DSP56000UM/AD
REV 2

DSP56000/DSP56001

Digital Signal Processor
User’s Manual

M\

| —
e — e e
V. p—

@ MOTOROLA

Introduction
Architectural Overview and Bus Structure
Memory Spaces

Data Arithmetic Logic Unit

Address Generation Unit and' Address Modes -

Program Controller
Instruction Set Introduction
Processing States

Pbrt A

Port B

Port C

Instruction Set Details
Benchmark Programs
Additional Support

Index

-
o

-Jof-1-1=]z1-1-1-]-1-1-]-]-1-

Introduction

Architectural Overview and Bus Structure
Memory Spaces

Data Arithmetic Logic Unit

Address Generation Unit and Address Modes
Program Controller

Instruction Set Introduction

Processing States

Port A

Port B

Port C

Instruction Set Details

Benchmark Programs

Additional Support

Index

DSP56000/DSP56001

DIGITAL SIGNAL PROCESSOR
USER'S MANUAL

Motorola reserves the right to make changes without further notice to any products herein
to improve reliability, function or design. Motorola does not assume any liability arising out
of the application or use of any product or circuit described herein; neither does it convey
any license under its patent rights nor the rights of others. Motorola products are not author-
ized for use as components in life support devices or systems intended for surgical implant
into the body or intended to support or sustain life. Buyer agrees to notify Motorola of any
such intended end use whereupon Motorola shall determine availability and suitability of its
product or products for the use intended. Motorola and ® are registered trademarks of
Motorola, Inc. Motorola, Inc. is an Equal Employment Opportunity/Affirmative Action
Employer.

©MOTOROLA INC., 1990

TABLE OF CONTENTS

Paragraph : Page
Number Title Number
Section 1
Introduction
1.1 Origin of the DSP56000 ArchiteCture.....cc.vvvveeirvininiineneineirirenrernenns 1-1
1.2 Summary of DSP56000 Family Features................... peeererrra e 1-7
1.3 Manual Organization..........cc..viiiieiiiiiii e e e 1-9
Section 2
Architectural Overview and Bus Structure
2.1 Data BUSES. . iuiuiiuitiiie i e e e 2-3
2.2 AdAress BUSES......ovviiiiiiiiiiiiiiicr i 2-3
2.2.1 Internal Bus SWitChcciviiiiiiiiii e 2-3
2.2.2 Bit Manipulation Unit........cooiiiiiiiiiiiccicr e e 2-3
2.3 Data ALU ... e e 2-4
24 Address Generation UNit........coeciiiiiiiiiiniiiiiiiinieiere s eeieanen 2-5
2.5 X Data MemOrY .oviriiiie e 2-5
2.6 Y Data MemOry. ..o ceieii e e e 2-5
2.7 Program Memory.......ocoviveveiinininnans TP 2-6
2.8 Program Controller..........vuviiiiiiiiiii e 2-6
2.9 INPUL/OULPUL. et et et e e e e e e en e e e baa e 2-6
2.9.1 EXpansion Port (Port A)....ceeeciieriiiiiiiiiiie e e eaeereae 2-7
29.2 General-Purpose 1/0 (Ports B and C)......cccouvvevieiiiiiiiiiiiineneenns 2-7
293 HOSt INterface......c.vviiiiiiiiiiiiiii e 2-7
294 Serial Communication INterfaceccovveviviieiiiiiiiiiiiiinienens 2-8
295 Synchronous Serial Interface.........cccovevveviveninnnns e 2-8
2.10 Signal DesCriPLioN ...vuiuiiieiiiiiiiie e e er s s e rn e raeees 2-9
2.10.1 Port A Address and Data Busccoiiiiiiiiiiii e 2-9
2.10.1.1 Address (AD=AT5)...ciiiiiiiiiiriii e 2-9
2.10.1.2 Data (D0-D23) ..uuivueeniiiiiineiieeneeineinerieresaneereaneeneaearnnannas 2-10
2.10.2 Port A Bus Control.............. B PP 2-10
2.10.2.1 Program Memory Select (PS)...........civiiiniiiiiiin 2-10
2.10.2.2 Data Memory Select (DS).........ccooeiiiiiiiiiiiin 2-10
2.10.2.3 XIY Select (X/Y) .ooiiiiiiiiiiiiii 2-10
2.10.2.4 Read Enable (RD)cooevieiimiininiiiiiniiiii s 2-10
2.10.2.5 Write Enable (WR)......... G PRt 2-10
2.10.2.6 Bus Request/Bus Strobe (BR/BS)...........ccoevvuiniiiiiiniininnnni, 2-10
2.10.2.7 Bus Grant/Wait (BG/WT) ...cvvieuiiiiiiiiiiiieireienniereeeennnnannnas 2-1
2.10.3 Interrupt and Mode Control..........ccovveniiiiiiiincn e 2-11
2.10.3.1 Mode Select A/External Interrupt Request A (MODA/IRQA) and

Mode Select B/External Interrupt Request B (MODB/IRQB).. 2-11

MOTOROLA DSP56000/DSP56001 USER'S MANUAL iii

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
2.10.3.2 Reset (RESET). cuiuiiieiiiiiiiieiiiiieecieescerie e sensnaeaanes 2-11
2.10.4 Power and CloCK.....oviiiiiii i e e e aees 2-11
2.10.4.1 Power (VCc), Ground (GND) ..ovvvviiiiiiiirieivevneenenen e 2-12
2.10.4.2 External Clock/Crystal Input (EXTAL)........ccoviviniiiiininininnnn. 2-12
2.10.4.3 Crystal Output {XTAL) .oiveiiiiiiiii e cce e e 2-12
2.10.5 Host Interface........ e 2-12
2.10.5.1 Host Data Bus (HO=H7)ccoiiiiiiiiii v e e 2-12
2.10.5.2 Host Address (HAO-HA2)cccooiiiiiiiiiniid e 2-12
2.10.5.3 Host Read/Write (HR/W)...........coiiiiiiiiii 212
2.10.5.4 Host Enable (HEN).....cooviiiniiiiis it cneea e 2-12
2.10.5.5 Host Request (HREQ)ccocvevvrininianinanns e 2-12
2.10.5.6 Host Acknowledge (HACK)ccvvviiiiiriiiiinciiinnciiienenens 2-13
2.10.6 Serial Communications Interface...........cccovviiviiiicininnieinnnn. 2-13
2.10.6.1 Receive Data (RXD)..iuiiriiriiiiiiiiiiiiiiiicie i e eaa 2-13
2.10.6.2 Transmit Data (TXD) covvevenieiiiiiiiiiiiniiiirnnrn e e eenes 2-13
2.10.6.3 Serial Clock (SCLK) ...cuiuiiiiiii i e 2-13
2.10.7 Synchronous Serial Interface..........c.covevviviiiiiiiiii, 2-13
2.10.7.1 Serial Control Zero {SCO) ...c.cevviieiiniiiiniirir e 2-13
2.10.7.2 Serial Control One (SCT1) . .ieviviiiiiiiiiiiiicrcneens ereeens 2-13
2.10.7.3 Serial Control TWo (SC2)....cvviiiiiiiiiiii i 2-14
2.10.7.4 SSI Serial Clock (SCK) ..oviiniiiiiiiiiiiiiici e e 2-14
2.10.7.5 SSI Receive Data (SRD).....cooviiiiiiiiiii i 2-14
2.10.7.6 SSI Transmit Data (STD) oveivviii i v s 2-14
Section 3
Memory Spaces

3.1 LY V1Y P 3-1
3.2 DSP56000 Memory INtroductioncceeeveeieiceniinennciinininnies 3-1
3.21 X Data MemoOry..ccovviiiiiiiiiiiieinenieninennnenanes PN 31
3.2.2 Y Data MemOry ...c.ociniiiiiiiiiiinii i 3-2
3.23 Program MemoOry...c.cooveiiiiiciiiiiinn e 33
3.24 Chip Operating Modesccvvvviiiieiiieiiiie e 3-3
3.2.4.1 Single-Chip Mode (Mode 0)........ccuvviiiiiiiiieiniiiiinierneennens 34
3.24.2 MOodE T o 3-4
3.24.3 Normal Expanded Mode (Mode 2)cevvviiiniiniiciannnnnenee, 3-4
3.24.4 Development Mode (Mode 3).....ccccieiiniiiiiiiniiiniii, 3-5
3.25 Security ROM Version (DSP56000)......cc.veviivrnerninirenaeenenreanns 3-5
3.3 DSP56001 Memory Introductioncc.cveuviiiiiiiiiiiiininnia 3-6
3.3.1 X Data MEMOTY ...ciiiiieeeiiieeeeeiieeeeeeien s eaeeri e eeebeneaereaaeaaees 37
3.3.2 Y Data Memorycccveveveniinnnnnnn, P 3-8
3.3.3 Program IMEmMOIY......uuuuuieeeeeeiiriiieieeeeeeeeeeerierie e e e e s eeesanaanaens 3-8
3.34 Bootstrap ROM (DSP56001 Only)...cccuivieiiiiiiiiiiiiiiieienenenenes 3-8

iv DSP56000/DSP56001 USER'S MANUAL MOTOROLA

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
3.35 Chip Operating Modescoeviiiiiiiiciiinciiisnre e reree i rene 3-8
3.3.5.1 Single-Chip Mode (Mode 0)......cccvivieireriiiniiiniiiienniinnns 3-9
3.3.5.2 Special Bootstrap Mode {Mode 1)c..cooiviniiniiviinninninnn. 39
3.35.3 Normal Expanded Mode (Mode 2)ccooveviviiniiienieniinnnns 3-12
3.354) Development Mode (Mode 3)......ccoveininiiiiiiiiiiieiiins 3-13
Section 4
Data Arithmetic Logic Unit
4.1 Overview and Data ALU Architecture.........cooevieviiiiinnnnnnne, PUTRORI 41
411 Data ALU Input Registers (X1, X0, Y1, YO)covevviniiniiinennininninns 4-3
4.1.2 MAC and Logic Unit......cocoveieniiniciininiiiiia 4-3
4.1.3 Data ALU Accumulator Registers (A2, A1, A0, B2, B1, BO)........... 4-5
4.1.4 Accumulator Shiftercocoiiiiiii 4-6
4.1.5 Data Shifter/Limiterc.ocoveiiiiiinnnnne, S 4-6
4.1.5.1 Limiting (Saturation Arithmetic).........coevivvineniiiiiiceininnne, 4-6
4.1.5.2 Scaling...ovviiiiii 4-8
4.2 Data Representation and Rounding ...c..c.cocveviviiiiiiiienioninininiinennnns 4-8
4.3 Data ALU Programming Model.............ccooviiinnnnnd . 4-11
44 Data ALU SUMMAIYuuiviiniiie i et 4-11
Section 5 .
Address Generation Unit and Addressing Modes

5.1 AGU Architectureooivviviiiiiiiiiciiiic e [, 5-1
5.1.1 Address Register Files (RN)c.ccooiiiiiiiiiiiiiniiinne 5-2
5.1.2 Offset Register Files (NN}ovviiiiiiiiieieinni e, 5-3
5.1.3 Modifier Register Files (Mn)...... e errereerea, et rie e ierarreenraae, 5-3
5.1.4 AdAress ALU ..ot e e a e 5-3
5.1.5 Address Output MultipleXers........coocviiiiiiviiiniiinins 5-4
5.2 Programming Modelccoovviiiiiiiiiinin e 5-4
5.2.1 Address Register Files (R0-R3 and R4-R7)ccocovenieiiciniiinnnns 5-5
5.2.2 Offset Register Files (NO-N3 and N4-N7).........ccocoeiviniiininnnnen, 5-5
5.2.3 Modifier Register Files (M0-M3 and M4-M7)........ccocvevviiennee 5-5
5.3 AdAressingcooeeviviiiiieiieees s et 5-5
5.3.1 Address Register Indirect Modes......c.cooveviiiiiniininiii, 5-6
5.3.1.1 : NO Update....cviniiiieiii i eiee e e e r e resa e 5-7
5.3.1.2 Postincrement by 1.....cccoviiiiiniiiii 5-8
5.3.1.3 Postdecrement BY 1civiiiiiiiiiiiiiriiee s e 5-8
5.3.1.4 Postincrement by Offset Nn.........coocoviviiiiiiiiiiinn, 5-9
5.3.15 Postdecrement by Offset Nn........ocovieiiviiiiiiiiinniinin, 5-9
5.3.1.6 Indexed by Offset NNcoovviiiiiiiiiii 5-10
5.3.1.7 Predecrement by 1coocviiiiiiiiiiiii e, 5-11

MOTOROLA DSP56000/DSP56001 USER'S MANUAL v

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
5.3.2 Address Modifier TYPES «.uveviiiiiiiiiiieiriine e renes 5-11
53.2.1 . Linear Modifier (Mn=8FFFF)......ccccociviiiiiiiieiiciniiinreen, 5-12
5.3.2.2 Modulo Modifier (Mn=MODULUS —1)......ccevviiiiiiiiinrinennnns 5-13
5.3.2.3 Reverse-Carry Modifier (Mn=3%0000)...........cccevvenrineeninennnns 5-17
5.3.24 Address-Modifier-Type Encoding Summarycocoevevenennn. 5-19

Section 6-
Program Controller

6.1 OVBIVIBW . et ettt et e r s et e e et s r e n e e e e s e en s n e s anenaenennes 6-1
6.2 Program Controller Architectureccccvoveiiiniriiiiiiiiiieicieneieees 6-2
6.2.1 Program Decode Controller...........cocvviviiiiiiiiiinieiiinceceens 6-2
6.2.2 Program Address Generator...........c.ocovevennnn, PPN 6-3
6.2.3 Program Interrupt Controllercoooiiiiiiiiiinns 6-3
6.24 Instruction Pipeline.........cocoviiiiiiiciiiiii 6-6
6.3 Clock OSCIIAtOT. ... ieiieiiiiiviir e ra e 6-7
6.4 Programming Model........coveiivniiiiiiiiii e e 6-7
6.4.1 Program Counter........ccccveeveeeniinenireennnenan, e 6-8
6.4.2 StatUS ReGISter..iciuieiiiiiiiii i e re e r e 6-8
6.4.2.1 Carry (Bit 0).eueeeeiiieiiriiii e eneas 6-9
6.4.2.2 OVerflow (Bit T)..vunieeeiiieiiiiirc e 6-9
6.4.2.3 ZET0 (Bit 2).ivuiiiiiiiiiiiireri i et ee e 6-10
6.4.2.4 Negative (Bit 3)..cviieviiiiiiii e 6-10
6.4.25 Unnormalized (Bit 4)c.ovvieiiniiiiiii e 6-10
6.4.2.6 Extension (Bit 5)......cvuiiiiiiiiiiiiiiii e 6-10
6.4.2.7 Limit (Bit) .eueniriireceee e cinereneenreacranrnsenenenenraruaensnns 6-10
6.4.2.8 Interrupt Masks (Bits 8 and 9)ccvveiiiiiiiiiiiiiiieieeieenns 6-10
6.4.2.9 Scaling Mode (Bits 10 and 17)....cciiiiiviiiiiiiiiiiiiinreeaenes 6-11
6.4.2.10 Trace Mode (Bit 13) ...ccoiuiiiiiiiiiii e eeaenaas 6-11
6.4.2.11 Reserved Status (Bits 7, 12, 14)c.covveieeineeiiiiiiieinceneen, 6-11
6.4.2.12 Loop Flag (Bit 15)c.ciruiiiireneiier e e 6-11
6.4.3 Operating Mode Register.......covuveiieiiiiiiiniieiiiiiicnneeeeenees 6-12
6.4.3.1 Chip Operating Mode (Bits 0 and 1)........ccovevvvveiiniinrinennenen. 6-13
6.4.3.2 Data ROM Enable (Bit 2)vevviveieineiiieeeeineeecineneeinenaes 6-13
6.4.3.3 STOP Delay (Bit 6).............. N 6-13
6.4.3.4 External Memory Access (Bit 7)...cccveiiviiiiiieiiiciiiinieirenenenes 6-14
6.4.3.5 Reserved OMR Bits (Bits 3-5 and 8-23).......ccccveveiiviniinnnnns 6-14
6.4.4 Loop Address Register.......ceverriiiiiiieririiiiiiininisieneennaenns 6-14
6.45 Loop Counter RegiSter ...c.cvveieiiiiiiiiieniciieinines e ceaaens 6-15
6.4.6 SYStEM StACK ... iviiiiiiiii e e 6-15
6.4.7 Stack Pointer Register......coeiiiieiieiiiieiiniiiiinrrieiiicnii e 6-15
6.4.7.1 Stack Pointer (Bits 0—-3}.......ciiveriiiiiiiiiiii e 6-16
6.4.7.2 Stack Error Flag (Bit 4).......cevveiiniiiiiiiiiiic e 6-16

vi DSP56000/DSP56001 USER'S MANUAL MOTOROLA

Paragraph
Number

6.4.7.3
6.4.7.4
6.4.8

7.1

7.2

7.2.1
7.2.2
7.2.21
7.2.2.2
7.2.2.3
7.23
7.24
7.24.1
7.24.2
7.24.3
7.244
7.2441
7.2.44.2
7.24.4.3
72444
7.25
7.2.5.1
7.2.5.1.1
7.2.5.1.2
7.2.5.2
7.25.3
7.2.5.3.1
7.2.5.3.2
7.2.5.3.3
7.2.5.34
7.2.5.3.5
7.2.5.3.6
7.25.3.7
7.2.54
7.3

7.3.1
7.3.2
7.3.3
734
7.3.5
7.3.6

MOTOROLA

TABLE OF CONTENTS (Continued)

Title

Underflow Flag (Bit 5) cvocvvviiiiiiiiiiiiiiiiiiiineens
Reserved Stack Pointer Register Bits (Bits 6-23)
DSP56000/DSP56001 Programming Model Summary

Section 7
Instruction Set Introduction

1Y D G
InStruction FOrmats......cccovuviieriiiiiviiiiiin e enenes
Operand SizeS.......vicvivviiiviivenviiniiieiiiiieren e enenes
Data Organization in Registers............coccvvvveninnennnnn.
Data ALU Registers......cocveviiviiiiiinieiinineiiiinnenens
AGU Registers....cc.coceviinvrirniiniiiinincrrieinsnnennes
Program Control Registerscocoveuveneciiniininns
Data Organization in Memoryc.cevvveeeeiiininnenenenns
Operand Referencescccovivveiviniiiiineniiieiriieneenennas
Program References..........ccoveuceiieiniinirineinnnnans
Stack References......cccocovveviiiiiiiiiiiiiiiciiiiiinns
Register Referencesccvcvvviviiiiviiiiiiiiininennnes
Memory References......cocovvveeiiiiiviiiiiiiiiiinianinnns

X Memory References.........coevvvevenininninennnnn

Y Memory References...........ccovvvviiniininnenen.

L Memory References...........ccceevvieinciininenens

YX Memory References.......ccceveveeninnecennnnenes
Addressing Modesccovvviviiiiiiiiiiiiirec e
Register Direct Modesoovvvviiiciviiiiiinenrenennns
Data or Control Register Directcc.cevvvnnes
Address Register Direct.........c.cooiveienieiininnns
Address Register Indirect Modescoveeenennnns
Special Addressing Modesccceevvvviiiiiiniininens
Immediate Data.........ccoveiviiniiiiiiiiiiineas
Absolute AdAress.........c.cevevviveiiiieerinieninnnens
Immediate Short.......cccooviiiiiiiiiiiiiiniiiiees

Short Jump Address.........ooceeiiiiiiiiiiniininen,
Absolute Short.......cocoeviiiiiiiinieeireees

/0 -Short...cccovivnenriennns et ireerreeaiereriaias
Implicit Referenceccoceveviviiiiiiiiiiininennns
Addressing Modes Summary.......ccocovvvviiieenennnes
INSIIUCHION GrOUPS...ivueuieiiiiiieiieietieerereeie et e e enearaees
Arithmetic Instructions.........cocovviiviiiiiiiiiiiiineeenns
Logical InStructionscccovevivviiiiiiniiiiiee e rnerennnes
Bit Manipulation Instructions........c..ccccevvveienieneninnennn.
LoOp INStrUCHIONS ..cvivieitiiciiiiiiei et
Move INStrUCLIONS ...vvivivirieiieiiii e eeee
Program Control Instructions.........c.coceviiiiiiiiiininennnes

DSP56000/DSP56001 USER'S MANUAL

Page
Number

6-17
6-17
6-17

7-3

7-4

7-9

7-10
7-10
7-11
7-11
7-11
7-11
7-11
7-11
7-11
7-13
7-13
7-13
7-13
7-18
7-18
7-19
7-19
7-20
7-20
7-22
7-24

vii

Paragraph
Number

® © ©
— -
N =

8.2

8.2.1.1
8.2.1.2
8.2.1.3
8.2.2
8.2.21
8.2.2.2
8.2.3
8.24
8.2.5
8.2.6
8.2.7
8.3

8.5

9.1
9.2
9.2.1
9.2.2
9.23

9.3.1
9.3.2
9.3.2.1
9.3.2.2
9.3.2.3
9.3.24

10.1
10.1.1
10.1.2

viii

TABLE OF CONTENTS (Continued)

Page
Title Number
Section 8
Processing States
Normal Processing State.........civiiieiienririreriereniriierinerniennernnsrnnenes 8-1
Instruction Pipeling.......ccoccivviiiiniiiiiiii 8-1
Summary of Pipeline-Related Restrictionsovovvviiiienennnns 8-6
Exception Processing State (Interrupt Processing)cceveeiineiinns 8-8
INTEITUPL SOUICES . uiuiiietiiinin e reece et ens 89
Hardware Interrupt SOUICEScvuvviveirrereerineireeeenrenennens 8-9
Software Interrupt Sources........coovviiiiiiiiiiiiiiiiiin, 8-11
Other INterrupt SOUICESvvveierieeriiiiereeiarsenenrerienrninennens 8-14
Interrupt Priority Structure.........covviviiiiiiiiiiiinindinin 8-16
Interrupt Priority Levelscocovvviinininnnns e 8-16
Exception Priorities within an IPL.........cccoviiiiiniiiniiiiinen, 8-17
Instructions Preceding the Interrupt Instruction Fetch.........., 8-18
e LT (¥ o1 S Y o =Y S P PN 8-18
Interrupt Arbitrationovieiiiiiiiii i e 8-19
Interrupt Instruction Fetch.........cccovviiiiiiniiinni 8-20
Interrupt Instruction Execution...........ccvvvevnvnnnnsnld e 8-20
Reset Processing Statec.ovviviveiiieiiiiiiiiiie e 8-27
Wait Processing State.........cociviiiiiiiiiiic 8-36
STOP Processing State...............cu.ins O PN 8-38
Section 9
Port A
Port A Interface......ccoveveviiiiiiiiniiiiirccine e PP OPTRPIN 9-1
Port A Timing................ PPt 9-8
Port A Wait States......ccoeeiiiiiieiiiiiiniincieneien i nesnes . 9-10
Bus Control Register.......ciovivrieciieiiiiiiiiiieeieiireniesnennnens 9-12
Bus Strobe/Wait Pinscccovviiiviniiiiiiiiniiiine e 9-12
Bus Arbitrationccoeiiiiiiiiii e e 9-15
Bus Request/Bus Grantceueuee. i rererererrerreee vt ererarans 9-15.
Shared MemOry.....ccciiiiiiiiiiieiiiieiicir s e s r e anae 9-16
Bus Arbitration Using Only BR/BG with Internal Control........ 9-16
Bus Arbitration Using Only B BR/BG with External Control....... 9-16
Bus Arbitration Using BR/BG and BS/WT W|th No Overhead.. 9-18
Signaling Using Semaphores........ccooveveiieniiieeiniiininninnnnn, 1 9-20
Section 10
Port B
General-Purpose /0 .. .civiiiiieiiiieinci e s 10-2
Programming Parallel O.................... TN 10-4
Port B Parallel I/0 Timing e eerehiaerrarasirere e e taanes 10-4

DSP56000/DSP56001 USER'S MANUAL MOTOROLA

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
10.2 Host Interface (HI)...viueiiiiiiiiiiiir it ene e raeee 10-7
10.2.1 Host Interface — DSP CPU Viewpoint.......ccovvviiiiiiiiniiiieninnene, 10-9
10.2.2 Programming Model — DSP CPU Viewpoint........c..cocuviuieniinnnns 10-10
10.2.2.1 Host Control Register (HCR)......ccoviiuniiiiniiiiiiiniiinieenenenns 10-11
10.2.2.1.1 HCR Host Receive Interrupt Enable (HRIE) Bit O 10-12
10.2.2.1.2 HCR Host Transmit Interrupt Enable (HTIE) Bit 1............ 10-12
10.2.2.1.3 HCR Host Command Interrupt Enable (HCIE) Bit 2.......... 10-12
10.2.2.1.4 HCR Host Flag 2 (HF2) Bit 3.....ccvvviniiininieiiineieincnenns 10-12
10.2.2.1.5 HCR Host Flag 3 (HF3) Bit 4...c.cvvniiiiiiiniiivenenveneenen 10-12
10.2.2.1.6 HCR Reserved Bits (Bits 5, 6, and 7)cccvvvivivniininiinennns 10-13
10.2.2.2 Host Status Register (HSR)......cocvvviiiiiiiiiiiiiiiiniiecenienenns 10-13
10.2.2.2.1 HSR Host Receive Data Full (HRDF) Bit 0...........cccoveuennns 10-13
10.2.2.2.2 HSR Host Transmit Data Empty (HTDE) Bit 1................. 10-13
10.2.2.2.3 HSR Host Command Pending (HCP) Bit 2........c.cccuveeenee. 10-14
10.2.2.2.4 HSR Host Flag 0 (HF0) Bit 3......cccviviviiiiiiniiniininiinn, 10-14
10.2.2.2.5 HSR Host Flag 1 (HF1) Bit 4.....ocevviiiiiiiiiiiniiiciiineiinn, 10-14
10.2.2.2.6 HSR Reserved Bits (Bits § and 6).......c.cocvvviiviiiviniicnanns 10-14
10.2.2.2.7 HSR DMA Status (DMA) Bit 7coovviiiiiniiiiiiniiiiien, 10-14
10.2.2.3 Host Receive Data Register (HRX)oevviieiininiiiinieniiniennnns 10-14
10.2.24 Host Transmit Data Register (HTX) ..ccovcviiiiniiiniiiiiiinieenne 10-14
10.2.2.5 Register Contents after ReSet......cccvvevviniiiiiniiniieniiieneeennss 10-15
10.2.2.6 Host Interface DSP CPU Interruptsccviiiiieiiiinnnnnnnns 10-15
10.2.2.7 Host Port Usage Considerations — DSP Side...................... 10-15
10.2.3 Host Interface — Host Processor Viewpointcocvevevivnienieensn. 10-16
10.2.3.1 Programming Model — Host Processor Viewpoint............... 10-17
10.2.3.2 Interrupt Control Register (ICR).......covvviiinviiiineriiiiiceneienenee 10-18
10.2.3.2.1 ICR Receive Request Enable (RREQ) Bit 0.........ccvuvennee. 10-19
10.2.3.2.2 ICR Transmit Request Enable (TREQ) Bit 1...........ccveuenen 10-19
10.2.3.2.3 ICR Reserved Bit (Bit 2)ccoivieiiiiieiiiiieiiieiieienieriieens 10-19
10.2.3.2.4 ICR Host Flag 0 (HFO) Bit 3....coiviviiiieiiieniicinnneeneninenees 10-20
10.2.3.2.5 ICR Host Flag 1 (HF1) Bit 4..cecvveniieiiieiiiii e e 10-20
10.2.3.2.6 ICR Host Mode Control (HM1 and HMOQ) Bits 5and 6....... 10-20
10.2.3.2.7 ICR Initialize Bit (INIT) Bit 7 .ccvuieeriiiiiiiiiiieiiiineeeseeens 10-21
10.2.3.3 Command Vector Register (CVR)oveviiiiniiiiiiiiiiene e 10-22
10.2.3.3.1 CVR Host Vector (HV) Bits 0=4......ccooevvvnrerinneienrnneenenns 10-22
10.2.3.3.2 CVR Reserved Bits (Bit 5 and 6)cccceviiiviiiieennnenn. 10-22
10.2.3.3.3 CVR Host Command Bit (HC) Bit 7....ccooviiiiiiiiiiiiacnens 10-22
10.2.34 Interrupt Status Register (ISR)........cocvviiiniiiiveniiiiiiiniinnenes 10-23
10.2.3.4.1 ISR Receive Data Register Full (RXDF) Bit 0.................. 10-23
10.2.3.4.2 ISR Transmit Data Register Empty (TXDE) Bit 1............. 10-23
10.2.3.4.3 ISR Transmitter Ready (TRDY) Bit 2......cccvvviniieerineenns, 10-23
10.2.3.4.4 ISR Host Flag 2 (HF2) Bit 3...ccoiviiiiiiiiciieiceiceeeee e 10-24
10.2.3.4.5 ISR Host Flag 3 {HF3) Bit 4......ccovvviviiniiniiiiiiiiina, 10-24
10.2.3.4.6 ISR Reserved Bit (Bit 5) ..ccovvuviiiiiiiiiieiieeeieieeerenciieanan 10-24

MOTOROLA DSP56000/DSP56001 USER'S MANUAL ix

Paragraph
Number

10.2.3.4.7
10.2.3.4.8
10.2:3.5
10.2.3.6
10.2.3.7
10.2.3.8
10.2.4
10.2.4.1
10.2.4.2
10.2.4.3
10.2.4.4
10.2.4.5
10.2.4.6
10.2.5
10.2.5.1
10.2.5.2
10.2.5.3
10.2.5.4
10.2.5.5
10.2.6
10.2.6.1
10.2.6.2
10.2.6.2.1
10.2.6.2.2
10.2.6.2.3
10.2.6.2.4
10.2.6.3
10.2.6.3.1
10.2.6.3.2
10.2.6.3.3
10.2.6.3.4
10.2.6.4
10.2.6.5

TABLE OF CONTENTS (Continued)

Page
Title Number
ISR DMA Status (DMA) Bit 6 ...ccvvvviviininniirecerviniininns 10-24
ISR Host Request (HREQ) Bit 7......cccoevvrveiiinierinccnnenenns 10-24
Interrupt Vector Register (IVR).....c.cocvviiiiiiiiiniiniiinin, 10-25
Receive Byte Registers (RXH, RXM, RXL)......coovvivinninniennnnns 10-25
Transmit Byte Registers (TXH, TXM, TXL).....oovvivriiiniininnnin, 10-25
Registers after Reset.....c..cccvvviiiiniiiniiiiiiii e 10-25
Host Interface Pins............. SN 10-26
Host Data Bus (HO=H7)ccocvrinenniiiiireiceeeeneeeeeeen, 10-26
Host Address (HAQ-HA2)ccooiiviiiiinnniiiiinei 10-26
Host Read/Write (HR/W)...ccvviniriiiiiiiiiiiiini e 10-27
Host Enable (HEN)..........cccieeiiienniiieiiiiic e 10-27
Host Request (HREQ)ccovviviiieiiiiiiiiiiiiicnc e ens 10-27
Host Acknowledge (HACK)c.covviiiniiiiiiiiiieeieii e 10-27
Servicing the Host Interfacec.cocevviiiiniiciiiincinicrnienes 10-27
HI Host Processor Data Transfer..........cocovvviiinininnineninnns 10-28
HI Interrupts Host Request (HREQ)ccoovviiiiiniiiicnininnnns 10-28
POlliNG covvieiiiii 10-30
Servicing Non-DMA Interrupts.......ccooevviiiiviniiiiiiinninnn., 10-30
Servicing DMA Interrupts......cooviiiiiviiiiiiiiiiiiea 10-31
HI Application EXamples......coiviiiiieiiniiiiiniiciiieniiereneenenennes 10-31
HI Initialization......co.iveiiiic e 10-31
Polling/Interrupt Controller Data Transfer..................o.ooueei. 10-31
Host to DSP — Data Transfer........cocvevviiiiieiiininininnnns, 10-35
Host to DSP — Command Vectorc.ciovviviivniiniinnnes 10-40
Host to DSP — Bootstrap Loading Using the Hi............. 10-43
DSP-to-Host Data Transfercccocviviniiviiiininnn, 10-44
DMA Data Transfer.....ccociieieiniiieiiic e 10-48
Host-to-DSP Internal Processing........cococvveveiiiniieninnn. 10-49
Host-to-DSP DMA Procedurecocovveveninniiiiiiincininnn. 10-50
DSP-to-Host Internal Processing...........ccoevvviiiiniininnnnns 10-53
DSP-to-Host DMA Procedure............... [T 10-54
Example Circuitsccoevviiiiiiiiiiiciiin e 10-54
Host Port Usage Considerations — Host Side..................... 10-56
Section 11
Port C
General-Purpose 1/0 (Port C).uuvuviiiiiiiienieiieiiiniin i eeeenee e 11-1
Programming Parallel 1/O..........ccoviviiiiiiniinin 11-1
Port C.Parallel I/O Timing ...ccoeviriiiniiiiiiiiniieiiicinreecrsanaeaes 11-6
Serial Communication Interface (SCl).....ccovviriiiiiiciiiiiiiiinniineene, 11-8
L 04 I 10 T T T S S PP 11-9
Receive Data (RXD}.u.ivieiuiiieniiiiiiiiiieiicreiieiininresrensenannss 11-9
Transmit Data (TXD) cuiviiriiiiiiiiiii e iire i rereee e eas 11-9
DSP56000/DSP56001 USER'S MANUAL MOTOROLA

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
11.2.1.3 SCI Serial Clock {SCLK)...cuvvvviineineiiiennannns S 11-9
11.2.2 Programming Model...........cooviviiiiiiniinnenn, e 11-9
11.2.21 SCI Control Register (SCR) .c.uvvienieiiiiiiiiiec e e 11-11
11.2.2.1.1 SCR Word Select {(WDS0, WDS1, WDSZ) Bits 0, 1,and 2 11-11
11.2.2.1.2 SCR SCI Shift Direction (SSFTD) Bit.3,,...cccvvvenininiininnnne 11-12
11.2.2.1.3 SCR Send Break (SBK) Bit 4. ..icieveisieeieeeiieneeeiieenenns 11-12
11.2.2.1.4 SCR Wakeup Mode Select (WAKE) BIt Buveeerererreesirineans 11-15
11.2.2.1.5 SCR Receiver Wakeup Enable (RWU) Bit 6............ceueuees 11-15
11.2.2.1.6 SCR Wired-OR Mode Select (WOMS) Bit 7vuuene. 11-16
11.2.2.1.7 SCR Receiver Enable (RE) Bit 8ccvevivveieiiniiinennns 11-16
11.2.2.1.8 SCR Transmitter Enable (TE) Bit 9-............. e 11-16
11.2.2.1.9 SCR Idle Line Interrtipt Enable (ILIE) Bit 10c.cv...... 11-16
11.2.2.1.10 SCR SCI Receive Interrupt Enable (RIE) Bit 11 11-17
11.2.21.1 SCR SCI Transmit Interrupt Enable (TIE) Bit 12.............. 11-17
11.2.2.1.12 SCR Timer Interrupt Enable (TMIE) Bit 13........ccccvvvenenes 11-17
11.2.2.1.13 SCR Reserved ' (Bit 14)ccovvieiieiiniiiiiieiriieireseeeenne 11-18
11.2.2.1.14 SCR SCI Clock Polarity (SCKP) Bit 15.cciiiiiiniieeniniiienns 11-18
11.2.2.2 SCI Status Reglster (5151 3) T U 11-18
11.2.2.2.1 SSR Transmitter Empty (TRNE) Bit O..........ccoovviinninnnis 11-18
11.2.2.2.2 SSR Transmit Data Register Empty (TDRE) Bit 1............ 11-18
11.2.2.2.3 SSR Receive Data Register Full (RDRF) Bit 2.................. 11-19
11.2.2.2.4 SSR Idle Line Flag (IDLE) Bit 3......coiivivieneniiciniinenninnen. 11-19
11.2.2.25 SSR Overrun Error Flag (OR) Bit 4.........ccoooiviiiiinnnnnnens 11-19
11.2.2.2.6 SSR Parity Error (PE) Bit 5.....ccvvvniiiiiniiiiiiiiniiiiinnnn, 11-19
11.2.2.2.7 SSR Framing Error Flag (FE) Bit 6..........ccoiviiiiiiinninnins 11-20
11.2.2.2.8 SSR Received Bit 8 (R8) Address Bit 7..........cccocvuvivnnnnn, 11-20
11.2.2.3 SCI €lock Control Register (SCCR)...c..coevvvrivecinienenieeiniinns 11-20
11.2.2.3.1 SCCR Clock Divider {CD11-CDO) Bits 11-0.........cevevvrnne. 11-21
11.2.2.3.2 SCCR Clock Out Divider (COD) Bit 12cccvveveuniniinnennn, 11-21
11.2.2.3.3 SCCR SCI Clock Prescaler (SCP) Bit 13.......ccceenviniinnnn. 11-22
11.2.2.3.4 SCCR Receive Clock Mode Source Bit (RCM) Bit 14........ 11-22
11.2.2.3.5 SCCR Transmit Clock Source Bit (TCM) Bit 15................ 11-22
11.2.24 SCl Data REgiSters....cciviviiininiiicriciienirneeiirenrninsennes 11-23
11.2.2.4.1 SCI Receive Registerscooveiviiiiiiiiiiiiiiinnenen, 11-23
11.2.2.4.2 " SCI Transmit RegiSters........ccuvveiieererrerenrnsnenaeres e 11-24
11.2.25 Preamble, Break, and Data Transmission Priority................. 11-25
11.2.3 Register Contents After Reset.......ococvviiiiiiiiniiiiiiiinn, 11-25
11.2.4 SCl INitialization: ... e ve et cree e e e s 11-26
11.2.5 SCI EXCEPLIONS «.vviiiiiiiiiiiiiiicciiai e e e 11-28
11.2.6 Synchronous Data.........ccoveeeniiiiiiiiniiiin i 11-32
11.2.7 Asynchronous Data...........viviiiiiiiiiiniciiic 11-39
11.2.71 Asynchronous Data Reception..........cvvveeiniiiiicinninennnn, 11-39
11.2.7.2 Asynchronous Data Transmissioncoeiviiiiiiiiienenianen, 11-41
11.2.8 MURIArOP ce v 11-47

MOTOROLA DSP56000/DSP56001 USER'S MANUAL Xi

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
11.2.8.1 Transmitting Data and Address Characterscovveunen. 11-49
11.2.8.2 Wired-OR MOdE ...ovviiiiireicireie v e e e aees 11-63
11.2.8.3 Idle Line WaKeup...c..oivviiiiiiiiiiiiiiciiinince i s cenena e 11-53
11.2.8.4 Address Mode Wakeup........ooeiviveiineiiininiieiieniirnneeneennes 11-53
11.2.8.5 Multidrop Example ...ccoovviiiiiiniiiiin e 11-56
11.2.9 S0 I T o =T O STPR 11-61
11.2.10 Example Circuits....c..ocveiiiiiiiiiiiiiir e 11-64
1.3 Synchronous Serial Interface (SSI)oveiiiiiiiiiiiiiie 11-66
11.3.1 SSI Data and Control Pins.....ccoeveviviiiiiiiiiiiencinncenee e neenan 11-67
11.3.1.1 Serial Transmit Data Pin (STD)ccovviiiiiiiiiiiie e, 11-68
11.3.1.2 Serial Receive Data Pin (SRD)covvviiviiieiiiiineienieneianen, 11-69
11.3.1.3 Serial Clock (SCK)..uiuiiiiiiiiiiiiiiiiiriin e se e e e 11-69
11.3.1.4 - Serial Control Pin {SCO) ..c.vvviiiiiiiiiiiiiiieec e 11-71
11.3.1.5 Serial Control Pin {SC1) .i.civviviieiiiiiiiin i 11-71
11.3.1.6 Serial Control Pin (SC2) iviieeiiiiiiiiiin e ineaneeas 11-72
11.3.2 SSI Interface Programming Model...........coeiiiiiiiiieniniiiinieenn. 11-72
11.3.2.1 SSI Control Register A (CRA)covvveiviiiiivree e 11-72
11.3.2.1.1 CRA Prescale Modulus Select (PM7-PM0) Bits 0-7......... 11-72
11.3.2.1.2 CRA Frame Rate Divider Control (DC4-DCO0) Bits 8-12 11-76
11.3.2.1.3 CRA Word Length Control (WLO, WL1) Bits 13 and 14..... 11-76
11.3.2.1.4 CRA Prescaler Range (PSR) Bit 15.......cccovvviiiiininciinene. 11-76
11.3.2.2 SSI Control Register B (CRB).......cccoeviiiiiniiiiiniiiiiceens 11-76
11.3.2.2.1 CRB Serial Output Flag 0 {OF0) Bit 0 ...c.evvvvecininnirenanee 11-77
11.3.2.2.2 CRB Serial Output Flag 1 (OF1) Bit T.....eeveveieviiicicinnnn. 11-77
11.3.2.2.3 CRB Serial Control 0 Direction (SCDO) Bit 2 1-77
11.3.2.24 CRB Serial Control 1 Direction (SCD1} Bit 3 11-77
11.3.2.2.5 CRB Serial Control 2 Direction (SCD2) Bit 4c....... 11-77
11.3.2.2.6 CRB Clock Source Direction (SCKD) Bit 5cvvvevnennnen. 11-79
11.3.2.2.7 CRB Shift Direction (SHFD) Bit 6........cccevvvveiieiieenannanas 11-79
11.3.2.2.8 CRB Frame Sync Length (FSLO and FSL1) Bits 7 and 8.... 11-79
11.3.2.2.9 CRB Sync/Async {SYN) Bit 9...cvvveviiiiiniiiiniiieinnniirennnns 11-79
11.3.2.2.10 CRB Gated Clock Control {GCK) Bit 10.......ccccceenvenennen.. 11-79
11.3.2.2.11 CRB SSI Mode Select (MOD) Bit 11....ccivvviirerennrecinnnnns 11-80
11.3.2.2.12 CRB SSI Transmit Enable (TE) Bit 12......cccovvvvivivnennenes 11-80
11.3.2.2.13 CRB SSI Receive Enable (RE) Bit 13ccocvvvvinineniennnes 11-80
11.3.2.2.14 CRB SSI Transmit Interrupt Enable (TIE) Bit 14.............. 11-81
11.3.2.2.15 CRB SSI Receive Interrupt Enable (RIE) Bit 15 11-81
11.3.2.3 SSI Status Register (SSISR)cccvvveneene e, 11-81
11.3.2.3.1 SSISR Serial Input Flag 0 (IF0) Bit 0 ..c..vvvvviniiiiinninnnnen. 11-81
11.3.2.3.2 SSISR Seial Input Flag 1 (IF1) Bit 1 ...vvvnveviiiiiiiiieennenns 11-82
11.3.2.3.3 SSISR Transmit Frame Sync Flag (TFS) Bit 2................. 11-82
11.3.2.3.4 SSISR Receive Frame Sync Flag (RFS) Bit 3.................. 11-82
11.3.2.3.5 SSISR Transmitter Underrun Error Flag (TUE) Bit 4........ 11-82
11.3.2.36 SSISR Receiver Overrun Error Flag (ROE) Bit 5.............. 11-83

Xit DSP56000/DSP56001 USER'S MANUAL MOTOROLA

TABLE OF CONTENTS (Concluded)

Paragraph Page
Number Title Number
11.3.2.3.7 SSISR SSI Transmit Data Register Empty (TDE) Bit 6...... 11-83
11.3.2.3.8 SSISR SSI Receive Date Register Full (RDF) Bit 7........... 11-83
11.3.2.3.9 SSI Receive Shift Register.........ccoceivieiiiiininiiniiiniinenne, 11-83
11.3.2.3.10 SSI Receive Data Register (RX) ...ovvveveiiniiiniiiiiicninenens, 11-84
11.3.2.3.11 SSI Transmit Shift Register.......covcvvviiniriiiinieiiniinenens 11-84
11.3.2.3.12 SSI Transmit Data Register (TX)........coovviiiiiiiiiiiiiinnn 11-84
11.3.2.3.13 Time Slot Register (TSR) ..cveviiiiiiiiiieiin e 11-84
11.3.3 Operational Modes and Pin Definitions........c..coveviiiiiiinininennnns 11-87
11.3.4 Registers After RESetiuviuiiiiniiiiiiiei e 11-88
11.3.5 SSI INitialiZatioN. .. vvie i e 11-88
11.3.6] I D CeT=Y o] (o] - PP 11-92
11.3.7 Operating Modes — Normal, Network, and On-Demand............. 11-93
11.3.7.1 Data/Operation FOrmats......c..cvevveiiiiiiniiieininneiniinennien, 11-96
11.3.7.1.1 Normal/Network Mode Selection........cccoveveviininnininnnns 11-96
11.3.7.1.2 Continuous/Gated Clock Selectioncccoovviveveeiinennne, 11-96
11.3.7.1.3 Synchronous/Asynchronous Operating Modes............... 11-99
11.3.7.1.4 Frame Sync Selectionccoviiiiiiiiiiiiiiniiiniceneeens 11-107
11.3.7.1.5 Shift Direction Selection.........c.ocvviveiiiiiiiiiinceneeenes 11-107
11.3.7.2 Normal Mode Examplesc.cocvvvveviiiiiinininnnn, T 11-107
11.3.7.2.1 Normal Mode Transmit.........c.coeiiveeniiiiiiininerciiinienns 11-113
11.3.7.2.2 Normal Mode ReCEiVe.....cccvviiiiiiiiiiiiiiiieie s 11-114
11.3.7.3 Network Mode Examplescovvveiviiiiiiiiiiiiniiciniicen, 11-118
11.3.7.3.1 Network Mode TransSmit.....c.ccoeeienenereininieeieasnininenns 11-122
11.3.7.3.2 Network Mode Receiveccoeviviiiiiiiniiieiiineieninieienees 11-124
11.3.7.4 On-Demand Mode Examples........cocvivivinininnininiiinnnnen, 11127
11.3.7.4.1 On-Demand Mode — Continuous Clock............ceevenenn. 11-128
11.3.7.4.2 On-Demand Mode — Gated Clockc..ccovvvevininenenenn, 11-128
11.3.8 S F= T 1= PPN 11-133
11.3.9 Example CirCUItS .. .ceiieiiiieiiiiiieiiiieisn et 11-138
Appendix A

Instruction Set Details

Appendix B
Benchmark Programs

Appendix C
Additional Support

Index

MOTOROLA DSP56000/DSP56001 USER'S MANUAL xiii

xiv DSP56000/DSP56001 USER'S MANUAL MOTOROLA \

LIST OF ILLUSTRATIONS

Figure
Number Title
1-1 Analog Signal Processing.........ccocevviiinviiiiiiniininiiiin
1-2 Digital Signal Processingcccvivievieiiiiiiieeiiiiniieiiireeerienenenien,
1-3 DSP Hardware OFiginscovvuveiiiiiiineiieiiciniinciceenee e,
1-4 DSP BlOCKk Diagram ...cciviuiniriuneieniiieieeeiiiireneeeeneneenssinesesanrenes
1-5 DSP56000 Block Diagram...........cccveeiiiiiiiiininiiiiinenninnnnneninnn, R
2-1 DSP56000 Block Diagram.......cocveeveiiieiiiiiiniiiininreieeneeeieissaienes
2-2 DSP56001 Block Diagram.........cceeuvinieninninnincineneiininiinenieenenne.
2-3 DSP56000/DSP56001 Functional Signal Groupsc.covveivininennnen.
3-1 DSP56000 Memory Map.......cceceuenens et tar it ierae i rea e,
3-2 Memory Map for DSP56000 Mode 0: Single-Chip Mode.................
33 Memory Map for DSP56000 Mode 2: Normal Expanded Mode
3-4 Memory Map for DSP56000 Mode 3: Development Mode...............
3-56 DSP56001 Memory Map......veiiiiiiiiinieniiiiinei e,
3-6 Memory Map for DSP56001 Mode 0: Single-Chipc..ovvvevvenennnnnnn.
3-7 Memory Map for DSP56001 Mode 2: Normal Expanded Mode
3-8 Memory Map for DSP56001 Mode 3: Development Mode...............
4-1 DSP56001 Block Diagram.........cceeuiiuiiieeiiieiiinineiiineninineenens
4-2 Data ALU ... e et e
4-3 Y O T 1) N
4-4 Saturation Arithmetic.......c.c.oiiiviiiiiiii
4-5 Bit Weighting and Alignment of Operandscc.ccceveviiiiiiinnnnne.
4-6 Integer-to-Fractional Data CONVErsioN..........ccvcceiiiniiiiirinseianiinnnns
4-7 Integer/Fractional Number Comparison...........cc.cvevvveneninenne e
4-8 Integer/Fractional Multiplication Comparisonc.ccoevvviienininnnnne.
4-9 Convergent ROUNAINGccuviiiiiininiiiiiieiiiieiiiiiniinnre e
4-10 DSP56000/DSP56001 Programming Model.........ccccveviiniiniinninnninnl!
5-1 DSP56001 Block Diagram............ N
5-2 AGU Block Diagramccooieiiiiiiiiiie i ccvn e e ene e
5-3 AGU Programming Modelccccoviiiiiiiiiniiin e
5-4 Address Register Indirect — No Update.......c.cccveiviiiiiiiiiniinnnnnnn,
5-5 Address Register Indirect — Postincrementc.coocviiiiiiiiiiiin
5-6 Address Register Indirect — Postdecrement............... e,
5-7 Address Register Indirect — Postincrement by Offset Nn................
5-8 Address Register Indirect — Postdecrement by Offset Nn................
5-9 Address Register Indirect — Indexed by Offset Nn............oceeuen.

MOTOROLA

DSP56000/DSP56001 USER'S MANUAL

Page

Number

3-7

3-10
3-11
3-13

4-1
4-2

4-7
4-9
4-9
4-10
4-10
4-12
4-13

5-10
5-11
5-12

XV

LIST OF ILLUSTRATIONS (Continued)

Figure ‘ Page
Number Title Number
5-10 Address Register Indirect — Predecrement.............coovvviinieninennn, 5-13
5-11 Circular BUffer......ccovveniiiiiiie e 5-14
5-12 = Linear Addressing with a Modulo Modifier...........cocovivivviiienininnnns 5-15
5-13 Modulo Modifier Example.........cc.cocviiiiiiiiiinnnnn, 5-16
5-14 Bit-Reverse Address Calculation Example......ccccoeveviiiiiiininininine. 5-19
5-15 Address Modifier SUMMAIY ...ocieiiiiiiiiiiiieinciin e rrrsecssrnaes 5-21
6-1 DSP56001 Block Diagram.......ccceevveiiiniiiniininnnnniiiniiinrneneienins 6-1
6-2 DSP56000/DSP56001 Program Controller..........covvvriiiiicinianenianines 6-2
6-3 Fast and Long Interrupt EXamplescoeveviiiiiieiininininninenineenn, 6-5
6-4 Three-Stage Pipeline.....c.cocviiiiiiiiiiniiiiniic e, 6-7
6-5 Program Controller Programming Model rerenenes e 6-8
6-6 Status Register FOrmat..........cocoiiiiiiiiiininiiiin e 6-9
6-7 OMR Format..........ccovunie e e e ereeirerra e 6-12
6-8 SP Register FOrmatccociviiiiiiiniiiiire e e 6-15
6-9 SP Register ValUBS....cuiuiiiiiiinieiiniiiiieeaereernirsa e eeaesnsnsranses 6-16
6-10 DSP56000/DSP56001 Central Processor Programming Model........... 6-18
7-1 DSP56000/DSP56001 Central Processor Programming Model........... 7-2
7-2 General Format of an Instruction Operation Word.............cccceveeenen 7-3
7-3 OPErand SizeS......ivivuveiieiiviiiiiiiiiirrteieeinriae e rarenarne s 7-4
7-4 Reading and Writing the ALU Extension Registerscccceviiiins 7-5
7-5 Reading and Writing the Address ALU Registerscccoeein, 7-5
7-6 Reading and Writing Control Registerscccovviniininiinenninnnn, 7-6
7-7 Special Addressing — Immediate Data.........co.cveveiviiieniiiiciniennnnn. 7-12
7-8 Special Addressing — Absolute Addressing...........cooocvvineiininnnen 7-13
7-9 - Special Addressing — Immediate Short Data............coovvvvnveennnne. 7-14
7-10 Special Addressing — Short Jump Address.........oocevvniiininnenienanes 7-15
7-11. Special Addressing — Absolute Short Address...........cccoiviivninnnn 7-16
7-12 Special Addressing — I/0 Short Address........cccvvveriveriiiininninnens 7-17
7-13 . Hardware DO Loop....... TP e 7-21
7-14 Nested DO LOOP ..iiiiiiiiiiiiii e et rerr e s et ae 7-22
7-16 Classifications of Parallel Data MOVES......cccocvveiineniiinnicieinnnsnnnnns 7-23
7-16 Parallel Move EXamPpIlescooviiiiiciiininiiiiiiiie i 7-23
8-1 Interrupting an SWi ... e 8-11
8-2 lllegal Instruction Interrupt Serviced by a Fast Interrupt.................. 8-12
8-3 Repeated lllegal INStruCtioncv.o.vieiiiiiiiiii e e 8-13
8-4 Trace EXCEPtiON....cccieiiiiiiiiiiiii e et a s arn e 8-15
8-5 Interrupt Priority Register (Addr X:$FFFF)......ccocviiiiiiiniiininininnenes 8-16
8-6 Fast Interrupt Service Routing...........ccovviiniiiiiiienninnnin . 8-21
8-7 Two Consecutive Fast Interruptscovevieiiiiiinnininiininn, 8-22
8-8 Long Interrupt Service ROULINEc.vvviiiiiiiieniiiiiniiieeiieiiciesesnnnaes 8-23
8-9 JSR First Instruction of a Fast Interrupt.......c.coocvviviiiiniiniiiinninnnn 8-25

xvi DSP56000/DSP56001 USER'S MANUAL MOTOROLA

LIST OF ILLUSTRATIONS (Continued)

Figure Page
Number Title Number
8-10 JSR Second Instruction of a Fast Interrupt.......cooeevviieiiiiniineniinnnns 8-26
8-11 Interrupting an REP Instructioncccvviviieiiieiiiiiiiniiinne e, 8-28
8-12 Interrupting Sequential REP Instructionsc.cocovviiiiinniinninnnn, 8-29
8-13 Reset SeqUENCE.......ccviiiiiiiiiiiiiiitiii e 8-30
8-14 Reset When OMR =0ccoiiiiiiiiiiiei et 8-31
8-15 Wait Instruction Timing......ccooeviiiiiiiiiiiii e 8-37
8-16 Simultaneous Wait Instruction and Interrupt.........cocoveiiiiieiininnnnns 8-37
8-17 STOP Instruction SEQUENCE......c.ceivuieiiiiiiciiiiiiiiiii i 8-39
8-18 STOP Instruction Sequence Followed by IRQAcccvvevvienennnns 8-39
8-19 STOP Instruction Sequence Recovering with RESET 8-42
9-1 POrt A Signals...covciuiiiiiiiiiiiiii e 9-2
9-2 External Program Space........cccoevveiiiiviiiiiiiiic e 9-3
9-3 External X and Y Data Space........c.cvviviiveniniiiinininiieeins 9-4
9-4 Memory Segmentationvcvvviiiiiiiiiiiie 9-5
9-5 Port A Bootstrap Circuit........cccovvieiiiiiiiiiiiiniieas 9-6
9-6 Port A Bootstrap ROM with X and Y RAMcooiiiiiiiiiiniiiicens 9-7
9-7 Port A Bus Operation with No Wait States.............ciceevviiiievniiieen. 9-8
9-8 Port A Bus Operation with Two Wait States..............ococviviininiinnn 9-9
9-9 Mixed-Speed Expanded System................. et rer e, 9-11
9-10 Bus Control Register.......cccoiiviiiiiiiiiiiiiiiin e 9-13
9-11 Port A Access CONtrol.....cuvveeeiiiniiniiiiiiiiienni e e 9-13
9-12 Bus Strobe/Wait Sequence...................... ettt 9-14
9-13 Bus Request/Bus Grant SeqUENCE...........ccoeviviieiinnannns e 9-15
9-14 Bus Arbitration Using Only BR/BG with Internal Control................. 9-17
9-15 - Two DSPs with External Bus Arbitration Timingc.c..covevenieiininnns 9-17
9-16 Bus Arbitration Using Only BR/BG with External Control 9-18
9-17 Bus Arbitration Using BR/BG and BS/WT with No Overhead............ 9-19
9-18 Two DSPs with External Bus Arbitration Timingcccocvviiiiiennns, 9-19
9-19 Signaling Using Semaphoresc.ccoviiviiiniiiiiiininin . 9-20
10-1 Port B Interfacecoi, v [0 2
10-2 Parallel Port B RegiStersveviveiniininriirrienesiacnnenresininensaisians 10-2
10-3 Parallel Port B PinOUL......ccoeiuiiiiiiiiiiiiien e e eeere e e 10-3
10-4 Port B 1/0 Pin Control LOGIC....c.vvvriiiieiniiiiiiie i ieene - 10-3
10-5 On-Chip Peripheral Memory Mapccooviieiiiiniiiiiinininan, 10-5
10-6 Write/Read Parallel Data with Port Bocoiviiiiiiiiniiniiinienenn, 10-6
10-7 Port B Configuration Flowchart..........occcoviiiiiiiiinininiinn, 10-6
10-8 I/0 Port B Configurationc.ccceveiiiiiiiiininniniiniin 10-7
10-9 HI BIOCK Diagram ...cuiive i iiiiiiiiiiiiii e ene s en e inereeenansensasaaes 10-10
10-10 Host Interface Programming Model — DSP Viewpoint 10-11
10-11 Host Flag Operationccceveeiniiiiiiiiiiiiiciiiien e 10-13
10-12 HSR-HCR Operation....c.ccccciiiiiiiiiiiiiieireerieereinsnecineresnsnnesanss 10-16
10-13 Host Processor Programming Model — Host Side...........c.coceveennin 10-17

MOTOROLA DSP56000/DSP56001 USER'S MANUAL xvii

LIST OF ILLUSTRATIONS (Continued)

Figure Page
Number Title Number
10-14 HI Register Map....iociiiiii i e e e e e e 10-18
10-156 Host Processor Transfer Timingcccovevieiiiiiiiiinininiinn, 10-28
10-16 Host Registers After Reset — Host Side.....ccovvivveiiiiiiiieneninnieennnns 10-29
10-17 HI Interrupt StruCtUIe......ocueeiii e e 10-29
10-18 DMA Transfer Logic and Timing.....cccoviveviiiiiriiiniiiieineiniienianenn 10-32
10-19 HI Initialization FIOWChart........ccveveiiiiiiiiiiiiiii e enees 10-32
10-20 HI Initialization — DSP Side.....cc.vuviiiiiiiiiiiiiiii et 10-33
10-21(a) HI Configuration — HOSt SIHE .vevvvvrerrienrenreireinererieierreraernaaneanens 10-34
10-21(b) HI Initialization — Host Side, Polling Mode...........cccoevvviiivennnnnnnnn. 10-34
10-21(c) HI Initialization — Host Side, Interrupt Mode..........ccvvvveninininnninens 10-35
10-21(d) HI Initialization — Host Side, DMA Modeccoevviiiiiiiniiirenens. 10-36
10-22 Host Mode and INIT BitS.....c.oveviiiniiiciinnieiiniiciniiininincanneneens 10-37
10-23 Bits Used for Host-to-DSP Transfer........cccocveeveiiiiivieiiiiiceninnnnnenn, 10-38
10-24 Data Transfer from Host t0 DSP......cccooviviiiiiiiiiiiniincn e, 10-39
10-25 Receive Data from Host — Main Programccoeeviiiinicenininnnnns 10-40
10-26 Receive Data from Host Interrupt Routine.............oovviiiiiiciiinnnnnne. 10-40
10-27 = Vector Table of Exception SOUICES......cvvvvvvvieiiienivinininennnnns e 10-41
10-28 HOSt ComMaANdvuiniriiiiiiiiieie et e r i re s s e e e e ennans 10-42
10-29 Bootstrap Using the Hl.....oveiniiniii e 10-44
10-30 Transmit/Receive Byte Registers.........coveviiiiiiiininiiniiiniiiniininn, 10-45
10-31 Bootstrap Code Fragment.......c..cooviiieeiiiceiiniiiii e 10-45
10-32 Bits Used for DSP-to-Host Transfer...................... e, ... 10-46
10-33 Data Transfer from DSP t0 HOSt........veeiviiiivininininiernieneienns 10-47
10-34 Main Program — Transmit 24-Bit Data to Host..........cccoociviiinnnnin, 10-48
10-35 Transmit to HI ROULINEovviiiiiiiriiiic e 10-49
10-36 HI Hardware — DMA MOdE.........cvenvieniininiiiniiiieiiiinrineeinenes 10-50
10-37 ~ DMA Transfer and Host Interrupts............... O 10-51
10-38 Host-t0-DSP DMA Procedureccceuiuieieriniiieiieieeinenennenennsenenes 10-52
10-39- Host Bits with TREQ and RREQ..........coviiviiiiiniiiiiiniiiii e 10-53
10-40 DSP-to-Host DMA Procedureceuvieeiiiiiiiiicieiineniceieseninen e 10-55
10-41 MC68HC11-to-DSP56000 Host Interface........cccovevivveeinienenienennnnnnn. 10-56
10-42 MC68000-t0-DSP56000 Host INterfacecuvevrninirreinnrnirnernennennenne 10-57
10-43 Multi-DSP Network Examplecccooviiiiiiiiiiiiiiicice e 10-58
11-1 Port C INterfacevvvvnieriiiirii e ee e nas 11-2
11-2 Parallel Port C PinOULt.......cooiiiiiiii e re s 11-3
11-3 Parallel Port C RegiStersviviiviriiniiiiiniieiiiireii et cne e e rneenenneaas 11-3
11-4 Port B 1/0 Pin Control LOgiC....cviviiveiiiiiiiieiiiiciiieceen s ecnnenens 11-4
11-5 On-Chip Peripheral Memory Mapc..cccveuvenen. e 11-5
11-6 Write/Read Parallel Data with Port Ccooovviiviiiniiiiininiicinin, 11-6
11-7 Port C Configuration Flowchart.......c..cccoiiiiiiiiiiiiiiiiiiiinncicieeans 11-6
11-8 1/0 Port C Configurationcoveiiiiiiieiiciii e 11-7
11-9 SCI Programming Model — Control and Status Registers............... 11-10
11-10 SCI Programming Modelccoeiuiiiiiiiiiiiiiiii e anaeans 11-11

xviii DSP56000/DSP56001 USER'S MANUAL MOTOROLA

Figure
Number

11-11
11-12
11-13
11-14
11-15
11-16
11-17
11-18
11-19
11-20
11-21
11-22
11-23
11-24
11-25
11-26
11-27
11-28
11-29
11-30
11-31
11-32
11-33
11-34
11-35
11-36
11-37
11-38
11-39
11-40
11-41
11-42
11-43
11-44
11-45
11-46
11-47
11-48
11-49
11-50
11-51
11-52
11-53
11-54

LIST OF ILLUSTRATIONS (Continued)

Page
Title Number
Serial FOrmats....covuririiiiii it a e ea s 11-13
16X Serial ClocK....ivuiiviiviniiiiiiiiiin 11-21
SCI Baud Rate GENErator.......covvvveieiininierieieiieienisireniereenansensanes 11-22
Data Packing and Unpackingcocoveviiiiiiniiininiiniinnnnn, 11-24
SCI Initialization Procedureccveiuiiiiiiiniiiienie e 11-28
SCI General Initialization Detail — Step 2......cvviiiviiiiiiiiiicininnn, 11-29
SCI Exception Vector LoCationS......ccvvveiiieieeiiiieninineiieienenenieienns 11-33
SyYNchronous Master.....c.o.iviiiiiiiniiiii e e ceesanens 11-34
Synchronous Slave ..o ..o 11-36
Synchronous TiMING «iveevveieeiiirieiiieiieeiriiereirearneerenrnrarrraares 11-37
SCI Synchronous TransSmMit.......ccveiieiiieeiiiieiiiieeiirineneensaeanes 11-38
SCl Synchronous Receivecivviiiiiniiiiiiiiiiiiice e 11-39
Asynchronous SCI Receiver Initialization...........cc.occcveviiiiiiiiianennns 11-40
SCI Character ReCEPtioncivvviuiiiiiiiiiiriirininenreisnnasiieess e 11-42
SCI Character Reception with EXCEPLioN.......cvcviveiieiieninienirinenenen, 11-43
Asynchronous SCI Transmitter Initialization........cccoevvvenienieneenennn. 11-44
Asynchronous SCI Character Transmission.........cccviveiviiesniinienens 11-45
Transmitting Marks and SPacescceeeeieiiivinnieiiiniiniincei, 11-46
SCI Asynchronous Transmit/Receive Exampleccoeevvveieviiiiiennnen, 11-48
11-Bit Multidrop Modeooiiniiiiiiiii e e 11-50
Transmitting Data and Address Characters.........c.ovceevivvnevierennenens 11-51
WiIred-OR MOuiiivneriieeeiiieeeiiieeeie et eeriesreneeennssannaeeeeens 11-562
Idle Line Wakeupooviiiiiiiiiiiiicii e 11-54
Address Mode Wakeup ...cccovveriiiiiiiiiiinicnieeiire et raeesnieaes 11-55
Multidrop Transmit/Receive Examplecocoiveiieiiinininiiiinnnicinne., 11-57
SCI Timer Operation......cuiieiereiinieerieiieieien s rreaeasasnressnrnens 11-62
SCl Timer EXample.....coeiiiiiiiiiiiiiiieini e e eae e 11-63
Synchronous Mode Example.........ocveviiiiiiiniininiiniiee e, 11-65
Multimaster System Examplec..ccovviviiiiniiimiiniina 11-65
Master-Slave System EXample.....c..cccovviiiiiiiiiiniieniniininnee e 11-66
SSI Clock Generator Functional Block Diagram.........cccevveveneeniinnns 11-69
SSI Frame Sync Generator Functional Block Diagram 11-70
SSI Interface Programming Model — Control and Status Registers... 11-73
SSI Interface Programming Model..........cocoviviiiiiiiiiiiniinnin, 11-74
Serial Control, Direction Bitscc.coiveveciiiieiiiiiiie e 11-78
Receive Data Path..........cooiiiiviiiiiiiniii e 11-85
Transmit Data Path...........coviiiiiii 11-86
SSI Initialization Block Diagram.......c..ccceeuieiniiniiiiiiiiniiiinna, 11-89
SSI CRA Initialization Procedure........c.cvvviiirieiiineiiciniiinininenans 11-90
SSI CRB Initialization Procedure......ccccovvvieiivnieiininininiininninienns 11-91
SSI Initialization Procedurec.c.oovveviniiiiiiciinniininas 11-92
SSI Exception Vector Locations.......ccvveiiveniieiinierieniinnineenencenens 11-94
1] I ST (eT=] o] (o] £ =T PPN 11-95
CRB MOD Bit Operationcccveveeeuiininiininninieiiiniei e 11-97
MOTOROLA DSP56000/DSP56001 USER'S MANUAL Xix

Figure
Number

11-65
11-56
11-57
11-58
11-59
11-60
11-61
11-62
11-63
11-64
11-65
11-66
11-67
11-68
11-69
11-70
11-71
11-72
11-73
11-74
11-75
11-76
11-77
11-78
11-79
11-80
11-81
11-82
11-83
11-84
11-85
11-86
11-87
11-88
11-89
11-90
11-91
11-92
11-93
11-94
11-95
11-96

XX

LIST OF ILLUSTRATIONS (Concluded)

Title

Normal Mode, External Frame Sync (8 Bit, 1 Word in Frame)

Network Mode (8 Bit, 2 Words in Frame)..........ccoocovvnienninnnnne
CRB GCK Bit Operation.........cccocoviiiiiiiiciiiiieiisini e
Continuous Clock Timing Diagram (8-Bit Example)
Internally Generated Gated Clock Timing (8-Bit Example).........
Externally Generated Gated Clock Timing (8-Bit Example)........
Synchronous CommuUuNICationcivveeiieiiiiiiiiieiieieeeieans
CRB SYN Bit Operation....cccc.cciiiieiiiiiiiiiiiinenicreriaenscenens
Gated Clock — Synchronous Operation.........cc.coooviiininiinnnnn.
Gated Clock — Asynchronous Operationcccocvvviiiieeeiennnnn.
Continuous Clock — Synchronouos Operation............ocvevneines
Continuous Clock — Asynchronous Operation...........cc.c.cevene.
CRB FSLO and FSL1 Bit Operation....c..cccveveiiiiieiiineieneninnenens
Normal Mode Initialization for FSL1=0 and FSL0=0...............
Normal Mode Initialization for FSL=1 and FSLO=0................
CRB SHFD Bit Operationc.c.ceviiieieiriiieieeierneneniineieernensnnens
Normal Mode Example.......ccooviviiiiidinininiiins e
Normal Mode Transmit Examplec.ccoiviiiiiiiiininnnss
Normal Mode Receive Example.......ccocveviviiiviiiiniiniiinininn,
Network Mode Example.......coovvieiiiiiiiiiiiiiiieeee e
TDM Network Software Flowchart..........c.ovovvivivininiiinicn
Network Mode Initializationccovviiiiiiiiinniiines
Network Mode Transmit Example Program..................coeeues
Network Mode Receive Example Programccocvvvvvenennnnn,
On-Demand EXampleo.cooiiiiiiiiiiiiiiiiiciir e
On-Demand Data-Driven Network Mode...........cocovvvveninnnnnn,
Clock MOAES ...uivinirririeie e s e e era e eae e aenens
SPl Configurationcveieiiiiiiiii e
On-Demand Mode Example — Hardware Configuration...........
On-Demand Mode Transmit Example Program..........c.cc..veuen.
On-Demand Mode Receive Example Program........................

Output Flag Timing.......ccoeviiiiiiiiiniiiiniinin i
Output Flag EXample.....ccouviiiiniiiiniiioniiininie e en
Output Flag Initializationccoovvveiiiiiiiiinccn e
INPUL Flags. ...t et e e e e e n e e e

\

SS| Cascaded Multi-DSP System......ccovviviviiiiiieiiiiiinininenes
SSI TDM Paralle]l DSP Network......ocovuvervieeniinenrenenneiennnennens
SSI TDM Connected Parallel Processing Arraycovcveeeninienins
SSI TDM Serial/Parallel Processing Array.......c.coivvvevieeienianens
SSI Parallel Processing — Nearest Neighbor Array
SSI TDM Bus DSP Networkcvvviiiiiiiieiiiiiiicnin e e
SSI TDM Master-Slave DSP Networkccveviviviiiiiiininininenns

DSP56000/DSP56001 USER'S MANUAL

Page
Number

MOTOROLA

LIST OF TABLES

Table Page
Number Title Number
141 Benchmark Summary in Instruction CyCles.......coveveeveirviviiniieieeeennnn, 1-4
2-1 Program and Data Memory Select Encoding.........ccovciecreneniiiiniiininee 2-10
3-1 Initial DSP56000 Operating Mode SuUMMary ...c.covevviiviieiinineinieiennes 3-3
3-2 Initial DSP56001 Operating Mode Summaryccccoveviveienininennnniann., 3-9
4-1 Limited Data ValUes ...ccciuiviriiiniiiiiiiiiiienirienieisis e sasin s e e 4-8
5-1 Address Register Indirect Summaryccoocoveiiiiiviviinnnn, 5-6
5-2 Linear Address Modifiers......ccoeeeveieiiveiiiiiiii e 5-14
5-3 Modulo Address Modifiers.......ccocvviiiiiicdiniiiin i, 5-17
5-4 Reverse-Carry Address Modifiers.......ccoveveiiiiiiiiiiiiiiiiniiiicnn 5-17
5-5 Bit-Reverse Addressing Sequence Examplec..cocvviviiiiiiiiiiininn, 5-18
5-6 Address-Modifier-Type Encoding Summary............cocivviiiinininnnn 5-20
6-1 INTEITUPE SOUICES . vttt ittt e 6-4
6-2 DSP56000/DSP56001 Operating Mode Summary.......c.covvveiieininnnnnn. 6-12
6-3 DSP56000/DSP56001 DE Memory Control.........ccoviviininiineniiininnnn 6-13
7-1 Addressing Modes Summary et ettt 7-18
8-1 Instruction Pipelining......cccoviiriiiiiiiiiiiiiciici s 8-1
8-2 INTEITUPE SOUICES ..uiviiiein it e 8-10
8-3 Status Register Interrupt Mask BitS.......covvveniiiiiiiiecreniniininieiieeeenns 8-16
8-4 Interrupt Priority Level Bitsccovvvniiiiiiiiiiii e 817
8-5 External Interrupt Trigger Mode Bitsc.cooviiiiiiiiiiiiiiniiiin, 8-17
8-6 Exception Priorities within an IPLc.ociciiiiiiiiiinc e 8-17
8-7 HI Reset Effects — DSP56000/DSP56001 Programming Modeil............. 8-32
8-8 HI Reset Effects — Host Processor Programming Model.................... 8-33
8-9 SSI ReSet EffeCtS...iciuriiiiiiiiniieriiiinieiiiineinrenenriircrarasassnseenenes 8-34
8-10 SCI Reset EffectS..c.ccuiiiinieiiiiiiiiciiiiiii et 8-35
8-11 Ports A, B, and C Reset Effects...........coceereiiniiiniiiiiiiniii e, 8-36
8-12 BR/BG During WAITccoviiiiiiiiii i, 8-38
9-1 Program and Data Memory Select Encoding...........ccovviininnininiininnn 9-5

9-2 Power Requirements for Minimum and Maximum External Memory
Wait States ...oivviiiiirnn it 9-12
9-3 Wait State Control....ccoiuiviiiiiiiiiiiicee e 9-15
MOTOROLA DSP56000/DSP56001 USER'S MANUAL XXi

LIST OF TABLES (Continued)

Table Page
Number Title Number
10-1 Host Registers after Reset — DSP CPU Sideoooeeiiiviiniiieiinennen, 10-15
10-2 HREQ Pin Definitionccvivviiiiieniiiiiinincinieiins e i nenenns 10-19
10-3 Host Mode Bit Definitioncoeeiiiiiiiiini e 10-20
10-4 HREQ Pin Definitioncceciuiieiimeiiiiiniire it 10-21
10-5 Host Registers after Reset (Host Side)ccoovvviiiiiiiiiiiiniinninnnn, 10-26
11-1 SCI Registers after RESetvvuvvvrieieniiiiiriii et ee e 11-27
11-2(a) Asynchronous SCI Baud Rates for a 20.48-MHz Crystal 11-31
11-2(b) Frequencies for Exact Asynchronous SCI Baud Rates................c..c...0. 11-31
11-3(a) Synchronous SCI Baud Rates for a 20.48-MHz Crystal...........c.cccuevunee. 11-32
11-3(b) Frequencies for Exact Synchronous SCI Baud Rates................ FRTTPTPN 11-32
11-4 Definition of SCO, SC1, SC2, and SCK....cciviieiiiiiiiiiiriiiiiieiiiinienes 11-68
11-5 SSI Clock Sources, Inputs, and OUtPULSccevviniiiiiiiveciniiiireireeees 11-70
11-6 Mode and Pin Definition Table — Continuous Clock...............c.cueneen. 11-87
11-7 Mode and Pin Definition Table — Gated Clock e 11-88
11-8 SSI Registers after RESEt ..v..iuiiiiiiiiiiiii e e 11-89
11-9(a) SSI Baud Rates for a 20.48-MHz Crystal........cccoiveieiviveiiiniiiinnneinnns 11-93
11-9(b) SSI Baud Rates for a 26.624-MHz Crystal.........c.cvviviiiiniineeniiininnenns 11-93
11-10 Crystal Frequencies Required for Codecsvvecviiiiiiininiiiinininns 11-93
11-11 SSI Operating MOdES......c.iuvinieieiiiie e eeaias 11-96

xxii DSP56000/DSP56001 USER'S MANUAL MOTOROLA

SECTION 1
INTRODUCTION

The DSP56001 and DSP56000, user-programmable, CMOS digital signal processors (DSPs),
are optimized to execute DSP algorithms in as few operations as possible while maintaining
a high degree of accuracy. The architecture has been designed to maximize throughput in
data-intensive DSP applications. This design has resulted in a dual-natured, expandable
architecture with sophisticated on-chip peripherals and general-purpose I/0. The architec-
ture, on-chip peripherals, and the low power consumption of the DSP56000/DSP56001 have
minimized the complexity, cost, and design time needed to add the power of DSP to any
design.

Being read-only memory (ROM) based, the DSP56000 is factory programmed with user
software for minimum cost in high-volume applications. Being random-access memory
(RAM) based, the DSP56001 is an off-the-shelf processor designed to load its program
from an external source. The difference between the two processors is the on-chip memory
resources. A secure version of the DSP56000, which prevents unauthorized access to the
internal program memory, is also available.

This manual is written for both the DSP56000 and DSP56001. Normally, the reference will
be to the DSP56000/DSP56001; however, when the two processors differ, they will be cited
individually.

1.1 ORIGIN OF THE DSP56000 ARCHITECTURE

DSP is the arithmetic processing of real-time signals sampled at regular intervals and
digitized. Examples of DSP processing are as follows:

Filtering of Signals :

Convolution, Which Is the Mixing of Two Signals

Correlation, Which Is a Comparison of Two Signals

Rectification of a Signal ‘

Amplification of a Signal

Transformation of a Signal

All of these functions have traditionally been performed using analog circuits. Only recently
has technology provided the processing power necessary to digitally perform these and
other functipns using DSPs.

Figure 1-1 is a graphical description of analog signal processing. The circuit filters a signal

from a sensor using an operational amplifier and controls an actuator with the result. Since
the ideal filter is not possible to design, the engineer must design the filter for acceptable

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 1-1

ANALOG FILTER

——
————
Ci yit)
x(t) xit) yit) OUTPUT
INPUT > ¢ - . > 10
FROM Ri + ACTUATOR
SENSOR ‘
: >
yio o _ Rt 1
x(t) Ri 1+ jw RiCt
FREQUENCY CHARACTERISTICS
|
IDEAL i
z FILTER |
g I
«
I
- i
| I

fe
FREQUENCY

Figure 1-1. Analog Signal Processing

response, considering variations in temperature, component aging, power-supply varia-
tion, and component accuracy. The resulting circuit typically has low noise lmmumty,
requures adjustments, and is difficult to modify.

The equivalent circuit using a DSP is shown in Figure 1-2. This application requires an
analog-to-digital (A/D) converter and digital-to-analog (D/A) converter in addition to the
DSP. Even with these additional parts, the component count can be lower using a DSP due
to the high integration available with current components.

Processing in this circuit begins by band limiting the input with an antialias filter, éliminating
out-of-band signals that can be aliased back into the pass band due to the sampling process.
The signal is then sampled, digitized with an A/D converter, and then sent to the DSP.

The filter implemented by the DSP is strictly a matter of software. The DSP can directly
implement any filter that can be implemented using analog techniques. Also, adaptive
filters can be easily implemented using DSP; whereas, these filters are extremely difficult
to implement using analog techniques.

1-2 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

LOW-PASS SAMPLER AND DSP OPERATION DIGITAL-TO-ANALOG ~ RECONSTRUCTION
ANTIALIASING ANALOG-TO-DIGITAL CONVERTER LOW-PASS FILTER
FILTER CONVERTER

FIR FILTER
N

— q zc(n) x(n—k) | —
x{t) k=0 y(t)
| x(n) yin))

. FINITE IMPULSE

RESPONSE
ANALOG IN ANALOG 0UT
A
IDEAL z
ALTER &
f
fc
FREQUENCY
A
ANALOG 2
FILTER S
} f
fc
FREQUENCY
A
DIGITAL =
FILTER S
} f
fc
FREQUENCY

Figure 1-2. Digital Signal Processing

The DSP output is processed by a D/A converter and is low-pass filtered to remove the
effects of digitizing. In summary, the advantages of using the DSP include the following:
Fewer Components '
Stable, Deterministic Performance
Wide Range of Application
High Noise Immunity and Power-Supply Rejection
Self-Test Can Be Built In

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 1-3

No Filter Adjustments
Filters with Much Closer Tolerances
Adaptive Filters Easily Implemented

The DSP56000/DSP5001 was not designed for a particular application but was designed to
execute commonly used DSP benchmarks in @ minimum time for a single-multiplier ar-
chitecture. For example, a cascaded, 2nd-order, four-coefficient infinite impulse response
(IR) biguad section has four multiplies for each section. For that algorithm, the theoretical
minimum number of operations for a single-multiplier architecture is four per section.
Table 1-1 shows a list of benchmarks with the number of instruction cycles the DSP56000/
DSP56001 uses compared to the number of multiplies in the algorithm.

Table 1-1. Benchmark Summary in Instruction Cycles

Benchmark DSP56000/DSP56001 Number of' A!gorithm
Number of Cycles Multiplies

Real Multiply 3 1

N Real Multiplies 2N N
Real Update 4 1

N Real Updates 2N N
N Term Real Convolution (FIR) N N
N Term Real * Complex Convolution 2N N
Complex Multiply 6 4
N Complex Multiplies 4N N

Complex Update 7 4

N Complex Updates 4N 4N
N Term Complex Convolution (FIR) 4N 4N
Nth-Qrder Power Series 2N 2N
2nd-Order Real Biquad Filter 7 4

N Cascaded 2nd-Order Biquads 4N 4N
N Radix Two FFT Butterflies 6N 4N

These benchmarks and others are used independently or in combination to implement
functions. The characteristics of these functions are controlied by the coefficients of the
benchmarks being executed. Useful functions using these and other benchmarks include
the following:

Digital Filtering . Signal Processing

Compression (e.g., Linear Predictive

Finite Impulse Response (FIR) Coding of Speech Signals)

Infinite Impulse Response (lIR) Expansion
. Matched Filters (Correlators) Averaging
Hilbert Transforms Energy Calculations

Homomorphic Processing
Mu-law/A-law to/from Linear Data
Adaptive Filters/Equalizers Conversion

Windowing

1-4 v DSP56000/DSP56001 USER'S MANUAL MOTOROLA

Data Processing
Encryption/Scrambling
Encoding (e.g., Trellis Coding)
Decoding (e.g., Viterbi Decoding)

Numeric Processing
Scaler, Vector, and Matrix Arithmetic
Transcendental Function Computation
(e.g., Sin(X), Exp(X))
Other Nonlinear Functions
Pseudo-Random-Number Generation

Modulation
Amplitude
Frequency
Phase

Spectral Analysis
Fast Fourier Transform (FFT)
Discrete Fourier Transform (DFT)
Sine/Cosine Transforms
Moving Average (MA) Modeling
Autoregressive (AR) Modeling
ARMA Modeling

Useful applications are based on combining these and other functions. DSP applications
affect almost every area in electronics because any application for analog electronic circuitry
can be duplicated using DSP. The advantages in doing so are becoming more compelling
as DSPs become faster and more cost effective. DSPs are also being used as high-speed
math processors in many purely digital computer applications. Some typical applications

for DSPs are presented in the following list:

Telecommunication
Tone Generation
Dual-Tone Multifrequency (DTMF)
Subscriber Line Interface
Full-Duplex Speakerphone
Teleconferencing
Voice Mail ~
Adaptive Differential Pulse Code
~ Modulation (ADPCM) Transcoder
Medium-Rate Vocoders
Noise Cancelation
Repeaters
Integrated Services Digital Network

(ISDN) Transceivers

Secure Telephones

Data Communication
High-Speed Modems
Multiple Bit-Rate Modems
High-Speed Facsimile

Radio Communication
Secure Communications
Point-to-Point Communications
Broadcast Communications
Cellular Mobile Telephone

Computer

Array Processors
Work Stations

MOTOROLA

Personal Computers
Graphics Accelerators

Image Processing
Pattern Recognition
Optical Character Recognition
Image Restoration
Image Compression
Image Enhancement
Robot Vision

Graphics
3-D Rendering
Computer-Aided Engineering (CAE)
Desktop Publishing
Animation

Instrumentation
Spectral Analysis
Waveform Generation
Transient Analysis
Data Acquisition

Speech Processing
Speech Synthesizer
Speech Recognizer
Voice Mail
Vocoder
Speaker Authentication
Speaker Verification

DSP56000/DSP56001 USER'S MANUAL 1-5

Audio Signal Processing Medical Electronics

Digital AM/FM Radio Cat Scanners
Digital Hi-Fi Preamplifier Sonographs
Noise Cancelation X-Ray Analysis

Electrocardiogram
Electroencephalogram
Nuclear Magnetic Resonance Analysis

Music Synthesis
Music Processing
Acoustic Equalizer

Digital Video
High-Speed Control Digital Television
Laser-Printer Servo High-Resolution Monitors
Hard-Disk Servo
Robotics Radar and Sonar Processing
Motor Controller Navigation
Oceanography

Position and Rate Controller Automatic Vehicle Location

: Search and Tracki
Vibration Analysis earch and fracking

Electric .Motors Seismic Processing
~ Jet Engines Oil Exploration
Turbines Geological Exploration

As evidenced in Figure 1-3, the keys to DSP are as follows:
The Multiply/Accumulate (MAC) Operation
Fetching Operands for the MAC
Program Control To Provide Versatile Operation
Input/Output To Move Data In and Out of the DSP

MAC is the basic operation used in DSP. Figure 1-3 shows how the architecture of the
DSP56000/DSP56001 was designed to match the shape of the MAC operation. The two
operands, C() and X(), are directed to a multiply operation, and the result is summed. This
process is built into the DSP56000/DSP56001 by using two separate memories {X and Y)
to feed a single-cycle MAC. The entire process must occur under program control to direct
the correct operands to the multiplier and save the accumulator as needed. Since the two
memories and the MAC are independent, it is possible to perform two moves, a multiply
and an accumulate, in a single operation. As a result, many of the benchmarks shown in
Table 1-1 can be executed at or near the theoretical maximum speed for a single-multiplier
architecture.

Figure 1-4 shows how the MAC, memories, and program controller in Figure 1-3 are con-
figured in the DSP56000/DSP56001. Three independent memories and memory buses are
used to move two operands to the MAC while concurrently fetching a program instruction.
The address generation unit (AGU) is divided into two arithmetic units used to independ-
ently control the X and Y memories and feed operands to the MAC. An additional block
labeled I/0 is shown in Figure 1-4. Many DSPs need additional parts to interface with their
input and output circuits (such as A/D converters, D/A converters, or host processors). The
DSP56000/DSP56001 provides on-chip serial and parallel interfaces to simplify this con-
nection problem. Figure 1-5 is a block diagram of the DSP56000 showing all the major

1-6 DSP56000/DSP56001 USER'S MANUAL - MOTOROLA

FiR FILTER

—_ | ‘ E cln) X (n—k) ::N D/A —_—
xlt) x(n) T ‘[yin) yit)

>

X Y
MEMORY MEMORY

T | o
| | 1
| | |
: f —_— I«—— PROGRAM
| | { |
| | | !
L I |

| MAC |

Figure 1-3.. DSP Hardware Origins

R N e —— T 1
: [s][i 1 |
[| l MEMORY MEMORY = |

i : ! I } 110

I

| || | 1 H

L _________ J I .

Figure 1-4. DSP Block Diagrém

blocks with their lnterconnectlng buses The DSP56000 Famlly of processors has a dual
Harvard architecture optimized for MAC operations.

1.2 SUMMARY OF DSP56000 FAMILY FEATURES

The DSP56000 and DSP56001 are the first two members of Motorola’s Family of HCMOS,

low-power, general-purpose DSPs. The DSP56001 features 512 words of full-speed, on-
chip, program RAM, two preprogrammed data ROMs, and special on-chip bootstrap

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 1-7

YAB

—>-[EXTERNAL
poRT | ADDRESS);:g > aopress | A50SS
Bog | GENERATION » >l Bus
HosT UNIT >4 v SWITCH
" X MEMORY | [Y MEMORY
" PROGRAM RAM RAM
<% ON-CHIP L ROM 256 x 24 256 x 24 sus |7
. HPOES';P:;?ASLEQ‘I 3.75K x 24 ROM ROM CONTROLLER{<“> | PORT A
| HOST, §SI, SCI, — 266 x 24 255 x 24
< *’ ™1 PARALLEL 1/0 f f @
PORT C [InTernaL paTA K 18 DATA
QSNID/SOCT BUS SWITCH | I I xoB <7 4p K] EXTERNAL
' AND BIT N 3> ros = K] "y o
MANIPULATION K= i o8 T
= -
Y
P oo T
| PROGRAM ! PROGRAM I 1 PROGRAM ! DATA ALU
| ADDRESS ** DECODE INTERRUPT |
| GENERATOR | | CONTROLLER] | CONTROLLER] 24X 24+ 58 ¢ 56-BIT MAC
CLoCK SENERATOR | ol) bl TWO 56-BIT ACCUMULATORS
GENERATOR A0 GRAM CONTROLLER A f
T v XTAL ' voos/imE —— 16BITS
EXTAL
v MODA/IRQA 2 BITS

RE

Figure 1-5. DSP56000 Block Diagram

hardware to permit convenient loading of user programs into the program RAM. The
DSP56001 is an off-the-shelf part since there are no user-programmable, on-chip ROMs.
The DSP56000 features 3.75K words of full-speed, on-chip, program ROM instead of 512
words of program RAM.

The heart of the processor consists of three execution units operating in parallel: the data
arithmetic logic unit (ALU), the AGU, and the program controller. The DSP56000/DSP56001
has MCU-style on-chip peripherals, program memory, data memory, and a memory ex-
pansion port. The MPU-style programming model and instruction set allow straightforward
generation of efficient, compact code.

The high throughput of the DSP56000/DSP56001 makes it well-suited for communication,
high-speed contro!, numeric processing, computer applications, and audio applications.
The main features facilitating this throughput are as follows:

® Speed — At 10.25 million instructions per second (MIPS), the DSP56000/DSP56001 can
execute a 1024-point complex FFT in 3.23 ms.

® Precision — The data paths are 24 bits wide, providing 144 dB of dynamic range;
intermediate results held in the 56-bit accumulators can range over 336 dB.

® Parallelism — Each on-chip execution unit (AGU, program controller, data ALU), mem-
ory, and peripheral operates independently and in parallel with the other units through

1-8 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

a sophisticated bus system. The data ALU, AGUs, and program controller operate in
parallel so that an instruction prefetch, a 24-bit x 24-bit multiplication, a 56-bit addition,
two data moves, and two address-pointer updates using one of three types of arith-
metic (linear, modulo, or reverse-carry) can be executed in a single instruction cycle.
This parallelism allows a four-coefficient [IR filter section to be executed in only four
cycles, the theoretical minimum for single-multiplier architecture. At the same time,
the two serial controllers can send and receive full-duplex data, and the host port can
send/receive simplex data.

o Integration — In addition to the three independent execution units, the DSP56000/
DSP56001 has six on-chip memories, three on-chip MCU-style peripherals (serial com-
munication interface (SCl), synchronous serial interface (SSl), and host interface), a
clock generator, and seven buses (three address and four data), making the overall
system low cost, low power, and compact.

o Invisible Pipeline — The three-stage instruction pipeline is essentially invisible to the
programmer, allowing straightforward program development in either assembly lan-
guage or a high-level language such as a full Kernighan and Ritchie C.

® Instruction Set — The 62 instruction mnemonics are MCU-like, making the transition
from programming microprocessors to programming the DSP56000/DSP56001 as easy
as possible. The orthogonal syntax supports controlling the parallel execution units.
The hardware DO loop instruction and the repeat (REP) instruction make writing
straightline code obsolete.

e DSP56000/DSP56001 Compatibility — The DSP56001 is identical to the DSP56000 ex-
cept for the following features: ‘
— 512-word X 24-bit, on-chip program RAM instead of 3.75K program ROM
— 32-word X 24-bit bootstrap ROM for loading the program RAM from either a byte-
wide, memory-mapped ROM or via the host interface
— On-chip X and Y data ROMs preprogrammed as positive Mu-law and A-law to linear
expansion tables and a full, four-quadrant sine-wave table, respectively

® Low Power — As a CMOS part, the DSP56000/DSP56001 is inherently very low power;

however, three other features can reduce power consumption to exceptionally low

levels.

— The WAIT instruction shuts off the clock in the central processor portion of the
DSP56000/DSP56001.

— The STOP instruction halts the internal oscillator. _

— Power increases linearly (approximately) with frequency; thus, reducing the clock
frequency reduces power consumption.

1.3 MANUAL ORGANIZATION
This manual is intended to provide practical information to help the user:
Understand the Operation of the DSP56000 Family

Interface the DSP56000 Family with Additional Memory
Design Parallel Communication Links

MOTOROLA DSP56000/DSP56001 USER'S MANUAL ‘ 1-9

Design Serial Communication Links
Code DSP Algorithms

Code Communication Routines
Code Data-Manipulation Algorithms
Locate Additional Support

The following list is a brief description of the contents of each section and each appendix:

Section 2. Architectural Overview and Bus Structure
A brief description of each subsystem of the DSP56000/DSP56001 is given. The buses
interconnecting the major components in the DSP56000/DSP56001 are descrlbed in
detail.

Section 3. Memory
This section describes and differentiates the memory for the DSP56000 and DSP56001.
It describes the program memories, data memories, and the operating mode register
(OMR) bits controlling the memory maps.

Section 4. Data Arithmetic Logic Unit
This section describes in detail the data ALU (one of the three executlon units com-
prising the central processor) and its programming model.

Section 5. Address Generation Unit

This section specifically describes the AGU (one of the three execution units comprising
the central processor), its programming model, address indirect modes, and address
modifiers.

Section 6. Program Controller

This section describes in detail the program controller {one of the three execution units
comprising the central processor) and its programming model.

Section 7. Instruction Set Introduction
A brief descriptio_h of the syntax, instruction formats, operand/memory references,
data organization, addressing modes, and instruction set is presented in this section.
A detailed description of each instruction is given in APPENDIX A INSTRUCTION SET
DETAILS.

Section 8. Processing States. . ‘

The five processing states (normal, exception, reset wait, and stop) are described in
this section.

Section 9. Port A

The port A section describes the external memory port, its control register, and control
signals.

1-10 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

Section 10. Port B

This section describes the port B parallel I/0, host interface, their registers, and the
controls to enable/disable them.

Section 11. Port C

This section describes the port C parallel I/O, SCI, SSI, their registers, and the controls
to enable/disable them.

Appendix A. Instruction Set Details
A detailed description of each DSP56000/DSP56001 instruction, its use, and its affect
on the processor are presented.

Appendix B. Benchmarks
DSP56000/DSP56001 benchmark results are listed in this appendix.

Appendix C. Additional Support

This appendix presents a brief description of current support products and services
and information on where to obtain them.

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 1-11

DSP56000/DSP56001 USER'S MANUAL

MOTOROLA

SECTION 2
ARCHITECTURAL OVERVIEW AND BUS STRUCTURE

The DSP56000/DSP56001 architecture has been designed to maximize throughput in data-
intensive digital signal processor (DSP) applications. This objective has resulted in a dual-
natured, expandable architecture with sophisticated on-chip peripherals and general-
purpose I/0. The architecture is dual natured in that there are two independent, expandable
data memory spaces, two address generation units (AGUs), and a data arithmetic logic
unit (ALU) having two accumulators and two shifter/limiter circuits. The duality of the
architecture facilitates writing software for DSP applications. For example, data is naturally
partitioned into X and Y spaces for graphics and image-processing applications, into coef-
ficient and data spaces for filtering applications, and into real and imaginary spaces for
performing complex arithmetic.

The major components of the DSP56000/DSP56001 are as follows:

® Data Buses

Address Buses

Data ALU
e AGU

X Data Memory

® Y Data Memory

® Program Controller
® Program Memory

o Input/Output:
— Memory Expansion (Port A)
— General-Purpose /0 (Ports B and C)
— Host Interface
— Serial Communication Interface {SCI)
— Synchronous Serial Interface (SSI)

These components are depicted in Figure 2-1 for the DSP56000 and in Figure 2-2 for the
DSP56001. A brief description is given for each component in the following paragraphs.
The processors differ only in the on-chip memory resources.

MOTOROLA DSP56000/DSP56001 USER'S MANUAL . 2-1

YAB

»EXTERNAL
XAB = ADDRESS
ADDRESS >{ ADDRESS |
PO | GeneraTIoN PAB 1M 8ls
HosT T fe—f 4 y SWITCH
Y [X MEMORY | [Y MEMORY
5 PROGRAM RAM RAM
5oy PEgII\FI’ﬁEHRIZLS < ROM 256 x 24 256 x 24 BUS 7
375K x 24 ROM ROM o <> | PORT A
g, | HosT, ssl, scl, <}:_—_{> 256 x 24 256 20 NTROLLER
“77™ PARALLEL I'0 ﬁ < X
w LT
INTERNAL DATA KC > DATA
AND/
SS‘”;’CRI BUS SWITCH | il T xo8 <% e K EXTERNAL
' AND BIT 1 <> roB 7S] DATA BUS GZD
MANIPULATION [G T 7S — T SWITCH
UNIT e - J L < JL
/ JL
C oo oroemam 1 1 progran]
I PROGRAM | | PROGRAM PROGRAM
| ADDRESS 3 DECODE INTERRUPT DATA ALY
| GENERATOR | 'coNTROLLER! | coNTROLLER 24X 24 + 56 § 56-BIT MAC
cLock Lo T | | TWO 56-BIT ACCUMULATORS
GENERATOR PROGRAM CONTROLLER A .
¥ xra ! MoDB/IRQB —— 168BITS
EXTAL MODA/IRGA
RESET —= 24 BITS
Figure 2-1. DSP56000 Block Diagram
YAB >
: »[EXTERNAL
porr | ADDRESS XAB | AboREss | ADDRESS
B oR | GENERATION PAB »| BUS >
Bosr UNT fe—d A Yy) SWITCH
Y <] X MEMORY | | Y MEMORY
15 800TSTRAP| | PROGRAM RAM RAM
<> PE[F)iI'\FI’ﬁgF:ZLS < ROM RAM 256x24 256 % 24 ais |7
32X 24 512X 24 wAROM | [SINEROM | [conTRoLLER> | PORT A
9, | HosT, ssl, sci, (}:#} 256 24 25624
PARALLEL 1/0 l ﬁ ﬁ @
PORT C YD8B |
INTERNAL DATA
lsxgllo/gcr} BUS SWITCH f; T 1T I xoB <% 4 > exteanaL | DATA
' AND BIT 1] 2 J> pB 7S 1] DATA BUS C:'|>
G SWITCH
MANIPULATION I 7~ 508 I
UNIT (;
y]
! M &L
Fe——— |———Y——-—w —— Tt ——
| PROGRAM | | PROGRAM ! ! PROGRAM : DATA ALU
| ADDRESS DECODE INTERRUPT
] I I 24 24+ 56 § 56-BIT MAC
cLocK (GENERATOR | CONTROLLER y \ CONTROLLER | | 1y g6_BIT ACCUMULATORS
GENERATOR PROGRAM CONTROLLER A f_
¥ IMUD_B/W —— 16BITS
EXTAL MODA/IRQA
RESET = % BITS
Figure 2-2. DSP56001 Block Diagram
2-2 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

2.1 DATA BUSES

The DSP56000/DSP56001 is organized around the registers of a central processor composed
of three independent execution units. The buses move data and instructions while instruc-
tions are being executed inside the execution units. Data movement on the chip occurs
over four, bidirectional, 24-bit buses: the X data bus (XDB), the Y data bus (YDB), the
program data bus (PDB), and the global data bus (GDB). The X and Y data buses may also
be treated by certain instructions as one 48-bit data bus by concatenation of XDB and YDB.
Data transfers between the data ALU and the X data memory or Y data memory occur
over XDB and YDB, respectively. XDB and YDB are kept local on the chip to maximize
speed and minimize power dissipation. All other data transfers, such as I/O transfers with
peripherals, occur over the GDB. Instruction word prefetches occur in parallel over the
PDB. The bus structure supports general register-to-register, register-to-memory, and
memory-to-register data movement and can transfer up to two 24-bit words and one 56-
bit word in the same instruction cycle. Transfers between buses are accomplished in the
internal bus switch. :

2.2 ADDRESS BUSES

Addresses are specified for internal X data memory and Y data memory on two, unidirec-
tional, 16-bit buses — X address bus {XAB) and Y address bus (YAB). Program memory
addresses are specified on the bidirectional program address bus (PAB). External memory
spaces are addressed via a single 16-bit, unidirectional address bus driven by a three-input
multiplexer that can select the XAB, the YAB, or the PAB. Only one external memory access
can be made in an instruction cycle. There is no speed penalty if only one external memory
space is accessed in an instruction cycle. If two or three external memory spaces are
-accessed in a single instruction, there will be a one- or two-instruction-cycle execution
delay, respectively. A bus arbitrator controls external access.

'2.2.1 Internal Bus Switch

Transfers between buses are accomplished in the internal bus switch. The internal bus
switch, which is similar to a switch matrix, can connect any two internal buses without
adding any pipeline delays. This flexibility simplifies programming.

2.2.2 Bit Manipulation Unit

The bit manipulation unit is physically located in the internal bus switch block because the
internal data bus switch can access each memory space. The bit manipulation unit performs
bit manipulation operations on memory locations, address registers, control reglsters and
data registers via the XDB, YDB, and GDB.

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 2-3

23 DATA ALU

The data ALU has been designed to be fast and to provide the capability of processing
signals having a wide dynamic range. Special circuitry has been provided to facilitate
handling data overflows and roundoff errors.

The data ALU performs all of the arithmetic and logical operations on data operands. It
consists of four 24-bit input registers, two 48-bit accumulator registers, two 8-bit accu-
mulator extension registers, an accumulator shifter, two data bus shifter/limiter circuits,
and a parallel, single-cycle, nonpipelined multiply-accumulator (MAC) unit. Data ALU op-
‘erations use fractional twos-complement arithmetic. Data ALU registers may be read or
written over XDB and YDB as 24- or 48-bit operands. The data ALU is capable of performing
any of the following operations in a single instruction cycle — multiplication, multiply-
accumulate with positive or negative accumulation, convergent rounding, multiply-
accumulate with positive or negative accumulation and convergent rounding; addition,
subtraction, a divide iteration, a normalization iteration, shifting, and logical operations.
Data ALU source operands, which may be 24, 48, or, in some cases, 56 bits, always originate
from data ALU registers. Arithmetic operations always have a 56-bit result stored in an
accumulator; whereas, logical operations are performed on 24-bit operands, yielding
24-bit results in one of the two accumulators.

The 24-bit data word provides 144 dB of dynamic range, which is sufficient for most real-
world applications since the majority of data converters are 16 bits or less, and certainly
not greater than 24 bits. The 56-bit accumulation internal to the data ALU provides 336 dB
of internal dynamic range so no loss of precision will occur due to intermediate processing.

The data shifter/limiter circuits provide special postprocessing on data read from the ALU
accumulator registers A and B out to the XDB or YDB. The data shifters can shift data one
bit to the left or one bit to the right as well as pass the data unshifted. Each data shifter
has a 24-bit output with overflow indication. The data shifters are controlled by the scaling
mode bits in the status register. These shifters permit dynamic scaling of fixed-point data
without modifying the program code, which allows block floating-point algorithms to be
implemented in a regular fashion. For example, fast Fourier transform (FFT) routines can
use this feature to selectively scale each butterfly pass.

Saturation arithmetic is provided to minimize errors due to overflow. Overflow occurs
when a source operand requires more bits for accurate representation than are available
in the destination. To minimize error due to overflow, the DSP56000 writes the maximum
{or “limited”) signed value the destination can assume when an overflow condition is
detected.

In the DSP56000/DSP56001, the data ALU accumulators A and B have extension registers
that are used when more than 48-bit accuracy is needed. Therefore, when the extension
registers are in use and either A or B is the source being read over XDB or YDB, limiting
will occur. In the DSP56000/DSP56001, the limiters place a “limited” value on XDB or YDB.
Limiting is performed on the contents of A or B after the contents have been shifted in the

2-4 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

shifter. There are two limiters allowing two-word operands to be limited independently in
the same instruction cycle. The two data limiters can also be concatenated to form one
48-bit data limiter for long-word operands.

2.4 ADDRESS GENERATION UNIT

All of the address storage and effective address calculations necessary to indirectly address
data operands in memory are performed in the AGU. This unit operates in parallel with
other chip resources to minimize address-generation overhead. The AGU contains eight
address registers (R0-R7), eight offset registers (NO-N7), and eight modifier registers
{M0-M?7). Rn are 16-bit registers that may contain an address or data. The contents of each
Rn may be output to the XAB (65,536 locations), YAB (65,536 locations), or PAB (65,536
locations); thus, 196,608 24-bit data words can be directly addressed. Nn and Mn, which
are 16-bit registers normally used in updating or modifying Rn registers, can also be used
to store 16-bit data. The AGU registers may be read or written via the GDB as 16-bit
operands.

The AGU has two identical address arithmetic units that can generate two 16-bit addresses
every instruction cycle — one for any two of the XAB, YAB, or PAB buses. Each of the
arithmetic units can implement three types of arithmetic: linear, modulo, and reverse-carry.

2.5 X DATA MEMORY

The on-chip X data random-access memory (RAM), a 24-bit-wide internal static memory,
occupies the lowest 256 locations in X memory space. The on-chip X data read-only memory
(ROM) occupies locations 256-511. On the DSP56001, the X data ROM has been pro-
grammed as positive Mu-law (128 locations) and A-law (128 locations) 24-bit companding
tables useful in telecommunication applications. On the DSP56000, the X data ROM is user
defined. The on-chip peripherals occupy the top 64 locations in X data memory space.
Addresses are received from the XAB, and data transfers to the data ALU occur on the
XDB. X memory may be expanded off-chip so that a total of 65,536 locations can be
addressed.

2.6 Y DATA MEMORY

The on-chip Y data RAM, a 24-bit-wide internal static memory, occupies the lowest 256
locations in Y memory space. The on-chip Y data ROM occupies locations 256-511. On
the DSP56001, the Y data ROM has been programmed as a full, four-quadrant, 24-bit sine
table. On the DSP56000, the Y data ROM is user defined. The off-chip peripherals are
optimally mapped into the top 64 locations in Y data memory space. Addresses are received
from the YAB, and data transfers to the data ALU occur on the YDB. Y memory may be
expanded off-chip so that a total of 65,536 locations can be addressed.

MOTOROLA DSP56000/DSP56001 USER'S MANUAL . 2-5

2.7 PROGRAM MEMORY

The on-chip program memory consists of a 3.75K-word by 24-bit ROM for the DSP56000
or a 512-word by 24-bit RAM for the DSP56001. Addresses are received from the program
control logic (usually the program counter). The interrupt vector addresses for the on-chip
resources are located in the bottom 64 locations of program memory. Program memory
may be expanded off-chip so that a total of 65,536 locations can be addressed.

Bootstrap ROM is a 32-word by 24-bit factory-programmed ROM used only in the bootstrap
mode (operating mode 1). The user can invoke bootstrap ROM only on the DSP56001; it
is not available on the DSP56000. More detailed information on bootstrap ROM is discussed
in the DSP56001 Advance Information Data Sheet (ADI1290).

2;8 PROGRAM CONTROLLER

The program controller performs instruction prefetch, instruction decoding, hardware DO
loop control, and exception processing. The program controller contains a 15-level by 32-
bit system stack memory and six directly addressable registers: the program counter (PC),
loop address (LA), loop counter {L.C), status register (SR), operating mode register (OMR),
and stack pointer (SP). The 16-bit PC can address 65,536 locations in program memory
space.

2.9 INPUT/OUTPUT

The I/0O capability of the DSP56000/DSP56001 is extensive and advanced. This I/O structure
facilitates interfacing into a variety of system configurations, including multiple DSP56000/
DSP56001 systems with or without a host processor, gIobaI bus systems with bus arbitra-
tion, and many serial configurations, all with minimal additional ““glue” logic. Each I/O
interface, which has its own control, status, and data registers, is treated as memory-
mapped I/0 by the DSP56000/DSP56001. Each interface has several dedicated interrupt
vector addresses and control bits to enable/disable interrupts, which minimizes the over-
head associated with servicing the device since each interrupt source can have its own
service routine. The interrupt sources can be programmed to one of three maskable priority
levels.

The 1/0 structure consists of an extremely flexible, 47-pin expansion port (port A) and 24
additional 1/0 pins. These pins may be used as general-purpose I/O pins, called port B and
port C, or allocated to on-chip peripherals under software control. Three on-chip peripherals
are provided on the DSP56000/DSP56001: an 8-bit parallel host microprocessor unit/direct
memory access (MPU/DMA) interface, an SCi, and an SSI. Port B is a 15-bit I/O interface
that may be used as general-purpose I/O pins or as host MPU/DMA interface pins. Port C
is a 9-bit I/0 interface that may be used as general-purpose |/O-pins or as SCl and SSI pms
These interfaces are descrlbed in the following paragraphs.

2-6 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

2.9.1 Expansion Port (Port A)

DSP56000/DSP56001 expansion port is designed to synchronously interface over acommon
24-bit data bus having a wide variety of memory and peripheral devices. These devices
include high-speed static RAMs, slower memory devices, and other DSPs and MPUs in
master/slave configurations. This variety is possible because the expansion bus timing is
programmable. Two pins can be defined with a control bit to operate either master pro-
cessor controls (called bus strobe and wait in this configuration) or as slave processor
controls (called bus request and bus grant). The expansion bus timing can also be controlled
by a bus control register (BCR). The BCR controls the timing of the bus interface signals,
RD and WR, and the data output lines. Each of the four memory spaces, X data, Y data,
program data, and I/O, has its own 4-bit register in the BCR that can be programmed for
inserting up to 15 wait states (one wait state is equal to a clock period or equivalently one-
half of an instruction cycle). Thus, external bus timing can be tailored to match the speed
requirements of the different memory spaces.

2.9.2 General-Purpase 1’0 (Ports B and C)

Each port B and port C pin may be programmed as a general-purpose I/O pin or as a
dedicated, on-chip peripheral pin under software control. A 9-bit port C control register
(PCC) allows each port C pin to be programmed for one of these two functions. The port
control register associated with port B (PBC) contains only one bit, which programs all 15
pins. Also associated with each general-purpose port is a data direction register, which
programs the direction of each pin, and a data register for data /0. The fact that all these
registers are memory mapped and read/write makes the use of bit manipulationinstructions
_extremely effective.

2.9.3 Host Interface

The host interface is a byte-wide, full-duplex, parallel port that can be connected directly
to the data bus of a host processor. The host processor may be any of a number of industry-
standard microcomputers or MPUs, another DSP, or DMA hardware. The DSP56000/
DSP56001 host interface has an 8-bit, bidirectional data bus, HO-H7 (PB0-PB7), and seven
dedicated control lines, HAO, HA1, HA2, HRW, HEN, HREQ, and HACK (PB8-PB14), to
control data transfers. The host interface appears as a memory-mapped peripheral occu-
pying eight bytes in the host-processor address space. Separate transmit and receive data
registers are double buffered to allow the DSP56000/DSP56001 and host processor to
efficiently transfer data at high speed. Host-processor communication with the host inter-
face is accomplished using standard, host-processor data move instructions and addressing
modes. Handshake flags are provided for polled or interrupt-driven data transfers with the
host processor. DMA hardware may be used with the handshake flags to efficiently transfer
data without using address lines HAO-HA2.

MOTOROLA DSP56000/DSP56001 USER’S MANUAL 2-7

One of the most innovative features of the host interface is the host command feature.
With this feature, the host processor can issue vectored exception requests to the DSP56000/
DSP56001. The host may select any one of 32 DSP56000/DSP56001 exception routines to
be executed by writing a vector address register in the host interface. This flexibility allows
the host programmer to execute up to 32 preprogrammed functions inside the DSP56000/
DSP56001. For example, host exceptions allow the host processor to read or write DSP56000/
DSP56001 registers, X, Y, or program memory locations, force exception handlers (e.g.,
SSI, SCI, IRQA, IROB exception routines), and perform control and debugging operations
if the exception routines are programmed in the DSP56000/DSP56001 to do these tasks.

2.9.4 Serial Communication Interface

The SCI provides a full-duplex port for 8-bit data serial communication to other DSPs,
MPUs, or peripherals such as modems. The communication can be either direct or via
RS232C-type lines. This interface uses three dedicated pins — transmit data (TXD), receive
data (RXD), and SCI serial clock (SCLK). It supports industry-standard asynchronous bit
rates and protocols as well as high-speed (up to 2.5 Mbits/sec) synchronous data trans-
mission. The asynchronous protocols include a multidrop mode for master/slave operation.
The SCI consists of separate transmit and receive sections having operations that can be
asynchronous with respect to each other by using the internal clock for one and an external
clock for the other. A programmable baud-rate generator is included to generate the trans-
mit and receive clocks. An enable and interrupt vector are included so that the baud-rate
generator can function as a general-purpose timer when it is not being used by the SCI
peripheral.

2.9.5 Synchronous Serial Interface

The SSI is an extremely flexible, full-duplex serial interface that allows the DSP56000/
DSP56001 to communicate with a variety of serial devices. These devices include one or
more industry-standard codecs, other DSPs, MPUs, and peripherals. The following char-
acteristics of the SSI can be independently defined by the user: the number of bits per
word, the protocol, the clock; and the transmit/receive synchronization. There are three
modes that can be selected: normal, on-demand, and network. The normal mode is typically
used to interface with devices on a regular or periodic basis. The data-driven on-demand
mode is intended to be used to communicate with devices on a nonperiodic basis. The
network mode provides time slots in addition to a bit clock and frame synchronization
pulse. The SSI functions with from two to 32 words of I/0 per frame in the network mode.
This mode- is typically used in star or ring time division multiplex (TDM) networks with
other DSP56000s and/or codecs. The clock can be programmed to be continuous or gated.
Since the transmitter and receiver sections of the SSI are independent, they can be pro-
grammed to be synchronous (using a common clock) or asynchronous with respect to
each other. The SSI supports a subset of the Motorola SPI. The SSI requires up to six pins,
depending on the operating mode selected. The most common minimum configuration is
three pins: transmit data (STD), receive data (SRD), and clock (SCK).

2-8 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

2.10 SIGNAL DESCRIPTION

The DSP56000/DSP56001 is available in an 88-pin pin-grid array package, surface mount,
or 100-pin single-layer aluminium-metalization (SLAM) package. The input and output
signals are organized into seven functional groups:

Port A Address and Data Buses

Port A Bus Control

Interrupt and Mode Control

Power and Clock

Host Interface or Port B 110

SCl or Port C I/0

SSl or Port C I/0

NogagsrwN =

Figure 2-3 also shows these seven functional groups of signals that are discussed in the
following paragraphs.

2.10.1 Port A Address and Data Bus
The following signals relate to the port A address and data bus.
2.10.1.1 ADDRESS (A0-A15). These three-state output pins specify the address for ex-

ternal program and data memory accesses. To minimize power disipation, A0-A15 do not
change state when external memory spaces are not being accessed.

HOST CONTROL

e N
HOST s
DATA I I | |

~BUS

=3 H0-H7
|«—— HAO
—— HAl
l€—— HA2
[<€—— HR/W
|«€—— HEN
|——> HREQ
l—— HACK

L e D N —Y SR
DATA DO-DE ~—] PORT B > TXD SCI
7S > scik J SERAL
DS < «—> SC0
70 <«——| p PORT A PORT C < fe—> sC1
CONT?!%?. . WR~— «—> $02 SSI
XY —— <«—> SCK SERIAL
BRAWT ——> (88 PINS) [<«€—— SRD
‘BG/BS <—— —> STD
v o = @
$EEERBEE
Wlee 5 2
o o
(= =]
s =

Figure 2-3. DSP56000/DSP56001 Functional Signal Groups

MOTOROLA DSP56000/DSP56001 USER'S MANUAL ' 2-9

2.10.1.2 DATA (D0-D23). These pins provide the bidirectional data bus for external pro-
gram and data memory accesses. D0-D23 are in the high-impedance state when the bus
grant signal is asserted. '

2.10.2 Port A Bus Control

The port A bus control signals are discussed in the following paragraphs.

2.10.2.1 PROGRAM MEMORY SELECT {PS). This three-state output is asserted only when
external program memory is referenced (see Table 2-1).

Table 2-1. Program and Data Memory Select Encoding

PS | DS | X/¥ External Memory Reference

1 1 1 | No Activity

1 0 1 | X Data Memory on Data Bus

1 0 0 |Y Data Memory on Data Bus

0 1 1 |Program Memory on Data Bus (Not Exception)

0 1 0 |External Exception Fetch: Vector or Vector+1
(Development Mode Only)

0 0 X |Reserved

1 1 0 [Reserved

2.10.2.2 DATA MEMORY SELECT (DS). This three-state output is asserted only when
external data memory is referenced (see Table 2-1).

2.10.2.3 X/Y SELECT (X/Y). This three-state output selects which external data memory
space {X or Y) is referenced by DS (see Table 2-1).

2.10.2.4 READ ENABLE (RD). This three-state output is asserted to read external memory
on the data bus (D0-D23).

2.10.2.5 WRITE ENABLE (WR). This three-state output is asserted to write external mem-
ory on the data bus (D0-D23). :

2.10.2.6 BUS REQUEST/WAIT (BRAWT). The bus request input (BR) allows another device
such as a processor or DMA controller to become the master of the external data bus
(D0-D23) and external address bus (A0-A15). When operating mode register (OMR) bit 7

2-10 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

is clear and BR is asseit.c_ad‘, the D_S_PEOOO/DSPSGOM will always release D0-D23, A0O-A15,
and bus control pins, PS, DS, X/Y, RD, and WR ({i.e., port A), by placing these pins in the
high-impedance state after execution of the current instruction has been completed.

If OMR bit 7 is set, this pin is an input that allows an external device to force wait states
during an external port A operation for as long as WT is asserted. .

2.10.2.7 BUS GRANT/BUS STROBE (BG/BS). If OMR bit 7 is clear, this output is asserted
to acknowledge an external bus request after port A has been released. If OMR bit 7 is set,
this pin is bus strobe and is asserted when the DSP accesses port A.

2.10.3 Interrupt and Mode Control

The following signals are the interrupt and mode control signals for the DSP56000/DSP56001.

2.10.3.1 MODE SELECT A/EXTERNAL INTERRUPT REQUEST A (MODA/IRQA) AND MODE
SELECT B/EXTERNAL INTERRUPT REQUEST B (MODB/IRQB). These two inputs have dual
functions: 1) to select the initial chip operating mode and 2) to receive an interrupt request
from an external source. MODA and MODB are read and internally latched in the DSP
when the processor exits the reset state. After leaving the reset state, the MODA and MODB
pins automatically change to external interrupt requests, IRQA and TRQB. After leaving the
reset state, the chip operating mode can be changed by software. IRQA and IRQB can be
programmed to be level sensitive or negative edge triggered. When edge triggered, trig-
"gering occurs at a voltage level and is not directly related to the fall time of the interrupt
signal; however, the probability of hoise on IRQA or IROB generating multiple interrupts
increases ‘with increasing fall time of the interrupt signal.

2.10.3.2 RESET (RESET). This Schmitt-trigger input pin is used to reset the DSP56000/
DSP56001. When RESET is asserted, the DSP56000/DSP56001 is initialized and placed in
the reset state. When RESET is deasserted, the initial chip operating mode is latched from
the MODA and MODB pins. When coming out of RESET, deassertion occurs at a voltage
level and is not directly related to the rise time of the RESET signal; however, the probability
of noise on RESET generating multiple resets increases with increasing rise time of the
RESET signal.

2.10.4 Power and Clock

The power and clock signals are presented in the following paragraphs.

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 2-11

2.10.4.1 POWER (Vcc), GROUND (GND). There are five sets of power and ground pins:
two pairs for internal logic, one power and two ground for port A address and control pins,
one power and two ground for port A data pins, and one pair for peripherals.

2.10.4.2 EXTERNAL CLOCK/CRYSTAL INPUT (EXTAL). EXTAL may be used to interface
the internal crystal oscillator input to an external crystal or an external clock.

2.10.4.3 CRYSTAL OUTPUT (XTAL). This output connects the internal crystal oscillator
output to an external crystal. If an external clock is used, XTAL should not be connected.

2.10.5 Host Interface

The following paragraphs discuss the host interface signals.

2.10.5.1 HOST DATA BUS (H0-H7). This bidirectional data bus is used to transfer data
between the host processor and the DSP56000/DSP56001. This bus is an input unless
enabled by a host processor read and is high impedance when HEN is deasserted. HO-H7
can be programmed as general-purpose parallel {/0 pins (PB0-PB7) when the host interface
is not being used.

2.10.5.2 HOST ADDRESS (HA0-HA2). These inputs provide the address selection for each
host interface register. HAO-HA2 can be programmed as general-purpose parallel /O pins
(PB8-PB10) when the host interface is not being used.

2.10.5.3 HOST READ/WRITE (HR_W). This input selects the direction of data transfer for
each host processor access. HR/W can be programmed as a general-purpose /O pin (PB11)
when the host interface is not being used. v)

2.10.5.4 HOST ENABLE (HEN). This input enables a data transfer on the host data bus.
When HEN is asserted and HR/W is high, HO-H7 become outputs and DSP56000/DSP56001
data may be read by the host processor. When HEN is asserted and HRW is low, HO-H7
become inputs, and host data is latched inside the DSP. When HEN is deasserted, the host
data bus is three-stated. Normally, a chip select signal derived from host address decoding
and an enable clock are used to generate HEN. HEN can be programmed as a general-
purpose /O pin (PB12) when the host interface is not being used.

2.10.5.5 HOST REQUEST (HREQ). This open-drain output signal is used by the DSP56000/
DSP56001 host interface to request service from the host processor, DMA controller, or a
simple external controller. HREQ can be programmed as a general-purpose (not open-
drain) I/0 pin (PB13) when the host interface is not being used.

2-12 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

2.10.5.6 HOST ACKNOWLEDGE (HACK). This input has two functions: 1) to provide a
host acknowledge handshake signal for DMA transfers and 2) to receive a host interrupt
acknowledge compatible with M68000 Family processors. HACK may be programmed as
a general-purpose I/0 pin (PB14) when the host interface is not being used.

2.10.6. Serial Communications Interface

The following signals relate to the SCI.

2.10.6.1 RECEIVE DATA (RXD). This input receives byte-oriented serial data and transfers
the data to the SCI receive shift register. RXD can be programmed as a general-purpose
I/0 pin (PCO) when the SCI RXD function is not being used.

2.10.6.2 TRANSMIT DATA (TXD). This output transmits serial data from the SCI transmit
shift register. TXD can be programmed as a general-purpose /O pin (PC1) when the SCi
TXD function is not being used.

2.10.6.3 SCI SERIAL CLOCK (SCLK). This bidirectional pin provides an input or output
clock from which the transmit and/or receive baud rate is derived in the asynchronous
mode and from which data is transferred in the synchronous mode. SCLK can be pro-
grammed as a general-purposé 1/0 pin (PC2) when the SCI SCLK function is not being
used.

2.10.7 Synchronous Serial Interface

The SSI signals are presented in the following paragraphs.

2.10.7.1 SERIAL CONTROL ZERO (SC0). This bidirectional pin is used for control by the
SSI as a flag or receiver clock. SCO can be programmed as a general-purpose I/0 pin (PC3)
when the SSI SCO function is not being used.

2.10.7.2 SERIAL CONTROL ONE (SC1). This bidirectional pin is used for control by the
SSI as a flag or frame synchronization. SC1 can be programmed as a general-purpose /O
pin (PC4) when the SSI SC1 function is not being used.

MOTOROLA DSP56000/DSP56001 USER'S MANUAL ' 2-13

2.10.7.3 SERIAL CONTROL TWO (SC2). This bidirectional pin is used for control by the
SSI as a frame synchronization only. SC2 can be programmed as a general-purpose 1/0
pin (PC5) when the SSI SC2 function is not being used.

2.10.7.4 SSI SERIAL CLOCK (SCK). This bidirectional pin provides the serial bit rate clock
for the SSI. SCK can be programmed as a general-purpose 1/O pin (PC6) when SCK is not
. being used.

2.10.7.5 SSIRECEIVE DATA (SRD). This input pin receives serial data into the SSI receive
shift register. SRD can be programmed as a general-purpose 1/0 pin (PC7) when SRD is
not being used.

2.10.7.6 SSI TRANSMIT DATA (STD). This output pin transmits serial data from the SSI
transmit shift register. STD can be programmed as a general-purpose 1/0 pin {PC8) when
the SSI STD function is not being used.

214 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

- SECTION 3
MEMORY SPACES

This section is divided into two major subsections, the DSP56000 and DSP56001. Each
subsection describes the memory spaces available and the operating modes that redefine
these memory spaces.

3.1 OVERVIEW

The memory of the DSP56000/DSP56001 can be partitioned in several ways to provide
high-speed parallel operation and additional off-chip memory expansion. Program and
data memory are separate, and the data memory is, in turn, divided into two separate
memory spaces, X and Y. Both the program and data memories can be expanded off-chip.
There are also two on-chip data read-only memories (ROMs) that can overlay a portion of
the X and Y data memories and a bootstrap ROM (DSP56001 only) that can overlay part
of the program random-access memory (RAM). The data memories are divided into two
independent spaces to work with the two address arithmetic logic units {ALUs) to feed two
operands simultaneously to the data ALU.

3.2 DSP56000 VIEMORY INTRODUCTION

The three independent memory spaces of the DSP56001, X data, Y data, and program, are
shown in Figure 3-1. The memory spaces are configured by control bits in the operating
mode register (OMR). The operating mode control bits (MA and MB) in the OMR control

. the program memory map and select the reset vector address. The data ROM enable (DE)
bit in the OMR controls the X and Y data memory maps and enables/disables the internal
X and Y data ROMs. The bootstrap memory on the DSP56000 is used only for factory
testing and should not be invoked by the user.

3.2.1 X bata Memory

The on-chip X data RAM is a 24-bit-wide, internal, static memory occupying the lowest 256
locations (0-255) in X memory space. The on-chip X data ROM (factory programmed to
user specifications like the program ROM) occupies locations 256-511 in the X data memory
space and is controlled by the DE bit in the OMR. The on-chip peripheral registers occupy
the top 64 locations of the X data memory ($FFCO-$FFFF). The 16-bit addresses are received
from the XAB, and 24-bit data transfers to the data ALU occur on the XDB. The X memory
may be expanded to 64K off-chip.

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 3-1

$FFFF SFFFF SFFFF
PROGRAM X DATA Y DATA
MEMORY MEMORY MEMORY
SPACE SPACE SPACE
$3F
INTERRUPT
VECTORS
$0 $0 $0
OPERATING MODE DETERMINES DE BIT IN THE OMR DETERMINES
PROGRAM MEMORY AND THE X AND Y DATA MEMORY MAPS
RESET STARTING ADDRESS)
J
MODE 0 MODE 2 MODE 3
MB=0 MA=0 MB=1MA=0 MB=1 MA=1 _ DE=1 DE=0
SFFFF SFFFF [SFFFRI[TON-CHIP | [EXTERNALZ] SFFFF [ON-CHIP | [EXTERNALL
RIPHERALS| |PERIPHERALS| PERIPHERALS| [P
$E000 srrco [oERI 3 serco LS| [PERIPHERALS]
EXTERNAL XTERNAL
X DATA
MEMORY
SEFF SEFF STPFL INTERNAL | [INTERNAL
INTERNAL INTERNAL X ROM Y ROM
. ?O_M_ R ROM » SR remas | | renac | S| intemnal | | inveRnaL
o L__RESET $0 $0 bt 1 g0l XRAM Y RAM sol_XRaM Y RAM
INTERNAL ROM ~ INTERNALROM NO INTERNAL ROM DATA ROMS ENABLED DATA ROMS DISABLED

INTERNAL RESET ~ EXTERNAL RESET EXTERNAL RESET

Figure 3-1. DSP56000 Memory Map

3.2.2 Y Data Memory

The on-chip Y data RAM is a 24-bit-wide, internal, static memory occupying the lowest 256
locations (0-255) in the Y memory space. The on-chip Y data ROM (factory programmed
to user specifications like the program ROM) occupies locations 256-511 in Y data memory
space and is controlled by the DE bit in the OMR. The off-chip peripheral registers should
be mapped into the top 64 locations ($FFCO-$FFFF) to take advantage of the move pe-
ripheral data (MOVEP) instruction. The 16-bit addresses are received from the YAB, and
24-bit data transfers to the data ALU occur on the YDB. Y memory may be expanded to
64K off-chip.

3-2 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

3.2.3 Program Memory

On-chip program memory consists of a 3840-location by 24-bit, high-speed ROM (3.75K x 24)
that is enabled/disabled by the MA and MB bits in the OMR. When the on-chip program
memory is disabled, either off-chip memory or a special mode 1 ROM is selected for
program memory.

NOTE -

The mode 1 ROM is used only for test purposes on the DSP56000 and should not
be invoked by the user.

Addresses are received from the program control logic (usually the program counter) over
the PAB. Off-chip program memory may be written using move program memory (MOVEM)
instructions. The interrupt vectors for the on-chip resources are located in the bottom 64
locations ($0000-$003F) of program memory. Program memory may be expanded to 64K
off-chip.

3.2.4 Chip Operating Modes

The DSP operating modes determine the memory maps for program and data memories
and the startup procedure when the DSP leaves the reset state. The MODA and MODB
pins are sampled as the DSP leaves the reset state, and the initial operating mode of the
DSP is set accordingly. When the reset state is exited, the MODA and MODB pins become
general-purpose interrupt pins, IRQA and IRQB. One of three initial operating modes is
selected: single chip, normal expanded, or development. Chip operating modes can be
changed by writing the operating mode bits (MB, MA) in the OMR. Changing operating
modes does not reset the DSP. [t is desirable to disable interrupts immediately before
changing the OMR to prevent an interrupt from going to the wrong memory location. Also,
one no-operation (NOP) instruction should be included after changing the OMR to allow
for remapping to occur.

Some pins on the DSP are mode independent; whereas, the use of others depends on the
particular operating mode. Specifically, external address bus, data bus, and bus control
pins are affected by the particular operating mode. Table 3-1 shows the mode assignments.

Table 3-1. Initial DSP56000 Operating Mode Summary

O';\:La(;;"g MODB | MODA Description
0 0 0 Single-Chip Mode
1 0 1 Single-Chip Mode
2 1 0 Normal Expanded Mode
3 1 1 Development Mode

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 3-3

3.2.4.1 SINGLE-CHIP MODE (MODE 0).

In the single-chip mode, all internal program and
data RAM memories are enabled. A hardware reset causes the DSP to jump to internal
program memory location $0000 ($=hexidecimal notation) and resume execution. The
memory map for this mode is shown in Figure 3-2. The memory maps for mode 0 and
mode 2 (see Figure 3-3) are identical. The difference between the two modes is that reset
vectors to program memory location $0000 in mode 0 and vectors to location $E000 in

mode 2.
PROGRAM X DATA ¥ DATA
MEMORY SPACE MEMORY SPACE MEMORY SPACE
SFFFF 7 ///// SFFFF ON-CHIP SFFFF L7 7 EXTERNAL 7
/ sfrco| PERIPHERALS SFFCO //PERIPHERALS/ /1
EXTERNAL SFFBF {7 r
/ PROGRAM / / ////// /
/ MEMORY EXTERNAL / EXTERNAL
/ X DATA / y DATA
A / MEMOV MEMORY
SOEFF
INTERNAL SO1FF //// % SOTFF ///// /
PROGRAM " [~ Gsenoermen USER-DEFINED
ROM ROM < oe=1]> ROM
SO0FF
S003F | INTERRUPTS INTERNAL SO0FF[|NTERNAL
$0000 RESET 50000 X RAM $0000 Y RAM
ON-CHIP
INTERRUPT MAP PERIPHERAL MAP
S003F ; SFFFF
HOST COMMANDS (NTERRUPT PRIORITY
$0026 BUS CONTROL
ILLEGAL INSTRUCTION INTERRUPT SCI INTERFACE
HOST INTERRUPTS SSI INTERFACE
SCI INTERRUPTS HOST INTERFACE
SSI INTERRUPTS PARALLEL 1/0
EXTERNAL INTERRUPTS INTERFACE
SWI INTERRUPT
TRACE INTERRUPT SFFEO
STACK INTERRUPT RESERVED
sooo [RESET SFFCO
NOTE: Addresses $FFCO-$FFFF in X data memory are NOT available externally.
Figure 3-2. Memory Map for DSP56000 Mode 0: Single-Chip Mode
3.2.4.2 MODE 1. Mode 1 is the same as mode 0 on the DSP56000. It is recommended

that this mode not be invoked by the user.

3.2.4.3 NORMAL EXPANDED MODE (MODE 2).

3.2.4.1 SINGLE-CHIP MODE (MODE 0) for further information).

34

DSP56000/DSP56001 USER'S MANUAL

Mode 2 is almost identical to mode 0 (see

MOTOROLA

PROGRAM X DATA Y DATA

MEMORY SPACE MEMORY SPACE MEMORY SPACE
SFFFF 7 SFFFF ON-CHIP SFFFEY /7 EXTERNAL /
srrico | PERIPHERALS srrco [/ PERIPHERALS //]
SE000 RESET SFFBF / ////// 5wt (/7777777
1777 EXTERNAL EXTERNAL
EXTERNAL
FRUGRAM X DATA hEMoR /
/ EMOAY MEMURY / MEMORY
s, ///// 2000074,
OEFF
s INTERNAL SO YSER-DEFINED SOUFFY yser-nerinED
PROGRAM SO7F ROM ROM
ROM
00FF
- SOOFF L | TeRNAL $00 INTERNAL
X RAM Y RAM
sooop {___NTERRUPTS $0000 $0000
ON-CHIP
INTERRUPT MAP PERIPHERAL MAP
$003F SFFFF
HOST COMMANDS INTERRUPT PRIDRITY
$0026 BUS CONTROL
ILLEGAL INSTRUCTION INTERRUPT SCI INTERFACE
HOST INTERRUPTS SSI INTERFACE
SCI INTERRUPTS HOST INTERFACE
SSI INTERRUPTS PARALLEL 110
EXTERNAL INTERRUPTS INTERFACE
SWI INTERRUPT e
TRACE INTERRUPT SFFE0
STACK INTERRUPT
RESERVED
s0000 | HOST COMMAND $FFCO)

NOTE: Addresses $FFCO-$FFFF in X data memory are NOT available externally.

Figure 3-3. Memory Map for DSP56000 Mode 2: Normal Expanded Mode

3.2.4.4 DEVELOPMENT MODE (MODE 3). The development mode is similarto the normal
expanded mode except that internal program memory is disabled. All references to pro-
gram memory space are directed to external program memory, which is accessed on the
external data bus. The memory map for this mode is shown in Figure 3-4. DSP56000 chips
with bad or obsolete internal program ROM code can be used with external program
memory in the development mode. The memory map in Figure 3-4 is shown with DE
arbitrarily set to zero.

3.2.5 Security ROM Version (DSP56000)*
The security ROM version of the DSP56000 is a standard DSP56000 that has been modified
to prevent unauthorized access to the program contained in the DSP program ROM. This

protection is accomplished in two ways. First, the DSP is forced into the single-chip mode
at reset. The chip powers up »in single-chip mode, and it is not possible to enter any other

For additional information concerning this part, contact the Motorola field office.

'~ MOTOROLA DSP56000/DSP56001 USER'S MANUAL 3-5

PROGRAM X DATA Y DATA

MEMORY SPACE MEMORY SPACE MEMORY SPACE
SFFFE SFEFFE on-cHip SFFFF [exteRNAL
$FFco| PERIPHERALS " srrco| PERIPHERALS

SFFBF ?{?ﬁ/ﬁg{// SFFBF Z Egn{iiﬁ/%
% MEMORY /

SO1FF

bl 77 INT'ERRUPTS/// SOOFF [|NTERNAL SOOFF [|NTERNAL
£ ot
$0000 7 RESET 50000 X RAM $0000 Y RAM
ON-CHIP
INTERRUPT MAP PERIPHERAL MAP
S003F SFFFF
HOST COMMANDS INTERRUPT PRIORITY
50026 BUS CONTROL
ILLEGAL INSTRUCTION INTERRUPT SCI INTERFACE
HOST INTERRUPTS $SI INTERFACE
| scr NTERRUPTS HOST INTERFACE
SSI INTERRUPTS PARALLEL 1/0
EXTERNAL INTERRUPTS INTERFACE
SWI INTERRUPT
TRACE INTERRUPT $FFE0
STACK INTERRUPT
STACK RESERVED
50000 $FFCO

NOTE: Addresses $FFCO-$FFFF in X data memory are NOT available externally.

Figure 3-4. Memory Map for DSP56000 Mode 3: Development Mode

mode on powerup. The MODA/IRQA and MODB/IRQB pins are configured only as TROA
and TRQB and cannot be used to change the mode. Second, the programmer must avoid
fetches from external program memory —i.e., the user code must be placed only in internal
program ROM. This placement prevents the execution of unauthorized code that might be
used to dump the contents of the program ROM. :

- 3.3 DSP56001 MEMORY INTRODUCTION

The three independent memory spaces of the DSP56001, X data, Y data, and program, are
shown in Figure 3-5. The memory spaces are configured by control bits in the OMR. The
MA'and MB control bits in the OMR control the program memory map and select the reset
vector address. The DE bit in the OMR controls the X and Y data memory maps and enables/
* disablesthe internal X and Y data ROMs. One additional memory available on the DSP56001
is the bootstrap memory that overlays the program memory in mode 1.

3-6 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

- N\)
SFFFF SFFFF SFFFF
PROGRAM X DATA Y DATA
MEMORY MEMORY MEMORY
SPACE SPACE SPACE
$3F
INTERRUPT
VECTORS
$0 $0 50
OPERATING MODE DETERMINES DE BIT IN THE OMR DETERMINES
PROGRAM MEMORY AND THE X AND Y DATA MEMORY MAPS
RESET STARTING ADDRESS Y,
J
MODE 0 MODE 2 MODE 3
MB=0 MA=0 ‘MB=1 MA=0 MB=1 MA=1 DE=1 , DE=0

SFFFF [ON-CHIP
PERIPHERA
$FFCO =

S$FFFF SFFFF SFFFF[ON-CHIP

ERAL!
SFFCO PERIPH S

SFFFF

$E000

EXTERNAL::
Y DATA ¥
MEMORY

EXTERNAL

STFF INTERNAL INTERNAL

SIFF $IFF SIFF
INTERNAL INTERNAL X ROM Y ROM
— EA_M__ | RAM i SoFE INTERNAL INTERNAL SOFF INTERNAL INTERNAL
$0 RESET 30 0 RESE so | XRAM Y RAM soL_XRam Y RAM
INTERNAL PRAM ~ INTERNAL PRAM NO INTERNAL PRAM DATA ROMS ENABLED DATA ROMS DISABLED

INTERNAL RESET ~ EXTERNAL RESET EXTERNAL RESET

Figure 3-5. DSP56001 Memory Map

3.3.1 X Data Memory

The on-chip X data RAM is a 24-bit-wide, static, internal memory occupying the lowest 256
locations (0-255) in X memory space. The on-chip X data ROM occupies locations 256-511
in the X data memory space when enabled by setting DE to one in the OMR. The X data
ROM is factory programmed with positive Mu-law and A-law expansion tables (see AP-
PENDIX D MU-LAW/A-LAW EXPANSION TABLES), which are useful in telecommunication
applications. The on-chip peripheral registers occupy the top 64 locations of the X data
memory (locations $FFCO-$FFFF). The 16-bit addresses are received from the XAB, and
24-bit data transfers to the data ALU occur on the XDB. The X memory may be expanded
to 64K off-chip.

MOTOROLA DSP56000/DSP56001 USER'S MANUAL . 3-7

3.3.2 Y Data Memory

The on-chip Y data RAM is a 24-bit-wide, static, internal memory occupying the lowest 256
locations (0-255) in the Y memory space. The on-chip Y data ROM occupies locations
256-511 in Y data memory space when enabled by setting DE to one in the OMR. The Y
data ROM is factory programmed with a full, four-quadrant, sine-wave table (see DSP56001
Advance Information Data Sheet (ADI1290)), which is useful for fast Fourier transforms,
discrete Fourier transforms, and waveform generation. The off-chip peripheral registers
should be mapped into the top 64 locations ($FFCO-$FFFF) to take advantage of the MOVEP
instruction. The 16-bit addresses are received from the YAB, and 24-bit data transfers to
the data ALU occur on the YDB. Y memory may be expanded to 64K off-chip.

3.3.3 Program Memory

On-chip program memory consists of a 512-location by 24-bit, high-speed, static RAM that
is enabled/disabled by the MA and MB bits in the OMR. When the on-chip program memory
is disabled, either off-chip memory or a special bootstrap ROM is selected for program
memory.

Addresses are received from the program control logic (usually the program counter) over
the PAB. Program memory may be written using MOVEM instructions. The interrupt vectors
for the on-chip resources are located in the bottom 64 locations ($0000-$003F) of program
memory. Program memory may be expanded to 64K off-chip.

Program RAM provides a method of developing code efficiently, and programs can be
changed dynamically, allowing efficient overlaying of DSP software algorithms. In this way,
the on-chip program RAM operates as a fixed cache, thereby minimizing contention with
accesses to external data memory.spaces.

The bootstrap mode overlays the program memory in mode 1 and provides a convenient,
low-cost method of loading the DSP56001 program RAM with a program after power-on
reset. The bootstrap mode also allows loading the program RAM from a single, inexpensive
EPROM through port A or via the host interface using a host processor.

1

3.3.4 Bootstrap ROM (DSP56001 Only)

Factory programmed to perform the bootstrap operation from the memory expansion port
(port A) or from the host interface, the 32-word on-chip ROM is invoked while the processor
is in operating mode 1. Users have no access to the bootstrap ROM other than through
the bootstrap process. '

3.3.5 Chip Operating Modes

The DSP operating modes determine the memory maps for program and data memories
and the startup procedure when the DSP leaves the reset state. The MODA and MODB

3-8 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

pins are sampled as the DSP leaves the reset state, and the initial operating mode of the
DSP is set accordingly. When the reset state is exited, the MODA and MODB pins become
general-purpose interrupt pins, IRQA and IRQB. One of four initial operating modes is
selected: single chip, special bootstrap, normal expanded, or development. Chip operating
modes can be changed by writing the operating mode bits (MB, MA) in the OMR. Changing
operating modes does not reset the DSP. It is desirable to disable interrupts immediately
before changing the OMR to prevent an interrupt from going to the wrong memory location.
For example, if the user changed to the bootstrap mode and an interrupt occurred, he
would execute the bootstrap code out of order. Also, one NOP instruction must be included
after changing the OMR to allow for remapping to occur. '

Some pins on the DSP are mode independent; whereas, others depend on the particular
operating mode. Specifically, external address bus, data bus, and bus control pins are
affected by the particular operating mode. Table 3-2 depicts the mode assignments.

Table 3-2. Initial DSP56001 Operating Mode Summary

O’;’I:’;Z"g MODB | MODA Description
0 0 0 Single-Chip Mode
1 0 1 Special Bootstrap Mode
2 1 0 Normal Expanded Mode
3 1 1 Development Mode

3.3.5.1 SINGLE-CHIP MODE (MODE 0). In the single-chip mode, all internal program and
data RAM memories are enabled. A hardware reset causes the DSP to jump to internal
_program memory location $0000 and resume execution. The memory map for this mode
is shown in Figure 3-6. The memory maps for mode 0 and mode 2 (see Figure 3-7) are
identical. The difference between the two modes is that reset vectors to program memory
location $0000 in mode 0 and vectors to location $E000 in mode 2.

3.3.5.2 SPECIAL BOOTSTRAP MODE (MODE 1). The bootstrap mode is a special mode
that loads internal program RAM either from a byte-wide external memory such as EPROM
or from the host interface. After loading the internal memory, the DSP switches to the
single-chip mode and begins program execution at on-chip program memory location
$0000.

One method of selecting mode 1 is to assert the reset pin on the DSP56001. When the DSP
leaves the reset state (RESET goes high), the MODB and MODA pins are sampled (they
should be set to zero and one, respectively), and the initial operating mode of the DSP is

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 39

PROGRAM X DATA Y DATA
MEMORY SPACE MEMORY SPACE MEMORY SPACE

SFFFF 7 SFFFF SNCHIP SFFFF e/,
/ srrco | PERIPHERALS SFFCO /P,@EERN,SL
EXTERNAL SFFBF % /////
/ PROGRAM / / E){QN/AL/V EXTERNAL

7
)

$O1FF
g\r‘aToEgnNA% SOIFF INTERNAL SOFFL INTERNAL
RAM X ROM Y ROM
SO0SF I INTERRUPTS | SOOFFL™ " NTERNAL SOOFFL™ | TERNAL
$0000 RESET $0000 X RAM $0000 Y RAM
ON-CHIP
INTERRUPT MAP PERIPHERAL MAP
S003F SFFFF
HOST COMMANDS INTERRUPT PRIORITY
50026 BUS CONTROL
ILLEGAL INSTRUCTION INTERRUPT SCI INTERFACE
HOST INTERRUPTS SSI INTERFACE
SCI INTERRUPTS HOST INTERFACE
SSI INTERRUPTS PARALLEL 1/0
EXTERNAL INTERRUPTS INTERFACE
SWI INTERRUPT
TRACE INTERRUPT $FFEO
STIS\EK INTERRUPT RESERVED
soooo | RESET $FFCO

NOTE: Addresses $FFCO-$FFFF in X data memory are NOT available externally.

Figure 3-6. Memory Map for DSP56001 Mode 0: Single-Chip

set accordingly. The following actions occur once the processor comes out of the reset
state.

1.

3-10

The control logic maps the bootstrap ROM into the internal DSP program memory
space starting at location $0000.

. The control logic causes program reads to come from the bootstrap ROM (only address

bits 4-0 are significant) and all writes go to the program RAM (all address bits are
significant). This condition allows the bootstrap program to load the user program
from $0000-$01FF.

. Program execution begins at location $0000 in the bootstrap ROM. The bootstrap

ROM program can load program RAM through either the memory expansion port or
through the host interface. The choice is made by looking at bit 23 of P:$C000. The
processor loads from the host interface if bit 23 is a zero; if bit 23 is a one, it loads
from a byte-wide memory starting at P:$C000.

The bootstrap ROM program executes the following sequence to end the bootstrap
operation and begin executing the user program. First, operating mode 2 is entered

DSP56000/DSP56001 USER'S MANUAL MOTOROLA

PROGRAM X DATA Y DATA

MEMORY SPACE MEMORY SPACE MEMORY SPACE
SFFFF SFFFF ONCHIP $FFFF / e 7
$E000 srrco| PERIPHERALS SFFCO PERIPHERALS
7 SFrRF [7 ////// SFFBF ////
EXTERNAL EXTERNAL
PROGRAM X DATA Y DATA
/ MEMORY / / MEMORY / MEMOHY
- yvi ¥ I IV - /////
0 SOWFF[™, a-Lawiun FULL
PROGRAM $017F - SINE-WAVE
RAM +MU-LAW/LIN TABLE
$00FF $00FF
INTERNAL INTERNAL
$003F X RAM Y RAM
$0000 INTERRUPTS $0000 $0000
ON-CHIP
$003F UL PERIPHERAL MAP
SFFFF
HOST COMMANDS INTERRUPT PRIORITY
$0026 8US CONTROL
ILLEGAL INSTRUCTION INTERRUPT SCI INTERFACE
HOST INTERRUPTS SSI INTERFACE
SCI INTERRUPTS HOST INTERFACE
SSI INTERRUPTS PARALLEL I/0
EXTERNAL INTERRUPTS INTERFACE
SWI INTERRUPT
TRACE INTERRUPT SFFEO
STACK INTERRUPT
RESERVED
s0000 | HOST COMMAND SFFCO

NOTE: Addresses $FFCO-$FFFF in X data memory are NOT available externally.

Figure 3-7. Memory Map for DSP56001 Mode 2: Normal Expanded Mode

by writing to the OMR. This action will be timed to remove the bootstrap ROM from
the program memory map and re-enable read/write access to the program RAM.
Second, the change to mode 2 is exactly timed to allow the bootstrap program to
execute a single-cycle instruction (clear status register), then a JMP #<00, and begin
_executiqn‘of the user program at location $0000.

The bootstrap mode may also be selected by writing zero to MB and one to MA in the
OMR. This selection initiates a timed operation to map the bootstrap ROM into the program
address space after a delay to allow execution of a single-cycle instruction and then a JMP
#<00 to begin the bootstrap process previously described. This technique allows the
DSP56001 user to reboot the system (with a different program, if desired). The code to
enter the bootstrap mode is as follows:

MOVEP #0,X:$FFFF ; Disable interrupts.

MOVEC #1,0MR ; The bootstrap ROM is mapped
; into the lowest 32 locations
; in program memory.

MOTOROLA DSP56000/DSP56001 USER'S MANUAL , 31

NOP ; Allow one cycle delay for the
; remapping.
JMP <$0 ; Begin bootstrap.

The interrupts are disabled before executing the bootstrap code; otherwise, an interrupt
could cause the DSP to execute the bootstrap code out of sequence because the bootstrap
program overlays the interrupt vectors.

The bootstrap ROM contains the bootstrap firmware program that performs initial loading
of the DSP56001 program RAM.

Written in DSP56001 assembly language, the program contains two separate methods of
initializing the program RAM: loading from a byte-wide memory starting at location P:$C000
or loading through the host interface. The particular method used is selected by the levei
of program memory location P:$C000 bit 23.

If location P:$CO000 bit 23 is read as a one, the external bus version of the bootstrap program
will be selected. Typically, a byte-wide EPROM will be connected to the DSP56001 address
and data bus. The data contents of the EPROM must be organized as follows:

Address of External Contents Loaded to

Byte-Wide Memory: Internal Program RAM at:
P:$C000 P:$0000 low byte
P:$C001 P:$0000 mid byte
P:$C002 P:$0000 high byte
P:$C5FD P:$01FF low byte
P:$C5FE P:$01FF mid byte
P:$C5FF P:$01FF high byte

If location P:$C000 bit 23 is read as a zero, the host interface version of the bootstrap
program will be selected. Typically, a host microprocessor will be connected to the DSP56001
host interface. The host microprocessor must write the host interface byte-wide registers
TXH, TXM, and then TXL with the desired contents of program RAM from location P:$0000
up to P:$01FF. if less than 512 words are to be loaded, the host programmer can exit the
bootstrap program and force the DSP56001 to begin executing at location P:$0000 by
setting HFO to one in the host interface control register. In most systems, the DSP56001
response is so fast that handshaking between the DSP56001 and the host is not necessary.

3.3.5.3 NORMAL EXPANDED MODE (MODE 2). Mode 2 is almost identical to mode 0 (see
3.3.5.1 SINGLE-CHIP MODE (MODE 0) for details).

3-12 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

3.3.5.4 DEVELOPMENT MODE (MODE 3). The development mode is similar to the normal
expanded mode except that internal program memory is disabled. All references to pro-
gram memory space are directed to external program memory, which is accessed on the
external data bus. The reset vector points to location $0000. The memory map for this
mode is shown in Figure 3-8. The memory map in Figure 3-8 is shown with DE arbitrarily
set to zero.

PROGRAM X DATA . Y DATA
MEMORY SPACE MEMORY SPACE MEMORY SPACE

SFFFF V SFFFF oN-CHIP SFFFF FEnT0r
srrco| PERIPHERALS $FFCO //E’EB'B“,E“,ALEA
/ SFFBF 7 /////// $FFBF 7 /7777
EXTERNAL EXTERNAL
EXTERNAL / X DATA / /
/ PROGRAM . MEMORY
MEMORY . -
SOTFF % /// /
//// /
A S00FF SO0FF
sousf P77 77T 777 ~ INTERNAL INTERNAL
LIRS A X RAM Y RAM
$0000 s RESET $0000 L $0000
ON-CHIP
INTERRUPT MAP PERIPHRAL MAP
SO003F [$FFFF
HOST COMMANDS INTERRUPT PRIORITY
30026 - BUS CONTROL
ILLEGAL INSTRUCTION INTERRUPT | . SCI INTERFACE
HOST INTERRUPTS SSI INTERFACE
SCI INTERRUPTS HOST INTERFACE
SSI INTERRUPTS PARALLEL 1/0
EXTERNAL INTERRUPTS INTERFACE
SWI INTERRUPT
TRACE INTERRUPT SFFEO
STACK INTERRUPT RESERVED
soooo PESET . SFFCO

NOTE: Addresses $FFCO-FFFF in X data memory are NOT available externally.

Figure 3-8. Memory Map for DSP56001 Mode 3: Development Mode

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 313

3-14

DSP56000/DSP56001 USER'S MANUAL

MOTOROLA

SECTION 4
DATA ARITHMETIC LOGIC UNIT

This section describes the operation of the data arithmetic logic unit {ALU) registers and
hardware. The data representation, rounding, and saturation arithmetic used within the
data ALU are also presented. This section concludes with a discussion of the programming
model.

4.1 OVERVIEW AND DATA ALU ARCHITECTURE

The DSP56000/DSP56001 central processor is composed of three execution units that op-
erate in parallel. They are the data ALU, address generation unit {AGU), and the program
controller (see Figure 4-1). These three units are register oriented rather than bus oriented
and are designed to interface over the system buses with memory and memory-mapped
I/0 devices. The DSP56000/DSP56001 instruction set has been designed to allow flexible
control of these parallel processing resources. Many instructions allow the programmer
to keep each unit busy, thus enhancing performance. It was possible to make the pro-
gramming model like that of conventional microprocessor units (MPUs), eliminating the

YAB
»{EXTERNAL
porT | ADDRESS s >1 ApREss |_ADDRESS
g or | GENERATION P »| BUS
host 17 S N V W) Y ¥ SWITCH
Y B X MEMORY | [Y MEMORY
. BOOTSTRAP | | PROGRAM RAM RAM
<3e»] ONCHP g ROM RAM 256 x 24 256 24 BUS ;
HPOESRTIP:g?ASLCS' 32x24 s12x24 |[wAROM |[SINEROM | |oonTROLLER[<*> | PORT A
PR , 8S1, SCI, CZF_—D 256 x 24 256 x 24
PARALLEL 1/0 r ﬁ ﬁ @
PORT C YOB
aoon | swnon [i o & ZE K] o | 247
B N T o 2w w— e A
mantpuLaTion K 0 7~ — T
= | Jbdb
v
r————- r-——"——-ﬂ —————— 2
| PROGRAM | | PROGRAM ! | PROGRAM || :
lI ADDRESS I{-.’ DECODE J(’}‘INTEHRUF‘T ! 3 24X>24+56’56-B|T MAC !
1 s AL
CLOCK L GENERATOR | | CONTROLLER) | CONTROLLER) | E: 1y 56.BT ACCUMULATORS ;
GENERATOR PROGRAM CONTROLLER A : ..
T ¢XTAL ! mooaiiRa — GBS
EXTAL MODA/IRGA
RESET — BITS

Figure 4-1. DSP56001 Block Diagram

MOTOROLA DSP56000/DSP56001 USER’S MANUAL 4-1

need to refer to the detailed chip architecture when programming the DSP56000/DSP56001
because the parallel execution units appear to execute their operations in a nonpipelined
manner.

The data ALU (see Figure 4-2) is the first of these execution units to be presented. The
data ALU, which has been designed to be fast.and yet provide the capability to process
signals having a wide dynamic range, performs all the arithmetic and logical operations
on data operands in the DSP56000/DSP56001. '

The data ALU registers‘may be read or written over the XDB and the YDB as 24- or 48-bit
operands. The source operands for the data ALU, which may be 24, 48, or 56 bits, always

X DATA BUS

Y DATA BUS

24 YL

X0
X1
Y0
Y1

2% 24
Y

(MULTIPLIER ’

Yy

ACCUMULATOR, 56
5 ROUNDING,
AND LOGIC UNIT

| SHIFTER l 5 N
/Yy Y ¥V ¥
A {56)
B (56)
[56 |56 I
R 2R
| SHIFTER/LIMITER I

y L.__"__

24

Figure 4-2. Data ALU

4-2 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

originate from data ALU registers. The results of all data ALU dperations are stored in an
accumulator.

The 24-bit data words provide 144 dB of dynamic range. This range is sufficient for most
real-world applications since the majority of data converters are 16 bits or less, and certainly
not greater than 24 bits. The 56-bit accumulator internal to the data ALU provides 336 dB
of internal dynamic range so that no loss of precision will occur due to intermediate
processing. Circuitry has been provided to facilitate handling data overflows and roundoff
errors.

Any of the following operations can be performed by the data ALU in a single instruction
cycle: multiplication, multiply-accumulate with positive or negative accumulation, con-
vergent rounding, multiply-accumulate with positive or negative accumulation and con-
vergent rounding, addition, subtraction, a divide iteration, a normalization iteration, shifting,
and logical operations.

The components of the data ALU are as follows:
Four 24-bit input registers
A parallel, single-cycle, nonpipelined multiply-accumulator/logic unit (MAC)
Two 48-bit accumulator registers '
Two 8-bit accumulator extension registers
An accumulator shifter
Two data bus shifter/limiter circuits

Each of these components is described in the following paragraphs as well as a description
of data representation, rounding, and saturation arithmetic.

4.1.1 Data ALU Input Registers (X1, X0, Y1, Y0)

X1, X0, Y1, and YO0 are four 24-bit, general-purpose data registers. They can be treated as
four independent, 24-bit registers or as two 48-bit registers called X and Y, developed by
the concatenation of X1:X0 and Y1:YO0, respectively. X1 is the most significant word in X
and Y1 is the most significant word in Y. The registers serve as input buffer registers
between the XDB or YDB and the MAC unit. They are used as data ALU source operands,
allowing new operands to be loaded for the next instruction while the register contents
are used by the current instruction. The registers may also be read back out to the appro-
priate data bus to implement memory-delay operations and save/restore operations for
interrupt service routines.

4.1.2 MAC and Logic Unit

The MAC and logic unit comprise the main arithmetic processing unit of the DSP and
perform ail of the calculations on data operands. In the case of arithmetic instructions, the
unit accepts up to three input operands and outputs one 56-bit result of the following form,

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 4-3

extension:most significant product:least significant product (EXT:MSP:LSP). The operation
of the MAC unit occurs independently and in parallel with XDB and YDB activity, and its
registers facilitate buffering for both data ALU inputs and outputs. Latches are provided
on.the MAC unit input to permit writing an input register, which is the source for a data
ALU operation in the same instruction. -

The arithmetic unit contains a multiplier and two accumulators. The input to the multiplier
can only come from the X or Y registers (X1, X0, Y1, Y0). The multiplier executes 24-bit x
24-bit, parallel, twos-complement fractional multiplies. The 48-bit product is right justified
and added to the 56-bit contents of either the A or B accumulator. The 56-bit sum is stored
back in the same accumulator (see Figure 4-3). An 8-bit adder, which is used as an extension

X0, X1, X0, X1,
YO,0RY1 YO, 0RY!

X0, X1,
VL i Y0, OR Y1

e 24 BITS
e 48 BITS 24-BIT x 24-BIT
omm— 5 BITS FRACTIONAL
MULTIPLIER
r s |
| ARITHMETIC AND |
| S LOGIC UNIT
H
I |
[* F
T
E
R

| CONDITION

|
I
|
l
| CONVERGENT-ROUNDING SCALING
|
|
|
= CODE GENERATOR

|

|

[

|

FORCING FUNCTION MODE BITS |
' |

|

|

|

ACCUMULATOR A ACCUMULATOR B

. Figure 4-3.. MAC Unit

4-4 ' DSP56000/DSP56001 USER'S MANUAL MOTOROLA

accumulator for the MAC array, accommodates overflow of up to 256 and allows the two
56-bit accumulators to be added and subtracted from each other. The extension adder
output is the EXT portion of the MAC unit output. This multiply/accumulate operation is
not pipelined but rather is a single-cycle operation. If a multiply without accumulation
(MPY) is specified in the instruction, the MAC clears the accumulator and then adds the
" contents to the product.

In summary, the results of all arithmetic instructions are valid (sign-extended and zero-
filled) 56-bit operands in the form of EXT:MSP:LSP or A2:A1:A0 or B2:B1:B0. When a
56-bit result is to be stored as a 24-bit operand, the LSP can be simply truncated, or it can
be rounded (using convergent rounding) into the MSP.

Convergent rounding (round-to-nearest) is performed when adding the multiplier’s product
to the contents of the accumulator if specified in the DSP instruction (e.g., the signed
multiply-accumulate and round (MACR) instruction). The bit in the accumulator that is
rounded is specified by the scaling mode bits in the status register.

The logic unit performs the logical operations, AND, OR, EOR, and NOT, on data ALU
registers. This unit is 24 bits wide and operates on data in the MSP portion of the accu-
mulator. The LSP and EXT portions of the accumulator are not affected.

i

4.1.3 Data ALU Accumulator Registers (A2, A1, A0, B2, B1, BO)

The six data ALU registers (A2, A1, A0, B2, B1, and B0) form two general-purpose, 56-bit
accumulators, A and B. Each of these two registers consists of three concatenated registers
(A2:A1:A0 and B2:B1:B0, respectively). The 24-bit MSP is stored in A1 or B1; the 24-bit
LSP is stored in AO or B0O. The 8-bit EXT is stored in A2 or B2.

The 8-bit extension registers offer protection against overflow. On the DSP56000/DSP56001,
the extreme values that a word operand can assume are —1 and +0.9999998. If the sum
of two numbers is less than —1 or greater than +0.9999998, the result {which cannot be
represented in a word operand — i.e., 24 bits) has underflowed or overflowed. The 8-bit
extension registers can accurately represent the result of 2565 overflows or 255 underflows.
Whenever the accumulator extension registers are in use, the V bit in the status register
is set. -

Automatic sign extension is provided when writing to the 56-bit accumulators A or B with
a 48- or 24-bit operand. When a 24-bit operand is written, the low-order portion will be
automatically zero filled to form a valid 56-bit operand. The registers may also be written
without sign extension or zero fill by specifying the individual register name. When ac-
cumulator registers A or B are read, they may be optionally scaled one bit left or one bit
right for block floating-point arithmetic.

Reading the A or B accumulators over the XDB and YDB is protected against overflow by
substituting a limiting constant for the data that is being transferred. The content of A or

‘MOTOROLA DSP56000/DSP56001 USER'S MANUAL 4-5

B is not affected should limiting occur; only the value transferred over the XDB or YDB is
limited. This overflow protection is performed after the contents of the accumulator have
been shifted according to the scaling mode. Shifting and limiting will be performed only
when the entire 56-bit A or B register is specified as the source for a parallel data move
over the XDB or YDB. When A0Q, A1, A2, BO, B1, or B2 are specified as the source for a
parallel data move, shifting and limiting are not performed. The accumulator registers
serve as buffer registers between the MAC unit and the XDB and/or YDB. These registers
are used as both data ALU source and destination operands.

Automatic sign extension of the 56-bit accumulators is provided when the A or B register
is written with*a smialler operand. Sign extension can occur when writing A or B from the
XDB and/or YDB or with the results of certain data ALU operations (such as the transfer
conditionally (Tcc) or transfer data ALU register (TFR) instructions). If a word operand is
to be written to an accumulator register (A or B), the MSP (A1 or B1) portion of the
accumulator is written with the word operand, the LSP (A0 or BO) portion is zero filled,
and the EXT (A2 or B2) portion is sign extended from MSP. Long-word operands are written
into the low-order portion, MSP:LSP, of the accumulator register, and the EXT portion is
sign extended from MSP. No sign extension is performed if an individual 24-bit register
is written (A1, A0, B1, or BO). Test logic is included in each accumulator register to support
operation of the data shifter/limiter circuits. This test logic is used to detect overflows out
of the data shifter so that the limiter can substitute one of several constants to minimize
errors due to the overflow. This process is commonly referred to as saturation arithmetic.

4.1.4 Accumulator Shifter

The accumulator shifter (see Figure 4-3) is an asynchronous parallel shifter with a 56-bit
input and a 56-bit output that is implemented immediately before the MAC accumulator
input. The source accumulator shifting operations are as follows:

No Shift (Unmodified) o

1-Bit Left Shift {Arithmetic or Logical) ASL, LSL, ROL

1-Bit Right Shift {Arithmetic or Logical) ASR, LSR, ROR

Force to zero

4.1.5 Data Shifter/Limiter

The data shifter/limiter circuits (see Figure 4-3) provide special postprocessing on data
read from the ALU accumulator registers A and B out to the XDB or YDB. There are two
independent shifter/limiter circuits (one for XDB and one for the YDB); each consists of a
shifter followed by a limiting circuit.

4.1.5.1 LIMITING (SATURATION ARITHMETIC). In the DSP56000/DSP56001, the data ALU
accumulators A and B have eight extension bits. Limiting will occur when the extension
bits are in use and either A or B is the source being read over XDB or YDB. The limiters

4-6 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

in the DSP56000/DSP56001 place a shifted and limited value on XDB or YDB without
changing the contents of the A or B registers. Having two limiters allows two-word operands
to be limited independently in the same instruction cycle. The two data limiters can also
be combined to form one 48-bit data limiter for long-word operands.

If the contents of the selected source accumulator can be represented without overflow in
the destination operand size (i.e., accumulator extension register not in use), the data limiter
is disabled, and the operand is not modified. If contents of the selected source accumulator
cannot be represented without overflow in the destination operand size, the data limiter
will substitute a limited data value having maximum magnitude (saturated) and having
the same sign as the source accumulator contents: $7FFFFF for 24-bit or $7FFFFF FFFFFF
for 48-bit positive numbers, $800000 for 24-bit or $800000 000000 for 48-bit negative num-
bers. This process is called saturation arithmetic. The value in the accumulator register is
not shifted and can be reused within the data ALU. When limiting does occur, a flag is set
and latched in the status register.

For example, if the source operand were 01.100 (+ 1.5 decimal) and the destination register
were only four bits, the destination register would contain 1.100 (- 1.5 decimal) after the
transfer, assuming signed fractional arithmetic. This is clearly in error as overflow has
occurred. To minimize the error due to overflow, it is preferable to write the maximum
{“limited"’) value the destination can assume. In the example, the limited value would be
0.111 (+0.875 decimal), which is clearly closer to + 1.5 than — 1.5 and therefore introduces
less error.

Figure 4-4 shows the effects of saturation arithmetic on a move from register A1 to register
X0. The instruction “MOVE A1,X0" causes a move without limiting, and the instruction
“MOVE A,X)" causes a move of the same 24 bits with limiting. The error without limiting
is 2.0; whereas, it is 0.0000001 with limiting. Table 4-1 shows a more complete set of
limiting situations.

WITHOUT LIMITING* WITH LIMITING*

7 0 23 023 0 7 0 23 0 23 0
MOVE A1,X0 ' MOVE A,X0

100........ 00(X0=-1.0 X0= +0.9999999
R — —

23 0 " |ERROR|=2.0 23 0 |ERROR]| =.0000001

*Limiting automatically occurs when the 56-bit operands A or B (not A2, A1, A0, B2, B1, or BO) are read. The contents of A
or B are NOT changed.

Figure 4-4. Saturation Arithmetic

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 4-7

Table 4-1. Limited Data Values

Dﬁ:ﬁztrl:n Source Accumulator Limited Value {Hexadecimal) Type of
Reference Operand Sign XDB YDB Access
X:A + TFFFFF — _
X X:B - 800000 — One 24 bit
Y:A + — 7FFFFF .
Y Y:B - — 800000 One 24 bit
X:A Y:A + TFFFFF 7FFFFF
X:AY:B - 800000 800000
X:BY:A + TFFFFF 7FFFFF)
XandY X:BY:B — 800000 800000 Two 24 bit
L:AB + 7FFFFF TFFFFF
L:BA - 800000 800000
; L:A + TFFFFF FFFFFF .
L X:¥) L:B - 800000 000000 One 48 bit

4.1.5.2 SCALING. The data shifters are capable of shifting data one bit to the left or one
bit to the right as well as passing the data unshifted. Each data shifter has a 24-bit output
with overflow indication and is controlled by the scaling mode bits in the status register.
These shifters permit dynamic scaling of fixed-point data without modifying the program
code. For example, this permits block floating-point algorithms such as fast Fourier trans-
forms to be implemented in a regular fashion.

4.2 DATA REPRESENTATION AND ROUNDING

The DSP56000/DSP56001 uses a fractional data representation for all data ALU operations.
Figure 4-5 shows the bit weighting of words, long words, and accumulator operands for
this representation. The decimal points are all aligned and are left justified.

Data must be converted to a fractional number by scaling before being used by the DSP56000/
DSP56001, or the user will have to be very careful in how the DSP manipulates the data.
Moving $3F to a 24-bit data ALU register does not result in the contents being $00003F as
might be expected. Assuming numbers are fractional, the DSP left justifies rather than
right justifies. As a result, storing $3F in a 24-bit register results in the contents being
$3F0000. The simplest example of scaling is to convert all integer numbers to fractional
numbers by shifting the decimal 24 places to the left (see Figure 4-6). Thus, the data has
not changed; only the position of the decimal has moved.’

For words and long words, the most negative number that can be represented is — 1 whose
internal representation is $800000 and $800000000000, respectively. The most positive
word is $7FFFFF or 1—2-23 and the most positive long word is $7FFFFFFFFFFF or 1—2747,
These limitations apply to all data stored in memory and to data stored in the data ALU
input buffer registers. The extension registers associated with the accumulators allow word
growth so that the most positive number that can be used is approximately 256 and the

4-8 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

DATA ALU

i
N
o
~
t
~
w

WORD OPERAND

X1,X0
Y1,Y0
A1LA0
B1,B0

=47

LONG-WORD OPERAND

X1:X0=X
YLYO=Y
A1:A0=A10
B1:B0=B10

I
N
=1
N
1
)
ESy

[P —

—28 20

ACCUMULATOR A OR B [a2 ALBI AQBO |

|
|

| |

|

| |

| |
SIGN EXTENSION OPERAND ZE

|
N
=

~

!
&
~

Figure 4-5. Bit Weighting and Alignment of Operands

§=SIGN BIT

3F=HEXADECIMAL DATA TO BE CONVERTED
Se 3F ,

Figure 4-6. Integer-to-Fractional Data Conversion

most negative number is approximately —256. When the accumulator extension registers
are in use, the data contained in the accumulators cannot be stored exactly in memory or
other registers. In these cases, the data must be limited to the most positive or most
negative number consistent with the size of the destination and the sign of the accumulator
(the most significant bit (MSB) of the extension register).

To maintain alignment of the binary point when a word operand is written to accumulator
A or B, the operand is written to the most significant accumulator register (A1 or B1), and

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 4-9

its MSB is automatically sign extended through the accumulator extension register. The
least significant accumulator register is automatically cleared. When a long-word operand
is written to an accumulator, the least significant word of the operand is written to the
least significant accumulator register (see Figure 4-5).

A comparison between integer and fractional number representation is shown in Figure
4-7. The number representation for integers is between +2N-"; whereas, the fractional
representation is limited to numbers between = 1. To convert from an integer to a fractional
number, the integer must be multiplied by a scaling factor so the result will always be
between +1. The representation of integer and fractional numbers is the same if the
numbers are added or subtracted but is different if the numbers are multiplied or divided.
An example of two numbers multiplied together is given in Figure 4-8. The key difference
is that the extra bit in the integer multiplication is used as a duplicate sign bit and as the
least significant bit (LSB) in the fractional multiplication. The advantages of fractional data
representation are as follows:

The MSP (left half) has the same format as the input data.

The LSP (right half) can be rounded into the MSP without shifting or updating the
exponent.

A significant bit is not lost through sign extension.

Conversion to floating-point representation is easier because the industry-standard
floating-point formats use fractional mantissas.

< N BITS >
TWOS COMPLEMENT INTEGER [s | —am-110 [+2(N-1)_1]
TWOS COMPLEMENT FRACTIONAL [s. | -170 [+|_2—(N—1)]

- N BITS >

FRACTIONAL = INTEGER EXCEPT FOR X AND +
Figure 4-7. Integer/Fractional Number Comparison

SIGNED MULTIPLICATION NxN#2N -1 BITS

INTEGER FRACTIONAL
ls | s | ls | Is |
{ SIGNED MULTIPLIER | | SIGNED MULTIPLIER |
[s MsP Lsp | [s- MsP Lsp |
" €—————N—1 PRODUCT——————> ~————— N1 PRODUCT————>
SIGN EXTENSION ZERO FILL
< 2N BITS > < N BITS >

Figure 4-8. Integer/Fractional Multiplication Comparison

4-10 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

Coefficients for most digital filters are derived as fractions by the high-level language
programs used in digital-filter design packages, which implies that the results can be
used without the extensive data conversions that other formats require.

Should integer arithmetic be required in an application, shifting a one or zero, depending
on the sign, into the MSB converts a fraction to an integer.

The data ALU MAC performs rounding of the accumulator register to single precision if
requested in the instruction (the A1 or B1 register is rounded according to the contents of
the AO or BO register). The rounding method used is called round-to-nearest (even) number,
sometimes referred to as convergent rounding. The usual rounding method rounds up any
value above one-half and rounds down any value below one-half. The question arises as
to which way one-half should be rounded. If it is always rounded one way, the results will
eventually be a bias in that direction. Convergent rounding solves the problem by rounding
down if the number is odd (LSB=0) and rounding up if the number is even (LSB=1). Figure
4-9 shows the four cases for rounding a number in the A1 (or B1) register. If scaling is set
in the status register, the resultant number will be rounded as it is put on the data bus.
However, the contents of the register are not scaled.

4.3 DATA ALU PROGRAMMING MODEL

The data ALU features 24-bit input/output data registers that can be concatenated to ac-
commodate 48-bit data and two 56-bit accumulators, which are segmented into three 24-
bit pieces that can be transferred over the buses. Figure 4-10 illustrates how the registers
in the programming model are grouped.

4.4 DATA ALU SUMMARY

The data ALU is optimized for arithmetic operations involving multiply and accumulate

. operations with two separate data spaces. The data ALU, which executes all instructions
in one machine cycle, is not pipelined. The two 24-bit numbers being multiplied can come
from the X registers (X0 or X1) or Y registers (YO or Y1). After multiplication, they are
added (or subtracted) with one of the 56-bit accumulators and can be convergently rounded
to 24 bits. The convergent-rounding forcing function detects the $800000 condition in the
LSP and makes the correction as necessary. The final result is then stored in one of the
accumulators as a valid 56-bit number. The condition code bits are set based on the rounded
output of the logic unit.

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 4-11

CASE I: IF A0 < $800000 {1/2), THEN ROUND DOWN (ADD NOTHING)

BEFORE ROUNDING AFTER ROUNDING
0
A2 Al \ A0 2 A1 A0*
Pox oo XXX0100{01 XXX, ... wof oo XKXO100[000 . ..o 000
55 4847 %2 0 55 4847 %2 0
CASE II: IF A0 > $800000 {1/2), THEN ROUND UP (ADD 170 A1)
BEFORE ROUNDING - AFTER ROUNDING
. 1
2 Al v 7 AD "2 M A0t
[xoc . oxoxpoox L X100 1110XX. ... oof P oo XXX0101{000. 000
55 48 47 2423 0 85 48 47 2423 0
CASE IIl: IF AD = $500000 (1/2), AND THE LSB OF A1=0, THEN.ROUND DOWN (ADD NOTHING)
BEFORE ROUNDING AFTER ROUNDING
0
A2 Al \ 7 A0 A2 A1 A*
[oo XXX010010000 ooof Pocodpooc XXX0100J000 000
55 4847 %23 0 55 4847 %2 0
CASE IV: IF A0 = $800000 (1/2), AND THE LSB =1, THEN ROUND UP (ADD 1T0 A1)
BEFORE ROUNDING AFTER ROUNDING
i
A2 Al §7 AQ A2 Al A0
[oc . oxdoox xox010110000 ... ooo| pocoxdxx X000110]000. ... 000
55 4847 22 0 55 4847 %2 0

*A0 is always clear; performed during RND, MPYR, MACR.

Figure 4-9. Convergent Rounding

4-12 DSP56000/DSP56001 USER'S MANUAL

MOTOROLA

DATA ALU
INPUT REGISTERS
47 X 0 47 Y 0
X1 X0 Y1 Y0
23 023 0 23 023 0

DATA ALU
ACCUMULATOR REGISTERS

55 A 0 55
x| om | Al A0 | [« |82 B1 [B0 |
23 87 02 03 0 B 87 02 02 0

*Read as zero, written as don't care.

Figure 4-10. DSP56000/DSP56001 Programming Model

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 4-13

4-14

DSP56000/DSP56001 USER'S MANUAL

MOTOROLA

SECTION 5
ADDRESS GENERATION UNIT AND ADDRESSING MODES

This section contains three major subsections. The first subsection describes the hardware
architecture of the address generation unit (AGU); the second subsection describes the
programming model. The third subsection describes the addressing modes, illustrating
how the Rn, Nn, and Mn registers work together to form a memory address.

5.1 AGU ARCHITECTURE

The AGU is one of the three execution units on the DSP56000/DSP56001 (see Figure 5-1).
The AGU performs the effective address calculations {using integer arithmetic) necessary
to address data operands in memory and contains the registers used to generate the
addresses. It implements three types of arithmetic, linear, modulo, and reverse-carry, and
operates in parallel with other chip resources to minimize address-generation overhead.
The AGU is divided into two identical halves, each of which has an address arithmetic
logic unit (ALU) and four sets of three registers (see Figure 5-2).

YAB

YAB »EXTERNALl \opress
»| ADDRESS |5
PAB BUS
>0 A v] y SWITCH
X MEMORY | [Y MEMORY
5 BOOTSTRAP | | PROGRAM RAM RAM
<> PES#}E&{ZLS < ROM RAM 256 x 24 256 % 24 BUS 7
32x24 512% 24 wAROM | [SINEROM | |conRoLLer[<=> | PORT A
g, .| HosT, s, scl, (}:_—_:) 256 x 24 256 x 24
‘ *’ ™| PARALLEL 110 l ﬁ ﬁ @
YOB :
PORT C
INTERNAL DATA
/nglln/sogxI BUS SWITEH éL 1 1 I xoB <Y ie > exteRnaL | DATA
' AND BIT I J5 JI5 o8 7~ T] DATA BUS CZD
manipuLaTion K& 0 7~ 508 T SWITCH
— | Ll
4
T PROGRAM | | PROGRAM | | PROGRAM 1
| PROGRAM | | PROGRAM
I ADDRESS <€ DECODE & INTERRUPT ! DATA ALU
| GeNeraTOR | 'cONTROLLER! | CONTROLLER 24 % 24+ 56 § 56-BIT MAC
CLOCK LZZZ 0 CZT) Lo | | TWO S6-BIT ACCUMULATORS
GENERATOR PROGRAM CONTROLLER A f—
T _ ¥ xia vove e —— 16BITS
EXTAL MODA/IRQA
RESET —= 24 BITS

Figure 5-1. DSP56001 Block Diagram

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 5-1

A

}<1L0W ADDRESS ALU >

XAB YAB PAB
A A

HIGH ADDRESS ALU —PI

165 [16 |16
| TRIPLE MULTIPLEXER |

% /)
A |
N RO_| R4 M4 | N4
N ADDRESS Rl | R5 ADDRESS M5 | N5
N2 | M2 ALU R2 | A6 ALU Ms_| N6
N3 | M3 R | R M7 | N7
X A 16 j A A t 16 k-
16 ' 16
\ \ GLOBAL DATA BUS - Y Y

Figure 5-2. AGU Block Diagram

These registers are the address registers (R0-R3 and R4-R7), offset registers (NO-N3 and
N4-N7), and the modifier registers (M0-M3 and M4-M7). The eight Rn, Nn, and Mn reg-
isters are treated as register triplets — e.g., only N2 and M2 can be used to update R2. The
eight triplets .are RO:N0:MO, R1:N1:M1, R2:N2:M2, R3:N3:M3, R4:N4:M4, R5:N5:M5,
R6:N6:M6, and R7:N7:M7.

The two arithmetic units can generate two 16-bit addresses every instruction cycle — one
for any two of the XAB, YAB, or PAB. The AGU can directly address 65,536 locations on
the XAB, 65,536 locations on the YAB, and 65,536 locations on the PAB. The two inde-
pendent address ALUs work with the two data memories to feed the data ALU two operands
in a single cycle..Each operand may be addressed by an Rn, Nn, and Mn triplet.

5.1.1 Address Register Files (Rn)

Each of the two address register files (see Figure 5-2) consists of four 16-bit registers. The
two files contain address registers R0O-R3 and R4-R7, which usually contain addresses
used as pointers to memory. Each register may be read or written by the global data bus
(GDB). When read by the GDB, 16-bit registers are written into the two least significant
bytes of the GBD, and the most significant byte is set to zero. When written from the GBD,
only the two least significant bytes are written, and the most significant byte is truncated.

5-2 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

Each address register can be used as input to its associated address ALU for a register
update calculation. Each register can also be written by the output of its respective address
ALU. One Rn register from the low address ALU and one Rn register from the high address
ALU can be accessed in a single instruction.

5.1.2 Offset Register Files (Nn)

Each of two offset register files, shown in Figure 5-2, consists of four 16-bit registers. The
two files contain offset registers NO-N3 and N4-N7, which contain either offset values
used to update address pointers or data. Each offset register can be read or written by the
GDB.-When read by the GDB, the contents of a register are placed in the two least significant
bytes, and the most significant byte on the GDB is zero extended. When a register is written,
only the least significant 16 bits of the GDB are used; the upper portion is truncated.

5.1.3 Modifier Register Files (Mn)

Each of two modifier register files, shown in Figure 5-2, consists of four 16-bit registers.
The two files contain modifier registers M0-M3 and M4-M7, which specify the type of
arithmetic used during address register update calculations or contain data. Each modifier
register can be read or written by the GDB. When read by the GDB, the contents of a
register are placed in the two least significant bytes, and the most significant byte on the
GDB is zero extended. When a register is written, only the least significant 16 bits of the
GDB are used; the upper portion is truncated. Each modifier register is preset to $FFFF
during a processor reset.

5.1.4 Address ALU

The two address ALUs are identical (see Figure 5-2) in that each contains a 16-bit full adder
(called an offset adder), which can add 1) plus one, 2) minus one, 3) the contents of the
respective offset register N, or 4) the twos complement of N to the contents of the selected
address register. A second full adder (called a modulo adder) adds the summed result of
the first full adder to a modulo value, M or minus M, where M is stored in the respective
modifier register. A third full adder (called a reverse-carry adder) can add 1) plus one, 2)
minus one, 3) the offset N (stored in the respective offset register), or 4) minus N to the
selected address register with the carry propagating in the reverse direction — i.e., from
the most significant bit (MSB) to the least significant bit (LSB). The offset adder and the
reverse-carry adder are in parallel and share common inputs. The only difference between
them is that the carry propagates in opposite directions. Test logic determines which of
the three summed results of the full adders is output.

Each address ALU can update one address register, Rn, from its respective address register
file during one instruction cycle and is capable of performing linear, reverse-carry, and

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 5-3

modulo arithmetic. The contents of the selected modifier register specify the type of arith-
metic to be used in an address register update calculation. The modifier value is decoded
in the address ALU. ‘

The output of the offset adder gives the result of linear arithmetic (e.g., Rn*1; Rn=N) and
is selected as the modulo arithmetic unit output for linear arithmetic addressing modifiers.
The reverse-carry adder performs the required operation for reverse-carry arithmetic and
its result is selected as the address ALU output for reverse-carry addressing modifiers.
Reverse-carry arithmetic is useful for 2K-point fast Fourier transform (FFT) addressing. For
modulo arithmetic, the modulo arithmetic unit will perform the function (Rn=N) modulo
M, where N can be one, minus one, or the contents of the offset register Nn. If the modulo
operation requires wraparound for modulo arithmetic, the summed output of the modulo
adder gives the correct updated address register value; if wraparound is not necessary,
the output of the offset adder gives the correct result.

5.1.5 Address Output Multiplexers

The address output multiplexers (see Figure 5-2) select the source for the XAB, YAB, and
PAB. These multiplexers allow the XAB, YAB, or PAB outputs to originate from R0O-R3 or
R4-R7.

5.2 PROGRAMMING MODEL

The programmer’s view of the AGU is eight sets of three registers {see Figure 5-3). These
registers-can be used as temporary data registers and indirect memory pointers. Automatic
updating is available when using address register indirect addressing. The Rn registers
- can be programmed for linear addressing, modulo addressing, and bit-reverse addressing.

23 16 15 0 23 16 15 . 0 23 16 15 0
* R7 * N7 * M7
* R6 * N6 * M6
* R5 * N5 * M5 UPPER FILE
* R4 L * N4 e M4 I I
* R3 * N3 * M3
* R2 * N2 * M2 LOWER FILE
* R1 * N1 * M1
* RO * NO * Mo
ADDRESS OFFSET MODIFIER
REGISTERS REGISTERS REGISTERS

*¥Written As Don't Care; Read As Zero

Figure 5-3. AGU Programming Model

5-4 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

5.2.1 Address Register Files (R0-R3 and R4-R7)

The eight 16-bit address registers, RO-R7, can contain addresses or general-purpose data.
The 16-bit address in a selected address register is used in the calculation of the effective
address of an operand. When supporting parallel X and Y data memory moves, the address
registers must be thought of as two separate files, RO-R3 and R4-R7. The contents of an
Rn may point directly to data or may be offset. In addition, Rn can be pre-updated or post-
updated according to the addressing mode selected. If an Rn is updated, modifier registers,
Mn, are always used to specify the type of update arithmetic. Offset registers, Nn, are used
for the update-by-offset addressing modes. The address register modification is performed
by one of the two modulo arithmetic units. Most addressing modes modify the selected
address register in a read-modify-write fashion; the address register is read, its contents
are modified by the associated modulo arithmetic unit, and the register is written with the
appropriate output of the modulo arithmetic unit. The form of address register modification
performed by the modulo arithmetic unit is controlled by the contents of the offset and
modifier registers discussed in the following paragraphs. Each address register is preset
to $FFFF during a processor reset.

5.2.2 Offset Register Files (NO-N3 and N4-N7)

The eight 16-bit offset registers, NO-N7, can contain offset values used to increment/
decrement address registers in address register update calculations or can be used for
16-bit general-purpose storage. For example, the contents of an offset register can be used
to step through a table at some rate (e.g., five locations per step for waveform generation),
or the contents can specify the offset into a table or the base of the table for indexed
addressing. Each address register, Rn, has its own offset register, Nn, associated with it.
Each offset register is preset to $FFFF during a processor reset.

5.2.3 Modifier Register Files {M0-~M3 and M4-M7)

The eight 16-bit modifier registers, M0-M7, define the type of address arithmetic to be
performed for addressing mode calculations, or they can be used for general-purpose
storage. The address ALU supports linear, modulo, and reverse-carry arithmetic types for
all address register indirect addressing modes. For modulo arithmetic, the contents of Mn
also specify the modulus. Each address register, Rn, has its own modifier register, Mn,
associated with it. Each modifier register is set to $FFFF on processor reset, which specifies
linear arithmetic as the default type for address register update calculations. Each modifier
register is preset to $FFFF during a processor reset.

5.3 ADDRESSING
The DSP56000/DSP56001 provides three different addressing modes: register direct, ad-

dress register indirect, and special (see Table 5-1). Since the register direct and special
addressing modes do not necessarily use the AGU registers, they are described in SECTION

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 5-5

7 INSTRUCTION SET SUMMARY. The address register indirect addressing modes use the
registers in the AGU and are described in the following paragraphs.

Table 5-1. Address Register Indirect Summary

Address Register Indirect l“’,f::i:r: Operand Reference Asssen:bler

s|c|D|A|P|[X|Y]|L|xy yntax
No Update No X|IX|X|X]|X]| (Rn}
Postincrement by 1 Yes X|x|x|x]x {Rn)+
Postdecrement by 1 Yes X|X|X{|X|X]| (Rn)-
Postincrement by Offset Nn Yes XXX X|X| {Rn)+Nn
Postdecrement by Offset Nn Yes XX X{X {Rn)—Nn
Indexed by Offset Nn Yes X[X|X|X (Rn+Nn)
Predecrement by 1 Yes XXX {X —(Rn)
NOTE:

S=_System Stack Reference
C=Program Controller Register Reference
D=Data ALU Register Reference
A=Address ALU Register Reference
P=Program Memory Reference
X=X Memory Reference
Y=Y Memory Reference
L=L Memory Reference

XY =XY Memory Reference

5.3.1 Address Register Indirect Modes

When an address register is used to point to a memory location, the addressing mode is
called address register indirect (see Table 5-1). The term indirect is used because the register
contents are not the operand itself, but rather the address of the operand. These addressing
modes specify that an operand is in memory and specify the effective address of that
operand.

A portion of the data bus movement field in the instruction specifies the memory space
to be referenced. The contents of specific AGU registers that determine the effective address
are modified by arithmetic operations performed in the AGU. The type of address arithmetic
used is specified by the address modifier register, Mn The offset register, Nn, is only used
when the update specifies an offset. , »

Not all possible combinations are available, e.g., +(Rn). The 24-bit instruction word size
of the DSP56000/DSP56001 is not large enough to allow a completely orthogonal instruction
set for all instructions used by the processor.

An example and description of each mode is-given in the following paragraphs. SECTION

7 INSTRUCTION SET SUMMARY and APPENDIX A INSTRUCTION SET DETAILS give a
complete description of the instruction syntax used in these examples. In particular, XY:

5-6 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

memory references refer to instructions in which an operand in X memory and an operand
in Y memory are referenced in the same instruction.

5.3.1.1 NO UPDATE. The address of the operand is in the address register, Rn {see Table
5-1). The contents of the Rn register are unchanged by executing the instruction. Figure
5-4 shows a MOVE instruction using address register indirect addressing with no update.
This mode can be used for making XY: memory references.

EXAMPLE: MOVE A1,X:(R0}

BEFORE EXECUTION AFTER EXECUTION
A2 Al A0 A2 Al A0
55 48 47 % 5 0 55 48 47 2 2 0
[o1]234as567]s9aBco| [oi1][234s567[ssaBcoD
7 0 02 0 7 03 S 0
X MEMORY ‘ X MEMORY
X] 0

?
|

$1000) X X X X X X = $1000f $ 234567 [«

15 0 T 0
ro| $1000 Ro| 1000

15 0 15 0
No| XXxx No| XXXX

15 0 15 0
Mo| SFFFF Mo| SFFFF

Assembler Syntax: (Rn)

Memory Spaces: P:, X:, Y:, XY:, L:

Additional Instruction Execution Time (Clocks): 0
Additional Effective Address Words: 0

Figure 5-4. Address Register Indirect — No Update

MOTOROLA DSP56000/DSP56001 USER'S MANUAL ‘ 5-7

5.3.1.2 POSTINCREMENT BY 1. The address of the operand is in the address register, Rn
(see Table 5-1 and Figure 5-5). After the operand address is used, it is incremented by 1
and stored in the same address register. This mode can be used for making XY: memory
references and for modifying the contents of Rn without an associated data move.

5.3.1.3 POSTDECREMENT BY 1. The address. of the operand is in the address register,
Rn (see Table 5-1 and Figure 5-6). After the operand address is used, it is decremented by
1 and stored in the same address register. This mode can be used for making XY: memory
references and for modifying the contents of Rn without an associated data move.

EXAMPLE: MOVE B0,Y:(R1) +

BEFORE EXECUTION AFTER EXECUTION
B2 81 B0 B2 81 80
55 48 47 % 23 0 55 48 47 % B 0
[Afr]esa321]Freocenal [AaF[654321[FeEDcasBaA
7 023 023 0 7 023 0 23 0
¥ MEMORY ¥ MEMORY
23 0 3 0
2501 X X X X X X 01| X X X X X X |
$2500f X X X X X X | s500 SFEDCBA

|
|

R1 $2500 R1 $2501
N1 XXXX N1 XXXX

i M| SFFFF

& = &
o o o
o wn o
o =] o

Assembler Syntax: (Rn)+

Memory Spaces: P:, X:, Y:, XY:, L:

Additional Instruction Execution Time (Clocks): 0
Additional Effective Address Words: 0

Figure 5-5. Address Register Indirect — Postincrement

5-8 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

EXAMPLE: MOVE Y0,Y:(R3) -

BEFORE EXECUTION AFTER EXECUTION
v Yo - 0 Y0

47 u 5 0 a7 B 0

{1231 23[45645%|] 123123[456456
2 02 0 23 B)

¥ MEMORY Y MEMORY
3 0 23 0
/_’

———

4736 X X X X X X [« $4735] 4 5 6 4 5 6

$413| X X X X X X $413] X X X X X X [
’_\/ ’\—/
15 0

N3 XXXX N3 XXXX

15 0
15 0
M3| SFFFF M3| SFFFF

I o &
o o o

Assembler Syntax: (Rn}—

Memory Spaces: P:, X:, Y:, XY:, L:

Additional Instruction Execution Time (Clocks): 0
Additional Effective Address Words: 0

Figure 5-6. Address Register Indirect — Postdecrement

5.3.1.4 POSTINCREMENT BY OFFSET Nn. The address of the operand is in the address
register, Rn-(see Table 5-1 and Figure 5-7). After the operand address is used, it is incre-
mented by the contents of the Nn register and stored in the same address register. The
contents of the Nn register are unchanged. This mode can be used for making XY: memory
references and for modifying the contents of Rn without an associated data move.

5.3.1.5 POSTDECREMENT BY OFFSET Nn. The address of the operand is in the address
register, Rn (see Table 5-1 and Figure 5-8). After the operand address is used, it is decre-
mented by the contents of the Nn register and stored in the same address register. The

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 5-9

EXAMPLE: MOVE X1,X:(R2) + N2

BEFORE EXECUTION AFTER EXECUTION
Xi X0 X1 X0
7 u B 0 - a7 2 3 0
[AsB8acefooooon [AsB84csefooooon
23 02 0 23 02 0
X MEMORY X MEMORY
3 0 3
’-_/ [~——
304 X X X X X X 30| XXX XXX |
S0 X XX XXX | sa0| sAsBacs
L |
15 0

R2 $3200 R2 $3204
15 0
N2 $0004) N2 $0004
15 0

M2| SFFFF M2| SFFFF

& & &>
o o o

Assembler Syntax: (Rn)+ Nn

Memory Spaces: P:, X:, Y:, XY:, L:

Additional Instruction Execution Time (Clocks): 0
Additional Effective Address Words: 0

Figure 5-7. Address Register Indirect — Postincrement by Offset Nn

contents of the Nn register are unchanged. This mode cannot be used for making XY:
memory references, but it can be used to modify the contents of Rn without an associated
data move.

5.3.1.6 INDEXED BY OFFSET Nn. The address of the operand is the sum of the contents
of the address register, Rn, and the contents of the address offset register, Nn (see Table
5-1 and Figure 5-9). The contents of the Rn and Nn registers are unchanged. This addressing
mode, which requires an extra instruction cycle, cannot be used for making XY: memory
references. ‘ '

5-10 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

EXAMPLE: MOVE X:(R4)—N4,A0

BEFORE EXECUTION AFTER EXECUTION
A2 Al A0 A2 Al A0
55 48 47 u B 0 55 48 47 % 2 0
[or[7 a1 0s5a]l3raeso] [or][7410s5al505050
7 0n® 02 0 7 0m® 023 0
X MEMORY X MEMORY
23 0 23 0
r—-\/‘ rf—_’_
s $505050 | o] $505050
s03[X X X X X X s [X X X X X X e
— —

Ra| s7706 R4| $7703
Na| $0003 N4| $0003
Ma| SFFFF ' M4| SFFFF

o @ >
o o o
& & &
o o o

Assembler Syntax: (Rn) —Nn

Memory Spaces: P:, X:, Y:, L:

Additional Instruction Execution Time (Clocks): 0
Additional Effective Address Words: 0

Figure 5-8. Address Register Indirect — Postdecrement by Offset Nn

5.3.1.7 PREDECREMENT BY 1. The address of the operand is the contents of the address
register, Rn, decremented by 1 before the operand address is used (see Table 5-1 and
Figure 5-10). The contents of Rn are decremented and stored in the same address register.
This addressing mode requires an extra instruction cycle. This mode cannot be used for
making XY: memory references, nor can it be used for modifying the contents of Rn without
an associated data move.

5.3.2 Address Modifier Types

The DSP56000/DSP56001 address ALU supports linear, modulo, and reverse-carry arith-
metic types for all address register indirect modes. These arithmetic types easily allow the

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 5-11

EXAMPLE: MOVE Y1,X:(R6 + N6)

BEFORE EXECUTION AFTER EXECUTION
Y Yo Y1 Yo
a7 u B 0 47 u 23 0
[621009[BA4cC 22 6§ 21 0009 |BASC 22
2 023 0 23 023 0
X MEMORY X MEMORY
0 3 0
—

$6004] X X X X X X r—->$l5004k $621008

$60001 X X X X X X $6000f X X X X X X

|
|

w[_sm ro[_soom

N6 $0004 N6 $0004
15 0

&
o
A4

o & @
o o o

Assembler Syntax: (Rn+ Nn)

Memory Spaces: P:, X:, Y:, L:

Additional Instruction Execution Time (Clocks): 2
Additional Effective Address Words: 0

Figure 5-9. Address Register Indirect — Indexed by Offset Nn

creation of data structures in memory for FIFOs (queues), delay lines, circular buffers,
stacks, and bit-reversed FFT buffers. Data is manipulated by updating address registers
{pointers) rather than moving large blocks of data. The contents of the address modifier
register, Mn, define the type of arithmetic to be performed for addressing mode calcula-
tions; for modulo arithmetic, the contents of Mn also specify the modulus. All address
register indirect modes can be used with any address modifier. Each address register, Rn,
has its own modifier register, Mn, associated with it.

5.3.2.1 LINEAR MODIFIER (Mn =$FFFF). Address modification is performed using normal
16-bit linear (modulo 65,536) arithmetic (see Table 5-2). A 16-bit offset, Nn, and +1 or —1

5-12 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

EXAMPLE: MOVE X: - (R5),B1

BEFORE EXECUTION AFTER EXECUTION
B2 B1 B0 B2 B1 B0
55 48 47 24 23 0 55 48 47 2423 0
I3BIBBZDU4 A554C[]| L3B|123456 AS554¢C0
7 0 23 0 23 0 7 023 023 0
X MEMORY X MEMORY
23 0 23
’_—-/‘ [~——
$3007| $ABCDEF |«) $3007) SABCDEF
$3006| $123456 $3006| $123456 [€—
N ’-\’J
15 0
RS $3007 R5 $3006

15 0

ns[xx s xxx
. 15 0

ms| serre Ms| seeF

o o [z
o o o

Assembler Syntax: —({Rn)

Memory Spaces: P:, X:, Y:, L:

Additional Instruction Execution Time (Clocks): 2
Additional Effective Address Words: 0

Figure 5-10. Address Register Indirect — Predecrement

can be used in the address calculations. The range of values can be considered as signed
(Nn from -32,768 to +32,767) or unsigned (Nn from 0 to +65,535) since there is no
arithmetic difference between these two data representations. Addresses are normally
considered unsigned, and data is normally considered signed.

5.3.2.2 MODULO MODIFIER (Mn=MODULUS -1). The address modification is per-
formed modulo M, where M ranges from 2 to + 32,768 (see Table 5-3). Modulo M arithmetic
causes the address register value to remain within an address range of size M, defined by
a lower and upper address boundary (see Figure 5-11). The value m=M-1 is stored in
the modifier register, Mn. The lower boundary (base address) value must have zeros in
the k LSBs, where 2k=M, and therefore must be a multiple of 2K. The upper boundary is

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 5-13

Table 5-2. Linear Address Modifiers

Modifier Mn Addressing Mode
Value Arithmetic
0 Reverse Carry (Bit Reverse)
1 Modulo 2
2 Modulo 3
Modulo (Mn+1)
32766 Modulo 32767
32767 Modulo 32768
: Reserved
65535 Linear (Modulo 65536)

the lower boundary plus the modulo size minus one (base address plus M—1). Since M=2k,
once M is chosen, a sequential series of memory blocks (each of length 2K) is created
where these circular buffers can be located. If M<2k, there will be a space between se-
quential circular buffers of {2k)—M. For example, to create a circular buffer of 21 stages,
M is 21, and the lower address boundary must have its five LSBs equal to zero (2k=21,
thus k=5). The Mn register is loaded with the value 20. The lower boundary may be chosen
as 0, 32, 64, 96, 128, 160, etc. The upper boundary of the buffer is then the lower boundary
plus 21. There will be an unused space of 11 memory locations between the upper address
and next usable lower address. The address pointer’is not required to start at the lower
address boundary or to end on the upper address boundary; it can initially point anywhere
within the defined modulo address range. Neither the lower nor the upper boundary of
the modulo region is stored; only the size of the modulo region is stored in Mn. The
boundaries are determined by the contents of Rn. Assuming the (Rn)+ indirect addressing
mode, if the address register pointer increments past the upper boundary of the buffer

UPPER BOUNDARY

ADDRESS

POINTER M=MODULUS

LOWER BOUNDARY

Figure 5-11. Circular Buffer

5-14 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

(base address plus M— 1), it will wrap around through the base address (lower boundary).
Alternatively, assuming the (Rn)— indirect addressing mode, if the address decrements
past the lower boundary (base address), it will wrap around through the base address plus
M —1 (upper boundary).

If an offset, Nn, is used in the address calculations, the 16-bit absolute value, |Nnf, must
be less than or equal to M for proper modulo addressing. If Nn>M, the result is data
dependent and unpredictable, except for the special case where Nn=P x 2K, a multiple of
the block size where P is a positive integer. For this special case, when using the (Rn) + Nn
addressing mode, the pointer, Rn, will jump linearly to the same relative address in a new
buffer, which is P blocks forward in memory (see Figure 5-12). Similarly, for (Rn)—Nn, the
pointer will jump P blocks backward in memory. This technique is useful in sequentially
processing multiple tables or N-dimensional arrays. The range of values for Nn is — 32,768
to +32,767. The modulo arithmetic unit will automatically wrap around the address pointer
by the required amount. This type address modification is useful for creating circular buffers
for FIFOs (queues), delay lines, and sample buffers up to 32,768 words long as well as for
decimation, interpolation, and waveform generation. The special case of (Rn)=Nn mod M
with Nn=P x 2K is useful for performing the same algorithm on multiple blocks of data in
memory — e.g., parallel infinite impulse response (lIR) filtering.

(Rn)=Nn MOD M
WHERE Nn=2K (i.e, P=1)

Figure 5-12. Linear Addressing with a Modulo Modifier

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 5-15

An example of address register indirect modulo addressing is shown in Figure 5-13. Starting
at location 64, a circular buffer of 21 stages is created. The addresses generated are offset
by 15 locations. The lower boundary = L x (2K) where 2k=21; therefore, k=5 and the lower
address boundary must be a multiple of 32. The lower boundary may be chosen as 0, 32,
64, 96, 128, 160, etc. For this example, L is arbitrarily chosen to be 2, making the lower
boundary 64. The upper boundary of the buffer is then 84 (the lower boundary plus 20
{M=1)). The Mn register is loaded with the value 20 (M — 1). The offset register is arbitrarily
chosen to be 15 (Nn<M). The address pointer is not required to start at the lower address
boundary and can begin anywhere within the defined modulo address range — i.e., within
the lower boundary +{2k) address region. The address pointer, Rn, is arbitrarily chosen
to be 75 in this example. When R2 is postincremented by the offset by the MOVE instruction,
instead of pointing to 90 (as it would in the linear mode) it wraps around to 69. f the
address register pointer increments past the upper boundary of the buffer (base address
plus M —1), it will wrap around to the base address. If the address decrements past the
lower boundary (base address), it will wrap around to the base address plus M —1.

If Rn is outside the valid modulo buffer range and an operation occurs that causes Rn to
be updated, the contents of Rn will be updated according to modulo arithmetic rules. For
example, a MOVE B0,X:(R0)+ NO instruction (where R0=6, M0=5, and NO=0) would ap-
parently leave RO unchanged since NO =0. However, since R0 is above the upper boundary,
the AGU calculates RO+ NO—MO0—1 for the new contents of RO and sets RO=0.

EXAMPLE: MOVE X0.X:(R2) +N

LET:
M2 00..... 0010100| MODULUS =21

N2 00..... 0001111 OFFSET =15

R2 00..... 1001011 POINTER=75

P RLLLLLLLTY

4
n - (84)

/

1+

\
\,

(15) N '
R2 by bt < XD BUS

0..010 UUOUUL (64) I_;(O__]
—— N\ |

k=5

Figure 5-13. Modulo Modifier Example

5-16 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

Table 5-3. Modulo Address Modifiers

Modifier Mn Addressing Mode
Value Arithmetic
0 Reverse Carry (Bit Reverse)
1 Modulo 2
2 Modulo 3
Modulo (Mn+1)
32766 Modulo 32767
32767 Modulo 32768
: Reserved
65535 Linear (Modulo 65536)

The MOVE instruction in Figure 5-13 takes the contents of the X0 register and moves it to
a location in the X memory pointed to by (R2), and then (R2) is updated modulo 21. The
new value of R2 is not 90 (75+ 15), which would be the case if linear arithmetic had been
used, but rather is 69 since modulo arithmetic was used.

5.3.2.3 REVERSE-CARRY MODIFIER (Mn=$0000). Reverse carry is selected by setting the
modifier register to zero (see Table 5-4). The address modification is performed in hardware
by propagating the carry in the reverse direction — i.e., from the MSB to the LSB. Reverse
carry is equivalent to bit reversing the contents of Rn (i.e., redefining the MSB as the LSB,
the next MSB as bit 1, etc.) and the offset value, Nn, adding normally, and then bit reversing
the result. If the + Nn addressing mode is used with this address modifier and Nn contains
the value 2(k—1) (a power of two), this addressing modifier is equivalent to bit reversing
the k LSBs of Rn, incrementing Rn by 1, and bit reversing the k LSBs of Rn again. This

Table 5-4. Reverse-Carry Address Modifiers

Modifier Mn Addressing Mode
Value Arithmetic
0 Reverse Carry (Bit Reverse)
. 1 Modulo 2
2 Modulo 3
Modulo (Mn + 1)
32766 " | Modulo 32767
32767 Modulo 32768
: Reserved
65535 Linear (Modulo 65536)

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 5-17

address modification is useful for addressing the twiddle factors in 2k-point FFT addressing
and to unscramble 2k-point FFT data. The range of values for Nnis 0 to +32K (i.e., Nn=215),
which allows bit-reverse addressing for FFTs up to 65,536 points.

To make bit-reverse addressing work correctly for a 2k point FFT, the following procedures
must be used:

1. Set Mn=0; this selects reverse-carry arithmetic.
2. Set Nn=2(k—1),

3. Set Rn between the lower boundary and upper boundary in the buffer memory. The
lower boundary is L x (2K), where L is an arbitrary whole number. This boundary gives
a 16-bit binary number “xx ... xx00...00"”, where xx...xx=Land 00...00 equals
k zeros. The upper boundary is L x (2K) + ((2k) - 1). This boundary gives a 16-bit binary
number “xx...xx11...11", where xx...xx=L and 11... 11 equals k ones.

4. Use the (Rn)+ Nn addressing mode.

As an example, consider a 1024-point FFT with real data stored in the X memory and
imaginary data stored in the Y memory. Since 1,024=210, k=10. The modifier register
{Mn) is zero to select bit-reverse addressing. Offset register (Nn) contains the value 512
(2(k=1)), and the pointer register (Rn) contains 3,072 (L x (2k) =3 x {210)), which is the lower
boundary of the memory buffer that holds the results of the FFT. The upper boundary is
4,095 (lower boundary + (2K)-1=3,072+1,023).

Postincrementing by + N generates the address sequence (0, 512, 256, 768, 128, 640, . . .),
which is added to the lower boundary. This sequence (0, 512, etc.) is the scrambled FFT
data order for sequential frequency points from 0 to 2 x pi. Table 5-5 shows the successive
contents of Rn when using (Rn)+ Nn updates.

Table 5-5. Bit-Reverse Addressing
Sequence Example

Rn Contents Lo?vf::(:;;z?ary
3072 0
3584 512
3328 256
3840 768
3200 128
3712 640

The reverse-carry modifier only works when the base address of the FFT data buffer is a
multiple of 2K, such as 1,024, 2,048, 3,072, etc. The use of addressing modes other than
postincrement by +Nn is possible but may not provide a useful result.

5-18 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

The term bit reverse with respect to reverse-carry arithmetic is descriptive. The lower
boundary that must be used for the bit-reverse address scheme to work is Lx (2K). In the
previous example shown in Table 5-5, L=3 and k=10. The first address used is the lower
boundary {3072); the calculation of the next address is shown in Figure 5-14. The k LSBs
of the current contents of Rn (3,072) are swapped: ‘

Bits 0 and 9 are swapped.

Bits 1 and 8 are swapped.

Bits 2 and 7 are swapped.

Bits 3 and 6 are swapped.

Bits 4 and 5 are swapped.

The result is incremented (3,073), and then the k LSBs are swapped again:
Bits 0 and 9 are swapped.
Bits 1 and 8 are swapped.
Bits 2 and 7 are swapped.
Bits 3 and 6 are swapped.
Bits 4 and 5 are swapped.

The result is Rn eqUaIs 3,584.

5.3.2.4 Address-Modifier-Type Encoding Summary

Table 5-6 is a summary of the address modifier types discussed in the previous paragraphs.
There are three modifier types:

Linear Addressing

Reverse-Carry Addressing

Modulo Addressing

EACH UPDATE, (Rn}+ Nn, IS EQUIVALENT TO:

L k BITS
N
1. BIT REVERSING: Rn = 000011 0000000000 = 3072
0000000000
2. INCREMENT Rn BY 1: Rn=000011 0000000000

—— 1
000011 0000000001

3. BIT REVERSING AGAIN: Rn=000011 0000000001

___foooooto
000011 1000000000 = 3584

Figure 5-14. Bit-Reverse Address Calculation Example

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 5-19

Table 5-6. Address-Modifier-Type Encoding Summary

Modifier Mn Rn Update Arithmetic
0 Reverse-Carry (Bit-Reverse) Addressing
1 Modulo 2
2 Modulo 3

Modulo (Mn+ 1) Addressing

32767 Modulo 32768
: Reserved
65535 Linear Addressing (Modulo 65536)

Bit-reverse addressing is useful for 2k-point FFT addressing. Modulo addressing is useful
for creating circular buffers for FIFOs (queues), delay lines, and sample buffers up to 32,768
words long. The linear addressing is useful for general-purpose addressing. There is a
reserved set of modifier values (from 32,768 to 65,534) that should not be used.

Figure 5-15 gives examples of the three addressing modifiers using 8-bit registers for
simplification (all AGU registers in the DSP56000/DSP56001 are 16 bit). The addressing
mode used in the example, postincrement by offset Nn, adds the contents of the offset
register to the contents of the address register after the address register is accessed. The
results of the three examples are as follows:

The linear address modifier addresses every fifth location since the offset register con-
tains $5.

Using the bit-reverse address modifier causes the postincrement by offset Nn addressing
mode to use the address register, bit reverse the four LSBs, increment by .1, and bit
reverse the four LSBs again.

The modulo address modifier has a lower boundary at a predetermined location, and
the modulo number plus the lower boundary establishes the upper boundary. This
boundary creates a circular buffer so that, if the address register is pointing within the

boundaries, addressing past a boundary causes a circular wraparound to the other
boundary.

5-20 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

LINEAR ADDRESS MODIFIER
> 90
MO =255=1111 1111 FOR LINEAR ADDRESSING WITH R0 AN
\,
ORIGINAL REGISTERS: NO=5, R0=75=0100 1011 \ %
\
POSTINCREMENT BY OFFSET NO:R0=80 = 0101 0000 N 8
\
POSTINCREMENT BY OFFSET NO:R0 =85 =0101 0101 RO— 15
POSTINCREMENT BY OFFSET NO:RO=90 =0101 1010
UPPER
MODULQ ADDRESS MODIFIER BOUNDARY,
; r—‘\ 83
MO=19= 1 20 ADDRESSING WITH R0 N
0=19=0001 0011 FOR MODULO 20 ADDRESSING I \ %
\,
ORIGINAL REGISTERS: NO=5, R0=75=0100 1011 \.
l RO—> 75
POSTINCREMENT BY OFFSET NO:R0 =80 =0101 0000 |
: —> 70
POSTINCREMENT BY OFFSET NO:RO =65 =0100 0001 | \
L—-— &
POSTINCREMENT BY OFFSET NO:R0=70 =0100 0110 o
LOWER
BOUNDARY
REVERSE-CARRY ADDRESS MODIFIER
MO =0=0000 0000 FOR REVERSE-CARRY ADDRESSING WITH R0 \ [l
: \
ORIGINAL REGISTERS: NO=8, R0=64=0100 0000 \‘V n
"\
POSTINCREMENT BY OFFSET NO:R0O=72 =0100 1000 L’c\P 68
A\
POSTINCREMENT BY OFFSET NO:R0 =68 =0100 0100 RO— 64
POSTINCREMENT BY GFFSET NO:RO=176 =0100 1100

Figure 5-15. Address Modifier Summary

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 5-21

5-22 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

SECTION 6
PROGRAM CONTROLLER

This section describes the hardware of the program controller and concludes with a de-
scription of the programming model. The instruction pipeline description is also included
since understanding the pipeline is particularly important in understanding the DSP56000/
DSP56001. 1

6.1 OVERVIEW

The program controller (one of the three concurrent execution units in the central processor)
performs program address generation (instruction prefetch), instruction decoding, hard-
ware DO loop control, and exception processing (see Figure 6-1). The programmer views
the program controller as consisting of six registers and a hardware system stack (SS) as
shown in Figure 6-2. In addition to the standard program flow-control resources, such as
a program counter (PC), complete status register (SR), and SS, the program controller
features registers (loop address (LA) and loop counter (LC)) dedicated to supporting the
hardware DO loop instruction. :

YAB
EXTERNAL
s
PORT ADDRESS ﬁ::] ADDRESS ADDRESS
BoR | GENERATION A es
vt UNIT >4 ¥ y y SWITCH
v X MEMORY] [Y MEMORY
: BOOTSTRAP | [PROGRAM RAM RAM
%> PEgINP-r?:F:E\LS < ROM RAM 256 % 24 256 % 24 s 17
- 3224 512x24 | [ROM | [SINE ROM <> | PORT A
<3| HOST. S8, 801 | 2620 || 2sexoa | [ONTROLLER
K LLPARALLEL 10 | ﬁ ﬁ @
ORT C : YOB
:Nn/on INTERNAL DATA K= —>) DATA
ssI, sci | BUS SWITCH Lt Il I [__xoe_ < 4B K] externaL o
) AND BIT I NG <% poB 7~ T DATA BUS
€ SWITCH
MANIPULATION T 7S — -
UNIT ‘ ‘
! b
e —
i PROGRAM %% - DATA ALU
3} ADDRESS 2424+ 56 § 56-BIT MAC
TLOCK GENERATOR TWO 56-BIT ACCUMULATORS
GENERATOR :
T ! XTAL ‘ ! wope/AaE —_— 1§ BITS
EXTAL MODAARGA |
RESET c—= 24 BITS

Figure 6-1. DSP56001 Block Diagram

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 6-1

4 R
CLOCK ——>»]
. PC .
INTERRUPTS —>
LA
T 32x16
STACK
CONTROL <>} s
OMR | SR
/
¢ 24 2
GLOBAL DATA BUS

Figure 6-2. DSP56000/DSP56001 Program Controller

The SS is a 15-level by 32-bit separate internal memory used to store the PC and SR during
subroutine calls and long interrupts. The SS will also store the LC and LA registers in
addition to the PC and SR registers for program looping. Each location in the SS is
addressable as 16-bit registers, system stack high (SSH), and system stack low (SSL), which
are pointed to by the stack pointer (SP). Thus, SS management is under software control.

All registers are read/write to facilitate system debugging. Although none of the program
controller registers are 24 bits, they are read or written over 24-bit buses. When they are
read, the least significant bits (LSBs) are significant, and the most significant bits (MSBs)
are zeroed as appropriate. When they are written, only the appropriate LSBs are significant,
and the MSBs are written as don’t care. The program controller implements a three-stage
(prefetch, decode, execute) pipeline and controls the five processing states of the DSP56000/
DSP56001: normal, exception, reset, wait, and stop.

6.2 PROGRAM CONTROLLER ARCHITECTURE

The program controller consists of three hardware blocks: the program decode controller
(PDC), the program address generator (PAG) and the program interrupt controller (PIC)
(see Figure 6-1).

6.2.1 Program Decode Controller

The PDC contains the program logic array decoders, the register address bus generator,
the loop state machine, the repeat state machine, the condition code generator, the interrupt

6-2 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

state machine, the instruction latch, and the backup instruction latch. The PDC decodes
the 24-bit instruction loaded into the instruction latch and generates all signals necessary
for pipeline control. The backup instruction latch stores a duplicate of the prefetched in-
struction to optimize execution of the repeat (REP) and jump (JMP) instructions.

6.2.2 Program Address Generator

The PAG contains the PC, the SP, the SS, the operating mode register (OMR), the SR, the
LC register, and the LA register. Loops, which are frequent constructs in digital signal
processing (DSP) algorithms, are supported by dedicated hardware on the DSP56000/
DSP56001. Executing a DO instruction loads the LC register with the number of times the
loop should be executed, loads the LA register with the address of the last instruction word
in the loop (fetched during one loop pass), and asserts the loop flag in the SR. Executing
the DO instruction also causes the contents of the LA, LC, and SR to be stacked prior to
the execution of the DO instruction, thereby supporting nesting of DO loops. Under control
of the loop state machine, the address of the first instruction in the loop is also stacked
so the loop can be repeated with no overhead. While the loop flag in the SR is asserted,
the loop state machine will compare the PC contents to the contents of the LA to determine
if the last instruction word in the loop was fetched. If the last word was fetched, the LC
contents are tested for one. If LC is not equal to one, then it is decremented, and the SS
is read to update the PC with the address of the first instruction in the loop, effectively
executing an automatic branch. If the LC is equal to one, then the LC, LA, and the loop flag
in the SR are restored with the stack contents, while instruction fetches continue at the
incremented PC value (LA+1).

Block data moves can be accomplished using the repeat feature. The REP instruction loads
the LC with the number of times the next instruction is to be repeated. Since the instruction
to be repeated is only fetched once, throughput is increased by reducing external bus
contention. However, REP instructions are not interruptable since they are fetched only
once. A single-instruction DO loop can be used in place of an REP if interrupts must be
allowed.

6.2.3 Program Interrupt Controller

The PIC receives all interrupt requests, arbitrates among all of them each cycle, and gen-
erates the interrupt vector address. There are four external and 16 internal interrupt sources
that may generate interrupts.

The interrupts are organized in a flexible priority structure. Each interrupt has associated
with it an interrupt priority level (IPL) that can be from zero to three. Levels O (lowest level),
1, and 2 are maskable. Level 3 is the highest IPL and is not maskable. Two interrupt mask
bits in the.SR reflect the current processor IPL and indicate the level needed for an interrupt
source to interrupt the processor. Interrupts are inhibited for all IPLs less than the current
processor priority. Level 3 interrupts can always interrupt the processor. All interrupt sources

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 6-3

and their IPLs are listed in Table 6-1. Each interrupt source is vectored {one of 32 vectors)
to a separate, fixed, two-word service routine located in the lowest 64 words of program
memory. If some of this space is not used, it may be used for program storage.

Upon entering the exception processing state, the current instruction in decode will execute
normally, unless it is the first word of a two-word instruction, in which case it will be
aborted and refetched at the completion of exception processing. The next two fetch
addresses are supplied by the PIC. During these fetches, the PC is not updated. The PIC

Table 6-1. Interrupt Sources

Interrupt Starting Address IPL Interrupt Source
P:$0000 or P:$E000 3 Hardware RESET (External)
P:$0002 3 Stack Error
P:$0004 3 Trace
P:$0006 ' 3 SWI {Software Interrupt)
P:$0008 0-2 |IRQA (External)
P:$000A 0-2 |TRQB (External)
P:$000C 0-2 | SSI Receive Data
P:$000E 0-2 SSI Receive Data with Exception Status
P:50010 0-2 | SSI Transmit Data
P:$0012 0-2 SSI Transmit Data with Exception Status
P:$0014 0-2 SCI Receive Data
P:$0016 0-2 SCI Receive Data with Exception Status
P:$0018 0-2 SCI Transmit Data
P:$001A 0-2 | SCl Idle Line
P:$001C 0-2 | SCI Timer
P:$001E 3 NMI — Reserved for Hardware Development (External)
P:$0020 0-2 Host Receive Data
P:$0022 0-2 Host Transmit Data
P:$0024 0-2 |Host Command (Default)
P:$0026 0-2 Available for Host Command
P:$0028 0-2 Available for Host Command
P:$002A - 0-2 Available for Host Command
P:$002C 0-2 Available for Host Command
P:$002E 0-2 Available for Host Command
P:$0030 0-2 Available for Host Command
P:$0032 0-2 Available for Host Command
P:$0034 0-2 Available for Host Command
P:$0036 ' 0-2 Available for Host Command
P:$0038 0-2 Available for Host Command
P:$003A 0-2 |Available for Host Command
P:$003C 0-2 Available for Host Command
P:$003E 0-2 ||Megal instruction _

6-4 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

generates an interrupt instruction fetch address, which points to the first instruction word
of a two-word fast-interrupt routine. All interrupts begin as fast interrupts (see Figure 6-
3(a)). During fast interrupt servicing, the two instruction words at the interrupt vector
addresses are jammed into the instruction stream without any overhead or stack usage.
If one of the two words is a jump to subroutine (JSR), the fast interrupt routine becomes
a long interrupt routine (see Figure 6-3(b)). The long interrupt service is the traditional
context switch in which the stack is used for saving the status and return address. Sub-
routines and interrupts can be nested using the 15-level stack. The stack can be extended
in memory by using software to access the SSH and SSL registers. The exception proc-
essing state is described in more detail in SECTION 8 PROCESSING STATES.

Two external interrupt request inputs, IRQA and IRQB, can be defined as either level
sensitive or negative edge triggered. One other external interrupt source is available. The
nonmaskable interrupt (NMI) is edge sensitive and is generated on the first transition to

FAST INTERRUPT SERVICE ROUTINE
MAIN PROGRAM

" 50100 — $S1 RECEIVE DATA
$0101 MACR | INTERRUPT l
30102 MOVE - RECUGN|ZED
$0103 MAC - $000C 'MOVEP
S REP $000D XXXXXX
el MAC IMPLICIT RETURN
$0106 — FROM INTERRUPT

(a) DSP56000/DSP56001 Fast Interrupt

LONG INTERRUPT SERVICE ROUTINE

MAIN PROGRAM SSI RECEIVE DATA
WITH EXCEPTION STATUS

$0100 —
$0101 MACR | INTERRUPT ‘L
MOVE! RECOGNIZED . . JSR INSTRUCTION

$0102 | E $000E JSR FORMS LONG
$0103 MAC $000F $0300 INTERRUPT SERVICE
$0104 REP v
$0105 MAC $0300 —
$0106 — $0301 DO

EXPLICIT RETURN $0303 MOVE

FROM INTERRUPT

$0304 RTI

(b) DSP56000/DSP56001 Long Interrupt

Figure 6-3. Fast and Long Interrupt Examples

MOTOROLA DSP56000/DSP56001 USER'S MANUAL ' 6-5

10 V on the TRQOB pin after the last time that the NMI interrupt was serviced or the chip
was reset. The NMI is a priority level 3 interrupt and cannot be masked. Only RESET and
illegal instruction have higher priority than NMI. NMl is reserved for hardware development
and should not be used as a general-purpose interrupt pin. Continued use of this interrupt
can cause damage to the chip (see the DSP56001 Advance Information Data Sheet (ADI1290)).
NMI has been provided strictly as an aid to the developer. The hardware reset address
vector may point to internal (P:$0000) or external (P:$E000) program memory, determined
by the value of the MODA and MODB pins when the RESET pin is deasserted.

The NMI, trace, and software interrupt (SWI) instructions are used for debugging and
development purposes. The SWiinstruction is useful forimplementing breakpoints. Tracing
is entered after turning on the trace flag in the SR. During tracing, a trace interrupt will be
generated after each instruction is executed, thereby creating a single-step feature.

Internally, the peripheral registers are accessed through the global data bus. All on-chip
peripherals use the same interrupt request interface mechanism. Each peripheral provides
a single interrupt request line to the PIC and receives two lines: vector read and interrupt
acknowledge. Each peripheral possesses more than one interrupt source (see Table 6-1);
therefore, interrupt arbitration between internal peripherals must be handled by the
peripheral according to its own predefined IPL. The PIC arbitrates between the different
I/O peripherals; when one of them is selected, the peripheral supplies the correct vector
address to the PIC. The host command vector in the host interface (see CHAPTER 10 PORT
B) can be programmed to point to any of the 32 starting addresses, including 13 routines
designated specifically as host commands and located at locations P:$0024—P:$003C. The
default value set in the host command vector register during a reset is $0024.

6.2.4 Instruction Pipeline

The program controller implements a three-level pipelined architecture in which concurrent
instruction fetch, decode, and execution occur. The fact that the pipelined operation remains
essentially hidden from the user makes programming straightforward. The pipeline is’
illustrated in Figure 6-4. The first instruction, |11, should be interpreted as follows: multiply
the contents of X0 by the contents of YO0, add the product to the contents already in
accumulator A, round the result to the “nearest even,” store the result back in accumulator
A, move the contents in X data memory {pointed to by RO) into X0; postincrement RO;
move the contents in'Y data memory (pointed to by R4) into Y1; postincrement R4. The
second instruction, 12, should be interpreted as follows: clear accumulator A; move the
contents in X0 into the location in X data memory pointed to by RO; postincrement RO;
before the clear operation, move the contents in accumulator A into the location in Y data
memory pointed to by R4; postdecrement R4. The third instruction, 13, is the same as 1,
except a rounding operation is not performed. The operations of each of the execution
units and all initial conditions necessary to follow the execution of the instruction sequence
are depicted in Figure 6-4.

6-6 DSP56000/DSP56001 USER'S MANUAL "~ MOTOROLA

INSTRUCTION INSTRUCTION INSTRUCTION

—> FETCH > DECODE > EXECUTION
LOGIC LOGIC LOGIC
EXAMPLE: PROGRAM SEGMENT
11 MACR X0Y1,A X:(R0)+ X0 Y:(R&}+ 11
12 CLR A X0,X:(R0) + AY:(R4) -
13 MAC X0Y1A X:(R0}+ X0 Y:(R4)+ Y1
INSTRUCTION FETCH n 12 13 14 15
INSTRUCTION DECODE 1 12 13 14
INSTRUCTION EXECUTION 1 12 13
PARALLEL INITIAL
OPERATIONS CONDITIONS
ADDRESS
UPDATE RO = $0005 »| RO=5+1 RO=6+1 RO=7+1
(AGU) R4 = $0008 »] R4=8+1 Rd=9-1 R4=8+1
A: — »| A A: A:
INSTRUCTION A2=$00 A2=$00 A2=3$00 A2=$00
EXECUTION A1 =$000066 A1 =3$0000A2 A1 =$000000 At =3$000000
A0 = $000000 A0 = $000000 A0 = $000000 A0 = $000050
(DATA ALU) X0=$400000 - —»1 X0=2$000005 X0 = $000005 X0 = $000007
Y1=2$000077 —>»| Y1=_3000008 Y1 =$000008 Y1 =$000008
X MEMORY DATA '
AT ADDRESS
$0005 $000005 > $000005 $000005 $000005
$0006 $000006 - $000006 $000005 $000005
$0007 $000007 —_———— e | —————— > $000007 $000007 $000007
Y MEMORY DATA
AT ADDRESS : ’
$0008 $ooo008 N |——————=|—————— > $000008 $000008 $000008
$0009 $000009 —» $000009 $0000A2 $0000A2

Figure 6-4. Three-Stage Pipeline

6.3 CLOCK OSCILLATOR

The DSP56000/DSP56001 uses a four-phase clock for instruction execution; therefare, the
clock runs at twice the instruction execution rate. The clock can be provided by an internal
oscillator {see Figure 6-1) by connecting an external crystal between XTAL and EXTAL or
by an external oscillator connected to EXTAL.

6.4 PROGRAMMING MODEL

The program controller features LA and LC registers dedicated to supporting the hardware
DO loop instruction in addition to the standard program flow-control resources, such as a
PC, complete SR, and SS. With the exception of the PC, all registers are read/write to
facilitate system debugging. Figure 6-5 shows the program controller programming model

- with the six registers and SS. The following paragraphs give a detailed description of each
register.

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 6-7

PROGRAM CONTROLLER

23 16 15 0 23 16 15 0
I | [* 1 |
LOOP ADDRESS {LA) LOOP COUNTER (LC)
23 16 15 8 7 0 22 87 6532 1 0

[x 1 | [[me [cer | [* [eafso] * [oems]mal

PROGRAM COUNTER (PC) STATUS REGISTER (SR) OPERATING MODE REGISTER (OMR)
23 16 15 SSH 0 23 16 15 SSL 0 23 65 ' 0

* * 4———| *

* * STACK POINTER {SP)

* *

* *

* *

* *

* HIGH * Low

* (SSH) * (SsL)

* *

* *

* *

* *

* *

* *

* *

* *

SYSTEM STACK

* Written as don’t care; read as zero

Figure 6-5. Program Controller Programming Model

6.4.1 Program Counter

This 16-bit register contains the address of the next location to be fetched from program
memory space. The PC can point to instructions, data operands, or addresses of operands.
References to this register are always inherent and are implied by most instructions. This
special-purpose address register is stacked when program looping is initialized, when a
JSR is performed, or when interrupts occur (except for no-overhead fast interrupts).

6.4.2 Status Register

The 16-bit SR consists of a mode register (MR) in the high-order eight bits and a condition
code register (CCR) in the low-order eight bits. The SR is stacked when program looping
is initialized, when a JSR is performed, or when interrupts occur, {except for no-overhead
fast interrupts). The SR format is shown in Figure 6-6.

6-8 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

MR PTE CCR >
15 14 3 12 1 10 9 87 6 5 4

3 2 1 0
LFI*IT[*ISI[SOIIIIIO *|L|Eﬁlu|zlvlc

CARRY
OVERFLOW
ZERO

NEGATIVE
UNNORMALIZED
EXTENSION
LIMIT
RESERVED
INTERRUPT MASK
SCALING MODE
RESERVED
TRACE MODE
RESERVED
LOOP FLAG

*Written as don't care; read as zero

‘Figure‘6-6. Status vRegister Format

The MR is a special-purpose control register defining the current system state of the
processor. The MR bits are affected by processor reset, exception processing, the DO, end
current DO loop (ENDDO), return from interrupt (RTI), and SWI instructions and by instruc-
tions that directly reference the MR register — OR immediate to control register (ORI) and
AND immediate to control register (ANDI}. During processor reset, the interrupt mask bits
of the MR will be set; the scaling mode bits, loop flag, and trace bit will be cleared.

The CCR is a special-purpose control register that defines the current user state of the
processor. The CCR bits are affected by data arithmetic logic unit (ALU) operations, parallel
move operations, and by instructions that directly reference the CCR (ORI and ANDI). The
CCR bits are not affected by parallel move operations unless data limiting occurs when
reading the A or B accumulators. During processor reset, all CCR bits are cleared.

6.4.2.1 CARRY (BIT 0). The carry (C) bit is set if a carry is generated out of the MSB of
the result in an addition. This bit is also set if a borrow is generated in a subtraction. The
carry or borrow is generated from bit 55 of the result. The carry bit is also affected by bit
manipulation, rotate, and shift instructions. Otherwise, this bit is cleared. '

6.4.2.2 OVERFLOW (BIT 1). The overflow (V) bit is set if an arithmetic overflow occurs in
the 56-bit result. This bit indicates that the result cannot be represented in the accumulator
register; thus, the register has overflowed. Otherwise, this bit is cleared.

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 6-9

6.4.2.3 ZERO (BIT 2). The zero (2) bit is set if the result equals zero; otherwise, this bit is
cleared.

6.4.2.4 NEGATIVE (BIT 3). The negative (N) bit is set if the MSB (bit 55) of the result is
set; otherwise, this bit is cleared.

6.4.2.5 UNNORMALIZED (BIT 4). The unnormalized (U) bit is set'if the two MSBs of the
most significant product (MSP) portion of the result are identical. Otherwise, this bit is
cleared. The MSP.portion of the A or B accumulators, which is defined by the scaling mode
and the U bit, is computed as follows:

S1 | SO Scaling Mode U Bit Computation
0 | 0 |NoScaling U=(Bit 47 ® Bit 46)
0 1 |Scale Down U={Bit 48 ® Bit 47)
1 0 |Scale Up U=(Bit 46 @ Bit 45)

6.4.2.6 EXTENSION (BIT 5). The extension (E) bit is cleared if all the bits of the integer
portion of the 56-bit result are all ones or all zeros; otherwise, this bit is set. The integer
portion, defined by the scaling mode and the E bit, is computed as follows:

S1 | SO Scaling Mode Integer Portion
0 0 {No Scaling Bits 55,54..... \..48,47
1 | Scale Down Bits 55,54....... 49,48
1 0 |Scale Up Bits 55,54....... 47,46

If the E bit is cleared, then the low-order fraction portion contains all the significant bits;
the high-orderinteger portion is just sign extension. In this case, the accumulator extension
register can be ignored. If the E bit is set, it indicates that the accumulator extension register
is in use. ‘

6.4.2.7 LIMIT (BIT 6). The limit {L} bit is set if the overflow bit is set. The L bit is also set
if the data shifter/limiter circuits perform a limiting operation; otherwise, it is not affected.
The L bit is cleared only by a processor reset or by an instruction that specifically clears
it, which allows the L bit to be used as a latching overflow bit {i.e., a “sticky’ bit). L is
affected by data movement operations that read the A or B accumulator registers.

6.4.2.8 INTERRUPT MASKS (BITS 8 AND 9). The interrupt mask bits, 11 and 10, reflect the
current IPL of the processor and indicate the IPL needed for an interrupt source to interrupt
the processor. The current IPL of the processor can be changed under software control.
The interrupt mask bits are set during hardware reset but not during software reset.

6-10 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

n 10 Exceptions Permitted Exceptions Masked
0 0 IPL0,1,2,3 None

0 1 IPL 1,2,3 IPLO

1 0 IPL 2,3 IPL 0,1

1 1

IPL 3 IPL0,1,2

6.4.2.9 SCALING MODE (BITS 10 AND 11). The scaling mode bits, S1 and S0, specify the
scaling to be performed in the data ALU shifter/limiter and the rounding position in the
data ALU multiply-accumulator (MAC). The scaling modes are shown in the following table:

s1 | so | Reunding Scaling Mode

0 0 23 No Scaling

0 1 24 Scale Down (1-Bit Arithmetic Right Shift)
1 0 22 Scale Up (1-Bit Arithmetic Left Shift)

1 1 —_ Reserved for Future Expansion

The shifter/limiter scaling mode affects data read from the A or B accumulator registers
out to the XDB and YDB. Different scaling modes can be used with the same program code
to allow dynamic scaling. One application of dynamic scaling is to facilitate block floating-
point arithmetic. The scaling mode also affects the MAC rounding position to maintain
proper rounding when different portions of the accumulator registers are read out to the
XDB and YDB. The scaling mode bits, which are cleared at the start of a long interrupt
service routine, are also cleared during a processor reset.

6.4.2.10 TRACE MODE (BIT 13). The trace mode (T) bit specifies the tracing function of
the DSP. If the T bit is set at the beginning of any instruction execution, a trace exception
will be generated after the instruction execution is completed. If the T bit is cleared, tracing
_is disabled and instruction execution proceeds normally. If a long interrupt is executed
- during a trace exception, the SR having the trace bit set will be stacked, and the trace bit
in the SR is cleared (see CHAPTER 8 PROCESSING STATES for a complete description of
a long interrupt operation). The T bit is also cleared during processor reset.

6.4.2.11 RESERVED STATUS (BITS 7, 12, 14). These bits, which are reserved for future
expansion, will read as zero during DSP read operations.

6.4.2.12 LOOP FLAG (BIT 15). The loop flag (LF) bit, set when a program loop is in prog-
ress, enables the detection of the end of a program loop. The LF is the only SR bit that is
restored when terminating a program loop. Stacking and restoring the LF when initiating
and exiting a program loop, respectively, allow the nesting of program loops. At the start
of a long interrupt service routine, the SR (including the LF) is pushed on the SS and the

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 6-11

SR LF is cleared. When returning from the long interrupt with an RTI instruction, the SS
is pulled and the LF is restored. During a processor reset, the LF is cleared.

6.4.3 Operating Mode Register

The OMR is a 24-bit register (only five bits are defined) that sets the current operating
mode of the processor (i.e., the memory maps for program and data memories as well as
the startup procedure). The OMR bits are only affected by processor reset and by instruc-
tions directly referencing the OMR: ANDI, ORI, and MOVEC. During processor reset, the
chip operating mode bits, MB and MA, will be loaded from the external mode select pins
B and A, respectively. The data ROM enable (DE) bit will be cleared, disabling the X and
Y on-chip lookup-table ROMs. The OMR format is shown in Figure 6-7. Table 6-2 summarizes
the DSP56000/DSP56001 operating modes and their effect on the memory map. Table 6-
3 shows how the DE bit in the OMR affects the X and Y memory maps.

3 87 6 5 4 3 2 1 0
[5 [ealso] *]+]« [oe]me|ma]

OPERATING MODE

DATA ROM ENABLE

RESERVED

STOP DELAY

EXTERNAL MEMORY ACCESS

RESERVED

Figure 6-7. OMR Format

Table 6-2. DSP56000/DSP56001 Operating Mod'e Summary

Operating DSP56000 Program Memory Map
Mode MB | MA -
Internal RAM External Reset
0 0 0 $0000-$01FF $0200-$FFFF | Internal — $0000

Mode 1 is not a valid mode for the DSP56000. Attempting to

1 0 1 7 | put the DSP56000 in mode 1 will put it into mode 0.

2 1 0 $0000-$01FF $0200-$FFFF External — $E000
3 1 1 — $0000-$FFFF External — $0000

6-12 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

Table 6-2. DSP56000/DSP56001 Operating
Mode Summary (Continued)

Operating DSP56001 Program Memory Map
Mode MB | MA
Internal RAM External Reset
0 0 0 $0000-$01FF $0200-$FFFF Internal — $0000
1 0 Special bootstrap mode; after program RAM loading, mode
1 2 is automatically selected but PC = $0000.
2 1 0 $0000-$01FF $0200-$FFFF External — $E000
3 1 1 — $0000-$FFFF | External — $0000

Table 6-3. DSP56000/DSP56001 DE Memory Control

DE Data Memory Map
Y Memory X Memory
0 Internal RAM: $0000-$00FF Internal RAM: $0000-$00FF
External:$0100-$FFFF External: $0100-$FFBF
— On-Chip Peripherals: $FFCO-$FFFF
1 Internal RAM: $0000-$00FF Internal RAM: $0000-$00FF
Internal ROM: $0100-$01FF Internal ROM: $0100-$01FF
External: $0200-$FFFF External: $0200-$FFBF
— On-Chip Peripherals: $FFCO-$FFFF

6.4.3.1 CHIP OPERATING MODE (BITS 0 AND 1). The chip operating mode bits, MB and
MA, indicate the bus expansion mode of the DSP56000/DSP56001. On processor reset,
these bits are loaded from the external mode select pins, MODB and MODA, respectively.
After the DSP leaves the reset state, MB and MA can be changed under program control.
The “secure DSP56000" is an exception. The external mode select pins, MODB and MODA,
are disabled on the “secure DSP56000” and are only used for interrupts as IROA and IRQB.
The operating modes are shown in the following table:

MB | MA Chip Operating Mode

0 0 |Single-Chip Nonexpanded

0 1 | Special Bootstrap (DSP56001 Only)
1 0 | Normal Expanded

“ 1 [Development Expanded

6.4.3.2 DATA ROM ENABLE (BIT 2). The DE bit enables the two, on-chip, 256 X 24 data
ROMs located at addresses $0100-$01FF in the X and Y memory spaces. When DE is
cleared, the $0100-$01FF address space is part of the external X and Y data spaces, and
the on-chip data ROMs are disabled. C

6.4.3.3 STOP DELAY (BIT 6). The STOP instruction causes the DSP56000/DSP56001 to
indefinitely suspend processing in the middle of the STOP instruction (see SECTION 8

. MOTOROLA DSP56000/DSP56001 USER’S MANUAL 6-13

PROCESSING STATES). When exiting the stop state, if the stop delay bit is zero, a 64K
clock cycle delay (i.e., 131,072 T states) is selected before continuing the stop instruction
cycle. However, if the stop delay bit is one, the delay before continuing the instruction
cycle is 16 T states. The long delay allows a clock stabilization period for the internal clock
to begin oscillating and to stabilize. When a stable external clock is used, the shorter delay
allows faster startup of the DSP.

6.4.3.4 EXTERNAL MEMORY ACCESS (BIT 7). The external memory access mode bit
selects the function of two of the port A control pins. The DSP56000/DSP56001 comes out
of reset with these pins defined as bus request/bus grant (BR/BG) — i.e., bit 7 is cleared.
When bit 7 is clear, wait states are only introduced into the port A timing by using the bus
control register (BCR). Additional information on the BCR can be found in CHAPTER 10
PORT B. When bit 7 is set under program control (using ANDI, ORI, or MOVEC), these pins
are defined as bus strobe (BS) and wait (WT). In this mode, wait states are introduced into
port A timing by using either the BCR or asserting WT. BR and BG allow the DSP56000/
DSP56001 to give the external bus to an external device, thus preventing bus conflicts. BS
and WT allow the DSP56000/DSP56001 to work with asynchronous devices (bus arbitrators)
on port A. The definition of the control pins is summarized in the following table:

OMR Bit 7 BR Pin (Input) BG Pin (Output)
0 (Default) Bus Request (BR) Bus Grant (BG)
1 Wait (WT) Bus Strobe (BS)

6.4.3.5 RESERVED OMR BITS (BITS 3-5 AND 8-23). These OMR bits, reserved for future
expansion, will read as zero during DSP read operations. ‘

6.4.4 Loop Address Register

The contents of the LA register indicate the location of the last instruction word in a program
loop. This register is stacked into the SSH by a DO instruction and is unstacked by end-
of-loop processing or by execution of an ENDDO instruction. When the instruction at the
address contained in this register is fetched, the contents of the LC register are checked.
If the contents are not one, the LC is decremented, and the next instruction is taken from
the address at the top of the SS; otherwise, the PC is incremented, the loop flag is restored
(pulled from the SS), the SS is purged, the LA and LC registers are pulled from the SS and
restored, and instruction execution continues normally. The LA register, a read/write reg-
ister, is written by a DO instruction and read by the SS when stacking the register. Since
the LC register can be accessed under program control, the number of times a loop has
been executed can be determined.

6-14 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

6.4.5 Loop Counter Register

The LC register is a special 16-bit counter used to specify the number of times a hardware
program loop is to be repeated. This register is stacked into the SSL by a DO instruction
and unstacked by end-of-loop processing or by execution of an ENDDO instruction. When
the end of a hardware program loop is reached, the contents of the LC register are tested
for one. If the LC is one, the program loop is terminated, and the LC register is loaded with
the previous LC contents stored on the SS. If LC is not one, it is decremented and the
program loop is repeated. The LC can be read under program control, which allows the
number of times a loop will be executed to be monitored/changed dynamically. The LC is
also used in the REP instruction.

6.4.6 System Stack

The SS is a separate 15X 32-bit internal memory divided into two banks: SSH and SSL,
each 16 bits wide. The SSH stores the PC contents, and the SSL stores the SR contents
for subroutine calls and long interrupts. The SS will also store the LA and LC registers in
addition to the PC and SR registers for program looping. The SS is in stack memory space;
its address is always inherent and implied by the current instruction.

The contents of the PC and SR register are pushed on the top location of the SS when a
subroutine call or long interrupt occurs. When a return from subroutine (RTS) occurs, the
contents of the top location in the SS are pulled and put in the PC; the SR is not affected.
When an RTI occurs, the contents of the top location in the SS are pulled to both the PC
and SR.

The SS is also used to implement no-overhead nested hardware DO loops. When the DO
instruction is executed, the LA:LC are pushed on the SS, then the PC:SR are pushed on
the SS. Since each SS location can be addressed as separate 16-bit registers (SSH and
SSL), software stacks can be created for unlimited nesting.

Up to 15 long interrupts, seven DO loops, 15 JSRs, or combinations of these can be
accommodated by the SS. When the SS limit is exceeded, a nonmaskable stack error
interrupt occurs, and the PC is pushed to SS location zero, which is not implemented in
hardware. The PC will be lost, and there will be no SP from the stack interrupt routine to
the program that was executing when the error occurred.

6.4.7 Stack Pointer Register

The 6-bit SP register indicates the location of the top of the SS and the status of the SS
(underflow, empty, full, and overflow). The SP register is referenced implicitly by some
instructions (DO, REP, JSR, RTI, etc.) or directly by the MOVEC instruction. The SP register
format, shown in Figure 6-8, is described in the following paragraphs. The SP register is
implemented as a 6-bit counter that addresses (selects) a 15-location stack with its four
LSBs. The possible SP values, shown in Figure 6-9, are described in the following paragraphs.

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 6-15

3 1

5 4 2 0
WF' ss| P3| PZ|P1|POI
L1 |

STACK POINTER

"STACK ERROR FLAG
UNDERFLOW FLAG

Figure 6-8. SP Register Format

UF SE P3 P2 P1 PO
1T 1 1 1 1 0 ¢STACK UNDERFLOW CONDITION AFTER DOUBLE PULL
1 1 4STACK UNDERFLOW CONDITION
0 0 ¢STACK EMPTY (RESET); PULL CAUSES UNDERFLOW
0" 1 ¢STACK LOCATION 1

4 STACK LOCATION 14

4 STACK LOCATION 15; PUSH CAUSES OVERFLOW

4 STACK OVERFLOW CONDITION

4 STACK OVERFLOW CONDITION AFTER DOUBLE PUSH

ocoocoo
——oc o
oo —- =
oo = =
—o -0

Figure 6-9. SP Register Values

6.4.7.1 STACK POINTER (BITS 0-3). The SP points to the last used location on the SS.
Immediately after hardware reset, these bits are cleared (SP=0), indicating that the SS
is empty.

Data is bushed onto the SS by incrémenting the SP, then writing data to the location
pointed to by the SP. An item is pulled off the stack by copying it from the location pointed
to by the SP and then by decrementing SP.

6.4.7.2 STACK ERROR FLAG (BIT 4). The stack error flag indicates that a stack error has
occurred, and-the transition of the stack error flag from zero to one causes a priority

level-3 stack error exception (see 6.4.7.1 STACK POINTER (BITS 0-3) for additional
information). '

When the stack is completely full, the SP reads 001111, and any operation that pushes
data onto the stack will cause a stack error exception to occur. The SR will read 010000
{or 010001 if an implied double push occurs).

Any implied pull operation with SP equal to zero will cause a st‘ack error exception, and
the SP will read 111111 {(or 111110 if an implied double pull occurs). The stack error bit is
set as shown in Figure 6-9.

6-16 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

The stack error flag is a “sticky bit"” which, once set, remains set until cleared by the user.
There is a sequence of instructions which can cause a stack overflow which, without the
sticky bit, would not be detected because the stack pointer is decremented before the stack
error interrupt is taken. The sticky bit keeps the stack error bit set until cleared by the user
by writing a zero to SP bit 4. It also latches the overflow/underflow bit so that it cannot be
changed by stack pointer increments or decrements as long as the stack error is set. The
overflow/underflow bit remains tatched until the first move to SP is executed.

NOTE

When SP is zero (stack empty), instructions that read the stack without SP postde-
crement and instructions that write to the stack without SP preincrement do not
cause a stack error exception (i.e., 1) DO SSL,xxxx 2) REP SSL 3) MOVEC or move
peripheral data (MOVEP) when SSL is specified as a source or destination).

6.4.7.3 UNDERFLOW FLAG (BIT 5). The underflow flag is set when a stock underflow
occurs. The stack underflow flag is a “sticky bit’” when the stack error flag is set i.e., when
the stack error flag is set, the underflow flag will not change state. The combination of
“underflow=1"" and “stack error=0" is an illegal combination and will not occur unless it
is forced by the user. If this condition is forced by the user, the hardware will correct itself
based on the result of the next stack operation. Also see the description for the stack error
flag (Section 6.4.7.2) for additional information.

6.4.7.4 RESERVED STACK POINTER REGISTER BITS (BITS 6-23). Any unimplemented
SP register bits are reserved for future expansion and will read as zero during DSP56000/
DSP56001 read operations.

6.4.8 DSP56000/DSP56001 Programming Model Summary

The complete programming model for the DSP56000/DSP56001 central processor is shown
in Figure 6-10. SECTION 9 PORT A, SECTION 10 PORT B, and SECTION 11 PORT C describe
in detail the programming model for the peripherals and external memory control (number
of wait states).

MOTOROLA DSP56000/DSP56001 USER’S MANUAL 6-17

DATA ALU INPUT REGISTERS

] X 0] 0
Xi | X0] Y1 Y0
3 023 0 2 02 0
ACCUMULATOR REGISTERS
56 A 0 56 B 0
| p | Al | AD 1 = |8 BI | B |
3 87 023 023 1 3 87 023 023 0
ADDRESS GENERATION UNIT
B 1615 0 B 1615 0 B 1615 0
* R7 * N7 * M7
* R6 * NG * M6
* RS * N5 * M5 UPPER FILE
* R4 i N4 i M4 e
* R3 * N3 * M3
* R2 * N2 * M2 LOWER FILE
* R1 * N1 * M
* RO * ND * Mo
POINTER OFFSET MODIFIER
REGISTERS REGISTERS REGISTERS
PROGRAM CONTROLLER
23 16 15 0 23 16 15 -0
[] I]
LOOP ADDRESS (LA) LOOP COUNTER (LC)
B 615 87 0 B 87 6532 1.0
[~] | [> T m] cr] [_* [ea]so] * [oe[wslma]
PROGRAM COUNTER (PC) STATUS REGISTER (SR OPERATING MODE REGISTER (OMR)
22 1615 SSH 0 B 1515 ssSL 0 23 6 5 0
«—— * |
STACK POINTER (SP)
HIGH Low
(SSH) ssL)

kpok| k| k| k| k| k| k] HR]k]k|kfkK|Kx|[%X

e | sk sk | o]] | k] | k] k| k] K] |k

SYSTEM STACK

* Written as don't care; read as zero
~** Read as sign extension bits; written as don’t care

6-18

Figure 6-10. DSP56000/DSP56001 Central Processor Programming Model

DSP56000/DSP56001 USER'S MANUAL

MOTOROLA

SECTION 7
INSTRUCTION SET INTRODUCTION

The programming model indicates that the DSP56000/DSP56001 central processor archi-
tecture can be viewed as three functional units operating in parallel: data arithmetic logic
unit (ALU), address generation unit (AGU), and program controller (see Figure 7-1). The
goal of the instruction set is to provide the capability to keep each of these units busy each
instruction cycle, achieving maximum speed and minimum program size.

This section introduces the DSP56000/DSP56001 instruction set and instruction format. The
complete range of instruction capabilities combined with the flexible addressing modes
used in this processor provide a very powerful assembly language for implementing digital
signal processing (DSP) algorithms. The instruction set has been designed to allow efficient
coding for DSP high-level language compilers such as the C compiler. Execution time is
minimized by the hardware looping capabilities, use of an instruction pipeline, and parallel
moves.

7.1 SYNTAX

The instruction syntax is organized into four columns: opcode, operands, and two parallel-
move fields. The assembly-language source code for a typical one-word instruction is
shown in the following illustration. Because of the multiple bus structure and the parallelism
of the DSP, up to three data transfers can be specified in the instruction word — one on
the X data bus (XDB), one on the Y data bus (YDB), and one within the data ALU. These
transfers are explicitly specified. A fourth data transfer is implied and occurs in the program
controller (instruction word prefetch, program looping control, etc.}. Each data transfer
involves a source and a destination. '

Opcode Operands XDB YDB
MAC X0,Y0,A X:(RO)+,X0 Y:(R4)+,YO

The opcode column indicates the data ALU, AGU, or program controller operation to be
performed and must always be included in the source code. The operands column specifies
the operands to be used by the opcode. The XDB and YDB columns specify optional data
transfers over the XDB and/or YDB and the associated addressing modes. The address
space qualifiers (X:, Y:, and L:) indicate which address space is being referenced. Parallel
moves are allowed in 30 of the 62 instructions. Additional information is presented in
APPENDIX A INSTRUCTION SET DETAILS.

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 7-1

DATA ALU INPUT REGISTERS

47 X 0 4 Y 0
[X1 X0 | [Yi Yo |
23 023 0 23 023 0
ACCUMULATOR REGISTERS
56 A 0 56 B 0
[= Ta] Al [A0 | [T] B1 | BO |
23 87 023 023 0 3 87 023 023 0
ADDRESS GENERATION UNIT
B 16 15 ‘ 0 B 1615 0 B 1615 0
* R7 * N7 * M7
* RS * NG * M6
* RS * N5 * M3 UPPER FILE
* R4 o * N4 I M4 L
* R3 * N3 * M3
* R2 * N2 * M2 LOWER FILE
* R1 * N1 * M '
* RO * NO * L)
POINTER OFFSET MODIFIER
REGISTERS REGISTERS REGISTERS
PROGRAM CONTROLLER
B 1615 0 B 1615 0
[> 1| 1] |
LOOP ADDRESS (LA) LOOP COUNTER (LC) v
B 1615 87 0 3 87 6532 1 0
[T | [T M T cor | | * T[ealsp] * [oe[ms]mal
PROGRAM COUNTER (PC) STATUS REGISTER (SR) OPERATING MODE REGISTER (OMR)
28 1615 SSH 0 3 1615 sst 0 23 5 0
G - DEEEE |
* * STACK POINTER (SP)
* * }
* *
* *
* *
* HIGH * Low
¥ {SSH) * (ssL)
* *
* *
* *
* *
* *
* *
* *

SYSTEM STACK

* Written as don’t care; read as zero
¥ % Read as sign extension bits; written as don’t care

Figure 7-1. DSP56000/DSP56001 Central Processor Programming Model

7-2 DSP56000/DSP56001 USER'S MANUAL

MOTOROLA

7.2 INSTRUCTION FORMATS

The DSP56000/DSP56001 instructions consist of one or two 24-bit words — an operation
word and an optional effective address extension word. The general format of the operation
word is shown in Figure 7-2. Most instructions specify data movement on the XDB, YDB,
and data ALU operations in the same operation word. The DSP is designed to perform
each of these operations in parallel.

23 87 0
OPCODE
xx [x Ix x I x [xTx

OPTIONAL EFFECTIVE ADDRESS EXTENSION

DATA BUS MOVEMENT

Figure 7-2. General Format of an Instruction Operation Word

The data bus movement field provides the operand reference type, which selects the type
of memory or register reference to be made, the direction of transfer, and the effective
address(es) for data movement on the XDB and YDB. This field may require additional
information to fully specify the operand for certain addressing modes. An effective address
extension word following the operation word is used to provide immediate data or an
absolute address if required. Examples of operations that may include the extension word
include the move operations X:, X:R, Y:, R:Y, and L:. Additional information is presented
in APPENDIX A INSTRUCTION SET DETAILS.

The opcode field of the operation word specifies the data ALU operation or the program
controller operation to be performed and any additional operands required by the instruc-
tion. Only those data ALU and program controller operations that can accompany data
bus movement will be specified in the opcode field of the instruction. Other data ALU,
program controller operations, and all address ALU operations will be specified in an
instruction word with a different format. These formats include operation words containing
short immediate data or short absolute addresses.

Encoding the 30 opcodes that allow up to two parallel data moves into 24 bits has used
all of the available bits and precluded adding more instructions or instruction variations.
The available operation codes form a very versatile microcontroller unit (MCU) style in-
struction set, providing highly parallel operations in most programming situations.

7.2.1 Operand Sizes

Operand sizes are defined as follows: a byte is 8 bits long, a short word is 16 bits long, a
word is 24 bits long, a long word is 48 bits long, and an accumulator is 56 bits long (see
Figure 7-3). The operand size for each instruction is either explicitly encoded in the instruc-
tion or implicitly defined by the instruction operation. Implicit instructions support some
subset of these five sizes. ’

MOTOROLA DSP56000/DSP56001 USER’S MANUAL 7-3

7 0
[e
15 0
[Jsnorrwomo
8 0
| ~ Jworo

a 0
(| LonG woro

55 0

[| accumutator

Figure 7-3. Operand Sizes

7.2.2 Data Organization in Registers

The ten data ALU registers support 8- or 24-bit data operands. Instructions also support
48- or 56-bit data operands by concatenating groups of specific data ALU registers. The
eight address registers in the AGU support 16-bit address or data operands. The eight AGU
offset registers support 16-bit offsets or may support 16-bit address or data operands. The
eight AGU modifier registers support 16-bit modifiers or may support 16-bit address or
data operands. The program counter (PC) supports 16-bit address operands. The status
register (SR) and operating mode register (OMR) support 8- or 16-bit data operands. Both
the loop counter (LC) and loop address (LA) registers support 16-bit address operands.

7.2.2.1 DATA ALU REGISTERS. The eight main data registers are 24 bits wide. Word
operands occupy one register; long-word operands occupy two concatenated registers.
The least significant bit (LSB) is the right-most bit (bit 0); whereas, the most significant bit
(MSB) is the left-most bit (bit 23 for word operands and bit 47 for long-word operands).
The two accumulator extension registers are eight bits wide. When an accumulator exten-
sion register is used as a source operand, it occupies the low-order portion (bits 0-7) of
the word; the high-order portion (bits 8-23) is sign extended (see Figure 7-4). When used
as a destination operand, this register receives the low-order portion of the word, and the
high-order portion is not used. Accumulator operands occupy an entire group of three
registers (i.e., A2:A1:A0 or B2:B1:B0). The LSB is the right-most bit (bit 0), and the MSB
is the left-most bit (bit 55).

7.2.2.2 AGU REGISTERS. The 24 AGU registers, which are 16 bits wide, may be accessed
as word operands for address, address modifier, and data storage. When used as a source
operand, these registers occupy the low-order portion of the 24-bit word; the high-order
portion is read as zeros (see Figure 7-5). When used as a destination operand, these registers
receive the low-order portion of the word; the high-order portion is not used. The notation

7-4 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

23 87 0

BUS
, |
LSB OF
NOT USED
REGISTER A2, B2 USED Jl WORD 1
AS A DESTINATION - At 0
NOT USED A2 REGISTER A2, B2
REGISTER A2, B2
USED AS A SOURCE |
\
23 87 0
SIGN EXTENSION CONTENTS | BUS
OF A2 OF A2

Figure 7-4. Reading and Writing the ALU Extension Registers

23 0
BUS
i [
1 ' LSB OF
ADORESS ALU REGISTERS NOT USED WORD
AS A DESTINATION
15 0
ADDRESS ALU REGISTERS
ADDRESS ALU REGISTERS '
AS A SOURCE I |
Y
23 16 15 0
ZERO FILL BUS

Figure 7-5. Reading and Writing the Address ALU Registers

Rn is used to designate one of the eight address registers, R0-R7; the notation Nn is used
to designate one of the eight address offset registers, NO-N7; and the notation Mn is used
to designate one of the eight address modifier registers, M0-M7.

7.2.2.3 PROGRAM CONTROL REGISTERS. The 8-bit OMR may be accessed as a word
operand; however, not all eight bits are defined. In general, undefined bits are written as
“don’t care” and read as zero. The 16-bit SR has the system mode register (MR) occupying

MOTOROLA DSP56000/DSP56001 USER’'S MANUAL 7-5

the high-order eight bits and the user condition code register (CCR} occupying the low-
order eight bits. The SR may be accessed as a word operand. The MR and CCR may be
accessed individually as word operands (see Figure 7-6(b)). The LC, LA, system stack high
(SSH), and system stack low (SSL) registers are 16 bits wide and may be accessed as word

23 87 0

BUS

NOT USED LSB
MR, CCR, OMR, AND SP AS A DESTINATION

MR, CCR, OMR, AND SP

MR. CCR, OMR, AND SP AS A SOURCE

23 87 . 0
ZERO BUS
FILL
(a) 16 Bit
23 0 .
BUS
1 1
S —
| LS8
NOT USED OF WORD
LC, LA, SR, SSH, AND SSL AS A DESTINATION 15 0
LC, LA, SR, SSH, AND SSL
LC, LA, SR, SSH, AND SSL AS A SOURCE
\ v
23 16 15 0)
ZERO) BUS
FILL
(b) 8 Bit

Figure 7-6. Reading and Writing Control Registers

7-6 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

operands (see Figure 7-6(a)). When used as a source operand, these registers occupy the
low-order portion of the 24-bit word; the high-order portion is zero. When used as a
destination operand, they receive the low-order portion of the 24-bit word; the high-order
portion is not used. The system stack pointer (SP) is a 6-bit register that may be accessed
as a word operand.

The PC, a special 16-bit-wide program control register, is always referenced implicitly as
a short-word operand.

7.2.3 Data Organization in Memory

The 24-bit program memory can store both 24-bit instruction words and instruction ex-
tension words. The 32-bit system stack (SS) can store the concatenated PC and SR registers
(PC:SR) for subroutine calls, interrupts, and program looping. The SS also supports the
concatenated LA and LC registers {(LA:LC) for program looping. The 24-bit-wide X and Y
memories can store word, short-word, and byte operands. Short-word and byte operands,
which usually occupy the low-order portion of the X or Y memory word, are either zero
extended or sign extended on the XDB or YDB.

The symbols used to abbreviate the various operands and operations in each instruction
and their respective meanings are shown in the following list:

Data ALU
Xn Input Registers X1, X0 (24 Bits)
Yn Input Registers Y1, YO (24 Bits)
An Accumulator Registers A2 (8 Bits), A1, A0 (24 Bits)
Bn Accumulator Registers B2 (8 Bits), B1, B0 (24 Bits)
X Input Register X (X1:X0, 48 Bits)
Y Input Register Y (Y1:Y0, 48 Bits)
A Accumulator A {A2:A1:A0, 56 Bits)*
B Accumulator B (B2:B1:B0, 56 Bits)*
AB Accumulators A and B {A1:B1, 48 Bits}*
BA Accumulators B and A (B1:A1, 48 Bits)*
A10 Accumulator A (A1:A0, 48 Bits)
B10 Accumulator B (B1:B0, 48 Bits)

*Data move operations: when specified as a source operand, shifting and limiting are
performed. When specified as a destination operand, sign extension and zero filling are
performed.

Address ALU
Rn Address Registers R0O-R7 (16 Bits)
Nn Address Offset Registers NO—-N7 (16 Bits)
Mn Address Modifier Registers M0-M7 {16 Bits)

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 7-7

Program Controller

PC Program Counter {16 Bits)

MR Mode Register (8 Bits)

CCR Condition Code Register (8 Bits)

SR Status Register (MR:CCR, 16 Bits)

OMR Operating Mode Register (8 Bits)

LA Hardware Loop Address Register (16 Bits)

LC Hardware Loop Counter (16 Bits)

SP System Stack Pointer (6 Bits)

SS System Stack RAM (15 x 32 Bits)

SSH Upper 16 Bits of the Contents of the Current Top of Stack

SSL Lower 16 Bits of the Contents of the Current Top of Stack
Addresses
ea Effective Address

XXXX Absolute Address (16 Bits)

XXX Short Jump Address (12 Bits)

aa Absolute Short Address (6 Bits Zero Extended)

pp 1/0 Short Address (6 Bits Ones Extended)

(...) Contents of the Specified Address

X: X Memory Reference

Y: Y Memory Reference ‘ ,

L: Long Memory Reference — X Concatenated with Y

P Program Memory Reference

Miscellaneous

#XX Immediate Short Data (8 Bits)
FXXX Immediate Short Data (12 Bits)
#xxxxxx Immediate Data (24 Bits)

#n Immediate Short Data (5 Bits)
S,Sn Source Operand Register

D,Dn Destination Operand Register
DIn] Bit n of D Affected

r Rounding Constant

11,10 Interrupt Priority Level in SR
LF Loop Flag in SR

7.2.4 Operand References

The DSP separates operand references into four classes: program, stack, register, and
memory references. The type of operand reference(s) required for an instruction is specified
by both the opcode field and the data bus movement field of the instruction; however, all
operand reference types may not be used with all instructions. The operand size for each
instruction is either explicitly encoded in the instruction or implicitly defined by the in-
struction operation. Implicit instructions support some subset of the five operand sizes.

7-8 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

7.2.4.1 PROGRAM REFERENCES. Program (P) references, which are references to 24-bit-
wide program memory space, are usually instruction reads. Instructions or data operands
may be read from or written to program memory space using the move program memory
(MOVEM) and move peripheral data (MOVEP) instructions. Depending on the address and
the chip operating mode, program references may be internal or external memory references.

7.2.4.2 STACK REFERENCES. Stack (S) references, which are references to a separate
32-bit-wide internal memory space (SS), are used implicitly to store the PC and SR for
subroutine calls, interrupts, and returns. In addition to the PC and SR, the LA and LC
registers are stored on the stack when a program loop is initiated. S references are always
implied by the instruction. Data is written to the stack memory to save the processor state
and is read from the stack memory to restore the processor state. In contrast to S references,
references to SSL and SSH are always explicit.

7.2.4.3 REGISTER REFERENCES. Register (R) references are references to the data ALU,
AGU, and program controller registers. Data can be read from one register and written
into another register.

7.2.4.4 MEMORY REFERENCES. Memory references, which are references to the 24-bit-
wide X or Y memory spaces, can be internal or external memory references, depending
on the effective address of the operand in the data bus movement field of the instruction.
Data can be read or written from any address in either memory space.

7.2.4.4.1 X Memory References. The operand, which is in X memory space, is a word
reference. Data can be transferred from memory to a register or from a register to memory.

.7.2.4.4.2 Y Memory References. The operand, a word reference, is in Y memory space.
Data can be transferred from memory to a register or from a register to memory.

7.2.4.4.3 L Memory References. Long (L) memory space references both Xand Y memaory
spaces with one operand address. The data operand is a long-word reference developed
by concatenating the X and Y memory spaces (X:Y). The high-order word of the operand
is in the X memory; the low-order word of the operand is in the Y memory. Data can be
read from memory to concatenated registers X1:X0, A1:AQ, etc. or from concatenated
registers to memory. :

7.2.4.4.4 YX Memory References. XY memory space references both X and Y memory
spaces with two operand addresses. Two independent addresses are used to access two
word operands — one word operand is in X memory space, and one word operand is in

MOTOROLA . DSP56000/DSP56001 USER'S MANUAL 7-9

Y memory space. Two effective addresses in the instruction are used to derive two inde-
pendent operand addresses — one operand address may reference either X or Y memory
space and the other operand address must reference the other memory space. One of
these two effective addresses specified in the instruction must reference one of the address
registers, R0O-R3, and the other effective address must reference one of the address reg-
isters, RA-R7. Addressing modes are restricted to no-update and post-update by +1, —1,
and + N addressing modes. Each effective address provides independent read/write control
for its memory space. Data may be read from memory to a register or from a register to
memory.

7.2.5 Addressing Modes

The DSP instruction set contains a full set of operand addressing"modes. To minimize
execution time and loop overhead, all address calculations are performed concurrently in
the address ALU.

Addressing modes specify whether the operand(s) is in a register or in memory and provide
the specific address of the operand(s}. An effective address in an instruction will specify
an addressing mode, and, for some addressing modes, the effective address will further -
specify an address register. In addition, address register indirect modes require additional
address modifier information that is not encoded in the instruction. The address modifier
information is specified in the selected address modifier register(s). All indirect memory
references require one address modifier, and the XY memory reference requires two ad-
dress modifiers. The definition of certain instructions implies the use of specific registers
and addressing modes.

Some address register indirect modes require an offset and a modifier register for use in
address calculations. These registers are implied by the address register specified in an
effective address in the instruction word. Each offset register (Nn) and each modifier register
(Mn) is assigned to an address register (Rn) having the same register number (n). Thus,
the assigned register triplets are RO;NO; M0, R1;N1;M1, R2;N2; M2, R3;N3;M3, R4;N4; M4,
R5;N5; M5, R6;N6;M6, and R7;N7;M7. Rn is used as the address register; Nn is used to
specify an optional offset; and Mn is used to specify the type of arithmetic used to update
the Rn.

The addressing modes are grouped into three catégories: register direct, address register
indirect, and special. These addressing modes are described in the following paragraphs.
Refer to Table 7-1 for a summary of the addressing modes and allowed operand references.

7.2.5.1 REGISTER DIRECT MODES. These effective addressing modes specify that the
operand source or destination is one of the data, control, or address registers in the
programming model.

7-10 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

7.2.5.1.1 Data or Control Register Direct. The operand is in one, two, or three data ALU
register(s) as specified in a portion of the data bus movement field in the instruction.
Classified as a register reference, this addressing mode is also used to specify a control
register operand for special instructions such as OR immediate to control registers (ORI)
and AND immediate to control registers (ANDI).

7.2.5.1.2 Address Register Direct. Classified as a register reference, the operand is in one
of the 24 address registers (Rn, Nn, or Mn) specified by an effective address in the instruc-
tion.

NOTE

Due to instruction pipelining, if an address register (Mn, Nn, or Rn} is changed
with a MOVE instruction, the new contents will not be available for use as a
pointer until the second following instruction.

7.2.5.2 ADDRESS REGISTER INDIRECT MODES. The address register indirect mode de-
scription is presented in SECTION 5 ADDRESS GENERATION UNIT.

7.2.5.3 SPECIAL ADDRESSING MODES. The special addressing modes do not use specific
registers in specifying an effective address. These modes specify the operand or the op-
erand address in a field of the instruction, or they implicitly reference an operand. Figure
examples are given for each of the special addressing modes discussed in the following
paragraphs.

7.2.5.3.1 Immediate Data. Classified as a program reference, this addressing mode re-
quires one word of instruction extension containing the immediate data. Figure 7-7 shows
three examples. Example A moves immediate data to register A0 without affecting A1 or
A2. Examples B and C zero fill register A0 and sign extend register A2.

7.2.5.3.2 Absolute Address. This addressing mode requires one word of instruction ex-
tension containing the absolute address. Figure 7-8 shows that MOVE Y:$5432,B0 copies
the contents of address $5432 into B0 without changing memory location $5432, register
B1, or register B2. This addressing mode is classified as both a memory reference and
program reference. The 16-bit absolute address is stored in the 16 LSBs of the extension
word; the eight MSBs are zero filled.

7.2,5.3.3 Immediate Short. The 8- or 12-bit operand, which is in the instruction operation
word, is classified as a program reference. The immediate data is interpreted as an unsigned
integer (low-order portion) or signed fraction (high-order portion), depending on the des-
tination register. Figure 7-9 shows the use of immediate short addressing in four examples.

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 7-11

EXAMPLE A: IMMEDIATE INTO 24-BIT REGISTER
(MOVE #8123456,A0)

BEFORE EXECUTION : AFTER EXECUTION

A2 Al A0 A2 Al A0
55 48 47 2423 0 55 48 47 24 23 0
Eoxox [xoxoxoxoxox [x x x x x x [x x[xxxxxx|1 23455
7 023 023 0 7 023 023 0

EXAMPLE B: POSITIVE IMMEDIATE INTO 56-BIT REGISTER
(MOVE #8123456,A)

BEFORE EXECUTION , AFTER EXECUTION
A2 Al AD A2 Al Y
55 48 47 % 2 0 55 48 47 % 2 0
[x [oxox xoxox x| x x x x x x [oo]l1 23456 /000000
7 02 02 0 BEER 0 0

EXAMPLE C: NEGATIVE IMMEDIATE INTO 56-BIT REGISTER

{MOVE #8801234,A)

BEFORE EXECUTION AFTER EXECUTION

m AT A0 Y Al A0
55 48 41 % 2 0 55 48 47 % 3 0
[x x[xox xox x x]x x x x x x [Frlso1234[oc00000
7 02 02 0 7 0n 0% 0

Assembler Syntax: #XXXXXX"

Memory Spaces: P:

Additional Instruction Execution Time (Clocks): 2
Additional Effective Address Words: 1

Figure 7-7. Speciai Addressing — Immediate Data

7-12 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

EXAMPLE: MOVE Y:$5432,80

BEFORE EXECUTION AFTER EXECUTION
B2 81 BO 82 B1 B
55 48 47 % 3 0 55 48 47 u 5 0
[xox [xox x xox x[xx x x x x| [x x[x xxxxx]ascoec¢r]
7 0m 02 0 7 0® 02 0
2 YMEMORY 0 23 YMEMORY 0
52| A B C D EF ssa2 [AB CDECF
. —d L

Assembler Syntax: XXXX

Memory Spaces: P:

Additional Instruction Execution Time (Clocks): 2
Additional Effective Address Words: 1

Figure 7-8. Special Addressing — Absolute Addressing

7.2.5.3.4 Short Jump Address. The operand occupies 12 bits in the instruction operation
word, which allows addresses $0000-$0FFF to be accessed (see Figure 7-10). The address
is zero extended to 16 bits when used to address program memory. This addressing mode
is classified as a program reference.

7.25.3.5 Absolute Short. The address of the operand occupies six bits in the instruction
operation word, allowing addresses $0000-$003F to be accessed (see Figure 7-11). Classified
as both a memory reference and program reference, the address is zero extended to 16
bits when used to address an operand or program memory.

7.25.3.6 1/0 Short. Classified as a memory reference, the I/0O short addressing mode is
similar to absolute short addressing. The address of the operand occupies six bits in the
instruction operation word. /0 short is used with the bit manipulation and MOVEP instruc-
tions. The I/O short address is ones extended to 16 bits to address the I/0 portion of X and
Y memory (addresses $FFCO-$FFFF — see Figure 7-12).

7.2.5.3.7 Implicit Reference. Some instructions make implicit reference to PC, SS, LA, LC,
or SR. For example, the jump instruction (JMP) implicitly references the PC; whereas, the
repeat next instruction (REP) implicitly references LC. The registers implied and their uses
are defined by the individual instruction descriptions (see APPENDIX A INSTRUCTION SET
DETAILS).

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 7-13

EXAMPLE A: IMMEDIATE SHORT INTO A0, A1, A2, B0, B1, B2, Rn, Nn
(MOVE #$FF,A1)

BEFORE EXECUTION AFTER EXECUTION

A2 Al A0 A2 Al A0
55 43 47 %5 0 55 48 47 u 5 0
[x xTxxx x x x[xx xxxx] [x xJoooo0FF]xxxxxx

7 023 02 0 7 023 023 0
/

NOTE: For these destinations, the immediate data is interpreted as an unsigned integer.

EXAMPLE B: POSITIVE IMMEDIATE SHORT INTO X0, X1, YO, Y1, A, B
(MOVE #8$1F.Y1)

BEFORE EXECUTION , AFTER EXECUTION
Yi Y0 vi Yo
a7 % 2 0 a7 % 23 0
X X X X X X|X XX XXX | [1 Foo0o0o0]xxxxxx
23 02 0 3 0 0

NOTE: For these destination registers, the immediate data is interpreted as a signed fraction.

EXAMPLE C: POSITIVE IMMEDIATE SHORT INTO X, Y, A, B
(MOVE #$1F,A)

BEFORE EXECUTION) AFTER EXECUTION

A2 Al YY) A2 Al A0
55 48 47 % 23 0 55 48 47 2B 0
[x x]xox x x x x| x x x x x x [oo]1 rooo0o0foooo00o0]
7 0n 02 0 7 02 023 0

EXAMPLE D: NEGATIVE IMMEDIATE SHORT INTO X0, X1, X0, Y1, A, B
{MOVE #883,8)

BEFORE EXECUTION ‘ AFTER EXECUTION
B2 81 80 B2 B1 B0
55 48 47 2B 0 55 48 47 2 B 0
[x x[x x x x x x[xx x x xx [Frls3o0o000foo00000

7 023 023 0 7 023 023 0

Assembler Syntax: #XX

Memory Spaces: P:

Additional Instruction Execution Time (Clocks): 0
Additional Effective Address Words: 0

Figure 7-9.' Special Addressing — Immediate Short Data

7-14 ' DSP56000/DSP56001 USER’S MANUAL MOTOROLA

EXAMPLE: JMP $123

BEFORE EXECUTION AFTER EXECUTION
P MEMORY P MEMORY
JMP 50123 JMP $0123
T —— ———
[~——— e ~—
SOFFF SOFFF

’—__J SHORT ————

JUMP
RANGE - [~———
4,0% PC
50123 WORDS NEXT INSTRUCTION
’_—’ ’—_—4
N ’\"
50000 v $0000

Assembler Syntax: XXX

Memory Spaces: P:

Additional Instruction Execution Time (Clocks): 0
Additional Effective Address Words: 0

Figure 7-10. Special Addressing — Short Jump Address

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 7-15

EXAMPLE A: MOVE P:$3200,X0

BEFORE EXECUTION

AFTER EXECUTION

X1 X0 X1 X0
47 YLRX] 0 4 VIR A] 0
00000 I1]|XXXXX XJ 0 00O0O0T1|AS5B4CE6 l
23 023 0 23 023 0
P MEMORY P MEMORY

0 23 0
T ~— T ~——

$320 [X X X X X X $3204 1 X X X X X X

$3200|SA 5 B 4 C 6 $3200|SA 5 B 4 C 6
’-\-/ ’—\/

EXAMPLE B: MOVE A1,X:$3

BEFORE EXECUTION

AFTER EXECUTION

A0

A2 Al AD A2 A1
55 48 47 24 23 0 55 48 47 24 23 0
[xx[sarses|xxxxxx| [xx[sarFrsc€es[xxxxxx]
7 023 023 0 7 0B 02 0
p XMEMORY | , XMEMORY
T ~—— T ~————
$0040 $0040
$003F $003F .
AN
S > ABSOLUTE " T
SHORT
ADDRESSING
S0003] X X X X X X RANGE $0003[3 4 F 5 E 6
$0000 $0000

Assembler Syntax: aa

Memory Spaces: P:, X:, Y, L:
Additional Instruction Execution Time (Clocks): 0
Additional Effective Address Words: 0

Figure 7-11. Special Addressing — Absolute Short Address

7-16 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

EXAMPLE: MOVEP A1,X:<<$FFFE

BEFORE EXECUTION AFTER EXECUTION
A2 A Mo A2 Al A0
55 48 47 u % 0 55 48 47 u % 0
[xx]123ase6[xxxxxx] [xx[123a56[xxxxxx]
7 01m 023 0 7 02 023 0
X MEMORY X MEMORY
0 , 3
SFFFF SFFFF
sFE| 0 0 F FOF ORX SFFFE| 0 0 3 4 5 6
AN 1/0 SHORT <
ABSOLUTE
ADDRESS
SPACE 7
SFFCO SFFCO
_’/\ _—/—N

*Contents of Bus Control Register (X:$FFFE) After Reset

Assembler Syntax: pp

Operands Referenced: X, Y Memories
Additional Instruction Execution Time (Clocks): 0
Additional Effective Address Words: 0

Figure 7-12. Special Addressing — /O Short Address

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 7-17

7.2.5.4 ADDRESSING MODES SUMMARY. Table 7-1 is a summary of the addressing
modes discussed in the previous paragraphs.

Table 7-1. Addressing Modes Summary

Modifier Operand Reference
ressing Mode
Addressing MMMM TpTsfec|p|a]x]v]r[xy

Register Direct

Data or Control Register No X1 X

Address Register No X

Address Modifier Register } No X

Address Offset Register No X
Address Register Indirect

No Update Yes X X|X|X|[X

Postincrement by 1 Yes X X[X]|X]|X

Postdecrement by 1 Yes X X|X|X[X

Postincrement by Offset Nn Yes X XX X]|X

Postdecrement by Offset Nn Yes X X1 XX

Indexed by Offset Nn Yes X X | X|X

Predecrement by 1 Yes X X[X]|X
Special

Immediate Data No X

Absolute Address No X XX | X

Immediate Short Data No X

Short Jump Address No X

Absolute Short Address No X XXX

I/0 Short Address No XX

Implicit No X\ X]|X

Where: MMMM = Address Modifier
P=Program Reference
S =Stack Reference
C=Program Controller Register Reference
D =Data ALU Register Reference
A=AGU Register Reference
X=X Memory Reference
Y=Y Memory Reference
L=L Memory Reference
XY =XY Memory Reference

7.3 INSTRUCTION GROUPS

The instruction set is divided into the following groups:

Arithmetic :

Logical

Bit Manipulation

Loop

Move

Program Control
Each instruction group is described in the following paragraphs; detailed information on
each instruction is given in APPENDIX A INSTRUCTION SET DETAILS.

7-18 ’ DSP56000/DSP56001 USER'S MANUAL MOTOROLA

7.3.1 Arithmetic Instructions

The arithmetic instructions, which perform all of the arithmetic operations within the data
ALU, execute in one instruction cycle. These instructions may affect all of the CCR bits.
Arithmetic instructions are register based (register direct addressing modes used for op-
erands) so that the data ALU operation indicated by the instruction does not use the XDB,
the YDB, or the global data bus (GDB). Optional data transfers may be specified with most
arithmetic instructions, which allows for parallel data movement over the XDB and YDB
or over the GDB during a data ALU operation. This parallel movement allows new data to
be prefetched for use in subsequent instructions and allows results calculated in previous
instructions to be stored. The following list contains the arithmetic instructions:
ABS Absolute Value

ADC Add Long with Carry

ADD Addition

ADDL Shift Left and Add

ADDR Shift Right and Add

ASL Arithmetic Shift Left

ASR ~ Arithmetic Shift Right

CLR Clear an Operand

CMP Compare

CMPM Compare Magnitude

DIV* Divide Iteration

MAC Signed Multiply-Accumulate
MACR Signed Mulitiply-Accumulate and Round
MPY Signed Multiply

MPYR Signed Multiply and Round
NEG Negate Accumulator
NORM* Normalize

RND Round

SBC Subtract Long with Carry
SUB Subtract

SUBL Shift Left and Subtract
SUBR Shift Right and Subtract
Tec* Transfer Conditionally

TFR Transfer Data ALU Register
TST Test an Operand

*These instructions do not allow parallel data moves.

7.3.2 Logical Instructions

The logical instructions, which execute in one instruction cycle, perform all of the logical
operations within the data ALU (except ANDI and ORI). They may affect all of the CCR bits
and, like the arithmetic instructions, are register based. Optional data transfers may be
specified with most logical instructions, allowing parallel data movement over the XDB
and YDB or over the GDB during a data ALU operation. This parallel movement allows

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 7-19

new data to be prefetched for use in subsequent instructions and allows results calculated
in previous instructions to be stored. The following list includes the logical instructions:
AND Logical AND

ANDI* AND Immediate to Control Register
EOR Logical Exclusive OR

LSL Logical Shift Left

LSR Logical Shift Right

NOT Logical Complement

OR Logical Inclusive OR

ORI* OR Immediate to Control Register
ROL Rotate Left

ROR Rotate Right

*These instructions do not allow parallel data moves.

7.3.3 Bit Manipulation Instructions

The bit manipulation instructions test the state of any single bit in a memory location and
then optionally set, clear, or invert the bit. The carry bit of the CCR will contain the result
of the bit test. The following list defines the bit manipulation instructions:

BCLR Bit Test and Clear

BSET Bit Test and Set
BCHG Bit Test and Change
BTST Bit Test on Memory and Registers

7.3.4 Loop Instructions

The hardware DO loop executes with no overhead cycles — i.e., it runs as fast as straight-
line code. Replacing straight-line code with DO loops can significantly reduce program
memory. The loop instructions control hardware looping by 1) initiating a program loop
and establishing looping parameters or by 2) restoring the registers by pulling the SS when
terminating a loop. Initialization includes saving registers used by a program loop (LA and
LC) on the SS so that program loops can be nested. The address of the first instruction'in
a program loop is also saved to allow no-overhead looping. The loop instructions are as
follows:

DO Start Hardware Loop

ENDDO Exit from Hardware Loop

Both static and dynamic loop counts are supported in the folloWing forms:
DO #xxx,Expr ; (Static)
DO S,Expr ; (Dynamic)

Expris an assembler expression or absolute address, and Sis a directly addressable register
such as X0. o '

7-20 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

The operation of a DO loop is shown in Figure 7-13. When a program loop is initiated with
the execution of a DO instruction, the following events occur:

1. The stack is pushed.
A. The SP is incremented.
B. The current 16-bit LA and 16-bit LC registers are pushed onto the SS to allow
nested loops.
C. The LCregisteris initiated with the loop count value specified in the DO instruction.

2. The stack is pushed again.
A. The SP is incremented.
B. The address of the first instruction in the program loop (PC) and the current SR
contents are pushed onto the SS.
C. The LA register is initialized with the value specified in the DO instruction dec-
remented by one.

3. The LF bit in the SR is set. The LF bit is set when a program loop is in progress and
enables the end-of-loop detection.

START OF LOOP

1) SP+1#SP; LA # SSH; LC# SSL; #xxx # LC
2) SP+19SP; PC# SSH; SR# SSL; Expr—1# LA
3 1LF

END OF LOOP

1) SSL(LF) # SR
2) SP—19SP; SSHHLA; SSL#LC; SP—18SP
3) PC+1»PC

NOTE:
#xxx=Loop Count Number
Expr =Expression

Figure 7-13. Hardware DO Loop

The program loop continues execution until the program address fetched equals the LA
register contents (last address of program loop). The contents of the LC are then tested
for one. If the LC is not one, it is decremented, and the top location in the stack RAM is
read (but not pulled) into the PC to return to the start of the loop. If the LC is one, the
program loop is terminated by the. following sequence:

1. Reading the previous LF bit from the top location in the SS into the SR

2. Purging the SS (pulling the top location and discarding the contents), pulling the LA
and LC registers off the SS, and restoring the respective registers

3. Incrementing the PC
The LF bit (pulled from the SS when a loop is terminated) indicates if the terminated loop

was a nested loop. Figure 7-14 shows two DO loops, one nested inside the other. If the
stack is managed to prevent a stack overflow, DO loops can be stacked indefinitely.

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 7-21

DO #nl,END1

DO #n2END2
‘ MOVE AX:(RO) +
END2 ADD AB X-(R1) + X0

END1

Figure 7-14. Nested DO Loops

The ENDDO instruction is not used for normal termination of a DO loop; it is only used to
terminate a DO loop before the LC has beén decremented to one.

7.3.5 Move Instructions

The move instructions perform data movement over the XDB and YDB or over the GDB.
Move instructions do not affect the CCR except the limit bit L if limiting is performed when
reading a data ALU accumulator register. An address ALU instruction (LUA) is also included
in the following move instructions. The MOVE instruction is the parallel move with a data
ALU no-operation (NOP).

LUA Load Updated Address

MOVE Move Data Register

MOVEC Move Control Register

MOVEM Move Program Memory

MOVEP = Move Peripheral Data

NOTE:

Due to instruction pipelining, if an address register (Mn, Nn, or Rn) is changed
with a MOVE instruction, the new contents will not be available for use in an
effective address calculation until the second following instruction.

There are nine classifications of parallel data moves between registers and memory. Figure
7-15 shows seven parallel moves. The source of the data to be moved and the destination
are separated by a comma.

Examples of the other two classifications, XY and long (L) moves, are shown in Figure 7-
16. :

The first example (A) illustrates the following steps: 1) register X0 is added to register A
and the result is placed in register A; 2) register X0 is moved to the X memory register
location pointed to by R3, and R3 is incremented; and 3) the contents of the Y memory
location pointed to by R7 is moved to the B register, and R7 is decremented.

The second example (B) depicts the following sequence: 1) register X0 is added to register
A and the result is placed in register A; and 2) registers A and B are moved, respectively,

7-22 DSP56000/DSP56001USER'S MANUAL MOTOROLA

OPCODE/OPERANDS '.) PARALLEL MOVE EXAMPLES

‘ l -0 I
IMMEDIATE SHORT DATA ADD X0A #805,Y1
ADDRESS REGISTER UPDATE ADD X0,A (RO)+NO
REGISTER TO REGISTER ADD X0A A1 Yo
X MEMORY ADD X0A X0,X:(R3) +
X MEMORY PLUS REGISTER ADD X0,A X:(R4)— X1 AYO
Y MEMORY ADD X0.A Y:(R6) + N6,X0
Y MEMORY PLUS REGISTER ADD X0,A 'AX0 B,Y:(RO)

NOTE: Parallel Move Syntax — Source(Src), Destination(Dst)

Figure 7-15. Classifications of Parallel Data Moves

-1
XY MEMORY MOVE ADD X0A " X0X:(R3)+ Y:R7)--.B
3 +1
R3 -
R7] B2 SIGN EXTENDED
ZE] BO CLEARED
X MEMORY Y MEMORY
LI s | 8 |

{(a) Example A

LONG MEMORY MOVE " ADD X0A AB,L:(R2)+N2
% N2
R2— = o S—
X MEMORY Y MEMORY
[R2] [a0] [e] & [80]

A,B ARE SHIFTED AND LIMITED
{b) Example B

Figure 7-16. Parallel Move Examples

to the locations in memories X and Y pointed to by R2, and then R2 is incremented by N2.
The contents of the 56-bit registers A and B were rounded to 24 bits before moving to the
24-bit memory registers. ’

The DSP offers parallel processing of the data ALU, AGU, and program controller. For the
instruction word above, the DSP will perform the designated operation (data ALU), the

MOTOROLA DSP56000/DSP56001 USER'S MANUAL ‘ 7-23

data transfers specified with address register updates (AGU), and will decode the next
instruction and fetch an instruction from program memory (program controller) all in one
instruction cycle. When an instruction is more than one word in length, an additional
instruction execution cycle is required. Most instructions involving the data ALU are register
based (all operands are in data ALU registers), thereby allowing the programmer to keep
each parallel processing unit busy. An instruction that is memory oriented (such as a bit
manipulation instruction) or that causes a control-flow change (such as a JMP) prevents
the use of parallel processing resources during its execution.

7.3.6 Program Control Instructions

The program control instructions include jumps, conditional jumps, and other instructions
affecting the PC and SS. Program control instructions may affect the CCR bits as specified
in the instruction. Optional data transfers over the XDB and YDB may be specified in some
of the program control instructions. The following list contains the program control
instructions:

I lllegal Instruction

Jee Jump Conditionally

JMP Jump

JCLR Jump if Bit Clear

JSET Jump if Bit Set ,

JScc Jump to Subroutine Conditionally
JSR Jump to Subroutine

JSCLR Jump to Subroutine if Bit Clear
JSSET Jump to Subroutine if Bit Set

NOP No Operation

REP Repeat Next Instruction

RESET Reset On-Chip Peripheral Devices

RTI Return from Interrupt

RTS Return from Subroutine

STOP Stop Processing (Low-Power Standby)
SWI Software Interrupt

WAIT Wait for Interrupt (Low-Power Standby)

7-24 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

SECTION 8
PROCESSING STATES

The DSP is always in one of five processing states: normal, exception, reset, wait, and
stop. These states are described in the following paragraphs.

8.1 NORMAL PROCESSING STATE

The normal processing state is associated with instruction execution. Details concerning
normal processing of the individual instructions can be found in APPENDIX A INSTRUC-
TION SET DETAILS. Instructions are executed using a three-stage pipeline, which is de-
scribed in the following paragraphs.

8.1.1 Instruction Pipeline

DSP56000/DSP56001 instruction execution is performed in a three-stage pipeline, allowing
most instructions to execute at a rate of one instruction every instruction cycle. However,
certain instructions require additional time to execute: instructions longer than one word,
instructions using an addressing mode that requires more than one cycle, and instructions
causing a control-flow change. In the latter case, a cycle is needed to clear the pipeline.

Instruction pipelining allows overlapping of instruction execution so that the fetch-decode-
execute operations of a given instruction occur concurrently with the fetch-decode-execute
operations of other instructions. Specifically, while an instruction is executed, the next
instruction to be executed is decoded, and the instruction to follow the instruction being
decoded is fetched from program memory. Only one word is fetched per cycle so that, if
an instruction is two words in length, the additional word will be fetched before the next
instruction is fetched. Table 8-1 demonstrates pipelining; F1, D1, and E1 refer to the fetch,
decode, and execute operations, respectively, of the first instruction. The third instruction,
which contains an instruction extension word, takes two instruction cycles to execute. The

Table 8-1. Instruction Pipelining

: . Instruction Cycle
Operation
1 2 3 4 5 6 7 . . .
Fetch F1 | F2 | F3 |F3e | F4 | F5 | F6 . . .
Decode D1 D2 D3 | D3e | D4 D5 . . .
Execute E1 | E2 | E3 | E3e | E4 . . .

MOTOROLA DSP56000/DSP56001. USER'S MANUAL 8-1

extension word will be either an absolute address or immediate data. Although it takes
three instruction cycles for the pipeline to fill and the first instruction to execute, an in-
struction usually executes on each instruction cycle thereafter.

Each instruction requires a minimum of three instruction cycles (12 clock phases) to be
fetched, decoded, and executed. This means that there is a delay of three instruction cycles
on powerup to fill the pipe. A new instruction may begin immediately following the previous
instruction. Two-word instructions require a minimum of four instruction cycles to execute
(three cycles for the first instruction word to move through the pipe and execute and one
more cycle for the second word to execute). A new instruction may start after two instruction
cycles.

The pipeline is normally transparent to the user. However, it will affect program execution
in some situations. These situations, which are instruction-sequence dependent, are best
described by case studies. Most of these restricted sequences occur because 1) all ad-
dresses are formed during instruction decode, or 2) they are the result of contention for
an internal resource such as the status register (SR). If the execution of an instruction
depends on the relative location of the instruction in a sequence of instructions, there is
a pipeline effect. To test for a suspected pipeline effect, compare between the execution
of the suspect instruction 1) when it directly follows the previous instruction and 2) when
four NOPs are inserted between the two. If there is a difference, it is due to a pipeline
effect. The DSP56000/DSP56001. assembler (ASM56000) is designed to flag instruction
sequences with potential pipeline effects so that the user can decide if the operation will
be as expected.

Case 1: The following two examples show similar code sequences.

1. No pipeline effect: : :
ORI #xx,CCR ;Changes CCR at the end of execution time slot
Jee xxxx ;Reads condition codes in SR in its execution time slot

The Jcc will test the bits modified by the ORI without any pipeline effect in the code segment
above.

2. Instruction that started execution during decode:
ORI #04,0MR ;Sets DE bit at execution time slot
MOVE x:$100,a ;Reads external RAM instead of internal ROM

A pipeline effect occurs in example 2 because the address of the MOVE is formed at its
decode time before the ORI changes the DE bit {(which changes the memory map) in the
OR!’s execution time slot. The following code produces the expected results of reading the
internal ROM:

ORI #04,0MR ;Sets DE bit at execution time slot
NOP ;Delays the MOVE so it will read the updated OMR
MOVE x:$100,a ;Reads internal ROM

8-2 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

Case 2: One of the more common sequences where pipeline effects are apparent is as
follows:
. ;Move a number into register Rn (n=0-7).
MOVE #xx,Rn
MOVE X:(Rn),A ;Use the new contents of Rn to address memory.

In this case, before the first MOVE instruction has written Rn during its execution cycle,
the second MOVE has accessed the old Rn, using the old contents of Rn. This is because
the address for indirect moves is formed during the decode cycle. This overlapping in-
struction execution in the pipeline causes the pipeline effect. One instruction cycle should
be allowed after a register has been written by a MOVE instruction before the new contents
are available for use by another MOVE instruction. The proper instruction sequence is as
follows: ' ’

. ;Move a number into register Rn.
MOVE X0,Rn
NOP ;Execute any instruction or instruction
. ;sequence not using Rn.
MOVE X:(Rn),A Use the new contents of Rn.

Case 3: A situation related to Case 2 can be seen in the boot ROM code shown in APPENDIX
A of the DSP56001 Advance Information Data Sheet (ADI1290). At the end of the bootstrap
operation, the operation mode register (OMR) is changed to mode #2, and then the program
that was loaded is executed. This process is accomplished in the last three instructions:

—-BOOTEND MOVEC #2,0MR ;Set the operating mode to 2

;(and trigger an exit from
;bootstrap mode).

ANDI #$0,CCR ;Clear SR as if RESET and
;introduce delay needed for
;Op. Mode change.

JMP <$0 ;Start fetching from PRAM, P:$0000

The JMP instruction generates its jump address during its decode cycle. If the JMP in-
struction followed the MOVEC, the MOVEC instruction would not have changed the OMR
before the JMP instruction formed the fetch address. As a result, the jump would fetch the
instruction at P:$0000 of the bootstrap ROM (MOVE #$FFE9,R2). The OMR would then
change due to the MOVEC instruction, and the next instruction would be the second
instruction of the downloaded code at P:$0001 of the internal RAM. However, the ANDI

MOTOROLA DSP56000/DSP56001 USER’S MANUAL \ 8-3

instruction allows the OMR to be changed before the JMP instruction uses it, and the JMP
fetches P:$0000 of the internal RAM.

Case 4: An interrupt has two additional control cycles that are executed in the interrupt
controller concurrently with the fetch, decode, and execute cycles (see 8.2 EXCEPTION
PROCESSING STATE INTERRUPT PROCESSING and Figure 8-2). During these two control
cycles, the interrupt is arbitrated by comparing the interrupt mask level with the interrupt
priority level (IPL) of the interrupt and allowing or disallowing the interrupt. Therefore, if
the interrupt mask is changed after an interrupt is arbitrated and accepted as pending but
before the interrupt is executed, the interrupt will be executed, regardless of what the mask
was changed to. The following examples show that the old interrupt mask is in effect for
up to four additional instruction cycles after the interrupt mask is changed. All instructions
shown in the examples here are one-word instructions; however, one two-word instruction
can replace two one-word instructions except where noted.

1. Program flow with no interrupts after interrupts are disabled:

ORI #03,MR ;Disable interrupts

INST 1
INST 2
INST 3
INST 4

2. Thefour possible variations in program flow that may occur after interrupts are disabled:

ORI #03,MR ORI #03,MR ORI #03,MR ORI #03,MR

Il (See Note 2) INST 1 INST 1 INST 1

+1 Il INST 2 INST 2

INST 1 H+1 I INST 3 (See Note 1)
INST 2 INST 2 +1 Il

INST 3 INST 3 INST 3 Ih+1

INST 4 INST 4 INST 4 INST 4

NOTES:

1. INST 3 may be executed at that point only if the preceding instruction {INST 2)
was a single-word instruction.

2. lI=Interrupt instruction from maskable interrupt.

8-4 DSP56000/DSP56001 USER'S MANUAL MOTOROCLA

The following program flow will not occur because the ORI instruction becomes effective
after a pipeline latency of four instruction cycles:

ORI #03,MR ;Disable interrupts.
INST 1

INST 2

INST 3

INST 4

] ;Interrupts disabled.
n+1 ;Interrupts disabled.

1. Program flow without interrupts after interrupts are re-enabled:

ANDI #00,MR ;Enable interrupts
INST 1
INST 2
INST 3
INST 4

2. Program flow with interrupts after interrupts are re-enabled:

ANDI #00,MR ;Enable interrupts
INST 1 ;Uninterruptable
INST 2 - ;Uninterruptable
INST 3 ;1l fetched

INST 4 ;1141 fetched

I

H+1

The DO instruction is another instruction that begins execution during the decode cycle of
the pipeline. As a result, there are a number of restrictions concerning access contention
with the program controller registers accessed by the DO instruction. The ENDDO instruc-
tion has similar restrictions. APPENDIX A INSTRUCTION SET DETAILS contains additional
information on the DO and ENDDO instruction restrictions. '

MOTOROLA DSP56000/DSP56001 USER’S MANUAL 8-5

Case 5: A resource contention problem can occur when one instruction is using a register
during its decode while the instruction executing is accessing the same resource. One
example of this is as follows:

MOVEC X:$100,SSH

DO #$10,END

The problem occurs because the MOVEC instruction loads the contents of X:$100 into the
system stack high (SSH) during T3 of its execution cycle. The DO instruction that follows
pushes the stack (LA » SSH, LC » SSL) during T3 of its decode cycle. Therefore, the two
instructions try writing to the SSH simultaneously and conflict.

8.1.2 Summary of Pipeline-Related Restrictions

A summary of the instruction sequences that cause pipeline effects is given in the following
paragraphs. Additional information concerning the individual instructions can be found in
APPENDIX A INSTRUCTION SET DETAILS.

DO instruction restrictions:

The DO instruction must not be immediately preceded by any of the following instructions:
BCHG/BCLR/BSET LA, LC, SSH, SSL, or SP
MOVEC/MOVEM to LA, LC, SSH, SSL, or SP
MOVEC/MOVEM from SSH

Restrictions near the end of DO loops:

Proper DO loop operation is guaranteed if no instruction starting at address LA-2, LA-1, or
LA specifies the program controller registers SR; SP, SSL, LA, LC, or {implicitly) PC as a
destination register or specifies SSH as a source or a destination register. Also, SSH can
not be specified as a source register in the DO instruction.

The restricted instructions at LA-2, LA-1, and LA are as follows:
DO .
BCHG/BCLR/BSET LA, LC, SR, SP, SSH, or SSL
BTST SSH .
JCLR/JSET/JSCLR/JSSET SSH
MOVEC/MOVEM/MOVEP from SSH
MOVEC/MOVEM/MOVEP to LA, LC, SR, SP, SSH, or SSL
ANDI/ORI MR

The restricted instructions at LA include the following:
Any two-word instruction
Jee, JMP, JScc, JSR,
REP, RESET, RTI, RTS, STOP, WAIT

8-6 DSP56000/DSP56001 USER'S MANUAL ; MOTOROLA

Other restrictions are
DO SSH,xxxx
JSR/JScc/JSCLR/JSSET to LA, if loop flag is set

ENDDO instruction restrictions: ‘

The ENDDQO instruction must not be immediately preceded by any of the following instruc-
tions:

BCHG/BCLR/BSET LA, LC, SR, SSH, SSL, or SP

MOVEC/MOVEM to LA, L.C, SR, SSH, SSL, or SP

MOVEC/MOVEM from SSH

ANDI/ORI MR

RTI and RTS instruction restrictions:

The RTl instruction must not be immediately preceded by any of the following instructions:
BCHG/BCLR/BSET SR, SSH, SSL, or SP
MOVEC/MOVEM to SR, SSH, SSL, or SP
MOVEC/MOVEM from SSH
ANDI MR, ANDI CCR
ORI MR, ORI CCR

The RTS instruction must not be immediately preceded by any of the following instructions:
BCHG/BCLR/BSET SSH, SSL, or SP
MOVEC/MOVEM to SSH, SSL, or SP
MOVEC/MOVEM from SSH

SP and SSH/SSL register manipulation restrictions:

In addition to all the above restrictions concerning SP, SSH, and SSL, the following in-
struction sequences are illegal:
1. BCHG/BCLR/BSET SP
2. MOVEC/MOVEM/MOVEP from SSH or SSL
and
1. MOVEC/MOVEM to SP
2. MOVEC/MOVEM/MOVEP from SSH or SSL
: and
. MOVEC/MOVEM to SP -
2. JCLR/JSET/JSCLR/JSSET SSH or SSL
and
1. BCHG/BCLR/BSET SP
2. JCLR/JSET/JSCLR/JSSET SSH or SSL

—_

Also the instruction MOVEC SSH,SSH is illegal.

MOTOROLA DSP56000/DSP56001 USER'S MANUAL ‘ 87

Rn, Nn, and Mn register restrictions:

If an address register {(R0O-R7, NO-N7, or M0-M7) is changed with a move-type instruction
(LUA, Tcc, MOVE, MOVEM, MOVEC, or parallel move), the new contents will not be available
for use as a pointer until the second following instruction. This restriction does not apply
to registers updated as part of an indirect addressing mode.

Fast interrupt routines:

SWI, STOP, and WAIT may not be used in a fast interrupt routine.

8.2 EXCEPTION PROCESSING STATE (INTERRUPT PROCESSING)

The exception processing state is associated with interrupts that can be generated by
conditions inside the DSP or from external sources. There are many sources for interrupts
on the DSP56000/DSP56001; some of these sources can generate more than one interrupt.
A prioritized interrupt vector scheme with 32 vectors is used to provide fast interrupt service.
The following list outlines how interrupts are processed by the DSP56000/DSP56001:

1. A hardware interrupt is synchronized with the DSP clock, and the interrupt pending
flag for that particular hardware interrupt is set. An interrupt source can have only
one interrupt pending at any given time.

2. Al pendlng interrupts (external and mternal) are arbitrated to select which lnterrupt
will be processed. The arbiter automatically ignores any interrupts with an IPL lower
than the interrupt mask level in the SR and selects the remaining interrupt with the
highest IPL.

3. The interrupt controller then freezes the program counter (PC) and fetches two in-
structions at the two interrupt vector addresses associated with the selected interrupt.

4. The interrupt controller jams the two instructions into the instruction stream and
releases the PC, which is used for the next instruction fetch. The next interrupt ar-
bitration is then begun.

If neither instruction is a change of program-flow instruction (i.e., a JSR), the state of the
machine is not saved on the stack, and a fast interrupt is executed. A long interrupt is
formed if one of the interrupt instructions fetched is a JSR instruction. The PC is immediately
released, the SR and the PC are saved in the stack, and the jump instruction controls where
the next instruction is fetched from. While either an unconditional jump or conditional
jump can be used to form a long interrupt, they do not store the PC on the stack; therefore,
there is no return path.

In digital signal processing, one of the main uses of interrupts is to transfer data between

DSP memory or registers and a peripheral device. When such an interrupt occurs, a limited
context switch with minimum overhead is often desirable. This limited context switch is

8-8 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

accomplished by a fast interrupt. The long interrupt is used when a more complex task
must be accomplished to service the interrupt.

The second and third activities require two additional control cycles, which effectively make
the interrupt pipeline five levels deep.

8.2.1 Interrupt Sources

Exceptions may originate from any of the 32 vector addresses listed in Table 8-2. The
corresponding interrupt starting address for each interrupt source is shown. These ad-
dresses are located in the first 64 |ocations of program memory. When an interrupt is
serviced, the instruction at the interrupt starting address is fetched first. Because the pro-
gram flow is directed to a different starting address for each interrupt, the interrupt structure
of the DSP56000/DSP56001 is said to be vectored. A vectored interrupt structure has low
overhead execution. If it is known a priori that certain interrupts will not be used, those
interrupt vector locations can be used for program or data storage.

The 32 interrupts are prioritized into four levels. Level 3, the highest priority level, is not
maskable. Levels 0-2 are maskable. The interrupts within each level are prioritized ac-
cording to a predefined priority. The level-3 interrupts (reset, illegal instruction, nonmask-
able interrupt (NMI), stack error, trace, and software interrupt (SWI) are discussed
individually.

8.2.1.1 HARDWARE INTERRUPT SOURCES. There are two types of hardware interrupts
in the DSP: internal and external. The internal interrupts include all of the on-chip peripheral
devices (host interface (HI), synchronous serial interface (SSI), and serial communications
interface (SCI). Each internal interrupt source is latched and serviced if it is not masked.
When it is serviced, the interrupt is cleared. Each internal hardware source has independent
enable control.

"The external hardware interrupts include RESET, NMI, IRQA, and TRQB. The RESET inter-
rupt, which is level sensitive, is the highest level interrupt {IPL 3). The IRQA and TRQB
interrupts can be programmed to be level sensitive or edge sensitive. Since the level-
sensitive interrupts will not be cleared automatically when they are serviced, they must
be cleared by other means to prevent multiple interrupts. The edge-sensitive interrupts
are latched as pending on the high-to-low transition of the interrupt input and are auto-
matically cleared when the interrupt is serviced. IROA and IRQB can be programmed to
one of three priority levels: 0, 1, or 2, all of which are maskable. Additionally, both of these
|nterrupts have independent enable control

When the IRQA or IRQB interrupts are disabled in the interrupt priority register, the pending
request will be ignored, regardless of whether the interrupt input was defined as level
sensitive or edge sensitive. Additionally, if the interrupt is defined as edge sensitive, its
edge-detection latch will remain in the reset state as long as the interrupt is disabled; if

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 8-9

Table 8-2. Interrupt Sources

Interrupt Interrupt Source
Starting IPL
Address

$0000 3 |Hardware RESET

$0002 3 | Stack Error

$0004 3 |Trace

$0006 3 |swi

$0008 0-2 |TROA

$000A | 0-2 |iRQB

$000C | 0-2 |SSI Receive Data

$000E 0-2 | SSI Receive Data with Exception Status
$0010 0-2 [SSI Transmit Data

$0012 0-2 [SSI Transmit Data with Exception Status
$0014 0-2 | SCI Receive Data

$0016 0-2 | SCI Receive Data with Exception Status
$0018 0-2 | SCI Transmit Data

$001A 0-2 | SCl Idle Line

$001C 0-2 | SCl Timer

$001E 3 |NMI — Reserved for Hardware Development
$0020 0-2 | Host Receive Data

$0022 0-2 | Host Transmit Data

$0024 0-2 | Host Command (Default)

$0026 0-2 | Available for Host Command

$0028 0-2 | Available for Host Command

$002A 0-2 | Available for Host Command

$002C 0-2 | Available for Host Command

$002E 0-2 |Available for Host Command

$0030 0-2 | Available for Host Command

$0032 0-2 | Available for Host Command

$0034 0-2 [Available for Host Command

$0036 0-2 |Available for Host Command

$0038 - 0-2 [Available for Host Command

$003A 0-2 | Available for Host Command

$003C 0-2 | Available for Host Command

$003E 3 | lllegal Instruction

the interrupt is defined as level sensitive, its edge-detection latch will remain in the reset
state. If the level-sensitive interrupt is disabled while the interrupt is pending, the pending
interrupt will be cancelled. However, if the interrupt has been fetched, it normally will not
be cancelled. . v ~

Interrupt service, which begins by fetching the instruction word in the first vector location,
is considered finished when the instruction word in the second vector location is fetched.

8-10 - DSP56000/DSP56001 USER'S MANUAL MOTOROLA

In the case of an edge-triggered interrupt, the internal latch is automatically cleared when
the second vector location is fetched. The fetch of the first vector location does not guar-
antee that the second location will be fetched. Figure 8-1 illustrates the one case where
the second vector location is not fetched. In Figure 8-1, the SWI instruction discards the
fetch of the first interrupt vector to ensure that the SWIi vectors will be fetched. Instruction
n4 is decoded as an SWI while ii1 is being fetched. Execution of the SWI requires that ii1
be discarded and the two SWI vectors (ii3 and ii4) be fetched instead.

CAUTION

On all level-sensitive interrupts, the interrupt must be externally released before
interrupts are internally re-enabled, or the processor will be interrupted repeatedly
until the interrupt is released.

The edge-sensitive NMI is generated on the first transition to 10 V on the IRQB pin after
the last time the NMI interrupt was serviced or the DSP was reset. The NMI is a priority 3
interrupt and cannot be masked. Only RESET and illegal instruction have higher priority
than NMI. NMlI is reserved for hardware development and should not be used in an ap-
plication. Repeated use may damage the integrated circuit.

8.2.1.2 SOFTWARE INTERRUPT SOURCE. There are two software interrupt sources —
illegal instruction interrupt (lll) and SWI. The lll is a nonmaskable interrupt (IPL 3}, which
is serviced immediately following the execution of the illegal instruction or the attempted
execution of an illegal instruction (any undefined operation code). llls are fatal errors. Only
a long interrupt routine should be used for the lll routine; RTI or RTS should not be used
at the end of the interrupt routine since return from the Ill to the main code should not be
attempted. During the Il service, the JSR located in the il vector will normally stack the
address of the illegal instruction (this is the reason why return should not be attempted
(see Figure 8-2)). The user may examine the stack (using MOVE SSH,dest) to locate the
offending illegal instruction. The illegal instruction is useful for triggering the illegal inter-
rupt service to see if the lll routine is capable of recovery from illegal instructions.

INTERRUPT CONTROL CYCLE 1 | | i | i*

INTERRUPT CONTROL CYCLE 2 i i*

FETCH n3 | na |ns!|iin] i3 | i |swi|sw2|sw3|swd
DECODE n2 | n3 |SWI| — | — | — [JSR| — [swi]|sw2|sw3
EXECUTE nt | n2 | n3 {swi[nop{nop[noP]usR] — |swi]sw2
INSTRUCTION BEING DECODED] 1 | | | ! |

i_ = INTERRUPT REQUEST
i” = INTERRUPT REQUEST GENERATED BY SWI
i1 = FIRST VECTOR OF INTERRUPT i
i3 = FIRST SWI VECTOR (ONE-WORD JSR)
ii4 = SECOND SWI VECTOR
n = NORMAL INSTRUCTION WORD
nd =SwWI
sw = INSTRUCTIONS PERTAINING TO THE SWI LONG lNTERRUPT ROUTINE

Figure 8-1. Interrupting an SWi

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 8-11

INFINITE
Loop

MAIN
PROGRAM
FETCHES

11 (NOP)

né

NO FETCH

NO FETCH

FAST INTERRUPT
SERVICE ROUTINE
FETCHES

(a) Instruction Fetches from Memory

ILLEGAL INSTRUCTION INTERRUPT
RECOGNIZED AS PENDING

ILLEGAL INSTRUCTION INTERRUPT
RECOGNIZED AS PENDING

INTERRUPT CONTROL CYCLE 1

INTERRUPT CONTROL CYCLE 2

FETCH nn2|n3fndfn5yn6|—|—]iit]ii2]ns

DECODE nl[n2|n3{nd| | —|—|—[it}i2] -
EXECUTE nl jn2)n3]ng |NOPf —] — | —]ii1]ii2 [NOP
INSTRUCTION GYCLECOUNT | 1| 2|3l a|s]ef7 8] alw]ulnr]n]n

i = INTERRUPT

i = INTERRUPT INSTRUCTION WORD

Il = ILLEGAL INSTRUCTION

n = NORMAL INSTRUCTION WORD

~ (b) Program Controller Pipeline

Figure 8-2. lllegal Instruction Interrupt Serviced by a Fast Interrupt

8-12

DSP56000/DSP56001 USER'S MANUAL

MOTOROLA

offending illegal instruction. The illegal instruction is useful for triggering the illegal inter-
rupt service to see if the Ill routine is capable of recovery from illegal instructions.

There are two cases in which the stacked address will not point to the illegal instruction:

1. If the illegal instruction is one of the two instructions at an interrupt vector location
and is fetched during a regular interrupt service, the processor will stack the address
of the next sequential instruction in the normal instruction flow (the regular return
address of the interrupt routine that had the illegal opcode in its vector).

2. If the illegal instruction follows an REP instruction (see Figure 8-3), the DSP will ef-
fectively execute the illegal instruction as a repeated NOP and the interrupt vector will
then be inserted in the pipeline. The next instruction will be fetched but will not be
decoded or executed. The processor will stack the address of the next sequentlal
instruction, which is two instructions after the illegal instruction.

ILLEGAL INSTRUCTION INTERRUPT
RECOGNIZED AS PENDING

. A

INTERRUPT CONTROL CYCLE 1 i
INTERRUPT CONTROL CYCLE 2 . i
FETCH nlfn2|n3|nd|n5)n6|n7|—|—([—|ii1]ii2|n8
DECODE nt | n2|n3fna|REP| Il | —} — | — | —|iil |ii2] n8
EXECUTE nl | n2) 03| nd |REPJREP[NOP| — | — | — | i1 | ii2 | n8
INSTRUCTION CYCLE COUNT 112 1314])5]|6)7]8]8]w|nj12{13[14]15]16

i = INTERRUPT

i = INTERRUPT INSTRUCTION WORD
II'=ILLEGAL INSTRUCTION
n = NORMAL INSTRUCTION WORD

Figure 8-3. Repeated lllegal Instruction

In DO loops, if the illegal instruction is in the loop address (LA) location and the instruction
preceding it {i.e., at LA-1) is being interrupted, the loop counter (LC) will be decremented
as if the loop had reached the LA instruction. When the interrupt service ends and the
instruction flow returns to the loop, the illegal instruction will be refetched (since it is the
next sequential instruction in the flow). The loop state machine will again decrement LC
because the LA instruction is being executed. At this point, the illegal instruction will trigger
the Ill. The result is that the loop state machine decrements LC twice in one loop due to
the presence of the illegal opcode at the LA location.

SWI is a nonmaskable interrupt (IPL 3), which is serviced immediately following the SWI

instruction execution. A long interrupt service routine is usually used. The difference be-
tween an SWI and a JSR instruction is that the SWI sets the interrupt mask to prevent

MOTOROLA DSP56000/DSP56001 USER’S MANUAL 8-13

interrupts below IPL 3 from being serviced. Masking out lower level interrupts makes the
SWI very useful for setting breakpomts in monitor programs. The JSR instruction does not
affect the interrupt mask.

8.2.1.3 OTHER INTERRUPT SOURCES. Other interrupt sources include the stack error
interrupt and trace interrupt (IPL3 interrupts).

An overflow or underflow of the system stack (SS) causes a stack error interrupt (see
SECTION 6 PROGRAM CONTROLLER for additional information on the stack error flag).
The stack error interrupt is caused by a nonrecoverable error condition and is vectored to
P:$0002. Since the stack error is nonrecoverable, a long interrupt should be used to service
the interrupt, and the service routine should not end in an RTI. Executing an RTl instruction
“pops”’ the stack, which has been corrupted.

The DSP56000/DSP56001 includes a facility for instruction-by-instruction tracing as a pro-
gram development aid. This trace mode (entered by setting the trace bit in the SR) generates
a trace exception after each instruction executed (see Figure 8-4), which can be used by a
debugger program to monitor the execution of a program.

The trace mode is entered by setting the trace bit in the SR. A trace exception is generated
after executing each instruction executed while the trace bit is set. When servicing the
trace exception, it is expected that a JSR will be encountered in the trace vector locations;
thereby forming a long interrupt routine. The JSR causes the SR to be stacked and the
trace bit in the SR to be cleared (clearing the trace bit in the SR prevents tracing while
executing the trace exception service routine). This service routine should end with an RTI
instruction, which restores the SR (with the trace bit set) from the SS, causing the next
instruction to be traced. The pipeline must be flushed to allow each sequential instruction
to be traced. Three instruction cycles are appended by the tracing facility to the end of
each instruction traced (these are the three NOP instructions shown in Figure 8-4) flushing
the pipeline and allowing the next trace interrupt to follow the next sequential interrupt.

During tracing, the REP instruction and the instruction being repeated are considered a
single two-word instruction. That is, only after executing the REP instruction and all the
repeats of the next instruction will the trace exception be generated.

Fast interrupts can not be traced because they are uninterruptable. Long interrupts will not
be traced (unless the trace mode is entered in the subroutine) because the SR is pushed
on the stack and the trace bit is cleared. Tracing is resumed upon returning from a long
interrupt because the trace bit is restored when the SR is restored. Interrupts are not likely
to occur during tracing because only an interrupt with a higher IPL can interrupt during a
trace operation. While executing the program being traced, the trace interrupt will always
be pending and will win the interrupt arbitration. During the trace interrupt, the interrupt
mask is set to reject interrupts below IPL3.

8-14 DSP56000/DSP56001 USER'S MANUAL - MOTOROLA

TRACE INSTRUCTION n1

MAIN
PROGRAM
FETCHES
NoP THREE NOP
NOP INSTRUCTIONS INSERTED
NoP BY TRACE MODE
TRACE BIT |
SET IN SR nl <
n2 j
TSR FAST INTERRUPT
CAUSED BY TRACE
NOT USED INTERRUPT

Va

NEXT TRACE - -
OPERATION DEBUGGER __|
PROGRAM
RTI SET TRACE BIT IN SSL

(a) Instruction Fetches from Memory

. INTERRUPT SYNCHRONIZED AND ___ INTERRUPT SYNCHRONIZED AND
RECOGNIZED AS PENDING RECOGNIZED AS PENDING

Y Y
INTERRUPT CONTROL CYCLE1 | i i
INTERRUPT CONTROL CYCLE 2 i i
FETCH n1 |NOP|NOP|NOP|JSR| — |TRACE PROGRAM| RTI [— | n2 [NOP{NOP|NOP
DECODE ' n1 [NOP|NOP{NOP|JSR{NOP [TRACE PROGRAM] RTI [NOP| n2 [NOP|NOPINOP,
EXECUTE n1 [NOP|NOPJNOP] JSR | NOP |TRACE PROGRAM| RTI [NOP| n2 NOP{NOP|NOP
INSTRUCTION CYCLE COUNT 1123 [4f|5(6]7]8]9]10 I 11 | 12 [13[14]15[16]17]18

i = INTERRUPT
ii = NTERRUPT INSTRUCTION WORD
n = NORMAL INSTRUCTION WORD

(b) Program Controller Pipeline

Figure 8-4. Trace Exception

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 8-15

8.2.2 Interrupt Priority Structure

Four levels of interrupt priority are provided. IPLs numbered 0, 1, and 2 are maskable (level
0 is the lowest level). Level 3 (highest level) is nonmaskable. The only IPL 3 interrupts are
reset, lll, NMI, stack error, trace, and SWI. The interrupt mask bits (I1, 10) in the SR reflect
the current processor priority level and indicate the IPL needed for an interrupt source to
interrupt the processor (see Table 8-3). Interrupts are inhibited for all priority levels less
than the current processor priority level. However, level 3 interrupts are not maskable and
therefore can always interrupt the processor.

Table 8-3. Status Register Interrupt Mask Bits

n 10 Exceptions Permitted E’;::g'::’:s
0] o IPLO, 1,2, 3 None

0 1 IPL1,2,3 IPLO

1 0 IPL 2,3 IPLO, 1

1 1 IPL 3 IPLO, 1,2

8.2.2.1 INTERRUPT PRIORITY LEVELS. The IPL for each on-chip peripheral device (HI,
SSI, SCI) and for each external interrupt source {IRQA, TRQB) can be programmed under
software control. Each on-chip or external peripheral device can be programmed to one
of the three maskable priority levels (IPL 0, 1, or 2). IPLs are set by writing to the interrupt
priority register shown in Figure 8-5. This read/write register specifies the IPL for each of
the interrupting devices (HI, SSI, SCI, IRQA, TRQB). In addition, this register specifies the
trigger mode of both external interrupt sources and is used to enable or disable the in-
dividual external interrupts. This register is cleared on RESET or by the reset instruction.
Table 8-4 defines the IPL bits. Table 8-5 defines the external interrupt trigger mode bits.

5 4 3 2 1 0
11812 [Bur [isio [ia {anr | iAo]

6
0
l u—l—m MODE

B w13 o N 10 9 s
lISCLIlSCLOlSSLIlSSLOlHPU|HLO 0o | o

T

Figure 8-5. Interrupt Priority Register (Addr X:$FFFF)

[

iROB MODE
RESERVED
HOST 1PL
SSIIPL
SCIIPL

8-16 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

Table 8-4. Interrupt Priority Table 8-5. External Interrupt

Level Bits Trigger Mode Bits
xxL1 | xxLO Enabled | IPL IxL2 - Trigger Mode
0 0 No — 0 Level
0 1 Yes) 1 Negative Edge
1 0 Yes 1
1 1 Yes 2

8.2.2.2 EXCEPTION PRIORITIES WITHIN AN IPL. If more than one exception is pending
when an instruction is executed, the interrupt with the highest priority level is serviced
first. When multiple interrupt requests having the same IPL are pending, a second fixed-
priority structure within that IPL determines which interrupt is serviced. The fixed priority
of interrupts within an IPL and the interrupt enable bits for all interrupts are shown in Table
8-6. The interrupt enable bits for the HI,.SSI, and SCI are located in the control reglsters
associated with their respective on-chip peripherals.

Table 8-6. Exception Priorities within an IPL

X Data
Priority Exception Enabled By Bit No. | Memory
Address
Level 3 {Nonmaskable)
Highest |Hardware RESET ’ — — —
1] R — — —
NMI - o = — —
Stack Error — — —
Trace ' — . - —
Lowest |SWi — = .
Levels 0, 1, 2 (Maskable)
Highest IRQA (External Interrupt) IRQA Mode Bits| 0 and 1 $FFFF
IRQB (External Interrupt) IRQB Mode Bits| 3 and 4 $FFFF
Host Command Interrupt HCIE 2 $FFE8
Host Receive Data Interrupt HRIE 0 $FFES
Host Transmit Data Interrupt HTIE 1 $FFES8
SSI RX Data with Exception Interrupt RIE 15 $FFED
SSI RX Data Interrupt RIE 15 $FFED
SSI TX Data with Exception Interrupt TIE 14 S$FFED
SSI TX Data Interrupt TIE 14 $FFED
SClI RX Data with Exception Interrupt RIE 1 $FFFO
SCI RX Data Interrupt RIE 1 $FFFO
SCi TX Data interrupt TIE 12 $FFFO
SClI Idle Line Interrupt ILIE 10 $FFFO
Lowest | SCI Timer Interrupt TMIE 13 $FFFO

MOTOROLA DSP56000/DSP56001 USER'S MANUAL | 8-17

8.2.3 Instructions Preceding the Interrupt Instruction Fetch

The following one-word instructions are aborted when they are fetched in the cycle pre-
ceding the fetch of the first interrupt instruction word — REP, STOP, WAIT, RESET, RTI,
RTS, Jce, JMP, JScc, and JSR.

Two-word instructions are aborted when the first interrupt instruction word fetched will
replace the fetch of the second word of the two-word instruction. Aborted instructions are
refetched again when program control returns from the interrupt routine. The PC is adjusted
appropriately before the end of the decode cycle of the aborted instruction.

If the first interrupt word fetch occurs in the cycle following the fetch of a one-word
instruction not previously listed or the second word of a two-word instruction, that instruc-
tion will complete normally before the start of the interrupt routine.

The following cases have been identified where service of an interrupt might encounter
an extra delay:

1. If a long interrupt routine is used to service an SWI, then the processor priority level
is set to 3. Thus, all interrupts except other level-3 interrupts are disabled until the
SWI service routine terminates with an RTI (unless the SWI service routine software
lowers the processor priority level).

2. While servicing an interrupt, the next interrupt service will be delayed according to
the following rule:
After the first interrupt instruction word reaches the instruction decoder, at least three
more instructions will be decoded before decoding the next first interrupt instruction
word. If any one pair of instructions being counted is the REP instruction followed by
an instruction to be repeated, then the combination is counted as two instructions
independent of the number of repeats done. Sequential REP combinations will cause
pending interrupts to be rejected and can not be interrupted until the sequence of
REP combinations ends.

3. The following instructions are not interruptable: SWI, STOP, WAIT, and RESET.
4. The REP instruction and the instruction being repeated are not interruptable.

5. If the trace bit in the SR is set, the only interrupts that will be processed are the
hardware RESET, Ill, NMI, stack error, and trace. Peripheral and external interrupt
requests will be ignored. The interrupt generated by the SWl instruction will be ignored.

During an interrupt instruction fetch, two instruction words are fetched — the first from
the interrupt starting address and the second from the interrupt starting address + 1 locations.
8.2.4 Interrupt Types

Two types of interrupt routines may be used: fast and long. The fast routine consists of

the two automatically inserted interrupt instruction words. These words can contain any

8-18 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

unrestricted, single two-word instruction or any two one-word instructions (see A.8 IN-
STRUCTION SEQUENCE RESTRICTIONS for a list of restrictions). Fast interrupt routines
are never interruptable,

CAUTION

Status is not preserved during a fast interrupt routine; therefore, instructions that
modify status should not be used at the interrupt starting address and interrupt
starting address +1.

If one of the instructions in the fast routine is a JSR, then a long interrupt routine is formed.
The following actions occur during execution of the JSR instruction when it occurs in the
interrupt starting address or in the interrupt starting address +1:

1. The PC (containing the return address) and the SR are stacked.
2. The loop flag is reset.
3. The scaling mode bits are reset.

4. The IPL is raised to disallow further interrupts at the same or lower levels (except that
hardware RESET, NMI, stack error, trace, and SWI can always interrupt).

5. The trace bit in the SR is cleared.

The long interrupt routine should be terminated by an RTI. Long interrupt routines are
interruptable by higher priority interrupts.

825 Ihterrupt Arbitration

External interrupts are internally synchronized with the processor clock (takes up to three
T cycles) before their interrupt-pending flags are set. Each external interrupt and internal
interrupt has its own flag. After each instruction is executed, all interrupts are arbitrated
—i.e., all hardware interrupts that have been latched into their respective interrupt-pending
flags and all internal interrupts. During arbitration, each interrupt’s IPL is compared with
theinterrupt mask in the SR, and the interrupt is either allowed or disallowed. The remaining
interrupts are prioritized according to the priority shown in Table 8-6, and the highest
priority interrupt is chosen. The interrupt vector is then calculated so that the program
interrupt controller can fetch the first interrupt instruction. Interrupt arbitration and control,
which occurs concurrently with the fetch-decode-execute cycle, takes two instruction cycles.
Interrupts from a given source are not buffered. The interrupt-pending flag for the chosen
interrupt is not cleared until the second interrupt vector of the chosen interrupt is being
fetched. A new interrupt from the same source will not be accepted for the next interrupt
arbitration until that time.

The internal interrupt acknowledge signal is used to clear the edge-triggered interrupt
flags, the HC bit in the host port, the SCI timer interrupt, and the internal latches of the
stack error, NMI, SWI, and trace interrupts. Peripheral interrupt requests that need a read/

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 8-19

write action to some register do not receive this signal, and those interrupts will remain
pending until their registers are read/written. Also, level-triggered interrupts will not be
cleared. The acknowledge signal will be generated after generation of the interrupt vectors,
not before.

8.2.6 Inteirupt Instruction Fetch

The interrupt controller generates an interrupt instruction fetch address, which points to
the first instruction word of a two-word interrupt routine. This address is used for the next
instruction fetch, instead of the contents of the PC, and the interrupt instruction fetch
address +1 is used for the subsequent instruction fetch. While the interrupt instructions
are being fetched, the PC is inhibited from being updated. After the two interrupt words
have been fetched, the PC is used for any subsequent instruction fetches.

After both interrupt vectors have been fetched, they are guaranteed to be executed. This
is true even if the instruction that is currently being executed is a change-of-flow instruction
(i.e., JMP, JSR, etc.) that would normally ignore the instructions in the pipe. After the
interrupt instruction fetch, the PC will point to the instruction that would have been fetched
if the interrupt instructions had not been inserted.

8.2.7 Interrupt Instruction Execution

Interrupt instruction execution is considered “fast’” if neither of the instructions of the
interrupt service routine cause a change of flow. A JSR within a fast interrupt routine forms
a long interrupt, which is terminated with an RTl instruction to restore the PC and SR from
the stack and return to normal program execution. Reset is a special exception, which will
normally contain only a JMP instruction at the exception start address. At the programmer’s
option, almost any instruction can be used in the fast interrupt routine. The restricted
instructions include SWI, STOP, and WAIT. Figures 8-6 and 8-8 show the fast and the long
interrupt service routines. The fast interrupt executes only two instructions and then au-
tomatically resumes execution of the main program; whereas, the long interrupt must be
told to return to the main program by executing an RTI instruction.

Figure 8-6 illustrates the effect of a fast interrupt routine in the stream of instruction fetches.

Figure 8-7 shows the sequence of instruction decodes between two fast interrupts. Four
decodes occur between the two interrupt decodes (two after the first interrupt and two
preceding the second interrupt). The requirement for these four decodes establishes the
maximum rate at which the DSP56000/DSP56001 will respond to interrupts — namely, one
interrupt every six instructions (six instruction cycles if all six instructions are one instruc-
tion cycle each). Since some instructions take more than one instruction cycle, the minimum
number of instructions between two interrupts may be more than six instruction cycles.

8-20 DSP56000/DSP56001 USER’S MANUAL ' MOTOROLA

MAIN
PROGRAM
MEMORY
INTERRUPT SYNCHRONIZED
AND RECOGNIZED
AS PENDING —> -
n
ADDITIONAL INTERRUPTS w2 i
DISABLED DURING -
FAST INTERRUPT n3 iz
nd
INTERRUPTS —>
RE-ENABLED

ii = INTERRUPT INSTRUCTION
n = NORMAL INSTRUCTION

(a) Instruction Fetches from Memory

_ INTERRUPT SYNCHRONIZED AND

RECOGNIZED AS PENDING
— INTERRUPTS RE-ENABLED
Y \
INTERRUPT CONTROL CYCLE 1 i
INTERRUPT CONTROL CYCLE 2 i
FETCH nl n2 | iil ii2 | n3 | nd4
DECODE nl | n2 { ii i2 | n3 | nd4
EXECUTE nl | n2 | il i2 [n3 | nd
INSTRUCTION CYCLE COUNT 1 2 3 4 5 6 7 8

i = INTERRUPT
ii = INTERRUPT INSTRUCTION WORD
n = NORMAL INSTRUCTION WORD

(b) Program Controller Pipeline

Figure 8-6. Fast Interrupt Service Routine

MOTOROLA DSP56000/DSP56001 USER'S MANUAL

8-21

MAIN
PROGRAM
MEMORY
INTERRUPT SYNCHRONIZED
AND RECOGNIZED
AS PENDING —> —
ADDITIONAL INTERRUPTS " i
DISABLED DURING FAST .
INTERRUPT n3 ‘ iz
INTERRUPTS n4 FOUR INSTRUCTION
RE-ENABLED > p DECODES -
ADDITIONAL INTERRUPTS P il
DISABLED DURING —
FAST INTERRUPT n? \
ng
_ INTERRUPTS —>
RE-ENABLED nd

ii = INTERRUPT INSTRUCTION
n = NORMAL INSTRUCTION

(a) Instruction Fetches from Memory

INTERRUPT SYNCHRONIZED AND

RECOGNIZED AS PENDING -
—— INTERRUPTS RE-ENABLED

fe——6 lgye ——>]
Y y

INTERRUPT CONTROL CYCLE 1 | i i

INTERRUPT CONTROL CYCLE 2 i i

FETCH nl {n2)it }ii2]n3|ndfn5])ng|iil]ii2

DECODE nl fn2|iit |ii2{n3fnd|n5|n6{iit]i2
EXECUTE nt [n2 |t |2 | n3 | na]ns|ne]inn|ii2
INSTRUCTION CYCLE COUNT 1123]4j5|6}7[8[9f0fnji
i = INTERRUPT

il = INTERRUPT INSTRUCTION WORD

n = NORMAL INSTRUCTION WORD .

(b) Program Controller Pipeline

Figure 8-7. Two Consecutive Fast Intekn"upts

8-22 o DSP56000/DSP56001TUSER'S MANUAL MOTOROLA

LONG INTERRUPT
SERVICE ROUTINE FETCHES
(STARTS WITH A FAST INTERRUPT)

MAIN
PROGRAM
FETCHES it
JSR CAN BE IN EITHER LOCATION
ii2 TO FORM A LONG INTERRUPT
INTERRUPT k
SYNCHRONIZED __ .
AND RECOGNIZED m
AS PENDING
n2 Y PROGRAM COUNTER
n3 i3 ~ RESUMES GPERATION
n4 i

__INTERRUPTS
| iNTeRrupT | RE-ENABLED

ROUTINE
i7
EXPLICIT
RETURN FROM RTI
INTERRUPT

(SHOULD BE RTI)

{a) Instruction Fetches from Mémory :

___INTERRUPT SYNCHRONIZED AND
RECOGNIZED AS PENDING

J— INTERRUPTS RE-ENABLED
y

INTERRUPT CONTROL CYCLE 1 i

INTERRUPT CONTROL CYCLE 2 i

FETCH nl | n2 | i1 |ii2 | ii3) ii4|ii5]ii6 [ii7 |RTI| — | n3 | nd

DECODE nt | n2 [it | ii2 | i3 | ii4 | ii5 | ii6 | ii7 | RTI{NOP| n3 | nd
EXECUTE ‘ nl | n2 |iiv | ii2 | @3) ii4 | ii5 | ii6 | ii7 | RTI{NOP]| n3 | nd4
INSTRUCTION CYCLE COUNT 1123 f4]5{6|7[8]9]wjn]ji12f13]14]15
i = INTERRUPT

ii = INTERRUPT INSTRUCTION WORD
n = NORMAL INSTRUCTION WORD

{b) Program Controller Pipeline

Figure 8-8. Lbng Interrupt Service Routine

MOTOROLA bSP56000/DSP56001 USER'S MANUAL 8-23

Execution of a fast interfupt routine always conforms to the following rules:

1. A JSR to the starting address of the interrupt service routine is not located at one
of the two interrupt vector addresses.

~ 2. The processor status is not saved.

3. The fast interrupf routine may (but should not) modify the status of the normal
instruction stream.

4. The fast interrupt routine may contain any single two-word instruction or any two
one-word instructions except SWI, STOP, and WAIT.

5. The PC, which contains the address of the next instruction to be executed in normal
processing, remains unchanged during a fast interrupt routine.

6. The fast interrupt returns without an RTI.

7. Normal instruction fetching resumes using the PC following the completion of the
fast interrupt routine.

8. A fast interrupt is not interruptable.
9. A JSR instruction within the fast interrupt routine forms a long interrupt routine.

10. The primary application is to move data between memory and /O devices.

Execution of a long interrupt routine always adheres to the following rules:

1. A JSR to the starting address of the interrupt service routine is located at one of the
two interrupt vector addresses.

2. During execution of the JSR instruction, the PC and SR are stacked. The interrupt
mask bits of the SR are updated to mask interrupts of the same or lower priority. The
loop flag, trace bit, and scaling mode bits are reset.

3. The first instruction word of the next interrupt service (of higher IPL) will reach the
decoder only after the decoding of at least four instructions following the decoding
of the first instruction of the previous interrupt.

4. Theinterrupt service routine can be interrupted — i.e., nested interrupts are supported.

5. The long interrupt routine, which can be any length, should be terminated by an RTI,
which restores the PC and SR from the stack.

Figure 8-8 illustrates the effect of a long interrupt routine on the instruction pipeline. A
short JSR (a JSR with 12-bit absolute address) is used to form the long interrupt routine.
For this example, word 6 of the long interrupt routine is an RTI. The point at which interrupts
are re-enabled and subsequent interrupts are allowed is shown to illustrate the noninter-
ruptable nature of the early instructions in the long interrupt service routine.

Either one of the two instructions of the fast interrupt can be the JSR instruction that forms

the long interrupt. Figures 8-9 and 8-10 show the two possible cases. If the first fast interrupt
vector instruction is the JSR, the second instruction is never used.

8-24 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

LONG INTERRUPT

FAST INTERRUPT SUBROUTINE
MAIN VECTOR
PROGRAM
JSR ii2
nl NOT USED i3
n2
{a) Instruction Fetches from Memory
___ INTERRUPT SYNCHRONIZED AND
RECOGNIZED AS PENDING
— INTERRUPTS RE-ENABLED
y \
INTERRUPT CONTROL CYCLE 1 | i
INTERRUPT CONTROL CYCLE 2 i
FETCH nt |JsR| — |2 [i3 | iia | iin | RTI| — | n2
DECODE ' n1 [JsR|NOP| iz | i3 { ii4 | iin | RTI [NOP] n2
EXECUTE n1 {Jsr|NoOP| i | i3 | ii4 | iin | RTIINOP| n2
INSTRUCTIONCYCLECOUNT | 1 | 23|45 |6 [7]8]|afwfnji|is
i = INTERRUPT '

ii = INTERRUPT INSTRUCTION WORD
n = NORMAL INSTRUCTION WORD
(b) Program Controller Pipeline

Figure 8-9. JSR First Instruction of a Fast Interrupt -

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 8-25

MAIN FAST INTERRUPT LONG INTERRUPT
PROGRAM VECTOR SUBROUTINE

nl il i3
n2 JSR ii4
i5
ii6

—

T —
fin
RTI

{a) Instruction Fetches from Memory

__ INTERRUPT SYNCHRONIZED AND
RECOGNIZED AS PENDING

— INTERRUPTS RE-ENABLED

Y Y
INTERRUPT CONTROL CYCLE 1 -] i
INTERRUPT CONTROL CYCLE 2 i
FETCH ot it |sR| — | i3 | iia | iis [{iin [RTI| — | n2
DECODE : nt | iit |JsR{nop| i3 | i | iis | ii6 | iin | RTI |nOP| n2
EXECUTE . ni | it {Jsr|noPf i3 | iia | iis | ii6 { iin | RTI [NOP] n2
INSTRUCTION CYCLECOUNT | 1 | 2 |3 |afs5 |6 |7 (8|9]w]|n]12[n[n]ls
i = INTERRUPT

ii = INTERRUPT INSTRUCTION WORD
n = NORMAL INSTRUCTION WORD

‘ (b) Program Controller Pipeline

Figure 8-10. JSR Second Instruction of a Fast Interrupt

8-26 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

An REP instruction is treated as a single two-word instruction, regardless of how many
times it repeats the second instruction of the pair. Instruction fetches are suspended and
will be reactivated only after the LC is decremented to one (see Figure 8-11). During the
execution of n2 in Figure 8-11, no interrupts will be serviced. When LC finally decrements
to one, the fetches are reinitiated, and pending interrupts can be serviced.

Sequential REP packages will cause pending interrupts to be rejected until the sequence
of REP packages ends. REP packages are not interruptable because the instruction being
repeated is not refetched. While that instruction is repeating, no instructions are fetched
or decoded, and an interrupt can not be inserted. For example, in Figure 8-12, if n1, n3,
and n5 are all REP instructions, no interrupts will be serviced until the last REP instruction
(n5 and its repeated instruction, n6) completes execution. '

8.3 RESET PROCESSING STATE

The reset processing state is entered in response to the external RESET pin being asserted
(a hardware reset). Upon entering the reset state (see Figure 8-13): 1) internal peripheral
devices are reset, and their pins revert to general-purpose I/O pins; 2) the modifier registers
are set to $FFFF; 3) the interrupt priority register is cleared; 4) the BCR is set to $FFFF,
thereby inserting 15 wait states in all external memory accesses; 5) the stack pointer is
cleared; 6) the scaling mode, trace mode, loop flag, and condition code bits of the SR are
cleared, and the interrupt mask bits of the SR are set; 7) the data ROM enable bit, the stop
delay bit, and the memory strobe bit are cleared; and 8) the DSP remains in the reset state
until RESET is deasserted. Upon leaving the reset state 9}, the chip operating mode bits
of the OMR are loaded from the external mode select pins (MODA, MODB), and 10) program
execution begins at program memory address $E000 in normal expanded mode or at $0000
in all other operation modes. The first instruction must be fetched and then decoded before
executing. Therefore, the first instruction execution is two instruction cycles after the first

- instruction fetch.

Figure 8-14 is a copy of the output from the DSP56000/DSP56001 simulator showing all of
the DSP56000/DSP56001 registers before the hardware reset and showing only the registers
that were written by the hardware reset after the reset occurred. The instructions executed
are as follows:

1. Reset s — Resets the simulator.

2. Change OMR 0 — Puts the DSP56000/DSP56001 in mode 0.
3. Display all — Displays all registers. Note that OMR =$00.
4. Reset d — Is a hardware reset.
5

. Display w — Causes the display command to only display the registers that were
written in the last instruction.

6. Display — Displays the contents of the registers that were written by the hardware
reset.

MOTOROLA) DSP56000/DSP56001 USER'S MANUAL 8-27

MAIN
PROGRAM
FETCHES
INTERRUPT SYNCHRONIZED
AND RECOGNIZED
AS PENDING —»
nl REP m INSTRUCTION n2
ADDITIONAL INTERRUPTS s REPLICATED PER
DISABLED DURING -« THE REP INSTRUCTION
FAST INTERRUPT n3
INTERRUPTS nd ____,_,_—-—————-""'/1
RE-ENABLED > 5 M
nb : i2
; FAST INTERRUPT
SERVICE ROUTINE FETCHES
(FROM BETWEEN P:$0000
AND P:$003F)

i = INTERRUPT INSTRUCTION
n = NORMAL INSTRUCTION .
(a) Instruction Fetches from Memory

____ INTERRUPT SYNCHRONIZED AND
RECOGNIZED AS PENDING

—INTERRUPTS RE-ENABLED
\) y
INTERRUPT CONTROL CYCLE 1 i) i

INTERRUPT CONTROL CYCLE 2 i% ' i

FETCH REP| n2 | n3 nd | i1 |ii2 | n5 | né
DECODE REP{NOP] n2 j n2 | n2 | n2 | n3 | nd | iit | ii2 | n§
EXECUTE REP|NOP| n2 [n2 [n2 | n2 | n3 | n4 | iil | ii2

INSTRUCTION CYCLE COUNT 112 13]4{5|6]7{8]9jwfnjn

i = INTERRUPT

ii = INTERRUPT INSTRUCITON WORD
n = NORMAL ISNTRUCTION WORD
i% = INTERRUPT REJECTED

{b) Program Controller Pipeline

Figure 8-11. Interrupting an REP Instruction

8-28 DSP56000/DSP56001 USER'S MANUAL | MOTOROLA

MAIN
PROGRAM

INTERRUPT FETCHES
INTERRUPT REJECTED

PENDING A o

INTERRUPT S
INTERRUPT _ | 'ne jEcTED n2 /\\\sv
PENDING A @D w nd
INTERRUPT " D
INTERRUPT _| 'pe £CTED nd
PENDING A G)
INTERRUPT N nb
PENDING 7
n8
n9 REPEAT m TIMES

(a) Instruction Fetches from Memory

INTERRUPT SYNCHRONIZED AND
F RECOGNIZED AS PENDING

r— INTERRUPTS RE-ENABLED

y y
INTERRUPT CONTROL CYCLE 1 | i i
INTERRUPT CONTROL CYCLE 2 %] . i
FETCH REP| n2 [REP n4 |REP né | n7 ng | iil [ii2 | n9
DECODE REP|NOP| n2 | n2 | n2 |REP|NOP| n4 | n4 | n4 |REP|NOPf n6 | n6 | n6 | n7 | n8 | iil | ii2 | n9
EXECUTE REP|NOP| n2 | n2 | n2 |REPINOP| n4 | n4 | n4 |REP|NOP| n6 | n6 | n6 | n7 | n8 | ii1 | iiz | n9
INSTRUCTION CYCLE COUNT 1123456789 fwo]n]12]13{14f15{16[17]18[19[20]21]22

i = INTERRUPT)

il = INTERRUPT INSTRUCTION WORD

n = NORMAL INSTRUCTION WORD
i% = INTERRUPT REJECTED

{b) Program Controller Pipeline

Figure 8-12. Interrupting Sequential REP Instructions

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 8-29

/' <— ASSERTION OF RESET

1. RESET ON-CHIP PERIPHERALS PORT B AND C
(PERIPHERAL PINS REVERT TO RESET—> <01 Ss1. HOST

GENERAL-PURPOSE 1/0 PINS).

2. SET MODIFIER REGISTERS TO SFFFF. MO0-M7 | SFFFF

3. CLEAR INTERRUPT PRIORITY REGISTER.
1514 13 1211 10 9 8 7 6 5 4 3 2 1 0
xseeee{ o [o JoJo o olololofofolo]jolo]o]o
sci | ssi [wost | meserven | iros IRQA

4. SET BUS CONTROL REGISTER TO SFFFF.
15 14 13 12’” 0 9 8 7 6 5 4 3 2 1 0
xsee []
XMEMORY | YMEMORY | PMEMORY | PERIPHERALS

. : 5 4 3 2 1 0
5. CLEAR THE STACK POINTER. [ofofo]o]o]o]
UF SE P3 P2 PI PO

6. INITIALIZE STATUS REGISTER.

5 14 1312 11 10 9 8 7 6 5 4 3 2 1 0

[ofofo olofo sl ofofeJulnfzfv]c]
LF T S1 S0 N 10 L '

7. CLEAR THE DATA ROM ENABLE BIT, STOP DELAY BIT, AND THE BUS STROBE

ENABLE BIT IN THE OMR REGISTER.
8. STAY IN RESET UNTIL NEGATED. /

\ <«——— NEGATION OF RESET MODB MODA
A

omr{ o [ol o | o] o] o] x| x|
ME SD DE

9. LOAD OPERATING MODE REGISTER FROM MODE PINS.

10. START NORMAL EXECUTION:
IF MODE 2 P:$E000
ELSE P:$0000

Figure 8-13. Reset Sequence

8-30 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

reset s
change omr 0
display all

1

X= $000000000000 y= $000000000000

= $000000000Q0000 b= $00000000000000
X1l= $000000 XO= $000000 r7= $0000 n7= $0000 m7= S$FFFF
yli= $000000 yoO= $000000 r6= $0000 né= $0000 mé6= $FFFF
az= $00 al= $000000 ao= $000000 r5= $0000 n5= $0000 m5= S$FFFF
b2= $00 bil= $000000 boO= $000000 r4= $0000 n4= $0000 m4= SFFFF
- r3= $0000 n3= $0000 m3= $FFFF
pc= $E000 sr= $0300 omr= $00 r2= $0000 n2= $0000 m2= SFFFF
la= $0000 lc= $0000 ri= $0000 nl= $0000 ml= $FFFF
ssh= $0000 ssl= $0000 sp= $00 roO= $0000 no= $0000 moO= S$FFFF
pbc= $0 pbddr= $0000 pbd= . $0000 pcd= $0000 pcddr= $0000 pcc= $0000
ipr= $0000 bcr= $FFFF htx= $000000 hrx= $000000 hsr= $02 her= $00
icr= $00 cvr= $12 isr= $06 ivr= $OF
rxh= $00 rxm= $00 rxl= $00 txh= $00 txm= $00 txl= $00
ssr= $03 scr= $0000 stx= $00 srx= $00 sccr= $0000 stxa= $00
tsr= $00 ssisr= $40 tx= $000000 rx= $000000 cra= $0000 crb= $0000
cyc=000000 ictr= 000000 cntl= 000000 cnt2= 000000 cnt3=000000 cnt4=000000
P:$E000 000000 = NOP
reset d
display w
display
m7= S$FFFF
mé= SFFFF
m5= S$FFFF
m4= SFFFF
m3= S$FFFF
pc= $E000 sr= $0300 omr= $02 m2= $FFFF
nl= S$FFFF
sp= $00 mo0= SFFFF
pbe= $0 pbddr= $0000 pcddr= $0000 pcc= $0000
ipr= $0000 bcr= S$FFFF hsr= $02 hecr= $00
icr= $00 cvr= $12 isr= $06 ivr= SOF
ssr= $03 scr=" $0000 scer= $0000
ssisr= $40 cra= $0000 crb= $0000
X:SFFE3 $000000
X:$SFFES8 $000000 $000002
X:SFFEC $000000 $000000 $000040
X:$FFFO $000000 $000003 $000000
X:SFFFF $000000
P:$E0CO 000000 = NOP

Figure 8-14. Reset When OMR=0 .

The OMR changed from $00 to $02, which is mode 2, because the MODA/IRQA and MODB/
IRQB pins are set to a one and zero, respectively (binary 2) in the simulator. If the DSP had
been in any other mode, the result would have been the same. The X: memory locations
written to are the memory locations of the peripheral registers. The internal peripheral
registers are memory mapped between X:$FFC0O and X:$FFFF.

The internal peripheral devices (HI, SSI, SCI, and ports A, B, and C) can be reset by several
methods — hardware (HW) reset, software (SW) reset, individual (1) reset, and stop (ST)
reset. Depending on the type of reset, the registers of these devices will be affected dif-
ferently (see SECTIONS 9 PORTA, SECTION 10 PORT B, and SECTION 11 PORT C for

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 8-31

additional information on the internal peripherals). Tables 8-7-8-11 show how each bit in
these registers is affected by the various resets. The Hl is programmed for both the DSP56000/
DSP56001 side of the interface and the host processor side of the interface.
The symbols used are as follows:

HW - Hardware reset is caused by asserting the external pin RESET.

SW - Software reset is caused by executing the RESET instruction.

|- Individualbreset is caused by all of the I/0 pins for a given internal I/O device being
configured for general-purpose 1/0. These 1/O devices are the HI, SSI, and SCI. The
conditions for these resets are:

1. SSlindividual reset occurs when port C control register bits 3-8 are set to zero.
2. SCl individual reset occurs when port C control register bits 0-2 are set to zero.
3. Hlindividual reset occurs when port B control register bit 0 is set to zero.
ST - Stop reset is caused by executing the STOP instruction.
1 - The bit is set during the xx reset.
0 - The bit is clear during the xx reset.

— - The bit is not changed during the xx reset.

Table 8-7. HI Reset Effects — DSP56000/DSP56001
Programming Model

Register Registfar HW Reset SW Reset | Reset ST Reset
Name Data Bits
HF(3-2) 0 0 — —
HCR HCIE 0 0 — —
XZ$FFE8 HTIE 0 0 — —_
HRIE 0 1] — —
DMA 0 0 0 0
HF (1-0) 0 0 0 0
HSR
X:$FFE9 Hep 0 0 0 0
HTDE 1 1 1 1
HRDF 0 0 0 0
HRX
X:SFFEB HRX(23-0) — - - -
HTX '
X:SFFEB HTX(23-0) - - — -

8-32 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

Table 8-8. HI Reset Effects — Host Processor Programming Model

Register Register
Name Data Bits

INIT
HM(1-0)
ICR $0 TREQ

RREQ
HF(1-0)

HC

HV(4-0) $12 $12 $12 $12
HREQ 0
DMA 0
HF(3-2) 0
1

1

0

HW Reset SW Reset | Reset ST Reset

o |ojlo|jo|o |©
o ||| |o|o
o jo|jo|o|o |o

CVR $1

ISR $2

TRDY
TXDE
RXDF
IVR $3 IV(7-0) $OF $OF - —_
RXH(23-16) — — — —
RX $5, 6, 7 | RXM(15-8) — — — —

RXL{7-0} — — — —
TXH(23-16) —_ - - —
TX $5,6,7 | TXM(15-8) — — —_— —
TXL(7-0) — = — —

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 8-33

Table 8-9. SSI Reset Effects

Register Register
Name Data Bits HW Reset | SW Reset | Reset ST Reset
WL(2-0} 0 0 —_ —
CRA PSR 0 0 — —_
X:$FFEC DC{4-0) 0 0 _ —
PM(7-0) 0 0 — —
RIE 0 0 — —
TIE 0 0 — —
RE 1] (4] — —
TE 0 0 — —
MOD 0 0 — —
CRB
X:$FFED GCK 0 0 — —
SYN 0 0 — —_
FSLO 0 0 — —
FSL1 0 0 - —
SCKD 0 0 — —
SCD(2-0) 0 0 — —
OF(1-0) 0 0 — —
RDF 0 0 0 0
TDE 1 1 1 1
ROE 0 0 0 0
SR
X:$FFEE TUE 0 0 0 0
RFS 0 0 0 0
TFS 0 0 0 0
1F(1-0) 0 0 0 0
RX -—_ — — —
X:$FFEF RDR(23-0)
TX
x:gFrep . | TPR23-0) - - - -
SRSR¥* RDR{23-0) — — — —
STSR* ¥ RDR(23-0) — —_ — —

*SRSR — SSi serial receive shift register
**¥GSTSR — SS| serial transmit shift register

8-34 » DSP56000/DSP56001 USER'S MANUAL MOTOROLA

Table 8-10. SCI Reset Effects

R:‘gir;t:r g:tgais;?t; HW Reset SW Reset | Reset ST Reset
SCKP 0 0 — —
TMIE 0 0 — -
TIE 0 0 — —
RIE 0 0 - —
ILIE 0 0 — —
sch TE 0 0 — —
X:$FFFO RE 0 0 - -
WOMS 0 0 — —
RWU 0 0 — —
WAKE 0 0 — —
SBK 0 0 — —
SSFTD 0 0" — —
WDS(2-0) 0 0 - —
R8 0 0 0 0
FE 0 0 0 0
PE 0 0 0 0
SSR OR 0 0 0 0
X:$FFF1 IDLE 0 0 0 0
RDRF 0 0 0 0
TDRE 1 1 1 1
TRNE 1 1 1 1
TCM 0 0 — —
on RCM 0 0 - —
XisFFr2 scp 0 0 - -
coD 0 0 — —
CD(11-0) 0 0 — -
SRX SRX(23-0) — — - -
X:$FFF4 LowW
X:$FFF5 MID
X:$FFF6 HIGH
STX STX(23-0) - - - —_
X:$FFF4 LOW .
X:$FFF5 MID
X:$FFF6 HIGH
X:$FFF3 STXA
SRSH* | SRSH(23-0) — — — —
STSH*¥ | STSH(23-0) — — — —

*SRSH — SCl receive shift register
*%STSH — SCI transmit shift register

MOTOROLA DSP56000/DSP56001 USER'S MANUAL : 8-35

The definitions for individual reset for the ports A, B, and C register settings during indi-
vidual reset are shown in Table 8-11. '

Table 8-11. Ports A, B, and C Reset Effects

Register RegistFr HW Reset SW Reset | Reset ST Reset Comments
Name Data Bits
BCR BCR(15-0) $FFFF — — — Port A Control
X:$FFFE
PBC PBCO 0 0 N/A — Port B Control
X:$FFEO
PBDDR PBDDR(14-0) 0 0 N/A — Port B Direction
X:$FFE2
PBD PBD(14-0) — L — N/A — Port B Data
X:$FFE4
PCC PCC(8-0) 0 0 N/A — Port C Control
X:$FFE1
PCDDR PCDDR(8-0) 0 0 N/A — Port C Direction
X:$FFE3
PCD PCD(8-0) — — N/A — Port C Data
X:$FFES

8.4 WAIT PROCESSING STATE

The wait processing state is a low power-consumption state entered by execution of the
WAIT instruction. In the wait state, the internal clock is disabled from all internal circuitry
except the internal peripherals (e.g., the interrupt controller, the SCI, SSI, and Hl). All internal
processing is halted until an unmasked interrupt occurs or until the DSP is reset. The BR/
BG circuits remain active during the wait state.

The wait state is one of two low power-consumption states. As a general rule, the normal
operating current for the DSP56000/DSP56001 is typically less than 100 ma for a 20.5-MHz
clock. The current is typically reduced to less than 10 ma (for a 20.5-MHz clock) in the wait
state and to less than 1.0 ma (independent of the clock frequency) in the stop state. See
the DSP56001 Advance Information Data Sheet (ADI1290) for exact figures. There are
several other ways that power can be reduced. Power consumption varies linearly with
both clock frequency and power-supply voltage. Changing clock frequency from 20 MHz
to 4 MHz can reduce power consumption 75 percent (i.e., linearly with decreasing fre-
guency). Changing the memory wait states from 0 to 15 can reduce power consumption
by more than half during external memory accesses.

Figure 8-15 shows a WAIT instruction being fetched, decoded, and executed. It is fetched
as n3 in this example and, during decode, is recognized as a WAIT instruction. The following
instruction (n4) is aborted, and the internal clock is disabled from all internal circuitry
except the internal peripherals. The processor stays in this state until an interrupt or reset
is recognized. The response time is variable due to the timing of the interrupt with respect
to the internal clock. Figure 8-15 shows the result of a fast interrupt bringing the processor

8-36 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

out of the wait state. The two appropriate interrupt vectors are fetched and put in the
instruction pipe. The next instruction fetched is n4, which had been aborted earlier. In-
struction execution proceeds normally from this point.

___INTERRUPT SYNCHRONIZED AND
RECOGNIZED AS PENDING

INTERRUPT CONTROL CYCLE 1 . i

INTERRUPT CONTROL CYCLE 2 i

FETCH nd| nd | — il | ii2 | nd | ns
DECODE n2 |WAIT| — il | ii2 | n4
EXECUTE nl | n2 JWAIT il] ii2
INSTRUCTION CYCLE COUNT 1 2 3 4{5]16]7]8[3%]10

i = INTERRUPT

i = INTERRUPT INSTRUCTION WORD

n = NORMAL INSTRUCTIDN WORD ONLY INTERNAL PERIPHERALS

RECEIVE CLOCK

Figure 8-15. Wait Instruction Timing

Figure 8-16 shows an example of the WAIT instruction being executed at the same time
that an interrupt is pending. Instruction n4 is aborted as before. There is a five-instruction-
cycle delay caused by the WAIT instruction; then the interrupt is processed normally. The
internal clocks are not turned off, and the net effect is that of executing eight NOP instruc-
tions between the execution of n2 and ii1.

____INTERRUPT SYNCHRONIZED AND
RECOGNIZED AS PENDING

y

INTERRUPT CONTROL CYCLE 1 i

INTERRUPT CONTROL CYCLE 2 i

FETCH nB|lm| —|—{—|—|—|—]i1]i2]|n
DECODE nWAT| — | —|—|—=}|—=]—=]|=]i]i2
EXECUTE n | on2 (WAT[— | —{ —| =] —=}—]—|
INSTRUCTION CYCLE COUNT 1 2 345 |6]7})8]9jwofn

i = INTERRUPT
INTERRUPT INSTRUCTION WORD ~ \ v /
== NGRMAL INSTRUCTION WORD EQUIVALENT TO EIGHT NOPs

Figure 8-16 Simultaneous Wait Instruction and Interrupt

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 8-37

During the wait state, the BR/BG circuits remain active. Before BR is asserted (see Table
8-12), all port A signals are driven. While the port is inactive, the control signals are
deasserted, the data signals are inputs, and the address signals remain as the last address
read or written. The signal timing during a read or write is given in the timing diagrams
in the DSP56001 Advance Information Data Sheet (ADI1290). When BG is asserted, all
signals are three-stated (high impedance). Inmediately after BR is deasserted, the RD and
WR signals are driven and are deasserted; all other signals remain in the high-impedance
state. During the first TO clock state following the exit from the wait state, control signals
PS, DS, and X/Y are again driven; the data and address signals remain in the high-imped-
ance state. During the first external access, all signals return to their normal operating
mode. :

Table 8-12. BR/BG During WAIT

Signal Before BR While BG After BR After Return to | After First
Asserted Asserted Peasserted Normal State |External Access
PS Driven Three-state Three-state Driven Driven
DS Driven Thiree-state Three-state © Driven Driven
XN Driven Three-state Three-state Driven Driven
RD Driven Three-state Driven Driven Driven
WR Driven Three-state Driven Driven Driven
Data Driven Three-state Three-state Three-state Driven
Address Driven Three-state Three-state Three-state Driven

8.5 STOP PROCESSING STATE

The stop processing state, which is the lowest power-consumption state, is entered by the
execution of the STOP instruction. In the stop state, the clock oscillator is gated off; whereas,
in the wait mode, the clock oscillator remains active. The chip clears all peripheral interrupts
(HI, SSI, and SCI) and external interrupts (IRQA, IRQB, and NMI) when entering the stop
state. Trace or stack errors that were pending, remain pending. The priority levels of the
peripherals remain as they were before the STOP instruction was executed. The SCI, SSI,
and HI are held in their respective individual reset states while in the stop state.

All activity in the processor is halted until one of the following actions occurs:
1. A low level is applied to the IRQA pin.
2. Allow level is applied to the RESET pin.

Either of these actions will gate on the oscillator, and, after a clock stabilization delay,
clocks to the processor and peripherals will be re-enabled. The clock stabilization delay
period is determined by the stop delay (SD) bit in the OMR.

The stop sequence is composed of eight instruction cycles called stop cycles. These are

differentiated from normal instruction cycles because the fourth cycle is stretched an in-
determinant period of time while the four-phase clock is turned off.

8-38 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

The STOP instruction is fetched in stop cycle 1 of Figure 8-17, decoded in stop cycle 2
(which is where it is first recognized as a stop command), and executed in stop cycle 3.
The next instruction (n4) is fetched during stop cycle 2 but is not decoded in stop cycle 3
because, by that time, the STOP instruction prevents the decode. The processor stops the
clock and enters the stop mode. The processor will stay in the stop mode until itis restarted.

TROA L]
A
FETCH HEIEER n
DECODE n [stop| — [— N
EXECUTE a | n2 [stop[- N
STOP CYCLE COUNT 2 s fa N Jslsls]slm
CLOCK STOPPED-—T N RESUME STOP CYCLE COUNT 4,

INTERRUPTS ENABLED

) 131,072 T OR 16 T CYCLE COUNT STARTED
IRQGA = INTERRUPT REQUEST A SIGNAL

n = NORMAL INSTRUCTION WORD
STOP = DECODED STOP INSTRUCTION

Figure 8-17. STOP Instruction Sequence

Figure 8-18 illustrates restarting the system by asserting the IRQA signal. If the exit from
stop state was caused by a low level on the IRQA pin, then the processor will service the
highest priority pending interrupt. If no interrupt is pending, then the processor resumes
at the instruction following the STOP instruction that caused the entry into the stop state.

IROA
LM
FETCH n3lnd | — | — iil
DECODE ’ n2 {STOP| — | —
EXECUTE nl | n2 |STOP{ —
STOP CYCLE COUNT 1 2 3- | 4 516178}

CLOCK STOPPED | I RESUME STOP CYCLE COUNT 4,

INTERRUPTS ENABLED

. 131,072 T OR 16 T CYCLE COUNT STARTED
IRQA = INTERRUPT REQUEST A SIGNAL

n = NORMAL INSTRUCTION WORD
STOP = DECODED STOP INSTRUCTION

Figure 8-18. STOP Instruction Sequence Followed by IR

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 8-39

An IRQA deasserted before the end of the stop cycle count will not be recognized as
pending. If IRQA is asserted when the stop cycle count completes, then an IRQA interrupt
will be recognized as pending and will be arbitrated with any other interrupts.

Specifically, when TRQA is asserted, the internal clock generator is started and begins a
delay determined by the SD bit of the OMR. If the internal clock oscillator is used, the SD
bit should be set to zero, which enables a delay count of 128K T cycles (131,072 T cycles)
to allow the clock oscillator to stabilize. If a stable external clock is used, the SD bit may
be set to one, which enables a 16 T cycle delay.

The following description assumes that SD=0 (the 128K T counter is used). During the
128K T count, interrupts are ignored until the last few count cycles. At this time, the
interrupts are synchronized. At the end of the 128K T cycle delay period, the chip restarts
instruction processing, stop cycle 4 is completed (interrupt arbitration occurs at this time),
and stop cycles 5, 6, 7, and 8 are executed (it takes 17T from the end of the 128K T delay
to the first instruction fetch). If the IRQA signal is released (pulled high) after a minimum
of 4T but less than 128K T cycles, no IRQA interrupt will occur, and the instruction fetched
after stop cycle 8 will be the next sequential instruction (n4 in Figure 8-18). An IRQA interrupt
will be serviced (as shown in Figure 8-18) if 1) the IRQA signal had previously been initialized
as level sensitive, 2) IRQA is held low from the end of the 128K T cycle delay counter to
the end of stop cycle count 8, and 3) no interrupt with a higher interrupt level is pending.
If IRQA is not asserted during the last part of the STOP instruction sequence (6, 7, and 8)
and if no interrupts are pending, the processor will refetch the next sequential instruction
(n4). Since the TROA signal is asserted (see Figure 8-18), the processor will recognize the
interrupt and fetch and execute the instructions at P:$0008 and P:$0009 (the IRQA mterrupt
vector locations). ,

To ensure servicing IRQA immediately after |leaving the stop state, the following steps
must be taken before the execution of the STOP instruction:

1. Define IRQA as level sensitive.

2. Define IRQA priority as higher than the other sources and higher than the program
priority.

3. Ensure that no stack error or trace interrupts are pending.
4. Execute the STOP instruction and enter the stop state.

5. Recover from the stop state by asserting the TROA pin and holding it asserted for the
whole clock recovery time. If it is low, the IRQA vector will be fetched. Also, the user
must ensure that NMI will not be asserted during these last three cycles; otherwise,
NMI will be serviced before TROA because NMI priority is higher.

6. The exact elapsed time for clock recovery is unpredictable. The external device that
asserts IRQA must wait for some positive feedback, such as specific memory access
or a change in some predetermined I/O pin, before deasserting IRQA.

8-40 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

The STOP sequence totals 131,104 T cycles (if SD=0) or 16 T cycles (if SD=1) in addition
to the period with no clocks from the stop fetch to the IRQA vector fetch (or next instruction).
However, there is an additional delay if the internal oscillator is used. An indeterminant
period of time is needed for the oscillator to begin oscillating and then stabilize its am-
plitude. The processor will still count 131,104 T cycles (or 16 T cycles), but the period of
the first oscillator cycles will be irregular; thus, an additional ‘period of 19,000 T cycles
should be allowed for oscillator irregularity (the specification recommends a total minimum
period of 150,000 T cycles for oscillator stabilization). If an external oscillator is used that
is already stabilized, no additional time is needed.

If the STOP instruction is executed when the TRQA signal is asserted, the clock generator
will not be stopped, but the four-phase clock will be disabled for the duration of the 128K
T cycle (or 19 T cycle) delay count. In this case, the STOP looks like a 131,072K + 35 T
cycle (or 51 T cycle) NOP, since the STOP instruction itself is eight instruction cycles long
(32T

A trace or stack error interrupt pending before entering the stop state is not cleared and
will remain pending. During the clock stabilization delay, all peripheral and external inter-
rupts are cleared and ignored (includes all SCI, SSI, HI, IRQA, IRQB, and NMI interrupts,
but not trace or stack error). If the SCI, SS|, or HI have interrupts enabled in 1) their respective
control registers and 2) in the interrupt priority register, then interrupts like SCI transmitter
empty will be immediately pending after the clock recovery delay and will be serviced
before continuing with the next instruction. If peripheral interrupts must be disabled, the
user should disable them with either the control registers or the interrupt priority register
before the STOP instruction is executed.

If RESET is used to restart the processor (see Figure 8-19), the 128K T cycle delay counter
would not be used, all pending interrupts would be discarded, and the processor would
immediately enter the reset processing state as described in 8.3 RESET PROCESSING
STATE. The stabilization time required for the clock (RESET should be asserted for this
time) is only 50 T for a stabilized external clock but is the same 150,000 T for the internal
oscillator. These stabilization times are recommended times but are not imposed by internal
timers or time delays. The DSP fetches instructions immediately after exiting reset. If the
user wishes to use the 128K T (or 16 T) delay counter, it can be started by asserting IRQA
for a short time (about two clock cycles).

During the stop mode, the port A bus is frozen. The state of each pin immediately before
executing the STOP instruction will be held until the DSP leaves the stop state. Port A is
not three-stated, and the BR/BG circuits are not operational. However, port A will remain
three-stated if BG was asserted before the STOP instruction was executed. One way to
release the port A bus for use while the DSP is in the stop state is to use a port B or port
C pin to initiate a bus request before executing the STOP instruction.

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 8-41

8-42

RESET

PROCESSOR ENTERS

RESET STATE ——PROCESSOR LEAVES RESET STATE
(

INTERRUPT CONTROL CYCLE 1

INTERRUPT CONTROL CYCLE 2 \l

FETCH nlm| —|— nop|[nA | nB | nC|nD|nE
DECODE n2 [STOP| — | — nop[nop|{ nA {nB | nC|nD
EXECUTE ni | n2 |STOP| — nop jnop|nop| nA | nB | nC

STOP CYCLE COUNT 1 2 3 |4

CLOCK STOPPED —I

RESET = SIGNAL APPLIED TO RESET PIN
n = NORMAL INSTRUCTION WORD
nA, nB, nC = INSTRUCTIONS IN RESET ROUTINE
STOP = DECODED STOP INSTRUCTION

"

Figure 8-19. STOP Instruction Sequence Recovering with RESET

DSP56000/DSP56001 USER'S MANUAL

MOTOROLA

SECTION 9
PORT A

Port A is the memory expansion port that can be used for either memory expansion or for
memory-mapped I/O (see 2.9.1 Expansion Port (Port A)). A number of features make port
A versatile and easy to use. These features provide a low-parts-count connection with fast
memories, slow memories/devices, and multiple bus master systems.

The port A data bus is 24 bits wide with a separate 16-bit address bus capable of a sustained
rate of one memory access per machine cycle (using no-wait-state memory). External
memory is divided into three 64K-word x 24-bit spaces — X:, Y:, and P:. An internal wait-
state generator can be programmed to insert up to 15 wait states if access to slower memory
or I/0 devices is required. A bus wait signal allows an external device to control the number
of wait states inserted in a bus access operation. Bus arbitration signals allow an external
device (e.g., a DMA controller or another processor) use of the bus while internal operations
continue using the internal memories. Two power-reduction features are specific to
port A. The first power-reduction feature is that accessing the internal memory spaces
does not toggle the external memory signals, eliminating unneeded switching current. The
second power-reduction feature is that, if lower memory speed is acceptable, wait states
can be added to external memory accesses to significantly reduce power while accessing
those memories. '

9.1 PORT A INTERFACE

One or more of the digital signal processor (DSP) memory sources (X data memory, Y
data memory, and program memory) can be accessed during the execution of an instruc-
tion. Each of these memory sources may be either internal or external to the DSP. Three
address buses (XAB, YAB, and PAB) and four data buses (XDB, YDB, PDB, and GDB) are
available for internal memory accesses during one instruction cycle, but only one address
bus and one data bus (port A) are available for external memory accesses. If all memory
sources are internal to the DSP, one or more of the three memory sources may be accessed
in one instruction cycle (i.e., program memory access or program memory access plus an
X, Y, XY, or L memory reference}. However, when one or more of the memories are external
to the DSP56000/DSP56001, memory references may require additional instruction cycles
because only one external memory access can occur per instruction cycle.

If more than one external access is required in one instruction cycle, the accesses will be
made in the following priority: X memory, Y memory, and program memory. It takes one
instruction cycle for each external memory access — i.e., one access can be executed in
one instruction cycle, two accesses take two instruction cycles, etc. Since the external bus
is only 24 bits wide, one XY or long external access will take two instruction cycles.

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 9-1

Figure 9-1 shows the port A signals divided into their three functional groups. The bus
control signals can be subdivided into three additional groups: read/write control, address
space selection, and bus access control. The read/write controls are self-descriptive. They
can be used as decoded read and write controls, or, as seen in Figures 9-2, 9-3, 9-4, and
9-6, the write signal can be used as the read/write control, and the read signal can be used

9-2

Figure 9-1. Port A Signals

DSP56000/DSP56001 USER'S MANUAL

16-BIT INTERNAL
" ADDRESS BUSES
X ADDRESS (XA) >
1
EXTERNAL EXTERNAL
Y ADDRESS (YA) ADDRESS BUS /> ADDRESS BUS
SWITCH 7 A0-A15
PROGRAM ADDRESS (PA) Jl>
24-BIT INTERNAL
DATA BUSES
X DATA (XD) >
Y DATA (YD) u
EXTERNAL pa EXTERNAL
DATA BUS / DATA BUS
SWITCH 7 D0-D23
PROGRAM DATA (PD)
GLOBAL DATA (GD) >
BUS CONTROL SIGNALS
> RD-READ ENABLE '
> WR-WRITE ENABLE -
EXTERNAL > PS-PROGRAM MEMORY SELECT
BUS CONTROL > DS-DATA MEMORY SELECT
LOGIC > XY-X/Y SELECT
< BR/WT-BUS REQUEST/WAIT
> BG/BS-BUS GRANT/BUS STROBE

MOTOROLA

as an output enable (or data enable) control for the memory. Decoding in this fashion
simplifies connection to high-speed random-access memories (RAMs). The program mem-
ory select, data memory select, and X/Y select can be considered additional address signals,
which extend the addressable memory from 64K words to 192K words.

Since external logic delay is large relative to RAM timing margins, timing becomes more
difficult as faster DSPs are introduced. The separate read and write strobes used by the
DSP56000/DSP56001 are mutually exclusive, with a guard time between them to avoid two
data buffers being enabled simultaneously. Other methods using external logic gates to
generate the RAM control inputs require either faster RAM chips or external data buffers
to avoid data bus buffer conflicts.

Additional DSP56000/DSP56001 peripherals can be memory mapped. An-easy way to in-
terface with MC6800 and MC68000 peripherals and to have an early read/write indication
is to use the X/Y output pin as an early R/W indication. The peripheral chip select should
be derived from the address lines and the data strobe so the peripheral registers appear
in both X and Y data memory spaces at the same addresses. For a read operation, perform
an X memory read:

MOVE X:PERIPHERAL,XO0 ;X/Y signal is high.
For a write operation, perform a Y memory write:

MOVE X0,Y:PERIPHERAL ; X/Y signal is low.

Vee Vss
+5V GROUND

—
‘ 6 [
ADDRESS BUS i PROGRAM MEMORY
ALALS / | ADDRESS |
7 24/ .
DATA BUS
D0-D23 < // > DATA
DSP56000/DSP56001
BUS
CONTROL __ _
RD OF 24 BIT x N WORDS
RW
|
-
_ 5

Figure 9-2. External Program Space

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 9-3

Vee Vss
+5V GROUND

ADDRESS BUS
A0-A15

DATA BUS
D0-D23 /)
7 I |
DATA ADDRESS ADDRESS
X DATA) Y DATA
DSP56000/DSP56001 MEMORY MEMORY
. 24 BITS x N WORDS 24 BITS x N WORDS
0E RW S CE 0E RW CS CE
BUS] [A 4 A A A A
CONTROL
————— }
S — >
—

Figure 9-3. External X and Y Data Space

Since the X/Y output signal has the same timing as the address lines, it provides an early
direction indication. The RD and WR signals are ANDed together to form a “data strobe”
signal. The only restriction is that X and Y memory space must be external at the same
address. Thus, the I/0 short addressing mode and the MOVEP instruction cannot be used
for this application. Otherwise, the hardware and software are trivial.

Figure 9-2 shows an example of external program memory. A typical implementation of
this circuit would use three-byte-wide static memories and would not require any additional
logic. The PS signal is used as the program-memory chip-select signal to enable the pro-
gram memory at the appropriate time.

Figure 9-3 shows a similar circuit using the DS signal to enable two data memories and
using the X/Y signal to select between them. The three external memory spaces {program,
X data, and Y data) do not have to reside in separate physical memories; a single memory
can be employed by using the PS, DS, and X/¥ signals as additional address lines to
segment the memory into three spaces (see Figure 9-4). Table 9-1 shows how the PS, DS,
and X/Y signals are decoded. If the DSP is in the development mode, an exception fetch
to any interrupt vector location will cause the X/¥ signal to go low when PS is asserted.

9-4 - DSP56000/DSP56001 USER'S MANUAL MOTOROLA

Vee Vss

+5V GROUND IE)I;.I('JEG?AAI\'&
X AND Y MEMORY
: SIFFF
L8 AD-A10
ADDRESS BUS 7
A0-AT5
7
CE
u K
DSP55000/DSP56001 o
DATA BUS < a MEMORY
D0-D23 ~
BUS
CONTROL -
— > $3000
RW SZFFF
[
R U2 *
[AT2 X DATA
> MEMORY
All I;g{ $2800
L Al S21FF
L Y DATA
MEMORY
| —————————
- 52000

Figure 9-4. Memory Segmentation

Table 9-1. Program and Data Memory Select

Encoding

XY External Memory Reference

-

No Activity

X Data Memory on Data Bus

(= =]

Y Data Memory on Data Bus

-

— o |-

Program Memory on Data Bus
(Not an Exception)

0 |External Exception Fetch: Vector or
Vector+ 1 {Development Mode Only)

X |Reserved

0 |Reserved

MOTOROLA

DSP56000/DSP56001 USER'S MANUAL

[— 24 BITS —>|

This procedure is useful for debugging and for allowing external circuitry to track interrupt

9-5

Special provisions have been made to allow the DSP to load a program from an inexpensive
byte-wide ROM (see Figure 9-5 and the DSP56007 Advance Information Data Sheet (AD}1290)
into internal program memory during a poweron reset. On powerup, the wait-state gen-
erator adds 15 wait states to all external memory accesses so that slow memory can be
used. If bit 23 of external memory is a logic one, the DSP will load the contents of an
external ROM into internal program memory (if bit 23 is a logic zero, it will load from the
host port). The bootstrap program uses the bytes in three consecutive memory locations
in the external ROM to build a single word in internal program memory. Figure 9-6 shows
a system that uses internal program memory loaded from an external ROM during powerup
and that splits the data memory space of a single memory bank into X: and Y: memory
spaces. Although external program memory must be 24 bits, external data memory does
not. Of course, this is application specific. However, many systems use 16 or fewer bits
for A/D and D/A conversion, since they only need to store 16, 12, or even eight bits of data.

45V +5V
S 3K 35 315K
b3 b3 +5V
DSP56001 2716
47K
023
FROM L - _
OPEN-COLLECTOR > » MODA/IROA PS CE
BUFFER)
5
: INS711 }
FROM A1-A15 [N,
RESET > RESET
FUNCTION 1
INST1 AO-A10 #—>] As-At0
FROM 8
. OPEN-COLLECTOR > o——1 MoDB/IROB 00-D7 |e—rp- D0-D7
BUFFER

.

ADDRESS OF EXTERNAL
BYTE-WIDE P MEMORY

CONTENTS LOADED
TO INTERNAL PRAM AT:

P:$C000. P:30000 LOW BYTE
P:$C001 P:80000 MID BYTE
P:$C002 P:$0000 HIGH BYTE
P:SCSFD P:301FF LOW BYTE
P:SC5FE P:S01FF MID BYTE
P:$C5FF P:$01FF HIGH BYTE

Figure 9-5. Port A Bootstrap Circuit

9-6 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

VI0HOLON

TYNNVYIAN S, HISN 1L0095dSA/000954SA

L6

FROM
OPEN-COLLECTOR
BUFFER

FROM
RESET
FUNCTION

FROM
OPEN-COLLECTOR
BUFFER

+5V +5V
> P4 <L P4
15K 215K 2 15K SAIK Q4K 24K SaKK
< < T < <
DSP56001
RD
WR
DS
> * MODA/IRQA XY - m
A0-A10 —A -
PS
IN5711 Y
; {A0-p9 A10 CS WE DE
¥ PEE—
D RESET P Y l
‘5 CE A0-AID
+
INS7H 276 2018(3) _J
D0-D7 D0-D23
15K A
V V
> 78 MODB/IRGE 18 1u
g D23 1 2 Y
D0-D23 |—¢

Q

Figure 9-6. Port A Bootstrap ROM with X and Y RAM

The 24/56 bits of internal precision is usually sufficient for intermediate results. Recognizing
this fact can save cost by reducing the number of external memory chips.

All unused inputs should have pullup resistors for two reasons: 1) floating inputs draw
excessive power, and 2) a floating input can cause erroneous operation. For example,
during RESET, all signals are three-stated. Without pullup resistors, the PS and DS signals
may become active, causing two or more memory chips to try to simultaneously drive the
external data bus, which can damage the memory chips. A pullup resistor in the 50K-ohm
range should be sufficient.

9.2 PORT A TIMING

The external bus timing is defined by the operation of the address bus, data bus, and bus
control pins. The transfer of data over the external data bus is synchronous with the clock.
The timing A, B, and C relative to the edges of an external clock (see Figures 9-7 and 9-8)
are provided.in the DSP56001 Advance Information Data Sheet (ADI1290). This timing is
essential for designing synchronous multiprocessor systems. Figure 9-7 shows the port A
timing with no wait states (wait-state control is discussed in 9.2.1 Port A Wait States). One
instruction cycle equals two clock cycles or four clock phases. The clock phases, which are
numbered TO-T3, are used for timing on the DSP. Figure 9-8 shows the same timing with
two wait states added to the external X: memory access. Four TW clock phases have been
added because one wait state adds two T phases and is equivalent to repeating the T2
and T2 clock phases. The write signal is also delayed from the T1 to the T2 state when one

ONE INSTRUCTION CYCLE < >

ONE CLOCK CYCLE - >
T0 T1 T2 T3 T0 T T2 T3 - T0 T

INTERNAL CLOCK PHASES ==\ /—\ /) / \ / \ / \

—

ADDRESS PS, DS, XV x
—_ —H A e .
RD -~ B ;‘n /
READ !
CYCLE

WRITE
CYCLE.

DATA OUT \ /

Figure 9-7. Port A Bus Operation with No Wait States

9-8 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

ONE INSTRUCT!ON CYCLE >
[€—— TW0 WAIT STATES ~——>

ONE CLOCK CYCLE [>
INTERNAL CLOCK — 10 n n w_w wWoW 13 T0 T
PHASES / \) \ I~ \

A

ADDRESS PS, DS, X/¥ X

READ R0 et _* /
CYCLE

DATA IN ORI T XXX ——-
WA |jfe——¢t —A‘ 4/

DATA 0UT — D

WRITE
CYCLE

DATA LATCHED HERE

Figure 9-8. Port A Bus Operation with Two Wait States

or more wait states are added to ease interfacing to the port. Each external memory access
requires the following procedure:

1. The external memory address is defined by the address bus (A0-A15) and the memory
reference selects (PS, DS, and X/Y). These signals change in the first phase (T0) of
the bus cycle. Since the memory reference select signals have the same timing as
the address bus, they may be used as additional address lines. The address and
memory reference signals are also used to generate chip-select signals for the ap-
propriate memory chips. These chip-select signals change the memory chips from
low-power standby mode to active mode and begin the read access time. This mode
change allows slower memories to be used since the chip-select signals can be address
based rather than read or write enable based. Read and write enable do not become
active until after the address is valid. See the timing diagrams in the DSP56007 Ad-
vance Information Data Sheet (ADI1290) for detailed timing information.

2.-When the address and memory reference signals are stable, the data transfer is
enabled by read enable (RD) or write enable (WR). RD or WR is asserted to “’qualify”
the address and memory reference signals as stable and to perform the read or write
data transfer. RD and WR are asserted in the second phase of the bus cycle (if there
are no wait states). Read enable is typically connected to the output enable (OE) of
the memory chips and simply controls the output buffers of the chip-selected memory.
Write enable is connected to the write enable (WE) or write strobe (WS) of the memory
chips and is the pulse that strobes data into the selected memory. For a read operation,

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 9-9

_RD is asserted and WR remains deasserted. Since write enable remains negated, a
memory read operation is performed. The DSP data bus becomes an input, and the
memory data bus becomes an output. For a write operation, WR is asserted and RD
remains deasserted. Since read enable remains deasserted, the memory chip outputs
remain in the high-impedance state even before write strobe is asserted. This state
assures that the DSP and the chip-selected memory chips are not enabled onto the
bus at the same time. The DSP data bus becomes an output, and the memory data
bus becomes an input.

3. Wait states are inserted into the bus cycle by a wait-state counter or by asserting WT.
The wait-state counter is loaded from the bus control register. If the value loaded into
the wait-state counter is zero, no wait states are inserted into the bus cycle, and RD
and WR are asserted as shown in Figure 9-7. If a value W+0 is loaded into the wait
state counter, W wait states are inserted into the bus cycle. When wait states are
inserted into an external write cycle, WR is delayed from T1 to T2. The timing for the
case of two wait states (W=2) is shown in Figure 9-8.

4, When RD or WR are deasserted at the start of T3 in a bus cycle, the data is latched
in the destination device — i.e., when RD is deasserted, the DSP latches the data
internally; when WR is deasserted, the external memory latches the data on the
positive-going edge. The address signals remain stable until the first phase of the
next external bus cycle to minimize power dissipation. The memory reference signals
(PS, DS, and X/Y) are deasserted (held high) during periods of no bus activity, and
the data signals are three-stated. For read-modify-write instructions such as BSET,
the address and memory reference signals remain active for the complete composite
(i.e., two Icyc) instruction cycle. :

Figure 9-9 shows an example of mixing different memory speeds and memory-mapped
peripherals in different address spaces. The internal memory uses no wait states, X: mem-
ory uses two wait states, Y: memory uses four wait states, P: memory uses five wait states,
and the analog converters use 14 wait states. Controlling five different devices at five
different speeds requires only one additional logic package. Half the gates in that package
are used to map the analog converters to the top 64 memory locations in Y: memory.

Adding wait states to external memory accesses can substantially reduce power require-
ments, Table 9-2 shows how the power was reduced during external memory and I/O
operations by changing from zero to 15 wait states at four different clock speeds in a test
circuit.

9.2.1 Port A Wait States

The DSP56000/DSP56001 features two methods to allow the user to accommodate siow
memory by changing the port A bus timing. The first method uses the bus control register
(BCR}, which allows a fixed number of wait states to be inserted in a given memory access
to all locations in each of the four memory spaces: X, Y, P, and I/O. The second method

9-10 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

PORT A BUS CONTROL REGISTER (BCR)

EXTERNAL EXTERNAL EXTERNAL EXTERNAL
X MEMORY Y MEMORY P MEMORY /0 MEMORY

s 121 g ll7 4113 ol

X:SFFFE | wo | 0100 0101 110 |

D/A AD

CONVERTER CONVERTER
D ¢S WR D S RD
750 ns : A

VAN 2\

{14 WAIT STATES)

-

A5

A0-A15

D0-D23

/

& 6242-15 2764-25 | 21256-30
o
2zk §242-15 665 | 75630 |
=5
G2 6242-15 2764-25 27256-30
5%
= 8K x 24 8K x 24 32K x 24
X RAM Y ROM P ROM
150 ns 250 ns 300 ns
205-MHz | | i
DSP56000 1 (2 WAIT STATES) L {4 WAIT STATES) (5 WAIT STATES)
Cs TS WE OF s OE [[
4 A A 3 y
XA 1 J
DS O

WR
RD
Ps

>

205
]_; MHz :_E

Figure 9-9. Mixed-Speed Expanded System

MOTOROLA DSP56000/DSP56001 USER’'S MANUAL 9-11

Table 9-2. Power Requirements for
Minimum and Maximum External
Memory Wait States

Clock Curr.ent for Curr?nt for
0 Wait States 15 Wait States
4.000 MHz 19.8 mA 8.6 mA
6.5536 MHz 31.0 mA 128 mA
10.245 MHz 46.8 mA 18.8 mA
20.000 MHz 91.0 mA 36.6 mA

uses the bus strobe/wait (BS/WT) facility, which allows an external device to insert an
arbitrary number of wait states when accessing either a single location or multiple locations
of external memory or I/O space. Wait states are executed until the external device releases
the DSP to finish the external memory cycle.

9.2.2 Bus Control Register

The expansion bus timing is controlled by the BCR (see Figure 9-10) which controls the
timing of the bus interface signals, RD and WR, and the data output lines. Each of the
memory spaces, X data, Y data, program data, and I/O, has its own 4-bit BCR, which can
be programmed for inserting up to 15 wait states (each wait state adds one-half instruction
cycle to each memory access — i.e., 50 ns for a 20-Mhz clock). In this way, external bus
timing can be tailored to match the speed requirements of the different memory spaces.
On processor RESET, the BCR is preset to all ones (15 wait states).

Figure 9-10 illustrates which of the four BCR subregisters affect which external memory
space. The BCR is a memory-mapped register located at X:$FFFE. All the internal peripheral
devices are memory mapped, and their control registers reside between X:$FC00 and
X:$FFFF. Loading the BCR as shown in Figure 9-9 can be accomplished by executing a
"MOVEP #$245E, X:$FFFE" instruction. Changing individual bits in one of the four sub-
registers can be accomplished by using the BSET and BCLR instructions.

9.2.3 Bus Strobe/Wait Pins

The DSP56000/DSP56001 has two reconfigurable pins that are used as either bus request/
bus grant (BR/BG) or as bus strobe/wait (BS/WT). The ability to insert wait states using BS/
WT provides a means to connect asynchronous devices to the DSP, allows devices with
differing timing requirements to reside in the same memory space, allows a bus arbiter
to provide a fast multiprocessor bus access, and provides another means of halting the
DSP at a known program location with a fast restart. Bus strobe in the original in-house
documentation was called “memory ready strobe’” and wait was called ‘memory ready”'.
The original names have been changed to be more descriptive.

9-12 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

15 nn 87 43 0

- EXTERNAL EXTERNAL EXTERNAL EXTERNAL
: X MEMORY* Y MEMORY* P MEMORY* 1/0 MEMORY*
\ / AN / AN /
N\ \/ \/
]
1
SFFFF SFFFF SFFFF
BUS CONTROL REGISTER -
SFFFE EXTERNAL
ON-CHIP
PERIPHERALS
$FFCO - $FFCO
$F00
INTERNAL $200 5200
PRgG'F:AAM - INTERNAL INTERNAL
0 X ROM Y ROM
$100 $100
INTERNAL INTERNAL
X RAM Y RAM
0 0 0
PROGRAM X DATA Y DATA
MEMORY SPACE) MEMORY MEMORY
SPACE SPACE

*Zero to 15 wait states can be inserted into each external memory access.

Figure 9-10. Bus Control Register

RESET initializes the DSP in the BR/BG mode for compatibility. The BS/WT mode is selected
if bit 7 in the OMR (see Figure 9-11) is set to one, which can be accomplished by executing
an “ORIl #80, OMR” instruction. Because the BR/BG and BS/WT modes are mutually ex-
clusive, port A cannot be three-stated by an external device when in the BS/WT mode. The
BCR is still operative in the BS/WT mode and defines the minimum number of wait states
that are inserted.

23 8 7 6 5 4 3 2 1 0
MOD | MOD
0 EM|[SD| O 0 0 | DE |"g" 1A
EXTERNAL MEMORY ACCESS T

0 BUS REQUEST/BUS GRANT ARBITRATION (RESET); USED BY A HOST TO THREE-STATE THE DSP56000 EXTERNAL BUS.
1 BUS STROBE/WAIT; USED BY A HOST TO DELAY OR STRETCH THE CURRENT DSP56000 BUS CYCLE

Figure 9-11. Port A Access Control !

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 9-13

The timing of BS and WT pins is illustrated in Figure 9-12. Every external access, BS is
asserted concurrently with the address lines in T0. BS can be used by external wait-state
logic to establish the start of an external access. BS is deasserted in T3 of each external
bus cycle, signaling that the current bus cycle will complete. Since the WT signal is internally
synchronized, it can be asserted asynchronously with respect to the system clock. The WT
signal should only be asserted while BS is asserted. Asserting WT while BS is deasserted
will give indeterminate results. However, for the number of inserted wait states to be
deterministic, WT timing must satisfy setup and hold timing with respect to the negative-
going edge of EXTAL. The setup and hold times arﬂrovided in the DSP56001 Advance
Information Data Sheet (ADI11290). The timing of WR is controlled by the BCR and is
independent of WT. The minimum number of wait states that can be inserted using the
WT pin is two. Table 9-3 summarizes the effect of the BCR and WT pin on the number of
wait states generated.

OPERATING MODE REGISTER

7 6 5 4 3 2 1 0
Lem[so] o[o] o[oe[me]ma]
SETEM=1
Veo - Vss
+5V GROUND
l l T0 T T2 ™w W ™w ™w T3 T0

SN T VO W Wl W
DSP56000/DSP56001
16

N
ADDA}i(JEiS;5BUS j:> X A0-A15, D0-D23, PS, DS, XY x
24
DATA BUS
00-D23 . . .
BUS Wi IS Wi s WIS
CONTROL 75 > SAMPLED SAMPLED SAMPLED
W f——
PS e
ﬁ L.
Xy
Wi fe——— \ _/ |

s\ L

Figure 9-12. Bus Strobe/Wait Sequence

9-14 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

Table 9-3. Wait State Control

BCR WT Number of Wait States Generated
Contents
0 Deasserted |0
0 Asserted |2 (minimum)
>0 Deasserted |Equals value in BCR
>0 Asserted | Minimum equals 2 or value in BCR.
Maximum is determined by WT.

9.3 BUS ARBITRATION

The BR/BG and BS/WT pins provide bus arbitration controls. The BR/BG mode allows an
external device to request and be given control of the external memory bus (port A) while
the DSP continues internal operations using internal memory spaces. This configuration
allows a bus controller to arbitrate a multiple bus-master system. (A bus master can issue
addresses on the bus; a bus slave can respond to addresses on the bus. A single device
can be both a master and a slave, but can only be one or the other at any given time.) The
BS/BW mode allows a bus arbitrator to extend the bus cycle of the DSP56000/DSP56001
to allow another bus master time to finish its bus access before allowing the DSP56000/
DSP56001 access to the bus. '

9.3.1 Bus Request/Bus Grant

The BR/BG mode is selected if OMR bit 7 (see Figure 9-11) is set to zero (execute an "“ANDI
#7F,OMR" instruction). When BR is asserted (see Figure 9-13), the DSP will assert BG after
the current external access cycle completes and will simultaneously three-state the port A
signals (see the DSP56001 Advance Information Data Sheet (ADI1290) for exact timing of
BR/BG). The bus is then available to be used by the bus master requesting the bus. When
BR is deasserted, BG is deasserted after the current external access, and the port A signals
are no longer three-stated. Reset clears bit 7 of the OMR. Information on operation of the

ﬁ—\\K
Ty

AQ-A15,00-D23, PS, \
DS, XY, RD, WR ‘ /
DSP56000 | A DIFFERENT . DSP56000
BUS MASTER T BUS MASTER © 71T BUS MASTER

Figure 9-13. Bus Request/Bus Grant Sequence

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 9-15

BR/BG pins after executing a WAIT or STOP instruction can be found in 8.4 WAIT PROC-
ESSING STATE and 8.5 STOP PROCESSING STATE.

9.3.2 Shared Memory

The bus control signals described in the previous paragraphs provide the means to connect
additional bus masters (which may be additional DSPs, microprocessors, direct memory
access (DMA) controllers, etc.) to the port A bus. Four arbitration examples will be described
in the following paragraphs: 1) bus arbitration using only BR/BG with internal control, 2)
bus arbitration using only BR/BG with external control, 3) bus arbitration using BR/BG and
BS/WT with no overhead, and 4) signaling using semaphores.

9.3.2.1 BUS ARBITRATION USING ONLY BR/BG WITH INTERNAL CONTROL. Perhaps the
simplest example of a shared memory system using a DSP56000/DSP56001 is shown in
Figure 9-14. The bus arbitration is performed internal to the DSP#2 by using software.
DSP#2 controls all bus operations by using I/0 pin OUT2 to three-state its own port A and
by never accessing port A without first calling the subroutine that arbitrates the bus. When
the DSP#2 needs to use external memory, it uses I/O pin OUT1 to request bus access and
I/0 pin IN1 to read bus grant. DSP#1 does not need any extra code for bus arbitration
since the BR/BG hardware handles its bus arbitration automatically. The protocol for bus
arbitration is as follows:

AtRESET: DSP#2 sets OUT2=0 (BR#2=0) and OUT1=1 (BR#1=1), which gives DSP#1
access to the bus and suspends DSP#2 bus access.

When DSP#2 wants control of the memory, the following steps are performed (see Figure
9-15):

1. DSP# 2 sets OUT1=0 (BR#1=0).

2. DSP# 2 waits for IN1=0 (BG#1=0 and DSP#1 off the bus). This takes at most
13T +4T«*WS+20 ns (about 400 ns at 20 MHz) where T is Icyc/4 and WS is the
number of wait states used by DSP# 1. If DSP#1 is not using any read/modify/write
instructions in its external space, the maximum becomes only 9T +2T+*WS+ 20 ns
(about 250 ns at 20 MHz).

DSP#2 sets OUT2=1 (BR#2=1 to let DSP#2 on the bus).

DSP#2 accesses the bus for block transfers, etc. at full speed.

To release the bus, DSP#2 sets OUT2=0 {(BR#2=0) after the last external access.
DSP#2 then sets OUT1=1 (BR#1=1) to return control of the bus to DSP#1.

. DSP#1 then acknowledges mastership by deasserting BG#1.

N o o s w

9.3.2.2 BUS ARBITRATION USING ONLY BR/BG WITH EXTERNAL CONTROL. Figure
9-16 can be implemented with external bus arbitration logic, which will save processing

9-16 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

»! BR
ouT2
BR | ouT
BG —»{ IN1
CONTROL € CONTROL
AD-A15 AD-A15
D0-D23 [(- 00-D23
DSP56000/DSP56001 #1 DSP56000/DSP56001 #2
BUS ARBITER
L\
c A D
MEMORY
BANK

Figure 9-14. Bus Arbitration Using Only BR/BG with Internal Control

oo ———\. S
INT \I /I
ouT2 = /T \ I ‘
— DATA !
I 1 TRANSFERRED |
P HERE—>] !
1 2 3 4 5 6 7)

Figure 9-15. Two DSPs with External Bus Arbitration Timing

capacity on the DSPs and can make bus access much faster at a cost of additional hardware.
Operation is similar to the system shown in Figure 9-14. The bus arbitration logic takes
control of the external bus by deasserting an enable signal (E1, E2, and E3) to all DSPs,
which will then acknowledge by granting the bus (BG=0). When a DSP (DSP#1 in Figure
9-16) wants the bus, it will jump to a subroutine, which will set PC3=1. When the arbitration
logic grants the bus to a DSP, it will issue a BG1 (BG2 for DSP#2; BG3 for DSP#3) to let
the DSP know that it can have the bus. Arbitration logic will then enable the bus by asserting
the appropriate enable (E1=1). When the DSP'is ready to relinquish the bus, it deasserts
PC3, and the arbiter deasserts E1 and BG1.

MOTOROLA DSP56000/DSP56001 USER’S MANUAL 9-17

SYSTEM MEMORY
32K x 24 X DATA RAM
32K x 24 Y DATA RAM
32K x 24 PROGRAM RAM
ADDRESS DATA CONTROL

))
ADDRESS 418
P

' 1 DATA 1 ' I!24
7

- ‘ CONTROL. ‘ ‘ 5

l r l |

A D C ADC ADC

DSP56000/DSP56001 | | DSP56000/D SP56001 DSP56000/DSP56001

#1 #2 #3

BG BR PC3 PC4 BG BR PC3 PC4 BG BR PC3 PC4
1 A A A A A

Yy Y A y i ¥

Al E1 BRI1BG! [A2 E2 BR2 BG2 [A3 E3 BR3BG3

BUS ARBITRATION LOGIC

Figure 9-16. Bus Arbitration Using Only BR/BG with External Control

9.3.2.3 BUS ARBITRATION USING BR/BG AND BS/WT WITH NO OVERHEAD. By using
the circuit shown in Figure 9-17, two DSPs can share memory with hardware arbitration
that requires no software on the part of the DSPs. In Figure 9-17, DSP#1 has EM=1 in its
OMR, and DSP#2 has EM=0-in its OMR. The protocol for bus arbitration in Figure 9-17 is
as follows:

At RESET: BG of DSP#2 is deasserted, which three-states the buffers, giving DSP#2
control of the memory. Reset causes DSP#1 to initially be in the BR/BG mode.
DSP#1 OMR bit 7 must be set by software during initialization to change BR/
BG to BS/WT.

When DSP#1 wants control of the memory the followmg steps are performed (see Flgure
9-18):

1. DSP#1 makes an external access, thereby asserting BS, which asserts WT (causing
DSP#1 to execute wait states in the cu rrent cycle) and asserts DSP#2 BR (requestlng
that DSP#2 release the bus).

2. When DSP#2 finishes its present bus cYcIe, it three-states its bus drivers and asserts
BG. Asserting BG enables the three-state buffers, placing the DSP#1 signals on the

9-18 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

MEMORY

D A c
A
DSP#1 THREE-STATE DSP#2
D0-D23 = BUFFER = D0-D23
AO-A15 — > AD-A15
__RD, WR, — >le RD, WR, _
DS, PS, XY DS, PS, XY
DIR
BS ENABLE B6 BR
. A

wi
: ,

Figure 9-17. Bus Arbitration Using BR/BG
and BS/WT with No Overhead

— Jq__
-—aQ_(-
ky_

&l
w

|

BR _ N
T Y.

DATA TRANSFERRED

HERE

1 2

Figure 9-18. Two DSPs with External Bus Arbitration Timing

memory bus. Asserting BG also deasserts WT, which allows DSP#1 to finish its
bus cycle.

3. When DSP#1's memory cycle is complete, it releases BS, which deasserts BR.
DSP#2 then deasserts BG, three-stating the buffers and allowing DSP#2 to access

the memory bus.

MOTOROLA ' DSP56000/DSP56001 USER’S MANUAL 9-19

9.3.2.4 SIGNALING USING SEMAPHORES. Figure 9-19 shows a more sophisticated shared
memory system that uses external arbitration with both local external memory and shared
memory. The four semaphores are bits in one of the words in each shared memory bank
used by software to arbitrate memory use. Semaphores are commonly used to indicate
that the contents of the semaphore’s memory blocks are being used by one processor and
are not available for use by another processor. Typically, if the semaphore is cleared, the
block is not allocated to a processor; if the semaphore is set, the block is allocated to a
processor. '

[1 | SEMAPHORE 3
BANK 3

ll SEMAPHORE 2
BANK 2

ll SEMAPHORE 1

BANK 1
1] SEMAPHORE 0 |
DSP56000 BANK 0 PROCESSOR
LOCAL LOCAL
MEMORY MEMORY
DSP56000/ PROCESSOR
DSP560001 " " OR DMA
ADDRESS BUFFER BUFFER ADDRESS
DATA AND DATA AND
CONTROL CONTROL
BUSES BUSES
ARBITRATION
LOGIC

Figure 9-19. Signaling Using Semaphores

Without semaphores, one processor may try to use data while it is being changed by
another processor, which may cause errors. This problem can occur in a shared memory
system when separate test and set instructions are used to “lock’ a data block for use by
a single processor.

The correct procedure is to test the semaphore and then set the semaphore if it was clear
to lock and gain exclusive use of the data block. The problem occurs when the second
processor acquires the bus and tests the semaphore after the first processor tests the
semaphore but before the first processor can lock the data block. The incorrect sequence

9-20 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

is 1) the first processor tests the semaphore and sees that the block is available; 2) the
second processor then tests the bit and also sees that the block is available; 3) both
processors then set the bit to lock the data; and 4) both proceed to use the data on the
assumption that the data cannot be changed by another processor.

The DSP56000/DSP56001 has a group of instructions designed to prevent this problem.
They perform an indivisible read-modify-write operation and do not release the bus be-
tween the read and write (specifically, AO-A15, DS, PS, and X/Y do not change state). Not
releasing the bus allows these instructions to test the semaphore and then to set, clear,
or change the semaphore without the possibility of another processor testing the sema-
phore before it is changed. The instructions are bit test and change (BCHG), bit test and
clear (BCLR), and bit test and set (BSET). The proper way to set the semaphore to gain
exclusive access to a memory block is to use BSET to test the semaphore and to set it to
one. After the bit is set, the result of the test operation will reveal if the semaphore was
clear before it was set by BSET and if the memory block is available. If the bit was already
set and the block is in use by another processor, the DSP will wait to access the memory
block. :

MOTOROLA DSP56000/DSP56001 USER’S MANUAL 9-21

9-22 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

SECTION 10
PORT B

Port B is a dual-purpose I/O port that can be used as 1) 15 general-purpose pins individually
configurable as either inputs or outputs or as 2) an 8-bit bidirectional host interface (HI)
(see Figure 10-1). When configured as general-purpose 1/O, port B can be used for device
control. When configured as the HI, port B provides a convenient connection to another
processor. This section describes both port B configurations, including examples of how
to configure and use the port.

DEFAULT ALTERNATE
FUNCTION FUNCTION
EXTERNAL ADDRESS > i
SWITCH - A -
EXTERNALDATA | 4.,22.> 00-D23 -
SWITCH | porTA
1" _

. ’(47) —> PS"’ -
——> DS . -
BUS > _
CONTROL, > —> RO —
——>» WR -
~— W -
—> BG/BS -

scl [<«€—>» PC0 . <—— RXD
INTERFACE <« —> PCI —» TXD

PORT C | }e—> PC3 ~—> 500
110 | je—> rca <> 5C]
sS| 9 |je—>pcs <302
INTERFACE > l«—> PC6 <> SCK

Figure 10-1. Port B Interface

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 10-1

10.1 GENERAL-PURPOSE /0

When it is configured as general-purpose I/0, port B can be viewed as three memory-
mapped registers (see Figure 10-2) that control 15 I/O pins (see Figure 10-3). The software
and hardware reset configure port B as general-purpose I/O with all 15 pins as inputs by
clearing all three registers (external circuitry connected to these pins may need pullups
until the pins are configured for operation). These registers are the port B control register
(PBC), port B data direction register {(PBDDR), and port B data register (PBD). Selection
between general-purpose I/0 and Hl is made by setting PBC bit 0 (memory location X:$FFEQ)
to zero for general-purpose I/O or to one for HI. The PBDDR {memory location X:$FFE2)
selects each corresponding pin in the PBD (memory location X:$FFE4), as an input pin if
the PBDDR bit equals zero or as an output pin if the PBDDR bit equals one.

The port B I/O pin control logic is shown in Figure 10-4. Writing to PBD will write data to

the pins designated as outputs by the PBDDR; reading the PBD will read the level on the
pins designated as inputs by the PBDDR. When a pin is designated as an output and the

23

Qlo

PORT B CONTROL

X:SFFEOf 0| oJo|ojojojojojofofofojofojojojofojojojo]jo]o REGISTER (PBC)

o ®

v

BC Function
0 |Parallel I/0 (Reset Condition)
1 | Host Interface

23

Clo

BD|BD{BD{ BO(BD|BD|BD|BD|BD|BD|BD|{BD|BD|BD|B
14113]1zp1n)wof9)s

PORT B DATA DIRECTION

X$FFE2)| OO CGfjO[O|O]jO|O}O REGISTER (PBDDR)

~
@
o
>
w
N
o

Y

-BDx Data Direction
0 |Input (Reset Condition)
1 | Output '
23 0

PB|PB|PB|PB|PB|PB{PB|PB|PB|PB|PB|PB|PB{PB|PB{ PORT B DATA

XFFEG1 0100101030101 080 1t alialii|o|sls|7]6|5]ala|2]1]|0]ResisTer iPBD)

o

Figure 10-2. Parallel Port B Registers

10-2 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

\ENABLED BY DIRECTION INPUT/QUTPUT

BIT IN SELECTED BY DATA
X:$FFEO X:$FFE2 X:$FFE4
PB0 j——3>1BC0 BDO PBO
PBY j<——>BC0 BD1 PB1
PB2 f—>B(0 8D2 PB2
PB3 [<€—> B0 BD3 PB3
PB4 > (o BD4 PB4
S PB5 J€—> B(D BDS PB5
-R PB6 [«€—> BC0 BD6 PB6
T PB7 > BCo BD7 PB7
PB8 <-—-—->.Bcu BD8 PB8
8 PBY <——>|Bco BD9 PB9
PB10 [<€—>B(0 BD10 PB10
PBI1 [€—> (o BD11 PBI11
PB12 [<—>B(p BD12 PB12
PB13 j<—> BC0 BD13 - PB13
PB14 [<€—> (0 BD14 PB14
Figure 10-3. Parallel Port B Pinout
Port Control Data Direction . .
Register Bit Register Bit Pin Function
0 0 Port Input Pin
0 1 Port Output Pin
1 X Alternate Function
_
— M mar -
* (PARALLEL
¢ 1/0 POSITION}
—»O0
DATA DIRECTION -
PORT _| REGISTER (DDR) BIT
REGISTERS .
»0
PORT CONTROL
REGISTER (CR) BIT NPT 0
POSITION) 1
_____PORT INPUT DATA BIT
|-
[~ H1 QUTPUT DATA BIT
PERIPHERAL _| HI DATA DIRECTION BIT

LoGIC
HI INPUT DATA BIT

T

_Figure 10-4. Port B /O Pin Control Logic

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 10-3

PBD is read, the output of the output data bit latch is read, not the logic level on the pin
itself. When the port is configured as the Hl and the bit in the PBDDR is zero (input), then
reading the PBD will show the logic level on the pin even though port B is configured as
the HI. The HI function may be using the pin as an input or an output. This feature can be
very useful when debugging the Hl.

s

10.1.1 Programming Parallel I/O

Port B is a memory-mapped peripheral as are all of the DSP56000/DSP56001 peripherals
(see Figure 10-5). The standard MOVE instruction transfers data between port B and a
register; as a result, MOVE takes two instructions to perform a memory-to-memory data
transfer and uses a temporary holding register. The MOVEP instruction is specifically
designed for I/O data transfer as shown in Figure 10-6. Although the MOVEP instruction
may take twice as long to execute as a MOVE instruction, only one MOVEP is required for
a memory-to-memory data transfer, and MOVEP does not use a temporary register. Using
the MOVEP instruction allows a fast interrupt to move data to/from a peripheral to memory
and execute one other instruction or move the data to an absolute address. MOVEP is the
only memory-to-memory move instruction; however, one of the operands must be in the
top 64 locations of either X: or Y: memory.

The bit-oriented instructions that use I/O short addressing (BCHG, BCLR, BSET, BTST, JCLR,
JSCLR, JSET, and JSSET) can also be used to address individual bits for faster /O proc-
essing. The digital signal processor (DSP) does not have a hardware data strobe to strobe
data out of the parallel I/0 port. If a strobe is needed, it can be implemented using software
to toggle one of the parallel /O pins. The process of programming port B as general-
purpose /O is shown in Figure 10-7 and detailed in Figure 10-8. Normally, it is not good
programming practice to activate a peripheral before programming it. However, reset
activates the port B general-purpose I/O as all inputs; the alternative is to configure port
B as an HI, which may not be desirable. In this case, it is probably better to insure that
port B is initially configured for general-purpose I/0, and then configure the data direction
and data registers. It may be better in some situations to program the data direction or
the data registers first to prevent two devices from driving one signal..The order of steps
1, 2, and 3 in Figure 10-7 is optional and can be changed as needed.

10.1.2 Port B Parallel I/0 Timing

Parallel data written to port B is synchronized to the central processing unit (CPU) but
delayed by one instruction cycle — i.e., the instruction

MOVE DATA15,X:PORTB DATA24,Y:EXTERN

1) writes 15 bits of data to the port B register, but the output pins do not change until the
following instruction cycle, and 2) writes 24 bits of data to the external Y memory, which
appears on port A during T2 and T3 of the current instruction.

10-4 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

23 16 15

INTERRUPT PRIORITY REGISTER (PR}
PORT A — BUS CONTROL REGISTER (BCR)

| RESERVED
RESERVED
| RESERVED

Cl HI-REC/XMIT DATA REGISTER (SRX/STX)

C! MID-REC/XMIT DATA REGISTER (SRX/STX)
SCI LOW-REC/XMIT DATA REGISTER (SRX/STX)
SCI TRANSMIT DATA ADDRESS REGISTER (STXA)
SC! CONTROL REGISTER (SCCR)

SCI INTERFACE STATUS REGISTER (SSR)

SCI INTERFACE CONTROL REGISTER (SCR)

SCI RECEIVE/TRANSMIT DATA REGISTER (RX/TX)
SSI STATUS/TIME SLOT REGISTER (SR/TSR)

SSI CONTROL REGISTER B (CRB)

SSI CONTROL REGISTER A (CRA)

HOST RECEIVE/TRANSMIT REGISTER (HRX/HTX)

X:$FFEC f;
X:SFFEB

HOST STATUS REGISTER (HSR)
HOST CONTROL REGISTER (HCR)

PORT C — DATA REGISTER (PCD)

PORT B — DATA REGISTER (PBD) 1
PORT C — DATA DIRECTION REGISTER (PCDDR)

PORT B — DATA DIRECTION REGISTER (PBDDR)|
PORT C — CONTROL REGISTER (PCC)

PORT B — BUS CONTROL REGISTER (PBC) I

= Read as random number; write as don't care.

Figure 10-5. On-Chip Peripheral Memory Map

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 10-5

MOVE #$0,X:$FFEQ ;Select Port B to be general-purpose /0

MOVE #3$7F00,X:SFFE2 ;Select pins PBO-PB7 to be inputs
. ;and pins PB8-PB14 to be outputs
MOVEP #data—out,X:$FFE4 ;Put bits 8-14 of “data—out” on pins
;PB8-PB14 bits 0-7 are ignored.
MOVEP X:$FFE4,#data-in ;Put PBO-PB7 in bits 0-7 of ‘“data—in"’

Figure 10-6. Write/Read Parallel Data with Pdrt B

STEP 1
ACTIVATE PORT B CONTROL REGISTER
ADDR X:SFFEO

Y

STEP 2
SELECT DATA DIRECTION {IN/QUT)
ADDR X:SFFE2

Y

STEP 3
READ/WRITE PORT B DATA
ADDR X:SFFE4

Figure 10-7. Port B Configuration Flowchart

As a result, if it is desirable to synchronize port A and port B outputs, two instructions
must be used:

MOVE DATA15,X:PORTB

NOP DATA24,Y:EXTERN

The NOP can be replaced by any instruction that allows parallel moves. Inserting one or
more “MOVE DATA15,X:PORTB DATA24,Y:EXTERN" instructions between the first and
second instruction effectively produces an external 39-bit write each instruction cycle with
only one instruction cycle lost in setup time:

MOVE DATA15,X:PORTB

MOVE DATA15,X:PORTB DATA24,Y:EXTERN
MOVE DATA15,X:PORTB DATA24,Y:EXTERN
MOVE DATA15,X:PORTB DATA24,Y:EXTERN
NOP DATA24,Y:EXTERN

10-6 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

STEP 1. ACTIVATE PORT 8 FOR GENERAL-PURPOSE 1/0:
SET BIT 0 TO ZERO

X:SFFEQ| % § % [% { %] %% %% |%|%|%]%]%]x]|BC|PORTB
0 | CONTROL REG!STER (PBC)

STEP 2. SET INDIVIDUAL PINS TO INPUT OR QUTPUT:
BDxx =09 INPUT

OR

BDxx=1¢ OUTPUT

X:sFfE2 | = [B0[BD|BD|BD(BD(BD|BD|BD(BD{BD|BD{BD|BD|BD|BD| PORT B DATA DIRECTION
1w 1iz|nfwfals|7|e|s]|4a]3]2]1 REGISTER (PBDDR)

o

STEP 3. WRITE OR READ DATA:
PBxx # INPUT IF BDxx:: 0
OR
PBxx # OUTPUT IF BDxx = 1.

X:SFFE4 | * PB|PB|PB|PB{PB|PB|PB|PB|PB|PB|PB|PB|PB|PB|PB | PORT B
’ 14113 12)11]10]9[8]7]|6]5]4|3]2] 1|0 |DATAREGISTER (PBD)

*Reserved; write as zero.

Figure 10-8. /0 Port B Configuration

One application of this technique is to create an extended address for port A by conca-
tenating the port A address bits (instead of data bits) to the port B general-purpose output
bits. The port B general-purpose I/0 register would then work as a base address register,
allowing the address space to be extended from 64K words (16 bits) to two billion words
(16 bits + 15 bits=231 bits).

Port B uses the DSP CPU four-phase clock for its operation. Therefore, if wait states are
inserted in the DSP CPU timing, they also affect port B timing. The result is that ports A

and B in the previous synchronization example will always stay synchronized, regardless
of how many wait states are used.

10.2 HOST INTERFACE (HI)

The HI is a byte-wide, full-duplex, double-buffered, parallel port which may be connected
directly to the data bus of a host processor. The host processor may be any of a number

MOTOROLA DSP56000/DSP56001 USER'S MANUAL . 10-7

of industry standard microcomputers or microprocessors, another DSP, or DMA hardware
because this interface looks like static memory. The Hl is asynchronous and consists of
two banks of registers — one bank accessible to the host processor and a second bank
accessible to the DSP CPU (see Figure 10-9). A brief description of the HI features is
presented in the following listing:

Speed
8 Mbyte/Sec Burst Data Transfer Rate
1.71 Million Word/Sec Interrupt Driven Data Transfer Rate (This is the maximum in-
terrupt rate for the DSP56000/DSP56001 running at 20.5 MHz — i.e., one interrupt every
six instruction cycles.)

Signals (15 Pins)
HO-H7 Host Data Bus
HAO-HA2 Host Address Select

HRW Host Read/Write Control
HEN Host Transfer Enable
HREQ Host Request

HACK Host Acknowledge

Interface — DSP CPU Side
Mapping: Three X: Memory Locations

Data Word: 24 Bits

Transfer Modes:
DSP to Host
Host to DSP
Host Command

Handshaking Protocols:
Software Polled
Interrupt Driven (Fast or Long)
Direct Memory Access

Instructions:
Memory-mapped registers allow the standard MOVE instruction to be used.

Special MOVEP instruction provides for I/0 service capability using fast interrupts.

Bit addressing instructions (BCHG, BCLR, BSET, BTST, JCLR, JSCLR, JSET, JSSET)
simplify 1/O service routines.

I/0 short addressing provides faster execution with fewer instruction words.

10-8 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

Interface — Host Side
Mapping:
Eight Consecutive Memory Locations
Memory-Mapped Peripheral for Microprocessors, DMA Controllers, etc.

Data Word: Eight Bits

Transfer Modes:
DSP to Host
Host to DSP
Host Command
Mixed 8-, 16-, and 24-Bit Data Transfers

Handshaking Protocols:
Software Polled
Interrupt Driven — Compatible with MC68000
Cycle Stealing DMA with Initialization

Dedicated Interrupts:
Separate Interrupt Vectors for Each Interrupt Source

Special host commands force DSP CPU interrupts under host processor control,
which are useful for

Real-Time Production Diagnostics

Debugging Window for Program Development

Host Control Protocols and DMA Setup

Figure 10-9 is a block diagram showing the registers in the HI. These registers can be
divided vertically down the middle into registers visible to the host processor on the left
and registers visible to the DSP on the right. They can also be divided horizontally into
control at the top, DSP-to-host data transfer in the middle (HTX, RXH, RXM, and RXL), and
host-to-DSP data transfer at the bottom (THX, TXM, TXL, and HRX).

10.2.1 Host Interface — DSP CPU Viewpoint

The DSP CPU views the HI as a memory-mapped peripheral occupying three 24-bit words
in data memory space. The DSP may use the HI as a normal memory-mapped peripheral,
using either standard polled or interrupt programming techniques. Separate transmit and
receive data registers are double buffered to allow the DSP and host processor to efficiently
transfer data at high speed. Memory mapping allows DSP CPU communication with the
HI registers to be accomplished using standard instructions and addressing: modes. In
addition, the MOVEP instruction allows HI-to-memory and memory-to-HI data transfers
without going through an intermediate register. Both hardware and software reset disable
the HI and change port B to general-purpose 1/0O with all pins designated as inputs.

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 10-9

DSP CPU GLOBAL

DATA BUS
X:$FFES | '
INTERRUPT CONTROL
| % [RecisTER HCR s HOST CONTROL REGISTER
ICR H{READ/WRITE) / (READ/WRITE)
~a //
~e. 7" x:sFFE9
COMMAND VECTOR
<> 5! |ReGISTER 77 Tsalon | HOST STATUS REGISTER
CVR | (READAWRITE} | (READ ONLY)
pliciya) A >
4
’/
_ | 52 [inermueT sTATUS
<158 | AeaisTer
(READ ONLY) CONTROL
5 | INTERRUPT VECTOR Loaic
<> x| RecisTeR
HoST MPU (READAWRITE)
DATABUS 8 RECEIVE BYTE X:SFFEB
PN <5 | REGISTERS (READ
HO-H? axi [ONLY)
2 HOST TRANSMIT
« B le— sl HTX |t DATA REGISTER
RXM (WRITE ONLY)
_ s1)
“ra [
. L 24
TRANSMIT BYTE X:SFFEB 4
_| s5 |resisTers waite
> xn ONLY)
o 2% HOST RECEIVE
> i HRX L] DATA REGISTER
{READ ONLY)
E
XL

Figure 10-9. HI Block Diagram

10.2.2 Programming Model — DSP CPU Viewpoint

The HI has two programming models — one for the DSP programmer and one for the host
processor programmer. In most cases, the notation used reflects the DSP perspective. The
HI — DSP programming model is shown in Figure 10-10. There are three registers: 1) a
control register (HCR), 2) a status register (HSR), and 3) a data transmit/receive register
{HTX/HRX). These registers can only be accessed by the DSP56000/DSP56001; they can
not be accessed by the host processor. The Hl host processor programming model is
shown in Figure 10-13.

The following paragraphs describe the purpose and operation of each bit in each register

of the Hl visible to the DSP CPU. The effects of the different types of reset on these registers
are shown. A brief discussion of interrupts and operation of the DSP'side of the HI complete

10-10 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

DSP CPU HI FLAGS
HOSTFLAG3 ~
HOST FLAG 2

HF3 | HF2 | HCIE | HTIE | HRIE | HOST CONTROL REGISTER (HCR)
{0) (0) (0) {0) {0) | (READ/WRITE)

X:SFFE8] 0 0 0

INTERRUPT ENABLES
HOST RECEIVE

HOST TRANSMIT

HOST COMMAND

HOST HI FLAGS
HOST FLAG 1
— HOST FLAG 0

7 0
X:SFFEQ DMA 0 0 HF1 | HFO | HCP | HTDE | HRDF | HOST STATUS REGISTER (HSR)
’ o |- (0) 0 | (o (1) | {0} | (READ ONLY)
HOST RECEIVE DATA FULL
HOST TRANSMIT DATA EMPTY
HOST COMMAND PENDING
23 16 15 87 0
E DATA REGISTER (HRX
X:$FFEB RECEIVE HIGH BYTE RECEIVE MIDDLE BYTE RECEIVE LOW BYTE :{R[f)iill')R(fl\[l:R\)/ 6 (HRX)

HOST TRANSMIT DATA REGISTER (HTX)

X:SFFEB| TRANSMIT HIGH BYTE TRANSMIT MIDDLE BYTE TRANSMIT LOW BYTE (WRITE ONLY)

7 07 07 0

NOTE: The numbers in parenthesis are reset values.

Figure 10-10. Host Interface Programming Model — DSP Viewpoint

the programming model from the DSP viewpoint. The programming model from the host
viewpoint begins at 10.2.3.1 PROGRAMMING MODEL — HOST PROCESSOR VIEWPOINT.

10.2.2.1 HOST CONTROL REGISTER (HCR). The HCR is an 8-bit read/write control register
used by the DSP to control the HI interrupts and flags. The HCR cannot be accessed by
the host processor. The HCR occupies the low-order byte of the internal data bus; the high-
order portion is zero filled. HCR is a read/write register to allow individua! control register
bits to be set or cleared. Any reserved bits are read as zeros and should be programmed

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 10-11

as zeros for future compatibility. The bit manipulation instructions are useful for accessing
the individual bits. The contents of HCR are cleared on hardware or software reset. The
control bits are described in the following paragraphs.

10.2.2.1.1 HCR Host Receive Interrupt Enable (HRIE) Bit 0. The HRIE bit is used to enable
a DSP interrupt when the host receive data full (HRDF) status bit in the host status register
(HSR) is set. When HRIE is cleared, HRDF interrupts are disabled. When HRIE is set, a host
receive data interrupt request will occur if HRDF is set. Hardware and software resets clear
HRIE. :

10.2.2.1.2 HCR Host Transmit Interrupt Enable (HTIE) Bit 1. The HTIE bit is used to enable
a DSP interrupt when the host transmit data empty (HTDE) status bit in the HSR is set.
When HTIE is cleared, HTDE interrupts are disabled. When HTIE is set, a host transmit data
interrupt request will occur if HTDE is set. Hardware and software resets clear HTIE.

10.2.2.1.3 HCR Host Command Interrupt Enable (HCIE) Bit 2. The HCIE bit is used to
enable a vectored DSP interrupt when the host command pending (HCP) status bit in the
HSR is set. When HCIE is cleared, HCP interrupts are disabled. When HCIE is set, a host
command interrupt request will occur if HCP is set. The starting address of this interrupt
is determined by the host vector {(HV). Hardware and software resets clear HCIE.

10.2.2.1.4 HCR Host Flag 2 (HF2) Bit 3. The HF2 bit is used as a general-purpose flag for
DSP-to-host communication. HF2 may be set or cleared by the DSP. HF2 is visible in the
interrupt status register (ISR) on the host processor side (see Figure 10-11). Hardware and
software resets clear HF2.

NOTE

There are four host flags: two used by the host to signal the DSP (HF0 and HF1)
and two used by the DSP to signal the host processor (HF2 and HF3). These flags
are not designated for any specific purpose but are general-purpose flags. The
host flags do not cause interrupts; they must be polled to see if they have changed.
These flags can be used individually or as encoded pairs. See 10.2.2.7 HOST PORT
USAGE CONSIDERATIONS for additional information. An example of the usage

~of host flags is the bootstrap loader, which is listed in the DSP56001 Advance
Information Data Sheet (ADI1290). Host flags are used to tell the bootstrap pro-
gram whether or not to terminate early.

10.2.2.1.5 HCR Host Flag 3 (HF3) Bit 4. The HF3 bit is used as a general-purpose flag for
DSP-to-host communication. HF3 may be set or cleared by the DSP. HF3 is visible in the
ISR on the host processor side (see Figure 10-11). Hardware and software resets clear.HF3.

10-12 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

HOST TO DSPS6000 STATUS FLAGS ’
7 0
so it [mi [o [e Jowro T o Jmea [area

HOST INTERRUPT CONTROL REGISTER (ICR)

(READ/WRITE)

7 0
pspseooo x:seres] oma [o | o [wer [wro [wee [hroe [Heor |

HOST STATUS REGISTER (HSR)
{READ ONLY)

DSPS6000 TO HOST STATUS FLAGS
7 0
HoST s2| tinea [oma | o [wrs [w2 [7mov [1xoe [axor

INTERRUPT STATUS REGISTER (ISR)
(READ ONLY)

0
HOST CONTROL REGISTER (HCR)
{READ/WRITE)

7
pspseooo X:sres| o [o | o [w3 [we2 [wcie [urie [weie

Figure 10-11. Host Flag Operation

10.2.2.1.6 HCR Reserved Bits (Bits 5, 6, and 7). These unused bits are reserved for future
expansion and should be written with zeros for upward compatibility.

10.2.2.2 HOST STATUS REGISTER (HSR). The HSR is an 8-bit read-only status register
used by the DSP to interrogate status and flags of the Hl. It can not be directly accessed
by the host processor. When the HSR is read to the internal data bus, the register contents
occupy the low-order byte of the data bus; the high-order portion is zero filled. The status
bits are described in the following paragraphs.

10.2.2.2.1 HSR Host Receive Data Full (HRDF) Bit 0. The HRDF bit indicates that the host
receive data register (HRX) contains data from the host processor. HRDF is set when data
is transferred from the TXH: TXM:TXL registers to the HRX register. HRDF is cleared when
HRX is read by the DSP. HRDF can also be cleared by the host processor using the initialize
function. Hardware, software, individual, and STOP resets clear HRDF.

10.2.2.2.2 HSR Host Transmit Data Empty (HTDE) Bit 1. The HTDE bit indicates that the
host transmit data register (HTX) is empty and can be written by the DSP. HTDE is set
when the HTX register is transferred to the RXH:RXM:RXL registers. HTDE is cleared when
HTX is written by the DSP. HTDE can also be set by the host processor using the initialize
function. Hardware, software, individual, and STOP resets set HTDE.

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 10-13

10.2.2.2.3 HSR Host Command Pending (HCP) Bit 2. The HCP bit indicates that the host
has set the HC bit and that a host command interrupt is pending. The HCP bit reflects the
status of the HC bit in the command vector register (CVR). HC and HCP are cleared by the
DSP exception hardware when the exception is taken. The host can clear HC, which also
clears HCP. Hardware, software, individual, and STOP resets clear HCP.

10.2.2.2.4 HSR Host Flag 0 (HFO0) Bit 3. The HFO bit in the HSR indicates the state of host
flag 0 in the ICR on the host processor side. HF0 can only be changed by the host processor
{see Figure 10-11). Hardware, software, individual, and STOP resets clear HFO.

10.2.2.2.5 HSR Host Flag 1 (HF1) Bit 4. The HF1 bit in the HSR indicates the state of host
flag 1 in the ICR on the host processor side. HF1 can only be changed by the host processor
(see Figure 10-11). Hardware, software, individual, and STOP resets clear HF1.

10.2.2.2.6 HSR Reserved Bits (Bits 5 and 6). These status bits are reserved for future
expansion and read as zero during DSP read operations.

10.2.2.2.7 HSR DMA Status (DMA) Bit 7. The DMA bit indicates that the host processor
has enabled the DMA mode of the HI by setting HM1 or HMO to one. When DMA bit is
zero, it indicates that the DMA mode is disabled by the HMO and HM1 bits in the ICR and
that no DMA operations are pending. When DMA bit is set, the DMA mode has been
enabled by one or more of the host mode bits being set to one. The channel not in use
can be used for polled or interrupt operation by .the DSP. Hardware, software, individual,
and STOP resets clear the DMA bit.

10.2.2.3 HOST RECEIVE DATA REGISTER (HRX). The HRX register is used for host-to-
DSP data transfers. The HRX register is viewed as a 24-bit read-only register by the DSP
CPU. The HRX register is loaded with 24-bit data from the transmit data registers
(TXH:TXM:TXL) on the host processor side when both the transmit data register empty
TXDE on the host processor side and DSP host receive data full (HRDF) bits are cleared.
This transfer operation sets TXDE and HRDF. The HRX register contains valid data when
the HRDF bit is set. Reading HRX clears HRDF. The DSP may program the HRIE bit to cause
a host receive data interrupt when HRDF is set. Resets do not affect HRX.

10.2.2.4 HOST TRANSMIT DATA REGISTER (HTX). The HTX register is used for DSP-to-
host data transfers. The HTX register is viewed as a 24-bit write-only register by the DSP
CPU. Writing the HTX register clears HTDE. The DSP may program the HTIE bit to cause
a host transmit data interrupt when HTDE is set. The HTX register is transferred as 24-bit
data to the receive byte registers (RXH:RXM:RXL) if both the HTDE bit (DSP CPU side) and
receive data full (RXDF) status bits (host processor side) are cleared. This transfer operation

10-14 DSP56000/DSP56001 USER'S MANUAL _ MOTOROLA

sets RXDF and HTDE. Data should not be written to the HTX until HTDE is set to prevent
the previous data from being overwritten. Resets do not affect HTX.

10.2.2.5 REGISTER CONTENTS AFTER RESET. Table 10-1 shows the results of four reset
types on bits in each of the HI registers seen by the DSP CPU. The hardware reset (HW)
is caused by the RESET signal; the software reset (SW) is caused by executing the RESET
instruction; the individual reset (IR) is caused by clearing the PBC register bit 0; and the
stop reset (ST) is caused by executing the STOP instruction.

Table 10-1. Host Registers after
Reset — DSP CPU Side

Register Register Reset Type
Name Data HW | SW | IR ST
Reset | Reset | Reset | Reset

HF(3-2) o o | =1 =

HCR HCIE 0 0 — —
HTIE o o [= =
HRIE 0 0 . —
DMA 0 0 0 0
HF(1-0) o 1 o o o

HSR HCP o T o 1o o
HTDE 1 1 . ;
HRDF o 1 o 1 o I o

HRX HRX(23-0) — _ _ —

HTX HTX(230) | — | — | — | —

10.2.2.6 HOST INTERFACE DSP CPU INTERRUPTS. The HI may request interrupt service
from either the DSP or the host processor. The DSP CPU interrupts are internal and do not
require the use of an external interrupt pin (see Figure 10-12). When the appropriate mask
bitin the HCR is set, an interrupt condition caused by the host processor sets the appropriate
bitin the HSR, which generates an interrupt request to the DSP CPU. The DSP acknowledges
interrupts caused by the host processor by jumping to the appropriate interrupt service
routine. The three possible interrupts are 1) receive data register full, 2) transmit data
register empty, and 3) host command. The host command can access any interrupt vector
in the interrupt vector table although it has a set of vectors reserved for host command
use. The DSP interrupt service routine must read or write the appropriate Hl register (i.e.,
clearing HRDF or HTDE, for example) to clear the interrupt. In the case of host command
interrupts, the interrupt acknowledge from the program controller will clear the pending
interrupt condition.

10.2.2.7 HOST PORT USAGE CONSIDERATIONS — DSP SIDE. Careful synchronization is
required when reading multibit registers that are written by another asynchronous system.

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 10-15

» MASK
, —
xseres[o [o [o [wes | weo [cie | wmie | wmie | HOR DSP CPU INTERRUPTS

L

RECEIVE DATA FULL
P:$0020

TRANSMIT DATA EMPTY
P:$0022

HOST COMMAND
P:(2 < HV # $0000-$003E)
RESET # HV =$0012

U

7 0
xsreeg [oma | o | o | wer | we2 | Hee | wroe | HRoF | HSR

STATUS

Figure 10-12. HSR-HCR Operation

This is a common problem when two asynchronous systems are connected. The situation
exists in the HI. However, if the Hl is used in the way it was designed, proper operation is
guaranteed. The considerations for proper operation on the DSP CPU side are discussed
in the following paragraphs, and considerations for the host processor side are discussed
in 10.2.6.5 HOST PORT USAGE CONSIDERATIONS — HOST SIDE.

DMA, HF1, HFQ, HCP, HTDE, and HRDF status bits are set or cleared by the host processor
side of the interface. These bits are individually synchronized to the DSP clock.

The only system problem with reading status occurs with HF1 and HFO if they are encoded
as a pair — e.g., the four combinations (00, 01, 10, and 11) each have significance. This
problem occurs because there is a very small probability that the DSP will read the status
bits during the transition. The solution to this potential problem is to read the bits twice .
for consensus (See 10.2.6.5 HOST PORT USAGE CONSIDERATIONS for additional infor-
mation).

10.2.3 Host Interface — Host Processor Viewpoint

The HI appears to the host processor as eight words of byte-wide static memory. The host
may access the Hl asynchronously by using polling techniques or interrupt-based tech-
niques. Separate transmit and receive data registers are double buffered to allow the DSP
CPU and host processor to transfer data efficiently at high speed. The HI contains a rudi-
mentary DMA controller, which makes generating addresses (HA0-HA2) for the TX/RX
registers in the Hl unnecessary.

10-16 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

10.2.3.1 PROGRAMMING MODEL — HOST PROCESSOR VIEWPOINT. The Hl appears to
the host processor as a memory-mapped peripheral occupying eight bytes in the host
processor address space (see Figures 10-13 and 10-14). These registers can be viewed as
one control register (ICR), one status register (ISR), three data registers (RXH/TXH, RXM/
TXM, and RXL/TXL), and two vector registers (IVR and CVR). The CVR is a special command
register that is used by the host processor to issue commands to the DSP. These registers
can be accessed only by the host processor; they can not be accessed by the DSP CPU.
Host processors may use standard host processor instructions (e.g., byte move) and ad-
dressing modes to communicate with the Hl registers. The HI registers are addressed so
that 8-bit MC6801-type host processors can use 16-bit load (LDD) and store (STD) instruc-
tions for data transfers. The 16-bit MC68000/MC68010 host processor can address the HI

MODES FLAGS
7 0
% INIT | HM1 | HMoO | HF1 | HFO. [| TREQ | RREQ | INTERRUPT CONTROL REGISTER (ICR)
1o | o o] 0 | (0 | (READ/WRITE)
\ \
0 0 Interrupt Mode (DMA Off)
0 1 | 24-Bit DMA Mode
1 0 | 16-Bit DMA Mode .
1 1 | 8-Bit DMA Mode
7 4 ‘ 0
s HC 0 0 HOST VECTOR COMMAND VECTOR REGISTER (CVR)
(0) ($12) (READ/WRITE)
o FLAGS STATUS
7
so| HREQ [DMA [| HF3 | HF2 | TRDY | TXDE [RXDF | INTERRUPT STATUS REGISTER (ISR)
| o © { © | o | m | (0 | (READONLY)
7 0
- INTERRUPT VECTOR NUMBER INTERRUPT VECTOR REGISTER (IVR)
($0F) {READ/WRITE)
RECEIVE BYTE REGISTERS (RXH:RXM:RXL)
(READ ONLY)
31 $4 2423 $5 16 15 36 87 $7 0
RXH RXM RXL
/00000000 RECEIVE HIGH BYTE RECEIVE MIDDLE BYTE RECEIVE LOW BYTE
NOT USED TXH TXM XL
TRANSMIT HIGH BYTE TRANSMIT MIDDLE BYTE TRANSMIT LOW BYTE
7 07 07 07 0
TRANSMIT BYTE REGISTERS (TXH:TXM:TXL)
g (WRITE ONLY)
NOTE: The numbers in parenthesis are reset values.
Figure 10-13. Host Processor Programming Model — Host Side
10-17

MOTOROLA

DSP56000/DSP56001 USER’S MANUAL

0 ICR INTERRUPT CONTROL
oy CVR COMMAND VECTOR
$ 2 ISR INTERRUPT STATUS
3 IVR INTERRUPT VECTOR
HAO-HAZ
p 4 00000000 UNUSED
Ros RXH/TXH
£ RECEIVE/TRANSMIT
- RXMITXM BYTES
7 RXUTXL

|

HOST DATA BUS
HO-H?7

Figure 10-14. HI Register Map

using the special MOVEP instruction for word (16-bit) or long-word (32-bit) transfers. The
32-bit MC68020 host processor can use its dynamic bus sizing feature to address the Hl
using standard MOVE word (16-bit), long-word (32-bit) or quad-word (64-bit) instructions.
The HREQ and HACK handshake flags are provided for polled or interrupt-driven data
transfers with the host processor. Because the DSP interrupt response is sufficiently fast,
most host microprocessors can load or store data at their maximum programmed I/0 (non-
DMA) instruction rate without testing the handshake flags for each transfer. If the full
handshake is not needed, the host processor can treat the DSP as fast memory, and data
can be transferred between the host processor and the DSP at the fastest host processor
data rate. DMA hardware may be used with the handshake flags to transfer data without
host processor intervention.

One of the most innovative features of the host interface is the host command feature.
With this feature, the host processor can issue vectored exception requests to the DSP56000/
DSP56001. The host may select any one of 32 DSP56000/DSP56001 exception routines to
be executed by writing a vector address register in the HI. This flexibility allows the host
programmer to execute up to 32 preprogrammed functions inside the DSP56000/DSP56001.
For example, host exceptions can allow the host processor to read or write DSP56000/
DSP56001 registers (X, Y, or program memory locations), force exception handlers {e.g.,
SS1, SCI, IRQA, IRQB exception routines), and perform control and debugging operations
if exception routines are implemented in the DSP56000/DSP56001 to perform these tasks.

10.2.3.2 INTERRUPT CONTROL REGISTER (ICR). The ICR is an 8-bit read/write contro}
register used by the host processor to control the Hl interrupts and flags. ICR cannot be
accessed by the DSP CPU. ICR is a read/write register, which allows the use of bit manip-
ulation instructions on control register bits. The control bits are described in the following
paragraphs.

10-18 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

10.2.3.2.1 ICR Receive Request Enable (RREQ) Bit 0. The RREQ bit is used to control the
HREQ pin for host receive data transfers.

In interrupt mode (DMA off), RREQ is used to enable interrupt requests via the external
host request (HREQ) pin when the receive data register full (RXDF) status bit in the ISR is
set. When RREQ is cleared, RXDF interrupts are disabled. When RREQ is set, the external
HREQ pin will be asserted if RXDF is set.

In DMA modes, RREQ must be set or cleared by software to select the direction of DMA
transfers. Setting RREQ sets the direction of DMA transfer to be DSP to host and enables
the HREQ pin to request data transfer. Hardware, software, individual, and STOP resets
clear RREQ.

10.2.3.2.2 ICR Transmit Request Enable (TREQ) Bit 1. The TREQ bit is used to control the
HREQ pin for host transmit data transfers.

In interrupt mode (DMA off), TREQ is used to enable interrupt requests via the external
HREQ pin when the transmit data register empty (TXDE) status bit in the ISR is set. When
TREQ is cleared, TXDE interrupts are disabled. When TREQ is set, the external HREQ pin
will be asserted if TXDE is set.

In DMA modes, TREQ must be set or cleared by software to select the direction of DMA
transfers. Setting TREQ sets the direction of DMA transfer to be host to DSP and enables
the HREQ pin to request data transfer. Hardware, software, individual, and STOP resets
clear TREQ.

Table 10-2 summarizes the effect of RREQ and TREQ on the HREQ pin.

-Table 10-2. HREQ Pin Definition

TREQ | RREQ| HREQ Pin
Interrupt Mode

0 0 |No Interrupts (Polling)

[4] 1 |RXDF Request (Interrupt)

1 0 |TXDE Request (Interrupt)

1 1 |RXDF and TXDE Request (Interrupts)
DMA Mode

0 0 [No DMA

0 1 |DSP to Host Request (RX)

1 0 |Host to DSP Request (TX)

1 1 |Undefined (lilegal)

10.2.3.2.3 ICR Reserved Bit (Bit 2). This bit, which is reserved and unused, reads as a
logic zero. :

MOTOROLA DSP56000/DSP56001 USER’S MANUAL 10-19

10.2.3.2.4 ICR Host Flag.0 (HF0) Bit 3. . The HFO bit is used as a general-purpose flag for
host-to-DSP communication. HFO may be set or cleared by the host processor and cannot
be changed by the DSP. HFO0 is visible in the HSR on the DSP CPU side of the HI (see Figure
10-11). Hardware, software, individual, and STOP resets clear HF0.

10.2.3.2.5 ICR Host Flag 1 (HF1) Bit 4. The HF1 bit is used as a general-purpose flag for
host-to-DSP communication. HF1 may be set or cleared by the host processor and cannot
be changed by the DSP. Hardware, software, individual, and STOP resets clear HF1.

10.2.3.2.6 ICR Host Mode Control (HM1 and HMO) Bits 5 and 6. The HMO and HM1 bits
select the transfer mode of the HI (see Table 10-3). HM1 and HMO0 enable the DMA mode
of operation or interrupt (non-DMA) mode of operation.

Table 10-3. Host Mode Bit Definition

HM1 | HMO Mode
Interrupt Mode (DMA Off)
DMA Mode (24 Bit)

DMA Mode (16 Bit)

DMA Mode (8 bit)

alaloloe
= |lol=|o

When both HM1 @nd HMO are cleared, the DMA mode is disabled, and the TREQ and RREQ
control bits are used for host processor interrupt control via the external HREQ output pin.
Also, in the non-DMA mode, the HACK input pin is used for the MC68000 Family vectored
interrupt acknowledge input.

When HM1 or HMO are set, the DMA mode is enabled, and the HREQ pin is used to request
DMA transfers. When the DMA mode is enabled, the TREQ and RREQ bits select the
direction of DMA transfers. The HACK input pin is used as a DMA transfer acknowledge
input. If the DMA direction is from DSP to host, the contents of the selected register are
enabled onto the host data bus when HACK is asserted. If the DMA direction is from host
to DSP, the selected register is written from the host data bus when HACK is asserted.

The size of the DMA word to be transferred is determined by the DMA control bits, HM0
and HM1. The Hl register selected during a DMA transfer is determined by a 2-bit address
counter, which is preloaded with the value in HM1 and HMO. The address counter substi-
tutes for the HA1 and HAO bits of the HI during a DMA transfer. The host address bit (HA2)
is forced to one during each DMA transfer. The address counter can be initialized with the
INIT bit feature. After each DMA transfer on the host data bus, the address counter is
incremented to the next register. When the address counter reaches the highest register
(RXL or TXL), the address counter is not incremented but is loaded with the value in HM1
and HMO. This allows 8-, 16- or 24-bit data to be transferred in a circular fashion and
eliminates the need for the. DMA controller to supply the HA2, HA1, and HAO pins. For 16-
or 24-bit data transfers, the DSP CPU interrupt rate is reduced by a factor of 2 or 3,

10-20 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

respectively, from the host request rate — i.e., for every two or three host processor data
transfers of one byte each, there is only one 24-bit DSP CPU interrupt.

Hardware, software, individual, and STOP resets clear HM1 and HMO.

10.2.3.2.7 ICR Initialize Bit (INIT) Bit 7. The INIT bit is used by the host processor to force
initialization of the HI hardware. Initialization consists of configuring the HI transmit and
receive control bits and loading HM1 and HMO into the internal DMA address counter.
Loading HM1 and HMO into the DMA address counter causes the Hi to begin transferring
data on a word boundary rather than transferring only part of the first data word. There
are two methods of initialization: 1) allowing the DMA address counter to be automatically
set after transferring a word and 2) setting the INIT bit, which sets the DMA address counter.
Using the INIT bit to initialize the HI hardware may or may not be necessary, depending
on the software design of the interface.

The type of initialization done when the INIT bit is set depends on the state of TREQ and
RREQ in the HI. The INIT command, which is local to the HI, is designed to conveniently
configure the HI into the desired data transfer mode. The commands are described in the
following paragraphs and in Table 10-4. The host sets the INIT bit, which causes the HI
hardware to execute the INIT command. The interface hardware clears the INIT bit when
the command has been executed. Hardware, software, individual, and STOP resets clear
INIT.

INIT execution always loads the DMA addréss counter and clears the channel according
to TREQ and RREQ. INIT execution is not affected by HM1 and HMO.

Table 10-4. HREQ Pin Definition

Transfer
TREQ | RREQ After INIT Execution ' Direction
Initialized
Interrupt Mode (HM1=0, HM0=0) INIT Execution
0 0 [INIT=0; address counter=00 None
0 1 [INIT=0; RXDF=0; HTDE=1; address DSP to Host
counter=00
1 0 |INIT=0; TXDE=1; HRDF=0; Address Host to DSP
Counter=00

1 1 |INIT=0; RXDF=0; HTDE=1; TXDE=1;| Host to/from DSP
HRDF=0; Address Counter=00

DMA Mode (HM1 or HMO0=1) INIT Execution

0 0 |INIT=0; Address Counter=HM1, HMO None

0 1 {INIT=0; RXDF=0; HTDE=1; Address DSP to Host
Counter=HM1, HMO :

1 0 [INIT=0; TXDE=1; HRDF=0; Address Host to DSP
Counter=HM1, HMO0

1 1 |Undefined (lllegal) Undefined

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 10-21

The internal DMA counter is incremented with each DMA transfer (each HACK pulse) until
it reaches the last data register (RXL or TXL). When the DMA transfer is completed, the
counter is loaded with the value of the HM1 and HMO bits. When changing the size of the
DMA word (changing HM0 and HM1 in the ICR), the DMA counter is not automatically
updated, and, as a result, the DMA counter will point to the wrong data registerimmediately
after HM1 and HMO are changed. The INIT function must be used to preset the internal
DMA counter correctly. Always set INIT after changing HM0Q and HM1. However, the DMA
counter can not be initialized in the middle of a DMA transfer. Even though the INIT bit is
set, the internal DMA controller will wait until after completing the data transfer in progress
before executing the initialization.

10.2.3.3 COMMAND VECTOR REGISTER (CVR). The CVR is used by the host processor
to cause the DSP to execute a vectored interrupt. The host command feature is independent
of any of the data transfer mechanisms in the HI. It can be used to cause any of the 32
possible interrupt routines in the DSP CPU to be executed.

10.2.3.3.1 CVR Host Vector (HV) Bits 0-4. The five HV bits select the host command
exception address to be used by the host command exception logic. When the host com-
mand exception is recognized by the DSP interrupt control logic, the starting address of
the exception taken is 2xHV. The host can write HC and HV in the same write cycle, if
desired.

The host processor can select any of the 32 possible exception routine starting addresses
in the DSP by writing the exception routine starting address divided by 2 into HV. This
means that the host processor can force any of the existing exception handlers (SSI, SCI,
IRQA, IRQB, etc.) and can use any of the reserved or otherwise unused starting addresses
provided they have been preprogrammed in the DSP. HV is set to $12 (vector location
$0024) by hardware, software, individual, and STOP resets. Vector location $0024 is the
first of thirteen special host command vectors.

CAUTION

The HV should not be used with a value of zero because the reset location is
normally programmed with a JMP instruction. Doing so will cause an improper
fast interrupt.

10.2.3.3.2 CVR Reserved Bits (Bits 5 and 6). Reserved bits are unused and are read by
the host processor as zeros.

10.2.3.3.3 CVR Host Command Bit (HC) Bit 7. The HC bit is used by the host processor
to handshake the execution of host command exceptions. Normally, the host processor
sets HC =1 to request the host command exception from the DSP. When the host command
exception is acknowledged by the DSP, the HC bit is cleared by the HI hardware. The host

10-22 DSP56000/DSP56001 USER’S MANUAL _ MOTOROLA

processor can read the state of HC to determine when the host command has been ac-
cepted. The host processor may elect to clear the HC bit, canceling the host command
exception request at any time before it is accepted by the DSP CPU.

CAUTION

The command exception might be recognized by the DSP and executed before
it can be canceled by the host, even if the host clears the HC bit.

Setting HC causes host command pending (HCP) to be set in the HSR. The host can write
HC and HV in the same write cycle if desired. Hardware, software, individual, and STOP
resets clear HC.

10.2.3.4 INTERRUPT STATUS REGISTER (ISR). The ISR is an 8-bit read-only status register
used by the host processor to interrogate the status and flags of the HI. The host processor
can write this address without affecting the internal state of the Hl, which is useful if the
user desires to access all of the HI registers by stepping through the Hl addresses. The
ISR can not be accessed by the DSP. The status bits are described in the following para-
graphs.

10.2.3.4.1 ISR Receive Data Register Full (RXDF) Bit 0. The RXDF bit indicates that the
receive byte registers (RXH, RXM, RXL) contain data from the DSP CPU and may be read
by the host processor. RXDF is set when the HTX is transferred to the receive byte registers.
RXDF is cleared when the receive data low (RXL) register is read by the host processor.
RXL is normally the last byte of the receive byte registers to be read by the host processor.
RXDF can be cleared by the host processor using the initialize function. RXDF may be used
to assert the external HREQ pin if the RREQ bit is set. Regardless of whether the RXDF
interrupt is enabled, RXDF provides valid status so that polling techniques may be used
by the host processor. Hardware, software, individual, and STOP resets clear RXDF.

10.2.3.4.2 ISR Transmit Data Register Empty (TXDE} Bit 1. The TXDE bit indicates that
the transmit byte registers (TXH, TXM, TXL) are empty and can be written by the host
processor. TXDE is set when the transmit byte registers are transferred to the HRX register.
TXDE is cleared when the transmit byte low (TXL) register is written by the host processor.
TXL is normally the last byte of the transmit byte registers to be written by the host
processor. TXDE can be set by the host processor using the initialize feature. TXDE may
be used to assert the external HREQ pin if the TREQ bit is set. Regardless of whether the
TXDE interrupt is enabled, TXDE provides valid status so that polling techniques may be
used by the host processor. Hardware, software, individual, and STOP resets set TXDE.

10.2.3.4.3 ISR Transmitter Ready (TRDY) Bit 2. The TRDY status bit indicates that both
the TXH, TXM, TXL and the HRX registers are empty.
TRDY =TXDE « HRDF

* MOTOROLA DSP56000/DSP56001 USER'S MANUAL 10-23

When TRDY is set to one, the data that the host processor writes to TXH, TXM, and TXL

will be immediately transferred to the DSP CPU side of the HI. This has many applications
— e.g., if the host processor issues a host command which causes the DSP CPU to read

the HRX, the host processor can be guaranteed that the data it just transferred to the Hl

is what is being received by the DSP CPU.

Hardware, software, individual, and STOP resets set TRDY.

10.2.3.4.4 ISR Host Flag 2 (HF2) Bit 3. The HF2 bit in the ISR indicates the state of host
flag 2 in the HCR on the CPU side. HF2 can only be changed by the DSP (see Figure 10-
11). HF2 is cleared by a hardware or software reset.

10.2.3.4.5 ISR Host Flag 3 (HF3) Bit 4. The HF3 bit in the ISR indicates the state of host
flag 3 in the HCR on the CPU side. HF3 can only be changed by the DSP {see Figure 10-
11). HF3 is cleared by a hardware or software reset.

10.2.3.4.6 ISR Reserved Bit (Bit 5). This status bit is reserved for future expansion and
will read as zero during host processor read operations.

10.2.3.4.7 ISR DMA Status (DMA) Bit 6. The DMA status bit indicates that the host pro-
cessor has enabled the DMA mode of the HI (HM1 or HMO = 1). When the DMA status bit
is clear, it indicates that the DMA mode is disabled (HMO0 =HM1=0) and no DMA operations
are pending. When DMA is set, it indicates that the DMA mode is enabled and the host
processor should not use the active DMA channel (RXH, RXM, RXL or TXH, TXM, TXL
depending on DMA direction) to avoid conflicts with the DMA data transfers. The channel
not in use can be used for polled operation by the host and operates in the interrupt mode
for internal DSP exceptions or polling. Hardware, software, individual, and STOP resets
clear the DMA status bit.

10.2.3.4.8 ISR Host Request (HREQ) Bit7. The HREQ bit indicates the status of the external
host request output pin (HREQ). When the HREQ status-bit is cleared, it indicates that the
external HREQ pin is deasserted and no host processor interrupts or DMA transfers are
being requested. When the HREQ status bit is set, it indicates that the external HREQ pin
is asserted, indicating that the DSP is interrupting the host processor or that a DMA transfer
request is occurring. The HREQ interrupt request may originate from either or both of two
sources — the receive byte registers are full or the transmit byte registers are empty. These
conditions are indicated by the ISR RXDF and TXDE status bits, respectively. If the interrupt
source has been enabled by the associated request enable bit in the ICR, HREQ will be set
if one or more of the two enabled interrupt sources is set. Hardware, software, individual,
and STOP resets clear HREQ.

10-24 DSP56000/DSP56001. USER'S MANUAL MOTOROLA

10.2.3.5 INTERRUPT VECTOR REGISTER (IVR). The IVR is an 8-bit read/write register
which typically contains the exception vector number used with M68000 Family processor
vectored interrupts. Only the host processor can read and write this register. The contents
of IVR are placed on the host data bus (HO-H7) when both the HREQ and HACK pins are
asserted and the DMA mode is disabled. The contents of this register are initialized to $0F
by a hardware or software reset, which corresponds to the uninitialized exception vector
in the MC68000 Family.

10.2.3.6 RECEIVE BYTE REGISTERS (RXH, RXM, RXL). The receive byte registers are
viewed as three 8-bit read-only registers by the host processor. These registers are called
receive high (RXH), receive middle (RXM), and receive low (RXL). These three registers
receive data from the high byte, middle byte, and low byte, respectively, of the HTX register
and are selected by three external host address inputs (HA2, HA1, and HAOQ) during a host
processor read operation or by an on-chip address counter in DMA operations. The receive
byte registers (at least RXL) contain valid data when the receive data register full (RXDF)
bit is set. The host processor may program the RREQ bit to assert the external HREQ pin
when RXDF is set. This informs the host processor or DMA controller that the receive byte
registers are full. These registers may be read in any order to transfer 8-, 16-, or 24-bit
data. However, reading RXL clears the receive data full RXDF bit. Because reading RXL
clears the RXDF status bit, it is normally the last register read during a 16- or 24-bit data
transfer. Reset does not affect RXH, RXM, or RXL.

10.2.3.7 TRANSMIT BYTE REGISTERS (TXH, TXM, TXL). The transmit byte registers are
viewed as three 8-bit write-only registers by the host processor. These registers are called
transmit high (TXH), transmit middle (TXM), and transmit low (TXL). These three registers
send data to the high byte, middle byte and low byte, respectively, of the HRX register
and are selected by three external host address inputs (HA2, HA1, and HAO) during a host
processor write operation. Data may be written into the transmit byte registers when the
transmit data register empty (TXDE) bit is set. The host processor may program the TREQ
bit to assert the external HREQ pin when TXDE is set. This informs the host processor or
DMA controller that the transmit byte registers are empty. These registers may be written
in any order to transfer 8-, 16-, or 24-bit data. However, writing TXL clears the TXDE bit.
Because writing the TXL register clears the TXDE status bit, TXL is normally the last register
written during a 16- or 24-bit data transfer. The transmit byte registers are transferred as
24-Dbit data to the HRX register when both TXDE and the HRDF bit are cleared. This transfer
operation sets TXDE and HRDF. Reset does not affect TXH, TXM, or TXL.

10.2.3.8 REGISTERS AFTER RESET. Table 10-5 shows the result of four kinds of reset on
bits in each of the HI registers seen by the host processor. The hardware reset is caused
by asserting the RESET pin; the software reset is caused by executing the RESET in-
struction; the individual reset is caused by clearing the PBC register bit 0; and the stop
reset is caused by executing the STOP instruction.

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 10-25

Table 10-5. Host Registers after Reset

{Host Side)
Reset Type
Register Register
Name Data HW | sw IR ST
Reset | Reset | Reset | Reset

INIT 0 0 0 0

HM (1-0) 0 0 0 0

ICR TREQ 0 0 0 0
RREQ 0 0 0 0

HF {1-0) 0 0 0 0

CVR HC 0 0 0 0
. HV (4-0) $12 | $12 | $12 | $12
HREQ 0 0 0 0

DMA 0 0 0 0

ISR HF (3-2) 0 0 — —

TRDY 1 1 1 1

TXDE 1 1 1 1

RXDF 0 0 0 0

IVR 1V (7-0) $0F | $OF — —
RXH (23-16) | — — — | -

RX RXM (15-8) | — — — —
RXL {7-0) — — — —

TXH (23-21) | — —_ — —

X TXM {15-8) — — — —
TXL (7-0) — — — —

10.2.4 Host Interface Pins

The 15 HI pins are described here for convenience. Additional information, including timing,
is given in the DSP56007 Advance Information Data Sheet (AD11290).

10.2.4.1 HOST DATA BUS (H0-H7). This bidirectional data bus is used to transfer data
between the host processor and the DSP56000/DSP56001. This bus is an input unless
enabled by a host processor read. HO-H7 may be programmed as general-purpose parallel
I/0 pins called PBO-PB7 when the Hl is not being used.

10.2.4.2 HOST ADDRESS (HA0-HA2). These inputs provide the address selection for each
HI register. These inputs are stable when HEN is asserted. HAO-HA2 may be programmed
as general-purpose parallel I/0 pins called PB8-PB10 when the HI is not being used.

10-26 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

10.2.4.3 HOST READ/WRITE (HR/W). This input selects the direction of data transfer for
each host processor access. If HR/W is high and HEN is asserted, HO-H7 are outputs, and
DSP data is transferred to the host processor. If HR/W is low and HEN is asserted, HO-H7
are inputs, and host data is transferred to the DSP. HR/W is stable when HEN is asserted.
HR/W may be programmed as a general-purpose 1/0 pin called PB11 when the Hl is not
being used.

10.2.4.4 HOST ENABLE (HEN). This input enables a data transfer on the host data bus.
When HEN is asserted and HR/W is high, H0O-H7 become outputs, and DSP data may be
latched by the host processor. When HEN is asserted and HRAW is low, HO-H7 become
inputs, and host data is latched inside the DSP when HEN is deasserted. When HEN is
deasserted, HO-H7 are three-stated. Normally, a chip-select signal derived from host ad-
dress decoding and an enable clock are used to generate HEN. HEN may be programmed
as a general-purpose I/0 pin called PB12 when the HI is not being used.

10.2.4.5 HOST REQUEST (HREQ). This open-drain output signal is used by the DSP56000/
DSP56001 Hi to request service from the host processor, DMA controller, or a simple
external controller. HREQ may be connected to an interrupt request pin of a host processor,
a transfer request of a DMA controller, or a control input of external circuitry. HREQ is
asserted when an enabled request occurs in the host interface. HREQ is deasserted when
the enabled request is cleared or masked, DMA HACK is asserted, or the DSP is reset.
HREQ may be programmed as a general-purpose /O pin (not open-drain) called PB13 when
the Hl is not being used. ‘

10.2.4.6 HOST ACKNOWLEDGE (HACK). This input has two functions: 1) to provide a
host acknowledge handshake signal for DMA transfers and 2} to receive a host interrupt
acknowledge compatible with M68000 Family processors. If programmed as a host ac-
knowledge signal, HACK may be used as a data strobe for Hl DMA data transfers. If
programmed as an MC68000 host interrupt acknowledge, HACK is used to enable the Hl
interrupt vector register (IVR) onto the host data bus (H0-H7) if HREQ is asserted. In this
case, all other HI control pins are ignored, and the state of the Hl is not affected. HACK
may be programmed as a general-purpose I/0O pin called PB14 when the Hl is not being
used.

10.2.5 Servicing the Host Interface

The HI can be serviced by using one of the following protocols:
1. Polling or
2. Interrupts, which can be either
a. non-DMA or
b. DMA

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 10-27

From the host processor viewpoint, the service consists of making a data transfer since
this is the only way of resetting the appropriate status bits.

10.2.5.1 HIHOST PROCESSOR DATA TRANSFER. ' The HI looks like static RAM to the host
processor. Accordingly, to transfer data with the HI, the host processor

1. Asserts the Hl address (HAO, HA1, HA2) to select the register to be read or written.
2. Asserts HR/W to select the direction of the data _transfer.

3. Strobes the data transfer using HEN. When data is being written to the Hl by the host
processor, the positive-going edge of HEN latches the data in the Hl register selected.
When data is being read by the host processor, the negative-going edge of HEN strobes
the data onto the data bus HO-H7.

This process is illustrated in Figure 10-15. The specified timing relationships are given in
the DSP56001 Advance Information Data Sheet (ADI11290).

10.2.5.2 HI INTERRUPTS HOST REQUEST (HREQ). The host processor interrupts are ex-
ternal and use the HREQ pin. HREQ is normally connected to the host processor maskable
interrupt (IPLO, IPL1, or IPL2 in Figure 10-16) input. The host processor acknowledges host
interrupts by executing an interrupt service routine. The most significant bit (HREQ) of the
ISR may be tested by the host processor to determine if the DSP is the interrupting device,
and the two least significant bits (RXDF and TXDE) may be tested to determine the interrupt
source (see Figure 10-17). The host processor interrupt service routine must read or write

DSP56000

3
HRAW ‘ -
W=\ / — | HRW

AEN -
\ 7 \ / —>»] HEN
8 B
Ho-H7 __—CD___E__ <> Ho-H7

+5V
WRITE \ READ ’
DATA '
LATCHED 3 HREQ
+5V

IN HI
‘%—F‘ HACK

Figure 10-15. Host Processor Transfer Timing

10-28 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

7 0

INTERRUPT VECTOR REGISTER (IVR)
$3
INTERRUPT VECTOR NUMBER (READ/WRITE)
— +5v p————
MC68000 1. THE DSP56000 ASSERTS HREQ TO INTERRUPT THE HOST PROCESSOR DSP56000

P2l i
PLl [e—— RE
IPLO

2. THE HOST. PROCESSOR ASSERTS HACK WITH ITS INTERRUPT ACKNOWL-

fer =
(=]

EDGE CYCLE.
\ — »|HACK
A1-A31 :) —> IACK
TACK
FCO-F >
c E LOGIC
AS >

3. WHEN HREQ AND HACK ARE SIMULTANEQUSLY ASSERTED, THE CON-
' T
TENTS OF THE IVR ARE PLACED ON THE HOST DATA BUS. $0F INTERRUPT VECTOR

REGISTER (IVR)
HO-H7 j
DO-D7 [t

Figure 10-16. Host Registers After Reset — Host Side

. STATUS
——"—0
s2| wrea | oma | o [wes | weo [7oy [wxoe | axor isk EXCEPTION
HREQ ASSERTED -
AREQ
7 0

sa[nim [owo [umo [wer Joweo [o [reea [meea icn

MASK

Figure 10-17. Hl Interrupt Structure

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 10-29

the appropriate HI register to clear the interrupt. HREQ is deasserted when 1) the enabled
request is cleared or masked, 2) DMA HACK is asserted, or 3) the DSP is reset.

10.2.5.3 POLLING. In the polling mode of operation, the HREQ pin is not connected to
the host processor, and HACK must be deasserted to insure DMA data or IVR data is not
being output on HO-H7 when other registers are being polled.

The host processor first performs a data read transfer to read the ISR (see Figure 10-17)
to determine whether

1. RXDF =1, signifying the receive data register is full so a data read should be performed.

2. TXDE=1, signifying the transmit data register is empty so a data write can be per-
formed.

3. TRDY =1, signifying the transmit data register is empty and the receive data register
on the DSP CPU side is empty so that the data written by the host processor will be
transferred directly to the DSP side.

4. HF2 « HF3#0, signifying an application-specific_state within the DSP CPU has been
reached, which requires action on the part of the host processor.

5. DMA =1, signifying the Hl is currently being used for DMA transfers. If DMA transfers
are possible in the system, care must be exercised to deactivate HACK prior to reading
the ISR so both DMA data and the contents of ISR are not simultaneously output on
HO-H7.

6. If HREQ=1, the HREQ pin has been asserted, and one of the previous five conditions
exists.

Generally, after the appropriate data transfer has been made, the corresponding status bit
will toggle.

If the host processor has issued a command to the DSP by writing the CVR and setting
the HC bit, it can read the HC bit in the CVR to determine when the-command has been
accepted by the interrupt contraller in the DSP CPU. When the command has been accepted
for execution, the HC bit will be reset to zero by the interrupt controller in the DSP CPU.

10.2.5.4 SERVICING NON-DMA INTERRUPTS. When HM0=HM1=0 (i.e., non-DMA) and
HREQ is connected to the host processor interrupt input, the HI can request service from
the host processor by asserting HREQ. In the non-DMA mode, HREQ will be asserted when
TXDE =1 and/or RXDF=1 and the corresponding mask bit (TREQ or RREQ, respectively)
is set. This process is depicted in Figure 10-17.

Generally, servicing the interrupt starts with reading the ISR, as described in the previous
paragraphs, to determine which DSP has generated the interrupt and why. When multiple
DSPs occur in a system, the HREQ bit in the ISR will normally be read first to determine

10-30 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

the interrupting device. The host 'processor interrupt service routine must read or write
the appropriate HI register to clear the interrupt. HREQ is deasserted when the enabled
request is cleared or masked.

When the host processor is a member of the M680XX Family, servicing the interrupt will
start by the DSP asserting HREQ to interrupt the processor (see Figure 10-17). The host
processor then acknowledges the interrupt by asserting HACK. While HREQ and HACK are
simultaneously asserted, the contents of the IVR are placed on the host data bus. This
vector will tell the host processor which routine to use to service the HREQ interrupt.

The HREQ pin is an open-drain output pin so that it can be wire-ORed with the HREQ pins
from other DSP56000/DSP56001 processors in the system. When one of the DSP56000/
DSP56001 processors generates an interrupt request, the host processor can poll the HREQ
bit in each of the ISRs to determine which device generated the interrupt.

10.2.5.5 SERVICING DMA INTERRUPTS. When HMO0+#0 and/or HM1+#0, HREQ will be
asserted to request a DMA transfer. Generally, the HREQ pin will be connected to the REQ
input of a DMA controller. The HA0-HA2, HEN, and HRW pins are not used during DMA
transfers; DMA transfers only use the HREQ and HACK pins after the DMA channel has
been initialized. HACK is used to strobe the data transfer {(see Figure 10-18) where an
MC68440 is used as the DMA controller. DMA transfers to and from the HI are considered
in more detail in 10.2.6 HI Application Examples.

10.2.6 HI Application Examples

In the following paragraphs, examples of initializing the HI, transferring data with the HlI,
bootstrapping via the Hl, and performing DMA transfers through the HI are described.

10.2.6.1 HIINITIALIZATION. Initializing the HI takes two steps (see Figure 10-19). The first
step is to initialize the DSP side of the HI, which requires that the options for interrupts
and flags be selected and then the HI be selected (see Figure 10-20). The second step is
for the host processor to clear the HC bit by writing the CVR, select the data transfer method
— polling, interrupts, or DMA (see Figures 10-21 and 10-23) — and write the IVR in the
case of a M680XX Family host processor. Figures 10-19-10-22 provide a general description
of how to initialize the HI. Later subsections provide more detailed descriptions for specific
examples. These subsections include some code fragments illustrating how to initialize
and transfer data using the HI.

10.2.6.2 POLLING/INTERRUPT CONTROLLED DATA TRANSFER. Handshake flags are pro-
vided for polled or interrupt-driven data transfers. Because the DSP interrupt response is
sufficiently fast, most host microprocessors can load or store data at their maximum
programmed I/O (non-DMA) instruction rate without testing the handshake flags for each

MOTOROLA ’ DSP56000/DSP56001 USER'S MANUAL 10-31

DSP56001

TO IRQB

+5V l/v

BURST

O— OWN

v +5V
[¥]
D a >
e
A
/—l
—— AD
—
jo— AS

[Mcesas0

ACKO

e

8T
HIGH MIDDLE Low

TR /_\im

FAST 56001 INTERRUPT
TO TRANSFER 24-BIT WORD

1 DMA CYCLE=8 T=4 DMA CLOCK CYCLES

e
/—\ BYTE /—\ BYTE / \

DMA ACK GATED OFF

MAX. MC68440 CLOCK =10 MHz= >T=50 ns

10-32

STEP 1
THE DSP CPU INITIALIZES THE DSP SIDE OF
THE HI BY WRITING:
1) HCE AT X:$FFE8 AND

2) PBC AT X:$FFED
v

STEP 2
THE HOST PROCESOR INITIALIZES THE HOST
SIDE OF THE H! BY WRITING:
1) ICR AT $0 AND/OR
2} CVR AT $1 AND/OR
3) IVR AT $3

DSP56000/DSP56001 USER'S MANUAL

Figure 10-18. DMA Transfer Logic and Timing

Figure 10-19. HI Initialization Flowchart

\ BYTE r—

MOTOROLA

STEP 1 OF HOST PORT CONFIGURATION

1. ENABLE/DISABLE
HOST RECEIVE DATA FULL INTERRUPT
ENABLE INTERRUPT: BIT0=1
DISABLE INTERRUPT: BIT0=0

2. ENABLE/DISABLE
HOST TRANSMIT DATA EMPTY INTERRUPT
ENABLE INTERRUPT: BIT 1=1
DISABLE INTERRUPT: BIT 1=0

3. ENABLE/DISABLE
HOST COMMAND PENDING INTERRUPT
ENABLE INTERRUPT: BIT2=1
DISABLE INTERRUPT: BIT 2- 0

4. SET/CLEAR .
HOST FLAG 2 (OPTIONAL)
ENABLE FLAG: BIT 3=1
DISABLE FLAG: BIT3=0

(3

. SET/CLEAR
HOST FLAG 3 (OPTIONAL)
ENABLE FLAG: BIT 4=1
DISABLE FLAG: BIT 4=0

V

, V JV #V

x:sFEs [*] | * | Hes | w2 IHCIE [Hrie | HRJ:L%%/%Q'&?L REGISTER (HCR)

6. SELECT PORT B FOR HOST PORT GPERATION:
BIT 0 TO ONE

15 yo

XSFFEO| * | # [[] % o [[% fox ||| %[x| %)% BC | poRT B CONTROL REGISTER (PBC)

*Reserved; write as zero.

NOTE: The host flags are general-purpose semaphores. They are not required for host port operation
but may be used in some applications.

Figure 10-20. HI Initialization — DSP Side

transfer. If the full handshake is not needed, the host processor can treat the DSP as fast
memory, and data can be transferred between the host and DSP at the fastest host pro-
cessor rate. DMA hardware may be used with the external host request and host acknowl-
edge pins to transfer data at the maximum-DSP interrupt rate.

The basic data transfer process from the host processor’s view (see Figure 10-15) is for
the host to

1. Assert HREQ when the HI is ready to transfer data.
2. Assert HACK if the interface is using HACK.

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 10-33

STEP 2 OF HOST PORT CONFIGURATION

1. CLEAR HOST COMMAND BIT (HC):

BIT7=0
7 6 5 4 ’ 0
* * COMMAND VECTOR REGISTER {CVR)
st I HC l | I H {READ/WRITE)
*Reserved; write as zero. A

2. OPTION 1:SELECT HOST VECTOR (HV)

(OPTIONAL SINCE HV CAN BE SET ANY TIME BEFORE THE HOST COMMAND 1S EXECUTED. DSP INTERRUPT VECTOR = THE HOST VECTOR
MULTIPLIED BY 2. DEFAULT (UPON DSP RESET): HV =$12 # DSP INTERRUPT VECTOR $0024

Figure 10-21(a). HI Configuration — Host Side

STEP 2 OF HOST PORT CONFIGURATION
2. OPTION 2: SELECT POLLING MODE FOR HOST TO DSP COMMUNICATION

INITIALIZE DSP
AND HOST PORT

DISABLE INTERRUPTS
OMA OFF BIT 0=0
BIT5=0 BIT1=0

LBrs=o0 | UPTIONALI l

1 0

7 8 5 4 3 2
sol i [t [vo | ver [veo | * | Thea | mRea | neanwmma o HeR)

*Reserved; write as zero.

Figure 10-21(b). HI Initialization — Host Side, Polling Mode

Assert HR/W to select whether this operation will read or write a register.
Assert the HI address (HA2, HA1, and HAO) to select the register to be read or written.
Assert HEN to enable the HI.

A S

When HEN is deasserted, the data can be latched or read, as appropriate, if the timing
requirements have been observed..

7. HREQ will be deasserted if the operation is complete.

10-34 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

STEP 2 OF HOST PORT CONFIGURATION

2. OPTION 3: SELECT INTERRUPT MODE FOR

ENABLE
DSP T0 HosT | RECEIVE DATA FULL INTERRUPT
BIT0=1
BIT 1=0
OR |
ENABLE
'NTTIALIZE DSP TRANSMIT DATA EMPTY INTERRUPT
INITIALIZE HI** HOSTTO DSP | BIT0=0
COBITT=1 ‘ Bri=i
oR I
ENABLE
DMA OFF DSP T0 HOST | RECEIVE DATA FULL INTERRUPT AND
BIT5=0 AND TRANSMIT DATA EMPTY INTERRUPT
BIT6=0 HOST TO DSP BITO=1

EE

7 6 5 4 3 2 10
sof i T umr [rmo [wer Jwro [+ [1mea | reea

INTERRUPT CONTROL REGISTER {ICR)
(READ/WRITE)

2. OPTION 4: LOAD HOST INTERRUPT VECTOR IF USING THE INTERRUPT MODE AND THE HOST PROCESSOR REQUIRES AN
INTERRUPT VECTOR. .

N T T EGISTER (IVR)
- INTERRUPT VECTOR REGISTER (I
ssf vi [we [ws [wa Jws || wi| wo|penowmime

*Reserved; write as zero.
**See Figure 10-23.

Figure 10-21(c). Hl Initialization — Host Side, Interrupt Mode

The previous transfer description is an overview. Specific and exact information for the HI
data transfers and their timing can be found in 10.2.6.3 DMA TRANSFER and in the DSP560001
Advance Information Data Sheet (ADI11290).

10.2.6.2.1 Host to DSP — Data Transfer. Figure 10-23 shows the bits in the ISR and ICR
registers used by the host processor and the bits in the HSR and HCR registers used by
the DSP to transfer data from the host processor to the DSP. The registers shown are the
status register and control register seen by the host processor and status register and
control register seen by the DSP. Only the registers used to transmit data from the host
processor to the DSP are described. Figure 10-24 illustrates the process of that data transfer.
The steps in Figure 10-24 can be summarized as follows:

1. When the TXDE bit in the ISR is set, it indicates that the Hl is ready to receive a data
byte from the host processor because the transmit byte registers (TXH, TXM, TXL)
are empty.

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 10-35

STEP 2 OF HOST PORT CONFIGURATION

2. OPTION 5: SELECT DMA MODE FOR

INITIALIZE DSP
INITIALIZE HI*
BIT7=1
4-BIT DMA
’ B['STIT5= 1 . ENABLE
BIT 6=0 0SP 70 HosT | RECEIVE DATA FULL INTERRUPT
OR I BIT0=1
16-BIT DMA BIT1=0
BIT5=0 OR [
R BIT[&:I ENABLE
8-BIT DMA HOST T0 pgp | TRANSMIT DATQTE“:ZTOY INTERRUPT
il ' BIT1=1
BIT6=1
l OPTIONAL
v Y

7 6 5 4 3 2 1 v
sof it [wwr [emo | wer | weo [% | Trea | reea | :SEES?\EZ,TTE?NTRDL REGISTER (1CRI

*Reserved; write as zero.
**See Figure 10-23.

Figure 10-21(d). Hl Initialization — Host Side, DMA Mode

2. The host processor can either poll or

3. Use interrupts to determine the status of this bit. Setting the TREQ bit in the ICR

causes the HREQ pin to interrupt the host processor when TXDE is set.

. Once the TXDE bit is set, the host can write data to the HI by writing-three bytes to
. TXH, TXM, and TXL, respectively, or two bytes to TXM and TXL, respectively, or

one byte to TXL.

5. Writing data to TXL clears TXDE in the ISR.
6. From the DSP’s viewpoint, the HRDF bit (when set) in the HSR indicates that data is

waiting in the Hl for the DSP.

. When the DSP reads the HRX, the HRDF bit is automatically cleared, and TXDE in

the ISR is set.

8. When TXDE =0 and HRDF=0, data is automatically transferred from TBR to HRX.
9. This transfer sets HRDF. The DSP can poll HRDF to see when data has arrived, or it

10.

10-36

can use interrupts.

If HRIE (in the HCR) and HRDF are set, exception processing is started using interrupt
vector P:$0020.

DSP56000/DSP56001 USER'S MANUAL MOTOROLA

MODES
7 P N 0

HosT sers INT 8T 1o | T | W [mvo | we T weo [0 [rmea | reea |

INTERRUPT CONTROL REGISTER (ICR}
(READ/WRITE)

-
-

Interrupt Mode (DMA Off) |<€——— RESET CONDITION
24-Bit DMA Mode
16-Bit DMA Mode
8-Bit DMA Mode

al=alo e
= lo |- lo |«

INTERRUPT MODE (DMA OFF) DMA MODE
TREQ | RREQ INIT Execution . TREQ | RREQ INIT Execution

0 0 |INIT=0; Address Counter=00 . [0 |INIT=0; Address Counter - HM1, HMO
0 1 |INIT=0; RXDF=0; HTDE=1; » 0 1 |INIT=0; RXDF=0; HTDE = 1;

Address Counter =00 Address Counter=HM1, HMO
1 0 |{INiT=0; TXDE=1; HRDF=0'; 1 0 |INIT=0; TXDE=1; HRDF=0;

Address Counter =00 Address Counter = HM1, HMO
1 1 |[INIT=0; RXDF=0; HTDE=1; TXDE =1; 1 1 |Undefined (lilegal)

HRDF =0; Address Counter =00

INIT is used by the HOST to force initialization of the HI hardware.
The HI hardware automatically clears INIT when the command is executed.
INIT is cleared by DSP RESET.

Figure 10-22. Host Mode and INIT Bits

The code shown in Figure 10-25 is an excerpt from the Host I/O Port Technical Bulletin (in-
.house document). The MAIN PROGRAM initializes the HI and then hangs in a wait loop
and allows interrupts to transfer data from the host processor to the DSP. The first three
MOVEP instructions enable the HI and configure the interrupts. The following two moves
enable the interrupts (should always be done after the interrupt programs and hardware
are completely initialized) and prepare the DSP CPU to look for the host flag, HFO=1. LOOP
is a polling loop that looks for HFO=1, which indicates that the host processor is ready.
When the host processor is ready to transfer data to the DSP, the DSP enables HRIE in the
HCR, which allows the interrupt routine to receive data from the host processor. The jump-
to-self instruction that follows is for test purposes only; it can be replaced by any other
code in normal operation.

The receive routine in Figure 10-26 was implemented as a long interrupt (the instruction
at the interrupt vector location, which is not shown, is a JSR). Since there is only one
instruction, this could have been implemented as a fast interrupt. The MOVEP instruction
moves data from the HI to a buffer area in memory and increments the buffer pointer so
that the next word received will be put in the next sequential location.

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 10-37

X 8g-0L

TVNNVIN S.H3SN L009SdSA/00095dSa

VI104OLOW

HOST

! 0. INTERRUPT STATUS
sz wrea | oma | o | wrs [we2 | o | xoe | axor | Recister sk
(READ ONLY)

TXDE — TRANSMIT DATA REGISTER EMPTY
1= INDICATES THE TRANSMIT BYTE REGISTERS (TXH, TXM, TXL) ARE EMPTY.
0=CLEARED BY WRITING TO TXL; TXDE CAN BE USED TO ASSERT THE HREQ PIN.

TRDY — TRANSMITTER READY = TXDE - HRDF
1=BOTH THE TRANSMIT BYTE REGISTERS AND THE HOST RECEIVE DATA REGISTERS
ARE EMPTY.

0=0NE OR BOTH REGISTERS ARE FULL.

MODES
LA ‘ O INTERRUPT CONTROL
sof i | umi [emo | wei | weo | o | TRea | maca | RecisTER icR)
) v (READ/WRITE)
v_ ¥ '
0 0 |(interrupt Mode (DMA Off)
o | 1 |2a-8it oMA Mode
1 | o |68it DMA Mode
1 1 [8-Bit DMA Mode

TREQ — TRANSMIT REQUEST ENABLE
USED TO_ENABLE INTERRUPTS THAT COME FROM TXDE TO THE HOST
VIA THE HREQ PIN. o

1=TXDE INTERRUPTS PASS TO RREQ
0=TXDE INTERRUPTS ARE MASKED

B DSP56000
! HOST STATUS
xsrres{ oMa | o | o [wer | wro [wee [uroe [wnor | ecister sk
(READ ONLY)

HRDF — HOST RECEIVE DATA FULL)
1=THE HOST RECEIVE REGISTER (HRX) CONTAINS DATA FROM THE
HOST PROCESSOR.
0=HRX iS EMPTY.
DMA — INDICATES THE HOST PROCESSOR HAS ENABLED THE DMA MODE
1=DMA ON
0=HOST MODE

! _ O wosT conTROL
xsrres{ 0 | o [o [wes | me2 | woie | sme | e | RecisTeR (HeR)
(READ/WRITE)

HRIE — HOST RECEIVE INTERRUPT ENABLE
ENABLES INTERRUPT AT P:$0020
DSP INTERRUPT IS CAUSED BY HRDF=1
1=INTERRUPT P:$0020 ENABLED
0=INTERRUPT P:$0020 DISABLED

Figure 10-23. Bits Used for Host-to-DSP Transfer

V104OLOW

TVNNYIA S, H3SN 10095dSA/000954SA

6€-0L

VIEW FROM HOST

1. WHEN TXDE=1, TBR IS EMPTY.
1 0

se[wreafoma | o [wes [e Jreov| 1 [mxor

INTERRUPT STATUS

3= VIEW FROM DSP56000
6. IF DSP56000 HAS OLD DATA IN HRX, THEN HRDF=1.

7. WHEN DSP56000 READS HRX, THEN HRDF =0.

REGISTER (ISR)
7 0
TXDE .
TRANSMIT DATA REGISTER EMPTY xsees| 0 [o | o [wer | weofnce [wroef o
DMA
2. HOST MAY POLL TXDE.
HRDF
; 0 HOST RECEIVE DATA FULL
INTERRUPT CONTROL
$°| INIT I 0 | o | WA I HFO I o | 1 |meeo |REGISTER (ICR)

HM1 HMO

TREQ:
TRANSMIT REQUEST ENABLE

3. IF TREQ =1, THEN HREQ PIN IS ASSERTED TO INTERRUPT HOST.
HREQ

PIN (—’__

4. HOST WRITES DATA TO TRANSMIT BYTE REGISTERS.
5. WRITE TO TXL CLEARS TXDE IN ISR.

8. WHEN TXDE =0 AND HRDF =0, THEN TRANSFER OCCURS.

23 0
HIGH BYTE | MIDDLE BYTE LOW. BYTE

P X:SFFEB

9. THE TRANSFER SETS HRDF FOR THE DSP56000 TO POLL.

7 0
xsrres| o | o | o [wes | e [HoE [ume | o

HRIE

7 0
$ TXH TRANSFER
s ™M
LAST WRITE # 87 ™
TRANSMIT BYTE
REGISTERS (TBR)
—> P:$0020

HOST RECEIVE INTERRUPT ENABLE

10. IF HRDF=1 AND INTERRUPTS ARE ENABLED, THEN EXCEPTION PROC-
ESSING BEGINS.

—

HOST RECEIVE DATA VECTOR

FAST INTERRUPT
OR
LONG INTERRUPT

Figure 10-24. Data Transfer from Host to DSP

HOST RECEIVE DATA

CEREREEEEKEEEEREEEEEEEEXRXX KRR ERRRX KRR RNX
’

; MAIN PROGRAM ... receive data from host

XL LS L E L L EL L LS EELLEE LS LR L LS L IR L LR LT
’

ORG P:$40
MOVE #0,R0
MOVE #3,M0

MOVEP #1,X:PBC ;Turn on Host Port
MOVEP #0,X:HCR ;Turn off XMT and RCV interrupts
MOVEP #$0C00,X:IPR ;Turn on host interrupt
MOVE #0,SR ;Unmask interrupts
MOVE #>$8,X0 ;Host flag mask for HFO
LOOP MOVEP X:HSR,A ;Wait for HFO (from host) set to 1
: AND X0,A
JEQ LOOP
MOVEP #$1,X:HGR ;Enable host receive interrupt
JMP * ;Now wait féf interrupt

Figure 10-25. Receive Data from Host — Main Program

CEEEXEEKEXEEEEEXEXAXRERX XXX ERRRX XX
’

; Receive from Host Interrupt Routine
EERE SR LT EE L L L L L L L L L L LR LT L LT T TR TS
I

m RCV MOVEP X:HRX,X: (RO)+ ;Receive data.
RTI

END

Figure 10-26. Receive Data from Host Interrupt Routine

10.2.6.2.2 Host to DSP. — Command Vector. The host processor can cause three types
of interrupts in the DSP (see Figure 10-27). These are host receive data (P:$0020), host
transmit data (P:$0022), and host command (P:$0024-P:$003C). The host command (HC)
can be used to control the DSP by forcing it to execute any of thirteen subroutines that
can be used to run tests, transfer data, process data, etc. In addition, the HC can cause
any of the other 19 interrupt routines in the DSP to be executed, The process to execute
an HC (see Figure 10-28) is as follows:

10-40 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

EXCEPTION PROGRAM MEMORY SPACE
STARTING
ADDRESS

EXCEPTION SOURCE *

$0000 | HARDWARE RESET TWO WORDS PER VECTOR
50002 [STACK ERROR T NONMASKABLE
$0004 | TRACE . INTERRUPTS
$0006 | SWI (SOFTWARE INTERRUPT) , v

$0008 | IRGA EXTERNAL HARDWARE INTERRUPT EXTERNAL

$000A |IRQB EXTERNAL HARDWARE INTERRUPT INTERRUPTS

S000C | SSI RECEIVE DATA A
SYNCHRONOUS

$000E | SSI RECEIVE DATA WITH EXCEPTION STATUS SERIAL
$0010 | SSI TRANSMIT DATA - INTERFACE
$0012 |SSI TRANSMIT DATA WITH EXCEPTION STATUS INVERNAL
$0014 | SCI RECEIVE DATA INTERRUPTS
$0016 | SCI RECEIVE DATA WITH EXCEPTION STATUS SERIAL

$0018 | SCI TRANSMIT DATA COMMUNICATIONS
$001A | SCI IDLE LINE INTERFACE

$001C | SC! TIMER P
$001€ | RESERVED FOR HARDWARE DEVELOPMENT
$0020 { HOST RECEIVE DATA A
$0022 | HOST TRANSMIT DATA

$0024 | HOST COMMAND (DEFAULT)
50026 | AVAILABLE FOR HOST COMMAND
$0028 | AVAILABLE FOR HOST COMMAND
$002A | AVAILABLE FOR HOST COMMAND
$002C | AVAILABLE FOR HOST COMMAND HOST INTERNAL
$002E | AVAILABLE FOR HOST COMMAND INTERFACE INTERRUPTS
$0030 | AVAILABLE FOR HOST COMMAND
$0032 | AVAILABLE FOR HOST COMMAND
$0034 | AVAILABLE FOR HOST COMMAND
$0036 | AVAILABLE FOR HOST COMMAND
30038 | AVAILABLE FOR HOST COMMAND
$003A [AVAILABLE FOR HOST COMMAND
$003C | AVAILABLE FOR HOST COMMAND
$003E | ILLEGAL INSTRUCTION ' Y

Figure 10-27. Vector Table of Exception Sources

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 10-41

TVNANVYIA S.43SN L0095dSA/00095dSA Zr-0L

V104010

VIEW FROM HOST

1. WRITE CVR WITH DESIRED HV.

2. SETHC=1.
7 0
sif 1 [o] ol HOST VECTOR (HV)
- S
HC $12 — DEFAULT
HOST COMMAND

EXCEPTION VECTOR
ADDRESS = HV x2

COMMAND VECTOR
REGISTER (CVR)

- P:50024 HOST COMMAND DEFAULT VECTOR

5. WHEN THE HOST COMMAND EXCEPTION IS ACKNOWLEDGED, THE HC
BIT IS CLEARED BY THE HOST COMMAND LOGIC. HC CAN BE READ AS
A STATUS BIT.

7 0

st] o | o] o] HOST VECTOR (HV)
X

HC — HOST COMMAND (STATUS)

COMMAND VECTOR
REGISTER (CVR)

VIEW FROM DSP56000

3. HCP IS SET UNTIL EXCEPTION IS ACKNOWLEDGED.

7 0
xsrees[omA [o [o Twm Jweo [IHTDEIHRDF]:E;;?;RAIHSSR’

HCP
HOST COMMAND PENDING

4. HOST COMMAND S MASKED UNTIL HCIE=1

7 0
xseres| 0 | 0 | o | Wes [W2 | 1| HTIE | HRE | peoiseen piom)

HCIE
HOST COMMAND INTERRUPT ENABLE

EXCEPTION VECTOR TABLE

P:$0000

AVAILABLE FOR HOST COMMAND

—— T

AVAILABLE FOR HOST COMMAND
P:$003C AVAILABLE FOR HOST COMMAND

FAST INTERRUPT
OR
LONG INTERRUPT

A

Figure 10-28. Host Command

1. The host processor writes the CVR with the desired HV (the HV is the DSP’s interrupt
vector (IV) location divided by 2 — i.e., if HV=$12, [V=$24).

2. The HC is then set.
3. The HCP bit in the HSR is set when HC is set.

4. If the HCIE bit in the HCR has been set by the DSP, the HC exception processing will
start. The HV is multiplied by 2, and the result is used by the DSP as the interrupt
vector.

5. When the HC exception is acknowledged, the HC bit (and therefore the HCP bit) is

~ cleared by the HC logic. HC can be read by the host processor as a status bit to

determine when the command is accepted. Similarly, the HCP bit can be read by the
DSP CPU to determine if an HC is pending.

To guarantee a stable interrupt vector, write HV only when HC is clear. The HC bit and HV
can be written simultaneously. The host processor can clear the HC bit to cancel a host
command at any time before the DSP exception is accepted. Although the HV can be
programmed to any exception vector, it is not recommended that HV =0 (RESET) be used
because it does not reset the DSP hardware. DMA must be disabled to use the host
exception.

10.2.6.2.3 Host to DSP — Bootstrap Loading Using the HI. The circuit shown in Figure
10-29 will cause the DSP to boot through the HI on powerup. During the bootstrap program,
the DSP looks at P:$C000 data bit 23. If D23 is high, it will boot from an external memory
location; if it is low, as shown'in Figure 10-29, it will load from the HI. Data is written by
the host processor in a pattern of four bytes, with the high byte being a dummy and the
low byte being the low byte of the DSP word {see Figures 10-29 and 10-30). Figure 10-30
shows how an 8-, 16-, 24-, or 32-bit word in the host processor maps into the HI registers.
The HI register at address $4 is not used and will read as zero. It is not necessary to use
address $4, but, since many host processors are 16- or 32-bit processors, address $4 will
often be used as part of the 16- or 32-bit word. The low-order byte (at $7) should always
be written last since writing to it causes the HI to initiate the transfer of the word to the
HRX. Data is then transferred from the HRX to the DSP program memory. If the host
processor needs to terminate the bootstrap loading before 512 words have been down-
loaded, it can set the HFO bit in the ICR. The DSP will then terminate the download and
start executing at location P:$0000. Since the DSP56000/DSP56001 is typically faster than
the host processor, handshaking during the data transfer is normally not required.

The actual code used in the bootstrap program is given in the DSP56001 Advance Infor-
mation Data Sheet (ADI11290). The portion of the code that loads from the HI is shown in
Figure 10-31. The BSET instruction configures port B as the HI and the first JCLR looks for
a flag (HFO) to indicate an early termination of the download. The second JCLR instruction
causes the DSP to wait for a complete word to be received, and then two MOVEs are used
. to move the data from the HI to memory through an intermediate register, A1.

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 10-43

+5V

s __
Fa2 HEN 15K & 15K & 15K
_ DSP56001
AS F32 L FROM OPEN-
MODA/RGA ‘ < COLLECTOR
A4-A23 »1 ADDRESS | BUFFER
.5y | CODE ‘
MC68000
{125 MHz) «
DTACK & { LS09
U +5V .
, FROM.
L\N\, HACK RESET . < RESET

- FUNCTION

RIW HRW
IN5711

8 : .
D0-07 | S »| Ho-H7 FROM OPEN-
. MODB/IRTE : < COLLECTOR
A1-A3 N WAOHAZ D BUFFER
15K
7 : HOST 0 =

INTERRUPT CONTROL REGISTER (ICR)
(READ/WRITE)

SETTING HF0 TERMINATES BOOTSTRAP LOADING AND STARTS
EXECUTION AT LOCATION P:$0000.

so| im | wwi | mmo | we | wro | o | Thea | rrea

HOST ADDRESS CONTENTS LOADED

WRITTEN TO INTERNAL PRAM AT:

4 {DUMMY)

5 P:$0000 HIGH BYTE

6 P:$0000 MID BYTE

7 P:$0000 LOW BYTE
SET HFO FOR EARLY TERMINATION =« .

4 (DUMMY) .

5 P:$01FF HIGH BYTE

6 P:$01FF MID BYTE

7 P:$01FF LOW BYTE

*Because the DSP56000 is so fast, host handshaking is generally not required.

Figure 10-29. Bootstrap Using the HI

10.2.6.2.4 DSP-to-Host Data Transfer. Data is transferred from the DSP to the host pro-
cessor in a similar manner as from the host processor to the DSP. Figure 10-32 shows the
bits in the status registers (ISR and HSR) and control registers (ICR and HCR) used by the
host processor and DSP CPU, respectively. The DSP CPU (see Figure 10-33) can poll the
HTDE bit in the HSR (1) to see when it can send data to the host, or it can use interrupts

10-44 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

HOST

TRANSMIT/RECEIVE
; BYTEREGISTERs HOST BYTE
ADDRESS
00000000 4
o~ TXH/RXH 5
o HIGH BYTE
R TXM/RXM 6
> MIDDLE BYTE
—— ACCESS TO
LOW BYTE
LOW BYTE T~ \Nimiates
7y TRANSFER
31 v 2 23 y 16 15) 87 - 0
HOST | READ - 00000000
DATA | WRITE - XXXXXXXX HIGH MIDDLE Low
—8-BIT TRANSFER~3]
L————w-sn TRANSFER — 3|
< 24-BIT TRANSFER >
<« 32-BIT TRANSFER, LS 24 BITS ARE SIGNIFICANT —————————3»
NOTE: Access low byte last
Figure 10-30. Transmit/Receive Byte Registers
INLOOP Do #512,-.LOOP1 ;Load 512 instruction words.
—-HOSTLD BSET #0,X:$FFEO ;Configure Port B as Host Interface
-LBLA JCLR #3,X:$FFE9,-LBLB ;If HFO=1, stop loading data.
ENDDO :Must terminate the DO loop
JMP <-BOOTEND ;Boot complete, go to exit handler

-LBLB JCLR #0,X:(R2),-LBLA ;Wait for HRDF to go high
;{meaning 24-bit data is present)

MOVE X:$FFEB,A1 ;Put 24-bit host data in A1
—-STORE MOVE A1,P:(RO)+ :Store 24-bit result in PRAM
-LOOP1 ;Return for another 24-bit word

Figure 10-31. Bootstrap Code Fragment

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 10-45

IVNANVIN S, H3SN ~l-009‘.i¢:|$O/OOOS)‘.EdS(l 9v-0l

VI104OL0OW

HOST - DSP56000
7 0 a 7 ’ 0
INTERRUPT STATUS | HOST STATUS
s2| weea | oma | o | wrs | we | tRov [Txoe | axoF | REGISTER USRI xsrres{ oMA | o | o | e | wro [op [wioe | HRoF | REGISTER (HSR)
(READ ONLY) ~ (READ ONLY)
RXDF — RECEIVE DATA REGISTER FULL HTDE — HOST TRANSMIT DATA EMPTY
1= INDICATES THAT RECEIVE BYTE REGISTERS (RXHRXM,RXL) 1= HTX IS EMPTY AND CAN BE WRITTEN BY DSP.
CONTAIN DATA FROM THE DSP. 0=HTX IS FULL.
0= CLEARED BY READING RXL.
MODES 0. HOST CONTROL
T/ N INTERRUPT CONTROL ~ X: sFFEs[| o | o | wes] we2 | v [vmie [sRie | REGISTER (HCR)
sof [emi | mvo | we | wro | o | 7eea | meea] REGISTER (ICR) (READ/WRITE)
(READ/WRITE) HTIE — HOST TRANSMIT INTERRUPT ENABLE
RREQ — RECEIVE REQUEST ENABLE (USED TO CONTROL THE FREQ PIN) 1~ ENABLE THE DSP INTERRUPT TO P:50022
1= ENABLE INTERRUPT REQUESTS CREATED BY RXDF 0 DISABLE THE DSP INTERRUPT TO P:$0022

0=DISABLE INTERRUPT REQUESTS DSP INTERRUPT IS CAUSED BY HTDE=1

Figure 10-32. Bits Used for DSP to Host Transfer

V104HOLOW

TVANVIN S,H3SN 10095d4SA/00095dSA

(-0l

VIEW FROM HOST

VIEW FROM HOST —=atif=

5. READ OF RXL BY HOST CLEARS RXDF IN ISR.
6. WHEN RXDF =0 AND HTDE =0, THEN TRANSFER OCCURS.

7 0
$5 RXH
36 RXM e
LAST READ » §7 RXL

RECEIVE BYTE
REGISTERS (RBR)

7. THE TRANSFER SETS RXDF FOR THE
HOST TO POLL.

! _ % INTERRUPT
s2[wrea | oma | o | wes | we [oy [moe| 1 [status
REGISTER (ISR)
RXDF
RECEIVER
DATA FULL
! 0 INTERRUPT
sof e [emr [emo | wer | weo | o freea| o]contROL
REGISTER (ICR)
RREQ
RECEIVE

REQUEST ENABLE

8. IF RREQ=1, THEN HREQ PIN IS ASSERTED TO INTERRUPT HOST.

HREQ —__
——
PIN

A

1. WHEN HTDE =1, THEN HTX IS EMPTY.

7 0
sseres{oma | o [o [we [wro [uer [1 Tmor wg{;rﬂsg;(r:ssm

HTDE
HOST TRANSMIT
DATA EMPTY
2. DSP56000 MAY POLL HTDE.

0

HOST CONTROL

7
sxseres| o | o | o | wm [we2 [Hoe | 1] e REGISTER (HCR)

HTIE
HOST TRANSMIT

INTERRUPT ENABLE

3. IF HTIE=1, AND INTERRUPTS ARE ENABLED, THEN EXCEPTION PROC-
ESSING BEGINS.

P:80000

L —
e

HOST TRANSMIT DATA VECTOR

> P:30022

L—
—_— e ——

ILLEGAL INSTRUCTION VECTOR

P:S003E

FAST INTERRUPT
OR e —

LONG INTERRUPT

4. DSP56000 WRITES DATA TO HTX, WHICH CLEARS HTDE IN HSR.

23 0

HOST TRANSMIT DATA

X:SFFEB| _ HIGHBYTE | MIDDLE BYTE LOW BYTE

REGISTER (HTX)

Figure 10-33. Data Transfer from DSP to Host

enabled by the HTIE bit in the HCR (2). If HTIE=1 and interrupts are enabled, exception
processing begins at interrupt vector P:$0022 (3). The interrupt routine should write data
to the HTX (4), which will clear HTDE in the HSR. From the host's viewpoint, (5) reading

~the RXL clears RXDF in the ISR. When RXDF =0 and HTDE =0 (6), the contents of the HTX
will be transferred to the receive byte registers (RXH:RXM:RXL). This transfer sets RXDF
in the ISR (7), which the host processor can poll to see if data is available, or, if the RREQ
bit in the ICR is set, the HI will interrupt the host processor with HREQ (8).

The code shown in Figure 10-34 is essentially the same as the MAIN PROGRAM in Figure
10-25 except that, since this code will transmit instead of receive data, the HTIE bit is set
in the HCR instead of the HRIE bit.

The transmit routine used by the code in Figure 10-34 is shown in Figure 10-35. The interrupt
vector contains a JSR, which makes it a long interrupt. The following code sends a fixed
test pattern ($123456) and then resets the HI for the next interrupt.

10.2.6.3 DMA DATA TRANSFER. The DMA mode allows the transfer of 8-, 16-, or 24-bit
data through the DSP HI under the control of an external DMA controller. The HI provides
the pipeline data registers and the synchronization logic between the two asynchronous
processor systems. The DSP host exceptions provide cycle-stealing data transfers with the

;**

; MAIN PROGRAM ... transmit 24-bit data to host

;**

ORG P:$40
MOVEP #1,X:PBC ;Turn on Host Port
MOVEP #$0C00,X:IPR ;Turn on host interrupt
MOVEP #0,X:HCR ;Turn off XMT and RCV interrupts
MOVE #0,5R ;Unmask interrupts
MOVE #>$8,X0 ;Host flag mask for HFO
LOOP MOVEP X:HSR,A ;Wait for HFO (from host) set to 1
AND X0,A
JEQ LOOP
MOVEP #%$2,X:HCR ;Enable host transmit interrupt
JMP * ;Now wait for interrupt

Figure 10-34. Main Program — Transmit 24-Bit Data to Host

10-48 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

;*********************************

; TRANSMIT to Host Interrupt Routine

;*********************************

XMT MOVEP #$123456,X:HTX ; Test value to transmit
MOVEP #0,X:HCR ;Turn off XMT Interrupt
RTI .
END

Figure 10-35. Transmit to HI Routine

DSP internal or external memory. This technique allows the DSP memory address to be
generated using any of the DSP addressing modes and modifiers. Queues and circular
sample buffers are easily created for DMA transfer regions. The host exceptions can be
programmed as high-priority fast or long exception service routines. The external DMA
controller provides the transfers between the DSP Hl registers and the external DMA mem-
ory. The external DMA controller must provide the address to the external DMA memory;
however, the address of the selected Hl register is provided by a DMA address counter in
the HI. '

DMA transfers can only be in one direction at a time; however, the host processor can
access any of the registers not in use during the DMA transfer by deasserting HACK and
using HEN and HAO-HA2 to transfer data. The host can therefore transfer data in the other
direction during the DMA operation using polling techniques.

10.2.6.3.1 Host-To-DSP Internal Processing. The following procedure outlines the steps
that the HI hardware takes to transfer DMA data from the host data bus to DSP memory
(see Figures 10-36 and 10-37):

1. Hl asserts the HREQ pin (see Figures 10-36 and 10-37) when TXDE=1.
2. DMA controller enables data on HO-H7 and asserts HACK.

3. When HACK is asserted, the HI deasserts HREQ.
4

. When the DMA controller deasserts HACK, the data on H0O-H7 is latched into the TXH,
TXM, TXL registers.

5. If the byte register written was not TXL (i.e., not $7), the DMA addres_s counter internal
to the HIl increments, and HREQ is again asserted. Steps 2-5 are then repeated.

6. If TXL ($7) was written, TXDE will be set to zero, and the address counter in the HI
will be loaded with the contents of HM1 and HMO0. When TXDE =0, the contents of
TXH:TXM:TXL are transferred to HRX if HRDF=0. After the transfer to HRX, TXDE
will be set to one, and HREQ will be asserted to start the transfer of another word
from external memory to the Hli.

MOTOROLA - DSP56000/DSP56001 USER'S MANUAL 10-49

7. When the transfer to HRX occurs within the HI, HRDF is set to one. Assuming HRIE=1,
a host receive exception will be generated. The exception routine must read the HRX

to clear HRDF.

NOTE

The transfer of data from the TXH, TXM, TXL registers to the HRX register au-
tomatically loads the DMA address counter from the HM1 and HMO bits in the
DMA host to DSP mode. This DMA address is used within the HI to place the

received byte in the correct register (TXH, TXM, or TXL).

Figure 10-37 shows the differences between 24-, 16-, and 8-bit DMA data transfers. The
interrupt rate is three times faster for 8-bit data transfers than for 24-bit data transfers. TXL

is always loaded last.

10.2.6.3.2 Host-to-DSP DMA Procedure. The following procedure outlines the typical steps

that the host processor must take to set up an

Figure 10-38):

1. Setup the external DMA controller (1) source address, byte count, direction, and other
control registers. Enable the DMA controller channel.

10-60

DMA
CONTROLLER

TRANSFER REQUEST

TRANSFER
ACKNOWLEDGE

-

+5V

%,K

) 4

J BN

>

>

)

MEMORY
RIW
CONTROL

ADDRESS

DATA

DSP56000/DSP56001
HOST INTERFACE
FREG INTERNAL

ADDRESS

COUNTER

ek 1
HO-H7

(—

Characteristics of Host DMA Mode

® The HREQ pin is NOT available for host processor interrupts.

® TREQ and RREQ select the direction of DMA transfer.
— DMA to DSP56000
— DSP56000 to DMA .
— Simultaneous bidirectional DMA transfers are not permitted

d terminate a host-to-DSP DMA transfer (see

® Host processor software polled transfers are permitted in the opposite direction of the DMA transfer.

® 8-, 16-, or 24-bit transfers are supported.

— 16- or 24-bit transfers reduce the DSP interrupt rate by a factor of 2 or 3, respectively.

Figure 10-36. Hl Hardware — DMA Mode

DSP56000/DSP56001 USER'S MANUAL

MOTOROLA

XFEREQ <—| | <€« HREQ
DMA DSP56000/
CONTROLLER DSP56001
XFERACK |—>» |_-—> HACK
| | |

o
iSRRG H (EXHOEXHEN

| | | | | |

| | | | | |
o ransreR (K X) 0@0 X X0 00 O R X)

A A
e s A XE-OCEOHEN)

Vooy oY Y Y

P:$0020 MOVE X:$FFE8,A READ HRX
P:$0021 MOVE AY:(R7) + ;AND PUT INTO Y MEMORY

HOST
RECEIVE
INTERRUPT,

Figure 10-37. DMA Transfer and Host Interrupts

~ 2. Initialize the HI (2) by writing the ICR to sélect the word size (HMO and HM1), to select
the direction (TREQ=1, RREQ=0), and to initialize the channel setting INIT=1 (see
Figure 10-39).

3. The DSP’s destination pointer (3) used in the DMA exception handler (e.g., address
register} must be initialized, and HRIE must be set to enable the HRDF interrupt to
the DSP CPU. This procedure can be done with a separate host command exception
routine in the DSP. HREQ will be asserted (4) immediately by the HI to'begin the DMA
transfer.

4. Perform other tasks (5} while the DMA controller transfers data (6) until interrupted
by the DMA controller DMA transfer complete interrupt (7). The DSP interrupt control
register (ICR), the interrupt status register (ISR), and RXH, RXM, and RXL registers
may be accessed at any time by the host processor but the TXH, TXM, and TXL
registers may not be accessed until the DMA mode is disabled.

5. Terminate the DMA controller channel (8) to disable DMA transfers.

6. Terminate the DSP HI DMA mode (9) in the ICR by clearing the HM1 and HMO bits
and clearing TREQ.

The HREQ will be active immediately after initialization is completed (depending on hard-
ware) because the data direction is host to DSP and TXH, TXM, and TXL registers are
empty. When the host writes data to TXH, TXM, and TXL, this data will be immediately
transferred to HRX. If the DSP is due to work in interrupt mode, HRIE must be enabled.

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 10-51

TYNNVIAN S.H3SN L0095dSA/000954SA 250l

V104010

0
INTERRUPT CONTROL

REGISTER (ICR}

HOST CONTROL

HOST PROCESSOR DMA CONTROLLER DSP56000
1. PROGRAM DMA CONTROLLER ——————>
— START ADDRESS
— BYTE COUNT
— TRANSFER DIRECTION
— START DMA CHANNEL ,
|
2. INITIALIZE DSP56000 HOST WRITE 1CR —>so| 1 [o | v [o[1 [o
INTERFACE
N eODE 20 81T oA INT HM1 HMO TREQ RREQ
— HOST TO DSP
— USE INIT BIT T0:
SET TXDE
CLEAR HRDF
LOAD DMA COUNTER , A .
3. TELL DSPS6000 > xsrres| o [o | o [wes [we [woe [eme]
— WHERE TO STORE DATA - o NEGISTER (HCR)
{i.e, PROGRAM ADDRESS 4. ASSERT HREQ TO START DMA
REGISTER R7). TRANSFER
— ENABLE INTERRUPT HRIE : '
(CAN BE DONE WITH A HOST s
COMMAND). ‘ 6. DMA CONTROLLER PERFORMS meET_‘_ PIN -
5. HOST IS FREE TO PERFORM OTHER Y "
R N —— Pisunon | EXCEPTION VECTOR TABLE
FER ON A POLLED BASIS). nl ™ ; M
ol TXH \
8. TERMINATE DMA CHANNEL. <€——— 0] Txm — P:50020 [HOST RECEIVE DATA VECTOR
9. TERMINATE DSP DMA MODE BY npom '
CLEARING HM1, HM0, AND TREQ. - —~——]
‘ : P:SO03E | ILLEGAL INSTRUCTION
o '
0] M FAST INTERRUPT
OR
[I— LONG INTERRUPT

7. DMA CONTROLLER INTERRUPTS HOST

WHEN TRANSFERS ARE DONE.

Figure 10-38. Host-to-DSP DMA Procedure

MODES

7 0
so[ir [i [o | wen | wro | o | Thea | RREQ | peanvarre oo R

J

Interrupt Mode (DMA Off) «€———— RESET CONDITION

0 0
0 1 | 24-Bit DMA Mode
1 0 16-Bit DMA mode
1 1 | 8-Bit DMA mode
. INTERRUPT MODE (DMA OFF) DMA MODE
TREQ | RREQ HREQ PIN TREQ |RREQ HREQ PIN
0 0 No Interrupts {Polling) 0 0 No DMA

RXDF Request (Interrupt) DSP to Host Request (RX)

= Jo |-

0 1 0
1 0 XDE Request {Interrupt) 1 Host To DSP Request (TX)
1 1 XDF and TXDE Request (Interrupts) 1 Undefined (lllegal)

A 0
s2[urea [oma | o | wes [we2 Jmov [vxoe | xor

INTERRUPT STATUS REGISTER (ISR}
(READ ONLY)

7 0
xserea oma | o | o | wr | wro | wee [wroe | eor (’:‘OEE\TDSJQE%S REGISTER (HSR)

Figure 10-39. Host Bits with TREQ and RREQ

10.2.6.3.3 DSP-to-Host Internal Processing. The following procedure outlines the steps
that the HI hardware takes to transfer DMA data from DSP memory to the host data bus:

1. On the DSP side of the HI, a host transmit exception will be generated when HTDE =1
and HTIE=1. The exception routine must write HTX, thereby setting HTDE =0.

2. If RXDF=0 and HTDE =0, the contents of HTX will be automatically transferred to
RXH:RXM:RXL, thereby setting RXDF=1 and HTDE =1. Since HTDE=1 again on the
initial transfer, a second host transmit exception will be generated immediately, and
HTX will be written, which will clear HTDE again.

3. When RXDF is set to one, the Hl's internal DMA address counter is loaded (from HM1
and HMO), and HREQ is asserted.

4. The DMA controller enables the data from the appropriate byte register onto HO-H7
by asserting HACK. When HACK is asserted, HREQ is deasserted by the HI.

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 10-53

5.

The DMA controller latches the data presented on H0-H7 and deasserts HACK. If the
byte register read was not RXL (i.e., not $7), the HI's internal DMA counter increments,
and HREQ is again asserted. Steps 3, 4, and 5 are repeated until RXL is read.

. If RXL was read, RXDF will be set to zero, and, since HTDE=0, the contents of HTX

will be automatically transferred to RXH:RXM:RXL, and RXFD will be set to one. Steps
3, 4, and 5 are repeated until RXL is read again.

NOTE
The transfer of data from the HTX register to the RXH:RXM:RXL registers auto-
matically loads the DMA address counter from the HM1 and HMO bits when in
the DMA DSP-to-host mode. This DMA address is used within the HI to place the
appropriate byte on H0-H7.

10.2.6.3.4 DSP-to-Host DMA Procedure. The following procedure outlines the typical steps
that the host processor must take to set up and terminate a DSP-to-host DMA transfer (see
Figure 10-40).

1.

Set up the DMA controller (1) destination address, byte count, direction, and other
control registers. Enable the DMA controller channel.

. Initialize the HI (2) by writing the ICR to select the word size (HM0 and HM1), to select

the direction (TREQ=0, RREQ=1), and to set INIT=1 (see Figure 10-40 for additional
information on these bits).

. The DSP’s source pointer (3) used in the DMA exception handler (e.g., an address

register) must be initialized, and HTIE must be set to enable the DSP host transmit
interrupt. Thi$ procedure can be done by the host processor with a host command
exception routine.

The DSP host transmit exception will be activated immediately after HTIE is set. The
DSP CPU will move data to HTX. The Hi circuitry will transfer the contents of HTX to
RXH:RXM:RXL, setting RXDF, which asserts HREQ. Asserting HREQ (4) starts the DMA
transfer from RXH, RXM, and RXL to the host processor.

. Perform other tasks (5) while the DMA controller transfers data (6) until interrupted

by the DMA controller DMA complete interrupt (7): The DSP interrupt control register
(ICR), the interrupt status register (ISR), and TXH, TXM, and TXL registers may be
accessed at any time by the host processor but the RXH, RXM, and RXL rgisters may
not be accessed until the DMA mode is disabled.

. Termmate the DMA controller channel (8) to disable DMA transfers.
. Termlnate the DSP HI DMA mode (9) in the ICR by clearing the HM1 and HMO bits

and clearing RREQ.

10.2.6.4 EXAMPLE CIRCUITS. Figures 10-41, 10-42, and 10-43 illustrate the simplicity of
the HI. The MC68HC11 in Figure 10-41 has a multiplexed address and data bus, which

10-54 DSP56000/DSP56001 USER'S MANUAL) MOTOROLA

VI10HO1OW

IVNNVYIA S, H3ISN L009SdSA/000954SA

§5-01

HOST PROCESSOR

1. PROGRAM DMA CONTROLLER
— START ADDRESS
— BYTE COUNT
-— TRANSFER DIRECTION
— START DMA CHANNEL

2. INITIALIZE DSP56000 HOST

DMA CONTROLLER

—_ >

WRITE ICR

INTERFACE

-— MODE 24 BIT DMA

— HOST T0 DSP

— USE INIT BIT TO:
CLEAR TXDE
SET HRDF
LOAD DMA COUNTER

3. TELL DSP56000

— SOURCE POINTER ADDRESS
— ENABLE HTIE (CAN BE DONE
WITH A HOST COMMAND).

5. HOST IS FREE TO PERFORM OTHER
TASKS (i.e., DSP TO HOST TRANS-
FER ON A POLLED BASIS).

8. TERMINATE DMA CHANNEL. <——

9. TERMINATE DSP DMA MODE BY
CLEARING HM1, HMO, AND TREQ.

DSP56000

7

0

> sof + [o] o [wmfwo| o | o]

INIT HM1 HMO

7

TREQ RREQ

> xsiees| o | o | o [wrs | we [hoe| o

[HTIEOI

4. ASSERT HREQ TO START DMA
TRANSFER.

6. DMA CONTROLLER PERFORMS READS.

o RXH
0 RXM
i RXL
o RXH \
0] RxMm
" RXL
ol RXH
0 RxM
1" RXL
S

7. OMA CONTROLLER INTERRUPTS HOST
WHEN TRANSFERS ARE DONE.

— P:50022
V—\‘/

P:S0000| EXCEPTION VECTOR TABLE

L~

HOST TRANSMIT DATA VECTOR

I/-N/

P:S003E I ILLEGAL INSTRUCTION

FAST INTERRUPT

OR <
LONG INTERRUPT

Figure 10-40. DSP-to-Host DVIA Procedure

HRIE

INTERRUPT CONTROL
REGISTER {ICR)

HOST CONTROL
REGISTER {HCR)

+5V

MCEBHC 11 5V DSP56000
% HACK

(HOST ACKNOWLEDGE)

HREQ
{HOST REQUEST)

=
=]
A

ADDRESS

AB-A15 DECODE
A
HEN
3 (HOST ENABLE)

RIW > HRW
A3-AT {HOST READMRITE)
. AS > e -
' ADDRESS i o] HAO-HAZ
LATCH {HOST ADDRESS)
Ho-H7
AUDO-ATIDT : t) {HOST DATA)

Use LDA and STA for 8-Bit Transfers.
Use LDD and STD for 16-8it Transfers.

Figure 10-41. MC68HC11-to-DSP56000 Host Interface

requires that the address be latched. Although the HACK is not used in this circuit, it is
pulled up. All unused input pins should be terminated to prevent erroneous signals. When
determining whether a pin is an input, remember that a pin may change during reset or
while changing port B between general-purpose I/0 and HI functions.

The MC68000 (see Figure 10-42) can use a MOVEP instruction with word and long-word
data size to transfer multiple bytes. If an MC68020 or MC68030 is used, dynamic bus sizing
can be used to transfer multiple bytes with any instruction.

Figure 10-43 is a high-level block diagram of a system using a single host to control multiple
DSPs. In addition, the DSPs use the SSI to network together the DSPs and multiple codecs.
With four DSPs, this system can process 41 million instructions per second and can be
easily expanded if more processing power is needed.

10.2.6.5 HOST PORT USAGE CONSIDERATIONS — HOST SIDE. Careful synchronization
is required when reading multibit registers that are written by another asynchronous sys-
tem. Synchronization is a common problem when two asynchronous systems are con-
nected. The situation exists in the host port. However, if the port is used in the way it was

10-56 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

+5V

MCE8000 § DSPS56000
INTERRUPT |_ _
IPLO-IPL2 encober [HREQ
ADDRESS
M-AZ3] DECODE ‘
. A
FCO-FC2
LD§ a »| HEN
AS ’
INTERRUPT |
- VECTOR): = :
L4 >
DECODE j————3 HACK
A
DTACK |« DTACK |
| TIMING |
BERR [« GENERATOR [
RIW »1 HR/W
A1-A3 3] HAD-HA2
D0-D7 (: N > Ho-H7

MC68000 — Use MOVEP for multiple byte transfers.
MC68020 or MC68030 — Any Memory references will work due to dynamic bus sizing.

Figure 10-42. MC68000-to-DSP56000 Host Interface

designed, proper operation is guaranteed. The considerations for proper operation are
discussed in the following paragraphs:

1. Unsynchronized Reading of Receive Byte Registers:

When reading receive byte registers, RXH, RXM, or RXL, the host processor should
use interrupts or poll the RXDF flag which indicates that data is available. This guar-
antees that the data in the receive byte registers will be stable.

2. Overwriting Transmit Byte Registers:

The host processor should not.write to the transmit byte registers, TXH, TXM, or TXL,
unless the TXDE bit is set, indicating that the transmit byte registers are empty. This
guarantees that the DSP will read stable data when it reads the HRX register.

3. Synchronization of Status Bits from DSP to Host:

HC, HREQ, DMA, HF3, HF2, TRDY, TXDE, and RXDF status bits are set or cleared from
inside the Hl and read by the host processor. The host can read these status bits very
quickly without regard to the clock rate used by the DSP, but there is a chance that
the state of the bit could be changing during the read operation. This possible change

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 10-57

10-58

HOST

%23 =4 E
2, s 3
L2 =1 o - w =
g g 2 228 3%
s| 5| §|5 S EEHE
[s= | | o "] >
> | RX
> HosT ssl N
< . ANALOG
SELECT > — INPUT
4 >
DSP56000/DSP56001 | cobec
——>
ANALOG
x - outPuT
> _RX
»| HosT ssi |
SELECT N -
<2ATA > DSP56000/DSP56001
ADDRESS
RDWR |
REQ X o
<> | _RX
»| HOST ssi |
< - ANALOG
SELECT > < INPUT
-« = l——
DSP56000/DSP56001 ~ | cooec
——
> ANALOG
- - QUTPUT
_RX
> HOST ssi |
SELECT o <
DSP56000/DSP56001
Figure 10-43. Multi-DSP Network Example
MOTOROLA

DSP56000/DSP56001 ; USER’'S MANUAL

is generally not a system problem, since the bit will be read correctly in the next pass
of any host polling routine.

However, if the host holds the HEN for the minimum assert time pius 1.5 clock cycle,
the status data is guaranteed to be stable. The 1.5 clock cycle is used to synchronize
the HEN signal and to block internal updates of the status bits. There is no other
minimum HEN assert time relationship to DSP clocks.

There is a minimum HEN deassert time of 1.5 clock cycle so that the blocking latch
can be updated if host is in a tight polling loop. This minimum time only applies to
reading status bits.

The only potential problem with the host processor reading status bits is reading HF3
and HF2 as an encoded pair. For example, if the DSP changes HF3 and HF2 from *'00"
to “11,"” there is a very small probability that the host could read the bits during the
transition and receive ‘01" or 10" instead of ““11”. If the combination of HF3 and
HF2 has significance, the host processor would potentially read the wrong combi-
nation. Two solutions would be to 1) read the bits twice and check for consensus and
2) hold HEN access for HEN + 1.5 clock cycle so that status bit transitions are stabilized.

4. Overwriting the Host Vector:

The host programmer should change the host vector register only when the HC bit
is clear. This will guarantee that the DSP interrupt control logic will receive a stable
vector.

5. Canceling a Pending Host Command Exception:

The host processor may elect to clear the HC bit to cancel the host command exception
request at any time before it is recognized by the DSP. The DSP CPU may execute
the host exception after the HC bit is cleared because the host processor does not
know exactly when the exception will be recognized. This uncertainty in timing is due
to differences in synchronization between the host processor and DSP CPU and the
uncertainties of pipelined exception processing. For this reason, the HV should not
be changed at the same time the HC bit is cleared. However, the HV can be changed
when the HC bit is set.

6. When using the HREQ pin for handshaking, wait until HREQ is asserted and then start
writing/reading data using the HEN pin or the HACK pin.

When not using HREQ for handshaking, poll the INIT bit in the ICR to make sure it is
cleared by the hardware (which means the INIT execution is completed). Then, start
writing/reading data.

If neither using HREQ for handshaking nor polling the INIT bit, wait at least 6T after
negation of HEN that wrote ICR before writing/reading data. This wait ensures that
INIT is completed, because the Hl needs 3T for synchronization (worst case) plus 3T
for executing the INIT.

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 10-59

7. All unused input pins should be terminated. Also, any pin that is temporarily not

10-60

" driven by an output 1) during RESET, 2) when reprogramming a port or pin, 3) when
a bus is not driven, or 4) at any other time should be pulled up or down with a resistor,
as appropriate. For example, the HEN is capable of reacting to 2-ns noise spikes when
it is not terminated. Allowing HACK to float may cause problems even though it is
not needed in the circuit.

DSP56000/DSP56001 USER'S MANUAL MOTOROLA

SECTION 11
PORT C

Port C is a triple-function 1/0 port with nine pins (see Figure 11-1). Three of the nine pins
can be configured as general-purpose 1/0 or as the serial communications interface (SCI)
pins, and the other six pins can be configured as general-purpose I/O or as the synchronous
serial interface (SSI) pins. When configured as general-purpose I/O, port C can be used for
device control. When the pins are configured as serial interfaces, port C provides a con-
venient connection to other DSPs, processors, codecs, digital-to-analog and analog-to-
digital converters, and any of several transducers. This section describes all three port C
functions as well as examples of how to configure and use each function.

11.1 GENERAL-PURPOSE /0O (PORT C)

When configured as general-purpose I/0, port C can be viewed as nine I/O pins (see Figure
11-2), which are controlled by three memory-mapped registers (see Figure 11-3). RESET
configures port C as general-purpose I/0 with all nine pins as inputs by clearing all three
registers (external circuitry connected to these pins may need pullups until the pins are
configured for operation). These registers are the port C control register (PCC), port C data
direction register (PCDDR), and port C data register (PCD). Each port C pin may be indi-
vidually programmed as a general-purpose I/0 pin or as a dedicated on-chip peripheral
pin under software control. Pin selection between general-purpose I/O and SCI or SSI is
made by setting the appropriate PCC bit (memory location X:$FFE1) to zero for general-
purpose I/O or to one for serial interface. The PCDDR {(memory location X:$FFE3) programs
each pin corresponding to a bit in the PCD (memory location X:$FFE5) as an input pin (if
PCDDR=0) or as an output pin (if PCDDR=1). Writing to the PCD will write data to the
pins designated as outputs by the PCDDR; reading the PCD will read the pins designated
as inputs by the PCDDR.

The port C I/0 pin control logic is shown in Figure 11-4. When a pin is designated as an
output and the PCD is read, the output of the output data bit latch is read, not the logic
level on the pin itself. When a port pin is configured as an SCI or SSi pin and the bit in
the PCDDR is zero (input), then reading the PCD will show the logic level on the pin even
though the pin is configured as a peripheral pin. The SCI or SSI function may be using the
pin as an input or an output, which can be very useful when debugging the SCI or SSI.

1111 Programming Parallel /O
Port C and all the DSP56000/DSP56001 peripherals are memory mapped {see Figure

11-5). The standard MOVE instruction transfers data between port C and a register; as a

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 11-1

DEFAULT ALTERNATE
FUNCTION FUNCTION
AN
EXTERNAL 3
EXTERNAL . _
DATA SWITCH 00-023
= E _
———> 05 -
BUS - -
CONTROL > % -
————> WR —
€ BRWT -
> BG/BS -
/
<—af—> S
PBO-PB7 HO-H7
l«————> PB3 <« 70
l«———> PB3 €«————
HOST/DMA PORT B
PARALLEL 10 l————> PB10 — HAZ_
INTERFACE (15) [<€—> PB11 € HRW
l«———> PB12 <€—— HEN
l€«———> PBI3 ————> HRED
l€————> PB14 €————— HACK
................... T o
RIAL COMMUNICATIONS — XD
INTERFACE .0 ~«—— > SO
<« 500
——— S(1
< S(2
NCHRONOUS - 30K
SERIAL -« 3RD

INTERFACE

—> STD

Figure 11-1. Port C Interface

result, performing a memory-to-memory data transfer takes two MOVE instructions and a
register. The MOVEP instruction is specifically designed for |/O data transfer as shown in
Figure 11-6. Although the MOVEP instruction may take twice as‘long to execute as a MOVE
instruction, only one MOVEP is required for a memory-to-memory data transfer, and MOVEP
does not use a temporary register. Using the MOVEP instruction allows a fast interrupt to
move data to/from a peripheral to memory and execute one other instruction or to move
the data to an absolute address. MOVEP is the only memory-to-memory move instruction;

11-2 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

ENABLED BY DIRECTION INPUT/QUTPUT
BITS IN SELECTED BY DATA REGISTER

X:SFFE1 X:SFFE3 X:SFFE5
PCO f&————> CC0 €00 PCO
PCl f———> CCI co1 PC1
p PC2 fe———>» (2 CD2 PC2
0 Pc3 le——> 3 cD3 PC3
R PC4 fe———> cCCa D4 PC4
PCs fe———> (5 CD5 PC5
c PC6 f€&——> 6 CD6 PC6
PC7 f¢——> 07 co7 PC7
PCS fe———> cCC8 CcD8 PC8

Figure 11-2. Parallel Port C Pinout

23

cciccjcejccjccjccfecjcecicc| PORT C CONTROL

X:SFFEV JOfO0jOojojojofO0jOojO)jOjOfOojofoO]oO REGISTER (PCC)

)
~
o
[}

: S
w
N
o

/

STD
SRD
CCx Function ss| j SCK

SC2
0 Parallel I/O SCl

1 | Serial Interface SCo
SCLK

Scl XD

. RXD

23 -

cojcofcojcp|co|CD|CD|CD|CD| PORT C DATA DIRECTION
REGISTER (PCDDR)

CDx Data Direction n
0 Input '

1 Output

XSFFE3 |0 (O]Ootojojojojojojofojojojojo

oo
~
=)
2.}
ES
w
~
o

PC|PC|PC|PC|PC|PC|PC|PC|PC| PORT C DATA
REGISTER (PCD)

XFFES [0oJ0o|ojojo|ojo]jojojo)o}jojofofo

o
-~
o
o
~
w
~
o

NOTE: Hardware and software reset clears PCC and PCDDR.

Figure 11-3. Parallel Port C Registers

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 11-3

Port Control Data Direction
Register Bit Register Bit

0 0 Port Input Pin
0 1 Port Output Pin
1 X Alternate Function

Pin Function

LATCHED OUTPUT -

DATA BIT

T (PARALLEL
‘L 1/0 POSITION)

>0
DATA DIRECTION -
™! REGISTER (DDR) BIT '°/c

PORT _]
REGISTERS : >0

PORT CONTROL
1 ReGISTER (CRIBIT [
(INPUT
' POSITION

PORT INPUT DATA BIT

A

QUTPUT DATA BIT

PERIPHERAL DATA DIRECTION BIT
Logic |

INPUT DATA BIT

Figure 11-4. Port B 1/0 Pin Control Logic

however, one of the operands must be in the top 64 locations of either X: or Y: memory.
The bit-oriented instructions using I/O short addressing (BCHG, BCLR, BSET, BTST, JCLR,
JSCLR, JSET, and JSSET) can also be used to address individual bits for faster |/O proc-
essing. The DSP does not have a hardware data strobe to strobe data out of the parallel
1/O port. If a data strobe is needed, it can be implemented using software to toggle one of
the parallel I/O pins. The process of programming port C as general-purpose I/O is shown
as a flowchart in Figure 11-7 and detailed in Figure 11-8. Normally, it is not good pro-
gramming practice to activate a peripheral before programming it. However, reset activates
the port C general-purpose I/0 as all inputs, and the alternative is to configure the port as
an SCI and/or SSI, which may not be desirable. In this case, it is probably better to insure
that port C is initially configured for general-purpose I/0 and then configure the data
direction and data registers. It may be better in some situations to program the data
direction or the data registers first to prevent two devices from driving one signal. The
order of steps 1, 2, and 3 in Figure 11-7 is optional and can be changed as needed.

11-4 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

23

16 15

8

7

X:$FFFF INTERRUPT PRIORITY REGISTER (IPR)
X:SFFFE PORT A — BUS CONTROL REGISTER (BCR)
X:$FFFD RESERVED
X:$FFFC RESERVED
X:$FFFB RESERVED
X:$FFFA RESERVED
X:$FFF9 RESERVED
X:$FFF8 RESERVED
X:$FFF? RESERVED
X:$FFF6 SCI HI — REC/XMIT DATA REGISTER (SRX/STX)
X:$FFF5 SCI MID — REC/XMIT DATA REGISTER {SRX/STX)
X:$FFF4 SCI LOW — REC/XMIT DATA REGISTER (SRX/STX)
X:$FFF3 SCI TRANSMIT DATA ADDRESS REGISTER (STXA)
X:$FFF2 SCI CONTROL REGISTER (SCCR)
X:$FFF1 SCI INTERFACE STATUS REGISTER (SSR)
X:$FFFO SCI INTERFACE CONTROL REGISTER (SCRI
X:SFFEF SSI RECEIVE/TRANSMIT DATA REGISTER (RX/TX)
X:$FFEE SSI STATUS/TIME SLOT REGISTER (SSISR/TSR)
X:$FFED SSI CONTROL REGISTER B {CRB)
X:$FFEC SSI CONTROL REGISTER A {CRA)
X:$FFEB HOST RECEIVE/TRANSMIT REGISTER (HRX/HTX)
X:SFFEA UNUSED
X:SFFEQ HOST STATUS REGISTER (HSR)
X:$FFE8 HOST CONTROL REGISTER (HCR)
X:$FFE7 RESERVED

_ X:$FFE6 RESERVED

IL:SFFES PORT C — DATA REGISTER (PCD) I
X:$FFE4 PORT B — DATA REGISTER (PBD)
I X:$FFE3 PORT C — DATA DIRECTION REGISTER (PCDDR) I

X:$FFE2 PORT B — DATA DIRECTION REGISTER (PBDDR)

X:$FFEQ
X:$FFDF

X:$FFCO

MOTOROLA

PORT C — CONTROL REGISTER (PCC) I

PORT B — BUS CONTROL REGISTER (PBC)
RESERVED

Read as random number; write as don't care.

RESERVED

Figure 11-5. On-Chip Peripheral Memory Map

DSP56000/DSP56001 USER'S MANUAL 11-5

MOVEP #$0,X:$FFE1 ;Select port C to be general-purpose /0
MOVEP #$01F0,X:$FFE3 ;Select pins PCO-PC3 to be inputs
: ;and pins PC4-PC8 to be outputs
MOVEP #data—out,X:$FFE5 ;Put bits 4-8 of “data—out” on pins
;PB4-PB8 bits 0-3 are ignored.
MOVEP X:$FFEQ,#data-in * :Put PB0-PB3 in bits 0-3 of “data—in"

Figure 11-6. Write/Read Parallel Data with Port C

STEP 1
INITIALIZE PORT C CONTROL REGISTER
ADDR X:$FFE1

y

STEP 2
SELECT DATA DIRECTION ({IN/OUT)
ADDR X:SFFE3

Y

STEP 3
READ/WRITE PORT C DATA
ADDR X:$FFES

Figure 11-7. Port C Configuration Flowchart

11.1.2 Port C Parallel I/O Timing

Parallel data written to port C is delayed by one instruction cycle —i.e., the following
instruction

MOVE DATA9. X:PORTC DATA24,Y:EXTERN

1) writes nine bits of data to the port C register, but the output pins do not change until
the following instruction cycle, and

2) writes 24 bits of data to the external Y memory, which appears on port A during T2
and T3 of the current instruction.

11-6 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

STEP 1. SELECT EACH PIN TO BE GENERAL-PURPOSE 1/0 OR AN ON-CHIP PERIPHERAL PIN:
CCx=0# GENERAL-PURPOSE 1/0
CCx=1# ON-CHIP PERIPHERAL

o0
(3]
o
[x]
Q
o
(=]
(x]
o
(x]
o
o
(]
(%]
(=]
%]
(=
(]

X:SFFEI

PORT C CONTROL REGISTER (PCC)

STEP 2. SET EACH GENERAL-PURPOSE 1/0 PIN {SELECTED ABOVE) AS INPUT OR OUTPUT:
CDxx=0# INPUT PIN

OR
CDx=1# OUTPUT PIN

8

cojcojcpjco|cofcpjcp)coico
gl7|6|5f[4fj3f{2]1]0

X:SFFE3 PORT C DATA DIRECTION REGISTER (PCDDR)

STEP 3. READ/WRITE GENERAL-PURPQSE 1/0 PINS:
PCx=0UTPUT DATA IF SELECTED FOR GENERAL-PURPOSE 1/0 AND OUTPUT IN STEPS 1 AND 2.

OR
PCx=INPUT DATA IF SELECTED FOR GENERAL-PURPOSE 1/0 AND INPUT IN STEPS 1 AND 2,

o
o
o
(]
-l
o
o
(%]
-l
(=]
o
[z}
o
[x]
o
(x]
il
o

PORT C DATA REG]STER (PCD)

X:SFFE5

Figure 11-8. /O Port C Configuration

As a result, if it is desirable to synchronize the port A and port C outputs, two instructions

must be used:
DATA24,Y:EXTERN ' n

MOVE DATA9,X:PORTC

NOP :
The NOP can be replaced by any instruction that allows parallel moves. Inserting one or
more “MOVE DATA15,X:PORTC DATA24,Y:EXTERN" instructions between the first and
second instruction produces an external 33-bit write each instruction cycle with only one
instruction cycle lost in setup time:

MOVE DATA15,X:PORTC

MOVE DATA15,X:PORTC DATA24,Y:EXTERN
MOVE DATA15,X:PORTC DATA24,Y:EXTERN
MOVE DATA15,X:PORTC DATA24,Y:EXTERN
NOP DATA24,Y:EXTERN

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 117

One application of this technique is to create an extended address for port A by conca-
tenating the port A address bits {instead of data bits) to the port C general-purpose output
bits. The port C general-purpose I/O register would then work as a base address register,
allowing the address space to be extended from 64K words (16 bits) to 33.5 million words
(16 bits + 9 bits =25 bits).

Port C uses the DSP central processing unit (CPU) four-phase clock for its operation. There-
fore, if wait states are inserted in the DSP CPU timing, they also affect port C timing. The
result is that port A and port C in the previous synchronization example will always stay
synchronized, regardless of how many wait states are used.

11.2 SERIAL COMMUNICATION INTERFACE (SCl)

The SCI provides a full-duplex port for serial communication to other DSPs, microproces-
" sors, or peripherals such as modems. The communication can be TTL-level signals or, with
additional logic, RS232C, RS422, etc. This interface uses three dedicated pins: transmit
data (TXD), receive data (RXD), and SClI serial clock (SCLK). It supports industry-standard
asynchronous bit ratés and protocols as well as high-speed (up to 3.375 Mbits/second for
a 27-MHz clock) synchronous data transmission. The asynchronous protocols include a
multidrop mode for master/slave operation with wakeup onidle line and wakeup on address
bit capability. The SCI consists of separate transmit and receive sections whose operations
can be asynchronous with respect to each other. A programmable baud-rate generator is
included to generate the transmit and receive clocks. An enable vector and an interrupt
vector have been included so that the baud-rate generator can function as a general-
purpose timer when it is not being used by the SCI peripheral or when the interrupt timing
is the same as that used by the SCI. The following is a short list of SCI features:

Three-Pin Interface:
TXD — Transmit Data

- RXD — Receive Data
SCLK — Serial Clock

422 Kbit/Second NRZ Asynchronous Communications Interface (27-MHz System Clock)
3.375 Mbit/Second Synchronous Serial Mode (27-MHz System Clock)

Multidrop Mode for Multiprocessor Systems:
Two Wakeup Modes:
Idle Line
Address Bit
Wired-OR Mode

On-Chip or External Baud Rate Generation/Interrupt Timer
Four Interrupt Priority Levels

Fast or Long Interrupts

11-8 DSP56000/DSP56001 USER'S MANUAL ' MOTOROLA

11.2.1 SCI I/O Pins

The SCI has three I/0 pins, which can be configured as either general-purpose I/0 or as a
specific SCI pin. Each pin is independent of the other two, which means that if only TXD
is needed, RXD and SCLK can be programmed for general-purpose I/0. At least one of the
three pins must be selected as an SCI pin to release the SCI from reset.

However, the SCI interrupts may be enabled by programming the SCI control registers
before any of the SCI pins are programmed as SC! functions. In this case, only one transmit
interrupt can be generated because the transmit data register is empty. The timer and
timer interrupt will operate as they do when one or more of the SCI pins is programmed
as an SCI function.

11.2.1.1 RECEIVE DATA (RXD). This input receives byte-oriented serial data and transfers
the data to the SCl receive shift register. Asynchronous input data is sampled on the positive
edge of the receive clock (1x SCLK) if SCKP equals zero. See the DSP56007 Advance
Information Data Sheet (ADI1290) for detailed timing information. RXD may be pro-
grammed as a general-purpose /O pin (PC0) when the SCI RXD function is not being used.

11.2.1.2 TRANSMIT DATA (TXD). This output transmits serial data from the SCl transmit
shift register. Data changes on the negative edge of the asynchronous transmit clock (SCLK)
if SCKP equals zero. This output is stable on the positive edge of the transmit clock. See
the DSP56001 Advance Information Data.Sheet (ADI1290) for detailed timing information.
TXD may be programmed as a general-purpose /O pin (PC1) when'the SCI TXD function
is not being used.

11.2.1.3 SCI SERIAL CLOCK (SCLK). This bidirectional pin provides an input or output
clock from which the transmit and/or receive baud rate is derived in the asynchronous
mode and from which data is transferred in the synchronous mode. SCLK may be pro-
grammed as a general-purpose I/0 pin (PC2) when the SCI SCLK function is not being
used. This pin may be programmed as PC2 when data is being transmitted on TXD since,
in the asynchronous mode, the clock need not be transmitted. There is no connection
between programming the PC2 pin as SCLK and data coming out the TXD pin because
SCLK is independent of SCI data /0.

11.2.2 Programming Model

The resources available in the SC! are described before discussing specific examples of
how the SCl is used. The registers comprising the SCI are shown in Figures 11-9 and
11-10. These registers are the SCI control register (SCR), SCI status register (SSR), SCI
clock control register (SCCR), SCI receive data registers (SRX), SCI transmit data registers
(STX), and the SCI transmit data address register (STXA). The SCI programming model

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 11-9

olL-tL

TYNNVYIN S.43SN L0095dSA/000954SA

VI0HOLON

23 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
X-$FFFO 0 SCKP 0 TMIE| TIE | RIE | ILE | TE RE |WOMS| RWU |WAKE| SBK |SSFTD|WDS2|WDS1{WDS0| SCI CONTROL REGISTER (SCR)
' {0) (0) (0) (0) (0) (0) {0) (0) (0) {0) {0) (0) (0) (0) {0) {READ/WRITE)
so cuoecrouary —1 | .
TIMER INTERRUPT ENABLE WORD SELECT BITS
TRANSMIT INTERRUPT ENABLE SCI SHIFT DIRECTION
RECEIVE INTERRUPT ENABLE SEND BREAK
IDLE LINE INTERRUPT ENABLE WAKEUP MODE SELECT
TRANSMITTER ENABLE RECEIVER WAKEUP ENABLE
: WIRED-OR MODE SELECT
RECEIVER ENABLE
3 7 6 5 4 3 2 1 0
X:SFFF1 0 R8 FE PE OR | IDLE | RDRF | TDRE | TRNE*[SCI STATUS REGISTER (SSR}
’ : (0) {0} (0) {0) (0) (0) (1) |+(1):| (READ ONLY)
RECEIVED BIT 8 L
FRAMING ERROR FLAG
PARITY ERROR FLAG TRANSMITTER EMPTY
OVERRUN ERROR FLAG TRANSMITTER DATA REGISTER EMPTY
RECEIVE DATA REGISTER FULL
IDLE LINE FLAG
23 16 15 14 13 12 1" 10 9 8 7 6 5 4 3 2 1 0
X:SFEF2 0 TcM | ReM | scp | coo | cp11coto} cp9 | cos | cb7 | cpe | cps | cos | cb3 | cp2 | cp1 | coo | SCI CLOCK CONTROL REGISTER (SCCR)
' {0) (0) (0) {0) (0) {0) (0) (0) {0) (0) (0) (0) (0) (0) (0) (0) (READ/WRITE)
—— /

TRANSMIT CLOCK SOURCE BITJ
RECEIVE CLOCK SOURCE BIT
CLOCK PRESCALER
CLOCK OUTPUT DIVIDER

CLOCK DIVIDER BITS

NOTE: The number in parenthesis is the condition of the bit after hardware reset.

Figure 11-9. SCI Programmingb Model — Control and Status Registers

can be viewed as three types of registers: 1) control — SCR and SCCR in Figure 11-9; 2)
status — SSR in Figure 11-9; and 3) data transfer — SRX, STX, and STXA in Figure 11-10.
The following paragraphs describe each bit in the programming model.

11.2.2.1 SCI CONTROL REGISTER (SCR). The SCR is a 16-bit read/write register that con-
trols the serial interface operation. Fifteen of the 16 bits are currently defined. Each bit is
described in the following paragraphs.

11.2.2.1.1 SCR Word Select (WDS0, WDS1, WDS2) Bits 0, 1, and 2. The three word-select
bits (WDS0, WDS1, WDS2) select the for_mat of the transmit and receive data. The formats
include three asynchronous and one multidrop asynchronous mode as well as an 8-bit

23 16 15 87 0

X:SFFF6
X:SFFF5
X:SFFF4

SCI RECEIVE DATA REGISTER HIGH (READ ONLY)
SCI RECEIVE DATA REGISTER MID (READ ONLY)
SCI RECEIVE DATA REGISTER LOW (READ ONLY)

[] SCIRECEIVE DATA SHIFT REGISTER

NOTE: SRX is the same register decoded at three different addresses.

(a) Receive Data Register

.23 16 15 8 7 0

X:SFFF6
X:SFFF5
X:SFFF4

SCI TRANSMIT DATA REGISTER HIGH {WRITE ONLY)
SCI TRANSMIT DATA REGISTER MID (WRITE ONLY)
SCI TRANSMIT DATA REGISTER LOW (WRITE ONLY)

SCI TRANSMIT DATA SHIFT REGISTER

16 15
X:SFFF3

NOTES:
1. Bytes are masked on the fly.
2. STX is the same register decoded at three different addresses.

--(b) Transmit Data Register

Figure 11-10. SCI Programming Model

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 1-11

synchronous (shift register) mode. The asynchronous modes are compatible with most
UART-type serial devices. Standard RS232C communication links are supported by these
modes. '

The multidrop asynchronous modes are compatible with the MC68681 DUART, the M68HC11
SCl interface, and the Intel 8051 serial interface.

The synchronous data mode is essentially a high-speed shift register used for I/O expansion
and stream-mode channel interfaces. Data synchronization is accomplished by the use of
a gated transmit and receive clock that is compatible with the Intel 8051 serial interface
mode 0. These formats are indicated below (also see Figure 11-11).

The word-select bits are cleared by hardware reset.

WDS2 WDS1 WDS0 Word Formats

0 0 0 8-Bit Synchronous Data (shift register mode)

0 0 1 Reserved

0 1 0 10-Bit Asynchronous (1 start, 8 data, 1 stop)

0 1 1 Reserved

1 0 0 11-Bit Asynchronous (1 start, 8 data, 1 even parity, 1 stop)
1 0 1 11-Bit Asynchronous (1 start, 8 data, 1 odd parity, 1 stop)
1 1 0 11-Bit Multidrop (1 start, 8 data, 1 data type, 1 stop)

1 1 1 Reserved

When odd parity is selected, the transmitter will count the number of bits in the data word;
if the total is not an odd number, the parity bit is made equal to one and thus produces
an odd number. If the receiver counts an even number of ones, an error in transmission
has occurred. When even parity is selected, an even number must result from the calculation
performed at both ends of the line or an error in transmission has occurred. The three
word-select bits are cleared by hardware and software reset.

11.2.2.1.2 SCR SCI Shift Direction {SSFTD) Bit 3. The SCI data shift registers can be
programmed to shift data in/out either LSB first if SSFTD equals zero or MSB first if SSFTD
equals one. The parity and data type bits do not change position and remain adjacent to
the stop bit. SSFTD should be cleared for compatibility with early versions of the DSP56000/
DSP56001. SSFTD is cleared by hardware and software reset. -

11.2.2.1.3 SCR Send Break (SBK) Bit 4. A break is an all-zero word frame — a start bit
zero, a character of all zeros (including any parity), and a stop bit zero: i.e., 10 or 11 zeros
depending on the WDS mode selected. If SBK is set and then cleared, the transmitter
completes transmission of any data, sends 10 or 11 zeros, and reverts to idle or sending
data. If SBK remains set, the transmitter will continually send whole frames of zeros (10
or 11 bits with no stop bit). At the completion of the break code, the transmitter sends at

11-12 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

MODE 0
2 1 0

X:SFFF0] 0 0 0 | 8-BIT SYNCHRONOUS DATA (SHIFT REGISTER MODE)
WDS2 WDS1 WDSe

<«—TX
(SSFTD) Do D D2 D3 D4 D5 D6 D7
<€————————— ONE BYTE FROM SHIFT REGISTER ————>1
MODE 2
2 1 0

X:SFF_F0| 0 | 1 | 0 |ID-BIT ASYNCHRONOUS (1 START, 8 DATA, 1 STOP)

WDS2 WDS1 WDS0

D7 OR
-«—TX START STOP
(SSFTD - 0) BIT Do D1 D2 D3 D4 D5 D6 l%e;lé BIT
MODE 4
2 1 0

X:SFFFOl 1 | 0 I 0 I 11-BIT ASYNCHRONOUS (1 START, 8 DATA, 1 EVEN PARITY, 1 STOP)

WDS2 WDS1 WDS0

' 07 OR
<X START , EVEN | STOP
(SSFTD=0) gr | DO [DT | D2 | D3 D4 4 D5 | D6) DATA Jorpy| mir
TYPE
MODE 5
2 1 0

X:SFFFOl 1 | 0 | 1 11-BIT ASYNCHRONOUS (1 START, 8 DATA, 1 ODD PARITY, 1 STOP)

WDS2 WDS1 WDBS0

07 0R
D START ano | stop
(SSFTD=0) o B I B B L ool U T
YPE
MODE 6
2 10

’ X:SFFFOl 1 | 1 | 0 | 11-BIT ASYNCHRONOUS MULTIDROP (1 START, 8 DATA, 1 DATA TYPE, 1 STOP)

WDS2 WDS1 wDSo

<X START oaTA | stop
(SSFTD =0) g [00 | OV | Dz) 03 | D& DS | D6) DT] ype | g

Data Type: 1=Address Byte
0=Data Byte

NOTES:
1. Modes 1, 3, and 7 are reserved.
2. D0O=LDS; D7=MSB
3. Data is transmitted and received LSB first if SSFTD=0 or MSB first if SSFTD=1.

{a) SSFTD=0

Figure 11-11. Serial Formats (Sheet 1 of 2)

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 11-13

MODE 0

2 1 0
xsol o | o | o]e-BIT sYNCHRONOUS DATA (SHIFT REGISTER MODE)
WDS2 WDS! WDSO
<X
SSFIDC1) o7 | o6 | os | pa | b3 [b2 | o1 | Do
< ONE BYTE FROM SHIFT REGISTER ——————>
MODE 2
2 1 0
sl o | 1 [o |10 ASYNCHRONOUS (1 START, 8 DATA, 1 STOP)
WDS2 WDS! WDSD
D7 OR
- 1X START sToP
SSFIDC 1) o | oata | o5 | o5 | pa | 83 | o2 | o | b0 | S
TYPE
MODE 4
2 10
xsrro| 1 | o | o]8I AsyNcHRONOUS (1 START, 8 DATA, 7 EVEN PARITY, 1 STOP)
WDS2 WDS1 WDSO
D7 OR
-<1x START EVEN | STOP
(SSFTD=1) gr [DATA| D5 | D5 | D& | D3 4 D2 | DI | D0 fpppyy| gy
TYPE
MODE 5
21 0
xsfo]l 1 | o | 1 |11-BIT ASYNCHRONOUS (1 START, 8 DATA, 1 0DD PARITY, 1 STOP)
WDS2 WDS1 WDSO
D7 OR
-TX START oop | stop
ST =1 b oata| o6 | os | pa [03 | o2 | o | oo | 000 f Y
TYPE
MODE 6
2 1 0
xserro| 1 | 1 [o |11-BIT AsyNcHRONOUS MULTIDROP (1 START, 8 DATA, 1 DATA TYPE, 1 STOP)
WDS2 WDS! WDSO
<7 START | DATA sToP
(SSFID=1) T fTvee | 07 | D6 [DS D4] D3] D2 DT] D0 gy

Data Type: -1=Address Byte
0=Data Byte

NOTES:
1. Modes 1, 3, and 7 are reserved.
2. DO=LSB; D7=MSB.
3. Data is transmitted and received LSB first if SSFTD=0 or MSB first if SSFTD=1.

(b) SSFTD=1

Figure 11-11. Serial Formats (Sheet 2 of 2)

11-14 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

least one high bit before transmitting any data to guarantee recognition of a valid start bit.
Break can be used to signal an unusual condition, message, etc. by forcing a frame error,
which is caused by a missing stop bit. Hardware and software reset clear SBK.

11.2.2.1.4 SCR Wakeup Mode Select (WAKE) Bit5. When WAKE equals zero, an idle line
wakeup is selected. In the idle line wakeup mode, the SCI receiver is re-enabled by an idle
string of at least 10 or 11 (depending on WDS mode) consecutive ones. The transmitter’s
software must provide this idle string between consecutive messages. The idle string
cannot occur within a valid message because each word frame contains a start bit that is
a zero.

When WAKE equals one, an address bit wakeup is selected. In the address bit wakeup
mode, the SCI receiver is re-enabled when the last (eighth or ninth) data bit received in a
character (frame) is one. The ninth data bit is the address bit (R8) in the 11-bit multidrop
mode; the eighth data bit is the address bit in the 10-bit asynchronous and 11-bit asyn-
chronous with parity modes. Thus, the received character is an address that has to be
processed by all sleeping processors — i.e., each processor has to compare the received
character with its own address and decide whether to receive or ignore all following
characters. WAKE is cleared by hardware and software reset.

11.2.2.1.5 SCR Receiver Wakeup Enable (RWU) Bit 6. When RWU equals one and the SCi
is in an asynchronous mode, the wakeup function is enabled — i.e., the SCl is put to sleep
waiting for a reason (defined by the WAKE bit) to wakeup. In the sleeping state, all receive
flags, except IDLE, and interrupts are disabled. When the receiver wakes up, this bit is
cleared by the wakeup hardware. The programmer may also clear the RWU bit to wake
up the receiver.

RWU can be used by the programmer to ignore messages that are for other devices on a
multidrop serial network. Wakeup on idle line (WAKE=0) or wakeup on address bit
(WAKE = 1) must be chosen. . :

1. When WAKE equals zero and RWU equals one, the receiver will not respond to data
on the data line until an idle line is detected.

2. When WAKE equals one and RWU equals one, the receiver will not respond to data
on the data line until a data byte with bit 9 equal to one is detected.

When the receiver wakes up, the RWU bit is cleared, and the first byte of data is received.
If interrupts are enabled, the CPU will be interrupted, and the interrupt routine will read
the message header to determine if the message is intended for this DSP.

1. If the message is for this DSP, the message will be received, and RWU will again be
set to one to wait for the next message.

2. If the message is not for this DSP, the DSP will immediately set RWU to one. Setting
RWU to one causes the DSP to ignore the remainder of the message and wait for the
next message.

MOTOROLA o DSP56000/DSP56001 USER’S MANUAL 11-15

RWU is cleared by hardware and software reset. RWU is a don’t care in the synchronous
mode.

11.2.2.1.6 SCR Wired-OR Mode Select (WOMS) Bit 7. When the WOMS bit is set, the SCI
TXD driver is programmed to function as an open-drain output and may be wired together
with other TXD pins in an appropriate bus configuration such as a master-slave multidrop
configuration. An external pullup resistor is required on the bus. When the WOMS is
cleared, the TXD pin uses an active internal pullup. This bit is cleared by hardware and
software reset. -

11.2.2.1.7 SCR Receiver Enable (RE) Bit 8. When RE is set, the receiver is enabled. When
RE is cleared, the receiver is disabled, and data transfer is inhibited to the receive data
register (SRX) from the receive shift register. If RE is cleared while a character is being
received, the reception of the character will be completed before the receiver is disabled.
RE does not inhibit RDRF or receive interrupts. RE is cleared by a hardware and software
reset.

11.2.2.1.8 SCR Transmitter Enable (TE) Bit9. When TE is set, the transmitter is enabled.
When TE is cleared, the transmitter will complete transmission of data in the SCI transmit
data shift register; then the serial output is forced high (idle). Data present in the SCI
transmit data register {STX) will not be transmitted. STX may be written and TDRE will be
cleared, but the data will not be transferred into the shift register. TE does not inhibit TDRE
or transmit interrupts. TE is cleared by a hardware and software reset.

Setting TE will cause the transmitter to send a preamble of 10 or 11 consecutive ones
(depending on WDS). This procedure gives the programmer a convenient way to ensure
that the line goes idle before starting a new message. To force this separation of messages
by the minimum idle line time, the following sequence is recommended:

1. Write the last byte of the first message to STX.

2. Wait for TDRE to go high, indicating the last byte has been transferred to the transmit
shift register.

3. Clear TE and set TE back to one. This queues an idle line preamble to immediately
follow the transmission of the last character of the message (including the stop bit).

4. Write the first byte of the second message to STX.

In this sequence, if the first byte of the second message is not transferred to the STX prior
to the finish of the preamble transmission, then the transmit data line will srmply mark
idle until STX is finally written.

11.2.2.1.9 SCR Idle Line Interrupt Enable (ILIE) Bit 10. When ILIE is set, the SCl interrupt
occurs when IDLE is set. When ILIE is clear, the IDLE interrupt is disabled. ILIE is cleared
by hardware and software reset.

11-16 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

An internal flag, the shift register idle interrupt (SRIINT) flag, is the interrupt request to the
interrupt controller. SRIINT is not directly accessible to the user.

When a valid start bit has been received, an idle interrupt will be generated if both IDLE
(SCI Status Register bit 3} and ILIE equals one. The idle interrupt acknowledge from the
interrupt controller clears this interrupt request. The idle interrupt will not be asserted again
until at least one character has been received. The result is as follows:

1. The IDLE bit shows the real status of the receive line at all times.

2. Idle interrupt is generated once for each idle state, no matter how long the idle state
lasts.

11.2.2.1.10 SCR SCI Receive Interrupt Enable (RIE) Bit 11.

The RIE bit is used to enable the SCl receive data interrupt. If RIE is cleared, receive interrupts
are disabled, and the RDRF bit in the SCI status register must be polled to determine if the
receive data register is full. If both RIE and RDRF are set, the SCI will request an SCI receive
data interrupt from the interrupt controller. '

One of two possible receive data interrupts will be requested:

1. Receive without exception will be requested if PE, FE, and OR-are all clear (i.e., a
normal received character).

2. Receive with exception will be requested if PE, FE, and OR are not all clear (i.e., a
received character with an error condition).

RIE is cleared by hardware and software reset.

11.2.2.1.11 SCR SCI Transmit Interrupt Enable (TIE) Bit 12. The TIE bit is used to enable
the SCI transmit data interrupt. If TIE is cleared, transmit data interrupts are disabled, and
the transmit data register empty (TDRE) bit in the SCI status register must be polled to
determine if the transmit data register is empty. If both TIE and TDRE are set, the SC! will
request an SCI transmit data interrupt from the interrupt controller. TIE is cleared by
hardware and software reset.

11.2.2.1.12 SCR Timer Interrupt Enable (TMIE) Bit 13. The TMIE bit is used to enable the
SCI timer interrupt. If TMIE is set (enabled), the timer interrupt requests will be made to
the interrupt controller at the rate set by the SCI clock register. The timer interrupt is
automatically cleared by the timer interrupt acknowledge from the interrupt controller. This
feature allows DSP programmers to use the SCI baud clock generator as a simple periodic
interrupt generator if the SCl is not in use, if external clocks are used for the SCI, or if
periodic interrupts are needed at the SCl baud rate. The SCl internal clock is divided by 16
{to match the 1x SCI baud rate) for timer interrupt generation. This timer does not require

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 1117

that any SCI pins be configured for SCI use to operate. TMIE is cleared by hardware and
software reset.

11.2.2.1.13 SCR Reserved {Bit 14). This unused bit is reserved and should be written with
a zero for upward compatibility. It is read as a zero. '

11.2.2.1.14 SCR SCI Clock Polarity (SCKP) Bit 15. The clock polarity, sourced or received
on the clock pin (SCLK), can be inverted using this bit, eliminating the need for an external
inverter. When bit 15 equals zero, the clock polarity is positive; when bit 15 equals one,
the clock polarity is negative. In the synchronous mode, positive polarity means that the
clock is normally positive and transitions negative during data valid; whereas, negative
polarity means that the clock is normally negative and transitions positive during valid
data. In the asynchronous mode, positive polarity means that the rising edge of the clock
occurs in the center of the period that data is valid; negative polarity means that the falling
edge of the clock occurs during the center of the period that data is valid. This bit should
be cleared for compatibility with early versions of the DSP56000/DSP56001. SCKP is cleared
on hardware and software reset.

11.2.2.2 SCI STATUS REGISTER (SSR). The SSR is an 8-bit read-only register used by
the DSP CPU to determine the status of the SCI. When the SSR is read onto the internal
data bus, the register contents occupy the low-order byte of the data bus and all high-
order portions are zero filled. The status bits are described in the following paragraphs.

11.2.2.2.1 SSR Transmitter Empty (TRNE) Bit 0. The TRNE flag is set when both the
transmit shift register and data register are empty to indicate that there is no data in the
transmitter. When TRNE is set, data written to one of the three STX locations or to the
STXA will be transferred to the transmit shift register and be the first data transmitted.
TRNE is cleared when TDRE is cleared by writing data into the transmit data register (STX)
or the transmit data address register (STXA), or when an idle, preamble, or break is trans-
mitted. The purpose of this bit is to indicate that the transmitter is empty; therefore, the
data written to STX or STXA will be transmitted next — i.e., there is not a word in the
transmit shift register presently being transmitted. This procedure is useful when initiating
the transfer of a message (i.e., a string of characters). TRNE is set by the hardware, software,
SCl individual, and stop reset.

11.2.2.2.2 SSR Transmit Data Register Empty (TDRE) Bit 1. The TDRE bit is set when the
SCl transmit data register is empty. When TDRE is set, new data may be written to one of
the SCI transmit data registers (STX) or transmit data address register (STXA). TDRE is
cleared when the SCI transmit data register is written. TDRE is set by the hardware, soft-
ware, SCl individual, and stop reset.

11-18 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

In the SCI synchronous mode, when using the internal SCI clock,.there is a delay of up to
5.5 serial clock cycles between the time that STX is written until TDRE is set, indicating
the data has been transferred from the STX to the transmit shift register. There is a two
to four serial clock cycle delay between writing STX and loading the transmit shift register;
in addition, TDRE is set in the middle of transmitting the second bit. When using an external
serial transmit clock, if the clock stops, the SCI transmitter stops. TDRE will not be set until
the middle of the second bit transmitted after the external clock starts. Gating the external
clock off after the first bit has been transmitted will delay TDRE indefinitely.

In the SCI asynchronous mode, the TDRE flag is not set immediately after a word is
transferred from the STX or STXA to the transmit shift register nor when the word first
begins to be shifted out. TDRE is set two cycles of the 16 x clock after the start bit — i.e.,
two 16 X clock cycles into to transmission time of the first data bit.

11.2.2.2.3 SSR Receive Data Register Full (RDRF) Bit 2. The RDRF bit is set when a valid
character is transferred to the SCI receive data register from the SCI receive shift register.
RDRF is cleared when the SCI receive data register is read or by the hardware, software,
SCl individual, and stop reset.

11.2.2.2.4 SSR Idle Line Flag (IDLE) Bit 3. IDLE is set when 10 (or 11) consecutive ones
are received. IDLE is cleared by a start-bit detection. The IDLE status bit represents the
status of the receive line. The transition of IDLE from zero to one can cause an IDLE interrupt
(ILIE). IDLE is cleared by the hardware, software, SCI individual, and stop reset.

11.2.2.2.5 SSR Overrun Error Flag (OR) Bit 4. The OR flag is set when a byte is ready to
be transferred from the receive shift register to the receive data register {SRX) that is
already full (RDRF=1). The receive shift register data is not transferred to the SRX. The
OR flag indicates that character(s) in the receive data stream may have been lost. The only
valid data is located.in the SRX. OR is cleared when the SCl status register is read, followed
by a read of SRX. The OR bit clears the FE and PE bits — i.e., overrun error has higher
priority than FE or PE. OR is cleared by the hardware, software, SCI individual, and stop
reset. .

11.2.2.2.6 SSR Parity Error (PE) Bit 5. In the 11-bit asynchronous modes, the PE bit is set
when an incorrect parity bit has been detected in the received character. It is set simul-
taneously with RDRF for the byte which contains the parity error — i.e., when the received
word is transferred to the SRX. If PE is set, it does not inhibit further data transfer into the
SRX. PE is cleared when the SClI status register is read, followed by a read of SRX. PE is
also cleared by the hardware, software, SCI individual, or stop reset. In the 10-bit asyn-
chronous mode, the 11-bit multidrop mode, and the 8-bit synchronous mode, the PE bit
is always cleared since there is no parity bit in these modes. If the byte received causes
both parity and overrun errors, the SCI receiver will only recognize the overrun error.

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 11-19

11.2.2.2.7 SSR Framing Error Flag (FE) Bit 6. The FE bit is set in the asynchronous modes
when no stop bit is detected in the data string received. FE and RDRE are set simultaneously
— i.e., when the received word is transferred to the SRX. However, the FE flag inhibits
further transfer of data into the SRX until it is cleared. FE is cleared when the SCI status
register is read followed by reading the SRX. The hardware, software, SCI individual, and
stop reset also clear FE. In the 8-bit synchronous mode, FE is always cleared. If the byte
received causes both framing and overrun errors, the SCI receiver will only recognize the
overrun error.

11.2.2.2.8 SSR Received Bit 8 (R8) Address Bit 7. In the 11-bit asynchronous multidrop
mode, the R8 bit is used to indicate whether the received byte is an address or data. R8
is not affected by reading the SRX or status register. The hardware, software, SCl individual,
and stop reset clear R8.

11.2.2.3 SCICLOCK CONTROL REGISTER (SCCR). The SCCRis a 16-bit read/write register,
which controls the selection of the clock modes and baud rates for the transmit and receive
sections of the SCI interface. The control bits are described in the following paragraphs.
The SCCR is cleared by hardware reset. ‘

The basic points of the clock generator are as follows:

1. The SCI core always uses a 16 internal clock in the asynchronous modes and
always uses a 2X internal clock in the synchronous mode. The maximum internal
clock available to the SCI peripheral block is the oscillator frequency divided by 4.
With a 20-MHz crystal, this gives a maximum data rate of 312.5 Kbits/sec for asyn-
chonous data and 2.5 Mbits/second for synchronous data. These maximum rates
are the same for internally or externally supplied clocks.

2. The 16X clock is necessary for the asynchronous modes to synchromze the SCl to
the incoming data (see Figure 11-12).

3. For the asynchronous modes, the user must provide a 16 x clock if he wishes to use
" an external baud rate generator (i.e., SCLK input).

4. For the asynchronous modes, the user may select either 1 X or 16x for the output
clock when using internal TX and RX clocks (TCM=0 and RCM=0).

5. The transmit data on the TXD pin changes on the negative edge of the 1x serial
clock and is stable on the positive edge (SCKP=0). For SCKP equals one, the data
changes on the positive edge and is stable on the negative edge.

6. The receive data on the RXD pin is sampled on the positive edge (if SCKP=0) or on
the negative edge (if SCKP=1) of the 1X serial clock.

7. For the asynchronous mode, the output clock is continuous.

8. For the synchronous mode, a 1x clock is used for the output or input baud rate.
The maximum 1 X clock is the crystal frequency divided by 8.

11-20 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

'SELECT 8- OR 9-BIT WORDS

IDLE LINE 0 1 2 3 4 5 sﬁ

RX, TX DATA
(SSFTD=0}

START STOP START

e | [T U UL

x 16 CLOCK
(SCKP =0} :

Figure 11-12. 16 x Serial Clock

9. For the synchronous mode, the clock is gated.

10. For both the asynchronous and synchronous modes, the transmitter and receiver
are synchronous with each other.

11.2.2.3.1 SCCR Clock Divider (CD11-CDO0) Bits 11-0. The clock divider bits (CD11-CD0)
are used to preset a 12-bit counter, which is decremented at the gy rate {(crystal frequency
divided by 2). The counter is not accessible to the user. When the counter reaches zero, it
is reloaded from the clock divider bits. Thus, a value of 0000 0000 0000 in CD11-CDO
produces the maximum rate of Icyc, and a value of 0000 0000 0001 produces a rate of
lcyc/2. The lowest rate available is lcyc/4096. Figures 11-13 and 11-36 show the clock
dividers. Bits CD11-CDO are cleared by hardware and software reset.

11.2.2.3.2 SCCR Clock Out Divider (COD) Bit 12. Figures 11-13 and 11-36 show the clock
divider circuit. The output divider is controlled by COD and the SCI mode. If the SCI mode
is synchronous, the output divider is fixed at divide by 2; if the SCI mode is asynchronous,
and

1. If COD equals zero and SCLK is an output (i.e., TCM and RCM=0), the SCI clock is
divided by 16 before being output to the SCLK pin; thus, the SCLK output is a 1Xx
clock.

2. If COD equals one and SCLK is an output, the SCI clock is fed directly out to the SCLK
pin; thus, the SCLK output is a 16 X baud clock.

The COD bit is cleared by hardware and software reset.

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 11-21

11.2.2.3.3 SCCR SCI Clock Prescaler (SCP) Bit 13. The SCI SCP bit selects a divide by 1
(SCP=0) or divide by 8 (SCP=1) prescaler for the clock divider. The output of the prescaler
is further divided by 2 to form the SCI clock. Hardware and software reset clear SCP. Figures
11-13 and 11-36 show the clock divider diagram.

11.2.2.3.4 SCCR Receive Clock Mode Source Bit (RCM) Bit 14. RCM selects internal or
external clock for the receiver (see Figure 11-36). RCM equals zero selects the internal clock;
RCM equals one selects the external clock from the SCLK pin. Hardware and software reset
clear RCM. : ‘

11.2.2.3.5 SCCR Transmit Clock Source Bit (TCM) Bit 15. The TCM bit selects internal or
external clock for the transmitter (see Figure 11-36). TCM equals zero selects the internal
clock; TCM equals one selects the external clock from the SCLK pin. Hardware and software
reset clear TCM.

TCM | RCM TX Clock RX Clock SCLK Pin Mode
0 0 Internal Internal Output Synchronous/Asynchronous
0 1 Internal External Input Asynchronous Only
1 0 External Internal Input Asynchronous Only
1 1 External External Input Synchronous/Asynchronous

fosc
l___, DIVIDE . | PrescALER: _| owioe
o 12-BIT COUNTER DIVIDE BY BY 2
A l1or8
%
CO11-CD0 Sce
INTERNAL CLOCK
DIVIDE _ SCI CORE LOGIC
BY 16 USES DIVIDE BY 16 FOR
ASYNCHRONOUS
, USES DIVIDE BY 2 FOR
R SYNCHRONOUS ’
INTERRUPT
IF ASYNCHRONOUS
(STMINT) DIVIDE BY 1 OR 16
‘ IF SYNCHRONOUS
_ DIVIDE BY 2
fo-
BPS = ' ; y
64*((7*SCP) +1)*(CD+1)
SCKP=0p +
where: SCP =0 or 1 SCKP SCKP=19 —
CD = 0 to $FFF
0 SCLK

Figure 11-13. SCI Baud Rate Generator

11-22 DSP56000/DSP56Q61 USER’S MANUAL MOTOROLA

11.2.2.4 SCI DATA REGISTERS. The SCI data registers are divided into two groups: re-
ceive and transmit. There are two receive registers — a receive data register (SRX) and a
serial-to-parallel receive shift register. There are also two transmit registers — a transmit
data register (called either STX or STXA) and a parallel-to-serial transmit shift register.

11.2.2.4.1 SCI Receive Registers. Data words received on the RXD pin are shifted into
the SCI receive shift register. When the complete word has been received, the data portion
of the word is transferred to the byte-wide SRX. This process converts the serial data to
parallel data and provides double buffering. Double buffering provides flexibility to the
programmer and increased throughput since the programmer can save the previous word
while the current word is being received.

The SRX can be read at three locations: X:$FFF4, X:$FFF5, and X:$FFF6 (see Figure
11-14). When location X:$FFF4 is read, the contents of the SRX are placed in the lower
byte of the data bus and the remaining bits on the data bus are written as zeros. Similarly,
when X:$FFF5 is read, the contents of SRX are placed in the middle byte of the bus, and
when X:$FFF6 is read, the contents of SRX are placed in the high byte with the remaining
bits zeroed. Mapping SRX as described allows three bytes to be efficiently packed into one
24-bit word by ORing three data bytes read from the three addresses. The following code
fragment requires that RO initially points to X:$FFF4, register A is initially cleared, and R3
points to a data buffer. The only programming trick is using BCLR to test bit 1 of the packing
pointer to see if it is pointing to X:$FFF6 and clearing bit 1 to point to X:$FFF4 if it had
been pointing to X:$FFF6. This procedure resets the packing pointer after receiving three
bytes.

MOVE- X:(R0),X0 ;Copy received data to temporary register
BCLR #$1,R0 ; Test for last byte
;reset pointer if it is the last byte

OR X0,A ;Pack the data into register A

MOVE (RO)+ ;and increment the packing pointer

JCS FLAG ;Jump to clean up routine if last byte

RTI ;Else return until next byte is received
FLAG. MOVE A,R3)+ ;Move the packed data to memory

CLR A ;Prepare A for packing next three bytes

RTI ;Return until the next byte is received

The length and format of the serial word is defined by the WDS0, WDS1, and WDS2 control
bits in the SCI control register. In the synchronous modes, the start bit, the eight data bits
with LSB first, the address/data indicator bit and/or the parity bit, and the stop bit are
received in that order for SSFTD equals zero (see Figure 11-11(a)). For SSFTD equals one,
the data bits are transmitted MSB first (see Figure 11-11(b}). The clock source is defined
by the receive clock mode (RCM) select bit in the SCR. In the synchronous mode, the
synchronization is provided by gating the clock. In either mode, when a complete word
has been clocked in, the contents of the shift register can be transferred to the SRX and
the flags; RDRF, FE, PE, and OR are changed appropriately. Because the operation of the

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 11-23

| MOVE X0.x:$FFF5 ; TRANSMIT CHARACTER “A"
MOVE X0,X:$FFF5 ; TRANSMIT CHARACTER “B”
MOVE X0,X:$FFF4 ;TRANSMIT CHARACTER “C”

NOTE: STX is the same register decoded at three different addresses.

(a) Unpacking

23 16 15 8 7 0

X:$FFF6
X:$FFF5 £
X:$FFF4 |

MOVE X:$FFF6,X0 ;RECEIVE CHARACTER "A”
MOVE X:$FFF5,X0 ;RECEIVE CHARACTER "B”
’MOVE X:$FFF4,X0 ;RECEIVE CHARACTER “C”

o I R R

NOTE: SRX is the same register decoded at three different addresses.
{b) Packing

Figure 11-14. Data Packing and Unpacking

SCI receive shift register is transparent to the DSP, the contents of this register are not
directly accessible to the programmer.

11.2.2.4.2 SCI Transmit Registers. The transmit data register is one byte-wide register
mapped into four addresses: X:$FFF3, X:$FFF4, X:$FFF5, and X:$FFF6. In the asynchronous
mode, when data is to be transmitted, X:$FFF4, X:$FFF5, and X:$FFF6 are used, and the
register is called STX. When X:$FFF4 is written, the low byte on the data bus is transferred
to the STX; when X:$FFF5 is written, the middle byte is transferred to the STX; and when
X:$FFF6 is written, the high byte is transferred to the STX. This structure (see Figure
11-10) makes it easy for the programmer to unpack the bytes in a 24-bit word for trans-
mission. Location X:$FFF3 should be written in the 11-bit asynchronous multidrop mode
when the data is an address and it is desired that the ninth bit (the address bit) be set.
When X:$FFF3 is written, the transmit data register is called STXA, and data from the low
byte on the data bus is stored in STXA. The address data bit will be cleared in the 11-bit
asynchronous multidrop mode when any of X:$FFF4, X:$FFF5, or X:$FFF6 is written. When
either STX or STXA is written, TDRE is cleared.

11-24 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

The transfer from either STX or STXA to the transmit shift register occurs automatically,
but not immediately, when the last bit from the previous word has been shifted out —i.e.,
the transmit shift register is empty. Like the receiver, the transmitter is double buffered.
However, there will be a two to four serial clock cycle delay between when the data is
transferred from either STX or STXA to the transmit shift register and when the first bit
appears on the TXD pin. (A serial clock cycle is the time required to transmit one data bit).
The transmit shift register is not directly addressable, and a dedicated flag for this register
does not exist. Because of this fact and the two to four cycle delay, two bytes cannot be
written consecutively to STX or STXA without polling. The second byte will overwrite the
first byte. The TDRE flag should always be polled prior to writing STX or STXA to prevent
overruns unless transmit interrupts have been enabled. Either STX or STXA is usually
written as part of the interrupt service routine. Of course, the interrupt will only be generated
if TDRE equals one. The transmit shift register is indirectly visible via the TRNE bit in the
SSR.

In the synchronous modes, data is clocked synchronously with the transmit clock, which
may have either an internal or external source as defined by the TCM bit in the SCCR. The
length and format of the serial word is defined by the WDS0, WDS1, and WDS2 control
bits in the SCR. In the asynchronous modes, the start bit, the eight data bits (with the LSB
first if SSFTD=0 and the MSB first if SSFTD=1), the address/data indicator bit or parity
bit, and the stop bit are transmitted in that order (see Figure 11-11).

In the synchronous mode, the data byte is transmitted LSB first if SCKP equals zero and
MSB first if SCKP equals one. The data to be transmitted can be written to any one of the
three STX addresses. If SCKP equals one and SSHTD equals one, the SCI synchronous
mode is equivalent to the SSI operation in the 8-bit data on-demand mode.

11.2.2.5 PREAMBLE, BREAK, AND DATA TRANSMISSION PRIORITY. It is possible that
two -or three transmission commands are set simultaneously: ’
1." A preamble (TE was toggled). :
2. A break (SBK was set or was toggled).
- 3. There is data for transmission (TDRE=0).

After the current character transmission, if two or more of these commands are set, the
transmitter will execute them in the following priority:

1. Preamble

2. Break

3. Data

11.2.3 Register Contents After Reset
Four different methods of resetting the SCI exist. Hardware or software reset clears the

port control register bits, which configure all I/0 as general-purpose input. The SCI will
remain in the reset state while all SCI pins are programmed as general-purpose 1/0 (CC2,

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 11-25

CC1, and CC0=0); the SCI will become active only when at Ieast one of the SCI I/O pins
is programmed as not general-purpose 1/0.

During program execution, the CC2, CC1, and CCO bits may be cleared (individual reset),
which will cause the SCI to stop serial activity and enter the reset state. All SCI status bits
will be set to their reset state; however, the contents of the interface control register are
not affected, allowing the DSP program to reset the SCl separately from the other internal
peripherals.

Executing the STOP instruction halts operation of the SCl until the DSPis restarted, causing
the SSR to be reset. No other SCl registers are affected by the STOP instruction. Table 11-
1 illustrates how each type of reset affects each register in the SCI.

11.2.4 SCl Initialization

The correct way to initialize the SCI is as follows:
1. Hardware or software reset.
2. Program SCI control registers.
3. Configure SCI pins (at Iéast Qne) as not general-purpose 1/0.

Figures 11-15 and 11-16 show how to configure the bits in the SCI registers. Figure 11-15
is the basic initialization procedure showing which registers must be: configured. (1) A
hardware or software reset should be used to reset the SCl and prevent it from doing
anything unexpected while it is being programmed. (2) Both the SCI interface control
register and the clock control register must be configured for any operation using the SCI.
(3) The pins to be used must then be selected to release the SCI from reset and (4) begin
operation. If interrupts are to be used, the pins must be selected, and interrupts must be
enabled and unmasked before the SCI will operate. The order does not matter; any one
of these three requirements for interrupts can be used to finally enable the SCI. Figure 11-
16 shows the meaning of the individual bits in the SCR and SCCR. The figures below do
not assume that interrupts will be used; they recommend selecting the appropriate pins
to enable the SCI. Programs shown in Figures 11-21, 11-22, 11-29, 11-35; and 11-37 use
interrupts and control the SCI by enabling and disabling interrupts. Either method is ac-
ceptable.

Tables 11-2 and 11-3 provide the settings for common baud rates for the SCI. The asyn-
chronous SCI baud rates show a baud rate error for the fixed oscillator frequency (see
Table 11-2(a)). These small-percentage baud rate errors should allow most UARTS to syn-
chronize. The synchronous applications usually require exact frequencies, which require
that the crystal frequency be chosen carefully {see Table 11- 3(a) and 11-3(b}). An alternative
to selecting the system clock to accommodate the SCl requirements is to provide an external
clock to the SCI.

11-26 DSP56000/DSP56001 USER’'S MANUAL MOTOROLA

Table 11-1. SCI Registers after Reset

.)) Reset Type
Register Bit Bit
Bit Mnemonic Number HW sw IR ST
Reset Reset Reset Reset
SCKP 15 0 0 — —
TMIE 13 0 0 - -
TIE 12 0 0 —_ —_
RIE 11 0 0 —_ —
ILIE 10 0 0 — -
TE 9 0 0 — —
SCR RE 8 0 0 —_ —
WOMS 7 0 0 — —
RWU 6 0 0 — —
WAKE 5 0 0 — —_
SBK 4 0 0 — —_
SSFTD 3 0 0 —_ —
WDS (2-0) 2-0 0 0 — —
R8 7 0 0 0 0
FE 6 0 0 0 0
PE 5 0 0 0 0
OR 4 0 0 0 0
SSR IDLE 3 0 0 0 0
RDRF 2 0 0. 0 0
TDRE 1 1 1 1 1
TRNE 0 1 1 1 1
TCM 15 0 0 — -
RCM 14 0 0 — —
SCCR SCP 13 0 0 — —
COoD 12 0 0 —_ -
CD (11-0) 11-0 0 0 — —
SRX SRX {23-0) 23-16, 15-8, 7-0 — — —
STX STX (23-0) 23-0 — — — —
SRSH SRS (8-0) 8-0 — — — —
STSH STS (8-0) 8-0 — — — —
NOTES: .
SRSH -~ SCl receive shift register
STSH — SClI transmit shift register !
HW — Hardware reset is caused by asserting the externa! RESET pin.
SW — Software reset is caused by executing the RESET instruction.
IR — Individual reset is caused by clearing PCC (bits 0-2) (configured for general-
purpose |/0).
ST — Stop reset is caused by executing the STOP instruction.
1 — The bit is set during the xx reset.
0 — The bit is cleared during the xx reset.

— — The bit is not changed during the xx reset.

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 11-27

X$FFEY| OfO0)o0JojojofofojoqojojOofOjoO]O

1. PERFORM HARDWARE OR SOFTWARE RESET.

2. PROGRAM SCI CONTROL REGISTERS:

A) SCI INTERFACE CONTROL REGISTER — X:$FFF0
B) SCI CLOCK CONTROL REGISTER — X:$FFF2

3. CONFIGURE AT LEAST ONE PORT C CONTROL BIT AS SCI.

23 . 0

ccjccjcclecfecfec|cc{cc|cc| PORT C CONTROL
g8|716|5|4}3|2|1]|0]| REGISTER(PCC)

CCx Function) scl {
0 | Parallel /O RXD

1 Serial Interface

4. SCI IS NOW ACTIVE.

Figure 11-15. SCl Initialization Procedure

11.2.5 SCI Exceptions

The SCl can cause five different exceptions in the DSP (see Figure 11-17). These exceptuons
are as follows:

1.

SCl Receive Data— caused by receive data register full with no receive error conditions
existing. This error-free interrupt may use a fast interrupt service routine for minimum
overhead. This interrupt is enabled by SCR bit 11 (RIE).

. SCl Receive Data with Exception Status — caused by receive data register full with a

receiver error (parity, framing, or overrun error). The SCI status register must be read
to clear the receiver error flag. A long interrupt service routine should be used to
handle the error condition. This interrupt is enabled by SCR bit 11 (RIE).

. SCI Transmit Data — caused by transmit data register empty. This error-free interrupt

may use a fast interrupt service routine for minimum overhead. This interrupt is
enabled by SCR bit 12 (TIE).

. SCI Idle Line — caused by the receive line entering the idle state (10 or 11 bits of

ones). This interrupt is latched and then automatically reset when the interrupt is
accepted. This interrupt is enabled by SCR bit 10 (ILIE).

. SCI Timer — caused by the baud rate counter underflowing. This interrupt is auto-

matically reset when the interrupt is accepted. This interrupt is enabled by SCR bit"
13 (TMIE).

11-28 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

V104OL0W

TVNNVIA S, HISN 10095dS$SA/00095dSA

6C-L1

STEP 2a. SELECT SCI OPERATION:
FOR A BASIC CONFIGURATION, SET:

SCKP —BIT 14=0
TMIE —BIT 13=0
ILE —BIT10=0
RWU —BIT 6=0
WAKE —BIT 5=0

ENABLE/DISABLE
TRANSMIT INTERRUPT

SBK —BIT 4=0
SSFTD — BIT 3=0

ENABLE=1
DISABLE=0

ENABLE/DISABLE
RECEIVE INTERRUPT

\ Y
15 14 13 12 n

10

ENABLE=1
DISABLE=0

[~ ENABLE/DISABLE
TRANSMIT DATA

9

ENABLE=1
| DISABLE=0

[ENABLE/DISABLE
RECEIVE DATA

8 7 6

5

ENABLE=1
| DISABLE=0

4 3 2 1

0
xsrreo | sckp | % [owie [1 | me | we | 1€ | re |woms| awu [wake| sek {ssro|wos2 | wosi |woso

SCI INTERFACE CONTROL REGISTER (SCR)
(READ/WRITE)

*Reserved; write as 0.

WIRED-OR MODE

MULTIDROP =1
POINT T0 POINT=0

000=28-BIT SYNCHRONOUS DATA (SHIFT REGISTER MODE)

001 =RESERVED)

010=10-BIT ASYNCHRONQUS {1 START, 8 DATA, 1 STOP)

011 =RESERVED

100=11-BIT ASYNCHRONOQUS {1 START, 8 DATA, EVEN PARITY, 1 STOP)
101 =11-BIT ASYNCHRONOQUS {1 START, 8 DATA, ODD PARITY, 1 STOP}
110=11-BIT MULTIDROP (1 START, 8 DATA, EVEN PARITY, 1 STOP)
111=RESERVED

(a) Step 2a

Figure 11-16. SCI General Initialization Detail — Step 2 (Sheet 1 of 2)

TYNNYIN S.HISN L0095dSA/00095dSA 0g-L1L

V104O10W

L

STEP 2b. SELECT CLOCK AND DATA RATE:
SET THE CLOCK DIVIDER BITS (CD0-CD11) ACCORDING TO TABLES 11-2 OR 11-3.
SET THE SCI CLOCK PRESCALER BIT (SCP, BIT 13) ACCORDING TO TABLES 11-2 OR 11-3.

SET
TRANSMIT CLOCK SOURCE
EXTERNAL CLOCK =1

‘_ INTERNAL CLOCK =0

SET

RECEIVE CLOCK SOGURCE
EXTERNAL CLOCK=1
INTERNAL CLOCK=0

SET

SCI CLOCK PRESCALER
DIVIDE BY 8=1

DIVIDE BY 1=0

SET

CLOCK OUT DiVIDER

IF SCLK PIN IS AN OUTPUT AND
COD=1# SCLK OUTPUT=16 x
COD=0# SCLK OUTPUT= 1x

Y y \J

%5 14 13 12 1 0 8 § 1 6 5 4 3 2 1 <o ctoc oL REGISTER tSCCh
x:seeF2 [Tcm | AeM | sce | coo | conn | cowo | cos | cos | cov | cos | cos | coa | cos | coz | oot | 00 | pawmie (SCCR)

(b) Step 2b

Figure 11-16. SCI General Initialization Detail — Step 2 {Sheet 2 of 2)

MOTOROLA

Table 11-2(a). Asynchronous SCI Baud Rates
for a 20.48-MHz Crystal

Baud Rate SCP Divider Bits Baud Rate
(BPS) Bit (CDo-CD11) Error, Percent
320.0K 0 $000 0

56.0K 0 $005 4.762
38.4K 0 $007 4,167
19.2K 0 $010 1.961
9600 0 $020 1.010
8000 0 $027 0
4800 0 $042 0.498
2400 0 $084 0.251
1200 1 $020 1.010
600 1 $042 0.498
300 1 $084 0.251
BPS= fp + (64 x (7(SCP) + 1) x (CD + 1)); fg=20.48 MHz
SCP=0or1
CD=0to $FFF

Table 11-2(b). Frequencies for Exact
Asynchronous SCI Baud Rates

Baud Rate scpP Divider Bits Crystal
(BPS) Bit (CD0-CD11) Frequency
9600 0 $021 20,500,000
4800 0 $042 20,275,200
2400 0 $084 20,275,200
1200 0 $108 20,275,200
300 0 $420 20,275,200
9600 1 $004 19,660,800
4800 1 $008 19,660,800
2400 1 $010 19,660,800
1200 1 $020 19,660,800
300 1 $080 19,660,800
fo=BPS x 64 x (7(SCP) + 1) x (CD + 1)
SCP=0or1
CD=0 to $FFF
DSP56000/DSP56001 USER'S MANUAL ‘ 11-31

Table 11-3(a). Synchronous SCI Baud Rates

for a 20.48-MHz Crystal

Baud Rate SCP Divider Bits Baud Rate
(BPS) Bit (CD0-CD11) Error, Percent
2.56M 0 - $000 0

128K 0 $014 0
64K 0 $027 0
56K 0 $02E 0.621
32K] $04F 0
16K 0 $09F 0

8000 0 $140 0

4000 0 $27F 0

2000 0 $4FF 0

1000 0 $9FF 0

BPS=fg + (8 x (7(SCP) + 1) x (CD + 1)); fg=20.48 MHz

SCP=0or1
CD=0 to $FFF

Table 11-3(b). Frequencies for Exact
Synchronous SCI Baud Rates

Baud Rate SCP Divider Bits Baud Rate
(BPS) Bit (CD0-CD11) Error, MHz
2.048M 0 $000 16.384
1.544M 0 $001 24.576
1.536M 0 $001 24.704
fo=BPS x 8 x {7(SCP) + 1) x (CD + 1)
CP=00r1
CD=0 to $FFF

11.2.6 Synchronous Data

The synchronous mode (WDS =0, shift register mode) is designed to implement serial-to-
parallel and parallel-to-serial conversions. This mode will directly interface to 8051/8096
synchronous {mode 0) buses as both a controller (master) or a peripheral (slave)} and is
compatible with the SSI mode if SCKP equals one. In synchronous mode, the clock is
always common to the transmit and receive shift registers.

As a controller (synchronous master) shown in Figure 11-18, the DSP outputs a clock on
the SCLK pin when data is present in the transmit shift register (a gated clock mode). The
master mode is selected by choosing internal transmit and receive clocks (setting TCM
and RCM=0). The example shows a 74HC165 parallel-to-serial shift register and 74HC164
serial-to-parallel shift register being used to convert eight bits of serial I/0 to eight bits of

11-32 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

EXCEPTION
STARTING
ADDRESS

$0000
$0002
$0004
$0006
$0008
$000A
$000C
$000E
$0010
$0012

PROGRAM MEMORY SPACE

EXCEPTION SOURCE

R’

HARDWARE RESET

TWO WORDS PER VECTOR

STACK ERROR

TRACE

SWI (SOFTWARE INTERRUPT)

f

TRQA EXTERNAL HARDWARE INTERRUPT

IROB EXTERNAL HARDWARE INYERRUPT

EXTERNAL
INTERRUPTS

SSI RECEIVE DATA

SSI RECEIVE DATA WITH EXCEPTION STATUS

SSI TRANSMIT DATA

SSI TRANSMIT DATA WITH EXCEPTION STATUS

SYNCHRGNOUS
SERIAL
INTERFACE

$0014
$0016
$0018
$001A
$001C

SCI RECEIVE DATA

SCI RECEIVE DATA WITH EXCEPTION STATUS

SCI TRANSMIT DATA

SCI IDLE LINE

SCI TIMER

SERIAL
COMMUNICATIONS
INTERFACE

A

INTERNAL
INTERRUPTS

$001
$0020
$0022
$0024
$0026
$0028
$002A
. $002C
$002E
$0030
$0032
$0034
$0036
$0038
$003A
$003C
$003E

m

MOTOROLA

RESERVED FOR HARDWARE DEVELOPMENT

HOST RECEIVE DATA

HOST TRANSMIT DATA

HOST COMMAND (DEFAULT)

AVAILABLE FOR HOST COMMAND

AVAILABLE FOR HOST COMMAND

AVAILABLE FOR HOST COMMAND

AVAILABLE FOR HOST COMMAND

AVAILABLE FOR HOST COMMAND

AVAILABLE FOR HOST COMMAND

AVAILABLE FOR HOST COMMAND

AVAILABLE FOR HOST COMMAND

AVAILABLE FOR HOST COMMAND

AVAILABLE FOR HOST COMMAND

AVAILABLE FOR HOST COMMAND

AVAILABLE FOR HOST COMMAND

ILLEGAL INSTRUCTION

HOST
INTERFACE

INTERNAL
INTERRUPTS

Figure 11-17. SCI Exception Vector Locations

DSP56000/DSP56001 USER'S MANUAL

11-33

TYNNVIN S, 4H3SN L0095d4SA/00095dSA ve-LL

V10HOLOW

5 W13 1m0 8 8 1 6 5 4 3 2
x:serro[sckp| o | ie| Te | R | e | 1e | Re [woms] rwu [wake] sek | 0 | 0 | 0 | 0 | penamrrg oo

SSFTD WDS2 WDS1 WDSO

5 W 13 12 w103 8 1 6 5 4 3 2 1
x:seer2[0 | o | sce [coo [con [com] cos | cos [cor [oos | cos [cos [cos [co2 [con [con | paee o iR (SECR
™ RCM

CLOCK OUTPUT : :
(SCP=0))
TRANSMIT DATA \ X X X X X
(SSFTD=0) B0 B1 B2 B3 B4 BS x B6 >< B7 /

,(——— WRITE STX

mmmmmm«mc s

SAMPLE 0 1 2 3 4 5 6 7

Example: Shift Register /0

EXAMPLE: SHIFT REGISTER 1/0

DSPs6oo0 | 74HC165
D 8 PARALLEL INPUTS
RXD | N LOAD PULSE LI~
SOLK)
. y
TIK
™ »{D " fmm- § PARALLEL OUTPUTS
74HC164
S/P

Figure 11-18. Synchronous Master

parallel /0. The load pulse latches eight bits into the 74HC165 and then SCLK shifts the
RXD data into the SCI (these data bits are sample bits 0-7 in the timing diagram). At the
same time, TXD shifts data out (B0-B7) to the 74HC164. When using the internal clock, data
is transmitted when the transmit shift register is full. Data is valid on both edges of the
output clock, which is compatible with an 8051 microprocessor. Received data is sampled
in the middle of the clock low time if SCKP equals zero or in the middle of the clock high
time if SCKP equals one. There is a window during which STX must be written with the
next byte to be transmitted to prevent a gap between words. This window is from the time
TDRE goes high halfway into transmission of bit 1 until the middle of bit 6 (see Figure 11-
20(a)).

As a peripheral (synchronous slave) shown in Figure 11-19, the DSP accepts an input clock
from the SCLK pin. If SCKP equals zero, data is clocked in on the rising edge of SCLK, and
data is clocked out on the falling edge of SCLK. If SCKP equals one, data is clocked in on
the falling edge of SCLK, and data is clocked out on the rising edge of SCLK. The slave
mode is selected by choosing external transmit and receive clocks (TCM and RCM=1).
Since there is no frame signal, if a clock is missed due to noise or any other reason, the
receiver will lose synchronization with the data without any error signal being generated.
Detecting an error of this type can be done with an error detecting protocol or with external
circuitry such as a watchdog timer. The simplest way to recover synchronization is to reset
the SCI. '

The timing diagram in Figure 11-19 shows transmit data in the normal driven mode. Bit
B7 is essentially one-half SCl clock long {Tscl/2 + 1.5 TEXTAL) The last data bit is truncated
so that the pin is guaranteed to go to its reset state before the start of the next data word,
thereby delimiting data words. The 1.5 crystal clock cycles provide sufficient hold time to
satisfy most external logic requirements. The example diagram requires that the WOMS
bit be set in the SCR to wired-OR RXD and TXD, which causes TXD to be three-stated when
not transmitting. Collisions (two devices transmitting simultaneously) must be avoided
with this circuit by using a protocol such as alternating transmit and receive periods. In
the example, the 8051 is the master device because it controls the clock. There is a window
during which STX must be written with the next byte to be transmitted to prevent the
current word from being retransmitted. This window is from the time TDRE goes high,
which is halfway into the transmission of bit 1 until the middle of bit 6 (see Figure 11-
20(b}). Of course, this assumes the clock remains continuous — i.e., there is a second word.
If the clock stops, the SCI stops.

The DSP is initially configured according to the protocol to either receive data or transmit
data. If the protocol determines that the next data transfer will be a DSP transmit, the DSP
will configure the SCI for transmit and load STX (or STXA). When the master starts SCLK,
data will be ready and waiting. If the protocol determines that the next data transfer will
be a DSP receive, the DSP will configure the SCI for receive and will either poll the SCI or
enable interrupts. This methodology allows multiple slave processors to use the same data

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 11-35

TYNANVIN S.H3SN L0095dSA/00095dSA 9¢g-L1L

V104OLOW

L

5 W 13 12 n 1 9 8 1 6 5 4 3 2 1 0
x:seero[sokP| o | Tmie] TiE | me | e | 1e | e [woms| mwu [wake[sek | 0 | 0 | 0 | 0 | ineaomine o on eoSTER SCR

SSFTD WDS2 WDS1 WDS0

5 14 13 12 1 10 9§ 8 7 6 5 4 3 2 1 0]
2| 1 | 1 | scp | cop | con { cow | cos | cos | co7 | cos | cos | coa | o3 | cp2 { cov | coo | (SHCE'ACDL,(\],&;TCE?NTROL REGISTER (SCCRI

TCM RCM

CLOCK INPUT
(SKP=0)

TRANSMIT DATA
(SSFTD =0)

RECEIVE DATA

SAMPLE - 0 1 2 3 4 5 6 7

Example: Interface to synchronous microcomputer buses

DSP56000 %
RXD —>] P30 go51
TXD —-j OR

8096

SCLK fe - P3.1

Figure 11-19. Synchronous Slave

V10HOLOW

IVNNVIN S, H3SN L0095dSA/000954SA

LE-LL

SYNCHRONOUS MODE, INTERNAL CLOCK (MASTER)

SERIAL
CLOCK
(INT)
STX
WRITE
RANGE

TRDE

TXD
(TRANSMIT DATA)

STX WRITE RANGE | STX WRITE RANGE FOR NO
D — >

GAP BETWEEN WORDS 1 AND 2 ~ ’|
le———MAX 5.5 SERIAL CLOCK CYCLES ———>]

A\ / AN

TDRE Q 0 BY STX WRITE

/
XBIT%BIT 1 X I;’ ;X BIT 3X BIT4X BIT 5X BIT SX BIT 7X BIT OX BIT IXBIT 2X X

I‘ FIRST WGRD

| SECOND WORD———

NOTE: In internal clock mode, if data 2 is written after the middle of bit 6 of data 1, then a gap of at least two serial bits is

inserted between word 1 and word 2. The gap is bigger as STX is written later.

(a) Master .

SYNCHRDNOUS MODE, EXTERNAL CLOCK {SLAVE)

SERIAL
cLocK
EXT)
STX
WRITE
RANGE

TRDE

TXD
ITRANSMIT DATA)

Hgipigipipipigipgipininint
I(—— STX WRITE RANGE ! STX WRITE HANGE——>|
\ — /N AN /

TDRE # 0 BY STX WRITE

BITO m BIT2 X BIT3 X BIT4 X BITS x BIT 6 x BIT 7XBITOXBIT1XBIT2X X
le

FIRST WORD

| SECOND WORD

NOTE: In external clock mode, if data 2 is written after the middle of bit 6 of data 1, then the previous data is retransmitted
and data 2 is transmitted after the retransmission of data 1.

(b} Slave
Figure 11-20. Synchronous Timing

line. Selection of individual slave processors can be under protocol control or by multi-
plexing SCLK.

NOTE

TCM=0,RCM=1 and TCM=1,RCM =0 are not allowed in the synchronous mode.
The results are undefined.

The assembly program shown in Figure 11-21 uses the SCI synchronous mode to transmit
only the low byte of the Y data ROM contents. The program sets the reset vector to run
the program after a hardware reset, puts the MOVEP instruction at the SCI transmit interrupt
vector location, sets the memory wait states to zero, and configures the memory pointers,
operating mode register, and the IPR. The SCI is then configured and the interrupts are
unmasked, which starts the data transfer. The jump-to-self instruction (LABO JMP LABO)
is used to wait while interrupts transfer the data.

ORG P:0 ;Reset vector
JMP $40 ;
ORG - P:%$18 ;SCI transmit interrupt vector
MOVEP Y:(RO)+ X:$FFF4 ;transmit low byte of data
ORG P:$40
MOVEP #0,X:$FFFE ;Clear BCR
MOVE #$100,R0 ;Data ROM start address
MOVE #$FF,M0 ;Size of data ROM — Wraps around at $200
MOVEC #6,0MR ;Change operating mode to enable data ROM
MOVEP #$C000,X:$FFFF ;Interrupt priority register
MOVEP #$1200,X:$FFF0 ;8-bit synchronous mode
MOVEP #7,X:$FFE1 ;Port C control register — enable SCI
MOVEC #0,SR ;Unmask interrupts
LABO JMP LABO ;Wait in loop for interrupts

Figure 11-21. SCI Synchronous Transmit

The program shown in Figure 11-22 is the program for receiving data from the program
presented in Figure 11-21. The program sets the reset vector to run the program after
hardware reset, puts the MOVEP instruction to store the data in a circular buffer starting
at $100 at the SCl receive interrupt vector location, puts another MOVEP instruction at the
SCI receive interrupt vector location, sets the memory wait states to zero, and configures
the memory pointers and IPR. The SCl is then configured and the interrupts are unmasked,
which starts the data transfer. The jump-to-self instruction (LABO JMP LABO) is used to
wait while interrupts transfer the data.

11-38 DSP56000/DSP56001 USER'S MANUAL MOTQROLA

ORG P:0 ; Reset vector

JMP $40 ;
ORG P:$14 ; SCl receive data cector
MOVEP X:$FFF4,Y:(RO)+ ; Receive low byte of data
NOP | ; Fast interrupt response
MOVEP X:$FFF1,X0 ; Receive with exception. Read status register
MOVEP X:$FFF4,Y:(RO)+ ; Receive low byte of data.
ORG P:$40
MOVEP #0,X:$FFFE ; Clear BCR
MOVE #%$100,R0 ; Data ROM start address
MOVE #$FF,M0 ; Size of data ROM — wraps around at $200
MOVEP #$C000,X:$FFFF ; Interrupt priority register
MOVEP #$900,X:$FFF0 ; 8-bit synchronous mode receive only
MOVEP #$C000,X:$FFF2 ; Clock control register external clock
MOVEP #7,X:$FFE1 ; Port C control register — enable SClI
MOVEC #0,SR ; Unmask interrupts

LABO JMP LABO ; Wait in loop for interrupts

Figure 11-22. SCI Synchronous Receive

11.2.7 Asynchronous Data
~

Asynchronous data uses a data format with embedded word sync, which aliows an un-
synchronized data clock to be synchronized with the word if the clock rate and number of
bits per word is known. Thus, the clock can be generated by the receiver rather than
requiring a separate clock signal. The transmitter and receiver both use an internal clock
that is 16 x the data rate to allow the SCI to synchronize the data. The data format requires
that each data byte have an additional start bit and stop bit. In addition, two of the word
formats have a parity bit. The multidrop mode used when SCls are on a common bus has
an additional data type bit. The SCI can operate in full-duplex or half-duplex modes since
the transmitter and receiver are independent. The SCI transmitter and receiver can use
either the internal clock (TCM=0 and/or RCM=0) or an external clock (TCM=1 and/or
RCM=1) or a combination. If a combination is used, the transmitter and receiver can run
at different data rates.

11.2.7.1 ASYNCHRONOUS DATA RECEPTION. Figure 11-23 illustrates initializing the SCI
data receiver for asynchronous data. The first step (1) resets the SCI to prevent the SCI
from transmitting or receiving data. Step two (2) selects the desired operation by pro-
gramming the SCR. As a minimum, the word format (WDS2, WDS1, and WDS0) must be
selected, and (3) the receiver must be enabled (RE=1). If (4) interrupts are to be used, set

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 11-39

TVNNVIN S,43SN L00954SA/00095d4Sd ob-L1L

V104OLOW

L

1. HARDWARE OR SOFTWARE RESET
2. PROGRAM SCR WITH DESIRED MODE AND FEATURES.
3. TURN ON RECEIVER (RE=1). _
4. OPTIONALLY ENABLE RECEIVER INTERRUPTS (RIE=1).
5 W4 13 12 1 1 9 8§ 7 6 5 4 3 2 1 0
xserro| scke | o [mie | me | 0 Jwe | e | 1 Jwoms| awu [wake| sex [ssro]wos2|wost{woso]-
RIE RE

(READ/WRITE)

5. SET THE BAUD RATE BY PROGRAMMING THE SCCR.

15 14 13 12 n 10 9 8 7 6 5 4 3 2 1 0

x:srr2 oM | Acm | sce [coo [corr [cono | cos | cos | cov | cos [cos [cos [cos | coz [co1 | coo | Seaommre oo RECISTER (SCCR)
\ /
¥
PRESCALER : DIVIDE BY 1

IF SCP =1, THEN DIVIDE BY 8 70 4036

IF SCP =0, THEN DIVIDE BY 1
6. SET THE RXD BIT IN PCC TO ENABLE THE SCI RECEIVER SYSTEM. «

3 9.8 1 5 5 a4 3’2 1 o

X:$FFET 0 [ccs [ccr | cos | ces | ces | ces | coa | cor | 1 | PORTC CONTROL REGISTER (PCC)

RXD

CCx Function
0 Parallel /0
1 Serial Interface

NOTE: If RE is cleared while a valid character is being received, the reception of the character will be completed before the
receiver is disabled.

Figure 11-23. Asynchronous SCI Receiver Initialization

SCI INTERFACE CONTROL REGISTER (SCR)

RIE equals one. Use Tables 11-2 and 11-3 to set (5} the baud rate (SCP and CD0-CD11 in
the SCCR). Once the SCl is completely configured, it is enabled by (6) setting the RXD bit
in the PCC.

The receiver is continually sampling RDX at the 16 x clock rate to find the idle-start-bit
transition edge. When that edge is detected (1) the following eight or nine bits, depending
on the mode, are clocked into the receive shift register (see Figure 11-24). Once a complete
byte is received, (2) the character is latched into the SRX, and RDRF is set as well as the
error flags, OR, PE, and FE. If (3) interrupts are enabled, an interrupt is generated. The
interrupt service routine, which can be a fast interrupt or a long interrupt, (4) reads the
received character. Reading the SRX (5) automatically clears RDFR in the SSR and makes
the SRX ready to receive another byte.

If (1) an FE, PE, or OR occurs while receiving data (see Figure 11-25), (2) RDRF is set because
a character has been received; FE, PE, or OR is set in the SSR to indicate that an error was
detected. Either (3) the SSR can be polled by software to look for errors, or (4) interrupts
can be used to execute an interrupt service routine. This interrupt is different from the
normal receive interrupt and is caused only by receive errors. The long interrupt service
routine should (5) read the SSR to determine what error was detected and then (6) read
the SRX to clear RDRF and all three error flags.

11.2.7.2 ASYNCHRONOUS DATA TRANSMISSION. Figure 11-26 illustrates initializing the
SCI data transmitter for asynchronous data. The first step (1) resets the SCl to prevent the
SCI from transmitting or receiving data. Step two (2) selects the desired operation by
programming the SCR. As a minimum, the word format (WDS2, WDS1, and WDS0) must
be selected, and (3) the transmitter must be enabled (TE=1). If (4) interrupts are to be
used, set TIE equals one. Use Tables 11-2 and 11-3 to set (5) the baud rate (SCP and
CD0-CD11 in the SCCR). Once the SCl is completely configured, it can be enabled by (6)
setting the TXD bit in the PCC. Transmission begins with (7) a preamble of ones.

If polling is used to transmit data (see Figure 11-27), the polling routine can look at either
TDRE or TRNE to determine.when to load another byte into STX. If TDRE is used (1), one
byte may be loaded into STX. If TRNE is used (2), two bytes may be loaded into STX if
enough time is allowed for the first byte to begin transmission (see 11.2.2.4.2 SCI Transmit
Registers). If interrupts are used (3), then an interrupt is generated when STX is empty.
The interrupt routine, which can be a fast interrupt or a long interrupt, writes (4) one byte
into STX. If multidrop mode is being used and this byte is an address, STXA should be
used instead of STX. Writing STX or STXA (5) clears TDRE in the SSR. When the transmit
data shift register is empty (6), the byte in STX (or STXA) is latched into the transmit data
shift register, TRNE is cleared, and TDRE is set.

There is a provision to send a break or preamble. A break (space) consists of a period of
zeros with no start or stop bits that is as long or longer than a character frame. A preamble
(mark) is an inverted break. A preamble of 10 or 11 ones (depending on the word length
selected by WDS2, WDS1, and WDSO0) can be sent with the following procedure (see Figure
11-28). (1) Write the last byte to STX and (2) wait for TDRE equals one. This is the byte

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 11-41

TVNNVIAN S.H3SN L0095dSA/000954SA -l

V104O0LOW

1. THE RECEIVER IS IDLE UNTIL A CHARACTER IS RECEIVED IN THE DATA SHIFT REGISTER.

TLOTTTTTITT ——{m>—]]

2. TRANSFERRING THE RECEIVED CHARACTER INTO SRX SETS RDRF IN THE SSR.

7§ 5 4 3 2 1 0
xiseee1[ms | Fe | Pe | on [oe | 1 [TORE| TANE] pramporny

RDRF

3. IF RIE=1IN SCR, THEN AN INTERRUPT IS GENERATED.

INTERRUPT
VECTOR

TABLE
. RECEIVE
% INTERRUPT
SERVICE
— — ROUTINE

P:$0014 | SCI RECEIVE DATA 5. READING SRX CLEARS RDRF IN THE SSR.
/—\/ »

% 4. THE RECEIVE INTERRUPT SERVICE ROUTINE READS THE RECEIVED CHARACTER.

Figure 11-24. SCI Character Reception

V104O1OW

ev-LL

IVNNVYIN S, H3SN 1L0095dSA/00095dSA

1. A CHARACTER IS RECEIVED WITH AT LEAST ONE OF THE FOLLOWING ERRORS:
— FRAMING ERROR (FE=BIT 6 IN SSR)
— PARITY ERROR (PE=BIT 5 IN SSR}
— OVERRUN ERROR {OR=BIT 4 IN SSR)

SERIAL STRING OF BAD DATA

LX) X T —-[X0 >—>{

2. THIS SETS RDRF AND SET OR, PE, OR FE IN SSR.

3. SSR CAN BE POLLED BY SOFTWARE.

7 6 5 4 3 2 1 0
xseeer [ms | fe | PE | or [ote | 1 [ome [mne | chE'A'gTOES{QCE STATUS REGISTER (SSR)

RDRF

AT LEAST ONE BIT SET

4. IFRIE=1 IN SCR, THEN AN INTERRUPT WITH ERROR IS GENERATED.

76 5 4 3 2 10
x:seert[A8 | fE | pe | oR [oie | 1 | TORE TANE] poamy o s e (SR

RDRF

/ \
2 16 15 87 0

INTERRUPT INTERRUPT WITH »1 RECEIVE

VECTOR EXCEPTION WITH EXCEPTION
TABLE INTERRUPT |

I] SERVICE

— ROUTINE

Y -
P:50016 SCI RECEIVE DATA EXCEP.
——
L

6. READ SSR, FOLLOWED BY

6. READING SRX. THIS CLEARS RDRF IN THE SSR AND CLEARS THE OR, PE,
AND FE FLAGS.

Figure 11-25. SCI Character Reception with Exception

—h
anb

IVNNVYIN S, 43SN L00954SA/00095dSA 141

V104OLOW

figure 11-26:

1. HARDWARE OR SOFTWARE RESET

2. PROGRAM SCR WITH DESIRED MODE AND FEATURES.

3. TURN ON TRANSMITTER (TE=1)

4. OPTIONALLY ENABLE TRANSMITTER INTERRUPTS (TIE=1}.

5 14 13 12 n__ 1 9 8 7. 6 5 4 3 2 1
xseero| sokp | o [mmie[1 [me Jwe [1 | re [woms| awu [wake] sex [ssrro]wosz| wosi[waso

SCI CONTROL REGISTER (SCR)

(READ/WRITE)
TIE T '

5. SET THE SCI CLOCK PRESCALER BIT AND THE CLOCK DIVIDER BITS IN THE SCCR.

6. SET THE TXD BIT IN PCC TO ENABLE THE SCI TRANSMITTER SYSTEM.
scl

n 98 7 6 5 4 3 2 1 0

X:SFFET 0 [ccs | ce7 | cos | ces [cca | cea [ce2 | 1 [ceo | porrc controL REGISTER (PCC)

™0
CCx Function
0 Parallel I/O

1 Serial Interface

7. THE TRANSMITTER WILL FIRST BROADCAST A PREAMBLE OF ONES BEFORE BEGINNING DATA TRANSMISSION:
10 ONES WILL BE TRANSMITTED FOR THE 10-BIT ASYNCHRONOUS MODE.
11 ONES WILL BE TRANSMITTED FOR THE 11-BIT ASYNCHRONOUS MODE.

NOTE: If TE is cleared while transmitting a character, the transmission of the character will be completed before the
transmitter is disabled.

- Figure 11-26. Asynchronous SCI Transmitter Initialization

V1040L0W

TVANVIA S, 43SN 10095dSA/00095d4Sd

Sh-LL

5 14 13 12 m w0 9 8 1 6 5 4 3 2 1 0 :
xsert o [o [o] o[o J o[o ol me | e[ee] or]me[rore] 1 |1](SRCE'A'{,\”OESEGCESTATUSREGISTER(SSR'
TORE TRNE

1. WHEN STX IS EMPTY, THEN TDRE=1.
2. WHEN STX IS EMPTY AND THE TRANSMIT DATA SHIFT REGISTER IS EMPTY THEN TRNE=1.
3. IFTIE=1IN SCR AND TDRE=1 IN SSR, THEN AN INTERRUPT IS GENERATED.

TRANSMIT
INTERRUPT \
SERVICE 8 1
$

INTERRUPT VECTOR TABLE ROUTINE X:$FFF6
-] 4, STORE X:$FFF5
ACTER INTO =
P:$0018 SCI TRANSMIT DATA > \ -/

STX (A)
——————— —
——— 5 s E—
[AVAILABLE FOR HOST COMMAND CLEARS
TDRE IN
SSR.

w
< >
>

X:SFFF3 | [

6. THE CHARACTER IN STX IS COPIED INTO TRANSMIT DATA SHIFT REGISTER.
TRNE IS CLEARED.
TDRE IS SET.
GO TO STEP 2.

Figure 11-27. Asynchronous SCI Character Transmission

IVNNVIA S, H3SN 10095dSA/00095dSA ap-LL

VI0O4HO10WN

ST | DO | D1 |D2 {D3 | D4 1 D5 | D6 | D7 | STOP IDLE LINE STlo| 1|23]4a]5]|6]|7 |STOPST j

A
-t

5. 1413 2 11 9 8 1 6 5 4 3 2 1 0
xserro| scke | o [mie| me | mie [we [e | Re [woms| rwu [wake| sek [ssero[wos2[wosi[woso
A

SCI INTERFACE CONTROL REGISTER (SCR)
(READ/WRITE)

TOGGLE (1-0-1) TO SEND A TOGGLE {0-1-0) TO SEND A
CHARACTER TIME OF ALL CHARACTER TIME OF ALL
ONES (MARKS) ZERQS (SPACES)

+10 OR 11 ONES/ZEROS WILL BE SENT DEPENDING ON THE WORD LENGTH SPECIFIED BY WDS2, WDS1, WDSO0.

MARKS {ONES)

1. WRITE THE LAST BYTE TO STX.

2. WAIT FOR TRDE = 1. THE LAST BYTE IS NOW IN THE TRANSMIT SHIFT REGISTER.

3. CLEAR TE AND SET BACK TO ONE. THIS QUEUES THE PREAMBLE TO FOLLOW THE LAST BYTE.
4. WRITE THE FIRST BYTE TO FOLLOW THE PREAMBLE INTO SRX.

LAST CHARACTER PREAMBLE OF 10 ONES FIRST CHARACTER

N i

SPACES (ZEROS) A STOP BIT AT THE END OF THE BREAK WILL BE
INSERTED BEFORE THE NEXT CHARACTER STARTS.

SBK=0 SBK=1 SBK=1 SBK=1 SBK=0
5|sl7|s|9|1o|l f

) {1 1213fals5lelz)slslwlifz)[alwl1]2]3]4
Z D4 | 05| D6 | D7 |STOP |STOPI sT| oo | D1 }
F -

CHARACTER ENDS 1 7 1 FRST !
BEFORE BREAK BEGINS. CHARACTER
AFTER BREAK
A END
STOFRT BREAK PERIOD IS AN EXACT MULTIPLE OF OF
BREAK CHARACTER TIMES. BREAK

Figure 11-28. Transmitting Marks and Spaces

that will be transmitted immediately before the preamble. (3) Clear TE and then again set
it to one. Momentarily clearing TE causes the output to go high for one character frame.
If TE remains cleared for a longer period, the output will remain high for an even number
of character frames until TE is set. (4) Write the first byte to follow the preamble into SRX
before the preamble is complete and resume normal transmission. Sending a break follows
the same procedure except that instead of clearing TE, SBK is set in the SCR to send breaks
and then reset to resume normal data transmission.

The example presented in Figure 11-29 uses the SCl in the asynchronous mode to transfer
data into buffers. Interrupts are used, allowing the DSP to perform other tasks while the
data transfer is occurring. This program can be tested by connecting the SCI transmit and
receive pins. Equates are used for convenience and readability.

The program sets the reset vector to run the program after reset, puts a MOVEP instruction
at the SCl receive interrupt vector location, and puts a MOVEP and BCLR at the SCI transmit
interrupt vector location so that, after transmitting a byte, the transmitter is disabled until
another byte is ready for transmission. The SCl is initialized by setting the interrupt level,
which configures the SCR and SCCR, and then is enabled by writing the PCC. The main
program begins by enabling interrupts, which allows data to be received. Data is trans-
mitted by moving a byte of data to the transmit register and by enabling interrupts. The
jump-to-self instruction (SEND JMP SEND) is used to wait while interrupts transfer the
data.

11.2.8 Multidrop

Multidrop is a special case of asynchronous data transfer. The key difference is that a
protocol is used to allow networking transmitters and receivers on a single data-trans-
mission line. Interprocessor messages in a multidrop network typically begin with a des-
tination address. All receivers check for an address match at the start of each message.
Receivers with no address match can ignore the remainder of the message and use a
wakeup mode to enable the receiver at the start of the next message. Receivers with an
address match can receive the message and optionally transmit an acknowledgment to
the sender. The particular message format and protocol used are determined by the user’s
software. These message formats include point-to-point, bus, token-ring, and custom con-
figurations. The SCI muitidrop network is compatible with other leading microprocessors.

Figure 11-30 shows a multidrop system with one master and N slaves. The multidrop mode
is selected by setting WDS2 equals one, WDS1 equals one, and WDS0 equals zero. One
possible protocol is to have a preamble or idle line between messages, followed by an
address and then a message. The idle line causes the slaves to wake up and compare the
address with their own address. If the addresses match, the slave receives the message.
If the addresses do not match, the slave ignores the message and goes back to sieep. It
is also possible to generate an interrupt when an address is received, eliminating the need
for idle time between consecutive messages and addresses. It is also possible for each
slave to look for more than one address, which allows each slave to respond to individual
messages as well as broadcast messages (e.g., a global reset).

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 11-47

R XX LTRSS I AL LSS LS LSS S ST EEL LI L LT L E L LT L LSS SRS ES L LTS EL L L LT LT L]
’

; SCI ASYNC WITH INTERRUPTS AND SINGLE BYTE BUFFERS *

A E S LSRR T TS L L LI L L L L ELL L L L LS ELELE L L L L L L LRSS LS E R AL RS E LT L L L LT
’

P REERREFRREEEEERERHEREEERRRRRERER KRR R RREXKRHR
’

; SCI and other EQUATES *

CREEREEREE TR EREX XXX REEEXXEEXXE XX RERRR KRR
4

START EQU $0040 ;Start of program
PCC EQU $FFE1 ;Port C control register
SCR EQU $FFFO ;SCl interface control register
SCCR EQU $FFF2 ;SCI clock control register
SRX EQU $FFF4 ;SCI receive register
STX EQU $FFF4 ;SCI transmit register
BCR EQU $FFFE ;Bus control register

" IPR EQU $FFFF ;Interrupt priority register
RXBUF EQU $100 ;Receive buffer
TXBUF EQU $200 ;Transmit buffer

CREEEEXKEEEEREEREXEXERXXRXXERRERRREERX X XXX RRN
’

; RESET VECTOR *

¢ EEEELEEEEEEEEE XX XXX IR EERRERRRRRXKRRH
’

ORG P:$0000
JMP START

s KEEEEEXEEKEEEEEEERREE XX XX KRR RERERRKERRRKK
'

; SCI RECEIVE INTERRUPT VECTOR *

¢ FEEEEEEEXEEEXREERERXEFRR IR EREX XXX R RXERXRRRX
’

ORG P:$0014 ;Load the SCI RX interrupt vectors
MOVEP X:SRX,Y:(R0)+ ;Put the received byte in the receive
NOP ;buffer. This receive routine is

;implemented as a fast interrupt.

C EEXEEEEEREKEXREELEEREERRXERR KRR RRE XX RERRRRKRK K
’

; SCI TRANSMIT INTERRUPT VECTOR ¥

C KEEREEEERREEERREREFREFEREERR KX XXX RRRXX
’ . .

ORG P:$0018 ;Load the SCI TX interrupt vectors
MOVEP X:(R3)+,X:STX ;Transmit a byte and
;increment the pointer in the
;transmit buffer.
BCLR #12,X:SCR ;Disable transmit interrupts

Figure 11-29. SCI Asynchronous Transmit/Receive Example (Sheet 1 of 2)

11-48 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

s EEEREREEEEERR XK R R R XK RRRR R E LR EREERRRER R KRR E XXX RXRNK
'

; INITIALIZE THE SCI PORT AND RX, TX BUFFER POINTERS ¥

P EEEEER LR XX KRR KRR R ELE XXX XXX AR LR R EER XX R LR E XXX K
'

ORG P:START ;Start the program at location $40
ORI #$03,MR ;Mask interrupts temporarily
MOVEP #$C000,X:IPR ;Set interrupt priority to 2

MOVEP #$0B02,X:SCR ;Disable TX, enable RX interrupts

:Enable transmitter, receiver
;Point to point

;10-bit asynchronous

;(1 start, 8 data, 1 stop)

MOVEP #$0022,X:SCCR ;Use internal TX, RX clocks

;9600 BPS
MOVEP #>$03,X:PCC ;Select pins TXD and RXD for SCI
MOVE #RXBUF,RO ;Initialize the receive buffer
MOVE #TXBUF,RO ;Initialize the transmit buffer

CREXERKEREREREREREEERERRRERREKE R KR XK K KRR RRRR
’

; MAIN PROGRAM *

C KEEEEXEEEEEXEEXEEEXE AR RXERRRXREXERRXKR
’

ANDI #$FC,MR ;Re-enable interrupts
MOVE #>%$41,R0 ;Move a byte to the transmit buffer
MOVE RO,X:(R3) -
BSET #12,X:SCR ;and enable interrupts so it
v ;will be transmitted
SEND JMP 'SEND ;Normally something more useful

;would be put here.

END ;End of example.

Figure 11-29. SCI Asynchronous Transmit/Receive Example {Sheet 2 of 2)

11.2.8.1 TRANSMITTING DATA AND ADDRESS CHARACTERS. Transmitting data and
address when the multidrop mode is selected is shown in Figure 11-31. The output sequence
shown is idle line, data/address, and the next character. In both cases, an “A” is being
transmitted. To send data, TE must be toggled to send the idle line, and then A" must
be sent to STX. Sending the ““A” to the STX sets the ninth bit in the frame to zero, which
indicates that this frame contains data. If the “A” is sent to STXA instead, the ninth bit in
the frame is set to a one, which indicates that this frame contains an address.

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 11-49

AVNNVIN S, HISN 1L00954SA/00095dSA

0G-LL

V104OLOW

15 14 13 12 n VIU 9 8 7 6 5 4 3 2 1 0
xsrero[sckp| o Jmie] me | mie [we | e | re [woms] rwu [wake] sex fssro] 1] 1] o (SRCE'A'S%:#EC)E CONTROL REGISTER (SCCR)

WDS2 WDS1 WDS0

HEADER
DLEUNE | ADDRESST | LONG MESSAGE FOR MPU 1 | mEune
™D
17 y v v DSP56000
RXD : RXD RXD RXD
DSP56000 .| bspss000 MC6BHC11 e oo [OTHER SERIAL
ADDRESS 1 ADDRESS 2 {- ADDRESS 3 | DEVICE
ADDRESS N
DEVICE RECEIVING DEVICES IGNORING MESSAGES
MESSAGE
RECEIVER INTERRUPT RECEIVER INTERRUPT
DOES DOES
HEADER EQUAL \y_NO_ _ HEADER EQUAL
MY ADDRESS MY ADDRESS
?
? {
IGNORE REST
YES | YES OF MESSAGE.
I DISABLE RECEIVER
RECEIVE REST OF AND ITS INTERRUPTS BY
MESSAGE; DO NOT SETTING RWU=1.

MASK INTERRUPTS.

EXIT

EXIT

Figure 11-30. 11-Bit Multidrop Mode

VI10HOLOW

IVNNYIA S.H3SN 10095dSA/00095dSA

16-LL

A" DATA
81
01000001

23 16 15 8 7 0

X:SFFF§ SCI TRANSMIT DATA REGISTER HIGH (WRITE ONLY)
X:$FFF5 SCI TRANSMIT DATA REGISTER MID (WRITE ONLY)
X:$FFF4 SCI TRANSMIT DATA REGISTER LOW (WRITE ONLY) NEXT
CHARACTER
A T N e A A N B I
SCI TRANSMIT DATA SHIFTREGISTER [] IDLE Isr| 1]o 0 0 o of1]o ofwodsr
LINE 1]
DATA
X:SFFF3
23 16 15 8 7 0
ADDRESS
X:$FFF6
X:$FFF5
X:$FFF4 | NEXT
CHARACTER
SCI TRANSMIT DATA SHIFT REGISTER
16 15
X:SFFF3

Figure 11-31. Transmitting Data and Address Characters

TVYNNVIA S.43SN L0095dSA/00095d4SA 25-LL

V104OLOW

1 10 9 8 7 6 5 4 3 2
1

5w 13 n 10
x:seero[sckp| o |tmie] T | me [we [1e | me | 1 | wu Jwake] sek Jsseo] 1 [1 [o] SCI CONTROL REGISTER (SCR)

(READ/WRITE)
WOMS WDS2 WDS1 WDSO
DSP56000 DSP56000 OTHER DSP56000 DSP56000
SCI PORT SCI PORT SERIAL PORT SCI PORT SCI PORT
ADDRESS 1 ADDRESS 2 ADDRESS 3 ADDRESS N-1 ADDRESS N
XMIT REC XMIT REC XMIT REC XMIT REC XMIT - REC

=M B

A2} MESSAGE A IA3| MESSAGE C | |A1| MESSAGE B |
—>| IDLE |<—-

IDLE LINE WAKEUP
AND/OR INTERRUPT

ADDRESS CHARACTER WAKEUP
AND/OR INTERRUPT

IANI MESSAGE Dl

FIRST CHARACTER l SECOND CHARACTER l THIRD CHARACTER
|N0[N1|N2|N3|N4W|N5|N7'1J—I IDulm'DZInzlm'ﬂnslmloJ] |Dolml
IDLE I ADDRESS N I FIRST CHARACTER OF MESSAGE D SECOND CHARACTER
OF MESSAGE D

INDICATES AN ADDRESS CHARACTER INDICATES A DATA CHARACTER

Figure 11-32. Wired-OR Mode

11.2.8.2 WIRED-OR MODE. Building a multidrop bus network requires connecting mul-
tiple transmitters to a common wire. The wired-OR mode allows this to be done without
damaging the transmitters when the transmitters are not in use. A protocol is still needed
to prevent two transmitters from simultaneously driving the bus. The SCI multidrop word
format provides an address field to support this protocol. Figure 11-32 shows a multidrop
configuration using wired-OR (set bit 7 of the SCR). The protocol shown consists of an idle
line between messages; each message begins with an address character. The message
can be any length, depending on the protocol. Each processor in this system has one
address that it responds to although each processor can be programmed to respond to
more than one address.

11.2.8.3 IDLE LINE WAKEUP. The purpose of a wakeup mode is to free a DSP from reading
messages intended for other processors. The usual operational procedure is for each DSP
to suspend SCI reception (the DSP can continue processing) until the beginning of a mes-
sage. Each DSP compares the address in the message header with the DSP’s address. If
the addresses do not match, the SCI again suspends reception until the next address. If
the address matches, the DSP will read and process the message and then suspend re-
ception until the next address.

The idle line wakeup mode wakes up the SCl to read a message before the first character
arrives. This mode allows the message to be in any format.

Figure 11-33 shows how to configure the SCI to detect and respond to an idle line. The
word format chosen (WDS2, WDS1, and WDSO in the SCR) must be asynchronous. The
WAKE bit must be clear to select idle line wakeup, and RWU must be set to put the SCI to
“sleep’”” and enable the wakeup function. RIE should be set if interrupts are to be used to
receive data. If processing must occur when the idle line is first detected, ILIE should be
set. The current message is followed by one or more data frames of ones (10 or 11 bits
each, depending on which word format is used), which are detected as an idle line. If the
word format is multidrop {an 11-bit code), after the 11 ones, the receiver determines the
Ilne is idle and (1) clears the RWU, enabling the receiver. The IDLE bit (2) and an internal
flag SRIINT (3) are set, indicating the line is idle. The SCl is now ready to receive messages;
however, nothing more will happen until the next start bit unless (4) ILIE is set. If ILIE is
set, an SCI idle line interrupt will be recognized as pending. When the idle line interrupt
is recognized (5), SRIINT is automatically cleared, and the SCI waits for the first start bit
of the next character. Since RIE was set, when the first character is received, an SCl receive
data interrupt (or SCI receive data with exception status interrupt if an error is detected}
will be recognized as pending. When the receiver has processed the message and is ready
to wait for another idle line, RWU must be set to one again.

11.2.8.4 ADDRESS MODE WAKEUP. The purpose and basic operational procedure for
address mode wakeup is the same as idle line wakeup. The difference is that address mode
wakeup re-enables the SCI when the ninth bit in a character is set to one (if cleared, this
bit marks a character as data; if set, an address). As a result, an idle line is not needed,

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 11-53

pa-LL

5 W 13 12 1w 9 8 7 & 5 4 3 2 1 0
xsrrro[scke| o [owie] me | 1 [v | e | ne Jwoms| 1+ | o [sex [ssrro[wose|wosi|woso

SCI INTERFACE CONTROL REGISTER (SCR)

IVNNVIAN S.HISN 100954SA/0009SdSA

V104HOL1OW

RIE ILE RWU WAKE

|A1 | MESSAGE A I | A2 I MESSAGE B '

LINE IS IDLE FOR 10 OR 11 STOP BlTS—‘-)' o

& Y

1. RWU IS CLEARED; THE RECEIVER IS ENABLED.
2. IDLE IS SET IN SSR, INDICATING THE LINE IS IDLE.
3. AN INTERNAL FLAG SRIINT IS GENERATED GNCE EACH IDLE STATE, NO MATTER HOW LONG IT LASTS.

7 6 5 4 3 2 1 0
xseer| me | re [pe | or | 1 | roar | ToRe | Re

SCI STATUS REGISTER (SSR)
(READ ONLY)

(READ/WRITE)

IDLE {SRIINT)
INTERRUPT
VECTOR
4. IFILEE=1IN SCR, THEN AN SCI IDLE LINE INTERRUPT IS PENDING. TABLE
5. WHEN IDLE LINE INTERRUPT IS ACCEPTED, SRIINT IS AUTOMATICALLY CLEARED.
el

P:$001A SCI IDLE LINE

IDLE LINE INTERRUPT
SERVICE ROUTINE
{FAST OR LONG)

e
P

Figure 11-33. Idle Line Wakeup

VI04OLONW

B M 13 12 w9 8 7 6 5 4 3 2 1 0
xsrero|sekp [o [tmie| me v Twe [ve | re Jwoms] 1+ T 1 T sex [ssenwos2[wosi[woso

SC! CONTROL REGISTER (SCR)
(READ/WRITE)

TVNNVYIA S.H3SN L009SdSA/000954SA

GG-LL

RIE . RWU WAKE

|Al | MESSAGE A IAZI MESSAGE B |A3| MESSAGE C IA4| MESSAGE D I

!)

1. WHEN ADDRESS CHARACTER IS RECEIVED, THEN R8=1 IN SSR AND RWU IS CLEARED. THE RECEIVER WAKES UP.

7 0
xsert| 1 | re | pe | or | 1 | mosr | 7oRe | Tore
R

SCI INTERFACE STATUS REGISTER (SSR)
(READ ONLY)

I INTERRUPT
VECTOR

2. IFRIE=1 IN SCR, THEN AN SCI RECEIVE DATA INTERRUPT IS PROCESSED. TABLE

e
N

P:$0014 | SCI RECEIVE DATA

e
e

Figure 11-34. Address Mode Wakeup

7

RECEIVE DATA
INTERRUPT
SERVICE
ROUTINE
(FAST OR LONG)

which eliminates the dead time between messages. If the protocol is such that the address
byte is not needed or is not wanted in the first byte of the message, a data byte can be
written to STXA at the beginning of each message. It is not essential that the first byte of
the message contain an address; it is essential that the start of a new message is indicated
by setting the ninth bit to one using STXA.

Figure 11-34 shows how to configure the SCI to detect and respond to an address character.
The word format chosen (WDS2, WDS1, and WDSO in the SCR) must be an asynchronous
word format. The WAKE bit must be set to select address mode wakeup and RWU must
be set to put the SCI to “sleep” and enable the wakeup function. RIE should be set if
interrupts are to be used to receive data. (1) When an address character (ninth bit=1) is
received, then R8 is set to one in the SSR, and RWU is cleared. Clearing RWU re-enables
the SCI receiver. Since (2) RIE was set in this example, when the first character is received,
an SCl receive data interrupt (or SCl receive data with exception status interrupt if an error
is detected) will be recognized as pending. When the receiver is ready to wait for another
address character, RWU must be set to one again.

11.2.8.5 MULTIDROP EXAMPLE. The program shown in Figure 11-35 configures the SCI
as a multidrop master transmitter and slave receiver (using wakeup on address bit) that
uses interrupts to transmit data from a circular buffer and to receive data into a different
circular buffer. This program can be run with the I/O pins (RXD and TXD) connected and
with a pullup resistor for test purposes.

The program starts by setting equates for convenience and clarity and then points the reset
vector to the start of the program. The receive and transmit interrupt vector locations have
JSRs forming long interrupts because the multidrop protocol and circular buffers require
more than two instructions for maintenance. Byte packing and unpacking are not used in
this example. The SRX and STX registers are equated to $FFF4, causing only the LSB of
the 24-bit DSP word to be used for SCI data. The SCI is then initialized as wired-OR,
multidrop, and using interrupts. The SCl is enabled but the interrupts are masked, which
prevents the SCI from transmitting or receiving data at this time.

The circular buffers used have two pointers. The first points to the first data byte; the
second points to the last data byte. This configuration allows the transmit buffer to act as
a first-in first-out (FIFO) memory. The FIFO can be loaded by a program and emptied by
the SCI in real time. As long as the number of data bytes never exceeds the buffer size,
there will be no overflow or underflow of the buffer. Registers M0-M3 must be loaded with
the buffer size minus one to make pointer registers R0-R3 work as circular pointers. Register
N2 is used as a constant to clear the receive buffer empty flag.

The main program starts by filling the transmit buffer with a data packet. When the transmit
buffer is full, it calls the subroutine that transmits the slave’s address and then jumps to
self (SEND jmp SEND), allowing interrupts to transmit and receive the data.

11-56 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

The receive subroutine first checks each byte to see if it is address or data. If itis an address,
it compares the address with its own. If the addresses do not match, the SCl is put back
to sleep. If the addresses match, the SCl is left awake, and control is returned to the main
program. If the byte is data, it is placed in the receive buffer, and the receive buffer empty
flag is cleared. Although this flag is not used in this program, it can be used by another
program as a simple test to see if data is available. Using N2 as the constant $0 allows
the flag to be cleared with a single-word instruction, which can be part of a fast interrupt.

The transmit subroutine transmits a byte and then checks to see if the transmit buffer is
empty. If the buffer is not empty, control is returned to the main program, and interrupts
are allowed to continue emptying the buffer. If the buffer is empty, the transmit buffer
empty flag is set, the transmit interrupt is disabled, and control is returned to the main
program.

The wakeup subroutine transmits the slave’s address by writing the address to the STXA
register and by enabling the transmit interrupt to allow interrupts to empty the transmit
buffer. Control is then returned to the main program.

COREEREEEREERREERKEER KRR ERREEREERREFRREERRERRRERFEEREE R R R R RRRRKRER KRR KRR
’

; MULTIDROP MASTER/SLAVE WITH INTERRUPTS AND CIRCULAR BUFFERS *

C EEEEEEEEFREREEEERERREERE IR R XERREEAXR R XEAXXAXXEEREXRRRRRX AKX RRR AN
’

CKEEEERERX AR R AR XXX ERXEREX XXX R NX X
’

; SCl and other EQUATES *

¢ EEEEEAXEEEXELXX XXX ERRAEREREEXEERERRRERNXK®
’

START EQU $0040 ;Start of program

TX-BUFF EQU $0010 ;Transmit buffer location
RX-BUFF EQU $0020 ;Receive buffer location

B-SIZE EQU $000E ;Transmit and receive buffer size

;(don’t allow the TX buffer and RX
;buffers to overlap).

TX-MTY EQU $0000 ; Transmit buffer empty
RX-MTY EQU $0001 ;Receive buffer empty

PCC EQU . $FFE1 ;Port C control register

SCR EQU $FFFO ;SCl interface control register
SCCR EQU $FFF2 ;SCI clock control register
STXA - EQU $FFF3 ;SCI transmit address register
SRX EQU $FFF4 ;SCl receive register

STX EQU $FFF4 ;SCI transmit register

BCR EQU $FFFE ;Bus control register

IPR EQU $FFFF - - ;Interrupt priority register

Figure 11-35. Multidrop Transmit Receive Example (Sheet 1 of 5)

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 11-57

P KEEEEEEREREEEEREERRREEEEAEEEXERRRXXXRXXXXXRNR
’

: RESET VECTOR *
;**
ORG P:$0000
JMP START

RS LI I T L LT LIRS R EL L LT L LT L L LT L L LT LT T
r

; SCI RECEIVE INTERRUPT VECTOR *
;**
ORG P:$0014 ;Load the SCI RX interrupt vectors
JSR RX ;Jump to the receive routine that

;puts data packet in a circular
;buffer if it is for this address.

NOP ;Second word of fast interrupt not
;needed

ORG P:$0016 ; This interrupt occurs when data is
;received with errors. This example

NOP ;does not-trap errors so this

NOP ;interrupt is not used.

¢ KEEEEEERXKEEREEEREXR AL EEXEXRRRRRERRRXRXRNNHR
’

; SCI TRANSMIT INTERRUPT VECTOR *
;**
ORG P:$0018 ;Load the SCI TX interrupt vectors
JSR X ; Transmit next byte in buffer
NOP

P EEAKEEXEXEEEEXR XXX KRR X XXX RRRRRNRHRH
’

; INITIALIZE THE SCI PORT *

P REEEREEEKEKREEEER R XXX RERRX XXX ERRRRRXRRRNNH
’ .

ORG P:START ;Start the program at location $40
ORI © #$03,MR ;Mask interrupts temporarily
MOVEP #$C000,X:IPR ;Set interrupt priority to 2
MOVEP ‘ #$0BE6,X:SCR ;Disable TX, enable RX interrupts

;Enable transmitter and receiver,
;Wired-OR mode; Rec. wakeup mode,
; 11-bit multidrop (1 start,

;8 data,1 data type, 1 stop)

MOVEP #$0000,X:SCCR ;Use internal TX, RX clocks
;320K BPS
MOVEP #>$03,X:PCC ;Select pins TXD and RXD for SCI

Figure 11-35. Multidrop Transmit Receive Example (Sheet 2 of 5)

11-58 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

;**

; INITIALIZE INTERRUPTS, REGISTERS, ETC.

¢ EEEEEREEXEEEEEREEEXEREEERRREEEERXXRXERAX KRR KR
’

*

MOVEP #$0,X:BCR
MOVE #TX-BUFF,R0
MOVE #TX-BUFF,R1
MOVE #RX-BUFF,R2
MOVE #RX-BUFF,R3
MOVE #>%$41,R5
MOVE #B_SIZE,M0
MOVE #B-SIZE,M1
MOVE #B-SIZE,M2
MOVE #B-SIZE,M3
MOVE #>$1,N0
MOVE #>$1,N1
MOVE #0,N2

MOVEP X:SRX,X:(R0)

;No wait states

;Load start pointer of transmit
sbuffer

;Load end pointer of transmit
sbuffer

;Load start pointer of receive
;buffer

;Load end pointer of receive
;buffer

;Init data register . .. R5 contains
;the data that will be sent in this
;example; it is initialized to an
;ASCII A,

;Load transmit buffer size

;Load transmit buffer size

;Load receive buffer size

;Load receive buffer size

;Load receive address

;Load first slave address

;Load a constant (0) into N2
;Clear receive register

¢ EEEEEEEXREXEEEEXEEX LRI R EXEEXX XXX ERRREX
’

*

; MAIN PROGRAM

¢ REREEEEEERRK XX A ERERERREREEXERXE XXX EXRXRXXNERNK
’

ANDI #$FC,MR ;Re-enable interrupts
MOVE (R1)+ ;Temporarily increment the tail
;pointer
;Build a packet
LOOP MOVE R1,A ;Check to see if the TX buffer is
;full
MOVE (R1)- ;(fix tail pointer now that we've
;used it)
MOVE RO.B ;by comparing the head and tail
;pointers
CMP A,B ;of the circular transmit buffer.
JEQ SND-BUF ;if equal, transmit completed packet
MOVE R5,X:(R1) + ;if not, put next character in
;transmit buffer and
Figure 11-35. Multidrop Transmit Receive Example (Sheet 3 of 5)
MOTOROLA DSP56000/DSP56001 USER'S MANUAL

11-69

MOVE (R5) + ;increment the pointers.
MOVE (R1)+ ;Temporarily increment the tail
;pointer to test buffer again

JMP LOOP
SND-BUF JSR WAKE-UP ;Wake up proper slave and send
;packet
SEND JMP SEND ;and allow interrupts to drain

;the transmit buffer.

P KKK L LI R R R R R R R AR AR RXX AR R XXX AR EXXX LRI E R KRR KRN
’

; SUBROUTINE TO READ SCI AND STORE IN BUFFER USING A LONG INTERRUPT *

P EEEEEREEEREERAEEE LA EXAXEEAEXEAELEX XA AR AE KA EEEERERRREERREX XXX XX
’

RX JCLR #7,X:$FFF1,RX-DATA ;Check if this is address or data.

MOVEP X:SRX,A ;Compare the received address

MOVE N1,B ;with the slave address.

CMP AB

JEQ END-RX ;If address OK, use interrupts to Rx

: ; packet .

BSET #6,X:$FFF0 ;if not, go back to sleep

JMP END-RX ;and return to previous program.
RX-DATA MOVEP X:SRX,X:(R3)+ ;Put data in buffer,

MOVE N2, X:RX-MTY ;and clear the Rx buffer empty flag
END-RX RTI ;Return to previous program

o EEEEEXEEEE LR X EREREERERLE R RXEERXEREAXEREERRAXEERX XX AREXX XX XX ERERXR
’

; SUBROUTINE TO WRITE BUFFER TO SCI USING A LONG INTERRUPT *

 REEEEEK XXX R R R R R ER R AR AR ER XX EE XXX IR XXX R R R R R RRXXXXX¥
’

TX MOVEP X:(R0O)+,X:STX ;Transmit a byte and increment the
_ © ;pointer
MOVE RO,A ;Check to see if the TX buffer is
;empty
MOVE R1,B
CMP A,B
JNE END-TX ;If not, return to main
MOVE #$000001,X0 ;If it is, set the TX buffer empty
v : .flag
MOVE X0, X:TX-MTY
BCLR #12,X:SCR ;disable transmit interrupts, and
END-TX RTI) ;return to main

Figure 11-35. Multidrop Transmit Receive Example (Sheet 4 of 5)

11-60 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

¢ EEEEE IR EE KRR E R R R KRR RN ERR KRR KRR EXKRARE XXX XK KRN *
’

; SUBROUTINE TO WAKE UP THE ADDRESSED SLAVE ‘ ¥

¢ KEEKEEEEEEEEEEEEEEEREEEER XXX R RN E R ERER AR EREXRXEXX XXX RRRN
’

WAKE-UP MOVEP N1,X:STXA ;Transmit slave address using STXA
;not STX
BSET #12,X:SCR ;Enable transmit interrupts to send
: ' ;packet
AWAKE RTI
END ;End of example.

Figure 11-35. Multidrop Transmit Receive Example (Sheet 4 of 5)

11.2.9 SCI Timer

The SCI clock used to determine the data transmission rate can also be used to cause a
periodic interrupt. This interrupt can be used as an event timer or for any other timing
function. Figure 11-36 illustrates how the SCI timer is programmed. Only bits CD11-CDO0
and SCP in the SCCR are used to determine the time base. The crystal oscillator fosc is
first divided by 2 and then divided by the number CD11-CDO in the SCCR. The oscillator
is then divided by 1 (if SCP=0) or eight (if SCP=1). Finally, it is divided by 2 and then by
16. If TMIE in the SCR is set (1) when the periodic timeout occurs, the SCI timer interrupt
is recognized and pending. The SCI timer interrupt is automatically cleared when the
interrupt is serviced. This interrupt will occur every time the periodic timer times out. If
only the timer function is being.used (i.e., PC0, PC1, and PC2 pins have been programmed
as parallel I/0 pins), the transmit interrupts should be turned off (TIE=0). Under individual
reset, TDRE will remain set, continuously generating interrupts.

Figure 11-36 shows that an external clock can be used for SCI receive and/or transmit,
which frees the SCI timer to be programmed for a different interrupt rate. In addition, both
the SCI timer interrupt and the SCI can use the internal time base if the SCI receiver and/
or transmitter require the same clock period as the SCI timer.

The following program (see Figure 11-37) configures the SCI to interrupt the DSP at fixed
intervals. The program starts by setting equates for convenience and clarity and then points
the reset vector to the start of the program. The SCI timer interrupt vector location contains
“move (RO)+", incrementing the contents of RO, which serves as an elapsed time counter.

The timer initialization consists of enabling the SCI timer interrupt, setting the SCI baud

rate counters for the desired interrupt rate, setting the interrupt mask, enabling the interrupt,
and then enabling the SCI state machine.

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 11-61

SCI INTERFACE CONTROL REGISTER (SCCR)

(READ/WRITE)
15 14

13

12 11 10 9

8 7 6 5

4 3 2

1

0

xserr2| Tom | Rem | sce | cop | coni | coto | cos | cos | co7 | coe | cos | cos | cos | coz2 | cor | coo |
— : 7

Y

‘—Y

PRESCALER
Oy | 17 scp=1, THEN DiviDe By 8 [«—] OYIPE BY 1 | DIMIE 1 fose
IF SCP=0, THEN DIVIDE BY 1
OUTPUT DIVIDER SCKP
IF SYNC, THEN DIVIDE BY 2
> IF ASYNC THEN: SCLK
COD=1, DIVIDE BY 16
| coD—>{ COD=0, DIVIDE BY 1 SCKP: £
X U
T T
E ROM —\ =
R R
N ™ —>d_/ N
A
L TCM L
c TRANSMIT CONROL ,L 1 c
v F ASYNC, THEN DIVIDE BY 16| TRANSMIT CLOCK ' O—& L
0 IF SYNC THEN: .0
¢ MASTER, DIVIDE BY 2 ¢
SLAVE, DIVIDE BY 1 o
0
RECEIVE CONTROL ¢ 1
IF ASYNC, THEN DIVIDE BY 16| RECEIVE CLOCK
IF SYNC THEN: l«——————— 0~
| PerioDIC TIMER MASTER, DIVIDE BY 2
DIVIDE BY 16 SLAVE, DIVIDE BY 1 o

15 14

SCI INTERFACE Ci
(READ/WRITE)

13 12 1 10 9

ONTROL REGISTER (SCR)

8 7 6 5

4 3 2

0

xsrrof 0 | o | 1 | mE| mE | e]| TE | Re jwoms| Rwu [wake] sek [o Jwps2{wbsiJwoso]

1. WHEN PERIODIC TEMEOUT OCCURS AND TMIE=1 IN SCR, THEN AN SCI TIMER EXCEPTION IS TAKEN.

—=

TMIE
INTERRUPT.
VECTOR
TABLE
% »| SCI TIMER
Vo —— "SERvICE
P:$001C SCI TIMER ROUTINE
(FAST OR LONG}

2. PENDING TIMER INTERRUPT IS AUTOMATICALLY CLEARED WHEN INTERRUPT IS SERVICED.

11-62

Figure 11-36. SCI Timer Operation

DSP56000/DSP56001 USER'S MANUAL

MOTOROLA

o FEERKEEEEEEERAEXEEEEERE R EXR XX EERERER R ERERLEEERERXRRXRRRERRXERER SR
’

; TIMER USING SCI TIMER INTERRUPT *

¢ HEEEEEEX TR R EE XKL EXER AR XX R AR AR KRR XXX EERRRXR R R RRERRN
’

P REEERREEEEEEEEERERRREERREERXXXRXRRRERERRRXRH
’

; SCI and other EQUATES *

C REERHEEREKEEEEEEEXERREREREEREXXEEX X XXX XXX XK
’

START EQU $0040 ;Start of program

SCR EQU $FFFO ' ;SCI control register
SCCR EQU $FFF2 ;SCl clock control register
IPR EQU $FFFF ;Interrupt priority register

¢ KEEEEREEEEEELXXEEELRE LR XX XL EREREXXRXXERXNSX
' 1

; RESET VECTOR *

@ HEEEEEEEEEEXREEEF AR XXX AR RRRNRK
’ .

ORG P:$0000
JMP START -

PREREREREREEERERKEERE KRR KRR RERKKEE R KKK XK KEK KR
’ ~

; SCI TIMER INTERRUPT VECTOR *

¢ EHEERELEEXEEEEEEEERXEEXREARKERXXEREREXERXERXX
r

ORG P:$001C :Load the SCI timer interrupt ‘vectors
MOVE (RO) + :Increment the timer interrupt counter
NOP ; This timer routine is implemented

;as a fast interrupt.

fEEEEEEEXEEE R XF IR EXXXXXRX IR RREARRRK KX
’

; INITIALIZE THE SCI PORT *

CERERREKRERFEREE KRR REKRERERRERREK KKK R KRR R RHR
’

ORG " P:START ;Start the program at location $40
MOVE #0,R0 ;Initialize the timer interrupt counter

Figure 11-37. SCI Timer Example (Sheet 1 of 2)

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 11-63

MOVEP #%$2000,X:SCR ;Select the timer interrupt

MOVEP #%013F,X:SCCR ;Set the interrupt rate at 1 ms.
;(arbitrarily chosen).
;Interrupts/second =
fosc/(64 X (7(SCP)—+1) X (CD+ 1))
;Note that this is the same equation

* ;as for SCI async baud rate.

;For 1T ms, SCP=0,
;CD=0001 0011 1111.

MOVEP #$C000,X:IPR ;Set the interrupt priority level —
;application specific.
ANDI #$FC,MR ;Enable interrupts, set MR bits 11 and
;10=0
END JMP END ;Normally something more useful

;would be put here.
END ;End of example.

Figure 11-37. SCI Timer Example (Sheet 2 of 2)

11.2.10 Example Circuits

The SCI can be used in a number of configurations to connect multiple processors. The
synchronous mode shown .in Figure 11-38 shows the DSP acting as a slave. The 8051
provides the clock that clocks data in and out of the SCI, which is possible because the
SCI shift register mode timing is compatible with the timing for 8051/8096 processors.
Transmit data is changed on the negative edge of the clock, and receive data is latched
on the positive edge of the clock. A protocol must be used to prevent both processors from
transmitting simultaneously. The DSP is also capable of being the master device.

A multimaster system can be configured (see Figure 11-39) using a single transmit/receive
line, multidrop word format, and wired-OR. The use of wired-OR requires a pullup resistor
as shown. A protocol must be used to prevent collisions. This scheme is physically the
simplest multiple DSP interconnection because it uses only one wire and one resistor.

The master-slave system shown in Figure 11-40 is different in that it is full duplex. The
clock pin is not required; thus, it is configured as a parallel /O pin., Communication is
asynchronous. The slave's transmitters must be wire-ORed because more than one trans-
mitter is on one line. The master’s transmitter does not need to be wire-ORed.

11-64 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

CLOCK INPUT | | | I | I | I l I | I I I I
|<'—|5 CCVC

' —
TRANSMIT DATA \ B0 X BI X B2 X 83 X B4 X B5 x B6 x 37,
RECEIVE DATA XXXXXX

SAMPLE 0 1 2 3 4 5 6 1
DSP56000 : 8051
RXD [<— »| P30
XD
SCLK | P3.1

Figure 11-38. Synchronous Mode Example

|
DSPS000/DSP5G001 DSPSED00/0SPSG00!
XD > : ™ >
RXD RXD |
pc2 f— pc2 f——

Figure 11-39. Multimaster System Example

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 11-65

MASTER RECEIVE

—AAA~O

MASTER TRANSMIT 7y
Mﬁgg{}gy DSPSB%)&I\)/%PBGOO] DSPSBOSO&Q/SEPSEUUI DSPSSOSOI%\)/%PSGOM
RXD RXD RXD RXD
XD XD TXD TXD
PC2 p—— PC2 p— PC2 f— PC2 p——

Figure 11-40. Master-Slave System Example

11.3 SYNCHRONOUS SERIAL INTERFACE (SSl)

The synchronous serial interface (SSI) provides a full-duplex serial port for serial com-
munication with a variety of serial devices including one or more industry-standard codecs,
other DSPs, microprocessors, and peripherals which implement the Motorola SPI. The SSI
consists of independent transmitter and receiver sections and a common SSI clock gen-
erator. Three to six pins are required for operation, depending on the operating mode

selected.

The following is a short list of SSI features:
A 6.75 Million Bit/Second at 27 MHz {fosc/4) serial interface
Double Buffered
User Programmable
Separate Transmit and Receive Sections
Control and Status Bits

Interface to a Variety of Serial Devices, Including:
Codecs (usually without additional logic)
MC145500
MC145501
MC145502
MC145503
MC145505
MC145402 (13-bit linear codec)
MC145554 Family of Codecs - -

11-66 DSP56000/DSP56001 USER'S MANUAL

MOTOROLA

Serial Peripherals (A/D, D/A)
Most Industry-Standard A/D, D/A.
DSP56ADC16 (16-bit linear A/D)
DSP56000 to DSP56000 Networks
Motorola SPI Peripherals and Processors
Shift Registers

Interface to Time Division Multiplexed Networks without Additional Logic

Six Pins:
STD SS! Transmit Data
SRD SS! Receive Data
SCK SSI Serial Clock
SCO Serial Control 0 (defined by SSI mode)
SC1 Serial Control 1 (defined by SSI mode)
SC2 Serial Control 2 (defined by SSI mode)

On-chip Programmable Functions Include:

Clock — Continuous, Gated, Internal, External
Synchronization Signals:

— Bit Length

— Word Length
TX/RX Timing — Synchronous, Asynchronous
Operating Modes — Normal, Network, On-Demand
Word Length — 8, 12, 16, 24 Bits
Serial Clock and Frame Sync Generator

Four Interrupt Vectors:
Receive
Receive with Exception
Transmit
Transmit with Exception

This interface is named synchronous because all serial transfers are synchronized to a
clock. Additional synchronization signals are used to delineate the word frames. The normal
mode of operation is used to transfer data at a periodic rate, but only one word per period.
The network mode is similar in that it is also intended for periodic transfers; however, it
will support up to 32 words (time slots) per period. This mode can be used to build time
division multiplexed (TDM) networks. In contrast, the on-demand mode is intended for
nonperiodic transfers of data. This mode can be used to transfer data serially at high speed
when the data becomes available. This mode offers a subset of the SPI protocol.

'11.3.1 SSI Data and Control Pins

The SSI has three dedicated 1/0 pins (see Figure 11-1), which are used for transmit data
(STD), receive data (SRD), and serial clock (SCK), where SCK may be used by both the
transmitter and the receiver for synchronous data transfers or by the transmitter only for
asynchronous data transfers. Three other pins may also be used, depending on the mode
selected; they are serial control pins SC0, SC1, and SC2. These serial control pins may be

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 11-67

programmed as SSI control pins in the port C control register. Table 11-4 shows the
definition of SCO, SC1, SC2, and SCK in the various configurations. The following para-
graphs describe the uses of these pins for each of the SSI operating modes.

Figures 11-41 and 11-42 show the internal clock path connections in block diagram form.

The receiver and transmitter clocks can be internal or external depending on the SYN,
SCDO, and SCKD bits in CRB.

Table 11-4. Definition of SC0, SC1, SC2, and SCK

Asynchronous Synchronous
SSI Pin Name (SYN=0) (SYN=1)
(Control Bit Name) Continuous Clock Gated Clock Continuous Clock Gated Clock
(GCK=0) {GCK=1) (GCK=0) (GCK=1)

SCO0=0 (in) RXC External RXC External Input FO Input FO
SCO0=1 (out) RXC Internal RXC Internal Output FO Output FO
{SCDO)
SC1=0 (in) FSR External Not Used Input F1 Input F1
SC1=1 (out} FSR Internal FSR Internal Output F1 Output F1
(SCD1)
SC2=0 (in) FST External Not Used FS* External Not Used
SC2=1 (out} FST Internal FST Internal FS* Internal FS* Internal
(SCD2)
SCK=0 (in) TXC External TXC External *XC External *XC External
SCK=1 (out) TXC Internal TXC Internal *XC Internal *XC Internal
(SCKD)

TXC — Transmitter Clock

RXC — Receiver Clock

*XC — Transmitter/Receiver Clock {synchronous operation)

FST — Transmitter Frame Sync

FSR — Receiver Frame Sync

FS* — Transmitter/Receiver Frame Sync (synchronous operation)

PFO —Flag0

F1 —Flag 1

11.3.1.1 SERIAL TRANSMIT DATA PIN (STD). STD is used for transmitting data from the
serial transmit shift register. STD is an output when data is being transmitted. Data changes
on the positive edge of the bit clock. STD goes to high impedance on the negative edge
of the bit clock of the last data bit of the word (i.e., during the second half of the last data
bit period) with external gated clock, regardless of the mode. With an internally generated
bit clock, the STD pin becomes high impedance after the last data bit has been transmitted
for a full clock period, assuming another data word does not follow immediately. If a data
word follows immediately, there will not be a high-impedance interval.

Codecs label the MSB as bit 0; whereas, the DSP labels the LSB as bit 0. Therefore, when
using a standard codec, the DSP MSB (or codec bit 0) is shifted out first when SHFD=0,
and the DSP LSB (or codec bit 7) is shifted out first when SHFD =1. STD may be programmed
as a general-purpose pin called PC8 when the SSI STD function is not being used.

11-68 DSP56000/DSP56001 USER’'S MANUAL MOTOROLA

FLAGO OUT

(SYNC MODE) (SYNC MODE)

FLAGO IN

) ———————o
SCDO SYN=0 SCDo=1
> SYN=1
@ INTERNAL BIT CLOCK
SCKD —
PRESCALE DIVIDER
DIVIDE | | DIVIDE BY 1 § | DIVIDE BY 1 DIVIDE
BY 2 OR T0 BY 2
DIVIDE BY 8 | |pIviDE BY 256
Fosc PSR PMO-PM7

© WLLWLO

¥

RX WORD
LENGTH DIVIDER

RCLOCK RX SHIFT REGISTER

WLILWLO

¥

TCLOCK | 1x worD

~| LENGTH DIVIDER

TX SHIFT REGISTER

Figure 11-41. SSI Clock Generator Functional Block Diagram

11.3.1.2. SERIAL RECEIVE DATA PIN (SRD).

edge of the bit clock.

11.3.1.3 SERIAL CLOCK (SCK).
for the SSl interface. The SCK is a clock input or output used by both the transmitter and
receiver in synchronous modes or by the transmitter in asychronous modes (see Table

11-5).

MOTOROLA

RX WORD
CLOCK

TX WORD
CLOCK

SRD receives serial data and transfers the
data to the SSI receive shift register. SRD may be programmed as a general-purpose 1/O
pin called PC7 when the SSI SRD function is not being used. Data is sampled on the negative

NOTE

Although an external serial clock can be independent of and asynchronous to the
DSP system clock, it must exceed the minimum clock cycle time of 8T (i.e., the
system clock frequency must be at least four times the external SSI clock fre-
quency). The SSI needs at least four DSP phases (DSP phase =T) inside each half
of the serial clock.

DSP56000/DSP56001 USER'S MANUAL

SCK is a bidirectional pin providing the serial bit rate clock

11-69

RX WORD
CLocK

&

TX WORD
CLOCK

11-70

DCUI'DC" Fsto, FsLi
Y Y
RECEIVER SYNC INTERNAL RX FRAME CLOCK
1 FRAME RATE TYPE >
DIVIDER
SCD1=1 SYN=0 SCo1
= SC1
RECEIVE RECEIVE l/
> —e
CONTROL LOGIC FRAME SYNC SCD1=0 SYN=
SYN=1 <
' 7
pCo-DC4 <>
FLD, FSL1 FLAGT IN FLAGI OUT
(SYNC MODE) (SYNC MODE) SCD?2
- TRANSMITTER o SYNC | INTERNAL TX FRAME CLOCK
> FRAME RATE vee SC2
DIVIDER l/ v
A
‘ TRANSMIT _ TRANSMIT
CONTROL LOGIC | ~ FRAME SYNC
Figure 11-42. SSI Frame Sync Generator Functional Block Diagram
Table 11-5. SSI Clock Sources,
Inputs, and Outputs
. R Clock RX Clock T Clock TX Clock
SYN SCKD SCDo Source Out Source Out
Asynchronous
0 0 0 EXT,SC0 | — EXT, SCK | —
0 0 1 INT SCo EXT, SCK -
0 1 0 EXT, SCO - INT SCK
0 1 1 INT SCo INT SCK
Synchronous
1 0 0 EXT, SCK - EXT, SCK —
1 0 1 EXT, SCK - EXT, SCK —
1 1 0 INT SCK INT SCK
1 1 1 INT SCK INT SCK
EXT — External Pin Name
INT — Internal Bit Clock
DSP56000/DSP560Q1 USER'S MANUAL MOTOROLA

11.3.1.4 SERIAL CONTROL PIN (SC0). The function of this pin is determined solely on
the selection of either synchronous or asynchronous mode (see Tables 11-4 and 11-5). For
asynchronous mode, this pin will be used for the receive clock I/0. For synchronous mode,
this pin is used for serial flag I/0. A typical application of flag /0 would be multiple device
selection for addressing in codec systems. The direction of this pin is determined by the
SCDO bit in the CRB as described in the following table. When configured as an output,
this pin will be either serial output flag 0, based on control bit OF0 in CRB, or a receive
shift register clock output. When configured as an input, this pin may be used either as
serial input flag 0, which will control status bit IF0 in the SSISR, or as a receive shift register
clock input.

SYN GCK SCDO Operation
Synchronous Continuous Input Flag 0 Input
Synchronous Continuous Output Flag 0 Output
Synchronous Gated Input Flag 0 Input
Synchronous Gated Output Flag 0 Output
Asynchronous Continuous Input Rx Clock — External
Asynchronous Continuous Output Rx Clock — Internal
Asynchronous Gated Input Rx Clock — External
Asynchronous Gated Output Rx Clock — Internal

11.3.1.5 SERIAL CONTROL PIN {SC1). The function of this pin is determined solely on
the selection of either synchronous or asynchronous mode (see Table 11-4}. In asynchron-
ous mode (such as a single codec with asynchronous transmit and receive), this pin is the
receiver frame sync 1/0. For synchronous mode with continuous clock, this pin is serial
flag SC1 and operates like the previously described SC0. SCO and SC1 are independent
serial /0 flags but may be used together for multiple serial device selection. SCO and SC1
can be used unencoded to select up to two codecs or may be decoded externally to select
up to four codecs. The direction of this pin is determined by the SCD1 bit in the CRB. When
configured as an output, this pin will be either a serial output flag, based on control bit
OF1, or it will make the receive frame sync signal available. When configured as an input,
this pin may be used as a serial input flag, which will control status bit IF1 in the SSI status
register, or as a receive frame sync from an external source for continuous clock mode.
In the gated clock mode, external frame sync signals are not used.

SYN GCK SCD1 Operation
Synchronous Continuous Input Flag 1 Input
Synchronous Continuous QOutput Flag 1 Qutput
Synchronous Gated Input Flag 1 Input
Synchronous Gated . | Output Flag 1 Output
Asynchronous Continuous Input RX Frame Sync — External
Asynchronous Continuous Output RX Frame Sync — Internal
Asynchronous Gated Input _
Asynchronous Gated Output RX Frame Sync — Internal

MOTOROLA DSP56000/DSP56001 USER'S MANUAL) 11-71

11.3.1.6 SERIAL CONTROL PIN (SC2). This pin is used for frame sync I/O (see Table
11-4). SC2 is the frame sync for both the transmitter and receiver in synchronous mode
and for the transmitter oniy in asynchronous mode. The direction of this pin is determined
by the SCD2 bit in CRB. When configured as an output, this pin is the internally generated
frame sync signal. When configured as an input, this pin receives an external frame sync
signal for the transmitter (and the receiver in synchronous operation). In the gated clock
mode, external frame sync S|gnals are not used.

SYN GCK SCD2 Operation
Synchronous Continuous Input TX and RX Frame Sync
Synchronous Continuous Output TX and RX Frame Sync
Synchronous ‘| Gated Input -
Synchronous Gated Output TX and RX Frame Sync
Asynchronous Continuous Input TX Frame Sync — External
Asynchronous Continuous Output TX Frame Sync — Internal
Asynchronous Gated Input e
Asynchronous Gated Qutput TX Frame Sync — Internal

11.3.2 SSI Interface Programming Model

The SSI can be viewed as two control registers, one status register, a transmit register, a
receive register, and special-purpose time slot register. These registers are illustrated in
Figures 11-43 and 11-44. The following paragraphs give detailed descriptions and opera-
tions of each of the bits in the SSI registers. The SSI registers are not prefaced with an
"S" (for serial) as are the SCI registers.

11.3.2.1 SSI CONTROL REGISTER A (CRA). CRA is one of two 16-bit read/write control
registers used to direct the operation of the SSI. The CRA controls the SSI clock generator
bit and frame sync rates, word length, and number of words per frame for the serial data.
The high-order bits of CRA are read as zeros by the DSP CPU. The CRA control bits are
described in the following paragraphs.

11.3.2.1.1 CRA Prescale Modulus Select (PM7-PMO0) Bits 0-7. The PM0-PM?7 bits specify
the divide ratio of the prescale divider in the SSI clock generator. A divide ratio from 1 to
256 (PM =0 to $FF) may be selected. The bit clock output is available at the transmit clock
(SCK) and/or the receive clock (SC0) pins of the DSP. The bit clock output is also available
internally for use as the bit clock to shift the transmit and receive shift registers. Careful
choice of the crystal oscillator frequency and the prescaler modulus will allow the industry-
standard codec master clock frequencies of 2.048 MHz, 1.544 MHz, and 1.636 MHz to be
generated. Hardware and software reset clear PM0-PM?7.

11-72 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

V104O10W

e€L-LL

AVANVYIN S, H3SN L0095dSA/00095dSA

15 14 13° 12

11

10

9

8 7 6 5 -4 3 2 i 0

PSR | WL1 | WLO | DC4

XSFFEC) ‘o | o | 0 | o

_J AN /
PRESCALE

RANGE WORD-LENGTH

pc3 | oc2 | per | oco | pM7 | Pms | PM5 | Pma | PM3 | Pm2 | PM1 | PMO | SS1 CONTROL REGISTER A (CRA)
(0) (0 o | (0) 0 | 0 (0) (0) {0) (0) {0) | (READ/WRITE)
/ \ /
\/

FRAME RATE DIVIDER CONTROL

PRESCALE MODULUS SELECT

CONTROL
RESET VALUE = $0000
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
xsrrep| RIE | TEE | RE [TE | MOD f 6CK | SYN [FSLI | FSLO | SHFD | SCKD | SCD2 | SCD1 | SCDO | OF1 | OF0 | SSI CONTROL REGISTER B (CRB)
’ {0) (0) {0) (0) (0) (0) {0) (0) {0) {0) (0) (0) {0) (0) (0) {0) | (READ/WRITE)
" SERIAL CONTROL DIRECTION OUTPUT FLAGS
RECEIVE INTERRUPT ENABLE SHIFT DIRECTION
TRANSMIT INTERRUPT ENABLE ————— FRAME SYNC LENGTH 0 (MIXED BIT/WORD)
RECEIVER ENABLE FRAME SYNC LENGTH (BIT/WORD)
TRANSMITTER ENABLE SYNC/ASYNC CONTROL
MODE SELECT (NETWORK/NORMAL) GATED CLOCK CONTROL
RESET VALUE = $0000
7 6 5 4 3 2 1 0
. [SS! TIME SLOT REGISTER (TSR}
X:SFFEE (WRITE)
X:SFFEE ROF | TDE | ROE | TUE | RFS | TFS | IF1 | IF0 |SSI STATUS REGISTER (SSISR)
' W jofw|ofo|]ol]o]® ran
RECEIVE DATA REGISTER FULL INPUT FLAGS
TRANSMIT DATA REGISTER EMPTY smm—

RECEIVER OVERRUN ERROR FLAG

TRANSMIT FRAME SYNC
RECEIVE FRAME SYNC

TRANSMITTER UNDERRUN ERROR FLAG
RESET VALUE = $40

Figure 11-43. SSI Interface Programming Model — Control and Status Registers

23 1615 87 0

X:SFFEF| RECEIVE WIGH BYTE | RECEIVEMIDDLEBYTE | RECEIVE Low BYTE | StAL RECEIVE DATA REGISTER
.IHCHU UNLT)
7 A 07 A 07 A 0
3 1615 87 0
SERIAL RECEIVE RECEIVE HIGH BYTE RECEIVE MIDDLE BYTE RECEIVE LOW BYTE
SHIFT REGISTER . : \ BT
7 07 0
\ 16 BIT | s
12 BIT . Z(—
8 BIT :
WL1, WLO
MSB LSB :
;SB—E-BIT DATA —>|<— 0 E:<— 0—> 0 >1 LEAST SIGNIFICANT
<————— 12.BIT DATA ZERQ FiLL
MSB LSB
€——————————16-BIT DATA =5
MSB LsB
- 24-BIT DATA >
NOTES:
1. Data is received MSB first if SHFD=0.
2. Compatible with fractional format.
- (a) Receive Registers for SHFD=0
SERIAL RECEIVE|SHIFT REGISTER
3 16 15 87 0

X:SFFEF TRANSMIT HIGH BYTE | TRANSMIT MIDDLE BYTE | TRANSMIT Low BYTE | Uit TRUSMIT DATA REGISTER

7 07 07 0
2 Y 1615 Y 87 Y 0
TRANSMIT HIGH BYTE | TRANSMIT MIDDLE BYTE | TRANSMIT LOW BYTE | SERIAL TRANSMIT
- | —— S -SHIFT REGISTER
7 07 07 0
MSB LSB
<—— 8-BIT DATA — > 0 —>€—) — > E——— [———>
MSB LSB LEAST SIGNIFICANT
| <€————— 12-BIT DATA —————>] ZERO FILL
LSB
<MSB_ 1587 DATA >
<MsB 24-BIT DATA L3B,
NOTES:

1. Data is sent MSB first if SHFD =0.
2. Compatible with fractional format.

(b) Transmit Registers for SHFD=0

Figure 11-44. SSI Interface Programming Model (Sheet 1 of 2)

11-74 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

23 16 15 87 0

XSFFEF| RECEIVE HIGH BYTE | RECEIVE MIDDLEBYTE | RECEVELOWBYTE | Scriat RECEIVE DATA REGISTER (RK)
(READ ONLY)
! 07 A 07 A 0
23 16 15 87 0
RECEIVE HIGH BYTE | RECEVEMIDDLEBYTE | RECEVELOWBYIE oo b oo cren
— e - -
7 07 07 0
MsB Ls8
|€——8-BIT DATA ——>le— ¢ —>]€—0 —>le— g ——3]
MSB LSB LEAST SIGNIFICANT
€—————— 12-BIT DATA —————»] ZERO FILL
MSB LSB
< 16-BIT DATA —————>
MsB Ls8
< 20-BIT DATA >
NOTES:

1. Data is received LSB first if SHFD=1.
2. Compatible with fractional format.

"(c) Receive Registers for SHFD=1

23 16 15 87 0

X:SFFEF TRANSMIT HIGH BYTE | TRANSMIT MIDDLE BYTE | TRANSMIT Low BYTE |yt RANSMIT DATA REGISTER (X

1 07 07 0

3 Y 16 15 Y 87 0

TRANSMIT HIGH BYTE TRANSMIT MIDDLE BYTE TRANSMIT LOW BYTE |SERIAL TRANSMIT SHIFT REGISTER
————— — e

! 07 \“7 J8 BIT 0
12 BIT

8 BIT

WL1, WLo

LsB
<MSB_g.pi7 DATA ——»I(—— 0 —>}e—0 —>le—— 1 ——>]
LS8

(ﬁ—- 12-BIT DATA ———>»"

MSB LSB

r——— 16-BIT DATA
< MSB

< 24-BIT DATA LS8

LEAST SIGNIFICANT
ZERO FILL

NOTES:
1. Data is sent LSB first if SHFD=1.
2. Compatible with fractional format.

(d) Transmit Registers for SHFD=1
Figure 11-44. SSl Interface Programming Model (Sheet 2 of 2)

MOTOROLA DSP56000/DSP56001 USER’'S MANUAL 11-75

£

11.3.2.1.2 CRA Frame Rate Divider Contro! (DC4-DC0) Bits 8-12. The DC4-DCO0 bits con-
trol the divide ratio for the programmable frame rate dividers used to generate the frame
clocks (see Figure 11-42). In network mode, this ratio may be interpreted as the number
of words per frame minus one. In normal mode, this ratio determines the word transfer
rate. The divide ratio may range from 1 to 32 (DC=00000 to 11111) for normal mode and
2 to 32 (DC=00001 to 11111) for network mode.

A divide ratio of one {DC=00000) in network mode is a special case (see 11.3.7.4 ON-
DEMAND MODE). In normal mode, a divide ratio of one (DC=00000) provides continuous
periodic data word transfers. A bit-length sync (FSL1=1, FSLO=0) must be used in this
case. Hardware and software reset clear DC4-DCO.

11.3.2.1.3 CRA Word Length Control (WLO, WL1) Bits 13 and 14. The WL1 and WLO bits
are used to select the length of the data words being transferred via the SSI. Word lengths
of 8, 12, 16, or 24 bits may be selected according to the following assignments:

wL1 wLo Number of Bits/Word
8

12

16

24

a|a]o|e
alolale

These bits control the number of active clock transitions in the gated clock modes and
control the word length divider (see Figures 11-41 and 11-42), which is part of the frame
rate signal generator for continuous clock modes. The WL control bits also control the
frame sync pulse length when FSLO and FSL1 select a WL bit clock (see Figure 11-41).
Hardware and software reset clear WLO and WL1.

11.3.2.1.4 CRA Prescaler Range (PSR) Bit 15. The PSR controls a fixed divide-by-eight
prescaler in series with the variable prescaler. This bit is used to extend the range of the
prescaler for those cases where a slower bit clock is desired (see Figure 11-41). When PSR
is cleared, the fixed prescaler is bypassed. When PSR is set, the fixed divide-by-eight
prescaler is operational. This allows a 128-kHz master clock to be generated for MC14550x
series codecs.

The maximum internally generated bit clock frequency is fosc/4, the minimuim internally
generated bit clock frequency is fosc/4/8/256 =fosc/8192. Hardware and software reset clear
PSR.

11.3.2.2 SSICONTROL REGISTER B (CRB). The CRB is one of two 16-bit read/write control
registers used to direct the operation of the SSI. CRB controls the SSI multifunction pins,
SC2, SC1, and SCO, which can be used as clock inputs or outputs, frame synchronization
pins; or serial I/O flag pins. The serial output flag control bits and the direction control bits

11-76 DSP56000/DSP56001 USER'S MANUAL » MOTOROLA

for the serial control pins are in the SSI CRB. Interrupt enable bits for each data register
interrupt are provided in this control register. When read by the DSP, CRB appears on the
two low-order bytes of the 24-bit word, and the high-order byte reads as zeros. Operating
modes are also selected in this register. Hardware and software reset clear all the bits in
the CRB. The relationships between the SSI pins (SC0, SC1, SC2, and SCK) and some of
the CRB bits are summarized in Tables 11-4, 11-6, and 11-7. The SSI CRB bits are described
in the following paragraphs.

11.3.2.2.1 CRB Serial Qutput Flag 0 (OF0) Bit 0. When the SSl is in the synchronous clock
mode and the serial control direction zero bit (SCDO0) is set, indicating that the SCO pin is
an output, then data present in OF0 will be written to SCO at the beginning of the frame
in normal mode or at the beginning of the next time slot in network mode. Hardware and
software reset clear OFOQ.

11.3.2.2.2 CRB Serial Output Flag 1 (OF1) Bit 1. When the SSl is in the synchronous clock
mode and the serial control direction one (SCD1) bit is set, indicating that the SC1 pin is
an output, then data present in OF1 will be written to the SC1 pin at the beginning of the
frame in normal mode or at the beginning of the next time slot in network mode (see 11.3.7
Operating Modes — Normal, Network, and On-Demand).

The normal sequence for setting output flags when transmitting data is to set TDE (TX
empty), to first write the flags, and then write the transmit data to the TX register. OF0
and OF1 are double buffered so that the flag states appear on the pins when the TX data
is transferred to the transmit shift register (i.e., the flags are synchronous with the data).
Hardware and software reset clear OF1.

NOTE

The optional serial output pins (SCO, SC1, and SC2) are controlled by the frame
timing and are not affected by TE or RE.

11.3.2.2.3 CRB Serial Control 0 Direction (SCD0) Bit 2. SCDO controls the direction of the
SCO I/0 line. When SCDO is cleared, SCO is an input; when SCDO is set, SCO is an output
(see Tables 11-4, 11-5, and Figure 11-45). Hardware and software reset clear SCDO.

11.3.2.2.4 CRB Serial Control 1 Direction (SCD1) Bit 3. SCD1 controls the direction of the
SC1 1/O line. When SCD1 is cleared, SC1 is an input; when SCD1 is set, SC1 is an output
(see Tables 11-4, 11-5 and Figure 11-45). Hardware and software reset clear SCD1.

11.3.2.2.5 CRB Serial Control 2 Direction (SCD2) Bit 4. SCD2 controls the direction of the
SC2 I/0 line. When SCD2 is cleared, SC2 is an input; when SCD2 is set, SC2 is an output
{see Tables 11-4, 11-5, and Figure 11-45). Hardware and software reset clear SCD2.

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 11-77

TVYNNVIA S, 43SN 10095d4SA/00095dSd

8L-LL

VI10HOLOW

X:$FFED

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
SCKD | SCD2 | SCD1 | SCDo
RIE TIE RE TE MOD | GCK | SYN | FSL1 | FSLO | SHFD)) 0 ") 0F1 0F0
\ /
V
1=0UTPUT
0=INPUT
DIRECTION
CONTROLLED BY BASIC FUNCTION
SCO j€&——> SCDo RECEIVE CLOCK/FLAG 0
£ SC1 j&e————> SCD1 RECEIVE FRAME SYNC/FLAG 1
R SC2le—— > scD2 TRANSMIT FRAME SYNC/TX AND RX FRAME SYNC
T SCKle———— 3 scKD TRANSMIT CLOCK/TX AND RX CLOCK
c SRD [€¢——— — SSI RECEIVE DATA
Sof——m>> — $SI TRANSMIT DATA

NOTE: Parentheses indicate RESET condition.

Figure 11-45. Serial Control, Direction Bits

SSI CONTROL REGISTER B (CRB)
(READ/WRITE)

11.3.2.2.6 CRB Clock Source Direction (SCKD) Bit 5. SCKD selects the source of the clock
signal used to clock the transmit shift register in the asynchronous mode and both the
transmit shift register and the receive shift register in the synchronous mode. When SCKD
is set, the internal clock source becomes the bit clock for the transmit shift register and
word length divider and is the output on the SCK pin. When SCKD is cleared, the clock
source is external; the internal clock generator is disconnected from the SCK pin, and an
external clock source may drive this pin. Hardware and software reset clear SCKD.

11.3.2.2.7 CRB Shift Direction (SHFD) Bit 6. This bit causes the transmit shift register to
shift data out MSB first when SHFD equals zero or LSB first when SHFD equals one. Receive
data is shifted in MSB first when SHFD equals zero or LSB first when SHFD equals zero.
Hardware reset and software reset clear SHFD.

11.3.2.2.8 CRB Frame Sync Length (FSLO and FSL1) Bits 7 and 8. These bits select the
type of frame sync to be generated or recognized. If FSL1 equals zero and FSLO equals
zero, a word-length frame sync is selected for both TX and RX that is the length of the
data word defined by bits WL1 and WLO. If FSL1 equals one and FSLO equals zero, a
1-bit clock period frame sync is selected for both TX and RX. When FSLO equals one, the
TX and RX frame syncs are different lengths. Hardware reset and software reset clear FSLO
and FSL1.

FSL1 FSLO Frame Sync Length
0 0 WL bit clock for both TX/RX
One-bit clock for TX and WL bit clock for RX
One-bit clock for both TX/RX
One-bit clock for RX and WL bit clock for TX

0
1
1

= |lo |-

11.3.2.2.9 CRB Sync/Async (SYN) Bit 9. SYN controls whether the receive and transmit
functions of the SSI occur synchronously or asynchronously with respect to each other.
When SYN is cleared, asynchronous mode is chosen and separate clock and frame sync
signals are used for the transmit and receive sections. When SYN is set, synchronous mode
is chosen and the transmit and receive sections use common clock and frame sync signals.
Hardware reset and software reset clear SYN.

11.3.2.2.10 CRB Gated Clock Control (GCK) Bit 10. GCK is used to select between a
continuously running data clock or a clock that runs only when there is data to be sent in
the transmit shift register. When GCK is cleared, a continuous clock is selected; when GCK
is set, the clock will be gated. Hardware reset and software reset clear GCK.

NOTE

For gated clock mode with externally generated bit clock, mtemally generated
frame sync is not defined.

MOTOROLA DSP56000/DSP56001 USER'S MANUAL / 11-79

11.3.2.2.11 CRB SSI Mode Select (MOD) Bit 11. MOD selects the operational mode of the
SSI. When MOD is cleared, the normal mode is selected; when MOD is set, the network
mode is selected. In the normal mode, the frame rate divider determines the word transfer
rate — one word is transferred per frame sync during the frame sync time slot. In network
mode, a word is (possibly) transferred every time slot. For more details, see 11.3.3 OP-
ERATIONAL MODES AND PIN DEFINITIONS. Hardware and software reset clear MOD.

11.3.2.2.12 CRB SSI Transmit Enable (TE) Bit 12. TE enables the transfer of data from TX
to the transmit shift register. When TE is set and a frame sync is detected, the transmit
portion of the SSI is enabled for that frame. When TE is cleared, the transmitter will be
disabled after completing transmission of data currently in the SSI transmit shift register.
The serial output is three-stated, and any data present in TX will not be transmitted (i.e.,
data can be written to TX with TE cleared; TDE will be cleared, but data will not be
transferred to the transmit shift register).

- The normal mode transmit enable sequence is to write data to TX or TSR before setting
TE. The normal transmit disable sequence is to clear TE and TIE after TDE equals one.

In the network mode, the operation of clearing TE and setting it again will disable the
transmitter after completing transmission of the current data word until the beginning of
the next frame. During that time period, the STD pin will remain in the high-impedance
state. Hardware reset and software reset clear TE.

The on-demand mode transmit enable sequence can be the same as the normal mode, or
TE can be left enabled.

NOTE

TE does not inhibit TDE or transmitter interrupts. TE does not affect the generation
of frame sync or output flags.

11.3.2.2.13 CRB SSI Receive Enable (RE) Bit 13. When RE is set, the receive portion of
the SSl is enabled. When this bit is cleared, the receiver will be disabled by inhibiting data
transfer into RX. If data is being received while this bit is cleared, the remainder of the
word will be shifted in and transferred to the SSI receive data register.

RE must be set in the normal mode and on-demand mode to receive data. In network
mode, the operation of clearing RE and setting it again will disable the receiver after
reception of the current data word until the beginning of the next data frame. Hardware
and software reset clear RE.

NOTE

RE does not inhibit RDF or receiver interrupts. RE does not affect the generation
of a frame sync.

11-80 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

11.3.2.2.14 CRB SSI Transmit Interrupt Enable (TIE) Bit 14. The DSP will be interrupted
when TIE and the TDE flag in the SSl status register is set. When TIE is cleared, this interrupt
is disabled. However, the TDE bit will always indicate the transmit data register empty
condition even when the transmitter is disabled with the TE bit. Writing data to TX or TSR
will clear TDE, thus clearing the interrupt. Hardware and software reset clear RE.

There are two transmit data interrupts that have separate interrupt vectors:

1. Transmit data with exceptions — This interrupt is generated on the following con-
dition: ‘
TIE=1, TDE=1, and TUE=1

2. Transmit data without exceptions — This interrupt is generated on the following
condition: '
TIE=1, TDE=1, and TUE=0

See SECTION 8 PROCESSING STATES for more information on exceptions.

11.3.2.2.15 CRB SSI Receive Interrupt Enable (RIE) Bit 15. When RIE is set, the DSP will
be interrupted when RDF in the SSl status register is set. When RIE is cleared, this interrupt
is -disabled. However, the RDF bit still indicates the receive data register full condition.
Reading the receive data register will clear RDF, thus clearing the pending interrupt. Hard-
ware and software reset clear RIE.

There are two receive data interrupts that have separate interrupt vectors:

1. Receive data with exceptions — This interrupt is generated on the following condition:
RIE=1, RDF=1, and ROE=1

2. Receive data without exceptions — This interrupt is generated on the following con-
dition: ’
RIE=1, RDF=1, and ROE=0
See SECTION 8 PROCESSING STATES for more information on exceptions.

11.3.2.3 SSI STATUS REGISTER (SSISR). The SSISR is an 8-bit read-only status register
used by the DSP to interrogate the status and serial input flags of the SSI. When the SSISR
is read to the internal data bus, the register contents occupy the low-order byte of the data
bus, and the high-order portion is zero filled. The status bits are described in the following
paragraphs.

11.3.2.3.1 SSISR Serial Input Flag 0 (IF0) Bit 0. The SSI latches data present on the SCO
pin during reception of the first received. bit after frame sync is detected. IFO is updated
with this data when the receive shift register is transferred into the receive data register.
The IFO bit is enabled only when SCDO is cleared and SYN is set, indicating that SCO is an
input and the synchronous mode is selected (see Table 11-4); otherwise, IFO reads as a
zero when it is not enabled. Hardware, software, SS! individual, and STOP reset clear IFQ.

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 11-81

11.3.2.3.2 SSISR Serial Input Flag 1 (IF1) Bit 1. The SSI latches data present on the SC1
pin during reception of the first received bit after frame sync is detected. The IF1 flag is
updated with the data when the receiver shift register is transferred into the receive data
register. The IF1 bit is enabled only when SCD1 is cleared and SYN is set, indicating that
SC1 is an input and the synchronous mode is selected (see Table 11- 4); otherwise, IF1
reads as a zero when it is not enabled. Hardware, software, SSI individual, and STOP reset
clear IF1.

11.3.2.3.3 SSISR TRANSMIT FRAME SYNC FLAG (TFS) Bit 2. When set, TFS indicates
that a transmit frame sync occurred in the current time slot. TFS is set at the start of the
first time slot in the frame and cleared during all other time slots. Data written to the
transmit data register during the time slot when TFS is set will be transmitted (in network
mode) during the second time slot in the frame. TFS is useful in network mode to identify
the start of a frame.

NOTE

In normal mode, TFS will always read as a one when transmitting data because
there is only one time slot per frame — the “frame sync” time slot.

TFS, which is cleared by hardware, software, SSi individual, or STOP reset, is not affected
by TE.

11.3.2.3.4 SSISR Receive Frame Sync Flag (RFS) Bit 3. When set, RFS indicates that a
receive frame sync occurred during reception of the word in the serial receive data register.
This indicates that the data word is from the first time slot in the frame. When RFS is clear
and a word is received, it indicates (only in the network mode) that the frame sync did not
occur during reception of that word.

NOTE
In normal mode, RFS will always read as a one when reading data because there

is only one time slot per frame — the “frame sync” time slot.

RFS, which is cleared by hardwére, software, SSI individual, or STOP reset, is not affected
by RE.

11.3.2.3.5 SSISR Transmitter Underrun Error Flag (TUE) Bit4. TUE is set when the serial
transmit shift register is empty {(no new data to be transmitted) .and a transmit time slot
occurs. When a transmit underrun error occurs, the previous data (which is still present
in the TX) will be retransmitted.

In the normal mode, there is only one transmit time slot per frame. In the network mode,
there can be up to 32 transmit time slots per frame.

11-82 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

TUE does not cause any interrupts; however, TUE does cause a change in the interrupt
vector used for transmit interrupts so that a different interrupt handler may be used for a
transmit underrun condition. If a transmit interrupt occurs with TUE set, the transmit data
with exception status interrupt will be generated; if a transmit interrupt occurs with TUE
clear, the transmit data without errors interrupt will be generated.

Hardware, software, SSI individual, and STOP reset clear TUE. TUE is also cleared by
reading the SSISR with TUE set, followed by writing TX or TSR.

11.3.2.3.6 SSISR Receiver Overrun Error Flag (ROE) Bit 5. This flag is set when the serial
receive shift register is filled and ready to transfer to the receiver data register (RX) and
RX is already full (i.e., RDF=1). The receiver shift register is not transferred to RX. ROE
does not cause any interrupts; however, ROE does cause a change in the interrupt vector
used for receive interrupts so that a different interrupt handler may be used for a receive
error condition. If a receive interrupt occurs with ROE set, the receive data with exception
status interrupt will be generated; if a receive interrupt occurs with ROE clear, the receive
data without errors interrupt will be generated.

Hardware, software, SSI individual, and STOP reset clear ROE. ROE is also cleared by
reading the SSISR with ROE set, followed by reading the RX. Clearing RE does not affect
ROE.

11.3.2.3.7 SSISR SSI Transmit Data Register Empty (TDE) Bit 6. This flag is set when the
contents of the transmit data register are transferred to the transmit shift register; it is also
set for a disabled time slot period in network mode (as if data were being transmitted after
the TSR was written). Thirdly, it can be set by the hardware, software, SSI individual, or
STOP reset. When set, TDE indicates that data should be written to the TX or to the time
slot register (TSR). TDE is cleared when the DSP writes to the transmit data register or
when the DSP writes to the TSR to disable transmission of the next time slot. If TIE is set,
a DSP transmit data interrupt request will be issued when TDE is set. The vector of the
interrupt will depend on the state of the transmitter underrun bit.

11.3.2.3.8 SSISR SSI Receive Data Register Full (RDF) Bit 7. RDF is set when the contents
of the receive shift register are transferred to the receive data register. RDF is cleared when
the DSP reads the receive data register or cleared by hardware, software, SSI individual,
or STOP reset. If RIE is set, a DSP receive data interrupt request will be issued when RDF
is set. The vector of the interrupt request will depend on the state of the receiver overrun
bit.

11.3.2.3.9 SSI Receive Shift Register. This 24-bit shift register receives the incoming data
from the serial receive data pin. Data is shifted in by the selected (internal/external} bit
clock when the associated frame sync I/0 (or gated clock) is asserted. Data is assumed to

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 11-83

be received MSB first if SHFD equals zero and LSB first if SHFD equals one. Data is
transferred to the SSI receive data reaister after 8, 12, 16, or 24 bits have been shifted in,
depending on the word-length control bits in the CRA (see Figure 11-46).

11.3.2.3.10 SSI Receive Data Register (RX). RXis a 24-bit read-only register that accepts
data from the receive shift register as it becomes full. The data read will occupy the most
significant portion of the receive data register (see Figure 11-46). The unused bits (least
significant portion) will read as zeros. The DSP is interrupted whenever RX becomes full
if the associated interrupt is enabled.

11.3.2.3.11 SSI Transmit Shift Register. This 24-bit shift register contains the data being
transmitted. Data is shifted out to the serial transmit data pin by the selected (internal/
external) bit clock when the associated frame sync I/O (or gated clock) is asserted. The
number of bits shifted out before the shift register is considered empty and may be written
to again can be 8, 12, 16, or 24 bits (determined by the word-length control bits in CRA).
The data to be transmitted occupies the most significant portion of the shift register. The
unused portion of the register is ignored. Data is shifted out of this register MSB first if
SHFD equals zero and LSB first if SHFD equals one (see Figure 11-47).

11.3.2.3.12 SSI Transmit Data Register (TX). TX is a 24-bit write-only register. Data to be
transmitted is written into this register and is automatically transferred to the transmit shift
register. The data written (8, 12, 16, or 24 bits) should occupy the most significant portion
of TX (see Figure 11-47). The unused bits (least significant portion) of TX are don't care
bits. The DSP is interrupted whenever TX becomes empty if the transmit data register
empty interrupt has been enabled.

11.3.2.3.13 Time Slot Register (TSR). TSR is effectively a null data register that is used
when the data is not to be transmitted in the available transmit time slot. For the purposes
of timing, TSR is a write-only register that behaves like an alternative transmit data register,
except that, rather than transmitting data, the transmit data pin is in the high-impedance
state for that time slot. '

11-84 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

RECEIVE SHIFT REGISTER

§ GDB S
| 16 15 1211 87 0
| I l I Jr
\ / ' | :
—V ' i ;
\ 1 / | :
v) !
N A / '
. V 1]
~ y S
\T/
VAN
- ~
/\ i
/ AN)
)]
y A ' '
A N :
/ N\ ! , i
RECEIVE SHIFT REGISTER [-—— | — [-—] e }«%”s-(SRD >
AN AN SHFD =0
8 BITS 12BITS 16 BITS
(a) SHFD=0
6DB (
23 16 15 ”n 87 0
| | I o
\ A ‘ / i :
V : I
\ A / :
v i
~ ‘ /
\T/
VAN
d N
A I
/ N :
/ |
/ N\ !
|

SHFD =1

(b) SHFD=1"
Figure 11-46. Receive Data Path

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 11-85

—

../

N GDB J\

2 16 15 \/L 87 0
| | ™

/ 12'n : :

\ / ' '

- ' '

AN 4 !

Vo h

AN l 7

/\ '

/ AN '

A |

4 '

|

[
]
[
[}
]
1
1

-—— [—[-—

TRANSMIT SHIFT REGISTER

SHFD=0

{a) SHFD=0

I? GDB i
» 1615 @ 87 0
I [|]
_\ /__/ THE : !
\— / g !
\V4 ! :
\ _/ !
Y :
™ J
- AN
4 :
N\ :
\L \. ,
/\] :
/ y \ : :
TRANSMIT SHIFT ReGiSTER] ——B= | ——» 'l > T‘ l uer
N\ N N SHFD=1
8 BIT 28I 16 BIT

11-86

(b) SHFD =1
Figure 11-47. Transmit Data Path

DSP56000/DSP56001 USER'S MANUAL

MOTOROLA

11.3.3 Operational Modes and Pin Definitions

Tables 11-6 and 11-7 completely describe the SSI operational modes and pin definitions
(Table 11-4 is a simplified version of these tables). The operational modes are as follows:
1. Continuous Clock
Mode 1 — Normal with Internal Frame Sync
Mode 2 — Network with Internal Frame Sync
Mode 3 — Normal with External Frame Sync
Mode 4 — Network with External Frame Sync
2. Gated Clock
Mode 5 — External Gated Clock
Mode 6 — Normal with Internal Gated Clock
Mode 7 — Network with Internal Gated Clock
3. Special Case (Both Gated and Continuous Clock)
Mode 8 — On-Demand Mode (Transmitter Only)
Mode 9 — Receiver Follows Transmitter Clocking

Table 11-6. Mode and Pin Definition Table — Continuous Clock

Control Bits Mode SCo SC1 SC2 SCK
MOD | GCLK | SYN | scD2 | 5cD1 [$cDo [sckD |2t | X |RX | n | Out | In | Out | In |Out | In | Out
o o[v+ [v x| x| x [1]1[rec]|rxc] — [Fsr]| = |FsT[TxC|TXC
o [1 [1 | x| x| x| x]1]1]r|[r]rm]|rm]|—]s|x]x
1 oo 1 1 x| x| 1]2]2rxc|rxc] — |[FsR| — |FsT|TXC|TXC
1o v 1 [x| x| x| 1 {2l2]r[r|rm|[rm|—=/[m]x]x
o oo o 1 x| x| x [3]1]rxc|rxe] = [rsr|FsT| — [Txc|TXC
o oo 1 o] x| x| x [1]3][rxc|rxc|rsr| — [— [FsT|7xc|TxC
oo o] o of x| x| x [3]3][axc|rxc|esr| — [rs1| — [xc|TxC
o o[1o x| x| x| x[3]3[r|r]|r]|rm]|ms]|—]x]x
1o oo 1| x| x| x|al|2[rxc|rxc| — [rr|esT| — [TXC|TXC
1 oo 1] o x| x| 1]2]alrxc|rxclesr] = | = [FsT|Txc|TXC
1t o] oo o x| x| x7alalrc|rxc|esr| — [FsT] — [TXC|TXC
1 o 1| o x| x| x| x[alalr]|r]|Fr]|Fr]|[r|—]x]|[*x
1 o] o 1] 1| x| x| o|e]2[rc|rc] — [rsrR| — [FsT|TXC|TXC
Tl o 1 [x| x| x| o [sle|[r|r]|F]|rm]|—]|F|x]|x
1 o] o 1o x| x| o |e|a[rc|rxc|esr] =] — [rsT|TXC|TXC
DC4-DCO0 =0 means that bits DC4=0, DC3=0, DC2=0, DC1=0, and DCO=0.

DC4-DCO =1 means that bits DC4-DCO0+ 0.

TXC — Transmitter Clock

RXC — Receiver Clock

*XC — Transmitter/Receiver Clock (Synchronous Operation)

FST — Transmitter Frame Sync

FSR — Receiver Frame Sync

FS* — Transmitter/Receiver Frame Sync {Synchronous Operation)
FO —Flag0

F1 —Flag1

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 11-87

Table 11-7. Mode and Pin Definition Table — Gated Clock

B A Control Bits Mode SCo SC1 SC2 SCK
MOD | GCLK | SYN | SCD2 [SCD1 | $CD0 | SCKD | he | TX | RX | In [Out | In [Out | In |Out | In | Out

o [1 o | x| x| 1] 1| x[e]s]|—=/]rxc|] 2 [rsr] 2 [FsT| = [7XC
o [1 [1 [x| x| x| 1] x]e|e|r|r]|Fr|[Fm]|? || =[x
o |1 o[x| x| 1 o] x][s]e|—][rc|]?|[rr|]?]? |-
o 1 o { x| x| oo x|[s|s{re]—={2]2]2]¢?] |-
o f 1| 1] x| x| x| o x|s]|s{r|rp|mn|a|2]7?]|x]—
11 o x| x| a1 ols]l7]—=1rxc| ? [Fr| 2 [FsT| = [TXC
11 o x| x| o1 ols]s|rxc]=1]2]2]72/est|~=[TxC
b P x x| x vl olelelrlr|lrm|]rm| 2 |ms| =]~
o [1] o | x| x| o[1| x/|e|s|rec|]=]2]2]2]rr|—-|m

DC4-DC0=0 means that bits DC4 = 0, DC3=0, DC2=0, DC1=0, and DCO=0.

TXC — Transmitter Clock

RXC — Receiver Clock

*XC — Transmitter/Receiver Clock {Synchronous Operation)

FST — Transmitter Frame Sync

FSR — Receiver Frame Sync

FS* — Transmitter/Receiver Frame Sync (Synchronous Operation)

FO —Flag0
F1 —Flag1
? —Undefined

11.3.4 Registers After Reset

Hardware or software reset clears the port control register bits, which configure all I/O as
general-purpose input. The SSI will remain in reset while all SSI pins are programmed as
general-purpose I/0 (CC8-CC3=0) and will become active only when at least one of the
SSI 1/0 pins is programmed as not general-purpose I/0. Table 11-8 shows how each type
of reset affects each SSI register bit.

“

11.35 SSl Initialization

The correct way to initialize the SSl is as follows:
1. Hardware, software, SSI individual, or STOP reset
2. Program SSI control registers
3. Configure SSI pins (at least one) as not general-purpose 1/0

During program execution, CC8-CC3 may be cleared, causing the SSI to stop serial activity
and enter the individual reset state. All status bits of the interface will be set to their reset
state; however, the contents of CRA and CRB are not affected. This procedure allows the
DSP program to reset each interface separately from the other internal peripherals.

The DSP program must use an SSI reset when changing the MOD, GCK, SYN, SCKD, SCD2,
SCD1, or SCDO bits to ensure proper operation of the interface. Figure 11-48 is a flowchart
illustrating the three initialization steps previously listed. Figures 11-49, 11-50, and 11-51
provide additional detail to the flowchart.

11-88 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

Table 11-8. SSI Registers after Reset

Register Register Bit Reset
Name Data Number HW Reset SW Reset Individual Reset ST Reset
PSR 15 0 0 — —
WL(2-0) 13,14 0 0 — —
CRA DCa-0) |8-12 0 0 - -
PM(7-0) 0-7 0 0 _ —
RIE 15 0 0 —_— —
TIE 14 0 0 - —_
RE 13 0 0 —_ -
TE 12 0 0 _ —
MOD 11 0 0 — —_
GCK 10 0 0 —_ —_
SYN 9 0 0. _ —
CRB FSL1 8 0 0 - —
FSLO 7 0 0 -_ —
SHFD 6 0 0 - -
SCKD 5 0 0 — —
SCD(2-0) 2-4 0 0 — -
OF(1-0) 0,1 0 0 —
RDF 7 0 0 0 0
TDE 6 1 1 1 1
ROE 5 0 0 0 0
SSISR TUE 4 0 0 0 1]
RFS 3 0 0 0 0
TFS 2 0 0 0 0
IF(1-0) 0,1 0 0 0 0
RDR RDR (23-0) |23-0 — — — —
TDR TDR (23-0) [23-0 —_ —_ — —
RSR RDR (23-0) |23-0 —_ — — —
TSR RDR (23-0) |23-0 — — - —
NOTES:

1. RSR — SSI receive shift register
. TSR — S8l transmit shift register
. HW — Hardware reset is caused by asserting the externa! pin RESET.

2
3
4. SW — Software reset is caused by executing the RESET instruction.
5

. IR — Individual reset is caused by SSI peripheral pins (i.e., PCC(3-8)) being configured as general-purpose

0.
. ST — Stop reset is caused by executing the STOP instruction.

(2]

MOTOROLA

HARDWARE OR SOFTWARE RESET

'

PROGRAM CRA AND CRB

!

SELECT PINS TO BE USED
PORT C CONTROL REGISTER

Figure 11-48. SSlI Initialization Block Diagram

DSP56000/DSP56001 USER'S MANUAL

11-89

06-LL

5 4 13 12 1 w9 8§ 7 6 5 4 3 2 1 0
x:serec[psr | wir [wio | oca | oes [oc2 | DmLoco/L\Pw [pus | pwms | pms | pm3 | pmz | pw | PMO/ R REGISTER A (CRA)

[S S— —

TVNNVYIA S, H3SN L009Sd4SA/000954SA

VI10HOL0N

PRESCALER
IF PSR=1, THEN DIVIDE BY 8 | mlegezsasvt < DgcgE - fosc .
IF PSR=0, THEN DIVIDE BY 1
v
Y wL1| wie | BITsworp | DCapco | WORD TRANSFER RATE | WORDS/FRAME
DIVIDE)) s B (SEE NOTE 1) (SEE NOTE 2)
BY 2 : —
g Continuous Periodic On-Demand
0 L 12 coooo0 {See Note 3) Data Driven
110 16 00001 2 2
1| 2
SSI BIT RATE CLOCK 00010 3 3
00011 4 4
11111 2 2
5 ® 18 12 u 1 % & 1 6 5 4 3 2 1 4
) SSI CONTROL REGISTER B (CRBJ
xseren | miE | TiE | e [1€ [mop] ack [sy [rsir [esto [sueo [scko [scoz [scor [scoo | ot [oro READWRITE!
~~
(SEE NOTES 1 AND 2) {SEE NOTE 3)
NOTES:

1. Normal — MOD=0
2. Network — MOD=1
3. FSL1=1, FSL0O=0

Figure 11-49. SSI CRA Initialization Procedure

0=RX IS WORD LENGTH LENGTH
1=RX IS BIT LENGTH 1=RX AND TX DIFFERENT
LENGTH
SYNC/ASYNC CONTROL SHIFT DIRECTION
0= ASYNCHRONOUS (= MSB FIRST
1=SYNCHRONOUS \ 1=LSB FIRST
GATED CLOCK CONTROL CLOCK SOURCE DIRECTION
0= CONTINUOUS CLOCK 0=INPUT (EXTERNAL)
1= GATED CLOCK 1= OUTPUT (INTERNAL)
§SI MODE SELECT SERIAL CONTROL
0= NORMAL N DIRECTION BITS
1=NETWORK 0=INPUT
1= OUTPUT
15 “ 13) — T 1 1 0
l RIE | TEE I RE I TE I MOD l GoK | SYN | FsU | FSLO | SHFD |SCKD | SCD2 | SCD1] SCDO | OF1 | OF0 |
m 1w 93 8 7 6 5 4 3 2
TRANSMIT ENABLE OUTPUT FLAG 1
0=DISABLE IF SYN=1, SCD1=1
1= ENABLE OF1 #SC1 PIN
RECEIVE ENABLE QUTPUT FLAG 0
0=DISABLE IF SYN=1, SCDO=1
1=ENABLE 0F0 # SCO PIN
TRANSMIT INTERRUPT ENABLE
0=DISABLE
1= ENABLE

RECEIVE INTERRUPT ENABLE
0=DISABLE
1=ENABLE

Figure 11-50. SSI CRB Initialization Procedure

Figure 11-51 shows the six control bits in the PCC, which select the six SSI pins as either
general-purpose I/0 or as SSI pins. The STD pin can only transmit data; the SRD pin can
only receive data. The other four pins can be inputs or outputs, depending on how they
are programmed. This programming is accomplished by setting bits in' CRA and CRB as
shown in Figure 11-45. The CRA (see Figure 11-49) sets the SSI bit rate clock with PSR and
PMO0-PM?7, sets the word length with WL1 and WLO, and sets the number of words in a
frame with DC0O-DC4. There is a special case where DC4-DCO equals zero (one word per
frame). Depending on whether the normal or network mode is selected (MOD =0 or MOD=1,
respectively), either the continuous periodic data mode is selected, or the on-demand data

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 11-91

23

Olo

PORT C CONTROL
REGISTER (PCC)

cc|cclec|ccicefcc]ccfcc|c
18|76]5[4[3[2]1
STD | sk [sct |

SRD SC2 SCO

X:3FFErloloiolololntolololao

[~}
>
=
=}
=1

o

CCx Function
0 Parallel 110
1 Serial Interface

PO fe ~ = — >
PCI [— — — >
P2 € ~ = — >

SCO > SERIAL CONTROL PIN 0

SC1 j€&——> SERIAL CONTROL PIN 1

SC2 f«€&—————> SERIAL CONTROL PIN 2

SCK j€&———> SERIAL CLOCK PIN

SRD je&—————— SERIAL RECEIVE DATA PIN
STD |—————>- SERIAL TRANSMIT DATA PIN

O —-OTo

Figure 11-51. SSlI Initialization Procedure

driven mode is selected. The continuous periodic mode requires that FSL1 equals one and
FSLO equals zero. Figure 11- 50 shows the meaning of each individual bit in the CRB. These
bits should be set according to the application requirements.

Table 11-9(a) and 11-9(b) provide a convenient listing of PSR and PM0-PM7 settings for
the common data communication rates and the highest rate possible for the SSI for the
chosen crystal frequencies. The crystal frequency selected for Table 11-9(a) is the one used
by the DSP56000ADS board; the one selected for Table 11-9(b} is the closest one to 27
MHz that divides down to exactly 128 kHz. If an exact baud rate is required, the crystal
frequency may have to be selected. Table 11-10 gives the PSR and PM0-PM?7 settings in
addition to the required crystal frequency for three common telecommunication frequen-
cies.

11.3.6 SSI Exceptions

The SSI can generate four different exceptions (see Figures 11-52 and 11-563):

1. SSI Receive Data — occurs when the receive interrupt is enabled, the receive data
register is full, and no receive error conditions exist. Reading RX clears the pending
interrupt. This error-free interrupt can use a fast interrupt service routine for minimum
overhead.

2. SSIReceive Data with Exception Status — occurs when the receive interrupt is enabled,
the receive data register is full, and a receiver overrun error has occurred. ROE is
cleared by first reading the SSISR and then reading RX. :

11-92 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

Table 11-9(a). SSI Baud Rates Table 11-9(b). SSI Baud Rates

for a 20.48-MHz Crystal for a 26.624-MHz Crystal
Baud Rate (BPS) PSR PM Baud Rate (BPS) PSR - PM
1000 1 $27F 1000 1 $33F
2000 1 $13F 2000 1 $19F
4000 1 $9F 4000 1 SCF
8000 1 $4F 8000 1 $67
16K 1 $27 16K 1 $33
32K 1 $13 32K 1 $19
64K 0 $4F 64K 0 $67
128K 0 $27 128K 0 $33
5.12M 0 $00 . 6.656M 0 $00
BPS=foge+(4 X (7(PSR}+1) X (PM+1)) where BPS =fgse+{4 X (7(PSR)+1) x (PM+1)) where
fosc=20.48 MHz fosc=26.624 MHz
PSR=0or 1 PSR=0o0r 1

PM=0 to $FFF PM=0to $FFF

Table 11-10. Crystal Frequencies
Required for Codecs

Baud Rate (BPS) PSR PM Frg;":;f"cy
1.536M 0 $03 24.576 MHz
1.544M 0 $03 24.707 MHz
2.048M 0 $02 24576 MHz

BPS=fggc+(4 x { 7(PSR)+1) x (PM+1))
PSR=0or1
PM=0 to $FFF

3. SSI Transmit Data — occurs when the transmit interrupt is enabled, the transmit data
register is empty, and no transmitter error conditions exist. Writing to TX or the TSR
will clear this interrupt. This error-free interrupt may use a fast interrupt service routine
for minimum overhead.

4. SS| Transmit Data with Exception Status — occurs when the transmit interrupt is
enabled, the transmit data register is empty, and a transmitter underrun error has
occurred. TUE is cleared by first reading the SSISR and then writing to TX or the TSR
to clear the pending interrupt.

11.3.7 Operating Modes — Normal, Network, and On-Demand
The SSI has three basic operating modes and many data/operation formats. These modes

can be programmed by several bits in the SSI control registers. Table 11-11 lists the SSI
operating modes and some of the typical applications in which they may be used.

MOTOROLA DSP56000/DSP56001 USER’S MANUAL 11-93

EXCEPTION
STARTING
ADDRESS

11-94

$0000
$0002
$0004
$0006
$0008
$000A

PROGRAM MEMORY SPACE

EXCEPTION SOURCE

¥

HARDWARE RESET

TWO WORDS PER VECTOR

STACK ERROR

TRACE

SWI (SOFTWARE INTERRUPT)

A

IRQA EXTERNAL HARDWARE INTERRUPT

TROB EXTERNAL HARDWARE INTERRUPT

EXTERNAL
INTERRUPTS

$000C
$000E
$0010
$0012

SSI RECEIVE DATA

SSI RECEIVE DATA WITH EXCEPTION STATUS

SS! TRANSMIT DATA

SSI TRANSMIT DATA WITH EXCEPTION STATUS

SYNCHRONOUS
SERIAL
INTERFACE

INTERNAL

$0014
$0016
$0018
$001A
$001C
$001E
$0020
$0022
$0024
$0026
$0028
$002A
$002C
$002E
$0030
$0032
$0034
$0036
$0038
$003A
$003C
$003E

SCI RECEIVE DATA

SCI RECEIVE DATA WITH EXCEPTION STATUS

SCI TRANSMIT DATA

SCI IDLE LINE

SCI TIMER

INTERRUPTS

SERIAL
COMMUNICATIONS
INTERFACE

RESERVED FOR HARDWARE DEVELOPMENT

HOST RECEIVE DATA

HOST TRANSMIT DATA

HOST COMMAND (DEFAULT)

AVAILABLE FOR HOST COMMAND

AVAILABLE FOR HOST COMMAND

AVAILABLE FOR HOST COMMAND

AVAILABLE FOR HOST COMMAND

AVAILABLE FOR HOST COMMAND

AVAILABLE FOR HOST COMMAND

AVAILABLE FOR HOST COMMAND

AVAILABLE FOR HOST COMMAND

AVAILABLE FOR HOST COMMAND

AVAILABLE FOR HOST COMMAND

AVAILABLE FOR HOST COMMAND

AVAILABLE FOR HOST COMMAND

ILLEGAL INSTRUCTION

INTERNAL
INTERRUPTS

HOST
INTERFACE

_—

Figure 11-52. SSI Exception Vector Locations

DSP56000/DSP56001 USER'S MANUAL

MOTOROLA

SSI CONTROL REGISTER (CRB)
X:$FFED (READ/WRITE)

5 14 13 12 N 1 9 8
[me [e | ne [16 [mon] cex [svw [esur]

SsSl
EXCEPTION
MASK

~ RECEIVE
INTERRUPT SERVICE ROUTINE

1. INTERRUPT IS GENERATED WHEN RIE=1,
RDF=1, AND ROE=0.

2. PENDING INTERRUPT IS CLEARED BY
READING RX.

SSI EXCEPTION MASK

EXCEPTION
STARTING
ADDRESS

EXCEPTION VECTOR TABLE

$0000

y

RECEIVE WITH EXCEPTION STATUS
INTERRUPT SERVICE ROUTINE

. INTERRUPT IS GENERATED WHEN RIE=1,
RDF=1, and ROE=1.

. ROE IS CLEARED BY READING SSISR
FOLLOWED BY:

N

w

. READING RX TO CLEAR PENDING
INTERRUPT.

-~

. APPLICATION-SPECIFIC CODE.

$000C

SSI RECEIVE DATA

$000E
$0010
$0012

SSI RECEIVE DATA WITH EXCEPTIONS STATUS
SSI TRANSMIT DATA
SSITRANSMIT DATA WITH EXCEPTION STATUS

J

TRANSMIT
INTERRUPT SERVICE ROUTINE

1. INTERRUPT IS GENERATED WHEN TIE=1,
TDE=1, and TUE=0.

2. PENDING INTERRUPT 1S CLEARED BY
WRITING TO TX OR TSR.

SSI STATUS REGISTER SSISR
X:$FFFE (READ ONLY)
7 6 5 4 3 2 1 0

["ror T oe [roe | ue [mes | s [im | k0|
\ /

\'4
SSI STATUS BITS

TRANSMIT WITH EXCEPTION STATUS
INTERRUPT SERVICE ROUTINE

. INTERRUPT IS GENERATED WHEN
TIE=1, TDE=1, AND TUE=1.

TUE IS CLEARED BY READING SSISR
FOLLOWED BY:

WRITING TO TX OR TSR TO CLEAR
PENDING INTERRUPT.

. APPLICATION-SPECIFIC CODE.

~

w

FS

Figure 11-53. SSI Exceptions

MOTOROLA

DSP56000/DSP56001 USER'S MANUAL

11-95

Table 11-11. SSI Operating Modes

OE::::;:S Serial Clock TX, RX Sections Typical Applications
Normal Continuous Asynchronous Single Asynchronous Codec; Stream-Mode Channel Interface
Normal Continuous Synchronous Multiple Synchronous Codecs
Normal Gated Asynchronous DSP-to-DSP; Serial Peripherals (A/D,D/A}
Normal Gated Synchronous SPI-Type Devices; DSP to MCU
Network Continuous Asynchronous TDM Networks
Network Continuous Synchronous TDM Codec Networks

TDM DSP Networks

On-Demand Gated Asynchronous Parallel-to-Serial and Serial-to-Parallel Conversion
On-Demand Gated Synchronous DSP to SPI Peripherals

The data/operation formats are selected by choosing between gated and continuous clocks,
synchronization of transmitter and receiver, selection of word or bit frame sync, and whether
the LSB is transferred first or last. The following paragraphs describe how to select a
particular data/operation format and describe examples of normal-mode and network-
mode applications. The on-demand mode is selected as a special case of the network
mode. ‘

The SSI can function as an SPI master or SPI slave, using additional logic for arbitration,
which is required because the SSl interface does not perform SPI master/slave arbitration.
An SPI master device always uses an internally generated clock; whereas, an SPI slave
device always uses an external clock.

11.3.7.1 DATA/OPERATION FORMATS. The data/operation formats available to the SSI
are selected by setting or clearing control bits in the CRB. These control bits are MOD,
GCK, SYN, FSL1, FSLO, and SHFD. :

11.3.7.1.1 Normal/Network Mode Selection. Selecting between the normal mode and
network mode is accomplished by clearing or setting the MOD bit in the CRB (see Figure
11-54). For normal mode, the SSI functions with one data word of I/0 per frame (see Figure
11-55). For the network mode, 2 to 32 data words of /O may be used per frame. In either
case, the transfers are periodic. The normal mode is typically used to transfer data to/from
asingle device. Network mode is typically used in time division multiplexed (TDM) networks
of codecs or DSPs with multiple words per frame (see Figure 11-56, which shows two
words in a frame with either word-length or bit-length frame sync). The frame sync shown
in Figure 11-54 is the word-length frame sync. A bit-length frame sync can be chosen by
setting FSL1 and FSLO for the configuration desired.

11.3.7.1.2 Continuous/Gated Clock Selection. The TX and RX clocks may be programmed
as either continuous or gated clock signals by the GCK bit in the CRB. A continuous TX

11-96 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

VI0HOLOW

TYNANVIA S.H3SN L0095dSA/00095dSA

L6-L1L

5 4 13 12 m__ 1 8 8 7 65 5 4 3 2 1 0
x:seren| mie | e | e | e [moo | eek [svn] rust [ruso [suro [sekn] scoz [scor [scoo] ot T oro |
*)

*NORMAL MOD=0

SSI CONTROL REGISTER B (CRB)
FRAME SYNC | I ‘ l |

4 TRANSMITTER INTERRUPT AND FLAGS SET A
SERIAL DATA DATA < DATA >
< AN
* RECEIVER INTERRUPT AND FLAGS SET ¢

NOTE: Interrupts occur and data is transferred once per frame sync.

*NETWORK MOD =1

SERIAL CLOCK I”” HH H | Hl ||| I | | l l H“ I l I | ”I l H“Hl | H| | Hll l H“ |
FRAME SYNC l | ’ | I

TRANSMITTER INTERRUPTS AND FLAGS SET

4 4 4 4 4
SERIAL nATA>< SLOT 1 >< SLOT2 >< sors > stoT >(sorz X s
))))

4

RECEIVER INTERRUPT AND FLAGS SET

NOTE: Interrupts occur every time slot and a word may be transferred.

Figure 11-54. CRB MOD Bit Operation

FRAME SYNC / \ [

(FSLO=0, FSL1=0)

FRAME SYNC /_\ : /_\

(FSLO=0, FSL1=1)

FLAGS _< X
‘—){(— SLOT 0 —)*(— WAIT ———)l(—smr 0

Figure 11-55. Normal Mode, External Frame Sync (8 Bit, 1 Word in Frame)

FRAME SYNC / \ / \

{FSLO=0, FLS1=0}

FRAME SYNC _/_\ /_\

(FSLO=0, FLS1=1)
DATA RXXXXXXCKXIKCKXKXKXXKXKXHKXHKRXIKXIKR
A A

X A
-—)}1—7 SLOT 0 —>’< SLOT 1 >||< SLOT 0 —P‘(—- SLOT 1=

Figure 11-56. Network Mode (8 Bit, 2 Words in Frame)

FLAGS

11-98 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

and RX clock is required in applications such as communicating with some codecs where
the clock is used for more than just data transfer. A gated clock, in which the clock only
toggles while data is being transferred, is useful for many applications and is required for
SPI compatibility. The frame sync outputs may be used as a start conversion signal by
some A/D and D/A devices.

Figure 11-57 illustrates the difference between continuous clock and gated clock systems.
A separate frame-sync signal is required in continuous clock systems to delimit the active
clock transitions. Although the word-length frame sync is shown in Figure 11-57, a bit-
length frame sync can be used (see Figure 11-58). In gated clock systems, frame synchro-
nization is inherent in the clock signal; thus a separate sync signal is not required (see
Figures 11-59 and 11-60). The SSI can be programed to generate frame sync outputs in
gated clock mode but does not use frame sync inputs.

Input flags (see Figures 11-59 and 11-60) are latched on the negative edge of the first data
bit of a frame. Output flags are valid during the entire frame.

11.3.7.1.3 Synchronous/Asynchronous Operating Modes. The transmit and receive sec-
tions of this interface may be synchronous or asynchronous — i.e., the transmitter and
receiver may use common clock and synchronization signals (synchronous operating mode,
see Figure 11-61) or they may have their own separate clock and sync signals (asynchronous
operating mode). The SYN ‘bit in CRB selects synchronous or asynchronous operation.
Since the SSI is designed to operate either synchronously or asynchronously, separate
receive and transmit interrupts are provided.

Figure 11-62 illustrates the operation of the SYN bit in the CRB. When SYN equals zero,
the SSI TX and RX clocks and frame sync sources are independent. If SYN equals one, the
SSI TX and RX clocks and frame sync come from the same source (either external or
internal). .

Data clock and frame sync signals can be generated internally by the DSP or may be
obtained from external sources. If internally generated, the SSI clock generator is used to
derive bit clock and frame sync signals from the DSP internal system clock. The SSI clock
generator consists of a selectable fixed prescaler and a programmable prescaler for bit
rate clock generation and also a programmable frame-rate divider and a word-length divider
for frame-rate sync-signal generation.

Figures 11-63, 11-64, 11-65, and 11-66 show the definitions of the SSI pins during each of
the four main operating modes of the SSI I/O interface. Figure 11-63 uses a gated clock
(from either an external source or the internal clock), which means that frame sync is
inherent in the clock. Since both the transmitter and receiver use the same clock {syn-
chronous configuration), both use the SCK pin. SC0 and SC1 are designated as flags or
can be used as general purpose-parallel I/0. SC2 is not defined if it is an input; SC2 is the
transmit and receive frame sync if it is an output.

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 11-99

TVNNVIA S, H3SN L00954SQ/00095dSA 0oL-LL

VIOHOLOW

5 4 13 12 1 10 9 8 71 6 5 4 3 2 1 0
xsrren| miE | TiE | me | 1e | mop | eok | svn [rsur | rsio [suep | scko | scoz | scor | scoo | of1 | oro (SRSE'A%%LT?EL,HEG'STERB(CRB’
*

*CONTINUOUS CLOCK GCK=0

DATA CHANGES

, |
SERIAL CLOCK H”HHII Hl” Hl””l” |||” HHHHIH HHHHH'HH
|

DATA STABLE
FRAME SYNC l l I
SERIAL DATA DATA > a: >

NOTE: Frame sync is required to tell when data is present.

*GATED CLOCK GCK=1

DATA CHANGES

DATA STABLE
SERIAL DATA — DATA > < oama Y
NOTES: ’ Figure 11-57

1. Word synchronization is inherent in'the serial clock signal.
2. Frame Sync generation is optional.

Figure 11-57. CRB GCK Bit Operation

VI104OLOW

TYNNVYIA S;HISN L0095d4SA/00095dSA

LoL-Lt

| | I
CONTINUOUS CLOCK /~ N\ N\ /") S /" S V" "\

| | | } | |
| |
DATA OUT (FORDC>0) 4 —— > X XX -
DATA OUT (FORDC—0, 08 K X X X CE— - X > X X X
NETWORK MODES) [AT 2T 2 2 AR 2 2 A I
DATA IN LATCHED | I 7 4 6 4 5 1.4 & 3 4 2 & 1 o0 |
1 t l | | | | | | 1 I
. | I | ! | | 1 ! | | !
INPUT FLAGS LATCHED | ! X%X | X I | | i I | I
| | B | | | | I | 1 |
FRAME SYNC OUT: ! ! ! I ! ! i ! I (Dc=0 | !
3 uT:
FSL0=0, FSL1=1 \ : ! , | ! . ! : :
| | | 1 | | 1 | | | |
FSLO=0m FSLI=0 g 1 Y 1 [| i | \ I
1 | 1 1 | | | | I | |
| | | | | | | | | | |
1 | | 1 | | 1 | | L |
OUTPUT FLAGS ; X 1) 1] ; 1] X 1
i ! | T I I | I I A !
FRAME SYNC IN: | . L) L . ¢ L ! |
Fsl0=0, FsLi=1 47 NARERMARRTHTRRTRRANANSOANNSNNNNNNSNASNSNNSANNSNNSN

| Y
FSW=,FSui=0 | /X7 IANAAANARRNN
|

| |
DATA OUT FOR: : T)| T 7 '(- :
R g G am—

)

OUTPUT FLAGS

! 1

| 1] '

\\\\\T\\\\\\L\\\\\I\\\\\\I\\\\\\
[I

. :

1 1

! 1

I I

! 1

! ¢

! ! ! ;

[I
[|
[I
[I
! I
! 1
¢ +
I |

|
|

'DATA NOT DEFINED !

‘ XXX , i
! |

NOTES:
1. For FSL1=0 the frame sync is latched and enables the STD output buffer, but data may not be valid until rising edge of bit clock.
2. WL bit frame sync (FSLO=0, FLS1=0) is not defined for DC=0 in continuous clock mode.
3. Data and flags transistion after external frame sync but not before rising edge of clock.

Figure 11-58. Continuous Clock Timing Diagram (8-Bit Example)

~
S I --7:1 | Y
=)
e |'0..F
e
- >

S NS U0 N ¥ S -4
LU S -

Figure 11-59. Internally Generated Gated Clock Timing (8-Bit Example)

I
|
|
|
(DC>0) 1——_(; D, G
|
1
| .
X
|
|
1
|
|
|
1
|
X
[
i
|

||||| S N VS I I I S Y
5% 5 85 55 g 5= 55 g 5 s
A | 1 = w
Sy © o o T ol &l =& A Il
oa « o8 =8 S e vo B 8 Q
= = 2 2 W S 2o W =) =}
Q- <« [=] < [vid [vid - -
25 g o =] B o 7] %]
a = =] S v 9 «©
< = <t Swy o wg o g
© > © a4 2o =0 M ey M
o = <2 < -
QP =P 5 [=3
o wt o 5 = =
a b= =
= >
=
= o o

11-102 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

VI104OLOW

AVNNVIN S, H3SN L0095dSA/000954Sd

€oL-L1

1 | 7
| |

|
1
GATED CLOCK | | | | . |
INPUT (DC>0) "w
| | | ! | tdhge >=5ns
o

|

1 1

DATA OUT I
|

|
| |
o0 +———K X X XXX
I | I
I | I

GATED CLOCK — ;

DATA IN LATCHED

INPUT FLAGS LATCHED

NOTES:
1. Output enabled on rising edge of first clock input.
2. Output disabled on falling edge of last clock pulse.
3. tdhgc is guaranteed by circuit design.
4. Frame syncs (in or out) are not defined for extenal gated clock mode.

Figure 11-60. Extérnally Generated Gated Clock Timing (8-Bit Example)

|
0
l
((
DATA 0UT ¢ : i | | : | :
D s GE GE X X X)IK X O— K o —
:
|
1
1
1
i

START OF
FRAME

[€——————— ONE FRAME—-————J

WORD TRANSFER RATE (=3) >

e—————
3 WORDS PER FRAME

y WORD I WORD l WORD WORD '

FRAME SYNC - l | l |

T TRANSMITTER EMPTY T

INTERNAL INTERRUPTS AND FLAGS
TRANSMIT DATA < XMIT DATA)— XMIT DATA }

INTERNAL INTERRUPTS AND FLAGS
RECEIVE DATA —< REC DATA REC DATA >

I(—— 3-STATE ——){ |‘—— 3-STATE ———>

T RECEIVER FULL

Figure 11-61. Synchronous Communication

Figure 11-64 shows a gated clock (from either an external source or the internal clock),
which means that frame sync is inherent in the clock. Since this configuration is asyn-
chronous, SCK is the transmitter clock pin (input or output) and SCO is the receiver clock
pin (input or output). SC1 and SC2 are designated as receive or transmit frame sync,
respectively, if they are selected to be outputs; these bits are undefined if they are selected
to be inputs. SC1 and SC2 can also be used as general-purpose parallel I/0.

Figure 11-65 shows a continuous clock (from either an external source or the internal clock),
which means that frame sync must be a separate signal. SC2 is used for frame sync, which
can come from an internal or external source. Since both the transmitter and receiver use
the same clock (synchronous configuration), both use the SCK pin. SC0 and SC1 are des-
ignated as flags or can be used'as general-purpose parallel I/0.

Figure 11-66 shows a continuous clock (from either an external source or the internal clock),
which means that frame sync must be a separate signal. SC1 is used for the receive frame
sync, and SC2 is used for the transmit frame sync. Either frame sync can come from an
internal or external source. Since the transmitter and receiver use different clocks (asyn-
chronous configuration), SCK is used for the transmit clock, and SCO is used for the receive
clock.

11-104 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

SSI CONTROL REGISTER B (CRB)
(READ/WRITE)

15 14 13 12 1l 10 9 8 7 6 5 4 3 2 1 0

xsreen| RiE | e [e | 7e | mo | aek | svn | rsui | rsto | sweo | scko | scoz | scoi [scoo| of1 | ok |
*

*ASYNCHRONOUS SYN=0

TRANSMITTER

STD
FRAME
CLOCK SYNC

EXTERNAL TRANSMIT CLOCK EXTERNAL TRANSMIT FRAME SYNC

SCK o‘i SC2
INTERNAL FRAME SYNC
S5 81T CLock > INTERNAL CLOCK °) %
"$ EXTERNAL RECEIVE FRAME SYNC
S5 EXTERNAL RECEIVE CLOCK o 3’2 o
TLOCK FRAME
SYNC
SRD
RECEIVER

NOTE: Transmitter and receiver may have different clocks and frame syncs.

*SYNCHRONOUS SYN=1

TRANSMITTER
FRAME
CLOCK SYNC
y 3
STK EXTERNAL CLOCK o EXTERNAL FRAME SYNC 532
INTERNAL CLOCK g INTERNAL FRAME SYNC
N\, Ve
SSI BIT CLOCK/ (o <
Y A
CLOCK FRAME
SYNC
SRD
RECEIVER

NOTE: Transmitter and receiver have the same clock frame syncs.

Figure 11-62. CRB SYN Bit Operation

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 11-105

)

pcs f——— > s
PC7 | SRD
PC6 |————— > SCK (TXC AND RXC}

SsI
SCo)

PC3 j——————> FLAGO

SC1

PC4 j€————————> FIAG !

SC2

PC5 j&———mm—— ? ~—————————3 FSt AND FSr

Figure 11-63. Gated Clock — Synchronous Operation

PC8 }———————> STD
PC? j€—————— SRD
PC6 j€——————> SCK (TXC}

ss|
pe3 le—3 5 gxc

pot fe—38 St —— >
P DR St —— >

Figure 11-64. Gated Clock — Asynchronous Operation

PC8 }——————> STD
PC7 }&—————— SRD
PC6 je—————3 SCK (TXC AND RXC)

SSI
SCo

PC3 je—————> FLAGO

SC1

PC4 4——&-2——) FLAG 1

PC5 p———————> FSr AND FSt

Figure 11-65. Continuous Clock — Synchronous Operation

pC8 f—————> STD
PC? j€———————— SRD
PC6 [€&—————>» SCK (TXC)

st SCO
PC3 j€———— > RXC
SC1
PC4 |€&————> FSr
SC2
PC5 [&——— > FSt

Figure 11-66. Continuous Clock — Asynchronous Operation

11-106 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

11.3.7.1.4 Frame Sync Selection. The transmitter and receiver can operate totally inde-
pendent of each other. The transmitter can have either a bit-long or word-long frame-sync
signal format, and the receiver can have the same or opposite format. The selection is
made by programming FSLO and FSL1 in the CRB as shown in Figure 11-67.

1. If FSL1 equals zero (see Figure 11-68), the RX frame sync is asserted during the entire
data transfer period. This frame sync length is compatible with Motorola codecs, SPI
serial peripherals, serial A/D and D/A converters, shift registers, and telecommuni-
cation PCM serial 1/0.

2. If FSL1 equals one (see Figure 11-69), the RX frame sync pulses active for one bit
clockimmediately before the data transfer period. This frame sync length is compatible
with Intel and National components, codecs, and telecommunication PCM serial 1/0.

The ability to mix frame sync lengths is useful in configuring systems in which data is
received from one type device (e.g., codec) and transmitted to a different type device.

FSLO controls whether RX and TX have the same frame sync length (see Figure 11-67). If
FSLO equals zero, RX and TX have the same frame sync length, which is selected by FSL1.
If FSLO equals one, RX and TX have different frame sync lengths, which are selected by
FSL1. ‘

The SSI receiver looks for a receive frame sync leading edge only when the previous frame
is completed. If the frame sync goes high before the frame is completed (or before the last
bit of the frame is received in the case of a bit frame sync), the current frame sync will not
be recognized, and the receiver will be internally disabled until the next frame sync. Frames
do not have to be adjacent — i.e., a new frame sync does not have to immediately follow
the previous frame. Gaps of arbitrary periods can occur between frames. The transmitter
will be three-stated during these gaps.

11.3.7.1.5 Shift Direction Selection. Some data formats, such as those used by codecs,
specify MSB first other data formats, such as the AES-EBU digital audio, specify LSB first.
To interface with devices from both systems, the shift registers in the SSI are bidirectional.
The MSB/LSB selection is made by programming SHFD in the CRB.

Figure 11-70 illustrates the operation of the SHFD bit in the CRB. If SHFD equals zero (see
Figure 11-70(a)}, data is shifted into the receive shift register MSB first and shifted out of
the transmit shift register MSB first. If SHFD equals one (see Figure 11-70(b)), data is shifted
into the receive shift register LSB first and shifted out of the transmit shift register LSB
first.

11.3.7.2 NORMAL MODE EXAMPLES. The normal SS| operating mode characteristically
-has one time slot per serial frame, and data is transferred every frame sync. When the SSI
is notin the.normal mode, it is in the network mode. The MSB is transmitted first (SHFD =0),
with overrun and underrun errors detected by the SSI hardware. Transmit flags are set

MOTOROLA DSP56000/DSP56001 USER'S MANUAL - 11-107

SSI CONTROL REGISTER B (CRB)

(READWRITE)
s M1 12 1 1w 8 8 7§ 5 & 3 2 i 0
xseren [miE | TiE [Re | e ['moo | eck | svn [rsui] rsto [seo ['scko [soo2 [scot [scoo [orr | oro |

* *

*¥WORD LENGTH: FSL1=0, FSL0O=0

RX, TX FRAME SYNC l S |

RX, TX SERIAL DATA o
DATA

DATA >

NOTE: Frame sync occurs while data is valid.

*ONE BIT: FSL1=1, FSL0=0

RX, TX FRAME SYNC || I—I

RX, TX SERIAL DATA . I nrverannN
— DATA) Q DATA

NOTE: Frame sync occurs for one bit time preceding the data.

*MIXED FRAME LENGTH: FSL1=0, FSLO=1

RX FRAME SYNC) |

RX SERIAL DATA
DATA) DATA
TX FRAME SYNC | H
TX SERIAL DATA
DATA DATA

*MIXED FRAME LENGTH: FSL1=1, FSLO=1

SERIAL CLOCK H I” l H l” | ” l I “ “ “I I ! l ” “l” “' | H ” l
RX FRAME SYNC ’ N H
AX SERIAL DATA

m DATA
TX FRAME SYNC | |

TX SERIAL DATA
— oan aE

Figure 11-67. CRB FSLO and FSL1 Bit Operation

11-108 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

V104OLOW

TVNNVIAN S.H3SN 10095d4SA/000954SA

601-L1L

3 2 1 0

oon w9
ol o] o]

SS! CONTROL REGISTER B (CRB)

5 U 13

xsrrec{ pse | o | o |
Wl WL
NERGIVZEN

8-BIT WORD LENGTH

V
3-WORD FRAME RATE

[o [pms [pms | s [pva | pwia | pmaz | ewr | pwo | {READ/WRITE)

15 1413 _ 3.2 10
xsrren| RE | e [me [e] o | o | v [o | o [swe| 1 | 1]scor]scoof ot | oro |
MoD SC02
$S1 MODE SELECT SERIAL CONTROL 2 DIRECTION
0=NORMAL 1=QUTPUT
6CK SCKD
GATED CLOCK CONTROL CLOCK SOURCE DIVISION
0=CONTINUOUS CLOCK 1= 0UTPUT
SN FLSO
SYNC/ASYNC CONTROL FRAME SYNC LENGTH
1= SYNCHRONOUS 0= DIFFERENT LENGTHS

FSL1 FRAME
SYNC LENGTH
0=WORD CLOCK

FRAME SYNC l |
TRANSMIT DATA —<T DSP DATA >

/—\T INTERNAL INTERRUPTS AND FLAGS /—\1
CODEC DATA CODEC DATA

RECEIVE DATA

]

INTERNAL INTERRUPTS AND FLAGS
< DSP DATA

Figure 11-68. Normal Mode Initialization for FSL1=0 and FSLO=0

d
-t

OtL-LL

1" 10 9 8 7 6 5 4 3 2 1
SSI CONTROL REGISTER A (CRA)

I N
xsrrec{ PsR | o [o [o | o | o | o o [ew|ems]ems|eme]ems]em]em | emo| peanwaime:

s

TYNANVIN S.H3SN 1L0095dSA/000954SA

VI104OLONW

WL WL DC4 DC3 DC2 DC1 DCO
|

CONTINUGUS PERIODIC

8 BIT WORD LENGTH

15 14 13 12 H

4 3 2 1 0

xseren| mie | Te | me | TE [o

W 9 8 1 8 5
[o [1+ | 1] o [sue| 1 |

MOD SSi MODE SELECT
0=NORMAL

GCK GATED CLOCK CONTROL
0=CONTINUOUS

SYN SYNC/ASYNC CONTROL
1=SYNCHRONOUS

l_ SCD2 SERIAL CONTROL 2 DIRECTION
1=0UTPUT

SCKD CLOCK SGURCE DIRECTION
1=0UTPUT

FLSO FRAME SYNC LENGTH
0=DIFFERENT LENGTHS

L____ FSL1 FRAME SYN LENGTH
1=WL CLOCK FOR RX

FRAME SYNC | |—l

]

L [[

TRANSMIT AND RECEIVE

SERIAL DATA X oatAa1 X DATA2)< DATA 3 >< patAd - X DATAS >C

Figure 11-69. Normal Mode Initialization for FSL1=1 and FSL0=0

SSI CONTROL REGISTER B {CRB)
1 I SCD1 | SCDOI OFt I OFDJ (READ/WRITE)

VI104OLOW

IVNNVIAN S, HISN L0095dSA/00095d4SA

LLL-LL

15

14

13 12 11

10 9 8 7

6

5 4 3

2 1

[on]

xseren| me | e | re | e [mon | 6o | svw | rsur | Fsio | suen | scko | seoa | scoi | scoo | ot
*

X:$FFEF

SSI CONTROL REGISTER B (CRB)
(READ/WRITE)

SERIAL RECEIVE DATA REGISTER (RX)

(READ ONLY)

3 1615 ‘87

RECEIVE HIGH BYTE RECEIVE MIDDLE BYTE RECEIVE LOW BYTE
7 07 A 07
3 1615 87

RECEIVE HIGH BYTE

RECEIVE MIDDLE BYTE

—

RECEIVE LOW BYTE

<€

-€

<

SERIAL RECEIVE SHIFT REGISTER (RX)

STD

SRD

7 07 07
8BT 12817 16 BIT 24 BIT

3 1615 87

X:SFFEF RECEIVE HIGH BYTE RECEIVE MIDDLE BYTE RECEIVE LOW BYTE |[SCHIAL RECEIVE DATA REGISTER (RX)
(READ ONLY)
7 07 07
23 \ 16 15 \] 87 A
RECEVE HIGH BYTE | RECEIVEMIDDLE BYTE | RECEIVELOWBYIE |croi roavcyr chuer cecicree
7 07 07 0

{(a) SHFD=0

Figure 11-70. CRB SHFD Bit Operation (Sheet 1 of 2)

J
d

TVNNVIA S.43SN L00954SA/00095dSA cLl-LL

VI04HOLOW

X:$FFEF

(READ ONLY)

23 16 15 87 0
RECEIVE HIGH BYTE RECEIVE MIDDLE BYTE RECEIVE LOW BYTE

7 07 A 07 A 0

3 1615 87 0

RECEIVE HIGH BYTE

RECEIVE MIDDLE BYTE

RECEIVE LOW BYTE

-

>

SERIAL RECEIVE SHIFT REGISTER {RX}

23

07

1615

07

87

X:SFFEF

TRANSMIT HIGH BYTE

TRANSMIT MIDDLE BYTE

TRANSMIT LOW BYTE

(WRITE ONLY)

23

Y

07

1615 17

07

87

\

0

TRANSMIT HIGH BYTE

TRANSMIT MIDDLE BYTE

TRANSMIT LOW BYTE

NN

SERIAL TRANSMIT SHIFT REGISTER

SERIAL RECEIVE DATA REGISTER (RX)

SERIAL TRANSMIT DATA REGISTER (TX)

8 BIT

12 BIT

16 BIT

(b) SHFD=1

Figure 11-70. CRB SHFD Bit Operation (Sheet 2 of 2)

24 BIT

STD

when data is transferred from the transmit data register to the transmit shift register. The
receive flags are set when data is transferred from the receive shift register to the receive
data register.

Figure 11-71 shows an example of using the SSI to connect an MC15500 codec with a
DSP56000/DSP56001. No glue logic is needed. The serial clock, which is generated internally
by the DSP, provides the transmit and receive clocks (synchronous operation) for the codec.
SC2 provides all the necessary handshaking. Data transfer begins when the frame sync is
asserted. Transmit data is clocked out and receive data is clocked in with the serial clock
while the frame sync is asserted (word-length frame sync). At the end of the data transfer,
DSP internal interrupts programmed to transfer data to/from will occur, and the SSISR will
be updated.

11.3.7.2.1 Normal Mode Transmit. The conditions for data transmission from the SSl are
as follows:

1. Transmitter is Enabled (TE=1).

2. Frame sync (or clock in gated clock mode) is active.

When these conditions occur in normal mode, the next data word will be transferred from
TX to the transmit shift register, the TDE flag will be set (transmitter empty), and the

MC1550x DSP56000
CODEC FILTER
A":ﬁtﬂ? —{ X 00 SRD
, RDD STD
' T0C SCK
ANALOG RDC 1<

outpuT < |RX0

TDE SC2
RCE ::l
MSt

SERIAL SYNC I I l |

TRANSMIT DATA DSP DATA N DSP DATA

RECEIVE DATA CODEC DATA —< CODEC DATA

Figure 11-71. Normal Mode Example

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 11-113

transmit interrupt will occur if TIE equals one (transmit interrupt enabled.) The new data
word will be transmitted immediately. »

The transmit data output (STD) is three-stated, except during the data transmission period.
The optional frame sync output, flag outputs, and clock outputs are not three-stated even
if both receiver and transmitter are disabled.

3

The optional output flags are always updated at the beginning of the frame, regardless of
TE. The state of the flag does not change for the entire frame.

Figure 11-72 is an example of transmitting data using the SSI in the normal mode with a
continuous clock, a bit-length frame sync, and 16-bit data words. The purpose of the
program is to interleave and transmit right and left channels in a compact disk player. Four
SSI pins are used: SCO is used as an output flag to indicate right-channel data (OF0=1)
or left-channel data (OF0=0); SC2 is TX and RX frame sync out; STD is transmit data out;
and SCK clocks the transmit data out. Equates are set for convenience and readability. Test
data is then put in the low X: memory locations. The transmit interrupt vector contains a
JSR instruction (which forms a long interrupt). The data pointer and channel flag are
initialized before initializing CRA and CRB. It is assumed that the DSP CPU and SSI have
been previously reset. At this point, the SSI is ready to transmit except that the interrupt
is masked because the MR was cleared on reset and port C is still configured a general-
purpose I/0. Unmasking the interrupt and enabling the SSI pins allows transmission to
begin. A “jump to self” instruction causes the DSP to hang and wait for interrupts to
transmit the data. When an interrupt occurs, a JSRinstruction at the interrupt vector location
causes the XMT routine to be executed. Data is then moved to the TX register, and the
data pointer is incremented. The flag is tested by the JSET instruction and, if it is set, a
jump to left occurs, and the code for the left channel is executed. If the flag is not set, the
code for the right channel is executed. In either case, the channel flag in X0 and then the
output flag are set to reflect the channel being transmitted. Control is then returned to the
main program, which will wait for the next interrupt.

11.3.7.2.2 Normal Mode Receive. If the receiver is enabled, a data word will be clocked
in each time the frame sync signal is generated (internal) or detected (external). After
receiving the data word, it will be transferred from the SSI receive shift register to the
receive data register (RX), RDF will be set (receiver full), and the receive interrupt will occur
if it is enabled (RIE=1).

The DSP program has to read the data from RX before a new data word .is transferred
from the receive shift register; otherwise, the receiver overrun error wiil be set (ROE=1).

11-114 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

CREEELEEREEEERLE AL EERX AR EARER AR RXX
’

; SSI and other /0 EQUATES *
;**
IPR EQU $FFFF
CRA EQU $FFEC
CRB EQU $FFED
PCC EQU $FFE1
X EQU $FFEF
FLG EQU $0010
ORG X:0
DC $SAAAAQ0 ;Data to transmit.
DC $333300
DC $CCCCO0
DC $FOF000

CEEXRREREREEREE R R RXE XXX EXER XXX RRKR
’

; INTERRUPT VECTOR *

CEEEEEEREEEEREL R AR X XXX EEXRXXERRRRRRXKR
’

ORG P:$0010
JSR XMT

P EREEEEKERRXEEEEFERREE XXX R R KK
’

; MAIN PROGRAM *
;**
ORG P:$40
MOVE #0,R0 ;Pointer to data buffer.
MOVE #3,M0 ;Set modulus to 4.
MOVE #0,X0 ;Initialize channel flag for SSI flag.
MOVE XO0,X:FLG ;Start with right channel first.

CEEEEEREEREEEEREX XXX XXX XXX RXXXRRXN
’

; Initialize SSI| Port
;**
MOVEP #$3000,X:IPR ;Setinterrupt priority register for SSI.
MOVEP #$401F X:CRA ;Set continuous clock=5.12/32 MHz
;word length=16.
MOVEP #$5334,X:CRB ;Enable TIE and TE; make clock and

;frame sync outputs; frame
;sync=bit mode; synchronous mode;
;make SCO an output.

Figure 11-72. Normal Mode Transmit Example (Sheet 1 of 2)

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 11-115

CEEEXEKEEFF KRR ERXERX XA ERREERXERXXRRX ¥
'

; Init SSI Interrupt

SR PR LSS R AT E R E L L ELE S E LS L LT L L E L LR LT LT
'

ANDI #$FC,MR ;Unmask interrupts.
MOVEP #$01F8,X:PCC ;Turn on SSI port.
JMP * , ;Wait for interrupt.

CEEEEEREXKEER TR EEEXE XXX IR FREREREREXEREREX R X
'

; MAIN INTERRUPT ROUTINE *

P EEEEEEEEERKEEEX LR EREREXERXXRER XXX RRXR
'

XMT MOVEP X:(RO)+,X:TX ;Move data to TX register.
JSET #0,X:FLG,LEFT ;Check channel flag.

RIGHT BCLR #0,X:CRB ;Clear SCO indicating right channel

;data

MOVE #>%$01,X0 ;Set channel flag to 1 for next data.
MOVE X0,X:FLG
RTI

LEFT BSET #0,X:CRB ;Set SCO indicating left channel data.
MOVE #>$00,X0 ;Clear channel flag for next data.
MOVE X0,X:FLG
RTI
END

Figure 11-72. Normal Mode Transmit Example {Sheet 2 of 2)

Figure 11-73 illustrates the program that receives the data transmitted by the program
shown in Figure 11-72. Using the flag to identify the channel, the receive program receives
the right- and left-channel data and separates the data into a right data buffer and a left
data buffer. The program shown in Figure 11-73 begins by setting equates and then using
a JSR instruction at the receive interrupt vector location to form a long interrupt. The main
program starts by initializing pointers to the right and left data buffers. The IPR, CRA, and
CRB are then initialized. The clock divider bits in the CRA do not have to be set since an
external receive clock is specified (SCKD =0). Pin SCO is specified as an input flag (SYN=1,
SCDO=0); pin SC2 is specified as TX and RX frame sync (SYN=1, SCD2=0). The SSI port
is then enabled and interrupts are unmasked, which allows the SS! port to begin data
reception. A jump-to-self instruction is then used to hang the processor and allow interrupts
to receive the data. Normally, the processor would execute useful instructions while waiting
for the receive interrupts. When an interrupt occurs, the JSR instruction at the interrupt
vector location transfers control to the RCV subroutine. The input flag is tested, and data
is putin the left or right data buffer depending on the results of the test. The RTl instruction
then returns control to the main program, which will wait for the next interrupt.

11-116 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

¢ KEKEEEEEEEXEXEREREXERR A XERRERXRRXERXXRER XK,
’

; SSI and other /0 EQUATES *
;**
IPR EQU $FFFF
SSISR EQU $FFEE
CRA EQU $FFEC
CRB EQU $FFED
PCC EQU $FFET
RX EQU $FFEF
;**
; INTERRUPT VECTOR *
;**
ORG P:$000C
JSR RCV

P EEEEEEEERXEEXXEEREREXE XXX EXERREREF XXX RN,
’

: MAIN PROGRAM *
;**~
ORG P:$40
MOVE #0,R0 ;Pointer to memory buffer for
MOVE #$08,R1 ;received data. Note data will be
MOVE #1,M0 ;split between two buffers which are

MOVE #1,M1 ;modulus 2. :

CEEEEEEREEELXT XL EEX XXX RREXXXRRRRRX
’

; Initialize SSI Port

;**
MOVEP #$3000,X:IPR ;Setinterrupt priority register for SSI.
MOVEP #$4000,X:CRA ;Set word length =16 bits.
MOVEP #$A300,X:CRB ;Enable RIE and RE; synchronous

;mode with bit frame sync;
;clock and frame sync are
;external; SCO is an input.

LR R RS E L E RS L L L L EEEEEEELEEL LT LT L]
.

H Init SSI interrupt
;**
ANDI #$FC,MR ;Unmask interrupts.
MOVEP #$01F8,X:PCC ;Turn on SSI port.
JMP * ;Wait for interrupt.

Figure 11-73. Normal Mode Receive Example (Sheet 1 of 2)

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 11-117

CEEEEXEEEEXEEERERREXLERERAL IR XK XXX RKXRN
'

; MAIN INTERRUPT ROUTINE *

CEREEEEEREREEXEERAEEEEELR AKX XX RNEEEERRRXXRXXRHX
'

RCV JSET #0,X:SSISR,RIGHT ; Test SCO flag.

LEFT MOVEP X:RX,X:(RO)+ ;1f SCO clear, receive data
RTI ;into left buffer (R0).

RIGHT MOVEP X:RX,X:(R1)+ :If SCO set, receive data
RTI ;into right buffer (R1).
END

Figure 11-73. Normal Mode Receive Example (Sheet 2 of 2)

11.3.7.3 NETWORK MODE EXAMPLES. The network mode, the typical mode in which
the DSP would interface to a TDM codec network or a network of DSPs, is compatible with
Bell and CCITT PCM data/operation formats. The DSP may be a master device (see Figure
11-74) that controls its own private network or a slave device that is connected to an existing
TDM network, occupying one or more time slots. The key characteristic of the network
mode is that each time slot (data word time) is identified by an interrupt or by polling
status bits, which allows the option of ignoring the time slot or transmitting data during
the time slot. The receiver operates in the same manner except that data is always being
shifted into the receive shift register and transferred to the RX. The DSP reads the receive
data register and uses or discards the contents. Overrun and underrun errors are detected.

The frame sync signal indicates the beginning of a new data frame. Each data frame is
divided into time slots; transmission or reception can occur in each time slot (rather than
in just the frame sync time slot as in normal mode). The frame rate dividers (controlled
by DC4, DC3, DC2, DC1, and DCO) control the number of time slots per frame from 2 to
32. Time-slot assignment is totally under software control. Devices can transmit on multiple
time slots, receive multiple time slots, and the time-slot assignment can be changed dy-
namically. -

MASTER TRANSMIT
MASTER RECEIVE

DSP56000 MASTER

STD
SRD

SCK
TIME SLOT 1 gpy

DSP56000 SLAVE1

STD
SRD

SCK
TIMvE SLQT 2 gm

A AI

MASTER CLOCK

DSP56000 SLAVE2 J
STD

SRD j=&

SCK
TIME SLOT 3 g¢y

DSP56000 SLAVE3

STD
SRD

SCK
TIMESLOT 4 g¢y

A AI

MASTER SYNC

11-118

Figure 11-74. Network Mode Example

DSP56000/DSP56001 USER'S MANUAL

MOTOROLA

A simplified flowchart showing operation of the network mode is shown in Figure 11-75.
Two counters are used to track the current transmit and receive time slots. Slot counter
one (SLOTCT1) is used to track the transmit time slot; slot counter two (SLOTCT2) is used
for receive. When the transmitter is empty, it generates an interrupt; a test is then made
to see if it is the beginning of a frame. If it is the beginning of a frame, SLOTCT1 is cleared
to start counting the time slots. If it is not the beginning of a frame, SLOTCT1 is incremented.
The next test checks to see if the SSI should transmit during this time slot. [f it is time to
transmit, data is written to the TX; otherwise, dummy data is written to the TSR, which
prevents a transmit underrun error from occurring and three-states the STD pin. The DSP
can then return to what it was doing before the interrupt and wait for the next interrupt
to occur. SLOTCT1 should reflect the data in the shift registers to coincide with TFS.
Software must recognize that the data being written to TX will be transmitted in time slot
SLOTCT1 plus one.

The receiver operates in a similar manner. When the receiver is full, an interrupt is gen-
erated, and a test is made to see if this is the beginning of a frame. If it is the beginning
of a frame, SLOTCT2 is cleared to start counting the time slots. If it is not the beginning
of a frame, SLOTCT2 is incremented. The next test checks to see if the data received is
intended for this DSP. If the current time slot is the one assigned to the DSP receiver, the
data is kept; otherwise, the data is discarded, and the DSP can then return to what it was
doing before the interrupt. SLOTCT2 should reflect the data in the receive shift register to
coincide with the RFS flag. Software must recognize that the data being read from RX is
for time slot SLOTCT2 minus two.

Initializing the network mode is accomplished by setting the bits in CRA and CRB as follows
(see Figure 11-76):

1. The word length must be selected by setting WL1 ‘and WLO. In this example, an 8-bit
word length was chosen (WL1=0 and WL0=0).

2. The number of time slots is selected by setting DC4-DCO. Four time slots were chosen
for this example (DC4-DCO=$03).

3. The serial clock rate must be selected by setting PSR and PM7-PMO (see Tables 11-
9 and 11-10). '

4. RE and TE must be set to activate the transmitter and receiver. If interrupts are to be
used, RIE and TIE should be set. RIE and TIE are usually set after everything else is
configured and the DSP is ready to receive interrupts.

5. The network mode must be selected (MOD=1).
6. A continuous clock is selected in this example by setting GCK=0.

7. Aithough it is not required for the network mode, synchronous clock control was
selected (SYN=1).

8. The frame sync length was chosen in this example as word length (FSL1=0) for both
transmit and receive frame sync (FSLO=0). Any other combinations could have been
selected, depending on the application.

9. Control bits SHFD, SCKD, SCD2, SCD1, SCDO, and the flag bits (OF1 and OF0) should
be set as needed for the application.

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 11-119

TVNNVYIN S.H3SN L0095dSA/00095dSA oClL-LL

VIOHOLOW

_YES

CLEAR SLOT
NUMBER
SLOTCT

TRANSMITTER
EMPTY
INTERRUPT

TEST FOR
FRAME SYNC
TFS=1?

NO

RECEIVER FULL
INTERRUPT

READ DATA
FROM RX

TEST FOR
FRAME SYNC
RFS=1

_YES

INCREMENT SLOT NUMBER
SLOTCT1=SLOTCT1 +1

CLEAR SLOT
NUMBER
SLOTCT2=0

WRITE DATA
T0 X

MY TURN
TO TRANSMIT?
SLOTCT =
MYSLOT

WRITE
DUMMY
DATA TO TSR

‘ EXIT . >

NO

INCREMENT SLOT NUMBER
SLOTCT2=SLOTCT2 +1

IS DATA
FOR ME?
SLOTCT2=
MYSLOT?

KEEP DATA

DISCARD
DATA

< EXIT ’

Figure 11-75. TDM Network Software Flowchart

SSI CONTROL REGISTER A (CRA)
(READ/WRITE)

% 1M 13 12 1N w0 9 8 7 6 5 4 3 2 1 0
xserec| psR | o [o | o o | o [1] 1 [emr[ewms| ems] ema] ema [emz | emr | emo |
WL WL DC4 DC3 DC2 DC1 DCO
—— ~
§-BIT WORD LENGTH FOUR TIME SLOTS

SSI CONTROL REGISTER B (CRB)
(READ/WRITE)
15 14 13 12 1 8 7 6 5 4 3 2 1 0

09
xseeen| RiE [e [re [v [v [o [« [o | o [sueo[scko|sco2]scot|scoof or1 | oro |

M0OD ~——— SCD2
SSI MODE SELECT SERIAL CONTROL 2 DIRECTION
1=NETWORK 1=0UTPUT {MASTER}
0=INPUT (SLAVE)
GCK —mmm————————
GATED CLOCK CONTROL —— SCKD
0=CONTINUOUS CLOCK : CLOCK SOURCE DIRECTION
1=0UTPUT (MASTER)
SYN 0=INPUT (SLAVE)
SYNC/ASYNC CONTROL
1=SYNCHRONGUS FSLO

FRAME SYNC LENGTH 0
0=TX, RX SYNC SAME LENGTH

FsL1
FRAME SYNC LENGTH 1
0=WORD WIDTH

v 1 6 5 4 3 2 1 0
x:sreee | RoF | ToE | moe | Tue | mes | s | ik | iro |BS! STATUS REGISTER (SR)
(READ)
$SI TIME SLOT REGISTER (TSR
. * * * * * * * *
X:$FFEE YA

SERIALCLOCK” II ||H|||| l I HH [Hl I HI l l” IH || I l II”“I I ||||| I ' HI l
FRAME SYNC) l I

INTERNAL TX FLAGS AND INTERRUPTS
N\

A) } 3

e
4
ssamme(SLOT 1 >< SLOT 2 >< SLOT 3 >< SLOT 4 >< SLOT 1 >€

) 4 ? 4 4

AN

Vv
INTERNAL RX FLAGS AND INTERRUPTS

Figure 11-76. Network Mode Initialization

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 11121

11.3.7.3.1 Network Mode Transmit. When TE is set, the transmitter will be enabled only
after detection of a new data frame sync. This procedure allows the SSI to synchronize to
the network timing.

Normal startup sequence for transmission in the first time slot is to write the data to be
transmitted to TX, which clears the TDE flag. Then set TE and TIE to enable the transmitter
on the next frame sync and to enable transmit interrupts.

Alternatively, the DSP programmer may decide not to transmit in the first time slot by
writing any data to the time slot register (TSR). This will clear the TDE flag just as if data
‘were going to be transmitted, but the STD pin will remain in the high-impedance state for
the first time slot. The programmer then sets TE and TIE.

When the frame sync is detected (or generated), the first data word will be transferred
from TX to the transmit shift register and will be shifted out (transmitted). TX being empty
will cause TDE to be set, which will cause a transmitter interrupt. Software can poll TDE
or use interrupts to reload the TX register with new data for the next time slot. Software
can also write to TSR to prevent transmitting in the next time slot. Failing to reload TX (or
writing to the TSR) before the transmit shift register is finished shifting (empty) will cause
a transmitter underrun. The TUE error bit will be set, causing the previous data to be
retransmitted.

The operation of clearing TE and setting it again will disable the transmitter after completion
of transmission of the current data word until the beginning of the next frame sync period.
During that time, the STD pin will be three-stated. When it is time to disable the transmitter,
TE should be cleared after TDE is set to ensure that all pending data is transmitted.

The optional output flags are updated every time slot regar_cvj’less of TE.

To summarize, the network mode transmitter generates interrupts every time slot and
requires the DSP program to respond to each time slot. These responses can be

1. Write data register with data to enable transmission in the next time slot.
2. Write the time slot register to disable transmission in the next time slot.

3. Do nothing — transmit underrun will occur the at beginning of the next time slot, and
the previous data will be transmitted.

Figure 11-77 is essentially the same program shown in Figure 11-72 except that this program
uses the network mode to transmit only right-channel data. A time slot is assigned for the
left-channel data, which could be inserted by another DSP using the network mode. In the
“Initialize SSI Port”’ section of the program, two words per frame are selected using CRA,
and the network mode is selected by setting MOD to one in the CRB. The main interrupt
routine, which waits to move the data to TX, only transmits data if the current time slot is
for the right channel. If the current time slot is for the left channel, the TSR is written,
which three-states the output to allow another DSP to transmit the left channel during the
time slot. '

11-122 ‘DSP56000/DSP56001 USER'S MANUAL MOTOROLA

EEE LT E XL EL IS EELTEL R EE RS LR LR EEE TR EE T EET]
’

: SSI and other /0 EQUATES

fEEEKEAEEREEREEEEREEEXEREEEREERERERXRERERXXARXX
’

*

IPR EQU $FFFF
CRA EQU $FFEC
CRB EQU $FFED
PCC EQU $FFE1
TX EQU $FFEF
TSR EQU $FFEE
FLG EQU $0010
ORG X:0
DC $AAAA00
DC $333300
DC $Cccceoo
DC $FOF000

¢ EEEREEXEXEEXEEXEXREXEEERE LR ERREXERXERRERERK%
’

; INTERRUPT VECTOR
;**
ORG P:$0010

JSR XMT

*

R IE LT EL LS L L EL L LR LR LR EEEL LT LT
’ .

; MAIN PROGRAM

P EEEEEEEEEEEELEEEXELEREXEFEEEEXREXEERE XXX ERXRRX
’

*

ORG P:$40
MOVE #0,R0
MOVE #3,M0
MOVE #0,X0
MOVE X0,X:FLG

P EEEEEERE LR REX R LXK ER R EEXX XXX RN
’

; Initialize SSI Port

P EEREEEEXXEEEEEXEEXXREEXXEAXE AR RRXERRRNK
’

*

MOVEP #$3000,X:IPR
MOVEP #$411F, X:CRA
#$5B34,X:CRB

MOVEP

;Data to transmit.

;Pointer to data buffer.

;Set modulus to 4.

;Initialize user flag for SSI flag.
;Start with the right channel.

;Set interrupt priority register for SSI.
;Set continuous clock=5.12/32 MHz,
;word length=16.

;Enable TIE and TE; make clock and
;frame sync outputs; frame sync = bit
;mode; synchronous mode; make
;SCO an output. '

Figure 11-77. Network Mode Transmit Example Program (Sheet 1 of 2)

MOTOROLA

DSP56000/DSP56001 USER'S MANUAL

11-123

CEEEEEERXEREEEEEAE R EREXXRREREREERRRRRERN
’

; Init SSI Interrupt *
ANDI #$FC,MR ;Unmask interrupts.
MOVEP #$01F8,X:PCC ;Turn on SSI port.
JMP * ;Wait for interrupt.

R RS LR L L ER LTS T ERLELE L LR LS LT ELE 2
’

; MAIN INTERRUPT ROUTINE *

¢ EERKEEEXREEE TR RELEEERRREXEEEERRREEXRRXXRRRRRN
’

XMT
JSET #0,X:FLG,LEFT ;Check user flag.
RIGHT BCLR #0,X:CRB ;Clear SCO indicating right channel
. ;data. v
MOVEP X:(RO)+ ,X:TX ;Move data to TX register.
MOVE #>$01,X0 ;Set user flag to 1
MOVE X0,X:FLG ;for next data.
RTI
LEFT BSET #0,X:CRB ;Set SCO indicating left channel data.
MOVEP X0,X:TSR ;Write to TSR register.
MOVE #>$00,X0 ;Clear user flag
MOVE XO0,X:FLG ;for next data.
RTI
END

Figure 11-77. Network Mode Transmit Example Program (Sheet 2 of 2)

11.3.7.3.2 Network Mode Receive. The receive enable will occur only after detection of
a new data frame with RE set. The first data word is shifted irito the receive shift register
and is transferred to the RX, which sets RDF if a frame sync was received (i.e., this is the
start of a new frame). Setting RDF will cause a receive intefrupt to occur if the receiver
interrupt is enabled (RIE=1).

The second data word (second time slot in the frame) begins shifting in immediately after
the transfer of the first data word to the RX. The DSP program has to read the data from
RX {(which clears RDF) before the second data word is completely received (ready to transfer
to RX), or a receive overrun error will occur (ROE=1), and the data in the receiver shift
register will not be transferred and will be lost. '

11-124 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

R R L R E L TR R LR EEELE S E L EEEL T
’

; SSi and other I/O EQUATES *

C KEKKEEREEEEEEXEE AR ERREEXXR XL EEAEEERRRRRRX XN
’

IPR EQU $FFFF
SSISR EQU $FFEE
CRA EQU $FFEC
CRB EQU $FFED
PCC EQU $FFE1
RX EQU $FFEF

CEEEEEEEEEEEEREERAR LXK R ERREERX R XX KX RR*
’

; INTERRUPT VECTOR *

P EEEEEEEERXERXEEEALEFRE XXX F R REEEEAXERRXX KX
’

ORG P:$000C
JSR RCV

@ EEEEREXEEEEEREXAE XXX EXEERREREXEEEXREX XXX RRN
’

; MAIN PROGRAM ¥

P EEEEEEERXXEEEKE XXX XXX R EERER XX XXX XX XXX
’

ORG P:$40

MOVE #0,R0 ;Pointer to memory buffer for
MOVE #$08,R1 ;received data. Note data will be
MOVE #3,M0 ;split between two buffers using
MOVE #3,M1 ;modulus 4

R X EXX XL TR REERX TR RAEEEXXXRRRXRXH
'

; Initialize SSI Port *

R AT R AR LT LRSS T L EEESEEEE LT LS LR
’

MOVEP #$3000,X:IPR ;Setinterrupt priority register for SSI.
MOVEP #$4100,X:CRA ;Set word length =16 bits.
MOVEP #$AB00,X:CRB ;Enable RIE and RE; synchronous

mode with bit frame sync; clock
;and frame sync are
;external; SCO is an input.

Figure 11-78. Network Mode Receive Example Program (Sheet 1 of 2)

MOTOROLA , DSP56000/DSP56001 USER'S MANUAL 11-125

CEEREEERKR AR XXX AR RXRE XXX RXXXXXXRHNH
’

; Init SSI Interrupt *
;**
ANDI #$FC,MR ;Unmask interrupts.
MOVEP #$01F8,X:PCC ;Turn on SSI port.
JMP * v ;Wait for interrupt.

FEEEEEEREEREEEEEXXA KA EEEREREERKXERKXKRXXXRXNNK
4

; MAIN INTERRUPT ROUTINE ¥

¢ EEEKEEEEXEXEEEX LA XXX EX KRR AR ERXERRXREN
’

RCV JSET #0,X:SSISR,RIGHT ; Test SCO flag.

LEFT MOVEP X:RX,X:(RO) + ;If SCO clear, receive data
RTI ;into left buffer (RO).

RIGHT MOVEP X:RX, X:(R1)+ ;If SCO set, receive data
RTI ;into right buffer (R1).
END

Figure 11-78. Network Mode Receive Example Program (Sheet 2 of 2)

If RE is cleared and set again by the DSP program, the receiver will be disabled after

receiving the current time slot in progress until the next frame sync (first time slot). This

mechanism allows the DSP programmer to ignore data in the last portion of a data frame.
NOTE

The optional frame sync output and clock output signals are not affected, even
if the transmitter and/or receiver are disabled. TE and RE do not disable bit clock
and frame sync generation.

To summarize, the network mode receiver receives every time slot data word unless the
receiver is disabled. An interrupt can occur after the reception of each data word, or the
programmer can poll RDF. The DSP program response can be

1. Read RX and use the data.
2. Read RX and ignore the data.

3. Do nothing — the receiver overrun exception will occur at the end of the current time
slot.

4. Toggle RE to disable the receiver until the next frame, and read RX to clear RDF.

11-126 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

Figure 11-78 is essentially the same program shown in Figure 11-73 except that this program
uses the network mode to receive only right-channel data. In the “Initialize SSI Port” section
of the program, two words per frame are selected using the DC bits in the CRA, and the
network mode is selected by setting MOD to one in the CRB. If the program in Figure 11-
77 is used to transmit to the program in Figure 11-78, the correct data will appear in the
data buffer for the right channel, but the buffer for the left channel will probably contain
$000000 or $FFFFFF, depending on whether the transmitter output was high or low when
TSR was written and whether the output was three-stated.

11.3.7.4 ON-DEMAND MODE EXAMPLES. A divide ratio of one {(DC=00000) in.the net-
work mode is defined as the on-demand mode of the SSI because it is the only data-driven
mode of the SSI — i.e., data is transferred whenever data is present (see Figures 11-79
and 11-80). STD and SCK from DSP1 are connected to DSP2 — SRD and SCQO, respectively.
SCO is used as an input clock pin in this application. Receive data and receive data clock
are separate from the transmit signals. On-demand data transfers are nonperiodic, and no
time slots are defined. When there is a clock in the gated clock mode, data is transferred.
Although they are not necessarily needed, frame sync and flags are generated when data
is transferred. Transmitter underruns (TUE) are impossible in this mode and are therefore
disabled. In the on-demand transmit mode, two additional SSI clock cycles are automati-
cally inserted between each data word transmitted. This procedure guarantees that frame
sync will be low between every transmitted data word or that the clock will not be contin-
uous between two consecutive words in the gated clock mode. The on-demand mode is
similar to the SCI shift register mode with SSFTD equals one and SCKP equals one. The
receiver should be configured to receive the bit clock and, if continuous clock is used, to
receive an external frame sync. Therefore, for all full-duplex communication in on-demand
mode, the asynchronous mode should be used. The on-demand mode is SPI compatible.

Initializing the on-demand mode for the example illustrated in Figure 11-80 is accomplished
by setting the bits in CRA and CRB as follows:
1. The word length must be selected by setting WL1 and WLO. In this example, a 24-
bit word length was chosen (WL1=1 and WL0O=1).
2. The on-demand mode is selected by clearing DC4-DCO.

DSP56000 DSP56000
DSP1 DSP2
STD > Sﬂb
» SCK > SCo
SRD | STD
SCO |- SCK

Figure 11-79. On-Demand Example

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 11-127

3. The serial clock rate must be selected by setting PSR and PM7-PMO (see Tables
"11-9 and 11-10).

4. RE and TE must be set to activate the transmitter and receiver. If interrupts are to
be used, RIE and TIE should be set. RIE and TIE are usually set after everything else
is configured and the DSP is ready to receive interrupts.

5. The network mode must be selected (MOD=1).

6. A gated clock (GCK=1) is selected in this example. A continuous clock example is
shown in Figure 11-77.

7. Asynchronous clock control was selected (SYN =0) in this example.

8. Since gated clock is used, the frame sync is not necessary. FSL1 and FSLO can be
ignored. '

9. SCKD must be an output (SCKD=1).
10. SCDO must be an input (SCD0=0).

11. Control bit SHFD should be set as needed for the application. Pins SC1 and SC2 are
undefined in this mode (see Table 11-7) and should be programmed as general-
purpose /O pins.

11.3.7.4.1 On-Demand Mode — Continuous Clock. This special case will not generate a
periodic frame sync. A frame sync pulse will be generated only when data is available to
transmit (see Figure 11-81(a)). The frame sync signal indicates the first time slot in the
frame. The on-demand mode requires that the transmit frame sync be internal (output)
and the receive frame sync be external {input). Therefore, for simplex operation, the syn-
chronous mode could be used; however, for full-duplex operation, the asynchronous mode
must be used. Data transmission that is data driven is enabled by writing data into TX.
Although the SSI is double buffered, only one word can be written to TX, even if the
transmit shift register is empty. The receive and transmit interrupts function as usual using
TDE and RDF; however, transmit and receive underruns are impossible for on-demand
transmission and are disabled. This mode is useful for interfacing to codecs requiring a
continuous clock.

11.3.7.4.2 On-Demand Mode — Gated Clock. Gated clock mode (see Figure 11-81(b)) is
defined for on-demand mode, but the gated clock mode is considered a frame sync source;
therefore, in gated clock mode, the transmit clock must be internal (output) and the receive
clock must be external (input). For on-demand mode, with internal (output) synchronous
gated clock, output clock is enabled for the transmitter and receiver when TX data is
transferred to the transmit data shift register. This SPI master operating mode is shown
in Figure 11-82. Word sync is inherent in the clock signal, and the operation format must
provide frame synchronization.

Figure 11-83 is the block diagram for the program presentekd ih Figure 11-84. This program
contains a transmit test program that was written as a scoping loop (providing a repetitive

11-128 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

SSI CONTROL REG!STER A (CRA)
(READ/WRITE)

15 14 13 12 n 10 9 8 7 6 5 4 3 2 1 0

xsrrec| psR [0 | v T o [o [o T o | o [emr|ews | ems{ eva | ema|eme] emi | emo |
WL Wl DC4 DC3 OC2 DGl DCO
——

24-BIT WORD LENGTH ON-DEMAND

SSI CONTROL REGISTER B (CRB)

(READ/WRITE)
15 14 13 12 n 10 9 8 7 6 5 4 3 2 1 0
xserep| me | me | me [t | 0] 1 [o [esuesw]sun] 1 [scoalscot] o [ot] oro |
MOD ————— SC00
$SI MODE SELECT SERIAL CONTROL 2
1= NETWORK DIRECTION
‘ 0=INPUT
6K ——————]
GATED CLOCK CONTROL ———————————s0KD
1=GATED CLOCK CLOCK SOURCE
DIRECTION
SYN 1=0UTPUT
SYNC/ASYNC CONTROL

0=ASYNCHRONOUS

TRANSMIT DATA_———(24-BIT DATA FROM DSP1 T0 DSP 2 >

— f+— TWO SSI BIT CLOCKS (MIN.)

RECEIVE DATA DSP2 T0 DSP1

N

24-BIT DATA FROM DSP2 TO DSP1 >—

NOTE: Two SSI bit clock times are automatically inserted between each data word. This guarantees frame sync will be low
between every data word transmitted and the clock will not be continuous for two consecutive data words.

Figure 11-80. On-Demand Data-Driven Network Mode

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 11-129

DATA CHANGES

I DATA STABLE

FRAME SYNC | | |
VRN
SERIAL DATA DATA (oata D

(a) Continuous

SERIAL CLOCK l I | |||| |I |” I H l H

SERIAL DATA { DATA > DATA -
(b) Gated

Figure 11-81. Clock Modes

MASTER SLAVE
SHIFT REGISTER [« SHIFT REGISTER
A 1\
SPI
CLOCK GENERATOR
DSP1 " DSP2

Figure 11-82. SPI Configuration

11-130 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

DSP56001 DSP56001

PC3

§C2

—>
—>
SRD
STD ——/—

SCK
%SK

Figure 11-83. On-Demand Mode Example — Hardware Configuration

SCK

sync) using the on-demand, gated, synchronous mode with no interrupts (polling) to trans-
mit data to the program shown in Figure 11-85. The program also demonstrates using
parallel /0O pins as general-purpose control lines. PC3 is used as an external strobe or
enable for hardware such as an A/D converter. The transmit program sets equates for
convenience and readability. Test data is then written to X: memory, and the data pointer
is initialized. Setting MO to two makes the buffer circular (modulo 3), which saves the step
of resetting the pointer each loop. PC3 is configured as a general-purpose output for use
as a scope sync, and CRA and CRB are then initialized. Setting the PCC bits begins SSI
operation; however, no data will be transmitted until data is written to TX. PC3 is set high
at the beginning of data transmission; data is then moved to TX to begin transmission. A
JCLR instruction is then used to form a wait loop until TDE equals one and the SSl is ready
for another data word to be transmitted. Two more data words are transmitted in this
fashion (this is an arbitrary number chosen for this test loop). An additional wait is included
to make sure that the frame sync has gone low before PC3 is cleared, indicating on the
scope that transmission is complete. A wait of 100 NOPs is implemented by using the REP
instruction before starting the loop again.

Figure 11-85 is the receive program for the scoping loop program presented in Figure 11-
84. The receive program also uses the on-demand, gated, synchronous mode with no
interrupts (polling). Initialization for the receiver is slightly different than for the transmitter.
In CRB, RE is set rather than TE, and SCKD and SCD2 are inputs rather than outputs. After
initialization, a JCLR instruction is used to wait for a data word to be received (RDF=1).
When a word is received, it is put into the circular buffer and loops to wait for another
data word. The data in the circular buffer will be overwritten after three words are received
(does not matter in this application).

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 11-131

CREEEREEXEXEEEEREEKE KRR RRARRREERERRRRRRR,H
’

; SSI and other I/0 EQUATES

CEEEEEEEREREREEEXXXRERRLE R XXX RXEXXREERREX
'

CRA EQU
CRB EQU
PCC EQU
PCD EQU
SSISR EQU
TX EQU
PCDDR EQU
ORG
DC
DC
DC

$FFEC
$FFED
$FFET
$FFE5
$FFEE
$FFEF
$FFE3

X:0
$AA0000
$330000
$F00000

*

;Data to transmit

fHEEEEEEEEERKREEEEEXXA KRR XXX XXX XXRERRERX
’

; MAIN PROGRAM

P EEHEEREERIEREREREEREREREEEREEXERRE XXX RRERRRX
’ .

ORG

MOVE
MOVE

MOVEP

MOVEP

'MOVEP

MOVEP

LOOPO BSET

MOVEP

P:$40

#0,R0
#2,M0

#$08,X:PCDDR

#$001F,X:CRA

~ #$1E30,X:CRB

#$1F0,X:PCC

#3,X:PCD

X:(RO)+,X:TX

*

;Pointer to data buffer
;Length of buffer is 3

;SCO (PC3) as general
;purpose output.

;Set Word Length=8, CLK=5.12/32
;MHz.

;Enable transmitter, Mode =0On-
;Demand,

;Gated clock on, synchronous mode,
;Word frame sync selected, frame
;sync and clock are internal and
;output to port pins.

;Set PCC for SSI and

;Set PC3 high (this is example enable
;or strobe for an external device
;such as an ADC).

;Move data to TX register

Figure 11-84. On-Demand Mode Transmit Example Program (Sheet 1 of 2)

11-132

DSP56000/DSP56001 USER'S MANUAL MOTOROLA

TDE1 JCLR #6,X:SSISR,TDE1 ;Wait for TDE (transmit data register
;empty) to go high.

MOVEP X:(RO)+ ,X:TX ;Move next data to TX.
TDE2 JCLR #6,X:SSISR, TDE2 ;Wait for TDE to go high.
MOVEP X:(RO)+,X:TX ;Move data to TX.
TDE3 JCLR #6,X:SSISR, TDE3 ;Wait for TDE=1.
FSC JSET #5,X:PCD,FSC ;Wait for frame sync to go low. NOTE:

;State of frame sync is directly
;determined by reading PC5.

BCLR #3,X:PCD ;Set PC3 lo (example external
;enable).

;anything goes here (i.e., any processing)

REP #100

NOP

JMP LOOPO ;Continue sequence forever.
END

Figure 11-84. On-Demand Mode Transmit Example Program (Sheet 2 of 2)

11.3.8 Flags

Two SSI pins (SC1 and SCO) are available in the synchronous mode for use as serial /0
flags. The control bits (OF1 and OF0) and status bits (IF1 and IF0) are double buffered to/
from SC1 and SCO. Double buffering the flags keeps them in sync with TX and RX. The
direction of SC1 and SCO is controlled by SCD1 and SCDO in CRB.

" Figure 11-86 shows the flag timing for a network mode example. Initially, neither TIE nor
TE is set, and the flag outputs are the last flag output value. When TIE is set, a TDE interrupt
occurs (the transmitter does not have to be enabled for this interrupt to occur). Data (D1)
is written to TX, which clears TDE, and the transmitter is enabled by software. When the
frame sync occurs, data (D1) is transferred to the transmit shift register, setting TDE. Data
(D1) is shifted out during the first word time, and the output flags are updated. These flags
will remain stable until the next frame sync. The TDE interrupt is then serviced by writing
data (D2) to TX, clearing TDE. After the TSR completes transmission, the transmit pin is
three-stated until the next frame sync.

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 11-133

XA EREEREERREEEREXEEEXEREXERKRXXXXRRRXERRXNKRR
' y

’

SSI and other /O EQUATES ¥

P EEERERREREERR R EEEEEEEEEEEEEEREEXREEREEREEEXK
2

CRA
CRB
PCC
PCD
SSISR
RX
PCDDR

EQU $FFEC
EQU $FFED
EQU $FFE1

EQU $FFES5
EQU $FFEE
EQU $FFEF

EQU $FFE3

CEEAEEEERRREEELEEEREERXRRXERXERXEXRXXRXRRARRX
’

’

LOOP

RDF1

MAIN PROGRAM *
;**
ORG P:$40
MOVE #0,R0 ;Pointer to data buffer
MOVE #2,M0 ;Length of buffer is 3
MOVEP #$[001F,X:CRA ;Set Word Length=8, CLK=5.12/32
;MHz.
MOVEP #$2E00,X:CRB ;Enable receiver, Mode=0n-
;Demand, gated clock on,
;synchronous mode,
;Word frame sync selected, frame
;sync and clock are external.
MOVEP #$1F0,X:PCC ;Set PCC for SSI
JCLR #7,X:SSISR,RDF1 ;Wait for RDF (receive data register
;Full) to go high.
MOVEP X:RX,X:(R0O) + ;Read data from RX into memory.
JMP LOOP ;Continue sequence forever.
END

11-134

Figure 11-85. On-Demand Mode Receive Example Program

DSP56000/DSP56001 USER'S MANUAL MOTOROLA

V104010

SseL-LL

TVNNVIA S.H3SN 10095dS0/00095dSA

START

FRAME SYNC l I

TIE _|

TE__J

D1 D2 D3
TDE INTERRUPTS | | |

LOAD TSR | |

D1 D2

WORD
TIME
l<
*

TIME SLOT

A

|
OUPUT FLAGS X X

" NOTES:

1. Fn=flags associated with Dn data.

2. Output flags are double buffered with transmit data.

3. Output flags change when data is transferred from TX to the transmit data shift register.
4. Initial flag outputs (*) =last flag output value.

5. Data and flags transition after external frame sync but not before rising edge of clock.

Figure 11-86. Output Flag Timing

Figure 11-87 shows a speaker phone example that uses a DSP56000 and two codecs. No
additional logic is required to connect the codecs to the DSP. The two serial output flags
in this exampie (OF1 and OF0) are used as chip selects to enable the appropriate codec
for 1/0. This procedure allows the transmit lines to be ORed together. The appropriate
output flag pin changes at the same time as the first bit of the transmit word and remains
stable until the next transmit word (see Figure 11-88). Applications include serial-device
chip selects, implementing multidrop protocols, generating Bell PCM signaling frame syncs,
and outputting status information.

MC15500 SPEAKER PHONE
CODEC FILTER 1
0D

MICROPHONE ~———3{ TXI RDD [
TDC [
RDC 1——-J

SPEAKER -——— RX0 TDE [

OF0 DSP56000

QUTPUT | -
RCE [FLAG 0

MSI| [

SRD
STD
SCK

SCo
MC15500
CODEC FILTER 2 SCi

0D
PHONE LINE INPUT =———3 TXI RDD
TDC
RDC
PHONE LINE OUTPUT -€————] RX0 TDE
RCE
MSI

Y

OF1

ouTPUT
FLAG 1

A A A T_A A

NOTE: SCO and SC1 are output flag 0 and 1 used to software select either filter 1 or 2,

Figure 11-87. Output Flag Example

Initializing the flags (see Figure 11-88) is accomplished by setting SYN, SCD1, and SCDO.
No other control bits affect the flags. The synchronous control bit must be set (SYN=1)
to select the SC1 and SCO pins as flags. SCD1 and SCDO select whether SC1 and SCO are
inputs or outputs (input=0, output=1). The other bits selected in Figure 11-88 are chosen
for the speaker phone example in Figure 11-87. In this example, the codecs require that
the SSI be set for normal mode (MOD =0) with a gated clock (GCK=1) out (SCKD=1).

Serial input flags, IF1 and IFO, are latched at the same time as the first bit is sampled in
the receive data word (see Figure 11-89). Since the input was latched, the signal on the

11-136 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

VIOHO10N

TYNNYIAL S, H3SN 10095d4S0/00095dSA

LEL-LL

M 180 0w 9 8 7 6 5 4 3 2 1 0
[me [me {me [ve [o | o+ [v [rsui{rstofsuen]| 1 [scoaf +] 1 [om | om]
0 1=FILTER1
MoD 1 0=FITER2
$51 MODE SELECT
0=NORMAL
6CK

GATED CLOCK CONTROL
1=GATED CLOCK

SYN
SYNC/ASYNC CONTROL
1=SYNCHRONOUS

CLOCK SOURCE

SCKD
DIRECTION
1=0UTPUT

SCD1 AND SCDo

SERIAL CONTROL 1 AND 0 DIRECTION
1=0UTPUT

TRANswrcwcx|||||||||||||||!

TRANSMIT DATA - —C_B7 X 85 > B5 > B4 X B3 X B2 XX B1 XX BO

OUTPUT FLAG

X VALID OUTPUT FLAG

A

OF0 AND OF1 ARE CLOCKED OUT ON THE
RISING EDGE OF THE TRANSMIT CLOCK.

Figure 11-88. Output Flag Initialization

A

OUTPUT FLAGS ARE ALWAYS VALID UNTIL
THE NEXT WORD TRANSMITTED.

- " - - - . o

7 [5 4 3 Z i 0

x:seeee | nor | oe [roe [ue Tres [ors [mn [o |pan REGISTER (SSISR)

INPUT FLAGS

RECEIVE DATA —C 87 > B6 > B5 X B4 X B3 XX B2) B1)X B0 D
1
INPUT FAG XXX

1
4 SAMPLE

Figure 11-89. Input Flags

input flag pin can change without affecting the input flag until the first bit of the next
receive data word. To initialize SC1 or SCO as input flags, the synchronous control bit in
CRB must be set to one (SYN =1) and SCD1 set to zero for pin SC1, and SCD0 must be set
to zero for pin SCO. The input flags are bits 1 and 0 in the SSISR (at X:$FFEE).

11.3.9 Example Circuits

The DSP-to-DSP serial network shown in Figure 11-90 uses no additional logic chips for
the network connection. All serial data is synchronized to the data source (all serial clocks
and serial syncs are common). This basic configuration is useful for decimation and data
reduction when more processing power is needed than one DSP can provide. Cascading
DSPs in this manner is useful in several network topologies including star and ring net-
works.

DSP56000/DSP56001 DSP56000/DSP56001 N R
DATA . DATA
IN ouT
—>{ sAp STD SRD STD > srp STD >l sro STD —>
SCK SCK SCK | . SCK |
SC2 |— SC2 <€ SC2 j&— SC2
SERIAL CLOCK A
SERIAL SYNC Y

Figure 11-90. SSI Cascaded Multi-DSP System

11-138 DSP56000/DSP56001 USER'S MANUAL" MOTOROLA

TDM networks are useful to reduce the wiring needed for connecting multiple processors.
A TDM parallel topology, such as the one shown in Figure 11-91, is useful for interpolating
filters. Serial data can be received simultaneously by all DSPs, processing can occur in
parallel, and the results are then multiplexed to a single serial data out line. This config-
uration can be cascaded and/or looped back on itself as needed to fit a particular application
(see Figure 11-92). The serial and parallel configurations can be combined to form the
array processor shown in Figure 11-93. A nearest neighbor array, which is aplicable to
matrix relaxation processing, is shown in Figure 11-94. To simplify the drawing, only the
center DSP is connected in this illustration. In use, all DSPs would have four three-state
buffers connected to their STD pin. The flags (SC0 and SC1) on the control master operate
the three-state buffers, which control the direction that data is transferred in the matrix
(north, south, east, or west).

The bus architecture shown in Figure 11-95 allows data to be transferred between any two
DSPs. However, the bus must be arbitrated by hardware or a software protocol to prevent
collisions. The master/slave configuration shown in Figure 11-96 also allows data to be
transferred between any two DSPs but simplifies network control.

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 11-139

11-140

SERIAL
DATA IN

DSP56000/DSP56001
>{ SRD STD >
SCK —>
sc2 >
DSPS6000/DSP56001
>{ sRD STD >
SCK €
sc2
DSP56000/DSP56001
>{ sRD STD >
SCK |
SC2 |
DSP5G000/DSP5500]
>{ SRD STD
SCK |
SC2 |
SERIAL SYNC

SERIAL CLOCK

Figure 11-91. SSI TDM Parallel DSP Network

DSP56000/DSP56001 USER'S MANUAL

SERIAL
DATA oUT

MOTOROLA

Y

Y

DSP56000/DSP56001
SRD STD
SCK
sC2
DSP56000/DSP56001
SRD STD
SCK |-
sc2 |«
DSP56000/DSP56001
SRD STD
ScK |
SC2 |-
DSP56000/DSP56001
SRD STD
SCK |
SC2 |
Figure

MOTOROLA

11-92. SSI TDM Connected Parallel Processing Array

A

A

A

DSPS56000/DSP56001

@ —>{ SRD STD
SCK

SC2

DSP56000/DSP56001

@——>| SRD STD
SCK

SC2

DSP56000/DSP56001

@—>»{ SRD STD
SCK

sC2

DSP56000/DSP56001

®—— > SRD STD
SCK

SC2

FRAME SYNC

SERIAL CLOCK

DSP56000/DSP56001 USER'S MANUAL

11-141

SERIAL
IN
—>

A

11-142

DSP56000/DSP56001
>1 SRD STD
SCK

SC2
DSP56000/DSP56001
>{ SRD STD
SCK

SC2
DSP56000/DSP56001
>1 SRD STD
SCK

SC2
DSP56000/DSP56001
> SRD STD
SCK

SC2

DSP56000/DSP56001 DSP56000/DSP56001
S0 sTD SRD ST
ScK e SCK [«
SC2 fe— SC2 [
DSP56000/DSP56001 DSP56000/DSP56001
>1 SRD STD >{ SRD STD >
SCK [SCK |
SC2 |— sc2 |
SERIAL
ouT
—
DSP56000/DSP56001 DSP56000/DSP56001
> SRD STD SRD STD
SCK | SCK |
SC2 Je— sc2 |
DSP56000/DSP56001 DSP56000/DSP56001
> SRD STD SRD STD >
SCK | SCK [
SC2 |- SC2 |
SERIAL SYNC
SERIAL CLOCK
Figure 11-93. SSI TDM Serial/Parallel Processing Array
DSP56000/DSP56001 USER'S MANUAL MOTOROLA

Y

DSP56000/DSP56001 DSP56000/DSP56001 DSP56000/DSPS6001
SRD STD > SRD STD >{ SRD STD
SCO SCK |—> SCK [« SCK 4—'
$C2 [sc2 f= SC2 [
<
DSP56000/DSPS6001 DSPS6000/DSP56001 DSP56000/DSPS6001
SRD STD > SRD STD |——i{—4-1P>>1 SRD STD
"//
[
ook < SCK | sck |
SC2 [SC2 [<€—] SC2 |«
<
DSP56000/DSP56001 DSP56000/DSP56001 DSP56000/DSP56001
SRD STD >1 SRD STD >{ SRD STD
SCK f SCK [« SCK [
SC2 fed SC2 |ae— sc2 [«
SERIAL CLOCK
FRAME SYNC

Figure 11-94. SSI Parallel Processing — Nearest Neighbor Array

DSP56000/DSP56001 USER'S MANUAL

Y

11-143

SERIAL SYNC
SERIAL CLOCK -
SERIAL DATA BUS
DSP56000/ DSP56000/ DSP56000/ DSPE6000/
DSPS6001 DSP56001 DSPS6001 DSP56001
STD STD STD STD
SRD SRD SRD SRD,
SCK SCK SCK SCK
sc2 |— sc2 sC2 fe sc2

Figure 11-95. SSI TDM Bus DSP Network

11-144 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

V104010

TYNNVYIN S, H3SN L0095dSA/00095dSA

ShL-LL

MASTER TRANSMIT

MASTER RECEIVE

DSP56000/DSP5001
MASTER -

STD

SRD e

SCK

sC1

SC0 |—

DSP56000/DSP5001
SLAVE 1

STD

SRD

SCK

SC2

SC1
SCo

A

DSP56000/DSP5001
SLAVE 2

STD

SRD

SCK

§C2

SC1
SCo

DSP56000/DSP5001
SLAVE 3

STD

SRD

SCK

sC2

§CO

MASTER CLOCK

MASTER SYNC
FLAG 1

FLAG 0

NOTE: Flags can specify data types: control, address, and data.

Figure 11-96. SSI TDM Master-Slave DSP Network

11-146 DSP56000/DSP56001 USER'S MANUAL MOTOROLA

APPENDIX A
INSTRUCTION SET DETAILS

This appendix contains detailed information about each instruction in the DSP56000/
DSP56001 instruction set. An instruction guide is presented first to help understand the
individual instruction descriptions. This guide is followed by sections on notation and
addressing modes. Since parallel moves are allowed with many of the instructions, they
are discussed before the instructions. The instructions are then discussed in alphabetical
order.

A.1 INSTRUCTION GUIDE

The following information is included in each instruction description with the goal of making
each description self-contained:

1.
2.

Name and Mnemonic: The mnemonic is highlighted in bold type for easy reference.

Assembler Syntax and Operation: For each instruction syntax, the corresponding
operation is symbolically described. If there are several operations indicated on a
single line in the operation field, those operations do not necessarily occur in the
order shown but are generally assumed to occur in parallel. If a parallel data move
is allowed, it will be indicated in parenthesis in both the assembler syntax and op-
eration fields. If a letter in the mnemonic is optional, it will be shown in parenthesis
in the assembler syntax field.

Description: A complete text description of the instruction is given together with ény
special cases and/or condition code anomalies of which the user should be aware
when using that instruction.

Example: An example of the use of the instruction is given. The example is shown
in DSP56000/DSP56001 assembler source code format. Most arithmetic and logical
instruction examples include one or two parallel data moves to illustrate the many
types of parallel moves that are possible. The example includes a complete expla-
nation, which discusses the contents of the registers referenced by the instruction
(but not those referenced by the parallel moves) both before and after the execution
of the instruction. Most examples are designed to be easily understood without the
use of a calculator.

Condition Codes: The status register is depicted with the condition code bits which
can be affected by the instruction highlighted in bold type. Not all bits in the status
register are used. Those which are reserved are indicated with a double asterisk and
are read as zeros.

Instruction Format: The instruction fields, the instruction opcode, and the instruction
extension word are specified for each instruction syntax. When the extension word

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-1

is optional, itis so indicated. The values which can be assumed by each of the variables
in the various instruction fields are shown under the instruction field’s heading. Note
that the symbols used in decoding the various opcode fields of an instruction are
completely arbitrary. Furthermore, the opcode symbols used in one instruction are
completely independent of the opcode symbols used in a different instruction.

. Timing: The number of oscillator clock cycles required for each instruction syntax is

given. This information provides the user a basis for comparison of the execution
times of the various instructions in oscillator clock cycles. Refer to Table A-1 and A.7
INSTRUCTION TIMING for a complete explanation of instruction timing, including the

"o [ZTi "ou Y] "o [N THW] "o

meaning of the symbols “aio”, “ap”, “ax", “ay”, “axy”, “ea’”, “jx", “mv", “mvb",

“ (7] "o [T T RN T A7) nou

mvc”, “mvm”, “mvp”, “rx"”, “wio”, “wp"”, “wx", and “wy".

. Memory: The number of program memory words required for each instruction syntax

is given. This information provides the user a basis for comparison of the number of
program memory locations required for each of the various instructions in 24-bit
program memory words. Refer to Table A-1 and A.7 INSTRUCTION TIMING for a
complete explanation of instruction memory requirements, including the meaning of
the symbols “ea” and “mv".

A.2 NOTATION

Each

instruction description contains symbols used to abbreviate certain operands and

operations. Table A-1 lists the symbols used and their respective meanings. Depending on
the context, registers refer to either the register itself or the contents of the register.

Table A-1. Instruction Description Notation

Data ALU Registers Operands

Xn Input Register X1 or X0 (24 Bits)

Yn Input Register Y1 or YO (24 Bits)

An Accumulator Registers A2, A1, A0 (A2 — 8 Bits, A1 and A0 — 24 Bits)

Bn Accumulator Registers B2, B1, BO (B2 — 8 Bits, B1 and B0 — 24 Bits)

X Input Register X=X1:X0 (48 Bits)

Y input. Register Y =Y1:YO0 (48 Bits)

A Accumulator A=A2:A1:A0 (56 Bits)*

B Accumulator B=B2:B1:B0 (56 Bits)*

AB Accumulators A and B=A1:B1 (48 Bits)*

BA Accumulators B and A=B1:A1 (48 Bits)*

A10 Accumulator A=A1:A0 (48 Bits)

B10 Accumulator B=B1:B0 (48 Bits)

*NOTE: In data move operations, shifting and limiting are performed when this register is spec-
ified as a source operand. When specified as a destination operand, sign extension and
possibly zeroing are performed.

DSP56000/DSP56001 USER’'S MANUAL MOTOROLA

Table A-1. Instruction Description Notation (Continued)

Address ALU Registers Operands

Rn Address Registers R0-R7 (16 Bits)
Nn Address Offset Registers NO-N7 (16 Bits)
Mn Address Modifier Registers M0-M7 (16 Bits)

Program Controller Registers Operands

PC Program Counter Register (16 Bits)

MR Mode Register (8 Bits)

CCR Condition Code Register (8 Bits)

SR Status Register=MR:CCR (16 Bits)

OMR Operating Mode Register (8 Bits)

LA Hardware Loop Address Register (16 Bits)

LC Hardware Loop Counter Register (16 Bits)

SP System Stack Pointer Register (6 Bits) -

SSH Upper Portion of the Current Top of the Stack (16 Bits)
SSL Lower Portion of the Current Top of the Stack (16 Bits)
SS System Stack RAM =SSH:SSL (15 Locations by 32 Bits)

Address Operands

ea Effective Address

eax Effective Address for X Bus

eay Effective Address for Y Bus

XXXX Absolute Address (16 Bits)

XXX Short Jump Address (12 Bits)

aa Absolute Short Address (6 Bits, Zero Extended)
pp /0 Short Address (6 Bits, Ones Extended)
<...> Specifies the Contents of the Specified Address
X X Memory Reference

Y: Y Memory Reference

L Long Memory Reference = X:Y

P Program Memory Reference

MOTOROLA DSP56000/DSP56001 USER'S MANUAL A-3

Table A-1. Instruction Description Notation (Continued)

Miscellaneous Operands

S,Sn Source Operand Register
D,Dn Destination Operand Register
DIn] Bit n of D Destination Operand Register
#n |Immediate Short Data (5 Bits)
#XX Immediate Short Data (8 Bits)
#xxx Immediate Short Data (12 Bits)
FXXXXXX Immediate Data {24 Bits)
Unary Operators
- Negation Operator
— Logical NOT Operator
PUSH Push Specified Value onto the System Stack (SS) Operator
PULL Pull Specified Value from the System Stack (SS) Operator
READ Read the Top of the System Stack (SS) Operator
PURGE Delete the Top Value on the System Stack (SS) Operator
|] Absolute Value Operator A
Binary Operators
+ Addition Operator
- Subtraction Operator
* Multiplication Operator
+ 1 Division Operator
+ Logical Inclusive OR Operator
. Logical AND Operator
@ Logical Exclusive OR Operator
» “Is Transferred To"" Operator
Concatenation Operator
Addressing Mode Operators
<< 1/0 Short Addressing Mode Force Operator
< Short Addressing Mode Force Operator
> Long Addressing Mode Force Operator
Immediate Addressing Mode Operator
#> Immediate Long Addressing Mode Force Operator
#< Immediate Short Addressing Mode Force Operator
A-4 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Table A-1. Instruction Description Notation (Continued)

Mode Register (MR} Symbols

LF Loop Flag Bit Indicating When a DO Loop Is in Progress
T Trace Mode Bit Indicating If the Tracing Function Has Been Enabled i
$1,S0 Scaling Mode Bits Indicating the Current Scaling Mode
11,10 Interrupt Mask Bits Indicating the Current Interrupt Priority Level
Condition Code Register (CCR) Symbols
Standard Definitions (Table A-3 Describes Exceptions)
L Limit Bit Indicating Arithmetic Overflow and/or Data Shifting/Limiting
E Extension Bit Indicating If the Integer Portion of A or B Is in Use
U Unnormalized Bit Indicating if the A or B Result Is Unnormalized
N Negative Bit Indicating If Bit 55 of the A or B Result Is Set
z Zero Bit Indicating If the A or B Result Equals Zero _
Vv Overflow Bit Indicating If Arithmetic Overflow Has Occurred in A or B
C Carry Bit Indicating If a Carry or Borrow Occurred in A or B Resulit
Instruction Timing Symbols
aio Time Required to Access an I/0O Operand
ap Time Required to Access a P Memory Operand
ax Time Required to Access an X Memory Operand
ay Time Required to Access a Y Memory Operand
axy Time Required to Access XY Memory Operands
ea Time or Number of Words ReqUired for an Effective Address
ix Time Required to Execute Part of a Jump-Type Instruction
mv Time or Number of Words Required for a Move-Type Operation
mvb Time Required to Execute Part of a Bit Manipulation Instruction-
mvce Time Required to Execute Part of a MOVEC Instruction
mvm Time Required to Execute Part of a MOVEM Instruction
mvp Time Required to Execute Part of a MOVEP Instruction
rx Time Required to Execute Part of an RTi or RTS Instruction
wio Number of Wait States Used in Accessing External I/O
wp Number of Wait States Used in Accessing External P Memory
WX Number of Wait States Used in Accessing External X Memory
wy Number of Wait States Used in Accessing External Y Memory

MOTOROLA

DSP56000/DSP56001 USER'S MANUAL

A-5

Table A-1. Instruction Description Notation (Concluded)

s P P
viner oympolis

() Optional Letter, Operand, or Operation

(.....) Any Arithmetic or Logical Instruction Which Allows Parallel Moves
EXT Extension Register Portion of an Accumulator (A2 or B2)
LS Least Significant ‘

LSP Least Significant Portion of an Accumulator (A0 or B0)
MS Most Significant

MSP Most Significant Portion of an Accumulator (A1 or B1)

r Rounding Constant ‘

S/L Shifting and/or Limiting on a Data ALU Register

Sign Ext Sign Extension of a Data ALU Register

Zero Zeroing of a Data ALU Register

A.3 ADDRESSING MODES

The addressing modes are grouped into three categories — register direct, address register
indirect, and special. These addressing modes are summarized in Table A-2. All address
calculations are performed in the address ALU to minimize execution time and loop over-
head. Addressing modes, which specify whether the operands are in registers, in memory,
or in the instruction itself (such as immediate data), provide the Sp