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SECTION 1 
DSP56K FAMILY INTRODUCTION 





1.1 INTRODUCTION 
The DSP56K family is Motorola's series of HCMOS, low power, 24-bit general purpose 
Digital Signal Processors (DSPs\ The family architecture features a modular chip layout 
with a standard central processing module which supports memory expansion options, 
different on-chip peripherals, and different package sizes. This modular implementation 
makes it relatively straighforward for Motorola to design and generate customer specified 
derivatives. 

A standard interface between the central processing module's silicon and the on-chip ex­
pansion areas supports all memory and peripheral configurations. The architecture, on­
chip peripherals, and the low power consumption of the DSP56K family minimize the com­
plexity, cost, and time required to add the power of Digital Signal Processing (DSP) to any 
design. 

This chapter introduces general DSP theory and discusses the features and benefits of 
the Motorola DSP56K family of processors. It also presents a brief description each of the 
sections in the manual. 

1.2 ORIGIN OF DIGITAL SIGNAL PROCESSING 
DSP is the arithmetic processing of real-time signals sampled at regular intervals and dig­
itized. Examples of DSP processing include the following: 

Filtering of signals 
• Convolution, which is the mixing of two signals 
• Correlation, which is a comparison of two signals 

Rectification, Amplification, and/or Transformation of a signal 

All of these functions have traditionally been performed using analog circuits. Only recent­
ly has semiconductor technology provided the processing power necessary to digitally 
perform these and other functions using DSPs. 

Figure 1-1 shows a description of analog signal processing. The circuit in the illustration 
filters a signal from a sensor using an operational amplifier, and controls an actuator with 
the result. Since the ideal filter is impossible to design, the engineer must design the filter 
for acceptable response, considering variations in temperature, component aging, power­
supply variation, and component accuracy. The resulting circuit typically has low noise im­
munity, requires adjustments, and is difficult to modify. 

* This manual uses the acronym DSP for Digital Signal Processing or Digital Signal Processor, de­
pending on the context 
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The equivalent circuit using a DSP is shown in Figure 1-2. This application requires an 
analog-to-digital (AID) converter and digital-to-analog (DI A) converter in addition to the 
DSP. Even with these additional parts, the component count can be lower using a DSP 
due to the high integration available with current components. 

Processing in this circuit begins by band-limiting the input with an anti-alias filter, eliminat­
ing out-of-band signals that can be aliased back into the pass band due to the sampling 
process. The signal is then sampled, digitized with an AID converter, and sent to the DSP. 

The filter implemented by the DSP is strictly a matter of software. The DSP can directly 
implement any filter that can also be implemented using analog techniques. Also, adap­
tive filters can be easily implemented using DSP, whereas these filters are extremely 
difficult to implement using analog techniques. 

The DSP output is processed by a D/A converter and is low-pass filtered to remove the 
effects of digitizing. In summary, the advantages of using the DSP include the following: 



Fewer components • Self-test can be built in 
Stable, deterministic performance 
Wide range of applications 

• No filter adjustments 
• Filters with much closer tolerances 

High noise immunity and • Adaptive filters easily implemented 
power-supply rejection 

LOW-PASS SAMPLER AND DSP OPERATION DIGITAL-TO-ANALOG RECONSTRUCTION 

ANTIALIASING ANALOG-TO-DIGITAL CONVERTER LOW-PASS 

FILTER CONVERTER FILTER 

FIR FILTER 

b 
N 

b - L c (k) x (n - k) -
x(t) 

,,~O 
yet) 

FINITE IMPULSE 

RESPONSE 

ANALOG IN A ANALOG OUT 

IDEAL 

I 
z 

FILTER « 
CJ 

fc 

FREQUENCY 

A 

I ~ 
ANALOG z 
FILTER « 

CJ 

fc 

FREQUENCY 

A 

~ 
DIGITAL z 
FILTER « 

CJ 

fc 

FREQUENCY 

Figure 1-2 Digital Signal Processing 



The DSP56K family is not designed for a particular application butis designed to execute 
commonly used DSP benchmarks in a minimum time for a single-multiplier architecture. 
For example, a cascaded, 2nd-order, four-coefficient infinite impulse response (IIR) bi­
quad section has four multiplies for each section. For that algorithm, the theoretical 
minimum number of operations for a Single-multiplier architecture is four per section. Ta­
ble 1-1 shows a list of benchmarks with the number of instruction cycles a DSP56K chip 
uses compared to the number of multiplies the algorithm requires. 

Table 1-1 Benchmark Summary in Instruction Cycles 

DSP56000/DSP56001 
Number of 

Benchmark Number of Cycles 
Algorithm 
Multiplies 

Real Multiply 3 1 

N Real Multiplies 2N N 

Real Update 4 1 

N Real Updates 2N N 

N Term Real Convolution (FIR) N N 

N Term Real * Complex Convolution 2N N 

Complex Multiply 6 4 

N Complex Multiplies 4N N 

Complex Update 7 4 

N Complex Updates 4N 4N 

N Term Complex Convolution (FIR) 4N 4N 

Nth -Order Power Series 2N 2N 

2nd - Order Real Biquad Filter 7 4 

N Cascaded 2nd - Order Biquads 4N 4N 

N Radix Two FFT Butterflies 6N 4N 

These benchmarks and others are used independently or in combination to implement 
functions whose characteristics are controlled by the coefficients of the benchmarks being 
executed. Useful functions using these and other benchmarks include the following: 



Digital Filtering 
Finite Impulse Response (FIR) 
Infinite Impulse Response (IIR) 
Matched Filters (Correlators) 
Hilbert Transforms 
Windowing 
Adaptive Fi Iters/Equalizers 

Signal Processing 
Compression (e.g., Linear Predictive 

Coding of Speech Signals) 
Expansion 
Averaging 
Energy Calculations 
Homomorphic Processing 
Mu-Iaw/ A-law to/from Linear Data 

Conversion 

Data Processing 
Encryption/Scram bli ng 
Encoding (e.g., Trellis Coding) 
Decoding (e.g., Viterbi Decoding) 

Numeric Processing 
Scaler, Vector, and Matrix Arithmetic 
Transcendental Function Computation 

(e.g., Sin(X), Exp(X)) 
Other Nonlinear Functions 
Pseudo-Random-Number Generation 

Modulation 
Amplitude 
Frequency 
Phase 

Spectral Analysis 
Fast Fourier Transform (FFT) 
Discrete Fourier Transform (DFT) 
Sine/Cosine Transforms 
Moving Average (MA) Modeling 
Autoregressive (AR) Modeling 
ARMA Modeling 

Useful applications are based on combining these and other functions. DSP applications 
affect almost every area in electronics because any application for analog electronic cir­
cuitry can be duplicated using DSP. The advantages in doing so are becoming more 
compelling as DSPs become faster and more cost effective.Some typical applications for 
DSPs are presented in the following list: 

Telecommunication 
Tone Generation 
Dual-Tone Multifrequency (DTMF) 
Subscriber Line Interface 
Full-Duplex Speakerphone 
Teleconferencing 
Voice Mail 
Adaptive Differential Pulse Code 
Modulation (ADPCM) Transcoder 
Medium-Rate Vocoders 
Noise Cancelation 
Repeaters 
Integrated Services Digital Network 

(ISDN) Transceivers 
Secure Telephones 

Data Communication 
High-Speed Modems 
Multiple Bit-Rate Modems 
High-Speed Facsimile 

Radio Communication 
Secure Communications 
Point-to-Point Communications 
Broadcast Communications 
Cellular Mobile Telephone 

Computer 
Array Processors 
Work Stations 
Personal Computers 
Graphics Accelerators 



Image Processing 
Pattern Recognition 
Optical Character Recognition 
Image Restoration 
Image Compression 
Image Enhancement 
Robot Vision 

Graphics 
3-D Rendering 
Computer-Aided Engineering (CAE) 
Desktop Publishing 
Animation 

Instrumentation 
Spectral Analysis 
Waveform Generation 
Transient Analysis 
Data Acquisition 

Speech Processing 
Speech Synthesizer 
Speech Recognizer 
Voice Mail 
Vocoder 
Speaker Authentication 
Speaker Verification 

Audio Signal Processing 
Digital AM/FM Radio 
Digital Hi-Fi Preamplifier 
Noise Cancelation 
Music Synthesis 
Music Processing 
Acoustic Equalizer 

High-Speed Control 
Laser-Printer Servo 
Hard-Disk Servo 
Robotics 
Motor Controller 
Position and Rate Controller 

Vibration Analysis 
Electric Motors 
Jet Engines 
Turbines 

Medical Electronics 
Cat Scanners 
Sonographs 
X-Ray Analysis 
Electrocardiog ram 
Electroencephalog ram 
Nuclear Magnetic Resonance Analysis 

Digital Video 
Digital Television 
High-Resolution Monitors 

Radar and Sonar Processing 
Navigation 
Oceanography 
Automatic Vehicle Location' 
Search and Tracking 

Seismic Processing 
Oil Exploration 
Geological Exploration 

As shown in Figure 1-3, the keys to DSP are as follows: 

• The Multiply/Accumulate (MAC) operation 
Fetching operands for the MAC 
Program control to provide versatile operation 
Input/Output to move data in and out of the DSP 

MAC is the basic operation used in DSP. The DSP56K family of processors has a dual 
Harvard architecture optimized for MAC operations. Figure 1-3 shows how the DSP56K 



architecture matches the shape of the MAC operation. The two operands, CO and XO, are 
directed to a multiply operation, and the result is summed. This process is built into the 
chip by using two separate memories (X and Y) to feed a single-cycle MAC. The entire 
process must occur under program control to direct the correct operands to the multiplier 
and save the accumulator as needed. Since the two memories and the MAC are indepen­
dent, the DSP can perform two moves, a multiply and an accumulate, in a single 
operation. As a result, many of the benchmarks shown in Table 1-1 can be executed at or 
near the theoretical maximum speed for a single-multiplier architecture. 

1.3 SUMMARY OF DSP56K FAMILY FEATURES 
The high throughput of the DSP56K family of processors makes them well suited for com­
munication, high-speed control, numeric processing and computer and audio 
applications. The main features that contribute to this high throughput include: 

• Speed - Speeds high enough to easily address applications traditionally served by 
low-end floating point DSPs. 
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• Precision - The data paths are 24 bits wide, providing 144 dB of dynamic range; 
intermediate results held in the 56-bit accumulato~s can range over 336 dB. 

• Parallelism - Each on-chip execution unit (AGU, program control unit, data ALU), 
memory, and peripheral operates independently and in parallel with the other units 
through a sophisticated bus system. The data ALU, AGU, and program control unit 
operate in parallel so that an instruction prefetch, a 24-bit x 24-bit multiplication, a 56-
bit addition, two data moves, and two address-pointer updates using one of three 
types of arithmetic (linear, modulo, or reverse-carry) can be executed in a single 
instruction cycle. This parallelism allows a four-coefficient IIR filter section to be 
executed in only four cycles, the theoretical minimum for single-multiplier architecture. 
At the same time, the two serial controllers can send and receive full-duplex data, and 
the host port can send/receive simplex data. 

Flexibility - While many other DSPs need external communications circuitry to 
interface with peripheral circuits (such as AID converters, D/A converters, or host 
processors), the DSP56K family provides on-chip serial and parallel interfaces which 
can support various configurations of memory and peripheral modules 

• Sophisticated Debugging- Motorola's on-chip emulation technology (OnCE) allows 
simple, inexpensive, and speed independent access to the internal registers for 
debugging. OnCE tells application programmers exactly what the status is within the 
registers, memory locations, buses, and even the last five instructions that were 
executed. 

Phase-locked Loop (PLL) Based Clocking - PLL allows the chip to use almost any 
available external system clock for full-speed operation while also supplying an output 
clock synchronized to a synthesized internal core clock. It improves the synchronous 
timing of the processors' external memory port, eliminating the timing skew common 
on other processors. 

• Invisible Pipeline - The three-stage instruction pipeline is essentially invisible to the 
programmer, allowing straightforward program development in either assembly 
language or a high-level language such as a full Kernighan and Ritchie C. 

• Instruction Set - The instruction mnemonics are MCU-like, making the transition 
from programming microprocessors to programming the chip as easy as possible. The 
orthogonal syntax controls the parallel execution units. The hardware DO loop 
instruction and the repeat (REP) instruction make writing straight-line code obsolete. 



• DSP56001 Compatibility - All members of the DSP56K family are downward 
compatible with the DSP56001, and also have added flexibility, speed, and 
functionality. 

• Low Power - As a CMOS part, the DSP56000/DSP56001 is inherently very low 
power and the STOP and WAIT instructions further reduce power requirements. 

1.4 MANUAL ORGANIZATION 
This manual describes the central processing module of the DSP56K family in detail and 
provides practical information to help the user: 

• Understand the operation of the DSP56K family 
• Design parallel communication links 
• Design serial communication links 
• Code DSP algorithms 
• Code communication routines 
• Code data manipulation algorithms 
• Locate additional support 

The following list describes the contents of each section and each appendix: 

Section 2 - DSP56K Central Architecture Overview 
The DSP56K central architecture consists of the data arithmetic logic unit (ALU), ad­
dress generation unit (AGU), program control unit, On-Chip Emulation (OnCE) 
circuitry, the phase locked loop (PLL) based clock oscillator, and an external memory 
port (Port A). This section describes each subsystem and the buses interconnecting 
the major components in the DSP56K central processing module. 

Section 3 - Data Arithmetic Logic Unit 
This section describes in detail the data ALU and its programming model. 

Section 4 - Address Generation Unit 
This section specifically describes the AGU, its programming model, address indirect 
modes, and address modifiers. 

Section 5 - Program Control Unit 
This section describes in detail the program control unit and its programming model. 

Section 6 - Instruction Set Introduction 
This section presents a brief description of the syntax, instruction formats, operand/­
memory references, data organization, addressing modes, and instruction set. A 
detailed description of each instruction is given in APPENDIX A - INSTRUCTION SET 
DETAILS. 



Section 7 - Processing States 
This section describes the five processing states (normal, exception, reset, wait, and 
stop). 

Section 8 - Port A 
This section describes the external memory port, its control register, and control sig­
nals. 

Section 9 - PLL Clock Oscillator 
This section describes the PLL and its functions 

Section 10- On-Chip Emulator (OnCE) 
This section describes the OnCE circuitry and its functions. 

Section 11 - Additional Support 
This section presents a brief description of current support products and services and 
information on where to obtain them. 

Appendix A - Instruction Set Details 
A detailed description of each DSP56K family instruction, its use, and its affect on the 
processor are presented. 

Appendix B - Benchmarks 
DSP5K family benchmark results are listed in this appendix. 
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2.1 DSP56K CENTRAL ARCHITECTURE OVERVIEW 
The DSP56K family of processors is built on a standard central processing module. In the 
expansion area around the central processing module, the chip can support various con­
figurations of memory and peripheral modules which may change from family member to 
family member. This section introduces the architecture and the major components of the 
central processing module. 

The central components are: 

• Data Buses 
• Address Buses 
• Data Arithmetic Logic Unit (data ALU) 
• Address Generation Unit (AGU) 

Program Control Unit (PCU) 
• Memory Expansion (Port A) 
• On-Chip Emulator (OnCElM) circuitry 

Phase-locked Loop (PLL) based clock circuitry 

Figure 2-1 shows a block diagram of a typical DSP56K family processor, including the 
central processing module and a nonspecific expansion area for memory and peripherals. 
The following paragraphs give brief descriptions of each of the central components. Each 
of the components is explained in detail in subsequent chapters. 

2.2 DATA BUSES 
The DSP56K central processing module is organized around the registers of three inde­
pendent execution units: the PCU, the AGU, and the data ALU. Data movement between 
the execution units occurs over four bidirectional 24-bit buses: the X data bus (XDB), the 
Y data bus (yDB), the program data bus (PDB), and the global data bus (GDB). (Certain 
instructions treat the X and Y data buses as one 48-bit data bus by concatenating them.) 
Data transfers between the data ALU and the X data memory or Y data memory occur 
over XDB and YDB, respectively. XDB and YDB are kept local on the chip to maximize 
speed and minimize power dissipation. All other data transfers, such as I/O transfers with 
peripherals, occur over the GDB. Instruction word prefetches occur in parallel over the 
PDB. 

The bus structure supports general register-to-register, register-to-memory, and memory­
to-register data movement. It can transfer up to two 24-bit words and one 56-bit word in 
the same instruction cycle. Transfers between buses occur in the internal bus switch. 
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2.3 ADDRESS BUSES 
Addresses are specified for internal X data memory and Y data memory on two unidirec­
tional 16-bit buses - X address bus (XAS) and Y address bus (Y AS)_ Program memory 
addresses are specified on the bidirectional program address bus (PAS). External mem­
ory spaces are addressed over a single 16-bit unidirectional address bus driven by a 



three-input multiplexer that can select the XAB, the VAB, or the PAB. Only one external 
memory access can be made in an instruction cycle. There is no speed penalty if only one 
external memory space is accessed in an instruction cycle. However, if two or three ex­
ternal memory spaces are accessed in a single instruction, there will be a one or two 
instruction cycle execution delay, respectively. 

A bus arbitrator controls external access. 

2.3.1 Internal Bus Switch 
Transfers between buses occur in the internal bus switch. The internal bus switch, which 
is similar to a switch matrix, can connect any two internal buses without adding any pipe­
line delays. This flexibility simplifies programming. 

2.3.2 Bit Manipulation Unit 
The bit manipulation unit is physically located in the internal bus switch block because the 
internal data bus switch can access each memory space. The bit manipulation unit per­
forms bit manipulation operations on memory locations, address registers, control 
registers, and data registers over the XDB, VDB, and GDB. 

2.4 DATAALU 
The data ALU performs all of the arithmetic and logical operations on data operands. It 
consists of four 24-bit input registers, two 48-bit accumulator registers, two 8-bit accumu­
lator extension registers, an accumulator shifter, two data bus shifter/limiter circuits, and 
a parallel, single-cycle, nonpipelined Multiply-Accumulator (MAC) unit. 

2.5 ADDRESS GENERATION UNIT 
The AGU performs all of the address storage and address calculations necessary to indi­
rectly address data operands in memory. It operates in parallel with other chip resources 
to minimize address generation overhead. The AGU has two identical address arithmetic 
units that can generate two 16-bit addresses every instruction cycle. Each of the arith­
metic units can perform three types of arithmetic: linear, modulo, and reverse-carry. 

2.6 PROGRAM CONTROL UNIT 
The program control unit performs instruction prefetch, instruction decoding, hardware 
DO loop control, and interrupt (or exception) processing. It consists of three components: 
the program address generator, the program decode controller, and the program interrupt 
controller. It contains a 15-level by 32-bit system stack memory and the following six di-
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rectly addressable registers: the program counter (PC), loop address (LA), loop counter 
(LC), status register (SR), operating mode register (OMR), and stack pointer (SP). The 
16-bit PC can address 65,536 locations in program memory space. 

There are four mode and interrupt control pins that provide input to the program interrupt 
controller. The Mode Select AlExternallnterrupt Request A(MODAlIROA) and Mode Se­
lect B/External Interrupt Request B (MODB/IROB) pins select the chip operating mode 
and receive interrupt requests from external sources. 

The Mode Select C/Non-Maskable Interrupt (MODC/NMI) pin provides further operating 
mode options and non-maskable interrupt input. 

The RESET pin resets the chip. When it is asserted, it initializes the chip and places it in 
the reset state. When it is deasserted, the chip assumes the operating mode indicated by 
the MODA, MODB, and MODC pins. 

2.7 MEMORY EXPANSION PORT (PORT A) 
Port A synchronously interfaces with a wide variety of memory and peripheral devices 
over a common 24-bit data bus. These devices include high-speed static RAMs, slower 
memory devices, and other DSPs and MPUs in master/slave configurations. This variety 
is possible because the expansion bus timing is programmable and can be tailored to 
match the speed requirements of the different memory spaces. Not all DSP56K family 
members feature a memory expansion port. See the individual device's User's Manual to 
determine if a particular chip includes this feature. 

2.8 ON-CHIP EMULATOR (OnCE) 
DSP56K on-chip emulation (OnCE) circuitry allows the user to interact with the DSP56K 
and its peripherals non-intrusively to examine registers, memory, or on-chip peripherals. 
It provides simple, inexpensive, and speed independent access to the internal registers 
for sophisticated debugging and economical system development. 

Dedicated OnCE pins allow the user to insert the DSP into its target system and retain 
debug control without sacrificing other user accessible on-Chip resources. The design 
eliminates the costly cabling and the access to processor pins required by traditional em­
ulator systems. 

2.9 PHASE-LOCKED LOOP (PLL) BASED CLOCKING 
The PLL allows the DSP to use almost any available external system clock for full-speed 
operation, while also supplying an output clock synchronized to a synthesized internal 
clock. The PLL performs frequency multiplication, skew elimination, and low-power divi­
sion. 
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3.1 DATA ARITHMETIC LOGIC UNIT 
This section describes the operation of the Data ALU registers and hardware. It dis­
cusses data representation, rounding, and saturation arithmetic used within the Data 
ALU, and concludes with a discussion of the programming model. 

3.2 OVERVIEW AND DATA ALU ARCHITECTURE 
As described in Section 2, The DSP56K family central processing module is composed 
of three execution units that operate in parallel. They are the Data ALU, address genera­
tion unit (AGU), and the program control unit (PCU) (see Figure 3-1). These three units 
are register oriented rather than bus oriented and interface over the system buses with 
memory and memory-mapped I/O devices. 

The Data ALU (see Figure 3-2) is the first of these execution units to be presented. It bal­
ances speed with the capability to process signals that have a wide dynamic range and 
performs all arithmetic and logical operations on data operands. 

The Data ALU registers may be read or written over the XDB and the YDB as 24- or 48-
bit operands. The source operands for the Data ALU, which may be 24, 48, or 56 bits; 
always originate from Data ALU registers. The results of all Data ALU operations are 
stored in an accumulator. 

The 24-bit data words provide 144 dB of dynamic range. This range is sufficient for most 
real-world applications since the majority of data converters are 16 bits or less - and cer­
tainly not greater than 24 bits. The 56-bit accumulator inside the Data ALU provides 336 

. dB of internal dynamic range so that no loss of preCision will occur due to intermediate. 
processing. Special circuitry handles data overflows and roundoff errors. 

The Data ALU can perform any of the following operations in a single instruction cycle: 
multiplication, multiply-accumulate with positive or negative accumulation, convergent 
rounding, multiply-accumulate with positive or negative accumulation and convergent 
rounding, addition, subtraction, a divide iteration, a normalization iteration, shifting, ?nd 
logical operations. 

The components of the Data ALU are: 

Four 24-bit input registers 
A parallel, single-cycle, nonpipelined multiply-accumulator/logic unit (MAC) 
Two 48-bit accumulator registers 
Two 8-bit accumulator extension registers 
An accumulator shifter 
Two data bus shifter/limiter circuits 
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The following paragraphs describe each of these components and provide a description 
of data representation, rounding, and saturation arithmetic. 



3.2.1 Data ALU Input Registers (X1, XO, Y1, YO) 
X1, XO, Y1, and YO are four 24-bit, general-purpose data registers. They can be treated 
as four independent, 24-bit registers or as two 48-bit registers called X and Y, developed 
by concatenating X1 :XO and Y1 :YO, respectively. X1 is the most significant word in X and 
Y1 is the most significant word in Y. The registers serve as input buffer registers between 
the XDS or YDS and the MAC unit. They act as Data ALU source operands and allow 
new operands to be loaded for the next instruction while the current instruction uses the 
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register contents. The registers may also be read back out to the appropriate data bus to 
implement memory-delay operations and save/restore operations for interrupt service 
routines. 

3.2.2 MAC and Logic Unit 
The MAC and logic unit shown in Figure 3-3 conduct the main arithmetic processing and 
perform all calculations on data operands in the DSP. 

For arithmetic instructions, the unit accepts up to three input operands and outputs one 
56-bit result in the following form: extension:most significant productleast significant 
product (EXT:MSP:LSP). The operation of the MAC unit occurs independently and in par­
allel with XDB and YDB activity, and its registers facilitate buffering for Data ALU inputs 
and outputs. Latches on the MAC unit input permit writing an input register which is the 
source for a Data ALU operation in the same instruction. 

The arithmetic unit contains a multiplier and two accumulators. The input to the multiplier 
can only come from the X or Y registers (X1, XO, Y1, YO). The multiplier executes 24-bit 
x 24-bit, parallel, twos-complement fractional multiplies. The 48-bit product is right justi­
fied and added to the 56-bit contents of either the A or B accumulator. The 56-bit sum is 
stored back in the same accumulator (see Figure 3-3). An 8-bit adder, which acts as an 
extension accumulator for the MAC array, accommodates overflow of up to 256 and al­
lows the two 56-bit accumulators to be added to and subtracted from each other. The 
extension adder output is the EXT portion of the MAC unit output. This multiply/accumu­
late operation is not pipelined, but is a single-cycle operation. If the instruction specifies a 
multiply without accumulation (MPy), the MAC clears the accumulator and then adds the 
contents to the product. 

In summary, the results of all arithmetic instructions are valid (sign-extended and zero­
filled) 56-bit operands in the form of EXT:MSP:LSP (A2:A1 :AO or B2:B1 :BO). When a 56-
bit result is to be stored as a 24-bit operand, the LSP can be simply truncated, or it can be 
rounded (using convergent rounding) into the MSP. 

Convergent rounding (round-to-nearest) is performed when the instruction (for example, 
the Signed multiply-accumulate and round (MACR) instruction) specifies adding the mul­
tiplier's product to the contents of the accumulator. The scaling mode bits in the status 
register specify which bit in the accumulator shall be rounded. 

The logic unit performs the logical operations AND, OR, EOR, and NOT on Data ALU reg­
isters. It is 24 bits wide and operates on data in the MSP portion of the accumulator. The 
LSP and EXT portions of the accumulator are not affected. 
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3.2.3 Data ALU A and B Accumulators 

XO,X1, 

YO,ORY1 

The Data ALU features two general-purpose, 56-bit accumulators, A and 8. Each con­
sists of three concatenated registers (A2:A 1 :AO and 82:81:80, respectively). The 8-bit 
sign extension (EXT) is stored in A2 or 82 and is used when more than 48-bit accuracy is 
needed; the 24-bit most significant product (MSP) is stored in A 1 or 81; the 24-bit least 
significant product (LSP) is stored in AO or 80 as shown in Figure 3-4. 
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Figure 3-4 DATA ALU Accumulator Registers 

Overflow occurs when a source operand requires more bits for accurate representation 
than are available in the destination. The 8-bit extension registers offer protection against 
overflow. In the DSP56K chip family, the extreme values that a word operand can 
assume are - 1 and + 0.9999998. If the sum of two numbers is less than - 1 or greater 
than + 0.9999998, the result (which cannot be represented in a 24 bit word operand) has 
underflowed or overflowed. The 8-bit extension registers can accurately represent the 
result of 255 overflows or 255 underflows. Whenever the accumulator extension regis­
ters are in use, the V bit in the status register is set. 

Automatic sign extension occurs when the 56-bit accumulator is written with a smaller 
operand of 48 or 24 bits. A 24-bit operand is written to the MSP (A 1 or B 1) portion of the 
accumulator, the LSP (AO or BO) portion is zero filled, and the EXT (A2 or B2) portion is 
sign extended from MSP. A 48-bit operand is written into the MSP:LSP portion (A1 :AO or 
B1 :BO) of the accumulator, and the EXT portion is sign extended from MSP. No sign 
extension occurs if an individual 24-bit register is written (A1, AO, B1, or BO).When either 
A or B is read, it may be optionally scaled one bit left or one bit right for block floating­
point arithmetic. Sign extension can also occur when writing A or B from the XDB and/or 
YDB or with the results of certain Data ALU operations (such as the transfer conditionally 
(Tcc) or transfer Data ALU register (TFR) instructions). 

Overflow protection occurs when the contents of A or B are transferred over the XDB and 
YDB by substituting a limiting constant for the data. Limiting does not affect the content 
of A or B - only the value transferred over the XDB or YDB is limited. This overflow pro­
tection occurs after the contents of the accumulator has been shifted according to the 
scaling mode. Shifting and limiting occur only when the entire 56-bit A or B accumulator 
is specified as the source for a parallel data move over the XDB or YDB. When individual 
registers AO, A1, A2, BO, B1, or B2 are specified as the source for a parallel data move, 
shifting and limiting are not performed. 



3.2.4 Accumulator Shifter 
The accumulator shifter (see Figure 3-3) is an asynchronous parallel shifter with a 56-bit 
input and a 56-bit output that is implemented immediately before the MAC accumulator 
input. The source accumulator shifting operations are as follows: 

• No Shift (Unmodified) 
1-Bit Left Shift (Arithmetic or Logical) ASL, LSL, RDL 
1-Bit Right Shift (Arithmetic or Logical) ASR, LSR, RDR 
Force to zero 

3.2.5 Data Shifter/Limiter 
The data shifter/limiter circuits (see Figure 3-3) provide special post-processing on data 
read from the Data ALU A and B accumulators out to the XDB or YDB. There are two in­
dependent shifter/limiter circuits (one for XDB and one for the YDB); each consists of a 
shifter followed by a limiting circuit. 

3.2.5.1 Limiting (Saturation Arithmetic) 
The A and B accumulators serve as buffer registers between the MAC unit and the XDB 
and/or YDB. They act both as Data ALU source and destination operands.Test logic exists 
in each accumulator register to support the operation of the data shifter/limiter circuits. 
This test logic detects overflows out of the data shifter so that the limiter can substitute 
one of several constants to minimize errors due to the overflow. This process is called sat­
uration arithmetic 

The Data ALU A and B accumulators have eight extension bits. Limiting occurs when the 
extension bits are in use and either A or B is the source being read over XDB or YDB. If 
the contents of the selected source accumulator calJ be represented without overflow in 
the destination operand size (Le., accumulator extension register not in use), the data lim­
iter is disabled, and the operand is not modified. If. contents of the selected source 
accumulator cannot be represented without overflow in the destination operand size, the 
data limiter will substitute a limited data value with maximum magnitude (saturated) and 
with the same sign as the source accumulator contents: $7FFFFF for 24-bit or $7FFFFF 
FFFFFF for 48-bit positive numbers, $800000 for 24-bit or $800000 000000 for 48-bit neg­
ative numbers. This process is called saturation arithmetic. The value in the accumulator 
register is not shifted and can be reused within the Data ALU. When limiting does occur, 
a flag is set and latched in the status register.Two limiters allow two-word operands to be 
limited independently in the same instruction cycle. The two data limiters can also be com­
bined to form one 48-bit data limiter for long-word operands. 
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For example, if the source operand were 01.100 (+ 1.5 decimal) and the destination reg­
ister were only four bits, the destination register would contain 1.100 (- 1.5 decimal) after 
the transfer, assuming signed fractional arithmetic. This is clearly in error as overflow has 
occurred. To minimize the error 'due to overflow, it is preferable to write the maximum 
("limited") value the destination can assume. In the example, the limited value would be 
0.111 (+ 0.875 decimal), which is clearly closer to + 1.5 than - 1.5 and therefore intro­
duces less error. 

Figure 3-5 shows the effects of saturation arithmetic on a move from register A 1 to regis­
ter XO. The instruction "MOVE A1 ,XO" causes a move without limiting, and the instruction 
"MOVE A,XO" causes a move of the same 24 bits with limiting. The error without limiting 
is 2.0; whereas, it is 0.0000001 with limiting. Table 3-1 shows a more complete set of lim­
iting situations. 

3.2.5.2 Scaling 
The data shifters can shift data one bit to the left or one bit to the right, or pass the data 
unshifted. Each data shifter has a 24-bit output with overflow indication and is controlled 
by the scaling mode bits in the status register. These shifters permit dynamic scaling of 
fixed-point data without modifying the program code. For example, this permits block float­
ing-point algorithms such as fast Fourier transforms to be implemented in a regular 
fashion. 

3.3 DATA REPRESENTATION AND ROUNDING 
The DSP56K uses a fractional data representation for all Data ALU operations. Figure 3-
7 shows the bit weighting of words, long words, and accumulator operands for this repre­
sentation. The decimal pOints are all aligned and are left justified. 



Table 3-1 Limited Data Values 

Destination Source Accumulator Limited Value (Hexadecimal) Type of 
Memory Reference Operand Sign XOB YOB Access 

X:A + 7FFFFF -
One 24 bit X X:B 800000 - -

Y:A + - 7FFFFF 
One 24 bit Y Y:B 800000 - -

X:A Y:A + 7FFFFF 7FFFFF 
X:A Y:B - 800000 800000 

XandY X:BY:A + 7FFFFF 7FFFFF Two 24 bit X:B Y:B - 800000 800000 
L:AB + 7FFFFF 7FFFFF 
L:BA - 800000 800000 

L (X:Y) 
L:A + 7FFFFF FFFFFF 

One 48 bit L:B - 800000 000000 

Data must be converted to a fractional number by scaling before being used by the DSP 
or the user will have to be very careful in how the DSP manipulates the data. Moving $3F 
to a 24-bit Data ALU register does not result in the contents being $00003F as might be 
expected. Assuming numbers are fractional, the DSP left justifies rather than right justi­
fies. As a result, storing $3F in a 24-bit register results in the contents being $3FOOOO. 
The simplest example of scaling is to convert all integer numbers to fractional numbers 
by shifting the decimal 24 places to the left (see Figure 3-6). Thus, the data has not 
changed; only the position of the decimal has moved. 

Is 
S =SIGN BIT 

3F = HEXADECIMAL DATA TO BE CONVERTED 

Is. 3FI 

Figure 3-6 Integer-to-Fractional Data Conversion 

For words and long words, the most negative number that· can be represented is -1 
whose internal representation is $800000 and $800000000000, respectively. The most 
positive word is $7FFFFF or 1 - Z23 and the most positive long word is $7FFFFFFFFFFF 
or 1 - 2-47. These limitations apply to all data stored in memory and to data stored in the 
Data ALU input buffer registers. The extension registers associated with the accumula-



tors allow word growth so that the most positive number that can be used is approxi­
mately 256 and the most negative number is approximately -256. When the accumulator 
extension registers are in use, the data contained in the accumulators cannot be stored 
exactly in memory or other registers. In these cases, the data must be limited to the most 
positive or most negative number consistent with the size of the destination and the sign 
of the accumulator (the most significant bit (MSB) of the extension register). 

To maintain alignment of the binary point when a word operand is written to accumulator 
A or B, the operand is written to the most significant accumulator register (A1 or B1), and 
its MSB is automatically sign extended through the accumulator extension register. The 
least significant accumulator register is automatically cleared. When a long-word oper­
and is written to an accumulator, the least significant word of the operand is written to the 
least significant accumulator register AO or BO and the most significant word is written to 
A1 or B1 (see Figure 3-8). 

DATAALU 

WORD OPERAND 

X1, XO 
Y1, YO 
A1, AO 
81, 80 

LONG - WORD OPERAND 

X1:XO = X 
Y1:YO = Y 
A1:AO = A10 
81:80 = 810 

ACCUMULATOR A OR 8 

I' 
_28 20 

SIG~ EXTENSION 

A1,81 
, , , , , , , , , 

OPER~AND 

I 
Z-24 

I 
2-24 

AO,80 

I 
ZE~O 

Figure 3-7 Bit Weighting and Alignment of Operands 

2--47 



_--- N BITS ---_ 

TWOS COMPLEMENT INTEGER L...IS _________ ...... 1-2(N-1)TO [+2(N-1)_1] 

TWOS COMPLEMENT FRACTIONAL L...1s_-_______ -.....I1-1 TO [+1_2-(N-1)] 

_--- N BITS ---_ 

FRACTIONAL = INTEGER EXCEPT FOR X AND -:-

Figure 3-8 Integer/Fractional Number Comparison 

A comparison between integer and fractional number representation is shown in Figure 
3-8. The number representation for integers is between ±2(N-1); whereas, the fractional 
representation is limited to numbers between ±1. To convert from an integer to a frac­
tional number, the integer must be multiplied by a scaling factor so the result will always 
be between ±1. The representation of integer and fractional numbers is the same if the 
numbers are added or subtracted but is different if the numb.ers are multiplied or divided. 
An example of two numbers multiplied together is given in Figure 3-9. The key difference 
is that the extra bit in the integer multiplication is used as a duplicate sign bit and as the 
least significant bit (LSB) in the fractional multiplication. The advantages of fractional 
data representation are as follows: 

• The MSP (left half) has the same format as the input data. 

• The LSP (right half) can be rounded into the MSP without shifting or updating the 
exponent. 

• A significant bit is not lost through sign extension. 

Conversion to floating-point representation is easier because the industry-standard 
floating-point formats use fractional mantissas. 

Coefficients for most digital filters are derived as fractions by the high-level language 
programs used in digital-filter design packages, which implies that the results can be 
used without the extensive data conversions that other formats require. 

Should integer arithmetic be required in an application, shifting a one or zero, depending 
on the sign, into the MSB converts a fraction to an integer. 

The Data ALU MAC performs rounding of the accumulator register to single precision if 
requested in the instruction (the A1 or B1 register is rounded according to the contents of 
the AO or BO register). The rounding method is called round-to-nearest (even) number, or 
convergent rounding. The usual rounding method rounds up any value above one-half 
and rounds down any value below one-half. The question arises as to which way one­
half should be rounded. If it is always rounded one way, the results will eventually be 



SIGNED MULTIPLICATION N x N .2N - 1 BITS 

INTEGER FRACTIONAL 

Is Is Is Is 
SIGNED MULTIPLIER SIGNED MULTIPLIER 

ergls MSP : LSP 

.. 2N - 1 PRODUCT ---. 
SIGN EXTENSION 

·1 ~ls-.--M-SP2N-1 PRODUCT LSP ~I ~ 
ZERO FILL =--1 
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Figure 3-9 Integer/Fractional Multiplication Comparison 

biased in that direction. Convergent rounding solves the problem by rounding down if the 
number is odd (LSB=O) and rounding up if the number is even (LSB=1). Figure 3-10 
shows the four cases for rounding a number in the A1 (or B1) register. If scaling is set in 
the status register, the resulting number will be rounded as it is put on the data bus. How­
ever, the contents of the register are not scaled. 



CASE I: IF AO < $800000 (1/2), THEN ROUND DOWN (ADD NOTHING) 

BEFORE ROUNDING AFTER ROUNDING 

A2 A1 AO* 
Ixx .. xx I XXX ... XXX0100 1000 ..... , .. 0001 
55 48 47 24 23 0 

CASE II: IF AO > $800000 (1/2), THEN ROUND UP (ADD 1 TO A1) 

BEFORE ROUNDING AFTER ROUNDING 

A2 A1· AO* 
Ixx .. XX I XXX ... xxx01011 000 ........ 0001 
55 48 47 24 23 0 

CASE III: IF AO = $800000 (1/2), AND THE LSB OF A1 = O,THEN ROUND DOWN (ADD NOTHING) 

BEFORE ROUNDING AFTER ROUNDING 

A2 A1 AO* 
I xx .. xx I XXX ... XXX01 00 I 000 ........ 0001 
55 48 47 24 23 a 

CASE IV: IF AO = $800000 (1/2), AND THE LSB = 1, THEN ROUND UP (ADD 1 TO A1) 

BEFORE ROUNDING AFTER ROUNDING 

A2 A1 AO* 
Ixx .. xxi XXX ... XXX0110 1000 ........ 0001 
55 48 47 24 23 a 

*AO is always clear; performed during RND, MPYR, MACR 

Figure 3-10 Convergent Rounding 



3.4 DOUBLE PRECISION MULTIPLY MODE 
The Data ALU double precision multiply operation multiplies two 48-bit operands with a 
96-bit result. The processor enters the dedicated Double Precision Multiply Mode when 
the user sets bit 14 (OM) of the Status Register (bit 6 of the MR register). The mode is 
disabled by clearing the OM bit. For· information on the OM bit, see Section 5.4.2.13 -
Double Precision Multiply Mode (Bit 14). 

CAUTION: 
While in the Double Precision Multiply Mode, only the double precision multiply algorithms 
shown in Figure 3-11, Figure 3-12, and Figure 3-13 may be executed by the Data ALU; 
any other Data ALU operation will give indeterminate results. 

Figure 3-11 shows the full double precision multiply algorithm. To allow for pipeline 
delay, the ANDI instruction should not be immediately followed by a Data ALU instruc­
tion. For example, the ORI instruction sets the OM mode bit, but, due to the instruction 
execution pipeline, the Data ALU enters the Double Precision Multiply mode only after 

X: Y: 

MSP1 MSP2 
R1 • LSP1 LSP2 -... R5 

DP3 DP2 

• DP1 DPO ----RO RO 

ori #$40,mr ;enter mode 

move x:(r1 )+,xO y:(r5)+,yO ;Ioad operands 

mpy yO,xO,a x:(r1 )+,x1 y:(r5)+,y1 ;LSP*LSP-+a 

mac x1,yO,a aO,y:(rO) ;shifted(a)+ 

, MSP*LSP-+a 

mac xO,y1,a ;a+LSP*MSP-+a 

mac y1 ,x1,a aO,x:(rO)+ ;shifted(a)+ 

, MSP*MSP-+a 

move a,I:(rO)+ 

andi #$bf,mr ;exit mode 

non-Data ALU operation ;pipeline delay 

Figure 3-11 Full Double Precision Multiply Algorithm 



one instruction cycle. The ANDI instruction clears the DM mode bit, but, due to the 
instruction execution pipeline, the Data ALU leaves the mode after one instruction cycle. 

The double precision multiply algorithm uses the YO register at all stages. If the use of 
the Data ALU is required in an interrupt service routine, YO should be saved together 
with other Data ALU registers to be used, and should be restored before leaving the 
interrupt routine. 

If just single precision times double precision multiply is desired, two of the multiply oper­
ations may be deleted and replaced by suitable initialization and clearing of the accumu­
lator and YO. Figure 3-12 shows the single precision times double precision algorithm. 

X: Y: 

MSP1 
R1 .. LSP1 

DP3 
RO .- DP1 

DP3_DP2_DP1 = MSP1 

clr a #O,yO 

ori #$40,mr 

move x:(r1 }+,xo 

mac xO,y1,a x:(r1 )+,x1 

mac y1 ,x1 ,a aO,x:(rO}+ 

move a,I:(rO}+ 

andi #$bf,mr 

non-Data ALU operation 

SP 

DP2 

LSP1 x SP -

y:(r5)+,y1 

-- R5 

-- RO 

;clear a and yO 

;enter DP mode 

;Ioad LSP1 and SP 

;LSP1 *SP-+a, 

;Ioad MSP1 

;shifted(a)+ 

; SP*MSP1-+a, 

;save DP1 

;save DP3_DP2 

;exit DP mode 

;pipeline delay 

Figure 3-12 Single x Double Multiply Algorithm 

Figure 3-13 shows a single precision times double precision multiply-accumulate algo­
rithm. First, the least significant parts of the double precision values are multiplied by the 
single precision values and accumulated in the "Double Precision Multiply" mode. Then 
the DM bit is cleared and the least significant part of the result is saved to memory. The 
most significant parts of the double precision values are then multiplied by the single pre-



cision values and accumulated using regular MAC instructions. Note that the maximum 
number of single times double MAC operations in this algorithm are limited to 255 since 
overflow may occur (the A2 register is just eight bits long). If a longer sequence is 
required, it should be split into sub-sequences each with no more than 255 MAC opera­
tions. 

X: Y: 

MSPi SPi -- R5 

R 1 ... LSPi -
DP3 DP2 .. - RO 

RO .. DP1 

DP3_DP2_DP1 = E MSPi_LSPi x SPi 

move #N-1,m5 

elr a #O,yO ;c1ear a and yO 

ori #$40,mr ;enter DP mode 

move x:(r1)+,xO y:(r5)+,y1 ;Ioad LSPi and SPi 

rep #N ;O<N<256 

mac xO,y1,a x:(r1)+,xO y:(r5)+,y1 ;LSPi*SPi-4a 

andi #$bf,mr ;exit DP mode 

move aO,x:(rO)+ ;save DP1 

move a1,yO 

move a2,a 

move yO,aO ;a2:a1-4a.1 :aO 

rep #N 

mac xO,y1,a x:(r1 )+,xO y:(r5)+,y1 ;Ioad MSPi and SPi 

move a,I:(rO)+ ;save DP3_DP2 

Figure 3-13 Single x Double Multiply-Accumulate Algorithm 



3.5 DATA ALU PROGRAMMING MODEL 
The Data ALU features 24-bit input/output data registers that can be concatenated to ac­
commodate 48-bit data and two 56-bit accumulators, which are segmented into three 24-
bit pieces that can be transferred over the buses. Figure 3-14 illustrates how the registers 
in the programming model are grouped. 

DATAALU 
INPUT REGISTERS 

X y 

47 0 47 0 
I X1 XO I I Y1 YO I 
23 023 0 23 023 0 

DATAALU 
ACCUMULATOR REGISTERS 

A B 

55 0 55 0 
IA21 A1 AO I 1 821 81 80 I 

23 8 7 0 23 o 23 0 23 8 7023 o 23 0 

*Read as sign extension bits, written as don't care. 

Figure 3-14 DSP56K Programming Model 

3.6 DATA ALU SUMMARY 
The Data ALU performs arithmetic operations involving multiply and accumulate opera­
tions. It executes all instructions in one machine cycle and is not pipelined. The two 24-bit 
numbers being multiplied can come from the X registers (XO or X1) or Y registers (YO or 
Y1). After multiplication, they are added (or subtracted) with one of the 56-bit accumula­
tors and can be convergently rounded to 24 bits. The convergent-rounding forcing 
function detects the $800000 condition in the LSP and makes the correction as neces­
sary. The final result is then stored in one of the accumulators as a valid 56-bit number. 
The condition code bits are set based on the rounded output of the logic unit. 

-





SECTION 4 
ADDRESS GENERATION UNIT -





4.1 ADDRESS GENERATION UNIT AND ADDRESSING MODES 
This section contains three major subsections. The first subsection describes the hard­
ware architecture of the address generation unit (AGU), the second subsection 
describes the programming model, and the third subsection describes the addressing 
modes, explaining how the Rn, Nn, and Mn registers work together to form a memory 
address. 

4.2 AGU ARCHITECTURE 
The AGU is shown in the DSP56K block diagram in Figure 4-1. It uses integer arithmetic 
to perform the effective address calculations necessary to address data operands in 
memory, and contains the registers used to generate the addresses. It implements lin­
ear, modulo, and reverse-carry arithmetic, and operates in parallel with other chip 
resources to minimize address-generation overhead. 

The AGU is divided into two identical halves, each of which has an address arithmetic 
logic unit (ALU) and four sets of three registers (see Figure 4-2). They are the address 
registers (RO - R3 and R4 - R7), offset registers (NO - N3 and N4 - N7), and the modifier 
registers (MO - M3 and M4 - M7). The eight Rn, Nn, and Mn registers are treated as reg­
ister triplets - e.g., only N2 and M2 can be used to update R2. The eight triplets are 
RO:NO:MO, R1 :N1 :M1, R2:N2:M2, R3:N3:M3, R4:N4:M4, R5:N5:M5, R6:N6:M6, and 
R7:N7:M7. 

The two arithmetic units can generate two 16-bit addresses every instruction cycle - one 
for any two of the XAB, VAB, or PAB. The AGU can directly address 65,536 locations on 
the XAB, 65,536 locations on the VAB, and 65,536 locations on the PAB. The two inde­
pendent address ALUs work with the two data memories to feed the data ALU two 
operands in a single cycle. Each operand may be addressed by an Rn, Nn, and Mn triplet. 

4.2.1 Address Register Files (Rn) 
Each of the two address register files (see Figure 4-2) consists of four 16-bit registers. The 
two files contain address registers RO - R3 and R4 - R7, which usually contain addresses 
used as pOinters to memory. Each register may be read or written by the global data bus 
(GDB). When read by the GOB, 16-bit registers are written into the two least significant 
bytes of the GBD, and the most Significant byte is set to zero. When written from the GBD, 
only the two least significant bytes are written, and the most significant byte is truncated. 
Each address register can be used as input to its associated address ALU for a register 
update calculation. Each register can also be written by the output of its respective ad­
dress ALU. One Rn register from the low address ALU and one Rn register from the high 
address ALU can be accessed in a single instruction. 
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Figure 4-1 DSP56K Block Diagram 

4.2.2 Offset Register Files (Nn) 
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Each of two offset register files shown in Figure 4-2 consists of four 16-bit registers. The 
two files contain offset registers NO - N3 and N4 - N7, which contain either data or offset 
values used to update address pointers. Each offset register can be read or written by the 
GOB. When read by the GOB, the contents of a register are placed in the two least signif-
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Figure 4-2 AG U Block Diagram 
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icant bytes, and the most significant byte on the GOB is zero extended. When a register 
is written, only the least significant 16 bits of the GOB are used; the upper portion is trun­
cated. 

4.2.3 Modifier Register Files (Mn) 
Each of the two modifier register files shown in Figure 4-2 consists of four 16-bit registers. 
The two files contain modifier registers MO - M3 and M4 - M7, which specify the type of 
arithmetic used during address register update calculations or contain data. Each modifier 
register can be read or written by the GOB. When read by the GOB, the contents of a reg­
ister are placed in the two least significant bytes, and the most significant byte on the GOB 
is zero extended. When a register is written, only the least Significant 16 bits of the GOB 
are used; the upper portion is truncated. Each modifier register is preset to $FFFF during 
a processor reset. 

4.2.4 Address ALU 
The two address ALUs are identical (see Figure 4-2) in that each contains a 16-bit full 
adder (called an offset adder), which can add 1) plus one, 2) minus one, 3) the contents 
of the respective offset register N, or 4) the twos complement of N to the contents of the 
selected address register. A second full adder (called a modulo adder) adds the summed 



result of the first full adder to a modulo value, M or minus M, where M-1 is stored in the 
respective modifier register. A third full adder (called a reverse-carry adder) can add 1) 
plus one, 2) minus one, 3) the offset N (stored in the respective offset register), or 4) minus 
N to the selected address register with the carry propagating in the reverse direction -
i.e., from the most significant bit (MSB) to the least significant bit (LSB). The offset adder 
and the reverse-carry adder are in parallel and share common inputs. The only difference 
between them is that the carry propagates in opposite directions. Test logic determines 
which of the three summed results of the full adders is output. 

Each address ALU can update one address register, Rn, from its respective address reg­
ister file during one instruction cycle and can perform linear, reverse-carry, and modulo 
arithmetic. The contents of the selected modifier register specify the type of arithmetic to 
be used in an address register update calculation. The modifier value is decoded in the 
address ALU. 

The output of the offset adder gives the result of linear arithmetic (e.g., Rn ± 1; Rn ± N) 
and is selected as the modulo arithmetic unit output for linear arithmetic addressing mod­
ifiers. The reverse-carry adder performs the required operation for reverse-carry 
arithmetic and its result is selected as the address ALU output for reverse-carry address­
ing modifiers. Reverse-carry arithmetic is useful for 2k-point fast Fourier transform (FFT) 
addressing. For modulo arithmetic, the modulo arithmetic unit will perform the function (Rn 
± N) modulo M, where N can be one, minus one, or the contents of the offset register Nn. 
If the modulo operation requires wraparound for modulo arithmetic, the summed output of 
the modulo adder gives the correct updated address register value; if wraparound is not 
necessary, the output of the offset adder gives the correct result. 

4.2.5 Address Output Multiplexers 
The address output multiplexers (see Figure 4-2) select the source for the XAB, VAB, and 
PAB. These multiplexers allow the XAB, VAB, or PAB outputs to originate from RO - R3 
or R4 - R7. 

4.3 PROGRAMMING MODEL 
The programmer's view of the AGU is eight sets of three registers (see Figure 4-3). These 
registers can act as temporary data registers and indirect memory pointers. Automatic up­
dating is available when using address register indirect addressing. The Mn registers can 
be programmed for linear addressing, modulo addressing, and bit-reverse addressing. 
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Figure 4-3 AGU Programming Model 

4.3.1 Address Register Flies (RO - R3 and R4 - R7) 
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The eight 16-bit address registers, RO - R7, can contain addresses or general-purpose 
data. The 16-bit address in a selected address register is used in the calculation of the 
effective address of an operand. When supporting parallel X and Y data memory moves, 
the address registers must be thought of as two separate files, RO - R3 and R4 - R7. The 
contents of an Rn may point directly to data or may be offset. In addition, Rn can be pre­
updated or post-updated according to the addressing mode selected. If an Rn is updated, 
modifier registers, Mn, are always used to specify the type of update arithmetic. Offset 
registers, Nn, are used for the update-by-offset addressing modes. The address register 
modification is performed by one of the two modulo arithmetic units. Most addressing 
modes modify the selected address register in a read-modify-write fashion; the address 
register is read, its contents are modified by the associated modulo arithmetic unit, and 
the register is written with the appropriate output of the modulo arithmetic unit. The form 
of address register modification performed by the modulo arithmetic unit is controlled by 
the contents of the offset and modifier registers discussed in the following paragraphs. Ad­
dress registers are not affected by a processor reset. 

4.3.2 Offset Register Files (NO - N3 and N4 - N7) 
The eight 16-bit offset registers, NO - N7, can contain offset values used to increment/dec­
rement address registers in address register update calculations or can be used for 16-bit 
general-purpose storage. For example, the contents of an offset register can be used to 
step through a table at some rate (e.g., five locations per step for waveform generation), 
or the contents can specify the offset into a table or the base of the table for indexed ad­
dressing. Each address register, Rn, has its own offset register, Nn, associated with it. 
Offset registers are not affected by a processor reset. 



Table 4-1 Address Register Indirect Summary 

UsesMn 
Address Register Indirect 

Modifier 

No Update No 

Postincrement by 1 Yes 

Postdecrement by 1 Yes 

Postincrement by Offset Nn Yes 

Postdecrement by Offset Nn Yes 

Indexed by Offset Nn Yes 

Predecrement by 1 Yes 

NOTE: 
S = System Stack Reference 
C = Program Control Unit Register Reference 
D = Data ALU Register Reference 
A = Address ALU Register Reference 
P = Program Memory Reference 
X = X Memory Reference 
y = Y Memory Reference 
L = L Memory Reference 

XV = XV Memory Reference 

Operand Reference 

S C D A P X V 

X X X 

X X X 

X X X 

X X X 

X X X 

X X X 

X X X 

4.3.3 Modifier Register Flies (MO - M3 and M4 - M7) 

L 

X 

X 

X 

X 

X 

X 

X 

Assembler 

XV Syntax 

X (Rn) 

X (Rn)+ 

X (Rn)-

X (Rn)+Nn 

(Rn)-Nn 

(Rn+Nn) 

-(Rn) 

The eight 16-bit modifier registers, MO - M7, define the type of address arithmetic to be 
performed for addressing mode calculations, or they can be used for general-purpose 
storage. The address ALU supports linear, modulo, and reverse.:carry arithmetic types for 
all address register indirect addressing modes. For modulo arithmetic, the contents of Mn 
also specify the modulus. Each address register, Rn, has its own modifier register, Mn, 
associated with it. Each modifier register is set to $FFFF on processor reset, which spec­
ifies linear arithmetic as the default type for address register update calculations. 

4.4 ADDRESSING 
The DSP56K provides three different addressing modes: register direct, address register 
indirect, and special. Since the register direct and special addressing modes do not nec­
essarily use the AGU registers, they are described in SECTION 6 - INSTRUCTION SET 
INTRODUCTION. The address register indirect addressing modes use the registers in 
the AGU and are described in the following paragraphs. 



4.4.1 Address Register Indirect Modes 
When an address register is used to point to a memory location, the addressing mode is 
called "address register indirect" (see Table 4-1). The term indirect is used because the 
register contents are not the operand itself, but rather the address of the operand. These 
addressing modes specify that an operand is in memory and specify the effective 
address of that operand. 

A portion of the data bus movement field in the instruction specifies the memory space to 
be referenced. The contents of specific AGU registers that determine the effective 
address are modified by arithmetic operations performed in the AGU. The type of 
address arithmetic used is specified by the address modifier register, Mn. The offset reg­
ister, Nn, is only used when the update specifies an offset. 

Not all possible combinations are available, such as + (Rn). The 24-bit instruction word 
size is not large enough to allow a completely orthogonal instruction set for all instruc­
tions used by the DSP. 

An example and description of each mode is given in the following paragraphs. SEC­
TION 6 - INSTRUCTION SET INTRODUCTION and APPENDIX A - INSTRUCTION SET 
DETAILS give a complete description of the instruction syntax used in these examples. 
In particular, XV: memory references refer to instructions in which an operand in X mem­
ory and an operand in V memory are referenced in the same instruction. 

4.4.1.1 No Update 
The address of the operand is in the address register, Rn (see Table 4-1). The contents 
of the Rn register are unchanged by executing the instruction. Figure 4-4 shows a MOVE 
instruction using address register indirect addressing with no update. This mode can be 
used for making XV: memory references. This mode does not use Nn or Mn registers. 

4.4.1.2 Postincrement By 1 
The address of the operand is in the address register, Rn (see Table 4-1 and Figure 4-5). 
After the operand address is used, it is incremented by 1 and stored in the same address 
register. This mode can be used for making XV: memory references and for modifying 
the contents of Rn without an associated data move. 

4.4.1.3 Postdecrement By 1 
The address of the operand is in the address register, Rn'(see Table 4-1 and Figure 4-6). 
After the operand address is used, it is decremented by 1 and stored in the same 
address register. This mode can be used for making XV: memory references and for 
modifying the contents of Rn without an associated data move. 



EXAMPLE: MOVE A1,X: (RO) 

BEFORE EXECUTION 

A2 A1 AO 

55 48 47 24 23 0 

1 0 11 2 3 4 5 6 71 8 9 ABC 01 
7 023 023 0 

X MEMORY 

15 0 

RO L....---'-__ 

15 0 

NO I xxxx I 
15 0 

MO I $FFFF 1 

Assembler Syntax: (Rn) 
Memory Spaces: P:, X:, V:, XV:, L: 
Additional Instruction Execution lime (Clocks): 0 
Additional Effective Address Words: 0 

AFTER EXECUTION 

A2 A1 AO 

55 4847 24 23 

1 0 11 2 3 4 5 6 71 8 9 A B C 

7 023 o 23 

X MEMORY 

15 

RO 

15 

NO I XXXX 

15 

MO I $FFFF 

Figure 4-4 Address Register Indirect - No Update 

4.4.1.4 Postlncrement By Offset Nn 

0 

01 
0 

0 

0 

0 

I 

The address of the operand is in the address register, Rn (see Table 4-1 and Figure 4-7). 
After the operand address is used, it is incremented by the contents of the Nn register and 
stored in the same address register. The contents of the Nn register are unchanged. This 
mode can be used for making XV: memory references and for modifying the contents of 
Rn without an associated data move. 



EXAMPLE: MOVE BO,V: (R1)+ 

BEFORE EXECUTION 

B2 B1 BO 

55 4847 24 23 0 

IA FI 6 5 4 3 2 11 F E 0 C B AI 
7 023 o 23 0 

YMEMORY 
23 0 

$2501 
I------i 

$2500 I------i 

15 0 

R1 
'----'-----' 

15 0 

N1 I XXXX I 

15 0 

M1 I $FFFF I 

Assembler Syntax: (Rn)+ 
Memory Spaces: P:, X:, V:, XV:, L: 
Additional Instruction Execution lime (Clocks): a 
Additional Effective Address Words: a 

AFTER EXECUTION 

82 B1 BO 

55 4847 24 23 0 

IA F I 6 5 4 3 2 11 F E o C B AI 
7 023 o 23 0 

YMEMORY 
23 0 

$2501 I--____ ~ 

$2500 $ FED C 8 A 

15 0 

R1 

15 0 

N1 I XXXX I 

15 0 

M1 I $FFFF I 

Figure 4-5 Address Register Indirect - Postincrement 

4.4.1.5 Postdecrement By Offset Nn 
The address of the operand is in the address register, Rn (see Table 4-1 and Figure 4-8). 
After the operand address is used, it is decremented by the contents of the Nn register 
and stored in the same address register. The contents of the Nn register are unchanged. 
This mode cannot be used for making XV: memory references, but it can be used to mod­
ify the contents of Rn without an associated data move. 



EXAMPLE: MOVE VO,V: (R3)-

BEFORE EXECUTION 

Y1 YO 
47 24 23 0 

1 1 2 3 1 2 31 4 5 6 4 5 6\ 
23 o 23 0 

YMEMORY 
23 o 

$4735 
i--------i 

$4734 1---------1 

15 o 
R3 

L-~_----' 

15 0 

N31 XXXX I 
15 0 

M31 $FFFF I 
Assembler Syntax: (Rn)-
Memory Spaces: P:, X:, V:, XV:, L: 
Additional Instruction Execution Time (Clocks): 0 
Additional Effective Address Words: 0 

47 

\1 
23 

Y1 

2 3 

AFTER EXECUTION 

1 

YO 
24 23 0 

2 3\ 4 5 6 4 5 6\ 
o 23 0 

YMEMORY 
23 0 

$4735 1---------1 

$4734 f---------i 

15 0 

R3 

15 0 

N3\ XXXX I 
15 0 

M31 $FFFF I 

Figure 4-6 Address Register Indirect - Postdecrement 

4.4.1.6 Indexed By Offset Nn 
The address of the operand is the sum of the contents of the address register, Rn, and 
the contents of the address offset register, Nn (see Table 4-1 and Figure 4-9). The con­
tents of the Rn and Nn registers are unchanged. This addressing mode, which requires 
an extra instruction cycle, cannot be used for making XV: memory references. 



EXAMPLE: MOVE X1,X: (R2)+N2 

BEFORE EXECUTION 

X1 XO 
47 24 23 0 

! A 5 B 4 C 61 0 0 0 0 0 11 
~ 0 ~ 0 

X MEMORY 
23 o 

$3204 X X 
I--------i 

$3200 X X X X X X 

15 0 

R2 
~~_--J 

15 

N21 

15 

M21 

Assembler Syntax: (Rn)+Nn 
Memory Spaces: P:, X:, V:, XV:, L: 

0 

$0004 I 
0 

$FFFF I 

Additional Instruction Execution Time (Clocks): 0 
Additional Effective Address Words: 0 

47 

IA 5 

23 

AFTER EXECUTION 

X1 XO 
24 23 0 

B 4 C 61 0 0 0 0 0 11 
o 23 0 

X MEMORY 
23 

15 0 

R2 

15 0 

N2! $0004 I 
15 0 

M2! $FFFF I 

Figure 4-7 Address Register Indirect - Postincrement by Offset Nn 

4.4.1.7 Predecrement By 1 
The address of the operand is the contents of the address register, Rn, decremented by 
1 before the operand address is used (see Table 4-1 and Figure 4-10). The contents of 
Rn are decremented and stored in the same address register. This addressing mode re­
quires an extra instruction cycle. This mode cannot be used for making XV: memory 
references, nor can it be used for modifying the contents of Rn without an associated data 
move. 

.. 
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EXAMPLE: MOVE X:(R4)-N4,AO 

BEFORE EXECUTION 

A2 Ai AO 

55 48 47 24 23 0 

10 FI 7 4 1 o 5 A I 3 F A 6 B 01 
7 023 o 23 0 

X MEMORY 
23 o 

$7706 
~-----; 

Assembler Syntax: (Rn)-Nn 
Memory Spaces: P:, X:, V:, L: 

15 o 
R4 

'----'-----' 

15 0 

N41 $0003 I 
15 0 

M41 $FFFF I 

Additional Instruction Execution Time (Clocks): 0 
Additional Effective Address Words: 0 

A2 

55 4847 

I 0 FI 7 
7 023 

AFTER EXECUTION 

Ai AO 

2423 0 

4 1 0 5 AI 5 0 5 0 5 01 
023 0 

X MEMORY 
23 0 

$7706 $ 5 0 5 0 5 0 

15 0 

R4 

15 0 

N41 $0003 I 
15 0 

M41 $FFFF I 

Figure 4-8 Address Register Indirect - Postdecrement by Offset Nn 

4.4.2 Address Modifier Arithmetic Types 
The address ALU supports linear, modulo, and reverse-carry arithmetic for all address 
register indirect modes. These arithmetic types easily allow the creation of data structures 
in memory for FIFOs (queues), delay lines, circular buffers, stacks, and bit-reversed FFT 
buffers. 

The contents of the address modifier register, Mn, defines the type of arithmetic to be per­
formed for addressing mode calculations. For modulo arithmetic, the contents of Mn also 



EXAMPLE: MOVE Y1,X: (RS+NS) 

BEFORE EXECUTION 

Y1 YO 
47 24 23 0 

1 6 2 1 0 0 91 B A 4 C 2 21 
23 o 23 0 

X MEMORY 
23 0 

$6004 X X X X X X 

$6000 X X X X X X 

15 o 
R6 

'----'------' 

N6 
'--~----' 

15 0 

M6 I $FFFF 1 

Assembler Syntax: (Rn+Nn) 
Memory Spaces: P:, X:, Y:, L: 
Additional Instruction Execution Time (Clocks): 2 
Additional Effective Address Words: 0 

AFfER EXECUTION 

Y1 YO 
47 24 23 0 

I 6 2 1 0 0 91 B A 4 C 2 21 
23 o 23 0 

X MEMORY 
23 0 

$6004 $ 6 2 1 0 0 9 

$6000 X X X X X X 

15 0 

R6 1 $6000 1 

15 0 

N61 $0004 1 

15 0 

M6 I $FFFF 1 

Figure 4-9 Address Register Indirect - Indexed by Offset Nn 

specifies the modulus, or the size of the memory buffer whose addresses will be refer­
enced. See Table 4-2 for a summary of the address modifiers implemented on the 
DSP56K. The MMMM column indicates the hex value which should be stored in the Mn 
register. 

-



EXAMPLE: MOVE X: -(R5),B1 

BEFORE EXECUTION 

B2 B1 BO 

55 48 47 24 23 0 

1 3 BIB 6 2 0 0 41 A 5 5 4 C 01 
7 0 23 o 23 o 

X MEMORY 
23 o 

$3007 
$3006 I-------i 

15 o 
R5 

'---'----' 

15 0 

N51 xxxx I 
15 0 

M51 $FFFF I 

Assembler Syntax: -Rn 
Memory Spaces: P:, X:, V:, L: 
Additional Instruction Execution Time (Clocks): 2 
Additional Effective Address Words: 0 

B2 

55 48 47 

13 BI1 
7 o 23 

AFTER EXECUTION 

B1 BO 

24 23 0 

2 3 4 5 61 A 5 5 4 C 01 
o 23 0 

X MEMORY 
23 0 

$3007 
1-------1 

$3006 I---'------i 

15 0 

R5 

15 0 

N51 XXXX I 
15 0 

M51 $FFFF 1 

Figure 4-10 Address Register Indirect - Predecrement 

4.4.2.1 Linear Modifier (Mn=$FFFF) 
When the value in the modifier register is $FFFF, address modification is performed using 
normal 16-bit linear arithmetic (see Table 4-2). A 16-bit offset, Nn, and + 1 or -1 can be 
used in the address calculations. The range of values can be considered as signed (Nn 
from -32,768 to + 32,767) or unsigned (Nn from 0 to + 65,535) since there is no arithmetic 
difference between these two data representations. Addresses are normally considered 
unsigned, and data is normally considered signed. 



Table 4-2 Address Modifier Summary 

MMMM Addressing Mode Arithmetic 

0000 Reverse Carry (Bit Reverse) 

0001 Modulo 2 

0002 Modulo 3 

7FFE Modulo 32767 

7FFF Modulo 32768 

8000 Reserved -8001 Multiple Wrap-Around Modulo 2 

8002 Reserved 

8003 Multiple Wrap-Around Modulo 4 

Reserved 

8007 Multiple Wrap-Around Modulo 8 

Reserved 

800F Multiple Wrap-Around Modulo 24 

Reserved 

801F Multiple Wrap-Around Modulo 25 .. 

Reserved 

803F Multiple Wrap-Around Modulo 26 

Reserved 

807F Multiple Wrap-Around Modulo 27 

Reserved 

80FF Multiple Wrap-Around Modulo 28 

Reserved 

81FF Multiple Wrap-Around Modulo 29 

Reserved 

83FF Multiple Wrap-Around Modulo 210 

Reserved 

87FF Multiple Wrap-Around Modulo 211 

Reserved 

8FFF Multiple Wrap-Around Modulo 212 
Reserved 

9FFF Multiple Wrap-Around Modulo 213 

Reserved 

BFFF Multiple Wrap-Around Modulo 214 

Reserved 

FFFF Linear (Modulo 215) 



4.4.2.2 Modulo Modifier 
When the value in the modifier register falls into one of two ranges (Mn=$0001 to $7FFF 
or Mn= $8001 to $BFFF with the reserved gaps noted in the table), address modification 
is performed using modulo arithmetic (see Table 4-2). 

Modulo arithmetic normally causes the address register value to remain within an address 
range of size M, whose lower boundary is determined by Rn. The upper boundary is de-
termined by the modulus, or M. The modulus value, in turn, is determined by Mn, the value 
in the modifier register (see Figure 4-11). 

There are certain cases where modulo arithmetic addressing conditions may cause the 
address register to jump linearly to the same relative address in a different buffer. Other 
cases firmly restrict the address register to the same buffer, causing the address register 
to wrap around within the buffer. The range in which the value contained in the modifier 
register falls determines how the processor will handle modulo addressing. 

4.4.2.2.1 Mn=$0001 to $7FFF 
In this range, the modulus (M) equals the value in the modifier register (Mn) plus 1. The 
memory buffer's lower boundary (base address) value, determined by Rn, must have ze­
ros in the k LSBs, where 2k ~ M, and therefore must be a multiple of 2k. The upper 
boundary is the lower boundary plus the modulo size minus one (base address plus M-
1). Since M~2k, once M is chosen, a sequential series of memory blocks (each of length 
2k) is created where these circular buffers can be located. If M<2k, there will be a space 
between sequential circular buffers of (2k)-M. 

"... For example, to create a circular buffer of 21 stages, M is 21, and the lower address 
boundary must have its five LSBs equal to zero (2k ~ 21, thus k ~ 5). The Mn register is 
loaded with the value 20. The lower boundary may be chosen as 0, 32, 64, 96, 128, 160, 
etc. The upper boundary of the buffer is then the lower boundary plus 21. There will be an 
unused space of 11 memory locations between the upper address and next usable lower 
address. The address pointer is not required to start at the lower address boundary or to 
end on the upper address boundary; it can initially point anywhere within the defined mod­
ulo address range. Neither the lower nor the upper boundary of the modulo region is 
stored; only the size of the modulo region is stored in Mn. The boundaries are determined 
by the contents of Rn. Assuming the (Rn)+ indirect addressing mode, if the address reg­
ister pointer increments past the upper boundary of the buffer (base address plus M-1), 
it will wrap around through the base address (lower boundary). Alternatively, assuming 
the (Rn)- indirect addressing mode, if the address decrements past the lower boundary 
(base address), it will wrap around through the base address plus M-1 (upper boundary). 



UPPER BOUNDARY 

ADDRESS -f-_ 
POINTER 

i 
M = MODULUS 

! 
LOWER BOUNDARY 

Figure 4-11 Circular Buffer 

If an offset (Nn) is used in the address calculations, the 16-bit absolute value, INnl, must 
be less than or equal to M for proper modulo addressing in this range. If Nn>M, the result 
is data dependent and unpredictable, except for the special case where Nn=P x 2k, a mul­
tiple of the block size where P is a positive integer. For this special case, when using the 
(Rn)+ Nn addressing mode, the pointer, Rn, will jump linearly to the same relative address 
in a new buffer, which is P blocks forward in memory (see Figure 4-12). 

Similarly, for (Rn)-Nn, the pOinter will jump P blocks backward in memory. This technique 
is useful in sequentially processing multiple tables or N-dimensional arrays. The range of 
values for Nn is -32,768 to + 32,767. The modulo arithmetic unit will automatically wrap 
around the address pointer by the required amount. This type of address modification is 
useful for creating circular buffers for FIFOs (queues), delay lines, and sample buffers up 
to 32,768 words long as well as for decimation, interpolation, and waveform generation. 
The special case of (Rn) ± Nn mod M with Nn=P x 2k is useful for performing the same 
algorithm on multiple blocks of data in memory - e.g., parallel infinite impulse response 
(IIR) filtering. 

An example of address register indirect modulo addressing is shown in Figure 4-13. Start­
ing at location 64, a circular buffer of 21 stages is created. The addresses generated are 
offset by 15 "locations. The lower boundary = Lx (2k) where 2k ~ 21; therefore, k=5 and 
the lower address boundary must be a multiple of 32. The lower boundary may be chosen 
as 0, 32, 64, 96, 128, 160, etc. For this example, L is arbitrarily chosen to be 2, making 
the lower boundary 64. The upper boundary of the buffer is then 84 (the lower boundary 

.. 



(Rn) ± Nn MOD M 
WHERE Nn = 2k (Le., P = 1) 

Figure 4-12 Linear Addressing with a Modulo Modifier 

plus 20 (M-1». The Mn register is loaded with the value 20 (M-1). The offset register is 
arbitrarily chosen to be 15 (Nn~M). The address pointer is not required to start at the lower 
address boundary and can begin anywhere within the defined modulo address range -

. i.e., within the lower boundary + (2k) address region. The address pointer, Rn, is arbitrarily 
chosen to be 75 in this example. When R2 is post-incremented by the offset by the MOVE 
instruction, instead of pointing to 90 (as it would in the linear mode) it wraps around to 69. 
If the address register pointer increments past the upper boundary of the buffer (base ad­
dress plus M-1), it will wrap around to the base address. If the address decrements past 
the lower boundary (base address), it will wrap around to the base address plus M-1. 

If Rn is outside the valid modulo buffer range and an operation occurs that causes Rn to 
be updated, the contents of Rn will be updated according to modulo arithmetic rules. For 
example, a MOVE BO,X:(RO)+ NO instruction (where RO=6, MO=5, and NO=O) would ap­
parently leave RO unchanged since NO=O. However, since RO is above the upper 
boundary, the AGU calculates RO+ NO-MO-1 for the new contents of RO and sets RO=O. 

The MOVE instruction in Figure 4-13 takes the contents of the XO register and moves it to 
a location in the X memory pointed to by (R2), and then (R2) is updated modulo 21. The 



EXAMPLE: MOVE XO,X:(R2)+N 

LET: 
M2 00 ..... 0010100 I MODULUS=21 

N2 00 ..... 0001111 I OFFSET=15 

R2 00 ..... 1001011 I POINTER=75 

Figure 4-13 Modulo Modifier Example 

new value of R2 is not 90 (75+ 15), which would be the case if linear arithmetic had been 
used, but rather is 69 since modulo arithmetic was used. 

4.4.2.2.2 Mn=$8001 to $BFFF 
In this range, the modulo (M) equals (Mn+ 1 )-$8000, where Mn is the value in the modifier 
register (see Table 4-2). This range firmly restricts the address register to the same 
buffer, causing the address register to wrap around within the buffer. This multiple wrap­
around addressing feature reduces argument overhead and is useful for decimation, 
interpolation, and waveform generation. 

The address modification is performed modulo M, where M may be any power of 2 in the 
range from 21 to 214. Modulo M arithmetic causes the address register value to remain 
within an address range of size M defined by a lower and upper address boundary. The 
value M-1 is stored in the modifier register Mn least significant 14 bits while the two most 
significant bits are set to '10'. The lower boundary (base address) value must have zeroes 
in the k LSBs, where 2k = M, and therefore must be a multiple of 2k. The upper boundary 
is the lower boufldary plus the modulo size minus one (base address plus M-1). 

For example, to create a circular buffer of 32 stages, M is chosen as 32 and the lower ad­
dress boundary must have its 5 least significant bits equal to zero (2k = 32, thus k = 5). 

-



The Mn register is loaded with the value $801 F. The lower boundary may be chosen as 
0, 32, 64, 96, 128, 160, etc. The upper boundary of the buffer is then the lower boundary 
plus 31. 

The address pointer is not required to start at the lower address boundary and may begin 
anywhere within the defined modulo address range (between the lower and upper bound­
aries). If the address register pointer increments past the upper boundary of the buffer 
(base address plus M-1) it will wrap around to the base address. If the address decre­
ments past the lower boundary (base address) it will wrap around to the base address 
plus M-1. If an offset Nn is used in the address calculations, it is not required to be less 
than or equal to M for proper modulo addressing since multiple wrap around is supported 
for (Rn)+Nn, (Rn)-Nn and (Rn+Nn) address updates (multiple wrap-around cannot occur 
with (Rn)+, (Rn)- and -(Rn) addressing modes). 

The multiple wrap-around . address modifier is useful for decimation, interpolation and 
waveform generation since the multiple wrap-around capability may be used for argument 
reduction. 

4.4.2.3 Reverse-Carry Modifier (Mn=$OOOO) 
Reverse carry is selected by setting the modifier register to zero (see Table 4-2). The ad­
dress modification is performed in hardware by propagating the carry in the reverse 
direction - Le., from the MSB to the LSB. Reverse carry is equivalent to bit reversing the 
contents of Rn (Le., redefining the MSB as the LSB, the next MSB as bit 1, etc.) and the 
offset value, Nn, adding normally, and then bit reversing the result. If the + Nn addressing 
mode is used with this address modifier and Nn contains the value 2(k-1) (a power of two), 
this addressing modifier is equivalent to bit reversing the k LSBs of Rn, incrementing Rn 
by 1, and bit reversing the k LSBs of Rn again. This address modification is useful for ad­
dressing the twiddle factors in 2k-point FFT addressing and to unscramble 2k-point FFT 
data. The range of values for Nn is 0 to + 32K (Le., Nn=215), which allows bit-reverse ad­
dressing for FFTs up to 65,536 points. 

To make bit-reverse addressing work correctly for a 2k point FFT, the following proce­
dures must be used: 

1. Set Mn=O; this selects reverse-carry arithmetic. 

2. Set Nn=2(k-1). 

3. Set Rn between the lower boundary and upper boundary in the buffer memory. 
The lower boundary is L x (2k), where L is an arbitrary whole number. This 



boundary gives a 16-bit binary number "xx ... xxOO ... 00", where xx ... xx=L 
and 00 ... 00 equals k zeros. The upper boundary is L x (2k)+ ((2k)-1). This 
boundary gives a 16-bit binary number "xx ... xx11 ... 11 ", where xx ... xx=L 
and 11 ... 11 equals k ones. 

4. Use the (Rn)+ Nn addressing mode. 

As an example, consider a 1024-point FFT with real data stored in the X memory and 
imaginary data stored in the Y memory. Since 1,024=210, k=10. The modifier register (Mn) 
is zero to select bit-reverse addressing. Offset register (Nn) contains the value 512 (2(k-
1), and the pointer register (Rn) contains 3,072 (L x (2k)=3 x (210», which is the lower 
boundary of the memory buffer that holds the results of the FFT. The upper boundary is 
4,095 (lower boundary + (2k)-1 =3,072+ 1,023). 

Postincrementing by + N generates the address sequence (0, 512, 256, 768, 128,640, ... ), 
which is added to the lower boundary. This sequence (0, 512, etc.) is the scrambled FFT 
data order for sequential frequency points from 0 to 2n. Table 4-3 shows the successive 
contents of Rn when using (Rn)+ Nn updates. 

Table 4-3 Bit-Reverse Addressing 
Sequence Example 

Rn Contents 
Offset From 

Lower Boundary 

3072 0 

3584 512 

3328 256 

3840 768 

3200 128 

3712 640 

The reverse-carry modifier only works when the base address of the FFT data buffer is a 
multiple of 2k, such as 1 ,024, 2,048, 3,072, etc. The use of addressing modes other than 
postincrement by + Nn is possible but may not provide a useful result. 

-



The term bit reverse with respect to reverse-carry arithmetic is descriptive. The lower 
boundary that must be used for the bit-reverse address scheme to work is Lx (2k). In the 
previous example shown in Table 4-3, L=3 and k=1 0. The first address used is the lower 
boundary (3072); the calculation of the next address is shown in Figure 4-14. The k LSBs 
of the current contents of Rn (3,072) are swapped: 

EACH UPDATE, (Rn)+Nn, IS EQUIVALENT TO: 

1. BIT REVERSING: 

2. INCREMENT Rn BY 1: 

3. BIT REVERSING AGAIN: 

L kBITS 
~~ 

Rn=000011 0000000000=3072 

X 
0000000000 

Rn=000011 0000000000 
+1 

000011 0000000001 

Rn,OOOOl1X 

1000000000 
000011 1000000000=3584 

Figure 4-14 Bit-Reverse Address Calculation Example 

Bits ° and 9 are swapped. 
Bits 1 and 8 are swapped. 
Bits 2 and 7 are swapped. 
Bits 3 and 6 are swapped. 
Bits 4 and 5 are swapped. 

The result is incremented (3,073), and then the k LSBs are swapped again: 

Bits ° and 9 are swapped. 
Bits 1 and 8 are swapped. 
Bits 2 and 7 are swapped. 
Bits 3 and 6 are swapped. 
Bits 4 and 5 are swapped. 

The result is Rn equals 3,584. 



4.4.2.4 Address-Modifier-Type Encoding Summary 
There are three address modifier types: 

Linear Addressing 
Reverse-Carry Addressing 
Modulo Addressing 

Bit-reverse addressing is useful for 2k-point FFT addressing. Modulo addressing is useful 
for creating circular buffers for FIFOs (queues), delay lines, and sample buffers up to 
32,768 words long. The linear addressing is useful for general-purpose addressing. There 
is a reserved set of modifier values (from 32,768 to 65,534) that should not be used. 

Figure 4-15 gives examples of the three addressing modifiers using 8-bit registers for sim­
plification (all AGU registers are 16 bit). The addressing mode used in the example, 
postincrement by offset Nn, adds the contents of the offset register to the contents of the 
address register after the address register is accessed. The results of the three examples 
are as follows: 

• The linear address modifier addresses every fifth location since the offset register 
contains $5. 

• Using the bit-reverse address modifier causes the postincrement by offset Nn 
addressing mode to use the address register, bit reverse the four LSBs, increment by 
1, and bit reverse the four LSBs again. 

• The modulo address modifier has a lower boundary at a predetermined location, and 
the modulo number plus the lower boundary establishes the upper boundary. This 
boundary creates a circular buffer so that, if the address register is pointing within the 
boundaries, addressing past a boundary causes a circular wraparound to the other 
boundary. 



LINEAR ADDRESS MODIFIER 

MO = 255 = 11111111 FOR LINEAR ADDRESSING WITH RO 

ORIGINAL REGISTERS: NO = 5, RO = 75 = 01001011 

POSTINCREMENT BY OFFSET NO: RO = 80 = 0101 0000 

POSTINCREMENT BY OFFSET NO: RO = 85 = 0101 0101 

POSTINCREMENT BY OFFSET NO: RO = 90 = 0101 1010 

MODULO ADDRESS MODIFIER 

MO = 19 = 0001 0011 FOR MODULO 20 ADDRESSING WITH RO 

ORIGINAL REGISTERS: NO = 5, RO = 75 = 0100 1011 

POSTINCREMENT BY OFFSET NO: RO = 80 = 0101 0000 

POSTINCREMENT BY OFFSET NO: RO = 65 = 01000001 

POSTINCREMENT BY OFFSET NO: RO = 70 = 01000110 

REVERSE-CARRY ADDRESS MODIFIER 

MO = 0= 0000 0000 FOR REVERSE-CARRY ADDRESSING WITH RO 

ORIGINAL REGISTERS: NO = 8, RO = 64 = 01000000 

POSTINCREMENT BY OFFSET NO: RO = 72 = 01001000 

POSTINCREMENT BY OFFSET NO: RO = 68 = 0100 0100 

POSTINCREMENT BY OFFSET NO: RO = 76 = 01001100 

RO 

.. 
.. 

"\ 
.. 

.. 

90 

85 

80 

75 

UPPER 
BOUNDARY 

1-----183 
~"" 80 

RO --I.:t======i 75 

~~=====l70 

~=====l65 
t---,.~=--I64 

LOWER 
BOUNDARY 

'~-1=====t76 

RO--l-1======l64 

Figure 4-15 Address Modifier Summary 



SECTION 5 
PROGRAM CONTROL UNIT 
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5.1 PROGRAM CONTROL UNIT 
This section describes the hardware of the program control unit (PCU) and concludes 
with a description of the programming model. The instruction pipeline description is also 
included since understanding the pipeline is particularly important in understanding the 
DSP56K family of processors. 

5.2 OVERVIEW 
The program control unit is one of the three execution units in the central processing 
module (see Figure 5-2). It performs program address generation (instruction prefetch), 
instruction decoding, hardware DO loop control, and exception (interrupt) processing. 
The programmer sees the program control unit as six registers and a hardware system 
stack (SS) as shown in Figure 5-1. In addition to the standard program flow-control 
resources, such as a program counter (PC), complete status register (SR), and SS, the 
program control unit features registers (loop address (LA) and loop counter (LC)) dedi­
cated to supporting the hardware DO loop instruction. 

The SS is a 15-level by 32-bit separate internal memory which stores the PC and SR for 
subroutine calls, long interrupts, and program looping. The SS also stores the LC and LA 
registers. Each location in the SS is addressable as a 16-bit register, system stack high 
(SSH) and system stack low (SSL). The stack pointer (SP) points to the SS locations. 

CLOCK-
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Figure 5-1 Program Address Generator 
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All of the PCU registers are read/write to facilitate system debugging. Although none of 
the registers are 24 bits, they are read or written over 24-bit buses. When they are read, 
the least significant bits (LSBs) are significant, and the most significant bits (MSBs) are 
zeroed as appropriate. When they are written, only the appropriate LSBs are significant, 
and the MSBs are written as don't care. 



The program control unit implements a three-stage (prefetch, decode, execute) pipeline 
and controls the five processing states of the OSP: normal, exception, reset, wait, and 
stop. 

5.3 PROGRAM CONTROL UNIT (PCU) ARCHITECTURE 
The PCU consists of three hardware blocks: the program decode controller (POC), the 
program address generator (PAG), and the program interrupt controller (PIC). 

5.3.1 Program Decode Controller 
The POC contains the program logic array decoders, the register address bus generator, 
the loop state machine, the repeat state machine, the condition code generator, the inter­
rupt state machine, the instruction latch, and the backup instruction latch. The POC 
decodes the 24-bit instruction loaded into the instruction latch and generates all signals 
necessary for pipeline control. The backup instruction latch stores a duplicate of the 
prefetched instruction to optimize execution of the repeat (REP) and jump (JMP) instruc­
tions. 

5.3.2 Program Address Generator (PAG) 
The PAG contains the PC, the SP, the SS, the operating mode register (OMR), the SR, 
the LC register, and the LA register (see Figure 5-1). 

The PAG provides hardware dedicated to support loops, which are frequent constructs in 
DSP algorithms. A DO instruction loads the LC register with the number of times the loop 
should be executed, loads the LA register with the address of the last instruction word in 
the loop (fetched during one loop pass), and asserts the loop flag in the SA. The DO in­
struction also supports nested loops by stacking the contents of the LA, LC, and SR prior 
to the execution of the instruction. Under control of the PAG, the address of the first in­
struction in the loop is also stacked so the loop can be repeated with no overhead. While 
the loop flag in the SR is asserted, the loop state machine (in the POC) will compare the 
PC contents to the contents of the LA to determine if the last instruction word in the loop 
was fetched. If the last word was fetched, the LC contents are tested for one. If LC is not 
equal to one, then it is decremented, and the SS is read to update the PC with the address 
of the first instruction in the loop, effectively executing an automatic branch. If the LC is 
equal to one, then the LC, LA, and the loop flag in the SR are restored with the stack con­
tents, while instruction fetches continue at the incremented PC value (LA + 1). More 
information about the LA and LC appears in Section 5.3.4 Instruction Pipeline Format. 

The repeat (REP) instruction loads the LC with the number of times the next instruction is 
to be repeated. The instruction to be repeated is only fetched once, so throughput is in­
creased by reducing external bus contention. However, REP instructions are not 
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interruptible since they are fetched only once. A single-instruction DO loop can be used 
in place of a REP instruction if interrupts must be allowed. 

5.3.3 Program Interrupt Controller 
The PIC receives all interrupt requests, arbitrates among them, and generates the inter-
rupt vector address. 

Interrupts have a flexible priority structure with levels that can range from zero to three. 
Levels 0 (lowest level), 1, and 2 are maskable. Level 3 is the highest interrupt priority level 
(IPL) and is not maskable. Two interrupt mask bits in the SR reflect the current IPL and 
indicate the level needed for an interrupt source to interrupt the processor. Interrupts 
cause the DSP to enter the exception processing state which is discussed fully in SEC­
TION 7 - PROCESSING STATES. 

The four external interrupt sources include three external interrupt request inputs (IROA, 
IROS, and NMI) and the RESET pin. IROA and IROS can be either level sensitive or neg­
ative edge triggered. The nonmaskable interrupt (NMI) is edge sensitive and is a level 3 
interrupt. MODNIROA, MODS/IROS, and MODC/NMI pins are sampled when RESET is 
deasserted. The sampled values are stored in the operating mode register (OMR) bits 
MA, MB, and MC, respectively (see Section 5.4.3 ,for information on the OMR). Only the 
fourth external interrupt, RESET, and Illegal Instruction have higher priority than NMI. 

The PIC also arbitrates between the different I/O peripherals. The currently selected pe­
ripheral supplies the correct vector address to the PIC. 

5.3.4 Instruction Pipeline Format 
The program control unit uses a three-level pipe lined architecture in which concurrent in-
struction fetch, decode, and execution occur. This pipelined operation remains essentially 
hidden from the user and makes programming straightforward. The pipeline is illustrated 
in Figure 5-3, which shows the operations of each of the execution units and all initial con­
ditions necessary to follow the execution of the instruction sequence shown in the figure. 
The pipeline is described in more detail in Section 7.2.1 Instruction Pipeline. 

The first instruction, 11, should be interpreted as follows: multiply the contents of XO by the 
contents of VO, add the product to the contents already in accumulator A, round the result 
to the "nearest even," store the result back in accumulator A, move the contents in X data 
memory (pointed to by RO) into XO and postincrement RO, and move the contents in V 
data memory (pointed to by R4) into V1 and postincrement R4. The second instruction, 
12, should be interpreted as follows: clear accumulator A, move the contents in XO into the 
location in X data memory pointed to by RO and postincrement RO. Sefore the clear oper-
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Figure 5-4 Program Control Unit Programming Model 

ation, move the contents in accumulator A into the location in Y data memory pointed to 
by R4 and postdecrement R4. The third instruction, 13, is the same as 11, except the 
rounding operation is not performed. 

5.4 PROGRAMMING MODEL 
The program control unit features LA and LC registers which support the DO loop instruc-
tion and the standard program flow-control resources, such as a PC, complete SR, and 
SS. With the exception of the PC, all registers are read/write to facilitate system debug­
ging. Figure 5-4 shows the program control unit programming model with the six registers 
and SS. The following paragraphs give a detailed description of each register. 

5.4.1 Program Counter 
This 16-bit register contains the address of the next location to be fetched from program 
memory space. The PC can point to instructions, data operands, or addresses of oper­
ands. References to this register are always inherent and are implied by most instructions. 
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Figure 5-5 Status Register Format 

This special-purpose address register is stacked when program looping is initialized, 
when a JSR is performed, or when interrupts occur (except for no-overhead fast inter­
rupts). 

5.4.2 Status Register 
The 16-bit SR consists of a mode register (MR) in the high-order eight bits and a condition 
code register (CCR) in the low-order eight bits, as shown in Figure 5-5. The SR is stacked 
when program looping is initialized, when a JSR is performed, or when interrupts occur, 
(except for no-overhead fast interrupts). 

The MR is a special purpose control register which defines the current system state of the 
processor. The MR bits are affected by processor reset, exception processing, the DO, 
end current DO loop (ENDDO), return from interrupt (RTI), and SWI instructions and by 
instructions that directly reference the MR register, such as OR immediate to control reg­
ister (ORI) and AND immediate to control register (ANDI). During processor reset, the 
interrupt mask bits of the MR will be set. The scaling mode bits, loop flag, and trace bit will 
be cleared. 
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The GGR is a special purpose control register that defines the current user state of the 
processor. The GGR bits are affected by data arithmetic logic unit (ALU) operations, par­
allel move operations, and by instructions tha! directly reference the eGR (ORI and 
ANDI). The GGR bits are not affected by parallel move operations unless data limiting oc­
curs when reading the A or B accumulators. During processor reset, all eGR bits are 
cleared. 

5.4.2.1 Carry (Bit 0) 
The carry (G) bit is set if a carry is generated out of the MSB of the result in an addition. 
This bit is also set if a borrow is generated in a subtraction. The carry or borrow is gener­
ated from bit 55 of the result. The carry bit is also affected by bit manipulation, rotate, and 
shift instructions. Otherwise, this bit IS cleared. 

5.4.2.2 Overflow (Bit 1) 
The overflow (V) bit is set if an arithmetic overflow occurs in the 56-bit result. This bit indi­
cates that the result cannot be represented in the accumulator register; thus, the register 
has overflowed. Otherwise, this bit is cleared. 

5.4.2.3 Zero (Bit 2) 
The zero (Z) bit is set if the result equals zero; otherwise, this bit is cleared. 

5.4.2.4 Negative (Bit 3) 
The negative (N) bit is set if the MSB (bit 55) of the result is set; otherwise, this bit is 
cleared. 

5.4.2.5 Unnormalized (Bit 4) 
The unnormalized (U) bit is set if the two MSBs of the most significant product (MSP) 
portion of the result are identical. Otherwise, this bit is cleared. The MSP portion of the A 
or B accumulators, which is defined by the scaling mode and the U bit; is computed as 
follows: 

Sl SO Scaling Mode U Bit Computation 

0 0 No Scaling U = (Bit 47 EB Bit 46) 

0 1 Scale Down U = (Bit 48 EB Bit 47) 

1 0 Scale Up U = (Bit 46 EB Bit 45) 



5.4.2.6 Extension (Bit 5) 
The extension (E) bit is cleared if all the bits of the integer portion of the 56-bit result are 
all ones or all zeros; otherwise, this bit is set. The integer portion, defined by the scaling 

mode and the E bit, is computed as follows: 

Sl SO Scaling Mode Integer Portion 

0 0 No Scaling Bits 55,54 ....... .48,47 

0 1 Scale Down Bits 55,54 ....... .49,48 

1 0 Scale Up Bits 55,54 ....... .47,46 

If the E bit is cleared, then the low-order fraction portion contains all the significant bits; 

the high-order integer portion is just sign extension. In this case, the accumulator exten­
sion register can be ignored. If the E bit is set, it indicates that the accumulator extension 
register is in use. 

5.4.2.7 Limit (Bit 6) 
The limit (L) bit is set if the overflow bit is set. The L bit is also set if the data shifter/limiter 
circuits perform a limiting operation; otherwise, it is not affected. The L bit is cleared only 
by a processor reset or by an instruction that specifically clears it, which allows the L bit 
to be used as a latching overflow bit (Le., a "sticky" bit). L is affected by data movement 
operations that read the A or B accumulator registers. 

5.4.2.8 Scaling Bit (Bit 7) 
The scaling bit (S) is used to detect data growth, which is required in Block Floating Point 
FFT operation. Typically, the bit is tested after each pass of a radix 2 FFT and, if it is set, 
the scaling mode should be activated in the next pass. The Block Floating Point FFT al­
gorithm is described in the Motorola application note APR4/D, "Implementation of Fast 

Fourier Transforms on Motorola's DSP56000/DSP56001 and DSP96002 Digital Signal 
Processors." This bit is computed according to the following logical equations when the 
result of accumulator A or B is moved to XDB or YDB. It is a "sticky" bit, cleared only by 
an instruction that specifically clears it. 
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If S 1 =0 and SO=O (no scaling) 
then S = (A46 XOR A45) OR (846 XOR 845) 

If S1 =0 and SO=1 (scale down) 
then S = (A47 XOR A46) OR (847 XOR B46) 

If S1 =1 and SO=O (scale up) 
then S = (A45 XOR A44) OR (B45 XOR B44) 

If S1 =1 and SO=1 (reserved) 
then the S flag is undefined. 

where Ai and Bi means bit i in accumulator A or B. 

5.4.2.9 Interrupt Masks (Bits 8 and 9) 
The interrupt mask bits, 11 and 10, reflect the current IPL of the processor and indicate 
the IPL needed for an interrupt source to interrupt the processor. The current IPL of the 
processor can be changed under software control. The interrupt mask bits are set during 
hardware reset but not during software reset. 

11 10 Exceptions Permitted Exceptions Masked 

0 0 IPL 0,1,2,3 None 

0 1 IPL 1,2,3 IPLO 

1 0 IPL2,3 IPL 0,1 

1 1 IPL3 IPL 0,1,2 

5.4.2.10 Scaling Mode (Bits 10 and 11) 
The scaling mode bits, S1 and SO, specify the scaling to be performed in the data ALU 
shifter/limiter, and also specify the rounding position in the data ALU multiply-accumula­
tor (MAC). The scaling modes are shown in the following table: 

S1 SO 
Rounding 

Scaling Mode 
Bit 

0 0 23 No Scaling 

0 1 24 Scale Down (1-Bit Arithmetic Right Shift) 

1 0 22 Scale Up (1-Bit Arithmetic Left Shift) 

1 1 - Reserved for Future Expansion 



The scaling mode affects data read from the A or B accumulator registers out to the XDB 
and YDB. Different scaling modes can occur with the same program code to allow dynam­
ic scaling. Dynamic scaling facilitates block floating-point arithmetic. The scaling mode 
also affects the MAC rounding position to maintain proper rounding when different por­
tions of the accumulator registers are read out to the XDB and YDB. The scaling mode 
bits, which are cleared at the start of a long interrupt service routine, are also cleared dur­
ing a processor reset. 

5.4.2.11 Reserved Status (Bit 12) 
This bits is reserved for future expansion and will read as zero during DSP read opera-
tions. 

5.4.2.12 Trace Mode (Bit 13) 
The trace mode (T) bit specifies the tracing function of the DSP56000/56001 only. (With 
other members of the DSP56K family, use the OnCE trace mode described in Section 
10.5.) For the DSP56000/56001, if the T bit is set at the beginning of any instruction exe.; 
cution, a trace exception will be generated after the instruction execution is completed. If 
the T bit is cleared, tracing is disabled and instruction execution proceeds normally. If a 
long interrupt is executed during a trace exception, the SR with the trace bit set will be 
stacked, and the trace bit in the SR is cleared (see SECTION 7 - PROCESSING 
STATES for a complete description of a long interrupt operation). The T bit is also 
cleared during processor reset. 

5.4.2.13 Double Precision Multiply Mode (Bit 14) 
The processor is in double precision multiply mode when this bit is set. (See Section 3.4 
for detailed information on the double precision multiply mode.) When the DM bit is set, 
the operations performed by the MPY and MAC instructions change so that a double pre­
cision 48-bit by 48-bit double precision multiplication can be performed in six instructions. 
The DSP56K software simulator accurately shows how the MPY, MAC, and other Data 
ALU instructions operate while the processor is in the double precision multiply mode. 

5.4.2.14 Loop Flag (Bit 15) 
The loop flag (LF) bit is set when a program loop is in progress. It detects the end of a 
program loop. The LF is the only SR bit that is restored when a program loop is termi­
nated. Stacking and restoring the LF when initiating and exiting a program loop, respec­
tively, allow the nesting of program loops. At the start of a long interrupt service routine, 
the SR (including the LF) is pushed on the SS and the SR LF is cleared. When returning 
from the long interrupt with an RTI instruction, the SS is pulled and the LF is restored. 
During a processor reset, the LF is cleared. 
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5.4.3 Operating Mode Register 

OPERATING MODE A, B 

DATA ROM ENABLE 

INTERNAL Y MEMORY DISABLE 

OPERATING MODE C 

RESERVED 

STOP DELAY 

RESERVED 

RESERVED 

The OMR is a 24-bit register (only six bits are d~fined) that sets the current operating 
mode of the processor. Each chip in the DSP56K family of processors has its own set of 
operating modes which determine the memory maps for program and data memories, and 
the startup procedure that occurs when the chip leaves the reset state. The OMR bits are 
only affected by processor reset and by the ANDI, ORI, and MOVEC instructions, which 
directly reference the OMR. 

The OMR format with all of its defined bits is shown in Figure 5-6. For product-specific 
OMR bit definitions, see the individual chip's user manual for details on its respective op­
erating modes. 

5.4.4 System Stack 
The SS is a separate 15X32-bit internal memory divided into two banks, the SSH and the 
SSL, each 16 bits wide. The SSH stores the PC contents, and the SSL stores the SR con­
tents for subroutine calls, long interrupts, and program looping. The SS will alsC? store the 
LA and LC registers. The SS is in stack memory space; its address is always inherent and 
implied by the current instruction. 

The contents of the PC and SR are pushed on the top location of the SS when a subrou­
tine call or long interrupt occurs. When a return from subroutine (RTS) occurs, the 
contents of the top location in the SS are pulled and put in the PC; the SR is not affected. 
When an RTI occurs, the conte~ts of the top location in the SS are pulled to both the PC 
and SR. 

The SS is also used to implement no-overhead nested hardware DO loops. When the DO 
instruction is executed, the LA:LC are pushed on the SS, then the PC:SR are pushed on 



the SS. Since each SS location can be addressed as separate 16-bit registers (SSH and 
SSL), software stacks can be created for unlimited nesting. 

The SS can accommodate up to 15 long interrupts, seven DO loops, 15 JSRs, or combi­
nations thereof. When the SS limit is exceeded, a nonmaskable stack error interrupt 
occurs, and the PC is pushed to SS location zero, which is not implemented in hardware. 
The PC will be lost, and there will be no SP from the stack interrupt routine to the program 
that was executing when the error occurred. 

5 4 3 2 o 

STACK POINTER 

STACK ERROR FLAG 

UNDERFLOW FLAG 

Figure 5-7 Stack Pointer Register Format 

5.4.5 Stack Pointer Register 
The 6-bit SP register indicates the location of the top of the SS and the status of the SS 
(underflow, empty, full, and overflow). The SP register is referenced implicitly by some in­
structions (DO, REP, JSR, RTI, etc.) or directly by the MOVEC instruction. The SP 
register format is shown in Figure 5-7. The SP register works as a 6-bit counter that ad­
dresses (selects) a 15-location stack with its four LSBs. The possible SP values are 
shown in Figure 5-8 and described in the following paragraphs. 

UF SE P3 P2 P1 PO 

STACK UNDERFLOW CONDITION AFTER DOUBLE PULL 

1 STACK UNDERFLOW CONDITION 

0 0 0 STACK EMPTY (RESET); PULL CAUSES UNDERFLOW 

0 0 0 STACK LOCATION 1 

0 0 STACK LOCATION 14 

0 0 STACK LOCATION 15; PUSH CAUSES OVERFLOW 

0 0 0 0 STACK OVERFLOW CONDITION 

0 0 0 0 STACK OVERFLOW CONDITION AFTER DOUBLE PUSH 

Figure 5-8 SP Register Values 



5.4.5.1 Stack Pointer (Bits 0-3) 
The SP points to the last location used on the SS. Immediately after hardware reset, 
these bits are cleared (SP=O), indicating that the SS is empty. 

Data is pushed onto the SS by incrementing the SP, then writing data to the location to 
which the SP points. An item is pulled off the stack by copying it from that location and 
then by decrementing the SP. 

5.4.5.2 Stack Error Flag (Bit 4) 
The stack error flag indicates that a stack error has occurred, and the transition of the 
stack error flag from zero to one causes a priority level-3 stack error exception. 

When the stack is completely full, the SP reads 001111, and any operation that pushes 
data onto the stack will cause a stack error exception to occur. The SR will read 010000 
(or 010001 if an implied double push occurs). 

Any implied pull operation with SP equal to zero will cause a stack error exception, and 
the SP will read 111111 (or 111110 if an implied double pull occurs). 

The stack error flag is a "sticky bit" which, once set, remains set until cleared by the user. 
There is a sequence of instructions that can cause a stack overflow and, without the sticky 
bit, would not be detected because the stack pointer is decremented before the stack error 
interrupt is taken. The ,sticky bit keeps the stack error bit set until the user clears it by writ­
ing a zero to SP bit 4. It also latches the overflow/underflow bit so that it cannot be 
changed by stack pointer increments or decrements as long as the stack error is set. The 
overflow/underflow bit remains latched until the first move to SP is executed. 

Note: When SP is zero (stack empty), instructions that read the stack without SP post­
decrement and instructions that write to the stack without SP preincrement do not cause 
a stack error exception (Le., 1) DO SSL,xxxx 2) REP SSL 3) MOVEC or move peripheral 
data (MOVEP) when SSL is specified as a source or destination). 

5.4.5.3 Underflow Flag (Bit 5) 
The underflow flag is set when a stack underflow occurs. The underflow flag is a "sticky 
bit" when the stack error flag is set. That is, when the stack error flag is set, the underflow 
flag will not change state. The combination of "underflow=1" and "stack error=O" is an ille­
gal combination and will not occur unless it is forced by the user. If this condition is 
forced by the user, the hardware will correct itself based on the result of the next stack 
operation. 



5.4.5.4 Reserved Stack Pointer Registration (Bits 6-23) 
SP register bits 6 through 23 are reserved for future expansion and will read as zero dur­
ing read operations. 

5.4.6 Loop Address Register 
The LA is a read/write register which is stacked into the SSH by a DO instruction and is 
unstacked by end-of-Ioop processing or by an ENDDO instruction. The contents of the LA 
register indicate the location of the last instruction word in a program loop. When that last 
instruction is fetched, the processor checks the contents of the LC register (see the fol­
lowing section). If the contents are not one, the processor decrements the LC and takes 
the next instruction from the top of the SS. If the LC is one, the PC is incremented, the 
loop flag is restored (pulled from the SS), the SS is purged, the LA and LC registers are 
pulled from the SS and restored, and instruction execution continues normally. 

5.4.7 Loop Counter Register 
The LC register is a special 16-bit counter which specifies the number of times a hardware 
program loop shall be repeated. This register is stacked into the SSL by a DO instruction 
and unstacked by end-of-Ioop processing or by execution of an ENDDO instruction. When 
the end of a hardware program loop is reached, the contents of the LC register are tested 
for one. If the LC is one, the program loop is terminated, and the LC register is loaded with 
the previous LC contents stored on the SS. If LC is not one, it is decremented and the 
program loop is repeated. The LC can be read under program control, which allows the 
number of times a loop will be executed to be monitored/changed dynamically. The LC is 
also used in the REP instruction 

5.4.8 Programming Model Summary 
The complete programming model for the DSP56K central processing module is shown 
in Figure 5-9. Programming models for the peripherals are shown in the appropriate user 
manuals. . 
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Figure 5-9 DSP56K Central Processing Module Programming Model 



SECTION 6 
INSTRUCTION SET INTRODUCTION 
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6.1 INSTRUCTION SET INTRODUCTION 
The programming model shown in Figure 6-1 suggests that the DSP56K central process­
ing module architecture can be viewed as three functional units which operate in parallel: 
data arithmetic logic unit (data ALU), address generation unit (AGU), and program con­
trol unit (PCU). The instruction set keeps each of these units busy throughout each 
instruction cycle, achieving maximal speed and maintaining minimal program size. 

This section introduces the DSP56K instruction set and instruction format. The complete 
range of instruction capabilities combined with the flexible addressing modes used in this 
processor provide a very powerful assembly language for implementing digital signal pro­
cessing (DSP) algorithms. The instruction set has been designed to allow efficient coding 
for DSP high-level language compilers such as the C compiler. Execution time is mini­
mized by the hardware looping capabilities, use of an instruction pipeline, and parallel 
moves. 

6.2 SYNTAX 
The instruction syntax is organized into four columns: opcode, operands, and two parallel­
move fields. The assembly-language source code for a typical one-word instruction is 
shown in the following illustration. Because of the multiple bus structure and the parallel­
ism of the DSP, up to three data transfers can be specified in the instruction word - one 
on the X data bus (XDB), one on the Y data bus (yDB), and one within the data ALU. 
These transfers are explicitly specified. A fourth data transfer is implied and occurs in the 
program control unit (instruction word prefetch, program looping control, etc.). Each data 
transfer involves a source and a destination. 

Opcode 

MAC 

Operands 

XO,YO,A 

XDB YDS 

X:(RO)+,XO Y:(R4)+,YO 

The opcode column indicates the data ALU, AGU, or program control unit operation to be 
performed and must always be included in the source code. The operands column spec­
ifies the operands to be used by the opcode. The XDB and YDB columns specify optional 
data transfers over the XDB and/or YDB and the associated addressing modes. The 
address space qualifiers (X:, V:, and L:) indicate which address space is being referenced. 
Parallel moves are allowed in 30 of the 62 instructions. Additional information is presented 
in APPENDIX A - INSTRUCTION SET DETAILS. 

6.3 INSTRUCTION FORMATS 
The DSP56K instructions consist of one or two 24-bit words - an operation word and an 
optional effective address extension word. The general format of the operation word is 
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Figure 6-1 DSP56K Central Processing Module Programming Model 



shown in Figure 6-2. Most instructions specify data movement on the XDB, YDB, and data 
ALU operations in the same operation word. The DSP56K performs each of these opera­
tions in parallel. 

~ 87 0 
I OPCODE 

DATA BUS MOVEMENT Ixlxlxlxlxlxlxlx 
OPTIONAL EFFECTIVE ADDRESS EXTENSION 

Figure 6-2 General Format of an Instruction Operation Word 

The data bus movement field provides the operand reference type. It selects the type of 
memory or register reference to be made, the direction of transfer, and the effective 
address(es) for data movement on the XDB and YDB. This field may require additional 
information to fully specify the operand for certain addressing modes. An effective 
address extension word following the operation word provides an immediate data address 
or an absolute address if required (see Section 6.3.5.3 for the description of special 
addressing modes). Examples of operations that may include the extension word include 
the move operations X:, X:R, V:, R:Y, and L:. Additional information is presented in 
APPENDIX A - INSTRUCTION SET DETAILS. 

The opcode field of the operation word specifies the data ALU operation or the program 
control unit operation to be performed, and any additional operands required by the 
instruction. Only those data ALU and program control unit operations that can accompany 
data bus movement will be specified in the opcode field of the instruction. Other data ALU, 
program control unit, and all address ALU operations will be specified in an instruction 
word with a different format. These formats include operation words which contain short 
immediate data or short absolute addresses (see Section 6.3.5.3 for the description of 
special addressing modes). 

6.3.1 Operand Sizes 
Operand sizes are defined as follows: a byte is 8 bits long, a short word is16 bits long, a 
word is 24 bits long, a long word is 48 bits long, and an accumulator is 56 bits long (see 
Figure 6-3). The operand size for each instruction is either explicitly encoded in the 
instruction or implicitly defined by the instruction operation. Implicit instructions support 
some subset of the five sizes shown in Figure 6-3. 
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7 0 
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Figure 6-3 Operand Sizes 

6.3.2 Data Organization in Registers 
The ten data ALU registers support 8- or 24-bit data operands. Instructions also support 
48- or 56-bit data operands by concatenating groups of specific data ALU registers. The 
eight address registers in the AGU support 16-bit address or data operands. The eight 
AGUoffset registers support 16-bit offsets or may support 16-bit address or data oper­
ands. The eight AGU modifier registers support 16-bit modifiers or may support 16-bit 
address or data operands. The program counter (PC) supports 16-bit address operands. 
The status register (SR) and operating mode register (OMR) support 8- or 16-bit data 
operands. Both the loop counter (LC) and loop address (LA) registers support 16-bit 
address operands. 

6.3.2.1 Data ALU Registers 
The eight main data ALU registers are 24 bits wide. Word operands occupy one register; 
long-word operands occupy two concatenated registers. The least significant bit (LSB) is 
the right-most bit (bit 0) and the most significant bit (MSB) is the left-most bit (bit 23 for 
word operands and bit 47 for long-word operands). The two accumulator extension regis­
ters are eight bits wide. 

When an accumulator extension register acts as a source operand, it occupies the low­
order portion (bits 0-7) of the word and the high-order portion (bits 8-23) is sign extended 
(see Figure 6-4). When used as a destination operand, this register receives the low-order 
portion of the word, and the high-order portion is not used. Accumulator operands occupy 
an entire group of three registers (Le., A2:A1 :AO or B2:B1 :BO). The LSB is the right-most 
bit (bit 0), and the MSB is the left-most bit (bit 55). 
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Figure 6-5 Reading and Writing the Address ALU Registers 

6.3.2.2 AGU Registers 
The 24 AGU registers_ are 16 bits wide. They may be accessed as word operands for 
address, address modifier, and data storage. When used as a source operand, these reg­
isters occupy the low-order portion of the 24-bit word; the high-order portion is read as 
zeros (see Figure 6-5). When used as a destination operand, these registers receive the 
low-order portion of the word; the high-order portion is not used. The notation "Rn" desig­
nates one of the eight address registers, RO-R7; the notation "Nn" designates one of the 
eight address offset registers, NO-N7; and the notation "Mn" designates one of the eight 
address modifier registers, MO-M7. 
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Figure 6-6 Reading and Writing Control Registers 

6.3.2.3 Program Control Registers 
The 8-bit operating mode register (OMR) may be accessed as a word operand. However, 
not all eight bits are defined, and those that are defined will vary depending on the 
DSP56K family member. In general, undefined bits are written as "don't care" and read as 
zero. 

The 16-bit SR has the system mode register (MR) occupying the high-order eight bits and 
the user condition code register (CCR) occupying the low-order eight bits. The SR may 
be accessed as a word operand. 



The MR and CCR may be accessed individually as word operands (see Figure 6-6(b». 
The LC, LA, system stack high (SSH), and system stack low (SSL) registers are 16 bits 
wide and may be accessed as word operands (see Figure 6-6(a». When used as a source 
operand, these registers occupy the low-order portion of the 24-bit word; the high-order 
portion is zero. When used as a destination operand, they receive the low-order portion 
of the 24-bit word; the high-order portion is not used. The system stack pointer (SP) is a 
6-bit register that may be accessed as a word operand. 

The PC, a special 16-bit-wide program control register, is always referenced implicitly as 
a short-word operand. 

6.3.3 Data Organization in Memory 
The 24-bit program memory can store both 24-bit instruction words and instruction exten­
sion words. The 32-bit system stack (SS) can store the concatenated PC and SR registers 
(PC:SR) for subroutine calls, interrupts, and program looping. The SS also supports the 
concatenated LA and LC registers (LA:LC) for program looping. The 24-bit-wide X and Y 
memories can store word, short-word, and byte operands. Short-word and byte operands, 
which usually occupy the low-order portion of the X or Y memory word, are either zero 
extended or sign extended on the XDB or YDB. 

The symbols used to abbreviate the various operands and operations in each instruction 
and their respective meanings are shown in the following list: 

DataALU 
Xn Input Registers X1, XO (24 Bits) 
Yn Input Registers Y1, YO (24 Bits) 
An Accumulator Registers A2 (8 Bits), A1, AO (24 Bits) 
Bn Accumulator Registers B2 (8 Bits), B1, BO (24 Bits) 
X Input Register X (X1 :XO, 48 Bits) 
Y Input Register Y (Y1 :YO, 48 Bits) 
A Accumulator A (A2:A 1 :AO, 56 Bits) * 
B Accumulator B (B2:B1 :BO, 56 Bits)* 
AB Accumulators A and B (A1 :B1, 48 Bits)* 
BA Accumulators B and A (B1 :A1, 48 Bits)* 
A 10 Accumulator A (A 1 :AO, 48 Bits) 
B10 Accumulator B (B1 :BO, 48 Bits) 

*Data Move Operations: when specified as a source operand, shifting and limiting 
are performed. When specified as a destination operand, sign extension and zero 
filling are performed. 

-
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AddressALU 
Rn Address Registers RO-R7 (16 Bits) 
Nn Address Offset Registers NO-N7 (16 Bits) 
Mn Address Modifier Registers MO-M7 (16 Bits) 

Program Control Unit 
PC Program Counter (16 Bits) 
MR Mode Register (8 Bits) 
CCR Condition Code Register (8 Bits) 
SR Status Register (MR:CCR, 16 Bits) 
OMR Operating Mode Register (8 Bits) 
LA Hardware Loop Address Register (16 Bits) 
LC Hardware Loop Counter (16 Bits) 
SP System Stack Pointer (6 Bits) 
SS System Stack RAM (15X32 Bits) 
SSH Upper 16 Bits of the Contents of the Current Top of Stack 
SSL Lower 16 Bits of the Contents of the Current Top of Stack 

Addresses 
ea 
xxxx 
xxx 

aa 
pp 
< ... > 
X: 
Y: 
L: 
P: 

Miscellaneous 

Effective Address 
Absolute Address (16 Bits) 
Short Jump Address (12 Bits) 

Absolute Short Address (6 Bits Zero Extended) 
1/0 Short Address (6 Bits Ones Extended) 
Contents of the Specified Address 
X Memory Reference 
Y Memory Reference 
Long Memory Reference - X Concatenated with Y 
Program Memory Reference 

#xx Immediate Short Data (8 Bits) 
#xxx Immediate Short Data (12 Bits) 
#xxxxxx Immediate Data (24 Bits) 
#n Immediate Short Data (5 Bits) 
S,Sn Source Operand Register 
D,Dn Destination Operand R~gister 
D[n] Bit n of D Affected 
r Rounding Constant 
11,10 Interrupt Priority Level in SR 
LF Loop Flag in SR 



6.3.4 Operand References 
The DSP separates operand references into four classes: program, stack, register, and 
memory references. The type of operand reference(s) required for an instruction is spec­
ified by both the opcode field and the data bus movement field of the instruction. However, 
not all operand reference types can be used with all instructions. The operand size for 
each instruction is either explicitly encoded in the instruction or implicitly defined by the 
instruction operation. Implicit instructions support some subset of the five operand sizes. 

6.3.4.1 Program References 
Program (P) references, which are references to 24-bit-wide program memory space, are 
usually instruction reads. Instructions or data operands may be read from or written to pro­
gram memory space using the move program memory (MOVEM) and move peripheral 
data (MOVEP) instructions. Depending on the address and the chip operating mode, pro­
gram references may be internal or external memory references. 

6.3.4.2 Stack References 
Stack (S) references, which are references to the System Stack (SS), a separate 32-bit­
wide internal memory space, are used implicitly to store the PC and SR for subroutine 
calls, interrupts, and returns. In addition to the PC and SR, the LA and LC registers are 
stored on the stack when a program loop is initiated. S references are always implied by 
the instruction. Data is written to the stack memory to save the processor state and is read 
from the stack memory to restore the processor state. In contrast to S references, refer­
ences to SSL and SSH are always explicit. 

6.3.4.3 Register References 
Register (R) references are references to the data ALU, AGU, and program control unit 
registers. Data can be read from one register and written into another register. 

6.3.4.4 Memory References 
Memory references, which are references to the 24-bit-wide X or Y memory spaces, can 
be internal or external memory references, depending on the effective address of the 
operand in the data bus movement field of the instruction. Data can be read or written from 
any address in either memory space. 

6.3.4.4.1 X Memory References 
The operand, which is in X memory space, is a word reference. Data can be transferred 
from memory to a register or from a register to memory. 

-
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6.3.4.4.2 V Memory References 
The operand, a word reference, is in V memory space. Data can be transferred from mem­
ory to a register or from a register to memory. 

6.3.4.4.3 L Memory References 
Long (L) memory space references both X and V memory spaces with one operand 
address. The data operand is a long-word reference developed by concatenating the X 
and V memory spaces (X:Y). The high-order word of the operand is in the X memory; the 
low-order word of the operand is in the V memory. Data can be read from memory to con­
catenated registers X1 :XO, A1 :AO, etc. or from concatenated registers to memory. 

6.3.4.4.4 YX Memory References 
XV memory space references both X and V memory spaces with two operand addresses. 
Two independent addresses are used to access two word operands - one word operand 
is in X memory space, and one word operand is in V memory space. Two effective 
addresses in the instruction are used to derive two independent operand addresses - one 
operand address may reference either X or V memory space and the other operand 
address must reference the other memory space. One of these two effective addresses 
specified in the instruction must reference one of the address registers, RO-R3, and the 
other effective address must reference one of the address registers, R4-R7. Addressing 
modes are restricted to no-update and post-update by + 1, -1, and +N addressing modes. 
Each effective address provides independent read/write control for its memory space. 
Data may be read from memory to a register or from a register to memory. 

6.3.5 Addressing Modes 
The DSP instruction set contains a full set of operand addressing modes. To minimize 
execution time and loop overhead, all address calculations are performed concurrently in 
the address ALU. 

Addressing modes specify whether the operand(s) is in a register or in memory, and pro­
vide the specific address of the operand(s). An effective address in an instruction will 
specify an addressing mode, and, for some addressing modes, the effective address will 
further specify an address register. In addition, address register indirect modes require 
additional address modifier information that is not encoded in the instruction. The address 
modifier information is specified in the selected address modifier register(s). All indirect 
memory references require one address modifier, and the XV memory reference requires 
two address modifiers. The definition of certain instructions implies the use of specific reg­
isters and addressing modes. 



Some address register indirect modes require an offset and a modifier register for use in 
address calculations. These registers are implied by the address register specified in an 
effective address in the instruction word. Each offset register (Nn) and each modifier reg­
ister (Mn) is assigned to an address register (Rn) having the same register number (n). 
Thus, the assigned register triplets are RO;NO;MO, R1 ;N1 ;M1, R2;N2;M2, R3;N3;M3, 
R4;N4;M4, R5;N5;M5, R6;N6;M6, and R7;N7;M7. Rn is used as the address register; Nn 
is used to specify an optional offset; and Mn is used to specify the type of arithmetic used 
to update the Rn. 

The addressing modes are grouped into three categories: register direct, address register 
indirect, and special. These addressing modes are described in the following paragraphs. 
Refer to Table 6-1 for a summary of the addressing modes and allowed operand refer­
ences. 

6.3.5.1 Register Direct Modes 
These effective addressing modes specify that the operand source or destination is one 
of the data, control, or address registers in the programming model. 

6.3.5.1.1 Data or Control Register Direct 
The operand is in one, two, or three data ALU register(s) as specified in a portion of the 
data bus movement field in the instruction. Classified as a register reference, this address­
ing mode is also used to specify a control register operand for special instructions such 
as OR immediate to control registers (ORI) and AND immediate to control registers 
(ANDI). 

6.3.5.1.2 Address Register Direct 
Classified as a register reference, the operand is in one of the 24 address registers (Rn, 
Nn, or Mn) specified by an effective address in the instruction. 

Note: Due to instruction pipelining, if an address register (Mn, Nn, or Rn) is changed with 
a MOVE instruction, the new contents will not be available for use as a pointer until the 
second following instruction. 

6.3.5.2 Address Register Indirect Modes 
The address register indirect mode description is presented in SECTION 4 - ADDRESS 
GENERATION UNIT. 
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6.3.5.3 Special Addressing Modes 
The special addressing modes do not use specific registers to specify an effective 
address. These modes specify the operand or the operand address in a field of the 
instruction, or they implicitly reference an operand. Figure examples are given for each of 
the special addressing modes discussed in the following paragraphs. 

6.3.5.3.1 Immediate Data 
Classified as a program reference, this addressing mode requires one word of instruction 
extension containing the immediate data. Figure 6-7 shows three examples. Example A 
moves immediate data to register AO without affecting A 1 or A2. Examples Band C zero 
fill register AO and sign extend register A2. 

6.3.5.3.2 Absolute Address 
This addressing mode requires one word of instruction extension containing the absolute 
address. Figure 6-8 shows that MOVE Y:$5432,BO copies the contents of address $5432 
into BO without changing memory location $5432, register B1, or register B2. This 
addressing mode is classified as both a memory reference and program reference. The 
16-bit absolute address is stored in the 16 LSBs of the extension word; the eight MSBs 
are zero filled. 

6.3.5.3.3 Immediate Short 
The 8- or 12-bit operand, which is in the instruction operation word, is classified as a pro­
gram reference. The immediate data is interpreted as an unsigned integer (low-order 
portion) or signed fraction (high-order portion), depending on the destination register. Fig­
ure 6-9 shows the use of immediate short addressing in four examples. 

6.3.5.3.4 Short Jump Address 
The operand occupies 12 bits in the instruction operation word, which allows addresses 
$OOOO-$OFFF to be accessed (see Figure 6-10). The address is zero extended to 16 bits 
when used to address program memory. This addressing mode is classified as a program 
reference. 

6.3.5.3.5 Absolute Short 
The address of the operand occupies six bits in the instruction operation word, allowing 
addresses $0000-$003F to be accessed (see Figure 6-11). Classified as both a memory 
reference and program reference, the address is zero extended to 16 bits when used to 
address an operand or program memory. 



EXAMPLE A: IMMEDIATE INTO 24-BIT REGISTER 
(MOVE 1t$123456,AO) 

BEFORE EXECUTION 

A2 A1 AO 
55 4847 2423 0 
I X X I X X X X X xl X X X X X X I 
7 023 023 0 

AFTER EXECUTION 

A2 A1 AO 
55 48 47 24 23 0 
I X X I X X X X X xl 1 2 3 4 5 6 I 
7 0 23 0 23 0 

EXAMPLE B:POSITIVE IMMEDIATE INTO 56-BIT REGISTER 
(MOVE 1t$123456,A) 

BEFORE EXECUTION 

A2 A1 AO 
55 48 47 24 23 0 
I X X I X X X X X xl X X X X X X I 
7 0 23 0 23 0 

AFTER EXECUTION 

A2 A1 AO 
55 4847 2423 0 
I 0 0 I 1 2 3 4 5 61 0 0 0 0 0 0 I 
7 023 023 0 

EXAMPLE C: NEGATIVE IMMEDIATE INTO 56-BIT REGISTER 
(MOVE 1t$801234,A) 

BEFORE EXECUTION 

A2 A1 AO 
55 4847 2423 0 
I X X I X X X X X xl X X X X X X I 
7 023 023 0 

Assembler Syntax: ItXXXXXX 
Memory Spaces: P: 
Additional Instruction Execution Time (Clocks): 2 
Additional Effective Address Words: 1 

AFTER EXECUTION 

A2 A1 AO 
55 48 47 24 23 0 
IFF I 8 0 1 2 3 41 0 0 0 0 0 0 I 
7 023 023 0 

Figure 6-7 Special Addressing -Immediate Data 
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EXAMPLE: MOVE Y:$5432,BO 

BEFORE EXECUTION 

B2 B1 BO 
55 48 47 24 23 0 
I X X I X X X X X xl X X X X X X I 
7 0 23 0 23 0 

23 Y MEMORY 0 

$5432~ 
Assembler Syntax: XXX X or aa 
Memory Spaces: P: 
Additional Instruction Execution Time (Clocks): 2 
Additional Effective Address Words: 1 

AFTER EXECUTION 

B2 B1 BO 
55 4847 2423 0 
I X X I X X X X X XIA BCD E F I 
7 0 23 0 23 0 

23 Y MEMORY 0 

$5~2~ 

Figure 6-8 Special Addressing - Absolute Addressing 

6.3.5.3.6 1/0 Short 
Classified as a memory reference, the liD short addressing mode is similar to absolute 
short addressing. The address of the operand occupies six bits in the instruction operation 
word. 110 short is used with the bit manipulation and MOVEP instructions. The liD short 
address is ones extended to 16 bits to address the 1/0 portion of X and Y memory 
(addresses $FFCO-$FFFF - see Figure 6-12). 

6.3.5.3.7 Implicit Reference 
Some instructions make implicit reference to PC, SS, LA, LC, or SA. For example, the 
jump instruction (JMP) implicitly references the PC; whereas, the repeat next instruction 
(REP) impliCitly references LC. The registers implied and their uses are defined by the 
individual instruction descriptions (see APPENDIX A - INSTRUCTION SET DETAILS). 



EXAMPLE A: IMMEDIATE SHORT INTO AO, A 1, A2, BO, B1, B2, Rn, Nn 
(MOVE I#$FF,A1) 

BEFORE EXECUTION 

A2 A1 AO 
55 4847 2423 a 
I X X I X X X X X xl X X X X X X I 
7 023 023 a 

AFTER EXECUTION 

A2 A1 AO 
55 48 47 24 23 0 
I X X I a a 0 a F FI X X X X X X I 
7 023 023 a 

EXAMPLE B:POSITIVE IMMEDIATE SHORT INTO XO, X1, va, V1, A, B 
(MOVE 1#$1F, V1) 

BEFORE EXECUTION 

V1 va 
47 24 23 a 
I X X X X X xl X X X X X xl 
23 023 0 

AFTER EXECUTION 

V1 VO 
47 24 23 0 
I 1 F a a a a I X X x X X xl 
23 023 a 

EXAMPLE C: POSITIVE IMMEDIATE SHORT INTO X, V, A, B 
(MOVE 1#$1 F, A) 

BEFORE EXECUTION 

A2 A1 AO 
55 48 47 24 23 a 

I X X 1 X X X X X xl X X X X X X I 
7 023 023 a 

AFTER EXECUTION 

A2 A1 AO 
55 48 47 24 23 a 
10 011 F 000010 a 0 0 a 01 
7 023 023 a 

EXAMPLE D: NEGATIVE IMMEDIATE INTO 56-BIT REGISTER 
(MOVE 1#$801234,A) 

BEFORE EXECUTION 

A2 A1 AO 
55 4847 2423 a 

I X X 1 X X X X X xl X X X X X X 1 

7 0 23 a 23 a 

Assembler Syntax: #XX 
Memory Spaces: P: 
Additional Instruction Execution Time (Clocks): a 
Additional Effective Address Words: a 

AFTER EXECUTION 

A2 A1 AO 
55 48 47 24 23 0 
IFF 18 3 a a a 010 a a 0 001 
7 a 23 0 23 a 

Figure 6-9 Special Addressing - Immediate Short Data 
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EXAMPLE: JMP $123 

BEFORE EXECUTION 
P MEMORY 

!---------iT 
JUMP 

$0123 . 4,096 $0123 
WORDS 

AFTER EXECUTION 
P MEMORY 

~ 
RANGE PC 

$OOOO~~ $OOOO~ 
Assembler Syntax: XXX 
Memory Spaces: P: 
Additional Instruction Execution Time (Clocks): 0 
Additional Effective Address Words: 0 

Figure 6-10 Special Addressing - Short Jump Address 
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EXAMPLE A: MOVE P: $3200,XO 

BEFORE EXECUTION 

X1 XO 
47 24 23 0 
I 0 0 0 0 0 1 I X X X X X xl 
23 023 0 

P MEMORY 

$3204 X X X X X X 

$3200 $ A 5 B 4 C 6 

EXAMPLE B: MOVE A1, X: $3 

A2 

55 4847 
X xI3 

7 o 23 

BEFORE EXECUTION 

4 

A1 AO 

2423 0 
F 5 E 61 X X X X X X I 

o 23 0 

$0040 
$003F 

$0003 

$0000 

X MEMORY 
23 0 

-------------
XXXXXX 

Assembler Syntax: aa 
Memory Spaces: P:, X:, V:, L: 
Additional Instruction Execution Time (Clocks): 0 
Additional Effective Address Words: 0 

AFTER EXECUTION 

X1 XO 
47 24 23 0 
I 0 0 0 0 0 1\ A 5 B 4 C 61 
23 023 0 

A2 
55 4847 

I X X 13 
7 o 23 

AJSOLUTE 
SHORT 

ADDRESSING 
RANGE 

1 

P MEMORY 
o 

$3204 X X X X X X 

$3200 $ A 5 B 4 C 6 

AFTER EXECUTION 

4 

A1 AO 
2423 0 

F 5 E 61xxxxxxi 
o 23 0 

$0040 
$003F 

$0003 

$0000 

X MEMORY 
23 0 
~ 

34F5E6 

Figure 6-11 Special Addressing - Absolute Short Address 
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EXAMPLE: MOVEPA1, X:«$FFFE 

BEFORE EXECUTION AFTER EXECUTION 

A2 A1 AO A2 A1 AO 

55 48 47 24 23 0 
I X X I 1 2 3 4 5 61 X X X X X X I 
7 023 023 0 

55 4847 2423 0 
I X X I 1 2 3 4 5 61 X X X X X X I 
7 023 023 0 

$FFFF 
$FFFE 

X MEMORY 
23 0 

OOFFFP 1 
1/0 SHORT 
ABSOLUTE 
ADDRESS 

SPACE 

$FFFF 
$FFFE 

$FFCO _____ 1 _____ $FFCO 

~ 

*Contents of Bus Control Register (X:$FFFE) After Reset 

Assembler Syntax: pp 
Operands Referenced: X:, Y Memories 
Additional Instruction Execution Time (Clocks): 0 
Additional Effective Address Words: 0 

X MEMORY 
23 0 

003456 

~ 

Figure 6-12 Special Addressing -I/O Short Address 

6.3.5.4 Addressing Modes Summary 
Table 6-1 is a summary of the addressing modes discussed in the previous paragraphs. 

6.4 INSTRUCTION GROUPS 
The instruction set is divided into the following groups: 

• Arithmetic • Logical 
• Bit Manipulation • Loop 
• Move • Program Control 

Each instruction group is described in the following paragraphs; detailed information on 
each instruction is given in APPENDIX A - INSTRUCTION SET DETAILS. 



Table 6-1 Addressing Modes Summary 

Addressing Mode 

Register Direct 
Data or Control Register 
Address Register 
Address Modifier Register 
Address Offset Register 

Address Register Indirect 
No Update 
Postincrement by 1 
Postdecrement by 1 
Postincrement by Offset Nn 
Postdecrement by Offset Nn 
Indexed by Offset Nn 
Predecrement by 1 

Special 
Immediate Data 
Absolute Address 
Immediate Short Data 
Short Jump Address 
Absolute Short Address 
I/O Short Address 
Implicit 

Where: MMMM = Address Modifier 
P = Program Reference 
S = Stack Reference 

Modifier 
MMMM 

No 
No 
No 
No 

No 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 

No 
No 
No 
No 
No 
No 
No 

C = Program Control Unit Register Reference 
D = Data ALU Register Reference 
A = AGU Register Reference 
X = X Memory Reference 
Y = Y Memory Reference 
L = L Memory Reference 

Operand Reference 

p S C D A X V 

X X 
X 
X 
X 

X X X 
X X X 
X X X 
X X X 
X X X 
X X X 
X X X 

X 
X X X 
X 
X 
X X X 

X X 
X X X 

L XV 

X X 
X X 
X X 
X X 
X 
X 
X -
X 

X 
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6.4.1 Arithmetic Instructions 
The arithmetic instructions, which perform all of the arithmetic operations within the data 
ALU, execute in one instruction cycle. These instructions may affect all of the CCR bits. 
Arithmetic instructions are register based (register direct addressing modes used for oper­
ands) so that the data ALU operation indicated by the instruction does not use the XDB, 
the YDB, or the global data bus (GDB). Optional data transfers may be specified with most 
arithmetic instructions, which allows for parallel data movement over the XDB and YDB 
or over the GDB during a data ALU operation. This parallel movement allows new data to 
be prefetched for use in subsequent instructions and allows results calculated in previous 
instructions to be stored. The following list contains the arithmetic instructions: 

ABS 
ADC 
ADD 
ADDL 
ADDR 
ASL 
ASR 
CLR 
CMP 
CMPM 
DEC* 
DIV* 
INC* 
MAC 
MACR 
MPY 
MPYR 
NEG 
NORM* 
RND 
SBC 
SUB 
SUBL 
SUBR 
Tcc* 
TFR 
TST 

Absolute Value 
Add Long with Carry 
Addition 
Shift Left and Add 
Shift Right and Add 
Arithmetic Shift Left 
Arithmetic Shift Right 
Clear an Operand 
Compare 
Compare Magnitude 
Decrement by One 
Divide Iteration 
Increment by One 
Signed Multiply-Accumulate ** 
Signed Multiply-Accumulate and Round** 
Signed Multiply** 
Signed Multiply and Round** 
Negate Accumulator 
Normalize 
Round 
Subtract Long with Carry 
Subtract 
Shift Left and Subtract 
Shift Right and Subtract 
Transfer Conditionally 
Transfer Data ALU Register 
Test an Operand 

*These instructions do not allow parallel data moves. 
**Certain applications of these instructions do not allow parallel data moves. 



6.4.2 Logicallnstructlons 
The logical instructions execute in one instruction cycle and perform all of the logical oper­
ations within the data ALU (except ANDI and ORI). They may affect all of the CCR bits 
and, like the arithmetic instructions, are register based. 

Logical instructions are the only instructions that allow apparent duplicate destinations, 
such as: 

AND XO,A X:(RO):AO 

A logical instruction uses only the MSP portion of the A and B registers (A 1 and B 1). 
Therefore, the instruction actually ignores what appears to be a duplicate destination and 
logically ANDs the value in the XO register with the bits in the A1 portion (bits 47-24) of the 
A accumulator. The parallel move shown above can simultaneously write to either of the 
other two portions of the A or the B accumulator without conflict. Avoid confusion by 
explicitly stating A1 or B1 in the original instruction. 

Optional data transfers may be specified with most logical instructions, allowing parallel 
data movement over the XDB and YDB or over the GOB during a data ALU operation. This 
parallel movement allows new data to be prefetched for use in subsequent instructions 
and allows results calculated in previous instructions to be stored. The following list 
includes the logical instructions: 

AND 
AND( 

EOR 
LSL 
LSR 
NOT 
OR 
OR( 
ROL 
ROR 

Logical AND 
AND Immediate to Control Register 
Logical Exclusive OR 
Logical Shift Left 
Logical Shift Right 
Logical Complement 
Logical Inclusive OR 
OR Immediate to Control Register 
Rotate Left 
Rotate Right 

*These instructions do not allow parallel data moves. 

-
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6.4.3 Bit Manipulation Instructions 
The bit manipulation instructions test the state of any single bit in a memory location or a 
register and then optionally set, clear, or invert the bit. The carry bit of the CCR will contain 
the result of the bit test. The following list defines the bit manipulation instructions: 

BClR 
BSET 
BCHG 
BTST 

Bit Test and Clear 
Bit Test and Set 
Bit Test and Change 
Bit Test on Memory and Registers 

6.4.4 Loop Instructions 
The hardware DO loop executes with no overhead cycles after the DO instruction itself 
has been executed- i.e., it runs as fast as straight-line code. Replacing straight-line code 
with DO loops can significantly reduce program memory. The loop instructions control 
hardware looping by 1) initiating a program loop and establishing looping parameters or 
by 2) restoring the registers by pulling the SS when terminating a loop. Initialization 
includes saving registers used by a program loop (lA and lC) on the SS so that program 
loops can be nested. The address of the first instruction in a program loop is also saved 
to allow no-overhead looping. The loop instructions are as follows: 

DO Start Hardware loop 
ENDDO Exit from Hardware loop 

Both static and dynamic loop counts are supported in the following forms: 

DO #xxx, Expr ; (Static) 
DO S,Expr ; (Dynamic) 

Expr is an assembler expression or absolute address, and S is a directly addressable reg­
ister such as XO. 

The operation of a DO loop is shown in Figure 6-13. When a program loop is initiated with 
the execution of a DO instruction, the following events occur: 

1. The stack is pushed. 
A. The SP is incremented. 
B. The current 16-bit lA and 16-bit lC registers are pushed onto the SS to 

allow nested loops. 
C. The lC register is initiated with the loop count value specified in the DO 

instruction. 



START OF LOOP 

1)SP+ 1 • SP; LA. SSH; LC • SSL; ttxxx. LC 
2)SP+ 1 • SP; PC. SSH; SR • SSL; Expr-1 • LA 
3)1. LF 

END OF LOOP 

1)SSL(LF). SR 
2)SP-1 • SP; SSH • LA; SSL. LC; SP-1 • SP 
3)PC + 1. PC 

NOTE: 
#xxx=Loop Count Number 
Expr=Expression 

Figure 6-13 Hardware DO Loop 

2. The stack is pushed again. 
A. The SP is incremented. 
B. The address of the first instruction in the program loop (PC) and the current 

SR contents are pushed onto the SS. 
C. The LA register is initialized with the value specified in the DO instruction 

decremented by one. 

3. The LF bit in the SR is set. The LF bit is set when a program loop is in 
progress and enables the end-of-Ioop detection. 

The program loop continues execution until the program address fetched equals the LA 
register contents (last address of program loop). The contents of the LC are then tested 
for one. If the LC is not one, it is decremented, and the top location in the stack RAM is 
read (but not pulled) into the PC to return to the start of the loop. If the LC is one, the pro­
gram loop is terminated by the following sequence: 

1. Reading the previous LF bit from the top location in the SS into the SR 

2. Purging the SS (pulling the top location and discarding the contents), pulling 
the LA and LC registers off the SS, and restoring the respective registers 

3. Incrementing the PC 

The LF bit (pulled from the SS when a loop is terminated) indicates if the terminated loop 
was a nested loop. Figure 6-14 shows two DO loops, one nested inside the other. If the 
stack is managed to prevent a stack overflow, DO loops can be stacked indefinitely. 

The ENDDO instruction is not used for normal termination of a DO loop; it is only used to 
terminate a DO loop before the LC has been decremented to one. 

-



DO ~n1,END1 

[

DO #n2,END2 

MOVE; A,X:(RO)+ 

END2 ADD A,B X:(R1)+,XO 
END1 

Figure 6-14 Nested DO Loops 

6.4.5 Move Instructions 
The move instructions perform data movement over the XDB and YDB or over the GOB. 
Move instructions only affect the CCR bits Sand L The S bit is affected if data growth is 
detected when the A or B registers are moved onto the bus. The L bit is affected if limiting 
is performed when reading a data ALU accumulator register. An address ALU instruction 
(LUA) is also included in the following move instructions. The MOVE instruction is the par­
allel move with a data ALU no-operation (NOP). 

LUA 
MOVE 
MOVEC 
MOVEM 
MOVEP 

Load Updated Address 
Move Data Register 
Move Control Register 
Move Program Memory 
Move Peripheral Data 

Note: Due to instruction pipelining, if an AGU register (Mn, Nn, or Rn) is directly changed 
with a MOVE-type instruction, the new contents may not be available for use until the sec­
ond following instruction. See the restrictions discussed in SECTION 7 - PROCESSING 
STATES on page 7-10. 

There are nine classifications of parallel data moves between registers and memory. Fig­
ure 6-15 shows seven parallel moves. The source of the data to be moved and the 
destination are separated by a comma. 

Examples of the other two classifications, XYand long (L) moves, are shown in Figure 6-
16. Example A illustrates the following steps: 1) register XO is added to register A and the 
result is placed in register A; 2) register XO is moved to the X memory register location 
pointed to by R3, and R3 is incremented; and 3) the contents of the Y memory location 
pointed to by R7 is moved to the B register, and R7 is decremented. 

Example B depicts the following sequence: 1) register XO is added to register A and the 
result is placed in register A; and 2) registers A and B are moved, respectively, to the loca­
tions in memories X and Y pointed to by R2, and then R2 is incremented by N2. The 



OPCODE/OPERANDS PARALLEL MOVE EXAMPLES 

IMMEDIATE SHORT DATA 
ADDRESS REGISTER UPDATE 
REGISTER TO REGISTER 
X MEMORY 
X MEMORY PLUS REGISTER 
Y MEMORY 
Y MEMORY PLUS REGISTER 

IADD 

ADD 
ADD 
ADD 
ADD 
ADD 
ADD 

XO,A 
XO,A 
XO,A 
XO,A 
XO,A 
XO,A 
XO,A 

I 

NOTE: Parallel Move Syntax-Source(Src), Destination(Dst) 

I 
#$05,Y1 
(RO)+NO 
A1,YO 
XO,X:(R3)+ 
X:(R4)-,X1 A,VO 
V:(R6)+N6,XO 
A,XO B,V:(RO) 

Figure 6-15 Classifications of Parallel Data Moves 

contents of the 56-bit registers A and B were rounded to 24 bits before moving to the 24-
bit memory registers. 

The DSP offers parallel processing of the data ALU, AGU, and program control unit. For 
the instruction word above, the DSP will perform the designated operation (data ALU), the 
data transfers specified with address register updates (AGU), and will decode the next 
instruction and fetch an instruction from program memory (program control unit) all in one 
instruction cycle. When an instruction is more than one word in length, an additional 
instruction execution cycle is required. Most instructions involving the data ALU are reg­
ister based (all operands are in data ALU registers), thereby allowing the programmer to 
keep each parallel processing unit busy. An instruction that is memory oriented (such as 
a bit manipulation instruction) or that causes a control-flow change (such as a JMP) pre­
vents the use of parallel processing resources during its execution. 

6.4.6 Program Control Instructions 
The program control instructions include jumps, conditional jumps, and other instructions 
affecting the PC and SS. Program control instructions may affect the CCR bits as speci­
fied in the instruction. Optional data transfers over the XDB and YDB may be specified in 
some of the program control instructions. The following list contains the program control 
instructions: 

DEBUG 
DEBUGcc 
III 
Jcc 
JMP 

Enter Debug Mode 
Enter Debug Mode Conditionally 
Illegal Instruction 
Jump Conditionally 
Jump 

-
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JCLR 
JSET 
JScc 
JSR 
JSCLR 
JSSET 
NOP 
REP 
RESET 
RTI 
RTS 
STOP 
SWI 
WAIT 

Jump if Bit Clear 
Jump if Bit Set 
Jump to Subroutine Conditionally 
Jump to Subroutine 
Jump to Subroutine if Bit Clear 
Jump to Subroutine if Bit Set 
No Operation 
Repeat Next Instruction 
Reset On-Chip Peripheral Devices 
Return from Interrupt 
Return from Subroutine 
Stop Processing (Low-Power Standby) 
Software Interrupt 
Wait for Interrupt (Low-Power Standby) 

Example A 

XY MEMORY MOVE ADD XO,A XO,X:(R3)+ Y:(R7)-,B 

R 1-----. B2 SIGN EXTENDED 
1---1 ------l BO CLEARED 

X MEMORY Y MEMORY 

xo B1 

Example B 

LONG MEMORY MOVE ADD XO,A AB,L:(R2)+N2 

X MEMORY Y MEMORY 

A1 AO I B2\ B1 \ BO \ 

A,B ARE SHIFTED AND LIMITED 

Figure 6-16 Parallel Move Examples 



SECTION 7 
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7.1 PROCESSING STATES 
The DSP56K processor is always in one of five processing states: normal, exception, 
reset, wait, or stop. This section describes each of the processing states. 

7.2 NORMAL PROCESSING STATE 
The normal processing state is associated with instruction execution. Details about nor­
mal processing of the individual instructions can be found in APPENDIX A - INSTRUC­
TION SET DETAILS. Instructions are executed using a three-stage pipeline, which is 
described in the following paragraphs. 

7.2.1 Instruction Pipeline 
DSP56K instruction execution occurs in a three-stage pipeline, which allows most 
instructions to execute at a rate of one instruction per instruction cycle. However, certain 
instructions require additional time to execute: instructions longer than one word, instruc­
tions using an addressing mode that requires more than one cycle, and instructions that 
cause a control-flow change. In the latter case, a cycle is needed to clear the pipeline. 

Pipelining allows instruction executions to overlap so that the fetch-decode-execute 
operations of a given instruction occur concurrently with the fetch-decode-execute oper­
ations of other instructions. Specifically, while the processor is executing one instruction, 
it is decoding the next instruction, and fetching the next instruction from program mem­
ory. The processor fetches only one word per cycle, so if an instruction is two words in 
length, it fetches the additional word before it fetches the next instruction. 

Table 7-1 demonstrates pipelining. F1, D1, and E1 refer to the fetch, decode, and exe­
cute operations, respectively, of the first instruction. The third instruction, which contains 
an instruction extension word, takes two instruction cycles to execute. The extension 
word will be either an absolute address or immediate data. Although it takes three 
instruction cycles for the pipeline to fill and the first instruction to execute, an instruction 
usually executes on each instruction cycle thereafter. 

Table 7-1 Instruction Pipelining 

Instruction Cycle 
Operation 

1 2 3 4 5 6 7 . · 
Fetch F1 F2 F3 F3e F4 FS F6 . · 
Oecode 01 02 03 03e 04 05 . · 
Execute E1 E2 E3 E3e E4 . · 
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Each instruction requires a minimum of three instruction cycles (12 clock phases) to be 
fetched, decoded, and executed. This means that there is a delay of three instruction 
cycles on powerup to fill the pipe. A new instruction may begin immediately following the 
previous instruction. Two-word instructions require a minimum of four instruction cycles 
to execute (three cycles for the first instruction word to move through the pipe and exe­
cute and one more cycle for the second word to execute). A new instruction may start 
after two instruction cycles. 

The pipeline is normally transparent to the user. However, there are certain instruction­
sequence dependent situations where the pipeline will affect the program execution. 
Such situations are best described by case studies. Most of these restricted sequences 
occur because 1) all addresses are formed during instruction decode, or 2) they are the 
result of contention for an internal resource such as the status register (SR). If the execu­
tion of an instruction depends on the relative location of the instruction in a sequence of 
instructions, there is a pipeline effect. To test for a suspected pipeline effect, compare 
between the execution of the suspect instruction 1) when it directly follows the previous 
instruction and 2) when four NOPs are inserted between the two. If there is a difference, 
it is caused by a pipeline effect. The DSP56K assembler flags instruction sequences with 
potential pipeline effects so that the user can determine if the operation will execute as 
expected. 

Case 1: The following two examples show similar code sequences. 

1. No pipeline effect: 
ORI #xx,CCR 
Jcc xxxx 

;Changes eeR at the end of execution time slot 
;Reads condition codes in SR in its execution time slot 

The Jcc will test the bits modified by the ORI without any pipeline effect in the code seg­
ment above. 

2. Instruction that started execution during decode: 
ORI #04,OMR ;Sets DE bit at execution time slot 
MOVE x:$100,a ;Reads external RAM instead of internal ROM 

A pipeline effect occurs in example 2 because the address of the MOVE is formed at its 
decode time before the ORI changes the DE bit (which changes the memory map) in the 
ORI's execution time slot. The following code produces the expected results of reading 
the internal ROM: 

ORI #04,OMR 
NOP 
MOVE x:$1 OO,a 

;Sets DE bit at execution time slot 
;Delays the MOVE so it will read the updated memory map 
;Reads internal ROM 



Case 2: One of the more common sequences where pipeline effects are apparent is as 
follows: 

MOVE #xx,Rn 
MOVE X:(Rn),A 

;Move a number into register Rn (n=0-7). 

;Use the new contents of Rn to address memory. 

In this case, before the first MOVE instruction has written Rn during its execution cycle, 
the second MOVE has accessed the old Rn, using the old contents of Rn. This is 
because the address for indirect moves is formed during the decode cycle. This overlap­
ping instruction execution in the pipeline causes the pipeline effect. One instruction cycle 
should be allowed after an address register has been written by a MOVE instruction 
before the new contents are available for use as an address register by another MOVE 
instruction. The proper instruction sequence is as follows: 

MOVEXO,Rn 
NOP 

MOVE X:(Rn),A 

;Move a number into register Rn. 

;Execute any instruction or instruction 
;sequence not using Rn. 

Use the new contents of Rn. 

Case 3: A situation related to Case 2 can be seen in the boot ROM code shown in AP­
PENDIX A of the DSP56001 Technical Data Sheet. At the end of the bootstrap operation, 
the operation mode register (OMR) is changed to mode #2, and then the program that was 
loaded is executed. This process is accomplished in the last three instructions: 

- BOOTEND MOVEC #2,OMR ;Set the operating mode to 2 
;(and trigger an exit from 
;bootstrap mode). 

ANDI #$O,CCR ;Clear SR as if RESET and 
;introduce delay needed for 
;Op. Mode change. 

JMP <$0 ;Start fetching from PRAM, P:$OOOO 

The JMP instruction generates its jump address during its decode cycle. If the JMP 
instruction followed the MOVEC, the MOVEC instruction would not have changed the 
OMR before the JMP instruction formed the fetch address. As a result, the jump would 
fetch the instruction at P:$OOOO of the bootstrap ROM (MOVE #$FFE9,R2). The OMR 
would then change due to the MOVEC instruction, and the next instruction would be the 

-
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second instruction of the downloaded code at P:$0001 of the internal RAM. However, the 
ANDI instruction allows the OMR to be changed before the JMP instruction uses it, and 
the JMP fetches P:$OOOO of the internal RAM. 

Case 4: An interrupt has two additional control cycles that are executed in the interrupt 
controller concurrently with the fetch, decode, and execute cycles (see Section 7.3 and 
Figure 7-4). During these two control cycles, the interrupt is arbitrated by comparing the 
interrupt mask level with the interrupt priority level (IPL) of the interrupt and allowing or 
disallowing the interrupt. Therefore, if the interrupt mask is changed after an interrupt is 
arbitrated and accepted as pending but before the interrupt is executed, the interrupt will 
be executed, regardless of what the mask was changed to. The following examples show 
that the old interrupt mask is in effect for up to four additional instruction cycles after the 
interrupt mask is changed. All instructions shown in the examples here are one-word in­
structions; however, one two-word instruction can replace two one-word instructions 
except where noted. 

1. Program flow with no interrupts after interrupts are disabled: 

ORI #03,MR 
INST 1 
INST2 
INST3 
INST4 

;Disable interrupts 

2. The four possible variations in program flow that may occur after interrupts are 
disabled: 

ORI #03,MR ORI #03,MR ORI #03,MR ORI #03,MR 
II (See Note 2) INST 1 INST1 INST 1 
11+1 II INST2 INST2 
INST 1 11+1 II INST3 (See Note 1) 
INST2 INST2 11+ 1 II 
INST3 INST3 INST3 11+1 
INST4 INST4 INST4 INST4 



Note 1: INST 3 may be executed at that point only if the preceding instruction (INST 2) 
was a single-word instruction. 

Note 2: 1I=lnterrupt instruction from maskable interrupt. 

The following program flow will not occur because the new interrupt mask level becomes 
effective after a pipeline latency of four instruction cycles: 

ORI #03,MR 
INST 1 
INST2 
INST3 
INST4 
II 
11+ 1 

;Disable interrupts. 

;Interrupts disabled. 
;Interrupts disabled. 

1. Program flow without interrupts after interrupts are re-enabled: 

ANDI #OO,MR 
INST 1 
INST2 
INST3 
INST4 

;Enable interrupts 

2. Program flow with interrupts after interrupts are re-enabled: 

ANDI #OO,MR 
INST 1 
INST2 
INST3 
INST4 
II 
11+ 1 

;Enable interrupts 
;Uninterruptable 
;Uninterruptable 
;11 fetched 
;11+ 1 fetched 

-
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The DO instruction is another instruction that begins execution during the decode cycle 
of the pipeline. As a result, there are a number of restrictions concerning access conten­
tion with the program controller registers accessed by the DO instruction. The ENDDO 
instruction has similar restrictions. APPENDIX A - INSTRUCTION SET DETAILS con­
tains additional information on the DO and ENDDO instruction restrictions. 

Case 5: A resource contention problem can occur when one instruction is using a register 
during its decode while the instruction executing is accessing the same resource. One ex­
ample of this is as follows: 

MOVEC 
DO 

X:$100,SSH 
#$10,END 

The problem occurs because the MOVEC instruction loads the contents of X:$100 into 
the system stack high (SSH) during its execution cycle. The DO instruction that follows 
pushes the stack (LA -7 SSH, LC -7 SSL) during its decode cycle. Therefore, the two 
instructions try writing to the SSH simultaneously and conflict. 

7.2.2 Summary of Pipeline-Related Restrictions 
The following paragraphs give a summary of the instruction sequences that cause pipe­
line effects. Additional information about the individual instructions can be found in 
APPENDIX A - INSTRUCTION SET DETAILS. 

DO Instruction restrictions: 

The DO instruction must not be immediately preceded by any of the following instruc­
tions: 

BCHG/BCLRlBSET LA, LC, SSH, SSL, or SP 
MOVEC/MOVEM to LA, LC, SSH, SSL, or SP 
MOVEC/MOVEM from SSH 

The DO instruction cannot specify SSH as a source register, as in the following example: 

DO SSH,xxxx 

Restrictions near the end of DO loops: 

Proper DO loop operation is guaranteed if no instruction starting at address LA-2, LA-1, 
or LA specifies the program controller registers SR, SP, SSL, LA, LC, or (implicitly) PC 
as a destination register, or specifies SSH as a source or a destination register. 



The restricted instructions at LA-2, LA-1, and LA are as follows: 

DO 
BCHG/BCLRlBSET LA, LC, SR, SP, SSH, or SSL 
BTST SSH 
JCLRlJSET/JSCLRlJSSET SSH 
MOVEC/MOVEM/MOVEP from SSH 
MOVEC/MOVEM/MOVEP to LA, LC, SR, SP, SSH, or SSL 
ANDI/ORI MR 

The restricted instructions at LA include the following: 

Any two-word instruction 
Jcc, JMP, JScc, JSR, 
REP, RESET, RTI, RTS, STOP, WAIT 

Another restriction is shown below: 

JSRlJScc/JSCLRlJSSET to LA, if loop flag is set 

ENDDO instruction restrictions: 

The ENDDO instruction must not be immediately preceded by any of the following 
instructions: 

BCHG/BCLRlBSET LA, LC, SR, SSH, SSL, or SP 
MOVEC/MOVEM to LA, LC, SR, SSH, SSL, or SP 
MOVEC/MOVEM from SSH 
ANDI/ORI MR 

RTI and RTS instruction restrictions: 

The RTI instruction must not be immediately preceded by any of the following instruc­
tions: 

BCHG/BCLRlBSET SR, SSH, SSL, or SP 
MOVEC/MOVEM to SR, SSH, SSL, or SP 
MOVEC/MOVEM from SSH 
ANDI MR, ANDI CCR 
ORI MR, ORI CCR 

The RTS instruction must not be immediately preceded by any of the following instruc­
tions: 

BCHG/BCLRlBSET SSH, SSL, or SP 
MOVEC/MOVEM to SSH, SSL, or SP 
MOVEC/MOVEM from SSH 

-
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SP and SSH/SSL register manipulation restrictions: 

In addition to all the above restrictions concerning SP, SSH, and SSL, the following 
instruction sequences are illegal: 

'1. BCHG/BCLRlBSET SP 
2. MOVEC/MOVEM/MOVEP from SSH or SSL 

and 
1. MOVEC/MOVEM to SP 
2. MOVEC/MOVEM/MOVEP from SSH or SSL 

and 
1. MOVEC/MOVEM to SP 
2. JCLRlJSET/JSCLRlJSSET SSH or SSL 

and 
1. BCHG/BCLRlBSET SP 
2. JCLRlJSET/JSCLRlJSSET SSH or SSL 

Also, the instruction MOVEC SSH,SSH is illegal. 

Rn, Nn, and Mn register restrictions: 

Due to pipelining, if an address register Rn is the destination of a MOVE-type instruction 
except MOVEP (MOVE, MOVEC, MOVEM, LUA, Tcc) , the new contents will not be 
available for use as an address pointer until the second following instruction cycle. 

Likewise, if an offset register Nn or a modifier register Mn is the destination of a MOVE­
type instruction except MOVEP, the new contents will not be available for use in address 
calculations until the second following instruction cycle. 

However, if the processor is in the No Update addressing mode (where Mn and Nn are 
ignored) and register Mn or Nn is the destination of a MOVE instruction, the next instruc­
tion may use the corresponding Rn register as an address pointer. Also, if the processor 
is in the Postincrement by 1, Postdecrement by 1, or Predecrement by 1 addressing 
mode (where Nn is ignored), a MOVE to Nn may be immediately followed by an instruc­
tion that uses Rn as an address pointer. 

Fast interrupt routines: 

SWI, STOP, and WAIT may not be used in a fast interrupt routine. (Fast interrupts are 
described in Section 7.3.1.) 

7.3 EXCEPTION PROCESSING STATE (INTERRUPT PROCESSING) 
The exception processing state is associated with interrupts that can be generated by 
conditions inside the DSP or from external sources. In digital signal processing, one of 



the main uses of interrupts is to transfer data between OSP memory or registers and a 
peripheral device. When such an interrupt occurs, a limited context switch with minimal 
overhead is ideal. A fast interrupt accomplishes a limited context switch. The processor 
relies on a long interrupt when it must accomplish a more complex task to service the 
interrupt. Fast interrupts and long interrupts are described in more detail in Section 
7.3.1. 

There are many sources for interrupts on the OSP56K family of chips, and some of these 
sources can generate more than one interrupt. The OSP56K family of processors fea­
tures a prioritized interrupt vector scheme with 32 vectors to provide fast interrupt ser­
vice. The interrupt priority structure is discussed in Section 7.3.2. The following list 
outlines how the OSP56K processes interrupts: 

1. A hardware interrupt is synchronized with the OSP clock, and the interrupt 
pending flag for that particular hardware interrupt is set. An interrupt source 
can have only one interrupt pending at any given time. 

2. All pending interrupts (external and internal) are arbitrated to select which 
interrupt will be processed. The arbiter automatically ignores any interrupts 
with an IPL lower than the interrupt mask level in the SR and selects the 
remaining interrupt with the highest IPL. 

3. The interrupt controller then freezes the program counter (PC) and fetches two 
instructions at the two interrupt vector addresses associated with the selected 
interrupt. 

. 4. The interrupt controller jams the two instructions into the instruction stream 
and releases the PC, which is used for the next instruction fetch. The next 
interrupt arbitration then begins. 

If neither instruction is a change of program-flow instruction (Le., a JSR), the state of the 
machine is not saved on the stack, and a fast interrupt is executed. A long interrupt 
occurs if one of the interrupt instructions fetched is a JSR instruction. The PC is immedi­
ately released, the SR and the PC are saved in the stack, and the jump instruction con­
trols where the next instruction shall be fetched. While either an unconditional jump or a 
conditional jump can be used to form a long interrupt, they do not store the PC on the 
stack. Therefore, there is no return path. ./ 

Activities 2 and 3 listed above require two additional control cycles, which effectively 
make the Interrupt pipeline five levels deep. 

-
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7.3.1 Interrupt Types 
The DSP56K relies on two types of interrupt routines: fast and long. The fast interrupt 
fetches only two words and then automatically resumes execution of the main program; 
whereas, the long interrupt must be told to return to the main program by executing an 
RTI instruction. The fast routine consists of two automatically inserted interrupt instruc­
tion words. These words can contain any unrestricted, single two-word instruction or any 
two one-word instructions (see Section A.9 in APPENDIX A - INSTRUCTION SET 
DETAILS for a list of restrictions). Fast interrupt routines are never interruptible. 

CAUTION 
Status is not preserved during a fast interrupt routine; therefore, instructions 
that modify status should not be used at the interrupt starting address and 
interrupt starting address + 1. 

If one of the instructions in the fast routine is a JSR, then a long interrupt routine is 
formed. The following actions occur during execution of the JSR instruction when it 
occurs in the interrupt starting address or in the interrupt starting address +1: 

1. The PC (containing the return address) and the SR are stacked. 

2. The loop flag is reset. 

3. The scaling mode bits are reset. 

4. The IPL is raised to disallow further interrupts at the same or lower levels 
(except that hardware RESET, NMI, stack error, trace, and SWI can always 
interrupt). 

5. The trace bit in the SR is cleared (in the DSP56000/56001 only). 

The long interrupt routine should be terminated by an RTI. Long interrupt routines are 
interruptible by higher priority interrupts. Figure 7-1 shows examples of fast and long 
interrupts. 

7.3.2 Interrupt Priority Structure 
Interrupts are organized in a flexible priority structure. Each interrupt has an associated 
interrupt priority level (IPL) that can range from zero to three. Levels 0 (lowest level), 1, 
and 2 are maskable. Level 3 is the highest IPL and is not maskable. The only IPL 3 inter­
rupts are RESET, illegal instruction interrupt (III), nonmaskable interrupt (NMI), stack 
error, trace, and software interrupt (SWI). The interrupt mask bits (11, 10) in the SR reflect 
the current priority level and indicate the IPL needed for an interrupt source to interrupt 
the processor (see Table 7-2). Interrupts are inhibited for all priority levels below the cur-
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Table 7-2 Status Register Interrupt Mask Bits 

11 10 Exceptions Permitted Exceptions Masked 

0 0 IPLO, 1,2,3 None 

0 1 IPL 1, 2, 3 IPL 0 

1 0 IPL2,3 IPL 0,1 

1 1 IPL 3 IPL 0, 1,2 

rent processor priority level. However, level 3 interrupts are not maskable and therefore 
can always interrupt the processor. DSP56K Family central processor interrupt sources 
and their IPLs are listed in Table 7-6. For information on on-chip peripheral interrupt pri­
ority levels, see the individual DSP56K family member's User's Manual. 

7.3.2.1 Interrupt Priority Levels 
The IPL for each on-chip peripheral device (HI, SSI, SCI) and for each external interrupt 
source (IRQA, IRQ8) can be programmed to one of the three maskable priority levels 
(IPL 0, 1, or 2) under software control. IPLs are set by writing to the interrupt priority reg­
ister shown in Figure 7-2. This read/write register is located in program memory at 
address $FFFF. It specifies the IPL for each of the interrupting devices including IRQA, 
IRQ8 and each peripheral device. (For specific peripheral information, see the specific 
DSP56K family member's User's Manual.) In addition, it specifies the trigger mode of the 
external interrupt sources and is used to enable or disable the individual external inter~ 
rupts. The interrupt priority register is cleared on RESET or by the reset instruction. 
Table 7-3 defines the IPL bits. Table 7-4 defines the external interrupt trigger mode bits. 

23 ........................................................ 1 0 9 8 7 6 5 4 3 2 0 

'---'----'--- IRQA MODE 
~~--~------------IRQBMODE 

~--'-__ -L...---' __________ RESERVED FOR EXPANSION 
'--_________ ....1...-_____________ RESERVED FOR PERIPHERAL IPL LEVELS 

Bits 6 to 9 are reserved, read as zero and should be written with zero for future compatibility. 

Figure 7-2 Interrupt Priority Register (Addr X:$FFFF) 



Table 7-3 Interrupt Priority Level Bits Table 7-4 External Interrupt 

xxL1 xxLO Enabled IPL IxL2 Trigger Mode 

0 0 No - 0 Level 

0 1 Yes 0 1 Negative Edge 

1 0 Yes 1 

1 1 Yes 2 

7.3.2.2 Exception Priorities Within an IPL 
If more than one interrupt is pending when an instruction is executed, the processor will 
service the interrupt with the highest priority level first. When multiple interrupt requests 
with the same IPL are pending, a second fixed-priority structure within that IPL deter­
mines which interrupt the processor will service. The fixed priority of interrupts within an 
IPL and the interrupt enable bits for all interrupts are shown in Table 7-5. 

Table 7-5 Central Processor Interrupt Priorities Within an IPL 

Priority Exception Enabled By Bit No. 
X Data 

Memory 
Address 

Level 3 (Nonmaskable) 

Highest Hardware RESET - - -

III - - -

NMI - - -

Stack Error - - -

Trace - - -

Lowest SWI - - -

Levels 0, 1,2 (Maskable) 

Higher IROA (External Interrupt) IROA Mode Bits o and 1 $FFFF 

Lower IROB (External Interrupt) IROB Mode Bits 3 and 4 $FFFF 
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7.3.3 Interrupt Sources 
Interrupts can originate from any of the vector addresses listed in Table 7-6, which 
shows the corresponding interrupt starting address for each interrupt source. These 
addresses are located in the first 64 locations of program memory. 

Table 7-6 Interrupt Sources 

Interrupt IPL Interrupt Source Starting Address 

$0000 3 Hardware RESET 

$0002 3 Stack Error 

$0004 3 Trace 

$0006 3 SWI 

$0008 0-2 IROA 

$OOOA 0-2 IROB 

: : Vectors available for peripherals 

$001E 3 NMI 

: : Vectors available for peripherals 

$003E 3 Illegal Instruction 

When an interrupt occurs, the instruction at the interrupt starting address is fetched first. 
Because the program flow is directed to a different starting address for each interrupt, 
the interrupt structure of the DSP56K can be described as "vectored". A vectored inter­
rupt structure has low execution overhead. If it is known beforehand that certain inter­
rupts will not be used, those interrupt vector locations can be used for program or data 
storage. 

7.3.3.1 Hardware Interrupt Sources 
There are two types of hardware interrupts in the DSP56K: internal and external. The 
internal interrupt sources include all of the on-chip peripheral devices. For further infor­
mation on a device's internal interrupt sources, see the device's individual User's Man­
ual. 

The external hardware interrupt sources are the RESET, NMI, IROA, and IROB pins on 
the program interrupt controller in the Program Control Unit. 

The level sensitive RESET interrupt is the highest priority interrupt with an IPL of 3. IROA 
and IROB can be programmed to one of three priority levels: 0, 1, or 2 - all of which are 
maskable. IROA and IROB have independent enable control and can be programmed to 
be level sensitive or edge sensitive. Since level-sensitive interrupts will not be cleared 



automatically when they are serviced, they must be cleared by other means to prevent 
multiple interrupts. Edge-sensitive interrupts are latched as pending on the high-to-Iow 
transition of the interrupt input and are automatically cleared when the interrupt is ser­
viced. 

When either the IROA or IROB pin is disabled in the interrupt priority register, the inter­
rupt request coming in on the pin will be ignored, regardless of whether the input was 
defined as level sensitive or edge sensitive. If the interrupt input is defined as edge sen­
sitive, its edge-detection latch will remain in the reset state for as long as the'interrupt pin 
is disabled. If the interrupt is defined as level-sensitive, its edge-detection latch will stay 
in the reset state. If the level-sensitive interrupt is disabled while it is pending it will be 
cancelled. However, if the interrupt has been fetched, it normally will not be cancelled. 

The processor begins interrupt service by fetching the instruction word in the first vector 
location. The interrupt is considered finished when the processor fetches the instruction 
word in the second vector location. 

In an edge-triggered interrupt, the internal latch is automatically cleared when the second 
vector location is fetched. The fetch of the first vector location does not guarantee that 
the second location will be fetched. Figure 7-3 illustrates the one case where the second 
vector location is not fetched. The SWI instruction in the figure discards the fetch of the 
first interrupt vector to ensure that the SWI vectors will be fetched. Instruction n4 is 
decoded as an SWI while ii1 is being fetched. Execution of the SWI requires that ii1 be 
discarded and the two SWI vectors (ii3 and ii4) be fetched instead. 

CAUTION 
On all level-sensitive interrupts, the interrupt must be externally released be­
fore interrupts are internally re-enabled. Otherwise, the processor will be in­
terrupted repeatedly until the release of the level-sensitive interrupt occurs. 

The edge sensitive NMI is a priority 3 interrupt and cannot be masked. Only RESET and 
illegal instruction have higher priority than NMI. 

7.3.3.2 Software Interrupt Sources 
There are two software interrupt sources - software interrupt (SWI) and illegal instruc­
tion interrupt (III). 

SWI is a nonmaskable interrupt (IPL 3), which is serviced immediately following the SWI 
instruction execution, usually using a long interrupt service routine. The difference 
between an SWI and a JSR instruction is that the SWI sets the interrupt mask to prevent 
interrupts below IPL 3 from being serviced. The SWI's ability to mask out lower level 
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interrupts makes it very useful for setting breakpoints in monitor programs. The JSR 
instruction does not affect the interrupt mask. 

The III is also a nonmaskable interrupt (IPL 3). It is serviced immediately following the 
execution or the attempted execution of an illegal instruction (any undefined operation 
code). Ills are fatal errors. Only a long interrupt routine should be used for the III routine. 
RTI or RTS should not be used at the end of the interrupt routine because, during the III 
service, the JSR located in the III' vector will normally stack the address of the illegal 
instruction (see Figure 7-4). Returning from the interrupt routine would cause the proces­
sor to attempt to execute the illegal interrupt again and cause an infinite loop which can 
only be broken by cycling power. This long interrupt (see Figure 7-4) can be used as a 
diagnostic tool to allow the programmer to examine the stack (MOVE SSH, dest) and 
locate the illegal instruction, or the application program can be restarted with the hope 
that the failure was a soft error. The illegal instruction is useful for triggering the illegal 
interrupt service routine to see if the III routine can recover from illegal instructions. 
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There are two cases in which the stacked address will not point to the illegal instruction: 

1. If the illegal instruction is one of the two instructions at an interrupt vector loca­
tion and is fetched during a regular interrupt service, the processor will stack 
the address of the next sequential instruction in the normal instruction flow (the 
regular return address of the interrupt routine that had the illegal opcode in its 
vector). 

2. If the illegal instruction follows an REP instruction (see Figure 7-6), the proces­
sor will effectively execute the illegal instruction as a repeated NOP and the 
interrupt vector will then be inserted in the pipeline. The next instruction will be 
fetched but will not be decoded or executed. The processor will stack the 
address of the next sequential instruction, which is two instructions after the 
illegal instruction. 

In DO loops, if the illegal instruction is in the loop address (LA) location and the instruc­
tion preceding it (Le., at LA-1) is being interrupted, the loop counter (LC) will be decre­
mented as if the loop had reached the LA instruction. When the interrupt service ends 
and the instruction flow returns to the lOOp, the illegal instruction will be refetched (since it 
is the next sequential instruction in the flow). The loop state machine will again decre­
ment LC because the LA instruction is being executed. At this point, the illegal instruction 
will trigger the III. The result is that the loop state machine decrements LC twice in one 
loop due to the presence of the illegal opcode at the LA location. 



7.3.3.3 Other Interrupt Sources 
Other interrupt sources include the stack error interrupt and trace interrupt (DSP560001 
56001) which are IPL3 interrupts. 

An overflow or underflow of the system stack (SS) causes a stack error interrupt which is 
vectored to P:$0002 (see SECTION 5 - PROGRAM CONTROL UNIT for additional infor­
mation on the stack error flag). Since the stack error is nonrecoverable, a long interrupt 
should be used to service it. The service routine should not end in an RTI because exe­
cuting an RTI instruction "pops" the stack, which has been corrupted. 

The DSP56000/56001 includes a facility for instruction-by-instruction tracing as a pro­
gram development aid. This trace mode generates a trace exception after each instruc­
tion executed (see Figure 7-7), which can be used by a debugger program to monitor the 
execution of a program. (With members of the DSP56K family other than DSP560001 
56001, use the OnCE trace mode described in 10.5.) 

The trace bit in the SR defines the trace mode. In the trace mode, the processor will gen­
erate a trace exception after it executes each instruction. When the processor is servic­
ing the trace exception, it expects to encounter a JSR in the trace vector locations, 
thereby forming a long interrupt routine. The JSR stacks the SR and clears the trace bit 
to prevent tracing while executing the trace exception service routine. This service rou­
tine should end with an RTI instruction, which restores the SR (with the trace bit set) from 
the SS, and causes the next instruction to be traced. The pipeline must be flushed to 
allow each sequential instruction to be traced. The tracing facility appends three instruc­
tion cycles to the end of each instruction traced (see the three NOP instructions shown in 
Figure 7-7) to flush the pipeline and allow the next trace interrupt to follow the next 
sequential interrupt. 

During tracing, the processor considers the REP instruction and the instruction being 
repeated as a single two-word instruction. That is, only after executing the REP instruc­
tion and all of the repeats of the next instruction will the trace exception be generated. 

Fast interrupts can not be traced because they are uninterruptable. Long interrupts will 
not be traced unless the processor enters the trace mode in the subroutine because the 
SR is pushed on the stack and the trace bit is cleared. Tracing is resumed upon returning 
from a long interrupt because the trace bit is restored when the SR is restored. Interrupts 
are not likely to occur during tracing because only an interrupt with a higher IPL can inter­
rupt during a trace operation. While executing the program being traced, the trace inter­
rupt will always be pending and will win the interrupt arbitration. During the trace 
interrupt, the interrupt mask is set to reject interrupts below IPL3. 
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7.3.4 Interrupt Arbitration 
Interrupt arbitration and control, which occurs concurrently with the fetch-decode-exe­
cute cycle, takes two instruction cycles. External interrupts are internally synchronized 
with the processor clock before their interrupt-pending flags are set. Each external and 
internal interrupt has its own flag. After each instruction is executed, the DSP arbitrates 
all interrupts. During arbitration, each interrupt's IPL is compared with the interrupt mask 
in the SR, and the interrupt is either allowed or disallowed. The remaining interrupts are 
prioritized according to the IPLs shown in Table 7-5, and the highest priority interrupt is 
chosen. The interrupt vector is then calculated so that the program interrupt controller 
can fetch the first interrupt instruction. 

Interrupts from a given source are not buffered. The processor won't arbitrate a new 
interrupt from the same source until after it fetches the second interrupt vector of the cur­
rent interrupt. 

The internal interrupt acknowledge signal clears the edge-triggered interrupt flags and 
the internal latches of the NMI, SWI, and trace interrupts. The stack error bit in the stack 
pointer register is "sticky" and requires a "MOVE" or a bit clear operation directly on the 
stack pointer register. Some peripheral interrupts may also be cleared by the internal 
interrupt acknowledge signal, as defined in their specifications. Peripheral interrupt 
requests that need a read/write action to some register do not receive the internal inter­
rupt acknowledge signal, and they will remain pending until their registers are read/writ­
ten. Further, level-triggered interrupts will not be cleared. The acknowledge signal will be 
generated after the interrupt vectors have been generated, not before. 

7.3.5 Interrupt Instruction Fetch 
The interrupt controller generates an interrupt instruction fetch address, which points to 
the first instruction word of a two-word interrupt routine. This address is used for the next 
instruction fetch, instead of the contents of the PC, and the interrupt instruction fetch 
address +1 is used for the subsequent instruction fetch. While the interrupt instructions 
are being fetched, the PC cannot be updated. After the two interrupt words have been 
fetched, the PC is used for any subsequent instruction fetches. 

After both interrupt vectors have been fetched, they are guaranteed to be executed. This 
is true even if the instruction that is currently being executed is a change-of-flow instruc­
tion (i.e., JMP, JSR, etc.) that would normally ignore the instructions in the pipe. After the 
interrupt instruction fetch, the PC will point to the instruction that would have been 
fetched if the interrupt instructions had not been inserted. 



7.3.6 . Instructions Preceding the Interrupt Instruction Fetch 
The following one-word instructions are aborted when they are fetched in the cycle pre­
ceding the fetch of the first interrupt instruction word- REP, STOP, WAIT, RESET, RTI, 
RTS, Jcc, JMP, JScc, and JSR. 

Two-word instructions are aborted when the first interrupt instruction word fetched will 
replace the fetch of the second word of the two-word instruction. Aborted instructions are 
refetched when program control returns from the interrupt routine. The PC is adjusted 
appropriately before the end of the decode cycle of the aborted instruction. 

If the first interrupt word fetch occurs in the cycle following the fetch of a one-word 
instruction not previously listed or the second word of a two-word instruction, that instruc­
tion will complete normally before the start of the interrupt routine. 

The following cases have been identified where service of an interrupt might encounter 
an extra delay: 

1. If a long interrupt routine is used to service an SWI, then the processor priority 
level is set to 3. Thus, all interrupts except other level-3 interrupts are disabled 
until the SWI service routine terminates with an RTI (unless the SWI service 
routine software lowers the processor priority level). 

2. While servicing an interrupt, the next interrupt service will be delayed accord­
ing to the following rule: after the first interrupt instruction word reaches the 
instruction decoder, at least three more instructions will be decoded before 
decoding the next first interrupt instruction word. If anyone pair of instructions 
being counted is the REP instruction followed by an instruction to be repeated, 
then the combination is counted as two instructions independent of the num­
ber of repeats done. Sequential REP combinations will cause pending inter­
rupts to be rejected and can not be interrupted until the sequence of REP 
combinations ends. 

3. The following instructions are not interruptible: SWI, STOP, WAIT, and 
RESET. 

4. The REP instruction and the instruction being repeated are not interruptible. 

5. If the trace bit in the SR (DSP56000/56001 only) is set, the only interrupts that 
will be processed are the hardware RESET, III,NMI, stack error, and trace. 
Peripheral and external interrupt requests will be ignored. The interrupt gener­
ated by the SWI instruction will be ignored. 
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7.3.7 Interrupt Instruction Execution 
Interrupt instruction execution is considered "fast" if neither of the instructions of the 
interrupt service routine causes a change of flow. A JSR within a fast interrupt routine 
forms a long interrupt, which is terminated with an RTI instruction to restore the PC and 
SR from the stack and return to normal program execution. Reset is a special exception, 
which will normally contain only a JMP instruction at the exception start address. At the 
programmer's option, almost any instruction can be used in the fast interrupt routine. The 
restricted instructions include SWI, STOP, and WAIT. Figure 7-8 and Figure 7-10 show 
the fast and the long interrupt service routines. The fast interrupt executes only two 
instructions and then automatically resumes execution of the main program; whereas, 
the long interrupt must be told to return to the main program by executing an RTI instruc­
tion. 

Figure 7-8 illustrates the effect of a fast interrupt routine in the stream of instruction 
fetches. 

Figure 7-9 shows the sequence of instruction decodes between two fast interrupts. Four 
decodes occur between the two interrupt decodes (two after the first interrupt and two 
preceding the second interrupt). The requirement for these four decodes establishes the 
maximum rate at which the DSP56K will respond to interrupts - namely, one interrupt 
every six instructions (six instruction cycles if all six instructions are one instruction cycle 
each). Since some instructions take more than one instruction cycle, the minimum num­
ber of instructions between two interrupts may be more than six instruction cycles. 

The execution of a fast interrupt routine always conforms to the following rules: 

1. A JSR to the starting address of the interrupt service routine is notiocated at 
one of the two interrupt vector addresses. 

2. The processor status is not saved. 

3. The fast interrupt routine may (but should not) modify the status of the normal 
instruction stream. 

4. The fast interrupt routine may contain any single two-word instruction or any 
two one-word instructions except SWI, STOP, and WAIT. 

5. The PC, which contains the address of the next instruction to be executed in 
normal processing remains unchanged during a fast interrupt routine. 
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6. The fast interrupt returns without an RT/' 

7. Normal instruction fetching resumes using the PC following the completion of 
the fast interrupt routine. 

8. A fast interrupt is not interruptible. 

9. A JSR instruction within the fast interrupt routine forms a long interrupt routine. 

10. The primary application is to move data between memory and I/O devices. 

The execution of a long interrupt routine always conforms to the following rules: 

1. A JSR to the starting address of the interrupt service routine is located at one 
of the two interrupt vector addresses. 

2. During execution of the JSR instruction, the PC and SR are stacked. The inter­
rupt mask bits of the SR are updated to mask interrupts of the same or lower 
priority. The loop flag, trace bit, double precision multiply mode bit, and scaling 
mode bits are reset. 

3. The first instruction word of the next interrupt service (of higher IPL) will reach 
the decoder only after the decoding of at least four instructions following the 
decoding of the first instruction of the previous interrupt. 

4. The interrupt service routine can be interrupted - i.e., nested interrupts are 
supported. 

5. The long interrupt routine, which can be any length, should be terminated by 
an RTI, which restores the PC and SR from the stack. 

Figure 7-10 illustrates the effect of a long interrupt routine on the instruction pipeline. A 
short JSR (a JSR with 12-bit absolute address) is used to form the long interrupt routine. 
For this example, word 6 of the long interrupt routine is an RT/' The point at which inter­
rupts are re-enabled and subsequent interrupts are allowed is shown to illustrate the 
non-interruptible nature of the early instructions in the long interrupt service routine. 

Either one of the two instructions of the fast interrupt can be the JSR instruction that 
forms the long interrupt. Figure 7-11 and Figure 7-12 show the two possible cases. If the 
first fast interrupt vector instruction is the JSR, the second instruction is never used. 

A REP instruction and the instruction that follows it are treated as a Single two-word 
instruction, regardless of how many times it repeats the second instruction of the pair. 
Instruction fetches are suspended and will be reactivated only after the LC is decre-

-
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mented to one (see Figure 7-13). During the execution of n2 in Figure 7-13, no interrupts 
will be serviced. When LC finally decrements to one, the fetches are reinitiated, and 
pending interrupts can be serviced. 

Sequential REP packages will cause pending interrupts to be rejected until the sequence 
of REP packages ends. REP packages are not interruptible because the instruction 
being repeated is not refetched. While that instruction is repeating, no instructions are 
fetched or decoded, and an interrupt can not be inserted. For example, in Figure 7-14, if 
n1, n3, and n5 are all REP instructions, no interrupts will be serviced until the last REP 
instruction (n5 and its repeated instruction, n6) completes execution. 

7.4 RESET PROCESSING STATE 
The processor enters the reset processing state when a hardware reset occurs and the 
external RESET pin is asserted. The reset state: 

1. resets internal peripheral devices; 

2. sets the modifier registers to $FFFF; 

3. clears the interrupt priority register; 

4. sets the SCR to $FFFF, thereby inserting 15 wait states in all external memory 
accesses; 

5. clears the stack pointer; 

6. clears the scaling mode, trace mode, loop flag, double precision multiply 
mode, and condition code bits of the SR, and sets the interrupt mask bits of 
the SR; 

7. clears the data ROM enable bit, the stop delay bit, and the internal Y memory 
disable bit, and 

8. the DSP remains in the reset state until the RESET pin is deasserted. 

When the processor deasserts the reset state: 

9. it loads the chip operating mode bits of the OMR from the external mode select 
pins (MODA, MODS, MODC), and 

10. begins program execution at program memory address defined by the state of 
bits MODA, MODS, and MODC in the OMR. The first instruction must be 
fetched and then decoded before executing. Therefore, the first instruction 
execution is two instruction cycles after the first instruction fetch. 
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7.5 WAIT PROCESSING STATE 
The WAIT instruction brings the processor into the wait processing state which is one of 
two low power-consumption states. Asserting the OnCE's debug request pin releases. 
the DSP from the wait state. In the wait state, the internal clock is disabled from all inter­
nal circuitry except the internal peripherals. All internal processing is halted until an 
unmasked interrupt occurs, the Debug Request pin of the OnCE is asserted, or the DSP 
is reset. 

Figure 7-15 shows a WAIT instruction being fetched, decoded, and executed. It is 
fetched as n3 in this example and, during decode, is recognized as a WAIT instruction. 
The following instruction (n4) is aborted, and the internal clock is disabled from all inter­
nal circuitry except the internal peripherals. The processor stays in this state until an 
interrupt or reset is recognized. The response time is variable due to the timing of the 
interrupt with respect to the internal clock. Figure 7-15 shows the result of a fast interrupt 
bringing the processor out of the wait state. The two appropriate interrupt vectors are 
fetched and put in the instruction pipe. The next instruction fetched is n4, which had been 
aborted earlier. Instruction execution proceeds normally from this point. 
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Figure 7-15 Wait Instruction Timing 

Figure 7-16 shows an example of the WAIT instruction being executed at the same time 
that an interrupt is pending. Instruction n4 is aborted as before. The WAIT instruction 
causes a five-instruction-cycle delay from the time it is decoded, after which the interrupt 
is processed normally. The internal clocks are not turned off, and the net effect is that of 
executing eight NOP instructions between the execution of n2 and ii1. 



INTERRUPT SYNCHRONIZED AND r RECOGNIZED AS PENDING 

INTERRUPT CONTROL CYCLE 1 i 

INTERRUPT CONTROL CYCLE 2 i 

FETCH n3 n4 - - - - - - ii1 ii2 

DECODE n2 WNr - - - - - - - ii1 

EXECUTE n1 n2 WNr - - - - - - -

INSTRUCTION CYCLE COUNT 1 2 3 4 5 6 7 8 9 10 

= INTERRUPT '------------ -----------~ ~ 
= INTERRUPT INSTRUCTION WORD 

n = NORMAL INSTRUCTION WORD 
EQUIVALENT TO EIGHT NOPs 

Figure 7-16 Simultaneous Wait Instruction and Interrupt 

7.6 STOP PROCESSING STATE 

n4 

ii2 

ii1 

11 

The STOP instruction· brings the processor into the stop processing state, which is the 
lowest power consumption state. In the stop state, the clock oscillator is gated off; 
whereas, in the wait state, the clock oscillator remains active. The chip clears all periph­
eral interrupts and external interrupts (IROA, IROB, and NMI) when it enters the stop 
state. Trace or stack errors that were pending, remain pending. The priority levels of the 
peripherals remain as they were before the STOP instruction was executed. The on-chip 
peripherals are held in their respective individual reset states while in the stop state. 
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The stop processing state halts all activity in the processor until one of the following 
actions occurs: 

1. A low level is applied to the TRQA pin. 

2. A low level is applied to the RESET pin. 

3. A low level is applied to the DR pin 

Either of these actions will activate the oscillator, and, after a clock stabilization delay, 
clocks to the processor and peripherals will be re-enabled. The clock stabilization delay 
period is determined by the stop delay (SD) bit in the OMR. 

The stop sequence is composed of eight instruction cycles called stop cycles. They are 
differentiated from normal instruction cycles because the fourth cycle is stretched for an 
indeterminate period of time while the four-phase clock is turned off. 

The STOP instruction is fetched in stop cycle 1 of Figure 7-17, decoded in stop cycle 2 
(which is where it is first recognized as a stop command), and executed in stop cycle 3. 
The next instruction (n4) is fetched during stop cycle 2 but is not decoded in stop cycle 3 
because, by that time, the STOP instruction prevents the decode. The processor stops 
the clock and enters the stop mode. The processor will stay in the stop mode until it is 
restarted. 
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Figure 7-18 shows the system being restarted by asserting the IRQA signal. If the exit 
from stop state was caused by a low level on the IRQA pin, then the processor will ser­
vice the highest priority pending interrupt. If no interrupt is pending, then the processor 
resumes at the instruction following the STOP instruction that brought the processor into 
the stop state. 

An IRQA deasserted before the end of the stop cycle count will not be recognized as 
pending. If IRQA is asserted when the stop cycle count completes, then an IRQA inter­
rupt will be recognized as pending and will be arbitrated with any other interrupts. 

Specifically, when IRQA is asserted, the internal clock generator is started and begins a 
delay determined by the SO bit of the OMR. When the chip uses the internal clock oscil­
lator, the SO bit should be set to zero, to allow a longer delay time of 128K T cycles 
(131,072 T cycles) so that the clock oscillator may stabilize. When the chip uses a stable 
external clock, the SO bit may be set to one to allow a shorter (16 T cycle) delay time and 
a faster start up of the chip. 

For example, assume that SD=O so that the 128K T counter is used. During the 128K T 
count, the processor ignores interrupts until the last few counts and, at that time, begins 
to synchronize them. At the end of the 128K T cycle delay period, the chip restarts 
instruction processing, completes stop cycle 4 (interrupt arbitration occurs at this time), 
and executes stop cycles 5, 6, 7, and 8 (it takes 17T from the end of the 128K T delay to 
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the first instruction fetch). If the IRQA signal is released (pulled high) after a minimum of 
4T but less than 128K T cycles, no IRQA interrupt will occur, and the instruction fetched 
after stop cycle 8 will be the next sequential instruction (n4 in Figure 7-18). An IRQA 
interrupt will be serviced as shown in Figure 7-18 if 1) the IRQA signal had previously 
been initialized as level sensitive, 2) IRQA is held low from the end of the 128K T cycle 
delay counter to the end of stop cycle count 8, and 3) no interrupt with a higher interrupt 
level is pending. If IRQA is not asserted during the last part of the STOP instruction 
sequence (6, 7, and 8) and if no interrupts are pending, the processor will refetch the 
next sequential instruction (n4). Since the IRQA signal is asserted (see Figure 7-18), the 
processor will recognize the interrupt and fetch and execute the instructions at P:$0008 
and P:$0009 (the IRQA interrupt vector locations). 

To ensure servicing IRQA immediately after leaving the stop state, the following steps 
must be taken before the execution of the STOP instruction: 

1. Define IRQA as level sensitive - an edge-triggered interrupt will not be ser­
viced. 

2. Define IRQA priority as higher than the other sources and higher than the pro-
gram priority. 

3. Ensure that no stack error or trace interrupts are pending. 

4. Execute the STOP instruction and enter the stop state. 

5. Recover from the stop state by asserting the IRQA pin and holding it asserted 
for the whole clock recovery time. If it is low, the IRQA vector will be fetched. 
Also, the user must ensure that NMI will not be asserted during these last 
three cycles; otherwise, NMI will be serviced before IRQA because NMI prior­
ity is higher. 

6. The exact elapsed time for clock recovery is unpredictable. The external 
device that asserts IRQA must wait for some positive feedback, such as spe­
cific memory access or a change in some predetermined I/O pin, before deas­
serting IRQA. 

The STOP sequence totals 131,104 T cycles (if SD=O) or 48 T cycles (if SD=1) in addi­
tion to the period with no clocks from the stop fetch to the IRQA vector fetch (or next 
instruction). However, there is an additional delay if the internal oscillator is used. An 
indeterminate period of time is needed for the oscillator to begin oscillating and then sta­
bilize its amplitude. The processor will still count 131,072 T cycles (or 16 T cycles), but 



the period of the first oscillator cycles will be irregular; thus, an additional period of 
19,000 T cycles should be allowed for oscillator irregularity (the specification recom­
mends a total minimum period of 150,000 T cycles for oscillator stabilization). If an exter­
nal oscillator is used that is already stabilized, no additional time is needed. 

The PLL may be disabled or not when the chip enters the STOP state. If it is disabled 
and will not be re-enabled when the chip leaves the STOP state, the number of T cycles 
will be much greater because the PLL must regain lock. 

If the STOP instruction is executed when the IROA signal is asserted, the clock genera­
tor will not be stopped, but the four-phase clock will be disabled for the duration of the 
128K T cycle (or 16 T cycle) delay count. In this case, the STOP looks like a 131,072 T + 
35 T cycle (or 51 T cycle) NOP, since the STOP instruction itself is eight instruction 
cycles long (32 T) and synchronization of IROA is 3T, which equals 35T. 

A trace or stack error interrupt pending before entering the stop state is not cleared and 
will remain pending. During the clock stabilization delay, all peripheral and external inter­
rupts are cleared and ignored (includes all SCI, SSI, HI, IROA, IROB, and NMI interrupts, 
but not trace or stack error). If the SCI, SSI, or HI have interrupts enabled in 1) their 
respective control registers and 2) in the interrupt priority register, then interrupts like SCI 
transmitter empty will be immediately pending after the clock recovery delay and will be 
serviced before continuing with the next instruction. If peripheral interrupts must be dis­
abled, the user should disable them with either the control registers or the interrupt prior­
ity register before the STOP instruction is executed. 

If RESET is used to restart the processor (see Figure 7-19), the 128K T cycle delay 
counter would not be used, all pending interrupts would be discarded, and the processor 
would immediately enter the reset processing state as described in Section 7.4. For 
example, the stabilization time recommended in theDSP56001 Technical Data Sheet for 
the clock (RESET should be asserted for this time) is only 50 T for a stabilized external 
clock but is the same 150,000 T for the internal oscillator. These stabilization times are 
recommended and are not imposed by internal timers or time delays. The DSP fetches 
instructions immediately after exiting reset. If the user wishes to use the 128K T (or 16 T) 
delay counter, it can be started by asserting IROA for a short time (about two clock 
cycles). 



RESET --------------------------------,~ 

RESET STATE 
----, r--

1 ~ 
PROCESSOR ENTERS PROCESSOR LEAVES RESET STATE 

INTERRUPT CONTROL CYCLE 1 f\ ~ 
INTERRUPT CONTROL CYCLE 2 l~ 
FETCH n3 n4 - - 1 

nop nA nB nC nO nE 

DECODE n2 SlOP - - f\~ nop nop nA nB nC nO 

EXECUTE n1 n2 STOP - ~ nop nop nop nA nB nC 

STOP CYCLE COUNT 1 2 3 4 ~' 

CLOCK STOPPEDJ 

~ 

IRESET = INTERRUPT 
n = NORMAL INSTRUCTION WORD 

nA, nB, nC = INSTRUCTIONS IN RESET ROUTINE 

- STOP = INTERRUPT INSTRUCTION WORD 

Figure 7-19 STOP Instruction Sequence Recovering with RESET 
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8.1 PORT A OVERVIEW 
Port A provides a versatile interface to external memory, allowing economical connection 
with fast memories, slow memories/devices, and multiple bus master systems. This sec­
tion introduces the signals associated with this memory expansion port that are common 
among the members of the OSP56K family of processors which feature Port A. Certain 
characteristics, such as signaling, timing, and bus arbitration, vary between members of 
the processor family and are detailed in each device's own User's Manual. 

Port A has two power-reduction features. It can access internal memory spaces, toggling 
only the external memory signals that need to change, and eliminate unneeded switching 
current. Also, if conditions allow the processor to operate at a lower memory speed, wait 
states can be added to the external memory access to significantly reduce power while 
the processor accesses those memories. 

8.2 PORT A INTERFACE 
The DSP56K processor can access one or more of its memory sources (X data memory, 
Y data memory, and program memory) while it executes an instruction. The memory 
sources may be either internal or external to the OSP. Three address buses (XAB, YAB, 
and PAB) and four data buses (XOB, YOB, POB, and GOB) are available for internal 
memory accesses during one instruction cycle. Port A's one address bus and one data 
bus are available for external memory accesses. If all memory sources are internal to the 

OSP, one or more of the three memory sources may be accessed in one instruction cycle 
(Le., program memory access or program memory access plus an X, Y, XY, or L memory 
reference). However, when one or more of the memories are external to the chip, memory 
references may require additional instruction cycles because only one external memory 
access can occur per instruction cycle. 

If an instruction cycle requires more than one external access, the processor will make the 
accesses in the following priority: X memory, Y memory, and program memory. It takes 
one instruction cycle for each external memory access - Le., one access can be executed 
in one instruction cycle, two accesses take two instruction cycles, etc. Since the external 
bus is only 24 bits wide, one XY or long external access will take two instruction cycles. 

The port A external data bus shown in Figure 8-1 is 24 bits wide. The 16-bit address bus 
can sustain a rate of one memory access per instruction cycle (using no-wait-state mem­
ory which is discussed in Section 8.2.5.) 

Figure 8-1 shows the port A signals divided into their three functional groups: address bus 
signals (AO-A 15), data bus signals (00-015), and bus control. The bus control signals can 
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Figure 8-1 Port A Signals 



be subdivided into three additional groups: read/write control (RD and WR), address 
space selection (including program memory select (PS), data memory select (OS), and XI 
Y select) and bus access control. 

The read/write controls are self-descriptive. They can be used as decoded read and write 

controls, or, the write signal can be used as the read/write control and the read signal can 

be used as an output enable (or data enable) control for the memory. Decoding in this 
fashion simplifies the connection to high-speed random-access memories (RAMs). The 
address space selection signals can be considered as additional address signals, which 
extend the addressable memory from 64K words to 192K words 

Note: Depending on system design, unused inputs should have pullup resistors for two 
reasons: 1) floating inputs draw excessive power, and 2) a floating input can cause erro­
neous operation. For example, during RESET, all signals are three-stated. Output pins PS 

and OS may require pullup resistors because, without them, the signals may become ac­

tive and may cause two or more memory chips to try to simultaneously drive the external 
data bus, which can damage the memory chips. A pullup resistor in the SDK-ohm range 
should be sufficient. 

8.2.1 ReadlWrite Control Signals 
The foliowing paragraphs describe the Port A read/write control Signals. These pins are 

three-stated during reset and may require pullup resistors to prevent erroneous operation 
of a memory device or other external components. 

8.2.1.1 Program Memory Select (PS) 
This three-state output is asserted only when external program memory is referenced. 

8.2.1.2 Data Memory Select (OS) 
This three-state output is asserted only when external data memory is referenced. 

8.2.1.3 xiV Select (xiV) 
This three-state output selects which external data memory space (X or Y) is referenced 
by OS. 

8.2.2 Port A Address and Data Bus Signals 
The following paragraphs describe the Port A address and data bus signals. These pins 

are three-stated during reset and may require pullup resistors to prevent erroneous oper­
ation. 

-



8.2.2.1 Address (AO-A15) 
These three-state output pins specify the address for external program and data memory 
accesses. To minimize power dissipation, AO-A 15 do not change state when external 
memory spaces are not being accessed. 

8.2.2.2 Data (00-023) 
These pins provide the bidirectional data bus for external program and data memory ac­
cesses. 00-023 are in the high-impedance state when the bus grant signal is asserted. 

8.2.3 Port A Bus Control Signals 
The following paragraphs describe the Port A bus control signals. The bus control signals 
provide the means to connect additional bus masters (which may be additional OSPs, mi­
croprocessors, direct memory access (OMA) controllers, etc.) to the port A bus. They are 
three-stated during reset and may require pullup resistors to prevent erroneous operation. 

8.2.3.1 Read Enable (RD) 
This three-state output is asserted to read external memory on the data bus (00-023). 

8.2.3.2 Write Enable (WR) 
This three-state output is asserted to write external memory on the data bus (00-023). 

8.2.3.3 Port A Access Control Signals 
Port A features a group of configurable pins that perform bus arbitration and bus access 
control. The pins, such as Bus Needed (BN), Bus Request. (BR), Bus Grant (BG), Bus 
Wait (WT), and Bus Strobe (BS), and their designations differ between members of the 
OSP56K family and are explained in the respective devices' user manuals. 

8.2.4 Interrupt and Mode Control 
Port A features a pin set that selects the chip's operating mode and receives interrupt re­
quests from external sources. The pins and their designations vary between members of 
the OSP56K family and are explained in the respective devices' user manuals~ 

8.2.5 Port A Wait States 
The OSP56K processor features two methods to allow the user to accommodate slow 
memory by changing the port A bus timing. The first method uses the16-bit bus control 
register (BCR), which resides in X Oata memory space. The BCR allows a fixed number 
of wait states to be inserted in a given memory access to all locations in anyone of the 
four memory spaces: X, Y, P, and 1/0. The second method uses the bus strobelwait (BSI 



WT) facility, which allows an external device to insert an arbitrary number of wait states 
when accessing either a single location or multiple locations of external memory or I/O 
space. Wait states are executed until the external device releases the DSP to finish the 
external memory cycle. An internal wait-state generator can be programmed using the 
SCR to insert up t015 wait states if it is known ahead of time that access to slower mem­
ory or I/O devices is required. A bus wait signal allows an external device to control the 
number of wait states (not limited to 15) inserted in a bus access operation. 
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9.1 PLL CLOCK OSCILLATOR INTRODUCTION 
The DSP56K family of processors (with the exception of the DSP56000 and DSP56001) 
features a PLL (phase-locked loop) clock oscillator in its central processing module, 
shown in Figure 9-2. The PLL allows the processor to operate at a high internal clock fre­
quency using a low frequency clock input, a feature which offers two immediate benefits. 
Lower frequency clock inputs reduce the overall electromagnetic interference generated 
by a system, and the ability to oscillate at different frequencies reduces costs by eliminat­
ing the need to add additional qscillators to a system. 

The PLL performs frequency multiplication to allow the processor to use almost any 
available external system clock for full speed operation, while also supplying an output 
clock synchronized to a synthesized internal core clock. It also improves the synchro­
nous timing of the processor's external memory port, significantly reducing the timing 
skew between EXTAL and the internal chip phases. The PLL is unusual in that it pro­
vides a low power divider on its output, which can reduce or restore the chip operating 
frequency without losing the PLL lock 

A DSP56K processor uses a four-phase clock for instruction execution which runs at the 
instruction execution rate. It can accept an external clock through the EXT AL input, or it 
can run on an internal oscillator, bypassing the PLL function, when the user connects an 
external crystal between XTAL and EXTAL. (The PLL need not be disabled when the 
processor accepts an external clock.) 

9.2 PLL COMPONENTS 
The PLL block diagram is shown below in Figure 9-1. The components of the PLL are de­
scribed in the following sections. 

EXTAL 
-'" Charge Voltage Low - Phase Power Pump Controlled 

Detector ~ ..... .. 
Divider ~ --. Loop Oscillator -

(PO) Filter (VCO) 20 to 215 
DIVIDER OUT 

DFO-DF3 
.. - VCOOUT 

Frequency 
Multiplier 

r--Multiplication 
Factor 

1 to 4096 

MFO-MF11 

Figure 9-1 PLL Block Diagram 
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Figure 9-2 DSP56K Block Diagram 

9.2.1 Phase Detector and Charge Pump Loop Filter 

_16BITS 
_24BITS 

« 
~ 
o 
Q. 

The Phase Detector (PO) detects any phase difference between the external clock 
(EXTAL) and an internal clock phase from the frequency multiplier. At the point where 
there is negligible phase difference and the frequency of the two inputs is identical, the 
PLL is in the "locked" state. 



The charge pump loop filter receives signals from the PD, and either increases or 
decreases the phase based on the PD signals. An external capacitor is connected to the 
PCAP pin (described in Section 9.3) and determines the PLL operation. (See the appro­
priate Technical Data Sheet for more detailed information about a particular device's 
phase and frequency.) 

After the PLL locks on to the proper phase/frequency, it reverts to the narrow bandwidth 
mode, which is useful for tracking small changes due to frequency drift of the EXTAL 
clock. 

9.2.2 Voltage Controlled Oscillator (VCO) 
The VCO can oscillate at frequencies from the minimum speed specified in a device's 
Technical Data Sheet (typically10 MHz) up to the device's maximum allowed clock input 
frequency. 

9.2.3 Frequency Multiplier 
Inside the PLL, the frequency multiplier divides the VCO output frequency by its division 
factor (n). If the frequency multiplier's output frequency is different from the EXTAL fre­
quency, the charge pump loop filter generates an error signal. The error Signal causes 
the VCO to adjust its frequency until the two input signals to the phase detector have the 
same phase and frequency. At this point (phase lock) the VCO will be running at n times 
the EXTAL frequency, where n is the multiplication factor for the frequency multiplier. 
The programmable multiplication factor ranges from 1 to 4096 

9.2.4 Low Power Divider (LPD) 
The Low Power Divider (lPD) divides the output frequency of the VCO by any power of 2 
from 2° to 215. Since the LPD is not in the closed loop of the PLL, changes in the divide 
factor will not cause a loss of lock condition. This fact is particularly useful for utilizing the 
LPD in low power consumption modes when the chip is not involved in intensive calcula­
tions. This can result in significant power saving. When the chip is required to exit the low 
power mode, it can immediately do so with no time needed for clock recovery or PLL 
lock. 

9.2.5 PLL Control Register (PCTL) 
The PLL control register (PCTL) is a 24-bit read/write register which directs the operation 
of the on-chip PLL. It is mapped into the processor's internal X memory at X:$FFFD. The 
PCTl control bits are described in the following sections. 

9.2.5.1 PCTL Multiplication Factor Bits (MFO-MF11) - Bits 0-11 
The Multiplication Factor Bits MFO-MF11 define the multiplication factor (MF) that will be 
applied to the PLL input frequency. The MF can be any integer from 1 to 4096. Table 9-1 
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23 22 21 20 19 18 17 16 15 14 13 12 

** Reserved bits, read as zero, should be written with zero for future compatibility. 

Figure 9-3 PLL Control Register (PCTL) 

shows how to program the MFO-MF11 bits. The veo will oscillate at a frequency of 
MF x Fext, where Fext is the EXTAL clock frequency. The multiplication factor must be 
chosen to ensure that the resulting veo output frequency will lay in the range specified 
in the device's Technical Data Sheet. Any time a new value is written into the MFO-MF11 
bits, the PLL will lose the lock condition. After a time delay, the PLL will relock. The 
MFO-MF11 bits are set to a pre-determined value during hardware reset; the value is 
implementation dependent and may be found in each DSP56K family member's user 
manual. 

Table 9-1 Multiplication Factor Bits MFO-MF11 

MF11-MFO 
Multiplication 

Factor MF 

$000 1 

$001 2 

$002 3 

• • 
• • 

$FFE 4095 

$FFF 4096 

9.2.5.2 PCTL Division Factor Bits (DFO-DF3) - Bits 12-15 
The Division Factor Bits DFO-DF3 define the divide factor (DF) of the low power divider. 
These bits specify any power of two divide factor in the range from 2° to 215. Table 9-2 



shows the programming of the DFO-DF3 bits. Changing the value of the DFO-DF3 bits 
will not cause a loss of lock condition. Whenever possible, changes of the operating fre­
quency of the chip (for example, to enter a low power mode) should be made by chang­
ing the value of the DFO-DF3 bits rather than changing the MFO-MF11 bits. For MF~4, 
changing OFO-DF3 may lengthen the instruction cycle following the PLL control register 
update; this is done in order to keep synchronization between EXTAL and the internal 
chip clock. For MF>4 such synchronization is not guaranteed and the instruction cycle is 
not lengthened. Note that CKOUT is synchronized with the internal clock in all cases. 
The OF bits are cleared (division by one) by hardware reset. 

Table 9-2 Division Factor Bits DFO-DF3 

DF3-DFO 
Division 

Factor OF 

$0 2° 

$1 21 

$2 22 

• • 
• • 

$E 214 

$F 215 

9.2.5.3 PCTL XTAL Disable Bit (XTLD) - Bit 16 
The XTAL Disable (XTLD) bit controls the on-chip crystal oscillator XTAL output. When 
XTLO is cleared, the XTAL output pin is active permitting normal operation of the crystal 
oscillator. When XTLD is set, the XTAL output pin is held in the high ("1 ") state, disabling 
the on-chip crystal oscillator. If the on-Chip crystal oscillator is not used (EXTAL is driven 
from an external clock source), it is recommended that XTLD be set (disabling XTAL) to 
minimize RFI noise and power dissipation. The XTLD bit is cleared by hardware reset. 

9.2.5.4 PCTL STOP Processing State Bit (PSTP) - Bit 17 
The PSTP bit controls the behavior of the PLL and of the on-chip crystal oscillator during 
the STOP processing state. When PSTP is set, the PLL and the on-chip crystal oscillator 
will remain operating while the chip is in the STOP processing state, enabling rapid 
recovery from the STOP state. When PSTP is cleared, the PLL and the on-chip crystal 
oscillator will be disabled when the chip enters the STOP processing. For minimal power 
consumption during the STOP state, at the cost of longer recovery time, PSTP should be 
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cleared. To enable rapid recovery when exiting the STOP state, at the cost of higher 
power consumption in the STOP state, PSTP should be set. PSTP is cleared by hard­
ware reset. 

9.2.5.5 PCTL PLL Enable Bit (PEN) - Bit 18 
The PEN bit enables the PLL operation. When this bit is set, the PLL is enabled and the 
internal clocks will be derived from the PLL VCO output. When this bit is cleared, the PLL 
is disabled and the internal clocks are derived directly from the clock connected to the 
EXTAL pin. When the PLL is disabled, the VCO does not operate in order to minimize 
power consumption. The PLOCK pin is asserted when PEN is cleared. The PEN bit may 
be set by software but it cannot be reset by software. During hardware reset this bit 
receives the value of the PINIT pin. The only way to clear PEN is to hold the PINIT pin 
low during hardware reset. 

A relationship exists between PSTP and PEN where PEN adjusts PSTP's control of the 
PLL o!'>eration. When PSTP is set and PEN (see Table 9-3) is cleared, the on-chip crys­
tal oscillator remains operating in the STOP state, but the PLL is disabled. This power 
saving feature enables rapid recovery from the STOP state when the user operates the 
chip with an on-chip oscillator and with the PLL disabled. 

Table 9-3 PSTP and PEN Relationship 

Operation during STOP 

PSTP PEN PLL Oscillator Recovery Power Consumption 

0 x Disabled Disabled long minimal 

1 0 Disabled Enabled rapid lower 

1 1 Enabled Enabled rapid higher 

9.2.5.6 PCTL Clock Output Disable Bits (CODO-COD1) - Bits 19-20 
The CODO-COD1 bits control the output buffer of the clock at the CKOUT pin. Table 9-4 
specifies the effect of CODO-COD1 on the CKOUT pin. When both CODO and COD1 are 
set, the CKOUT pin is held in the high ("1 ") state. If the CKOUT pin is not connected to 
external Circuits, it is recommended that both COD1 and CODO be set (disabling clock 
output) to minimize RFI noise and power dissipation. If the CKOUT output is low at the 
moment the CODO-COD1 bits are set, it will complete the low cycle and then be disabled 
high. If the programmer re-enables the CKOUT output before it reaches the high logic 
level during the disabling process, the CKOUT operation will be unaffected. The CODO-­
COD1 bits are cleared by hardware reset. 



Table 9-4 Clock Output Disable Bits CODO-COD1 

COOl CODa CKOUTPin 

0 0 Clock Out Enabled, Full Strength Output Buffer 

0 1 Clock Out Enabled, 2/3 Strength Output Buffer 

1 0 Clock Out Enabled, 1/3 Strength Output Buffer 

1 1 Clock Out Disabled 

9.2.5.7 PCTL Chip Clock Source Bit (CSRC) - Bit 21 
The CSRC bit specifies whether the clock for the chip is taken from the output of the VCO 
or is taken from the output of the Low Power Divider (LPD). When CSRC is set, the clock 
for the chip is taken from the VCO. When CSRC is cleared, the clock for the chip is taken 
from the output of the LPD. See Section 9.4.8 fo( restrictions. CSRC is cleared by hard­
ware reset. 

9.2.5.8 PCTL CKOUT Clock Source Bit (CKOS) - Bit 22 
The CKOS bit specifies whether the CKOUT clock output is taken from the output of the 
VCO or is taken from the output of the Low Power Divider (LPD). When CKOS is set, the 
CKOUT clock output is taken from the VCO. When eKOS is cleared, the CKOUT clock 
output is taken from the output of the LPD. If the PLL is disabled (PEN=O), CKOUT is tak­
en from EXT AL. See Section 9.4.8 for restrictions. CKOS is cleared by hardware reset. 

9.2.5.9 PCTL Reserved Bit - Bit 23 
This bit is reserved for future expansion. It reads as zero and should be written with zero 
for future compatibility. 

9.3 PLL PINS 
Some of the PLL pins need not be implemented. The specific PLL pin configuration for 
each DSP56K chip implementation is available in the respective device's user's manual. 
The following pins are dedicated to the PLL operation: 

PVCC vec dedicated to the analog PLL circuits. The voltage should be well regulated 
and the pin should be provided with an extremely low impedance path to the 
VCC power rail. pvce should be bypassed to PGND by a 0.1 JlF capacitor 
located as close as possible to the chip package. 

PGND GND dedicated to the analog PLL circuits. The pin should be provided with an 
extremely low impedance path to ground. pvee should be bypassed to PGND 
by a 0.1 JlF capacitor located as close as possible to the chip package. 
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CLVCC VCC for the CKOUT output. The voltage should be well regulated and the pin 
should be provided with an extremely low impedance path to the VCC power 
rail. CLVCC should be bypassed to CLGND by a 0.1JlF capacitor located as 
close as possible to the chip package. 

CLGND GND for the CKOUT output. The pin should be provided with an extremely low 
impedance path to ground. CLVCC should be bypassed to CLGND by a 0.1 JlF 
capacitor located as close as possible to the chip package. 

PCAP Off-chip capacitor for the PLL filter. One terminal of the capacitor is connected 
to PCAP while the other terminal is connected to PVCC. The capacitor value is 
specified in the particular device's Technical Data Sheet. 

CKOUT This output pin provides a 50% duty cycle output clock synchronized to the 
internal processor clock when the PLL is enabled and locked. When the PLL is 
disabled, the output clock at CKOUT is derived from, and has the same 
frequency and duty cycle as, EXT AL. 

Note: If the PLL is enabled and the multiplication factor is less than or equal to 
4, then CKOUT is synchronized to EXTAL. 

CKP This input pin defines the polarity of the CKOUT signal. Strapping CKP through 
a resistor to GND will make the CKOUT polarity the same as the EXTAL 
polarity. Strapping CKP through a resistor to VCC will make the CKOUT polarity 
the inverse of the EXTAL polarity. The CKOUT clock polarity is internally 
latched at the end of the hardware reset, so that any changes of the CKP pin 
logic state after deassertion of RESET will not affect the CKOUT clock polarity. 

PINIT During the assertion of hardware reset, the value at the PINIT input pin is 
written into the PEN bit of the PLL control register. After hardware reset is 
deasserted, the PINIT pin is ignored. 

PLOCK The PLOCK output originates from the Phase Detector. The chip asserts 
PLOCK when the PLL is enabled and has locked on the proper phase and 
frequency of EXTAL. The PLOCK output is deasserted by the chip if the PLL is 
enabled and has not locked on the proper phase and frequency. PLOCK is 
asserted if the PLL is disabled. PLOCK is a reliable indicator of the PLL lock 
state only after exiting the hardware reset state. 



9.4 PLL OPERATION CONSIDERATIONS 
The following paragraphs discuss PLL operation considerations. 

9.4.1 Operating Frequency 
The operating frequency of the chip is governed by the frequency control bits in the PLL 
control register as follows: 

F EXT X MF Fvco 
F CHIP = D F - ----oF 

where: DF is the division factor defined by the DFO-DF3 bits 

FCHIP is the chip operating frequency 

FEXT is the external input frequency to the chip at the EXTAL pin 

Fvco is the output frequency of the VCO 

MF is the multiplication factor defined by the MFO-MF11 bits 

The chip frequency is derived from the output of the low power divider. If the low 
power divider is bypassed, the equation is the same but the division factor 
should be assumed to be equal to one. 

9.4.2 Hardware Reset . 
Hardware reset causes the initialization of the PLL. The following considerations apply: 

1. The MFO-MF11 bits in the PCTL register are set to their pre-determined hard­
ware reset value. The DFO-DF3 bits and the Chip Clock Source bit in the PCTL 
register are cleared. This causes the chip clock frequency to be equal to the 
external input frequency (EXTAL) multiplied by the multiplication factor defined 
by MFO-MF11. 

2. During hardware reset assertion, the PINIT pin value is written into the PEN 
bit in the PCTL register. If the PINIT pin is asserted (setting PEN), the PLL 
acquires the proper phase/frequency. While hardware reset is asserted, the 
internal chip clock will be driven by the EXTAL pin until the PLL achieves lock 
(if enabled). If the PINIT pin is deasserted during hardware reset assertion, the 
PEN bit is cleared, the PLL is deactivated and the internal chip clock is driven 
by the EXTAL pin. 

3. PLOCK is a reliable indicator of the PLL lock state only after exiting the hard­
ware reset state. 
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4. For all input frequencies which would result in a VCO output frequency lower 
than the minimum specified in the device's Technical Data Sheet (typically 10 
MHz), PINIT must be cleared during hardware reset, disabling PLL operation. 
Otherwise, proper operation of the PLL cannot be guaranteed. If the resulting 
VCO clock frequency would be less than the minimum and the user wishes to 
operate with the PLL enabled, the user must issue an instruction which loads 
the PCTL control register with a multiplication factor that would bring the VCO 
frequency above 10 MHz and would enable the PLL operation. Until this 
instruction is executed, the PLL is disabled, which may cause a large skew 
«15nsec) between the external input clock and the internal processor clock. If 
internal low frequency of operation is desired with the PLL enabled, the VCO 
output frequency may be divided down by using the internal low power divider. 

5. The CKP pin only affects the CKOUT clock polarity during'the hardware reset 
state. At the end of the hardware reset state, the CKP state is internally 
latched. 

9.4.3 Operation with PLL Disabled 

1. If the PLL is disabled, the PLOCK pin is asserted. 

2. If the PLL is disabled, the internal chip clock and CKOUT are driven from the 
EXTAL input. 

9.4.4 Changing the MFO-MF11 Bits 
Changes to the MFO-MF11 bits cause the following to occur: 

1. The PLL will lose the lock condition, the PLOCK pin will be deasserted. 

2. The PLL acquires the proper phase/frequency. Until this occurs the internal 
chip clock phases will be frozen. This ensures that the clock used by the chip 
is a clock that has reached a stable frequency. 

3. When lock occurs, PLOCK is asserted and the PLL drives the internal chip 
clock and CKOUT. 

4. While PLL has not locked, CKOUT is held low if CKP is cleared. CKOUT is 
held high if CKP is set. 

9.4.5 Change of DFO-DF3 Bits 
Changes to the DFO-DF3 bits do not cause a loss of lock condition. The internal clocks 
will immediately revert to the frequency prescribed by the new divide factor. For MF:5:4, 
changing DFO-DF3 may lengthen the instruction cycle or CKOUT pulse following th~ PLL 
control register update in order to keep synchronization between EXTAL and the internal 



chip clock. (Here, T3 is equal to the phase described by the new divide factor plus the 
time required to wait for a synchronizing pulse, which is less than 1.5ETc.) For MF>4, 
such synchronization is not guaranteed and the instruction cycle is not lengthened. 

If the DFO-DF3 bits are changed by the same instruction that changes the MFO-MF11 
bits, the LPD divider factor changes before the detection of the change in the multiplica­
tion factor. This means that the detection of loss of lock will occur after the LPD has 
started dividing by the new division factor. 

9.4.6 Loss of Lock 
The PLL distinguishes between cases where MF>4 and cases where MF~4. If MF~4, the 
PLL will detect loss of lock if a skew of 2.5 to 4.5 ns develops between the two clock 
inputs to the phase detector. 

If MF>4, the PLL will detect loss of lock when there is a discrepancy of one clock cycle 
between the two clock inputs to the phase detector. When either of these two conditions 
occurs, the following also occur: 

1. PLOCK will be deasserted, indicating that loss of lock condition has occurred. 

2. The PLL will re-acquire the proper phase/frequency. When lock occurs, 
PLOCK will be asserted. 

9.4.7 STOP Processing State 
If the PSTP bit is cleared, executing the STOP instruction will disable the on-chip crystal 
oscillator and the PLL. In this state the chip consumes the least possible power. When 
recovering from the STOP state, the recovery time will be 16 or 64k external clock cycles 
(according to bit 6 in the Operating Mode Register) plus the time needed for the PLL to 
achieve lock. 

If the PSTP bit is set, executing the STOP instruction will leave the on-chip crystal oscil­
lator (if XTLD=O) and the PLL loop (if PEN=1) operating, but will disable the clock to the 
LPD and the rest of the DSP. When recovering from the STOP state, the recovery time 
will be only three clock cycles. 

9.4.8 CKOUT Considerations 
The CKOUT clock output is held high while disabled, which is also while the CODO-COD1 
bits are set. If the CKOUT clock output is low at the moment the CODO-COD1 bits are set, 
then the CKOUT clock output will complete the low cycle and then be disabled high. If the 
programmer re-enables the CKOUT clock output before it reaches the high logic level dur­
ing the disabling process, the CKOUT operation will be unaffected. 



-

While the PLL is regaining lock, the CKOUT clock output remains at the same logic level 
it held when the PLL lost lock, which is when the clocks were frozen in the DSP. 

When the chip enters the WAIT processing state, the core phases are disabled but CK­
OUT continues to operate. When PLL is disabled, CKOUT will be fed from EXT AL. 

If DF> 1 and CKOS*CSRC, then the programmer must change either CKOS or CSRC be­
fore taking any action that causes the PLL to lose and subsequently regain lock, such as 
changing the multiplication factor, enabling PLL operation, or recovering from the STOP 
state with PSTP=O. 

Any change of the CKOS or CSRC bits must be done while DF=1. 

9.4.9 Synchronization Among EXTAL, CKOUT, and the Internal Clock 
Low clock skew between EXTAL and CKOUT is guaranteed only if MF:$;4. The synchro-
nization between CKOUT and the internal chip activity and Port A timing is guaranteed in 
all cases where CKOS=CSRC and the bits have never differed from one another. 



SECTION 10 
ON-CHIP EMULATION (OnCE) 
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10.1 ON-CHIP EMULATION INTRODUCTION 
The DSP56K on-chip emulation (OnCE) circuitry provides a sophisticated debugging tool 
that allows simple, inexpensive, and speed independent access to the processor's inter­
nal registers and peripherals. OnCE tells application programmers exactly what the status 
is within the registers, memory locations, buses, and even the last five instructions that 
were executed. OnCE capabilities are accessible through a standard set of pins which are 
the same on all of the members of the DSP56K processor family. Figure 10-1 shows the 
components of the OnCE circuitry. OnCE is shown as part of the DSP56K central pro­
cessing module in Figure 10-2. 
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Figure 10-1 OnCE Block Diagram 

10.2 ON-CHIP EMULATION (OnCE) PINS 
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The following paragraphs describe the OnCE pins associated with the OnCE controller 
and serial interface component shown in Figure 10-1. 

10.2.1 Debug SerlallnputlChip Status 0 (DSI/OSO) 
Serial data or commands are provided to the OnCE controller through the DSI/OSO pin 
when it is an input. The data received on the DSI pin will be recognized only when the 
DSP56K has entered the debug mode of operation. Data is latched on the falling edge of 
the DSCK serial clock (described in Section 10.2.2). Data is always shifted into the OnCE 
serial port most significant bit (MSB) first. When the DSI/OSO pin is an output, it works in 
conjunction with the OS1 pin to provide chip status information (see Table 10-1). The 
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DSI/OSO pin is an output when the processor is not in debug mode. When switching from 
output to input, the pin is three-stated. During hardware reset, this pin is defined as an out­
put and it is driven low. 

Note: To avoid possible glitches, an external pull-down resistor should be attached to this 
pin. 



10.2.2 Debug Serial Clock/Chip Status 1 (DSCK/OS1) 
The DSCK/OS 1 pin supplies the serial clock to the OnCE when it is an input. The serial 
clock provides pulses required to shift data into and out of the OnCE serial port. (Data is 
clocked into the OnCE on the falling edge and is clocked out of the OnCE serial port on 
the rising edge.) The debug serial clock frequency must be no greater than 1/8 of the pro­
cessor clock frequency. When an output, this pin, in conjunction with the OSO pin, 
provides information about the chip status (see Table 10-1). The DSCK/OS1 pin is an out­
put when the chip is not in debug mode. When switching from output to input, the pin is 
three-stated. During hardware reset, this pin is defined as an output and it is driven low. 

Note: To avoid possible glitches, an external pull-down resistor should be attached to this 
pin. 

Table 10-1 Chip Status Information 

OS1 OSO Status 

0 0 Normal State 

0 1 Stop or Wait State 

1 0 Chip waits for bus mastership 

1 1 Chip waits for end of memory wait states 
(due to WT assertion or BCR) 

10.2.3 Debug Setial Output (DSO) 
Serial data is read from the OnCE through the DSO pin, as specified by the last command 
received from the external command controller. Data is always shifted out the OnCE serial 
port most significant bit (MSB) first. Data is clocked out of the OnCE serial port on the ris­
ing edge of DSCK. 

The DSO pin also provides acknowledge pulses to the external command controller. 
When the chip enters the debug mode, the DSO pin will be pulsed low to indicate (ac­
knowledge) that the OnCE is waiting for commands. After receiving a read command, the 
DSO pin will be pulsed low to indicate that the requested data is available and the OnCE 
serial port is ready to receive clocks in order to deliver the data. After receiving a write 
command, the DSO pin will be pulsed low to indicate that the OnCE serial port is ready to 
receive the data to be written; after the data is written, another acknowledge pulse will be 
provided. 

During hardware reset and when the processor is idle, the DSO pin is held high. 
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10.2.4 Debug Request Input (DR) 
The debug request input (DR) allows the user to enter the debug mode of operation from 
the external command controller. When DR is asserted, it causes the DSP56K to finish 
the current instruction being executed, save the instruction pipeline information, enter the 
debug mode, and wait for commands to be entered from the DSI line. While in debug 
mode, the DR pin lets the user reset the OnCE controller by asserting it and deasserting 
it after receiving acknowledge. It may be necessary to reset the OnCE controller in cases 
where synchronization between the OnCE controller and external circuitry is lost. DR must 
be deasserted after the OnCE responds with an acknowledge on the DSO pin and before 
sending the first OnCE command. Asserting DR will cause the chip to exit the STOP or 
WAIT state. 

10.3 OnCE CONTROLLER AND SERIAL INTERFACE 
The OnCE Controller and Serial Interface contains the following blocks: OnCE command 
register, bit counter, OnCE decoder, and the status/control register. Figure 10-3 illustrates 
a block diagram of the OnCE controller and serial interface 

10.3.1 OnCE Command Register (OCR) 
The OCR is an a-bit shift register that receives its serial data from the DSI pin. It holds the 
a-bit commands to be used as input for the OnCE Decoder. The Command Register is 
shown in Figure 10-4. 
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ISSWDBG 
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REG READ REG WRITE MODE SELECT 

Figure 10-3 OnCE Controller and Serial Interface 
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Figure 10-4 OnCE Command Register 

10.3.1.1 Register Select (RS4-RSO) Bits 0-4 
The Register Select bits define which register is source (destination) for the read (write) 
operation. Table 10-2 indicates the OnCE register addresses. 

Table 10-2 OnCE Register Addressing 

RS4-RSO Register Selected 

00000 OnCE Status and Control Register (OSCR) 

00001 Memory Breakpoint Counter (OMBC) 

00010 Reserved 

00011 Trace Counter (OTC) 

00100 Reserved 

00101 Reserved 

00110 Memory Upper Limit Register (OMULR) 

00111 Memory Lower Limit Register (OMLLR) 

01000 GDB Register (OGDBR) 

01001 PDB Register (OPDBR) 

01010 PAB Register for Fetch (OPABFR) 

01011 PIL Register (OPILR) 

01100 Clear Memory Breakpoint Counter (OMBC) 

01101 Reserved 

01110 Clear Trace Counter (OTC) 

01111 Reserved 

10000 Reserved 

10001 Program Address Bus FIFO and Increment Counter 

10010 Reserved 

10011 PAB Register for Decode (OPABDR) 

101xx Reserved 

11xxO Reserved 

11xOx Reserved 

110xx Reserved 

11111 No Register Selected 
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10.3.1.2 Exit Command (EX) Bit 5 
If the EX bit is set, the processor will leave the debug mode and resume normal operation. 
The Exit command is executed only if the Go command is issued, and the operation is 
write to OPDBR or read/write to "No Register Selected". Otherwise the EX bit is ignored. 

EX Action 

0 Remain in debug mode 

1 Leave debug mode 

10.3.1.3 Go Command (GO) Bit 6 
If the GO bit is set, the chip will execute the instruction which resides in the PIL register. 
To execute the instruction, the processor leaves the debug mode, and the status is reflect­
ed in the OSO-OS1 pins. The processor will return to the debug mode immediately after 
executing the instruction if the EX bit is cleared. The processor goes on to normal opera­
tion if the EX bit is set. The GO command is executed only if the operation is write to 
OPDBR or read/write to "No Register Selected". Otherwise the GO bit is ignored. 

GO Action 

0 Inactive (no action taken) 

1 Execute instruction in PIL 

10.3.1.4 ReadlWrite Command (RIW) Bit 7 
The RIW bit specifies the direction of data transfer. The table below describes the options 
defined by the RIW bit. 

RIW Action 

0 Write the data associated with the command into the register 
specified by RS4-RSO 

1 Read the data contained in the register specified by RS4-RSO 

10.3.2 OnCE Bit Counter (OBC) 
The OBC is a 5-bit counter associated with shifting in and out the data bits. The OBC is 
incremented by the falling edges of the DSCK. The OBC is cleared during hardware reset 
and whenever the DSP56K acknowledges that the debug mode has been entered. The 
OBC supplies two signals to the OnCE Decoder: one indicating that the first 8 bits were 



shifted in (so a new command is available) and the second indicating that 24 bits were 
shifted in (the data associated with that command is available) or that 24 bits were shifted 
out (the data required by a read command was shifted out). 

10.3.3 OnCE Decoder (ODEC) 
The ODEC supervises the entire OnCE activity. It receives as input the a-bit command 
from the OCR, two signals from OBC (one indicating that 8 bits have been received and 
the other that 24 bits have been received), and two signals indicating that the processor 
was halted. The ODEC generates all the strobes required for reading and writing the se­
lected OnCE registers. 

10.3.4 OnCE Status and Control Register (OSCR) 
The Status and Control Register is a 16-bit register used to select the events that will put 
the chip in debug mode and to indicate the reason for entering debug mode. The control 
bits are read/write while the status bits are read only. See Figure 10-5. 

10.3.4.1 Memory Breakpoint Control (BCO-BC3) Bits 0-3 
These control bits enable memory breakpoints. They allow memory breakpoints to occur 
when a memory address is within the low and high memory address registers and will se- . 
lect whether the breakpoint will be recognized for read, write, or fetch (program space) 
accesses. These bits are cleared on hardware reset. See Table 10-3 for the definition of 
the BCO-BC3 bits. 

When BC3-BCO=0001, program memory breakpoints are enabled for any fetch access 
to the program space (true and false fetches, fetches of 2nd word, etc.). Explicit program 
memory accesses resulting from MOVEP and MOVEM instructions to/from program 
memory space are ignored. 

W~en BC3-BCO=001 0, program memory breakpoints are enabled for any read access to 
the Program space (MOVEP and MOVEM instructions from P: memory space, true and 
false fetches, fetches of 2nd word, etc.). ExpliCit program memory write accesses resulting 
from MOVEP and MOVEM instructions to P: memory space are ignored. 

15 11 10 9 8 7 6543210 
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* Reserved, read as zero, should be written with zero for future compatibility. 

Figure 10-5 OnCE Status and Control Register (OSCR) 
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When BC3-BCO=0011, program memory breakpoints are enabled for any read or write 
access to the Program space (any kind of MOVE, true and false fetches, fetches of sec­
ond word, etc.). 

When BC3-BCO=01 00, program memory breakpoints are enabled only for fetches of the 
first instruction word of instructions that are actually executed. Aborted instructions and 
prefetched instructions that are discarded (such as jump targets that are not taken) are 
ignored by the breakpoint logic. 

When BC3-BCO=01 01,0110 or 0111, program memory breakpoints are enabled only for 
explicit program memory access resulting from MOVEP or MOVEM instructions to/from 
P: memory space. 

Table 10-3 Memory Breakpoint Control Table 

BC3 BC2 BC1 BCO DESCRIPTION 

0 0 0 0 Breakpoint disabled 

0 0 0 1 Breakpoint on any fetch (including aborted instructions) 

0 0 1 0 Breakpoint on any P read (any fetch or move) 

0 0 1 1 Breakpoint on any P access (any fetch, P move R/W) 

0 1 0 0 Breakpoint on executed fetches only 

0 1 0 1 Breakpoint on P space write 

0 1 1 0 Breakpoint on P space read (no fetches) 

0 1 1 1 Breakpoint on P space write or read (no fetches) 

1 0 0 0 Reserved 

1 0 0 1 Breakpoint on X space write 

1 0 1 0 Breakpoint on X space read 

1 0 1 1 Breakpoint on X space write or read 

1 1 0 0 Reserved 

1 1 0 1 Breakpoint on Y space write 

1 1 1 0 Breakpoint on Y space read 

1 1 1 1 Breakpoint on Y space write or read 

10.3.4.2 Trace Mode Enable (TME) Bit 4 
The TME control bit, when set, enables the Trace Mode of operation (see Section 10.5). 
This bit is cleared on hardware reset. 

10.3.4.3 Reserved (Bits 5-7,11-15) 
These bits are reserved for future use. They read as zero and should be written with zero 
for future compatibility. 



10.3.4.4 Software Debug Occurrence (SWO) Bit 8 
This read-only status bit is set when the processor enters debug mode of operation as a 
result of the execution of the DEBUG or DEBUGcc instruction with condition true. This bit 
is cleared on hardware reset or when leaving the debug mode with the GO and EX bits 
set. 

10.3.4.5 Memory Breakpoint Occurrence (MBO) Bit 9 
This read-only status bit is set when a memory breakpoint occurs. This bit is cleared on 
hardware reset or when leaving the debug mode with the GO and EX bits set. 

10.3.4.6 Trace Occurrence (TO) Bit 10 
This read-only status bit is set when the processor enters debug mode of operation, when 
the trace counter is zero and the trace mode has been armed. This bit is cleared on hard­
ware reset or when leaving the debug mode with the GO and EX bits set. 

10.4 OnCE MEMORY BREAKPOINT LOGIC 
Memory breakpOints may be set on program memory or data memory locations. Also, the 
breakpoint does not have to be in a specific memory address but within an address range 
of where the program may be executing. This Significantly increases the programmer's 
ability to monitor what the program is doing in real-time. 

The breakpOint logic contains a latch for the addresses, registers that store the upper and 
lower address limit, comparators, and a breakpoint counter. Figure 10-6 illustrates the 
block diagram of the OnCE Memory Breakpoint Logic. 

Address comparators help to determine where a program may be getting lost or when 
data is being written to areas that should not be written to. They are also useful in halting 
a program at a specific point to examine/change registers or memory. Using address com­
parators to set breakpoints enables the user to set breakpoints in RAM or ROM in any op­
erating mode. Memory accesses are monitored according to the contents of the OSCR. 

The low address comparator will generate a logic true signal when the address on the bus 
is greater than or equal to the contents of the lower limit register. The high address com­
parator will generate a logic true Signal when the address on the bus is less than or equal 
to the contents of the upper limit register. If the low address comparator and high address 
comparator both issue a logiC true signal, the address is within the address range and the 
breakpoint counter is decremented if the contents are greater than zero. If zero, the 
counter is not decremented and the breakpoint exception occurs (ISBKPT asserted). 

10.4.1 Memory Address Latch (OMAL) 
The Memory Address Latch is a 16-bit register that latches the PAB, XAB or VAB on every 
instruction cycle according to the BC3-BCO bits in OSCR. 
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Figure 10-6 OnCE Memory Breakpoint Logic 

10.4.2 Memory Upper Limit Register (OMULR) 
The 16-bit Memory Upper Limit Register stores the memory breakpoint upper limit. The 
OMULR can be read or written through the OnCE serial interface. Before enabling break­
points, OMULR must be loaded by the external command controller. 

10.4.3 Memory Lower Limit Register (OMLLR) 
The 16-bit Memory Lower Limit Register stores the m~mory breakpoint lower limit. The 
OMLLR can be read or written through the OnCE serial interface. Before enabling break­
points, OMLLR must be loaded by the external command controller. 



10.4.4 Memory High Address Comparator (OMHC) 
The OMHC compares the current memory address (stored in OMAL) with the OMULR 
contents. If OMULR is higher than or equal to OMAL then the comparator delivers a signal 
indicating that the address is lower than or equal to the upper limit. 

10.4.5 Memory Low Address Comparator (OMLC) 
The OMLC compares the current memory address (stored in OMAL) with the OMLLR con­
tents. If OMLLR is lower than or equal to OMAL then the comparator delivers a signal in­
dicating that the address is higher than or equal to the lower limit. 

10.4.6 Memory Breakpoint Counter (OMBC) 
The 24-bit OMBC is loaded with a value equal to the number of times, minus one, that a 
memory access event should occur before a memory breakpoint is declared. The memory 
access event is specified by the BCS-BCO bits in the OSCR register and by the memory 
upper and lower limit registers. On each occurrence of the memory access event, the 
breakpoint counter is decremented. When the counter has reached the value of zero and 
a new occurrence takes place, the chip will enter the debug mode. The OMBC can be 
read, written, or cleared through the OnCE serial interface. 

Anytime the upper or lower limit registers are changed, or a different breakpoint event is 
selected in the OSCR, the breakpoint counter must be written afterward. This assures that 
the OnCE breakpoint logic is reset and that no previous events will affect the new break­
point event selected. 

The breakpoint counter is cleared by hardware reset. 

10.5 OnCE TRACE LOGIC 
The OnCE trace logic allows the user to execute instructions in single or multiple steps 
before the chip returns to the debug mode and awaits OnCE commands from the debug 
serial port. (The OnCE trace logic is independent of the trace facility of the 
DSP56000/56001, which is operated through the trace interrupt discussed in Section 
7.S.S.S, and started by setting the trace bit in the processor's status register discussed in 
Section 5.4.2.12). The OnCE trace logic block diagram is shown in Figure 10-7. 

The trace counter allows more than one instruction to be executed in real time before the 
chip returns to the debug mode of operation. This feature helps the software developer 
debug sections of code which do not have a normal flow or are getting hung up in infinite 
loops. The trace counter also enables the user to count the number of instructions exe­
cuted in a code segment. 
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To initiate the trace mode of operation, the counter is loaded with a value, the program 
counter is set to the start location of the instruction(s) to be executed real-time, the TME 
bit is set in the OSCR, and the processor exits the debug mode by executing the appro­
priate command issued by the external command controller. 

Upon exiting the debug mode, the counter is decremented after each execution of an in­
struction. Interrupts are serviceable, and all instructions executed (including fast interrupt 
services and the execution of each repeated instruction) will decrement the trace counter. 

Upon decrementing the trace counter to zero, the processor will re-enter the debug mode, 
the trace occurrence bit TO in the OSCR will be set, and the DSO pin 'will be toggled to 
indicate that the processor has entered debug mode and is requesting service (ISTRACE 
asserted). 

END OF INSTRUCTION 

DSI 

DSO~-----1 TRACE COUNTER 

DSCK 

COUNT=O 

ISTRACE 

Figure 10-7 OnCE,Trace Logic Block Diagram 

10.5.1 Trace Counter (OTC) 
The OTC is a 24-bit counter that can be read, written, or cleared through the OnCE serial 
interface. If N instructions are to be executed before entering the debug mode, the Trace 
Counter should be loaded with N-1. The Trace Counter is cleared by hardware reset. 

10.6 METHODS OF ENTERING THE DEBUG MODE 
The chip acknowledges having entered the debug mode by pulsing low the DSO line, in­
forming the external command controller that the chip has entered the debug mode and 
is waiting for commands.The following paragraphs discuss conditions that bring the pro­
cessor into the debug mode. 



10.6.1 External Debug Request During RESET 
Holding the DR line asserted during the assertion of RESET causes the chip to enter the 
debug mode. After receiving the acknowledge, the external command controller must 
deassert the DR line before sending the first command. Note that in this case the chip 

does not execute any instruction before entering the debug mode. 

10.6.2 External Debug Request During Normal Activity 
Holding the DR line asserted during normal chip activity causes the chip to finish the ex­
ecution of the current instruction and then enter the debug mode. After receiving the ac­
knowledge, the external command controller must deassert the DR line before sending 
the first command. Note that in this case the chip completes the execution of the current 
instruction and stops after the newly fetched instruction enters the instruction latch. This 
process is the same for any newly fetched instruction including instructions fetched by the 
interrupt processing, or those that will be aborted by the interrupt processing. 

10.6.3 External Debug Request During STOP 
Asserting DR when the chip is in the stop state (i. e., has executed a STOP instruction) 

and keeping it asserted until an acknowledge pulse in DSO is produced causes the chip 
to exit the stop state and enter the debug mode. After receiving the acknowledge, the ex­
ternal command controller must deassert DR before sending the first command. Note that 

in this case, the chip completes the execution of the STOP instruction and halts after the 
next instruction enters the instruction latch. 

10.6.4 External Debug Request During WAIT 
Asserting DR when the chip is in the wait state (i. e., has executed a WAIT instruction) 
and keeping it asserted until an acknowledge pulse in DSO is produced causes the chip 

to exit the wait state and enter the debug mode. After receiving the acknowledge, the ex­

ternal command controller must deassert DR before sending the first command. Note that 

in this case, the chip completes the execution of the WAIT instruction and halts after the 
next instruction enters the instruction latch. 

10.6.5 Software Request During Normal Activity 
, Upon executing the DEBUG or DEBUGcc instruction when the specified condition is true, 

the chip enters the debug mode after the instruction following the DEBUG instruction has 
entered the instruction latch. 

10.6.6 Enabling Trace Mode 
When the trace mode mechanism is enabled and the trace counter is greater than zero, 
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the trace counter is decremented after each instruction execution. The completed execu­
tion of an instruction when the trace counter is zero will cause the chip to enter the debug 
mode. 

Note: Only instructions actually executed cause the trace counter to decrement, i.e. an 
aborted instruction will not decrement the trace counter and will not cause the chip to enter 
the debug mode. 

10.6.7 Enabling Memory Breakpoints 
When the memory breakpoint mechanism is enabled with a breakpoint counter value of 
zero, the chip enters the debug mode after completing the execution of the instruction that 
caused the memory breakpoint to occur. In case of breakpoints on executed program 
memory fetches, the breakpoint will be acknowledged immediately after the execution of 
the fetched instruction. In case of breakpoints on data memory addresses (accesses to X, 
Y or P memory spaces by MOVE instructions), the breakpoint will be acknowledged after 
the completion of the instruction following the instruction that accessed the specified ad­
dress. 

10.7 PIPELINE INFORMATION AND GLOBAL DATA BUS REGISTER 
A number of on-chip registers store the chip pipeline status to restore the pipeline and re­
sume normal chip activity upon return from the debug mode. Figure 10-8 shows the block 
diagram of the pipeline information registers with the exception of the program address 
bus (PAS) registers, which are shown in Figure 10-9. 
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Figure 10-8 OnCE Pipeline Information and GOB Registers 
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Figure 10-9 OnCE PAB FIFO 

10.7.1 Program Data Bus Register (OPDBR) 
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The OPDBR is a 24-bit latch that stores the value of the program data bus which was gen­
erated by the last program memory access before the chip entered the debug mode. 
OPDBR can be read or written through the OnCE serial interface. It is affected by the op­
erations performed during the debug mode and must be restored by the external com­
mand controller when the chip returns to normal mode. 

10.7.2 Pipeline Instruction Latch Register (OPILR) 
The OPILR is a 24-bit latch that stores the value of the instruction latch before the debug 
mode is entered. OPILR can only be read through the OnCE serial interface. This register 
is affected by the operations performed during the debug mode and must be restored by 
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the external command controller when returning to normal mode. Since there is no direct 
write access to this register, this task is accomplished in the first write to OPDBR after en­
tering the debug mode or after executing the GO command; the data from OPDBR is 
transferred to OPILR only in these cases. 

10.7.3 Global Data Bus Register (OGDBR) 
The OGDBR is a 24-bit latch that can only be read through the OnCE serial interface. 
OGDBR is not actually required from a pipeline status restore point of view but is required 
as a means of passing information between the chip and the external command controller. 
OGDBR is mapped on the X internal 1/0 space at address $FFFC. Whenever the external 
command controller needs the contents of a register or memory location, it will force the 
chip to execute an instruction that brings that information to OGDBR. Then, the contents 
of OGDBR will be delivered serially to the external command controller by the command 
"READ GDB REGISTER". 

10.8 PROGRAM ADDRESS BUS HISTORY BUFFER 
There are two read-only PAB registers which give pipeline information when the debug 
mode is entered. The OPABFR register tells which opcode address is in the fetch stage 
of the pipeline and OPABDR tells which opcode is in the decode stage. To ease debug­
ging activity and keep track of program flow, a First-In-First-Out (FIFO) buffer stores the 
addresses of the last five instructions that were executed. 

10.8.1 PAB Register for Fetch (OPABFR) 
The OPABFR is a 16-bit register that stores the address of the last instruction that was 
fetched before the debug mode was entered. The OPABFR can only be read through the 
OnCE serial interface. This register is not affected by the operations performed during the 
debug mode. 

10.8.2 PAB Register for Decode (OPABDR) 
The OPABDR is a 16-bit register that stores the address of the instruction currently in the 
instruction latch. This is the instruction that would have been decoded if the chip would 
not have entered the debug mode. OPABDR can only be read through the serial interface. 
This register is not affected by the operations performed during the debug mode. 

10.8.3 PAB FIFO 
The PAB FIFO stores the addresses of the last five instructions that were executed. The 
FIFO is implemented as a circular buffer containing five 16-bit registers and one 3-bit 
counter. All the registers have the same address but any read access to the FIFO address 
will cause the counter to increment, making it pOint to the next FIFO register. The registers 



are serially available to the external command controller through their common FIFO ad­
dress. Figure 10-9 shows the block diagram of the PAB FIFO. The FIFO is not affected by 
the operations performed during the debug mode except for the FIFO pointer increment 
when reading the FIFO. When entering the debug mode, the FIFO counter will be pointing 
to the FIFO register containing the address of the oldest of the five executed instructions. 
The first FIFO read will obtain the oldest address and the following FIFO reads will get the 
other addresses from the oldest to the newest (the order of execution). 

To ensure FIFO coherence, a complete set of five reads of the FIFO must be performed 
because each read increments the FIFO pOinter, thus making it point to the next location. 
After five reads the pointer will point to the same location it pointed to before starting the 
read procedure. 

10.9 SERIAL PROTOCOL DESCRIPTION 
The following protocol permits an efficient means of communication between the OnCE's 
external command controller and the DSP56K chip. Before starting any debugging activ­
ity, the external command controller must wait for an acknowledge on the DSO line, indi­
cating that the chip has entered the debug mode. The external command controller com­
municates with the chip by sending a-bit commands that may be accompanied by 24 bits 
of data. Both commands and data are sent or received most significant bit first. After send­
ing a command, the external command controller must wait for the processor to acknowl­
edge execution of the command before it may send a new command. 

When accessing OnCE 16-bit registers, the register contents appear in the 16 most sig­
nificant bits in the 24-bit data field, and the a least significant bits are zeroed. 

10.9.1 OnCE Commands 
The OnCE commands may be classified as follows: 

• read commands (when the chip will deliver the required data). 
• write commands (when the chip will receive data and write the data in one of the OnCE 

registers). 
• commands that do not have data transfers associated with them. 

The commands are a bits long and have the format shown in Figure 10-4. 

10.10 DSP56K TARGET SITE DEBUG SYSTEM REQUIREMENTS 
A typical DSP56K debug environment consists of a target system where the DSP56K re­
sides in the user defined hardware. The debug serial port interfaces to the external com­
mand controller over a 6-wire link which includes the 4 OnCE wires, a ground, and a reset 
wire. The reset wire is optional and is only used to reset the DSP56K and its associated 
circuitry. 
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The external command controller acts as the medium between the DSP56K target system 
and a host computer. The external command controller circuit acts as a DSP56K serial 
debug port driver and host computer command interpreter. The controller issues com­
mands based on the host computer inputs from a user interface program which commu­
nicates with the user. 

10.11 USING THE OnCE 
The following notations are used: 

ACK = Wait for acknowledge on the DSO pin 

ClK = Issue 24 clocks to read out data from the selected register 

10.11.1 Begin Debug Activity 
Most of the debug activities have the following beginning: 

1. ACK 

2. Save pipeline information: 

a. Send command READ PDS REGISTER (10001001) 

b. ACK 

c. ClK 

d. Send command READ Pil REGISTER (10001011) 

e. ACK 

f. ClK 

3. Read PAS FI FO and fetch/decode info (this step is optional): 

a. Send command READ PAS address for fetch (10001010) 

b.ACK 

c. ClK 

d. Send command READ PAS address for decode (10010011) 

e. ACK 

f. ClK 

g. Send command READ FIFO REGISTER and increment counter (10010001) 

h. ACK 

i. ClK 

j. Send command READ FIFO REGISTER and increment counter (10010001) 



k. ACK 

I. ClK 

m. Send command READ FIFO REGISTER and increment counter (10010001) 

n. ACK 

o.ClK 

p. Send command READ FIFO REGISTER and increment counter (10010001) 

q.ACK 

r. ClK 

s. Send command READ FIFO REGISTER and increment counter (10010001) 

t. ACK 

u.ClK 

10.11.2 Displaying A Specified Register 
1. Send command WRITE PDB REGISTER, GO, no EX (01001001). The OnCE con­

troller selects PDB as destination for serial data. 

2.ACK 

3. Send the 24-bit DSP56K opcode: "MOVE reg,x:OGDB" 
After 24 bits have been received, the PDB register drives the PDB. The OnCE con­
troller releases the chip from the debug mode, the chip executes the MOVE 
instruction, and the contents of the register specified in the instruction are loaded in 
the GOB REGISTER. The signal that marks the end of the instruction returns the 
chip to the debug mode. 

4.ACK 

5. Send command READ GOB REGISTER (10001000) 
The OnCE controller selects GOB as source for serial data. 

6.ACK 

7.ClK 

10.11.3 Displaying X Memory Area Starting From Address XXXX 
This command uses RO to minimize serial traffic. 

1. Send command WRITE PDB REGISTER, GO, no EX (01001001). 
The OnCE controller selects PDB as destination for serial data. 

2. ACK 

3. Send the 24-bit DSP56K opcode: "MOVE RO,x:OGDB" 

-
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After 24 bits have been received the POB register drives the POB. The OnCE con-' 
troller releases the chip from the debug mode and the contents of RO are loaded 
in the GOB REGISTER. The signal that marks the end of the instruction returns the 
chip to the debug mode. 

4. ACK 

5. Send command REAO GOB REGISTER (10001001) 
The OnCE controller selects GOB as source for serial data. 

6. ACK 

7. ClK 
The external command controller generates 24 clocks that shift out the contents of 
the GOB register. The value of RO is thus saved and should be restored before ex­
iting the debug mode. 

8. Send command WRITE POB REGISTER, no GO, no EX (00001001) 
OnCE controller selects POB as destination for serial data. 

9. ACK 

10. Send the 24-bit OSP56K opcode: "MOVE #$xxxx,RO" 
After 24 bits have been received, the POB register drives the POB. The OnCE con­
troller causes the processor to load the opcode. 

11. ACK 

12. Send command WRITE POB REGISTER, GO, no EX (01001001) 
The OnCE controller selects POB as destination for serial data. 

13. ACK 

14. Send the 24-bit 2nd word of: "MOVE #$xxxx,RO" (the XXX X field). 
After 24 bits have been received, the POB register drives the POB. The OnCE con­
troller releases the chip from the debug mode and the instruction starts execution. 
The signal that marks the end of the instruction returns the chip to the debug mode. 

15. ACK 

16. Send command WRITE POB REGISTER, GO, no EX (01001001) 
The OnCE controller selects POB as destination for serial data. 

17. ACK 

18. Send the 24-bit OSP56K opcode: "MOVE X:(RO)+,x:OGOB" 
After 24 bits have been received, the POB register drives the POB. The OnCE con­
troller releases the chip from the debug mode and the contents of X:(RO) are 
loaded in the GOB REGISTER. The signal that marks the end of the instruction re­
turns the chip to the debug mode. 



19. ACK 

20. Send command READ GDB REGISTER (10001000) 
The OnCE controller selects GDB as source for serial data. 

21. ACK 

22. ClK 

23. Send command NO REGISTER SELECTED, GO, no EX (01011111) 
The OnCE controller releases the chip from the debug mode and the instruction is 
executed again in a "REPEAT-like" fashion. The signal that marks the end of the 
instruction returns the chip to the debug mode. 

24. ACK 

25. Send command RE~D GDB REGISTER (10001000) 
The OnCE controller selects GDB as source for serial data. 

26. ACK 

27. ClK 

28. Repeat from step 23 until the entire memory area is examined. 

29. After finishing reading the memory, RO should to be restored as follows. 

30. Send command WRITE PDB REGISTER, no GO, no EX (00001001) 
OnCE controller selects PDB as destination for serial data. 

31. ACK 

32. Send the 24-bit DSP56K opcode: "MOVE #saved_rO,RO" 
After 24 bits have been received, the PDB register drives the PDB. The OnCE con­
troller causes the processor to load the opcode. 

33. ACK 

34. Send command WRITE PDB REGISTER, GO, no EX (01001001) 
The OnCE contr~ler selects PDB as destination for serial data. 

35. ACK 

36. Send the 24-bit second word of: "MOVE #saved_rO,RO" (the saved_rO field). 
After 24 bits have been received, the PDB register drives the PDB. The OnCE con­
troller releases the chip from the debug mode and the instruction starts execution. 
The Signal that marks the end of the instruction returns the chip to the debug mode. 

37. ACK 

-
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10.11.4 Executing a Single-Word DSP56K Instruction While in Debug Mode 
1. Send command WRITE PDB REGISTER, GO, no EX (01001001). 

The OnCE controller selects PDB as destination for serial data. 

2.ACK 

3. Send the single-word 24-bit DSP56K opcode to be executed. 
After 24 bits have been received, the PDB register drives the PDB. The OnCE con­
troller releases the chip from the debug mode and the chip executes the instruction. 
The Signal that marks the end of the instruction returns the chip to the debug mode. 
Some DSP56K instructions should not be executed in this state: DO, REP, ILLE­
GAL or any opcode that is considered illegal, and DEBUG. 

4.ACK 

10.11.5 Executing a Two-Word DSP56K Instruction While In Debug Mode 
1. Send command WRITE PDB REGISTER, no GO, no EX (00001001). 

The OnCE controller selects PDB as destination for serial data .. 

2.ACK 

3. Send the first instruction word (24-bit DSP56K opcode) 
After 24 bits have been received, the PDB register drives the PDB. The OnCE con­
troller causes the processor to load the opcode. 
Some DSP56K instructions should not be executed in this state: DO, REP, ILLE­
GAL or any opcode that is considered illegal, and DEBUG. 

4.ACK 

5. Send command WRITE PDB REGISTER, GO, no EX (01001001) 
The OnCE controller selects PDB as destination for serial data. 

6.ACK 

7. Send the second 24-bit instruction word. 
After 24 bits have been received, the PDB register drives the PDB. The OnCE con­
troller releases the chip from the debug mode and the instruction starts execution. 
The Signal that marks the end of the instruction returns the chip to the debug mode. 

8.ACK 

10.11.6 Returning from Debug Mode to Normal Mode 
There are two cases for returning from the debug mode in a single processor: 

• Control is returned to the program that was running before debug was initiated. 
• Jump to a different program location is executed. 



10.11.6.1 Case 1: Return To The Previous Program (Return To Normal Mode) 
1. Send command WRITE PDS REGISTER, no GO, no EX (00001001) 

The OnCE controller selects the PDS as the destination for serial data. Also, the 
OnCE controller selects the on-chip PAS register as the source for the PAS bus. 

2.ACK 

3. Send the 24 bits of the saved PIL (instruction latch) value. 
After the 24 bits have been received, the PDS register drives the PDS. The OnCE 
controller causes the PIL to latch the PDS value. In this way, the PIL is restored to 
the same state as before entering the debug mode. 

4.ACK 

5. Send command WRITE PDS REGISTER, GO, EX (01101001) 
The OnCE controller selects PDS as destination for the serial data to follow. 

6. ACK 

7. Send the 24 bits of the saved PDS value. 
After the 24 bits have been received, the PDS register drives the PDS. In this way, 
the PDS is restored to the same state as before entering the debug mode. The EX 
bit causes the OnCE controller to release the chip from the debug mode and the 
status bits in OSCR are cleared. The GO bit causes the chip to start executing in­
structions. 

10.11.6.2 Case 2: Jump To A New Program (Go From Address $xxxx) 
1. Send command WRITE PDS REGISTER, no GO, no EX (00001001) 

The OnCE controller selects PDS as destination for serial data. Also, the OnCE 
controller selects the on-chip PAS register as the source for the PAS bus. 

2.ACK 

3. Send 24 bits of the opcode of a two-word jump instruction instead of the saved PIL 
value. After the 24 bits have been received, the PDS register drives the PDS. The 
OnCE controller causes the PIL to latch the PDS value. In this way, the instruction 
latch will contain the opcode of the jump instruction which will cause the change in 
the program flow. 

4.ACK 

5. Send command WRITE PDS REGISTER, GO, EX (01101001) 
The OnCE controller selects PDS as destination for serial data. 

6. ACK 

7. Send 24 bits of the jump target absolute address ($xxxxxx). 
After 24 bits have been received, the PDS register drives the PDS. In this way, the 
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PDS contains the second word of the jump as required for the jump instruction ex­
ecution. The EX bit causes the OnCE controller to release the chip from the debug 
mode and the status bits in OSCR are cleared. The GO bit causes the chip to start 
executing the jump instruction which will then cause the chip to continue instruction 
execution from the target address. Note that the trace counter will count the jump 
instruction so the current trace counter may need to be corrected if the trace mode 
is enabled. 

10.11.7 Debugging Multiprocessor Systems With a Single External Command 
Controller 

In multiprocessor systems, each processor may be individually debugged as described 
above. When simultaneous exit of the debug state is desired for more than one processor, 
each processor must first be loaded with the required PIL and PDS values where process­
ing should proceed. This is accomplished by the following sequence as applied to each 
processor: 

1. Send command WRITE PDS REGISTER, no GO, no EX (00001001) 
The OnCE controller selects PDS as destination for serial data. Also, the OnCE 
controller selects the on-chip PAS register as the source for the PAS bus. 

2.ACK 

3. Send 24 bits of either the opcode of a 2-word jump instruction or the saved PIL val­
ue. After the 24 bits have been received, the PDS register drives the PDS. The 
OnCE controller causes the PIL to latch the PDS value. 

4.ACK 

5. Send command WRITE PDS REGISTER, no GO, no EX (00001001) 
The OnCE controller selects PDS as destination for serial data . 

6.ACK 

7. Send 24 bits of either the jump target absolute address ($xxxxxx) or the saved PDS 
value. After 24 bits have been received, the PDS register drives the PDS. 

8.ACK 

At this point, all processors should have the required PIL and PDS values while still in de­
bug mode. To return all processors to the normal execution state simultaneously, the fol­
lowing command should be issued to all processors in parallel: 

9. Send command NO REGISTER SELECTED, GO, EX (01111111) 
The OnCE controller releases the chips from the debug mode and instruction exe­
cution is resumed. 
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ADDITIONAL SUPPORT 
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11.1 USER SUPPORT 
User support from the conception of a design through completion is available from 
Motorola and third-party companies as shown in the following list: 

Design 

Prototyping 

Design 
Verification 

Motorola 

Data Sheets 
Application Notes 
Application Bulletins 
Software Examples 

Assembler 
Linker 
C Compiler 
Simulator 
Application Development 

System (ADS) 
In-Circuit Emulator 

Cable for ADS 

Application Development 
System (ADS) 

In-Circuit Emulator 
Simulator 

Third Party 

Data Acquisition Packages 
Filter Design Packages 
Operating System Software 
Simulator 

Logic Analyzer with 
DSP56000/DSP56001 ROM Packages 

In-Circuit Emulators 
Data Acquisition Cards 
DSP Development System Cards 
Operating System Software 
Debug Software 

Data Acquisition Packages 
Logic Analyzer with 

DSP56000/DSP56001 ROM Packages 
Data Acquisition Cards 
DSP Development System Cards .. 
Application-Specific Development Tools 
Debug Software 

-
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The following is a partial list of the support available for the DSP56000/DSP56001. Addi­
tional information can be obtained through Dr. BuB or the appropriate support telephone 
service. 

11.2 MOTOROLA DSP PRODUCT SUPPORT 
• DSP56000CLASx Design-In Software Package which includes: 

Relocatable Macro Assembler 

Linker 

Simulator (simulates single or multiple DSP56K processors» 

Librarian 

• DSP56KCCx GNU C Compiler 

• DSP56000/DSP56001 Applications Development System (ADS) 

• Support Integrated Circuits 

• DSP Bulletin Board (Dr. BuB) 

• Motorola DSP Newsletter 

• Motorola Field Application Engineers (FAEs) 
See your local telephone directory for the Motorola Semiconductor Sector sales 
office telephone number. 

• Design Hotline 

• Applications Assistance 

• Marketing Information 

• Third-Party Support Information 

• University Support Information 

11.2.1 DSP56000CLASx Assembler/Simulator 
The Macro Cross Assembler and Simulator run on: 

1. IBMTM PCs (-386 or higher) under DOS 2.x and 3.x 

2. Macintosh™ II under MAC OS 4.1 or later 

3. SUN-4™ under UNIXTM BSD 4.2 

4. NeXTTM under Mach 

11.2.2 Macro Cross Assembler Features: 
• Production of relocatable object modules compatible with linker program when in 

relocatable mode 

• Production of absolute files compatible with simulator program when in absolute 
mode 

• Supports full instruction set, memory spaces, and parallel data transfer fields of 



the DSP56K family of processors 

• Modular programming features: local labels, sections, and external definition/ref-
erence directives 

• Nested macro processing capability with support for macro libraries 

• Complex expression evaluation including boolean operators 

• Built-in functions for data conversion, string comparison, and common transcen­
dental math functions 

• Directives to define circular and bit-reversed buffers 

• Extensive error checking and reporting 

11.2.3 Simulator Features: 
• Simulation of all DSP56K family members 

• Simulation of multiple DSP56Ks 

• Linkable object code modules: 

-Nondisplay simulator library 

-Display simulator library 

• C language source code for: 

-Screen management functions 

-Terminal I/O functions 

-Simulation examples 

• Single stepping through object programs 

• Up to 99 conditional or unconditional breakpoints 

• Program patching using a single-line assembler/disassembler 

• Instruction, clock cycle, and histogram counters 

• Session and/or command logging for later reference 

• ASCII input/output files for peripherals 

• Help-file and help-line display of simulator commands 

• Loading and saving of files to/from simulator memory 

• Macro command definition and execution 

• Display enable/disable of registers and memory 

• Hexadecimal/decimal/binary calculator 

11.2.4 DSP56KCCx Language Compiler Features: 
• GNU - ANSI Standard 

• Structures/Unions 

• Floating Point 

... 
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• In-line assembler language code compatibility 

• Full Function preprocessor for: 

-Macro definition/expansion 

-File Inclusion 

-Conditional compilation 

• Full error detection and reporting 

11.3 DSP56KADSx APPLICATION DEVELOPMENT SYSTEM 

11.3.1 DSP56KADS Application Development System Hardware Features: 
• Processor speed independent 

• Multiple (up to 8) application development module (ADM) support with program-
mable ADM addresses 

• 8K/32Kx24 user-configurable RAM for DSP56K code development 

• 1 Kx24 monitor ROM expandable to 4Kx24 

• 96-pin Euro-card connector making all DSP56K pins accessible 

• In-circuit emulation capabilities when used with the DSP56KEMULTRCABL cable 

• Separate berg pin connectors for alternate accessing of serial or hostiDMA ports 

• ADM can be used in stand-alone configuration 

• No external power supply needed when connected to a host platform 

11.3.2 DSP56KADSx Application Development System Software Features: 
• Single/multiple stepping through DSP56K object programs 

• Up to 99 conditional or unconditional breakpoints 

• Program patching using a single-line assembler/disassembler 

• Session and/or command logging for later reference 

• Loading and saving files to/from ADM memory 

• Macro command definition and execution 

• Display enable/disable of registers and memory 

• Debug commands supporting multiple ADMs 

• Hexadecimal/decimal/binary calculator 

• Host operating system commands from within ADS user interface program 

• Multiple as I/O file access from DSP56K object programs 

• Fully compatible with the DSP56KCLASx design-in software package 

• On-line help screens for each command and DSP56K register 



11.3.3 Support Integrated Circuits: 
• 8Kx24 Static RAM - MC56824 

• DSP56ADC16 16-bit, sigma-delta 100-kHz analog-to-digital converter 

• DSP56401 AES/EBU processor 

• DSP56200 FIR filter 

11.4 Dr. BuB ELECTRONIC BULLETIN BOARD 
Dr. BuB is an electronic bulletin board which provides free source code for a large variety 
of topics that can be used to develop applications with Motorola DSP products. The soft­
ware library contains files including FFTs, FIR filters, IIR filters, lattice filters, matrix alge­
bra routines, companding routines, floating-point routines, and others. In addition, the 
latest product information and documentation (including information on new products 
and improvements to existing products) is posted. Questions about Motorola DSP prod­
ucts posted on Dr. BuB are answered promptly. Access to Dr. BuB is through calling 
(512) 891-3771 using a modem set to 8 data bits, no parity, and 1 stop bit. Dr. BuB will 
automatically set the data transfer rate to match your modem (9600,4800,2400, 1200 or 
300 BPS). 

A partial list of the software available on Dr. BuB follows. 

-



I Document 10 I Version Synopsis I Size I 
Audio: 

rvb1.asm 1.0 Easy-to-read reverberation routine 17056 

rvb2.asm 1.0 Same as RVB1.ASM but optimized 15442 

stereo.hlp 1.0 Help file for STEREO.ASM 620 

dge.asm 1.0 Digital Graphic Equalizer code from 14880 

Codec Routines: 

loglin.asm 1.0 Companded CODEC to linear PCM data 4572 
conversion 

loglin.hlp Help for loglin.asm 1479 

loglint.asm 1.0 Test program for loglin.asm 2184 

loglint.hlp Help for loglint.asm 1993 

linlog.asm 1.1 Linear PCM to companded CODEC data 4847 
conversion 

linlog.hlp Help for linlog.asm 1714 

DTMF Routines: 

clear.cmd 1.0 Explained in read.me file 119 

data.lod 1.0 421 

det.asm 1.0 Subroutine used in IIR DTMF 5923 

dtmf.asm 1.0 Main routine used in IIR DTMF 10685 

dtmf.mem 1.0 Memory for DTMF routine 48 

dtmfmstr.asm 1.0 Main routine for multichannel DTMF 7409 

dtmfmstr. mem 1.0 Memory for multichannel DTMF routine 41 

dtmftwo.asm 1.0 10256 

- ex56.bat 1.0 94 

genxd.lod 1.0 Data file 183 

genyd.lod 1.0 Data file 180 

goertzel.asm 1.0 Goertzel routine 4393 

goertzeLlnk 1.0 Link file for Goertzel routine 6954 

goertzel.lst 1.0 List file for Goertzel routine 11600 

load.cmd 1.0 46 

tstgoert.mem 1.0 Memory for Goertzel routine 384 



I Document ID I Version Synopsis I Size I 
sub.asm 1.0 Subroutine linked for use in IIR DTMF 2491 

read.me 1.0 Instructions 738 

Fast Fourier Transforms: 

sincos.asm 1.2 Sine-Cosine Table Generator for FFTs 1185 

sincos.hlp Help for sincos.asm 887 

sinewave.asm 1.1 Full-Cycle Sine wave Table Generator 1029 
Generator Macro 

sinewave.hlp for sinewave.asm 1395 

fftr2a.asm 1.1 Radix 2, In-Place, DIT FFT (smallest) 3386 

fftr2a.hlp Help for fftr2a.asm 2693 

fftr2at.asm 1.1 Test Program for FFTs (fftr2a.asm) 999 

fftr2at.hlp Help for fftr2at.asm 563 

fftr2b.asm 1.1 Radix 2, In-Place, DIT FFT (faster) 4290 

fftr2b.hlp Help for fftr2b.asm 3680 

fftr2c.asm 1.2 Radix 2, In-Place, DIT FFT (even faster) 5991 

fftr2c.hlp Help for fftr2c.asm 3231 

fftr2d.asm 1.0 Radix 2, In-Place, DIT FFT (using 3727 
DSP56001 sine-cosine ROM tables) 

fftr2d.hlp Help for fftr2d.asm 3457 

fftr2dt.asm 1.0 Test program for fftr2d.asm 1287 

fftr2dt.hlp Help for fftr2dt.asm 614 

fftr2e.asm 1.0 1024 Point, Non-In-Place, FFT (3.39ms) 8976 

fftr2e.hlp Help for fftr2e.asm 5011 

fftr2et.asm 1.0 Test program for fftr2e.asm 984 

fftr2et.hlp Help for fftr2et.asm 408 

dct1.asm 1.1 Discrete Cosine Transform using FFT 5493 

dct1.hlp 1.1 Help file for dct1.asm 970 

fftr2cc.asm 1.0 Radix 2, In-place Decimation-in-time 6524 
complex FFT macro 

fftr2cc.hlp 1.0 Help file for fftr2cc.asm 3533 



I Document 10 I Version Synopsis I Size I 
fftr2cn.asm 1.0 Radix 2, Decimation-in-time Complex FFT 6584 

macro with normally ordered input/output 

fftr2cn.hlp 1.0 Help file for fftr2cn.asm 2468 

fftr2en.asm 1.0 1024 point, not-in-place, complex FFT 9723 
macro with normally ordered input/output 

fftr2en.hlp 1.0 Help file for fftr2en.asm 4886 

dhit1.asm 1.0 Routine to compute Hilbert transform 1851 
in the frequency domain 

dhit1.hlp 1.0 Help file for dhit1.asm 1007 

fftr2bf.asm 1.0 Radix-2, decimation-in-time FFT with 13526 
block floating point 

fftr2bf.hlp 1.0 Help file for fftr2bf.asm 1578 

fftr2aa.asm 1.0 FFT program for automatic scaling 3172 

Filters: 

fir.asm 1.0 Direct Form FIR Filter 545 

fir.hlp Help for fir.asm 2161 

firt.asm 1.0 Test program for fir.asm 1164 

iir1.asm 1.0 Direct Form Second Order All Pole 656 
IIR Filter 

iir1.hlp Help for iir1.asm 1786 

iir1t.asm 1.0 Test program for iir1.asm 1157 

iir2.asm 1.0 Direct Form Second Order All Pole 801 
IIR Filter with Scaling 

iir2.hlp Help for iir2.asm 2286 

iir2t.asm 1.0 Test program for iir2.asm 1311 

iir3.asm 1.0 Direct Form Arbitrary Order All 776 
Pole IIR Filter 

iir3.hlp Help for iir3.asm 2605 

iir3t.asm 1.0 Test program for iir3.asm 1309 

iir4.asm 1.0 Second Order Direct Canonic IIR Filter 713 
(Biquad IIR Filter) 

iir4.hlp Help for iir4.asm 2255 

iir4t.asm 1.0 Test program for iir4.asm 1202 



I Document ID I Version Synopsis I Size I 
iir5.asm 1.0 Second Order Direct Canonic IIR Filter 842 

with Scaling (Biquad IIR Filter) 

iir5.hlp Help for iir5.asm 2803 

iir5t.asm 1.0 Test program for iir5.asm 1289 

iir6.asm 1.0 Arbitrary Order Direct Canonic IIR 923 
Filter 

iir6.hlp Help for iir6.asm 3020 

iir6t.asm 1.0 Test program for iir6.asm 1377 

iir7.asm 1.0 Cascaded Biquad IIR Filters 900 

iir7.hlp Help for iir7.asm 3947 

iir7t.asm 1.0 Test program for iir7.asm 1432 

Ims.hlp 1.0 LMS Adaptive Filter Algorithm 5818 

transiir.asm 1.0 Implements the transposed IIR filter 1981 

transiir.hlp 1.0 Help file for transiir.asm 974 

Floating-Point Routines: 

fpdef.hlp 2.0 Storage format and arithmetic 10600 
representation definition 

fpcalls.hlp 2.1 Subroutine calling conventions 11876 

fplist.asm 2.0 Test file that lists all subroutines 1601 

fprevs.hlp 2.0 Latest revisions of floating-point lib 1799 

fpinit.asm 2.0 Library initialization subroutine 2329 

fpadd.asm 2.0 Floating point add 3860 

fpsub.asm 2.1 Floating point subtract 3072 

fpcmp.asm 2.1 Floating point compare 2605 

fpmpy.asm 2.0 Floating point multiply 2250 -fpmac.asm 2.1 Floating point multiply-accumulate 2712 

fpdiv.asm 2.0 Floating point divide 3835 

fpsqrt.asm 2.0 Floating point square root 2873 

fpneg.asm 2.0 Floating point negate 2026 

fpabs.asm 2.0 Floating pOint absolute value 1953 

fpscale.asm 2.0 Floating paint scaling 2127 



I Document ID I Version Synopsis I Size I 
fpfix.asm 2.0 Floating to fixed point conversion 3953 

fpfloat.asm 2.0 Fixed to floating point conversion 2053 

fpceil.asm 2.0 Floating point CEIL subroutine 1771 

fpfloor.asm 2.0 Floating point FLOOR subroutine 2119 

durbin.asm 1.0 Solution for LPC coefficients 5615 

durbin.hlp 1.0 Help file for DURBIN.ASM 2904 

fpfrac.asm 2.0 Floating point FRACTION subroutine 1862 

Functions: 

log2.asm 1.0 Log base 2 by polynomial 1118 
approxi mation 

log2.hlp Help for log2.asm 719 

log2t.asm 1.0 Test program for log2.asm 1018 

log2nrm.asm 1.0 Normalizing base 2 logarithm macro 2262 

log2nrm.hlp Help for log2nrm.asm 676 

log2nrmt.asm 1.0 Test program for log2nrm.asm 1084 

exp2.asm 1.0 Exponential base 2 by polynomial 926 
approxi mation 

exp2.hlp Help for exp2.asm 759 

exp2t.asm 1.0 Test program for exp2.asm 1019 

sqrt1.asm 1.0 Square Root by polynomial 991 
approximation, 7 bit accuracy 

sqrt1.hlp Help for sqrt1.asm 779 

sqrt1 t.asm 1.0 Test program for sqrt1.asm 1065 

sqrt2.asm 1.0 Square Root by polynomial 899 
approximation, 10 bit accuracy 

sqrt2.hlp Help for sqrt2.asm 776 

sqrt2t.asm 1.0 Test program for sqrt2.asm 1031 

sqrt3.asm 1.0 Full precision Square Root Macro 1388 

sqrt3.hlp Help for sqrt3.asm 794 

sqrt3t.asm 1.0 Test program for sqrt3.asm 1053 

tlLasm 1.1 Linear table lookup/interpolation 3253 
routine for function generation 

tlLhlp 1.1 Help for tlLasm 1510 



I Document ID I Version Synopsis I Size I 
bingray.asm 1.0 Binary to G ray code conversion macro 601 

bingrayt.~sm 1.0 Test program for bingray.asm 991 

rand1.asm 1.1 Pseudo Random Sequence Generator 2446 

rand1.hlp Help for rand1.asm 704 

Lattice Filters: 

latfir1.asm 1.0 Lattice FIR Filter Macro 1156 

latfir1.hlp Help for latfir1.asm 6327 

latfir1 t.asm 1.0 Test program for latfir1.asm 1424 

latfir2.asm 1.0 Lattice FIR Filter Macro 1174 
(modified modulo count) 

latfir2.hlp Help for latfir2.asm 1295 

latfir2t.asm 1.0 Test program for latfir2.asm 1423 

latiir.asm 1.0 Lattice IIR Filter Macro 1257 

latiir.hlp Help for latiir.asm 6402 

latiirt.asm 1.0 Test program for latiir.asm 1407 

latgen.asm 1.0 Generalized Lattice FIRlIIR 1334 
Filter Macro 

latgen.hlp Help for latgen.asm 5485 

latgent.asm 1.0 Test program for latgen.asm 1269 

latnrm.asm 1.0 Normalized Lattice IIR Filter Macro 1407 

latnrm.hlp Help for latnrm.asm 7475 

latnrmt.asm 1.0 Test program for latnrm.asm 1595 

Matrix Operations: 

matmul1.asm 1.0 [1 x3][3x3] =[1 x3] Matrix Multiplication 1817 -matmul1.hlp Help for matmul1.asm 527 

matmul2.asm 1.0 General Matrix Multiplication, C=AB 2650 

matmul2.hlp Help for matmul2.asm 780 

matmul3.asm 1.0 General Matrix Multiply-Accumulate, 2815 
C=AB+Q 

matmul3.hlp 1.0 Help for matmul3.asm 865 



I Document 10 I Version Synopsis I Size I 
Reed-Solomon Encoder: 

readme.rs 1.0 Instructions for Reed-Solomon coding 5200 

rscd.asm 1.0 Reed-Solomon coder for DSP56000 simulator 5822 

newc.c 1.0 Reed-Solomon coder coded in C 4075 

table1.asm 1.0 Include file for R-S coder 7971 

table2.asm 1.0 Include file for R-S coder 4011 

Sorting Routines: 

sort1.asm 1.0 Array Sort by Straight Selection 1312 

sort1.hlp Help for sort1 .asm 1908 

sort1t.asm 1.0 Test program for sort1.asm 689 

sort2.asm 1.1 Array Sort by Heapsort Method 2183 

sort2.hlp Help for sort2.asm 2004 

sort2t.asm 1.0 Test program for sort2.asm 700 

Speech: 

Igsol1.asm 2.0 Leroux-Gueguen solution for PARCOR 4861 
(LPC) coefficients 

Igsol1.hlp Help for Igsol1.asm 3971 

durbin1.asm 1.2 Durbin Solution for PARCOR 6360 
(LPC) coefficients 

durbin1.hlp Help for durbin1.asm 3616 

adpcm.asm 1.0 32 kbps CCITT ADPCM Speech Coder 120512 

adpcm.hlp 1.0 Help file for adpcm.asm 14817 

adpcmns.asm 1.0 Nonstandard ADPCM source code 54733 

adpcmns.hlp 1.0 Help file for adpcmns.asm 9952 

Standard 1/0 Equates: 

ioequ.asm 1.1 Motorola Standard I/O Equate File 8774 

ioequlc.asm 1.1 Lower Case Version of ioequ.asm 8788 

intequ.asm 1.0 Standard Interrupt Equate File 1082 

intequlc.asm 1.0 Lower Case Version of intequ.asm 1082 



I Document ID I Version Synopsis I Size I 
Tools and Utilities: 

srec.c 4.10 Utility to convert DSP56000 OMF format 38975 
to SREC. 

srec.doc 4.10 Manual page for srec.c. 7951 

srec.h 4.10 Include file for srec.c 3472 

srec.exe 4.10 Srec executable for IBM PC 22065 

sloader.asm 1.1 Serial loader from the SCI port for the 3986 
DSP56001 

sloader.hlp 1.1 Help for sloader.asm 2598 

sloader.p 1.1 Serial loader s-record file for download 736 
to EPROM 

parity.asm 1.0 Parity calculation of a 24-bit number in 1641 
accumulator A 

parity.hlp 1.0 Help for parity.asm 936 

parityt.asm 1.0 Test program for parity.asm 685 

parityt.hlp 1.0 Help for parityt.asm 259 

dspbug Ordering information for free debug 882 
monitor for DSP56000/DSP56001 

The following Is a list of current DSP56200 related software: 

p1 1.0 Information on 56200 Filter Software 6343 

p2 1.0 Interrupt Driven Adaptive Filter Flowchart. 10916 

p3 1.0 "C" code implementation of p2 25795 

p4 1.0 Polled 1/0 Adaptive Filter Flowchart 10361 

p5 1.0 "C" code implementation of p4 24806 

p6 1.1 Interrupt Driven Dual FIR Filter Flowchart. 9535 

p7 1.0 "C" code implementation of p6 28489 -p8 1.0 Polled 1/0 Dual FIR Filter Flowchart 9656 

p9 1.0 "C" code implementation of p8 28525 



-

11.5 MOTOROLA DSP NEWS 
The Motorola DSP News is a quarterly newsletter providing information on new products, 
application briefs, questions and answers, DSP product information, third-party product 
news, etc. This newsletter is free and is available upon request by calling the marketing 
information phone number listed below. 

11.6 MOTOROLA FIELD APPLICATION ENGINEERS 
Information and assistance for DSP applications is available through the local Motorola 
field office. See your local telephone directory for telephone numbers or call (512)891-
2030. 

11.7 DESIGN HOTLlNE-1-800-521-6274 
This is the Motorola number for information about any Motorola product. 

11.8 DSP HELP LINE - (512) 891-3230 
Design assistance for specific DSP applications is available by calling this number. 

11.9 MARKETING INFORMATION- (512) 891-2030 
Marketing information, including brochures, application notes, manuals, price quotes, 
etc., for Motorola DSP-related products is available by calling this number. 

11.10 THIRD-PARTY SUPPORT INFORMATION - (512) 891-3098 
Information about third-party manufacturers who use and support Motorola DSP products 
is available by calling this number. Third-party support includes: 

Filter design software 

Logic analyzer support 

Boards for VME, IBM-PC/XT/AT, MACI! boards 

Development systems 

Data conversion cards 

Operating system software 

Debug software 

Additional information is available on Dr. BuB and in DSP News. 

11.11 UNIVERSITY SUPPORT - (512) 891-3098 
Information concerning university support programs and university discounts for all 
Motorola DSP products is available by calling this number. 



11.12 TRAINING COURSES - (602) 897-3665 or (800) 521-6274 
There are two DSPS6000 Family training courses available: 

1. Introduction to the DSP5600X (MTT AS) is a 4.S-hour aUdio-tape course on the 
DSPS6K Family architecture and programming. 

2. Introduction to the DSPS600X (MTT31) is a four-day instructor-led course and 
laboratory which covers the details of the DSP5600X architecture and 
programming. 

Additional information is available by writing to: 

Motorola SPS Training and Technical Operations 

Mail Drop ELS24 

P. O. Box 21007 

Phoenix, Arizona 8S036 

or by calling the number above. A technical training catalog is available which describes 
these courses and gives the current training schedule and prices. 

11.13 REFERENCE BOOKS AND MANUALS 
A list of DSP-related books is included here as an aid for the engineer who is new to the 
field of DSP. This is a partial list of DSP references intended to help the new user find 
useful information in some of the many areas of DSP applications. Many of the books 
could be included in several categories but are not repeated. 

General DSP: 

ADVANCED TOPICS IN SIGNAL PROCESSING 
Jae S. Lim and Alan V. Oppenheim 
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1988 

APPLICATIONS OF DIGITAL SIGNAL PROCESSING 
A. V. Oppenheim 
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1~78 

DISCRETE-TIME SIGNAL PROCESSING 
A. V. Oppenheim and R. W. Schafer 
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1989 

DIGITAL PROCESSING OF SIGNALS THEORY AND PRACTICE 
Maurice Bellanger 
New York, NY: John Wiley and Sons, 1984 



DIGITAL SIGNAL PROCESSING 
Alan V. Oppenheim and Ronald W. Schafer 
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1975 

DIGITAL SIGNAL PROCESSING: A SYSTEM DESIGN APPROACH 
David J. DeFatta, Joseph G. Lucas, and William S. Hodgkiss 
New York, NY: John Wiley and Sons, 1988 

FOUNDATIONS OF DIGITAL SIGNAL PROCESSING AND DATA ANALYSIS 
J. A. Cadzow 
New York, NY: MacMillan Publishing Company, 1987 

HANDBOOK OF DIGITAL SIGNAL PROCESSING 
D. F. Elliott 
San Diego, CA: Academic Press, Inc., 1987 

INTRODUCTION TO DIGITAL SIGNAL PROCESSING 
John G. Proakis and Dimitris G. Manolakis 
New York, NY: Macmillan Publishing Company, 1988 

MULTJRATE DIGITAL SIGNAL PROCESSING 
R. E. Crochiere and L. R. Rabiner 
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1983 

SIGNAL PROCESSING ALGORITHMS 
S. Stearns and R. Davis 
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1988 

SIGNAL PROCESSING HANDBOOK 
C.H. Chen 
New York, NY: Marcel Dekker, Inc., 1988 

SIGNAL PROCESSING - THE MODERN APPROACH 
James V. Candy 
New York, NY: McGraw-Hili Company, Inc., 1988 

THEORY AND APPLICATION OF DIGITAL SIGNAL PROCESSING 
Rabiner, Lawrence R., Gold and Bernard 
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1975 

Digital Audio and Filters: 

ADAPTIVE FILTER AND EQUALIZERS 
B. Mulgrew and C. Cowan 
Higham, MA: Kluwer Academic Publishers, 1988 



ADAPTIVE SIGNAL PROCESSING 
B. Widrow and S. D. Stearns 
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1985 

ART OF DIGITAL AUDIO, THE 
John Watkinson 
Stoneham. MA: Focal Press, 1988 

DESIGNING DIGITAL FILTERS 
Charles S. Williams 
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1986 

DIGITAL AUDIO SIGNAL PROCESSING AN ANTHOLOGY 
John Strawn 
William Kaufmann, Inc., 1985 

DIGITAL CODING OF WAVEFORMS 
N. S. Jayant and Peter Noll 
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1984 

DIGITAL FILTERS: ANALYSIS AND DESIGN 
Andreas Antoniou 
New York, NY: McGraw-Hili Company, Inc., 1979 

DIGITAL FILTERS AND SIGNAL PROCESSING 
Leland B. Jackson 
Higham, MA: Kluwer Academic Publishers, 1986 

DIGITAL SIGNAL PROCESSING 
Richard A. Roberts and Clifford T. Mullis 

. New York, NY: Addison-Welsey Publishing Company, Inc., 1987 

INTRODUCTION TO DIGITAL SIGNAL PROCESSING 
Roman Kuc 
New York, NY: McGraw-Hili Company, Inc., 1988 

INTRODUCTION TO ADAPTIVE FILTERS 
Simon Haykin 
New York, NY: MacMillan Publishing Company, 1984 

MUSICAL APPLICATIONS OF MICROPROCESSORS (Second Edition) 
H. Chamberlin 
Hasbrouck Heights, NJ: Hayden Book Co., 1985 



C Programming Language: 

. C: A REFERENCE MANUAL 
Samuel P. Harbison and Guy L. Steele 
Prentice-Hall Software Series, 1987. 

PROGRAMMING LANGUAGE - C 
American National Standards Institute, 
ANSI Document X3.159-1989 
American National Standards Institute, inc., 1990 

THE C PROGRAMMING LANGUAGE 
Brian W. Kernighan, and Dennis M. Ritchie 
Prentice-Hall, Inc., 1978. 

Controls: 

ADAPTIVE CONTROL 
K. Astrom and B. Witten mark 
New York, NY: Addison-Welsey Publishing Company, Inc., 1989 

ADAPTIVE FILTERING PREDICTION & CONTROL 
G. Goodwin and K. Sin 
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1984 

AUTOMATIC CONTROL SYSTEMS 
B.C.Kuo 
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1987 

COMPUTER CONTROLLED SYSTEMS: THEORY & DESIGN 
K. Astrom and B. Witten mark 
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1984 

DIGITAL CONTROL SYSTEMS 
B.C.Kuo 
New York, NY: Holt, Reinholt, and Winston, Inc., 1980 

DIGITAL CONTROL SYSTEM ANALYSIS & DESIGN 
C. Phillips and H. Nagle 
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1984 

ISSUES IN THE IMPLEMENTATION OF DIGITAL FEEDBACK 
COMPENSATORS 
P. Moroney 
Cambridge, MA: The MIT Press, 1983 



Graphics: 

CGM AND CGI 
D. B. Arnold and P. R. Bono 
New York, NY: Springer-Verlag, 1988 

COMPUTER GRAPHICS (Second Edition) 
D. Hearn and M. Pauline Baker 
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1986 

FUNDAMENTALS OF INTERACTIVE COMPUTER GRAPHICS 
J. D. Foley and A. Van Dam 
Reading MA: Addison-Wesley Publishing Company Inc., 1984 

GEOMETRIC MODELING 
Michael E. Morteson 
New York, NY: John Wiley and Sons, Inc. 

GKS THEORY AND PRACTICE 
P. R. Bono and I. Herman (Eds.) 
New York, NY: Springer-Verlag, 1987 

ILLUMINATION AND COLOR IN COMPUTER GENERATED IMAGERY 
Roy Hall 
New York, NY: Springer-Verlag 

POSTSCRIPT LANGUAGE PROGRAM DESIGN 
Glenn C. Reid - Adobe Systems, Inc. 
Reading MA: Addison-Wesley Publishing Company, Inc., 1988 

MICROCOMPUTER DISPLAYS, GRAPHICS, AND ANIMATION 
Bruce A. Artwick 
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1985 

PRINCIPLES OF INTERACTIVE COMPUTER GRAPHICS 
William M. Newman and Roger F. Sproull 
New York, NY: McGraw-Hili Company, Inc., 1979 

PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS 
David F. Rogers 
New York, NY: McGraw-Hili Company, Inc., 1985 

RENDERMANINTERFACE,THE 
Pixar 
San Rafael, CA. 94901 



Image Processing: 

DIGITAL IMAGE PROCESSING 
William K. Pratt 
New York, NY: John Wiley and Sons, 1978 

DIGITAL IMAGE PROCESSING (Second Edition) 
Rafael C. Gonzales and Paul Wintz 
Reading, MA: Addison-Wesley Publishing Company, Inc., 1977 

DIGITAL IMAGE PROCESSING TECHNIQUES 
M. P. Ekstrom 
New York, NY: Academic Press, Inc., 1984 

DIGITAL PICTURE PROCESSING 
Azriel Rosenfeld and Avinash C. Kak 
New York, NY: Academic Press, Inc., 1982 

SCIENCE OF FRACTAL IMAGES, THE 
M. F. Barnsley, R. L. Devaney, B. B. Mandelbrot, H. O. Peitgen, 
D. Saupe, and R. F. Voss 
New York, NY: Springer-Verlag 

Motorola DSP Manuals: 

MOTOROLA DSP56000 LINKER/LIBRARIAN REFERENCE MANUAL 
Motorola, Inc., 1991. 

MOTOROLA DSP56000 MACRO ASSEMBLER REFERENCE MANUAL 
Motorola, Inc., 1991. 

MOTOROLA DSP56000 SIMULATOR REFERENCE MANUAL 
Motorola, Inc., 1991. 

MOTOROLA DSP56000/DSP56001 USER'S MANUAL 
Motorola, Inc.,1990. 

Numerical Methods: 

ALGORITHMS (THE CONSTRUCTION, PROOF, AND ANALYSIS OF 
PROGRAMS) 
P. Berliout and P. Bizard 
New York, NY: John Wiley and Sons, 1986 

MATRIX COMPUTATIONS 
G. H. Golub and C. F. Van Loan 
John Hopkins Press, 1983 



NUMERICAL RECIPES IN C - THE ART OF SCIENTIFIC PROGRAMMING 
William H. Press, Brian P. Flannery, 
Saul A. Teukolsky, and William T. Vetterling 
Cambridge University Press, 1988 

NUMBER THEORY IN SCIENCE AND COMMUNICATION 
Manfred R. Schroeder 
New York, NY: Springer-Verlag, 1986 

Pattern Recognition: 

PATTERN CLASSIFICATION AND SCENE ANALYSIS 
R. O. Duda and P. E. Hart 
New York, NY: John Wiley and Sons, 1973 

CLASSIFICATION ALGORITHMS 
Mike James 
New York, NY: Wiley-Interscience, 1985 

Spectral Analysis: 

STATISTICAL SPECTRAL ANALYSIS, A NON PROBABILISTIC THEORY 
William A. Gardner 
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1988 

THE FAST FOURIER TRANSFORM AND ITS APPLICATIONS 
E. Oran Brigham 
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1988 

THE FAST FOURIER TRANSFORM AND ITS APPLICATIONS 
R. N. Bracewell 
New York, NY: McGraw-Hili Company, Inc., 1986 

Speech: 

ADAPTIVE FILTERS - STRUCTURES, ALGORITHMS, AND APPLICATIONS 
Michael L. Honig and David G. Messerschmitt 
Higham, MA: Kluwer Academic Publishers, 1984 

DIGITAL CODING OF WAVEFORMS 
N. S. Jayant and P. Noll 
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1984 

DIGITAL PROCESSING OF SPEECH SIGNALS 
Lawrence R. Rabiner and R. W. Schafer 
Englwood Cliffs, NJ: Prentice-Hall, Inc., 1978 



LINEAR PREDICTION OF SPEECH 
J. D. Markel and A. H. Gray, Jr. 
New York, NY: Springer-Verlag, 1976 

SPEECH ANALYSIS, SYNTHESIS, AND PERCEPTION 
J. L. Flanagan 
New York, NY: Springer-Verlag, 1972 

SPEECH COMMUNICATION - HUMAN AND MACHINE 
D. O'Shaughnessy 
Reading, MA: Addison-Wesley Publishing Company, Inc., 1987 

Telecommunications: 

DIGITAL COMMUNICATION 
Edward A. Lee and David G. Messerschmitt 
Higham, MA: Kluwer Academic Publishers, 1988 

DIGITAL COMMUNICATIONS 
John G. Proakis 
New York, NY: McGraw-Hili Publishing Co., 1983 



APPENDIX A 
INSTRUCTION SET DETAILS 

Arithmetic 
ABS 

ADC 

IMPY 

INC 

INC24 

MAC 

MACR 

MPY 

MPYR 

MPY(su,uu) 

Program 
Control 

WAIT 





A.1 APPENDIX A INTRODUCTION 
This appendix contains detailed information about each instruction in the DSP56K 
instruction set. It presents an instruction guide to help the user understand the individual 
instruction descriptions and follows with sections on notation and addressing modes. 
The instructions are then discussed in alphabetical order. 

A.2 INSTRUCTION GUIDE 
The following information is included in each instruction description with the goal of mak­
ing each description self-contained: 

1. Name and. Mnemonic: The mnemonic is highlighted in bold type for easy refer­
ence. 

2. Assembler Syntax and Operation: For each instruction syntax, the corresponding 
operation is symbolically described. If there are several operations indicated on a 
single line in the operation field, those operations do not necessarily occur in the 
order shown but are generally assumed to occur in parallel. If a parallel data move 
is allowed, it will be indicated in parenthesis in both the assembler syntax and oper­
ation fields. If a letter in the mnemonic is optional, it will be shown in parenthesis in 
the assembler syntax field. 

3. Description: A complete text description of the instruction is given together with 
any special cases and/or condition code anomalies of which the user should be 
aware when using that instruction. 

4. Example: An example of the use of the instruction is given. The example is shown 
in DSP56K assembler source code format. Most arithmetic and logical instruction 
examples include one or two parallel data moves to illustrate the many types of par­
allel moves that are possible. The example includes a complete explanation, which 
discusses the contents of the registers referenced by the instruction (but not those 
referenced by the parallel moves) both before and after the execution of the instruc­
tion. Most examples are designed to be easily understood without the use of a cal­
culator. 

5. Condition Codes: The status register is depicted with the condition code bits which 
can be affected by the instruction highlighted in bold type. Not all bits in the status 
register are used. Those which are reserved are indicated with a double asterisk 
and are read as zeros. 

6. Instruction Format: The instruction fields, the instruction opcode, and the instruc­
tion extension word are specified for each instruction syntax. When the extension 



word is optional, it is so indicated. The values which can be assumed by each of the 
variables in the various instruction fields are shown under the instruction field's 
heading. Note that the symbols used in decoding the various opcode fields of an 
instruction are completely arbitrary. Furthermore, the opcode symbols used in 
one instruction are completely independent of the opcode symbols used in a dif­
ferent instruction. 

7. Timing: The number of oscillator clock cycles required for each instruction syntax is 
given. This information provides the user a basis for comparison of the execution 
times of the various instructions in oscillator clock cycles. Refer to Table A-1 and 
Section A.8 for a complete explanation of instruction timing, including the meaning 
of the symbols "aio", "ap" , "ax", "ay", "axy", "ea", "jx", "mv", "mvb", "mvc", "mvm", 
"mvp", "rx", "wio", "wp", "wx", and ''wy''. 

8. Memory: The number of program memory words required for each instruction syn­
tax is given. This information provides the user a basis for comparison of the num­
ber of program memory locations required for each of the various instructions in 24-
bit program memory words. Refer to Table A-1 and Section A.8 for a complete 
explanation of instruction memory requirements, including the meaning of the sym­
bols "ea" and "mv". 

A.3 NOTATION 
Each instruction description contains symbols used to abbreviate certain operands and 
operations. Table A-1 lists the symbols used and their respective meanings. Depending 
on the context, registers refer to either the register itself or the contents of the register. 



Table A-1 Instruction Description Notation 

Data ALU Registers Operands 

Xn Input Register X1 or XO (24 Bits) 

Yn Input Register Y1 or YO (24 Bits) 

An Accumulator Registers A2, A1, AO (A2 - 8 Bits, A1 and AO - 24 Bits) 

Bn Accumulator Registers B2, B1, BO (B2 - 8 Bits, B1 and BO - 24 Bits) 

X Input Register X = X1 : XO (48 Bits) 

Y Input Register Y = Y1 : YO (48 Bits) 

A Accumulator A = A2: A 1: AO (56 Bits)* 

B Accumulator B = B2: B1 : BO (56 Blts)* 

AB Accumulators A and B = A1: B1 (48 Bits)* 

BA Accumulators B and A = B1 : A1 (48 Bits)* 

A10 Accumulator A = A1: AO (48 Bits) 

B10 Accumulator B= B1 :BO (48 bits) 

* NOTE: In data move operations, shifting and limiting are performed when this register is specified 
as a source operand. When specified as a destination operand, sign extension and possibly 
zeroing are performed. 

Address ALU Registers Operands 

Rn Address Registers RO - R7 (16 Bits) 

Nn Address Offset Registers NO - N7 (16 Bits) 

Mn Address Modifier Registers MO - M7 (16 Bits) 



PC 

MR 

CCR 

SR' 

OMR 

LA 

LC 

SP 

SSH 

SSL 

SS 

ea 

eax 

eay 

xxxx 

xxx 

aa 

pp 

< ... > 

X: 

Y: 

L: 

P: 

Table A-1 Instruction Description Notation (Continued) 

Program Control Unit Registers Operands 

Program Counter Register (16 Bits) 

Mode Register (8 Bits) 

Condition Code Register (8 Bits) 

Status Register = MR:CCR (16 Bits) 

Operating Mode Register (8 Bits) 

Hardware Loop Address Register (16 Bits) 

Hardware Loop Counter Register (16 Bits) 

System Stack Pointer Register (6 Bits) 

Upper Portion of the Current Top of the Stack (16 Bits) 

Lower Portion of the Current Top of the Stack (16 Bits) 

System Stack RAM = SSH: SSL (15 Locations by 32 Bits) 

Address Operands 

Effective Address 

Effective Address for X Bus 

Effective Address for Y Bus 

Absolute Address (16 Bits) 

Short Jump Address (12 Bits) 

Absolute Short Address (6 Bits, Zero Extended) 

I/O Short Address (6 Bits, Ones Extended) 

Specifies the Contents of the Specified Address 

X Memory Reference 

Y Memory Reference 

Long Memory Reference = X:Y 

Program Memory Reference 



Table A-1 Instruction Description Notation (Continued) 

Miscellaneous Operands 

S,Sn Source Operand Register 

D,Dn Destination Operand Register 

D[n] Bit n of D Destination Operand Register 

#n Immediate Short Data (5 Bits) 

#XX Immediate Short Data (8 Bits) 

#XXX Immediate Short Data (12 Bits) 

#XXXXXX Immediate Data (24 Bits) 

Unary Operators 

- Negation Operator 

- Logical NOT Operator (Overbar) 

PUSH Push Specified Value onto the System Stack (SS) Operator 

PULL Pull Specified Value from the System Stack (SS) Operator 

READ Read the Top of the System Stack (SS) Operator 

PURGE Delete the Top Value on the System Stack (SS) Operator 

I I Absolute Value Operator 

Binary Operators 

+ Addition Operator 

- Subtraction Operator 

* Multiplication Operator 

+,/ Division Operator 

+ Logical Inclusive OR Operator 

. Logical AND Operator 

ED Logical Exclusive OR Operator 

-+ "Is Transferred To" Operator 

Concatenation Operator 



Table A-1 Instruction Description Notation (Continued) 

Addressing Mode Operators 

« 110 Short Addressing Mode Force Operator 

< Short Addressing Mode Force Operator 

> Long Addressing Mode Force Operator 

# Immediate Addressing Mode Operator 

#> Immediate Long Addressing Mode Force Operator 

#< Immediate Short Addressing Mode Force Operator 

Mode Register (MR) Symbols 

DM Double Precision Multiply Bit Indicating if the Chip is in Double Precision Multiply Mode 

LF Loop Flag Bit Indicating When a DO Loop is in Progress 

T Trace Mode Bit Indicating if the Tracing Function has been Enabled 

S1, SO Scaling Mode Bits Indicating the Current Scaling Mode 

11,10 Interrupt Mask Bits Indicating the Current Interrupt Priority Level 

Condition Code Register (CCR) Symbols 
Standard Definitions (Table A-5 in Section A.5 Describes Exceptions) 

S Block Floating Point Scaling Bit Indicating Data Growth Detection 

L Limit Bit Indicating Arithmetic Overflow and/or Data Shifting/Limiting 

E Extension Bit Indicating if the Integer Portion of A or B is in Use 

U Unnormalized Bit Indicating if the A or B Result is Unnormalized 

N Negative Bit Indicating if Bit 55 of the A or B Result is Set 

Z Zero Bit Indicating if the A or B Result Equals Zero 

V Overflow Bit Indicating if Arithmetic Overflow has Occurred in A or B 

C Carry Bit Indicating if a Carry or Borrow Occurred in A or B Result 



aio 

ap 

ax 

ay 

axy 

ea 

jx 

mv 

mvb 

mvc 

mvm 

mvp 

rx 

wio 

wp 

wx 

wy 

() 

( ... ) 
EXT 

LS 

LSP 

MS 

MSP 

r 

S/L 

Sign Ext 

Zero 

Table A-1 Instruction Description Notation (Continued) 

Instruction Timing Symbols 

lime Required to Access an I/O Operand 

lime Required to Access a P Memory Operand 

lime Required to Access an X Memory Operand 

lime Required to Access a V Memory Operand 

lime Required to Access XV Memory Operands 

lime or Number of Words Required for an Effective Address 

lime Required to Execute Part of a Jump-Type Instruction 

lime or Number of Words Required for a Move-Type Operation 

lime Required to Execute Part of a Bit Manipulation Instruction 

lime Required to Execute Part of a MOVEC Instruction 

lime Required to Execute Part of a MOVEM Instruction 

lime Required to Execute Part of a MOVEP Instruction 

lime Required to Execute Part of an RTI or RTS Instruction 

Number of Wait States Used in Accessing External 110 

Number of Wait States Used in Accessing External P Memory 

Number of Wait States Used in Accessing External X Memory 

Number of Wait States Used in Accessing External V Memory 

Other Symbols 

Optional Letter, Operand, or Operation 

Any Arithmetic or Logical Instruction Which Allows Parallel Moves 

Extension Register Portion of an Accumulator (A2 or B2) 

Least Significant 

Least Significant Portion of an Accumulator (AO or BO) 

Most Significant 

Most Significant Portion of a n Accumulator (A1 or B1) 

Rounding constant 

Shifting and/or Limiting on a Data ALU Register 

Sign Extension of a Data ALU Register 

Zeroing of a Data ALU Register 

-



-

A.4 ADDRESSING MODES 
The addressing modes are grouped into three categories: register direct, address regis­
ter indirect, and special. These addressing modes are summarized in Table A-2. All 
address calculations are performed in the address ALU to minimize execution time and 
loop overhead. Addressing modes, which specify whether the operands are in registers, 
in memory, or in the instruction itself (such as immediate data), provide the specific 
address of the operands. 

The register direct addressing mode can be subclassified according to the specific regis­
ter addressed. The data registers inch,Jde X1, XO, V1, VO, X, V, A2, A1, AO, B2, B1, BO, 
A, and B. The control registers include SR, OMR, SP, SSH, SSL, LA, LC, CCR, and MR. 

Address register indirect modes use an address register Rn (RO-R7) to point to locations 
in X, V, and P memory. The contents of the Rn address register (Rn) is the effective 
address (ea) of the specified operand, except in the "indexed by offset" mode where the 
effective address (ea) is (Rn+Nn). Address register indirect modes use an address mod­
ifier register Mn to specify the type of arithmetic to be used to update the address register 
Rn. If an addressing mode specifies an address offset register Nn, the given address off­
set register is used to update the corresponding address register Rn. The Rn address 
register may only use the corresponding address offset register Nn and the correspond­
ing address modifier register Mn. For example, the address register RO may only use the 
NO address offset register and the MO address modifier register during actual address 
computation and address register update operations. This unique implementation allows 
the user to easily address a wide variety of DSP-oriented data structures. All address 
register indirect modes use at least one set of address registers (Rn, Nn, and Mn), and 
the XV memory reference uses two sets of address registers, one for the X memory 
space and one for the V memory space. 

The special addressing modes include immediate and absolute addressing modes as 
well as implied references to the program counter (PC), the system stack (SSH or SSL), 
and program (P) memory. 

Addressing modes may also be categorized by the ways in which they can be used. 
Table A-2 and Table A-3 show the various categories to which each addressing mode 
belongs. These addressing mode categories may be combined so that additional, more 
restrictive classifications may be defined. For example, the instruction descriptions may 
use a memory alterable classification, which refers to addressing modes that are both 
memory addressing modes and alterable addressing modes. Thus, memory alterable 
addressing modes use address register indirect and absolute addressing modes. 



Table A-2 DSP56K Addressing Modes 

Uses Mn Operand Reference 
Addressing Mode 

Modifier C D A P X V L XV S 

Register Direct 

Data or Control Register No X X X 

Address Register Rn No X 

Address Modifier Register No X 
Mn 

Address Offset Register Nn No X 

Address Register Indirect 

No Update No X X X X X 

Postincrement by 1 Yes X X X X X 

Postdecrement by 1 Yes X X X X X 

Postincrement by Offset Nn Yes X X X X X 

Postdecrement by Offset Nn Yes X X X X 

Indexed by Offset Nn Yes X X X X 

Predecrement by 1 Yes X X X X 

Special 

Immediate Data No X 

Absolute Address No X X X X 

Immediate Short Data No X 

Short Jump Address No X 

Absolute Short Address No X X X X 

I/O Short Address No X X 

Implicit No X X X 

NOTE: 
S = System Stack Reference X = X Memory Reference 
C = Program Controller Register Reference Y = Y Memory Reference 
D = Data ALU Register Reference L = L Memory Reference -A = Address ALU Register Reference XY = XV Memory Reference 
P = Program Memory Reference 



-

Table A-3 DSP56K Addressing Mode Encoding 

Mode Reg Addressing Categories Assembler 
Addressing Mode MMM RRR Syntax U P M A 

Register Direct 

Data or Control Register - - X (See Table A-1) 

Address Register - - X Rn 

Address Offset Register - - X Nn 

Address Modifier Register - - X Mn 

Address Register Indirect 

No Update 100 Rn X X X (Rn) 

Postincrement by 1 011 Rn X X X X (Rn) + 

Postdecrement by 1 010 Rn X X X X (Rn) -

Postincrement by Offset Nn 001 Rn X X X X (Rn) + Nn 

Postdecrement by Offset Nn 000 Rn X X X (RN) - Nn 

Indexed by Offset Nn 101 Rn X X (Rn + Nn) . 
Predecrement by 1 111 Rn X X - (Rn) 

Special 

Immediate Data 110 100 X #xxxxxx 

Absolute Address 110 000 X X xxxx 

Immediate Short Data - - #xx 

Short Jump Address - - X xxx 

Absolute Short Address - - X aa 

I/O Short Address - - X pp 

Implicit - - X 

. Update Mode (U) - Modifies address registers without any associated data move. 
Parallel Mode (P) - Used in instructions where two effective addresses are required. 
Memory Mode (M) - Refers to operands in memory using an effective addressing field. 
Alterable Mode (A) - Refers to alterable or writable registers or memory. 



The address register indirect addressing modes require that the offset register number 
be the same as the address register number. The assembler syntax "N" may be used 
instead of liNn" in the address register indirect memory addressing modes. If "N" is spec­
ified, the offset register number is the same as the address register number. 

A.4.1 Addressing Mode Modifiers 
The addressing mode selected in the instruction word is further specified by the contents 
of the address modifier register Mn. The addressing mode update modifiers (MO-M7) are 
shown in Table A-4. There are no restrictions on the use of modifier types with any 
address register indirect addressing mode. 

-



Table A-4 Addressing Mode Modifier Summary 

Binary MO-M7 Hex MO-M7 Addressing Mode Arithmetic 

0000 0000 0000 0000 0000 Reverse Carry (Bit Reverse) 

0000 0000 0000 0001 0001 Modulo 2 

00000000 0000 0010 0002 Modulo 3 

0111111111111110 7FFE Modulo 32767 

0111 1111 1111 1111 7FFF Modulo 32768 

1 000 0000 0000 0000 8000 Reserved 

1000 0000 0000 0001 8001 Multiple Wrap-Around Modulo 2 

1000 0000 0000 0010 8002 Reserved 

1000000000000011 8003 Multiple Wrap-Around Modulo 4 

Reserved 

1 000 0000 0000 0111 8007 Multiple Wrap-Around Modulo 8 

Reserved 

1000000000001111 800F Multiple Wrap-Around Modulo 24 

Reserved 

100000000001 1111 801F Multiple Wrap-Around Modulo 25 

Reserved 

100000000011 1111 803F Multiple Wrap-Around Modulo 26 

Reserved 

100000000111 1111 807F Multiple Wrap-Around Modulo 27 

Reserved 

1 000 0000 1111 1111 80FF Multiple Wrap-Around Modulo 28 

Reserved 

10000001 1111 1111 81FF Multiple Wrap-Around Modulo 29 

Reserved 

1000 0011 1111 1111 83FF Multiple Wrap-Around Modulo 210 

Reserved 

10000111 1111 1111 87FF Multiple Wrap-Around Modulo 211 

Reserved 

-
1 000 1111 1111 1111 8FFF Multiple Wrap-Around Modulo 212 

Reserved 

1001 1111 1111 1111 9FFF Multiple Wrap-Around Modulo 213 

Reserved 

1011111111111111 BFFF Multiple Wrap-Around Modulo 214 

Reserved 

1111 1111 11111111 FFFF Linear (Modulo 215) 



A.S CONDITION CODE COMPUTATION 

15 14 13 12 11 10 9 8 7 6 4 3 2 o 

I'F 10M I T I ** I 51 I SO I 11 I 10 I 5 I l I E I u N I z 
.. MA .. oC eeA 

The condition code register (CCR) portion of the status register (SR) consists of eight 
defined bits: 

S - Scaling Bit 

L - Limit Bit 

N - Negative Bit 

Z - Zero Bit 

E - Extension Bit V - Overflow Bit 

U - Unnormalized Bit C - Carry Bit 

The E, U, N, Z, V, and C bits are true condition code bits that reflect the condition of the 
result of a data ALU operation. These condition code bits are not latched and are not 
affected by address ALU calculations or by data transfers over the X, Y, or global 
data buses. The L bit is a latching overflow bit which indicates that an overflow has 
occurred in the data ALU or that data limiting has occurred when moving the contents of 
the A and/or B accumulators. The S bit is a latching bit used in block floating pOint oper­
ations to indicate the need to scale the number in A or B. See SECTION 5 - PROGRAM 
CONTROL UNIT for information on the MR portion of the status register. 

The standard definition of the condition code bits follows. Exceptions to these stan­
dard definitions are given in the notes which follow Table A-5. 



S (Scaling Bit) 

L (Limit Bit) 

- E (Extension Bit) 

The scaling bit (S) is used to detect data growth, which is 
required in Block Floating Point FFT operation. Typically, the bit 
is tested after each pass of a radix 2 decimation-in-time FFT 
and, if it is set, the appropriate scaling mode should be activated 
in the next pass. The Block Floating Point FFT algorithm is 
described in the Motorola application note APR4/D, "Implemen­
tation of Fast Fourier Transforms on Motorola's DS P56000/ 
DSP56001 and DSP96002 Digital Signal Processors." This bit is 
computed according to the logical equations below when an 
instruction or a parallel move moves the result of accumulator A 
or B to XDB or YDB. It is a "sticky" bit, cleared only by an instruc­
tion that specifically clears it. 

The following logical equations are used to compute the scaling 
bit based upon the scaling mode bits: 

If S1 =0 and So=o (no scaling) 
then S = (A46 XOR A45) OR (B46 XOR B45) 

If S1 =0 and SO=1 (scale down) 
then S = (A47 XOR A46) OR (B47 XOR B46) 

If S1 =1 and SO=O (scale up) 
then S = (A45 XOR A44) OR (B45 XOR B44) 

If S1 =1 and SO=1 (reserved) 
then the S flag is undefined. 

where Ai and Bi means bit i in accumulator A or B. 

Set if the overflow bit V is set or if an instruction or a parallel 
move causes the data shifter/limiters to perform a limiting opera­
tion. Not affected otherwise. This bit is latched and must be 
reset by the user. 

Cleared if all the bits of the signed integer portion of the A or B 
result are the same - i.e., the bit patterns are either 00 ... 00 or 
11 ... 11. Set otherwise. The signed integer portion is defined 
by the scaling mode as shown in the following table: 



S1 SO Scaling Mode Signed Integer Portion 

0 0 No Scaling Bits 55, 54, .... 48,47 
0 1 Scale Down Bits 55, 54, .... 49, 48 
1 0 Scale Up Bits 55, 54, .... 47,46 

Note that the signed Integer portion of an accumulator IS NOT necessarily the same as 
the extension register portion of that accumulator. The signed integer portion of an accu­
mulator consists of the MS 8, 9, or 10 bits of that accumulator, depending on the scaling 
mode being used. The extension register portion of an accumulator (A2 or B2) is always the 
MS 8 bits of that accumulator. The E bit refers to the signed integer portion of an accu­
mulator and NOT the extension register portion of that accumulator. For example, if 
the current scaling mode is set for no scaling (Le., 81 =SO=O), the signed integer portion of 
the A or B accumulator consists of bits 47 through 55. If the A accumulator contained the 
signed 56-bit value $00:800000:000000 as a result of a data ALU operation, the E bit 
would be set (E=1) since the 9 MS bits of that accumulator were not all the same (Le., nei­
ther 00 .. 00 nor 11 .. 11). This means that data limiting will occur if that 56-bit value is 
specified as a source operand in a move-type operation. This limiting operation will result in 
either a positive or negative, 24-bit or 48-bit saturation constant being stored in the specified 
destination. The only situation in which the signed integer portion of an accumulator and the 
extension register portion of an accumulator are the same is in the "Scale Down" scaling 
mode (i.e., S1 =0 and SO=1). 

U (Un normalized Bit) Set if the two MS bits of the MSP portion of the A or B result are the 
same. Cleared otherwise. The MSP portion is defined by the scal­
ing mode. The U bit is computed as follows: 

N (Negative Bit) 

Z (Zero Bit) 

v (Overflow Bit) 

S1 

o 
o 
1 

SO 

o 
1 
o 

Scaling Mode 

No Scaling 
Scale Down 
Scale Up 

U Bit Computation 

U=(Bit 47 ffi Bit 46) 
U=(Bit 48 ffi Bit 47) 
U=(Bit 46 ffi Bit 45) 

Set if the MS bit 55 of the A or B result is set. Cleared otherwise. 

Set if the A or B result equals zero. Cleared otherwise. 

Set if an arithmetic overflow occurs in the 56-bit A or B result. This 
indicates that the result cannot be represented in the 56-bit accu­
mulator; thus, the accumulator has overflowed. Cleared otherwise. -



-

C (Carry Bit) Set if a carry is generated out of the MS bit of the A or B result of 
an addition or if a borrow is generated out of the MS bit of the A 
or B result of a subtraction. The carry or borrow is generated out 
of bit 55 of the A or B result. Cleared otherwise. 

Table A-5 shows how each condition code bit is affected by each instruction. Exceptions 
to the standard definitions given above are indicated by a number or a "?". Consult the 
corresponding note for the special definition that applies in each particular case. 
Although many of the instructions allow optional parallel moves, Table A-5 applies when 
there are no parallel moves associated with an instruction. With this restriction, the 
states of the condition code bits are determined only by the execution of the instruction 
itself. However, the Sand L bits may be determined differently than shown in the table 
when a parallel move is associated with the instruction. When using an optional parallel 
move, refer to the individual instruction's detailed description in Section A.7 to see how 
the Sand L bits are determined. 



Table A-5 Condition Code Computations for Instructions (No Parallel Move) 

Mnemonic S L E U N Z V C Notes Mnemonic S L E U N Z V C Notes 

ABS - ,/ ,/ ,/ ,/ ,/ ,/ - LSR - - - - 1 9 1 11 

ADC - ,/ ,/ ,/ ,/ ,/ ,/ ,/ LUA - - - - - - - -
ADD - ,/ ,/ ,/ ,/ ,/ ,/ ,/ MAC - ,/ ,/ ,/ ,/ ,/ ,/ -
ADDL - ,/ ,/ ,/ ,/ ,/ 2 ,/ MACR - ,/ ,/ ,/ ,/ ,/ ,/ -
ADDR - ,/ ,/ ,/ ,/ ,/ ,/ ,/ MOVE ,/ ,/ - - - - - -
AND - - - - 8 9 1 - MOVEC ? ? ? ? ? ? ? ? 13 

ANDI ? ? ? ? ? ? ? ? 3 MOVEM ? ? ? ? ? ? ? ? 13 

ASL - ,/ ,/ ,/ ,/ ,/ 2 4 MOVEP ? ? ? ? ? ? ? ? 13 

ASR - - ,/ ,/ ,/ ,/ 1 5 MPY - - ,/ ,/ ,/ ,/ 1 -
BCHG ? ? ? ? ? ? ? ? 14 MPYR - - ,/ ,/ ,/ ,/ 1 -
BCLR ? ? ? ? ? ? ? ? 14 NEG - ,/ ,/ ,/ ,/ ,/ ,/ -
BSET ? ? ? ? ? ? ? ? 14 NOP - - - - - - - -
BTST ? ? - - - - - ? 14 NORM - ,/ ,/ ,/ ,/ ,/ 2 -
CLR - - ,/ ,/ ,/ ,/ 1 - NOT - - - - 8 9 1 -
CMP - ,/ ,/ ,/ ,/ ,/ ,/ ,/ OR - - - - 8 9 1 -
CMPM - ,/ ,/ ,/ ,/ ,/ ,/ ,/ ORI ? ? ? ? ? ? ? ? 6 

DEBUG - - - - - - - - REP ,/ ,/ - - - - - -
DEBUGec - - - - - - - - RESET - - - - - - - -
DEC - ,/ ,/ ,/ ,/ ,/ ,/ ,/ RND - ,/ ,/ ,/ ,/ ,/ ,/ -
DIV - ,/ - - - - 2 7 ROL - - - - 8 9 1 10 

DO ,/ ,/ - - - - - - ROR - - - - 8 9 1 11 

ENDDO - - - - - - - - RTI ? ? ? ? ? ? ? ? 12 

EOR - - - - 8 9 1 - RTS - - - - - - - -
ILLEGAL - - - - - - - - SBC - ,/ ,/ ,/ ,/ ,/ ,/ ,/ 

INC - ,/ ,/ ,/ ,/ ,/ ,/ ,/ STOP - - - - - - - -
Jcc - - - - - - - - SUB - ,/ ,/ ,/ ,/ ,/ ,/ ,/ 

JCLR ? ? - - - - - - 14 SUBL - ,/ ,/ ,/ ,/ ,/ 2 ,/ 

JMP - - - - - - - - SUBR - ,/ ,/ ,/ ,/ ,/ ,/ ,/ 

JScc - - - - - - - - SWI - - - - - - - -
JSCLR ? ? - - - - - - 14 Tee - - - - - - - -
JSET ? ? - - - - - - 14 TFR - - - - - - - -
JSR - - - - - - - - TST - - ,/ ,/ ,/ ,/ 1 -
JSSET ? ? - - - - - - 14 WAIT - - - - - - - -
LSL - - - - 8 9 1 10 

where: ,/ Set according to the standard definition of the operation 
- Not affected by the operation 
? or' Set according to a special definition (refer to the following notes) and can be a 0 or 1 

-
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The following notes apply to Table A-5: 

1. The bit is cleared. 

2. V - Set if an arithmetic overflow occurs in the 56-bit A or B result or if the MS bit 
. of the destination operand is changed as a result of the left shift. Cleared otherwise. 

3. For destination operand CCR, the bits are cleared if the corresponding bits in the 
immediate data are cleared. Otherwise they are not affected. For other destination 
operands, the bits are not affected. 

4. C - Set if bit 55 of the source operand was set prior to instruction execution. 
Cleared otherwise. 

5. C - Set if bit 0 of the source operand was set prior to instruction execution. Cleared 
otherwise. 

6. For destination operand CCR, the bits are set if the corresponding bits in the imme­
diate data are set. Otherwise, they are not affected. For other destination operands, 
the bits are not affected. 

7. C - Set if bit 55 of the result is cleared. Cleared otherwise. 

8. N - Set if bit 47 of the A or B result is set. Cleared otherwise. 

9. Z - Set if bits 47 - 24 of the A or B result are zero. Cleared otherwise. 

10. C - Set if bit 47 of the source operand was set prior to instruction execution. 
Cleared otherwise. 

11. C - Set if bit· 24 of the source operand was set prior to instruction execution. 
Cleared otherwise. 

12. Set according to the value pulled from the stack. 

13. For destination operand SR, the bits are set according to the corresponding bit of 
the source operand. If SR is not specified as a destination operand, the L bit is set 
if data limiting occurred and the S bit is computed according to the definition. (See 
Section A.5.) Otherwise, the bits are unaffected. 

14. Due to complexity, refer to the detailed description of the instruction. 

A.6 PARALLEL MOVE DESCRIPTIONS 
Many of the instructions in the DSP56K instruction set allow optional parallel data bus 
movement. Section A.7 indicates the parallel move option in the instruction syntax with 
the statement "'parallel move)". The MOVE instruction is equivalent to a NOP with paral­
lel moves. Therefore, a detai led description of each parallel move is given with the 
MOVE instruction details in Section A.7, beginning on page A-160. 



A.7 INSTRUCTION DESCRIPTIONS 
The following section describes each instruction in the DSPS6K instruction set in com­
plete detail. The format of each instruction description is given in Section A2. Instruc­
tions which allow parallel moves include the notation "(parallel move)" in both the 
Assembler Syntax and the Operation fields. The example given with each instruction 
discusses the contents of all the registers and memory locations referenced by the 
opcode-operand portion of that instruction but not those referenced by the parallel move 
portion of that instruction. Refer to page A-160 for a complete discussion of parallel 
moves, including examples which discuss the contents of all the registers and memory 
locations referenced by the parallel move portion of an instruction. 

Note: Whenever an instruction uses an accumulator as both a destination operand for a 
data ALU operation and as a source for a parallel move operation, the parallel move 
operation occurs first and will use the data that exists in the accumulator before the exe­
cution of the data ALU operation has occurred. 

Whenever a bit in the condition code register is defined according to the standard defini­
tion given in Section AS, a brief definition will be given in normal text in the Condition 
Code section of that instruction description. Whenever a bit in the condition code register 
is defined according to a special definition for some particular instruction, the special 
definition of that bit will be given in the Condition Code section of that instruction in bold 
text to alert the user to any special conditions concerning its use. 

The definition and thus the computation of both the E (extension) and U (unnormalized) 
bits of the condition code register (CCR) varies according to the scaling mode being 
used. Refer to Section AS for complete details. 

Note: The Signed integer portion of an accumulator is NOT necessarily the same as ei­
ther the A2 or 82 extension register portion of that accumulator. The signed integer 
portion of an accumulator is defined according to the scaling mode being used and can 
consist of the MS 8,9, or 10 bits of an accumulator. Refer to Section AS for complete de­
tails. 

-
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ABS Absolute Value ABS 

Operation: Assembler Syntax: 
I D I ..... D (parallel move) ABS D (parallel move) 

Description: Take the absolute value of the destination operand D and store the result 
in the destination accumulator. 

Example: 

ABS A 1 #$123456,XO A,YO ;take abs. value, set up XO, save value 

Before Execution After Execution 

AI ~ ___ $_FF_:F_F_FF_F_F:F_F_FF_F_2 __ ~ A ~I ___ $_O_o:o_o_oo_oo_:o_OO_OO_E __ --' 

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the 
value $FF:FFFFFF:FFFFF2. Since this is a negative number, the execution of the ABS 
instruction takes the twos complement of that value and returns $OO:OOOOOO:OOOOOE. 

Note: For the case in which the D operand equals $80:000000:000000 (-256.0), the 
ABS instruction will cause an overflow to occur since the result cannot be correctly ex­
pressed using the standard 56-bit, fixed-point, twos-complement data representation. 
Data limiting does not occur (Le., A is not set to the limiting value of 
$7F:FFFFFF:FFFFFF). 

Condition Codes: 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 I LF I OM 1 T I" 1 S1 1 SO 1 11 1 10 I "I LIE 1 U 1 N 1 z vic I 

.... MR ...... CCR ..... 

S - Computed according to the definition in A.5 CONDITION CODE COMPUTATION. 
L - Set if limiting (parallel move) or overflow has occurred in result 
E - Set if the signed integer portion of A or B result is in use 
U - Set if A or B result is unnormalized 
N - Set if bit 55 of A or B result is set 
Z- Set if A or B result equals zero 
V - Set if overflow has occurred in A or B result 

Note: The definitions of the E and U bits vary according to the scaling mode being used. 
Refer to Section A.5 for complete details. 



ABS 

Instruction Format: 
ABSD 

Opcode: 

23 

Instruction Fields: 
Cd 

AO 
B 1 

Absolute Value 

8 7 

DATA BUS MOVE FIELD I 0 0 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

Timing: 2+mv oscillator clock cycles 

Memory: 1 +mv program words 

ABS 

4 3 o 
Old o 

-
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ACC Add Long with Carry ACC 

Operation: Assembler Syntax: 
S+C+D -+ D (parallel move) ADC S,D (parallel move) 

Description: Add the source operand S and the carry bit C of the condition code register 
to the destination operand D and store the result in the destination accumulator. Long 
words (48 bits) may be added to the (56-bit) destination accumulator. 

Note: The carry bit is set correctly for multiple precision arithmetic using long-word op­
erands if the extension register of the destination accumulator (A2 or B2) is the sign 
extension of bit 47 of the destination accumulator (A or B). 

Example: 

MOVE L:<$O,X 
MOVE L:<$1,A 
MOVE L:<$2,V 
ADD X,A L:<$3,B 
ADC V,B A10,L:<$4 
MOVE B10,L:<$5 

Before Execution 

A I $FF:800000:000000 

X I $800000:000000 

B I $00:000000:000001 

V I $000000:000001 

;get a 48-bit LS long-word operand in X 
;get other LS long word in A (sign ext.) 
;get a 48-bit MS long-word operand in V 
;add LS words; get other MS word in B 
;add MS words with carry, save LS sum 
;save MS sum 

After Execution 

A I $FF:OOOOOO:oooooo 

X I $800000:000000 

B I $00:000000:000003 

V I $000000:000001 

Explanation of Example: This example illustrates long-word double-precision (96-bit) 
addition using the ADC instruction. Prior to execution of the ADD and ADC instructions, 
the double-precision 96-bit value $000000:000001 :800000:000000 is loaded into the V 
and X registers (y:X), respectively. The other double-precision 96-bit value 
$000000:000001 :800000:000000 is loaded into the B and A accumulators (B:A), respec­
tively. Since the 48-bit value loaded into the A accumulator is automatically sign 
extended to 56 bits and the other 48-bit long-word operand is internally sign extended to 
56 bits during instruction execution, the carry bit will be set correctly after the execution 
of the ADD X,A instruction. The ADC V,B instruction then produces the correct MS 56-bit 



ADC Add Long with Carry ADC 

result. The actual 96-bit result is stored in memory using the A 10 and B10 operands 
(instead of A and B) because shifting and limiting is not desired. 

Condition Codes: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

I LF I OM I T I ** I 81 I 80 I 11 I lois I L I E I U N I z v I :.1 ~ MR .~ CCR 

S - Computed according to the definition in A.5 CONDITION CODE COMPUTATION 

L - Set if limiting (parallel move) or overflow has occurred in result 
E - Set if the signed integer portion of A or B result is in use 
U - Set if A or B result is unnormalized 
N - Set if bit 55 of A or B result is set 
Z- Set if A or B result equals zero 
V - Set if overflow has occurred in A or B result 

C - Set if a carry (or borrow) occurs from bit 55 of A or B result. 

Note: The definitions of the E and U bits vary according to the scaling mode being used. 

Refer to Section A.5 for complete details. 

Instruction Format: 
ADC S,D 

Opcode: 
23 8 7 

DATA BUS MOVE FIELD 1 0 0 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

Instruction Fields: 
S,D Jd 

X,A 00 
X,B 01 

V,A 10 
V,B 1 1 

Timing: 2+mv oscillator clock cycles 

Memory: 1 +mv program words 

4 3 0 

-



-

ADD Add ADD 

Operation: Assembler Syntax: 
S+D-+D (parallel move ADD S,D (parallel move) 

Description: Add the source operand S to the destination operand D and store the result 
in the destination accumulator. Words (24 bits), long words (48 bits), and accumulators 
(56 bits) may be added to the destination accumulator. 

Note: The carry bit is set correctly using word or long-word source operands if the ex­
tension register of the destination accumulator (A2 or B2) is the sign extension of bit 47 of 
the destination accumulator (A or B). Thus, the carry bit is always set correctly using ac­
cumulator source operands, but can be set incorrectly if A1, B1, A1 0, or B1 0 are used as 
source operands and A2 and B2 are not replicas of bit 47. 

Example: 

ADD XO,AA,X1 A,Y:(R1)+1 ;24-bit add, set up X1 , save prevo result 

Before Execution After Execution 

XO ~I ________ $_F_FF_FF_F __ ~ XO ~I ________ $F_FF_F_FF ____ ~ 

A 1~ ___ $_O_O:_OO_01_00_:0_00_0_00 __ ~ A ~I ___ $_O_O:O_O_OO_FF_:O_OO_O_OO_----' 

Explanation of Example: Prior to execution, the 24-bit XO register contains the value 
$FFFFFF and the 56-bit A accumulator contains the value $00:000100:000000. The 
ADD instruction automatically appends the 24-bit value in the XO register with 24 LS 
zeros, sign extends the resulting 48-bit long word to 56 bits, and adds the result to the 
56-bit A accumulator. Thus, 24-bit operands are added to the MSP portion of A or B (A1 
or B1) because all arithmetic instructions assume a fractional, twos complement data 
representation. Note that 24-bit operands can be added to the LSP portion of A or B (AO 
or BO) by loading the 24-bit operand into XO or YO, forming a 48-bit word by loading X1 or 
Y1 with the sign extension of XO or YO and executing an ADD X,A or ADD Y,A instruc­
tion. 



ADD Add ADD 

Condition Codes: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

1 LF 10M 1 T 1-- I SI I so I 11 I lOiS I LIE I U N I z v I :.1 
.... MR ..... CCR _. 

S - Computed according to the definition in A.5 CONDITION CODE COMPUTATION 
L - Set if limiting (parallel move) or overflow has occurred in result 
E - Set if the signed integer portion of A or B result is in use 
U - Set if A or B result is unnormalized 
N - Set if bit 55 of A or B result is set 
Z - Set if A or B result equals zero 
V - Set if overflow has occurred in A or B result 
C - Set if a carry (or borrow) occurs from bit 55 of A or B result. 

Note: The definitions of the E and U bits vary according to the scaling mode being used. 
Refer to Section A.5 for complete details. 

Instruction Format: 
ADD S,D 

Opcode: 

23 8 7 4 3 

DATA BUS MOVE FIELD I 0 J J J I d 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

Instruction Fields: 
S,D JJJd S,D JJJd 

B,A 0010 XO,A 1 000 
A,B 001 1 XO,B 1 001 
X,A 0100 VO,A 1 0 1 0 
X,B o 1 01 VO,B 1 0 1 1 
V,A o 1 1 0 X1,A 1 1 00 
V,B o 1 1 1 X1,B 1 1 0 1 

Timing: 2+mv oscillator clock cycles 

Memory: 1 +mv program words 

S,D JJJd 

V1,A 1 1 1 0 
V1,8 1 1 1 1 

o 
o 0 0 



-

ADDL Shift Left and Add Accumulators ADDL 

Operation: Assembler Syntax: 
S+2*D~D (parallel move) ADDL S,D (parallel move) 

Description: Add the source operand S to two times the destination operand D and 
store the result in the destination accumulator. The destination operand D is arithmeti­
cally shifted one bit to the left, and a zero is shifted into the LS bit of D prior to the addi­
tion operation. The carry bit is set correctly if the source operand does not overflow as a 
result of the left shift operation. The overflow bit may be set as a result of either the shift­
ing or addition operation (or both). This instruction is useful for efficient divide and deci­
mation in time (DIT) FFT algorithms. 

Example: 

ADDL A,B #$O,RO ;A+2*B~B, set up addr. reg. RO 

Before Execution After Execution 

A 1~ ____ $O_O:_OO_OO_O_O:O_O_01_23 __ ~ A ~I ___ $_O_O:O_O_OO_OO_:O_OO_12_3 __ ~ 

B ~I ___ $_O_O:_OO_50_00_:0_00_0_00 __ ~ BI L-___ $_O_O:O_O_AO_OO_:O_OO_1_23 __ ~ 

Explanation of Example: Prior to execution, the 56-bit accumulator contains the value 
$00:000000:000123, and the 56-bit B accumulator contains the value 
$00:005000:000000. The ADDL A,B instruction adds two times the value in the B accu­
mulator to the value in the A accumulator and stores the 56-bit result in the B accumula­
tor. 



ADDL Shift Left and Add Accumulators ADDL 

Condition Codes: 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

1 LF I OM I T I·· I 81 I 80 I 11 lois I LEI U N I z v I :.1 
.... MR ..... CCR _. 

S - Computed according to the definition in A.5 CONDITION CODE COMPUTATION 
L - Set if limiting (parallel move) or overflow has occurred in result 
E - Set if the signed integer portion of A or B result is in use 
U - Set if A or B result is unnormalized 
N - Set if bit 55 of A or B result is set 
Z- Set if A or B result equals zero 
V - Set If overflow has occurred In A or B result or if the MS bit of the destination 

operand Is changed as a result of the Instruction's left shift 
C - Set if a carry (or borrow) occurs from bit 55 of A or B result. 

Note: The definitions of the E and U bits vary according to the scaling mode being used. 
Refer to Section A.5 for complete details. 

Instruction Format: 
ADDL S,D 

Opcode: 

23 8 7 

DATA BUS MOVE FIELD I 0 0 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

Instruction Fields: 
S,D d 

B,A 0 
A,B 1 

Timing: 2+mv oscillator clock cycles 

Memory: 1 +mv program words 

4 3 o 
o 1 I d o o 



-

ADDR Shift Right and Add Accumulators ADDR 

Operation: Assembler Syntax: 
S+D / 2--tD (parallel move) ADDR S,D (parallel move) 

Description: Add the source operand S to one-half the destination operand D and store 
the result in the destination accumulator. The destination operand D is arithmetically 
shifted one bit to the right while the MS bit of D is held constant prior to the addition oper­
ation. In contrast to the ADDL instruction, the carry bit is always set correctly, and the 
overflow bit can only be set by the addition operation and not by an overflow due to the 
initial shifting operation. This instruction is useful for efficient divide and decimation in 
time (DIT) FFT algorithms. 

Example: 

ADDR 8,A XO,X:(R1)+N1 YO,Y:(R4)- ;B+A / 2--tA, save XO and YO 

Before Execution After Execution 

A '~ ___ $8_0:_00_00_0_0:2_4_68_AC __ ~ A ,'----_$_C_0:0_13_57_0_:12_3_45_6_--' 

B '~ __ $_0_0:0_1_35_70_:0_00_0_00 __ ~ B , 
'-------------~ 

$00:013570:000000 

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the 
value $80:000000:2468AC, and the 56-bit 8 accumulator contains the value 
$00:013570:000000. The ADDR B,A instruction adds one-half the value in the A accu­
mulator to the value in the B accumulator and stores the 56-bit result in the A accumula­
tor. 



ADDR Shift Right and Add Accumulators ADDR 

Condition Codes: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 I LF I OM I T I .. I 8' I 80 I 11 I [0 I s I L I E I u I N I z 
... MR • ~ CCR 

S - Computed according to the definition in A.5 CONDITION CODE COMPUTATION 
L - Set if limiting (parallel move) or overflow has occurred in result 
E - Set if the signed integer portion of A or B result is in use 

U - Set if A or B result is unnormalized 
N - Set if bit 55 of A or B result is set 
Z- Set if A or B result equals zero 
V - Set if overflow has occurred in A or B result 
C - Set if a carry (or borrow) occurs from bit 55 of A or B result. 

Note: The definitions of the E and U bits vary according to the scaling mode being used. 
Refer to Section A.5 for complete details. 

Instruction Format: 
ADDR 8,D 

Opcode: 

23 8 7 4 3 

DATA BUS MOVE FIELD I 0 0 o 0 I d 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

Instruction Fields: 
S,D d 

B,A 0 
A,B 1 

Timing: 2+mv oscillator clock cycles 

Memory: 1 +mv program words 

o 
o o 

-



-

AND Logical AND AND 

Operation: Assembler Syntax: 
S - 0[47:24]-+0[47:24] (parallel move) 
where -denotes the logical AND operator 

AND S,O (parallel move) 

Description: Logically AND the source operand S with bits 47-24 of the destination 
operand 0 and store the result in bits 47-24 of the destination accumulator. This instruc­
tion is a 24-bit operation. The remaining bits of the destination operand 0 are not 
.affected. 

Example: 

AND XO,A 1 (R5)-N5 ;AND XO with A 1, update R5 using N5 

Before Execution After Execution 

xo 1-1 _____ $F_F_OO_OO_-" xol '-________ $_F F_O 0_00 __ -" 

A ,-I __ $_00_:1_23_4_56_:7_89_A_BC_----.J AI '-___ $_00_:12_0_00_0:7_8_9A_BC __ ~ 

Explanation of Example: Prior to execution, the 24-bit XO register contains the value 
$FFOOOO, and the 56-bit A accumulator contains the value $00:123456:789ABC. The 
AND XO,A instruction logically ANOs the 24-bit value in the XO register with bits 47-24 of 
the A accumulator (A 1) and stores the result in the A accumulator with bits 55-48 and 
23-0 unchanged. 

Condition Codes: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 ° I LF I DM I T I ** I S1 I SO I 11 I 10 I s I LIE I u I N I z v I :. I 
.... MR ..... CCR _. 

S - Computed according to the definition in A.5 CONDITION CODE COMPUTATION 
L - Set if limiting occurs during parallel move 
N - Set if bit 47 of A or B result is set 
Z- Set if bits 47-24 of A or B result are zero 
V - Always cleared 



AND Logical AND 

Instruction Format: 
AND S,D 

Opcode: 

23 8 7 4 3 

DATA BUS MOVE FIELD I 0 J J I d 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

Instruction Fields: 
S JJ 

XO 00 
X1 1 0 
YO 01 
Y1 1 1 

Dd 

A 0 (only A 1 is changed) 
8 1 (only 81 is changed) 

Timing: 2+mv oscillator clock cycles 

Memory: 1 +mv program words 

AND 

o 
o 



-

ANDI AND Immediate with Control Register 

Operation: 
#xx. D .... D 
where • denotes the logical AND operator 

Assembler Syntax: 
AND(I) #xx,D 

ANDI 

Description: Logically AND the 8-bit immediate operand (#xx) with the contents of the 
destination control register D and store the result in the destination control register. The 
condition codes are affected only when the condition code register (CCR) is specified as 
the destination operand. 

Restrictions: The ANDI #xx,MR instruction cannot be used immediately before an 
ENDDO or RTI instruction and cannot be one of the last three instructions in a DO loop 
(at LA-2, LA-1, or LA). 

The ANDI #xx,CCR instruction cannot be used immediately before an RTI instruction. 

Example: 

AND #$FE,CCR ;clear carry bit C in condo code register 

Before Execution After Execution 

CCR~I _______ $_3_1 ______ ~ CCR~I _______ $_30 ______ ~ 

Explanation of Example: Prior to execution, the 8-bit condition code register (CCR) 
contains the value $31. The AND #$FE,CCR instruction logically ANDs the immediate 8-
bit value $FE with the contents of the condition code register and stores the result in the 
condition code register. 



ANDI AND Immediate with Control Register 

Condition Codes: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 I: I DM I T I·· J:' I so I 11 I '~ I: I LIE I U CCR N I z 

For CCR Operand: 
S - Cleared if bit 7 of the immediate operand is cleared 
L - Cleared if bit 6 of the immediate operand is cleared 
E - Cleared if bit 5 of the immediate operand is cleared 
U - Cleared if bit 4 of the immediate operand is cleared 
N - Cleared if bit 3 of the immediate operand is cleared 
Z - Cleared if bit 2 of the immediate operand is cleared 
V - Cleared if bit 1 of the immediate operand is cleared 
C - Cleared if bit 0 of the immediate operand is cleared 

ANDI 

o 

For MR and OMR Operands: The condition codes are not affected using these oper­
ands. 

Instruction Format: 
AND(I) #xx,D 

Opcode: 

23 16 15 

10 0 0 0 0 0 0 o 1 i i 

Instruction Fields: 
#xx=8-bit Immediate Short Data - iii iii i i 

D EE 

MR 00 
CCR 01 
OMR 10 

Timing: 2 oscillator clock cycles 

Memory: 1 program word 

8 7 o 
i 11 o 1 1 1 0 E E I 



ASL Arithmetic Shift Accumulator Left ASL 

55 47 23 o 
Operation: cl ~ I~"'--I~"'-- I 0 (parallel move) 

Assembler Syntax: ASL 0 (parallel move) 

Description: Arithmetically shift the destination operand D one bit to the left and store 
the result in the destination accumulator. The MS bit of 0 prior to instruction execution is 
shifted into the carry bit C and a zero is shifted into the LS bit of the destination accumu­
lator D. If a zero shift count is specified, the carry bit is cleared. The difference between 
ASL and LSL is that ASL operates on the entire 56 bits of the accumulator and therefore 
sets the V bit if the number overflowed. 

Example: 

ASL A (R3)- ;multiply A by 2, update R3 

Before Execution After Execution 

A <-I __ $A_5o_
o
01_23_4_5:_01_234_5_---' AI <-__ $4_A_:0_24_68_A_:02_46_8_A_---' 

SRIL-_____ $_03_00_---' SR I 
~-------~ 

$0373 

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the 
value $A5:012345:012345. The execution of the ASL A instruction shifts the 56-bit value 
in the A accumulator one bit to the left and stores the result back in the A accumulator. 



ASL Arithmetic Shift Accumulator Left ASL 

Condition Codes: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 I: IOMl T I ** I S1 I so I 11 I lois 1 
L E I u I N I z v I ~I MA CCA ... 

S - Computed according to the definition in A.5 CONDITION CODE COMPUTATION 
L - Set if limiting (parallel move) or overflow has occurred in result 
E - Set if the signed integer portion of A or B result is in use 

U - Set if A or B result is unnormalized 
N - Set if bit 55 of A or B result is set 
Z- Set if A or B result equals zero 
V - Set if bit 55 of A or B result is changed due to left shift 
C - Set if bit 55 of A or B was set prior to instruction execution 

Note: The definitions of the E and U bits vary according to the scaling mode being used. 
Refer to Section A.5 for complete details. 

Instruction Format: 
ASL D 

Opcode: 

23 8 7 4 3 o 
DATA BUS MOVE FIELD I 0 0 1 j d 0 o 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

Instruction Fields: 
D d 

A 0 
B 1 

Timing: 2+mv oscillator clock cycles 

Memory: 1 +mv program words 



ASR Arithmetic Shift Accumulator Right ASR 

55 47 23 0 
Operation: d 7 I-----tl~~ I----..... ~~ I C (parallel move) 

Assembler Syntax: ASR 0 (parallel move) 

Description: Arithmetically shift the destination operand 0 one bit to the right and store 
the result in the destination accumulator. The LS bit of 0 prior to instruction execution is 
shifted into the carry bit C, and the MS bit of 0 is held constant. 

Example: 

ASRB X:-(R3),R3 ;divide B by 2, update R3, load R3 

Before Execution After Execution 

B L-I _--=$_A8_:A_8_64_20_:A_864_21_---l BI ...... __ $_D4_:5_43_2_10_:54_3_21_0_----' 

SRI ...... _____ $0_30_0_---' SR ...... I _______ $_0_32_9_----' 

Explanation of Example: Prior to execution, the 56-bit B accumulator contains the 
value $A8:A86420:A86421. The execution of the ASR B instruction shifts the 56-bit value 
in the B accumulator one bit to the right and stores the result back in the B accumulator. 



ASR Arithmetic Shift Accumulator Right ASR 

Condition Codes: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 I: I OM 1 T 1** JR S1 1 SO 1 11 1 '~ I: 1 LIE 1 U JR N 1 z 1 v 1 ~ I 
S - Computed according to the definition in A.5 CONDITION CODE COMPUTATION 
L - Set if data limiting occurs during parallel move 
E - Set if the signed integer portion of A or B result is in use 
U - Set if A or B result is un normalized 
N - Set if bit 55 of A or B result is set 
z- Set if A or B result equals zero 
V - Always cleared 
C - Set H bit 0 of A or B was set prior to instruction execution 

Note: The definitions of the E and U bits vary according to the scaling mode being used. 
Refer to Section A.5 for complete details. 

Instruction Format: 
ASR D 

Opcode: 

23 8 7 4 3 o 
DATA BUS MOVE FIELD I 0 0 Old 0 o 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

Instruction Fields: 
D d 

A 0 
B 

Timing: 2+mv oscillator clock cycles 

Memory: 1 +mv program words 
-



BCHG Bit Test and Change BCHG 

Operation: Assembler Syntax: 
QI!:!] ~ C; BCHG #n,X:ea 
O[n] ~ O[n] 

QI!:!] ~ C; BCHG #n,X:aa 
O[n] ~ O[n] 

QI!:!] ~ C; BCHG #n,X:pp 
O[n] ~ O[n] 

QI!:!] ~ C; BCHG #n,Y:ea 
O[n] ~ O[n] 

QI!:!] ~ C; BCHG #n,Y:aa 
O[n] ~ O[n] 

QI!:!] ~ C; BCHG #n,Y:pp 
O[n] ~ O[n] 

QI!:!] ~ C; BCHG #n,O 
O[n] ~ O[n] 

Description: Test the nth bit of the destination operand 0, complement it, and store the 
result in the destination location. The state of the nth bit is stored in the carry bit C of the 
condition code register. The bit to be tested is selected by an immediate bit number from 
0-23. This instruction performs a read-modify-write operation on the destination location 
using two destination accesses before releasing the bus. This instruction provides a test­
and-change capability which is useful for synchronizing multiple processors using a 
shared memory. This instruction can use all memory alterable addressing modes. 

Example: 

BCHG #$7,X:«$FFE2 ;test and change bit 7 in I/O Port BOOR 

Before Execution After Execution 

X:$FFE2 1'-___ ----:$'-00_0_00_0_----1 X;$FFE2 ,-I ____ $0_0_00_80 __ --' 

SRI L-_____ $_0_3o_0_------' SRI'--_______ $_03_00 ____ --' 



BCHG Bit Test and Change BCHG 

Explanation of Example: Prior to execution, the 24-bit X location X:$FFE2 (lID port B 
data direction register) contains the value $000000. The execution ~f the BCHG 
#$7,X:«$FFE2 instruction tests the state of the 7th bit in X:$FFE2, sets the carry bit C 
accordingly, and then complements the 7th bit in X:$FFE2. 

Condition Codes: 

15 14 13 12 11 10 9 8765432 I LF I OM I T 1·* I 81 I 80 I 11 

~ MR 

CCR Condition Codes: 
For destination operand SR: 

C - Changed if bit 0 is specified. Not affected otherwise. 
V - Changed if bit 1 is specified. Not affected otherwise. 
Z - Changed if bit 2 Is specified. Not affected otherwise. 
N - Changed if bit 3 is specified. Not affected otherwise. 
U - Changed if bit 4 is specified. Not affected otherwise. 
E - Changed if bit 5 is specified. Not affected otherwise. 
L - Changed if bit 6 is specified. Not affected otherwise. 
S - Changed if bit 7 is specified. Not affected otherwise. 

For destination operand A or B: 

1 0 

S -Computed according to the definition. See Notes on page A-47. 
L - Set if data limiting has occurred. See Notes on page A-47. 
E - Not affected 
U - Not affected 
N - Not affected 
Z - Not affected 
V - Not affected 
C - Set if bit tested is set. Cleared otherwise. 



BCHG 

For other destination operands: 
S - Not affected 
L - Not affected 
E - Not affected 
U - Not affected 
N - Not affected 
Z - Not affected 
V - Not affected 

Bit Test and Change 

C - Set if bit tested is set. Cleared otherwise. 

MR Status Bits: 
For destination operand SR: 

10 - Changed if bit 8 is specified. Not affected otherwise. 
11 - Changed if bit 9 is specified. Not affected otherwise. 
SO - Changed if bit 10 is specified. Not affected otherwise. 
S 1 - Changed if bit 11 is specified. Not affected otherwise. 
T - Changed if bit 13 is specified. Not affected otherwise. 
DM - Changed if bit 14 is specified. Not affected otherwise 
LF - Changed if bit 15 is specified. Not affected otherwise. 

For other destination operands: 
10 - Not affected 
11 - Not affected 
SO - Not affected 
S1 - Not affected 
T - Not affected 
DM - Not affected 
LF - Not affected 

BCHG 



BCHG 

Instruction Format: 
BCHG #n,X:ea 
BCHG #n,Y:ea 

Opcode: 

Bit Test and Change BCHG 

23 16 15 8 7 0 

0000101 1 I 0 1 M MMRRRIOSOb bb bb 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

Instruction Fields: 
#n=bit number=bbbbb, 
ea=6-bit Effective Address=MMMRRR 

Effective 
Addressing Mode MMMRRR Memory SpaceS 

(Rn)-Nn o 0 0 r r r X Memory 
(Rn)+Nn o 0 1 r r Y Memory 
(Rn)- o 1 0 r 
(Rn)+ o 1 r r 
(Rn) 0 o r r r 
(Rn+Nn) 0 r r r 
-(Rn) r r r 
Absolute address o 000 

where "rrr" refers to an address register RO-R7 

Timing: 4+mvb oscillator clock cycles 

Memory: 1 +ea program words 

0 

Bit Number bbbbb 

00000 
• 
• 
• 

10111 

-



BCHG Bit Test and Change 

Instruction Format: 
BCHG #n,X:aa 
BCHG #n,Y:aa 

Opcode: 
23 16 15 8 7 

\0 0 0 0 1 0 1 1100 a a a a a 

Instruction Fields: 
#n=bit number=bbbbb, 
aa=6-bit Absolute Short Address=aaaaaa 

Absolute Short Address aaaaaa 

000000 
• 
• 

111111 

Timing: 4+mvb osci lIator clock cycles 

Memory: 1 +ea program words 

Memory SpaceS 

X Memory 0 
Y Memory 1 

BCHG 

o 
SOb b b b bl 

Bit Number bbbbb 

00000 
• 

10111 



BCHG 

Instruction Format: 
BCHG #n,X:pp 
BCHG #n,Y:pp 

Opcode: 
23 

10 0 0 0 1 0 1 

Instruction Fields: 
#n=bit number=bbbbb, 

Bit Test and Change 

16 15 

1 11 0 p p p p p 

ea=6-bit liD Short Address=pppppp 

8 7 

1/0 Short Address pppppp Memory SpaceS 

000000 
• 
• 

111111 

Timing: 4+mvb oscillator clock cycles 

Memory: 1 +ea program words 

X Memory 
Y Memory 

a 

BCHG 

o 

SOb b b b bl 

Bit Number bbbbb 

00000 
• 

10111 



BCHG Bit Test and Ch~nge 

Instruction Format: 
BCHG #n,D 

Opcode: 
23 16 15 8 7 

10 0 0 0 1 0 1 1 11 1 00000010 

Instruction Fields: 
#n=bit number=bbbbb, 
D=destination register=DDDDDD 
xxxx=16-bit Absolute Address in extension word 

Destination Register DDDDDD 

4 registers in Data ALU o 0 0 1 D D 
8 accumulators in Data ALU o 0 1 DDD 
8 address registers in AGU o 1 0 T T T 
8 address offset registers in AGU o 1 1 N N N 
8 address modifier registers in AGU 1 0 0 F F F 
8 program controller registers 1 1 G G G 

BCHG 

o 
1 0 b b b b bl 

Bit Number bbbbb 

00000 

• 
10111 

See Section A.1 0 and Table A-18 for specific register encodings. 



BCHG Bit Test and Change BCHG 

Notes: If A or 8 is specified as the destination operand, the following sequence of events 
takes place: 

1. The S bit is computed according to its definition (See Section A.5) 

2. The accumulator value is scaled according to the scaling mode bits SO 
and S1 in the status register (SR). 

3. If the accumulator extension is in use, the output of the shifter is limited 
to the maximum positive or negative saturation constant, and the L bit is 
set. 

4. The resulting 24 bit value is placed back into A1 or 81. AO or 80 is 
cleared and the sign of A 1 or 81 is extended into A2 or 82. 

5. The bit test and change is performed on A1 or 81, and the C bit is set if 
the bit tested is set. 

Timing: 4+mvb oscillator clock cycles 

Memory: 1 +ea program words 



BCLR Bit Test and Clear BCLR 

Operation: Assembler Syntax: 
O[n] -+ C; BelR #n,X:ea 

0-+ O[n] 

O[n] -+ C; BelR #n,X:aa 
0-+ O[n] 

D[n] -+ C; BClR #n,X:pp 
0-+ D[n] 

O[n] -+ C; BelR #n,Y:ea 
0-+ D[n] 

D[n] -+ C; BelR #n,Y:aa 
0-+ D[n] 

D[n] -+ C; BelR #n,Y:pp 
0-+ D[n] 

D[n] -+ C; BelR #n,D 
0-+ D[n] 

Description: Test the nth bit of the destination operand 0, clear it and store the result in 
the destination location. The state of the nth bit is stored in the carry bit C of the condition 
code register. The bit to be tested is selected by an immediate bit number from 0-23. 
This instruction performs a read-modify-write operation on the destination location using 
two destination accesses before releasing the bus. This instruction provides a test-and­
clear capability which is useful for synchronizing multiple processors using a shared 
memory. This instruction can use all memory alterable addressing modes. 

Example: 

BClR #$E,X:«$FFE4 ;test and clear bit 14 in I/O Port B Data Reg. 

Before Execution After Execution 

X:$FFE4 <--I __ ---'-$_FF_F_FF_F __ ------' X:$FFE4 <--I __ ---'-$F_F_BF_F_F __ --" 

SR 1'---___ $_03_0_0 __ -----' SR ,--I ____ $_03_0_1 __ ---' 



BCLR Bit Test and Clear BCLR 

Explanation of Example: Prior to execution, the 24-bit X location X:$FFE4 (110 port B 
data register) contains the value $FFFFFF. The execution of the BCLR #$E,X:«$FFE4 
instruction tests the state of the 14th bit in X:$FFE4, sets the carry bit C accordingly, and 
then clears the 14th bit in X:$FFE4. 

Condition Codes: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 I: I DM I T I ** JR S1 I so I 11 I : I ... " I LIE I U clR N I z I v I : 1 
CCR Condition Codes: 
For destination operand SR: 

C - Cleared if bit 0 is specified. Not affected otherwise. 
V - Cleared if bit 1 is specified. Not affected otherwise. 
Z - Cleared if bit 2 is specified. Not affected. otherwise. 
N - Cleared if bit 3 is specified. Not affected otherwise. 
U - Cleared if bit 4 is specified. Not affected otherwise. 
E - Cleared if bit 5 is specified. Not affected otherwise. 
L - Cleared if bit 6 is specified. Not affected otherwise. 
S - Cleared if bit 7 is specified. Not affected otherwise. 

For destination operand A or B: 
S -Computed according to the definition. See Notes on page A-55. 
L - Set if data limiting has occurred. See Notes on page A-55. 
E - Not affected 
U - Not affected 
N - Not affected 
Z - Not affected 
V - Not affected 
C - Set if bit tested is set. Cleared otherwise. 



BCLR Bit Test and Clear 

For other destination operands: 
C - Set If bit tested is set. Cleared otherwise. 
V - Not affected 
Z - Not affected 
N - Not affected 
U - Not affected 
E - Not affected 
L -Not affected 
S - Not affected 

MR Status Bits: 
For destination operand SR: 

10 - Cleared if bit 8 is specified. Not affected otherwise. 

11 - Cleared if bit 9 is specified. Not affected otherwise. 

SO - Cleared if bit 10 is specified. Not affected otherwise. 

S 1 - Cleared if bit 11 is specified. Not affected otherwise. 
T - Cleared if bit 13 is specified. Not affected otherwise. 

DM - Cleared if bit 14 is specified. Not affected otherwise 

LF - Cleared if bit 15 is specified. Not affected otherwise. 

For other destination operands: 

10 - Not affected 
11 - Not affected 

SO - Not affected 

S 1 - Not affected 

T - Not affected 

DM - Not affected 
LF - Not affected 

BCLR 



BClR 

Instruction Format: 
BClR #n,X:ea 
BClR #n,Y:ea 

Opcode: 

Bit Test and Clear BClR 

23 16 15 8 7 0 

0000101 o 10 1 M M M R R Rio SOb b b b b 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

Instruction Fields: 
#n=bit number=bbbbb, 
ea=6-bit Effective Address=MMMRRR 

Effective 
Addressing Mode MMMRRR Memory SpaceS 

(Rn)-Nn o 0 Orr X Memory 
(Rn)+Nn o 0 r r Y Memory 
(Rn)- o 1 o r r r 
(Rn)+ o 1 r r r 
(Rn) 0 o r r r 
(Rn+Nn) 0 1 r r r 
-(Rn) 1 r r r 
Absolute address o 000 

where "rrr" refers to an address register RO-R? 

Timing: 4+mvb oscillator clock cycles 

Memory: 1 +ea program words 

0 

Bit Number bbbbb 

00000 

• 
• 
• 

10111 



BCLR Bit Test and Clear 

Instruction Format: 
BClR #n,X:aa 
BClR #n,Y:aa 

Opcode: 

23 16 15 8 7 

10 0 0 0 1 0 1 0100 a a a a a alo 

Instruction Fields: 
#n=bit number=bbbbb, 
aa=6-bit Absolute Short Address=aaaaaa 

Absolute Short Address aaaaaa 

000000 
• 
• 

111111 

Timing: 4+mvb oscillator clock cycles 

Memory: 1 +ea program words 

Memory SpaceS 

X Memory 0 
Y Memory 1 

BCLR 

o 
SOb b b b bl 

Bit Number bbbbb 

00000 
• 

10111 



BClR Bit Test and Clear 

Instruction Format: 
BClA #n ,X :pp 
BClA #n,Y:pp 

Opcode: 
23 

10 0 0 0 1 0 1 

Instruction Fields: 
#n=bit number=bbbbb, 

16 15 

o I 0 0 p p p p p 

ea=6-bit 1/0 Short Address=pppppp 

1/0 Short Address pppppp 

000000 
• 
• 

111111 

Timing: 4+mvb oscillator clock cycles 

Memory: 1 +ea program words 

Memory SpaceS 

X Memory 0 
Y Memory 

BClR 

o 
SOb b b b bl 

Bit Number bbbbb 

00000 
• 

10111 



BCLR Bit Test and Clear 

Instruction Format: 
BCLR #n,D 

Opcode: 

23 16 15 8 7 

10 0 0 0 1 0 1 o 11 1 D D D D D Dlo 

Instruction Fields: 
#n=bit number=bbbbb, 
D=destination register=DDDDDD 
xxxx=16-bit Absolute Address in extension word 

Destination Register DDDDDD 

4 registers in Data ALU o 0 0 1 D D 
8 accumulators in Data ALU o 0 1 D D D 
8 address registers in AGU o 1 0 T T T 
8 address offset registers in AGU o 1 NNN 
8 address modifier registers in AGU 1 0 0 F F F 
8 program controller registers 1 1 G G G 

BCLR 

o 
1 0 b b b b bl 

Bit Number bbbbb 

00000 

• 
10111 

See Section A.1 0 and Table A-18 for specific register encodings. 



BClR Bit Test and Clear BClR 

Notes: If A or 8 is specified as the destination operand, the following sequence of events 
takes place: 

1. The S bit is computed according to its definition (See Section A.S) 

2. The accumulator value is scaled according to the scaling mode bits SO 
and S1 in the status register (SR). 

3. If the accumulator extension is in use, the output of the shifter is limited 
to the maximum positive or negative saturation constant, and the L bit is 
set. 

4. The resulting 24 bit value is placed back into A1 or 81. AO or 80 is 
cleared and the sign of A 1 or 81 is extended into A2 or 82. 

S. The bit test and clear is performed on A1 or 81, and the C bit is set if the 
bit tested is set. 

Timing: 4+mvb oscillator clock cycles 

Memory: 1 +ea program words 



BSET Bit Test and Set BSEl 

Operation: Assembler Syntax: 
D[n] ~ C; BSET #n,X:ea 

1 ~ D[n] 

D[n] ~ C; BSET #n,X:aa 
1 ~ D[n] 

D[n] ~ C; BSET #n,X:pp 
1 ~ D[n] 

D[n] ~ C; BSET #n,Y:ea 
1 ~ D[n] 

D[n] ~ C; BSET #n,Y:aa 
1 ~ D[n] 

D[n] ~ C; BSET #n,Y:pp 
1 ~ D[n] 

D[n] ~ C; BSET #n,D 
1 ~ D[n] 

Description: Test the nth bit of the destination operand 0, set it, and store the result in 
the destination location. The state of the nth bit is stored in the carry bit C of the condition 
code register. The bit to be tested is selected by an immediate bit number from 0-23. 
This instruction performs a read-modify-write operation on the destination location using 
two destination accesses before releasing the bus. This instruction provides a test-and­
set capability which is useful for synchronizing multiple processors using a shared mem­
ory. This instruction can use all memory alterable addressing modes. 

Example: 

BSET #$0,X:«$FFE5 ;test and clear bit 14 in liD Port B Data Reg. 

Before Execution After Execution 

X:$FFE5 1 '--____ $ 0_00_0_0 o __ -.l X:$FFE5 1L--__ --'-$°_°°_°°_1 __ --' 

SRI '--____ $0_3_00 __ -.l SRI'--____ ~$_03_0_0 __ ~ 



BSET Bit Test and Set BSET 

Explanation of Example: Prior to execution, the 24-bit X location X:$FFE5 (liD port C 
data register) contains the value $000000. The execution of the BSET #$0,X:«$FFE5 

instruction tests the state of the oth bit in X:$FFE5, sets the carry bit C accordingly, and 
then sets the Oth bit in X:$FFE5. 

Condition Codes: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 

I"F I OM I T I" I SI I SO I 11 I 10 I s I l 
... MR • C CCR 

CCR Condition Codes: 
For destination operand SR: 

C- Set if bit 0 is specified. Not affected otherwise. 
V - Set if bit 1 is specified. Not affected otherwise. 
Z - Set if bit 2 Is specified. Not affected otherwise. 
N - Set if bit 3 is specified. Not affected otherwise. 
U - Set if bit 4 is specified. Not affected otherwise. 
E - Set if bit 5 Is specified. Not affected otherwise. 
L - Set if bit 6 is specified. Not affected otherwise. 
S - Set If bit 7 Is specified. Not affected othelWise. 

For destination operand A or B: 

1 0 

S -Computed according to the definition. See Notes on page A-63. 
L - Set if data limiting has occurred. See Notes on page A-63. 
E - Not affected 
U - Not affected 
N - Not affected 
Z - Not affected 
V - Not affected 
C - Set if bit tested Is set. Cleared othelWise. 



BSEl Bit Test and Set 

For other destination operands: 
C - Set If bit tested Is set. Cleared otherwise. 
V - Not affected 
Z - Not affected 
N - Not affected 
U - Not affected 
E - Not affected 
L - Not affected 
S - Not affected 

MR Status Bits: 
For destination operand SR: 

10 - Set if bit 8 is specified. Not affected otherwise. 
11 - Set if bit 9 is specified. Not affected otherwise. 
SO - Set if bit 10 is specified. Not affected otherwise. 
S1 - Set if bit 11 is specified. Not affected otherwise. 
T - Set if bit 13 is specified. Not affected otherwise. 
DM - Set if bit 14 is specified. Not affected otherwise 
LF - Set if bit 15 is specified. Not affected otherwise. 

For other destination operands: 
10 - Not affected 
11 - Not affected 
SO - Not affected 
S 1 - Not affected 
T - Not affected 
DM - Not affected 
LF - Not affected 

BSEl 



BSET 

Instruction Format: 
BSET #n,X:ea 
BSET #n,Y:ea 

Opcode: 

Bit Test and Set BSET 

23 16 15 8 7 0 

000010 10 1 01 M M M R R Rio S 1 b b b b b 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

Instruction Fields: 
#n=bit number=bbbbb, 
ea=6-bit Effective Address=MMMRRR 

Effective 
Addressing Mode MMMRRR Memory SpaceS 

(Rn)-Nn o 0 o r r r X Memory 
(Rn)+Nn o 0 1 r r r Y Memory 
(Rn)- o 1 0 r r r 
(Rn)+ o 1 1 r r r 
(Rn) 1 0 o r r r 
(Rn+Nn) 0 r r r 
-(Rn) 1 r r r 
Absolute address o 0 0 0 

where "rrr" refers to an address register RO-R? 

Timing: 4+mvb oscillator clock cycles 

Memory: 1 +ea program words 

0 

Bit Number bbbbb 

00000 

• 
• 
• 

10111 



BSET Bit Test and Set 

Instruction Format: 
BSET #n,X:aa 
BSET #n,Y:aa 

Opcode: 
23 16 15 8 7 

10 0 0 0 1 0 1 o I 01 0 a a a a a a I 0 

Instruction Fields: 
#n=bit number=bbbbb, 
aa=6-bit Absolute Short Address=aaaaaa 

Absolute Short Address aaaaaa 

000000 
• 
• 

111111 

Timing: 4+mvb oscillator clock cycles 

Memory: 1 +ea program words 

Memory SpaceS 

X Memory 0 
Y Memory 1 

BSET 

o 
S 1 b b b b bl 

Bit Number bbbbb 

00000 
• 

10111 



BSET Bit Test and Set 

Instruction Format: 
BSET #n,X:pp 
BSET #n,Y:pp 

Opcode: 
23 16 15 8 7 

10 0 0 0 1 0 1 

Instruction Fields: 
#n=bit number=bbbbb, 
ea=6-bit liD Short Address=pppppp 

1/0 Short Address pppppp 

000000 
• 
• 

111111 

Timing: 4+mvb oscillator clock cycles 

Memory: 1 +ea program words 

Memory SpaceS 

X Memory a 
Y Memory 

BSET 

o 
S 1 b b b b bl 

Bit Number bbbbb 

00000 
• 

10111 



BSET Bit Test and Set 

Instruction Format: 
BSET #n,D 

Opcode: 
23 16 15 

10 0 0 0 1 0 1 011 1 0 0 0 DO 

Instruction Fields: 
#n=bit number=bbbbb, 
D=destination register=DDDDDD 
xxxx=16-bit Absolute Address in extension word 

Destination Register DDDDDD 

4 registers in Data ALU o 0 0 1 D D 
8 accumulators in Data ALU o 0 1 D D D 
8 address registers in AGU o 1 0 T T T 
8 address offset registers in AGU o 1 1 NNN 
8 address modifier registers in AGU 0 0 F F F 
8 program controller registers 1 1 G G G 

BSET 

8 7 o 
o 1 0 1 1 b b b b bl 

Bit Number bbbbb 

00000 

• 
10111 

See Section A.1 0 and Table A-18 for specific register encodings. 



BSET Bit Test and Set BSET 

Notes: If A or B is specified as the destination operand, the following sequence of events 
takes place: 

1. The S bit is computed according to its definition (See Section A.5) 

2. The accumulator value is scaled according to the scaling mode bits SO 
and S 1 in the status register (SR). 

3. If the accumulator extension is in use, the output of the shifter is limited 
to the maximum positive or negative saturation constant, and the L bit is 
set. 

4. The resulting 24 bit value is placed back into A1 or B1. AO or BO is 
cleared and the sign of A 1 or 81 is extended into A2 or 82. 

5. The bit test and set is performed on A1 or 81, and the C bit is set if the 
bit tested is set. 

Timing: 4+mvb oscillator clock cycles 

Memory: 1 +ea program words 



8TST Bit Test 8TST 

Operation: Assembler Syntax: 
D[n] -+ C; BTST #n,X:ea 

D[n] -+ C; BTST #n,X:aa 

D[n] -+ C; BTST #n,X:pp 

D[n] -+ C; BTST #n,Y:ea 

D[n] -+ C; BTST #n,Y:aa 

D[n] -+ C; BTST #n,Y:pp 

D[n] -+ C; BTST #n,D 

Description: Test the nth bit of the destination operand D. The state of the nth bit is 
stored in the carry bit C of the condition code register. The bit to be tested is selected by 
an immediate bit number from 0-23. This instruction is useful for performing serial to par­
allel conversion when used with the appropriate rotate instructions. This instruction can 
use all memory alterable addressing modes. 

Example: 

BTST 
ROL 

#$O,X:«$FFEE 
A 

Before Execution 

X:$FFEE 1-1 ___ -'-$o_o_oo_o2 __ ---' 

SR~I ___ ~$_03_00 ____ ---' 

;read SSI serial input flag IF1 into C bit 
;rotate carry bit C into LSB of A 1 

After Execution 

X:$FFEE 1'--___ $_00_00_02 __ --' 

SRI'--___ ~$_03_01 ____ --' 

Explanation of Example: Prior to execution, the 24-bit X location X:$FFEE (1/0 SSI sta­
tus register) contains the value $000002. The execution of the BTST #$1,X:«$FFEE 
instruction tests the state of the 1 st bit (serial input flag IF1) in X:$FFEE and sets the 
carry bit C accordingly. This instruction sequence illustrates serial to parallel conversion 
using the carry bit C and the 24-bit A1 register. 



BTST Bit Test 

Condition Codes: 
15 14 13 12 11 10 9 8 7 6 5 4 3 1 LF I OM I T I ** I 61 I 60 I 11 I lois I L I E I u I N I 
~ MR .... 

CCR Condition Codes: 
For destination operand A or B: 

C - Set If bit tested Is set. Cleared otherwise. 
V - Not affected 
Z - Not affected 
N - Not affected 
U - Not affected 
E - Not affected 

CCR 

2 

z I v 

L - Set If data limiting has occurred. See Notes on page A-69. 

BTST 

0 

I :1 

S - Computed according to the definition. See Notes on page A-69. 

For other destination operands: 
C - Set H bit tested is set. Cleared otherwise. 
V - Not affected 
Z - Not affected 
N - Not affected 
U - Not affected 
E - Not affected 
L - Not affected 
S - Not affected 

MR Status bits are not affected. 

SP - Stack Pointer: 
For destination operand SSH: SP - Decrement by 1 . 
For other destination operands: Not affected 



BTST 

Instruction Format: 
BTST #n,X:ea 
BTST #n,Y:ea 

Opcode: 

Bit Test BTST 

23 16 15 870 

0000101 1 I 0 1 M M M R R Rio S 1 b b b b b 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

Instruction Fields: 
#n=bit number=bbbbb, 
ea=6-bit Effective Address=MMMRRR 

Effective 
Addressing Mode MMMRRR Memory SpaceS 

(Rn)-Nn o 0 0 X Memory 
(Rn)+Nn o 0 1 Y Memory 
(Rn)- o 1 0 r r r 
(Rn)+ o 1 1 r r r 
(Rn) 1 0 o r r r 
(Rn+Nn) 1 0 1 r r r 
-(Rn) 1 1 1 r r r 
Absolute address 1 1 o 0 0 0 

where "rrr" refers to an address register RO-R7 

Timing: 4+mvb oscillator clock cycles 

Memory: 1 +ea program words 

0 
1 

Bit Number bbbbb 

00000 
• 
• 
• 

10111 



8TST 

Instruction Format: 
BTST #n,X:aa 
BTST #n,Y:aa 

Opcode: 

Bit Test 

23 16 15 8 7 

10 0 0 0 1 0 1 1 10 0 a a a a a a 10 

Instruction Fields: 
#n=bit number=bbbbb, 
aa=6-bit Absolute Short Address=aaaaaa 

Absolute Short Address aaaaaa 

000000 
• 
• 

111111 

Timing: 4+mvb oscillator clock cycles 

Memory: 1 +ea program words 

Memory SpaceS 

X Memory a 
Y Memory 1 

8TST 

o 
S 1 b b b b bl 

Bit Number bbbbb 

00000 
• 

10111 



-

8TST 

Instruction Format: 
BTST #n,X:pp 
BTST #n,Y:pp 

Opcode: 

23 

10 0 0 0 1 0 1 

Instruction Fields: 
#n=bit number=bbbbb, 

16 15 

ea=6-bit 110 Short Address=pppppp 

1/0 Short Address pppppp 

000000 
• 
• 

111111 

Timing: 4+mvb oscillator clock cycles 

Memory: 1 +ea program words 

Bit Test 

8 7 

Memory SpaceS 

X Memory 0 
Y Memory 1 

8TST 

o 
S 1 b b b b bl 

Bit Number bbbbb 

00000 
• 

10111 



8TST 

Instruction Format: 
BTST #n,D 

Opcode: 
23 16 15 

10 0 0 0 1 0 1 

Instruction Fields: 
#n=bit number=bbbbb, 
D=destination register=DDDDDD, 

Bit Test 

xxxx=16-bit Absolute Address in extension word 

Destination Register DDDDDD 

4 registers in Data ALU o 0 0 1 D D 
8 accumulators in Data ALU o 0 1 D D D 
8 address registers in AGU o 1 0 T T T 
8 address offset registers ilJ AGU o 1 1 N N N 
8 address modifier registers in AGU 0 0 F F F 
8 program controller registers 1 1 G G G 

8TST 

8 7 o 
o I 0 1 1 b b b b bl 

Bit Number bbbbb 

00000 

• 
10111 

See Section A.1 0 and Table A-18 for specific register encodings. 

Notes: If A or B is specified as the destination operand, the following sequence of events 
takes place: 

1. The S bit is computed according to its definition (See Section A.S) 

2. The accumulator value is scaled according to the scaling mode bits SO 
and S1 in the status register (SR). 

3. If the accumulator extension is in use, the output of the shifter is limited 
to the maximum positive or negative saturation constant, and the L bit is 
set. 

4. The bit test is performed on the resulting 24-bit value and the C bit is set 

if the bit tested is~ set. The original contents of A or B are not changed. 

Timing: 4+mvb oscillator clock cycles 
Memory: 1 +ea program words 



-

CLR Clear Accumulator CLR 

Operation: Assembler Syntax: 
o ~D (parallel move) CLR D (parallel move) 

Description: Clear the destination accumulator. This is a 56-bit clear instruction. 

Example: 

CLR A #$7F,N ;clear A, set up NO addr. reg. 

Before Execution After Execution 

A~I ___ $_12_:3_45_6_78_:9_AB_C_D_E __ ~ A 1'--___ $0_0:_00_00_00_:0_00_0_00 __ ----' 

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the 
value $12:345678:9ABCDE. The execution of the CLR A instruction clears the 56-bit A 
accumulator to zero. 

Condition Codes: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 ° I: 1 OM 1 T 1** J:' 1 so 1 11 1 '~ I: 1 LIE 1 U JR N 1 z 1 vi: I 
S - Computed according to the definition in A.5 CONDITION CODE COMPUTATION 
L - Set if data limiting has occurred during parallel move 
E - Always cleared 
U - Always set 
N - Always cleared 
z- Always set 
V - Always cleared 



CLR Clear Accumulator 

Instruction Format: 
CLR D 

Opcode: 

23 8 7 4 3 

DATA BUS MOVE FIELD I 0 0 o 1 I d 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

Instruction Fields: 
o d 

A 0 
B 

Timing: 2+mv oscillator clock cycles 

Memory: 1 +mv program words 

CLR 

o 
o 



-

CMP Compare CMP 

Operation: Assembler Syntax: 
S2 - S1 (parallel move) CMP S1, S2 (parallel move) 

Description: Subtract the source one operand, S1, from the source two accumulator, 
S2, and update the condition code register. The result of the subtraction operation is not 
stored. 

Note: This instruction subtracts 56-bit operands. When a word is specified as S1, it is 
sign extended and zero filled to form a valid 56-bit operand. For the carry to be set cor­
rectly as a result of the subtraction, S2 must be properly sign extended. S2 can be 
improperly sign extended by writing A1 or B1 explicitly prior to executing the compare so 
that A2 or B2, respectively, may not represent the correct sign extension. This note par­
ticularly applies to the case where it is extended to compare 24-bit operands such as XO 
with A1. 

Example: 

CMP YO,B XO,X:(R6)+N6 Y1,Y:(RO)- ;comp. YO and B, save XO, Y1 

Before Execution After Execution 

B I $00:000020:000000 B I $00:000020:000000 

YO I $000024 YO I $000024 

SR I $0300 SR I $0319 

Explanation of Example: Prior to execution, the 56-bit B accumulator contains the 
value $00:000020:000000 and the 24-bit YO register contains the value $000024. The 
execution of the CMP YO,B instruction automatically appends the 24-bit value in the YO 
register with 24 LS zeros, sign extends the resulting 48-bit long word to 56 bits, subtracts 
the result from the 56-bit B accumulator and updates the condition code register. 



CMP Compare CMP 

Condition Codes: 

15 14 13 12 11 10 9 876543210 

S - Computed according to the definition in A.5 CONDITION CODE COMPUTATION 
L - Set if limiting (parallel move) or overflow has occurred in result 
E - Set if the signed integer portion of A or B result is in use 
U - Set if A or B result is unnormalized 
N - Set if bit 55 of A or B result is set 
z- Set if A or B result equals zero 
V - Set if overflow has occurred in A or B result 
C - Set if a carry (or borrow) occurs from bit 55 of A or B result. 

Note: The definitions of the E and U bits vary according to the scaling mode being used. 
Refer to Section A.5 for complete details. 

Instruction Format: 
CMP S1, S2 

Opcode: 
23 8 7 4 3 

DATA BUS MOVE FIELD 1 0 J J J 1 d 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

Instruction Fields: 
S1,S2 JJJd S1,82 

B,A 0000 YO,B 
A,B 0001 X1,A 
XO,A 1000 X1,B 
XO,B 1 001 Y1,A 
YO,A 1 0 1 0 Y1,B 

Timing: 2+mv oscillator clock cycles 

Memory: 1 +mv program words 

JJJd 

1 0 1 1 
1 1 00 
1 1 0 1 
1 1 1 0 
1 1 1 1 

o 

-



-

CMPM Compare Magnitude CMPM 

Operation: Assembler Syntax: 
IS21-IS11(paraliel move) CMPM S1, S2 (parallel move) 

Description: Subtract the absolute value (magnitude) of the source one operand, S1, 
from the absolute value of the source two accumulator, S2, and update the condition 
code register. The result of the subtraction operation is not stored. 

Note: This instruction subtracts 56-bit operands. When a word is specified as S1, it is 
sign extended and zero filled to form a valid 56-bit operand. For the carry to be set cor­
rectly as a result of the subtraction, S2 must be properly sign extended. S2 can be 
improperly sign extended by writing A 1 or B1 explicitly prior to executing the compare so 
that A2 or B2, respectively, may not represent the correct sign extension. This note par­
ticularly applies to the case where it is extended to compare 24-bit operands such as XO 
with A1. 

Example: 

CMPM X1,A BA,L:-(R4) ;comp. YO and B, save XO, Y1 

Before Execution After Execution 

A I $00:000006:000000 A I $00:000006:000000 

X1 I $FFFFF7 X1 I $FFFFF7 

SR I $0300 SR I $0319 

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the 
value $00:000006:000000, and the 24-bit X1 register contains the value $FFFFF7. The 
execution of the CMPM X1 ,A instruction automatically appends the 24-bit value in the X1 
register with 24 LS zeros, sign extends the resulting 48-bit long word to 56 bits, takes the 
absolute value of the resulting 56-bit number, subtracts the result from the absolute 
value of the contents of the 56-bit A accumulator, and updates the condition code regis­
ter. 



CMPM Compare Magnitude CMPM 

Condition Codes: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 I LF I DM I T I ** I 81 I 80 I 11 I [0 I 8 I L I E I u I N I z v 
I ~I CCR ... MR ~~ 

S - Computed according to the definition in A.5 CONDITION CODE COMPUTATION 
L - Set if data limiting has occurred during a parallel move 
E - Set if the signed integer portion of A or B result is in use 
U - Set if A or B result is unnormalized 
N - Set if bit 55 of A or B result is set 
Z- Set if A or B result equals zero 
V - Set if overflow has occurred in A or B result 
C - Set if a carry (or borrow) occurs from bit 55 of A or B result. 

Note: The definitions of the E and U bits vary according to the scaling mode being used. 
Refer to Section A.5 for complete details. 

Instruction Format: 
CMPM 81, S2 

Opcode: 
23 8 7 4 3 

DATA BUS MOVE FIELD I 0 J J J I d 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

Instruction Fields: 
81,82 J J J d 

B,A 0000 
A,B 0001 
XO,A 1 000 

81,S2 J J J d 

XO,B 1 001 
YO,A 101 0 
YO,B 1 0 1 1 

Timing: 2+mv oscillator clock cycles 

Memory: 1 +mv program words 

81,S2 J J J d 

X1,A 1 1 00 
X1,B 1 1 0 1 
Y1,A 1 1 1 0 
Y1,B 1 1 1 1 

o 

-
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DEBUG Enter Debug Mode DEB,UG 

Operation: Assembler Syntax: 

Enter the debug mode DEBUG 

Description: Enter the debug mode and wait for OnCE commands. 

Example: 

DEBUG ;enter the debug mode 

Explanation of Example: Upon executing the DEBUG instruction, the chip enters the 
debug mode after the instruction following the DEBUG instruction has entered the 
instruction latch. Entering the debug mode is acknowledged by the chip by pulsing low 
the DSO line. This informs the external command controller that the chip has entered the 
debug mode and is waiting for commands. 

Condition Codes: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 I LF I OM I T I·· I 81 I 80 I 11 I 10 I 8 I L I E I U N z 
• MR • • CCR 

The condition codes are not affected by this instruction 

Instruction Format: 
DEBUG 



DEBUG Enter Debug Mode 

Opcode: 
23 16 15 

10 0 0 0 0 0 0 0100 0 0 

Timing: 4 oscillator clock cycles 

Memory: 1 program word 

o 0 1 

DEBUG 

8 7 o 

o I 0 o 0 0 0 0 0 01 

-
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DEBUGcc Enter Debug Mode Conditionally DEB U G cc 

Operation: Assembler Syntax: 

If cc, then enter the debug mode DEBUGcc 

Description: If the specified condition is true, enter the debug mode and wait for OnCE 

commands. If the specified condition is false, continue with the next instruction. 

The term "cc" may specify the following conditions: 

CC (HS) 
CS (LO) 
EC 
EQ 
ES 
GE 
GT 
LC 
LE 
LS 
LT 
MI 
NE 
NR 
PL 
NN 

where 

"cc" Mnemonic 
- carry clear (higher or same) 
- carry set (lower) 
- extension clear 
- equal 
- extension set 
- greater than or equal 
- greater than 
-limit clear 
- less than or equal 
-limit set 
-less than 
- minus 
- not equal 
- normalized 
-plus 
- not normalized 

U denotes the logical complement of U, 
+ denotes the logical OR operator, 
- denotes the logical AND operator, and 
EB denotes the logical Exclusive OR operator 

Condition Codes: 

Condition 
C=O 
C=1 
E=O 
Z=1 
E=1 
NEB V=O 
Z+(N EB V)=O 
L=O 
Z+(N EB V)=1 
L=1 
NEB V=1 
N=1 
Z=O 
Z+(U-E)=1 
N=O 
Z+(U-E)=O 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 

I LF I OM I T I ** I SI I SO I 11 I 10 I s I L I E I U N I z I v 
... MR .. ... CCR 

The condition codes are not affected by this instruction. 

o 



DEBUGcc Enter Debug Mode Conditionally DEB U G cc 

Example: 

CMP YO, B 
DEBUGge 

; Compare register YO with the B accumulator. 
; Enter the debug mode if 
; the previous test result is "greater than". 

Explanation of Example: The results of the comparison between YO and B will be 
recorded in the status register bits. The conditional debug instruction looks at the condi­
tions (for greater than or equal in this case) and if they are met (N ffi V=O) then the 
DEBUG instruction will be executed. The chip enters the debug mode after the instruc­
tion following the DEBUG instruction has entered the instruction latch. The chip pulses 
low the DSO line to inform the external command controller that it has entered the debug 
mode and that the chip is waiting for commands. 

Instruction Format: 
DEBUGcc 

Opcode: 
23 16 15 8 7 0 

10 0 0 o 0 0 0 o I 0 0 0 0 0 0 1 1 I 0 0 0 0 c c c c I 

Instruction Fields: 

Mnemonic c c c c Mnemonic c c c c 
CC (HS) 0 0 0 0 CS (LO) 0 0 0 
GE 0 0 0 1 LT 0 0 1 
NE 0 0 1 0 EQ 0 1 0 
PL 0 0 1 1 MI 0 1 1 
NN 0 1 0 0 NR 1 0 0 
EC 0 1 0 1 ES 1 0 1 
LC 0 1 1 0 LS 1 1 0 
GT 0 1 1 1 LE 1 1 1 

Timing: 4 oscillator clock cycles 

Memory: 1 program word 
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DEC 

Operation: 
0-1 -+ 0 

Decrement by One DEC 

Assembler Syntax: 
DEC 0 

Description: Decrement by one the specified operand and store the result in the destina­
tion accumulator. One is subtracted from the LSB of D. 

Example: 

DEC A ;Decrement the content of A accumulator by one 

Explanation of Example: One is subtracted from the content of the A accumulator. 

Condition Codes: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 

1 LF I DM I T 1** 1 S1 1 so 1 11 I 10 1 s 1 L E I u N I z 
... MR ~ ... CCR 

L - Set if overflow has occurred in result. Not affected otherwise 
E - Set if the signed integer portion of result is in use 
U- Set if result is unnormalized 
N - Set if bit 55 of result is set 
Z - Set if result equals zero 
V - Set if overflow has occurred in result 

-C - Set if a borrow occurs from bit 55 of result 

0 

v I 
:1 



DEC Decrement by One DEC 

Instruction Format: 
DEC D 

Opcode: 
23 16 15 8 7 a 

10 a a a a a a 010 a a a a a a a I a a a a 1 a 1 dl 

Instruction Fields: 
D d 

A 0 
B 

Timing: 2 oscillator clock cycles 

Memory: 1 program word 

-
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DIV Divide Interation DIV 

Operation: If D[55]ffiS[23]=1, 

55 47 23 0 

then I~I-- 1-- I+C+S+D 

Destination Accumulator D 

55 47 23 0 

else I~I-- 1-- I+C-S+D 

Destination Accumulator D 

where ffi denotes the logical exclusive OR operator 

Assembler Syntax: DIV S,D 

Description: 
Divide the destination operand D by the source operand S and store the result in the des-
tination accumulator D. The 48-bit dividend must be a positive fraction which has 
been sign extended to 56-bits and Is stored in the full 56-bit destination accumula­
tor D. The 24-blt divisor is a signed fraction and Is stored in the source operand S. 
Each DIV iteration calculates one quotient bit using a nonrestoring fractional division 
algorithm (see description on the next page). After the execution of the first DIV instruc­
tion, the destination operand holds both the partial remainder and the formed quotient. 
The partial remainder occupies the high-order portion of the destination accumulator D 
and is a signed fraction. The formed quotient occupies the low-order portion of the desti­
nation accumulator D (AO or 80) and is a positive fraction. One bit of the formed quotient 
is shifted into the LS bit of the destination accumulator at the start of each DIV iteration. 
The formed quotient is the true quotient if the true quotient is positive. If the true quotient 
is negative, the formed quotient must be negated. Valid results are obtained only 
when IDI < lSI and the operands are Interpreted as fractions. Note that this condition 
ensures that the magnitude of the quotient is less than one (Le., is fractional) and pre­
cludes division by zero. 



DIV Divide Interation DIV 

The DIV instruction calculates one quotient bit based on the divisor and the previous par­
tial remainder. To produce an N-bit quotient, the DIV instruction is executed N times 
where N is the number of bits of precision desired in the quotient, 1 ;leN;le24. Thus, for a 
full-precision (24 bit) quotient, 24 DIV iterations are required. In general, executing the 
DIV instruction N times produces an N-bit quotient and a 48-bit remainder which has 
(48-N) bits of precision and whose N MS bits are zeros. The partial remainder is not a 
true remainder and must be corrected due to the nonrestoring nature of the division algo­
rithm before it may be used. Therefore, once the divide is complete, it is necessary to 
reverse the last DIV operation and restore the remainder to obtain the true remainder. 

The DIV instruction uses a nonrestoring fractional division algorithm which consists of 
the following operations (see the previous Operation diagram): 

1. Compare the source and destination operand sign bits: An exclusive OR 
operation is performed on bit 55 of the destination operand D and bit 23 of the 
source operand S; 

2. Shift the partial remainder and the quotient: The 55-bit destination accumu­
lator D is shifted one bit to the left. The carry bit C is moved into the LS bit (bit 
0) of the accumulator; 

3. Calculate the next quotient bit and the new partial remainder: The 24-bit 
source operand S (signed divisor) is either added to or subtracted from the 
MSP portion of the destination accumulator (A1 or 81), and the result is stored 
back into the MSP portion of that destination accumulator. If the result of the 
exclusive OR operation previously described was a "1" (Le., the sign bits were 
different), the source operand S is added to the accumulator. If the result of the 
exclusive OR operation was a "0" (Le., the sign bits were the same), the 
source operand S is subtracted from the accumulator. Due to the automatic 
sign extension of the 24-bit signed divisor, the addition or subtraction opera­
tion correctly sets the carry bit C of the condition code register with the next 
quotient bit. 

-
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DIV Divide Interation DIV 

Example: (4-Quadrant division, 24-bit signed quotient, 48-blt signed remainder) 
ABS A A,B ;make dividend positive, copy A1 to B1 
EOR XO,B B,X:$O ;save rem. sign in X:$O, quo. sign in N 
AND #$FE,CCR ;clear carry bit C (quotient sign bit) 
REP #$18 ;form a 24-bit quotient 
DIV XO,A ;form quotient in AO, remainder in A1 
TFR A,B ;save quotient and remainder in B1,BO 
JPL SAVEQUO ;go to SAVEQUO if quotient is positive 
NEG 8 ;complement quotient if N bit set 

SAVEQUO TFR XO,B BO,X1 ;save quo. in X1, get signed divisor 
A8S B ;get absolute value of signed divisor 
ADD A,B ;restore remainder in B1 
JCLR #23,X:$O,DONE ;go to DONE if remainder is positive 
MOVE #$0,80 ;clear LS 24 bits of 8 
NEG B ;complement remainder if negative 

DONE ....... 

Before Execution After Execution 

A I $00:OE66D7:F2832C A I $FF:EDCCAA:654321 

XO I $123456 XO I $123456 

X1 I $000000 X1 I $654321 

B I $00:000000:000000 B I $00:000100:654321 

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the 56-
bit, sign-extended fractional dividend D (D=$00.OE66D7:F2832C=0.112513535894635 
approx.) and the 24-bit XO register contains the 24-bit, signed fractional divisor S 
(S=$123456=0.142222166061401). Since IDI<ISI, the execution of the previous divide 
routine stores the correct 24-bit signed quotient in the 24-bit X1 register (N 
XO=0.79111111164093=$654321 =X1). The partial remainder is restored by reversing 
the last DIV operation and adding back the absolute value of the signed divisor in XO to 
the partial remainder in A 1. This produces the correct LS 24 bits of the 48-bit signed 
remained in the 24-bit 81 register. Note that the remainder is really a 48-bit value which 
has 24 bits of precision. Thus, the correct 48-bit remainder is $000000:000100 which 
equals 0.0000000000018190 approximately. 



DIV Divide Interation DIV 

Note that the divide routine used in the previous example assumes that the sign­
extended 56-bit signed fractional dividend is stored in the A accumulator and that the 24-
bit signed fractional divisor is stored in the XO register. This routine produces a full 24-bit 
signed quotient and a 48-bit signed remainder. 

This routine may be greatly simplified for the case in which only positive, fractional oper­
ands are used to produce a 24-bit positive quotient and a 48-bit positive remainder, as 
shown in the following example: 

1-Quadrant division, 24-bit unsigned quotient, 48-bit unsigned remainder 
AND #$FE,CCR ;clear carry bit C (quotient sign bit) 
REP #$18 ;form a 24-bit quotient and remainder 
DIV XO,A ;form quotient in AO, remainder in A1 
ADD XO,A ;restore remainder in A1 

Note that this routine assumes that the 56-bit positive, fractional, sign-extended dividend 
is stored in the A accumulator and that the 24-bit positive, fractional divisor is stored in 
the XO register. After execution, the 24-bit positive fractional quotient is stored in the AO 
register; the LS 24 bits of the 48-bit positive fractional remainder are stored in the A 1 reg­
ister. 

There are many variations possible when choosing a suitable division routine for a given 
application. The selection of a suitable division routine normally involves specification of 
the following items: 

1. the number of bits of precision in the dividend; 

2. the number of bits of precision N in the quotient; 

3. whether the value of N is fixed or is variable; 

4. whether the operands are unsigned or signed; 

5. whether or not the remainder is to be calculated. 
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DIV Divide Interatlon DIV 

A complete discussion of the various division routines is beyond the scope of this man­
ual. For a more complete discussion of these routines, refer to the application note enti­
tled Fractional and Integer Arithmetic Using the DSP56001. 

For extended precision division (Le., for N-bit quotients where N>24), the DIV instruction 
is no longer applicable, and a user-defined N-bit division routine is required. For further 
information on division algorithms, refer to pages 524-530 of Theory and Application of 
Digital Signal Processing by Rabiner and Gold (Prentice-Hall, 1975), pages 190-199 of 
Computer Architecture and Organization by John Hayes (McGraw-Hili, 1978), pages 
213-223 of Computer Arithmetic: Principles, Architecture, and Design by Kai Hwang 
(John Wiley and Sons, 1979), or other references as required. 

Condition Codes: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 I LF I OM I T I ** I 81 I 80 I 11 I 10 I 8 I LIE I U N Z v I ~I 
.~ MR ..... CCR -. 

L - Set if overflow bit V is set 
V - Set If the MS bit of the destination operand is changed as a result of the 

Instruction's left shift operation 
C - Set if bit 55 of the result Is cleared. 



DIV Divide Interation 

Instruction Format: 
DIV S,D 

Opcode: 

23 16 15 8 7 

10 0 0 0 0 0 0 1 11 0 0 o 0 00 010 

Instruction Fields: 
S,D J J d 

XO,A 000 
XO,B 001 
VO,A 010 
VO,B 0 1 1 

S,D 

X1,A 
X1,B 
V1,A 
V1,B 

Timing: 2 oscillator clock cycles 

Memory: 1 program word 

JJd 

100 
1 0 1 
1 1 0 
111 

DIV 

o 
1 J J d 0 0 01 

-
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DO Start Hardware Loop 

Operation: Assembler Syntax: 
SP+1 --t SP;LA --t SSH;LC --t SSL;X:ea --t LC 
SP+1 --t SP;PC --t SSH;SR --t SSL;expr -1 --t LA 
1 --t LF 

SP+1 --t SP;LA --t SSH;LC --t SSL;X:aa --t LC 
SP+1 --t SP;PC --t SSH;SR --t SSL;expr -1 --t LA 
1 --t LF 

SP+1 --t SP;LA --t SSH;LC --t SSL;Y:ea --t LC 
SP+1 --t SP;PC --t SSH;SR --t SSL;expr -1 --t LA 
1 --t LF 

SP+1 --t SP;LA --t SSH;LC --t SSL;Y:aa --t LC 
SP+1 --t SP;PC --t SSH;SR --t SSL;expr -1 --t LA 
1 --t LF 

SP+1 --t SP;LA --t SSH;LC --t SSL;#xxx --t LC 
SP+1 --t SP;PC --t SSH;SR --t SSL;expr -1 --t LA 
1 --t LF 

SP+1 -4 SP;LA --t SSH;LC --t SSL;S --t LC 
SP+1 --t SP;PC --t SSH;SR --t SSL;expr -1 --t LA 
1 --t LF 

End of Loop: 
SSL(LF) --t SR;SP-1 --t SP 
SSH --t LA;SSL --t LC;SP - 1 --t SP 

DO X:ea,expr 

DO X:aa,expr 

DO Y:ea,expr 

DO Y:aa,expr 

DO #xxx,expr 

DO S,expr 

DO 

Description: Begin a hardware DO loop that is to be repeated the number of times spec­
ified in the instruction's source operand and whose range of execution is terminated by 
the destination operand (previously shown as "expr"). No overhead other than the execu­
tion of this DO instruction is required to set up this loop. DO loops can be nested and the 
loop count can be passed as a parameter. 

During the first instruction cycle, the current contents of the loop address (LA) and the 
loop counter (LC) registers are pushed onto the system stack. The DO instruction's 
source operand is then loaded into the loop counter (LC) register. The LC register con­
tains the remaining number of times the DO loop will be executed and can be accessed 
from inside the DO loop subject to certain restrictions. If LC equals zero, the DO loop is 



DO Start Hardware Loop DO 

executed 65,536 times. All address register indirect addressing modes may be used to 
generate the effective address of the source operand. If immediate short data is speci­
fied, the 12 LS bits of LC are loaded with the 12-bit immediate value, and the four MS bits 
of LC are cleared. 

During the second instruction cycle, the current contents of the program counter (PC) 
register and the status register (SR) are pushed onto the system stack. The stacking of 
the LA, LC, PC, and SR registers is the mechanism which permits the nesting of DO 
loops. The DO instruction's destination operand (shown as "expr") is then loaded into the 
loop address (LA) register. This 16-bit operand is located in the instruction's 24-bit abso­
lute address extension word as shown in the opcode section. The value in the program 
counter (PC) register pushed onto the system stack is the address of the first instruction 
following the DO instruction (Le., the first actual instruction in the DO loop). This value is 
read (Le., copied but not pulled) from the top of the system stack to return to the top of 
the loop for another pass through the loop. 

During the third instruction cycle, the loop flag (LF) is set. This results in the PC being 
repeatedly compared with LA to determine if the last instruction in the loop has been 
fetched. If LA equals PC, the last instruction in the loop has been fetched and the loop 
counter (LC) is tested. If LC is not equal to one, it is decremented by one and SSH is 
loaded into the PC to fetch the first instruction in the loop again. If LC equals one, the 
"end-of-Ioop" processing begins. 

When executing a DO loop, the instructions are actually fetched each time through the 
loop. Therefore, a DO loop can be interrupted. DO loops can also be nested. When DO 
loops are nested, the end-of-Ioop addresses must also be nested and are not allowed to 
be equal. The assembler generates an error message when DO loops are improperly 
nested. Nested DO loops are illustrated in the example. 

Note: The assembler calculates the end-of-Ioop address to be loaded into LA (the abso­
lute address extension word) by evaluating the end-of-Ioop expression "expr" and sub­
tracting one. This is done to accommodate the case where the last word in the DO loop 
is a two-word instruction. Thus, the end-of-Ioop expression "expr" in the source code 
must represent the address of the instruction AFTER the last instruction in the loop as 
shown in the example. 

During the "end-of-Ioop" processing, the loop flag (LF) from the lower portion (SSL) of SP 
is written into the status register (SR), the contents of the loop address (LA) register are 
restored from the upper portion (SSH) of (SP-1), the contents of the loop counter (LC) 
are restored from the lower portion (SSL) of (SP-1) and the stack pOinter (SP) is decre-

-
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DO Start Hardware Loop DO 

mented by two. Instruction fetches now continue at the address of the instruction follow­
ing the last instruction in the DO loop. Note that LF is the only bit in the status register 
(SR) that is restored after a hardware DO loop has been exited. 

Note: The loop flag (LF) is cleared by a hardware reset. 

Restrictions: The "end-of-Ioop" comparison previously described actually occurs at 
instruction fetch time. That is, LA is being compared with PC when the instruction at LA-
2 is being executed. Therefore, instructions which access the program controller regis­
ters and/or change program flow cannot be used in locations LA-2, LA-1, or LA. 

Proper DO loop operation is not guaranteed if an instruction starting at address LA-2, 
L~-1, or LA specifies one of the program controller registers SR, SP, SSL, LA, LC, or 
(implicitly) PC as a destination register. Similarly, the SSH program controller register 
may not be specified as a source or destination register in an instruction starting at 
address LA-2, LA-1, or LA. Additionally, the SSH register cannot be specified as a 
source register in the DO instruction itself and LA cannot be used as a target for jumps 
to subroutine (Le., JSR, JScc, JSSET, or JSCLR to LA). A DO instruction cannot be 
repeated using the REP instruction. 

The following instructions cannot begin at the indicated position(s) near the end of a DO 
loop: 

At LA-2, LA-1, and LA 

At LA-1 

DO 
MOVEC from SSH 
MOVEM from SSH 
MOVEP from SSH 
MOVEC to LA, LC, SR, SP, SSH, or SSL 
MOVEM to LA, LC, SR, SP, SSH, or SSL 
MOVEP to LA, LC, SR, SP, SSH, or SSL 
ANDI MR 
ORIMR 
Two-word instructions which read LC, SP, or SSL 

Single-word instructions (except REP) which read LC, 
SP, or SSL, JCLR, JSET, two-word JMP, two-word Jcc 



DO 

At LA 

Other Restrictions: 

Start Hardware Loop 

any two-word instruction* 
Jcc 
JCLR 
JSET 
JMP 
JScc 
JSR 

REP 
RESET 
RTI 
RTS 
STOP 
WAIT 

DO 

*This restriction applies to the situation in which the 
DSP56K simulator's single-line assembler is used to 
change the last instruction in a DO loop from a one­
word instruction to a two-word instruction. 

DO SSH,xxxx 
JSR to (LA) whenever the loop flag (LF) is set 
JScc to (LA) whenever the loop flag (LF) is set 
JSCLR to (LA) whenever the loop flag (LF) is set 
JSSET to (LA) whenever the loop flag (LF) is set 

A DO instruction cannot be repeated using the REP instruction. 

Note: Due to instruction pipelining, if an AGU register (Mn, Nn, or Rn) is directly changed 
with a MOVE-type instruction, the new contents may not be available for use until the 
second following instruction. See the restrictions discussed in A.9.6 - R, N, and M Regis­
ter Restrictions on page A-310.This restriction also applies to the sitLiation in which the 
last instruction in a DO loop changes an address register and the first instruction at the 
top of the DO loop uses that same address register. The top instruction becomes the fol­
lowing instruction because of the loop construct. 

Similarly, since the DO instruction accesses the program controller registers, the DO 
instruction must not be immediately preceded by any of the following instructions: 

Immediately before DO MOVEC to LA, LC, SSH, SSL, or SP 
MOVEM to LA, LC, SSH, SSL, or SP 
MOVEP to LA, LC, SSH, SSL, or SP 
MOVEC from SSH 
MOVEM from SSH 
MOVEP from SSH -
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DO 

Example: 

DO #cnt1, END1 

DO #cnt2, END2 

MOVE A,X:(RO)+ 

END2 
ADD A,S X:(R1 )+,XO 

END1 

Start Hardware Loop 

;begin outer DO loop 

;begin inner DO loop 

;Iast instruction in inner loop 
;(in outer loop) 
;Iast instruction in outer loop 
;first instruction after outer loop 

DO 

Explanation of Example: This example illustrates a nested DO loop. The outer DO loop 
will be executed "cnt1" times while the inner DO loop will be executed ("cnt1" * "cnt2") 
times. Note that the labels END1 and END2 are located at the first instruction past the end 
of the DO loop, as mentioned above, and are nested properly. 

Condition Codes: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 

I LF I DM I T I ** I 81 I 80 I 11 I 10 I s I L E I u N I z 
CCR 

For source operand A or S: 
LF - Set when a DO loop is in progress 

S - Computed according to the definition. See Notes on page A-97. 
L - Set if data limiting occurred. See Notes on page A-97. 

For other source operands: 

LF - Set when a DO loop is in progress 

o 



DO Start Hardware Loop 

Instruction Format: 
DO X:ea, expr 
DO Y:ea, expr 

Opcode: 

23 20 19 16 15 8 7 

o 0 0 010 1 1 o I 0 1 

ABSOLUTE ADDRESS EXTENSION 

Instruction Fields: 
ea=6-bit Effective Address=MMMRRR, 
expr=16-bit Absolute Address in 24-bit extension word 

Effective 
Addressing Mode MMMRRR Memory SpaceS 

(Rn)-Nn o 0 o r r r X Memory 
(Rn)+Nn o 0 1 r r r Y Memory 
(Rn)- o 1 o r r r 
(Rn)+ o 1 1 r r r 
(Rn) 1 0 o r r r 
(Rn+Nn) 1 0 1 r r r 
-(Rn) 1 1 1 r r r 

where "rrr" refers to an address register RO-R? 

Timing: 6+mv oscillator clock cycles 

Memory: 2 program words 

0 
1 

DO 

o 
SO 010000 

-



DO Start Hardware Loop DO 

Instruction Format: 
DO X:aa, expr 
DO Y:aa, expr 

Opcode: 
23 20 19 16 15 8 7 0 

o 0 0 0 10 1 1 0100 a ala a a alo so 010000 

ABSOLUTE ADDRESS EXTENSION 

Instruction Fields: 
ea=6-bit Effective Short Address=aaaaaa, 
expr=16-bit Absolute Address in 24-bit extension word 

Absolute Short Address aaaaaa 

000000 
• 
• 

111111 

Timing: 6+mv oscillator clock cycles 

Memory: 2 prog ram words 

Memory SpaceS 

X Memory 0 
Y Memory 1 



DO Start Hardware Loop 

Instruction Format: 
DO #xxx, expr 

Opcode: 
23 20 19 16 15 8 7 

o 0 0 010 1 1 iii i i i 11 

ABSOLUTE ADDRESS EXTENSION 

Instruction Fields: 
#xxx=12-bit Immediate Short Data = hhhhiiiiiiii, 
expr=16-bit Absolute Address in 24-bit extension word 

Immediate Short Data hhhh iii iii i i 

000000000000 
• 
• 

111111111111 

Timing: 6+mv oscillator clock cycles 

Memory: 2 program words 

DO 

o 
00 olh h h h 

-



-

DO Start Hardware Loop DO 

Instruction Format: 
DO S, expr 

Opcode: 
23 20 19 16 15 8 7 0 

o 0 0 01 0 1 1 o 11 1 D DID D D DID 0 0 01 0 o 0 0 

ABSOLUTE ADDRESS EXTENSION 

Instruction Fields: 
S=6-bit Source operand = 000000, 
expr=16-bit Absolute Address in 24-bit extension word 

S 
Source D D D D D D S/L Source D D D D D D 

XO 0 0 0 1 0 0 no SR 1 1 1 0 0 1 
X1 0 0 0 1 0 1 no OMR 1 1 1 0 1 0 
YO 0 0 0 1 1 0 no SP* 1 1 1 0 1 1 
Y1 0 0 0 1 1 1 no SSL** 1 1 1 1 0 1 
AO 0 0 1 0 0 0 no LA 1 1 1 1 1 0 
BO 0 0 1 0 0 1 no LC 1 1 1 1 1 1 
A2 0 0 1 0 1 0 no RO-R7 0 1 0 r r r 
B2 0 0 1 1 0 0 no NO-N7 0 1 1 n n n 
A1 0 0 1 1 0 1 no MO-M7 1 0 0 m m m 
A 0 0 1 1 1 0 yes [see Notes on page A-97] 
B 0 0 1 1 1 1 yes [see Notes on page A-97] 
where rrr=Rn register 
where nnn=Nn register 
where mmm=Mn register 

*For DO SP, expr The actual value that will be loaded into the loop counter (LC) is 
the value of the stack pointer (SP) before the execution of the 
DO instruction, incremented by 1. 

Thus, if SP=3, the execution of the DO SP,expr instruction will load the loop 
counter (LC) with the value LC=4. 

**For DO SSL, expr The loop counter (LC) will be loaded with its previous value 
which was saved on the stack by the DO instruction itself. 



DO Start Hardware Loop DO 

Notes: If A or B is specified as the destination operand, the following sequence of events 
takes place: 

1. The S bit is computed according to its definition (See Section A.S) 

2. The accumulator value is scaled according to the scaling mode bits SO 
and S1 in the status register (SR). 

3. If the accumulator extension is in use, the output of the shifter is limited 
to the maximum positive or negative saturation constant, and the L bit is 
set. 

4. The LS 16 bits of the resulting 24 bit value is loaded into the loop 
counter (LC). The original contents of A or B are not changed. 

Timing: 6+mv oscillator clock cycles 

Memory: 2 program words 

-



ENDDO End Current DO Loop ENDDO 

Operation: Assembler Syntax: 
SSL(LF) ~ SR;SP - 1 ~ SP ENDDO 
SSH ~ LA; SSL ~ LC;SP -1 ~ SP 

Description: Terminate the current hardware DO loop before the current loop counter 
(LC) equals one. If the value of the current DO loop counter (LC) is needed, it must be 
read before the execution of the ENDDO instruction. Initially, the loop flag (LF) is 
restored from the system stack and the remaining portion of the status register (SR) and 
the program counter (PC) are purged from the system stack. The loop address (LA) and 
the loop counter (LC) registers are then restored from the system stack. 

Restrictions: Due to pipelining and the fact that the ENDDO instruction accesses the 
program controller registers, the ENDDO instruction must not be immediately preceded 
by any of the following instructions: 

Immediately before ENDDO MOVEC to LA, LC, SR, SSH, SSL, or SP 
MOVEM to LA, LC, SR, SSH, SSL, or SP 
MOVEP to LA, LC, SR, SSH, SSL, or SP 
MOVEC from SSH 
MOVEM from SSH 
MOVEP from SSH 
ORIMR 
ANDI MR 
REP 

Also, the ENDDO instruction cannot be the last (LA) instruction in a DO loop. 

Example: 

DOYO,NEXT 

MOVECLC,A 
CMPY1,A 
JNE ONWARD 
ENDDO 
JMP NEXT 

ONWARD 

NEXT MOVE #$123456,X1 

;exec. loop ending at NEXT (YO) times 

;get current value of loop counter (LC) 
;compare loop counter with value in Y1 
;go to ONWARD if LC not equal to Y1 
;LC equal to Y1, restore all DO registers 
;go to NEXT 
;LC not equal to Y1, continue DO loop 
;(Iast instruction in DO loop) 
;(first instruction AFTER DO loop) 



ENDDO End Current DO Loop ENDDO 

Explanation of Example: This example illustrates the use of the ENDDO instruction to 
terminate the current DO loop. The value of the loop counter (LC) is compared with the 
value in the Y1 register to determine if execution of the DO loop should continue. Note 
that the ENDDO instruction updates certain program controller registers but does not 
automatically jump past the end of the DO loop. Thus, if this action is desired, a JMP 
instruction (i.e., JMP NEXT as previously shown) must be included after the ENDDO 
instruction to transfer program control to the first instruction past the end of the DO loop. 

Condition Codes: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

I"F I DM I T I ** I 81 I 80 I " I 10 I 8 I l I E I U N I z 

Opcode: 

23 16 15 8 7 o 
10 0 0 0 0 0 0 o 10 0 0 0 0 0 0 0 11 o 0 0 1 1 0 01 

Instruction Fields: 
None 

Timing: 2 oscillator clock cycles 

Memory: 1 program word 



EOR Logical Exclusive OR EOR 

Operation: Assembler Syntax: 
S E9 0[47:24] -+0[47:24] (parallel move) EOR S,O (parallel move) 

where E9 denotes the logical Exclusive OR operator 

Description: Logically exclusive OR the source operand S with bits 47-24 of the desti­
nation operand 0 and store the result in bits 47-24 of the destination accumulator. This 
instruction is a 24-bit operation. The remaining bits of the destination operand 0 are not 
affected. 

Example: 

EOR Y1 ,81 (R2)+ ;Exclusive OR Y1 with 81, update R2 

Before Execution After Execution 

Y1 1~ _______ $_00_00_0_3 __ ~ Y1 1~ ________ $_0_00_00_3 __ ~ 

B 1~ __ $_00_:0_00_0_05_:0_00_00_0 __ ~ B l-I ____ $0_0_:00_00_0_6:0_0_00_00 __ ---' 

Explanation of Example: Prior to execution, the 24-bit Y1 register contains the value 
$000003, and the 56-bit 8 accumulator contains the value $00:000005:000000. The 
EOR Y1 ,8 instruction logically exclusive ORs the 24-bit value in the Y1 register with bits 
47-24 of the 8 accumulator (81) and stores the result in the 8 accumulator with bits 55-
48 and 23-0 unchanged. 

Condition Codes: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 ° I LF 1 DM 1 T 1** 1 81 1 80 1 11 1 10 I s I L I E I u N I z 
... MR • III( CCR 

S - Computed according to the definition in A.5 CONDITION CODE COMPUTATION 
L - Set if data limiting has occurred during parallel move 
N - Set if bit 47 of A or B result is set 
Z- Set if bits 47 - 24 of A or B result are zero 
V - Always cleared 



EOR Logical Exclusive OR EOR 

Instruction Format: 
EOR S,D 

Opcode: 

23 8 7 4 3 o 
DATA BUS MOVE FIELD I 0 J J I d 0 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

Instruction Fields: 
S JJ 0 d 

XO 00 A 0 
X1 1 0 B 1 
YO 01 
Y1 1 1 

Timing: 2+mv oscillator clock cycles 

Memory: 1 +mv program words 

-



ILLEGAL 

Operation: 
Begin Illegal Instruction 

exception processing 

Illegal Instruction Interrupt ILLEGAL 

Assembler Syntax: 
ILLEGAL 

Description: The ILLEGAL instruction is executed as if it were a NOP instruction. Nor­
mal instruction execution is suspended and illegal instruction exception processing is ini­
tiated. The interrupt vector address is located at address P:$3E. The interrupt priority 
level (11, 10) is set to 3 in the status register if a long interrupt service routine is used. The 
purpose of the ILLEGAL instruction is to force the DSP into an illegal instruction excep­
tion for test purposes. If a fast interrupt is used with the ILLEGAL instruction, an infinite 
loop will be formed (an illegal instruction interrupt normally"returns to the illegal instruc­
tion) which can only be broken by a hardware reset. Therefore, only long interrupts 
should be used. Exiting an illegal instruction is a fatal error. The long exception routine 
should indicate this condition and cause the system to be restarted. 

If the ILLEGAL instruction is in a DO loop at LA and the instruction at LA-1 is being inter­
rupted, then LC will be decremented twice due to the same mechanism that causes LC 
to be decremented twice if JSR, REP, etc. are located at LA. This is why JSR, REP, etc. 
at LA are restricted. Clearly restrictions cannot be imposed on illegal instructions. 

Since REP is uninterruptable, repeating an ILLEGAL instruction results in the interrupt 
not being initiated until after completion of the REP. After servicing the interrupt, program 
control will return to the address of the second word following the ILLEGAL instruction. 
Of course, the ILLEGAL interrupt service routine should abort further processing, and the 
processor should be reinitialized. 

Example: 

ILLEGAL ;begin ILLEGAL exception processing 

Explanation of Example: The ILLEGAL instruction suspends normal instruction execu­
tion and initiates ILLEGAL exception processing. 



ILLEGAL Illegal Instruction Interrupt 

Condition Codes: 

The condition codes are not affected by this instruction. 

Instruction Format: 
ILLEGAL 

Opcode: 

23 16 15 

10 0 0 0 0 0 0 010 0 0 0 0 0 0 

Instruction Fields: 
None 

Timing: 8 oscillator clock cycles 

Memory: 1 program word 

8 7 

01 0 

ILLEGAL 

o 
o 0 0 0 1 

-



INC Increment by One INC 

Operation: Assembler Syntax: 
D-1 ~ D INC D 

Description: Increment by one the specified operand and store the result in the destina­
tion accumulator. One is added from the LSB of D. 

Example: 

INC B ;Increment the content of the B accumulator by one 

Explanation of Example: One is added to the content of the B accumulator. 

Condition Codes: 

15 14 13 12 11 10 9 8 7 6 5 4 

1 LF I OM I T 1** 1 SI 1 SO 1 11 I ,0 1 s I L I E I u 
eeR ... MR .... 

L - Set if overflow has occurred in A or B result 
E - Set if the signed integer portion of A or B result is in use 
U - Set if A or B result is unnormalized 
N - Set if bit 55 of A or B result is set 
Z - Set if A or B result equals zero 
V - Set if overflow has occurred in A or B result 
C - Set if a carry is generated from bit 55 of A or B result 

3 2 0 

N Z 
v 1 :1 



INC Increment by One INC 

Instruction Format: 
INC D 

Opcode: 
23 16 15 8 7 o 

10 0 0 0 0 0 0 0100 0 0 0 00 o I 0 o 0 0 1 0 0 dl 

Instruction Fields: 
D d 

A 0 
8 

Timing: 2 oscillator clock cycles 

Memory: 1 program word 

-



Jcc 

Operation: 
If cc, then Oxxx -+PC 

else PC+ 1 -+PC 

If cc, then ea -+PC 
else PC+ 1 -+PC 

Jump Conditionally Jcc 

Assem bier Syntax: 
Jcc xxx 

Jcc xxx 

Description: Jump to the location in program memory given by the instruction's effective 
address if the specified condition is true. If the specified condition is false, the program 

counter (PC) is incremented and the effective address is ignored. However, the address 
register specified in the effective address field is always updated independently of the 
specified condition. All memory alterable addressing modes may be used for the effec­
tive address. A Fast Short Jump addressing mode may also be used. The 12-bit data is 
zero extended to form the effective address. See Section A.9 for restrictions. The term 
"cc" may specify the following conditions: 

CC (HS) 
CS (LO) 
EC 
EQ 
ES 
GE 
GT 
LC 
LE 
LS 
LT 
MI 
NE 
NR 
PL 
NN 

where 

"cc" Mnemonic 
- carry clear (higher or same) 
- carry set (lower) 
- extension clear 
- equal 
- extension set 
- greater than or equal 
- greater than 
-limit clear 
- less than or equal 
-limit set 
-less than 
- minus 
- not equal 
- normalized 
-plus 
- not normalized 

IT denotes the logical complement of U, 
+ denotes the logical OR operator, 
• denotes the logical AND operator, and 
Ee denotes the logical Exclusive OR operator 

Condition 
C=O 
C=1 
E=O 
Z=1 
E=1 
NEe V=O 
Z+(N Ee V)=O 
L=O 
Z+(N EE> V)=1 
L=1 
N E9 V=1 
N=1 
Z=O 
Z+(UeE)=1 
N=O 
Z+(ITeE)=0 



Jcc Jump Conditionally Jcc 

Restrictions: A Jcc instruction used within a DO loop cannot begin at the address LA 
within that DO loop. 

A Jcc instruction cannot be repeated using the REP Instruction. 

Example: 

JNN - (R4) ;jump to P:(R4) -1 if not normalized 

Explanation of Example: In this example, program execution is transferred to the 
address P:(R4)-1 if the result is not normalized. Note that the contents of address regis­
ter R4 are predecremented by 1, and the resulting address is then loaded into the pro­
gram counter (PC) if the specified condition is true. If the specified condition is not true, 
no jump is taken, and the program counter is incremented by one. 

Condition Codes: 

15 14 13 12 11 10 9 8 7 6 5 4 I LF I OM I T I" I 81 I 80 I 11 I 10 I 8 I L E I u 

The condition codes are not affected by this instruction. 

Instruction Format: 
Jcc xxx 

Opcode: 

eeR 

23 16 15 8 7 

10 0 0 0 1 1 1 ole e e e a a a ala 

3 2 o 
N I z I v 

o 
a a a a a a al 

-



Jcc Jump Conditionally Jcc 

Instruction Fields: 
cc=4-bit condition code=CCCC, 
xxx=12-bit Short Jump Address=aaaaaaaaaaaa 

Mnemonic C C C C Mnemonic C C C C 

CC (HS) 0 0 0 0 CS (LO) 0 0 0 
GE 0 0 0 1 LT 0 0 1 
NE 0 0 1 0 EQ 0 1 0 
PL 0 0 1 1 MI 0 1 1 
NN 0 1 0 0 NR. 1 0 0 
EC 0 1 0 1 ES 1 0 1 
LC 0 1 1 0 LS 1 1 0 
GT 0 1 1 1 LE 1 1 1 

Timing: 4+jx oscillator clock cycles 

Memory: 1 +ea program words 

Instruction Format: 
Jcc ea 

Opcode: 
23 16 15 8 7 0 

0 0 0 0 1 0 1 o 11 1 M M M R R R 11 0 1 0 C C C C 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

Instruction Fields: 
cc=4-bit condition code=CCCC, 
ea=6-bit Effective Address=MMMRRR 



Jcc Jump Conditionally 

Effective 
Addressing Mode 

(Rn)-Nn 
(Rn)+Nn 
(Rn)-
(Rn)+ 
(Rn) 
(Rn+Nn) 
-(An) 
Absolute Address 

MMMRRR 

o 0 0 
o 0 1 
o 1 o r r r 
o 1 1 r r r 
1 0 o r r r 
1 0 1 r r r 
1 1 1 r r r 
1 1 o 0 0 0 

where "rrr" refers to an address register AO-A7 

Mnemonic C C C C Mnemonic 

CC (HS) 0 0 0 0 CS (LO) 
GE 0 0 0 1 LT 
NE 0 0 0 EQ 

PL 0 0 1 MI 

NN 0 0 0 NA 
EC 0 0 1 ES 
LC 0 0 LS 
GT 0 LE 

Timing: 4+jx oscillator clock cycles 

Memory: 1 +ea program words 

C 

Jcc 

C C C 

0 0 0 
0 0 1 
0 0 
0 1 

0 0 
0 1 

0 

-



-

JCLR Jump If Bit Clear JCLR 

Operation: Assembler Syntax: 
If S[n]=O, then xxxx-+PC JCLR #n,X:ea,xxxx 

else PC+ 1-+PC 

If S[n]=O, then XXXX -+PC JCLR #n,X:aa,xxxx 
else PC+ 1 -+PC 

If S[n]=O, then XXXX -+PC JCLR #n,X:pp,xxxx 
else PC+ 1 -+PC 

If S[n]=O, then XXXX -+PC JCLR #n,Y:ea,xxxx 

else PC+ 1 -+PC 

If S[n]=O, then XXXX -+PC JCLR #n,Y:aa,xxxx 
else PC+ 1 -+PC 

If S[n]=O, then XXXX -+PC JCLR #n,Y:pp,xxxx 
else PC+ 1 -+PC 

If S[n]=O, then XXXX -+PC JCLR #n,S,xxxx 
else PC+ 1 -+PC 

Description: Jump to the 16-bit absolute address in program memory specified in the 
instruction's 24-bit extension word if the nth bit of the source operand S is clear. The bit to 
be tested is selected by an immediate bit number from 0-23. If the specified memory bit 
is not clear, the program counter (PC) is incremented and the absolute address in the 
extension word is ignored. However, the address register specified in the effective 
address field is always updated independently of the state of the nth bit. All address reg­
ister indirect addressing modes may be used to reference the source operand S. Abso­
lute Short and I/O Short addressing modes may also be used. 



JCLR Jump If Bit Clear JCLR 

Restrictions: A JCLR instruction cannot be repeated using the REP instruction. 

A JCLR located at LA, LA-1, or LA-2 of the DO loop cannot specify the program control­
ler registers SR, SP, SSH, SSL, LA, or LC as its target. 

JCLR SSH or JCLR SSL cannot follow an instruction that changes the SP. 

Example: 

JCLR #$5,X:«$FFF1 ,$1234 ;go to P:$1234 if bit 5 in SCI SSR is clear 

Explanation of Example: In this example, program execution is transferred to the 
address P:$1234 if bit 5 (PE) of the a-bit read-only X memory location X:$FFF1 (1/0 SCI 
interface status register) is a zero. If the specified bit is not clear, no jump is taken, and 
the program counter (PC) is incremented by one. 

Condition Codes: 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 I LF I OM I T I" I 51 I SO I 11 I 10 I 5 I LIE I u I N I z v I ~ I 

.~ MR ...... CCR -. 

For destination operand A or 8: 
S -Computed according to the definition. See Notes on page A-115. 
L - Set if data limiting has occurred. See Notes on page A-115. 
E - Not affected 
U - Not affected 
N - Not affected 
Z - Not affected 
V - Not affected 
C - Not affected 

For other source operands: 
The condition codes are not affected. 



-

JCLR 

Instruction Format: 
JCLR #n,X:ea,xxxx 
JCLR #n,Y:ea,xxxx 

Opcode: 

Jump if Bit Clear JCLR 

23 16 15 870 

0000101 o 10 1 M M M R R RI1 SOb b b b b 

ABSOLUTE ADDRESS EXTENSION 

Instruction Fields: 
#n=bit number=bbbbb, 
ea=6-bit Effective Address=MMMRRR 
xxxx=16-bit Absolute Address in extension word 

Effective 
Addressing Mode MMMRRR Memory SpaceS 

(Rn)-Nn o 0 o r r r X Memory 
(Rn)+Nn o 0 1 r r Y Memory 
(Rn)- o 1 0 r r 
(Rn)+ o 1 1 r r 
(Rn) 1 0 0 r r 
(Rn+Nn) 1 0 1 r r r 
-(Rn) 1 1 1 r r r 

where "rrr" refers to an address register RO-R7 

Timing: 6+jx oscillator clock cycles 

Memory: 2 program words 

0 
1 

Bit Number bbbbb 

00000 
• 
• 
• 

10111 



JCLR 

Instruction Format: 
JCLR #n,X:aa,xxxx 
JCLR #n,Y:aa,xxxx 

Opcode: 
23 

0000101 

Jump If Bit Clear JCLR 

16 15 870 

0100 a a a a a al1 SOb b b b b 

ABSOLUTE ADDRESS EXTENSION 

Instruction Fields: 
#n=bit number=bbbbb, 
aa=6-bit Absolute Short Address=aaaaaa 
xxxx=16-bit Absolute Address in extension word 

Absolute Short Address aaaaaa Memory SpaceS 

000000 

• 
• 

111111 

Timing: 6+jx oscillator clock cycles 

Memory: 2 program words 

X Memory 
Y Memory 

o 
Bit Number bbbbb 

00000 

• 
10111 



-

JCLR 

Instruction Format: 
JCLR #n,X:pp,xxxx 
JCLR #n,Y:pp,xxxx 

Opcode: 

Jump if Bit Clear JCLR 

23 16 15 8 7 0 

0000101 o 11 0 p p p p p p 11 SOb b b b b 

ABSOLUTE ADDRESS EXTENSION 

Instruction Fields: 
#n=bit number=bbbbb, 
pp=6-bit I/O Short Address=pppppp 
xxxx=16-bit Absolute Address in extension word 

I/O Short Address pppppp 

000000 

• 
• 

'111111 

Timing: 6+jx oscillator clock cycles 

Memory: 2 program words 

Memory SpaceS 

X Memory a 
Y Memory 

Bit Number bbbbb 

00000 

• 
10111 



JCLR Jump If Bit Clear JCLR 

Instruction Format: 
JCLR #n,S,xxxx 

Opcode: 
23 16 15 870 

00001010111 D DDDDDIOOObbbbb 

ABSOLUTE ADDRESS EXTENSION 

Instruction Fields: 
#n=bit number=bbbbb, 
S=source register=DDDDDD 
xxxx=16-bit Absolute Address in extension word 

Source Register 

4 registers in Data ALU 
8 accumulators in Data ALU 
8 address registers in AGU 
8 address offset registers in AGU 
8 address modifier registers in AGU 
8 program controller registers 

DDDDDD 

o 0 0 1 D D 
o 0 1 D D D 
010 TT T 
o 1 1 N N N 
1 0 0 F F F 
1 1 1 G G G 

Bit Number bbbbb 

00000 
• 

10111 

See Section A.1 0 and Table A-18 for specific register encodings. 

Notes: If A or B is specified as the destination operand, the following sequence of events 
takes place: 

1. The S bit is computed according to its definition (See Section A.5) 

2. The accumulator value is scaled according to the scaling mode bits SO 
and S1 in the status register (SR). 

3. If the accumulator extension is in use, the output of the shifter is limited to 
the maximum positive or negative saturation constant, and the L bit is set. 

4. The bit test is performed on the resulting 24-bit value, and the jump is taken 
if the bit tested is clear. The original contents of A or B are not changed. 

Timing: 6+jx oscillator clock cycles 

Memory: 2 program words 

-



-

JMP 

Operation: 
Oxxx --t PC 

ea --t PC 

Jump 

Assembler Syntax: 
JMP xxx 
JMPea 

JMP 

Description: Jump to the location in program memory given by the instruction's effective 
address. All memory alterable addressing modes may be used for the effective address. 
A Fast Short Jump addressing mode may also be used. The 12-bit data is zero extended 
to form the effective address. 

Restrictions: A JMP instruction used within a DO loop cannot begin at the address LA 
within that DO loop. 

A JMP instruction cannot be repeated using the REP instruction. 

Example: 

JMP (R1+N1) ;jump to program address P:(R1 +N1) 

Explanation of Example: In this example, program execution is transferred to the pro­
gram address P:(R1 +N1). 

Condition Codes: 

15 14 13 12 11 10 9 8 7 6 5 4 

1 LF I OM I T I ** I 81 I 80 I 11 I 10 1 8 I L I E I u 
... MR .... 

The condition codes are not affected by this instruction. 

Instruction Format: 
JMP xxx 

Opcode: 
23 16 15 

10 0 0 0 1 1 0 0100 0 0 a a a 

3 2 0 

N I z 
v I :1 

CCR 

o 
a a a a a a al 



JMP Jump 

Instruction Fields: 
xxx=12-bit Short Jump Address=aaaaaaaaaaaa 

Timing: 4+jx oscillator clock cycles 

Memory: 1 +ea program words 

Instruction Format: 
JMP ea 

Opcode: 
23 16 15 

0000101 o 11 1 

8 7 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

Instruction Fields: 
ea=6-bit Effective Address=MMMRRR 

Effective 
Addressing Mode MMMRRR 

(Rn)-Nn o 0 o r r r 
(Rn)+Nn o 0 1 r r r 
(Rn)- o 1 o r r r 
(Rn)+ o 1 1 r r r 
(Rn) 0 0 r r 
(Rn+Nn) 0 r r 
-(Rn) 1 r r r 
Absolute address o 0 0 0 

where "rrr" refers to an address register RO-R7 

Timing: 4+jx oscillator clock cycles 

Memory: 1 +ea program words 

JMP 

o 
0000000 

-



-

JScc Jump to Subroutine Conditionally JScc 

Operation: . 
If cc, then SP+ 1-+SP; PC-+SSH; SR-+SSL; Oxxx-+PC 

else PC+ 1-+PC 

If cc, then SP+ 1-+SP; PC-+SSH; SR-+SSL; ea-+PC 
else PC+ 1-+PC 

Assembler Syntax: 
JScc xxx 

JScc ea 

Description: Jump to the subroutine whose location in program memory is given by the 
instruction's effective address if the specified condition is true. If the specified condition is 
true, the address of the instruction immediately following the JScc instruction (PC) and 
the system status register (SR) are pushed onto the system stack. Program execution 
then continues at the specified effective address in program memory. If the specified 
condition is false, the program counter (PC) is incremented, and any extension word is 
ignored. However, the address register specified in the effective address field is always 
updated independently of the specified condition. All memory alterable addressing 
modes may be used for the effective address. A fast short jump addressing mode may 
also be used. The 12-bit data is zero extended to form the effective address. The term 
"cc" may specify the following conditions: 

CC (HS) 
CS (LO) 
EC 
EQ 
ES 
GE 
GT 
LC 
LE 
LS 
LT 
MI 
NE 
NR 
PL 
NN 

"CC" Mnemonic 
- carry clear (higher or same) 
- carry set (lower) 
- extension clear 
- equal 
- extension set 
- greater than or equal 
- greater than 
- limit clear 
- less than or equal 
-limit set 
-less than 
- minus 
- not equal 
- normalized 
-plus 
- not normalized 

Condition 
C=O 
C=1 
E=O 
Z=1 
E=1 
N E9 V=O 
Z+(N E9 V)=O 
L=O 
Z+(N E9 V)=1 
L=1 
N E9 V=1 
N=1 
Z=O 
Z+ (UeE) = 1 
N=O 
Z+(UeE)=O 



JScc Jump to Subroutine Conditionally 

where o denotes the logical complement of U, 
+ denotes the logical OR operator, 
• denotes the logical AND operator, and 
EB denotes the logical Exclusive OR operator 

JScc 

Restrictions: A JScc instruction used within a DO loop cannot specify the loop 
address (LA) as its target. 

A JScc instruction used within in a DO loop cannot begin at the address LA within that 
DO loop. 

A JScc instruction cannot be repeated using the REP instruction. 

Example: 

JSLS (R3+N3) ;jump to subroutine at P:(R3+N3) if limit set (L=1) 

Explanation of Example: In this example, program execution is transferred to the sub­
routine at address P:(R3+N3) in program memory if the limit bit is set (L=1). Both the 
return address (PC) and the status register (SR) are pushed onto the system stack prior 
to transferring program control to the subroutine if the specified condition is true. If the 
specified condition is not true, no jump is taken and the program counter is incremented 
by 1. 

Condition Codes: 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 o I LF I DM I T I" I S1 I SO I 11 I 10 I S I L I E I u N I z 

... MR • ... CCR 

The condition codes are not affected by this instruction. 

-



JScc Jump to Subroutine Conditionally JScc 

Instruction Format: 
JScc xxx 

Opcode: 

23 16 15 8 7 o 
10 0 0 0 1 1 1 a a a a a a 81 

Instruction Fields: 
cc=4-bit condition code=CCCC, 
xxx=12-bit Short Jump Address=aaaaaaaaaaaa 

Mnemonic C C C C Mnemonic C C C C 

CC (HS) 0 0 0 0 CS (LO) 0 0 0 
GE 0 0 0 1 LT 0 0 1 
NE 0 0 1 0 EQ 0 1 0 
PL 0 0 1 1 MI 0 1 1 
NN 0 1 0 0 NR 1 0 0 
EC 0 1 0 1 ES 1 0 1 
LC 0 1 1 0 LS 1 1 0 
GT 0 1 1 1 LE 1 1 1 

Timing: 4+jx oscillator clock cycles 

Memory: 1 +ea program words 

-



JScc Jump to Subroutine Conditionally JScc 

Instruction Format: 
JScc ea 

Opcode: 
23 16 15· 8 7 0 

0000101 M MMRRRI1 0 10 CCCC 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

Instruction Fields: 
cc=4-bit condition code=CCCC, 
ea=6-bit Effective Address=MMMRRR 

Effective 
Addressing Mode M M M R R R Mnemonic C C C C 
(Rn)-Nn 000 r r r CC (HS) 
(Rn)+NnO 001 r r r GE 
(Rn)- 010 r r NE 
(Rn)+ o 1 1 r r PL 
(Rn) 100 r r NN 
(Rn+Nn) 1 0 1 r r EC 
-(Rn) 1 1 1 r r r LC 
Absolute address 1 1 000 0 GT 

where "rrr" refers to an address register RO-R7 

Timing: 4+jx oscillator clock cycles 

Memory: 1 +ea program words 

o 0 0 0 
o 0 0 1 
o 0 1 0 
o 0 1 1 
o 1 0 0 
o 1 0 1 
o 1 1 0 
011 1 

Mnemonic C C C 

CS (LO) 100 
LT 100 
EQ 1 0 1 
MI 1 0 1 
NR 1 1 0 
ES 1 1 0 
LS 1 1 1 
LE 1 1 1 

C 

0 
1 
0 
1 
0 
1 
0 
1 

-



-

JSCLR Jump to Subroutine If Bit Clear JSCLR 

Operation: 
If S[n]=O, 

Assembler Syntax 
JSCLR #n,X:ea,xxxx 

then SP+ 1-+SP; PC-+SSH; SR-+SSL; XXXX -+PC 
else PC+1 -+PC 

f S[n]=O, JSCLR #n,X:aa,xxxx 
then SP+ 1-+SP; PC-+SSH; SR-+SSL; xxxx-+PC 
else PC+ 1-+PC 

If S[n]=O, JSCLR #n,X:pp,xxxx 
then SP+ 1-+SP; PC-+SSH; SR-+SSL; xxxx-+PC 
else PC+ 1-+PC 

If S[n]=O, JSCLR #n,Y:ea,xxxx 
then SP+1-+SP; PC-+SSH; SR-+SSL; xxxx-+PC 
else PC+ 1-+PC 

If S[n]=O, JSCLR #n,Y:aa,xxxx 
then SP+1-+SP; PC-+SSH; SR-+SSL; xxxx-+PC 
else PC+ 1-+PC 

If S[n]=O, JSCLR #n,Y:pp,xxxx 
then SP+ 1-+SP; PC-+SSH; SR-+SSL; xxxx-+PC 
else PC+ 1-+PC 

If S[n]=O, JSCLR #n,S,xxxx 
then SP+1-+SP; PC-+SSH; SR-+SSL; xxxx-+PC 
else PC+ 1-+PC 

Description: Jump to the subroutine at the 16-bit absolute address in program memory 
specified in the instruction's 24-bit extension word if the nth bit of the source operand S is 
clear. The bit to be tested is selected by an immediate bit number from 0-23. If the nth bit 
of the source operand S is clear, the address of the instruction immediately following the 
JSCLR instruction (PC) and the system status register (SR) are pushed onto the system 
stack. Program execution then continues at the specified absolute address in the instruc­
tion's 24-bit extension word. If the specified memory bit is not clear, the program counter 
(PC) is incremented and the extension word is ignored. However, the address register 



JSCLR Jump to Subroutine if Bit Clear JSCLR 

specified in the effective address field is always updated independently of the state of the 
nth bit. All address register indirect addressing modes may be used to reference the 
source operand S. Absolute short and I/O short addressing modes may also be used· 

Restrictions: A JSCLR instruction used within a DO loop cannot specify the loop 
address (LA) as its target. 

A JSCLR located at LA, LA-1, or LA-2 of a DO loop, cannot specify the program control­
ler registers SR, SP, SSH, SSL, LA, or LC as its target. 

JSCLR SSH or JSCLR SSL cannot follow an instruction that changes the SP. 

A JSCLR instruction cannot be repeated using the REP instruction. 

Example: 

JSCLR #$1 ,Y:«$FFE3,$1357 ;go sub. at P:$1357 if bit 1 in Y:$FFE3 is clear 

Explanation of Example: In this example, program execution is transferred to the sub­
routine at absolute address P:$1357 in program memory if bit 1 of the external I/O loca­
tion Y:«$FFE3 is a zero. If the specified bit is not clear, no jump is taken and the 
program counter (PC) is incremented by 1. 

-



-

JSCLR Jump to Subroutine if Bit Clear JSCLR 

Condition Codes: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 1 LF I OM I T I.. I S1 I SO I 11 I lois I L I E I u I N I z I v I :1 eeR ... MR ...... 
For destination operand A or B: 

S -Computed according to the definition. See Notes on page A-129. 
L - Set if data limiting has occurred. See Notes on page A-129. 
E - Not affected 
U - Not affected 
N - Not affected 
Z - Not affected 
V - Not affected 
C - Not affected 

For other source operands: 
The condition codes are not affected. 



JSCLR 

Instruction Format: 
JSCLR #n,X:ea,xxxx 
JSCLR #n,Y:ea,xxxx 

Opcode: 

Jump to Subroutine If Bit Clear JSCLR 

23 16 15 8 7 0 

0000101 1 I 0 1 M M M R R RI1 SOb b b b b 

Instruction Fields: 
#n=bit number=bbbbb, 

ABSOLUTE ADDRESS EXTENSION 

ea=6-bit Effective Address=MMMRRR, 
xxxx=16-bit Absolute Address in extension word 

Effective 
Addressing Mode MMMRRR Memory SpaceS 

(Rn)-Nn o 0 o r r r X Memory 
(Rn)+Nn o 0 1 r r r Y Memory 
(Rn)- o 1 0 r r 
(Rn)+ o 1 1 r r 
(Rn) 1 0 0 r r r 
(Rn+Nn) 1 0 1 r r r 
-(Rn) 1 1 1 r r r 

where "rrr" refers to an address register RO-R7 

Timing: 6+jx oscillator clock cycles 

Memory: 2 program words 

0 
1 

Bit Number bbbbb 

00000 
• 
• 
• 

10111 

-



-

JSCLR 

Instruction Format: 
JSCLR #n,X:aa,xxxx 
JSCLR #n,Y:aa,xxxx 

Opcode: 

Jump to Subroutine if Bit Clear JSCLR 

23 16 15 8 7 0 

0000101 1 1 0 0 a a a a a a 11 S Ob b b b b 

ABSOLUTE ADDRESS EXTENSION 

Instruction Fields: 
#n=bit number=bbbbb, 
aa=6-bit Absolute Short Address=aaaaaa, 
xxxx=16-bit Absolute Address in extension word 

Absolute Short Address aaaaaa 

000000 
• 
• 

111111 

Timing: 6+jx oscillator clock cycles 

Memory: 2 program words 

Memory SpaceS 

X Memory 0 
Y Memory 

Bit Number bbbbb 

00000 
• 

10111 



JSCLR 

Instruction Format: 
JSCLR #n,X:pp,xxxx 
JSCLR #n,Y:pp,xxxx 

Opcode: 

Jump to Subroutine If Bit Clear JSCLR 

23 16 15 870 

0000101 p p p p p P 11 SOb b b b b 

ABSOLUTE ADDRESS EXTENSION 

Instruction Fields: 
#n=bit number=bbbbb, 
pp=6-bit I/O Short Address=pppppp, 
xxxx=16-bit Absolute Address in extension word 

110 Short Address aaaaaa 

000000 
• 
• 

111111 

Timing: 6+jx oscillator clock cycles 

Memory: 2 program words 

Memory SpaceS 

X Memory a 
Y Memory 

Bit Number bbbbb 

00000 
• 

10111 



-

JSCLR Jump to Subroutine if Bit Clear JSCLR 

Instruction Format: 
JSCLR #n,S,xxxx 

Opcode: 
23 16 15 8 7 0 

0000101 D DDDDDIOOObbbbb 

ABSOLUTE ADDRESS EXTENSION 

Instruction Fields: 
#n=bit number=bbbbb, 
S=source register=DDDDDD, 
xxxx=16-bit Absolute Address in extension word 

Source Register 

4 registers in Data ALU 
8 accumulators in Data ALU 
8 address registers in AGU 
8 address offset registers in AGU 
8 address modifier registers in AGU 
8 program controller registers 

DDDDDD 

o 0 0 1 D D 
o 0 1 D D D 
o 1 0 T T T 
o 1 1 N N N 
1 0 0 F F F 
1 1 1 G G G 

Bit Number bbbbb 

00000 
• 

10111 

See Section A.1 0 and Table A-18 for specific register encodings. 



JSCLR Jump to Subroutine If Bit Clear JSCLR 

Notes: If A or B is specified as the destination operand, the following sequence of events 
takes place: 

1. The 8 bit is computed according to its definition (See Section A.5) 

2. The accumulator value is scaled according to the scaling mode bits SO 
and 81 in the status register (SR). 

3. If the accumulator extension is in use, the output of the shifter is limited to 
the maximum positive or negative saturation constant, and the L bit is set. 

4. The bit test is performed on the resulting 24-bit value, and the jump to sub­
routine is taken if the bit tested is clear. The original contents of A or Bare 
not changed. 

Timing: 6+jx oscillator clock cycles 

Memory: 2 program words 



-

JSET 

Operation: 
If S[n]=O, then xxxx-+PC 

else PC+ 1-+PC 

If S[n]=1 , then xxxx-+PC 
else PC+1-+PC 

If S[n]=1 , then xxxx-+PC 
else PC+1-+PC 

If S[n]=1 , then XXXX -+PC 
else PC+ 1-+PC 

If S[n]=1 , then xxxx-+PC 
else PC+ 1-+PC 

If S[n]=1 , then XXXX -+PC 
else PC+1-+PC 

If S[n]=1 , then xxxx-+PC 
else PC+ 1-+PC 

If S[n]=1 , then xxxx-+PC 
else PC+ 1-+PC 

Jump If Bit Set JSET 

Assembler Syntax: 
JSET #n,X:ea,xxxx 

JSET #n,X:ea,xxxx 

JSET #n,X:aa,xxxx 

JSET #n,X:pp,xxxx 

JSET #n,Y:ea,xxxx 

JSET #n,Y:aa,xxxx 

JSET #n,Y:pp,xxxx 

JSET #n,S,xxxx 

Description: Jump to the 16-bit absolute address in program memory specified in the 
instruction's 24-bit extension word if the nth bit of the source operand S is set. The bit to 
be tested is selected by an immediate bit number from 0-23. If the specified memory bit 
is not set, the program counter (PC) is incremented, and the absolute address in the 
extension word is ignored. However, the address register specified in the effective 
address field is always updated independently of the state of the nth bit. All address reg­
ister indirect addressing modes may be used to reference the source operand S. Abso­
lute short and 1/0 short addressing modes may also be used. 



JSET Jump if Bit Set JSET 

Restrictions: A JSET instruction used within a DO loop cannot specify the loop 
address (LA) as its target. 

A JSET located at LA, LA-1, or LA-2 of a DO loop cannot specify the program controller 
registers SR, SP, SSH, SSL, LA, or LC as its target. 

JSET SSH or JSET SSL cannot follow an instruction that changes the SP. 

A JSET instruction cannot be repeated using the REP instruction. 

Example: 

JSET #12,X:«$FFF2,$4321 ;$4321 ~(PC) if bit 12 (SCI COD) is set 

Explanation of Example: In this example, program execution is transferred to the 
address P:$4321 if bit 12 (SCI COD) of the 16-bit read/write I/O register X:$FFF2 is a 
one. If the specified bit is not set, no jump is taken and the program counter (PC) is incre­
mented by 1. 

Condition Codes: 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 o 

I LF I DM I T I·· I 81 I 80 I 11 

~ MR 

N z I v 
• ~ GGR 

For destination operand A or B: 
S -Computed according to the definition. See Notes on page A-135. 
L - Set if data limiting has occurred. See Notes on page A-135. 
E - Not affected 
U - Not affected 
N - Not affected 
Z - Not affected 
V - Not affected 
C - Not affected 

For other source operands: 
The condition codes are not affected. 



-

JSET 

Instruction Format: 
JSET #n,X:ea,xxxx 
JSET #n,Y:ea,xxxx 

Opcode: 

Jump If Bit Set JSET 

23 16 15 870 

00001010101 M M M R R RI1 S 1 b b b b b 

ABSOLUTE ADDRESS EXTENSION 

Instruction Fields: 
#n=bit number=bbbbb, 
ea=6-bit Effective Address=MMMRRR 
xxxx=16-bit Absolute Address in extension word 

Effective 
Addressing Mode MMMRRR Memory SpaceS 

{Rn)-Nn o 0 o r r r X Memory 
{Rn)+Nn o 0 1 r r r Y Memory 
(Rn)- o 1 o r r r 
(Rn)+ o 1 1 r r r 
(Rn) 1 0 o r r r 
(Rn+Nn) 1 0 1 r r 
-(Rn) 1 1 1 r r 

where "rrr" refers to an address register RO-R7 

Timing: 6+jx oscillator clock cycles 

Memory: 2 program words 

0 
1 
• 
• 
10111 

Bit Number bbbbb 

00000 
• 



JSET 

Instruction Format: 
JSET #n,X:aa,xxxx 
JSET #n,Y:aa,xxxx 

Opcode: 
23 

Jump if Bit Set JSET 

16 15 8 7 o 
0000101 o I 0 0 a a a a a al1S1bbb b b 

ABSOLUTE ADDRESS EXTENSION 

Instruction Fields: 
#n=bit number=bbbbb, 
aa=6-bit Absolute Short Address=aaaaaa, 
xxxx=16-bit Absolute Address in extension word 

Absolute Short Address aaaaaa 

000000 

• 
• 

111111 

Timing: 6+jx oscillator clock cycles 

Memory: 2 program words 

Memory SpaceS 

X Memory 0 
V Memory 

Bit Number bbbbb 

00000 

• 
10111 



JSET 

Instruction Format: 
JSET #n,X:pp,xxxx 
JSET #n,Y:pp,xxxx 

Opcode: 

Jump if Bit Set JSET 

23 16 15 8 7 0 

0000101 01 10 P P P P P P 11 S 1 b b b b b 

ABSOLUTE ADDRESS EXTENSION 

Instruction Fields: 
#n=bit number=bbbbb, 
pp=6-bit I/O Short Address=pppppp, 
xxxx=16-bit Absolute Address in extension word 

1/0 Short Address pppppp 

000000 

• 
• 

111111 

Timing: 6+jx oscillator clock cycles 

Memory: 2 program words 

Memory SpaceS 

X Memory 0 
Y Memory 

Bit Number bbbbb 

00000 

• 
10111 



JSET Jump If Bit Set JSET 

Instruction Format: 
JSET #n,S,xxxx 

Opcode: 
23 16 15 870 

0000101 D DDDDDloo 1bbbbb 

ABSOLUTE ADDRESS EXTENSION 

Instruction Fields: 
#n=bit number=bbbbb, 
S=source register=DDDDDD, 
xxxx=16-bit Absolute Address in extension word 

Source Register 

4 registers in Data ALU 
8 accumulators in Data ALU 
8 address registers in AGU 
8 address offset registers in AGU 
8 address modifier registers in AGU 
8 program controller registers 

DDDDDD 

o 0 0 1 D D 
001 DDD 
010 TT T 
o 1 1 N N N 
1 0 0 F F F 
1 1 1 G G G 

Bit Number bbbbb 

00000 

• 
10111 

See Section A.1 0 and Table A-18 for specific register encodings. 

Notes: If A or B is specified as the destination operand, the following sequence of events 
takes place: 

1. The S bit is computed according to its definition (See Section A.5) 

2. The accumulator value is scaled according to the scaling mode bits SO 
and 81 in the status register (SR). 

3. If the accumulator extension is in use, the output of the shifter is limited to 
the maximum positive or negative saturation constant, and the L bit is set. 

4. The bit test is performed on the resulting 24-bit value, and the jump is taken 
if the bit tested is set. The original contents of A or B are not changed. 

Timing: 6+jx oscillator clock cycles 

Memory: 2 program words 



JSR Jump to Subroutine JSR 

Operation: Assembler Syntax: 
SP+1 .... SP; PC .... SSH; SR .... SSL; Oxxx .... PC JSR xxx 

SP+ .... SP; PC .... SSH; SR .... SSL; ea-+PC JSR ea 

Description: Jump to the subroutine whose location in program memory is given by the 
instruction's effective address. The address of the instruction immediately following the 
JSR instruction (PC) and the system status register (SR) is pushed onto the system 
stack. Program execution then continues at the specified effective address in program 
memory. All memory alterable addressing modes may be used for the effective address. 
A fast short jump addressing mode may also be used. The 12-bit data is zero extended 
to form the effective address. 

Restrictions: A JSR instruction used within a DO loop cannot specify the loop 
address (LA) as its target. 

A JSR instruction used within a DO loop cannot begin at the address LA within that DO 
loop. 

A JSR instruction cannot be repeated using the REP instruction. 

Example: 

JSR (R5)+ ;jump to subroutine at (R5), update R5 

Explanation of Example: In this example, program execution is transferred to the sub­
routine at address P:(R5) in program memory, and the contents of the R5 address regis­
ter are then updated. 

Condition Codes: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 I LF I DM I T I ** I S1 I SO I 11 I 10 I s I L I E I u I N I z I v I~I CCR ... MR .... 
The condition codes are not affected by this instruction. 



JSR Jump to Subroutine JSR 

Instruction Format: 
JSR xxx 

Opcode: 
23 16 15 8 7 o 

10 0 0 0 1 1 0 1100 0 0 a a a al a a a a a a a al 

Instruction Fields: 
xxx=12-bit Short Jump Address=aaaaaaaaaaaa 

Timing: 4+jx oscillator clock cycles 
Memory: 1 +ea program words 

Instruction Format: 
JSR ea 

Opcode: 
23 16 15 8 7 0 

0000101 M MMRRRI1 0000000 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

Instruction Fields: 
ea=6-bit Effective Address=MMMRRR 

Effective 
Addressing Mode MMMRRR 

(Rn)-Nn o 0 0 r r 
(Rn)+Nn o 0 r r 
(Rn)- o 1 o r r r 
(Rn)+ o 1 r r r 
(Rn) 1 0 0 r r r 
(Rn+Nn) 0 r r r 
-(Rn) 1 r r r 
Absolute address o 0 0 0 
where "rrr" refers to an address register RO-R7 

Timing: 4+jx oscillator clock cycles 
Memory: 1 +ea program words 

-



-

JSSET Jump to Subroutine if Bit Set JSSET 

Operation: 
If S[n]=1, 
then SP+1-+SP; PC-+SSH; SR-+SSL; xxxx-+PC 
else PC+ 1-+PC 

If S[n]=1, 
then SP+1-+SP; PC-+SSH; SR-+SSL; xxxx-+PC 
else PC+ 1-+PC 

If S[n]=1, 
then SP+ 1-+SP; PC-+SSH; SR-+SSL; xxxx-+PC 
else PC+ 1-+PC 

If S[n]=1, 
then SP+ 1-+SP; PC-+SSH; SR-+SSL; xxxx-+PC 
else PC+ 1-+PC 

If S[n]=1, 
then SP+ 1-+SP; PC-+SSH; SR -+SSL; xxxx-+PC 
else PC+ 1-+PC 

If S[n]=1, 
then SP+1-+SP; PC-+SSH; SR-+SSL; xxxx -+PC 
else PC+ 1-+PC 

If S[n]=1, 
then SP+ 1-+SP; PC-+SSH; SR-+SSL; xxxx-+PC 
else PC+ 1-+PC 

Assembler Syntax 
JSSET #n,X:ea,xxxx 

JSSET #n,X:aa,xxxx 

JSSET #n,X:pp,xxxx 

JSSET #n,Y:ea,xxxx 

JSSET #n,Y:aa,xxxx 

JSSET #n,Y:pp,xxxx 

JSSET #n,S,xxxx 

Description: Jump to the subroutine at the 16-bit absolute address in program memory 
specified in the instruction's 24-bit extension word if the nth bit of the source operand S is 
set. The bit to be tested is selected by an immediate bit number from 0-23. If the nth bit 
of the source operand S is set, the address of the instruction immediately following the 
JSSET instruction (PC) and the system status register (SR) are pushed onto the system 
stack. Prog ram execution then continues at the specified absolute address in the instruc­
tion's 24-bit extension word. If the specified memory bit is not set, the program counter 
(PC) is incremented, and the extension word is ignored. However, the address register 
specified in the effective address field is always updated independently of the state of the 



JSSET Jump to Subroutine if Bit Set JSSET 

nth bit. All address register indirect addressing modes may be used to reference the 
source operand S. Absolute short and I/O short addressing modes may also be used. 

Restrictions: A JSSET instruction used within a DO loop cannot specify the loop 
address (LA) as its target. 

A JSSET located at LA, LA-1, or LA-2 of a DO loop, cannot specify the program control­
ler registers SR, SP, SSH, SSL, LA, or LC as its target. 

JSSET SSH or JSSET SSL cannot follow an instruction that changes the SP. 

A JSSET instruction cannot be repeated using the REP instruction. 

Example: 

JSSET #$17,Y:<$3F,$1 00 ;go to sub. at P:$01 00 if bit 23 in Y:$3F is set 

Explanation of Example: In this example, program execution is transferred to the sub­
routine at absolute address P:$0100 in program memory if bit 23 of Y memory location 
Y:$003F is a one. If the specified bit is not set, no jump is taken and the program counter 
(PC) is incremented by 1. 

Condition Codes: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 I LF I DM I T I" I 81 I 80 I 11 I 10 I 8 I LIE I u I N I z I v I c I 
.... MR ~.... eeR .,. 

For destination operand A or B: 
S -Computed according to the definition. See Notes on page A-143. 
L - Set if data limiting has occurred. See Notes on page A-143. 
E - Not affected 
U - Not affected 
N - Not affected 
Z - Not affected 
V - Not affected 
C - Not affected 

For other source operands: 
The condition codes are not affected. 

-



JSSET 

Instruction Format: 
JSSET #n,X:ea,xxxx 
JSSET #n,Y:ea,xxxx 

Opcode: 

Jump to Subroutine If Bit Set JSSET 

23 16 15 8 7 0 

0000101 1 \ 0 1 M M M R R R \1 S 1 b b b b b 

Instruction Fields: 
#n=bit number=bbbbb, 

ABSOLUTE ADDRESS EXTENSION 

ea=6-bit Effective Address=MMMRRR, 
xxxx=16-bit Absolute Address in extension word 

Effective 
Addressing Mode MMMRRR Memory SpaceS 

(Rn)-Nn o 0 o r r r X Memory 
(Rn)+Nn o 0 1 r r r Y Memory 
(Rn)- o 1 0 r r 
(Rn)+ o 1 1 r r 
(Rn) 1 0 0 r r 
(Rn+Nn) 1 0 1 r r 
-(Rn) 1 1 1 r r r 

where "rrr" refers to an address register RO-R7 

Timing: 6+jx oscillator clock cycles 

Memory: 2 program words 

0 
1 

Bit Number bbbbb 

00000 
• 
• 
• 

10111 



JSSET 

Instruction Format: 
JSSET #n,X:aa,xxxx 
JSSET #n,Y:aa,xxxx 

Opcode: 

Jump to Subroutine if Bit Set JSSET 

23 16 15 8 7 0 

0000101 1 I 0 0 a a aaaal1 S1bbbbb 

ABSOLUTE ADDRESS EXTENSION 

Instruction Fields: 
#n=bit number=bbbbb, 
aa=6-bit Absolute Short Address=aaaaaa, 
xxxx=16-bit Absolute Address in extension word 

Absolute Short Address aaaaaa 

000000 
• 
• 

111111 

Timing: 6+jx oscillator clock cycles 

Memory: 2 program words 

Memory SpaceS 

X Memory a 
Y Memory 1 

Bit Number bbbbb 

00000 
• 

10111 

-



JSSET 

Instruction Format: 
JSSET #n,X:pp,xxxx 
JSSET #n,Y:pp,xxxx 

Opcode: 
23 

Jump to Subroutine If Bit Set JSSET 

16 15 8 7 o 
0000101 P PPPPpl1S1bbb b b 

ABSOLUTE ADDRESS EXTENSION 

Instruction Fields: 
#n=bit number=bbbbb, 
pp=6-bit I/O Short Address=pppppp, 
xxxx=16-bit Absolute Address in extension word 

I/O Short Address pppppp 

000000 

• 
• 

111111 

Timing: 6+jx oscillator clock cycles 

Memory: 2 program words 

Memory SpaceS 

X Memory 0 
Y Memory 

Bit Number bbbbb 

00000 

• 
10111 



JSSET Jump to Subroutine if Bit Set JSSET 

Instruction Format: 
JSSET #n,S,xxxx 

Opcode: 
23 16 15 8 7 0 

0000101 1 1 11 D DDDDDloo 1bbbbb 

ABSOLUTE ADDRESS EXTENSION 

Instruction Fields: 
#n=bit number=bbbbb, 
S=source register=DDDDDD, 
xxxx=16-bit Absolute Address in extension word 

Source Register 

4 registers in Data ALU 
8 accumulators in Data ALU 
8 address registers in AGU 
8 address offset registers in AGU 
8 address modifier registers in AGU 
8 program controller registers 

DDDDDD 

o 0 0 1 D D 
o 0 1 D D D 
o 1 0 T T T 
o 1 1 N N N 
1 0 0 F F F 
1 1 1 G G G 

Bit Number bbbbb 

00000 
• 

10111 

See Section A.1 0 and Table A-18 for specific register encodings. 

Notes: If A or B is specified as the destination operand, the following sequence of 
events takes place: 

1. The S bit is computed according to its definition (See Section A.5) 

2. The accumulator value is scaled according to the scaling mode bits SO 
and S1 in the status register (SR). 

3. If the accumulator extension is in use, the output of the shifter is limited to 
the maximum positive or negative saturation constant, and the L bit is set. 

4. The bit test is performed on the resulting 24-bit value, and the jump to sub­
routine is taken if the bit tested is set. The original contents of A or B are not 
changed. 

Timing: 6+jx oscillator clock cycles 

Memory: 2 program words 

-



LSL Logical ~hlft Left LSL 

47 24 

Operation: c..-I ....... ------ 1..- 0 (parallel move) 

Assembler Syntax: LSL D (parallel move) 

Description: Logically shift bits 47-24 of the destination operand D one bit to the left 
and store the result in the destination accumulator. Prior to instruction execution, bit 47 of 
D is shifted into the carry bit C, and a zero is shifted into bit 24 of the destination accumu­
lator D. This instruction is a 24-bit operation. The remaining bits of the destination oper­
and D are not affected. If a zero shift count is specified, the carry bit is cleared. The 
difference between LSL and ASL is that LSL operates on only A1 or B1 and always, 
clears the V bit. 

Example: 

LSL B1 #$7F,RO ;shift B1 one bit to the left, set up RO 

Before Execution After Execution 

B ~I __ $_0_0:F_O_1~_4_:1_35_7_9B __ ~ B ~I ___ $_OO_:E_02_4_~_:1_35_79_B __ ~ 

SRI,-__________ $0_3_00 __ ----' SRI~ __________ $0_3_09 __ ~ 

Explanation of Example: Prior to execution, the 56-bit B accumulator contains the 
value $OO:F01234:13579B. The execution of the LSL B instruction shifts the 24-bit value 
in the B1 register one bit to the left and stores the result back in the B1 register. 



LSL Logical Shift Left LSL 

Condition Codes: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

S - Computed according to the definition in A.5 CONDITION CODE COMPUTATION 
L - Set if data limiting has occurred during parallel move 
N - Set if bit 47 of A or B result is set 
Z - Set if bits 47-24 of A or B result are zero 
V - Always cleared 
C - Set if bit 47 of A or B was set prior to instruction execution 

Instruction Format: 
LSLD 

Opcode: 

23 8 7 

DATA BUS MOVE FIELD I 0 0 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

Instruction Fields: 
Dd 
AO 
B 1 

Timing: 2+mv oscillator clock cycles 

Memory: 1 +mv program words 

4 3 

1 I d 0 

o 



LSR Logical Shift Right LSR 

47 24 

Operation: O~ I -----I.~ I ~ C (parallel move) 

Assembler Syntax: LSR D (parallel move) 

Description: Logically shift bits 47-24 of the destination operand D one bit to the right 
and store the result in the destination accumulator. Prior to instruction execution, bit 24 of 
D is shifted into the carry bit C, and a zero is shifted into bit 47 of the destination accumu­
lator D. This instruction is a 24-bit operation. The remaining bits of the destination oper­
and D are not affected. 

Example: 

LSR A 1 A 1, N4 ;shift A 1 one bit to the right, set up N4 

Before Execution After Execution 

A ~I ___ $3_7:_44_44_45_:8_28_1_80 __ ~ A 1'--_$_37_:2_22_22_2:_82_81_80_---' 

SRI ~ ______ $_03_00_~ SR~I ________ $0_3_01_---' 

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the 
value $37:444445:828180. The execution of the LSR A instruction shifts the 24-bit value 
in the A1 register one bit to the right and stores the result back in the A1 register. 



LSR Logical Shift Right LSR 

Condition Codes: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 I: IOMI T 1**J:, I S0 '1111~I .. s I LIE I UceRN I z v 1:.1 
S - Computed according to the definition in A.S CONDITION CODE COMPUTATION 
L - Set if data limiting has occurred during parallel move 
N - Always cleared 
Z- Set if bits 47-24 of A or B result are zero 
V - Always cleared 
C - Set if bit 24 of A or B was set prior to Instruction execution 

Instruction Format: 
LSR D 

Opcode: 

23 8 7 

DATA BUS MOVE FIELD I 0 0 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

Instruction Fields: 
Dd 
AD 
B 1 

Timing: 2+mv oscillator clock cycles 

Memory: 1 +mv program words 

4 3 

Old 0 

o 



LUA 

Operation: 
ea-+d 

Load Updated Address LUA 

Assembler Syntax: 
LUAea,D 

Description: Load the updated address into the destination address register D. The 
source address register and the update mode used to compute the updated address are 
specified by the effective address (ea). Note that the source address register speci­
fied in the effective address is not updated. All update addressing modes may be 
used. 

Note: This instruction is considered to be a move-type instruction. Due to instruction 
pipelining, if an AGU register (Mn, Nn, or Rn) is directly changed with this instruction, the 
new contents may not be available for use until the second following instruction. See the 
restrictions discussed in A.9.6 - R, N, and M Register Restrictions on page A-31 o. 
Example: 

LUA (RO)+NO,R1 ;update R1 using (RO)+NO 

Before Execution After Execution 

RO I $0003 RO I $0003 

NO I $0005 NO I $0005 

MO I $FFFF MO I $FFFF 

R1 I $0004 R1 I $0008 

Explanation of Example: Prior to execution, the 16-bit address register RO contains the 
value $0003, the 16-bit address register NO contains the value $0005, and the 16-bit 
address register R1 contains the value $0004. The execution of the LUA (RO)+NO,R1 
instruction adds the contents of the RO register to the contents of the NO register and 
stores the resulting updated address in the R1 address register. Normally NO would be 
added to RO and deposited in RO. However, for an LUA instruction, the contents of both 
the RO and NO address registers are not affected. 



LUA Load Updated Address 

Condition Codes: 

15 14 13 12 11 10 9 8 7 6 5 4 I LF I OM I T I.. I 81 I 80 I 11 I 10 I 8 I L I E I u 
~ MR .... 

The condition codes are not affected by this instruction. 

Instruction Format: 
LUA ea,D 

Opcode: 

3 

I N 

CCR 

23 16 15 8 7 

LUA 

2 0 

Z 
v I ~I 

o 
10 0 0 0 0 1 0 01010 M M R R Rio o 0 1 d d d dl 

Instruction Fields: 
ea=5-bit Effective Address=MMRRR, 
D=4-bit destination address register=dddd 

Effective 
Addressing Mode MMMRRR Dest. Addr. Reg. D 

(Rn)-Nn 0 0 o r r r RO-R? 
(Rn)+Nn 0 0 1 r r NO-N? 
(Rn)- 0 0 r r 
(Rn)+ 0 r r r 

where "rrr" refers to a source address register RO-R? 

d d 

o n 
n 

where "nnn" refers to a destination address register RO-R? or NO-N? 

Timing: 4 oscillator clock cycles 

Memory: 1 program word 

d d 

n n 
n n 



MAC Signed Multiply-Accumulate MAC 

Operation: 
D±S1 *S2~D (parallel move) 

D±S1 *S2~D (parallel move) 

D±(S1 *2-n)~D (no parallel move) 

Assembler Syntax: 
MAC (±)S1 ,S2,D (parallel move) 

MAC 

MAC 

(±)S2,S1 ,D (parallel move) 

(±)S,#n,D (no parallel move) 

Description: Multiply the two signed 24-bit source operands S1 and S2 (or the signed 
24-bit source operand S by the positive 24-bit immediate operand 2-n) and add/subtract 
the product to/from the specified 56-bit destination accumulator D. The ,,_It sign option is 
used to negate the specified product prior to accumulation. The default sign option is "+". 

Note: When the processor is in the Double Precision Multiply Mode, the following 
instructions do not execute in the normal way and should only be used as part of the 
double precision multiply algorithm shown in Section 3.4 DOUBLE PRECISION MUL TI­
PLY MODE: 

MPYYO, XO, A 
MAC X1, YO, A 
MAC XO, Y1, A 
MAC Y1, X1, A 

MPYYO, XO, B 
MAC X1, YO, B 
MAC XO, Y1, B 
MAC Y1, X1, B 

All other Data ALU instructions are executed as NaP's when the processor is in the Dou­
ble Precision Multiply Mode. 

Example 1: 

MAC XO,XO,A X:(R2)+N2,Y1 ;square XO and store in A, update Y1 and R2 

Before Execution After Execution 

XO I $123456 XO I $123456 

A I $00:100000:00000 AI $00:1296CD:9619C8 

Explanation of Example 1: Prior to execution, the 24-bit XO register contains the value 
of $123456 (0.142222166), and the 56-bit A accumulator contains the value 
$00:100000:000000 (0.125). The execution of the MAC XO,XO,A instruction squares the 
24-bit signed value in the XO register and adds the resulting 48-bit product to the 56-bit A 
accumulator (XO*XO+IA=0.145227144519197 approximately= $00:1296CD :9619C8=A). 



MAC Signed Multiply-Accumulate MAC 

Condition Codes: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 I LF I DM I T I ** I SI I SO I 11 I 10 I s I LIE I u I N I z I v I c I 
.• MR .,.. CCR .,. 

S - Computed according to the definition in A.5 CONDITION CODE COMPUTATION. 
L - Set if limiting (parallel move) or overflow has occurred in result 
E - Set if the signed integer portion of A or B result is in use 
U - Set if A or B result is unnormalized 
N - Set if bit 55 of A or B result is set 
Z - Set if A or B result equals zero 
V - Set if overflow has occurred in A or B result 

Note: The definitions of the E and U bits vary according to the scaling mode being used. 
Refer to Section A.5 for complete details. 

Instruction Format 1: 
MAC (±)S 1 ,S2,D 
MAC (±)S2,S1,D 

Opcode: 1 
23 8 7 4 3 

DATA BUS MOVE FIELD 11 a a aid k 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

Instruction Fields: 
81*82 Q Q Q Sign k D d 

XOXO 0 0 0 + 0 A 0 
YO YO 0 0 1 1 B 1 
X1 XO 0 1 0 
Y1 YO 0 1 1 
XOY1 1 0 0 
YOXO 1 0 1 
X1 YO 1 1 0 
Y1 X1 1 1 1 

o 
o 

Note: Only the indicated S1 *S2 combinations are valid. X1 *X1 and Y1 *Y1 are not valid. 



MAC Signed Multiply-Accumulate 

Timing: 2+mv oscillator clock cycles 

Memory: 1 +mv program words 

Example 2: 

MAC XO, #3, A 

Before Execution 

XO~I _________ $_65_4_32_1 __ ~ 

A~I ____ $_00_:1_00_00_0_:00_0_00_0 __ ~ 

After Execution 

XOI~ _________ $6_54_32_1 __ ~ 

A~I ____ $0_0:_1C_A8_6_4:2_00_00_0 __ ~ 

MAC 

Explanation of Example 2: The content of XO ($654321) is multiplied by 2-3 and then 
added to the content of the A accumulator ($00:100000:000000). The result is then 
placed in the A accumulator. The net effect of this operation is to divide the content of 
XO by 23 and add the result to the accumulator. An alternate interpretation is that XO is 
right shifted 3 places and filled with the sign bit (0 for a positive number and 1 for a neg­
ative number) and then the result is added to the accumulator. 

Instruction Format 2: 

MAC (±)S,#n,D 

Opcode 2: 

23 16 15 8 7 o 
10 0 0 0 0 0 0 11000 S S ss sl1 1 a a d k 1 01 

Instruction Fields: 
S QQ Sign k D d 

Y1 0 0 + 0 A 0 
XO 0 1 1 B 1 
YO 1 0 
X1 1 1 



MAC Signed Multiply-Accumulate 

n sssss constant 
1 00001 010000000000000000000000 
2 00010 001000000000000000000000 
3 00011 000100000000000000000000 
4 00100 000010000000000000000000 
5 00101 000001000000000000000000 
6 00110 000000100000000000000000 
7 00111 000000010000000000000000 
8 01000 000000001000000000000000 
9 01001 000000000100000000000000 
10 01010 000000000010000000000000 
11 01011 000000000001000000000000 
12 01100 000000000000100000000000 
13 01101 000000000000010000000000 
14 01110 000000000000001000000000 
15 01111 000000000000000100000000 
16 10000 000000000000000010000000 
17 10001 000000000000000001000000 
18 10010 000000000000000000100000 
19 10011 000000000000000000010000 
20 10100 000000000000000000001000 
21 10101 000000000000000000000100 
22 10110 000000000000000000000010 
23 10111 000000000000000000000001 

Timing: 2 oscillator clock cycles 

Memory: 1 program word 

MAC 



MACR Signed Multiply-Accumulate and Round MACR 

Operation: 
D±S1 *S2+r.-.D (parallel move) 

D±S1 *S2+r.-. D (parallel move) 

D±(S1 *2-n)+r.-.D (no parallel move) 

Assembler Syntax: 
MACR (±)S1,S2,D (parallel move) 

MACR 

MACR 

(±)S2,S1,D (parallel move) 

(±)S,#n,D (no parallel move) 

Description: Multiply the two signed 24-bit source operands S1 and S2 (or the signed 
24-bit source operand S by the positive 24-bit immediate operand 2-n), add/subtract the 
product to/from the specified 56-bit destination accumulator D, and then round the result 
using convergent rounding. The rounded result is stored in the destination accumulator 
D. 

The U_" sign option negates the specified product prior to accumulation. The default sign 
option is u+". 

The contribution of the LS bits of the result is rounded into the upper portion of the desti­
nation accumulator (A1 or B1) by adding a constant to the LS bits of the lower portion of 
the accumulator (AO or BO). The value of the constant added is determined by the scal­
ing mode bits SO and S1 in the status register. Once rounding has been completed, the 
LS bits of the destination accumulator D (AO or BO) are loaded with zeros to maintain an 
unbiased accumulator value which may be reused by the next instruction. The upper por­
tion of the accumulator (A1 or B1) contains the rounded result which may be read out to 
the data buses. Refer to the RND instruction for more complete information on the con­
vergent rounding process. 

Example 1: 

MACR XO,YO,B B,XO Y:(R4)+N4,YO ;XO*YO+B'-'B, and B, update XO,YO,R4 

Before Execution After Execution 

XO I $123456 XO I $100000 

YO I $123456 YO I $987654 

B I $00:100000:000000 B I $00:1296CE:000000 



MACR Signed Multiply-Accumulate and Round MACR 

Explanation of Example 1: Prior to execution, the 24-bit XO register contains the value 
$123456 (0.142222166), the 24-bit YO register contains the value $123456 
(0.142222166), and the 56-bit B accumulator contains the value $00:100000:000000 
(0.125). The execution of the MACR XO,YO,B instruction multiples the 24-bit signed value 
in the XO register by the 24-bit signed value in the YO register, adds the resulting product 
to the 56-bit B accumulator, rounds the result into the B1 portion of the accumulator, and 
then zeros the BO portion of the accumulator (XO*YO+B=0.145227144519197 approxi­

mately =$00:1296CD:9619C8, which is rounded to the value 
$00:1296CE:000000=0.145227193832397=B). 

Condition Codes: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 IlF I DM I T I.. I S1 I SO I 11 I 10 I s I L E I u I N I z v 
I ~I CCA 41( MA ..... 

S - Computed according to the definition in A.5 CONDITION CODE COMPUTATION 
L - Set if limiting (parallel move) or overflow has occurred in result 
E - Set if the signed integer portion of A or B result is in use 
U - Set if A or B result is unnormalized 
N - Set if bit 55 of A or B result is set 
Z- Set if A or B result equals zero 
V - Set if overflow has occurred in A or B result 

Note: The definitions of the E and U bits vary according to the scaling mode being used. 
Refer to Section A.5 for complete details. 

Instruction Format 1: 
MACR (±)S1,S2,0 
MACR (±)S2,S 1 ,0 

Opcode 1: 
23 

DATA BUS MOVE FIELD 

8 7 4 3 

I 1 Q Q Q I d k 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

o 



MACR Signed Multiply-Accumulate and Round MACR 

Instruction Fields 1: 
S1*S2 Q Q Q Sign k D d 

XOXO 0 0 0 + 0 A 0 
YO YO 0 0 1 1 8 1 
X1 XO 0 1 0 
Y1 YO 0 1 1 
XOY1 1 0 0 
YOXO 1 0 1 
X1 YO 1 1 0 
Y1 X1 1 1 1 

Note: Only the indicated 81 *82 combinations are valid. X1 *X1 and Y1 *Y1 are not valid. 

Timing: 2+mv oscillator clock cycles 

Memory: 1 +mv program words 

Example 2: 

MACR -YO, #10,8 

Before Execution After Execution 

YO~I _________ $_65_4_32_1 __ ~ YO~I _________ $_6_M_32_1 __ ~ 

BI~ ____ $_OO_:1_00_00_o_:oo_o_oo_o __ ~ B~I ____ $O_O_:OF_E_6A_F_:O_OO_oo_o __ ~ 

Explanation of Example 2: The content of YO ($654321) is negated, multiplied by 2-1°, 
added to the content of the 8 accumulator ($00:100000:000000), placed in the 8 accu­
mulator and then rounded to a single precision number (24 bits in 81). The net effect of 
this operation is to negate the content of YO, divide the result by 210 and add the result 
to the accumulator. An alternate interpretation is that YO is negated, right shifted 10 
places, filled with the sign bit (0 for a positive number and 1 for a negative number), the 
result is added to the accumulator and then rounded to a single precision number. 



MACR Signed MUltiply-Accumulate and Round MACR 

Instruction Format 2: 
MACR (±)S,#n,D 

Opcode 2: 
23 16 15 8 7 o 

\0 0 0 0 0 0 0 1\000 S S ss S\1 1 Q Q d k 1 11 

Instruction Fields 2: 
S QQ Sign k D d 

Y1 0 0 + 0 A 0 
XO 0 1 1 B 1 
YO 1 0 
X1 1 1 

n sssss constant 
1 00001 010000000000000000000000 
2 00010 001000000000000000000000 
3 00011 000100000000000000000000 
4 00100 000010000000000000000000 
5 00101 000001000000000000000000 
6 00110 000000100000000000000000 
7 00111 000000010000000000000000 
8 01000 000000001000000000000000 
9 01001 000000000100000000000000 
10 01010 000000000010000000000000 
11 01011 000000000001000000000000 
12 01100 000000000000100000000000 
13 01101 000000000000010000000000 
14 01110 000000000000001000000000 
15 01111 000000000000000100000000 
16 10000 000000000000000010000000 
17 10001 000000000000000001000000 
18 10010 000000000000000000100000 
19 10011 000000000000000000010000 
20 10100 000000000000000000001000 
21 10101 000000000000000000000100 
22 10110 000000000000000000000010 
23 10111 000000000000000000000001 -

Timing: 2 oscillator clock cycles 

Memory: 1 program word 



MOVE Move Data MOVE 

Operation: Assembler Syntax: 
S~D MOVE S,D 

Description: Move the contents of the specified data source S to the specified destina­
tion D. This instruction is equivalent to a data ALU NOP with a parallel data move. 

When a 56-bit accumulator (A or B) is specified as a source operand S, the accumulator 
value is optionally shifted according to the scaling mode bits SO and S 1 in the system 
status register (SR). If the data out of the shifter indicates that the accumulator extension 
register is in use and the data is to be moved into a 24- or 48-bit destination, the value 
stored in the destination D is limited to a maximum positive or negative saturation con­
stant to minimize truncation error. Limiting does not occur if an individual 24-bit accumu­
lator register (A1, AO, B1, or BO) is specified as a source operand instead of the full 56-bit 
accumulator (A or B). This limiting feature allows block floating-point operations to be 
performed with error detection since the L bit in the condition code register is latched. 

When a 56-bit accumulator (A or B) is specified as a destination operand 0, any 24-bit 
source data to be moved into that accumulator is automatically extended to 56 bits by 
sign extending the MS bit of the source operand (bit 23) and appending the source oper­
and with 24 LS zeros. Similarly, any 48-bit source data to be loaded into a 56-bit accu­
mulator is automatically sign extended to 56 bits. Note that for 24-bit source operands 
both the automatic sign-extension and zeroing features may be disabled by specifying 
the destination register to be one of the individual 24-bit accumulator registers (A 1 or 
B1). Similarly, for 48-bit source operands, the automatic sign-extension feature may be 
disabled by using the long memory move addressing mode and specifying A10 or B10 as 
the destination operand. 

Example: 

MOVE XO,A 1 ;move XO to A 1 without sign ext. or zeroing 

xo ~I ________ ~$2_34_5_67 __ ~ xol ~ ________ ~$2_3_45_67 __ ~ 

A I~ __ $F_F_:F_FF_FF_F_:F_FF_F_FF __ ~ A ~I ____ $_FF_:2_34_56_7_:F_FF_FF_F __ --I 



MOVE Move Data MOVE 

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the 
value $FF:FFFFFF:FFFFFF, and the 24-bit XO register contains the value $234567. The 
execution of the MOVE XO,A 1 instruction moves the 24-bit value in the XO register into 
the 24-bit A 1 register without automatic sign extension and without automatic zeroing. 

Condition Codes: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 LF I OM I T I .. I S1 I SO I 11 
10 1 s 1 L E I U N Z v 

1:1 CCR ... MR .... 
S - Computed according to the definition in A.5 CONDITION CODE COMPUTATION 
L - Set if data limiting has occurred during parallel move. 

Instruction Format: 
MOVE S,D 

Opcode: 

23 8 7 4 3 o 
DATA BUS MOVE FIELD I 0 o o o I 0 o o o 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

Instruction Fields: 
See Parallel Move Descriptions for data bus move field encoding. 

Timing: 2+mv oscillator clock cycles 

Memory: 1 +mv program words 



MOVE Move Data MOVE 

Parallel Move Descriptions: Thirty of the sixty-two instructions allow an optional paral­
lel data bus movement over the X and/or Y data bus. This allows a data ALU operation to 
be executed in parallel with up to two data bus moves during the instruction cycle. Ten 
types of parallel moves are permitted, including register to register moves, register to 
memory moves, and memory to register moves. However, not all addressing modes are 
allowed for each type of memory reference. Addressing mode restrictions which apply to 
specific types of moves are noted in the individual move operation descriptions. The fol­
lowing section contains detailed descriptions about each type of parallel move operation. 

When a 56-bit accumulator (A or B) is specified as a source operand S, the accumulator 
value is optionally shifted according to the scaling mode bits SO and S1 in the system 
status register (SR). If the data out of the shifter indicates that the accumulator extension 
register is in use and the data is to be moved into a 24- or 48-bit destination, the value 
stored in the destination D is limited to a maximum positive or negative saturation con­
stant to minimize truncation error. Limiting does not occur if an individual 24-bit accumu­
lator register (A1, AD, B1, or BO) is specified as a source operand instead of the full 56-bit 
accumulator (A or B). This limiting feature allows block floating-point operations to be 
performed with error detection since the L bit in the condition code register is latched. 

Note: Whenever an instruction uses an accumulator as both a destination operand for a 
data ALU operation and as a source for a parallel move operation, the parallel move 
operation occurs first and will use the data that exists in the accumulator before the 
execution of the data ALU operation has occurred. 



MOVE Move Data MOVE 

When a 56-bit accumulator (A or B) is specified as a destination operand D, any 24-bit 
source data to be moved into that accumulator is automatically extended to 56 bits by 
sign extending the MS bit of the source operand (bit 23) and appending the source oper­
and with 24 LS zeros. Similarly, any 48-bit source data to be loaded into a 56-bit accu­
mulator is automatically sign extended to 56 bits. Note that for 24-bit source operands 
both the automatic sign-extension and zeroing features may be disabled by specifying 
the destination register to be one of the individual 24-bit accumulator registers (A 1 or 
B1). Similarly, for 48-bit source operands, the automatic sign-extension feature may be 
disabled by using the long memory move addressing mode and specifying A 10 or B 10 as 
the destination operand. 

Note that the symbols used in decoding the various opcode fields of an instruction or par­
allel move are completely arbitrary. Furthermore, the opcode symbols used in one 
instruction or parallel move are completely Independent of the opcode symbols used in 
a different instruction or parallel move. 

-



-

No Parallel Data Move 

Operation: Assembler Syntax: 
( ..... ) ( ..... ) 

where ( ..... ) refers to any arithmetic or logical instruction which allows parallel moves. 

Description: Many (30 of the total 66) instructions in the DSP56K instruction set allow 
parallel moves. The parallel moves have been divided into 10 opcode categories. This 
category is a parallel move NOP and does not involve data bus move activity. 

Example: 

ADD XO,A ;add XO to A (no parallel move) 

Explanation of Example: This is an example of an instruction which allows parallel 
moves but does not have one. 

Condition Codes: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o 
I LF I DM I T I - I S1 I SO I 11 I 10 I S I L I E I u N I z 
~ MR .. III( CCR 

The condition codes are affected by the instruction, not the move. 



No Parallel Data Move 

Instruction Format: 
( ..... ) 

Opcode: 

23 15 8 

0010000000000000 

Instruction Format: 
(defined by instruction) 

Timing: mv oscillator clock cycles 

Memory: mv program words 

o 
INSTRUCTION OPCODE 

-



-

I 

Operation: 
( ..... ), #xx-4D 

Immediate Short Data Move 

Assembler Syntax: 
( ..... ) #xx,D 

I 

where ( ..... ) refers to any arithmetic or logical instruction which allows parallel moves. 

Description: Move the 8-bit immediate data value (#xx) into the destination operand D. 

If the destination register D is AO, A 1, A2, 80, 81, 82, RO-R7, or NO-N7, the 8-bit imme­
diate short operand is interpreted as an unsigned integer and is stored in the specified 
destination register. That is, the 8-bit data is stored in the eight LS bits of the destination 
operand, and the remaining bits of the destination operand D are zeroed. 

If the destination register D is XO, X1, YO, Y1, A, or 8, the 8-bit immediate short operand 
is interpreted as a signed fraction and is stored in the specified destination register. 
That is, the 8-bit data is stored in the eight MS bits of the destination operand, and the 
remaining bits of the destination operand D are zeroed. 

If the arithmetic or logical opcode-operand portion of the instruction specifies a given 
destination accumulator, that same accumulator or portion of that accumulator may not 
be specified as a destination D in the parallel data bus move operation. Thus, if the 
opcode-operand portion of the instruction specifies the 56-bit A accumulator as Its desti­
nation, the parallel data bus move portion of the instruction may not specify AO, A 1, A2, 
or A as its destination D. Similarly, if the opcode-operand portion of the instruction speci­
fies the 56-bit 8 accumulator as its destination, the parallel data bus move portion of the 
instruction may not specify 80, 81, 82, or 8 as its destination D. That is, duplicate des­
tinations are NOT allowed within the same instruction. 

Note: Due to instruction pipelining, if an AGU register (Mn, Nn, or Rn) is directly changed 
with this instruction, the new contents may not be available for use until the second fol­
lowing instruction. See the restrictions discussed in A.,9.6 - R, N, and M Register Restric­
tions on page A-310. 



I Immediate Short Data Move I 

Example: 

ABS B #$18,R1 ;take absolute value of B, #$18~R1 

Before Execution After Execution 

R1 $0000 R1 ~I _______ $0_01_8 ______ ~ 

Explanation of Example: Prior to execution, the 16-bit address register R1 contains the 
value $0000. The execution of the parallel move portion of the instruction, #$18,R1, 
moves the 8-bit immediate short operand into the eight LS bits of the R1 register and 
zeros the remaining eight MS bits of that register. The 8-bit value is interpreted as an 
unsigned integer since its destination is the R1 address register. 

-



-

I Immediate Short Data Move 

Condition Codes: 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 

1 LF 10M I T I ** I S1 I SO I 11 lOiS L E I U I N I z 
AlII( MR .... CCR 

The condition codes are not affected by this type of parallel move. 

Instruction Format: 
( ..... ) #xx,D 

Opcode: 
23 16 15 8 7 

0 

I v I C.I 

001dddd di i INSTRUCTION OPCOOE 

Instruction Fields: 
#xx=8-bit Immediate Short Data=iiiiiiii 

I 

o 



I Immediate Short Data Move I 

D D 
D d d d d d Sign Ext Zero 

XO 0 0 1 0 0 no no 
X1 0 0 1 0 1 no no 
YO 0 0 1 1 0 no no 
Y1 0 0 1 1 1 no no 
AO 0 1 0 0 0 no no 
80 0 1 0 0 1 no no 
A2 0 1 0 1 0 no no 
82 0 1 0 1 1 no no 
A1 0 1 1 0 0 no no 
81 0 1 1 0 1 no no 
A 0 1 1 1 0 A2 AO 
8 0 1 1 1 1 82 80 
RO-R7 1 0 r r r 
NO-N7 1 1 n n n 

where "rrr"=Rn number 
where "nnn"=Nn number 

Timing: mv oscillator clock cycles 

Memory: mv program words 

-



-

R 

Operation: 
( ..... ); S-+D 

Register to Register Data Move 

Assembler Syntax: 
( ..... ) S,D 

R 

where ( ..... ) refers to any arithmetic or logical instruction which allows parallel moves. 

Description: Move the source register S to the destination register D. 

If the arithmetic or logical opcode-operand portion of the instruction specifies a given 
destination accumulator, that same accumulator or portion of that accumulator may not 
be specified as a destination D in the parallel data bus move operation. Thus, if the 
opcode-operand portion of the instruction specifies the 56-bit A accumulator as its desti­
nation, the parallel data bus move portion of the instruction may not specify AO, A 1, A2, 
or A as its destination D. Similarly, if the opcode-operand portion of the instruction speci­
fies the 56-bit B accumulator as its destination, the parallel data bus move portion of the 
instruction may not specify BO, B1, B2, or B as its destination D. That is, duplicate des­
tinations are NOT allowed within the same Instruction. 

If the opcode-operand portion of the instruction specifies a given source or destination 
register, that same register or portion of that register may be used as a source S in the 
parallel data bus move operation. This allows data to be moved in the same instruction in 
which it is being used as a source operand by a data ALU operation. That is,duplicate 
sources are allowed within the same instruction. 

When a 24-bit source operand is moved into a 16-bit destination register, the 16 LS bits 
of the 24-bit source operand are stored in the 16-bit destination register. When a 16-bit 
source operand is moved into a 24-bit destination register, the 16 LS bits of the destina­
tion register are loaded with the contents of the 16-bit source operand, and the eight MS 
bits of the 24-bit destination register are zeroed. 

Note: The MOVE A,B operation will result in a 24-bit positive or negative saturation con­
stant being stored in the B1 portion of the B accumulator if the signed integer portion of 
the A accumulator is in use. 

Note: Due to instruction pipelining, if an AGU register (Mn, Nn, or Rn) is directly changed 
with this instruction, the new contents may not be available for use until the second fol­
lowing instruction. See the restrictions discussed in A.9.6 - R, N, and M Register Restric­
tions on page A-310. 



R Register to Register Data Move R 

Example: 

MACR-XO,YO,A ( Y1 ,N5 ;-XO*YO+A--+A, move Y1--+N5 

Before Execution After Execution 

Y1 $001234 Y1 ~I ______ ~$0_0_12_34 ____ ~ 

N5~1 _________ $_OO_OO ____ ~ N5~1 _________ $_12_34 ____ ~ 
Explanation of Example: Prior to execution, the 24-bit Y1 register contains the value 
$001234 and the 16-bit address offset register N5 contains the value $0000. The execu­
tion of the parallel move portion of the instruction, Y1 ,N5, moves the 16 LS bits of the 24-
bit value in the Y1 register into the 16-bit N5 register. 

-



-

R Register to Register Data Move R 

Condition Codes: 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

1 ~ IOMI T 1- 1 ~ 1M I 11 I lOiS I L I E I U N I z I v 1:1 CCR ... MR ..... 
S - Computed according to the definition in A.S CONDITION CODE COMPUTATION 
L - Set if data limiting has occurred during parallel move 

Instruction Format: 
( ..... ) S,D 

Opcode: 
23 16 15 8 7 0 

o 0 1 0 0 0 e e e e e d d d d d INSTRUCTION OPCODE 



R Register to Register Data Move R 

Instruction Fields: 
e e e e e S D D 

SorD d d d d d S/L Sign Ext Zero 

XO 0 0 1 0 0 no no no 
X1 0 0 1 0 1 no no no 
YO 0 0 1 1 0 no no no 
Y1 0 0 1 1 1 no no no 
AO 0 1 0 0 0 no no no 
80 0 1 0 0 1 no no no 
A2 0 1 0 1 0 no no no 
82 0 1 0 1 1 no no no 
A1 0 1 1 0 0 no no no 
81 0 1 1 0 1 no no no 
A 0 1 1 1 0 yes A2 AO 
8 0 1 1 1 1 yes 82 80 
RO-R7 1 0 r r r 
NO-N7 1 1 n n n 

where "rrr"=Rn number 
where "nnn"=Nn number 

Timing: mv oscillator clock cycles 

Memory: mv program words 



u 

Operation: 
( ..... ); ea-+Rn 

Address Register Update 

Assembler Syntax: 
( ..... ) ea 

u 

where ( ..... ) refers to any arithmetic or logical instruction which allows parallel moves. 

Description: Update the specified address register according to the specified effective 
addressing mode. All update addressing modes may be used. 

Example: 

RND 8 (R3)+N3 ;round value in 8 into 81, R3+N3-+R3 

Before Execution After Execution 

R31~ ____ ~$0_0_07 ______ ~ R31~ _____ $_00_OB ______ ~ 

N3 ~I _______ $~0_00_4 ____ ~ N3 1L-_____ $_00_04 _____ ~ 

Explanation of Example: Prior to execution, the 16-bit address register R3 contains the 
value $0007, and the 16-bit address offset register N3 contains the value $0004. The 
execution of the parallel move portion of the instruction, (R3)+N3, updates the R3 
address register according to the specified effective addressing mode by adding the 
value in the R3 register to the value in the N3 register and storing the 16-bit result back in 
the R3 address register. 

Condition Codes: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

1 LF I DM I T I" I 81 I 80 I 11 I 10 1 8 I LIE I u I N I z v I :.1 
.... MR ..... CCR _. 

The condition codes are not affected by this type of parallel move. 



u 

Instruction Format: 
( ..... ) ea 

Opcode: 

Address Register Update 

23 16 15 8 7 0 

o 0 1 0 0 0 0 0 0 10M M R R R INSTRUCTION OPCODE 

Instruction Fields: 
ea=5-bit Effective Address=MMRRR 

Effective 
Addressing Mode 

(Rn)-Nn 
(Rn)+Nn 
(Rn)-
(Rn)+ 

MMRRR 

o 0 r r r 
o 1 r r r 
1 0 r r 
1 1 r r 

where "rrr" refers to an address register RO-R7 

Timing: mv oscillator clock cycles 

Memory: mv program words 

u 



X: X Memory Data Move X: 

Operation: Assem bier Syntax: 
( ..... ); X:ea~D ( ..... ) X:ea,D 

( ..... ); X:aa~D ( ..... ) X:aa,D 

( ..... ); S~X:ea ( ..... ) S,X:ea 

( ..... ); S~X:aa ( ..... ) S,X:aa 

( ..... );#xxxxxx~D ( ..... ) #xxxxxx,D 

where ( ..... ) refers to any arithmetic or logical instruction which allows parallel moves. 

Description: Move the specified word operand from/to X memory. All memory address­
ing modes, including absolute addressing and 24-bit immediate data, may be used. 
Absolute short addressing may also be used. 

If the arithmetic or logical opcode-operand portion of the instruction specifies a given 
destination accumulator, that same accumulator or portion of that accumulator may not 
be specified as a destination D in the parallel data bus move operation. Thus, if the 
opcode-operand portion of the instruction specifies the 56-bit A accumu lator as its desti­
nation, the parallel data bus move portion of the instruction may not specify AO, A 1, A2, 
or A as its destination D. Similarly, if the opcode-operand portion of the instruction speci­
fies the 56-bit 8 accumulator as its destination, the parallel data bus move portion of the 
instruction may not specify 80, 81, 82, or B as its destination D. That is, duplicate des­
tinations are NOT allowed within the same instruction. 

If the opcode-operand portion of the instruction specifies a given source or destination 
register, that same register or portion of that register may be used as a source S in the 
parallel data bus move operation. This allows data to be moved in the same instruction in 
which it is being used as a source operand by a data ALU operation. That is, duplicate 
sources are allowed within the same instruction. 

When a 24-bit source operand is moved into a 16-bit destination register, the 16 LS bits 
of the 24-bit source operand are stored in the 16-bit destination register. When a 16-bit 
source operand is moved into a 24-bit destination register, the 16 LS bits of the destina­
tion register are loaded with the contents of the 16-bit source operand, and the eight MS 
bits of the 24-bit destination register are zeroed. 



X: X Memory Data Move X: 

Note:Due to instruction pipelining, if an AGU register (Mn, Nn, or Rn) is directly changed 
with this instruction, the new contents may not be available for use until the second fol­
lowing instruction. See the restrictions discussed in A.9.6 - R, N, and M Register R~stric­
tions on page A-31 o. 
Example: 

ASL A R2,X:-(R2) ;A*2-+A, save updated R2 in X:(R2) 

Before Execution After Execution 

~1~ ______ $_10_01 ______ ~ R2~1 ______ ~$1_00_0 ____ ~ 

X:$1000 1~ _____ $0_0_00_00 ______ ~ X:$1000 ~I ______ $0_01_00_0 ____ ~ 

Explanation of Example: Prior to execution, the 16-bit R2 address register contains the 
value $1001, and the 24-bit X memory location X:$1000 contains the value $000000. 
The execution of the parallel move portion of the instruction, R2,X:-(R2), predecrements 
the R2 address register and then uses the R2 address register to move the updated con­
tents of the R2 address register into the 24-bit X memory location X:$1 000. 

Condition Codes: 

S - Computed according to the definition in A.5 CONDITION CODE COMPUTATION. 
L - Set if data limiting has occurred during parallel move. 

Note: The MOVE A,X:ea operation will result in a 24-bit positive or negative saturation 
constant being stored in the specified 24-bit X memory location if the signed integer por­
tion of the A accumulator is in use. 



X: X Memory Data Move X: 

Instruction Format: 
( ..... ) X:ea,D 
( ..... ) S,X:ea 
( ..... ) #xxxxxx,D 

Opcode: 
23 16 15 8 7 0 

01ddOdd d/W 1 M M M R R R I INSTRUCTION OPCODE 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

Instruction Fields: 
ea=6-bit Effective Address=MMMRRR 

Effective 
RegisterW Addressing Mode M MMRR R 

Read S 0 (Rn)-Nn 0 0 0 r r r 

Write ° 1 (Rn)+Nn 0 0 1 r r r 
(Rn)- 0 1 0 r r r 
(Rn)+ 0 1 1 r r r 
(Rn) 1 0 0 r r r 
(Rn+Nn) 1 0 1 r r r 
-(Rn) 1 1 1 r r r 
Absolute address 1 1 0 0 0 0 
Immediate data 1 1 0 1 0 0 



X: X Memory Data Move X: 

S D D 
S,D d d d d d S/L Sign Ext Zero 

XO 0 0 1 0 0 no no no 
X1 0 0 1 0 1 no no no 
YO 0 0 1 1 0 no no no 
Y1 0 0 1 1 1 no no no 
AO 0 1 0 0 0 no no no 
BO 0 1 0 0 1 no no no 
A2 0 1 0 1 0 no no no 
B2 0 1 0 1 1 no no no 
A1 0 1 1 0 0 no no no 
B1 0 1 1 0 1 no no no 
A 0 1 1 1 0 yes A2 AO 
B 0 1 1 1 1 yes 82 80 
RO-R7 1 0 r r r 
NO-N7 1 1 n n n 

where "rrr"=Rn number 
where "nnn"=Nn number 

Timing: mv oscillator clock cycles 

Memory: mv program words 



X: X Memory Data Move 

Instruction Format: 
( ..... ) X:aa,D 
( ..... ) S,X:aa 

Opcode: 

6 15 8 7 

01 d dOd d d WO a a a a a a 

Instruction Fields: 
aa=6-bit Absolute Short Address=aaaaaa 

Register W 

Read S 0 
Write D 

Absolute Short Address a a a a a a 

000000 

• 
1 1 1 111 

X: 

o 
INSTRUCTION OPCODE 



X: X Memory Data Move X: 

S D D 
S,D d d d d d S/L Sign Ext Zero 

XO a a 1 a a no no no 
X1 0 a 1 a 1 no no no 
YO 0 a 1 1 a no no no 
Y1 0 0 1 1 1 no no no 
AO 0 1 0 0 0 no no no 
80 a 1 0 0 1 no no no 
A2 a 1 0 1 a no no no 
82 a 1 0 1 1 no no no 
A1 a 1 1 a a no no no 
81 a 1 1 a 1 no no no 
A a 1 1 1 a yes A2 AO 
8 a 1 1 1 1 yes 82 80 
RO-R? 1 a r r r 
NO-N? 1 1 n n n 

where "rrr"=Rn number 
where "nnn"=Nn number 

Timing: mv oscillator clock cycles 

Memory: mv program words 



X:R X Memory and Register Data Move 

Operation: 
Class I 

( ..... ); X:ea ..... 01; 82 ..... 02 

( ..... ); 81 ..... X:ea; 82 ..... 02 

( ..... ); #xxxxxx ..... 01; 82 ..... 02 

Class II 
( ..... ); A ..... X:ea; XO ..... A 

( ..... ); B ..... X:ea; XO ..... B 

Assembler Syntax: 
Class I 

( ..... ) X:ea,01 52,02 

( ..... ) S1 ,X:ea S2,02 

( ..... ) #xxxxxx,01 S2,02 

Class II 
( ..... ) A,X:ea 

( ..... ) B,X:ea 

XO,A 

XO,B 

X:R 

where ( ..... ) refers to any arithmetic or logical instruction which allows parallel moves. 

Description: Class I: Move a one-word operand from/to X memory and move another 
word operand from an accumulator (S2) to an input register (02). All memory addressing 
modes, including absolute addressing and 24-bit immediate data, may be used. The reg­
ister to register move (82,02) allows a data ALU accumulator to be moved to a data ALU 
input register for use as a data ALU operand in the following instruction. 

Class II: Move one-word operand from a data ALU accumulator to X memory and one­
word operand from data ALU register XO to a data ALU accumulator. One effective 
address is specified. All memory addressing modes, excluding long absolute addressing 
and long immediate data, may be used. 

For both Class I and Class II X:R parallel data moves, if the arithmetic or logical opcode­
operand portion of the instruction specifies a given destination accumulator, that same 
accumulator or portion of that accumulator may not be specified as a destination 01 in 
the parallel data bus move operation. Thus, if the opcode-operand portion of the instruc­
tion specifies the 56-bit A accumulator as its destination, the parallel data bus move por­
tion of the instruction may not specify AO, A1, A2, or A as its destination 01. Similarly, if 
the opcode-operand portion of the instruction specifies the 56-bit Baccumulator as its 
destination, the parallel data bus move portion of the instruction may not specify BO, B1, 
B2, or B as its destination 01. That is, duplicate destinations are NOT allowed within 
the same Instruction. 



X:R X Memory and Register Data Move X:R 

If the opcode-operand portion of the instruction specifies a given source or destination 
register, that same register or portion of that register may be used as a source 81 and/or 
82 in the parallel data bus move operation. This allows data to be moved in the same 
instruction in which it is being used as a source operand by a data ALU operation. That 
is, duplicate sources are allowed within the same instruction. Note that 81 and 82 
may specify the same register. 

Class I Example: 

CMPM VO,A A,X:$1234 A,VO ;compare A,VO mag., save A, update VO 

Before Execution After Execution 

A 1~ _____ $0_0:_80_00_0_0:0_0_00_00 __ ~ A 1~ _____ $0_0_:80_0_00_0:_00_00_0_0~ 

X:$1234I 
~--------------~ 

$000000 X:$12341~ __________ $7_FF_F_FF __ .......J 

yol~ ________ $_O_OO_OO_O __ ~ YOI~ ________ $_7F_F_FF_F __ .......J 

Explanation of the Class I Example: Prior to execution, the 56-bit A accumulator con­
tains the value $00:800000:000000, the 24-bit X memory location X:$1234 contains the 
value $000000, and the 24-bit VO register contains the value $000000. The execution of 
the parallel move portion of the instruction, A,X:$1234 A,VO, moves the 24-bit limited 
positive saturation constant $7FFFFF into both the X:$1234 memory location and the VO 
register since the signed portion of the A accumulator was in use. 

-



-

X:R X Memory and Register Data Move X:R 

Class II Example: 

MAC XO,YO,A 8,X:(R1)+ XO,8 ;multiply XO and YO and accumulate .in A 
;move 8 to X memory location pointed to 
;by R1 and postincrement R1 
;move XO to 8 

Before Execution After Execution 

XO I $400000 XO I $400000 

YO I $600000 YO I $600000 

A I $00:000000:000000 A I $00:300000:000000 

B I $FF:7FFFFF:000000 B I $00:400000:000000 

X:$1234 I $000000 X:$1234 I $800000 

R1 I III $1234 R1 I $1235 

Explanation of the Class II Example: Prior to execution, the 24-bit registers XO and YO 
contain $400000 and $600000, respectively. The 56-bit accumulators A and 8 contain 
the values $00:000000:000000 and $FF:7FFFFF:000000, respectively. The 24-bit X 
memory location X:$1234 contains the value $000000, and the 16-bit R1 register con­
tains the value $1234. Execution of the parallel move portion of the instruction 
(8,X:(R1 )+XO,8).JT1oves the 24-bit limited value of 8 ($800000) into the X:$1234 memory 
location and the ,.)(0 register ($400000) into accumulator 81 ($400000), sign extends 81 
into 82 ($00), and zero fills 80 ($000000). It also increments R1 to $1235. 



X:R X Memory and Register Data Move X:R 

Condition Codes: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 I LF I DM I T I ** I S1 I SO I 11 I 10 I S I L I E I U N I z v 
I ~I CCR AlII( MR •• 

S - Computed according to the definition in A.S CONDITION CODE COMPUTATION 
L - Set if data limiting has occurred during parallel move. 

Class I Instruction Format: 
( ..... ) X:ea,D1 S2,D2 
( ..... ) S1 ,X:ea S2, D2 
( ..... ) #Xxxxxx, S2,D2 

Opcode: 
23 16 15 870 

o 0 0 1 f f d f Jw 0 M M M R R R l INSTRUCTION OPCODE 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

Instruction Fields: 
ea=6-bit Effective Address=MMMRRR 

Effective 
RegisterW Addressing Mode M M M R R R 

ReadS 0 (Rn)-Nn 0 0 0 r r 
Write 0 1 (Rn)+Nn 0 0 1 r r 

(Rn)- 0 1 o r r r 
(Rn)+ 0 1 1 
(Rn) 1 0 0 
(Rn+Nn) 1 0 1 r r r 
-(Rn) 1 1 1 r r r 
Absolute address 1 1 0 0 0 0 
Immediate data 1 1 0 1 0 0 

where "rrr" refers to an address register RO-R7 



X:R X Memory and Register Data Move X:R 

51 01 01 S2 02 02 
51,01 f f 5/L Sign Ext Zero 52 d SIL 02 f 5ign Ext Zero 

XO o 0 no no no A 0 yes YO 0 no no 
X1 o 1 no no no B 1 yes Y1 1 no no 
A 1 0 yes A2 AO 
B 1 1 yes B2 BO 

Timing: mv oscillator clock cycles 

Memory: mv program words 



X:R X Memory and Register Data Move X:R 

Class II Instruction Format: 
( ..... ) A-+X:ea XO-+A 
( ..... ) 8-+ X :ea XO-+8 

Opcode: 
23 16 15 8 7 0 

0000100 dio 0 M M M R R R I INSTRUCTION OPCODE 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

Instruction Fields: 
ea=6-bit Effective Address=MMMRRR 

Effective 
Addressing Mode MMMRRR 

(Rn)-Nn o 0 o r r r 
(Rn)+Nn o 0 1 r r 
(Rn)- o 1 0 r r 
(Rn)+ o 1 1 r r r 
(Rn) 1 0 o r r r 
(Rn+Nn) 0 r r r 
-(Rn) r r r 

where "rrr" refers to an address register RO-R7 

S D D 
SD SIL Sign Ext Zero d MOVE Opcode 

XO no N/A N/A 0 A-+X:ea XO-+A 
YO no N/A N/A 8-+X:ea XO-+8 
A yes A2 AO 
8 yes 82 80 

Timing: mv oscillator clock cycles 

Memory: mv program words 



Y: V Memory Data Move Y: 

Operation: Assembler Syntax: 
( ..... ); Y:ea-+D ( ..... ) Y:ea,D 

( ..... ); Y:aa-+D ( ..... ) Y:aa,D 

( ..... ); S-+Y:ea ( ..... ) S,Y:ea 

( ..... );S-+Y:aa ( ..... ) S,Y:aa 

( ..... ); #xxxxxx-+D ( ..... ) #xxxxxx,D 

where ( ..... ) refers to any arithmetic or logical instruction which allows parallel moves. 

Description: Move the specified word operand from/to Y memory. All memory address­
ing modes, including absolute addressing and 24-bit immediate data, may be used. 
Absolute short addressing may also be used. 

If the arithmetic or logical opcode-operand portion of the instruction specifies a given 
destination accumulator, that same accumulator or portion of that accumulator may not 
be specified as a destination D in the parallel data bus move operation. Thus, if the 
opcode-operand portion of the instruction specifies the 56-bit A accumulator as its desti­
nation, the parallel data bus move portion of the instruction may not specify AO, A 1, A2, 
or A as its destination D. Similarly, if the opcode-operand portion of the instruction speci­
fies the 56-bit B accumulator as its destination, the parallel data bus move portion of the 
instruction may not specify BO, B 1 , B2, or B as its destination D. That is, duplicate des­
tinations are NOT allowed within the same instruction. 

If the opcode-operand portion of the instruction specifies a given source or destination 
register, that same register or portion of that register may be used as a source S in the 
parallel data bus move operation. This allows data to be moved in the same instruction in 
which it is being used as a source operand by a data ALU operation. That is, duplicate 
sources are allowed within the same instruction. 

When a 24-bit source operand is moved into a 16-bit destination register, the 16 LS bits 
of the 12-bit source operand are stored in the 16-bit destination register. When a 16-bit 
source operand is moved into a 24-bit destination register, the 16 LS bits of the destina­
tion register are loaded with the contents of the 16-bit source operand, and the eight MS 
bits of the 24-bit destination register are zeroed. 



Y: Y Memory Data Move Y: 

Note: This parallel data move is considered to be a move-type instruction. Due to 
instruction pipelining, if an AGU register (Mn, Nn, or Rn) is directly changed with this 
instruction, the new contents may not be available for use until the second following 
instruction. See the restrictions discussed in A.9.6 - R, N, and M Register Restrictions on 
page A-310. 

Example: 

EOR XO,B #$123456,A ;exclusive OR XO and B, update A accumulator 

Before Execution After Execution 

A~I ___ $_F_F:_FF_FF_F_F:_FF_F_FF_F __ ~ AI~ ____ $o_o:_12_~_5_6:0_0_00_00 __ ~ 

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the 
value $FF:FFFFFF:FFFFFF. The execution of the parallel move portion of the instruc­
tion, #$123456,A, moves the 24-bit immediate value $123456 into the 24-bit A 1 register, 
then sign extends that value into the A2 portion of the accumulator, and zeros the lower 
24-bit AO portion of the accumulator. 

Condition Codes: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 o I LF I OM I T I ** I s, I so I 11 I 10 I s I L E I u I N I z I v 
CCR ... MR ..... 

S - Computed according to the definition in A.5 CONDITION CODE COMPUTATION 
L - Set if data limiting has occurred during parallel move. 



V: Y Memory Data Move V: 

Note: The MOVE A,Y:ea operation will result in a 24-bit positive or negative saturation 
constant being stored in the specified 24-bit Y memory location if the signed integer por­
tion of the A accumulator is in use. 

Instruction Format: 
( ..... ) Y:ea,D 

( ..... ) S,Y:ea 

( ..... ) #xxxxxx,D 

Opcode: 
23 16 15 8 7 0 

o 1 d d 1 d d d I W 1 M M M R R R I INSTRUCTION OPCODE 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

Instruction Fields: 
ea=6-bit Effective Address=MMMRRR 

Effective 
RegisterW Addressing Mode M MMRR R 

ReadS 0 (Rn}-Nn 0 0 0 r r r 
Write D 1 (Rn}+Nn 0 0 1 r r 

(Rn)- 0 1 0 r r 
(Rn)+ 0 1 1 r r r 
(Rn) 1 0 0 r r 
(Rn+Nn) 1 0 1 r r 
-(Rn) 1 1 1 r r r 
Absolute address 1 1 0 0 0 0 
Immediate data 1 1 0 1 0 0 

where "rrr" refers to an address register RO-R7 



Y: Y Memory Data Move Y: 

S D D 
S,D d d d d d S/L Sign Ext Zero 

XO 0 0 1 0 0 no no no 
X1 0 0 1 0 1 no no no 
YO 0 0 1 1 0 no no no 
Y1 0 0 1 1 1 no no no 
AO 0 1 0 0 0 no no no 
80 0 1 0 0 1 no no no 
A2 0 1 0 1 0 no no no 
82 0 1 0 1 1 no no no 
A1 0 1 1 0 0 no no no 
81 0 1 1 0 1 no no no 
A 0 1 1 1 0 yes A2 AO 
8 0 1 1 1 . 1 yes 82 80 
RO-R? 1 0 r r r 
NO-N? 1 1 n n n 

where "rrr"=Rn number 
where "nnn"=Nn number 

Timing: mv oscillator clock cycles 

Memory: mv program words 



V: Y Memory Data Move 

Instruction Format: 
( ..... ) Y:aa,D 
( ..... ) S,Y:aa 

Opcode: 

5 8 

01 d d 1 d d d WO a a a a a a 

Instruction Fields: 
aa=6-bit Absolute Short Address=aaaaaa 

Register W Absolute Short Address aaaaaa 

Read S 0 
Write D 

000000 

• 
111111 

V: 

INSTRUCTION OPCODE 



Y: Y Memory Data Move Y: 

S D D 
S,D d d d d d SIL Sign Ext Zero 

XO 0 0 1 0 0 no no no 
X1 0 0 1 0 1 no no no 
YO 0 0 1 1 0 no no no 
Y1 0 0 1 1 1 no no no 
AO 0 1 0 0 0 no no no 
BO 0 1 0 0 1 no no no 
A2 0 1 0 1 0 no no no 
B2 0 1 0 1 1 no no no 
A1 0 1 1 0 0 no no no 
B1 0 1 1 0 1 no no no 
A 0 1 1 1 0 yes A2 AO 
B 0 1 1 1 1 yes B2 BO 
RO-R? 1 0 r r r 
NO-N? 1 1 n n n 

where "rrr"=Rn number 
where "nnn"=Nn number 

Timing: mv oscillator clock cycles 

Memory: mv program words 



R:V Register and V Memory Data Move R:V 

Operation: Assembler Syntax: 
Class I Class I 

( ..... ); S1--+01 ; Y:ea--+02 ( ..... ) S1 ,01 Y:ea,02 

( ..... ); S1--+01; S2--+Y:ea ( ..... ) S1 ,01 S2,Y:ea 

( ..... ); S1--+01 ; #xxxxxx--+02 ( ..... ) S1 ,01 #xxxxxx,02 

Class II Class II 
( ..... ); YO --+A; A--+Y:ea ( ..... ) YO,A A,Y:ea 

( ..... ); YO--+B; B--+Y:ea ( ..... ) YO,B B,Y:ea 

where ( ..... ) refers to any arithmetic or logical instruction which allows parallel moves. 

Description: Class I: Move a one-word operand from an accumulator (S1) to an input 
register (01) and move another word operand from/to Y memory. All memory addressing 
modes, including absolute addressing and 24-bit immediate data, may be used. The reg­
ister to register move (S1 ,01) allows a data ALU accumulator to be moved to a data ALU 
input register for use as a data ALU operand in the following instruction. 

Class II: Move one-word operand from a data ALU accumulator to Y memory and one­
word operand from data ALU register YO to a data ALU accumulator. One effective 
address is specified. All memory addressing modes, excluding long absolute addressing 
and long immediate data, may be used. Class II move operations have been added to 
the R:Y parallel move (and a similar feature has been added to the X:R parallel move) as 
an added feature available in the first quarter of 1989. 

For both Class I and Class II R:Y parallel data moves, if the arithmetic or logical opcode­
operand portion of the instruction specifies a given destination accumulator, that same 
accumulator or portion of that accumulator may not be specified as a destination 02 in 
the parallel data bus move operation. Thus, if the opcode-operand portion of the instruc­
tion specifies the 56-bit A accumulator as its destination, the parallel data bus move por­
tion of the instruction may not specify AO, A1, A2, or A as its destination 02. Similarly, if 
the opcode-operand portion of the instruction specifies the 56-bit B accumulator as its 
destination, the parallel data bus move portion of the ins~ruction may not specify BO, B1, 
B2, or B as its destination 02. That is, duplicate destinations are NOT allowed within the 
same instruction. 



R:V Register and V Memory Data Move R:Y 

If the opcode-operand portion of the instruction specifies a given source or destination 
register, that same register or portion of that register may be used as a source 81 and/or 
82 in the parallel data bus move operation. This allows data to be moved in the same 
instruction in which it is being used as a source operand by a data ALU operation. That 
is, duplicate sources are allowed within the same Instruction. Note that 81 and 82 
may specify the same register. 

Class I Example: 

ADDL B,A B,X1 Y:(R6)-N6,B ;2*A+B ~ A, update X1 ,B and R6 

Before Execution After Execution 

B I $80:123456:789ABC B I $00:654321 :000000 

X1 $000000 X1 I $800000 

R6 I $2020 R6 I $2000 

N6 I $0020 N6 I $0020 

Y:$2020 I $654321 Y:$2020 I $654321 

Explanation of the Class I Example: Prior to execution, the 56-bit B accumulator con­
tains the value $80:123456:789ABC, the 24-bit X1 register contains the value $000000, 
the 16-bit R6 address register contains the value $2020, the 16-bit N6 address offset 
register contains the value $0020 and the 24-bit Y memory location Y:$2020 contains the 
value $654321. The execution of the parallel move portion of the instruction, B,X1 
Y:(R6)-N6,B, moves the 24-bit limited negative saturation constant $800000 into the X1 
register since the signed integer portion of the B accumulator was in use, uses the value 
in the 16-bit R6 address register to move the 24-bit value in the Y memory location 
Y:$2020 into the 56-bit B accumulator with automatic sign extension of the upper portion 
of the accumulator (B2) and automatic zeroing of the lower portion of the accumulator 
(BO), and finally uses the contents of the 16-bit N6 address offset register to update the 
value in the 16-bit R6 address register. The contents of the N6 address offset register 
are not affected. 



R:Y Register and Y Memory Data Move R:Y 

Class II Example: 

MAC XO,YO,A YO,B B,Y:(R1)+ 

Before Execution 

XO I $400000 

YO I $600000 

A I $00:000000:000000 

B I $00:800000:000000 

Y:$1234 I $000000 

R1 I $1234 

;multiply XO and YO and accumulate in A 
;move B to Y memory location pointed to 
;by R1 and postincrement R1 
;move YO to B 

After Execution 

xo I $400000 

YO I $600000 

A I $00:300000:000000 

B I $00:600000:000000 

Y:$1234 I $7FFFFF 

R1 I $1235 

Explanation of the Class II Example: Prior to execution, the 24-bit registers, XO and 
YO, contain $400000 and $600000, respectively. The 56-bit accumulators A and B con­
tain the values $00:000000:000000 and $00:800000:000000 (+1.0000), respectively. 
The 24-bit Y memory location Y:$1234 contains the value $000000, and the 16-bit R1 
register contains the value $1234. Execution of the parallel move portion of the instruc­
tion (yO,B B,Y:(R1)+) moves the YO register ($600000) into accumulator B1 ($600000), 
sign extends B1 into B2 ($00), and zero fills BO ($000000). It also moves the 24-bit lim­
ited value of B ($7FFFFF) into the Y:$1234 memory location and increments R1 to 
$1235. 



R:V Register and Y Memory Data Move R:Y 

Condition Codes: 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 1 LF 1 OM 1 T 1** 1 SI 1 SO 1 11 I lois 1 L I E I U N I z I v 

1 :1 CCR ~ MR .... 
S - Computed according to the definition in A.5 CONDITION CODE COMPUTATION 
L - Set if data limiting has occurred during parallel move. 

Class I Instruction Format: 
( ..... ) S1 ,D1 Y:ea,D2 
( ..... ) S1 ,D1 S2,Y:ea 
( ..... ) S1 ,D1 #xxxxxx,D2 

Opcode: 
23 16 15 8 7 0 

0001def f Iw 1 M M M R R R I INSTRUCTION OPCODE 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 



R:V Register and V Memory Oata Move 

Instruction Fields: 
ea=6-bit Effective Address=MMMRRR 

Effective 
RegisterW Addressing Mode M 

Read S2 0 (Rn)-Nn 0 
Write D2 1 (Rn)+Nn 0 

(Rn)- 0 
. (Rn)+ 0 

(Rn) 1 
(Rn+Nn) 1 
-(Rn) 1 
Absolute address 1 
Immediate data 1 

where "rrr" refers to an address register RO-R7 

51 01 
51 d S/L 01 e 5ign Ext 

A 0 yes XO 0 no 
B 1 yes X1 no 

Timing: mv oscillator clock cycles 

Memory: mv program words 

01 
Zero 

no 
no 

M M R R R 

0 0 r r r 
0 1 r r r 
1 0 r r 
1 1 r r 
0 0 r r 
0 1 r r r 
1 1 r r r 
1 0 0 o 0 
1 0 1 o 0 

52,02 f f 

YO o 0 
Y1 o 1 
A 1 0 
B 1 1 

R:V 

52 02 02 
5/L Sign Ext Zero 

no no no 

no no no 
yes A2 AO 
yes B2 BO 



R:V Register and Y Memory Data Move R:V 

Class II Instruction Format: 
( ..... ) YO ~ A A ~ Y:ea 
( ..... ) YO ~ 8 8 ~ Y:ea 

Opcode: 
23 16 15 8 7 0 

00001 0 0 d 110M M M R R R 1 INSTRUCTION OPCODE 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

·Instructlon Fields: 
ea=6-bit Effective Address=MMMRRR 

Effective 
Addressing Mode MMMRRR 

(Rn)-Nn o 0 o r r r 
(Rn)+Nn o 0 1 r r r 
(Rn)- o 1 0 r r 
(Rn)+ o 1 1 r r 
(Rn) 1 0 o r r r 
(Rn+Nn) 1 0 1 r r 
-(Rn) 1 1 1 r r 

where "rrr" refers to an address register RO-R7 

S,D 
XO 
YO 
A 
8 

SRC 
S/L 
no 
no 
yes 
yes 

DEST 
Sign Ext 

N/A 
N/A 
A2 
82 

DEST 
Zero 
N/A 
N/A 
AO 
80 

Timing: mv oscillator clock cycles 

Memory: mv program words 

d 
o 
1 

MOVEOpcode 
YO ~ A A.~ Y:ea 
YO ~ 8 8~Y:ea 



L: Long Memory Data Move L: 

Operation: Assembler Syntax: 
( ..... ); X:ea .-. 01; Y:ea .-. 02 ( ..... ) L:ea,O 

( ..... ); X:aa .-. 01; Y:aa .-. 02 ( ..... ) L:aa,O 

( ..... ); S1 .-. X:ea; S2.-. Y:ea ( ..... ) S,L:ea 

( ..... ); S1 .-. X:aa; S2 .-. Y:aa ( ..... ) S,L:aa 

where ( ..... ) refers to any arithmetic or logical instruction which allows parallel moves. 

Description: Move one 48-bit long-word operand from/to X and Y memory. Two data 
ALU registers are concatenated to form the 48-bit long-word operand. This allows effi­
cient moving of both double-precision (high:low) and complex (real:imaginary) data from/ 
to one effective address in L (X:Y) memory. The same effective address is used for both 
the X and Y memory spaces; thus, only one effective address is required. Note that the 
A, B, A 10, and B1 ° operands reference a single 48-bit signed (double-precision) quantity 
while the X, Y, AB, and BA operands reference two separate (i.e., real and imaginary) 
24-bit signed quantities. All memory alterable addressing modes may be used. Absolute 
short addressing may also be used. 

If the arithmetic or logical opcode-operand portion of the instruction specifies a given 
destination accumulator, that same accumulator or portion of that accumulator may not 
be specified as a destination 0 in the parallel data bus move operation. Thus, if the 
opcode-operand portion of the instruction specifies the 56-bit A accumulator as its desti­
nation, the parallel data bus move portion of the instruction may not specify A, A 10, AB, 
or BA as destination O. Similarly, if the opcode-operand. portion of the instruction speci­
fies the 56-bit B accumulator as its destination, the parallel data bus move portion of the 
instruction may not specify B, B1 0, AB, or BA as its destination D. That is, duplicate des­
tinations are NOT allowed within the same instruction. 

If the opcode-operand portion of the instruction specifies a given source or destination 
register, that same register or portion of that register may be used as a source S in the 
parallel data bus move operation. This allows data to be moved in the same instruction in 
which it is being used as a source operand by a data ALU operation. That is, duplicate 
sources are allowed within the same instruction. 

Note: The operands A10, B10, X, Y, AB, and BA may be used only for a 48-bit long 
memory move as previously described. These operands may not be used in any other 
type of instruction or parallel move. 



L: Long Memory Data Move L: 

Example: 

CMPYO,B A,L:$1234 ;compare YO and B, save 48-bit A1 :AO value 

Before Execution After Execution 

A 1~ __ $_01_:2_M_5_67_:8_9A_B_eD __ ~ A 1~ __ $0_1_:23_45_67_:8_9A_B_eD __ ~ 

X:$12M C $000000 X:$1234 1 ....... ______ $7_FF_FF_F ____ ~ 

Y:$12M I $:000000 Y:$12341'--_____ $F_FF_FF_F ___ ~ 

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the 
value $01 :234567:89ABCD, the 24-bit X memory location X:$1234 contains the value 
$000000, and the 24-bit Y memory location Y:$1234 contains the value $000000. The 
execution of the para"el move portion of the instruction, A,L:$1234, moves the 48-bit lim­
ited positive saturation constant $7FFFFF:FFFFFF into the specified long memory loca­
tion by moving the MS 24 bits of the 48-bit limited positive saturation constant ($7FFFFF) 
into the 24-bit X memory location X:$1234 and by moving the LS 24 bits of the 48-bit lim­
ited positive saturation constant ($FFFFFF) into the 24-bit Y memory location Y:$1234 
since the signed integer portion of the A accumulator was in use. 

Condition Codes: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 LF I OM I T I ** 1 SI 1 SO 1 11 I lois 1 L E I u N I z v 
1:1 eeR ~ MR ..... 

S - Computed according to the definition in A.5 CONDITION CODE COMPUTATION 
L - Set if data limiting has occurred during para"el move. 

Note: The MOVE A,L:ea operation will result in a 48-bit positive or negative saturation 
constant being stored in the specified 24-bit X and Y memory locations if the signed inte­
ger portion of the A accumulator is in use. The MOVE AB,L:ea operation wi" result in 
either one or two 24-bit positive and/or negative saturation constant(s) being stored in the 
specified 24-bit X and/or Y memory location(s) if the signed integer portion of the A and/ 
or B accumulator(s) is in use. 



L: Long Memory Data Move L: 

Instruction Format: 
( ..... ) L:ea,D 
( ..... ) S,L:ea 

Opcode: 
23 16 15 870 

01 OOLO L L/W 1 M M M R R R / INSTRUCTION OPCODE 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

Instruction Fields: 
ea=6-bit Effective Address=MMMRRR 

Effective 
RegisterW Addressing Mode M M M R R R 

ReadS 0 (Rn)-Nn 0 0 0 r r r 
Write D 1 (Rn)+Nn 0 0 1 r r r 

(Rn)- 0 1 0 r 
(Rn)+ 0 1 1 r 
(Rn) 1 0 0 r r 
(Rn+Nn) 1 0 1 r r r 
-(Rn) 1 1 0 r r r 
Absolute address 1 1 0 0 0 0 

where "rrr" refers to an address register RO-R7 

5 D D 
S 51 52 S/L D D1 D2 Sign Ext Zero L L L 

A10 A1 AO no A10 A1 AO no no o 0 0 
B10 B1 BO no B10 B1 BO no no o 0 1 
X X1 XO no X X1 XO no no 010 
Y Y1 YO no Y Y1 YO no no o 1 1 
A A1 AO yes A A1 AO A2 no 1 0 0 
B B1 BO yes B B1 BO B2 no 1 0 1 

AB A B yes AB A B A2,B2 AO,BO 1 1 0 
BA B A yes BA B A B2,A2 BO,AO 1 1 1 

Timing: mv oscillator clock cycles 

Memory: mv program words 



L: Long Memory Data Move L: 

Instruction Format: 
( ..... ) L:aa,D 
( ..... ) S,L:aa 

Opcode: 
23 16 15 8 7 0 

o 1 0 0 L 0 L L I W 0 a a a a a a INSTRUCTION OPCODE 

Instruction Fields: 
aa=6-bit Absolute Short Address=aaaaaa 

Register W Absolute Short Address aaaaaa 

ReadS 0 000000 
Write D 1 • 

• 
111111 

S D D 
S S1 82 S/L D 01 02 Sign Ext Zero L L L 

A10 A1 AO no A10 A1 AO no no 000 
B10 B1 BO no B10 B1 BO no no o 0 1 
X X1 XO no X X1 XO no no 010 
Y Y1 YO no Y Y1 YO no no 011 
A A1 AO yes A A1 AO A2 no 1 0 0 
B B1 BO yes B B1 BO B2 no 1 0 1 

AB A B yes AB A B A2,B2 AO,BO 1 1 0 
BA B A yes BA B A B2,A2 BO,AO 1 1 1 

Timing: mv oscillator clock cycles 

Memory: mv program words -



-

X: V: xv Memory Data Move X: V: 

Operation: Assembler Syntax: 
( ..... ); X:<eax> -+ 01; Y:<eay> -+ 02 ( ..... ) X:<eax>,01 Y:<eaY>,02 

( ..... ); X:<eax> -+ 01; S2 -+ Y:<eay> ( ..... ) X:<eax>,01 S2,Y:<eay> 

( ..... ); S1 -+ X:<eax>; Y:<eay> -+ 02 ( ..... ) S1,X:<eax> Y:<eaY>,02 

( ..... ); S1 -+ X:<eax>; S2 -+ Y:<eay> ( ..... ) S1 ,X:<eax> S2,Y:<eay> 

where ( ..... ) refers to any arithmetic or logical instruction which allows parallel moves. 

Description: Move a one-word operand from/to X memory and move another word 
operand from/to Y memory. Note that two independent effective addresses are specified 
«eax> and <eay» where one of the effective addresses uses the lower bank of address 
registers (RO-R3) while the other effective address uses the upper bank of address reg­
isters (R4-R7). All parallel addressing modes may be used. 

If the arithmetic or logical opcode-operand portion of the instruction specifies a given 
destination accumulator, that same accumulator or portion of that accumulator may not 
be specified as a destination 01 or 02 in the parallel data bus move operation. Thus, if 
the opcode-operand portion of the instruction specifies the 56-bit A accumulator as its 
destination, the parallel data bus move portion of the instruction may not specify A as its 
destination 01 or 02. Similarly, if the opcode-operand portion of the instruction specifies 
the 56-bit B accumulator as its destination, the parallel data bus move portion of the 
instruction may not specify B as its destination 01 or 02. That is, duplicate destinations 
are NOT allowed within the same Instruction. 01 and 02 may not specify the same 
register. 

If the opcode-operand portion of the instruction specifies a given source or destination 
register, that same register or portion of that register may be used as a source S1 and/or 
S2 in the parallel data bus move operation. This allows data to be moved in the same 
instruction in which it is being used as a source operand by a data ALU operation. That 
is, duplicate sources are allowed within the same instruction. Note that S1 and S2 
may specify the same register. 



X: Y: xv Memory Data Move X: Y: 

Example: 

MPYR X1 ,YO,A X1,X:(RO)+ YO,"Y:(R4)+N4 ;X1 *YO -+ A,save X1 and YO 

Before Execution After Execution 

X1 $123123 X1 $123123 

YO $456456 YO I $456456 

RO $1000 RO I $1001 

R4 $0100 R4 I $0123 

N4 $0023 N4 I $0023 

X:$1000 $000000 X:$1000 I $123123 

Y:$0100 I $000000 Y:$0100 I $456456 

Explanation of Example: Prior to execution, the 24-bit X1 register contains the value 
$123123, the 24-bit YO register contains the value $456456, the 16-bit RO address regis.:. 
ter contains the value $1000, the 16-bit R4 address register contains the value $0100, 
the 16-bit N4 address offset register contains the value $0023, the 24-bit X memory loca­
tion X:$1000 contains the value $000000, and the 24-bit Y memory location Y:$0100 
contains the value $000000. The execution of the parallel move portion of the instruction, 
X1,X:(RO)+ YO,Y:(R4)+N4, moves the 24-bit value in the X1 register into the 24-bit X 
memory location X:$1 000 using the 16-bit RO address register, moves the 24-bit value in 
the YO register into the 24-bit Y memory location Y:$0100 using the 16-bit R4 address 
register, updates the 16-bit value in the RO address register, and updates the 16-bit R4 
address register using the 16-bit N4 address offset register. The contents of the N4 
address offset register are not affected. 

Condition Codes: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 LF I DM I T I·· I S1 1 so 1 11 I 10 1 s 1 L I E I u I N I z v 
1:1 CCR .... MR ..... 

S - Computed according to the definition in A.5 CONDITION CODE COMPUTATION 
L - Set if data limiting has occurred during parallel move. 

-



X: V: xv Memory Data Move X: V: 

Note: The MOVE A,X:<eax> B,Y:<eay> operation will result in one or two 24-bit positive 
and/or negative saturation constant(s) being stored in the specified 24-bit X and/or Y 
memory location(s) if the signed integer portion of the A and/or B accumulator(s) is in use. 

Instruction Format: 
( ..... ) X:<eax>,D1 Y:<eay>,D2 
( ..... ) X:<eax>,D1 52,Y:<eay> 
( ..... ) 51 ,X:<eax> Y:<eay>,D2 
( ..... ) 51,X:<eax> 52,Y:<eay> 

Opcode: 
23 16 15 8 7 0 

1 w m m e e f f W r r M M R R R INSTRUCTION OPCODE 

Instruction Fields: 
X:<eax>=6-bit X Effective Address=WMMRRR (RO-R3 or R4-R7) 
Y:<eay>=5-bit Y Effective Address=wmmrr (R4-R7 or RO-R3) 

X Effective 
Addressing Mode M M R R R 

(Rn)+Nn 0 1 s s s 
(Rn)- 1 0 s s s 
(Rn)+ 1 1 s s s 
(Rn) 0 0 s s s 

where "sss" refers to an address register RO-R7 



X: Y: xv Memory Data Move X: Y: 

S1 D1 D1 V Effective 
Register w S1, D1 ee S/L Sign Ext Zero Addressing Mode mm r r 

Read 81 0 XO 00 no no no (Rn) +Nn o 1 t 
Write D1 1 X1 o 1 no no no (Rn) - 1 0 t t 

A 1 0 yes A2 AO (Rn) + 1 1 t t 
8 1 1 yes 82 80 (Rn) o 0 t t 

where "U" refers to an address register R4 - R7 or RO - R3 which is in the opposite 
address register bank from the one used in the X effective address, previously described 

S2 D2 D2 
Register W S2,02 f f S/L Sign Ext Zero 

Read 82 0 YO 00 no no no 
Write 02 1 Y1 o 1 no no no 

A 1 0 yes A2 AO 
8 1 1 yes 82 80 

Timing: mv oscillator clock cycles 

Memory: mv program words 

-



MOVEC Move Control Register MOVEC 

Operation: Assembler Syntax: 
X:ea-401 MOVE(C) X:ea,01 

X:aa-401 MOVE(C) X:aa,01 

S1-4X:ea MOVE(C) 81,X:ea 

81-4X:aa MOVE(C) 81,X:aa 

Y:ea-401 MOVE(C) Y:ea,01 

Y:aa-401 MOVE(C) Y:aa,01 

S1-4Y:ea MOVE(C) 81,Y:ea 

81-4Y:aa MOVE(C) 81,Y:aa 

81-402 MOVE(C) 81,02 

82-401 MOVE(C) 82,01 

#xxxx-401 MOVE(C) #xxxx,01 

#xx-401 MOVE(C) #xx,01 

Description: Move the contents of the specified source control register 81 or 82 to the 
specified destination or move the specified source to the specified destination control 
register 01 or 02. The control registers 81 and 01 are a subset of the S2 and 02 regis­
ter set and consist of the address ALU modifier registers and the program controller reg­
isters. These registers may be moved to or from any other register or memory space. AI 
memory addressing modes, as well as an immediate short addressing mode, may be 
used. 

If the system stack register 88H is specified as a source operand, the system stack 
pointer (8P) is postdecremented by 1 after 88H has been read. If the system stack reg­
ister 88H is specified as a destination operand, the system stack pOinter (SP) is prein­
cremented by 1 before 88H is written. This allows the system stack to be efficiently 
extended using software stack pointer operations. 

When a 56-bit accumulator (A or B) is specified as a source operand, the accumulator 
value is optionally shifted according to the scaling mode bits 80 and S1 in the system 



MOVEC Move Control Register MOVEC 

status register (SR). If the data out of the shifter indicates that the accumulator extension 
register is in use, and the data is to be moved into a 24-bit destination, the value stored in 
the destination is limited to a maximum positive or negative saturation constant to mini­
mize truncation error. If the data is to be moved into a 16-bit destination and the accumu­
lator extension register is in use, the value is limited to a maximum positive or negative 
saturation constant whose LS 16 bits are then stored in the 16-bit destination register. 
Limiting does not occur if an individual 24-bit accumulator register (A 1, AD, 81, or 80) is 
specified as a source operand instead of the full 56-bit accumulator (A or 8). This limiting 
feature allows block floating-point operations to be performed with error detection since 
the L bit in the condition code register is latched. 

When a 56-bit accumulator (A or 8) is specified as a destination operand, any 24-bit 
source data to be moved into that accumulator is automatically extended to 56 bits by 
sign extending the MS bit of the source operand (bit 23) and appending the source oper­
and with 24 LS zeros. Whenever a 16-bit source operand is to be moved into a 24-bit 
destination, the 16-bit value is stored in the LS 16 bits of the 24-bit destination, and the 
MS 8 bits of that destination are zeroed. Similarly, whenever a 16-bit source operand is 
to be moved into a 56-bit accumulator, the 16-bit value is moved into the LS 16 bits of the 
MSP portion of the accumulator (A1 or 81), the MS 8 bits of the MSP portion of that 
accumulator are zeroed, and the resulting 24-bit value is extended to 56 bits by sign 
extending the MS bit and appending the result with 24 LS zeros. Note that for 24-bit 
source operands both the automatic sign-extension and zeroing features may be dis­
abled by specifying the destination register to be one of the individual 24-bit accumulator 
registers (A 1 or 81 ). 

Note: Due to instruction pipelining, if an AGU register (Mn, Nn, or Rn) is directly changed 
with this instruction, the new contents may not be available for use until the second fol­
lowing instruction. See the restrictions discussed in A.9.6 - R, N, and M Register Restric­
tions on page A-31 O. 

Restrictions: The following restrictions represent very unusual operations which proba­
bly would never be used but are listed only for completeness. 

A MOVEC instruction used within a DO loop which specifies SSH as the source oper­
and or LA, LC, SR, SP, SSH, or SSL as the destination operand cannot begin at the 
address LA - 2, LA - 1, or LA within that DO loop. 

-
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MOVEC Move Control Register MOVEC 

A MOVEC instruction which specifies SSH as the source operand or LA, LC, SSH, SSL, 
or SP as the destination operand cannot be used immediately before a DO instruc­
tion. 

A MOVEC instruction which specifies SSH as the source operand or LA, LC, SR, SSH, 
SSL, or SP as the destination operand cannot be used immediately before an 
ENDDO instruction. 

A MOVEC instruction which specifies SSH as the source operand or SR, SSH, SSL, or 
SP as the destination operand cannot be used immediately before an RTI instruction. 

A MOVEC instruction which specifies SSH as the source operand or SSH, SSL, or SP 
as the destination operand cannot be used immediately before an RTS instruction. 

A MOVEC instruction which specified SP as the destination operand cannot be used 
immediately before a MOVEC, MOVEM, or MOVEP instruction which specifies SSH or 
SSL as the source operand. 

A MOVEC SSH, SSH instruction is illegal and cannot be used. 

Example: 

MOVEC LC,XO ;move LC into XO 

Before Execution After Execution 

LC 1'--____ $_o1_oo __ -.1 LC ,'-_________ $0_10_0 ___ --' 

xo~1 _____ $_12_34_5_6 ___ ~ xol~ _______ $_0_00_10_0 ____ ~ 

Explanation of Example: Prior to execution, the 16-bit loop counter (LC) register con­
tains the value $0100, and the 24-bit XO register contains the value $123456. The execu­
tion of the MOVEC LC,XO instruction moves the contents of the 16-bit LC register into 
the 16 LS bits of the 24-bit XO register and zeros the 8 MS bits of the XO register. 



MOVEC Move Control Register MOVEC 

Condition Codes: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 I: I OM I T I ** J:' I so I 11 I ': I: I LIE I U JR N I z I v I : 1 
For 01 or 02=SR operand: 
S - Set according to bit 7 of the source operand 
L - Set according to bit 6 of the source operand 
E - Set according to bit 5 of the source operand 
U - Set according to bit 4 of the source operand 
N - Set according to bit 3 of the source operand 
Z - Set according to bit 2 of the source operand 
V - Set according to bit 1 of the source operand 
C - Set according to bit 0 of the source operand 

For 01 and 02*SR operand: 
8 - Computed according to the definition in A.S CONDITION CODE COMPUTATION 
L - Set if data limiting has occurred during the move 

Instruction Format: 
MOVE(C) X:ea,D1 
MOVE(C) S1,X:ea 
MOVE(C) Y:ea,D1 
MOVE(C) 81,Y:ea 
MOVE(C) #xxxx,D1 

Opcode: 
23 

0000010 

Instruction Fields: 

16 15 8 7 

1 Iw 1 M M M R R Rio s 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

ea=6-bit Effective Address=MMMRRR 

o 
1 d d d d d 
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MOVEC Move Control Register 

Effective 
Register W 

Read S 0 
Write D 1 

Addressing Mode MMMRR 

(Rn)-Nn 0 0 
(Rn)+Nn 0 0 
(Rn)- 0 1 
(Rn)+ 0 1 
(Rn) 1 0 
(Rn+Nn) 1 0 
-(Rn) 1 1 
Absolute address 1 1 
Immediate Data 1 1 

where "rrr" refers to an address register RO-R7 

Memory Space s 
X Memory 0 
Y Memory 1 

S1,01 
MO-M7 
SR 
OMR 
SP 
SSH 
SSL 
LA 
LC 

where "nnn" = Mn number (MO-M7) 

Timing: 2+mvc oscillator clock cycles 

Memory: 1 +ea program words 

ddddd 
OOnnn 
1 1 001 
1 1 01 0 
1 1 0 1 1 
1 1 1 00 
1 1 1 0 1 
1 1 1 1 0 
1 1 111 

0 r r 
1 r 
0 r 
1 r 
0 r 
1 r r 
1 r r 
0 0 0 
0 1 0 

MOVEC 

R 

r 
r 
r 
r 
r 
0 
0 



MOVEC 

Instruction Format: 
MOVE(C) X:aa,D1 
MOVE(C) 51,X:aa 
MOVE(C) Y:aa,D1 
MOVE(C) S1,Y:aa 

Opcode: 

Move Control Register MOVEC 

23 16 15 8 7 0 

10 0 0 0 0 1 0 1 I W 0 a a a a a a los 1 d d d d d I 
Instruction Fields: 

aa=6-bit Absolute Short Address=aaaaaa 

Register W Absolute Short Address aaaaaa 
Read S 0 000000 
Write D 1 

Memory Space s 
X Memory 0 
Y Memory 1 

• 
• 

111111 

S1,D1 
MO-M7 
SR 
OMR 
SP 
SSH 
SSL 
LA 
LC 

where "nnn" = Mn number (MO-M7) 

Timing: 2+mvc oscillator clock cycles 

Memory: 1 +ea program words 

ddddd 
OOnnn 
1 1 001 
1 1 0 1 0 
1 1 0 1 1 
1 1 1 00 
1 1 1 0 1 
1 1 1 1 0 
1 1 111 
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MOVEC 

Instruction Format: 
MOVE(C) S1 ,02 
MOVE(C) S2,01 

Opcode: 

23 

Move Control Register MOVEC 

16 15 8 7 o 

10 0 0 0 0 1 0 o I W 1 99 9 99911 o 1 d d d d dl 

Instruction Fields: 

Register W S1,01 ddddd 
Read S1 0 MO-M7 OOnnn 
Write 01 1 SR 1 1 001 

OMR 1 1 0 1 0 
SP 1 1 0 1 1 

Memory Space s SSH 1 1 1 00 
X Memory 0 SSL 1 1 1 0 1 
Y Memory 1 LA 1 1 1 1 0 

LC 1 1 111 

where "nnn" = Mn number (MO-M7) 

S2 02 02 
S2,02 eeeeee S/L Sign Ext Zero S2,02 eeeeee 
XO 000100 no no no RO - R7 010nnn 
X1 000101 no no no NO - N7 011 nnn 
YO 000110 no no no MO- M7 100nnn 
Y1 000111 no no no SR 111001 
AO 001000 no no no OMR 111010 
BO 001001 no no no SP 111011 
A2 001010 no no no SSH 111100 
B2 001011 no no no SSL 111101 
A1 001100 no no no LA 111 1 1 0 
B1 001101 no no no LC 111 1 1 1 
A 001110 yes A2 AO 
B 001111 yes B2 BO 

where "nnn" = Rn number (RO - R7) 
Nn number (NO - N7) 
Mn number (MO - M7) 



MOVEC Move Control Register MOVEC 

Timing: 2+mvc oscillator clock cycles 

Memory: 1 +ea program words 

Instruction Format: 
MOVE{C) #xx,D1 

Opcode: 

23 16 15 

10000010 11i i 

Instruction Fields: 
#xx=8-bit Immediate Short Data=i iii iii i 

01 
MO-M7 
SR 
OMR 
SP 
SSH 
SSL 
LA 
LC 

ddddd 
OOnnn 
1 1 001 
1 1 0 1 0 
1 1 0 1 1 
1 1 1 00 
1 1 1 0 1 
1 1 1 1 0 
11111 

where "nnn" = Mn number (MO-M7) 

Timing: 2+mvc oscillator clock cycles 

Memory: 1 +ea program words 

8 7 o 

i 11 0 1 d d d d dl 
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MOVEM 
Operation: 

S~P:ea 

S~P:aa 

P:ea~O 

P:aa~O 

Move Program Memory MOVEM 
Assembler Syntax: 

MOVE(M) S,P:ea 

MOVE(M) S,P:aa 

MOVE(M) P:ea,O 

MOVE(M) P:aa,O 

Description: Move the specified operand from/to the specified program (P) memory 
location. This is a powerful move instruction in that the source and destination registers 
Sand D may be any register. All memory alterable addressing modes may be used as 
well as the absolute short addressing mode. 

If the system stack register SSH is specified as a source operand, the system stack 
pointer (SP) is postdecremented by 1 after SSH has been read. If the system stack reg­
ister SSH is specified as a destination operand, the system stack pOinter (SP) is prein­
cremented by 1 before SSH is written. This allows the system stack to be efficiently 
extended using software stack pointer operations. 

When a 56-bit accumulator (A or B) is specified as a source operand S, the accumulator 
value is optionally shifted according to the scaling mode bits SO and S 1 in the system 
status register (SR). If the data out of the shifter indicates that the accumulator extension 
register is in use and the data is to be moved into a 24-bit destination, the value stored in 
the destination is limited to a maximum positive or negative saturation constant to mini­
mize truncation error. If a 24-bit source operand is to be moved into a 16-bit destination 
register 0, the 8 MS bits of the 24-bit source operand are discarded, and the 16 LS bits 
are stored in the 16-bit destination register. Limiting does not occur if an individual 24-bit 
accumulator register (A1, AO, B1, or BO) is specified as a source operand instead of the 
full 56-bit accumulator (A or B). This limiting feature allows block floating-point operations 
to be performed with error detection since the L bit in the condition code register is 
latched. 

When a 56-bit accumulator (A) is specified as a destination operand 0, any 24-bit 
source data to be moved into that accumulator is automatically extended to 56 bits by 
sign extending the MS bit of the source operand (bit 24) and appending the source oper­
and with 24 LS zeros. Whenever a 16-bit source operand S is to be moved into a 24-bit 
destination, the 16-bit source is loaded into the LS 16 bits of the destination operand, 
and the remaining 8 MS bits of the destination are zeroed. Note that for 24-bit source 



MOVEM Move Program Memory MOVEM 
operands, both the automatic sign-extension and zeroing features may be disabled by 
specifying the destination register to be one of the individual 24-bit accumulator registers 
(A1orB1). 

Note: Due to instruction pipelining, if an AGU register (Mn, Nn, or Rn) is directly changed 
with this instruction, the new contents may not be available for use until the second fol­
lowing instruction. See the restrictions discussed in A.9.6 - R, N, and M Register Restric­
tions on page A-31 o. 
Restrictions: The following restrictions represent very unusual operations, which proba­
bly would never be used but are listed only for completeness. 

A MOVEM instruction used within a DO loop which specifies SSH as the source oper­
and or LA, LC, SR, SP, SSH, or SSL as the destination operand cannot begin at the 
address LA-2, LA-1, or LA within that DO loop. 

A MOVEM instruction which specifies SSH as the source operand or LA, LC, SSH, 
SSL, or SP as the destination operand cannot be used immediately before a DO 
instruction. 

A MOVEM instruction which specifies SSH as the source operand or LA, Le, SR, SSH, 
SL, or SP as the destination operand cannot be used immediately before an ENDDO. 
instruction. 

A MOVEM instruction which specifies SSH as the source operand or SR, SSH, SSL, or 
SP as the destination operand cannot be used immediately before an RTI instruction. 

A MOVEM instruction which specifies SSH as the source operand or SSH, SSL, or SP 
as the destination operand cannot be used immediately before an RTS instruction. 

A MOVEM instruction which specifies SP as the destination operand cannot be used 
immediately before a MOVEC, MOVEM, or MOVEP instruction which specifies SSH or 
SSL as the source operand. 

-
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MOVEM Move Program Memory MOVEM 
Example: 

MOVEM P:(R5+N5), LC :move P :(R5+N5) into the loop counter (LC) 

Before Execution After Execution 

P:(R5 + N5) L-I ___ $_00_0_11_6 __ ----' P:(R5 + N5) ...... 1 ___ $_00_0_116 ___ --' 

$0116 ~I ...... ____ $O_OO_O ___ ~ LC I 
~-----------~ 

Explanation of Example: Prior to execution, the 16-bit loop counter (LC) register con­
tains the value $0000, and the 24-bit program (P) memory location P:(R5+N5) contains 
the value $000116. The execution of the MOVEM P:(R5+N5), LC instruction moves the 
16 LS bits of the 24-bit program (P) memory location P:(R5+N5) into the 16-bit LC regis­
ter. 

Condition Codes: 

15 14 13 12 11 10 9 8 7 6 5 4 I LF I DM I T I ** I 81 I 80 I 11 I 10 I s I L I E I u 
.... MR ~ lilli( CCR 

For D=SR operand: 
S - Set according to bit 7 of the source operand 
L.- Set according to bit 6 of the source operand 
E - Set according to bit 5 of the source operand 
U - Set according to bit 4 of the source operand 
N - Set according to bit 3 of the source operand 
Z - Set according to bit 2 of the source operand 
V - Set according to bit 1 of the source operand 
C - Set according to bit 0 of the source operand 

For D*SR operand: 

3 2 ° N I z 

S - Computed according to the definition in A.5 CONDITION CODE COMPUTATION 
L - Set if data limiting has occurred during the move 



MOVEM Move Program Memory MOVEM 
Instruction Format: 

MOVE(M) S,P:ea 
MOVE(M) P:ea,D 

Opcode: 
23 

0000011 

16 15 8 7 0 

1 Iw 1 M M M R R RI1 0 d d d d d d 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

Instruction Fields: 
ea=6-bit Effective Address=MMMRRR 

Effective 
RegisterW Addressing Mode M M M R R R 

ReadS 0 (Rn)-Nn 0 o 0 r r 
Write 0 1 (Rn)+Nn 0 0 1 r r 

(Rn)- 0 1 0 r r 
(Rn)+ 0 1 1 r r 
(Rn) 1 o 0 r r 
(Rn+Nn) 1 0 1 r r r 
-(Rn) 1 1 1 r r r 
Absolute address 1 1 0 0 0 0 

where "rrr" refers to an address register RO-R7 

-



MOVEM Move Program Memory MOVEM 
S D D 

S,D dddddd S/L Sign Ext Zero S,D dddddd 
XO 000100 no no no RO - R7 010nnn 
X1 000101 no no no NO - N7 011 nnn 
YO 000110 no no no MO- M7 100nnn 
Y1 000111 no no no SR 111001 
AO 001000 no no no OMR 111010 
80 001001 no no no SP 111011 
A2 001010 no no no SSH 111100 
82 001011 no no no SSL 111101 
A1 001100 no no no LA 111110 
81 001101 no no no LC 111 111 
A 001110 yes A2 AO 
8 001111 yes 82 80 

where "nnn" = Rn number (RO - R7) 
Nn number (NO - N7) 
Mn number (MO - M7) 

Timing: 2+mvm oscillator clock cycles 

Memory: 1 +ea program words 

-



MOVEM 
Instruction Format: 

MOVE(M) S,P:aa 
MOVE(M) P:aa,D 

Opcode: 

Move Program Memory MOVEM 

23 16 15 8 7 0 

10 0 0 0 0 1 1 1 I W 0 a a a a a a I 0 0 d d d d d dl 

Instruction Fields: 
aa=6-bit Absolute Short Address=aaaaa 

Register W Absolute Short Address aaaaaa 
Read S 0 000000 
Write D 1 • 

• 
111111 

S D D 
S,D dddddd SIL Sign Ext Zero S,D dddddd 
XO 000100 no no no RO - R7 010nnn 
X1 000101 no no no NO - N7 011nnn 
YO 000110 no no no MO- M7 100nnn 
Y1 000111 no no no SR 111001 
AO 001000 no no no OMR 111010 
80 001001 no no no SP 111011 
A2 001010 no no no SSH 111100 
82 001011 no no no SSL 111101 
A1 001100 no no no LA 111110 
B1 001101 no no no LC 111 1 1 1 
A 001110 yes A2 AO 
B 001111 yes B2 BO 

where "nnn" = Rn number (RO - R7) 
Nn number (NO - N7) 
Mn number (MO - M7) 

Timing: 2+mvm oscillator clock cycles 

Memory: 1 +ea program words 

-
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MOVEP Move Peripheral Data MOVEP 

Operation: Assembler Syntax: 
X:pp -+ D MOVEP X:pp,D 

X:pp -+ X:ea MOVEP X:pp,X:ea 

X:pp -+ Y:ea MOVEP X:pp,Y:ea 

X:pp -+ P:ea MOVEP X:pp,P:ea 

S -+ X:pp MOVEP S,X:pp 

#xxxxxx -+ X:pp MOVEP #xxxxxx,X :pp 

X:ea-+ X:pp MOVEP X:ea,X:pp 

Y:ea-+ X:pp MOVEP Y:ea,X:pp 

P:ea-+ X:pp MOVEP P:ea,X:pp 

Y:pp -+ D MOVEP Y:pp,D 

Y:pp -+ X:ea MOVEP Y:pp,X:ea 

Y:pp -+ Y:ea MOVEP Y:pp,Y:ea 

Y:pp -+ P:ea MOVEP Y:pp,P:ea 

S -+ Y:pp MOVEP S,Y:pp 

#xxxxxx -+ Y:pp MOVEP #xxxxxx,Y:pp 

X:ea -+ Y:pp MOVEP X:ea,Y:pp 

Y:ea -+ Y:pp MOVEP Y:ea,Y:pp 

P:ea -+ Y:pp MOVEP P:ea,Y:pp 

Description: Move the specified operand from/to the specified X or V 1/0 peripheral. 
The I/O short addressing mode is used for the I/O peripheral address. All memory 
addressing modes may be used for the X or Y memory effective address; all memory 
alterable addressing modes may be used for the P memory effective address. 

If the system stack register SSH is specified as a source operand, the system stack 
pointer (SP) is postdecremented by 1 after SSH has been read. If the system stack reg-



MOVEP Move Peripheral Data MOVEP 
ister SSH is specified as a destination operand, the system stack pointer (SP) is prein­
cremented by 1 before SSH is written. This allows the system stack to be efficiently 
extended using software stack pointer operations. 

When a 56-bit accumulator (A or B) is specified as a source operand S, the accumulator 
value is optionally shifted according to the scaling mode bits SO and S 1 in the system 
status register (SR). If the data out of the shifter indicates that the accumulator extension 
register is in use and the data is to be moved into a 24-bit destination, the value stored in 
the destination is limited to a maximum positive or negative saturation constant to mini­
mize truncation error. If a 24-bit source operand is to be moved into a 16-bit destination 
register D, the 8 MS bits of the 24-bit source operand are discarded, and the 16 LS bits 
are stored in the 16-bit destination register. Limiting does not occur if an individual 24-bit 
accumulator register (A 1, AO, B1, or BO) is specified as a source operand instead of the 
full 56-bit accumulator (A or B). This limiting feature allows block floating-point operations 
to be performed with error detection since the L bit in the condition code register is 
latched. 

When a 56:'bit accumulator (A or B) is specified as a destination operand 0, any 24-bit 
source data to be moved into that accumulator is automatically extended to 56 bits by 
sign extending the MS bit of the source operand (bit 23) and appending the source oper­
and with 24 LS zeros. Whenever a 16-bit source operand S is to be moved into a 24-bit 
destination, the 16-bit source is loaded into the LS 16 bits of the destination operand, 
and the remaining 8 MS bits of the destination are zeroed. Note that for 24-bit source 
operands both the automatic sign-extension and zeroing features may be disabled by 
specifying the destination register to be one of the individual 24-bit accumulator registers 
(Afar B1). 

Note: Unlike other MOVE-type instructions, if an AGU register (Mn, Nn, or Rn) is directly 
changed with MOVEP, the new contents will be available for use during the immediately 
following instruction. There is no instruction cycle pipeline delay associated with 
MOVEP. 

Restrictions: The following restrictions represent very unusual operations, which proba­
bly would never be used but are listed only for completeness. 

A MOVEP instruction used within a DO loop which specifies SSH as the source oper­
and or ~, Le, SR, SP, SSH, or SSL as the destination operand cannot begin at the 
address LA-2, LA-1, or LA within that DO loop. 

-
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MOVEP Move Peripheral Data MOVEP 

A MOVEP instruction which specifies SSH as the source operand or LA, LC, SSH, SSL, 
or SP as the destination operand cannot be used immediately before a DO instruc­
tion. 

A MOVEP instruction which specifies SSH as the source operand or LA, LC, SR, SSH, 
SSL, or SP as the destination operand cannot be used immediately before an 
ENDDO instruction. 

A MOVEP instruction which specifies SSH as the source operand or SR, SSH, SSL, or 
SP as the destination operand cannot be used immediately before an RTI instruction. 

A MOVEP instruction which specifies SSH as the source operand or SSH, SSL, or SP 
as the destination operand cannot be used immediately before an RTS instruction. 

A MOVEP instruction which specifies SP as the destination operand cannot be used 
immediately before a MOVEC, MOVEM, or MOVEP instruction which specifies SSH or 
SSL as the source operand. 

Example: 

MOVEP #1113,X:«$FFFE :initialize Bus Control Register wait states 

Before Execution After Execution 

X:$FFFE I $FFFF 
(BCR) L-. _______ -----' 

X:$FFFE I 
(BCR) L-. ____ $1_11_3 ___ --' 

Explanation of Example: Prior to execution, the 16-bit, X memory-mapped, 1/0 bus 
control register (BCR) contains the value $FFFF. The execution of the MOVEP 
#$1113,X:«$FFFE instruction moves the value $1113 into the 16-bit bus control regis­
ter X:$FFFE, resulting in one wait state for all external X, external Y, and external pro­
gram memory accesses and three wait states for all external 1/0 accesses. 
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Condition Codes: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 I LF I eM I T I ** I S1 I SO I 11 I 10 I s I LIE I U N I z I v I ~ I 
..... MR .... CCR -. 

For D=SR operand: 
S - Set according to bit 7 of the source operand 
-L - Set according to bit 6 of the source operand 
E - Set according to bit 5 of the source operand 
U - Set according to bit 4 of the source operand 
N - Set according to bit 3 of the source operand 
Z - Set according to bit 2 of the source operand 
V - Set according to bit 1 of the source operand 
C - Set according to bit 0 of the source operand 

For D*SR operand: 
S - Computed according to the definition in A.5 CONDITION CODE COMPUTATION 
L - Set if data limiting has occurred during the move 
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MOVEP Move Peripheral Data 

Instruction Format (X: or Y: Reference): 
MOVEP X:ea,X:pp 
MOVEP Y:ea,X:pp 
MOVEP #xxxxxx,X:pp 
MOVEP X:pp,X:ea 
MOVEP X:pp,Y:ea 
MOVEP X:ea,Y:pp 
MOVEP Y:ea,Y:pp 
MOVEP #xxxxxx,Y:pp 
MOVEP Y:pp,Y:ea 
MOVEP Y:pp,Y:ea 

Opcode: 
23 

0000100 

16 15 

slw 1 M M M R R 

MOVEP 

8 7 o 
RI1 Spp pp p p 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 



MOVEP Move Peripheral Data MOVEP 

Instruction Fields: 
ea=6-bit Effective Address=MMMRRR, 
pp=6-bit I/O Short Address=pppppp 

Effective 
Memory Space S Addressing Mode MM M R R R 

X Memory 0 (Rn)-Nn 0 0 0 r r r 
Y Memory 1 (Rn)+Nn 0 0 1 r r 

(Rn)- 0 1 0 r r 
Peripheral Space s (Rn)+ 0 1 1 r r r 
X Memory 0 (Rn) 1 0 0 r r r 
Y Memory 1 (Rn+Nn) 1 0 1 r r r 

-(Rn) 1 1 1 r r r 
Peripheral W Absolute address 1 1 0 0 0 0 
Read 0 Immediate data 1 1 0 1 0 0 
Write 1 

where "rrr" refers to an address register RO-R7 

Timing: 4+mvp oscillator clock cycles 

Memory: 1 +ea program words 
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Instruction Format (P: Reference): 
MOVEP P:ea,X:pp 
MOVEP X:pp,P:ea 
MOVEP P:ea,Y:pp 
~OVEP Y:pp,P:ea 

Opcode: 
23 

0000100 

16 15 

SJw 1 M M M R R 

8 7 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

Instruction Fields: 
ea=6-bit Effective Address=MMMRRR 
pp=6-bit I/O Short Address=pppppp 

Effective 
Peripheral Space S Addressing Mode 

X Memory 0 (Rn)-Nn 
Y Memory 1 (Rn)+Nn 

(Rn)-
Peripheral W (Rn)+ 
Read 0 (Rn) 
Write 1 (Rn+Nn) 

-(Rn) 
Absolute address 

where "rrr" refers to an address register RO-R7 

Timing: 4+mvp oscillator clock cycles 

Memory: 1 +ea program words 

MM M R R 

0 0 0 r r 
0 0 1 r r 
0 1 0 r r 
0 1 1 r r 
1 0 0 r r 
1 0 1 r r 
1 1 1 r r 
1 1 0 0 0 

MOVEP 

o 
p p p p p p 

R 

r 
r 
r 

r 
r 
0 



MOVEP Move Peripheral Data MOVEP 

Instruction Format (Register Reference): 
MOVEP S,X:pp 
MOVEP X:pp,D 
MOVEP S,Y:pp 
MOVEP Y:pp,D 

Opcode: 

23 16 15 8 7 o 

10 0 0 0 1 0 0 s I W 1 d d d d d dl 0 o p p p P P I?I 

Instruction Fields: 
pp=6-bit I/O Short Address=pppppp 

Peripheral Space S 
X Memory 0 
Y Memory 

Peripheral W 
Read 0 
Write 

S D D 
S,D dddddd S/L Sign Ext Zero 
XO 000100 no no no 
X1 000101 no no no 
YO 000110 no no no 
Y1 000 1 1 1 no no no 
AO 001000 no no no 
80 001001 no no no 
A2 001010 no no no 
82 001011 no no no 
A1 001100 no no no 
81 001101 no no no 
A 001110 yes A2 AO 
8 001 1 1 1 yes 82 80 

where "nnn" = Rn number (RO - R7) 
Nn number (NO - N7) 
Mn number (MO - M7) 

Timing: 4+mvp oscillator clock cycles 

Memory: 1 +ea program words 

S,D dddddd 
RO - R7 010nnn 
NO - N7 011nnn 
MO-M7 100nnn 
SR 111001 
OMR 111010 
SP 111011 
SSH 111100 
SSL 111101 
LA 111110 
LC 111 1 1 1 



MPY Signed Multiply MPY 

Operation: 
±S1 *S2 -+ D (parallel move) 

±S1 *S2 -+ D (parallel move) 

±(S1 *2-n)-+Q (no parallel move) 

Assembler Syntax: 
MPY (±)S1 ,S2,D (parallel move) 

MPY (±)S2,S1 ,D (parallel move) 

MPY (±)S,#n,D (no parallel move) 

Description: Multiply the two signed 24-bit source operands S1 and S2 and store the 
resulting product in the specified 56-bit destination accumulator D. Or, multiply the 
signed 24-bit source operand S by the positive 24-bit immediate operand 2-n and add/ 
subtract to/from the specified 56-bit destination accumulator D. The "_" sign option is 
used to negate the specified product prior to accumulation. The default sign option is "+". 

Note: When the processor is in the Double Precision Multiply Mode, the following 
instructions do not execute in the normal way and should only be used as part of the 
double precision multiply algorithm shown in Section 3.4 DOUBLE PRECISION MUL TI­
PLY MODE: 

MPYYO, XO, A 
MACX1, YO, A 
MACXO, Y1, A 
MAC Y1, X1, A 

MPYYO, XO, B 
MACX1, YO, B 
MACXO, Y1, B 
MACY1, X1, B 

All other Data ALU instructions are executed as NOP's when the processor is in the Dou­
ble Precision Multiply Mode. 

Example 1: 

MPY -X1 ,Y1 ,A #$543210,YO ;-(X1 *Y1) -+ A, update YO 

Before Execution After Execution 

X1 I $800000 X1 I $800000 

Y1 I $COOOOO Y1 I $COOOOO 

AI $00:000000:000000 AI $FF:COOOOO:OOOOOO 



MPY Signed Multiply MPY 

Explanation of Example 1: Prior to execution, the 24-bit X1 register contains the value 
$800000 (-1.0), the 24-bit Y1 register contains the value $COOOOO, (-0.5), and the 56-bit 
A accumulator contains the value $00:000000:000000 (0.0). The execution of the MPY­
X1 ,Y1 ,A instruction multiples the 24-bit signed value in the X1 register by the 24-bit 
signed value in the Y1 register, negates the 48-bit product, and stores the result in the 
56-bit A accumulator (-X1 *Y1 =-0.5=$FF:COOOOO:000000=A). 

Condition Codes: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 I LF I DM I T I •• I 81 I 80 I 11 I 10 I 8 I LIE I u I N I z v I : I 
.~ MR •. ~ CCR _. 

S - Computed according to the definition in A.5 CONDITION CODE COMPUTATION 
L - Set if limiting occurred during parallel move 
E - Set if the signed integer portion of A or B result is in use 
U - Set if A or B result is unnormalized 
N - Set if bit 55 of A or B result is set 
Z - Set if A or B result equals zero 
V - Set if overflow has occurred in A or B result 

Not~: The definitions of the E and U bits vary according to the scaling mode being used. 
Refer to Section A.5 CONDITION CODE COMPUTATION for complete details. 

Instruction Format 1: 
MPY (±)S1,S2,0 
MPY (±)S2,S1,0 

Opcode 1: 
23 

DATA BUS MOVE FIELD 

8 7 4 3 

I 1 Q Q Q I d k 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

o 
o 



MPY Signed Multiply MPY 

Instruction Fields 1:. 
51*52 Q Q Q Sign k D d 

XOXO 0 0 0 + 0 A 0 
YO YO 0 0 1 1 B 1 
X1 XO 0 1 0 
Y1 YO 0 1 1 
XOY1 1 0 0 
YOXO 1 0 1 
X1 YO 1 1 0 
Y1 X1 1 1 1 

Note: Only the indicated S1 *S2 combinations are valid. X1 *X1 and Y1 *Y1 are not valid. 

Timing: 2+mv oscillator clock cycles 

Memory: 1 +mv program words 

Example 2: 

MPY X1, . #9, A 

Before Execution 

X1 1~ ________ $_65_43_2_1 __ ~ 

AI~ ___ $_OO_:O_OO_OO_O_:OO_O_OO_O __ ~ 

After Execution 

X1 ~I _________ $_6_54_32_1 __ ~ 

A~I __ ~$_OO_:O_03_2A_1_:9_08_00_0 __ ~ 

Explanation of Example 2: The content of X1 is multiplied by 2-9 and the result is 
placed in the A accumulator. The net effect of this operation is to divide the content of 
X1 by 29 and place the result in the accumulator. An alternate interpretation is that X1 is 
right shifted 9 places and filled with the sign bit (0 for a positive number and 1 for a neg­
ative number) and then the result is placed in the accumulator. 



MPY Signed Multiply MPY 

Instruction Format 2: 
MPY (±)S,#n,D 

Opcode2: 

23 16 15 8 7 o 
\0 0 0 0 0 0 0 11000S S SSSI1 1 a a d k 0 01 

Instruction Fields: 
S QQ Sign k 0 d 

Y1 0 0 + 0 A 0 
XO 0 1 1 B 1 
YO 1 0 
X1 1 1 

n sssss constant 
1 00001 010000000000000000000000 
2 00010 001000000000000000000000 
3 00011 000100000000000000000000 
4 00100 000010000000000000000000 
5 00101 000001000000000000000000 
6 00110 000000100000000000000000 
7 00111 000000010000000000000000 
8 01000 000000001000000000000000 
9 01001 000000000100000000000000 
10 01010 000000000010000000000000 
11 01011 000000000001000000000000 
12 01100 000000000000100000000000 
13 01101 000000000000010000000000 
14 01110 000000000000001000000000 
15 01111 000000000000000100000000 
16 10000 000000000000000010000000 
17 10001 000000000000000001000000 
18 10010 000000000000000000100000 
19 10011 000000000000000000010000 
20 10100 000000000000000000001000 
21 10101 000000000000000000000100 
22 10110 000000000000000000000010 
23 10111 000000000000000000000001 

Timing: 2 oscillator clock cycles 

Memory: 1 program word 



MPYR Signed Multiply and Round MPYR 
Operation: 

±S1 *S2+r -+ D (parallel move) 

±S1 *S2+r -+ D (parallel move) 

±(S1 *2-n)+r -+ D (no parallel move) 

Assembler Syntax: 
MPYR (±)S1,S2,D (parallel move) 

MPYR (±)S2,S1,D (parallel move) 

MPYR (±)S,#n,D (no parallel move) 

Description: Multiply the two signed 24-bit source operands S1 and S2 (or the signed 
24-bit source operand S by the positive 24-bit immediate operand 2-n), round the result 
using convergent rounding, and store it in the specified 56-bit destination accumulator D. 
The "-" sign option is used to negate the product prior to rounding. The default sign 
option is "+". The contribution of the LS bits of the result is rounded into the upper portion 
of the destination accumulator (A1 or B1) by adding a constant to the LS bits of the lower 
portion of the accumulator (AO or BO). The value of the constant added is determined by 
the scaling mode bits SO and S1 in the status register. Once the rounding has been com­
pleted, the LS bits of the destination accumulator D (AO or BO) are loaded with zeros to 
maintain an unbiased accumulator value which may be reused by the next instruction. 
The upper portion of the accumulator (A1 or B1) contains the rounded result which may 
be read out to the data buses. Refer to the RND instruction for more complete informa­
tion on the convergent rounding process. 

Example 1: 

MPYR - YO,YO,B (R3)-N3 ;square and negate YO, update R3 

Before Execution After Execution 

YOI~ ________ $_65_4_32_1 __ ~ YOI~ ________ $_6_54_32_1 __ ~ 

BI~ ___ $_OO_:O_OO_OO_O_:OO_O_OO_O __ ~ BI~ ___ $_F_F:_AF_E_3E_D_:O_OO_OO_O __ ~ 

Explanation of Example 1: Prior to execution, the 24-bit YO register contains the value 
$654321 (0.791111112), and the 56-bit B accumulator contains the value 
$00:000000:000000 (0.0). The execution of the MPYR -YO,YO,B instruction squares the 
24-bit signed value in the YO register, negates the resulting 48-bit product, rounds the 
result into B1, and zeros BO (-YO*YO=-0.625856790961748 approximately= 
$FF:AFE3EC:B76B7E, which is rounded to the value $FF:AFE3ED:000000= 
-0.625856757164002=B). 



MPYR Signed Multiply and Round MPYR 

Condition Codes: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 I LF I DM I T I ~ I ., I .0 I 11 I 10 I s I LIE I u I N I z v I :1 
.~ MR ....... CCR _. 

S - Computed according to the definition in A.5 CONDITION CODE COMPUTATION 
L - Set if limiting occurred during parallel move 
E - Set if the signed integer portion of A or B result is in use 
U - Set if A or B result is unnormalized 
N - Set if bit 55 of A or B result is set 
Z- Set if A or B result equals zero 
V - Set if overflow has occurred in A or B result 

Note: The definitions of the E and U bits vary according to the scaling mode being used. 
Refer to Section A.5 CONDITION CODE COMPUTATION for complete details. 

Instruction Format 1: 
MPYR (±)S1,S2,D 
MPYR (±)S2,S1,D 

Opcode 1: 
23 

DATA BUS MOVE FIELD 

8 7 4 3 0 

I 1 a a aid k 0 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 



MPYR Signed Multiply and Round MPYR 
Instruction Fields 1: 

51*52 Q Q Q Sign k 0 d 

XOXO 0 0 
YO YO 0 0 
X1 XO 0 1 
Y1 YO 0 1 
XOY1 1 0 
YOXO 1 0 
X1 YO 1 1 
Y1 X1 1 1 

0 
1 
0 
1 
0 
1 
0 
1 

+ o 
1 

A 0 
B 1 

Note: Only the indicated S1 *S2 combinations are valid. X1 *X1 and Y1 *Y1 are not valid. 

Timing: 2+mv oscillator clock cycles 

Memory: 1 +mv program words 

Example 2: 

MPYR -Y1, #14, B 

Before Execution 

Y1 1~ _________ $_65_4_32_1 __ ~ 

BI~ ____ $_OO_:O_OO_OO_O_:OO_O_OO_O __ ~ 

After Execution 

$654321 Y1 I 
~--------------~ 

B~I ____ $F_F_:FF_F_E6_B_:O_OO_oo_o __ ~ 

Explanation of Example 2: The content of Y1 is negated, multiplied by 2-14, rounded to 
a single precision number (24 bits in B1) and placed in the B accumulator. The net effect 
of this operation is negate the content of Y1 and divide the result by 214, place the result 
in the accumulator and then round to a single precision number. An alternate interpreta­
tion is that X1 is negated and placed in the accumulator, right shifted 14 places, filled 
with the sign bit (0 for a positive number and 1 for a negative number) and then rounded 
to a single precision number. 



MPYR Signed Multiply and Round MPYR 
Instruction Format 2: 

MPYR (±)S,#n,D 

Opcode 2: 

23 16 15 8 7 o 
10 0 0 0 0 0 0 1 10 0 0 s s s s s 11 1 Q Q d k 0 11 

Instruction Fields 2: 
S QQ Sign k D d 

Y1 0 0 + 0 A 0 
XO 0 1 1 8 1 
YO 1 0 
X1 1 1 

n sssss constant 
1 00001 010000000000000000000000 
2 00010 001000000000000000000000 
3 00011 000100000000000000000000 
4 00100 000010000000000000000000 
5 00101 000001000000000000000000 
6 00110 000000100000000000000000 
7 00111 000000010000000000000000 
8 01000 000000001000000000000000 
9 01001 000000000100000000000000 
10 01010 000000000010000000000000 
11 01011 000000000001000000000000 
12 01100 000000000000100000000000 
13 01101 000000000000010000000000 
14 01110 000000000000001000000000 
15 01111 000000000000000100000000 
16 10000 000000000000000010000000 
17 10001 000000000000000001000000 
18 10010 000000000000000000100000 
19 10011 000000000000000000010000 
20 10100 000000000000000000001000 
21 10101 000000000000000000000100 
22 10110 000000000000000000000010 
23 10111 000000000000000000000001 

Timing: 2 oscillator clock cycles 

Memory: 1 program word 



NEG Negate Accumulator NEG 

Operation: Assembler Syntax: 
0-0 ~ 0 (parallel move) NEG D (parallel move) 

Description: Negate the destination operand D and store the result in the destination 
accumulator. This is a 56-bit, twos-complement operation. 

Example: 

NEG B X1 ,X:(R3)+ Y:(R6)-,A ;O-B ~ B, update A,X1 ,R3,R6 

Before Execution After Execution 

BI~ __ $_0_0:_12_34_56_:7_89_A_BC __ ~ BI~ __ $F_F_:E_DC_B_A9_:8_76_54_4 __ ~ 

Explanation of Example: Prior to execution, the 56-bit B accumulator contains the 
value $00:123456:789ABC. The NEG B instruction takes the twos complement of the 
value in the B accumulator and stores the 56-bit result back in the B accumulator. 

Condition Codes: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 I LF I DM I T I *. I 81 I 80 I 11 I 10 I s I LIE I u I N I z v I c I 
.... MR •. ~ CCR •. 

S - Computed according to the definition in A.5 CONDITION CODE COMPUTATION 
L - Set if limiting (parallel move) or overflow has occurred in result 
E - Set if the signed integer portion of A or B result is in use 
U - Set if A or B result is unnormalized 
N - Set if bit 55 of A or B result is set 
Z - Set if A or B result equals zero 
V - Set if overflow has occurred in A or B result 

Note: The definitions of the E and U bits vary according to the scaling mode being used. 
Refer to Section A.5 CONDITION CODE COMPUTATION for complete details. 



NEG 

Instruction Format: 
NEG 0 

Opcode: 
23 

Instruction Fields: 
o d 

A 0 
B 

Negate Accumulator 

8 7 

DATA BUS MOVE FIELD I 0 0 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

Timing: 2+mv oscillator clock cycles 

Memory: 1 +mv program words 

NEG 

4 3 o 
1 I d o 



NOP No Operation NOP 

Operation: Assembler Syntax: 
PC+1-+PC NOP 

Description: Increment the program counter (PC). Pending pipeline actions, if any, are 
completed. Execution continues with the instruction following the NOP. 

Example: 

NOP ;increment the program counter 

Explanation of Example: The NOP instruction increments the program counter and 
completes any pending pipeline actions. 

Condition Codes: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 I: 1 OM 1 T 1** JR 81 I 80 1 11 1 : I: I LIE I U JR N I z I v I : I 
The condition codes are not affected by this instruction. 



NOP No Operation 

Instruction Format: 
NOP 

Opcode: 

23 16 15 8 7 

10 0 0 0 0 0 0 0100 0 0 o 0 0 0 I 0 

Instruction Fields: 
None 

Timing: 2 oscillator clock cycles 

Memory: 1 program word 

NOP 

o 
o 0 0 0 0 0 01 



NORM Normalize Accumulator Iteration NORM 

Operation: Assembler Syntax: 
If E. U • Z=1, then ASL 0 and Rn-1~Rn 
else if E=1, then ASR 0 and Rn+ 1 ~Rn 
else NOP 

where E denotes the logical complement of E, and 
where • denotes the logical AND operator 

NORM Rn,O 

Description: Perform one normalization iteration on the specified destination operand 0, 
update the specified address register Rn based upon the results of that iteration, and 
store the result back in the destination accumulator. This is a 56-bit operation. If the 
accumulator extension is not in use, the accumulator is un normalized, and the accumula­
tor is not zero, the destination operand is arithmetically shifted one bit to the left, and the 
specified address register is decremented by 1. If the accumulator extension register is 
in use, the destination operand is arithmetically shifted one bit to the right, and the speci­
fied address register is incremented by 1. If the accumulator is normalized or zero, a 
NOP is executed and the specified address register is not affected. Since the operation 
of the NORM instruction depends on the E, U, and Z condition code register bits, these 
bits must correctly reflect the current state of the destination accumulator prior to execut­
ing the NORM instruction. Note that the L and V bits in the condition code register will be 
cleared unless they have been improperly set up prior to executing the NORM instruc­
tion. 

Example: 

REP #$2F 
NORM R3,A 

;maximum number of iterations needed 
;perform 1 normalization iteration 

Before Execution After Execution 

A 1,-_$_0_0:0_0_00_00_:0_00_00_1_--, AI~ ____ $_00_:4_00_0_00_:0_00_oo_0_~ 

R31~ _____ $0_O_OO_~ R31~ ______ $_FF_D_2 __ ~ 

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the 
value $00:000000:000001, and the 16-bit R3 address register contains the value $0000. 
The repetition of the NORM R3,A instruction normalizes the value in the 56-bit accumu­
lator and stores the resulting number of shifts performed during that normalization pro-



NORM Normalize Accumulator Iteration NORM 

cess in the R3 address register. A negative value reflects the number of left shifts 
performed; a positive value reflects the number of right shifts performed during the nor­
malization process. 

Condition Codes: 

15 14 13 12 11 10 9 8 7 6 

I LF I DM I T I" I 81 I 80 I 11 I 10 I 8 I L 

N - Set if bit 55 of A or B result is set 
Z - Set if A or B result equals zero 

5 4 3 2 1 0 

E I U N Z 

CCR 

V - Set if bit 55 is changed as a result of a left shift 

Note: The definitions of the E and U bits vary according to the scaling mode being used. 
Refer to Section A.5 CONDITION CODE COMPUTATION for complete details. 

Instruction Format: 
NORM Rn,D 

Opcode: 

23 16 15 

10 0 0 0 0 0 0 

Instruction Fields: 
o d Rn R R R 

A 0 Rn n n n 
B 1 

where "nnn" = Rn number 

Timing: 2 oscillator clock cycles 

Memory: 1 program word 

8 7 o 
o 0 1 d 1 0 1 1 



NOT Logical Complement NOT 

Operation: Assembler Syntax: 
0[47:24] -+ 0[47:24] (parallel move) NOT 0 (parallel move) 
where "-" denotes the logical NOT operator 

Description: Take the ones complement of bits 47-24 of the destination operand D and 
store the result back in bits 47-24 of the destination accumulator. This is a 24-bit opera­
tion. The remaining bits of D are not affected. 

Example: 
NOT A 1 AB,L:(R2)+ ;save A 1 ,B 1 , take the ones complement of A 1 

Before Execution After Execution 

A~I ____ $0_0:_12_34_56_:7_89_A_BC __ ~ AI~ __ $_00_:E_DC_B_A9_:7_8_9A_B __ ~ 

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the 
value $OO:123456:789ABC. The NOT A instruction takes the ones complement of bits 
47-24 of the A accumulator (A1) and stores the result back in the A1 register. The 
remaining bits of the A accumulator are not affected. 

Condition Codes: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

I LF 1 OM 1 T 1** 1 81 1 80 1 11 1 10 lsi LIE 1 U N 1 z v 1 ~ I 
.~ MA ~_~ CCA _. 

S - Computed according to the definition in A.5 CONDITION CODE COMPUTATION 
L - Set if data limiting has occurred during parallel move 
N - Set if bit 47 of A or B result is set 
Z - Set If bits 47-24 of A or B result are zero 
V - Always cleared 



NOT 

Instruction Format: 
NOT 0 

Opcode: 
23 

Instruction Fields: 
o d 

A 0 
8 1 

Logical Complement 

8 7 

DATA BUS MOVE FIELD 
1

00 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

Timing: 2+mv oscillator clock cycles 

Memory: 1 +mv program words 

NOT 

4 3 o 
o 1 I d 



OR Logical Inclusive OR OR 

Operation: Assembler Syntax: 
8+0[47:24] -+ 0[47:24] (parallel move) OR 8,0 (parallel move) 
where + denotes the logical inclusive OR operator 

Description: Logically inclusive OR the source operand 8 with bits 47-24 of the destina­
tion operand 0 and store the result in bits 47-24 of the destination accumulator. This 
instruction is a 24-bit operation. The remaining bits of the destination operand 0 are not 
affected. 

Example: 

OR Y1,B1 BA,L:$1234 ;save A1 ,B1, OR Y1 with B 

Before Execution After Execution 

Y11 ~ _________ $_FF_O_OO_o __ ~ Y1 ~I ________ ._$_FF_O_OO_o __ ~ 

BI ~ ____ $0_O:_12_34_56_:7_8_9A_B_C __ ~ B~I ____ $0_O:_FF_3_45_6:7_8_9A_B_C __ ~ 

Explanation of Example: Prior to execution, the 24-bit Y1 register contains the value 
$FFOOOO, and the 56-bit B accumulator contains the value $00:123456:789ABC. The OR 
Y1 ,B instruction logically ORs the 24-bit value in the Y1 register with bits 47-24 of the B 
accumulator (B1) and stores the result in the B accumulator with bits 55-48 and 23-0 
unchanged. 

Condition Codes: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 I LF I OM I T I·· I 81 I 80 I 11 I 10 I s I LIE I u I N I z I v I :. I 
.~ MR •. ~ eeR _. 

8 - Computed according to the definition in A.5 CONDITION CODE COMPUTATION 
L - 8et if data limiting has occurred during parallel move 
N - Set if bit 47 of A or B result is set 
Z - Set If bits 47-24 of A or B result are zero 
V - Always cleared 



OR Logical Inclusive OR 

Instruction Format: 
OR S,D 

Opcode: 
23 8 7 

DATA BUS MOVE FIELD I 0 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

Instruction Fields: 
S JJ Dd 

XO 00 
X1 1 0 
YO 01 
Y1 1 1 

AO 
81 

Timing: 2+mv oscillator clock cycles 

Memory: 1 +mv program words 

OR 

4 3 o 
J J J d 0 o 



ORI OR Immediate with Control Register ORI 

Operation: Assembler Syntax: 
#xx+D -4 D OR(I) #xx,D 
where + denotes the logical inclusive OR operator 

Description: Logically OR the 8-bit immediate operand (#xx) with the contents of the 
destination control register D and store the result in the destination control register. The 
condition codes are affected only when the condition code register is specified as the 
destination operand. 

Restrictions: The ORI #xx,MR instruction cannot be used Immediately before an 
ENDDO or RTI instruction and cannot be one of the last three instructions in a DO loop 
(at LA-2, LA-1, or LA). 

Example: 

OR #$8,MR ;set scaling mode bit 81 to scale up 

Before Execution After Execution 

MRI~ ________ $0_3 ______ ~ MR~I _______ $O_B ______ ~ 

Explanation of Example: Prior to execution, the 8-bit mode register (MR) contains the 
value $03. The OR #$8,MR instruction logically ORs the immediate 8-bit value $8 with 
the contents of the mode register and stores the result in the mode register. 

Condition Codes: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o I LF I OM I T I·· I 81 I 80 I 11 I 10 I s I L I E I u I N I z v ~I 



ORI OR Immediate with Control Register ORI 

For MR and OMR operands: 
The condition codes are not affected using these operands. 

Instruction Format: 
OR(I) #xx,D 

Opcode: 

23 16 15 

10 0 0 0 0 0 0 o Iii 

Instruction Fields: 
#xx=8-bit Immediate Short Data = iii iii i i 

o EE 

MR 00 
CCR 01 
OMR 10 

Timing: 2 oscillator clock cycles 

Memory: 1 program word 

8 7 

i 11 
o 

1 1 1 1 0 E E I 



REP Repeat Next Instruction REP 

Operation: Assembler Syntax: 
LC -+ TEMP; X:ea -+ LC REP X:ea 
Repeat next instruction until LC=1 
TEMP -+ LC 

LC -+ TEMP; X:aa -+ LC REP X:aa 
Repeat next instruction until LC=1 
TEMP -+ LC 

LC -+ TEMP; Y:ea -+ LC REP Y:ea 
Repeat next instruction until LC=1 
TEMP -+ LC 

LC -+ TEMP; Y:aa -+ LC REP Y:aa 
Repeat next instruction until LC=1 
TEMP -+ LC 

LC -+ TEMP; S -+ LC REP S 
Repeat next instruction until LC=1 
TEMP -+ LC 

LC -+ TEMP; #xxx -+ LC REP #xxx 
Repeat next instruction until LC=1 
TEMP -+ LC 

Description: Repeat the single-word instruction immediately following the REP 
instruction the specified number of times. The value specifying the number of times the 
given instruction is to be repeated is loaded into the 16-bit loop counter (LC) register. 
The single-word instruction is then executed the specified number of times, decrement­
ing the loop counter (LC) after each execution until LC=1. When the REP instruction is in 
effect, the repeated instruction is fetched only one time, and it remains in the instruction 
register for the duration of the loop count. Thus, the REP instruction is not Interrupt­
Ible (sequential repeats are also not interruptible). The current loop counter (LC) value is 
stored in an internal temporary register. If LC is set equal to zero, the instruction is 
repeated 65,536 times. The instruction's effective address specifies the address of the 
value which is to be loaded into the loop counter (LC). All address register indirect 
addressing modes may be used. The absolute short and the immediate short addressing 
modes may also be used. The four MS bits of the 12-bit immediate value are zeroed to 
form the 16-bit value that is to be loaded into the loop counter (LC). 



REP Repeat Next Instruction REP 

Restrictions: The REP instruction can repeat any single-word instruction· except the 
REP instruction itself and any instruction that changes program flow. The following 
instructions are not allowed to follow an REP instruction: 

Immediately after REP 
DO 
Jcc 
JCLR 
JMP 
JSET 
JScc 
JSCLR 
JSR 

JSSET 
REP 
RTI 
RTS 
STOP 
SWI 
WAIT 
ENDDO 

Also, a REP instruction cannot be the last instruction in a DO loop (at LA). The assem­
bler will generate an error if any of the previous instructions are found immediately fol­
lowing an REP instruction. 

Example: 

REPXO ;repeat (XO) times 
MAC X1 ,Y1 ,A X:(R1 )+,X1 Y:(R4)+,Y1 ;X1 *Y1 +A ~ A, update X1 ,Y1 

Before Execution After Execution 

XO~' _________ $0_00_10_0 __ ~ X0l-' _________ $0_00_1_00 __ ~ 

LC 1-1 __________ $0_00_0 __ --' Lci I-~ ________ $O_O_OO __ ---, 



REP Repeat Next Instruction REP 

Explanation of Example: Prior to execution, the 24-bit XO register contains the value 
$000100, and the 16-bit loop counter (LC) register contains the value $0000. The execu­
tion of the REP XO instruction takes the 24-bit value in the XO register, truncates the MS 
8 bits, and stores the 16 LS bits in the 16-bit loop counter (LC) register. Thus, the single­
word MAC instruction immediately following the REP instruction is repeated $100 times. 

Condition Codes: 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 I LF I OM 1 T 1** 1 S1 1 so 1 11 1 10 I S 1 L 1 E 1 U N 1 z 
~ MR ~ ~ . CCR 

v 1 ~I 
For source operand A or B: 
S - Computed according to the definition. See Notes on page A-255. 
L - Set if data limiting occurred. See Notes on page A-255. 

For other source operands: 
The condition code bits are not affected. 



REP 

Instruction Format: 
REP X:ea 
REP Y:ea 

Opcode: 
23 

10 0 0 0 0 1 1 

Instruction Fields: 

Repeat Next Instruction 

16 15 8 7 

o I 0 1 M M M R R Rio 

ea=6-bit Effective Address=MMMRRR, 

Effective 

REP 

o 
s 1 0 0 0 0 01 

Addressing Mode 

(Rn)-Nn 

MMMRRR Memory Space s 

(Rn)+Nn 
(Rn)-
(Rn)+ 
(Rn) 
(Rn+Nn) 
-(Rn) 

o 0 0 r r 
o 0 1 r 
o 1 0 r r 
o 1 1 r r 
1 0 0 r r 
101rrr 
1 1 1 r r r 

X Memory 0 
Y Memory 1 

where "rrr" refers to an address register RO-R7 

Timing: 4+mv oscillator clock cycles 

Memory: 1 program word 

-



REP Repeat Next Instruction 

Instruction Format: 
REP X:aa 
REPY:aa 

Opcode: 
23 16 15 8 7 

10 0 0 0 0 1 1 o 100 a a a a a al 0 

Instruction Fields: 
aa=6-bit Absolute Short Address=aaaaaa 

Absolute Short Address aaaaaa 

000000 
• 
• 

111111 

Timing: 4+mv oscillator clock cycles 

Memory: 1 program word 

Memory Space s 

X Memory 0 
Y Memory 1 

REP 

o 
s 1 0 0 0 0 01 



REP Repeat Next Instruction 

Instruction Format: 
REP #xxx 

Opcode: 

23 16 15 8 7 

10 0 0 0 0 1 1 o 1 i i i 11 

Instruction Fields: 
#xxx=12-bit Immediate Short Data = hhhh iii iii i i 

Immediate Short Data hhhh iii IIIII i 

000000000000 
• 
• 

111111111111 

Timing: 4+mv oscillator clock cycles 

Memory: 1 program word 

REP 

o 
o 1 0 h h h hi 

-



-

REP Repeat Next Instruction REP 

Instruction Format: 
REP S 

Opcode: 

23 16 15 6 7 o 
10 0 0 0 0 1 1 o 11 1 d d d d d dl 0 o 1 0 0 0 0 01 

Instruction Fields: 
S 

S dddddd S/L S dddddd 
XO 000100 no RO - R7 o 1 0 n n n 
X1 000101 no NO - N7 o 1 1 n n n 
YO 000110 no MO- M7 100nnn 
Y1 000111 no SR 1 1 1 0 0 1 
AO 001000 no OMR 1 1 1 0 1 0 
80 001001 no SP 1 1 1 0 1 1 
A2 001010 no SSH 111100 
82 001011 no SSL 1 1 1 1 0 1 
A1 001100 no LA 1 1 1 1 1 0 
81 001101 no LC 1 1 1 1 1 1 
A 001110 yes (See Notes on page A-255) 
B 001111 yes (See Notes on page A-255) 

where "nnn" = Rn number (RO - R7) 
Nn number (NO - N7) 
Mn number (MO - M7) 



REP Repeat Next Instruction REP 

Notes: If A or B is specified as the destination operand, the following sequence of events 
takes place: 

1. The S bit is computed according to its definition (See Section A.5 CON­
DITION CODE COMPUTATION) 

2. The accumulator value is scaled according to the scaling mode bits SO 
and S1 in the status register (SR). 

3. If the accumulator extension is in use, the output of the shifter is limited 
to the maximum positive or negative saturation constant, and the L bit is 
set. 

4. The LS 16 bits of the resulting 24 bit value is loaded into the loop 
counter (LC). The original contents of A or B are not changed. 

If the system stack register SSH is specified as a source operand, the system stack 
pointer (SP) is postdecremented by 1 after SSH has been read. 

Timing: 4 oscillator clock cycles 

Memory: 1 program word 

-



RESET Reset On-Chip Peripheral Devices 

Operation: 
Reset the interrupt priority register 

and all on-chip, peripherals 

Assembler Syntax: 
RESET 

RESET 

Description: Reset the interrupt priority register and all on-chip peripherals. This is a 
software reset which is NOT equivalent to a hardware reset since only on-chip peripher­
als and the interrupt structure are affected. The processor state is not affected, and exe­
cution continues with the next instruction. All interrupt sources are disabl,ed except for 
the trace, stack error, NMI, illegal instruction, and hardware reset interrupts. 

Restrictions: A RESET instruction cannot be the last instruction in a DO loop (at LA). 

Example: 

RESET ;reset all on-chip peripherals and IPR 

Explanation of Example: The execution of the RESET instruction resets all on-chip 
peripherals and the interrupt priority register (IPR). 

Condition Codes: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 I: I DM I T 1** JR 81 I 80 I 11 I :1.8 I liE I u 1 N I z I v I ~I 

The condition codes are not affected by this instruction 



RESET Reset On-Chip Peripheral Devices 

Instruction Format: 
RESET 

Opcode: 

23 16 15 8 7 

la a a a a a a ala a a a a a a al1 

Instruction Fields: 
None 

Timing: 4 oscillator clock cycles 

Memory: 1 program word 

RESET 

a 
a a a a 1 a al 



RND Round Accumulator RND 

Operation: Assembler Syntax: 
D+r -+ D (parallel move) RND D (parallel move) 

Description: Round the 56-bit value in the specified destination operand D and store the 
result in the MSP portion of the destination accumulator (A 1 or 81). This instruction uses 
a convergent rounding technique. The contribution of the LS bits of the result (AO and 
80) is rounded into the upper portion of the result (A 1 or 81) by adding a rounding con­
stant to the LS bits of the result. The MSP portion of the destination accumulator con­
tains the rounded result which may be read out to the data buses. 

The value of the rounding constant added is determined by the scaling mode bits SO and 
51 in the system status register (SR). A "1" is added in the rounding position as shown 
below: 

Rounding Rounding Constant 
S1 SO Scaling Mode Position 55-25 24 23 22 21 - 0 

0 0 No Scaling 23 0 .... 0 0 1 0 0 .... 0 

0 Scale Down 24 0 .... 0 1 0 0 0 .... 0 

0 Scale Up 22 0 .... 0 0 0 0 .... 0 

Normal or "standard" rounding consists of adding a rounding constant to a given 
number of L5 bits of a value to produce a rounded result. The rounding constant 
depends on the scaling mode being used as previously shown. Unfortunately, when 
using a twos-complement data representation, this process introduces a positive bias in 
the statistical distribution of the roundoff error. 



RND Round Accumulator RND 

Convergent rounding differs from "standard" rounding in that convergent rounding 
attempts to remove the aforementioned positive bias by equally distributing the round-off 
error. The convergent rounding technique initially performs "standard" rounding as previ­
ously described. Again, the rounding constant depends on the scaling mode being used. 
Once "standard" rounding has been done, the convergent rounding method tests the 
result to determine if all bits Including and to the right of the rounding position are 
zero. If, and only if, this special condition is true, the convergent rounding method will 
clear the bit immediately to the left of the rounding position. When this special condition 
is true, numbers which have a "1" in the bit immediately to the left of the rounding posi­
tion are rounded up; numbers with a "0" in the bit immediately to the left of the rounding 
position are rounded down. Thus, these numbers are rounded up half the time and 
rounded down the rest of the time. Therefore, the roundoff error averages out to zero. 
The LS bits of the convergently rounded result are then cleared so that the rounded 
result may be immediately used by the next instruction. 

Example: 

RND A #$123456,X1 B,Y1 ;round A accumulator into A 1, zero AO 

Before Execution After Execution 

Case I: A ..... 1 __ $_00_:1_23_4_56_:7_89_AB_C __ AI $00: 123456 :000000 

Case II: A 1-1 __ $0_0:_12_34_5_6:8_0_00_00 __ AI $00:123456:000000 

Case III: A ..... 1 __ $0_0:_12_34_5_6:8_0_00_00 __ AI $00:123456:000000 

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the 
value $00:123456:789ABC for Case I, the value $00:123456:800000 for Case II, and the 
value $00:123455:800000 for Case III. The execution of the RND A instruction rounds 
the value in the A accumulator into the MSP portion of the A accumulator (A1), using 
convergent rounding, and then zeros the. LSP portion of the A accumulator (AO). Note 
that Case II is the special case that distinguishes convergent rounding from standard or 
biased rounding. -



-

RND Round Accumulator RND 

Condition Codes: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 I LF I DM I T I ** I 81 I 80 I 11 I 10 I s I LIE I u I N I z I v I c I 
.... MR ...... CCR ..,. 

S - Computed according to the definition in A.5 CONDITION CODE COMPUTATION 
L - Set if data limiting (parallel move) or overflow has occurred in result 
E - Set if the signed integer portion of A or B result is in use 
U - Set if A or B result is unnormalized 
N - Set if bit 55 of A or B result is set 
Z - Set if A or B result equals zero 
V - Set if overflow has occurred in A or B result 

Note: The definitions of the E and. U bits vary according to the scaling mode being used. 
Refer to Section A.5 CONDITION CODE COMPUTATION for complete details. 



RND Round Accumulator 

Instruction Format: 
RND D 

Opcode: 
23 8 7 

DATA BUS MOVE FIELD 
1

00 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

Instruction Fields: 
D D 
A 0 
B 1 

Timing: 4 oscillator clock cycles 

Memory: 1 program word 

RND 

4 3 o 
o 1 I d o 0 

-



ROL Rotate Left ROL 

47 24 

Operation: r c.-I,-_ ... _____ b(parallel move) 

Assembler Syntax: ROL D (parallel move) 

Description: Rotate bits 47-24 of the destination operand D one bit to the left and store 
the result in the destination accumulator. Prior to instruction execution, bit 47 of D is 
shifted into the carry bit C, and, prior to instruction execution, the value in the carry bit C 
is shifted into bit 24 of the destination accumulator D. This instruction is a 24-bit opera­
tion. The remaining bits of the destination operand D are not affected. 

Example: 

ROL A1 #314,N2 ;rotate A1 one left bit, update N2 

Before Execution After Execution 

A 1~ ___ $_O_o:_oo_oo_oo_:o_oo_o_oo_~ A 1~ ___ $_O_O:O_O_OO_01_:0_00_OO_0 __ ~ 

SR 1L-_________ $O_3_01 __ --' SR 1~ ________ $O_30_0 __ ~ 

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the 
value $00:000000:000000. The execution of the ROL A instruction shifts the 24-bit value 
in the A1 register one bit to the left, shifting bit 47 into the carry bit C, rotating the carry bit 
C into bit 24, and storing the result back in the A 1 register. 



ROL Rotate Left ROL 

Condition Codes: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 LF 1 DM 1 T I.. I s, I so I 11 I lois 1 L E I U N I z v 
1:1 CCR ... MR ...... 

S - Computed according to the definition in A.5 CONDITION CODE COMPUTATION 
L - Set if data limiting has occurred during parallel move 
N - Set If bit 47 of A or B result Is set 
Z - Set if bits 47-24 of A or B result are zero 
V - Always cleared 
C - Set if bit 47 of A or B was set prior to instruction execution 

Instruction Format: 
ROL D 

Opcode: 

23 8 7 

DATA BUS MOVE FIELD I 0 0 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

Instruction Fields: 
o d 
A 0 
B 

Timing: 2+mv oscillator clock cycles 

Memory: 1 +mv program words 

4 3 

1 I d 

o 



ROR Rotate Right ROR 

47 24 

Operation: c: c~ ..... I-----·-b (parallel move) 

Assembler Syntax: ROR D (parallel move) 

Description: Rotate bits 47-24 of the destination operand D one bit to the right and 
store the result in the destination accumulator. Prior to instruction execution, bit 24 of D 
is shifted into the carry bit C, and, prior to instruction execution, the value in the carry bit 
C is shifted into bit 47 of the destination accumulator D. This instruction is a 24-bit opera­
tion. The remaining bits of the destination operand D are not affected. 

Example: 

ROR B1 #$1234,R2 ;rotate B1 right one bit, update R2 

Before Execution After Execution 

B ~I __ $0_0:_00_00_0_1:2_~_2_~_~ B ~I __ $_O_o:o_o_oo_oo_:~_~_~ __ -,-, 

SR ..... 1 _____ $_03_00_---' SRI ..... _____ $0_3_05_~ 

Explanation of Example: Prior to execution, the 56-bit B accumulator contains the 
value $00:000001 :222222. The execution of the ROR B instruction shifts the 24-bit value 
in the B1 register one bit to the right, shifting bit 24 into the carry bit C, rotating the carry 
bit C into bit 47, and storing the result back in the B1 register. 



ROR Rotate Right ROR 

Condition Codes: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o I LF I OM I T I ** I 81 I 80 I 11 10 I s I L E I U N Z 

.. MR --".*'-~!---- CCR 

S - Computed according to the definition in A.S CONDITION CODE COMPUTATION 
L - Set if data limiting has occurred during parallel move 
N - Set if bit 47 of A or B result is set 
Z - Set if bits 47-24 of A or B result are zero 
V - Always cleared 
C - Set if bit 24 of A or B was set prior to instruction execution. 

Instruction Format: 
ROR D 

Opcode: 

23 8 7 

DATA BUS MOVE FIELD 1 0 0 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

Instruction Fields: 
o d 
A 0 
B 

Timing: 2+mv oscillator clock cycles 

Memory: 1 +mv program words 

4 3 

o Id 
o 



RTI Return from Interrupt RTI 

Operation: Assembler Syntax: 
SSH ~ PC; SSL ~ SR; SP-1 ~ SP RTI 

Description: Pull the program counter (PC) and the status register (SR) from the system 
stack. The previous program counter and status register are lost. 

Restrictions: Due to pipelining in the program controller and the fact that the RTI 
instruction accesses certain program controller registers, the RTI instruction must not be 
immediately preceded by any of the following instructions: 

Imm~dlately before RTI MOVEC to SR, SSH, SSL, or SP 
MOVEM to SR, SSH, SSL, or SP 
MOVEP to SR, SSH, SSL, or SP 
MOVEC from SSH 
MOVEM from SSH 
MOVEP from SSH 
ANDI MR or ANDI CCR 
ORI MR or ORI CCR 

An RTI instruction cannot be the last instruction in a DO loop (at LA). 

An RTI instruction cannot be repeated using the REP instruction. 

Example: 

RTI ;pull PC and SR from system stack 

Explanation of Example: The RTI instruction pulls the 16-bit program counter (PC) and 
the 16-bit status register (SR) from the system stack and updates the system stack 
pointer (SP). 



RTI Return from Interrupt 

Condition Codes: 

15 14 13 12 11 10 9 8 7 6 5 4 Il. I OM I T I·· I 81 I 80 I 11 I 10 I s I l I E I u 
~ MR • I11III( CCR 

S - Set according to the value pulled from the stack 
L - Set according to the value pulled from the stack 
E - Set according to the value pulled from the stack 
U - Set according to the value pulled from the stack 
N - Set according to the value pulled from the stack 
Z - Set according to the value pulled from the stack 
V - Set according to the value pulled from the stack 
C - Set according to the value pulled from the stack 

Instruction Format: 
RTI 

Opcode: 

23 16 15 8 7 

10 0 0 0 0 0 0 0100 0 0 0 00 0\ 0 

Instruction Fields: 
None 

Timing: 4+rx oscillator clock cycles 

Memory: 1 program word 

RTI 

3 2 o 
N I z v 

o 
o 0 0 0 1 0 01 



RTS Return from Subroutine RTS 

Operation: Assembler Syntax: 
SSH -+ PC; SP-1 -+ SP RTS 

Description: Pull the program counter (PC) from the system stack. The previous pro­
gram counter is lost. The status register (SR) is not affected. 

Restrictions: Due to pipelining in the program controller and the fact that the RTS 
instruction accesses certain controller registers, the RTS instruction must not be immedi­
ately preceded by any of the following instructions: 

Immediately before RTS MOVEC to SSH, SSL, or SP 
MOVEM to SSH, SSL, or SP 
MOVEP to SSH, SSL, or SP 
MOVEC from SSH 
MOVEM from SSH 
MOVEP from SSH 

An RTS instruction cannot be the last instruction in a DO loop (at LA). 

An RTS instruction cannot be repeated using the REP instruction. 

Example: 

RTS ;pull PC from system stack 

Explanation of Example: The RTS instruction pulls the 16-bit program counter (PC) 
from the system stack and updates the system stack pointer (SP). 

Condition Codes: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

1 LF 10M 1 T 1** 1 81 1 80 1 11 1 10 1 8 I LIE I u I N I z v I :.1 
.~ MR •. l1li( CCR _. 

The condition codes are not affected by this instruction. 



RTS Return from Subroutine 

Instruction Format: 
RTI 

Opcode: 

23 16 15 

10 0 0 0 0 0 0 0100 0 0 

Instruction Fields: 
None 

Timing: 4+rx oscillator clock cycles 

Memory: 1 program word 

8 7 

o 0 0 0 I 0 

RTS 

o 
o 0 0 1· 1001 



SBC Subtract Long with Carry sec 

Operation: Assembler Syntax: 
o-s-c -+ 0 (parallel move) SBC S,D (parallel move) 

Description: Subtract the source operand S and the carry bit C of the condition code 
register from the destination operand D and store the result in the destination accumula­
tor. Long words (48 bits) may be subtracted from the (56-bit) destination accumulator. 

Note: The carry bit is set correctly for multiple-precision arithmetic using long-word oper­
ands if the extension register of the destination accumulator (A2 or B2) is the sign exten­
sion of bit 47 of the destination accumulator (A or B). 

Example: 

MOVE L:<$O,X 
MOVE L:<$1 ,A 
MOVE L:<$2,Y 
SUB X,A L:<$3,B 
SBC YB A10,L:<$4 
MOVE B10,L:<$5 

Before Execution 

AI $00:000000:000000 

xl $800000:000000 

BI $00:000000:000003 

vi $000000 :000001 

;get a 48-bit LS long-word operand in X 
;get other LS long word in A (sign ext.) 
;get a 48-bit MS long-word operand in Y 
;sub. LS words; get other MS word in B 
;sub. MS words with carry; save LS dif. 
;save MS difference 

After Execution 

AI $00:800000:000000 

xl $800000:000000 

BI $00:000000:000001 

vi $000000:000001 

/ 



sec Subtract Long with Carry sec 

Explanation of Example: This example illustrates long-word double-precision (96-bit) 
subtraction using the SBe instruction. Prior to execution of the SUB and SBe instruc­
tions, the 96-bit value $000000:000001 :800000:000000 is loaded into the Y and X regis­
ters (X:y) , respectively. The other double-precision 96-bit value 
$000000:000003:000000:000000 is loaded into the B and A accumulators (B:A), respec­
tively. Since the 48-bit value loaded into the A accumulator is automatically sign 
extended to 56 bits and the other 48-bit long-word operand is internally sign extended to 
56 bits during instruction execution, the carry bit will be set correctly after the execution 
of the SUB X,A instruction. The SBe Y,B instruction then produces the correct MS 56-bit 
result. The actual 96-bit result is stored in memory using the A10 and B10 operands 
(instead of A and B) because shifting and limiting is not desired. 



SBC Subtract Long with Carry SBC 

Condition Codes: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

I: I OM I T I·· JR S1 I so I 11 I '~ 1 .. 9 I LIE I U JR N I z I v I : 1 
S - Computed according to the definition in A.5 CONDITION CODE COMPUTATION 
L - Set if limiting (parallel move) or overflow has occurred in result 
E - Set if the signed integer portion of A or B result is in use 
U - Set if A or B result is unnormalized 
N - Set if bit 55 of A or B result is set 
Z - Set if A or B result equals zero 

'V - Set if overflow has occurred in A or B result 
C - Set if a carry (or borrow) occurs from bit 55 of A or B result 

Note: The definitions of the E and U bits vary according to the scaling mode being used. 
Refer to Section A.5 CONDITION CODE COMPUTATION for complete details. 



sec 

Instruction Format: 
SBe S,D 

Opcode: 

23 

Instruction Fields: 
S,D Jd 

X,A 00 
X,B 01 
V,A 1 0 
V,B 11 

Subtract Long with Carry 

8 7 

DATA BUS MOVE FIELD I 0 0 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

Timing: 2+mv oscillator clock cycles 

Memory: 1 +mv program words 

sec 

4 3 o 
J I d o 1 



STOP Stop Instruction Processing STOP, 

Operation: Assembler Syntax: 
Enter the stop processing state and STOP 

stop the clock oscillator 

Description: Enter the STOP processing state. All activity in the processor is suspended 
until the RESET or IRQA pin is asserted. The clock oscillator is gated off internally. The 
STOP processing state is a low-power standby state. 

During the STOP state, port A is in an idle state with the control signals held inactive (Le., 
RD=WR=Vcc etc.), the data pins (DO-D23) are high impedance, and the address pins 
(A 1-A 15) are unchanged from the previous instruction. If the bus grant was asserted 
when the STOP instruction was executed, port A will remain three-stated until the DSP 
exits the STOP state. 

If the exit from the STOP state was caused by a low level on the RESET pin, then the 
processor will enter the reset processing state. The time to recover from the STOP state 
using RESET will depend on the oscillator used. Consult the DSP56001 Advance Infor­
mation Data Sheet (ADI1290) for details. 

If the exit from the STOP state was caused by a low level on the IRQA pin, then the pro­
cessor will service the highest priority pending interrupt and will not service the IRQA 
interrupt unless it is highest priority. The interrupt will be serviced after an internal delay 
counter counts 65,536 clock cycles (or a three clock cycle delay if the stop delay bit in 
the OMR is set to one) plus 17T (see the DSP56001 Technical Data Sheet (ADI1290) for 
details). During this clock stabilization count delay, all peripherals and external interrupts 
are cleared and re-enabled/arbitrated at the start of the 17T period following the count 
interval. The processor will resume program execution at the instruction following the 
STOP instruction that caused the entry into the STOP state after the interrupt has been 
serviced or, if no interrupt was pending, immediately after the delay count plus 17T. If the 
IRQA pin is asserted when the STOP instruction is executed, the clock will not be gated 
off, and the internal delay counter will be started. 



STOP Stop Instruction Processing 

Restrictions: 
A STOP instruction cannot be used in a fast interrupt routine. 

A STOP instruction cannot be the last instruction in a DO loop (Le., at LA). 

A STOP instruction cannot be repeated using the REP instruction. 

Example: 

STOP ;enter low-power standby mode 

STOP 

Explanation of Example: The STOP instruction suspends all processor activity until the 
processor is reset or interrupted as previously described. The STOP instruction puts the 
processor in a low-power standby state. 

Condition Codes: 

15 14 13 12 11 10 9 8 7 6 5 4 I LF I DM I T I" I 81 I 80 I 11 I 10 I 8 I L E I u 
CCR 

The condition codes are not affected by this instruction. 

Instruction Format: 
STOP 

Opcode: 

23 16 15 8 7 

10 0 0 0 0 0 0 0100 0 0 0 00 011 

Instruction Fields: 
None 

3 2 o 
N I z 

o 
o 0 O' 0 1 1 1 I 

Timing: The STOP instruction disables the internal clock oscillator and internal distribu­
tion of the external clock. 

Memory: 1 program word 



SUB Subtract SUB 

Operation: Assembler Syntax: 
O-S -4 D (parallel move) SUB S,D (parallel move) 

Description: Subtract the source operand S from the destination operand 0 and store 
the result in the destination operand O. Words (24 bits), long words (48 bits), and accu­
mulators (56 bits) may be subtracted from the destination accumulator. 

Note: The carry bit is set correctly using word or long-word source operands if the exten­
sion register of the destination accumulator (A2 or B2) is the sign extension of bit 47 of the 
destination accumulator (A or B). The carry bit is always set correctly using accumulator 
source operands. 

Example: 

SUB X1 ,A X:(R2)+N2,RO ;24.;bit subtract, load RO, update R2 

Before Execution After Execution 

Xi 1~ _________ $_OO_O_OO_3 __ ~ Xii ~ _________ $_O_OO_OO_3 __ ~ 

A 1~ ___ $_OO_:O_OO_05_8_:24_2_42_4 __ --' A~I ____ $_OO_:O_OO_05_5_:24_2_42_4 __ ~ 

Explanation of Example: Prior to execution, the 24-bit X1 register contains the value 
$000003, and the 56-bit A accumulator contains the value $00:000058:242424. The 
SUB instruction automatically appends the 24-bit value in the X1 register with 24 LS 
zeros, sign extends the resulting 48-bit long word to 56 bits, and subtracts the result from 
the 56-bit A accumulator. Thus, 24-bit operands are subtracted from the MSP portion of 
A or B (A 1 or B1) because all arithmetic instructions assume a fractional, twos comple­
ment data representation. Note that 24-bit operands can be subtracted from the LSP por­
tion of A or B (AO or BO) by loading the 24-bit operand into XO or YO, forming a 48-bit 
word by loading X1 or Y1 with the sign extension of XO or YO, and executing a SUB X,A 
or SUB Y,A instruction. 



SUB Subtract SUB 

Condition Codes: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 I: I OM I T I ** JR 51 I SO I 11 I '~ I: I LIE I U ClR N I z I v I ~ I 
S - Computed according to the definition in A.5 CONDITION CODE COMPUTATION 
L - Set if limiting (parallel move) or overflow has occurred in result 
E - Set if the signed integer portion of A or B result is in use 
U - Set if A or B result is unnormalized 
N - Set if bit 55 of A or B result is set 
Z - Set if A or B result equals zero 
V - Set if overflow has occurred in A or B result 
C - Set if a carry (or borrow) occurs from bit 55 of A or B result 

Note: The definitions of the E and U bits vary according to the scaling mode being used. 
Refer to Section A.5 CONDITION CODE COMPUTATION for complete details. 

Instruction Format: 
SUB S,D 

Opcode: 

23 8 7 4 3 

DATA BUS MOVE FIELD I 0 J J J I d 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

Instruction Fields: 
S,D J J J d 

B,A 001 0 
A,B 001 1 
X,A 01 00 
X,B 0 1 01 
V,A 01 1 0 
V,B 0 1 1 1 

S,D J J J d 

XO,A 1 000 
XO,B 1 001 
VO,A 1 010 
VO,B 1 0 1 1 
X1,A 1 100 
X1,B 1 1 0 1 

Timing: 2+mv oscillator clock cycles 

Memory: 1 +mv program words 

S,D J J J d 

V1,A 1 1 1 0 
V1,B 1 1 1 1 

o 
o 0 



SUBL Shift Left and Subtract Accumulators SUBL 

Operation: Assembler Syntax: 
2* O-S ..... 0 (parallel move) SUBL SO (parallel move) 

Description: Subtract the source operand S from two times the destination operand 0 
and store the result in the destination accumulator. The destination operand 0 is arith­
metically shifted one bit to the left, and a zero is shifted into the LS bit of 0 prior to the 
subtraction operation. The carry bit is set correctly if the source operand does not over­
flow as a result of the left shift operation. The overflow bit may be set as a result of either 
the shifting or subtraction operation (or both). This instruction is useful for efficient divide 
and decimation in time (OIT) FFT algorithms. 

Example: 

SUBL A,B Y:(R5+N5),R7 ;2*B-A ..... B, load R7, no R5 update 

Before Execution After Execution 

AI $00:004000:000000 AI $00:004000:000000 

BI $00:005000:000000 BI $00:006000:000000 

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the 
value $00:004000:000000, and the 56-bit B accumulator contains the value 
$00:005000:000000. The SUBL A,B instruction subtracts the value in the A accumulator 
from two times the value in the B accumulator and stores the 56-bit result in the B accu­
mulator. 



SUBL Shift Left and Subtract Accumulators SUBL 

Condition Codes: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 I LF I OM I T I·· I S1 I SO I 11 I 10 I s I L I E I u I N I z 
~ MR ~~ CCR 

S_- Computed according to the definition in A.5 CONDITION CODE COMPUTATION 
L - Set if limiting (parallel move) or overflow has occurred in result 
E - Set if the signed integer portion of A or B result is in use 
U - Set if A or B result is unnormalized 
N - Set if bit 55 of A or B result is set 
Z - Set if A or B result equals zero 
V - Set if overflow has occurred in A or B result or if the MS bit of the destination 

operand is changed as a result of the instruction's left shift 
C - Set if a carry (or borrow) occurs from bit 55 of A or B result 

Note: The definitions of the E and U bits vary according to the scaling mode being used. 
Refer to Section A.5 CONDITION CODE COMPUTATION for complete details. 

Instruction Format: 
SUBL S,D 

Opcode: 

23 8 7 4 3 

DATA BUS MOVE FIELD I 0 0 o 1 I d 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

Instruction Fields: 
S,D d 

B,A 0 
A,B 

Timing: 2+mv oscillator clock cycles 

Memory: 1 +mv program words 

o 
o 



SUBR Shift Right and Subtract Accumulators SUBR 

Operation: Assembler Syntax: 
0/2-S ~ D (parallel move) SUBR S,D (parallel move) 

Description: Subtract the source operand S from one-half the destination operand 0 
and store the result in the destination accumulator. The destination operand 0 is arith­
metically shifted one bit to the right while the MS bit of 0 is held constant prior to the sub­
traction operation. In contrast to the SUBL instruction, the carry bit is always set 
correctly, and the overflow bit can only be set by the subtraction operation, and not byan 
overflow due to the initial shifting operation. This instruction is useful for efficient divide 
and decimation in time (DIT) FFT algorithms. 

Example: 

SUBR B,A N5,Y:-(R5) ;Al2-B ~ A, update R5, save N5 

Before Execution After Execution 

A~I ____ $8_0_:00_o_00_0:2_4_68_A_C __ ~ A~I ____ $_co_:o_oo_oo_o_:oo_o_oo_o __ ~ 

B~I ____ $_oo_:o_oo_OO_O_:12_3_45_6 __ ~ B~I ____ $_oo_:o_oo_OO_O_:12_3_45_6 __ ~ 

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the 
value $80:000000:2468AC, and the 56-bit B accumulator contains the value 
$00:000000:123456. The SUBR B,A instruction subtracts the value in the B accumulator 
from one-half the value in the A accumulator and stores the 56-bit result in the A accu­
mulator. 



SUBR Shift Right and Subtract Accumulators SUBR 

Condition Codes: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o I LF I DM I T I ** I S1 I SO I 11 I 10 I s I L E I u N I z 
CCR 

S - Computed according to the definition in A.5 CONDITION CODE COMPUTATION 
L - Set if limiting (parallel move) or overflow has occurred in result 
E - Set if the signed integer portion of A or B result is in use 
U - Set if A or B result is unnormalized 
N - Set if bit 55 of A or B result is set 
Z -Set if A or B result equals zero 
V - Set if overflow has occurred in A or B result 
C - Set if a carry (or borrow) occurs from bit 55 of A or B result 

Note: The definitions of the E and U bits vary according to the scaling mode being used. 
Refer to Section A.5 CONDITION CODE COMPUTATION for complete details. 

Instruction Format: 
SUBR S,D 

Opcode: 

23 8 7 4 3 

DATA BUS MOVE FIELD I 0 0 o 0 J d 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

Instruction Fields: 
S,D d 

B,A 0 
A,B 

Timing: 2+mv oscillator clock cycles 

Memory: 1 +mv program words 

o 
o 



SWI Software Interrupt SWI 

Operation: Assembler Syntax: 
Begin SWI exception processing SWI 

Description: Suspend normal instruction execution and begin SWI exception process­
ing. The interrupt priority level (11,10) is set to 3 in the status register (SR) if a long inter­
rupt service routine is used. 

Restrictions: 
An SWI instruction cannot be used in a fast interrupt routine. 

An SWI instruction cannot be repeated using the REP instruction. 

Example: 

SWI ;begin SWI exception processing 

Explanation of Example: The SWI instruction suspends normal instruction execution 
and initiates SWI exception processing. 



SWI Software Interrupt 

Condition Codes: 

15 14 13 12 11 10 9 8 7 6 5 4 

I"F I DM I T I" I 81 I 80 I 11 10 I 8 I l E I u 
~ MR --".*,-~I--

The condition codes are not affected by this instruction. 

Instruction Format: 
SWI 

Opcode: 

CCR 

23 16 15 8 7 

10 0 0 0 0 0 0 0100 0 0 

Instruction Fields: 
None 

Timing: 8 oscillator clock cycles 

Memory: 1 program word 

o 0 0 0 I 0 

SWI 

3 2 o 
N I z 

o 
o 0 0 0 1 1 01 

-



-

Tee Transfer Conditionally Tee 

Operation: Assembler Syntax: 
If cc, then S1 ~ 01 Tcc S1,01 

If cc, then S1 ~ 01 and S2 ~ 02 Tcc S1 ,01 S2,02 

Description: Transfer data from the specified source register S1 to the specified desti­

nation accumulator 01 if the specified condition is true. If a second source register S2 
and a second destination register 02 are also specified, transfer data from address reg­
ister S2 to address register 02 if the specified condition is true. If the specified condition 
is false, a NOP is executed. The term "cc" may specify the following conditions:" 

CC (HS) 
CS (LO) 
EC 
EQ 
ES 
GE 
GT 
LC 
LE 
LS 
LT 
MI 
NE 
NR 
PL 
NN 

where 

"cc" Mnemonic 
- carry clear (higher or same) 
- carry set (lower) 
- extension clear 
- equal 
- extension set 
- greater than or equal 
- greater than 
-limit clear 
- less than or equal 
-limit set 
-less than 
- minus 
- not equal 
- normalized 
-plus 
- not normalized 

o denotes the logical complement of U, 
+ denotes the logical OR operator, 
- denotes the logical ANO operator, and 
EB denotes the logical Exclusive OR operator 

Condition 
C=O 
C=1 
E=O 
Z=1 
E=1 
N E9 V=O 
Z+(N E9 V)=O 
L=O 
Z+(N EB V)=1 
L=1 
N E9 V=1 
N=1 
Z=O 
Z+(O'-E)=1 
N=O 
Z+(O-E)=0 

When used after the CMP or CMPM instructions, the Tcc instruction can perform many 

useful functions such as a "maximum value," "minimum value," "maximum absolute 
value," or "minimum absolute value" function. The desired value is stored in the destina-



Tee Transfer Conditionally Tee 

tion accumulator D1 . If address register S2 is used as an address pointer into an array of 
data, the address of the desired value is stored in the address register D2. The Tec 
instruction may be used after any instruction and allows efficient searching and sorting 
algorith ms. 

The Tcc instruction uses t~e internal data ALU paths and internal address ALU paths. 
The Tce instruction does not affect the condition code bits. 

Note: This instruction is considered to be a move-type instruction. Due to instruction 
pipelining, if an AGU register (Mn, Nn, or Rn) is directly changed with this instruction, the 
new contents may not be available for use until the second following instruction. See the 
restrictions discussed in A9.6 - R, N, and M Register Restrictions on page A-31 O. 

Example: 

CMP XO,A 
TGT XO,A RO,R1 

;compare XO and A (sort for minimum) 
;transfer XO -. A and RO -. R1 if XO<A 

Explanation of Example: In this example, the contents of the 24-bit XO register are 
transferred to the 56-bit A accumulator, and the contents of the 16-bit RO address regis­
ter are transferred to the 16-bit R1 address register if the specified condition is true. If the 
specified condition is not true, a NOP is executed. 

Condition Codes: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o I LF I DM I T I ** I S1 I SO I 11 I 10 I s I L I E I u N I z 
~ MR ~ ~ CCR 

The condition codes are not affected by this instruction. 



Tee Transfer Conditionally Tee 

Instruction Format: 
Tcc S1,01 

.Opcode: 

23 16 15 8 7 0 

10 0 o 0 0 0 1 ole c c c 0 0 0 01 0 J J J 000 01 

Instruction Fields: 
cc=4=bit condition code=CCCC 

81,D1 J J J D Mnemonic CCCC Mnemonic CCCC 
B,A 0 0 0 0 CC (HS) o 000 CS (LO) 0 o 0 
A,B 0 0 0 1 GE o 0 0 1 LT 0 o 1 
XO,A 1 0 0 0 NE 001 0 EQ 0 1 0 
XO,B 1 0 0 1 PL o 0 1 1 MI 0 1 1 
X1,A 1 1 0 0 NN o 1 0 0 NR 1 o 0 
X1,B 1 1 0 1 EC o 1 0 1 ES 1 o 1 
YO,A 1 0 1 0 LC o 1 1 0 LS 1 1 0 
YO,B 1 0 1 1 GT o 1 1 1 LE 1 1 1 
Y1,A 1 1 1 0 
Y1,B 1 1 1 1 

Timing: 2 oscillator clock cycles 

Memory: 1 program word 



Tee Transfer Conditionally Tee 

Instruction Format: 
Tcc S1,D1 S2,02 

Opcode: 
23 16 15 870 

10 0 0 0 0 0 1 11c c C COt t 

Instruction Fields: 
cc=4=bit condition code=CCCC 

81,01 J J J 0 82 t t t Mnemonic C C C C 
B,A 0 0 0 0 Rn n n n CC (HS) 0 0 0 0 
A,B 0 0 0 1 GE 0 0 0 1 
XO,A 1 0 0 0 NE 0 0 1 0 
XO,B 1 0 0 1 PL 0 0 1 1 
X1,A 1 1 0 0 02 T T T NN 0 1 0 0 
X1,B 1 1 0 1 Rn n n n EC 0 1 0 1 
VO,A 1 0 1 0 LC 0 1 1 0 
VO,B 1 0 1 1 GT 0 1 1 1 
V1,A 1 1 1 0 
V1,B 1 1 1 1 

where "nnn"=Rn number (RO-R?) 

Timing: 2 oscillator clock cycles 

Memory: 1 program word 

Mnemonic 
CS (LO) 
LT 
EQ 
MI 
NR 
ES 
LS 
LE 

ecce 
1 0 o 0 
1 0 o 1 
1 0 1 0 
1 0 1 1 
1 1 o 0 
1 1 o 1 
1 1 1 0 
1 1 1 1 



TFR Transfer Data ALU Register TFR 

Operation: . Assembler Syntax: 
S4D (parallel move) TFR S,D (parallel move) 

Description: Transfer data from the specified source data ALU register S to the speci­
fied destination data ALU accumulator D. TFR uses the internal data ALU data paths; 
thus, data does not pass through the data shifter/limiters. This allows the full 56-bit con­
tents of one of the accumulators to be transferred into the other accumulator without 
data shifting and/or limiting. Moreover, since TFR uses the internal data ALU data paths, 
parallel moves are possible. The TFR instruction only affects the L condition code bit 
which can be set by data limiting associated with the instruction's parallel move opera­
tions. 

Example: 

TFR A,B A,X1 Y:(R4+N4),YO ;move A to B and X 1 , update YO 

Before Execution After Execution 

A~I ___ $_O_1:2_3_45_67_:8_9A_B_C_D __ ~ A~I ____ $O_1:_23_45_67_:8_9_AB_C_D __ ~ 

B ~I ___ $_FF_:F_F_FF_F_F:F_F_FF_F_F __ ~ B~I ____ $O_1:_23_45_67_:8_9_AB_C_D __ ~ 

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the 
value $01 :234567:89ABCD, and the 56-bit B accumulator contains the value 
$ff:FFFFFF:FFFFFF. The execution of the TFR A,B instruction moves the 56-bit value in 
the A accumulator into the 56-bit B accumulator using the internal data ALU data paths 
without any data shifting and/or limiting. The value in the B accumulator would have 
been limited if a MOVE A,B instruction had been used. Note, however, that the parallel 
move portion of the TFR instruction does use the data shifter/limiters. Thus, the value 
stored in the 24-bit X1 register (not shown) would have been limited in this example. 
This example illustrates a triple move instruction. 



TFR Transfer Data ALU Register TFR 

Condition Codes: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 I: I OM I T I ** J:' I so I 11 I : I .. s I LIE I U clR N I z I v I :1 
S - Computed according to the definition in A.S CONDITION CODE COMPUTATION 
L - Set if data limiting has occurred during parallel move 

Instruction Format: 
TFR S,D 

Opcode: 

23 8 7 4 3 o 
DATA BUS MOVE FIELD I 0 J J J I d 001 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

Instruction Fields: 

S,D J J J D 
B,A 0 0 o 0 
A;B 0 0 o 1 
XO,A 1 0 o 0 
XO,B 1 0 o 1 
X1,A 1 1 o 0 
X1,B 1 1 o 1 
YO,A 1 0 1 0 
YO,B 1 0 1 1 
Y1,A 1 1 1 0 
Y1,B 1 1 1 1 

Timing: 2+mv oscillator clock cycles 

Memory: 1 +mv program words -



-

TST Test Accumulator TST 

Operation: Assembler Syntax: 
, s-o (parallel move) TST S (parallel move) 

Description: Compare the specified source accumulator S with zero and set the condi­
tion codes accordingly. No result is stored although the condition codes are updated. 

Example: 

TST A #$345678,B ;set CCR bits for value in A, update B 

Before Execution After Execution 

AI 
~--------------~ 

$01 :020304:000000 A~I ____ $0_1_:02_0_30_4:_00_00_00 __ ~ 

CCR 1-1 __________ $0_3_00 __ ----' CCRI~ __________ $0_33_0 __ ~ 

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the 
value $01 :020304:000000, and the 16-bit condition code register contains the value 
$0300. The execution of the TST A instruction compares the value in the A register with 
zero and updates the condition code register accordingly. The contents of the A accumu­
lator are not affected. 

Condition Codes: 

15 14 13 12 11 -10 9 8 7 6 5 4 3 2 0 

I LF I OM I T I ** I 81 I 80 I 11 I 10 I 8 I LIE I U N I z I v I : I 
.... MR ....... CCR _. 

S - Computed according to the definition in A.5 CONDITION CODE COMPUTATION 
L - Set if data limiting has occurred during parallel move 
E - Set if the signed integer portion of A or B result is in use 
U - Set if A or B result is unnormalized 
N - Set if bit 55 of A or B result is set 
Z - Set if A or B result equals zero 
V - Always cleared 

Note: The definitions of the E and U bits vary according to the scaling mode being used. 
Refer to Section A.5 CONDITION CODE COMPUTATION for complete details. 



TST Test Accumulator 

Instruction Format: 
TST S 

Opcode: 

23 8 7 4 3 

DATA BUS MOVE FIELD too o 0 I d 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

Instruction Fields: 
S d 

A 0 
B 

Timing: 2+mv oscillator clock cycles 

Memory: 1 +mv program words 

TST 

o 
o 



WAIT Wait for Interrupt WAIT 

Operation: 
Disable clocks to the processor core and 

enter the WAIT processing state. 

Assembler Syntax: 
WAIT 

Description: Enter the WAIT processing state. The internal clocks to the processor core 
and memories are gated off, and all activity in the processor is suspended until an 
unmasked interrupt occurs. The clock oscillator and the internal I/O peripheral clocks 
remain active. If WAIT is executed when an interrupt is pending, the interrupt will be pro­
cessed; the effect will be the same as if the processor never entered the WAIT state and 
three NOPs followed the WAIT instruction. When an unmasked interrupt or external 
(hardware) processor RESET occurs, the processor leaves the WAIT state and be,gins 
exception processing of the unmasked interrupt or RESET condition. The BRlBG circuits 
remain active during the WAIT state. The WAIT state is a low-power standby state. The 
processor always leaves the WAIT state in the T2 clock phase (see the DSP56001 
Advance Information Data Sheet (ADI1290)). Therefore, multiple processors may be 
synchronized by having them all enter the WAIT state and then interrupting them with a 
common interrupt. 

Restrictions: A WAIT instruction cannot be used in a fast interrupt routine. 

A WAIT instruction cannot be the last instruction in a DO loop (at LA). 

A WAIT instruction cannot be repeated using the REP instruction. 

Example: 

WAIT ;enter low power mode, wait for interrupt 

Explanation of Example: The WAIT instruction suspends normal instruction execution 
and waits for an unmasked interrupt or external RESET to occur. 



WAIT Wait for Interrupt WAIT 

Condition Codes: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o I LF I OM I T I ** I S1 I SO I 11 I 10 I s I L E I u N I z 
GGR 

The condition codes are not affected by this instruction. 

Instruction Format: 
WAIT 

Opcode: 
23 16 15 870 

10 0 0 0 0 0 0 0100 0 0 0 00 01100001101 

Instruction Fields: 
None 

Timing: The WAIT instruction takes a minimum of 16 cycles to execute when an internal 
interrupt is pending during the execution of the WAIT instruction 

Memory: 1 program word 

-



-

A.a INSTRUCTION TIMING 
This section describes how to calculate DSP56K instruction timing manually using the 
tables provided. Three complete examples illustrate the "layered" nature of the tables. 

Alternatively, the user can determine the number of instruction program words and the 
number of oscillator clock cycles required for a given instruction by using the DSP56K 
simulator. This method of determining instruction timing information is much faster and 
much simpler than using the tables. This powerful software package is available for the 
IBM*1M PC and SUN workstation. 

• Table A-6 gives the number of instruction program words and the number of oscillator 
clock cycles for each instruction mnemonic. 

• Table A-7 gives the number of additional (if any) instruction words and additional (if 
any) clock cycles for each type of parallel move operation. 

• Table A-a gives the number of additional (if any) clock cycles for each type of 
MOVEC operation. 

• Table A-9 gives the number of additional (if any) clock cycles for each type of 
MOVEP operation .. 

• Table A-10 gives the number of additional (if any) clock cycles for each type of bit 
manipulation (BCHG, BClR, BSET, and BTST) operation. 

• Table A-11 gives the number of additional (if any) clock cycles for each type of jump 
(Jcc, JClR, JMP, JScc, JSClR, JSET, JSR, and JSSET) operation. 

• Table A-12 gives the number of additional (if any) clock cycles for the RTI and RTS 
instructions. 

• Table A-13 gives the number of additional (if any) instruction words and additional (if 
any) clock cycles for each effective addressing mode. 

• Table A-14 gives the number of additional (if any) clock cycles for external data, 
external program, and external 110 memory accesses. 

The number of words per instruction is dependent on the addressing mode and the type 
of parallel data bus move operation specified. The symbols used reference subsequent 
tables to complete the instruction word count. 

The number of oscillator clock cycles per instruction is dependent on many factors, 

*IBM is a trademark of International Business Machines. 
SUN is a trademark of Sun Microsystems, Inc. 



including the number of words per instruction, the addressing mode, whether the instruc­
tion fetch pipe is full or not, the number of external bus accesses, and the number of wait 
states inserted in each external access. The symbols used reference subsequent tables 
to complete the execution clock cycle count. 

All tables are based on the following assumptions: 

1. All instruction cycles are counted in oscillator clock cycles. 

2. The instruction fetch pipeline is full. 

3. There is no contention for instruction fetches. Thus, external program instruc­
tion fetches are assumed not to have to contend with external data memory 
accesses. 

4. There are no. wait states for instruction fetches done sequentially (as for non­
change-of-flow instructions), but they are taken into account for change-of-flow 
instructions which flush the pipeline such as JMP, Jcc, RTI, etc. 

To help the user better understand and use the timing tables, the following three exam­
ples illustrate the tables' "layered" nature. (Remember that it is faster and simpler to use 
the DSP56K simulator to calculate instruction timing.) 

Example 16: Arithmetic Instruction with Two Parallel Moves 

Problem: Calculate the number of 24-bit instruction program words and the number of 
oscillator clock cycles required for the instruction 

where 

MACR -XO,XO,A X1,X:(R6)- YO,Y:(RO)+ 

Operating Mode Register (OMR) 
Bus Control Register (BCR) 
R6 Address Register 
RO Address Register 

= $02 (normal expanded memory map), 
=$1135, 
= $0052 (internal X memory), and 
= $0523 (external Y memory). 

Solution: To determine the number of instruction program words and the number of 
oscillator clock cycles required for the given instruction, the user should perform the fol­
lowing operations: 

1. Look up the number of instruction program words and the number of oscillator clock 
cycles required for the opcode-operand portion of the instruction in Table A-6. 

According to Table A-6, the MACR instruction will require (1 +mv) instruction program 
words and will execute in (2+mv) oscillator clock cycles. The term "mv" represents the 
additional (if any) instruction program words and the additional (if any) oscillator clock 

-



-

cycles that may be required over and above those needed for the basic MACR instruc­
tion due to the parallel move portion of the instruction. 

2. Evaluate the "mv" term using Table A-7. 

The parallel move portion of the MACR instruction consists of an XV memory move. 
According to Table A-7, the parallel move portion of the instruction will require mv=O 
additional instruction program words and mv=(ea+axy) additional oscillator clock cycles. 
The term "ea" represents the number of additional (if any) oscillator clock cycles that are 
required for the effective addressing move specified in the parallel move portion of the 
instruction. The term "axy" represents the number of additional (if any) oscillator clock 
cycles that are required to access an XV memory operand. 

3. Evaluate the "ea" term using Table A-13. 

The parallel move portion of the MACR instruction consists of an XV memory move 
which uses both address register banks (RO-R3 and R4-R7) in generating the effective 
addresses of the XV memory operands. Thus, the two effective address operations 
occur in parallel, and the larger of the two "ea" terms should be used. The X memory 
move operation uses the "postdecrement by 1" effective addressing mode. According to 
Table A-13, this operation will require ea=O additional oscillator clock cycles. The V 
memory move operation uses the "postincrement by 1" effective addressing mode. 
According to Table A-13, this operation will also require ea=O additional oscillator clock 
cycles. Thus, using the maximum value of "ea", the effective addressing modes used in 
the parallel move portion of the MACR instruction will require ea=O additional oscillator 
clock cycles. 

4. Evaluate the "axy" term using Table A-14. 

The parallel move portion of the MACR instruction consists of an XV memory move. 
According to Table A-14, the term "axy" depends upon where the referenced X and V 
memory locations are located in the DSP56K memory space. External memory 
accesses require additional oscillator clock cycles according to the number of wait states 
programmed into the DSP56K bus control register (SCR). Thus, assuming that the 16-bit 
bus control register contains the value $1135, external X memory accesses require wx=1 
wait state of additional oscillator clock cycle while external Y memory accesses require 
wy=1 wait state or additional oscillator clock cycle. For this example, the X memory refer­
ence is assumed to be an Internal reference; the V memory reference is assumed to be 
an external reference. Thus, according to Table A-14, the XV memory reference in the 
parallel move portion of the MACR instruction will require axy=wy=1 additional oscillator 
clock cycle. 



5. Compute final results. 

Thus, based upon the assumptions given for Table A-6 and those listed in the problem 
statement for Example 1 , the instruction 

MACR -XO,XO,A X1,X:(R6)- YO,Y:(RO)+ 

will require 

and will execute in 

(1 +mv) 
= (1 +0) 
= 1 

= (2+mv) 
= (2+ea+axy) 
= (2+ea+wy) 

instruction program word 

= (2+0+1) oscillator clock cycles. 
3 

Note that if a similar calculation were to be made for a MOVEC, MOVEM, MOVEP, or 
one of the bit manipulation (BCHG, BClR, BSET, or BTST) instructions, the use of Table 
A-7 would no longer be appropriate. For one of these cases, the user would refer to 
Table A-a, Table A-9, or Table A-1 0, respectively. 

Example 17: Jump Instruction 

Problem: Calculate the number of 24-bit instruction program words and the number of 
oscillator clock cycles required for the instruction 

JlC (R2+N2) 

where Operating Mode Register (OMR) 
Bus Control Register (BCR) 
R2 Address Register 
N2 Address Register 

= $02 (normal expanded memory map), 
= $2246, 
= $1000 (external P memory), and 
= $0037. 

Solution: To determine the number of instruction program words and the number of 
oscillator clock cycles required for the given instruction, the user should perform the fol­
lowing operations: 

1. look up the number of instruction program words and the number of oscillator clock 
cycles required for the opcode-operand portion of the instruction in Table A-6. 

According to Table A-6, the Jcc instruction will require (1 +ea) instruction program words 
and will execute in (4+jx) oscillator clock cycles. The term "ea" represents the number of 

-
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additional (if any) instruction program words that are required for the effective address of 
the Jcc instruction. The term "jx" represents the number of additional (if any) oscillator 
clock cycles required for a jump-type instruction. 

2. Evaluate the "jx" term using Table A-11. 

According to Table A-11, the Jcc instruction will require jx=ea+(2 * ap) additional oscilla­
tor clock cycles. The term "ea" represents the number of additional (if any) oscillator 
clock cycles that are required for the effective addressing mode specified in the Jcc 
instruction. The term "ap" represents the number of additional (if any) oscillator clock 
cycles that are required to access a P memory operand. Note that the "+(2 * ap)" term 
represents the two program memory instruction fetches executed at the end of a one­
word jump instruction to refill the instruction pipeline. 

3. Evaluate the "ea" term using Table A-13. 

The JLC (R2+N2) instruction uses the "indexed by offset Nn" effective addressing mode. 
According to Table A-13, this operation will require ea=O additional instruction program 
words and ea=2 additional oscillator clock cycles. 

4. Evaluate the "ap" term using Table A-14. 

According to Table A-14, the term "ap" depends upon where the referenced P memory 
location is located in the DSP56K memory space. External memory accesses require 
additional oscillator clock cycles according to the number of wait states programmed into 
the DSP56K bus control register (8CR). Thus, assuming that the 16-bit bus control regis­
ter contains the value $2246, external P memory accesses require wp=4 wait states or 
additional oscillator clock cycles. For this example, the P memory reference is assumed 
to be an external reference. Thus, according to Table A-14, the Jcc instruction will use 
the value ap=wp=4 oscillator clock cycles. 

5. Compute final results. 

Thus, based upon the assumptions given for Table A-6 and those listed in the problem 
statement for Example 2, the instruction 



will require 

and will execute in 

JLC (R2+N2) 

= (1 +ea) 
= (1 +0) 
= 1 

= (4+jx) 

instruction program word 

= (4+ea+(2 * ap» 
= (4+ea+(2 * wp» 
= (4+2+(2 * 4» oscillator clock cycles. 
= 14 

Example 18: RTll!lstruction 

problem: Calculate the number of 24-bit instruction program words and the number of 
oscillator clock cycles required for the instruction 

where 

RTI 

Operating Mode Register (OMR) 
Sus Control Register (SCR) 
Return Address (on the stack) 

= 02 (normal expanded memory map), 
= $0012, and, 
= $0100 (internal P memory). 

Solution: To determine the number of instruction program words and the number of 
oscillator clock cycles required for the given instruction, the user should perform the fol­
lowing operations: 

1. Look up the number of instruction program words and the number of oscillator clock 
cycles required for the opcode-operand portion of the instruction in Table A-6. 

According to Table A-6, the RTI instruction will require one instruction program word and 
will execute in (4+rx) oscillator clock cycles. The term "rx" represents the number of addi­
tional (if any) oscillator clock cycles required for an RTI or RTS instruction. 

2. Evaluate the "rx" term using Table A-12. 

According to Table A-12, the RTI instruction will require rx=(2 * ap) additional oscillator 
clock cycles. The term "ap" represents the number of additional (if any) oscillator clock 
cycles that are required to access a P memory operand. Note that the term "(2 * ap)" rep­
resents the two program memory instruction fetches executed at the end of an RTI or 
RTS instruction to refill the instruction pipeline. 

-
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3. Evaluate the "ap" term using Table A-14. 

According to Table A-14, the term "ap" depends upon where the referenced P memory 
location is located in the DSP56K memory space. External memory accesses require 
additional oscillator clock cycles according to the number of wait states programmed into 
the DSP56K bus control register (BCR). Thus, assuming that the 16-bit bus control regis­
ter contains the value $0012, external P memory accesses require wp=1 wait state or 
additional oscillator clock cycles. For this example, the P memory reference is assumed 
to be an Internal reference. This means that the return address ($0100) pulled from the 
system stack by the RTI instruction is in internal P memory. Thus, according to Table A-
14, the RTI instruction will use the value ap=O additional oscillator clock cycles. 

4. Compute final results. 

Thus, based upon the assumptions given for Table A-6 and those listed in the problem 
statement for Example 3, the instruction 

will require 

and will execute in 

RTI 

(4+rx) 

= (4+(2 * ap» 
= (4+(2 * 0» 

instruction program word 

4 oscillator clock cycles 



Table A-6 Instruction Timing Summary (see Note 3) 

Instruction Osc. Instruction Osc. 
Mnemonic Program Clock Notes Mnemonic Program Clock 

Words Cycles Words Cycles 

ABS 1 + mv 2+mv lSR 1 + mv 2+ mv 
ADC 1 + mv 2+mv LUA 1 4 

ADD 1 + mv 2+mv MAC 1 + mv 2+mv 

ADDl 1 + mv 2+mv MACR 1 + mv 2+mv 

ADDR 1 + mv 2+mv MOVE 1 + mv 2+mv 

AND 1 + mv 2+mv MOVEC 1 + ea 2+ mvc 

ANDI 1 2 MOVEM 1 + ea 6 + ea+ ap 

ASl 1 + mv 2+mv MOVEP 1 + ea 2+ mvp 

ASR 1 + mv 2+mv MPY 1 + mv 2+mv 

BCHG 1 + ea 4+ mvb MPYR 1 + mv 2+mv 

BClR 1 + ea 4+ mvb NEG 1 + mv 2+mv 

BSET 1 + ea 4+ mvb NOP 1 2 

BTST 1 + ea 4+ mvb NORM 1 2 

ClR 1 + mv 2+mv NOT 1 + mv 2+mv 

CMP 1 + mv 2+mv OR 1 + mv 2+mv 

CMPM 1 +mv 2+mv ORI 1 2 

DEBUG 1 4 REP 1 4+mv 

DEBUGee 1 4 RESET 1 4 

DEC 1 2 RND 1 + mv 2+mv 

DIV 1 2 ROl 1 + mv 2+mv 

DO 2 6+mv ROR 1 + mv 2+mv 

ENDDO 1 2 RTI 1 4+ rx 

EOR 1 +mv 2+mv RTS 1 4+ rx 

INC 1 2 SBC 1 + mv 2+mv 

Jee 1 + ea 4+jx STOP 1 nfa 

JClR 2 6+jx SUB 1 + mv 2+mv 

JMP 1 + ea 4+jx SUBl 1 + mv 2+mv 

JScc 1 + ea 4+jx SUBR 1 + mv 2+mv 

JSCLR 2 6+jx SWI 1 8 

JSET 2 6+jx Tee 1 2 

JSR 1 + ea 4+jx TFR 1 + mv 2+mv 

JSSET 2 6+jx TST 1 + mv 2+mv 

lSl 1 + mv 2+mv WAIT 1 nfa 

Note 1: The STOP instruction disables the intemal clock oscillator. After clock tum on, an internal counter counts 
65,536 clock cycles ~f bit 6 in the OMR is clear) before enabling the clock to the internal DSP circuits. If 
bit 6 in the OMR is set, only six clock cycles are counted before enabling the clock to the external 
DSP circuits. 

Note 2: The WAlT instruction takes a minimum of 16 cycles to execute when an internal interrul1 is pending 
during the execution of the WAIT instruction. 

Note 3: If assumption 4 is not applicable, then to each one-word instruction timing, a "+ap" term should be 
added, and, to each two-word instruction, a • +(2*ap)" term should be added to account for the program 
memory wait states spent to fetch an instruction word to fill the pipeline. 

Notes 

1 

2 -
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Table A-7 Parallel Data Move Timing 

Parallel Move Operation 
+mv +mv 

Comments 
Words Cycles 

No Parallel Data Move 0 0 
I Immediate Short Data 0 0 

R Register to Register 0 0 

U Address Register Update 0 0 

X: X Memory Move ea ea+ ax See Note 1 

X:R X Memory and Register ea ea+ ax See Note 1 

Y: Y Memory Move ea ) ea+ ay See Note 1 

R:Y Y Memory and Register ea ea+ ay See Note 1 

L: Long Memory Move ea ea + axy 

X:Y: XV Memory Move 0 ea+ axy 

LMS(X) LMS X Memory Moves 0 ea+ ax See Notes 1 ,2 

LMSM LMS Y Memory Moves 0 ea+ ay See Notes 1 ,2 

Note 1: The ax or ay term does not apply to MOVE IMMEDIATE DATA. 
Note 2: The ea term does not apply to ABSOLUTE ADDRESS and IMMEDIATE DATA. 

Table A-a MOVEC Timing Summary (see Note 2) 

MOVEC Operation 
+mvc 

Comments 
Cycles 

Immediate Short 4 Register 0 
Register +-+ Register 0 

X Memory+-+ Register ea+ax See Note 1 

Y MemoryB Register ea + ay See Note 1 

P Memory+-+ Register 4+ ea+ ap 

Note 1: The ax or ay term does not apply to MOVE IMMEDIATE DATA. 
Note 2: If assumption 4 is not applicable, then to each one-word instruction timing, a "+ ap" term should 

be added, and to each two-word instruction, a "+ (2 * ap)" term should be added to account for 
the program memory wait states spent to fetch an instruction word to fill the pipeline. 

Table A-9 MOVEP Timing Summary (see Note 2) 

MOVEP Operation +mvp 
Comments 

Cycles 

Register+-+ Peripheral aio See Note 3 

Register+-+ Peripheral 2+aio See Note 4 
X Memory-0- Peripheral 2 + ea + ax + aio See Note 1 

Y Memory+-+ Peripheral 2 + ea + ay + aio See Note 1 

P Memory+-+ Peripheral 4 + ea + ap + aio 

Note 1: The" 2+ax" or "2+ay" terms do not apply to MOVE IMMEDIATE DATA. 
Note 2: If assump:ion 4 is not applicable, then to each one-word instruction timing,a "+ ap" term should be 

added, and to each two-word instruction, a "+ (2 * ap)" term should be added to account for the 
program memory wait states spent to fetch an instruction word to fill the pipeline. 

Note 3: "Register" refers to DATA_ALU register 
Note 4: "Register" refers to non DATA_ALU register 



Note that the "ap" term in Table A-a and Table A-9 for the P memory move represents 
the wait states spent when accessing the program memory during DATA read or write 
operations and does not refer to instruction fetches. 

Table A-10 Bit Manipulation Timing Summary (see Note 2) 

Bit Manipulation Operation 
+mvb 

Comments 
Cycles 

Bxxx Peripheral 2 * aio See Note 1 

Bxxx X Memory ea + (2 * ax) See Note 1 

Bxxx Y Memory ea+ (2 * ay) See Note 1 

Bxxx Register Direct 0 See Note 1 

BTST Peripheral aio 

BTST X Memory ea+ ax 

BTST Y Memory ea+ ay 

Note 1: Bxxx = BCHG, BCLR, or BSET. 
Note 2: If assumliion 4 is not applicable, then to each one-word instruction timing, 

a"+ ap" term should be added, and to each two-word instruction, a"+ (2 * ap)" 
term should be added to account for the program memory wait states spent to 
fetch an instruction word to fill the pipeline. 

Table A-11 Jump Instruction Timing Summary 

Jump Instruction Operation +Jx 
Cycles 

Jbit Register Direct 2 * ap 
Jbit Peripheral aio + (2 * ap) 

JbitXMemory ea+ ax+ (2 * ap) 

JbitYMemory ea+ ay+ (2 * ap) 

Jxxx 

Note 1: Jbit = JCLR, JSCLR, JSET, and JSSET 
Note 2: Jxxx = Jcc, JMP, JScc, and JSR 

ea + (2 * ap) 

Comments 

See Note 1 
See Note 1 

See Note 1 

See Note 1 

See Note 2 

All one-word jump instructions execute TWO program memory fetches to refill the pipe­
line, which is represented by the "+(2 * ap)" term. 

All two-word jumps execute THREE program memory fetches to refill the pipeline, but 
one of those fetches is sequential (the instruction word located at the jump instruction 
2nd word address+ 1), so it is not counted as per assumption 4. If the jump instruction 
was fetched from a program memory segment with wait states, another "ap" should be 
added to account for that third fetch. 
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Table A-12 RTIIRTS Timing Summary 

Operation 
+ rx 

Cycles 

RTI 2 * ap 
RTS 2 * ap 

The term "2 * ap" comes from the two instruction fetches done by t~e RTI/RTS instruc­

tion to refi II the pipeline. 

Table A-13 Addressing Mode Timing Summary 

Effective Addressing +ea +ea 
Mode Words Cycles 

Address Register Indirect 
No Update 0 0 

Postincrement by 1 0 0 

Postdecrement by 1 0 0 

Postincrement by Offset Nn 0 0 

Postdecrement by Offset Nn 0 0 

Indexed by Offset Nn 0 2 

Predecrement by 1 0 2 

Special 

Immediate Data 1 2 

Absolute Address 1 2 

Immediate Short Data 0 0 

Short Jump Address 0 0 

Absolute Sort Address 0 0 

1/0 Short Address 0 0 

Implicit 0 0 



Table A-14 Memory Access Timing Summary 

Access XMem YMem PMem 
Type Access Access Access 

X: Int - -
X: Ext - -
Y: - Int -
Y: - Ext -
P: - - Int 

P: - - Ext 
liD: - - -
liD: - - -
L:XY: Int Int -
L:XY: Int Ext -
L:XY: Ext Int -
L:XY: Ext Ext -

Note 1: wx = external X memory access wait states 
wy = external Y memory access wait states 
wp = external P memory access wait states 
wio = external 110 memory access wait states 

I/O +ax +ay +ap 
Access Cycle Cycle Cycle 

- 0 - -
- wx - -
- - 0 -
- - wy -
- - - 0 

- - - wp 

Int - - -
Ext - - -
- - - -
- - - -
- - - -
- - - -

+alo 
Cycle 

-
-
-
-
-
-
0 

wio 

-
-
-
-

Note 2: wx, wy, wp, and wio are programmable from 0 - 15 wait states in the port A bus control register (BCR). 

A.9 INSTRUCTION SEQUENCE RESTRICTIONS 

+axy 
Cycle 

-
-
-
-
-
-
-
-
0 

wy 

wx 

2+wx+wy 

Due to the pipelined nature of the DSP56K central processor, there are certain instruc­
tion sequences that are forbidden and will cause undefined operation. Most of these 
restricted sequences would cause contention for an internal resource, such as the stack 
register. The DSP assembler will flag these as assembly errors. 

Most of the following restrictions represent very unusual operations which probably 
would never be used but are listed only for completeness. 

Note: The DSP56K macro assembler is designed to recognize all restrictions and flag 
them as errors at the source code level. Since many of these are instruction sequence 
restrictions, they cannot be flagged as errors at the object code level such as when using 
the DSP56K simulator's single-line assembler. Therefore, if any changes are made at 
the object code level using the simulator, the user should always re-assemble his pro­
gram at the source code level using the DSP56K macro assembler to verify that no 
restricted instruction sequences have been generated. -
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A.9.1 Restrictions Near the End of DO Loops 
Proper DO loop operation is not guaranteed if an instruction starting at address LA-2, 
LA-1, or LA specifies one of the program controller registers SR, SP, SSL, LA, LC, or 
(implicitly) PC as a destination register. Similarly, the SSH register may not be specified 
as a source or destination register in an instruction starting at address LA-2, LA-1, or 
LA. Additionally, the SSH register cannot be specified as a source register in the DO 
instruction itself, and LA cannot be used as a target for jumps to subroutine (Le., JSR, 
JScc, JSSET, or JSCLR to LA). The following instructions cannot begin at the indicated 
position(s) near the end of a DO loop: 

At LA-2, LA-1, and LA 

At LA 

DO 
BCHG LA, LC, SR, SP, SSH, or SSL 
BCLR LA, LC, SR, SP, SSH, or SSL 
BSET LA, LC, SR, SP, SSH, or SSL 
BTSTSSH 
JCLRlJSET/JSCLRlJSSET SSH 
MOVEC from SSH 
MOVEM from SSH 
MOVEP from SSH 
MOVEC to LA, LC, SR, SP, SSH, or SSL 
MOVEM to LA, LC, SR, SP, SSH, or SSL 
MOVEP to LA, LC, SR, SP, SSH, or SSL 
ANDI MR 
ORIMR 

any two-word instruction * 
Jcc 
JMP 
JScc 
JSR 
REP 
RESET 
RTI 
RTS 
STOP 
WAIT 

*This restriction applies to the situation in which the DSP56K simulator's single-line 
assembler is used to change the last instruction in a DO loop from a one-word instruc­
tion to a two-word instruction. All changes made using the simulator should be reassem­
bled at the source code level using the DSP56K macro assembler to verify that no 
restricted instruction sequences have been generated. 



Other Restrictions DO SSH,xxxx 
JSR to (LA) whenever the loop flag (LF) is set 
JScc to (LA) whenever the loop flag (LF) is set 
JSCLR to (LA) whenever the loop flag (LF) is set 
JSSET to (LA) whenever the loop flag (LF) is set 

Note: Due to pipelining, if an address register (RO-R7, NO-N7, or MO-M7) is changed 
using a move-type instruction (LUA, Tcc, MOVE, MOVEC, MOVEM, MOVEP, or parallel 
move), the new contents of the destination address register will not be available for use 
during the following instruction (Le., there is a single instruction cycle pipeline delay). 
This restriction also applies to the situation in which the last instruction in a DO loop 
changes an address register and the first instruction at the top of the DO loop uses that 
same address register. The top instruction becomes the following instruction because 
of the loop construct. The assembler will generate a warning if this condition is detected. 

A.9.2 Other DO Restrictions 
Due to pipelining, the DO instruction must not be immediately preceded by any of the 
following instructions: 

Immediately before DO 

A.9.3 ENDDO Restrictions 

BCHG LA, LC, SSH, SSL, or SP 
BCLR LA, LC, SSH, SSL, or SP 
BSET LA, LC, SSH, SSL, or SP 
MOVEC to LA, LC, SSH, SSL, or SP 
MOVEM to LA, LC, SSH, SSL, or SP 
MOVEP to LA, LC, SSH, SSL, or SP 
MOVEC from SSH 
MOVEM from SSH 
MOVEP from SSH 

Due to pipelining, the ENDDO instruction must not be immediately preceded by any of 
the following instructions: 
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Immediately before ENDDO BCHG lA, lC, SR, SSH, SSl, or SP 
BClR lA, lC, SR, SSH, SSl, or SP 
BSET lA, lC, SR, SSH, SSl, or SP 
MOVEC to LA, lC, SR, SSH, SSl, or SP 
MOVEM to lA, lC, SR, SSH, SSl, or SP 
MOVEP to lA, lC, SR, SSH, SSl, or SP 
MOVEC from SSH 
MOVEM from SSH 
MOVEP from SSH 
ANDI MR 
ORIMR 
REP 

A.9.4 RTI and RTS Restrictions 
Due to pipelining, the RTI and RTS instructions must not be Immediately preceded by 
any of the following instructions: 

Immediately before RTI 

Immediately before RTS 

BCHG SR, SSH, SSl, or SP 
BClR SR, SSH, SSl, or SP 
BSET SR, SSH, SSl, or SP 
MOVEC to SR, SSH, SSl, or SP 
MOVEM to SR, SSH, SSl, or SP 
MOVEP to SR, SSH, SSl, or SP 
MOVEC from SSH 
MOVEM from SSH 
MOVEP from SSH 
ANDI MR or ANDI CCR 
ORI MR or ORI CCR 

BCHG SSH, SSl, or SP 
BClR SSH, SSl, or SP 
BSET SSH, SSl, or SP 
MOVEC to SSH, SSl, or SP 
MOVEM to SSH, SSl, or SP 
MOVEP to SSH, SSl, or SP 
MOVEC from SSH 
MOVEM from SSH 
MOVEP from SSH 

A.9.S SP and SSH/SSL Manipulation Restrictions 
In addition to all the above restrictions concerning MOVEC, MOVEM, MOVEP, SP, SSH, 
and SSl, the following MOVEC, MOVEM, and MOVEP restrictions apply: 



Immediately before MOVEC from SSH or SSL BCHG to SP 
BClR to SP 
BSETto SP 

Immediately before MOVEM from SSH or SSL BCHG to SP 
BClR to SP 
BSETto SP 

Immediately before MOVEP from SSH or SSL BCHG to SP 
BClR to SP 
BSETto SP 

Immediately before MOVEC from SSH or SSL MOVEC to SP 
MOVEM to SP 
MOVEP to SP 

Immediately before MOVEM from SSH or SSL MOVEC to SP 
MOVEM to SP 
MOVEP to SP 

Immediately before MOVEP from SSH or SSL MOVEC to SP 
MOVEM toSP 
MOVEP to SP 

Immediately before JCLR #n,SSH or SSL,xxxx MOVEC to SP 
MOVEM to SP 
MOVEP to SP 

Immediately before JSET #n,SSH or SSL,xxxx MOVEC to SP 
MOVEM to SP 
MOVEP to SP 

Immediately before JSCLR #n,SSH or SSL,xxxx MOVEC to SP 
MOVEM to SP 
MOVEP to SP 

Immediately before JSSET #n,SSH or SSL,xxxx MOVEC to SP 
MOVEM toSP 
MOVEP to SP 

Immediately before JCLR #n,SSH or SSL,xxxx 

Immediately before JSET #n,SSH or SSL,xxxx 

BCHG to SP 
BClR to SP 
BSETto SP 

BCHG to SP 
BClR to SP 
BSETto SP 

-



-

Immediately before JSCLR from SSH or SSL,xxxx BCHG to SP 
BCLR to SP 
BSET to SP 

Immediately before JSSET from SSH or SSL,xxxx BCHG to SP 
BCLR to SP 
BSETto SP 

Also, the instruction MOVEC SSH,SSH is illegal. 

A.9.G R, N, and M Register Restrictions 
Due to pipelining, if an address register Rn is the destination of a MOVE-type instruction 
except MOVEP (MOVE, MOVEC, MOVEM, LUA, Tcc) , the new contents will not be 
available for use as an address pointer until the second following instruction cycle. 

Likewise, if an· offset register Nn or a modifier register Mn is the destination of a MOVE­
type instruction except MOVEP, the new contents will not be available for use in address 
calculations until the second following instruction cycle. 

However, if the processor is in the No Update addressing mode (where Mn and Nn are 
ignored) and register Mn or Nn is the destination of a MOVE instruction, the next instruc­
tion may use the corresponding Rn register as an address pointer. Also, if the processor 
is in the Postincrement by 1, Postdecrement by 1, or Predecrement by 1 addressing 
mode (where Nn is ignored), a MOVE to Nn may be immediately followed by an instruc­
tion that uses Rn as an address pointer. 

Note: This restriction also applies to the situation in which the last instruction in a DO 
loop changes an address register using a move-type instruction and the first instruction 
at the top of the DO loop uses that same address register. The top instruction becomes 
the following instruction because of the loop construct. The DSP assembler will gener­
ate a warning if this condition is detected. 

A.9.7 Fast Interrupt Routines 
The following instructions may not be used in a fast interrupt routine: 

In a fast interrupt rou~ine DO MOVEM from SSH 
ENDDO MOVEP from SSH 
RTI ORI MR or ORI CCR 
RTS ANDI MR or ANDI CCR 

STOP 
SWI 
WAIT 

, MOVEC to LA, LC, SSH, SSL, SP, or SR 
MOVEM to LA, LC, SSH, SSL, SP, or SR 
MOVEP to LA, LC, SSH, SSL, SP, or SR 
MOVEC from SSH 



A.9.S REP Restrictions 
The REP instruction can repeat any single-word instruction except the REP instruction 
itself and any instruction that changes program flow. The following instructions are not 
allowed to follow an REP instruction: 

Immediately after REP DO 
Jcc 
JCLR 
JMP 
JSET 
JScc 
JSCLR 
JSR 
JSSET 
REP 
RTI 
RTS 
STOP 

'SWI 
WAIT 
ENDDO 

Also, an REP instruction cannot be the last instruction in a DO loop (at LA). 

A.10 INSTRUCTION ENCODING 
This section summarizes instruction encoding for the DSP56K instruction set. The 
instruction codes are listed in nominally descending order. The symbols used in decod­
ing the various fields of an instruction are identical to those used in the Opcode section of 
the individual instruction descriptions. The user should always refer to the actual instruc­
tion description for complete information on the encoding of the various fields of that 
instruction. 

Section A.10.1 gives the encodings for (1) various groupings of registers used in the 
instruction encodings, (2) condition code combinations, (3) addressing, and (4) address­
ing modes. 

Section A.10.2 gives the encoding for the parallel move portion of an instruction. These 
16-bit partial instruction codes may be combined with the 8-bit data ALU opcodes listed 
in Section A.1 0.3 to form a complete 24-bit instruction word. 

Section A.10.3 gives the complete 24-bit instruction encoding for those instructions 
which do not allow parallel moves. 

-
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Section A.10.4 gives the encoding for the data ALU portion of those instructions which 
allow parallel data moves. These a-bit partial instruction codes may be combined with 
the 16-bit parallel move opcodes listed in Section A.10.1 to form a complete 24-bit 
instruction word. 

A.10.1 Partial Encodings for Use in Instruction Encoding 

Table A-15 Single-Bit Register Encodings 

Code d* e f Where: 

0 A XO YO d = 2 Accumulators in Data ALU 

1 B X1 Y1 e = 2 Registers in Data ALU 

f = 2 Registers in Data ALU 

• For class II encodings for R:Y and X:R, see Table A-16 

Table A-16 Single-Bit Special Register Encodings 

d X:R Class II Opcode R:Y Class II Opcode 

0 A ~ X:<ea> XO ~ A YO ~ AA ~ Y:<ea> 

1 B ~ X:<ea> XO ~ B YO ~ B B ~ Y:<ea> 

Table A-17 Double-Bit Register Encodings 

Code DD ee 

00 XO XO 

01 X1 X1 

10 YO A 

11 Y1 B 

Where: DD = 4 registers in data ALU 
ee = 4 XDS registers in data ALU 
ff = 4 YDS registers in data ALU 

ff 

YO 
Y1 

A 

B 



Table A-18 Triple-Bit Register Encodings 

Code DDD LLL FFF NNN TTT GGG 

000 AO A10 MO NO RO * 
001 BO B10 M1 N1 R1 SR 

010 A2 X M2 N2 R2 OMR 

011 B2 Y M3 N3 R3 SP 

100 A1 A M4 N4 R4 SSH 

101 B1 B M5 N5 R5 SSL 

110 A AB M6 N6 R6 LA 

111 B BA M7 N7 R7 LC 

* Reserved 
Where: DOD: 8 accumulators in data ALU 

LLL: 8 extended-precision registers in data ALU; LLL field is encoded as LOLL 
FFF: 8 address modifier registers in address ALU 
NNN: 8 address offset registers in address ALU 
TTT: 8 address registers in address 
FFF: 8 program controller registers 

Table A-19(a) Four-Bit Register Encodings for 12 Registers in Data ALU 

D D D D Description 

0 0 X X Reserved 

0 1 D D Data ALU Register 

1 D D D Data ALU Register 

Table A-19(b) Four-Bit Register Encodings for 16 Condition Codes 

Mnemonic C C C C Mnemo'nic C C C c 
CC(HS) 0 0 0 0 CS(LO) 1 0 0 0 

GE 0 0 0 1 LT 1 0 0 1 

NE 0 0 1 0 EQ 1 0 1 0 

PL 0 0 1 1 MI 1 0 1 1 

NN 0 1 0 0 NR 1 1 0 0 

EC 0 1 0 1 ES 1 1 0 1 

LC 0 1 1 0 LS 1 1 1 0 

GT 0 1 1 1 LE 1 1 1 1 
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Table A-20 Five-Bit Register Encodings for 
28 Registers in Data ALU and Address ALU 

e e e e e 
or 

d d d d d 

0 0 0 0 X 
0 0 0 1 X 

0 0 1 D D 

0 1 D D D 

1 0 T T T 

1 1 N N N 

Where: eeeee = source 
ddddd = destination 

Description 

Reserved 

Reserved 

Data ALU Register 

Data ALU Register 

Address ALU Register 

Address Offset Register 

Table A-21 Six-Bit Register Encodings 
for 43 Registers On-Chip 

d d d d d d Description 

0 0 0 0 X X Reserved 

0 0 0 1 D D Data ALU Register 

0 0 1 D D D Data ALU Register 

0 1 0 T T T Address ALU Register 

0 1 1 N N N Address Offset Register 

1 0 0 F F F Address Modifier Register 

1 0 1 X X X Reserved 

1 1 0 X X X Reserved 

1 1 1 G G G Program Controller Register 

Table A-22 Write Control Encoding 

W Operation 

0 Read Register or Peripheral 

1 Write Register or Peripheral 

Table A-23 Memory Space Bit Encoding 

S Operation 

0 X Memory 

1 Y Memory 



Table A-24 Program Control Unit Register Encoding 

E E Register 

0 0 MR Mode Register 

0 1 CCR Condition Code Register 

1 0 OMR Operating Mode Register 

1 1 - Reserved 

Table A-25 Condition Code and Address Encoding 

Code Code Definition 

ecce 16 Condition Code Combinations 

b bbbb 5-Bit Immediate Data 

iiii iiii 8-Bit Immediate Data (int, trac, mask) 

iiii iiii xxxx hhhh 12-Bit Immediate Data (iiii iiii hhhh) 

aa aaaa 6-Bit Absolute Short (Low) Address 

pp pppp 6-Bit Absolute I/O (High) Address 

aaaa aaaa aaaa 12-Bit Fast Absolute Short (Low) Address 

Table A-26 Effective Addressing Mode Encoding 

M2 M1 MO R2 R1 RO Code Definition 

0 0 0 r r r Post - N 

0 0 1 r r r Post + N 

0 1 0 r r r Post -1 

0 1 1 r r r Post + 1 

1 0 0 r r r No Update 

1 0 1 r r r Indexed + N 

1 1 1 r r r Pre - 1 

1 1 0 0 0 0 Absolute Address 

1 1 0 1 0 0 Immediate Data 

MMM = three bits M2, M1, MO determine mode 

RRR = three bits R2, R1 , RO determine which address register number where rrr refers to the 
binary representation of the number 

Notes: 
(1) R2 is 0 for low register bank and 1 for the high register bank. 
(2) M2 is 0 for all post update modes and 1 otherwise. 
(3) M1 is 0 for update by register offset and no update and 1 otherwise. 
(4) MO is 0 for minus and 1 for plus, except for predecrement which is also 1. 
(5) For X:Y: parallel data moves, bits 14 and 13 of the opcode are a subset of the above RRR 

and are labelled rr. See the XY parallel data move description for a detailed explanation. 
(6) For X:Y: parallel data moves, bits 21 and 20 of the opcode are a subset of the above MMM 

and are labelled mm. See the XY parallel data move description for a detailed explanation 

-



A.10.2 Instruction Encoding for the Parallel Move Portion of an Instruction 

X: V: Parallel Data Move 

23 16 15 87 o 
1Wmmee f f WrrMMRRR INSTRUCTION OPCODE 

X: Parallel Data Move 

23 16 15 87 o 
01 ddOddd W1MMMRRR INSTRUCTION OPCODE 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

23 16 15 8 7 0 

o 1 d dOd d d W 0 a a a a a a INSTRUCTION OPCODE 

V: Parallel Data Move 

23 16 15 87 o 
01 dd1ddd W1MMMRRR INSTRUCTION OPCODE 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

23 16 15 87 o 
01 dd1ddd WOaaaaaa INSTRUCTION OPCODE 

L: Parallel Data Move 

23 16 15 87 o 
01 OOLOLL W1MMMRRR INSTRUCTION OPCODE 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

23 16 15 87 0 

o 1 0 0 L 0 L L W 0 a a a a a a INSTRUCTION OPCODE 

- I: Immediate Short Parallel Data Move 

23 16 15 87 o 
o 0 d d d d d INSTRUCTION OPCODE 



R: Register to Register Parallel Data Move 

23 16 15 87 o 
o 0 OOOee eeeddddd INSTRUCTION OPCODE 

U: Address Register Update Parallel Data Move 

23 16 15 87 0 

o 0 o 0 0 0 0 0 10M M R R R INSTRUCTION OPCODE 

Parallel Data Move NOP 

23 16 15 87 0 

o 0 o 0 0 0 0 i 0 0 0 0 0 0 0 0 i INSTRUCTION OPCODE 

R:Y Parallel Data Move 

(Class I) 

23 16 15 87 0 

o 0 0 1 d e f f W 1 M M M R R R INSTRUCTION OPCODE 

(Class II) 
23 

o 0 0 0 1 

X: R Parallel Data Move 

(Class I) 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

16 15 8 7 0 

00 di10M M M R R R i INSTRUCTION OPCODE 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

23 16 15 87 0 

o 0 0 1 f f d f W 0 M M M R R R INSTRUCTION OPCODE 

(Class II) 
23 

o 0 0 0 1 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

16 15 8 7 0 

M M R R R I INSTRUCTION OPCODE 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 



A.10.3 Instruction Encoding for Instructions Which Do Not Allow Parallel Moves 

Note: For following bit class instructions bbbbb = 11 bbb is reserved: 
JSSET, JSClR, JSET, JClR, BTST, BCHG, BSET, and BClA. 

JScc xxx 
23 16 15 87 0 

I 0 0 0 0 1 1 1 1 C C C C a a a a I a a a a a a a a I 

Jcc XXX 

23 16 15 87 0 

I 0 0 0 0 1 1 1 o I C C C C a a a a I a a a a a a a a I 

JSR XXX 

23 16 15 87 0 

I 0 0 0 0 1 1 0 1 I 0 0 0 0 a a a a I a a a a a a a a I 

JMP XXX 

23 16 15 87 0 

I 0 0 0 0 1 1 0 0 0 0 0 0 a a a a I a a a a a a a a I 

JScc ea 

23 16 15 87 0 

0 0 0 0 1 0 1 1 1 1 M M M R R R 1 0 1 0 C C C C 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

JSR ea 
23 16 15 87 0 

0 0 0 0 1 0 1 1 1 1 M M M R R R 1 0 0 0 0 0 0 0 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

Jcc ea 
23 16 15 87 0 

0 0 0 0 1 0 1 0 1 1 M M M R R R 1 0 1 0 C C C C 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

JMP ea 
23 16 15 87 0 

0 0 0 0 1 0 1 0 1 1 M M M R R R 1 0 0 0 0 0 0 0 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 



JSSET 
JSSET 

JSCLR 
JSCLR 

JSET 
JSET 

JCLR 
JCLR 

JSSET 
JSSET 

JSCLR 
JSCLR 

#n,X:pp,XXXX 
#n,Y:pp,xxxx 

23 16 15 87 

00001011 

#n,X:pp,XXXX 
#n,Y:pp,XXXX 

10pppppp 

ABSOLUTE ADDRESS EXTENSION 

o 
1 S 1 b b b b b 

23 16 15 87 0 

00001011 

#n,X:pp,XXXX 
#n,Y:pp,XXXX 

10pppppp 1S0bbbbb 

ABSOLUTE ADDRESS EXTENSION 

23 1615 87 0 

00001010 10pppppp 1S1 bbbbb 

#n,X:pp,XXXX 
#n,Y:pp,XXXX 

ABSOLUTE ADDRESS EXTENSION 

23 16 15 87 0 

00001010 10pppppp 1S0bbbbb 

#n,X:ea,xxxx 
In, Y:ea,xxxx 

ABSOLUTE ADDRESS EXTENSION 

23 16 15 87 

00001011 

#n,X:ea,xxxx 
In, Y:ea,xxxx 

01MMMRRR 1S1 bbbbb 

ABSOLUTE ADDRESS EXTENSION 

o 

23 16 15 87 0 

00001011 01MMMRRR 1S0bbbbb 

ABSOLUTE ADDRESS EXTENSION 



JSET 
JSET 

JCLR 
JCLR 

JSSET 
JSSET 

JSCLR 
JSCLR 

JSET 
JSET 

JCLR 
JCLR 

#n,X:ea,xxxx 
#n,Y:ea,xxxx 

23 16 15 87 

00001010 01MMMRRR 1S1 

23 

#n,X:ea,xxxx 
In, Y:ea,xxxx 

ABSOLUTE ADDRESS EXTENSION 

16 15 87 

b b b b b 

00001010 01MMMRRR 1S0bbbbb 

23 

#n,X:aa,xxxx 
#n,Y:aa,xxxx 

0000101 

#n,X:aa,xxxx 
In, Y:aa,xxxx 

ABSOLUTE ADDRESS EXTENSION 

16 15 87 

1 0 Oaaaaaa 1S1 b b b b b 

ABSOLUTE ADDRESS EXTENSION 

o 

o 

o 

23 16 15 87 0 

00001011 OOaaaaaa 

23 

#n,X:aa,xxxx 
#n,Y:aa,xxxx 

ABSOLUTE ADDRESS EXTENSION 

16 15 87 

0000101000aaaaaa 

23 

#n,X:aa,xxxx 
In, Y:aa,xxxx 

ABSOLUTE ADDRESS EXTENSION 

16 15 87 

0000101000aaaaaa 

ABSOLUTE ADDRESS EXTENSION 

1S0bbbbb 

o 
1 S 1 b b b b b 

o 
1S0bbbbb 



JSSET #n,S,xxxx 

23 16 15 87 0 

00001011 11dddddd 001 bbbbb 

ABSOLUTE ADDRESS EXTENSION 

JSCLR #n,S,xxxx 

23 16 15 87 0 

00001011 11dddddd OOObbbbb 

ABSOLUTE ADDRESS EXTENSION 

JSET #n,S,xxxx 

23 16 15 87 0 

00001010 11dddddd 001 bbbbb 

ABSOLUTE ADDRESS EXTENSION 

JCLR #n,S,xxxx 

23 16 15 87 o 
00001010 11dddddd OOObbbbb 

ABSOLUTE ADDRESS EXTENSION 

BTST #n,X:pp 
BTST #n,Y:pp 

23 16 15 87 0 

0 0 0 0 1 0 1 1 1 0 P P P P P P I 0 S 1 b b b b b 

BCHG #n,X:pp 
BCHG #n,Y:pp 

23 16 15 87 0 

I 0 0 0 0 1 0 1 1 I 1 0 P P P P P P I 0 S 0 b b b . b b I 

BSET #n,X:pp 
BSET #n,Y:pp 

23 16 15 87 0 

I 0 0 0 0 1 0 1 0 1 0 P P P P P P I 0 S 1 b b b b b I 



BCLR 
BCLR 

BTST 
BTST 

BCHG 
BCHG 

BSET 
BSET 

BCLR 
BCLR 

BTST 
BTST 

23 

#n,X:pp 
#n,Y:pp 

I 0 0 0 0 

#n,X:ea 
#n,Y:ea 

16 15 87 0 

101010ppppp plOSObbbbb 

23 16 15 87 0 

00001011 01MMMRRR OS1 bbbbb 

#n,X:ea 
#n,Y:ea 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

23 16 15 87 0 

00001011 01MMMRRR OSObbbbb 

#n,X:ea 
#n,Y:ea 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

23 16 15 87 0 

00001010 01MMMRRR OS1 bbbbb 

#n,X:ea 
#n,Y:ea 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

23 16 15 87 0 

00001010 01MMMRRR OSObbbbb 

#n,X:aa 
#n,Y:aa 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

23 16 15 87 0 

1 00 00 1 01 1 I 00 a a a a a a lOS 1 b b.b b b I 



BCHG #n,X:aa 
BCHG #n,Y:aa 

23 16 15 87 0 

I 0 0 0 0 1 0 1 1 0 0 a a a a a a I 0 s 0 b b b b b 

BSET #n,X:aa 
BSET #n,Y:aa 

23 16 15 87 0 

I 0 0 0 0 1 0 1 o I 
0 0 a a a a a a I 0 S 1 b b b b b I 

BClR #n,X:aa 
BelR #n,Y:aa 

23 16 15 87 0 

I 0 0 0 0 1 0 1 o I 
0 0 a a a a a a I 0 s 0 b b b b b I 

BTST #n,O 

23 16 15 87 0 

I 0 0 0 0 1 0 1 1 
I 

1 1 d d d d d d I 0 1 b b b b b I 

BCHG #n,O 

23 16 15 87 0 

I 0 0 0 0 1 0 1 1 I 1 1 d d d d d d I 0 1 0 b b b b b I 

BSET #n,O 

23 16 15 87 0 

I 0 0 0 0 1 0 1 o I 1 1 d d d d d d I 0 1 b b b b b 



BCLR #n,O 
23 

0 0 0 0 1 0 

MOVEP X:ea,X:pp 
MOVEP V:ea,X:pp 
MOVEP #XXXXXX,X:pp 
MOVEP X:pp,X:ea 
MOVEP X:pp,V:ea 
MOVEP X:ea,V:pp 
MOVEP V:ea,V:pp 
MOVEP #XXXXXX,V:pp 
MOVEP V:pp,X:ea 
MOVEP V:pp,V:ea 

23 

0 0 0 0 

MOVEP P:ea,X:pp 
MOVEP X:pp,P:ea 
MOVEP P:ea,V:pp 
MOVEP V:pp,P:ea 

23 

1 0 

16 15 87 

1 o \ 1 1 d d d d d d \ 0 1 0 b b b b b 

16 15 87 

0 S W 1 M M M R R R 1 s P P P P P P 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

16 15 87 

0000100S W1MMMRRR 01 pppppp 

MOVEP S,X:pp 
MOVEP X:pp,O 
MOVEP S,V:pp 
MOVEP V:pp,O 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

0 

0 

o 

23 16 15 87 0 

\ 0 0 0 0 

MOVE(M) 
MOVE(M) 

S,P:ea 
P:ea,O 

1 00S\W1dd d d d d\OOpppppp\ 

23 16 15 87 0 

00000111 W1MMMRRR 10dddddd 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 



MOVE(M) S,P:aa 
MOVE(M) P:aa,D 

23 16 15 87 0 

I 0 0 0 0 0 1 1 1 IW 0 a a a a a a I 0 0 d d d d d d I 

REP #XXX 

23 16 15 87 0 

1 
0 0 0 0 0 1 1 o 1 11 0 1 0 h h h h I 

REP S 

23 16 15 87 0 

I 0 0 0 0 0 1 1 o I 1 1 d d d d d d I 0 0 1 0 0 0 0 0 

REP X:ea 
REP Y:ea 

23 16 15 87 0 

1 
0 0 0 0 0 1 1 o I 0 1 M M M R R R 1 0 s 1 0 0 0 0 0 

REP X:aa 
REP Y:aa 

23 16 15 87 0 

1 
0 0 0 0 0 1 1 0 

1 
0 0 a a a a a a 1 0 s 1 0 0 0 0 o I 

DO #xxx,expr 

23 16 15 87 0 

0 0 0 0 0 1 1 0 i i 1 0 0 0 h h h h 

ABSOLUTE ADDRESS EXTENSION 

DO S,expr 

23 16 15 87 0 

0 0 0 0 0 1 1 0 1 1 D D D D D D 0 0 0 0 0 0 0 0 

ABSOLUTE ADDRESS EXTENSION 

-



DO X:ea,expr 
DO V:ea,expr 

23 16 15 87 0 

00000110 01MMMRRR OSOOOOOO 

ABSOLUTE ADDRESS EXTENSION 

DO X:aa,expr 
DO V:aa,expr 

23 16 15 87 o 
00000110 OOaaaaaa OSOOOOOO 

ABSOLUTE ADDRESS EXTENSION 

MOVE(C) #xx,01 
23 16 15 87 0 

1000001011 

MOVE(C) 
MOVE(C) 
MOVE(C) 
MOVE(C) 
MOVE(C) 

23 

X:ea,01 
S1,X:ea 
V:ea,01 
S1,V:ea 
#xxxx,01 

16 15 87 

00000101 W1MMMRRR Os1ddddd 

MOVE(C) 
MOVE(C) 
MOVE(C) 
MOVE(C) 

X:aa,D1 
S1,X:aa 
V:aa,01 
S1,V:aa 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

o 

23 16 15 87 0 

MOVE(C) 
MOVE(C) 

00000101 WOaaaaaa Os1 ddddd 

S1,02 
S2,01 

OPTIONAL EFFECTIVE ADDRESS EXTENSION 

23 16 15 87 0 

o 0 .0 0 0 1 0 0 W 1 e e e e eel 1 0 1 d d d d d 



LUA ea,O 

23 16 15 87 0 

I 0 0 0 0 0 1 0 0 I 0 1 o M M R R R I 0 0 0 1 d d d d I 

Tee S1,01 S2,02 

23 16 15 87 0 

I 0 0 0 0 0 0 1 1 C C C C 0 t t I 0 J J J 0 T T TI 

Tee S1,01 

23 16 15 87 0 

0 0 0 0 0 0 1 o I c c c c 0 0 0 o I 0 J J J 0 0 0 0 

NORM Rn,O 

23 16 15 87 0 

I 0 0 0 0 0 0 0 1 I 1 1 0 1 1 R R R I 0 0 0 1 d 1 0 1 

OIV S,O 
23 16 15 87 0 

I 0 0 0 0 0 0 0 1 I 1 0 0 0 0 0 0 o I 0 1 J J d 0 0 o I 

MAC (±)S,#n,O 

23 16 15 8 7 0 

1
0 0 0 0 0 0 0 1 10 0 0 s s s s s I 1 Q Q d k 1 o 1 

MACR (±)S,#n,O 

23 16 15 8 7 0 

1
0 0 0 0 0 0 0 1 1 0 0 0 s s s s s 11 Q Q d k 1 11 

MPY (±)S,#n,O 

23 16 15 8 7 0 -1
0 0 0 0 0 0 0 1 1 0 0 0 s s s s s 11 Q Q d k 0 o I 



MPYR (±)S,#n,D 

23 16 15 8 7 0 

1
0 0 0 0 0 0 0 1 10 0 0 s s s s s I 1 Q Q d k 0 11 

DEBUGcc 
23 16 15 87 0 

I 0 0 0 0 0 0 0 o I 0 0 0 0 0 0 1 1 I 0 0 0 0 c c c c I 

DEBUG 
23 16 15 87 0 

I 0 0 0 0 0 0 0 o I 0 0 0 0 0 0 1 o I 0 0 0 0 0 0 0 o I 

OR(I) #xx,D 

23 16 15 87 0 

0 0 0 0 0 0 0 o I 1 1 0 E E I 

AND(I) #xx,D 
23 16 15 87 0 

0 0 0 0 0 0 0 o 1 11 0 1 0 E E 1 

-



ENDDO 

23 16 15 87 0 

0 0 0 0 0 0 0 o 1 0 0 0 0 0 0 0 o 11 0 0 0 1 0 o 1 

STOP 
23 16 15 87 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 1 1 0 0 0 0 1 

WAIT 
23 16 15 87 0 

1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

RESET 
23 16 15 87 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 

RTS 
23 16 15 87 0 

1 
0 0 0 0 0 0 0 o I 0 0 0 0 0 0 0 0 0 0 0 0 1 0 o I 

DEC 
23 16 15 87 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 d 

INC 
23 16 15 87 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 d 

SWI 
23 16 15 87 0 

1 
0 0 0 0 0 0 0 0 0 '0 0 0 0 0 0 0 0 0 0 0 0 0 -



-

ILLEGAL 

23 16 15 87 0 

I 0 0 0 0 0 0 0 o I 0 0 0 0 0 0 0 01 0 0 0 0 0 1 0 1 

RTI 

23 16 15 87 0 

I 0 0 0 0 0 0 0 o I 0 0 0 0 0 0 0 o I 0 0 0 0 0 1 0 o I 

NOP 

23 16 15 87 0 

I 0 0 0 0 0 0 0 o I 0 0 0 0 0 0 0 01 0 0 0 0 0 0 0 o I 

A.10.4 Parallel Instruction Encoding of the Operation Code 

The operation code encoding for the instructions which allow parallel moves is divided 
into the multiply and non multiply instruction encodings shown in the following subsection. 

Multiply Instruction Encoding 

The a-bit operation code for multiply instructions allowing parallel moves has different 
fields than the nonmultiply instruction's operation code. 

The a-bit operation code=1 aaa dkkk whereQQQ=selects the inputs to the multiplier 
kkk = three unencoded bits k2, k1, kO 
d = destination accumulator 
d=O-+A 
d=1-+B 

Table A-27 Operation Code KO-2 Decode 

Code k2 k1 kO 

0 positive mpyonly don't round 

1 negative mpy and ace round 



Table A-28 Operation Code QQQ Decode 

Q Q Q S1 S2 

0 0 0 xo xo 

0 0 1 YO YO 

0 1 0 X1 xo 
0 1 1 Y1 YO 

1 0 0 XO Y1 

1 0 1 YO XO 

1 1 0 X1 YO 

1 1 1 Y1 X1 

NOTE: S1 and S2 are the inputs to the multiplier. 

MACR 851 ,52,0 
MACR 52,51,0 

23 87 43 0 

DATA BUS MOVE FIELD 

MAC B 51,82,0 
MAC 52,51,0 

23 87 43 0 

DATA BUS MOVE FIELD 

MPYR B 51,52,0 
MPYR 52,81,0 

23 87 43 0 

DATA BUS MOVE FIELD 

MPY () 51,52,0 
MPY () 82,51,0 -23 87 43 0 

DATA BUS MOVE FIELD 



-

Nonmultlply Instruction Encoding 

The a-bit operation code for instructions allowing parallel moves contains two 3-bit fields 
defining which instruction the operation code represents and one bit defining the destina­
tion accumulator register. 

The a-bit operation code = OJJJ Dkkk where JJJ=1/2 instruction number 
kkk=1/2 instruction number 
0=0'-' A 
0=1 .-. B 

Table A-29 Nonmultlply Instruction Encoding 

JJJ 

000 

001 

0102 

011 2 

0102 

011 2 

100 

101 

110 

111 

NOTES: 

D=O D =1 
Src Src 

Oper Oper 000 

B A MOVE' 
B A ADD 
B A -
B A -

X1XO X1XO ADD 
Y1YO Y1YO ADD 
XO_O XO_O ADD 
YO_O YO_O ADD 
X1_0 X1_0 ADD 
Y1_0 yeO ADD 

• = Reserved 
1 = Special Case 11 (See Table A-30) 
2 = Special Case f2 (See Table A-31) 

001 

TFR 
RND 
-
-

ADC 
ADC 
TFR 
TFR 
TFR 
TFR 

kick 

010 011 100 101 110 

ADDR TST * CMP SUBR 
ADDL CLR SUB * SUBL 
ASR LSR - - ABS 
ASL LSL - - NEG 
- - SUB SBC 

- - SUB SBC 
OR EOR SUB CMP AND 
OR EOR SUB CMP AND 
OR EOR SUB CMP AND 
OR EOR SUB CMP AND 

111 

CMPM 
NOT 
ROR 
ROL 

CMPM 
CMPM 
CMPM 
CMPM 



Table A-30 Special Case #1 

0 P E R CO D E Operation 

0 0 0 0 0 0 0 0 MOVE 

0 0 0 0 1 0 0 0 ReseNed 

For JJJ=01 0 and 011, k1 qualifies source register selection: 

Table A-31 Special Case #2 

0 J J J d k k k Operation 

0 0 1 0 x x 0 x Selects X1 XO 

0 0 1 1 x x 0 x Selects Y1YO 

0 0 1 x x x 1 x Selects NB 

CMPM 81,82 

23 87 43 0 

DATA BUS MOVE FIELD 

AND 8,D 

23 87 43 0 

DATA BUS MOVE FIELD 

CMP 81,82 

23 87 43 0 

DATA BUS MOVE FIELD 

SUB 8,D 

23 87 43 0 

DATA BUS MOVE FIELD 



EOR S,D 
23 87 43 0 

DATA BUS MOVE FIELD 

OR S,D 
23 87 43 0 

DATA BUS MOVE FIELD 

TFR S,D 

23 87 43 0 

DATA BUS MOVE FIELD 

ADD S,D 
23 87 43 0 

DATA BUS MOVE FIELD 

SBC S,D 

23 87 43 0 

DATA BUS MOVE FIELD 

ADC S,D 

23 87 43 0 

DATA BUS MOVE FIELD 

ROL ° 23 43 0 

DATA BUS MOVE FIELD 



NEG D 

23 87 43 0 

DATA BUS MOVE FIELD 

LSL D 

23 87 43 0 

DATA BUS MOVE FIELD 

ASL D 

23 87 0 

DATA BUS MOVE FIELD 

ROR D 
23 87 43 0 

DATA BUS MOVE FIELD 

ABS D 

23 87 43 0 

DATA BUS MOVE FIELD 

LSR D 

23 87 43 0 

DATA BUS MOVE FIELD 

ASR D 

23 87 43 0 

DATA BUS MOVE FIELD 



NOT D 

23 87 43 0 

DATA BUS MOVE FIELD 

SUBL S,D 
23 87 43 0 

DATA BUS MOVE FIELD 

CLR D 
23 87 43 0 

DATA BUS MOVE FIELD 

ADDL S,D 
23 87 43 0 

DATA BUS MOVE FIELD 

RND D 
23 87 43 0 

DATA BUS MOVE FIELD 

SUBR S,D 

23 87 43 0 

DATA BUS MOVE FIELD 

TST D 

23 87 43 0 

- DATA BUS MOVE FIELD 



ADDR S,D 

23 87 43 o 
DATA BUS MOVE FIELD 

MOVE S,D 

23 87 43 o 
DATA BUS MOVE FIELD 



-



APPENDIX B 
BENCHMARK PROGRAMS 

-



lEI 



B.1 INTRODUCTION 
Table 8-1 provides benchmark numbers for 18 common DSP programs implemented on 
the 27-MHz DSP56001. 

The four code examples shown in Figures 8-1 to B-4 represent the benchmark programs 
shown in Table B-1. 

B.2 BENCHMARK PROGRAMS 
Figure 8-1 is the code for the 20-tap FIR filter shown in Table 8-1. Figure B-2 is the code 
for an FFT using a triple nested DO LOOP. Although this code is easier to understand 
and very compact, it is not as fast as the code used for the benchmarks shown in Table 
8-1, which are highly optimized using the symmetry of the FFT and the parallelism of the 
DSP. Figure B-3 is the code for the 8-pole cascaded canonic biquad IIR filter, which uses 
four coefficients (see Table B-1). Figure 8-4 is the code for a 2N delayed least mean 
square (LMS) FIR adaptive filter, which is useful for echo cancelation and other adaptive 
filtering applications.Thecode example shown in Figure 8-5 represents the Real FFT 
code for the DSP56002, based on the Glenn Bergland algorithm. 

The code for these and other programs is free and available through the Dr. 8uB elec­
tronic bulletin board. 



Table 8-1 27-MHz Benchmark Results for the DSP56001 R27 
Sample Rate Memory Number of 

Benchmark Program (Hz) or Size Clock 
Execution Time (Words) Cycles 

20 - Tap FIR Filter 500.0 kHz 50 54 

64 - Tap FIR Filter 190.1 kHz 138 142 

67 - Tap FIR Filter 182.4 kHz 144 148 

8 - Pole Cascaded Canonic 
540.0 kHz 40 50 Siquad IIR Filter (4x) 

8 - Pole Cascaded Canonic 
465.5 kHz 45 58 

Siquad IIR Filter (5x) 

8 - Pole Cascaded Transpose 
385.7 kHz 48 70 

Siquad IIR Filter 

Dot Product 444.4 ns 10 12 

Matrix Multiply 2x2 
1.556p..s 33 42 

times2x2 

Matrix Multiply 3x3 
1.259 p..s 29 34 times 3x1 

M-to-M FFT 
98.33 p..s 489 2655 64 Point 

M-to-M FFT 
489.8 p..s 1641 13255 

256 Point 

M-to-M FFT 
2.453 ms 6793 66240 1024 Point 

P-to-M FFT 
92.56 p..s 704 2499 64 Point 

P-to-M FFT 
347.9 p..s 2048 9394 

256 Point 

P-to-M FFT 
1.489 ms 7424 40144 1024 Point 



page 132,66,0,6 
opt rc 

.**************** •••• ************************************ 
I 

;Motorola Austin DSP Operation June 30, 1988 
.******************************************************** 
I 

;DSP56000f1 
;20 - tap FI R filter 
;File name: 1-56.asm 
.********************************************************************************************************************* 
I 

Maximum sample rate: 379.6 kHz at 20.5 MHzf500.0 kHz at 27.0 MHz 
Memory Size: Prog: 4+6 words; Data: 2x20 words 
Number of clock cycles: 54 (27 instruction cycles) 
Clock Frequency: 20.5 MHzf27.0 MHz 
Instruction cycle time: 97.6 nsf74.1 ns 

.********************************************************************************************************************* 
I 

This FIR filter reads the input sample 
from the memory location Y:input 
and writes the filtered output sample 
to the memory location Y:output 

The samples are stored in the X memory 
I The coefficients are stored in the Y memory 
********************************************************************************************************************** 

X MEMORY 

X(n) 

X(n-1) 

X(n-k+1) X(n+1) 

C(O) 
x(n) 

FIR 

Y MEMORY 

c(O) 

c(1) 

c(k-1) 

G yen) 
81---~ 

y(n) 

k-l 

Lc(p)x(n-p) 

p=O 

Figure 8-1 20-Tap FIR Filter Example (Sheet 1 of 2) -



.*._---*-----*-------**-------.... *_ .. * •••• _ •••••••••• * •••••• * •• -*.* •••• * •••• -.-•• -_ •• __ ••• _ •••• -* ••••• _-•• -* ••••• __ •• , 

initialization 
-* •• _ ••••••••• -.* •••.••••.•••••... _* ••••• 

n 
start 
wddr 
cddr 
input 
output 

equ 
equ 
equ 
equ 
equ 
equ 

org 
move 
move 
move 
move 

20 
$40 
$0 
$0 
$ffeO 
$ffe1 

p:start 
#Wddr;rO 
#cddr,r4 
#n-1,mO 
mO,m4 

opt cc 
filter loop :8+(n-1) cycles 

;rO - samples 
;r1 - coefficients 
;set modulo arithmetic 
;for the 2 circular buffers 

.*_if_if •••• * ••••••• _ ••••• * ••••••••••• _.*_._*._ .. _* •• _ •• 'ltif*if •••• _._* .. _* ........ _ ... _._ ... _ ....... _. __ ..... _*.* •• * ••• *_ •• , 
movep y:input,x: (rO) ;input sample in memory 
elr a x:(rO)+,xO y: (r4)+,yO 

rep #n-1 
mac xO,yO,a x:(rO)+,xO y:(r4)+,yO 
macr xO,xO,a (rO)-

movep a,y:output ;output filtered sample .*. __ ••• _ •••• _*_ .. __ ..... _ .... _ ... * ••••• _ ••••• __ * ••• _*.if_*_ .•• * •• _.*_* .. __ .... _* •••• ** •• _* •••••••••• _ ••• _**.'It*.'It'ltif •••• , 
end 

Figure 8-1 20-Tap FIR Filter Example (Sheet 2 of 2) 



;This program originally available on the Motorola DSP bulletin board. 
;It is provided under a DISCLAIMER OF WARRANlY available from 
;Motorola DSP Operation, 6501 William Cannon Drive, Austin, TX, 78735 

;Radix-2, In-Place, Decimation-In-Tlme FFT (smallest code size). 

;Last Update 30 Sep 86 

fftr2a 
fftr2a 

macro 
ident 

Version 1.1 

points,data,coef 
1,1 

;Radix-2 Decimation-In-Time In-Place FFT Routine 

Complex input and output data 
Real data in X memory 
Imaginary data in Y memory 

Normally ordered input data 
Bit reversed output data 

Coefficient lookup table 
-Cosine values in X memory 
-Sine values in Y memory 

;Macro Call - ffr2a points,data,coef 

points 
data 
coef 

number of points (2-32768, power of 2) 
start of data buffer 
start of sine/cosine table 

;Alters Data ALU Registers 
x1 xO 
a2 a1 
b2 b1 

;Alters Address Registers 

y1 
aO 
bO 

rO nO mO 
r1 n1 m1 

n2 

r4 
r5 
r6 

n4 
n5 
n6 

'Alters Program Control Registers 
pc sr 

;Uses 6 locations on System Stack 

m4 
m5 
m6 

yO 
a 
b 

Figure 8-2 Radix 2, In-Place, Decimation-In-Time FFT (Sheet 1 of 2) 



-

;Latest Revision - September 30, 1986 

move #points/2,nO 
move #1,n2 
move #points/4,n6 
move #-1,mO 
move mO,m1 
move mO,m4 
move mO,m5 
move #0,m6 

;initialize butterflies per group 
;initialize groups per pass 
;initialize C pointer offset 
;initialize A and B address modifiers 
;for linear addressing 

;initialize C address modifier for 
;reverse carry (bit-reversed) addressing 

;Perform all FFT passes with triple nested DO loop 

do 
move 
move 
lua 
move 
lua 
move 
move 
move 

do 
move 

move 
move 

do 
mac 

macr 
subl 
mac 
macr 
subl 

_end_bfy 
move 
move 

_end-9rp 
move 
Isr 
lsi 
move 

_end-pass 
endm 

#@cvi (@log(points)/@log(2)+0.5),_end-pass 
#data,rO ;initialize A input pointer 
rO,r4 ;initialize A output pointer 
(rO)+nO,r1 ;initialize B input pointer 
#coef,r6 ;initialize C input pointer 
(r1 )-,r5 ;initialize B output pointer 
nO,n1 ;initialize pointer offsets 
nO,n4 
nO,n5 

n2,_end-9rp 
x:(r1 ),X1 y:(r6),yO 

x:(r5),a y:(rO),b 
x:(r6)+n6,xO 

nO,_end_bfy 
x1,yO,b y:(r1 )+,y1 

-xO,y1,b 
b,a 
-x1,xO,b 
-y1,yO,b 
b,a 

a,x:(r5)+ 
x:(rO),b 
x:(rO)+,a 
x:(r1 ),x1 
b,x:(r4)+ 

y:(rO),a 
b,y:(r4) 
a,y:(r5) 

y:(rO),b 

a,x:(r5)+n5 
x:(rO)+nO,x1 

y:(r1 )+n1 ,y1 
y:(r4)+n4,y1 

;Iookup -sine and 
; -cosine values 
;preload data 
;update C pointer 

;Radx20lT 
;butterfly kernel 

;update A and B pointers 

nO,b1 
b n2,a1 

;divide butterflies per group by two 
;multiply groups per pass by two 

a b1,nO 
a1,n2 

Figure B-2 Radix 2, In-Place, Decimatlon-In-Time FFT (Sheet 2 of 2) 



page 132,66,0,6 
opt rc .... _ .. __ ....... _ ... __ ..... *-_ ... _ .. * •••••• _ •••••••• _-••••• , 

;Motorola Austin DSP Operation June 30, 1988 
._ ••••• * ••• _ ••••• _ •• _ •• _ ••• _._--------_.--_. __ •••• _._-••••• 

;DSP56000/1 
;8-pole 4-multiply cascaded canonic IIR filter 
;File name: 4-56.asm .•••• _. __ • ___ •••• _ •• _. ___ • ___ • _____ • _____ ._ •• __ • ___ ._ •• *_ •• _*._ ..... _ ...... ___ ._._. __ .. ____ *_ •• ___ •• __ ••• ___ *'It'lt •• _____ • 

, 
Maximum sample rate: 410.0 kHz at 20.5 MHz/540.0 kHz at 27.0 MHz 
Memory Size: Prog: 6+10 words; Data: 4(2+4) words 
Number of clock cycles: 50 (25 instruction cycles) 
Clock Frequency: 20.5 MHz/27.0 MHz 

, Instruction cycle time: 97.5 nsn4.1 ns 
.*****************************************************.*'It'lt'lt __ •• __ .** __ ._* ______ .... __ ._. ______ ..... _.*._ .... 'It'lt'lt'lt'lt_._ ••• 

This IIR filter reads the input sample 
from the memory location Y:input 
and writes the filtered output sample 
to the memory location Y:output 

The samples are stored in the X memory 
The coefficients are stored in the Y memory 

The equations of the filter are: 
w(n)= x(n)-ai1 *w(n-1 )-ai2*w(n-2) 
y(n)= w(n)+bi1 *w(n-1 )+bi2*w(n-2) 

wen) 

x(n}/----( - )/----------1---+-1.,--------( + }----- yen) 

z w(n-1) 

~ai1+bi1~ 
z-1 w(n-2) 

f-o_--- ai2 __ -,----..._....Ll--l._--- bi2---__ -l 

Figure 8-3 a-Pole 4-Multlply Cascaded Canonic IIR Filter (Sheet 1 of 2) 



All coefficients are divided by 2: 
w( n )/2=x( n)/2-ai 1/2*w( n-1 )-ai2/2*w( n-2) 
y( n )/2=w( n )/2+bi 1/2*w( n-1 )+bi2/2*w( n-2) 

X Memory Organization Y Memory Organization 
b1 N/2 Coef. + 4*nsec - 1 

wN(n-1) Data + 2*nsec - 1 
wN(n-2) 

w1 (n-1) 
RO'" w1 (n-2) Data 

b2N/2 
a1N/2 
a2N/2 

b11/2 
b2112 
a11/2 

R4.. a21/2 Coef. 

.********************************************************************************************************************* , 
initialization 

.************************************* , 
nsec equ 4 
start equ $40 
data equ 0 
coef equ 0 
input equ $ffeO 
output equ $ffe1 
igain equ 0.5 

ori #$08,mr ;set scaling mode 
move #data,rO ;point to filter states 
move #coef,r4 ;point to filter coefficients 
move #2*nsec -1 ,mO 
move #4*nsec -1 ,m4 
move #igain,y1 ;y1 =initial gain 

opt cc 
filter loop: 4*nsec + 9 

.********************************************************************* , 

movep y:input,yO 
mpy yO,y1,a x:(rO) +,xO y:(r4)+,yO 

do #nsec,end_cell 
mac -xO,yO,a x:(rO) -,x1 y:(r4) +,yO 
macr -x1,yO,a x1 ,x:(rO) + y:(r4) +,yO 
mac xO,yO,a a,x:(rO)+ y:(r4) +,yO 
mac x1,yO,a x:(rO) +,xO y:(r4) +,yO 

end_cell 

;getsample 
;xO=1st section w(n-2),yO=ai2/2 

;do each section 
;x1 =w(n-1 ),yO=ai1/2 
;push w(n-1) to w(n-2),yO=bi2/2 
;push w(n) to w(n-1 ),yO=bi1/2 
;next iter:xO=w(n-2),yO=ai2/2 

rnd a ;round result 
movep a,y:output ;output sample 

.**************************************************************************************** , 
end 

Figure 8-3 8-Pole 4-Multiply Cascaded Canonic IIR Filter (Sheet 2 of 2) 



page 132,60,1,1 
;newlms2n.asm 
; New Implementation of the delayed LMS on the DSPS6000 Revision C 
;Memory map: 
; Initial X H 
; x(n) x(n-1) x(n-2) x(n-3) x(n-4) hx hO h1 h2 h3 
; ] ] ] 
; ~ ~ ~ 
;hx is an unused value to make the calculations faster. 

opt cc 
ntaps equ 4 
input equ $FFCO 
output equ $FFC1 

org x:$O 
state ds S 

org y:$O 
coef ds 5 

org p:$40 
move #state,~ 
move #2,nO 
move #ntaps,mO 
move #ooef + 1,r4 
move #ntaps,m4 
move #ooef,rS 
move m4,mS 

_smploop 
movep 
move 

;error signal is in y1 
a,x:(rO) 

;start of X 

;modS 
;coefficients 
;modS 
;coefficients 
;modS 

y:input,a 

;FIR sum in a=a+h(k) old*x(n-k) 
;h(k)new in b=h(k)old + error*x(n-k-1) 

cir a x:(rO)+,xO 
move x:(rO)+,x1 y:(r4)+,yO 
do #taps/2,Jms 
mac xO,yO,a yO,b b,y:(rS)+ 
macr x1,y1,b x:(rO)+,xO y:(r4)+,yO 

mac x1,yO,a yO,b b,y:(r5)+ 
macr xO,y1,b, x:(rO)+,x1 y:(r4)+,yO 

Ims -
move b,y:(rS)+ 
move (rO) -nO 

, 
;get input sample 
;save input sample 

;xO=x(n) 
;x1 =x(n-1 ),yO=h(O) 
, 
;a=h(O)*x(n),b=h(O) 
;b=h(0)+e*x(n-1 )=h(O)new 
;xO=x(n-2) yO=h(1) 
;a=a+h(1 )*x(n-1) b=h(1) 
;b=h(1 )+e*x(n-2) 
;x1 =x(n-3) yO=H(2) 

;save last new c( ) 
;pointer update 

;(Get d(n), subtract fir output (reg a), multiply by "u", put 
;the result in y1. This section is application dependent.) 

movep a,y:output ;outputfir if desired 
jmp _smploop 
end 

Prog 
word 

1 

1 
1 
2 
1 
1 

Totals: 11 

Figure 8-4 LMS FIR Adaptive Filter 

Icyc 

1 
1 
3 
1 
1 

2N+8 -



Real input FFT based on Glenn Bergland algorithm 

; Normal order input and normal order output. 

; Since 56001 does not support bergland addressing, extra instruction cycles are needed 
; for converting bergland order to normal order. It has been done in the last pass by 
; looking at the bergtable. 
; The micro 'bergsincos' generates SIN and COS table with size of points/4, COS in Y, SIN in X 
; The micro 'bergorder' generates table for address conversion, the size of twiddle factors is half 
; of FFT output's. 
; The micro 'norm2berg' converts normal order data to bergland order. 
; The micro 'rfft-56b' does FFT. 

; Real input data are split into two parts, the first part is put in X, the second in Y. 
; Real output data are in X, imaginary output data are in Y. 
; The bergland table for converting berglang order to normal order is stored in output buffer. 
; In the last pass the FFT output overwrites this table. 
; The first real output plus the first imaginary output is DC value of the spectrum. 
; Note that only DC to Nyquist frequency range is calculated by this algorithm. 
; After twiddle factors and bergtable are generated, you may overwrite 'bergorder', 
; 'norm2berg' by 'rfft-56b' for saving P memory. 

Real input data points 
64 
128 
256 
512 
1024 

Performance 

Clock cycle 
1686 
3846 
8656 
19296 
49776 

,------------------------------------------------------------------

P memory 
87 

Memory (word) 

X memory 
points/2 (real input) + 
points/4 (SIN table) + 
points/2 (real output) + 
points/2 (bergtable) 

Y memory 
pOints/2 (imaginary input) 
points/4 (COS table) 
points/2 (imaginary output) 

,-------------------------------------------------------------------

rfft56bt ident 1,3 
page 132,60 
opt nomd,nomex,loc,nocex,mu 
include 'bergsincos' 
include 'bergorder' 
include 'norm2berg' 
include 'rfft-56b' 

Figure B-5 Real Input FFT Based on Glenn Bergland Algorithm (Sheet 1 of 8) 



, 
; Main program to call the rfft-56b macro 

Argument list 
, 
; Latest modifying date - 4-March-92 

reset 
start 
points 
binlogsz 
idata 
odata 
bergtable 
twiddle 

bergsincos 

bergorder 
norm2berg 
order 
bergorder 
rifft 

bergsincos 
bergsincos 

pi 
freq 

sincos -

points -
coef -

equ 0 
equ $40 
equ 512 
equ 9 
equ $000 
equ $400 
equ $600 
equ $800 

points,odata ;generate normal order twiddle factors with size of points/4 

opt mex 
org p:reset 
jmp start 

org p:start 
movep #O,x:$fffe 
points/4,bergtable,odata 
points/4,bergtable, twiddle 

;0 wait states 
;generates bergland table for twiddle factor 
;converting twiddle factor from normal order to bergland 

points/2,bergtable,odata ;table for final output 
points,binlogsz,idata,odata,twiddle,bergtable 
end 

macro points,coef 
ident 1,2 

macro to generate sine and cosine coefficient 
lookup tables for Decimation in lime FFT 
twiddle factors. 

number of points (2 - 32768, power of 2) 
base address of sine/cosine table 

negative cosine value in X memory 
negative sine value in Y memory 

equ 3.141592654 
equ 2.0*pi/@cvf(points) 

Figure 8-5 Real Input FFT Based on Glenn Bergland Algorithm (Sheet 2 of 8) 



count 

ount 

count 

count 

org y:coef 
set 0 
dup points/4 
dc @cos(@cvf(count)*freq) 
set count+ 1 
endm 

org x:coef 
set 0 
dup points/4 
dc @sin(@cvf(count)*freq) 
set count+ 1 
endm 

endm ;end of bergsincos macro 

bergorder macro points,bergtable,offset 
bergorder ident 1,3 
;bergorder generates bergland order table 

generated 

move #>4,a 
move #points,r4 ;points=number of points of bergtable to be 

move #>points/4,b ;nitial pointer 
move #bergtable,rO ;table resides in 
move b,nO ;init offset 
move #>O,xO 
move xO,x:(rO)+nO ;seeds 
move #>2,xO 
move xO,x:(rO)+nO 
move #>1,xO 
move xO,x:(rO)+nO 
move #>3,xO 
move xO,x:(rO) 
move #bergtable,nO ;Iocation of bergtable 
do #@cvi(@log(points/4)/@log(2)),_endl 
move b,xO ;xO=i+i 
Isr b ;b=i 
move b,rO ;rO=i 
nop 
move a,x:(rO+nO) 
lsi a 
move a,y1 
move r4,a 
cmp xO,a 

;k-> bergtable 
;k=k*2 
;save A content 
;r4=# of points 
;xO=j, if j< points, cont 

Figure B-5 Real Input FFT Based on Glenn Bergland Algorithm (Sheet 3 of 8) 



jle -'oop 
move xO,rO 
move y1,a 
move x:(rO+nO),yO 
sub yO,a 
move b,x1 
move rO,yO 
add yO,b 
move b,rO 
nop 
move a,x:(rO+nO) 
add x1,b 
move b,xO 
move x1,b 
jmp _star 

-'oop move y1,a 
_endl 

move #>offset,a 
move #bergtable,rO 
do #points,_add_offset 
move x:(rO),B 
add A,B 
move B,x:(rO)+ 

_add_offset 
endm ;end of sincos macro 

;convert normal order to berg lang order 
norm2berg macro points,bergtable,twiddle 
;points is actual size of table to be converting 

move #bergtable,rO 
move #twiddle,r2 
move r2,r6 
do #points,data_temp 
move x:(rO)+,r3 
move r3,r7 
move x:(r3),a 
move y:(r7),b 
move a,x:(r2)+ b,y:(r6)+ 

endm 

;rO=i+i=j,b=i 
;recover A=k 
;yO=bergtabl[j] 
;k-bergtablU] 
;save b, x1 =i 
;yO=j=i+i 
;b=j+i 
;rO=j+i 

;store bergtablU+i] 
;b=j+i+i 
;save b 
;recover b=i 

;recover a 

;offset is the location of output data or twiddle 

;rO=pointer of bergland table 
;r2=twiddle pointer for X 
;r6=twiddle pointer for Y 

;get index 

;get value 
;write back 

Figure B-5 Real Input FFT Based on Glenn Bergland Algorithm (Sheet 4 of 8) 



; Real-Valued FFT for MOTOROLA DSP560001112 
, 
; based on Glenn Bergland's algorithm 

, 
rifft macro points,binlogsz,idata,odata, twiddle,bergtable 

move #idata,rO 
move #points/4,nO 
move #twiddle+ 1,r7 
lua (rO)+nO,r1 
move rO,r4 
move r1,r5 
move #1,r3 
move x:(rO),A y:(r4),yO 

do nO,pass1 

First Pass -- W(n) = 1 

A---\ I---A'= Re[ A + jB + (C + jD) ] = A + C 
B----'--L/----B'= Im[ A + jB + (C + jD) ] =j(D + B) 
C----/I \----C'= Re[ A + jB - (C + jD) ] = A - C 
D---I \---D'= Im[-A - jB + (C + jD) ] =j(D - B) 

, -------------------------------------------------

sub yO,A x:(r1 ),xO y:(r5),B 
add xO,B A,x:(r1)+ y:(r5),A 
sub xO,A x:(rO)+,B B,y:(r4)+ 
add yO,B x:(rO)-, A A,y:(r5)+ 
move B,x:(rO)+ y:(r4),yO 

pass 1 

move #idata,rO 

do #binlogsz-3,end-pass 
move r7,r2 
move r2,r6 
move nO,A 
Isr Ar3,B 
lsi A,nO 
move B,r3 
lua (rO)+nO,r1 
move rO,r4 
move r1,r5 
lua (r3)-,n2 
move x:(rO),A y:(r4),yO 

;rO = ptr to a 
;bflys in ea group, half at ea pass 
;r7 always points to start location of twiddle 
;r1 = ptr to b 
;r4 points to c 
;r5 points to d,with predecrement 
;group per pass, double at ea pass 
;A=a,yO=c 

;first pass is trivial, no multiplications 

;A=a-c=c' ,B=d,xO=b, 
;B=d+b=b', A=d,PUT c' to x:b 
;A=d-b=d',B=a,PUT b' to y:c 
;B=a+C=a', A=next a,PUT d' 
;yO=next c, PUT a' 

;rO = ptr to a 

;do all passes except first and last 
;r2 points to real twiddle 
;r6 points to imag twiddle 
;half bflys per group 
;double group per pass 

;r3 is temp reg. 
;r1 = ptr to b 
;r4 points to c 
;r5 points to d 
;n2=group per pass -1 
;A=a, yO=c 
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do nO,FirstGrouplnPass 
sub yO, A x:(r1 ),xO y:(r5),B 
add xO,B A,x:(r1)+ y:(r5),A 
sub xO,A x:(rO)+,B B,y:(r4)+ 
add yO,B x:(rO)-,A A,y:(r5)+ 
move B,x:(rO)+ y:(r4),yO 

FirstGrouplnPass 

do n2,end_group 
move r5,rO 
move rO,r4 
lua (rO)+nO,r1 
move r1,r5 

;first group in a pass 
;A=a-c=c',B=d,xO=b, 
;B=d+b=b', A=d,PUT c' to x:b 
;A=d-b=d',B=a,PUT b' to y:c 
;B=a+c=a', A=next a,PUT d' 
;yO=next c, PUT a' 

;rest groups in this pass 
;rO ptr to next group a 
;r4 ptr to next group c 
;r1 ptr to next group b 
;r5 ptr to next group d 

Intermediate Passes -- W(n) < 1 

A---\ /---A'= Re[ A + jC + (B - jO)W(k) 1 = A+BWr+OWi=A+ T1 
B----'-L/----B'= Im[ A + jC - (B - jO)W(k) 1 = C+OWr-BWi= T2+C 
C----/ I \----C'= Re[ A + jC - (B - jO)W(k) 1 = A-(BWr+OWi)=A-T1 
0---/ \---0'= Im[-A - jC - (B - jO)W(k) ] = -C+OWr-BWi= T2-C 

end_bfly 

end_group 

endJ)ass 

move x:(r2)+,xO y:(r6)+,yO 
move x:(r1 )-,x1 y:(r5),y1 
move x:(r1 ),B 

do nO,end_bfly 
mpy -x1,xO,B B,x:(r1) 
mac yO,y1,B y:(r4),A 
sub A,B 
addl B,A x:(r1 )+,B B,x:(r5)+ 
mpy -x1,yO,B x:(rO),A A,y:(r4)+ 
mac -xO,y1,B x:(r1 )-,x1 
sub B,A 
addl A,B A,x:(rO)+ y:(r5),y1 

move B,x:(r1 )+ 

move #idata,rO 

;xO=Wi, yO=Wr 
;x1 =b,y1 =d 
;for pointer reason 

;nO bfly in this group 
;B=-bWi, PUT c' to x:b 
;B=dWr-bWi= T2, A=c 
;B= T2-c=d' 

;A= T2+c=b', PUT d' 
;B=-bWr, A=a, PUT b' to y:c 
;B=-bWr-dWi=-T1, x1=next b 
;A=a+T1=a' 
;B=a-T1 =c', y1 =next d, PUT a' 

;PUT last b' 

;rO = ptr to a 

;the last pass converts bergland order to normal order by calling bergtable 
move r7,r2 ;r2 points to real twiddle 
move r2,r6 ;r6 points to imag twiddle 
move rO,r4 r4 points to c 
move #bergtable,r3 ;r3=pointer of bergland table 
move #(points/4)-1,n2 ;n2=group per pass -1 
move x:(r3)+,r7 ;get first index 
move x:(r3)+,r1 ;get second index 
move #2,n4 
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; first group in the last pass 
move x:(rO)+,A y:(r4)+,B 
sub B,A x:(rO)+,xO y:(r6)+,yO 
addl A,B A,x:(r1) y:(r4),A 
sub xO,A B,x:(r7) 
move y:(r4)+,B 
add xO,B A,y:(r1) 
move x:(rO)+,A B,y:(r7) 

move x:(r2)+,xO y:(r4)+,B 

do n2,endJastg 

Intermediate Passes -- W(n) < 1 

;A=a, B=c 
;A=a-c=c',xO=b, yO=Wr for next bfly 
;B=a+C=a', A=d,PUT c' to x:b 
;A=d-b=d',PUT a' to x 
;B=d 
;B=d+b=b', A=next a,PUT d' 
;A=next a, PUT b' 

;xO=Wi,B=next c 

;rest groups in the last pass 

A---\ /---A'= Re[ A + jC + (B - jO)W(k)] = A+BWr+OWi=A+ T1 
B----\-'-'----B'= Im[ A + jC - (B - jO)W(k)] = C+OWr-BWi= T2+C 
C----/I \----C'= Re[ A + jC - (B - jO)W(k)] = A-(BWr+OWi)=A-T1 
0---/ \---0'= Im[-A - jC - (B - jO)W(k) ] = -C+OWr-BWi= T2-C 

move x:(rO)+,x1 y:(r4)-,y1 
mpy x1 ,yO,B x:(r3)+,r7 
mac xO,y1,B x:(r3)+,r1 
sub B,A 
addl A,B A,x:(r1) 
mpy y1 ,yO,A B,x:(r7) 
mac -x1,xO,A y:(r4)+n4,B 
sub B,A x:(r2)+,xO y:(r6)+,yO 
addl A,B A,y:(r1) 
move x:(rO)+,A B,y:(r7) 
move y:(r4)+,B 

endm 

; Real input FFT based on Glenn Bergland algorithm 

; Normal order input and normal order output. 

;x1 =b, y1 =d, r4 ptr back to c 
;A=bWr, 
;B=bWr +dWi= T1 , get first index 
;A=a-T1=c', get second index 
;B=a+ T1 =a', PUT c' to x:b 
;B=dWr, B=c PUT a' 
;A=dWi-bWr= T2, B=c, r4 ptr to next c 
;A= T2-c=d',xO=next Wi, yO=next Wr 
;B= T2+c=b', update r4, A=next a, PUT d' 
;PUT b', A=next a 
;B=nextc 

; Since 56001 does not support Bergland addressing, extra instruction cycles are needed 
; for converting Bergland order to normal order.lt has been done in the last pass by 
; looking at the bergtable. 
; 'bergsincos' generates sin and cos table with size of points/4,COS in Y, SIN in X 
; 'bergorder' generates table for address conversion, the size of twiddle factors is half 
; of FFT output's 
; 'rfft-56b' does FFT . 
; Normal order input and normal order output. 

Figure 8-5 Real Input FFT Based on Glenn Bergland Algorithm (Sheet 7 of 8) 



; Real input data are split into two parts, the first part is put in X, the second in Y. 
; Real output data are in X, imaginary output data are in Y. 
; The first real output is DC 
; The first imaginary output is the Nyquist frequency. 
; Note that only DC to Nyquist frequency range is calculated by this algorithm 
; After twiddle factors and bergtable are generated, you may overwrite 'bergorder', 
; 'norm2berg' by 'rfft-56b' for saving P memory. 

Performance 
,---------------------------------------------- - -----------------

Real input data points 
64 
128 
256 
512 
1024 

Memory (word) 
, ----------------------------------------------------------------

P memory 
87 

Clock cycle 
1686 
3846 
8656 
19296 
49776 

X memory 
points/2+ (real input) 
points/4+ (SIN table) 
points/2+ (real output) 
points/2 (bergtable) 

Ymemory 
points/2+ (imaginary input) 
points/4+ (COS table) 
pOints/2 (imaginary output) 

Figure 8-5 Real Input FFT Based on Glenn Bergland Algorithm (Sheet 8 of 8) 
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