8
Status Register Format.. 6-9
OMR Format ·.. 6-12
SP Register Format .. 6-15
SP Register Values ... 6-16
DSP56000/DSP56001 Central Processor Programming Model........... 6-18

DSP56000/DSP56001 Central Processor Programming Model........... 7-2
General Format of an Instruction Operation Word............ 7-3
Operand Sizes ·........ 7-4
Reading and Writing the ALU Extension Registers 7-5
Reading and Writing the Address ALU Registers.......................... 7-5
Reading and Writing Control Registers...................... 7-6
Special Addressing - Immediate Data 7-12
Special Addressing - Absolute Addressing ~... 7-13
Special Addressing - Immediate Short Data 7-14
Speciill Addressing - Short Jump Address................................. 7-15
Special Addressing - Absolute Short Address .. ;.......................... 7-16
Special Addressing - 1/0 Short Address.. 7-17
Hardware DO Loop :... 7-21
Nested DO Loop.:.. 7-22
Classifications of Para"el Data Moves... 7-23
Para"el Move Examples.. 7-23

Interrupting an SWI.. 8-11
"legal Instruction Interrupt'Serviced by a Fast Interrupt.................. 8-12
Repeated "legal Instruction...... 8-13
Trace Exception... 8-15
Interrupt Priority Register (Addr X:$FFFF).................................... 8-16
Fast I nterru pt Service Routi ne ~...... 8-21
Two Consecutive Fast Interrupts... 8-22
Long Interrupt Service Routine :................. 8-23
JSR First Instruction of a Fast Interrupt....................................... 8-25

DSP56000/DSP56001 USER'S MANUAL MOTOROLA

LIST OF ILLUSTRATIONS (Continued)

Figure Page
Number Title Number

8-10 JSR Second Instruction of a Fast Interrupt.............................. 8-26
8-11 Interrupting an REP Instruction 8-28
8-12 Interrupting Sequential REP Instructions 8-29
8-13 Reset Sequence... 8-30
8-14 Reset When OMR=O .. 8-31
8-15 Wait Instruction Timing 8-37
8-16 Simultaneous Wait Instruction and Interrupt................................ 8-37
8-17 STOP Instruction Sequence.. 8-39
8-18 STOP Instruction Sequence Followed by IRQA 8-39
8-19 STOP Instruction Sequence Recovering with RESET...................... 8-42

9-1 Port A Signals... 9-2
9-2 External Program Space.. 9-3
9-3 External X and Y Data Space ;................................. 9-4
9-4 Memory Segmentation... 9-5
9-5 Port A Bootstrap Circuit...... 9-6
9-6 Port A Bootstrap ROM with X and Y RAM................................... 9-7
9-7 Port A Bus Operation with No Wait States................................... 9-8
9-8 Port A Bus Operation with Two Wait States................................. 9-9
9-9 Mixed-Speed Expanded System.. 9-11
9-10 Bus Control Register.. 9-13
9-11 Port A Access Control.................. 9-13
9-12 Bus StrobelWait Sequence ~................................. 9-14
9-13 Bus Request/Bus Grant Sequence '............... 9-15
9-14 Bus Arbitration Using Only BR/BG with Internal Control............ 9-17
9-15 Two DSPs with External Bus Arbitration Timing 9-17
9-16 Bus Arbitration Using Only BR/BG with External Control................ 9-18
9-17 Bus Arbitration Using BR/BG and BSIWT with No Overhead............ 9-19
9-18 Two DSPs with External Bus Arbitration Timing.. 9-19
9-19 Signaling Using Semaphores ... 9-20

10-1 Port B Interface ... 10-1
10-2 Parallel PortB Registers .. 10-2
10-3 Parallel Port B Pinout.. 10-3
10-4 Port B I/O Pin Control Logic .. ~ 10-3
10-5 On-Chip Peripheral Memory Map .. 10-5
10-6 Write/Read Parallel Data with Port B .. 10-6
10-7 Port B Configuration Flowchart.... 10-6
10-8 I/O Port B Configuration 10-7
10-9 HI Block Diagram ... 10-10
10-10 Host Interface Programming Model - DSP Viewpoint 10-11
10-11 Host Flag Operation ... 10-13
10-12 HSR-HCR Operation.. 10-16
10-13 Host Processor Programming Model - Host Side.............. 10-17

MOTOROLA OSP56000/0SP56001 USER'S MANUAL xvii

Figure
Number

LIST OF ILLUSTRATIONS (Continued)

Title
Page

Number

10-14 HI Register Map ... 10-18
10-15 Host Processor Transfer Timing .. 10-28
10-16 Host Registers After Reset - Host Side 10-29
10-17 HI Interrupt Structure .. 10-29
10-18 DMA Transfer Logic and Timing.. 10-32
10-19 HI Initialization Flowchart ... 10-32
10-20 HI Initialization - DSP Side.............................. 10-33
10-21 (a) HI Configuration - Host side 10-34
10-21 (b) HI Initialization - Host Side, Polling Mode.. 10-34
10-21 (c) HI Initialization - Host Side, Interrupt Mode........ 10-35
10-21 (d) HI Initialization - Host Side, DMA Mode 10-36
10-22 Host Mode and INIT Bits........ 10-37
10-23 Bits Used for Host-to-DSP Transfer 10-38
10-24 Data Transfer from Host to DSP.. 10-39
10-25 Receive Data from Host - Main Program 10-40
10-26 Receive Data from Host Interrupt Routine.................................... 10-40
10-27 Vector Table of Exception Sources................ 10-41
10-28 Host Command 10-42
10-29 Bootstrap Using the HI.. 10-44
10-30 TransmitlReceive Byte Registers.. 10-45
10-31 Bootstrap Code Fragment .. 10-45
10-32 Bits Used for DSP-to-Host Transfer ~..................... 10-46
10-33 Data Transfer from DSP to Host.. 10-47
10-34 Main Program - Transmit 24-Bit Data to Host 10-48
10-35 Transmit to HI Routine 10-49
10-36 HI Hardware - DMA Mode .. 10-50
10-37 DMA Transfer and Host Interrupts 10-51
10-38 Host-to-DSP DMA Procedure.. 10-52
10-39 Host Bits with TREQ and RREQ ... 10-53
10-40 DSP-to-Host DMA Procedure .. 10-55
10-41 MC68HC11-to-DSP56000 Host Interface....................................... 10-56
10-42 MC68000-to-DSP56000 Host Interface... 10-57
10-43 Multi-DSP Network Example .. 10-58

11-1 Port C Interface 11-2
11-2 Para"el Port C Pinout .. 11-3
11-3 Para"el Port C Registers.. 11-3
11-4 Port B liD Pin Control Logic.................................... 11-4
11-5 On-Chip Peripheral Memory Map 11-5
11-6 WritelRead Para"el Data with Port C 11-6
11-7 Port C Configuration Flowchart... 11-6
11-8 liD Port C Configuration 11-7
11-9 SCI Programming Model - Control and Status Registers 11-10
11-10 SCI Programming Model ... 11-11

xviii DSP56000/DSP56001 USER'S MANUAL MOTOROLA

Figure
Number

11-11
11-12
11-13
11-14
11-15
11-16
11-17
11-18
11-19
11-20
11-21
11-22
11-23
11-24
11-25
11-26
11-27
11-28
11-29
11-30
11-31
11-32
11-33
11-34
11-35
11-36
11-37
11-38
11-39
11-40
11-41
11-42
11-43
11-44
11-45
11-46
11-47
11-48
11-49
11-50
11-51
11-52
11-53
11-54

LIST OF ILLUSTRATIONS (Continued)

Page
Title Number

Serial Formats... 11-13
16 x Serial Clock.. 11-21
SCI Baud Rate Generator 11-22
Data Packing and Unpacking 11-24
SCI Initialization Procedure 11-28
SCI General Initialization Detail - Step 2............................ 11-29
SCI Exception Vector Locations... 11-33
Synchronous Master................. 11-34
Synch ronous Slave' :'... 11-36
Synchronous Timing ~... 11-37
SCI Synchronous Transmit...................... 11-38
SCI Synchronous Rec~ive.................................... 11-39
Asynchronous SCI Receiver Initialization 11-40
SCI Character Reception 11-42
SCI Character Reception with Exception...................................... 11-43
Asynchronous SCI Transmitter Initialization 11-44
Asynchronous SCI Character Transmission......................... 11-45
Transmitting Marks' and Spaces.. 11-46
SCI Asynchronous Transmit/Receive Example 11-48
11-Bit Multidrop Mode .. 11-50
Transmitting Data and Address Characters........................ 11-51
Wired-OR Moae.... 11-52
Idle Line Wakeup 11-54
Address Mode Wakeup ;................................... 11-55
Multidrop Transmit/Receive Example 11-57
SCI Timer Operation................ 11-62
SCI Timer Example... 11-63
Synchronous Mode Example.. 11-65
Multimaster System Example 11-65
Master-Slave System Example.. 11-66
SSI Clock Generator Functional Block Diagram............................. 11-69
SSI Frame Sync Generator Functional Block Diagram......... 11-70
SSI Interface Programming Model - Control and Status Registers... 11-:-73
SSI Interface Programming Model........... 11-74
Serial Control, Direction Bits 11-78
Receive Data Path.. 11-85
Transmit Data Path.... 11-86
SSI Initialization Block Diagram. 11-89
SSI CRA Initialization Procedure.. 11-90
SSI CRB Initialization Procedure..................................... 11-91
SSI Initialization Procedure 11-92
SSI Exception Vector Locations...... 11-94
SSI Exceptions.. 11-95
CRB MOD Bit Operation.... 11-97

MOTOROLA DSP56000/DSP56001 USER'S MANUAL xix

Figure
Number

LIST OF ILLUSTRATIONS (Concluded)

Title
Page

Number

11-55 Normal Mode, External Frame Sync (8 Bit, 1 Word in Frame) 11-98
11-56 Network Mode (8 Bit, 2 Words in Frame) 11-98
11-57 CRB GCK Bit Operation ... 11-100
11-58 Continuous Clock Timing Diagram (8-Bit Example) 11-101
11-59 Internally Generated Gated Clock Timing (8-Bit Example) 11-102
11-60 Externally Generated Gated Clock Timing (8-Bit Example) 11-103
11-61 Synchronous Communication ' .. ; ... 11-104
11-62 CRB SYN Bit Operation ... 11-105
11-63 Gated Clock - Synchronous Operation .. 11-106
11-64 Gated Clock - Asynchronous Operation 11-106
11-65 Continuous Clock - Synchronouos Operation 11-106
11-66 Continuous Clock - Asynchronous Operation 11-106
11-67 CRB FSLO and FSL1 Bit Operation ..•.. 11-108
11-68 Normal Mode Initialization for FSL1 =0 and FSLO=O 11-109
11-69 Normal Mode Initialization for FSL=1 and FSLO=O 11-110
11-70 CRB SHFD Bit Operation ... 11-111
11-71 Normal Mode Example ... 11-113
11-72 Normal Mode Transmit Example .. 11-115
11-73 Normal Mode Receive Example .. 11-117
11-74 Network Mode Example .. 11-118
11-75 TDM Network Software Flowchart•......... 11-120
11-76 Network Mode Initialization ... 11-121
11-77 Network Mode Transmit Example Program 11-123
11-78 Network Mode Receive Example Program 11-125
11-79 On-Demand Example ... 11-127
11-80 On-Demand Data-Driven Network Mode 11-129
11-81 Clock Modes .. 11-1~p
11-82 SPI Configuration .. 11-130
11-83 On-Demand Mode Example - Hardware Configuration 11-131
11-84 On-Demand Mode Transmit Example Program 11-1~?
11-85 On-Demand Mode Receive Example Program 11-134
11-86 Output Flag Timing~ ... 11-135
11-87 Output Flag Example .. 11-136
11-88 Output Flag Initialization ... 11-137
11-89 Input Flags ... 11-138
11-90 SSI Cascaded Multi-DSP System.: ... 11-13~
11-91 SSI TDM Parallel DSP Network ... 11-140
11-92 SSI TDM Connected Parallel Processing Array 11-141
11-93 SSI TDM Serial/Parallel Processing Array 11-142
11-94 SSI Parallel Processing - Nearest Neighbor Array ' 11-143
11-95 SSI TDM Bus DSP Network .. ~ 11-144
11-96 SSI TDM Master-Slave DSP Network ... 11-145

xx DSP56000/DSP56001 USER'S MANUAL MOTOROLA

LIST OF TABLES

Table
Number Title

Page
Number

1-1 Benchmark Summary in Instruction Cycles..................................... 1-4

2-1 Program and Data. Memory Select Encoding 2-10

3-1 Initial DSP56000 Operating Mode Summary................................... 3-3
3-2 Initial DSP56001 Operating Mode Summary...................... 3-9

4-1 Limited Data Values 4-8

5-1 Address Register Indirect Summary.... 5-6
5-2 Linear Address Modifiers.. 5-14
5-3 Modulo Address Modifiers.. 5-17
5-4 Reverse-Carry Address Modifiers.. 5-17
5-5 Bit-Reverse Addressing Sequence Example.................................... 5-18
5-6 Address-Modifier-Type Encoding Summary.................................... 5-20

Interrupt Sources.. 6-4 6-1
6-2
6-3

DSP56000/DSP56001 Operating Mode Summary..... 6-12
DSP56000/DSP56001 DE Memory Control....................................... 6-13

7-1
• c I

Addressing Modes Summary.. 7-18

8-1 Instruction Pipelining... 8-1
8-2 Interrupt Sources 8-10
8-3 Status Regi~ter Interrupt Mask Bits ... 8-16
8-4 Interrupt Priority Level Bits 8-17
8-5 External Interrupt Trigger Mode Bits 8-17
8-6 Exception Priorities within an IPL 8-17
8-7 HI Reset Effects - DSP56000/DSP56001 Programming Model............. 8-32
8-8 HI Reset Effects - Host Processor Programming ModeL........ 8-33
8-9 SSI Reset Effects... 8-34
8-10 SCI Reset Effects... 8-35
8-11 Ports A, B, and C Reset Effects... 8-36
8-12 BR/BG During WAIT ... 8-38

9-1 Program and Data Memory Select Encoding 9-5
9-2 Power Requirements for Minimum and Maximum External Memory

Wa it States.. 9-12
9-3 Wait State Control... 9-15

MOTOROLA DSP56000/DSP56001 USER'S MANUAL xxi

Table
Number

10-1
10-2
10-3
10-4
10-5

11-1
11-2(a)
11-2(b)
11-3(a)
11-3(b)
11-4
11-5
11-6
11-7
11-8
11-9(a)
11-9(b)
11-10
11-11

xxii

LIST OF TABLES (Continued)

Title
Page

Number

Host Registers after Reset - DSP CPU Side 10-15
HREO Pin Definition .. 10-19
Host Mode Bit Definition .. 10-20
HREO Pin Definition .. 10-21
Host Registers after Reset (Host Side) ~ 10-26

SCI Reg isters after Reset .. 11-27
Asynchronous SCI Baud Rates for a 20.48-MHz Crystal 11-31
Frequencies for Exact Asynchronous SCI Baud Rates ~ 11-31
Synchronous SCI Baud Rates for a 20.48-MHz CrystaL 11-32
Frequencies for Exact Synchronous SCI Baud Rates 11-32
Definition of SCO, SC1, SC2, and SCK .. 11-68
SSI Clock Sources, Inputs, and Outputs ... 11-70
Mode and Pin Definition Table - Continuous Clock 11-87
Mode and Pin Definition Table - Gated Clock 11-88
SSI Registers after Reset .. 11-89
SSI Baud Rates for a 20.48-MHz Crystal. .. ; 11-93
SSI Baud Rates for a 26.624-MHz Crystal. 11-93
Crystal Frequencies Required for Codecs 11-93
SSI Operating Modes ... 11-96

DSP56000/DSP56001 USER'S MANUAL MOTOROLA

SECTION 1
INTRODUCTION

The DSP56001 and DSP56000, user-programmable, CMOS digital signal processors (DSPs),
are optimized to execute DSP algorithms in as few operations as possible while maintaining
a high degree of accuracy. The architect"ure has been designed to maximize throughput in
data-intensive DSP applications. This design has resulted in a dual-natured, expandable
architecture with sophisticated on-chip peripherals and general-purpose liD. The architec­
ture, on-chip peripherals, and the low power consumption of the DSP56000/DSP56001 have
minimized the complexity, cost, and design time needed to add the power of DSP to any
design.

Being read-only memory (ROM) based, the DSP56000 is factory programmed with user
software for minimum cost in high-volume applications. Being random-access memory
(RAM) based, the DSP56001 is an off-the-shelf processor designed to load its program
from an external source. The difference between the two processors is the on-chip memory
resources. A secure version of the DSP56000, which prevents unauthorized access to the
internal program memory, is also available.

This manual is written for both the DSP56000 and DSP56001. Normally, the reference will
be to the DSP56000/DSP56001; however, when the two processors differ, they will be cited
individually.

1.1 ORIGIN OF THE DSP56000 ARCHITECTURE

DSP is the arithmetic processing of real-time signals sampled at regular intervals and
digitized. Examples of DSP processing are as follows:

Filtering of Signals
Convolution, Which Is the Mixing of Two Signals
Correlation, Which Is a Comparison of Two Signals
Rectification of a Signal
Amplification of a Signal
Transformation of a Signal

All ofthese functions have traditionally been performed using analog circuits. Only recently
has technology provided the processing power necessary to digitally perform these and
other functions using DSPs.

Figure 1-1 is a graphical description of analog signal processing. The circuit filters a signal
from a sensor using an operational amplifier and controls an actuator with the result. Since
the ideal filter is not possible to design, the engineer must design the filter for acceptable

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 1-1

III

fe

FREOUENCY

IDEAL
FILTER

ANALOG FILTER

Rf

y(t) Rf

x(t) l+jw RfCf

FREQUENCY CHARACTERISTICS

y(t)

Figure 1-1. Analog Signal Processing

y(t)~ OUTPUT
TO

ACTUATOR

response, considering variations in temperature, component aging, power-supply varia­
tion, and component accuracy. The resulting circuit typically has low noise immunity,
requires adjustments, and is difficult to modify.

The equivalent circuit using a DSP is shown in Figure 1-2. This application requires an
analog-to-digital (AID) converter and digital-to-analog (D/A) converter in addition to the
DSP. Even with these additional parts, the component count can be lower using a DSP due
to the high integration available with current components.

Processing in this circuit begins by band limiting the input with an antialias filter, eliminating
out-of-band signals that can be aliased back into the pass band due to the sampling process.
The signal is then sampled, digitized with an AID converter, and then sent to the DSP.

The filter implemented by the DSP is strictly a matter of software. The DSPcan directly
implement any filter that can be implemented using analog techniques. Also, adaptive
filters can be easily implemented using DSP; whereas, these filters are extremely difficult
to implement using analog techniques.

1-2 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

LOW-PASS SAMPLER AND DSP OPERATION DIGITAL-TO-ANALOG RECONSTRUCTION
ANTIALIASING ANALOG-TO-DIGITAL CONVERTER LOW-PASS FILTER

FILTER CONVERTER

FIR FILTER

D N Q ~ Lc(nl x (n - kl ---..
x(11 k=O Y(I)

. FINITE IMPULSE
RESPONSE

ANALOG IN ANALOG OUT

A

~I
I

IDEAL
FILTER

fc

FREQUENCY

A

~I ~ ANALOG
FILTER

fc

FREQUENCY

A

DIGITAL ~I ~ FILTER

fc

FREQUENCY

Figure 1-2. Digital Signal Processing

The DSP output is processed by a D/A converter and is low-pass filtered to remove the
effects of digitizing. In summary, the advantages of using the DSP include the following:

Fewer Components
Stable, Deterministic Performance
Wide Range of Application
High Noise Immunity and Power-Supply Rejection
Self-Test Can Be Built In

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 1-3

•

•
No Filter Adjustments
Filters with Much Closer Tolerances
Adaptive Filters Easily Implemented

The DSP56000/DSP5001 was not designed for a particular application but was designed to
execute commonly used DSP benchmarks in a minimum time for a single-multiplier ar­
chitecture. For example, a cascaded, 2nd-order, four-coefficient infinite impulse response
(IIR) biquad section has four multiplies for each section. For that algorithm, the theoretical
minimum number of operations for a single-multiplier architecture is four per section.
Table 1-1 shows a list of benchmarks with the number of instruction cycles the DSP560001
DSP56001 uses compared to the number of multiplies in the algorithm.

Table 1-1. Benchmark Summary in Instruction Cycles

Benchmark
OSP56000/0SP56001 Number of Algorithm

Number of Cycles Multiplies

Real Multiply 3 1

N Real Multiplies 2N N

Real Update 4 1

N Real Updates 2N N

N Term Real Convolution (FIR) N N

N Term Real * Complex Convolution 2N N

Complex Multiply 6 4

N Complex Multiplies 4N N

Complex Update 7 4

N Complex Updates 4N 4N

N Term Complex Convolution (FIR) 4N 4N

Nth-Order Power Series 2N 2N

2nd-Order Real Biquad Filter 7 4

N Cascaded 2nd-Order Biquads 4N 4N

N Radix Two FFT Butterflies 6N 4N

These benchmarks and others are used independently or in combination to implement
functions. The characteristics of these functions are controlled by the coefficients of the
benchmarks being executed. Useful functions using these and other benchmarks include
the following:

Digital Filtering

Finite Impulse Response (FIR)

Infinite Impulse Response (lIR)

. Matched Filters (Correlators)

Hilbert Transforms

Windowing

Adaptive Filters/Equalizers

Signal Processing
Compression (e.g., Linear Predictive

Coding of Speech Signals)
Expansion
Averaging
Energy Calculations
Homomorphic Processing
Mu-Iaw/A-Iaw to/from Linear Data

Conversion

1-4 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

Data Processing
Encryption/Scrambling
Encoding (e.g., Trellis Coding)
Decoding (e.g., Viterbi Decoding)

Numeric Processing
Scaler, Vector, and Matrix Arithmetic
Transcendental Function Computation

(e.g., Sin(X), Exp(X))
Other Nonlinear Functions
Pseudo-Random-Number Generation

Modulation
Amplitude
Frequency
Phase

Spectral Analysis
Fast Fourier Transform (FFT)
Discrete Fourier Transform (OFT)
Sine/Cosine Transforms
Moving Average (MA) Modeling
Autoregressive (AR) Modeling
ARMA Modeling

Useful applications are based on combining these and other functions. DSP applications
affect almost every area in electronics because any application for analog electronic circuitry
can be duplicated using DSP. The advantages in doing so are becoming more compelling
as DSPs b~come faster and more cost effective. DSPs are also being used as high-speed
math processors in many purely digital computer applications. Some typical applications
for DSPs .are presented in the following list:

Telecommunication
Tone Generation
D~al~Tone Multifrequency (DTMF)
Subscriber Line Interface
Full-Duplex Speakerphone
Tel'~conferencing'
Voice Mail .
Adaptive Differential Pulse Code

Modulation (ADPCM) Transcoder
Medium-Rate Vocoders
Noise Cancelation
Repeaters'
Integrated Services Digital Network

(ISDN) Transceivers
Secure Telephones

Data Communication
High~Speed Modems
Multiple Bit-Rate Modems
High-Speed Facsimile

Radio Communication
Secure Communications
Point-to-Point Communications
Broadcast Communications
Cellular Mobile Telephone

Computer
Array Processors
Work Stations

Personal Computers
Graphics Accelerators

Image Processing
Pattern Recognition
Optical Character Recognition
Image Restoration
Image Compression
Image Enhancement
Robot Vision

Graphics
3-D Rendering
Computer-Aided Engineering (CAE)
Desktop Publishing
Animation

Instrumentation
Spectral Analysis
Waveform Generation
Transient Analysis
Data Acquisition

Speech Processing
Speech Synthesizer
Speech Recognizer
Voice Mail
Vocoder
Speaker Authentication
Speaker Verification

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 1-5

III

Audio Signal Processing
Digital AM/FM Radio
Digital Hi-Fi Preamplifier
Noise Cancelation
Music Synthesis

Medical Electronics
Cat Scanners
Sonographs
X-Ray Analysis
Electrocardiogram
Electroencephalogram

Music Processing
Acoustic Equalizer

Nuclear Magnetic Resonance Analysis

High-Speed Control
Laser-Printer Servo
Hard-Disk Servo
Robotics
Motor Controller
Position and Rate Controller

Vibration Analysis
Electric Motors
Jet Engines
Turbines

Digital Video
Digital Television
High-Resolution Monitors

Radar and Sonar Processing
Navigation
Oceanography
Automatic Vehicle Location
Search and Tracking

Seismic Processing
Oil Exploration
Geological Exploration

As evidenced in Figure 1-3, the keys to DSP are as follows:
The Multiply/Accumulate (MAC) Operation
Fetching Operands for the MAC
Program Control To Provide Versatile Operation
Input/Output To Move Data In and Out of the DSP

MAC is the basic operation used in DSP. Figure 1-3 shows how the architecture of the
DSP56000/DSP56001 was designed to match the shape of the MAC operation. The two
operands, C() and X(), are directed to a multiply operation, and the result is summed. This
process is built into the DSP56000/DSP56001 by using two separate memories (X and Y)
to feed a single-cycle MAC. The entire process must occur under program control to direct
the correct operands to the multiplier and save the accumulator as needed. Since the two
memories and the MAC are independent, it is possible to perform two moves, a multiply
and an accumulate, in a single operation. As a result, many of the benchmarks shown in
Table 1-1 can be executed at or near the theoretical maximum speed for a single-multiplier
architecture.

Figure 1-4 shows how the MAC, memories, and program controller in Figure 1-3 are con­
figured in the DSP56000/DSP56001. Three independent memories and memory buses are
used to move two operands to the MAC while concurrently fetching a program instruction.
The address generation unit (AGU) is divided into two arithmetic units used to independ­
ently control the X and Y memories and feed operands to the MAC. An additional block
labeled I/O is shown in Figure 1-4. Many DSPs need additional parts to interface with their
input and output circuits (such as AID converters, D/A converters, or host processors). The
DSP56000/DSP56001 provides on-chip serial and parallel interfaces to simplify this con­
nection problem. Figure 1-5 is a block diagram of the DSP56000 showing all the major

1-6 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

FIR FILTER

~ c(n) x (n-k)

'--.r-' '-v--"

r- -,
I 1
I I
I 1 __ ..
I 1
I I
I I
I I L __ --'

Figure 1-3. DSP Hardware Origins

r-----------· I-----------l r-----------l

I . PROGRAM 1'88. II I I MEMORY I I MEMORY MEMORY I I I
I I I I I I
I I I I I lID I
I II c:J II I I ADDRESS PROGRAM I I I I I
I GENERATION CONTROLLER I I . MAC I I I
I UNIT I I I I I
L~ ________ ~L __________ ~L __________ ~

Figure 1-4. DSP Block Diagram

blocks with their interconnecting buses. The DSP56000 Family of processors has a dual
Harvard architecture optimized for MAC operations.

1.2 SUMMARY OF DSP56000 FAMILY FEATURES

The DSP56000 and DSP56001 are the first two members of Motorola's Family of HCMOS,
low-power, general-purpose DSPs. The DSP56001 features 512 words of full-speed, on­
chip,. program RAM, twopreprogrammed data ROMs, and special on-chip bootstrap

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 1-7

III
YAB
XAB

EXTERNAL ADD
PDRT ADDRESS

I
ADDRESS ~

GENERATION PAB BUS B OR
UNIT ~ + HOST SWITCH

• 1.- X MEMORY Y MEMORY
PROGRAM RAM RAM

~ ON-CHIP
:.-~ ROM 256 x 24 256 x 24 7 BUS PERIPHERALS 3.75K x 24 ROM ROM

~ HOST, SSI, SCI, .A
.... CONTROLLER

256 x 24 256 x 24 + PARALLEL 1/0 "'I
v

11 .11 ~ PORT C A YDB "-
ANDIOR INTERNAL DATA ...

II XDB <{7 ~~ ::: EXTERNAL
DATA

BUS SWITCH A 0 SSI, SCI
AND BIT :;: .S7 PDB .Q.ll J(DATA BUS

MANIPULATION -:: SWITCH

UNIT II ~~ GDB II II K

RESS

PORT A

"'I t L ~ ~ v

i PROGRAM I i PRO;AM"I I PRO(;RAM I DATA ALU
I ADDRESS ~ DECODE ~ INTERRUPT I

~~~R~T~RJ ~~~~L~J ~O~TR~LER] 24 x 24 + 56 • 56-BIT MAC I CLOCK I TWO 56-BIT ACCUMULATORS 
GENERATOR PROGRAM CONTROLLER . f 
i t XTAL I MODB/IRQB - 16 BIT 

EXTAL MODAIIRQA 
=::J 24 BIT RESET S 

Figure 1-5. DSP56000 Block Diagram 

hardware to permit convenient loading of user programs into the program RAM. The 
DSP56001 is an off-the-shelf part since there are no user-programmable, on-chip ROMs. 
The DSP56000 features 3.75K words of full-speed, on-chip, program ROM instead of 512 
words of program RAM. 

The heart of the processor consists of three execution units operating in parallel: the data 
arithmetic logic unit (ALU), the AGU, and the program controller. The DSP56000/DSP56001 
has MCU-style on-chip peripherals, program memory, data memory, and a memory ex­
pansion port. The MPU-style programming model and instruction set allow straightforward 
generation of efficient, compact code. 

The high throughput of the DSP56000/DSP56001 makes it well-suited for communication, 
high-speed control, numeric processing, computer applications, and audio applications. 
The main features facilitating this throughput are as follows: 

• Speed - At 10.25 million instructions per second (MIPS), the DSP56000/DSP56001 can 
execute a 1 024-point complex FFT in 3.23 ms. 

• Precision - The data paths are 24 bits wide, providing 144 dB of dynamic range; 
intermediate results held in the 56-bit accumulators can range over 336 dB. 

• Parallelism - Each on-chip execution unit (AGU, program controller, data ALU), mem­
ory, and peripheral operates independently and in parallel with the other units through 

1-8 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



a sophisticated bus system. The data ALU, AGUs, and program controller operate in 
parallel so that an instruction prefetch, a 24-bit x 24-bit multiplication, a 56-bit addition, 
two data moves, and two address-pointer updates using one of three types of arith­
metic (linear, modulo, or reverse-carry) can be executed in a single instruction cycle. 
This parallelism allows a four-coefficient IIR filter section to be executed in only four 
cycles, the theoretical minimum for single-multiplier architecture. At the same time, 
the two serial controllers can send and receive full-duplex data, and the host port can 
send/receive simplex data. ' 

• Integration - In addition to the three independent execution units, the DSP560001 
DSP56001 has six on-chip memories, three on-chip MCU-style peripherals (serial com­
munication interface (SCI), synchronous serial interface (SSI),and host interface), a 
clock generator, and seven buses (three address and four data), making the overall 
system low cost, low power, and compact. 

• Invisible Pipeline - The three-stage instruction pipeline is essentially invisible to the 
programmer, allowing straightforward program development in either assembly lan­
guage or a high-level language such as a full Kernighan and Ritchie C. 

• Instruction Set - The 62 instruction mnemonics are MCU-like, making the transition 
from programming microprocessors to programming the DSP56000/DSP56001 as easy 
as possible. The orthogonal syntax supports controlling the parallel execution units. 
The hardware DO loop instruction and the repeat (REP) instruction make writing 
straightline code obsolete. 

• OSP56000/0SP56001 Compatibility - The DSP56001 is identical to the DSP56000 ex-
cept for the following features: I 

- 512-word x 24-bit, on-chip program .RAM instead of 3.75K program ROM 
- 32-word x 24-bit bootstrap ROM for loading the program RAM from either a byte-

wide, memory-mapped ROM or via the host interface 
- On-chip X and Y data ROMs preprogrammed as positive Mu-Iaw and A-law to linear 

expansion tables and a full, four-quadrant sine-wave table, respectively 

• Low Power - As a CMOS part, the DSP56000/DSP56001 is inherently very low power; 
however, three other features can reduce power consumption to exceptionally low 
levels. 
- The WAIT instruction shuts off the clock in the central processor portion of the 

DSP56000/DSP56001. 
- TheSTOP instruction halts the internal oscillator. 
- Power increases linearly (approximately) with frequency; thus, reducing the clock 

frequency reduces power consumption. 

1.3 MANUAL ORGANIZATION 

This manual is intended to provide practical information to help the user: 
Understand the Operation of the DSP56000 Family 
Interface the DSP56000 Family with Additional Memory 
Design Parallel Communication Links 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 1-9 



III 

Design Serial Communication Links 
Code DSP Algorithms 
Code Communication Routines 
Code Data-Manipulation Algorithms 
Locate Additional Support 

The following list is a brief description of the contents of each section and each appendix: 

Section 2. Architectural Overview and Bus Structure 
A brief description of each subsystem of the DSP56000/DSP56001 is given. The buses 
interconnecting the major components in the DSP56000/DSP56001 are described in 
detail. 

Section 3. Memory 
This section describes and differentiates the memory for the DSP56000 and DSP56001. 
It describes the program memories, data memories, and the operating mode register 
(OMR) bits controlling the memory maps. 

Section 4. Data Arithmetic Logic Unit 
This section describes in detail the data ALU (one of the three execution units com­
prising the central processor) and its programming model. 

Section 5. Address Generation Unit 
This section specifically describes the AGU (one of the three execution units comprising 
the centr~1 processor), its programming model, address indirect modes, and address 
modifiers. 

Section 6. Program Controller 
This section describes in detail the program controller (one of the three execution units 
comprising the central processor) and its programming model. 

Section 7. Instruction Set Introduction 
A brief description of the syntax, instruction formats, operand/memory references, 
data organization,' addressing modes, and instruction set is presented in this section. 
A detailed description of each instruction is given in APPENDIX A INSTRUCTION SET 
DETAILS. 

Section 8. Processing States. 
The five processing states (normal, exception, reset, wait, and stop) are described in 
this section. 

Section 9. Port A 

1-10 

The port A section describes the external memory port, its control register, and control 
signals. 

DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



Section 10. Port B 
This section describes the port B parallel I/O, host interface, their registers, and the 
controls to enable/disable them. 

Section 11. Port C 
This section describes the port C parallel I/O, SCI, SSI, their registers, and the controls 
to enable/disable them. 

Appendix A. Instruction Set Details 
A detailed description of each DSP56000/DSP56001 instruction, its use, and its affect 
on the processor are presented. 

Appendix B. Benchmarks 
DSP56000/DSP56001 benchmark results are listed in this appendix. 

Appendix C. Additional Support 
This appendix presents a brief description of current support products and services 
and information on where to obtain them. 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 1-11 

• 



III 

1-12 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



SECTION 2 
ARCHITECTURAL OVERVIEW AND BUS STRUCTURE 

The DSP56000/DSP56001 architecture has been designed to maximize throughput in data­
intensive digital signal processor (DSP) applications. This objective has resulted in a dual­
natured, expandable architecture with sophisticated on-chip peripherals and general­
purpose I/O. The architecture is dual natured in that there are two independent, expandable 
data memory spaces, two address generation units (AGUs), and a data arithmetic logic 
unit (ALU) having two accumulators and two shifter/limiter circuits. The duality of the 
architecture facilitates writing software for DSP applications. For example, data is naturally 
partitioned into X and Y spaces for graphics and image-processing applications, into coef­
ficient and data spaces for filtering applications, and into real and imaginary· spaces for 
performing complex arithmetic. 

The major components of the DSP56000/DSP56001 are as follows: 

• Data Buses 

• Address Buses 

• Data ALU 

• AGU 

• X Data Memory 

• Y Data Memory 

• Program Controller 

• Program Memory 

• Input/Output: 

- Memory Expansion (Port A) 

- General-Purpose I/O (Ports B and C) 

- Host Interface 

- Serial Communication Interface (SCI) 

- Synchronous Serial Interface (SSI) 

These components are depicted in Figure 2-1 for the DSP56000 and in Figure 2-2 for the 
DSP56001. A brief description is given for each component in the following paragraphs. 
The processo·rs differ only in the on-chip memory resources. 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 2-1 



YAB 

III 

XAB EXTERNAL ADD ADDRESS ADDRESS PDRT PAB I ~ GENERATION BUS B OR + 1 HOST UNIT SWITCH 

t ~ X MEMORY Y MEMORY 
PROGRAM RAM RAM 

~ ON-CHIP 
~ ROM 256 x 24 256 x 24 

PERIPHERALS BUS 7 
.A ... 3.75K x 24 ROM ROM CONTROLLER 

~ 
HOST, SSI, SCI, 256 x 24 256 x 24 

~ 
PARALLEL I/O " v 

II II ~ PORT C YDB "-
AND/OR INTERNAL DATA 

I II 0 -l?> :::: DATA 
BUS SWITCH A XDB EXTERNAL 

~, SSI, SCI 
AND BIT ;: I '(7 {~II K DATA BUS PDB 

MANIPULATION SWITCH 

UNIT 1 I 4~ GDB II II K 

RESS 

PORT A 

" t L ~ ~ v 
r -, r .~ ~ ~ ~ , 
I PROGRAM I I PROGRAM I I PROGRAM I 

DATA ALU 
I ADDRESS ~ DECODE ~ INTERRUPT I 

~ ~~R~T~R J ~~~D~L~J ~O~TR~LER j 24 x 24+ 56. 56-BIT MAC I CLOCK I TWO 56-BIT ACCUMULATORS 
GENERATOR PROGRAM CONTROLLER . f 
t t XTAL I MODB/IRQB -- 16 BITS 

EXTAL -
MODA/IRQA 

-- = 24 BITS RESET 

Figure 2-1. DSP56000 Block Diagram 

YAB 
XAB EXTERNAL ADD 

PORT 
ADDRESS 

I ADDRESS ~ GENERATION PAB BUS B OR 
UNIT + + + HOST SWITCH 

t ~ X MEMORY Y MEMORY 
BOOTSTRAP PROGRAM RAM RAM 

~ ON-CHIP ~ ROM RAM 256 x 24 256 x 24 7 BUS PERIPHERALS 
.A 

32 x 24 512x24 iJ./A ROM SINE ROM CONTROLLER ... 
~ HOST, SSI, SCI, 256 x 24 256 x 24 

~ 
PARALLEL I/O " v 

II II II ~ PORT C .A YDB ;.. 
AND/OR INTERNAL DATA ... 

II II XDB 0 -l?> :::: EXTERNAL 
DATA 

BUS SWITCH A ~ SSI, SCI 
AND BIT ;: 0 '(7 PDB {~II K DATA BUS 

MANIPULATION SWITCH 

UNIT 
:: II 4~ GDB II U J:: 

RESS 

PORT A 

" t 1 ~ ~ v 

r -, r ."- ..... ~ ~ , 
I PROGRAM I I PROGRAM I I PROGRAM I DATA ALU 
I ADDRESS ~ DECODE ~ INTERRUPT I 

~ ~~R~T~R J ~~~~L~J ~O~TR~LER 1 
24 x 24 + 56. 56-BIT MAC 

CLOCK -' TWO 56-BIT ~CCUMULATORS 
GENERATOR PROGRAM CONTROLLER . f 
1 t XTAL I MODBIIRQB -- 16 BIT 

EXTAL MODA/IRQA -- = 24 BIT RESET 

Figure 2-2. DSP56001 Block Diagram 

2-2 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



2.1 DATA BUSES 

The DSP56000lDSP56001 is organized around the registers of a central processor composed 
of three independent execution units. The buses move data and instructions while instruc­
tions are being executed inside the execution units. Data movement on the chip occurs 
over four, bidirectional, 24-bit buses: the X data bus (XDB), the Y data bus (YDB), the 
program data bus (PDB), and the global data bus (GOB). The X and Y data buses may also 
be treated by certain instructions as one 48-bit data bus by concatenation of XDB and YDB. 
Data transfers between the data ALU and the X data memory or Y data memory occur 
over XDB and YDB, respectively. XDB and YDB are kept local on the chip to maximize 
speed and minimize power dissipation. All other data transfers, such as I/O transfers with 
peripherals, occur over the GOB. Instruction word prefetches occur in parallel over the 
PDB. The bus structure supports general register-to-register, register-to-memory, and 
memory-to-register data movement and can transfer up to two 24-bit words and one 56-
bit word in the same instruction cycle. Transfers between buses are accomplished in the 
internal bus switch. 

2.2 ADDRESS BUSES 

Addresses are specified for internal X data memory and Y data memory on two, unidirec­
tional, 16-bit buses - X address bus (XAB) and Y address bus (YAB). Program memory 
addresses are specified on the bidirectional program address bus (PAB). External memory 
spaces are addressed via a single 16-bit, unidirectional address bus driven by a three-input 
multiplexer that can select the XAB, the YAB,·or the PAB. Only one external memory access 
can be made in an instruction cycle. There is no speed penalty if only one external memory 
space is accessed in an instruction cycle. If two or three external memory spaces are 
accessed in a single instruction, there will be a one- or two-instruction-cycle execution 
delay, respectively. A bus arbitrator controls external access. 

·2.2.1 Internal Bus Switch 

Transfers between buses are accomplished in the internal bus switch. The internal bus 
switch, which is similar to a switch matrix, can connect any two internal buses without 
adding any pipeline delays. This flexibility simplifies programming. 

2.2.2 Bit Manipulation Unit 

The bit manipulation unit is physically located in the internal bus switch block because the 
internal data bus switch can access each memory space. The bit manipulation unit performs 
bit manipulation operations on memory locations, address registers, control registers, and 
data registers via the XDB, YDB, and GOB. 

MOTOROLA OSP56000/0SP56001 USER'S MANUAL 2-3 

-



• 
2.3 DATA ALU 

The data ALU has been designed to be fast and to provide the capability of processing 
signals having a wide dynamic range. Special circuitry has been provided to facilitate 
handling data overflows and roundoff errors. 

The data ALU performs all of the arithmetic and logical operations on data operands. It 
consists of four 24-bit input registers, two 48-bit accumulator registers, two 8-bit accu­
mulator extension registers, an accumulator shifter, two data bus shifter/limiter circuits, 
and a parallel, single-cycle, nonpipelined multiply-accumulator (MAC) unit. Data ALU op­
erations use fractional twos-complement arithmetic. Data ALU registers may be read or 
written over XDB and YDB as 24- or 48-bit operands. The data ALU is capable of performing 
any of the following operations in a single instruction cycle - multiplication, multiply­
accumulate with positive or negative accumulation, convergent rounding, multiply­
accumulate with positive or negative accumulation and convergent rounding; addition, 
subtraction, a divide iteration, a normalization iteration, shifting, and logical operations. 
Data ALU source operands, which may be 24, 48, or, in some cases, 56 bits, always originate 
from data ALU registers. Arithmetic operations always have a 56-bit result stored in an 
accumulator; whereas, logical operations are performed on 24-bit operands, yielding 
24-bit results in one of the two accumulators. 

The 24-bit data word provides 144 dB of dynamic range, which is sufficient for most real­
world applications since the majority of data converters are' 16 bits or less, and certainly 
not greater than 24 bits. The 56-bit accumulation internal to the data ALU provides 336 dB 
of internal dynamic range so no loss of precision will occur due to intermediate processing. 

The data shifter/limiter circuits provide special postprocessing on data read from the ALU 
accumulator registers A and B out to the XDB or YDB. The data shifters can shift data one 
bit to the left or one bit to the right as well as pass the data unshifted. Each data shifter 
has a 24-bit output with overflow indication. The data shifters are controlled by the scaling 
mode bits in the status register. These shifters permit dynamic scaling of fixed-point data 
without modifying the program code, which allows block floating-point algorithms to be 
implemented in a regular fashion. For example, fast Fourier transform (FFT) routines can 
use this feature to selectively scale each butterfly pass. 

Saturation arithmetic is provided to minimize errors due to overflow. Overflow occurs 
when a source operand requires more bits for accurate representation than are available 
in the destination. To minimize error due to overflow, the DSP56000 writes the maximum 
(or "limited") signed value the destination can assume when an overflow condition is 
detected. 

In the DSP56000/DSP56001, the data ALU accumulators A and B have extension registers 
that are used when more than 48-bit accuracy is needed. Therefore, when the extension 
registers are in use and either A or B is the source being read over XDB or YDB, limiting 
will occur. In the DSP56000/DSP56001, the limiters place a "limited" value on XDB or YDB. 
Limiting is performed on the contents of A or B after the contents have been shifted in the 

2-4 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



shifter. There are two limiters allowing two-word operands to be limited independently in 
the same instruction cycle. The two data limiters can also be concatenated to form one 
48-bit data limiter for long-word operands. 

2.4 ADDRESS GENERATION UNIT 

All of the address storage and effective address calculations necessary to indi rectly address 
data operands in memory are performed in the AGU. This unit operates in parallel with 
other chip resources to minimize address-generation overhead. The AGU contains eight 
address registers (RO-R7), eight offset registers (NO-N7), and eight modifier registers 
(MO-M7). Rn are 16-bit registers that may contain an address or data. The contents of each 
Rn may be output to the XAB (65,536 locations), YAB (65,536 locations), or PAB (65,536 
locations); thus, 196,608 24-bit data words can be directly addressed. Nn and Mn, which 
are 16-bit registers normally used in updating or modifying Rn registers, can also be used 
to store 16-bit data. The AGU registers may be read or written via the GDB as 16-bit 
operands. 

The AGU has two identical address arithmetic units that can generate two 16-bit addresses 
every instruction cycle - one for any two of the XAB, YAB, or PAB buses. Each of the 
arithmetic units can implement three types of arithmetic: linear, modulo, and reverse-carry. 

2.5 X DATA MEMORY 

The on-chip X data random-access memory (RAM), a 24-bit-wide internal static memory, 
occupies the lowest 256 locations in X memory space. The on-chip X data read-only memory 
(ROM) occupies locations 256-511. On the DSP56001, the X data ROM has been pro­
grammed as positive Mu-Iaw (128 locations) and A-law (128 locations) 24-bit companding 
tables useful in telecommunication applications. On the DSP56000, the X data ROM is user 
defined. The on-chip peripherals occupy the top 64 locations in X data memory space. 
Addresses are received from the XAB, and data transfers to the data ALU occur on the 
XDB. X memory may be expanded off-chip so that a total of 65,536 locations can be 
addressed. 

2.6 Y DATA MEMORY 

The on-chip Y data RAM, a 24-bit-wide internal static memory, occupies the lowest 256 
locations in Y memory space. The on-chip Y data ROM occupies locations 256-511. On 
the DSP56001, the Y data ROM has been programmed as a full, four-quadrant, 24-bit sine 
table. On the DSP56000, the Y data ROM is user defined. The off-chip peripherals are 
optimally mapped into the top 64 locations in Y data memory space. Addresses are received 
from the YAB, and data transfers to the data ALU occur on the YDB. Y memory may be 
expanded off-chip so that a total of 65,536 locations can be addressed. 

MOTOROLA OSP56000/0SP56001 USER'S MANUAL 2-5 

-



III 

2.7 PROGRAM MEMORY 

The on-chip program memory consists of a 3.75K-word by 24-bit ROM for the DSP56000 
or a 512-word by 24-bit RAM for the DSP56001. Addresses are received from the program 
control logic (usually the program counter). The interrupt vector addresses for the on-chip 
resources are located in the bottom 64 locations of program memory. Program memory 
may be expanded off-chip so that a total of 65,536 locations can be addressed. 

Bootstrap ROM is a 32-wordby 24-bit factory-programmed ROM used only in the bootstrap 
mode (operating mode 1). The user can invoke bootstrap ROM only on the DSP56001; it 
is not available on the DSP56000. More detailed information on bootstrap ROM is discussed 
in the DSP56001 Advance Information Data Sheet (ADI1290). 

2.8 PROGRAM CONTROLLER 

The program controller performs instruction prefetch, instruction decoding, hardware DO 
loop control, and exception processing. The program controller contains a 15-level by 32-
bit system stack memory and six directly addressable registers: the program counter (PC), 
loop address (LA), loop counter (LC), status register (SR), operating mode register (OMR), 
and stack pointer (SP). The 16-bit PC can address 65,536 locations in program memory 
space. 

2.9 INPUT/OUTPUT 

The I/O capability of the DSP56000/0SP56001 is extensive and advanced. This liD structure 
facilitates interfacing into a variety of system configurations, including multiple DSP560001 
DSP56001 systems with or without a host processor, global bus systems with bus arbitra­
tion, and many serial configurations, all with minimal additional "glue" logic. Each liD 
interface, which has its own control, status, and data registers, is treated as memory­
mapped liD by the DSP56000/DSP56001. Each interface has several dedicated interrupt 
vector addresses and control bits to enableldisable interrupts, which minimizes the over­
head associated with servicing the device since each interrupt source can have its own 
service routine. The interrupt sources can be programmed to one ofthree maskable priority 
levels. 

The liD structure consists of an extremely flexible, 47-pin expansion port (port A) and 24 
additional 110 pins. These pins may be used as general-purpose liD pins, called port Band 
port C, or allocated to on-chip peripherals under software control. Three on-chip peripherals 
are provided on the DSP56000/DSP56001: an 8-bit parallel host microprocessor unitldirect 
memory access (MPU/DMA) interface, an SCI, and an SSI. Port B is a 15-bit liD interface 
that may be used as general-purpose .lID pins or as host MPU/DMA interface pins. Port C 
is a 9-bit liD interfacethat may be used as general-purpose 110 pins or as SCI and SSI pins. 
These interfaces are described in the following paragraphs. 

2-6 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



2.9.1 Expansion Port (Port A) 

DSP56000/DSP56001 expansion port is designed to synchronously interface over a common 
24-bit data bus having a wide variety of memory and peripheral devices. These devices 
include high-speed static RAMs, slower memory devices, and other DSPs and MPUs in 
master/slave configurations. This variety is possible because the expansion bus timing is 
programmable. Two pins can be defined with a control bit to operate either master pro­
cessor controls (called bus strobe and wait in this configuration) or as slave processor 
controls (called bus request and bus grant). The expansion bus timing can also be controlled 
by a bus control register (BCR). The BCR controls the timing of the bus interface signals, 
RD and WR, and the data output lines. Each of the four memory spaces, X data, Y data, 
program data, and liD, has its own 4-bit register in the BCR that can be programmed for 
inserting up to 15 wait states (one wait state is equal to a clock period or equivalently one­
half of an instruction cycle). Thus, external bus timing can be tailored to match the speed 
requirements of thE:! different memory spaces. 

2.9.2 General-Purpose 1/0 (Ports B and C) 

Each port B and port C pin may be programmed as a general-purpose liD pin or as a 
dedicated, on-chip peripheral pin under software control. A 9-bit port C control register 
(PCC) allows each port C pin to be programmed for one of these two functions. The port 
control register associated with port B (PBC) contains only one bit, which programs all 15 
pins. Also associated with each general-purpose port is a data direction register, which 
programs the direction of each pin, and a data register for data liD. The fact that all these 
registers are memory mapped and read/write makes the use of bit manipulation instructions 
extremely effective. 

2.9.3 Host Interface 

The host interface is a byte-wide, full-duplex, parallel port that can be connected directly 
to the data bus of a host processor. The host processor may be any of a number of industry­
standard microcomputers or MPUs, another DSP, or DMA hardware. The DSP56000/ 
DSP56001 host interface has an 8-bit, bidirectional data bus, HO-H7 (PBO-PB7), and seven 
dedicated control lines, HAO, HA1, HA2, HRIW, HEN, HREQ, and HACK (PB8-PB14), to 
control data transfers. The host interface appears as a memory-mapped peripheral occu­
pying eight bytes in the host-processor address space. Separate transmit and receive data 
registers are double buffered to allow the DSP56000/DSP56001 and host processor to 
efficiently transfer data at high speed. Host-processor communication with the host inter­
face is accomplished using standard, host-processor data move instructions and addressing 
modes. Handshake flags are provided for polled or interrupt-driven data transfers with the 
host processor. DMA hardware may be used with the handshake flags to efficiently transfer 
data without using address lines HAO-HA2. 

MOTOROLA OSP56000/0SP56001 USER'S MANUAL 2-7 



III 

One of the most innovative features of the host interface is the host command feature. 
With this feature, the host proces,sor can issue vectored exception requests to the DSP56000/ 
DSP56001. The host may select anyone of 32 DSP56000/DSP56001 exception routines to 
be executed by writing a vector address register in the host interface. This flexibility allows 
the host prOgrammer to execute up to 32 prep'rogrammed functions inside the DSP56000/ 
DSP56001. For example, host exceptions allow the host processor to read or write DSP56000/ 
DSP56001 registers, X, V, or program memory locations, force exception handlers (e.g., 
SSI, SCI, IROA, IROB exception routines), and perform control and debugging operations 
if the exception routines are programmed in the DSP56000/DSP56001 to do these tasks. 
I, , '. 

2.9.4 Serial Communication Interface 

The SCI provides a full-duplex port forS-bit data serial communicat'ion to other DSPs, 
MPUs, or peripherals such as modems. The communication can be either direct or via 
RS232C-type lines. This interface uses three dedicated pins - transmit data (TXD), receive 
data (RXD), and SCI serial clock (SCLK). It supports industry-standard asynchronous bit 
rates and protocols as well as high-speed (up to 2.5 Mbits/sec) synchronous data trans­
mission. The asynchronous protocols include a multidrop mode for master/slave operation. 
The SCI consists of separate transmit and receive sec~ions having operations that can be 
asynchronous with respect to each other by using the internal clock for one and an external 
clock for the other. A programmable baud-rate generator is included to generate the trans­
mit and receive clocks. An enable and interrupt vector are included so that the baud-rate 
generator can function as a general-purpose timer when it is not being used by the SCI 
peripheral. 

2.9.5 Synchronous Serial Interface 

The SSI is an extremely flexible, full-duplex serial interface that allows the DSP56000/ 
DSP56001 to communicate with a variety of serial devices. These devices include one or 
more industry-standard codecs, other DSPs, MPUs, and peripherals. The following char­
acteristics of the SSI can be independently defined by the user: the number of bits per 
word, the protocol, the clock, and the transmit/receive synchronization. There are three 
modes that can be selected: normal, on-demand, and network. The normal mode is typically 
used to interface with devices on a regular or periodic basis. The data-driven on-demand 
mode is intended to be used to communicate with devices on a non periodic basis. The 
network mode provides time slots in addition to a bit clock and frame synchronization 
pulse. The SSI functions with from two to 32 words of I/O per frame in the network mode. 
This mode'is typically used in star or ring time division multiplex (TDM) networks with 
other DSP56000s and/or codecs. The clock can be programmed to be continuous or gated. 
Since the transmitter and receiver sections of the SSI are independent, they can be pro­
grammed to be synchronous (using a common clock) or asynchronous with respect to 
each other. The SSI supports a subset of the Motorola SPI. The SSI requires up to six pins, 
depending on the operating mode selected. The most common minimum configuration is 
three pins: transmit data (STD), receive data (SRD), and clock (SCK). 

2-8 OSP56000/0SP56001 USER'S MANUAL MOTOROLA 



2.10 SIGNAL DESCRIPTION 

The DSP56000lDSP56001 is available in an aa-pin pin-grid array package, surface mount, 
or 100-pin single-layer aluminium-metalization (SLAM) package. The input and output 
signals are organized into seven functional groups: 

1. Port A Address and Data Buses 
2. Port A Bus Control 
3. Interrupt and Mode Control 
4. Power and Clock 
5. Host Interface or Port B liD 
6. SCI or Port CliO 
7. SSI or Port C I/O 

Figure 2-3 also shows these seven functional groups of signals that are discussed in the 
following paragraphs. 

2.10.1 Port A Address and Data Bus' . 

The following signals relate to the port A address and data bus. 

2.10.1.1 ADDRESS (AO-A15): These three-state output pins specify the address for ex­
ternal program and data memory accesses. To minimize power disipation, AO-A15 do not 
change state when external memory spaces are not being acce~sed. 

MOTOROLA 

HOST 
DATA 
BUS 

ADDRESS: AO-AI5 
DATA I 00-023 ........ 

{ 

PS 
os 
Ri5 

BUS -

CONTROL '.~ ~ 
BRIWT 
BG/BS 

PORT A 

(88 PINS) 

SClK 
SCO 
SCI 
SC2 
SCK 
SRD 
STD 

} 
SCI 
SERIAL 

J
'SSI 
.sERIAL 

Figure 2-3. DSP56000/DSP56001 Functional Signal Groups 

DSP56000/DSP56001 USER'S MANUAL 2-9 

• 



• 
2.10.1.2 DATA (00-023). These pins provide the bidirectional data bus for external pro­
gram and data memory accesses. 00-023 are in the high-impedance state when the bus 
grant signal is asserted. 

2.10.2 Port A Bus Control 

The port A bus control signals are discussed in the following paragraphs. 

2.10.2.1 PROGRAM MEMORY SELECT (PS). This three-state output is asserted only when 
external program memory is referenced (see Table 2-1). 

Table 2-1. Program and Data Memory Select Encoding 
ps os XtY External Memory Reference 

1 1 1 No Activity 

1 0 1 X Data Memory on Data Bus 

1 0 0 Y Data Memory on Data Bus 

0 1 1 Program Memory on Data Bus (Not Exception) 

0 1 0 External Exception Fetch: Vector or Vector+ 1 
(Development Mode Only) 

0 0 X Reserved 

1 1 0 Reserved 

2.10.2.2 DATA MEMORY SELECT (OS). This three-state output is asserted only when 
external data memory is referenced (see Table 2-1 ). 

2.10.2.3 XIV SELECT (XIV). This three-state output selects which external data memory 
space (X or Y) is referenced by OS (see Table 2-1). 

2.10.2.4 READ ENABLE (RO). This three-state output is asserted to read external memory 
on the data bus (00-023). 

2.10.2.5 WRITE ENABLE (WR). This three-state output is asserted to write external mem­
ory on the data bus (00-023). 

2.10.2.6 BUS REQUEST/WAIT (BRIWT). The bus request input (BR) allows another device 
such as a processor or OMA controller to become the master of the external data bus 
(DO-D23) and external address bus (AO-A 15). When operating mode register (OMR) bit 7 

2-10 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



is clear and BR is asserted, the DSP56000/DSP56001 will always release DO-D23, AO-A 15, 
and bus control pins, PS, DS, XIV, RD, and WR (i.e., port A), by placing these pins in the 
high-impedance state after execution of the current instruction has been completed. 

If OMR bit 7 is set, this pin is an input that allows an external device to force wait states 
during an external port A operation for as long as WT is asserted. 

2.10.2.7 BUS GRANT/BUS STROBE (BG/BS). If OMR bit 7 is clear, this output is asserted 
to acknowledge an external bus request after port A has been released. If OMR bit 7 is set, 
this pin is bus strobe and is asserted when the DSP accesses port A. 

2.10.3 Interrupt and Mode Control 

The following signals are the interrupt and mode control signals for the DSP56000/DSP56001. 

2.10.3.1 MODE SELECT A/EXTERNAL INTERRUPT REQUEST A (MODA/IRQA) AND MODE 
SELECT B/EXTERNAL INTERRUPT REQUEST B (MODB/IRQB). These two inputs have dual 
functions: 1) to select the initial chip operating mode and 2) to receive an interrupt request 
from an external source. MODA and MODB are read and internally latched in the DSP 
when the processor exits the reset state. After leaving the reset state, the MODA and MODB 
pins automatically change to external interrupt requests, IROA and IROB. After leaving the 
reset state, the chip operating mode can be changed by software. IROA and IROB can be 
programmed to be level sensitive or negative edge triggered. When edge triggered, trig-

, gering occurs at a voltage level and is not directly related to the fall time of the interrupt 
signal; however, the probability of noise on IROA or IROB generating multiple interrupts 
increases'with increasing fall time of the interrupt signal. 

2.10.3.2 RESET (RESET). This Schmitt-trigger input pin is used to reset the DSP560001 
DSP56001. When RESET is asserted, the DSP56000/DSP56001 is initialized and placed in 
the reset state. When RESET is deasserted, the initial chip operating mode is latched from 
the MODA and MODB pins. When coming out of RESET, deassertion occurs at a voltage 
level and is not directly related to the rise time ofthe RESET signal; however, the probability 
of noise on RESET generating multiple resets increases with increasing rise time of the 
RESET signal. 

2.10.4 Power and Clock 

The power and clock signals are presented in the following paragraphs. 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 2-11 

l1li 



• 
2.10.4.1 POWER (VCC), GROUND (GND). There are five sets of power and ground pins: 
two pairs for internal logic, one power and two ground for port A address and control pins, 
one power and two ground for port A data pins, and one pair for peripherals. 

2.10.4.2 EXTERNAL CLOCK/CRYSTAL INPUT (EXTAL). EXTAL may be used to interface 
the internal crystal oscillator input to an external crystal or an external clock. 

2.10.4.3 CRYSTAL OUTPUT (XTAL). This output connects the internal crystal oscillator 
output to an external crystal. If an external clock is used, XTAL should not be connected. 

2.10.5 Host Interface 

The following paragraphs discuss the host interface signals: 

2.10.5.1 HOST DATA BUS (HO-H7). This bidirectional data bus is used to transfer data 
between the host processor and the DSP56000/DSP56001. This bus is an input unless 
enabled by a host processor read and is high impedance when HEN is deasserted. HO-H7 
can be programmed as general-purpose parallel 110 pins (PBO-PB7) when the host interface 
is not being used. 

2.10.5.2 HOST ADDRESS (HAO-HA2). These inputs provide the address selection for each 
host interface register. HAO-HA2 can be programmed as general-purpose parallel I/O pins 
(PB8-PB10) when the host interface is not being used. 

2.10.5.3 HOST READIWRITE (HR/W). This input selects the direction of data transfer for 
each host processor access. HR/W can be programmed as a general-purpose liD pin (PB11) 
when the host interface is not being used. 

2.10.5.4 HOST ENABLE (HEN). This input enables a data transfer on the host data bus. 
When HEN is asserted and HRIW is high, HO-H7 become outputs and DSP56000/DSP56001 
data may be read by the host processor. When HEN is asserted and HR/W is low, HO-H7 
become inputs, and host data is latched inside the DSP. When HEN is deasserted, the host 
data bus is three-stated. Normally, a chip select signal derived from host address decoding 
and an enable clock are used to generate HEN. HEN can be programmed as a general­
purpose liD pin (PB12) when the host interface is not being used. 

2.10.5.5 HOST REQUEST (HREQ). This open-drain output signal is used by the DSP560001 
DSP56001 host interface to request service from the host processor, DMA controller, or a 
simple external controller. HREQ can be programmed as a general-purpose (not open­
drain) liD pin (PB13) when the host interface is not being used. 

2-12 OSP56000/0SP56001 USER'S MANUAL MOTOROLA 



2.10.5.6 HOST ACKNOWLEDGE (HACK). This input has two functions: 1) to provide a 
host acknowledge handshake signal for DMA transfers and 2) to receive a host interrupt 
acknowledge compatible with M68aaa Family processors. HACK may be programmed as 
a general-purpose liD pin (PB14) when the host interface is not being used. 

2.10.6. Serial Communications Interface 

The following signals relate to the SCI. 

2.10.6.1 RECEIVE DATA (RXD). This input receives byte-oriented serial data and transfers 
the data to the SCI receive shift register. RXD can be programmed as a general-purpose 
liD pin (PCa) when the SCI RXD function is not being used. 

2.10.6.2 TRANSMIT DATA (TXD). This output transmits serial data from the SCI transmit 
shift register. TXD can be programmed as a general-purpose liD pin (PC1) when the SCI 
TXD function is not being used. 

2.10.6.3 SCI SERIAL CLOCK (SCLK). This bidirectional pin provides an input or output 
clock from which the transmit andlor receive baud rate is derived in the asynchronous 
mode and from which data is transferred in the synchronous mode. SCLK can be pro­
grammed as a general-purpose liD pin (PC2) when the SCI SCLK function is not being 
used. . 

2.10.7 Synchronous Serial Interface 

The SSI signals are presented in the following paragraphs. 

2.10.7.1 SERIAL CONTROL ZERO (SCO). This bidirectional pin is used for control by the 
SSI as a flag or receiver clock. sca can be programmed as a general-purpose liD pin (PC3) 
when the SSI sca function is not being used. 

2.10.7.2 SERIAL CONTROL ONE (SC1). This bidirectional pin is used for control by the 
SSI as a flag or frame synchronization. SC1 can be programmed as a general-purpose liD 
pin (PC4) when the SSI SC1 function is not being used. 

MOTOROLA OSP56000/0SP56001 USER'S MANUAL 2-13 

Ell 



• 
2.10.7.3 SERIAL CONTROL TWO (SC2). This bidirectional pin is used for control by the 
55f as a frame synchronization only. 5C2 can be programmed as a general-purpose liD 
pin (PC5) when the 551 5C2 function is not being used. 

2.10.7.4 SSI SERIAL CLOCK (SCK). This bidirectional pin provides the serial bit rate clock 
for the 551. 5CK can be programmed as a general-purpose I/O pin (PC6) when 5CK is not 
being used. 

2.10.7.5 SSI RECEIVE DATA (SRD). This input pin receives serial data into the 551 receive 
shift register. 5RD can be programmed as a general-purpose liD pin (PC7) when 5RD is 
not being used. 

2.10.7.6 SSI TRANSMIT DATA (STD). This output pin transmits serial data from the 551 
transmit shift register. 5TD can be programmed as a general-purpose I/O pin (PC8) when 
the 5S1 STD function is not being used. 

2-14 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



SECTION 3 
MEMORY SPACES 

This section is divided into two major subsections, the DSP56000 and DSP56001. Each 
subsection describes the memory spaces available and the operating modes that redefine 
these memory spaces. 

3.1 OVERVIEW 

The memory of the DSP56000/DSP56001 can be partitioned in several ways to provide 
high-speed parallel operation and additional off-chip memory expansion. Program and 
data memory are separate, and the data memory is, in turn, divided into two separate 
memory spaces, X and Y. Both the program and data memories can be expanded off-chip. 
There are also two on-chip data read-only memories (ROMs) that can overlay a portion of 
the X and Y data memories and a bootstrap ROM (DSP56001 only) that can overlay part 
of the program random-access memory (RAM). The data memories are divided into two 
independent spaces to work with the two address arithmetic logic units (ALUs) to feed two 
operands simultaneously to the data ALU. 

3.2 DSP56000 MEMORY INTRODUCTION 

The three independent memory spaces of the DSP56001, X data, Y data, and program, are 
shown in Figure 3-1. The memory spaces are configured by control bits in the operating 
mode register (OMR). The operating mode control bits (MA and MB) in the OMR control 

. the program memory map and select the reset vector address. The data ROM enable (DE) 
bit in the OMR controls the X and Y data memory maps and enables/disables the internal 
X and Y data ROMs. The bootstrap memory on the DSP56000 is used only for factory 
testing and should not be invoked by the user. 

3.2.1 X Data Memory 

The on-chip X data RAM is a 24-bit-wide, internal, static memory occupying the lowest 256 
locations (0-255) in X memory space. The on-chip X data ROM (factory programmed to 
user specifications like the program ROM) occupies locations 256-511 in the X data memory 
space and is controlled by the DE bit in the OMR. The on-chip peripheral registers occupy 
the top 64 locations of the X data memory ($FFCO-$FFFF). The 16-bit addresses are received 
from the XAB, and 24-bit data transfers to the data ALU occur on the XDB. The X memory 
may be expanded to 64K off-chip. 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 3-1 

IEII 



lEI 

SFFFF SFFFF SFFFF 

PROGRAM X DATA Y DATA 
MEMORY MEMORY MEMORY 

SPACE SPACE SPACE 

$3F 
INTERRUPT 
VECTORS 

$0 $0 $0 

OPERATING MODE DETERMINES DE BIT IN THE OMR DETERMINES 
PROGRAM MEMORY AND THE X AND Y DATA MEMORY MAPS 

RESET STARTING ADDRESS 

MODE 0 MODE 2 MODE 3 
MB=O MA=O MB=l MA=O MB=l MA=l 

SFFFF SFFFF SFFFF 

DE= 1 

SFFFFIr--::O:-:":N-=·C':":":HI'::'"P'" ~:':~EX~TE=-::R":":"NA":":"l"'""': SFFFF 
DE=O 

':':';';";';';';';';';'J SEOOO 
r:::;:::;~~.:.:.:::.:~~ 

PERIPHERALS P'ERIPHERALS 

1;·;·;·;,·;·;·;· .. ·.·.·.~,.~.1 mco lflllllfllllfl ~~IItI~~f SFFCO It;~;~;~;~;~;~;~;J .. _._._.,_._._._._._. 
::EXTERNAl:: : EXTERNAL::: 
:; X DATA:: :: Y DATA ::: 
:: MEMORY:: :; MEMORY::: 

irfrft tttttf 
$lFF INTERNAL $EFF $EFF INTERNAL 

INTERNAL INTERNAL X ROM Y ROM 

ROM ROM SOFF 
INTERNAL INTERNAL INTERNAL INTERNAL 

$0 $0 $0 $0 X RAM Y RAM $0 X RAM Y RAM 

INTERNAL RoM INTERNAL ROM NO INTERNAL ROM DATA ROMS ENABLED DATA ROMS DISABLED 
INTERNAL RESET EXTERNAL RESET EXTERNAL RESET 

Figure 3-1. DSP56000 Memory Map 

3.2.2 Y Data Memory 

The on-chip V data RAM is a 24-bit-wide, internal, static memory occupying the lowest 256 
locations (0-255) in the V memory space. The on-chip V data ROM (factory programmed 
to user specifications like the program ROM) occupies locations 256-511 in V data memory 
space and is controlled by the DE bit in the OMR. The off-chip peripheral registers should 
be mapped into the top 64 locations ($FFCO-$FFFF) to take advantage of the move pe­
ripheral data (MOVEP) instruction. The 16-bit addresses are received from the VAB, and 
24-bit data transfers to the data ALU occur on the VDB. V memory may be expanded to 
64K off-chip. 

3-2 OSP56000/0SP56001 USER'S MANUAL MOTOROLA 



3.2.3 Program Memory 

On-chip program memory consists of a 3840-location by 24-bit, high-speed ROM (3.75K x 24) 
that is enabled/disabled by the MA and MB bits in the OMR. When the on-chip program 
memory is disabled, either off-chip memory or a special mode 1 ROM is selected for 
program memory. 

NOTE· 

The mode 1 ROM is used only for test purposes on the DSP56000 and should not 
be invoked by the user. 

Addresses are received from the program control logic (usually the program counter) over 
the PAB. Off-chip program memory may be written using move program memory (MOVEM) 
instructions. The interrupt vectors for the on-chip resources are located in the bottom 64 
locations ($OOOO-$003F) of program memory. Program memory may be expanded to 64K 
off-chip. 

3.2.4 Chip Operating Modes 

The DSP operating modes determine the memory maps for program and data memories 
and the startup procedure when the DSP leaves the reset state. The MODA and MODB 
pins are sampled as the DSP leaves the reset state, and the initial operating mode of the 
DSP is set accordingly. When the reset state is exited, the MODA and MODB pins become 
general-purpose interrupt pins, IROA and IROB. One of three initial operating modes is 
selected: single chip, normal expanded, or development. Chip operating modes can be 
changed by writing the operating mode bits (MB, MA) in the OMR. Changing operating 
modes does not reset the DSP. It is desirable to disable interrupts immediately before 
changing the OMR to prevent an interrupt from going to the wrong memory location. Also, 
one no-operation (NaP) instruction should be included after changing the OMR to allow 
for remapping to occur. 

Some pins on t~e DSP are mode independent; whereas, the use of others depends on the 
particular operating mode. Specifically, external address bus, data bus, and bus control 
pins are affected by the particular operating mode. Table 3-1 shows the mode assignments. 

Table 3-1. Initial DSP56000 Operating Mode Summary 

Operating 
MODB MODA Description 

Mode 

0 0 0 Single-Chip Mode 

1 0 1 Single-Chip Mode 

2 1 0 Normal Expanded Mode 

3 1 1 Development Mode 

MOTOROLA OSP56000/0SP56001 USER'S MANUAL 3-3 

• 



II 

3.2.4.1 SINGLE-CHIP MODE (MODE 0). In the single-chip mode, all internal program and 
data RAM memories are enabled. A hardware reset causes the DSP to jump to internal 
program memory location $0000 ($ = hexidecimal notation) and resume execution. The 
memory map for this mode is shown in Figure 3-2. The memory maps for mode a and 
mode 2 (see Figure 3-3) are identical. The difference between the two modes is that reset 
vectors to program memory location $0000 in mode a and vectors to location $EOOO in 
mode 2. 

SFFFF 

$om 

$003F 

$0000 

PROGRAM 
MEMORY SPACE 

X DATA 
MEMORY SPACE 

Y DATA 
MEMORY SPACE 

$FFFF 

INTERNAL $01FF 
PROGRAM 

ROM 

INTERRUPTS INTERNAL --------
RESET $0000 

. X RAM 

INTERRUPT MAP 
$003F ..---------.., 

HOST COMMANDS 
$0026 t-----------t 

ILLEGAL INSTRUCTION INTERRUPT 
HOST INTERRUPTS 
SCI INTERRUPTS 
SSI INTERRUPTS 
EXTERNAL INTERRUPTS 
SWI INTERRUPT 
TRACE INTERRUPT 
STACK INTERRUPT 

$0000 ... R_E_SE_T _______ ~ 

$FFFF 

INTERNAL 

$OOOO,--_Y_RA_M_.......I 

ON-CHIP 
PERIPHERAL MAP 

INTERRUPT PRIORITY 
BUS CONTROL 
SCI INTERFACE 
SSI INTERFACE 
HOST INTERFACE 
PARALLEL 1/0 

INTERFACE 

$FFEO .-_____ ~ 

RESERVED 
$FFCO '--_____ -' 

NOTE: Addresses $FFCO-$FFFF in X data memory are NOT available externally. 

Figure 3-2. Memory Map for DSP56000 Mode 0: Single-Chip Mode 

3.2.4.2 MODE 1. Mode 1 is the same as mode a on the DSP56000. It is recommended 
that this mode not be invoked by the user. 

3.2.4.3 NORMAL EXPANDED MODE (MODE 2). Mode 2 is almost identical to mode a (see 
3.2.4.1 SINGLE-CHIP MODE (MODE 0) for further information). 

3-4 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



$FFFF 

$EOOO 

PROGRAM 
MEMORY SPACE 

. INTERNAL 
PROGRAM 

ROM 

$FFFF 

$FFCO ...,...,....,...,....,...,...,...,...,004 
$FFBF 

$om 1------1 
$OOFF 

Y DATA 
MEMORY SPACE 

INTERNAL 
$003F 
$0000 ~_IN_T_ER_R_UP_T_S ~ 

INTERNAL 
X RAM 

$OOOO~ ____ ... $0000 ,--_Y_R_A_M ____ 

INTERRUPT MAP 
$003F 

HOST COMMANDS 
$00261-________ -4 

ILLEGAL INSTRUCTION INTERRUPT 
HOST INTERRUPTS 
SCI INTERRUPTS 
SSI INTERRUPTS 
EXTERNAL INTERRUPTS 
SWI INTERRUPT 
TRACE INTERRUPT 
STACK INTERRUPT 

$0000 ""H_o_ST_C_o_M_M_A_No ____ ____ 

$FFFF 

oN·CHIP 
PERIPHERAL MAP 

INTERRUPT PRIORITY 
BUS CONTROL 
SCI INTERFACE 
SSI INTERFACE 
HOST INTERFACE 
PARALLEL lID 

INTERFACE 

$FFEO t---------I 

RESERVED 
$FFCO ....... _____ -'" 

NOTE: Addresses $FFCO-$FFFF in X data memory are NOT available externally. 

Figure 3-3. Memory Map for DSP56000 Mode 2: Normal Expanded Mode 

3.2.4.4 DEVELOPMENT MODE (MODE 3). The development mode is similarto the normal 
expanded mode except that internal program memory is disabled. All references to pro­
gram memory space are directed to external program memory, which is accessed on the 
external data bus. The memory map for this mode is shown in Figure 3-4. DSP56000 chips 
with bad or obsolete internal program ROM code can be used with external program 
memory in the development mode. The memory map in Figure 3-4 is shown with DE 
arbitrarily set to zero. 

3.2.5 Security ROM Version (DSP56000)* 

The security ROM version of the DSP56000 is a standard DSP56000 that has been modified 
to prevent unauthorized access to the program contained in the DSP program ROM. This 
protection is accomplished in two ways. First, the DSP is forced into the single-chip mode 
at reset. The chip powersup in single-chip mode, and it is not possible to enter any other 

*For additional information concerning this part, contact the Motorola field office. 

MOTOROLA OSP56000/0SP56001 USER'S MANUAL 3-5 

IEII 



III 

$FFFF 

$OlFF 

$003F 

PROGRAM 
MEMORY SPACE 

X DATA 
MEMORY SPACE 

$FFFF ON-CHIP 

$FFCO .,..,..P..,.E..,.RI..,.PH'"7'ER'"7'A'"7'lS..,....,. 
$FFBF 

$OOFF 

$FFFF 

Y DATA 
MEMORY SPACE 

EXTERNAL 
PERIPHERALS 

INTERNAL 

$0000 ~~ ........ ~"'""""~ 

INTERNAL 
$OOOO,--_X_RA_M ___ $0000 I...-_Y_R_A_M_--, 

INTERRUPT MAP 
$003F ,------------, 

HOST COMMANDS 
$0026.-_______ --1 

ILLEGAL INSTRUCTION INTERRUPT 
HOST INTERRUPTS 
SCI INTERRUPTS 
SSI INTERRUPTS 
EXTERNAL INTERRUPTS 
SWI INTERRUPT 
TRACE INTERRUPT 
STACK INTERRUPT 

$OOOO'--RE_SE_T _______ "" 

$FFFF 

ON-CHIP 
PERIPHERAL MAP 

INTERRUPT PRIORITY 
BUS CONTROL 
SCI INTERFACE 
SSI INTERFACE 
HOST INTERFACE 
PARALLEL 1/0 

INTERFACE 

$FFEO 1--_____ -1 

RESERVED 
$FFCO 1...-_____ "" 

NOTE: Addresses $FFCO-$FFFF in X data memory are NOT available externally. 

Figure 3-4. Memory Map for DSP56000 Mode 3: Development Mode 

mode on powerup. The MODAlIROA and MODB/IROB pins are configured only as IROA 
and IROB and cannot be used to change the mode~ Second, the programmer must avoid 
fetches from external program memory- i.e., the user code must be placed only in internal 
program ROM. This placement prevents the execution of unauthorized code that might be 
used to dump the contents of the program ROM. 

3.3 DSP56001 MEMORY INTRODUCTION 

The three independent memory spaces of the DSP56001, X data, Y data, and program, are 
shown in Figure 3-5. The memory spaces are configured by control bits in the OMR. The 
MA'and MB control bits in the OMR control the program memory map and select the reset 
vector address. The DE bit in the OMR controls the X and Y data memory maps and enablesl 
disables the internal X and Y data ROMs. One additional memory available on the DSP56001 
is the bootstrap memory that overlays the program memory in mode 1. 

3-6 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



$lFF 
INTERNAL 

RAM 
------

$0 

INTERNAL PRAM 
INTERNAL RESET 

$FFFF 

PROGRAM 
MEMORY 

SPACE 

$3F 
INTERRUPT 

$0 
VECTORS 

OPERATING MODE DETERMINES 
PROGRAM MEMORY AND 

RESET STARTING ADDRESS 

$lFF $lFF 
INTERNAL 

RAM 

$0 
INTERNAL PRAM 
EXTERNAL RESET 

$0 u;.;,,;.:o.=w...;,;,.;.,j 

NO INTERNAL PRAM 
EXTERNAL RESET 

$FFFF 

$0 

$FFFF 

X DATA Y DATA 
MEMORY MEMORY 

SPACE SPACE 

$0 

DE BIT IN THE OMR DETERMINES 
THE X AND Y DATA MEMORY MAPS 

DE=l 

.::E)(T~RNAL:: 

P:~RIP.HERALS 

::i;~~~;~~~:: 
:: Y DATA :: 
:: MEMORY:: 

%tr~tm{ 

DE=O 

$lFF INTERNAL INTERNAL 
Y ROM 

$OFF 

$0 

X ROM 

INTERNAL 
X RAM 

INTERNAL 
Y RAM 

DATA ROMS ENABLED 

INTERNAL INTERNAL 
$0 L...-_x _RA_M......... ~_Y _RA_M---I 

DATA ROMS DISABLED 

Figure 3-5. DSP56001 Memory Map 

3.3.1 X Data Memory 

The on-chip X data RAM is a 24-bit-wide, static, internal memory occupying the lowest 256 
locations (0-255) in X memory space. The on-chip X data ROM occupies locations 256-511 
in the X data memory space when enabled by setting DE to one in the OMR. The X data 
ROM is factory programmed with positive Mu-Iaw and A-law expansion tables (see AP­
PENDIX D MU-LAW/A-LAW EXPANSION TABLES), which are useful in telecommunication 
applications. The on-chip peripheral registers occupy the top 64 locations of the X data 
memory (locations $FFCO-$FFFF). The 16-bit addresses are received from the XAB, and 
24-bit data transfers to the data ALU occur on the XDB. The X memory may be expanded 
to 64K off-chip. 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 3-7 

-



III 

3.3.2 Y Data Memory 

The on-chip V data RAM is a 24-bit-wide, static, internal memory occupying the lowest 256 
locations (0-255) in the V memory space. The on-chip V data ROM occupies locations 
256-511 in V data memory space when enabled by setting DE to one in the OMR. The V 
data ROM is factory programmed with a full, four-quadrant, sine-wave table (see DSP56001 
Advance Information Data Sheet (ADI1290)), which is useful for fast Fourier transforms, 
discrete Fourier transforms, and waveform generation. The off-chip peripheral registers 
should be mapped into the top 64 locations ($FFCO-$FFFF) to take advantage of the MOVEP 
instruction. The 16-bit addresses are received from the VAB, and 24-bit data transfers to 
the data ALU occur on the VDB. V memory may be expanded to 64K off-chip. 

3.3.3 Program Memory 

On-chip program memory consists of a 512-location by 24-bit, high-speed, static RAM that 
is enabled/disabled by the MA and MB bits in the OMR. When the on-chip program memory 
is disabled, either off-chip memory or a special bootstrap ROM is selected for program 
memory. 

Addresses are received from the program control logic (usually the program counter) over 
thePAB. Program memory may be written using MOVEM instructions. The interrupt vectors 
for the on-chip resources are located in the bottom 64 locations ($0000-$003F) of program 
memory. Program memory may be expanded to 64K off-chip. 

Program RAM provides a method of developing code efficiently, and programs can be 
changed dynamically, allowing efficient overlaying of DSP software algorithms. In this way, 
the on-chip program RAM operates as a fixed cache, thereby minimizing contention with 
accesses to external data memory. spaces. 

The bootstrap mode overlays the program memory in mode 1 and provides a convenient, 
low-cost method of loading the DSP56001 program RAM with a program after power-on 
reset. The bootstrap mode also allows loading the program RAM from a single, inexpensive 
EPROM through port A or via the host interface using a host processor. 

3.3.4 Bootstrap ROM (DSP56001 Only) 

Factory programmed to perform the bootstrap operation from the memory expansion port 
(port A) or from the host interface, the 32-word on-chip ROM is invoked while the processor 
is in operating mode 1. Users have no access to the bootstrap ROM other than through 
the bootstrap process. 

3.3.5 Chip Operating Modes 

The DSP operating modes determine the memory maps for program and data memories 
and the startup procedure when the DSP leaves the reset state. The MODA and MODB 

3-8 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



pins are sampled as the DSP leaves the reset state, and the initial operating mode of the 
DSP is set accordingly. When the reset state is exited, the MODA and MODB pins become 
general-purpose interrupt pins, IROA and IROB. One of four initial operating modes is 
selected: single chip, special bootstrap, normal expanded, or development. Chip operating 
modes can be changed by writing the operating mode bits (MB, MA) in the OMR. Changing 
operating modes does not reset the DSP. It is desirable to disable interrupts immediately 
before changing the OMR to prevent an interrupt from going to the wrong memory location. 
For example, if the user changed to the bootstrap mode and an interrupt occurred, he 
would execute the bootstrap code out of order. Also, one NOP instruction must be included 
after changing the OMR to allow for remapping to occur. 

Some pins on the DSP are mode independent; whereas, others depend on the particular 
operating mode. Specifically, external address bus, data bus, and bus control pins are 
affected by the particular operating mode. Table 3-2 depicts the mode assignments. 

Table 3-2. Initial DSP56001 Operating Mode Summary 

Operating 
MODS MODA Description 

Mode 

0 0 0 Single-Chip Mode 

1 0 1 Special Bootstrap Mode 

2 1 0 Normal Expanded Mode 

3 1 1 Development Mode 

3.3.5.1 SINGLE-CHIP MODE (MODE 0). In the single-chip mode, all internal program and 
data RAM memories are enabled. A hardware reset causes the DSP to jump to internal 

. program memory location $0000 and resume execution. The memory map for this mode 
'is shown in Figure 3-6. The memory maps for mode 0 and mode 2 (see Figure 3-7) are 
identical. The difference between the two modes is that reset vectors to program memory 
location $0000 in mode 0 and vectors to location $EOOO in mode 2. 

3.3.5.2 SPECIAL BOOTSTRAP MODE (MODE 1). The bootstrap mode is a special mode 
that loads internal program RAM either from a byte-wide external memory such as EPROM 
or from the host interface. After loading the internal memory, the DSP switches to the 
single-chip mode and begins program execution at on-chip program memory location 
$0000. 

One method of selecting mode 1 is to assert the reset pin on the DSP56001. When the DSP 
leaves the reset state (RESET goes high), the MODB and MODA pins are sampled (they 
should be set to zero and one, respectively), and the initial operating mode of the DSP is 

MOTOROLA OSP56000/0SP56001 USER'S MANUAL 3-9 

• 



lEI 

$FFFF 

$01FF 

$003F 

PROGRAM 
MEMORY SPACE 

INTERNAL 
PROGRAM 

RAM 

INTERRUPTS 

$FFFF 

X DATA 
MEMORY SPACE 

$FFCO ~1""'7""~"r"7''''''''''''' 
$FFBF 

$OlFF 

$OOFF 

Y DATA 
MEMORY SPACE 

INTERNAL 

$OOOO....-._R_E_SE_T_--, 

INTERNAL 
$OOOO....-._X_R_A_M ___ $0000 ~_Y_R_A_M_ ....... 

INTERRUPT MAP 
$003F 

HOST COMMANDS $00261--_______ --1 

ILLEGAL INSTRUCTION INTERRUPT 
HOST INTERRUPTS 
SCI INTERRUPTS 
SSI INTERRUPTS 
EXTERNAL INTERRUPTS 
SWI INTERRUPT 
TRACE INTERRUPT 
STACK INTERRUPT 

$OOOO ... R_E_SE_T _______ ... 

$FFFF 

ON-CHIP 
PERIPHERAL MAP 

INTERRUPT PRIORITY 
BUS CONTROL 
SCI INTERFACE 
SSI INTERFACE 
HOST INTERFACE 
PARALLEL 1/0 

INTERFACE 

$FFEO I--------t 

RESERVED 
$FFCO ~ _____ ....... 

NOTE: Addresses $FFCO-$FFFF in X data memory are NOT available externally. 

Figure 3-6. Memory Map for DSP56001 Mode 0: Single-Chip 

set accordingly. The following actions occur once the processor comes out of the reset 
state. 

1. The control logic maps the bootstrap ROM into the internal DSP program memory 
space starting at location $0000. 

2. The control logic causes program reads to come from the bootstrap ROM (only address 
bits 4-0 are significant) and all writes go to the program RAM (all address bits are 
significant). This condition allows the bootstrap program to load the user program 
from $0000-$01 FF. 

3. Program execution begins at location $0000 in the bootstrap ROM. The bootstrap 
ROM program can load program RAM through either the memory expansion port or 
through the host interface. The choice is made by looking at bit 23 of P:$COOO. The 
processor loads from the host interface if bit 23 is a zero; if bit 23 is a one, it loads 
from a byte-wide memory starting at P:$COOO. 

4. The bootstrap ROM program executes the following sequence to end the bootstrap 
operation and begin executing the user program. First, operating mode 2 is entered 

3-10 DSP56000/DSP56P01 USER'S MANUAL MOTOROLA 



$FFFF 

$EOOO 

SOlFF 

PROGRAM 
MEMORY SPACE 

PROGRAM 
RAM 

SFFFF 

X DATA 
MEMORY SPACE 

$FFCO 1-o-"'7""7'......-J,...,...~-,t 
SFFBF 

$OIFF 

$017F t--+-M-U-_LA-W-/~-IN--t 

$OOFF 

$003F INTERRUPTS 
$0000 ~ ____ ..... 

INTERNAL 
X RAM 

$0000 ~ ____ .... 

INTERRUPT MAP 
$003F 

HOST COMMANDS 
$0026 t-________ -i 

ILLEGAL INSTRUCTION INTERRUPT 
HOST INTERRUPTS 
SCI INTERRUPTS 
SSI INTERRUPTS 
EXTERNAL INTERRUPTS 
SWI INTERRUPT 

$FFFF 

$OOFF 

Y DATA 
MEMORY SPACE 

INTERNAL 
Y RAM 

$0000'--____ -' 

ON-CHIP 
PERIPHERAL MAP 

INTERRUPT PRIORITY 
BUS CONTROL 
SCI INTERFACE 
SSI INTERFACE 
HOST INTERFACE 
PARALLEL I/O 

INTERFACE 

TRACE INTERRUPT $FFEO I---------f 
STACK INTERRUPT 

RESERVED 
$0000 ... H_O_ST_CO_M_M_A_N_D ____ _ $FFCO ~ _____ --I 

NOTE: Addresses $FFCO-$FFFF in X data memory are NOT available extern~"y. 

Figure 3-7. Memory Map for DSP56001 Mode 2: Normal Expanded Mode 

by writing to the OMR. This action will be timed to remove the bootstrap ROM from 
the program memory map and re-enable read/write access to the program RAM. 
Second, .the change to mode 2 is exactly timed to allow the bootstrap program to 
execute a single-cycle instruction (clear status register), then a JMP #<00, and begin 
executi<:>n' of the user program at location $0000. 

The bootstrap mode may also be selected by writing zero to MB and one t.o MA in the 
OMR. This selection initiates a timed operation to map the bootstrap ROM into the program 
address space after a delay to allow execution of a single-cycle instruction and then a JMP 
#<00 to begin the bootstrap process previously described. This technique allows the 
DSP56001 user to reboot the system (with a different program, if desired). The code to 
enter the bootstrap mode is as follows: 

MOVEP 
MOVEC 

MOTOROLA 

#O,X:$FFFF 
#1,OMR 

; Disable interrupts. 
; The bootstrap ROM is mapped 
; into the lowest 32 locations 
; in program memory. 

OSP56000/0SP56001 USER'S MANUAL 3-11 



-

NOP 

JMP <$0 

; Allow one cycle delay for the 
; remapping. 
; Begin bootstrap. 

The interrupts are disabled before executing the bootstrap code; otherwise, an interrupt 
could cause the DSP to execute the bootstrap code out of sequence because the bootstrap 
program overlays the interrupt vectors. 

The bootstrap ROM contains the bootstrap firmware program that performs initial loading 
of the DSP56001 program RAM. 

Written in DSP56001 assembly language, the program contains two separate methods of 
initializing the program RAM: loading from a byte-wide memory starting at location P:$COOO 
or loading through the host interface. The particular method used is selected by the level 
of program memory location P:$COOO bit 23. 

If location P:$COOO bit 23 is read as a one, the external bus version of the bootstrap program 
will be selected. Typically, a byte-wide EPROM will be connected to the DSP56001 address 
and data bus. The data contents of the EPROM must be organized as follows: 

Address of External 
Byte-Wide Memory: 

P:$COOO 
P:$C001 
P:$C002 

P:$C5FD 
P:$C5FE 
P:$C5FF 

Contents Loaded to 
Internal Program RAM at: 

P:$OOOO low byte 
P:$OOOO mid byte 
P:$OOOO high byte 

P:$Ol FF 
P:$01 FF 
P:$01 FF 

low byte 
mid byte 
high byte 

If location P:$COOO bit 23 is read as a zero, the host interface version of the bootstrap 
program will be selected. Typically, a host microprocessor will be connected to the DSP56001 
host interface. The host microprocessor must write the host interface byte-wide registers 
TXH, TXM, and then TXL with the desired contents of program RAM from location P:$OOOO 
up to P:$01 FF. If less than 512 words are to be loaded, the host programmer can exit the 
bootstrap program and force the DSP56001 to begin executing at location P:$OOOO by 
setting HFO to one in the host interface control register. In most systems, the DSP56001 
response is so fast that handshaking between the DSP56001 and the host is not necessary. 

3.3.5.3 NORMAL EXPANDED MODE (MODE 2). Mode 2 is almost identical to mode 0 (see 
3.3.5.1 SINGLE-CHIP MODE (MODE O) for details). 

3-12 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



3.3.5.4 DEVELOPMENT MODE (MODE 3). The development mode is similar to the normal 
expanded mode except that internal program memory is disabled. All references to pro­
gram memory space are directed to external program memory, which is accessed on the 
external data bus. The reset vector points to location $0000. The memory map for this 
mode is shown in Figure 3-8. The memory map in Figure 3-8 is shown with DE arbitrarily 
set to zero. 

$FFFF 

$OlFF 

$003F 

$0000 

PROGRAM 
MEMORY SPACE 

$FFFF r-------..., 

INTERNAL 
X RAM 

$0000 

INTERRUPT MAP 
$003F $FFFF 

HOST COMMANDS 
$0026 

ILLEGAL INSTRUCTION INTERRUPT 
HOST INTERRUPTS 
SCI INTERRUPTS 
SSI INTERRUPTS 
EXTERNAL INTERRUPTS 
SWI INTERRUPT 
TRACE INTERRUPT $FFEO 

STACK INTERRUPT 

$0000 
RESET mco 

INTERNAL 
Y RAM 

$0000 

ON-CHIP 
PERIPHRAL MAP 

INTERRUPT PRIORITY 
BUS CONTROL 
SCI INTERFACE 
SSI INTERFACE 
HOST INTERFACE 
PARALLEL 1/0 

INTERFACE 

RESERVED 

NOTE: Addresse~ $FFCO-FFFF in X data memory are NOT available externally. 

Figure 3-8. Memory Map for DSP56001 Mode 3: Development Mode 

MOTOROLA OSP56000/0SP56001 USER'S MANUAL 3-13 



-

3-14 DSP56000/DSP5~001 USER'S MANUAL MOTOROLA 



SECTION 4 
DATA ARITHMETIC LOGIC UNIT 

This section describes the operation of the data arithmetic logic unit (ALU) registers and 
hardware. The data representation, rounding, and saturation arithmetic used within the 
data ALU are also presented. This section concludes with a discussion of the programming 
model. 

4.1 OVERVIEW AND DATA ALU ARCHITECTURE 

The DSP56000/DSP56001 central processor is composed of three execution units that op­
erate in parallel. They are the data ALU, address generation unit (AGU), and the program 
controller (see Figure 4-1). These three units are register oriented rather than bus oriented 
and are designed to interface over the system buses with memory and memory-mapped 
liD devices. The DSP56000/DSP56001 instruction set has been designed to allow flexible 
control of these parallel processing resources. Many instructions allow the programmer 
to keep each unit busy, thus enhancing performance. It was possible to make the pro­
gramming model like that of conventional microprocessor units (MPUs), eliminating the 

YAB 
XAB EXTERNAL ADD 

PDRT 
ADDRESS 

I 
ADDRESS ~ 

GENERATIDN PAB BUS B OR 
~ ~ ~ HOST UNIT +- SWITCH 

t X MEMORY Y MEMORY 
BOOTSTRAP PROGRAM RAM RAM 

~ ON-CHIP ~- ROM RAM 256 x 24 256 x 24 BUS 7 PERIPHERALS 
.A 

32x 24 512x24 fJ./A ROM SINE ROM CONTROLLER 
~ HOST, SSI, SCI, t. 

256 x 24 256 x 24 + PARALLEL I/O " v 

II II II ~ PORT C .A YDB "-
AND/OR INTERNAL DATA ... 

II II XDB 0 ~~ ~ EXTERNAL 
DATA 

BUS SWITCH A ~ SSI, SCI 
AND BIT ; '«7 0 PDB "If'- II K DATA BUS 

MANIPULATION '! SWITCH 

UNIT .Ii ~ GDB II II K 

RESS 

PORT A 

" t L { ~v 
i PROGRAM "I r PRO;;AM 'I I" PRO~RAM I ~::':':':::::::::::6:~~~:~~0:::::::::::::::::::~ 

I ADDRESS -let- DECODE V. INTERRUPT I : 24 x· 24+ 56. 56-BIT MAC : 

I CLOCK I ~ ~~R~T~R J ~~~~l~J ~~~R~lER 1 :TWO 56-BIT ACCUMULATORS: 

GENERATOR PROGRAM CONTROLLER . f ~:::::::::::::::::::::::::::::::::::::::::::::::::::::: :~ 

i • XTAL 
I MODBIIRQB - 16 BIT 

EXTAL MODAIIRQA = 24 BIT RESET S 

Figure 4-1. DSP56001 Block Diagram 

MOTOROLA OSP56000/0SP56001 USER'S MANUAL 4-1 



III 

need to refer to the detailed chip architecture when programming the DSP56000/DSP56001 
bec'ause the parallel execution units appear to execute their operations in a nonpipelined 
manner. 

The data ALU (see Figure 4-2) is the first of these execution units to be presented. The 
data ALU, which has been designed to be fast and yet provide the capability to process 
signals having a wide dynamic range, performs all the arithmetic and logical operations 
on data operands in the DSP56000/DSP56001. 

The data ALU registers may be read or written over the XDB and the YDB as 24- or 48-bit 
operands. The source operands for the data ALU, which may be 24, 48, or 56 bits, always 

X DATA BUS 

V DATA BUS 

24 24 

XO 

Xl 

vo 
VI 

24 24 

MULTIPLIER ) 
! 

"rC 
ACCUMULATOR, r ROUNDING, 
AND LOGIC UNIT 

I SHIFTER I 56 '" 

-t 
I A (56) J 
I B (56) I 

I 56 56 L 
I SHIFTER/LIMITER I 

t 24 

24 

Figure 4-2. Data ALU 

4-2 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



originate from data ALU registers. The results of all data ALU'~perations are stored in an 
accumulator. 

The 24-bit data words provide 144 dB of dynamic range. This range is sufficient for most 
real-world applications since the majority of data converters are 16 bits or less, and certainly 
not greater than 24 bits. The 56-bit accumulator internal to the data ALU provides 336 dB 
of internal dynamic range so that no loss of precision will occur due to intermediate 
processing. Circuitry has been provided to facilitate handling data overflows and roundoff 
errors. 

Any of the following operations can be performed by the data ALU in a single instruction 
cycle: multiplication, multiply-accumulate with positive or negative accumulation, con­
vergent rounding, multiply-accumulate with positive or negative accumulation and, con­
vergent rounding, addition, subtraction, a divide iteration, a normalization iteration, shifting, 
and logical operations. 

The components of the data ALU are as follows: 
Four 24-bit input registers 
A parallel, single-cycle, nonpipelined mUltiply-accumulator/logic unit (MAC) 
Two 48-bit accumulator registers 
Two 8-bit accumulator extension registers 
An accumulator shifter 
Two data bus shifter/limiter circuits 

Each of these components is described in the following paragraphs as well as a description 
of data representation, rounding, and saturation arithmetic. 

4.1.1 Data ALU Input Registers (X1, XO, V1, VO) 

X1, XO, V1, and VO are four 24-bit, general-purpose data registers. They can be treated as 
four independent, 24-bit registers or as two 48-bit registers called X and V, developed by 
the concatenation of X1 :XO and V1 :VO, respectively. X1 is the most significant word in X 
and V1 is the most significant word in V. The registers serve as input buffer registers 
between the XDB or VDB and the MAC unit. They are used as data ALU source operands, 
allowing new operands to be loaded for the next instruction while the register contents 
are used by the current instruction. The.registers may also be read back out to the appro­
priate data bus to implement memory-delay operations and save/restore operations for 
interrupt service routines. 

4.1.2 MAC and Logic Unit 

The MAC and logic unit comprise the main arithmetic processing unit of the DSP and 
perform all of the calculations on data operands. In the case of arithmetic instructions, the 
unit accepts up to three input operands and outputs one 56-bit result of the following form, 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 4-3 

III 



III 

extension:most significant product:least significant product (EXT:MSP:LSP). The operation 
of the MAC unit occurs independently and in parallel with XDB and YDB activity, and its 
registers facilitate buffering for both data ALU inputs and outputs. Latches are provided 
on the MAC unit input to permit writing an input register, which is the source for a data 
ALU operation in the same instruction. 

The arithmetic unit contains a multiplier and two accumulators. The input to the multiplier 
can only come from the Xor Y registers (X1, XO, Y1, YO). The multiplier executes 24-bit x 
24-bit, parallel, twos-complement fractional multiplies. The 48-bit product is right justified 
and added to the 56-bit contents of either the A or B accumulator. The 56-bit sum is stored 
back in the same accumulator (see Figure 4-3). An 8-bit adder, whic~ is used as an extension 

4-4 

--- 24 BITS 
-48BITS 
- 56 BITS 

XO, Xl, XO, Xl, 
YO, OR Yl YO, OR Yl 

24-BIT x 24-BIT 
FRACTIONAL 
MULTIPLIER 

r--------- --- - ---;-B~-l 

I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

S 
H 
I 
F 
T 
E 
R 

CONVERGENT-ROUNDING 
FORCING FUNCTION 

ARITHMETIC ANO I 
LOGIC UNIT I 

SCALING 
MODE BITS 

CONDITION 
CODE GENERATOR 

I 
I 
I 
I 
I 
I 
I 
I 
I 

L_~ ______ _ . " J ----------

Figure 4-3. MAC Unit 

DSP56000/DSP56001 USER'S MANUAL 

XO, Xl, 
YO, OR Yl 

MOTOROLA 



accumulator for the MAC array, accommodates overflow of up to 256 and allows the two 
56-bit accumulators to be added and subtracted from each other. The extension adder 
output is the EXT portion of the MAC unit output. This multiply/accumulate operation is 
not pipelined but rather is a single-cycle operation. If a multiply without accumulation 
(MPY) is specified in the instruction, the MAC clears the accumulator and then adds the 
contents to the product. 

In summary, the results of all arithmetic instructions are valid (sign-extended and zero­
filled) 56-bit operands in the form of EXT:MSP:LSP or A2:A 1 :AO or B2:B1 :BO. When a 
56-bit result is to be stored as a 24-bit operand, the LSP can be simply truncated, or it can 
be rounded (using convergent rounding) into the MSP. 

Convergent rounding (round-to-nearest) is performed when adding the multiplier's product 
to the contents of the accumulator if specified in the. DSP instruction (e.g., the signed 
multiply-accumulate and round (MACR) instruction). The bit in the accumulator that is 
rounded is specified by the scaling mode bits in the status register. 

The logic unit performs the logical operations, AND, OR, EaR, and NOT, on data ALU 
registers. This unit is 24 bits wide and operates on data in the MSP portion of the accu­
mulator. The LSP and EXT portions of the accumulator are not affected. 

4.1.3 Data ALU Accumulator Registers (A2, A1, AO, B2, B1, BO) 

The six data ALU registers (A2, A 1, AO, B2, B1, and BO) form two general-purpose, 56-bit 
accumulators, A and B. Each of these two registers consists of three concatenated registers 
(A2:A 1 :AO and B2:B1 :BO, respectively). The 24-bit MSP is stored in A 1 or 81; the 24-bit 
LSP is stored in AO or BO. The 8-bit EXT is stored in A2 or B2. 

The 8-bit extension registers offer protection against overflow. On the DSP56000/DSP56001, 
the extreme values that a word operand can assume are -1 and + 0.9999998. If the sum 
of two numbers is less than -1 or greater than + 0.9999998, the result (which cannot be 
represented in a word operand - i.e., 24 bits) has underflowed or overflowed. The 8-bit 
extension registers can accurately represent the result of 255 overflows or 255 underflows. 
Whenever the accumulator extension registers are in use, the V bit in the status register 
is set. 

Automatic sign extension is provided when writing to the 56-bit accumulators A or 8 with 
a 48- or 24-bit operand. When a 24-bit operand is written, the low-order portion will be 
automatically zero filled to form a valid 56-bit operand. The registers may also be written 
without sign extension or zero fill by specifying the individual register name. When ac­
cumulator registers A or B are read, they may be optionally scaled one bit left or one bit 
right for block floating-point arithmetic. 

Reading the A or B accumulators over the XDB and YDB is protected against overflow by 
substituting a limiting constant for the data that is being transferred. The content of A or 

·MOTOROLA DSP56000/DSP56001 USER'S MANUAL 4-5 

-



• 

B is not affected should limiting occur; only the value transferred over the XDB or YDB is 
limited. This overflow protection is performed after the contents of the accumulator have 
been shifted according to the scaling mode. Shifting and limiting will be performed only 
when the entire 56-bit A or B register is specified as the source for a parallel data move 
over the XDB or YDB. When AO, Al, A2, BO, Bl, or B2 are specified as the source for a 
parallel data move, shifting and limiting are riot performed. The accumulator registers 
serve as buffer registers between the MAC unit and the XDB and/or YDB. These registers 
are used as both data ALU source and destination operands. 

Automatic sign extension of the 56-bit accumulators is provided when the A or B register 
is written with'a smaller operand. Sign extension can occur when writing A or B from the 
XDB and/or YDB or with the results of certain data ALU operations (such as the transfer 
conditionally (Tcc) or transfer data ALU register (TFR) instructions). If a word operand is 
to be written to an accumulator register (A or B), the MSP(A 1 or Bl) portion of the 
accumulator is written with the word operand, the LSP (AO or BO) portion is zero filled, 
and the EXT (A2 or B2) portion is sign extended from MSP. Long-word operands are written 
into the low-order portion, MSP: LSP, of the accumulator register, and the EXT portion is 
sign extended from MSP. No sign extension is performed if an individual 24-bit register 
is written (A 1, AO, Bl, or BO). Test logic is included in each accumulator register to support 
operation of the data shifter/limiter circuits. This test logic is used to detect overflows out 
of the data shifter so that the limiter can substitute one of several constants to minimize 
errors due to the overflow. This process is commonly referred to as saturation arithmetic. 

4.1.4 Accumulator Shifter 

The accumulator shifter (see Figure 4-3) is an asynchronous parallel shifter with a 56-bit 
input and a 56-bit output that is implemented immediately before the MAC accumulator 
input. The source accumulator shifting operations are as follows: 

No Shift (Unmodified) . , 
l-Bit Left Shift (Arithmetic or Logical) ASL, LSL, ROL 
l-Bit Right Shift (Arithmetic or Logical) ASR, LSR, ROR 
Force to zero 

4.1.5 Data Shifter/Limiter 

The data shifter/limiter circuits (see Figure 4-3) provide special postprocessing on data 
read from the ALU accumulator registers A and B out to the XDB or YDB. There are two 
independent shifter/limiter circuits (one for XDB and one for the YDB); each consists of a 
shifter followed by a limiting circuit. 

4.1.5.1 LIMITING (SATURATION ARITHMETIC). In the DSP56000/DSP56001, the data ALU 
accumulators A and B have eight extension bits. Limiting will occur when the extension 
bits are in use and either A or B is the source being read over XDB or YDB. The limiters 

4-6 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



in the DSP56000/DSP56001 place a shifted and limited value on XDB or YDB without 
changing the contents of the A or B registers. Having two limiters allows two-word operands 
to be limited independently in the same instruction cycle. The two data limiters can also 
be combined to form one 48-bit data limiter for long-word operands. 

If the contents of the selected source accumulator can be represented without overflow in 
the destination operand size (i.e., accumulator extension register not in use), the data limiter 
is disabled, and the operand is not modified. If contents of the selected source accumulator 
cannot be represented without overflow in the destination operand size, the data limiter 
will substitute a limited data value having maximum magnitude (saturated) and having 
the same sign as the source accumulator contents: $7FFFFF for 24-bit or $7FFFFF FFFFFF 
for 48-bit positive numbers, $800000 for 24-bit or $800000 000000 for 48-bit negative num­
bers. This process is called saturation arithmetic. The value in the accumulator register is 
not shifted and can be reused within the data ALU. When limiting does occur, a flag is set 
and latched in the status register. 

For example, ifthe source operand were 01.100 (+ 1.5 decimal) and the destination register 
were only four bits, the destination register would contain 1.100 (-1.5 decimal) after the 
transfer, assuming signed fractional arithmetic. This is clearly in error as overflow has 
occurred. To minimize the error due to overflow, it is preferable to write the maximum 
("Iimited") value the destination can assume. In the ex~mple, the limited value would be 
0.111 (+ 0.875 decimal), which is clearly closer to + 1.5 than -1.5 and therefore introduces 
less error. 

Figure 4-4 shows the effects of saturation arithmetic on a move from register A 1 to register 
XO. The instruction "MOVE A 1 ,XO" causes a move without limiting, and the instruction 
"MOVE A,X)" causes a move of the same 24 bits with limiting. The error without limiting 
is 2.0; whereas, it is 0.0000001 with limiting. Table 4-1 shows a more complete set of 
limiting situations. 

WITHOUT LlMITING* WITH LlMITING* 

55 0 55 

I 0 ....... 0 I ~ o ......... 00 I 00 .. ~ ....... 0 a I A = + 1.0 

7 0 23 rl 0 23 0 j 
V MOVE A1,XO . 

110 0 ........ 001 xo= -1.0 t 

10 ... ,. .0 I ~ o ......... a a I a o .......... a a 1 A = + 1.0 

D 1J ~ D M:VE A,XO D j 
111 1. ....... 111 xo= +0.9999999~ 

23 0 iERRORI = 2.0 23 0 IERRORI = .0000001 

*Limiting automatically occurs when the 56-bit operands A or 8 (not A2, A 1, AO, 82, 81, or 80) are read. The contents of A 
or 8 are NOT changed. 

Figure 4-4. Saturation Arithmetic 

MOTOROLA OSP56000/0SP56001 USER'S MANUAL 4-7 

II 



II 

Table 4-1. Limited Data Values 

Destination 
Source Accumulator 

Limited Value (Hexadecimal) 
Type of 

Memory 
Reference 

Operand Sign XDB YDB Access 

X 
X:A + 7FFFFF -

One 24 bit 
X:B - 800000 -

Y 
Y:A + - 7FFFFF 

One 24 bit 
Y:B - - 800000 

X:AY:A + 7FFFFF 7FFFFF 
X:A Y:B - 800000 800000 

X and Y 
X:B Y:A + 7FFFFF 7FFFFF 

Two 24 bit 
X:B Y:B - 800000 800000 
L:AB + 7FFFFF 7FFFFF 
L:BA - 800000 800000 

L (X:Y) 
L:A + 7FFFFF FFFFFF 

One 48 bit 
L:B - 800000 000000 

4.1.5.2 SCALING. The data shifters are capable of shifting data one bit to the left or one 
bit to the right as well as passing the data unshifted. Each data shifter has a 24-bit output 
with overflow indication and is controlled by the scaling mode bits in the status register. 
These shifters permit dynamic scaling of fixed-point data without modifying the program 
code. For example, this permits block floating-point algorithms such as fast Fourier trans­
forms to be implemented in a regular fashion. 

4.2 DATA REPRESENTATION AND ROUNDING 

The DSP56000/DSP56001 uses a fractional data representation for all data ALU operations. 
Figure 4-5 shows the bit weighting of words, long words, and accumulator operands for 
this representation. The decimal points are all aligned and are left justified. 

Data must be converted to a fractional number by scaling before being used by the DSP560001 
DSP56001, or the user will have to be very careful in how the DSP manipulates the data. 
Moving $3F to a 24-bit data ALU register does not result in the contents being $00003F as 
might be expected. Assuming numbers are fractional, the DSP left justifies rather than 
right justifies. As a result, storing $3F in a 24-bit register results in the contents being 
$3FOOOO. The simplest example of scaling is to convert all integer numbers to fractional 
'numbers by shifting the decimal 24 places to the left (see Figure 4-6). Thus, the data has 
not changed; only the position of the decimal has moved. 

For words and long words, the most negative number that can be represented is -1 whose 
internal representation is $800000 and $800000000000, respectively. The most positive 
word is $7FFFFF or 1-2-23 and the most positive long word is $7FFFFFFFFFFF or 1-2-47. 

These limitations apply to all data stored in memory and to data stored in the data ALU 
input buffer registers. The extension registers associated with the accumulators allow word 
growth so that the most positive number that can be used is approximately 256 and the 

4-8 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



DATA ALU 

- 20 2 -23 

I 
WORD OPERAND 

I I 
I I 

Xl,XO I I 
Yl,YO I I 
Al,AO I I 
Bl,BO I I 

i-20 2 - 24 

LONG-WORD OPERAND 
I 

I I 

I I 
Xl:XO=X I I 
Yl:YO=Y I I 
Al :AO = AIO I I 
Bl:BO= BIO I I 

-28 20 2- 24 

ACCUMULATOR A OR B A2,B2 Al,B1 AO,BO 
I i i I I I I 
I I I 
I I I 
I I I 

SIGN EXTENSION OPERAND ZERO 

Figure 4-5. Bit Weighting and Alignment of Operands 

Is 3F.1 
S=SIGN BIT 

Is. 3F=HEXADECIMAL DATA 'TO BE CONVERTED 

Figure 4-6. Integer-to-Fractional Data Conversion 

most negative number is approximately - 256. When the accumulator extension registers 
are in use, the data contained in the accumulators cannot be stored exactly in memory or 
other registers. In these cases, the data must be rimited to the most positive or most 
negative number consistent with the size of the destination and the sign of the accumulator 
(the most significant bit (MSB) of the extension register). 

To maintain alignment of the binary point when a word operand is written to accumulator 
A or B, the operand is written to the most significant accumulator register (A 1 or B1), and 

MOTOROLA OSP56000/0SP56001 USER'S MANUAL 4-9 

II 



• 

its MSB is automatically sign extended through the accumulator extension register. The 
least significant accumulator register is automatically cleared. When a long-word operand 
is written to an accumulator, the least significant word of the operand is written to the 
least significant accumulator register (see Figure 4-5). 

A comparison between integer and fractional number representation is shown in Figure 
4-7. The number representation for integers is between ± 2(N -1); whereas, the fractional 
representation is limited to numbers between ± 1. To convert from an integer to a fractional 
number, the integer must be multiplied by a scaling factor so the result will always be 
between ± 1. The representation of integer and fractional numbers is the same if the 
numbers are added or subtracted but is different if the numbers are multiplied or divided. 
An example of two numbers multiplied together is given in Figure 4-8. The key difference 
is that the extra bit in the integer multiplication is used as a duplicate sign bit and as the 
least significant bit (LSB) in the fractional multiplication. The advantages of fractional data 
representation are as follows: 

Is 
I 

The MSP (left half) has the same format as the input data. 

The LSP (right half) can be rounded into the MSP without shifting or updating the 
exponent. 

A significant bit is not lost through sign extension. 

Conversion to floating-point representation is easier because the industry-standard 
floating-point formats use fractional mantissas . 

..... r----N BITS---•• 

TWOS COMPLEMENT INTEGER .... 1 s ________ ---I-I- 2(N -1) TO [+ 2(N -1) -1] 

TWOS COMPLEMENT FRACTIONAL I .... s_-____ "--__ ----'1-1 TO [+1-2-(N-1)] 

..... :----N BIT5---•• 

FRACTIONAL = INTEGER EXCEPT FOR X AND + 

Figure 4-7. Integer/Fractional Number Comparison 

SIGNED MULTIPLICATION N x N. 2N -1 BITS 

INTEGER FRACTIONAL 

Is Is Is 
SIGNED MULTIPLIER I SIGNED MULTIPLIER 

~I: MSP LSP -I Is- MSP 
lSP ~ 

2N-1 PRODUCT • • 2N -1 PRODUCT • 
SIGN EXTENSION ZERO FILL ... 2N BITS .. ... 2N BITS • 

Figure 4-8. Integer/Fractional Multiplication Comparison 

4-10 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



Coefficients for most digital filters are derived as fractions by the high-level language 
programs used in digital-filter design packages, which implies that the results can be 
used without the extensive data conversions that other formats require. 

Should integer arithmetic be required in an application, shifting a one or zero, depending 
on the sign, into the MSB converts a fraction to an integer. 

The data ALU MAC performs rounding of the accumulator register to single precision if 
requested in the instruction (the A 1 or Bl register is rounded according to the contents of 
the AO or BO register). The rounding method used is called round-to-nearest (even) number, 
sometimes referred to as convergent rounding. The usual rounding rT)ethod rounds up any 
value above one-half and rounds down any value below one-half. The question arises as 
to which way one-half should be rounded. If it is always rounded one way, the results will 
eventually be a bias in that direction. Convergent rounding solves the problem by rounding 
down if the number is odd (LSB = 0) and rounding up if the number is even (LSB = 1). Figure 
4-9 shows the four cases for rounding a number in the A 1 (or Bl) register. If scaling is set 
in the status register, the resultant number will be rounded as it is put on the data bus. 
However, the contents of the register are not scaled. 

4.3 DATA ALU PROGRAMMING MODEL 

The data ALU features 24-bit input/output data registers that can be concatenated to ac­
commodate 48-bit data and two 56-bit accumulators, which are segmented into three 24-
bit pieces that can be transferred over the buses. Figure 4-10 illustrates how the registers 
in the programming model are grouped. 

4.4 DATA ALU SUMMARY 

The data ALU is optimized for arithmetic operations involving multiply and accumulate 
.. operations with two separate data spaces. The data ALU, which executes all instructions 

in one machine cycle, is not pipelined. The two 24-bit numbers being multiplied can come 
from the X registers (XO or Xl) or Y registers (YO or Yl). After multiplication, they are 
added (or subtracted) with one ofthe 56-bit accumulators and can be convergently rounded 
to 24 bits. The convergent-rounding forcing function detects the $800000 condition in the 
LSP and makes the correction as necessary. The final result is then stored in one of the 
accumulators as a valid 56-bit number. The condition code bits are set based on the rounded 
output of the logic unit: 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 4-11 



III 

CASE I: IF AO < $800000 (112), THEN ROUND DOWN (ADD NOTHING) 

BEFORE ROUNDING 

55 48 41 2423 

CASE II: IF AO > $800000 (112), THEN ROUND UP (ADD I TO AI) 

BEFORE ROUNDING 

55 48 41 2423 

AFTER ROUNDING 

A2 Al AO* 

Ixx .. xxlxxx ............ xXX01oolooo ................. 000 I 
55 48 41 2423 

AFTER ROUNDING 

A2 Al AO* 

Ixx .. xxlxxx ............ XXX0101looo ................. 0001 

55 48 41 2423 

CASE III: IF AO = $800000 (112), AND THE lSB OF Al =0, THEN.ROUND DOWN (ADD NOTHING) 

BEFORE ROUNDING AFTER ROUNDING 

A2 Al AO* 

Ixx .. xxlxxx ............ xXX01oolooo ................. 000 I 
55 48 41 24 23 55 48 41 2423 

CASE IV: IF AD = $800000 (112), AND THE lSB=:1, THEN ROUND UP (ADD I TO AI) 

BEFORE ROUNDING AFTER ROUNDING 

A2 Al AO* 

Ixx .. xxlxxx ............ xxxollolooo ................. 000 I 
55 48 41 2423 55 48 41 2423 

*AO is always clear; performed during RND, MPYR, MACR. 

Figure 4·9. Convergent Rounding 

4-12 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



DATA ALU 
INPUT REGISTERS 

47 X 47 Y 0 

XI I XO YI I YO I 
23 023 23 023 

DATA ALU 
ACCUMULATOR REGISTERS 

55 A 55 B 

* I A2 Al I AO * I B2 BI I BO 

23 87 023 o 23 23 87 o 23 o 23 

*Read as zero, written as don't care. 

Figure 4-10. DSP56000/DSP56001 Programming Model 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 4-13 



III 

4-14 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



SECTION 5 
ADDRESS GENERATION UNIT AND ADDRESSING MODES 

This section contains three major subsections. The first subsection describes the hardware 
architecture of the address generation unit (AGU); the second subsection describes the 
programming model. The third subsection describes the addressing modes, illustrating 
how the Rn, Nn, and Mn registers work together to form a memory address. 

5.1 AGU ARCHITECTURE 

The AGU is one of the three execution units on the DSP56000/DSP56001 (see Figure 5-1). 
The AGU performs the effective address calculations (usin'g integer arithmetic) necessary 
to address data operands in memory and contains the registers used to generate the 
addresses. It implements three types of arithmetic, linear, modulo, and reverse-carry, and 
operates in parallel with other chip resources to minimize address-generation overhead. 
The AGU is divided into two identical halves, each of which has an address arithmetic 
logic unit (ALU) and four sets of three registers (see Figure 5-2). 

j~~:::~~:6~:~:i§::::m: 
YAB 
XAB 

EXTERNAL ADDR 
PORT {GENERATION ::: PAB I 

AODRESS ~. 

B OR 

~j~::::::::~:nf:::::::::~j~ ~ + + 
BUS 

HOST 
~ 

SWITCH 

t X MEMORY Y MEMORY 
BOOTSTRAP PROGRAM RAM RAM 

~ ON-CHIP ~ ROM RAM 256 x 24 256 x 24 BUS 7 PERIPHERALS 
.A 32x 24 512x24 IL/A ROM SINE ROM CONTROllER .... 

4-+ HOST, SSI, SCI, 256 x 24 256 x 24 

+ PARALLEL I/O ... v 

II II II ~ PORT C YDB " 
AND/OR 

INTERNAL DATA ... 
II II XDB 0 ~~ ~ EXTERNAL 

DATA 
BUS SWITCH .A ~. SSI, SCI AND BIT ; 0 -(7 PDB {f'- II K DATA BUS 

MANIPULATION SWITCH 

UNIT 
~ II ..(~ GOB II II K 

ESS 

PORT A 

... 
t L { 4 v 

r ..., r ,,"- ..., ~ - " 
I PROGRAM I I PROGRAM I I PROGRAM I DATA ALU 
I ADDRESS ~ DECODE .JeI.. INTERRUPT I 

L ~~R~T~R J l:~~~l~J ~~TR~lER 1 
24 x 24 + 56. 56-BIT MAC I CLOCK I TWO 56-BIT ACCUMULATORS 

GENERATOR PROGRAM CONTROLLER 'f 
i . t XTAL I MODB/IROB - 16 BITS 

EXTAL MODAlIROA -- = 24 BITS RESET 

Figure 5-1. DSP56001 Block Diagram 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 5-1 



III 

!---"OW AOORESS AlU-----,)I·*I ..... ----HIGH AOORESS ALU----1 

XAB VAB PAB 

16 16 

GLOBAL DATA BUS 

Figure 5-2. AGU Block Diagram 

These registers are the address registers (RO-R3 and R4-R7), offset registers (NO-N3 and 
N4-N7), and the modifier registers (MO-M3 and M4-M7). The eight Rn, Nn, and Mn reg­
isters are treated as register triplets - e.g., only N2 and M2 can be used to update R2. The 
eight triplets are RO:NO:MO, R1 :N1 :M1, R2:N2:M2, R3:N3:M3, R4:N4:M4, R5:N5:M5, 
R6:N6:M6, and R7:N7:M7. 

The two arithmetic units can generate two 16-bit addresses every instruction cycle - one 
for any two of the XAB, VAB, or PAB. The AGU can directly address 65,536 locations on 
the XAB, 65,536 locations on the VAB, and 65,536 locations on the PAB. The two inde­
pendent address ALUs work with the two data memories to feed the data ALU two operands 
in a single cycle. Each operand may be addressed by an Rn, Nn, and Mn triplet. 

5.1.1 Address Register Files (Rn) 

Each of the two address register files (see Figure 5-2) consists of four 16-bit registers. The 
two files contain address registers RO-R3 and R4-R7, which usually contain addresses 
used as pointers to memory. Each register may be read or written by the global data bus 
(GDB). When read by the GDB, 16-bit registers are written into the two least significant 
bytes of the GBD, and the most significant byte is set to zero. When written from the GBD, 
only the two least significant bytes are written, and the most significant byte is truncated. 

5-2 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



Each address register can be used as input to its associated address ALU for a register 
update calculation. Each register can also be written by the output of its respective address 
ALU. One Rn register from the low address ALU and one Rn register from the high address 
ALU can be accessed in a single instruction. 

5.1.2 Offset Register Files (Nn) 

Each of two offset register files, shown in Figure 5-2, consists of four 16-bit registers. The 
two files contain offset registers NO-N3 and N4-N7, which contain either offset values 
used to update address pointers or data. Each offset register can be read or written by the 
GOB.When read by the GOB, the contents of a register are placed in the two least significant 
bytes, and the most significant byte on the GOB is zero extended. When a register is written, 
only the least significant 16 bits of the GOB are used; the upper portion is truncated . 

5.1.3 Modifier Register Files (Mn) 

Each of two modifier register files, shown in Figure 5-2, consists of four 16-bit registers. 
The two files contain modifier registers MO-M3 and M4-M7, which specify the type of 
arithmetic used during address register update calculations or contain data. Each modifier 
register can be read or written by the GOB. When read by the GOB, the contents of a 
register are placed in the two least significant bytes, and the most significant byte on the 
GOB is zero extended. When a register is written, only the least significant 16 bits of the 
GOB are used; the upper portion is truncated. Each modifier register is preset to $FFFF 
during a processor reset. 

5.1.4 Address ALU 

The two address ALUs are identical (see Figure 5-2) in that each contains a 16-bit full adder 
(called an offset adder), which can add 1) plus one, 2) minus one, 3) the contents of the 
respective offset register N, or 4) the twos complement of N to the contents of the selected 
address register. A second full adder (called a modulo adder) adds the summed result of 
the first full adder to a modulo value, M or minus M, where M is stored in the respective 
modifier register. A third full adder (called a reverse-carry adder) can add 1) plus one, 2) 
minus one, 3) the offset N (stored in the respective offset register), or 4) minus N to the 
selected address register with the carry propagating in the reverse direction - i.e., from 
the most significant bit (MSB) to the least significant bit (LSB). The offset adder and the 
reverse-carry adder are in parallel and share common inputs. The only difference between 
them is that the carry propagates in opposite directions. Test logic determines which of 
the three summed results of the full adders is output. 

Each address ALU can update one address register, Rn, from its respective address register 
file during one instruction cycle and is capable of performing linear, reverse-carry, and 

MOTOROLA OSP56000/0SP56001 USER'S MANUAL 5-3 

• 



II 

modulo arithmetic. The contents of the selected modifier register specify the type of arith­
metic to be used in an address register update calculation. The modifier value is decoded 
in the address ALU. 

The output 'of the offset adder gives the result of linear arithmetic (e.g., Rn ± 1; Rn ± N) and 
is selected as the modulo arithmetic unit output for linear arithmetic addressing modifiers. 
The reverse-carry adder performs the required operation for reverse-carry arithmetic and, 
its result is selected as the address ALU output for reverse-carry addressing modifiers. 
Reverse-carry arithmetic is useful for 2k-point'fast Fourier transform (FFT) addressing. For 
modulo arithmetic, the modulo arithmetic unit will perform the function (Rn ± N) modulo 
M, where N can be one, minus one, or the contents of the offset register Nn. If the modulo 
operation requires wraparound for modulo arithmetic, the summed output of the modulo 
adder gives the correct updated address register value; if wraparound is not necessary, 
the output of the offset adder gives the correct result. 

5.1.5 Address Output Multiplexers 

The address output multiplexers (see Figure 5-2) select the source for the XAB, VAB, and 
PAB. These multiplexers allow the XAB, VAB, or PAB outputs to originate from RO-R3 or 
R4-R7. 

5.2 PROGRAMMING MODEL 

The programmer's view of the AGU is eight sets of three registers (see Figure 5-3). These 
registers can be used as temporary data registers and indirect memory pointers. Automatic 
updating is available when using address register indirect addressing. The Rn registers 
can be programmed for linear addressing, modulo addressing, and bit-reverse addressing. 

23 

* 
* 
* 
* 
* 
* 
* 
* 

16 15 

R7 

R6 

R5 

R4 

R3 

R2 

R1 

RO 

ADDRESS 
REGISTERS 

23 

* 

* 
* 

* 
* 

* 
* 
* 

'16 15 

N7 

N6 

N5 

N4 

N3 

N2 

N1 

NO 

OFFSET 
REGISTERS 

23 

* 
* 
* 
* 
* 
* 
* 
* 

16 15 

M7 

M6 

M5 

M4 

M3 

M2 

Ml 

MO 

MODIFIER 
REGISTERS 

*Written As Don't Care; Read As Zero 

Figure 5-3. AGU Programming Model 

5-4 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



5.2.1 Address Register Files (RO-R3 and R4-R7) 

The eight 16-bit address registers, RO-R7, can contain addresses or general-purpose data. 
The 16-bit address in a selected address register is used in the calculation of the effective 
address of an operand. When supporting parallel X and Y data memory moves, the address 
registers must be thought of as two separate files, RO-R3 and R4-R7. The contents of an 
Rn may point directly to data or may be offset. In addition, Rn can be pre-updated or post­
updated according to the addressing mode selected. If an Rn is updated, modifier registers, 
Mn, are always used to specify the type of update arithmetic. Offset registers, Nn, are used 
for the update-by-offset addressing modes. The address register modification is performed 
by one of the two modulo arithmetic units. Most addressing modes modify the selected 
address register in a read-modify-write fashion; the address register is read, its contents 
are modified by the associated modulo arithmetic unit, and the register is written with the 
appropriate output ofthe modulo arithmetic unit. The form of address register modification 
performed by the modulo arithmetic unit is controlled by the contents of the offset and 
modifier registers discussed in the following paragraphs. Each address register is preset 
to $FFFF during a processor reset. 

5.2.2 Offset Register Files (NO-N3 and N4-N7) 

The eight 16-bit offset registers, NO-N7, can contain offset values used to incrementl 
decrement address registers in address register update calculations or can be used for 
16-bit general-purpose storage. For example, the contents of an offset register can be used 
to step through a table at some rate (e.g., five locations per step for waveform generation), 
or the contents can specify the offset into a table. or the base of the table for indexed 
addressing. Each address register, Rn, has its own offset register, Nn, associated with it. 
Each offset register is preset to $FFFF during a processor reset. 

5.2.3 Modifier Register Files (MO-M3 and M4-M7) 

The eight 16-bit modifier registers, MO-M7, define the type of address arithmetic to be 
performed for addressing mode calculations, or they can be used for general-purpose 
storage. The address ALU supports linear, modulo, and reverse-carry arithmetic types for 
all address register indirect addressing modes. For modulo arithmetic, the contents of Mn 
also specify the modulus. Each address register, Rn, has its own modifier register, Mn, 
associated with it. Each modifier register is set to $FFFF on processor reset, which specifies 
linear arithmetic as the default type for address register update calculations. Each modifier 
register is preset to $FFFF during a processor reset. 

5.3 ADDRESSING 

The DSP56000/DSP56001 provides three different addressing modes: register direct, ad­
dress register indirect, and special (see Table 5-1). Since the register direct and special 
addressing modes do not necessarily use the AGU registers, they are described in SECTION 

MOTOROLA OSP56000/0SP56001 USER'S MANUAL 5-5 

-



• 

7 INSTRUCTION SET SUMMARY. The address register indirect addressing modes use the 
registers in the AGU and are described in the following paragraphs. 

Table 5-1. Address Register Indirect Summary 

Uses Mn 
Address Register Indirect Modifier 

No Update No 

Postincrement by 1 Ves 

Postdecrement by 1 Ves 

Postincrement by Offset Nn Ves 

Postdecrement by Offset Nn Ves 

Indexed by Offset Nn Ves 

Predecrement by 1 Ves 

NOTE: 
s = System Stack Reference 
C = Program Controller Register Reference 
D = Data ALU Register Reference 
A=Address ALU Register Reference 
P= Program Memory Reference 
X = X Memory Reference 
V = V Memory Reference 
L= L Memory Reference 

XV = XV Memory Reference 

5.3.1 Address Register Indirect Modes 

Operand Reference 

S C D A P X V L XV 

X X X X X 

X X X X X 

X X X X X 

X X X X X 

X X X X 

X X X X 

X X X X 

Assembler 
Syntax 

(Rn) 

(Rn)+ 

(Rn)-

(Rn)+Nn 

(Rn)-Nn 

(Rn+Nn) 

-(Rn) 

When an address register is used to point to a memory location, the addressing mode is 
called address register indirect (see Table 5-1). The term indirect is used because the register 
contents are not the operand itself, but rather the address ofthe operand. These addressing 
modes specify that an operand is in memory and specify the effective address of that 
operand. 

A portion of the data bus movement field in the instruction specifies the memory space 
to be referenced. The contents of specific AGU registers that determine the effective address 
are modified by arithmetic operations performed in the AGU. The type of address arithmetic 
used is specified by the address modifier register, Mn. The offset register, Nn, is only used 
when the update specifies an offset. 

Not all possible combinations are available, e.g., + (Rn). The 24-bit instruction word size 
of the DSP56000/DSP56001 is not large enough to allow a completely orthogonal instruction 
set for all instructions used'by the processor. 

An example and description of each mode is given in the following paragraphs. SECTION 
7 INSTRUCTION SET SUMMARY and APPENDIX A INSTRUCTION SET DETAILS give a 
complete description of the instruction syntax used in these examples. In particular, XV: 

5-6 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



memory references refer to instructions in which an operand in X memory and an operand 
in V memory are referenced in the same instruction. 

5.3.1.1 NO UPDATE. The address of the operand is in the address register, Rn (see Table 
5-1). The contents of the Rn register are unchanged by executing the instruction. Figure 
5-4 shows a MOVE instruction using address register indirect addressing with no update. 
This mode can be used for making XV: memory references. 

EXAMPLE: MOVE A1,X:(RO) 

BEFORE EXECUTION 

A2 Al AO 
55 48 47 24 23 

I 0 1 I 2 3 4 5 6 7 I 8 9 A B C 0 

o 23 o 23 

X MEMORY 
23 

$1000 X X X X X X 

RO 

15 

Nol XXXX 

15 

Mol $FFFF 

Assembler Syntax: (Rn) 
Memory Spaces: P:, X:, Y:, XY:, L: 
Additional Instruction Execution Time (Clocks): 0 
Additional Effective Address Words: 0 

AFTER EXECUTION 

A2 Al AO 
0 55 48 47 24 23 

I I 0 1 I 2 3 4 5 6 7 I 8 9 A B 

o 23 o 23 

X MEMORY 
23 

$1000 $ 2 3 4 5 6 7 

15 

RO 

15 

Nol xxxx . 

0 15 

I Mol $FFFF 

Figure 5-4. Address Register Indirect - No Update 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 

0 

0 I 

5-7 

III 



5.3.~.2 POSTINCREMENT BY 1. The address of the operand is in the address register, Rn 
(see Table 5-1 and Figure 5-5). After the operand address is used, it is incremented by 1 
and stored in the same address register. This mode can be used for making XV: memory 
references and for modifying the contents of Rn without an associated data move. 

5.3.1.3 POSTDECREMENT BY 1. The address of the operand is in the address register, 
Rn (see Table 5-1 and Figure 5-6). After the operand address is used, it is decremented by 
1 and stored in the same address register. This mode can be used for making XV: memory 
references and for modifying the contents of Rn without an associated data move. 

5-8 

EXAMPLE: MOVE BO,Y:(R1)+ 

I 

8EFORE EXECUTION 

82 81 80 
55 48 47 24 23 0 

A F I 6 5 4 3 2 1 I F E 0 C 8 A 

o 23 o 23 

Y MEMORY 
23 

$2501 X X X X X X 

$2500 XXXXXX 

15 

R1 

15 

Nd XXXX 

15 

Md $FFFF 

Assembler Syntax: (Rn) + 
Memory Spaces: P:, X:, Y:, XY:, L: 
Additional Instruction Execution Time (Clocks): 0 
Additional Effective Address Words: 0 

I I 
82 

55 48 47 

A F I 6 5 

o 23 

AFTER EXECUTION 

81 

4 3 

80 
24 23 0 

2 1 I F E 0 C 8 A I 
o 23 

Y MEMORY 
23 - --

$2501 

$2500 

X X X X X X 

$FEOC8A 

--
15 

R11 $2501 

15 

N11 XXXX 

15 

M11 $FFFF 

0 

~ 

~ 

Figure 5-5. Address Register Indirect - Postincrement 

DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



EXAMPLE: MOVE YO,Y:(R3)-

I 

BEFORE EXECUTION 

Yl YO 
47 24 23 0 

1 2 3 1 

23 

2 3 I 4 

o 23 

$4735 

$4734 

23 

5 6 4 5 6 

Y MEMORY - -

X X X X X X 

X X X X X X 

-
15 

R31 $4735 

15 

N31 XXXX 

15 

M31 $FFFF 

Assembler Syntax: (Rn)-
Memory Spaces: P:, X:, V:, XV:, L: 

0 

I 

~ 

r-

Additional Instruction Execution Time (Clocks): 0 
Additional Effective Address Words: 0 

Yl 
47 

I 1 2 3 1 

23 

AFTER EXECUTION 

YO 
24 23 0 

2 3 I 4 5 6 4 5 6 I 
o 23 

Y MEMORY 
23 -

$4735 

$4734 

-

456456 

X X X X X X 

--
15 

R3l $4734 

15 

N31 XXX X 

15 

M31 $FFFF 

-

~ 

-
0 

J---

Figure 5-6. Address Register Indirect - P~stdecrement 

5.3.1.4 POSTINCREMENT BY OFFSET Nn; The address of the operand is in the address 
register, Rn ·(see Table 5-1 and Figure 5-7). After the operand address is used, it is incre­
mented by the contents of the Nn register and stored in the same address register. The 
contents ofthe Nn register are unchanged. This mode can be used for making XV: memory 
references and for modifying the contents of Rn without an associated data move. 

5.3.1.5 POSTDECREMENT BY OFFSET Nn. The address of the operand is in the address 
register, Rn (see Table 5-1 and Figure 5-8). After the operand address is used, it is decre­
mented by the contents of the Nn register and stored in the same address register. The 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 5-9 



III 

EXAMPLE: MOVE Xl,X:(R2)+N2 

BEFORE EXECUTION 

Xl XO 
47 24 23 0 

I A 5 B 4 C 6 I 0 0 0 0 0 1 

23 o 23 

X MEMORY 
23 - -

$3204 X X X X X X 

$3200 X X X X X X 

- --
15 

R2[ $3200 

15 

N21 $0004 

15 

Md $FFFF 

Assembler Syntax: (Rn) + Nn 
Memory Spaces: P:, X:, Y:, XY:, L: 

0 

I 

....--

r-

Additional Instruction Execution Time (Clocks): 0 
Additional Effective Address Words: 0 

AFTER EXECUTION 

Xl XO 
47 24 23 0 

I A 5 B 4 C 6 I 0 0 0 0 0 1 I 
23 o 23 

X MEMORY 
23 -

$3204 X X X X X X ......--

$3200 $A5B4C6 

--
15 0 

R2\ $3204 1--
15 

N21 $0004 

15 

M21 $FFFF 

Figure 5-7. Address Register Indirect - Postincrement by Offset Nn 

contents of the Nn register are unchanged. This mode cannot be used for making XV: 
memory references, but it can be used to modify the contents of Rn without an associated 
data move. 

5.3.1.6 INDEXED BY OFFSET Nn. The address of the operand is the sum of the contents 
of the address register, Rn, and the contents of the address offset register, Nn (see Table 
5-1 and Figure 5-9). The contents ofthe Rn and Nn registers are unchanged. This addressing 
mode, which requires an extra instruction cycle, cannot be used for making XV: memory 
references. 

5-10 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



EXAMPLE: MOVE X:(R4) - N4,A0 

BEFORE EXECUTION AFTER EXECUTION 

A2 Al AO A2 Al AO 
55 48 47 24 23 0 55 48 47 24 23 0 

I 0 F I 7 4 1 0 5 A I 3 F A 6 B 0 I 10 FI7 4105 AI5 05050 I 

o 23 o 23 

23 

$7706 

$7703 

Assembler Syntax: (Rn) - Nn 
Memory Spaces: P:, X:, V:, L: 

X MEMORY 

- -
$505050 

X X X X X X 

-
15 0 

R41 $7706 

15 

N41 $0003 

15 

M41 $FFFF 

Additional Instruction Execution Time (Clocks): 0 
Additional Effective Address Words: 0 

o 23 o 23 

X MEMORY 
23 --

-+- $7706 $505050 

$7703 X X X X X X 

- --
15 

J-- R41 $7703 

15 

N41 $0003 

15 

M41 $FFFF 

Figure 5-8. Address Register Indirect - Postdecrement by Offset Nn 

~ 

0 

I--

5.3.1.7 PREDECREMENT BY 1. The address of the operand is the contents ofthe address 
register, Rn, decremented by 1 before the operand address is used (see Table 5-1 and 
Figure 5-10). The contents of Rn are decremented and- stored in the same address register. 
This addressing mode requires an extra instruction cycle. This mode cannot be used for 
making XV: memory references, nor can it be used for modifying the contents of Rn without 
an associated data move. 

5.3.2 Address Modifier Types 

The DSP56000/DSP56001 address ALU supports linear, modulo, and reverse-carry arith­
metic types for all address register indirect modes. These arithmetic types easily allow the 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 5-11 



-

EXAMPLE: MOVE Yl,X:(R6+ N6) 

BEFORE EXECUTION 

Yl YO 
47 24 23 0 

1 6 2 1 0 0 9 1 B A 4 C 2 21 
23 o 23 

X MEMORY 

$6004 XXXXXX 

$6000 X X X X X X 

15 

R6 

N6 L..-__ ---I 

15 

M61 $FFFF 

Assembler Syntax: (Rn + Nn) 
Memory Spaces: P:, X:, Y:, L: 
Additional Instruction Execution Time (Clocks): 2 
Additional Effective Address Words: 0 

AFTER EXECUTION 

Yl YO 
~ N n 0 

16210091BA4C221 

23 o 23 

X MEMORY 
23 r----......_ .... 

r----.- $6004 $621009 

$6000 X X X X X X 

~- -
15 

R61 $6000 

15 

N61 $0004 

15 

M61 $FFFF 

Figure 5-9. Address Register Indirect - Indexed by Offset Nn 

creation of data structures in memory for FIFOs (queues), delay lines, circular buffers, 
stacks, and bit-reversed FFT buffers. Data is manipulated by updating" address registers 
(pointers) rather than moving large blocks of data. The contents of the address modifier 
register, Mn, define the type of arithmetic to be performed for addressing mode calcula­
tions; for modulo arithmetic, the contents of Mn also specify the modulus. All address 
register indirect modes can be used with any address modifier. Each address register, Rn, 
has its own modifier register, Mn, associated with it. . 

5.3.2.1 LINEAR MODIFIER (Mn=$FFFF). Address modification is performed using normal 
16-bit linear (modulo 65,536) arithmetic (see Table 5-2). A 16-bit offset, Nn, and + 1 or -1 

5-12 OSP56000/0SP56001 USER'S MANUAL MOTOROLA 



EXAMPLE: MOVE X: - (R5),Bl 

BEFORE EXECUTION AFTER EXECUTION 

B2 Bl BO B2 Bl BO 
55 48 47 24 23 0 55 48 47 24 23 a 

I 3 BIB 6 2 D 0 4 I A 5 5 4 C 0 I 13BI1234561A554coi 

o 23 o 23 

X MEMORY 
23 --- -

$3007 

$3006 

Assembler Syntax: - (Rn) 
Memory Spaces: P:, X:, Y:, L: 

$ABCDEF 

$123456 

--
15 0 

R51 $3007 

15 

N51 XXXX 

15 

M51 $FFFF 

Additional Instruction Execution Time (Clocks): 2 
Additional Effective Address Words: 0 

o 23 

~ 

I--

a 23 

23 

$3007 

$3006 

X MEMORY 

- -
$ABCDEF 

$123456 

- -
15 

R5l $3006 

15 

i'J51 XXXX 

15 

M51 $FFFF 

Figure 5-10. Address Register Indirect - Predecrement 

~ 

0 

J--
0 

I 

0 

I 

can be used in the address calculations. The range of values can be considered as signed 
(Nn from - 32,768 to + 32,767) or unsigned (Nn from 0 to + 65,535) since there is no 
arithmetic difference between these two data representations. Addresses are normally 
considered unsigned, and data is normally considered signed. 

5.3.2.2 MODULO MODIFIER (Mn = MODULUS -1). The address modification is per­
formed modulo M, where M ranges from 2 to + 32,768 (see Table 5-3). Modulo M arithmetic 
causes the address register value to remain within an address range of size M, defined by 
a lower and upper address boundary (see Figure 5-11). The value m = M -1 is stored in 
the modifier register, Mn. The lower boundary (base address) value must have zeros in 
the k LSBs, where 2k~M, and therefore must be a multiple of 2k. The upper boundary is 

MOTOROLA OSP56000/0SP56001 USER'S MANUAL 5-13 

-



1& 

Table 5·2. Linear Address Modifiers 

Modifier Mn Addressing Mode 
Value Arithmetic 

0 Reverse Carry (Bit Reverse) 

1 Modulo 2 

2 Modulo 3 

: : 

: Modulo (Mn+1) 

: : 

32766 Modulo 32767 

32767 Modulo 32768 

: Reserved 

65535 Linear (Modulo 65536/ 

the lower boundary plus the modulo size minus one (base address plus M -1). Since M~2k, 
once M is chosen, a sequential series of memory blocks (each of length 2k) is created 
where these circular buffers can be located. If M<2k, there will be a space between se­
quential circular buffers of (2k) - M. For example, to create a circular buffer of 21 stages, 
M is 21, and the lower address boundary must have its five LSBs equal to zero (2k~21, 
thus k~5). The Mn register is loaded with the value 20. The lower boundary may be chosen 
as 0, 32, 64, 96,128,160, etc. The upper boundary of the buffer is then the lower boundary 
plus 21. There will be an unused space of 11 memory locations between the upper address 
and next usable lower address. The address pointe(is not required to start at the lower 
address boundary or to end on the upper address boundary; it can initially point anywhere 
within the defined modulo address range. Neither the lower nor the upper boundary of 
the modulo region is stored; only the size of the modulo region is stored in Mn. The 
boundaries are determined by the contents of Rn. Assuming the (Rn) + indirect addressing 
mode, if the address register pointer increments past the upper boundary of the buffer 

5-14 

ADDRESS 
POINTER IIIIIIIII:;~~~~;::IIIIIII 

UPPER BOUNDARY 

t 
M=MODULUS 

~ 
LOWER BOUNDARY 

Figure 5·11. Circular Buffer 

DSP56000/DSP56,001 USER'S MANUAL MOTOROLA 



(base address plus M -1), it will wrap around through the base address (lower boundary). 
Alternatively, assuming the (Rn) - indirect addressing mode, if the address decrements 
past the lower boundary (base address), it will wrap around through the base address plus 
M -1 (upper boundary). 

If an offset, Nn, is used in the address calculations, the 16-bit absolute value, INnl, must 
be less than or equal to M for proper modulo addressing. If Nn>M, the result is data 
dependent and unpredictable, except for the special case where Nn = P x 2k, a multiple of 
the block size where P is a positive integer. For this special case, when using the (Rn) + Nn 
addressing mode, the pointer, Rn, will jump linearly to the same relative address in a new 
buffer, which is P blocks forward in memory (see Figure 5-12). Similarly, for (Rn) - Nn, the 
pointer will jump P blocks backward in memory. This technique is useful in sequentially 
processing multiple tables or N-dimensional arrays. The range of values for Nn is - 32,768 
to +32,767. The modulo arithmetic unit will automatically wrap around the address pointer 
by the required amount. This type address modification is useful for creating circular buffers 
for FIFOs (queues), delay lines, and sample buffers up to 32,768 words long as well as for 
decimation, interpolation, and waveform generation. The special case of (Rn)± Nn mod M 
with Nn = P x 2k is useful for performing the same algorithm on multiple blocks of data in 
memory - e.g., parallel infinite impulse response (IIR) filtering. 

IRn)±Nn MOD M 
WHERE Nn = 2k Ii.e., P = 1) 

Figure 5-12. Linear Addressing with a Modulo Modifier 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 5-15 

-



-

An example of address register indirect modulo addressing is shown in Figure 5-13. Starting 
at location 64, a circular buffer of 21 stages is created. The addresses generated are offset 
by 15 locations. The lower boundary = Lx (2k) where 2k~21; therefore, k = 5 and the lower 
address boundary must be a multiple of 32. The lower boundary may be chosen as 0, 32, 
64, 96, 128, 160, etc. For this example, L is arbitrarily chosen to be 2, making the lower 
boundary 64. The upper boundary of the buffer is then 84 (the lower boundary plus 20 
(M -1 )). The Mn register is loaded with the value 20 (M -1). The offset register is arbitrarily 
chosen to be 15 (Nn~M). The address pointer is not required to start at the lower address 
boundary and can begin anywhere within the defined modulo address range -i.e., within 
the lower boundary + (2k) address region. The address pointer, Rn, is arbitrarily chosen 
to be 75 in this example. When R2 is postincremented by the offset by the MOVE instruction, 
instead of pointing to 90 (as it would in the linear mode) it wraps around to 69. If the 
address register pointer increments past the upper boundary of the buffer (base address 
plus M -1), it will wrap around to the base address. If the address decrements past the 
lower boundary (base address), it will wrap around to the base address plus M -1. 

If Rn is outside the valid modulo buffer range and an operation occurs that causes Rn to 
be updated, the contents of Rn will be updated according to modulo arithmetic rules. For 
example, a MOVE BO,X:(RO)+NO instruction (where RO=6, MO=5, and NO=O) would ap­
parently leave RO unchanged since NO = O. However, since RO is above the upper boundary, 
the AGU calculates RO + NO - MO -1 for the new contents of RO and sets RO = o. 

EXAMPLE: MOVE XO,X:(R2) + N 

LET: 
M2 100 ..... 0010100 I MODULUS = 21 

N2 100 ..... 0001111 I OFFSET = 15 

R2 100 ..... 10010111 POINTER=75 

Figure 5-13. Modulo Modifier Example 

5-16 OSP56000/0SP56001 USER'S MANUAL MOTOROLA 



Table 5-3. Modulo Address Modifiers 

Modifier Mn Addressing Mode 
Value Arithmetic 

0 Reverse Carry (Bit Reverse) 

7 Modulo 2 

2 Modulo 3 

: : 

: Modulo (Mn+ 7) , 

: : 

32766 Modulo 32767 

32767 Modulo 32768 

: Reserved 

65535 Linear (Modulo 65536) 

The MOVE instruction in Figure 5-13 takes the contents of the XO register and moves it to 
a location in the X memory pointed to by (R2), and then (R2) is updated modulo 21. The 
new value of R2 is not 90 (75 + 15), which would be the case if linear arithmetic had been 
used, but rather is 69 since modulo arithmetic was used. 

5.3.2.3 REVERSE-CARRY MODIFIER (Mn = $0000). Reverse carry is selected by setting the 
modifier register to zero (see Table 5-4). The address modification is performed in hardware 
by propagating the carry in the reverse direction - i.e., from the MSB to the LSB. Reverse 
carry is equivalent to bit reversing the contents of Rn (i.e., redefining the MSB as the LSB, 
the next MSB as bit 1, etc.) and the offset value, Nn, adding normally, and then bit reversing 
the result. If the + Nn addressing mode is used with this address modifier and Nn contains 
the value 2(k-1) (a power of two), this addressing modifier is equivalent to bit reversing 
the k LSBs of Rn, incrementing Rn by 1, and bit reversing the k LSBs of Rn again. This 

Table 5-4. Reverse-Carry Address Modifiers 

Modifier Mn Addressing Mode 
Value Arithmetic 

0 Reverse Carry (Bit Reverse) 

1 Modulo 2 " 

2 Modulo 3 

: : 

: Modulo (Mn + 1) 

: : 

32766 Modulo 32767 

32767 Modulo 32768 

: Reserved 

65535 Linear (Modulo 65536) 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 5-17 

-



• 

address modification is useful for addressing the twiddle factors in 2k-point FFT addressing 
and to unscramble 2k-point FFT data. The range of values for Nn is 0 to + 32K (i.e., Nn = 215), 
which allows bit-reverse addressing for FFTs up to 65,536 points. 

To make bit-reverse addressing work correctly for a 2k point FFT, the following procedures 
must be used: 

1. Set Mn = 0; this selects reverse-carry arithmetic. 

2. Set Nn=2(k-1), 

3. Set Rn between the lower boundary and upper boundary in the buffer memory. The 
lower boundary is Lx (2k), where L is an arbitrary whole number. This boundary gives 
a 16-bit binary number "xx ... xxOO ... 00", where xx ... xx = Land 00 ... 00 equals 
k zeros. The upper boundary is Lx (2k) + ((2k) -1). This boundary gives a 16-bit binary 
number "xx ... xx11 ... 11 If, where xx ... xx = Land 11 ... 11 equals k ones . 

4. Use the (Rn) + Nn addressing mode. 

As an example, consider a 1024-point FFT with real data stored in the X memory and 
imaginary data stored in the Y memory. Since 1,024=210, k= 10. The modifier register 
(Mn) is zero to select bit-reverse addressing. Offset register (Nn) contains the value 512 
(2(k -1 )), and the pointer register (Rn) contains 3,072 (L x (2k) = 3 x (210)), which is the lower 
boundary of the memory buffer that holds the results of the FFT. The upper boundary is 
4,095 (lower boundary + (2k) -1 = 3,072 + 1,023). 

Postincrementing by + N generates the address sequence (0, 512, 256, 768, 128, 640, ... ), 
which is added to the lower boundary. This sequence (0, 512, etc.) is the scrambled FFT 
data order for sequential frequency points from 0 to 2 x pi. Table 5-5 shows the successive 
contents of Rn when using (Rn) + Nn updates. 

Table 5-5. Bit-Reverse Addressing 
Sequence Example 

Rn Contents 
Offset from 

Lower Boundary 

3072 0 

3584 512 

3328 256 

3840 768 

3200 128 

3712 640 

The reverse-carry modifier only works when the base address of the FFT data buffer is a 
mUltiple of 2k, such as 1,024, 2,048, 3,072, etc. The use of addressing modes other than 
postincrement by + Nn is possible but may not provide a useful result. 

5-18 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



The term bit reverse with respect to reverse-carry arithmetic is descriptive. The lower 
boundary that must be used for the bit-reverse address scheme to work is Lx (2k). In the 
previous example shown in Table 5-5, L= 3 and k= 10. The first address used is the lower 
boundary (3072); the calculation of the next address is shown in Figure 5-14. The k LSBs 
of the current contents of Rn (3,072) are swapped: 

Bits ° and 9 are swapped. 
Bits 1 and 8 are swapped. 
Bits 2 and 7 are swapped. 
Bits 3 and 6 are swapped. 
Bits 4 and 5 are swapped. 

The result is incremented (3,073), and then the k LSBs are swapped again: 
Bits ° and 9 are swapped. 
Bits 1 and 8 are swapped. 
Bits 2 and 7 are swapped. 
Bits 3 and 6 are swapped. 
Bits 4 and 5 are swapped. 

The result is Rn equals 3,584. 

5.3.2.4 Address-Modifier-Type Encoding Summary 

Table 5-6 is a summary of the address modifier types discussed in the previous paragraphs. 
There are three modifier types: 

Linear Addressing 
Reverse-Carry Addressing 
Modulo Addressing 

EACH UPDATE, (Rn) + Nn, IS EQUIVALENT TO: 

MOTOROLA 

1. BIT REVERSING: 

2. INCREMENT Rn BY 1: 

3. BIT REVERSING AGAIN: 

k BITS 

~~ 
Ro ~ 00001' ')(0 ~ 3072 

0000000000 

Rn = 000011 0000000000 
+1 

0000 11 000000000 1 

Ro = 000011 X' 
1000000000 

000011 1000000000 = 3584 

Figure 5-14. Bit-Reverse Address Calculation Example 

DSP56000/0SP56001 USER'S MANUAL 5-19 



III 

Table 5-6. Address-Modifier-Type Encoding Summary 

Modifier Mn Rn Update Arithmetic 

0 Reverse-Carry (Bit-Reverse) Addressing 

1 Modulo 2 

2 Modulo 3 

: : 

: Modulo (Mn + 1) Addressing 

: : 

32767 Modulo 32768 

: Reserved 

65535 Linear Addressing (Modulo 65536) 

Bit-reverse addressing is useful for 2k-point FFT addressing. Modulo addressing is useful 
for creating circular buffers for FIFOs (queues), delay lines, and sample buffers up to 32,768 
words long. The linear addressing is useful for general-purpose addressing. There is a 
reserved set of modifier values (from 32,768 to 65,534) that should not be used. 

Figure 5-15 gives examples of the three addressing modifiers using 8-bit registers for 
simplification (all AGU registers in the DSP56000/DSP56001 are 16 bit). The addressing 
mode used in the example, postincrement by offset Nn, adds the contents of the offset 
register to the contents of the address register after the address register is accessed. The 
results of the three examples are as follows: 

The linear address modifier addresses every fifth location since the offset register con­
tains $5. 

Using the bit-reverse address modifier causes the postincrement by offset Nn addressing 
mode to use the address register, bit reverse the four LSBs, increment by.1, and bit 
reverse the four LSBs again. 

The modulo address modifier has a lower boundary at a predetermined location, and 
the modulo number plus the lower boundary establishes the upper boundary. This 
boundary creates a circular buffer so that, if the address register is pointing within the 
boundaries, addressing past a boundary causes a circular wraparound to the other 
boundary. 

5-20 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



MOTOROLA 

LINEAR ADDRESS MODIFIER 

MO =255= 1111 1111 FOR LINEAR ADDRESSING WITH RO 

ORIGINAL REGISTERS: NO=5, RO=75=0100 1011 

POSTINCREMENT BY OFFSET NO:RO = 80 = 0101 0000 

POSTINCREMENT BY OFFSET ND:RO=85 =0101 0101 

POSTINCREMENT BY OFFSET NO:RO=90 =0101 1010 

MODULO ADDRESS MODIFIER 

MO = 19 = 0001 0011 FOR MODULO 20 ADDRESSING WITH RO 

ORIGINAL REGISTERS: NO = 5, RO = 75 = 0100 1011 

PDSTINCREMENT BY OFFSET NO:RO = 80 = 0101 0000 

PDSTINCREMENT BY OFFSET NO:RO = 65 = 0100 0001 

POSTINCREMENT BY OFFSET NO:RO=70 =01000110 

REVERSE-CARRY ADDRESS MODIFIER 

MO = 0 = 0000 0000 FOR REVERSE-CARRY ADDRESSING WITH RO 

ORIGINAL REGISTERS: NO=8, RO=64 =01000000 

POSTINCREMENT BY OFFSET NO:RO=72 =0100 1000 

POSTINCREMENT BY OFFSET NO:RO=68 =01000100 

POSTINCREMENT BY OFFSET NO:RO=76 =0100 1100 

~ 
\ 

\ 
\ 

\ 
\ 

\ 

\ , 
RO 

, 

r-, 
I \ 

\ 

I 
I 

I RO 
I 
I 
I 
I L __ 

RO 

" '\ 
\ 

'\ 
\ 

\ 

\ 
\ 

\V 
X" / 

\ 
\ 

Figure 5-15. Address Modifier Summary 

DSP56000/DSP56001 USER'S MANUAL 

UPPER 
BOUNDARY 

LOWER 
BOUNDARY 

90 

85 

80 

75 

83 

80 

75 

70 

65 
64 

76 

72 

66 

64 

-

5-21 



• 

5-22 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



SECTION 6 
PROGRAM CONTROLLER 

This section describes the hardware of the program controller and concludes with a de­
scription of the programming model. The instruction pipeline description is also included 
since understanding the pipeline is particularly important in understanding the DSP56000/ 
DSP56001. 

6.1 OVERVIEW 

The program controller (one ofthe three concurrent execution units in the central processor) 
performs program address generation (instruction prefetch), instruction decoding, hard­
ware DO loop control, and exception processing (see Figure 6-1). The programmer views 
the program controller as consisting of six registers and a hardware system stack (SS) as 
shown in Figure 6-2. in addition to the standard program flow-control resources, such as 
a program counter (PC), complete status register (SR), and SS, the program controller 
features registers (loop address (LA) and loop counter (LC)) dedicated to supporting the 
hardware DO loop instruction. 

YAB 
XAB 

EXTERNAL ADD 
PORT ADDRESS 

I 
ADDRESS ~ GENERATION PAB BUS B DR 

UNIT J f + HOST SWITCH 

t ~ X MEMORY Y MEMORY 
BOOTSTRAP PROGRAM RAM RAM 

~ ON-CHIP ~ ROM RAM 256 x 24 256 x 24 BUS 7 PERIPHERALS 32 x 24 512 x 24 Il/A ROM SINE ROM CONTROLLER A '" ~ HOST, SSI, SCI, -r- ....-,., 256 x 24 256 x 24 
.t- PARALLEL I/O II it it ~ PORT C A YDB "-

AND/OR INTERNAL DATA ~ 
II II XDB {7 ~~ ::: EXTERNAL 

DATA 
BUS SWITCH A ~ SSI, SCI 

AND BIT :: 0 0 PDB {~ II K DATA BUS 

MANIPULATION SWITCH 

UNIT :: L;'~ GOB II II K 

RESS 

PORT A 

~ 

t L { ~v 
-t' -- -'--r- -~~rr"""~""·.LIl :~ PROGRAM· £::::1 PROGRAM A PROGRAM ~: DATA ALU 
:~ ADDRESS ~ DECODE ••• INTERRUPT I:: 24 x 24 + 56. 56-BIT MAC 

CLOCK I :~ GENERATORJ~:~j CONTROLL~:::::~ONTROLLER;:: TWO 56-BIT ACCUMULATORS 
GENERATOR tf.iO~1rM·_GO~i:ROlCERt::::~:~f: 1J f:[:f 
I t XTAL I MODB/IRQB - 16 BIT 

EXTAL MODA/IRQA = 24 BIT RESET 

S 

Figure 6-1. DSP56001 Block Diagram 

MOTOROLA OSP56000/0SP56001 USER'S MANUAL 6-1 

-



• 

PAB PDB 

~ 
~ 

16 24 

"'" 

CLOCK ---. 
t t 

~ 
PC 

LA 

LC 
32 x 16 
STACK 

~ 
SP r+ 

OMR I SR 

INTERRUPTS 

CONTROL 

24 24 

GLOBAL DATA BUS 

Figure 6-2. DSP56000/DSP56001 Program Controller 

The 55 is a 15-level by 32-bit separate internal memory used to store the PC and 5R during 
subroutine calls and long interrupts. The 55 will also store the LC and LA registers in 
addition to the PC and 5R registers for program looping. Each location in the 55 is 
addressable as 16-bit registers, system stack high (55H), and system stack low (55L), which 
are pointed to by the stack pointer (5P). Thus, 55 management is under software control. 

All registers are read/write to facilitate system debugging. Although none of the program 
controller registers are 24 bits, they are read or written over 24-bit buses. When they are 
read, the least significant bits (L5Bs) are significant, and the most significant bits (M5Bs) 
are zeroed as appropriate. When they are written, only the appropriate L5Bs are significant, 
and the M5Bs are written as don't care. The program controller implements a three-stage 
(prefetch, decode, execute) pipeline and controls the five processing states ofthe 05P56000/ 
05P56001: normal, exception, reset, wait, and stop. 

6.2 PROGRAM CONTROLLER ARCHITECTURE 

The program controller consists of three hardware blocks: the program decode controller 
(POC), the program address generator (PAG), and the program interrupt controller (PIC) 
(see Figure 6-1). 

6.2.1 Program Decode Controller 

The POC contains the program logic array decoders, the register address bus generator, 
the loop state machine, the repeat state machine, the condition code generator, the interrupt 

6-2 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



state machine, the instruction latch, and the backup instruction latch. The PDC decodes 
the 24-bit instruction loaded into the instruction latch and generates all signals necessary 
for pipeline control. The backup instruction latch stores a duplicate of the prefetched in­
struction to optimize execution of the repeat (REP) and jump (JMP) instructions. 

6.2.2 Program Address Generator 

The PAG contains the PC, the SP, the SS, the operating mode register (OMR), the SR, the 
LC register, and the LA register. Loops, which are frequent constructs in digital signal 
processing (DSP) algorithms, are supported by dedicated hardware on the DSP56000/ 
DSP56001. Executing a DO instruction loads the LC register with the number of times the 
loop should be executed, loads the LA register with the address of the last instruction word 
in the loop (fetched during one loop pass), and asserts the loop flag in the SR. Executing 
the DO instruction also causes the contents of the LA, LC, and SR to be stacked prior to 
the execution of the DO instruction, thereby supporting nesting of DO loops. Under control 
of the loop state machine, the address of the first instruction in the loop is also stacked 
so the loop can be repeated with no overhead. While the loop flag in the SR is asserted, 
the loop state machine will compare the PC contents to the contents of the LA to determine 
if the last instruction word in the loop was fetched. If the last word was fetched, the LC 
contents are tested for one ... lf LC is not equal to one, then it is decremented, and the SS 
is read to update the PC with the address of the first instruction in the loop, effectively 
executing an automatic branch. If the LC is equal to one, then the LC, LA, and the loop flag 
in the SR are restored with the stack contents, while instruction fetches continue at the 
incremented PC value (LA+ 1). 

Block data moves can be accomplished using the repeat feature. The REP instruction loads 
the. LC with the number of times the next instruction is to be repeated. Since the instruction 
to be repeated is only fetched once, throughput is increased by reducing external bus 
contention. However, REP instructions are not interruptable since they are fetched only 
once. A single-instruction DO loop can be used in place of an REP if interrupts must be 
allowed. 

6.2.3 Program Interrupt Controller 

The PIC receives all interrupt requests, arbitrates among all of them each cycle, and gen­
erates the interrupt vector address. There are four external and 16 internal interrupt sources 
that may generate interrupts. 

The interrupts are organized in a flexible priority structure. Each interrupt has associated 
with it an interrupt priority level (IPL) that can be from zero to three. Levels 0 (lowest level), 
1, and 2 are maskable. Level 3 is the highest IPL and is not maskable. Two interrupt mask 
bits in theSR reflect the current processor IPL and indicate the level needed for an interrupt 
source to interrupt the processor. Interrupts are inhibited for all IPLs less than the current 
processor priority. Level 3 interrupts can always interrupt the processor. All interrupt sources 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 6-3 

--



• 

and their IPLs are listed in Table 6-1. Each interrupt source is vectored (one of 32 vectors) 
to a separate, fixed, two-word service routine located in the lowest 64 words of program 
memory. If so'me of this space is not used, it may be used for program storage. 

Upon entering the exception processing state, the current instruction in decode will execute 
normally, unless it is the first word of a two-word instruction, in which case it will be 
aborted and refetched at the completion of exception processing. The next two fetch 
addresses are supplied by the PIC. During these fetches, the PC is not updated. The PIC 

Table 6-1. Interrupt Sources 

Interrupt Starting Address IPL Interrupt Source 

P:$OOOO or P:$EOOO 3 Hardware RESET (External) 

P:$0002 3 Stack Error 

P:$0004 3 Trace 

P:$0006 3 SWI (Software Interrupt) 

P:$0008 0-2 IROA (External) 

P:$OOOA 0-2 IROB (External) 

P:$OOOC 0-2 SSI Receive Data 

P:$OOOE 0-2 SSI Receive Data with Exception Status 

P:$0010 0-2 SSI Transmit Data 

P:$0012 0-2 SSI Transmit Data with Exception Status 

P:$0014 0-2 SCI Receive Data 

P:$0016 0-2 SCI Receive Data with Exception Status 

P:$0018 0-2 SCI Transmit Data 

P:$OOlA 0-2 SCI Idle Line 

P:$OOlC 0-2 SCI Timer 

P:$OOlE 3 NMI - Reserved for Hardware Development (External) 

P:$0020 0-2 Host Receive Data 

P:$0022 0-2 Host Transmit Data 

P:$0024 0-2 Host Command (Default) 

P:$0026 0-2 Available for Host Command 

P:$0028 0-2 Available for Host Command 

P:$002A 0-2 Available for Host Command 

P:$002C 0-2 Available for Host Command 

P:$002E 0-2 Available for Host Command 

P:$0030 0-2 Available for Host Command 

P:$0032 0-2 Available for Host Command 

P:$0034 0-2 Available for Host Command 

P:$0036 0-2 Available for Host Command 

P:$0038 0-2 Available for Host Command 

P:$003A 0-2 Available for Host Command 

P:$003C 0-2 Available for Host Command 

P:$003E 0-:-2 ililegal Instruction __ 

6-4 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



generates an interrupt instruction fetch address, which points to the first instruction word 
of a two-word fast-interrupt routine. All interrupts begin as fast interrupts Isee Figure 6-
3(a)). During fast interrupt servicing, the two instruction words at the interrupt vector 
addresses are jammed into the instruction stream without any overhead or stack usage. 
If one of the two words is a jump to subroutine (JSR), the fast interrupt routine becomes 
a long interrupt routine (see Figure 6-3(b)). The long interrupt service is the traditional 
context switch in which the stack is used for saving the status and return address. Sub­
routines and interrupts can be nested using the 15-level stack. The stack can be extended 
in memory by using software to access the SSH and SSL registers. The exception proc­
essing state is described in more detail in SECTION 8 PROCESSING STATES. 

Two external interrupt request inputs, IROA and IROB, can be defined as either level 
sensitive or negative edge triggered. One other external interrupt source is available. The 
nonmaskable interrupt (NMI) is edge sensitive and is generated on the first transition to 

FAST INTERRUPT SERVICE ROUTINE 

MAIN PROGRAM 

$0100 

$0101 

$0102 

$0103 

$0104 

$0105 

$0106 

MAIN PROGRAM 

$0100 

$0101 MACR 

$0102 ,MOVEI 

$0103 MAC 

$0104 REP 

$0105 MAC 

$0106 

MOTOROLA 

SSI RECEIVE DATA 

MACR 

MOVE 

MAC 

REP 

MAC 

(a) DSP56000/DSP56001 Fast Interrupt 

LONG INTERRUPT SERVICE ROUTINE 

SSI RECEIVE DATA 
WITH EXCEPTION STATUS 

(b) DSP56000/DSP56001 Long Interrupt 

Figure 6-3. Fast and Long Interrupt Examples 

DSP56000/DSP56001 USER'S MANUAL 

JSR INSTRUCTION 
FORMS LONG 
INTERRUPT SERVICE 

6-5 

iii 



10 V on the IROB pin after the last time that the NMI interrupt was serviced or the chip 
was'reset. The NMI is a priority level 3 interrupt and cannot be masked. Only RESET and 
illegal instruction have higher priority than NMI. NMI is reserved for hardware development 
and should not be used as a general-purpose interrupt pin. Continued use of this interrupt 
can cause damage to the chip (see the DSP56001 Advance Information Data Sheet (ADI1290)). 
NMI has been provided strictly as an aid to the developer. The hardware reset address 
vector may point to internal (P:$OOOO) or external (P:$EOOO) program memory, determined 
by the value of the MODA and MODB pins when the RESET pin is deasserted. 

The NMI, trace, and software interrupt (SWI) instructions are used for debugging and 
development purposes. The SWI instruction is useful for implementing breakpoints. Tracing 
is entered after turning on the trace flag in the SR. During tracing, a trace interrupt will be 
generated after each instruction is executed, thereby creating a single-step feature. 

Internally, the peripheral registers are accessed through the global data bus. All on-chip 
peripherals use the same interrupt request interface mechanism. Each peripheral provides 
a single interrupt request line to the PIC and receives two lines: vector read and interrupt 
acknowledge. Each peripheral possesses more than one interrupt source (see Table 6-1); 
therefore, interrupt arbitration between internal peripherals must be handled by the 
peripheral according to its own predefined IPL. The PIC arbitrates between the different 
I/O peripherals; when one of them is selected, the peripheral supplies the correct vector 
address to the PIC. The host command vector in the host interface (see CHAPTER 10 PORT 
B) can be programmed to point to any of the 32 starting addresses, including 13 routines 
designated specifically as host commands and located at locations P:$0024-P:$003C. The 
default value set in the host command vector register during a reset is $0024. 

6.2.4 Instruction Pipeline 

The program controller implements a three-level pipelined architecture in which concurrent 
instruction fetch, decode, and execution occur. The factthatthe pipelined operation remains 
essentially hidden from the user makes programming straightforward. The pipeline is 
illustrated in Figure 6~4. The first instruction, 11, should be interpreted as follows: multiply 
the contents of XO by the contents of YO, add the product to the contents already in 
accumulator A, round the result to the "nearest even," store the result back in accumulator 
A, move the contents in X data memory (pointed to by ROJ into XO; postincrement RO; 
move the contents in Y data memory (pointed to by R4) into Y1; postincrement R4. The 
second instruction, 12, should be interpreted as follows: clear accumulator A; move the 
contents in XO into the location in X data memory pointed to by RO; postincrement RO; 
before the clear operation, move the contents in accumulator A into the location in Y data 
memory pointed to by R4; jJostdecrement R4. The third instruction, 13, is the same as 11, 
except a rounding operation is not performed. The operations of each of the execution 
units and all initial conditions necessary to follow the execution of the instruction sequence 
are depicted in Figure 6-4. 

6-6 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



INSTRUCTION 
FETCH 
LOGIC 

EXAMPLE: PROGRAM SEGMENT 

INSTRUCTION 
DECODE 

LOGIC 

11 MACR XO,Vl,A X:(RO) + ,XO 
12 CLR A XO,X:(RO)+ 
13 MAC XO,Vl,A X:(RO)+,XO 

V:(R4)+ ,VI 
A,V:(R4) -
V:(R4)+ ,VI 

INSTRUCTION FETCH 11 12 
INSTRUCTION DECODE 11 

INSTRUCTION EXECUTION 

PARALLEL INITIAL 
OPERATIONS CONDITIONS 

ADDRESS 
UPDATE RO =$0005 ----------- ---------~ 

(AGU) R4 =$0008 ---------- ---------~ 

A: --------- --------~ 

INSTRUCTION A2=$00 
EXECUTION Al =$000066 

AO= $000000 
(DATA ALU) XO = $400000 --------- -------~ 

VI =$000077 --------- ------~ 

X MEMoRV DATA 
AT ADDRESS 

$0005 $000005 -------- -------.. 
$0006 $000006 ------- ------~ 

$0007 $000007 ------- -------.. 
V MEMoRV DATA 

AT ADDRESS 
$0008 $000008 ------- ------.... 
$0009 $000009 ------- ----.--~ 

13 
12 
11 

RO=5+ 1 
R4=8+ 1 

A: 
A2 = $00 
Al =$0000A2 
AO =$000000 

XO = $000005 
VI = $000008 

$000005 
$000006 
$000007 

$000008 
$000009 

Figure 6-4. Three-Stage Pipeline 

6.3 CLOCK OSCILLATOR 

INSTRUCTION 
EXECUTION 

LOGIC 

14 
13 
12 

RO=6+ 1 
R4= 9-1 

A: 
A2=$00 
Al = $000000 
AO=$OOOOOO 

XO= $000005 
VI =$000008 

$000005 
$000005 
$000007 

$000008 
$0000A2 

15 
14 
13 

RO= 7 + 1 
R4=8+ 1 

A: 
A2=$00 
Al = $000000 
AO =$000050 

XO= $000007 
VI =$000008 

$000005 
$000005 
$000007 

$000008 
$0000A2 

The DSP56000/DSP56001 uses a four-phase clock for instruction execution; therefore, the 
clock runs at twice the instruction execution rate. The clock can be provided by an internal 
oscillator (see Figure 6-1) by connecting an external crystal between XTAL and EXTAL or 
by an external oscillator connected to EXTAL. 

6.4 PROGRAMMING MODEL 

The program controller features LA and LC registers dedicated to supporting the hardware 
DO loop instruction in addition to the standard program flow-control resources, such as a 
PC, complete SR, and SS. With the exception of the PC, all registers are read/write to 
facilitate system debugging. Figure 6-5 shows the program controller programming model 
with the six registers and SS. The following paragraphs give a detailed description of each 
register. 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 6-7 

-



• 

PROGRAM CONTROLLER 

23 16 15 0 23 16 15 0 

I * I I I * I I 
LOOP ADDRESS (LA) LOOP COUNTER (LC) 

23 16 15 8 7 0 23 8 7 6 5 3 2 1 0 

* I * I MR I CCR I I * IEAlsDI * IDEIMBIMAI 
PROGRAM COUNTER (PC) STATUS REGISTER (SR) OPERATING MODE REGISTER (OMR) 

23 16 15 SSH 23 16 15 SSL 23 6 5 

* * * I I 
* * STACK POINTER (SP) 

* * 
* * 
* * 
* * 
* HIGH * LOW 

* (SSH)- * (SSL) 

* * 
* * 
* * 
* * 
* * 
* * 
* * 
* * 

SYSTEM STACK 

* Written as don't care; read as zero 

Figure 6-5. Program Controller Programming Model 

6.4.1 Program Counter 

This 16-bit register contains the address of the next location to be fetched from program 
memory space. The PC can point to instructions, data operands, or addresses o(operands. 
References to this register are always inherent and are implied by most instructions. This 
special-purpose address register is stacked when program looping is initialized, when a 
JSR is performed, or when interrupts occur (except for no-overhead fast interrupts). 

6.4.2 Status Register 

The 16-bit SR consists of a mode register (MR) in the high-order eight bits and a condition 
code register (CCR) in the low-order eight bits. The SR is s~acked when program looping 
is initialized, when a JSR is performed, or when interrupts occur, (except for no-overhead 
fast interrupts). The SR format is shown in Figure 6-6. 

6-8 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



.... MR , CCR 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

LF I * I T I * I SI I SO I 11 I 10 flLIEIUINIZIVIC 

I 

.-

*Written as don't care; read as zero 

, Figure 6-6. Statu~ Register Format 

CARRY 

OVERFLOW 

ZERO 

NEGATIVE 

UNNORMALIZED 

EXTENSION 

LIMIT 

RESERVED 

INTERRUPT MASK 

SCALING MODE 

RESERVED 

TRACE MODE 

RESERVED 

LOOP FLAG 

The MR is a special-purpose control register defining the current system state of the 
processor. The MR bits are affected by processor reset, exception processing, the DO, end 
current DO loop (ENDDO), return from interrupt (RTI), and SWI instructions and by instruc­
tions that directly reference the MR register - OR immediate to control register (ORI) and 
AND immediate to control register (ANDI). During processor reset, the interrupt mask bits 
of the MR will be set; the scaling mode bits, loop flag, and trace bit will be cleared. 

The CCR is a special-purpose control register that defines the current user state of the 
processor. The CCR bits are affected by data arithmetic logic unit (ALU) operations, parallel 
move operations, and by instructions that directly reference the CCR (ORI and ANDI). The 
CCR bits are not affected py parallel move operations unless data limiting occurs when 
reading the A or B accumulators. During processor reset, all CCR bits are cleared. 

6.4.2.1 CARRY (BIT 0). The carry (C) bit is set if a carry is generated out of the MSB of 
the result in an addition. This bit is also set if a borrow is generated in a subtraction. The 
carry or borrow is generated from bit 55 of the result. The carry bit is also affected by bit 
manipulation, rotate, and shift instructions. Otherwise, this bit is cleared. 

6.4.2.2 OVERFLOW (BIT 1). The overflow (V) bit is set if an arithmetic overflow occurs in 
the 56-bit result. This bit indicates that the result cannot be represented in the accumulator 
register; thus, the register has overflowed. Otherwise, this bit is cleared. 

MOTOROLA OSP56000/0SP56001 USER'S MANUAL 6-9 

III 



--

6.4.2.3 ZERO (BIT 2). The zero (Z) bit is set if the result equals zero; otherwise, this bit is 
cleared. 

6.4.2.4 NEGATIVE (BIT 3). The negative (N) bit is set if the MSB (bit 55) of the result is 
set; otherwise, this bit is cleared. 

6.4.2.5 UNNORMALIZED (BIT 4). The unnormalized (U) bit is set if the two MSBs of the 
most significant product (MSP) portion of the result are identical. Otherwise, this bit is 
cleared. The MSP portion of the A or B accumulators, which is defined by the scaling mode 
and the U bit, is computed as follows: 

S1 so Scaling Mode U Bit Computation 

0 0 No Scaling U = (Bit 47 EEl Bit 46) 

0 1 Scale Down U = (Bit 48 EEl Bit 47) 

1 0 Scale Up U = (Bit 46 EEl Bit 45) 

6.4.2.6 EXTENSION (BIT 5). The extension (E) bit is cleared if all the bits of the integer 
portion of the 56-bit result are all ones or all zeros; otherwise, this bit is set. The integer 
portion, defined by the scaling mode and the E bit, is computed as follows: 

51 so Scaling Mode Integer Portion 

0 0 No Scaling Bits 55,54 ...... .48,47 

0 1 Scale Down Bits 55,54 ...... .49,48 

1 0 Scale Up Bits 55,54 ...... .47,46 

If the E bit is cleared, then the low-order fraction portion contains all the significant bits; 
the high-order integer portion is just sign extension. In this case, the accumulator extension 
register can be ignored. Ifthe E bit is set, it indicates that the accumulator extension register 
is in use. 

6.4.2.7 LIMIT (BIT 6). The limit (L) bit is set if the overflow bit is set. The L bit is also set 
if the data shifterllimiter circuits perform a limiting operation; otherwise, it is not affected. 
The L bit is cleared only by a processor reset or by an instruction that specifically clears 
it, which allows the L bit tobe used as a latching overflow bit (i.e., a "sticky" bit). L is 
affected by data movement operations that read the A or B accumulator registers. 

6.4.2.8 INTERRUPT MASKS (BITS 8 AND 9). The interrupt mask bits, 11 and 10, reflect the 
current IPL of the processor and indicate the IPL needed for an interrupt source to interrupt 
the processor. The current IPL of the processor can be changed under software control. 
The interrupt mask bits are set during hardware reset but not during software reset. 

6-10 DSP56000/0SP56001 USER'S MANUAL MOTOROLA 



11 10 Exceptions Permitted Exceptions Masked 

0 0 IPL 0,1,2,3 None 

0 1 IPL 1,2,3 IPL 0 

1 0 IPL 2,3 IPL 0,1 

1 1 IPL 3 IPL 0,1,2 

6.4.2.9 SCALING MODE (BITS 10 AND 11). The scaling mode bits, S1 and SO, specify the 
scaling to be performed in the data ALU shifter/limiter and the rounding position in the 
data ALU multiply-accumulator (MAC). The scaling modes are shown in the following table: 

S1 so Rounding Scaling Mode 
Bit 

0 0 23 No Scaling 

0 1 24 Scale Down (1-Bit Arithmetic Right Shift) 

1 0 22 Scale Up (1-Bit Arithmetic Left Shift) 

1 1 - Reserved for Future Expansion 

The shifter/limiter scaling mode affects data read from the A or B accumulator registers 
out to the XDB and YDB. Different scaling modes can be used with the same program code 
to allow dynamic scaling. One application of dynamic scaling is to facilitate block floating­
point arithmetic. The scaling mode also affects the MAC rounding position to maintain 
proper rounding when different portions of the accumulator registers are read out to the 
XDB and YDB. The scaling mode bits, which are cleared at the start of a long interrupt 
service routine, are also cleared during a processor ,reset. 

6.4.2.10 TRACE MODE (BIT 13). The trace mode (T) bit specifies the tracing function of 
the DSP. If the T bit is set at the beginning of any instruction execution, a trace exception 
will be generated after the instruction execution is completed. If the T bit is cleared, tracing 

, is disabled and instruction execution proceeds normally. If a long interrupt is executed 
during a trace exception, the SR having the trace bit set will be stacked, and the trace bit 
in the SR is cleared (see CHAPTER 8 PROCESSING STATES for a complete description of 
a long interrupt operation). The T bit is also cleared during processor reset. 

6.4.2.11 RESERVED STATUS (BITS 7, 12, 14). These bits, which are reserved for future 
expansion, will read as zero during DSP read operations. 

6.4.2.12 LOOP FLAG (BIT 15). The loop flag (LF) bit, set when a program loop is in prog­
ress, enables the detection of the end of a program loop. The LF is the only SR bit that is 
restored when terminating a program loop. Stacking and restoring the LF when initiating 
and exiting a program loop, respectively, allow the nesting of program loops. At the start 
of a long interrupt service routine, the SR (including the LF) is pushed on the SS and the 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 6-11 



III 

SR LF is cleared. When returning from the long interrupt with an RTI instruction, the SS 
is pulled and the LF is restored. During a processor reset, the LF is cleared. 

6.4.3 Operating Mode Register 

The OMR is a 24-bit register (only five bits are defined) that sets the current operating 
mode of the processor (i.e., the memory maps for program and data memories as well as 
the startup procedure). The OMR bits are only affected by processor reset and by instruc­
tions directly referencing the OMR: ANDI, ORI, and MOVEC. During processor reset, the 
chip operating mode bits, MB and MA, will be loaded from the external mode select pins 
B and A, respectively. The data ROM enable (DE) bit will be cleared, disabling the X and 
Yon-chip lookup-table ROMs. The OMR format is shown in Figure 6-7. Table 6-2 summarizes 
the DSP56000/DSP56001 operating modes and their effect on the memory map. Table 6-
3 shows how the DE bit in the OMR affects the X and Y memory maps. 

23 

I 

6-12 

8 7 

* I EA I SD I * I * I * I DE I MB I MA I 

I I 

Figure 6-7. OMR Format 

OPERATING MODE 

DATA ROM ENABLE 

RESERVED 

STOP DELAY 

EXTERNAL MEMORY ACCESS 

RESERVED 

Table 6-2. DSP56000/DSP56001 Operating Mode Summary 

Operating DSP56000 Program Memory Map 
Mode MB MA 

Internal RAM External Reset 

0 0 0 $OOOO-$OlFF $0200-$FFFF Internal - $0000 

1 0 1 
Mode 1 is not a valid mode for the DSP56000. Attempting to 

put the DSP56000 in mode 1 will put it into mode O. 

2 1 0 $OOOO-$OlFF $0200-$FFFF External - $EOOO 

3 1 1 - $OOOO-$FFFF External - $0000 

DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



Operating 
Mode 

0 

1 

2 

3 

Table 6-2. DSP56000/DSP56001 Operating 
Mode Summary (Continued) 

DSP56001 Program Memory Map 
MB MA 

1 1 
Internal RAM External Reset 

0 0 $0000-$01 FF 
1 

$0200-$FFFF 1 Internal - $0000 

0 1 
Special bootstrap mode; after program RAM loading, mode 

2 is automatically selected but PC = $0000. 

1 0 $0000-$01FF 
1 

$0200-$FFFF J External - $EOOO 

1 1 - J $OOOO-$FFFF I. External - $0000 

Table 6-3. DSP56000/DSP56001 DE Memory Control 

DE 
Data Memory Map 

Y Memory X Memory 

0 Internal RAM: $OOOO-$OOFF Internal RAM: $OOOO-$OOFF 
External :$01 OO-$FFFF External: $0100-$FFBF 

- On-Chip Peripherals: $FFCO-$FFFF 

1 Internal RAM: $OOOO-$OOFF Internal RAM: $OOOO-$OOFF 
Internal ROM: $0100-$01 FF Internal ROM: $0100-$01 FF 

External: $0200-$FFFF External: $0200-$FFBF 
- On-Chip Peripherals: $FFCO-$FFFF 

6.4.3.1 CHIP OPERATING MODE (BITS 0 AND 1). The chip operating mode bits, MB and 
MA, indicate the bus expansion mode of the DSP56000/DSP56001. On processor reset, 
these bits are loaded from the external mode select pins, MODB and MODA, respectively. 
After the DSP leaves the reset state, MB and MA can be changed under program control. 
The "secure DSP56000" is an exception. The external mode select pins, MODB and MODA, 
are disabled on the "secure DSP56000" and are only used for interrupts as IROA and IROB. 
The operating modes are shown in the following table: 

MB MA Chip Operating Mode 

0 0 Single-Chip Nonexpanded 

0 1 Special Bootstrap (DSP56001 Only) 

1 0 Normal Expanded 

1 1 Development Expanded 

6.4.3.2 DATA ROM ENABLE (BIT 2). The DE bit enables the two, on-chip, 256 x 24 data 
ROMs located at addresses $0100-$01 FF in the X and Y memory spaces. When DE is 
cleared, the $0100-$01 FF address space is part of the external X and Y data spaces, and 
the on-chip data ROMs are disabled. 

6.4.3.3 STOP DELAY (BIT 6). The STOP instruction causes the DSP56000/DSP56001 to 
indefinitely suspend processing in the middle of the STOP instruction (see SECTION 8 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 6-13 

• 



PROCESSING STATES). When exiting the stop state, if the stop delay bit is zero, a 64K 
clock cycle delay (i.e., 131,072 T states) is selected before continuing the stop instruction 
cycle. However, if the stop delay bit is one, the delay before continuing the instruction 
cycle is 16 T states. The long delay allows a clock stabilization period for the internal clock 
to begin oscillating and to stabilize. When a stable external clock is used, the shorter delay 
allows faster startup of the DSP. 

6.4.3.4 EXTERNAL MEMORY ACCESS (BIT 7): The external memory access mode bit 
selects the function of two of the. port A control pins. The DSP56000/DSP56001 comes out 
of reset with these pins defined as bus request/bus grant (BR/BG) - i.e., bit 7 is cleared. 
When bit 7 is clear, wait states are only introduced into the port A timing by using the bus 
control register (BCR). Additional information on the BCR can be found in CHAPTER 10 
PORT B. When bit 7 is set under program control (using ANDI, ORI, or MOVEC), these pins 
are defined as bus strobe (BS) and wait (WT). In this mode, wait states are introduced into 
port A timing by using either the BCR or asserting WT. BR and BG allow the DSP56000/ 
DSP56001 to give the external bus to an external device, thus preventing bus conflicts. BS 
and WT allow the DSP56000/DSP56001 to work with asynchronous devices (bus arbitrators) 
on port A. The definition of the control pins is summarized in the following table: 

OMR Bit 7 BR Pin (Input) BG Pin (Output) 

o (Default) Bus Request (BR) Bus Grant (BG) 

1 Wait (WT) Bus Strobe (8S) 

6.4.3.5 RESERVED OMR BITS (BITS 3-5 AND 8-23). These OMR bits, reserved for future 
expansion, will read as zero during DSP read operations. 

6.4.4 Loop Address Register 

The contents ofthe LA register indicate the location ofthe last instruction word in a program 
loop. This register is stacked into the SSH by a DO instruction and is unstacked by end­
of-loop processing or by execution of an ENDDO instruction. When the instruction at the 
address contained in this register is fetched, the contents of the LC register are checked. 
If the contents are not one, the LC is decremented, and the next instruction is taken from 
the address at the top of the SS; otherwise, the PC is incremented, the loop flag is restored 
(pulled from the SS), the SS is purged, the LA and LC registers are pulled from the SS and 
restored, and instruction execution continues normally. The LA register, a read/write reg­
ister, is written by a DO instruction and read by the SS when stacking the register. Since 
the LC register can be accessed under program control, the number of times a loop has 
been executed can be determined. 

6-14 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



6.4.5 Loop Counter Register 

The LC register is a special 16-bit counter used to specify the number of times a hardware 
program loop is to be repeated. This register is stacked into the SSL by a DO instruction 
and unstacked by end-of-Ioop processing or by execution of an ENDDO instruction. When 
the end of a hardware program loop is reached, the contents of the LC register are tested 
for one. If the LC is one, the program loop is terminated, and the LC register is loaded with 
the previous LC contents stored on the SS. If LC is not one, it is decremented and the 
program loop is repeated. The LC can be read under program control, which allows the 
number of times a loop will be executed to be monitored/changed dynamically. The LC is 
also used in the REP instruction. 

6.4.6 System Stack 

The SS is a separate 15 x 32-bit internal memory divided into two banks: SSH and SSL,' 
each 16 bits wide. The SSH stores the PC contents, and the SSL stores the SR contents 
for subroutine calls and long interrupts. The SS will also store the LA and LC registers in 
addition to the PC and SR registers for program looping. The SS is in stack memory space; 
its address is always inherent and implied by the current instruction. 

The contents of the PC and SR register are pushed on the top location of the SS when a 
subroutine call or long interrupt occurs. When a return from subroutine (RTS) occurs, the 
contents of the top location in the SSare pulled and put in the PC; the SR is not affected. 
When an RTI occurs, the contents of the top location in the SS are pulled to both the PC 
and SR. 

The SS is also used to implement no-overhead nested hardware DO loops. When the DO 
instruction is executed, the LA:LC are pushed on the SS, then the PC:SR are pushed on 
the SS. Since each SS location can be addressed as separate 16-bit registers (SSH and 
SSL), software stacks can be created for unlimited nesting. 

Up to 15 long interrupts, seven DO loops, 15 JSRs, or combinations of these can be 
accommodated by the SS. When the SS limit is exceeded, a nonmaskable stack error 
interrupt occurs, and the PC is pushed to SS location zero, which is not implemented in 
hardware. The PC will be lost, and there will be no SP from the stack interrupt routine to 
the program that was executing when the error occurred .. 

6.4.7 Stack Pointer Register 

The 6-bit SP register indicates the location of the top of the SS and the status of the SS 
(underflow, empty, full, and overflow). The SP register is referenced implicitly by some 
instructions (DO, REP, JSR, RTI, etc.) or directly by the MOVEC instruction. The SP register 
format, shown in Figure 6-8, is described in the following paragraphs. The SP register is 
implemented as a 6-bit counter that addresses (selects) a 15-location stack with its four 
LSBs. The possible SP values, shown in Figure 6-9, are described in the following paragraphs. 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 6-15 

Ell 



4 

'-----"---'----'-- STACK POINTER 

~-------- STACK ERROR FLAG 
L--__________ UNDERflOW FLAG 

Figure 6-:-8. SP Register Format 

UF SE P3 P2 P1 PO 
1 1 1 1 0 • STACK UNDERFLOW CONDITION AFTER DOUBLE PULL 

1 1 1 1 • STACK UNDERFLOW CONDITION 
o 0 0 0 • STACK EMPTY (RESET); PULL CAUSES UNDERFLOW 
o 0 0 1 • STACK LOCATION 1 

• STACK LOCATION 14 
• STACK LOCATION 15; PUSH CAUSES OVERFLOW 
• STACK OVERFLOW CONDITION 
• STACK OVERFLOW CONDITION AFTER DOUBLE PUSH 

Figure 6-9. SP Register Values 

6.4.7.1 STACK POINTER (BITS 0-3). The SP points to the last used location on the SS. 
Immediately after hardware reset, these bits are cleared (SP = 0), indicating that the SS 
is empty. 

Data is pushed onto the SS by incrementing the SP, then writing data to the location 
pointed to by the SP. An item is pulled off the stack by copying it from the location pointed 
to by the SP and then by decrementing SP. 

6.4.7.2 STACK ERROR FLAG (BIT 4). The stack error flag indicates that a stack error has 
occurred, and the transition of the stack error flag from zero to one causes a priority 
level-3 stack error exception (see 6.4.7.1 STACK POINTER (BITS 0-3) for additional 
information). 

When the stack is completely full, the SP reads 001111, and any operation that pushes 
data onto the stack will cause a stack error exception to occur. The SR will read 010000 
(or 010001 if an implied double push occurs). 

Any implied pull operation with SP equal to zero will cause a stack error exception, and 
the SP will read 111111 (or 111110 if an implied double pull occurs). The stack error bit is 
set as shown in Figure 6-9. 

6-16 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



The stack error flag is a "sticky bit" which, once set, remains set until cleared by the user. 
There is a sequence of instructions which can cause a stack overflow which, without the 
sticky bit, would not be detected because the stack pointer is decremented before the stack 
error interrupt is taken. The sticky bit keeps the stack error bit set until cleared by the user 
by writing a zero to SP bit 4. It also latches the overflow/underflow bit so that it cannot be 
changed by stack pointer increments or decrements as long as the stack error is set. The 
overflow/underflow bit remqins latched until the first move to SP is executed. 

NOTE 

When SP is zero (stack empty), instructions that read the stack without SP postde­
crement and instructions that write to the stack without SP preincrement do not 
cause a stack error exception (i.e., 1) DO SSL,xxxx 2) REP SSL 3) MOVEC or move 
peripheral data (MOVEP) when SSL is specified as a source or destination). 

6.4.7.3 UNDERFLOW FLAG (BIT 5). The underflow flag is set when a stock underflow 
occurs. The stack underflow flag is a "sticky bit" when the stack error flag is set i.e., when 
the stack error flag is set, the underflow flag will not change state. The combination of 
"underflow= 1" and "stack error=O" is an illegal combination and will not occur unless it 
is forced by the user. If this condition is forced by the user, the hardware will correct itself 
based on the result of the next stack operation. Also see the description for the stack error 
flag (Section 6.4.7.2) for additional information. 

6.4.7.4 .RESERVED STACK POINTER REGISTER BITS (BITS 6-23). Any unimplemented 
SP register bits are reserved for future expansion and will read as zero during DSP56000/ 
DSP56001 read operations. 

6.4.8 DSP56000/DSP56001 Programming Model Summary 

The complete programming model for the DSP56000/DSP56001 central processor is shown 
in Figure 6-10. SECTION 9 PORT A, SECTION 10 PORT B, and SECTION 11 PORTC describe 
in detail the programming model for the peripherals and external memory control (number 
of wait states). 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 6-17 

• 



DATA ALU INPUT REGISTERS 

47 X 0 47 Y 0 

I Xl I XO I I Yl I YO I 
23 023 23 023 

ACCUMULATOR REGISTERS 

56 A 0 56 8 0 

** I A2 Al I AO I I ** I 82 I 81 I 80 I 
23 87 023 023 23 87 023 023 

ADDRESS GENERATION UNIT 

23 16 15 23 16 15 23 16 15 

* R7 * N7 * M7 

* R6 * N6 * M6 

* R5 

* R4 

* R3 

* R2 

* N5 

* N4 

* N3 

* N2 

* M5 

* M4 

* M3 

* M2 

_1_::~~L~ 
~ LOWER FILE 

* Rl * Nl * Ml 

* RO * NO * MO 

• POINTER OFFSET MODIFIER 
REGISTERS REGISTERS REGISTERS 

PROGRAM CONTROLLER 

23 16 15 0 23 16 15 0 

I * I I I * I I 
LOOP ADDRESS (LA) LOOP COUNTER (LC) 

23 16 15 8 7 0 23 8 7 6 5 3 2 1 0 

* I * I MR I CCR I * IEAlsDI * IDEIM81MAI 
PROGRAM COUNTER (PC) STATUS REGISTER (SR) OPERATING MODE REGISTER (OMR) 

23 16 15 SSH 23 16 15 SSL 23 6 5 

* * * 1 I 
* * STACK POINTER (SP) 

* * 
* * 
* * 
* * 
* HIGH * LOW 

* (SSH) * (SSL) 

* * 
* * 
* * 
* * 
* * 
* * 
* * 

SYSTEM STACK 

* Written as don't care; read as zero 
,** Read as sign extension bits; written as don't care 

Figure 6-10. OSP56000/0SP56001 Central Processor Programming Model 

6-18 OSP56000/0SP56001 USER'S MANUAL MOTOROLA 



SECTION 7 
INSTRUCTION SET INTRODUCTION 

The programming model indicates that the DSP56000/DSP56001 central processor archi­
tecture can be viewed as three functional units operating in parallel: data arithmetic logic 
unit (ALU), address generation unit (AGU), and program controller (see Figure 7-1). The 
goal of the instruction set is to provide the capability to keep each of these units busy each 
instruction cycle, achieving maximum speed and minimum program size. 

This section introduces the DSP56000/DSP56001 instruction set and instruction format. The 
complete range of instruction capabilities combined with the flexible addressing modes 
used in this processor provide a very powerful assembly language for implementing digital 
signal processing (DSP) algorithms. The instruction set has been designed to allow efficient 
coding for DSP high-level language compilers such as the C compiler. Execution time is 
minimized by the hardware looping capabilities, use of an instruction pipeline, and parallel 
moves. 

7.1 SYNTAX 

The instruction syntax is organized into four columns: opcode, operands, and two parallel­
move fields. The assembly-language source code for a typical one-word instruction is 
shown in the following illustration. Because of the mUltiple bus structure and the parallelism 
of the DSP, up to three data transfers can be specified in the instruction word - one on 
the X data bus (XDB), one on the Y data bus (YDB), and one within the data ALU. These 
t~ansfers are explicitly specified. A fourth data transfer is implied and occurs in the program 
controller (instruction word prefetch, program looping control, etc.). Each data transfer 
involves a source and a destination. 

Opcode 
MAC 

Operands 
XO,YO,A 

XDB 
X:(RO)+,XO 

YDB 
Y:(R4)+,YO 

The opcode column indicates the data ALU, AGU, or program controller operation to be 
performed and must always be included in the source code. The operands column specifies 
the operands to be used by the opcode. The XDB and YDB columns specify optional data 
transfers over the XDB and/or YDB and the associated addressing modes. The address 
space qualifiers (X:, V:, and L:) indicate which address space is being referenced. Parallel 
moves are allowed in 30 of the 62 instructions. Additional information is presented in 
APPENDIX A INSTRUCTION SET DETAILS. 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 7-1 



III 

** 
23 

23 

* 
* 
* 
* 
* 
* 
* 
* 

47 

I 
23 

56 

I A2 I 
87 023 

16 15 

R7 

R6 

R5 

R4 

R3 

R2 

Rl 

RO 
POINTER 

REGISTERS 

Xl 

23 16 15 

I * I 
LOOP ADDRESS (LA) 

* 
PROGRAM COUNTER (PC) 

23 16 15 SSH 

* 
* 
* 
* 
* 
* 
* HIGH 

Al 

* (SSH)-

* 
* 
* 
* 
* 
* 
* 

X 

I 
023 

XO 

A 

I 
023 

23 

* 
* 
* 
* 
* 
* 
* 
* 

DATA ALU INPUT REGISTERS 

0 47 

I I 
23 

ACCUMULATOR REGISTERS 

0 

AO I I ** 
23 

ADDRESS GENERATION UNIT 

16 15 

N7 

N6 

N5 

N4 

N3 

N2 

Nl 

NO 
OFFSET 

REGISTERS 

PROGRAM CONTROLLER 

23 16 15 

I * I 
LOOP COUNTER (LC) 

23 16 15 8 7 0 

I * I MR I CCR I 
STATUS REGISTER (SR) 

23 16 15 SSL 

* 
* 
* 
* 
* 
* 
'* LOW 

* (SSL) 

* 
* 
* 
* 
* 
* 
* 

SYSTEM STACK 

* Written as don't care; read as zero 
** Read as sign extension bits; written as don't care 

Yl 

56 

I B2 
87 

23 

* 
* 
* 
* 
* 
* 
* 
* 

Y 0 

I YO I 
023 

B 0 

I Bl I BO I 
023 023 

16 15 

M7 

M6 

M5 

M4 

M3 

M2 

Ml 

MO 
MODIFIER 

REGISTERS 

_1_::~~~ 
~ LOWER FILE 

23 8 7 6 5 3 2 1 0 

I * IEAlsDI * IDdMBIMAI 
OPERATING MODE REGISTER (OMR) 

23 6 5 

* I I 
STACK POINTER (SP) 

Figure 7-1. OSP56000/0SP56001 Central Processor Programming Model 

7-2 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



7.2 INSTRUCTION FORMATS 

The DSP56000/DSP56001 instructions consist of one or two 24-bit words - an operation 
word and an optional effective address extension word. The general format of the operation 
word is shown in Figure 7-2. Most instructions specify data movement on the XDB, YDB, 
and data ALU operations in the same operation word. The DSP is designed to perform 
each of these operations in parallel. 

23 87 

DATA BUS MOVEMENT 
I OPCODE 

/x/x/x/x/x/x/x/x 
OPTIONAL EFFECTIVE ADDRESS EXTENSION 

Figure 7-2. General Format of an Instruction Operation Word 

The data bus movement field provides the operand reference type, which selects the type 
of memory or register reference to be made, the direction of transfer, and the effective 
address(es) for data movement on the XDB and YDB. This field may require additional 
information to fully specify the operand for certain addressing modes. An effective address 
extension word following the operation word is used to provide immediate data or an 
absolute address if required. Examples of operations that may include the extension word 
include the move operations X:, X:R, V:, R:Y, and L:. Additional information is presented 
in APPENDIX A INSTRUCTION SET DETAILS. 

The opcode field of the operation word specifies the data ALU operation or the program 
controller operation to be performed and any additional operands required by the instruc­
tion. Only those data ALU and program controller operations that can accompany data 
bus movement will be specified in the opcode field of the instruction. Other data ALU, 
program controller operations, and all address ALU operations will be specified in an 
instruction word with a different format. These formats include operation words containing 
short immediate data or short absolute addresses. 

Encoding the 30 opcodes that allow up to two parallel data moves into 24 bits has used 
all of the available bits and precluded adding more instructions or instruction variations. 
The available operation codes form a very versatile microcontroller unit (MCU) style in­
struction set, providing highly parallel operations in most programming situations. 

7.2.1 Operand Sizes 

Operand sizes are defined as follows: a byte is 8 bits long, a short word is 16 bits long, a 
word is 24 bits long, a long word is 48 bits long, and an accumulator is 56 bits long (see 
Figure 7-3). The operand size for each instruction is either explicitly encoded in the instruc­
tion or implicitly defined by the instruction operation. Implicit instructions support some 
subset of these five sizes. 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 7-3 



7 0 

DBYTE 

15 o 
L--___ ....... \ SHORT WORD 

23 

L--_____ -.l\ WORD 

47 

'-_____________ ..... \ LONG WORD 

55 

'--________________ ...J\ ACCUMULATOR 

Figure 7·3. Operand Sizes 

7.2.2 Data Organization in Registers 

The ten data ALU registers support 8- or 24-bit data operands. Instructions also support 
48- or 56-bit data operands by concatenating groups of specific data ALU registers. The 
eight address registers in the AGU support 16-bit address or data operands. The eight AGU 
offset registers support 16-bit offsets or may support 16-bit address or data operands. The 
eight AGU modifier registers support 16-bit modifiers or may support 16-bit address or 
data operands. The program counter (PC) supports 16-bit address operands. The status 
register (SR) and operating mode register (OMR) support 8- or 16-bit data operands. Both 
the loop counter (LC) and loop address (LA) registers support 16-bit address operands. 

7.2.2.1 DATA ALU REGISTERS. The eight main data registers are 24 bits wide. Word 
operands occupy one register; long-word operands occupy two concatenated registers. 
The least significant bit (LSB) is the right-most bit (bit 0); whereas, the most significant bit 
(MSB) is the left-most bit (bit 23 for word operands and bit 47 for long-word operands). 
The two accumulator extension registers are eight bits wide; When an accumulator exten­
sion register is used as a source operand, it occupies the low-order portion (bits 0-7) of 
the word; the high-order portion (bits 8-23) is sign extended (see Figure 7-4). When used 
as a destination operand, this register receives the low-order portion ofthe word, and the 
high-order portion is not used. Accumulator operands occupy an entire group of three 
registers (i.e., A2:A1 :AO or B2:B1 :BO). The LSB is the right-most bit (bit 0), and the MSB 
is the left-most bit (bit 55). 

7.2.2.2 AGU REGISTERS. The 24 AGU registers, which are 16 bits wide, may be accessed 
as word operands for address, address modifier, and data storage. When used as a source 
operand, these registers occupy the low-order portion of the 24-bit word; the high-order 
portion is read as zeros (see Figure 7-5). When used as a destination operand, these registers 
receive the low-order portion of the word; the high-order portion is not used. The notation 

7-4 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



23 67 

BUS 

, 
v· LSB OF NOT USED 

REGISTER A2, B2 USED WORD 
AS A DESTINATION 23 67 

NOT USED A2 I REGISTER A2, B2 

REGISTER A2, B2 
USED AS A SOURCE ! 

23 0 

SIGN EXTENSION BUS 
OF A2 

Figure 7-4. Reading and Writing the ALU Extension Registers 

23 

BUS 

'-v--" 
LSB OF 

ADDRESS ALU REGISTERS NOT USED 

AS A DESTINATION 
WORD 

15 

I I 
ADDRESS ALU REGISTERS 

ADDRESS ALU REGISTERS 

~ ! AS A SOURCE 

23 16 15 0 

ZERO FILL I BUS 

Figure 7-5. Reading and Writing the Address ALU Registers 

Rn is used to designate one of the eight address registers, RO-R7; the notation Nn is used 
to designate one of the eight address offset registers, NO-N7; and the notation Mn is used 
to designate one of the eight address modifier registers, MO-M7. 

7.2.2.3 PROGRAM CONTROL REGISTERS. The 8-bit OMR may be accessed as a word 
operand; however, not all eight bits are defined. In general, undefined bits are written as 
"don't care" and read as zero. The 16-bit SR has the system mode register (MR) occupying 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 7-5 



-

the high-order eight bits and the user condition code register (CCR) occupying the low­
order eight bits. The SR may be accessed as a word operand. The MR and CCR may be 
accessed individually as word operands (see Figure 7-6(b)). The LC, LA, system stack high 
(SSH), and system stack low (SSL) registers are 16 bits wide and may be accessed as word 

23 87 0 

I I BUS 

"-

T 
NOT USED LSB 

MR, CCR, OMR, AND SP AS A DESTINATION ~ 

c=J MR, CCR, OMR, AND SP 

MR. CCR, OMR, AND SP AS A SOURCE 

1 l 
23 87 0 

ZERO I I BUS 
FILL 

(a) 16 Bit 

(b) 8 Bit 

Figure 7-6. Reading and Writing Control Registers 

7-6 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



operands (see Figure 7-6(a)). When used as a source operand, these registers occupy the 
low-order portion of the 24-bit word; the high-order portion is zero. When used as a 
destination operand, they receive the low-order portion of the 24-bit word; the high-order 
portion is not used. The system stack pointer (SP) is a 6-bit register that may be accessed 
as a word operand. 

The PC, a special 16-bit-wide program control register, is always referenced implicitly as 
a short-word operand. 

7.2.3 Data Organization in Memory 

The 24-bit program memory can store both 24-bit instruction words and instruction ex­
tension words. The 32-bit system stack (SS) can store the concatenated PC and SR registers 
(PC:SR) for subroutine calls, interrupts, and program looping. The SS also supports the 
concatenated LA and LC registers (LA:LC) for program looping. The 24-bit-wide X and V 
memories can store word, short-word, and byte operands. Short-word and byte operands, 
which usually occupy the low-order portion of the X or V memory word, are either zero 
extended or sign extended on the XDB or VDB. 

The symbols used to abbreviate the various operands and operations in each instruction 
and their respective meanings are shown in the following list: 

Data ALU 
Xn Input Registers X1, XO (24 Bits) 
Vn Input Registers V1, VO (24 Bits) 
An Accumulator Registers A2 (8 Bits), A 1, AO (24 Bits) 
Bn Accumulator Registers B2 (8 Bits), B1, BO (24 Bits) 
X Input Register X (X1 :XO, 48 Bits) 
V Input Register V (V1 :YO, 48 Bits) 
A Accumulator A (A2:A 1 :AO, 56 Bits)* 
B Accumulator B (B2:B1 :BO, 56 Bits)* 
AB Accumulators A and B (A1 :B1, 48 Bits)* 
BA Accumulators B and A (B1:A 1, 48 Bits)* 
A10 Accumulator A (A1 :AO, 48 Bits) 
B10 Accumulator B (B1 :BO, 48 Bits) 

*Data move operations: when specified as a source operand, shifting and limiting are 
performed. When specified as a destination operand, sign extension and zero filling are 
performed. 

Address ALU 
Rn Address Registers RO-R7 (16 Bits) 
Nn Address Offset Registers NO-N7 (16 Bits) 
Mn Address Modifier Registers MO-M7 (16 Bits) 

MOTOROLA OSP56000/0SP56001 USER'S MANUAL 7-7 



Pn?gram Controller 
PC Program Counter (16 Bits) 
MR Mode Register (8 Bits) 
CCR Condition Code Register (8 Bits) 
SR Status Register (MR:CCR, 16 Bits) 
OMR Operating Mode Register (8 Bits) 
LA Hardware Loop Address Register (16 Bits) 
LC Hardware Loop Counter (16 Bits) 
SP System Stack Pointer (6 Bits) 
SS System Stack RAM (15x 32 Bits) 
SSH Upper 16 Bits of the Contents of the Current Top of Stack 
SSL Lower 16 Bits of the Contents of the Current Top of Stack, 

Addresses 
ea Effective Address 
xxxx Absolute Address (16 Bits) 
xxx Short Jump Address (12 Bits) 
aa Absolute Short Address (6 Bits Zero Extended) 
pp 110 Short Address (6 Bits Ones Extended) 
( ... ) Contents of the Specified Address 
X: X Memory Reference 
Y: Y Memory Reference 
L: Long Memory Reference - X Concatenated with Y 
P: Program Memory Reference 

Miscellaneous 
#xx Immediate Short Data (8 Bits) 
#xxx Immediate Short Data (12 Bits) 

_ #xxxxxx Immediate Data (24 Bits) 
#n Immediate Short Data (5 Bits) 
S,Sn Source Operand Register 
D,Dn Destination Operand Register 
D[n] Bit n of D Affected 
r Rounding Constant 
11,10 Interrupt Priority Level in SR 
LF Loop Flag in SR 

7.2.4 Operand References 

The DSP separates operand references into four classes: program, stack, register, and 
memory references. The type of operand reference(s) required for an instruction is specified 
by both the opcode field and the data bus movement field of the instruction; however, all 
operand reference types may not be used with all instructions. The operand size for each 
instruction is either explicitly encoded in the instruction or implicitly defined by the in­
struction operation. Implicit instructions support some subset of the five operand sizes. 

7-8 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



7.2.4.1 PROGRAM REFERENCES. Program (P) references, which are references to 24-bit­
wide program memory space, are usually instruction reads. Instructions or data operands 
may be read from or written to program memory space using the move program memory 
(MOVEM) and move peripheral data (MOVEP) instructions. Depending on the address and 
the chip operating mode, program references may be internal or external memory references. 

7.2.4.2 STACK REFERENCES. Stack (S) references, which are references to a separate 
32-bit-wide internal memory space (SS), are used implicitly to store the PC and SR for 
subroutine calls, interrupts, and returns. In addition to the PC and SR, the LA and LC 
registers are stored on the stack when a program loop is initiated. S references are always 
implied by the instruction. Data is written to the stack memory to save the processor state 
and is read from the stack memory to restore the processor state. In contrast to S references, 
references to SSL and SSH are always explicit. 

7.2.4.3 REGISTER REFERENCES. Register (R) references are references to the data ALU, 
AGU, and program controller registers. Data can be read from one register and written 
into another register .. 

7.2.4.4 MEMORY REFERENCES. Memory references, which are references to the 24-bit­
wide X or V memory spaces, can be internal or external memory references, depending 
on the effective address of the operand in the data bus movement field of the instruction. 
Data can be read or written from any address in either memory space. 

7.2.4.4.1 X Memory References. The operand, which is in X memory space, is a word 
reference. Data can be transferred from memory to a register or from a register to memory . 

. 7.2.4.4.2 Y Memory References. The operand, a word reference, is in V memory space. 
Data can be transferred from memory to a register or from a register to memory. 

7.2.4.4.3 L Memory References. Long (L) memory space references both X and V memory 
spaces with one operand address. The data operand is a long-word reference developed 
by concatenating the X and V memory spaces (X:V). The high-order word of the operand 
is in the X memory; the low-order word of the operand is in the V memory. Data can be 
read from memory to concatenated registers X1 :XO, A 1 :AO, etc. or from concatenated 
registers to memory. 

7.2.4.4.4 YX Memory References. XV memory space references both X and V memory 
spaces with two operand addresses. Two independent addresses are used to access two 
word operands - one word operand is in X memory space, and one word operand is in 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 7-9 

l1li 



• 

Y memory space. Two effective addresses in the instruction are used to derive two inde­
pendent operand addresses - one operand address may reference either X or V memory 
space and the other operand address must reference the other memory space. One of 
these two effective addresses specified in the instruction must reference one of the address 
registers, RO-R3, and the other effective address must reference one of the address reg­
isters, R4-R7. Addressing modes are restricted to no-update and post-update by + 1, -1, 
and + N addressing modes. Each effective address provides independent read/write control 
for its memory space. Data may be read from memory to a register or from a register to 
memory. 

7.2.5 Addressing Modes 

The DSP instruction set contains a full set of operand addressing modes. To minimize 
execution time and loop overhead, all address calculations are performed concurrently in 
the address ALU. 

Addressing modes specify whether the operand(s) is in a register or in memory and provide 
the specific address of the operand(s). An effective address in an instruction will specify 
an addressing mode, and, for some addressing modes, the effective address will further 
specify an address register. In addition, address register indirect modes require additional 
address modifier information that is not encoded in the instruction. The address modifier 
information is specified in the selected address modifier register(s). All indirect memory 
references require one address modifier, and the XV memory reference requires two ad­
dress modifiers. The definition of certain instructions implies the use of specific registers 
and addressing modes. 

Some address register indirect modes require an offset and a modifier register for use in 
address calculations. These registers are implied by the address register specified in an 
effective address in the instruction word. Each offset register (Nn) and each modifier register 
(Mn) is assigned to an address register (Rn) having the same register number (n). Thus, 
the assigned register triplets are RO;NO;MO, R1;N1;M1, R2;N2;M2, R3;N3;M3, R4;N4;M4, 
R5;N5;M5, R6;N6;M6, and R7;N7;M7. Rn is used as the address register; Nn is used to 
specify an optional offset; and Mn is used to specify the type of arithmetic used to update 
the Rn. 

The addressing modes are grouped into three categories: register direct, address register 
indirect, and special. These addressing modes are described in the following paragraphs. 
Refer to Table 7-1 for a summary ofthe addressing modes and allowed operand references. 

7.2.5.1 REGISTER DIRECT MODES. These effective addressing modes specify that the 
operand source or destination is one of the data, control, or address registers in the 
programming model. 

7-10 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



7.2.5.1.1 Data or Control Register Direct. The operand is in one, two, or three data ALU 
register(s) as specified in a portion of the data bus movement field in the instruction. 
Classified as a register reference, this addressing mode is also used to specify a control 
register operand for special instructions such as OR immediate to control registers (ORI) 
and AND immediate to control registers (ANDI). 

7.2.5.1.2 Address Register Direct. Classified as a register reference, the operand is in one 
of the 24 address registers (Rn, Nn, or Mn) specified by an effective address in the instruc­
tion. 

NOTE 

Due to instruction pipelining, if an address register (Mn, Nn, or Rn) is changed 
with a MOVE instruction, the new contents will not be available for use as a 
pointer until the second following instruction. 

7.2.5.2 ADDRESS REGISTER INDIRECT MODES. The address register indirect mode de­
scription is presented in SECTION 5 ADDRESS GENERATION UNIT. 

7.2.5.3 SPECIAL ADDRESSING MODES. The special addressing modes do not use specific 
registers in specifying an effective address. These modes specify the operand or the op­
erand address in a field of the instruction, or they implicitly reference an operand. Figure 
examples are given for each of the special addressing modes discussed in the following 
paragraphs. 

7.2.5.3.1 Immediate Data. Classified as a program reference, this addressing mode re­
quires one word of instruction extension containing the immediate data'. Figure 7-7 shows 
three examples. Example A moves immediate data to register AO without affecting A 1 or 
A2. Examples Band C zero fill register AO and sign extend register A2. 

7.2.5.3.2 Absolute Address. This addressing mode requires one word of instruction ex­
tension containing the' absolute address. Figure 7-8 shows that MOVE Y:$5432,BO copies 
the contents of address $5432 into BO without changing memory location $5432, register 
B1, or register B2. This addressing mode is classified as both a memory reference and 
program reference. The 16-bit absolute address is stored in the 16 LSBs of the extension 
word; the eight MSBs are zero filled. 

7.2.5.3.3 Immediate Short. The 8- or 12-bit operand, which is in the instruction operation 
word, is classified as a program reference. The immediate data is interpreted as an unsigned 
integer (low-order portion) or signed fraction (high-order portion), depending on the des­
tination register. Figure 7-9 shows the use of immediate short addressing in four examples. 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 7-11 



-

BEFORE EXECUTION 

A2 Al 
55 48 47 24 23 

I X X I X X X X X X I X 

o 23 o 23 

BEFORE EXECUTION 

A2 Al 
55 48 47 24 23 

I X X I X X X X X X I X 

o 23 o 23 

BEFORE EXECUTION 

A2 Al 
55 48 47 24 23 

I X X I X X X X X X I X 

o 23 o 23 

Assembler Syntax: #XXXXXX 
Memory Spaces: P: 

X 

X 

X 

EXAMPLE A: IMMEDIATE INTO 24-BIT REGISTER 
IMOVE #$123456,AD) 

AFTER EXECUTION 

AD A2 Al 
0 55 48 47 24 23 

X X X X I I X X I X X X X X X 11 
o 23 o 23 

EXAMPLE B: POSITIVE IMMEDIATE INTO 56-BIT REGISTER 
IMOVE #$123456,A) 

AFTER EXECUTION 

AO A2 Al 
0 55 48 47 24 23 

X X X X I I 0 o I 1 2 3 4 6 I 0 

o 23 o 23 

EXAMPLE C: NEGATIVE IMMEDIATE INTO 56-BIT REGISTER 
IMOVE #$801234,A) 

AFTER EXECUTION 

AO A2 Al 
0 55 48 47 24 23 

X X X X I I F F I 8 1 2 4 I 0 

o 23 o 23 

Additional Instruction Execution Time (Clocks): 2 
Additional Effective Address Words: 1 

Figure 7-7. Special Addressing - Immediate Data 

7-12 DSP56000/DSP56001 USER'S MANUAL 

AO 
0 

3 4 5 6 I 

AO 
0 

0 0 0 I 

AO 
0 

0 0 0 I 

MOTOROLA 



EXAMPLE: MOVE Y:$5432,BO 

BEFORE EXECUTION AFTER EXECUTION 

B2 81 80 82 81 80 
55 48 47 24 23 0 55 48 47 24 23 0 

I X X I X X X X X X I X X X X X X I I X X I X X X X X X I A 8 C 0 E F I 
o 23 o 23 o 23 o 23 

23 Y MEMORY 0 23 Y MEMORY 0 

$~32~ $5432~ 
Assembler Syntax: XXXX 
Memory Spaces: P: 
Additional Instruction Execution Time (Clocks): 2 
Additional Effective Address Words: 1 

Figure 7-8. Special Addressing - Absolute Addressing 

7.2.5.3.4 Short Jump Address, The operand occupies 12 bits in the instruction operation 
word, which allows addresses $OOOO-$OFFF to be accessed (see Figure 7-10). The address 
is zero extended to 16 bits when used to address program memory. This addressing mode 
is classified as a program reference. 

7.2.5.3.5 Absolute Short. The address of the operand occupies six bits in the instruction 
operation word, allowing addresses $0000-$003F to be accessed (see Figure 7-11). Classified 
as both a memory reference and program reference, the address is zero extended to 16 
bits when used to address an operand or program memory. 

7.2.5.3.6 1/0 Short. Classified as a memory reference, the liD short addressing mode is 
similar to absolute short addressing. The address of the operand occupies six bits in the 
instruction operation word. liD short is used with the bit manipulation and MOVEP instruc­
tions. The liD short address is ones extended to 16 bits to address the liD portion of X and 
Y memory (addresses $FFCO-$FFFF - see Figure 7-12). 

7.2.5.3.7 Implicit Reference. Some instructions make implicit reference to PC, SS, LA, LC, 
or SR. For example, the jump instruction (JMP) implicitly references the PC; whereas, the 
repeat next instruction (REP) implicitly references LC. The registers implied and their uses 
are defined by the individual instruction descriptions (see APPENDIX A INSTRUCTION SET 
DETAILS). 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 7-13 



• 

A2 
55 48 47 

I X X I X X 

o 23 

EXAMPLE A: IMMEDIATE SHORT INTO AO, AI, A2, BO, Bl, B2, Rn, Nn 
IMOVE #$FF,A1) 

BEFORE EXECUTION AFTER EXECUTION 

Al AO A2 Al 
24 23 0 55 48 47 24 23 

X X X X I X X X X X X I I X X I 0 0 0 F I X 

o 23 o 23 o 23 

NOTE: For these destinations, the immediate data is interpreted as an unsigned integer. 

EXAMPLE B: POSITIVE IMMEDIATE SHORT INTO XO, Xl, VO, VI, A, B 
IMOVE #$lF,V1) 

X 

BEFORE EXECUTION AFTER EXECUTION 

VI VO VI 
47 24 23 0 47 

I X X X X X X I X X X X X X I 11 0 0 

23 o 23 23 

NOTE: For these destination registers, the immediate data is interpreted as a signed fraction . 

EXAMPLE C: POSITIVE IMMEDIATE SHORT INTO X, Y, A, B 
IMOVE #$lF,A) 

24 23 

o I X 

o 23 

BEFORE EXECUTION AFTER EXECUTION 

A2 Al 
55 48 47 

I X X I X X X X X 

o 23 

AO A2 Al 
24 23 0 55 48 47 

X I X X X X X X I I 0 o I 1 00 

o 23 o 23 

EXAMPLE D: NEGATIVE IMMEDIATE SHORT INTO XO, Xl, XO, Yl, A, B 
IMOVE #$83,B) 

24 23 

o I 0 

o 23 

BEFORE EXECUTION AFTER EXECUTION 

B2 Bl 
55 48 47 

I X X I X X X X X 

o 23 

Assembler Syntax: #XX 
Memory Spaces: P: 

BO 
24 23 0 

X I X X X X X X I 
o 23 

Additional Instruction Execution Time IClocks): 0 
Additional Effective Address Words: 0 

B2 Bl 
55 48 47 24 23 

I F F I 8 0 0 010 

o 23 o 23 

Figure 7-9. Special Addressing - Immediate Short Data 

7-14 DSP56000/DSP56Q01 USER'S MANUAL 

AO 
0 

X X X X I 

VO 
0 

X X X X X I 

AO 
0 

0 0 0 I 

BO 
0 

o 0 0 I 

MOTOROLA 



$OFFF 

BEFORE EXECUTION 
P MEMORY 

JMP $0123 

-

-

-

EXAMPLE: JMP $123 

SHORT 
JUMP 
RANGE 
4,096 

WOROS 

$0000 ..... _____ ---1 ___ ......... __ _ 

Assembler Syntax: XXX 
Memory Spaces: P: 
Additional Instruction Execution Time (Clocks): 0 
Additional Effective Address Words: 0 

$OFFF 

AFTER EXECUTION 
P MEMORY - ---
JMP $0123 

- ---
- - --

- -- -

NEXT INSTRUCTION 

10000~ 

Figure 7-10. Special Addressing - Short Jump Address 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 7-15 



• 

7-16 

EXAMPLE A: MOVE P:$3200,XO 

BEFORE EXECUTION 

Xl XO 
47 24 23 0 47 

I 0 0 0 0 1 I X X X X X X I I 0 

23 o 23 23 

P MEMORY 
23 

-
$3204 X X X X X X 

$3200 SA 5 B 4 C 6 

--
EXAMPLE B: MOVE Al,X:$3 

A2 
55 48 47 

I X X I 3 

o 23 

BEFORE EXECUTION 

Al 

F 5 

24 23 

6 I X 

$0040 

$003 F 

23 

23 

\ 

AO 

X X X X X 

X MEMORY 

- -

$0003 X X X X X X 

$0000 

Assembler Syntax: aa 
Memory Spaces: P:, X:, Y:, L: 

0 

Additional Instruction Execution Time (Clocks): 0 
Additional Effective Address Words: 0 

I I 

~ 

~ 

A2 
55 48 47 

X X I 3 

o 23 

1 
ABSOLUTE 

SHORT 
ADDRESSING 

RANGE 

1 

4 

AFTER EXECUTION 

Xl XO 
24 23 0 

0 0 1 I A B 4 6 

o 23 

P MEMORY 
23 - -

$3204 X X X X X X 

$3200 SA 5 B 4 C 6 

- --
AFTER EXECUTION 

Al AO 
24 23 

F 5 E 6 I X X X X X 

23 

23 
X MEMORY -

$0040 

$003 F 

... 

$0003 

$0000 

3 

-

4 F 5 E 

0 

X 

6 

Figure 7-11. Special Addressing - Absolute Short Address 

I 

I 

'" 
"" 

DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



EXAMPLE: MOVEP A1,X:«$FFFE 

BEFORE EXECUTION AFTER EXECUTION 

A2 Al AD A2 Al AD 
55 48 47 24 23 0 55 48 47 24 23 

I X X 11 3 4 6 I X X X X X X I I X X 11 3 4 6 I X X X X X 

o 23 D 23 o 23 o 23 

X MEMORY X MEMORY 
23 

F $FFF 

$FFFE 0 0 F F F F* 

'\ \ 

$FFCO 

---
*Contents of Bus Control Register (X:$FFFE) After Reset 

Assembler Syntax: pp 
Operands Referenced: X, Y Memories 
Additional Instruction Execution Time (Clocks): 0 
Additiolilal Effective Address Words: 0 

liD SHORT 
ABSOLUTE 
ADDRESS 

SPACE 

$FFFF 

$FFFE 

~ 

$FFC 0 

23 

o 0 3 4 5 

r-

~ 

Figure 7-12. Special Addressing -1/0 Short Address 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 

0 

X I 

6 

,. 

• 

7-17 



• 

7.2.5.4 ADDRESSING MODES SUMMARY. Table 7-1 is a summary of the addressing 
modes discussed in the previous paragraphs. 

Table 7-1. Addressing Modes Summary 

Addressing Mode 

Register Direct 
Data or Control Register 
Address Register 
Address Modifier Register 
Address Offset Register 

Address Register Indirect 
No Update 
Postincrement by 1 
Postdecrement by 1 
Postincrement by Offset Nn 
Postdecrement by Offset Nn 
Indexed by Offset Nn 
Predecrement by 1 

Special 
Immediate Data 
Absolute Address 
Immediate Short Data 
Short Jump Address 
Absolute Short Address 
I/O Short Address 
Implicit 

Where: MMMM=Address Modifier 
P = Program Reference 
S = Stack Reference 
C = Program Controller Register Reference 
D = Data ALU Register Reference 
A=AGU Register Reference 
X = X Memory Reference 
Y = Y Memory Reference 
L= L Memory Reference 

XY = XY Memory Reference 

7.3 INSTRUCTION GROUPS 

Modifier 
MMMM 

No 
No 
No 
No 

Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 

No 
No 
No 
No 
No 
No 
No 

The instruction set is divided into the following groups: 
Arithmetic 
Logical 
Bit Manipulation 
Loop 
Move 
Program Control 

p S 

X 
X 
X 
X 
X 
X 
X 

X 
X 
X 
X 
X 

X X 

Operand Reference 

C D A X V L XV 

X X 
X 
X 
X 

X X X X 
X X X X 
X X X X 
X X X X 
X X X 
X X X 
X X X 

X X X 

X X X 
X X 

X 

Each instruction group is described in the following paragraphs; detailed information on 
each instruction is given in APPENDIX A INSTRUCTION SET DETAILS. 

7-18 OSP56000/0SP56001 USER'S MANUAL MOTOROLA 



7.3.1 Arithmetic Instructions 

The arithmetic instructions, which perform all of the arithmetic operations within the data 
ALU, execute in one instruction cycle. These instructions may affect all of the CCR bits. 
Arithmetic instructions are register based (register direct addressing modes used for op­
erands) so that the data ALU operation indicated by the instruction does not use the XDB, 
the YDB, or the global data bus (GDB). Optional data transfers may be specified with most 
arithmetic instructions, which allows for parallel data movement over the XDB and YDB 
or over the GDB during a data ALU operation. This parallel movement allows new data to 
be prefetched for use in subsequent instructions and allows results calculated in previous 
instructions to be stored. The following list contains the arithmetic instructions: 

ABS Absolute Value 
ADC Add Long with Carry 
ADD Addition 
ADDL Shift Left and Add 
ADDR Shift Right and Add 
ASL Arithmetic Shift Left 
ASR Arithmetic Shift Right 
CLR Clear an Operand 
CMP Compare 
CMPM Compare Magnitude 
DIV* Divide Iteration 
MAC Signed Multiply-Accumulate 
MACR Signed Multiply-Accumulate and Round 
MPY Signed Multiply 
MPYR Signed Multiply and Round 
NEG Negate Accumulator 
NORM* Normalize 
RND Round 
SBC Subtract Long with Carry 
SUB Subtract 
SUBL Shift Left and Subtract 
SUBR Shift Right and Subtract 
Tcc* Transfer Conditionally 
TFR Transfer Data ALU Register 
TST Test an Operand 

*These instructions do not allow parallel data moves. 

7.3.2 Logical Instructions 

The logical instructions, which execute in one instruction cycle, perform all of the logical 
operations within the data ALU (except ANDI and ORI). They may affect all of the CCR bits 
and, like the arithmetic instructions, are register based. Optional data transfers may be 
specified with most logical instructions, allowing parallel data movement over the XDB 
and YDB or over the GDB during a data ALU operation. This parallel movement allows 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 7-19 

• 



• 

new data to be prefetched for use in subsequent instructions and allows results calculated 
in previous instructions to be stored. The following list includes the logical instructions: 

AND Logical AND 
ANDI* AND Immediate to Control Register 
EOR Logical Exclusive OR 
LSL Logical Shift Left 
LSR Logical Shift Right 
NOT Logical Complement 
OR Logical Inclusive OR 
ORI* OR Immediate to Control Register 
ROL Rotate Left 
ROR Rotate Right 

*These instructions do not allow parallel data moves. 

7.3.3 Bit Manipulation Instructions 

The bit manipulation instructions test the state of any single bit in a memory location and 
then optionally set, clear, or invert the bit. The carry bit of the CCR will contain the result 
of the bit test. The following list defines the bit manipulation instructions: 

BCLR Bit Test and Clear 
BSET Bit Test and Set 
BCHG Bit Test and Change 
BTST Bit Test on Memory and Registers 

7.3.4 Loop Instructions 

The hardware DO loop executes with no overhead cycles - i.e., it runs as fast as straight­
line code. Replacing straight-line code with DO loops can significantly reduce program 
memory. The loop instructions control hardware looping by 1) initiating a program loop 
and establishing looping parameters or by 2) restoring the registers by pulling the SS when 
terminating a loop. Initialization includes saving registers used by a program loop (LA and 
LC) on the SS so that program loops can be nested. The address of the first instruction in 
a program loop is also saved to allow no-overhead looping. The loop instructions are as 
follows: 

DO Start Hardware Loop 
ENDDO Exit from Hardware Loop 

Both static and dynamic loop counts are supported in the following forms: 
DO #xxx,Expr ; (Static) 
DO S,Expr ; (Dynamic) 

Expr is an assembler expression or absolute address, and S is a directly addressable register 
such as XO. 

7-20 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



The operation of a DO loop is shown in Figure 7-13. When a program loop is initiated with 
the execution of a DO instruction, the following events occur: 

1. The stack is pushed. 
A. The SP is incremented. 
B. The current 16-bit LA and 16-bit LC registers are pushed onto the SS to allow 

nested loops. 
C. The LC register is initiated with the loop count value specified in the DO instruction. 

2. The stack is pushed again. 
A. The SP is incremented. 
B. The address of the first instruction in the program loop (PC) and the current SR 

contents are pushed onto the SS. 
C. The LA register is initialized with the value specified in the DO instruction dec­

remented by one. 

3. The LF bit in the SR is set. The LF bit is set when a program loop is in progress and 
enables the end-of-Ioop detection. 

START OF LOOP 

11 SP + 1. SP; LA. SSH; LC. SSL; #xxx HC 
21 SP + 1. SP; PC. SSH; SR. SSL; Expr-l HA 
311HF 

11 SSL(LFI. SR 
21 SP-l.SP; SSHHA; SSL.LC; SP-l.SP 
31 PC+l HC 

NOTE: 
#xxx = Loop Count Number 
Expr = Expression 

END OF LOOP 

Figure 7-13. Hardware DO Loop .. 

The program loop continues execution until the program address fetched equals the LA 
register contents (last address of program loop). The contents of the LC are then tested 
for one. If the LC is not one, it is decremented, and the top location in the stack RAM is 
read (but not pulled) into the PC to return to the start of the loop. If the LC is one, the 
program loop is terminated by'the following sequence: 

1. Reading the previous LF bit from the top location in the SS into the SR 

2. Purging the SS (pulling the top location and discarding the contents), pulling the LA 
and LC registers off the SS, and restoring the respective registers 

3. Incrementing the PC 

The LF bit (pulled from the SS when a loop is terminated) indicates if the terminated loop 
was a nested loop. Figure 7-14 shows two DO loops, one nested inside the other. If the 
stack is managed to prevent a stack overflow, DO loops can be stacked indefinitely. 

MOTOROLA DSP56000/0SP56001 USER'S MANUAL 7-21 



III 

[E 
DO #nl,ENDI 

[

. DO "',EN02 

MOVE A,X:IROI + 
END2 ADD A,B X:IRll + ,XO 
ENOl 

Figure 7-14. Nested DO Loops 

The ENDDO instruction is not used for normal termination of a DO loop; it is only used to 
terminate a DO loop before the LC has been decremented to one. 

7.3.5 Move Instructions 

The move instructions perform data movement over the XDB and YDB or over the GDB. 
Move instructions do not affect the CCR except the limit bit L if limiting is performed when 
reading a data ALU accumulator register. An address ALU instruction (LUA) is also included 
in the following move instructions. The MOVE instruction is the parallel move with a data 
ALU no-operation (NOP), 

LUA Load Updated Address 
MOVE Move Data Register 
MOVEC Move Control Register 
MOVEM Move Program Memory 
MOVEP Move Peripheral Data 

NOTE: 

Due to instruction pipelining, if an address register (Mn, Nn, or Rn) is changed 
with a MOVE instruction, the new contents will not be available for use in an 
effective address calculation until the second following instruction. 

There are nine classifications of.parallel data moves between registers and memory. Figure 
7-15 shows seven parallel moves. The source of the data to be moved and the destination 
are separated by a comm·a .. 

Examples of the other two classifications, XY and long (L) moves, are shown in Figure 7-
16. 

The first example (A) illustrates the following steps: 1) register XO is added to register A 
and the result is placed in register A; 2) register XO is moved to the X memory register 
location pointed to by R3, and R3 is incremented; and 3) the contents of the Y memory 
location pointed to by R7 is moved to the B register, and R7 is decremented. 

The second example (B) depicts the following sequence: 1) register XO is added to register 
A and the result is placed in register A; and 2) registers A and B are moved, respectively, 

7-22 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



IMMEDIATE SHORT DATA 
ADDRESS REGISTER UPDATE 
REGISTER TO REGISTER 
X MEMORY 
X MEMORY PLUS REGISTER 
Y MEMORY 
Y MEMORY PLUS REGISTER 

OPCODE/OPERANDS 

ADD 
ADD 
ADD 
ADD 
ADD 
ADD 
AOQ 

I 

XO,A 
XO,A 
XO,A 
XO,A 
XO,A 
XO,A 
XO,A 

PARALLEL MOVE EXAMPLES 

I 

#$05,Yl 
(RO)+NO 
Al,YO 
XO,X:(R3) + 
X:(R4)-,Xl 
Y:(R6) + N6,XO 

'A,XO 

A,YO 

B,Y:(RO) 

NOTE: Parallel Move Syntax - Source(Src), Destination(Dst) 

Figure 7-15. Classifications of Parallel Data Moves 

-I 

XY MEMORY MOVE ADP XO,A XO,X:(R3) + Y:(R7) .. ,B 

R7 

(a) Example A 

LONG MEMORY MOVE ADD XO,A AB,L:(R2).;- N2 

R2 

A,B ARE SHIFTED AND LIMITED 

(b) Example B 

Figure 7-16. Parallel Move Examples 

to the locations in memories X and Y pointed to by R2, and then R2 is incremented by N2. 
The contents of the 56-bit registers A and B were rounded to 24 bits before moving to the 
24-bit memory registers. -

The DSP offers parallel processing of the data ALU, AGU, and program controller. For the 
instruction word above, the DSP will perform the designated operation (data ALU), the 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 7-23 

III 



• 

data transfers specified with address register updates (AGU), and will decode the next 
instruction and fetch an instruction from program memory (program controller) all in one 
instruction cycle. When an instruction is more than one word in length, an additional 
instruction execution cycle is required. Most instructions involving the data ALU are register 
based (all operands are in data ALU registers), thereby allowing the programmer to keep 
each parallel processing unit busy. An instruction that is memory oriented (such as a bit 
manipulation instruction) or that causes a control-flow change (such as a JMP) prevents 
the use of parallel processing resources during its execution. 

7.3.6 Program Control Instructions 

The program control instructions include jumps, conditional jumps, and other instructions 
affecting the PC and SS. Program control instructions may affect the CCR bits as specified 
in the instruction. Optional data transfers over the XDB and YDB may be specified in some 
of the program control instructions. The following list contains the program control 
instructions: 

II 
Jcc 
JMP 
JCLR 
JSET 
JScc 
JSR 
JSCLR 
JSSET 
NOP 
REP 
RESET 
RTI 
RTS 
STOP 
SWI 
WAIT 

7-24 

Illegal Instruction 
Jump Conditionally 
Jump 
Jump if Bit Clear 
Jump if Bit Set 
Jump to Subroutine Conditionally 
Jump to Subroutine 
Jump to Subroutine if Bit Clear 
Jump to Subroutine if Bit Set 
No Operation 
Repeat Next Instruction 
Reset On-Chip Peripheral Devices 
Return from Interrupt 
Return from Subroutine 
Stop Processing (Low-Power Standby) 
Software Interrupt 
Wait for Interrupt (Low-Power Standby) 

DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



SECTION 8 
PROCESSING STATES 

The DSP is always in one of five processing states: normal, exception, reset, wait, and 
stop. These states are described in the following paragraphs. 

8.1 NORMAL PROCESSING STATE 

The normal processing state is associated with instruction execution. Details concerning 
normal processing of the individual instructions can be found in APPENDIX A INSTRUC­
TION SET DETAILS. Instructions are executed using a three-stage pipeline, which is de­
scribed in the following paragraphs. 

8.1.1 Instruction Pipeline 

DSP56000lDSP56001 instruction execution is performed in a three-stage pipeline, allowing 
most instructions to execute at a rate of one instruction every instruction cycle. However, 
certain instructions require additional time to execute: instructions longer than one word, 
instructions using an addressing mode that requires more than one cycle, and instructions 
causing a control-flow change. In the latter case, a cycle is needed to clear the pipeline. 

Instruction pipelining allows overlapping of instruction execution so that the fetch-decode­
execute operations of a given instruction occur concurrently with the fetch-decode-execute 
operations of other instructions. Specifically, while an instruction is executed, the next 
instruction to be executed is decoded, and the instruction to follow the instruction being 
decoded is fetched from program memory. Only one word is fetched per cycle so that, if 
an instruction is two words i"n length, the additional word will be fetched before the next 
instruction is fetched. Table 8-1 demonstrates pipelining; F1, D1, and E1 refer to the fetch, 
decode, and execute operations, respectively, of the first instruction. The third instruction, 
which contains an instruction extension word, takes two instruction cycles to execute. The 

Table 8-1. Instruction Pipelining 

Operation 
Instruction Cycle 

1 2 3 4 5 6 7 

Fetch F1 F2 F3 F3e F4 F5 F6 

Decode 01 02 03 03e 04 05 

Execute E1 E2 E3 E3e E4 

MOTOROLA DSP56000/DSP56001. USER'S MANUAL 8-1 

-



extension word will be either an absolute address or immediate data. Although it takes 
three instruction cycles for the pipeline to fill and the first instruction to execute, an in­
struction usually executes on each instruction cycle thereafter. 

Each instruction requires a minimum of three instruction cycles (12 clock phases) to be 
fetched, decoded, and executed. This means that there is a delay of three instruction cycles 
on powerup to fill the pipe. A new instruction may begin immediately following the previous 
instruction. Two-word instructions require a minimum of four instruction cycles to execute 
(three cycles for the first instruction word to move through the pipe and execute and one 
more cycle forthe second word to execute). A new instruction may start after two instruction 
cycles. 

The pipeline is normally transparent to the user. However, it will affect program execution 
in some situations. These situations, which are instruction-sequence dependent, are best 
described by case studies. Most of these restricted sequences occur because 1) all ad­
dresses are formed during inst'ruction decode, or 2) they are the result of contention for 
an internal resource such as the status register (SR). If the execution of an instruction 
depends on the relative location of the instruction in a sequence of instructions, there is 
a pipeline effect. To test for a suspected pipeline effect, compare between the execution 
of the suspect instruction 1) when it directly follows the previous instruction and 2) when 
four NOPs are inserted between the two. If there is a difference, it is due to a pipeline 
effect. The DSP56000lDSP56001 assembler (ASM56000) is designed to flag instruction 
sequences with potential pipeline effects so that the user can decide if the operation will 
be as expected. 

Case 1: The following two examples show similar code sequences. 

1. No pipeline effect: 
ORI #xx,CCR 
Jcc xxx x 

;Changes CCR at the end of execution time slot 
;Reads condition codes in SR in its execution time slot 

The Jcc will test the bits modified by the ORI without any pipeline effect in the code segment 
above. 

2. Instruction that started execution during decode: 
ORI #04,OMR ;Sets DE bit at execution time slot 
MOVE x:$100,a ;Reads external RAM instead of internal ROM 

A pipeline effect occurs in example 2 because the address of the MOVE is formed at its 
decode time before the ORI changes the DE bit (which changes the memory map) in the 
ORI's execution time slot. The following code produces the expected results of reading the 
internal ROM: 

8-2 

ORI #04,OMR 
NOP 
MOVE x:$100,a 

;Sets DE bit at execution time slot 
;Delays the MOVE so it will read the updated OMR 
;Reads internal ROM 

DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



Case 2: One of the more common sequences where pipeline effects are apparent is as 
follows: 

MOVE #xx,Rn 
MOVE X:(Rn),A 

;Move a number into register Rn (n = 0 -7). 

;Use the new contents of Rn to address memory. 

In this case, before the first MOVE instruction has written Rn during its execution cycle, 
the second MOVE has accessed the old Rn, using the old contents of Rn. This is because 
the address for indirect moves is formed during the decode cycle. This overlapping in­
struction execution in the pipeline causes the pipeline effect. One instruction cycle should 
be allowed after a register has been written by a MOVE instruction before the new contents 
are available for use by another MOVE instruction. The proper instruction sequence is as 
follows: 

MOVE XO,Rn 
NOP 

MOVE X:(Rn),A 

;Move a number into register Rn. 

;Execute any instruction or instruction 
;sequence not using Rn. 

Use the new contents of Rn. 

Case 3: A situation related to Case 2 can be seen in the boot ROM code shown in APPENDIX 
A of the DSP56001 Advance Information Data Sheet (ADI1290). At the end of the bootstrap 
operation, the operation mode register (OMR) is changed to mode #2, and then the program 
that was loaded is executed. This process is accomplished in the last three instructions: 

-BOOTEND MOVEC #2,OMR ;Set the operating mode to 2 
;(and trigger an exit from 
;bootstrap mode). 

ANDI #$O,CCR ;Clear SR as if RESET and 
;introduce delay needed for 
;Op. Mode change. 

JMP <$0 ;Start fetching from PRAM, P:$OOOO 

The JMP instruction generates its jump address during its decode cycle. If the JMP in­
struction followed the MOVEC, the MOVEC instruction would not have changed the OMR 
before the JMP instruction formed the fetch address. As a result, the jump would fetch the 
instruction at P:$OOOO of the bootstrap ROM (MOVE #$FFE9,R2). The OMR would then 
change due to the MOVEC instruction, and the next instruction would be the second 
instruction of the downloaded code at P:$0001 of the internal RAM. However, the ANDI 

MOTOROLA OSP56000/0SP56001 USER'S MANUAL 8-3 

II 



II 

instruction allows the OMR to be changed before the JMP instruction uses it, and the JMP 
fetches P:$OOOO of the internal RAM. 

Case 4: An interrupt has two additional control cycles that are executed in the interrupt 
controller concurrently with the fetch, decode, and execute cycles (see 8.2 EXCEPTION 
PROCESSING STATE INTERRUPT PROCESSING and Figure 8-2). During these two control 
cycles, the interrupt is arbitrated by comparing the interrupt mask level with the interrupt 
priority level (IPL) of the interrupt and allowing or disallowing the interrupt. Therefore, if 
the interrupt mask is changed after an interrupt is arbitrated and accepted as pending but 
before the interrupt is executed, the interrupt will be executed, regardless of what the mask 
was changed to. The following examples show that the old interrupt mask is in effect for 
up to four additional instruction cycles after the interrupt mask is changed. All instructions 
shown in the examples here are one-word instructions; however, one two-word instruction 
can replace two one-word instructions except where noted. 

1. Program flow with no interrupts after interrupts are disabled: 

ORI #03,MR 

INST 1 
INST 2 
INST3 
INST4 

;Disable interrupts 

2. The four possible variations in program flow that may occur after interrupts are disabled: 

8-4 

ORI #03,MR ORI #03,MR ORI #03,MR ORI #03,MR 
II (See Note 2) INST 1 INST 1 INST 1 
11+1 II INST 2 INST 2 
INST 1 11+1 II INST 3 (See Note 1) 
INST 2 INST2 11+1 II 
INST3 INST3 INST3 II + 1 
INST4 INST4 INST4 INST4 

NOTES: 

1. INST 3 may be executed at that point only if the preceding instruction (INST 2) 
was a single-word instruction. 

2. II = Interrupt instruction from maskable interrupt. 

DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



The following program flow will not occur because the ORI instruction becomes effective 
after a pipeline latency of four instruction cycles: 

ORI #03,MR 
INST 1 
INST 2 
INST3 
INST4 
II 
11+1 

;Disable interrupts. 

;Interrupts disabled. 
;Interrupts disabled. 

1. Program flow without interrupts after interrupts are re-enabled: 

ANDI #OO,MR 
INST 1 
INST 2 
INST3 
INST4 

;Enable interrupts 

2. Program flow with interrupts after interrupts are re-enabled: 

ANDI #OO,MR 
INST 1 
INST 2 
INST3 
INST4 
II 
11+1 

;Enable interrupts 
; Un i nterru ptable 
; Uninterruptable 
;11 fetched 
; II + 1 fetched 

The DO instruction is another instruction that begins execution during the decode cycle of 
the pipeline. As a result, there are a number of restrictions concerning access contention 
with the program controller registers accessed by the DO instruction. The ENDDO instruc­
tion has similar restrictions. APPENDIX A INSTRUCTION SET DETAILS contains additional 
information on the DO and ENDDO instruction restrictions. 

MOTOROLA OSP56000/0SP56001 USER'S MANUAL 8-5 

Ell 



• 

Case 5: A resource contention problem can occur when one instruction is using a register 
during its decode while the instruction executing is accessing the same resource. One 
example of this is as follows: 

MOVEC X:$100,SSH 
DO #$10,END 

The problem occurs because the MOVEC instruction loads the contents of X:$100 into the 
system stack high (SSH) during T3 of its execution cycle. The DO instruction that follows 
pushes the stack (LA. SSH, LC. SSL) during T3 of its decode cycle. Therefore, the two 
instructions try writing to the SSH simultaneously and conflict. 

8.1.2 Summary of Pipeline-Related Restrictions 

A summary of the instruction sequences that cause pipeline effects is given in the following 
paragraphs. Additional information concerning the individual instructions can be found in 
APPENDIX A INSTRUCTION SET DETAILS. 

DO instruction restrictions: 

The DO instruction must not be immediately preceded by any of the following instructions: 
BCHG/BCLR/BSET LA, LC, SSH, SSL, or SP 
MOVEC/MOVEM to LA, LC, SSH, SSL, or SP 
MOVEC/MOVEM from SSH 

Restrictions near the end of DO loops: 

Proper DO loop operation is guaranteed if no instruction starting at address LA-2, LA-1, or 
LA specifies the program controller registers SR; SP, SSL, LA, LC, or (implicitly) PC as a 
destination register or specifies SSH as a source or a destination register. Also, SSH can 
not be specified as a source register in the DO instruction. 

The restricted instructions at LA-2, LA-1, and LA are as follows: 
DO 
BCHG/BCLR/BSET LA, LC, SR, SP, SSH, or SSL 
BTST SSH 
JCLR/JSET/JSCLR/JSSET SSH 
MOVEC/MOVEM/MOVEP from SSH 
MOVEC/MOVEM/MOVEP to LA, LC, SR, SP, SSH, or SSL 
ANDI/ORI MR 

The restricted instructions at LA include the following: 
Any two-word instruction 
Jcc, JMP, JScc, JSR, 
REP, RESET, RTI, RTS, STOP, WAIT 

8-6 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



Other restrictions are 
DO SSH,xxxx 
JSR/JScc/JSCLR/JSSET to LA, if loop flag is set 

ENDDO instruction restrictions: 

The ENDDO instruction must not be immediately preceded by any of the following instruc­
tions: 

BCHG/BCLR/BSET LA, LC, SR, SSH, SSL, or SP 
MOVEC/MOVEM to LA, ~C, SR, SSH, SSL, or SP 
MOVEC/MOVEM from SSH 
ANDI/ORI MR 

RTI and RTS instruction restrictions: 

The RTI instruction must not be immediately preceded by any of the following instructions: 
BCHG/BCLR/BSET SR, SSH, SSL, or SP 
MOVEC/MOVEM to SR, SSH, SSL, or SP 
MOVEC/MOVEM from SSH 
ANDI MR, ANDI CCR 
ORI MR, ORI CCR 

The RTS instruction must not be immediately preceded by any of the following instructions: 
BCHG/BCLR/BSET SSH, SSL, or SP 
MOVEC/MOVEM to SSH, SSL, or SP 
MOVEC/MOVEM from SSH 

SP and SSH/SSL register manipulation restrictions: 

In addition to all the above restrictions concerning SP, SSH, and SSL, the following in­
struction sequences are illegal: 

1. BCHG/BCLR/BSET SP 
2. MOVEC/MOVEM/MOVEP from SSH or SSL 

and 
1. MOVEC/MOVEM to SP 
2. MOVEC/MOVEM/MOVEP from SSH or SSL 

and 
1. MOVEC/MOVEM to SP 
2. JCLR/JSET/JSCLR/JSSET SSH or SSL 

and 
1. BCHG/BCLR/BSET SP 

. 2. JCLR/JSET/JSCLR/JSSET SSH or SSL 

Also the instruction MOVEC SSH,SSH is illegal. 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 8-7 

III 



• 

Rn, Nn, and Mn register restrictions: 

If an address register (RO-R7, NO-N7, or MO-M7) is changed with a move-type instruction 
(LUA, Tcc, MOVE, MOVEM, MOVEC, or parallel move), the new contents will not be available 
for use as a pointer until the second following instruction. This restriction does not apply 
to registers updated as part of an indirect addressing mode. 

Fast interrupt routines: 

SWI, STOP, and WAIT may not be used in a fast interrupt routine. 

8.2 EXCEPTION PROCESSING STATE (INTERRUPT PROCESSING) 

The exception processing state is associated with interrupts that can be generated by 
conditions inside the DSP or from external sources. There are many sources for interrupts 
on the DSP56000/DSP56001; some of these sources can generate more than one interrupt. 
A prioritized interrupt vector scheme with 32 vectors is used to provide fast interrupt service. 
The following list outlines how interrupts are processed by the DSP56000/DSP56001: 

1. A hardware interrupt is synchronized with the DSP clock, and the interrupt pending 
flag for that particular hardware interrupt is set. An interrupt source can have only 
one interrupt p,ending at any given time . 

2. All pending interrupts (external and internal) are arbitrated to select which interrupt 
will be processed. The arbiter automatically ignores any interrupts with an IPL lower 
than the interrupt mask level in the SR and selects the remaining interrupt with the 
highest IPL. 

3. The interrupt controller then freezes the program counter (PC) and fetches two in­
structions at the two interrupt vector addresses associated with the selected interrupt. 

4. The interrupt controller jams the two instructions into the instruction stream and 
releases the PC, which is used for the next instruction fetch. The next interrupt ar­
bitration is then begun. 

If neither instruction is a change of program-flow instruction (Le., a JSR), the state of the 
machine is not saved on the stack, and a fast interrupt is executed. Along interrupt is 
formed if one of the interrupt instructions fetched is a JSR instruction. The PC is immediately 
released, the SR and the PC are saved in the stack, and the jump instruction controls where 
the next instruction is fetched from. While either an unconditional jump or conditional 
jump can be used to form a long interrupt, they do not store the PC on the stack; therefore, 
there is no return path. 

In digital signal processing, one of the main uses of interrupts is to transfer data between 
DSP memory or registers and a peripheral device. When such an interrupt occurs, a limited 
context switch with minimum overhead is often desirable. This limited context switch is 

8-8 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



accomplished by a fast interrupt. The long interrupt is used when a more complex task 
must be accomplished to service the interrupt. 

The second and third activities require two additiol']al control cycles, which effectively make 
the interrupt pipeline five levels deep. 

8.2.1 Interrupt Sources 

Exceptions may originate from any of the 32 vector addresses listed in Table 8-2. The 
corresponding interrupt starting address for each interrupt source is shown. These ad­
dresses are located in the first 64 locations of program memory. When an interrupt is 
serviced, the instruction at the interrupt starting address is fetched first. Because the pro­
gram flow is directed to a different starting address for each interrupt, the interrupt structure 
of the DSP56000/DSP56001 is said to be vectored~ A vectored interrupt structure has low 
overhead execution. If it is known a priori that certain interrupts will not be used, those 
interrupt vector locations can be used for program or data storage. 

The 32 interrupts are prioritized into four levels. Level 3, the highest priority level, is not 
maskable. Levels 0-2 are maskable. The interrupts within each level are prioritized ac­
cording to a predefined priority. The level-3 interrupts (reset, illegal instruction, nonmask­
able interrupt (NMI), stack error, trace, and' software interrupt (SWI) are discussed 
individually. 

8.2.1.1 HARDWARE INTERRUPT SOURCES. There are two types of hardware interrupts 
in the DSP: internal and external. The internal interrupts include all ofthe on-chip peripheral 
devices (host interface (HI), synchronous serial interface (SSI), and serial communications 
interface (SCI). Each internal interrupt source is latched and serviced if it is not masked. 
When it is serviced, the interrupt is cleared. Each internal hardware source has independent 
enable control. 

. The external hardware interrupts include RESET, NMI, IROA, and IROB. The RESET inter­
rupt, which is level sensitive, is the highest level interrupt (lPL 3). The IROA and IROB 
interrupts can be programmed to be level sensitive or edge sensitive. Since the level­
sensitive interrupts will not be cleared automatically when they are serviced, they must 
be cleared by other means to prevent mUltiple interrupts. The edge-sensitive interrupts 
are latched as pending on the high-to-Iow transition of the interrupt input and are auto­
matically cleared when the interrupt is serviced. IROA and IROB can be programmed to 
one of three priority levels: 0, 1, or 2, all of which are maskable. Additionally, both of these 
interrupts have independent' enable control. 

When the IROA or IROB interrupts are disabled in the interrupt priority register, the pending 
request will be ignored, regardless of whether the interrupt input was defined as level 
sensitive or edge sensitive. Additionally, if the interrupt is defined as edge sensitive, its 
edge-detection latch will remain in the reset state as long as the interrupt is disabled; if 

MOTOROLA OSP56000/0SP56001 USER'S MANUAL 8-9 



iii 

Table 8-2. Interrupt Sources 

Interrupt Interrupt Source 
Starting IPL 
Address 

$0000 3 Hardware RESET 

$0002 3 Stack Error 

$0004 3 Trace 

$0006 3 SWI 

$0008 0-2 IROA 

$OOOA 0-2 IROB 

$OOOC 0-2 SSI Receive Data 

$OOOE 0-2 SSI Receive Data with Exception Status 

$0010 0-2 SSI Transmit Data 

$0012 0-2 SSI Transmit Data with Exception Status 

$0014 0-2 SCI Receive Data 

$0016 0-2 SCI Receive Data with Exception Status 

$0018 0-2 SCI Transmit Data 

$001A 0-2 SCI Idle Line 

$OOlC 0-2 SCI Timer 

$OOlE 3 NMI - Reserved for Hardware Development 

$0020 0-2 Host Receive Data 

$0022 0-2 Host Transmit Data 

$0024 0-2 Host Command (Default) 

$0026 0-2 Available for Host Command 

$0028 0-2 Available for Host Command 

$002A 0-2 Available for Host Command 

$002C 0-2 Available for Host Command 

$002E 0-2 Available for Host Command 

$0030 0-2 Available for Host Command 

$0032 0-2 Available for Host Command 

$0034 0-2 Available for Host Command 

$0036 0-2 Available for Host Command 

$0038 ·0-2 Available for Host Command 

$003A 0-2 Available for Host Command 

$003C 0-2 Available for Host Command 

$003E 3 Illegal Instruction 

the interrupt is defined as level sensitive, its edge-detection latch will remain in the reset 
state. If the level-sensitive interrupt is disabled while the interrupt is pending, the pending 
interrupt will be cancelled. However, if the interrupt has been fetched, it normally will not 
be cancelled. 

Interrupt service, which begins by fetching the instruction word in the first vector location, 
is considered .finished when the instruction word in the second vector location is fetched. 

8-10 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



In the case of an edge-triggered interrupt, the internal latch is automatically cleared when 
the second vector location is fetched. The fetch of the first vector location does not guar­
antee that the second location will be fetched. Figure 8-1 illustrates the one case where 
the second vector location is not fetched. In Figure 8-1, the SWI instruction discards the 
fetch of the first interrupt vector to ensure that the SWI vectors will be fetched. Instruction 
n4 is decoded as an SWI while ii1 is being fetched. Execution of the SWI requires that ii1 
be discarded and the two SWI vectors (ii3 and ii4) be fetched instead. 

CAUTION 

On all level-sensitive interrupts, the interrupt must be externally released before 
interrupts are inter"ally re-enabled, orthe processor will be interrupted repeatedly 
until the interrupt is released. 

The edge-sensitive NMI is generated on the first transition to 10 V on the IROB pin after 
the last time the NMI interrupt was serviced or the DSP was reset. The NMI is a priority 3 
interrupt and cannot be masked. Only RESET and illegal instruction have higher priority 
than NMI. NMI is reserved for hardware development and should not be used in an ap­
plication. Repeated use may damage the integrated circuit. 

8.2.1.2 SOFTWARE INTERRUPT SOURCE. There are two software interrupt sources -
illegal instruction interrupt (III) and SWI. The III is a nonmaskable interrupt (IPL 3), which 
is serviced immediately following the execution of the illegal instruction or the attempted 
execution of an illegal instruction (any undefined operation code). Ills are fatal errors. Only 
a long interrupt routine should be used for the III routine; RTI or RTS should not be used 
at the end of the interrupt routine since return from the III to the main code should not be 
attempted. During the III service, the JSR located in the III vector will normally stack the 
address of the illegal instruction (this is the reason why return should not be attempted 
(see Figure 8-2))~ The user may examine the stack (using MOVE SSH,dest) to locate the 
offending illegal instruction. The illegal instruction is useful for triggering the illegal inter­
rupt service to see if the III routine is capable of recovery from illegal instructions. 

MOTOROLA 

INTERRUPT CONTROL CYCLE I i I "* I 

INTERRUPT CONTROL CYCLE 2 , \ i 

FETCH n3 n4 n5 I "iil"r 

DECODE n2 n3 SWI -

EXECUTE nl n2 n3 SWI 

INSTRUCTION BEING DECODED I ; : I 

i = INTERRUPT REQUEST 
i* = INTERRUPT REQUEST GENERATED BY SWI 

iiI = FIRST VECTOR OF INTERRUPT i 
ii3 = FIRST SWI VECTOR lONE-WORD JSRI 
ii4 = SECOND SWI VECTOR 
n = NORMAL INSTRUCTION WORD 

n4 = SWI 

"* I 

ii3 ii4 swl sw2 

- - JSR - swl 

NOP NOP NOP JSR -

I 

sw = INSTRUCTIONS PERTAINING TO THE SWI LONG INTERRUPT ROUTINE 

Figure 8-1. Interrupting an SWI 

OSP56000/0SP56001 USER'S MANUAL 

sw3 sw4 

sw2 sw3 

swl sw2 

I 

8-11 

-



III 

8-12 

MAIN 
PROGRAM 
FETCHES 

{ 

II (NOP) 

INFINITE t--__ n6 __ -i 
LOOP NO FETCH 

NO FETCH 

FAST INTERRUPT 
SERVICE ROUTINE 

FETCHES 

(a) Instruction Fetches from Memory 

ILLEGAL INSTRUCTION INTERRUPT 
RECOGNIZED AS PENDING 

ILLEGAL INSTRUCTION I NTERRUPT 
DING RECOGNIZED AS PEN 

INTERRUPT CONTROL CYCLE 1 

INTERRUPT CONTROL CYCLE 2 

FETCH 

DECODE 

EXECUTE 

INSTRUCTION CYCLE COUNT 1 

i = INTERRUPT 
ii = INTERRUPT INSTRUCTION WORD 
II = ILLEGAL INSTRUCTION 
n = NORMAL INSTRUCTION WORD 

n1 n2 n3 

n1 n2 

n1 

2 3 4 

i 

i 

n4 n5 n6 - -

n3 n4 II - -
n2 n3 n4 NOP -

5 6 7 8 9 

(b) Program Controller Pipeline 

t 
ii1 ii2 n5 

- ii1 ii2 II 

- - ii1 ii2 NOP 

10 11 12 13 14 

Figure 8-2. Illegal Instruction Interrupt Serviced by a Fast Interrupt 

DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



offending illegal instruction. The illegal instruction is useful for triggering the illegal inter­
rupt service to see if the III routine is capable of recovery from illegal instructions. 

There are two cases in which the stacked address will not point to the illegal instruction: 

1. If the illegal instruction is one of the two instructions at an interrupt vector location 
and is fetched during a regular interrupt service, the processor will stack the address 
of the next sequential instruction in the normal instruction flow (the regular return 
address of the interrupt routine that had the illegal opcode in its vector). 

2. If the illegal instruction follows an REP instruction (see Figure 8-3), the DSP will ef­
fectively execute the illegal instruction as a repeated NOP and the interrupt vector will 
then be inserted in the pipeline. The next instruction will be fetched but will not be 
decoded or executed. The processor will stack the address of the next sequential 
instruction, which is two instructions after the illegal instruction. 

INTERRUPT CONTROL CYCLE 1 

INTERRUPT CONTROL CYCLE 2 

FETCH 

DECODE 

EXECUTE 

INSTRUCTION CYCLE COUNT 1 

i = INTERRUPT 
ii = INTERRUPT INSTRUCTION WORD 
II = ILLEGAL INSTRUCTION 
n = NORMAL INSTRUCTION WORD 

nl n2 n3 n4 

nl n2 n3 

nl n2 

2 3 4 5 

ILLEGAL INSTRUCTION INTERRUPT 
RECOGNIZED AS PENDING 

1 
i 

i 

n5 n6 n7 - - -

n4 REP II - - -

n3 n4 REP REP NOP -

6 7 8 9 10 11 

Figure 8-3. Repeated Illegal Instruction 

iiI ii2 n8 

- iiI ii2 n8 

- - iiI ii2 n8 

12 13 14 15 16 

In DO loops, if the illegal instruction is in the loop address (LA) location and the instruction 
preceding it (i.e., at LA-1) is being interrupted, the loop counter (LC) will be decremented 
as if the loop had reached the LA instruction. When the interrupt service ends and the 
instruction flow returns to the loop, the illegal instruction will be refetched (since it is the 
next sequential instruction in the flow). The loop state machine will again decrement LC 
because the LA instruction is being executed. At this point, the illegal instruction will trigger 
the III. The result is that the loop state machine decrements LC twice in one loop due to 
the presence of the illegal opcode at the LA location. 

SWI is a nonmaskable interrupt (lPL 3), which is serviced immediately following the SWI 
instruction execution. A long interrupt service routine is usually used. The difference be­
tween an SWI and a JSR instruction is that the SWI sets the interrupt mask to prevent 

MOTOROLA OSP56000/0SP56001 USER'S MANUAL 8-13 

III 



• 

interrupts below IPL 3 from being serviced. Masking out lower level interrupts makes the 
SWI very useful for setting breakpoints in monitor programs. The JSR instruction does not 
affect the interrupt mask. 

8.2.1.3 OTHER INTERRUPT SOURCES. Other interrupt sources include the stack error 
interrupt and trace interrupt (lPL3 interrupts). 

An overflow or underflow of the system stack (SS) cause~ a stack error interrupt (see 
SECTION 6 PROGRAM CONTROLLER for additional information on the stack error flag). 
The stack error interrupt is caused by a nonrecoverable error condition and is vectored to 
P:$0002. Since the stack error is nonrecoverable, a long interrupt should be used to service 
the interrupt, and the service routine should not end in an RTI. Executing an RTI instruction 
"pops" the stack, which has been corrupted. 

The DSP56000/DSP56001 includes a facility for instruction-by-instruction tracing as a pro­
gram development aid. This trace mode (entered by setting the trace bit in the SR) generates 
a trace exception after each instrLlction executed (see Figure 8-4), which can be used by a 
debugger program to monitor the execution of a program. 

The trace mode is entered by setting the trace bit in the SR. A trace exception is generated 
after executing each instruction executed while the trace bit is set. When servicing the 
trace exception, it is expected that a JSR will be encountered in the trace vector locations; 
thereby forming a long interrupt routine. The JSR causes the SR to be stacked and the 
trace bit in the SR to be cleared (clearing the trace bit in the SR prevents tracing while 
executing the trace exception service routine). This service routine should end with an RTI 
instruction, which restores the SR (with the trace bit set) from the SS, causing the next 
instruction to be traced. The pipeline must be flushed to allow each sequential instruction 
to be traced. Three instruction cycles are appended by the tracing facility to the end of 
each instruction traced (these are the three NOP instructions shown in Figure 8-4)' flushing 
the pipeline and allowing the next trace interrupt to follow the next sequential interrupt. 

During tracing, the REP instruction and the instruction being repeated are considered a 
single two-word instruction. That is, only after executing the REP instruction and all the 
repeats of the next instruction will the trace exception be generated. ' 

Fast interrupts can not be traced because they are uninterruptable. Long interrupts will not 
be traced (unless the trace mode is entered in the subroutine) because the SR is pushed 
on the stack and the trace bit is cleared. Tracing is resumed upon returning from a long 
interrupt because the trace bit is restored when the SR is restored. Interrupts are not likely 
to occur during tracing because only an interrupt with a higher IPL can interrupt during a 
trace operation. While executing the program being tra~ed, the trace interrupt will always 
be pending and will win the interrupt arbitration. During the trace interrupt, the interrupt 
mask is set to reject interrupts below IPL3. 

8-14 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



TRACE BIT 
SET IN SR 

MAIN 
PROGRAM 
FETCHES 

nl 

n2 

NEXT TRACE 
OPERATION 

TRACE INSTRUCTION nl 

I--__ N_O_P ---f THREE NOP 
NOP INSTRUCTIONS INSERTED 

I----
N
-
O
-
P 
---f BY TRACE MODE 

FAST INTERRUPT 
1-------1 CAUSED BY TRACE 

i..-----r--..... INTERRUPT 

DEBUGGER 
PROGRAM 

RTI SET TRACE BIT IN SSL 

(a) Instruction Fetches from Mem'ory 

INTERRUPT SYNCHRONIZED AND INTERRUPT SYNCHRONIZED AND r RECOGNIZED AS PENOJNG - RECOGNIZED AS PENDING 

INTERRUPT CONTROL CYCLE 1 i 

INTERRUPT CONTROL CYCLE 2 

FETCH 

DECODE 

EXECUTE 

INSTRUCTION CYCLE COUNT 1 

i = INTERRUPT 
ii = INTERRUPT INSTRUCTION WORD 
n = NORMAL INSTRUCTION WORD 

I 
i I 

nl NOP NOP NOP JSR - TRACE PROGRAM RTI -

nl NOP NOP NOP JSR NOP TRACE PROGRAM RTI 

nl NOP NOP NOP JSR NOP ITRACE PROGRAM 

2 3 4 5 6 7 8 9 I 10 11 12 

(b) Program Controller Pipeline 

Figure 8-4. Trace Exception 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 

i 

i 

n2 NOP NOP NOP 

NOP n2 NOP NOP 

RTI NOP n2 NOP 

13 14 15 16 

NOP 

NOP NOP 

17 18 

8-15 



lEI 

8.2.2 Interrupt Priority Structure 

Four levels of interrupt priority are provided. IPLs numbered 0, 1, and 2 are maskable (level 
o is the lowest level). Level 3 (highest level) is nonmaskable. The only IPL 3 interrupts are 
reset, III, NMI, stack error, trace, and SWI. The interrupt mask bits (11, 10) in the SR reflect 
the current processor priority level and indicate the IPL needed for an interrupt source to 
interrupt the processor (see Table 8-3). Interrupts are inhibited for all priority levels less 
than the current processor priority level. However, level 3 interrupts are not maskable and 
therefore can always interrupt the processor. 

Table 8-3. Status Register Interrupt ~ask Bits 

11 10 Exceptions Permitted 
Exceptions 

Masked 

0 0 IPL 0, 1, 2, 3 None 

0 1 IPL 1, 2, 3 IPL 0 

1 0 IPL 2, 3 IPL 0,1 

1 1 IPL 3 IPL 0,1,2 

8.2.2.1 INTERRUPT PRIORITY LEVELS. The IPL for each on-chip peripheral device (HI, 
SSI, SCI) and for each external interrupt source (lROA, IROB) can be programmed under 
software control. Each on-chip or external peripheral device ca,n be programmed to one 
of the three maskable priority levels (lPL 0, 1, or 2). IPLs are set by writing to the interrupt 
priority register shown in Figure 8-5. This read/write register specifies the IPL for each of 
the interrupting devices (HI, SSI, SCI, IROA, IROB). In addition, this register specifies the 
trigger mode of both external interrupt sources and is used to enable or disable the in­
dividual external interrupts. This register is cleared on RESET or by the reset instruction. 
Table 8-4 defines the IPL bits. Table 8-5 defines the external interrupt trigger mode bits. 

15 14 13 12 11 10 

I SCLl I SCLO I SSLl I SSLO I HPLl I HPLO I 0 I 0 I 0 

II I 

5 3 2 1 0 

o I IBL2 I IBLI I IBLO I IAL2 I IALI I IALO 

I I I I 
w, 

RUA MODE 

RUB MODE 

RESERVED 

HOST IPL 

SSIIPL 

SCIIPL 

I 

Figure 8-5. Interrupt Priority Register.(Addr X:$FFFF) 

8-16 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



Table 8-4. Interrupt Priority 
Level Bits 

xxL1 xxLO Enabled IPL 

0 0 No -
0 1 Yes 0 

1 0 Yes 1 

1 1 Yes 2 

Table 8-5. External Interrupt 
Trigger Mode Bits 

Ixl2 Trigger Mode 

0 Level 

·1 Negative Edge 

8.2.2.2 EXCEPTION PRIORITIES WITHIN AN IPL. If more than one exception is pending 
when an instruction is executed, the interrupt with the highest priority level is serviced 
first. When multiple interrupt requests having the same IPL are pending, a second fixed­
priority structure within that IPL determines which interrupt is serviced. The fixed priority 
of interrupts within an IPL and the interrupt enable bits for all interrupts are shown in Table 
8-6. The interrupt enable bits for the HI,SSI, and SCI are located in the control registers 
associated with their respective on-chip peripherals. ' 

Table 8-6. Exception Priorities within an IPL 

X Data 
Priority Exception Enabled By Bit No. Memory 

Address 

Level 3 (Nonmaskable) 

Highest Hardware RESET - - -
III - - -
NMI - - -

Stack Error - - -
Trace - - -

Lowest SWI - - -

Levels 0, 1,2 (Maskable) 

Highest IROA (External Interrupt) IROA Mode Bits o and 1 $FFFF 

IROB (External Interrupt) IROB Mode Bits 3 and 4 $FFFF 

Host Command Interrupt HCIE 2 $FFE8 

Host Receive Data Interrupt HRIE 0 $FFE8 

Host Transmit Data Interrupt HTIE 1 $FFE8 

SSI RX Data with Exception Interrupt RIE 15 $FFED 

SSI RX Data Interrupt RIE 15 $FFED 

SSI TX Data with Exception Interrupt TIE 14 $FFED 

SSI TX Data Interrupt TIE 14 $FFED 

SCI RX Data with Exception Interrupt RIE 11 $FFFO 

SCI RX Data Interrupt RIE 11 $FFFO 

SCI TX Data Interrupt TIE 12 $FFFO 

SCI Idle Line Interrupt ILiE 10 $FFFO 

Lowest SCI Timer Interrupt TMIE 13 $FFFO 

MOTOROLA OSP56000/0SP56001 USER'S MANUAL 8-17 

III 



• 

8.2.3 Instructions Preceding the Interrupt Instruction Fetch 

The following one-word instructions are aborted when they are fetched in the cycle pre­
ceding the fetch of the first interrupt instruction word - REP, STOP, WAIT, RESET, RTI, 
RTS, Jcc, JMP, JScc, and JSR. 

Two-word instructions are aborted when the first interrupt instruction word fetched will 
replace the fetch of the second word of the two-word instruction. Aborted instructions are 
refetched again when program control returns from the interrupt routine. The PC is adjusted 
appropriately before the end of the decode cycle of the aborted instruction. 

If the first interrupt word fetch occurs in the cycle following the fetch of a one-word 
instruction not previously listed or the second word of a two-word instruction, that instruc­
tion will complete normally before the start of the interrupt routine. 

The following cases have been identified where service of an interrupt might encounter 
an extra delay: 

1. If a long interrupt routine is used to service an SWI, then the processor priority level 
is set to 3. Thus, all interrupts except other level-3 interrupts are disabled until the 
SWI service routine terminates with an RTI (unless the SWI service routine software 
lowers the processor priority level). 

2. While servicing an interrupt, the next interrupt service will be delayed according to 
the following rule: 
After the first interrupt instruction word reaches the instruction decoder, at least three 
more instructions will be decoded before decoding the next first interrupt instruction 
word. If anyone pair of instructions being counted is the REP instruction followed by 
an instruction to be repeated, then the combination is counted as two instructions 
independent of the number of repeats done. Sequential REP combinations will cause 
pending interrupts to be rejected and can not be interrupted until the sequence of 
REP combinations ends. 

3. The following instructions are not interruptable: SWI, STOP, WAIT, and RESET. 

4. The REP instruction and the instruction being repeated are not interruptable. 

5. If the trace bit in the SR is set, the only interrupts that will be processed are the 
hardware RESET, III, NMI, stack error, and trace. Peripheral and external interrupt 
requests will be ignored. The interrupt generated by the SWI instruction will be ignored. 

During an interrupt instruction fetch, two instruction words are fetched - the first from 
the interrupt starting address and the second from the interrupt starting address + 1 locations. 

8.2.4 Interrupt Types 

Two types of interrupt routines may be used: fast and long. The fast routine consists of 
the two automatically inserted interrupt instruction words. These words can contain any 

8-18 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



unrestricted, single two-word instruction or any two one-word instructions (see A.S IN· 
STRUCTION SEQUENCE RESTRICTIONS for a list of restrictions). Fast interrupt routines 
are never interruptable. 

CAUTION 

Status is not preserved during a fast interrupt routine; therefore, instructions that 
modify status should not be used at the interrupt starting address and interrupt 
starting address + 1. 

If one of the instructions in the fast routine is a JSR, then a long interrupt routine is formed. 
The following actions occur during execution of the JSR instruction when it occurs in the 
interrupt starting address or in the interrupt starting address + 1 : . 

1. The PC (containing the return address) and the SR are stacked. 

2. The loop flag is reset. 

3. The scaling mode bits are reset. 

4. The IPL is raised to disallow further interrupts at the same or lower levels (except that 
hardware RESET, NMI, stack error, trace, and SWI can always interrupt). 

5. The trace bit in the SR is cleared. 

The long interrupt routine should be terminated by an RTI. Long interrupt routines are 
interruptable by higher priority interrupts. 

S.2.5 Interrupt Arbitration 

External interrupts are internally synchronized with the processor clock (takes up to three 
T cycles) before their interrupt-pending flags are set. Each external interrupt and internal 
interrupt has its own flag. After each instruction is executed, all interrupts are arbitrated 
- i.e., all hardware interrupts that have been latched into their respective interrupt-pending 
flags and all internal interrupts. During arbitration, each interrupt's IPL is compared with 
the interrupt mask in the SR, and the interrupt is either allowed or disallowed. The remaining 
interrupts are prioritized according to the priority shown in Table 8-6, and the highest 
priority interrupt is chosen. The interrupt vector is then calculated so that the program 
interrupt controller can fetch the first interrupt instruction. Interrupt arbitration and control, 
which occurs concurrently with the fetch-decode-execute cycle, takes two instruction cycles. 
Interrupts from a given source are not buffered. The interrupt-pending flag for the chosen 
interrupt is not cleared until the second interrupt vector of the chosen interrupt is being 
fetched. A new interrupt from the same source will not be accepted for the next interrupt 
arbitration until that time. 

The internal interrupt acknowledge signal is used to clear the edge-triggered interrupt 
flags, the HC bit in the host port, the SCI timer interrupt, and the internal latches of the 
stack error, NMI, SWI, and trace interrupts. Peripheral interrupt requests that need a read/ 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 8-19 

III 



• 

write action to some register do not receive this signal, and those interrupts will remain 
pending until their registers are read/written. Also, level-triggered interrupts will not be 
cleared. The acknowledge signal will be generated after generation of the interrupt vectors, 
not before. 

8.2.6 Interrupt Instruction Fetch 

The interrupt controller generates an interrupt instruction fetch address, which points to 
the first instruction word of a two-word interrupt routine. This address is used for the next 
instruction fetch, instead of the contents of the PC, and the interrupt instru.ction fetch 
address + 1 is used for the subsequent instruction fetch. While the interrupt instructions 
are being fetched, the PC is inhibited from being updated. After the two interrupt words 
have been fetched, the PC is used for any subsequent instruction fetches. 

After both interrupt vectors have been fetched, they are guaranteed to be executed. This 
is true even if the instruction that is currently being executed is a change-of-flow instruction 
(i.e., JMP, JSR, etc.) that would normally ignore the instructions in the pipe. After the 
interrupt instruction fetch, the PC will point to the instruction that would have been fetched 
if the interrupt instructions had not been inserted. 

8.2.7 Interrupt Instruction Execution 

Interrupt instruction execution is considered "fast" if neither of the instructions of the 
interrupt service routine cause a change of flow. A JSR within a fast interrupt routine forms 
a long interrupt, which is terminated with an RTI instruction to restore the PC and SR from 
the stack and return to normal program execution. Reset is a special exception, which will 
normally contain only a JMP instruction at the exception start address. At the programmer's 
option, almost any instruction can be used in the fast interrupt routine. The restricted 
instructions include SWI, STOP, and WAIT. Figures 8-6 and 8-8 show the fast and the long 
interrupt service routines. The fast interrupt executes only two instructions and then au­
tomatically resumes execution of the main program; whereas, the long interrupt must be 
told to return to the main program by executing an RTI instruction. 

Figure 8-6 illustrates the effect of a fast interrupt routine in the stream of instruction fetches. 

Figure 8-7 shows the sequence of instruction decodes between two fast interrupts. Four 
decodes occur between the two interrupt decodes (two after the first interrupt and two 
preceding the second interrupt). The requirement for these four decodes establishes the 
maximum rate at which the DSP56000/DSP56001 will respond to interrupts - namely, one 
interrupt every six instructions (six instruction cycles if all six instructions are one instruc­
tion cycle each). Since some instructions take more than one instruction cycle, the minimum 
number of instructions between two interrupts may be more than six instruction cycles. 

8-20 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



INTERRUPT SYNCHRONIZED 
AND RECOGNIZED 

AS PENDING --"r 

ii = INTERRUPT INSTRUCTION 
n = NORMAL INSTRUCTION 

MAIN 
PROGRAM 
MEMORY 

nl 

(a) Instruction Fetches from Memory 

INTERRUPT SYNCHRONIZED AND 
- RECOGNIZED AS PENDING 

,....-INTERRUP 

MOTOROLA 

INTERRUPT CONTROL CYCLE 1 i 

INTERRUPT CONTROL CYCLE 2 

FETCH nl 

DECODE 

EXECUTE 

INSTRUCTION CYCLE COUNT 1 

i = INTERRUPT 
ii = INTERRUPT INSTRUCTION WORD 
n = NORMAL INSTRUCTION WORD 

i 

n2 

nl 

2 

iiI ii2 n3 n4 

n2 iiI ii2 n3 

nl n2 iiI ii2 

3 4 5 6 

(b) Program Controller Pipeline 

n4 

n3 n4 

7 8 

Figure 8-6. Fast Interrupt Service Routine 

OSP56000/0SP56001 USER'S MANUAL 

III 
TS RE-ENABLED 

8-21 



• 

8-22 

INTERRUPT SYNCHRONIZED 
AND RECOGNIZED 

AS PENDING ~r 

ii = INTERRUPT INSTRUCTION 
n = NORMAL INSTRUCTION 

MAIN 
PROGRAM 
MEMORY 

n1 

(a) Instruction Fetches from Memory 

INTERRUPT SYNCHRONIZED AND 
- RECOGNIZED AS PENDING 

r-- INTERRUPTS RE-ENABLED 

INTERRUPT CONTROL CY~LE 1 i 

INTERRUPT CONTROL CYCLE 2 

FETCH n1 

DECODE 

EXECUTE 

INSTRUCTION CYCLE COUNT 1 

I = INTERRUPT 
ii = INTERRUPT INSTRUCTION WORD 
n = NORMAL INSTRUCTION WORD 

6 Icyc 

i 

n2 ii1 ii2 

n1 n2 ii1 

n1 n2 

2 3 4 

i 

i 

n3 n4 n5 n6 

ii2 n3 n4 n5 

ii1 ii2 n3 n4 

5 6 7 8 

(b) Program Controller Pipeline 

ii1 ii2 

n6 ii1 

n5 n6 

9 10 

Figure 8-7. Two Consecutive Fast Interrupts 

DSP56000/DSP56001 USER'S MANUAL 

ii2 

ii1 ii2 

11 12 

MOTOROLA 



MAIN 
PROGRAM 

LONG INTERRUPT 
SERVICE ROUTINE FETCHES 

(STARTS WITH A FAST INTERRUPT) 

FETCHES iiI } JSA CAN BE IN EITHER LOCATION 
ii2 TO FORM A LONG INTERRUPT 

INTERRUPT 
SYNCHRONIZED 

AND RECOGNIZED nl AS PENDING 
n2 PROGRAM COUNTER 
n3 ii3 RESUMES OPERATION 

n4 ii4 INTERRUPTS 

INTERRUPT RE-ENABLED 

ROUTINE 

ii7 

RTI 

(a,) Instruction Fetches from Memory 

INTERRUPT SYNCHRONIZED AND 
roo- RECOGNIZED AS PENDING 

rlNTERRUPTS RE-ENABLED 

INTERRUPT CONTROL CYCLE 1 i 

INTERRUPT CONTROL CYCLE 2 

FETCH nl 

DECODE 

EXECUTE 

INSTRUCTION CYCLE COUNT 1 

i = INTERRUPT 
ii = INTERRUPT INSTRUCTION WORD 
n = NORMAL INSTRUCTION WORD 

i 

n2 iiI 

nl n2 

nl 

2 3 

ii2 ii3 ii4 ii5 iiB ii7 

iiI ii2 ii3 ii4 ii5 ii6 

n2 iiI ii2 ii3 ii4 ii5 

4 5 6 7 8 9 

(b) Program Controller Pipeline 

RTI -
ii7 RTI 

iiB ii7 

10 11 

Figure 8-8. Long Interrupt Service Routine 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 

n3 n4 

NOP n3 n4 

RTI NOP n3 n4 

12 13 14 15 

8-23 

III 



• 

Execution of a fast interrupt routine always conforms to the following rules: 

1. A JSR to the starting address of the interrupt service routine is not located at one 
of the two interrupt vector addresses. 

2. The processor status is not saved. 

3. The fast interrupt routine may (but should not) modify the status of the normal 
instruction stream. 

4. The fast interrupt routine may contain any single two-word instruction or any two 
one-word instructions except SWI, STOP, and WAIT. 

5. The PC, which contains the address of the next instruction to be executed in normal 
processing, remains unchanged during a fast interrupt routine. 

6. The fast interrupt returns without an RTI. 

7. Normal instruction fetching resumes using the PC following the completion of the 
fast interrupt routine. 

8. A fast interrupt is not interruptable. 

9. A JSR instruction within the fast interrupt routine forms a long interrupt routine. 

10. The primary application is to move data between memory and 1/0 devices. 

Execution of a long interrupt routine always adheres to the following rules: 

1. A JSR to the starting address of the interrupt service routine is located at one of the 
two interrupt vector addresses. 

2. During execution of the JSR instruction, the PC and SR are stacked. The interrupt 
mask bits of the SR are updated to mask interrupts of the same or lower priority. The 
loop flag, trace bit, and scaling mode bits are reset. 

3. The first instruction word of the next interrupt service (of higher IPL) wilt reach the 
decoder only after the decoding of at least four instructions following the decoding 
of the first instruction of the previous interrupt. 

4. The interrupt service routine can be interrupted - i.e., nested interrupts are supported. 

5. The long interrupt routine, which can be any length, should be terminated by an RTI, 
which restores the PC and SR from the stack. 

Figure 8-8 illustrates the effect of a long interrupt routine on the instruction pipeline. A 
short JSR (a JSR with 12-bit absolute address) is used to form the long interrupt routine. 
For this example, word 6 of the long interrupt routine is an RTI. The point at which interrupts 
are re-enabled and subsequent interrupts are allowed is shown to illustrate the noninter­
ruptable nature of the early instructions in the long interrupt service routine. 

Either one of the two instructions of the fast interrupt can be the JSR instruction that forms 
the long interrupt. Figures 8-9 and 8-10 show the two possible cases. If the first fast interrupt 
vector instruction is the JSR, the second instruction is never used. 

8-24 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



MAIN 
PROGRAM 

n1 

n2 

FAST INTERRUPT 
VECTOR 

(a) Instruction Fetches from Memory 

INTERRUPT SYNCHRONIZED AND 
- RECOGNIZED AS PENDING 

LONG INTERRUPT 
SUBROUTINE 

-INTERRUPTS RE-ENABLED 

MOTOROLA 

INTERRUPT CONTROL CYCLE 1 i 

INTERRUPT CONTROL CYCLE 2 

FETCH 

DECODE 

EXECUTE 

INSTRUCTION CYCLE COUNT 1 

i == INTERRUPT 
ii == INTERRUPT INSTRUCTION WORD 
n == NORMAL INSTRUCTION WORD 

i 

n1 JSR 

n1 

2 3 

- ii2 ii3 ii4 iin 

JSR NOP ii2 ii3 ii4 

n1 JSR NOP ii2 ii3 

4 5 6 7 8 

(b) Program Controller Pipeline 

RTI - n2 

iin Rli NOP 

ii4 iin RTI 

9 10 11 

Figure 8-9. JSR First Instruction of a Fast Interrupt 

DSP56000/DSP56001 USER'S MANUAL 

n2 

NOP n2 

12 13 

• 

8-25 



II 

8-26 

MAIN 
PROGRAM 

nl 

n2 

FAST INTERRUPT 
VECTOR 

(a) Instruction Fetches from Memory 

INTERRUPT SYNCHRONIZED AND 
- RECOGNIZED AS PENDING 

LONG INTERRUPT 
SUBROUTINE 

r'NTERRU'TS RE-ENABlED 

INTERRUPT CONTROL CYCLE 1 i 

INTERRUPT CONTROL CYCLE 2 

FETCH 

DECODE 

EXECUTE 

INSTRUCTION CYCLE COUNT 1 

i = INTERRUPT 
ii = INTERRUPT INSTRUCTION WORD 
n = NORMAL INSTRUCTION WORD 

i 

nl iiI JSR 

nl iiI 

nl 

2 3 4 

- ii3 ii4 ii5 ii6 

JSR NOP ii3 ii4 ii5 

iiI JSR NOP ii3 ii4 

5 6 7 8 9 

(b) Program Controller Pipeline 

iin RTI - n2 

ii6 iin RTI NOP 

ii5 ii6 iin RTI 

10 11 12 13 

Figure 8-10. JSR Second Instruction of a Fast Interrupt 

DSP56000/DSP56001 USER'S MANUAL 

n2 

NOP n2 

14 15 

MOTOROLA 



An REP instruction is treated as a single two-word instruction, regardless of how many 
times it repeats the second instruction of the pair. Instruction fetches are suspended and 
will be reactivated only after the LC is decremented to one (see Figure 8-11). During the 
execution of n2 in Figure 8-11, no interrupts will be serviced. When LC finally decrements 
to one, the fetches are reinitiated, and pending interrupts can be serviced. 

Sequential REP packages will cause pending interrupts to be rejected until the sequence 
of REP packages ends. REP packages are not interruptable because the instruction being 
repeated is not refetched. While that instruction is repeating, no instructions are fetched 
or decoded, and an interrupt can not be inserted. For example, in Figure 8-12, if n1, n3, 
and n5 are all REP instructions, no interrupts will be serviced until the last REP instruction 
(n5 and its repeated instruction, n6) completes execution. 

8.3 RESET PROCESSING STATE 

The reset processing state is entered in response to the external RESET pin being asserted 
(a hardware reset). Upon entering the reset state (see Figure 8-13): 1) internal peripheral 
devices are reset, and their pins revert to general-purpose 1/0 pins; 2) the modifier registers 
are set to $FFFF; 3) the interrupt priority register is cleared; 4) the BCR is set to $FFFF, 
thereby inserting 15 wait states in all external memory accesses; 5) the stack pointer is 
cleared; 6) the scaling mode, trace mode, loop flag, and condition code bits of the SR are 
cleared, and the interrupt mask bits of the SR are set; 7) the data ROM enable bit, the stop 
delay bit, and the memory strobe bit are cleared; and 8) the DSP remains in the reset state 
until RESET is deasserted. Upon leaving the reset state 9), the chip operating mode bits 
ofthe OMR are loaded from the external mode select pins (MODA, MODB), and 10) program 
execution begins at program memory address $EOOO in normal expanded mode or at $0000 
in all other operation modes. The first instruction must be fetched and then decoded before 
executing. Therefore, the first instruction execution is two instruction cycles after the first 
instruction fetch. 

Figure 8-14 is a copy of the output from the DSP56000/DSP56001 simulator showing all of 
the DSP56000/DSP56001 registers before the hardware reset and showing only the registers 
that were written by the hardware reset after the reset occurred. The instructions executed 
are as follows: 

1. Reset s - Resets the simulator. 

2. Change OMR 0 - Puts the DSP56000/DSP56001 in mode O. 

3. Display all- Displays all registers. Note that OMR=$OO. 

4. Reset d - Is a hardware reset. 

5. Display w - Causes the display command to only display the registers that were 
written in the last instruction. 

6. Display - Displays the contents of the registers that were written by the hardware 
reset. 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 8-27 

• 



II 

INTERRUPT SYNCHRONIZED 
AND RECOGNIZED 

AS PENDING ..... 

MAIN 
PROGRAM 
FETCHES 

ADDITIONAL INTERRUPTS I __ .2n~2 ---l::;::==~:"'----------
DISABLED DURING "" r n1 REP m 

FAST INTERRUPT n3 

INTERRUPTS -+- n4 
RE-ENABLED n5 

i = INTERRUPT INSTRUCTION 
n = NORMAL INSTRUCTION 

n6 

(a) Instruction Fetches from Memory 

INTERRUPT SYNCHRONIZED AND 
- RECOGNIZED AS PENDING 

FAST INTERRUPT 
SERVICE ROUTINE FETCHES 
(FROM BETWEEN P:$OOOQ 
AND P:$003FI 

rlNTERRUPTS RE-ENABLED 

8-28 

INTERRUPT CONTROL CYCLE 1 i 

INTERRUPT CONTROL CYCLE 2 

FETCH REP 

DECODE 

EXECUTE 

INSTRUCTION CYCLE COUNT 1 

i = INTERRUPT 
ii = INTERRUPT INSTRUCITON WORD 
n = NORMAL ISNTRUCTION WORD 

i% = INTERRUPT REJECTED 

i% 

n2 n3 

REP NOP 

REP 

2 3 

i 

i 

n4 

n2 n2 n2 n2 n3 

NOP n2 n2 n2 n2 

4 5 6 7 8 

(b) Program Controller Pipeline 

ii1 ii2 

n4 ii1 

n3 n4 

9 10 

Figure 8-11. Interrupting an REP Instruction 

DSP56000/DSP56001 USER'S MANUAL 

n5 n6 

ii2 n5 

ii1 ii2 

11 12 

MOTOROLA 



MAIN 
PROGRAM 
FETCHES 

INTERRUPT 
PENDING ----++---n-7 --....... :--.. 

n8 

n9 

(a) Instruction Fetches from Memory 

INTERRUPT SYNCHRONIZED AND 
r- RECOGNIZED AS PENDING 

INTERRUPT CONTROL CYCLE 1 i 

INTERRUPT CONTROL CYCLE 2 i% 

FETCH REP n2 

DECODE REP 

EXECUTE 

INSTRUCTION CYCLE COUNT 1 

i = INTERRUPT 
ii = INTERRUPT INSTRUCTION WORD 
n = NORMAL INSTRUCTION WORD 

i% = INTERRUPT REJECTED 

2 

REP n4 

NOP n2 n2 n2 REP 

REP NOP n2 n2 n2 

3 4 5 6 7 

REP 

NOP 

REP 

8 

n6 n7 

n4 n4 n4 REP NOP 

NOP n4 n4 n4 REP 

9 10 11 12 13 

(b) Program Controller Pipeline 

n6 

NOP 

14 

r-- INTERRUPTS RE ENABLED 

i 

i 

n8 iiI ii2 n9 

n6 n6 n7 n8 iiI ii2 n9 

n6 n6 n6 n7 n8 iiI ii2 n9 

15 16 17 18 19 20 21 22 

Figure 8-12. Interrupting Sequential REP Instructions 

MOTOROLA OSP56000/0SP56001 USER'S MANUAL 8-29 

III 



• 

8-30 

... 11('----- ASSERTION OF RESET 

1. RESET ON-CHIP PERIPHERALS 
IPERIPHERAL PINS REVERT TO 
GENERAL-PURPOSE 1/0 PINSI. 

RESET 
PORT BAND C 
SCI, SSt HOST 

2. SET MODIFIER REGISTERS TO $FFFF. MO-M71 $FFFF I 
3. CLEAR INTERRUPT PRIORITY REGISTER. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

X:SFFFF I a I 0 I a I a I 0 I 0 I 0 I 0 I a I 0 I a I a I 0 I a I 0 I a I 
SCI SSI HOST RESERVED IROB IROA 

4. SET BUS CONTROL REGISTER TO $FFFF. 

5 4 3 2 1 a 
5. CLEAR THE STACK POINTER. 101010101010 I 

UF SE P3 P2 P1 PO 

6. INITIALIZE STATUS REGISTER. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

10·1010 I 0 I 0 I 0 1111 10 101 E I U I N I Z I V I C I 
LF T S1 SO 11 10 

7. CLEAR THE DATA ROM ENABLE BIT, STOP DELAY BIT, AND THE BUS STROBE 
ENABLE BIT IN THE OMR REGISTER. 

8. STAY IN RESET UNTIL NEGATED. 

ME SD 

9. LOAD OPERATING MODE REGISTER FROM MODE PINS. 

10. START NORMAL EXECUTION: 
IF MODE 2 P:$EOOO 
ELSE P:$OOOO 

Figure·8-13. Reset Sequence 

DSP56000/DSP56001 USER'S MANUAL 

DE 

MOTOROLA 



reset s 
ehange omr 0 
display all 

x= $000000000006 y= 
a= $00000000000000 b= 

xl= $000000 xo= 
yl= $000000 yo= 

a2= $00 al= $000000 aO= 
b2= $00 bl= $000000 bO= 

pe= $EOOO sr= 
la= $0000 le= 

ssh= $0000 ssl= 
pbe= $0 pbddr= 
ipr= $0000 ber= 
ier= $00 evr= 
rxh= $00 rxm= 
ssr= $03 ser= 
tsr= $00 ssisr= 
eye=OOOOOO ietr= 
P:$EOOO 000000 

reset d 
display w 
display 

pe= $EOOO 

pbe= $0 
ipr= $0000 
ier= $00 
ssr= $03 

X:$FFE3 
X:$FFE8 
X:$FFEC 
X:$FFFO 
X:$FFFF 

sr= 

pbddr= 
ber= 
evr= 
scr= 

ssisr= 
$000000 
$000000 
$000000 
$000000 
$000000 

P:$EOOO 000000 

$0300 omt= 
$0000 
$0000 sp= 
$0000 pbd= 
$FFFF htx= 

$12 isr= 
$00 rxl= 

$0000 stx= 
$40 tx= 

000000 ent1= 
= NOP 

$0300 omr= 

sp= 
$0000 
$FFFF 

$12 isr= 
$0000 

$40 

$000002 
$000000 
$000003 

= NOP 

$000000000000 
$00000000090000 
$000000 r7= $0000 n7= $0000 
$000000 r6= $0000 n6= $0000 
$000000 r5= $0000 n5= $0000 
$000000 r4= $0000 n4= $0000 

r3= $0000 n3= $0000 
$00 r2= $0000 n2= $0000 

rl= $0000 nl= $0000 
$00 rO= $0000 nO= $0000 

$0000 pcd= $0000 peddr= $0000 
$000000 hrx= $000000 hsr= $02 

$06 ivr= $OF 
$00 tXh= $00 txm= $00 
$00 srx= $00 seer= $0000 

$000000 rx= $000000 era= $0000 
000000 ent2= 000000 ent3=000000 

$02 

$00 
peddr= $0000 

hsr= $02 
$06 ivr= $OF 

seer= $0000 
era= $0000 

$000040 
$000000 

Figure 8-14. Reset When OMR = 0 . 

m7= $FFFF 
m6= $FFFF 
m5= $FFFF 
m4= $FFFF 
m3= $FFFF 
m2= $FFFF 
ml= $FFFF 
mO= $FFFF 

pee= $0000 
her= $00 

tXl= $00 
stxa= $00 
erb= $0000 

ent4=000000 

m7= $FFFF 
m6= $FFFF 
m5= $FFFF 
m4= $FFFF 
m3= $FFFF 
m2= $FFFF 
m1= $FFFF 
mO= $FFFF 

pee= $0000 
her= $00 

erb= $0000 

The OMR changed from $00 to $02, which is mode 2, because the MODAlIROA and MODBI 
IROB pins are set to a one and zero, respectively (binary 2) in the simulator. If the DSP had 
been in any other mode, the result would have been the same. The X: memory locations 
written to are the memory locations of the peripheral registers. The internal peripheral 
registers are memory mapped between X:$FFCO and X:$FFFF: 

The internal peripheral devices (HI, SSI, SCI, and ports A, B, and C) can be reset by several 
methods - hardware (HW) reset, software (SW) reset, individual (I) reset, and stop (ST) 
reset. Depending on the type of reset, the registers of these devices will be affected dif­
ferently (see SECTIONS 9 PORTA, SECTION 10 PORT B, and SECTION 11 PORT C for 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 8-31 

• 



additional information on the internal peripherals). Tables 8-7-8-11 show how each bit in 
these registers is affected by the various resets. The HI is programmed for both the DSP560001 
DSP56001 side of the interface and the host processor side of the interface. 

The symbols used are as follows: 

HW - Hardware reset is caused by asserting the external pin RESET. 

SW - Software reset is caused by executing the RESET instruction. 

I - Individual reset is caused by all of the liD pins for a given internal 110 device being 
configured for general-purpose I/O. These liD devices are the HI, SSI, and SCI. The 
conditions for these resets are: 

1. SSI individual reset occurs when port C control register bits 3-8 are set to zero. 

2. SCI individual reset occurs when port C control register bits 0-2 are set to zero. 

3. HI individual reset occurs when port B control register bit 0 is set to zero. 

ST - Stop reset is caused by executing the STOP instruction. 

1 - The bit is set during the xx reset. 

o - The bit is clear during the xx reset. 

- - The bit is not changed during the xx reset. 

8-32 

Table 8-7. HI Reset Effects - DSP56000/DSP56001 
Programming Model 

Register Register 
HW Reset SW Reset I Reset ST Reset 

Name Data Bits 

HF(3-2) 0 0 - -

HCR HCIE 0 0 - -
X:$FFE8 HTIE 0 0 - -

HRIE 0 0 - -

DMA 0 0 0 0 

HF (1-0) 0 0 0 0 
HSR 

HCP 0 0 0 0 X:$FFE9 
HTDE 1 1 1 1 

HRDF 0 0 0 0 

HRX 
HRX(23-0) 

X:$FFEB - - - -

HTX 
HTX(23-0) 

X:$FFEB 
- - - -

DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



Table 8-8. HI Reset Effects - Host Processor Programming Model 

Register Register 
HW Reset SW Reset I Reset ST Reset 

Name Data Bits 

INIT 0 0 0 0 

HM(1-0) 0 0 0 0 

ICR $0 TREO 0 0 0 0 

RREO 0 0 0 0 

HF(1-0) 0 0 0 0 

CVR $1 
HC 0 0 0 0 

HV(4-0) $12 $12 $12 $12 

HREQ 0 0 0 0 

DMA 0 0 0 0 

ISR $2 
HF(3-2) 0 0 - -

TRDY 1 1 1 1 

TXDE 1 1 1 1 

RXDF 0 0 0 0 

IVR $3 IV(7-0) $OF $OF - -

RXH(23-16) - - - -

RX $5, 6, 7 RXM(15-8) - - - -
RXL(7-0) - - - -

TXH(23-16) - - - -

TX $5, 6, 7 TXM(15-8) - - - -

TXL(7-0) - - - - III 

MOTOROLA OSP56000/0SP56001 USER'S MANUAL 8-33 



• 

8-34 

Table 8-9. 551 Reset Effects 

Register Register 
HW Reset 

Name Data Bits 

WL(2-0) 0 

CRA PSR 0 
X:$FFEC DC(4-0) 0 

PM(7-0) 0 

RIE 0 

TIE 0 

RE 0 

TE 0 

MOD 0 
CRB 

GCK 0 X:$FFED 
SYN 0 

FSLO 0 

FSL1 0 

SCKD 0 

SCD(2-0) 0 

OF(1-0) 0 

RDF 0 

TDE 1 

ROE 0 
SR 

TUE 0 X:$FFEE 
RFS 0 

TFS 0 

IF(1-0) 0 

RX RDR(23-0) -
X:$FFEF 

TX TDR(23-0) -X:$FFEF· 

SRSR* RDR(23-0) -

STSR** RDR(23-0) -

*SRSR - SSI serial receive shift register 
* *STSR - SSI serial transmit shift register 

SW Reset I Reset 

0 -
0 -
0 -
0 -
0 -

0 -

0 -

0 -
0 -
0 -

0 -
0 -
0 -
0 -

0 -
0 -
0 0 

1 1 

0 0 

0 0 

0 0 

0 0 

0 0 

- -

- -

- -

- -

DSP56000/DSP56001 USER'S MANUAL 

ST Reset 

-
-
-
-
-

-
-

-
-
-

-
-
-
-
-

-
0 

1 

0 

0 

0 

0 

0 

-

-

-

-

MOTOROLA 



MOTOROLA 

Table 8-10. SCI Reset Effects 

Register Register 
HW Reset SW Reset I Reset 

Name Data Bits 

SCKP 0 0 -

TMIE 0 0 -
TIE 0 0 -

RIE 0 0 -
ILiE 0 0 -
TE 0 0 -

SCR 
RE 0 0 X:$FFFO -

WOMS 0 0 -

RWU 0 0 -
WAKE 0 0 -
SBK 0 0 -

SSFTD 0 0 -

WDS(2-0) 0 0 -
R8 0 0 0 

FE 0 0 0 

PE 0 0 0 

SSR OR 0 0 0 
X:$FFF1 IDLE 0 0 0 

RDRF 0 0 0 

TORE 1 1 1 

TRNE 1 1 1 

TCM 0 0 -

RCM 0 0 -
SCCR 

SCP 0 0 X:$FFF2 -

COD 0 0 -
CD(11-0) 0 0 -

SRX SRX(23-0) - - -
X:$FFF4 LOW 
X:$FFF5 MID 
X:$FFF6 HIGH 

STX STX(23-0) - - -
X:$FFF4 LOW 
X:$FFF5 MID 
X:$FFF6 HIGH 
X:$FFF3 STXA 

SRSH* SRSH(23-0) - - -

STSH** STSH(23-0) - - -

*SRSH - SCI receive shift register 
**STSH - SCI transmit shift register 

DSP56000/DSP56001 USER'S MANUAL 

ST Reset 

-

-
-
-
-
-
-
-
-

-
-

-

-
0 

0 

0 

0 

0 

0 

1 

1 II 
-

-
-
-
-

-

-

-

-

8-35 



II 

The definitions for individual reset for the ports A, B, and C register settings during indi­
vidual reset are shown in Table 8-11. 

Table 8-11. Ports A, S, and C Reset Effects 

Register Register 
HW Reset SW Reset I Reset S1 Reset Comments 

Name Data Bits 

BCR BCR(15-0) $FFFF - - - Port A Control 
X:$FFFE 

PBC PBCO 0 0 N/A - Port B Control 
X:$FFEO 

PBDDR PBDDR(14-0) 0 0 N/A - Port B Direction 
X:$FFE2 

PBD PBD(14-0) - - N/A - Port B Data 
X:$FFE4 

PCC PCC(8-0) 0 0 N/A - Port C Control 
X:$FFE1 

PCDDR PCDDR(8-0) 0 0 N/A - Port C Direction 
X:$FFE3 

PCD PCD(8-0) - - N/A - Port C Data 
X:$FFE5 

8.4 WAIT PROCESSING STATE 

The wait processing state is a low power-consumption state entered by execution of the 
WAIT instruction. In the wait state, the internal clock is disabled from all internal circuitry 
exceptthe internal peripherals (e.g., the interrupt controller, the SCI, SSI, and HI). All internal 
processing is halted until an unmasked interrupt occurs or until the DSP is reset. The BRI 
BG circuits remain active during the wait state. 

The wait state is one of two low power-consumption states. As a general rule, the normal 
operating current for the DSP56000/DSP56001 is typically less than 100 ma for a 20.5-MHz 
clock. The current is typically reduced to 'less than 10 ma (for a 20.5-MHz clock) in the wait 
state and to less than 1.0 ma (independent of the clock frequency) in the stop state. See 
the DSP56001 Advance Information Data Sheet (ADI1290) for' exact figures. There are 
several other ways that power can be reduced. Power consumption varies linearly with 
both clock frequency and power-supply voltage. Changing clock frequency from 20 MHz 
to 4 MHz can reduce power consumption 75 percent (Le., linearly with decreasing fre­
quency). Changing the memory wait states from 0 to 15 can reduce power consumption 
by more than half during external memory accesses. 

Figure 8-15 shows a WAIT instruction being fetched, decoded, and executed. It is fetched 
as n3 in this example and, during decode, is recognized as a WAIT instruction. The following 
instruction (n4) is aborted, and the internal clock is disabled from all internal circuitry 
except the internal peripherals. The processor stays in 'this state until an interrupt or reset 
is recognized. The response time is variable due to the timing of the interrupt with respect 
to the internal clock. Figure 8-15 shows the result of a fast interrupt bringing the processor 

8-36 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



out of the wait state. The two appropriate interrupt vectors are fetched and put in the 
instruction pipe. The next instruction fetched is n4, which had been aborted earlier. In­
struction execution proceeds normally from this point. 

INTERRUPT SYNCHRONIZED AND 
-RECOGNIZED AS PENDING 

INTERRUPT CONTROL CYCLE 1 i 

INTERRUPT CONTROL CYCLE 2 i 

FETCH n3 n4 - iiI ii2 n4 n5 

DECODE n2 WAIT - iiI ii2 n4 

EXECUTE nl n2 WAIT iiI ii2 

INSTRUCTION CYCLE COUNT 1 2 3 4 5 6 7 8 9 10 

i = INTERRUPT L ONLY INTERNAL PERIPHERALS 
ii = INTERRUPT INSTRUCTION WORD 
n = NORMAL INSTRUCTION WORD 

RECEIVE CLOCK 

Figure 8-15. Wait Instruction Timing 

Figure 8-16 shows an example of the WAIT instruction being executed at the same time 
that an interrupt is pending. Instruction n4 is aborted as before. There is a five-instruction­
cycle delay caused by the WAIT instruction; then the interrupt is processed normally. The 
internal clocks are not turned off, and the net effect is that of executing eight NOP instruc­
tions between the execution of n2 and ii1. 

MOTOROLA 

INTERRUPT CONTROL CYCLE 1 

INTERRUPT CONTROL CYCLE 2 

FETCH n3 

DECODE n2 

EXECUTE nl 

INSTRUCTION CYCLE COUNT 1 

i ,= INTERRUPT 
ii= INTERRUPT INSTRUCTION WORD 
n ,~ NORMAL INSTRUCTION WORD 

n4 

WAIT 

n2 

2 

INTERRUPT SYNCHRONIZED AND 
-RECOGNIZED AS PENDING 

i 

i 

- - - - - - iiI ii2 

- - - - - - - iiI 

WAIT - - - - - - -
3 4 5 6 7 8 9 10 

,~ ________ ~ ~ ________ J/ 

V 
EQUIVALENT TO EIGHT NOPs 

n4 

ii2 

iiI 

11 

Figure 8-16 Simultaneous Wait Instruction and Interrupt 

DSP56000/DSP56001 USER'S MANUAL 8-37 

• 



II 

During the wait state, the BR/BG circuits remain active. Before BR is asserted (see Table 
8-12), all port A signals are driven. While the port is inactive, the control signals are 
deasserted, the data signals are inputs, and the address signals remain as the last address 
read or written. The signal timing during a read or write is given in the timing diagrams 
in the DSP56001 Advance Information Data Sheet (ADI1290). When BG is asserted, all 
signals are three-stated (high impedance). Immediately after BR is deasserted, the RD and 
WR signals are driven and are deasserted; all other signals remain in the high-impedance 
state. During the first TO clock state following the exit from the wait state, control signals 
PS, DS, and xiV are again driven; the data and address signals remain in the high-imped­
ance state. During the first external access, all signals return to their normal operating 
mode. 

Table 8-12. BR/BG During WAIT 
-

Before BR After BR After Return to After First 
Signal While BG 

Asserted Asserted Peasserted Normal State External Access 

PS Driven Three-state Three-state Driven Driven 

DS Driven Three-state Three-state Driven Driven 

XN Driven Three-state Three-state Driven Driven 

RD Driven Three-state Dr[ven Driven Driven 

WR Driven Three-state Driven Driven Driven 

Data Driven Three-state Three-state Three-state Driven 

Address Driven Three-state Three-state Three-state Driven 

8.5 STOP PROCESSING STATE 

The stop processing state, which is the lowest power-consumption state, is entered by the 
execution ofthe STOP instruction. In the stop state, the clock oscillator is gated off; whereas, 
in the wait mode, the clock oscillator remains active. The chip clears all peripheral interrupts 
(HI, SSI, and SCI) and external interrupts (lROA, IROB, and NMI) when entering the stop 
state. Trace or stack errors that were pending, remain pending. The priority levels of the 
peripherals remain as they were before the STOP instruction was executed. The SCI, SSI, 
and HI are held in their respective individual reset states while in the stop state. 

All activity in the processor is halted until one of the following actions occurs: 
1. A low level is applied to the IROA pin. 
2. A low level is applied to the RESET pin. 

Either of these actions will gate on the oscillator, and, after a clock stabilization delay, 
clocks to the processor and peripherals will be re-enabled. The clock stabilization delay 
period is determined by the stop delay (SD) bit in the OMR. 

The stop sequence is composed of eight instruction cycles called stop cycles. These are 
differentiated from normal instruction cycles because the fourth cycle is stretched an in­
determinant period of time while the four-phase clock is turned off. 

8-38 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



The STOP instruction is fetched in stop cycle 1 of Figure 8-17, decoded in stop cycle 2 
(which is where it is first recognized as a stop command), and executed in stop cycle 3. 
The next instruction (n4) is fetched during stop cycle 2 but is not decoded in stop cycle 3 
because, by that time, the STOP instruction prevents the decode. The processor stops the 
clock and enters the stop mode. The processor will stay in the stop mode until it is restarted. 

IROA ---------------.U 

FETCH n3 n4 - -
DECODE n2 STOP - -

EXECUTE n1 n2 STOP -

STOP CYCLE COUNT 1 2 3 4 

CLOCK STOPPED"~ 

IROA = INTERRUPT REQUEST A SIGNAL 
n = NORMAL INSTRUCTION WORD 

STOP = DECODED STOP INSTRUCTION" 

.. 
'4 n4 
'4 

'4 5 6 7 8 (91 

~'1 L RESUME STOP CYCLE CO 
INTERRUPTS ENABLED 

- 131072 T OR 16 T CYCLE COUN 

Figure 8-17. STOP Instruction Sequence 

UNT 4, 

T STARTED 

Figure 8-18 illustrates restarting the system by asserting the IRQA signal. If the exit from 
stop state was caused by a low level on the IRQA pin, then the processor will service the 
highest priority pending interrupt. If no interrupt is pending, then the processor resumes 
at the instruction following the STOP instruction that caused the entry into the stop state. 

IROA 

FETCH n3 n4 - -

DECODE n2 STOP - -
EXECUTE n1 n2 STOP -

STOP CYCLE COUNT 1 2 3 " 4 

CLOCK STOPPED J 
IROA = INTERRUPT REQUEST A SIGNAL 

n = NORMAL INSTRUCTION WORD 
STOP = DECODED STOP INSTRUCTION 

mnn 
ii1 

5 6 7 8 (91 

~L RESUME STOP CYCLE C OUNT 4, 
INTERRUPTS ENABLED 

i-- T R 16 T CYCLE CO 131,072 a UNT STARTED 

Figure 8-18. STOP Instruction Sequence Followed by IRQA 

MOTOROLA OSP56000/0SP56001 USER'S MANUAL 8-39 

• 



II 

An IRQA deasserted before the end of the stop cycle count will not be recognized as 
pending. If IRQA is asserted when the stop cycle count completes, then an IRQA interrupt 
will be recognized as pending and will. be arbitrated with any other interrupts. 

Specifically, when IRQA is asserted, the internal clock generator is started and begins a 
delay determined by the SD bit of the OMR. If the internal clock oscillator is used, the SD 
bit should be set to zero, which enables a delay count of 128K T cycles (131,072 T cycles) 
to allow the clock oscillator to stabilize. If a stable external clock is used, the SD bit may 
be set to one, which enables a 16 T cycle delay. 

The following description assumes that SD = ° (the 128K T counter is used). During the 
128K T count, interrupts are ignored until the last few count cycles. At this time, the 
interrupts are synchronized. At the end of the 128K T cycle delay period, the chip restarts 
instruction processing, stop cycle 4 is completed (interrupt arbitration occurs at this time), 
and stop cycles 5, 6, 7, and 8 are executed (it takes 17T from the end of the 128K T delay 
to the first instruction fetch). If the IRQA signal is released (pulled high) after a minimum 
of 4T but less than 128K T cycles, no IRQA interrupt will occur, and the instruction fetched 
after stop cycle 8 will be the next sequential instruction (n4 in Figure 8-18). An IRQA interrupt 
will be serviced (as shown in Figure 8-18) if 1) the IRQA signal had previously been initialized 
as level sensitive, 2) IRQA is held low from the end of the 128K T cycle delay counter to 
the end of stop cycle count 8, and 3) no interrupt with a higher interrupt level is pending. 
If IRQA is not asserted during the last part of the STOP instruction sequence (6, 7, and 8) 
and if no interrupts are pending, the processor will refetch the next sequential instruction 
(n4). Since the IRQA signal is asserted (see Figure 8-18), the processor will recognize the 
interrupt and fetch and execute the instructions at P:$0008 and P:$0009 (the IRQA interrup.t 
vector locations). 

To ensure servicing IRQA immediately after leaving the stop state, the following steps 
must be taken before the execution of the STOP instruction: 

1. Define IRQA as level sensitive. 

2. Define IRQA priority as higher than the other sources and higher than the program 
priority. 

3. Ensure that no stack error or trace interrupts are pending. 

4. Execute the STOP instruction and enter the stop state. 

5. Recover from the stop state by asserting the IRQA pin and holding it asserted for the 
whole clock recovery time. If it is low, the IRQA vector will be fetched. Also, the user 
must ensure that NMI will not be asserted during these last three cycles; otherwise, 
NMI will be serviced before IRQA because NMI priority is higher; 

6. The exact elapsed time for clock recovery is unpredictable. The external device that 
asserts IRQA must wait for some positive feedback, such as specific memory access 
or a change in some predetermined 1/0 pin, before deasserting IRQA. 

8-40 DSP56000/0SP56001 USER'S MANUAL MOTOROLA 



The STOP sequence totals 131,104 T cycles (if SD=O) or 16 T cycles (if SD=1) in addition 
to the period with no clocks from the stop fetch to the IROA vector fetch (or next instruction). 
However, there is an additional delay if the internal oscillator is used. An indeterminant 
period of time is needed for the oscillator to begin oscillating and then stabilize its am­
plitude. The processor will still count 131,104 T cycles (or 16 T cycles), but the period of 
the first oscillator cycles will be irregular; thus, an additional 'period of 19,000 T cycles 
should be allowed for oscillator irregularity (the specification recommends a total minimum 
period of 150,000 T cycles for oscillator stabilization). If an external oscillator is used that 
is already stabilized, no additional time is needed. 

If the STOP instruction is executed when the IROA signal is asserted, the clock generator 
will not be stopped, but the four-phase clock will be disabled for the duration of the 128K 
T cycle (or 19 T cycle) delay count. In this case, the STOP looks like a 131,072K + 35 T 
cycle (or 51 T cycle) NOP, since the STOP instruction itself is eight instruction cycles long 
(32 T). 

A trace or stack error interrupt pending before entering the stop state is not cleared and 
will remain pending. During the clock stabilization delay, all peripheral and external inter­
rupts are cleared and ignored (includes all SCI, SSI, HI, IROA, IROB, and NMI interrupts, 
but nottrace or stack error).lfthe SCI, SSI, or HI have interrupts enabled in 1) their respective 
control registers and 2) in the interrupt priority register, then interrupts like SCI transmitter 
empty will be immediately pending after the clock recovery delay and will be serviced 
before continuing with the next instruction. If peripheral interrupts must be disabled, the 
user should disable them with either the control registers or the interrupt priority register 
before the STOP instruction is executed. 

If RESET is used to restart the processor (see Figure 8-19), the 128K T cycle delay counter 
would not be used, all pending interrupts would be discarded, and the processor would 
immediately enter the reset processing state as described in 8.3 RESET PROCESSING 
STATE. The stabilization time required for the clock (RESET should be asserted for this 
time) is only 50 T for a stabilized external clock but is the same 150,000 T for the internal 
oscillator. These stabilization times are recommended times but are not imposed by internal 
timers or time delays. The DSP fetches instructions immediately after exiting reset. If the 
user wishes to use the 128K T (or 16 T) delay counter, it can be started by asserting IROA 
for a short time (about two clock cycles). 

During the stop mode, the port A bus is frozen. The state of each pin immediately before 
executing the STOP instruction will be held until the DSP leaves the stop state. Port A is 
not three-stated, and the BR/BG circuits are not operational. However, port A will remain 
three-stated if BG was asserted before the STOP instruction was executed. One way to 
release the port A bus for use while the DSP is in the stop state is to use a port B or port 
C pin to initiate a bus request before executing the STOP instruction. 

MOTOROLA OSP56000/0SP56001 USER'S MANUAL 8-41 

-



III 

8-42 

PROCESSOR ENTERS -RESET STATE 

INTERRUPT CONTROL CYCLE 1 

INTERRUPT CONTROL CYCLE 2 

FETCH n3 n4 - -

DECODE n2 STOP - -

EXECUTE nl n2 STOP -

STOP CYCLE COUNT 1 2 3 4 

IJ CLOCK STOPPED 

RESET = SIGNAL APPLIED TO RESET PIN 
n = NORMAL INSTRUCTION WORD 

nA, nB, nC = INSTRUCTIONS IN RESET ROUTINE 
STOP = DECODED STOP INSTRUCTION 

PROCESSOR LEAVES RESET STATE -I 
.~ 

.~~ 
~~ 
~~ nap nA nB nC nD nE 

J..~ nap nap nA nB nC nD 

~~ nap nap nap nA nB nC 

~~ , 

Figure 8·19. STOP Instruction Sequence Recovering with RESET 

DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



SECTION 9 
PORTA 

Port A is the memory expansion port that can be used for either memory expansion or for 
memory-mapped I/O (see 2.9.1 Expansion Port (Port A)). A number of features make port 
A versatile and easy to use. These features provide a low-parts-count connection with fast 
memories, slow memories/devices, and multiple bus master systems. 

The port A data bus is 24 bits wide with a separate 16-bit address bus capable of a sustained 
rate of one memory access per machine cycle (using no-wait-state memory). External 
memory is divided into three 64K-word x 24-bit spaces - X:, V:, and P:. An internal wait­
state generator can be programmed to insert up to 15 wait states if access to slower memory 
or I/O devices is required. A bus wait signal allows an external device to control the number 
of wait states inserted in a bus access operation. Bus arbitration signals allow an external 
device (e.g., a DMA controller or another processor) use ofthe bus while internal operations 
continue using the internal memories. Two power-reduction features are specific to 
port A. The first power-reduction feature is that accessing the internal memory spaces 
does not toggle the external memory signals, eliminating unneeded switching current. The 
second power-reduction feature is that, if lower memory speed is acceptable, wait states 
can be added to external memory accesses to significantly reduce power while accessing 
those memories. 

9.1 PORT A INTERFACE 

One or more of the digital signal processor (DSP) memory sources (X data memory, V 
data memory, and program memory) can be accessed during the execution of an instruc­
tion. Each of these memorysources may be either internal or external to the DSP. Three 
address buses (XAB, VAB, and PAB) and four data buses (XDB, VDB, PDB, and GDB) are 
available for internal memory accesses during one instruction cycle, but only one address 
bus and one data bus (port A) are available for external memory accesses. If all memory 
sources are internal to the DSP, one or more of the three memory sources may be accessed 
in one instruction cycle (i.e., program memory access or program memory access plus an 
X, V, XV, or L memory reference). However, when one or more of the memories are external 
to the DSP56000/DSP56001, memory references may require additional instruction cycles 
because only one external memory access can occur per instruction cycle. 

If more than one external access is required in one instruction cycle, the accesses will be 
made in the following priority: X memory, V memory, and program memory. It takes one 
instruction cycle for each external memory access - i.e., one access can be executed in 
one instruction cycle, two accesses take two instruction cycles, etc. Since the external bus 
is only 24 bits wide, one XV or long external access will take two instruction cycles. 

MOTOROLA OSP56000/0SP56001 USER'S MANUAL 9-1 



Figure 9-1 shows the port A signals divided into their three functional groups. The bus 
control signals can be subdivided into three additional groups: read/write control, address 
space selection, and bus access control. The read/write controls are self-descriptive. They 
can be used as decoded read and write controls, or, as seen in Figures 9-2, 9-3, 9-4, and 
9-6, the write signal can be used as the read/write control, and the read signal can be used 

16-BIT INTERNAL 
. ADDRESS BUSES 

X ADDRESS IXA) 

Y ADDRESS IYA) 

PROGRAM ADDRESS WA) 

24-BIT INTERNAL 
DATA BUSES 

X DATA (XD) 

Y DATA IYD) 

PROGRAM DATA WD) 

GLOBAL DATA !GO) 

9-2 

) 
) EXTERNAL 

ADDRESS BUS 
SWITCH 

~ 
V 

) 
~ 
-V EXTERNAL 

~ 
DATA BUS 

SWITCH 

V 

) 

EXTERNAL 
BUS CONTROL 

LOGIC 

1~ 
EXTERNAL 

ADDRESS BUS 
AO-A15 

/ 
/ 

24 
/ EXTERNAL 

DATA BUS 
00-023 

/ 
/ 

BUS CONTROL SIGNALS 

-
RD-READ 
WR-WRIT 

ENABLE' 
E ENABLE 

PS-PROG 
OS-DATA 
XIY-XIY S 

RAM MEMORY SELECT 
MEMORY SELECT 

ELECT 
BR/WTcB US REQUEST/WAIT 
iiGiBS-B US GRANT/BUS STROBE 

Figure.9-1. Port A Signals 

DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



as an output enable (or data enable) control for the memory. Decoding in this fashion 
simplifies connection to high-speed random-access memories (RAMs). The program mem­
ory select, data memory select, and XIV select can be considered additional address signals, 
which extend the addressable memory from 64K words to 192K words. 

Since external logic delay is large relative to RAM timing margins, timing becomes more 
difficult as faster DSPs are introduced. The separate read and write strobes used by the 
DSP56000/DSP56001 are mutually exclusive, with a guard time between them to avoid two 
data buffers being enabled simultaneously. Other methods using external logic gates to 
generate the RAM control inputs require either faster RAM chips or external data buffers 
to avoid data bus buffer conflicts. 

Additional DSP56000/DSP56001 peripherals can be memory mapped. An- easy way to in­
terface with MC6800 and MC68000 peripherals and to have an early read/write indication 
is to use the XIY output pin as an early RIW indication. The peripheral chip select should 
be derived from the address lines and the data strobe so the peripheral registers appear 
in both X and Y data mertlOry spaces at the same addresses. For a read operation, perform 
an X memory read: 

MOVE X:PERIPHERAL,XO ;XIV signal is high. 

For a write operation, perform a Y memory write: 

MOTOROLA 

MOVE XO,Y:PERIPHERAL ;XIV signal is low. 

Vee VSS 
+ 5 V GROUND 

16 

ADDRESS BUS 1--------.1'-------1 

AO-A15 

DATA BUS 
00-023 

DSP56000/0SP56001 

BUS 
CONTROL _ 

ADDRESS 

DATA 

RD 1-----------+1 DE 

WR R/W 

PS cs 
OSt------. 
XIY t------. 

BR/WT~---­

BG/BS t------. 

PROGRAM MEMORY 

24 BIT x N WORDS 

Figure 9-2. External Program Space 

OSP56000/0SP56001 USER'S MANUAL 9-3 

-



-

VCC VSS 
+5 V GROUND 

DATA BUS I-------::I~--------­
DO-D23 

BUS 
CONTROL 

X DATA 
MEMORY 

24 BITS x N WORDS 

DE Rm CS CE 

Y DATA 
MEMORY 

24 BITS x N WORDS 

DE Rm CS CE 

~r-------'--+--+--~------~ 
WRI-------------~-+--+---------~ 

PSt-----~ 

~r---------~--~-~----~c_----~ 
xiV 1-----------------...... ------1 

BRIWT ..... ---­
BG/BS t-----~ 

Figure 9-3. External X and V Data Space 

Since the X/V output signal has the same timing as the address lines, it provides an early 
direction indication. The RO and WR signals are AN Oed together to form a "data strobe" 
signal. The only restriction is that X and Y memory space must be external at the same 
address. Thus, the I/O short addressing mode and the MOVEP instruction cannot be used 
for this application. Otherwise, the hardware and software are trivial. 

Figure 9-2 shows an example of external program memory. A typical implementation of 
this circuit would use three-byte-wide static memories and would not require any additional 
logic. The PS signal is used as the program-memory ch!p-select signal to enable the pro­
gram memory at the appropriate time. 

Figure 9-3 shows a similar circuit using the OS signal to enable two data memories and 
using the XIY signal to select between them. The three external memory spaces (program, 
X data, and Y data) do not have to reside in separate physical memories; a single memory 
can be employed by using the PS, OS, and XIY signals as additional address lines to 
segment the memory into three spaces (see Figure 9-4). Table 9-1 shows how the PS, OS, 
and X/V signals are decoded. If the OSP is in the development mode, an exception fetch 
to any interrupt vector location will cause the XIY signal to go low when PS is asserted. 

9-4 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



VCC 
+5V 

VSS 
GROUND 

16 AO-A10 
ADDRESS BUS t-----:~-----------------I 

AO-AI5 

DATA BUS 
00-023 

BUS 
CONTROL 

CE 

24 

DE 
RD ~----4_--------------~ 

WR t-----4_-------------~~ 
R/W 

PS~----4_--~-~ 

OS ~----4_~-_+_-~ 

xiV t-------, 

BR/WT ..-----­

B"G/SS ~-----.. 

CS 

Al2 

All 

EXTERNAL 
PROGRAM 

X AND Y MEMORY 

S3FFF 

4K 
PROGRAM 
MEMORY 

$3000 

S2FFF 

2K 
X DATA 

MEMORY 

S2800 
$27FF 

2K 
Y DATA 

MEMORY 

$2000 

~ 24 BITS ---+I 

Figure 9-4. Memory Segmentation 

This procedure is useful for debugging and for allowing external circuitry to track interrupt 
servicing. 

MOTOROLA 

Table 9-1. Program and Data Memory Select 
Encoding 

ps os x/v External Memory Reference 

1 1 1 No Activity 

1 0 1 X Data Memory on Data Bus 

1 0 0 V Data Memory on Data Bus 

0 1 1 Program Memory on Data Bus 
(Not an Exception) 

0 1 0 External Exception Fetch: Vector or 
Vector+ 1 (Development Mode Only) 

0 0 X Reserved 

1 1 0 Reserved 

OSP56000/0SP56001 USER'S MANUAL 9-5 



-

Special provisions have been made to allow the DSP to load a program from an inexpensive 
byte-wide ROM (see Figure 9-5 and the DSP56001 Advance Information Data Sheet (ADI1290) 
into internal program memory during a poweron reset. On powerup, the wait-state gen­
erator adds 15 wait states to all external memory accesses so that slow memory can be 
used. If bit 23 of external memory is a logic one, the DSP will load the contents of an 
external ROM into internal program memory (if bit 23 is a logic zero, it will load from the 
host port). The bootstrap program uses the bytes in three consecutive memory locations 
in the external ROM to build a single word in internal program memory. Figure 9-6 shows 
a system that uses internal program memory loaded from an external ROM during powerup 
and that splits the data memory space of a single memory bank into X: and Y: memory 
spaces. Although external program memory must be 24 bits, external data memory does 
not. Of course, this is application specific. However, many systems use 16 or fewer bits 
for AID and D/A conversion, since they only need to store 16, 12, or even eight bits of data. 

FROM 
OPEN-COLLECTOR 

BUFFER 

FROM 
RESET 

FUNCTION 

FROM 
. OPEN-COLLECTOR 

BUFFER 

9-6 

15K 

+5V +5V 

15K 15K • ) 15K 

L-- 023 

- MOOA/IROA 
! 

lN5711 :! ~ 
RESET 

lN5711 ::;iii ~ 

<i MOOB/IROB 

ADDRESS OF EXTERNAL 
BYTE-WIDE P MEMORY 

P:SCOOO 
P:$COOl 
P:$C002 

P:SC5FO 
P:$C5FE 
P:$C5FF 

OSP56001 

+5V 
<) 

• 47K 

-
PS 

5 
All-A15 + N.C. 

11 
AO-AlO 

, 
/ 

00-07 
8, 
I 

CONTENTS LOADED 
TO INTERNAL PRAM AT: 

P:SOOOO LOW BYTE 
P:$OOOO MID BYTE 
P:$OOOO HIGH BYTE 

P:$OlFF LOW BYTE 
P:S01FF MID BYTE 
P:S01FF HIGH BYTE 

Figure 9-5. Port A Bootstrap Circuit 

DSP56000/DSP56001 USER'S MANUAL 

2716 

-,.. - CE 

AO-Al0 

00-07 

MOTOROLA 



~ 
o 
-I 
o 
:0 
o 
~ 

c en 
"'C 
U1 
en 
o 
o 
~ c en 
"'C 
U1 
en 
o 
~ 
c: en 
m 
:xl 
en 
3: 
l> 
:2 
c: 
l> 
r-

<.0 
..!.J 

FROM 
OPEN-COLLECTOR 

BUFFER 

FROM 
RESET 

FUNCTION 

FROM 
OPEN-COLLECTOR 

BUFFER 

+5V 

15K 15K 

+5V 

15K 47K 47K 

OSP56001 
AD 

WR 

os-
MOOA/IRGA xiV 

I AO-Al0 
/11 

/ 

PS 

lN5711 ~~ 

RESET 
( 

, 
CE AO-AlO 

lN5711 :iii! ~ +5 
2716 

~ 
00-07 

15K 

MOOB/IRGB "/8 

./ 023 
00-023 -

Figure 9-6. Port A Bootstrap ROM with X and Y RAM 

47K 47K 

/10 
;' 

( ') (') 

I AO-A9 AlO CS WE OE 

I 
10-

2018(3) -
00-023 

{14 



III 

The 24/56 bits of internal precision is usually sufficient for intermediate results. Recognizing 
this fact can save cost by reducing the number of external memory chips. 

All unused inputs should have pullup resistors for two. reasons: 1) floating inputs draw 
excessive power, and 2) a floating input can cause erroneous operation. For example, 
during RESET, all signals are three-stated. Without pullup resistors, the PS and OS signals 
may become active, causing two or more memory chips to try to simultaneously drive the 
external data bus, which can damage the memory chips. A pullup resistor in the 50K-ohm 
range should be sufficient. 

9.2 PORT A TIMING 

The external bus timing is defined by the operation of the address bus, data bus, and bus 
control pins. The transfer of data over the external data bus is synchronous with the clock. 
The timing A, 8, and C relative to the edges of an external clock (see Figures 9-7 and 9-8) 
are provided in the DSP56001 Advance Information Data Sheet (AOI1290). This timing is 
essential for designing synchronous multiprocessor systems. Figure 9-7 shows the port A 
timing with no wait states (wait-state control is discussed in 9.2.1 Port A Wait States). One 
instruction cycle equals two clock cycles or four clock phases. The clock phases, which are 
numbered TO-T3, are used for timing on the OSP. Figure 9-8 shows the same timing with 
two wait states added to the external X: memory access. Four TW clock phases have been 
added because one wait state adds two T phases and is equivalent to repeating the T2 
and T2 clock phases. The write signal is also delayed from the T1 to the T2 state when one 

ONE INSTRUCTION CYCLE 

ONE CLOCK CYCLE 

INTERNAL CLOCK PHASES 

ADDRESS ps, OS, xfi 

[ 

RD 

c~c~~ DATA IN --I-+-_____________ /~~'f"'ft"'7\ '-_---I 

[ 

WR 

~:g~ DATA OUT ------~(==========))----------------
Figure 9-7. Port A Bus Operation with No Wait States 

9-8 OSP56000/0SP56001 USER'S MANUAL MOTOROLA 



ONE CLOCK CYCLE 
INTERNAL CLOCK 

PHASES 

ADDRESS ps, OS, xii 

CYCLE 

t..------- ONE INSTRUCTION CYCLE --------.t 
~-- TWO WAIT STATES ---l'" 

TW T3 

READ [ AD 

DATAIN~~~ 

TO Tl 

=:~_: ______ ~(r ______ ------~I---)~ ____ _ 
I 
I 

DATA LATCHED HERE 

Figure 9-8. Port A Bus Operation with Two Wait States 

or more wait states are added to ease interfacing to the port. Each external memory access 
requires the following procedure: 

1. The external memory address is defined by the address bus (AO-A 15) and the memory 
reference selects (PS, DS, and X/V). These signals change in the first phase (TO) of 
the bus cycle. Since the memory reference select signals have the same timing as 
the address bus, they may be used as additional address lines. The address and 
memory reference signals are also used to generate chip-select signals for the ap­
propriate memory chips. These chip-select signals change the memory chips from 
low-power standby mode to active mode and begin the read access time. This mode 
change allows slower memories to be used since the chip-select signals can be address 
based rather than read or write enable based. Read and write enable do not become 
active until after the address is valid. See the timing diagrams in the DSP56001 Ad­
vance Information Data Sheet (ADI1290) for detailed timing information. 

2. When the address and memory reference signals are stable, the data transfer is 
enabled by read enable (RD) or write enable (WR). RD or WR is asserted to "qualify" 
the address and memory reference signals as stable and to perform the read or write 
data transfer. RD and WR are asserted in the second phase of the bus cycle (if there 
are no wait states). Read enable is typically connected to the output enable (DE) of 
the memory chips and simply controls the output buffers ofthe chip-selected memory. 
Write enable is connected to the write enable (WE) or write strobe (WS) of the memory 
chips and is the pulse that strobes data into the selected memory. For a read operation, 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 9-9 



-

RD is asserted and WR remains deasserted. Since write enable remains negated, a 
memory read operation is performed. The DSP data bus becomes an input, and the 
memory data bus becomes an output. For a write operation, WR is asserted and RD 
remains deasserted. Since read enable remains deasserted, the memory chip outputs 
remain in the high-impedance state even before write strobe is asserted. This state 
assures that the DSP and the chip-selected memory chips are not enabled onto the 
bus at the same time. The DSP data bus becomes an output, and the memory data 
bus becomes an input. 

3. Wait states are inserted into the bus cycle by a wait-state counter or by asserting WT. 
The wait-state counter is loaded from the bus control register. If the value loaded into 
the wait-state counter is zero, no wait states are inserted into the bus cycle, and RD 
and WRare asserted as shown in Figure 9-7. If a value W -:/= 0 is loaded into the wait 
state counter, W wait states are inserted into the bus cycle. When wait states are 
inserted into an external write cycle, WR is delayed from T1 to T2. The timing for the 
case of two wait states (W = 2) is shown in Figure 9-8. 

4. When RD or WR are deasserted at the start of T3 in a bus cycle, the data is latched 
in the destination device - i.e., when RD is deasserted, the DSP latches the data 
internally; when WR is deasserted, the external memory latches the data on the 
positive-going edge. The address signals remain stable until the first phase of the 
next external bus cycle to minimize power dissipation. The memory reference signals 
(PS, DS, and XIV) are deasserted (held high) during periods of no bus activity, and 
the data signals are three-stated. For read-modify-write instructions such as BSET, 
the address and memory reference signals remain active for the complete composite 
(i.e., two Icyd instruction cycle. 

Figure 9-9 shows an example of mixing different memory speeds and memory-mapped 
peripherals in different address spaces. The internal memory uses no wait states, X: mem­
ory uses two wait states, V: memory uses four wait states, P: memory uses five wait states, 
and the analog converters use 14 wait states. Controlling five different devices at five 
different speeds requires only one additional logic package. Half the gates in that package 
are used to map the analog converters to the top 64 memory locations in V: memory. 

Adding wait states to external memory accesses can substantially reduce power require­
ments .. Table 9-2 shows how the power was reduced during external memory and liD 
operations by changing from zero to 15 wait states at four different clock speeds in a test 
circuit. 

9.2.1 Port A Wait States 

The DSP56000/DSP56001 features two methods to allow the user to accommodate slow 
memory by changing the port A bus timing. The first method uses the bus control register 
(BCR), which allows a fixed number of wait states to be inserted in a given memory access 
to all locations in each of the four memory spaces: X, V, P, and liD. The second method 

9-10 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



AO-AI5 

00-023 

~ 
;;t~~ 
~~t;; 
~UJ~ 
~::a:~ 

2 

20.5-MHz 
OSP56000 

20.5 
MHz 

XIY 

OS 
WR 

RO 

PS 

X:$FFFE 

MOTOROLA 

EXTERNAL 
X MEMORY 

PORT A BUS CONTROL REGISTER (BCRI 

EXTERNAL 
Y MEMORY 

EXTERNAL 
P MEMORY 

12 Ii 11 8 117 

0010 0100 

6242-15 

8K X 24 
X RAM 
150 ns 

(2 WAIT STATESI 

CS CS WE DE 

OIA 
CONVERTER 

o CS 

2764-25 

8K X 24 
Y ROM 
250 ns 

0101 

(4 WAIT STATESI 

CS OE 

EXTERNAL 
1/0 MEMORY 

1110 

o I 

AID 
CONVERTER 

o CS 

27256-30 

32K X 24 
PROM 
300 ns 

(5 WAIT STATESI 

CE OE 

Figure 9-9. Mixed-Speed Expanded System 

DSP56000/DSP56001 USER'S MANUAL 

RO 

9-11 



III 

Table 9-2. Power Requirements for 
Minimum and Maximum External 

Memory Wait States 

Clock 
Current for Current for 

o Wait States 15 Wait States 

4.000 MHz 19.8 rnA 8.6 rnA 

6.5536 MHz 31.0 rnA 12.8 rnA 

10.245 MHz 46.8 rnA 18.8 rnA 

20.000 MHz 91.0 rnA 36.6 rnA 

uses the bus strobe/wait (BS/WT) facility, which allows an external device to insert an 
arbitrary number of wait states when accessing either a single location or multiple locations 
of external memory or I/O space. Wait states are executed until the external device releases 
the DSP to finish the external memory cycle. 

9.2.2 Bus Control Register 

The expansion bus timing is controlled by the BCR (see Figure 9-10) which controls the 
timing of the bus interface signals, RD and WR, and the data output lines. Each of the 
memory spaces, X data, Y data, program data, and I/O, has its own 4-bit BCR, which can 
be programmed for inserting up to 15 wait states (each wait state adds one-half instruction 
cycle to each memory access - i.e., 50 ns for a 20-Mhz clock). In this way, external bus 
timing can be tailored to match the speed requirements of the different memory spaces. 
On processor RESET, the BCR is preset to all ones (15 wait states). 

Figure 9-10 illustrates which of the four BCR subregisters affect which external memory 
space. The BCR is a memory-mapped register located at X:$FFFE. All the internal peripheral 
devices are memory mapped, and their control registers reside between X:$FCOO and 
X:$FFFF. Loading the BCR as shown in Figure 9-9 can be accomplished by executing a 
"MOVEP #$245E, X:$FFFE" instruction. Changing individual bits in one of the four sub­
registers can be accomplished by using the BSET and BCLR instructions. 

9.2.3 Bus Strobe/Wait Pins 

The DSP56000/DSP56001 has two reconfigurable pins that are used as either bus request/ 
bus grant (BR/BG) or as bus strobe/wait (BS/WT). The ability to insert wait states using BS/ 
WT provides a means to connect asynchronous devices to the DSP, allows devices with 
differing timing requirements to reside in the same memory space, allows a bus arbiter 
to provide a fast multiprocessor bus access, and provides another means of halting the 
DSP at a known program location with a fast restart. Bus strobe in the original in-house 
documentation was called "memory ready strobe" and wait was called "memory ready". 
The original names have been changed to be more descriptive. 

9-12 OSP56000/0SP56001 USER'S MANUAL MOTOROLA 



15 

X:SFFFE 

SFFFF 

SFOO 

EXTERNAL 
X MEMORY* 

INTERNAL 
PROGRAM 

ROM 

PROGRAM 
MEMORY SPACE 

1211 

EXTERNAL 
Y MEMORY* 

$100 

87 

EXTERNAL 
P MEMORY* 

INTERNAL 
X ROM 

$100 
INTERNAL 

X RAM 

X DATA 
MEMORY 

SPACE 

*Zero to 15 wait states can be inserted into each external memory access. 

Figure 9-10. Bus Control Register 

43 

EXTERNAL 
1/0 MEMORY* 

INTERNAL 
Y ROM 

INTERNAL 
Y RAM 

Y DATA 
MEMORY 

SPACE 

RESET initializes the DSP in the BR/BG mode for compatibility. The BS/WT mode is selected 
if bit 7 in the OMR (see Figure 9-11) is set to one, which can be accomplished by executing 
an "0RI #80, OMR" instruction. Because the BR/BG and BS/WT modes are mutually ex­
clusive, port A cannot be three-stated by an external device when in the BS/WT mode. The 
BCR is still operative in the BS/WT mode and defines the minimum number of wait states 
that are inserted. 

23 4 3 1 0 

o I EM I SO 0 

EXTERNAL MEMORY ACCESS ____________ ---'t 
o BUS REQUEST/BUS GRANT ARBITRATION (RESET); USED BY A HOST TO THREE-STATE THE DSP56000 EXTERNAL BUS. 

BUS STROBEIWAIT; USED BY A HOST TO DELAY OR STRETCH THE CURRENT DSP56000 BUS CYCLE 

Figure 9-11. Port A Access Control 

MOTOROLA OSP56000/0SP56001 USER'S MANUAL 9-13 

III 



• 

The timing of BS and WT pins is illustrated in Figure 9-12. Every external access, BS is 
asserted concurrently with the address lines in TO. BS can be used by external wait-state 
logic to establish the start of an external access. BS is deasserted i~3 of each external 
bus cycle, signaling that the current bus cycle will complete. Since the WT signal is internally 
synchronized, it can be asserted asynchronously with respect to the system clock. The WT 
signal should only be asserted while BS is asserted. Asserting WT while BS is deasserted 
will give indeterminate results. However, for the number of inserted wait states to be 
deterministic, WT timing must satisfy setup and hold timing with respect to the negative­
going edge of EXTAL. The setup and hold times are provided in the DSP56001 Advance 
Information Data Sheet (ADI1290). The timing of WR is controlled by the BCR and is 
independent of WT. The minimum number of wait states that can be inserted using the 
WT pin is two. Table 9-3 summarizes the effect of the BCR and WT pin on the number of 
wait states generated. 

Vee VSS 
+ 5 V GROUND 

EXTAL 

DSP56000/DSP56001 

ADDRESS BUS I----#--J 
AO-A15 

DATA BUS 
DO-D23 

BUS 
CONTROL RD 1---_ ...... 

WR t----...... 

PS 1----...... 

DS 1----...... 

x/y 1----...... 

WT~---

OPERATING MODE REGISTER 
765 3210 

I EM I SD I 0 I 0 I 0 I DE I MB I MA I 
SET EM ~ 1 

TO T1 T2 TW TW TW TW T3 TO 

AO-A15, DO-D23, PS, DS, XIV V--
------"--

WT IS 
SAMPLED 

WT IS 
SAMPLED 

WT IS 
SAMPLED 

r-T3~ 
BS.....----.. \'---____ ~/ l 

Figure 9-12. Bus Strobe/Wait ~equence 

9-14 OSPS6000/0SPS6001 USER'S MANUAL MOTOROLA 



Table 9-3. Wait State Control 

BCR 
WT Number of Wait States Generated 

Contents 

0 Deasserted 0 

0 Asserted 2 (minimum) 

>0 Deasserted Equals value in BCR 

>0 Asserted Minimum equals 2 or value in BCR. 
Maximum is determined by WT. 

9.3 BUS ARBITRATION 

The BR/BG and BS/WT pins provide bus arbitration controls. The BR/BG mode allows an 
external device to request and be given control of the external memory bus (port A) while 
the DSP continues internal operations using internal memory spaces. This configuration 
allows a bus controller to arbitrate a mUltiple bus-master system. (A bus master can issue 
addresses on the bus; a bus slave can respond to addresses on the bus. A single device 
can be both a master and a slave, but can only be one or the other at any given time.) The 
BS/BW mode allows a bus arbitrator to extend the bus cycle of the DSP56000/DSP56001 
to allow another bus master time to finish its bus access before allowing the DSP560001 
DSP56001 access to the bus. 

9.3.1 Bus Request/Bus Grant 

The BR/BG mode is selected if OMR bit 7 (see Figure 9-11) is set to zero (execute an IIANDI 
#7F,OMR" instruction). When BR is asserted (see Figure 9-13), the DSP will assert BG after 
the current external access cycle completes and will simultaneously three-state the port A 
signals (see the DSP56001 Advance Information Data Sheet (ADI1290) for exact timing of 
BR/BG). The bus is then available to be used by the bus master requesting the bus. When 
BR is deasserted, BGis deasserted after the current external access, and the port A signals 
are no longer three-stated. Reset clears bit 7 of the OMR. Information on operation of the 

BR 

BG 

AO-A 15,00-023, PS, 
OS, xiV, RD, WR 

OSP56000 A DIFFERENT DSP56000 
BUS MASTER---......... -----BUS MASTER:---------:-++4- BUS MASTER 

Figure 9-13. Bus Request/Bus Grant Sequence 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 9-15 

III 



• 

BR/BG pins after executing a WAIT or STOP instruction can be found in 8.4 WAIT PROC· 
ESSING STATE and 8.5 STOP PROCESSING STATE. 

9.3.2 Shared Memory 

The bus control signals described in the previous paragraphs provide the means to connect 
additional bus masters (which may be additional DSPs, microprocessors, direct memory 
access (DMA) controllers, etc.) to the port A bus. Four arbitration examples will be described 
in the following paragraphs: 1) bus arbitration using only BR/BG with internal control, 2) 
bus arbitration using only BR/BG. with external control, 3) bus arbitration using BR/BG and 
BS/WT with no overhead, and 4) signaling using semaphores. 

9.3.2.1 BUS ARBITRATION USING ONLY BR/BG WITH INTERNAL CONTROL. Perhaps the 
simplest example of a shared memory system using a DSP56000/DSP56001 is shown in 
Figure 9-14. The bus arbitration is performed internal to the DSP#2 by using software. 
DSP#2 controls all bus operations by using 1/0 pin OUT2 to three-state its own port A and 
by never accessing port A without first calling the subroutine that arbitrates the bus. When 
the DSP#2 needs to use external memory, it uses 1/0 pin OUT1 to request bus access and 
1/0 pin IN1 to read bus grant. DSP#1 does not need any extra code for bus arbitration 
since the BR/BG hardware handles its bus arbitration automatically. The protocol for bus 
arbitration is as follows: 

At RESET: DSP#2 sets OUT2 = 0 (BR#2 = 0) and OUT1 = 1 (BR#1 = 1), which gives DSP#1 
access to the bus and suspends DSP#2 bus access. 

When DSP#2 wants control ofthe memory, the following steps are performed (see Figure 
9-15): 

1. DSP# 2 sets OUT1 = 0 (BRti1 = 0). 

2. DSP# 2 waits for IN1 = 0 (BG#1 = 0 and DSP#1 off the bus). This takes at most 
13T + 4T*WS + 20 ns (about 400 ns at 20 MHz) where T is Icyc/4 and WS is the 
number of wait states used by DSP# 1. If DSP#1 is not using any read/modify/write 
instructions in its external space, the maximum becomes only 9T + 2T*WS + 20 ns 
(about 250 ns at 20 MHz). 

3. DSP#2 sets OUT2 = 1 (BR#2 = 1 to let DSP#2 on the bus). 

4. DSP#2 accesses the bus for block transfers, etc. at full speed. 

5. To release the bus, DSP#2 sets OUT2 = 0 (BR#2 = 0) after the last external access. 

6. DSP#2 then sets OUT1 = 1 (BR#1 = 1) to return control of the bus to DSP#1. 

7. DSP#1 then acknowledges mastership by deasserting BG#1. 

9.3.2.2 BUS ARBITRATION USING ONLY BR/BG WITH EXTERNAL CONTROL. Figure 
9-16 can be implemented with external bus arbitration logic, which will save processing 

9-16 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



BR 

OUT2 

-
BR Dun 

BG '" INl 

CONTROL CONTROL 

AO-A15 AO-A15 

DO-D23 
, _ .... 

DO-D23 - -
, 

DSP56000lDSP5600l #1 DSP56000lDSP5600l #2 
\ J BUS ARBITER 

C A D 

MEMORY 
BANK 

Figure 9-14. Bus Arbitration Using Only BR/BG with Internal Control 

DUTl } I 
I 

INl 
I \ I I 
I I I 
I I 

~ 
I 

OUT2 I I 
DATA \ I 

I I I I 
I I I TRANSFERRED I I 
I I ~HERE~ I 
I I I 

Figure 9-15. Two DSPs with External Bus Arbitration Timing 

capacity on the DSPs and can make bus access much faster at a cost of additional hardware. 
Operation is similar to the system shown in Figure 9-14. The bus arbitration logic takes 
control of the external bus by deasserting an enable signal (E1, E2, and E3) to all DSPs, 
which will then acknowledge by granting the bus (BG = 0). When a DSP (DSP#1 in Figure 
9-16) wants the bus, it will jump to a subroutine, which will set PC3 = 1. When the arbitration 
logic grants the bus to a DSP, it will issue a BG1 (BG2 for DSP#2; BG3 for DSP#3) to let 
the DSP know that it can have the bus. Arbitration logic will then enable the bus by asserting 
the appropriate enable (E1 = 1). When the DSP is ready to relinquish the bus, it deasserts 
PC3, and the arbiter deasserts E1 and BG1. 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 9-17 

• 



• 

SYSTEM MEMORY 
32K x 24 X DATA RAM 
32K x 24 Y DATA RAM 

32K x 24 PROGRAM RAM 
ADDRESS DATA CONTROL 

ADDRESS 1
16 

DATA 
I 24 
I 

I 
CONTROL 5 

" 
\ 

A D C A D C A D C 

DSP56000/DSP56001 DSP56000/DSP5600l DSP56000/DS P56001 
#1 #2 #3 

BG BR PC3 PC4 BG BR· PC3 PC4 BG BR PC3 PC4 

~ 

A1 E1 BR1 BG1 I A2 E2 BR2 BG2 I A3 E3 BR3 BG3 

BUS ARBITRATION LOGIC 

Figure 9-16. Bus Arbitration Using Only BR/BG with External Control 

9.3.2.3 BUS ARBITRATION USING BR/BG AND BS/WT WITH NO OVERHEAD. By using 
the circuit shown In Figure 9-17, two DSPs can share memory with hardware arbitration 
that requires no software on the part of the DSPs. In Figure 9-17, DSP#1 has EM = 1 in its 
OMR, and DSP#2 has EM = Din its OMR. The protocol for bus arbitration in Figure 9-17 is 
as follows: 

At RESET: BG of DSP#2 is deasserted, which three-states the buffers, giving DSP#2 
control ofthe memory. Reset causes DSP#1 to initially be in the BR/BG mode. 
DSP#1 OMR bit 7 must be set by software during initialization to change BRI 
BG to BS/WT. 

When DSP#1 wants control ofthe memory the following steps are performed (see Figure 
9-18): 

9-18 

1. DSP#1 makes an external access, thereby asserting BS, which asserts WT (causing 
DSP#1 to execute wait states in the current cycle) and asserts DSP#2 BR (requesting 
that DSP#2 release the bus). 

2. When DSP#2 finishes its present bus cycle, it three-states its bus drivers and asserts 
BG. Asserting BG enables the three-state buffers, placing the DSP#1 signals on the 

DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



-
BS 

DSP#l 

DO-D23 

AO-A15 

--
RD, WR, 

OS, PS, XtY 

-
WT 

BS 

WT 

BR 

BG 

MEMORY 

D A C 

THREE-STATE 
BUFFER -

L DIR 

ENABLE 

1 
r 

I 
Figure 9-17. Bus Arbitration Using BR/BG 

and BS/WT with No Overhead 

I 
/.--- DATA TRANSFERRED----+I 

HERE 
2 3 

DSP#2 

DO-D23 

AO-A15 

RD, WR, 
OS, PS, XtY 

BG -
BR 

I 

Figure 9-18. Two DSPs with External Bus Arbitration Timing 

memory bus. Asserting BG also deasserts WT, which allows DSP#1 to finish its 
bus cycle. 

3. When DSP#1 's memory cycle is complete, it releases BS, which deasserts BR. 
DSP#2 then deasserts BG, three-stating the buffers and allowing DSP#2 to access 
the memory bus. 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 9-19 

III 



• 

9.3.2.4 SIGNALING USING SEMAPHORES. Figure 9-19 shows a more sophisticated shared 
memory system that uses external arbitration wi~h both local external memory and shared 
memory. The four semaphores are bits in one of the words in each shared memory bank 
used by software to arbitrate memory use. Semaphores are commonly used to indicate 
that the contents of the semaphore's memory blocks are being used by one processor and 
are not available for use by another processor. Typically, if the semaphore is cleared, the 
block is not allocated to a processor; if the semaphore is set, the block is allocated to a 
processor. 

WJ SEMAPHORE 3 

BANK 3 

~ SEMAPHORE 2 

BANK 2 

~ SEMAPHORE 1 

BANK 1 

~ SEMAPHORE 0 . 

DSP56000 
BANK 0 PROCESSOR 

LOCAL LOCAL 
MEMORY MEMORY 

DSP560001 PROCESSOR 
DSP560001 

BUS BUS 
OR DMA 

ADDRESS 
BUFFER BUFFER 

ADDRESS 
DATA AND DATA AND 
CONTROL CONTROL 

BUSES BUSES 

ARBITRATION 
LOGIC 

Figure 9-19. Signaling Using Semaphores 

Without semaphores, one processor may try to use data while it is being changed by 
another processor, which may cause errors. This problem can occur in a shared memory 
system when separate test and set instructions are used to "lock" a data block for use by 
a single processor. 

The correct procedure is to test the semaphore and then set the semaphore if it was clear 
to lock and gain exclusive use of the data block. The problem occurs when the second 
processor acquires the bus and tests the semaphore after the first processor tests the 
semaphore but before the first processor can lock the data block. The incorrect sequence 

9-20 OSP56000/0SP56001 USER'S MANUAL MOTOROLA 



is 1) the first processor tests the semaphore and sees that the block is available; 2) the 
second processor then tests the bit and also sees that the block is available; 3) both 
processors then set the bit to lock the data; and 4) both proceed to use the data on the 
assumption that the data cannot be changed by another processor. 

The DSP56000/DSP56001 has a group of instructions designed to prevent this problem. 
They perform an indivisible read-modify-write operation and do not release the bus be­
tween the read and write (specifically, AO-A 15, DS, PS, and XIV do not change state). Not 
releasing the bus allows these instructions to test the semaphore and then to set, clear, 
or change the semaphore without the possibility of another processor testing the sema­
phore before it is changed. The instructions are bit test and change (BCHG), bit test and 
clear (BCLR), and bit test and set (BSET). The proper way to set the semaphore to gain 
exclusive access to a memory block is to use BSET to test the semaphore and to set it to 
one. After the bit is set, the result of the test operation will reveal if the semaphore was 
clear before it was set by BSET and if the memory block is available. If the bit was already 
set and the block is in use by another processor, the DSP will wait to access the memory 
block. 

MOTOROLA OSP56000/0SP56001 USER'S MANUAL 9-21 



III 

9-22 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



SECTION 10 
PORT B 

Port B is a dual-purpose liD port that can be used as 1) 15 general-purpose pins individually 
configurable as either inputs or outputs or as 2) an 8-bit bidirectional host interface (HI) 
(see Figure 10-1). When configured as g"eneral-purpose liD, port B can be used for device 
control. When configured as the HI, port B provides a convenient connection to another 
processor. This section describes both port B configurations, including examples of how 
to configure and use the port. 

MOTOROLA 

EXTERNAL ADDRESS 
SWITCH 

EXTERNAL DATA 
SWITCH 

BUS 
CONTROL. 

SSI 
INTERFACE 

DEFAULT 
FUNCTION 

AO-A15 

DO-D23 

PS 
os 
xlV 
III 
WR 

BRIWT 
BGiss 

Figure 10-1. Port B Interface 

ALTERNATE 
FUNCTION 

~HAO 

~HAI 

~HA2 

~HR/W 
~HEN 

~HREQ 

~HACK 

~RXD 

~TXD 

~SCLK 

~sco 

~SCI 

~SC2 
~SCK 

~SRD 

~STD 

DSP56000/DSP56001 USER'S MANUAL 10-1 

-



• 

10.1 GENERAL-PURPOSE 1/0 

When it is configured as general-purpose liD, port B can be viewed as three memory­
mapped registers (see Figure 10-2) that control 151/0 pins (see Figure 10-3). The software 
and hardware reset,configure port B as general-purpose liD with all 15 pins as inputs by 
clearing all three registers (external circuitry connected to these pins may need pullups 
until the pins are configured for operation). These registers are the port B control register 
(PBC), port B data direction register (PBDDR), and port B data register (PBD). Selection 
between general-purpose I/O and HI is made by setting PBC bit 0 (memory location X:$FFEO) 
to zero for general-purpose I/O or to one for HI. The PBDDR (memory location X:$FFE2) 
selects each corresponding pin in the PBD (memory location X:$FFE4), as an input pin if 
the PBDDR bit equals zero or as an output pin if the PBDDR bit equals one. 

The port B liD pin control logic is shown in Figure 10-4. Writing to PBD will write data to 
the pins designated as outputs by the PBDDR; reading the PBD will read the level on the 
pins designated as inputs by the PBDDR. When a pin is designated as an output and the 

BC Function 

o Parallel 1/0 (Reset Condition) 

Host Interface 

I 
~ 

BOx Data Direction 

0 Input (Reset Condition) 

1 Output 

Figure 10-2. Parallel Port B Registers 

10-2 DSP56000/DSP5600,1 USER'S MANUAL MOTOROLA 



PORT 
REGISTERS 

PBO 
PBl ~ 

PB2 
PB3 
PB4 

P PB5 
0 PBG -R 
T PB7 

PBB 
B PB9 

PB10 
PBll 
PB12 
PB13 
PB14 

,ENABLED BY 
BIT IN 
:SFFEO X 

l
BCO 
BCD 
BCD 
BCD 
BCD 
BCD 
BCD 
BCD 

I
BCO 

IBCO 
,BCD 
:BCO 
:BCO 
BCD 
BCD 

I 

DIRECTION 
SELECTED BY 

X:SFFE2 
BOO 
BDI 
B02 
B03 
B04 
B05 
BOG 
B07 
BOB 
B09 
BOlO 
BOll 
B012 
BOI3· 
B014 

INPUT/OUTPUT 
DATA 

X:SFFE4 
PBO 
PBl 
PB2 
PB3 
PB4 
PB5 
PB6 
PB7 
PBB 
PB9 
PB10 
PBll 
PB12 
PB13 
PB14 

Figure 10-3. Parallel Port B Pinout 

Port Control 
Register Bit 

0 

0 

1 

LATCHED OUTPUT 
DATA BIT 

DATA DIRECTION 
REGISTER IOORI BIT 

PORT CONTROL 
REGISTER ICRI BIT 

PORT INPUT DATA BIT 

Data Direction Pin Function Register Bit 

0 Port Input Pin 

1 Port Output Pin 

X Alternate Function 

PERIPHERAL . _-=HI-=D;.;.;A;.;.;TA..;..;:;.;DI~RE;;.;C;.:,.T:..=IO.:..:.N-=B;.;.;IT _____ -, 

{

HI OUTPUT DATA BIT 

LOGIC 
HI INPUT DATA BIT 

Figur~ 10-4. P~rt B 110 Pin Control ~ogic 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 

!INPUT 
POSITIONI 

10-3 

m 



PBD is read, the output of the output data bit latch is read, not the logic level on the pin 
itseif. When the port is configured as the HI and the bit in the PBDDR is zero (input), then 
reading the PBD will show the logic level on the pin even though port B is configured as 
the HI. The HI function may be using the pin as an input or an output. This feature can be 
very useful when debugging the HI. 

10.1.1 Programming Parallel 1/0 

Port B is a memory-mapped peripheral as are all of the DSP56000/DSP56001 peripherals 
(see Figure 10-5). The standard MOVE instruction transfers data between port B and a 
register; as a result, MOVE takes two instructions to perform a memory-to-memory data 
transfer and uses a temporary holding register. The MOVEP instruction is specifically 
designed for 1/0 data transfer as shown in Figure 10-6. Although the MOVEP instruction 
may take twice as long to execute as a MOVE instruction, only one MOVEP is required for 
a memory-to-memory data transfer, and MOVEP does not use a temporary register. Using 
the MOVEP instruction allows a fast interrupt to move data tolfrom a peripheral to memory 
and execute one other instruction or move the data to an absolute address. MOVEP is the 
only memory-to-memory move instruction; however, one of the operands must be in the 
top 64 locations of either X: or Y: memory. 

The bit-oriented instructions that use I/O short addressing (BCHG, BCLR, BSET, BTST, JCLR, 
JSCLR,JSET, and JSSET) can also be used to address individual bits for faster 1/0 proc­
essing. The digital signal processor (DSP) does not have a hardware data strobe to strobe 
data out of the parallel 110 port. If a strobe is needed, it can be implemented using software 
to toggle one of the parallel 1/0 pins. The process of programming port B as general­
purpose 1/0 is shown in Figure 10-7 and detailed in Figure 10-8. Normally, it is not good 
programming practice to activate a peripheral before programming it. However, reset 
activates the port B general-purpose 1/0 as all inputs; the alternative is to configure port 
B as an HI, which may not be desirable. In this case, it is probably better to insure that 
port B is initially configured for general-purpose 1/0, and then configure the data direction 
and data registers. It may be better in some situations to program the data direction or 
the data registers first to prevent two devices from driving one signal. The order of steps 
1,2, and 3 in Figure 10-7 is optional and can be changed as needed. 

10.1.2 Port B Parallel 1/0 Timing 

Parallel data written to port B is synchronized to the central processing unit (CPU) but 
delayed by one instruction cycle - i.e., the instruction 

MOVE DATA15,X:PORTB DATA24,Y:EXTERN 

1) writes 15 bits of data to the port B register, but the output pins do not change until the 
following instruction cycle, and 2) writes 24 bits of data to the external Y memory, which 
appears on port A during T2 and T3 of the current instruction. 

10-4 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



23 16 15 -----
____ ~ INTERRUPT PRIORITY REGISTER (lPRI 

PORT A - BUS CONTROL REGISTER (BCRI 

SCI HI·REC/XMIT DATA REGISTER (SRX/STXI 

SCI MID·REC/XMIT DATA REGISTER (SRX/STXI 

,--____ ~ SCI LOW·REC/XMIT DATA REGISTER (SRX/STXI 

SCI TRANSMIT DATA ADDRESS REGISTER (STXAI 
------i 
_____ ~ SCI CONTROL REGISTER (SCCRI 

SCI INTERFACE STATUS REGISTER (SSRI 
,-------i 

SCI INTERFACE CONTROL REGISTER (SCRI 
----------+-----------~ 

SCI RECEIVEITRANSMIT DATA REGISTER (RXITXI 
------i 

-----~ 
SSI STATUSITIME SLOT REGISTER (SRITSRI 

------------+-----------~ 
SSI CONTROL REGISTER B (CRBI 

SSI CONTROL REGISTER A (CRAI 
------------+-----------~ 

HOST RECEIVE/TRANSMIT REGISTER (HRX/HTXI 

HOST CONTROL REGISTER (HCRI 

ItItmttl = Read as random number; write as don't care. 

Figure 10-5. On-Chip Peripheral Memory Map 

MOTOROLA OSP56000/0SP56001 USER'S MANUAL 

• 

10-5 



• 

MOVE #$O,X:$FFEO ;Select Port B to be general-purpose 1/0 

MOVE #$7FOO,X:$FFE2 ;Select pins PBO-PB7 to be inputs 
;and pins PB8-PB14 to be outputs 

MOVEP #data-out,X:$FFE4 ; Put bits 8-14 of "data-out" on pins 
;PB8-PB14 bits 0-7 are ignored. 

MOVEP X:$FFE4,#data-in ;Put PBO-PB7 in bits 0-7 of "data-in" 

Figure 10-6. Write/Read Parallel Data with Port B 

STEP 1 
ACTIVATE PORT B CONTROL REGISTER 

AODR X:$FFEO 

STEP 2 
SELECT DATA DIRECTION ON/OUTI 

ADDR X:$FFE2 

STEP 3 
READ/WRITE PORT B DATA 

ADDR X:$FFE4 

Figure 10-7. Port B Configuration Flowchart 

As a result, if it is desirable to synchronize port A and port B outputs, two instructions 
must be used: 

MOVE DATA15,X:PORTB 
NOP DATA24,Y:EXTERN 

The NOP can be replaced by any instruction that allows parallel moves. Inserting one or 
more "MOVE DATA15,X:PORTB DATA24,Y:EXTERN" instructions between the first and 
second instruction effectively produces an external 39-bit write each instruction cycle with 
only one instruction cycle lost in setup time: 

MOVE DATA15,X:PORTB 
MOVE DATA15,X:PORTB DATA24,Y:EXTERN 
MOVE DATA15,X:PORTB DATA24,Y:EXTERN 

MOVE 
NOP 

10-6 

DATA15,X:PORTB DATA24,Y:EXTERN 
DATA24,Y:EXTERN 

DSP56000/DSP5600.1 USER'S MANUAL MOTOROLA 



STEP 1. ACTIVATE PORT B FOR GENERAL-PURPOSE 1/0: 
SET BIT 0 TO ZERO ----------, 

15 

PORT B 

L..-..J...-..J...-...l..-...l..-...1-...1--L--L--l--l--'--'--'--'---L...--I CONTROL REGISTER (PBCI 

STEP 2. SET INDIVIDUAL PINS TO INPUT OR OUTPUT: 
BDxx = 9.INPUT 

OR 

BDxx = 1 • OUTPUT 

STEP 3. WRITE OR READ DATA: 

15 

PBxx .INPUT IF BDxx oc 0 

OR 

PBxx. OUTPUT IF BDxx 'co 1. 

X:$FFE4 PORT B 
'---'---'---'--...L--'---'---'---'----'----'--.....L-.....L-...................... -'----' DATA REG I STER (P B D I 
*Reserved; write as zero. 

Figure 10-8. 110 Port B Configuration 

One application of this technique is to create an extended address for port A by conca­
tenating the port A address bits (instead of data bits) to the port B general-purpose output 
bits. The port B general-purpose liD register would then work as a base address register, 
allowing the address space to be extended from 64K words (16 bits) to two billion words 
(16 bits + 15 bits = 31 bits). 

Port B uses the DSP CPU four-phase clock for its operation. Therefore, if wait states are 
inserted in the DSP CPU timing, they also affect port B timing. The result is that ports A 
and B in the previous synchronization example will always stay synchronized, regardless 
of how many wait states are used. 

10.2 HOST INTERFACE (HI) 

The HI is a byte-wide, full-duplex, double-buffered, parallel port which may be connected 
directly to the data bus of a host processor. The host processor may be any of a number 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 10-7 

III 



III 

of industry standard microcomputers or microprocessors, another DSP, or DMA hardware 
bec'ause this interface looks like static memory. The HI is asynchronous and consists of 
two banks of registers - one bank accessible to the host processor and a second bank 
accessible to the DSP CPU (see Figure 10-9). A brief description of the HI features is 
presented in the following listing: 

Speed 
8 Mbyte/Sec Burst Data Transfer Rate 
1.71 MillionWord/Sec Interrupt Driven Data Transfer Rate (This is the maximum in­
terrupt rate for the DSP56000/DSP56001 running at 20.5 MHz - i.e., one interrupt every 
six instruction cycles.) 

Signals (15 Pins) 
HO-H7 Host Data Bus 
HAO-HA2 Host Address Select 
HRIW Host ReadlWrite Control 
HEN Host Transfer Enable 
HREQ Host Request 
HACK Host Acknowledge 

Interface - DSP CPU Side 

10-8 

Mapping: Three X: Memory Locations 

Data Word: 24 Bits 

Transfer Modes: 
DSP to Host 
Host to DSP 
Host Command 

Handshaking Protocols: 
Software Polled 
Interrupt Driven (Fast or Long) 
Direct Memory Access 

Instructions: 
Memory-mapped registers allow the standard MOVE instruction to be used. 

Special MOVEP instruction provides for liD service capability using fast interrupts. 

Bit addressing instructions (BCHG, BCLR, BSET, BTST, JCLR, JSCLR, JSET, JSSET) 
simplify liD service routines. 

liD short addressing provides faster. execution with fewer instruction words. 

DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



Interface - Host Side 
Mapping: 

Eight Consecutive Memory Locations 
Memory-Mapped Peripheral for Microprocessors, DMA Controllers, etc. 

Data Word: Eight Bits 

Transfer Modes: 
DSP to Host 
Host to DSP 
Host Command 
Mixed 8-, 16-, and 24-Bit Data Transfers 

Handshaking Protocols: 
Software Polled 
Interrupt Driven - Compatible with MC68000 
Cycle Stealing DMA with Initialization 

Dedicated Interrupts: 
Separate Interrupt Vectors for Each Interrupt Source 

Special host commands force DSP CPU interrupts under host processor control, 
which are useful for 

Real-Time Production Diagnostics 
Debugging Window for Program Development 
Host Control Protocols and DMA Setup 

Figure 10-9 is a block diagram showing the registers in the HI. These registers can be 
divided vertically down the middle into registers visible to the host processor on the left 
and registers visible to the DSP on the right. They can also be divided horizontally into 
control at the top, DSP-to-host data transfer in the middle (HTX, RXH, RXM, and RXL), and 
host-to-DSP data transfer at the bottom (THX, TXM, TXL, and HRX). 

10.2.1 Host Interface - DSP. CPU Viewpoint 

The DSP CPU views the HI as a memory-mapped peripheral occupying three 24-bit words 
in data memory space. The DSP may use the HI as a normal memory-mapped peripheral, 
using either standard polled or interrupt programming techniques. Separate transmit and 
receive data registers are double buffered to allow the DSP and host processor to efficiently 
transfer data at high speed. Memory mapping allows DSP CPU communication with the 
HI registers to be accomplished using standard instructions and addressing' modes. In 
addition, the MOVEP instruction allows HI-to-memory and memory-to-HI data transfers 
without going through an intermediate register. Both hardware and software reset disable 
the HI and change port B to general-purpose I/O with all pins designated as inputs. 

MOTOROLA OSP56000/0SP56001 USER'S MANUAL 10-9 

-



INTERRUPT CONTROL 
REGISTER 

X:$FFEB 

DSP CPU GLOBAL 
DATA BUS 

.... ---l~ HOST CONTROL REGISTER 
(READIWRITE) lREA,£/WRITE) /' 

......... _ ~/ X:$FFE9 
COMMAND VECTOR 
REGISTER,/ ...... 
(READIWRITE) 

I-----I~ HOST STATUS REGISTER 
(READ ONLY) 

---r-------
/" 

~TERRUPT STATUS 

~~EGISTER 
(~EAD ONLY) CONTROL 

LOGIC 

X:$FFEB 

24 HOST TRANSMIT 
1+--+-""'--1 HTX ...... ~ ... DATA REGISTER 

(WRITE ONLY) 

X:$FFEB 24 

24 HOST RECEIVE 
I----+---,."""-!~ HRX ....... __ ~ DATA REGISTER 

(READ ONLY) 

Figure 10-9. HI Block Diagram 

10.2.2 Programming Model --.. DSP CPU Viewpoint 

The HI has two programming models - one for the DSP programmer and one for the host 
processor programmer. In most cases, the notation used reflects the DSP perspective. The 
HI- DSP programming model is shown in Figure 10-10. There are three registers: 1) a 
control register (HCR)' 2) a status register (HSR), and 3) a data transmit/receive register 
(HTX/HRX). These registers can only be accessed by the DSP56000/DSP56001; they can 
not be accessed by the host processor. The HI host processor programming model is 
shown in ~igure 10-13. 

The following paragraphs describe the purpose and operation of each bit in each register 
of the HI visible to the DSP CPU. The effects of the different types of reset on these registers 
are shown. A brief discussion of interrupts and operation ofthe DSPside ofthe HI complete 

10-10 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



X:SFFEB 

X:SFFEB 

X:SFFE8 
HOST CONTROL REGISTER (HCR) 
(READIWRITE) 

23 

~--~~~~~~--~~~~~~~ 

INTERRUPT ENABLES 
HOST RECEIVE 

~----- HOST TRANSMIT 
~--------- HOST COMMAND 

HOST HI FLAGS 
,...----- HOST FLAG 1 

HOST FLAG 0 

HOST STATUS REGISTER (HSR) 

L-..:.":'-L-__ ~~L.......;..~L.......;....;.......J'---..;.,,;........J'---..;.,~--T.:.......J (READ ONLY) 

RECEIVE HIGH BYTE 

TRANSMIT HIGH BYTE 

HOST RECEIVE DATA FULL 
L...-___ HOST TRANSMIT DATA EMPTY 

'-------- HOST COMMAND PENDING 

16 15 8 7 

RECEIVE MIDDLE BYTE 

TRANSMIT MIDDLE BYTE 

07 o 7 

RECEIVE LOW BYTE 

TRANSMIT LOW BYTE 

HOST RECEIVE DATA REGISTER (HRX) 
(READ ONLY) 

HOST TRANSMIT DATA REGISTER (HTX) 
(WRITE ONLY) 

NOTE: The numbers in parenthesis are reset values. 

Figure 10-10. Host Interface Programming Model- DSP Viewpoint 

the programming model from the DSP viewpoint. The programming model from the host 
viewpoint begins at 10.2.3.1 PROGRAMMING MODEL - HOST PROCESSOR VIEWPOINT. 

10.2.2.1 HOST CONTROL REGISTER (HCR). The HeR is an 8-bit read/write control register 
used by the DSP to control the HI interrupts and flags. The HeR cannot be accessed by 
the host processor. The HeR occupies the low-order byte of the internal data bus; the high­
order portion is zero filled. HeR is a read/write register to allow individual control register 
bits to be set or cleared. Any reserved bits are read as zeros and should be programmed 

MOTOROLA OSP56000/0SP56001USER'S MANUAL 10-11 



as zeros for future compatibility. The bit manipulation instructions are useful for accessing 
the 'individual bits. The contents of HCR are cleared on hardware or software reset. The 
control bits are described in the following paragraphs. 

10.2.2.1.1 HCR Host Receive Interrupt Enable (HRIE) Bit O. The HRIE bit is used to enable 
a DSP interrupt when the host receive data full (HRDF) status bit in the host status register 
(HSR) is set. When HRIE is cleared, HRDF interrupts are disabled. When HRIE is set, a host 
receive data interrupt request will occur if HRDF is set. Hardware and software resets clear 
HRIE. 

10.2.2.1.2 HCR Host Transmit Interrupt Enable (HTIE) Bit 1. The HTIE bit is used to enable 
a DSP interrupt when the host transmit data empty (HTDE) status bit in the HSR is set. 
When HTIE is cleared, HTDE interrupts are disabled. When HTIE is set, a host transmit data 
interrupt request will occur if HTDE is set. Hardware and software resets clear HTIE. 

10.2.2.1.3 HCR Host Command Interrupt Enable (HCIE) Bit 2. The HCIE bit is used to 
enable a vectored DSP interrupt when the host command pending (HCP)status bit in the 
HSR is set. When HCIE is cleared, HCP interrupts are disabled. 'When HCIE is set, a host 
command interrupt request will occur if HCP is set. The starting address of this interrupt 
is determined by the host vector (HV). Hardware and software resets clear HCIE. 

10.2.2.1.4 HCR Host Flag 2 (HF2) Bit 3. The HF2 bit is used as a general-purpose flag for 
DSP-to-host communication. HF2 may be set or cleared by the DSP. HF2 is visible in the 
interrupt status register (lSR) on the host processor side (see Figure 10-11). Hardware and 
software resets clear HF2. 

NOTE 

There are four host flags: two used by the host to signal the DSP (HFO and HF1) 
and two used by the DSP to signal the host processor (HF2 and HF3). These flags 
are not designated for any specific purpose but are general-purpose flags. ·The 
host flags do not cause interrupts; they must be polled to see ifthey have changed. 
These flags can be used individually or as encoded pairs. See 10.2.2.7 HOST PORT 
USAGE CONSIDERATIONS for additional information. An example of the usage 
of host flags is the bootstrap loader, which is listed in the DSP56001 Advance 
Information Data Sheet (ADI1290). Host flags are used to tell the bootstrap pro­
gram whether or not to terminate early. 

10.2.2.1.5 HCR Host Flag 3 (HF3) Bit 4. The HF3 bit is used as a general-purpose flag for 
DSP-to-host communication. HF3 may be set or cleared by the DSP. HF3 is visible in the 
ISR on the host processor side (see Figure 10-11). Hardware and software resets clearHF3. 

10-12 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



DSP56000 

HOST TO DSP56000 STATUS FLAGS 

INTERRUPT CONTROL REGISTER IICRI 
L-.---.l_--'-_--L..---.---'--.--'-_..L-_L-....~ IREAD/WRITEI 

X:SFFE91 DMA I 0 I 0 I HFI HFO I HCP I HTDE I HRDF I HOST STATUS REGISTER IHSRI 
. . . . IREAD ONLYI 

DSP56000 TO HOST STATUS FLAGS 

HOST INTERRUPT STATUS REGISTER IISRI t ..... 7 --'---"""---"---r--'---.--L---'-----'---...J

o 

(REAO ONLY( 

DSP56000 X:SFFESI 0 0 I 0 I HF3 HF2 I HCIE I HTIE I HRIE I HOST CONTROL REGISTER IHCRI 
...... --'---........ --'-. ---'----'-.---'-. --J·L.....-----I·IREADIWRITEI 

Figure 10-11. Host Flag Operation 

10.2.2.1.6 HeR Reserved Bits (Bits 5, 6, and 7). These ~nused bits are reserved for future 
expansion and should be written with zeros for upward compatibility. 

10.2.2.2 HOST STATUS REGISTER (HSFd. The HSR is an 8-bit read-only status register 
used by the DSP to interrogate status and flags of the HI. It can not be directly accessed 
by the host processor. When the HSR is read to the internal data bus, the register contents 
occupy the low-order byte of the data bus; the high-order portion is zero filled. The status 
bits are described in the following paragraphs. 

10.2.2.2.1 HSR Host Receive Data Full (HRDF) Bit O. The HRDF bit indicates that the host 
receive data register (HRX) contains data from the host processor. HRDF is set when data 
is transferred from the TXH:TXM:TXL registers to the HRX register. HRDF is cleared when 
HRX is read by the DSP. HRDF can also be cleared by the host processor using the initialize 
function. Hardware, software, ihdividual, and STOP resets clear HRDF. 

10.2.2.2.2 HSR Host Transmit Data Empty (HTDE) Bit 1. The HTDE bit indicates that the 
host transmit data register (HTX) is empty and can be written by the DSP. HTDE is set 
when the HTX register is transferred to the RXH:RXM:RXL registers. HTDE is cleared when 
HTX is written by the DSP. HTDE can also be set by'the host processor using the initialize 
function. Hardware, software, individual, and STOP resets set HTDE. 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 10-13 

-



-

10.2.2.2.3 HSR Host Command Pending (HCP) Bit 2. The HCP bit indicates that the host 
has set the HC bit and that a host command interrupt is pending. The HCP bit reflects the 
status of the HC bit in the command vector register (CVR). HC and HCP are cleared by the 
DSP exception hardware when the exception is taken. The host can clear HC, which also 
clears HCP. Hardw~re, software, individual, and STOP resets clear HCP. 

10.2.2.2.4 HSR Host Flag 0 (HFO) Bit 3. The HFO bit in the HSR indicates the state of host 
flag 0 in the ICR on the host processor side. HFO can only be changed by the host processor 
(see Figure 10-11). Hardware, software, individualr and STOP resets clear HFO. 

10.2.2.2.5 HSR Host Flag 1 (HF1) Bit 4. The HF1 bit in the HSR indicates the state of host 
flag 1 in the ICR on the host processor side. HF1 can only be changed by the host processor 
(see Figure 10-11). Hardware, software, individual, and STOP resets clear HF1. 

10.2.2.2.6 HSR Reserved Bits (Bits 5 and 6). These status bits are reserved for future 
expansion and read as zero during DSP read operations. 

10.2.2.2.7 HSR DMA Status (DMA) Bit 7. The DMA bit indicates that the host processor 
has enabled the DMA mode of the HI by setting HM1 or HMO to one. When DMA bit is 
-zero, it indicates that the DMA mode is disabled by the HMO and HM1 bits in the ICR and 
that no DMA operations are pending. When DMA bit is set, the DMA mode has been 
enabled by one or more of the host mode bits being set to one. The channel not in use 
can be used for polled or interrupt operation by.the DSP. Hardware, software, individual, 
and STOP resets clear the DMA bit. 

10.2.2.3 HOST RECEIVE DATA REGISTER (HRX). The HRX register is used for host-to­
DSP data transfers. The HRX register is viewed as a 24-bit read-only register by the DSP 
CPU. The HRX register is loaged with 24-bit data from the transmit data registers 
(TXH:TXM:TXL) on the host processor side when both the transmit data register empty 
TXDE on the host processor side and DSP host receive data full (HRDF) bits are cleared. 
This transfer operation sets TXDE and HRDF. The HRX register contains valid data when 
the HRDF bit is set. Reading HRX clears HRDF. The DSP may program the HRIE bit to cause 
a host receive data interrupt when HRDF is set. Resets do not affect HRX. 

10.2.2.4 HOST TRANSMIT DATA REGISTER (HTX). The HTX register is used for DSP-to­
host data transfers. The HTX register is viewed as a 24-bit write-only register by the DSP 
CPU. Writing the HTX register clears HTDE. The DSP may program the HTIE bit to cause 
a host transmit data interrupt when HTDE is set. The HTX register is transferred as 24-bit 
data to the receive byte registers (RXH:RXM:RXL) if both the HTDE bit (DSP CPU side) and 
receive data full (RXDF) status bits (host processor side) are cleared. This transfer operation 

10-14 OSP56000/0SP56001 USER'S MANUAL MOTOROLA 



sets RXDF and HTDE. Data should not be written to the HTX until HTDE is set to prevent 
the previous data from being overwritten. Resets do not affect HTX. 

10.2.2.5 REGISTER CONTENTS AFTER RESET. Table 10-1 shows the results offour reset 
types on bits in each of the HI registers seen by the DSP CPU. The hardware reset (HW) 
is caused by the RESET signal; the software reset (SW) is caused by executing the RESET 
instruction; the individual reset (IR) is caused by clearing the PBC register bit 0; and the 
stop reset (ST) is caused by executing the STOP instruction. 

Table 10-1. Host Registers after 
Reset - DSP CPU Side 

Register Register 
Reset Type 

Name Data HW SW IR 
Reset Reset Reset 

HF(3-2) 0 0 -

HCR HCIE 0 0 -
HTIE 0 0 -

HRIE 0 0 -
DMA 0 0 0 

HF(1-0) 0 0 0 

HSR HCP 0 0 0 

HTDE 1 1 1 

HRDF 0 0 0 

HRX HRX(23-0) - - -
HTX HTX(23-0) - - -

ST 
Reset 

-

-

-

-

0 

0 

0 

1 

0 

-
-

10.2.2.6 HOST INTERFACE DSP CPU INTERRUPTS. The HI may request interrupt service 
from either the DSP or the host processor. The DSP CPU interrupts are internal and do not 
require the use of an external interrupt pin (see Figure 10-12). When the appropriate mask 
bit in the HCR is set, an interrupt condition caused by the host processor sets the appropriate 
bit in the HSR, which generates an interrupt request to the DSP CPU. The DSP acknowledges 
interrupts caused by the host processor by jumping to the appropriate interrupt service 
routine. The three possible interrupts are 1) receive data register full, 2) transmit data 
register empty, and 3) host command. The host command can access any interrupt vector 
in the interrupt vector table although it has a set of vectors reserved for host command 
use. The DSP interrupt service routine must read or write the appropriate HI register (i.e., 
clearing HRDF or HTDE, for example) to clear the interrupt. In the case of host command 
interrupts, the interrupt acknowledge from the program controller will clear the pending 
interrupt condition. 

10.2.2.7 HOST PORT USAGE CONSIDERATIONS - DSP SIDE. Careful synchronization is 
required when reading multibit registers that are written by another asynchronous system. 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 10-15 

-



Figure 10-12. HSR-HCR Operation 

DSP CPU INTERRUPTS 

RECEIVE DATA FULL 
P:$0020 

TRANSMIT DATA EMPTY 
P:$0022 

HOST COMMAND 
P:12;< HV. $OOOO-$003E) 
RESET. HV = $0012 

This is a common problem when two asynchronous systems are connected. The situation 
exists in the HI. However, if the HI is used in the way it was designed, proper operation is 
guaranteed. The considerations for proper operation on the DSP CPU side are discussed 
in the following paragraphs, and considerations for the host processor side are discussed 
in 10.2.6.5 HOST PORT USAGE CONSIDERATIONS - HOST SIDE. 

DMA, HF1, HFO, HCP, HTDE, and HRDF status bits are set or cleared by the host processor 
side of the interface. These bits are individually synchronized to the DSP clock. 

The only system problem with reading status occurs with HF1 and HFO if they are encoded 
as a pair - e.g., the four combinations (00, 01, 10, and 11) each have significance. This 
problem occurs because there is a very small probability that the DSP will read the status 
bits during the transition. The solution to this potential problem is to read the bits twice 
for consensus (See 10.2.6.5 HOST PORT USAGE CONSIDERATIONS for additional infor­
mation). 

10.2.3 Host Interface - Host Processor Viewpoint 

The HI appears to the host processor as eight words of byte-wide static memory. The host 
may access the HI asynchronously by using polling techniques or interrupt-based tech­
niques. Separate transmit and receive data registers are double buffered to allow the DSP 
CPU and host processor to transfer data efficiently at high speed. The HI contains a rudi­
mentary DMA controller, which makes generating addresses (HAO-HA2) for the TX/RX 
registers in the HI unnecessary. 

10-16 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



10.2.3.1 PROGRAMMING MODEL - HOST PROCESSOR VIEWPOINT. The HI appears to 
the host processor as a memory-mapped peripheral occupying eight bytes in the host 
processor address space (see Figures 10-13 and 10-14). These registers can be viewed as 
one control register (lCR), one status register (lSR), three data registers (RXHITXH, RXMI 
TXM, and RXLITXL), and two vector registers (IVR and CVR). The CVR is a special command 
register that is used by the host processor to issue commands to the DSP. These registers 
can be accessed only by the host processor; they can not be accessed by the DSP CPU. 
Host processors may use standard host processor instructions (e.g., byte move) and ad­
dressing modes to communicate with the HI registers. The HI registers are addressed so 
that 8-bit MC6801-type host processors can use 16-bit load (LDD) and store (STD) instruc­
tions for data transfers. The 16-bit MC68000/MC68010 host processor can address the HI 

$0 

31 

INTERRUPT CONTROL REGISTER (lCRl 

L--_L--;---L--,.--'L-----''----'_---'_---'_---' (READ/WRITEI 

0 0 Interrupt Mode (DMA Off! 

0 24-Bit DMA Mode 

0 16-Bit DMA Mode 

8-Bit DMA Mode 

7 

$11 
HC 

0 
1 

0 
1 

HOST VECTOR 
(01 ($121 

L--_L--~L--~i-___ i-____ ---' 

COMMAND VECTOR REGISTER (CVRI 
(READIWRITEI 

$2 
~_L-_L-_L-_L__~L__~L__~i_~ 

7 0 

INTERRUPT STATUS REGISTER (lSRl 
(READ ONLYI 

$3l ____ I_NT_E_RR_U_PT_V.;....EC.;....T_OR_N_U_M_B_ER ____ --1IINTERRUPT VECTOR REGISTER (lVRl 
_ ($OFI . . (READIWRITEI 

$4 2423 .. 

RECEIVE BYTE REGISTERS (RXH:RXM:RXLI 
(READ ONLYI 

$5 1615 $6 

RXH RXM 

87 $7 

RXL 
00000000 

RECEIVE HIGH BYTE RECEIVE MIDDLE BYTE RECEIVE LOW BYTE 

TXH TXM TXL 
NOT USED 

TRANSMIT HIGH BYTE TRANSMIT MIDDLE BYTE TRANSMIT LOW BYTE 

07 07 

TRANSMIT BYTE REGISTERS (TXH:TXM:TXLI 
(WRITE ONLYI 

07 

NOTE: The numbers in parenthesis are reset values. 

Figure 10-13. Host Processor Programming Model- Host Side 
. .. 

MOTOROLA OSP56000/0SP56001 USER'S MANUAL 10-17 



III 

HAO-HA2 

H 
o 
S 
T 
A 3 
D 
D 
R 
E 
S 
S 

ICR 

CVR 

ISR 

IVR 

00000000 

RXHITXH 

RXMITXM 

RXUTXL 

t 
HOST DATA BUS 

HO-H7 

INTERRUPT CONTROL 

COMMAND VECTOR 

INTERRUPT STATUS 

INTERRUPT VECTOR 

UNUSED 

} 

RECEIVEITRANSMIT 
BYTES 

Figure 10-14. HI Register Map 

using the special MOVEP instruction for word (16-bit) or long-word (32-bit) transfers. The 
32-bit MC68020 host processor can use its dynamic bus sizing feature to address the HI 
using standard MOVE word (16-bit), long-word (32-bit) or quad-word (64-bit) instructions. 
The HREO and HACK handshake flags are provided for polled or interrupt-driven data 
transfers with the host processor. Because the DSP interrupt response is sufficiently fast, 
most host microprocessors can load or store data at their maximum programmed I/O (non­
DMA) instruction rate without testing the handshake flags for each transfer. If the full 
handshake is not needed, the host processor can treat the DSP as fast memory, and data 
can be transferred between the host processor and the DSP at the fastest host processor 
data rate. DMA hardware may be used with the handshake flags to transfer data without 
host processor intervention. 

One of the most innovative features of the host interface is the host command feature. 
With this feature, the host processor can issue vectored exception requests to the DSP56000/ 
DSP56001. The host may select anyone of 32 DSP56000/DSP56001 exception routines to 
be executed by writing a vector' address register in the HI. This flexibility allows the host 
programmer to execute up to 32 preprogrammed functions inside the DSP56000/DSP56001. 
For example, host exceptions can allow the host processor to read or write DSP56000/ 
DSP56001 registers (X, V, or program memory locations), force exception handlers (e.g., 
SSI, SCI, IROA, IROB exception routines), and perform control and debugging operations 
if exception routines are implemented in the DSP56000/DSP56001 to perform these tasks. 

10.2.3.2 INTERRUPT CONTROL REGISTER (lCR). The ICR is an 8-bit read/write control 
register used by the host processor to control the HI interrupts and flags. ICR cannot be 
accessed by the DSP CPU. ICR is a read/write register, which allows the use of bit manip­
ulation instructions on control register bits. The control bits are described in the following 
paragraphs. 

10-18 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



10.2.3.2.1 ICR Receive Request Enable (RREQ) Bit O. The RREQ bit is used to control the 
HREQ pin for host receive data transfers. 

In interrupt mode (DMA off), RREQ is used to enable interrupt requests via the external 
host request (HREQ) pin when the receive data register full (RXDF) status bit in the ISR is 
set. When RREQ is cleared, RXDF interrupts are disabled. When RREQ is set, the external 
HREQ pin will be asserted if RXDF is set. 

In DMA modes, RREQ must be set or cleared by software to select the direction of DMA 
transfers. Setting RREQ sets the direction of DMA transfer to be DSP to host and enables 
the HREQ pin to request data transfer. Hardware, software, individual, and STOP resets 
clear RREQ. 

10.2.3.2.2 ICR Transmit Request Enable (TREQ) Bit 1. The TREQ bit is used to control the 
HREQ pin for host transmit data transfers. 

In interrupt mode (DMA off), TREQ is used to enable interrupt requests via the external 
HREQ pin when the transmit data register empty (TXDE) status bit in the ISR is set. When 
TREQ is cleared, TXDE interrupts are disabled. When TREQ is set, the external HREQ pin 
will be asserted if TXDE is set. 

In DMA modes, TREQ must be set or cleared by software to select the direction of DMA 
transfers. Setting TREQ sets the direction of DMA transfer to be host to DSP and enables 
the HREQ pin to request data transfer. Hardware, software, individual, and STOP resets 
clear TREQ. 

Table 10-2 summarizes the effect of RREQ and TREQ on the HREQ pin. 

Table 10-2. HREQ Pin Definition 

TREQ RREQ HREQ Pin 

Interrupt Mode 

0 0 No Interrupts (Polling) 

0 1 RXDF Request (Interrupt) 

1 0 TXDE Request (Interrupt) 

1 1 RXDF and TXDE Request (Interrupts) 

DMA Mode 

0 0 No DMA 

0 1 DSP to Host Request (RX) 

1 0 Host to DSP Request (TX) 

1 1 Undefined (Illegal) 

10.2.3.2.3 ICR Reserved Bit (Bit 2). This bit, which is reserved and unused, reads as a 
logic zero. 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 10-19 



-

10.2.3.2.4 ICR Host Flag 0 (HFO) Bit 3. The HFO bit is used as a general-purpose flag for 
hosi-to-DSP communication. HFO may be set or cleared by the host processor and cannot 
be changed by the DSP. HFO is visible in the HSR on the DSP CPU side of the HI (see Figure 
10-11). Hardware, software, individual, and STOP resets clear HFO. 

10.2.3.2.5 ICR Host Flag 1 (HF1) Bit 4. The HF1 bit is used as a general-purpose flag for 
host-to-DSP communication. HF1 may be set or cleared by the host processor and cannot 
be changed by the DSP. Hardware, software, individual, and STOP resets clear HF1. 

10.2.3.2.6 ICR Host Mode Control (HM1 and HMO) Bits 5 and 6. The HMO and HM1 bits 
select the transfer mode of the HI (see Table 10-3). HM1 and HMO enable the DMA mode 
of operation or interrupt (non-DMA) mode of operation. 

Table 10-3. Host Mode Bit Definition 

HM1 HMO Mode 

0 0 Interrupt Mode (DMA Off) 

0 1 DMA Mode (24 Bit) 

1 0 DMA Mode (16 Bit) 

1 1 DMA Mode (8 bit) 

When both HM1 and HMO are cleared, the DMA mode is disabled, and the TREQ and RREQ 
control bits are used for host processor interrupt control via the external HREQ output pin. 
Also, in the non-DMA mode, the HACK input pin is used for the MC68000 Family vectored 
interrupt acknowledge input. 

When HM1 or HMO are set, the DMA mode is enabled, and the HREQ pin is used to request 
DMA transfers. When the DMA mode is enabled, the TREQ and RREQ bits select the 
direction of DMA transfers. The HACK input pin is used as a DMA transfer acknowledge 
input. If the DMA direction is from DSP to host, the contents of the selected register are 
enabled onto the host data bus when HACK is asserted. If the DMA direction is from host 
to DSP, the selected register is written from the host data ~us when HACK is asserted. 

The size of the DMA word to be transferred is determined by the DMA control bits, HMO 
and HM1. The HI register selected during a DMA transfer is determined by a 2-bit address 
counter, which is preloaded with the value in HM1 and HMO. The address counter substi­
tutes for the HA 1 and HAO bits of the HI during a DMA transfer. The host address bit (HA2) 
is forced to one during each DMA transfer. The address counter can be initialized with the 
INIT bit feature. After each DMA transfer on the host data bus, the address counter is 
incremented to the next register. When the address counter reaches the highest register 
(RXL or TXL), the address counter is not incremented but is loaded with the value in HM1 
and HMO. This allows 8-, 16- or 24-bit data to be transferred in a circular fashion and 
eli l1l inates the need for theDMA controller to supply the HA2, HA1, and HAO pins. For 16-
or 24-bit data transfers, the DSP CPU interrupt rate is reduced by a factor of 2 or 3, 

10-20 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



respectively, from the host request rate - i.e., for every two or three host processor data 
transfers of one byte each, there is only one 24-bit DSP CPU interrupt. 

Hardware, software, individual, and STOP resets clear HM1 and HMO. 

10.2.3.2.7 leR Initialize Bit (lNIT) Bit 7. The INIT bit is used by the host processor to force 
initialization of the HI hardware. Initialization consists of configuring the HI transmit and 
receive control bits and loading HM1 and HMO into the internal DMA address counter. 
Loading HM1 and HMO into the DMA address counter causes the HI to begin transferring 
data on a word boundary rather than transferring only part of the first data word. There 
are two methods of initialization: 1) allowing the DMA address counter to be automatically 
set after transferring a word and 2) setting the INIT bit, which sets the DMA address counter. 
Using the INIT bit to initialize the HI hardware mayor may not be necessary, depending 
on the software design of the interface. 

The type of initialization done when the INIT bit is set depends on the state of TREO and 
RREO in the HI. The INIT command, which is local to the HI, is designed to conveniently 
configure the HI into the desired data transfer mode. The commands are described in the 
following paragraphs and in Table 10-4. The host sets the INIT bit, which causes the HI 
hardware to execute the INIT command. The interface hardware clears the INIT bit when 
the command has been executed. Hardware, software, individual, and STOP resets clear 
INIT. 

INIT execution always loads the DMA address counter and clears the channel according 
to TREO and RREO. INIT execution is not affected by HM1 and HMO. 

Table 10-4. HREQ Pin Definition 

Transfer 
TREQ RREQ After INIT Execution Direction 

Initialized 

Interrupt Mode (HM1 =0, HMO=O) INIT Execution 

0 0 INIT=O; address counter=OO None 

0 1 INIT=O; RXDF=O; HTDE=1; address DSP to Host 
counter=OO 

1 0 INIT=O; TXDE=1; HRDF=O; Address Host to DSP 
Counter=OO 

1 1 INIT=O; RXDF=O; HTDE=1; TXDE=1; Host to/from DSP 
HRDF=O; Address Counter=OO 

DMA Mode (HM1 or HMO=1) INIT Execution 

0 0 INIT=O; Address Counter=HM1, HMO None 

0 1 INIT = 0; RXDF = 0; HTDE = 1; Address DSP to Host 
Counter=HM1, HMO 

1 0 INIT=O; TXDE= 1; HRDF=O; Address Host to DSP 
Counter=HM1, HMO 

1 1 Undefined (Illegal) Undefined 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 10-21 

-



III 

The internal DMA counteris incremented with each DMA transfer (each HACK pulse) until 
it reaches the last data register (RXL or TXL). When the DMA transfer is completed, the 
counter is loaded with the value of the HM1 and HMO bits. When changing the size of the 
DMA word (changing HMO and HM1 in the ICR), the DMA counter is not automatically 
updated, and, as a result, the DMA counterwill pointto the wrong data register immediately 
after HM1 and HMO are changed. The INIT function must be used to preset the internal 
DMA counter correctly. Always set INIT after changing HMO and HM1. However, the DMA 
counter can not be initialized in the middle of a DMA transfer. Even though the INIT bit is 
set, the internal DMA controller will wait until after completing the data transfer in progress 
before executing the initialization. 

10.2.3.3 COMMAND VECTOR REGISTER (CVR). The CVR is used by the host processor 
to cause the DSP to execute a vectored interrupt. The host command feature is independent 
of any of the data transfer mechanisms in the HI. It can be used to cause any of the 32 
possible interrupt routines in the DSP CPU to be executed. 

10.2.3.3.1 CVR Host Vector (HV) Bits 0-4. The five HV bits select the host command 
exception address to be used by the host command exception logic. When the host com­
mand exception is recognized by the DSP interrupt control logic, the starting address of 
the exception taken is 2 x HV. The host can write HC and HV in the same write cycle, if 
desired. 

The host processor can select any of the 32 possible exception routine starting addresses 
in the DSP by writing the exception routine starting address divided by 2 into HV. This 
means that the host processor can force any of the existing exception handlers (SSI, SCI, 
IROA, IROB, etc.) and can use any of the reserved or otherwise unused starting addresses 
provided they have been preprogrammed in the DSP. HV is set to $12 (vector location 
$0024) by hardware, software, individual, and STOP resets. Vector location $0024 is the 
first of thirteen special host command vectors. 

CAUTION 

The .HV should not be used with a value of zero because the reset location is 
normally programmed with a JMP instruction. Doing so will cause an improper 
fast interrupt. 

10.2.3.3.2 CVR Reserved Bits (Bits 5 and 6). Reserved bits are unused and are read by 
the host processor as zeros. 

10.2.3.3.3 CVR Host Command Bit (HC) Bit 7. The HC bit is used by the host processor 
to handshake the execution of host command exceptions. Normally, the host processor 
sets HC = 1 to request the host command exception from the DSP. When the host command 
exception is acknowledged by the DSP, the HC bit is cleared by the HI hardware. The host 

10-22 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



processor can read the state of HC to determine when the host command has been ac­
cepted. The host processor may elect to clear the HC bit, canceling the host command 
exception request at any time before it is accepted by the DSP CPU. 

CAUTION 

The command exception might be recognized by the DSP and executed before 
it can be canceled by the host, even if the host clears the HC bit. 

Setting HC causes host command pending (HCP) to be set in the HSR. The host can write 
HC and HV in the same write cycle if desired. Hardware, software, individual, and STOP 
resets clear HC. 

10.2.3.4 INTERRUPT STATUS REGISTER (lSR). The ISR is an 8-bit read-only status register 
used by the host processor to interrogate the status and flags of the HI. The host processor 
can write this address without affecting the internal state of the HI, which is useful if the 
user desires to access all of the HI registers by stepping through the HI addresses. The 
ISR can not be accessed by the DSP. The status bits are described in the following para­
graphs. 

10.2.3.4.1 ISR Receive Data Register Full (RXDF) Bit O. The RXDF bit indicates that the 
receive byte registers (RXH, RXM, RXL) contain data from the DSP CPU and may be read 
by the host processor. RXDF is set when the HTX is transferred to the receive byte registers. 
RXDF is cleared when the receive data low (RXL) register is read by the host processor. 
RXL is normally the last byte of the receive byte registers to be read by the host processor. 
RXDF can be cleared by the host processor using the initialize function. RXDF may be used 
to assert the external HREQ pin if the RREQ bit is set. Regardless of whether the RXDF 
interrupt is enabled, RXDF provides valid status so that polling techniques may be used 
by the host processor. Hardware, software, individual, and S!OP resets clear RXDF. 

10.2.3.4.2 ISR Transmit Data Register Empty (TXDE) Bit 1. The TXDE bit indicates that 
the transmit byte registers (TXH, TXM, TXL) are empty and can be written by the host 
processor. TXDE is set when the transmit byte registers are transferred to the HRX register. 
TXDE is cleared when the transmit byte low (TXL) register is written by the host processor. 
TXL is normally the last byte of the transmit byte registers to be written by the host 
processor. TXDE can be set by the host processor using the initialize feature. TXDE may 
be used to assert the external HREQ pin if the TREQ bit is set. Regardless of whether the 
TXDE interrupt is enabled, TXDE provides valid status so that polling techniques may be 
used by the host processor. Hardware, software, individual, and STOP resets set TXDE. 

10.2.3.4.3 ISR Transmitter Ready (TRDY) Bit 2. The TRDY status bit indicates that both 
the TXH, TXM, TXL and the HRX registers are empty. 

TRDY = TXDE • HRDF 

MOTOROLA OSP56000/0SP56001 USER'S MANUAL 10-23 



III 

When TRDY is set to one, the data that the host processor writes to TXH, TXM, and TXL 
will be immediately transferred to the DSP CPU side of the HI. This has many applications" 
- e.g., if the host processor issues a host command which causes the DSP CPU to read 
the HRX, the host processor can be guaranteed that the data it just transferred to the HI 
is what is being received by the DSP CPU. 

Hardware, software, individual, and STOP resets set TRDY. 

10.2.3.4.4 ISR Host Flag 2 (HF2) Bit 3. The HF2 bit in the ISR indicates the state of host 
flag 2 in the HCR on the CPU side. HF2 can only be changed by the DSP (see Figure 10-
11). HF2 is cleared by a hardware or software reset. 

10.2.3.4.5 ISR Host Flag 3 (HF3) Bit 4. The HF3 bit in the ISR indicates the state of host 
flag 3 in the HCR on the CPU side. HF3 can only be changed by the DSP (see Figure 10-
11). HF3 is cleared by a hardware or software reset. 

10.2.3.4.6 ISR Reserved Bit (Bit 5). This status bit is reserved for future expansion and 
will read as zero during host processor read operations. 

10.2.3.4.7 ISR DMA Status (DMA) Bit 6. The DMA status bit indicates that the host pro­
cessor has enabled the DMA mode of the HI (HM1 or HMO = 1). When the DMA status bit 
is clear, it indicates that the DMA mode is disabled (HMO = HM1 = 0) and no DMA operations 
are pending. When DMA is set, it indicates that the DMA mode is enabled and the host 
processor should not use the active DMA channel (RXH, RXM, RXL or TXH, TXM, TXL 
depending on DMA direction) to avoid conflicts with the DMA data transfers. Th~ channel 
not in use can be used for polled operation by the host and operates in the interrupt mode 
for internal DSP exceptions or polling. Hardware, software, individual, and STOP resets 
clear the DMA status bit. 

10.2.3.4.8 ISR Host Request (HREQ) Bit 7. The HREO bit indicates the status of the external 
host request output pin (HREO). When the HREO status' bit is cleared, it ihdicates that the 
external HREO pin is deasserted and no host processor interrupts or DMA transfers are 
being requested. When the HREO status bit is set, it indicates that the external HREO pin 
is asserted, indicating tHat the DSP is interrupting the host processor or that a DMA transfer 
request is occurring. The HREO interrupt request may originate from either or both of two 
sources - the receive byte registers are full or the transmit byte registers are empty. These 
conditions are indicated by the ISR RXDF and TXDE status bits, respectively. If the interrupt 
source has been enabled by the associated request enable bit in the ICR, HREO will be set 
if one or more of the two enabled interrupt sources is set. Hardware, software, individual, 
and STOP resets clear HREO. 

10-24 OSP56000/0SP56001. USER'S MANUAL MOTOROLA 



10.2.3.5 INTERRUPT VECTOR REGISTER (lVR). The IVR is an 8-bit read/write register 
which typically contains the exception vector number used with M68000 Family processor 
vectored interrupts. Only the host processor can read and write this register. The contents 
of IVR are placed on the host data bus (HO-H7) when both the HREQ and HACK pins are 
asserted and the DMA mode is disabled. The contents of this register are initialized to $OF 
by a hardware or software reset, which corresponds to the uninitialized exception vector 
in the MC68000 Family. 

10.2.3.6 RECEIVE BYTE REGISTERS (RXH, RXM, RXL). The receive byte registers are 
viewed as three 8-bit read-only registers by the host processor. These registers are called 
receive high (RXH), receive middle (RXM), and receive low (RXL). These three registers 
receive data from the high byte, middle byte, and low byte, respectively, of the HTX register 
and are selected by three external host address inputs (HA2, HA 1, and HAO) during a host 
processor read operation or by an on-chip address counter in DMA operations. The receive 
byte registers (at least RXL) contain valid data when the receive data register full (RXDF) 
bit is set. The host processor may program the RREQ bit to assert the external HREQ pin 
when RXDF is set. This informs the host processor or DMA controller that the receive byte 
registers are full. These registers may be read in any order to transfer 8-, 16-, or 24-bit 
data. However, reading RXL clears the receive data full RXDF bit. Because reading RXL 
clears the RXDF status bit, it is normally the last register read during a 16- or 24-bit data 
transfer. Reset does not affect RXH, RXM, or RXL. 

10.2.3.7 TRANSMIT BYTE REGISTERS (TXH, TXM, TXL). The transmit byte registers are 
viewed as three 8-bit write-only registers by the host processor. These registers are called 
transmit high (TXH), transmit middle (TXM), and transmit low (TXL). These three registers 
send data to the high byte, middle byte and low byte, respectively, of the HRX register 
and are selected by three external host address inputs (HA2, HA1, and HAO) during a host 
processor write operation. Data may be written into the transmit byte registers when the 
transmit data register empty (TXDE) bit is set. The host processor may program the TREQ 
bit to assert the external HREQ pin when TXDE is set. This informs the host processor or 
DMA controller that the transmit byte registers are empty. These registers may be written 
in any order to transfer 8-, 16-, or 24-bit data. However, writing TXL clears the TXDE bit. 
Because writing the TXL register clears the TXDE status bit, TXL is normally the last register 
written during a 16- or 24-bit data transfer. The transmit byte registers are transferred as 
24-bit data to the HRX register wher,l both TXDE and the HRDF bit are cleared. This transfer 
operation sets TXDE and HRDF. Reset does not affect TXH, TXM, or TXL. 

10.2.3.8 REGISTERS AFTER RESET. Table 10-5 shows the'result of four kinds of reset on 
bits in each of the HI registers seen by the host processor. The hardware reset is caused 
by asserting the RESET pin; the software reset is caused by executing the RESET in­
struction; the individual reset is caused by clearing the PBC register bit 0; and the stop 
reset is caused by executing the STOP instruction. 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 10-25 



Table 10-5. Host Registers after Reset 
(Host Side) 

Reset Type 
Register Register 
Name Data HW SW IR ST 

Reset Reset Reset Reset 

INIT 0 0 0 0 

HM (1-0) 0 0 0 0 

ICR TREO 0 0 0 0 

RREO 0 0 0 0 

HF (1-0) 0 0 0 0 

CVR 
HC 0 0 0 0 

HV (4-0) $12 $12 $12 $12 

HREO 0 0 0 0 

DMA 0 0 0 0 

ISR HF (3-2) 0 0 - -

TRDY 1 1 1 1 

TXDE 1 1 1 1 

RXDF 0 O' 0 0 

IVR IV (7-0) $OF $OF - -

RXH (23-16) - - - -

RX RXM (15-8) - - - -

RXL (7-0) - - - -
TXH (23-21) - - - -

TX TXM (15-8) - - - -

TXL (7-0) - - - -

10.2.4 Host Interface Pins 

The 15 HI pins are described here for convenience. Additional information, including timing, 
is given in the DSP56001 Advance Information Data Sheet (ADI1290). 

10.2.4.1 HOST DATA BUS (HO-H7). This bidirectional data bus is used to transfer data 
between the host processor and the DSP56000/DSP56001. This bus is an input unless 
enabled by a host processor read. HO-H7 may be programmed as general-purpose parallel 
liD pins called PBO-PB7 when the HI is not being used. 

10.2.4.2 HOST ADDRESS (HAO-HA2). These inputs provide the address selection for each 
HI register. These inputs are stable when HEN is asserted. HAO-HA2 may be programmed 
as general-purpose parallel liD pins called PB8-PB10 when the HI is not being used. 

10-26 OSP56000/0SP56001 USER'S MANUAL MOTOROLA 



10.2.4.3 HOST READIWRITE (HRIW). This input selects the direction of data transfer for 
each host processor access. If HRIW is high and HEN is asserted, HO-H7 are outputs, and 
DSP data is transferred to the host processor. If HR/W is low and HEN is asserted, HO-H7 
are inputs, and host data is transferred to the DSP. HRIW is stable when HEN is asserted. 
HRIW may be programmed as a general-purpose I/O pin called PB11 when the HI is not 
being used. 

10.2.4.4 HOST ENABLE (HEN). This input enables a data transfer on the host data bus. 
When HEN is asserted and HRIW is high, HO-H7 become outputs, and DSP data may be 
latched by the host processor. When HEN is asserted and HRIW is low, HO-H7 become 
inputs, and host data is latched inside the DSP when HEN is deasserted. When HEN is 
deasserted, HO-H7 are three-stated. Normally, a chip-select signal derived from host ad­
dress decoding and an enable clock are used to generate HEN. HEN may be programmed 
as a general-purpose I/O pin called PB12 when the HI is not being used. 

10.2.4.5 HOST REQUEST (HREQ). This open-drain output signal is used by the DSP56000/ 
DSP56001 HI to request service from the host processor, DMA controller, or a simple 
external controller. HREQ may be connected to an interrupt request pin of a host processor, 
a transfer request of a DMA controller, or a control input of external circuitry. HREQ is 
asserted when an enabled request occurs in the host interface. HREQ is deasserted when 
the enabled request is cleared or masked, DMA HACK is asserted, or the DSP is reset. 
HREQ may be programmed as a general-purpose I/O pin (not open-drain) called PB13 when 
the HI is not being used. 

10.2.4.6 HOST ACKNOWLEDGE (HACK). This input has two functions: 1) to provide a 
host acknowledge handshake signal for DMA transfers and 2) to receive a host interrupt 
acknowledge compatible with M68000 Family processors. If programmed as a host ac­
knowledge signal, HACK may be used as a data strobe for HI DMA data transfers. If 
programmed as an MC68000 host interrupt acknowledge, HACK is used to enable the HI 
interrupt vector register (IVR) onto the host data bus (HO-H7) if HREQ is asserted. In this 
case, all other HI control pins are ignored, and the state of the HI is not affected. HACK 
may be programmed as a general-purpose I/O pin called PB14 when the HI is not being 
used. 

10.2.5 Servicing the Host Interface 

The HI can be serviced by using one of the following protocols: 
1. Polling or 
2. Interrupts, which can be either 

a. non-DMA or 
b. DMA 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 10-27 



II 

From the host processor viewpoint, the service consists of making a data transfer since 
this IS the only way of resetting the appropriate status bits. 

10.2.5.1 HI HOST PROCESSOR DATA TRANSFER. The HI looks like static RAM to the host 
processor. Accordingly, to transfer data with the HI, the h?~t processor 

1. Asserts the HI address (HAO, HA 1, HA2) to select the register to be read or written. 

2. Asserts HR/W to select the direction of the data transfer. 

3. Strobes the data transfer using HEN. When data is being written to the HI by the host 
processor, the positive-going edge of HEN latches the data in the HI register selected. 
When data is being read by the host processor, the negative-going edge of HEN strobes 
the data onto the data bus HO-H7. 

This process is illustrated in Figure 10-15. The specified timing relationships are given in 
the DSP56001 Advance Information Data Sheet (ADI1290). 

10.2.5.2 HI INTERRUPTS HOST REQUEST (HREQ). The host processor interrupts are ex­
ternal and use the HREO pin. HREO is normally connected to the host processor maskable 
interrupt (lPLO, IPL 1, or IPL2 in Figure 10-16) input. The host processor acknowledges host 
interrupts by executing an interrupt service routine. The most significant bit (HREO) of the 
ISR may be tested by the host processor to determine if the DSP is the interrupting device, 
and the two least significant bits (RXDF and TXDE) may be tested to determine the interrupt 
source (see Figure 10-17). The host processor interrupt service routine must read or write 

DSP56000 

HAO-HA2 "JZf.. Y:l:ll;j. HAO-HA2 

HR!W~ I HR/W 

HEN~ 

f> 
I \ HEN 

( ( }-HO-H7 HO-H7 

+5V 

WRITE READ 
DATA 

LATCHED 
+5V 

HREQ 
IN HI 

HACK 

Figure 10-15. Host Processor Transfer Timing 

10-28 OSP56000/0SP56001 USER'S MANUAL MOTOROLA 



7 0 

53 I INTERRUPT VECTOR NUMBER I INTERRUPT VECTOR REGISTER (lVR) 
L... ________________ ---1. (READ/WRITE) 

MC6S000 
-t-5V 

1. THE DSP56000 ASSERTS HREQ TO INTERRUPT THE HOST PROCESSOR DSP56000 

lK =\ .... ______________ :t-_-_.L_--t HREO 

2. THE HOST PROCESSOR ASSERTS HAS;K WITH ITS INTERRUPT ACKNOWL· 
EDGE CYCLE. 

\ 
---+I HACK 

Al-A31 __ .,. 

FCO-FC2 t--+I 

AS t---+I 

"------

3. WHEN HREO AND HACK ARE SIMULTANEOUSLY ASSERTED, THE CON· 
TENTS OF THE IVR ARE PLACED ON THE HOST DATA BUS. 

HO-H7 
00-07 ........ ---------------------+--' 

Figure 10-16. Host Registers After Reset - Host Side 

Figure 10-17. HI Interrupt Structure 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 

INTERRUPT VECTOR 
REGISTER (lVR) 

10-29 



• 

the appropriate HI register to clear the interrupt. HREO is deasserted when 1) the enabled 
request is cleared or masked, 2) DMA HACK is asserted, or 3) the DSP is reset. 

10.2.5.3 POLLING. In the polling mode of operation, the HREO pin is not connected to 
the host processor, and HACK must be deasserted to insure DMA data or IVR data is not 
being output on HO-H7 when other registers are being polled. 

The host processor first performs a data read transfer to read the ISR (see Figure 10-17) 
to determine whether 

1. RXDF = 1, signifying the receive data register is full so a data read should be performed. 

2. TXDE = 1, signifying the transmit data register is empty so a data write can be per­
formed. 

3. TRDY = 1, signifying the transmit data register is empty and the receive data register 
on the DSP CPU side is empty so that the data written by the host processor will be 
transferred directly to the DSP side. 

4. HF2· HF3 =F 0, signifying an application-specific. state within the DSP CPU has been 
reached, which requires action on the part of the host processor. 

5. DMA= 1, signifying the HI is currently being used for DMA transfers. If DMA transfers 
are possible in the system, care must be exercised to deactivate HACK prior to reading 
the ISR so both DMA data and the contents of ISR are not simultaneously output on 
HO-H7. 

6. If HREO = 1, the HREO pin has been asserted, and one of the previous five conditions 
exists. 

Generally, after the appropriate data transfer has been made, the corresponding status bit 
will toggle. 

If the host processor has issued a command to the DSP by writing the CVR and setting 
the HC bit, it can read the HC bit in the CVR to determine when the' command has been 
accepted by the interrupt controller in the DSP CPU. When the command has been accepted 
for execution, the HC bit will be ,reset to zero by the interrupt controller in the DSP CPU. 

10.2.5.4 SERVICING NON-DMA INTERRUPTS. When HMO = HM1 = 0 (Le., non-DMA) and 
HREO is connected to the host processor interrupt input, the HI can request service from 
the host processor by asserting HREO. In the non-DMA mode, HREO will be asserted when 
TXDE = 1 and/or RXDF = 1 and the corresponding mask bit (TREO or RREO, respectively) 
is set. This process is depicted in Figure 10-17. 

Generally, servicing the interrupt starts with reading the ISR, as described in the previous 
paragraphs, to determine which DSP has generated the interrupt and why. When multiple 
DSPs occur in a system, the HREO bit in the ISR will normally be read first to determine 

10-30 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



the interrupting devicy. The host processor interrupt service routine must read or write 
the appropriate HI register to clear the interrupt. HREO is deasserted when the enabled 
request is cleared or masked. 

When the host processor is a member of the M680XX Family, servicing the interrupt will 
start by the DSP asserting HREO to interrupt the processor (see Figure 10-17). The host 
processor then acknowledges the interrupt by asserting HACK. While HREO and HACK are 
simultaneously asserted, the contents of the IVR are placed on the host data bus. This 
vector will tell the host processor which routine to use to service the HREO interrupt. 

The HREO pin is an open-drain output pin so that it can be wire-ORed with the HREO pins 
from other DSP56000/DSP56001 processors in the system. When one of the DSP56000/ 
DSP56001 processors generates an interrupt request, the host processor can poll the HREO 
bit in each of the ISRs to determine which device generated the interrupt. 

10.2.5.5 SERVICING DMA INTERRUPTS. When HMO=FO and/or HM1 =FO, HREO will be 
asserted to request a DMA transfer. Generally, the HREO pin will be connected to the REO 
input of a DMA controller. The HAO-HA2, HEN, and HRIW pins are not used during DMA 
transfers; DMA transfers only use the HREO and HACK pins after the DMA channel has 
been initialized. HACK is used to strobe the data transfer (see Figure 10-18) where an 
MC68440 is used as the DMA controller. DMA transfers to and from the HI are considered 
in more detail in 10.2.6 HI Application Examples. 

10.2.6 HI Application Examples 

In the following paragraphs, examples of initializing the HI, transferring data with the HI, 
bootstrapping via the HI, and performing -DMA transfers through the HI are described. 

10.2.6.1 HI INITIALIZATION. Initializing the HI takes two steps (see Figure 10-19). The first 
step is to initialize the DSP side of the HI, which requires that the options for interrupts 
and flags be selected and then the HI be selected (see Figure 10-20). The second step is 
for the host processor to clear the HC bit by writing the CVR, select the data transfer method 
- polling, interrupts, or DMA (see Figures 10-21 and 10-23) - and write the IVR in the 
case of a M680XX Family host processor. Figures 10-19-10-22 provide a general description 
of how to initialize the HI. Later subsections provide more detailed descriptions for specific 
examples. These subsections include some code fragments illustrating how.to initialize 
and transfer data using the HI. . 

10.2.6.2 POLLING/INTERRUPT CONTROLLED DATA TRANSFER. Handshake flags are pro­
vided for polled or interrupt-driven data transfers. Because the DSP interrupt response is 
sufficiently fast, most host microprocessors can load or store data at their maximum 
programmed I/O (non-DMA) instruction rate without testing the handshake flags for each 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 10-31 



TO IRQB 

[}SP56001 MC68440 

r----~-------------~IRQ 

HREQ 1--------1 

HACK~--~-------~ 

-+5V 

~----------~-----~REQO 

~---------------------iACKO 

__ -~-AO 
A1 
AS 

'---o-OWN 

RE~~ ________________________ B_UR_S_T ________________________ ~r-

10-32 

L -----...J FAST 56001 INTERRUPT I - ~ ~ I TO TRANSFER 24-BIT WORD 

HACK n ;i~ n,-_MB_I~_~~_E ..In,-_~~_~ __ I ( \'--_~0_G~ __ r 
1 DMA CYCLE = 8 T = 4 DMA CLOCK CYCLES 
MAX. MC68440 CLOCK = 10 MHz = > T = 50 ns 

DMA ACK GATED OFF 

Figure 10-18. DMA Transfer Logic and Timing 

STEP 1 
THE DSP CPU INITIALIZES THE DSP SIDE OF 
THE HI BY WRITING: 
11 HCE AT X:$FFE8 AND 
21 PBC AT X:$FFEO 

! 
STEP 2 

THE HOST PROCESOR INITIALIZES THE HOST 
SIDE OF THE HI BY WRITING: 
11 ICR AT $0 AND/OR 
21 CVR AT $1 AND/OR 
31 IVR AT $3 

Figure 10-19. HI Initialization Flowchart 

DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



STEP 1 OF HOST PORT CONFIGURATION 

1. ENABLE/DISABLE 
HOST RECEIVE DATA FULL INTERRUPT --------, 
ENABLE INTERRUPT: BIT 0 = 1 
DISABLE INTERRUPT: BIT 0 = 0 

2. ENABLE/DISABLE 
HOST TRANSMIT DATA EMPTY INTERRUPT ------, 
ENABLE INTERRUPT: BIT 1 = 1 
DISABLE INTERRUPT: BIT 1 = 0 

3. ENABLE/DISABLE 
HOST COMMAND PENDING INTERRUPT -----, 
ENABLE INTERRUPT: BIT 2 ~ 1 
DISABLE INTERRUPT: BIT 2 - 0 

4. SET/CLEAR 
HOST FLAG 2 (OPTIONAU ----..., 
ENABLE FLAG: BIT 3 = 1 
DISABLE FLAG: BIT 3 = 0 

5. SET/CLEAR 

DISABLE FLAG: BIT 4 = 0 

HOST FLAG 3 (OPTIONAU l 
ENABLE FLAG: BIT 4 = 1 

7 6 5 4 2 1 0 

X:SFFESI * I * I * HF3 HF2 I HCIE I HTIE I HRIE I HOST CONTROL REGISTER (HCR) 
. . . . (READ/WRITE) 

6. SELECT PORT B FOR HOST PORT OPERATION: 

,:" 0 TO ON'--------------,lo 

X:$FFEO I * I * I * I * I * I * I * I * I * I * I * I * I * I * I * I BOC I PORT B CONTROL REGISTER (PBG) 

*Reserved; write as zero. 

NOTE: The host flags are' general-purpose semaphores. They are not required for host port operation 
but may be used in some applications. 

Figure 10-20. HI Initialization - DSP Side 

transfer. If the full handshake is not needed, the host processor can treat the DSP as fast 
memory, and data can be transferred between the host and DSP at the fastest host pro­
cessor rate. DMA hardware may be used with the external host request and host acknowl­
edge pins to transfer data at themaximumDSP interrupt rate. 

The basic data transfer process from the host processor's view (see Figure 10-15) is for 
the host to 

1. Assert HREQ when the HI is ready to transfer data. 

2. Assert HACK if the interface is using HACK. 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 10-33 



III 

STEP 2 OF HOST PORT CONFIGURATION 

1. CLEAR HOST COMMAND BIT (HCI: 

BIT 7 "17 0 

$1 ,r-H-C -,r--*---"r--*---"r------
HV
-------" COMMAND VECTOR REGISTER (CVRI 

(READIWRITEI 
*Reserved; write as zero. 

2. OPTION 1 :SELECT HOST VECTOR (HVI----' 
(OPTIONAL SINCE HV CAN BE SET ANY TIME BEFORE THE HOST COMMAND IS EXECUTED. DSP INTERRUPT VECTOR = THE HOST VECTOR 
MULTIPLIED BY 2. DEFAULT (UPON DSP RESETI: HV = $12. DSP INTERRUPT VECTOR $0024 

Figure 10-21(a). HI Configuration - Host Side 

STEP 2 OF HOST PORT CONFIGURATION 

2. OPTION 2: SELECT POLLING MODE FOR HOST TO DSP COMMUNICATION 

7 6 5 4 2· 1 0 

$0 I·INIT I HMI I HMO I HFI HFO I * I TREQ I RREQ I :~~!~~~iT~~NTROL REGISTER (lCRI 

*Reserved; write as zero. 

Figure 10-21(b). HI Initialization - Host Side, Polling Mode 

3. Assert fiRIW to select whether this operation will read or write a register. 

4. Assert the HI address (HA2, HA 1, and HAD) to select the register to be read or written. 

5. Assert HEN to enable the HI. 

6. When HEN is deasserted, the data can be latched or read, as appropriate, if the timing 
requirements have been observed .. 

7. HREQ will be deasserted if the operation is complete. 

10-34 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



STEP 2 OF HOST PORT CONFIGURATION 

2. OPTION 3: SELECT INTERRUPT MODE FOR 

INITIALIZE DSP 
INITIALIZE HI** 

BIT 7= I 

DMA OFF 
BIT 5=0 
BIT 6=0 

.~ 
7 6 5 4 3 

DSP TO HOST 

o R 

HOST T o DSP 

o R 

HOST DSP TO 
AN 

HOST T 
D 
o DSP 

~ 

ENABLE 
RECEIVE DATA FULL INTERRUPT 

BIT 0= I 
BIT 1=0 

I 
ENABLE 

TRANSMIT DATA EMPTY INTERRUPT 
BIT 0=0 
BIT I = I 

I 

ENABLE 
RECEIVE DATA FULL INTERRUPT AND 
TRANSMIT DATA EMPTY INTERRUPT 

BIT 0= I 
BIT I = I 

I 

I 0 

$0 I INIT I HMI I HMO I HFI I HFO I * I TREQ I RREa I INTERRUPT CONTROL REGISTER (lCR) 
(READtWRITE) 

2. OPTION 4: LOAD HOST INTERRUPT VECTOR IF USING THE INTERRUPT MODE AND THE HOST PROCESSOR REQUIRES AN 
INTERRUPT VECTOR. 

I I INTERRUPT VECTOR REGISTER (lVR) 
$3 IV7 IV6 IV5 IV4 IV3 IV2 IVI IVO. (READtWRITE) 

*Reserved; write as zero. 
**See Figure 10-23. 

Figure 10-21 (c). HI Initialization - Host Side, Interrupt Mode 

The previous transfer description is an overview. Specific and exact information for the HI 
data transfers and their timing can be found in 10.2.6.3 DMA TRANSFER and in the DSP560001 
Advance Information Data Sheet (ADI1290). 

10.2.6.2.1 Host to DSP - Data Transfer. Figure 10-23 shows the bits in the ISR and ICR 
registers used by the host processor and the bits in the HSR and HCR registers used by 
the DSP to transfer data from the host processor to the DSP. The registers shown are the 
status register and control register seen by the host processor and status register and 
control register seen by the DSP. Only the registers used to transmit data from the host 
processor to the DSP are described. Figure 10-24 illustrates the process of that data transfer. 
The steps in Figure 10-24 can be summarized as follows: 

1. When the TXDE bit in the ISR is set, it indicates that the HI is ready to receive a data 
byte from the host processor because the transmit byte registers (TXH, TXM, TXL) 
are empty. 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 10-35 



STEP 2 OF HOST PORT CONFIGURATION 

2. OPTION 5: SELECT DMA MODE FOR 

ENABLE 

DSP TO HOST RECEIVE DATA FULL INTERRUPT 
BIT 0= 1 
BIT 1 =0 

OR 1 
ENABLE 

TRANSMIT DATA EMPTY INTERRUPT 
BIT 0 =0 

HOST TO DSP 

BIT 1 = 1 

I , 
~ 

1 0 

L-_L-----I'----"_---'-_H_FO--'-I_*_.L.1 T_R_EQ_I .... R_R_EQ ...... I :~~!~~~iT~~NTROL REGISTER IICRI 

*Reserved; write as zero. 
**See Figure 10-23. 

Figure 10-21 (d). HI Initialization - Host SiJle, DMA Mode 

2. The host processor can either poll or 

3. Use interrupts to determine the status of this bit. Setting the TREQ bit in the ICR 
causes the HREQ pin to interrupt the host processor when TXDE is set. 

4. Once the TXDE bit is set, the host can write data to the HI by writing three bytes to 
. TXH, TXM, and TXL, respectively, or two bytes to TXM and TXL, respectively, or 
one byte to TXL. 

5. Writing data to TXL clears TXDE in the ISR. 

6. From the DSP's viewpoint, the HRDF bit (when set) in the HSR indicates that data is 
waiting in the HI for the DSP. 

7. When the DSP. reads the HRX, the HRDF bit is automatically cleared, and TXDE in 
the ISR is set. 

8. When TXDE=O and HRDF=O, data is automatically transferred from TBR to HRX. 

9. This transfer sets HRDF. The DSP can poll HRDF to see when data has arrived, or it 
can use interrupts. 

10. If HRIE (in the HCR) and HRDF are set, exception processing is started using interrupt 
vector P:$0020. 

10-36 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



TREQ 

0 

0 

1 

1 

MODES' 

~ 

HOST SETS INIT BIT 1 • I INIT HMI HMO HFI I HFO I a I TREQ I RREQ I INTERRUPT CONTROL REGISTER OCR) 
(READ/WRITE) 

~ ! 
0 0 Interrupt Mode (DMA Off) ~ RESET CONDITION 

0 1 24-Bit DMA Mode } 1 0 16-Bit DMA Mode 

1 1 a-Bit DMA Mode 

INTERRUPT MODE (DMA OFF) DMA MODE 

RREQ 

0 

1 

0 

1 

INIT Execution TREQ RREQ INIT Execution 

INIT = 0; Address Counter = 00 0 0 INIT 00 0; Address Counter -~ HM 1, HMO 

INIT = 0; RXDF = 0; HTDE = 1; 0 1 INIT 7 0; RXDF~ 0; HTDE = 1; 
Address Counter = 00 Address Counter~ HM1, HMO 

INIT=O; TXDE=1; HRDF=O; 1 0 INIT ~ 0; TXDE = 1; HRDF = 0; 
Address Counter = 00 Address Counter = HM1, HMO 

INIT=O; RXDF=O; HTDE = 1; TXDE = 1; 1 1 Undefined (Illegal) 
HRDF = 0; Address Counter = 00 

INIT is used by the HOST to force initialization of the HI hardware. 
The HI hardware automatically clears INIT when the command is executed. 
INIT is cleared by DSP RESET. 

Figure 10-22. Host Mode and INIT Bits 

The code shown in Figure 10-25 is an excerpt from the Host liD Port Technical Bulletin (in­
house document). The MAIN PROGRAM initializes the HI and then hangs in a wait loop 
and allows interrupts to transfer data from the host processor to the DSP. The first three 
MOVEP instructions enable the HI and configure the interrupts. The following two moves 
enable the interrupts (should always be done after the interrupt programs and hardware 
are completely initialized) and prepare the DSP CPU to look for the host flag, HFO = 1. LOOP 
is a polling loop that looks for HFO = 1, which indicates that the host processor is ready. 
When the host processor is ready to transfer data to the DSP, the DSP enables HRIE in the 
HCR, which allows the interrupt routine to receive data from the host processor. The jump­
to-self instruction that follows is for test purposes only; it can be replaced by any other 
code in normal operation. 

The receive routine in Figure 10-26 was implemented as a long interrupt (the instruction 
at the interrupt vector location, which is not shown, is a JSR). Since there is only one 
instruction, this could have been implemented as a fast interrupt. The MOVEP instruction 
moves data from the HI to a buffer area in memory and increments the buffer pointer so 
that the next word received will be put in the next sequential location. 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 10-37 

-



..... 
o 
W 
00 

c 
CJ) 
""0 en 
en 
o 
o 
o 
C 
CJ) 
""0 en 
en 
o o 

-...& 

c 
CJ) 
m 
::J:J en 
~ 
> 
2 
C 
> r-

~ 
o 
--I 
o 
:::tI 
o 
~ 

I 

HOST ~ DSP56000 

7 0 INTERRUPT STATUS 
s21 HREQ 1 DMA 1 0 HF3 HF2 1 TROY 1 TXDE 1 RXDF I REGISTER OSRI 

(READ ONLYI 

TXDE - TRANSMIT DATA REGISTER EMPTY 
1 ~ INDICATES THE TRANSMIT BYTE REGISTERS (TXH, TXM, TXU ARE EMPTY. 
00: CLEARED BY WRITING TO TXL; TXDE CAN BE USED TO ASSERT THE HREQ PIN. 

TROY - TRANSMITTER READY = TXDE· HRDF 
1 = BOTH THE TRANSMIT BYTE REGISTERS AND THE HOST RECEIVE DATA REGISTERS 

~RE EMPTY. 

0= ONE OR BOTH REGISTERS ARE FULL. 

so I INIT 

MODES 
~ 

HMI HMO 

~ ~ 
0 0 

0 1 

1 0 

1 1 
-

HFI I HFO I o I TREQ 

Interrupt Mode (DMA om 
24-Bit DMA Mode 

16-Bit DMA Mode 

8-Bit DMA Mode 
- -- -

TREQ - TRANSMIT REQUEST ENABLE 

RREQ I 

USED TO ENABLE INTERRUPTS THAT COME FROM TXDE TO THE HOST 
VIA THE HREQ PIN. 

1 = TXDE INTERRUPTS PASS TO HREQ 
0= TXDE INTERRUPTS ARE MASKED 

INTERRUPT CONTROL 
REGISTER OCRI 
(READIWRITEI 

7 0 HOST STATUS 
X:SFFE91 DMA 1 0 1 0 HFI HFO 1 HCP 1 HTDE 1 HRDF 1 REGISTER (HSRI 

HRDF - HOST RECEIVE DATA FULL 
1 = THE HOST RECEIVE REGISTER (HRXI CONTAINS DATA FROM THE 

HOST PROCESSOR. 
0= HRX IS EMPTY. 

DMA - INDICATES THE HOST PROCESSOR HAS ENABLED THE DMA MODE 
1 =DMA ON 
0= HOST MODE 

(READ ONLYI 

7 0 HOST CONTROL 
X:SFFESI 0 I 0 0 1 HF3 HF2 1 HCIE 1 HTIE 1 HRIE I REGISTER (HCRI 

HRIE - HOST RECEIVE INTERRUPT ENABLE 
ENABLES INTERRUPT AT P:S0020 

DSP INTERRUPT IS CAUSED BY HRDF = 1 
1 = INTERRUPT P:S0020 ENABLED 
0= INTERRUPT P:S0020 DISABLED 

(READIWRITEI 

Figure 10-23. Bits Used for Host-to-OSP Transfer 



~ 
o 
~ o 
:c 
o 
s;: 

c en 
"tI 
U1 
en 
o 
o 
~ c en 
"tI 
U1 
en 
o 
~ 
c en 
m 
:JJ 
cii 
s: 
l> 
:2 
C 
l> r-

o 
W 
(0 

VIEW FROM HOST • VIEW FROM DSP56000 

1. WHEN TXDE = I, TBR IS EMPTY. 6. IF DSP56000 HAS OLD DATA IN HRX, THEN HRDF = 1. 
7 0 

$21 HREQ 1 DMA 1 0 1 HF3 1 HF2 1 TROY 1 1 1 RXDF I ~~~~~~~:~I;~tTUS 7. WHEN DSP56000 READS HRX, THEN HRDF = o. 

TXDEJ 
TRANSMIT DATA REGISTER EMPTY 

7 HOST STATUS 
X:$FFE91 0 REGISTER IHSR) 

2. HOST MAY POLL TXDE. 

. I -I INTERRUPT CONTROL 
1 INIT 1 0 1 0 I HFI HFO I 0 RREQ REGISTER (ICR) 

TREQ 
TRANSMIT REQUEST ENABLE 

DMA 

HRDF 
HOST RECEIVE DATA FULL 

8. WHEN TXDE = 0 AND HRDF = 0, THEN TRANSFER OCCURS. 

23 0 

I HOST RECEIVE DATA 
-......; .. ~ X:$FFEB I HIGH BYTE MIDDLE BYTE LOW BYTE REGISTER IHRX) 

3. IF TREQ= I, THEN HREQ PIN IS ASSERTED TO INTERRUPT HOST. 

I HREQ I .~ 
PIN • '-----

4. HOST WRITES DATA TO TRANSMIT BYTE REGISTERS. 
5. WRITE TO TXL CLEARS TXDE IN ISR. 

$5 TXH } $6 TXM 

LAST WRITE. $7 TXL 

TRANSMIT BYTE 
REGISTERS ITBR) 

9. THE TRANSFER SETS HROF FOR THE DSP56000 TO POLL. 

HOST CONTROL 
X:$FFE8 1 0 I 0 I 0 I HF3 HF2 I HCIE I HTIE I I REGISTER IHCR) 

TRANSFER 
HRIE 

r-------------------HOST RECEIVE INTERRUPT ENABLE 

10. IF HRDF = 1 AND INTERRUPTS ARE ENABLED, THEN EXCEPTION PROC-
ESSING BEGINS. . 

P:$0020 I HOST RECEIVE DATA VECTOR 

FAST INTERRUPT 
OR 

LONG INTERRUPT 

Figure 10-24. Data Transfer from Host to DSP 

I 



.****************************************** , 
; MAIN PROGRAM ... receive data from host 

.****************************************** , 
ORG P:$40 
MOVE #O,RO 
MOVE #3,MO 

MOVEP #1,X:PBC 
MOVEP #O,X:HCR 
MOVEP #$OCOO,X:IPR 

MOVE #O,SR 
MOVE #>$8,XO 

LOOP MOVEP X:HSR,A 
AND XO,A 
JEQ LOOP 

MOVEP #$1,X:HGR 

JMP * 

;Turn on Host Port 
;Turn off XMT and RCV interrupts 
;Turn on host interrupt 

;Unmask interrupts 
;Host flag mask for HFO 

;Wait for HFO (from host) set to 1 

;Enable host receive interrupt 

;Now wait for interrupt 

Figure 10-25. Receive Data from Host - Main Program 

.*********************************** , 
; Receive from Host Interrupt Routine 
.*********************************** , 

RCV MOVEP X:HRX,X: (RO) + 
RTI 

END 

; Receive data. 

Figure 10-26. Receive Data from Host Interrupt Routine 

10.2.6.2.2 Host to DSP - Command Vector. The host processor can cause three types 
of interrupts in the DSP (see Figure 10-27). These are host receive data (P:$0020), host 
transmit data (P:$0022), and host command (P:$0024-P:$003C). The host command (HC) 
can be used to control the DSP by forcing it to execute any of thirteen subroutines that 
can be used to run tests, transfer data, process data, etc. In addition, the HC can cause 
any of the other 19 interrupt routines in the DSP to be executed. The process to execute 
an HC (see Figure 10-28) is as follows: 

10-40 OSP56000/0SP56001 USER'S MANUAL MOTOROLA 



EXCEPTION 
STARTING 
ADORESS 

PROGRAM MEMORY SPACE 

EXCEPTION SOURCE 

$0000 HARDWARE RESET 

$0002 STACK ERROR 

$0004 TRACE 

$0006 SWI ISOFTWARE INTERRUPT) 

$0008 IROA EXTERNAL HARDWARE INTERRUPT 

$OOOA IROB EXTERNAL HARDWARE INTERRUPT 

$OOOC SSI RECEIVE DATA 

$OOOt SSI RECEIVE DATA WITH EXCEPTION STATUS 

$0010 SSI TRANSMIT DATA 

$0012 SSI TRANSMIT DATA WITH EXCEPTION STATUS 

$0014 SCI RECEIVE DATA 

$0016 SCI RECEIVE DATA WITH EXCEPTION STATUS 

$0018 SCI TRANSMIT DATA 

$001 A SCI IDLE LINE 

$OO1C SCI TIMER 

$OO1E RESERVED FOR HARDWARE DEVELOPMENT 

$0020 HOST RECEIVE DATA 

$0022 HOST TRANSMIT DATA 

$0024 HOST COMMAND IDEFAULT) 

$0026 AVAILABLE FOR HOST COMMAND 

$0028 AVAILABLE FOR HOST COMMAND 

$002A AVAILABLE FOR HOST COMMAND 

$002C AVAILABLE FOR HOST COMMAND 

$002E AVAILABLE FOR HOST COMMAND 

$0030 AVAILABLE FOR HOST COMMAND 

$0032 AVAILABLE FOR HOST COMMAND 

$0034 AVAILABLE FOR HOST COMMAND 

$0036 AVAILABLE FOR HOST COMMAND 

$0038 AVAILABLE FOR HOST COMMAND 

$003A AVAILABLE FOR HOST COMMAND 

$003C AVAILABLE FOR HOST COMMAND 

$003E ILLEGAL INSTRUCTION 

~ 

TWO WORDS PER VECTOR f t NONMASKABLE 
INTERRUPTS 

! 
EXTERNAL 

INTERRUPTS 

SYNCHRONOUS 
SERIAL 

INTERFACE 

INTERNAL 
INTERRUPTS 

SERIAL 
COMMUNICATIONS 

INTERFACE 

~ 

HOST INTERNAL 
INTERFACE INTERRUPTS 

Figure 10-27. Vector Table of Exception Sources 

MOTOROLA OSP56000/0SP56001 USER'S MANUAL 10-41 



-> 
o 
J;:. 
N 

c en 
""C 
U'1 en 
o 
o e c en 
""C 
U'1 en 
o g 
c: 
en 
m 
::a 
en 
s: » 
2: 
c: » 
r-

:s: 
o 
-I o 
::a o 
s;: 

I 
VIEW FROM HOST 

1. WRITE CVR WITH DESIRED HV. 
2. SET HC = 1. 

7 0 

$1 I 1 I 0 I 0 I HOST VECTOR (HV) I COMMAND VECTOR 
, , REGISTER (CVR) ... 

HC 
HOST COMMAND 

$12 - DEFAULT 

EXCEPTION VECTOR 
ADDRESS c HV x 2 

VIEW FROM DSP56000 

3. HCP IS SET UNTIL EXCEPTION IS ACKNOWLEDGED. 

7 I 0 I HOST STATUS "'''E91 OMA 1 0 0 I Hfl I H::J I HTOE : HROF REGISTER IHSRI 

HCP 
HOST COMMAND PENDING 

4. HOST COMMAND IS MASKED UNTIL HCIE = 1 

7 0 

x,,'" 1 0 1 0 1 0 1 HF3 1 HF2:OS 1 HTIE 1 HRIE 1 ~~~is~~:i~gkl 
HCIE 

HOST COMMAND INTERRUPT ENABLE 

EXCEPTION VECTOR TABLE 

P~OOL J 
-

L...------------......; .. ~P:S0024 HOST COMMAND DEFAULT VECTOR I---

5. WHEN THE HOST COMMAND EXCEPTION IS ACKNOWLEDGED, THE HC 
BIT IS CLEARED BY THE HOST COMMAND LOGIC. HC CAN BE READ AS 
A STATUS BIT. 

7 0 

$11 E I 0 1 HOST VECTOR IHVI I COMMAND VECTOR 
REGISTER (CVR) 

HC - HOST COMMAND (STATUS) 

--
P:$003C 

Figure 10-28. Host Command 

AVAILABLE FOR HOST COMMAND 

--
AVAILABLE FOR HOST COMMAND 

AVAILABLE FOR HOST COMMAND 

FAST INTERRUPT 
OR I( 

LONG INTERRUPT 



1. The host processor writes the CVR with the desired HV (the HV is the DSP's interrupt 
vector (IV) location divided by 2 - i.e., if HV = $12, IV = $24). 

2. The HC is then set. 

3. The HCP bit in the HSR is set when HC is set. 

4. If the HCIE bit in the HCR has been set by the DSP, the HC exception processing will 
start. The HV is multiplied by 2, and the result is used by the DSP as the interrupt 
vector. 

5. When the HC exception is acknowledged, the HC bit (and therefore the HCP bit) is 
cleared by the HC logic. HC can be read by the host processor as a status bit to 
determine when the command is accepted. Similarly, the HCP bit can be read by the 
DSP CPU to determine if an HC is pending. 

To guarantee a stable interrupt vector, write HV only when HC is clear. The HC bit and HV 
can be written simultaneously. The host processor can clear the HC bit to cancel a host 
command at any time before the DSP exception is accepted. Although the HV can be 
programmed to any exception vector, it is not recommended that HV = 0 (RESET) be used 
because it does not reset the DSP hardware. DMA must be disabled to use the host 
exception. 

10.2.6.2.3 Host to DSP - Bootstrap Loading Using the HI. The circuit shown in Figure 
10-29 will cause the DSP to boot through the HI on powerup. During the bootstrap program, 
the DSP looks at P:$COOO data bit 23. If D23 is high, it will boot from an external memory 
location; if it is low, as shownin Figure 10-29, it will load from the HI. Data is written by 
the host processor in a pattern of four bytes, with the high byte being a dummy and the 
low byte being the low byte of the DSP word (see Figures 10-29 and 10-30). Figure 10-30 
shows how an 8-, 16-, 24-, or 32-bit word in the host processor maps into the HI registers. 
The HI register at address $4 is not used and will read as zero. It is not necessary to use 
address $4, but, since many host processors are 16- or 32-bit processors, address $4 will 
often be used as part of the 16- or 32-bit word. The low-order byte (at $7) should always 
be written last since writing to it causes the HI to initiate the transfer of the word to the 
HRX. Data is then transferred from the HRX to the DSP program memory. If the host 
processor needs to terminate the bootstrap loading before 512 words have been down­
loaded, it can set the HFO bit in the ICR. The DSP will then terminate the download and 
start executing at location P:$OOOO. Since the DSP56000/DSP56001 is typically faster than 
the host processor, handsha~ing during the data transfer is normally not required. 

The actual code used in the bootstrap program is given in the DSP56001Advance Infor­
mation Data Sheet (ADI1290). The portion of the code that loads from the HI is shown in 
Figure 10-31. The BSET instruction configures port B as the HI and the first JCLR looks for 
a flag (HFO) to indicate an early termination of the download. The second JCLR instruction 
causes the DSP to wait for a complete word to be received, and then two MOVEs are used 
to move the data from the HI to memory through an intermediate register, A 1. 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 10-43 

-



III 

+5V 

LOS t----------\ 
15K 

OSP56001 
ASt--------+_~ 

MOOA/IRUA t--.----+--+--< 

A4-A23 

MC68000 
112.5 MHzl 

1K 

OTACK 1--..----------4 

RESET I---'-~-+--< 

R/W HR/W 

00-07 ... ------~------_.J HO-H7 

MODB/IRUB 1---.----...... -< 
A1-A3 t---------.r------..... HAO-HA2 D23 

15K 

7 HOST 0 

$0 I INIT I HM1 I HMO I HF1 HFO I 0 I TREQ I RREQ I INTERRUPT (~~~b~~I~~~ISTER IICRI 

L SETTING HFO TERMINATES BOOTSTRAP LOADING AND STARTS 
EXECUTION AT LOCATION P:$OOOO. 

HOST ADDRESS 
WRITTEN 

4 mUMMYI 
5 
6 
7 

SET HFO FOR EARLY TERMINATION ---~ .. ~. 
4 mUMMYI 
5 

·Because the DSP56000 is so fast, host handshaking is generally not required. 

CONTENTS LOADED 
TO INTERNAL PRAM AT: 

P:$OOOO HIGH BYTE 
P:$OOOO MID BYTE 
P:$OOOO LOW BYTE 

P:$01 FF HIGH BYTE 
P:$OlFF MID BYTE 
P:$01FF LOW BYTE 

Figure 10-29. Bootstrap Using the HI 

FROM OPEN­
COLLECTOR 
BUFFER 

FROM 
RESET 
FUNCTION 

FROM OPEN­
COLLECTOR 
BUFFER 

10.2.6.2.4 DSP-to-Host Data Transfer. Data is transferred from the DSP to the host pro­
cessor in a similar manner as from the host processor to the DSP. Figure 10-32 shows the 
bits in the status registers (lSR and HSR) and control registers (lCR and HCR) used by the 
host processor and DSP CPU, respectively. The DSP CPU (see Figure 10-33) can poll the 
HTDE bit in the HSR (1) to see when it can send data to the host, or it can use interrupts 

10-44 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



HOST 
DATA 

31 24 23 I READ - 00000000 I 
WRITE - XXXXXXXX 

16 15 8 7 

HIGH I MIDDLE 

HOST 
TRANSMITIRECEIVE 

BYTE REGISTERS HOST BYTE 
o ADDRESS 

00000000 

TXH/RXH 
HIGH BYTE 

TXM/RXM 
MIDDLE BYTE 

TXURXL 
LOW BYTE 

LOW 

0 

ACCESS TO 
7~ LOW BYTE 

INITIATES 
TRANSFER 

L---JI /.-S-BIT TRANSFER 

~16-BIT TRANSFER ---~ 
24-BIT TRANSFER -------..t 

~------32-BIT TRANSFER, LS 24 BITS ARE SIGNIFICANT -------l~ 

NOTE: Access low byte last 

Figure 10-30. Transmit/Receive Byte Registers 

INLOOP 

-HOSTLD 
-LBLA 

-LBLB 

-STORE 
-LOOP1 

MOTOROLA 

DO 

BSET 
JCLR 
ENDDO 
JMP 
JCLR 

MOVE 
MOVE 

#512,-LOOP1 

#O,X:$FFEO 
#3,X:$FFE9,-LBLB 

<-BOOTEND 
#0,X:(R2),-LBLA 

X:$FFEB,A1 
A1,P:(RO)+ 

;Load 512 instruction words. 

;Configure Port B as Host Interface 
;If HFO= 1, stop loading data. 
;Must terminate the DO loop 
;Boot complete, go to exit handler 
;Wait for HRDF to go high 
;(meaning 24-bit data is present) 
;Put 24-bit host data in A1 
;Store 24-bit result in PRAM 
;Return for another 24-bit word 

Figure 10-31. Bootstrap Code Fragment 

OSP56000/0SP56001 USER'S MANUAL 10-45 



o 
~ 
0> 

c 
C/) 
"'0 
U1 
m 
o o 
o 
C 
C/) 
"'0 
U1 
m 
o 
o ..... 
c 
C/) 
m 
::tJ en 
s: » z 
c » 
r-

s: 
o 
d 
::0 o 
S; 

II 

HOST .. DSP56000 

.------,.....------._~--...-___ -__._-_-__ O INTERRUPT STATUS: 
$21 HREQ I DMA I 0 I HF3 I HF2 I TRDY I TXDE I RXDF I REGISTER (ISRI 

(READ ONLYI 

RXDF - RECEIVE DATA REGISTER FULL 
1 = INDICATES THAT RECEIVE BYTE REGI~TERS (RXH,RXM,RXU 

CONTAIN DATA FROM THE DSP. 
0= CLEARED BY READING RXL. 

r------;r-----,---"T---r----,------r----r--.....,O HOST STATUS 
X:$FFE91 DMA I 0 I 0 HFl HFO I HCP I HTDE 1 HRDF I REGISTER (HSRI 

HTDE - HOST TRANSMIT DATA EMPTY 
1 = HTX IS EMPTY AND CAN BE WRITIEN BY DSP. 
0= HTX IS FULL. 

(READ ONLYI 

MODES 7 0 HOST CONTROL 

17 III 1 1 1 0 I INTERRUPT CONTROL x:$FFESI 0 1 0 1 0 I HF3 I HF2 I HCIE I HTIE I HRIE I REGISTER (HCRI 
$0 INIT HMl HMO HFl HFO 0 TREQ RREQ REGISTER (ICRI (READIWRITEI 

RREQ - RECEIVE REQUEST ENABLE (USED TO CONTROL THE HREQ PINI 
1 = ENABLE INTERRUPT REQUESTS CREATED BY RXDF 
0= DISABLE INTERRUPT REQUESTS 

(READIWRITEI HTIE - HOST TRANSMIT INTERRUPT ENABLE 
1 = ENABLE THE DSP INTERRUPT TO P:$0022 
0= DISABLE THE DSP INTERRUPT TO P:$0022 

DSP INTERRUPT IS CAUSED BY HTDE = 1 

Figure 10-32. Bits Used for DSP to Host Transfer 



~ 
o 
-i o 
:0 
o 
~ 

c 
CJ) 
"tJ en en 
o 
o 
~ 
C 
CJ) 
"tJ en 
en 
o 
g 
c: 
CJ) 
m 
:0 
en 
:s: 
:I> 
Z 
c: 
:I> 
r-

...... 
o 
J:.. ..... 

VIEW FROM HOST .. VIEW FROM HOST 

5. READ OF RXL BY HOST CLEARS RXDF IN ISR. 
6. WHEN RXDF = 0 AND HTDE = 0, THEN TRANSFER OCCURS. 

:: ::: },-......... -----------_ .... 
LAST READ. 57 RXL 

RECEIVE BYTE 
REGISTERS (RBR) 

7. THE TRANSFER SETS RXDF FOR THE 
HOST TO POLL. 

7 0 INTERRUPT 
s21 HREQ 1 DMA 1 0 1 HF3 HF2'1 TRDY 1 TXDE 1 1 I STATUS 

I REGISTER (lSR) 

RXDF-1 
RECEIVER 

DATA FULL 

~ INTERRUPT 
SO I INIT 1 HMI 1 HMO 1 HFI HFO 0 1 TREQ 1 1 1 CONTROL 

I REGISTER (lCR) 

RREQ----.J 
RECEIVE 

REQUEST ENABLE 

8. IF RREQ= 1, THEN HREO PIN IS ASSERTED TO INTERRUPT HOST. 

I HREQ I ~ PIN ~ L-

1. WHEN HTDE= 1, THEN HTX IS EMPTY. 
7 0 

S;5FFESI· DMA 1 0 1 0 1 HFI 1 HFO 1 HCP 1 1 1 HRDF 1 ~~~I~i;: r~;R) 
HTDE ----.J 

HOST TRANSMIT 
DATA EMPTY 

2. DSP56000 MAY POLL HTDE. 

o 
7 I I I HOST CONTROL 

SX;SFFESI 0 0 1 0 1 HF3 1 HF2 1 HCIE 1 HRIE REGISTER (HCR) 

HTIE~ 
HOST TRANSMIT 

INTERRUPT ENABLE 

3. IF HTIE = 1, AND INTERRUPTS ARE ENABLED, THEN EXCEPTION PROC­
ESSING BEGINS. 

p;soOOOL J 
HOST TRANSMIT DATA VECTDR 

III Ff1AL INSTRUCTION VECTOR P;S003E 1...' ___________ ...J 

FAST INTERRUPT 
OR 

LONG INTERRUPT 

4. DSP56000 WRITES DATA TO HTX, WHICH CLEARS HTDE IN HSR. 

n 0 

" 

I....---X·SFFEB I HIGH BYTE MIDDLE BYTE LOW BYTE 1 HOST TRANSMIT DATA 
. . . REGISTER (HTX) 

Figure 10-33. Data Transfer from DSP to Host 

II 



-

enabled by the HTIE bit in the HCR (2). If HTIE = 1 and interrupts are enabled, exception 
processing begins at interrupt vector P:$0022 (3). The interrupt routine should write data 
to the HTX (4), which will clear HTDE in the HSR. From the host's viewpoint, (5) reading 
the RXL clears RXDF in the ISR. When RXDF = 0 and HTDE = 0 (6), the contents of the HTX 
will be transferred to the receive byte registers (RXH:RXM:RXL). This transfer sets RXDF 
in the ISR (7), which the host processor can poll to see if data is available, or, if the RREO 
bit in the ICR is set, the HI will interrupt the host processor with HREO (8). 

The code shown in Figure 10-34 is essentially the same as the MAIN PROGRAM in Figure 
10-25 except that, since this code will transmit instead of receive data, the HTIE bit is set 
in the HCR instead of the HRIE bit. 

The transmit routin~ used by the code in Figure 10-34 is shown in Figure 10-35. The interrupt 
vector contains a JSR, which makes it a long interrupt. The following code sends a fixed 
test pattern ($123456) and then resets the HI for the next interrupt. 

10.2.6.3 DMA DATA TRANSFER. The DMA mode allows the transfer of 8-, 16-, or 24-bit 
data through the QSP HI under the control of an external DMA controller. The HI provides 
the pipeline data registers and the synchronization logic between the two asynchronous 
processor systems. The DSP host exceptions provide cycle-stealing data transfers with the 

;******************************************** 
; MAIN PROGRAM ... transmit 24-bit data to host 
;******************************************** 

ORG P:$40 

MOVEP #1,X:PBC ;Turn on Host Port 
MOVEP #$OCOO,X:IPR ;Turn on host interrupt 
MOVEP #O,X:HCR ;Turn off XMT and RCV interrupts 

MOVE #O,SR ;Unmask interrupts 
MOVE #>$8,XO ;Host flag mask for HFO 

LOOP MOVEP X:HSR,A ;Wait for HFO (from host) set to 1 
AND XO,A 
JEQ LOOP 

MOVEP #$2,X:HCR ; Enable host transmit interrupt 

JMP * ;Now wait for interrupt 

Figure 10-34. Main Program - Transmit 24-Bit Data to Host 

10-48 OSP56000/0SP56001 USER'S MANUAL MOTOROLA 



;********************************* 
; TRANSMIT to Host Interrupt Routine 
;********************************* 

XMT MOVEP 
MOVEP 
RTI 

END 

#$123456,X: HTX 
#O,X:HCR 

;Test value to transmit 
;Turn off XMT Interrupt 

Figure 10-35. Transmit to HI Routine 

DSP internal or external memory. This technique allows the DSP memory address to be 
generated using any of the DSP addressing modes and modifiers. Queues and circular 
sample buffers are easily created for DMA transfer regions. The host exceptions can be 
programmed as high-priority fast or long exception service routines. The external DMA 
controller provides the transfers between the DSP HI registers and the external DMA mem­
ory. The external DMA controller must provide the address to the external DMA memory; 
however, the address of the selected HI register is provided by a DMA address counter in 
the HI. 

DMA transfers can only be in one direction at a time; however, the host processor can 
access any of the registers not in use during the DMA transfer by deasserting HACK and 
using HEN and HAO-HA2 to transfer data. The host can therefore transfer data in the other 
direction during the DMA operation using polling techniques. 

10.2.6.3.1 Host-To-OSP Internal Processing. The following procedure outlines the steps 
that the HI hardware takes to transfer DMA data from the host data bus to DSP memory 
(see Figures 10-36 and 10-37): 

1. HI asserts the HREQ pin (see Figures 10-36 and 10-37) when TXDE=1. 

2. DMA controller enables data on HO-H7 and asserts HACK. 

3. When HACK is asserted, the HI deasserts HREQ. 

4. When the DMA controller deasserts HACK, the data on HO-H7 is latched into the TXH, 
TXM, TXL registers. 

5. If the byte register written was not TXL (i.e., not $7), the DMA address counter internal 
to the HI increments, and HREQ is again asserted. Steps 2-5 are thEm repeated. 

6. If TXL ($7) was written, TXDE will be set to zero, and the address counter in the HI 
will be loaded with the contents of HM1 and HMO. When TXDE=O, the contents of 
TXH:TXM:TXL are transferred to HRX if HRDF=O. After the transfer to HRX, TXDE 
will be set to one, and HREQ will be asserted to start the transfer of another word 
from external memory to the HI. 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 10-49 

• 



• 

7. When the transfer to HRX occurs within the HI, HRDF is set to one. Assuming HRIE = 1, 
a host receive exception will be generated. The exception routine must read the HRX 
to clear HRDF. 

NOTE 
The transfer of data from the TXH, TXM, TXL registers to the HRX register au­
tomatically loads the DMA address counter from the HM1 and HMO bits in the 
DMA host to DSP mode. This DMA address is used within the HI to place the 
received byte in the correct register (TXH, TXM, or TXL). 

Figure 10-37 shows the differences between 24-, 16-, and 8-bit DMA data transfers. The 
interrupt rate is three times faster for 8-bit data transfers than for 24-bit data transfers. TXL 
is always loaded last. 

10.2.6.3.2 Host-to-DSP DMA Procedure. The following procedure outlines the typical steps 
that the host processor must take to set up and terminate a host-to-DSP DMA transfer (see 
Figure 10-38): 

1. Set up the external DMA controller (1) source address, byte count, direction, and other 
control registers. Enable the DMA controller channel. 

10-50 

+5V 

DMA 
Q 

? lK CONTROLLER ? 
? 

TRANSFER REQUEST 

TRANSFER 
ACKNOWLEDGE 

I I MEMORY 

R/W 

CONTROL 

... A 
ADDRESS DATA 

V 'oJ 
Characteristics of Host DMA Mode 

• The HREO pin is NOT available for host processor interrupts. 

• TREO and RREO select the direction of DMA transfer. 
- DMA to DSP56000 
- DSP56000 to DMA 
- Simultaneous bidirectional DMA transfers are not permitted 

DSP56000/DSP56001 
HOST INTERFACE 

HREQ INTERNAL 
ADDRESS 
COUNTER 

HACK CD 
HO-H7 

...;~ 

• Host processor software polled transfers are permitted in the opposite direction of the DMA transfer. 

• 8-, 16-, or 24-bit transfers are supported. 
-16- or 24-bit transfers reduce the DSP interrupt rate by a factor of 2 or 3, respectively. 

Figure 10-36. HI Hardware - DMA Mode 

DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



XFEREO 

DMA 
CONTROLLER 

24-81T TRANSFER 
IINTERNAL COUNTERI 

16-81T TRANSFER 
IINTERNAL COUNTERI 

8-81T TRANSFER 
(INTERNAL COUNTERI 

FAST INTERRUPT ROUTINE 
P:$0020 MOVE X:$FFE8,A READ HRX 
P:$0021 MOVE A,Y:(R71 + ;AND PUT INTO Y MEMORY 

Figure 10-37. DMA Transfer and Host Interrupts 

HREO 

DSP56000/ 
DSP56001 

2. Initialize the HI (2) by writing the ICR to select the word size (HMO and HM1), to select 
the direction (TREQ= 1, RREQ=O), and to initialize the channel setting INIT= 1 (see 
Figure 10-39). 

3. The DSP's destination pointer (3) used in the DMA exception handler (e.g., address 
register) must be initialized, and HRIE must be set to enable the HRDF interrupt to 
the DSP CPU. This procedure can be done with a separate host command exception 
routine in the DSP. HREQ will be asserted (4) immediately by the HI to begin the DMA 
transfer. 

4. Perform other tasks (5) while the DMA controller transfers data (6) until interrupted 
by the DMA controller DMA transfer complete interrupt (7). The DSP interrupt control 
register (lCR), the interrupt status register (lSR), and RXH, RXM, and RXL registers 
may be accessed at any time by the host processor but the TXH, TXIVI, and TXL 
registers may not be accessed until the DMA mode is disabled. 

5. Terminate the DMA controller channel (8) to disable DMA transfers. 

6. Terminate the DSP HI DMA mode (9) in the ICR by clearing the HM1 and HMO bits 
and clearing TREQ. 

The HREQ will be active immediately after initialization is completed (depending on hard­
ware) because the data direction is host to DSP and TXH, TXM, and TXL registers are 
empty. When the host writes data to TXH, TXM, and TXL, this data will be immediately 
transferred to HRX. If the DSP is due to work in interrupt mode, HRIE must be enabled. 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 10-51 

-



o 
c11 
N 

c 
(f) 
""0 en 
0') 
o 
o 
o 
C 
(f) 
""0 en 
0') 
o 
o 
-& 

c 
(f) 
m 
::a en 
s: » z 
c » 
r-

~ 
o 
-I o 
:0 
o 
s;: 

I 
HOST PROCESSOR DMA CONTROLLER DSP56000 

1. PROGRAM DMA CONTROLLER • 
- START ADDRESS 
- BYTE COUNT 
- TRANSFER DIRECTION 
- START DMA CHANNEL 

7 0 
WRITE ICR I I INTERRUPT CONTROL 

2. INITIALIZE DSP56000 HOST • $0 I 1 1 HFI HFO 1 0 REGISTER (lCR) 
INTERFACE INIT HMI HMO TRED RRED 

- MODE 24 BIT DMA 
-- HOST TO DSP 
- USE INIT BIT TO: 

SET TXDE 
CLEAR HRDF 
LOAD DMA COUNTER 

3. TELL DSP56000 7 0 _ WHERE TO STORE DATA • X:SFFESI 0 I HF3 HF2 I HCIE I HTIE I 1 I HOST CONTROL 
(I.e., PROGRAM ADDRESS REGISTER (HCR) 

REGISTER R7). HRIE 4. ASSERT HRED TO START DMA 
TRANSFER. 

- ENABLE INTERRUPT HRIE 
(CAN BE DONE WITH A HOST 
COMMAND). 

5. HOST IS FREE TO PERFORM OTHER 
TASKS (i.e., DSP TO HOST TRANS­
FER ON A POLLED BASIS!. 

8. TERMINATE DMA CHANNEL. ........ ~-...., 

9. TERMINATE DSP DMA MODE BY 
CLEARING HM1, HMO, AND TRED. 

6. DMA CONTROLLER PERFORMS WRI~ ~ 
011 TXH 

TXM 
10 1-1 -------i 

11~XL 
01 TXH 

10 TXM 

11 TXL 

011 TXH 

10 I TXM 

11 TXL 

7. DMA CONTROLLER INTERRUPTS HOST 
WHEN TRANSFERS ARE DONE. 

P:SOOOO I EXCEPTION VECTOR TABLE 

III FGAL INSTRUCTION P:S003E L' _:.::.:~ _____ ...... 

FAST INTERRUPT 
OR 

LONG INTERRUPT 

Figure 10-38. Host-to-DSP DMA Procedure 



MODES 
~ 

.....--.---.------,..------,..-----.----,----,----, I NTERRU PT CONTROL REG ISTER (lCR) 
L---_'--.--'---;....-''----''------'_---'_---'_---' (READIWRITE) 

o o Interrupt Mode (DMA Off) RESET CONDITION 

o 24-Bit DMA Mode 

1 0 16-Bit DMA mode 

1 1 8-Bit DMA mode 

, INTERRUPT MODE (DMA OFF) DMA MODE 

TREQ RREQ HREQ PIN TREQ RREQ HREQ PIN 

0 0 No Interrupts (Polling) 0 0 No DMA 

0 1 RXDF Request (Interrupt) 0 1 DSP to Host Request (RX) 

1 0 XDE Request (Interrupt) 1 0 Host To DSP Request (TX) 

1 1 XDF and TXDE Request (Interrupts) 1 1 Undefined (Illegal) 

1 I I 0 

$21 HREQ 1 DMA 1 o 1 HF3 1 HF2 1 TRDY 1 TXDE 1 RXDF 1 INTERRUPT STATUS REGISTER (lSR 

,~ 
(READ ONLY) 

0 

X:$FFE91 DMA I o I o I HFl I HFO I HCP I HTDE I HRDF I HOST STATUS REGISTER (HSR) 
(READ ONLY) 

Figure 10-39. Host Bits with TREQ and RREQ 

10.2.6.3.3 DSP-to-Host Internal Processing. The following procedure outlines the steps 
that the HI hardware takes to transfer DMA data from DSP memory to the host data bus: 

1. On the DSP side of the HI, a host transmit exception will be generated when HTDE = 1 
and HTIE = 1. The exception routine must write HTX, thereby setting HTDE = O. 

2. If RXDF = 0 and HTDE = 0, the contents of HTX will be automatically transferred to 
RXH:RXM:RXL, thereby setting RXDF= 1 and HTDE = 1. Since HTDE = 1 again on the 
initial transfer, a second host transmit exception will be generated immediately, and 
HTX will be written, which will clear HTDE again. 

3. When RXDF is set to one, the HI's internal DMA address counter is loaded (from HM1 
and HMO), and HREO is asserted. 

4. The DMA controller enables the data from the appropriate byte register onto HO-H7 
by asserting HACK. When HACK is asserted, HREO is deasserted by the HI. 

MOTOROLA OSP56000/0SP56001 USER'S MANUAL 10-53 

III 



• 

5. The DMA controller latches the data presented on HO-H7 and deasserts HACK. If the 
byte register read was not RXL (i.e., not $7), the HI's internal DMA counter increments, 
and HREQ is again asserted. Steps 3, 4, and 5 are repeated until RXL is read. 

6. If RXL was read, RXDF will be set to zero, and, since HTDE = 0, the contents of HTX 
will be automatically transferred to RXH:RXM :RXL, and RXFD will be set to one. Steps 
3, 4, and 5 are repeated until RXL is read again. 

NOTE 

The transfer of data from the HTX register to the RXH:RXM:RXL registers auto­
matically loads the DMA address counter from the HM1 and HMO bits when in 
the DMA DSP-to-host mode. This DMA address is used within the HI to place the 
appropriate byte on HO-H7. 

10.2.6.3.4 DSP-to-Host DMA Procedure. The following procedure outlines the typical steps 
that the host processor must take to set up and terminate a DSP-to-host DMA transfer (see 
Figure 10-40). 

1. Set up the DMA controller (1) destination address, byte count, direction, and other 
control registers. Enable the DMA controller channel. 

2. Initialize the HI (2) by writing the ICR to select the word size (HMO and HM1), to select 
the direction (TREQ = 0, RREQ = 1), and to set INIT = 1 (see Figure 10-40 for additional 
information on these bits). 

3. The DSP's source pointer (3) used in the DMA exception handler (e.g., an address 
register) must be initialized, and HTIE must be set to enable the DSP host transmit 
interrupt. This procedure can be done by the host processor with a host command 
exception routine. 

The DSP host transmit exception will be activated immediately after HTIE is set. The 
DSP CPU will move data to HTX. The HI circuitry will transfer the contents of HTX to 
RXH:RXM:RXL, setting RXDF, which asserts HREQ. Asserting HREQ (4) starts the DMA 
transfer from RXH, RXM, and RXL to the host processor. 

4. Perform other tasks (5) while the DMA controller transfers data (6) until interrupted 
by the DMA controller DMA complete interrupt (7): The DSP interrupt control register 
OCR), the interrupt status register (ISR), and TXH, TXM, and TXL registers may be 
accessed at any time by the host processor but the RXH, RXM, and RXL rgisters may 
n~t be accessed until the DMA mode is disabled. 

5. Te'rminate the DMA controller channel (8) to disable DMA transfers. 

6. Terminate the DSP HI DMA mode (9) in the ICR by clearing the HM1 and HMO bits 
and clearing RREQ. ' . 

10.2.6.4 EXAMPLE CIRCUITS. Figures 10-41, 10-42, and 10-43 illustrate the simplicity of 
the HI. The MC68HC11 in Figure 10-41 has a multiplexed address and data bus, which 

10-54 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



s: 
o 
-i 
o 
::0 
o 
}; 

c en 
"'C 
U1 
en 
o 
o e 
c en 
"'C 
U1 
en 
o o 
~ 

c: en 
m 
::0 en 
:s: 
:t> 
2: 
c: 
:t> 
r-

a 
0, 
U'1 

HOST PROCESSOR 

1. PROGRAM DMA CONTROLLER 
- START ADDRESS 
-- BYTE COUNT 
-- TRANSFER DIRECTION 
- START DMA CHANNEL 

DMA CONTROLLER DSP56000 

7 D 

2. INITIALIZE DSP56000 HOST 
INTERFACE 

WRITE ICR I I I INTERRUPT CONTROL 
-------------..... SO I 1 0 1 HFI HFO 0 0 1 REGISTER OCRI 

-- MODE 24 BIT DMA 
- HOST TO DSP 
- USE INIT BIT TO: 

CLEAR TXDE 
SET HRDF 

INIT HMI HMO TREQ RREQ 

LOAD DMA COUNTER 

3. TELL DSP56000 7 0 _ SOURCE POINTER ADDRESS .. X:SFFESI 0 I 0 HF3 HF2 I HCIE I 1 I HTIE I HOST CONTROL 
_ ENABLE HTIE ICAN BE DONE REGISTER IHCR) 

WITH A HOST COMMAND). HRIE 4. ASSERT HREQ TO START DMA 
lRANSFER. 

5. HOST IS FREE TO PERFORM OTHER 
TASKS li.e., DSP TO HOST TRANS­
FER ON A POLLED BASISI. 

8. TERMINATE DMA CHANNEL. ... "l------. 

9. TERMINATE DSP DMA MODE BY 
CLEARING HM1, HMO, AND TREQ. 

6. DMA CONTROLLER PERFORMS R~ I( I HREQ I 
011 RXH 

RXM 10 t-I ____ -I 

11 RXL 

01 RXH 

10 RXM 

11 Rxr 

D1m 10 RXM 

11 RXL 

7. DMA CONTROLLER INTERRUPTS HOST 
WHEN TRANSFERS ARE DONE. 

PSOOOO I EXCEPTION VECTOR TABLE 

P:S003E I ILLEGAL INSTRUCTION 

FAST INTERRUPT 
OR 

LONG INTERRUPT 

Figure 10-40. DSP-to-Host DMA Procedure 

I 



III 

-i-5V 
MC68HCll j. 5 V DSP56000 

HACK 
(HOST ACKNOWLEDGE! 

IRQ~ __ ~ ______________________ ~HREQ 

(HOST REQUEST! 

A8-A15 t---~ 

10----+1 HEN 
(HOST ENABLE! 

Rlw J----------4------------------.J HfllW 
A3-A7 (HOST READ/WRITE! 

AS 1-----+1 
t--___ AO_-A_2 __ ---"l~ HAO-HA2 

(HOST ADDRESS! 

L--___________ ~\I HO-H7 

AO/DO-A7/D7 1\r--------------------------'----~/1 (HOST DATA! 

Use LDA and STA for 8-Bit Transfers. 
Use LDD and STD for 16-Bit Transfers. 

Figure 10-41. MC68HC11-to-DSP56000 Host Interface 

requires that the address be latched. Although the HACK is not used in this circuit, it is 
pulled up. All unused input pins should be terminated to prevent erroneous signals. When 
determining whether a pin is an input, remember that a pin may change during reset or 
while changing port B between general-purpose 1/0 and HI functions. 

The MC68000 (see Figure 10-42) can use a MOVEP instruction with word and long-word 
data size to transfer multiple bytes. If an MC68020 or MC68030 is used, dynamic bus sizing 
can be used to transfer multiple bytes with any instruction. 

Figure 10-43 is a high-level block diagram of a system using a single host to control multiple 
DSPs. In addition, the DSPs use the SSI to network together the DSPs and multiple codecs. 
With four DSPs, this system can process 41 million instructions per second and can be 
easily expanded if more processing power is needed. 

10.2.6.5 HOST PORT USAGE CONSIDERATIONS - HOST SIDE. Careful synchronization 
is required when reading multibit registers that are written by another asynchronous sys­
tem. Synchronization is a common problem when two asynchronous systems are con­
nected. The situation exists in the host port. However, if the port is used in the way it was 

10-56 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



+5V 

MC68000 
Q 

DSP56000 
~ > INTERRUPT <; 

HREQ IPLO-IPL2 
ENCODER 

~I AOORESS~ A4-A23 )I 
DECODE vI 

FCO-FC2 
LOS HEN ,-
AS un INTERRUPT 

VECTOR -'" HACK DECODE 

II' 

DTACK DTACK 
TIMING 

BERR GENERATOR 

R/W HR/W 

Al-A3 HAO-HA2 
1.1 J\ 

00-07 HO-H7 

I~ y 

MC68000 - Use MOVEPfor multiple byte transfers. 
MC68020 or MC68030 - Any Memory references will work due to dynamic bus sizing. 

Figure 10-42. MC68000-to-DSP56000 Host Interface 

designed, proper operation is guaranteed. The considerations for proper operation are 
discussed in the following paragraphs: 

1. Unsynchronized Reading of Receive Byte Registers: 

When reading receive byte registers, RXH, RXM, or RXL, the host processor should 
use interrupts or poll the RXOF flag which indicates that data is available. This guar­
antees that the data in the receive byte registers will be stable. 

2. Overwriting Transmit Byte Registers: 

The host processor should not.write to the transmit byte registers, TXH, TXM, or TXL, 
unless the TXOE bit is set, indicating that the transmit byte registers are empty. This 
guarantees that the OSP will read stable data when it r.eads the HRX register. 

3. Synchronization of Status Bits from OSP to Host: 

He, HREQ, OMA, HF3, HF2, TROY, TXOE, and RXOF status bits are set or cleared from 
inside the HI and read by the host processor. The host can read these status bits very 
quickly without regard to the clock rate used by the OSP, but there is a chance that 
the state of the bit could be changing during the read operation. This possible change 

MOTOROLA OSP56000/0SP56001 USER'S MANUAL 10-57 

lEI 



cr: LJ.J (!) (!) u ffi ~ 
cr: <! 

~ ~ g <! 

I~ 
a ~ ~ ....--- EE a a <! u ~ 

cr: <! o~ RX 

HOST SSI 

SELECT 1..-"-
ANALOG 

~ 
INPUT 

~ L....-- ~ 
DSP56000IDSP56001 

~ 4 
CODEC 

L....-- ANALOG 
~ .--- TX 

OUTPUT 

~ RX 
--,. 

HOST SSI 

SELECT 

I--
~ 

DATA L....--

D S P56000/D S P5600 1 

HOST 
ADDRESS 

-
RD/WR 

REO - ,--- TX 

~ RX 

~ HOST SSI 

SELECT l+-I-- r--- ANALOG 

l.-
I.- INPUT 

I-- L....-- ~ 
~ 

DSP56000/DSP56001 CODEC 

ANALOG 
L....--

I--- ..- TX 
OUTPUT 

~ RX 

-
HOST SSI 

SELECT 

~ L....--
~ 

DSP56000/DSP56001 

Figure 10-43. Multi-DSP Network Example 

10-58 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



is generally not a system problem, since the bit will be read correctly in the next pass 
of any host polling routine. 

However, if the host holds the HEN for the minimum assert time plus 1.5 clock cycle, 
the status data is guaranteed to be stable. The 1.5 clock cycle is used to synchronize 
the HEN signal and to block internal updates of the status bits. There is no other 
minimum HEN assert time relationship to DSP clocks. 

There is a minimum HEN deassert time of 1.5 clock cycle so that the blocking latch 
can be updated if host is- in a tight polling loop. This minimum time only applies to 
reading status bits. 

The only potential problem with the host processor reading status bits is reading HF3 
and HF2 as an encoded pair. For example, if the DSP changes HF3 and HF2 from "00" 
to "11," there is a very small probability that the host could read the bits during the 
transition and receive "01" or "10" instead of "11". If the combination of HF3 and 
HF2 has significance, the host processor would potentially read the wrong combi­
nation. Two solutions would be to 1) read the bits twice and check for consensus and 
2) hold HEN access for HEN + 1.5 clock cycle so that status bit transitions are stabilized. 

4. Overwriting the Host Vector: 

The host programmer should change the host vector register only when the HC bit 
is clear. This will guarantee that the DSP interrupt control logic will receive a stable 
vector. 

5. Canceling a Pending Host Command Exception: 

Th.e host processor may elect to clear the HC bit to cancel the host command exception 
request at any time before it is recognized by the DSP. The DSP CPU may execute 
the host exception after the HC bit is cleared because the host processor does not 
know exactly when the exception will be recognized. This uncertainty in timing is due 
to differences in synchronization between the host processor and DSP CPU and the 
uncertainties of pipelined exception processing. For this reason, the HV should not 
be changed at the same time the HC bit is cleared. However, the HV can be changed 
when the HC bit is set. 

6. When using the HREQ pin for handshaking, wait until HREQ is asserted and then start 
writing/reading data using the HEN pin or the HACK pin. 

When not using HREQ for handshaking, poll the INIT bit in the ICR to make sure it is 
cleared by the hardware (which means the INIT execution is completed). Then, start 
writing/reading data. 

If neither using HREQ for handshaking nor polling the INIT bit, wait at least 6T after 
negation of HEN that wrote ICR before writing/reading data. This wait ensures that 
INIT is completed, because the HI needs 3T for synchronization (worst case) plus 3T 
for executing the INIT. 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 10-59 

III 



7. All unused input pins should be terminated. Also, any pin that is temporarily not 
- driven by an output 1) during RESET, 2) when reprogramming a port or pin, 3) when 

a bus is not driven, or 4) at any other time should be pulled up or down with a resistor, 
as appropriate. For example, the HEN is capable of reacting to 2-ns noise spikes when 
it is not terminated. AI/owing HACK to float may cause problems even though it is 
not needed in the circuit. 

10-60 DSP56000/DSP56001 USER'S MANUAL MOTOROLA 



SECTION 11 
PORTC 

Port C is a triple-function liD port with nine pins (see Figure 11-1). Three of the nine pins 
can be configured as general-purpose liD or as the serial communications interface (SCI) 
pins, and the other six pins can be configured as general-purpose liD or as the synchronous 
serial interface (SSI) pins. When configured as general-purpose liD, port C can be used for 
device control. When the pins are configured as serial interfaces, port C provides a con­
venient connection to other DSPs, processors, codecs, digital-to-analog and analog-to­
digital converters, and any of several transducers. This section describes all three port C 
functions as well as examples of how to configure and use each function. 

11.1 GENERAL-PURPOSE 1/0 (PORT C) 

When configured as general-purpose liD, port C can be viewed as nine liD pins (see Figure 
11-2), which are controlled by three memory-mapped registers (see Figure 11-3). RESET 
configures port C as general-purpose liD with all nine pins as inputs by clearing all three 
registers (external circuitry connected to these pins may need pullups until the pins are 
configured for operation). These registers are the port C control register (Pce)' port C data 
direction register (PCDDR), and port C data register (PCD). Each port C pin may be indi­
vidually programmed as a general-purpose liD pin or as a dedicated on-chip peripheral 
pin under software control. Pin selection between general-purpose liD and SCI or SSI is 
made by setting, the appropriate PCC bit (memory location X:$FFE1) to zero for general­
purpose liD or to one for serial interface. The PCDDR (memory location X:$FFE3) programs 
each pin corresponding to a bit in the PCD (memory location X:$FFE5) as an input pin (if 
PCDDR = 0) or as an output pin (if PCDDR = 1). Writing to the PCD will write data to the 
pins designated as outputs by the PCDDR; reading the PCD will read the pins designated 
as inputs by the PCDDR. 

The port C liD pin control logic is shown in Figure 11-4. When a pin is designated as an 
output and the PCD is read, the output of the output data bit latch is read, not the logic 
level on the pin itself. When a port pin is configured as an SCI or SSI pin and the bit in 
the PCDDR is zero (input), then reading the PCD will show the logic level on the.pin even 
though the pin is configured as a peripheral pin. The SCI or SSI function may be using the 
pin as an input or an output, which can be very useful when debugging the SCI or SSI. 

11.1.1 Programming Parallel 1/0 

Port C and all the DSP56000/DSP56001 peripherals are memory mapped (see Figure 
11-5). The standard MOVE instruction transfers data between port C and a register; as a 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 11-1 

III 



III 

BUS 
CONTROL 

HOST/DMA PORT B 
PARALLEL liD 
INTERFACE 1151 

~~~ ................ ·s·c·(········ .... ·· ............. ~~ 

:~:SERIAL COMMUNICATIONsl~
~~t ~~!.~.~~.~.~.~ }

Figure 11-1. Port C Interface

DEFAULT
FUNCTION

AO-A15

DO-D23

PS
OS
XIY
R5
WR
BRIWT
BG/BS

PBO-PB7 ..
PBB lIE

PB9 ...,
PB10 lIE
PBll ...,
PB12 ...,
PB13
PB14 If

PCO lIE
PCl
PC2 lIE

PC3 lIE
PC4 lIE

PC5 lIE
PC6 lIE
PC7 ...,
PCB

B
(
)

ALTERNATE
FUNCTION

• HO-H7
HAO
HAl
HA2
HR/W
HEN

• HREQ
HACK

RXD ., TXD ., SCLK

., SCO ., SCl ., SC2

• SCK
SRD ., STD

result, performing a memory-to-memory data transfer takes two MOVE instructions and a
register. The MOVEP instruction is specifically designed for 1/0 data transfer as shown in
Figure "-6. Although the MOVEP instruction may take twice as long to execute as a MOVE
instruction, only one MOVEP is required for a memory-to-memory data transfer, and MOVEP
does not use a temporary register. Using the MOVEP instruction allows a fast interrupt to
move data to/from a peripheral to memory and execute one other instruction or to move
the data to an absolute address. MOVEP is the only memory-to-memory move instruction;

11-2 OSP56000/0SP56001 USER'S MANUAL MOTOROLA

X:SFFEl

CCx

o

ENABLED BY DIRECTION INPUT/OUTPUT
BITS IN SELECTED BY DATA REGISTER
X:SFFEl X:SFFE3 X:SFFE5

PCO CCO COO PCO
PCl CCl COl PCl

P PC2 CC2 CO2 PC2
0 PC3
R PC4 T

PC5

CC3 CD3 PC3
CC4 CD4 PC4
CC5 CD5 PC5

C PC6 CC6 CD6 PC6
PC7 eC7 CD7 PC7
PCB eCB COB PCB

Figure 11-2. Parallel Port C Pinout

23

PORT C CONTROL

L--..!..--'-....L..--t..........L..--L..---1.---L---..JL....-.l....-.L..-...L-....L..--t..........L..--L..---1.~__:___'~.I.....:_.l_:_...L...:_....I....::--I REG I STER (PCC)

Function

Parallel I/O

Serial Interface

{

SCLK
SCI TXD ------------'

RXD --------------'

23

X:SFFE3 PORT C DATA DIRECTION
L...--I--...L.-....L..--t..........L..--L..---1.---L---..JL....-.l....--I--...L.-....L.......L.........L..--L..---1.--'_L....-.L._-I--...L.-....L..:__I REG ISTER (PC 0 0 R)

CDx Data Direction

0 Input

1 Output

23

X:FFE5
PORT e DATA

o REGISTER (PCD)
~~....L..~~~~L....-.L._~~~~~~L....-~~~~~~~L....-~~~~

NOTE: Hardware and software reset clears PCC and PCDDR.

Figure 11-3. Parallel Port C Registers

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 11-3

III

III

PORT
REGISTERS

Port Control
Register Bit

0

0

1

LATCHED OUTPUT
DATA BIT

DATA DIRECTION
REGISTER IDDR) BIT

PORT CONTROL
REGISTER (CR) BIT

PORT INPUT DATA BIT

Data Direction
Register Bit

0

1

X

PERIPHERAL DATA DIRECTION BIT

{

OUTPUT DATA BIT

LOGIC ____________J

INPUT DATA BIT

Pin Function

Port Input Pin

Port Output Pin

Alternate Function

(PARALLEL
110 POSITION)

Figure 11-4. Port B 1/0 Pin Control Logic

however, one of the operands must be in the top 64 locations of either X: or Y: memory.
The bit-oriented instructions using 1/0 short addressing (BCHG, BCLR, BSET, BTST, JCLR,
JSCLR, JSET, and JSSET) can also be used to address individual bits for faster liD proc­
essing. The DSP does not have a hardware data strobe to strobe data out of the parallel
I/O port. If a data strobe is needed, it can be implemented using software to toggle one of
the parallel 110 pins. The process of programming port C as general-purpose liD is shown
as a flowchart in Figure 11-7 and detailed in Figure 11-8. Normally, it is not good pro­
gramming practice to activate a peripheral before programming it. However, reset activates
the port C general;.purpose 1/0 as all inputs, and the alternative is to configure the port as
an SCI andlor SSI, which may not be desirable. In this case, it is probably better to insure
that port C is initially configured for general-purpose 1/0 and then configure the data
direction and data registers. It may be better in some situations to program the data
direction or the data registers first to prevent two devices from driving one signal. The
order of steps 1,2, and 3 in Figure 11-7 is optional and can be changed as needed.

11-4 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

MOTOROLA

23 16 15 8 7

------1

-------;
----'-----;

-------;
-------1

~-----~-----~

-------1

INTERRUPT PRIORITY REGISTER OPR)

PORT A - BUS CONTROL REGISTER IBCR)

SCI HI - REC/XMIT DATA REGISTER ISRX/STX)

SCI MID - REC/XMIT DATA REGISTER ISRX/STX)

SCI LOW - REC/XMIT DATA REGISTER ISRX/STX)

SCI TRANSMIT DATA ADDRESS REGISTER ISTXA)

SCI CONTROL REGISTER ISCCR)

SCI INTERFACE STATUS REGISTER ISSR)

SCI INTERFACE CONTROL REGISTER ISCR)

SSI RECEIVEITRANSMIT DATA REGISTER IRXITX)

SSI STATUSITIME SLOT REGISTER ISSISRITSR)
r--------;

~-----~----~
SSI CONTROL REGISTER B ICRB)

~-----~-----;
SSI CONTROL REGISTER A ICRA)

HOST RECEIVEITRANSMIT REGISTER IHRX/HTX)

~ ___ -I HOST STATUS REGISTER IHSR)

HOST CONTROL REGISTER IHCR)

pm:mmmrml = Read as random number; write as don't care.

Figure 11-5. On-Chip Peripheral Memory Map

OSP56000/0SP56001. USER'S MANUAL 11-5

III

•

MOVEP #$0,X:$FFE1

MOVEP #$01 FO,X:$FFE3

;Select port C to be general-purpose I/O

;Select pins PCO-PC3 to be inputs
;and pins PC4-PC8 to be outputs

MOVEP #data-out,X:$FFE5 ; Put bit~ 4-8 of "data-out" on pins
;PB4-PB8 bits 0-3 are ignored.

MOVEP X:$FFEO,#data-in ;Put PBO-PB3 in bits 0-3 of "data-in"

Figure 11-6. Write/Read Parallel Data with Port C

STEP 1
INITIALIZE PORT C CONTROL REGISTER

ADDR X:$FFEI

STEP 2
SELECT DATA DIRECTION (IN/OUT)

ADDR X:$FFE3

STEP 3
READIWRITE PORT C DATA

ADDR X:$FFE5

Figure 11-7. Port C Configuration Flowchart

11.1.2 Port C Parallel I/O Timing

Parallel data written to port C is delayed by one instruction cycle - i.e., the following
instruction

MOVE DATA9,X:PORTC DATA24,Y:EXTERN

1) writes nine bit~ of data to the port C register, but the output pins do not change until
the following instruction cycle, and

2) writes 24 bits of data to the external Y memory, which appears on port A during T2
and T3 of the current instruction.

11-6 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

STEP 1. SELECT EACH PIN TO BE GENERAL-PURPOSE 1/0 OR AN ON-CHIP PERIPHERAL PIN:

X:SFFEI

CCx = 0 t GENERAL-PURPOSE 110
CCx = 1 t ON-CHIP PERIPHERAL

STEP 2. SET EACH GENERAL-PURPOSE lID PIN (SELECTED ABOVEI AS INPUT OR OUTPUT:
CDxx = 0 tlNPUT PIN

OR

CDx= '. OUTPUT PIN

X:SFFE3

STEP 3. READIWRITE GENERAL-PURPOSE 1/0 PINS:
PCx=OUTPUT DATA IF SELECTED FOR GENERAL-PURPOSE liD AND OUTPUT IN STEPS 1 AND 2.

OR

PCx= INPUT DATA IF SELECTED FOR GENERAL-PURPOSE lID AND INPUT IN STEPS 1 AND 2.

X:$FFE5

Figure 11-8. 1/0 Port C Configuration

As a result, if it is desirable to synchronize the port A and port C outputs, two instructions
must be used:

MOVE DATA9,X:PORTC
NOP DATA24,Y:EXTERN

The NOP can be replaced by any instruction that allows parallel moves. Inserting one or
more "MOVE DATA15,X:PORTC DATA24,Y:EXTERN" instructions between the first and
second instruction produces an external 33-bit write each instruction cycle with only one
instruction cycle lost in setup time:

MOVE DATA15,X:PORTC
MOVE DATA15,X:PORTC
MOVE DATA15,X:PORTC

MOVE
NOP

DATA15,X:PORTC

DATA24,Y:EXTERN
DATA24,Y:EXTERN

DATA24,Y:EXTERN
DATA24,Y:EXTERN

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 11-7

III

III

One application of this technique is to create an extended address for port A by conca­
tenating the port A address bits (instead of data bits) to the port C general-purpose output
bits. The port C general-purpose I/O register would then work as a base address register,
allowing the address space to be extended from 64Kwords (16 bits) to 33.5 million words
(16 bits + 9 bits = 25 bits).

Port C uses the DSP central processing unit (CPU) four-:phase clock for its operation. There­
fore, if wait states are inserted in the DSP CPU timing, they also affect port C timing. The
result is that port A and port C in the previous synchronization example will always stay
synchronized, regardless of how many wait states are used.

11.2 SERIAL COMMVNICATION INTERFACE (SCI)

The SCI provides a full-duplex port for serial communication to other DSPs, microproces­
sors, or peripherals such as modems. The communication can be TIL-level signals or, with
additional logic, RS232C, RS422, etc. This interface uses three dedicated pins: transmit
data (TXD), receive data (RXD), and SCI serial clock (SCLK). It supports industry-standard
asynchronous bit rates and protocols as well as high-speed (up to 3.375 Mbits/second for
a 27-MHz clock) synchronous data transmission. The asynchronous protocols include a
multidrop mode for master/slave operation with wakeup on idle line and wakeup on address
bit capability. The SCI consists of separate transmit and receive sections whose operations
can be asynchronous with respect to each other. A programmable baud-rate generator is
included to generate the transmit and receive clocks. An enable vector and an interrupt
vector have been included so that the baud-rate generator can function as a general­
purpose timer when it is not being used by the SCI peripheral or when the interrupt timing
is the same as that used by the SCI. The following is a short list of SCI features:

Three-Pin Interface:
TXD - Transmit Data

, RXD - Receive Data
SCLK - Serial Clock

422 Kbit/Second NRZ Asynchronous C,ommunications Interface (27-MHz System Clock)

3.375 Mbit/Second Synchronous Serial Mode (27-MHz System Clock)

Multidrop Mode for Multiprocessor Systems:
Two Wakeup Modes:

Idle Line
Address Bit

Wired-OR Mode

On-Chip or External Baud Rate Generation/Interrupt Timer

Four Interrupt Priority Levels

Fast or Long Interrupts

11-8 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

11.2.1 SCI 1/0 Pins

The SCI has three liD pins, which can be configured as either general-purpose liD or as a
specific SCI pin. Each pin is independent of the other two, which means that if only TXD
is needed, RXD and SCLK can be programmed for general-purpose liD. At least one of the
three pins must be selected as an SCI pin to release the SCI from reset.

However, the SCI interrupts may be enabled by programming the SCI control registers
before any of the SCI pins are programmed as SCI functions. In this case, only one transmit
interrupt can be generated because the transmit data register is empty. The timer and
timer interrupt will operate as they do when one or more of the SCI pins is programmed
as an SCI function.

11.2.1.1 RECEIVE DATA (RXD). This input receives byte-oriented serial data and transfers
the data to the SCI receive shift register. Asynchronous input data is sampled on the positive
edge of the receive clock (1 x SCLK) if SCKP equals zero. See the DSP56001 Advance
Information Data Sheet (ADI1290) for detailed timing information. RXD may be pro­
grammed as a general-purpose liD pin (PCO) when the SCI RXD function is not being used.

11.2.1.2 TRANSMIT DATA (TXD). This output transmits serial data from the SCI transmit
shift register. Data changes on the negative edge ofthe asynchronous transmit clock (SCLK)
if SCKP equals zero. This output is stable on the positive edge of the transmit clock. See
the DSP56001 Advance Information Data Sheet (ADI1290) for detailed timing information. .
TXD may be programmed as a general-purpose liD pin (PC1) when'the SCI TXD function
is not being used.

11.2.1.3 SCI SERIAL CLOCK (SCLK). This bidirectional pin provides an input or output
clock from which the transmit andlor receive baud rate is derived in the asynchronous
mode and from which data is transferred in the synchronous mode. SCLK may be pro­
grammed as a general-purpose liD pin (PC2) when the SCI SCLK function is not being
used. This pin may be programmed as PC2 when data is being transmitted on TXD since,
in the asynchronous mode, the clock need not be transmitted. There is no connection
between programming the PC2 pin as SCLK and data coming out the TXD pin because
SCLK is independent of SCI data liD.

11.2.2 Programming Model

The resources available in the SCI are described before discussing specific examples of
how the SCI is used. The registers comprising the SCI are shown in Figures 11-9 and
11-10. These registers are the SCI control register (SCR), SCI status register (SSR), SCI
clock control register (SCCR), SCI receive data registers (SRX), SCI transmit data registers
(STX), and the SCI transmit data address register (STXA). The SCI programming model

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 11-9

•

I
o

c en
"'0
U1
C')
o
o e c en
"'0
U1
C')
o
~
c: en
m
::0
CJi
s: »
2
c: »
r-

~

I
X:$FFFO

23

X:$FFFl

RECEIVED BIT 8 _______________;....J
FRAMING ERROR FLAG _________________ ---.J

PARITY ERROR FLAG ___________________ ----J

OVERRUN ERROR FLAG ----------------

X:$FFF2
I I \U

TRAN.SMITCLOCK SOURCE J I II
RECEIVE CLOCK SOURCE BIT

CLOCK PRES CALER
CLOCK OUTPUT DIVIDER

CLOCK DIVIDER BITS

~ NOTE: The number in parenthesis is the condition of the bit after hardware reset.
o
::0

SCI CONTROL REGISTER (SCR)
(READIWRITE)

WORD SELECT BITS
SCI SHIFT DIRECTION
SEND BREAK
WAKEUP MODE SELECT
RECEIVER WAKEUP ENABLE
WIRED-OR MODE SELECT
RECEIVER ENABLE

SCI STATUS REGISTER (SSR)
(READ ONLY)

~I LTRANSMITTEREMPTV ~ TRANSMITIER DATA REGISTER EMPTY
RECEIVE DATA REGISTER FULL
IDLE LINE FLAG

SCI CLOCK CONTROL REGISTER (SCCR)
(READ/WRITE)

~ Figure 11-9. SCI Programming Model- Control and Status Registers

can be viewed as three types of registers: 1) control - SCR and SCCR in Figure 11-9; 2)
status - SSR in Figure 11-9; and 3) data transfer - SRX, STX, and STXA in Figure 11-10.
The following paragraphs describe each bit in the programming model.

11.2.2.1 SCI CONTROL REGISTER (SCR). The SCR is a 16-bit read/write register that con­
trols the serial interface operation. Fifteen of the 16 bits are currently defined. Each bit is
described in the following paragraphs.

11.2.2.1.1 SCR Word Select (WDSO, WDS1, WDS2) Bits 0,1, and 2. The three word-select
bits (WDSO, WDS1, WDS2) select the format of the transmit and receive data. The formats
include three asynchronous and one m'ultidrop asynchronous mode as well as an 8-bit

X:$FFF6

X:$FFF5

X:$FFF4

23 16 15 ,..------- 8 7

SCi RECEIVE DATA REGISTER HIGH (READ ONLYI

SCI RECEIVE DATA REGISTER MID (READ ONLYI

~ __ "":"'-__ ...J SCI RECEIVE DATA REGISTER LOW !READ ONLYI

\ ----------------~--------------~/ t
~~--------~ SCI RECEIVE DATA SHIFT REGISTER

NOTE: SRX is the same register decoded at three different addresses.

,23

23

X:$FFF3

NOTES:

(a) Receive Data Register

16 15

SCI TRANSMIT DATA SHIFT REGISTER

16 15

8 7

SCI TRANSMIT DATA REGISTER HIGH (WRITE ONLYI

SCI TRANSMIT DATA REGISTER MID (WRITE ONLYI

L.....-_""":""" __J SCI TRANSMIT DATA REGISTER LOW (WRITE ONLYI

8 7

III]_M.IillIEL=~~=~ SCI TRANSMIT DATA ADDRESS REGISTER (WRITE ONLYI

1. Bytes are masked on the fly.
2. STX is the same register decoded at three different addresses.

(b) Transmit Data Register

Figure 11-10. SCI Programming Model

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 11-11

III

III

synchronous (shift register) mode. The asynchronous modes are compatible with most
UART-type serial devices. Standard RS232C communication links are supported by these
modes.

The multidrop asynchronous modes are compatible with the MC68681 DUART, the M68HC11
SCI interface, and the Intel 8051 serial interface.

The synchronous data mode is essentially a high-speed shift register used for I/O expansion
and stream-mode channel interfaces. Data synchronization is accomplished by the use of
a gated transmit and receive clock that is compatible with the Intel 8051 serial interface
mode O. These formats are indicated below (also see Figure 11-11).

The word-select bits are cleared by hardware reset.

WDS2 WDS1 WDSO Word Formats

0 0 0 a-Bit Synchronous Data (shift register mode)

0 0 1 Reserved

0 1 0 10-Bit Asyncllronous (1 start, a data. 1 stop)

0 1 1 Reserved

1 0 0 11-Bit Asynchronous (1 start, a data, 1 even parity, 1 stop)

1 0 1 11-Bit Asynchronous (1 start, a data, 1 odd parity, 1 stop)

1 1 0 11-Bit Multidrop (1 start, a data, 1 data type, 1 stop)

1 1 1 Reserved

When odd parity is selected, the transmitter will count the number of bits in the data word;
if the total is not an odd number, the parity bit is made equal to one and thus produces
an odd number. If the receiver counts an even number of ones, an error in transmission
has occurred. When even parity is selected, an even number must result from the calculation
performed at both ends of the line or an error in transmission has occurred. The three
word-select bits are cleared by hardware and software reset.

11.2.2.1.2 SCR SCI Shift Direction (SSFTD) Bit 3. The SCI data shift registers can be
programmed to shift data in/out either LSB first if SSFTD equals zero or MSB first if SSFTD
equals one. The parity and data type bits do not change position and remain adjacent to
the stop bit. SSFTD should be cleared for compatibility with early versions of the DSP56000/
DSP56001. SSFTD is cleared by hardware and software reset.

11.2.2.1.3 SCR Send Break (SBK) Bit 4. A break is an all-zero word frame - a start bit
zero, a character of all zeros (including any parity), and a stop bit zero: i.e., 10 or 11 zeros
depending on the WDS mode selected. If SBK is set and then cleared, the transmitter
completes transmission of any data, sends 10 or 11 zeros, and reverts to idle or sending
data. If SBK remains set, the transmitter will continually send whole frames of zeros (10
or 11 bits with no stop bit). At the completion of the break code, the transmitter sends at

11-12 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

MODE 0

X:SFFFO 1L.._---L __ -'--_....Jls.BIT SYNCHRONOUS DATA (SHIFT REGISTER MODEl

WDS2 WDSI WDSO

~TX

(SSFTD 01

MODE2

I DO I 01 I 02 I 03 I 04 I 05 I 06 07 I
III(ONE BYTE FROM SHIFT REGISTER -----'.~I

X:SFFFO L..I _---L __ -'--_....Jll0.BIT ASYNCHRONOUS (1 START, S DATA, 1 STOPI

WDS2 WDSI WDSO

~TX

(SSFTD ~ 01

MODE 4
1

STOP
BIT

X:SFFFO L..1 _---L __ -'--_....Jlll.BIT ASYNCHRONOUS (1 START, S DATA, 1 EVEN PARITY, 1 STOP)

WDS2 WDSI WDSO

~TX

(SSFTD = 01

MODES

X:SFFFO ...,1 _--' __ ...1.-.-_
1

11·8IT ASYNCHRONOUS (1 START, S DATA, 1 ODD PARITY, 1 STOP)

WDS2 WDSI WDSO

~TX

(SSFTD = 01

MODE 6

STOP
BIT

STOP
BIT

. X:SFFFO 1 1 11·81"r ASYNCHRONOUS MULTIDROP (1 START, S DATA, 1 DATA TYPE, 1 STOP)

WDS2 WDSI WDSO

~TX

(SSFTD = 01

Data Type: 1 = Address Byte
0= Data Byte

NOTES:
1. Modes 1, 3, and 7 are reserved.
2. DO=LDS; D7=MSB
3. Data is transmitted and received LSB first if SSFTD = 0 or MSB first if SSFTD = 1.

(a) SSFTD=O

Figure 11-11. Serial Formats (Sheet 1 of 2)

MOTOROLA DSP56000/DSP56001 USER'S MANUAL

STOP
BIT

III

11-13

III

MODE 0
1

X:$FFFO I 0 I 0 lola-BIT SYNCHRONOUS DATA ISHIFT REGISTER MODE)

WDS2 WDSI WDSO

~TX

ISSFTD=l)

MODE 2
1

I :' 06 I 05 I 04 I 03 I 02 I D1 00 J
..... ----ONE BYTE FROM SHIFT REGISTER ------3~

X:$FFFO 1-1 _--L __ ~_O---,ll0-BIT ASYNCHRONOUS II START, a DATA, 1 STOP)

WDS2 WDSI WDSO

~TX

ISSFTD = 1)

MODE 4
1

STOP
BIT

X:$FFFO 1 1 I 0 lollI-BIT ASYNCHRONOUS II START, a DATA, 7 EVEN PARITY, 1 STOP)

WDS2 WDSI WDSO

""'--TX
ISSFTD=l)

MODES
I

X:$FFFO 1 1 I 0 I Ill-BIT ASYNCHRONOUS II START, a DATA, I ODD PARITY, I STOP)

WDS2 WDSI WDSO

~TX

ISSFTD=I)

MODE 6
I

STOP
BIT

STOP
BIT

X:$FFFO 1 lollI-BIT ASYNCHRONOUS MULTIDROP II START, a DATA, I DATA TYPE, I STOP)

WDS2 WDSI WDSO

""'--TX
ISSFTD=1)

Data Type: 1 =Address Byte
O=Data Byte

NOTES:
1. Modes I, 3, and 7 are reserved.
2. DO=LSB; D7=MSB.
3. Data is transmitted and received LSB first if SSFTD = 0 or MSB first if SSFTD = 1.

(b) SSFTD=1

Figure 11-11. Serial Formats (Sheet 2 of 2)

11-14 DSP56000/DSP560~1 USER'S MANUAL

STOP
BIT

MOTOROLA

least one high bit before transmitting any data to guarantee recognition of a valid start bit.
Break can be used to signal an unusual condition, message, etc. by forcing a frame error,
which is caused by a missing stop bit. Hardware and software reset clear SBK.

11.2.2.1.4 SCR Wakeup Mode Select (WAKE) Bit 5. When WAKE equals zero, an idle line
wakeup is selected. In the idle line wakeup mode, the SCI receiver is re-enabled by an idle
string of at least 10 or 11 (depending on WDS mode) consecutive ones. The transmitter's
software must provide this idle string between consecutive messages. The idle string
cannot occur within a valid message because each word frame contains a start bit that is
a zero.

When WAKE equals one, an address bit wakeup is selected. In the address bit wakeup
mode, the SCI receiver is re-enabled when the last (eighth or ninth) data bit received in a
character (frame) is one. The ninth data bit is the address bit (R8) in the 11-bit multidrop
mode; the eighth data bit is the address bit in the 10-bit asynchronous and 11-bit asyn­
chronous with parity modes. Thus, the received character is an address that has to be
processed by all sleeping processors - i.e., each processor has to compare the received
character with its own address and decide whether to receive or ignore all following
characters. WAKE is cleared by hardware and software reset.

11.2.2.1.5 SCR Receiver Wakeup Enable (RWU) Bit 6. When RWU equals one and the SCI
is in an asynchronous mode, the wakeup function is enabled - i.e., the SCI is put to sleep
waiting for a reason (defined by the WAKE bit) to wakeup. In the sleeping state, all receive
flags, except IDLE, and interrupts are disabled. When the receiver wakes up, this bit is
cleared by the wakeup hardware. The programmer may also clear the RWU bit to wake
up the receiver.

RWU can be used by the programmer to ignore messages that are for other devices on a
multidrop serial network. Wakeup on idle line (WAKE=O) or wakeup on address bit
(WAKE = 1) must be chosen.

1. When WAKE equals zero and RWU equals one, the receiver will not respond to data
on the data line until an idle line is detected.

2. When WAKE equals one and RWU equals one, the receiver will not respond to data
on the data line until a data byte with bit 9 equal to one is detected.

When the receiver wakes up, the RWU bit is cleared, and the first byte of data is received.
If interrupts are enabled, the CPU will be interrupted, and the interrupt routine will read
the message header to determine if the message is intended for this. DSP.

1. If the message is for this DSP, the message will be received, and RWU will again be
set to one to wait for the next message.

2. If the message is not for this DSP, the DSP will immediately set RWU to one. Setting
RWU to one causes the DSP to ignore the remainder of the message and wait for the
next messag"e.

MOTOROLA OSP56000/0SP56001 USER'S MANUAL 11-15

III

III

RWU is cleared by hardware and software reset. RWU is a don't care in the synchronous
mode.

11.2.2.1.6 SCR Wired-OR Mode Select (WOMS) Bit 7. When the WOMS bit is set, the SCI
TXD driver is programmed to function as an open-drain output and maybe wired together
with other TXD pins in an appropriate bus configuration such as a master-slave multidrop
configuration. An external pullup resistor is required on the bus. When the WOMS is
cleared, the TXD pin uses an active internal pullup. This bit is cleared by hardware and
softwa re reset.

11.2.2.1.7 SCR Receiver Enable (RE) Bit 8. When RE is set, the receiver is enabled. When
RE is cleared, the receiver is disabled, and data transfer is inhibited to the receive data
register (SRX) from the receive shift register. If RE is cleared while a character is being
received, the reception of the character will be completed before the receiver is disabled.
RE does not inhibit RDRF or receive interrupts. RE is cleared by a hardware and software
reset.

11.2.2.1.8 SCR Transmitter Enable (TE) Bit 9. When TE is set, the transmitter is enabled.
When TE is cleared, the transmitter will complete transmission of data in the SCI transmit
data shift register; then the serial output is forced high (idle). Data present in the SCI
transmit data register (STX) will not be transmitted. STX may be written and TDRE will be
cleared, but the data will not be transferred into the shift register. TE does not inhibit TDRE
or transmit interrupts. TE is cleared by a hardware and software reset.

Setting TE will cause the transmitter to send a preamble of 10 or 11 consecutive ones
(depending on WDS). This procedure gives the programmer a convenient way to ensure
that the line goes idle before starting a new message. To force this separation of messages
by the minimum idle line time, the following sequence is recommended:

1. Write the last byte of the first message to STX.

2. Wait for TDRE to go high, indicating the last byte has been transferred to the transmit
shift register.

3. Clear TE and set TE back to one. This queues an idle line preamble to immediately
follow the transmission of the last character of the message (including the stop bit).

4. Write the first byte of the second message to STX.

In this sequence, if the first byte of the second message is not transferred to the STX prior
to the finish of the preamble transmission, then the transmit data line will simply mark
idle until STX is finally written.

11;2.2.1.9 SCR Idle Line Interrupt Enable (lLlE) Bit 10. When ILiE is set, the SCI interrupt
occurs when IDLE is set. When ILiE is clear, the IDLE interrupt is disabled. ILiE is cleared
by hardware and software reset.

11-16 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

An internal flag, the shift register idle interrupt (SRIINT) flag, is the interrupt request to the
interrupt controller. SRIINT is not directly accessible to the user.

When a valid start bit has been received, an idle interrupt will be generated if both IDLE
(SCI Status Register bit 3) and ILiE equals one. The idle interrupt acknowledge from the
interrupt controller clears this interrupt request. The idle interrupt will not be asserted again
until at least one character has been received. The result is as follows:

1. The IDLE bit shows the real status of the receive line at all times.

2. Idle interrupt is generated once for each idle state, no matter how long the idle state
lasts.

11.2.2.1.10 SCR SCI Receive Interrupt Enable (RIE) Bit 11.
The RIE bit is used to enable the SCI receive data interrupt. If RIE is cleared, receive interrupts
are disabled, and the RDRF bit in the SCI status register must be polled to determine if the
receive data register is full. If both RIE ahd RDRF are set, the SCI will request an SCI receive
data interrupt from the interrupt controller.

One of two possible receive data interrupts will be requested:

1. Receive without exception will be requested if PE, FE, and OR are all clear (i.e., a
normal received character).

2. Receive with exception will be requested if PE, FE, and OR are not all clear (Le., a
received character with an error condition).

RIE is cleared by hardware and software reset.

11.2.2.1.11 SCR SCI Transmit Interrupt Enable (TIE) Bit 12. The TIE'bit is used to enable
the SCI transmit data interrupt. If TIE is cleared, transmit data interrupts are disabled, and
the transmit data register empty (TDRE) bit in the SCI status register must be polled to
determine if the transmit data register is empty. If both TIE and TDRE are set, the SCI will
request an SCI transmit data interrupt from the interrupt controller. TIE is cleared by
hardware and software reset.

11.2.2.1.12 SCR Timer Interrupt Enable (TMIE) Bit 13. The TMIE bit is used to 'enable the
SCI timer interrupt. If TMIE is set (enabled), the timer interrupt requests will be made to
the interrupt controller at the rate set by the SCI clock register. The timer interrupt is
automatically cleared by the timer interrupt acknowledge from the interrupt controller. This
feature allows DSP programmers to use the SCI baud clock generator as a simple periodic
interrupt generator if the SCI is not in use, if external clocks are used for the SCI, or if
periodic interrupts are needed at the SCI baud rate. The SCI internal clock is divided by 16
(to match the 1 x SCI baud rate) for timer interrupt generation. This timer does not require

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 11-17

III

III

that any SCI pins be configured for SCI use to operate. TMIE is cleared by hardware and
softwa re reset.

11.2.2.1.13 SCR Reserved (Bit 14). This unused bit is reserved and should be written with
a zero for upward compatibility. It is read as a zero.

11.2.2.1.14 SCR SCI Clock Polarity (SCKP) Bit 15. The clock polarity, sourced or received
on the clock pin (SCLK), can be inverted using this bit, eliminating the need for an external
inverter. When bit 15 equals zero, the clock polarity is positive; when bit 15 equals one,
the clock polarity is negative. In the synchronous mode, positive polarity means that the
clock is normally positive and transitions negative during data valid; whereas, negative
polarity means that the clock is normally negative and transitions ,positive during valid
data. In the asynchronous mode, positive polarity means that the rising edge of the clock
occurs in the center of the period that data is valid; negative polarity means that the falling
edge of the clock occurs during the cente'r of the period that data is valid. This bit should
be cleared for compatibility with early versions of the OSP56000/0SP56001. SCKP is cleared
on hardware and software reset.

11.2.2.2 SCI STATUS REGISTER (SSR). The SSR is an 8-bit read-only register used by
the OSP CPU to determine the status of the SCI. When the SSR is read onto the internal
data bus, the register contents occupy the low-order byte of the data bus and all high­
order portions are zero filled. The status bits are described in the following paragraphs.

11.2.2.2.1 SSR Transmitter Empty (TRNE) Bit O. The TRNE flag is set when both the
transmit shift register and data register are empty to indicate that there is no data in the
transmitter. When TRNE is set, data written to one of the three STX locations or to the t

STXA will be transferred to the transmit shift register and be the first data transmitted.
TRNE is cleared when TORE is cleared by writing data into the transmit data register (STX)
or the transmit data address register (STXA), or when an idle, preamble, or break is trans­
mitted. The purpose of this bit is to indicate that the transmitter is empty; therefore, the
data written to STX or STXA will be transmitted next - i.e., there is not a word in the
transmit shift register presently being transmitted. This procedure is useful when initiating
the transfer of a message (i.e., a string of characters),. TRNE is set by the hardware, software,
SCI individual, and stop reset.

11.2.2.2.2 SSR Transmit Data Register Empty (TORE) Bit 1. The TORE bit is set when the
SCI transmit data register is empty. When TORE is set, new data may be written to one of
the SCI transmit data registers (STX) or transmit data address register (STXA). TORE is
cleared when the SCI transmit data register is written. TORE is set by the hardware, soft-:
ware, SCI individual, and stop reset.

11-18 OSP56000/0SP56001 USER'S MANUAL MOTOROLA

In the SCI synchronous mode, when using the internal SCI clock,there is a delay of up to
5.5 serial clock cycles between the time that STX is written until TDRE is set, indicating
the data has been transferred from the STX to the transmit shift register. There is a two
to four serial clock cycle delay between writing STX and loading the transmit shift register;
in addition, TDRE is set in the middle oftransmitting the second bit. When using an external
serial transmit clock, if the clock stops, the SCI transmitter stops. TDRE will not be set until
the middle of the second bit transmitted after the external clock starts. Gating the external
clock off after the first bit has been transmitted will delay TDRE indefinitely.

In the SCI asynchronous mode, the TDRE flag is not set immediately after a word is
transferred from the STX or STXA to the transmit shift register nor when the word first
begins to be shifted out. TDRE is set two cycles of the 16 x clock after the start bit - i.e.,
two 16 x clock cycles into to transmission time of the first data bit.

11.2.2.2.3 SSR Receive Data Register Full (RDRF) Bit 2. The RDRF bit is set when a valid
character is transferred to the SCI receive data register from the SCI receive shift register.
RDRF is cleared when the SCI receive data register is read or by the hardware, software,
SCI individual, and stop reset.

11.2.2.2.4 SSR Idle Line Flag (IDLE) Bit 3. IDLE is set when 10 (or 11) consecutive ones
are received. IDLE is cleared by a start-bit detection. The IDLE status bit represents the
status of the receive line. The transition of IDLE from zero to one can cause an IDLE interrupt
(lLlE). IDLE is cleared by the hardware, software, SCI individual, and stop reset.

11.2.2.2.5 SSR Overrun Error Flag (OfU Bit 4. The OR flag is set when a byte is ready to
be transferred from the receive shift register to the receive data register (SRX) that is
already full (RDRF = 1). The receive shift register data is not transferred to the SRX. The
OR flag indicates that character(s) in the receive data stream may have been lost. The only
valid data is located in the SRX. OR is cleared when the SCI status register is read, followed
by a read of SRX. The OR bit clears the FE and PE bits - i.e., overrun error has higher
priority than FE or PE. OR is cleared by the hardware, software, SCI individual, and stop
reset.

11.2.2.2.6 SSR Parity Error (PE) Bit 5. In the 11-bit asynchronous modes, the PE bit is set
when an incorrect parity bit has been detected in the received character. It is set simul­
taneously with RDRF for the byte which contains the parity error - i.e., when the received
word is transferred to the SRX. If PE is set, it does not inhibit further data transfer into the
SRX. PE is cleared when the SCI status register is read, followed by a read of SRX. PE is
also cleared by the hardware, software, SCI individual, or stop reset. In the 10-bit asyn­
chronous mode, the 11-bit multidrop mode, and the 8-bit synchronous mode, the PE bit
is always cleared since there is no parity bit in these modes. If the byte received causes
both parity and overrun errors, the SCI receiver will only recognize the overrun error.

MOTOROLA OSP56000/0SP56001 USER'S MANUAL 11-19

III

III

1.1.2.2.2.7 SSR Framing Error Flag (FE) Bit 6. The FE bit is set in the asynchronous modes
whi:m no stop bit is detected in the data string received. FE and RDRE are set simultaneously
- i.e., when the received word is transferred to the SRX. However, the FE flag inhibits
further transfer of data into the SRX until it is cleared. FE is cleared when the SCI status
register is read followed by reading the SRX. The hardware, software, SCI individual, and
stop reset also clear FE. In the 8-bit synchronous mode, FE is always cleared. If the byte
received causes both framing and overrun errors, the SCI receiver will only recognize the
overrun error.

11.2.2.2.8 SSR Received Bit 8 (R8) Address Bit 7. In the 11-bit asynchronous multidrop
mode, the R8 bit is used to indicate whether the received byte is an address or data. R8
is not affected by reading the SRX or status register. The hardware, software, SCI individual,
and stop reset clear R8.

11.2.2.3 SCI CLOCK CONTROL REGISTER (SCCR). The SCCR is a 16-bit read/write register,
which controls the selection of the clock modes and baud rates for the transmit and receive
sections of the SCI interface. The control bits are described in the following paragraphs.
The SCCR is cleared by hardware reset.

The basic points of the clock generator are as follows:

1. The SCI core always uses a 16 x internal clock in the asynchronous modes and
always uses a 2 x internal clock in the synchronous mode. The maximum internal
clock available to the SCI peripheral block is the oscillator frequency divided by 4.
With a 20-MHz crystal, this gives a maximum data rate of 312.5 Kbits/sec for asyn­
chonous data and 2.5 Mbits/second for synchronous data. These maximum rates
are the same for internally or externally supplied clocks.

2. The 16 x clock is necessary for the asynchronous modes to synchronize the SCI to
the incoming data (see Figure 11-12).

3. For the asynchronous modes, the user must provide a 16 x clock if he wishes to use
an external baud rate generator (i.e., SCLK input).

4. For the asynchronous modes, the user may select either 1 x or 16 x for the output
clock when using internal TX and RX clocks (TCM = 0 and RCM = 0).

5. The transmit data on the TXD pin changes on the negative edge of the 1 x serial
clock and is stable on the positive edge (SCKP=O). For SCKP equals one, the data
changes on the positive edge and is stable on the negative edge.

6. The receive data on the'RXD pin is sampled on the positive edge (if SCKP = 0) or on
the negative edge (if SCKP = 1) of the 1 x serial clock.

7. For the asynchronous mode, the output clock is continuous.

8. For the synchronous mode, a 1 x clock is used for the output or input baud rate.
The maximum 1 x clock is the crystal frequency divided by 8.

11-20 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

RX, TX DATA
ISSFTD=O)

x 1 CLOCK

x 16 CLOCK
ISCKP=O)

IDLE LINE

START

SELECT B- OR 9-BIT WORDS

6~
I I I

STOP START

Figure 11-12. 16 x Serial Clock

9. For the synchronous mode, the clock is gated.

10. For both the asynchronous and synchronous modes, the transmitter and receiver
are synchronous with each other.

11.2.2.3.1 SCCR Clock Divider (CD11-CDO) Bits 11-0. The clock divider bits (CDll-CDO)
are used to preset a 12-bit counter, which is decremented at the Icyc rate (crystal frequency
divided by 2). The counter is not accessible to the user. When the counter reaches zero, it
is reloaded from the clock divider bits. Thus, a value of 0000 0000 0000 in CD11-CDO
produces the maximum rate of Icyc, and a value of 0000 0000 0001 produces a rate of
Icyc/2. The lowest rate available is Icyc/4096. Figures 11-13 and 11-36 show the clock
dividers. Bits CD11-CDO are cleared by hardware and software reset.

11.2.2.3.2 SCCR Clock Out Divider (COD) Bit 12. Figures 11-13 and 11-36 show the clock
divider circuit. The output divider is controlled by COD and the SCI mode. If the SCI mode
is synchronous, the output divider is fixed at divide by 2; if the SCI mode is asynchronous,
and

1. If COD equals zero and SCLK is an output (i.e., TCM and RCM = 0), the SCI clock is
divided by 16 before being output to the SCLK pin; thus, the SCLK output is a 1 x
clock.

2. If COD equals one and SCLK is an output, the SCI clock is fed directly out to the SCLK
pin; thus, the SCLK output is a 16 x baud clock.

The COD bit is cleared by hardware and software reset.

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 11.;.21

III

III

11.2.2.3.3 SCCR SCI Clock Prescaler (SCP) Bit 13. The SCI SCP bit selects a divide by 1
(SCP = 0) or divide by 8 (SCP = 1) prescaler for the clock divider. The output of the prescaler
is further divided by 2 to form the SCI clock. Hardware and software reset clear SCPo Figures
11-13 and 11-36 show the clock divider diagram.

11.2.2.3.4 SeCR Receive Clock Mode Source Bit (RCM) Bit 14. RCM selects internal or
external clock for the receiver (see Figure 11-36). RCM equals zero selects the internal clock;
RCM equals one selects the external clock from the SCLK pin. Hardware and software reset
clear RCM.

11.2.2.3.5 SCCR Transmit Clock Source Bit (TCM) Bit 15. The TCM bit selects internal or
external clock for the transmitter (see Figure 11-36). TCM equals zero selects the internal
clock; TCM equals one selects the external clock from the SCLK pin. Hardware and software
reset clear TCM.

fose

11-22

TCM

0

0

1

1

RCM TX Clock

0 Internal

1 Internal

0 External

1 External

TIMER
INTERRUPT
ISTMINTl

fo

RX Clock SCLK Pin Mode

Internal Output Synchronous/Asynchronous

External Input Asynchronous Only

Internal Input Asynchronous Only

External Input Synchronous/Asynchronous

.--_ PRESCALER: t----+I
DIVIDE BY

1 or 8

SCI CORE LOGIC
USES DIVIDE BY 16 FOR

ASYNCHRONOUS
USES DIVIDE BY 2 FOR

SYNCHRONOUS

INTERNAL CLOCK

BPS = ---------
64*((7*SCP) + 1)*(CD + 1)

where: SCP = 0 or 1
CD = 0 to $FFF

TO SCLK

Figure 11-13. SCI Baud Rate Generator

DSP56000/DSP56~01 USER'S MANUAL MOTOROLA

11.2.2.4 SCI DATA REGISTERS. The SCI data registers are divided into two groups: re­
ceive and transmit. There are two receive registers - a receive data register (SRX) and a
serial-to-parallel receive shift register. There are also two transmit registers - a transmit
data register (called either STX or STXA) and a parallel-to-serial transmit shift register.

11.2.2.4.1 SCI Receive Registers. Data words received on the RXD pin are shifted into
the SCI receive shift register. When the completeword has been received, the data portion
of the word is transferred to the byte-wide SRX. This process converts the serial data to
parallel data and provides double buffering. Double buffering provides flexibility to the
programmer and increased throughput since the programmer can save the previous word
while the current word is being received.

The SRX can be read at three locations: X:$FFF4, X:$FFF5, and X:$FFF6 (see Figure
11-14). When location X:$FFF4 is read, the contents of the SRX are placed in the lower
byte of the data bus and the remaining bits on the data bus are written as zeros. Similarly,
when X:$FFF5 is read, the contents of SRX are placed in the middle byte of the bus, and
vvhen X:$FFF6 is read, the contents of SRX are placed in the high byte with the remaining
bits zeroed. Mapping SRX as described allows three bytes to be efficiently packed into one
24-bit word by ORing three data bytes read from the three addresses. The following code
fragment requires that RO initially points to X:$FFF4, register A is initially cleared, and R3
points to a data buffer. The only programming trick is using BCLR to test bit 1 of the packing
pointer to see if it is pointing to X:$FFF6 and clearing bit 1 to point to X:$FFF4 if it had
been pointing to X:$FFF6. This procedure resets the packing pointer after receiving three
bytes.'

MOVE X:(RO),XO ;Copy received data to temporary register
BCLR #$1,RO ;Test for last byte

;reset pointer if it is the last byte
OR XO,A ;Pack the data into register A
MOVE (RO)+ ;and increment the packing pointer
JCS FLAG ;Jump to clean up routine if last byte
RTI ;Else return until next byte is received

FLAG MOVE A,(R3)+ ;Move the packed data to memory
CLR A ;Prepare A for packing next three bytes
RTI ;Return until the next byte is received

The length and format of the serial word is defined by theWDSO, WDS1, and WDS2 control
bits in the SCI control register. In the synchronous modes, the start bit, the eight data bits
with LSB first, the address/data indicator bit and/or the parity bit, and the stop bit are
received in that order for SSFTD equals zero (see Figure 11-11 (a)). For SSFTD equals one,
the data bits are transmitted MSB first (see Figure 11-11 (b)). The clock source is defined
by the receive clock mode (RCM) select bit in the SCR. In the synchronous mode, the
synchronization is provided by gating the clock. In either mode, when a complete word
has been clocked in, the contents of the shift register can be transferred to the SRX and
the flags; RDRF, FE, PE, and OR are changed appropriately. Because the operation of the

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 11-23

III

•

XQ~I ____ ''_A'-'--~----~"Br"----~--_,"Cr"--~
, 16 15 , B 7 , 23

X:$FFF6

X:$FFF5~m

X:$FFF4

i MOVE XQ,X:$FFF6 ;TRANSMIT CHARACTER "A"

MOVE XQ,X:$FFF5 ;TRANSMIT CHARACTER "B"

=""'--______ ---' MOVE XQ,X:$FFF4 ;TRANSMIT CHARACTER "C"

NOTE: STX is the same register decoded at three different addresses.

X:$FFF6

X:$FFF5

X:$FFF4

23 16 15 r-------

(a) Unpacking

B 7

•. MOVE X:$FFF6,XQ ;RECEIVE CHARACTER "A"

OVE X:$FFF5,XQ ;RECEIVE CHARACTER "B"

OVE X:$FFF4,XQ ;RECEIVE CHARACTER "C"

XQ~I __ '_'A_" __ ~ __ '_'B_" __ ~ __ "C_"_~

NOTE: SRX is the same register decoded at three different addresses.

(b) Packing

Figure 11-14. Data Packing and Unpacking

SCI receive shift register is transparent to the DSP, the contents of this register are not
directly accessible to the programmer .

11.2.2.4.2 SCI Transmit Registers. The transmit data register is one byte-wide register
mapped into four addresses: X:$FFF3, X:$FFF4, X:$FFF5, and X:$FFF6.ln the asynchronous
mode, when data is to be transmitted, X:$FFF4, X:$FFF5, and X:$FFF6 are used, and the
register is called STX. When X:$FFF4 is written, the low byte on the data bus is transferred
to the STX; when X:$FFF5 is written, the middle byte is transferred to the STX; and when
X:$FFF6 is written, the high byte is transferred to the STX. This structure (see Figure
11-10) makes it easy for the programmer to unpack the bytes in a 24-bit word for trans­
mission. Location X:$FFF3 should be written in the 11-bit asynchronous multidrop mode
when the data is an address and it is desired that the ninth bit (the address bit) be set.
When X:$FFF3 is written, the transmit data register is called STXA, and data from the low
byte on the data bus is stored in STXA. The address data bit will be cleared in the 11-bit
asynchronous multidrop mode when any of X:$FFF4, X:$FFF5, or X:$FFF6 is written. When
either STX or STXA is written, TDRE is cleared.

11-24 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

The transfer from either STX or STXA to the transmit shift register occurs automatically,
but not immediately, when the last bit from the previous word has been shifted out - i.e.,
the transmit shift register is empty. Like the receiver, the transmitter is double buffered.
However, there will be a two to four serial clock cycle delay between when the data is
transferred from either STX or STXA to the transmit shift register and when the first bit
appears on the TXD pin. (A serial clock cycle is the time required to transmit one data bit).
The transmit shift register is not directly addressable, and a dedicated flag for this register
does not exist. Because of this fact and the two to four cycle delay, two bytes cannot be
written consecutively to STX or STXA without polling. The second byte will overwrite the
first byte. The TDRE flag should always be polled prior to writing STX or STXA to prevent
overruns unless transmit interrupts have been enabled. Either STX or STXA is usually
written as part ofthe interrupt service routine. Of course, the interrupt will only be generated
if TDRE equals one. The transmit shift register is indirectly visible via the TRNE bit in the
SSR.

In the synchronous modes, data is clocked synchronously with the transmit clock, which
may have either an internal or external source as defined by the TCM bit in the SCCR. The
length and format of the serial word is defined by the WDSO, WDS1, and WDS2 control
bits in the SCR. In the asynchronous modes, the start bit, the eight data bits (with the LSB
first if SSFTD = 0 and the MSB first if SSFTD = 1), the address/data indicator bit or parity
bit, and the stop bit are transmitted in that order (see Figure 11-11).

In the synchronous mode, the data byte is transmitted LSB first if SCKP equals zero and
MSB first if SCKP equals one. The data to be transmitted can be written to anyone of the
three STX addresses. If SCKP equals one and SSHTD equals one, the SCI synchronous
mode is equivalent to the SSI operation in the 8-bit data on-demand mode.

11.2.2.5 PREAMBLE, BREAK, AND DATA TRANSMISSION PRIORITY. It is possible that
two or three transmission commands are set simultaneously:

1. A preamble (TE was toggled).
2. A break (SBK was set or was toggled) .

. 3. There is data for transmission (TDRE = 0).

After the current character transmission, if two or more of these commands are set, the
transmitter will execute them in the following priority:

1. Preamble
2. Break
3. Data

11.2.3 Register Contents After Reset

Four different methods of resetting the SCI exist. Hardware or software reset clears the
port control register bits, which configure all I/O as general-purpose input. The SCI will
remain in the reset state while all SCI pins are programmed as general-purpose I/O (CC2,

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 11-25

III

III

CC1, and CCO=O); the SCI will become active only when at least one of the SCI liD pins
is programmed as not general-purpose 1/0.

During program execution, the CC2, CC1, and CCO bits may be cleared (individual reset),
which will cause the SCI to stop serial activity and enter the reset state. All SCI status bits
will be set to their reset state; however, the contents of the interface control register are
not affected, allowing the DSP program to reset the SCI separately from the other internal
peripherals.

Executing the STOP instruction halts operation ofthe SCI until the DSPis restarted, causing
the SSR to be reset. No other SCI registers are affected by the STOP instruction. Table 11-
1 illustrates how each type of reset affects each register in the SCI.

11.2.4 SCI Initialization

The correct way to initialize the SCI is as follows:

1. Hardware or software reset.

2. Program SCI control registers.

3. Configure SCI pins (at I~ast one) as not general-purpose liD.

Figures 11-15 and 11-16 show how to configure the bits in the SCI registers. Figure 11-15
is the basic initialization procedure showing which registers must be configured. (1) A
hardware or software reset should be used to reset the SCI and prevent it from doing
anything unexpected while it is being programmed. (2) Both the SCI interface control
register and the clock control register must be configured for any operation using the SCI.
(3) The pins to be used must then be selected to release the SCI from reset and (4) begin
operation. If interrupts are to be used, the pins must be selected, and interrupts must be
enabled and unmasked before the SCI will operate. The order does not matter; anyone
of these three requirements fo~ interrupts can be used to finally enable the SCI. Figure 11-
16 shows the.meaning of the individual bits in the SCR and SCCR. The figures below do
not assume that interrupts will be used; they recommend selecting the appropriate pins
to enable the SCI. Programs shown in Figures 11-21, 11-22, 11-29, 11-35; and 11-37 use
interrupts and control the SCI by enabling and disabling interrupts. Either method is ac­
ceptable.

Tables 11-2 and 11-3 provide the settings for common baud rates for the SCI. The asyn­
chronous SCI baud rates show a baud rate error for the fixed oscillator frequency (see
Table 11-2(a)). These small-percentage baud rate errors should allow most UARTs to syn­
chronize. The synchronous applications usually require exact frequencies, which require
that the crystal frequency be chosen carefully (see Table 11- 3(a) and 11-3(b)). An alternative
to selecting the system clock to accommodate the SCI requirements is to provide an external
clock to the SCI.

11-26 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

Table 11-1. SCI Registers after Reset

Register Bit Bit
Reset Type

HW SW IR ST Bit

SCR

SSR

SCCR

SRX

STX

SRSH

STSH

NOTES:

MOTOROLA

SRSH
STSH
HW
SW
IR

ST
1
o

Mnemonic Number
Reset Reset Reset Reset

SCKP 15 0 0 - -
TMIE 13 0 0 - -
TIE 12 0 0 - -
RIE 11 0 0 - -
ILIE 10 0 0 - -
TE 9 0 0 - -
RE 8 0 0 - -
WOMS 7 0 0 - -
RWU 6 0 0 - -
WAKE 5 0 0 - -
SBK 4 0 0 - -
SSFTO 3 0 0 - -
WDS (2-0) 2-0 0 0 - -
R8 7 0 0 0 0
FE 6 0 0 0 0
PE 5 0 0 0 0
OR 4 0 0 0 0
IDLE 3 0 0 0 0
RDRF 2 0 0 0 0
TORE 1 1 1 1 1
TRNE 0 1 1 1 1

TCM 15 0 0 - -
RCM 14 0 0 - -
SCP 13 0 0 - -
COD 12 0 0 - -
CD (11-0) 11-0 0 0 - -
SRX (23-0) 23-16, 15-8, 7-0 - - -

STX (23-0) 23-0 - - - -
SRS (8-0) 8-0 - - - -
STS (8-0) 8-0 - - - -

- SCI receive shift register
- SCI transmit shift register
- Hardware reset is caused by asserting the external RESET pin.
- Software reset is caused by executing the RESET instruction.
- Individual reset is caused by clearing PCC (bits 0'-2) (configured for general-

purpose 1/0).
- Stop reset is caused by executing the STOP instruction.
- The bit is set during the xx reset.
- The bit is cleared during the xx reset.
- The bit is not changed during the xx reset.

DSP56000/DSP56001 USER'S MANUAL

•

11-27

III

1. PERFORM HARDWARE OR SOFTWARE RESET.

2. PROGRAM SCI CONTROL REGISTERS:
Al SCI INTERFACE CONTROL REGISTER - X:$FFFO
Bl SCI CLOCK CONTROL REGISTER - X:$FFF2

3. CONFIGURE AT LEAST ONE PORT C CONTROL BIT AS SCI.

23

ccx Function

0 Parallel 1/0

1 Serial Interface

4. SCI IS NOW ACTIVE.

{SClKdlJ I I
SCI TXD~

RXD

Figure 11-15. SCI Initialization Procedure

11.2.5 SCI Exceptions

PORT C CDNTRDL
REGISTER (PCCI

The SCI can cause five different exceptions in the DSP (see Figure 11-17). These exceptions
are as follows:

1. SCI Receive Data - caused by receive data register full with no receive error conditions
existing. This error-free interrupt may use a fast interrupt service routine for minimum
overhead. This interrupt is enabled by SCR bit 11 (RIE).

2. SCI Receive Data with Exception Status - caused by receive data register full with a
receiver error (parity, framing, or overrun error). The SCI status register must be read
to clear the receiver error flag. A long interrupt service routine should be used to
handle the error condition. This interrupt is enabled by SCR bit 11 (RIE).

3. SCI Transmit Data - caused by transmit data register empty. This error-free interrupt
may use a fast interrupt service routine for minimum overhead. This interrupt is
enabled by SCR bit 12 (TIE).

4. SCI Idle Line - caused by the receive line entering the idle state (10 or 11 bits of
ones). This interrupt is latched and then automatically reset when the interrupt is
accepted. This interrupt is enabled by SCR bit 10 (ILlE).

5. SCI Timer - caused by the baud rate counter underflowing. This interrupt is auto­
matically reset when the interrupt is accepted. This interrupt is enabled by SCR bit
13 (TMIE).

11-28 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

5:
o
-I o
:c
o
~

c en
"'tJ
U1
en
o
o
~
c en
"'tJ
U1
en
o
o
c
en
m
jJ

en
:s:
l>
Z
C
l>
r-

--"
--"

"-> c.o

STEP 2a. SELECT SCI OPERATION:
FOR A BASIC CONFIGURATION, SET:

SCKP - BIT 14=0
TMIE - BIT 13=0
ILiE - BIT 10=0
RWU - BIT 6=0
WAKE - BIT 5=0
SBK - BIT 4=0
SSFTD - BIT 3=0

ENABLE/DISABLE

...------------------~I TRANSMIT INTERRUPT
ENABLE= 1
DISABLE=O

ENABLE/DISABLE
RECEIVE INTERRUPT
ENABLE= 1
DISABLE=O

ENABLE/DISABLE
TRANSMIT DATA
ENABLE=1
DISABLE=O

[

ENABLE/DISABLE
...------------i. RECEIVE DATA

DISABLE=O 1
ENABLE=1

15 14 13 12 11 10 8 rTMJETl 1--1 1 lMsl -urwt<ETSBKl-mrw· -1-1 -DSol SCI INTERFACE CONTROL REGISTER (SCR)
X:$FFEO I SCKP I * ~TIE RIE ILiE TE RE WO~ RWUWA~ SSFTDWDS2 WDSI W~ (READIWRITE)

*Reserved; write as O. t "-v-----I
000=8-BIT SYNCHRONOUS DATA (SHIFT REGISTER MODE)

WIRED-OR MODE 001 = RESERVED
010= 10-BIT ASYNCHRONOUS (1 START,8 DATA, 1 STOP)

MULTIDROP = 1 011 = RESERVED
POINT TO POINT = 0 100 = ll-BIT ASYNCHRONOUS (1 START,8 DATA, EVEN PARITY, 1 STOP)

101 = II-BIT ASYNCHRONOUS (1 START,8 DATA, ODD PARITY, 1 STOP)
110= II-BIT MULTIDROP (1 START,8 DATA, EVEN PARITY, 1 STOP)
111 = RESERVED

(a) Step 2a

Figure 11-16. SCI General Initialization Detail- Step 2 (Sheet 1 of 2)

I

w o

c en
"tI
U'1
en o
o
~ c en
"tI
U'1
en
o

.g
c: en
m
:J:I
en
s:
l>
:2:
c:
l>
r-

s:
o
-i o
:c o
~

I

STEP 2b. SELECT CLOCK AND DATA RATE:
SET THE CLOCK DIVIDER BITS (CDO-CDll) ACCORDING TO TABLES 11-2 OR 11-3.
SET THE SCI CLOCK PRESCALER BIT (SCP, BIT 13) ACCORDING TO TABLES 11-2 OR 11-3.

15 14 13 12 11 10

SET
TRANSMIT CLOCK SOURCE
EXTERNAL CLOCK = 1
INTERNAL CLOCK = 0

SET
RECEIVE CLOCK SOURCE
EXTERNAL CLOCK = 1
INTERNAL CLOCK=O

SET
SCI CLOCK PRES CALER
DIVIDE BY B = 1

L. DIVIDE BY 1 =0

r SET
CLOCK OUT DIVIDER
IF SCLK PIN IS AN OUTPUT AND
COD = 1 • SCLK OUTPUT = 16 x

L. COD=O. SCLK OUTPUT= 1 x

X:$FFF2 I TCM I RCM I SCP I COD I CDll I COlO I COg I COB I CD7 I CD6 I CD5 I CD4 I CD3 I C02 I COl I COO I ~RC~A~~~TCE~NTROL REGISTER (SCCR)

(b) Step 2b

Figure 11-16. SCI General Initialization Detail - Step 2 (Sheet 2 of 2)

MOTOROLA

Table 11-2(a). Asynchronous SCI Baud Rates
for a 20.48-MHz Crystal

Baud Rate SCP Divider Bits Baud Rate
(BPS) Bit (CDO-CD11) Error, Percent

320.0K 0 $000 0

56.0K 0 $005 4.762

38.4K 0 $007 4.167

19.2K 0 $010 1.961

9600 0 $020 1.010

8000 0 $027 0

4800 0 $042 0.498

2400 0 $084 0.251

1200 1 $020 1.010

600 1 $042 0.498

300 1 $084 0.251

BPS= fO """ (64 x (7(SCP) + 1) x (CD + 1)); fO=20.48 MHz
SCP=O or 1
CD=O to $FFF

Table 11-2(b). Frequencies for Exact
Asynchronous SCI Baud Rates

Baud Rate SCP Divider Bits
(BPS) Bit (CDO-CD11)

9600 0 $021

4800 0 $042

2400 0 $084

1200 0 $108

300 0 $420

9600 1 $004

4800 1 $008

2400 1 $010

1200 1 $020

300 1 $080

fO=BPS x 64 x (7(SCP) + 1) x (CD + 1)
SCP=O or 1
CD=O to $FFF

Crystal
Frequency

20,500,000

20,275,200

20,275,200

20,275,200

20,275,200

19,660,800

19,660,800

19,660,800

19,660,800

19,660,800

DSP56000/DSP56001 USER'S MANUAL

III

11-31

III

Table 11-3(a). Synchronous SCI Baud Rates
for a 20.48-MHz Crystal

Baud Rate SCP Divider Bits Baud Rate
(BPS) Bit (CDO-CD11) Error. Percent

2.56M 0 $000 0

128K 0 $014 0

64K 0 $027 0

56K 0 $02E 0.621

32K 0 $04F 0

16K 0 $09F 0

8000 0 $140 0

4000 0 $27F 0

2000 0 $4FF 0

1000 0 $9FF 0

BPS=fo 7 (8 x (7(SCP) + 1) x (CD + 111; fo=20.48 MHz
SCP=O or 1
CD=O to $FFF

Table 11-3(b). Frequencies for Exact
Synchronous SCI Baud Rates

Baud Rate SCP Divider Bits
(BPS) Bit (CDO-CD11)

2.048M 0 $000

1.544M 0 $001

1.536M 0 $001

fO=BPS x 8 x (7(SCP) + 1) x (CD + 1)
CP = 0 or 1
CD=O to $FFF

11.2.6 Synchronous Data

Baud Rate
Error. MHz

16.384

24.576

24.704

The synchronous mode (WDS = 0, shift register mode) is designed to implement serial-to­
parallel and parallel-to-serial conversions. This mode will directly interface to 8051/8096
synchronous (mode 0) buses as both a controller (master) or a peripheral (slave) and is
compatible with the SSI mode if SCKP equals one. In synchronous mode, the clock is
always common to the transmit and receive shift registers.

As a controller (synchronous master) shown in Figure 11-18, the DSP outputs a clock on
the SCLK pin when data is present in the transmit shift register (a gated clock mode). The
master mode is selected by choosing internal transmit and receive clocks (setting TCM
and RCM =0). The example shows a 74HC165 parallel-to-serial shift register and 74HC164
serial-to-parallel shift register being used to convert eight bits of serial I/O to eight bits of

11-32 OSP56000/0SP56001 USER'S MANUAL MOTOROLA

EXCEPTION
STARTING
ADDRESS

$0000

$0002

$0004

$0006

$0008

$OOOA

$OOOC

$OOOE

$0010

$0012

$0014

$0016

$0018

$OOlA

$OOlC

$OOlE

$0020

$0022

$0024

$0026

$0028

$002A

$002C

$002E

$0030

$0032

$0034

$0036

$0038

$003A

$003C

$003E

PROGRAM MEMORY SPACE

EXCEPTION SOURCE

HARDWARE RESET TWO WORDS PER VECTOR

STACK ERROR t
TRACE

SWI (SOFTWARE INTERRUPT)

IRQA EXTERNAL HARDWARE INTERRUPT

IRUB EXTERNAL HARDWARE IN"'ERRUPT

SSI RECEIVE DATA

SSI RECEIVE DATA WITH EXCEPTION STATUS
SYNCHRONOUS

SERIAL
SSI TRANSMIT DATA INTERFACE

SSI TRANSMIT DATA WITH EXCEPTION STATUS

SCI RECEIVE DATA

SCI RECEIVE DATA WITH EXCEPTION STATUS SERIAL

SCI TRANSMIT DATA COMMUNICATIONS
INTERFACE

SCI IDLE LINE

SCI TIMER

RESERVED FOR HARDWARE DEVELOPMENT

HOST RECEIVE DATA

HOST TRANSMIT DATA

HOST COMMAND (DEFAULT)

AVAILABLE FOR HOST COMMAND

AVAILABLE FOR HOST COMMAND

AVAILABLE FOR HOST COMMAND

AVAILABLE FOR HOST COMMAND

AVAILABLE FOR HOST COMMAND HOST

AVAILABLE FOR HOST COMMAND INTERFACE

AVAILABLE FOR HOST COMM'AND

AVAILABLE FOR HOST COMMAND

AVAILABLE FOR HOST COMMAND

AVAILABLE FOR HOST COMMAND

AVAILABLE FOR HOST COMMAND

AVAILABLE FOR HOST COMMAND

ILLEGAL INSTRUCTION

-
Figure 11-17. SCI Exception Vector Locations

MOTOROLA DSP56000/DSP56001 USER'S MANUAL

EXTERNAL
INTERRUPTS

INTERNAL
INTERRUPTS

~

INTERNAL
INTERRUPTS

III

11-33

......
w
~

c en
"tI
U1
en
o
o
~ c
en
"tI
U1
en
o
o ...
c:
en
m
::0 en
s: » z
c: »
r-

s:
o
--i o
::0
o
£:

II
15 14 13 12 II 10 'RETw I I '-'-I -r , - , SCI CONTROL REGISTER (SCR) X:$FFFO I SCKP I 0 I TMIE I TIE RIE I ILiE I TEYEWOMS RWU WAKE SBK 0 0 0 0 (REAOIWRITE)

SSFTO WOS2 WOSI WOSO

15 14 13 12 II 10 9 a 7 6 5 4 3 2 I 0

X:$FFF2\ 0 0 I SCP I COO I COli I COlO I C09 I coa I C07 I C06 I C05 I C04 I C03 I C02 I COl I COO I SCI CLOCK CONTROL REGISTER (SCCR)
TCM RCM (REAOIWRITE)

CLOCK OUTPUT
(SCP=O)

TRANSMIT DATA
(SSFTO=O)

SAMPLE

Example: Shift Register I/O

EXAMPLE: SHIFT REGISTER I/O

OSP56000

RXO

SGLK

TXO

74HCI64
SIP

a PARALLEL INPUTS

LOAD PULSE -U-

a PARALLEL OUTPUTS

Figure 11-18. Synchronous Master

parallel 110. The load pulse latches eight bits into the 74HC165 and then SCLK shifts the
RXD data into the SCI (these data bits are sample bits 0-7 in the timing diagram). At the
same time, TXD shifts data out (BO-B7) to the 74HC164. When using the internal clock, data
is transmitted when the transmit shift register is full. Data is valid on both edges of the
output clock, which is compatible with an 8051 microprocessor. Received data is sampled
in the middle of the clock low time if SCKP equals zero or in the middle of the clock high
time if SCKP equals one. There is a window during which STX must be written with the
next byte to be transmitted to prevent a gap between words. This window is from the time
TDRE goes high halfway into transmission of bit 1 until the middle of bit 6 (see Figure 11-
20(a)).

As a peripheral (synchronous slave) shown in Figure 11-19, the DSP accepts an inpu~ clock
from the SCLK pin. If SCKP equals zero, data is clocked in on the rising edge of SCLK, and
data is clocked out on the falling edge of SCLK. If SCKP equals one, data is clocked in on
the falling edge of SCLK, and data is clocked out on the rising edge of SCLK. The slave
mode is selected by choosing external transmit and receive clocks (TCM andRCM = 1).
Since there is no frame signal, if a clock is missed due to noise or any other reason, the
receiver will lose synchronization with the data without any error signal being generated.
Detecting an error of this type can be done with an error detecting protocol or with external
circuitry such as a watchdog timer. The simplest way to recover synchronization is to reset
the SCI.

The timing diagram in Figure 11-19 shows transmit data in the normal driven mode. Bit
B7 is essentially one-half SCI clock long (TSCI/2 + 1.5 TEXTAU The last data bit is truncated
so that the pin is guaranteed to go to its reset state before the start of the next data word,
thereby delimiting data words. The 1.5 crystal clock cycles provide sufficient hold time to
satisfy most external logic requirements. The example diagram requires that the WOMS
bit be set in the SCR to wired-OR RXD and TXD, which causes TXD to be three-stated when
not transmitting. Collisions (two devices transmitting simultaneously) must be avoided
with this circuit by using a protocol such as alternating transmit and receive periods. In
the example, the 8051 is the master device because it controls the clock. There is a window
during which STX must be written with the next byte to be transmitted to prevent the
current word from being retransmitted. This window is from the time TDRE goes high,
which is halfway into the transmission of bit 1 until the middle of bit 6 (see Figure 11-
20(b)). Of course, this assumes the clock remains continuous - i.e., there is a second word.
If the clock stops, the SCI stops.

The DSP is initially configured according to the protocol to either receive data or transmit
data. If the protocol determines that the next data transfer will be a DSP transmit, the DSP
will configure the SCI for transmit and load STX (or STXA). When the master starts SCLK,
data will be ready and waiting. If the protocol determines that the next data transfer will
be a DSP receive, the DSP will configure the SCI for receive and will either poll the SCI or
enable interrupts. This methodology allows mUltiple slave processors to use the same data

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 11-35

III

......
W
en

c
CJ)
"g
c.n
0)
o o
~
C
CJ)
"g
c.n
0)
o o
...&

c:
CJ)
m
:D en
3:
l>
Z
c:
l> r-

s:
o
~ o
:JJ o
~

I
15 14 13 12 11 10 9 7 6 5 4

x~~ffil_sC_K_P~1 ~~I~T~M~IE~I_T~IE~~R=IE~I =Q~IE~I~TE~~R~E~lw~O~M~sl~R~W~u~l~w~AK~ELI~sB~K~I~o~~o~~o~~o~1 S~INTER~CECONTROLRErnSTER~Cm (READIWRITE)
SSFTD WDS2 WDS1 WOSO

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 I I I I SCI CLOCK CONTROL REGISTER (SCCR)
X:$FFF2 1 1 I I SCP 1 COD 1 COl1 1 CDIO 1 CD9 1 CD8 1 C07 1 CD6·1 C05 1 CD4 C03 1 CD2 CDI CDO (READIWRITE)

TCM RCM

CLOCK INPUT
(SKP=O)

TRANSMIT DATA
(SSFTO =0)

SAMPLE

Example: Interface to synchronous microcomputer buses

Figure 11-19. Synchronous Slave

I ~ 1.5tcyc
J

8051
DR

8096

s:
o
-I o
:c
o
s;

c en
"C
U1
en
o
o e
c en
"C
U1
en
o o
-A

c: en
m
::a
en
s: » z
c: »
r-

w
'"

SYNCHRONOUS MODE, INTERNAL CLOCK (MASTER)

SERIAL
CLOCK

(I NT)

STX
WRITE
RANGE

TRDE

TXD
(TRANSMIT DATA)

~STXWRITERANGE ~11t(
r----MAX 5.5 SERIAL CLOCK CYCLES ~

STX WRITE RANGE FOR NO
GAP BETWEEN WORDS 1 AND 2

~I
~I

\ Ir-r-\~\ \r--r"\ __ \...--r"\ \""""'I""""\~\ \---r-\~\\ I
TORE.O BY STX WRITE

I It(FIRST WORD ~ I... SECOND WORD---

NOTE: In internal clock mode, if data 2 is written after the middle of bit 6 of data 1, then a gap of at least two serial bits is
inserted between word 1 and word 2. The gap is bigger as STX is written later.

(a) Master

SYNCHRONOUS MODE, EXTERNAL CLOCK (SLAVE)

SERIAL
CLOCK

(EXT)

STX
WRITE
RANGE

TRDE

TXD
(TRANSMIT DATA)

I... STX WRITE RANGE ~ I. STX WRITE RANGE~

\ / \\\\\\\\\\\\\ /
TORE.O BY STX WRITE

I... FIRST WORD ~ I It(SECOND WORD ---

NOTE: In external clock mode, if data 2 is written after the middle of bit 6 of data 1, then the previous data is retransmitted
and data 2 is transmitted after the retransmission of data 1.

(b) Slave

Figure 11-20. Synchronous Timing

I

III

line. Selection of individual slave processors can be under protocol control or by multi­
plexing SCLK.

NOTE

TCM =O,RCM = 1 and TCM = 1,RCM =0 are not allowed in the synchronous mode.
The results are undefined.

The assembly program shown in Figure 11-21 uses the SCI synchronous mode to transmit
only the low byte of the Y data ROM contents. The program sets the reset vector to run
the program after a hardware reset, puts the MOVEP instruction at the SCI transmit interrupt
vector location, sets the memory wait states to zero, and configures the memory pointers,
operating mode register, and the IPR. The SCI is then configured and the interrupts are
unmasked, which starts the data transfer. The jump-to-self instruction (LABO JMP LABO)
is used to wait while interrupts transfer the data.

LABO

ORG
JMP

P:O
$40

ORG P:$18
MOVEP Y:(RO) + ,X:$FFF4

ORG
MOVEP
MOVE
MOVE
MOVEC
MOVEP
MOVEP
MOVEP
MOVEC
JMP

P:$40
#O,X:$FFFE
#$100,RO
#$FF,MO
#6,OMR
#$COOO,X:$FFFF
#$1200,X:$FFFO
#7,X:$FFE1
#O,SR
LABO

; Reset vector

;SCI transmit interrupt vector
;transmit low byte of data

;Clear BCR
;Data ROM start address
;Size of data ROM - Wraps around at $200
;Change operating mode to enable data ROM
;Interrupt priority register
;8-bit synchronous mode
;Port C control register - enable SCI
;Unmask interrupts
;Wait in loop for interrupts

Figure 11-21. SCI Synchronous Transmit

The program shown in Figure 11-22 is the program for receiving data from the program
presented in Figure 11-21. The program sets the reset vector to run the program after
hardware reset, puts the MOVEP instruction to store the data in a circular buffer starting
at $100 at the SCI receive interrupt vector location, puts another MOVEP instruction at the
SCI receive interrupt vector location, sets the memory wait states to zero, and configures
the memory pointers and IPR. The SCI is then configured and the interrupts are unmasked,
which starts the data transfer. The jump-to-self instruction (LABO JMP LABO) is used to
wait while interrupts transfer the data.

11-38 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

ORG P:O ; Reset vector
JMP $40

ORG P:$14 ; SCI receive data cector
MOVEP X:$FFF4,Y:(RO) + ; Receive low byte of data
NOP ; Fast interrupt response

MOVEP X:$FFF1,XO ; Receive with exception. Read status register
MOVEP X:$FFF4,Y:(RO) + ; Receive low byte of data.

ORG P:$40
MOVEP #O,X:$FFFE ; Clear BCR
MOVE #$100,RO ; Data ROM start address
MOVE #$FF,MO ; Size of data ROM - wraps around at $200
MOVEP #$COOO,X :$FFFF ; Interrupt priority register
MOVEP #$900,X :$FFFO ; 8-bit synchronous mode receive only
MOVEP #$COOO,X:$FFF2 ; Clock control register external clock
MOVEP #7,X:$FFE1 ; Port C control register - enable SCI
MOVEC #O,SR ; Unmask interrupts

LABO JMP LABO ; Wait in loop for interrupts

Figure 11-22. SCI Synchronous Receive

11.2.7 Asynchronous Data

Asynchronous data uses a data format with embedded word sync, which allows an un­
synchronized data clock to be synchronized with the word if the clock rate and number of
bits per word is known. Thus, the clock can be generated by the receiver rather than
requiring a separate clock signal. The transmitter and receiver both use an internal clock
that is 16 x the data rate to allow the SCI to synchronize the data. The data format requires
that each data byte have an additional start bit and stop bit. In addition, two of the word
formats have a parity bit. The multidrop mode used when SCls are on a common bus has
an additional data type bit. The SCI can operate in full-duplex or half-duplex modes since
the transmitter and receiver are independent. The SCI transmitter and receiver can use
either the internal clock (TCM = 0 and/or RCM = 0) or an external clock (TCM = 1 and/or
RCM = 1) or a combination. If a combination is used, the transmitter and receiver can run
at different data rates.

11.2.7.1 ASYNCHRONOUS DATA RECEPTION. Figure 11-23 illustrates initializing the SCI
data receiver for asynchronous data. The first step (1) resets the SCI to prevent the SCI
from transmitting or receiving data. Step two (2) selects the desired operation by pro­
gramming the SCR. As a minimum, the word format (WDS2, WDS1, and WDSO) must be
selected, and (3) the receiver must be enabled (RE = 1). If (4) interrupts are to be used, set

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 11-39

III

J:. o

c
en
-a
U1
Q)
o
o
o
C
en
-a
U1
Q)
o
g
c:
en
m
:a
en
s: » z
c: »
r-

~
o
-I o
:tJ o
~

I
1. HARDWARE OR SOFTWARE RESET
2. PROGRAM SCR WITH DESIRED MODE AND FEATURES.
3. TURN ON RECEIVER (RE = 1/.
4. OPTIONALLY ENABLE RECEIVER INTERRUPTS (RIE=l).

15 14 13 12 11 10

X:$FFFO I SCKP I 0 I TMIE I TIE I 1 I ILIE I TE 1 . IWOMS] RWU I WAKE I SBK I SSFTD I WDS21 WDSl I WDSO I? ~RC~~~~~~:E~E CONTROL REGISTER (SCR)

RIE RE

5. SET THE BAUD RATE BY PROGRAMMING THE SCCR.

15 14 13 12 11 10

X:$FFF2 , , ._

PRESCALER
IF SCP = 1. THEN DIVIDE BY 8
IF SCP = O. THEN DIVIDE BY 1

6. SET THE RXD BIT IN PCC TO ENABLE THE SCI RECEIVER SYSTEM.
SCI

~
23 9-8 7 6 5 4 3 2 1 0

SCI INTERFACE CONTROL REGISTER (SCCR)
(READIWRITE)

X:$FFEll I CC8 I CC7 I CC6 I CC5 I CC4 I CC3 I CC2 I CCl I 1 PORT C CONTROL REGISTER (PCC)

RXD~
CCx Function

0 Parallel 1/0

Serial Interface

NOTE: If RE is cleared while a valid character is being received. the reception of the character will be completed before the
receiver is disabled.

Figure 11-23. Asynchronous SCI Receiver Initialization

RIE equals one. Use Tables 11-2 and 11-3 to set (5) the baud rate (SCP and CDO-CD11 in
the SCCR). Once the SCI is completely configured, it is enabled by (6) setting the RXD bit
in the PCC.

The receiver is continually sampling RDX at the 16 x clock rate to find the idle-start-bit
transition edge. When that edge is detected (1) the following eight or nine bits, depending
on the mode, are clocked into the receive shift register (see Figure 11-24). Once a complete
byte is received, (2) the character is latched into the SRX, and RDRF is set as well 9s the
error flags, OR, PE, and FE. If (3) interrupts are enabled, an interrupt is generated. The
interrupt service routine, which can be a fast interrupt or a long interrupt, (4) reads the
received character. Reading the SRX (5) automatically clears RDFR in the SSR and makes
the SRX ready to receive another byte.

If (1) an FE, PE, or OR occurs while receiving data (see Figure 11-25), (2) RDRF is set because
a character has been received; FE, PE, or OR is set in the SSR to indicate that an error was
detected. Either (3) the SSR can be polled by software to look for errors, or (4) interrupts
can be used to execute an interrupt service routine. This interrupt is different from the
normal receive interrupt and is caused only by receive errors. The long interrupt service
routine should (5) read the SSR to determine what error was detected and then (6) read
the SRX to clear RDRF and all three error flags.

11.2.7.2 ASYNCHRONOUS DATA TRANSMISSION. Figure 11-26 illustrates initializing the
SCI data transmitter for asynchronous data. The first step (1) resets the SCI to prevent the
SCI from transmitting or receiving data. Step two (2) selects the desired operation by
programming the SCR. As a minimum, the word format (WDS2, WDS1, and WDSO) must
be selected, and (3) the transmitter must be enabled (TE = 1). If (4) interrupts are to be
used, set TIE equals one. Use Tables 11-2 and 11-3 to set (5) the baud rate (SCP and
CDO-CD11 in the SCCR). Once the SCI is completely configured, it can be enabled by (6)
setting the TXD bit in the PCC. Transmission begins with (7) a preamble of ones.

If polling is used to transmit data (see Figure 11-27), the polling routine can look at either
TDRE or TRNE to determine.when to load another byte into STX. If TDRE is used (1), one
byte may be loaded into STX. If TRNE is used (2), two bytes may be loaded into STX if
enough time is allowed for the first byte to begin transmission (see 11.2.2.4.2 SCI Transmit
Registers). If interrupts are used (3), then an interrupt is generated when STX is empty.
The interrupt routine, 'which can be a fast interrupt or a long interrupt, writes (4) one byte
into STX. If multidrop mode is being used and this byte is an address, STXA should be
used instead of STX. Writing STX or STXA (5) clears TDRE in the SSR. When the transmit
data shift register is empty (6), the byte in STX (or STXA) is latched into the transmit data
shift register, TRNE is cleared, and TDRE is set.

There is a provision to send a break or preamble. A break (space) consists of a period of
zeros with no start or stop bits that is as long or longer than a character frame. A preamble
(mark) is an inverted break. A preamble of 10 or 11 ones (depending on the word length
selected by WDS2, WDS1, and WDSO) can be sent with the following procedure (see Figure
11-28). (1) Write the last byte to STX and (2) wait for TDRE equals one. This is the byte

MOTOROLA OSP56000/0SP56001 USER'S MANUAL 11-41

III

~
N

c en
""C
U1
0)
o
o
o
is en
""C
U1
0)
o o
c:
en
m
:D en
s: » z
c: »
r-

s:
o
--I
o
::0
o
>

I

1. THE RECEIVER IS IDLE UNTIL A CHARACTER IS RECEIVED IN THE DATA SHIFT REGISTER.

2. TRANSFERRING THE RECEIVED CHARACTER INTO SRX SETS RDRF IN THE SSR.

~ 1 -I I I 1--fTRNEl STATUS REGISTER (SSR)
X:$FFF1 1 R8 I FE PE OR IDLE 1 TORE ~ (READ ONLY)

RDRF

3. IF RIE = 1 IN SCR, THEN AN INTERRUPT IS GENERATED.

RECEIVE
INTERRUPT

SERVICE
ROUTINE

X:$FFF6

X:$FFF5

X:$FFF4

23 16 15 8 7

P:$0014 5. READING SRX CLEARS RDRF IN THE SSR.

4. THE RECEIVE INTERRUPT SERVICE ROUTINE READS THE RECEIVED CHARACTER.

Figure 11-24. SCI Character Reception

s:
o
-l o
::c o
s;:

c en
."
U1
en
o
o e c en
."
U1
en
o
g
c:
en
m
:JJ en
:s: »
2
c: »
r-

~

~ w

1. A CHARACTER IS RECEIVED WITH AT LEAST ONE OF THE FOLLOWING ERRORS:
- FRAMING ERROR (FE = BIT 6 IN SSR)
- PARITY ERROR (PE = BIT 5 IN SSR)
- OVERRUN ERROR (OR = BIT 4 IN SSR)

SERIAL STRING OF BAD DATA

"I Ixlxlxlxlxlxlxlxl .1

2. THIS SETS RDRF AND SET OR, PE, OR FE IN SSR.

3. SSR CAN BE POLLED BY SOFTWARE.
7 654

X:$FFFI 1 R8 1 FE 1 PE I_ OR 1 IDLE 1 1 1 TORE 1 TRNE 1 SCI INTERFACE STATUS REGISTER (SSR)
\ _ / (READ ONLY)
-V- RDRF

AT LEAST ONE BIT SET

X:$FFF1, . _00_ , -- -- ,

P:$OOI6

INTERRUPT
VECTOR
TABLE

b ___ ::J
,,-- '"""'-.... .-"'I

F ---g

SCI INTERFACE STATUS REGISTER (SSR)
(READ ONLY) _

RECEIVE
WITH EXCEPTION

INTERRUPT
SERVICE
ROUTINE

~ ____________ A _____________ __

/ \
23 16 15 8 7 0

X:$FFF6 SRX):I:?

5_ READ SSR, FOLLOWED BY

6. READING SRX. THIS CLEARS RDRF IN THE SSR AND CLEARS THE OR, PE,
ANlf -FE FLAGS~ --

Figure 11-25. SCI Character Reception with Exception

II

--"

t

c en
"'0
U1
Q)
o
o
~ c
en
"'0
U1
Q)
o o
c
en
m
::JJ
en
3:
l>
2
C
l>
r-

s::
o
-I
o
:0 o
s;:

I
figure 11-26:

1. HARDWARE OR SOFTWARE RESET
2. PROGRAM SCR WITH DESIRED MODE AND FEATURES.
3. TURN ON TRANSMIITER (TE = 1)
4. OPTIONALLY ENABLE TRANSMIITER INTERRUPTS (TIE= 1/.

15 14 13 12 11 10

X:$FFFO 1 SCKP 1 0 1 TMIE 1 1 RIE 1 ILiE lIRE IWOMSI RWU 1 WAKE 1 SBK 1 SSFTD 1 WDS21 WDSI 1 WDSO I· ~RC~A~:~~~~) REGISTER (SCR)

TIE TE

5. SET THE SCI CLOCK PRES CALER BIT AND THE CLOCK DIVIDER BITS IN THE SCCR.
6. SET THE TXD BIT IN PCC TO ENABLE THE SCI TRANSMIITER SYSTEM.

SCI

~
23 9816543210

X:$FFEI I ICC8 I CCl I CC6 I CC5 I CC4 I CC3 I CC2 I 1 I cco I PORT C CONTROL REGISTER (PCC)

CCx Function

0 Parallel 1/0

--' Serial Interface

7. THE TRANSMITIER WILL FIRST BROADCAST A PREAMBLE OF ONES BEFORE BEGINNING DATA TRANSMISSION:
10 ONES WILL BE TRANSMIITED FOR THE 10-BIT ASYNCHRONOUS MODE.
11 ONES WILL BE TRANSMIITED FOR THE ll-BIT ASYNCHRONOUS MODE.

TXD

NOTE: If TE is cleared while transmitting a character, the transmission of the character will be completed before the
transmitter is disabled. .

Figure 11-26. Asyn~hronous SCI Transmitter Initialization

~
o
d
:0 o
~

c en
"'0
U1
en
o
o
~ c
en
"'0
U1
en
o
~
c:
en
m
:tI
en
s: » z
c: »
r-

.J:,.
(J1

15 14 13 12 11 10 3 2

X1ffAI _~~~~~~~~~~~~~_·LI~R~8~~ff~~~~~0~R~1 ~ID~~~I~R~DR~Fl~I~_I~ISCIINTffi~crSTATUSRffil~ffi~Sm (READ ONL,()
TORE TRNE

1. WHEN STX IS EMPTY, THEN TDRE = 1.
2. WHEN STX IS EMPTY AND THE TRANSMIT DATA SHIFT REGISTER IS EMPTY THEN TRNE = 1.
3. IF TIE= 1 IN SCR AND TORE= 1 IN SSR, THEN AN INTERRUPT IS GENERATED.

INTERRUPT VECTOR TABLE L:: ___ :oJ
~ --- -1

P:$0018

TRANSMIT
INTERRUPT

SERVICE
ROUTINE

4. STORE
ONE CHAR­
ACTER INTO
STX (A)

5. THIS
CLEARS
TDREIN
SSR.

6. THE CHARACTER IN STX IS COPIED INTO TRANSMIT DATA SHIFT REGISTER.
TRNE IS CLEARED.
TORE IS SET.
GO TO STEP 2.

X:$FFF6

X:$FFF5

X:$FFF3 'L-_____ -'-_____ --'-__ --,,--_---'

Figure 11-27. Asynchronous SCI Character Transmission

.J:,..
(J')

c en
"'C
U1
en o
o
~ c en
"'C
U1
en o o
~

c:
en
m
:c
en
:s: »
2:
c: »
r-

s:
o
-i o
:0 o
~

I
15 14 13 12 11 10 8 7 6 5 4 3 2 1 0

X:$FFFO I SCKP I I TMIE I TIE RIE ILiE TE I RE IWOMSI RWU I WAKE I SBK I SSFTD I WDS21 WDSll WDSO I rRC~~~~~~¢E~E CONTROL REGISTER (SCR)

TOGGLE (1-0-1) TO SEND A t TOGGLE (0-1-0) TO SEND A t
CHARACTER TIME OF ALL ~ CHARACTER TIME OF ALL ~

ONES (MARKS) ZEROS (SPACES)

·10 OR 11 ONES/ZEROS WILL BE SENT DEPENDING ON THE WORD LENGTH SPECIFIED BY WDS2, WDS1, WDSO.

MARKS (ONES)

1. WRITE THE LAST BYTE TO STX.
2. WAIT FOR TRDE = 1. THE LAST BYTE IS NOW IN THE TRANSMIT SHIFT REGISTER.
3. CLEAR TE AND SET BACK TO ONE. THIS QUEUES THE PREAMBLE TO FOLLOW THE LAST BYTE.
4. WRITE THE FIRST BYTE TO FOLLOW THE PREAMBLE INTO SRX.

LAST CHARACTER
PREAMBLE OF 10 ONES

FIRST CHARACTER

IDLE LINE ~~~~~~~~~~~~

CHARACTER ENDS
BEFORE BREAK BEGINS.

SPACES (ZEROS)

SBK=1

A STOP BIT AT THE END OF THE BREAK WILL BE
INSERTED BEFORE THE NEXT CHARACTER STARTS.

I 1 1.2 I 3 I 4 I 5 I 6 I 7 I 8 1 9 110 1 1 I 2 9 ItoS~K'~I' 2 I 3 I .15 I :~K;: 8 I 9 Ito I ~ ~.7

START
OF

BREAK

BREAK PERIOD IS AN EXACT MULTIPLE OF
CHARACTER TIMES.

Figure 11-28. Transmitting Marks and Spaces

OF
BREAK

=77

that will be transmitted immediately before the preamble. (3) Clear TE and then again set
it to one. Momentarily clearing TE causes the output to go high for one character frame.
If TE remains cleared for a longer period, the output will remain high for an even number
of character frames until TE is set. (4) Write the first byte to follow the preamble into SRX
before the preamble is complete and resume normal transmission. Sending a break follows
the same procedure except that instead of clearing TE, SBK is set in the SCR to send breaks
and then reset to resume normal data transmission.

The example presented in Figure 11-29 uses the SCI in the asynchronous mode to transfer
data into buffers. Interrupts are used, allowing the DSP to perform other tasks while the
data transfer is occurring. This program can be tested by connecting the SCI transmit and
receive pins. Equates ~re used for convenience and readability.

The program sets the reset vector to run the program after reset, puts a MOVEP instruction
at the SCI receive interrupt vector location, and puts a MOVEP and BCLR at the SCI transmit
interrupt vector location so that, after transmitting a byte, the transmitter is disabled until
another byte is ready for transmission. The SCI is initialized by setting the interrupt level,
which configures the SCR and SCCR, and then is enabled by writing the PCC. The main
program begins by enabling interrupts, which allows data to be received. Data is trans­
mitted by moving a byte of data to the transmit register and by enabling interrupts. The
jump-to-self instruction (SEND JMP SEND) is used to wait while interrupts transfer the
data.

11.2.8 Multidrop

Multidrop is a special case of asynchronous data transfer. The key difference is that a
protocol is used to allow networking transmitters and receivers on a single data-trans­
mission line. Interprocessor messages in a multidrop network typically begin with a des­
tination address. All receivers check for an address match at the start of each message.
Receivers with no address match can ignore the remainder of the message and use a
wakeup mode to enable the receiver at the start of the next message. Receivers with an
address match can receive the message and optionally transmit an acknowledgment to
the sender. The particular message format and protocol used are determined by the user's
software. These message formats include point-to-point, bus, token-ring, and custom con­
figurations. The SCI multidrop network is compatible with other leading microprocessors.

Figure 11-30 shows a multidrop system with one master and N slaves. The multidrop mode
is selected by setting WDS2 equals one, WDS1 equals one, and WDSO equals zero. One
possible protocol is to have a preamble or idle line between messages, followed by an
address and then a message. The idle line causes the slaves to wake up and compare the
address with their own address. If the addresses match, the slave receives the message.
If the addresses do not match, the slave ignores the message and goes back to sleep. It
is also possible to generate an interrupt when an address is received, eliminating the need
for idle time between consecutive messages and addresses. It is also possible for each
slave to look for more than one address, which allows each slave to respond to individual
messages as well as broadcast messages (e.g., a global reset).

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 11-47

-

SCI ASYNC WITH INTERRUPTS AND SINGLE BYTE BUFFERS *

· ** ,
SCI and other EQUATES *

· ** ,

START
PCC
SCR
SCCR
SRX
STX
BCR
IPR
RXBUF
TXBUF

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

$0040
$FFE1
$FFFO
$FFF2
$FFF4
$FFF4
$FFFE
$FFFF
$100
$200

· ** ,
RESET VECTOR *

· ** ,

ORG P:$OOOO
JMP START

· ** ,
SCI RECEIVE INTERRUPT VECTOR *

· ** ,

ORG
MOVEP
NOP

P:$0014
X:SRX,Y:(RO) +

; **
SCI TRANSMIT INTERRUPT VECTOR *

; **

ORG
MOVEP

BCLR

P:$0018
X:(R3) + ,X:STX

#12,X:SCR

;Start of program
;Port C control register
;SCI interface control register
;SCI clock control register
;SCI receive register
;SCI transmit register
;Bus control register
;Interrupt priority register
; Receive buffer
;Transmit buffer

;Load the SCI RX interrupt vectors
;Put the received byte in the receive
;buffer. This receive routine is
;implemented as a fast interrupt.

;Load the SCI TX interrupt vectors
;Transmit a byte and
;increment the pointer in the
;transmit buffer.
;Disable transmit interrupts

Figure 11-29. SCI Asynchronous Transmit/Receive Example (Sheet 1 of 2)

11-48 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

INITIALIZE THE SCI PORT AND RX, TX BUFFER POINTERS *

ORG
ORI
MOVEP
MOVEP

MOVEP

MOVEP

MOVE
MOVE

P:START
#$03,MR
#$COOO,X:IPR
#$OB02,X:SCR

#$0022,X: SCCR

#>$03,X:PCC

#RXBUF,RO
#TXBUF,RO

. ** ,
MAIN PROGRAM *

. ** ,

ANDI #$FC,MR
MOVE #>$41,RO
MOVE RO,X:(R3)
BSET #12,X:SCR

SEND JMP SEND

END

;Start the program at location $40
;Mask interrupts temporarily
;Set interrupt priority to 2
;Disable TX, enable RX interrupts
;Enable transmitter, receiver
;Point to point
; 1 O-bit asynchronous
;(1 start,8 data, 1 stop)
;Use internal TX, RX clocks
;9600 BPS
;Select pins TXD and RXD for SCI

;Initialize the receive buffer
;Initialize the transmit buffer

;Re-enable interrupts
; Move a byte to the transmit buffer

;and enable interrupts so it
;will be transmitted
;Normally something more useful
;would be put here.

;End of example.

Figure 11-29. SCI Asynchronous Transmit/Receive Example (Sheet 2 of 2)

11.2.S.1 TRANSMITTING DATA AND ADDRESS CHARACTERS. Transmitting data and
address when the multidrop mode is selected is shown in Figure 11-31. The output sequence
shown is idle line, data/address, and the next character. In both cases, an "A" is being
transmitted. To send data, TE must be toggled to send the, idle line, and then "A" must
be sent to STX. Sending the "A" to the STX sets the ninth bit in the frame to zero, which
indicates that this frame contains data. If the "A" is sent to STXA instead, the ninth bit in
the frame is set to a one, which indicates that this frame contains an address.

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 11-49

-

-"

en o

c en
."
U1
0)
o
o
~
c en
."
U1
0)
o
-~

c: en
m
:::D en
s:
l>
:2
c:
l>
r-

s:
a
-f a
:D a
~

I
15 14 13 12 11 10 7 6 5 4 3

x~~~ ... 1 s_c_KP~I~~I_TM_I~E~1 ~T~IE~~~~E~I~I=UE~I~T~E~~R~E~I~w=OM=S~I~RW~U~IW=A~K~EI~s~B~K~I~SS~IT~DLI ~1 ~~1~~0~1 S~INTER~CECONTROLREGISTER~ccm (READIWRITEI

IDLE UNE

~
RXD

DSP56000
ADDRESS 1

DEVICE RECEIVING
MESSAGE

NO

WDS2 WDSI WDSO
HEADER

r-"----\
ADDRESS '-1 LONG-MESSAGEFOR MPU 1 J

~ ~
RXD RXD

DSP56000 MC68HCll
ADDRESS 2 - ADDRESS 3

DEVICES IGNORING MESSAGES

~
RXD

••• OTHER SERIAL
DEVICE

ADDRESS N

IGNORE REST
I YES OF MESSAGE.
I DISABLE RECEIVER

AND ITS INTERRUPTS BY
SETIING RWU=1.

Figure 11-30. 11-Bit Multidrop Mode

IDLE UNE

TXD

DSP56000

:s:
o
-i o
:JJ
o
~

c en
"'tJ
U1
en
o
o
o
C en
"'tJ
U1
en
o
o
~

c en
m
::tJ en
s:
:t=o
Z
C
:t=o
r-

~

X:$FFF6

X:$FFF5

X:$FFF4

X:SFFF3

X:$FFF6

X:$FFF5

X:$FFF4

X:SFFF3

I
23

\

23

23

23

"A"
$41

01000001

16 15
t······;·····

DATA

SCI TRANSMIT DATA REGISTER HIGH (WRITE ONLY)

SCI TRANSMIT DATA REGISTER MID (WRITE ONLY)

L--____ ~' SCI TRANSMIT DATA REGISTER LOW (WRITE ONLY)

SCI TRANSMIT DATA SHIFT REGISTER IDLE
LINE

16 15 8 7

16 15 8 7
ADDRESS

SCI TRANSMIT DATA SHIFT REGISTER IDLE
LINE

16 15 8 7

HI S~ I SCI TRANSMIT DATA REGISTER (WRITE ONLY)'

'--v--I
"A"

Figure 11-31. Transmitting Data and Address Characters

I

cJ,
I'.)

c en
""C
U'1 en o
o
o
C en
""C
U'1
en o
o
-a

c::
en
m
:::a en
s: » z
c:: » r-

~
o
-i o
::IJ
o
~

I
15 14 13 12 11 10

x:$ffruL-ls_~_p~l~o_I~T~M~IE~I~T~IE~=RIE~I~IL=1E~I~IT~~R~E~I~l~I~RW~u~l~w~AK~ELI=SB~K~I~~~R~DLI_1~[_··~~1~·~~0~J S~ffiNmOL~GISITR(SCm - - - (READIWRITE)

IDLE

t
IDLE LINE WAKEUP
AND/OR INTERRUPT ,

ADDRESS CHARACTER WAKEUP
AND/OR INTERRUPT

IDLE I ADDRESS N

WOMS WDS2 WDS1 WDSO

DSP56000
SCI PORT

ADDRESS N-1
XMIT REC

1

~~-r~~~-r~~~-r~~,

FIRST CHARACTER OF MESSAGE D I
INDICATES AN ADDRESS CHARACTER INDICATES A DATA CHARACTER

Figure 11-32. Wired-OR Mode

THIRD CHARACTER

I
SECOND CHARACTER
OF MESSAGE D

11.2.8.2 WIRED-OR MODE. Building a multidrop bus network requires connecting mul­
tiple transmitters to a common wire. The wired-OR mode allows this to be done without
damaging the transmitters when the transmitters are not in use. A protocol is still needed
to prevent two transmitters from simultaneously driving the bus. The SCI multidrop word
format provides an address field to support this protocol. Figure 11-32 shows a multidrop
configuration using wired-OR (set bit 7 of the SCR). The protocol shown consists of an idle
line between messages; each message begins with an address character. The message
can be any length, depending on the protocol. Each processor in this system has one
address that it responds to although each processor can be programmed to respond to
more than one address.

11.2.8.3 IDLE LINE WAKEUP. The purpose of a wakeup mode is to free a DSP from reading
messages intended for other processors. The usual operational procedure is for each DSP
to suspend SCI reception (the DSP can continue processing) until the beginning of a mes­
sage. Each DSP compares the address in the message header with the DSP's address. If
the addresses do not match, the SCI again suspends reception until the next address. If
the address matches, the DSP will read and process the message and then suspend re­
ception until the next address.

The idle line wakeup mode wakes up the SCI to read a message before the first character
arrives. This mode allows the message to be in any format.

Figure 11-33 shows how to configure the SCI to detect and respond to an idle line. The
word format chosen (WDS2, WDS1, and WDSO in the SCR) must be asynchronous. The
WAKE bit must be clear to select idle line wakeup, and RWU must be set to put the SCI to
"sleep" and enable the wakeup function. RIE should be set if interrupts are to be used to
receive data. If processing must occur when the idle line is first detected, ILiE should be
set. The current message is followed by one or more data frames of ones (10 or 11 bits
each, depending on which word format is used), which are detected as an idle line. If the
wc;>rd format is multidrop (an 11-bit code), after the 11 ones, the receiver determines the
line is idle and (1) clears the RWU, enabling the receiver. The IDLE bit (2) and an internal
flag SRIINT (3) are set, indicating the line is idle. The SCI is now ready to receive messages;
however, nothing more will happen until the next start bit unless (4) ILiE is set. If ILiE is
set, an SCI idle line interrupt will be recognized as pending. When the idle line interrupt
is recognized (5), SRIINT is automatically cleared, and the SCI waits for the first start bit
of the next character. Since RIE was set, when the first character is received, an SCI receive
data interrupt (or SCI receive data with exception status interrupt if an error is detected)
will be recognized as pending. When the receiver has processed the message and is ready
to wait for another idle line, RWU must be set to one again.

11.2.8.4 ADDRESS MODE WAKEUP. The purpose and basic operational procedure for
address mode wakeup is the same as idle line wakeup. The difference is that address mode
wakeup re-enables the SCI when the ninth bit in a character is set to one (if cleared, this
bit marks a character as data; if set, an address). As a result, an idle line is not needed,

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 11-53

III

tn
::..

c en
~
U1
en
o
o e
c en
~
U1
en
o o
c
en
m
:JJ
en
s:
l>
:2

i
r-

:;:
o
-I
o

J ::c o
~

I
15 14 13 12 11 10

X:$FFFO I SCKP I 0 I TMIE I TIE [Tr-l TrEnT RE (wOMsl 1 I 0 I SBK I SSFTD I WDS21 WDSll WDSO I SCI INTERFACE CONTROL REGISTER (SCR)
RIE IliE RWU WAKE (READIWRITE)

1. RWU IS CLEARED; THE RECEIVER IS ENABLED.
2. IDLE IS SET IN SSR, INDICATING THE LINE IS IDLE.
3. AN INTERNAL FLAG SRIINT IS GENERATED ONCE EACH IDLE STATE, NO MAnER HOW LONG IT LASTS.

X:$FFFI I R8 FE I PE OR I 1 I RDRF I TORE I TNRE I SCI STATUS REGISTER (SSR)
--'-....L...-:......=....1.... ':":":':':::.J. (READ ONLY)
IDLE (SRIINT)

4. IF IlIE= 1 IN SCR, THEN AN SCI IDLE LINE INTERRUPT IS PENDING.

INTERRUPT
VECTOR
TABLE

5. WHEN IDLE LINE INTERRUPT IS ACCEPTED, SRIINT IS AUTOMATICALLY CLEARED.

P:$OOIA I .- I

r-=:==J
Figure 11-33. Idle Line Wakeup

IDLE LINE INTERRUPT
SERVICE ROUTINE
(FAST OR LONG)

~
o
-I
o
::0
o
~

c en
"tJ
U1 en
o
o
~
c en
"tJ
U1
en
o
o ...
c:
en
m
:::a en
s: » z
c: »
r-

u,
U1

15 14 13 12 11 10 7 4 3 2 1 0

XiFFF0L...1 S~cK~p~I~~1 T~M~IE~I~T~IE~~l ~I~IU~E~I~T~E~~R~E ~I~~OM~S~I ~1~~1~I~s~BK~I~s~S~~D~I~~~DS~2~1~~D~S~11~~~Ds~ol S~ CONTROLREGISTER~Cm (READIWRITE)
RIE R~U ~AKE

1. ~HEN ADDRESS CHARACTER IS RECEIVED, THEN R8 = 1 IN SSR AND R~U IS CLEARED. THE RECEIVER ~AKES UP.

7 0

X:$FFF1 I 1 I FE PE OR I 1 I RDRF I TDRE I TDRE I SCI INTERFACE STATUS REGISTER (SSR)
R8 (READ ONLY)

2. IF RIE = 1 IN SCR, THEN AN SCI RECEIVE DATA INTERRUPT IS PROCESSED.

INTERRUPT
VECTOR
TABLE

Figure 11-34. Address Mode Wakeup

I

RECEIVE DATA
INTERRUPT

SERVICE
ROUTINE

(FAST OR LONG)

III

which eliminates the dead time between messages. If the protocol is such that the address
byte' is not needed or is not wanted in the first byte of the message, a data byte can be
written to STXA at the beginning of each message. It is not essential that the first byte of
the message contain an address; it is essential that the start of a new message is indicated
by setting the ninth bit to one using STXA.

Figure 11-34 shows how to configure the SCI to detect and respond to an address character.
The word format chosen (WDS2, WDS1, and WDSO in the SCR) must be an asynchronous
word format. The WAKE bit must be set to select address mode wakeup and RWU must
be set to put the SCI to "sleep" and enable the wakeup function. RIE should be set if
interrupts are to be used to receive data. (1) When an address character (ninth bit = 1) is
received, then R8 is set to one in the SSR, and RWU is cleared. Clearing RWU re-enables
the SCI receiver. Since (2) RIE was set in this example, when the first character is received,
an SCI receive data interrupt (or SCI receive data with exception status interrupt if an error
is detected) will be recognized as pending. When the receiver is ready to wait for another
address character, RWU must be set to one again.

11.2.8.5 MULTIDROP EXAMPLE. The program shown in Figure 11-35 configures the SCI
as a multidrop master transmitter and slave receiver (using wakeup on address bit) that
uses interrupts to transmit data from a circular buffer and to receive data into a different
circular buffer. This program can be run with the I/O pins (RXD and TXD) connected and
with a pullup resistor for test purposes. '

The program starts by setting equates for convenience and clarity and then points the reset
vector to the start of the program. The receive and transmit interrupt vector locations have
JSRs forming long interrupts because the multidrop protocoLand circular buffers require
more than two instructions for maintenance. Byte packing and unpacking are not used in
this example. The SRX and STX registers are equated to $FFF4, causing only the LSB of
the 24-bit DSP word to be used for SCI data. The SCI is then initialized as wired-OR,
multidrop, and using interrupts. The SCI is enabled but the interrupts are masked, which
prevents the SCI from transmitting or receiving data at this time.

The circular buffers used have two pointers. The first points to the first data byte; the
second points to the last data byte. This configuration allows the transmit buffer to act as
a first-in first-out (FIFO) memory. The FIFO can be loaded by a program and emptied by
the SCI in real time. As long as the number of data bytes never exceeds the buffer size,
there will be no overflow or underflow of the buffer. Registers MO-M3 must be loaded with
the buffer size minus one to make pointer registers RO-R3 work as circular pointers. Register
N2 is used as a constant to clear the receive buffer empty flag.

The main program starts by filling the transmit buffer with a data packet. When the transmit
buffer is full, it calls the subroutine that transmits the slave's address and then jumps to
self (SEND jmp SEND), allowing interrupts to transmit and receive the data.

11-56 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

The receive subroutine first checks each byte to see if it is address or data. If it is an address,
it compares the address with its own. If the addresses do not match, the SCI is put back
to sleep. If the addresses match, the SCI is left awake, and control is returned to the main
program. If the byte is data, it is placed in the receive buffer, and the receive buffer empty
flag is cleared. Although this flag is not used in this program, it can be used by another
program as a simple test to see if data is available. Using N2 as the constant $0 allows
the flag to be cleared with a single-word instruction, which can be part of a fast interrupt.

The transmit subroutine transmits a byte and then checks to see if the transmit buffer is
empty. If the buffer is not empty, control is returned to the main program, and interrupts
are allowed to continue emptying the buffer. If the buffer is empty, the transmit buffer
empty flag is set, the transmit interrupt is disabled, and control is returned to the main
program.

The wakeup subroutine transmits the slave's address by writing the address to the STXA
register and by enabling the transmit interrupt to allow interrupts to empty the transmit
buffer. Control is then returned to the main program.

MULTIDROP MASTER/SLAVE WITH INTERRUPTS AND CIRCULAR BUFFERS *

. ** ,
SCI and other EOUATES *

. ** ,

START
TX~BUFF
RX-BUFF
B-SIZE

TX-MTY
RX-MTY
PCC
SCR
SCCR
STXA
SRX
STX
BCR
IPR

EOU
EOU
EOU
EOU

EOU
EOU
EOU
EOU
EOU
EOU
EOU
EOU
EOU
EOU

$0040
$0010
$0020
$OOOE

$0000
$0001
$FFE1
$FFFO
$FFF2
$FFF3
$FFF4
$FFF4
$FFFE
$FFFF

;Start of program
;Transmit buffer location
;Receive buffer location
;Transmit and receive buffer size
;(don't allow the TX buffer and RX
; buffers to overlap).
;Transmit buffer empty
;Receive buffer empty
;Port C control register
;SCI interface control register
;SCI clock control register
;SCI transmit address register
;SCI receive register
;SCI transmit register
; Bus control register
;Interrupt priority register

Figure 11-35. Multidrop Transmit Receive Example (Sheet 1 of 5)

MOTOROLA OSP56000/0SP56001 USER'S MANUAL 11-57

III

III

.** ,
RESET VECTOR *

· ** ,
ORG P:$OOOO
JMP START

· ** ,
SCI RECEIVE INTERRUPT VECTOR *

· ** ,
ORG
JSR

NOP

ORG

NOP
NOP

P:$0014
RX

P:$0016

· ** ,
SCI TRANSMIT INTERRUPT VECTOR *

; **

ORG
JSR
NOP

P:$0018
TX

· ** ,
INITIALIZE THE SCI PORT *

· ** ,
ORG
ORI
MQ.VEP

MOVEP

MOVEP

MOVEP

P:START
#$03,MR
#$COOO,X:IPR

#$OBE6,X:SCR

#$OOOO,X: SCCR

#>$03,X: PCC

;Load the SCI RX interrupt vectors
;Jump to the receive routine that
;puts data packet in a circular
;buffer if it is for this address.
;Second word of fast interrupt not
;needed
;This interrupt occurs when data is
;received with errors. This example
;does not trap errors so this
;interrupt is not used.

;Load the SCI TX interrupt vectors
;Transmit next byte in buffer

;Start the program at location $40
;Mask interrupts temporarily
;Set interrupt priority to 2

;Disable TX, enable RX interrupts
;Enable transmitter and receiver,
;Wired-OR mode; Rec. wakeup mode,
; 11-bit multidrop (1 start,
;8 data,1 data type, 1 stop)
;Use internal TX, RX clocks
;320K BPS
;Select pins TXD and RXD for SCI

Figure 11-35. Multidrop Transmit Receive Example (Sheet 2 of 5)

11-58 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

.** ,
INITIALIZE INTERRUPTS, REGISTERS, ETC. *

.** ,
MOVEP

MOVE

MOVE

MOVE

MOVE

MOVE

MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVEP

#$O,X:BCR

#TX-BUFF,RO

#TX-BUFF,R1

#RX-BUFF,R2

#RX-BUFF,R3

#>$41,R5

#B-SIZE,MO
#B-SIZE,M1
#B-SIZE,M2
#B-SIZE,M3
#>$1,NO
#>$1,N1
#0,N2
X:SRX,X:(RO)

; No wait states

;Load start pointer of transmit
;buffer
;Load end pointer of transmit
;buffer
;Load start pointer of receive
;buffer
;Load end pointer of receive
;buffer
;Init data register ... R5 contains
;the data that will be sent in this
;example; it is initialized to an
;ASCII A.
;Load transmit buffer size
;Load transmit buffer size
; Load receive buffer size
; Load receive buffer size
;Load receive address
;Load first slave address
;Load a constant (0) into N2
;Clear receive register

. ** . ,
MAIN PROGRAM *

.** ,

LOOP

MOTOROLA

ANDI #$FC,MR

MOVE (R1)+

MOVE R1,A

MOVE (R1)-

MOVE RO,B

CMP A,B
JEQ SND-BUF
MOVE R5,X:(R1)+

;Re-enable interrupts

;~emporarily increment the tail
;pointer
; Build a packet
;Check to see if the TX buffer is
;full
;(fix tail pointer now that we've
;used it)
;by comparing the head and tail
;pointers
;of the circular transmit buffer.
;if equal, transmit completed packet
;if not, put next character in
;transmit buffer and

Figure 11-35. Multidrop Transmit Receive Example (Sheet 3 of 5)

DSP56000/DSP56001 USER'S MANUAL 11-59

•

III

MOVE (R5)+ ;increment the pointers.
MOVE (R1)+ ;Temporarily increment the tail

;pointer to test buffer again
JMP LOOP

SND-BUF JSR WAKE-UP ;Wake up proper slave and send
;packet

SEND JMP SEND ;and allow interrupts to drain
;the transmit buffer.

SUBROUTINE TO READ SCI AND STORE IN BUFFER USING A LONG INTERRUPT *

RX

RX-DATA

END-RX

JCLR
MOVEP
MOVE
CMP
JED

BSET
JMP
MOVEP
MOVE
RTI

#7,X:$FFF1,RX-DATA ;Check if this is address or data.
X:SRX,A ;Compare the received address
N 1,B ;with the slave address.
A,B
END-RX

#6,X:$FFFO
END-RX
X:SRX,X:(R3)+
N2,X:RX-MTY

;If address OK, use interrupts to Rx
;packet
;if not, go back to sleep
;and return to previous program.
; Put data in buffer,
;and clear the Rx buffer empty flag
;Return to previous program

SUBROUTINE TO WRITE BUFFER TO SCI USING A LONG INTERRUPT *

TX MOVEP X:(RO) + ,X:STX ;Transmit a byte and increment the
;pointer

MOVE RO,A ;Check to see if the TX buffer is
;empty

MOVE R1,B
CMP A,B
JNE END-TX ; If not, return to main
MOVE #$000001,XO ;If it is, set the TX buffer empty

.;tlag
MOVE XO,X:TX-MTY
BCLR #12,X:SCR ;disable transmit interrupts, and

END-TX RTI ; return to main

Figure 11-35. Multidrop Transmit Receive Example (Sheet 4 of 5)

11-60 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

SUBROUTINE TO WAKE UP THE ADDRESSED SLAVE *

WAKE-UP MOVEP

BSET

AWAKE RTI

END

N1,X:STXA

#12,X:SCR

;Transmit slave address using STXA
;not STX
;Enable transmit interrupts to send
;packet

;End of example.

Figure 11-35. Multidrop Transmit Receive Example (Sheet 4 of 5)

11.2.9 SCI Timer

The SCI clock used to determine the data transmission rate can also be used to cause a
periodic interrupt. This interrupt can be used as an event timer or for any other timing
function. Figure 11-36 illustrates how the SCI timer is programmed. Only bits CD11-CDO
and SCP in the SCCR are used to determine the time base. The crystal oscillator fosc is
first divided by 2 and then divided by the number CD11-CDO in the SCCR. The oscillator
is then divided by 1 (if SCP = 0) or eight (if SCP = 1). Finally, it is divided by 2 and then by
16. If TMIE in the SCR is set (1) when the periodic timeout occurs, the SCI timer interrupt
is recognized and pending. The SCI timer interrupt is automatically cleared when the
interrupt is serviced. This interrupt will occur every time the periodic timer times out. If
only the timer function is being. used (i.e., PCO, PC1, and PC2 pins have been programmed
as parallel I/O pins), the transmit interrupts should be turned off (TIE = 0). Under individual
reset, TDRE will re'main set, continuously generating interrupts.

Figure 11-36 shows that an external clock can be used for SCI receive and/or transmit,
which frees the SCI timer to be programmed for a different interrupt rate. In addition, both
the SCI timer interrupt and the SCI can use the internal time base if the SCI receiver and/
or transmitter require the same clock period as the SCI timer.

The following program (see Figure 11-37) configures the SCI to interrupt the DSP at fixed
intervals. The program starts by setting equates for convenience and clarity and then points
the reset vector to the start of the program. The SCI timer interrupt vector location contains
"move (RO) + ", incrementing the contents of RO, which serves as an elapsed time counter.

The timer initialization consists of enabling the SCI timer interrupt, setting the SCI baud
rate counters forthe desired interrupt rate, setting the interrupt masK, enabling the interrupt,
and then enabling the SCI state machine.

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 11-61

III

III

I
N
T
E
R
N
A
L

C
L
o
C
K

SCI INTERFACE CONTROL REGISTER (SCCR)
(READIWRITE)

PRESCALER
IF SCP = 1, THEN DIVIDE BY 8
IF SCP = 0, THEN DIVIDE BY 1

OUTPUT DIVIDER
IF SYNC, THEN DIVIDE BY 2

..... -----+1 IF ASYNC THEN:

COD

RCM

COD = 1, DIVIDE BY 16
COD = 0, DIVIDE BY 1

TCM-_~ __

TRANSMIT CONROL
IF ASYNC, THEN DIVIDE BY 16

IF SYNC THEN:
MASTER, DIVIDE BY 2
SLAVE, DIVIDE BY 1

SCKP

TCM

TRANSMIT CLOCK t 1

RECEIVE CONTROL I
IF ASYNC, THEN DIVIDE BY 16 RECEIVE CLOCK f

IF SYNC THEN:
MASTER, DIVIDE BY 2
SLAVE, DIVIDE BY 1

SCI INTERFACE CONTROL REGISTER (SCR)
(READIWRITE)

fosc

E
X
T
E
R
N
A
L

C
L
o
C
K

15 14 13 12 11 10 9 8 7 6 5 4 2 1 0

X:$FFFO L..I _O---'_0.......L~l ,="",,-_T_IE -1-_RI_E ...L1_I_LlE---,-1 _T_E ...J1,--RE---Llw_O_M_S 1 _Rw_u...Jl~w_A_KE...LI_s_BK--L.1 _....JI~W_D_S2...LI_w_DS_1.J..1 W_D_S--I0 I
TMIE

11-62

1. WHEN PERIODIC TIMEOUT OCCURS AND TMIE= 1 IN SCR, THEN AN SCI TIMER EXCEPTION IS TAKEN.

P:$OOlC

INTERRUPT.
VECTOR
TABLE

. SCI TIMER
INTERRUPT

SERVICE
ROUTINE

(FAST OR LONG)

2. PENDING TIMER INTERRUPT IS AUTOMATICALLY CLEARED WHEN INTERRUPT IS SERVICED.

Figure 11-36. SCI Timer Operation

DSP56000/DSP56001 USER'S MANUAL MOTOROLA

TIMER USING SCI TIMER INTERRUPT *

.** ,
SCI and other EQUATES *

.** ,

START
SCR
SCCR
IPR

EQU
EQU
EQU
EQU

$0040
$FFFO
$FFF2
$FFFF

.** ,
RESET VECTOR *

· ** ,

ORG
JMP

P:$OOOO
START

· * **** * *** * *** * * * *'*** *** * * * * * * ** * * * * * * *'* * * ** * , -

SCI TIMER INTERRUPT VECTOR *
.** ,

ORG
MOVE
NOP

P:$001C
(RO)+

· ** ,
INITIALIZE THE SCI PORT *

· ** ,

ORG
MOVE

P:START
#O,RO

;Start of program
;SCI control register
;SCI clock control register
;Interrupt priority register

; Load the SCI timer interrupt Vectors
;Increment the timer interrupt counter
;This timer routine is implemented
;as a fast interrupt.

;Start the program at location $40
;Initialize the timer interrupt counter

Figure 11-37. SCI Timer Example (Sheet 1 of 2)

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 11-63

•

III

END

MOVEP
MOVEP

MOVEP

ANDI

JMP

END

#$2000,X:SCR
#$013F,X:SCCR

#$COOO,X:IPR

#$FC,MR

END

;Select the timer interrupt
;Set the interrupt rate at 1 ms.
;(arbitrarily chosen).
;Interrupts/second =
;fosc/(64 x (7(SCP)-+ 1) x (CD + 1))
; Note that this is the same equation
;as for SCI async baud rate.
;For 1 ms, SCP=O,
;CD=0001 0011 1111.
;Set the interrupt priority level -
;application specific.
;Enable interrupts, set MR bits 11 and
;10=0

;Normally something more useful
;would be put here.

;End of example.

Figure 11-37. SCI Timer Example (Sheet 2 of 2)

11.2.10 Example Circuits

The SCI can be used in a number of configurations to connect mUltiple processors. The
synchronous mode shown in Figure 11-38 shows the DSP acting as a slave. The 8051
provides the clock that clocks data in and out of the SCI, which is possible because the
SCI shift register mode timing is compatible with the timing for 8051/8096 processors.
Transmit data is changed on the negative edge of the clock, and receive data is latched
on the positive edge of the clock. A protocol must be used to prevent both processors from
transmitting simultaneously. The DSP is also capable of being the master device.

A multimaster system can be configured (see Figure 11-39) using a single transmit/receive
line, multidrop word format, and wired-OR. The use of wired-OR requires a pullup resistor
as shown. A protocol must be used to prevent collisions. This scheme is physically the
simplest multiple DSP interconnection because it uses only one wire and one resistor.

The master-slave system shown in Figure 11-40 is different in that it is full duplex. The
clock pin is not required; thus, it is configured as a parallel I/O pin. Communication is
asynchronous. The slave's transmitters must be wire-ORed because more than one trans­
mitter is on one line. The master's transmitter does not need to be wire-ORed.

11-64 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

CLOCK INPUT

TRANSMIT DATA

RECEIVE DATA XXXXXX

SAMPLE

D S P56000/DS P5600 1
MASTER

TXD

RXD

PC2

DSP56000 ~ 8051
~ <;

RXD P3.0

U TXD

SClK P3.1

Figure 11-38. Synchronous Mode Example

DS P56000/D S P56001
MASTER

TXD

RXD

PC2

Figure 11-39. Multimaster System Example

MOTOROLA DSP56000/DSP56001 USER'S MANUAL

XXXXXXX

III

11-65

III

o
> ;>
;>

MASTER RECEIVE--.---------.,.---~----~-------_r_

MASTER TRANSMIT·--t-...--------r--f-------...,.....+--------r--f-

MC68HCll DSP56000/DSP56001 DSP56000/DSP56001 DSP56000/DSP56001
MASTER SLAVE SLAVE SLAVE

RXD 1+ RXD 1-+ RXD I.- RXD i'+

TXD t-- TXD f--- TXD f--- TXD I---

PC2 I--- PC2 I-- PC2 I-- PC2 I---

Figure 11-40. Master-Slave System Example

11.3 SYNCHRONOUS SERIAL INTERFACE (551)

The synchronous serial interface (SSI) provides a full-duplex serial port for serial com­
munication with a variety of serial devices including one or more industry-standard codecs,
other DSPs, microprocessors, and peripherals which implement the Motorola SPI. The SSI
consists of independent transmitter and receiver sections and a common SSI clock gen­
erator. Three to six pins are required for operation, depending on the operating mode
selected.

The following is a short list of SSI features:

A 6.75 Million Bit/Second at 27 MHz (fosd4) serial interface

Double Buffered

User Programmable

Separate Transmit and Receive Sections

Control and Status Bits

Interface to a Variety of Serial Devices, Including:
Codecs (usually without additional logic)

MC145500

11-66

MC145501
MC145502
MC145503
MC145505
MC145402 (13-bit linear codec)
MC145554 Family of Codecs

DSP56000/DSP56001 USER'S MANUAL MOTOROLA

Serial Peripherals (AID, D/A)
Most Industry-Standard AID, D/A
DSP56ADC16 (16-bit linear AID)

DSP56000 to DSP56000 Networks
Motorola SPI Peripherals and Processors
Shift Registers

Interface to Time Division Multiplexed Networks without Additional Logic

Six Pins:
STD SSI Transmit Data
SRD SSI Receive Data
SCK SSI Serial Clock
SCO Serial Control 0 (defined by SSI mode)
SC1 Serial Control 1 (defined by SSI mode)
SC2 Serial Control 2 (defined by SSI mode)

On-chip Programmable Functions Include:
Clock - Continuous, Gated, Internal, External
Synchronization Signals:

- Bit Length
- Word Length

TX/RX Timing - Synchronous, Asynchronous
Operating Modes - Normal, Network, On-Demand
Word Length - 8, 12, 16, 24 Bits
Serial Clock and Frame Sync Generator

Four Interrupt Vectors:
Receive
Receive with Exception
Transmit
Transmit with Exception

This interface is named synchronous because all serial transfers are synchronized to a
clock. Additional synchronization signals are used to delineate the word frames. The normal
mode of operation is used to transfer data at a periodic rate, but only one word per period.
The network mode is similar in that it is also intended for periodic transfers; however, it
will support up to 32 words (time slots) per period. This mode can be used to build time
division multiplexed (TDM) networks. In contrast, the on-demand mode is intended for
nonperiodic transfers of data. This mode can be used to transfer data serially at high speed
when the data becomes available. This mode offers a subset of the SPI protocol.

11.3.1 551 Data and Control Pins

The SSI has three dedicated 1/0 pins (see Figure 11-1), which are used for transmit data
(STD), receive data (SRD), and serial clock (SCK),'where SCK may be used by both the
transmitter and the receiver for synchronous data transfers or by the transmitter only for
asynchronous data transfers. Three other pins may also be used, depending on the mode
selected; they are serial control pins SCO, SC1, and SC2. These serial control pins may be

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 11-67

-

•

programmed as SSI control pins in the port C control register. Table 11-4 shows the
definition of SCO, SC1, SC2, and SCK in the various configurations. The following para­
graphs describe the uses of these pins for each of the SSI operating modes.

Figures 11-41 and 11-42 show the internal clock path connections in block diagram form.
The receiver and transmitter clocks can be internal or external depending on the SYN,
SCDO, and SCKD bits in CRB.

Table 11-4. Definition of SCO, SC1, SC2, and SCK

SSI Pin Name
(Control Bit Name)

SCO=O (in)
SCO= 1 (out)
(SCDO)

SC1 =0 (in)
SC1 = 1 (out)
(SCD1)

SC2=0 (in)
SC2= 1 (out)
(SCD2)

SCK=O (in)
SCK= 1 (out)
(SCKD)

TXC - Transmitter Clock
RXC - Receiver Clock

Asynchronous
(SYN=O)

Continuous Clock Gated Clock
(GCK=O) (GCK=1)

RXC External RXC External
RXC Internal RXC Internal

FSR External Not Used
FSR Internal FSR Internal

FST External Not Used
FST Internal FST Internal

TXC External TXC External
TXC Internal TXC Internal

*XC - Transmitter/Receiver Clock (synchronous operation)
FST - Transmitter Frame Sync
FSR - Receiver Frame Sync
FS* - Transmitter/Receiver Frame Sync (synchronous operation)
PFO -Flag 0
F1 -Flag 1

Synchronous
(SYN=1)

Continuous Clock Gated Clock
(GCK=O) (GCK=1)

Input FO Input FO
Output FO Output FO

Input F1 Input F1
Output F1 Output F1

FS* External Not Used
FS* Internal FS* Internal

*XC External *XC External
*XC Internal *XC Internal

11.3.1.1 SERIAL TRANSMIT DATA PIN (STD). STD is used for transmitting data from the
serial transmit shift register. SrD is an output when data is being transmitted. Data changes
on the positive edge of the bit clock. STD goes to high impedance on the negative edge
of the bit clock of the last data bit of the word (Le., during the second half of the last data
bit period) with external gated clock, regardless of the mode. With an internally generated
bit clock, the STD pin becomes high impedance after the last data bit has been.transmitted
for a full clock period, assuming another data word does not follow immediately. If a data
word follows immediately, there will not be a high-impedance interval.

Codecs label the MSB as bit 0; whereas, the DSP labels the LSB as bit O. Therefore, when
using a standard codec, the DSP MSB (or codec bit 0) is shifted out first when SHFD=O,
and the DSP LSB (or codec bit 7) is shifted out first when SHFD = 1. STD may be programmed
as a general-purpose pin called PCS when the SSI STD function is not being used.

11-68 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

FOSC

DIVIDE
BY 2

FlAGO OUT FLAGO IN
(SYNC MODE) (SYNC MODE)

SYN=l

INTERNAL BIT CLOCK

PRESCALE
DIVIDE BY 1

OR
DIVIDE BY 8

PSR

DIVIDER
DIVIDE BY 1

TO
DIVIDE BY 256

PMO-PM7

DIVIDE
BY 2

WLl,WLO

Figure 11-41. SSI Clock Generator Functional Block Diagram

RX WORD
CLOCK

TX WORD
CLOCK

11.3.1.2. SERIAL RECEIVE DATA PIN (SRD). 5RD receives serial data and transfers the
data to the 551 receive shift register. 5RD may be programmed as a general-purpose liD
pin called PC7 when the 551 5RD function is not being used. Data is sampled on the negative
edge of the bit clock.

11.3.1.3 SERIAL CLOCK (SCK). 5CK is a bidirectional pin providing the serial bit rate clock
for the 551 interface. The 5CK is a clock input or output used by both the transmitter and
receiver in synchronous modes or by the transmitter in asychronous modes (see Table
11-5).

NOTE

Although an external serial clock can be independent of and asynchronous to the
D5P system clock, it must exceed the minimum clock cycle time of 8T (Le., the
system clock frequency must be at least four times the external 551 clock fre­
quency). The 551 needs at least four D5P phases (D5P phase = T) inside each half
of the serial clock.

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 11-69

-

RX WORD
CLOCK

TX WORD
CLOCK

III

11-70

DCO-DC4 FSLO, FSLl
I I

RECEIVER INTERNAL RX FRAME CLOCK
FRAME RATE

DIVIDER

SCDI =1

SYN=O
RECEIVE RECEIVE

CONTROL LOGIC FRAME SYNC

SYN=1

DCO-DC4
FSLO, FSLl FLAGI IN FLAGI OUT

(SYNC MODE) (SYNC MODE)

TRANSMITIER INTERNAL TX FRAME CLOCK
FRAME RATE

DIVIDER

TRANSMIT TRANSMIT
CONTROL LOGIC FRAME SYNC

Figure 11-42. 551 Frame Sync Generator Functional Block Diagram

SYN SCKD

a a
a a
a 1
a 1

1 a
1 a
1 1
1 1

Table 11-5. 551 Clock Sources,
Inputs, and Outputs

SCDO
R Clock RX Clock T Clock
Source Out Source

Asynchronous

a EXT,sca - EXT,SCK
1 INT sca EXT,SCK
a EXT,sca - INT
1 INT SCQ INT

Synchronous

a EXT,SCK - EXT,SCK
1 EXT,SCK - EXT,SCK
a INT SCK INT
1 INT SCK INT

EXT - External Pin Name
INT - Internal Bit Clock

DSP56000/DSP560Q1 USER'S MANUAL

TX Clock
Out

-
-"-

SCK
SCK

-
-
SCK
SCK

MOTOROLA

11.3.1.4 SERIAL CONTROL PIN (SCa). The function of this pin is determined solely on
the selection of either synchronous or asynchronous mode (see Tables 11-4 and 11-5). For
asynchronous mode, this pin will be used for the receive clock liD. For synchronous mode,
this pin is used for serial flag liD. A typical application of flag liD would be multiple device
selection for addressing in codec systems. The direction of this pin is determined by the
SCDO bit in the CRB as described in the following table. When configured as an output,
this pin will be either serial output flag 0, based on control bit OFO in CRB, or a receive
shift register clock output. When configured as an input, this pin may be used either as
serial input flag 0, which will control status bit IFO in the SSISR, or as a receive shift register
clock input.

SVN GCK SCDO Operation

Synchronous Continuous Input Flag 0 Input

Synchronous Continuous Output Flag 0 Output

Synchronous Gated Input Flag 0 Input

Synchronous Gated Output Flag 0 Output

Asynchronous Continuous Input Rx Clock - External

Asynchronous Continuous Output Rx Clock - Internal

Asynchronous Gated Input Rx Clock - External

Asynchronous Gated Output Rx Clock - Internal

11.3.1.5 SERIAL CONTROL PIN (SC1). The function of this pin is determined solely on
the selection of either synchronous or asynchronous mode (see Table 11-4). In asynchron­
ous mode (such as a single codec with asynchronous transmit and receive), this pin is the
receiver frame sync liD. For synchronous mode with continuous clock, this pin is serial
flag SC1 and operates like the previously described SCO. SCO and SC1 are independent
serial 110 flags but may be used together for multiple serial device selection. SCO and SC1
can be used unencoded to select up to two codecs or may be decoded externally to select
up to four codecs. The direction of this pin is determined by the SCD1 bit in the CRB. When
configured as an output, this pin will be either a serial output flag, based on control bit
OF1, or it will make the receive framp, sync signal available. When configured as an input,
this pin may be used as a serial input flag, which will control status bit IF1 in the SSI status
register, or as a receive frame sync from an external source for continuous clock mode.
In the gated clock mode, external frame sync signals are not used.

SVN GCK SCD1 Operation

Synchronous Continuous Input Flag 1 Input

Synchronous Continuous Output Flag 1 Output

Synchronous Gated Input Flag 1 Input

Synchronous Gated Output Flag 1 Output

Asynchronous Continuous Input RX Frame Sync - External

Asynchronous Continuous Output RX Frame Sync - Internal

Asynchronous Gated Input -
Asynchronous Gated Output RX Frame Sync - Internal

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 11-71

III

III

11.3.1,.6 SERIAL CONTROL PIN (SC2). This pin is used for frame sync I/O (see Table
11-4). SC2 is the frame sync for both the transmitter and receiver in synchronous mode
and for the transmitter oniy in asynchronous mode. The direction of this pin is determined
by the SCD2 bit in CRB. When configured as an output, this pin is the internally generated
frame sync signal. When configured asan input, this pin receives an external frame sync
signal for the transmitter (and the receiver in synchronous operation). In the gated clock
mode, external frame sync signals are not used.

SYN GCK SCD2 Operation

Synchronous Continuous Input TX and RX Frame Sync

Synchronous Continuous Output TX and RX Frame Sync

Synchronous Gated Input -

Synchronous Gated Output TX and RX Frame Sync

Asynchronous Continuous Input TX Frame Sync - External

Asynchronous Continuous Output TX Frame Sync - Internal

Asynchronous Gated Input -

Asynchronous Gated Output TX Frame Sync - Internal

11.3.2 SSI Interface Programming Model

The SSI can be viewed as two control registers, one status register, a transmit register, a
receive register, and special-purpose time slot register. These registers are illustrated in
Figures 1 ~-43 and 11-44. The following paragraphs give detailed descriptions and opera­
tions of each of the bits in the SSI registers. The SSI registers are not prefaced with an
"s" (for serial) as are the SCI registers.

11.3.2.1 SSI CONTROL REGISTER A (CRA). CRA is one of two 16-bit read/write control
registers used to direct the operation of the SSI. The CRA controls the SSI clock generator
bit and frame sync rates, word length, and number of words per frame for the serial data.
The high-order bits of eRA are read as zeros by the DSP CPU. The CRA control bits are
described in the followi~g paragraphs. ..

11.3.2.1.1 CRA Prescale Modulus Select (PM7-PMO) Bits 0-7. The PMO-PM7 bits specify
the divide ratio of the prescale divider in the SSI clock generator. A divide ratio from 1 to
256 (PM = 0 to $FF) may be selected. The bit clock output is available at the transmit clock
(SCK) and/or the receive clock (SCO) pins of the DSP. The bit clock output is also available
internally for use as the bit clock to shift the transmit and receive shift registers. Careful
choice of the crystal oscillator frequency and the prescaler modulus will allow the industry­
standard codec master clock frequencies of 2.048 MHz, 1.544 MHz, and 1.536 MHz to be
generated. Hardware and software reset clear PMO-PM7.

11-72 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

s::
o
-i o
:c
o
~

c en
"tJ
U1
en
o o
~
c en
"tJ
U1 en o g
c
en
m
:c en
3: » z
c »
r-

.....

.!.J w

14 12

X'$FFEC SSI CONTROL REGISTER A (CRA)
. (READIWRITE)

PRESCALE J WORD-LENGTH
RANGE CONTROL

FRAME RATE DIVIDER CONTROL PRESCALE MODULUS SELECT

X:$FFED

TRANSMITTER ENABLE -------.....

MODE SELECT (NETWORK/NORMAL) ----------'

RECEIVE DATA REGISTER FULL'

TRANSMIT DATA REGISTER EMPTY '

RECEIVER OVERRUN ERROR FLAG

RESET VALUE = $0000

L...--------SyNC/ASyNC CONTROL
L...-_________ GATED CLOCK CONTROL

RESET VALUE = $0000

SSI TIME SLOT REGISTER (TSR)
WRITE)

SSI STATUS REGISTER (SSISR)
READ)

RANSMIT FRAME SYNC

ECEIVE FRAME SYNC

RANSMITTER UNDERRUN ERROR FLAG

RESET VALUE = $40

Figure 11-43. SSI Interface Programming Model - Control and Status Regfsters

I

III

23 1615 87

SERIAL RECEIVE DATA REGISTER
,Inr-an ",.,,\1\ RECEIVE HIGH BYTE RECEIVE MIDDLE BYTE

L.-___ ~--.....L---......,.---....L.---....,....----I.\m:Hu UI~LII

07

23 87

SERIAL RECEIVE RECEIVE HIGH BYTE RECEIVE LOW BYTE

SHIFT REGISTER L--..:::!!"!=====--_L_~==;=~.-J~_~"!=:=====----.J

11-74

MSB LSB r-~8-BITDATA~~~0 ... I(

MSB LSB
I(12-BIT DATA
MSB LSB
~-----16-BIT DATA --..:....----+1

MSB

16 BIT

LSB

WL1, WLO

LEAST SIGNIFICANT
ZERO FILL

1 ... 1(E---------24-BIT DATA --.....:..---------+1
NOTES:

1. Data is received MSB first if SHFD=O.
2. Compatible with fractional format.

(a) Receive Registers for SHFD == 0

SERIAL RECEIVE I SHIFT REGISTER
23 1615 87

X:$FFEF TRANSMIT HIGH BYTE TRANSMIT MIDDLE BYTE TRANSMIT LOW BYTE SERIAL TRANSMIT DATA REGISTER
'-----r------'------.---....L..----r--...;......----J (WRITE ONLYI

07 07

SERIAL TRANSMIT

L-~===_-1._~!:====____.JL___=~===__---.J SHIFT REGISTER
07 07

~~BITDATA LS~r-0 il~O -
I(MSB 12-BIT DATA LSB

MSB 16-BIT DATA LSB

I .. I(~M;.:;.S=-B _______ 24-BIT DATA __ ~ ____ ---=L;;:,;SB~J~~

NOTES:
1. Data is sent MSB first if SHFD = O.
2. Compatible with fractional format.

(b) Transmit Registers for SHFD = 0

LEAST SIGNIFICANT
ZERO FILL

Figure 11-44. SSllnterface Programming Model (Sheet 1 of 2)

DSP56000/DSP56001 USER'S MANUAL MOTOROLA

23 1615 87

X:SFFEF RECEIVE HIGH BYTE SERIAL RECEIVE DATA REGISTER IRXI L...-__ ---: ___L... ___ ~---l---__:_-----' IREAD DNlYI

23 1615 87

RECEIVE HIGH BYTE RECEIVE MIDDLE BYTE RECEIVE lOW BYTE SERIAL RECEIVE SHIFT REGISTeR
07 07

MSB lSB r-~8-BITDATA~~~0 lEAST SIGNIFICANT
MSB lSB
I(12-BIT DATA ZERO Fill
MSB lSB
~-----16-BIT DATA --";"'---+1

MSB lSB
l""I(E----------24-BIT DATA ----..:..------~

NOTES:
1. Data is received LSB first if SHFD = 1.
2. Compatible with fractional format.

(c) Receive Registers for SHFD= 1

23 1615 87

X:$FFEF TRANSMIT HIGH BYTE . TRANSMIT MIDDLE BYTE TRANSMIT lOW BYTE
SERIAL TRANSMIT DATA REGISTER !TXI
IREAD ONlYI

L...---~r---~---~---~---'---~
07 07

~ '·BIT DATA LS~ r- 0 ~I_O --
I(MSB 12-BIT DATA LSB ,

MSB 16-BIT DATA lSB

........ ~M.;;.;SB;....-. _______ 24-BIT DATA ________ l_SB-l ~

NOTES:
1. Data is sent LSB first if SHFD= 1.
2. Compatible with fractional format.

(d) Transmit Registers for SHFD = 1

t
Wl1, WlO

lEAST SIGNIFICANT
ZERO Fill

Figure 11-44. SSllnterface Programming Model (Sheet 2 of 2)

MOTOROLA DSP56000/DSP56001 USER'S MANUAL "-75

•

III

11.3.2.1.2 CRA Frame Rate Divider Control {DC4-DCO} Bits 8-12. The DC4-DCO bits con­
trol the divide ratio for the programmable frame rate dividers used to generate the frame
clocks (see Figure 11-42). In network mode, this ratio may be interpreted as the number
of words per frame minus one. In normal mode, this ratio determines the word transfer
rate. The divide ratio may range from 1 to 32 (DC = 00000 to 11111) for normal mode and
2 to 32 (DC = 00001 to 11111) for network mode.

A divide ratio of one (DC=OOOOO) in network mode is a special case (see 11.3.7.4 ON­
DEMAND MODE). In normal mode, a divide ratio of one (DC = 00000) provides continuous
periodic data word transfers. A bit-length sync (FSL 1 = 1, FSLO = 0) must be used in this
case. Hardware and software reset clear DC4-DCO.

11.3.2.1.3 CRA Word Length Control {WLO, WL1} Bits 13 and 14. The WL1 and WLO bits
are used to select the length of the data words being transferred via the SSI. Word lengths
of 8, 12, 16, or 24 bits may be selected according to the following assignments:

WL1 WLO Number of BitslWord

0 0 8

0 1 12

1 0 16

1 1 24

These bits control the number of active clock transitions in the gated clock modes and
control the word length divider (see Figures 11-41 and 11-42), which is part of the frame
rate signal generator for continuous clock modes. The WL control bits also control the
frame sync pulse length when FSLO and FSL 1 select a WL bit clock (see Figure 11-41).
Hardware and software reset clear WLO and WL 1.

11.3.2.1.4 CRA Prescaler Range {PSR} Bit 15. The PSR controls a fixed divide-by-eight
prescaler in series with the variable prescaler. This bit is used to extend the range of the
prescaler for those cases where a slower bit clock is desired (see Figure 11-41). When PSR
is cleared, the fixed prescaler is bypassed. When PSR is set, the fixed divide-by-eight
prescaler is operational. This allows a 128-kHz master clock to be generated for MC14550x
series codecs.

The maximum internally generated bit clock frequency is fosc/4, the minimum internally
generated bit clock frequency is fosc/4/8/256=fosc/8192. Hardware and software reset clear
PSR.

11.3.2.2 SSI CONTROL REGISTER B {CRB}. The CRB is one of two 16-bit read/write control
registers used to direct the operation of the SSI. CRB controls the SSI multifunction pins,
SC2, SC1, and SCO, which can be used as clock inputs or outputs, frame synchronization
pins, or serial I/O flag pins. The serial output flag control bits and the direction control bits

11-76 OSP56000/0SP56001 USER'S MANUAL MOTOROLA

for the serial control pins are in the SSI CRB. Interrupt enable bits for each data register
interrupt are provided in this control register. When read by the DSP, CRB appears on the
two low-order bytes of the 24-bit word, and the high-order byte reads as zeros. Operating
modes are also selected in this register. Hardware and software reset clear all the bits in
the CRB. The relationships between the SSI pins (SCO, SC1, SC2, and SCK) and some of
the CRB bits are summariz~d in Tables 11-4, 11-6, and 11-7. The SSI CRB bits are described
in the following paragraphs.

11.3.2.2.1 CRB Serial Output Flag 0 (OFO) Bit O. When the SSI is in the synchronous clock
mode and the serial control direction zero bit (SCDO) is set, indicating that the SCO pin is
an output, then data present in OFO will be written to SCO at the beginning of the frame
in normal mode or at the beginning of the next time slot in network mode. Hardware and
software reset clear OFO.

11.3.2.2.2 CRB Serial Output Flag 1 (OF1) Bit 1. When the SSI is in the synchronous clock
mode and the serial control direction one (SCD1) bit is set, indicating that the SC1 pin is
an output, then data present in OF1 will be written to the SC1 pin at the beginning of the
frame in normal mode or at the beginning ofthe next time slot in network mode (see 11.3.7
Operating Modes - Normal, Network, and On-Demand).

The normal sequence for setting output flags when transmitting data is to set TDE (TX
empty), to first write the flags, and then write the transmit data to the TX register. OFO
and OF1 are double buffered so that the flag states appear on the pins when the TX data
is transferred to the transmit shift register (i.e., the flags are synchronous with the data).
Hardware and software reset clear OF1.

NOTE

The optional serial output pins (SCO, SC1, and SC2) are controlled by the frame
timing and are not affected by TE or RE.

11.3.2.2.3 CRB Serial Control 0 Direction (SCDO) Bit 2. SCDO controls the direction of the
SCO I/O line. When SCDO is cleared, SCO is an input; when SCDO is set, SCO is an output
(see Tables 11-4, 11-5, and Figure 11-45). Hardware and software reset clear SCDO.

11.3.2.2.4 CRB Serial Control 1 Direction (SCD1) Bit 3. SCD1 controls the direction of the
SC1 I/O line. When SCD1 is cleared, SC1 is an input; when SCD1 is set, SC1 is an output
(see Tables 11-4, 11-5 and Figure 11-45). Hardware and software reset clear SCD1.

11.3.2.2.5 CRB Serial Control 2 Direction (SCD2) Bit 4. SCD2 controls the di rection of the
SC2 I/O line. When SCD2 is cleared, SC2 is an input; when SCD2 is set, SC2 is an output
(see Tables 11-4, 11-5, and Figure 11-45). Hardware and software reset clear SCD2.

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 11-77

-

......

.!.J
ex>

c rn
"tI
U1 en
o
o
~ c rn
"tI
U1 en
-8
~

c: rn
m
:::c
en
~ » z
c: » .-

s:
o
-I
o
::0
o
S;

15

X:$FFED

I

14 13 12 11 10

DIRECTION
CONTROLLED BY

SCDO
SCDI
SCD2
SCKD

1 = OUTPUT
O=INPUT

BASIC FUNCTION
RECEIVE CLOCK/FLAG 0
RECEIVE FRAME SYNC/FLAG 1
TRANSMIT FRAME SYNCITX AND RX FRAME SYNC
TRANSMIT CLOCKlTX AND RX CLOCK
SSI RECEIVE DATA
SSI TRANSMIT DATA

NOTE: Parentheses indicate RESET condition.

Figure 11-45. Serial Control, Direction Bits

SSI CONTROL REGISTER B (CRBI
(READIWRITEI

11.3.2.2.6 CRB Clock Source Direction (SCKD) Bit 5. SCKD selects the source of the clock
signal used to clock the transmit shift register in the asynchronous mode and both the
transmit shift register and the receive shift register in the synchronous mode. When SCKD
is set, the internal clock source becomes the bit clock for the transmit shift register and
word length divider and is the output on the SCK pin. When SCKD is cleared, the clock
source is external; the internal clock generator is disconnected from the SCK pin, and an
external clock source may drive this pin. Hardware and software reset clear SCKD.

11.3.2.2.7 CRB Shift Direction (SHFD) Bit 6. This bit causes the transmit shift register to
shift data out MSB first when SHFD equals zero or LSB first when SHFD equals one. Receive
data is shifted in MSB first when SHFD equals zero or LSB first when SHFD equals zero.
Hardware reset and software reset clear SHFD.

11.3.2.2.8 CRB Frame Sync Length (FSLO and FSL 1) Bits 7 and 8. These bits select the
type of frame sync to be generated or recognized. If FSL 1 equals zero and FSLO equals
zero, a word-length frame sync is selected for both TX and RX that is the length of the
data word defined by bits WL 1 and WLO. If FSL 1 equals one and FSLO equals zero, a
1-bit clock period frame sync is selected for both TX and RX. When FSLO equals one, the
TX and RX frame syncs are different lengths. Hardware reset and software reset clear FSLO
and FSL 1.

FSL1 FSLO Frame Sync Length

0 0 WL bit clock for both TX/RX

0 1 One-bit clock for TX and WL bit clock for RX

1 0 One-bit clock for both TXlRX

1 1 One-bit clock for RX and WL bit clock for TX

11.3.2.2.9 CRB Sync/Async (SYN) Bit 9. SYN controls whether the receive and transmit
functions of the SSI occur synchronously or asynchronously with respect to each other.
When SYN is cleared, asynchronous mode is chosen and separate clock and frame sync
signals are used for the transmit and receive sections. When SYN is set, synchronous mode
is chosen and the transmit and receive sections use common clock and frame sync signals.
Hardware reset and software reset clear SYN.

11.3.2.2.10 CRB Gated Clock Control (GCK) Bit 10. GCK is used to select between' a
continuously running data clock or a clock that runs only when there is data to be sent in
the transmit shift register. When GCK is cleared, a continuous clock is selected; when GCK
is set, the clock will be gated. Hardware reset and software reset clear GCK.

NOTE

For gated clock mode with externally generated bit clock, internally generated
frame sync is not defined.

MOTOROLA OSP56000/0SP56001 USER'S MANUAL 11-79

-

III

11.3.2.2.11 eRB SSI Mode Select (MOD) Bit 11. MOD selects the operational mode of the
SS!. When MOD is cleared, the normal mode is selected; when MOD is set, the network
mode is selected. In the normal mode, the frame rate divider determines the word transfer
rate - one word is transferred per frame sync during the frame sync time slot. In network
mode, a word is (possibly) transferred every time slot. For more details, see 11.3.3 OP­
ERATIONAL MODES AND PIN DEFINITIONS. Hardware and software reset clear MOD.

11.3.2.2.12 eRB SSI Transmit Enable (TE) Bit 12. TE enables the transfer of data from TX
to the transmit shift register. When TE is set and a frame sync is detected, the transmit
portion of the SSI is enabled for that frame. When TE is cleared, the transmitter will be
disabled after completing transmission of data currently in the'SSI transmit shift register.
The serial output is three-stated, and any data present in TX will not be transmitted (Le.,
data can be written to TX with TE cleared; TDE will be cleared, but data will not be
transferred to the transmit shift register).

The normal mode transmit enable sequence is to write data to TX or TSR before setting
TE. The normal transmit disable sequence is to clear TE and TIE after TDE equals one.

In the network mode, the operation of clearing TE and setting it again will disable the
transmitter after completing transmission of the current data word until the beginning of
the next frame. During that time period, the STD pin will remain in the high-impedance
state. Hardware reset and software reset clear TE.

The on-demand mode transmit enable sequence can be the same as the normal mode, or
TE can be left enabled.

NOTE

TE does not inhibit TDE or transmitter interrupts. TE does not affect the generation
of frame sync or output flags.

11.3.2.2.13 eRB SSI Receive Enable (RE) Bit 13. When RE is set, the receive portion of
the SSI is enabled. When this bit is cleared, the receiver will be disabled by inhibiting data
transfer into RX. If data is being received while this bit is cleared, the remainder of the
word will be shifted in and transferred to the SSI receive data register.

RE must be set in the normal mode and on-demand mode to receive data. In network
mode, the operation of clearing RE and setting it again will disable the receiver after
reception of the current data word until the beginning of the next data frame. Hardware
and software reset clear RE.

NOTE

RE does not inhibit RDF or receiver interrupts. RE does not affect the generation
ofa frame sync.

11-80 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

11.3.2.2.14 CRB SSI Transmit Interrupt Enable (TIE) Bit 14. The OSP will be interrupted
when TIE and the TOE flag in the SSI status register is set. When TIE is cleared, this interrupt
is disabled. However, the TOE bit will always indicate the transmit data register empty
condition even when the transmitter is disabled with the TE bit. Writing data to TX or TSR
will clear TDE, thus clearing the interrupt. Hardware and software reset clear RE.

There are two transmit data interrupts that have separate interrupt vectors:

1. Transmit data with exceptions - This interrupt is generated on the following con­
dition:

TIE=1, TDE=1, and TUE=1

2. Transmit data without exceptions - This interrupt is generated on the following
condition:

TIE= 1, TOE= 1, and TUE=O

See SECTION 8 PROCESSING STATES for more information on exceptions.

11.3.2.2.15 CRB SSI Receive Interrupt Enable (RIE) Bit 15. When RIE is set, the DSP will
be interrupted when RDF in the SSI.status register is set. When RIE is cleared, this interrupt
is disabled. However, the RDF bit still indicates the receive data register full condition.
Reading the receive data register will clear RDF, thus clearing the pending interrupt. Hard­
ware and software reset clear RIE.

There are two receive data interrupts that have separate interrupt vectors:

1. Receive data with exceptions- This interrupt is generated on the following condition:
RIE=1, ROF=1, and ROE=1

2. Receive data without exceptions - This interrupt is generated on the following con­
dition:

RIE=1, RDF=l, and ROE=O

See SECTION 8 PROCESSING STATES for more information on exceptions.

11.3.2.3 SSI STATUS REGISTER (SSISR). The SSISR is an 8-bit read-only status register
used by the DSP to interrogate the status and serial input flags of the SS!. When the SSISR
is read to the internal data bus, the register contents occupy the low-order byte of the data
bus, and the high-order portion is zero filled. The status bits are described in the following
paragraphs.

11.3.2.3.1 SSISR Serial Input Flag 0 (lFO) Bit O. The SSI latches data present on the seo
pin during reception of the first received bit after frame sync is detected. IFO is updated
with this data when the receive shift register is transferred into the receive data register.
The IFO bit is enabled only when seoo is cleared and SYN is set, indicating that seo is an
input and the synchronous mode is selected (see Table 11-4); otherwise, IFO reads as a
zero when it is not enabled. Hardware, software, SSI individual, and STOP reset clear IFO.

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 11-81

-

III

11.3.2.3.2 SSISR Serial Input Flag 1 (lF1) Bit 1. The SSI latches data present on the SC1
pin during reception of the first received bit after frame sync is detected. The IF1 flag is
updated with the data when the receiver shift register is transferred into the receive data
register. The IF1 bft is enabled only when SCD1 is cleared and SYN is set, indicating that
SC1 is an input and the synchronous mode is selected (see Table 11- 4); otherwise, IF1
reads as a zero when it is not enabled. Hardware, software, SSI individual, and STOP reset
clear IF1.

11.3.2.3.3 SSISR TRANSMIT FRAME SYNC FLAG (TFS) Bit 2. When set, TFS indicates
that a transmit frame sync occurred in the current time slot. TFS is set at the start of the
first time slot in the frame and cleared during all other time slots. Data written to the
transmit data register during the time slot when TFS is set will be transmitted (in network
mode) during the second time slot in the frame. TFS is useful in network mode to identify
the start of a frame.

NOTE

In normal mode, TFS will always read as a one when transmitting data because
there is only one time slot per frame - the "frame sync" time slot.

TFS, which is cleared by hardware, software, SSI individual, or STOP reset, is not affected
by TE.

11.3.2.3.4 SSISR Receive Frame Sync Flag (RFS) Bit 3. When set, RFS indicates that a
receive frame sync occurred during reception of the word in the serial receive data register.
This indicates that the data word is from the first time slot in the frame. When RFS is clear
and a word is received, it indicates (only in the network mode) that the frame sync did not
occur during reception of that word.

NOTE

In normal mode, RFS will always read as a one when reading data because there
is only one time slot per frame - the "frame sync" time slot.

RFS, which is cleared by hardware, software, SSI individual, or STOP reset, is not affected
by RE.

11.3.2.3.5 SSISR Transmitter Underrun Error Flag (TUE) Bit 4. TUE is set when the serial
transmit shift register is empty (no new data to be transmitted) and a transmit time slot
occurs. When a transmit underrun error occurs, the previous data (which is still present
in the TX) will be retransmitted.

In the normal mode, there is only one transmit time slot per frame. In the network mode,
there can be up to 32 transmit time slots per frame.

11-82 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

TUE does not cause any interrupts; however, TUE does cause a change in the interrupt
vector used for transmit interrupts so that a different interrupt handler may be used for a
transmit underrun condition. If a transmit interrupt occurs with TUE set, the transmit data
with exception status interrupt will be generated; if a transmit interrupt occurs with TUE
clear, the transmit data without errors interrupt will be generated.

Hardware, software, SSI individual, and STOP reset clear TUE. TUE is also cleared by
reading the SSISR with TUE set, followed by writing TX or TSR.

11.3.2.3.6 SSISR Receiver Overrun Error Flag (ROE) Bit 5. This flag is set when the serial
receive shift register is filled and ready to transfer to the receiver data register (RX) and
RX is already full (i.e., RDF = 1). The receiver shift register is not transferred to RX. ROE
does not cause any interrupts; however, ROE does cause a change in the interrupt vector
used for receive interrupts so that a different interrupt handler may be used for a receive
error condition. If a receive interrupt occurs with ROE set, the receive data with exception
statu~ interrupt will be generated; if a receive interrupt occurs with ROE clear, the receive
data without errors interrupt will be generated.

Hardware, software, SSI individual, and STOP reset clear ROE. ROE is also cleared by
reading the SSISR with ROE set, followed by reading the RX. Clearing RE does not affect
ROE.

11.3.2.3.7 SSISR 551 Transmit Data Register Empty (TDE) Bit 6. This flag is set when the
contents of the transmit data register are transferred to the transmit shift register; it is also
set for a disabled time slot period in network mode (as if data were being transmitted after
the TSR was written). Thirdly, it can be set by the hardware, software, SSI individual, or
STOP reset. When set, TDE indicates that data should be written to the TX or to the time
slot register (TSR). TDE is cleared when the DSP writes to the transmit data register or
when the DSP writes to the TSR to disable transmission of the next time slot. If TIE is set,
a DSP transmit data interrupt request will be issued when TDE is set. The vector of the
interrupt will depend on the state of the transmitter underrun bit.

11.3.2.3.8 SSISR SSt Receive Data Register Full (RDF) Bit 7. RDF is set when the contents
of the receive shift register are transferred to the receive data register. RDF is cleared when
the DSP reads the receive data register or cleared by hardware, software, SSI individual,
or STOP reset. If RIE is set, a DSP receive data interrupt request will be issued when RDF
is set. The vector of the interrupt request will depend on the state of the receiver overrun
bit.

11.3.2.3.9 551 Receive Shift Register. This 24-bit shift register receives the incoming data
from the serial receive data pin. Data is shifted in by the selected (internal/external) bit
clock when the associated frame sync I/O (or gated clock) is asserted. Data is assumed to

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 11-83

-

-

be received MSB first if SHFD equals zero and LSB first if SHFD equals one. Data is
transferred to the 551 receive data register after 8, 12, 16, or 24 bits have been shifted in,
depending on the word-length control bits in the CRA (see Figure 11-46).

11.3.2.3.10 551 Receive Data Register (RX). RX is a 24-bit read-only register that accepts
data from the receive shift register as it becomes full. The data read will occupy the most
significant portion of the receive data register (see Figure 11-46). The unused bits (least
significant portion) will read as zeros. The DSP is interrupted whenever RX becomes full
if the associated interrupt is enabled.

11.3.2.3.11 551 Transmit 5hift Register. This 24-bit shift register contains the data being
transmitted. Data is shifted out to the serial transmit data pin by the selected (internall
external) bit clock when the associated frame sync lID (or gated clock) is asserted. The
number of bits shifted out before the shift register is considered empty and may be written
to again can be 8, 12, 16, or 24 bits (determined by the word-length control bits in CRA).
The data to be transmitted occupies the most significant portion of the shift register. The
unused portion of the register is ignored. Data is shifted out of this register MSB first if
SHFD equals zero and LSB first if SHFD equals one (see Figure 11-47).

11.3.2.3.12 551 Transmit Data Register (TX). TX is a 24-bit write-only register. Data to be
transmitted is written into this register and is automatically transferred to the transmit shift
register. The data written (8, 12, 16, or 24 bits) should occupy the most significant portion
of TX (see Figure 11-47). The unused bits (least significant portion) of TX are don't care
bits. The DSP is interrupted whenever TX becomes empty if the transmit data register
empty interrupt has been enabled.

11.3.2.3.13 Time 510t Register (T5R). TSR is effectively a null data register that is used
when the data is not to be transmitted in the available transmit time slot. For the purposes
of timing, TSR is a write-only register that behaves like an alternative transmit data register,
except that, rather than transmitting data, the transmit data pin is in the high-impedance
state for that time slot.

11-84 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

S GOB S
=f'F

23 1615 1211 87 0

I I l I RX , I I
I I

V I I

I
I
I
I

I

t
I

1\ I
I
I

I I

j I I

I I

I I

8 BITS 12 BITS 16 BITS

(a) SHFD=O

s GOB s
1"F

23 16 15 12 11 87 0

L-I ____ -I.I __ --!-! __ ...L.! ____ ---lRX
, _____------11 I

V I
I
I

\/ I
I

\/

t -
I
I

j\, I
I
I

I I

/ I I

I I

I I

--_-1/\""'--""'\ I I I \ I . I

~'--__ -" ___ -..L.'--:-_._ l_-" ___ ',-' __ -.. ____ ----', RECEIVE SHIFT REGISTER

SHFO=1
(b) SHFD=1

Figure 11-46. Receive Data Path

MOTOROLA OSP56000/0SP56001 USER'S MANUAL 11-85

GOB

] [
23 1615 ~ 87 0

I I I I TX
~------------~--~~2~'------~----------~

I 1
I

11 I
I

,/ I I
I
I
I
I

V

~ I

I\. I
I
I

I I

'\ I I

I I

I I

\. I I I

I \ I I I

1 1

s GOB s
23 16 15 U 87 0

I~ __________ ~ ____ ~I~I ____ ~ __________ ~TX
12,11 1

1

\/ 1 1
.1

1

\ 1
1

\

III 1
1"-

1

/,,- 1
1

/\.
I

1 1

I- 24 BIT
TRANSMIT SHIFT REGISTER'I -------.-----~l::r----.----..... 'ir~-----.JI\c-~-. _----. __ --.,;.... __ ----J~

I \ I 1
1

8 BIT 12 BIT 16 BIT

(b) SHFD=1

Figure 11-47. Transmit Data Path

11-86 DSP56000/DSP56Q01 USER'S MANUAL MOTOROLA

11.3.3 Operational Modes and Pin Definitions

Tables 11-6 and 11-7 completely describe the SSI operational modes and pin definitions
(Table 11-4 is a simplified version of these tables). The operational modes are as follows:

1. Continuous Clock
Mode 1 - Normal with Internal Frame Sync
Mode 2 - Network with Internal Frame Sync
Mode 3 - Normal with External Frame Sync
Mode 4 - Network with External Frame Sync

2. Gated Clock
Mode 5 - External Gated Clock
Mode 6 - Normal with Internal Gated Clock
Mode 7 - Network with Internal Gated Clock

3. Special Case (Both Gated and Continuous Clock)
Mode 8 - On-Demand Mode (Transmitter Only)
Mode 9 - Receiver Follows Transmitter Clocking

Table 11-6. Mode and Pin Definition Table - Continuous Clock

Control Bits Mode SCO

MOD GCLK SYN SCD2 SCD1 SCDO SCKD
DC4-

TX RX In
DCO

a a a 1 1 X X X 1 1 RXC

a a 1 1 X X X X 1 1 Fa

1 a a 1 1 X X 1 2 2 RXC

1 a 1 1 X X X 1 2 2 Fa

a a a a 1 x x X 3 1 RXC

a a a 1 a x x x 1 3 RXC

a 0 0 0 0 x x X 3 3 RXC

a a 1 a x x x X 3 3 Fa

1 a a a 1 x x X 4 2 RXC

1 a a 1 a x x 1 2 4 RXC

1 a a a a x x x 4 4 RXC

1 a 1 a x x x X 4 4 Fa

1 a a 1 1 X X a 8 2 RXC

1 a 1 1 X X X a 8 9 Fa

1 a a 1 a x x a 8 4 RXC

DC4-DCO=0 means that bits DC4=0, DC3;"0, DC2=0, DC1 =0, and DCO=O.

DC4-DCO = 1 means that bits DC4-DCO "= O.

TXC - Transmitter Clock
RXC - Receiver Clock
*XC - Transmitter/Receiver Clock (Synchronous Operation)
FST - Transmitter Frame Sync
FSR - Receiver Frame Sync
FS* - Transmitter/Receiver Frame Sync (Synchronous Operation)
Fa -Flag a
F1 -Flag 1

Out

RXC

Fa

RXC

Fa

RXC

RXC

RXC

Fa

RXC

RXC

RXC

Fa

RXC

Fa

RXC

SC1

In Out

- FSR

F1 F1

- FSR

F1 F1

- FSR

FSR -

FSR -

F1 F1

- FSR

FSR -

FSR -
F1 F1

- FSR

F1 F1

FSR -

MOTOROLA DSP56000/DSP56001 USER'S MANUAL

SC2

In Out

- FST

- FS*

- FST

- FS*

FST -

- FST

FST -

FS* -

FST -

- FST

FST -

FS* -

- FST

- FS*

- FST

SCK

In Out

TXC TXC

*XC *XC

TXC TXC

*XC *XC

TXC TXC

TXC TXC

TXC TXC

*XC *XC

TXC TXC

TXC TXC

TXC TXC

*XC *XC

TXC TXC

*XC *XC

TXC TXC

11-87

III

-

Table 11-7. Mode and Pin Definition Table - Gated Clock
Control Bits I Mode I SCO I SC1 I SC2 SCK

- --

MOD GClK SYN SCD2 SCD1 SCDO SCKD
DC4-

TX RX In
DCO

0 1 0 X X 1 1 X 6 6 -
0 1 1 X X X 1 X 6 6 FO

0 1 0 X X 1 0 X 5 6 -
0 1 0 X X 0 0 X 5 5 RXC

0 1 1 X X X 0 X 5 5 FO

1 1 0 X X 1 1 0 8 7 -

1 1 0 X X 0 1 0 8 5 RXC

1 1 1 X X X 1 0 8 9 FO

0 1 0 X X 0 1 X 6 5 RXC

DC4-DCO=0 means that bits DC4=O, DC3=O, DC2=O, DC1 =0, and DCO=O.

TXC - Transmitter Clock
RXC - Receiver Clock
*XC - Transmitter/Receiver Clock (Synchronous Operation)
FST - Transmitter Frame Sync
FSR - Receiver Frame Sync
FS* - Transmitter/Receiver Frame Sync (Synchronous Operation)
FO -Flag 0
F1 -Flag 1

-Undefined

11.3.4 Registers After Reset

Out In Out In Out In Out

RXC ? FSR ? FST - TXC

FO FO F1 ? FS* - *XC

RXC ? FSR ? ? TXC -

- ? ? ? ? TXC -
FO F1 F1 ? ? *XC -

RXC ? FSR ? FST - TXC

- ? ? ? FST - TXC

FO F1 F1 ? FS* - *XC

- ? ? ? FST - TXC

Hardware or software reset clears the port control register bits, which configure all liD as
general-purpose input. The SSI will remain in reset while all SSI pins are programmed as
general-purpose liD (CC8-CC3=0) and will become active only when at least one of the
SSI liD pins is programmed as not general-purpose I/O. Table 11-8 shows how each type
of reset affects each SSI register bit.

11.3.5 551 Initialization

The correct way to initialize the SSI is as follows:
1. Hardware, software, SSI individual,or STOP reset
2. Program SSI control registers
3. Configure SSI pins (at least one) as not general-purpose liD

During program execution, CC8-CC3 may be cleared, causing the SSI to stop serial activity
and enter the individual reset state. All status bits of the interface will be set to their reset
state; however, the contents of CRA and CRB are not affected. This procedure allows the
DSP program to reset each interface separately from the other internal peripherals.

The DSP program must use an SSI reset when changing theMOD, GCK, SYN, SCKD, SCD2,
SCD1, or SCDO bits to ensure proper operation of the interface. Figure 11-48 is a flowchart
illustrating the three initialization steps previously listed. Figures 11-49, 11-50, and 11-51
provide additional detail to the flowchart.

11-88 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

Table 11-8. SSI Registers after Reset

Register Register Bit Reset

Name Data Number HW Reset SW Reset Individual Reset ST Reset

PSR 15 0 0 - -

CRA
WL(2-0) 13,14 0 0 - -
DC(4-0) 8-12 0 0 - -
PM(7-0) 0-7 0 0 - -
RIE 15 0 0 - -
TIE 14 0 0 - -
RE 13 0 0 - -
TE 12 0 0 - -
MOD 11 0 0 - -
GCK 10 0 0 - -

CRB
SYN 9 0 0 - -
FSL1 8 0 0 - -
FSLO 7 0 0 - -
SHFD 6 0 0 - -
SCKD 5 0 0 - -
SCD(2-0) 2-4 0 0 - -
OF(1-0) 0,1 0 0 - -

RDF 7 0 0 0 0
TOE 6 1 1 1 1
ROE 5 0 0 0 0

SSISR TUE 4 0 0 0 0
RFS 3 0 0 0 0
TFS 2 0 0 0 0
IF(1-0) 0,1 0 0 0 0

RDR RDR (23-0) 23-0 - - - -
TOR TOR (23-0) 23-0 - - - -

RSR RDR (23-0) 23-0 - - - -
TSR RDR (23-0) 23-0 - - - -

NOTES:
1. RSR - SSI receive shift register
2. TSR - SSI transmit shift register
3. HW - Hardware reset is caused by asserting the external pin RESET.
4. SW - Software reset is caused by executing the RESET instruction.
5. IR - Individual reset is caused by SSI peripheral pins (i.e., PCC(3-8)) being configured as general-purpose

1/0.
6. ST - Stop reset is caused by executing the STOP instruction.

MOTOROLA

HARDWARE OR SOFTWARE RESET

PROGRAM CRA AND CRB

SELECT PINS TO BE USED
PORT C CONTROL REGISTER

Figure 11-48. SSI Initialization Block Diagram

DSP56000/DSP56001 USER'S MANUAL 11-89

III

cD
o

c en
"'C
U1
en
o
o
o
C en
"'C
U1
en o g
c
en
m
::a
en
s: » z
c »
r-

s:
o
--I o
::c
o
£:

I
15 14 13 12 11 10

I PSR I WLl J WLO I DC4 I DC3 I DC2 I DCl I DCO I PM7 I PM6 I PM5 I PM6 I PM3 I PM2 I PMl I PMO I
~ /, / \ntf\UIVVnllt/

y 1

I PRES~ALER I ' IF PSR = 1 THEN DIVIDE BY 8 I DIVIDE BY 1 DIVIDE fosc
IF PSR = 0: THEN DIVIDE BY 1 I I TO 256 BY 2

TER A (CRA)

WL1 WLO BITSIWORD
DC4-DCO

WORD TRANSFER RATE WORDS/FRAME
DIVIDE

0 0 8
(SEE NOTE 1) (SEE NOTE 2)

BY 2
0 1 12 o 0 0 0 0

Continuous Periodic On-Demand
(See Note 3) Data Driven

1 0 16 o 0 0 0 1 2 2
1 1 24

00010 3 3 SSI BIT RATE CLOCK

00011 4 4

..
11111 32 32 -'

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X:$FFED I RIE TIE RE TE I MOD I GCK I SYN I FSLl I FSLO I SHFD I SCKD I SCD21 SCDI I SCDO I OFI I OFO I SSI CONTROL REGISTER B (CRB)
'-/ ~ (READIWRITE)

(SEE NOTES 1 AND 2) (SEE NOTE 3)

NOTES:
1. Normal- MOD=O
2. Network - MOD = 1
3. FSL1 = 1, FSLO=O

Figure 11-49. 551 eRA Initialization Procedure

FRAME SYNC LENGTH 1
FRAME SYNC LENGTH 0

0= RX AND TX SAME
0= RX IS WORD LENGTH LENGTH
1 = RX IS BIT LENGTH 1 = RX AND TX DIFFERENT

LENGTH

SYNC/ASYNC CONTROL SHIFT DIRECTION
0= ASYNCHRONOUS 0= MSB FIRST
1 = SYNCHRONOUS 1 = LSB FIRST

GATED CLOCK CONTROL CLOCK SOURCE DIRECTION
0= CONTINUOUS CLOCK 0= INPUT (EXTERNALI
1 = GATED CLOCK 1 = OUTPUT (lNTERNALI

SSI MODE SELECT SERIAL CONTROL
O=NORMAL f-- ,.-- DIRECTION BITS
1 = NETWORK O=INPUT

1 = OUTPUT

15 14 13 12 I I 1 0

RIE I TIE I RE I TE MOD I GCK I SYN I FSL1 FSLO SHFD I SCKD I SCD2 SCD1 SCDO I OF1 I OFO

11 10 9 8 7 6 5 4 3 2

I TRANSMIT ENABLE OUTPUT FLAG 1
'--- 0= DISABLE IF SYN = I, SCDI = 1

1 = ENABLE OFI. SCI PIN

RECEIVE ENABLE OUTPUT FLAG 0
0= DISABLE IF SYN=l. SCDO=l
1 = ENABLE OFO. SCO PIN

TRANSMIT INTERRUPT ENABLE
O=DISABLE
1 = ENABLE

RECEIVE INTERRUPT ENABLE
0= DISABLE
1 = ENABLE

Figure 11-50. 551 eRB Initialization Procedure

Figure 11-51 shows the six control bits in the PCC, which select the six SSI pins as either
general-purpose 1/0 or as SSI pins., The STD pin can only transmit data; the SRD pin can
only receive data. The other four pins can be inputs or outputs, depending on how they
are programmed. This programming is accomplished by setting bits in CRA and CRB as
shown in Figure 11-45. The CRA (see Figure 11-49) sets the SSI bit rate clock with PSR and
PMO-PM7, sets the word length with WL 1 and WLO, and sets the number of words in a
frame with DCO-DC4. There is a special case where DC4-DCO equals zero (one word per
frame). Depending on whether the normal or network mode is selected (MOD=O or MOD= 1,
respectively), either the continuous periodic data mode is selected, or the on-demand data

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 11-91

-

III

23 a
X'$FFEl I 0 I 0 I 0 I 0 I 0 I n I n I n I n I n I n I n I n I n I n Icc I cc I cc Icc Icc I cc I cc I cc Icc I PORT C CONTROL
. I I I I I' I . I . I - I - I - I - I - I - I - I - I 8 I 7 I 6 I 5 I 4 I 3 I 2 I I I a I REGISTER (PCC)

ccx
0

1

P
0
R
T

C

Function

Parallel 1/0

Serial Interface

pca ~ - - -->-
PCI ~---->-
PC2 ~---->-
sca ,

'"
SCI
SC2 ,

'"

SCK .'"
~ ,

SRD
STD

SERIAL CONTROL PIN a
SERIAL CONTROL PIN I
SERIAL CONTROL PIN 2
SERIAL CLOCK PIN
SERIAL RECEIVE DATA PIN
SERIAL TRANSMIT DATA PIN

STD I SCK I SCI I
SRD SC2 sca

Figure 11-51. 551 Initialization Procedure

driven mode is selected. The continuous periodic mode requires that FSL 1 equals one and
FSLO equals zero. Figure 11- 50 shows the meaning of each individual bit in the CRB. These
bits should be set according to the application requirements.

Table 11-9(a) and 11-9(b) provide a convenient listing of PSR and PMO-PM7 settings for
the common data communication rates and the highest rate possible for the SSI for the
chosen crystal frequencies. The crystal frequency selected for Table 11-9(a) is the one used
by the DSP56000ADS board; the one selected for Table 11-9(b) is the closest one to 27
MHz that divides down to exactly 128 kHz. If an exact baud rate is required, the crystal
frequency may have to be selected. Table 11-10 gives the PSR and PMO-PM7 settings in
addition to the required crystal frequency for three common telecommunication frequen­
cies.

11.3.6 551 Exceptions

The SSI can generate four different exceptions (see Figures 11-52 and 11-53):

1. SSI Receive Data - occurs when the receive interrupt is enabled, the receive data
register is full, and no receive error conditions exist. Reading RX clears the pending
interrupt. This error-free interrupt can use a fast interrupt service routine for minimum
overhead.

2. SSI Receive Data with Exception Status-occurs when the receive interrupt is enabled,
the receive data register is full, and a receiver overrun error has occurred. ROE is
cleared by first reading the SSISR and then reading RX.

11-92 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

Table 11-9(a). 551 Baud Rates·
for a 20.48-MHz Crystal

Baud Rate (BPS) PSR PM

1000 1 $27F

2000 1 $13F

4000 1 $9F

8000 1 $4F

16K 1 $27

32K 1 $13

64K a $4F

128K a $27

5.12M 0 $00

BPS=fosc+(4 x (7(PSR)+1) x (PM+1)) where
fosc = 20.48 MHz

PSR=O or 1
PM=O to $FFF

Table 11-9(b). 551 Baud Rates
for a 26.624-MHz Crystal

Baud Rate (BPS) PSR PM

1000 1 $33F

2000 1 $19F

4000 1 $CF

8000 1 $67

16K 1 $33

32K 1 $19

64K 0 $67

128K 0 $33

6.656M 0 $00

BPS=fosc +(4 x (7(PSR)+1) x (PM+1)) where
fosc= 26.624 MHz

PSR=Oor1
PM=O to $FFF

Table 11-10. Crystal Frequencies
Required for Codecs

Baud Rate (BPS) PSR

1.536M 0

1.544M 0

2.048M 0

BPS=fosc+(4 x (7(PSR)+1) x (PM+1))
PSR=O or 1
PM=O to $FFF

PM
Crystal

Frequency

$03 24.576 MHz

$03 24.707 MHz

$02 24.576 MHz

3. SSI Transmit Data - occurs when the transmit interrupt is enabled, the transmit data
register is empty, and no transmitter error conditions exist. Writing to TX or the TSR
will clear this interrupt. This error-free interrupt may use a fast interrupt service routine
for minimum overhead.

4. SSI Transmit Data with Exception Status - occurs when the transmit interrupt is
enabled, the transmit data register is empty, and a transmitter underrun error has
occurred. TUE is cleared by first reading the SSISR and then writing to TX or the TSR
to clear the pending interrupt.

11.3.7 Operating Modes - Normal, Network, and On-Demand

The SSI has three basic operating modes and many data/operation formats. These modes
can be programmed by several bits in the SSI control registers. Table 11-11 lists the SSI
operating modes and some of the typical applications in which they may be used.

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 11-93

III

•

EXCEPTION
STARTING
ADDRESS

$0000

$0002

$0004

$0006

$0008

$OOOA

$OOOC

$OOOE

$0010

$0012

$0014

$0016

$0018

$001 A

$OO1C

$OOIE

$0020

$0022

$0024

$0026

$0028

$002A

$002C

$002E

$0030

$0032

$0034

$0036

$0038

$003A

$003C

$003E

11-94

PROGRAM MEMORY SPACE

EXCEPTION SOURCE

HARDWARE RESET TWO WORDS PER VECTOR

STACK ERROR t
TRACE

SWI (SOFTWARE INTERRUPT)

IROA EXTERNAL HARDWARE INTERRUPT EXTERNAL

IROB EXTERNAL HARDWARE INTERRUPT INTERRUPTS

SSI RECEIVE DATA
I

SSI RECEIVE DATA WITH EXCEPTION STATUS
SYNCHRONOUS

SERIAL
SSI TRANSMIT DATA INTERFACE

SSI TRANSMIT DATA WITH EXCEPTION STATUS INTERNAL

SCI RECEIVE DATA INTERRUPTS

SCI RECEIVE DATA WITH EXCEPTION STATUS SERIAL

j SCI TRANSMIT DATA COMMUNICATIONS
INTERFACE

SCI IDLE LINE
\

SCI TIMER

RESERVED FOR HARDWARE DEVELOPMENT

HOST RECEIVE DATA

HOST TRANSMIT DATA

HOST COMMAND (DEFAULT)

AVAILABLE FOR HOST COMMAND

AVAILABLE FOR HOST COMMAND

AVAILABLE FOR HOST COMMAND

AVAILABLE FOR HOST COMMAND

AVAILABLE FOR HOST COMMAND
INTERNAL

AVAILABLE FOR HOST COMMAND INTERRUPTS

AVAILABLE FOR HOST COMMAND HOST

AVAILABLE FOR HOST COMMAND
INTERFACE

AVAILABLE FOR HOST COMMAND

AVAILABLE FOR HOST COMMAND

AVAILABLE FOR HOST COMMAND

AVAILABLE FOR HOST COMMAND

ILLEGAL INSTRUCTION ,
-

Figure 11-52. 551 Exception Vector Locations

DSP56000/DSP56001 USER'S MANUAL MOTOROLA

X:$FFED
SSI CONTROL REGISTER (CRBI
(READIWRITEI

15 14 13 12 11 10 9 B

@EiJ RE TE I MOD I GCK I SYN I FSLl I

SSI
EXCEPTION

MASK

EXCEPTION
STARTING
ADDRESS

SSI EXCEPTION MASK

EXCEPTION VECTOR TABLE

$0000 tL===============J:::l

$OOOC

$OOOE

$0010

$0012

.-- -
SSI RECEIVE DATA

SSI RECEIVE DATA WITH EXCEPTIONS STATUS

SSI TRANSMIT DATA

SSI TRANSMIT DATA WITH EXCEPTION STATUS

'-

SSI STATUS REGISTER SSISR
X:$FFFE (READ ONLYI

7 6 543 2

CoDF I TOE J ROE I ruE) RFS TFS 1F1 IFO

SSI STATUS BITS

Figure 11-53. 551 Exceptions

RECEIVE
INTERRUPT SERVICE ROUTINE

1. INTERRUPT IS GENERATED WHEN RIE = 1.
RDF= 1. AND ROE=O.

2. PENDING INTERRUPT IS CLEARED BY
READING RX.

RECEIVE WITH EXCEPTION STATUS
INTERRUPT SERVICE ROUTINE

1. INTERRUPT IS GENERATED WHEN RIE = 1.
RDF=1. and ROE=1.

2. ROE IS CLEARED BY READING SSISR
FOLLOWED BY:

3. READING RX TO CLEAR PENDING
INTERRUPT .

4. APPLICATION-SPECIFIC CODE.

TRANSMIT
INTERRUPT SERVICE ROUTINE

1. INTERRUPT IS GENERATED WHEN TIE = 1.
TOE = 1. and TUE = O.

2. PENDING INTERRUPT IS CLEARED BY
WRITING TO TX OR TSR .

TRANSMIT WITH EXCEPTION STATUS
INTERRUPT SERVICE ROUTINE

1. INTERRUPT IS GENERATED WHEN
TIE=1. TDE=1. AND TUE=1.

2. TUE IS CLEARED BY READING SSISR
FOLLOWED BY:

3. WRITING TO TX OR TSR TO CLEAR
PENDING INTERRUPT.

4. APPLICATION-SPECIFIC CODE.

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 11-95

•

III

Table 11-11. SSI Operating Modes

nnftr~+in" -,..._.- •••• ::J
Serial Clock TX, RX Sections Typical Applications

Format

Normal Continuous Asynchronous Single Asynchronous Codec; Stream-Mode Channel Interface

Normal Continuous Synchronous Multiple Synchronous Codecs

Normal Gated Asynchronous DSP-to-DSP; Serial Peripherals (AlD,D/AI

Normal Gated Synchronous SPI-Type Devices; DSP to MCU

Network Continuous Asynchronous TDM Networks

Network Continuous Synchronous TDM Codec Networks
TDM DSP Networks

On-Demand Gated Asynchronous Parallel-to-Serial and Serial-to-Parallel Conversion

On-Demand Gated Synchronous DSP to SPI Peripherals

The data/operation formats are selected by choosing between gated and continuous clocks,
synchronization of transmitter and receiver, selection of word or bit frame sync, and whether
the LSB is transferred first or last. The following paragraphs describe how to select a
particular data/operation format and describe examples of normal-mode and network­
mode applications. The on-demand mode is selected as a special case of the network
mode.

The SSI can function as an SPI master or SPI slave, using additional logic for arbitration,
which is required because the SSI interface does not perform SPI master/slave arbitration.
An SPI master device always uses an internally generated clock; whereas, an SPI slave
device always uses an external clock.

11.3.7.1 DATA/OPERATION FORMATS. The data/operation formats available to the SSI
are selected by setting or clearing control bits in the CRB. These control bits are MOD,
GCK, SYN, FSL 1, FSLO, and SHFD.

11.3.7.1.1 Normal/Network Mode Selection. Selecting between the normal mode and
network mode is accomplished by clearing or setting the MOD bit in the CRB (see Figure
11-54); For normal mode, the SSI functions with one data word of I/O per frame (see Figure
11-55). For the network mode, 2 to 32 data words of I/O may be used per frame. In either
case, the transfers are periodic. The normal mode is typically used to transfer data to/from
a single device. Network mode is typically used in time division multiplexed (TOM) networks
of codecs or DSPs with multiple words per frame (see Figure 11-56, which shows two
words in a frame with either word-length or bit-length frame sync). The frame sync shown
in Figure 11-54 is the word-length frame sync. A bit-length frame sync can be chosen by
setting FSL 1 and FSLO for the configuration desired.

11.3.7.1.2 Continuous/Gated Clock Selection. The TX and RX clocks may be programmed
as either continuous or gated clock signals by the GCK bit in the CRB. A continuous TX

11-96 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

~
o
-f
o
::0
o
~

c en
"tI en
C)
o
o
o
C en
"tI en
C)
o
~
c
en
m
::0 en
~ »
2
C » .-

cO
-...J

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X:$FFED I RIE TIE RE TE I MOD I GCK I SYN I FLS1 I FLSO I SHFD I SCKD I SCD21 SCD1 I SCDO I OF1 I OFO I
*

*NORMAL MOD=O

SERIAL CLOCK

FRAMESYNC~

t TRANSMITTER INTERRUPT AND FLAGS SET t
SERIAL DATA -< DATA) < DATA)>---------

t RECEIVER INTERRUPT AND FLAGS SET +
NOTE: Interrupts occur and data is transferred once per frame sync.

*NETWORK MOD=1

SERIAL CLOCK

FRAME SYNC ~

TRANSMITTER INTERRUPTS AND FLAGS SET

t t t t ~t_~
SERIAL DATA =>< SLOT 1 X SLOT 2 X SLOT 3 X SLOT 1 X SLOT 2 ~

t t t t t
RECEIVER INTERRUPT AND FLAGS SET

NOTE: Interrupts occur every time slot and a word may be transferred.

Figure 11-54. CRB MOD Bit Operation

I

SSI CONTROL REGISTER B (CRB)
(READIWRITE)

FRAME SYNC ___ ...JI \ ________ ---'1
(FSlO = 0, FSl1 = 0)

FRAME SYNC ~ 1\ (FSlO=O,FSl1=l) _____________ ---J '----------

DATA OUT ----0CIXXXXXYJ----------~0ClXXX'IJX'IX')

FLAGS -----«'--____________ -L-X..l.--____ _

---~>*'I<E--SlOT 0 -~>~I <~---WAIT ----~>~I <~-SlOT 0 ---

Figure 11-55. Normal Mode, External Frame Sync (8 Bit, 1 Word in Frame)

FRAME SYNC ___ -II
(FSlO=O, FlSl =0)

\'--__ --..JI \ _-

FRAME SYNC ~ 1\ (FSlO=O, FlSl=1) '----_________ --J '------------

DATA----;

III
FLAGS __ -..JX'-____ ...JX'-____ -..JX'-____ -..JX'-__ _

--~. r--- SLOT 0 ---1-SLOT' --1- SLOT 0 ---1-SLOT ,-

Figure 11-56. Network Mode (8 Bit, 2 Words in Frame)

11-98 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

and RX clock is required in applications such as communicating with some codecs where
the clock is used for more than just data transfer. A gated clock, in which the clock only
toggles while data is being transferred, is useful for many applications and is required for
SPI compatibility. The frame sync outputs may be used as a start conversion signal by
some AID and D/A devices.

Figure 11-57 illustrates the difference between continuous clock and gated clock systems.
A separate frame-sync signal is required in continuous clock systems to delimit the active
clock transitions. Although the word-length frame sync is shown in Figure 11-57, a bit­
length frame sync can be used (see Figure 11-58). In gated clock systems, frame synchro­
nization is inherent in the clock signal; thus a separate sync signal is not required (see
Figures 11-59 and 11-60). The SSI can be programed to generate frame sync outputs in
gated clock mode but does not use frame sync inputs.

Input flags (see Figures 11-59 and 11-60) are latched on the negative edge of the first data
bit of a frame. Output flags are valid during the entire frame.

11.3.7.1.3 Synchronous/Asynchronous Operating Modes. The transmit and receive sec­
tions of this interface may be synchronous or asynchronous - i.e., the transmitter and
receiver may use common clock and synchronization signals (synchronous operating mode,
see Figure 11-61) or they may have their own separate clock and sync signals (asynchronous
operating mode). The SYNbit in CRB selects synchronous or asynchronous operation.
Since the SSI is designed to operate either synchronously or asynchronously, separate
receive and transmit interrupts are provided.

Figure 11-62 illustrates the operation of the SYN bit in the CRB. When SYN equals zero,
the SSI TX and RX clocks and frame sync sources are independent. If SYN equals one, the
SSI TX and RX clocks and frame sync come from the same source (either external or
internal).

Data clock and frame sync signals can be generated internally by the DSP or may' be
obtained from external sources. If internally generated, the" SSI clock generator is used to
derive bit clock and frame sync signals from the DSP internal system clock. The SSI clock
generator consists of a selectable fixed prescaler and a programmable prescaler for bit
rate clock generation and also a programmable frame-rate divider and a word-length divider
for frame-rate sync-signal generation.

Figures 11-63, 11-64, 11-65, and 11-66 show the definitions of the SSI pins during each of
the four main operating modes of the SSI I/O interface. Figure 11-63 uses a gated clock
(from either an external source or the internal clock), which means that frame sync is
inherent in the clock. Since both the transmitter and receiver use the same clock (syn­
chronous configuration), both use the SCK pin. SCO and SC1 are designated as flags or
can be used as general purpose-parallel liD. SC2 is not defined if it is an input; SC2 is the
transmit and receive frame sync if it is an output.

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 11-99

•

....
I
o o

c rn
"'tI
U'I
0)
o
o
~
c rn
"'tI
U'I
0)
o
o
~

c rn
m
:lJ en
3: » z
c »
r-

~
o
-I
o
::0 o s;:

II
15 14 13 12 11 10

I I I I I I I I I I I·· I I I I SSI CONTROL REGISTER B (CRB) X:$FFED RIE TIE RE TE MOD GCK SYN FSL1 FSLO SHFD SCKD SCD2 SCD1 SCDO OF1 OFO (READIWRITE) .

SERIAL CLOCK

FRAME SYNC

SERIAL DATA

*

~

*CONTINUOUS CLOCK GCK=O

DATA CHANGES
I

I
DATA STABLE

----/ DATA) (DATA \>------

NOTE: Frame sync is required to tell when data is present.

*GATED CLOCK GCK=1

DATA CHANGES

SERIAL CLOCK

DATA STABLE

SERIAL DATA ----/ DATA) (DATA \>--------

NOTES: Figure 11-57
1. Word synchronization is inherent inthe serial clock signal.
2. Frame Sync generation is optional.

Figure 11-57. CRB GCK Bit Operation

s:
o
~ o
:0
o
);

c en
"'C en
0)
o
o
o
C en
"'C en
0)
o
~
c
en
m
:a en
s:
l>
Z
C
l> r-

I
~

~

CONTINUOUS CLOCK

DATA OUT (FOR DC>O)

DATA OUT (FOR DC=O, OR
NETWORK MODES)

DATA IN LATCHED

INPUT FLAGS LATCHED

FRAME SYNC OUT:
FSLO = 0, FSLl = 1

FSLO = Om FSLl = 0

OUTPUT FLAGS

FRAME SYNC IN:
FSLO = 0, FSLl = 1

FSLO=, FSLl=O

DATA OUT FOR:
FSLl = 0, FSLO = 0

OUTPUT FLAGS

NOTES:

I I I I I
I -----;;:----'---1:===:J ,.-----..1 I I I I

T f f '" ~ 16

~ * * * * * * * * * ~ : :, , , t , + +:,:
I I 4 I I
I 1 6 I I I I I I
I I I I
I I I I
I I I (DC=O) I

1 } { }
I I I
~--~y ~~----~---

I I

"-------..~ ~
I ~ I I I I I ~

..p SK\SSSSSSS\SSSSSS\SSSSSSSSSSSSsssssssssi (DC=O)
I .L I I I I I I I I
I !. I .L . I I .l. I I I

/llT17 I\SS\S\SSSSSiSSSSS&\\S\\SSS\SISSS\\\SSS\\
I I I I I I I I

t ..I t 7 ~ I I I I I I
I - I ,- I I I I I I
+------< -<-<* -< <==J.< X I I I I I
I _ I I. I I I I I I I
I ~ ~ I I I I I I I
: DATA N~)*FINED: : : : : : :

I

1. For FSL 1 = 0 the frame sync is latched and enables the STD output buffer, but data may not be valid until rising edge of bit clock.
2. WL bit frame sync (FSLO=O, FLSl =0) is not defined for DC=O in continuous clock mode.
3. Data and flags transistion after external frame sync but not before rising edge of clock.

Figure 11-5S. Continuous Clock Timing Diagram (S-Bit Example)

I

~

~

~

o
N

c
(J)
~
U1
en
o
o
o
C
(J)
~
U1
en
o
o
.~

c
(J)
m
:a
en
s:
:t>
:2:
C
:t>
r-

~
o
--i
o
:xl
o
r­»

I

GATED CLOCK 1
OUTPUT (DC>O) :

DATA OUT: : "------;1----..-----

(DC>O) >K >K ~-------
1 1

GATED CLOCK 1 1
(DC=O) 1 1 1 1 1 1 1 1 1 1

DATA OUT 1 1 1 1 1 1 1 1 1 1

(DC=O) ~ >:< t ~ t ? J. J. * J. ~ J. * >:< ~ r===
DATA IN LATCHED I 1 7 1 6 I! I '3 I' t 1 • 1 1 1 1 1 1 2 1 1 0
FRAME SYNC OUT t. 1 1 1 1 1 (DC=O) 1
(FSLO=O, FSLl = 1) Ii \. 1 / i
FRAME SYNC OUT 1 1 1 1
(FSLO = 0, FSLl = 0) I: '}'-___ ..L...-_.

INPUT FLAGS LATCHED 1 6 1 1
1 1 1

OUTPUT FLAGS (DC>O) ~---*: :
1 1
1 OUTPUT FLAGS (DC = 0) ~----"X:----T----~---+----+------L-----:---_--!. ____ I,--__ ----.;
1 ~~--~-

1

Figure 11-59. Internally Generated Gated Clock Timing (a-Bit Example)

s::
o
--I
o
:Xl
o
s;:

c en
"'0
U1
en
o
o
o
C en
"'0
U1
en
o
g
c
en
m
::0
en
s: » z
c »
r-

I
o w

GATED CLOCK
INPUT (DC>O)

DATA OUT
(DC>O)

GATED CLOCK
(DC=O)

DATA OUT
(DC=O)

DATA IN LATCHED

INPUT FLAGS LATCHED

1 ~ y-"----/.- ~ ~ ~~
~I '---'I 1 '---/I "--'1 1
1 1 1 1 1 1 1 1 r tdhgc > = 5 ns 1

7-----~~----~* f * * * ~ : 1 1 1
1 1 1

1

1 1 1 1 1 1 1
1 0 1 1 1 1 1 1 1 1 1 6

~ ~****~~
I Y y I Y Y t Y Y 1 Y
I I I
I I 1 16 1 I
I I I
1 1 1
1 1 I
1 1 1

NOTES:
1. Output enabled on rising edge of first clock input.
2. Output disabled on falling edge of last clock pulse.
3. tdhgc is guaranteed by circuit design.
4. Frame syncs (in or out) are not defined for extenal gated clock mode.

Figure 11-60. Externally Generated Gated Clock Timing (8-Bit Example)

I

III

SERIAL CLOCK

START OF
FRAME

~----- ONE FRAME-----~

~ ___ WORD TRANSFER RATE (=3) ___ ---l~
3 WORDS PER FRAME

WORD WORD WORD WORD

FRAME SYNC .--l I

INTERNAL INTERRUPTS AND FLAGS t TRANSMITIER EMPTY t
TRANSMIT DATA--< XMIT DATA)>--------------«r--X-MI-T-DA-T-A"""")>--------

INTERNAL INTERRUPTS AND FLAGS t RECEIVER FUll t
RECEIVE DATA --<r--R-EC-D-AT-A---) < REC DATA)>--------

I.. 3-STATE ·1 r--- 3-STATE ----'.~

Figure 11-61. Synchronous Communication

Figure 11-64 shows a gated clock (from either an external source or .the internal clock),
which means that frame sync is inherent in the Clock. Since this configuration is asyn­
chronous, SCK is the transmitter clock pin (input or output) and SCQ is the receiver clock
pin (input or output). SC1 and SC2 are designated as receive or transmit frame sync,
respectively, if they are selected to be outputs; these bits are undefined if they are selected
to be inputs. SC1 and SC2 can also be used as general-purpose parallel liD.

Figure 11-65 shows a continuous clock (from either an external source orthe internal clock),
which means that frame sync must be a separate signal. SC2 is used for frame sync, which
can come from an internal or external source. Since both the transmitter and receiver use
the same clock (synchronous configuration), both use the SCK pin. SCQ and SC1 are des­
ignated as flags or can be used'as general-purpose parallel liD.

Figure 11-66 shows a continuous clock (from either an external source or the internal clock),
which means that frame sync must be a separate signal. SC1 is used for the receive frame
sync, and SC2 is used for the transmit frame sync. Either frame sync can come from an
internal or external source. Since the transmitter and receiver use different clocks (asyn­
chronous configuration), SCK is used for the transmit clock, and SCQ is used for the receive
clock.

11-104 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

SSI CONTROL REGISTER B (CRBI
(REAOIWRITEI

15 14 13 12 11 10 9 8 7 6 5 4 3 2

X:$FFED I RIE TIE RE TE I MOD I GCK I SYN I FSL1 I FSLO I SHFD I SCKD I SCD21 SCD1 I SCDO I OF1 OFO

*

* ASYNCHRONOUS SYN = 0

CLOCK

TRANSMITIER

FRAME
SYNC

SCK ~E:;.;..X;.....TE;.;.;R,;.;.NA.....;L;...;T;.....RA;.....N.....;S;.;.;,M;.;.;IT....;C~L..;;.;OC;.;.;K~_-CL ~>--E_XT_E_RN_A_L_T_RA_N_S_M_IT_F_RA_M_E_S_YN_C--< SC2

SSI BIT CLOCK ~_..;,;,IN....;T~ER_N_A_L ,;;.;CL;.;;,O,;;.;CK.;.....-___ --I INTERNAL FRAME SYNC

~ EXTERNAL RECEIVE CLOCK EXTERNAL RECEIVE FRAME SYNC
~-----------------~

~~----------~~

RECEIVER

NOTE: Transmitter aod receiver may have different clocks and frame syncs.

~>--_E_X_TE_R_NA_L_C....;LO;.;.;,C_K _____ O

SSI BIT CLOCK >-_IN_T_ER_N_A_L _CL_O_CK ____ -o

*SYNCHRONOUS SYN = 1

CLOCK

CLOCK

TRANSMITIER

RECEIVER

FRAME
SYNC

NOTE: Transmitter and receiver have the same clock frame syncs.

EXTERNAL FRAME SYNC ..0-----------< SC2

INTERNAL FRAME SYNC <
O~------------~

Figure 11-62. eRB SYN Bit Operation

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 11-105

III

III

11-106

:~: I. • STD

SRD

PC6 SCK (TXC AND RXCI

SSI
SCD

PC3 FLAG D
SCl

PC4 FLAG 1
SC2

PC5 • FSt AND FSr

Figure 11-63. Gated Clock - Synchronous Operation

PCS

PC7

PC6

SSI

PC3
SCD

PC4
SCl

SC2
PC5

" STD

SRD

SCK (TXCI

RXC

FSr -----l.~

FSt -----l.~

Figure 11-64. Gated Clock - Asynchronous Operation

PCS

PC7

PC6

SSI

PC3

PC4

PC5

SCD

SCl

SC2

STD

SRD

SCK (TXC AND RXCI

FLAG D

FLAG 1

FSr AND FSt

Figure 11-65. Continuous Clock - Synchronous Operation

PCS

PC7 ~~

PC6

SSI

PC3

PC4

PC5

SCQ

SCl

SC2

STD

SRD

SCK (TXCI

RXC

FSr

FSt

Figure 11-66. Continuous Clock - Asynchronous Operation

OSP56000/0SP560,01 USER'S MANUAL MOTOROLA

11.3.7.1~4 Frame Sync Selection. The transmitter and receiver can operate totally inde­
pendent of each other. The transmitter can have either a bit-long or word-long frame-sync
signal format, and the receiver can have the same or opposite format. The selection is
made by programming FSLO and FSL 1 in the CRB as shown in Figure 11-67.

1. If FSL1 equals zero (see Figure 11-68), the RX frame sync is asserted during the entire
data transfer period. This frame sync length is compatible with Motorola codecs, SPI
serial peripherals, serial AID and D/A converters, shift registers, and telecommuni­
cation PCM serial liD.

2. If FSL 1 equals one (see Figure 11-69), the RX frame sync pulses active for one bit
clock immediately before the data transfer period. This frame sync length is compatible
with Intel and National components, codecs, and telecommunication PCM serial 1/0.

The ability to mix frame sync lengths is useful in configuring systems in which data is
received from one type device (e.g., codec) and transmitted to a different type device.

~

FSLO controls whether RX and TX have the same frame sync length (see Figure 11-67). If
FSLO equals zero, RX and TX have the same frame sync length, which is selected by FSL 1.
If FSLO equals one, RX and TX have different frame sync lengths, which are selected by
FSL1.

The SSI receiver looksfor a receive frame sync leading edge only when the previous frame
is completed. If the frame sync goes high before the frame is completed (or before the last
bit of the frame is received in the case of a bit frame sync), the current frame sync will not
be recognized, and the receiver will be internally disabled until the next frame sync. Frames
do not have to be adjacent - i.e., a new frame sync does not have to immediately follow
the previous frame. Gaps of arbitrary periods can occur between frames. The transmitter
will be three-stated during these gaps.

11.3.7.1.5 Shift Direction Selection. Some data formats, such as those used by codecs,
specify MSB first other data formats, such as the AES-EBU digital audio, specify LSB first.
To interface with devices from both systems, the shift registers in the SSI are bidirectional.
The MSB/LSB selection is made by programming SHFD in the CRB.

Figure 11-70 illustrates the operation of the SHFD bit in the CRB. If SHFD equals zero (see
Figure 11-70(a)),'data is shifted into the receive shift register MSB first and shifted out of
the transmit shift register MSB first. If SHFD equals one (see Figure 11-70(b)), data is shifted
into the receive shift register LSB first and shifted out of the transmit shift register LSB
first.

11.3.7.2 NORMAL MODE EXAMPLES. The normal SSI operating mode characteristically
. has one time slot per serial frame, and data is transferred every frame sync. When the SSI
is not in the normal mode, it is in the network mode. The MSB is transmitted first (SHFD = 0),
with overruf1 and underrun errors detected by the SSI hardware. Transmit flags are set

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 11-107

•

III

SSI CONTROL REGISTER B (CRB)
(REAOIWRITE)

15 13 12 11 10

X:$FFED I RIE TIE RE TE I MOD I GCK I SYN I FSLl I FSLO I SHFD I SCKD I SCD21 SCD1 I SCDO I OF1 OFO

SERIAL CLOCK

RX, TX FRAME SYN~

RX, TX SERIAL DAT~

* *
*WORD LENGTH: FSL1 =0, FSLO=O

I I
DATAl)>------------«'-_D_A_TA ____ >--------

NOTE: Frame sync occurs while data is valid.

*ONE BIT: FSl1 = 1, FSLO = 0

RX, TX FRAME SYNC~ _______________ -.JnL.. ___________ _
RX, TX SERIAL DATA ~

~ DATA)>----------« DATA)>-------
NOTE: Frame sv.nc occurs for one bit time preceding the data.

*MIXED FRAME LENGTH: FSl1=O, FSLO=1

SERIAL CLOCK

RX FRAME SYN~

RX SERIAL DAT~
DATA) (DATA)

TX FRAME SYN~ n
TX SERIAL DAT~

DATA) (DATA)

*MIXED FRAME LENGTH: FSL1=1, FSLO=l

SERIAL CLOCKJUlJ1IlJlJ1J

RXFRAMESYN~~ ________________ ~flL.. ____________________ ___
RX SERIAL DAT~

TX FRAME SYN~

TX SERIAL DAT~

11-108

DATA)>----------«'-_DA_T_A ______)>-------

I I I~ ____ _
DATA) (DATA)>------

Figure 11-67. eRB FSLO and FSL 1 Bit Operation

DSP56000/DSP56001 USER'S MANUAL MOTOROLA

s
o
--i o
:0
o
~

c
C/)
"'C
U1
en
o
o
o
C
C/)
"'C
U1
en
o o
..&

c
C/)
m
:::tI
en
:::
l>
:2
C
l>
r-

-> ,
->
o
(0

15 14 13 12 11 10 7 _ _

X:$FFEC I PSR I 0 I 0 I 0 I 0 I 0 I 1 I 0 I PM7 I PM6 I PM5 I PM4 I PM3 I PM2 I PMl I PMO I ~RS~A~:~~~i) REGISTER B (CRB)

WLl WLO DC4 DC3 DC2 DCl DCO

~~/
8-BIT WORD LENGTH 3-WORD FRAME RATE

15 14 13 12 11 10

X:$FFED, .. _ , ._ , ,_ .. _ , , ___ . , ____ , _.

MOD
SSI MODE SELECT

O=NORMAL

GCK -----'
GATED CLOCK CONTROL
0= CONTINUOUS CLOCK

SYN ---------'
SYNC/ASYNC CONTROL

1 = SYNCHRONOUS

SERIAL CLOCK

SCD2
SERIAL CONTROL 2 DIRECTION
1 = OUTPUT

L----SCKD
CLOCK SOURCE DIVISION
1 = OUTPUT

L--_______ FLSO

FRAME SYNC LENGTH
0= DIFFERENT LENGTHS

L-_________ FSLl FRAME

SYNC LENGTH
0= WORD CLOCK

FRAME SYNC ~ I
t INTERNAL INTERRUPTS AND FLAGS t ,....-----..

TRANSMIT DATA ~ DSP DATA) < DSP DATA)>--------
,....----~ t INTERNAL INTERRUPTS AND FLAGS t

RECEIVE DATA --(CODEC DATA) < CODEC DATA)>--------

Figure 11-68. Normal Mode Initialization for FSL 1 = 0 and FSLO = 0

I

I
o

c en
"'C
U1
en
o
o e c en
"'C
U1
en
o
o -.....
C en
m
:::a
en
s:
:I=­
Z
C
:I=­
r-

~
o
-I o
::c
o
~

I

15 14 13 12 11 10 , -I r-.----:-I T ,. -, .. -=-------r; -r-:= '.=-:-:-1. ~-r , , 1 SSI CONTROL REGISTER A (CRA)
X:$FFEC PSR 0 0 ~ 0 0 0 OJPM7 jPM6 PM5JPM4JPM3 PM2 PMl PMO (READIWRITE)'

WLl WLO DC4 DC3 DC2 DCl DCO I I I I I I I CONTINUOUS PERIODIC
1-. _-1. __ 8 BIT WORD LENGTH

15 14 13 12 11 10 6 3 2
SSI CONTROL REGISTER B (CRB)

X:$FFED , RIE TIE RE TE JO JO 'Jl , 1 °l' SHFD , lL ~ :~:: ~:~,:: ICO:~ROl ::IR~;::AVRlTEJ
MOD SSI MODE SELECT 1 = OUTPUT

0= NORMAL SCKD CLOCK SOURCE DIRECTION

GCK GATED CLOCK CONTROL 1 = OUTPUT

0= CONTINUOUS FLSO FRAME SYNC LENGTH
0= DIFFERENT LENGTHS

SYN SYNC/ASYNC CONTROL

SERIAL CLOCK

1 = SYNCHRONOUS FSLl FRAME SYN LENGTH
1 = WL CLOCK FOR RX

FRAMESYNC ~ n n n n L
TRANSMIT AND RECEIVE

SERIAL DATA =>< DATA 1 X DATA 2 X DATA 3 X DATA 4 X DATA 5 x=

Figure 11-69. Normal Mode Initialization for FSL 1 = 1 and FSLO = 0

s:
o
-l o
:::0
o
s;:

c en
""C
U1
en
o
o e c en
""C
U1
en
o
~
c en
m
::a
eli
S »
:2:
C »
r-

I
-"

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X:$FFED I RIE TIE RE TE I MOD I GCK I SYN I FSLl I FSLO I SHFD I SCKD I SCD21 SCD1 I SCDO I OF1 I OFO I ~i~ACDO~TR~~~) REGISTER B (CRB)

*

23 1615
°

87

X:$FFEF RECEIVE HIGH BYTE I RECEIVE MIDDLE BYTE I RECEIVE LOW BYTE ISERIAL RECEIVE DATA REGISTER (RX)
(READ ONLY)

X:$FFEF

23

23

RECEIVE HIGH BYTE
~

07 07 o

1615 87

I .RECEIVE MIDDLE BYTE I .RECEIVE LOW BYTE ISERIAL RECEIVE SHIFT REGISTER (RX)

07~O~ @
8 BIT 12 BIT 16 BIT 24 BIT

1615 87

SERIAL RECEIVE DATA REGISTER (RX)
RECEIVE HIGH BYTE RECEIVE LOW BYTE

L-... __ --r ___ --L ___ --r ___ -L-___ r--__ ----I,(READ ONLY)
RECEIVE MIDDLE BYTE

07 07

23 1615 87

RECEIVE HIGH BYTE

•
RECEIVE MIDDLE BYTE

•
RECEIVE LOW BYTE

SERIAL TRANSMIT SHIFT REGISTER •
07 07

(a) SHFD=O

Figure 11-70. eRB SHFD Bit Operation (Sheet 1 of 2)

I

I
~

~

N

c en
"'tJ
U'1
C')
o
o
o
C en
"'tJ
U'1
C')
o g
c
en
m
:%J
en
~ »
2
C »
r-

$
o
--i
o
:lJ
o
~

I
23 87

X:$FFEF RECEIVE MIDDLE BYTE RECEIVE LOW BYTE SERIAL RECEIVE DATA REGISTER (RX)
':-__ -,-___ -L-. __ ---,:--__L __ ----r ___ --.J(READ ONLY)

07

23 1615 87

RECEIVE HIGH BYTE • RECEIVE MIDDLE BYT~ RECEIVE LOW BYTE. ISERIAL RECEIVE SHIFT REGISTER (RX)

07 07

~ 87

TRANSMIT MIDDLE BYTE TRANSMIT LOW BYTE SERIAL TRANSMIT DATA REGISTER (TX)

~---,------1-----.----L---r-------1(WRITE ONLY)
07 07

23 f 1615

TRANSMITHlGHBYT! 07~BYT~ o SES REGISTER ~

(b) SHFD=1

Figure 11-70. eRB SHFD Bit Operation (Sheet 2 of 2)

when data is transferred from the transmit data register to the transmit shift register. The
receive flags are set when data is transferred from the receive shift register to the receive
data register.

Figure 11-71 shows an example of using the SSI to connect an MC15500 codec with a
DSP56000/DSP56001. No glue logic is needed. The serial clock, which is generated internally
by the DSP, provides the transmit and receive clocks (synchronous operation) for the codec.
SC2 provides all the necessary handshaking. Data transfer begins when the frame sync is
asserted. Transmit data is clocked out and receive data is clocked in with the serial clock
while the frame sync is asserted (word-length frame sync). At the end of the data transfer,
DSP internal interrupts programmed to transfer data to/from will occur, and the SSISR will
be updated.

11.3.7.2.1 Normal Mode Transmit. The conditions for data transmission from the SSI are
as follows:

1. Transmitter is Enabled (TE = 1).
2. Frame sync (or clock in gated clock mode) is active.

When these conditions occur in normal mode, the next data word will be transferred from
TX to the transmit shift register, the TDE flag will be set (transmitter empty), and the

MC1550x DSP56000
CODEC FILTER

ANALOG
TXI TOO SRD INPUT ROD STO

TOC SCK

ANALOG ROC

OUTPUT RXO TOE SC2
RCE
MSI

SERIAL CLOCK

SERIAL SYNC --.J

TRANSMITDATA-< DSPDATA)>------------« DSPDATA)>--------

RECEIVE DATA -< CODEC DATA)>------------« CODEC DATA)>--------

Figure 11-71. Normal Mode Example

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 11-113

-

III

transmit interrupt will occur if TIE equals one (transmit interrupt enabled.) The new data
word will be transmitted immediately.

The transmit data output (STD) is three-stated, except during the data transmission period.
The optional frame sync output, flag outputs, and clock outputs are not three-stated even
if both receiver and transmitter are disabled.

The optional output flags are always updated at the beginning of the frame, regardless of
TE. The state of the flag does not change for the entire frame.

Figure 11-72 is an example of transmitting data using the SSI in the normal mode with a
continuous clock, a bit-length frame sync, and 16-bit data words. The purpose of the
program is to interleave and transmit right and left channels in a compact disk player. Four
SSI pins are used: SCO is used as an output flag to indicate right-channel data (OFO = 1)
or left-channel data (OFO=O); SC2 is TX and RX frame sync out; STD is transmit data out;
and SCK clocks the transmit data out. Equates are set for convenience and readability. Test
data is then put in the low X: memory locations. The transmit interrupt vector contains a
JSR instruction (which forms a long interrupt). The data pointer and channel flag are
initialized before initializing CRA and CRB. It is assumed that the DSP CPU and SSI have
been previously reset. At this point, the SSI is ready to transmit except that the interrupt
is masked because the MR was cleared on reset and port C is still configured a general­
purpose liD. Unmasking the interrupt and enabling the SSI pins allows transmission to
begin. A "jump to self" instruction causes the DSP to hang and wait for interrupts to
transmitthe data. When an interrupt occurs, a JSR instruction at the interrupt vector location
causes the XMT routine to be executed. Data is then moved to the TX register, and the
data pointer is incremented. The flag is tested by the JSET instruction and, if it is set, a
jump to left occurs, and the code for the left channel is executed. If the flag is not set, the
code for the right channel is executed. In either case, the channel flag in XO and then the
output flag are set to reflect the channel being transmitted. Control is then returned to the
main program, which will wait for the next interrupt.

11.3.7.2.2 Normal Mode Receive. If the receiver is enabled, a data word will be clocked
in each time the frame sync signal is generated (internal) or detected (external). After
receiving the data word, it will be transferred from the SSI receive shift register to the
receive data register (RX), RDF will be set (receiver full), and the receive interrupt will occur
if it is enabled (RIE = 1).

The DSP program has to read the data from RX before a new data word .is transferred
from the receive shift register; otherwise, the receiver overrun error will be set (ROE = 1).

11-114 DSP56000/DSP560Q1 USER'S MANUAL MOTOROLA

· ** ,
SSI and other 1/0 EQUATES *

· ** ,
IPR
CRA
CRB
PCC
TX
FLG

EQU
EQU
EQU
EQU
EQU
EQU

ORG
DC
DC
,DC
DC

$FFFF
$FFEC
$FFED
$FFE1
$FFEF
$0010

X:O
$AAAAOO
$333300
$CCCCOO
$FOFOOO

.** ,
INTERRUPT VECTOR *

· ** ,

ORG P:$0010
JSR XMT

.** ,
MAIN PROGRAM *

· ** ,
ORG
MOVE
MOVE
MOVE
MOVE

P:$40
#O,RO
#3,MO
#O,XO
XO,X:FLG

· ** ,
Initialize SSI Port

· ** ,

MOVEP
MOVEP

MOVEP

#$3000,X:IPR
#$401 F,X:CRA

#$5334,X: CR B

;Data to transmit.

;Pointer to data buffer.
;Set modulus to 4.
;Initialize channel flag for SSI flag.
;Start with right channel first. '

;Set interrupt priority register for SSI.
;Set continuous clock = 5.12/32 MHz
;word length = 16.
;Enable TIE and TE; make clock and
;frame sync outputs; frame
;sync= bit mode; synchronous mode;
;make SCO an output.

Figure 11-72. Normal Mode Transmit Example (Sheet 1 of 2)

MOTOROLA OSP56000/0SP56001 USER'S MANUAL 11-115

-

-

. ** ,
Init SSI Interrupt

.** ,

ANDI
MOVEP

JMP

#$FC,MR
#$01 FS,X:PCC

*

. ** ,
MAIN INTERRUPT ROUTINE *

.** ,

XMT MOVEP X:(RO) + ,X:TX
JSET #O,X:FLG,LEFT

RIGHT BCLR #O,X:CRB

MOVE #>$01,XO
MOVE XO,X:FLG
RTI

LEFT BSET #O,X:CRB
MOVE #>$OO,XO
MOVE XO,X:FLG
RTI

END

;Unmask interrupts.
;Turn on SSI port.

;Wait for interrupt.

;Move data to TX register.
;Check channel flag.

;Clear SCO indicating right channel
;data
;Set channel flag to 1 for next data.

;Set SCO indicating left channel data.
;Clear channel flag for next data.

Figure 11-72. Normal Mode Transmit Example (Sheet 2 of 2)

Figure 11-73 illustrates the program that receives the data transmitted by the program
shown in Figure 11-72. Using the flag to identify the channel, the receive program receives
the right- and left-channel data and separates the data into a right data buffer and a left
data buffer. The program shown in Figure 11-73 begins by setting equates and then using
a JSR instruction at the receive interrupt vector location to form a long interrupt. The main
program starts by initializing pointers to the right and left data buffers. The IPR, CRA, and
CRB are then initialized. The clock divider bits in the CRA do not have to be set since an
external receive clock is specified (SCKD = 0). Pin sca is specified as an input flag (SYN = 1,
SCDO=O); pin SC2 is specified as TX and RX frame sync (SYN=1, SCD2=0). The SSI port
is then enabled and interrupts are unmasked, which allows the SSI port to begin data
reception. A jump-to-self instruction is then used to hang the processor and allow interrupts
to receive the data. Normally, the processor would execute useful instructions while waiting
for the receive interrupts. When an interrupt occurs, the JSR instruction at the interrupt
vector location transfers control to the RCV subroutine. The input flag is tested, and data
is put in the left or right data buffer depending on the results of the test. The RTI instruction
then returns control to the main program, which will wait for the next interrupt.

11-116 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

· ** ,
SSI and other 1/0 EQUATES *

· ** ,
IPR
SSISR
CRA
CRB
PCC
RX

EQU
EQU
EQU
EQU
EQU
EQU

$FFFF
$FFEE
$FFEC
$FFED
$FFE1
$FFEF

· ** ,
INTERRUPT VECTOR *

· ** ,
ORG
JSR

P:$OOOC
RCV

· ** ,
MAIN PROGRAM *

· ** ,

ORG
MOVE
MOVE
MOVE
MOVE

P:$40
#O,RO
#$08,R1
#1,MO
#1,M1

· ** ,
Initialize SSI Port

· ** ,
MOVEP
MOVEP
MOVEP

#$3000,X:IPR
#$4000,X: CRA
#$A300,X:CRB

· ** ,
Init SSI Interrupt

· ** ,

ANDI
MOVEP
JMP

#$FC,MR
#$01 F8,X:PCC

*

; Pointer to memory buffer for
;received data. Note data will be
;split between two buffers which are
;modulus 2.

;Set interrupt priority register for SSI.
;Set word length = 16 bits.
;Enable RIE and RE; synchronous
;mode with bit frame sync;
;clock and frame sync are
;external; SCO is an input.

; Unmask interrupts.
;Turn on SSI port.
;Wait for interrupt.

Figure 11-73. Normal Mode Receive Example (Sheet 1 of 2)

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 11-117

III

-

.** ,
MAIN INTERRUPT ROUTINE *

.** ,

RCV
LEFT

RIGHT

JSET
MOVEP
RTI
MOVEP
RTI
END

#D,X:SSISR,RIGHT
X:RX,X:(RD) +

X:RX,X:(R1)+

;Test SCD flag.
; If SCD clear, receive data
;into left buffer (RD).
; If SCD set, receive data
;into right buffer (R1).

Figure 11-73. Normal Mode Receive Example (Sheet 2 of 2)

11.3.7.3 NETWORK MODE EXAMPLES. The network mode, the typical mode in which
the DSP would interface to a TDM codec network or a network of DSPs, is compatible with
Bell and CCITT PCM data/operation formats. The DSP may be a master device (see Figure
11-74) that controls its own private network or a slave device that is connected to an existing
TDM network, occupying one or more time slots. The key characteristic of the network
mode is that each time slot (data word time) is identified by an interrupt or by polling
status bits, which allows the option of ignoring the time slot or transmitting data during
the time slot. The receiver operates in the same manner except that data is always being
shifted into the receive shift register and transferred to the RX. The DSP reads the receive
data register and uses or discards the contents. Overrun and underrun errors are detected.

The frame sync signal indicates the beginning of a new data frame. Each data frame is
divided into time slots; transmission or reception can occur in each time slot (rather than
in just the frame sync time slot as in normal mode). The frame rate dividers (controlled
by DC4, DC3, DC2, DC1, and DCD) control the number of time slots per frame from 2 to
32. Time-slot assignment is totally under software control. Devices can transmit on multiple
time slots, receive multiple time slots, and the time-slot assignment can be changed dy­
namically.

MASTER TRANSMIT--.----------.----------r----------,r--­

MASTER RECEIVE--t---r-------.-+--------.--t--------.-t-

DSP56000 MASTER

STD

SRD

SCK
TIME SLOT 1 SC2

DSP56000 SLAVEI

STD
SRD

SCK
TIME SLOT 2 SC2

DSP56000 SLAVE2

STD
SRD

SCK
TIME SLOT 3

DSP56000 SLAVE3

STD

TIME SLOT 4

MASTER CLOCK---t-.....J..-------~.L-------_+_--L.-------~~
MASTER SYNC_--'-________ L--_______L.. ________ L--_

Figure 11-74. Network Mode Example

11-118 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

A simplified flowchart showing operation of the network mode is shown in Figure 11-75.
Two counters are used to track the current transmit and receive time slots. Slot counter
one (SLOTCT1) is used to track the transmit time slot; slot counter two (SLOTCT2) is used
for receive. When the transmitter is empty, it generates an interrupt;a test is then made
to see if it is the beginning of a frame. If it is the beginning of a frame, SLOTCT1 is cleared
to start counting the time slots. If it is not the beginning of a frame, SLOTCT1 is incremented.
The next test checks to see if the SSI should transmit during this time slot. If it is time to
transmit, data is written to the TX; otherwise, dummy data is written to the TSR, which
prevents a transmit underrun error from occurring and three-states the STD pin. The DSP
can then return to what it was doing before the interrupt and wait for the next interrupt
to occur. SLOTCT1 should reflect the data in the shift registers to coincide with TFS.
Software must recognize that the data being written to TX will be transmitted in time slot
SLOTCT1 plus one.

The receiver operates in a similar manner. When the receiver is full, an interrupt is gen­
erated, and a test is made to see if this is the beginning of a frame. If it is the beginning
of a frame, SLOTCT2 is cleared to start counting the time slots. If it is not the beginning
of a frame, SLOTCT2 is incremented. The next test checks to see if the data received is
intended for this DSP. If the current time slot is the one assigned to the DSP receiver, the
data is kept; otherwise, the data is discarded, and the DSP can then return to what it was
doing before the interrupt. SLOTCT2 should reflect the data in the receive shift register to
coincide with the RFS flag. Software must recognize that the data being read from RX is
for time slot SLOTCT2 minus two.

Initializing the network mode is accomplished by setting the bits in CRA and CRB as follows
(see Figure 11-76):

1. The word length must be selected by setting WL 1 and WLO. In this example, an 8-bit
word length was chosen (WL 1 = 0 and WLO = 0).

2. The number of time slots is selected by setting DC4-DCO. Four time slots were chosen
for this example (DC4-DCO = $03).

3. The serial clock rate must be selected by setting PSR and PM7-PMO (see Tables 11-
9 and 11-10).

4. RE and TE must be set to activate the transmitter and receiver. If interrupts are to be
used, RIE and TIE should be set. RIE and TIE are usually set after everything else is
configured and the DSP is ready to receive interrupts.

5. The network mode must be selected (MOD = 1).

6. A continuous clock is selected in this example by setting GCK = O.

7. Although it is not required for the network mode, synchronous clock control was
selected (SYN = 1).

8. The frame sync length was chosen in this example as word length (FSL 1 = 0) for both
transmit and receive frame sync (FSLO=O). Any other combinations could have been
selected, depending on the application.

9. Control bits SHFD, SCKD, SCD2, SCD1, SCDO, and the flag bits (OF1 and OFO) should
be set as needed for the application.

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 11-119

III

.....
I

N o

c en
"0
U1
en
0
0
0

C en
"0
U1
en
0
0
~

c en
m
::c en
s: » z
C »
r-

~
o
-;
o
::IJ
o
~

I

CLEAR SLOT
NUMBER
SLOTcn

WRITE DATA
TO TX

CLEAR SLOT I INCREMENT SLOT NUMBER I INCREMENT SLOT NUMBER I
SLOTCTl = SLOTcn + 1 NUMBER

SLOTCT2 = SLOTCT2 + 1
SLOTCT2=O

I WRITE I KEEP DATA I DISCARD
DUMMY

DATA TO TSR I DATA

Figure 11-75. TOM Network Software Flowchart

SSI CONTROL REGISTER A (CRA)
(READIWRITE)

15 14 13 12 11 10 76543210

X:$FFEC I PSR I 0 I 0 I 0 I 0 o I 1

DCl WLl WLO DC4 DC3 DC2

1 I PM7 I PM6 I PM5 I PM4 I PM3 I PM2 I PMl I PMO I
DCO

~'~--------v-------~
8-BIT WORD LENGTH

SSI CONTROL REGISTER B (CRB)
(READIWRITE)

15 14 13 12

FOUR TIME SLOTS

11 10

X:$FFED I RIE I TIE I RE I TE I 1 I o I 1 I o I o I SHFD I SCKD I SCD21 SCDI I SCDO I OFI I OFO I

MOO~ [se02
SSI MODE SELECT SERIAL CONTROL 2 DIRECTIO

1 = NETWORK 1 = OUTPUT (MASTER)
0= INPUT (SLAVE)

GCK

N

G
o

ATED CLOCK CONTROL
= CONTINUOUS CLOCK

SYN
S YNC/ASYNC CONTROL

1 = SYNCHRONOUS

\ 7

X:$FFEE RDF

X:$FFEE *

FRAMESYNC~

/

+
SERIAL DATA ~ SLOT 1

MOTOROLA

TOE ROE TUE RFS TFS IFI IFO

* * * * * * *

INTERNAL TX FLAGS AND INTERRUPTS
A

+ + +
X SLOT 2 X SLOT 3 X
+ + +

SCKD
CLOCK SOURCE DIRECTION
1 = OUTPUT (MASTER)
0= INPUT (SLAVE)

FSLO
FRAME SYNC LENGTH 0
0= TX, RX SYNC SAME LENG

FSLl
FRAME SYNC LENGTH 1
0= WORD WIDTH

SSI STATUS REGISTER (SR)
(READ)

SSI TIME SLOT REGISTER (TSR)
(WRITE)

,
+

L

SLOT 4 X SLOT 1 ~
+ +

'~------------------~v-----------~------~/
INTERNAL RX FLAGS AND INTERRUPTS

Figure 11-76. Network Mode Initialization

TH

DSP56000/DSP56001 USER'S MANUAL 11-121

III

III

11.3.7.3.1 Network Mode Transmit. When TE is set, the transmitter will be enabled only
after detection of a new data frame sync. This procedure allows the SSI to synchronize to
the network timing.

Normal startup sequence for transmission in the first time slot is to write the data to be
transmitted to TX, which clears the TDE flag. Then set TE and TIE to enable the transmitter
on the nextframe sync and to enable transmit interrupts.

Alternatively, the DSP programmer may decide not to transmit in the first time slot by
writing any data to the time slot register (TSR). This will clear the TDE flag just as if data
were going to be transmitted, but the STD pin will. remain in the high-impedance state for
the first time slot. The programmer then sets TE and TIE.

When the frame sync is detected (or generated), the first data word will be transferred
from TX to the transmit shift register and will be shifted out (transmitted). TX being empty
will cause TDE to be set, which will cause a transmitter interrupt. Software can poll TDE
or use interrupts to reload the TX register with new data for the next time slot. Software
can also write to TSR to prevent transmitting in the next time slot. Failing to reload TX (or
writing to the TSR) before the transmit shift register is finished shifting (empty) will cause
a transmitter underrun. The TUE error bit will be set, causing the previous data to be
retransmitted.

The operation of clearing TE and setting it again will disable the transmitter after completion
of transmission of the current data word until the beginning of the next frame sync period.
During that time, the STD pin will be three-stated. When it is time to disable the transmitter,
TE should be cleared after TDE is set to ensure that all pending data is transmitted.

The optional output flags are updated every time slot regardless of TE.

To summarize, the network mode transmitter generates interrupts every time slot and
requires the DSP program to respond to each time slot. These responses can be

1. Write data register with data to enable transmission in the next time slot.

2. Write the time slot register to disable transmission in the next time slot.

3. Do nothing - transmit underrun will occur the at beginning of the next time slot, and
the previous data will be transmitted.

Figure 11-77 is essentially the same program shown in Figure 11-72 exceptthatthis program
uses the network mode to transmit only right-channel data. A time slot is assigned for the
left-channel data, which could be inserted by another DSP using the network mode. In the
"Initialize SSI Port" section of the program, two words per frame are selected using CRA,
and the network mode is selected by setting MOD to one in the CRB. The main interrupt
routine, which waits to move the data to TX, only transmits data if the current time slot is
for the right channel. If the current time slot is for the left channel, the TSR is written,
which three-states the output to allow another DSP to transmit the left channel during the
time slot.

11-122 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

· ** ,
SSI and other I/O EQUATES *

.** ,
IPR
CRA
CRB
PCC
TX
TSR
FLG

EQU
EQU
EQU
EQU
EQU
EQU
EQU

ORG
DC
DC
DC
DC

$FFFF
$FFEC
$FFED
$FFE1
$FFEF
$FFEE
$0010

X:O
$AAAAOO
$333300
$CCCCOO
$FOFOOO

· ** ,
INTERRUPT VECTOR *

· ** ,
ORG P:$0010
JSR XMT

· ** ,
MAIN PROGRAM *

· ** ,
ORG P:$40

MOVE #O,RO
MOVE #3,MO
MOVE #O,XO
MOVE XO,X:FLG

· ** ,
Initialize SSI Port *

· ** ,
MOVEP
MOVEP

MOVEP

#$3000,X:IPR
#$411 F,X:CRA

#$5B34,X:CRB

;Data to transmit.

; Pointer to data buffer.
;Set modulus to 4.
;Initialize user flag for SSI flag.
;Start with the right channel.

;Set interrupt priority register for SSI.
;Set continuous clock=5.12/32 MHz,
;word length = 16.
;Enable TIE and TE; make clock and
;frame sync outputs; frame sync = bit
;mode; synchronous mode; make
;SCO an output.

Figure 11-77. Network Mode Transmit Example Program (Sheet 1 of 2)

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 11-123

III

•

· ** ,
Init SSI Interrupt *

· ** ,

ANDI
MOVEP
JMP

#$FC,MR
#$01 F8,X:PCC

*

· ** ,
MAIN INTERRUPT ROUTINE *

· ** ,

XMT

RIGHT

LEFT

JSET

BCLR

MOVEP
MOVE
MOVE
RTI

BSET
MOVEP
MOVE
MOVE
RTI

END

#O,X:FLG,LEFT

#O,X:CRB

X:(RO) + ,X:TX
#>$01,XO
XO,X:FLG

#O,X:CRB
XO,X:TSR
#>$OO,XO
XO,X:FLG

;Unmask interrupts.
;Turn on SSI port.
;Wait for interrupt.

;Check user flag.

;Clear SCO indicating right channel
;data.
;Move data to TX register.
;Set user flag to 1
;for next data.

;Set SCO indicating left channel data.
;Write to TSR register.
;Clear user flag
;for next data.

Figure 11-77. Network Mode Transmit Example Program (Sheet 2 of 2)

11.3.7.3.2 Network Mode Receive. The receive enable will occLlr orily after detection of
a new data frame with RE set. The first data word is shifted irito the receive shift register
and is transferred to the RX, which sets RDF if a frame sync was received (i.e., this is the
start of a new frame). Setting RDF will cause a receive interrupt to occur if the receiver
interrupt is enabled (RIE = 1).

The second data word (second time slot in the frame) begins shifting in immediately after
the transfer of the first data word to the RX. The DSP program has to read the data from
RX (which clears RDF) before the second data word is completely received (ready to transfer
to RX), or a receive overrun error will occur (ROE = 1), and the data in the receiver shift
register will not be transferred and will be lost.

11-124 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

· ** ,
SSI and other 1/0 EQUATES *

· ** ,

IPR
SSISR
CRA
CRB
PCC
RX

EQU
EQU
EQU
EQU
EQU
EQU

$FFFF
$FFEE
$FFEC
$FFED
$FFE1
$FFEF

· ** ,
INTERRUPT VECTOR *

· ** ,

ORG P:$OOOC
JSR RCV

· ** ,
MAIN PROGRAM *

· ** ,

ORG
MOVE
MOVE
MOVE
MOVE

P:$40
#O,RO
#$08,R1
#3,MO
#3,M1

· ** ,
Initialize SSI Port *

· ** ,

MOVEP
MOVEP
MOVEP

#$3000,X:IPR
#$4100,X:CRA
#$ABOO,X:CRB

;Pointer to memory buffer for
;received data. Note data will be
;split between two buffers using
;modulus 4

;Set interrupt priority register for SSI.
;Set word length = 16 bits.
;Enable RIE and RE; synchronous
mode with bit frame sync; clock
;and frame sync are
;external; SCO is an input.

Figure 11-78. Network Mode Receive Example Program (Sheet 1 of 2)

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 11-125

III

III

.** ,
Init SSI Interrupt *

.** ,
ANDI
MOVEP
JMP

#$FC,MR
#$01 FS,X:PCC

*

.** ,
MAIN INTERRUPT ROUTINE *

.** ,

RCV JSET #O,X:SSISR,RIGHT

LEFT MOVEP X:RX,X:(RO)+
RTI

RIGHT MOVEP X:RX,X:(R1) +
RTI

END

;Unmask interrupts.
;Turn on SSI port.
;Wait for interrupt.

;Test SCO flag.

; If SCO clear, receive data
; into left buffer (RO).

; If SCO set, receive data
;into right buffer (R1).

Figure 11-78. Network Mode Receive Example Program (Sheet 2 of 2)

If RE is cleared and set again by the DSP program, the receiver will be disabled after
receiving the current time slot in progress until the next frame sync (first time slot). This
mechanism allows the DSP programmer to ignore data in the last portion of a data frame.

NOTE

The optional frame sync output and clock output signals are not affected, even
if the transmitter and/or receiver are disabled. TE and RE do not disable bit clock
and frame sync generation.

To summarize, the network mode receiver receives every time slot data word unless the
receiver is disabled. An interrupt can occur after the reception of each data word, or the
programmer can poll RDF. The DSP program response can be

1. Read RX and use the data.

2. Read RX and ignore the data.

3. Do nothing - the receiver overrun exception will occur at the end of the current time
slot.

4. Toggle RE to disable the receiver until the next frame, and read RX to clear RDF.

11-126 OSP56000/0SP56001 USER'S MANUAL MOTOROLA

Figure 11-78 is essentially the same program shown in Figure 11-73 except thatthis program
uses the network mode to receive only right-channel data. In the "Initialize SSI Port" section
of the program, two words per frame are selected using the DC bits in the CRA, and the
network mode is selected by setting MOD to one in the CRB. If the program in Figure 11-
77 is used to transmit to the program in Figure 11-78, the correct data will appear in the
data buffer for the right channel, but the buffer for the left channel will probably contain
$000000 or $FFFFFF, depending on whether the transmitter output was high or low when
TSR was written and whether the output was three-stated.

11.3.7.4 ON-DEMAND MODE EXAMPLES. A divide ratio of one (DC=OOOQO) in.the net­
work mode is defined as the on-demand mode of the SSI because it is the only data-driven
mode of the SSI - i.e., data is transferred whenever data is present (see Figures 11-79
and 11-80). STD and SCK from DSP1 are connected to DSP2 - SRD and SCO, respectively.
SCQ is used as an input clock pin in this application. Receive data and receive data clock
are separate from the transmit signals. On-demand data transfers are nonperiodic, and no
time slots are defined. When there is a clock in the gated clock mode, data is transferred.
Although they are not necessarily needed, frame sync and flags are generated when data
is transferred. Transmitter underruns (TUE) are impossible in this mode and are therefore
disabled. In the on-demand transmit mode, two additional SSI clock cycles are automati­
cally inserted between each data word transmitted. This procedure guarantees that frame
sync will be low between every transmitted data word or that the clock will not be contin­
uous between two consecutive words in the gated clock mode. The on-demand mode is
similar to the SCI shift register mode with SSFTD equals one and SCKP equals one. The
receiver should be configured to receive the bit clock and, if continuous clock is used, to
receive an external frame sync. Therefore, for all full-duplex communication in on-demand
mode, the asynchronous mode should be used. The on-demand mode is SPI compatible.

Initializing the on-demand mode for the example illustrated in Figure 11-80 is accomplished
by setting the bits in CRA and CRB as follows:

1. The word length must be selected by setting WL 1 and WLO. In this example, a 24-
bit word length was chosen (WL 1 = 1 and WLO = 1).

2. The on-demand mode is selected by clearing DC4-DCO.

DSP56000 DSP56000
DSPI DSP2

STD SRD

SCK sco

SRD STD

SCO SCK

Figure 11-79. On-Demand Example

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 11-127

III

•

3. The serial clock rate must be selected by setting PSR and PM7-PMO (see Tables
'11-9 and 11-10).

4. RE and TE must be set to activate the transmitter and receiver. If interrupts are to
be used, RIE and TIE should be set. RIE and TIE are usually set after everything else
is configured and the DSP is ready to receive interrupts.

5. The network mode must be selected (MOD = 1).

6. A gated clock (GCK = 1) is selected in this example. A continuous clock example is
shown in Figure 11-77.

7. Asynchronous clock control was selected (SYN =0) in this example.

8. Since gated clock is used, the frame sync is not necessary. FSL 1 and FSLO can be
ignored.

9. SCKD must be an output (SCKD = 1).

10. SCDO must be an input (SCDO = 0).

11. Control bit SHFD should be set as needed for the application. Pins SC1 and SC2 are
undefined in this mode (see Table 11-7) and should be programmed as general­
purpose liD pins.

11.3.7.4.1 On-Demand Mode - Continuous Clock. This special case will not generate a
periodic frame sync. A frame sync pulse .will be generated only when data is available to
transmit (see Figure 11-81(a)). The frame sync signal indicates the first time slot in the
frame. The on-demand mode requires that the transmit frame sync be internal (output)
and the receive frame sync be external (input). Therefore, for simplex operation, the syn­
chronous mode could be used; however, for full-duplex operation, the asynchronous mode
must be used. Data transmission that is data driven is enabled by writing data into TX.
Although the SSI is double buffered, only one word can be written to TX, even if the
transmit shift register is empty. The receive and transmit interrupts function as usual using
TDE and RDF; however, transmit and receive underruns are impossible for on-demand
transmission and are disabled. This mode is useful for interfacing to codecs requiring a
continuous clock.

11.3.7.4.2 On-Demand Mode - Gated Clock. Gated clock mode (see Figure 11-81(b)) is
defined for on-demand mode, but the gated clock mode is considered a frame sync source;
therefore, in gated clock mode, the transmit clock must be internal (output) and the receive
clock must be external (input). For on-demand mode, with internal (output) synchronous
gated clock, output clock is enabled for the transmitter and receiver when TX data is
transferred to the transmit data shift register. This SPI master operating mode is shown
in Figure 11-82. Word sync is inherent in the clock signal, and the operation format must
provide frame synchronization.

Figure 11-83 is the block diagram for the program presented in Figure 11-84. This program
contains a transmit test program that was written as a scoping loop (providing a repetitive

11-128 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

SSI CONTROL REGISTER A (CRA)
(REAOIWRITE)

15 14 13 12 11 10

X:$FFEC I PSR I 1 I 1 I 0 0 I 0

WLl WLO OC4 OC3 OC2 OCl OCO
"'-.r---' ' ----..v~-------"

24-BIT WORD LENGTH

SSI CONTROL REGISTER B (CRB)
(REAOIWRITE)

15 14 13 12

ON-DEMAND

11 10

76543210

I PM7 I PM6 I PM5 I PM4 I PM3 I PM2 I PMl I PMO I

X:$FFED I RIE I TIE I RE I TE I 1 I 1 I 0 I FSLl I FSLO I SHFD I 1 I SCD21 SCDl I 0 I OFl I OFO I

MOD
SSI MODE SELECT

1 = NETWORK

GCK
GAT ED CLOCK CONTROL

1 = GATED CLOC~

SYN
SYNC/ASYNC CONTROL

0= ASYNCHRONOUS

TRANSMIT CLOCK

'- SCDO
SERIAL CONTRO L2

DIRECTION
O=INPUT

SCKD
CLOCK SOURCE

DIRECTION
1 = OUTPUT

TRANSMIT DATA---------«'-___ 2_4_-B_IT_D_A_TA_FR_O_M_D_S_Pl_T_O_D_S_P _2 ___ ...,,)>--------

RECEIVE CLOCK

RECEIVE DATA DSP2 TO DSPl 24-BIT DATA FROM DSP2 TO DSPl

NOTE: Two SSI bit clock times are automatically inserted between each data word. This guarantees frame sync will be low
between every data word transmitted and the clock will not be continuous for two consecutive data words.

Figure 11-80. On-Demand Data-Driven Network Mode

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 11-129

-

DATA CHANGES

SERIAL CLOCK

I DATA STABLE

FRAME SYNC .--l

SERIAL DATA --< DATA)>-------------« DATA)>--------

(a) Continuous

SERIAL CLOCK

SERIAL DATA --< DATA)>----------« DATA)>-----

(b) Gated

Figure 11-81. Clock Modes

MASTER SLAVE

III SHIFT REGISTER SHIFT REGISTER

SPI
CLOCK GENERATOR

DSPI DSP2

Figure 11-82. SPI Configuration

11-130 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

DSP56001 DSP56001

PC3

SC2

SRD

STD

SCK t---r--~ SCK

15K

Figure 11-83. On-Demand Mode Example - Hardware Configuration

sync) using the on-demand, gated, synchronous mode with no interrupts (polling) to trans­
mit data to the program shown in Figure 11-85. The .program also demonstrates using
parallel 1/0 pins as general-purpose .control lines. PC3 is used as an external strobe or
enable for hardware such as an AID converter. The transmit program sets equates for
convenience and readability. Test data is then written to X: memory, and the data pointer
is initialized. Setting MO to two makes the buffer circular (modulo 3), which saves the step
of resetting the pointer each loop. PC3 is configured as a general-purpose output for use
as a scope sync, and CRA and CRB are then initialized. Setting the PCC bits begins SSI
operation; however, no data will be transmitted until data is written to TX. PC3 is set high
at the beginning of data transmission; data is then moved to TX to begin transmission. A
JCLR instruction is then used to form a wait loop until TDE equals one and the SSI is ready
for another data word to be transmitted. Two more data words are transmitted in this
fashion (this is an arbitrary number chosen for this test loop). Ar additional wait is included
to make sure that the frame sync has gone low before PC3 is cleared, indicating on the
scope that transmission is complete. A wait of 100 NOPs is implemented by using the REP
instruction before starting the loop again.

Figure 11-85 is the receive program for the scoping loop program presented in Figure 11-
84. The receive program also uses the on-demand, gated, synchronous mode with no
interrupts (polling). Initialization for the receiver is slightly different than for the transmitter.
In CRB, RE is set rather than TE, and SCKD and SCD2 are inputs rather than outputs. After
initialization, a JCLR instruction is used to wait for a data word to be received (RDF = 1).
When a word is received, it is put into the circular buffer and loops to wait for another
data word. The data in the circular buffer will be overwritten after three words are received
(does not matter in this application).

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 11-131

•

III

.** ,
SSI and other I/O EQUATES *

.** ,

CRA
CRB
PCC
PCD
SSISR
TX
PCDDR

EQU
EQU
EQU
EQU
EQU
EQU
EQU

ORG
DC
DC
DC

$FFEC
$FFED
$FFE1
$FFE5
$FFEE
$FFEF
$FFE3

X:O
$AAOOOO
$330000
$FOOOOO

.** ,
MAIN PROGRAM *

.** ,

ORG P:$40

MOVE #O,RO
MOVE #2,MO

MOVEP #$08,X: PCDDR

MOVEP #$001 F,X:CRA

MOVEP #$1E30,X:CRB

MOVEP #$1 FO,X:PCC

lOOPO BSET #3,X:PCD

MOVEP X:(RO) + ,X:TX

;Data to transmit

; Pointer to data buffer
; length of buffer is 3

;SCO (PC3) as general
; purpose output.

;Set Word length = 8, ClK = 5.12/32
;MHz.
;Enable transmitter, Mode = On­
;Demand,
;Gated clock on, synchronous mode,
;Word frame sync selected, frame
;sync and clock are internal and
;output to port pins.
;Set PCC for SSI and

;Set PC3 high (this is example enable
;or strobe for an external device
;such as an AQC).
;Move data to TX register

Figure 11-84. On-Demand Mode Transmit Example Program (Sheet 1 of 2)

11-132 OSP56000/0SP56001 USER'S MANUAL MOTOROLA

TDE1 JCLR

MOVEP
TDE2 JCLR

MOVEP
TDE3 JCLR

FSC JSET

BCLR

#6,X:SSISR,TDE1

X:(RO) + ,X:TX
#6,X:SSISR,TDE2
X:(RO) + ,X:TX
#6,X:SSISR,TDE3

#5,X:PCD,FSC

#3,X:PCD

;Wait for TDE (transmit data register
;empty) to go high.
; Move next data to TX.
;Wait for TDE to go high.
; Move data to TX.
;Wait for TDE = 1.

;Wait for frame sync to go low. NOTE:
;State of frame sync is directly
;determined by reading PC5.

;Set PC3 10 (example external
;enable).

;anything goes here (Le., any processing)

REP #100
NOP

JMP LOOPO ;Continue sequence forever.

END

Figure 11-84. On-Demand Mode Transmit Example Program (Sheet 2 of 2)

11.3.8 Flags

rwo SSI pins (SC1 and SCO) are available in the synchronous mode for use as serial I/O
flags. The control bits (OF1 and OFO) and status bits (lF1 and IFO) are double buffered to/
from SC1 and SCO. Double buffering the flags keeps them in sync with TX and RX. The
direction of SC1 and SCO is controlled by SCD1 and SCDO in CRB .

. Figure 11-86 shows the flag timing for a network mode example. Initially, neither TIE nor
TE is set, and the flag outputs are the last flag output value. When TIE is set, a TDE interrupt
occurs (the transmitter does not have to be enabled for this interrupt to occur). Data (D1)
is written to TX, which clears TDE, and the transmitter is enabled by software. When the
frame sync occurs, data (D1) is transferred to the transmit shift register, setting TDE. Data
(D1) is shifted out during the first word time, and the output flags are updated. These flags
will remain stable until the next frame sync. The TDE interrupt is then serviced by writing
data (D2) to TX, clearing TDE. After the TSR completes transmission, the transmit pin is
three-stated until the next frame sync.

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 11-133

•

III

.** , .
SSI and other I/O EQUATES *

.** ,

CRA
CRB
PCC
PCD
SSISR
RX
PCDDR

EQU
EQU
EQU
EQU
EQU
EQU
EQU

$FFEC
$FFED
$FFE1
$FFE5
$FFEE
$FFEF
$FFE3

.** ,
MAIN PROGRAM *

.** ,

ORG P:$40

MOVE #O,RO
MOVE #2,MO

MOVEP #$001 F,X:CRA
\

MOVEP #$2EOO,X:CRB

MOVEP #$1 FO,X:PCC

lOOP

RDF1 JClR #7,X:SSISR,RDF1

MOVEP X:RX,X:(RO) +

JMP lOOP

END

;Pointer to data buffer
; length of buffer is 3

;Set Word length = 8, ClK = 5.12/32
;MHz.
; Enable receiver, Mode = On­
;Demand, gated clock on,
;synchronous mode,
;Word frame sync selected, frame
;sync and clock are external.
;Set PCC for SSI

;Wait for RDF (receive data register
;Full) to go high.
;Read data from RX into memory.

;Continue sequence forever.

Figure 11-85. On-Demand Mode Receive Example Program

11-134 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

~
o
-;
o
::lJ
o
r­
l>

c
en
""C
U'1
en
o
o
o
C
en
""C
U'1
en
o
g
c:
en
m
::lJ
en
:s: »
2
c: »
r-

~

~

I
~

W
(J1

START

~
FRAME SYNC

TIE J

TE~

Dl D2
TOE INTERRUPTS I I D3 I

Dl
lOAD TSR I D2 I

Dl

(fJXX'IJ
DATA WORD C WORD =.!

ITIMEI

* F2

OUPUT FLAGS

NOTES:
1. Fn = flags associated with Dn data.
2. Output flags are double buffered with transmit data.
3. Output flags change when data is transferred from TX to the transmit data shift register.
4. Initial flag outputs (*) = last flag output value.
5. Data and flags transition after external frame sync but not before rising edge of clock.

Figure 11-86. Output Flag Timing

I

III

Figure 11-87 shows a speaker phone example that uses a DSP56000 and two codecs. No
additi'onal logic is required to connect the codecs to the DSP. The two serial output flags
in this exampie (OF; and OFU) are used as chip selects to enable the appropriate codec
for liD. This procedure allows the transmit lines to be ORed together. The appropriate
output flag pin changes at the same time as the first bit of the transmit word and remains
stable until the next transmit word (see Figure 11-88). Applications include serial-device
chip selects, implementing multidrop protocols, generating Bell PCM signaling frame syncs,
and outputting status information.

MC15500 SPEAKER PHONE
COOEC FILTER I

TOO

MICROPHONE TXI ROD

TOC
I ROC

OFO OSP56000
SPEAKER RXO TOE I OUTPUT

RCE I FLAG 0 --. SRO
MSI

STO

SCK

SCO
MC15500

COOEC FILTER 2 SCI

TOO

PHONE LINE INPUT TXI ROD

TOC
J ROC

OF1
"'- RXO TOE I OUTPUT

RCE I FLAG 1
MSI

PHONE LINE OUTPUT

NOTE: sea and SCI are output flag a and 1 used to software select either filter 1 or 2.

Figure 11-87. Output Flag Example

Initializing the flags (see Figure 11-88) is accomplished by setting SYN, SCD1, and SCDO.
No other control bits affect the flags. The synchronous control bit must be set (SYN = 1)
to select the SC1 and SCO pins as flags. SCD1 and SCDO select whether SC1 and SCO are
inputs or outputs (input= 0, output= 1), The other bits selected in Figure 11-88 are chosen
for the speaker phone example in Figure 11-87. In this example, the codecs require that
the SSI be set for normal mode (MOD=O) with a gated clock (GCK= 1) out (SCKD= 1).

Serial input flags, IF1 and IFO, are latched at the same time as the first bit is sampled in
the receive data word (see Figure 11-89). Since the input was latched, the signal on the

11-136 OSP56000/0SP56001 USER'S MANUAL MOTOROLA

:s:
o
-I o
::0
o
~

c en
" U1
0')
CI
CI
~
c
en
" U1
0')
CI
CI ...
c:
en
m
~ en
3: » z
c: »
r-

I
~

W
-...J

15 14 13 12 11 10

I RIE I TIE I RE I TE I 0 I 1 I 1 I FSL1 I FSLO 1 sHFDI 1 I SCDd 1 I 1 J OFI I OFO I

MOD~
SSI MODE SELECT

O=NORMAL

GCK
GATED CLOCK CONTROL

1 = GATED CLOCK

SYN
SYNC/ASYNC CONTROL

1 = SYNCHRONOUS

CLOCK SOURCE
SCKD

DIRECTION
1 = OUTPUT

SCD1 AND SCDO
SERIAL CONTROL 1 AND 0 DIRECTION

1 =OUTPUT

TRANSMIT CLOCK

TRANSMIT DATA

0
1

OUTPUT FLAG =><.......;.;VA.;.:;L::..:ID~D::..:U;.;..TP;....;U;..;.T....;,.F;;;.LA.:.;;;G ___________________ ----,. __

+ +
OFO AND OF1 ARE CLOCKED OUT ON THE
RISING EDGE OF THE TRANSMIT CLOCK.

OUTPUT FLAGS ARE ALWAYS VALID UNTIL
THE NEXT WORD TRANSMITIED.

Figure 11-88. Output Flag Initialization

I

I=F
O=F

ILTER 1
ILTER 2

III

7 6 5 4 :; 2

X:$FFEE I RDF I TOE I ROE I TUE I RFS I TFS I IFl IFO I rRS~ASD~ATUS REGISTER (SSISR)

'----v----"
INPUT FLAGS

RECEIVE CLOCK

RECEIVE DATA
I

INPUT FLAG >eX
I t SAMPLE

Figure 11-89. Input Flags

input flag pin can change without affecting the input flag until the first bit of the next
receive data word. To initialize SC1 or SCO as input flags, the synchronous control bit in
CRB must be set to one (SYN = 1) and SCD1 set to zero for pin SC1, and SCDO must be set
to zero for pin SCO. The input flags are bits 1 and 0 in the SSISR (at X:$FFEE).

11.3.9 Example Circuits

The DSP-to-DSP serial network shown in Figure 11-90 uses no additional logic chips for
the network connection. All serial data is synchronized to the data source (all serial clocks
and serial syncs are common). This basic confjguration is useful for decimation and data
reduction when more processing power is needed than one DSP can provide. Cascading
DSPs in this manner is useful in several network topologies including star and ring net­
works.

DSP56000/DSP5600l DSP56000/DSP56001 DSP56000/DSP56001 DSP56000/DSP5600l
DATA DATA

~ ... OUT
SRD STO , SRD STO ... SRD STO ... SRD STO ~

SCK - SCK ~ SCK ~ SCK ~

SC2 - SC2 ~ SC2 ~ SC2 ~

If
SERIAL CLOCK

SERIAL SYNC

Figure 11-90. SSI Cascaded Multi-DSP System

11-138 DSP56000/DSP56Q01 USER'S MANUAL· MOTOROLA

TOM networks are useful to reduce the wiring needed for connecting multiple processors.
A TOM parallel topology, such as the one shown in Figure 11-91, is useful for interpolating
filters. Serial data can be received simultaneously by all OSPs, processing can occur in
parallel, and the results are then multiplexed to a single serial data out line. This config­
uration can be cascaded and/or looped back on itself as needed to fit a particular application
(see Figure 11-92). The serial and parallel configurations can be combined to form the
array processor shown in Figure 11-93. A nearest neighbor array, which is aplicable to
matrix relaxation processing, is shown in Figure 11-94. To simplify the drawing, only the
center OSP is connected in this illustration. In use, all OSPs would have four three-state
buffers connected to their STO pin. The flags (SCQ and SC1) on the control master operate
the three-state buffers, which control the direction that data is transferred in the matrix
(north, south, east, or west).

The bus architecture shown in Figure 11-95 allows data to be transferred between any two
OSPs. However, the bus must be arbitrated by hardware or a software protocol to prevent
collisions. The master/slave configuration shown in Figure 11-96 also allows data to be
transferred between any two OSPs but simplifies network control.

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 11-139

•

DSP56000/DSP56001

... SRD STD

SCK ~ ,

SC2

D S P56000/D S P5600 1

SRD STD -" ,

SCK ~

SC2 ~

SERIAL SERIAL
DATA IN DATA OUT ,

DSP56000/DSP56001

,
SRD STD -" ,

SCK

SC2 -

DS P56000/DS P56001

III "- SRD STD

SCK ;

SC2 ;

SERIAL SYNC

SERIAL CLOCK

Figure 11-91. 551 TOM Parallel 05P Network

11-140 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

OS P56000/0 S P5600 1 OS P56000/0 S P5600 1

-. SRO STD ,. SRO STD

SCK SCK
..,

~

SC2 SC2
..,
~

OSP56000/0SP56001 OSP56000/0SP56001

~ SRO STO SRO STD

SCK .# SCK -...

SC2 .#

SC2 ~

OSP56000/0SP56001 OSP56000/0SP56001

~ SRO STD SRO STD

SCK .# SCK

SC2 - SC2

OSP56000/0SP56001 OS P56000/0 S P5600 1

~ SRO STO SRO STD ... ,. ,. III
SCK - SCK -...

SC2 - SC2 .L

FRAME SYNC

SERIAL CLOCK

Figure 11-92. 551 TOM Connected Parallel Processing Array

MOTOROLA OSP56000/0SP56001 USER'S MANUAL 11-141

OSP56000/0SP56001 OSP56000/0SP56001 OSP56000/0SP56001

~ SRO STD
,

SRO STO -" SRO STD
,

SCK SCK SCK ~ ,,-

SC2 ~ SC2 foE- SC2 ~

OS P56000/0S P56001 OSP56000/0SP56001 OSP56000/0SP56001

~ SRO STO -, SRO STO -" SRO STO
, ,

SCK ~ SCK SCK

SC2 I~ SC2 I~ SC2 ~
SERIAL SERIAL

IN OUT
~ ~

OSP56000/0SP56001 OSP56000/0SP56001 OSP56000/0SP56001

~ SRO STD SRO STO , SRO STO

SCK ~ SCK SCK

SC2 I+-- SC2 I~ SC2 ~

III
OS P56000/0 S P5600 1 DSP56000/0SP56001 OSP56000/0SP56001

~ SRO STD
,

SRO STD " SRO STD ,

SCK .. SCK SCK "'

SC2 I+-- SC2 ~ SC2 ~

SERIAL SYNC

SERIAL CLOCK

Figure 11-93. 551 TOM Serial/Parallel Processing Array

11-142 DSP56000/DSP5600, USER'S MANUAL MOTOROLA

DSP56000/DSP56001 DSP56000/DSP56001 DSP56000/DSP56001

~ SRD STD SRD STD SRD STD

~ SCO SCK ~ SCK ,~ SCK ~ -
~ SCI SC2 ~ SC2 ~ SC2 :~ I--

~
DSP56000/DSP56001 DSP56000/DSP56001 DSP56000/DSP56001

... SRD STD ... SRD STD SRD STD ...
~

,. , ----f-- ... ,

------s; ------- ~ ,- SCK ..,
SCK I~ -

SC2 ~ SC2 ~ SC2 I~ -

~
~

DSP56000/DSP56001 DSP56000/DSP56001 DSP56000/DSP56001

~ SRD STD _ ... SRD STD ... SRD STD ...

SCK ~ - SCK SCK I~

SC2 ~ SC2 +- SC2 I~ -

SERIAL CLOCK

FRAME SYNC III
Figure 11-94. 551 Parallel Processing - Nearest Neighbor Array

MOTOROLA OSP56000/0SP56001 USER'S MANUAL 11-143

SERIAL SYNC

SERIAL CLOCK
J

SERIAL DATA BUS

DSP560001 DSP560001 DSP560001 DSP560001
DSP56001 DSP56001 DSP56001 DSP56001

STD ~ STD --+ STD --+ STD f--+
SRD ~ SRD ~ SRD ~ SRD, ~

SCK - SCK ~ SCK ~ SCK ~

SC2 SC2 SC2 SC2

Figure 11-95. 551 TOM Bus 05P Network

III

11-144 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

s:
o
-I
o
::lJ
o
r-»

c
fJ)

" U1
C')
CI
CI
~
C
fJ)

" U1
C')
CI g
c
fJ)
m
:::c
en
~ »
:2
C »
r-

--"
~
U'I

MASTER TRANSMIT

MASTER RECEIVE

DSP56000/DSP5001 DSP56000/DSP5001 DSP56000/DSP5001
MASTER SLAVE I SLAVE 2

STD I--- STD f-- STD I---

SRD - SRD SRD ~

SCK SCK .J SCK

SC2 SC2 SC2

SCI I--- SCI ~ SCI ~

SCO I-- SCO ~ SCO ~

/lASTER CLOCK
-

MASTER SYNC

FLAG I

FLAG 0

NOTE: Flags can specify data types: control, address, and data.

Figure 11-96. SSI TOM Master-Slave OSP Network

I

DSP56000/DSP500l
SLAVE 3

STD f--

SRD k--
SCK k--
SC2 k--
SCI k--
SCO f+-

III

11-146 DSP56000/DSP5600,1 USER'S MANUAL MOTOROLA

APPENDIX A
INSTRUCTION SET DETAILS

This appendix contains detailed information about each instruction in the DS'P56000/
DSP56001 instruction set. An instruction guide is presented first to help understand the
individual instruction descriptions. This guide is followed by sections on notation and
addressing modes. Since parallel moves are allowed with many of the instructions, they
are discussed before the instructions. The instructions are then discussed in alphabetical
order.

A.1 INSTRUCTION GUIDE

The following information is included in each instruction description with the goal of making
each description self-contained:

1. Name and Mnemonic: The mnemonic is highlighted in bold type for easy reference.

2. Assembler Syntax and Operation: For each instruction syntax, the corresponding
operation is symbolically described. If there are several operations indicated on a
single line in the operation field, those operations do not necessarily occur in the
order shown but are generally assumed to occur in parallel. If a parallel data move
is allowed, it will be indicated in parenthesis in both the assembler syntax and op­
eration fields. If a letter in the mnemonic is optional, it will be shown in parenthesis
in the assembler syntax field.

3. Description: A complete text description of the instruction is given together with any
special cases and/or condition code anomalies of which the user should be aware
when using that instruction.

4. Example: An example of the use of the instruction is given. The example is shown
in DSP56000/DSP56001 assembler source code format. Most arithmetic and logical
instruction examples include one or two parallel data moves to illustrate the many
types of parallel moves that are possible. The example includes a complete expla­
nation, which discusses the contents of the registers referenced by the instruction
(but not those referenced by the parallel moves) both before and after the execution
of the instruction. Most examples are designed to be easily understood without the
use of a calculator.

5. Condition Codes: The status register is depicted with the condition code bits which
can be affected by the instruction highlighted in bold type. Not all bits in the status
register are used. Those which are reserved are indicated with a double asterisk and
are read as zeros.

6. Instruction Format: The instruction fields, the instruction opcode, and the instruction
extension word are specified for each instruction syntax. When the extension word

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-1

-

is optional, it is so indicated. The values which can be assumed by each of the variables
fn the various instruction fields are shown under the instruction field's heading. Note
that the symbols used in decoding the various opcode fields of an instruction are
completely arbitrary. Furthermore, the opcode symbols used in one instruction are
completely independent of the opcode symbols used in a different instruction.

7. Timing: The number of oscillator clock cycles required for each instruction syntax is
given. This information provides the user a basis for comparison of the execution
times of the various instructions in oscillator clock cycles. Refer to Table A-1 and A.7
INSTRUCTION TIMING for a complete explanation of instruction timing, including the
meaning of the symbols "aio", "ap", "ax", "ay", "axy", "ea", "jx", "mv", "mvb",
"mvc", "mvm", "mvp", "rx", "wio", "wp", "wx", and "wy".

8. Memory: The number of program memory words required for each instruction syntax
is given. This information provides the user a basis for comparison of the number of
program memory locations required for each of the various instructions in 24-bit
program memory words. Refer to Table A-1 and A.7 INSTRUCTION TIMING for a
complete explanation of instruction memory requirements, including the meaning of
the symbols "ea" and "mv".

A.2 NOTATION

Each instruction description contains symbols used to abbreviate certain operands and
operations. Table A-1 lists the symbols used and their respective meanings. Depending on
the context, registers refer to either the register itself or the contents of the register.

Table A-1. Instruction Description Notation

Data ALU Registers Operands

Xn Input Register X1 or XO (24 Bits)

Yn Input Register Y1 or YO (24 Bits)

An Accumulator Registers A2, A1, AO (A2 - 8 Bits, A1 and AO - 24 Bits)

Bn Accumulator Registers B2, B1, BO (B2 - 8 Bits, B1 and BO - 24 Bits)

X Input Register X = X1 :XO (48 Bits)

Y Input Register Y = Y1 :YO (48 Bits)

A Accumulator A=A2:A1 :AO (56 Bits)*

B Accumulator B=B2:B1:BO (56 Bits)*

AB Accumulators A and B=A1 :B1 (48 Bits)*

BA Accumulators Band A= B1 :A1 (48 Bits)*

A10 Accumulator A=A1 :AO (48 Bits)

B10 Accumulator B = B1 :BO (48 Bits)

*NOTE: In data move operations, shifting and limiting are performed when this register is spec-
ified as a source operand. When specified as a destination operand, sign extension and
possibly zeroing are performed.

A-2 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

Table A-1. Instruction Description Notation (Continued)

Address ALU Registers Operands

Rn Address Registers RO-R7 (16 Bits)

Nn Address Offset Registers NO-N7 (16 Bits)

Mn Address Modifier Registers MO-M7 (16 Bits)

Program Controller Registers Operands

PC Program Counter Register (16 Bits)

MR Mode Register (8 Bits)

CCR Condition Code Register (8 Bits)

SR Status Register= MR:CCR (16 Bits)

OMR Operating Mode Register (8 Bits)

LA Hardware Loop Address Register (16 Bits)

LC Hardware Loop Counter Register (16 Bits)

SP System Stack Pointer Register (6 Bits) .

SSH Upper Portion of the Current Top of the Stack (16 Bits)

SSL Lower Portion of the Current Top of the Stack (16 Bits)

SS System Stack RAM=SSH:SSL (15 Locations by 32 Bits)

Address Operands

ea Effective Address

eax Effective Address for X Bus

eay Effective Address for Y Bus

xxxx Absolute Address (16 Bits)

xxx Short Jump Address (12 Bits) III
aa Absolute Short Address (6 Bits, Zero Extended)

pp 1/0 Short Address (6 Bits, Ones Extended)

< ... > Specifies the Contents of the Specified Address

X: X Memory Reference

Y: Y Memory Reference

L: Long Memory Reference=X:Y

P: Program Memory Reference

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-3

Table A-1. Instruction Description Notation (Continued)

Miscellaneous Operands

S,Sn Source Operand Register

D,Dn Destination Operand Register

DIn] Bit n of D Destination Operand Register

#n . Immediate Short Data (5 Bits)

#xx Immediate Short Data (8 Bits)

#xxx Immediate Short Data (12 Bits)

#xxxxxx Immediate Data (24 Bits)

Unary Operators

- Negation Operator

- Logical NOT Operator

PUSH Push Specified Value onto the System Stack (SS) Operator

PULL Pull Specified Value from the System Stack (SS) Operator

READ Read the Top of the System Stack (SS) Operator

PURGE Delete the Top Value on the System Stack (SS) Operator

I I Absolute Value Operator

Binary Operators

+ Addition Operator

- Subtraction Operator

* Multiplication Operator

-;- ,/ Division Operator

+ Logical Inclusive OR Operator . Logical AND Operator

E0 Logical Exclusive OR Operator

• "Is Transferred To" Operator

III : Concatenation Operator

Addressing Mode Operators

« 1/0 Short Addressing Mode Force Operator

< Short Addressing Mode Force Operator

> Long Addressing Mode Force Operator

Immediate Addressing Mode Operator

#> Immediate Long Addressing Mode Force Operator

#< Immediate Short Addressing Mode Force Operator

A-4 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

LF

T

S1,SO

11,10

L

E

U

N

Z

V

C

aio

ap

ax

ay

axy

ea

jx

mv

mvb

mvc

mvm

mvp

rx

wio

wp

wx

wy

MOTOROLA

Table A-1. Instruction Description Notation (Continued)

Mode Register (MR) Symbols

Loop Flag Bit Indicating When a DO Loop Is in Progress

Trace Mode Bit Indicating If the Tracing Function Has Been Enabled

Scaling Mode Bits Indicating the Current Scaling Mode

Interrupt Mask Bits Indicating the Current Interrupt Priority Level

Condition Code Register (CCR) Symbols
Standard Definitions (Table A-3 Describes Exceptions)

Limit Bit Indicating Arithmetic Overflow and/or Data Shifting/Limiting

Extension Bit Indicating If the Integer Portion of A or B Is in Use

Unnormalized Bit Indicating if the A or B Result Is Unnormalized

Negative Bit Indicating If Bit 55 of the A or B Result Is Set

Zero Bit Indicating If the A or B Result Equals Zero

Overflow Bit Indicating If Arithmetic Overflow Has Occurred in A or B

Carry Bit Indicating If a Carry orBorrow Occurred in A or B Result

Instruction Timing Symbols

Time Required to Access an I/O Operand

Time Required to Access a P Memory Operand -.
Time Required to Access an X Memory Operand

Time Required to Access a V Memory Operand

Time Required to Access XV Memory Operands

Time or Number of Words Required for an Effective Address

Time Required to Execute Part of a Jump-Type Instruction

Time or Number of Words Required for a Move-Type Operation

Time Required to Execute Part of a Bit Manipulation Instruction·

Time Required to Execute Part of a MOVEC Instruction

Time Required to Execute Part of a MOVEM Instruction

Time Required to Execute Part of a MOVEP Instruction

Time Required to Execute Part of an RTI or RTS Instruction

Number of Wait States Used in Accessing External I/O

Number of Wait States Used in Accessing External P Memory

Number of Wait States Used in Accessing External X Memory

Number of Wait States Used in Accessing External V Memory

OSP56000/0SP56001 USER'S MANUAL

,

III

A-5

III

Table A-1. Instruction Description Notation (Concluded)

Other Symbois

() Optional Letter, Operand, or Operation

(.....) Any Arithmetic or Logical Instruction Which Allows Parallel Moves

EXT Extension Register Portion of an Accumulator (A2 or 82)

LS Least Significant

LSP Least Significant Portion of an Accumulator (AO or 80)

MS Most Significant

MSP Most Significant Portion of an Accumulator (A 1 or 81)

r Rounding Constant

S/L Shifting and/or Limiting on a Data ALU Register

Sign Ext Sign Extension of a Data ALU Register

Zero Zeroing of a Data ALU Register

A.3 ADDRESSING MODES

The addressing modes are grouped into three categories - register direct, address register
indirect, and special. These addressing modes are summarized in Table A-2. All address
calculations are performed in the address ALU to minimize execution time and loop over­
head. Addressing modes, which specify whether the operands are in registers, in memory,
or in the instruction itself (such as immediate data), provide the specific address of the
operands.

The register direct addressing mode can be subclassified according to the specific register
addressed. The data registers include X1, XO, Y1, YO, X, Y, A2, A 1, AO, B2, B1, BO, A, and
B. The control registers include SR, OMR, SP, SSH, SSL, LA, LC, CCR, and MR.

Address register indirect modes use an address register Rn (RO-R7) to point to locations
in X, Y, and P memory. The contents of the Rn address register (Rn) is the effective address
(ea) of the specified operand, except in the "indexed by offset" mode where the effective
address (ea) is (Rn + Nn). Address register indirect modes use an address modifier register
Mn to specify the type of arithmetic to be used to update the address register Rn. If an
addressing mode specifies an address offset regis~er Nn, the given address offset register
is used to update the corresponding address register Rn. The Rn address register may only
use the corresponding address offset register Nn and the corresponding address modifier
register Mn. For example, the address register RO may only use the NO address offset
register and the MO address modifier register during actual address computation and
address register update operations. This unique implementation is extremely powerful and
allows the user to easily address a wide variety of DSP-oriented data structures. All address
register indirect modes use at least one set of address registers (Rn, Nn, and Mnl, and the
XY memory reference uses two sets of address registers, one for the X memory space and
one for the Y memory space. '

A-6 OSP56000/0SP56001 USER'S MANUAL MOTOROLA

Table A-2. DSP56000/0SP56001 Addressing Modes

Uses Mn Operand Reference
Addressing Mode Modifier S C D A P X V L XV

Register Direct

Data or Control Register No X X X

Address Register Rn No X

Address Modifier Register Mn No X

Address Offset Register Nn No X

Address Register Indirect

No Update Yes X X X X X

Postincrement by 1 Yes X X X X X

Postdecrement by 1 Yes X X X X X

Postincrement by Offset Nn Yes X X X X X

Postdecrement by Offset Nn Yes X X X X

Indexed by Offset Nn Yes X X X X

Predecrement by 1 Yes X X X X

Special

Immediate Data No X

Absolute Address No X X X X

Immediate Short Data No X

Short Jump Address No X

Absolute Short Address No X X X X

I/O Short Address No X X

Implicit No X X X

NOTE: S = System Stack Reference X = X Memory Reference
C = Program Controller Register Reference Y = Y Memory Reference
D = Data ALU. Register Reference. L = L Memory Reference
A=Address ALU Register Reference XY = XY Memory Reference
P = Program Memory Reference

The special addressing modes include immediate and absolute addressing modes as well
as implied references to the program counter (PC), the system stack (SSH or SSL), and
program (P) memory. .

Addressing modes may also be categorized by the ways in which they may be used. Table
A-3 shows the various categories to which each addressing mode belongs. The following
classifications will be used in the Instruction descriptions.

These addressing mode categories may be combined so that additional, more restrictive
classifications may oe defined. For example, the instruction descriptions may use a memory
alterable classification, which refers to addressing modes that are both memory addressing
modes and alterable addressing modes. Thus, memory alterable addressing modes use
address register indirect and absolute addressing modes.

MOTOROLA OSP56000/0SP56001· USER'S MANUAL A-7

III

•

Table A-3. DSP56000/DSP56001 Addressing Mode Encoding

I Mode I Reg I
Muuie55iiig

I Assembler Addressing Mode Categories
MMM RRR Syntax

U P M A

Register Direct

Data or Control Register - - X (See
Table A-1)

Address Register - - X Rn

'Address Offset Register - - X Nn

Address Modifier Register - - X Mn

Address Register Indirect

No Update 100 Rn X X X (Rn)

Postincrement by 1 011 Rn X X X X (Rn)+

Postdecrement by 1 010 Rn X X X X (Rn)-

Postincrement by Offset Nn 001 Rn X X X X (Rn)+Nn

Postdecrement by Offset Nn 000 Rn X X X (Rn)-Nn

Indexed by Offset Nn 101 Rn X X (Rn+Nn)

Predecrement by 1 111 Rn X X -(Rn)

Special

Immediate Data 110 100 X #xxxxxx

Absolute Address 110 000 X X xxx x

Immediate Short Data - - #xx

Short Jump Address - - X xxx

Absolute Short Address - - X aa

1/0 Short Address - .- X pp

Implicit - - X

Update Mode (U) The update addressing mode is used to modify address registers with-
out any associated data move. .

Parallel Mode (P) The parallel addressing mode is used in instructions where two effec­
tive addresses are required.

Memory Mode (M) The memory addressing mode is used to refer to operands in memory
using an effective addressing field.

Alterable Mode (A) The alterable addressing mode is used to refer to alterable or writable
registers or memory .

The address register indirect addressing modes require that the offset register number be
the same as theaddress register number. However, future family members may allow the
offset register number to be different from the address register number. The assembler
syntax "Nn" supports the future feature. The assembler syntax '~N" may be used instead
of "Nn" in the address register indirect memory addressing modes. If "N" is specified, the
offset register number is the same as the address register number.

. , .

A.3.1"· Addressing Mode Modifiers

The addressing mode selected in the instruction word is further specified by the contents
of the address modifier register Mn. The addressing mode update modifiers (MO-M7) are

A-8 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

shown in Table A-4. There are no restrictions on the use of modifier types with any address
register indirect addressing mode.

Table A-4. Addressing Mode Modifier Summary

16·Bit Modifier Reg. (MO-M7)
Address Calculation Arithmetic

MMMMMMMMMMMMMMMM*

0000000000000000 Reverse Carry (Bit Reversed)

0000000000000001 Modulo 2

0000000000000010 Modulo 3

0111111111111110 Modulo 32767

0111111111111111 Modulo 32768

1000000000000000 Undefined

1111111111111110 Undefined

1111111111111111 Linear (Modulo 65536)

*MMMMMMMMMMMMMMMM= 16·Bit Modifier Reg. Contents

A.4 CONDITION CODE COMPUTATION

15 14 13 12 11 10 8 7 6 432 1 0 F ** I T I" I Sl I SO I 11 I 10 I ** I L U N Z

CCR

The condition code register (CCR) portion of the status register (SR) consists of seven
defined bits:

L - Limit Bit
E - Extension Bit
U - Unnormalized Bit
N - Negative Bit

Z -Zero Bit
V - Overflow Bit
C - Carry Bit

The E, U, N, Z, V, and C bits are true condition code bits that reflect the condition of the
result of a data ALU operation. These condition code bits are not latched and are not
affected by address ALU calculations or by data transfers over the X, V, or global data
buses. The L bit is a latching overflow bit which indicates that an overflow has occurred
in the data ALU or that data limiting has occurred when moving the contents of the A
and/or B accumulators.

The standard definition of the condition code bits is as follows. Exceptions to these stand­
ard definitions are given in Table A-5.

MOTOROLA OSP56000/0SP56001 USER'S MANUAL A-9

III

•

L (Limit Bit)

E (Extensioi1 Bit)

Set if the overflow bit V is set or jf the datashifter/limiters
perform a limiting operation. Not affected otherwise. This
bit is latched and must be reset by the user.

Cleared if ali the bits of the signed integer portion of the
A or B result are the same - i.e., the bit, patterns are either
00 ... 00 or 11 .' .. 11. Set otherwise. The signed integer
portion IS definetJ by the scaling mode as shown in the
following table:

51 SO Scaling Mode Signed Integer Portion

0 0 No Scaling Bits 55, 54, 48, 47

0 Scale Down B~s 55; 54, 49,48

0 Scale Up B~~ 5~ 54, 47,46

N()te that the signed integer portion of ah accumulator IS NOT necessarily the same as
the extensiOi1 register port.ion of that accumulator. The signsd integer portion of an ac­
cumulator consists of the MS8, 9,,Or 1d bits of that aC9umulator,.depending on the'scaling
mode oeing used. The extension register portionof an accumulatqr (A2 or B2) is alway~
the MS 8 bits of that aCcuinulator. The E bit r~f~rs to the signed integer portion of an
accumulator and NOT the extension register portion of that accumulator. For example, if
the current scaling mode is set for no scaling (i.e., S1 = SO = 0), the signed integer portion
of the A or B accumulator consists of bits 47 through 55. If the A accumulator contained
the signed 56-bit value $00:800000:000000 as a result of a data ALU operation, the E bit
would be set (E = 1) since the 9 MS bits of that accumulator ~ere not all the same (i.e.,
neither 00 .. 00 hor 11 .. 11). This means that data limiting will occur if that 56-bit value
is specified as a source operand in a move-type operation. This limiting operation will
result in either a positive or negative, 24-bit or 48-bit saturation constant being stored in
the specified destination. The only situation in which the signed integer portion of an
accumulator and the extension register portion of an accumulator are the same is in the
"Scale Down" scaiing mode (i.e., S1 = 0 and SO = 1).

U (Unnormalized Bit)

N (Negative Bit)

Z (Zero Bit)

A-10

S~{if the two MS bits of the MSP portib.n of the A or B
result are the same. Cleared otherwise. The MSP portion
is cjefined by the scaling mode. The U bit is computed as
follows:

51 SO Scaling Mode
',.1')., :l

U Bit Computation

0 0 No Scaling U = (Bit 47 ffi Bit 46)

0 1 Scale Down U = (Bit 48 ED Bit 47)

0 Scale Up U = (Bit 46 ED Bit 45)

Set if the MS bit 55 of the A or B result is set. Cleared
otherwise.

Set if the A or B result equals zero. Cleared otherwise.

DSP56000/DSP56001 USER'S MANUAL MOTOROLA

v (Overflow Bit)

C (Carry Bit)

Set if an arithmetic overflow occurs in the 56-bit A or B
result. This indicates that the result cannot be represented
in the 56-bit accumulator; thus, the accumulator has ov­
erflowed. Cleared otherwise.

Set if a carry is generated out of the MS bit of the A or B
result of an addition or if a borrow is generated out of the
MS bit of the A or B result of a subtraction. The carry or
borrow is generated out of bit 55 of the A or B result.
Cleared otherwise.

Table A-5 details how each instruction affects the condition codes. The convention for the
notation that is used is shown at the bottom of Table A-5.

A.S PARALLEL MOVE DESCRIPTIONS

Many of the instructions in the DSP56000/DSP56001 instruction set allow optional parallel
data bus movement. A.6INSTRUCTION DESCRIPTIONS indicates the parallel move option
in the instruction syntax with the statement "(parallel move)". The MOVE instruction is
equivalentto a NOP with parallel moves. Therefore, a detailed description of each parallel
move is given with the MOVE instruction details in A.6 INSTRUCTION DESCRIPTIONS.

A.6 INSTRUCTION DESCRIPTIONS

The following section describes each instruction in the DSP56000/DSP56001 instruction set
in complete detail. The format of each instruction description is given in A.1INSTRUCTION
GUIDE. Instructions which allow parallel moves include the notation "(parallel move)" in
both the Assembler Syntax and the Operation fields. The example given with each instruc­
tion discusses the contents of all the registers and memory locations referenced by the
opcode-operand portion of that instruction but not those referenced by the parallel move
portion of that instruction. Refer to A.S PARALLEL MOVE DESCRIPTIONS for a complete
discussion of parallel moves, including examples which discuss the contents of all the
registers and memory locations referenced by the parallel move portion of an instruction .

Whenever an instruction uses an accumulator as both a destination operand for a data
ALU operation and as a source for a parallel move operation, the parallel move operation
will use the value in the accumulator prior to execution of any data ALU operation.

Whenever a bit in the condition code register is defined according to the standard definition
given in A.4 CONDITION CODE COMPUTATION, a brief definition will be given in normal
text in the Condition Code section of that instruction description. Whenever a bit in the
condition code register is defined according to a special definition for some particular
instruction, the complete special definition of that bit will be given in the Condition Code
section of that instruction in bold text to alert the user to any special conditions concerning
its use.

MOTOROLA OSP56000/0SP56001 USER'S MANUAL A-11

•

Table A-S. Condition Code Computations

I , I 0:: I " I '" I .. I " I ,. I I I , I 0:: I " I '" I "7 I " I ,. I
nIlIIWIIIUI .. t" .. L- V v '" •• 'iLS5 n.iiSiiiiiiiiC .. L- V I • ... V '" ,,.ul.c5

ABS * * * * * * - MAC * * * * * * -
ADC * * * * * * * MACR * * * * * * -

ADD * * * * * * * MOVE * - - - - - -

ADDL * * * * * 7 * 1 MOVEC ? ? ? ? ? ? ? 13

ADDR oJ(; * * * * * * MOVEM ? ? ? ? ? 7 ? 13

AND * - - ? ? 0 - 8,9 MOVEP ? ? ? ? ? ? ? 13

ANDI ? 7 ? ? ? ? ? 2 MPY * * * * * * -

ASL * '* * * * 7 7 1,3 MPYR * * * * * * -
ASR * * * * * 0 ? 4 NEG * * * * * * -

BCHG - - - - - - ? 5 NOP - - - - - - -
BCLR - - - - - - ? 5 NORM * * * * * ? - 1

BSET - - - - - - ? 5 NOT * - - ? ? 0 - 8,9

BTST - - --: - - - ? 5 OR * - - ? ? 0 - 8,9

CLR * * * * * 0 - ORI ? ? ? ? ? ? ? 6

CMP * * * * * * * REP * - - - - - -
CMPM * * * * * * * RESET - - - - - - -

DIV * - - - - ? ? 1,7 RND * * * * * * -

DO * - - - - - - ROL * - - ? ? 0 ? 8,9,10

ENDDO - - - - - - - ROR * - - ? ? 0 ? 8,9,11

EQR * - - ? 7 0 - 8,9 RTI ? 7 ? ? ? ? ? 12

Jcc - - - - - - - RTS * - - - - - -

JCLR - - - - - - - SBC * * * * * * *
JMP - - - - - - - STOP - - - - - - -

JScc - - - - - - - SUB * * * * * * *
JSCLR - - - - - - - SUBL

,
* * * * * ? * 1

JSET - - - - - - - SUBR * * * * * * *
JSR - - - - - - - SWI - - - - - - -

JSSET - - - - - - - Tcc - - - - - - -
LSL * - - ? ? 0 ? 8,9,10 TFR * - - - - - -

LSR * - - ? ? 0 ? 8,9,11 TST * * * * * 0 -

• LUA - - - - - - - WAIT - - - - - - -

where: * Set according to the standard definition of the operation
- Not affected by the operation
? Set according to a special definition and can be a 0 or 1
o The V bit is cleared

NOTES:
1 V Set if an arithmetic overflow occurs in the 56-bit result. Also set if the MS bit of the destination operand is changed

as a result of the left shift. Cleared otherwise.
2 Cleared if the corresponding bit in the immediate data is cleared when the operand is the CCR. Not affected

otherwise.
3 C Set if bit 55 of the source operand is set. Cleared otherwise.
4 C Set if bit 0 of the source oper.and is set. Cleared otherwise.
5 C Set of bit #n of the source operand is set. Cleared otherwise.
6 Set if the corresponding bit in the immediate data is set when the operand is the CCR. Not affected otherwise.

A-12 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

NOTES:
7 C
8 N
9 Z

10 C
11 C
12 ?

Set if bit 55 of the result is cleared. Cleared otherwise.
Set if bit 47 of the result is set. Cleared otherwise.
Set if bits 47-24 of the result are zero. Cleared otherwise.
Set if bit 47 of the source operand is set. Cleared otherwise.
Set if bit 24 of the source operand is set. Cleared otherwise.
Set according to the value pulled from the stack.

13 If the status register (SR) is specified as a destination operand, set according to the corresponding bit of the
source operand. If SR is not specified as a destination operand, the L bit is set if data limiting occurred. All ? bits
are not affected otherwise.

The definition and thus the computation of both the E (extension) and U (unnormalized)
bits of the condition code register (CCR) varies according to the scaling mode being used.
Refer to A.4 CONDITION CODE COMPUTATION for complete details.

NOTE

The signed integer portion of an accumulator IS NOT necessarily the same as
either the A2 or 82 extension register portion of that accumulator. The signed
integer portion of an accumulator is defined according to the scaling mode being
used and can consist of the MS 8, 9, or 10 bits of an accumulator. Refer to A.4
CONDITION CODE COMPUTATION for complete details.

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-13

III

•

ABS Absolute Value ABS

Operation: Assembler Syntax:
I D I • D (parallel move) ABS D (parallel move)

Description: Take the absolute value of the destination operand D and store the result
in the destination accumulator.

Example:

ABS A #$123456,XO A,YO ;take abs. value, set up XO, save value

Before Execution After Execution

A ~I __ ~$_FF_:F_F_FF_FF_:_FF_FF_F_2 __ ~ A I~ __ $_OO_:O_O_OO_OO_:O_O_OO_OE __ ~

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the
value $FF: FFFFFF: FFFFF2. Since this is a negative number, the execution of the ABS
instruction takes the twos complement of that value and returns $OO:OOOOOO:OOOOOE.

NOTE: For the case in which the D operand equals $80:000000:000000 (- 256.0), the
ABS instruction will cause an overflow to occur since the result cannot be correctly
expressed using the standard 56-bit, fixed-point, twos-complement data representa­
tion. Data limiting does not occur (i.e., A is not set to the limiting value of
$7F: FFFFFF: FFFFFF).

Condition Codes:

A~14

15 14 13 12 11 10 8 7 0 Iil ** I T I ** I 51 I SO I 11 I 10 I ** I LIE I U N I z I v ~
MR ~ .• CCR

L - Set if limiting (parallel move) or overflow has occurred in result
E - Set if the signed integer portion of A or B result is in use
U - Set if A or B result is un normalized
N - Set if bit 55 of A or B result is set
Z - Set if A or B result equals zero
V - Set if overflow has occurred in A or B result

NOTE: The definition of the E and U bits varies according to the scaling mode being
used. Refer to A.4 CONDITION CODE COMPUTATION for complete details.

DSP56000/DSP56001 USER'S MANUAL MOTOROLA

ABS

Instruction Format:
ABS D

Opcode:

23

Instruction Fields:
o d

A b
B 1

Absolute Value

DATA BUS MOVE FIELD

Timing: 2 + mv oscillator clock cycles

Memory: 1 + mv program words

MOTOROLA DSP56000/DSP56001 USER'S MANUAL

ABS

III

A-15

III

ADC Add Long with Carry ADC

Operation: Assembler Syntax:
S+C+ D. D (parallel move) ADC S,D (parallel move)

Description: Add the source operand S and the carry bit C of the condition code register
to the destination operand D and store the result in the destination accumulator. Long
words (48 bits) may be added to the (56-bit) destination accumulator.

NOTE: The carry bit is set correctly for multiple precision arithmetic using long-word
operands if the extension register of the destination accumulator (A2 or 82) is the sign
extension of bit 47 of the destination accumulator (A or 8).

Example:

MOVE L: <$O,X
MOVE L: <$1,A
MOVE L:<$2,V
ADD X,A L: <$3,8
ADC V,8 A 1 O,L: <$4
MOVE 810,L:<$5

;get a 48-bit LS long-word operand in X
;get other LS long word in A (sign ext.)
;get a 48-bit MS long-word operand in V
;add LS words; get other MS word in 8
;add MS words with carry, save LS sum.
;save MS sum

Before Execution After Execution

A $FF: 800000: 000000 A I $FF: 000000: 000000

X $800000: 000000 X I $800000: 000000

B $00: 000000: 00000 1 B I $00: 000000: 000003

y $000000: 00000 1 Y I $000000: 00000 1

Explanation of Example: This example illustrates long-word double-precision (96-bit)

A-16

addition using the ADC instruction. Prior to execution of the ADD and ADC instructions,
the double-precision 96-bit value $000000:000001 :800000:000000 is loaded into the V
and X registers (V:X), respectively. The other double-precision 96-bit value
$000000:000001 :800000:000000 is loaded into the 8 and A accumulators (8:A), re­
spectively. Since the 48-bit value loaded into the A accumulator is automatically sign
extended to 56 bits and the other 48-bit long-word operand is internally sign extended
to 56 bits during instruction execution, the carry bit will be set correctly after the
execution of the ADD X,A instruction. The ADC V,8 instruction then produces the
correct MS 56-bit result. The actual 96-bit result is stored in memory using the A10
and 810 operands (instead of A and 8) because shifting and limiting is not desired.

OSP56000/0SP56()01 USER'S MANUAL MOTOROLA

ADC Add Long with Carry

Condition Codes:

15 14 13 12 11 10 9 8 7

U I N z I v ~
CCR

L - Set if limiting (parallel move) or overflow has occurred in result
E - Set if the signed integer portion of A or B result is in use
U - Set if A or B result is unnormalized
N -Set if bit 55 of A or B result 'is set
Z - Set if A or B result equals zero
V - Set if overflow has occurred in A or B result
C - Set if a carry (or borrow) occurs from bit 55 of A or B result

ADC

NOTE: The definition of the E and U bits varies according to the scaling mode being
used. Refer to A.4 CONDITION CODE COMPUTATION for complete details.

Instruction Format:
ADC S,D

Opcode:

23

Instruction Fields:
S,D Jd

X,A 00
X,B 01
V,A 10
V,B 11

8 7

DATA BUS MOVE FIELD 0 0 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Timing: 2 + mv oscillator clock cycles

Memory: 1 + mv program words

4 3

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-17

III

•

ADD Add ADD
Operation: Assembler Syntax:

S + D • D (parallel move) ADD S,D (parallel move)

Description: Add the source operand S to the destination operand D and store the result
in the destination accumulator. Words (24 bits), long words (48 bits), and accumulators
(56 bits) may be added to the destination accumulator.

NOTE: The carry bit is set correctly using word or long-word source operands if the
extension register of the destination accumulator (A2 or 82) is the sign extension of
bit 47 of the destination accumulalor (A or 8). Thus, the carry bit is always set correctly
using accumulator source operands, but can beset incorrectly if A1, 81, A10, or 810
are used as ~ource operands and A2 and 82 are not replicas of bit 47.

Example:

ADD XO,A A,X1 A,Y:(R1)+ ;24-bjt add, set up X1, save prevo result

Before Execution After Execution

xO I $FFFFFF xo $FFFFFF

A I $00: 000 1 00: 000000 A I $00: OOOOFF: 000000

Explanation of Example: Prior to execution, the 24-bit XO register contains the value

A-18

$FFFFFF and the 56-bit A accumulator contains the value $00:000100:000000, The ADD
instruction automatically appends the 24-bit value in the XO register with 24 LS zeros,
sign extends the resulting 48-bit long word to 56 bits, and adds the resuit to the 56-
bit A accumulator. Thus, 24-bit operands are added to the MSP portion of A or 8 (A 1
or 81) because all ari~hmetic instructions assume a fractional, twos complement data
representation. Note 'that 24-bit operands can be added to the LSP portion of A or 8
(AO or 80) by loading the 24-bit operand into XO or YO, forming a 48-bit word by
loading X1 or Y1 with the sign extension of XOor YO and executing an ADD X,A or
ADD V,A instruction.

DSP56000/DSP56001 USER'S MANUAL MOTOROLA

ADD Add

Condition Codes:

15 14 13 12 11 Hi 8 7 4 3

~**I T 1**1 "I so 111 110 1**1
CCR

z I v Lq E I U N

L - Set if limiting (parallel move) or overflow has occurred in result
E - Set if the signed integer portion of A or B result in use
U - Set if A or B result is unnormalized
N - Set if bit 55 of A or B result is set
Z - Set if A or B result equals zero
V - Set if overflow has occurred in A or B result
C - Set if a carry (or borrow) occurs from bit 55 of A or B result

ADD

NOTE: The definition,of the E and U bits varies according to the scaling mode being
used. Refer to A.4 CONDITION CODE COMPUTATION for complete details.

Instruction Format:
ADD S,D

Opcode:

23 8 7

DATA BUS MOVE FIELD

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:
S,D JJJd S,D JJJd

B,A 0010 XO,A 1000
A,B 0011 XO,B 1001
X,A 0100 VO,A 101 0
X,B 0101 VO,B 1 0 1 1
V,A 011 0 X1,A 1100
V,B o 1 1 1 X1,B 1 1 0 1

Timing: 2 + mv ocillator clock cycles

Memory: 1 + mv program words

S,D J J J d

V1,A 1 1 1 0
V1,B 11 1 1

4 3

MOTOROLA OSP56000/0SP56001 USER'S MANUAL A-19

III

III

ADDL Shift Left and Add Accumulators ADDL

Operation: Assembler Syntax:
S + 2*0 • 0 (parallel move) AOOL S,O (parallel move)

Description: . Add the source operand S to two times the destination operand 0 and
store the result in the destination accumulator. The destination operand 0 is arith­
metically shifted one bit to the left, and a zero is shifted into the LS bit of 0 prior to
the addition operation. The carry bit is set correctly if the source operand does not
overflow as a result of the left shift operation. The overflow bit may be set as a result
of either the shifting or addition operation (or both). This instruction is useful for
efficient divide and decimation in time (OIT) FFT algorithms.

Example:

AOOL A,8 #$O,RO ;A + 2*8 • 8, set up addr. reg. RO

Before Execution After Execution

A ~1 ___ $_OO_:O_O_OO_OO_:O_O_Ol_2_3 __ ~

B ~1 ___ $_OO_:O_O_50_00_:0_0_00_0_0 __ ~

A 1~ __ $_OO_:O_O_OO_OO_:O_O_Ol_23 __ ~

B 1~ __ $_OO_:O_OA_O_OO_:_OO_Ol_2_3 __ ~

Explanation of Example: Prior to execution, the 56-bit accumulator contains the value
$00:000000:000123, and the 56-bit 8 accumulator contains the value $00:005000:000000.
The AOOL A,8 instruction adds two times the value in the 8 accumulator to the value
in the A accumulator and stores the 56-bit result in the 8 accumulator.

Condition Codes:

A-20

15 14 13 12 11 10 8 7

\;fl** I T I *. I SI I S, I 11 I 10 1** I L I E I U N
MR ,., ~ GGR

L - Set if limiting (parallel move) or overflow has occurred in result
E - Set if the signed integer portion of A or 8 result is in use
U - Set if A or 8 result is unnormalized
N - Set if bit 55 of A or 8 result is set
Z - Set if A or 8 result equals zero
V - Set if overflow has occurred in A or B result or if the MS bit of the destination

operand is changed as a result of the instruction's left shift
C - Set if a carry (or borrow) occurs from bit 55 of A or 8 result

DSP56000/DSP56001 USER'S MANUAL MOTOROLA

ADDL Shift Left and Add Accumulators ADDL

NOTE: The definition of the E and U bits varies according to the scaling mode being
used. Refer to A.4 CONDITION CODE COMPUTATION for complete details.

Instruction Format:
ADDL S,D

Opcode:

23

Instruction Fields:

S,D d

. B,A 0
A,B 1

DATA BUS MOVE FIELD

Timing: 2 + mv oscillator clock cycles

Memory: 1 + mv program words

8 7 4 3

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-21

II

ADDR Shift Right and Add Accumulators ADDR

Operation: Assembler Syntax:
S + D / 2 • D (parallel move) ADDR S,D (parallel move)

Description: Add the source operand S to one-half the destination operand D and store
the result in the destination accumulator. The destination operand D is arithmetically
shifted one bit to the right while the MS bit of D is held constant prior to the addition
operation. In contrast to the ADDL instruction, the carry bit is always set correctly,
and the overflow bit can only be set by the addition operation and not by an overflow
due to the initial shifting operation. This instruction is useful for efficient divide and
decimation in time (DIT) FFT algorithms.

Example:

ADDR B,A XO,X:(R1)+N1 YO,Y:(R4)- ;B+A /2. A, save XO and YO

Before Execution After Execution

A I $80 :000000: 2468AC A I $CO:013570:123456

B I $00:013570:000000 B I $00:013570:000000

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the
value $80:000000:2468AC, and the 56-bit B accumulator contains the value
$00:013570:000000. The ADDR B,A instruction adds one-half the value in the A ac­
cumulator to the value in the B accu.mulator and stores the 56-bit result in the A
accumulator.

Condition Codes:

A-22

15 14 13 12 11 10 8.7

~ ** I T I *d SI I SO I 11 I 10 I ** I L
MR • 01(CCR

L - Set if limiting (parallel move) or overflow has occurred in result
E - Set if the signed integer portion of A or B result is in use
U - Set if A or B result is unnormalized
N - Set if bit 55 of A or B result is set
Z - Set if A or B result equals zero
V - Set if overflow has occurred in A or B result
C· - Set if a carry (or borrow) occurs from bit 55 of A or B result

OSP56000/0SP56001 USER'S MANUAL MOTOROLA

ADDR Shift Right and Add Accumulators ADDR:

NOTE: The definition of the E and U bits varies according to the scaling mode being
used. Refer to A.4 CONDITION CODE COMPUTATION for complete details.

Instruction Format:
ADDR S,D

Opcode:

23

Instruction Fields:
S,D d

B,A 0
A,B 1

DATA BUS MOVE FIELD

Timing: 2 + mv oscillator clock cycles

Memory: 1 + mv program words

8 7 4 3

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-23

III

11.1

AND Logical AND AND

Operation: Assembler Syntax:
S • D[47:24] • D[47:24] (parallel move)
where. denotes the logical AND operator

AND S,D (parallel move)

Description: Logically AND the source operand S with bits 47-24 of the destination
operand D and store the result in bits 47-24 of the destination accumulator. This
instruction is a 24-bit operation. The remaining bits of the destination operand Dare
not affected.

Example:

AND XO,A (R5) - N5 ;AND XO with A 1, update R5 using N5

Before Execution After Execution

XO $FFOOOO XO $FFOOOO

A ~1 __ ~$_OO_:1_23_4_56_:7_89_A_B_C __ ~ A ~1 ___ $_OO_:1_20_0_00_:7_8_9A_B_C __ ~

Explanation of Example: Prior to execution, the 24-bit XO register contains the value
$FFOOOO, and the 56-bit A accumulator contains the value $00: 123456:789ABC. The
AND XO,A instruction logically ANDs the 24-bit value in the XO register with bits 47-24
of the A accumulator (A 1) and stores the result in the A accumulator with bits 55-48
and 23-0 unchanged.

Condition Codes:

15 14 13 12 11 10 8 3 2 1 IiJ ** I T I ** , SI I SO I 11 I
10 1**' L I E I u I N Z V

CCR MR)I ,.

L - Set if data limiting has occurred during parallel move
N - Set if bit 47 of A or B result is set
Z - Set if bits 47-24 of A or B result are zero
V - Always cleared

Instruction Format:
AND S,D

A-24 DSP56000/DSP56001 USER'S MANUAL

0

CQ

MOTOROLA

AND
Opcode:

23

Instruction Fields:
5 JJ

XO 00
X1 10
YO 01
Y1 1 1

Logical AND

8 7

DATA BUS MOVE FIELD

OPTIONAL EFFECTIVE ADDRESS EXTENSION

o d

A 0 (only A 1 is changed)
B 1 (only B1 is changed)

Timing: 2 + mv oscillator clock cycles

Memory: 1 + mv program words

4 3

OSP56000/0SP56001 USER'S MANUAL

AND

•

A-25

•

ANDI AND Immediate with Control Register ANDI

Operation:
#xx. D. D

Assembler Syntax:
AND(I) #xx,D

where. denotes the logical AND operator

Description: Logically AND the 8-bit immediate operand (#xx) with the contents of the
destination control register D and store the result in the destination control register.
The condition codes are affected only when the condition code register (CCR) is spec­
ified as the destination operand.

Restrictions: The ANDI #xx,MR instruction cannot be used immediately before an ENDDO
or RTI instruction and cannot be one of the last three instructions in a DO loop (at LA-
2, LA-1, or LA).

The ANDI #xx,CCR instruction cannot be used immediately before an RTI instruction.

Example:

AND #$FE,CCR ;clear carry bit C in condo code register

Before Execution After Execution

CCR $31 CCR $30

Explanation of Example: Prior to execution, the 8-bit condition code register (CCR)
contains the value $31. The AND #$FE,CCR instruction logically ANDs the immediate
8-bit value $FE with the contents of the condition code register and stores the result
in the condition code register.

Condition Codes:

15 14 13 12 11 10 8 7 PO"' I T 1**1 S1 I so I 11 I
10 ,**1 L I E I u I N I z I

CCR MR ~ l1li(

For CCR Operand:
L - Cleared if bit 6 of the immediate operand is cleared
E - Cleared if bit 5 of the immediate operand is clear~d
U - Cleared if bit 4 of the immediate Qperand is cleared
N - Cleared if bit 3 of the immediate operand j~ pleared
Z -- Cleared if bit 2 of the immediate operand is cleared

1

v

A-26 DSP56000/DSP56001 USER'S MANUAL

0

cq

MOTOROLA

ANDI AND Immediate with Control Register

v - Cleared if bit 1 of the immediate operand is cleared
C - Cleared if bit 0 of the immediate operand is cleared

For MR and OMR Operands:
The condition codes are not affected using these operands.

Instruction Format:
AND(I) #xx,D

Opcode:

23 16 15 8 7 a
I a a a a a a a ali dl all 1 a E EI

Instruction Fields:
#xx=8-bit Immediate Short Data - iii iii i i

DEE

MR 00
CCR 01
OMR 10

Timing: 2 oscillator clock cycles

Memorv: 1 program word

MOTOROLA OSP56000/0SP56001 USER'S MANUAL

ANDI

A-27

•

ASL Arithmetic Shift Accumulator Left ASL

~ 47 n o
Operation: c~1 +- I ~.---I ~111(--- 1..- 0 (parallel move)

Assembler
Syntax: ASL D (parallel move)

Description: Arithmetically shift the destination operand D one bit to the left and store
the result in the destination accumulator. The MS bit of D prior to instruction execution
is shifted into the carry bit C and a zero is shifted into the LS bit of the destination
accumulator D. If a zero shift count is specified, the carry bit is cleared. The difference
between ASLand LSL is that ASL operates on the entire 56 bits of the accumulator
and therefore sets the V bit if the number overflowed.

Example:

ASLA (R3)- ;multiply A by 2, update R3

Before Execution After Execution

AI ~ __ ~$_A5_:_01_23_4_5:_01_23_4_5 __ ~ A 1~ __ ~$4_A_:O_24_6_8A_:_02_46_8_A __ ~

SR $0300 SR $0373

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the
value $A5:012345:012345. The execution of the ASL A instruction shifts the' 56-bit
value in the A accumulator one bit to the left and stores the result back in the A
accumulator.

Condition Codes:

A-28

15 14 13 12 11 10 8 7 4 2 1 0 I1J ** I T I" I Sl I SO I 11 I 10 I ** I l I
GGR

vl~ U N I z

L - Set if limiting (parallel move) or overflow has occurred in result
E - Set if the signed integer portion of A or B result is in use
U - Set if A or B result is unnormalized
N - Set if bit 55 of A or B result is set
Z - Set if A or B result equals zero
V - Set if bit 55 of A or B result is changed due to left shift
C - Set if bit 55 of A or B was set prior to instruction execution

DSP56000/DSP56001 USER'S MANUAL MOTOROLA

ASL Arithmetic Shift Accumulator Left ASL

NOTE: The definition of the E and U bits varies according to the scaling mode being
used. Refer to A.4 CONDITION CODE COMPUTATION for complete details.

Instruction Format: ..
ASL D

Opcode:

23 8 7

DATA BUS MOVE FIELD

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:
D d

A 0
8

Timing: 2 + mv oscillator clock cycles

Memory: 1 + mv program words

4 3

MOTOROLA OSP56000/0SP56001 USER'S MANUAL A-29

ASR Arithmetic Shift Accumulator Right ASR

55 47 23 o
Operation: di6,.-.-" 1 ____ • 1_-_-_-_-_--=--_".--11 ~ C (parallel move)

Assembler
Syntax: ASR D (parallel move)

Description: Arithmetically shift the destination operand D one bit to the right and store
the result in the destination accumulator. The LS bit of D prior to instruction execution
is shifted into the carry bit C, and the MS bit of D is held constant.

Example:

ASR B X: -(R3),R3 ;divide B by 2, update R3, load R3

Before Execution After Execution

B 1~ __ $A_8_:A_8_64_20_:A_8_6_42_1 __ ~ B ~1 ___ $_D4_:5_4_32_1_0:_54_32_1_0 __ ~

SR $0300 SR $0329

Explanation of Example: Prior to execution, the 56-bit B accumulator contains the value
$A8:A86420:A86421. The execution of the ASR B instruction shifts the 56-bit value in
the B accumulator one bit to the right and stores the result back in the B accumulator.

Condition Codes:

A-30

15 14 13 12 11 10 8 7

1£**1 T 1**I"lsoll1llO 1**lll z 1 v
CCR

L - Set if data limiting has occurred during parallel move
E - Set if the signed integer portion of A or B result is in use
U - Set if A or B result is unnormalized
N - Set if bit 55 of A or B result is set
Z - Set if A or B result equals zero
V - Always cleared
C - Set if bit 0 of A or B was set prior to instruction execution

NOTE: The definition of the E and U bits varies according to the scaling mode being
used. Refer to A.4 CONDITION CODE COMPUTATION for complete details.

OSP56000/0SP56001 USER'S MANUAL MOTOROLA

ASR

Instruction Format:
ASR D

Opcode:

23

Instruction Fields:
b d

A 0
8 1

Arithmetic Shift Accumulator Right

4 3

DATA BUS MOVE FIELD

Timing: 2 + mv oscillator clock cycles

Memory: 1 + mv program words

MOTOROLA OSP56000/0SP56001 USER'S MANUAL

ASR

A-31

-

BCHG Bit Test and Change BCHG
Operation: Assembler Syntax:

D[n]. C; BCHG #n,X:ea
D[n]. D[n]

D[n]. C; BCHG #n,X:aa
D[n] • D[n]

D[n]. C; BCHG #n,X:pp
D[n] • D[n]

D[n]. C; BCHG #n,Y:ea
D[n]. D[n]

D[n]. C; BCHG #n,Y:aa
D[n] • D[n]

D[n]. C; BCHG #n,Y:pp
D[n] • D[n]

D[n]. C; BCHG #n,D
D[n] • D[n]

Description: Test the nth bit of the destination operand D, complement it, and store the
result in the destination location. The state of the nth bit is stored in the carry bit C
of the condition code register. After the test, the nth bit of the destination location is
complemented. The bit to be tested is selected by an immediate bit number from
0-23. This instruction performs a read-modify-write operation on the destination lo­
cation using two destination accesses before releasing the bus. This instruction pro­
vides a test-and-change capability which is useful for synchronizing multiple processors
using a shared memory. This instruction can use all memory alterable addressing
modes.

Example:

BCHG #$7,X:«$FFE2 ;test and change bit 7 in 110 Port B DDR

Before Execution After Execution

X:$FFE2 $000000 X;$FFE2 $000080

SR $0300 SR $0300

A-32 OSP56000/0SP56001· USER'S MANUAL MOTOROLA

BCHG Bit Test and Change BCHG

Explanation of Example: Prior to execution, the 24-bit X memory location X:$FFE2 (I/O
port B data direction register) contains the value $000000. The execution of the BCHG
#$7,X:«$FFE2 instruction tests the state of the 7th bit in X:$FFE2, sets the carry bit
C accordingly, and then complements the 7th bit in X:$FFE2.

Condition Codes:

15 14 13 12 11 10 8 7

IOI**ILI

CCR Condition Codes:
For destination operand SR:

C - Changed if bit 0 is specified. Not affected otherwise.
V - Changed if bit 1 is specified. Not affected otherwise.
Z - Changed if bit 2 is specified. Not affected otherwise.
N - Changed if bit 3 is specified. Not affected otherwise.
U - Changed if bit 4 is specified. Not affected otherwise.
E - Changed if bit 5 is specified. Not affected otherwise.
L - Changed if bit 6 is specified. Not affected otherwise.

For other destination operands:
C - Set if bit tested is set. Cleared otherwise.
V - Not affected
Z - Not affected
N - Not affected
U - Not affected
E - Not affected
L - Not affected

MR Status Bits:
For destination operand SR:

10 - Changed if bit 8 is specified. Not affected otherwise.
11 - Changed if bit 9 is specified. Not affected otherwise.
SO - Changed if bit 10 is specified. Not affected otherwise.
S1 - Changed if bit 11 is specified. Not affected otherwise.
T - Changed if bit 13 is specified. Not affected otherwise.
F - Changed if bit 15 is specified. Not affected otherwise.

MOTOROLA OSP56000/0SP56001 USER'S MANUAL A-33

BCHG Bit Test and Change

For other destination operands:
10 - Not affected
11 - Not affected
SO - Not affected
S1 - Not affected
T - Not affected
LF - Not affected

Instruction Format:
BCHG #n,X:ea
BCHG #n,Y:ea

Opcode:

23 16 15 8 7

0000101101 M M M R R RO SOb b b b b

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:
#n = bit number = bbbbb,
ea = 6-bit Effective Address = MMMRRR

Effective
Addressing Mode MMMRRR Memory Space S Bit Number bbbbb

(Rn)-Nn OOOrrr X Memory 0 00000
(Rn)+Nn 001rrr Y Memory
(Rn)- o 1 0 r r r
(Rn)+ 011rrr
(Rn) 100rrr 10111
(Rn+Nn) 101rrr
-(Rn) 111rrr
Absolute address 110000

where "rrr" refers to an address register RO-R7

Timing: 4+ mvb oscillator clock cycles

Memory: 1 + ea program words

OSP56000/0SP56001 USER'S MANUAL

BCHG

MOTOROLA

BCHG Bit Test and Change

Instruction Format:
BCHG #n,X:aa
BCHG #n,Y:aa

Opcode:
23

I 0 0 0 0 1

Instruction Fields:

16 15

o 1 1100 a a a a a

#n = bit number= bbbbb,
aa = 6-bit Absolute Short Address = aaaaaa

870

aiD S Db b b b bl

Absolute Short Address aaaaaa Memory SpaceS Bit Number bbbbb

00000 000000

111111

X Memory
Y Memory

Timing: . 4 + mvb oscillator clock cycles

Memory: 1 + ea program words

Instruction Format:
BCHG #n,X:pp
BCHG #n,Y:pp

Opcode:

23 16 15

I 0 0 0 0 1 o 1 dl 0 P P P P P

Instruction Fields:
#n = bit number= bbbbb,
pp = 6-bit I/O Short Address = pppppp

o

10111

8 7 0

plo SOb b b b b I

I/O Short Address pppppp

000000

Memory SpaceS Bit Number bbbbb

00000

111111

X Memory
Y Memory

Timing: 4+ mvb oscillator clock cycles

Memory: 1 + ea program words

o

MOTOROLA OSP56000/0SP56001 USER'S MANUAL

10111

BCHG

A-35

-

BCHG Bit Test and Change

Instruction Format:
BCHG #n,D

Opcode:

23 16 15 8 7

I 0 0 0 0 1 o 1 111 1 00000010

Instruction Fields:
#n = bit number= bbbbb,
D = destination register= DDDDDD,
xxxx = 16-bit Absolute Address in extension word

Destination Register

4 registers in Data ALU
8 accumulators in Data ALU
8 address registers in AGU
8 address offset registers in AGU
8 address modifier registers in AGU
8 program controller registers

DDDDDD

000100
001000
010TTT
011NNN
100 F F F
111 GGG

1 0 b b b b bl

Bit Number bbbbb

00000

10111

BCHG

See A.9 INSTRUCTION ENCODING and Table A-18 for specific register encodings.

Timing: 4 + mvb oscillator clock cycles

Memory: 1 + ea program words

A-36 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

BCLR Bit Test and Clear BCLR
Operation: Assembler Syntax:

D[n]. C; BCLR #n,X:ea O. D[n]

D[n]. C; BCLR #n,X:aa O. D[n]

D[n]. C; BCLR #n,X:pp O. D[n]

D[n]. C; BCLR #n,Y:ea O. D[n]

D[n]. C; BCLR#n,Y:aa O. D[n]

D[n]. C; BCLR #n,Y:pp O. D[n]

D[n]. C; BCLR #n,D O. D[n]

Description: Testthe nth bit of the destination operand D, clear it and store the result
in the destination location. The state of the nth bit is stored in the carry bit C of the
condition code register. After the test, the nth bit of the destination location is cleared.
The bit to be tested is selected by an immediate bit number from 0-23. This instruction
performs a read-modify-write operation on the destination location using two desti­
nation accesses before releasing the bus. This instruction provides a test-and-clear
capability which is useful for synchronizing multiple processors using a shared mem­
ory. This instruction can use all memory alterable addressing modes.

Example:

BCLR #$E,X:«$FFE4 ;test and clear bit 14 in liD Port B Data Reg.

Before Execution After Execution

X:$FFE4 $FFFFFF X:$FFE4 $FFBFFF

SR $0300 SR $0301

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-37

III

III

BCLR Bit Test and Clear BCLR

Explanation of Example: Prior to execution, the 24-bit X memory location X:$FFE4 (I/O
port B data register) contains the value $FFFFFF. The execution of the BCLR
#$E,X:«$FFE4 instruction tests the state of the 14th bit in X:$FFE4, sets the carry
bit C accordingly, and then clears the 14th bit in X:$FFE4.

Condition Codes:

15 14 13 12 11 10 8 7

~ ** I T I ** I SI I SO I 11 I 10 I ** I

CCR Condition Codes:
For destination operand SR:

C - Changed if bit 0 is specified. Not affected otherwise.
V - Changed if bit 1 is specified. Not affected otherwise.
Z - Changed if bit 2 is specified. Not affected otherwise.
N - Changed if bit 3 is specified. Not affected otherwise.
U - Changed if bit 4 is specified. Not affected otherwise.
E - Changed if bit 5 is specified. Not affected otherwise.
L - Changed if bit 6 is specified. Not affected otherwise.

For other destination operands:
C - Set if bit tested is set. Cleared otherwise.
V - Not affected
Z - Not affected
N - Not affected
U - Not affected
E - Not affected
L - N at affected

MR Status Bits:

A-38

For destination operand SR:
10 - Changed if bit 8 is specified. Not affected otherwise.
11 - Changed if bit 9 is specified. Not affected otherwise.
SO - Changed if bit 10 is specified. Not affected otherwise.
S1 - Changed if bit 11 is specified. Not affected otherwise.
T - Changed if bit 13 is specified. Not affected otherwise.
LF - Changed if bit 15 is specified. Not affected otherwise.

DSP56000/DSP56001 USER'S MANUAL MOTOROLA

BCLR Bit Test and Clear

For other destination operands:
10 - Not affected
11 - Not affected
SO - Not affected
S1 - Not affected
T - Not affected
LF - Not affected

Instruction Format:
BCLR #n,X:ea
BCLR #n,Y:ea

Opcode:

23 16 15 B 7

D D D DID 1 D DIM M M R R RD S D b b b b b

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:
#n = bit number= bbbbb, .
ea = 6-bit Effective Address = MMMRRR

Effective
Addressing Mode MMMRRR Memory Space S

(Rn)-Nn OOOrrr X Memory 0
(Rn)+Nn 001 r r r Y Memory 1
(Rn)- 010rrr
(Rn)+ 011rrr
(Rn) 100 r r r
(Rn+Nn) 101rrr
-(Rn) 111rrr
Absolute address 110000

where "rrr" refers to an address register RO-R7

Timing: 4+ mvb oscillator clock cycles

Memory: 1 + ea program words

Bit Number bbbbb

00000

10111

MOTOROLA DSP56000/DSP56001 USER'S MANUAL

BCLR

•

A-39

11.1

BCLR Bit Test and Clear

Instruction Format:
BCLR #n,X:aa
BCHR #n,Y:aa

Opcode:

23

I 0 0 0 0 1

Instruction Fields:

16 15

o 1 010 0 a a a a a

#n = bit number= bbbbb,
aa =: 6-bit Absolute Short Address = aaaaaa

870

alo SOb b b b b I

Absolute Short Address aaaaaa Memory SpaceS Bit Number bbbbb

000000

111111

X Memory
Y Memory

Timing: 4+ mvb oscillator clock cycles

Memory: 1 + ea program words

Instruction Format:
BCLR #n,X:pp
BCLR #n,Y:pp

Opcode:

23 16 15

o
1

00000

10111

870

I 0 0 0 0 1 o 1 0 11 0 P p p p plo SOb b b b bl

Instruction Fields:
#n = bit number= bbbbb,
pp = 6-bit liD Short Address = pp'pppp

1/0 Short Address pppppp

000000

111111

Memory SpaceS

X Memory 0
Y Memory 1

Timing: 4+ mvb oscillator clock cycles

Memory: 1 + ea program words

Bit Number bbbbb

00000

10111

A-40 DSP56000/DSP56001 USER'S MANUAL

BCLR

MOTOROLA

BCLR Bit Test and Clear

Instruction Format:
BelR #n,D

Opcode:

23 16 15 8 7

I 0 0 0 0 1 o 1 011 1 0 0 0 0 0 010

Instruction Fields:
#n = bit number= bbbbb,
0= destination register = 000000,
xxxx= 16-bit Absolute Address in extension word

Destination Register

4 registers in Data ALU
8 accumulators in Data ALU
8 address registers in AGU
8 address offset registers in AGU
8 address modifier registers in AGU
8 program controller registers

DDDDDD

000100
001000
010TTT
011NNN
100 F F F
111 GGG

lOb b b b bl

Bit Number bbbbb

00000

10111

BCLR

See A.9INSTRUCTION ENCODING and Table A-18 for specific register encodings.

Timing: 4+ mvb oscillator clock cycles

Memory: 1 + ea program words

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-41

III

III

BSET Bit Test and Set BSET

Operation: Assembler Syntax:
D[n]. C; BSET #n,X:ea

1 .D[n)

D[n]. C; BSET #n,X:aa
1 .D[n]

D[n]. C; BSET #n,X:pp
1 • b[n]

D[n]. C; BSET #n~Y:ea

1 .D[n]

D[n]. C; BSET #n,Y:aa
1 • b[n]

D[n]. C; BSET #n,Y:pp
1 .D[n]

D[n]. C;, BSET #n,D
1.D[h]

Description: Te~t the nth bit of the destination operand 0, set ,it, and store the result in
the destinatioh location. the state of the nth bit is stored ih tHe carry bit C of the
condition code register, After the test, the nth bit of the destination location is cleared.
The bit to be tested il:;'selected by an immediate bit number from 0-23. This instruction
performs a read-modify-write operation on the destination location using two desti­
nation accesses before ,releasing the bus. This instruction provides a test-and-set ca­
pability which is useful for synchronizing multiple processors using a shared memory.
This instruction can use all memory alterable addressing modes.

Example:

BSET #$O,X:«$FFE5 ;test and set bit 10 in I/O Port C Data Reg.

Before Execution After Execution

X:$FFE5 $000000 X:$FFE5 $000001

SR $0300 SR $0300

A-42 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

BSET Bit Test and Set BSET

Explanation of Example: Prior to execution, the 24-bit X memory location X:$FFE5 (lID
port C data register) contains the value $000000. The execution of the BSET
#$0,X:«$FFE5 instruction tests the state of the oth bit in X:$FFE5, sets the carry bit
C accordingly, and then sets the Oth bit in X:$FFE5.

Condition Codes:

15 14 13 12 11 10 8 7

CCR Condition Codes:
For destination operand SR:

C - Changed if bit 0 is specified. Not affected otherwise.
V - Changed if bit 1 is specified. Not affected otherwise.
Z - Changed if bit 2 is specified. Not affected otherwise.
N - Changed if bit 3 is specified. Not affected otherwise.
U - Changed if bit 4 is specified. Not affected otherwise.
E - Changed if bit 5 is specified. Not affected otherwise.
L - Changed if bit 6 is specified. Not affected otherwise.

For other destination operands:
C - Set if bit tested is set. Cleared otherwi~e.
V - Not affected
Z - Not affected
N - Not affected
U - Not affected
E - Not affected
L - Not affected

-- - -
MR Status Bits:

For destination operand SR:
10 - Changed if bit 8 is specified. Not affected otherwise.
11 - Changed if bit 9 is specified. Not affected otherwise.
SO - Changed if bit 10 is specified. Not affected otherwise.
S1 - Changed if bit 11 is specified. Not affected otherwise.
T - Changed if bit 13 is specified. Not affected otherwise.
LF - Changed if bit 15 is specified. Not affected otherwise.

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-43

•

•

BSET

For other destination operands:
10 - Not affected
11 - Not affected
SO - Not affected
S1 - Not affected
T - Not affected
LF - Not affected

Instruction Format:
BSET #n,X:ea
BSET #n,Y:ea

Opcode:

23 16 15

Bit Test and Set

8 7

0000101 001MMMRRROS

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:
#n = bit number = bbbbb,
ea = 6-bit Effective Address = MMMRRR

Effective
Addressing Mode MMMRRR Memory Space S

(Rn)-Nn OOOrrr X Memory 0
(Rn)+Nn 001 r r r Y Memory
(Rn)- 010rrr
(Rn)+ 011rrr
(Rn) 100 r r r
(Rn+Nn) 101rrr
-(Rn) 1 1 1 r r' r
Absolute address 110000

where "rrr" refers to an address register RO-R7

Timing: 4+ mvb oscillator clock cycles

Memory: 1 +ea program words

1 b b b b b

Bit Number bbbbb

00000

10111

A-44 DSP56000/DSP56001 USER'S MANUAL

BSET

MOTOROLA

BSET
Instruction Format:

SSET #n,X:aa
SSET #n,Y:aa

Opcode:

23

I 0 0 0 0 1

Instruction Fields:

Bit Test and Set

16 15 8 7

o 1 010 0 a a a a a alo

#n = bit number = bbbbb,
aa = 6-bit Absolute Short Address = aaaaaa

SIb b b b bl

Absolute Short Address aaaaaa Memory Space S Bit Number bbbbb

00000 000000 X Memory
Y Memory

a
1

111111

Timing: 4+mvb oscillator clock cycles

Memory: 1 + ea program words

Instruction Format:
SSET #n,X:pp
SSET #n,Y:pp

Opcode:

23

I 0 0 0 0 1

Instruction Fields:

16 15

o 1 011 0 p p p p p

#n=bit number=bbbbb,
pp = 6-bit I/O Short Address = pppppp

1/0 Short Address pppppp

000000

Memory SpaceS

111111

X Memory
Y Memory

Timing: 4+ mvb oscillator clock cycles

Memory: 1 + ea program words

o
1

10111

8 7 0

plo SIb b b b bl

Bit Number bbbbb

00000

10111

MOTOROLA DSP56000/DSP56001 USER'S MANUAL

BSET

•

A-45

iii

BSET Bit Test and Set

Instruction Format:
BSET #n,D

Opcode:

23 16 15 8 7

I 0 0 o 0 1 o 1 011 1 D D D D D Dlo 1 b b b b bl

Instruction Fields:
#n = bit number= bbbbb,
D = destination register = DDDDDD,
xxxx = 16-bit Absolute Address in extension word

Destination Register

4 registers in Data ALU
8 accumulators in Data ALU
8 address registers in AGU
8 address offset registers in AGU
8 address modifier registers in AGU
8 program controller registers

DDDDDD

000100
001000
010TTT
011NNN
100 F F F
1 1 1 GG G

Bit Number bbbbb

00000

10111

BSET

See A.9 INSTRUCTION ENCODING and Table A-18 for specific register encodings.

Timing: 4+ mvb oscillator clock cycles

Memory: 1 + ea program words

A-46 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

8TST Bit Test 8TST

Operation: Assembler Syntax:
D[n]. C BTST #n,X:ea

D[n] • C BTST #n,X:aa

D[n] • C BTST #n,X:pp

D[n] • C BTST #n,Y:ea

D[n]. C BTST #n,Y:aa

D[n]. C BTST #n,Y:pp

D[n] • C BTST #n,D

Description: Test the nth bit of the destination operand D. The state of the nth bit is
stored in the carry bit C of the condition code register. The bit t.o be tested is selected
by an immediate bit number from 0-23. This instruction is useful for performing serial
to parallel conversion when used with the appropriate rotate instructions. This instruc­
tion can use all memory alterable addressing modes.

Example:

BTST #$1,X:«$FFEE
ROL A

Before Execution

X:$FFEE $000002

SR $0300

;read SSI serial input flag IF1 into C bit
;rotate carry bit C into LSB of A1

After Execution

X:$FFEE $000002

SR $0301

Explanation of Example: Prior to execution, the 24-bit X memory location X:$FFEE (I/O
SSI status register) contains the value $000002. The execution of the BTST
#$1,X:«$FFEE instruction tests the state ofthe'1st bit (serial input flag IF1) in X:$FFEE
and sets the carry bit C accordingly. This instruction sequence illustrates serial to
parallel conversion using the carry·bit C and the 24-bit A1 register.

MOTOROLA OSP56000/0SP56001 USER'S MANUAL A-47

•

•

8TST Bit Test

Condition Codes:

15 14 13 12 11 10 8 7 6 5 4 IEJ ** 1 T 1** 1 s, 1 so 1 11 I '°1**1 L E U

MR ••
CCR Condition Codes:

C - Set if bit tested is set. Cleared otherwise.
V - Not affected
Z - Not affected
N - Not affected
U - Not affected
E - Not affected
L - Not affected

MR Status bits are. not affected.

SP - Stack Pointer:

3

N

CCR

For destination operand SSH: SP - Decrement by 1.
For other destination operands: SP ~ Not affected.

Instruction Format:
8TST #n,X:ea
8TST #n,Y:ea

Opcode:

2 1 0

Z V CQ

23 16 15 8 7 0

o 0 0 0 1 0 1 1 0 1 M M M R R R 0 S 1 b b. b b b

OPTIONAL EFFECTIVE ADDRESS EXTENSION

DSP56000IDSP560~1· USER'S MANUAL

8TST

MOTOROLA

BTST Bit Test

Instruction Fields:
#n=bit number=bbbbb,
ea = 6-bit Effective Address = MMMRRR

Effective
Addressing Mode MMMRRR Memory SpaceS

(Rn)-Nn OOOrrr X Memory
(Rn)+Nn 001 r r r Y Memory
(Rn)- 010rrr
(Rn)+ 011rrr
(Rn) 100rrr
(Rn+Nnl 101rrr
-(Rn) l11rrr
Absolute address 110000

where "rrr" refers to an address register RO-R7

Timing: 4+ mvb oscillator clock cycles

Memory:, 1 +ea program words

Instruction Format
8TST #n,X:aa
8TST #n,Y:aa

Opcode:

23

I 0 0 0 0 1

Instruction Fields:

16 15

o 1 do 0 a a a a a

#n=bit number=bbbbb,
aa = 6-bit Absolute Short Address = aaaaaa

0
1

8 7

alo S 1

Absolute Short Address aaaaaa Memory SpaceS

000000

111111

X Memory
Y Memory

Timing: 4+ mvb oscillator clock cycles

Memory: 1 + ea program words

o

Bit Number bbbbb

00000

10111

b b b b bl

Bit Number bbbbb

00000

10111

MOTOROLA DSP56000/DSP56001 USER'S MANUAL

BTST

&I

A-49

•

8TST

Instruction Format:
8T5T #n,X:pp
8T5T #n,Y:pp

Opcode:

23

I 0 0 0 0 1

Instruction Fields:

Bit Test

16 15

o 1 dl 0 P P P P P

#n = bit number= bbbbb,
pp = 6-bit liD 5hort Address = pppppp

870

plo SIb b b b b I

110 Short Address pppppp

000000

Memory SpaceS Bit Number bbbbb

00000

111111

X Memory
Y Memory

Timing: 4+ mvb oscillator clock cycles

Memory: 1 +ea program words

Instruction Format:
8T5T #n,D

Opcode:

23

I 0 0 o 0 1

Ins~ruction Fields:

16 15

o 1 111 1 DOD D D

':#n = bit number= bbbbb,
D = destination· register= DDDDDD,

a

10111

870

Dlo lIb b b b bl

xxxx= 16-bit Absolute Address in extension word

A-50 DSP56000/DSP56001 USER'S MANUAL

8TST

MOTOROLA

81S1

Destination Register

4 registers in Data ALU
8 accumulators in Data ALU
8 address registers in AGU
8 address offset registers in AGU
8 address modifier registers in AGU
8 program controller registers

Bit Test

DDDDDD

000100
001000
010TTT
011NNN
100 F F F
111 GGG

81S1

Bit Number bbbbb

00000

10111

See A.9 INSTRUCTION ENCODING and Table A-18 for specific register encodings.

Timing: 4+ mvb oscillator clock cycles

Memory: 1 + ea program words

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-51

&I

III

CLR Clear Accumulator CLR

Operation: Assembler Syntax: o. D (parallel move) CLR D (parallel move)

Description: Clear the destination accumulator. This is a 56-bit clear instruction.

Example:

CLR A #$7F,NO ;clear A, set up NO addr. reg.

Before Execution After Execution

A ~1 __ ~$1_2~:3~45~67~8~:9~A~BC~D~E __ ~ A ~I __ ~$~oo~:o~o~oo_oo_:o_o_oo_o~o __ ~

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the
value $12:345678:9ABCDE. The execution of the CLR A instruction clears the 56-bit A
accumulator to zero.

Condition Codes:

A-52

15 14 13 12 11 10 8 7 3 IiJ .. I T I ** I SI I SO I 11 I 10 I ** I l I E I U N I '
, MR .. I(CCR v~

L - Set 'if data limiting has occurred during parallel move
E - Always cleared
U - Always set
N - Always cleared
Z - Always set
V - Always cleared

DSP56000/DSP56001 USER'S MANUAL MOTOROLA

CLR

Instruction Format:
CLR D

Opcode:

23

Instruction Fields:
o d

A 0
B 1

Clear Accumulator

8 7

DATA BUS MOVE FIELD

Timing: 2 + mv oscillator clock cycles

Memory: 1 + mv program words

4 3

MOTOROLA OSP56000/0SP56001 USER'S MANUAL

CLR

•

A-53

a

CMP Compare CMP

Operation: Assembler Syntax:
S2 - S1 (parallel move) CMP S1,S2 (parallel move)

Description: Subtract the source one operand, S1, from the source two accumulator,
S2, and update the condition code register. The result of the subtraction operation is
not stored.

NOTE: This instruction subtracts 56-bit operands. When a word is specified as S1, it
is sign extended and zero filled to form a valid 56-bit operand. For the carry to be set
correctly as a result of the subtraction, S2 must be properly sign extended. S2 can be
improperly sign extended by writing A 1 or 81 explicity prior to executing the compare
so that A2 or 82, respectively, may not represent the correct sign extension. This note
particularly applies to the case where it is extended to compare 24-bit operands such
as XO with A1.

Example:

CMP YO,8 XO,X:(R6)+ N6 Y1,Y:(RO)- ;comp. YO and 8, save XO, Y1

Before Execution After Execution

B 1-1 __ $_00_:0_0_00_20_:0_0_00_0_0_--, B 1,,-_$_00_:0_0_00_20_:0_0_00_0_0_--,

YO $000024 YO $000024

SR $0300 SR $0319

Explanation of Example: Prior to execution, the 56-bit 8 accumulator contains the value

A-54

$00:000020:000000 and the 24-bit YO register contains the value $000024. The exe­
cution of the CMP YO,8 instruction automatically appends the 24-bit value in the YO
register with 24 LS zeros, sign extends the resulting 48-bit long word to 56 bits,
subtracts the result from the 56-bit 8 accumulator and updates the condition code
register.

DSP56000/DSP56001 USER'S MANUAL MOTOROLA

CMP Compare

Condition Codes:

15 14 13 12 11 10 8 7 0 Ifl .. I T 1'* I Sl I SO I 11 I 10 I" I 'iE I U N I z I v III
MR CCR

L - Set if limiting (parallel move) or overflow has occurred in result
E - Set if the signed integer portion of result is in use
U - Set if result is unnormalized
N - Set if bit 55 of result is set
Z - Set if result equals zero
V - Set if overflow has occurred in result
C - Set if a carry (or borrow) occurs from bit 55c;:>f result

CMP

NOTE: The definition of the E and U bits varies according to the scaling mode being
used. Refer to A.4 CONDITION CODE COMPUTATION for complete details.

Instruction Format:
CMP S1,S2

ppcode:

23

Instruction Fields:

51,52 JJJd

B,A 0000
A,B 0001
XO,A 1000
XO,B 1001
YO, A 1010

8 7

DATA BUS MOVE FIELD 0 J

OPTIONAL EFFECTIVE ADDRESS EXTENSION

51,52 JJJd

YO,B 1 0 1 1
Xl,A 1 100
Xl,B 1 1 0 1
Yl,A 1 1 1 0
Yl,B 1 1 1 1

Timing: 2 + mv oscillator clock cycles

Memory: 1 + mv program words

43

MOTOROLA OSP56000/0SP56001 USER'S MANUAL A-55

•

CMPM Compare Magnitude CMPM

Operation: Assembler Syntax:
1821-1811 (parallel move) CMPM 81,82 (parallel rT)0ve)

, ,

Description: 8ubtract the absolute value (magnitude) of the source one operand, 81,
from the absolute value of the source two accumulator, 82, and update the condition
code register. The result of the subtraction operation is not stored.

NOTE: This instuction subtracts 56-bit operands. When a word is specified as 81, it
is sign extended and zero filled to form a valid 56-bit operand. For the carry to be set
correctly as a result of the subtraction, 82 must be properly sign extended. 82 can be
improperly sign extended by writing A 1 or 81 explicitly prior to executing the compare
so that A2 or B2, respectively, may not represent the correct sign extension. This note
particularly applies to the case where it is extended to compare 24-bit operands such
as XO with A1.

Example:

CMPM X1,A BA,L: - (R4) ;comp. X1 and A mag., save B1 and At

Before Execution After Execution

A I $00 :000006: 000000 A I $00: 000006: 000000

X1 $FFFFF7 X1 I $FFFFF7

SR $0300 SR $0319

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the

A-56

value $00:000006:000000, and the 24-bit X1 register contains the value $FFFFF7. The
execution of the CMPM X1,A instruction automatically appends the 24-bit value in the
X1 register with 24 LS zeros, sign extends the resulting 48-bit long word to 56 bits,
takes the absolute value of the resulting 56-bit number, subtracts the result from the
absolute value of the contents of the 56-bit A accumulator, and updates the condition
code register. .

DSP56000/DSP56001 USER'S MANUAL MOTOROLA

CMPM Compare Magnitude

Condition Codes:

15 14 13 12 11 10 8 7 6 5 4 3 2 0 pu .. I T I .. I 51 I SO I 11 I .. 1**1 L E U N Z I v CQ CCR MR .., .
L - Set if limiting (parallel move) or overflow has occurred in result
E - Set if the signed integer portion of result is in use
U - Set if result is unnormalized
N - Set if bit 55 of result is set
Z - Set if result equals zero
V - Set if overflow has occurred in result
C - Set if a carry (or borrow) occurs from bit 55 of result

CMPM

NOTE: The definition of the E and U bits varies according to the scaling mode being
psed. Refer to A.4 CONDITION CODE COMPUTATION for complete details.

Instruction Format:
CMPM S1,S2

Opcode:

23 8 7 o
DATA BUS MOVE FIELD

Instruction Fields:

51,52 JJJd 51,52 JJJd 51,52 JJJd

B,A 0000 XO,B 1001 X1,A 1100
A,B 0001 VO,A 1010 X1,B 1101
XO,A 1000 VO,B 101 1 V1,A 11 10

V1,B 1 1 1 1

Timing: 2 + m'v oscillator clock cycles

Memory: 1 + mv program words

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-57

-

•

DIV Divide Iteration DIV

Operation: If D[55] EB S[23] = 1,

55 47 23 ·0

then I'-I l1li{ I II(; I • C+S t D

Destination Accumulator D

55 47 23 0

else I~I II(; I l1li{ I .C-StD

Destination Accumulator D

where EB denotes the logical exclusive OR operator

Assembler
Syntax: DIV S,D

Description: Divide the destination operand D by the source operand S and store the

A-58

result in the destination accumulator D. The 48-bit dividend must be a positive fraction
which has been sign extended to 56-bits and is stored in the full 56-bit destination
accumulator D. The 24-bit divisor is a signed fraction and is stored in the source
operand S. Each DIV iteration calculates one quotient bit using a nonrestoring fractional
division algorithm (see description on the next page). After the execution of the first
DIV instruction, the destination operand holds both the partial remainder and the
formed quotient. The partial remainder occupies the high-order portion of the desti­
nation accumulator D and is a signed fraction. The formed quotient occupies the low­
order portion of the destination accumulator D (AO or 80) and is a positive fraction.
One bit of the formed quotient is shifted into the LS bit of the destination accumulator
at the start of each DIV iteration. The formed quotient is the true quotient if the true
quotient is positive. If the true quotient is negative, the formed quotient must be
negated. Valid results are obtai"ed only when IDI < ISland the operands are inter­
preted as fractions. Note that this condition ensures that the magnitude of the quotient
is less than one (i.e., is fractional) and precludes division by zero.

The DIV instruction calculates one quotient bit based on the divisor and the previous
partial remainder. To produce an N-bit quotient, the DIV instruction is executed N
times where N is the number of bits of precision desired in the quotient, 1 ::::;;N::::;;24.
Thus, for a full-precision (24 bit) quotient, 24 DIV iterations are required. In general,
executing the DIV instruction N times produces an N-bit quotient and a 48-bit remainder
which has (48 - N) bits of precision and whose N MS bits are zeros. The partial re­
mainder is not a true remainder and must be corrected due to the nonrestoring nature
of the division algorithm before it may be used. Therefore, once the divide is complete,

DSP56000/DSP56001 USER'S MANUAL MOTOROLA

DIV Divide Iteration DIV

it is necessary to reverse the last DIV operation and restore the remainder to obtain
the true remainder.

The DIV instruction uses a nonrestoring fractional division algorithm which consists
of the following operations (see the previous Operation diagram):

1. Compare the source and destination operand sign bits: An exclusive OR operation
is performed on bit 55 of the destination operand D and bit 23 of the source
operand S;

2. Shift the partial remainder and the quotient: The 55-bit destination accumulator
D is shifted one bit to the left. The carry bit C is moved into the LS bit (bit 0) of
the accumulator;

3. Calculate the next quotient bit and the new partial remainder: The 24-bit source
operand S (signed divisor) is either added to or subtracted from the MSP portion
of the destination accumulator (A 1 or B1), and the result is stored back into the
MSP portion of that destination accumulator. If the result of the exclusive OR
operation previously described was a "1" (i.e., the sign bits were different), the
source operand S is added to the accumulator. If the result of the exclusive OR
operation was a "0" (i.e., the sign bits were the same), the source operand S is
subtracted from the accumulator. Due to the automatic sign extension of the 24-
bit signed divisor, the addition or subtraction operation correctly sets the carry
bit C of the condition code register with the next quotient bit.

Example:
(4-Quadrant division, 24-bit signed quotient, 48-bit signed remainder)

ABS A A,B
EOR XO,B B,X:$O
AND #$FE,CCR
REP #$18
DIV XO,A
TFR A,B
JPL SAVEOUO
NEG B

SAVEOUO TFR XO,B BO,X1
ABS B

DONE

ADD A,B
JCLR #23,X:$0,DONE
MOVE #$O,BO
NEG B

;make dividend positive, copy A1 to B1
;save rem. sign in X:$O, quo. sign in N
;clear carry bit C (quotient sign bit)
;form a 24-bit quotient
;form quotient in AO, remainder in A 1
;save quotient and remainder in B1,BO
;go to SAVEOUO if quotient is positive
;complement quotient if N bit set
;save quo. in X1, get signed divisor
;get absolute value of signed divisor
;restore remainder in B1
;go to DONE if remainder is positive
;clear LS 24 bits of B
;complement remainder if negative

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-59

III

DIV Divide Iteration DIV

Before Execution After Execution

A $00 :OE66D7: F2832C A $FF:EDCCAA:654321

XO $123456 XO $123456

Xl $000000 Xl $654321

B $00: 000000: 000000 B $00:000100:654321

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the 56-

A-60

bit, sign-extended fractional dividend D (D=$00.OE66D7:F2832C=0.112513535894635
approx.) and the 24-bit XO register contains the 24-bit, signed fractional divisor S
(S = $123456 = 0.142222166061401). Since IDI<ISI, the execution of the previous divide
routine stores the correct 24-bit signed quotient in the 24-bit X1 register (AI
XO = 0.79111111164093 = $654321 = X1). The partial remainder is restored by reversing
the last DIV operation and adding back the absolute value of the signed divisor in XO
to the partial remainder in A 1. This produces the correct LS 24 bits of the 48-bit signed
remained in the 24-bit 81 register. Note that the remainder is really a 48-bit value
which has 24 bits of precision. Thus, the correct 48-bit remainder is $000000:000100
which equals 0.0000000000018190 approximately.

Note that the divide routine used in the previous example assumes that the sign­
extended 56-bit signed fractional dividend is stored in the A accumulator and that the
24-bit signed fractional divisor is stored in the XO register. This routine produces a
full 24-bit signed quotient and a 48-bit signed remainder.

This routine may be greatly simplified for the case in which only positive, fractional
operands are used to produce a 24-bit positive quotient and a 48-bit positive remainder,
as shown in the following example:

1-Quadrant division, 24-bit unsigned quotient, 48-bit unsigned remainder
AND #$FE,CCR ;clear carry bit C (quotient sign bit)
REP #$18 ;form a 24-bit quotient and remainder
DIV XO,A ;form quotient in AO, remainder in A1
ADD XO,A ;restore remainder in A1

Note that this routine assumes that the 56-bit positive, fractional, sign-extended div­
idend is stored in the A accumulator and that the 24-bit positive, fractional divisor is
stored in the XO register. After execution, the 24-bit positive fractional quotient is
stored in the AO register; the LS 24 bits of the 48-bit positive fractional remainder are
stored in the A 1 register.

DSP56000/DSP56001 USER'S MANUAL MOTOROLA

DIV Divide Iteration DIV

There are many variations possible when choosing a suitable division routine for a
given application. The selection of a suitable division routine normally involves spec­
ification of the following items:

1) the number of bits of precision in the dividend;
2) the number of bits of precision N in the quotient;
3) whether the value of N is fixed or is variable;
4) whether the operands are unsigned or signed;
5) whether or not the remainder is to be calculated.

A complete discussion of the various division routines is beyond the scope of this
manual. For a more complete discussion of these routines, refer to the application
note entitled Fractional and Interger Arithmetic Using the DSP56001.

For extended precision division (i.e., for N-bit quotients where N>24), the DIV instruc­
tion is no longer applicable, and a user-defined N-bit division routine is required. For
further information on division algorithms, refer to pages 524-530 of Theory and
Application of Digital Signal Processing by Rabiner and Gold (Prentice-Hall, 1975),
pages 190-199 of Computer Architecture and Organization by John Hayes (McGraw­
Hill, 1978), pages 213-223 of ComputerArithmetic: Principles, Architecture, and Design
by Kai Hwang (John Wiley and Sons, 1979), or other references as required.

Condition Codes:

15 14 13 12 11 10 8 7 1 0

CCR
IJQ ** I T I ** I S1 I SO I 11

MR
I 10 I ** I l I I u I N

L - Set if overflow bit V is set
V - Set if the MS bit of the destination operand is changed as a result of the instruc­

tion's left shift operation
C - Set if bit 55 of the result is cleared

MOTOROLA OSP56000/0SP56001 USER'S MANUAL A-61

-

DIV Divide Iteration DIV

Instruction Format:
DIV S,D

Opcode:

23 16 15 8 7 0

I 0 0 00000 111 000 0 0 0 010 1 J J d 0 0 01

Instruction Fields:

S,D JJd S,D JJd

XO,A 000 X1,A 1 0 0
XO,8 o 0 1 X1,8 1 0 1
YO,A 010 Y1,A 1 1 0
YO,8 o 1 1 Y1,8 1 1 1

Timing: 2 oscillator clock cycles

Memory: 1 program word

A-62 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

DO Start Hardware Loop

Operation: ,
SP+ 1 • SP;LA. SSH;LC • SSL;X:ea • LC
SP+ 1 • SP;PC. SSH;SR • SSL;expr-1 • LA
1 • LF

SP+ 1 • SP;LA. SSH;LC • SSL;X:aa • LC
SP+ 1 • SP;PC • SSH;SR • SSL;expr-1 • LA
1 • LF

SP+ 1 • SP;LA. SSH;LC • SSL;Y:ea • LC
SP+ 1 • SP;PC • SSH;SR • SSL;expr-1 • LA
1 • LF

SP+ 1 • SP;LA. SSH;LC • SSL;Y:aa • LC
SP+ 1 • SP;PC • SSH;SR • SSL;expr-1 • LA
1 • LF

SP+ 1 • SP;LA. SSH;LC • SSL;#xxx. LC
SP+ 1 • SP;PC • SSH;SR • SSL;expr-1 • LA
1 • LF

SP+ 1 • SP;LA. SSH;LC • SSL;S • LC
SP+ 1 • SP;PC • SSH;SR • SSL;expr-1 • LA
1 • LF

End of Loop:
SSL(LF) • SR;SP-1 • SP
SSH. LA;SSL. LC;SP-1 • SP

Assembler Syntax:
DO X:ea,expr

DO X:aa,expr

DO Y:ea,expr

DO Y:aa,expr

DO #xxx,expr

DO S,expr

DO

Description: Begin a hardware DO loop that is to be repeated the number of times
specified in the instruction's source operand and whose range of execution is termi­
nated by the destination operand (previously shown as "expr"). No overhead other
than the execution of this DO instruction is required to set up this loop. DO loops can
be nested and the loop count can be passed as a parameter.

During the first instruction cycle, the <?urreht contents of the loop address (LA) and
the loop counter (LC) registers are pushed onto the system stack. The DO instruction's
source operand is then loaded into the loop counter (LC) register. The LC register
contains the remaining number of times the DO loop will be executed and can be
accessed from inside the DO loop subject to certain restrictions. If LC equals zero, the
DO loop is executed 65,536 times. All address register indirect addressing modes may
be used to generate the effective address of the source operand. If immediate short

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-63

III

DO Start Hardware Loop DO

A-64

data is specified, the 12 LS bits of LC are loaded with the 12-bit immediate value, and
the four MS bits of LC are cleared.

During the second instruction cycle, the current contents of the program counter (PC)
register and the status register (SR) are pushed onto the system stack. The stacking
of the LA, LC, PC, and SR registers is the mechanism which permits the nesting of DO
loops. The DO instruction's destination operand (shown as "expr") is then loaded into
the loop address (LA) register. This 16-bit operand is located in the instruction's 24-
bit absolute address extension word as shown in the opcode section. The value in the
program counter (PC) register pushed onto the system stack is the address of the first
instruction following the DO instruction (i.e., the first actual instruction in the DO loop).
This value is read (i.e., copied but not pulled) from the top of the system stack to
return to the top of the loop for another pass through the loop.

During the third instruction cycle, the loop flag (LF) is set. This results in the PC being
repeatedly compared with LA to determine if the last instruction in the loop has been
fetched. If LA equals PC, the last instruction in the loop has been fetched and the loop
counter (LC) is tested. If LC is not equal to one, it is decremented by one and SSH is
loaded into the PC to fetch the first instruction in the loop again. If LC equals one, the
"end-of-Ioop" processing begins.

When executing a DO loop, the instructions are actually fetched each time through
the loop. Therefore, a DO loop can be interrupted. DO loops can also be nested. When
DO loops are nested, 'the end-of-Ioop addresses must also be nested and are not
allowed to be equal. The assembler generates an error message when DO loops are
improperly nested. Nested DO loops are illustrated in the example.

NOTE: The assembler calculates the end-of-Ioop address to be loaded into LA (the
absolute address extension word) by evaluating the end-of-Ioop expression lIexpr"
and subtracting one. This is done to accommodate the case where the last word in
the DO loop is a two-word instruction. Thus, the end-of-Ioop expression lIexpr" in the
source code must represent the address of the instruction AFTER the last instruction
in the loop as shown in the example.

During the lIend-of-loop" processing, the loop flag (LF) from the lower portion (SSL)
of SP is written into the status register (SR), the contents of the loop address (LA)
register are restored from the upper portion (SSH) of (Sf:' -1), the contents of the loop
counter (LC) are restored from the lower portion (SSL) of (SP -1) and the stack pointer
(SP) is decremented by two. Instruction fetches now continue at the address of the
instruction following the last instruction in the DO loop. Note that LF is the only bit
in the status register (SR) that is restored after a hardware DO loop has been exited.

NOTE: The loop flag (LF) is cleared bya hardware. re~et.

DSP56000/DSP56001 USER'S MANUAL MOTOROLA

DO Start Hardware Loop DO

Restrictions: The "end-of-Ioop" comparison previously described actually occurs at in-
struction fetch time. That is, LA is being compared with PC when the instruction at
LA - 2 is being executed. Therefore, instructions which access the program controller
registers and/or change program flow cannot be used in locations LA - 2, LA -1, or
LA.

Proper DO loop operation is not guaranteed if an instruction starting at address LA-2,
LA -1, or LA specifies one of the program controller registers SR, SP, SSL, LA, LC, or
(implicitly) PC as a destillation register. Similarly, the SSH program controller register
may not be specified as a source or destination register in an instruction starting at
address LA-2, LA-l, or LA. Additionally, the SSH register cannot be specified as a
source register in the DO instruction itself and LA cannot be used as a target for jumps
to subroutine (i.e., JSR, JScc, JSSET, or JSCLR to LA). A DO instruction cannot be
repeated using the REP instruction.

The following instructions cannot begin at the indicated position(s) near the end of a
DO loop:

At LA-2, LA-l, and LA DO

At LA-1

At LA

MOTOROLA

MOVEC from SSH
MOVEM from SSH
MOVEP from SSH
MOVEC to LA, LC, SR, SP, SSH, or SSL
MOVEM to LA, LC, SR, SP, SSH, or SSL
MOVEP to LA, LC, SR, SP, SSH, or SSL
ANDI MR
ORI MR
Two-word instructions which read LC, SP, or SSL

Single-word instructions (except REP) which read LC, SP,
or SSL, JCLR, JSET, two-word JMP, two-word Jcc

any two-word instruction*
Jcc
JCLR
JSET
JMP
JScc
JSR

REP
RESET
RTI
RTS
STOP
WAIT

*This restriction applies to the situation in which the
DSP56000/DSP56001 simulator's single-line assembler
is used to change the last instruction in a DO loop from
a one-word instruction to a two-word instruction.

DSP56000/DSP56001 USER'S MANUAL A-65

Ell

DO Start Hardware Loop DO

Other Restrictions: DO SSH,xxxx
JSR to (LA) whenever the loop flag (LF) is set
JScc to (LA) whenever the loop flag (LF) is set
JSCLR to (LA) whenever the loop flag (LF) is set
JSSET to (LA) whenever the loop flag (LF) is set

A DO instruction cannot be repeated using the REP instruction.

NOTE: Due to pipelining, if an address register (RO-R7, NO-N7, or MO-M7) is changed
using a move-type instruction (LUA, Tcc, MOVE, MOVEC, MOVEM, MOVEP, or parallel
move), the new contents of the destination address register wili not be available for
use during the following instruction (i.e., there is a single instruction cycle pipeline
delay). This restriction also applies to the situation in which the last instruction in a
DO loop changes an address register and the first instruction at the top of the DO
loop uses that same address register. The top instruction becomes the following
instruction because of the loop construct.

Similarly, since the DO instruction accesses the program controller registers, the DO
instruction must not be immediately preceded by any of the following instructions:

Immediately before DO MOVEC to LA, LC, SSH, SSL, or SP
MOVEM to LA, LC, SSH, SSL, or SP
MOVEP to LA, LC, SSH, SSL, or SP
MOVEC from SSH
MOVEM from SSH
MOVEP from SSH

Example:

A-66

DO #cnt1, END1

DO #cnt2, END2

MOVE A,X:(RO) +

END2
ADD A,B X:(R1) + ,XO

END1

; begin outer DO loop

;begin inner DO loop

;Iast instruction in inner loop
;(in outer loop)
;Iast instruction in outer loop
;first instruction after outer loop

OSP56000/0SP56001 USER'S MANUAL MOTOROLA

DO Start Hardware Loop DO

Explanation of Example: This example illustrates a nested DO loop. The outer DO loop
will be executed "cnt1" times while the inner DO loop will be executed ("cnt1" * "cnt2")
times. Note that the labels END1 and END2 are located at the first instruction past the
end of the DO loop, as mentioned above, and are nested properly.

Condition Codes:

15 14 13 12 11 10 8 7 !iJ ** I T I ** I s, I so I 11 110 1** 1 l 1 E

LF - Set when a DO loop is in progress
L - Set if data limiting occurred [see Note 2]

Instruction Format:
DO X:ea, expr
DO Y:ea, expr

Opcode:

Instruction Fields:
ea = 6-bit Effective Address = MMMRRR,

CCR

expr= 16-bit Absolute Address in 24-bit extension word

Effective
Addressing Mode MMMRRR Memory SpaceS

(Rn)-Nn OOOrrr X Memory 0
(Rn)+Nn 001 r r r Y Memory 1
(Rn)- o 1 0 r r r
(Rn)+ 011rrr
(Rn) 100rrr
(Rn+Nn) 1 0 1 r r r
-(Rn) 111rrr

where "rrr" refers to an address register RO-R7

Timing: 6+ mv oscillator clock cycles

Memory: 2 program words

MOTOROLA OSP56000/0SP56001 USER'S MANUAL A-67

•

III

DO Start Hardware Loop

Instruction Format:
DO X:aa, expr
DO Y:aa, expr

Opcode:

23 20 19

Instruction Fields:
aa = 6-bit Absolute Short Address = aaaaaa,
expr= 16-bit Absolute Address in 24-bit extension word

Absolute Short Address aaaaaa

000000

111111

Timing: 6 + mv oscillator clock cycles

Memory: 2 program words.

Instruction Format:
DO #xxx, expr

Opcode:

Instruction Fields:

Memory SpaceS

X Memory
Y Memory

o
1

#xxx = 12-bit Immediate Short Data = hhhh iii iii i i,
expr = 16-bit Absolute Short Address in 24-bit extension word

Immediate Short Data hhhh iii iii i i

000000000000

111111111111

A-68 DSP56000/DSP56001 USER'S MANUAL

DO

MOTOROLA

DO Start Hardware Loop

Timing: 6 + mv oscillator clock cycles

Memory: 2 program words

Instruction Format:
DO S, expr

Opcode:

Instruction Fields:
S = 6-bit Source operand = DDDDDD,
expr = 16-bit Absolute Address in 24-bit extension word

Source 000000

XO 000100
X1 000101
YO 000110
Y1 000 1 1 1
AO 001000
80 001001
A2 00101 0
82 o 0 1 0 1 1
A1 00 1 1 00
81 o 0 1 1 0 1
A 001110
8 001111

where rrr = Rn register
where nnn = Nn register
where mmm = Mn register

S
S/L

no
no
no
no
no
no
no
no
no
no
yes [see Note 2)
yes [see Note 2)

NOTE 1: Implementation Notes:

Source

SR
OMR
SP
SSL
LA
LC
RO-R7
NO-N7
MO-M7

DO

000000

111001
1 1 101 0
1 1 1 0 1 1 [see Note 1)
1 1 1 1 0 1 [see Note 1)
1 1 1 1 1 0
1 1 1 1 1 1

010rr·r
o 1 1 n n n
100mmm

For DO SP, expr The actual value that will be loaded into the loop
counter (LC) is the value of the stack pointer (SP)
before the execution of the DO instruction, incre­
mented by 1.

MOTOROLA

Thus, if SP = 3, the execution of the DO SP,expr instruction will load the loop
counter (LC) with the value LC=4.

DSP56000/DSP56001 USER'S MANUAL A-69

III

III

DO Start Hardware Loop DO

For DO SSL, expr The loop counter (LC) will be loaded with its previous
value which was saved on the stack by the DO in­
struction itself.

NOTE 2: If A or 8 is specified as a source operand, the accumulator value is optionally
shifted according to the scaling mode bits in the status register. If the data
out of the shifter indicates that the accumulator extension is in use, the 24-
bit data is limited to a maximum positive or negative saturation constant.
The shifted and limited value is loaded into LC, although A or 8 remain
unchanged.

Timing: 6+mv oscillator clock cycles.

Memory: 2 program words

A-70 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

ENDDO End Current DO Loop ENDDO
Operation: Assembler Syntax:

SSL(LF) • SR; SP-1 • SP ENDDO
SSH. LA; SSL. LC; SP-1 • SP

Description: Terminate the current hardware DO loop before the current loop counter
(LC) equals one. If the value of the current DO loop counter (LC) is needed, it must be
read before the execution of the ENDDO instruction. Initially, the loop flag (LF) is
restored from the system stack and the remaining portion of the status register (SR)
and the program counter (PC) are purged from the system stack. The loop address
(LA) and the loop counter (LC) registers are then restored from the system stack.

Restrictions: Due to pipelining and the fact that the ENDDO instruction accesses the
program controller registers, the ENDDO instruction must not be immediately pre­
ceded by any of the following instructions:

Immediately before ENDDO MOVEC to LA, LC, SR, SSH, SSL, or SP
MOVEM to LA, LC, SR, SSH, SSL, or SP
MOVEP to LA, LC, SR, SSH, SSL, or SP
MOVEC from SSH
MOVEM from SSH
MOVEP from SSH
ORI MR
ANDIMR

Also, the ENDDO instruction cannot be the next to last (LA-1) or last (LA) instruction
in a DO loop.

Example:

DO YO,NEXT

MOVEC LC,A
CMP Y1,A
JNE ONWARD
ENDDO
JMP NEXT

ONWARD:

;exec. loop ending at NEXT (YO) times

;get current value of loop counter (LC)
;compare loop counter with value in Y1
;go to ONWARD if LC not equal to Y1
;LC equal to Y1, restore all DO registers
;go to NEXT
;LC not equal to Y1, continue DO loop
;(Iast instruction in DO loop)

NEXT MOVE #$123456,X1 ;(first instruction AFTER DO loop)

MOTOROLA OSP56000/0SP56001 USER'S MANUAL A-71

III

11.1

ENDDO End Current DO Loop ENDDO
Explanation of Example: This example illustrates the use of the ENDDO instruction to

terminate the current DO loop. The value of the loop counter (LC) is compared with
the value in the Y1 register to determine if execution of the DO loop should continue.
Note that the ENDDO instruction updates certain program controller registers but does
not automatically jump past the end of the DO loop. Thus, if this action is desired, a
JMP instruction (Le., JMP NEXT as previously shown) must be included after the
ENDDO instruction to transfer program control to the first instruction past the end of
the DO loop.

Condition Codes:

15 14 13 12 11 10 8 7

CCR
z I v III I U N

The condition codes are not affected by this instruction.

Instruction Format:
ENDDO

Opcode:

23 16 15 8 7 0

10 0 0 0 0 o 0 010 0 0 0 0 0 0 o 11 0 0 0 1 1 0 0 I

Instruction Fields:
None

Timing: 2 oscillator clock cycles

Memory: 1 program word

A-72 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

EOR Logical Exclusive OR EOR

Operation: Assembler Syntax:
S EB D[47:24] • D[47:24] (parallel move) EOR S,D (parallel move)

where EB denotes the logical Exclusive OR operator

Description: Logically exclusive OR the source operand S with bits 47-24 of the des-
tination operand D and store the result in bits 47-24 of the destination accumulator.
This instruction is a 24-bit operation. The remaining bits of the destination operand
D are not affected. '

Example:

EOR Y1,8 (R2) + ;Exclusive OR Y1 with 81, update R2

Before Execution After Execution

Y1 I $000003 Y1 $000003

B I $00: 000005: 000000 B I $00 :000006: 000000

Explanation of Example: Prior to execution, the 24-bit Y1 register contains the value
$000003, and the 56-bit 8 accumulator contains the value $00:000005:000000. The EOR
Y1,8 instruction logically exclusive ORs the 24-bit value in the Y1 register with bits
47-24 of the 8 accumulator (81) and stores the result in the 8 accumulator with bits
55-48 and 23-0 unchanged.

Condition Codes:

15 14 13 12 11 10 8 7 3

IiJ ** I T I ** I S1 I so I II I 10 '** I L I E I u I N
z I v ~

- Set if data limiting has occurred during parallel move
N - Set if bit 47 of A or B result is set
Z - Set if bits 47-24 of A or B result are zero·
V - Always cleared

MOTOROLA DSP56000/0SP56001 USER'S' MANUAL A-73

•

EOR Logical Exclusive OR EOR

Instruction Format:
EOR S,D

Opcode:

23 4 3

DATA BUS MOVE FIELD

Instruction Fields:

5 JJ 0 d

XO 00 A 0
X1 1 0 8 1
YO 01
Y1 1 1

Timing: 2 + mv oscillator clock cycles

Memory: 1 + mv program words

II

A-74 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

ILLEGAL

Operation:
Begin Illegal Instruction

exception processing

Illegal Instruction Interrupt ILLEGAL

Assembler Syntax:
ILLEGAL

Description: The ILLEGAL instruction is executed as if it were a NOP instruction. Normal
instruction execution is suspended and illegal instruction exception processing is in­
itiated. The interrupt vector address is located at address P:$3E. The interrupt priority
level (11, 10) is set to 3 in the status register if a long interrupt service routine is used.
The purpose of the ILLEGAL instruction is to force the DSP into an illegal instruction
exception for test purposes. If a fast interrupt is used with the ILLEGAL instruction,
an infinite loop will be formed (an illegal instruction interrupt normally returns to the
illegal instruction) which can only be broken by a hardware reset. Therefore, only long
interrupts should be used. Exiting an illegal instruction is a fatal error. The long ex­
ception routine should indicate this condition and cause the system to be restarted.

If the ILLEGAL instruction is in a DO loop at LA and the instruction at LA -1 is being
interrupted, then LC will be decremented twice due to the same mechanism that causes
LC to be decremented twice if JSR, REP, etc. are located at LA. This is why JSR, REP,
etc. at LA are restricted. Clearly restrictions cannot be imposed on illegal instructions.

Since REP is uninterruptable, repeating an ILLEGAL instruction results in the interrupt
not being initiated until after completion of the REP. After servicing the interrupt,
program control will return to the address of the second word following the ILLEGAL
instruction. Of course, the ILLEGAL interrupt service routine should abort further proc­
essing, and the processor should be reinitialized.

Example:

ILLEGAL ;begin ILLEGAL exception processing

Explanation of Example: The ILLEGAL instruction suspends normal instruction exe-
cution and initiates ILLEGAL exception proc~ssing.

Condition Codes:

15 14 13 12 11 10 8 7

1f1**1 T 1**ISllsoll1llO 1**1 L 1 E 1 u N z I v
MR • ... CCR

The condition codes are not affected by this instruction.

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-75

•

)ILLEGAL Illegal Instruction Interrupt ILLEGAL

Instruction Format:
ILLEGAL

Opcode:

23 16 15 8 7 0

I 0 0 o 0 0 0 0 010 0 0 0 0 0 0 010 0 0 0 0 1 0 11

Instruction Fields:
None

Timing: 8 oscillator clock cycles

Memory: 1 program word

•

A-76 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

JC.C

Operation:
If cc, then Oxxx • PC

else PC+ 1 • PC
If CC, then ea • PC

else PC+ 1 • PC

Jump Conditionally Jcc
Assembler Syntax:

Jcc xxx

Jcc ea

Description: Jump to the location in program memory given by the instruction's effec-
tive address if the specified condition is true. If the specified condition is false, the
program counter (PC) is incremented and the effective address is ignored. However,
the address register specified in the effective address field is always updated inde­
pendently of the specified condition. All memory alterable addressing modes may be
used for the effective address. A Fast Short Jump addressing mode may also be used.
The 12-bit data is zero extended to form the effective address. See A.S INSTRUCTION
SEQUENCE RESTRICTIONS for restrictions. The term IICC

Ii may specify the following
conditions:

cc (HS)
CS (LO)
EC
EQ
ES
GE
GT
LC
LE
LS
LT
MI
NE
NR
PL
NN

where

lice" Mnemonic
- carry clear (higher or same)
- carry set (lower)
- extension clear
- equal
- extension set
- greater than or equal
- greater than
- limit clear
- less than or equal
-limit set
-less than
- minus
- not equal
- normalized
-plus
- not normalized

U denotes the logical complement of U,
+ denotes the logical OR operator,
• denotes the logical AND operator, and
EB denotes the logical Exclusive OR operator

Condition
C=O
C=1
E=O
Z=1
E=1

N EB V=O
Z+(N EB V)=O

L=O
Z+(N EB V)= 1

L=1
N EB V= 1

N=1
Z=O

Z+(U. E)=1
N=O

Z+(U. E)=O

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-77

•

iii

Jcc Jump Conditionally Jcc

Restrictions: A Jcc instruction used within a DO loop cannot begin at the address LA
within that DO loop.

A Jcc instruction cannot be repeated using the REP instruction.

Example:

JNN -(R4) ;jump to P:(R4) -1 if not normalized

Explanation of Example: In this example, program execution is transferred to the ad-
dress P:(R4) -1 ifthe result is not normalized. Note that the contents of address register
R4 are predecremented by 1, and the resulting address is then loaded into the program
counter (PC) if the specified condition is true. If the specified condition is not true, no
jump is taken, and the program counter is incremented by one.

Condition Codes:

15 14 13 12 11 10 8 7 0

!fl"I T 1**1 "I SO I" 110 1"1 LIE I u I N I z I v q
MR)i .111(eeR

The condition codes are not affected by this instruction.

Instruction Format:
Jcc xxx

Opcode:

23 16 15 8 7

I 0 0 o 0 1 1 1 ole e e e a a a ala a a a a a a al

A-78 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

Jcc Jump Conditionally Jcc

Instruction Fields:
cc = 4-bit condition code = ecce,
xxx = 12-bit Short Jump Address = aaaaaaaaaaaa

Mnemonic C C C C Mnemonic C C C C

CC (HS) 0000 CS (LO) 1 000
GE o 0 0 1 LT 1 0 0 1
NE 001 0 EQ 101 0
PL o 0 1 1 MI 1 0 1 1
NN o 1 00 NR 1 1 0 0
EC o 1 0 1 ES 1 1 0 1
LC o 1 1 0 LS 1 1 1 0
GT o 1 1 1 LE 1 1 11

Timing: 4 + jx oscillator clock cycles

Memory: 1 + ea program words

Instruction Format:
Jcc ea

Opcode:

23 16 15 8 7

o 0 o 0 1 0 1 011MMMRRR10 1 0 C C C C

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:
cc = 4-bit condition code = ecce,
ea = 6-bit Effective Address = MMMRRR

Effective
Addressing Mode M~MRRR

(Rn)-Nn 000 r r r
(Rn)+Nn 001 r r r III
(Rn)- o 1 0 r r r
(Rn)+ 011rrr
(Rn) 100rrr
(Rn + Nn) 101rrr
-(Rn) 111rrr
Absolute address 110000

where "rrr" refers to an address register RO-R7

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-79

Jcc Jump Conditionally Jcc

Mnemonic C C C C Mnemonic C C C C

CC (HS) 0000 CS (LO) 1 000
GE 000 1 LT 1 0 0 1
NE o 0 1 0 EQ 101 0
PL o 0 1 1 MI 1 0 1 1
NN o 1 0 0 NR 1 1 0 0
EC o 1 0 1 ES 1 1 0 1
LC o 1 1 0 LS 1 1 1 0
GT o 1 1 1 LE 1 1 1 1

Timing: 4+ jx oscillator clock cycles

Memory: 1 + ea program words

III

A-80 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

JCLR Jump if Bit Clear JCLR

Operation:
If S[n] = 0, then XXXX • PC

else PC+ 1 • PC

If S[n] = 0, then XXXX • PC
else PC+ 1 • PC

If S[n] = 0, then XXXX • PC
else PC+ 1 • PC

If S[n] = 0, then XXXX • PC
else PC+ 1 • PC

If S[n] = 0, then XXXX • PC
else PC+ 1 • PC

If S[n] = 0, then XXXX • PC
else PC+ 1 • PC

If S[n] = 0, then XXXX • PC
else PC+ 1 • PC

Assembler Syntax:
JCLR #n,X:ea,xxxx

JCLR #n,X:aa,xxxx

JCLR #n,X:pp,xxxx

JCLR #n,Y:ea,xxxx

JCLR #n,Y:aa,xxxx

JCLR #n,Y:pp,xxxx

JCLR #n,S,xxxx

Description: Jump to the 16-bit absolute address in program memory specified in the
instruction's 24-bit extension word if the nth bit of the source operand S is clear. The
bit to be tested is selected by an immediate bit number from 0-23. If the specified
memory bit is not clear, the program counter (PC) is incremented and the absolute
address in the extension word is ignored. However, the address register specified in

. the effective address field is always updated independently of the state of the nth bit.
All address register indirec~ addressing modes may be used to reference the source
operand S. Absolute Short and I/O Short addressing modes may also be used .

Restrictions: A JCLR instruction cannot be repeated using the REP instruction.

A JCLR located at LA, LA -1, or LA - 2 of the· DO loop cannot specify the program
controller registers SR, SP, SSH, SSL, LA, or LC as its target.

JCLR SSH or JCLR SSL cannot follow an instruction that changes the SP.

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-81

•

•

JCLR Jump if Bit Clear JCLR

Example:

JCLR #$5,X:«$FFF1,$1234 ;go to P:$1234 if bit 5 in SCI SSR is clear

Explanation of Example: In this example, program execution is transferred to the ad-
dress P:$1234 if bit 5 (PE) of the 8-bit read-only X memory location X:$FFF1 (I/O SCI
interface status register) is a zero. If the specified bit is not .clear, no jump is taken,
and the program counter (PC) is incremented by one.

Condition Codes:

15 14 13 12 11 10 8 7 Ill" I T I" I SI I so I 11 I 10 1** I E I U N

CCR

The condition codes are not affected by this instruction.

Instruction Format:
JCLR #n,X:ea,xxxx
JCLR #n,Y:ea,xxxx

Opcode:

23 16 15 8 7

1 0

0000101001 M M M R R Rl SOb b b b b

ABSOLUTE ADDRESS EXTENSION

Instruction Fields:
#n = bit number = bbbbb,
ea = 6-bit Effective Address = MMMRRR
xxxx = 16-bit Absolute Address in extension word

Effective
Addressing Mode MMMRRR Memory SpaceS

{Rn)-Nn OOOrrr X Memory 0
(Rn)+Nn 001 r r r Y Memory
(Rn)- 010rrr
(Rn)+ 011rrr
(Rn) 100rrr
(Rn+Nn) 101rrr
-(Rn) 111rrr

where: "rrr" refers to an address register RO-R7

Timing: 6+ jx oscillator clock cycles

Memory: 2 program words

Bit Number bbbbb

00000

10111

A-82 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

JCLR

Instruction Format:
JCLR #n,X:aa,xxxx
JCLR #n,Y:aa,xxxx

Opcode:

23

Jump if Bit Clear

16 15 8 7

0000101000 a a a a a al SOb b b b b

ABSOLUTE AOORESS EXTENSION

Instruction Fields:
#n = bit number= bbbbb,
aa = 6-bit Absolute Short Address = aaaaaa,
xxxx= 16-bit Absolute Address in extension word

Absolute Short Address aaaaaa

000000

111111

Timing: 6+ jx oscillator clock cycles

Memory: 2 program words

Instruction Format:
JCLR #n,X:pp,xxxx
JCLR #n,Y:pp,xxxx

Opcode:

23 16 15

Memory SpaceS

X Memory
Y Memory

o

8 7

Bit Number bbbbb

00000

10111

o 00 0 1 0 1 0 lOp p p p p pI SOb b b b b

ABSOLUTE ADDRESS EXTENSION

MOTOROLA OSP56000/0SP56001 USER'S MANUAL

JCLR

II

A-83

•

JCLR Jump if Bit Clear

Instruction Fields:
#n = bit number= bbbbb,
pp = 6-bit lID Short Address = pppppp,
xxxx = 16-bit Absolute Address in extension word

110 Short Address pppppp

000000

111111

Timing: 6+ jx oscillator clock cycles

Memory: 2 program words

Instruction Format:
JCLR #n,S,xxxx

Opcode:

Memory SpaceS

X Memory 0
Y Memory' 1

Bit Number bbbbb

00000

10111

23 16 15 B 7 0

o 0 0 0' 1 0 1 0 lID D D D D DO 0 0 b b b b b

ABSOLUTE ADDRESS EXTENSION

Instruction Fields:
#n = bit number = bbbbb,
S = source register = DDDDDD,
xxxx= 16-bit Absolute Address in extension word

Destination Register

4 registers in Data ALU
8 accumulators in Data ALU
8 address registers in AGU
8 address offset registers in AGU
8 address modifier registers in AGU
8 program controller registers

DDDDDD

000100
001000
010TTT
011NNN
100 F F F
111 GGG

Bit Number bbbbb

00000

10111

JCLR

See A.9 INSTRUCTION ENCODING and Table A-18 for specific register encodings.

Timing: 6 + jx oscillator clock cycles

Memory: 2 program words

A-84 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

JMP

Operation:

Assembler
Syntax:

Oxxx. PC
ea. PC

JMP xxx
JMP ea

Jump JMP

Description: Jump to the location in program memory given by the instruction's effec-
tive address. All memory alterable addressing modes may be used for the effective
address. A Fast Short Jump addressing mode may also be used. The 12-bit data is
zero extended to form the effective address.

Restrictions: A JMP instruction used within a DO loop cannot begin at the address LA
within that DO loop.

A JMP instruction cannot be repeated using the REP instruction.

Example:

JMP (R1 +N1) ;jump to program address P:(R1 + N1)

Explanation of Example: In this example, program execution is transferred to the pro-
gram address P:(R1 + N1).

Condition Codes:

15 14 13 12 11 10 8 7 2 0

CCR

The condition codes are not affected by this instruction.

MOTOROLA OSP56000/0SP56001 USER'S MANUAL A-85

•

JMP Jump JMP

Instruction Format:
JMP xxx

Opcode:

23 16 15 8 7

I 0 0 0 0 1 1 0 010 0 0 0 a a a ala a a a a a a al

Instruction Fields:
xxx = 12-bit Short Jump Address = aaaaaaaaaaaa

Timing: 4+ jx oscillator clock cycles

Memory: 1 +ea program words

Instruction Format:
JMP ea

Opcode:

23 16 15 8 7

0000101011 M M M R R RIO 0 0 0 0 0 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:
ea = 6-bit Effective Address = MMMRRR

Effective
Addressing Mode MMMRRR

(Rn)-Nn OOOrrr
(Rn)+Nn 001 r r r

• (Rn)- o 1 0 r r r
(Rn)+ 011rrr
(Rn) 100 r r r
(Rn+Nn) 101rrr
-(Rn) 111rrr
Absolute address 110000

where " rrr" refers to an address register RO-R7

Timing: 4+ jx oscillator clock cycles

Memory: 1 + ea program words

A-86 OSP56000/0SP56001 USER'S MANUAL MOTOROLA

JScc Jump to Subroutine Conditionally JScc

Operation: Assembler Syntax:
If cc, then SP+ 1 • SP; PC. SSH; SR • SSL; Oxxx. PC
else PC+ 1 • PC

If cc, then SP+ 1 • SP; PC. SSH; SR • SSL; ea • PC
else PC+ 1 • PC

JScc xxx

JScc ea

Description: Jump to the subroutine whose location in program memory is given by
the instruction's effective address if the specified condition is true. If the specified
condition is true, the address of the instruction immediately following the JScc in­
struction (PC) and the system status register (SR) are pushed onto the system stack.
Program execution then continues at the specified effective address in program mem­
ory. If the specified condition is false, the program counter (PC) is incremented, and
any extension word is ignored. However, the address register specified in the effective
address field is always updated independently of the specified condition. All memory
alterable addressing modes may be used for the effective address. A fast short jump
addressing mode may also be used: The 12-bit data is zero extended. to form the
effective address. The term "cc" may specify the following conditions:

CC (HS)
CS (LO)
EC
EQ
ES
GE
GT
LC
LE
LS
LT
MI
NE
NR
PL
NN

where

"cc" Mnemonic
- carry clear (higher or same)
- carry set (lower)
- extension clear
- equal
- extension set
- greater than or equal
- greater than
- limit clear
- less than or equal
-limit set
-less them
- minus
- not equal
- normalized
-plus
- not normalized

D denotes the logical complement of U,
+ denotes the logical OR operator,
• denotes the logical AND operator, and
EB denotes the logical Exclusive OR operator

Condition
c=o
C=1
E=O
Z=1
E=1

NEB v=o
Z+(N EB V)=O

L=O
Z+(N EB V)= 1

L=1
N EB V= 1

N=1
Z=O

z+(D. E)=1
N=O

z+(D. E)=O

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-a7

•

iii

JScc Jump to Subroutine Conditionally JScc

Restrictions: A JScc instruction used within a DO loop cannot specify the loop address
(LA) as its target.

A JScc instruction used within in a DO loop cannot begin at the address LA within
that DO loop.

A JScc instruction cannot be repeated using the REP instruction.

Example:

JSLS (R3 + N3) ;jump to subroutine at P: (R3 + N3) if limit set (L = 1)

Explanation of Example: In this example, program execution is transferred to the sub-
routine at address P:(R3 + N3) in program memory if the limit bit is set (L= 1). Both
the return address (PC) and the status register (SR) are pushed onto the system stack
prior to transferring program control to the subroutine if the specified condition is
true. If the specified condition is not true, no jump is taken and the program counter
is incremented by 1.

Condition Codes:

15 14 13 12 11 10 8 7 Iil** I T I ** I SI I SO I 11 I 10 1** I L I E I u I N
MR • .. eeR

z I v l;q
The condition codes are not affected by this instruction.

Instruction Format:
JScc xxx

Opcode:

23 16 15 8 7

I 0 0 0 0 1 1 1 lie e e e a a a ala a a a a a a al

A-88 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

JScc Jump to Subroutine Conditionally

Instruction Fields:
cc = 4-bit condition code = ecce,
xxx = 12-bit Short Ju mp Address = aaaaaaaaaaaa

Mnemonic C C C C Mnemonic C C C C

CC (HS) 0000 CS (LO)
GE 000 1 LT
NE 001 0 EO
PL o 0 1 1 MI
NN o 1 0 0 NR
EC o 1 0 1 ES
LC o 1 1 0 LS
GT o 1 1 1 LE

Timing: 4+ jx oscillator clock cycles

Memory: 1 + ea program words

Instruction Format:
JScc ea

Opcode:

23 16 15

1 000
1 0 0 1
101 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

8 7

0000101111 M M M R R R1 0 10 C C C C

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:
cc = 4-bit condition code = ecce,
ea = 6-bit Effective Address = MMMRRR

Effective
Address Mode MMMRRR Mnemonic C C C C Mnemonic C C C C

(Rn)-Nn OOOrrr CC (HS) 0000 CS (LO) 1 000
(Rn)+Nn 001 r r r GE 000 1 LT 1 0 0 1
(Rn)- o 1 0 rr r NE 00 1 0 EO 1 0 1 0
(Rn)+ 011rrr PL o 0 1 1 MI 1 0 1 1
(Rn) 100 r r r NN o 1 0 0 NR 1 1 0 0
(Rn+Nn) 101rrr EC o 1 0 1 ES 1 1 0 1
-(Rn) 111rrr LC o 1 1 0 LS 1 1 1 0
Absolute address 110000 GT o 1 1 1 LE 1 1 1 1

where "rrr" refers to an address register RO-R7

Timing: 4 + jx oscillator clock cycles

Memory: 1 + ea program words

MOTOROLA DSP56000/DSP56001 USER'S MANUAL

JScc

III

A-89

•

JSCLR

Operation:
If S[n] =0,

Jump to Subroutine
:, 0:+ 1'1,.1. "'IIIVUI

then SP + 1 • SP; PC. SSH; SR • SSL; xxxx. PC
else PC+ 1 • PC

If S[n]=O,
then SP+ 1 • SP; PC. SSH; SR. SSL; xxxx. PC
else PC+1 • PC

If S[n] =0,
then SP + 1 • SP; PC • SSH; SR • SSL; xxxx. PC
else PC+ 1 • PC

If S[n]=O,
then SP+ 1 • SP; PC. SSH; SR. SSL; xxxx. PC
else PC+ 1 • PC

If S[n] =0,
then SP + 1 • SP; PC • SSH; SR • SSL; xxxx. PC
else PC+ 1 • PC

If S[n] =0,
then SP+ 1 • SP; PC. SSH; SR. SSL; xxx x • PC
else PC+ 1 • PC

If S[n]=O,
then SP+ 1 • SP; PC. SSH; SR. SSL; xxxx • PC
else PC+ 1 • PC

JSCLR

Assembler Syntax:
JSCLR #n,X:ea,xxxx

JSCLR #n,X:aa,xxxx

JSCLR #n,X:pp,xxxx

JSCLR #n,Y:ea,xxxx

JSCLR #n,Y:aa,xxxx

JSCLR #n,Y:pp,xxxx

JSCLR #n,S,xxxx

Description: Jump to the subroutine at the 16-bit absolute address in program memory

A-90

specified in the instruction's 24-bit extension word if the nth bit of the source operand
S is clear. The bit to be tested is selected by an immediate bit number from 0-23. If
the nth bit of the source operand S is clear, the address of the instruction immediately
following the JSCLR instruction (PC) and the system status register (SR) are pushed
onto the system stack. Program execution then continues at the specified absolute
address in the instruction's 24-bit extension word. If the sepcified memory bit is not
clear, the program counter (PC) is incremented and the extension word is ignored.
However, the address register specified in the effective address field is always updated
independently ofthe state ofthe nth bit. All address register indirect addressing modes

DSP56000/DSP56001 USER'S MANUAL MOTOROLA

JSCLR Jump to Subroutine
if Bit Clear

JSCLR

may be used to reference the source operand S. Absolute short and 110, short ad­
dressing modes may also be used.

Restrictions: ·A JSCLR instruction used within a DO loop cannot specify the loop address
(LA) as its target.

A JSCLR located at LA, LA-1, or LA-2 of a DO loop, cannot specify the program
controller registers SR, SP, SSH, SSL, LA, or LC as its target.

JSCLR SSH or JSCLR SSL cannot follow an instruction that changes the SP.

A JSCLR instruction cannot be repeated using the REP instruction.

Example:

JSCLR #$1,Y:«$FFE3,$1357 ;go sub. at P:$1357 if bit 1 in Y:$FFE3 is clear

Explanation of Example: In this example, program execution is transferred to the sub-
routine at absolute address P:$1357 in program memory if bit 1 of the external liD
location Y:«$FFE3 is a zero. If the specified bit is not clear, no jump is taken and
the program counter (PC) is incremented by 1.

Condition Codes:

15 14 13 12 11 10 8 7

U N
eeR

The condition codes are not affected by this instruction.

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-91

•

III

JSCLR

Instruction Format:
JSCLR #n,X:ea,xxxx
JSCLR #n,Y:ea,xxxx

Opcode:

23 16 15

Jump to Subroutine
:~ n: ... 1'1 __ _

II DIL \l1t:dl

8 7

0000 1 0 1 101 M MM R R R 1 SOb b b b b

ABSOLUTE ADDRESS EXTENSION

Instruction Fields:
#n = bit number= bbbbb,
ea = 6-bit Effective Address = MMMRRR,
XXXX = 16-bit Absolute Address in extension word

Effective

JSCLR

Addressing Mode MMMRRR Memory Space S Bit Number bbbbb

(Rn)-Nn OOOrrr X Memory
(Rn)+Nn 001 r r r Y Memory
(Rn)- o 1 0 r r r
(Rn)+ 011rrr
(Rn) 100rrr
(Rn+Nn) 101rrr
-(Rn) 111rrr

where "rrr" refers to an address register RO-R7

Timing: 6+ jx oscillator clock cycles

Memory: 2 program words

Instruction Format:
JSCLR #n,X:aa,xxxx
JSCLR #n,Y:aa,xxxx

Opcode:

23 16 15

0 00000
1

10111

8 7

0000101100 a a a a a al SOb b b b b

ABSOLUTE ADDRESS EXTENSION

Instruction Fields:
#n = bit number= bbbbb,
aa = 6-bit Absolute Short Address = aaaaaa,
XXXX = 16-bit Absolute Address in extension word

A-92 DSP56000/DSP560,01 USER'S MANUAL MOTOROLA

JSCLR Jump to Subroutine
if Bit Clear

JSCLR

Absolute Short Address aaaaaa Memory SpaceS Bit Number bbbbb

000000

111111

Timing: 6 + jx oscillator clock cycles

Memory: 2 program words

Instruction Format:
JSCLR #n,X:pp,xxxx
JSCLR #n,Y:pp,xxxx

Opcode:

23 16 15

X Memory
Y Memory

o

8 7

00000

10111

0000101110 P P P P P pI SOb b b b

ABSOLUTE ADDRESS EXTENSION

Instruction Fields:
#n = bit number.= bbbbb,
pp = 6-bit 1/0 Short Address = pppppp,
XXXX = 16-bit Absolute Address in extension word

1/0 Short Address pppppp

000000

111111

Memory SpaceS

X Memory 0
Y Memory

Timing: 6+ jx oscillator clock cycles

Memory: 2 program words

Bit Number bbbbb

00000

10111

MOTOROLA OSP56000/0SP56001 USER'S MANUAL A-93

•

-

JSCLR

Instruction Format:
JSCLR #n,S,xxxx

Opcode:

23 16 15

Jump to Subroutine
ii Bit Ciear

8 7

0000101 111 D D DOD DO OObbbbb

ABSOLUTE ADDRESS EXTENSION

Instruction Fields:
#n = bit number= bbbbb,
S = source register = DDDDDD,
xxxx = 16-bit Absolute Address in extension word

Destination Register

4 registers in Oata ALU
8 accumulators in Oata ALU
8 address registers in AGU
8 address offset registers in AGU
8 address modifier registers,in AGU
8 program controller registers

DDDDDD

000100
001000
010rTT
011NNN
100 F F F
111 GGG

Bit Number bbbbb

00000

10111

JSCLR

See A.9 Instruction Encoding and Table A-18 for specific register encodings.

Timing: 6 + jx oscillator clock cycles

Memory: 2 program words

A-94 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

JSET

Operation:
If S[n] = " then XXXX • PC

else PC+' • PC

If S[n] =', then XXXX • PC
else PC+' • PC

If S[n] =', then XXXX • PC
else PC+' • PC

If S[n] = " then XXXX • PC
else PC+' • PC

If S[n] = " then XXXX • PC
else PC+' • PC

If S[n] = " then XXXX • PC
else PC+' • PC

If S[n] = " then XXXX • PC
else PC+' • PC

Jump if Bit Set JSET

Assembler Syntax:
JSET #n,X:ea,xxxx

JSET #n,X:aa,xxxx

JSET #n,X:pp,xxxx

JSET #n,Y:ea,xxxx

JSET #n,Y:aa,xxxx

JSET #n,Y:pp,xxxx

JSET #n,S,xxxx

Description: Jump to the '6-bit absolute address in program memory specified in the
instruction's 24-bit extension word if the nth bit of the source operand S is ~et. The
bit to be tested is selected by an immediate bit number from 0-23. If the specified
memory bit is not set, the program counter (PC) is incremented, and the absolute
address in the extension word is ignored. However, the address register specified in
the effective address field is always updated independently of the state of the nth bit.
All address register indirect addressing modes may be used to reference the source
operand S. Absolute short and I/O short addressing modes may also be used.

Restrictions: A JSET instruction used within a DO loop cannot specify the loop address
(LA) as its target.

A JSET located at LA, LA -', or LA - 2 of a DO loop cannot specify the program
controller registers SR, SP, SSH, SSL, LA, or LC as its target.

JSET SSH or JSET SSL cannot follow an instruction that changes the SP.

A JSET instruction cannot be repeated using the REP instruction.

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-95

&I

III

JSET Jump if Bit Set JSET

Example:

JSET #12,X:«$FFF2,$4321 ;$4321 • (PC) if bit 12 (SCI COD) is set

Explanation of Example: In this example, program execution is transferred to the ad-
dress P:$4321 if bit 12 (SCI COD) of the 16-bit readlwrite 1/0 register X:$FFF2 is a one.
If the specified bit is not set, no jump is taken and the program counte.r (PC) is incre­
mented by 1.

Condition Codes:

15 14 13 12 11 10 8 7 0

IEJ .. I T I *. I sd so I 11 I 10 1** I liE I u I N I z I v LQ
MR)0. 0(GGR

The condition codes are not affected by this instruction.

Instruction Format:
JSET #n,X:ea,xxxx
JSET #n,Y:ea,xxxx

Opcode:

23 16 15 8 7

0000101001 M M M R R Rl SIb b b b b

ABSOLUTE ADDRESS EXTENSION

Instruction Fields:
#n=bit number=bbbbb,
ea = 6-bit Effective Address = MMMRRR
xxxX= 16-bit Absolute Address in extension word

Effective
Addressing Mode MMMRRR Memory SpaceS

(Rn)-Nn OOOrrr X Memory 0
(Rn)+Nn 001rrr Y Memory
(Rn)- 010rrr
(Rn)+ 011rrr
(Rn) 100rrr
(Rn+Nn) 101rrr
-(Rn) 111rrr

where "rrr" refers to an address register RO-R7

Bit Number bbbbb

00000

10111

A-96 DSP56000/DSP56091 USER'S MANUAL MOTOROLA

JSET Jump if Bit Set

Timing: 6 + jx oscillator clock cycles

Memory: 2 program words

Instruction Format:
JSET #n,X:aa,xxxx
JSET #n,Y:aa,xxxx

Opcode:

23 16 15 8 7

0000101000 a a a a a al SIb b b b

ABSOLUTE ADDRESS EXTENSION

Instruction Fields:
#n = bit number= bbbbb,
aa = 6-bit Absolute Short Address = aaaaaa,
xxxx = 16-bit Absolute Address in extension word

Absolute Short Address aaaaaa

000000

111111

Timing: 6 + jx oscillator clock cycles

Memory: 2 program words

Instruction Format:
JSET #n,X:pp,xxxx
JSET #n,Y:pp,xxxx

Opcode:

23 16 15

Memory Space S

X Memory
Y Memory

a
1

8 7

Bit Number bbbbb

00000

10111

o 0 ,0 0 1 0 1 0 lOp p p p p pIS 1 b b b b b

ABSOLUTE ADDRESS EXTENSION

MOTOROLA OSP56000/0SP56001 USER'S MANUAL

JSET

A-97

-

JSET Jump if Bit Set

Instruction Fields:
#n = bit number= bbbbb,
pp = 6-bit liD Short Address = pppppp,
xxxx = 16-bit Absolute Address in extension word

110 Short Address pppppp Memory SpaceS

000000

111111

X Memory
Y Memory

Timing: 6 + jx oscillator clock cycles

Memory: 2 program words

Instruction Format:
JSET #n,S,xxxx

Opcode:

23 16 15

o

B 7

Bit Number bbbbb

00000

10111

0000101011 D D D D D DO 01 b b b b b

ABSOLUTE ADDRESS EXTENSION

Instruction Fields:
#n = bit number= bbbbb,
S=source register=DDDDDD,
xxxx= 16-bit Absolute Address in extension word

Destination Register

4 registers in Oata ALU
8 accumulators in Oata ALU
8 address registers in AGU
8 address offset registers in AGU
8 address modifier registers in AGU
8 program controller registers

DDDDDD

000100
001000
010TTT
011NNN
100 F F F
111 GGG

Bit Number bbbbb

00000

10111

JSET

See A.9 Instruction Encoding and Table A-18 for specific register encodings.

Timing: 6 + jx oscillator clock cycles

Memory: 2 program words

A-98 DSP56000/DSP56001·USER'S MANUAL MOTOROLA

JSR Jump to Subroutine JSR

Operation: Assembler Syntax:
SP+ 1 • SP; PC. SSH; SR • SSL; Ox xx • PC JSR xxx

SP+ 1 • SP; PC. SSH; SR • SSL; ea • PC JSR ea

Description: Jump to the subroutine whose location in program memory is given by
the instruction's effective address. The address of the instruction immediately follow­
ing the JSR instruction (PC) and the system status register (SR) is pushed onto the
system stack. Program execution then continues at the specified effective address in
program memory. All memory alterable addressing modes may be used for the ef­
fective address. A fast short jump addressing mode may also be used. The 12-bit data
is zero extended to form the effective address.

Restrictions: A JSR instruction used within a DO loop cannot specify the loop address
(LA) as its target.

A JSR instruction used within a DO loop cannot begin at the address LA within that
DO loop.

A JSR instruction cannot be repeated using the REP instruction.

Example:

JSR (R5)+ ;jump to subroutine at (R5), update R5

Explanation of Example: In this example, program execution is transferred to the sub-
routine at address P:(R5) in program memory, and the contents of the R5 address
register are then updated.

Condition Codes:

15 14 13 12 11 10 8 7 5 . 0 IJD ** I i I ** I SI I SO I 11 I ro I ** I LIE I u I N I z I v LiI
MR • -I(CCR

The condition codes are not affected by this instruction.

MOTOROLA OSP56000/0SP56001 USER'S MANUAL A-99

11.1

JSR Jump to Subroutine

Instruction Format:
JSR xxx

Opcode:

23 16 15 8 7

I 0 0 0 0 1 1 0 110000 a a a ala

Instruction Fields:
xxx = 12-bit Short Jump Address = aaaaaaaaaaaa

Timing: 4+ jx oscillator clock cycles

Memory: 1 + ea program words

Instruction Format:
JSR ea

Opcode:

23 16 15 8 7

0000101 lllMMMRRRl

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:
ea = 6-bit Effective Address = MMMRRR

Effective
Addressing Mode MMM R R R

(Rn)-Nn
(Rn)+Nn
(Rn)­
(Rn)+
(Rn)
(Rn + Nn)
-(Rn)
Absolute address

OOOrrr
001 r r r ,
010rrr
011rrr
100rrr
101rrr
111rrr
110000

where "rrr" refers to an address register RO-R7

Timing: 4 + jx oscillator clock cycles

Memory: 1 + ea program words

a a a a a a al

o 0 0 0 0 0 0

A-100 DSP56000/DSP56001 USER'S MANUAL

JSR

MOTOROLA

JSSET

Operation:
If S[n] = 1,

Jump to Subroutine
if Bit Set

then SP+ 1 • SP; PC. SSH; SR. SSL; xxxx. PC
else PC+ 1 • PC

If S[n] = 1,
then SP+ 1 • SP; PC. SSH; SR. SSL; xxxx. PC
else PC+ 1 • PC

If S[n] = 1,
then SP+ 1 • SP; PC. SSH; SR • SSL; xxxx. PC
else PC+ 1 • PC

If S[n] = 1,
then SP + 1 • SP; PC. SSH; SR • SSL; xxxx. PC
else PC+ 1 • PC

If S[n] = 1,
then SP+ 1 • SP; PC. SSH; SR • SSL; xxxx. PC
else PC+1 • PC

If S[n] = 1,
then SP+ 1 • SP; PC. SSH; SR • SSL; xxxx. PC
else PC+ 1 • PC

If S[n] = 1,
then SP + 1 • SP; PC. SSH; SR • SSL; xxxx. PC
else PC+ 1 • PC

JSSET

Assembler Syntax:
JSSET #n,X:ea,xxxx

JSSET #n,X:aa,xxxx

JSSET #n,X: pp,xxxx

JSSET #n,Y:ea,xxxx

JSSET #n,Y:aa,xxxx

JSSET #n,Y:pp,xxxx

JSSET #n,S,xxxx

Description: Jump to the subroutine at the 16-bit absolute address in program memory
specified in the instruction's 24-bit extension word if the nth bit of the source operand
S is set. The bit to be tested is selected by an immediate bit number from 0-23. If the
nth bit of the source operand S is set, the address of the instruction immediately
following the JSSET instruction (PC) and the system status register (SR) are pushed
onto the system stack. Program execution then continues at the specified absolute
address in the instruction's 24-bit extension word. If the specified memory bit is not
set, the program counter (PC) is incremented, and the extension word is ignored.
However, the address register specified in the effective address field is always updated
independently ofthe state ofthe nth bit. All address register indirect addressing modes
may be used to reference the source operand S. Absolute short and 1/0 short ad­
dressing modes may also be used.

MOTOROLA OSP56000/0SP56001 USER'S MANUAL A-101

iii

JSSET Jump to Subroutine JSSET
~~ n'!'.a. "_.&.
II Dil .,tH

Restrictions: A JSSET instruction used within a DO loop cannot specify the loop address
(LA) as its target.

A JSSET located at LA, LA -1, or LA - 2 of a DO loop, cannot specify the program
controller registers SR, SP, SSH, SSL, LA, or LC as its target.

JSSET SSH or JSSET SSL cannot follow an instruction that changes the SP.

A JSSET instruction cannot be repeated using the REP instruction.

Example:

JSSET #$17,Y:<$3F,$100 ;go to sub. at P:$0100 if bit 23 in Y:$3F is set

Explanation of Example: In this example, program execution is transferred to the sub-
routine at absolute address P:$0100 in program memory if bit 23 of Y memory location
Y:$003F is a one. If the specified bit is not set, no jump is taken and the program
counter (PC) is incremented by 1.

Condition Codes:

15 14 13 12 11 10 8 7

U I N

CCR

The condition codes are not affected by this instruction.

Instruction Format:
JSSET #n,X:ea,xxxx
JSSET #n,Y:ea,xxxx

Opcode:

23 16 15 8 7

0000101101 M M M R R Rl SIb b b b b

. ABSOLUTE ADDRESS EXTENSION

A-102 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

JSSET Jump to Subroutine
if Bit Set

JSSET

Instruction Fields:
#n=bit number=bbbbb,
ea = 6-bit Effective Address = MMMRRR,
XXXX = 16-bit Absolute Address in extension word

Effective
Addressing Mode MMMRRR Memory Space S

(Rn)-Nn OOOrrr X Memory 0
(Rn)+Nn 001 r r r Y Memory
(Rn)- o 1 0 r r r
(Rn)+ 011rrr
(Rn) 100 r r r
(Rn+Nn) 101rrr
-(Rn) 111rrr

where "rrr" refers to an address register RO-R7

Timing: 6 + jx oscillator clock cycles

Memory: 2 program words

Instruction Format:
JSSET #n,X:aa,xxxx
JSSET #n,Y:aa,xxxx

Opcode:

23 16 15 8 7

Bit Number bbbbb

00000

10111

0000101100 a a a a a al S 1 b b b b

ABSOLUTE ADDRESS EXTENSION

Instruction Fields:
#n = bit number= bbbbb,
aa = 6-bit Absolute Short Address = aaaaaa,
xxxX= 16-bit Absolute Address in extension word

Absolute Short Address aaaaaa

000000

111111

Timing: 6 + jx oscillator clock cycles

Memory: 2 program words

Memory SpaceS

X Memory
Y Memory

o
1

Bit Number bbbbb

00000

10111

MOTOROLA OSP56000/0SP56001 USER'S MANUAL A-103

III

--

JSSET Jump to Subroutine

Instruction Format:
JSSET #n,X:pp,xxxx
JSSET #n,Y:pp,xxxx

Opcode:

23 16 15

:.: D:~ £'_~
.. UIL "CL

8 7

0000101110 P P P P P pI SIb b b b b

ABSOLUTE ADDRESS EXTENSION

Instruction Fields:
#n = bit number= bbbbb,
pp = 6-bit liD Short Address = pppppp,
xxxx = 16-bit Absolute Address in extension word

I/O Short Address pppppp Memory SpaceS

000000

111111

X Memory
Y Memory

Timing: 6 + jx oscillator clock cycles

Memory: 2 program words

o
1

Bit Number bbbbb

00000

10111

A-104 DSP56000/DSP56001 USER'S MANUAL

JSSET

MOTOROLA

JSSET

Instruction Format:
JSSET #n,S,xxxx

Opcode:

23 16 15

Jump to Subroutine
if Bit Set

B 7

o 0 0 0 1 0 1 01 1·0 0 0 0 0 DO 0 1 b b b b b

ABSOLUTE ADDRESS EXTENSION

Instruction Fields:
#n = bit number= bbbbb,
S = source register= DDDDDD,
XXXX = 16-bit Absolute Address in extension word

Destination Register

4 registers in Oata ALU
8 accumulators in Oata ALU
8 address registers in AGU
8 address offset registers in AGU
8 address modifier registers in AGU
8 program controller registers

DDDDDD

000100
001000
010TTT
011NNN
100 F F F
111 GGG

Bit Number bbbbb

00000

10111

JSSET

See A.9 Instruction Encoding and Table A-18 for specific register encodings.

Timing: 6 + jx oscillator clock cycles

Memory: 2 program words

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-105

•

•

LSL

Operation:

Assembler
Syntax:

Logical Shift Left LSL

47 24

c~I,. ... ---- j,.-o (parallel move)

LSL D (parallel move)

Description: Logically shift bits 47-24 of the destination operand D one bit to the left
and store the result in the destination accumulator. Prior to instruction execution, bit
47 of D is shifted into the carry bit C, and a zero is shifted into bit 24 of the destination
accumulator D. This instruction is a 24-bit operation. The remaining bits of the des­
tination operand D are not affected. If a zero shift count is specified, the carry bit is
cleared. The difference between LSL and ASL is that LSL operates on only A 1 or B1
and always clears the V bit.

Example:

LSL B #$7F,RO ;shift B1 one bit to the left, set up RO

Before Execution After Execution

8 I $00:F01234:135798 8 I $00:E02468: 135798

SR I $0300 SR I $0309

Explanation of Example: Prior to execLition, the 56-bit B accumulator contains the value
$00:F01234:13579B. The execution of the LSL B instruction shifts the 24-bit value in
the B1 register one bit to the left and stores the result back in the 81 register.

Condition Codes:

15 14 13 12 11 10 8 7 4 3 1 0

~ **1 T 1**1 S1 I so I 11 I 10 '** I
CCR

z I v cq U N

L - Set if data limiting has occurred during parallel move
N - Set if bit 47 of A or B result is set
Z - Set if bits 47-24 of A or B result are zero
V - Always cleared ,
C - Set if bit 47 of A or B was set prior to instruction execution

A-106 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

LSL

Instruction Format:
LSL D

Opcode:

23

Instruction Fields:
o d
A 0
B 1

Logical Shift Left

B 7

DATA BUS MOVE FIELD

Timing: 2 + mv oscillator clock cycles

Memory: 1 + mv program words

MOTOROLA DSP56000/DSP56001 USER'S MANUAL

LSL

•

A-107

•

LSR

Operation:

Assembler
Syntax:

Logical Shift Right LSR

47 24

04L--___)1 I~c (parallel move)

LSR D (parallel move)

Description: Logically shift bits 47-24 of the destination operand D one bit to the right
and store the result in the destination accumulator. Prior to instruction execution, bit
24 of D is shifted into the carry bit C, and a zero is shifted into bit 47 of the destination
accumulator D. This instruction is a 24-bit operation. The remaining bits of the des­
tination operand D are not affected.

Example:

LSR A A 1 ,N4 ;shift A 1 one bit to the right, set up N4

Before Execution After Execution

A 1~ __ $_37_:4_44_4_45_:8_2_81_80 __ ~ A 1~ ___ $_37_:2_2_22_22_:8_2_81_80 __ ~

SR $0300 SR $0301

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the
value $37:444445:828180. The execution ofthe LSR A instruction shifts the 24-bit value
in the A 1 register one bit to the right and stores the result back in the A 1 register.

Condition Codes:

15 14 13 12 11 10 8 7 1 0

1iJ"1 T 1··1 S11 so 111 110 1"ll I
MR)I C GGR

L - Set if data limiting has occurred during parallel move
N - Always cleared
Z - Set if bits 47-24 of A or B result are zero
V - Always cleared
C - Set if bit 24 of A or B was set prior to instruction execution

A-108 DSP56000/DSP56~01 USER'S MANUAL MOTOROLA

LSR

Instruction Format:
LSR D

Opcode:

23

Instruction Fields:
D d
A 0
B 1

Logical Shift Right

8 7

DATA BUS MOVE FIELD

Timing: 2 + mv oscillator clock cycles

Memory: 1 + mv program words

4 3

MOTOROLA DSP56000/DSP56001 USER'S MANUAL

LSR

III

A-109

LUA

Operation:
ea. d

Load Updated Address LUA

Assembler Syntax:
LUA ea,D

Description: Load .the updated address into the destination address register D. The
source address register and the update mode used to compute the updated address
are specified by the effective address (ea). Note that the source address register
specified in the effective address is not updated. All update addressing modes may
be used.

NOTE: This instruction is considered to be a move-type instruction. Due to pipelining,
the new contents of the destination address register (R0-R7 or NO-N7) will not be
available for use during the following instruction (i.e., there is a single instruction cycle
pipeline delay).

Example:

LUA (RO) + NO,R1 ;update R1 using (RO) + NO

Before Execution After Execution

RO $0003 RO $0003

NO $0005 NO $0005

Rl $0004 Rl $0008

Explanation of Example: Prior to execution, the 16-bit address register RO contains
the value $0003, the 16-bit address register NO contains the value $0005, and the 16-
bit address register R1 contains the value $0004. The execution ofthe LUA (RO) + NO,\R1
instruction adds the contents of the RO register to the contents of the NO register and
stores the resulting updated address in the R1 address register. The contents of both
the RO and NO address registers are not affected.

Condition Codes:

15 14 13 12 11 10 8 7 1 0 Ill" I T I " I s, I so I 11 I 10 1** I l I E I u I N z
MR .. • CCR

The condition codes are not affected by this instruction.

A-110 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

LUA Load Updated Address LUA

Instruction Format:
LUA ea,D

Opcode:

23 16 15 8 7

10 0 0 0 0 1 0 010 10M M R R Rio 0 0 1

Instruction Fields:
ea = 5-bit Effective Address = MMRRR,
D = 4-bit destination address register = dddd

Effective
Addressing Mode MMRRR Dest. Addr. Reg. D dddd

(Rn)-Nn o 0 r r r RO-R7 o n n n
(Rn)+Nn o 1 r r r NO-N7 1 n n n
(Rn)- 1 0 r r r
(Rn)+ 1 1 r r r

where "rrr" refers to a source address register RO-R7
where "nnn" refers to a destination address register RO-R7 or NO-~7

Timing: 4 oscillator clock cycles

Memory: 1 program word

III

MOTOROLA DSP56000/DSP56001· USER'S MANUAL A-111

•

MAC Signed Multiply-Accumulate MAC

Operation: Assembler Syntax:
D±ShS2. D (parallel move) MAC (±)S1,S2,D (parallel move)

D±ShS2. D (parallel move) MAC (±)S2,S1,D (parallel move)

Description: Multiply the two signed 24-bit source operands S1 and S2 and add/subtract
the product to/from the specified 56-bit destination accumulator D. The" -" sign
option is used to negate the specified product prior to accumulation. The default sign
option is "+".

Example:

MAC XO,XO,A X:(R2) + N2,Y1 ;square XO and store i~ A, update Y1 and R2

Before Execution After Execution

xol ~ _________ ·$1_2_34_56 __ ~ xo $123456

A ~1 ___ $_00_:1_0_00_oo_:0_0_00_0_0 __ ~ A ~1 ___ $_00_'1_29_6_CD_:_96_19_C_8 __ ~

Explanation of Example: Prior to execution, the 24-bit XO register contains the value
of $123456 (0.142222166), and the 56-bit A accumulator contains the value
$00:100000:000000 (0.125). The execution of the MAC XO,XO,A instruction squares the
24-bit signed value in the XO register and adds the res~lting 48-bit product to the
56-bit A accumulator (XO*XO + A = 0.145227144519197 approximately =
$00: 1296CD:9619C8 = A).

Condition Codes:

15 14 13 12 11 10 B 7

~ ** I T I ** I s. I so I 11 I 10 I ** I U N

CCR

L - Set if limiting (parallel move) or overflow has occurred in result
E - Set if the signed integer portion of A or B result in use
U -:- Set if A or B result is unnormalized
N - Set if bit 55 of A or B result is set
Z - Set if A or B result equals zero
V - Set if overflow ras occurred in A or B result

NOTE: The definition of the E and U bits varies according to the scaling mode being
used. Refer to A.4 CONDITION CODE COMPUTATION for complete details.

A-112 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

MAC Signed Multiply-Accumulate

Instruction Format:
MAC (±)S 1 ,S2,D
MAC (±)S2,S1,D

Opcode:

23

DATA BUS MOVE FIELD

Instruction Fields:

51*52 aaa 5ign k

XO XO 000 + 0
YO YO o 0 1 1
X1 XO 010
Y1 YO o 1 1
XO Y1 100
YO XO 1 0 1
X1 YO 1 1 0
Y1 X1 1 1 1

o d

A 0
B

B 7

NOTE: Only the indicated 51 *52 combinations are valid. X1 *X1 and Y1 *Y1 are not valid.

Timing: 2 + mv oscillator clock cycles

Memory: 1 + mv program words

MOTOROLA DSP56000/DSP56001 USER'S MANUAL

MAC

III

A-113

•

MACR

Operation:

Signed Multiply-Accumulate
and Round

Assembler Syntax:

MACR

D±S1*S2+r. D (parallel move) MACR (±)S1 ,S2,D (parallel move)

D±S1*S2+r. D (parallel move) MACR (±)S2,S1,D (parallel move)

Description: Multiply the two signed 24-bit source operands S1 and S2, add/subtract
the product to/from the specified 56-bit destination accumulator D, and then round
the result using convergent rounding. The rounded result is stored in the destination
accumulator D. The" -" sign option is used to negate the specified product prior to
accumulation. The default sign option is "+". The contribution of the LS bits of the
result is rounded into 'the upper portion of the destination accumulator (A 1 or B1) by
adding a constant to the LS bits of the lower portion of the accumulator (AO or BO).
The value of the constant added is determined by the scaling mode bits SO and 51 in
the status register. Once rounding has been completed, the LS bits of the destination
accumulator D (AO or BO) are loaded with zeros to maintain an unbiased accumulator
value which may be reused by the next instruction. The upper portion of the accu­
mulator (A 1 or B1) contains the rounded result which may be read out to the data
buses. Refer to the RND instruction for more complete information on the convergent
rounding process.

Example:

MACR XO,YO,B B,XO Y:(R4) + N4,YO ;XO* YO + B • B, rnd B, update XO,YO,R4

Before Execution After Execution

XO $123456 XO $100000

YO $123456 YO $987654

B ~1 ___ $_00_:1_0_00_oo_:o_0_00_0_0 __ ~ B ~I ___ $_OO_:1_29_6_CE_:0_0_oo_o_o __ ~

Explanation of Example: Prior to execution, the 24-bit XO register contains the value
$123456 (0.142222166), the 24-bit YO register contains the value $123456 (0.142222166),
and the 56-bit B accumulator contains the value $00: 1 00000:000000 (0.125). The ex­
ecution of the MACR XO,YO,B instruction multiples the 24-bit signed value in the XO
register by the 24-bit signed value in the YO register, adds the resulting product to the
56-bit B accumulator, rounds the result into the B1 portion of the accumulator, and
then zeros the BO portion of the accumulator (XO*YO+B=0,145227144519197
approximately = $00: 1296CD:9619C8, which is rounded to the value
$00: 1296CE: 000000 =0.1452271 ~3832397 = B).

A-114 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

MACR

Condition Codes:

Signed Multiply-Accumulate
and Round

15 14 13 12 11 10 8 7

L - Set if limiting (parallel move) or overflow has occurred in result
E - Set if the signed integer portion of A or B result is in use
U - Set if A or B result is unnormalized
N - Set if bit 55 of A or B result is set
Z - Set if A or B result equals zero
V - Set if overflow has occurred in A or B result

MACR

NOTE: The definition of the E and U bits varies according to the scaling mode being
used. Refer to A.4 CONDITION CODE COMPUTATION for complete details.

Instruction Format:
MACR (±)S 1 ,S2,0
MACR (±)S2,S1,0

Opcode:

23 8 7

DATA BUS MOVE FIELD 1 Q

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:

51*52 QQQ 5ign k D d

XO XO 000 + 0 A 0
YO YO o 0 1 B 1
Xl XO 010
Yl YO o 1 1
XO Y1 100
YO XO 1 0 1
X1 YO 1 1 0
Yl Xl 1 1 1

4 3

NOTE: Only the indicated 51 *52 combinations are valid. X1 *X1 and Y1 *Yl are not valid.

Timing: 2 + mv oscillator clock cycles

Memory: 1 + mv program words

MOTOROLA OSP56000/0SP56001 USER'S MANUAL A-115

•

•

MOVE Move Data MOVE

Operation: Assembler Syntax:
S.D MOVE S,D

Description: Move the contents of the specified data source S to the specified desti-
nation D. This instruction is equivalent to a data ALU NOP with a parallel data move.

When a 56-bit accumulator (A or B) is specified as a source operand S, the accumulator
value is optionally shifted according to the scaling mode bits SO and S1 in the system
status register (SR). If the data out of the shifter indicates that the accumulator exten­
sion register is in use and the data is to be moved into a 24- or 48-bit destination, the
value stored in the destination D is limited to a maximum positive or negative satu­
ration constant to minimize truncation error. Limiting does not occur if an individual
24-bit accumulator register (A1, AO, B1, or BO) is specified as a source operand instead
of the full 56-bit accumulator (A or B). This limiting feature allows block floating-point
operations to be performed with error detection since the L bit in the condition code
register is latched.

When a 56-bit accumulator (A or B) is specified as a destination operand D, any 24-
bit source data to be moved into that accumulator is automatically extended to 56 bits
by sign extending the MS bit of the source operand (bit 23) and appending the source
operand with 24 LS zeros. Similarly, any 48-bit source data to be loaded into a 56-bit
accumulator is automatically sign extended to 56 bits. Note that for 24-b,it source
operands both the automatic sign-extension and zeroing features may be disabled by
specifying the destination register to be one of the individual 24-bit accumulator reg­
isters (A 1 or B1). Similarly, for 48-bit source operands, the automatic sign-extension
feature may be disabled by using the long memory move addressing mode and spec­
ifying A10 or B10 as the destination operand.

Example:

MOVE XO,A1 ;move XO to A1 without sign ext. or zeroing

Before Execution After Execution

xo $234567 xo $234567

A I~ __ $_FF_:F_F_FF_FF_:F_F_FF_F_F __ ~ A 1~ ___ $_FF_:2_3_45_67_:F_F_FF_F_F __ ~

A-116 DSP56000/DSP56001·USER'S MANUAL MOTOROLA

MOVE Move Data MOVE

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the
value $FF:FFFFFF:FFFFFF, and the 24-bit XO register contains the value $234567. The
execution of the MOVE XO,A 1 instruction moves the 24-bit value in the XO register
into the 24-bit A 1 register without automatic sign extension and without automatic
zeroing.

Condition Codes:

15 14 13 12 11 10 8 7 iiJ .. I T I·· I SI I SO I 11 I 10 I ** I L I E I u I N
MR • 4(GGR

L - Set if data limiting has occurred during parallel move

Instruction Format:
MOVE S,D

Opcode:

23 8 7 4 3

DATA BUS MOVE FIELD

Instruction Fields:
See Parallel Move Descriptions for data bus move field encoding.

Timing: 2 + mv oscillator clock cycles

Memory: 1 + mv program words

MOTOROLA OSP56000/0SP56001 USER'S MANUAL A-117

Ell

MOVE Move Data MOVE

Parallel Move Descriptions: Thirty of the sixty-two instructions provide the capability
to specifiy an optional parallel data bus movement over the X and/or Y data bus. This
allows a data ALU operation to be executed in parallel with up to two data bus moves
during the instruction cycle. Ten types of parallel moves are permitted, including
register to register moves, register to memory moves, and memory to register moves.
However, not all addressing modes are allowed for each type of memory reference.
Addressing mode restrictions which apply to specific types of moves are noted in the
individual move operation descriptions. The following section contains detailed de­
scriptions about each type of parallel move operation.

When a 56-bit accumulator (A or 8) is specified as a source operand 5, the accumulator
value is optionally shifted according to the scaling mode bits 50 and 51 in the system
status register (5R). If the data out of the shifter indicates that the accumulator exten­
sion register is in use and the data is to be moved into a 24- or 48-bit destination, the
value stored in the destination D is limited to a maximum positive or negative satu­
ration constant to minimize truncation error. Limiting does not occur if an individual
24-bit accumulator register (A 1, AO, 81, or 80) is specified as a source operand instead
of the full 56-bit accumulator (A or 8). This limiting feature allows block floatin'g-point
operations to be performed with error detection since the L bit in the condition code
register is latched.

When a 56-bit accumulator (A or 8) is specified as a destination operand D, any 24-
bit source data to be moved into that accumulator is automatically extended to 56 bits
by sign extending the M5 bit of the source operand (bit 23) and appending the source
operand with 24 LS zeros. Similarly, any 48-bit source data to be loaded into a 56-bit
accumulator is automatically sign extended to 56 bits. Note that for 24-bit source
operands both the automatic sign-extension and zeroing features may be disabled by
specifying the destination register to be one of the individual 24-bit accumulator reg­
isters (A 1 or 81). Similarly, for 48-bit source operands, the automatic sign-extension
feature may be disabled by using the long memory move addressing mode and spec­
ifying A10 or 810 as the destination operand.

Note that the symbols used in decoding the various opcode fields of an instruction
or parallel move are completely arbitrary. Furthermore, the opcodesymbols used in
one instruction or parallel move are completely independent of the opcode symbols
used in a different instruction or parallel move.

A-118 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

Operation:
(.....)

No Parallel Data Move

Assembler Syntax:
(.....)

where (.....) refers to any arithmetic or logical instruction which allows parallel
moves.

Description: Many (30 of the total 62) instructions in the DSP56000/DSP56001 instruction
set allow parallel moves. The parallel moves have been divided into 10 opcode cat­
egories. This category is a parallel move NOP and does not involve data bus move
activity.

Example:

ADD XO,A ;add XO to A (no parallel move)

Explanation of Example: This is an example of an instruction which allows parallel
moves but does not have one.

Condition Codes:

15 14 13 12 11 10 8 7 1 0 IlJ ** I T I ** I S1 I SO I 11 I 10 I ** I L I E I U I N I z I v ~ CCR MR ~ ..
The condition codes are not affected by this type of parallel move.

Instruction Format:
(.....)

Opcode:

23 16 15 8 7

I 0 0 1 0 0 0 0 010 0 0 0 0 0 0 01 INSTRUCTION OPCODE

Instruction Fields:
(defined by instruction)

. Timing: mv oscillator clock cycles

Memory: mv program words

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-119

III

•

I Immediate Short Data Move I

Operation: Assembler Syntax:
(.....), #xx. D (.....) #xx,D

where (.....) refers to any arithmetic or logical instruction which allows parallel
moves.

Description: Move the 8-bit immediate data value (#xx) into the destination operafld D.

If the destination register D is AO, A 1, A2, BO, B1, B2, RO-R7, or NO-N7, the 8-bit
immediate short operand is interpreted as an !Jnsigned integer and is stored in the
specified destination register. That is, the 8-bit 'data is stored in the eight LS bits of
the destination operand, and the remaining bits of the destination operand Dare
zeroed.

If the destination register D is XO, X1, YO, Y1, A, or B, the 8-bit immediate short operand
is interpreted as a signed fraction and is stored in the specified destination register.
That is, the 8-bit data is stored in the eight MS bits of the destination operand, and
the remaining bits of the destination operand D are zeroed.

If the arithmetic or logical opcode-operand portion of the instruction specifies a given
destination accumulator, that same accum~'ator or portion of that accumulator may
not be specified as a destination D in the parallel data bus move operation. Thus, if
the opcode-operand portion of the instruction specifies the 56-bit A accumulator as
its destination, the parallel data bus move portion of the instruction may not specify
AO, A 1, A2, or A as its destination D. Similarly, if the opcode-operand portion of the
instruction specifies the 56-bit B accumulator as its destination, the parallel data bus
move portion of the instruction may not specify BO, B1, B2, or B as its destination D.
That is, duplicate destinations are NOT allowed within the same instruction.

NOTE: This parallel data move is considered to be a move-type instruction. Due to
pipelining, if an address register (R or N) is changed using a move-type instruction,
the new contents of the destination address register will not be available for use during
the following instruction (i.e., there is a ~ingle instruction cycle pipeline delay). .

Example:

ABS B #$18,R1 ;take absolute value of B, #$18. R1

Before Execution After Execution

R1 $0000 R1 $0018

A-120 DSP56000/0SP56001 USER'S MANUAL MOTOROLA

I Immediate Short Data Move I

Explanation of Example: Prior to execution, the 16-bit address register R1 contains
the value $0000. The execution ofthe parallel move portion ofthe instruction, #$18,R1,
moves the 8-bit immediate short operand into the eight LS bits of the R1 register and
zeros the remaining eight MS bits of that register. The 8-bit value is interpreted as an
unsigned integer since its destination is the R1 address register.

Condition Codes:
15 14 13 12 11 10 8 7 3 0 iiJ ** I T I ** I S1 I SO I 11 1 10 ,**1 L I E I U I N Z I vl~

CCR MR ...
The condition codes are not affected by this type of parallel move.

Instruction Format:
(.....) #xx,D

Opcode:
23

I 0 0

Instruction Fields:

16 15

#xx = 8-bit Immediate Short Data = iiiiiiii
D D

D ddddd
XO o 0 1 00
X1 00 1 0 1
YO o 0 1 1 0
Y1 o 0 1 1 1
AO o 1 000
80 o 1 0 0 1
A2 o 1 0 1 0
82 o 1 0 1 1
A1 o 1 1 0 0
81 o 1 1 0 1
A o 1 1 1 0
8 o 1 1 1 1
RO-R7 1 0 r r r
NO-N71 1 n n n

Sign Ext
no
no.
no
no
no
no
no
no
no
no
A2
82

where "rrr" = Rn number
where "nnn" = Nn number

Zero
no
no
no
no
no
no
no
no
no
no
AO
80

Timing: mv oscillator clock cycles

Memory: mv program words

8 7

INSTRUCTION OPCODE

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-121

III

•

R Register to Register Data Move R

Operation: Assembler Syntax:
(.....) S,D (.....); s. D

where (.....) refers to any arithmetic or logical instruction which allows parallel
moves.

Description: Move the source register S to the destination register D.

If the arithmetic or logical opcode-operand portion of the instruction specifies a given
destination accumulator, that same accumulator or portion of that accumulator may
not be specified as a destination D in the parallel data bus move operation. Thus, if
the opcode-operand portion of the instruction specifies the 56-bit A accumulator as
its destination, the parallel data bus move" portion of the instruction may not specify
AD, A 1, A2, or A as its destination D. Similarly, if the opcode-operand portion of the
instruction specifies the 56-bit B accumulator as its destination, the parallel data bus
move portion of the instruction may not specify BO, B1, B2, or B as its destination D.
That is, duplicate destinations are NOT allowed within the same instruction.

If the opcode-operand portion of the instruction specifies a given source or destination
register, that same register or portion of that register may be used as a source S in
the parallel data bus move operation. This allows data to be moved in the same
instruction in which it is being used as a source operand by a data ALU operation.
That is, duplicate sources are allowed within the same instruction.

When a 24-bit source operand is moved into a 16-bit destination register, the 16 LS
bits of the 24-bit source operand are stored in the 16-bit destination register. When a
16-bit source operand is moved into a 24-bit destination register, the 16 LS bits of the
destination register are loaded with the contents of the 16-bit source operand, and
the eight MS bits of the 24-bit destination register are zeroed.

NOTE: The MOVE A,B operation will result in a 24-bit positive or negative saturation
constant being stored in the B1 portion of the B accumulator if the signed integer
portion of the A accumulator is in use.

NOTE: This parallel data move is considered to be a move-type instruction. Due to
pipelining, if an address register (R or N) is changed using a move-type instruction,
the new contents of the destination address register will not be available for use during
the following instruction (i.e., there is a single instruction cycle pipeline delay).

A-122 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

R Register to Register Data Move R

Example:

MACR -XO,YO,A Y1,N5 ; -XO*YO+A. A, move Y1 • N5

Before Execution After Execution

Yl $001234 Yl $001234

N5 $0000 N5 $1234

Explanation of Example: Prior to execution, the 24~bit Y1 register contains the value
$001234 and the 16-bit address offset register N5 contains the value $0000. The ex­
ecution of the parallel move portion of the instruction, Y1,N5, moves the 16 LS bits
of the 24-bit value in the Y1 register into the 16-bit N5 register.

Condition Codes:

15 14 13 12 11 10 8 7 0

/10 ** I T I .. J. SI I so I 11 I 10.1;* I LIE I u c!: I z I v CQ
L ~ Set if data limiting has occurred during parallel move

MOTOROLA OSP56000/0SP56001 USER'S MANUAL A-123

III

III

R Register to Register Data Move

Instruction Format:
(.....) S,D

Opcode:

23 16 15

I 0 0 1 0 0 0 e ele e e d d d d

Instruction Fields:

e e e e e S D D
S or D d d d d d S/L Sign Ext Zero

XO o 0 1 0 0 no no no
X1 o 0 1 0 1 no no no
VO o 0 1 1 0 no no no
V1 o 0 1 1 1 no no no
AO o 1 000 no no no
80 o 1 0 0 1 no no no
A2 o 1 0 1 0 no no no
82 o 1 0 1 1 no no no
A1 o 1 100 no no no
81 o 1 1 0 1 no no no
A o 1 1 1 0 yes A2 AO
8 o 1 1 1 1 yes 82 80
RO-R7 1 0 r r r
NO-N71 1 n n n

where "rrr" = Rn number
where "nnn" = Nn number

Timing: mv oscillator clock cycles

Memory: mv program words

8 7

INSTRUCTION OPCODE

A-124 DSP56000/DSP56001 USER'S MANUAL

R

MOTOROLA

u Address Register Update u
Operation: Assembler Syntax:

(.....) ea (.....); ea. Rn

where (.....) refers to any arithmetic or logical instruction which allows parallel
moves.

Description: Update the specified address register according to the specified effective
addressing mode. All update addressing modes may be used.

Example:

RND 8 (R3)+N3 ;round value in 8 into 81, R3+N3. R3

Before Execution After Execution

R3 $0007 R3 $0008

N3 $0004 N3 $0004

Explanation of Example: Prior to execution, the 16-bit address registerR3 contains
the value $0007, and the 16-bit address offset register N3 contains the value $0004.
The execution of the parallel move portion of the instruction, (R3) + N3, updates the
R3 address register according to the specified effective addressing mode by adding
the value in the R3 register to the value in the N3 register and storing the 16-bit result
back in the R3 address register.

Condition Codes:

15 14 13 12 11 10 8 7 5 1 0

j.'D ** I T I ** I SI I SO I 11 I 10 I ** I l I E U N z
CCR

The condition codes are not affected by this type of parallel move.

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-125

III

u Address Register Update

Instruction Format:
(.....) ea

Opcode:

23 16 15 8 7

I a a 1 a a a a 010 10M M R R RI

Instruction Fields:
ea = 5-bit Effective Address = MMRRR

Effective
Addressing Mode MM R R R

(Rn)-Nn
(Rn)+Nn
(Rn)­
(Rn)+

o 0 r r r
o 1 r r r
1 0 r r r
1 1 r r r

where " rrr" refers to an address register RO-R7

Timing: mv oscillator clock cycles

Memory: mv program words

INSTRUCTION OPCODE

A-126 DSP56000/DSP56001 USER'S MANUAL

u

MOTOROLA

X: X Memory Data Move X:

Operation: Assembler Syntax:
(.....);X:ea. D (.....) X:ea,D

(.....); X:aa. D (.....) X:aa,D

(.....); S. X:ea (.....) S,X:ea

(.....); S. X:aa (.....) S,X:aa

(.....); #xxxxxx. D (.....) #xxxxxx,D

where (.....) refers to any arithmetic or logical instruction which allows parallel
moves.

Description: Move the specified word operand from/to X memory. All memory ad-
dressing modes, including absolute addressing and 24-bit immediate data, may be
used. Absolute short addressing may also be used.

If the arithmetic or logical opcode-operand portion of the instruction specifies a given
destination accumulator, that same accumulator or portion of that accumulator may
not be specified as a destination D in the parallel data bus move operation. Thus, if
the opcode-operand portion of the instruction specifies the 56-bit A accumulator as
its destination, the parallel data bus move portion of the instruction may not specify
AD, A 1, A2, or A as its destination D. Similarly, if the opcode-operand portion of the
instruction specifies the 56-bit B accumulator as its destination, the parallel data bus
move portion of the instruction may not specify BO, B1, B2, or B as its destination D.
That is, duplicate destinations are NOT allowed within the same instruction.

Ifthe opcode-operand portion ofthe instruction specifies a given source or destination
register, that same register or portion of that register may be used as a source S in
the parallel data bus move operation. This allows data to be moved in the same
instruction in which it is being used as a source operand by a data ALU operation.
That is, duplicate sources are allowed within the same instruction.

When a 24-bit source operand is moved into a 16-bit destination register, the 16 LS
bits of the 24-bit source operand are stored in the 16-bit destination register. When a
16-bit source operand is moved into a 24-bit destination register, the 16 LS bits of the
destination register are loaded with the contents of the 16-bit source operand, and
the eight MS bits of the 24-bit destination register are zeroed.

NOTE: This parallel data move is considered to be a move-type instruction. Due to
pipelining, if an address register (R or N) is changed using a move-type instruction,

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-127

X: X Memory Data Move X:

the new contents ofthe destination address register will not be available for use during
the following instruction (i.e., there is a single instruction cycle pipeline delay).

Example:

ASL A R2,X: - (R2) ;A*2 • A, save updated R2 in X:(R2)

Before Execution After Execution

R2 $1001 R2 $1000

X:$1000 $000000 X:$1000 $001000

Explanation of Example: Prior to execution, the 16-bit R2 address register contains
the value $1001, and the 24-bit X memory location X:$1 000 contains the value $000000.
The execution of the parallel move portion of the instruction, R2,X: - (R2), predecre­
ments the R2 address register and then uses the R2 address register to move the
updated contents ofthe R2 address register into the 24-bit X memory location X:$1000.

Condition Codes:

15 14 13 12 11 10 8 7 IlJ --I T 1--JR S1 1 so 1 11 '$1 l 1 u I N z
eeR

L - Set if data limiting has occurred during parallel move

NOTE: The MOVE A,X:ea operation will result in a 24-bit positive or negative satu­
ration constant being stored in the specified 24-bit X memory location if the signed
integer portion of the A accumulator is in use.

A-128 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

X: X Memory Data Move X:

Instruction Format:
(.....) X:ea,D
(.....) S,X:ea
(.....) #xxxxxx,D

Opcode:

23 16 15 8 7

Old dOd d d W 1 M M M R R R INSTRUCTION OPCODE

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:
ea =6-bit Effective Address= MMMMRRR

Effective
Register W Addressing Mode MMMRRR

Read S 0 (Rn) - Nn 000 r r r
Write D 1 (Rn)+Nn 001 r r r

(Rn)- 010rrr
(Rn)+ 011rrr
(Rn) 100 r r r
(Rn+Nn) 1 0 1r r r
-(Rn) 111rrr
Absolute address 110000
Immediate data 110100

S D D S D D
S,D ddddd S/L Sign Ext Zero S,D ddddd S/L Sign Ext Zero

XO o 0 1 0 0 no no no 82 o 1 0 1 1 no no no
X1 00101 no no no A1 o 1 1 0 0 no no no
YO o 0 1 1 0 no no no 81 o 1 1 0 1 no no no
Y1 o 0 1 1 1 no no no A o 1 1 1 0 yes A2 AO
AO o 1 0 a a no no no 8 o 1 1 1 1 yes 82 80
80 o 1 0 0 1 no no no RO-R7 1 0 r r r
A2 o 1 0 1 0 NO-N7) 1 n h n

where "rrr" = Rn number
where "nnn" = Nn number

Timing: mv oscillator clock cycles

Memory: mv program words

MOTOROLA OSP56000/0SP56001 USER'S MANUAL A-129

X: X Memory Data Move

Instruction Format:
(.....) X:aa,D
(.....) S,X:aa

Opcode:

23 16 15 8 7

10 1 d dOd dlw 0 a a a a a al

Instruction Fields:
aa = 6-bit Absolute Short Address = aaaaaa

Register W

Read S 0
Write D 1

Absolute Short Address aaaaaa

000000

111111

S D D
S,D ddddd S/L Sign Ext Zero

XO 00100 no no no
X1 00101 no no no
YO o 0 1 1 0 no no no
Y1 00111 no no no
AO o 1 000 no no no
80 o 1 0 0 1 no no no
A2 o 1 010 no no no
82 o 1 0 1 1 no no no
A1 o 1 100 no no no
81 o 1 1 0 1 no no no
A o 1 1 1 0 yes A2 AO
8 o 1 1 1 1 yes 82 80
RO-R7 1 0 r r r
NO-N71 1 n n n

where "rrr" = Rn number
where "nnn" = Nn number

Timing: mv oscillator clock cycles

Memory: mv program words

INSTRUCTION OPCODE I

A-130 DSP56000/DSP56001 USER'S MANUAL

X:

MOTOROLA

X:R X Memory and Register Data Move X:R

Operation: Assembler Syntax:
Class I Class I

(.....); X:ea • 01; S2 • 02 (.....) X:ea,01 S2,02

(.....); S1 • X:ea; S2 • 02 (.....) S1,X:ea S2,02

(.....); #xxxxxx. 01; S2. 02 (.....) #xxxxxx,01 S2,02

Class II Class II
(.....); A • X:ea; XO • A (. ; ...) A,X:ea XO,A

(.....); 8 • X:ea; XO • 8 (.....) 8,X:ea XO,8

where (.....) refers to any arithmetic or logical instruction which allows parallel
moves.

Description: Class I: Move a one-word operand from/to X memory and move another
word operand from an accumulator (S2) to an input register (02). All memory ad­
dressing modes, including absolute addressing and 24-bit immediate data, may be
used. The register to register move (S2,02) allows a data ALU accumulator to be
moved to a data ALU input register for use as a data ALU operand in the following
instruction.

Class II: Move one-word operand from a data ALU accumulator to X memory and
one-word operand from data ALU register XO to a data ALU accumulator. One effective
address is specified. All memory addressing modes, excluding long absolute address­
ing and long immediate data, may be used.

For both Class I and Class II X:R parallel data moves, ifthe arithmetic or logical opcode­
operand portion ofthe instruction specifies a given destination accumulator, that same
accumulator or portion of that accumulator may not be specified as a destination D1
in the parallel data bus move operation. Thus, if the opcode-operand portion of the
instruction specifies the 56-bit A accumulator as its destination, the parallel data bus
move portion of the instruction may not specify AO, A 1, A2, or A as its destination 01.
Similarly, if the opcode-operand portion of the instruction specifies the 56-bit 8 ac­
cumulator as its destination, the parallel data bus move portion of the instruction may
not specify 80, 81, 82, or 8 as its destination 01. That is, duplicate destinations are
NOT allowed within the same instruction.

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-131

1&

X:R X Memory and Register Data Move X:R

If the opcode-operand portion of the instruction specifies a given source or destination
register, that same register or portion of that register may be used as a source S1
and/or S2 in the parallel data bus move operation. This allows data to be moved in
the same instruction in which it is. being used as a source operand by a data ALU
operation. That is, duplicate sources are allowed within the same instruction. Note
that S1 and S2 may specify the same register.

Class I Example:

CMPM YO,A A,X:$1234 A,YO ;compare A,YO mag., save A, update YO

Before Execution After Execution

A ~1 ___ $_00_:8_0_00_00_:0_0_00_0_0 __ ~ AI ~ ___ $_00_:8_0_00_00_:_00_00_0_0 __ ~

X:$1234 $000000 X:$1234 $7FFFFF

YO $000000 YO $7FFFFF

Explanation of the Class I Example: Prior to execution, the 56-bit A accumulator contains
the value $00:800000:000000, the 24-bit X memory location X:$1234 contains the value
$000000, and the 24-bit YO register contains the value $000000. The execution of the
parallel move portion of the instruction, A,X:$1234 A,YO, moves the 24-bit limited
positive saturation constant $7FFFFF into both the X:$1234 memory location and the
YO register since the signed portion of the A accumulator was in use.

Class II Example:

MAC XO,YO,A B,X:(R1) + XO,B ;multiply XO and YO and accumulate in A
;move B to X memory location pointed to
;by R1 and postincrement R1
;move XO to B

A-132 DSP56000/DSP560~1 USER'S MANUAL MOTOROLA

X:R X Memory and Register Data Move X:R

Before Execution After Execution

XO $400000 XO $400000

YO $600000 YO $600000

A $00: 000000: 000000 A $00: 300000: 000000

B $FF:7FFFFF:000000 B $00 :400000: 000000

X:$1234 $000000 X:$1234 $800000

R1 $1234 R1 $1235

Explanation of the Class II Example: Prior to execution, the 24-bit registers XO and YO
contain $400000 and $600000, respectively. The 56-bit accumulators A and B contain
the values $00:000000:000000 and $FF:7FFFFF:000000, respectively. The 24-bit X
memory location X:$1234 contains the value $000000, and the 16-bit R1 register con­
tains the value $1234. Execution of the parallel move portion of the instruction
(B,X:(R1) + XO,B) moves the 24-bit limited value of B ($800000) into the X:$1234
memory location and the XO register ($400000) into accumulator B1 ($400000), sign
extends B1 into B2 ($00), and zero fills BO ($000000). It also increments R1 to $1235.

Condition Codes:

15 14 13 12 11 10 8 7

L - Set if data limiting has occurred during parallel move.

MOTOROLA OSP56000/0SP56001 USER'S MANUAL A-133

III

III

X:R X Memory and Register Data Move X:R

Class I Instruction Format:
(.....) X:ea,01 S2,02
(.....) S1,X:ea S2,02
(.....) #xxxxxx, S2,02

Opcode:

23 16 15 8 7

o 0 0 1 f f d f W 0 M M M R R R INSTRUCTION OPCODE

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:
ea =6-bit Effective Address= MMMRRR

Register W

Read 51 0
Write D1 1

S1,01 f f

XO o 0
X1 o 1
A 1 0
B 1 1

Effective
Addressing Mode MMM R R R

(Rn) -Nn
(Rnl+ Nn
(Rn)­
(Rn)+
(Rn)
(Rn+ Nn)
-(Rn)
Absolute address
Immediate data

OOOrrr
001 r r r
010rrr
011rrr
100rrr
101rrr
111rrr
110000
110100

where "rrr" refers to an address register RO-R7

S1 01 01 52
S/L Sign Ext Zero S2 d S/L

no no no A 0 yes
no no no B 1 yes
yes A2 AO
yes B2 BO

Timing: mv oscillator clock cycles

Memory: mv program words

02

YO
Y1

A-134 DSP56000/DSP56001 USER'S MANUAL

02 02
f Sign Ext Zero

0 no no
1 no no

MOTOROLA

X:R X Memory and Register Data Move X:R

Class II Instruction Format:
(.....) A. X:ea XO. A
(.....) B. X:ea XO. B

Opcode:

23 16 15 8 7

o 0 0 0 1 0 0 d 0 0 M M M R R R INSTRUCTION OPCODE

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:
ea = 6-bit Effective Address = MMMRRR

Effective
Addressing Mode MMMRRR

(Rn)-Nn 000 r r r
(Rn)+Nn 001 r r r
(Rn)- o 1 0 r r r
(Rn)+ 011rrr
(Rn) 100 r r r
(Rn+Nn) 101rrr
-(Rn) 111rrr
Absolute address 110000
Immediate data 110100

where "rrr" refers to an address register RO-R7

5 D D
s,D s/L Sign Ext Zero d MOVE Opcode

XO no N/A N/A 0 A. X:ea XO. A
YO no N/A N/A 8. X:ea XO.8
A yes A2 AO
8 yes 82 80

Timing: mv oscillator clock cycles III
Memory: mv program words

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-135

•

V: Y Memory Data Move V:
Operation: Assembler Syntax:

(.....); Y:ea. D (.....) Y:ea,D

(.....); Y:aa • D (.....) Y:aa,D

(.....); S. Y:ea (.....) S,Y:ea

(.....); S. Y:aa (.....) S,Y:aa

(.....); #xxxxxx. D (.....) #xxxxxx,D

where (.....) refers to any arithmetic or logical instruction which allows parallel
moves.

Description: Move the specified word operand from/to Y memory. All memory address-
ing modes, including absolute addressing and 24-bit immediat.e data, may be used.
Absolute short addressing may also be used.

If the arithmetic or logical opcode-operand portion of the instruction specifies a given
destination accumulator, that same accumulator or portion of that accumulator may
not be specified as a destination D in the parallel data bus move operation. Thus, if
the opcode-operand portion of the instruction specifies the 56-bit A accumulator as
its destination, the parallel data bus move portion of the instruction may not.specify
AO, A 1, A2, or A as its destination D. Similarly, if the opcode-operand portion of the
instruction specifies the 56-bit B accumulator as its destination, the parallel data bus
move portion of the instruction may not specify BO, B1, B2, or B as its destination D.
That is, duplicate destinations are NOT allowed within the same instruction.

If the opcode-operand portion of the instruction specifies a given source or destination
register, that same register or portion of that register may be used as a source S in
the parallel data bus move operation. This allows data to be moved in the same
instruction in which it is being used as a source operand by a data ALU operation .
That is, duplicate sources are allowed within the same instruction.

When a 24-bit source operand is moved into a 16-bit destination register, the 16 LS
bits of the 12-bit source operand are stored in the 16-bit destination register. When a
16-bit source operand is moved into a 24-bit destination register, the 16 LS bits of the
destination register are loaded with the contents of the 16-bit source operand, and
the eight MS bits of the 24-bit destination register are zeroed.

NOTE: This parallel data move is considered to be a move-type instruction. Due to
pipelining, if an address register (R or N) is changed using a move-type instruction,

A-136 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

V: Y Memory Data Move V:
the new contents of the destination address register will not be available for use during
the following instruction (Le., there is a single instruction cycle pipeline delay).

Example:

EOR XO,8 #$123456,A ;exclusive OR XO and 8, update A accumulator

Before Execution After Execution

A _I ___ $_FF_:F_F_FF_FF_:_FF_FF_F_F __ ~ A _1 __ ~$_OO_:1_2_34_56_:0_0_00_0_0 __ ~

Explanation of Example:· Prior to execution, the 56-bit A accumulator contains the
value $FF:FFFFFF:FFFFFF. The execution ofthe parallel move portion of the instruction,
#$123456,A, moves the 24-bit immediate value $123456 into the 24-bit A1 register,
then sign extends that value into the A2 portion of the accumulator, and zeros the
lower 24-bit AO portion of the accumulator.

Condition Codes:

15 14 13 12 11 10 8 7 2 0

u I N

~ MR ... CCR

L - Set if data limitin9 has occurred during parallel move

NOTE: The MOVE A,Y:ea operation .will result in ·a 24-bit positive or negative satu­
ration constant being stored in the specified 24-bit Y memory location if the signed
integer portion of the A accumulator is in use.

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-137

III

V:. Y Memory Data Move

Instruction Format:
(.....) Y:ea,D
(.....) S,Y:ea
(.....) #xxxxxx,D

Opcode:

23 16 15 B 7

Old d 1 d d d W 1 M M M R R R INSTRUCTION OPCODE

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:
ea = 6-bit Effective Address = MMMRRR

Effective
Register W Addressing Mode MMMRRR

Read S 0 (Rn)-Nn 000 r r r
Write D (Rn)+Nn 001 r r r

(Rn)- o i 0 r r r
(Rn)+ o 1 1 r r r
(Rn) 100rrr
(Rn+Nn) 1 0 1 r r r
-(Rn) 111rrr
Absolute address 1 000 0
Immediate data 110100

where "rrr" refers to an address register RO-R7

S
S,D ddddd S/L

XO o 0 1 0 0 no
X1 o 0 1 0 1 no
YO o 0 1 1 0 no
Y1 o 0 1 1 1 no
AO o i 000 no
80 o 1 0 0 1 no
A2 o 1 010 no

where "rrr" = Rn number
where "nnn" = Nn number

D
Sign Ext

no
no
no
no
no
no
no

Timing: mv oscillator clock cycles

Memory: mv program words

D
Zero

no
no
no
no
no
no
no

S,D

82
A1
B1
A
B
RO-R7
NO-N7

ddddd

o 1 011
o 1 100
o 1 1 0 1
o 1 1 1 0
o 1 1 1 1
1 0 r r r
1 1 n n n

A-138 OSP56000/0SP56001 USER'S MANUAL

S
S/L

no
no
no
yes
yes

V:

D D
Sign Ext Zero

no no
no no
no no
A2 AO
82 80

MOTOROLA

V: Y Memory Data Move

Instruction Format:
(.....) Y:aa,D
(.....) S,Y:aa

Opcode:

23 16 15 8 7

I Old d 1 d d dlw 0 a a a a a al

Instruction Fields:
aa = 6-bit Absolute Short Address = aaaaaa

Register W Absolute Short Address aaaaaa

Read S 0 000000
Write D 1

111111

S D D
S,D ddddd S/L Sign Ext Zero

XO 00100
X1 00101
YO 001 1 0
Y1 001 1 1
AO 01000
80 01001
A2 0101 0
82 01 01 1
A1 01100
81 01 101
A 01 1 1 0
8 o 1 1 1 1
RO-R7 1 0 r r r
NO-N7 11 n n n

where "rrr" = Rn number
where "nnn" = Nn number

no
no
no
no
no
no
no
no
no
no
yes
yes

Timing: mv oscillator clock cycles

Memory: mv program words

no no
no no
no no
no no
no no
no no
no no
no no
no no
no no
A2 AO
82 80

INSTRUCTION OPCODE

MOTOROLA DSP56000/DSP56001 USER'S MANUAL

V:

•

A-139

II

R:Y Register and Y Memory Data Move R:Y

Operation: Assembler Syntax:
Class I Class I

(.....); S1 • 01; Y:ea • 02 (.....) S1,01 Y:ea,02

(.....); S1 • 01; S2 • Y:ea (.....) S1,01 S2,Y:ea

(.....); S1 .01; #xxxxxx. 02 (.....) S1,01 #xxxxxx,02

Class II Class II
(.....); YO. A; A. Y:ea (.....) YO,A A,Y:ea

(.....); YO. 8; 8 • Y:ea (.....) YO,8 8,Y:ea

where (.....) refers to any arithmetic or logical instruction which allows parallel
moves.

Description: Class I: Move a one-word operand from an accumulator (S1) to an input
register (01) and move another word operand from/to Y memory. All memory ad­
dressing modes, including absolute addressing and 24-bit immediate data, may be
used. The register to register move (S1 ,01) allows a data ALU accumulator to be
moved to a data ALU input register for use as a data ALU operand in the following
instruction.

Class II: Move one-word operand from a data ALU accumulator to Y memory and
one-word operand from data ALU register YO to a data ALU accumulator. One effective
address is specified. All memory addressing modes, excluding long absolute address­
ing and long immediate data, may be used. Class II move operations have been added
to the R:Y parallel move (and a similar feature has been added to the X:R parallel
move) as an added feature available in the first quarter of 1989.

For both Class I and Class II R:Y parallel data moves, if the arithmetic or logical opcode­
operand portion ofthe instruction specifies a given destination accumulator, that same
accumulator or portion of that accumulator may not be specified as a destination 02
in the parallel data bus move operation. Thus, if the opcode-operand portion of the
instruction specifies the 56-bit A accumulator as its destination, the parallel data bus
move portion of the instruction may not specify AO, A 1, A2, or A as its destination 02.
Similarly, if the opcode-operand portion of the instruction specifies the 56-bit 8 ac­
cumulator as its destination, the parallel data bus move portion of the instruction may
not specify 80, 81, 82, or 8 as its destination 02. That is, duplicate destinations are
NOT allowed within the same instruction.

A-140 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

R:Y Register and Y Memory Data Move R:Y

If the opcode-operand portion of the instruction specifies a given source or destination
register, that same register or portion of that register may be used as a source S1
and/or S2 in the parallel data bus move operation. This allows data to be moved in
the same instruction in which it is being used as a source operand by a data ALU
operation. That is, duplicate sources are allowed within the same instruction. Note
that S1 and S2 may specify the same register.

Class I Example:

ADDL B,A B,X1 Y:(R6) - N6,B ;2*A+B. A, update X1,B and R6

Before Execution After Execution

B $80: 123456:789ABC B $00:654321 :000000

X1 $000000 X1 $800000

R6 $2020 R6 $2000

N6 $0020 N6 $0020

Y:$2020 $654321 Y:$2020 $654321

Explanation of the Class I Example: Prior to execution, the 56-bit B accumulator contains
the value $80: 123456:789ABC, the 24-bit X1 register contains the value $000000, the
16-bit R6 address register contains the value $2020~ the 16-bit N6 address offset register
contains the value $0020 and the 24-bit Y memory location Y:$2020 contains the value
$654321. The execution of the parallel move portion of the instruction, B,X1
Y:(R6) - N6,B, moves the 24-bit limited negative saturation constant $800000 into the
X1 register since the signed integer portion of the B accumulator was in use, uses the
value in the 16-bit R6 address register to move the 24-bit value in the Y memory
location Y:$2020 into the 56-bit B accumulator with automatic sign extension of the
upper portion of the accumulator (B2) and automatic zeroing of the lower portion of
the accumulator (BO), and finally uses the contents of the 16-bit N6 address offset
register to update the value in the 16-bit R6 address register. The contents of the N6
address offset register are not affected.

MOTOROLA OSP56000/0SP56001 USER'S MANUAL A-141

•

II

R:Y Register and Y Memory Data Move R:Y

Class II Example:

MAC XO,YO,A YO,B B,Y:(R1) + ;multiply XO and YO and accumulate in A
;move B to Y memory location pointed to
;by R1 and postincrement R1
;move YO to B

Before Execution After Execution

XO $400000 XO $400000

YO $600000 YO $600000

A $00: 000000: 000000 A $00: 300000: 000000

B $00: 800000: 000000 B $00: 600000: 000000

Y:$1234 $000000 Y:$1234 $7FFFFF

R1 $1234 R1 $1235

Explanation of the Class II Example: Prior to execution, the 24-bit registers, XO and YO,
contain $400000 and $600000, respectively. The 56-bit accumulators A and B contain
the values $00:000000:000000 and $00:800000:000000 (+ 1.0000), respectively. The
24-bit Y memory location Y:$1234 contains the value $000000, and the 16-bit R1 register
contains the value $1234. Execution of the parallel move portion of the instruction
(YO,B B,Y:(R1) +) moves the YO register ($600000) into accumulator B1 ($600000), sign
extends B1 into B2 ($00), and zero fills BO ($000000). It also moves the 24-bit limited
value of B ($7FFFFF) into the Y:$1234 memory location and increments R1 to $1235.

Condition Codes:

15 14 13 12 11 10 B 7 3

!:f1**1 T 1**1 "I sol 11 110 1**1 L IE I U IN
MR .. • CCR

L - Set if data limiting has occurred during parallel move

A-142 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

R:V Register and Y Memory Data Move R:V

Class I Instruction Format:
(.....) 81,01 Y:ea,02
(.....) 81,01 82,Y:ea
(.....) 81,01 #xxxxxx,02

Opcode:

23 16 15 B 7

000 e f f W 1 M M M R R R INSTRUCTION OPCODE

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:
ea = 6-bit Effective Address = MMMRRR

Effective
Register W Address Mode MMMRRR

Read 52 0 (Rn)- Nn 000 r r r
Write D2 1 (Rn)+Nn 001 r r r

(Rn)- o 1 0 r r r
(Rn)+ o 1 1 r r r
(Rn) 100 r r r
(Rn+Nn) 1 0 1 r r r
-(Rn) 1 1 1 r r r

Absolute address 1 1 0 0 0 0
Immediate data 1 1 0 1 0 0

where "rrr" refers to an address register RO-R7

S1 01 01 52 02 02

51 d SIL 01 e Sign Ext Zero 52.02 f f 5/L Sign Ext Zero

A 0 yes XO 0 no no YO o 0 no no no
8 yes X1 1 no no Y1 o 1 no no no

A 1 0 yes A2 AO

8 11 yes 82 80 -Timing: mv oscillator clock cycles

Memory: mv program words

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-143

R:Y Register and Y Memory Data Move R:V

Class II Instruction Format:
(.....) YO. A A. Y:ea
(.....) YO. B B. Y:ea

Opcode:

23 16 15 8 7

o 0 0 0 1 0 0 d 10M M M R R ~ INSTRUCTION OPCODE

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:
ea = 6-bit Effective Address = MMMRRR

Effective
Addressing Mode MMMRRR

(Rn)-Nn 000 r r r
(Rn)+Nn 001 r r r
(Rn)- 010rrr
(Rn)+ 011rrr
(Rn) 100rrr
(Rn+Nn) 101rrr
-(Rn) 111rrr
Absolute address 110000
Immediate data 110100

where "rrr" refers to an address register RO-R7

SRC DEST DEST
S,D S/L Sign Ext Zero d MOVE opcode

XO no N/A N/A 0 YOtA At Y:ea
YO no N/A N/A 1 YO t B B t Y:ea
A yes A2 ·AO
B yes B2 BO

III Timing: mv oscillator clock cycles

Memory: mv program words

A-144 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

L: Long Memory Data Move L:

Operation: Assembler Syntax:
(.....); X:ea. D1; V:ea. D2 (.....) L:ea,D

(.....); X:aa • D1; V:aa • D2 (.....) L:aa,D

(.....); S1 • X:ea; S2 • V:ea (.....) S,L:ea

(.....); S1 • X:aa; S2 • V:aa (.....) S,L:aa

where (.....) refers to any arithmetic or logical instruction which allows p~rallel
moves.

Description: Move one 48-bit long-word operand from/to X and V memory. Two data
ALU registers are concatenated to form the 48-bit long-word operand. This allows
efficient moving of both double-precision (high:low) and complex (real:imaginary)
data from/to one effective address in L (X:V) memory. The same effective address is
used for both the X and V memory spaces; thus, only one effective address is required.
Note that the A, B, A10, and B10 operands reference a single 48-bit signed (double­
precision) quantity while the X, V, AB, and BA operands reference two separate (i.e.,
real and imaginary) 24-bit signed quantities. All memory alterable addressing modes
may be used. Absolute short addressing may also be used.

If the arithmetic or logical opcode-operand portion of the instruction specifies a given
destination accumulator, that same accumulator or portion of that accumulator may
not be specified as a destination D in the parallel data bus move operation. Thus, if
the opcode-operand portion of the instruction specifies the 56-bit A accumulator as
its destination, the parallel data bus move portion of the instruction may not specify
A, A 10, AB, or BA as destination D. Similarly, if the opcode-operand portion of the
instruction specifies the 56-bit B accumulator as its destination, the parallel data bus
move portion of the instruction may not specify B, B10, AB, or BA as its destination
D. That is, duplicate destinations are NOT allowed within the same instruction .

If the. opcode-operand portion of the instruction specifies a given source or d~stination
register, that same register or portion of that register may be used as a source S in
the parallel data bus move operation. This allows data to be moved in the same
instruction in which it is being used as a source operand by a data ALU operation.
That is, duplicate sources are allowed within the same instruction.

NOTE: The operands A 10, B10, X, V, AB, and BA may be used only for a 48-bit long
memory move as previously described. These operands may not be used in any other
type of instruction or parallel move.

MOTOROLA OSP56000/0SP56001 USER'S MANUAL A-145

•

III

L: Long Memory Data Move L: ·

Example:

CMP YO,B A,L:$1234 ;compare YO and B, save 48-bit A 1 :AO value

Before Execution After Execution

A I $01 :234567:89ABCD A I $01 :234567:89ABCD

X:$1234 I $000000 X:$1234 I $7FFFFF

Y:$1234 $000000 Y:$1234 $FFFFFF

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the
value $01 :234567:89ABCD, the 24-bit X memory location X:$1234 contains the value
$000000, and the 24-bit Y memory location Y:$1234 contains the value $000000. The
execution of the parallel move portion of the instruction, A,L:$1234, moves the 48-bit
limited positive saturation constant $7FFFFF:FFFFFF into the specified long memory
location by moving the MS 24 bits of the 48-bit limited positive saturation constant
($7FFFFF) into the 24-bit X memory location X:$1234 and by moving the LS 24 bits
of the 48-bit limited positive saturation constant ($FFFFFF) into the 24-bit Y memory
location Y:$1234 since the signed integer portion of the A accumulator was in use.

Condition Codes:

15 14 13 12 11 10 9 8 7

CCR
vcq

L - Set if data limiting has occurred during parallel move

NOTE: The MOVE A,L:ea operation will result in a 48-bit positive or negative saturation
constant being stored in the specified 24-bit X and Y memory locations if the signed
integer portion of the A accumulator is in use. The MOVE AB,L:ea operation will result
in either one or two 24-bit positive and/or negative saturation constant(s) being stored
in the specified 24-bit X and/or Y memory location(s) if the signed i'nteger portion of
the A and/or B accumulator(s) is in use.

A-146 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

L: Long Memory Data Move L:

Instruction Format:
(.....) L:ea,D
(.....) S,L:ea

Opcode:

23 16 15 8 7

o 1 0 0 l 0 l l W 1 M M M R R R INSTRUCTION OPCODE

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:
ea = 6-bit Effective Address = MMMRRR

Effective
Register W Addressing Mode MMMRRR

Read 5 0 (Rn)-Nn OOOrrr
Write 0 1 (Rn)+Nn 001 r r r

(Rn)- o 1 0 r r r
(Rn)+ 011rrr
(Rn) 100 r r r
(Rn+Nn) 101rrr
-(Rn) 110rrr
Absolute address 110000

where "rrr" refers to an address register RO-R7

5 D D
5 51 52 S/L D D1 D2 Sign Ext Zero L L L

A10 A1 AO no A10 A1 AO no no 0 0 0
810 81 80 no 810 81 80 no no 0 0 1
X X1 XO no X X1 XO no no 0 0
Y Y1 YO no Y Y1 YO no no 0 1
A A1 AO yes A A1 AO A2 no 0 0
8 81 80 yes 8 81 80 82 no
A8 A 8 yes A8 A 8 A2,82 AO,80
8A 8 A yes 8A 8 A 82,A2 80,AO

0 1
1 0 Ell

Timing: mv oscillator clock cycles

Memory: mv program words

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-147

L: Long Memory Data Move L:

Instruction Format:
(.....) L:aa,D
(.....) S,L:aa

Opcode:

23 16 15 8 7 0

I 0 1 0 0 L 0 L L I w 0 a a a a a a I INSTRUCTION OPCODE I

Instruction Fields:
aa = 6-bit Absolute Short Address = aaaaaa

Register W Absolute 5hort Address aaaaaa

Read 5 0 000000
Write D 1

111111

5 D D
5 51 52 5/L D D1 D2 5ign Ext Zero L L L

A10 A1 AO no A10 A1 AO no no 0 0 0
B10 B1 BO no B10 B1 BO no no 0 0 1
X X1 XO no X X1 XO no no 0 0
Y Y1 YO no Y Y1 YO no no 0 1 1
A A1 AO yes A A1 AO A2 no 0 0
B B1 BO yes B B1 BO B2 no 0 1
AB A B yes AB A B A2,B2 AO,BO 0
BA B A yes BA B A B2,A2 BO,AO 1

Timing: mv oscillator clock cycles

Memory: mv program words

III

A-148 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

X: V: XV Memory Data Move X: Y:

Operation: Assembler Syntax:
(.....); X:<eax> • 01; Y:<eay> • 02 (.....) X:<eax>,01 Y:<eay>,02

(.....); X:<eax> • 01; S2 • Y:<eay> (.....) X:<eax>,01 S2,Y:<eay>

(.....); S1 • X:<eax>; Y:<eay> • 02 (.....) S1,X:<eax> Y:<eay>,02

(.....); S1 • X:<eax>; S2 • Y:<eay> (.....) S1,X:<eax> S2,Y:<eay>

where (.....) refers to any arithmetic or logical instruction which allows parallel
moves.

Description: Move a one-word operand from/to X memory and move another word
operand from/to Y memory. Note that two independent effective addresses are spec­
ified «eax> and <eay» where one of the effective addresses uses the lower bank
of address registers (RO~R3) while the other effective address uses the upper bank of
address registers (R4-R7). All parallel addressing modes may be used.

If the arithmetic or logical opcode-operand portion of the instruction specifies a given
destination accumulator, that same accumulator or portion of that accumulator may
not be specified as a destination 01 or 02 in the parallel data bus move operation.
Thus, if the opcode-operand portion of the instruction specifies the 56-bit A accu­
mulator as its destination, the parallel data bus move portion of the instruction may
not specify A as its destination 01 or 02. Similarly, if the opcode-operand portion of
the instruction specifies the 56-bit B accumulator as its destination, the parallel data
bus move portion of the instruction may not specify B as its destination 01 or 02.
That is, duplicate destinations are NOT allowed within the same instruction. 01 and
02 may not specify the same register.

Ifthe opcode-operand portion of the instruction specifies a given source or destination
register, that same register or portion of that register may be used as a source S1
and/or S2 in the parallel data bus move operation. This allows data to be moved in
the same instruction in which it is being used as a source operand by a data ALU
operation. That is, duplicate sources are allowed within the same instruction. Note
that S1 and S2 may specify the same register.

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-149

iii

II

X:. V: XV Memory Data Move X: V:

Example:

MPYR X1,YO,A X1,X:(RO)+ YO,Y:(R4)+ N4 ;X1*YO. A,save X1 and YO

Before Execution After Execution

Xl $123123 Xl $123123

YO $456456 YO $456456

RO $1000 RO $1001

R4 $0100 R4 $0123

N4 $0023 N4 $0023

X:$1000 $000000 X:$1000 $123123

Y:$0100 $000000 Y:$0100 $456456

Explanation of Example: Prior to execution, the 24-bit X1 register contains the value
$123123, the 24-bit YO register contains the value $456456, the 16-bit RO address
register contains the value $1000, the 16-bit R4 address register contains the value
$0100, the 16-bit N4 address offset register contains the value $0023, the 24-bit X
memory location X:$1000 contains the value $000000, and the 24-bit Y memory lo­
cation Y:$01 00 contains the value $000000. The execution of the parallel move portion
of the instruction, X1,X:(RO) + YO,Y:(R4) + N4, moves the 24-bit value in the X1 register
into the 24-bit X memory location X:$1000 using the 16-bit RO address register, moves
the 24-bit value in the YO register into the 24-bit Y memory location Y:$0100 using
the 16-bit R4 address register, updates the 16-bit value in the RO address register, and
updates the 16-bit R4 address register using the 16-bit N4 address offset register. The
contents of the N4 address offset register are not affected.

Condition Codes:

15 14 13 12 11 10 B 2 0

u I N

CCR

L - Set if data limiting has occurred during parallel move

NOTE: The MOVE A,X:<eax> B,Y:<eay> operation will result in one or two 24-bit
positive and/or negative saturation constant(s) being stored in the specified 24-bit X

A-150 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

X: V: XV Memory Data Move X: V:

and/or Y memory location(s) if the signed integer portion of the A and/or B accumu­
lator(s) is in use.

Instruction Format:
(.....) X:<eax>,D1
(.....) X:<eax>,D1
(.....) S1,X:<eax>
(.....) S1,X:<eax>

Opcode:

Y:<eay>,D2
S2,Y:<eay>
Y:<eay>,D2
S2,Y:<eay>

23 16 15 8 7

11 w m m e e t tlw r r M M R R RI

Instruction Fields:

INSTRUCTION OPCODE

X:<eax>=6-bit X Effective Address=WMMRRR (RO-R3 or R4-R7)
X:<eay> = 5-bit Y Effective Address =wmmrr (R4-R7 or RO-R3)

X Effective
Addressing Mode MM R R R

(Rn)+Nn
(Rn)­
(Rn)+
(Rn)

o 1 s s s
1 0 s s s
1 1 s s s
o 0 s s s

where "sss" refers to an address register RO-R3 or R4-R7

51 01 01
Register W 51,01 e e 5/L 5ign Ext Zero

Read 51 0 XO 00 no no no
Write D1 1 X1 o 1 no no no

A 1 0 yes A2 . AO

8 1 1 yes 82 80

Y Effective
Addressing Mode

(Rn)+Nn
(Rn)-
(Rn)+
(Rn)

mm r r

o 1 t t
1 0 t t
1 1 t t
o 0 t t

where "tt" refers to an address register R4-R7 or RO-R3 which is in the opposite address register bank
from the one used in the X effective address, previously described

52 02 02
Register W 52,02 f f 5/L 5ign Ext Zero

Read 52 0 YO 00 no no no
Write D2 1 Y1 o 1 no no no

A 1 0 yes A2 AO
8 1 1 yes 82 80

Timing: mv oscillator clock cycles

Memory: mv program words

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-151

-

III

MOVEC Move Control Register MOVEC

Operation: Assembler Syntax:
X:ea.01 MOVE(C) X:ea,01

X:aa.01 MOVE(C) X:aa,01

S1 • X:ea MOVE(C) S1,X:ea

S1 • X:aa MOVE(C) S1,X:aa

Y:ea.01 MOVE(C) Y:ea,01

Y:aa.01 MOVE(C) Y:aa,01

S1 • Y:ea MOVE(C) S1,Y:ea

S1 • Y:aa MOVE(C) S1,Y:aa

S1 .02 MOVE(C) S1,02

S2.01 MOVE(C) S2,01

#xxxx.01 MOVE(C) #xxxx,01

#xx.01 MOVE(C) #xx,01

Description: Move the contents of the specified source control register S1 or S2 to the
specified destination or move the specified source to the specified destination control
register 01 or 02. The control registers S1 and 01 are a subset of the S2 and 02
register set and consist of the address ALU modifier registers and the program con­
troller registers. These registers may be moved to orfrom any other register or memory
space. All memory addressing modes, as well as an immediate shortaddressing mode,
may be used.

If the system stack register SSH is specified as a source operand, the system stack
pointer (SP) is postdecremented by 1 after SSH has been read. If the system stack
register SSH is specified as a destination operand, the system stack pointer (SP) is
preincremented by 1 before SSH is written. This allows the system stack to be effi­
ciently extended using software stack pointer operations.

When a 56-bit accumulator (A or B) is specified as a source operand, the accumulator
value is optionally shifted according to the scaling mode bits SO and S1 in the system

A-152 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

MOVEC Move Control Register MOVEC

status register (SR). If the data out of the shifter indicates that the accumulator exten­
sion register is in use and the data is to be moved into a 24-bit destination, the value
stored in the destination is limited to a maximum positive or negative saturation
constant to minimize truncation error. If the data is to be moved into a 16-bit destination
and the accumulator extension register is in use, the value is limited to a maximum
positive or negative saturation constant whose LS 16 bits are then stored in the 16-
bit destination register. Limiting does not occur if an individual 24-bit accumulator
register (A 1, AD, 81, or 80) is specified as a source operand instead of the full 56-bit
accumulator (A or 8). This limiting feature allows block floating-point operations to
be performed with error detection since the L bit in the condition code register is
latched.

When a 56-bit accumulator (A or 8) is specified as a destination operand, any 24-bit
source data to be moved into that accumulator is automatically extended to 56 bits
by sign extending the MS bit of the source operand (bit 23) and appending the source
operand with 24 LS zeros. Whenever a 16-bit source operand is to be moved into a
24-bit destination, the 16-bit value is stored in the LS 16 bits of the 24-bit destination,
and the MS 8 bits of that destination are zeroed. Similarly, whenever a 16-bit source
operand is to be moved into a 56-bit accumulator, the 16'::bit value is moved into the
LS 16 bits of the MSP portion of the accumulator (A 1 or 81), the MS 8 bits of the MSP
portion of that accumulator are zeroed, and the resulting 24-bit value is extended to
56 bits by sign extending the MS bit and appending the result with 24 LS zeros. Note
that for 24-bit source operands both the automatic sign-extension and zeroing features
may be disabled by specifying the destination register to be one of the individual 24-
bit accumulator registers (A 1 or 81).

NOTE: Due to pipelining, if an address register (R, N, or M) is changed using a move­
type instruction, the new contents of the destination address register will not be
available for use during the following instruction (i.e., there is a single instruction cycle
pipeline delay). :

R~strictions: NOTE: The following restrictions represent very unusual operations, which
probably would never be used but are listed only for completeness.

A MOVEC instruction used within a DO loop which specifies SSH as the source operand
or LA, LC, SR, SP, SSH, or SSL as the destination operand cannot begin at the address
LA - 2, LA -1, or LA within that DO loop.

A MOVEC instruction which specifies SSH as the source operand or LA, LC, SSH, SSL,
or SP as the destination operand cannot be used immediately before a DO instruction.

MOTOROLA DSPS6000/DSPS6001 USER'S MANUAL A-153

•

•

M.OVEC Move Control Register MOVEC

A MOVEC instruction which specifies SSH as the source operand or LA, LC, SR, SSH,
SSL, or SP as the destination operand cannot be used immediately before an ENDDO
instruction.

A MOVEC instruction which specifies SSH as the source operand or SR, SSH, SSL, or
SP as the destination operand cannot be used immediately before an RTI instruction.

A MOVEC instruction which specifies SSH as the source operand or SSH, SSL, or SP
as the destination operand cannot be used immediately before an RTS instruction.

A MOVEC instruction which specifies SP as the destination operand cannot be used
immediately before a MOVEC, MOVEM, or MOVEP instruction which specifies SSH
or SSL as the source operand.

A MOVEC SSH,SSH instruction is illegal and cannot be used.

Example:

MOVEC LC,XO ;move LC into XO

Before Execution After Execution

LC $0100 LC $0100

xo $123456 xo $000100

Explanation of Example: Prior to execution, the 16-bit loop counter (LC) register con-
tains the value $0100, and the 24-bit XO register contains the value $123456. The
execution ofthe MOVEC LC,XO instruction moves the contents of the 16-bit LC register
into the 16 LS bits of the 24-bit XO register and zeros the 8 MS bits of the XO register.

Condition Codes:

15 14 13 12 11 10 8 7 0 IiJ ** I T I ** I SI I SO I 11 I 10 I ** I liE I u I N I z I v ~
MR •. 0(CCR

For 01 or 02=SR operand:

L - Set according to bit 6 of the source operand
E - Set according to bit 5 of the source operand
U - Set according to bit 4 of the source operand
N - Set according to bit 3 of the source operand

A-154 OSP56000/0SP56001 USER'S MANUAL MOTOROLA

MOVEC Move Control Register

Z - Set according to bit 2 of the source operand
V - Set according to bit 1 of the source operand
C - Set according to bit 0 of the source operand

For 01 and 02'4= SR operand:

L - Set if data limiting has occurred during move

Instruction Format:
MOVE(C) X:ea,D1
MOVE(C) S1,X:ea
MOVE(C) Y:ea,D1
MOVE(C) S1,Y:ea
MOVE(C) #xxxx,D1

Opcode:

23 16 15 8 7

MOVEC

D D D D D 1 D 1 W 1 M M M R R RD s 1 d d d d d

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:
ea == 6-bit Effective Address = MMMRRR

Effective
Register W Addressing Mode MMMRRR

Read S1 0 (Rn)-Nn OOOrrr
Write 01 1 (Rn)+Nn 001 r r r

(Rn)- 010rrr
(Rn)+ 011rrr
(Rn) 100 r r r
(Rn+Nn) 101rrr
-(Rn) 111rrr
Absolute address 110000
Immediate data 110100

where "rrr" refers to an address register RO-R7

MOTOROLA OSP56000/0SP56001 USER'S MANUAL A-155

III

MOVEC

Memory Space s

X Memory
Y Memory

o
1

51,01

MO-M7
SR
OMR
SP
SSH
SSL
LA
LC

Move Control Register

ddddd

o 0 n n n
1 1 00 1
1 1 0 1 0
1 1 0 1 1
1 1 1 0 0
1 1 1 0 1
1 1 1 1 0
1 1 1 1 1

where "nnn" = Mn number (MO-M7)

Timing: 2 + mvc oscillator clock cycles

Memory: 1 + ea program words

Instruction Format:
MOVE(C) X:aa,D1
MOVE(C) S1,X:aa
MOVE(C) Y:aa,D1
MOVE(C) S1,Y:aa

Opcode:

23 16 15 8 7

MOVEC

.100000 1 0 llw 0 a a a a a alo sId d d d dl

Instruction Fields:
aa = 6-bit Absolute Short Address = aaaaaa

Register W

Read S 0
Write D 1

Memory Space s

X Memory 0
Y Memory

Absolute Short Address aaaaaa

000000

111111

51,01 ddddd

MO-M7 OOnnn
SR 1 1001
OMR 1 1 01 0
SP 1 1 01 1
SSH 1 1 1 00
SSL 1 1 1 0 1
LA 1 1 1 1 0
LC 1 1 1 1 1

where "nnn" = Mn number (MO-M7)

A-156 DSP56000/DSP56()01 USER'S MANUAL MOTOROLA

MOVEC Move Control Register

Timing: 2 + mvc oscillator clock cycles

Memory: 1 + ea program words

Instruction Format:
MOVE(C) S1,02
MOVE(C) S2,01

Opcode:

23 16 15 8 7

MOVEC

10 0 0 0 0 1 0 olw 1 e e e e e ell o 1 d d d d dl

Instruction Fields:

Register W S1,01

Read S1 0 MO-M7
Write 01 SR

OMR
SP

Memory Space s SSH

X Memory 0
SSL
LA

Y Memory
LC

where "nnn" = Mn number (MO-M7)

S2 02 02
S2,02 e e e e e e S/L Sign Ext Zero

XO 00·0100 no no no
X1 000101 no no no
YO 000110 no no no
Y1 000111 no no no
AO 001000 no no no
80 001001 no no no
A2 001010 no no no
82 001011 no no no
A1 001100 no no no
81 001101 no no no
A 001 1 1 0 yes A2 AO
8 001 1 1 1 yes 82 80

where " nnn"' = Rn number (RO-R7)
Nn number (NO-N7)
Mn number (MO-M7)

ddddd

\oonnn
1 1 001
11010 I

1 1 01 1
1 1 1 00
1 1 1 0 1
1 1 1 1 0
1 1 1 1 1

S2,02 eeeeee

RO-R7 010nnn
NO-N7 011nnn
MO-M7 100nnn
SR 111001
OMR 111010
SP 111011
SSH 111100
SSL 111101
LA 1 1 1 1 1 0
LC 111111

MOTOROLA OSP56000/0SP56001 USER'S MANUAL A-157

MOVEC Move Control Register MOVEC

Timing: 2 + mvc oscillator clock cycles

Memory: 1 + ea program words

Instruction Format:
MOVE(C) #xx,D1

Opcode:

23 16 15

10 0 0 0 0

Instruction Fields:
#xx = 8-bit Immediate Short Data = iii iii i i

01 d d d d d
MO-M7 00 n n n
SR 1 1001
OMR 11010
SP 1 1 01 1
SSH 11 100
SSL 1 1 1 01
LA 11110
LC 1 1 1 1 1

where "nnn" = Mn number (MO-M7)

Timing: 2 + mvc oscillator clock cycles

Memory: 1 + ea program words

8 7 0

dl Old d d d dl

A-158 OSP56000/0SP56001 USER'S MANUAL MOTOROLA

MOVEM

Operation: s. P:ea

S. P:aa

P:ea. D

P:aa. D

Move Program Memory MOVEM

Assembler Syntax:
. MOVE(M) S,P:ea

MOVE(M) S,P:aa

MOVE(M) P:ea,D

MOVE(M) P:aa,D

Description: Move the specified operand from/to the specified program (P) memory
location. This is a powerful move instruction in that the source and destination registers
Sand D may be any register. All memory alterable addressing modes may be used
as well as the absolute short addressing mode.

If the system stack register SSH is specified as a source operand, the system stack
pointer. (SP) is postdecremented by 1 after SSH has been read. If the sytem stack
register SSH is specified as a destination operand, the system stack pointer (SP) is
preincremented by 1 before SSH is written. This allows the system stack to be effi­
ciently extended using software stack pointer operations.

When a 56-bit accumulator (A or B) is specified as a source operand S, the accumulator
value is optionally shifted according to the scaling mode bits SO and S1 in the system
status register (SR). If the data out of the shifter indicates that the accumulator exten­
sion register is in use and the data is to be moved into a 24-bit destination, the value
stored in the destination is limited to a maximum positive or negative saturation
constant to minimize truncation error. If a 24-bit source operand is to be moved into
a 16-bit destination register D, the 8 MS bits ofthe 24-bit source operand are discarded,
and the 16 LS bits are stored in the 16-bit destination register. Limiting does not occur
if an individual 24-bit accumulator register (A 1, AO, B1, or BO) is specified as a source
operand instead of the full 56-bit accumulator (A or B). This limiting feature allows
block floating-point operations to be performed with error detection since the L bit in
the condition code register is latched.

When a 56-bit accumulator (A or B) is specified as a destination operand D, any 24-
bit source data to be moved into that accumulator is automatically extended to 56 bits
by sign extending the MS bit of the source operand (bit 23) and appending the source
operand with 24 LS zeros. Whenever a 16-bit source operand S is to be moved into
a 24-bit destination, the 16-bit source is loaded into the LS 16 bits of the destination
operand, and the remaining 8 MS bits of the destination are zeroed. Note that for 24-
bit source operands, both the automatic sign-extension and zeroing features may be
disabled by specifying the destination register to be one of the individual 24-bit ac­
cumulator registers (A 1 or B1).

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-159

-

MOVEM Move Program Memory MOVEM

NOTE: Due to pipelining, if an address register (R, N, or M) is changed using a move­
type instruction, the new contents of the destination address register will not be
available for use during the following instruction (Le., there is a single instruction cycle
pipeline delay).

Restrictions: NOTE: The following restrictions represent very unusual operations, which
probably would never be used but are listed only for compJ.eteness.

A MOVEM instruction used within a DO .Ioop which specifies SSH as the source
operand or LA, LC, SR, SP, SSH, or SSL as the destination operand cannot begin at
the address LA-2, LA-1, or LA within that DO loop. ,

A MOVEM instruction which specifies SSH as the source operand or LA, Le, SSH, SSL,
or SP as the destination operand cannot be used imm·ediately before aDO instruction.

A MOVEM instruction which specifiesSSH as the source operand or LA, LC, SR, SSH,
SSL, or SP as the destination operand cannot be used immediately before an ENDDO
instruction.

A MOVEM instruction which specifies SSH as the source operand or SR, SSH, SSL,
or SP as the destination operand cannot be used immediately before an RTI instruction.

A MOVEM instruction which specifies SSH as the source operand or SSH, SSL, or SP
as the destination operand cannot be used immediately before an RTS instruction.

A MOVEM instruction which specifies SP as the destination operand cannot be used
immediately before a MOVEC, MOVEM, or MOVEP instruction which specifies SSH
or SSL as the source operand. .

Example:

MOVEM P:(R5+ N5),LC ;move P:(R5+ N5) into the loop counter (LC)

Before Execution After Execution

P:(R5+ N5) $000116 P:(R5 +I'~5) $000116

LC $0000 LC $0116

Explanation of Example: Prior to execution, the 16-bit loop counter (LC) register con-
tains the value $0000, and the 24-bit program (P) memory location P:(R5 + N5) contains
the value $000116. The execution of the MOVEM P: (R5 + N5),LC instruction moves the
16 LS bits of the 24-bit program (P) memory location P: (R5 + N5) into the 16-bit LC
register.

A-160 DSP56000/DSP56901 LlSER'S MANUAL MOTOROLA

MOVEM Move Program Memory

Condition Codes:

15 14 13 12 11 10 8 7 4 jlJ ** I T I ** I SI I SO I 11 I 10 I ** I l I E I u I N
MR ~ i(CCR

For D=SR operand:
L - Set according to bit 6 of the source operand
E - Set according to bit 5 of the source operand
U - Set according to bit 4 of the source operand
N - Set according to bit 3 of the source operand
Z - Set according to bit 2 of the source operand
V - Set according to bit 1 of the source operand
C - Set according to bit 0 of the source operand

For D:f= SR operand:
L - Set if data limiting has occurred during move

Instruction Format:
MOVE(M) S,P:ea
MOVE(M) P:ea,D

Opcode:

23 16 15 8 7

0000011 lW1MMMRRR10

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:
ea = 6-bit Effective Address= MMMRRR

Effective
Register W Addressing Mode MMMRRR

Read S 0 (Rn)-Nn OOOrrr
Write D 1 (Rn)+Nn 001 r r r

(Rn)- o 1 0 r r r
(Rn)+ 01irrr
(Rn) 100 r r r
(Rn+Nn) 101rrr
-(Rn) 111rrr
Absolute address 110000

where "rrr" refers to an address register RO-R7

MOVEM

1 0

z

d d d d d d

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-161

MOVEM Move Program Memory

S D D
S,D d d d d d d S/L Sign Ext Zero

XO 000100 no no no
X1 000101 no no no
YO 000110 no no no
Y1 000111 no no no
AO 001000 no no no
80 001001 no no no
A2 001010 no no no
82 001011 no no no
A1 001100 no no no
81 001101 no no no
A 001 1 1 0 yes A2 AO
8 001 1 1 1 yes 82 80

where "nnn" = Rn number (RO-R7)
Nn number (NO-N7)
Mn number (MO-M7)

Timing: 2 + mvm oscillator clock cycles

Memory: 1 + ea program words

Instruction Format:
MOVE(M) S,P:aa
MOVE(M) P:aa,D

Opcode:

S,D

RO-R7
NO-N7
MO-M7
SR
OMR
SP
SSH
SSL
LA
LC

23 16 15 8 7

dddddd

010nnn
011nnn
100nnn
111001
1 1 1 010
111011
111100
111101
111110
1 11 1 11

MOVEM

I a a a a a 1 llwa a a a a a ala add d d d dl

Instruction Fields:
aa = 6-bit Absolute Short Address = aaaaaa

Register W

Read S 0
Write D 1

A-162

Absolute Short Address aaaaaa

000000

111111

DSP56000/DSP56001 USER'S MANUAL MOTOROLA

MOVEM Move Program Memory MOVEM

S D D
S,D d d d d d d S/L Sign Ext Zero S,D dddddd

XO 000100 no no no RO-R7 010nnn
X1 000101 no no no NO-N7 011nnn
YO 000110 no no no MO-M7 100nnn
Y1 000111 no no no SR 111001
AO 001000 no no no OMR 111010
80 001001 no no no SP 111011
A2 001010 no no no SSH 1 1 1 1 00
82 001011 no no no SSL 111101
A1 001100 no no no LA 1 1 1 1 1 0
81 001101 no no no LC 111111
A 001 1 1 0 yes A2 AO
8 001 1 1 1 yes 82 80

where "nnn" = Rn number (RO-R7)
Nn number (NO-N7)
Mn number (MO-M7)

Timing: 2 + mvm oscillator clock cycles

Memory: 1 + ea program words

III

MOTOROLA OSP56000/0SP56001 USER'S MANUAL A-163

-

MOVEP Move Peripheral Data MOVEP

Operation: Assembler Syntax:
X:pP. D MOVEP X:pp,D

X:pP. X:ea MOVEP X:pp,X:ea

X:pP. Y:ea MOVEP X:pp,Y:ea

X:pP. P:ea MOVEP X:pp,P:ea

S. X:pp MOVEP S,X:pp

#xxxxxx. X:pp MOVEP #xxxxxx,X: pp

X:ea. X:pp MOVEP X:ea,X:pp

Y:ea. X:pp MOVEP Y:ea,X:pp

P:ea. X:pp MOVEP P:ea,X:pp

Y:pP. D MOVEP Y:pp,D

Y:pP. X:ea MOVEP Y:pp,X:ea

Y:pP. Y:ea MOVEP Y:pp,Y:ea

Y:pP. P:ea MOVEP Y:pp,P:ea

S. Y:pp MOVEP S,Y:pp

#xxxxxx. Y:pp MOVEP #xxxxxx,Y:pp

X:ea. Y:pp MOVEP X:ea,Y:pp

Y:ea. Y:pp MOVEP Y:ea,Y:pp

P:ea. Y:pp MOVEP P:ea,Y:pp

Description: Move the specified operand fromlto the specified X or Y 1/0 peripheral.
The 1/0 short addressing mode is used for the I/O peripheral address. All memory
addressing modes may be used for the X or Y memory effective address; all memory
alterable addressing modes may be used for the P memory effective address.

A-164 DSP56000/DSP56~01 USER'S MANUAL MOTOROLA

MOVEP Move Peripheral Data MOVEP

If the system stack register SSH is specified as a source operand, the system stack
pointer (SP) is postdecremented by 1 after SSH has been read. If the system stack
register SSH is specified as a destination operand, the system stack pointer (SP) is
preincremented by 1 before SSH is written. This allows the system stack to be effi­
ciently extended using software stack pointer operations.

When a 56-bit accumulator (A or B) is specified as a source operand S, the accumulator
value is optionally shifted according to the scaling mode bits SO and S1 in the system
status register (SR). If the data out of the shifter indicates that the accumulator exten­
sion register is in use and the data is to be moved into a 24-bit destination, the value
stored in the destination is limited to a maximum positive or negative saturation
constant to minimize truncation error. If a 24-bit source operand is to be moved into
a 16-bit destination register 0, the 8 MS bits ofthe 24-bit source operand are discarded,
and the 16 LS bits are stored in the 16-bit destination register. Limiting does not occur
if an individual 24-bit accumulator register (A 1, AO, B1, or BO) is specified as a source
operand instead of the full 56-bit accumulator (A or B). This limiting feature allows
block floating-point operations to be performed with error detection since the L bit in
the condition code register is latched.

When a 56-bit accumulator (A or B) is specified as a destination operand 0, any 24-
bit source data to be moved into that accumulator is automatically extended to 56 bits
by sign extending the MS bit of the source operand (bit 23) and appending the source
operand with 24 LS zeros. Whenever a 16-bit source operand S is to be moved into
a 24-bit destination, the 16-bit source is loaded into the LS 16 bits of the destination
operand, and the remaining 8 MS bits of the destination are zeroed. Note that for 24-
bit source operands both the automatic sign-extension and zeroing features may be
disabled by specifying the destination register to be one of the individual 24-bit ac­
cumulator registers (A 1 or B1).

NOTE: Due to pipelining, if an address register (R, N, or M) is changed using a move­
type instruction, the new contents of the destination address register will not be
available for use during the following instruction (i.e, there is a single instuction cycle
pipeline delay).

Restrictions: NOTE: The following restrictions represent very unusual operations, which
probably would never be used but are listed only for completeness.

A MOVEP instruction used within a DO loop which specifies SSH as the source operand
or LA, Le, SR, SP, SSH, or SSL as the destination operand cannot begin at the address
LA - 2, LA -1, or LA within that DO loop.

MOTOROLA OSP56000/0SP56001 USER'S MANUAL A-165

•

III

M·OVEP Move Peripheral Data MOVEP

A MOVEP instruction which specifies SSH as the source operand or LA, LC, SSH, SSL,
or SP as the destination operand cannot be used immediately before a DO instruction.

A MOVEP instruction which specifies SSH as the source operand or LA, LC, SR, SSH,
SSL, or SP as the destination operand cannot be used immediately before an ENDDO
instruction.

A MOVEP instruction which specifies SSH as the source operand or SR, SSH, SSL, or
SP as the destination operand cannot be used immediately before an RTI instruction.

A MOVEP instruction which specifies SSH as the source operand or SSH, SSL, or SP
as the destination operand cannot be used immediately before an RTS instruction.

A MOVEP instruction which specifies SP as the destination operand cannot be used
immediately before a MOVEC, MOVEM, or MOVEP instruction which specifies SSH
or SSL as the source operand.

Example:

MOVEP #$1113,X:«$FFFE ;initialize Bus Control Register wait states

X:$FFFE
(BCR)

Before Execution

$FFFF X:$FFFE
(BCR)

After Execution

$1113

Explanation of Example: Prior to execution, the 16-bit, X memory-mapped, I/O' bus
control register (BCR) contains the value $FFFF. The execution of the MOVEP
#$1113,X:«$FFFE instruction moves the value $1113 into the 16-bit bus control
register X:$FFFE, resulting in one wait state for all external X, external V, and external
program memory accesses and three wait states for all external I/O accesses.

Condition Codes:

15 14 13 12 11 10 8 7

eeR

For D=SR operand:

L - Set according to bit 6 of the source operand
E - Set according to bit 5 of the source operand
U - Set according to bit 4 of the. source operand

vcq

A-166 OSP56000/0SP56001 USER'S MANUAL MOTOROLA

MOVEP Move Peripheral Data

N - Set according to bit 3 of the source operand
Z - Set according to bit 2 of the source operand
V - Set according to bit 1 of the source operand
C - Set according to bit 0 of the source operand

For D#;SR operand:
L - Set if data limiting has occurred during move

Instruction Format (X: or Y: Reference):
MOVEP X:ea,X:pp
MOVEP Y:ea,X:pp
MOVEP #xxxxxx,X:pp
MOVEP X:pp,X:ea
MOVEP X:pp,Y:ea
MOVEP X:ea,Y:pp
MOVEP Y:ea,Y:pp
MOVEP #xxxxxx,Y:pp
MOVEP Y:pp,Y:ea
MOVEP Y:pp,Y:ea

Opcode:

23 16 15 8 7

MOVEP

0000100 s W 1 M M M R R Rl S P P P P P P

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:
ea = 6-bit Effective Address = MMMRRR,
pp = 6-bit liD Short Address = pppppp

Effective
Memory Space S Addressing Mode MMMRRR

X Memory 0 (Rn)-Nn OOOrrr
Y Memory (Rn)+ Nn 001 r r r

(Rn)- 010rrr
Peripheral Space s (Rn)+ 011rrr
X Memory 0 (Rn) 100rrr
Y Memory 1 (Rn+Nn) 101rrr

-(Rn) 111rrr
Peripheral W Absolute address 110000
Read 0 Immediate data 110100
Write 1

where " rrr" refers to an address register RO-R7

MOTOROLA OSP56000/0SP56001 USER'S MANUAL A-167

•

III

MOVEP Move Peripheral Data

Timing: 4+ mvp oscillator clock cycles

Memory: 1 + ea program words

Instruction Format (P: Reference):
MOVEP . P:ea,X:pp
MOVEP X:pp,P:ea
MOVEP P:ea,Y:pp
MOVEP Y:pp,P:ea

Opcode:

23 16 15 8 7

MOVEP

0000100 S WI M M M R R RO 1 P P P P P P

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:
ea = 6-bit Effective Address = MMMRRR,
pp = 6-bit liD Short Address = pppppp

Effective
Peripheral Space S Addressing Mode

X Memory 0 (Rn)-Nn
Y Memory 1 (Rn)+Nn

(Rn)-
Peripheral W (Rn)+
Read 0 (Rn)
Write 1 (Rn+Nn)

-(Rn)
Absolute address

where "rrr" refers to an address register RO-R7

Timing: 4+ mvp oscillator clock cycles

Memory: 1 + ea program words

MMMRRR

OOOrrr
001 r r r
010rrr
011rrr
100rrr
101rrr
111rrr
110000

A-168 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

MOVEP Move Peripheral Data

Instruction Format (Register Reference):
MOVEP S,X:pp
MOVEP X:pp,O
MOVEP S,Y:pp
MOVEP Y:pp,O

Opcode:

23 16 15 B 7

MOVEP

I 0 0 0 0 1 o 0 slw 1 d d d d d dlo o p p p p p pi

Instruction Fields:
pp = 6-bit I/O Short Address = pppppp

Peripheral Space S Peripheral W

X Memory
Y Memory

o Read
Write

S D D
S,D d d d d d d SIL Sign Ext Zero

XO 0001 00 no no no
X1 000101 no no no
YO 0001 1 0 no no no
Y1 0001 1 1 no no no
AO 001 000 no no no
80 001001 no no no
A2 00101 0 no no no
82 001 01 1 no no no
A1 001 100 no no no
81 001 1 01 no no no
A 001 1 1 0 yes A2 AO
8 001 1 1 1 yes 82 80

where "nnn'" = Rn number (RO-R7)
Nn number (NO-N7)
Mn number (MO-M7)

Timing: 4+ mvp oscillator clock cycles

Memory: 1 + ea program words

o

S,D dddddd

RO-R7 010nnn
NO-N7 011nnn
MO-M7 100nnn
SR 111001
OMR 111010
SP 111011
SSH 111100
SSL '111101
LA 111110
LC 111111

MOTOROLA OSP56000/0SP56001 USER'S MANUAL A-169

III

III

MPY Signed Multiply MPY

Operation: Assembler Syntax:
± 51 *52 • D (parallel move) MPY (±)51 ,52,D (parallel move)

± 51 *52 • D (parallel move) MPY (±)52,51,D (parallel move)

Description: Multiply the two signed 24-bit source operands 51 and 52 and store the
resulting product in the specified 56-bit destination accumulator D. The" -" sign
option is used to negate the specified product. The default sign option is "+ ".

Example:

MPY -X1,Y1,A #$543210,YO ; -(XhY1). A, update YO

Before Execution After Execution

X1 $800000 X1 $800000

Y1 I $COOOOO Y1 $COOOOO

A I $00: 000000': 000000 A I $FF: COOOOo: 000000

Explanation of Example: Prior to execution, the 24-bit X1 register contains the value
$800000 (-1.0), the 24-bit Y1 register contains the value $COOOOO, (- 0.5), and the 56-
bit A accumulator contains the value $00:000000:000000 (0.0). The execution of the
MPY - X1 ,Y1,A instruction multiples the 24-bit signed value in the X1 register by the
24-bit signed value in the Y1 register, negates the 48~bit product, and stores the result
in the 56-bit A accumulator (-XhY1 = -0.5=$FF:COOOOO:000000=A).

Condition Codes:

15 14 13 12 11 10 8 7 1 0 idQ •• I T I .. I SI I so I 11 I 10 I ** I L I E I u I N
MR)I II(GGR

L - 5et if data limiting has occurred during parallel move
E - 5et if the signed integer portion of A or B result is in use
U - 5et if A or B result in unnormalized
N - 5et if bit 55 of A or B result is set
Z - 5et if A or B result equals zero
V - Always cleared

A-170 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

MPY Signed Multiply MPY

NOTE: The definition of the E and U bits varies according to the scaling mode being
used. Refer to A.4 CONDITION CODE COMPUTATION for complete details.

Instruction Format:
MPY (±)S1,S2,O
MPY (±)S2,S1,O

Opcode:

23

DATA BUS MOVE FIELD

Instruction Fields:

51*52 QQQ

XO XO 0 0 0
YO YO 0 0 1
X1 XO 0 1 0
Y1 YO 0 1 1
XO Y1 1 0 0
YO XO 1 0 1
X1 YO 1 1 0
Y1X1 1 1 1

Sign k

+ 0

D d

A 0
8 1

8 7 4 3

NOTE: Only the indicated 51*52 combinations are valid. X1 *X1 and Y1 *Y1 are not valid.

Timing: 2 + mv oscillator clock cycles

Memory: 1 + mv program words

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-171

D

•

MPYR Signed Multiply and Round MPYR

Operation: Assembler Syntax:
±ShS2+r. D (parallel move) MPYR (±)S1,S2,D (parallel move)

± S1 *S2 + r • D (parallel move) MPYR (±)S2,S1,D (parallel move)

Description: Multiply the two signed 24-bit source operands S1 and S2, round the result
using convergent rounding, and store it in the specified 56-bit destination accumulator
D. The" -" sign option is used to negate the product prior to rounding. The default
sign option is "+". The contribution of the LS bits of the result is rounded into the
upper portion of the destination accumulator (A 1 or B1) by adding a constant to the
LS bits of the lower portion of the accumulator (AO or BO). The value of the constant
added is determined by the scaling mode bits SO and S1 in the status register. Once
the rounding has been completed, the LS bits of the destination accumulator D (AO
or BO) are loaded with zeros to maintain an unbiased accumulator value which may
be reused by the next instruction. The upper portion of the accumulator (A 1 or B1)
contains the rounded result which may be read out to the data buses. Refer to the
RND instruction for more complete information on the convergent rounding process.

Example:

MPYR - YO,YO,B (R3) - N3 ;square and negate YO, update R3

Before Execution After Execution

YO $654321 YO $654321

B I~~$_oo_:o_oo_o_oo_:o_o_oo_oo __ ~ B 1~ __ $F_F_:A_FE_3_ED_:_OO_oo_o_o __ ~

Explanation of Example: Prior to execution, the 24-bit YO register contains the value

A-172

$654321 (0.791111112)" and the 56-bit B accumulator contains the value
$00:000000:000000 (0.0). The execution of the MPYR - YO,YO,B instruction squares
the 24-bit signed value in the YO register, negates the resulting 48-bit product, rounds
the result into B1, and zeros BO (-YO*YO= -0.625856790961748 approximately=
$FF:AFE3EC:B76B7E, which is rounded to the value $FF:AFE3ED:000000 =
- 0.625856757164002 = B).

DSP56000/DSP56001 USER'S MANUAL MOTOROLA

MPYR Signed Multiply and Round

Condition Codes:

15 14 13 12 11 10 8 7

L - Set if data limiting has occurred during parallel move
E - Set if the signed integer portion of A or B result is in use
U - Set if A or B result is unnormalized
N - Set if bit 55 of A or B result is set
Z - Set if A or B result equals zero
V - Always cleared

MPYR

NOTE: The definition of the E and U bits varies according to the scaling mode being
used. Refer to A.4 CONDITION CODE COMPUTATION for complete details.

Instruction Format:
MPYR (±)S1,S2,D
MPYR (±)S2,S1,D

Opcode:

23 8 7

DATA BUS MOVE FIELD 1 Q

Instruction Fields:

51*52 000

XO XO 000
YO YO 0 0 1
X1 XO 0 1 0
Y1 YO 0 1 1
XO Y1 1 0 0
YO XO 1 0 1
X1 YO 1 1 0
Y1 X1 1 1 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Sign k

+ 0

D d

A 0
B 1

NOTE: Only the indicated S1 *S2 combinations are valid. X1 *X1 and Y1 *Y1 are not valid.

Timing: 2 + mv oscillator clock cycles

Memory: 1 + mv program words

MOTOROLA OSP56000/0SP56001 USER'S MANUAL A-173

•

•

NEG Negate Accumulator NEG

Operation: Assembler Syntax:
0- D • D (parallel move) NEG D (parallel move)

Description: Negate the destination operand D and store the result in the destination
accumulator. This is a 56-bit, twos-complement operation.

Example:

NEG B X1,X:(R3) + Y:(R6)-,A ;0 - B • B, update A,X1,R3,R6

Before Execution After Execution

B ~I ___ $O_O_:1_23_4_56_:7_89_A_B_C __ ~ BI ~ ___ $F_F_:E_D_CB_A_9_:87_6_54_4 __I

Explanation of Example: Prior to execution, the 56-bit B accumulator contains the value
$00: 123456:789ABC. The NEG B instruction takes the twos complement of the value
in the B accumulator and stores the 56-bit result back in the B accumulator.

Condition Codes:

15 14 13 12 11 10 8 7 4 3 2 1 0

IJD .. I T I ** I S1 I SO 1 11 I
10 1**1 L I E I u N Z v I~ GGR MR • I(

L - Set if limiting (parallel move) or oyerflow has occurred in result
E - Set if the signed integer portion of A or B is in use
U - Set if A or B result is unnormalized
N - Set if bit 55 of A or B result is set
Z - Set if A or B result equals zero
V - Set if overflow has occurred in A or B result

NOTE: The definition of the E and U bits varies according to the scaling mode being
used. Refer to A.4 CONDITION CODE COMPUTATION for complete details.

A-174 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

NEG Negate Accumulator NEG

Instruction Format:
NEG 0

Opcode:

23 8 7

DATA BUS MOVE FIELD

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:

D d

A 0
B 1

Timing: 2 + mv oscillator clock cycles

Memory: 1 + mv program worq~

III

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-17S

NOP No Operation NOP

Operation: Assembler Syntax:
PC+ 1 • PC Nap

Description: Increment the program counter (PC). Pending pipeline actions, if any, are
completed. Execution continues with the instruction following the Nap.

Example:

Nap ;increment the program counter

Explanation of Example: The NOP instruction increments the program counter (PC)
and completes any pending pipeline actions.

Condition Codes:

15 14 13 12 11 10 876 i!J ** I T 1 **1 SI 1 So 1 11 10 ,**1 L z I v
MR CCR

The condition codes are not affected by this instruction.

Instruction Format:
NOP

Opcode:

23 16 15 870

I 0 0 o 0 0 0 0 010 0 0 0 0 0 0 010 0 0 0 0 0 0 01

Instruction Fields:

11.1
None

Timing: 2 oscillator clock cycles

Memory: 1 program word

A-176 DSP56000/DSP560.01 USER'S MANUAL MOTOROLA

NORM Normalize Accumulator Iteration NORM

Operation:
If
else if
else NOP

E • U • Z = 1, then' ASL D and Rn - 1 • Rn
E = 1.' then ASR D and Rn + 1 • Rn

where E de!1otes the logical complement of E, and
where. denotes the logical AND operator

Assembler Syntax:
NORM Rn,D

Description: Pe'rform one' normalization iteration on the specified destination operand
D, update the specitred address register Rn based upon the results of that iteration,
and store the result back in the destination accumulator. This is a 56-bit operation. If
the accumulator' extension is not in use, the accumulator is unnormalized, and the
accumulator is not zero, the destination operand is arithmetically shifted one bit'to
the left, and the speCified ~ddress register is decremented by 1. If the accumulator
extension register is in use,·the destination operand is arithmetically shifted on~ bit
to the right, and the specified address register is incremented by 1. If the accumulator
is normalized or 'zero, a' NOP is executed and the specified address register is riot
affected. Since the operation of the NORM instruction depends on the E, U, and Z
condition code register bits, these bits must correctly reflect the current state of the
destination accumulator prior to executing the NORM instruction. Note that the Land
V bits in the condition code register will be cleared unless they have been improperly
set up prior to executing the NORM instruction.

Example:

REP #$2F
NORM R3,A

A

R3

I
I

;maximum number of iterations needed'
; perform 1 normalization iteration

Before Execution After Execution

$00: 000000: 00000 1 A I $00 :400000: 000000

$0000 R3 I $FFD2

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the
value $00:000000:000001, and the 16-bit R3 address register contains the value $0000.
The repetition of the NORM R3,A instruction normalizes the value in the 56-bit accu­
mulator and stores the resulting number of shifts performed during that normalization
process in the R3 address register. A negative value reflects the number of left shifts
performed; a positive value reflects the number of right shifts performed during the
normalization process.

MOTOROLA OSP56000/0SP56001 USI=R'S MANUAL A-177

•

•

NORM Normalize Accumulator Iteration

Condition Codes:

15 14 13 12 11 10 8 7 3 IiJ ** I T I ** I " I so I II
MR

101**lll'luIN z
~ III(eeR

L - Set if overflow has occurred in A or B result
E - Set if the signed integer portion of A or B result is in use
U - Set if A or B result is unnormalized
N - Set if bit 55 of A or B result is set
Z - Set if A or B result equals zero
V - Set if bit 55 is changed as a result of a left shift

NORM

NOTE: The definition of the E and U bits varies according to the scaling mode being
used. Refer to A.4 CONDITION CODE COMPUTATION for complete details.

Instruction Format:
NORM Rn,D

Opcode:

23 16 15 870

I 0 0 o 0 0 0 0 ,j1 1 0 1 1 R R Rio 0 0 1 d 1 0 11

Instruction Fields:

o d Rn R R R

A 0 Rn n n n
B 1

where "nnn" = Rn number

Timing: 2 oscillator clock cycles

Memory: 1 program word

A-178 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

NOT Logical Complement NOT

Operation: Assembler Syntax:
D[47:24] • D[47:24] (parallel move) NOT D (parallel move)
where "_" denotes the logical NOT operator

Description: Take the ones complement of bits 47-24 of the destination operand D and
store the result back in bits 47-24 of the destination acc,umulator. This is a 24-bit
operation. The remaining bits of D are not affected.

Example:
NOT A AB,L:(R2)+ ;save A1,B1, take the ones complement of A1

Before Execution After Execution

A 1~ __ $O_O_:1_23_4_56_:7_89_A_B_C __ ~ A I $OO:EDCBA9:789ABC

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the
value $OO:123456:789ABC. The NOT A instruction takes the ones complement of bits
47-24 of the A accumulator (A 1) and stores the result back in the A 1 register. The
remaining bits of the A accumulator are not affected.

Condition Codes:

15 14 13 12 11 10 8 7 IiJ ** 1 T 1*' 1 S1 1 SO 1 11 1 10 1** 1
MR • 0(CCR

z 1 v Lq I U N

L - Set if data limiting has occurred during parallel move
N - Set if bit 47 of A or B result is set
Z - Set if bits 47-24 of A or B result are zero
V - Always cleared

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-179

III

III

NOT

Instruction Format:
NOT D

Opcode:

23

Instruction Fields:

o d

A 0
B 1

Logical Complement

8 7

DATA BUS MOVE FIELD

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Timing: 2 + mv oscillator clock cycles

Memory: 1 + mv program words

4 3

A-180 OSP56000/0SP56Q01 USER'S MANUAL

NOT

MOTOROLA

OR Logical Inclusive OR OR

Operation: Assembler Syntax:
S + 0[47:24] • D[47:24] (parallel move) OR S,D (parallel move)
where + denotes the logical inclusive OR operator

Description: Logically inclusive OR the source operand S with bits 47-24 of the desti-
nation operand 0 and store the result in bits 47-24 of the destination accumulator.
This instruction is a 24-bit operation. The remaining bits of the destination operand
D are not affected.

Example:

OR Y1,B BA,L:$1234 ;save A1,B1, OR Y1 with B

Before Execution After Execution

Y1 IL.....-___ --.,;..$F_FO_O_OO_----I Y1 IL.....-___ --.,;..$F_FO_O_OO_---'

B 1L.....-_$O_O_:1_23_4_56_:7_89_A_BC_~ B 1~ __ $O_O_:F_F3_4_56_:7_89_A_B_C_~

Explanation of Example: Prior to execution, the 24-bit Y1 register contains the value
$FFOOOO, and the 56-bit B accumulator contains the value $00: 123456:789ABC. The
OR Y1,B instruction logically DRs the 24-bit value in the Y1 register with bits 47-24
of the B accumulator (B1) and stores the result in the B accumulator with bits 55-48
and 23-0 unchanged.

Condition Codes:

15 14 13 12 11 10 8 7

GGR

L - Set if data limiting has occurred during parallel move
N - Set if bit 47 of A or B result is set
Z - Set if bits 47-24 of A or B result are zero
V - Always cleared

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-181

•

OR Logical Inclusive OR OR

Instruction Format:
OR S,D

Opcode:

23

DATA BUS MOVE FIELD

Instruction Fields:

5 J J 0 d

XO o 0 A 0
X1 1 0 B
YO o 1
Y1 1 1

Timing: 2 + mv oscillator clock cycles

Memory: 1 + mv program words

•

A-182 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

ORI OR Immediate with Control Register

Operation:
#xx+D. D
where + denotes the logical inclusive OR operator

Assembler Syntax:
OR(I) #xx,D

ORI

Description: Logically OR the 8-bit immediate operand (#xx) with the contents of the
destination control register D and store the result in the destination control register.
The condition codes are affected only when the condition ·code register is specified
as the destination operand.

Restrictions: The ORI #xx,MR instruction cannot be used immediately before an ENDDO
or RTI instruction and cannot be one of the last three instructions in a DO loop (at
LA- 2, LA-1, or LA).

Example:

OR #$8,MR ;set scaling mode bit S1 to scale up

Before Execution After Execution

MR $03 MR ~I _______ $_OB ______ ~

Explanation of Example: Prior to execution, the 8-bit mode register (MR) contains the
value $03. The OR #$8,MR instruction logically DRs the immediate 8-bit value $8 with
the contents of the mode register and stores the result in the mode register.

Condition Codes:

15 14 13 12 11 10 8 7

u I N

CCR

For CCR operand:

L - Set if bit 6 of the immediate operand is set
E - Set if bit 5 of the immediate operand is set
U - Set if bit 4 of the immediate operand is set
N - Set if bit 3 of the immediate operand is set
Z - Set if bit 2 of the immediate operand is set
V - Set if bit 1 of the immediate operand is set
C - Set if bit 0 of the immediate operand is set

MOTOROLA DSP56000/DSP56001 USER'S MANUAL

1 0

A-183

III

III

ORI OR Immediate with Control Register

For MR and OMR operands:
The condition codes are not affected using these operands.

Instruction Format:
OR(I) #xx,D

Opcode:

23 16 15

I 0 0 o 0 0 0 0 Oli

Instruction Fields:
#xx = a-bit Immediate Short Data = iii iii i i

D EE

MR 00
CCR 0 1
OMR 1 0

Timing: 2 oscillator clock cycles

Memory: 1 program word

B 7 0

d1 1 1 1 1 0 E E\

A-184 DSP56000/DSP560P1 USER'S MANUAL

ORI

MOTOROLA

REP Repeat Next Instruction

Operation:
LC • TEMP; X:ea • LC
Repeat next instruction until LC = 1
TEMP. LC

LC • TEMP; X:aa • LC
Repeat next instruction until LC = 1
TEMP. LC

LC • TEMP; Y:ea • LC
Repeat next instruction until LC = 1
TEMP. LC

LC • TEMP; Y:aa • LC
Repeat next instruction until LC = 1
TEMP. LC

LC • TEMP; S • LC
Repeat next instruction until LC = 1
TEMP. LC

LC • TEMP; #xxx. LC
Repeat next instruction until LC = 1
TEMP. LC

Assembler Syntax:
REP X:ea

REP X:aa

REP Y:ea

REP Y:aa

REP S

REP #xxx

REP

Description: Repeat the single-word instruction immediately following the REP instruc-
tion the specified numberoftimes. The value specifying the number oftimes the given
instruction is to be repeated is loaded into the 16-bit loop counter (LC) register. The
single-word instruction is then executed the specified number of times, decrementing
the loop counter (LC) after each execution until LC = 1. When the REP instruction is in
effect, the repeated instruction is fetched only one time, and it remains in the instruc­
tion register for the duration of the loop count. Thus, the REP instruction is not
interruptible (sequential repeats are also not interruptible). The current loop counter
(LC) value is stored in an internal temporary register. If LC is set equal to zero, the
instruction is repeated 65,536 times. The instruction's effective address specifies the
address of the value which is to be loaded into the loop counter (LC). All address
register indirect addressing modes may be used. The absolute short and the immediate
short addressing modes may also be used. The four MS bits of the 12-bit immediate
value are zeroed to form the 16-bit value that is to be loaded into the loop counter
(LC).

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-185

III

•

REP Repeat Next Instruction REP

If the A or 8 accumulator is specified as a source operand, the accumulator value is
optionally shifted according to the scaling mode bits SO and S1 in the system status
register (SR). If the data out of the shifter indicates that t~e accumulator extension is
in use, the value to be loaded into the loop counter (LC) register will be limited to a
24-bit maximum positive or negative saturation constant to minimize the error due to
truncation. The LS 16 bits of the resulting 24-bit value are then stored in the 16-bit
loop counter (LC) register.

If the system stack register SSH is specified as a source operand, the system stac~
pointer (SP) is postdecremented by 1 after SSH has been read.

Restrictions: The REP instruction can repeat any single-word instruction except the REP
instruction itself and any instruction that changes program flow. The following in­
structions are not allowed to follow an REP instruction:

Immediately after REP
DO
Jcc
JCLR
JMP
JSET
JScc
JSCLR
JSR

JSSET
REP
RTI
RTS
stop
SWI
WAIT

Also, a REP instruction cannot be ~he last instruction in a DO loop (at LA). The assembler
will generate an error if any of the previous instructions are found immediately fol­
lowing an REP instruction.

Example:

REP XO ; repeat (XO) times
MAC X1,Y1,A X:(R1)+,X1 Y:(R4)+,Y1 ;XhY1 +A. A, update X1,Y1

Before Execution After Execution

xo $000100 xo $000100

LC $0000 LC $0000

A-186 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

REP Repeat Next Instruction REP

Explanation of Example: Prior to execution, the 24-bit XO register contains the value
$000100, and the 16-bit loop counter (LC) register contains the value $0000. The ex­
ecution of the REP XO instruction takes the 24-bit value in the XO register, truncates
the MS 8 bits, and stores the 16 LS bits in the 16-bit loop counter (LC) register. Thus,
the single-word MAC instruction immediately following the REP instruction is repeated
$100 times.

Condition Codes:

15 14 13 12 11 10 B 7 3 2 1 0 !:flU I T 1**1 "I so 111 110 1**1 U N Z
MR • ~ CCR

L - Set if data limiting occurred using A or B as source operands

Instruction Format:
REP X:ea
REP Y:ea

Opcode:

23

10 0 0 0 0

Instruction Fields:

16 15 B 7

1 1 010 1 M M M R R Rio

ea = 6-bit Effective Address = MMMRRR

Effective
Addressing Mode MMMRRR Memory Space s

(Rn)-Nn OOOrrr X Memory 0
(Rn)+Nn 001 r r r Y Memory
(Rn)- 010rrr
(Rn)+ 011rrr
(Rn) 100 r r r
(Rn+Nn) 101rrr
-(Rn) 111rrr

where "rrr" refers to an address register RO-R7

Timing: 4 + mv oscillator clock cycles

Memory: 1 program word

s 1 0 0 0 0 01

MOTOROLA OSP56000/0SP56001 USER'S MANUAL A-187

III

REP Repeat Next Instruction

Instruction Format:
REP X:aa
REP Y:aa

Opcode:

23

10 0 0 0 0

Instruction Fields:

16 15

1 1 010 0 a a a a a

aa = 6-bit Absolute Short Address = aaaaaa

B 7

s 1 0 0 0 0 01

Absolute Short Address aaaaaa Memory Space s

000000

111111

Timing: 4+ mv oscillator clock cycles

Memory: 1 program word

Instruction Format:
REP #xxx

Opcode:

23 16 15

10 0 0 0 0

Instruction Fields:

X Memory
Y Memory

o

B 7 0

d1 0 1 0 h h h hi

#xxx = 12-bit Immediate Short Data = hhhh iii iii i i

Immediate Short Data hhhh iii iii i i

000000000000

111111111111

Timing: 4 + mv oscillator clock cycles

Memory: 1 program word

A-188 DSP56000/DSP56001 USER'S MANUAL

REP

MOTOROLA

REP Repeat Next Instruction REP

Instruction Format:
REP S

Opcode:

23 16 15 8 7

10 0 0 0 0 110111 d d d d·d dlo o 1 0 0 0 0 01

Instruction Fields:

5
5 dddddd S/L 5 dddddd

XO 000100 no RO-R7 010nnn
X1 000101 no NO-N7 011nnn
YO 000110 no MO-M7 1 0 0 n n n
Y1 000111 no SR 1 1 1 0 0 1
AO 001000 no OMR 111010
80 001001 no SP 111011
A2 001010 no SSH 1 1 1 1 0 0
82 001011 no SSL 1 1 1 1 0 1
A1 001100 no LA 111110
81 001101 no LC 1 1 1 1 1 1
A 001110 yes
8 001111 yes

where "nnn" = Rn number (RO-R7)
Nn number (NO-N7)
Mn number (MO-M71

Timing: 4 oscillator clock cycles

Memory: 1 program word

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-189

RESET Reset On-Chip

Operation:
Reset the interrupt priority register

and all on-chip peripherals

Assembler Syntax:
RESET

RESET

Description: Reset the interrupt priority register and all on-chip peripherals. This is a
software reset which is NOT equivalent to a hardware reset since only on~chip pe­
ripherals and the interrupt structure are affected. The processor state is not affected,
and execution continues with the next instruction. All interrupt sources are disabled
except for the trace, stack error, NMI, illegal instruction, and hardware reset interrupts.

Restrictions: A RESET instruction cannot be the last instruction in a DO loop (at LA).

Example:

RESET ;reset all on-chip peripherals and IPR

Explanation of Example: The execution of the RESET instruction resets all on-chip
peripherals and the interrupt priority register (IPR).

Condition Codes:

15 14 13 12 11 10 8 7 3

\dU«ITI«ls1Isolnl"I«lll ElulN
MR ~ 01(CCR

The condition codes are not affected by this instruction.

Instruction Format:
RESET

Opcode:

23 16 15 8 7

I 0 0 o 0 0 0 0 010 0 0 0 0 0 0 011 o 0 0 0 1 0 01

Instruction Fields:
None

Timing: 4 oscillator clock cycles

Memory: 1 program word

A-190 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

RND Round Accumulator RND
Operation: Assembler Syntax:

D + r • D (parallel move) RND D (parallel move)

Description: Round the 56-bit value in the specified destination operand D and store
the result in the MSP portion of the destination accumulator (A 1 or 81). This instruction
uses a convergent rounding technique. The contribution of the LS bits of the result
(AO and 80) is rounded into the upper portion of the result (A 1 or 81) by adding a
rounding constant to the LS bits of the result. The MSP portion of the destination
accumulator contains the rounded result which may be read out to the data buses.

The value of the rounding constant added is determined by the scaling mode bits SO
and S1 in the system status register (SR). A "1" is added in the rounding position as
shown below:

Rounding Rounding Constant
S1 SO Scaling Mode Position 55-25 24 23 22 21-0

0 0 No Scaling 23 0 0 0 1 0 0 ... 0
0 1 Scale Down 24 0 0 1 0 0 0 ... 0

0 Scale Up 22 0 0 0 0 1 0 ... 0

Normal or "standard" rounding consists of adding a rounding constant to a given
number of LS bits of a value to produce a rounded result. The rounding constant
depends on the scaling mode being used as previously shown. Unfortunately, when
uSing a twos-complement data representation, this process introduces a positive bias
in the statistical distribution of the roundoff error.

Convergent rounding differs from "standard" rounding in that convergent rounding
attempts to remove the aforementioned positive bias by equally distributing the round­
off error. The convergent rounding technique initially performs "standard" rounding
as previously described. Again, the rounding constant depends on the scaling mode
being used. Once "standard" rounding has been done, the convergent rounding method
tests the result to determine if all bits including and to the right of the rounding
position are zero. If, and only if, this special condition is true, the convergent rounding
method will clear the bit immediately to the left of the rounding position.'When this
special condition is true, numbers which have a "1" in the bit immediately to the left
of the rounding position are rounded up; numbers with a "0" in the bit immediately
to the left of the rounding position are rounded down. Thus, these numbers are
rounded up half the time and rounded down the rest of the time. Therefore, the
roundoff error averages out to zero. The LS bits of the convergently rounded result
are then cleared so that the rounded result may be immediately used by the next
instruction.

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-191

RND Round Accumulator RND
Example:

RND A #$123456,X1 B,Y1 ;round A accumulator into A1, zero AO

Before Execution After Execution

Case I: A I $00: 123456:789ABC A I $00:123456:000000

Case II: A I $00: 123456: 800000 A I $00:123456:000000

Case III: A I $00: 123455: 800000 A I $00:123456:000000

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the
value $00:123456:789ABC for Case I, the value $00:123456:800000 for Case II, and the
value $00:123455:800000 for Case III. The execution of the RND A instruction rounds
the value in the A accumulator into the MSP portion of the A accumulator (A 1), using
convergent rounding, and then zeros the LSP portion of the A accumulator (AO). Note
that Case II is the special case that distinguishes convergent rounding from standard
or biased rounding.

Condition Codes:

15 14 13 12 11 10 8 7 1 0

eeR

L - Set if limiting (parallel move) or overflow has occurred in result
E - Set if the signed integer portion of A or B result is in use
U - Set if A or B result is un normalized
N - Set if bit 55 of A or B resu It is set
Z - Set if A or B result equals zero
V - Set if overflow hasoc~urred in A or B result

NOTE: The definition of the E and U bits varies according to the scaling mode being
used. Refer to A.4 CONDITION CODE COMPUTATION for complete details.

A-192 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

RND
Instruction Format:

RND D

Opcode:

23

Instruction Fields:

D D

A 0
B 1

Round Accumulator

8 7

DATA BUS MOVE FiElD a
OPTIONAL EFFECTIVE ADDRESS EXTENSION

Timing: 2 + mv oscillator clock cycles

Memory: 1 + mv program words

MOTOROLA OSP56000/0SP56001 USER'S MANUAL

RND

A-193

ROL

Operation:

Assembler
Syntax:

Rotate Left ROL

47 24

rC~L....~----h (parallel movel

ROL D (parallel move)

Description: Rotate bits 47-24 of the destination operand D one bit to the left and store
the result in the destination accumulator. Prior to instruction execution, bit 47 of D is
shifted into the carry bit C, and, prior to instruction execution, the value in the carry
bit C is shifted into bit 24 of the destination accumulator D. This instruction is a 24-
bit operation. The remaining bits of the destination operand D are not affected.

Example:

ROL A #$314,N2 ; rotate A1 left one bit, update N2

Before Execution After Execution

A 1L.... __ ~$_00_:0_0_00_00_:0_0_00_00 __ ~ AI L.... __ ~$_00_:0_0_00_0_1:_00_00_0_0 __ ~

SR $0301 SR $0300

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the
value $00:000000:000000. The execution of the ROL A instruction shifts the 24-bit
value in the A 1 register one bit to the left, shifting bit 47 into the carry bit C, rotating
the carry bit C into bit 24, and storing the result back in the A 1 register.

Condition Codes:

15 14 13 12 11 10 8 7 1 0 po .. I T I" I S1 I so I 11 I 10 1** I liE I u I N I z I v I~
MR •• 11(GGR

L - Set if data limiting has occurred during parallel move
N - Set if bit 47 of A or B result is set
Z - Set if bits 47-24 of A or B result are zero
V - Always cleared
C - Set if bit 47 of A or B was set prior to instruction execution

A-194 OSP56000/0SP56001 USER'S MANUAL MOTOROLA

ROL

Instruction Format:
ROL D

Opcode:

23

Instruction Fields:

D d

A 0
B 1

DATA BUS MOVE FIELD

Timing: 2 + mv oscillator clock cycles

Memory: 1 + mv program words

Rotate Left

4 3

MOTOROLA DSP56000/DSP56001 USER'S MANUAL

ROL

III

A-195

ROR

Operation:

Assembler
Syntax:

Rotate Right ROR

47 24 r c ~ I ___ -----II+] (parallel move)

ROR D (parallel move)

Description: Rotate bits 47-24 of the destination operand D one bit to the right and
store the result in the destination accumulator. Prio'(to instruction execution, bit 24
of D is shifted into the carry bit C, and, prior to instruction execution, the value in the
carry bit C is shifted into bit 47 of the destination accumulator D. This instruction is a
24-bit operation. The remaining bits of the destination operand D are not affected.

Example:

ROR B #$1234,R2 ;rotate B1 right one bit, update R2

Before Execution After Execution

B ~1 ___ $_00_:0_0_00_01_:2_2_22_2_2 __ ~ B ~1 ___ $_00_:0_0_00_00_:_22_22_2~2 __ ~

SR $0300 SR $0305

Explanation of Example: Prior to execution, the 56-bit B accumulator contains the value
$00:000001 :222222. The execution of the HOR B instruction shifts the 24-bit value in
the B1 register one bit to the right, shifting bit 24 into the carry bit C, rotating the carry
bit C into bit 47, and storing the result back in the B1 register.

Condition Codes:

15 14 13 12 11 10 8 7 IiJ ** I T I ** I SI I SO I 11 I 10 I ** I L I E I U N
MR CCR

L - Set if data limiting has occurred during parallel move
N - Set if bit 47 of A or B result is set
Z - Set if bits 47-24 of A or B result are zero
V - Always cleared
C - Set if bit 47 of A or B was set prior to instruction execution

A-196 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

ROR

Instruction Format:
ROR D

Opcode:

23

Instruction Fields:

D d

A 0
B 1

Rotate Right

8 7

DATA BUS MOVE FIELD 0 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Timing: 2 + mv oscillator clock cycles

Memory: 1 + mv program words

MOTOROLA OSP56000/0SP56001 USER'S MANUAL

ROR

III

A-197

III

RTI Return from Interrupt RTI

Operation: Assembler Syntax:
SSH. PC; SSL. SR; SP-1 • SP RTI

Description: Pull the program counter (PC) and the status register (SR) from the system
stack. The previous program counter and status register are lost.

Restrictions: Due to pipelining in the program controller and the fact that the RTI in-
struction accesses certain program controller registers, the RTI instruction must not
be immediately preceded by any of the following instructions:

Immediately before RTI MOVEC to SR, SSH, SSL, or SP
MOVEM to SR, SSH, SSL, or SP
MOVEP to SR, SSH, SSL, or SP
MOVEC from SSH
MOVEM from SSH
MOVEP from SSH
ANDI MR or ANDI CCR
ORI MR or ORI CCR

An RTI instruction cannot be the last instruction in a DO loop (at LA).

An RTI instruction cannot be repeated using the REP instruction.

Example:

RTI ;pull PC and SR from system stack

Explanation of Example: The RTI instruction pulls the 16-bit program counter (PC) and
the 16-bit status register (SR) from the system stack and updates the system stack
pointer (SP),.

A-198 OSP56000/0SP56001 USER'S MANUAL MOTOROLA

RTI Return from Interrupt

Condition Codes:

15 14 13 12 11 10 8 7 0 i1J ** I T I ** I S1 I SO I 11 I 10 I ** I liE I u I N I z I v ~
MR .-1(eeR

L - Set according to the value pulled from the stack
E - Set according to the value pulled from the stack
U - Set according to the value pulled from the stack
N - Set according to the value pulied from the stack
Z - Set according to the value pulled from the stack
V - Set according to the value pulled from the stack
C - Set according to the value pulled from the stack

Instruction Format:
RTI

Opcode:

23 16 15 870

I 0 0 o 0 0 0 0 010 0 0 0 0 0 0 010 0 0 0 0 1 0 01

Instruction Fields:
None

Timi.ng: 4 + rx oscillator clock cycles

Memory: 1 program word

MOTOROLA DSP56000/DSP56001 USER'S MANUAL

RTI

•

A-199

•

RTS Return from Subroutine RTS

Operation: Assembler Syntax:
SSH • PC; SP -1 • SP RTS

Description: Pull the program counter (PC) from the system stack. The previous program
counter is lost. The status register (SR) is not affected.

Restrictions: Due to pipelining in the program controller and the fact that the RTS in-
struction accesses certain controller registers, the RTS instruction must not be im­
mediately preceded by any of the following instructions:

Immediately before RTS MOVEC to SSH, SSL, or SP
MOVEM to SSH, SSL, or SP
MOVEP to SSH, SSL, or SP
MOVEC from SSH
MOVEM from SSH
MOVEP from SSH

An RTS instruction cannot be the last instruction in a DO loop (at LA).

An RTS instruction cannot be repeated 4sin9 the REP instruction.

Example:

RTS ;pull PC from system stack

Explanation of Example: The RTS instruction pulls the 16-bit program counter (PC)
from the system stack and updates the system stack pointer (SP).

Condition Codes:

15 14 13 12 11 10 8 7 IiJ ** I T I ** I S1 I SO I 11 I 10 I ** I l I E I U N
MR ~ 0(eeR

z I v I~

The condition codes are not affected by this instruction.

A-200 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

RTS Return from Subroutine RTS

Instruction Format:
RTS

Opcode:

23 16 15 8 7

I 0 0 o 0 0 0 0 010 0 0 0 0 0 0 010 0 0 0 1 1 0 0 I

Instruction Fields:
None

Timing: 4+ rx oscillator clock cycles

Memory: 1 program word

III

MOTOROLA OSP56000/0SP56001 USER'S MANUAL A-201

III

SBC Subtract Long with Carry SBC

Operation: Assembler Syntax:
D-s-e. D (parallel move) SBe S,D (parallel move)

Description: Subtract the source operand S and the carry bit e of the condition code
register from the destination operand D and store the result in the destination accu­
mulator. Long words (48 bits) may be subtracted from the (56-bit) destination accu­
mulator.

NOTE: The carry bit is set correctly for multiple-precision arithmetic using long-word
operands if the extension register of the destination accumulator (A2 or B2) is the sign
extension of bit 47 of the destination accu"mulator (A or B).

Example:

MOVE L:<$O,X
MOVE L:<$1,A
MOVE L:<$2,Y
SUB X,A L:<$3,B
SBe YB A10,L:<$4
MOVE B10,L:<$5

;get a 48-bit LS long-word operand in X
;get other LS long word in A (sign ext.)
;get a 48-bit MS long-word operand in Y
;sub. LS words; get other MS word in B
;sub. MS words with carry; save LS dif.
;save MS difference

Before Execution After Execution

A $00: 000000: 000000 A $00: 800000: 000000

x $800000: 000000 x $800000: 000000

B $00: 000000: 000003 B $00: 000000: 00000 1

y $000000: 00000 1 y $000000: 00000 1

Explanation of Example: This example illustrates long-word double-precision (96-bit)
subtraction using the SBe instruction. Prior to execution of the SUB and SBe instruc­
tions, the 96-bit value $000000:000001 :800000:000000 is loaded into the Y and X
registers (X:Y), respectively. The other doubie-precision 96-bit value
$000000:000003:000000:000000 is loaded into the B and A accumulators (B:A), re­
spectively. Since the 48-bit value loaded into the A accumulator is automatically sign
extended to 56 bits and the other 48-bit long-word operand is internally sign extended
to 56 bits during instruction execution, the carry bit will be set correctly after the

A-202 DSP56000/DSP5600.1 USER'S MANUAL MOTOROLA

SBe Subtract Long with Carry SBe
execution ofthe SUB X,A instruction. The SBe V,B instruction then produces the correct
MS 56-bit result. The actual 96-bit result is stored in memory using the A10 and B10
operands (instead of A and B) because shifting and limiting is not desired.

Condition Codes:

15 14 13 12 11 10 8 7 ilJ .. I T I ** I SI I SO I 11 I 10 I ** I l I E I " I N
MR • ... CCR

L - Set if limiting (parallel move) or overflow has occurred in result
E - Set if signed integer portion of A or B result is in use
U - Set if A or B result is unnormalized
N - Set if bit 55 of A or B result is set
Z - Set if A or B result equals zero
V - Set if overflow has occurred in A or B result.
e - Set if a carry (or borrow) occurs from bit 55 of A or B result

NOTE: The definition of the E and U bits varies according to the scaling mode being
used. Refer to A.4 CONDITION CODE COMPUTATION for complete details.

Instruction Format:
SBe S,D

Opcode:

23

Instruction Fields:
S,D Jd

X,A 00
X,B 01
V,A 10
V,B 11

DATA BUS MOVE FIELD

Timing: 2 + mv oscillator clock cycles

Memory: 1 + mv program words

8 7 4 3

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-203

•

•

STOP Stop Instruction Processing

Operation:
Enter the STOP processing state and

stop the clock oscillator

Assembler Syntax:
STOP

STOP

Description: Enter the STOP processing state. All activity in the processor is suspended
until the RESET or IROA pin is asserted. The clock oscillator is gated off internally.
The STOP processing state is a low-power standby state.

During the STOP state, port A is in an idle state with the control signals held inactive
(i.e., RD = WR = VCC etc.), the data pins (DO-D23) are high impedance, and the address
pins (A1-A15) are unchanged from the previous instruction. If the bus grant was
asserted when the STOP instruction was executed, port A will remain three-stated
until the DSP exits the STOP state.

If the exit from the STOP state was caused by a low level on the RESET pin, then the
processor will enter the reset processing state. The time to recover from the STOP
state using RESET will depend on the oscillator used. Consult the DSP56001 Advance
Information Data Sheet (ADI1290) for details.

If the exit from the STOP state was caused by a low level on the IROA pin, then the
processor will service the highest priority pending interrupt and will not service the
IROA interrupt unless it is highest priority. The interrupt will be serviced after an
internal delay counter counts 65,536 clock cycles (or a three clock cycle delay if the
stop delay bit in the OMR is set to one) plus 17T (see the DSP56001 Advance Infor­
mation Data Sheet (ADI1290) for details). During this clock stabilization count delay,
all peripherals and external interrupts are cleared and re-enabled/arbitrated at the start
of the 17T period following the count interval. The processor will resume program
execution at the instruction following the STOP instruction that caused the entry into
the STOP state after the interrupt has been serviced or, if no interrupt was pending,
immediately after the delay count plus 17T. If the IROA pin is asserted when the STOP
instruction is executed, the clock will not be gated off, and the internal delay counter
will be started .

Restrictions: A STOP instruction cannot be used in a fast int~rrupt routine.

A STOP instruction cannot be the last instruction in a DO loop (i.e., at LA).

A STOP instruction cannot be repeated using the REP instruction.

A-204 OSP56000/0SP56001 USER'S MANUAL MOTOROLA

STOP Stop Instruction Processing STOP

Example:

STOP ;enter low-power standby mode

Explanation of Example: The STOP instruction suspends all processor activity until
the processor is reset or interrupted as previously described. The STOP instruction
puts the processor in a low-power standby state.

Condition Codes:

15 14 13 12 11 10 8 7 IiJ ** I T I ** I 51 I $0 I 11 I 10 I ** I L I E I u I N
MR • II(CCR

The condition codes are not affected by this instruction.

Instruction Format:
STOP

Opcode:

23 16 15 8 7

I 0 0 o 0 0 0 0 010 0 0 0 0 0 0 011 o 0 0 0 1

Instruction Fields:
None

Timing: The STOP instruction disables the internal clock oscillator and internal distri­
bution of the external clock.

Memory: 1 program word

MOTOROLA OSP56000/0SP56001 USER'S MANUAL A-205

•

•

SUB Subtract SUB

Operation: Assembler Syntax:
D - S • D (parallel move) SUB S,D (parallei move)

Description: Subtract the source operand S from the destination operand D and store
the result in the destination operand D. Words (24 bits), long words (48 bits), and
accumulators (56 bits) may be subtracted from the destination accumulator.

NOTE: The carry bit is set correctly using word or long-word source operands if the
extension register of the destination accumulator (A2 or B2) is the sign extension of
bit 47 of the destination accumulator (A or B). The carry bit is always set correctly
using accumulator source operands.

Example:

SUB X1,A X:(R2) + N2,RO ;24-bit subtract, load RO, update R2

Before Execution After Execution

X1 $000003 X1 $000003

A ~I ___ $_00_:0_0_OO_58_:2_4_24_24 __ ~ A ~1 ___ $_OO_:O_O_OO_55_:_24_24_2_4 __ ~

Explanation of Example: Prior to execution, the 24-bit X1 register contains the value
$000003, and the 56-bit A accumulator contains the value $00:000058:242424. The
SUB instruction automatically appends the 24-bit value in the X1 register with 24 LS
zeros, sign extends the resulting 48-bit long word to 56 bits, and subtracts the result
from the 56-bit A accumulator. Thus, 24-bit operands are subtracted from the MSP
portion of A or B (A 1 or B1) because all arithmetic instructions assume a fractional,
twos complement data representation. Note that 24-bit operands can be subtracted
from the LSP portion of A or B (AO or BO) by loading the 24-bit ope'rand into XO or
VO, forming a 48-bit word by loading X1 or V1 with the sign extension of XO or VO,
and executing a SUB X,A or SUB V,A instruction .

A-206 OSP56000/0SP56001 USER'S MANUAL MOTOROLA

SUB Subtract

Condition Codes:

15 14 13 12 11 10 8 7 0

III ** I T I ** I S1 I so I 11 I 10 I ** I liE I u I N I z I v 'lI
MR •• ,. CCR

L - Set if limiting (parallel move) or overflow has occurred in result
E - Set if the signed integer portion of A or B result is in use
U - Set if A or B result is unnormalized
N - Set if bit 55 of A or B result is set
Z - Set if A or B result equals zero
V - Set if overflow has occurred in A or B result
C - Set if a carry (or borrow) occurs from bit 55 of A or B result

SUB

NOTE: The definition of the E and U bits varies according to the scaling mode being
used. Refer to A.4 CONDITION CODE COMPUTATION for complete details.

Instruction Format:
SUB S,D

Opcode:

23

Instruction Fields:

S,D JJJd

8,A 001 0
A,8 o 0 1 1
X,A o 1 0 0
X,8 o 1 0 1
Y,A o 1 1 0
Y,8 o 1 1 1

8 7

DATA BUS MOVE FIELD 0 J

OPTIONAL EFFECTIVE ADDRESS EXTENSION

S,D JJJd

XO,A 1 000
XO,8 1 0 0 1
YO,A 1 0 1 0
YO,8 1 0 1 1
X1,A 1 1 0 0
X1,8 1 1 0 1

S,D J J J d

Y1,A 1 1 1 0
Y1,81 1 1 1

Timing: 2 + mv oscillator clock cycles

Memory: 1 + mv program words

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-207

III

III

SUBL Shift Left and Subtract Accumulators SUBL

Operation: Assembler Syntax:
2*D - S • D (parallel move) SU8L S,D (parallel move)

Description: Subtract the source operand S from two times the destination operand D
and store the result in the destination accumulator. The destination operand D is
arithmetically shifted one bit to the left, and a zero is shifted into the LS bit of D prior
to the subtraction operation. The carry bit is set correctly if the source operand does
not overflow as a result of the left shift operation. The overflow bit may be set as a
result of either the shifting or subtraction operation (or both). This instruction is useful
for efficient divide and decimation in time (DIT) FFT algorithms.

Example:

SU8L A,8 Y:(R5 + N5),R7 ;2*8 - A • 8, load R7, no R5 update

Before Execution After Execution

A ~1 ___ $_00_:0_0_40_00_:0_0_00_0_0 __ ~ A ~1 ___ $_00_:0_0_40_00_:0_0_00_0_0 __ ~

B ~I ___ $_00_:0_0_50_00_:0_0_00_0_0 __ ~ B ~1 __ ~$_00_:0_0_60_00_:0_0_00_0_0 __ ~

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the
value $00:004000:000000, and the 56-bit 8 accumulator contains the value
$00:005000:000000. The SU8L A,8 instruction subtracts the value in the A accumulator
from two times the value in the 8 accumulator and stores the 56-bit result in the 8
accumulator.

Condition Codes:

15 14 13 12 11 10 8 7 1 0 IiJ ** I T I ** I S1 I SO I !1 I 10 I ** I l I E I u I N z vCQ
MR • ... CCR

L - Set if limiting (parallel move) or overflow has occurred in result
E - Set if the signed integer portion of A or 8 result is in use
U - Set if A or 8 result is unnormalized
N - Set if bit 55 of A or 8 result is set
Z - Set if A or 8 result equals zero
V - Set if overflow has occurred in A or B result or if the MS bit of the destination

operand is changed as a result of the instruction's left shift
C - Set if a carry (or borrow) occurs from bit 55 of A or 8 result

DSP56000/DSP56001 USER'S MANUAL MOTOROLA

SUBL Shift Left and Subtract Accumulators SUBL

NOTE: The definition of the E and U bits varies according to the scaling mode being
used. Refer to A.4 CONDITION CODE COMPUTATION for complete details.

Instruction Format:
SUBL S,D

Opcode:

23

Instruction Fields:
S,D d

B,A
A,B

o

DATA BUS MOVE FIELD

Timing: 2 + mv oscillator clock cycles

Memory: 1 + mv program words

8 7 4 3

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-209

III

•

SUBR Shift Right and Subtract Accumulators SUBR

Operation: Assembler Syntax:
D/2 - S • D (parallel move) SUBR S,D (parallel move)

Description: Subtract the source operand S from one-half the destination operand D
and store the result in the destination accumulator. The destination operand D is
arithmetically shifted one bit t6 the right while the MS bit of D is held constant prior
to the subtraction operation. In contrast to the SUBL instruction, the carry bit is always
set correctly, and the overflow bit can only be set by the subtraction operation, and
not by an overflow due to the initial shifting operation. This instruction is useful for
efficient divide and decimation in time (DIT) FFT algorithms.

Example:

SUBR B,A N5,Y: - (R5) ;A/2 - B • A, update R5, save N5

Before Execution After Execution

A 1~ __ $_80_:0_00_0_00_:2_46_8_AC __ ~

B 1~ __ $_OO_:O_O_OO_OO_:1_2_34_56 __ ~

A ~I ___ $_CO_:O_O_OO_OO_:_OO_OO_O_O __ ~

BI ~ ___ $_OO_:O_O_OO_OO_:_12_34_5_6 __ ~

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the
value $80:000000:2468AC, and the 56-bit B accumulator contains the value
$00:000000: 123456. The SUBR B,A instruction subtracts the value in the B accumulator
from one-half the value in the A accumulator and stores the 56-bit result in the A
accumulator.

Condition Codes:

15 14 1312 11 10 8 7

L - Set if limiting (parallel move) or overflow has occurred in result
E - Set if the signed integer portion of A or B result is in use
U - Set if A or B result is unnormalized
N - Set if bit 55 of A or B result is set
Z - Set if A or B result equals zero
V - Set if overflow has occurred in A or B result
C - Set if a carry (or borrow) occurs from bit 55 of A or B result

A-210 DSP56000/[)SP56001 USER'S MANUAL MOTOROLA

SUBR Shift Right and Subtract Accumulators SUBR

NOTE: The definition of the E and U bits varies according to the scaling mode being
used. Refer to A.4 CONDITION CODE COMPUTATION for complete details.

Instruction Format:
SUBR S,D

Opcode:

23

Instruction Fields:
S,D d

B,A
A,B

o
1

B 7

DATA BUS MOVE FIELD 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Timing: 2 + mv oscillator clock cycles

Memory:. 1 + mv program words

4 3

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-211

III

•

SWI Software . Interrupt SWI

Operation: Assembler Syntax:
Begin SWI exception processing SWI

Description: Suspend normal instruction execution and begin SWI exception process-
ing. The interrupt priority level (11,10) is set to 3 in the status register (SR) if a long
interrupt service routine is used.

Restrictions: An SWI instruction cannot be used in a fast interrupt routine.

An SWI instruction cannot be repeated using the REP instruction.

Example:

SWI ;begin SWI exception processing

Explanation of Example: The SWI instruction suspends normal instruction execution
and initiates SWI exception processing.

Condition Codes:

15 14 13 12 11 10 8 7

I{J .. I T I" I sd so I 11 I ro 1** I
CCR

u I N

The condition codes are not affected by this instruction.

Instruction Format:
SWI

Opcode:

23 16 15 8 7

I 0 0 o 0 0 0 0 010 0 0 0 0 0 0 010 0 0 0 0 1 1 0 I

Instruction Fields:
None

Timing: 8 oscillator clock cycles

Memory: 1 program word

A-212 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

Tee Transfer Conditionally Tee
Operation: Assembler Syntax:

If cc, then S1 • 01 Tcc S1,01

If cc, then S1 • 01 and S2 • 02 Tcc S1,01 S2,02

Description: Transfer data from the specified source register S1 to the specified des-
tination accumulator 01 if the specified condition is true. If a second source register
S2 and a second destination register 02 are also specified, transfer data from address
register S2 to address register 02 if the specified condition is true. If the specified
condition is false, a Nap is executed. The term "cc" may specify the following con­
ditions:

cc (HS)
CS (La)
EC
EQ
ES
GE
GT
LC
LE
LS
LT
MI
NE
NR
PL
NN

where

"cc" Mnemonic
- carry clear (higher or same)
- carry set (lower)
- extension clear
- equal
- extension set
- greater than or equal
- greater than
- limit clear
- less than or equal
-limit set
-less than
- minus
- not equal
- normalized
-plus
- not normalized

TI denotes the logical complement of U
+ denotes the logical OR operator
• denotes the logical ANO operator
EB denotes the logical Exclusive OR operator

Condition
C=O
C=1
E=O
Z=1
E=1

N EB V=O
Z+ (N EB V)=O

L=O
Z+(N EB V)= 1

L=1
NEB V= 1

N=1
Z=O

Z+(U. E)= 1

N=O
Z+(U. E)=O

When used after the CMP or CMP.M instructions, the Tcc instruction can perform many
useful functions such as a "maximum value," "minimum value," "maximum absolute
value," or "minimum absolute value" function. The desired value is stored in the
destination accumulator 01. If address register S2 is used as an address pointer into

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-213

1.11

•

Tee Transfer Conditionally Tee

an array of data, the address of the desired value is stored in the address register D2.
The Tcc instruction may be used after any instruction and allows efficient searching
and sorting algorithms.

The Tcc instruction uses the internal data ALU paths and internal address ALU paths.
The Tcc instruction does not affect the condition code bits.

NOTE: This instruction is considered to be a move-type instruction. Due to pipelining,
if an address register (RO-R7) is changed using a move-type instruction, the new
contents of the destination address register will not be available for use during the
following instruction (i.e., there is a single instruction cycle pipeline delay).

Example:

CMP XO,A
TGT XO,A RO,R1

;compare XO and A (sort for minimum)
;transfer XO • A and RO • R1 if XO<A

Explanation of Example: In this example, the contents of the 24-bit XO register are
transferred to the 56-bit A accumulator, and the contents of the 16-bit RO address
register are transferred to the 16-bit R1 address register if the specified condition is
true. If the specified condition is not true, a NOP is executed.

Condition Codes:

15 14 13 12 11 10 8 7 6 432 iii ** 1 T 1 ** J. S1 1 so 1 11 1$1 l U N Z

eeR

The condition codes are not affected by this instruction.

Instruction Format:
Tcc 51,D1

Opcode:

23 16 15 8 7

I 0 0 o 0 0 0 1 ole e e e 0 0 0 010 J J J 0 0 0 01

A-214 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

Tee Transfer Conditionally Tee
Instruction Fields:

cc = 4-bit condition code = ecce
51,01 JJJO Mnemonic C C C C Mnemonic C C C C

S,A 0000 CC (HS) 0000 CS (LO) 1 000
A,S 000 1 GE 000 1 LT 1 0 0 1
XO,A 1 000 NE o 0 1 0 EO 101 0
XO,S 1 0 0 1 PL o 0 1 1 MI 1 0 1 1
Xl,A 1 1 0 0 NN o 1 0 0 NR 1 1 0 0
Xl,S 1 1 0 1 EC o 1 0 1 ES 1 1 0 1
YO,A 101 0 LC o 1 1 0 LS 1 1 1 0
YO,S 1 0 1 1 GT o 1 1 1 LE 1 1 1 1
Yl,A, 1 1 1 0
Yl,S 1 1 1 1

Timing: 2 oscillator clock cycles

Memory: 1 program word

Instruction Format:
Tcc 51,D1 52,D2

Opcode:

23 16 15 8 7 0

10 0 0 0 0 o 1 de c ceo t t do J J JOT T TI

Instruction Fields:
cc = 4-bit condition code = ecce
51,01 JJJO 52 t t t Mnemonic C C C C Mnemonic C C C C

S,A 0000 Rn n n n CC (HS) o 0 0 0 CS (LO) 100 0
A,S 000 1 GE 000 1 LT 1 0 0 1
XO,A 1 000 NE 001 0 EO 101 0
XO,S 1 0 0 1 PL o 0 1 1 MI 1 0 1 1

&I X1,A 1 1 0 0 02 TTT NN o 1 0 0 NR 1 1 00
X1,S 1 1 0 1 Rn n n n EC o 1 0 1 ES 1 1 0 1
YO,A 1 0 1 0 LC o 1 1 0 LS 1 1 1 0
YO,S 1 0 1 1 GT o 1 1 1 LE 1 1 1 1
Yl,A 1 1 1 0
Yl,S 1 1 1 1

where "nnn" = Rn number (RO-R7)

Timing: 2 oscillator clock cycles

Memory: 1 program word

MOTOROLA OSP56000/0SP56001 USER'S MANUAL A-215

iii

TFR Transfer Data ALU Register TFR

Operation: Assembler Syntax:
S • D (parallel move) TFR S,D (parallel move)

Description: Transfer data from the specified source data ALU register S to the specified
destination data ALU accumulator D. TFR uses the internal data ALU data paths; thus,
data does not pass through the data shifter/limiters. This allows the full 56-bit contents
of one of the accumulators to be transferred into the other accumulator without data
shifting and/or limiting. Moreover, since TFR uses the internal data ALU data paths,
parallel moves are possible. The TFR instruction only affects the L condition code bit,
which can pe set by data limiting associated with the instruction's parallel move
operations.

Example:

TFR A,B A,X1 Y:(R4+ N4),YO ;move A to Band X1, update YO

Before Execution After Execution

A I $01 :234567:89ABCD A I $01 :234567:89ABCD

B I $FF: FFFFFF: FFFFFF B I $01 :234567:89ABCD

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the
value $01 :234567:89ABCD, and the 56-bit B accumulator contains the value
$FF:FFFFFF:FFFFFF. The execution of the TFR A,B instruction moves the 56-bit value
in the A accumulator into the 56-bit B accumulator using the internal data ALU data
paths without any data shifting and/or limiting. The value in the B accumulator would
have been limited if a MOVE A,B instruction had been. used. Note, however, that the
parallel move portion of the TFR instruction does use the data shifter/limiters. Thus,
the value stored in the 24-bit X1 register (not shown) would have been limited in this
example. This example illustrates a triple move instruction.

Condition Codes:

15 14 13 12 11 10' 8 7 0 \i1 ** I T I ** I s" so I 11 I 10 I ** I LIE I u I N I z I v cq
MR)I. '" CCR

L - Set if data limiting has occurred during parallel move

A-216 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

TFR Transfer Data ALU Register TFR

Instruction Format:
TFR S,D

Opcode:

23

DATA BUS MOVE FIELD

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:

S,D J J J d

B,A 0000
A,B 000 1
XO,A 1 0 0 0
XO,B 1 0 0 1
X1,A 1 1 0 0
X1,B 1 1 0 1
YO,A 1 0 1 0
YO,B 1 0 1 1
Y1,A 1 1 1 0
Y1,B 1 1 1 1

Timing: 2 + mv oscillator clock cycles

Memory: 1 + mv program words

III

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-217

•

TST Test Accumulator TST

Operation: Assembler Syntax:
S - o (parallel move) TST S (parallel move)

Description: Compare the specified source accumulator S with zero and set the con-
dition codes accordingly. No result is stored although the condition codes are updated.

Example:

TST A #$345678,8 ;set CCR bits for value in A, update 8

Before Execution Aftel' Execution

A ~1 ___ $_01_:0_2_03_04_:_00_00_0_0 __ ~ A ~I ___ $_01_:0_2_03_04_:0_0_00_0_0 __ ~

CCR $0300 CCR $0330

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the
value $01 :020304:000000, and the 16-bit condition code register contains the value
$0300. The execution of the TST A instruction compares the value in the A register
with zero and updates the condition code register accordingly. The contents of the A
accumulator are not affected.

Condition Codes:

15 14 13 12 11 10 8 7 3 0 Ifl ** I T I ** I 51 I so I 11 I 10 I ** I

L - Set if data limiting has occurred during parallel move
E - Set if the signed integer portion of A or 8 result is in use
U - Set if A or B result is unnormalized
N - Set if bit 55 of A fIB result is set
Z - Set if A or B result equals zero
V - Always cleared

NOTE: The definition of the E and U bits varies according to the scaling mode being
used. Refer to A.4 CONDITION CODE COMPUTATION for complete details.

A-218 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

TST Test Accumulator TST

Instruction Format:
TST S

Opcode:

23 8 7

DATA BUS MOVE FIELD 0 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:
S d

A 0
B 1

Timing: 2 + mv oscillator clock cycles

Memory: 1 + mv program words

-

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-219

lEI

WAIT Wait for Interrupt

Operation:
Disable clocks to the processor core and

enter the WAIT processing state.

Assembler Syntax:
WAIT

WAIT

Description: Enter the WAIT processing state. The internal clocks to the processor core
and memories are gated off, and all activity in the processor is suspended until an
unmasked interrupt occurs. The clock oscillator and the internal liD peripheral clocks
remain active. If WAIT is executed when an interrupt is pending, the interrupt will be
processed; the effect will be the same as if the processor never entered the WAIT
state and three NOPs followed the WAIT instruction. When an unmasked interrupt or
external (hardware) processor RESET occurs, the processor leaves the WAIT state and
begins exception processing of the unmasked interrupt or RESET condition. The SRI
SG circuits remain active during the WAIT state. The WAIT state is a low-power standby
state. The processor always leaves the WAIT state in the T2 clock phase (see the
DSP56001 Advance Information Data Sheet (ADI1290)). Therefore, multiple processors
may be synchronized by having them all enter the WAIT state and then interrupting
them with a common interrupt.

Restrictions: A WAIT instruction cannot be used in a fast interrupt routine.

A WAIT instruction cannot be the last instruction in a DO loop (at LA).

A WAIT instruction cannot be repeated using the REP instruction.

Example:

WAIT ;enter low power mode, wait for interrupt

Explanation of Example: The WAIT instruction suspends normal instruction execution
and waits for an unmasked interrupt or external RESET to occur.

Condition Codes:

15 14 13 12 11 10 8 7 4· l' 0 IlJ ** I T I ** I S1 I So I 11 I 10 I ** I l I E I u N

MR • I(CCR

The condition codes are not affected by this instruction.

A-220 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

WAIT Wait for Interrupt WAIT

Instruction Format:
WAIT

Opcode:

23 16 15 8 7

I 0 0 o 0 0 0 0 010 o 0 0 0 0 0 011 o 0 0 0 1 1 0 I

Instruction Fields:
None

Timing: The WAIT instruction takes a minimum of 16 cycles to execute when an internal
. interrupt is pending during the execution of the WAIT instruction.

Memory: 1 program word

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-221

A.7 INSTRUCTION TIMING

This section describes how one can calculate DSP56000/DSP56001 instruction timing man­
ually using the tables provided in this section. Three complete examples are presented to
illustrate the "layered" nature of the tables. Alternatively, the user can obtain the number
of instruction program words and the number of oscillator clock cycles required for a given
instruction by using the DSP56000/DSP56001 simulator. This method of determining in­
struction timing information is much faster and much simpler than using the aforemen­
tioned tables. This powerful software package is available for the IBM@ PC, VAX@ (BSD
4.2 or VMS), and SUN-3@ workstation.

Table A-6 gives the number of instruction program words and the number of oscillator
clock cycles for each instruction mnemonic. Table A-7 gives the number of additional (if
any) instruction words and additional (if any) clock cycles for each type of parallel move
operation. Table A-8 gives the number of additional (if any) clock cycles for each type of
MOVEC operation. Table A-9 gives the number of additional (if any) clock cycles for each
type of MOVEP operation. Table A-10 gives the number of additional (if any) clock cycles
for each type of bit manipulation (BCHG, BCLR, BSET, and BTST) operation. Table A-11
gives the number of additional (if any) clock cycles for each type of jump (Jcc, JCLR, JMP,
JScc, JSCLR, JSET, JSR, and JSSET) operation. Table A-12 gives the number of additional
(if any) clock cycles for the RTI and RTS instructions. Table A-13 gives the number of
additional (if any) instruction words and additional (if any) clock cycles for each effective
addressing mode. Table A-14 gives the number of additional (if any) clock cycles for external
data, external program, and external liD memory accesses.

The number of words per instruction is dependent on the addressing mode and the type
of parallel data bus move operation specified. The symbols used reference subsequent
tables to complete the instruction word count.

The number of oscillator clock cycles per instruction is dependent on many factors, in­
cluding the number of words per instruction, the addressing mode, whether the instruction
fetch pipe is full or not, the number of external bus accesses, and the number of wait states
inserted in each external access. The symbols used reference subsequent tables to com­
plete the execution clock cycle count.

All tables are based on the following assumptions.

Assumptions:

1. All instruction cycles are counted in oscillator clock cycles.

2. The instruction fetch pipeline is full.

IBM is a trademark of International Business Machines
VAX is a trademark of Digital Equipment Corporation
SUN-3 is a trademark of Sun Microsystems, Inc.

A-222 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

3. There is no contention for instruction fetches. Thus, external program instruction
fetches are assumed not to have to contend with external data memory accesses.

4. There are no wait states for instruction fetches done sequentially (as for non-change­
of-flow instructions), but they are taken into account for change-of-flow instructions
which flush the pipeline such as JMP, Jcc, RTI, etc.

To better understand and use the aforementioned tables, three examples are presented
prior to the actual tables. These examples attempt to illustrate the "layered" nature of the
tables.

Example 1: Arithmetic Instruction with Two Parallel Moves

Problem: Calculate the number of 24-bit instruction program words and the number of
oscillator clock cycles required for the instruction

MACR -XO,XO,A X1,X:(R6)- YO,Y:(RO)+

where Operating Mode Register (OMR) = $02 (normal expanded memory map),
Bus Control Register (BCR) =$1135,
R6 Address Register = $0052 (internal X memory), and
RO Address Register = $0523 (external Y memory).

Solution: To determine the number of instruction program words and the number of
oscillator clock cycles required for the given instruction, the user should perform the fol­
lowing operations:

1. Look up the number of instruction program words and the number .of oscilla,tor clock
cycles required for the opcode-operand portion of the instruction in Table A-6.

According to Table A-6, the MACR instruction will require (1 + mv) instruction program
words and will execute in (2 + mv) oscillator clock cycles. The term "mv" represents the
additional (if any) instruction program words and the additional (if any) oscillator clock
cycles that may be required over and above those needed for the basic MACR instruction
due to the parallel move portion of the instruction.

2. Evaluate the "mv" term using Table A-7.

The parallel move portion of the MACR instruction consists of an XY memory move.
According to Table A-7, the parallel move portion of the instruction will require mv=O
additional instruction program words and mv = (ea + axy) additional oscillator clock cycles.
The term "ea" represents the number of additional (if any) oscillator clock cycles that are
required for the effective addressing move specified in the parallel move portion of the
instruction. The term "axy" represents the number of additional (if any) oscillator clock
cycles that are required to access an XV memory operand.

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-223

Ell

III

3. Evaluate the "ea" term using Table A-13.

The parallel move portion of the MACR instruction consists of an XY memory move which
uses both address register banks (RO-R3 and R4-R7) in generating the effective addresses
of the XV memory operands. Thus, the two effective address operations occur in parallel,
and the larger of the two "ea" terms should be used. The X memory move operation uses
the "postdecrement by 1" effective addressing mode. According to Table A-13, this op­
eration will require ea = 0 additional oscillator clock cycles. The V memory move operation
uses the "postincrement by 1" effective addressing mode. According to Table A-13, this
operation will also require ea = 0 additional oscillator clock cycles. Thus, using the maxi­
mum value of "ea", the effective addressing modes used in the parallel move portion of
the MACR instruction will require ea = 0 additional oscillator clock cycles.

4. Evaluate the "axy" term using Table A-14.

The parallel move portion of the MACR instruction consists of an XV memory move.
According to Table A-14, the term "axy" depends upon where the referenced X and V
memory locations are located in the DSP56000/DSP56001 memory space. External memory
accesses require additional oscillator clock cycles according to the number of wait states
programmed into the DSP56000/DSP56001 bus control register (BCR). Thus, assuming that
the 16-bit bus control register contains the value $1135, external X memory accesses require
wx = 1 wait state of additional oscillator clock cycle while external Y memory accesses
require wy = 1 wait state or additional oscillator clock cycle. For this example, the X memory
reference is assumed to be an internal reference; the V memory reference is assumed to
be an external reference. Thus, according to Table A-14, the XV memory reference in the
parallel move portion ofthe MACR instruction will require axy=wy= 1 additional oscillator
clock cycle.

5. Compute final results.

Thus, based upon the assumptions given for Table A-6 and those listed in the problem
statement for Example 1, the instruction

will require

and will execute in

A-224

MACR -XO,XO,A X1,X:(R6)- VO,V:(RO)+

(1 +mv)
=(1 +0)
= 1 instruction program word

(2+mv)
=(2+ea+axy)
=(2+ea+wy)
=(2+0+ 1) oscillator clock cycles.

3

DSP56000/DSP56001 USER'S MANUAL MOTOROLA

Note that if a similar calculation were to be made for a MOVEC, MOVEM, MOVEP, or one
of the bit manipulation (BCHG, BCLR, BSET, or BTST) instructions, the use of Table A-7
would no longer be appropriate. For one of these cases, the user would refer to Table A-
8, Table A-9, or Table A-10, respectively.

Example 2: Jump Instruction

Problem: Calculate the number of 24-bit instruction program words and the number of
oscillator clock cycles required for the instruction .

JLC (R2+N2)

where Operating Mode Register (OMR) =$02 (normal expanded memory map),
Bus Control Register (BCR) = $2246,
R2 Address Register = $1 000 (external P memory), and
N2 Address Register =$0037.

Solution: To determine the number of instruction program words and the number of
oscillator clock cycles required for the given instruction, the user should perform the fol­
lowing operations:

1. Look up the number of instruction program words and the number of oscillator clock
cycles required for the opcode-operand portion of the instruction in Table A-6.

According to Table A-6, the Jcc instruction will require (1 + ea) instruction program words
and will execute in (4 + jx) oscillator clock cycles. The term "ea II represents the number of
additional (if any) instruction program words that are required for the effective address of
the Jcc instruction. The term "jx" represents the number of additional (if any) oscillator
clock cycles required for a jump-type instruction.

2. Evaluate the "jx" term using Table A-11.

According to Table A-11, the Jcc instruction will require jx = ea + (2 * ap) additional oscillator
clock cycles. The term "ea" represents the number of additional (if any) oscillator clock
cycles that are required for the effective addressing mode specified in the Jcc instruction.
The term "ap" represents the number of additional (if any) oscillator clock cycles that are
required to access a P memory operand. Note that the "+ (2 * ap)" term represents the
two program memory instruction fetches executed at the end of a one-word jump instruc­
tion to refill the instruction pipeline.

3. Evaluate the "ea" term using Table A-13.

The JLC (R2 + N2) instruction uses the "indexed by offset Nn" effective addressing mode.
According to Table A-13, this operation will require ea = 0 additional instruction program
words and ea = 2 additional oscillator clock cycles.

MOTOROLA OSP56000/0SP56001 USER'S MANUAL A-225

III

4. Evaluate the "ap" term using Table A-14.

According toTable A-14, the term "ap" depends upon where the referenced P memory
location is located in the DSP56000/DSP56001 memory space. External memory accesses
require additional oscillator clock cycles according to the number of wait states pro­
grammed into the DSP56000/DSP56001 bus control register (BCR). Thus, assuming that
the 16-bit bus control register contains the value $2246, external P memory accesses require
wp =4 wait states or additional oscillator clock cycles. For this example, the P memory
reference is assumed to be an external reference. Thus, according to Table A-14, the Jcc
instruction will use the value ap=wp=4 oscillator clock cycles.

5. Compute final results.

Thus, based upon the assumptions given for Table A-6 and those listed in the problem
statement for Example 2, the instruction

will require

JLC (R2+ N2)

(1 +ea)
=(1 +0)
= 1 instruction program word

and will execute in
(4+ jx)

=(4+ea+(2 * ap))
=(4+ea+(2 * wp))
=(4+2+(2 * 4)) oscillator clock cycles.

14

Example 3: RTllnstruction

Problem: Calculate the number of 24-bit instruction program words and the number of
oscillator clock cycles required for the instruction

RTI

where Operating Mode Register (OMR) =$02 (normal expanded memory map),
Bus Control Register (BCR) = $0012, and
Return Address (on the stack) =$0100 (internal P memory).

Solution: To determine the number of instruction program words and the number of
oscillator clock cycles required for the given instruction, the user should perform the fol­
lowing operations:

1. Look up the number of instruction program words and the number of oscillator clock
cycles required for the opcode-operand portion of the instruction in Table A-6.

A-226 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

According to Table A-6, the RTI instruction will require one instruction program word and
will execute in (4 + rx) oscillator clock cycles. The term "rx" represents the number of
additional (if any) oscillator clock cycles required for an RTI or RTS instruction.

2. Evaluate the "rx" term using Table A-12.

According to Table A-12, the RTI instruction will require rx = (2 * ap) additional oscillator
clock cycles. The term "ap" represents the number of additional (if any) oscillator clock
cycles that are required to access a P memory operand. Note'that the term "(2 * ap)"
represents the two program memory instruction fetches executed at the end of an RTI or
RTS instruction to refill the instruction pipeline.

3. Evaluate the "ap" term using Table A-14.

According to Table A-14, the term "ap" depends upon where the referenced P memory
location is located in the DSP56000/DSP56001 memory space. External memory accesses
require additional oscillator clock cycles according to the number of wait states pro­
grammed into the DSP56000/DSP56001 bus control register (BCR). Thus, assuming that
the 16-bit bus control register contains the value $0012, external P memory accesses require
wp = 1 wait state or additional oscillator clock cycles. For this example, the P memory
reference is assumed to be an internal reference. This means that the return address ($0100)
pulled from the system stack by the RTI instruction is in internal P memory. Thus, according
to Table A-14, the RTI instruction will use the value ap = 0 additional oscillator clock cycles.

4. Compute final results.

Thus, based upon the assumptions given for Table A-6 and those listed in the problem
statement for Example 3, the instruction

will require

and will execute in

MOTOROLA

RTI

(4+rx)
=(4+(2 * ap))
=(4+(2 * 0))

4

instruction program word

oscillator clock cycles.

DSP56000/DSP56001 USER'S MANUAL A-227

Ell

-

Table A-G. Instruction Timing Summary (see Note 3)

instruction usc.
1. __ Jll._ •• _.&.! __ n ••
III=-UU\';LlUII v.:t

Mnemonic Program Clock Notes Mnemonic Program Clock Notes
Words Cycles Words Cycles

ABS 1+mv 2+mv MAC 1+mv 2+mv

ADC 1+mv 2+mv MACR 1+mv 2+mv

ADD 1+mv 2+mv MOVE 1+mv 2+mv

ADDL 1+mv 2+mv MOVEC 1 +ea 2+mvc

ADDR 1+mv 2+mv MOVEM 1 +ea 6+ea+ap

AND 1+mv 2+mv MOVEP 1+ea 4+mvp

ANDI 1 2 . MPY 1+mv 2+mv

ASL 1+mv 2+mv MPYR 1+mv 2+mv

ASR 1+mv 2+mv NEG 1+mv 2+mv

BCHG 1 +ea 4+mvb NOP 1 2

BCLR 1 +ea 4+mvb NORM 1 2

BSET 1 +ea 4+mvb· NOT 1+mv 2+mv

BTST 1 +ea 4+mvb OR 1+mv 2+mv

CLR 1+mv 2+mv ORI 1 2

CMP 1+mv 2+mv REP 1 4+mv

CMPM 1+mv 2+mv RESET 1 4

DIV 1 2 RND 1+mv 2+mv

DO 2 6+mv ROL 1+mv 2+mv

ENDDO 1 2 ROR 1+mv 2+mv

EOR 1+mv 2+mv RTI 1 4+rx

Jcc 1 +ea 4+jx RTS 1 4+rx

JCLR 2 6+jx SBC 1+mv 2+mv

JMP 1 +ea 4+jx STOP 1 nfa 1

JScc 1 +ea 4+jx SUB 1+mv 2+mv

JSCLR 2 6+jx SUBL 1+mv 2+mv

JSET 2 6+jx SUBR 1+mv 2+mv

JSR 1 +ea 4+jx SWI 1 8

JSSET 2 6+jx Tcc 1 2

LSL 1+mv 2+mv TFR 1+mv 2+mv

LSR 1+mv 2+mv TST 1+mv 2+mv

LUA 1 4 WAIT 1 nfa 2

Note 1: The STOP instruction disables the internal clock oscillator. After clock turnan, an internal counter counts
65,536 clock cycles (if bit 6 in the OMR is clear) before enabling the clock to the internal DSP circuits.
If bit 6 in the OMR is set, only six clock cycles are counted before enabling the clock to the external
DSP circuits.

Note 2: The WAIT instruction takes a minimum of 16 cycles to execute when an internal interrupt is pending
during the execution of the WAIT instruction.

Note 3: If assumption 4 is not applicable, then to each one-word instruction timing, a" + ap" term should be
added, and, to each two-word instruction, a" + (2*ap)" term should be added to account forthe program
memory wait states spent to fetch an instruction word to fill the pipeline.

A-228 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

Table A-7. Parallel Data Move Timing

+mv +mv Comments
Parallel Move Operation Words Cycles

No Parallel Data Move 0 0

I Immediate Short Data 0 0

R Register to Register 0 0

U Address Register Update 0 0

X: X Memory Move ea- ea+ax See Note 1

X:R X Memory and Register ea ea+ax See Note 1

Y: Y Memory Move ea ea+ay See Note 1

R:Y Y Memory and Register ea ea+ay See Note 1

L: Long Memory Move ea ea+axy

X:Y: XY Memory Move 0 ea+axy

LMS(X) LMS X Memory Moves 0 ea+ax See Notes 1, 2

LMS(Y) LMS Y Memory Moves 0 ea+ay See Notes 1, 2

Note 1: The ax or ay term does not apply to MOVE IMMEDIATE DATA.
Note 2: The ea term does not apply to ABSOLUTE ADDRESS and IMMEDIATE DATA.

Table A-S. MOVEC Timing Summary (see Note 2)

MOVEC Operation +mvc Comments
Cycles

Immediate Short. Register 0

Register .. Register 0

X Memory •• Register ea+ax See Note 1

Y Memory •• Register ea+ay See Note 1

P Memory •• Register 4+ea+ap

Note 1: The ax or ay term does not apply to MOVE IMMEDIATE DATA.
Note 2: If assumption 4 is not applicable, then to each one-word instruction

timing, a "+ ap" term should be added, and to each two-word in­
struction, a "+ (2 * ap)" term should be added to account for the
program memory wait states spent to fetch an instruction word to
fill the pipeline.

Note that the lIapll term present in Table A-8 for the P memory move entry represents the
wait state spent when accessing the program memory during DATA read or write and does
not refer to instruction fetches.

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-229

III

III

Table A·9. MOVEP Timing Summary (see Note 2)

MOVEP OnMRtinn +mvp Cnmml>ntc:: -, -- ----- Cycles -- ----------

Register" Peripheral aio

X Memory •• Peripheral ea+ax+aio See Note 1

Y Memory •• Peripheral ea+ay+aio See Note 1

P Memory •• Peripheral 2 + ea + ap + aio

Note 1: The ax or ay term does not apply to MOVE IMMEDIATE DATA.
Note 2: If assumption 4 is not applicable, then to each one-word instruction

timing, a "+ ap" term should be added, and to each two-word in­
struction, a "+ (2 * ap)" term should be added to account for the
program memory wait states spent to fetch an instruction word to
fill the pipeline.

Note that the "ap" term present in Table A-9 for the P memory move entry represents the
wait states spent when accessing the program memoryduring DATA read or write oper­
ations and does not refer to instruction fetches.

A-230

Table A·10. Bit Manipulation Timing Summary
(see Note 2)

Bit Manipulation Operation +mvb Comments
Cycles

Bxxx Peripheral 2 * aio See Note 1

Bxxx X Memory ea+(2 * ax) See Note 1

Bxxx Y Memory ea+(2 * ay) See Note 1

Bxxx Register Direct 0 See Note 1

BTST Peripheral aio

BTST X Memory ea+ax

BTST Y Memory ea+ay

Note 1: Bxxx = BCHG, BClR, or BSET

Note 2: If assumption 4 is not applicable, then to each one-word instruction
timing, a "+ ap" term should be added, and to each two-word in­
struction, a "+ (2 * ap)" term should be added to account for the
program memory wait states spent to fetch an instruction word to
fill the pipeline.

Table A·11. Jump Instruction Timing Summary

Jump Instruction Operation +jx
Cycles

Jbit Register Direct 2 ~ ap

Jbit Peripheral aio+(2 * ap)

Jbit X Memory ea+ax+(2 * ap)

Jbit Y Memory ea+ay+(2 * ap)

Jxxx ea+(2 * ap)

Note 1: Jbit=JClR, JSClR, JSET, and JSSET
Note 2: Jxxx=Jcc, JMP, JScc, and JSR

Comments

See Note 1

See Note 1

See Note 1

See Note 1

See Note 2

DSP56000/DSP56001 USER'S MANUAL MOTOROLA

All one-word jump instructions execute TWO program memory fetches to refill the pipeline,
which is represented by the" + (2 * ap)" term.

All two-word jumps execute THREE program memory fetches to refill the pipeline, but one
of those fetches is sequential (the instruction word located at the jump instruction 2nd
word address + 1), so it is not counted as per assumption 4. If the jump instruction was
fetched from a program memory segment with wait states, another "ap" should be added
to account for that third fetch.

Table A-12. RTI/RTS Timing
Summary

Operation
+rx

Cycles

RTI 2 * ap

RTS 2 * ap

The term "2 * ap" come from the two instruction fetches done by the RTI/RTS instruction
to refill the pipeline.

MOTOROLA

Table A-13. Addressing Mode Timing
Summary

Effective Addressing Mode +ea +ea
Words Cycles

Address Register Indirect

No Update 0 0

Postincrement by 1 0 0

Postdecrement by 1 0 0

Postincrement by Offset Nn 0 0

Postdecrement by Offset Nn 0 0

Indexed by Offset Nn 0 2

Predecrement by 1 0 2

Special

Immediate Data 1 2

Absolute Address 1 2

Immediate Short Data 0 0

Short Jump Address 0 0

Absolute Short Address 0 0

1/0 Short Address 0 0

Implicit 0 0

DSP56000/DSP56001 USER'S MANUAL A-231

III

II

Table A-14. Memory Access Timing Summary

Access XMem VMem PMem I/O +ax +ay +ar + <IiI) +a~v
Type Access Access Access Access Cycle Cycle Cycle Cycle Cycle

X: Int - 0

X: Ext wx

V: Int 0

V: Ext wy

P: Int 0

P: Ext wp

110: Int 0

1/0: Ext wio

L: XV: Int Int 0

L: XV: Int Ext wy

L: XV: Ext Int wx

L: XV: Ext Ext 2+wx+wy

Note 1: wx = external X memory access wait states
wy = external V memory access wait states
wp = external P memory access wait states
wio = external 1/0 memory access wait states

Note 2: wx, wy, wp, and wio are programmable from 0-15 wait states in the port A bus control register (BeRI.

A.S INSTRUCTION SEQUENCE RESTRICTIONS

Due to the pipelined nature of the DSP core processor, there are certain instruction se­
quences that are forbidden and will cause undefined operation. Most of these restricted
sequences would cause contention for an inter'1al resource, such as the stack register. The
DSP assembler will flag these as assembly errors.

Most of the following restrictions represent very unusual operations which probably would
never be used but are listed only for completeness.

NOTE: The DSP56000/DSP56001 macro assembler is designed to recognize all restrictions
and flag them as errors at the source code level. Since many of these are instruction
sequence restrictions, they cannot be flagged as errors at the object code level such as
when using the DSP56000/DSP56001 simulator's single-line assembler. Therefore, if any
changes are made at the object code level using the simulator, the user should always re­
assemble his program at the source code level using the DSP56000/DSP56001 macro as­
sembler to verify that no restricted instruction sequences have been generated.

A.S.1 Restrictions Near the End of DO Loops

Proper DO loop operation is not guaranteed if an instruction starting at address LA-2,
LA -1, or LA specifies one of the program controller registers SR, SP, SSL, LA, Le, or

A-232 OSP56000/0SP560P1 USER'S MANUAL MOTOROLA

(implicitly) PC as a destination register. Similarly, the SSH register may not be specified
as a source or destination register in an instruction starting at address LA-2, LA-1, or
LA. Additionally, the SSH register cannot be specified as a source register in the DO
instruction itself, and LA cannot be used as a target for jumps to subroutine (Le., JSR,
JScc, JSSET, or JSCLR to LA). The following instructions cannot begin at the indicated
position(s) near the end of a DO loop:

At LA-2, LA-1, and LA

At LA

DO
BCHG LA, LC, SR, SP, SSH, or SSL
BCLR LA, LC, SR, SP~ SSH, or SSL
BSET LA, LC, SR, SP, SSH, or SSL
BTST SSH
JCLR/JSET/JSCLR/JSSET SSH
MOVEC from SSH
MOVEM from SSH
MOVEP from SSH
MOVEC to LA, LC, SR, SP, SSH, or SSL
MOVEM to LA, LC, SR, SP, SSH, or SSL
MOVEP to LA, LC, SR, SP, SSH, or SSL
ANDI M~
ORI MR

any two-word instruction*
Jcc
JMP
JScc
JSR
REP
RESET
RTI
RTS
STOP
WAIT

*This restriction applies to the situation in which the DSP56000lDSP56001 simulator's
single-line assembler is used to change the last instruction in a DO loop from a one-word
instruction to a two-word instruction. All changes made using the simulator should be
reassembled at the source code level using the DSP56000/DSP56001 macro assembler to
verify that no restricted instruction sequences have been generated.

Other Restrictions

MOTOROLA

DO SSH,xxxx
JSR to (LA) whenever the loop flag (LF) is set
JScc to (LA) whenever the loop flag (LF) is set
JSCLR to (LA) whenever the loop flag (LF) is set
JSSET to (LA) whenever the loop flag (LF) is set

DSP56000/DSP56001 USER'S MANUAL A-233

III

III

NOTE: Due to pipelining, if an address register (RO-R7, NO-N7, or MO-M7) is changed
using a move-type instruction (LUA, Tcc, MOVE, MOVEC, MOVEM, MOVEP, or parallel
move), the new contents ot the destination address register wiii not be avaiiabie for use
during the following instruction (i.e., there is a single instruction cycle pipeline delay). This
restriction also applies to the situation in which the last instruction in a DO loop changes
an address register and the first instruction at the top of the DO loop uses that same
address register. The top instruction becomes the following instruction because of the
loop construct. The assembler will generate a warnihg if this condition is detected.

A.S.2 Other DO Restrictions

Due to pipelining, the DO instruction must not be immediately preceded by any of the
following instructions:

Immediately before DO

A.S.3 ENDDO Restrictions

BCHG LA, LC, SSH, SSL, or SP
BCLR LA, LC, SSH, SSL, or SP
BSET LA, LC, SSH, SSL, or SP
MOVEC to LA, LC, SSH, SSL, or SP
MOVEM to LA, LC, SSH, SSL, or SP
MOVEP to LA, LC, SSH, SSL, or SP
MOVEC from SSH
MOVEM from SSH
MOVEP from SSH

Due to pipelining, the ENDDO instruction must not be immediately preceded by any of the
following instructions:

Immediately before ENDDO BCHG LA, LC, SR, SSH, SSL, or SP
BCLR LA, LC, SR, SSH, SSL, or SP
BSET LA, LC, SR, SSH, SSL, or SP
MOVEC to LA, LC, SR, SSH, SSL, or SP
MOVEM to LA, LC, SR, SSH, SSL, or SP
MOVEP to LA, LC, SR, SSH, SSL, or SP
MOVEC from SSH
MOVEM from SSH
MOVEP from SSH
ANDIMR
ORI MR

A-234 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

A.8.4 RTI and RTS Restrictions

Due to pipelining, the RTI and RTS instructions must not be immediately preceded by any
of the following instructions:

Immediately before RTI

Immediately before RTS

BCHG SR, SSH, SSL, or SP
BCLR SR, SSH, SSL, or SP
BSET SR, SSH, SSL, or SP
MOVEC to SR, SSH, SSL, or SP
MOVEM to SR, SSH, SSL, or SP
MOVEP to SR, SSH, SSL, or SP
MOVEC from SSH
MOVEM from SSH
MOVEP from SSH
ANDI MR or ANDI CCR
ORI MR or ORI CCR

BCHG SSH, SSL, or SP
BCLR SSH, SSL, or SP
BSET SSH, SSL, or SP
MOVEC to SSH, SSL, or SP
MOVEM to SSH, SSL, or SP
MOVEP to SSH, SSL, or SP
MOVEC from SSH
MOVEM from SSH
MOVEP from SSH

A.8.S SP and SSH/SSL Manipulation Restrictions

In addition to all the above restrictions concerning MOVEC, MOVEM, MOVEP, SP, SSH,
and SSL, the following MOVEC, MOVEM, and MOVEP restrictions apply:

Immediately before MOVEC from SSH or SSL

Immediately before MOVEM from SSH or SSL

Immediately before MOVEP from SSH or SSL

BCHG to SP
BCLR to SP
BSET to SP

BCHG to SP
BCLR to SP
BSET to SP

BCHG to SP
BCLR to SP
BSET to SP

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-235

•

•

Immediately before MOVEC from SSH or SSL

Immediately before MOVEM from SSH or SSL

Immediately before MOVEP from SSH or SSL

Immediately before JCLR #n, SSH or SSL,xxxx

Immediately before JSET #n, SSH or SSL,xxxx

Immediately before JSCLR #n, SSH or SSL,xxxx

Immediately before JSSET #n, SSH or SSL,xxxx

Immediately before JCLR #n, SSH or SSL,xxxx

Immediately before JSET #n, SSH or SSL,xxxx

Immediately before JSCLR from SSH or SSL,xxxx

Immediately before JSSET from SSH or SSL,xxxx

Also, the instruction MOVEC SSH,SSH is illegal.

MOVEC to SP
MOVEM to SP
I\/ln"cn .. _ c-n
IVIV v 1-1 LV vr

MOVEC to SP
MOVEM to SP
MOVEP to SP

MOVEC to SP
MOVEM to SP
MOVEP to SP

MOVEC to SP
MOVEM to SP
MOVEP to SP

MOVEC to SP
MOVEM to SP
MOVEP to SP

MOVEC to SP
MOVEM to SP
MOVEP to SP

MOVEC to SP
MOVEM to SP
MOVEP to SP

BCHG to SP
BCLR to SP
BSET to SP

BCHG to SP
BCLR to SP
BSET to SP

BCHG to SP
BCLR to SP
BSET to SP

BCHG to SP
BCLR to SP
BSET to SP

A-236 DSP56000/DSP56001 ,USER'S MANUAL MOTOROLA

A.S.G R, N, and M Register Restrictions

If an address register (RO-R7, NO-N7, or MO-M7) is changed with a move-type instruction
(LUA, Tcc, MOVE, MOVEC, MOVEM, MOVEP, or parallel move), the new contents of the
destination address register will not be available for use as a pointer during the following
instruction (i.e., there is a single instruction cycle pipeline delay). This does not apply to
address registers that are updated as part of an addressing mode update.

NOTE: This restriction also applies to the situation in which the last instruction in a DO
loop changes an address register using a move-type instruction and the first instruction
at the top of the DO loop uses that same address register. The top instruction becomes
the following instruction because of the loop construct. The DSP assembler will generate
a warning if this condition is detected.

A.S.7 Fast Interrupt Routines

The following instructions may not be used in a fast interrupt routine:

In a fast interrupt routine DO
ENDDO
RTI
RTS
MOVEC to LA, LC, SSH, SSL, SP, or SR
MOVEM to LA, LC, SSH, SSL, SP, or SR
MOVEP to LA, Lt, SSH, SSL, SP, or SR
MOVEC from SSH
MOVEM from SSH
MOVEP from SSH
ORI MR or ORI CCR
ANDI MR or ANDI CCR
STOP
SWI
WAIT

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-237

•

1.1

A.S.S REP Restrictions

The REP instruction can repeat any single-word instruction except the REP instruction itself
and any instruction that changes program flow. The following instructions are not allowed
to follow an REP instruction:

Immediately after REP DO
Jcc
JCLR
JMP
JSET
JScc'
JSCLR
JSR
JSSET
REP
RTI
RTS
STOP
SWI
WAIT

Also, an REP instruction cannot be the last instruction in a DO loop (at LA).

A.9 INSTRUCTION ENCODING

This section summarizes instruction encoding for the DSP56000/DSP56001 instruction set.
The instruction codes are listed in nominally descending order. The symbols used in de­
coding the various fields of an instruction are identical to those used in the Opcode section
of the individual instruction descriptions. The user should always refer to the actual in­
struction description for complete information on the encoding of the various fields of that
instruction.

Section A.9.1 gives the encodings for (1) various groupings of registers used in the in­
struction encodings, (2) condition code combinations, (3) addressing, and (4) addressing
modes.

Section A'.9.2 gives the encoding for the parallel move portion of an instruction. These 16-
bit partial instruction codes may be combined with the 8-bit data ALU opcodes listed in
Section A.9.3 to form a complete 24-bit instruction word.

Section A.9.3 gives the complete 24-bit instruction encoding for those instructions which
do not allow parallel moves.

A-238 OSP56000/0SP56001 USER'S MANUAL MOTOROLA

Section A.9.4 gives the encoding forthe data ALU portion ofthose instructions which allow
parallel data moves. These 8-bit partial instruction codes may be combined with the 16-
bit parallel move opcodes listed in Section A.9.1 to form a complete 24-bit instruction word.

Section A.9.S contains instruction encoqings for nonsensical instructions (called insane
instructions) for which encodings exist but which cause problems such as writing two
sources to one destination.

A.9.1 Partial Encodings for Use in Instruction Encoding

MOTOROLA

Table A-1S. Single-Bit Register Encodings

Code d* e f Where:

0 A XO YO d=2 Accumulators in Data ALU

1 B Xl Yl e = 2 Registers in Data ALU

f=2 Registers in Data ALU

*For class" encodings for R:Y and X:R, see Table A-16.

d

0

1

Table A-16. Single-Bit
Special Register Encodings

X:R Class" Opcode R:Y Class" Opcode

A. X:<ea> XO. A YO. A A. Y:<ea>

B • X:<ea> XO • B YO. B B • Y:<ea>

Table A-17. Double-Bit Register
Encodings

Code DD ee ff

00 XO XO YO

01 Xl n Xl Yl

10 YO A A

11 Yl A B

Where: DD=4 registers in data ALU
ee=4 XDB registers in data ALU
ff=4 YDB registers in data ALU

DSP56000/DSP56001 USER'S MANUAL A-239

-

•

A-240

Table A-18. Triple-Bit Register Encodings

Code DOD LLL FFF NNN TIT GGG

000 AD Al0 MO NO RO *
001 BO Bl0 Ml Nl Rl SR

010 A2 X M2 N2 R2 OMR

011 B2 Y M3 N3 R3 SP

100 Al A M4 N4 R4 SSH

101 Bl B M5 N5 R5 SSL

110 A AB M6 N6 R6 LA

111 B BA M7 N7 R7 LC

*Reserved
Where: DDD: 8 accumulators in data ALU

LLL: 8 extended-precision registers in data ALU; LLL field is
encoded as LOLL

FFF: 8 address modifier registers in address ALU
NNN: 8 address offset registers in address ALU
Tn: 8 address registers in address
GGG: 8 program controller registers

Table A-19(a). Four-Bit Register
Encodings for 12 Registers in

Data ALU

0 0 0 0 Description

0 0 X X Reserved

0 1 D D Data ALU Register

,1 D D D Data ALU Register

Table A-19(b). Four-Bit Register Encodings
for 16 Conditi(m Codes

Mnemonic C C C C Mnemonic C C C

CC (HS) 0 0 0 0 CS (LO) 1 0 0

GE 0 0 0 1 LT 1 0 0

NE 0 0 1 0 EQ 1 0 1

PL 0 0 1 1 MI 1 0 1

NN 0 1 0 0 NR 1 1 0

EC 0 1 0 1 ES 1 1 0

LC 0 1 1 0 LS 1 1 1

GT 0 1 1 1 LE 1 1 1

OSP56000/0SP56001 USER'S MANUAL

C

0

1

0

1

0

1

0

1

MOTOROLA

W

0

1

Table A-20. Five-Bit Register Encodings
I • for 28 Registers in Data ALU and

Address ALU

e e e e e
or

d d d d d Description

0 0 0 0 X Reserved

0 0 0 1 X Reserv.ed

0 0 1 D D Data ALU Register

0 1 D D D Data ALU Register

1 0 T T T Address ALU Register

1 1 N N N Address Offset Register

Where: eeeee=source
ddddd = destination

Table A-21. Six-Bit Register Encodings for
43 Registers On-Chip

d d d d d d Description

0 0 0 0 X X Reserved

0 0 0 1 D D Data ALU Register

0 0 1 D D D Data ALU Register

0 1 0 T T T Address ALU Register

0 1 1 N N N Address Offset Register

1 0 0 F F F Address Modifier Register

1 0 1 X X X Reserved

1 1 0 X X X Reserved

1 1 1 G G G Program Controller Register

Table A-22. Write Control
Encoding

Table A-23. Memory Space
Bit Encoding

Operation S Operation

Read Register or Peripheral 0 X Memory

Write Register or Peripheral 1 Y Memory

MOTOROLA OSP56000/0SP56001 USER'S MANUAL

II

A-241

i i i i

II

A-242

E E

0 0

0 1

1 0

1 1

Table A-24. Program Controller
Register Encoding

Register

MR Mode Register

CCR Condition Code Register

OMR Operating Mode Register

- Reserved

Table A-25. Condition Code and Address Encoding

Code Code Definition

c c c c 16 Condition Code Combinations

b b b b b 5-Bit Immediate Data

i i i i i i i i 8-Bit Immediate Data (int, frac, mask)

i i i i x x x x h h h h 12-Bit Immediate Data (iiii iiii hhhh)

a a a a a a 6-Bit Absolute Short (Low) Address

p p p p p P 6-Bit Absolute I/O (High) Address

a a a a a a a a a a a a 12-Bit Fast Absolute Short (Low) Address

M M

a a
a a
a 1

a 1

1 0

1 a
1 1

1 1

1 1

Table A-26. Effective Addressing
Mode Encoding

M R R R Effective Addressing Mode

a r r r Post -N

1 r r r Post +N

a r r r Post -1

1 r r r Post + 1

0 r r r No Update

1 r r r Indexed +N

1 r r r Pre -1

a 0 r r Absolute Address

a 1 r r Immediate Data

RRR=three unencoded bits RO, R1, R2

MMM =three unencoded bits MO, M1, M2
NOTES:

(1) R2 is a for low register bank and 1 for the high register
bank.

(2) M2 is a for all post update modes and 1 otherwise.
(3) M1 is a for update by register offset and 1 for update by

one.
(4) MO is 0 for minus and 1 for plus.
(5) For X and Y moves, rr is a subfield or rrr with equations:

r2 :=R2.
(6) For rr field, r1 is bit 14; rO is bit 13.
(7) For X and Y moves, mm is a subfield of mmm with equa­

tions: M2 :=(M1 v MO) m2 :=(m1 v mO).
(8) For mm field, m1 is bit 21; mO is bit 20. For MM field, M1

is bit 12; MO is bit 11.

DSP56000/DSP56001 USER'S MANUAL MOTOROLA

A.9.2 Instruction Encoding for the Parallel Move Portion of an Instruction

X: Y: Parallel Data Move

23 16 15 8 7 0

11 W m m e e t tlw r r M M R R RI INSTRUCTION OPCODE I

X: Parallel Data Move

23 16 15 8 7

0 1 d d 0 d d d W 1 M M M R R R INSTRUCTION OPCODE

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0

I 0 1 d d 0 d d d I w 0 a a a a a a I INSTRUCTION OPCODE I

Y: Parallel Data Move

23 16 15 8 7

0 1 d d 1 d d d W 1 M M M R R R INSTRUCTION OPCODE

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7

I 0 1 d d 1 d d d I w 0 a a a a a a I INSTRUCTION OPCODE

L: Parallel Data Move

23 16 15 8 7

0 1 0 0 L 0 L L W 1 M M M R R R INSTRUCTION OPCODE

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7

10 1 0 0 L 0 L o a a a a a INSTRUCTION OPCODE • I: Immediate Short Parallel Data Move

23 16 15 8 7

10 0 1 d d d d INSTRUCTION OPCODE

R: Register to Register Parallel Data Move

23 16 15 8 7

10 0 1 0 0 0 e ele e e d d d INSTRUCTION OPCODE

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-243

U: Address Register Update Parallel Data Move

23 16 15 8 7

10 0 1 0 0 0 0 o I 0 1 0 M M R R R I INSTRUCTION OPCODE

Parallel Data Move NOP

23 16 15 8 7 0

I 0 0 1 0 0 0 0 o I 0 0 0 0 0 0 0 o I INSTRUCTION OPCODE I

R:Y Parallel Data Move

23 16 15 8 7

0 0 0 1 d e f f W 1 M M M R R R INSTRUCTION OPCODE

OPTIONAL EFFECTIVE ADDRESS EXTENSION

X:R Parallel Data Move

23 16 15 8 7

0 0 0 1 f f d f W 0 M M M R R R INSTRUCTION OPCODE

OPTIONAL EFFECTIVE ADDRESS EXTENSION

A.9.3 Instruction Encoding for Instructions Which Do Not Allow Parallel Moves

NOTE: For following bit class instructions bbbbb = 11 bbb is reserved:
JSSET, JSCLR, JSET, JCLR, BTST, BCHG, BSET, and BCLR.

JScc xxx

23 16 15 8 7 0

I 0 0 0 0 1 1 1 dc C C C a a a a I a a a a a a a a I

Jcc XXX

• 23 16 15 8 7 0

10 0 0 0 1 1 1 olc C C C a a a a I a a a a a a a a I

JSR XXX

23 16 15 8 7 0

I 0 0 0 0 1 1 0 do 0 0 0 a a a a I a a a a a a a a I

JMP xxx

23 16 15 8 7 0

I 0 0 0 0 1 1 0 o I 0 0 0 0 a a a a I a a a a a a a a I

A-244 DSP56000/0SP56()01 USER'S MANUAL MOTOROLA

JScc ea

23 16 15 8 7

0000101 l11MMMRRR10 1 0 C C C C

OPTIONAL EFFECTIVE ADDRESS EXTENSION

JSR ea

23 16 15 8 7

0000101111 M M M R R RIO 0 0 0 0 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Jcc ea

23 16 15 8 7

0000101011 M M M R R RIOlO C C C C

OPTIONAL EFFECTIVE ADDRESS EXTENSION

JMP ea

23 16 15 8 7

0000101011 M M M R R RIO 0 0 0 0 0 0

JSSET
JSSET

23

#n,X: pp,XXXX
#n, V: pp,XXXX

OPTIONAL EFFECTIVE ADDRESS EXTENSION

16 15 8 7

0000101110 P P P P P pI SIb b b b

JSCLR
JSCLR

23

#n,X:pp,XXXX
#n, V: pp,XXXX

0000101

JSET
JSET

23

#n,X:pp,XXXX
#n, V: pp,XXXX

ABSOLUTE ADDRESS EXTENSION

16 15 8 7

110ppppppl SOb b b b b

ABSOLUTE ADDRESS EXTENSION

16 15 8 7

0000101010 P P P P P pI SIb b b b

ABSOLUTE ADDRESS EXTENSION

MOTOROLA DSP56000/DSP56001 USER'S MANUAL

II

A-245

JCLR
JCLR

23

#n,X:pp,XXXX
#n,V:pp,xxxx

16 15 8 7

0000101010 P P P P P pI SOb b b b b

JSSET
JSSET

#n,X:ea,xxxx
#n,V:ea,xxxx

ABSOLUTE ADDRESS EXTENSION

23 16 15 8 7

0000101101 M M M R R Rl SIb b b b b

JSCLR
JSCLR

23

#n,X:ea,xxxx
#n,V:ea,xxxx

ABSOLUTE ADDRESS EXTENSION

16 15 8 7

0000101101 M M M R R Rl SOb b b b

JSET
JSET

23

#n,X:ea,xxxx
#n,V:ea,xxxx

ABSOLUTE ADDRESS EXTENSION

16 15 8 7

0000101001 M M M R R Rl SIb b b b b

JCLR
JCLR

23

#n,X:ea,xxxx
#n, V: ea,xxxx

o 0 0 0 .1 o 1

JSSET
JSSET

23

#n,X:aa,xxxx
#n,V:aa,xxxx

ABSOLUTE ADDRESS EXTENSION

16 15 8 7

001MMMRRRI SOb b b b b

ABSOLUTE ADDRESS EXTENSION

16 15 8 7

0000101100 a a a a a al SIb b b b b

ABSOLUTE ADDRESS EXTENSION

A-246 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

JSCLR
JSCLR

23

#n,X:aa,xxxx
#n,Y:aa,xxxx

16 15 8 7

o 0 0 0 1 100 a a a a a al SOb b b b b

JSET
JSET

JCLR
JCLR

23

#n,X:~a,xxxx

#n, Y: aa,xxxx

ABSOLUTE ADDRESS EXTENSION

16 15 8 7

000 0 01000 a a a a a al S

23

#n,X:aa,xxxx
#n, Y: aa,xxxx

ABSOLUTE ADDRESS EXTENSION

16 15 8 7

b b b b

o 0 0 1 0 1 o a a a a a al SOb b

ABSOLUTE ADDRESS EXTENSION

JSSET #n,S,XXXX

23 16 '15 8 7

o 0 0 0 0111 d d d d d dO 0 b b b b

ABSOLUTE ADDRESS EXTENSION

JSCLR #n,S,XXXX

23 16 15 8 7

0 0 0 0 1 0 1 1 1 1 d d d d d d 0 o '0 b

ABSOLUTE ADDRESS EXTENSION

JSET #n,S,XXXX

23 16 15 8 7

0 0 0 1 0 1 0 1 d d d d d d 0 0 b b b b

ABSOLUTE ADDRESS EXTENSION

JCLR #n,S,XXXX

23 16 15 8 7

0

b

0

b

0000101011 d d d d d dO 0 0 b b b

ABSOLUTE ADDRESS EXTENSION

MOTOROLA DSP56000/DSP56001 USER'S MANUAL

III

A-247

BTST #n,X:pp
BTST #n,Y:pp

23 16 15 8 7 a
I a a a a 1 a 1 111 a p p p p p p I a S 1 b b b b b I

BCHG #n,X:pp
BCHG #n,Y:pp

23 16 15 8 7 a

I a a a a 1 a 1 dl a p p p p p p I a S a b b b b b I

BSET #n,X:pp
BSET #n,Y:pp

23 16 15 8 7 a

I a a a a 1 a 1 a 11 a p p p p p pia S 1 b b b b b I

BCLR #n,X:pp
BCLR #n,Y:pp

23 16 15 8 7 a
I a a a a 1 a 1 a 11 a p p p p p p I a S a b b b b b I

BTST #n,X:ea
BTST #n,Y:ea

23 16 15 8 7

a a a a 1 a 1 1 a 1 M M M R R R a S 1 b b b b b

OPTIONAL EFFECTIVE ADDRESS EXTENSION

BCHG #n,X:ea
BCHG #n,Y:ea

• 23 16 15 8 7

a a a a 1 a 1 1 a 1 M M M R R R a S a b b b b b

OPTIONAL EFFECTIVE ADDRESS EXTENS"ION

BSET #n,X:ea
BSET #n,Y:ea

23 16 15 8 7

a 9 a a 1 a 1 a a 1 M M M R R R a S 1 b b b b b

OPTIONAL EFFECTIVE ADDRESS EXTENSION

A-248 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

BCLR #n,X:ea
BCLR #n,V:ea

23 16 15 8 7

0 0 0 0 1 0 1 0 0 1 M M M R R R 0 S 0 b b b b b

OPTIONAL EFFECTIVE ADDRESS EXTENSION

BTST #n,X:aa
BTST #n,V:aa

23 16 15 8 7 0

I 0 0 0 0 1 0 1 do 0 a a a a a a 10 S 1 b b b b b I

BCHG #n,X:aa
BCHG #n,V:aa

23 16 15 8 7 0

I 0 0 0 0 1 0 1 1 I 0 0 a a a a a a 10 S 0 b b b b b I

BSET #n,X:aa
BSET #n,V:aa

23 16 15 8 7 0

I 0 0 0 0 1 0 1 o I 0 0 a a a a a a 10 S 1 b b b b b I

BCLR #n,X:aa
BCLR #n,V:aa

23 16 15 8 7 0

I 0 0 0 0 1 0 1 o I 0 0 a a a a a a 10 S 0 b b b b b I

BTST #n,O

23 16 15 8 7 0

I 0 0 0 0 1 0 1 111 1 d d d d d d 10 1 1 b b b b b I • BCHG #n,O

23 16 15 8 7 0

I 0 0 0 0 1 0 1 dl 1 d d d d d d 10 1 0 b b b b b I

BSET #n,O

23 16 15 8 7 0

I 0 0 0 0 1 0 1 o 11 1 d d d d d d 10 1 1 b b b b b I

MOTOROLA OSP56000/0SP56001 USER'S MANUAL A-249

•

BCLR

23

I 0

MOVEP
MOVEP
MOVEP
MOVEP
MOVEP
MOVEP
MOVEP
MOVEP
MOVEP
MOVEP

23

0

MOVEP
MOVEP
MOVEP
MOVEP

0

0

#n,O

16 15 8 7

0 0 1 0 1 o 11 1 d d d d d dlo

X:ea,X:pp
Y:ea,X:pp
#XXXXXX,X:pp
X:pp,X:ea
X:pp,Y:ea
X:ea,Y:pp
Y:ea,Y:pp
#XXXXXX, Y: pp
Y:pp,X:ea
Y:pp,Y:ea

16 15 8 7

0 0 1 0 0 S W 1 M M M R R R 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

P:ea,X:pp
X:pp,P:ea
P:ea,Y:pp
Y:pp,P:ea

23 16 15 8 7

0

1 0 b b b b b I

s p p p p p P

0000100 S W 1 M M M R R RO 1 P P P P P P

MOVEP
MOVEP
MOVEP
MOVEP

23

I 0 0

MOVE(M)
MOVE(M)

23

S,X:pp
X:pp,O
S,Y:pp
Y:pp,O

0 0 1 0

S,P:ea
P:ea,O

0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

16 15 8 7 0

S I W 1 d d d d d d 10 0 p p p p p pi

16 15 8 7

00000111 W 1 M M M R R R1 0 d d d d d d

OPTIONAL EFFECTIVE ADDRESS EXTENSION

A-250 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

MOVE(M) S,P:aa
MOVE(M) P:aa,D

23 16 15 8 7 0

I 0 0 0 0 0 1 1 llw 0 a a a a a a 10 0 d d d d . d dl

REP #xxx

23 16 15 8 7 0

I 0 0 0 o . 0 1 1 o I i dl 0 1 0 h h h h 1

REP S

23 16 15 8 7 0

I 0 0 0 0 0 1 1 o 11 1 d d d d d d 10 0 1 0 0 0 0 01

REP X:ea
REP Y:ea

23 16 15 8 7 0

I 0 0 0 0 0 1 1 o I 0 1 M M M R R Rio s 1 0 0 0 0 o 1

REP X:aa
REP Y:aa

23 16 15 8 7 0

I 0 . 0 0 0 0 1 1 o I 0 0 a a a a a a 10 s 1 0 0 0 0 o 1

DO #xxx,expr

23 16 15 8 7 0

0 0 0 0 0 1 1 0 i 1 0 0 0 h h h h

ABSOLUTE ADDRESS EXTENSION

DO S,expr

23 16 15 8 7 0

0 0 0 0 0 1 1 0 1 1 D D D D D D 0 0 0 0 0 0 0 0

ABSOLUTE ADDRESS EXTENSION

DO X:ea,expr
DO Y:ea,expr

23 16 15 8 7

0 0 0 0 0 1 1 0 0 1 M M M R R R O. S 0 0 0 0 0 0

ABSOLUTE ADDRESS EXTENSION

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-251

III

00 X:aa,expr
00 Y:aa,expr

23 16 15 B 7

0000011000aaaaaaOSOO 0000

MOVE(C) #xx,01

23

10 0 0 0 0 1

MOVE(C)
·MOVE(C)
MOVE(C)
MOVE(C)
MOVE(C)

X:ea,01
81,X:ea
Y:ea,01
81,Y:ea
#xxxx,01

ABSOLUTE AODRESS EXTENSION

16 15 B 7 0

dl Old d d d dl

23 16 15 B 7

00000101 WI M M M R R RO sId d d d d

OPTIONAL EFFECTIVE ADDRESS EXTENSION

MOVE(C) X:aa,01
MOVE(C) 81,X:aa
MOVE(C) Y:aa,01
MOVE(C) 81,Y:aa

23 16 15 B 7 0

I 0 0 0 0 0 1 0 llw 0 a a a a a a 10 s 1 d d d d d I

MOVE(C) 81,02
MOVE(C) 82,01

23 16 15 B 7 0

I 0 0 0 0 0 1 0 o I W 1 e e e e e e 11 0 1 d d d d d I

LUA ea,O

23 16 15 B 7 0

I 0 0 0 0 0 1 0 o I 0 1 0 M M R R Rio 0 0 1 d d d d I

Tee 81,01 82,02

23 16 15 B 7 0

I 0 0 0 0 0 0 1 1 I C C C C 0 t t do J J J D T T TI

A-252 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

Tee S1,D1

23 16 15 8 7 0

I 0 0 0 0 0 0 1 o I c c c c 0 0 0 o 10 J J J D 0 0 o I

NORM Rn,D

23 16 15 8 7 0

I 0 0 0 0 0 0 0 dl 1 0 1 1 R R Rio 0 0 1 d 1 0 d

DIV S,D

23 16 15 8 7 0

I 0 0 0 0 0 0 0 111 0 0 0 0 0 0 o I 0 1 J J d 0 0 o I

OR(I) #xx,D

23 16 15 8 7 0

I 0 0 0 0 0 0 0 o I i dl 1 1 1 1 0 E E I

AND(I) #xx,D

23 16 15 8 7 0

10 0 0 0 0 0 0 o I i dl 0 1 1 1 0 E d

ENDDO

23 16 15 8 7 0

I 0 0 0 0 0 0 0 o I 0 0 0 0 0 0 0 o 11 0 0 0 1 1 0 o I

STOP

23 16 15 8 7 0

I 0 0 0 0 0 0 0 o I 0 0 0 0 0 0 0 o 11 0 0 0 0 1 1 d

WAIT

23 16 15 8 7 0

I 0 0 0 0 0 0 0 o I 0 0 0 0 0 0 0 o 11 0 0 0 0 1 1 o I

RESET

23 16 15 8 7 0

I 0 0 0 0 0 0 0 o I 0 0 0 0 0 0 0 o 11 0 0 0 0 1 0 o I

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-253

RTS

23 16 15 B 7 0

I 0 0 0 0 0 0 0 o I 0 0 0 0 0 0 0 o I 0 0 0 0 1 1 0 o I

SWI

23 16 15 B 7 0

I 0 0 0 0 0 0 0 o I 0 0 0 0 0 0 0 o I 0 0 0 0 0 1 1 o I

RTI

23 16 15 B 7 0

I 0 0 0 0 0 0 0 o I 0 0 0 0 0 0 0 010 0 0 0 0 1 0 o I

NOP

23 16 15 B 7 0

I 0 0 0 0 0 0 0 o I 0 0 0 0 0 0 0 010 0 0 0 0 0 0 01

A.9.4 Parallel Instruction Encoding of the Operation Code

The operation code encoding for the instructions which allow parallel moves is divided
into the multiply and nonmultiply instruction encodings shown in the following subsection.

Multiply Instruction Encoding

The 8-bit operation code for multiply instructions allowing parallel moves has different
fields than the nonmultiply instruction's operation code.

The 8-bit operation code = 1QQQ dkkk where QQQ = selects the inputs to the multiplier
kkk = three unencoded bits k2, k1, kO

d = destination accumulator
d=O.A
d= 1 • B

Table A-27. Operation Code KO-2 Decode

Code k2 k1 kO

0 positive mpyonly don't round

1 negative mpy and ace round

A-254 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

Table A-28. Operation Code
QQQ Decode

Q Q Q 51 52

0 0 0 XO XO

0 0 1 YO YO

0 1 0 X1 XO

0 1 1 Y1 YO

1 0 0 XO Y1

1 0 1 YO XO

1 1 0 X1 YO

1 1 1 Y1 X1

NOTE: S1 and S2 are the inputs to the multiplier

MACR
MACR

23

(±)S1,S2,D
(±)S2,S1,D

DATA BUS MOVE FIELD

MAC (±)S1,S2,D
MAC (±)S2,S1,D

23

MPYR
MPYR

23

DATA BUS MOVE FIELD

(±)S1,S2,D
(±)S2,S1,D

DATA BUS MOVE FIELD

MPY (±)S1,S2,D
MPY (±)S2,S1,D

23

8 7

8 7

8 7

8 7

DATA BUS MOVE FIELD 1 Q

OPTIONAL EFFECTIVE ADDRESS EXTENSION

4 3

4 3

4 3

4 3

MOTOROLA OSP56000/0SP56001 USER'S MANUAL

III

A-255

III

Nonmultiply Instruction Encoding

The 8-bit operation code for instructions allowing parallel moves contains two 3-bit fields
defining which instruction the operation code represents and one bit defining the desti­
nation accumulator register.

The 8-bit operation code = OJJJ Dkkk where JJJ = 1/2 instruction number
kkk = 1/2 instruction number

D = destination accumulator
D=O.A
D=1.8

Table A-29. Nonmultiply Instruction Encoding

0=0 0=1
JJJ Src Src

Oper Oper 000

000 B A MOVE'

001 B A ADD

0102 B A -

011 2 B A -

0102 X1XO X1XO ADD

011 2 Y1YO Y1YO ADD

100 XO_O XO_O ADD

101 YO_O YO_O ADD

110 XLO XLO ADD

111 YLO YLO ADD

NOTES:
* = Reserved
1 = Special Case #1 (See Table A-30)
2 = Special Case #2 (See Table A-31)

kkk

001 010 011

TFR ADDR TST

RND ADDL CLR

- ASR LSR

- ASL LSL

ADC - -

ADC - -

TFR OR EOR

TFR OR EOR

TFR OR EOR

TFR OR EOR

Table A-30. Special Case #1

o P E·R coo E Operation

00000000 MOVE

o 000 1 000 Reserved

100

*
SUB

-

-

SUB

SUB

SUB

SUB

SUB

SUB

For JJJ = 010 and 011, k1 qualifies source register selection:

Table A-31. Special Case #2

OJJJdkkk Operation

001 0 x x 0 x Selects X1XO

0011xxOx Selects Y1YO

001xxx1x Selects AlB

101

CMP

*
-

-

SBC

SBC

CMP

CMP

CMP

CMP

110

SUBR

SUBL

ABS

NEG

AND

AND

AND

AND

111

CMPM

NOT

ROR

ROL

CMPM

CMPM

CMPM

CMPM

A-256 OSP56000/0SP56001 USER'S MANUAL MOTOROLA

CMPM 51,52

23 B 7

DATA BUS MOVE FIELD

OPTIONAL EFFECTIVE ADORESS EXTENSION

AND 5,0

23 B 7 4 3

DATA BUS MOVE FIELD 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

CMP 51,52

23 B 7 4 3

DATA BUS MOVE FIELD 0 J

OPTIONAL EFFECTIVE ADDRESS EXTENSION

5UB S,D

23 4 3

DATA BUS MOVE FIELD

OPTIONAL EFFECTIVE ADDRESS EXTENSION

EOR S,D

23 4 3

DATA BUS MOVE FIELD

OPTIONAL EFFECTIVE ADDRESS EXTENSION

OR S,D

23 4 3

DATA BUS MOVE FIELD

TFR S,D

23 B 7

DATA BUS MOVE FIELD 0 J

OPTIONAL EFFECTIVE ADDRESS EXTENSION

ADD S,D

23 B 7

DATA BUS MOVE FIELD 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-257

SBC S,D

23

DATA BUS MOVE FIELD

ADC S,D

23 8 7 4 3

DATA BUS MOVE FIELD

ROL D

23 8 7

DATA BUS MOVE FIELD

NEG D

23 8 7 4 3

DATA BUS MOVE FIELD

LSL D

23 8 7 4 3

DATA BUS MOVE FIELD

ASL D

23 8 7

DATA BUS MOVE FIELD

ROR D

23 8 7

DATA BUS MOVE FIELD

ABS D

23 8 7 4 3

DATA BUS MOVE FIELD 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

A-258 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

LSR D

23 8 7 4 3

DATA BUS MOVE FIELD

OPTIONAL EFFECTIVE ADDRESS EXTENSION

ASR D

23 8 7

DATA BUS MOVE FIELD

OPTIONAL EFFECTIVE ADDRESS EXTENSION

NOT D

23 4 3

DATA BUS MOVE FIELD

OPTIONAL EFFECTIVE ADDRESS EXTENSION

SUBL S,D
23

DATA BUS MOVE FIELD

OPTIONAL EFFECTIVE ADDRESS EXTENSION

CLR D

23 4 3

DATA BUS MOVE FIELD

OPTIONAL EFFECTIVE ADDRESS EXTENSION

ADDL S,D
23 8 7 4 3

DATA BUS MOVE FIELD 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

RND D 1.11
23 4 3

DATA BUS MOVE FIELD

SUBR S,D

23 8 7 4 3

DATA BUS MOVE FIELD

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-259

TST D

23 8 7 4 3

DATA BUS MOVE FIELD

OPTIONAL EFFECTIVE ADDRESS EXTENSION

ADDR S,D

23 8 7 4 3

DATA BUS MOVE FIELD

OPTIONAL EFFECTIVE ADDRESS EXTENSION

ILLEGAL

23 16 15 8 7 4 3 0

I 0 0 0 0 0 0 0 o I 0 0 0 0 0 0 0 010 0 0 010 11

MOVE S,D

23 8 7 4 3

DATA BUS MOVE FIELD

A.9.5 Insane Instructions

Some instructions have legal operation codes but try to perform nonsensical operations.
These instructions are called insane instructions. An example of an insane instruction is:

11xx 1111 1xxx xxxx yyyy xyyy X:ea • B & Y:ea • B

Both parallel moves write to the same register (register B) which puts an indeterminant
result in B. These instructions are flagged as errors by the assembler. However, it is possible
to produce illegal or insane instructions with the assembler using the DC command.

For the following insane instructions, let the operation code yyyy dyyy equal any combi­
nation of OPER CODE except:

1. 0000 0000 MOVE
2. 0000 1000 reserved
3. 0000 0100 RTI
4. 0000 1100 RTS

A-260 DSP56000/DSP56Q01 USER'S MANUAL MOTOROLA

Also, no operation code is allowed that results in writing to a destination if there is a parallel
move to that same destination. In each of the following tables, a duplicate destination is
specified, which makes that specific case of the instruction an insane instruction.

Table A-32. Insane X: and Y: Parallel Move

23 16 15 8 7 0 Parallel Instruction
1wmmXXYYWr rMMRRROPERCODE X:ea,XX and Y:ea,YY

1 1 x x 1 1 1 1 1 x x x x x x x y y y y x y y y X:ea • B & Y:ea • B

1 1 x x 1 a 1 a 1 x x x x x x x y y y y x y y y X:ea • A & Y:ea • A

1 x x x 1 1 x x 1 x x x x x x x y y y y 1 y y y X:ea. B & ACC. B

1 1 x x x x 1 1 x x x x x x x x y y y y 1 y y y Y:ea • B & ACC • B

1 x x x 1 a x x 1 x x x x x x x y y y yay y y X:ea. A &ACC. A
1 1 x x x x 1 a x x x x x x x x y y y yay y y Y:ea. A & ACC. A

Table A-33. Insane X: or Y: Parallel Move

23 16 15 8 7 0 Parallel Instruction
0101SDDDWxxxxxxxOPERCODE X:xx,DDD or Y:xx,DDD

a 1 a 1 x x x 1 1 x x x x x x x y y y Y 1 Y Y Y X:xx. B or Y:xx • B & ACC • B

a 1 a 1 x x x a 1 x x x x x x x y y y yay y y X:xx. A or Y:xx. A & ACC. A

Table A-34. Insane L: Parallel Move

23 16 15 8 7 0 Parallel Instruction
0100LOLLWxxxxxxxOPERCODE L:xx,LLL

a 1 a a a a a 1 1 x x x x x x x y y y y 1 y y y L:xx.Bla&ACC.B

a 1 a a a a a a 1 x x x x x x x y y y yay y y L:xx. Ala & ACC. A

a 1 a a 1 a a 1 1 x x x x x x x y y y y 1 y y y L:xx. B & ACC. B

a 1 a a 1 a a a 1 x x x x x x x y y y yay y y L:xx. A & ACC. A
a 1 a a 1 a 1 11 xxxxx xxyyyyxyyy L:xx • B_A & ACC • A or B

a 1 a a 1 a 1 a 1 x x x x x x x y y y y x y y y L:xx • A..B & ACC • A or B

Table A-3S. Insane I: Parallel Move

23 16 15 8 7 0 Parallel Instruction
001 0 1 D D D i i i i i i i iOPERCODE iiiiiiii. DDD

a a 1 a 1 x x 1 x x x x x x x x y y y y 1 y y y Imm • B & ACC • B

a a 1 a 1 x x a x x x x x x x x y y y yay y y Imm • A & ACC • A

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-261

III

Table A-3S. Insane R: Parallel Move

23 16 15 8 7 0 Parallel Instruction
o 01 0 0 0 d d d d d D D D D D 0 PER COD E ddddd • DDDDD

o 0 1 000 x x x x x 0 1 x x 1 y Y Y Y 1 Y Y Y Reg. B & ACC • B

001 0 0 0 x x x x x 0 1 x x 0 y y y y 0 y y y Reg. A & ACC • A

Table A-37. Insane R:Y Parallel Move

23 16 15 8 7 0 Parallel Instruction
0001dXVVW1MMMRRROPERCODE d. X and V:ea,VV

o 0 0 1 x x 1 1 1 1 x x x x x x y y y y 1 Y Y Y Y:ea • B & ACC • B

o 0 0 1 x x 1 0 1 1 x x x x x x y yy y 0 y y y Y:ea • A & ACC • A

Table A-3S. Insane X:R Parallel Move

23 16 15 8 7 0 Parallel Instruction
0001XXdVWOMMMRRROPERCODE X:ea,XX and d • V

o 0 0 1 1 1 x x 1 o x x x x x x y y y y 1 Y Y Y X:ea. B & ACC. B

o 0 0 1 lOx xl 0 x x x x x x y y y y 0 y y y X:ea • A & ACC • A

Table A-39. Insane R:Y and X:R Parallel Move

23 16 15 87 0 Parallel Instruction
0000100dsOMMMRRROPERCODE R:V & X:R Class II MOVES

o 0 0 0 1 o 000 0 x x x x x x y y y y 0 y y y A. X:ea & XO • A & ACC • A

o 0 001 001 0 0 x x x x x x y y y y 1 Y Y Y B • X:ea & XO • B & ACC • B

o 0 0 0 1 o 0 0 1 o x x x x x x y y y y 0 y yy YO. A & A. Y:ea & ACC. A

o 0 0 0 1 001 lOx x x x x x y y y y 1 y y y YO • B & B • Y: ea & ACC • B

iii

A-262 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

A.9.S Reserved Instruction Codes

The instruction codes shown in Table A-40 are reserved for future use and attempting to
execute them will cause an illegal instruction interrupt.

MOTOROLA

Table A-40. Reserved Operation Codes

o 0 1 000 000 1 1 MM R R R 0 PER COD E
001 000 0 0 0 0 x x x x x x 0 PER COD E
o 0 000 1 1 1 x 1 x x x x x x 0 x x x x x x x
00000111xOx_xxxxx1xxxxxxx
o 0 0 0 0 1 101 0 x x x x x x 0 x 1 x x x x x
o 0 000 1 101 0 x x x x x x 0 x 0 x x x x x
o 0 000 1 0 0 x x x x x x x x 0 x 1 x x x x x
o 0 0 000 1 x x x x x x x x x 1 x x x x x x x
o 0 0 0 0 0 0 1 x x x x x x x x 1 x x x D x x x
o 0 0 0 0 0 0 1 0 x x x x x x x 0 x x x D x x x
o 0 0 0 0 0 0 0 x x x x x x x x 0 x 1 x x x x x

(xxx xxx f. 000000)

OSP56000/0SP56001 USER'S MANUAL A-263

III

•

A-264 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

APPENDIX B
BENCHMARK PROGRAMS

Tables 8-1 and 8-2 provide benchmark numbers for 18 common DSP programs. The two
tables are identical except that Table 8-1 is for the 20.5-MHz DSP56001 and Table 8-2 is
for the 27-MHz DSP56001. The following four code examples (Figures 8-1 to 8-4) are
representative of the benchmark programs shown in Tables 8-1 and 8~2. The code for
these and other programs is free and available through the Dr. 8u8 electronic bulletin
board. Figure 8-1 is the code for the 20-tap FIR filter shown in Tables 8-1 and 8-2. Figure
8-2 is the code for an FFT using a triple nested DO LOOP. Although this code is easier to
understand and very compact, it is not as fast as the code used for the benchmarks shown
in Tables 8-1 and 8-2, which are highly optimized using the symmetry of the FFT and the
parallelism of the DSP. Figure 8-3 is the code for the 8-pole cascaded canonic biquad IIR
filter, which uses four coefficients (see Tables 8-1 and 8-2). Figure 8-4 is the code for a 2N
delayed least mean square (LMS) FIR adaptive filter, which is useful for echo cancelation
and other adaptive filtering applications.

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 8-1

Table B-1. 20.S-MHz Benchmark Results for the DSP56001R20

Sample Rate Memory Number of
Benchmark Program (Hz) or Size Clock

Execution Time (Words) Cycles

20-Tap FIR Filter 379.6 kHz 50 54

64-Tap FIR Filter 144.4 kHz 138 142

67-Tap FIR Filter 138.5 kHz 144 148

8-Pole Cascaded Canonic 410.0 kHz 40 50
Biquad IIR Filter (4 x)

8-Pole Cascaded Canonic 353.5 kHz 45 58
Biquad IIR Filter (5 x)

8-Pole Cascaded Transpose 292.9 kHz 48 70
. Biquad IIR Filter

Dot Product 585.4 ns 10 12

Matrix Multiply 2 x 2 2.049 IJ.S 33 42
times 2x2

Matrix Multiply 3 x 3 1.6591J.s 29 34
times 3x1

M-to-M FFT 129.5 IJ.S 489 2655
64 Point

M-to-M FFT 645.1 IJ.S 1641 13255
256 Point

M-to-M FFT 3.231 ms 6793 66240
1024 Point

P-to-M FFT 121.9 IJ.s 704 2499
64 Point

P-to-M FFT 458.2 IJ.s 2048 9394
256 Point

P-to-M FFT 1.958 ms 7424 40144
1024 Point

8-2 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

Table B-2. 27-MHz Bimchniark Results for the DSP56001R27

Sample Rate Memory Number of
Benchmark Program (Hz) or Size Clock

Execution Time (Words) Cycles

20-Tap FIR Filter 500.0 kHz 50 54

64-Tap FIR Filter 190.1 kHz 138 142

67-Tap FIR Filter 182.4 kHz 144 148

8-Pole Cascaded Canonic 540.0 kHz 40 50
Biquad IIR Filter (4 x)

8-Pole Cascaded Canonic 465.5 kHz 45 58
Biquad IIR Filter (5 x)

8-Pole Cascaded Transpose 385.7 kHz 48 70
Biquad IIR Filter

Dot Product 444.4 ns 10 12

Matrix Multiply 2 x 2 1.556 f.LS 33 42
times 2x2

Matrix Multiply 3 x 3 1.259 f.LS 29 34
times3x1

M-to-M FFT 98.33 f.LS 489 2655
64 Point

M-to-M FFT 489.8 f.Ls 1641 13255
256 Point

M-to-M FFT 2.453 ms 6793 66240
1024 Point

P-to-M FFT 92.56 f.LS 704 2499
64 Point

P-to-M FFT 347.9 f.LS 2048 9394
256 Point

P-to-M FFT 1.489 ms 7424 40144
1024 Point

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 8-3

•

page 132,66,0,6
opt rc

· ** ,
; Motorola Austin DSP Operation June 30, 1988
· ** ,
; DSP56000/1
;20-tap FIR filter
;File name: 1-56.asm
· *** ,

Maximum sample rate: 379.6 kHz at 20.5 MHz/500.0 kHz at 27.0 MHz
Memory Size: Prog: 4+6 words; Data: 2x20 words
Number of clock cycles: 54 (27 instruction cycles)
Clock Frequency: 20.5 MHz/27.0 MHz
_Ir~struction cycle time: 97.6 ns/74.1 ns

· *** ,

,

This FIR filter reads the input sample
from the memory location Y:input
and writes the filtered output sample
to the memory location Y:output

The samples are stored in the X memory
The coefficients are stored in the Y memory

; ***

8-4

X MEMORY

X(n)

X(n-1)

X(n-k+l) X(n+l)

x(n)
C(O)

FIR

Y MEMORY

c(O)

c(1)

c(k-l)

yIn)

k-l

yIn) = I c(p)x(n - p)

p=O

Figure 8-1. 20-Tap FIR Filter Example (Sheet 1 of 2)

DSP56000/DSP56001 USER'S MANUAL MOTOROLA

,
· *** ,

, initialization
· ***************************** ,
n
start
wddr
cddr
input
output

equ
equ
equ
equ
equ
equ

org
move
move
move
move

20
$40
$0
$0
$ffeO
$ffe1

p:start
#wddr,rO
#cddr,r4
#n-1,mO
mO,m4

opt cc
; filter loop :8+(n-1) cycles

; rO • samples
;r1 • coefficients
;set modulo arithmetic
;for the 2 circular buffers

· *** ,
movep y:input,x: (rO) ;input sample in memory
clr a x:(rO)+,xO y: (r4)+,yO

rep #n-1
mac xO,yO,a x:(rO)+,xO y: (r4)+,yO
macr xO,xO,a (rO)-

movep a,y:output ;output filtered sample
· *** ,

end

Figure 8-1. 20-Tap FIR Filter Example (Sheet 2 of 2)

MOTOROLA OSP56000/0SP56001 USER'S MANUAL 8-5

III

a

;This program originally available on the Motorola DSP bulletin board.
;It is provided under a DISCLAIMER OF WARRANTY available from
;Motorola DSP Operation, 6501 William Cannon Drive, Austin, Tx., 78735.

;Radix-2, In-Place, Decimation-In-Time FFT (smallest code size).
;)

; Last Update 30 Sep 86 Version 1.1

fftr2a
fftr2a

macro
ident

points,data,coef
1,1

;Radix-2 Decimation-In-Time In-Place FFT Routine

Complex input and output data
Real data in X memory
Imaginary data in Y memory

Normally ordered input data
Bit reversed output data

Coefficient lookup table
-Cosine values in X memory
-Sine vaues in Y memory

; Macro Call - fftr2a poi nts,data,coef

points
data
coef

number of points (2-32768, power of 2)
start of data buffer
start of sine/cosine table

;Alters Data ALU Registers
x1 xO y1 yO
a2 a1 aO a
b2 b1 bO b

;Alters Address Registers
rO nO mO
r1 n1 m1

n2

r4 n4 m4
r5 n5 m5
r6 n6 m6

;Alters Program Control Registers
pc sr

; Uses 6 locations on System Stack

Figure 8-2. Radix 2, In-Place, Decimation-In-Time FFT (Sheet 1 of 2)

B-6 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

;Latest Revision - September 30, 1986

move #points/2,nO
move #1,n2
move #points/4,n6
move #-1,mO
move mO,m1
move mO,m4
move mO,m5
move #0,m6

;initialize butterflies per group
;initialize groups per pass
;initialize C pointer offset
;initialize A and 8 address modifiers
;for linear addressing

;initialize C address modifier for
;reverse carry (bit-reversed) addressing

;Perform all FFT passes with triple nested DO loop

do #@cvi (@log(points)/@log(2) + 0.5),-end-pass
move #data,rO ;initialize A input pointer
move rO,r4 ;initialize A output pointer
lua (rO) + nO,r1 ;initialize 8 input pointer
move #coef,r6 ;initialize C input pointer
lua (r1) - ,r5 ;initialize 8 output pointer
move nO,n1 ;initialize pointer offsets
move nO,n4
move nO,n5

do
move

move
move

do
mac

macr
subl
mac
macr
subl

move
move

move
Isr
lsi
move

endm

n2,_end_grp
x:(r1),X1

x:(r5),a
x:(r6)+n6,xO

nO.-end-bfy
x1,y0,b

-xO,y1,b
b,a
-x1,xO,b
-y1,yO,b
b,a

a,x:(r5)+n5,
x:(rO) + nO,x1

nO,b1
b n2,a1
a b1,nO
a1,n2

y:(r6),y0

y:(rO),b

y:(r1) + ,y1

a,x:(r5) +
x:(rO),b
x:(rO) +,a
x:(r1),x1
b,x:(r4)+

y:(rO),a
b,y:(r4)
a,y:(r5)

y:(rO),b

y:(r1)+n1,y1
y: (r4) + n4,y1

;Iookup -sine and
; - cosine values
;preload data
;update C pointer

;Radx 2 DIT
;butterfly kernel

;update A and 8 pointers

;divide butterflies per group by two
;multiply groups per pass by two

Figure B-2. Radix 2, In-Place, Decimation-In-Time FFT (Sheet 2 of 2)

MOTOROLA DSP56000/DSP56001 USER'S MANUAL

•
8-7

•

page 132,66,0,6
opt rc

. ** ,
;Motorola Austin DSP OperationJune 30, 1988
; **
; DSP56000/1
;8-pole 4-multiply cascaded canonic IIR filter
;File name: 4-56.asm
; ***

Maximum sample rate: 410.0 kHz at 20.5 MHzl540.0 kHz at 27.0 MHz
Memory Size: Prog: 6+ 10 words; Data: 4(2+4) words
Number of clock cycles: 50 (25 instruction cycles)
Clock Frequency: 20.5 MHzl27.0 MHz
Cycle time: 97.5 ns04.1 ns

; ***

8-8

This IIR filter reads the input sample
from the memory location Y:input
and writes the filtered output sample
to the memory location Y:output

The samples are stored in the X memory
The coefficients are stored in the Y memory

The equations of the filter are:
w(n) = x(n) - ail*w(n -1) - ai2*w(n - 2)
y(n) = w(n) + bil*w(n -1) + bi2*w(n - 2)

wIn)
xln) --I -) -------------.; +--J~--------

...... l----- ail 1-1 ---.-+-J----

....... f-----ai2 ---...., ---

Figure 8-3. 8-Pole 4-Multiply Cascaded Canonic IIR Filter (Sheet 1 of 2)

DSP56000/DSP56001 USER'S MANUAL MOTOROLA

All coefficients are divided by 2:
w(n)/2 = x(n)/2 - aiI/2*w(n -1) - ai2/2*w(n - 2)
y(n)/2 = w(n)/2 + biI/2*w(n -1) + bi2/2*w(n - 2)

X Memory Organization

wN(n-1)
wN(n-2)

w1(n-1)
RO. w1(n-2)

Data + 2*nsec-1

Data

Y Memory Organization
b1N/2 Coef.+4*nsec-1
b2N/2
a1N/2
a2N/2

b1112
b2112
a11/2

R4. a21/2 Coef.

; ***

, initialization
. ***************************** ,
nsec
start
data
coef
input
output
igain

equ
equ
equ
equ
equ
equ
equ
ori
move
move
move
move
move

4
$40
o
o
$ffeO
$ffe1
0.5
#$08,mr
#data,rO
#coef,r4
#2*nsec - 1,mO
#4*nsec-1,m4
#igain,y1

opt cc
; filter loop: 4*nsec+9

;set scaling mode
;point to filter states
;point to filter coefficients

;y1 = initial gain

;**

movep y:input,yO ;get sample
mpy yO,y1,a x:(rO)+,xO y:(r4)+,yO ;xO=1st section w(n-2),yO=a12/2

do #nsec,end_cell ;do each section
mac -xO,yO,a x:(rO) - ,x1 y:(r4) +,y0 ;x1 =w(n-1),yO=ai1/2
macr -x1,yO,a x1,x:(rO) + y:(r4) +,y0 ;push w(n-1) to w(n-2),y0=bi2/2
mac xO,yO,a a,x:(rO) + y:(r4)+,yp ;push wIn) to w(n-1),yO=bi1/2
mac x1,yO,a x:(rO)+,xO y:(r4)+,yO ;next iter:xO = wIn - 2),yo = ai2/2

end_cell
rnd a ;round result
movep a,y:output ;output sample

.**

end

Figure B-3. 8-Pole 4-Multiply Cascaded Canonic IIR Filter (Sheet 2 of 2)

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 8-9

&I

page 132,60,1,1
;newlms2n.asm

New Implementation of the delayed LMS on the DSP56000 Revision C
;Memory map:

Initial X H
; x(n) x(n -1) x(n -2) x(n -3) x(n -4) hx hO h1 h2 h3

]]]
~ ~ ~

;hx is an unused value to make the calculations faster.

opt cc
ntaps equ 4
input equ $FFCO
output equ $FFC1

org x:$O
state ds 5

org y:$O
coef ds 5

org p:$40
move #state,rO ;start of X
move #2,nO
move #ntaps,mO ;mod 5
move #coef+ 1,r4 ;coefficients
move #ntaps,m4 ;mod 5
move #coef,r5 ;coefficients
move m4,m5 ;mod 5

-smploop , Prog Icyc
movep y:input,a
move a,x:(rO)

;error signal is in y1
;FIR sum in a=a+h(k) old*x(n-k)
; h(k)new in b = h(k)old + error*x(n - k -1)

;get input sample
;save input sample

word
1

clr
move
do
mac
macr

a x:(rO)+,xO ;xO=x(n) 1

,

mac
macr

-Ims
move
move

x:(rO)+,x1 y:(r4)+,yO ;x1=x(n-1),yO=h(0) 1
#taps/2,-lms 2
xO,yO,a yO,b b,y:(r5) + ;a = h(O)*x(n),b= h(O) 1
x1,y1,b x:(rO)+,xO y:(r4)+,yO ;b=h(0)+e*x(n-1)=h(0)new 1

;xO=x(n-2) yO=h(1)
x1,yO,a yO,b b,y:(r5)+ ;a=a+h(1)*x(n-1) b=h(1)
xO,y1,b x:(rO)+,x1 y:(r4)+,y0 ;b=h(1)+e*x(n-2)

(rO) - nO

;x1 = x(n - 3) yO = H(2)

b,y:(r5) + ;save last new c()
;pointer update

;(Get d(n), subtract fir output (reg a), multiply by "u", put
;the result in y1. This section is application dependent.)

movep a,y:output ;output fir if desired
jmp -smploop
end

1
1
3
1
1

Totals: 11 2N +8

Figure 8-4. LMS FIR Adaptive Filter

8-10 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

APPENDIX C
ADDITIONAL SUPPORT

User support frol1l the conception of a design through completion is available from Motorola
and third-party companies as shown in the following list:

Design

Prototyping

Design
Verification

MOTOROLA

Motorola
Data Sheets
Application Notes
Application Bulletins
Software Examples
Simulator

Assembler
Linker
C Compiler
Simulator
Application Development

System (ADS)
In-Circuit Emulator

Cable for ADS

Application Development
System (ADS)

In-Circuit Emulator
Simulator

Third Party
Data Acquisition Packages
Filter Design Packages
Operating System Software

Logic Analyzer with
DSP56000/DSP56001 ROM Packages

In-Circuit Emulators
Data Acquisition Cards
DSP Development System

Cards
Operating System Software
Debug Software

Data Acquisition Packages
Logic Analyser with

DSP56000/DSP56001 ROM Packages
Data Acquisition Cards
DSP Development System

Cards
Application-Specific

Development Tools
Debug Software

OSP56000/0SP56001 USER'S MANUAL C-1

III

l1li

The following is a partial list ofthe support available forthe DSP56000/DSP56001. Additional
information can be obtained through Dr. BuB or the appropriate support telephone service.

Motorola DSP Product Support

• DSP56000CLASx Design-In Software Package which includes:
Relocatable Macro Assembler
Linker
Simulator (simulates single or multiple DSP56000/DSP56001s)
Librarian

• DSP56KCCx Full Kernighan and Ritchie C Compiler

• DSP320to56001 Translator Software

• DSP56000/DSP56001 Applications Development System (ADS)

• Support Integrated Circuits

• DSP Bulletin Board (Dr. BuB)

• Motorola DSP Newsletter

• Motorola Field Application Engineers (FAEs)
See your local telephone directory for the Motorola Semiconductor Sector sales
office telephone number.

• Design Hotline

• Applications Assistance

• Marketing Information

• Third-Party Support Information

• University Support Information

DSP56000CLASx Assembler/Simulator

The macro cross assembler and simulator run on:
1. IBM@) PC, XT, and AT under DOS 2.x and 3.x
2. Macintosh@) II under MAC as 4.1 or later
3. SUN-3@) under UNIX@) BSD 4.2
4. VAX@) under VMS@) 4.5 or later
5. NeXT@) under Mach

IBM is a trademark of International Business Machines.
Macintosh is a trademark of Apple Computer, Inc.
SUN-3 is a trademark of Sun Microsystems, Inc.
UNIX is a registered trademark of AT&T Bell laboratories.
VAX and VMS are trademarks of Digital Equipment Corp.
NeXT is a trademark of NeXT, Inc.

C-2 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

/

Macro Cross Assembler Features:

• Production of relocatable object modules compatible with linker program when in
relocatable mode

• Production of absolute files compatible with simulator program when in absolute mode

• Supports full instruction set, memory spaces, and parallel data transfer fields of the
DS P56000/DS P5600 1

• Modular programming features: local labels, sections, and external definition/refer-
ence directives

• Nested macro processing capability with support for macro libraries

• Complex expression evaluation including boolean operators

• Built-in functions for data conversion, string comparison, and common transcendental
math functions

o Directives to define circular and bit-reversed buffers

• Extensive error checking and reporting

Simulator Features:

• Simulation of DSP56001 (default) or DSP56000

o Simulation of multiple DSP56000/DSP56001 s

o Linkable object code modules:
-Nondisplay simulator library
-Display simulator library

• C language source code for:
-Screen management functions
-Terminal I/O functions
-Simulation examples

o Single stepping through object programs

o Up to 99 conditional or unconditional breakpoints

• Program patching using a single-line assembler/disassembler

• Instruction, clock cycle, and histogram counters

o Session and/or command logging for later reference

• ASCII input/output files for peripherals

o Help-file and help-line display of simulator commands

• Loading and saving of files to/from simulator memory

• Macro command definition and execution

• Display enable/disable of registers and memory

• Hexadecimal/decimal/binary calculator

MOTOROLA DSP56000/DSP56001 USER'S MANUAL C-3

Ell

l1li

C Language Compiler

DSP56KCCx C Language Compiler Features:

• Full Kernighan and Ritchie C

• Structures/Unions

• Floating Point

• In-line assembler language code compatibility

• Full function preprocessor for:
-Macro definition/expansion
-File inclusion
-Conditional compilation

• Full error detection and reporting

DSP320to56001 Translator

DSP320to56001 Translator Features:

• Translates any TMS32010 linked object code to DSP56001 source assembler code

• Two modes of operation:
-Translates to DSP56001 source assembler code for optimization and assembly

using DSP56000CLASx
-Translates and runs lias is" directly and immediately on the DSP56000ADSx

• C language DSP320t056001 source code is provided in addition to IBM PC/XT/AT object
code to allow:

-User modification for TMS32020 or TMS320C25 translation
-User compilation to accommodate different host platforms

DSP56000ADSx Application Development System

DSP56000ADS Application Development System Hardware Features:

• Full-speed 20.48-MHz operation (upgradable to 27 MHz)

• Multiple application development module (ADM) support with programmable ADM
addresses

• 8K132Kx24 user-configurable RAM for DSP56000/DSP56001 code development

• 1 K x 24 monitor ROM expandable to 4K x 24

• 96-pin Euro-card connector making all DSP56001 pins accessible

• In-circuit emulation capabilities when used with the DSP56KEMUL TRCABL cable

• Separate berg pin connectors for alternate accessing of serial or hostiDMA ports

• ADM can be used in standalone configuration

• No external power supply needed when connected to a host platform

C-4 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

DSP56000ADSx Application Development System Software Features:

• Single/multiple stepping through DSP56000/DSP56001 object programs

• Up to 99 conditional or unconditional breakpoints

• Program patching using a single-line assembler/disassembler

• Session and/or command logging for later reference

• Loading and saving files to/from ADM memory

• Macro command definition and execution

• Display enable/disable of registers and memory

• Debug commands supporting multiple ADMs

• Hexadecimal/decimal/binary calculator

• Host operating system commands from within ADS user interface program

• Multiple as I/O file access from DSP56000/DSP56001 object programs

o Fully compatible with the DSP56000CLASx design-in software package

• On-line help screens for each command and DSP56000/DSP56001 register

Support Integrated Circuits:

• 8K x 24 Static RAM (available Q4, 1989)

• DSP56ADC16 16-bit, 100-kHz analog-to-digital Converter

Dr. BuB Electronic Bulletin Board

Dr. BuB is an electronic bulletin board providing free source code for a large variety of
topics that can be used to develop applications with Motorola DSP products. The software
library includes approximately 100 files including FFTs, FIR filters, IIR filters, lattice filters,
matrix algebra routines, companding routines, floating-point routines, a software debug
monitor, and others. In addition, the latest product information and documentation (in­
cluding information on new products and improvements on existing products) is posted.
Questions concerning Motorola DSP products posted on Dr. BuB are answered promptly.
Access to Dr. BuB is through the following phone numbers:

(212A - 300/1200 Baud) (512) 891-DSP1
(V.22 - 1200 Baud) (512) 891-DSP2
(V.22bis - 2400 Baud) (512) 891-DSP3
Format: 7 data bits, even parity, 1 stop bit
User ID=guest

MOTOROLA DSP56000/DSP56001 USER'S MANUAL C-5

•

The following is a partial list of the software available on Dr. BuB.

Document ID Version Synopsis Size

Codec Routines:
loglin.asm 1.0 Companded CODEC to linear PCM data 4572

conversion
loglin.hlp Help for loglin.asm 1479

loglint.asm 1.0 Test program for loglin.asm 2184
loglint.hlp Help for loglint.asm 1993

linlog.asm 1.1 Linear PCM to companded CODEC data 4847
conversion

linlog.hlp Help for linlog.asm 1714

Fast Fourier Transforms:
sincos.asm 1.2 Sine-Cosine Table Generator for FFTs 1185
sihcos.hlp Help for sincos.asm 887

sinewave.asm 1.1 Full-Cycle Sinewave Table Generator 1029
Macro

sinewave.hlp Help for sinewave.asm 1395

fftr2a.asm 1.1 Radix 2, In-Place, DIT FFT (smallest) 3386
fftr2a.hlp Help for fftr2a.asm 2693

fftr2at.asm 1.1 Test Program for FFTs (fftr2a.asm) 999
fftr2~t. hlp Help for fftr2at.asm 563

fftr2b.asm 1.1 Radix 2, In-Place, DIT FFT (faster) 4290
fftr2b.hlp Help for fftr2b.asm 3680

fftr2c.asm 1.2 Radix 2, In-Place, DIT FFT (even faster) 5991
fftr2c.hlp Help for fftr2c.asm 3231

fftr2d.asm 1.0 Radix 2, In-Place, DIT FFT 3727 (using 3727
DSP56001 sine-cosine ROM tables)

fftr2d.hlp Help for fftr2d.asm 3457

III fftr2dt.asm 1.0 Test program for fftr2d.asm 1287
fftr2dt.hlp Help for fftr2dt.asm 614

C-6 DSP56000/DSP56001 USER'S MANUAL

Document 10 Version Synopsis Size

fftr2e.asm 1.0 1024 Point, Non-In-Place, FFT (3.39ms) 8976
fftr2e.hlp Help for fftr2e.asm 5011

fftr2et.asm 1.0 Test program for fftr2e.asm 984
fftr2et.hlp Help for fftr2et.asm 408

dct1.asm 1.2 Discrete Cosine Transform using FFT 5471
dct1.hlp 1.1 Help file for dct1.asm 970

fftr2cc.asm 1.0 Radix 2, In-place Decimation-in-time 6524
complex FFT macro

fftr2cc.hlp 1.0 Help file for fftr2cc.asm 3533

fftr2cn.asm 1.0 Radix 2, Decimation-in-time Complex FFT 6584
macro with normally ordered
input/output

fftr2cn.hlp 1.0 Help file for fftr2cn.asm 2468

fftr2en.asm 1.0 1024 point, not-in-place, complex FFT 9723
macro with normally ordered

- input/output
fftr2en.hlp 1.0 Help file for fftr2en.asm 4886

dhit1.asm 1.0 Routine to compute Hilbert transform in 1851
the frequency domain

Filters:
fir.asm 1.0 Direct Form FIR Filter 545
fir.hlp Help for fir.asm 2161

firt.asm 1.0 Test program for fir.asm 1164

iir1.asm 1.0 Direct Form Second-Order All-Pole 656
IIR Filter

iir1.hlp Help for iir1.asm 1786

iir1t.asm 1.0 Test program for iir1.asm 1157 • iir2.asm 1.0 Direct Form Second-Order All-Pole IIR 801
Filter with Scaling

iir2.hlp Help for iir2.asm 2286

MOTOROLA OSP56000/0SP56001 USER'S MANUAL C-7

Document ID Version Synopsis Size

iir2t.asm 1.0 Test program for iir2.asm 1311

iir3.asm 1.0 Direct Form Arbitrary-Order All-Pole 776
IIR Filter

iir3.hlp Help for iir3.asm 2605

iir3t.asm 1.0 Test program for iir3.asm 1309

iir4.asm 1.0 Second-Order Direct Canonic IIR Filter 713
(Biquad IIR Filter)

iir4.hlp Help for iir4.asm 2255

iir4t.asm 1.0 Test program for iir4.asm 1202

iir5.asm 1.0 Second-Order Direct Canonic IIR Filter with 842
Scaling (Biquad IIR Filter)

iir5.hlp Help for iir5.asm 2803

iir5t.asm 1.0 Test program for iir5.asm 1289

iir6.asm 1.0 Arbitrary-Order Direct Canonic IIR Filter 923
iir6.hlp Help for iir6.asm 3020

iir6t.asm 1.0 Test program for iir6.asm 1377

iir7.asm 1.0 Cascaded Biquad IIR Filters 900
iir7.hlp Help for iir7.asm 3947

iir7t.asm 1.0 Test program for iir7.asm 1432

Ims.hlp 1.0 LMS Adaptive-Filter Algorithm 5818

transiir.asm 1.0 Impiements the transposed IIR filter 1981

transiir.hlp 1.0 Help file for transiir.asm 974

Floating-Point Routines:

l1li fpdef.hlp 2.0 Storage format and arithmetic 10600
representation definition

fpcalls.hlp 2.1 Subroutine calling conventions 11876
fplist.asm 2.0 Test file that lists all subroutines 1601
fprevs.hlp 2.0 Latest revisions of floating pt. lib 1799

C-8 OSP56000/0SP56001 USER'S MANUAL MOTOROLA

Document 10 Version Synopsis Size

fpinit.asm 2.0 Library initialization subroutine 2329
fpadd.asm 2.0 Floating-point add 3860
fpsub.asm 2.1 Floating-point subtract 3072
fpcmp.asm 2.1 Floating-point compare 2605
fpmpy.asm 2.0 Floating-point multiply 2250
fpmac.asm 2.1 Floating-point multiply-accumulate 2712
fpdiv.asm 2.0 Floating-point divide 3835
fpsqrt.asm 2.0 Floating-point square root 2873

·fpneg.asm 2.0 Floating-point negate 2026
fpabs.asm 2.0 Floating-point absolute value 1953
fpscale.asm 2.0 Floating-point scaling 2127
fpfix.asm 2.0 Floating to fixed-point conversion 3953
fpfloat.asm 2.0 Fixed to floating-point conversion 2053
fpceil.asm 2.0 Floating-point CEIL subroutine 1771

durbin.asm 1.0 Solution for LPC coefficients 5615
durbin.hlp 1.0 Help file for DURBIN.ASM 2904

fpfrac.asm 2.0 Floating-point FRACTION subroutine 1862

Functions:
log2.asm 1.0 Log base 2 by polynomial approximation 1118
log2.hlp Help for log2.asm 719

log2t.asm 1.0 Test program for log.asm 1018

log2nrm.asm 1.0 Normalizing base 2 logarithm macro 2262
log2nrm.hlp Help for log2nrm.asm 676

log2nrmt.asm 1.0 Test program for log2nrm.asm 1084

exp2.asm 1.0 Exponential base 2 by polynomial 926
approximation

exp2.hlp Help for exp2.asm 759

exp2t.asm 1.0 Test program for exp2.asm 1019

sqrt1.asm 1.0 Square Root by polynomial 991
approximation 7-bit accuracy

sqrt1.hlp Help for sqrt1.asm 779

MOTOROLA OSP56000/0SP56001 USER'S MANUAL C-9

Document ID Version Synopsis Size

sqrt1t.asm 1.0 Test program for sqrt1.asm 1065

sqrt2.asm 1.0 Square Root by polynomial 899
approximation 10-bit accuracy

sqrt2.hlp Help for sqrt2.asm 776

sqrt2t.asm 1.0 Test program for sqrt2.asm 1031

sqrt3.asm 1.0 Full precision Square Root Macro 1388
sqrt3.hlp Help for sqrt3.asm 794

sqrt3t.asm 1.0 Test program for sqrt3.asm 1053

ILasm 1.1 Linear table lookup/interpolation routine 3253
for function generation

ILhlp 1.1 Help for tlLasm 1510

bingray.asm 1.0 Binary to Gray code conversion macro 601

bi ng rayt.asm 1.0 Test program for bingray.asm 991

rand1.asm 1.1 Pseudo Random Sequence Generator 2446
rand1.hlp Help for rand1.asm 704

lattice Filters:
latfir1.asm 1.0 Lattice FIR Filter Macro 1156
latfir1.hlp Help for latfir1.asm 6327

latfir1t.asm 1.0 Test program for latfir1.asm 1424

latfir2.asm 1.0 Lattice FIR Filter Macro (modified modulo 1174
count)

latfir2.hlp Help for latfir2.asm 1295

latfir2t.asm 1.0 Test program for latfir2.asm 1423

latiir.asm 1.0 Lattice IIR Filter Macro 1257
latiir.hlp Help for latiir.asm 6402

latiirt.asm 1.0 Test program for latiir.asm 1407

C-10 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

Document ID Version Synopsis Size

latgen.asm 1.0 Generalized Lattice FIR/IIR Filter Macro 1334
latgen.hlp Help for latgen.asm 5485

latgent.asm 1.0 Test program for latgen.asm 1269

latnrm.asm 1.0 Normalized Lattice IIR Filter Macro 1407
latnrm.hlp Help for latnrm.asm 7475

latnrmt.asm 1.0 Test program for latnrm.asm 1595

Matrix Operations:
matmul1.asm 1.0 [1 x 3][3 x 3] = [1 x 3] Matrix Multiplication 1817
matmul1.hlp Help for matmul1.asm 527

matmul2.asm 1.0 General Matrix Multiplication, C=AB 2650
matmul2.hlp Help for matmul2.asm 780

matmul3.asm 1.0 General Matrix Multiply-Accumulate, 2815
C=AB+Q

matmul3.hlp 1.0 Help for matmul3.asm 865

Reed-Solomon Encoder:
readme.rs 1.0 Instructions for Reed-Solomon coding 5200
rscd.asm 1.0 Reed-Solomon coder for DSP56000 5822

simulator
newc.c 1.0 Reed-Solomon coder coded in C 4075
table1.asm 1.0 Include file for R-S coder 7971
table2.asm 1.0 Include file for R-S coder 4011

Sorting Routines:
sort1.asm 1.0 Array Sort by Straight Selection 1312
sort1.hlp Help for sort1.asm 1908

sort1t.asm 1.0 Test program for sort1.asm 689

sort2.asm 1.1 Array Sort by Heapsort Method 2183
sort2.hlp Help for sort2.asm 2004

sort2t.asm 1.0 Test program for sort2.asm 700

MOTOROLA DSP56000/DSP56001 USER'S MANUAL C-11

Document ID Version Synopsis Size

Speech:
Igsol1.asm 2.0 Leroux-Gueguen solution for PARCOR 4861

(LPC) coefficients
Igsol1.hlp Help for Igsol1.asm 3971

durbin1.asm 1.2 Durbin Solution for PARCOR (LPC) 6360
coefficients

durbin1.hlp Help for durbin1.asm 3616

Standard 1/0 Equates:
ioequ.asm 1.1 Motorola Standard 110 Equate File 8774

ioequlc.asm 1.1 Lower Case Version of ioequ.asm 8788

intequ.asm 1.0 Standard Interrupt Equate File 1082

intequlc.asm 1.0 Lower Case Version of intequ.asm 1082

Motorola DSP News

The Motorola DSP News is a quarterly newsletter providing information on new products,
application briefs, questions and answers, DSP product information, third-party product
news, etc. This newsletter is free and is available upon request by calling the marketing
information phone number listed below.

Motorola Field Application Engineers

Information and assistance for DSP applications is available through the local Motorola
field office. See your local telephone directory for telephone numbers or call (512)
891-2030.

Design Hotline - 1-800-521-6274

This is the Motorola number for information pertaining to any Motorola product.

C-12 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

Applications Assistance - (512) 891-3230

Design assistance for specific DSP applications is available by calling this number.

Marketing Information - (512) 891-2030

Marketing information including brochures, application notes, manuals, price quotes, etc.
for Motorola DSP-related products are available by calling this number.

Third-Party Support Information - (512) 891-3098

Information concerning third-party manufacturers using and supporting Motorola DSP
products is available by calling this number. Third-party support includes:

Filter design software
Logic analyzer support
VME boards, IBM-PC/XT/AT boards, MACII boards
Development systems
Data conversion cards
Operating system software
Debug software

Additional information is available on Dr. Bub and in DSP News.

University Support - (512) 891-3098

Information concerning university support programs and university discounts for all
Motorola DSP products is available by calling this number.

Training Courses - (602) 897-8665

There are two courses available for the DSP56000 Family:
1. Introduction to the DSP56000/DSP56001 (MTTA5) which is a 4.5-hour audio-tape course

on the DSP56000lDSP56001 architecture and programming.
2. Introduction to the DSP56000/DSP56001 (MTT31) which is a four-day instructor-led

course and laboratory covering the details of the DSP56000/DSP56001 architecture
and programming.

Additional information is available by writing:
Motorola SPS Training and Technical Operations
Mail Drop HW68
P. O. Box 21007
Phoenix, Arizona 85036

or by calling the number above. A technical training catalog is available which describes
these courses and gives the current training schedule and prices.

MOTOROLA DSP56000/DSP56001 USER'S MANUAL C-13

III

•

Text Books

A list of DSP-related books is included here as an aid for the engineer who is new to the
field of DSP. This is a partial list of DSP references intended to help the new user find
useful information in some of the many areas of DSP applications. Many books could be
included in several categories but are not repeated.

General DSP:

C-14

ADVANCED TOPICS IN SIGNAL PROCESSING
Jae S. Lim and Alan V. Oppenheim
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1988

APPLICATIONS OF DIGITAL SIGNAL PROCESSING
A. V. Oppenheim
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1978

DESCRETE-TIME SIGNAL PROCESSING
A. V. Oppenheim and R. W. Schafer
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1989

DIGITAL PROCESSING OF SIGNALS THEORY AND PRACTICE
Maurice Bellanger
New York, NY: John Wiley and Sons, 1984

DIGITAL SIGNAL PROCESSING
Alan V. Oppenheim and Ronald W. Schafer
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1975

DIGITAL SIGNAL PROCESSING: A SYSTEM DESIGN APPROACH
David J. DeFatta, Joseph G. Lucas, and William S. Hodgkiss
New York, NY: John Wiley and Sons, 1988

FOUNDATIONS OF DIGITAL SIGNAL PROCESSING AND DATA ANALYSIS
J. A. Cadzow
New York, NY: MacMillan Publishing Company, 1987

HANDBOOK OF DIGITAL SIGNAL PROCESSING
D. F. Elliott
San Diego, CA: Academic Press, Inc., 1987

INTRODUCTION TO DIGITAL SIGNAL PROCESSING
John G. Proakis and Dimitris G. Manolakis
New York, NY: Macmillan Publishing Company, 1988

DSP56000/DSP56()01 USER'S MANUAL MOTOROLA

MULTIRATE DIGITAL SIGNAL PROCESSING
R. E. Crochiere and L. R. Rabiner
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1983

SIGNAL PROCESSING ALGORITHMS
S. Stearns and R. Davis
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1988

SIGNAL PROCESSING HANDBOOK
C.H. Chen
New York, NY: Marcel Dekker, Inc., 1988

SIGNAL PROCESSING - THE MODERN APPROACH
James V. Candy
New York, NY: McGraw-Hili Company, Inc., 1988

THEORY AND APPLICATION OF DIGITAL SIGNAL PROCESSING
Rabiner, Lawrence R., Gold and Bernard
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1975

Digital Audio and Filters:

ADAPTIVE FILTER AND EQUALIZERS
B. Mulgrew and C. Cowan
Higham, MA: Kluwer Academic Publishers, 1988

ADAPTIVE SIGNAL PROCESSING
B. Widrow and S. D. Stearns
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1985

ART OF DIGITAL AUDIO, THE
John Watkinson
Stoneham. MA: Focal Press, 1988

DESIGNING DIGITAL FILTERS
Charles S. Williams
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1986

DIGITAL AUDIO SIGNAL PROCESSING AN ANTHOLOGY
John Strawn
William Kaufmann, Inc., 1985

DIGITAL CODING OF WAVEFORMS
N. S. Jayant and Peter Noll
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1984

MOTOROLA DSP56000/DSP56001 USER'S MANUAL

•
C-15

DIGITAL FILTERS: ANALYSIS AND DESIGN
Andreas Antoniou
New York, NY: McGraw-Hili Company, Inc., 1979

DIGITAL FILTERS AND SIGNAL PROCESSING
Leland B. Jackson
Higham, MA: Kluwer Academic Publishers, 1986

DIGITAL SIGNAL PROCESSING
Richard A. Roberts and Clifford T. Mullis
New York, NY: Addison-Welsey Publishing Company, Inc., 1987

INTRODUCTION TO DIGITAL SIGNAL PROCESSING
Roman Kuc
New York, NY: McGraw-Hili Company, Inc., 1988

INTRODUCTION TO ADAPTIVE FILTERS
Simon Haykin
New York, NY: MacMillan Publishing Company, 1984

MUSICAL APPLICATIONS OF MICROPROCESSORS (Second Edition)
H. Chamberlin
Hasbrouck Heights, NJ: Hayden Book Co., 1985

Controls:

C-16

ADAPTIVE CONTROL
K. Astrom and B. Wittenmark
New York, NY: Addison-Welsey Publishing Company, Inc., 1989

ADAPTIVE FILTERING PREDICTION & CONTROL
G. Goodwin and K. Sin
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1984

AUTOMATIC CONTROL SYSTEMS
B.C. Kuo
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1987

COMPUTER CONTROLLED SYSTEMS: THEORY & DESIGN
K. Astrom and B. Witten mark
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1984

DIGITAL CONTROL SYSTEMS
B.C. Kuo
New York, NY: Holt, Reinholt, and Winston, Inc., 1980

DSP56000/DSP56001 USER'S MANUAL MOTOROLA

DIGITAL CONTROL SYSTEM ANALYSIS & DESIGN
C. Phillips and H. Nagle
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1984

ISSUES IN THE IMPLEMENTATION OF DIGITAL FEEDBACK COMPENSATORS
P. Moroney
Cambridge, MA: The MIT Press, 1983

Graphics:

CGM AND CGI
D. B. Arnold and P. R. Bono
New York, NY: Springer-Verlag, 1988

COMPUTER GRAPHICS (Second Edition)
D. Hearn and M. Pauline Baker
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1986

FUNDAMENTALS OF INTERACTIVE COMPUTER GRAPHICS
J. D. Foley and A. Van Dam
Reading MA: Addison-Wesley Publishing Company Inc., 1984

GEOMETRIC MODELING
Michael E. Morteson
New York, NY: John Wiley and Sons, Inc ..

GKS THEORY AND PRACTICE
P. R. Bono and I. Herman (Eds.)
New York, NY: Springer-Verlag, 1987

ILLUMINATION AND COLOR IN COMPUTER GENERATED IMAGERY
Roy Hall
New York, NY: Springer-Verlag

POSTSCRIP LANGUAGE PROGRAM DESIGN
Glenn C. Reid - Adobe Systems, Inc.
Reading MA: Addison-Wesley Publishing Company, Inc., 1988

MICROCOMPUTER DISPLAYS, GRAPHICS, AND ANIMATION
Bruce A. Artwick
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1985

PRINCIPLES OF INTERACTIVE COMPUTER GRAPHICS
William M. Newman and Rogert F. Sproull
New York, NY: McGraw-Hili Company, Inc., 1979

MOTOROLA DSP56000/DSP56001 USER'S MANUAL

III

C-17

III

PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS
David F. Rogers
New York, NY: McGraw-Hili Company, Inc., 1985

RENDERMAN INTERFACE, THE
Pixar
San Rafael, CA. 94901

Image Processing:

DIGITAL IMAGE PROCESSING
William K. Pratt
New York, NY: John Wiley and Sons, 1978

DIGITAL IMAGE PROCESSING (Second Edition)
Rafael C. Gonzales and Paul Wintz
Reading, MA: Addison-Wesley Publishing Company, Inc., 1977

DIGITAL IMAGE PROCESSING TECHNIQUES
M. P. Ekstrom
New York, NY: Academic Press, Inc., 1984

DIGITAL PICTURE PROCESSING
Azriel Rosenfeld and Avinash C. Kak
New York, NY: Academic Press, Inc., 1982

SCIENCE OF FRACTAL IMAGES, THE
M. F. Barnsley, R. L. Devaney, B. B. Mandelbrot, H. O. Peitgen,
D. Saupe, and R. F. Voss
New York, NY: Springer-Verlag

Numerical Methods:

C-18

ALGORITHMS (THE CONSTRUCTION, PROOF, AND ANALYSIS OF PROGRAMS)
P. Berliout and P. Bizard
New York, NY: John Wiley and Sons, 1986

MATRIX COMPUTATIONS
G. H. Golub and C. F. Van Loan
John Hopkins Press, 1983

DSP56000/DSP560q1 USER'S MANUAL MOTOROLA

NUMERICAL RECIPES IN C - THE ART OF SCIENTIFIC PROGRAMMING
William H. Press, Brian P. Flannery,
Saul A. Teukolsky, and William T. Vetterling
Cambridge Uni,(ersity Press, 1988

NUMBER THEORY IN SCIENCE AND COMMUNICATION
Manfred R. Schroeder
New York, NY: Springer-Verlag, 1986

Pattern Recognition:

PATTERN CLASSIFICATION AND SCENE ANALYSIS
R. O. Duda and P. E. Hart
New York, NY: John Wiley and Sons, 1973

CLASSIFICATION ALGORITHMS
Mike James
New York, NY: Wiley-Interscience, 1985

Spectral Analysis:

STATISTICAL SPECTRAL ANALYSIS, A NON PROBABILISTIC THEORY
William A. Gardner
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1988

THE FAST FOURIER TRANSFORM AND ITS APPLICATIONS
E. Oran Brigham
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1988

THE FAST FOURIER TRANSFORM AND ITS APPLICATIONS
R. N. Bracewell
New York, NY: McGraw-Hili Company, Inc., 1986

Speech:

ADAPTIVE FILTERS - STRUCTURES, ALGORITHMS, AND APPLICATIONS
Michael L. Honig and David G. Messerschmitt
Higham, MA: Kluwer Academic Publishers, 1984

DIGITAL CODING OF WAVEFORMS
N. S. Jayant and P. Noll
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1984

MOTOROLA DSP56000/DSP56001 USER'S MANUAL

II

C-19

DIGITAL PROCESSING OF SPEECH SIGNALS
Lawrence R. Rabiner and R. W. Schafer
Englwood Cliffs, NJ: Prentice-Hall, Inc., 1978

LINEAR PREDICTION OF SPEECH
J. D. Markel and A. H. Gray, Jr.
New York, NY: Springer-Verlag, 1976

SPEECH ANALYSIS, SYNTHESIS, AND PERCEPTION
J. L. Flanagan
New York, NY: Springer-Verlag, 1972

SPEECH COMMUNICATION - HUMAN AND MACHINE
D. O'Shaughnessy
Reading, MA: Addison-Wesley Publishing Company, Inc., 1987

Telecommunications:

C-20

DIGITAL COMMUNICATION
Edward A. Lee and David G. Messerschmitt
Higham, MA: Kluwer Academic Publishers, 1988

DIGITAL COMMUNICATIONS
John G. Proakis
New York, NY: McGraw-Hili Publishing Co., 1983

DSP56000/DSP56001 USER'S MANUAL . MOTOROLA

-A-
A-law, 2-5
Aborted Instructions, 8-18
ABS, A-14
Absolute Address, 7-11
Absolute Short, 7-13
Accumulator Shifter, 4-6
Adaptive Filter, B-1
Adaptive Filters, 1-2
ADC, A-16
ADD, A-18
Additional Support

Applications Assistance, C-13
C Language Compiler, C-4
Codec Routines, C-6
Design Hotline,'C-12
Dr. BuB Electronic Bulletin Board, C-5
DSP320to56001 Translator, B-4
DSP56000ADSx Application Development

System, B-4
DSP56000CLASx Assembler/Simulator, B-2
Fast Fourier Transforms, C-6
Filters, C-7
Floating Point Routines, C-8
Functions, C-9
Lattice Filters, C-10
Marketing Information, C-13
Matrix Operations, C-11
Motorola DSP News, C-12
Motorola DSP Product Support, B-2
Motorola Field Application Engineers, C-12

. Reed-Solomon Encoder, C-11
Sorting Routines, C-11
Speech, C-12
Standard I/O Equates, C-12
Text Books, C-14
Third Party Support Information, C-13
Training Courses, C-13
University Support, C-13

ADDL, A-20
ADDR, A-22
Address (AO-A 15), 2-9
Address ALU, 5-3
Address ALU Registers, A-7
Address Buses, 2-3
Address Generation Unit, 2-5, 5-1
Address Generation Unit Registers, 7-4
Address Modifier

Linear Modifier, 5-12
Modulo Modifier, 5-13

INDEX

Address Modifier, Continued
Reverse-Carry Modifier, 5-17
Summary, 5-19

Address Modifier Types, 5-11
Address Operands, A-7
Address Output Multiplexers, 5-4
Address Register

Indexed by Offset Nn, 5-10
No Update, 5-7
Postdecrement by 1, 5-8
Postdecrement by Offset Nn, 5-9
Postincrement by 1, 5-8
Postincrement by Offset Nn, 5-9
Predecrement by 1, 5-11
Register Indirect, 5-6

Address Register Direct, 7-11
Address Register Indirect Mode, 5-6, 7-11
Address Registers, 2-5, 5-2, 5-5
Addressing Mode Encoding, A-8
Addressing Mode Modifiers, A-8
Addressing Mode Operators, A-8
Addressing Modes, 5-5, 5-6, 7-10, A-6
Addressing Modes Summary, 7-18
Analog-to-Digital Converter, 1-2
AND(I), A-26
Antialias Filter, 1-2
Applications, 1-5
Arbitration, 9-16, 9-18
Architecture, 1-1, 2-1
Arithmetic Instructions, 7-19
ASL, A-28
Assembler, 8-2
Assembler Syntax and Operation, A-1
Assembly Language, 7-1

-8-

BCHG, 9-21, A-32
BCLR, 9-21, A-37
BCR, 2-7, 9-10
Benchmarks, 1-4, B-1
Binary Operators, A-4
Bit Manipulation Instructions, 7-20
Bit Manipulation Unit, 2-3
Bit Reversed, 5-18
Block Data Moves, 6-3
Bootstrap Mode, 2-6
Bootstrap ROM, 2-6
BR/BG, 8-36, 8-38

MOTOROLA DSP56000/DSP56001 USER'S MANUAL

•
INDEX-1

a

BSET, 9-21, A-42
BTST, A-47
Bus Arbitrator, 2-3
Bus Control Register, 9-10, 9-12
Bus GrantiWait (BGIWT), 2-11
Bus Request/Bus Grant (BR/BG), 6-14, 9-15
Bus Request/Bus Strobe (BR/BS), 2-10
Bus StrobelWait, 9-12
Bus Switch, 2-3

-c-
Carry Bit, 6-9, A-9
Central Processor, 4-1
Circular Buffer, 5-14, 11-56
Clock Cycles, 9-8
Clock Oscillator, 6-7, 8-38
Clock Phases, 8-2, 9-8
Clock Stabilization Delay, 8-38
CLR, A-52
CMP, A-54
CMPM, A-56
Coefficients, 4-11
Condition Code Computation, A-9
Condition Code Register, 6-8
Condition Code Register (CCR) Symbols, A-5
Condition Codes, A-1
Convergent Rounding, 2-4,4-5,4-11
Crystal Output (XTAL), 2-12

Data (DO-D23), 2-10
Data ALU,2-4, 4-3

-D-

Data ALU Accumulator Registers, 4-5
Data ALU Input Registers, 4-3, 4-5
Data ALU Programming Model, 4-11
Data ALU Registers, 4-5, 7-4, A-2
Data ALU Summary, 4-11
Data Buses, 2-3
Data Memory Select (DS), 2-10
Data or Control Register Direct, 7-11
Data Organization in Memory, 7-7
Data Organization in Registers, 7-4
Data Representation, 4-8
Data ROM Enable, 6-13
Data Shifter/Limiter, 4-6
Data Shifters, 4-8
Digital Filters, 4-11
Digital-to-Analog Converter, 1-3
DIV, A-58
DMA,2-7
DO, A-63
DO Instruction Restrictions, 8-6
DO Loop Control, 6-1

Dot Product, B-2
Dr. BuB, B-1
DSP Applications, 1-5
DSP Functions, 1-4
DSP56000 Memory Spaces, 3-1

Development Mode, 3-3, 3-5
Mode 0,3-4
Mode 1,3-4
Mode 2, 3-4
Mode 3, 3-5
Normal Expanded, 3-3, 3-4
Operating Mode Register, 3-1
Operating Modes, 3-3
Program Memory, 3-3
Security ROM DSP56000 Version, 3-5
Single Chip, 3-3, 3-4
X Data RAM, 3-1
X Data ROM, 3-1
Y Data RAM, 3-2
Y Data ROM, 3-2

DSP56001 Memory Spaces, 3-1
A-law Expansion Tables, 3-7
Bootstrap Mode, 3-8, 3-9, 3-11
Bootstrap ROM, 3-8, 3-12
Chip Operating Modes, 3-8
Development Mode, 3-9, 3-12
Mode 0, 3-9
Mode 1, 3-9
Mode 2, 3-12
Mode 3, 3-13
Mu-Iaw Expansion Tables, 3-7
Normal Expanded Mode, 3-9, 3-12
Operating Mode Register, 3-6
Program Memory, 3-8
Sine Wave Table, 3-8
Single-Chip Mode, 3-9
Special Bootstrap Mode, 3-9
X Data RAM, 3-7
X Data ROM, 3-7
Y Data RAM, 3-8
Y Data ROM, 3-8

Dynamic Range, 2-4

-E-
Edg~ Sensitive, 6-5, 8-9
Edge-Triggered, 6-5, 8-19
Encodings

Condition Code and Address Encoding, A-242
Double-Bit Register, A-239
Effective Addressing Mode, A-242
Five-Bit Register, A-241
Four-Bit Register A-240
Insane Instructions, A-260
Memory Space Bit, A-241
Multiply Instruction, A-254
No Parallel Move, A-244

INDEX-2 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

Encodings, Countined
Nonmultiply Instruction, A-256
Operatio'n Code, A-254
Parallel Move, A-243
Program Controller Register, A-242
Reserved Instruction Codes, A-263
Single-Bit Register, A-239
Single-Bit Special Register, A-239
Six-Bit Register, A-241
Triple-Bit Register, A-240
Write Control, A-241

ENDDO, A-71
ENDDO Instruction Restrictions, 8-7
ENDDO Restrictions, A-234
EOR, A-73
Exception Priorities within an IPL, 8-17
Exception Processing, 6-1, 8-8
Exception Processing State, 8-8
Exceptions, 11-92
Execution Units, 1-8, 2-3, 4-1, 6-1
Expansion Port, 2-7
EXT:MSP:LSP,4-4
EXTAL,6-7
Extension Bit, 6-10, A-9
External Clock/Crystal Input (EXTAL), 2-12
External Interrupts, 8-9
External Memory Access, 6-13
Fast Interrupt, 6-5, 8-19, 8-24
Fast Interrupt Restrictions, A-237
Fetch, 8-20
Fetch-Decode-Execute, 8-1
FFT, 3-8, 4-8, 5-4, 5-18, B-2
FIFO, 11-56
FIR Filter, B-2, B-4
Floating Point, 4-8
Fractional, 4-8, 4-10
Fractional Arithmetic, 4-7
Functions, 1-1, 1-4

-G-
General-Purpose 1/0, 2-6, 2-7, 10-2

Port B, 10-1
Port C, 11-1

Global Data Bus, 6-6
Ground (GND), 2-'12

-H-
Hardware Interrupt Sources, 8-9
Hardware RESET, 6-6
Harvard Architecture, 1-7
Host Interface, 10-7

Command Vector Register, 10-14
DMA Controller, 10-16, 10-20
DMA Counter, 10-22

Host Interface, Continued
DMA Data Transfer, 10-48
DMA Interrupts, 10-31
DMA Status, 10-14, 10-24
DSP-to-Host Data Transfer, 10-44
DSP-to-Host DMA Procedure, 10-54
DSP-to-Host Internal Processing, 10-53
Example Circuits, 10-54
Host Address-0-2 (HAO,HA1,HA2), 10-26
Host Command, 10-15, 10-18, 10-22
Host Command Interrupt Enable, 10-12
Host Command Pending, 10-12, 10-14
Host Command Vector Register, 10-22
Host Control Register, 10-11
Host Data Bus (HO-H7), 10-26
Host Enable (HEN), 10-27
Host Flag 0, 10-14, 10-20
Host Flag 1, 10-14, 10-20
Host Flag 2, 10-12, 10-24
Host Flag 3, 10-12, 10-24
Host Interface Interrupts, 10-28
Host Mode Control, 10-20
Host Processor Data Transfers, 10-28
Host ReadlWrite (HRIW), 10-27
Host Receive Data Full, 10-13
Host Receive Data Register, 10-14
Host Receive Interrupt Enable, 10-12
Host Request, 10-24
Host Request (HREQ), 10-27
Host Status Register, 10-13 ,
Host to DSP - Bootstrap Loading, 10-43
Host to DSP - Command Vector, 10-40
Host to DSP - Data Transfer, 10-35
Host-to-DSP DMA Procedure, 10-50 \
Host-to-DSP Internal Processing, 10-49
Host Transmit Data Empty, 10-12, 10-13
Host Transmit Data Register, 10-13
Host Transmit Interrupt Enable, 10-12
Host Transmit Register, 10-14
Host Vector, 10-22
INIT, lQ-20, 10-21
Initialization, 10-31
Interrupt Control Register, 10-18
Interrupt Status Register, 10-23
Interrupt Vector Register, 10-25
Interrupt-Driven Data Transfers, 10-31
Interrupts, 10-15
MC68000, 10-20, 10-25, 10-56
MC68000/10, 10-17
MC68020, 10-18, 10-56
MC68030, 10-56
MC68HCll, 10-54
Non-DMA Interrupts, 10-30
Polling, 10-30, 10-31
Programming Model, 10-10, 10-17
Receive Byte Registers, 10-25
Receive Data from Host, 10-37
Receive Data Register Full, 10-23

MOTOROLA DSP56000/DSP56001 USER'S MANUAL

II
INDEX-3

II

Host Interface, Continued
Receive Request Enable, 10-19
Reset, 10-15, 10-25
RXH:RXM:RXL, 10-13, 10-14, 10-23
Termination, 10-60
Transmit 12-Bit Data to Host, 10-48
Transmit Byte Registers, 10-25
Transmit Data Register Empty, 10-23
Transmit Request Enable, 10-19
Transmitter Ready, 10-23
TXH:TXM:TXL, 10-13, 10-14

Host Acknowledge (HACK), 2-13, 10-27
Host Address 0-2 (HAO,HA 1 ,HA2), 2-12
Host Command, 2-8
Host Data Bus (HO-H7), 2-12
Host Enable (HEN), 2-12
Host Interface, 2-6, 2-7, 10-2
Host ReadIWrite (HRIW), 2-12
Host Request (HREO), 2-12

I/O Short, 7-13
IIR Filter, B-2, B-8
ILLEGAL, A-75

-1-

Illegal Instruction, 8-11
Illegal Instruction" Interrupt, 8-11
Immediate Data, 7-11
Immediate Short, 7-11
Implicit Reference, 7-13
Input/Output, 2-6
Insane Instructions, A-260
Instruction Decoding, 6-1
Instruction Descriptions, A-11
Instruction Encoding, A-238
Instruction Format, 7-3, A-1
Instruction Latch, 6-3
Instruction Memory Requirements, A-2
Instruction Pipeline, 6-6, 8-1
Instruction Sequence Restrictions, A-232
Instruction Timing, A-2, A-222
Instruction Timing Symbols, A-5
Integer, 4-10
Internal Interrupts, 8-9
Interrupt, 8-4
Interrupt Arbitration, 8-19
Interrupt Instruction Execution, 8-20
Interrupt Mask, 6-10
Interrupt Priority Level, 6-3, 6-10, 8-9, 8-16
Interrupt Priority Register, 8-16
Interrupt Processing, 8-8
Interrupt Sources, 8-9
Interrupt Types, 8-18
Interrupts, 10-15
IROA, 6-5, 8-9
IROB, 6-5, 8-9

Jcc, A-77
JCLR, A-81
JMP, A-85
JScc, A-87
JSCLR, A-90
JSET, A-95
JSR, A-100
JSSET, A-101

-J-

-L-
L Memory References, 7-9
Least Mean Square (LMS), B-1, B-10
Limit Bit, 6-10, A-9
Limiting, 4-6, 4-7
Linear Arithmetic, 5-4
Logical Instructions, 7-19
Long Interrupt, 6-5, 8-18, 8-24
Loop Address, 2-6
Loop Address Register, 6-14
Loop Count, 2-6
Loop Counter, 6-14
Loop Flag (LF), 6-11
Loop Instructions, 7-20
LSL, A-107
LSR, A-108
LUA, A-110

MA,6-13
MAC, 1-6, 4-3, A-112
MACR, A-114
Matrix Multiply, B-2
MB,6-13
MC680XX, 10-31

-M-

Memory Ready, 9-12
Memory Ready Strobe, 9-12
Memory References, 7-9
MODA, 6-6, 6-13
MODAlIROA,2-11
MODB, 6-6, 6-13
MODB/IROB, 2-11
Mode Register, 6-8
Mode Register (MR) Symbols, A-5
Modifier Registers, 2-5, 5-2, 5-3, 5-5
Modulo Arithmetic, 5-4
MOYE, A-116
Move Instructions, 7-22
MOYE(C), A-152
MOYE(M), A-159
MOYEP, A-167
MPY, A-170

INDEX-4 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

MPYR, A-172
Mu-law,2-5
Multiplier/Accumulator,1-6
Multiply-Accumulator (MAC), 2-4, 4-3

-N-
NEG, A-174
Negative Bit, 6-10, A-9
NMI,8-9
Nonmaskable Interrupt, 6-5, 8-11
NOP, A-176
NORM, A-177
Normal Processing State, 8-1
NOT, A-179
Notation, A-2

-0-

Offset Registers, 2-5, 5-2, 5-3, 5-5
OMR Bit-7, 2-10, 2-11
Opcode Field, 7-3
Operand References, 7-8
Operand Size, 7-3
Operands, 7-1, A-2
Operating Mode, 2-6, 6-13
Operating Mode Register, 2-6, 3-6, 6-11
Operation Code, A-254
OR, A-181
OR(I), A-183
Overflow Bit, 4-7, 6-9, A-9

-p-

Parallel Data Moves, 7-22
Parallel Move, 7-22

Address Register Update, A-125
Descriptions, A-118
Immediate Short Data Move, A-120
Instruction Coding, A-243
Long Memory Data Move, A-145
No Parallel Data Move, A-119
Register and Y Memory Data Move, A-140
Register to Register Data Move, A-122
X Memory and Register Data Move, A-131
X Memory Data Move, A-127
XY Memory Data Move, A-149
Y Memory Data Move, A-136

Parallel Move Descriptions, A-11
Parallel Processing, 7-24
Pipeline, 6-2

Pipeline Effect, 8-2
Pipelining, 7-22
Port A, 2-6, 9-1

Access Priority, 9-1
Base Address Register, 10-7
Boot ROM, 9-6
Bus Arbitration, 9-15
DS,9-4
Extended Address, 10-7, 11-8
External Memory Access, 9-9
Peripherals, 9-3
PS,9-4
Pullup,9-8
Read and Write Strobes, 9-3
Reduced Data Size, 9-6
Timing, 9-8
Wait States, 9-10
X/Y,9-4

Port B, 2-6, 10-1
Extended Address, 10-7
General-Purpose 1/0, 10-2
HI Description, 10-8
HI Programming Model, 10-10
Parallel 110 Timing, 10-4
Port B Control Register, 10-2
Port B Data Direction Register, 10-2
Port B Data Register, 10-2
Programming Parallel 1/0, 10-4

Port C, 2-6, 11-1
Extended Address, 11-8
General-Purpose 1/0, 11-1
Parallel 1/0 Timing, 11-6
Programming Parallel 1/0, 11-1

Power, 2-12, 9-1, 9-10
Power Consumption, 8-36
Power Dissipation, 2-9
Priority Structure, 8-17
Processing States, 6-2, 8-1
Program Address Generation, 6-1
Program Address Generator, 6-2, 6-3
Program Control Instructions, 7-24
Program Control Registers, 7-5, A-3
Program Controller, 2-6, 6-1
Program Counter, 2-6, 6-8
Program Decode Controller, 6-2
Program Interrupt Controller, 6-2, 6-3
Program Memory, 2-6
Program Memory Select (PS), 2-10
Program References, 7-9
Programming Model

Address Generation Unit, 5-4
Host Interface, 10-10, 10-17
Data Arithmetic Unit, 4-11
Program Controller, 6-7
SCI, 11-9
SSI,11-72
Summary, 6-17

Pullup, 9-8, 11-16, 11-64

MOTOROLA DSP56000/DSP56001 USER'S MANUAL

III
INDEX-5

a

-R-
R, N, and M Register Restrictions, A-237
Read Enable (RD), 2-10
Read-Modify-Write, 5-5, 9-21
Receive Data (RXD), 2-8, 2-13
Register Direct Mode, 7-10
Register Indirect, 5-6
Register Indirect Mode, 7-10
Register References, 7-9
REP, 6-3, 8-27, A-185
REP Restrictions, A-238
Reserved Instruction Codes, A-263
RESET, 2-11, 8-9, A-190

Host Interface, 10-15
SCI, 11-25
SSI, 11-88

Reset Processing State, 8-27
Restrictions Near the End of DO Loops, A-232
Reverse Carry, 5-3
Rn, Nn, and Mn Register Restrictions, 8-8
RND, A-191
ROL, A-195
ROR, A-197
Round to Nearest (Even), 4-11
Rounding, 4-8, 4-11, 6-11
RTI, A-198
RTI and RTS Instruction Restrictions, 8-7, A-235
RTS, A-200

-s-
Saturation Arithmetic, 2-4, 4-6
SBC, A-202
Scaling, 4-8
Scaling Mode, 6-10, 6-11
SCI

4X Internal Clock, 11-20
1 X Clock, 11-20

"2X Internal Clock, 11-20
8051, 11-12
Address Mode Wakeup, 11-15, 11-53
Asynchronous Data, 11-39
Asynchronous Data Reception, 11-39
Asynchronous Data Transmission, 11-41
Asynchronous Transmit/Receive Example, 11-47
Break, 11-25, 11-41
Circular Buffers, 11-56
Clock Divider, 11-21
Clock Out Divider, 11-21
Common Baud Rates, 11-26
Data Transmission Priority, 11-25
Example Circuits, 11-64
Exceptions, 11-28
Featu res, 11-8
FIFO, 11-56
Framing Error Flag, 11-20

SCI, Continued
Idle Line Flag, 11-19
Idle Line Interrupt Enable, 11-16
Idle line Wakeup, 11-15, 11-53
Initialization, 11-26
Interrupts, 11-41
MC68681, 11-12
MC68HC11,11-12
Multidrop, 11-47
Multidrop Example, 11-56
Multidrop Transmit/Receive Example, 11-61
Overrun Error Flag, 11-19
Parity Error, 11-19
Polling, 11-41
Preamble, 11-16, 11-25, 11-41
Programming Model, 11-9
Receive Clock Mode Source Bit, 11-22
Receive Data (RXD), 11-9
Receive Data Register Full, 11-19
Received bit 8 (address bit), 11-20
Receiver Enable, 11-16
Receiver Wakeup Enable, 11-15
Reset, 11-25
SCI Clock Control Register (SCCR), 11-9, 11-20
SCI Clock Polarity, 11-18
SCI Clock Prescaler, 11-22
SCI Control Register (SCR), 11-9, 11-11
SCI Data Registers, 11-23
SCI Receive Data Registers (SRX), 11-9
SCI Receive Interrupt Enable, 11-17
SCI Receive Reg isters, 11-23
SCI Serial Clock (SCLK), 11-9
SCI Shift Direction, 11-12
SCI Status Register (SSR), 11-9, 11-18
SCI Timer, 11-61
SCI Timer Example, 11-64
SCI Transmit Data Address Register (STXA), 11-9
SCI Transmit Data Registers (STX), 11-9
SCI Transmit Interrupt Enable, 11-17
SCI Transmit Registers, 11-24
Send Break, 11-12
SRIINT,11-17
Synchronous Data, 11-32
Synchronous Master, 11-32
Synchronous Mode, 11-38
Synchronous Receive, 11-39
Synchronous Slave, 11-35
Synchronous Transmit, 11-38
Timer Interrupt Enable, 11~17
Transmit Clock Source Bit, 11-22
Transmit Data (TXD), 11-9
Transmit Data Register Empty, 11-18
Transmitter Empty, 11-18
Transmitter Enable, 11-16
Transmitting Data and Address Characters, 11-49
Wakeup Mode Select, 11-15
Wired-OR Mode, 11-53
Wired-OR Mode Select, 11-16
Word Select, 11-11

INDEX-6 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

SCI Serial Clock (SCLK), 2-8, 2-13
Security ROM DSP56000 Version, 1-1,3-1,3-5,6-13
Semaphores, 9-20
Serial Communication Interface, 2-6, 2-8, 2-13
Serial Control One (SC1), 2-13
Serial Control Two (SC2), 2-14
Serial Control Zero (SCO), 2-13
Shared Memory, 9-16
Shifter/Limiter, 2-4, 6-11
Short Jump Address, 7-13
Sign Extension, 4-5
Signal Description, 2-9
Signaling, 9-20
Simulator, 8-27
Software Interrupt, 8-11
SP and SSH/SSL Manipulation Restrictions, A-235
Special Addressing Mode, 7-11
SSI

Asynchronous, 11-104
Baud Rates, 11-92
CCITT, 11-118
Circular Buffer, 11-131
Clock Source Direction, 11-79
Codec, 11-113, 11-118, 11-136
Compact Disk Player, 1 f~114
Continuous Clock, 11-87, 11-104, 11-128
Continuous/Gated Clock Selection, 11-96
Data/Operation Formats, 11-96
Double Buffered, 11-128
Example Circuits, 11-138
Exceptions, 11-92
Features, 11-66
Flags, 11-133
Frame Rate Divider Control, 11-76
Frame Sync, 11-99, 11-107 '
Frame Sync Length, 11-79
Gated Clock, 11-87, 11-99, 11-104, 11-128
Gated Clock Control, 11-79
Initialization, 11-88
Input Flags, 11-99
MC15500,11-113
Multidrop, 11-136
Network, 11-93
Network Mode, 11-67, 11-76, 11-119
Network Mode Examples, 11-118
Network Mode Receive, 11-124
Network Mode Transmit, 11-122
Normal, 11-93
Normal Mode, 11-67, 11-76
Normal Mode Examples, 11-107
Normal Mode Receive, 11-114
Normal Mode Transmit, 11-113
Normal/Network Mode Selection, 11-96
On-Demand Mode, 11-67, 11-76, 11-93, 11-128
On-Demand Mode Example, 11-127
Operational Modes, 11-87
Output Flags, 11-99, 11-114
Prescale Modulus Select, 11-72

SSI, Continued
Prescaler Range, 11-76
Programming Model, 11-72
Receive Data Register, 11-84
Receive Frame Sync Flag, 11-82
Receive Shift Register, 11-83
Receiver Overrun Error Flag, 11-83
Reset, 11-88
SCO, 11-71
SC1, 11-71
SC2, 11-72
SCK,11-69
Serial Control 0 Direction, 11-77
Serial Control 1 Direction, 11-77
Serial Control 2 Direction, 11-77
Serial Input Flag 0, 11-81
Serial Input Flag 1, 11-82
Serial Output Flag 0, 11-77
Serial Output Flag 1, 11-77
Shift Direction, 11-79, 11-107
Speaker Phone, 11-136
S'PI, 11-96
SRD,11-69
SSI Control Register A (CRA), 11-72
SSI Control Register B (CRB), 11-76
SSI Mode Select, 11-80
SSI Receive Data Register Full, 11-83
SSI Receive Enable, 11-80
SSI Receive Interrupt Enable, 11-81
SSI Status Register (SSISR), 11-81
SSI Transmit Data Register Empty, 11-83
SSI Transmit Enable, 11-80
SSI Transmit Interrupt Enable, 11-81
Start Conversion Signal, 11-99
STD, 11-68
Sync/Async Control, 11-79
Synchronous, 11-67, 11-99, 11-104
Synchronous/Asynchronous Operating Modes,

11-99
Time Division Multiplex, 11-96
Time Slot Register, 11-84, 11-122
Transmit Data Register, 11-84
Transmit Frame Sync Flag, 11-82
Transmit Shift Register, 11-84
Transmitter Underrun Error Flag, 11-82
Word Length Control, 11-76

SSI Receive Data (SRD), 2-14
SSI Serial Clock (SCK), 2-14
SSI Transmit Data (STD), 2-14
Stack Error, 8-14
Stack Error Flag (SE), 6-16
Stack Pointer (SP), 2-6, 6-16
Stack Pointer Register, 6-15
Stack References, 7-9
Status Register, 2-6, 6-8
STOP, A-204
Stop Delay, 6-13
Stop Processing State, 8-38

MOTOROLA OSP56000/0SP56001 USER'S MANUAL INDEX-7

II

•

StrobelWait,9-10
SUB, A-206
SUSL, A-208
SUBR, A-210
Summary

Additional Support, C-1-C-20
Address Modifier, 5-19
Addressing Modes, 7-18
Benchmark, 1-1, B-2, B-3
Data ALU, 4-11
DSP Advantages, 1-3
DSP56000 Family Features, 1-7
Host Interface, 10-8
Programming Model, 6-17
SCI, 11-8
SSI,11-66
Pipeline-Related Restrictions, 8-6

SWI, 6-6, A-212
Synchronous Serial Interface (SSI), 2-6, 2-8, 2-13
Syntax, 7-1
System Stack, 6-2, 6-15
System Stack High (SSH), 6-15
System Stack Low (SSL), 6-15
System Stack Memory, 2-6

Tcc, A-214
Text Books

Controls, C-14

-T-

Digital Audio and Filters, C-14
Division, A-453
General DSP, C-14
Graphics, C-17
Image Processing, C-18
Numerical Methods, C-18
Pattern Recognition, C-19
Spectral Analysis, C-19
Speech, C-19
Telecommunications, C-120

TFR, A-216
Three-state, 9-15
Trace, 6-6, 8-14

Trace Mode Bit (T), 6-11
Transmit Data (TXD), 2-8, 2-13
TST, A-220

-u-
Unary Operators, A-4
Underflow Flag (UF), 6-16
Unnormalized Bit, 6-10, A-9

-v-
Vectored Interrupt, 8-9

-w-
WAIT, A-220
Wait Processing State, 8-36
Wait States, 8-36, 9-10

Bus StrobelWait, 9-10
Write Enable (WR), 2-10

-x-
X Data Memory, 2-5
X Memory References, 7-9
XOR -see EOR
X/y Select (XIV), 2-10
XV Memory References, 7-9

-v-
V Data Memory, 2-5
V Memory References, 7-9

-z-
Zero Bit, 6-10, A-9

INDEX-8 OSP56000/0SP56001 USER'S MANUAL MOTOROLA

-NOTES-

-NOTES-

-NOTES-

-NOTES-

/

Introduction II
Architectural Overview and Bus Structure lEI

Memory Spaces B
Data Arithmetic Logic Unit II

Address Generation Unit and'Address Modes II
Program Controller II

Instruction Set Introduction III
Processing States Ell

PortA III
Port B 1m
Port C III

Instruction Set Details a
Benchmark Programs II

Additional Support II
Index II

II Introduction

II Architectural Overview and Bus Structure

II Memory Spaces

II Data Arithmetic Logic Unit

II Address Generation Unit and Address Modes

a Program Controller

II Instruction Set Introduction

II Processing States

II PortA

III Port B

III Port C

III Instruction Set Details

Ell Benchmark Programs

B Additional Support

a Index

A19562-12 PRINTED IN USA 7/91 EVANS PRESS EMTR 2003 10,000 DSP YGAVAA

