

DSP56K FAMILY INTRODUCTION

DSP56K CENTRAL ARCHITECTURE OVERVIEW

DATA ARITHMETIC LOGIC UNIT

ADDRESS GENERATION UNIT

PROGRAM CONTROL UNIT

INSTRUCTION SET INTRODUCTION

PROCESSING STATES

PORTA

PLL CLOCK OSCILLATOR

ON-CHIP EMULATION (OnCE)

ADDITIONAL SUPPORT

INSTRUCTION SET DETAILS

BENCHMARK PROGRAMS

INDEX

DSP56K FAMILY INTRODUCTION

_ DSP56K CENTRAL ARCHITECTURE OVERVIEW

DATA ARITHMETIC LOGIC UNIT

ADDRESS GENERATION UNIT

_ PROGRAM CONTROL UNIT

_ INSTRUCTION SET INTRODUCTION

_ PROCESSING STATES

PORTA

PLL CLOCK OSCILLATOR

ON-CHIP EMULATION (OnCE)

ADDITIONAL SUPPORT

INSTRUCTION SET DETAILS

BENCHMARK PROGRAMS

INDEX

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability ariSing out of the application or use of any product or circuit,
and specifically disclaims any and all liability, including without limitation consequential or incidental damages. ''Typical'' parameters can and do vary in different
applications. All operating parameters, including ''Typicals· must be validated for each customer application by customer's technical experts. Motorola does
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in
systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such
unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the deSign or manufacture of the part.
Motorola and @ are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

OnCETM is a trade mark of Motorola, Inc.

© MOTOROLA INC., 1992

Paragraph
Number

TABLE OF CONTENTS

Title

SECTION 1
DSP56K FAMILY INTRODUCTION

Page
Number

1.1 INTRODUCTION ... 1-3
1.2 ORIGIN OF DIGITAL SIGNAL PROCESSING 1-3
1.3 SUMMARY OF DSP56K FAMILY FEATURES 1-9
1.4 MANUAL ORGANIZATION 1-11

SECTION 2
DSP56K CENTRAL ARCHITECTURE

OVERVIEW

2.1 DSP56K CENTRAL ARCHITECTURE OVERVIEW 2-3
2.2 DATA BUSES ... 2-3
2.3 ADDRESS BUSES ... 2-4
2.4 DATA ALU .. 2-5
2.5 ADDRESS GENERATION UNIT 2-5
2.6 PROGRAM CONTROL UNIT 2-5
2.7 MEMORY EXPANSION PORT (PORT A) 2-6
2.8 ON-CHIP EMULATOR (OnCE) 2-6
2.9 PHASE-LOCKED LOOP (PLL) BASED CLOCKING 2-6

SECTION 3
DATA ARITHMETIC LOGIC UNIT

3.1 DATA ARITHMETIC LOGIC UNIT 3-3
3.2 OVERVIEW AND DATA ALU ARCHITECTURE 3-3
3.3 DATA REPRESENTATION AND ROUNDING 3-10
3.4 DOUBLE PRECISION MULTIPLY MODE 3-16

Table of Contents (Continued)
Paragraph Page

Number Title Number
3.5 DATA ALU PROGRAMMING MODEL 3-19
3.6 DATA ALU SUMMARy ... 3-19

SECTION 4
ADDRESS GENERATION UNIT

4.1 ADDRESS GENERATION UNIT AND ADDRESSING MODES4-3
4.2 AGU ARCHITECTURE .. 4-3
4.3 PROGRAMMING MODEL4-6
4.4 ADDRESSING .. 4-8

SECTION 5
PROGRAM CONTROL UNIT

5.1 PROGRAM CONTROL UNIT 5-3
5.2 OVERVIEW ... 5-3
5.3 PROGRAM CONTROL UNIT (PCU) ARCHITECTURE 5-5
5.4 PROGRAMMING MODEL 5-8

SECTION 6
INSTRUCTION SET INTRODUCTION

6.1 INSTRUCTION SET INTRODUCTION 6-3
6.2 SYNTAX ... 6-3
6.3 INSTRUCTION FORMATS 6-3
6.4 INSTRUCTION GROUPS -....................................... 6-20

SECTION 7
PROCESSING STATES

7.1 PROCESSING STATES ... 7-3
7.2 NORMAL PROCESSING STATE 7-3
7.3' EXCEPTION PROCESSING STATE (INTERRUPT PROCESSING) 7-10

Table of Contents (Continued)
Paragraph Page

Number Title Number
7.4 RESET PROCESSING STATE 7-33
7.5 WAIT PROCESSING STATE 7-36
7.6 STOP PROCESSING STATE 7-37

SECTION 8
PORTA

8.1 PORT A OVERVIEW ... 8-3
8.2 PORT A INTERFACE ... 8-3

SECTION 9
PLL CLOCK OSCILLATOR

9.1 PLL CLOCK OSCILLATOR INTRODUCTION 9-3
9.2 PLL COMPONENTS .. 9-3
9.3 PLL PINS .. 9-9
9.4 PLL OPERATION CONSIDERATIONS 9-11

SECTION 10
ON-CHIP EMULATION (OnCE)

10.1 ON-CHIP EMULATION INTRODUCTION 10-3
10.2 ON-CHIP EMULATION (OnCE) PINS 10-3
10.3 OnCE CONTROLLER AND SERIAL INTERFACE 10-6
10.4 OnCE MEMORY BREAKPOINT LOGIC 10-11
10.5 OnCE TRACE LOGIC ... 10-13 '
10.6 METHODS OF ENTERING THE DEBUG MODE 10-14
10.7 PIPELINE INFORMATION AND GLOBAL DATA BUS REGiSTER 10-16
10.8 PROGRAM ADDRESS BUS HISTORY BUFFER 10-18
10.9 SERIAL PROTOCOL DESCRIPTION 10-19
10.10 DSP56K TARGET SITE DEBUG SYSTEM REQUIREMENTS 10-19
10.11 USING THE OnCE ... 10-20

Paragraph
Number

Table of Contents (Continued)

Title

SECTION 11
ADDITIONAL SUPPORT

Page
Number

11.1 USER SUPPORT ... 11-3
11.2 MOTOROLA DSP PRODUCT SUPPORT 11-4
11.3 DSP56KADSx APPLICATION DEVELOPMENT SYSTEM 11-6
11.4 Dr. BuB ELECTRONIC BULLETIN BOARD 11-7
11.5 MOTOROLA DSP NEWS 11-16
11.6 MOTOROLA FIELD APPLICATION ENGINEERS 11-16
11.7 DESIGN HOTLlNE-1-800-521-6274 11-16
11.8 DSP HELP LINE - (512) 891-3230 11-16
11.9 MARKETING INFORMATION- (512) 891-2030 11-16
11.10 THIRD-PARTY SUPPORT INFORMATION - (512) 891-3098 11-16
11.11 UNIVERSITY SUPPORT - (512) 891-3098 11-16
11.12 TRAINING COURSES - (602) 897-3665 or (800) 521-6274 11-17
11.13 REFERENCE BOOKS AND MANUALS 11-17

APPENDIX A
INSTRUCTION SET DETAILS

A1 APPENDIX A INTRODUCTION A-3
A.2 INSTRUCTION GUiDE ... A-3
A.3 NOTATION ... : .. A-4
A.4 ADDRESSING MODES A-10
A.5 CONDITION CODE COMPUTATION A-15
A6 PARALLEL MOVE DESCRIPTIONS A-20
A.7 INSTRUCTION DESCRIPTIONS A-21
A8 INSTRUCTION TIMING A-294
A.9 INSTRUCTION SEQUENCE RESTRICTIONS A-305
A.10 INSTRUCTION ENCODING A-311

APPENDIX B
BENCHMARK PROGRAMS

B.1 INTRODUCTION .. B-3
B.2 BENCHMARK PROGRAMS B-3

Figure
Number

LIST of FIGURES

Title
Page

Number

1-1 Analog Signal Processing 1-4
1-2 Digital Signal Processing .. 1-5
1-3 DSP Hardware Origins ... 1-9

2-1 DSP56K Block Diagram .. 2-4

3-1 DSP56K Block Diagram .. 3-4
3-2 Data ALU ... '. 3-5
3-3 MAC Unit . 3-7
3-4 DATA ALU Accumulator Registers 3-8
3-5 Saturation Arithmetic ... 3-10
3-6 Integer-to-Fractional Data Conversion 3-11
3-7 Bit Weighting and Alignment of Operands 3-12
3-8 Integer/Fractional Number Comparison 3-13
3-9 Integer/Fractional Multiplication Comparison 3-14
3-10 Convergent Rounding .. 3-15
3-11 Full Double Precision Multiply Algorithm 3-16
3-12 Single X Double Multiply Algorithm 3-17
3-13 Single X Double Multiply-Accumulate Algorithm 3-18
3-14 DSP56K Programming Model 3-19

4-1 DSP56K Block Diagram .. 4-4
4-2 AGU Block Diagram ... 4-5
4-3 AGU Programming Model 4-7
4-4 Address Register Indirect - No Update 4-10
4-5 Address Register Indirect - Postincrement 4-11
4-6 Address Register Indirect - Postdecrement 4-12
4-7 Address Register Indirect - Postincrement by Offset Nn 4-13
4-8 Address Register Indirect - Postdecrement by Offset Nn 4-14
4-9 Address Register Indirect - Indexed by Offset Nn 4-15
4-10 Address Register Indirect - Predecrement 4-16
4-11 Circular Buffer .. 4-19
4-12 Linear Addressing with a Modulo Modifier :.................. 4-20
4-13 Modulo Modifier Example 4-21

Figure
Number

List of Figures (Continued)

Title
Page

Number
4-14 Bit-Reverse Address Calculation Example 4-24
4-15 Address Modifier Summary " 4-26

5-1 Program Address Generator 5-3
5-2 DSP56K Block Diagram .. 5-4
5-3 Three-Stage Pipeline .. 5-7
5-4 Program Control Unit Programming Model 5-8
5-5 Status Register Format " 5-9
5-6 OMR Format ... 5-14
5-7 Stack Pointer Register Format 5-15
5-8 SP Register Values .. 5-15
5-9 DSP56K Central Processing Module Programming Model 5-18

6-1 DSP56K Central Processing Module Programming Model 6-4
6-2 General Format of an Instruction Operation Word 6-5
6-3 Operand Sizes ... 6-6
6-4 Reading and Writing the ALU Extension Registers 6-7
6-5 Reading and Writing the Address ALU Registers . 6-7
6-6 Reading and Writing Control Registers 6-8
6-7 Special Addressing - Immediate Data 6-15
6-8 Special Addressing - Absolute Addressing 6-16
6-9 Special Addressing - Immediate Short Data 6-17
6-10 Special Addressing - Short Jump Address 6-18
6-11 Special Addressing - Absolute Short Address 6-19
6-12 Special Addressing - I/O Short Address 6-20
6-13 Hardware DO Loop .. 6-25
6-14 Nested DO Loops ... " 6-26
6-15 Classifications of Parallel Data Moves 6-27
6-16 Parallel Move Examples .. 6-28

7-1 Fast and Long Interrupt Examples 7-13
7-2 Interrupt Priority Register (Addr X:$FFFF) 7-14
7-3 Interrupting an SWI .. " 7-18
7-4 Illegal Instruction Interrupt Serviced by a Fast Interrupt " 7-19
7-5 Illegal Instruction Interrupt Serviced by a Long Interrupt 7-20
7-6 Repeated Illegal Instruction 7-21
7-7 Trace Exception .. 7-23
7-8 Fast Interrupt Service Routine 7-27
7-9 Two Consecutive Fast Interrupts ; 7-28
7-10 Long Interrupt Service Routine 7-30
7-11 JSR First Instruction of a Fast Interrupt 7-31
7-12 JSR Second Instruction of a Fast Interrupt 7-32

Figure
Number

List of Figures (Continued)

Title
Page

Number
7-13 Interrupting an REP Instruction 7-34
7-14 Interrupting Sequential REP Instructions 7-35
7-15 Wait Instruction Timing ... 7-36
7-16 Simultaneous Wait Instruction and Interrupt 7-37
7-17 STOP Instruction Sequence " 7-38
7-18 STOP Instruction Sequence Followed by IRQA 7-39
7-19 STOP Instruction Sequence Recovering with RESET 7-42

8-1 Port A Signals .. 8-4

9-1 Pll Block Diagram 9-3
9-2 DSP56K Block Diagram .. 9-4
9-3 Pll Control Register (PCTl) 9-6

10-1 OnCE Block Diagram .. 10-3
10-2 DSP56K Block Diagram .. 10-4
10-3 OnCE Controller and Serial Interface " 10-6
10-4 OnCE Command Register 10-7
10-5 OnCE Status and Control Register (OSCR) .. 10-9
10-6 OnCE Memory Breakpoint logic 10-12
10-7 OnCE Trace logic Block Diagram 10-14
10-8 OnCE Pipeline Information and GOB Registers 10-16
10-9 OnCE PAB FIFO' 10-17

B-1 20-Tap FIR Filter Example B-5
B-2 Radix 2, In-Place, Decimation-In-Time FFT B-7
B-3 8-Pole 4-Multiply Cascaded Canonic IIR Filter . B-9
B-4 lMS FIR Adaptive Filter .. B-11
B-5 Real Input FFT Based on Glenn Bergland Algorithm B-12

Table
Number

LIST of TABLES

Title
Page

Number

1-1 Benchmark Summary in Instruction Cycles 1-6

3-1 Limited Data Values ... 3-11

4-1 Address Register Indirect Summary 4-8
4-2 Address Modifier Summary 4-17
4-3 Bit-Reverse Addressing Sequence Example 4-23

6-1 Addressing Modes Summary 6-21

7-1 Instruction Pipelining .. 7-3
7 -2 Status Register Interrupt Mask Bits 7-14
7-3 Interrupt Priority Level Bits 7-15
7-4 External Interrupt ... 7-15
7-5 Central Processor Interrupt Priorities Within an IPL 7-15
7-6 Interrupt Sources ... 7-16

9-1 Multiplication Factor Bits MFO-MF11 9-6
9-2 Division Factor Bits DFO-DF3 9-7
9-3 PSTP and PEN Relationship 9-8
9-4 Clock Output Disable Bits CODO-COD1 9-9

10-1 Chip Status Information , 10-5
10-2 OnCE Register Addressing 10-7
10-3 Memory Breakpoint Control Table 10-10

A-1 Instruction Description Notation A-5
A-2 DSP56K Addressing Modes A-11
A-3 DSP56K Addressing Mode Encoding A-12
A-4 Addressing Mode Modifier Summary A-14
A-5 Condition Code Computations for Instructions (No Parallel Move) A-19
A-6 Instruction Timing Summary A-301
A-7 Parallel Data Move Timing A-302
A-8 MOVEC Timing Summary A-302
A-9 MOVEP Timing Summary A-302

List of Tables (Continued)
Table Page

Number Title Number
A-10 Bit Manipulation Timing Summary A-303
A-11 Jump Instruction Timing Summary A-303
A-12 RTI/RTS Timing Summary A-304
A-13 Addressing Mode Timing Summary A-304
A-14 Memory Access Timing Summary A-305
A-15 Single-Bit Register Encodings A-312
A-16 Single-Bit Special Register Encodings A-312
A-17 Double-Bit Register Encodings A-312
A-18 Triple-Bit Register Encodings A-313
A-19 (a) Four-Bit Register Encodings for 12 Registers in Data ALU A-313
A-19 (b) Four-Bit Register Encodings for 16 Condition Codes A-313
A-20 Five-Bit Register Encodings for 28 Registers in

Data ALU and Address ALU A-314
A-21 Six-Bit Register Encodings for 43 Registers On-Chip A-314
A-22 Write Control Encoding .. A-314
A-23 Memory Space Bit Encoding A-314
A-24 Program Controller Register Encoding A-315
A-25 Condition Code and Address Encoding A-315
A-26 Effective Addressing Mode Encoding A-316
A-27 Operation Code KO-2 Decode A-331
A-28 Operation Code QQQ Decode A-332
A-29 Nonmultiply Instruction Encoding A-333
A-30 Special Case #1 ... A-334
A-31 Special Case #2 ... A-334

B-1 27-MHz Benchmark Results for the DSP56001 R27 B-4

SECTION 1
DSP56K FAMILY INTRODUCTION

1.1 INTRODUCTION
The DSP56K family is Motorola's series of HCMOS, low power, 24-bit general purpose
Digital Signal Processors (DSPs\ The family architecture features a modular chip layout
with a standard central processing module which supports memory expansion options,
different on-chip peripherals, and different package sizes. This modular implementation
makes it relatively straighforward for Motorola to design and generate customer specified
derivatives.

A standard interface between the central processing module's silicon and the on-chip ex­
pansion areas supports all memory and peripheral configurations. The architecture, on­
chip peripherals, and the low power consumption of the DSP56K family minimize the com­
plexity, cost, and time required to add the power of Digital Signal Processing (DSP) to any
design.

This chapter introduces general DSP theory and discusses the features and benefits of
the Motorola DSP56K family of processors. It also presents a brief description each of the
sections in the manual.

1.2 ORIGIN OF DIGITAL SIGNAL PROCESSING
DSP is the arithmetic processing of real-time signals sampled at regular intervals and dig­
itized. Examples of DSP processing include the following:

Filtering of signals
• Convolution, which is the mixing of two signals
• Correlation, which is a comparison of two signals

Rectification, Amplification, and/or Transformation of a signal

All of these functions have traditionally been performed using analog circuits. Only recent­
ly has semiconductor technology provided the processing power necessary to digitally
perform these and other functions using DSPs.

Figure 1-1 shows a description of analog signal processing. The circuit in the illustration
filters a signal from a sensor using an operational amplifier, and controls an actuator with
the result. Since the ideal filter is impossible to design, the engineer must design the filter
for acceptable response, considering variations in temperature, component aging, power­
supply variation, and component accuracy. The resulting circuit typically has low noise im­
munity, requires adjustments, and is difficult to modify.

* This manual uses the acronym DSP for Digital Signal Processing or Digital Signal Processor, de­
pending on the context

X(tlbX(t)
INPUT

FROM

SENSOR

t

FREQUENCY

IDEAL

FILTER

ANALOG FILTER

Rf

Cf

y(t) Rf[1 -l
XTt) = -R; 1 + jwRF tJ

FREQUENCY CHARACTERISTICS

y(t)

Figure 1-1 Analog Signal Processing

Y(ll~ OUTPUT

TO

ACTUATOR

The equivalent circuit using a DSP is shown in Figure 1-2. This application requires an
analog-to-digital (AID) converter and digital-to-analog (DI A) converter in addition to the
DSP. Even with these additional parts, the component count can be lower using a DSP
due to the high integration available with current components.

Processing in this circuit begins by band-limiting the input with an anti-alias filter, eliminat­
ing out-of-band signals that can be aliased back into the pass band due to the sampling
process. The signal is then sampled, digitized with an AID converter, and sent to the DSP.

The filter implemented by the DSP is strictly a matter of software. The DSP can directly
implement any filter that can also be implemented using analog techniques. Also, adap­
tive filters can be easily implemented using DSP, whereas these filters are extremely
difficult to implement using analog techniques.

The DSP output is processed by a D/A converter and is low-pass filtered to remove the
effects of digitizing. In summary, the advantages of using the DSP include the following:

Fewer components • Self-test can be built in
Stable, deterministic performance
Wide range of applications

• No filter adjustments
• Filters with much closer tolerances

High noise immunity and • Adaptive filters easily implemented
power-supply rejection

LOW-PASS SAMPLER AND DSP OPERATION DIGITAL-TO-ANALOG RECONSTRUCTION

ANTIALIASING ANALOG-TO-DIGITAL CONVERTER LOW-PASS

FILTER CONVERTER FILTER

FIR FILTER

b
N

b - L c (k) x (n - k) -
x(t)

,,~O
yet)

FINITE IMPULSE

RESPONSE

ANALOG IN A ANALOG OUT

IDEAL

I
z

FILTER «
CJ

fc

FREQUENCY

A

I ~
ANALOG z
FILTER «

CJ

fc

FREQUENCY

A

~
DIGITAL z
FILTER «

CJ

fc

FREQUENCY

Figure 1-2 Digital Signal Processing

The DSP56K family is not designed for a particular application butis designed to execute
commonly used DSP benchmarks in a minimum time for a single-multiplier architecture.
For example, a cascaded, 2nd-order, four-coefficient infinite impulse response (IIR) bi­
quad section has four multiplies for each section. For that algorithm, the theoretical
minimum number of operations for a Single-multiplier architecture is four per section. Ta­
ble 1-1 shows a list of benchmarks with the number of instruction cycles a DSP56K chip
uses compared to the number of multiplies the algorithm requires.

Table 1-1 Benchmark Summary in Instruction Cycles

DSP56000/DSP56001
Number of

Benchmark Number of Cycles
Algorithm
Multiplies

Real Multiply 3 1

N Real Multiplies 2N N

Real Update 4 1

N Real Updates 2N N

N Term Real Convolution (FIR) N N

N Term Real * Complex Convolution 2N N

Complex Multiply 6 4

N Complex Multiplies 4N N

Complex Update 7 4

N Complex Updates 4N 4N

N Term Complex Convolution (FIR) 4N 4N

Nth -Order Power Series 2N 2N

2nd - Order Real Biquad Filter 7 4

N Cascaded 2nd - Order Biquads 4N 4N

N Radix Two FFT Butterflies 6N 4N

These benchmarks and others are used independently or in combination to implement
functions whose characteristics are controlled by the coefficients of the benchmarks being
executed. Useful functions using these and other benchmarks include the following:

Digital Filtering
Finite Impulse Response (FIR)
Infinite Impulse Response (IIR)
Matched Filters (Correlators)
Hilbert Transforms
Windowing
Adaptive Fi Iters/Equalizers

Signal Processing
Compression (e.g., Linear Predictive

Coding of Speech Signals)
Expansion
Averaging
Energy Calculations
Homomorphic Processing
Mu-Iaw/ A-law to/from Linear Data

Conversion

Data Processing
Encryption/Scram bli ng
Encoding (e.g., Trellis Coding)
Decoding (e.g., Viterbi Decoding)

Numeric Processing
Scaler, Vector, and Matrix Arithmetic
Transcendental Function Computation

(e.g., Sin(X), Exp(X))
Other Nonlinear Functions
Pseudo-Random-Number Generation

Modulation
Amplitude
Frequency
Phase

Spectral Analysis
Fast Fourier Transform (FFT)
Discrete Fourier Transform (DFT)
Sine/Cosine Transforms
Moving Average (MA) Modeling
Autoregressive (AR) Modeling
ARMA Modeling

Useful applications are based on combining these and other functions. DSP applications
affect almost every area in electronics because any application for analog electronic cir­
cuitry can be duplicated using DSP. The advantages in doing so are becoming more
compelling as DSPs become faster and more cost effective.Some typical applications for
DSPs are presented in the following list:

Telecommunication
Tone Generation
Dual-Tone Multifrequency (DTMF)
Subscriber Line Interface
Full-Duplex Speakerphone
Teleconferencing
Voice Mail
Adaptive Differential Pulse Code
Modulation (ADPCM) Transcoder
Medium-Rate Vocoders
Noise Cancelation
Repeaters
Integrated Services Digital Network

(ISDN) Transceivers
Secure Telephones

Data Communication
High-Speed Modems
Multiple Bit-Rate Modems
High-Speed Facsimile

Radio Communication
Secure Communications
Point-to-Point Communications
Broadcast Communications
Cellular Mobile Telephone

Computer
Array Processors
Work Stations
Personal Computers
Graphics Accelerators

Image Processing
Pattern Recognition
Optical Character Recognition
Image Restoration
Image Compression
Image Enhancement
Robot Vision

Graphics
3-D Rendering
Computer-Aided Engineering (CAE)
Desktop Publishing
Animation

Instrumentation
Spectral Analysis
Waveform Generation
Transient Analysis
Data Acquisition

Speech Processing
Speech Synthesizer
Speech Recognizer
Voice Mail
Vocoder
Speaker Authentication
Speaker Verification

Audio Signal Processing
Digital AM/FM Radio
Digital Hi-Fi Preamplifier
Noise Cancelation
Music Synthesis
Music Processing
Acoustic Equalizer

High-Speed Control
Laser-Printer Servo
Hard-Disk Servo
Robotics
Motor Controller
Position and Rate Controller

Vibration Analysis
Electric Motors
Jet Engines
Turbines

Medical Electronics
Cat Scanners
Sonographs
X-Ray Analysis
Electrocardiog ram
Electroencephalog ram
Nuclear Magnetic Resonance Analysis

Digital Video
Digital Television
High-Resolution Monitors

Radar and Sonar Processing
Navigation
Oceanography
Automatic Vehicle Location'
Search and Tracking

Seismic Processing
Oil Exploration
Geological Exploration

As shown in Figure 1-3, the keys to DSP are as follows:

• The Multiply/Accumulate (MAC) operation
Fetching operands for the MAC
Program control to provide versatile operation
Input/Output to move data in and out of the DSP

MAC is the basic operation used in DSP. The DSP56K family of processors has a dual
Harvard architecture optimized for MAC operations. Figure 1-3 shows how the DSP56K

architecture matches the shape of the MAC operation. The two operands, CO and XO, are
directed to a multiply operation, and the result is summed. This process is built into the
chip by using two separate memories (X and Y) to feed a single-cycle MAC. The entire
process must occur under program control to direct the correct operands to the multiplier
and save the accumulator as needed. Since the two memories and the MAC are indepen­
dent, the DSP can perform two moves, a multiply and an accumulate, in a single
operation. As a result, many of the benchmarks shown in Table 1-1 can be executed at or
near the theoretical maximum speed for a single-multiplier architecture.

1.3 SUMMARY OF DSP56K FAMILY FEATURES
The high throughput of the DSP56K family of processors makes them well suited for com­
munication, high-speed control, numeric processing and computer and audio
applications. The main features that contribute to this high throughput include:

• Speed - Speeds high enough to easily address applications traditionally served by
low-end floating point DSPs.

FIR FILTER

N

E c(k) x (n-k)

k = 0 '-v---J ~

, .. ,"; ""', · . · . · , · , · , · ,

'", .. """"J

MAC

Figure 1-3 DSP Hardware Origins

-I PROGRAM I

• Precision - The data paths are 24 bits wide, providing 144 dB of dynamic range;
intermediate results held in the 56-bit accumulato~s can range over 336 dB.

• Parallelism - Each on-chip execution unit (AGU, program control unit, data ALU),
memory, and peripheral operates independently and in parallel with the other units
through a sophisticated bus system. The data ALU, AGU, and program control unit
operate in parallel so that an instruction prefetch, a 24-bit x 24-bit multiplication, a 56-
bit addition, two data moves, and two address-pointer updates using one of three
types of arithmetic (linear, modulo, or reverse-carry) can be executed in a single
instruction cycle. This parallelism allows a four-coefficient IIR filter section to be
executed in only four cycles, the theoretical minimum for single-multiplier architecture.
At the same time, the two serial controllers can send and receive full-duplex data, and
the host port can send/receive simplex data.

Flexibility - While many other DSPs need external communications circuitry to
interface with peripheral circuits (such as AID converters, D/A converters, or host
processors), the DSP56K family provides on-chip serial and parallel interfaces which
can support various configurations of memory and peripheral modules

• Sophisticated Debugging- Motorola's on-chip emulation technology (OnCE) allows
simple, inexpensive, and speed independent access to the internal registers for
debugging. OnCE tells application programmers exactly what the status is within the
registers, memory locations, buses, and even the last five instructions that were
executed.

Phase-locked Loop (PLL) Based Clocking - PLL allows the chip to use almost any
available external system clock for full-speed operation while also supplying an output
clock synchronized to a synthesized internal core clock. It improves the synchronous
timing of the processors' external memory port, eliminating the timing skew common
on other processors.

• Invisible Pipeline - The three-stage instruction pipeline is essentially invisible to the
programmer, allowing straightforward program development in either assembly
language or a high-level language such as a full Kernighan and Ritchie C.

• Instruction Set - The instruction mnemonics are MCU-like, making the transition
from programming microprocessors to programming the chip as easy as possible. The
orthogonal syntax controls the parallel execution units. The hardware DO loop
instruction and the repeat (REP) instruction make writing straight-line code obsolete.

• DSP56001 Compatibility - All members of the DSP56K family are downward
compatible with the DSP56001, and also have added flexibility, speed, and
functionality.

• Low Power - As a CMOS part, the DSP56000/DSP56001 is inherently very low
power and the STOP and WAIT instructions further reduce power requirements.

1.4 MANUAL ORGANIZATION
This manual describes the central processing module of the DSP56K family in detail and
provides practical information to help the user:

• Understand the operation of the DSP56K family
• Design parallel communication links
• Design serial communication links
• Code DSP algorithms
• Code communication routines
• Code data manipulation algorithms
• Locate additional support

The following list describes the contents of each section and each appendix:

Section 2 - DSP56K Central Architecture Overview
The DSP56K central architecture consists of the data arithmetic logic unit (ALU), ad­
dress generation unit (AGU), program control unit, On-Chip Emulation (OnCE)
circuitry, the phase locked loop (PLL) based clock oscillator, and an external memory
port (Port A). This section describes each subsystem and the buses interconnecting
the major components in the DSP56K central processing module.

Section 3 - Data Arithmetic Logic Unit
This section describes in detail the data ALU and its programming model.

Section 4 - Address Generation Unit
This section specifically describes the AGU, its programming model, address indirect
modes, and address modifiers.

Section 5 - Program Control Unit
This section describes in detail the program control unit and its programming model.

Section 6 - Instruction Set Introduction
This section presents a brief description of the syntax, instruction formats, operand/­
memory references, data organization, addressing modes, and instruction set. A
detailed description of each instruction is given in APPENDIX A - INSTRUCTION SET
DETAILS.

Section 7 - Processing States
This section describes the five processing states (normal, exception, reset, wait, and
stop).

Section 8 - Port A
This section describes the external memory port, its control register, and control sig­
nals.

Section 9 - PLL Clock Oscillator
This section describes the PLL and its functions

Section 10- On-Chip Emulator (OnCE)
This section describes the OnCE circuitry and its functions.

Section 11 - Additional Support
This section presents a brief description of current support products and services and
information on where to obtain them.

Appendix A - Instruction Set Details
A detailed description of each DSP56K family instruction, its use, and its affect on the
processor are presented.

Appendix B - Benchmarks
DSP5K family benchmark results are listed in this appendix.

SECTION 2
DSP56K CENTRAL ARCHITECTURE

OVERVIEW

,
,
,

, ,
f, _____ J

-

2.1 DSP56K CENTRAL ARCHITECTURE OVERVIEW
The DSP56K family of processors is built on a standard central processing module. In the
expansion area around the central processing module, the chip can support various con­
figurations of memory and peripheral modules which may change from family member to
family member. This section introduces the architecture and the major components of the
central processing module.

The central components are:

• Data Buses
• Address Buses
• Data Arithmetic Logic Unit (data ALU)
• Address Generation Unit (AGU)

Program Control Unit (PCU)
• Memory Expansion (Port A)
• On-Chip Emulator (OnCElM) circuitry

Phase-locked Loop (PLL) based clock circuitry

Figure 2-1 shows a block diagram of a typical DSP56K family processor, including the
central processing module and a nonspecific expansion area for memory and peripherals.
The following paragraphs give brief descriptions of each of the central components. Each
of the components is explained in detail in subsequent chapters.

2.2 DATA BUSES
The DSP56K central processing module is organized around the registers of three inde­
pendent execution units: the PCU, the AGU, and the data ALU. Data movement between
the execution units occurs over four bidirectional 24-bit buses: the X data bus (XDB), the
Y data bus (yDB), the program data bus (PDB), and the global data bus (GDB). (Certain
instructions treat the X and Y data buses as one 48-bit data bus by concatenating them.)
Data transfers between the data ALU and the X data memory or Y data memory occur
over XDB and YDB, respectively. XDB and YDB are kept local on the chip to maximize
speed and minimize power dissipation. All other data transfers, such as I/O transfers with
peripherals, occur over the GDB. Instruction word prefetches occur in parallel over the
PDB.

The bus structure supports general register-to-register, register-to-memory, and memory­
to-register data movement. It can transfer up to two 24-bit words and one 56-bit word in
the same instruction cycle. Transfers between buses occur in the internal bus switch.

-
-I « a:
w
:c
a.

ffi~
a. a.

24-Bit 56K
Module

ADDRESS
GENERATION

UNIT

X MEMORY
RAM/ROM

EXPANSION

.-......:..:..,::;--1-- •. ----'-- .---J EXTERNAL

.--:P::=:A"=B'---..&-.----II--i ADDRESS I--+--_u.

BUS ~

en en
w

SWITCH

BUS
CONTROL

«
-I I­a a:
a: a
I- a. z
a o

~II·~----·I"'I---I·II-------Jl"'--~~"~
INTERNAL EXTERNAL

DATA DATA BUS
S~~H SWITCH ~ ... ~«

....... I~ --·II--II--I-.. ~

MODBIIROB

MODAIIROA

RESET

DATAALU
24X24+56~56-BIT MAC

TWO 56-BIT ACCUMULATORS

Figure 2-1 DSP56K Block Diagram

OnCETM

_ 16 BITS

--24BITS

2.3 ADDRESS BUSES
Addresses are specified for internal X data memory and Y data memory on two unidirec­
tional 16-bit buses - X address bus (XAS) and Y address bus (Y AS)_ Program memory
addresses are specified on the bidirectional program address bus (PAS). External mem­
ory spaces are addressed over a single 16-bit unidirectional address bus driven by a

three-input multiplexer that can select the XAB, the VAB, or the PAB. Only one external
memory access can be made in an instruction cycle. There is no speed penalty if only one
external memory space is accessed in an instruction cycle. However, if two or three ex­
ternal memory spaces are accessed in a single instruction, there will be a one or two
instruction cycle execution delay, respectively.

A bus arbitrator controls external access.

2.3.1 Internal Bus Switch
Transfers between buses occur in the internal bus switch. The internal bus switch, which
is similar to a switch matrix, can connect any two internal buses without adding any pipe­
line delays. This flexibility simplifies programming.

2.3.2 Bit Manipulation Unit
The bit manipulation unit is physically located in the internal bus switch block because the
internal data bus switch can access each memory space. The bit manipulation unit per­
forms bit manipulation operations on memory locations, address registers, control
registers, and data registers over the XDB, VDB, and GDB.

2.4 DATAALU
The data ALU performs all of the arithmetic and logical operations on data operands. It
consists of four 24-bit input registers, two 48-bit accumulator registers, two 8-bit accumu­
lator extension registers, an accumulator shifter, two data bus shifter/limiter circuits, and
a parallel, single-cycle, nonpipelined Multiply-Accumulator (MAC) unit.

2.5 ADDRESS GENERATION UNIT
The AGU performs all of the address storage and address calculations necessary to indi­
rectly address data operands in memory. It operates in parallel with other chip resources
to minimize address generation overhead. The AGU has two identical address arithmetic
units that can generate two 16-bit addresses every instruction cycle. Each of the arith­
metic units can perform three types of arithmetic: linear, modulo, and reverse-carry.

2.6 PROGRAM CONTROL UNIT
The program control unit performs instruction prefetch, instruction decoding, hardware
DO loop control, and interrupt (or exception) processing. It consists of three components:
the program address generator, the program decode controller, and the program interrupt
controller. It contains a 15-level by 32-bit system stack memory and the following six di-

-
rectly addressable registers: the program counter (PC), loop address (LA), loop counter
(LC), status register (SR), operating mode register (OMR), and stack pointer (SP). The
16-bit PC can address 65,536 locations in program memory space.

There are four mode and interrupt control pins that provide input to the program interrupt
controller. The Mode Select AlExternallnterrupt Request A(MODAlIROA) and Mode Se­
lect B/External Interrupt Request B (MODB/IROB) pins select the chip operating mode
and receive interrupt requests from external sources.

The Mode Select C/Non-Maskable Interrupt (MODC/NMI) pin provides further operating
mode options and non-maskable interrupt input.

The RESET pin resets the chip. When it is asserted, it initializes the chip and places it in
the reset state. When it is deasserted, the chip assumes the operating mode indicated by
the MODA, MODB, and MODC pins.

2.7 MEMORY EXPANSION PORT (PORT A)
Port A synchronously interfaces with a wide variety of memory and peripheral devices
over a common 24-bit data bus. These devices include high-speed static RAMs, slower
memory devices, and other DSPs and MPUs in master/slave configurations. This variety
is possible because the expansion bus timing is programmable and can be tailored to
match the speed requirements of the different memory spaces. Not all DSP56K family
members feature a memory expansion port. See the individual device's User's Manual to
determine if a particular chip includes this feature.

2.8 ON-CHIP EMULATOR (OnCE)
DSP56K on-chip emulation (OnCE) circuitry allows the user to interact with the DSP56K
and its peripherals non-intrusively to examine registers, memory, or on-chip peripherals.
It provides simple, inexpensive, and speed independent access to the internal registers
for sophisticated debugging and economical system development.

Dedicated OnCE pins allow the user to insert the DSP into its target system and retain
debug control without sacrificing other user accessible on-Chip resources. The design
eliminates the costly cabling and the access to processor pins required by traditional em­
ulator systems.

2.9 PHASE-LOCKED LOOP (PLL) BASED CLOCKING
The PLL allows the DSP to use almost any available external system clock for full-speed
operation, while also supplying an output clock synchronized to a synthesized internal
clock. The PLL performs frequency multiplication, skew elimination, and low-power divi­
sion.

SECTION 3
DATA ARITHMETIC LOGIC UNIT

3.1 DATA ARITHMETIC LOGIC UNIT
This section describes the operation of the Data ALU registers and hardware. It dis­
cusses data representation, rounding, and saturation arithmetic used within the Data
ALU, and concludes with a discussion of the programming model.

3.2 OVERVIEW AND DATA ALU ARCHITECTURE
As described in Section 2, The DSP56K family central processing module is composed
of three execution units that operate in parallel. They are the Data ALU, address genera­
tion unit (AGU), and the program control unit (PCU) (see Figure 3-1). These three units
are register oriented rather than bus oriented and interface over the system buses with
memory and memory-mapped I/O devices.

The Data ALU (see Figure 3-2) is the first of these execution units to be presented. It bal­
ances speed with the capability to process signals that have a wide dynamic range and
performs all arithmetic and logical operations on data operands.

The Data ALU registers may be read or written over the XDB and the YDB as 24- or 48-
bit operands. The source operands for the Data ALU, which may be 24, 48, or 56 bits;
always originate from Data ALU registers. The results of all Data ALU operations are
stored in an accumulator.

The 24-bit data words provide 144 dB of dynamic range. This range is sufficient for most
real-world applications since the majority of data converters are 16 bits or less - and cer­
tainly not greater than 24 bits. The 56-bit accumulator inside the Data ALU provides 336

. dB of internal dynamic range so that no loss of preCision will occur due to intermediate.
processing. Special circuitry handles data overflows and roundoff errors.

The Data ALU can perform any of the following operations in a single instruction cycle:
multiplication, multiply-accumulate with positive or negative accumulation, convergent
rounding, multiply-accumulate with positive or negative accumulation and convergent
rounding, addition, subtraction, a divide iteration, a normalization iteration, shifting, ?nd
logical operations.

The components of the Data ALU are:

Four 24-bit input registers
A parallel, single-cycle, nonpipelined multiply-accumulator/logic unit (MAC)
Two 48-bit accumulator registers
Two 8-bit accumulator extension registers
An accumulator shifter
Two data bus shifter/limiter circuits

24 Bit56K
Module

ADDRESS

X MEMORY
RAM/ROM

EXPANSION

GENERATION I--_I_II_~"':;:"'_L-1·----I--J

UNIT

BUS
CONTROL I-i--!:::

INTERNAl EXTERNAL
D~A ~.I.~""I-"I-".I.' •• """~"""-lr"'''~DATABUS
S!~H SWITCH ~<C

: : -ffi(X?~wi -: f
: NTERRUPT I I CECODE I , ADDRESS I

: CONTROLLERft" CONTmU.ER nGENERAlOR :
_~ , __________ • 1 __ • ___ ----,

Program Control Unit

MODCINMI

MODBIIRQB

MODAIIRQA

RESET

Figure 3-1 DSP56K Block Diagram

OnCE'"

__ 16 BITS

_24 BITS

«
Ii: o
a.

The following paragraphs describe each of these components and provide a description
of data representation, rounding, and saturation arithmetic.

3.2.1 Data ALU Input Registers (X1, XO, Y1, YO)
X1, XO, Y1, and YO are four 24-bit, general-purpose data registers. They can be treated
as four independent, 24-bit registers or as two 48-bit registers called X and Y, developed
by concatenating X1 :XO and Y1 :YO, respectively. X1 is the most significant word in X and
Y1 is the most significant word in Y. The registers serve as input buffer registers between
the XDS or YDS and the MAC unit. They act as Data ALU source operands and allow
new operands to be loaded for the next instruction while the current instruction uses the

X DATA BUS

YDATABUS

24 24

XO

X1

YO

Y1

24 24

(MULTIPLIER

56

ACCUMULATOR,
ROUNDING,

AND LOGIC UNIT Y
I SHIFTER I 56

~
I A (56) I
I 8 (56) I

56 56 L
I SHIFTERILIMITER I

24

24

Figure 3-2 Data ALU

register contents. The registers may also be read back out to the appropriate data bus to
implement memory-delay operations and save/restore operations for interrupt service
routines.

3.2.2 MAC and Logic Unit
The MAC and logic unit shown in Figure 3-3 conduct the main arithmetic processing and
perform all calculations on data operands in the DSP.

For arithmetic instructions, the unit accepts up to three input operands and outputs one
56-bit result in the following form: extension:most significant productleast significant
product (EXT:MSP:LSP). The operation of the MAC unit occurs independently and in par­
allel with XDB and YDB activity, and its registers facilitate buffering for Data ALU inputs
and outputs. Latches on the MAC unit input permit writing an input register which is the
source for a Data ALU operation in the same instruction.

The arithmetic unit contains a multiplier and two accumulators. The input to the multiplier
can only come from the X or Y registers (X1, XO, Y1, YO). The multiplier executes 24-bit
x 24-bit, parallel, twos-complement fractional multiplies. The 48-bit product is right justi­
fied and added to the 56-bit contents of either the A or B accumulator. The 56-bit sum is
stored back in the same accumulator (see Figure 3-3). An 8-bit adder, which acts as an
extension accumulator for the MAC array, accommodates overflow of up to 256 and al­
lows the two 56-bit accumulators to be added to and subtracted from each other. The
extension adder output is the EXT portion of the MAC unit output. This multiply/accumu­
late operation is not pipelined, but is a single-cycle operation. If the instruction specifies a
multiply without accumulation (MPy), the MAC clears the accumulator and then adds the
contents to the product.

In summary, the results of all arithmetic instructions are valid (sign-extended and zero­
filled) 56-bit operands in the form of EXT:MSP:LSP (A2:A1 :AO or B2:B1 :BO). When a 56-
bit result is to be stored as a 24-bit operand, the LSP can be simply truncated, or it can be
rounded (using convergent rounding) into the MSP.

Convergent rounding (round-to-nearest) is performed when the instruction (for example,
the Signed multiply-accumulate and round (MACR) instruction) specifies adding the mul­
tiplier's product to the contents of the accumulator. The scaling mode bits in the status
register specify which bit in the accumulator shall be rounded.

The logic unit performs the logical operations AND, OR, EOR, and NOT on Data ALU reg­
isters. It is 24 bits wide and operates on data in the MSP portion of the accumulator. The
LSP and EXT portions of the accumulator are not affected.

"""""" 24 BITS
;:~:>~~::~~~:~:~:~::::::m::~: 48 BITS ___ 56BITS

XO,X1, XO,X1,

YO, OR Y1 YO, OR Y1

24-BITx24-BIT
FRACTIONAL
MULTIPLIER ,-------------~ --------------------t ------------------~~;ji~j~~~~--

H

F
T
E
R

CONVERGENT - ROUNDING
FORCING FUNCTION

SCALING
MODE BITS

CONDITION
...... ~ CODE GENERATOR

Figure 3-3 MAC Unit

3.2.3 Data ALU A and B Accumulators

XO,X1,

YO,ORY1

The Data ALU features two general-purpose, 56-bit accumulators, A and 8. Each con­
sists of three concatenated registers (A2:A 1 :AO and 82:81:80, respectively). The 8-bit
sign extension (EXT) is stored in A2 or 82 and is used when more than 48-bit accuracy is
needed; the 24-bit most significant product (MSP) is stored in A 1 or 81; the 24-bit least
significant product (LSP) is stored in AO or 80 as shown in Figure 3-4.

DATA ALU ACCUMULATOR REGISTERS

Accumulator A Accumulator B

55 0 55 0
IA21 A1 AO I 1

82
1 81 80 1

7 0 23 o 23 0 7023 o 23 0

t t t t t t
EXT MSP LSP EXT MSP LSP

'Read as sign extension bits, written as don't care.

Figure 3-4 DATA ALU Accumulator Registers

Overflow occurs when a source operand requires more bits for accurate representation
than are available in the destination. The 8-bit extension registers offer protection against
overflow. In the DSP56K chip family, the extreme values that a word operand can
assume are - 1 and + 0.9999998. If the sum of two numbers is less than - 1 or greater
than + 0.9999998, the result (which cannot be represented in a 24 bit word operand) has
underflowed or overflowed. The 8-bit extension registers can accurately represent the
result of 255 overflows or 255 underflows. Whenever the accumulator extension regis­
ters are in use, the V bit in the status register is set.

Automatic sign extension occurs when the 56-bit accumulator is written with a smaller
operand of 48 or 24 bits. A 24-bit operand is written to the MSP (A 1 or B 1) portion of the
accumulator, the LSP (AO or BO) portion is zero filled, and the EXT (A2 or B2) portion is
sign extended from MSP. A 48-bit operand is written into the MSP:LSP portion (A1 :AO or
B1 :BO) of the accumulator, and the EXT portion is sign extended from MSP. No sign
extension occurs if an individual 24-bit register is written (A1, AO, B1, or BO).When either
A or B is read, it may be optionally scaled one bit left or one bit right for block floating­
point arithmetic. Sign extension can also occur when writing A or B from the XDB and/or
YDB or with the results of certain Data ALU operations (such as the transfer conditionally
(Tcc) or transfer Data ALU register (TFR) instructions).

Overflow protection occurs when the contents of A or B are transferred over the XDB and
YDB by substituting a limiting constant for the data. Limiting does not affect the content
of A or B - only the value transferred over the XDB or YDB is limited. This overflow pro­
tection occurs after the contents of the accumulator has been shifted according to the
scaling mode. Shifting and limiting occur only when the entire 56-bit A or B accumulator
is specified as the source for a parallel data move over the XDB or YDB. When individual
registers AO, A1, A2, BO, B1, or B2 are specified as the source for a parallel data move,
shifting and limiting are not performed.

3.2.4 Accumulator Shifter
The accumulator shifter (see Figure 3-3) is an asynchronous parallel shifter with a 56-bit
input and a 56-bit output that is implemented immediately before the MAC accumulator
input. The source accumulator shifting operations are as follows:

• No Shift (Unmodified)
1-Bit Left Shift (Arithmetic or Logical) ASL, LSL, RDL
1-Bit Right Shift (Arithmetic or Logical) ASR, LSR, RDR
Force to zero

3.2.5 Data Shifter/Limiter
The data shifter/limiter circuits (see Figure 3-3) provide special post-processing on data
read from the Data ALU A and B accumulators out to the XDB or YDB. There are two in­
dependent shifter/limiter circuits (one for XDB and one for the YDB); each consists of a
shifter followed by a limiting circuit.

3.2.5.1 Limiting (Saturation Arithmetic)
The A and B accumulators serve as buffer registers between the MAC unit and the XDB
and/or YDB. They act both as Data ALU source and destination operands.Test logic exists
in each accumulator register to support the operation of the data shifter/limiter circuits.
This test logic detects overflows out of the data shifter so that the limiter can substitute
one of several constants to minimize errors due to the overflow. This process is called sat­
uration arithmetic

The Data ALU A and B accumulators have eight extension bits. Limiting occurs when the
extension bits are in use and either A or B is the source being read over XDB or YDB. If
the contents of the selected source accumulator calJ be represented without overflow in
the destination operand size (Le., accumulator extension register not in use), the data lim­
iter is disabled, and the operand is not modified. If. contents of the selected source
accumulator cannot be represented without overflow in the destination operand size, the
data limiter will substitute a limited data value with maximum magnitude (saturated) and
with the same sign as the source accumulator contents: $7FFFFF for 24-bit or $7FFFFF
FFFFFF for 48-bit positive numbers, $800000 for 24-bit or $800000 000000 for 48-bit neg­
ative numbers. This process is called saturation arithmetic. The value in the accumulator
register is not shifted and can be reused within the Data ALU. When limiting does occur,
a flag is set and latched in the status register.Two limiters allow two-word operands to be
limited independently in the same instruction cycle. The two data limiters can also be com­
bined to form one 48-bit data limiter for long-word operands.

WITHOUT L1MITING* WITH L1MITING*

~ 0 ~ 0

10 .. ,01~0, 00100 001 A=+1.0 10 ... 0 I~O, 001 00 001 A=+1.0

7 0 23 rl 0 23 0

V MOVE A1, XO

7 0 23 rl 0 23 0

V MOVE A, XO

11.. 0 0 0 1 xo = -1.0 l I~ 1 111 XO=+0.9999999-.

23 0 IERRORI = 2.0 23 0 IERRORI = .0000001

* Limiting automatically occurs when the 56 - bit operands A or B (not A2, A1, AO, B2, B1, or BO) are read. The contents
of A or B are NOT changed.

Figure 3-5 Saturation Arithmetic

For example, if the source operand were 01.100 (+ 1.5 decimal) and the destination reg­
ister were only four bits, the destination register would contain 1.100 (- 1.5 decimal) after
the transfer, assuming signed fractional arithmetic. This is clearly in error as overflow has
occurred. To minimize the error 'due to overflow, it is preferable to write the maximum
("limited") value the destination can assume. In the example, the limited value would be
0.111 (+ 0.875 decimal), which is clearly closer to + 1.5 than - 1.5 and therefore intro­
duces less error.

Figure 3-5 shows the effects of saturation arithmetic on a move from register A 1 to regis­
ter XO. The instruction "MOVE A1 ,XO" causes a move without limiting, and the instruction
"MOVE A,XO" causes a move of the same 24 bits with limiting. The error without limiting
is 2.0; whereas, it is 0.0000001 with limiting. Table 3-1 shows a more complete set of lim­
iting situations.

3.2.5.2 Scaling
The data shifters can shift data one bit to the left or one bit to the right, or pass the data
unshifted. Each data shifter has a 24-bit output with overflow indication and is controlled
by the scaling mode bits in the status register. These shifters permit dynamic scaling of
fixed-point data without modifying the program code. For example, this permits block float­
ing-point algorithms such as fast Fourier transforms to be implemented in a regular
fashion.

3.3 DATA REPRESENTATION AND ROUNDING
The DSP56K uses a fractional data representation for all Data ALU operations. Figure 3-
7 shows the bit weighting of words, long words, and accumulator operands for this repre­
sentation. The decimal pOints are all aligned and are left justified.

Table 3-1 Limited Data Values

Destination Source Accumulator Limited Value (Hexadecimal) Type of
Memory Reference Operand Sign XOB YOB Access

X:A + 7FFFFF -
One 24 bit X X:B 800000 - -

Y:A + - 7FFFFF
One 24 bit Y Y:B 800000 - -

X:A Y:A + 7FFFFF 7FFFFF
X:A Y:B - 800000 800000

XandY X:BY:A + 7FFFFF 7FFFFF Two 24 bit X:B Y:B - 800000 800000
L:AB + 7FFFFF 7FFFFF
L:BA - 800000 800000

L (X:Y)
L:A + 7FFFFF FFFFFF

One 48 bit L:B - 800000 000000

Data must be converted to a fractional number by scaling before being used by the DSP
or the user will have to be very careful in how the DSP manipulates the data. Moving $3F
to a 24-bit Data ALU register does not result in the contents being $00003F as might be
expected. Assuming numbers are fractional, the DSP left justifies rather than right justi­
fies. As a result, storing $3F in a 24-bit register results in the contents being $3FOOOO.
The simplest example of scaling is to convert all integer numbers to fractional numbers
by shifting the decimal 24 places to the left (see Figure 3-6). Thus, the data has not
changed; only the position of the decimal has moved.

Is
S =SIGN BIT

3F = HEXADECIMAL DATA TO BE CONVERTED

Is. 3FI

Figure 3-6 Integer-to-Fractional Data Conversion

For words and long words, the most negative number that· can be represented is -1
whose internal representation is $800000 and $800000000000, respectively. The most
positive word is $7FFFFF or 1 - Z23 and the most positive long word is $7FFFFFFFFFFF
or 1 - 2-47. These limitations apply to all data stored in memory and to data stored in the
Data ALU input buffer registers. The extension registers associated with the accumula-

tors allow word growth so that the most positive number that can be used is approxi­
mately 256 and the most negative number is approximately -256. When the accumulator
extension registers are in use, the data contained in the accumulators cannot be stored
exactly in memory or other registers. In these cases, the data must be limited to the most
positive or most negative number consistent with the size of the destination and the sign
of the accumulator (the most significant bit (MSB) of the extension register).

To maintain alignment of the binary point when a word operand is written to accumulator
A or B, the operand is written to the most significant accumulator register (A1 or B1), and
its MSB is automatically sign extended through the accumulator extension register. The
least significant accumulator register is automatically cleared. When a long-word oper­
and is written to an accumulator, the least significant word of the operand is written to the
least significant accumulator register AO or BO and the most significant word is written to
A1 or B1 (see Figure 3-8).

DATAALU

WORD OPERAND

X1, XO
Y1, YO
A1, AO
81, 80

LONG - WORD OPERAND

X1:XO = X
Y1:YO = Y
A1:AO = A10
81:80 = 810

ACCUMULATOR A OR 8

I'
_28 20

SIG~ EXTENSION

A1,81
, , , , , , , , ,

OPER~AND

I
Z-24

I
2-24

AO,80

I
ZE~O

Figure 3-7 Bit Weighting and Alignment of Operands

2--47

--- N BITS ---

TWOS COMPLEMENT INTEGER L...IS _________ 1-2(N-1)TO [+2(N-1)_1]

TWOS COMPLEMENT FRACTIONAL L...1s_-_______ -.....I1-1 TO [+1_2-(N-1)]

--- N BITS ---

FRACTIONAL = INTEGER EXCEPT FOR X AND -:-

Figure 3-8 Integer/Fractional Number Comparison

A comparison between integer and fractional number representation is shown in Figure
3-8. The number representation for integers is between ±2(N-1); whereas, the fractional
representation is limited to numbers between ±1. To convert from an integer to a frac­
tional number, the integer must be multiplied by a scaling factor so the result will always
be between ±1. The representation of integer and fractional numbers is the same if the
numbers are added or subtracted but is different if the numb.ers are multiplied or divided.
An example of two numbers multiplied together is given in Figure 3-9. The key difference
is that the extra bit in the integer multiplication is used as a duplicate sign bit and as the
least significant bit (LSB) in the fractional multiplication. The advantages of fractional
data representation are as follows:

• The MSP (left half) has the same format as the input data.

• The LSP (right half) can be rounded into the MSP without shifting or updating the
exponent.

• A significant bit is not lost through sign extension.

Conversion to floating-point representation is easier because the industry-standard
floating-point formats use fractional mantissas.

Coefficients for most digital filters are derived as fractions by the high-level language
programs used in digital-filter design packages, which implies that the results can be
used without the extensive data conversions that other formats require.

Should integer arithmetic be required in an application, shifting a one or zero, depending
on the sign, into the MSB converts a fraction to an integer.

The Data ALU MAC performs rounding of the accumulator register to single precision if
requested in the instruction (the A1 or B1 register is rounded according to the contents of
the AO or BO register). The rounding method is called round-to-nearest (even) number, or
convergent rounding. The usual rounding method rounds up any value above one-half
and rounds down any value below one-half. The question arises as to which way one­
half should be rounded. If it is always rounded one way, the results will eventually be

SIGNED MULTIPLICATION N x N .2N - 1 BITS

INTEGER FRACTIONAL

Is Is Is Is
SIGNED MULTIPLIER SIGNED MULTIPLIER

ergls MSP : LSP

.. 2N - 1 PRODUCT ---.
SIGN EXTENSION

·1 ~ls-.--M-SP2N-1 PRODUCT LSP ~I ~
ZERO FILL =--1

----- 2N BITS---- _----- 2N BITS----_

Figure 3-9 Integer/Fractional Multiplication Comparison

biased in that direction. Convergent rounding solves the problem by rounding down if the
number is odd (LSB=O) and rounding up if the number is even (LSB=1). Figure 3-10
shows the four cases for rounding a number in the A1 (or B1) register. If scaling is set in
the status register, the resulting number will be rounded as it is put on the data bus. How­
ever, the contents of the register are not scaled.

CASE I: IF AO < $800000 (1/2), THEN ROUND DOWN (ADD NOTHING)

BEFORE ROUNDING AFTER ROUNDING

A2 A1 AO*
Ixx .. xx I XXX ... XXX0100 1000 , .. 0001
55 48 47 24 23 0

CASE II: IF AO > $800000 (1/2), THEN ROUND UP (ADD 1 TO A1)

BEFORE ROUNDING AFTER ROUNDING

A2 A1· AO*
Ixx .. XX I XXX ... xxx01011 000 0001
55 48 47 24 23 0

CASE III: IF AO = $800000 (1/2), AND THE LSB OF A1 = O,THEN ROUND DOWN (ADD NOTHING)

BEFORE ROUNDING AFTER ROUNDING

A2 A1 AO*
I xx .. xx I XXX ... XXX01 00 I 000 0001
55 48 47 24 23 a

CASE IV: IF AO = $800000 (1/2), AND THE LSB = 1, THEN ROUND UP (ADD 1 TO A1)

BEFORE ROUNDING AFTER ROUNDING

A2 A1 AO*
Ixx .. xxi XXX ... XXX0110 1000 0001
55 48 47 24 23 a

*AO is always clear; performed during RND, MPYR, MACR

Figure 3-10 Convergent Rounding

3.4 DOUBLE PRECISION MULTIPLY MODE
The Data ALU double precision multiply operation multiplies two 48-bit operands with a
96-bit result. The processor enters the dedicated Double Precision Multiply Mode when
the user sets bit 14 (OM) of the Status Register (bit 6 of the MR register). The mode is
disabled by clearing the OM bit. For· information on the OM bit, see Section 5.4.2.13 -
Double Precision Multiply Mode (Bit 14).

CAUTION:
While in the Double Precision Multiply Mode, only the double precision multiply algorithms
shown in Figure 3-11, Figure 3-12, and Figure 3-13 may be executed by the Data ALU;
any other Data ALU operation will give indeterminate results.

Figure 3-11 shows the full double precision multiply algorithm. To allow for pipeline
delay, the ANDI instruction should not be immediately followed by a Data ALU instruc­
tion. For example, the ORI instruction sets the OM mode bit, but, due to the instruction
execution pipeline, the Data ALU enters the Double Precision Multiply mode only after

X: Y:

MSP1 MSP2
R1 • LSP1 LSP2 -... R5

DP3 DP2

• DP1 DPO ----RO RO

ori #$40,mr ;enter mode

move x:(r1)+,xO y:(r5)+,yO ;Ioad operands

mpy yO,xO,a x:(r1)+,x1 y:(r5)+,y1 ;LSP*LSP-+a

mac x1,yO,a aO,y:(rO) ;shifted(a)+

, MSP*LSP-+a

mac xO,y1,a ;a+LSP*MSP-+a

mac y1 ,x1,a aO,x:(rO)+ ;shifted(a)+

, MSP*MSP-+a

move a,I:(rO)+

andi #$bf,mr ;exit mode

non-Data ALU operation ;pipeline delay

Figure 3-11 Full Double Precision Multiply Algorithm

one instruction cycle. The ANDI instruction clears the DM mode bit, but, due to the
instruction execution pipeline, the Data ALU leaves the mode after one instruction cycle.

The double precision multiply algorithm uses the YO register at all stages. If the use of
the Data ALU is required in an interrupt service routine, YO should be saved together
with other Data ALU registers to be used, and should be restored before leaving the
interrupt routine.

If just single precision times double precision multiply is desired, two of the multiply oper­
ations may be deleted and replaced by suitable initialization and clearing of the accumu­
lator and YO. Figure 3-12 shows the single precision times double precision algorithm.

X: Y:

MSP1
R1 .. LSP1

DP3
RO .- DP1

DP3_DP2_DP1 = MSP1

clr a #O,yO

ori #$40,mr

move x:(r1 }+,xo

mac xO,y1,a x:(r1)+,x1

mac y1 ,x1 ,a aO,x:(rO}+

move a,I:(rO}+

andi #$bf,mr

non-Data ALU operation

SP

DP2

LSP1 x SP -

y:(r5)+,y1

-- R5

-- RO

;clear a and yO

;enter DP mode

;Ioad LSP1 and SP

;LSP1 *SP-+a,

;Ioad MSP1

;shifted(a)+

; SP*MSP1-+a,

;save DP1

;save DP3_DP2

;exit DP mode

;pipeline delay

Figure 3-12 Single x Double Multiply Algorithm

Figure 3-13 shows a single precision times double precision multiply-accumulate algo­
rithm. First, the least significant parts of the double precision values are multiplied by the
single precision values and accumulated in the "Double Precision Multiply" mode. Then
the DM bit is cleared and the least significant part of the result is saved to memory. The
most significant parts of the double precision values are then multiplied by the single pre-

cision values and accumulated using regular MAC instructions. Note that the maximum
number of single times double MAC operations in this algorithm are limited to 255 since
overflow may occur (the A2 register is just eight bits long). If a longer sequence is
required, it should be split into sub-sequences each with no more than 255 MAC opera­
tions.

X: Y:

MSPi SPi -- R5

R 1 ... LSPi -
DP3 DP2 .. - RO

RO .. DP1

DP3_DP2_DP1 = E MSPi_LSPi x SPi

move #N-1,m5

elr a #O,yO ;c1ear a and yO

ori #$40,mr ;enter DP mode

move x:(r1)+,xO y:(r5)+,y1 ;Ioad LSPi and SPi

rep #N ;O<N<256

mac xO,y1,a x:(r1)+,xO y:(r5)+,y1 ;LSPi*SPi-4a

andi #$bf,mr ;exit DP mode

move aO,x:(rO)+ ;save DP1

move a1,yO

move a2,a

move yO,aO ;a2:a1-4a.1 :aO

rep #N

mac xO,y1,a x:(r1)+,xO y:(r5)+,y1 ;Ioad MSPi and SPi

move a,I:(rO)+ ;save DP3_DP2

Figure 3-13 Single x Double Multiply-Accumulate Algorithm

3.5 DATA ALU PROGRAMMING MODEL
The Data ALU features 24-bit input/output data registers that can be concatenated to ac­
commodate 48-bit data and two 56-bit accumulators, which are segmented into three 24-
bit pieces that can be transferred over the buses. Figure 3-14 illustrates how the registers
in the programming model are grouped.

DATAALU
INPUT REGISTERS

X y

47 0 47 0
I X1 XO I I Y1 YO I
23 023 0 23 023 0

DATAALU
ACCUMULATOR REGISTERS

A B

55 0 55 0
IA21 A1 AO I 1 821 81 80 I

23 8 7 0 23 o 23 0 23 8 7023 o 23 0

*Read as sign extension bits, written as don't care.

Figure 3-14 DSP56K Programming Model

3.6 DATA ALU SUMMARY
The Data ALU performs arithmetic operations involving multiply and accumulate opera­
tions. It executes all instructions in one machine cycle and is not pipelined. The two 24-bit
numbers being multiplied can come from the X registers (XO or X1) or Y registers (YO or
Y1). After multiplication, they are added (or subtracted) with one of the 56-bit accumula­
tors and can be convergently rounded to 24 bits. The convergent-rounding forcing
function detects the $800000 condition in the LSP and makes the correction as neces­
sary. The final result is then stored in one of the accumulators as a valid 56-bit number.
The condition code bits are set based on the rounded output of the logic unit.

-

SECTION 4
ADDRESS GENERATION UNIT -

4.1 ADDRESS GENERATION UNIT AND ADDRESSING MODES
This section contains three major subsections. The first subsection describes the hard­
ware architecture of the address generation unit (AGU), the second subsection
describes the programming model, and the third subsection describes the addressing
modes, explaining how the Rn, Nn, and Mn registers work together to form a memory
address.

4.2 AGU ARCHITECTURE
The AGU is shown in the DSP56K block diagram in Figure 4-1. It uses integer arithmetic
to perform the effective address calculations necessary to address data operands in
memory, and contains the registers used to generate the addresses. It implements lin­
ear, modulo, and reverse-carry arithmetic, and operates in parallel with other chip
resources to minimize address-generation overhead.

The AGU is divided into two identical halves, each of which has an address arithmetic
logic unit (ALU) and four sets of three registers (see Figure 4-2). They are the address
registers (RO - R3 and R4 - R7), offset registers (NO - N3 and N4 - N7), and the modifier
registers (MO - M3 and M4 - M7). The eight Rn, Nn, and Mn registers are treated as reg­
ister triplets - e.g., only N2 and M2 can be used to update R2. The eight triplets are
RO:NO:MO, R1 :N1 :M1, R2:N2:M2, R3:N3:M3, R4:N4:M4, R5:N5:M5, R6:N6:M6, and
R7:N7:M7.

The two arithmetic units can generate two 16-bit addresses every instruction cycle - one
for any two of the XAB, VAB, or PAB. The AGU can directly address 65,536 locations on
the XAB, 65,536 locations on the VAB, and 65,536 locations on the PAB. The two inde­
pendent address ALUs work with the two data memories to feed the data ALU two
operands in a single cycle. Each operand may be addressed by an Rn, Nn, and Mn triplet.

4.2.1 Address Register Files (Rn)
Each of the two address register files (see Figure 4-2) consists of four 16-bit registers. The
two files contain address registers RO - R3 and R4 - R7, which usually contain addresses
used as pOinters to memory. Each register may be read or written by the global data bus
(GDB). When read by the GOB, 16-bit registers are written into the two least significant
bytes of the GBD, and the most Significant byte is set to zero. When written from the GBD,
only the two least significant bytes are written, and the most significant byte is truncated.
Each address register can be used as input to its associated address ALU for a register
update calculation. Each register can also be written by the output of its respective ad­
dress ALU. One Rn register from the low address ALU and one Rn register from the high
address ALU can be accessed in a single instruction.

24-Bit 56K
Module

X MEMORY
RAM/ROM

EXPANSION

~)liim@~~)lt~-I_ 1---::-:-':=-=---1·-1,----'--1---1 EXTERNAL
.--;..;;..;~-'--1----11--1 ADDRESS I--+--"'~

BUS
SWITCH

BUS
CONTROL 1+--&--"''=

YDB

ImERNAL EXTERNAL
DMA ~.I.~""-II".II"-~.~--""-P""".T."~DATABUS
S!~H SWITCH ~ ... ~<c

...... ~ .. ----·I· .. ·I· .. ·I· .. ~

DATAALU
24X24+56~56-BIT MAC OnCE'll.!

MODCINMI

MODBIIRQB

MODAIIRQA

RESET

TWO 56-BIT ACCUMULATORS

Figure 4-1 DSP56K Block Diagram

4.2.2 Offset Register Files (Nn)

_ 16 BITS

-24 BITS

«
h:
o
a..

Each of two offset register files shown in Figure 4-2 consists of four 16-bit registers. The
two files contain offset registers NO - N3 and N4 - N7, which contain either data or offset
values used to update address pointers. Each offset register can be read or written by the
GOB. When read by the GOB, the contents of a register are placed in the two least signif-

!---LOWADDRESS ALU -----I~.j.I ---HIGH ADDRESS ALU----j

XAB VAB PAB

GLOBAL DATA BUS

Figure 4-2 AG U Block Diagram

--16bits
_24 bits

icant bytes, and the most significant byte on the GOB is zero extended. When a register
is written, only the least significant 16 bits of the GOB are used; the upper portion is trun­
cated.

4.2.3 Modifier Register Files (Mn)
Each of the two modifier register files shown in Figure 4-2 consists of four 16-bit registers.
The two files contain modifier registers MO - M3 and M4 - M7, which specify the type of
arithmetic used during address register update calculations or contain data. Each modifier
register can be read or written by the GOB. When read by the GOB, the contents of a reg­
ister are placed in the two least significant bytes, and the most significant byte on the GOB
is zero extended. When a register is written, only the least Significant 16 bits of the GOB
are used; the upper portion is truncated. Each modifier register is preset to $FFFF during
a processor reset.

4.2.4 Address ALU
The two address ALUs are identical (see Figure 4-2) in that each contains a 16-bit full
adder (called an offset adder), which can add 1) plus one, 2) minus one, 3) the contents
of the respective offset register N, or 4) the twos complement of N to the contents of the
selected address register. A second full adder (called a modulo adder) adds the summed

result of the first full adder to a modulo value, M or minus M, where M-1 is stored in the
respective modifier register. A third full adder (called a reverse-carry adder) can add 1)
plus one, 2) minus one, 3) the offset N (stored in the respective offset register), or 4) minus
N to the selected address register with the carry propagating in the reverse direction -
i.e., from the most significant bit (MSB) to the least significant bit (LSB). The offset adder
and the reverse-carry adder are in parallel and share common inputs. The only difference
between them is that the carry propagates in opposite directions. Test logic determines
which of the three summed results of the full adders is output.

Each address ALU can update one address register, Rn, from its respective address reg­
ister file during one instruction cycle and can perform linear, reverse-carry, and modulo
arithmetic. The contents of the selected modifier register specify the type of arithmetic to
be used in an address register update calculation. The modifier value is decoded in the
address ALU.

The output of the offset adder gives the result of linear arithmetic (e.g., Rn ± 1; Rn ± N)
and is selected as the modulo arithmetic unit output for linear arithmetic addressing mod­
ifiers. The reverse-carry adder performs the required operation for reverse-carry
arithmetic and its result is selected as the address ALU output for reverse-carry address­
ing modifiers. Reverse-carry arithmetic is useful for 2k-point fast Fourier transform (FFT)
addressing. For modulo arithmetic, the modulo arithmetic unit will perform the function (Rn
± N) modulo M, where N can be one, minus one, or the contents of the offset register Nn.
If the modulo operation requires wraparound for modulo arithmetic, the summed output of
the modulo adder gives the correct updated address register value; if wraparound is not
necessary, the output of the offset adder gives the correct result.

4.2.5 Address Output Multiplexers
The address output multiplexers (see Figure 4-2) select the source for the XAB, VAB, and
PAB. These multiplexers allow the XAB, VAB, or PAB outputs to originate from RO - R3
or R4 - R7.

4.3 PROGRAMMING MODEL
The programmer's view of the AGU is eight sets of three registers (see Figure 4-3). These
registers can act as temporary data registers and indirect memory pointers. Automatic up­
dating is available when using address register indirect addressing. The Mn registers can
be programmed for linear addressing, modulo addressing, and bit-reverse addressing.

23 1615 o 23 1615 o 23 1615 o

* R7 * N7
*

M7

* R6 * N6
*

M6

* R5 *
N5

*
M5

* R4
*

N4
*

M4
..

* R3 *
N3

*
M3

* R2
*

N2
*

M2

*
R1

*
Nl

*
Ml

* RO *
NO

*
MO

ADDRESS REGISTERS OFFSET REGISTERS MODIFIER REGISTERS

• Written as don't care; read as zero

Figure 4-3 AGU Programming Model

4.3.1 Address Register Flies (RO - R3 and R4 - R7)

!
UPPER FILE

•••••••• _ h

LOWER FILE

The eight 16-bit address registers, RO - R7, can contain addresses or general-purpose
data. The 16-bit address in a selected address register is used in the calculation of the
effective address of an operand. When supporting parallel X and Y data memory moves,
the address registers must be thought of as two separate files, RO - R3 and R4 - R7. The
contents of an Rn may point directly to data or may be offset. In addition, Rn can be pre­
updated or post-updated according to the addressing mode selected. If an Rn is updated,
modifier registers, Mn, are always used to specify the type of update arithmetic. Offset
registers, Nn, are used for the update-by-offset addressing modes. The address register
modification is performed by one of the two modulo arithmetic units. Most addressing
modes modify the selected address register in a read-modify-write fashion; the address
register is read, its contents are modified by the associated modulo arithmetic unit, and
the register is written with the appropriate output of the modulo arithmetic unit. The form
of address register modification performed by the modulo arithmetic unit is controlled by
the contents of the offset and modifier registers discussed in the following paragraphs. Ad­
dress registers are not affected by a processor reset.

4.3.2 Offset Register Files (NO - N3 and N4 - N7)
The eight 16-bit offset registers, NO - N7, can contain offset values used to increment/dec­
rement address registers in address register update calculations or can be used for 16-bit
general-purpose storage. For example, the contents of an offset register can be used to
step through a table at some rate (e.g., five locations per step for waveform generation),
or the contents can specify the offset into a table or the base of the table for indexed ad­
dressing. Each address register, Rn, has its own offset register, Nn, associated with it.
Offset registers are not affected by a processor reset.

Table 4-1 Address Register Indirect Summary

UsesMn
Address Register Indirect

Modifier

No Update No

Postincrement by 1 Yes

Postdecrement by 1 Yes

Postincrement by Offset Nn Yes

Postdecrement by Offset Nn Yes

Indexed by Offset Nn Yes

Predecrement by 1 Yes

NOTE:
S = System Stack Reference
C = Program Control Unit Register Reference
D = Data ALU Register Reference
A = Address ALU Register Reference
P = Program Memory Reference
X = X Memory Reference
y = Y Memory Reference
L = L Memory Reference

XV = XV Memory Reference

Operand Reference

S C D A P X V

X X X

X X X

X X X

X X X

X X X

X X X

X X X

4.3.3 Modifier Register Flies (MO - M3 and M4 - M7)

L

X

X

X

X

X

X

X

Assembler

XV Syntax

X (Rn)

X (Rn)+

X (Rn)-

X (Rn)+Nn

(Rn)-Nn

(Rn+Nn)

-(Rn)

The eight 16-bit modifier registers, MO - M7, define the type of address arithmetic to be
performed for addressing mode calculations, or they can be used for general-purpose
storage. The address ALU supports linear, modulo, and reverse.:carry arithmetic types for
all address register indirect addressing modes. For modulo arithmetic, the contents of Mn
also specify the modulus. Each address register, Rn, has its own modifier register, Mn,
associated with it. Each modifier register is set to $FFFF on processor reset, which spec­
ifies linear arithmetic as the default type for address register update calculations.

4.4 ADDRESSING
The DSP56K provides three different addressing modes: register direct, address register
indirect, and special. Since the register direct and special addressing modes do not nec­
essarily use the AGU registers, they are described in SECTION 6 - INSTRUCTION SET
INTRODUCTION. The address register indirect addressing modes use the registers in
the AGU and are described in the following paragraphs.

4.4.1 Address Register Indirect Modes
When an address register is used to point to a memory location, the addressing mode is
called "address register indirect" (see Table 4-1). The term indirect is used because the
register contents are not the operand itself, but rather the address of the operand. These
addressing modes specify that an operand is in memory and specify the effective
address of that operand.

A portion of the data bus movement field in the instruction specifies the memory space to
be referenced. The contents of specific AGU registers that determine the effective
address are modified by arithmetic operations performed in the AGU. The type of
address arithmetic used is specified by the address modifier register, Mn. The offset reg­
ister, Nn, is only used when the update specifies an offset.

Not all possible combinations are available, such as + (Rn). The 24-bit instruction word
size is not large enough to allow a completely orthogonal instruction set for all instruc­
tions used by the DSP.

An example and description of each mode is given in the following paragraphs. SEC­
TION 6 - INSTRUCTION SET INTRODUCTION and APPENDIX A - INSTRUCTION SET
DETAILS give a complete description of the instruction syntax used in these examples.
In particular, XV: memory references refer to instructions in which an operand in X mem­
ory and an operand in V memory are referenced in the same instruction.

4.4.1.1 No Update
The address of the operand is in the address register, Rn (see Table 4-1). The contents
of the Rn register are unchanged by executing the instruction. Figure 4-4 shows a MOVE
instruction using address register indirect addressing with no update. This mode can be
used for making XV: memory references. This mode does not use Nn or Mn registers.

4.4.1.2 Postincrement By 1
The address of the operand is in the address register, Rn (see Table 4-1 and Figure 4-5).
After the operand address is used, it is incremented by 1 and stored in the same address
register. This mode can be used for making XV: memory references and for modifying
the contents of Rn without an associated data move.

4.4.1.3 Postdecrement By 1
The address of the operand is in the address register, Rn'(see Table 4-1 and Figure 4-6).
After the operand address is used, it is decremented by 1 and stored in the same
address register. This mode can be used for making XV: memory references and for
modifying the contents of Rn without an associated data move.

EXAMPLE: MOVE A1,X: (RO)

BEFORE EXECUTION

A2 A1 AO

55 48 47 24 23 0

1 0 11 2 3 4 5 6 71 8 9 ABC 01
7 023 023 0

X MEMORY

15 0

RO L....---'-__

15 0

NO I xxxx I
15 0

MO I $FFFF 1

Assembler Syntax: (Rn)
Memory Spaces: P:, X:, V:, XV:, L:
Additional Instruction Execution lime (Clocks): 0
Additional Effective Address Words: 0

AFTER EXECUTION

A2 A1 AO

55 4847 24 23

1 0 11 2 3 4 5 6 71 8 9 A B C

7 023 o 23

X MEMORY

15

RO

15

NO I XXXX

15

MO I $FFFF

Figure 4-4 Address Register Indirect - No Update

4.4.1.4 Postlncrement By Offset Nn

0

01
0

0

0

0

I

The address of the operand is in the address register, Rn (see Table 4-1 and Figure 4-7).
After the operand address is used, it is incremented by the contents of the Nn register and
stored in the same address register. The contents of the Nn register are unchanged. This
mode can be used for making XV: memory references and for modifying the contents of
Rn without an associated data move.

EXAMPLE: MOVE BO,V: (R1)+

BEFORE EXECUTION

B2 B1 BO

55 4847 24 23 0

IA FI 6 5 4 3 2 11 F E 0 C B AI
7 023 o 23 0

YMEMORY
23 0

$2501
I------i

$2500 I------i

15 0

R1
'----'-----'

15 0

N1 I XXXX I

15 0

M1 I $FFFF I

Assembler Syntax: (Rn)+
Memory Spaces: P:, X:, V:, XV:, L:
Additional Instruction Execution lime (Clocks): a
Additional Effective Address Words: a

AFTER EXECUTION

82 B1 BO

55 4847 24 23 0

IA F I 6 5 4 3 2 11 F E o C B AI
7 023 o 23 0

YMEMORY
23 0

$2501 I--____ ~

$2500 $ FED C 8 A

15 0

R1

15 0

N1 I XXXX I

15 0

M1 I $FFFF I

Figure 4-5 Address Register Indirect - Postincrement

4.4.1.5 Postdecrement By Offset Nn
The address of the operand is in the address register, Rn (see Table 4-1 and Figure 4-8).
After the operand address is used, it is decremented by the contents of the Nn register
and stored in the same address register. The contents of the Nn register are unchanged.
This mode cannot be used for making XV: memory references, but it can be used to mod­
ify the contents of Rn without an associated data move.

EXAMPLE: MOVE VO,V: (R3)-

BEFORE EXECUTION

Y1 YO
47 24 23 0

1 1 2 3 1 2 31 4 5 6 4 5 6\
23 o 23 0

YMEMORY
23 o

$4735
i--------i

$4734 1---------1

15 o
R3

L-~_----'

15 0

N31 XXXX I
15 0

M31 $FFFF I
Assembler Syntax: (Rn)-
Memory Spaces: P:, X:, V:, XV:, L:
Additional Instruction Execution Time (Clocks): 0
Additional Effective Address Words: 0

47

\1
23

Y1

2 3

AFTER EXECUTION

1

YO
24 23 0

2 3\ 4 5 6 4 5 6\
o 23 0

YMEMORY
23 0

$4735 1---------1

$4734 f---------i

15 0

R3

15 0

N3\ XXXX I
15 0

M31 $FFFF I

Figure 4-6 Address Register Indirect - Postdecrement

4.4.1.6 Indexed By Offset Nn
The address of the operand is the sum of the contents of the address register, Rn, and
the contents of the address offset register, Nn (see Table 4-1 and Figure 4-9). The con­
tents of the Rn and Nn registers are unchanged. This addressing mode, which requires
an extra instruction cycle, cannot be used for making XV: memory references.

EXAMPLE: MOVE X1,X: (R2)+N2

BEFORE EXECUTION

X1 XO
47 24 23 0

! A 5 B 4 C 61 0 0 0 0 0 11
~ 0 ~ 0

X MEMORY
23 o

$3204 X X
I--------i

$3200 X X X X X X

15 0

R2
~~_--J

15

N21

15

M21

Assembler Syntax: (Rn)+Nn
Memory Spaces: P:, X:, V:, XV:, L:

0

$0004 I
0

$FFFF I

Additional Instruction Execution Time (Clocks): 0
Additional Effective Address Words: 0

47

IA 5

23

AFTER EXECUTION

X1 XO
24 23 0

B 4 C 61 0 0 0 0 0 11
o 23 0

X MEMORY
23

15 0

R2

15 0

N2! $0004 I
15 0

M2! $FFFF I

Figure 4-7 Address Register Indirect - Postincrement by Offset Nn

4.4.1.7 Predecrement By 1
The address of the operand is the contents of the address register, Rn, decremented by
1 before the operand address is used (see Table 4-1 and Figure 4-10). The contents of
Rn are decremented and stored in the same address register. This addressing mode re­
quires an extra instruction cycle. This mode cannot be used for making XV: memory
references, nor can it be used for modifying the contents of Rn without an associated data
move.

..

-

EXAMPLE: MOVE X:(R4)-N4,AO

BEFORE EXECUTION

A2 Ai AO

55 48 47 24 23 0

10 FI 7 4 1 o 5 A I 3 F A 6 B 01
7 023 o 23 0

X MEMORY
23 o

$7706
~-----;

Assembler Syntax: (Rn)-Nn
Memory Spaces: P:, X:, V:, L:

15 o
R4

'----'-----'

15 0

N41 $0003 I
15 0

M41 $FFFF I

Additional Instruction Execution Time (Clocks): 0
Additional Effective Address Words: 0

A2

55 4847

I 0 FI 7
7 023

AFTER EXECUTION

Ai AO

2423 0

4 1 0 5 AI 5 0 5 0 5 01
023 0

X MEMORY
23 0

$7706 $ 5 0 5 0 5 0

15 0

R4

15 0

N41 $0003 I
15 0

M41 $FFFF I

Figure 4-8 Address Register Indirect - Postdecrement by Offset Nn

4.4.2 Address Modifier Arithmetic Types
The address ALU supports linear, modulo, and reverse-carry arithmetic for all address
register indirect modes. These arithmetic types easily allow the creation of data structures
in memory for FIFOs (queues), delay lines, circular buffers, stacks, and bit-reversed FFT
buffers.

The contents of the address modifier register, Mn, defines the type of arithmetic to be per­
formed for addressing mode calculations. For modulo arithmetic, the contents of Mn also

EXAMPLE: MOVE Y1,X: (RS+NS)

BEFORE EXECUTION

Y1 YO
47 24 23 0

1 6 2 1 0 0 91 B A 4 C 2 21
23 o 23 0

X MEMORY
23 0

$6004 X X X X X X

$6000 X X X X X X

15 o
R6

'----'------'

N6
'--~----'

15 0

M6 I $FFFF 1

Assembler Syntax: (Rn+Nn)
Memory Spaces: P:, X:, Y:, L:
Additional Instruction Execution Time (Clocks): 2
Additional Effective Address Words: 0

AFfER EXECUTION

Y1 YO
47 24 23 0

I 6 2 1 0 0 91 B A 4 C 2 21
23 o 23 0

X MEMORY
23 0

$6004 $ 6 2 1 0 0 9

$6000 X X X X X X

15 0

R6 1 $6000 1

15 0

N61 $0004 1

15 0

M6 I $FFFF 1

Figure 4-9 Address Register Indirect - Indexed by Offset Nn

specifies the modulus, or the size of the memory buffer whose addresses will be refer­
enced. See Table 4-2 for a summary of the address modifiers implemented on the
DSP56K. The MMMM column indicates the hex value which should be stored in the Mn
register.

-

EXAMPLE: MOVE X: -(R5),B1

BEFORE EXECUTION

B2 B1 BO

55 48 47 24 23 0

1 3 BIB 6 2 0 0 41 A 5 5 4 C 01
7 0 23 o 23 o

X MEMORY
23 o

$3007
$3006 I-------i

15 o
R5

'---'----'

15 0

N51 xxxx I
15 0

M51 $FFFF I

Assembler Syntax: -Rn
Memory Spaces: P:, X:, V:, L:
Additional Instruction Execution Time (Clocks): 2
Additional Effective Address Words: 0

B2

55 48 47

13 BI1
7 o 23

AFTER EXECUTION

B1 BO

24 23 0

2 3 4 5 61 A 5 5 4 C 01
o 23 0

X MEMORY
23 0

$3007
1-------1

$3006 I---'------i

15 0

R5

15 0

N51 XXXX I
15 0

M51 $FFFF 1

Figure 4-10 Address Register Indirect - Predecrement

4.4.2.1 Linear Modifier (Mn=$FFFF)
When the value in the modifier register is $FFFF, address modification is performed using
normal 16-bit linear arithmetic (see Table 4-2). A 16-bit offset, Nn, and + 1 or -1 can be
used in the address calculations. The range of values can be considered as signed (Nn
from -32,768 to + 32,767) or unsigned (Nn from 0 to + 65,535) since there is no arithmetic
difference between these two data representations. Addresses are normally considered
unsigned, and data is normally considered signed.

Table 4-2 Address Modifier Summary

MMMM Addressing Mode Arithmetic

0000 Reverse Carry (Bit Reverse)

0001 Modulo 2

0002 Modulo 3

7FFE Modulo 32767

7FFF Modulo 32768

8000 Reserved -8001 Multiple Wrap-Around Modulo 2

8002 Reserved

8003 Multiple Wrap-Around Modulo 4

Reserved

8007 Multiple Wrap-Around Modulo 8

Reserved

800F Multiple Wrap-Around Modulo 24

Reserved

801F Multiple Wrap-Around Modulo 25 ..

Reserved

803F Multiple Wrap-Around Modulo 26

Reserved

807F Multiple Wrap-Around Modulo 27

Reserved

80FF Multiple Wrap-Around Modulo 28

Reserved

81FF Multiple Wrap-Around Modulo 29

Reserved

83FF Multiple Wrap-Around Modulo 210

Reserved

87FF Multiple Wrap-Around Modulo 211

Reserved

8FFF Multiple Wrap-Around Modulo 212
Reserved

9FFF Multiple Wrap-Around Modulo 213

Reserved

BFFF Multiple Wrap-Around Modulo 214

Reserved

FFFF Linear (Modulo 215)

4.4.2.2 Modulo Modifier
When the value in the modifier register falls into one of two ranges (Mn=$0001 to $7FFF
or Mn= $8001 to $BFFF with the reserved gaps noted in the table), address modification
is performed using modulo arithmetic (see Table 4-2).

Modulo arithmetic normally causes the address register value to remain within an address
range of size M, whose lower boundary is determined by Rn. The upper boundary is de-
termined by the modulus, or M. The modulus value, in turn, is determined by Mn, the value
in the modifier register (see Figure 4-11).

There are certain cases where modulo arithmetic addressing conditions may cause the
address register to jump linearly to the same relative address in a different buffer. Other
cases firmly restrict the address register to the same buffer, causing the address register
to wrap around within the buffer. The range in which the value contained in the modifier
register falls determines how the processor will handle modulo addressing.

4.4.2.2.1 Mn=$0001 to $7FFF
In this range, the modulus (M) equals the value in the modifier register (Mn) plus 1. The
memory buffer's lower boundary (base address) value, determined by Rn, must have ze­
ros in the k LSBs, where 2k ~ M, and therefore must be a multiple of 2k. The upper
boundary is the lower boundary plus the modulo size minus one (base address plus M-
1). Since M~2k, once M is chosen, a sequential series of memory blocks (each of length
2k) is created where these circular buffers can be located. If M<2k, there will be a space
between sequential circular buffers of (2k)-M.

"... For example, to create a circular buffer of 21 stages, M is 21, and the lower address
boundary must have its five LSBs equal to zero (2k ~ 21, thus k ~ 5). The Mn register is
loaded with the value 20. The lower boundary may be chosen as 0, 32, 64, 96, 128, 160,
etc. The upper boundary of the buffer is then the lower boundary plus 21. There will be an
unused space of 11 memory locations between the upper address and next usable lower
address. The address pointer is not required to start at the lower address boundary or to
end on the upper address boundary; it can initially point anywhere within the defined mod­
ulo address range. Neither the lower nor the upper boundary of the modulo region is
stored; only the size of the modulo region is stored in Mn. The boundaries are determined
by the contents of Rn. Assuming the (Rn)+ indirect addressing mode, if the address reg­
ister pointer increments past the upper boundary of the buffer (base address plus M-1),
it will wrap around through the base address (lower boundary). Alternatively, assuming
the (Rn)- indirect addressing mode, if the address decrements past the lower boundary
(base address), it will wrap around through the base address plus M-1 (upper boundary).

UPPER BOUNDARY

ADDRESS -f-_
POINTER

i
M = MODULUS

!
LOWER BOUNDARY

Figure 4-11 Circular Buffer

If an offset (Nn) is used in the address calculations, the 16-bit absolute value, INnl, must
be less than or equal to M for proper modulo addressing in this range. If Nn>M, the result
is data dependent and unpredictable, except for the special case where Nn=P x 2k, a mul­
tiple of the block size where P is a positive integer. For this special case, when using the
(Rn)+ Nn addressing mode, the pointer, Rn, will jump linearly to the same relative address
in a new buffer, which is P blocks forward in memory (see Figure 4-12).

Similarly, for (Rn)-Nn, the pOinter will jump P blocks backward in memory. This technique
is useful in sequentially processing multiple tables or N-dimensional arrays. The range of
values for Nn is -32,768 to + 32,767. The modulo arithmetic unit will automatically wrap
around the address pointer by the required amount. This type of address modification is
useful for creating circular buffers for FIFOs (queues), delay lines, and sample buffers up
to 32,768 words long as well as for decimation, interpolation, and waveform generation.
The special case of (Rn) ± Nn mod M with Nn=P x 2k is useful for performing the same
algorithm on multiple blocks of data in memory - e.g., parallel infinite impulse response
(IIR) filtering.

An example of address register indirect modulo addressing is shown in Figure 4-13. Start­
ing at location 64, a circular buffer of 21 stages is created. The addresses generated are
offset by 15 "locations. The lower boundary = Lx (2k) where 2k ~ 21; therefore, k=5 and
the lower address boundary must be a multiple of 32. The lower boundary may be chosen
as 0, 32, 64, 96, 128, 160, etc. For this example, L is arbitrarily chosen to be 2, making
the lower boundary 64. The upper boundary of the buffer is then 84 (the lower boundary

..

(Rn) ± Nn MOD M
WHERE Nn = 2k (Le., P = 1)

Figure 4-12 Linear Addressing with a Modulo Modifier

plus 20 (M-1». The Mn register is loaded with the value 20 (M-1). The offset register is
arbitrarily chosen to be 15 (Nn~M). The address pointer is not required to start at the lower
address boundary and can begin anywhere within the defined modulo address range -

. i.e., within the lower boundary + (2k) address region. The address pointer, Rn, is arbitrarily
chosen to be 75 in this example. When R2 is post-incremented by the offset by the MOVE
instruction, instead of pointing to 90 (as it would in the linear mode) it wraps around to 69.
If the address register pointer increments past the upper boundary of the buffer (base ad­
dress plus M-1), it will wrap around to the base address. If the address decrements past
the lower boundary (base address), it will wrap around to the base address plus M-1.

If Rn is outside the valid modulo buffer range and an operation occurs that causes Rn to
be updated, the contents of Rn will be updated according to modulo arithmetic rules. For
example, a MOVE BO,X:(RO)+ NO instruction (where RO=6, MO=5, and NO=O) would ap­
parently leave RO unchanged since NO=O. However, since RO is above the upper
boundary, the AGU calculates RO+ NO-MO-1 for the new contents of RO and sets RO=O.

The MOVE instruction in Figure 4-13 takes the contents of the XO register and moves it to
a location in the X memory pointed to by (R2), and then (R2) is updated modulo 21. The

EXAMPLE: MOVE XO,X:(R2)+N

LET:
M2 00 0010100 I MODULUS=21

N2 00 0001111 I OFFSET=15

R2 00 1001011 I POINTER=75

Figure 4-13 Modulo Modifier Example

new value of R2 is not 90 (75+ 15), which would be the case if linear arithmetic had been
used, but rather is 69 since modulo arithmetic was used.

4.4.2.2.2 Mn=$8001 to $BFFF
In this range, the modulo (M) equals (Mn+ 1)-$8000, where Mn is the value in the modifier
register (see Table 4-2). This range firmly restricts the address register to the same
buffer, causing the address register to wrap around within the buffer. This multiple wrap­
around addressing feature reduces argument overhead and is useful for decimation,
interpolation, and waveform generation.

The address modification is performed modulo M, where M may be any power of 2 in the
range from 21 to 214. Modulo M arithmetic causes the address register value to remain
within an address range of size M defined by a lower and upper address boundary. The
value M-1 is stored in the modifier register Mn least significant 14 bits while the two most
significant bits are set to '10'. The lower boundary (base address) value must have zeroes
in the k LSBs, where 2k = M, and therefore must be a multiple of 2k. The upper boundary
is the lower boufldary plus the modulo size minus one (base address plus M-1).

For example, to create a circular buffer of 32 stages, M is chosen as 32 and the lower ad­
dress boundary must have its 5 least significant bits equal to zero (2k = 32, thus k = 5).

-

The Mn register is loaded with the value $801 F. The lower boundary may be chosen as
0, 32, 64, 96, 128, 160, etc. The upper boundary of the buffer is then the lower boundary
plus 31.

The address pointer is not required to start at the lower address boundary and may begin
anywhere within the defined modulo address range (between the lower and upper bound­
aries). If the address register pointer increments past the upper boundary of the buffer
(base address plus M-1) it will wrap around to the base address. If the address decre­
ments past the lower boundary (base address) it will wrap around to the base address
plus M-1. If an offset Nn is used in the address calculations, it is not required to be less
than or equal to M for proper modulo addressing since multiple wrap around is supported
for (Rn)+Nn, (Rn)-Nn and (Rn+Nn) address updates (multiple wrap-around cannot occur
with (Rn)+, (Rn)- and -(Rn) addressing modes).

The multiple wrap-around . address modifier is useful for decimation, interpolation and
waveform generation since the multiple wrap-around capability may be used for argument
reduction.

4.4.2.3 Reverse-Carry Modifier (Mn=$OOOO)
Reverse carry is selected by setting the modifier register to zero (see Table 4-2). The ad­
dress modification is performed in hardware by propagating the carry in the reverse
direction - Le., from the MSB to the LSB. Reverse carry is equivalent to bit reversing the
contents of Rn (Le., redefining the MSB as the LSB, the next MSB as bit 1, etc.) and the
offset value, Nn, adding normally, and then bit reversing the result. If the + Nn addressing
mode is used with this address modifier and Nn contains the value 2(k-1) (a power of two),
this addressing modifier is equivalent to bit reversing the k LSBs of Rn, incrementing Rn
by 1, and bit reversing the k LSBs of Rn again. This address modification is useful for ad­
dressing the twiddle factors in 2k-point FFT addressing and to unscramble 2k-point FFT
data. The range of values for Nn is 0 to + 32K (Le., Nn=215), which allows bit-reverse ad­
dressing for FFTs up to 65,536 points.

To make bit-reverse addressing work correctly for a 2k point FFT, the following proce­
dures must be used:

1. Set Mn=O; this selects reverse-carry arithmetic.

2. Set Nn=2(k-1).

3. Set Rn between the lower boundary and upper boundary in the buffer memory.
The lower boundary is L x (2k), where L is an arbitrary whole number. This

boundary gives a 16-bit binary number "xx ... xxOO ... 00", where xx ... xx=L
and 00 ... 00 equals k zeros. The upper boundary is L x (2k)+ ((2k)-1). This
boundary gives a 16-bit binary number "xx ... xx11 ... 11 ", where xx ... xx=L
and 11 ... 11 equals k ones.

4. Use the (Rn)+ Nn addressing mode.

As an example, consider a 1024-point FFT with real data stored in the X memory and
imaginary data stored in the Y memory. Since 1,024=210, k=10. The modifier register (Mn)
is zero to select bit-reverse addressing. Offset register (Nn) contains the value 512 (2(k-
1), and the pointer register (Rn) contains 3,072 (L x (2k)=3 x (210», which is the lower
boundary of the memory buffer that holds the results of the FFT. The upper boundary is
4,095 (lower boundary + (2k)-1 =3,072+ 1,023).

Postincrementing by + N generates the address sequence (0, 512, 256, 768, 128,640, ...),
which is added to the lower boundary. This sequence (0, 512, etc.) is the scrambled FFT
data order for sequential frequency points from 0 to 2n. Table 4-3 shows the successive
contents of Rn when using (Rn)+ Nn updates.

Table 4-3 Bit-Reverse Addressing
Sequence Example

Rn Contents
Offset From

Lower Boundary

3072 0

3584 512

3328 256

3840 768

3200 128

3712 640

The reverse-carry modifier only works when the base address of the FFT data buffer is a
multiple of 2k, such as 1 ,024, 2,048, 3,072, etc. The use of addressing modes other than
postincrement by + Nn is possible but may not provide a useful result.

-

The term bit reverse with respect to reverse-carry arithmetic is descriptive. The lower
boundary that must be used for the bit-reverse address scheme to work is Lx (2k). In the
previous example shown in Table 4-3, L=3 and k=1 0. The first address used is the lower
boundary (3072); the calculation of the next address is shown in Figure 4-14. The k LSBs
of the current contents of Rn (3,072) are swapped:

EACH UPDATE, (Rn)+Nn, IS EQUIVALENT TO:

1. BIT REVERSING:

2. INCREMENT Rn BY 1:

3. BIT REVERSING AGAIN:

L kBITS
~~

Rn=000011 0000000000=3072

X
0000000000

Rn=000011 0000000000
+1

000011 0000000001

Rn,OOOOl1X

1000000000
000011 1000000000=3584

Figure 4-14 Bit-Reverse Address Calculation Example

Bits ° and 9 are swapped.
Bits 1 and 8 are swapped.
Bits 2 and 7 are swapped.
Bits 3 and 6 are swapped.
Bits 4 and 5 are swapped.

The result is incremented (3,073), and then the k LSBs are swapped again:

Bits ° and 9 are swapped.
Bits 1 and 8 are swapped.
Bits 2 and 7 are swapped.
Bits 3 and 6 are swapped.
Bits 4 and 5 are swapped.

The result is Rn equals 3,584.

4.4.2.4 Address-Modifier-Type Encoding Summary
There are three address modifier types:

Linear Addressing
Reverse-Carry Addressing
Modulo Addressing

Bit-reverse addressing is useful for 2k-point FFT addressing. Modulo addressing is useful
for creating circular buffers for FIFOs (queues), delay lines, and sample buffers up to
32,768 words long. The linear addressing is useful for general-purpose addressing. There
is a reserved set of modifier values (from 32,768 to 65,534) that should not be used.

Figure 4-15 gives examples of the three addressing modifiers using 8-bit registers for sim­
plification (all AGU registers are 16 bit). The addressing mode used in the example,
postincrement by offset Nn, adds the contents of the offset register to the contents of the
address register after the address register is accessed. The results of the three examples
are as follows:

• The linear address modifier addresses every fifth location since the offset register
contains $5.

• Using the bit-reverse address modifier causes the postincrement by offset Nn
addressing mode to use the address register, bit reverse the four LSBs, increment by
1, and bit reverse the four LSBs again.

• The modulo address modifier has a lower boundary at a predetermined location, and
the modulo number plus the lower boundary establishes the upper boundary. This
boundary creates a circular buffer so that, if the address register is pointing within the
boundaries, addressing past a boundary causes a circular wraparound to the other
boundary.

LINEAR ADDRESS MODIFIER

MO = 255 = 11111111 FOR LINEAR ADDRESSING WITH RO

ORIGINAL REGISTERS: NO = 5, RO = 75 = 01001011

POSTINCREMENT BY OFFSET NO: RO = 80 = 0101 0000

POSTINCREMENT BY OFFSET NO: RO = 85 = 0101 0101

POSTINCREMENT BY OFFSET NO: RO = 90 = 0101 1010

MODULO ADDRESS MODIFIER

MO = 19 = 0001 0011 FOR MODULO 20 ADDRESSING WITH RO

ORIGINAL REGISTERS: NO = 5, RO = 75 = 0100 1011

POSTINCREMENT BY OFFSET NO: RO = 80 = 0101 0000

POSTINCREMENT BY OFFSET NO: RO = 65 = 01000001

POSTINCREMENT BY OFFSET NO: RO = 70 = 01000110

REVERSE-CARRY ADDRESS MODIFIER

MO = 0= 0000 0000 FOR REVERSE-CARRY ADDRESSING WITH RO

ORIGINAL REGISTERS: NO = 8, RO = 64 = 01000000

POSTINCREMENT BY OFFSET NO: RO = 72 = 01001000

POSTINCREMENT BY OFFSET NO: RO = 68 = 0100 0100

POSTINCREMENT BY OFFSET NO: RO = 76 = 01001100

RO

..
..

"\
..

..

90

85

80

75

UPPER
BOUNDARY

1-----183
~"" 80

RO --I.:t======i 75

~~=====l70

~=====l65
t---,.~=--I64

LOWER
BOUNDARY

'~-1=====t76

RO--l-1======l64

Figure 4-15 Address Modifier Summary

SECTION 5
PROGRAM CONTROL UNIT

-

-

5.1 PROGRAM CONTROL UNIT
This section describes the hardware of the program control unit (PCU) and concludes
with a description of the programming model. The instruction pipeline description is also
included since understanding the pipeline is particularly important in understanding the
DSP56K family of processors.

5.2 OVERVIEW
The program control unit is one of the three execution units in the central processing
module (see Figure 5-2). It performs program address generation (instruction prefetch),
instruction decoding, hardware DO loop control, and exception (interrupt) processing.
The programmer sees the program control unit as six registers and a hardware system
stack (SS) as shown in Figure 5-1. In addition to the standard program flow-control
resources, such as a program counter (PC), complete status register (SR), and SS, the
program control unit features registers (loop address (LA) and loop counter (LC)) dedi­
cated to supporting the hardware DO loop instruction.

The SS is a 15-level by 32-bit separate internal memory which stores the PC and SR for
subroutine calls, long interrupts, and program looping. The SS also stores the LC and LA
registers. Each location in the SS is addressable as a 16-bit register, system stack high
(SSH) and system stack low (SSL). The stack pointer (SP) points to the SS locations.

CLOCK-

INTERRUPTS

CONTROL

PAB PDB

24

32 x 15
STACK

24 24

GLOBAL DATA BUS

Figure 5-1 Program Address Generator

-

24-Bit56K
Module

X MEMORY
RAM/ROM

III E:XPAf'JSIC)N LIII EXPANSION

EXTERNAL
ADDRESS I--.f--o~

BUS ~
SWITCH

BUS
CONTROL

<
5 t:
a: 0
I- a.
Z o
Q

\mERNAL EXTERNAL
D~A ~.I.~----.II--.I.--.I ..•. ------"----"'lr"'''~DMABUS
S!~H SWITCH 14I_~<I:

DATAALU
24X24+56456-BIT MAC

~roNTIi(;LLEi.roMfOOjffiXtGi:NERliiOR:~§ TWO 56-BIT ACCUMULATORS

MODBIIROB

MODAIIROA

RESET

Figure 5-2 DSP56K Block Diagram

OnCEllot

_ 16 BITS

-24BITS

All of the PCU registers are read/write to facilitate system debugging. Although none of
the registers are 24 bits, they are read or written over 24-bit buses. When they are read,
the least significant bits (LSBs) are significant, and the most significant bits (MSBs) are
zeroed as appropriate. When they are written, only the appropriate LSBs are significant,
and the MSBs are written as don't care.

The program control unit implements a three-stage (prefetch, decode, execute) pipeline
and controls the five processing states of the OSP: normal, exception, reset, wait, and
stop.

5.3 PROGRAM CONTROL UNIT (PCU) ARCHITECTURE
The PCU consists of three hardware blocks: the program decode controller (POC), the
program address generator (PAG), and the program interrupt controller (PIC).

5.3.1 Program Decode Controller
The POC contains the program logic array decoders, the register address bus generator,
the loop state machine, the repeat state machine, the condition code generator, the inter­
rupt state machine, the instruction latch, and the backup instruction latch. The POC
decodes the 24-bit instruction loaded into the instruction latch and generates all signals
necessary for pipeline control. The backup instruction latch stores a duplicate of the
prefetched instruction to optimize execution of the repeat (REP) and jump (JMP) instruc­
tions.

5.3.2 Program Address Generator (PAG)
The PAG contains the PC, the SP, the SS, the operating mode register (OMR), the SR,
the LC register, and the LA register (see Figure 5-1).

The PAG provides hardware dedicated to support loops, which are frequent constructs in
DSP algorithms. A DO instruction loads the LC register with the number of times the loop
should be executed, loads the LA register with the address of the last instruction word in
the loop (fetched during one loop pass), and asserts the loop flag in the SA. The DO in­
struction also supports nested loops by stacking the contents of the LA, LC, and SR prior
to the execution of the instruction. Under control of the PAG, the address of the first in­
struction in the loop is also stacked so the loop can be repeated with no overhead. While
the loop flag in the SR is asserted, the loop state machine (in the POC) will compare the
PC contents to the contents of the LA to determine if the last instruction word in the loop
was fetched. If the last word was fetched, the LC contents are tested for one. If LC is not
equal to one, then it is decremented, and the SS is read to update the PC with the address
of the first instruction in the loop, effectively executing an automatic branch. If the LC is
equal to one, then the LC, LA, and the loop flag in the SR are restored with the stack con­
tents, while instruction fetches continue at the incremented PC value (LA + 1). More
information about the LA and LC appears in Section 5.3.4 Instruction Pipeline Format.

The repeat (REP) instruction loads the LC with the number of times the next instruction is
to be repeated. The instruction to be repeated is only fetched once, so throughput is in­
creased by reducing external bus contention. However, REP instructions are not

-

-

interruptible since they are fetched only once. A single-instruction DO loop can be used
in place of a REP instruction if interrupts must be allowed.

5.3.3 Program Interrupt Controller
The PIC receives all interrupt requests, arbitrates among them, and generates the inter-
rupt vector address.

Interrupts have a flexible priority structure with levels that can range from zero to three.
Levels 0 (lowest level), 1, and 2 are maskable. Level 3 is the highest interrupt priority level
(IPL) and is not maskable. Two interrupt mask bits in the SR reflect the current IPL and
indicate the level needed for an interrupt source to interrupt the processor. Interrupts
cause the DSP to enter the exception processing state which is discussed fully in SEC­
TION 7 - PROCESSING STATES.

The four external interrupt sources include three external interrupt request inputs (IROA,
IROS, and NMI) and the RESET pin. IROA and IROS can be either level sensitive or neg­
ative edge triggered. The nonmaskable interrupt (NMI) is edge sensitive and is a level 3
interrupt. MODNIROA, MODS/IROS, and MODC/NMI pins are sampled when RESET is
deasserted. The sampled values are stored in the operating mode register (OMR) bits
MA, MB, and MC, respectively (see Section 5.4.3 ,for information on the OMR). Only the
fourth external interrupt, RESET, and Illegal Instruction have higher priority than NMI.

The PIC also arbitrates between the different I/O peripherals. The currently selected pe­
ripheral supplies the correct vector address to the PIC.

5.3.4 Instruction Pipeline Format
The program control unit uses a three-level pipe lined architecture in which concurrent in-
struction fetch, decode, and execution occur. This pipelined operation remains essentially
hidden from the user and makes programming straightforward. The pipeline is illustrated
in Figure 5-3, which shows the operations of each of the execution units and all initial con­
ditions necessary to follow the execution of the instruction sequence shown in the figure.
The pipeline is described in more detail in Section 7.2.1 Instruction Pipeline.

The first instruction, 11, should be interpreted as follows: multiply the contents of XO by the
contents of VO, add the product to the contents already in accumulator A, round the result
to the "nearest even," store the result back in accumulator A, move the contents in X data
memory (pointed to by RO) into XO and postincrement RO, and move the contents in V
data memory (pointed to by R4) into V1 and postincrement R4. The second instruction,
12, should be interpreted as follows: clear accumulator A, move the contents in XO into the
location in X data memory pointed to by RO and postincrement RO. Sefore the clear oper-

EXAMPLE pROGRAM SEGMENT

Instruction 1 MACR
Instruction 2 CLR
Instruction 3 MAC

XO,Y1,A X:(RO)+,XO
A XO,X:(RO)+
XO,Y1,A X:(RO)+,XO

Y:(R4)+,Y1
A,Y:(R4)­
Y:(R4)+,Y1

SEQUENCE OF OPERATIONS

SERIAL EXECUTION OF INSTRUCTIONS

CI)
z o
§
~
a:

Instruction/Data Fetch

~
~
u. o
CJ
z

Instruction Decode

fg
w
g
a:
D..
..J
W

Instruction Execution

::I
~
~

1~~~1~~~Tb~NcfEEJ"g6'e -
INSTRUCTION EXECUTION=:

PARALLEL INITIAL
OPERATIONS CONDITIONS

ADDRESS
UPDATE RO=$0005
(AGU) R4=$0008

A:
INSTRUCTION A2=$OO
EXECUTION A1=$000066

AO:$OOOOOO

(DATAALU) XO=$400000
Y1=$000077

X MEMORY DATA
AT ADDRESS

$0005 $000005
$0006 $000006
$0007 $000007

YMEMORY DATA
AT ADDRESS

$0008 $000008
$0009 $000009

EXECUTION OF EXAMPLE PROGRAM

Instruction Cycle 1 Instruction Cycle 2 Instruction Cycle 3
11 __ 12 __

--i1 __
13 __

====:12 __
11

RO=5+1
R4=8+1

A:
A2=$00
A1=$0000A2
AO=$OOOOOO

XO=$000005
Y1=$000008

~000005
000006

$000007

$000008
$000009

Figure 5-3 Three-Stage Pipeline

Instruction Cycle 4

I~----i~ __
--12

RO=6+1
R4=9-1

A:
A2=$00
A1=$000000
AO=$OOOOOO

XO=$000005
Y1=$000008

$000005
$000005
$000007

$000008
$0000A2

-
Instruction Cycle 5

15

~~4 13

RO=7+1
R4=8+1

A:
A2=$00
A1=$000000
AO=$000050

XO=$000007
Y1=$000008

$000005
$000005
$000007

$000008
$0000A2

-

PROGRAM CONTROL UNIT

23 1615 023 1615 0

I * I " * I I '---'-LO-O-P-A-DD---R-ES-S---' LOOP COUNTER (LC)
REGISTER (LA)

231615 0231615 87 0

I * I II * I MA I eCA I
PROGRAM STATUS

COUNTER (PC) REGISTER (SR)

31 SSH 1615 SSL

SYSTEM STACK

1

23 8 7 6 5 4 3 2 1 0

I * 1* Isol*IMClvoloEIMSIMAI
OPERATING MODE REGISTER (OMR)

23 6 5 0

~---~I _*~I~~==~ __ ~I
STACK POINTER (SP)

* READ AS ZERO, SHOULD BE WRITTEN
WITH ZERO FOR FUTURE COMPATIBILITY

Figure 5-4 Program Control Unit Programming Model

ation, move the contents in accumulator A into the location in Y data memory pointed to
by R4 and postdecrement R4. The third instruction, 13, is the same as 11, except the
rounding operation is not performed.

5.4 PROGRAMMING MODEL
The program control unit features LA and LC registers which support the DO loop instruc-
tion and the standard program flow-control resources, such as a PC, complete SR, and
SS. With the exception of the PC, all registers are read/write to facilitate system debug­
ging. Figure 5-4 shows the program control unit programming model with the six registers
and SS. The following paragraphs give a detailed description of each register.

5.4.1 Program Counter
This 16-bit register contains the address of the next location to be fetched from program
memory space. The PC can point to instructions, data operands, or addresses of oper­
ands. References to this register are always inherent and are implied by most instructions.

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF 10M I T I * I S1 I SO 111 110 SILIElulNlzjvjc

I

All bits are cleared after hardware reset except bits 8 and 9 which are set to ones.

CARRY

OVERFLOW

ZERO

NEGATIVE

UNNORMALIZED

EXTENSION

LIMIT

SCALING

INTERRUPT MASK

SCALING MODE

RESERVED

TRACE MODE
DOUBLE PRECISION

MULTIPLY MODE

LOOP FLAG

Bits 12 and 16 to 23 are reserved, read as zero and should be written with zero for future compatibility

Figure 5-5 Status Register Format

This special-purpose address register is stacked when program looping is initialized,
when a JSR is performed, or when interrupts occur (except for no-overhead fast inter­
rupts).

5.4.2 Status Register
The 16-bit SR consists of a mode register (MR) in the high-order eight bits and a condition
code register (CCR) in the low-order eight bits, as shown in Figure 5-5. The SR is stacked
when program looping is initialized, when a JSR is performed, or when interrupts occur,
(except for no-overhead fast interrupts).

The MR is a special purpose control register which defines the current system state of the
processor. The MR bits are affected by processor reset, exception processing, the DO,
end current DO loop (ENDDO), return from interrupt (RTI), and SWI instructions and by
instructions that directly reference the MR register, such as OR immediate to control reg­
ister (ORI) and AND immediate to control register (ANDI). During processor reset, the
interrupt mask bits of the MR will be set. The scaling mode bits, loop flag, and trace bit will
be cleared.

-

-

The GGR is a special purpose control register that defines the current user state of the
processor. The GGR bits are affected by data arithmetic logic unit (ALU) operations, par­
allel move operations, and by instructions tha! directly reference the eGR (ORI and
ANDI). The GGR bits are not affected by parallel move operations unless data limiting oc­
curs when reading the A or B accumulators. During processor reset, all eGR bits are
cleared.

5.4.2.1 Carry (Bit 0)
The carry (G) bit is set if a carry is generated out of the MSB of the result in an addition.
This bit is also set if a borrow is generated in a subtraction. The carry or borrow is gener­
ated from bit 55 of the result. The carry bit is also affected by bit manipulation, rotate, and
shift instructions. Otherwise, this bit IS cleared.

5.4.2.2 Overflow (Bit 1)
The overflow (V) bit is set if an arithmetic overflow occurs in the 56-bit result. This bit indi­
cates that the result cannot be represented in the accumulator register; thus, the register
has overflowed. Otherwise, this bit is cleared.

5.4.2.3 Zero (Bit 2)
The zero (Z) bit is set if the result equals zero; otherwise, this bit is cleared.

5.4.2.4 Negative (Bit 3)
The negative (N) bit is set if the MSB (bit 55) of the result is set; otherwise, this bit is
cleared.

5.4.2.5 Unnormalized (Bit 4)
The unnormalized (U) bit is set if the two MSBs of the most significant product (MSP)
portion of the result are identical. Otherwise, this bit is cleared. The MSP portion of the A
or B accumulators, which is defined by the scaling mode and the U bit; is computed as
follows:

Sl SO Scaling Mode U Bit Computation

0 0 No Scaling U = (Bit 47 EB Bit 46)

0 1 Scale Down U = (Bit 48 EB Bit 47)

1 0 Scale Up U = (Bit 46 EB Bit 45)

5.4.2.6 Extension (Bit 5)
The extension (E) bit is cleared if all the bits of the integer portion of the 56-bit result are
all ones or all zeros; otherwise, this bit is set. The integer portion, defined by the scaling

mode and the E bit, is computed as follows:

Sl SO Scaling Mode Integer Portion

0 0 No Scaling Bits 55,5448,47

0 1 Scale Down Bits 55,5449,48

1 0 Scale Up Bits 55,5447,46

If the E bit is cleared, then the low-order fraction portion contains all the significant bits;

the high-order integer portion is just sign extension. In this case, the accumulator exten­
sion register can be ignored. If the E bit is set, it indicates that the accumulator extension
register is in use.

5.4.2.7 Limit (Bit 6)
The limit (L) bit is set if the overflow bit is set. The L bit is also set if the data shifter/limiter
circuits perform a limiting operation; otherwise, it is not affected. The L bit is cleared only
by a processor reset or by an instruction that specifically clears it, which allows the L bit
to be used as a latching overflow bit (Le., a "sticky" bit). L is affected by data movement
operations that read the A or B accumulator registers.

5.4.2.8 Scaling Bit (Bit 7)
The scaling bit (S) is used to detect data growth, which is required in Block Floating Point
FFT operation. Typically, the bit is tested after each pass of a radix 2 FFT and, if it is set,
the scaling mode should be activated in the next pass. The Block Floating Point FFT al­
gorithm is described in the Motorola application note APR4/D, "Implementation of Fast

Fourier Transforms on Motorola's DSP56000/DSP56001 and DSP96002 Digital Signal
Processors." This bit is computed according to the following logical equations when the
result of accumulator A or B is moved to XDB or YDB. It is a "sticky" bit, cleared only by
an instruction that specifically clears it.

-

-

If S 1 =0 and SO=O (no scaling)
then S = (A46 XOR A45) OR (846 XOR 845)

If S1 =0 and SO=1 (scale down)
then S = (A47 XOR A46) OR (847 XOR B46)

If S1 =1 and SO=O (scale up)
then S = (A45 XOR A44) OR (B45 XOR B44)

If S1 =1 and SO=1 (reserved)
then the S flag is undefined.

where Ai and Bi means bit i in accumulator A or B.

5.4.2.9 Interrupt Masks (Bits 8 and 9)
The interrupt mask bits, 11 and 10, reflect the current IPL of the processor and indicate
the IPL needed for an interrupt source to interrupt the processor. The current IPL of the
processor can be changed under software control. The interrupt mask bits are set during
hardware reset but not during software reset.

11 10 Exceptions Permitted Exceptions Masked

0 0 IPL 0,1,2,3 None

0 1 IPL 1,2,3 IPLO

1 0 IPL2,3 IPL 0,1

1 1 IPL3 IPL 0,1,2

5.4.2.10 Scaling Mode (Bits 10 and 11)
The scaling mode bits, S1 and SO, specify the scaling to be performed in the data ALU
shifter/limiter, and also specify the rounding position in the data ALU multiply-accumula­
tor (MAC). The scaling modes are shown in the following table:

S1 SO
Rounding

Scaling Mode
Bit

0 0 23 No Scaling

0 1 24 Scale Down (1-Bit Arithmetic Right Shift)

1 0 22 Scale Up (1-Bit Arithmetic Left Shift)

1 1 - Reserved for Future Expansion

The scaling mode affects data read from the A or B accumulator registers out to the XDB
and YDB. Different scaling modes can occur with the same program code to allow dynam­
ic scaling. Dynamic scaling facilitates block floating-point arithmetic. The scaling mode
also affects the MAC rounding position to maintain proper rounding when different por­
tions of the accumulator registers are read out to the XDB and YDB. The scaling mode
bits, which are cleared at the start of a long interrupt service routine, are also cleared dur­
ing a processor reset.

5.4.2.11 Reserved Status (Bit 12)
This bits is reserved for future expansion and will read as zero during DSP read opera-
tions.

5.4.2.12 Trace Mode (Bit 13)
The trace mode (T) bit specifies the tracing function of the DSP56000/56001 only. (With
other members of the DSP56K family, use the OnCE trace mode described in Section
10.5.) For the DSP56000/56001, if the T bit is set at the beginning of any instruction exe.;
cution, a trace exception will be generated after the instruction execution is completed. If
the T bit is cleared, tracing is disabled and instruction execution proceeds normally. If a
long interrupt is executed during a trace exception, the SR with the trace bit set will be
stacked, and the trace bit in the SR is cleared (see SECTION 7 - PROCESSING
STATES for a complete description of a long interrupt operation). The T bit is also
cleared during processor reset.

5.4.2.13 Double Precision Multiply Mode (Bit 14)
The processor is in double precision multiply mode when this bit is set. (See Section 3.4
for detailed information on the double precision multiply mode.) When the DM bit is set,
the operations performed by the MPY and MAC instructions change so that a double pre­
cision 48-bit by 48-bit double precision multiplication can be performed in six instructions.
The DSP56K software simulator accurately shows how the MPY, MAC, and other Data
ALU instructions operate while the processor is in the double precision multiply mode.

5.4.2.14 Loop Flag (Bit 15)
The loop flag (LF) bit is set when a program loop is in progress. It detects the end of a
program loop. The LF is the only SR bit that is restored when a program loop is termi­
nated. Stacking and restoring the LF when initiating and exiting a program loop, respec­
tively, allow the nesting of program loops. At the start of a long interrupt service routine,
the SR (including the LF) is pushed on the SS and the SR LF is cleared. When returning
from the long interrupt with an RTI instruction, the SS is pulled and the LF is restored.
During a processor reset, the LF is cleared.

-

23 876543210

I * 1* JSO I * I Mel yoJ OE1MBIMAI

I I I

Figure 5-6 OMR Format

5.4.3 Operating Mode Register

OPERATING MODE A, B

DATA ROM ENABLE

INTERNAL Y MEMORY DISABLE

OPERATING MODE C

RESERVED

STOP DELAY

RESERVED

RESERVED

The OMR is a 24-bit register (only six bits are d~fined) that sets the current operating
mode of the processor. Each chip in the DSP56K family of processors has its own set of
operating modes which determine the memory maps for program and data memories, and
the startup procedure that occurs when the chip leaves the reset state. The OMR bits are
only affected by processor reset and by the ANDI, ORI, and MOVEC instructions, which
directly reference the OMR.

The OMR format with all of its defined bits is shown in Figure 5-6. For product-specific
OMR bit definitions, see the individual chip's user manual for details on its respective op­
erating modes.

5.4.4 System Stack
The SS is a separate 15X32-bit internal memory divided into two banks, the SSH and the
SSL, each 16 bits wide. The SSH stores the PC contents, and the SSL stores the SR con­
tents for subroutine calls, long interrupts, and program looping. The SS will alsC? store the
LA and LC registers. The SS is in stack memory space; its address is always inherent and
implied by the current instruction.

The contents of the PC and SR are pushed on the top location of the SS when a subrou­
tine call or long interrupt occurs. When a return from subroutine (RTS) occurs, the
contents of the top location in the SS are pulled and put in the PC; the SR is not affected.
When an RTI occurs, the conte~ts of the top location in the SS are pulled to both the PC
and SR.

The SS is also used to implement no-overhead nested hardware DO loops. When the DO
instruction is executed, the LA:LC are pushed on the SS, then the PC:SR are pushed on

the SS. Since each SS location can be addressed as separate 16-bit registers (SSH and
SSL), software stacks can be created for unlimited nesting.

The SS can accommodate up to 15 long interrupts, seven DO loops, 15 JSRs, or combi­
nations thereof. When the SS limit is exceeded, a nonmaskable stack error interrupt
occurs, and the PC is pushed to SS location zero, which is not implemented in hardware.
The PC will be lost, and there will be no SP from the stack interrupt routine to the program
that was executing when the error occurred.

5 4 3 2 o

STACK POINTER

STACK ERROR FLAG

UNDERFLOW FLAG

Figure 5-7 Stack Pointer Register Format

5.4.5 Stack Pointer Register
The 6-bit SP register indicates the location of the top of the SS and the status of the SS
(underflow, empty, full, and overflow). The SP register is referenced implicitly by some in­
structions (DO, REP, JSR, RTI, etc.) or directly by the MOVEC instruction. The SP
register format is shown in Figure 5-7. The SP register works as a 6-bit counter that ad­
dresses (selects) a 15-location stack with its four LSBs. The possible SP values are
shown in Figure 5-8 and described in the following paragraphs.

UF SE P3 P2 P1 PO

STACK UNDERFLOW CONDITION AFTER DOUBLE PULL

1 STACK UNDERFLOW CONDITION

0 0 0 STACK EMPTY (RESET); PULL CAUSES UNDERFLOW

0 0 0 STACK LOCATION 1

0 0 STACK LOCATION 14

0 0 STACK LOCATION 15; PUSH CAUSES OVERFLOW

0 0 0 0 STACK OVERFLOW CONDITION

0 0 0 0 STACK OVERFLOW CONDITION AFTER DOUBLE PUSH

Figure 5-8 SP Register Values

5.4.5.1 Stack Pointer (Bits 0-3)
The SP points to the last location used on the SS. Immediately after hardware reset,
these bits are cleared (SP=O), indicating that the SS is empty.

Data is pushed onto the SS by incrementing the SP, then writing data to the location to
which the SP points. An item is pulled off the stack by copying it from that location and
then by decrementing the SP.

5.4.5.2 Stack Error Flag (Bit 4)
The stack error flag indicates that a stack error has occurred, and the transition of the
stack error flag from zero to one causes a priority level-3 stack error exception.

When the stack is completely full, the SP reads 001111, and any operation that pushes
data onto the stack will cause a stack error exception to occur. The SR will read 010000
(or 010001 if an implied double push occurs).

Any implied pull operation with SP equal to zero will cause a stack error exception, and
the SP will read 111111 (or 111110 if an implied double pull occurs).

The stack error flag is a "sticky bit" which, once set, remains set until cleared by the user.
There is a sequence of instructions that can cause a stack overflow and, without the sticky
bit, would not be detected because the stack pointer is decremented before the stack error
interrupt is taken. The ,sticky bit keeps the stack error bit set until the user clears it by writ­
ing a zero to SP bit 4. It also latches the overflow/underflow bit so that it cannot be
changed by stack pointer increments or decrements as long as the stack error is set. The
overflow/underflow bit remains latched until the first move to SP is executed.

Note: When SP is zero (stack empty), instructions that read the stack without SP post­
decrement and instructions that write to the stack without SP preincrement do not cause
a stack error exception (Le., 1) DO SSL,xxxx 2) REP SSL 3) MOVEC or move peripheral
data (MOVEP) when SSL is specified as a source or destination).

5.4.5.3 Underflow Flag (Bit 5)
The underflow flag is set when a stack underflow occurs. The underflow flag is a "sticky
bit" when the stack error flag is set. That is, when the stack error flag is set, the underflow
flag will not change state. The combination of "underflow=1" and "stack error=O" is an ille­
gal combination and will not occur unless it is forced by the user. If this condition is
forced by the user, the hardware will correct itself based on the result of the next stack
operation.

5.4.5.4 Reserved Stack Pointer Registration (Bits 6-23)
SP register bits 6 through 23 are reserved for future expansion and will read as zero dur­
ing read operations.

5.4.6 Loop Address Register
The LA is a read/write register which is stacked into the SSH by a DO instruction and is
unstacked by end-of-Ioop processing or by an ENDDO instruction. The contents of the LA
register indicate the location of the last instruction word in a program loop. When that last
instruction is fetched, the processor checks the contents of the LC register (see the fol­
lowing section). If the contents are not one, the processor decrements the LC and takes
the next instruction from the top of the SS. If the LC is one, the PC is incremented, the
loop flag is restored (pulled from the SS), the SS is purged, the LA and LC registers are
pulled from the SS and restored, and instruction execution continues normally.

5.4.7 Loop Counter Register
The LC register is a special 16-bit counter which specifies the number of times a hardware
program loop shall be repeated. This register is stacked into the SSL by a DO instruction
and unstacked by end-of-Ioop processing or by execution of an ENDDO instruction. When
the end of a hardware program loop is reached, the contents of the LC register are tested
for one. If the LC is one, the program loop is terminated, and the LC register is loaded with
the previous LC contents stored on the SS. If LC is not one, it is decremented and the
program loop is repeated. The LC can be read under program control, which allows the
number of times a loop will be executed to be monitored/changed dynamically. The LC is
also used in the REP instruction

5.4.8 Programming Model Summary
The complete programming model for the DSP56K central processing module is shown
in Figure 5-9. Programming models for the peripherals are shown in the appropriate user
manuals. .

-

DATA ARITHMETIC LOGIC UNIT
INPUT REGISTERS

47 X 0 47 Y 0

l3
Xl

I
XO I I Vl

I
VO I

o 23 0 23 o 23 0

ACCUMULATOR REGISTERS

55 A 0

I , I A2 I Al I AO I
23 87 o 23 023 0

55 B 0

I , I 62 I 61 I 80 I
23 87 o 23 023 0

ADDRESS GENERATION UNIT

23 1615 0 23 1615 0 23 1615 0

*

*

*

*

*

*

*

*

R7

R6

R5

R4

R3

R2

R1

RO

POINTER
REGISTERS

*

*

*

*

*

*

*

*

LOOP ADDRESS
REGISTER (LA)

23 1615

31

PROGRAM
COUNTER (PC)

SSH

N7

N6

N5

N4

N3

N2

N1

NO

OFFSET
REGISTERS

PROGRAM CONTROL UNIT

LOOP COUNTER (LC)

023 1615 87

/I * I MR I CCR

1615

STATUS
REGISTER (SR)

SSL
1

1

SYSTEM STACK

* M7

* M6
UPPER FILE

* M5

* M4
----- ---------.--_.

* M3

* M2

* M1
LOWER FILE

* MO

MODIFIER
REGISTERS

23 8 7 6. 5 4 3 2 1 0

I I *ISOI*I MCI VO IOEIM6IMAI

OPERATING MODE REGISTER (OMR)

23 6 5

--1 * I
STACK POINTER (SP)

* READ AS ZERO, SHOULD BE WRITTEN
WITH ZERO FOR FUTURE COMPATIBILITY

, READ AS SIGN EXTENSION BITS,
5 WRITTEN AS DON'T CARE

Figure 5-9 DSP56K Central Processing Module Programming Model

SECTION 6
INSTRUCTION SET INTRODUCTION

-

6.1 INSTRUCTION SET INTRODUCTION
The programming model shown in Figure 6-1 suggests that the DSP56K central process­
ing module architecture can be viewed as three functional units which operate in parallel:
data arithmetic logic unit (data ALU), address generation unit (AGU), and program con­
trol unit (PCU). The instruction set keeps each of these units busy throughout each
instruction cycle, achieving maximal speed and maintaining minimal program size.

This section introduces the DSP56K instruction set and instruction format. The complete
range of instruction capabilities combined with the flexible addressing modes used in this
processor provide a very powerful assembly language for implementing digital signal pro­
cessing (DSP) algorithms. The instruction set has been designed to allow efficient coding
for DSP high-level language compilers such as the C compiler. Execution time is mini­
mized by the hardware looping capabilities, use of an instruction pipeline, and parallel
moves.

6.2 SYNTAX
The instruction syntax is organized into four columns: opcode, operands, and two parallel­
move fields. The assembly-language source code for a typical one-word instruction is
shown in the following illustration. Because of the multiple bus structure and the parallel­
ism of the DSP, up to three data transfers can be specified in the instruction word - one
on the X data bus (XDB), one on the Y data bus (yDB), and one within the data ALU.
These transfers are explicitly specified. A fourth data transfer is implied and occurs in the
program control unit (instruction word prefetch, program looping control, etc.). Each data
transfer involves a source and a destination.

Opcode

MAC

Operands

XO,YO,A

XDB YDS

X:(RO)+,XO Y:(R4)+,YO

The opcode column indicates the data ALU, AGU, or program control unit operation to be
performed and must always be included in the source code. The operands column spec­
ifies the operands to be used by the opcode. The XDB and YDB columns specify optional
data transfers over the XDB and/or YDB and the associated addressing modes. The
address space qualifiers (X:, V:, and L:) indicate which address space is being referenced.
Parallel moves are allowed in 30 of the 62 instructions. Additional information is presented
in APPENDIX A - INSTRUCTION SET DETAILS.

6.3 INSTRUCTION FORMATS
The DSP56K instructions consist of one or two 24-bit words - an operation word and an
optional effective address extension word. The general format of the operation word is

-

47

~3
X

Xl I
a 23

XO

55

I I A2

23 87

55

I I 62

23 87

DATA ARITHMETIC LOGIC UNIT
INPUT REGISTERS

47

I I
a 23

ACCUMULATOR REGISTERS

A

I Al I
a 23 023

B

I 61 I
a 23 023

Y

Yl I YO I
a 23 a

a

AO I
a

a

so I
a

~CCOQQC:~:=::=2!:=~ ::Q=:~::::::I'O'OQ::a:~~::::::a::o::::O:Q::cmo :CIfQ:::o:coC:::Q: ::'Oco:::: ::::Q:::CQO~C: ~::C2:::C::Q2:Q:: : :::~ ,r~::2:::: Q;~IC:C~ ::~'-~ ~

1
~:mQ:mm:Q::J:: UQO!Qc:::mmt:: H:ncH :m::N: :::tam;:: QU::: :m::cv;;:;:;~:~;:~EN~~;~;~~:Q~:~CI~;::::l:: :::mQ: ::ml:: ::m.m aHQQQ~Q::c:m ceca ~~~l

23 1615 a 23 1615 a 23 1615 a

* R7 * N7 * M7

*
*
*
*
*
*
*

R6

R5

R4

R3

R2

R1

RO

POINTER
REGISTERS

-

*
*
*
*
*
*
*

N6

N5

N4

N3

N2

N1

NO

OFFSET
REGISTERS

*
*
* -

*
*
*
*

M6

M5

M4

M3

M2

M1

MO

MODIFIER
REGISTERS

UPPER FILE

LOWER FILE

PROGRAM CONTROL UNIT

23 1615

LOOP ADDRESS
REGISTER (LA)

023 1615

LOOP COUNTER (LC)

r2,;;...3....;1..:,6..:..15'--_____ --,O 23 1615 87

I * I II * I MR I CCR
'---1--P-R-O-=G-:R-=A-:-M---' STATUS

COUNTER (PC) REGISTER (SR)

31 SSH 1615 SSL

23 8 7 6 5 4 3 2 1 a

I 1* Isol*IMCI YO IOEIM6IMAI
OPERATING MODE REGISTER (OMR)

23 6 5

I--____ t--___ -jl _I * I

SYSTEM STACK

STACK POINTER (SP)

* READ AS ZERO, SHOULD BE WRIDEN
WITH ZERO FOR FUTURE COMPATIBILITY

It READ AS SIGN EXTENSION BITS,
WRIDEN AS DON'T CARE

Figure 6-1 DSP56K Central Processing Module Programming Model

shown in Figure 6-2. Most instructions specify data movement on the XDB, YDB, and data
ALU operations in the same operation word. The DSP56K performs each of these opera­
tions in parallel.

~ 87 0
I OPCODE

DATA BUS MOVEMENT Ixlxlxlxlxlxlxlx
OPTIONAL EFFECTIVE ADDRESS EXTENSION

Figure 6-2 General Format of an Instruction Operation Word

The data bus movement field provides the operand reference type. It selects the type of
memory or register reference to be made, the direction of transfer, and the effective
address(es) for data movement on the XDB and YDB. This field may require additional
information to fully specify the operand for certain addressing modes. An effective
address extension word following the operation word provides an immediate data address
or an absolute address if required (see Section 6.3.5.3 for the description of special
addressing modes). Examples of operations that may include the extension word include
the move operations X:, X:R, V:, R:Y, and L:. Additional information is presented in
APPENDIX A - INSTRUCTION SET DETAILS.

The opcode field of the operation word specifies the data ALU operation or the program
control unit operation to be performed, and any additional operands required by the
instruction. Only those data ALU and program control unit operations that can accompany
data bus movement will be specified in the opcode field of the instruction. Other data ALU,
program control unit, and all address ALU operations will be specified in an instruction
word with a different format. These formats include operation words which contain short
immediate data or short absolute addresses (see Section 6.3.5.3 for the description of
special addressing modes).

6.3.1 Operand Sizes
Operand sizes are defined as follows: a byte is 8 bits long, a short word is16 bits long, a
word is 24 bits long, a long word is 48 bits long, and an accumulator is 56 bits long (see
Figure 6-3). The operand size for each instruction is either explicitly encoded in the
instruction or implicitly defined by the instruction operation. Implicit instructions support
some subset of the five sizes shown in Figure 6-3.

-

7 0

c:=J BYTE

15 0

I I SHORT WORD

23 0

I I WORD

47 0

I I LONG WORD

55 0

I I ACCUMULATOR

Figure 6-3 Operand Sizes

6.3.2 Data Organization in Registers
The ten data ALU registers support 8- or 24-bit data operands. Instructions also support
48- or 56-bit data operands by concatenating groups of specific data ALU registers. The
eight address registers in the AGU support 16-bit address or data operands. The eight
AGUoffset registers support 16-bit offsets or may support 16-bit address or data oper­
ands. The eight AGU modifier registers support 16-bit modifiers or may support 16-bit
address or data operands. The program counter (PC) supports 16-bit address operands.
The status register (SR) and operating mode register (OMR) support 8- or 16-bit data
operands. Both the loop counter (LC) and loop address (LA) registers support 16-bit
address operands.

6.3.2.1 Data ALU Registers
The eight main data ALU registers are 24 bits wide. Word operands occupy one register;
long-word operands occupy two concatenated registers. The least significant bit (LSB) is
the right-most bit (bit 0) and the most significant bit (MSB) is the left-most bit (bit 23 for
word operands and bit 47 for long-word operands). The two accumulator extension regis­
ters are eight bits wide.

When an accumulator extension register acts as a source operand, it occupies the low­
order portion (bits 0-7) of the word and the high-order portion (bits 8-23) is sign extended
(see Figure 6-4). When used as a destination operand, this register receives the low-order
portion of the word, and the high-order portion is not used. Accumulator operands occupy
an entire group of three registers (Le., A2:A1 :AO or B2:B1 :BO). The LSB is the right-most
bit (bit 0), and the MSB is the left-most bit (bit 55).

23 87 0

L...-I ___ -'-I _---'I BUS

~ LSBOF
REGISTER A2, B2 USED NOT USED WORD

AS A DESTINATION

REGISTER A2, B2
USED AS A SOURCE

23 87 0

I '-__ NO_T_U_S_ED_-,-I_A_2--,' REGISTER A2, B2

!
23 87 0

SIGN EXTENSION ICONTENT~ BUS
OF A2 _ OFA2 J

Figure 6-4 Reading and Writing the ALU Extension Registers

23 0

I I BUS

ADDRESS ALU REGISTERS '--v--' LSBOF
AS A DESTINATION NOT USED WORD

15 0

I I ADDRESSALU
ADDRESS ALU REGISTERS REGISTERS

AS A SOURCE

~ ~
23 1615 0

IZEROFILLI , BUS

Figure 6-5 Reading and Writing the Address ALU Registers

6.3.2.2 AGU Registers
The 24 AGU registers_ are 16 bits wide. They may be accessed as word operands for
address, address modifier, and data storage. When used as a source operand, these reg­
isters occupy the low-order portion of the 24-bit word; the high-order portion is read as
zeros (see Figure 6-5). When used as a destination operand, these registers receive the
low-order portion of the word; the high-order portion is not used. The notation "Rn" desig­
nates one of the eight address registers, RO-R7; the notation "Nn" designates one of the
eight address offset registers, NO-N7; and the notation "Mn" designates one of the eight
address modifier registers, MO-M7.

-

-

23 87 0

I I I BUS

MR, GGR, OMR, AND SP '----v---J
AS A DESTINATION NOT USED LSB

MR, GGR, OMR, AND SP MR, GGR, OMR, AND SP
ASA SOURGE

23 87 0

I ZERO FILL I I BUS

(a) 16 Bit

23 0

I I BUS

LG, LA, SR, SSH, AND SSL '--y----/ LSBOF

AS A DESTINATION NOT USED WORD

15

J LG, LA, SR, SSH, AND SSL I LG, LA, SR, SSH, AND SSL
ASASOURGE

1
23 1615 0

I ZERO FIL~ I BUS

(b) 8 Bit

Figure 6-6 Reading and Writing Control Registers

6.3.2.3 Program Control Registers
The 8-bit operating mode register (OMR) may be accessed as a word operand. However,
not all eight bits are defined, and those that are defined will vary depending on the
DSP56K family member. In general, undefined bits are written as "don't care" and read as
zero.

The 16-bit SR has the system mode register (MR) occupying the high-order eight bits and
the user condition code register (CCR) occupying the low-order eight bits. The SR may
be accessed as a word operand.

The MR and CCR may be accessed individually as word operands (see Figure 6-6(b».
The LC, LA, system stack high (SSH), and system stack low (SSL) registers are 16 bits
wide and may be accessed as word operands (see Figure 6-6(a». When used as a source
operand, these registers occupy the low-order portion of the 24-bit word; the high-order
portion is zero. When used as a destination operand, they receive the low-order portion
of the 24-bit word; the high-order portion is not used. The system stack pointer (SP) is a
6-bit register that may be accessed as a word operand.

The PC, a special 16-bit-wide program control register, is always referenced implicitly as
a short-word operand.

6.3.3 Data Organization in Memory
The 24-bit program memory can store both 24-bit instruction words and instruction exten­
sion words. The 32-bit system stack (SS) can store the concatenated PC and SR registers
(PC:SR) for subroutine calls, interrupts, and program looping. The SS also supports the
concatenated LA and LC registers (LA:LC) for program looping. The 24-bit-wide X and Y
memories can store word, short-word, and byte operands. Short-word and byte operands,
which usually occupy the low-order portion of the X or Y memory word, are either zero
extended or sign extended on the XDB or YDB.

The symbols used to abbreviate the various operands and operations in each instruction
and their respective meanings are shown in the following list:

DataALU
Xn Input Registers X1, XO (24 Bits)
Yn Input Registers Y1, YO (24 Bits)
An Accumulator Registers A2 (8 Bits), A1, AO (24 Bits)
Bn Accumulator Registers B2 (8 Bits), B1, BO (24 Bits)
X Input Register X (X1 :XO, 48 Bits)
Y Input Register Y (Y1 :YO, 48 Bits)
A Accumulator A (A2:A 1 :AO, 56 Bits) *
B Accumulator B (B2:B1 :BO, 56 Bits)*
AB Accumulators A and B (A1 :B1, 48 Bits)*
BA Accumulators B and A (B1 :A1, 48 Bits)*
A 10 Accumulator A (A 1 :AO, 48 Bits)
B10 Accumulator B (B1 :BO, 48 Bits)

*Data Move Operations: when specified as a source operand, shifting and limiting
are performed. When specified as a destination operand, sign extension and zero
filling are performed.

-

-

AddressALU
Rn Address Registers RO-R7 (16 Bits)
Nn Address Offset Registers NO-N7 (16 Bits)
Mn Address Modifier Registers MO-M7 (16 Bits)

Program Control Unit
PC Program Counter (16 Bits)
MR Mode Register (8 Bits)
CCR Condition Code Register (8 Bits)
SR Status Register (MR:CCR, 16 Bits)
OMR Operating Mode Register (8 Bits)
LA Hardware Loop Address Register (16 Bits)
LC Hardware Loop Counter (16 Bits)
SP System Stack Pointer (6 Bits)
SS System Stack RAM (15X32 Bits)
SSH Upper 16 Bits of the Contents of the Current Top of Stack
SSL Lower 16 Bits of the Contents of the Current Top of Stack

Addresses
ea
xxxx
xxx

aa
pp
< ... >
X:
Y:
L:
P:

Miscellaneous

Effective Address
Absolute Address (16 Bits)
Short Jump Address (12 Bits)

Absolute Short Address (6 Bits Zero Extended)
1/0 Short Address (6 Bits Ones Extended)
Contents of the Specified Address
X Memory Reference
Y Memory Reference
Long Memory Reference - X Concatenated with Y
Program Memory Reference

#xx Immediate Short Data (8 Bits)
#xxx Immediate Short Data (12 Bits)
#xxxxxx Immediate Data (24 Bits)
#n Immediate Short Data (5 Bits)
S,Sn Source Operand Register
D,Dn Destination Operand R~gister
D[n] Bit n of D Affected
r Rounding Constant
11,10 Interrupt Priority Level in SR
LF Loop Flag in SR

6.3.4 Operand References
The DSP separates operand references into four classes: program, stack, register, and
memory references. The type of operand reference(s) required for an instruction is spec­
ified by both the opcode field and the data bus movement field of the instruction. However,
not all operand reference types can be used with all instructions. The operand size for
each instruction is either explicitly encoded in the instruction or implicitly defined by the
instruction operation. Implicit instructions support some subset of the five operand sizes.

6.3.4.1 Program References
Program (P) references, which are references to 24-bit-wide program memory space, are
usually instruction reads. Instructions or data operands may be read from or written to pro­
gram memory space using the move program memory (MOVEM) and move peripheral
data (MOVEP) instructions. Depending on the address and the chip operating mode, pro­
gram references may be internal or external memory references.

6.3.4.2 Stack References
Stack (S) references, which are references to the System Stack (SS), a separate 32-bit­
wide internal memory space, are used implicitly to store the PC and SR for subroutine
calls, interrupts, and returns. In addition to the PC and SR, the LA and LC registers are
stored on the stack when a program loop is initiated. S references are always implied by
the instruction. Data is written to the stack memory to save the processor state and is read
from the stack memory to restore the processor state. In contrast to S references, refer­
ences to SSL and SSH are always explicit.

6.3.4.3 Register References
Register (R) references are references to the data ALU, AGU, and program control unit
registers. Data can be read from one register and written into another register.

6.3.4.4 Memory References
Memory references, which are references to the 24-bit-wide X or Y memory spaces, can
be internal or external memory references, depending on the effective address of the
operand in the data bus movement field of the instruction. Data can be read or written from
any address in either memory space.

6.3.4.4.1 X Memory References
The operand, which is in X memory space, is a word reference. Data can be transferred
from memory to a register or from a register to memory.

-

-

6.3.4.4.2 V Memory References
The operand, a word reference, is in V memory space. Data can be transferred from mem­
ory to a register or from a register to memory.

6.3.4.4.3 L Memory References
Long (L) memory space references both X and V memory spaces with one operand
address. The data operand is a long-word reference developed by concatenating the X
and V memory spaces (X:Y). The high-order word of the operand is in the X memory; the
low-order word of the operand is in the V memory. Data can be read from memory to con­
catenated registers X1 :XO, A1 :AO, etc. or from concatenated registers to memory.

6.3.4.4.4 YX Memory References
XV memory space references both X and V memory spaces with two operand addresses.
Two independent addresses are used to access two word operands - one word operand
is in X memory space, and one word operand is in V memory space. Two effective
addresses in the instruction are used to derive two independent operand addresses - one
operand address may reference either X or V memory space and the other operand
address must reference the other memory space. One of these two effective addresses
specified in the instruction must reference one of the address registers, RO-R3, and the
other effective address must reference one of the address registers, R4-R7. Addressing
modes are restricted to no-update and post-update by + 1, -1, and +N addressing modes.
Each effective address provides independent read/write control for its memory space.
Data may be read from memory to a register or from a register to memory.

6.3.5 Addressing Modes
The DSP instruction set contains a full set of operand addressing modes. To minimize
execution time and loop overhead, all address calculations are performed concurrently in
the address ALU.

Addressing modes specify whether the operand(s) is in a register or in memory, and pro­
vide the specific address of the operand(s). An effective address in an instruction will
specify an addressing mode, and, for some addressing modes, the effective address will
further specify an address register. In addition, address register indirect modes require
additional address modifier information that is not encoded in the instruction. The address
modifier information is specified in the selected address modifier register(s). All indirect
memory references require one address modifier, and the XV memory reference requires
two address modifiers. The definition of certain instructions implies the use of specific reg­
isters and addressing modes.

Some address register indirect modes require an offset and a modifier register for use in
address calculations. These registers are implied by the address register specified in an
effective address in the instruction word. Each offset register (Nn) and each modifier reg­
ister (Mn) is assigned to an address register (Rn) having the same register number (n).
Thus, the assigned register triplets are RO;NO;MO, R1 ;N1 ;M1, R2;N2;M2, R3;N3;M3,
R4;N4;M4, R5;N5;M5, R6;N6;M6, and R7;N7;M7. Rn is used as the address register; Nn
is used to specify an optional offset; and Mn is used to specify the type of arithmetic used
to update the Rn.

The addressing modes are grouped into three categories: register direct, address register
indirect, and special. These addressing modes are described in the following paragraphs.
Refer to Table 6-1 for a summary of the addressing modes and allowed operand refer­
ences.

6.3.5.1 Register Direct Modes
These effective addressing modes specify that the operand source or destination is one
of the data, control, or address registers in the programming model.

6.3.5.1.1 Data or Control Register Direct
The operand is in one, two, or three data ALU register(s) as specified in a portion of the
data bus movement field in the instruction. Classified as a register reference, this address­
ing mode is also used to specify a control register operand for special instructions such
as OR immediate to control registers (ORI) and AND immediate to control registers
(ANDI).

6.3.5.1.2 Address Register Direct
Classified as a register reference, the operand is in one of the 24 address registers (Rn,
Nn, or Mn) specified by an effective address in the instruction.

Note: Due to instruction pipelining, if an address register (Mn, Nn, or Rn) is changed with
a MOVE instruction, the new contents will not be available for use as a pointer until the
second following instruction.

6.3.5.2 Address Register Indirect Modes
The address register indirect mode description is presented in SECTION 4 - ADDRESS
GENERATION UNIT.

-

-

6.3.5.3 Special Addressing Modes
The special addressing modes do not use specific registers to specify an effective
address. These modes specify the operand or the operand address in a field of the
instruction, or they implicitly reference an operand. Figure examples are given for each of
the special addressing modes discussed in the following paragraphs.

6.3.5.3.1 Immediate Data
Classified as a program reference, this addressing mode requires one word of instruction
extension containing the immediate data. Figure 6-7 shows three examples. Example A
moves immediate data to register AO without affecting A 1 or A2. Examples Band C zero
fill register AO and sign extend register A2.

6.3.5.3.2 Absolute Address
This addressing mode requires one word of instruction extension containing the absolute
address. Figure 6-8 shows that MOVE Y:$5432,BO copies the contents of address $5432
into BO without changing memory location $5432, register B1, or register B2. This
addressing mode is classified as both a memory reference and program reference. The
16-bit absolute address is stored in the 16 LSBs of the extension word; the eight MSBs
are zero filled.

6.3.5.3.3 Immediate Short
The 8- or 12-bit operand, which is in the instruction operation word, is classified as a pro­
gram reference. The immediate data is interpreted as an unsigned integer (low-order
portion) or signed fraction (high-order portion), depending on the destination register. Fig­
ure 6-9 shows the use of immediate short addressing in four examples.

6.3.5.3.4 Short Jump Address
The operand occupies 12 bits in the instruction operation word, which allows addresses
$OOOO-$OFFF to be accessed (see Figure 6-10). The address is zero extended to 16 bits
when used to address program memory. This addressing mode is classified as a program
reference.

6.3.5.3.5 Absolute Short
The address of the operand occupies six bits in the instruction operation word, allowing
addresses $0000-$003F to be accessed (see Figure 6-11). Classified as both a memory
reference and program reference, the address is zero extended to 16 bits when used to
address an operand or program memory.

EXAMPLE A: IMMEDIATE INTO 24-BIT REGISTER
(MOVE 1t$123456,AO)

BEFORE EXECUTION

A2 A1 AO
55 4847 2423 0
I X X I X X X X X xl X X X X X X I
7 023 023 0

AFTER EXECUTION

A2 A1 AO
55 48 47 24 23 0
I X X I X X X X X xl 1 2 3 4 5 6 I
7 0 23 0 23 0

EXAMPLE B:POSITIVE IMMEDIATE INTO 56-BIT REGISTER
(MOVE 1t$123456,A)

BEFORE EXECUTION

A2 A1 AO
55 48 47 24 23 0
I X X I X X X X X xl X X X X X X I
7 0 23 0 23 0

AFTER EXECUTION

A2 A1 AO
55 4847 2423 0
I 0 0 I 1 2 3 4 5 61 0 0 0 0 0 0 I
7 023 023 0

EXAMPLE C: NEGATIVE IMMEDIATE INTO 56-BIT REGISTER
(MOVE 1t$801234,A)

BEFORE EXECUTION

A2 A1 AO
55 4847 2423 0
I X X I X X X X X xl X X X X X X I
7 023 023 0

Assembler Syntax: ItXXXXXX
Memory Spaces: P:
Additional Instruction Execution Time (Clocks): 2
Additional Effective Address Words: 1

AFTER EXECUTION

A2 A1 AO
55 48 47 24 23 0
IFF I 8 0 1 2 3 41 0 0 0 0 0 0 I
7 023 023 0

Figure 6-7 Special Addressing -Immediate Data

-

-

EXAMPLE: MOVE Y:$5432,BO

BEFORE EXECUTION

B2 B1 BO
55 48 47 24 23 0
I X X I X X X X X xl X X X X X X I
7 0 23 0 23 0

23 Y MEMORY 0

$5432~
Assembler Syntax: XXX X or aa
Memory Spaces: P:
Additional Instruction Execution Time (Clocks): 2
Additional Effective Address Words: 1

AFTER EXECUTION

B2 B1 BO
55 4847 2423 0
I X X I X X X X X XIA BCD E F I
7 0 23 0 23 0

23 Y MEMORY 0

$5~2~

Figure 6-8 Special Addressing - Absolute Addressing

6.3.5.3.6 1/0 Short
Classified as a memory reference, the liD short addressing mode is similar to absolute
short addressing. The address of the operand occupies six bits in the instruction operation
word. 110 short is used with the bit manipulation and MOVEP instructions. The liD short
address is ones extended to 16 bits to address the 1/0 portion of X and Y memory
(addresses $FFCO-$FFFF - see Figure 6-12).

6.3.5.3.7 Implicit Reference
Some instructions make implicit reference to PC, SS, LA, LC, or SA. For example, the
jump instruction (JMP) implicitly references the PC; whereas, the repeat next instruction
(REP) impliCitly references LC. The registers implied and their uses are defined by the
individual instruction descriptions (see APPENDIX A - INSTRUCTION SET DETAILS).

EXAMPLE A: IMMEDIATE SHORT INTO AO, A 1, A2, BO, B1, B2, Rn, Nn
(MOVE I#$FF,A1)

BEFORE EXECUTION

A2 A1 AO
55 4847 2423 a
I X X I X X X X X xl X X X X X X I
7 023 023 a

AFTER EXECUTION

A2 A1 AO
55 48 47 24 23 0
I X X I a a 0 a F FI X X X X X X I
7 023 023 a

EXAMPLE B:POSITIVE IMMEDIATE SHORT INTO XO, X1, va, V1, A, B
(MOVE 1#$1F, V1)

BEFORE EXECUTION

V1 va
47 24 23 a
I X X X X X xl X X X X X xl
23 023 0

AFTER EXECUTION

V1 VO
47 24 23 0
I 1 F a a a a I X X x X X xl
23 023 a

EXAMPLE C: POSITIVE IMMEDIATE SHORT INTO X, V, A, B
(MOVE 1#$1 F, A)

BEFORE EXECUTION

A2 A1 AO
55 48 47 24 23 a

I X X 1 X X X X X xl X X X X X X I
7 023 023 a

AFTER EXECUTION

A2 A1 AO
55 48 47 24 23 a
10 011 F 000010 a 0 0 a 01
7 023 023 a

EXAMPLE D: NEGATIVE IMMEDIATE INTO 56-BIT REGISTER
(MOVE 1#$801234,A)

BEFORE EXECUTION

A2 A1 AO
55 4847 2423 a

I X X 1 X X X X X xl X X X X X X 1

7 0 23 a 23 a

Assembler Syntax: #XX
Memory Spaces: P:
Additional Instruction Execution Time (Clocks): a
Additional Effective Address Words: a

AFTER EXECUTION

A2 A1 AO
55 48 47 24 23 0
IFF 18 3 a a a 010 a a 0 001
7 a 23 0 23 a

Figure 6-9 Special Addressing - Immediate Short Data

-

-

EXAMPLE: JMP $123

BEFORE EXECUTION
P MEMORY

!---------iT
JUMP

$0123 . 4,096 $0123
WORDS

AFTER EXECUTION
P MEMORY

~
RANGE PC

$OOOO~~ $OOOO~
Assembler Syntax: XXX
Memory Spaces: P:
Additional Instruction Execution Time (Clocks): 0
Additional Effective Address Words: 0

Figure 6-10 Special Addressing - Short Jump Address

I

EXAMPLE A: MOVE P: $3200,XO

BEFORE EXECUTION

X1 XO
47 24 23 0
I 0 0 0 0 0 1 I X X X X X xl
23 023 0

P MEMORY

$3204 X X X X X X

$3200 $ A 5 B 4 C 6

EXAMPLE B: MOVE A1, X: $3

A2

55 4847
X xI3

7 o 23

BEFORE EXECUTION

4

A1 AO

2423 0
F 5 E 61 X X X X X X I

o 23 0

$0040
$003F

$0003

$0000

X MEMORY
23 0

XXXXXX

Assembler Syntax: aa
Memory Spaces: P:, X:, V:, L:
Additional Instruction Execution Time (Clocks): 0
Additional Effective Address Words: 0

AFTER EXECUTION

X1 XO
47 24 23 0
I 0 0 0 0 0 1\ A 5 B 4 C 61
23 023 0

A2
55 4847

I X X 13
7 o 23

AJSOLUTE
SHORT

ADDRESSING
RANGE

1

P MEMORY
o

$3204 X X X X X X

$3200 $ A 5 B 4 C 6

AFTER EXECUTION

4

A1 AO
2423 0

F 5 E 61xxxxxxi
o 23 0

$0040
$003F

$0003

$0000

X MEMORY
23 0
~

34F5E6

Figure 6-11 Special Addressing - Absolute Short Address

-

-

EXAMPLE: MOVEPA1, X:«$FFFE

BEFORE EXECUTION AFTER EXECUTION

A2 A1 AO A2 A1 AO

55 48 47 24 23 0
I X X I 1 2 3 4 5 61 X X X X X X I
7 023 023 0

55 4847 2423 0
I X X I 1 2 3 4 5 61 X X X X X X I
7 023 023 0

$FFFF
$FFFE

X MEMORY
23 0

OOFFFP 1
1/0 SHORT
ABSOLUTE
ADDRESS

SPACE

$FFFF
$FFFE

$FFCO _____ 1 _____ $FFCO

~

*Contents of Bus Control Register (X:$FFFE) After Reset

Assembler Syntax: pp
Operands Referenced: X:, Y Memories
Additional Instruction Execution Time (Clocks): 0
Additional Effective Address Words: 0

X MEMORY
23 0

003456

~

Figure 6-12 Special Addressing -I/O Short Address

6.3.5.4 Addressing Modes Summary
Table 6-1 is a summary of the addressing modes discussed in the previous paragraphs.

6.4 INSTRUCTION GROUPS
The instruction set is divided into the following groups:

• Arithmetic • Logical
• Bit Manipulation • Loop
• Move • Program Control

Each instruction group is described in the following paragraphs; detailed information on
each instruction is given in APPENDIX A - INSTRUCTION SET DETAILS.

Table 6-1 Addressing Modes Summary

Addressing Mode

Register Direct
Data or Control Register
Address Register
Address Modifier Register
Address Offset Register

Address Register Indirect
No Update
Postincrement by 1
Postdecrement by 1
Postincrement by Offset Nn
Postdecrement by Offset Nn
Indexed by Offset Nn
Predecrement by 1

Special
Immediate Data
Absolute Address
Immediate Short Data
Short Jump Address
Absolute Short Address
I/O Short Address
Implicit

Where: MMMM = Address Modifier
P = Program Reference
S = Stack Reference

Modifier
MMMM

No
No
No
No

No
Yes
Yes
Yes
Yes
Yes
Yes

No
No
No
No
No
No
No

C = Program Control Unit Register Reference
D = Data ALU Register Reference
A = AGU Register Reference
X = X Memory Reference
Y = Y Memory Reference
L = L Memory Reference

Operand Reference

p S C D A X V

X X
X
X
X

X X X
X X X
X X X
X X X
X X X
X X X
X X X

X
X X X
X
X
X X X

X X
X X X

L XV

X X
X X
X X
X X
X
X
X -
X

X

-

6.4.1 Arithmetic Instructions
The arithmetic instructions, which perform all of the arithmetic operations within the data
ALU, execute in one instruction cycle. These instructions may affect all of the CCR bits.
Arithmetic instructions are register based (register direct addressing modes used for oper­
ands) so that the data ALU operation indicated by the instruction does not use the XDB,
the YDB, or the global data bus (GDB). Optional data transfers may be specified with most
arithmetic instructions, which allows for parallel data movement over the XDB and YDB
or over the GDB during a data ALU operation. This parallel movement allows new data to
be prefetched for use in subsequent instructions and allows results calculated in previous
instructions to be stored. The following list contains the arithmetic instructions:

ABS
ADC
ADD
ADDL
ADDR
ASL
ASR
CLR
CMP
CMPM
DEC*
DIV*
INC*
MAC
MACR
MPY
MPYR
NEG
NORM*
RND
SBC
SUB
SUBL
SUBR
Tcc*
TFR
TST

Absolute Value
Add Long with Carry
Addition
Shift Left and Add
Shift Right and Add
Arithmetic Shift Left
Arithmetic Shift Right
Clear an Operand
Compare
Compare Magnitude
Decrement by One
Divide Iteration
Increment by One
Signed Multiply-Accumulate **
Signed Multiply-Accumulate and Round**
Signed Multiply**
Signed Multiply and Round**
Negate Accumulator
Normalize
Round
Subtract Long with Carry
Subtract
Shift Left and Subtract
Shift Right and Subtract
Transfer Conditionally
Transfer Data ALU Register
Test an Operand

*These instructions do not allow parallel data moves.
**Certain applications of these instructions do not allow parallel data moves.

6.4.2 Logicallnstructlons
The logical instructions execute in one instruction cycle and perform all of the logical oper­
ations within the data ALU (except ANDI and ORI). They may affect all of the CCR bits
and, like the arithmetic instructions, are register based.

Logical instructions are the only instructions that allow apparent duplicate destinations,
such as:

AND XO,A X:(RO):AO

A logical instruction uses only the MSP portion of the A and B registers (A 1 and B 1).
Therefore, the instruction actually ignores what appears to be a duplicate destination and
logically ANDs the value in the XO register with the bits in the A1 portion (bits 47-24) of the
A accumulator. The parallel move shown above can simultaneously write to either of the
other two portions of the A or the B accumulator without conflict. Avoid confusion by
explicitly stating A1 or B1 in the original instruction.

Optional data transfers may be specified with most logical instructions, allowing parallel
data movement over the XDB and YDB or over the GOB during a data ALU operation. This
parallel movement allows new data to be prefetched for use in subsequent instructions
and allows results calculated in previous instructions to be stored. The following list
includes the logical instructions:

AND
AND(

EOR
LSL
LSR
NOT
OR
OR(
ROL
ROR

Logical AND
AND Immediate to Control Register
Logical Exclusive OR
Logical Shift Left
Logical Shift Right
Logical Complement
Logical Inclusive OR
OR Immediate to Control Register
Rotate Left
Rotate Right

*These instructions do not allow parallel data moves.

-

-

6.4.3 Bit Manipulation Instructions
The bit manipulation instructions test the state of any single bit in a memory location or a
register and then optionally set, clear, or invert the bit. The carry bit of the CCR will contain
the result of the bit test. The following list defines the bit manipulation instructions:

BClR
BSET
BCHG
BTST

Bit Test and Clear
Bit Test and Set
Bit Test and Change
Bit Test on Memory and Registers

6.4.4 Loop Instructions
The hardware DO loop executes with no overhead cycles after the DO instruction itself
has been executed- i.e., it runs as fast as straight-line code. Replacing straight-line code
with DO loops can significantly reduce program memory. The loop instructions control
hardware looping by 1) initiating a program loop and establishing looping parameters or
by 2) restoring the registers by pulling the SS when terminating a loop. Initialization
includes saving registers used by a program loop (lA and lC) on the SS so that program
loops can be nested. The address of the first instruction in a program loop is also saved
to allow no-overhead looping. The loop instructions are as follows:

DO Start Hardware loop
ENDDO Exit from Hardware loop

Both static and dynamic loop counts are supported in the following forms:

DO #xxx, Expr ; (Static)
DO S,Expr ; (Dynamic)

Expr is an assembler expression or absolute address, and S is a directly addressable reg­
ister such as XO.

The operation of a DO loop is shown in Figure 6-13. When a program loop is initiated with
the execution of a DO instruction, the following events occur:

1. The stack is pushed.
A. The SP is incremented.
B. The current 16-bit lA and 16-bit lC registers are pushed onto the SS to

allow nested loops.
C. The lC register is initiated with the loop count value specified in the DO

instruction.

START OF LOOP

1)SP+ 1 • SP; LA. SSH; LC • SSL; ttxxx. LC
2)SP+ 1 • SP; PC. SSH; SR • SSL; Expr-1 • LA
3)1. LF

END OF LOOP

1)SSL(LF). SR
2)SP-1 • SP; SSH • LA; SSL. LC; SP-1 • SP
3)PC + 1. PC

NOTE:
#xxx=Loop Count Number
Expr=Expression

Figure 6-13 Hardware DO Loop

2. The stack is pushed again.
A. The SP is incremented.
B. The address of the first instruction in the program loop (PC) and the current

SR contents are pushed onto the SS.
C. The LA register is initialized with the value specified in the DO instruction

decremented by one.

3. The LF bit in the SR is set. The LF bit is set when a program loop is in
progress and enables the end-of-Ioop detection.

The program loop continues execution until the program address fetched equals the LA
register contents (last address of program loop). The contents of the LC are then tested
for one. If the LC is not one, it is decremented, and the top location in the stack RAM is
read (but not pulled) into the PC to return to the start of the loop. If the LC is one, the pro­
gram loop is terminated by the following sequence:

1. Reading the previous LF bit from the top location in the SS into the SR

2. Purging the SS (pulling the top location and discarding the contents), pulling
the LA and LC registers off the SS, and restoring the respective registers

3. Incrementing the PC

The LF bit (pulled from the SS when a loop is terminated) indicates if the terminated loop
was a nested loop. Figure 6-14 shows two DO loops, one nested inside the other. If the
stack is managed to prevent a stack overflow, DO loops can be stacked indefinitely.

The ENDDO instruction is not used for normal termination of a DO loop; it is only used to
terminate a DO loop before the LC has been decremented to one.

-

DO ~n1,END1

[

DO #n2,END2

MOVE; A,X:(RO)+

END2 ADD A,B X:(R1)+,XO
END1

Figure 6-14 Nested DO Loops

6.4.5 Move Instructions
The move instructions perform data movement over the XDB and YDB or over the GOB.
Move instructions only affect the CCR bits Sand L The S bit is affected if data growth is
detected when the A or B registers are moved onto the bus. The L bit is affected if limiting
is performed when reading a data ALU accumulator register. An address ALU instruction
(LUA) is also included in the following move instructions. The MOVE instruction is the par­
allel move with a data ALU no-operation (NOP).

LUA
MOVE
MOVEC
MOVEM
MOVEP

Load Updated Address
Move Data Register
Move Control Register
Move Program Memory
Move Peripheral Data

Note: Due to instruction pipelining, if an AGU register (Mn, Nn, or Rn) is directly changed
with a MOVE-type instruction, the new contents may not be available for use until the sec­
ond following instruction. See the restrictions discussed in SECTION 7 - PROCESSING
STATES on page 7-10.

There are nine classifications of parallel data moves between registers and memory. Fig­
ure 6-15 shows seven parallel moves. The source of the data to be moved and the
destination are separated by a comma.

Examples of the other two classifications, XYand long (L) moves, are shown in Figure 6-
16. Example A illustrates the following steps: 1) register XO is added to register A and the
result is placed in register A; 2) register XO is moved to the X memory register location
pointed to by R3, and R3 is incremented; and 3) the contents of the Y memory location
pointed to by R7 is moved to the B register, and R7 is decremented.

Example B depicts the following sequence: 1) register XO is added to register A and the
result is placed in register A; and 2) registers A and B are moved, respectively, to the loca­
tions in memories X and Y pointed to by R2, and then R2 is incremented by N2. The

OPCODE/OPERANDS PARALLEL MOVE EXAMPLES

IMMEDIATE SHORT DATA
ADDRESS REGISTER UPDATE
REGISTER TO REGISTER
X MEMORY
X MEMORY PLUS REGISTER
Y MEMORY
Y MEMORY PLUS REGISTER

IADD

ADD
ADD
ADD
ADD
ADD
ADD

XO,A
XO,A
XO,A
XO,A
XO,A
XO,A
XO,A

I

NOTE: Parallel Move Syntax-Source(Src), Destination(Dst)

I
#$05,Y1
(RO)+NO
A1,YO
XO,X:(R3)+
X:(R4)-,X1 A,VO
V:(R6)+N6,XO
A,XO B,V:(RO)

Figure 6-15 Classifications of Parallel Data Moves

contents of the 56-bit registers A and B were rounded to 24 bits before moving to the 24-
bit memory registers.

The DSP offers parallel processing of the data ALU, AGU, and program control unit. For
the instruction word above, the DSP will perform the designated operation (data ALU), the
data transfers specified with address register updates (AGU), and will decode the next
instruction and fetch an instruction from program memory (program control unit) all in one
instruction cycle. When an instruction is more than one word in length, an additional
instruction execution cycle is required. Most instructions involving the data ALU are reg­
ister based (all operands are in data ALU registers), thereby allowing the programmer to
keep each parallel processing unit busy. An instruction that is memory oriented (such as
a bit manipulation instruction) or that causes a control-flow change (such as a JMP) pre­
vents the use of parallel processing resources during its execution.

6.4.6 Program Control Instructions
The program control instructions include jumps, conditional jumps, and other instructions
affecting the PC and SS. Program control instructions may affect the CCR bits as speci­
fied in the instruction. Optional data transfers over the XDB and YDB may be specified in
some of the program control instructions. The following list contains the program control
instructions:

DEBUG
DEBUGcc
III
Jcc
JMP

Enter Debug Mode
Enter Debug Mode Conditionally
Illegal Instruction
Jump Conditionally
Jump

-

-

JCLR
JSET
JScc
JSR
JSCLR
JSSET
NOP
REP
RESET
RTI
RTS
STOP
SWI
WAIT

Jump if Bit Clear
Jump if Bit Set
Jump to Subroutine Conditionally
Jump to Subroutine
Jump to Subroutine if Bit Clear
Jump to Subroutine if Bit Set
No Operation
Repeat Next Instruction
Reset On-Chip Peripheral Devices
Return from Interrupt
Return from Subroutine
Stop Processing (Low-Power Standby)
Software Interrupt
Wait for Interrupt (Low-Power Standby)

Example A

XY MEMORY MOVE ADD XO,A XO,X:(R3)+ Y:(R7)-,B

R 1-----. B2 SIGN EXTENDED
1---1 ------l BO CLEARED

X MEMORY Y MEMORY

xo B1

Example B

LONG MEMORY MOVE ADD XO,A AB,L:(R2)+N2

X MEMORY Y MEMORY

A1 AO I B2\ B1 \ BO \

A,B ARE SHIFTED AND LIMITED

Figure 6-16 Parallel Move Examples

SECTION 7
PROCESSING STATES

-

-

7.1 PROCESSING STATES
The DSP56K processor is always in one of five processing states: normal, exception,
reset, wait, or stop. This section describes each of the processing states.

7.2 NORMAL PROCESSING STATE
The normal processing state is associated with instruction execution. Details about nor­
mal processing of the individual instructions can be found in APPENDIX A - INSTRUC­
TION SET DETAILS. Instructions are executed using a three-stage pipeline, which is
described in the following paragraphs.

7.2.1 Instruction Pipeline
DSP56K instruction execution occurs in a three-stage pipeline, which allows most
instructions to execute at a rate of one instruction per instruction cycle. However, certain
instructions require additional time to execute: instructions longer than one word, instruc­
tions using an addressing mode that requires more than one cycle, and instructions that
cause a control-flow change. In the latter case, a cycle is needed to clear the pipeline.

Pipelining allows instruction executions to overlap so that the fetch-decode-execute
operations of a given instruction occur concurrently with the fetch-decode-execute oper­
ations of other instructions. Specifically, while the processor is executing one instruction,
it is decoding the next instruction, and fetching the next instruction from program mem­
ory. The processor fetches only one word per cycle, so if an instruction is two words in
length, it fetches the additional word before it fetches the next instruction.

Table 7-1 demonstrates pipelining. F1, D1, and E1 refer to the fetch, decode, and exe­
cute operations, respectively, of the first instruction. The third instruction, which contains
an instruction extension word, takes two instruction cycles to execute. The extension
word will be either an absolute address or immediate data. Although it takes three
instruction cycles for the pipeline to fill and the first instruction to execute, an instruction
usually executes on each instruction cycle thereafter.

Table 7-1 Instruction Pipelining

Instruction Cycle
Operation

1 2 3 4 5 6 7 . ·
Fetch F1 F2 F3 F3e F4 FS F6 . ·
Oecode 01 02 03 03e 04 05 . ·
Execute E1 E2 E3 E3e E4 . ·

-

Each instruction requires a minimum of three instruction cycles (12 clock phases) to be
fetched, decoded, and executed. This means that there is a delay of three instruction
cycles on powerup to fill the pipe. A new instruction may begin immediately following the
previous instruction. Two-word instructions require a minimum of four instruction cycles
to execute (three cycles for the first instruction word to move through the pipe and exe­
cute and one more cycle for the second word to execute). A new instruction may start
after two instruction cycles.

The pipeline is normally transparent to the user. However, there are certain instruction­
sequence dependent situations where the pipeline will affect the program execution.
Such situations are best described by case studies. Most of these restricted sequences
occur because 1) all addresses are formed during instruction decode, or 2) they are the
result of contention for an internal resource such as the status register (SR). If the execu­
tion of an instruction depends on the relative location of the instruction in a sequence of
instructions, there is a pipeline effect. To test for a suspected pipeline effect, compare
between the execution of the suspect instruction 1) when it directly follows the previous
instruction and 2) when four NOPs are inserted between the two. If there is a difference,
it is caused by a pipeline effect. The DSP56K assembler flags instruction sequences with
potential pipeline effects so that the user can determine if the operation will execute as
expected.

Case 1: The following two examples show similar code sequences.

1. No pipeline effect:
ORI #xx,CCR
Jcc xxxx

;Changes eeR at the end of execution time slot
;Reads condition codes in SR in its execution time slot

The Jcc will test the bits modified by the ORI without any pipeline effect in the code seg­
ment above.

2. Instruction that started execution during decode:
ORI #04,OMR ;Sets DE bit at execution time slot
MOVE x:$100,a ;Reads external RAM instead of internal ROM

A pipeline effect occurs in example 2 because the address of the MOVE is formed at its
decode time before the ORI changes the DE bit (which changes the memory map) in the
ORI's execution time slot. The following code produces the expected results of reading
the internal ROM:

ORI #04,OMR
NOP
MOVE x:$1 OO,a

;Sets DE bit at execution time slot
;Delays the MOVE so it will read the updated memory map
;Reads internal ROM

Case 2: One of the more common sequences where pipeline effects are apparent is as
follows:

MOVE #xx,Rn
MOVE X:(Rn),A

;Move a number into register Rn (n=0-7).

;Use the new contents of Rn to address memory.

In this case, before the first MOVE instruction has written Rn during its execution cycle,
the second MOVE has accessed the old Rn, using the old contents of Rn. This is
because the address for indirect moves is formed during the decode cycle. This overlap­
ping instruction execution in the pipeline causes the pipeline effect. One instruction cycle
should be allowed after an address register has been written by a MOVE instruction
before the new contents are available for use as an address register by another MOVE
instruction. The proper instruction sequence is as follows:

MOVEXO,Rn
NOP

MOVE X:(Rn),A

;Move a number into register Rn.

;Execute any instruction or instruction
;sequence not using Rn.

Use the new contents of Rn.

Case 3: A situation related to Case 2 can be seen in the boot ROM code shown in AP­
PENDIX A of the DSP56001 Technical Data Sheet. At the end of the bootstrap operation,
the operation mode register (OMR) is changed to mode #2, and then the program that was
loaded is executed. This process is accomplished in the last three instructions:

- BOOTEND MOVEC #2,OMR ;Set the operating mode to 2
;(and trigger an exit from
;bootstrap mode).

ANDI #$O,CCR ;Clear SR as if RESET and
;introduce delay needed for
;Op. Mode change.

JMP <$0 ;Start fetching from PRAM, P:$OOOO

The JMP instruction generates its jump address during its decode cycle. If the JMP
instruction followed the MOVEC, the MOVEC instruction would not have changed the
OMR before the JMP instruction formed the fetch address. As a result, the jump would
fetch the instruction at P:$OOOO of the bootstrap ROM (MOVE #$FFE9,R2). The OMR
would then change due to the MOVEC instruction, and the next instruction would be the

-

-

second instruction of the downloaded code at P:$0001 of the internal RAM. However, the
ANDI instruction allows the OMR to be changed before the JMP instruction uses it, and
the JMP fetches P:$OOOO of the internal RAM.

Case 4: An interrupt has two additional control cycles that are executed in the interrupt
controller concurrently with the fetch, decode, and execute cycles (see Section 7.3 and
Figure 7-4). During these two control cycles, the interrupt is arbitrated by comparing the
interrupt mask level with the interrupt priority level (IPL) of the interrupt and allowing or
disallowing the interrupt. Therefore, if the interrupt mask is changed after an interrupt is
arbitrated and accepted as pending but before the interrupt is executed, the interrupt will
be executed, regardless of what the mask was changed to. The following examples show
that the old interrupt mask is in effect for up to four additional instruction cycles after the
interrupt mask is changed. All instructions shown in the examples here are one-word in­
structions; however, one two-word instruction can replace two one-word instructions
except where noted.

1. Program flow with no interrupts after interrupts are disabled:

ORI #03,MR
INST 1
INST2
INST3
INST4

;Disable interrupts

2. The four possible variations in program flow that may occur after interrupts are
disabled:

ORI #03,MR ORI #03,MR ORI #03,MR ORI #03,MR
II (See Note 2) INST 1 INST1 INST 1
11+1 II INST2 INST2
INST 1 11+1 II INST3 (See Note 1)
INST2 INST2 11+ 1 II
INST3 INST3 INST3 11+1
INST4 INST4 INST4 INST4

Note 1: INST 3 may be executed at that point only if the preceding instruction (INST 2)
was a single-word instruction.

Note 2: 1I=lnterrupt instruction from maskable interrupt.

The following program flow will not occur because the new interrupt mask level becomes
effective after a pipeline latency of four instruction cycles:

ORI #03,MR
INST 1
INST2
INST3
INST4
II
11+ 1

;Disable interrupts.

;Interrupts disabled.
;Interrupts disabled.

1. Program flow without interrupts after interrupts are re-enabled:

ANDI #OO,MR
INST 1
INST2
INST3
INST4

;Enable interrupts

2. Program flow with interrupts after interrupts are re-enabled:

ANDI #OO,MR
INST 1
INST2
INST3
INST4
II
11+ 1

;Enable interrupts
;Uninterruptable
;Uninterruptable
;11 fetched
;11+ 1 fetched

-

-

The DO instruction is another instruction that begins execution during the decode cycle
of the pipeline. As a result, there are a number of restrictions concerning access conten­
tion with the program controller registers accessed by the DO instruction. The ENDDO
instruction has similar restrictions. APPENDIX A - INSTRUCTION SET DETAILS con­
tains additional information on the DO and ENDDO instruction restrictions.

Case 5: A resource contention problem can occur when one instruction is using a register
during its decode while the instruction executing is accessing the same resource. One ex­
ample of this is as follows:

MOVEC
DO

X:$100,SSH
#$10,END

The problem occurs because the MOVEC instruction loads the contents of X:$100 into
the system stack high (SSH) during its execution cycle. The DO instruction that follows
pushes the stack (LA -7 SSH, LC -7 SSL) during its decode cycle. Therefore, the two
instructions try writing to the SSH simultaneously and conflict.

7.2.2 Summary of Pipeline-Related Restrictions
The following paragraphs give a summary of the instruction sequences that cause pipe­
line effects. Additional information about the individual instructions can be found in
APPENDIX A - INSTRUCTION SET DETAILS.

DO Instruction restrictions:

The DO instruction must not be immediately preceded by any of the following instruc­
tions:

BCHG/BCLRlBSET LA, LC, SSH, SSL, or SP
MOVEC/MOVEM to LA, LC, SSH, SSL, or SP
MOVEC/MOVEM from SSH

The DO instruction cannot specify SSH as a source register, as in the following example:

DO SSH,xxxx

Restrictions near the end of DO loops:

Proper DO loop operation is guaranteed if no instruction starting at address LA-2, LA-1,
or LA specifies the program controller registers SR, SP, SSL, LA, LC, or (implicitly) PC
as a destination register, or specifies SSH as a source or a destination register.

The restricted instructions at LA-2, LA-1, and LA are as follows:

DO
BCHG/BCLRlBSET LA, LC, SR, SP, SSH, or SSL
BTST SSH
JCLRlJSET/JSCLRlJSSET SSH
MOVEC/MOVEM/MOVEP from SSH
MOVEC/MOVEM/MOVEP to LA, LC, SR, SP, SSH, or SSL
ANDI/ORI MR

The restricted instructions at LA include the following:

Any two-word instruction
Jcc, JMP, JScc, JSR,
REP, RESET, RTI, RTS, STOP, WAIT

Another restriction is shown below:

JSRlJScc/JSCLRlJSSET to LA, if loop flag is set

ENDDO instruction restrictions:

The ENDDO instruction must not be immediately preceded by any of the following
instructions:

BCHG/BCLRlBSET LA, LC, SR, SSH, SSL, or SP
MOVEC/MOVEM to LA, LC, SR, SSH, SSL, or SP
MOVEC/MOVEM from SSH
ANDI/ORI MR

RTI and RTS instruction restrictions:

The RTI instruction must not be immediately preceded by any of the following instruc­
tions:

BCHG/BCLRlBSET SR, SSH, SSL, or SP
MOVEC/MOVEM to SR, SSH, SSL, or SP
MOVEC/MOVEM from SSH
ANDI MR, ANDI CCR
ORI MR, ORI CCR

The RTS instruction must not be immediately preceded by any of the following instruc­
tions:

BCHG/BCLRlBSET SSH, SSL, or SP
MOVEC/MOVEM to SSH, SSL, or SP
MOVEC/MOVEM from SSH

-

-

SP and SSH/SSL register manipulation restrictions:

In addition to all the above restrictions concerning SP, SSH, and SSL, the following
instruction sequences are illegal:

'1. BCHG/BCLRlBSET SP
2. MOVEC/MOVEM/MOVEP from SSH or SSL

and
1. MOVEC/MOVEM to SP
2. MOVEC/MOVEM/MOVEP from SSH or SSL

and
1. MOVEC/MOVEM to SP
2. JCLRlJSET/JSCLRlJSSET SSH or SSL

and
1. BCHG/BCLRlBSET SP
2. JCLRlJSET/JSCLRlJSSET SSH or SSL

Also, the instruction MOVEC SSH,SSH is illegal.

Rn, Nn, and Mn register restrictions:

Due to pipelining, if an address register Rn is the destination of a MOVE-type instruction
except MOVEP (MOVE, MOVEC, MOVEM, LUA, Tcc) , the new contents will not be
available for use as an address pointer until the second following instruction cycle.

Likewise, if an offset register Nn or a modifier register Mn is the destination of a MOVE­
type instruction except MOVEP, the new contents will not be available for use in address
calculations until the second following instruction cycle.

However, if the processor is in the No Update addressing mode (where Mn and Nn are
ignored) and register Mn or Nn is the destination of a MOVE instruction, the next instruc­
tion may use the corresponding Rn register as an address pointer. Also, if the processor
is in the Postincrement by 1, Postdecrement by 1, or Predecrement by 1 addressing
mode (where Nn is ignored), a MOVE to Nn may be immediately followed by an instruc­
tion that uses Rn as an address pointer.

Fast interrupt routines:

SWI, STOP, and WAIT may not be used in a fast interrupt routine. (Fast interrupts are
described in Section 7.3.1.)

7.3 EXCEPTION PROCESSING STATE (INTERRUPT PROCESSING)
The exception processing state is associated with interrupts that can be generated by
conditions inside the DSP or from external sources. In digital signal processing, one of

the main uses of interrupts is to transfer data between OSP memory or registers and a
peripheral device. When such an interrupt occurs, a limited context switch with minimal
overhead is ideal. A fast interrupt accomplishes a limited context switch. The processor
relies on a long interrupt when it must accomplish a more complex task to service the
interrupt. Fast interrupts and long interrupts are described in more detail in Section
7.3.1.

There are many sources for interrupts on the OSP56K family of chips, and some of these
sources can generate more than one interrupt. The OSP56K family of processors fea­
tures a prioritized interrupt vector scheme with 32 vectors to provide fast interrupt ser­
vice. The interrupt priority structure is discussed in Section 7.3.2. The following list
outlines how the OSP56K processes interrupts:

1. A hardware interrupt is synchronized with the OSP clock, and the interrupt
pending flag for that particular hardware interrupt is set. An interrupt source
can have only one interrupt pending at any given time.

2. All pending interrupts (external and internal) are arbitrated to select which
interrupt will be processed. The arbiter automatically ignores any interrupts
with an IPL lower than the interrupt mask level in the SR and selects the
remaining interrupt with the highest IPL.

3. The interrupt controller then freezes the program counter (PC) and fetches two
instructions at the two interrupt vector addresses associated with the selected
interrupt.

. 4. The interrupt controller jams the two instructions into the instruction stream
and releases the PC, which is used for the next instruction fetch. The next
interrupt arbitration then begins.

If neither instruction is a change of program-flow instruction (Le., a JSR), the state of the
machine is not saved on the stack, and a fast interrupt is executed. A long interrupt
occurs if one of the interrupt instructions fetched is a JSR instruction. The PC is immedi­
ately released, the SR and the PC are saved in the stack, and the jump instruction con­
trols where the next instruction shall be fetched. While either an unconditional jump or a
conditional jump can be used to form a long interrupt, they do not store the PC on the
stack. Therefore, there is no return path. ./

Activities 2 and 3 listed above require two additional control cycles, which effectively
make the Interrupt pipeline five levels deep.

-

-

7.3.1 Interrupt Types
The DSP56K relies on two types of interrupt routines: fast and long. The fast interrupt
fetches only two words and then automatically resumes execution of the main program;
whereas, the long interrupt must be told to return to the main program by executing an
RTI instruction. The fast routine consists of two automatically inserted interrupt instruc­
tion words. These words can contain any unrestricted, single two-word instruction or any
two one-word instructions (see Section A.9 in APPENDIX A - INSTRUCTION SET
DETAILS for a list of restrictions). Fast interrupt routines are never interruptible.

CAUTION
Status is not preserved during a fast interrupt routine; therefore, instructions
that modify status should not be used at the interrupt starting address and
interrupt starting address + 1.

If one of the instructions in the fast routine is a JSR, then a long interrupt routine is
formed. The following actions occur during execution of the JSR instruction when it
occurs in the interrupt starting address or in the interrupt starting address +1:

1. The PC (containing the return address) and the SR are stacked.

2. The loop flag is reset.

3. The scaling mode bits are reset.

4. The IPL is raised to disallow further interrupts at the same or lower levels
(except that hardware RESET, NMI, stack error, trace, and SWI can always
interrupt).

5. The trace bit in the SR is cleared (in the DSP56000/56001 only).

The long interrupt routine should be terminated by an RTI. Long interrupt routines are
interruptible by higher priority interrupts. Figure 7-1 shows examples of fast and long
interrupts.

7.3.2 Interrupt Priority Structure
Interrupts are organized in a flexible priority structure. Each interrupt has an associated
interrupt priority level (IPL) that can range from zero to three. Levels 0 (lowest level), 1,
and 2 are maskable. Level 3 is the highest IPL and is not maskable. The only IPL 3 inter­
rupts are RESET, illegal instruction interrupt (III), nonmaskable interrupt (NMI), stack
error, trace, and software interrupt (SWI). The interrupt mask bits (11, 10) in the SR reflect
the current priority level and indicate the IPL needed for an interrupt source to interrupt
the processor (see Table 7-2). Interrupts are inhibited for all priority levels below the cur-

FAST INTERRUPT SERVICE ROUTINE
MAIN

PROGRAM SSI RECEIVE DATA

$0100

$0101

$0102

$0103

$0104

$0105

$0106

MAIN
PROGRAM

$0100

$0101 MACR

$0102 MOVE

$0103 MAC

$0104 REP

$0105 MAC

$0106

MACR

MOVE

MAC

REP

MAC

INTERRUPT
RECOGNIZED

(a) DSP56K Fast Interrupt

LONG INTERRUPT SERVICE ROUTINE

SSI RECEIVE DATA
WITH EXCEPTION STATUS

(b) DSP56K Long Inte~rupt

$OOOC MOVEP

xxxxxx

JSR INSTRUCTION
FORMS LONG
INTERRUPT SERVICE

Figure 7-1 Fast and Long Interrupt Examples

-

Table 7-2 Status Register Interrupt Mask Bits

11 10 Exceptions Permitted Exceptions Masked

0 0 IPLO, 1,2,3 None

0 1 IPL 1, 2, 3 IPL 0

1 0 IPL2,3 IPL 0,1

1 1 IPL 3 IPL 0, 1,2

rent processor priority level. However, level 3 interrupts are not maskable and therefore
can always interrupt the processor. DSP56K Family central processor interrupt sources
and their IPLs are listed in Table 7-6. For information on on-chip peripheral interrupt pri­
ority levels, see the individual DSP56K family member's User's Manual.

7.3.2.1 Interrupt Priority Levels
The IPL for each on-chip peripheral device (HI, SSI, SCI) and for each external interrupt
source (IRQA, IRQ8) can be programmed to one of the three maskable priority levels
(IPL 0, 1, or 2) under software control. IPLs are set by writing to the interrupt priority reg­
ister shown in Figure 7-2. This read/write register is located in program memory at
address $FFFF. It specifies the IPL for each of the interrupting devices including IRQA,
IRQ8 and each peripheral device. (For specific peripheral information, see the specific
DSP56K family member's User's Manual.) In addition, it specifies the trigger mode of the
external interrupt sources and is used to enable or disable the individual external inter~
rupts. The interrupt priority register is cleared on RESET or by the reset instruction.
Table 7-3 defines the IPL bits. Table 7-4 defines the external interrupt trigger mode bits.

23 .. 1 0 9 8 7 6 5 4 3 2 0

'---'----'--- IRQA MODE
~~--~------------IRQBMODE

~--'-__ -L...---' __________ RESERVED FOR EXPANSION
'--_________1...-_____________ RESERVED FOR PERIPHERAL IPL LEVELS

Bits 6 to 9 are reserved, read as zero and should be written with zero for future compatibility.

Figure 7-2 Interrupt Priority Register (Addr X:$FFFF)

Table 7-3 Interrupt Priority Level Bits Table 7-4 External Interrupt

xxL1 xxLO Enabled IPL IxL2 Trigger Mode

0 0 No - 0 Level

0 1 Yes 0 1 Negative Edge

1 0 Yes 1

1 1 Yes 2

7.3.2.2 Exception Priorities Within an IPL
If more than one interrupt is pending when an instruction is executed, the processor will
service the interrupt with the highest priority level first. When multiple interrupt requests
with the same IPL are pending, a second fixed-priority structure within that IPL deter­
mines which interrupt the processor will service. The fixed priority of interrupts within an
IPL and the interrupt enable bits for all interrupts are shown in Table 7-5.

Table 7-5 Central Processor Interrupt Priorities Within an IPL

Priority Exception Enabled By Bit No.
X Data

Memory
Address

Level 3 (Nonmaskable)

Highest Hardware RESET - - -

III - - -

NMI - - -

Stack Error - - -

Trace - - -

Lowest SWI - - -

Levels 0, 1,2 (Maskable)

Higher IROA (External Interrupt) IROA Mode Bits o and 1 $FFFF

Lower IROB (External Interrupt) IROB Mode Bits 3 and 4 $FFFF

-

7.3.3 Interrupt Sources
Interrupts can originate from any of the vector addresses listed in Table 7-6, which
shows the corresponding interrupt starting address for each interrupt source. These
addresses are located in the first 64 locations of program memory.

Table 7-6 Interrupt Sources

Interrupt IPL Interrupt Source Starting Address

$0000 3 Hardware RESET

$0002 3 Stack Error

$0004 3 Trace

$0006 3 SWI

$0008 0-2 IROA

$OOOA 0-2 IROB

: : Vectors available for peripherals

$001E 3 NMI

: : Vectors available for peripherals

$003E 3 Illegal Instruction

When an interrupt occurs, the instruction at the interrupt starting address is fetched first.
Because the program flow is directed to a different starting address for each interrupt,
the interrupt structure of the DSP56K can be described as "vectored". A vectored inter­
rupt structure has low execution overhead. If it is known beforehand that certain inter­
rupts will not be used, those interrupt vector locations can be used for program or data
storage.

7.3.3.1 Hardware Interrupt Sources
There are two types of hardware interrupts in the DSP56K: internal and external. The
internal interrupt sources include all of the on-chip peripheral devices. For further infor­
mation on a device's internal interrupt sources, see the device's individual User's Man­
ual.

The external hardware interrupt sources are the RESET, NMI, IROA, and IROB pins on
the program interrupt controller in the Program Control Unit.

The level sensitive RESET interrupt is the highest priority interrupt with an IPL of 3. IROA
and IROB can be programmed to one of three priority levels: 0, 1, or 2 - all of which are
maskable. IROA and IROB have independent enable control and can be programmed to
be level sensitive or edge sensitive. Since level-sensitive interrupts will not be cleared

automatically when they are serviced, they must be cleared by other means to prevent
multiple interrupts. Edge-sensitive interrupts are latched as pending on the high-to-Iow
transition of the interrupt input and are automatically cleared when the interrupt is ser­
viced.

When either the IROA or IROB pin is disabled in the interrupt priority register, the inter­
rupt request coming in on the pin will be ignored, regardless of whether the input was
defined as level sensitive or edge sensitive. If the interrupt input is defined as edge sen­
sitive, its edge-detection latch will remain in the reset state for as long as the'interrupt pin
is disabled. If the interrupt is defined as level-sensitive, its edge-detection latch will stay
in the reset state. If the level-sensitive interrupt is disabled while it is pending it will be
cancelled. However, if the interrupt has been fetched, it normally will not be cancelled.

The processor begins interrupt service by fetching the instruction word in the first vector
location. The interrupt is considered finished when the processor fetches the instruction
word in the second vector location.

In an edge-triggered interrupt, the internal latch is automatically cleared when the second
vector location is fetched. The fetch of the first vector location does not guarantee that
the second location will be fetched. Figure 7-3 illustrates the one case where the second
vector location is not fetched. The SWI instruction in the figure discards the fetch of the
first interrupt vector to ensure that the SWI vectors will be fetched. Instruction n4 is
decoded as an SWI while ii1 is being fetched. Execution of the SWI requires that ii1 be
discarded and the two SWI vectors (ii3 and ii4) be fetched instead.

CAUTION
On all level-sensitive interrupts, the interrupt must be externally released be­
fore interrupts are internally re-enabled. Otherwise, the processor will be in­
terrupted repeatedly until the release of the level-sensitive interrupt occurs.

The edge sensitive NMI is a priority 3 interrupt and cannot be masked. Only RESET and
illegal instruction have higher priority than NMI.

7.3.3.2 Software Interrupt Sources
There are two software interrupt sources - software interrupt (SWI) and illegal instruc­
tion interrupt (III).

SWI is a nonmaskable interrupt (IPL 3), which is serviced immediately following the SWI
instruction execution, usually using a long interrupt service routine. The difference
between an SWI and a JSR instruction is that the SWI sets the interrupt mask to prevent
interrupts below IPL 3 from being serviced. The SWI's ability to mask out lower level

-

interrupts makes it very useful for setting breakpoints in monitor programs. The JSR
instruction does not affect the interrupt mask.

The III is also a nonmaskable interrupt (IPL 3). It is serviced immediately following the
execution or the attempted execution of an illegal instruction (any undefined operation
code). Ills are fatal errors. Only a long interrupt routine should be used for the III routine.
RTI or RTS should not be used at the end of the interrupt routine because, during the III
service, the JSR located in the III' vector will normally stack the address of the illegal
instruction (see Figure 7-4). Returning from the interrupt routine would cause the proces­
sor to attempt to execute the illegal interrupt again and cause an infinite loop which can
only be broken by cycling power. This long interrupt (see Figure 7-4) can be used as a
diagnostic tool to allow the programmer to examine the stack (MOVE SSH, dest) and
locate the illegal instruction, or the application program can be restarted with the hope
that the failure was a soft error. The illegal instruction is useful for triggering the illegal
interrupt service routine to see if the III routine can recover from illegal instructions.

INTERRUPT CONTROL CYCLE 1 i

INTERRUPT CONTROL CYCLE 2

FETCH n3 n4

DECODE n2 n3

EXECUTE n1 n2

INSTRUCTION BEING DECODED 1

i = INTERRUPT REQUEST
i* = INTERRUPT REQUEST GENERATED BY SWI
ii1 = FIRST VECTOR OF INTERRUPT i
ii3 = FIRST SWI VECTOR (ONE-WORD JSR)
ii4 = SECOND SWI VECTOR
n = NORMAL INSTRUCTION WORD
n4 =SWI

i*

i i*

n5 ii1 ii3

SWI - - -
n3 SWI NOP NOP

sw = INSTRUCTIONS PERTAINING TO THE SWI LONG INTERRUPT ROUTINE

Figure 7-3 Interrupting an SWI

ii4 sw1 sw2 sw3 sw4

JSR - sw1 sw2 sw3

NOP JSR - sw1 sw2

MAIN

PROGRAM

FETCHES

{

II (NOP)

INFINITE 1--__ "_6 __ --1

LOOP NO FETCH

NO FETCH

FAST INTERRUPT
SERVICE ROUTINE

FETCHES

(a) Instruction Fetches from Memory

ILLEGAL INSTRUCTION INTERRUPT
RECOGNIZED AS PENDING

ILLEGAL INSTRUCTION INTERRUPT

INTERRUPT CONTROL CYCLE 1

INTERRUPT CONTROL CYCLE 2

FETCH

DECODE

EXECUTE

INSTRUCTION CYCLE COUNT 1

i = INTERRUPT
ii = INTERRUPT INSTRUCTION WORD
II = ILLEGAL INSTRUCTION
" = NORMAL INSTRUCTION WORD

n1 n2 n3

n1 n2

n1

2 3 4

i

n4 n5 n6 -

n3 n4 II -
rQ rG Ill- NJP

5 6 7 8

(b) Program Controller Pipeline

RECOGNIZED AS PENDING

i

- ii1 ii2 n5

- - i1 ii2 /I

- - - ii1 ii2 I\Ol

9 10 11 12 13 14

Figure 7-4 Illegal Instruction Interrupt Serviced by a Fast Interrupt

-

MAIN

PROGRAM

FETCHES

II (NOP)

n6

NO FETCH

NO FETCH

LONG INTERRUPT
SERVICE ROUTINE

FETCHES

~,
12

13

14

15

- ---
(a) Instruction Fetches from Memory

ILLEGAL INSTRUCTION INTERRUPT
RECOGNIZED AS PENDING

ILLEGAL INSTRUCTION INTERRUPT

INTERRUPT CONTROL CYCLE 1

INTERRUPT CONTROL CYCLE 2

FETCH

DECODE

EXECUTE

INSTRUCTION CYCLE COUNT 1

= INTERRUPT
ii = INTERRUPT INSTRUCTION WORD
II = ILLEGAL INSTRUCTION
n = NORMAL INSTRUCTION WORD

n1 n2 n3

n1 n2

n1

2 3 4

i

n4 n5 n6 -

n3 n4 II -

n2 n3 n4 NOP

5 6 7 8

(b) Program Controller Pipeline

RECOGNIZED AS PENDING

i

- ii1 ii2 ii3 ii4 ii5

- - ii1 ii2 ii3 ii4 .

- - - ii1 ii2 ii3

9 10 11 12 13 14

Figure 7-5 Illegal Instruction Interrupt Serviced by a Long Interrupt

ILLEGAL INSTRUCTION INTERRUPT
RECOGNIZED AS PENDING

INTERRUPT CONTROL CYCLE 1 i

INTERRUPT CONTROL CYCLE 2 i

FETCH n1 n2 n3 n4 n5 n6 n7 - - - ii1 ii2 n8

DECODE n1 n2 n3 n4 REP I - - - - ii1 ii2 n8

EXECUTE

INSTRUCTION CYCLE COUNT 1 2

= INTERRUPT
= INTERRUPT INSTRUCTION WORD
= ILLEGAL INSTRUCTION

n = NORMAL INSTRUCTION WORD

n1 n2

3 4 5

n3 n4 REP REP t\OP

6 7 8 9 10

Figure 7-6 Repeated Illegal Instruction

- - - ii1 ii2 n8

11 12 13 14 15 16

There are two cases in which the stacked address will not point to the illegal instruction:

1. If the illegal instruction is one of the two instructions at an interrupt vector loca­
tion and is fetched during a regular interrupt service, the processor will stack
the address of the next sequential instruction in the normal instruction flow (the
regular return address of the interrupt routine that had the illegal opcode in its
vector).

2. If the illegal instruction follows an REP instruction (see Figure 7-6), the proces­
sor will effectively execute the illegal instruction as a repeated NOP and the
interrupt vector will then be inserted in the pipeline. The next instruction will be
fetched but will not be decoded or executed. The processor will stack the
address of the next sequential instruction, which is two instructions after the
illegal instruction.

In DO loops, if the illegal instruction is in the loop address (LA) location and the instruc­
tion preceding it (Le., at LA-1) is being interrupted, the loop counter (LC) will be decre­
mented as if the loop had reached the LA instruction. When the interrupt service ends
and the instruction flow returns to the lOOp, the illegal instruction will be refetched (since it
is the next sequential instruction in the flow). The loop state machine will again decre­
ment LC because the LA instruction is being executed. At this point, the illegal instruction
will trigger the III. The result is that the loop state machine decrements LC twice in one
loop due to the presence of the illegal opcode at the LA location.

7.3.3.3 Other Interrupt Sources
Other interrupt sources include the stack error interrupt and trace interrupt (DSP560001
56001) which are IPL3 interrupts.

An overflow or underflow of the system stack (SS) causes a stack error interrupt which is
vectored to P:$0002 (see SECTION 5 - PROGRAM CONTROL UNIT for additional infor­
mation on the stack error flag). Since the stack error is nonrecoverable, a long interrupt
should be used to service it. The service routine should not end in an RTI because exe­
cuting an RTI instruction "pops" the stack, which has been corrupted.

The DSP56000/56001 includes a facility for instruction-by-instruction tracing as a pro­
gram development aid. This trace mode generates a trace exception after each instruc­
tion executed (see Figure 7-7), which can be used by a debugger program to monitor the
execution of a program. (With members of the DSP56K family other than DSP560001
56001, use the OnCE trace mode described in 10.5.)

The trace bit in the SR defines the trace mode. In the trace mode, the processor will gen­
erate a trace exception after it executes each instruction. When the processor is servic­
ing the trace exception, it expects to encounter a JSR in the trace vector locations,
thereby forming a long interrupt routine. The JSR stacks the SR and clears the trace bit
to prevent tracing while executing the trace exception service routine. This service rou­
tine should end with an RTI instruction, which restores the SR (with the trace bit set) from
the SS, and causes the next instruction to be traced. The pipeline must be flushed to
allow each sequential instruction to be traced. The tracing facility appends three instruc­
tion cycles to the end of each instruction traced (see the three NOP instructions shown in
Figure 7-7) to flush the pipeline and allow the next trace interrupt to follow the next
sequential interrupt.

During tracing, the processor considers the REP instruction and the instruction being
repeated as a single two-word instruction. That is, only after executing the REP instruc­
tion and all of the repeats of the next instruction will the trace exception be generated.

Fast interrupts can not be traced because they are uninterruptable. Long interrupts will
not be traced unless the processor enters the trace mode in the subroutine because the
SR is pushed on the stack and the trace bit is cleared. Tracing is resumed upon returning
from a long interrupt because the trace bit is restored when the SR is restored. Interrupts
are not likely to occur during tracing because only an interrupt with a higher IPL can inter­
rupt during a trace operation. While executing the program being traced, the trace inter­
rupt will always be pending and will win the interrupt arbitration. During the trace
interrupt, the interrupt mask is set to reject interrupts below IPL3.

TRACE BIT
SETINSR

MAIN

PROGRAM

FETCHES

n1

n2

NEXT TRACE
OPERATION

TRACE INSTRUCTION n1

\-------:---\ J~SFt~~~~I~NS INSERTED
f---------i BY TRACE MODE

r---.,..-L,::----, FAST INTERRUPT

\---___: ___ -=--\ ~A~~~~~t TRACE

DEBUGGER
PROGRAM

RTI SET TRACE BIT IN SSL

(a) Instruction Fetches from Memory

,.-- INTERRUPT SYNCHRONIZED AND ,.-- INTERRUPT SYNCHRONIZED AND
RECOGNIZED AS PENDING RECOGNIZED AS PENDING

INTERRUPT CONTROL CYCLE 1 i I I

INTERRUPT CONTROL CYCLE 2 i I I

FETCH nl NOP NOP NOP JSR - TRACE PROGRAM RTI - n2 NOP NOP NOP

DECODE nl NOP NOP NOP JSR NOP TRACE PROGRAM RTI NOP n2 NOP NOP NOP

EXECUTE nl NOP NOP NOP JSR NOpJ TRACE PROGRAM Rli NOP n2 NOP NOP

INSTRUCTION CYCLE COUNT 1 2 3

= INTERRUPT
ii = INTERRUPT INSTRUCTION WORD
II = ILLEGAL INSTRUCTION

4 5 6 7 8 9 I 10 11

n = NORMAL INSTRUCTION WORD
(b) Program Controller Pipeline

Figure 7-7 Trace Exception

12 13 14 15 16 17

NOP

18

-

7.3.4 Interrupt Arbitration
Interrupt arbitration and control, which occurs concurrently with the fetch-decode-exe­
cute cycle, takes two instruction cycles. External interrupts are internally synchronized
with the processor clock before their interrupt-pending flags are set. Each external and
internal interrupt has its own flag. After each instruction is executed, the DSP arbitrates
all interrupts. During arbitration, each interrupt's IPL is compared with the interrupt mask
in the SR, and the interrupt is either allowed or disallowed. The remaining interrupts are
prioritized according to the IPLs shown in Table 7-5, and the highest priority interrupt is
chosen. The interrupt vector is then calculated so that the program interrupt controller
can fetch the first interrupt instruction.

Interrupts from a given source are not buffered. The processor won't arbitrate a new
interrupt from the same source until after it fetches the second interrupt vector of the cur­
rent interrupt.

The internal interrupt acknowledge signal clears the edge-triggered interrupt flags and
the internal latches of the NMI, SWI, and trace interrupts. The stack error bit in the stack
pointer register is "sticky" and requires a "MOVE" or a bit clear operation directly on the
stack pointer register. Some peripheral interrupts may also be cleared by the internal
interrupt acknowledge signal, as defined in their specifications. Peripheral interrupt
requests that need a read/write action to some register do not receive the internal inter­
rupt acknowledge signal, and they will remain pending until their registers are read/writ­
ten. Further, level-triggered interrupts will not be cleared. The acknowledge signal will be
generated after the interrupt vectors have been generated, not before.

7.3.5 Interrupt Instruction Fetch
The interrupt controller generates an interrupt instruction fetch address, which points to
the first instruction word of a two-word interrupt routine. This address is used for the next
instruction fetch, instead of the contents of the PC, and the interrupt instruction fetch
address +1 is used for the subsequent instruction fetch. While the interrupt instructions
are being fetched, the PC cannot be updated. After the two interrupt words have been
fetched, the PC is used for any subsequent instruction fetches.

After both interrupt vectors have been fetched, they are guaranteed to be executed. This
is true even if the instruction that is currently being executed is a change-of-flow instruc­
tion (i.e., JMP, JSR, etc.) that would normally ignore the instructions in the pipe. After the
interrupt instruction fetch, the PC will point to the instruction that would have been
fetched if the interrupt instructions had not been inserted.

7.3.6 . Instructions Preceding the Interrupt Instruction Fetch
The following one-word instructions are aborted when they are fetched in the cycle pre­
ceding the fetch of the first interrupt instruction word- REP, STOP, WAIT, RESET, RTI,
RTS, Jcc, JMP, JScc, and JSR.

Two-word instructions are aborted when the first interrupt instruction word fetched will
replace the fetch of the second word of the two-word instruction. Aborted instructions are
refetched when program control returns from the interrupt routine. The PC is adjusted
appropriately before the end of the decode cycle of the aborted instruction.

If the first interrupt word fetch occurs in the cycle following the fetch of a one-word
instruction not previously listed or the second word of a two-word instruction, that instruc­
tion will complete normally before the start of the interrupt routine.

The following cases have been identified where service of an interrupt might encounter
an extra delay:

1. If a long interrupt routine is used to service an SWI, then the processor priority
level is set to 3. Thus, all interrupts except other level-3 interrupts are disabled
until the SWI service routine terminates with an RTI (unless the SWI service
routine software lowers the processor priority level).

2. While servicing an interrupt, the next interrupt service will be delayed accord­
ing to the following rule: after the first interrupt instruction word reaches the
instruction decoder, at least three more instructions will be decoded before
decoding the next first interrupt instruction word. If anyone pair of instructions
being counted is the REP instruction followed by an instruction to be repeated,
then the combination is counted as two instructions independent of the num­
ber of repeats done. Sequential REP combinations will cause pending inter­
rupts to be rejected and can not be interrupted until the sequence of REP
combinations ends.

3. The following instructions are not interruptible: SWI, STOP, WAIT, and
RESET.

4. The REP instruction and the instruction being repeated are not interruptible.

5. If the trace bit in the SR (DSP56000/56001 only) is set, the only interrupts that
will be processed are the hardware RESET, III,NMI, stack error, and trace.
Peripheral and external interrupt requests will be ignored. The interrupt gener­
ated by the SWI instruction will be ignored.

-

7.3.7 Interrupt Instruction Execution
Interrupt instruction execution is considered "fast" if neither of the instructions of the
interrupt service routine causes a change of flow. A JSR within a fast interrupt routine
forms a long interrupt, which is terminated with an RTI instruction to restore the PC and
SR from the stack and return to normal program execution. Reset is a special exception,
which will normally contain only a JMP instruction at the exception start address. At the
programmer's option, almost any instruction can be used in the fast interrupt routine. The
restricted instructions include SWI, STOP, and WAIT. Figure 7-8 and Figure 7-10 show
the fast and the long interrupt service routines. The fast interrupt executes only two
instructions and then automatically resumes execution of the main program; whereas,
the long interrupt must be told to return to the main program by executing an RTI instruc­
tion.

Figure 7-8 illustrates the effect of a fast interrupt routine in the stream of instruction
fetches.

Figure 7-9 shows the sequence of instruction decodes between two fast interrupts. Four
decodes occur between the two interrupt decodes (two after the first interrupt and two
preceding the second interrupt). The requirement for these four decodes establishes the
maximum rate at which the DSP56K will respond to interrupts - namely, one interrupt
every six instructions (six instruction cycles if all six instructions are one instruction cycle
each). Since some instructions take more than one instruction cycle, the minimum num­
ber of instructions between two interrupts may be more than six instruction cycles.

The execution of a fast interrupt routine always conforms to the following rules:

1. A JSR to the starting address of the interrupt service routine is notiocated at
one of the two interrupt vector addresses.

2. The processor status is not saved.

3. The fast interrupt routine may (but should not) modify the status of the normal
instruction stream.

4. The fast interrupt routine may contain any single two-word instruction or any
two one-word instructions except SWI, STOP, and WAIT.

5. The PC, which contains the address of the next instruction to be executed in
normal processing remains unchanged during a fast interrupt routine.

INTERRUPT SYNCHRONIZED
AND RECOGNIZED

MAIN

PROGRAM

MEMORY

AS PENDING_ n1

ADDITIONAL INTERRUPTS I n2
DISABLED DURING I-------~

FAST INTERRUPT 1--__ n_3 __ ---I
n4

INTERRUPTS_ 1--------1
RE-ENABLED

ii = INTERRUPT INSTRUCTION
n = NORMAL INSTRUCTION

(a) Instruction Fetches from Memory

INTERRUPT CONTROL CYCLE 1

INTERRUPT CONTROL CYCLE 2

FETCH

DECODE

EXECUTE

INSTRUCTION CYCLE COUNT

= INTERRUPT
ii = INTERRUPT INSTRUCTION WORD
n = NORMAL INSTRUCTION WORD

-

i

n1

1

INTERRUPT SYNCHRONIZED AND
RECOGNIZED AS PENDING

i

n2 ii1 ii2 n3

n1 n2 ii1 ii2

n1 n2 ii1

2 3 4 5

(b) Program Controller Pipeline

n4

n3

ii2

6

Figure 7-8 Fast Interrupt Service Routine

INTERRUPTS RE-ENABlED

n4

n3 n4

7 8

-

INTERRUPT SYNCHRONIZED
AND RECOGNIZED

AS PENDING_

MAIN

PROGRAM

MEMORY

i
n1

ADDITIONAL INTERRUPTS n2

DISABLED DURING t==~C=~):""-'------J::====~~-.--l FAST INTERRUPT 1--__ n_3 __ --f
n4

INTERRUPTS- 1-----=:-----1

ADDITIONAL INTERRUPTS t---n~6r-JF~-_____ .l::::::=~~_.-l
RE-ENABLED { n5

DISABLED DURING I n7
FAST INTERRUPT I----n-a-----i

INTERRUPTS- I----n-g----f
RE-ENABLED

ii = INTERRUPT INSTRUCTION
n = NORMAL INSTRUCTION

(a) Instruction Fetches from Memory

INTERRUPT SYNCHRONIZED AND .--- INTERRUPTS RE-ENABLED .---

INTERRUPT CONTROL CYCLE 1 i

INTERRUPT CONTROL CYCLE 2

FETCH n1

DECODE

EXECUTE

INSTRUCTION CYCLE COUNT 1

= INTERRUPT
= INTERRUPT INSTRUCTION WORD

n = NORMAL INSTRUCTION WORD

RECOGNIZED AS PENDING

61cye

i

i

n2 ii1 ii2 n3 n4 n5

n1 n2 ii1 ii2 n3 n4

n1 n2 ii1 ii2 n3

2 3 4 5 6 7

(b) Program Controller Pipeline

i

n6 ii1

n5 n6

n4 n5

8 9

Figure 7-9 Two Consecutive Fast Interrupts

ii2

ii1

n6

10

ii2

ii1

11

ii2

12

6. The fast interrupt returns without an RT/'

7. Normal instruction fetching resumes using the PC following the completion of
the fast interrupt routine.

8. A fast interrupt is not interruptible.

9. A JSR instruction within the fast interrupt routine forms a long interrupt routine.

10. The primary application is to move data between memory and I/O devices.

The execution of a long interrupt routine always conforms to the following rules:

1. A JSR to the starting address of the interrupt service routine is located at one
of the two interrupt vector addresses.

2. During execution of the JSR instruction, the PC and SR are stacked. The inter­
rupt mask bits of the SR are updated to mask interrupts of the same or lower
priority. The loop flag, trace bit, double precision multiply mode bit, and scaling
mode bits are reset.

3. The first instruction word of the next interrupt service (of higher IPL) will reach
the decoder only after the decoding of at least four instructions following the
decoding of the first instruction of the previous interrupt.

4. The interrupt service routine can be interrupted - i.e., nested interrupts are
supported.

5. The long interrupt routine, which can be any length, should be terminated by
an RTI, which restores the PC and SR from the stack.

Figure 7-10 illustrates the effect of a long interrupt routine on the instruction pipeline. A
short JSR (a JSR with 12-bit absolute address) is used to form the long interrupt routine.
For this example, word 6 of the long interrupt routine is an RT/' The point at which inter­
rupts are re-enabled and subsequent interrupts are allowed is shown to illustrate the
non-interruptible nature of the early instructions in the long interrupt service routine.

Either one of the two instructions of the fast interrupt can be the JSR instruction that
forms the long interrupt. Figure 7-11 and Figure 7-12 show the two possible cases. If the
first fast interrupt vector instruction is the JSR, the second instruction is never used.

A REP instruction and the instruction that follows it are treated as a Single two-word
instruction, regardless of how many times it repeats the second instruction of the pair.
Instruction fetches are suspended and will be reactivated only after the LC is decre-

-

-

MAIN

PROGRAM

FETCHES

LONG INTERRUPT
SERVICE ROUTINE FETCHES

(STARTS WITH A FAST INTERRUPT)

INTERRUPT
SYNCHRONIZED

}

JSR CAN BE IN EITHER LOCATION
I---------i TO FORM A LONG INTERRUPT

'------r----~

AND RECOGNIZED- n1
AS PENDING 1----

n
-

2
----l

n3

n4

EXPLICIT
RETURN FROM

INTERRUPT
(SHOULD BE RTll

~--..l---....... -PROGRAM COUNTER
RESUMES OPERATION

ii4
1-------i4--INTERRUPTS

INTERRUPT RE-ENABLED
ROUTINE

ii7

RTI

(a) Instruction Fetches from Memory

r-

INTERRUPT CONTROL CYCLE 1 i

INTERRUPT CONTROL CYCLE 2

FETCH n1

DECODE

EXECUTE

INSTRUCTION CYCLE COUNT 1

= INTERRUPT
ii = INTERRUPT INSTRUCTION WORD
n = NORMAL INSTRUCTION WORD

INTERRUPT SYNCHRONIZED AND
RECOGNIZED AS PENDING

r-- INTERRUPTS RE-ENABLED

i

n2 ii1 ii2 ii3 ii4 ii5 ii6 ii7 RT1 -
n1 n2 ii1 ii2 ii3 ii4 ii5 ii6 ii7 RT1

n1 n2 ii1 ii2 ii3 ii4 ii5 ii6 ii7

2 3 4 5 6 7 8 9 10 11

(b) Program Controller Pipeline

Figure 7-10 Long Interrupt Service Routine

n3 n4

I'C.P n3

RT1 I'C.P

12 13

n4

n3 n4

14 15

MAIN

PROGRAM

n1

n2

FAST INTERRUPT
VECTOR

(a) Instruction Fetches from Memory

r--- INTERRUPT SYNCHRONIZED AND
RECOGNIZED AS PENDING

LONG INTERRUPT
SUBROUTINE

.-- INTERRUPTS RE-ENABLED

INTERRUPT CONTROL CYCLE 1 i

INTERRUPT CONTROL CYCLE 2

FETCH

DECODE

EXECUTE

INSTRUCTION CYCLE COUNT 1

= INTERRUPT
= INTERRUPT INSTRUCTION WORD

n = NORMAL INSTRUCTION WORD

i

n1 .m -
n1 .m

n1

2 3 4

ii2 ii3 ii4 iin

NY ii2 ii3 ii4

.m NY ii2 ii3

5 6 7 8

(b) Program Controller Pipeline

RTl - n2

iin RTl NY

ii4 iin RTl

9 10 11

Figure 7-11 JSR First Instruction of a Fast Interrupt

n2

NY n2

12 13

-

-

MAIN

PROGRAM

n1

n2

FAST INTERRUPT
VECTOR

(a) Instruction Fetches from Memory

..--- INTERRUPT SYNCHRONIZED AND
RECOGNIZED AS PENDING

LONG INTERRUPT
SUBROUTINE

r INTERRUPTS RE-ENABLED

INTERRUPT CONTROL CYCLE 1 i

INTERRUPT CONTROL CYCLE 2 i

FETCH n1

DECODE

EXECUTE

INSTRUCTION CYCLE COUNT 1 2

= INTERRUPT
= INTERRUPT INSTRUCTION WORD

n = NORMAL INSTRUCTION WORD

ii1 JSR

n1 ii1

n1

3 4

- ii3 ii4 ii5

JSR f\OI ii3 ii4 ii5

ii1 JSR f\OI ii3 ii4

5 6 7 8 9

(b) Program Controller Pipeline

iin RTl -
ii6 iin RTl

ii5 ii6 iin

10 11 12

Figure 7-12 JSR Second Instruction of a Fast Interrupt

n2

f\OI n2

RTl f\OI

13 14

n2

15

mented to one (see Figure 7-13). During the execution of n2 in Figure 7-13, no interrupts
will be serviced. When LC finally decrements to one, the fetches are reinitiated, and
pending interrupts can be serviced.

Sequential REP packages will cause pending interrupts to be rejected until the sequence
of REP packages ends. REP packages are not interruptible because the instruction
being repeated is not refetched. While that instruction is repeating, no instructions are
fetched or decoded, and an interrupt can not be inserted. For example, in Figure 7-14, if
n1, n3, and n5 are all REP instructions, no interrupts will be serviced until the last REP
instruction (n5 and its repeated instruction, n6) completes execution.

7.4 RESET PROCESSING STATE
The processor enters the reset processing state when a hardware reset occurs and the
external RESET pin is asserted. The reset state:

1. resets internal peripheral devices;

2. sets the modifier registers to $FFFF;

3. clears the interrupt priority register;

4. sets the SCR to $FFFF, thereby inserting 15 wait states in all external memory
accesses;

5. clears the stack pointer;

6. clears the scaling mode, trace mode, loop flag, double precision multiply
mode, and condition code bits of the SR, and sets the interrupt mask bits of
the SR;

7. clears the data ROM enable bit, the stop delay bit, and the internal Y memory
disable bit, and

8. the DSP remains in the reset state until the RESET pin is deasserted.

When the processor deasserts the reset state:

9. it loads the chip operating mode bits of the OMR from the external mode select
pins (MODA, MODS, MODC), and

10. begins program execution at program memory address defined by the state of
bits MODA, MODS, and MODC in the OMR. The first instruction must be
fetched and then decoded before executing. Therefore, the first instruction
execution is two instruction cycles after the first instruction fetch.

-

NTERRUPTSYN8HRCNZID
fN) RE<XX.lNIZED

MAIN

PROGRAM

FETCHES

PSPENJII\G] n1 REP m
~~~ ~ _____ n_2 ____ ~ __ -. ______________________ ~ 

FAST NTERRIJPT n3 

n4 

~~~ n5 

i = INTERRUPT INSTRUCTION
n = NORMAL INSTRUCTION

n6

(a) Instruction Fetches from Memory

- INTERRUPT SYNCHRONIZED AND
RECOGNIZED AS PENDING

FAST INTERRUPT
SERVICE ROUTINE FETCHES
(FROM BETWEEN P:$OOOO
AND P:$003F)

r- INTERRUPTS RE-ENABLED

INTERRUPT CONTROL CYCLE 1 i

INTERRUPT CONTROL CYCLE 2

FETCH REP

DECODE

EXECUTE

INSTRUCTION CYCLE COUNT 1

i = INTERRUPT
ii = INTERRUPT INSTRUCTION WORD
n = NORMAL INSTRUCTION WORD
i% = INTERRUPT REJECTED

i%

n2

REP

2

i

n3

NOP n2 n2 n2 n2

REP NOP n2 n2 n2

3 4 5 6 7

(b) Program Controller Pipeline

i

n4

n3

n2

8

Figure 7-13 Interrupting an REP Instruction

ii1 ii2 n5 n6

n4 ii1 ii2 n5

n3 n4 ii1 ii2

9 10 11 12

MAIN

PROGRAM

FETCHES

~~
I~-l

I~~
INTEARlPT n6

F81DN3 n7

n8

n9

(a) Instruction Fetches from Memory

r INTERRUPT SYNCHRONIZED AND
RECOGNIZED AS PENDING

INTERRUPT CONTROL CYCLE 1 I

INTERRUPT CONTROL CYCLE 2 1%

FETCH REP n2 REP

DECODE REP NOP n2

EXECUTE REP /lOP

INSTRUCTION CYCLE COUNT 1 2 3 4

i = INTERRUPT
ii = INTERRUPT INSTRUCTION WORD
n = NORMAL INSTRUCTION WORD
i% = INTERRUPT REJECTED

n4 REP

n2 n2 REP NOP

n2 n2 n2 REP

5 6 7 8

n4

NOP

9

n6 n7

n4 n4 REP NOP

n4 n4 n4 REP

10 11 12 13

(b) Program Controller Pipeline

n6 n6

NOP n6

14 15

r-- INTERRUPTS RE ENABLED

I

i

n8 iiI 112 n9

n6 n7 n8 111 i2 n9

n6 n6 n7 n8 il i2 n9

16 17 18 19 20 21 22

Figure 7-14 Interrupting Sequential REP Instructions

-

7.5 WAIT PROCESSING STATE
The WAIT instruction brings the processor into the wait processing state which is one of
two low power-consumption states. Asserting the OnCE's debug request pin releases.
the DSP from the wait state. In the wait state, the internal clock is disabled from all inter­
nal circuitry except the internal peripherals. All internal processing is halted until an
unmasked interrupt occurs, the Debug Request pin of the OnCE is asserted, or the DSP
is reset.

Figure 7-15 shows a WAIT instruction being fetched, decoded, and executed. It is
fetched as n3 in this example and, during decode, is recognized as a WAIT instruction.
The following instruction (n4) is aborted, and the internal clock is disabled from all inter­
nal circuitry except the internal peripherals. The processor stays in this state until an
interrupt or reset is recognized. The response time is variable due to the timing of the
interrupt with respect to the internal clock. Figure 7-15 shows the result of a fast interrupt
bringing the processor out of the wait state. The two appropriate interrupt vectors are
fetched and put in the instruction pipe. The next instruction fetched is n4, which had been
aborted earlier. Instruction execution proceeds normally from this point.

INTERRUPT SYNCHRONIZED AND ,r RECOGNIZED AS PENDING

~----------------~--~--~--~,
INTERRUPT CONTROL CYCLE 1
~----------------~--~--+---~~,~--~--~--~--+---~~

INTERRUPT CONTROL CYCLE 2

FETCH n3 n4 - ~ ii1 ii2 n4 n5
r------------------r--~--+---~~,~--_r--_r--~--+_--r_~

DECODE n2 WNf - ii1 ii2 n4
r------------------r--~--+---~~~~--_r--_r--~--+_--r_~

EXECUTE

INSTRUCTION CYCLE COUNT

= INTERRUPT
= INTERRUPT INSTRUCTION WORD

n = NORMAL INSTRUCTION WORD

n1 n2 WNf ... ii1 ii2

1 2 3 4~ 5 6 7 8 9 10

L ONLY INTERNAL PERIPHERALS
RECEIVE CLOCK

Figure 7-15 Wait Instruction Timing

Figure 7-16 shows an example of the WAIT instruction being executed at the same time
that an interrupt is pending. Instruction n4 is aborted as before. The WAIT instruction
causes a five-instruction-cycle delay from the time it is decoded, after which the interrupt
is processed normally. The internal clocks are not turned off, and the net effect is that of
executing eight NOP instructions between the execution of n2 and ii1.

INTERRUPT SYNCHRONIZED AND r RECOGNIZED AS PENDING

INTERRUPT CONTROL CYCLE 1 i

INTERRUPT CONTROL CYCLE 2 i

FETCH n3 n4 - - - - - - ii1 ii2

DECODE n2 WNr - - - - - - - ii1

EXECUTE n1 n2 WNr - - - - - - -

INSTRUCTION CYCLE COUNT 1 2 3 4 5 6 7 8 9 10

= INTERRUPT '------------ -----------~ ~
= INTERRUPT INSTRUCTION WORD

n = NORMAL INSTRUCTION WORD
EQUIVALENT TO EIGHT NOPs

Figure 7-16 Simultaneous Wait Instruction and Interrupt

7.6 STOP PROCESSING STATE

n4

ii2

ii1

11

The STOP instruction· brings the processor into the stop processing state, which is the
lowest power consumption state. In the stop state, the clock oscillator is gated off;
whereas, in the wait state, the clock oscillator remains active. The chip clears all periph­
eral interrupts and external interrupts (IROA, IROB, and NMI) when it enters the stop
state. Trace or stack errors that were pending, remain pending. The priority levels of the
peripherals remain as they were before the STOP instruction was executed. The on-chip
peripherals are held in their respective individual reset states while in the stop state.

-

The stop processing state halts all activity in the processor until one of the following
actions occurs:

1. A low level is applied to the TRQA pin.

2. A low level is applied to the RESET pin.

3. A low level is applied to the DR pin

Either of these actions will activate the oscillator, and, after a clock stabilization delay,
clocks to the processor and peripherals will be re-enabled. The clock stabilization delay
period is determined by the stop delay (SD) bit in the OMR.

The stop sequence is composed of eight instruction cycles called stop cycles. They are
differentiated from normal instruction cycles because the fourth cycle is stretched for an
indeterminate period of time while the four-phase clock is turned off.

The STOP instruction is fetched in stop cycle 1 of Figure 7-17, decoded in stop cycle 2
(which is where it is first recognized as a stop command), and executed in stop cycle 3.
The next instruction (n4) is fetched during stop cycle 2 but is not decoded in stop cycle 3
because, by that time, the STOP instruction prevents the decode. The processor stops
the clock and enters the stop mode. The processor will stay in the stop mode until it is
restarted.

FETCH n3 n4 - -
DECODE n2 STOP - -
EXECUTE n1 n2 STOP -
STOP CYCLE COUNT 1 2 3 4

CLOCK STOPPED~

IRQA = INTERRUPT REQUEST A SIGNAL
n = NORMAL INSTRUCTION WORD

STOP = INTERRUPT INSTRUCTION WORD

u
"

n4
t-.

t-.

111..'"

~ 5 6 7 8 (9)

'II L RESUME STOP CYCLE COUNT 4,
INTERRUPTS ENABLED

131 072 T OR 16 T CYCLE COUNT STARTED

Figure 7-17 STOP Instruction Sequence

IRQA ---------------.,

FETCH n3 n4 - -
DECODE n2 STOP - -
EXECUTE n1 n2 STOP -
STOP CYCLE COUNT 1 2 3 4

CLOCK STOPPED-.1

IRQA = INTERRUPT REQUEST A SIGNAL
n = NORMAL INSTRUCTION WORD

STOP = INTERRUPT INSTRUCTION WORD

-- ii1

5 6 7 8 (9)

L RESUME STOP CYCLE COUNT 4,
INTERRUPTS ENABLED

"-- 131 072 T OR 16 T CYCLE COUNT STARTED

Figure 7-18 STOP Instruction Sequence Followed by IRQA

Figure 7-18 shows the system being restarted by asserting the IRQA signal. If the exit
from stop state was caused by a low level on the IRQA pin, then the processor will ser­
vice the highest priority pending interrupt. If no interrupt is pending, then the processor
resumes at the instruction following the STOP instruction that brought the processor into
the stop state.

An IRQA deasserted before the end of the stop cycle count will not be recognized as
pending. If IRQA is asserted when the stop cycle count completes, then an IRQA inter­
rupt will be recognized as pending and will be arbitrated with any other interrupts.

Specifically, when IRQA is asserted, the internal clock generator is started and begins a
delay determined by the SO bit of the OMR. When the chip uses the internal clock oscil­
lator, the SO bit should be set to zero, to allow a longer delay time of 128K T cycles
(131,072 T cycles) so that the clock oscillator may stabilize. When the chip uses a stable
external clock, the SO bit may be set to one to allow a shorter (16 T cycle) delay time and
a faster start up of the chip.

For example, assume that SD=O so that the 128K T counter is used. During the 128K T
count, the processor ignores interrupts until the last few counts and, at that time, begins
to synchronize them. At the end of the 128K T cycle delay period, the chip restarts
instruction processing, completes stop cycle 4 (interrupt arbitration occurs at this time),
and executes stop cycles 5, 6, 7, and 8 (it takes 17T from the end of the 128K T delay to

-

the first instruction fetch). If the IRQA signal is released (pulled high) after a minimum of
4T but less than 128K T cycles, no IRQA interrupt will occur, and the instruction fetched
after stop cycle 8 will be the next sequential instruction (n4 in Figure 7-18). An IRQA
interrupt will be serviced as shown in Figure 7-18 if 1) the IRQA signal had previously
been initialized as level sensitive, 2) IRQA is held low from the end of the 128K T cycle
delay counter to the end of stop cycle count 8, and 3) no interrupt with a higher interrupt
level is pending. If IRQA is not asserted during the last part of the STOP instruction
sequence (6, 7, and 8) and if no interrupts are pending, the processor will refetch the
next sequential instruction (n4). Since the IRQA signal is asserted (see Figure 7-18), the
processor will recognize the interrupt and fetch and execute the instructions at P:$0008
and P:$0009 (the IRQA interrupt vector locations).

To ensure servicing IRQA immediately after leaving the stop state, the following steps
must be taken before the execution of the STOP instruction:

1. Define IRQA as level sensitive - an edge-triggered interrupt will not be ser­
viced.

2. Define IRQA priority as higher than the other sources and higher than the pro-
gram priority.

3. Ensure that no stack error or trace interrupts are pending.

4. Execute the STOP instruction and enter the stop state.

5. Recover from the stop state by asserting the IRQA pin and holding it asserted
for the whole clock recovery time. If it is low, the IRQA vector will be fetched.
Also, the user must ensure that NMI will not be asserted during these last
three cycles; otherwise, NMI will be serviced before IRQA because NMI prior­
ity is higher.

6. The exact elapsed time for clock recovery is unpredictable. The external
device that asserts IRQA must wait for some positive feedback, such as spe­
cific memory access or a change in some predetermined I/O pin, before deas­
serting IRQA.

The STOP sequence totals 131,104 T cycles (if SD=O) or 48 T cycles (if SD=1) in addi­
tion to the period with no clocks from the stop fetch to the IRQA vector fetch (or next
instruction). However, there is an additional delay if the internal oscillator is used. An
indeterminate period of time is needed for the oscillator to begin oscillating and then sta­
bilize its amplitude. The processor will still count 131,072 T cycles (or 16 T cycles), but

the period of the first oscillator cycles will be irregular; thus, an additional period of
19,000 T cycles should be allowed for oscillator irregularity (the specification recom­
mends a total minimum period of 150,000 T cycles for oscillator stabilization). If an exter­
nal oscillator is used that is already stabilized, no additional time is needed.

The PLL may be disabled or not when the chip enters the STOP state. If it is disabled
and will not be re-enabled when the chip leaves the STOP state, the number of T cycles
will be much greater because the PLL must regain lock.

If the STOP instruction is executed when the IROA signal is asserted, the clock genera­
tor will not be stopped, but the four-phase clock will be disabled for the duration of the
128K T cycle (or 16 T cycle) delay count. In this case, the STOP looks like a 131,072 T +
35 T cycle (or 51 T cycle) NOP, since the STOP instruction itself is eight instruction
cycles long (32 T) and synchronization of IROA is 3T, which equals 35T.

A trace or stack error interrupt pending before entering the stop state is not cleared and
will remain pending. During the clock stabilization delay, all peripheral and external inter­
rupts are cleared and ignored (includes all SCI, SSI, HI, IROA, IROB, and NMI interrupts,
but not trace or stack error). If the SCI, SSI, or HI have interrupts enabled in 1) their
respective control registers and 2) in the interrupt priority register, then interrupts like SCI
transmitter empty will be immediately pending after the clock recovery delay and will be
serviced before continuing with the next instruction. If peripheral interrupts must be dis­
abled, the user should disable them with either the control registers or the interrupt prior­
ity register before the STOP instruction is executed.

If RESET is used to restart the processor (see Figure 7-19), the 128K T cycle delay
counter would not be used, all pending interrupts would be discarded, and the processor
would immediately enter the reset processing state as described in Section 7.4. For
example, the stabilization time recommended in theDSP56001 Technical Data Sheet for
the clock (RESET should be asserted for this time) is only 50 T for a stabilized external
clock but is the same 150,000 T for the internal oscillator. These stabilization times are
recommended and are not imposed by internal timers or time delays. The DSP fetches
instructions immediately after exiting reset. If the user wishes to use the 128K T (or 16 T)
delay counter, it can be started by asserting IROA for a short time (about two clock
cycles).

RESET --------------------------------,~

RESET STATE
----, r--

1 ~
PROCESSOR ENTERS PROCESSOR LEAVES RESET STATE

INTERRUPT CONTROL CYCLE 1 f\ ~
INTERRUPT CONTROL CYCLE 2 l~
FETCH n3 n4 - - 1

nop nA nB nC nO nE

DECODE n2 SlOP - - f\~ nop nop nA nB nC nO

EXECUTE n1 n2 STOP - ~ nop nop nop nA nB nC

STOP CYCLE COUNT 1 2 3 4 ~'

CLOCK STOPPEDJ

~

IRESET = INTERRUPT
n = NORMAL INSTRUCTION WORD

nA, nB, nC = INSTRUCTIONS IN RESET ROUTINE

- STOP = INTERRUPT INSTRUCTION WORD

Figure 7-19 STOP Instruction Sequence Recovering with RESET

SECTION 8
PORTA

-

8.1 PORT A OVERVIEW
Port A provides a versatile interface to external memory, allowing economical connection
with fast memories, slow memories/devices, and multiple bus master systems. This sec­
tion introduces the signals associated with this memory expansion port that are common
among the members of the OSP56K family of processors which feature Port A. Certain
characteristics, such as signaling, timing, and bus arbitration, vary between members of
the processor family and are detailed in each device's own User's Manual.

Port A has two power-reduction features. It can access internal memory spaces, toggling
only the external memory signals that need to change, and eliminate unneeded switching
current. Also, if conditions allow the processor to operate at a lower memory speed, wait
states can be added to the external memory access to significantly reduce power while
the processor accesses those memories.

8.2 PORT A INTERFACE
The DSP56K processor can access one or more of its memory sources (X data memory,
Y data memory, and program memory) while it executes an instruction. The memory
sources may be either internal or external to the OSP. Three address buses (XAB, YAB,
and PAB) and four data buses (XOB, YOB, POB, and GOB) are available for internal
memory accesses during one instruction cycle. Port A's one address bus and one data
bus are available for external memory accesses. If all memory sources are internal to the

OSP, one or more of the three memory sources may be accessed in one instruction cycle
(Le., program memory access or program memory access plus an X, Y, XY, or L memory
reference). However, when one or more of the memories are external to the chip, memory
references may require additional instruction cycles because only one external memory
access can occur per instruction cycle.

If an instruction cycle requires more than one external access, the processor will make the
accesses in the following priority: X memory, Y memory, and program memory. It takes
one instruction cycle for each external memory access - Le., one access can be executed
in one instruction cycle, two accesses take two instruction cycles, etc. Since the external
bus is only 24 bits wide, one XY or long external access will take two instruction cycles.

The port A external data bus shown in Figure 8-1 is 24 bits wide. The 16-bit address bus
can sustain a rate of one memory access per instruction cycle (using no-wait-state mem­
ory which is discussed in Section 8.2.5.)

Figure 8-1 shows the port A signals divided into their three functional groups: address bus
signals (AO-A 15), data bus signals (00-015), and bus control. The bus control signals can

16 - BIT INTERNAL
ADDRESS BUSES

X ADDRESS (XA)

Y ADDRESS (YA)

PROGRAM ADDRESS (PA)

24 - BIT INTERNAL
DATA BUSES

X DATA (XD)

YDATA(YD)

PROGRAM DATA (PD)

GLOBAL DATA (GD)

EXTERNAL
ADDRESS BUS

SWITCH

EXTERNAL
DATA BUS
SWITCH

EXTERNAL
BUS CONTROL

LOGIC

EXTERNAL
ADDRESS BUS

AO-A15

EXTERNAL
DATA BUS
DO - D23

BUS CONTROL SIGNALS

I---+---RD - READ ENABLE
!----t--WR - WRITE ENABLE

I---+---PS" - PROGRAM MEMORY SELECT
1---+---58 - DATA MEMORY SELECT
1----+-_yJ'{ - X MEMORYIY MEMORY SELECT

BUS ACCESS CONTROL PINS

Figure 8-1 Port A Signals

be subdivided into three additional groups: read/write control (RD and WR), address
space selection (including program memory select (PS), data memory select (OS), and XI
Y select) and bus access control.

The read/write controls are self-descriptive. They can be used as decoded read and write

controls, or, the write signal can be used as the read/write control and the read signal can

be used as an output enable (or data enable) control for the memory. Decoding in this
fashion simplifies the connection to high-speed random-access memories (RAMs). The
address space selection signals can be considered as additional address signals, which
extend the addressable memory from 64K words to 192K words

Note: Depending on system design, unused inputs should have pullup resistors for two
reasons: 1) floating inputs draw excessive power, and 2) a floating input can cause erro­
neous operation. For example, during RESET, all signals are three-stated. Output pins PS

and OS may require pullup resistors because, without them, the signals may become ac­

tive and may cause two or more memory chips to try to simultaneously drive the external
data bus, which can damage the memory chips. A pullup resistor in the SDK-ohm range
should be sufficient.

8.2.1 ReadlWrite Control Signals
The foliowing paragraphs describe the Port A read/write control Signals. These pins are

three-stated during reset and may require pullup resistors to prevent erroneous operation
of a memory device or other external components.

8.2.1.1 Program Memory Select (PS)
This three-state output is asserted only when external program memory is referenced.

8.2.1.2 Data Memory Select (OS)
This three-state output is asserted only when external data memory is referenced.

8.2.1.3 xiV Select (xiV)
This three-state output selects which external data memory space (X or Y) is referenced
by OS.

8.2.2 Port A Address and Data Bus Signals
The following paragraphs describe the Port A address and data bus signals. These pins

are three-stated during reset and may require pullup resistors to prevent erroneous oper­
ation.

-

8.2.2.1 Address (AO-A15)
These three-state output pins specify the address for external program and data memory
accesses. To minimize power dissipation, AO-A 15 do not change state when external
memory spaces are not being accessed.

8.2.2.2 Data (00-023)
These pins provide the bidirectional data bus for external program and data memory ac­
cesses. 00-023 are in the high-impedance state when the bus grant signal is asserted.

8.2.3 Port A Bus Control Signals
The following paragraphs describe the Port A bus control signals. The bus control signals
provide the means to connect additional bus masters (which may be additional OSPs, mi­
croprocessors, direct memory access (OMA) controllers, etc.) to the port A bus. They are
three-stated during reset and may require pullup resistors to prevent erroneous operation.

8.2.3.1 Read Enable (RD)
This three-state output is asserted to read external memory on the data bus (00-023).

8.2.3.2 Write Enable (WR)
This three-state output is asserted to write external memory on the data bus (00-023).

8.2.3.3 Port A Access Control Signals
Port A features a group of configurable pins that perform bus arbitration and bus access
control. The pins, such as Bus Needed (BN), Bus Request. (BR), Bus Grant (BG), Bus
Wait (WT), and Bus Strobe (BS), and their designations differ between members of the
OSP56K family and are explained in the respective devices' user manuals.

8.2.4 Interrupt and Mode Control
Port A features a pin set that selects the chip's operating mode and receives interrupt re­
quests from external sources. The pins and their designations vary between members of
the OSP56K family and are explained in the respective devices' user manuals~

8.2.5 Port A Wait States
The OSP56K processor features two methods to allow the user to accommodate slow
memory by changing the port A bus timing. The first method uses the16-bit bus control
register (BCR), which resides in X Oata memory space. The BCR allows a fixed number
of wait states to be inserted in a given memory access to all locations in anyone of the
four memory spaces: X, Y, P, and 1/0. The second method uses the bus strobelwait (BSI

WT) facility, which allows an external device to insert an arbitrary number of wait states
when accessing either a single location or multiple locations of external memory or I/O
space. Wait states are executed until the external device releases the DSP to finish the
external memory cycle. An internal wait-state generator can be programmed using the
SCR to insert up t015 wait states if it is known ahead of time that access to slower mem­
ory or I/O devices is required. A bus wait signal allows an external device to control the
number of wait states (not limited to 15) inserted in a bus access operation.

-

SECTION 9
PLL CLOCK OSCILLATOR

-

-

9.1 PLL CLOCK OSCILLATOR INTRODUCTION
The DSP56K family of processors (with the exception of the DSP56000 and DSP56001)
features a PLL (phase-locked loop) clock oscillator in its central processing module,
shown in Figure 9-2. The PLL allows the processor to operate at a high internal clock fre­
quency using a low frequency clock input, a feature which offers two immediate benefits.
Lower frequency clock inputs reduce the overall electromagnetic interference generated
by a system, and the ability to oscillate at different frequencies reduces costs by eliminat­
ing the need to add additional qscillators to a system.

The PLL performs frequency multiplication to allow the processor to use almost any
available external system clock for full speed operation, while also supplying an output
clock synchronized to a synthesized internal core clock. It also improves the synchro­
nous timing of the processor's external memory port, significantly reducing the timing
skew between EXTAL and the internal chip phases. The PLL is unusual in that it pro­
vides a low power divider on its output, which can reduce or restore the chip operating
frequency without losing the PLL lock

A DSP56K processor uses a four-phase clock for instruction execution which runs at the
instruction execution rate. It can accept an external clock through the EXT AL input, or it
can run on an internal oscillator, bypassing the PLL function, when the user connects an
external crystal between XTAL and EXTAL. (The PLL need not be disabled when the
processor accepts an external clock.)

9.2 PLL COMPONENTS
The PLL block diagram is shown below in Figure 9-1. The components of the PLL are de­
scribed in the following sections.

EXTAL
-'" Charge Voltage Low - Phase Power Pump Controlled

Detector ~
Divider ~ --. Loop Oscillator -

(PO) Filter (VCO) 20 to 215
DIVIDER OUT

DFO-DF3
.. - VCOOUT

Frequency
Multiplier

r--Multiplication
Factor

1 to 4096

MFO-MF11

Figure 9-1 PLL Block Diagram

-

-

24-Bit56K
Module

ADDRESS
GENERATION

UNIT

X MEMORY
RAM/ROM

EXPANSION

1----:-:-::::=---1·-1·----'--I'-~ EXTERNAL
I-~;:'--I-I----II--J ADDRESS 1--4-_a:

BUS
SWITCH

BUS
CONTROL 1.--1-_1-

INTERN.AJ... EXTERNAL
DATA ~.I.I---I,--II_-I.J._iliii"'''''--.T.-~ DATA BUS
S~~H SWITCH 14I ~d'

DATAALU
24X24+56~56·BIT MAC OnCEllI

MODCINMI

MODBIIRQB

MODAIIRQA

RESET

TWO 56-BIT ACCUMULATORS

Figure 9-2 DSP56K Block Diagram

9.2.1 Phase Detector and Charge Pump Loop Filter

_16BITS
_24BITS

«
~
o
Q.

The Phase Detector (PO) detects any phase difference between the external clock
(EXTAL) and an internal clock phase from the frequency multiplier. At the point where
there is negligible phase difference and the frequency of the two inputs is identical, the
PLL is in the "locked" state.

The charge pump loop filter receives signals from the PD, and either increases or
decreases the phase based on the PD signals. An external capacitor is connected to the
PCAP pin (described in Section 9.3) and determines the PLL operation. (See the appro­
priate Technical Data Sheet for more detailed information about a particular device's
phase and frequency.)

After the PLL locks on to the proper phase/frequency, it reverts to the narrow bandwidth
mode, which is useful for tracking small changes due to frequency drift of the EXTAL
clock.

9.2.2 Voltage Controlled Oscillator (VCO)
The VCO can oscillate at frequencies from the minimum speed specified in a device's
Technical Data Sheet (typically10 MHz) up to the device's maximum allowed clock input
frequency.

9.2.3 Frequency Multiplier
Inside the PLL, the frequency multiplier divides the VCO output frequency by its division
factor (n). If the frequency multiplier's output frequency is different from the EXTAL fre­
quency, the charge pump loop filter generates an error signal. The error Signal causes
the VCO to adjust its frequency until the two input signals to the phase detector have the
same phase and frequency. At this point (phase lock) the VCO will be running at n times
the EXTAL frequency, where n is the multiplication factor for the frequency multiplier.
The programmable multiplication factor ranges from 1 to 4096

9.2.4 Low Power Divider (LPD)
The Low Power Divider (lPD) divides the output frequency of the VCO by any power of 2
from 2° to 215. Since the LPD is not in the closed loop of the PLL, changes in the divide
factor will not cause a loss of lock condition. This fact is particularly useful for utilizing the
LPD in low power consumption modes when the chip is not involved in intensive calcula­
tions. This can result in significant power saving. When the chip is required to exit the low
power mode, it can immediately do so with no time needed for clock recovery or PLL
lock.

9.2.5 PLL Control Register (PCTL)
The PLL control register (PCTL) is a 24-bit read/write register which directs the operation
of the on-chip PLL. It is mapped into the processor's internal X memory at X:$FFFD. The
PCTl control bits are described in the following sections.

9.2.5.1 PCTL Multiplication Factor Bits (MFO-MF11) - Bits 0-11
The Multiplication Factor Bits MFO-MF11 define the multiplication factor (MF) that will be
applied to the PLL input frequency. The MF can be any integer from 1 to 4096. Table 9-1

-

-

23 22 21 20 19 18 17 16 15 14 13 12

** Reserved bits, read as zero, should be written with zero for future compatibility.

Figure 9-3 PLL Control Register (PCTL)

shows how to program the MFO-MF11 bits. The veo will oscillate at a frequency of
MF x Fext, where Fext is the EXTAL clock frequency. The multiplication factor must be
chosen to ensure that the resulting veo output frequency will lay in the range specified
in the device's Technical Data Sheet. Any time a new value is written into the MFO-MF11
bits, the PLL will lose the lock condition. After a time delay, the PLL will relock. The
MFO-MF11 bits are set to a pre-determined value during hardware reset; the value is
implementation dependent and may be found in each DSP56K family member's user
manual.

Table 9-1 Multiplication Factor Bits MFO-MF11

MF11-MFO
Multiplication

Factor MF

$000 1

$001 2

$002 3

• •
• •

$FFE 4095

$FFF 4096

9.2.5.2 PCTL Division Factor Bits (DFO-DF3) - Bits 12-15
The Division Factor Bits DFO-DF3 define the divide factor (DF) of the low power divider.
These bits specify any power of two divide factor in the range from 2° to 215. Table 9-2

shows the programming of the DFO-DF3 bits. Changing the value of the DFO-DF3 bits
will not cause a loss of lock condition. Whenever possible, changes of the operating fre­
quency of the chip (for example, to enter a low power mode) should be made by chang­
ing the value of the DFO-DF3 bits rather than changing the MFO-MF11 bits. For MF~4,
changing OFO-DF3 may lengthen the instruction cycle following the PLL control register
update; this is done in order to keep synchronization between EXTAL and the internal
chip clock. For MF>4 such synchronization is not guaranteed and the instruction cycle is
not lengthened. Note that CKOUT is synchronized with the internal clock in all cases.
The OF bits are cleared (division by one) by hardware reset.

Table 9-2 Division Factor Bits DFO-DF3

DF3-DFO
Division

Factor OF

$0 2°

$1 21

$2 22

• •
• •

$E 214

$F 215

9.2.5.3 PCTL XTAL Disable Bit (XTLD) - Bit 16
The XTAL Disable (XTLD) bit controls the on-chip crystal oscillator XTAL output. When
XTLO is cleared, the XTAL output pin is active permitting normal operation of the crystal
oscillator. When XTLD is set, the XTAL output pin is held in the high ("1 ") state, disabling
the on-chip crystal oscillator. If the on-Chip crystal oscillator is not used (EXTAL is driven
from an external clock source), it is recommended that XTLD be set (disabling XTAL) to
minimize RFI noise and power dissipation. The XTLD bit is cleared by hardware reset.

9.2.5.4 PCTL STOP Processing State Bit (PSTP) - Bit 17
The PSTP bit controls the behavior of the PLL and of the on-chip crystal oscillator during
the STOP processing state. When PSTP is set, the PLL and the on-chip crystal oscillator
will remain operating while the chip is in the STOP processing state, enabling rapid
recovery from the STOP state. When PSTP is cleared, the PLL and the on-chip crystal
oscillator will be disabled when the chip enters the STOP processing. For minimal power
consumption during the STOP state, at the cost of longer recovery time, PSTP should be

-

-

cleared. To enable rapid recovery when exiting the STOP state, at the cost of higher
power consumption in the STOP state, PSTP should be set. PSTP is cleared by hard­
ware reset.

9.2.5.5 PCTL PLL Enable Bit (PEN) - Bit 18
The PEN bit enables the PLL operation. When this bit is set, the PLL is enabled and the
internal clocks will be derived from the PLL VCO output. When this bit is cleared, the PLL
is disabled and the internal clocks are derived directly from the clock connected to the
EXTAL pin. When the PLL is disabled, the VCO does not operate in order to minimize
power consumption. The PLOCK pin is asserted when PEN is cleared. The PEN bit may
be set by software but it cannot be reset by software. During hardware reset this bit
receives the value of the PINIT pin. The only way to clear PEN is to hold the PINIT pin
low during hardware reset.

A relationship exists between PSTP and PEN where PEN adjusts PSTP's control of the
PLL o!'>eration. When PSTP is set and PEN (see Table 9-3) is cleared, the on-chip crys­
tal oscillator remains operating in the STOP state, but the PLL is disabled. This power
saving feature enables rapid recovery from the STOP state when the user operates the
chip with an on-chip oscillator and with the PLL disabled.

Table 9-3 PSTP and PEN Relationship

Operation during STOP

PSTP PEN PLL Oscillator Recovery Power Consumption

0 x Disabled Disabled long minimal

1 0 Disabled Enabled rapid lower

1 1 Enabled Enabled rapid higher

9.2.5.6 PCTL Clock Output Disable Bits (CODO-COD1) - Bits 19-20
The CODO-COD1 bits control the output buffer of the clock at the CKOUT pin. Table 9-4
specifies the effect of CODO-COD1 on the CKOUT pin. When both CODO and COD1 are
set, the CKOUT pin is held in the high ("1 ") state. If the CKOUT pin is not connected to
external Circuits, it is recommended that both COD1 and CODO be set (disabling clock
output) to minimize RFI noise and power dissipation. If the CKOUT output is low at the
moment the CODO-COD1 bits are set, it will complete the low cycle and then be disabled
high. If the programmer re-enables the CKOUT output before it reaches the high logic
level during the disabling process, the CKOUT operation will be unaffected. The CODO-­
COD1 bits are cleared by hardware reset.

Table 9-4 Clock Output Disable Bits CODO-COD1

COOl CODa CKOUTPin

0 0 Clock Out Enabled, Full Strength Output Buffer

0 1 Clock Out Enabled, 2/3 Strength Output Buffer

1 0 Clock Out Enabled, 1/3 Strength Output Buffer

1 1 Clock Out Disabled

9.2.5.7 PCTL Chip Clock Source Bit (CSRC) - Bit 21
The CSRC bit specifies whether the clock for the chip is taken from the output of the VCO
or is taken from the output of the Low Power Divider (LPD). When CSRC is set, the clock
for the chip is taken from the VCO. When CSRC is cleared, the clock for the chip is taken
from the output of the LPD. See Section 9.4.8 fo(restrictions. CSRC is cleared by hard­
ware reset.

9.2.5.8 PCTL CKOUT Clock Source Bit (CKOS) - Bit 22
The CKOS bit specifies whether the CKOUT clock output is taken from the output of the
VCO or is taken from the output of the Low Power Divider (LPD). When CKOS is set, the
CKOUT clock output is taken from the VCO. When eKOS is cleared, the CKOUT clock
output is taken from the output of the LPD. If the PLL is disabled (PEN=O), CKOUT is tak­
en from EXT AL. See Section 9.4.8 for restrictions. CKOS is cleared by hardware reset.

9.2.5.9 PCTL Reserved Bit - Bit 23
This bit is reserved for future expansion. It reads as zero and should be written with zero
for future compatibility.

9.3 PLL PINS
Some of the PLL pins need not be implemented. The specific PLL pin configuration for
each DSP56K chip implementation is available in the respective device's user's manual.
The following pins are dedicated to the PLL operation:

PVCC vec dedicated to the analog PLL circuits. The voltage should be well regulated
and the pin should be provided with an extremely low impedance path to the
VCC power rail. pvce should be bypassed to PGND by a 0.1 JlF capacitor
located as close as possible to the chip package.

PGND GND dedicated to the analog PLL circuits. The pin should be provided with an
extremely low impedance path to ground. pvee should be bypassed to PGND
by a 0.1 JlF capacitor located as close as possible to the chip package.

-

-

CLVCC VCC for the CKOUT output. The voltage should be well regulated and the pin
should be provided with an extremely low impedance path to the VCC power
rail. CLVCC should be bypassed to CLGND by a 0.1JlF capacitor located as
close as possible to the chip package.

CLGND GND for the CKOUT output. The pin should be provided with an extremely low
impedance path to ground. CLVCC should be bypassed to CLGND by a 0.1 JlF
capacitor located as close as possible to the chip package.

PCAP Off-chip capacitor for the PLL filter. One terminal of the capacitor is connected
to PCAP while the other terminal is connected to PVCC. The capacitor value is
specified in the particular device's Technical Data Sheet.

CKOUT This output pin provides a 50% duty cycle output clock synchronized to the
internal processor clock when the PLL is enabled and locked. When the PLL is
disabled, the output clock at CKOUT is derived from, and has the same
frequency and duty cycle as, EXT AL.

Note: If the PLL is enabled and the multiplication factor is less than or equal to
4, then CKOUT is synchronized to EXTAL.

CKP This input pin defines the polarity of the CKOUT signal. Strapping CKP through
a resistor to GND will make the CKOUT polarity the same as the EXTAL
polarity. Strapping CKP through a resistor to VCC will make the CKOUT polarity
the inverse of the EXTAL polarity. The CKOUT clock polarity is internally
latched at the end of the hardware reset, so that any changes of the CKP pin
logic state after deassertion of RESET will not affect the CKOUT clock polarity.

PINIT During the assertion of hardware reset, the value at the PINIT input pin is
written into the PEN bit of the PLL control register. After hardware reset is
deasserted, the PINIT pin is ignored.

PLOCK The PLOCK output originates from the Phase Detector. The chip asserts
PLOCK when the PLL is enabled and has locked on the proper phase and
frequency of EXTAL. The PLOCK output is deasserted by the chip if the PLL is
enabled and has not locked on the proper phase and frequency. PLOCK is
asserted if the PLL is disabled. PLOCK is a reliable indicator of the PLL lock
state only after exiting the hardware reset state.

9.4 PLL OPERATION CONSIDERATIONS
The following paragraphs discuss PLL operation considerations.

9.4.1 Operating Frequency
The operating frequency of the chip is governed by the frequency control bits in the PLL
control register as follows:

F EXT X MF Fvco
F CHIP = D F - ----oF

where: DF is the division factor defined by the DFO-DF3 bits

FCHIP is the chip operating frequency

FEXT is the external input frequency to the chip at the EXTAL pin

Fvco is the output frequency of the VCO

MF is the multiplication factor defined by the MFO-MF11 bits

The chip frequency is derived from the output of the low power divider. If the low
power divider is bypassed, the equation is the same but the division factor
should be assumed to be equal to one.

9.4.2 Hardware Reset .
Hardware reset causes the initialization of the PLL. The following considerations apply:

1. The MFO-MF11 bits in the PCTL register are set to their pre-determined hard­
ware reset value. The DFO-DF3 bits and the Chip Clock Source bit in the PCTL
register are cleared. This causes the chip clock frequency to be equal to the
external input frequency (EXTAL) multiplied by the multiplication factor defined
by MFO-MF11.

2. During hardware reset assertion, the PINIT pin value is written into the PEN
bit in the PCTL register. If the PINIT pin is asserted (setting PEN), the PLL
acquires the proper phase/frequency. While hardware reset is asserted, the
internal chip clock will be driven by the EXTAL pin until the PLL achieves lock
(if enabled). If the PINIT pin is deasserted during hardware reset assertion, the
PEN bit is cleared, the PLL is deactivated and the internal chip clock is driven
by the EXTAL pin.

3. PLOCK is a reliable indicator of the PLL lock state only after exiting the hard­
ware reset state.

-

-

4. For all input frequencies which would result in a VCO output frequency lower
than the minimum specified in the device's Technical Data Sheet (typically 10
MHz), PINIT must be cleared during hardware reset, disabling PLL operation.
Otherwise, proper operation of the PLL cannot be guaranteed. If the resulting
VCO clock frequency would be less than the minimum and the user wishes to
operate with the PLL enabled, the user must issue an instruction which loads
the PCTL control register with a multiplication factor that would bring the VCO
frequency above 10 MHz and would enable the PLL operation. Until this
instruction is executed, the PLL is disabled, which may cause a large skew
«15nsec) between the external input clock and the internal processor clock. If
internal low frequency of operation is desired with the PLL enabled, the VCO
output frequency may be divided down by using the internal low power divider.

5. The CKP pin only affects the CKOUT clock polarity during'the hardware reset
state. At the end of the hardware reset state, the CKP state is internally
latched.

9.4.3 Operation with PLL Disabled

1. If the PLL is disabled, the PLOCK pin is asserted.

2. If the PLL is disabled, the internal chip clock and CKOUT are driven from the
EXTAL input.

9.4.4 Changing the MFO-MF11 Bits
Changes to the MFO-MF11 bits cause the following to occur:

1. The PLL will lose the lock condition, the PLOCK pin will be deasserted.

2. The PLL acquires the proper phase/frequency. Until this occurs the internal
chip clock phases will be frozen. This ensures that the clock used by the chip
is a clock that has reached a stable frequency.

3. When lock occurs, PLOCK is asserted and the PLL drives the internal chip
clock and CKOUT.

4. While PLL has not locked, CKOUT is held low if CKP is cleared. CKOUT is
held high if CKP is set.

9.4.5 Change of DFO-DF3 Bits
Changes to the DFO-DF3 bits do not cause a loss of lock condition. The internal clocks
will immediately revert to the frequency prescribed by the new divide factor. For MF:5:4,
changing DFO-DF3 may lengthen the instruction cycle or CKOUT pulse following th~ PLL
control register update in order to keep synchronization between EXTAL and the internal

chip clock. (Here, T3 is equal to the phase described by the new divide factor plus the
time required to wait for a synchronizing pulse, which is less than 1.5ETc.) For MF>4,
such synchronization is not guaranteed and the instruction cycle is not lengthened.

If the DFO-DF3 bits are changed by the same instruction that changes the MFO-MF11
bits, the LPD divider factor changes before the detection of the change in the multiplica­
tion factor. This means that the detection of loss of lock will occur after the LPD has
started dividing by the new division factor.

9.4.6 Loss of Lock
The PLL distinguishes between cases where MF>4 and cases where MF~4. If MF~4, the
PLL will detect loss of lock if a skew of 2.5 to 4.5 ns develops between the two clock
inputs to the phase detector.

If MF>4, the PLL will detect loss of lock when there is a discrepancy of one clock cycle
between the two clock inputs to the phase detector. When either of these two conditions
occurs, the following also occur:

1. PLOCK will be deasserted, indicating that loss of lock condition has occurred.

2. The PLL will re-acquire the proper phase/frequency. When lock occurs,
PLOCK will be asserted.

9.4.7 STOP Processing State
If the PSTP bit is cleared, executing the STOP instruction will disable the on-chip crystal
oscillator and the PLL. In this state the chip consumes the least possible power. When
recovering from the STOP state, the recovery time will be 16 or 64k external clock cycles
(according to bit 6 in the Operating Mode Register) plus the time needed for the PLL to
achieve lock.

If the PSTP bit is set, executing the STOP instruction will leave the on-chip crystal oscil­
lator (if XTLD=O) and the PLL loop (if PEN=1) operating, but will disable the clock to the
LPD and the rest of the DSP. When recovering from the STOP state, the recovery time
will be only three clock cycles.

9.4.8 CKOUT Considerations
The CKOUT clock output is held high while disabled, which is also while the CODO-COD1
bits are set. If the CKOUT clock output is low at the moment the CODO-COD1 bits are set,
then the CKOUT clock output will complete the low cycle and then be disabled high. If the
programmer re-enables the CKOUT clock output before it reaches the high logic level dur­
ing the disabling process, the CKOUT operation will be unaffected.

-

While the PLL is regaining lock, the CKOUT clock output remains at the same logic level
it held when the PLL lost lock, which is when the clocks were frozen in the DSP.

When the chip enters the WAIT processing state, the core phases are disabled but CK­
OUT continues to operate. When PLL is disabled, CKOUT will be fed from EXT AL.

If DF> 1 and CKOS*CSRC, then the programmer must change either CKOS or CSRC be­
fore taking any action that causes the PLL to lose and subsequently regain lock, such as
changing the multiplication factor, enabling PLL operation, or recovering from the STOP
state with PSTP=O.

Any change of the CKOS or CSRC bits must be done while DF=1.

9.4.9 Synchronization Among EXTAL, CKOUT, and the Internal Clock
Low clock skew between EXTAL and CKOUT is guaranteed only if MF:$;4. The synchro-
nization between CKOUT and the internal chip activity and Port A timing is guaranteed in
all cases where CKOS=CSRC and the bits have never differed from one another.

SECTION 10
ON-CHIP EMULATION (OnCE)

-

10.1 ON-CHIP EMULATION INTRODUCTION
The DSP56K on-chip emulation (OnCE) circuitry provides a sophisticated debugging tool
that allows simple, inexpensive, and speed independent access to the processor's inter­
nal registers and peripherals. OnCE tells application programmers exactly what the status
is within the registers, memory locations, buses, and even the last five instructions that
were executed. OnCE capabilities are accessible through a standard set of pins which are
the same on all of the members of the DSP56K processor family. Figure 10-1 shows the
components of the OnCE circuitry. OnCE is shown as part of the DSP56K central pro­
cessing module in Figure 10-2.

XAB
YAS
PAS

POB PIL GOB

~ + +
Pipeline

Information

J~ A

l' ,.
PAB
FIFO

Breakpoint and
Trace Logic

J~ A ~~ OnCE - Controller ...
and

t j,
Serial

, "
Interface

Breakpoint
Registers
and
Comparators

Figure 10-1 OnCE Block Diagram

10.2 ON-CHIP EMULATION (OnCE) PINS

OSCKlOS - ... - -
OSI!,?S .. o - p

0 -
os o . ..

The following paragraphs describe the OnCE pins associated with the OnCE controller
and serial interface component shown in Figure 10-1.

10.2.1 Debug SerlallnputlChip Status 0 (DSI/OSO)
Serial data or commands are provided to the OnCE controller through the DSI/OSO pin
when it is an input. The data received on the DSI pin will be recognized only when the
DSP56K has entered the debug mode of operation. Data is latched on the falling edge of
the DSCK serial clock (described in Section 10.2.2). Data is always shifted into the OnCE
serial port most significant bit (MSB) first. When the DSI/OSO pin is an output, it works in
conjunction with the OS1 pin to provide chip status information (see Table 10-1). The

-

-

...I

~
W
:I:
0...

ffi~
0...0...

X MEMORY
RAM/ROM

EXPANSION

ADDRESS ~-I-II-~:::::'--I-- I-----L..-I--.-J EXTERNAL

Cf)
Cf)
w

24-BitS6K
Module

GENERATION ADDRESS 1-4--~
UNIT ~r-II-"':"':";=----I----- I--~ BUS

SWITCH

BUS

o «

CONTROL 14--B--_t-

INTERNAL EXTERNAL
D~A ~.I.'-----I--.II--"II.~----"~"----.T.--~DATABUS
SW~H SWITCH ~ ... ~C:(

MODBIIROB

MODAIIROA

RESET

DATAALU
24X24+56~56-BIT MAC

TWO 56-BIT ACCUMULATOR

Figure 10-2 DSP56K Block Diagram

_ 16 BITS

-24 BITS

«
~
o
0...

DSI/OSO pin is an output when the processor is not in debug mode. When switching from
output to input, the pin is three-stated. During hardware reset, this pin is defined as an out­
put and it is driven low.

Note: To avoid possible glitches, an external pull-down resistor should be attached to this
pin.

10.2.2 Debug Serial Clock/Chip Status 1 (DSCK/OS1)
The DSCK/OS 1 pin supplies the serial clock to the OnCE when it is an input. The serial
clock provides pulses required to shift data into and out of the OnCE serial port. (Data is
clocked into the OnCE on the falling edge and is clocked out of the OnCE serial port on
the rising edge.) The debug serial clock frequency must be no greater than 1/8 of the pro­
cessor clock frequency. When an output, this pin, in conjunction with the OSO pin,
provides information about the chip status (see Table 10-1). The DSCK/OS1 pin is an out­
put when the chip is not in debug mode. When switching from output to input, the pin is
three-stated. During hardware reset, this pin is defined as an output and it is driven low.

Note: To avoid possible glitches, an external pull-down resistor should be attached to this
pin.

Table 10-1 Chip Status Information

OS1 OSO Status

0 0 Normal State

0 1 Stop or Wait State

1 0 Chip waits for bus mastership

1 1 Chip waits for end of memory wait states
(due to WT assertion or BCR)

10.2.3 Debug Setial Output (DSO)
Serial data is read from the OnCE through the DSO pin, as specified by the last command
received from the external command controller. Data is always shifted out the OnCE serial
port most significant bit (MSB) first. Data is clocked out of the OnCE serial port on the ris­
ing edge of DSCK.

The DSO pin also provides acknowledge pulses to the external command controller.
When the chip enters the debug mode, the DSO pin will be pulsed low to indicate (ac­
knowledge) that the OnCE is waiting for commands. After receiving a read command, the
DSO pin will be pulsed low to indicate that the requested data is available and the OnCE
serial port is ready to receive clocks in order to deliver the data. After receiving a write
command, the DSO pin will be pulsed low to indicate that the OnCE serial port is ready to
receive the data to be written; after the data is written, another acknowledge pulse will be
provided.

During hardware reset and when the processor is idle, the DSO pin is held high.

-

-

10.2.4 Debug Request Input (DR)
The debug request input (DR) allows the user to enter the debug mode of operation from
the external command controller. When DR is asserted, it causes the DSP56K to finish
the current instruction being executed, save the instruction pipeline information, enter the
debug mode, and wait for commands to be entered from the DSI line. While in debug
mode, the DR pin lets the user reset the OnCE controller by asserting it and deasserting
it after receiving acknowledge. It may be necessary to reset the OnCE controller in cases
where synchronization between the OnCE controller and external circuitry is lost. DR must
be deasserted after the OnCE responds with an acknowledge on the DSO pin and before
sending the first OnCE command. Asserting DR will cause the chip to exit the STOP or
WAIT state.

10.3 OnCE CONTROLLER AND SERIAL INTERFACE
The OnCE Controller and Serial Interface contains the following blocks: OnCE command
register, bit counter, OnCE decoder, and the status/control register. Figure 10-3 illustrates
a block diagram of the OnCE controller and serial interface

10.3.1 OnCE Command Register (OCR)
The OCR is an a-bit shift register that receives its serial data from the DSI pin. It holds the
a-bit commands to be used as input for the OnCE Decoder. The Command Register is
shown in Figure 10-4.

~------------------~~----------~--DSI

OnCE COMMAND REGISTER r----t-..-DSCK

ISBKPT

OnCE DECODER

ISSWDBG

DSO

REG READ REG WRITE MODE SELECT

Figure 10-3 OnCE Controller and Serial Interface

76543210
I R/W I GO I EX I RS41 RS31 RS21 RS 1 I RSO I

Figure 10-4 OnCE Command Register

10.3.1.1 Register Select (RS4-RSO) Bits 0-4
The Register Select bits define which register is source (destination) for the read (write)
operation. Table 10-2 indicates the OnCE register addresses.

Table 10-2 OnCE Register Addressing

RS4-RSO Register Selected

00000 OnCE Status and Control Register (OSCR)

00001 Memory Breakpoint Counter (OMBC)

00010 Reserved

00011 Trace Counter (OTC)

00100 Reserved

00101 Reserved

00110 Memory Upper Limit Register (OMULR)

00111 Memory Lower Limit Register (OMLLR)

01000 GDB Register (OGDBR)

01001 PDB Register (OPDBR)

01010 PAB Register for Fetch (OPABFR)

01011 PIL Register (OPILR)

01100 Clear Memory Breakpoint Counter (OMBC)

01101 Reserved

01110 Clear Trace Counter (OTC)

01111 Reserved

10000 Reserved

10001 Program Address Bus FIFO and Increment Counter

10010 Reserved

10011 PAB Register for Decode (OPABDR)

101xx Reserved

11xxO Reserved

11xOx Reserved

110xx Reserved

11111 No Register Selected

-

10.3.1.2 Exit Command (EX) Bit 5
If the EX bit is set, the processor will leave the debug mode and resume normal operation.
The Exit command is executed only if the Go command is issued, and the operation is
write to OPDBR or read/write to "No Register Selected". Otherwise the EX bit is ignored.

EX Action

0 Remain in debug mode

1 Leave debug mode

10.3.1.3 Go Command (GO) Bit 6
If the GO bit is set, the chip will execute the instruction which resides in the PIL register.
To execute the instruction, the processor leaves the debug mode, and the status is reflect­
ed in the OSO-OS1 pins. The processor will return to the debug mode immediately after
executing the instruction if the EX bit is cleared. The processor goes on to normal opera­
tion if the EX bit is set. The GO command is executed only if the operation is write to
OPDBR or read/write to "No Register Selected". Otherwise the GO bit is ignored.

GO Action

0 Inactive (no action taken)

1 Execute instruction in PIL

10.3.1.4 ReadlWrite Command (RIW) Bit 7
The RIW bit specifies the direction of data transfer. The table below describes the options
defined by the RIW bit.

RIW Action

0 Write the data associated with the command into the register
specified by RS4-RSO

1 Read the data contained in the register specified by RS4-RSO

10.3.2 OnCE Bit Counter (OBC)
The OBC is a 5-bit counter associated with shifting in and out the data bits. The OBC is
incremented by the falling edges of the DSCK. The OBC is cleared during hardware reset
and whenever the DSP56K acknowledges that the debug mode has been entered. The
OBC supplies two signals to the OnCE Decoder: one indicating that the first 8 bits were

shifted in (so a new command is available) and the second indicating that 24 bits were
shifted in (the data associated with that command is available) or that 24 bits were shifted
out (the data required by a read command was shifted out).

10.3.3 OnCE Decoder (ODEC)
The ODEC supervises the entire OnCE activity. It receives as input the a-bit command
from the OCR, two signals from OBC (one indicating that 8 bits have been received and
the other that 24 bits have been received), and two signals indicating that the processor
was halted. The ODEC generates all the strobes required for reading and writing the se­
lected OnCE registers.

10.3.4 OnCE Status and Control Register (OSCR)
The Status and Control Register is a 16-bit register used to select the events that will put
the chip in debug mode and to indicate the reason for entering debug mode. The control
bits are read/write while the status bits are read only. See Figure 10-5.

10.3.4.1 Memory Breakpoint Control (BCO-BC3) Bits 0-3
These control bits enable memory breakpoints. They allow memory breakpoints to occur
when a memory address is within the low and high memory address registers and will se- .
lect whether the breakpoint will be recognized for read, write, or fetch (program space)
accesses. These bits are cleared on hardware reset. See Table 10-3 for the definition of
the BCO-BC3 bits.

When BC3-BCO=0001, program memory breakpoints are enabled for any fetch access
to the program space (true and false fetches, fetches of 2nd word, etc.). Explicit program
memory accesses resulting from MOVEP and MOVEM instructions to/from program
memory space are ignored.

W~en BC3-BCO=001 0, program memory breakpoints are enabled for any read access to
the Program space (MOVEP and MOVEM instructions from P: memory space, true and
false fetches, fetches of 2nd word, etc.). ExpliCit program memory write accesses resulting
from MOVEP and MOVEM instructions to P: memory space are ignored.

15 11 10 9 8 7 6543210
* I TO IMBOlswol * * I * ITMEIBC31BC21BC1 IBCol

* Reserved, read as zero, should be written with zero for future compatibility.

Figure 10-5 OnCE Status and Control Register (OSCR)

-

-

When BC3-BCO=0011, program memory breakpoints are enabled for any read or write
access to the Program space (any kind of MOVE, true and false fetches, fetches of sec­
ond word, etc.).

When BC3-BCO=01 00, program memory breakpoints are enabled only for fetches of the
first instruction word of instructions that are actually executed. Aborted instructions and
prefetched instructions that are discarded (such as jump targets that are not taken) are
ignored by the breakpoint logic.

When BC3-BCO=01 01,0110 or 0111, program memory breakpoints are enabled only for
explicit program memory access resulting from MOVEP or MOVEM instructions to/from
P: memory space.

Table 10-3 Memory Breakpoint Control Table

BC3 BC2 BC1 BCO DESCRIPTION

0 0 0 0 Breakpoint disabled

0 0 0 1 Breakpoint on any fetch (including aborted instructions)

0 0 1 0 Breakpoint on any P read (any fetch or move)

0 0 1 1 Breakpoint on any P access (any fetch, P move R/W)

0 1 0 0 Breakpoint on executed fetches only

0 1 0 1 Breakpoint on P space write

0 1 1 0 Breakpoint on P space read (no fetches)

0 1 1 1 Breakpoint on P space write or read (no fetches)

1 0 0 0 Reserved

1 0 0 1 Breakpoint on X space write

1 0 1 0 Breakpoint on X space read

1 0 1 1 Breakpoint on X space write or read

1 1 0 0 Reserved

1 1 0 1 Breakpoint on Y space write

1 1 1 0 Breakpoint on Y space read

1 1 1 1 Breakpoint on Y space write or read

10.3.4.2 Trace Mode Enable (TME) Bit 4
The TME control bit, when set, enables the Trace Mode of operation (see Section 10.5).
This bit is cleared on hardware reset.

10.3.4.3 Reserved (Bits 5-7,11-15)
These bits are reserved for future use. They read as zero and should be written with zero
for future compatibility.

10.3.4.4 Software Debug Occurrence (SWO) Bit 8
This read-only status bit is set when the processor enters debug mode of operation as a
result of the execution of the DEBUG or DEBUGcc instruction with condition true. This bit
is cleared on hardware reset or when leaving the debug mode with the GO and EX bits
set.

10.3.4.5 Memory Breakpoint Occurrence (MBO) Bit 9
This read-only status bit is set when a memory breakpoint occurs. This bit is cleared on
hardware reset or when leaving the debug mode with the GO and EX bits set.

10.3.4.6 Trace Occurrence (TO) Bit 10
This read-only status bit is set when the processor enters debug mode of operation, when
the trace counter is zero and the trace mode has been armed. This bit is cleared on hard­
ware reset or when leaving the debug mode with the GO and EX bits set.

10.4 OnCE MEMORY BREAKPOINT LOGIC
Memory breakpOints may be set on program memory or data memory locations. Also, the
breakpoint does not have to be in a specific memory address but within an address range
of where the program may be executing. This Significantly increases the programmer's
ability to monitor what the program is doing in real-time.

The breakpOint logic contains a latch for the addresses, registers that store the upper and
lower address limit, comparators, and a breakpoint counter. Figure 10-6 illustrates the
block diagram of the OnCE Memory Breakpoint Logic.

Address comparators help to determine where a program may be getting lost or when
data is being written to areas that should not be written to. They are also useful in halting
a program at a specific point to examine/change registers or memory. Using address com­
parators to set breakpoints enables the user to set breakpoints in RAM or ROM in any op­
erating mode. Memory accesses are monitored according to the contents of the OSCR.

The low address comparator will generate a logic true signal when the address on the bus
is greater than or equal to the contents of the lower limit register. The high address com­
parator will generate a logic true Signal when the address on the bus is less than or equal
to the contents of the upper limit register. If the low address comparator and high address
comparator both issue a logiC true signal, the address is within the address range and the
breakpoint counter is decremented if the contents are greater than zero. If zero, the
counter is not decremented and the breakpoint exception occurs (ISBKPT asserted).

10.4.1 Memory Address Latch (OMAL)
The Memory Address Latch is a 16-bit register that latches the PAB, XAB or VAB on every
instruction cycle according to the BC3-BCO bits in OSCR.

-

-

OSCK

OSO OSI

PAB XAB YAB

~-- MEMORY BUS SELECT

LOWER
OR

~ __ ~~ ____ ~ EQUAL

L..-___ --,.--___ ---' HIGHER
OR

~r--------~--------~ EQUAL
LOWER LIMIT REGISTER

BREAKPOINT COUNTER

COUNT=O

BC3-BCO

BREAKPOINT
OCCURRED

ISBKPT

Figure 10-6 OnCE Memory Breakpoint Logic

10.4.2 Memory Upper Limit Register (OMULR)
The 16-bit Memory Upper Limit Register stores the memory breakpoint upper limit. The
OMULR can be read or written through the OnCE serial interface. Before enabling break­
points, OMULR must be loaded by the external command controller.

10.4.3 Memory Lower Limit Register (OMLLR)
The 16-bit Memory Lower Limit Register stores the m~mory breakpoint lower limit. The
OMLLR can be read or written through the OnCE serial interface. Before enabling break­
points, OMLLR must be loaded by the external command controller.

10.4.4 Memory High Address Comparator (OMHC)
The OMHC compares the current memory address (stored in OMAL) with the OMULR
contents. If OMULR is higher than or equal to OMAL then the comparator delivers a signal
indicating that the address is lower than or equal to the upper limit.

10.4.5 Memory Low Address Comparator (OMLC)
The OMLC compares the current memory address (stored in OMAL) with the OMLLR con­
tents. If OMLLR is lower than or equal to OMAL then the comparator delivers a signal in­
dicating that the address is higher than or equal to the lower limit.

10.4.6 Memory Breakpoint Counter (OMBC)
The 24-bit OMBC is loaded with a value equal to the number of times, minus one, that a
memory access event should occur before a memory breakpoint is declared. The memory
access event is specified by the BCS-BCO bits in the OSCR register and by the memory
upper and lower limit registers. On each occurrence of the memory access event, the
breakpoint counter is decremented. When the counter has reached the value of zero and
a new occurrence takes place, the chip will enter the debug mode. The OMBC can be
read, written, or cleared through the OnCE serial interface.

Anytime the upper or lower limit registers are changed, or a different breakpoint event is
selected in the OSCR, the breakpoint counter must be written afterward. This assures that
the OnCE breakpoint logic is reset and that no previous events will affect the new break­
point event selected.

The breakpoint counter is cleared by hardware reset.

10.5 OnCE TRACE LOGIC
The OnCE trace logic allows the user to execute instructions in single or multiple steps
before the chip returns to the debug mode and awaits OnCE commands from the debug
serial port. (The OnCE trace logic is independent of the trace facility of the
DSP56000/56001, which is operated through the trace interrupt discussed in Section
7.S.S.S, and started by setting the trace bit in the processor's status register discussed in
Section 5.4.2.12). The OnCE trace logic block diagram is shown in Figure 10-7.

The trace counter allows more than one instruction to be executed in real time before the
chip returns to the debug mode of operation. This feature helps the software developer
debug sections of code which do not have a normal flow or are getting hung up in infinite
loops. The trace counter also enables the user to count the number of instructions exe­
cuted in a code segment.

-

-

To initiate the trace mode of operation, the counter is loaded with a value, the program
counter is set to the start location of the instruction(s) to be executed real-time, the TME
bit is set in the OSCR, and the processor exits the debug mode by executing the appro­
priate command issued by the external command controller.

Upon exiting the debug mode, the counter is decremented after each execution of an in­
struction. Interrupts are serviceable, and all instructions executed (including fast interrupt
services and the execution of each repeated instruction) will decrement the trace counter.

Upon decrementing the trace counter to zero, the processor will re-enter the debug mode,
the trace occurrence bit TO in the OSCR will be set, and the DSO pin 'will be toggled to
indicate that the processor has entered debug mode and is requesting service (ISTRACE
asserted).

END OF INSTRUCTION

DSI

DSO~-----1 TRACE COUNTER

DSCK

COUNT=O

ISTRACE

Figure 10-7 OnCE,Trace Logic Block Diagram

10.5.1 Trace Counter (OTC)
The OTC is a 24-bit counter that can be read, written, or cleared through the OnCE serial
interface. If N instructions are to be executed before entering the debug mode, the Trace
Counter should be loaded with N-1. The Trace Counter is cleared by hardware reset.

10.6 METHODS OF ENTERING THE DEBUG MODE
The chip acknowledges having entered the debug mode by pulsing low the DSO line, in­
forming the external command controller that the chip has entered the debug mode and
is waiting for commands.The following paragraphs discuss conditions that bring the pro­
cessor into the debug mode.

10.6.1 External Debug Request During RESET
Holding the DR line asserted during the assertion of RESET causes the chip to enter the
debug mode. After receiving the acknowledge, the external command controller must
deassert the DR line before sending the first command. Note that in this case the chip

does not execute any instruction before entering the debug mode.

10.6.2 External Debug Request During Normal Activity
Holding the DR line asserted during normal chip activity causes the chip to finish the ex­
ecution of the current instruction and then enter the debug mode. After receiving the ac­
knowledge, the external command controller must deassert the DR line before sending
the first command. Note that in this case the chip completes the execution of the current
instruction and stops after the newly fetched instruction enters the instruction latch. This
process is the same for any newly fetched instruction including instructions fetched by the
interrupt processing, or those that will be aborted by the interrupt processing.

10.6.3 External Debug Request During STOP
Asserting DR when the chip is in the stop state (i. e., has executed a STOP instruction)

and keeping it asserted until an acknowledge pulse in DSO is produced causes the chip
to exit the stop state and enter the debug mode. After receiving the acknowledge, the ex­
ternal command controller must deassert DR before sending the first command. Note that

in this case, the chip completes the execution of the STOP instruction and halts after the
next instruction enters the instruction latch.

10.6.4 External Debug Request During WAIT
Asserting DR when the chip is in the wait state (i. e., has executed a WAIT instruction)
and keeping it asserted until an acknowledge pulse in DSO is produced causes the chip

to exit the wait state and enter the debug mode. After receiving the acknowledge, the ex­

ternal command controller must deassert DR before sending the first command. Note that

in this case, the chip completes the execution of the WAIT instruction and halts after the
next instruction enters the instruction latch.

10.6.5 Software Request During Normal Activity
, Upon executing the DEBUG or DEBUGcc instruction when the specified condition is true,

the chip enters the debug mode after the instruction following the DEBUG instruction has
entered the instruction latch.

10.6.6 Enabling Trace Mode
When the trace mode mechanism is enabled and the trace counter is greater than zero,

-

-

the trace counter is decremented after each instruction execution. The completed execu­
tion of an instruction when the trace counter is zero will cause the chip to enter the debug
mode.

Note: Only instructions actually executed cause the trace counter to decrement, i.e. an
aborted instruction will not decrement the trace counter and will not cause the chip to enter
the debug mode.

10.6.7 Enabling Memory Breakpoints
When the memory breakpoint mechanism is enabled with a breakpoint counter value of
zero, the chip enters the debug mode after completing the execution of the instruction that
caused the memory breakpoint to occur. In case of breakpoints on executed program
memory fetches, the breakpoint will be acknowledged immediately after the execution of
the fetched instruction. In case of breakpoints on data memory addresses (accesses to X,
Y or P memory spaces by MOVE instructions), the breakpoint will be acknowledged after
the completion of the instruction following the instruction that accessed the specified ad­
dress.

10.7 PIPELINE INFORMATION AND GLOBAL DATA BUS REGISTER
A number of on-chip registers store the chip pipeline status to restore the pipeline and re­
sume normal chip activity upon return from the debug mode. Figure 10-8 shows the block
diagram of the pipeline information registers with the exception of the program address
bus (PAS) registers, which are shown in Figure 10-9.

OSCK

o SO
OSI

... I GOB REGISTER (OGOBR) I -- .,J

• GOB

- ~ POB REGISTER (OPOBR) I -
+ ... - POB

I PIL REGISTER (OPILR) I - ...

+ PIL

Figure 10-8 OnCE Pipeline Information and GOB Registers

PAB

Figure 10-9 OnCE PAB FIFO

10.7.1 Program Data Bus Register (OPDBR)

CIRCULAR
BUFFER
POINTER

DSCK
DSO

The OPDBR is a 24-bit latch that stores the value of the program data bus which was gen­
erated by the last program memory access before the chip entered the debug mode.
OPDBR can be read or written through the OnCE serial interface. It is affected by the op­
erations performed during the debug mode and must be restored by the external com­
mand controller when the chip returns to normal mode.

10.7.2 Pipeline Instruction Latch Register (OPILR)
The OPILR is a 24-bit latch that stores the value of the instruction latch before the debug
mode is entered. OPILR can only be read through the OnCE serial interface. This register
is affected by the operations performed during the debug mode and must be restored by

-

-

the external command controller when returning to normal mode. Since there is no direct
write access to this register, this task is accomplished in the first write to OPDBR after en­
tering the debug mode or after executing the GO command; the data from OPDBR is
transferred to OPILR only in these cases.

10.7.3 Global Data Bus Register (OGDBR)
The OGDBR is a 24-bit latch that can only be read through the OnCE serial interface.
OGDBR is not actually required from a pipeline status restore point of view but is required
as a means of passing information between the chip and the external command controller.
OGDBR is mapped on the X internal 1/0 space at address $FFFC. Whenever the external
command controller needs the contents of a register or memory location, it will force the
chip to execute an instruction that brings that information to OGDBR. Then, the contents
of OGDBR will be delivered serially to the external command controller by the command
"READ GDB REGISTER".

10.8 PROGRAM ADDRESS BUS HISTORY BUFFER
There are two read-only PAB registers which give pipeline information when the debug
mode is entered. The OPABFR register tells which opcode address is in the fetch stage
of the pipeline and OPABDR tells which opcode is in the decode stage. To ease debug­
ging activity and keep track of program flow, a First-In-First-Out (FIFO) buffer stores the
addresses of the last five instructions that were executed.

10.8.1 PAB Register for Fetch (OPABFR)
The OPABFR is a 16-bit register that stores the address of the last instruction that was
fetched before the debug mode was entered. The OPABFR can only be read through the
OnCE serial interface. This register is not affected by the operations performed during the
debug mode.

10.8.2 PAB Register for Decode (OPABDR)
The OPABDR is a 16-bit register that stores the address of the instruction currently in the
instruction latch. This is the instruction that would have been decoded if the chip would
not have entered the debug mode. OPABDR can only be read through the serial interface.
This register is not affected by the operations performed during the debug mode.

10.8.3 PAB FIFO
The PAB FIFO stores the addresses of the last five instructions that were executed. The
FIFO is implemented as a circular buffer containing five 16-bit registers and one 3-bit
counter. All the registers have the same address but any read access to the FIFO address
will cause the counter to increment, making it pOint to the next FIFO register. The registers

are serially available to the external command controller through their common FIFO ad­
dress. Figure 10-9 shows the block diagram of the PAB FIFO. The FIFO is not affected by
the operations performed during the debug mode except for the FIFO pointer increment
when reading the FIFO. When entering the debug mode, the FIFO counter will be pointing
to the FIFO register containing the address of the oldest of the five executed instructions.
The first FIFO read will obtain the oldest address and the following FIFO reads will get the
other addresses from the oldest to the newest (the order of execution).

To ensure FIFO coherence, a complete set of five reads of the FIFO must be performed
because each read increments the FIFO pOinter, thus making it point to the next location.
After five reads the pointer will point to the same location it pointed to before starting the
read procedure.

10.9 SERIAL PROTOCOL DESCRIPTION
The following protocol permits an efficient means of communication between the OnCE's
external command controller and the DSP56K chip. Before starting any debugging activ­
ity, the external command controller must wait for an acknowledge on the DSO line, indi­
cating that the chip has entered the debug mode. The external command controller com­
municates with the chip by sending a-bit commands that may be accompanied by 24 bits
of data. Both commands and data are sent or received most significant bit first. After send­
ing a command, the external command controller must wait for the processor to acknowl­
edge execution of the command before it may send a new command.

When accessing OnCE 16-bit registers, the register contents appear in the 16 most sig­
nificant bits in the 24-bit data field, and the a least significant bits are zeroed.

10.9.1 OnCE Commands
The OnCE commands may be classified as follows:

• read commands (when the chip will deliver the required data).
• write commands (when the chip will receive data and write the data in one of the OnCE

registers).
• commands that do not have data transfers associated with them.

The commands are a bits long and have the format shown in Figure 10-4.

10.10 DSP56K TARGET SITE DEBUG SYSTEM REQUIREMENTS
A typical DSP56K debug environment consists of a target system where the DSP56K re­
sides in the user defined hardware. The debug serial port interfaces to the external com­
mand controller over a 6-wire link which includes the 4 OnCE wires, a ground, and a reset
wire. The reset wire is optional and is only used to reset the DSP56K and its associated
circuitry.

-

-

The external command controller acts as the medium between the DSP56K target system
and a host computer. The external command controller circuit acts as a DSP56K serial
debug port driver and host computer command interpreter. The controller issues com­
mands based on the host computer inputs from a user interface program which commu­
nicates with the user.

10.11 USING THE OnCE
The following notations are used:

ACK = Wait for acknowledge on the DSO pin

ClK = Issue 24 clocks to read out data from the selected register

10.11.1 Begin Debug Activity
Most of the debug activities have the following beginning:

1. ACK

2. Save pipeline information:

a. Send command READ PDS REGISTER (10001001)

b. ACK

c. ClK

d. Send command READ Pil REGISTER (10001011)

e. ACK

f. ClK

3. Read PAS FI FO and fetch/decode info (this step is optional):

a. Send command READ PAS address for fetch (10001010)

b.ACK

c. ClK

d. Send command READ PAS address for decode (10010011)

e. ACK

f. ClK

g. Send command READ FIFO REGISTER and increment counter (10010001)

h. ACK

i. ClK

j. Send command READ FIFO REGISTER and increment counter (10010001)

k. ACK

I. ClK

m. Send command READ FIFO REGISTER and increment counter (10010001)

n. ACK

o.ClK

p. Send command READ FIFO REGISTER and increment counter (10010001)

q.ACK

r. ClK

s. Send command READ FIFO REGISTER and increment counter (10010001)

t. ACK

u.ClK

10.11.2 Displaying A Specified Register
1. Send command WRITE PDB REGISTER, GO, no EX (01001001). The OnCE con­

troller selects PDB as destination for serial data.

2.ACK

3. Send the 24-bit DSP56K opcode: "MOVE reg,x:OGDB"
After 24 bits have been received, the PDB register drives the PDB. The OnCE con­
troller releases the chip from the debug mode, the chip executes the MOVE
instruction, and the contents of the register specified in the instruction are loaded in
the GOB REGISTER. The signal that marks the end of the instruction returns the
chip to the debug mode.

4.ACK

5. Send command READ GOB REGISTER (10001000)
The OnCE controller selects GOB as source for serial data.

6.ACK

7.ClK

10.11.3 Displaying X Memory Area Starting From Address XXXX
This command uses RO to minimize serial traffic.

1. Send command WRITE PDB REGISTER, GO, no EX (01001001).
The OnCE controller selects PDB as destination for serial data.

2. ACK

3. Send the 24-bit DSP56K opcode: "MOVE RO,x:OGDB"

-

-

After 24 bits have been received the POB register drives the POB. The OnCE con-'
troller releases the chip from the debug mode and the contents of RO are loaded
in the GOB REGISTER. The signal that marks the end of the instruction returns the
chip to the debug mode.

4. ACK

5. Send command REAO GOB REGISTER (10001001)
The OnCE controller selects GOB as source for serial data.

6. ACK

7. ClK
The external command controller generates 24 clocks that shift out the contents of
the GOB register. The value of RO is thus saved and should be restored before ex­
iting the debug mode.

8. Send command WRITE POB REGISTER, no GO, no EX (00001001)
OnCE controller selects POB as destination for serial data.

9. ACK

10. Send the 24-bit OSP56K opcode: "MOVE #$xxxx,RO"
After 24 bits have been received, the POB register drives the POB. The OnCE con­
troller causes the processor to load the opcode.

11. ACK

12. Send command WRITE POB REGISTER, GO, no EX (01001001)
The OnCE controller selects POB as destination for serial data.

13. ACK

14. Send the 24-bit 2nd word of: "MOVE #$xxxx,RO" (the XXX X field).
After 24 bits have been received, the POB register drives the POB. The OnCE con­
troller releases the chip from the debug mode and the instruction starts execution.
The signal that marks the end of the instruction returns the chip to the debug mode.

15. ACK

16. Send command WRITE POB REGISTER, GO, no EX (01001001)
The OnCE controller selects POB as destination for serial data.

17. ACK

18. Send the 24-bit OSP56K opcode: "MOVE X:(RO)+,x:OGOB"
After 24 bits have been received, the POB register drives the POB. The OnCE con­
troller releases the chip from the debug mode and the contents of X:(RO) are
loaded in the GOB REGISTER. The signal that marks the end of the instruction re­
turns the chip to the debug mode.

19. ACK

20. Send command READ GDB REGISTER (10001000)
The OnCE controller selects GDB as source for serial data.

21. ACK

22. ClK

23. Send command NO REGISTER SELECTED, GO, no EX (01011111)
The OnCE controller releases the chip from the debug mode and the instruction is
executed again in a "REPEAT-like" fashion. The signal that marks the end of the
instruction returns the chip to the debug mode.

24. ACK

25. Send command RE~D GDB REGISTER (10001000)
The OnCE controller selects GDB as source for serial data.

26. ACK

27. ClK

28. Repeat from step 23 until the entire memory area is examined.

29. After finishing reading the memory, RO should to be restored as follows.

30. Send command WRITE PDB REGISTER, no GO, no EX (00001001)
OnCE controller selects PDB as destination for serial data.

31. ACK

32. Send the 24-bit DSP56K opcode: "MOVE #saved_rO,RO"
After 24 bits have been received, the PDB register drives the PDB. The OnCE con­
troller causes the processor to load the opcode.

33. ACK

34. Send command WRITE PDB REGISTER, GO, no EX (01001001)
The OnCE contr~ler selects PDB as destination for serial data.

35. ACK

36. Send the 24-bit second word of: "MOVE #saved_rO,RO" (the saved_rO field).
After 24 bits have been received, the PDB register drives the PDB. The OnCE con­
troller releases the chip from the debug mode and the instruction starts execution.
The Signal that marks the end of the instruction returns the chip to the debug mode.

37. ACK

-

-

10.11.4 Executing a Single-Word DSP56K Instruction While in Debug Mode
1. Send command WRITE PDB REGISTER, GO, no EX (01001001).

The OnCE controller selects PDB as destination for serial data.

2.ACK

3. Send the single-word 24-bit DSP56K opcode to be executed.
After 24 bits have been received, the PDB register drives the PDB. The OnCE con­
troller releases the chip from the debug mode and the chip executes the instruction.
The Signal that marks the end of the instruction returns the chip to the debug mode.
Some DSP56K instructions should not be executed in this state: DO, REP, ILLE­
GAL or any opcode that is considered illegal, and DEBUG.

4.ACK

10.11.5 Executing a Two-Word DSP56K Instruction While In Debug Mode
1. Send command WRITE PDB REGISTER, no GO, no EX (00001001).

The OnCE controller selects PDB as destination for serial data ..

2.ACK

3. Send the first instruction word (24-bit DSP56K opcode)
After 24 bits have been received, the PDB register drives the PDB. The OnCE con­
troller causes the processor to load the opcode.
Some DSP56K instructions should not be executed in this state: DO, REP, ILLE­
GAL or any opcode that is considered illegal, and DEBUG.

4.ACK

5. Send command WRITE PDB REGISTER, GO, no EX (01001001)
The OnCE controller selects PDB as destination for serial data.

6.ACK

7. Send the second 24-bit instruction word.
After 24 bits have been received, the PDB register drives the PDB. The OnCE con­
troller releases the chip from the debug mode and the instruction starts execution.
The Signal that marks the end of the instruction returns the chip to the debug mode.

8.ACK

10.11.6 Returning from Debug Mode to Normal Mode
There are two cases for returning from the debug mode in a single processor:

• Control is returned to the program that was running before debug was initiated.
• Jump to a different program location is executed.

10.11.6.1 Case 1: Return To The Previous Program (Return To Normal Mode)
1. Send command WRITE PDS REGISTER, no GO, no EX (00001001)

The OnCE controller selects the PDS as the destination for serial data. Also, the
OnCE controller selects the on-chip PAS register as the source for the PAS bus.

2.ACK

3. Send the 24 bits of the saved PIL (instruction latch) value.
After the 24 bits have been received, the PDS register drives the PDS. The OnCE
controller causes the PIL to latch the PDS value. In this way, the PIL is restored to
the same state as before entering the debug mode.

4.ACK

5. Send command WRITE PDS REGISTER, GO, EX (01101001)
The OnCE controller selects PDS as destination for the serial data to follow.

6. ACK

7. Send the 24 bits of the saved PDS value.
After the 24 bits have been received, the PDS register drives the PDS. In this way,
the PDS is restored to the same state as before entering the debug mode. The EX
bit causes the OnCE controller to release the chip from the debug mode and the
status bits in OSCR are cleared. The GO bit causes the chip to start executing in­
structions.

10.11.6.2 Case 2: Jump To A New Program (Go From Address $xxxx)
1. Send command WRITE PDS REGISTER, no GO, no EX (00001001)

The OnCE controller selects PDS as destination for serial data. Also, the OnCE
controller selects the on-chip PAS register as the source for the PAS bus.

2.ACK

3. Send 24 bits of the opcode of a two-word jump instruction instead of the saved PIL
value. After the 24 bits have been received, the PDS register drives the PDS. The
OnCE controller causes the PIL to latch the PDS value. In this way, the instruction
latch will contain the opcode of the jump instruction which will cause the change in
the program flow.

4.ACK

5. Send command WRITE PDS REGISTER, GO, EX (01101001)
The OnCE controller selects PDS as destination for serial data.

6. ACK

7. Send 24 bits of the jump target absolute address ($xxxxxx).
After 24 bits have been received, the PDS register drives the PDS. In this way, the

-

..

PDS contains the second word of the jump as required for the jump instruction ex­
ecution. The EX bit causes the OnCE controller to release the chip from the debug
mode and the status bits in OSCR are cleared. The GO bit causes the chip to start
executing the jump instruction which will then cause the chip to continue instruction
execution from the target address. Note that the trace counter will count the jump
instruction so the current trace counter may need to be corrected if the trace mode
is enabled.

10.11.7 Debugging Multiprocessor Systems With a Single External Command
Controller

In multiprocessor systems, each processor may be individually debugged as described
above. When simultaneous exit of the debug state is desired for more than one processor,
each processor must first be loaded with the required PIL and PDS values where process­
ing should proceed. This is accomplished by the following sequence as applied to each
processor:

1. Send command WRITE PDS REGISTER, no GO, no EX (00001001)
The OnCE controller selects PDS as destination for serial data. Also, the OnCE
controller selects the on-chip PAS register as the source for the PAS bus.

2.ACK

3. Send 24 bits of either the opcode of a 2-word jump instruction or the saved PIL val­
ue. After the 24 bits have been received, the PDS register drives the PDS. The
OnCE controller causes the PIL to latch the PDS value.

4.ACK

5. Send command WRITE PDS REGISTER, no GO, no EX (00001001)
The OnCE controller selects PDS as destination for serial data .

6.ACK

7. Send 24 bits of either the jump target absolute address ($xxxxxx) or the saved PDS
value. After 24 bits have been received, the PDS register drives the PDS.

8.ACK

At this point, all processors should have the required PIL and PDS values while still in de­
bug mode. To return all processors to the normal execution state simultaneously, the fol­
lowing command should be issued to all processors in parallel:

9. Send command NO REGISTER SELECTED, GO, EX (01111111)
The OnCE controller releases the chips from the debug mode and instruction exe­
cution is resumed.

SECTION 11
ADDITIONAL SUPPORT

Dr. BuB Electronic Bulletin Board

U)

~
::s

~~8
'" .- 01 a. f!! c
I Q)'_

Co :g.~.~
cCo~..cc~
01<-=1-=>1-
.- a. a. a. a. a.
~cncncncncn cccccc

-

-

11.1 USER SUPPORT
User support from the conception of a design through completion is available from
Motorola and third-party companies as shown in the following list:

Design

Prototyping

Design
Verification

Motorola

Data Sheets
Application Notes
Application Bulletins
Software Examples

Assembler
Linker
C Compiler
Simulator
Application Development

System (ADS)
In-Circuit Emulator

Cable for ADS

Application Development
System (ADS)

In-Circuit Emulator
Simulator

Third Party

Data Acquisition Packages
Filter Design Packages
Operating System Software
Simulator

Logic Analyzer with
DSP56000/DSP56001 ROM Packages

In-Circuit Emulators
Data Acquisition Cards
DSP Development System Cards
Operating System Software
Debug Software

Data Acquisition Packages
Logic Analyzer with

DSP56000/DSP56001 ROM Packages
Data Acquisition Cards
DSP Development System Cards ..
Application-Specific Development Tools
Debug Software

-

-

The following is a partial list of the support available for the DSP56000/DSP56001. Addi­
tional information can be obtained through Dr. BuB or the appropriate support telephone
service.

11.2 MOTOROLA DSP PRODUCT SUPPORT
• DSP56000CLASx Design-In Software Package which includes:

Relocatable Macro Assembler

Linker

Simulator (simulates single or multiple DSP56K processors»

Librarian

• DSP56KCCx GNU C Compiler

• DSP56000/DSP56001 Applications Development System (ADS)

• Support Integrated Circuits

• DSP Bulletin Board (Dr. BuB)

• Motorola DSP Newsletter

• Motorola Field Application Engineers (FAEs)
See your local telephone directory for the Motorola Semiconductor Sector sales
office telephone number.

• Design Hotline

• Applications Assistance

• Marketing Information

• Third-Party Support Information

• University Support Information

11.2.1 DSP56000CLASx Assembler/Simulator
The Macro Cross Assembler and Simulator run on:

1. IBMTM PCs (-386 or higher) under DOS 2.x and 3.x

2. Macintosh™ II under MAC OS 4.1 or later

3. SUN-4™ under UNIXTM BSD 4.2

4. NeXTTM under Mach

11.2.2 Macro Cross Assembler Features:
• Production of relocatable object modules compatible with linker program when in

relocatable mode

• Production of absolute files compatible with simulator program when in absolute
mode

• Supports full instruction set, memory spaces, and parallel data transfer fields of

the DSP56K family of processors

• Modular programming features: local labels, sections, and external definition/ref-
erence directives

• Nested macro processing capability with support for macro libraries

• Complex expression evaluation including boolean operators

• Built-in functions for data conversion, string comparison, and common transcen­
dental math functions

• Directives to define circular and bit-reversed buffers

• Extensive error checking and reporting

11.2.3 Simulator Features:
• Simulation of all DSP56K family members

• Simulation of multiple DSP56Ks

• Linkable object code modules:

-Nondisplay simulator library

-Display simulator library

• C language source code for:

-Screen management functions

-Terminal I/O functions

-Simulation examples

• Single stepping through object programs

• Up to 99 conditional or unconditional breakpoints

• Program patching using a single-line assembler/disassembler

• Instruction, clock cycle, and histogram counters

• Session and/or command logging for later reference

• ASCII input/output files for peripherals

• Help-file and help-line display of simulator commands

• Loading and saving of files to/from simulator memory

• Macro command definition and execution

• Display enable/disable of registers and memory

• Hexadecimal/decimal/binary calculator

11.2.4 DSP56KCCx Language Compiler Features:
• GNU - ANSI Standard

• Structures/Unions

• Floating Point

...

-

• In-line assembler language code compatibility

• Full Function preprocessor for:

-Macro definition/expansion

-File Inclusion

-Conditional compilation

• Full error detection and reporting

11.3 DSP56KADSx APPLICATION DEVELOPMENT SYSTEM

11.3.1 DSP56KADS Application Development System Hardware Features:
• Processor speed independent

• Multiple (up to 8) application development module (ADM) support with program-
mable ADM addresses

• 8K/32Kx24 user-configurable RAM for DSP56K code development

• 1 Kx24 monitor ROM expandable to 4Kx24

• 96-pin Euro-card connector making all DSP56K pins accessible

• In-circuit emulation capabilities when used with the DSP56KEMULTRCABL cable

• Separate berg pin connectors for alternate accessing of serial or hostiDMA ports

• ADM can be used in stand-alone configuration

• No external power supply needed when connected to a host platform

11.3.2 DSP56KADSx Application Development System Software Features:
• Single/multiple stepping through DSP56K object programs

• Up to 99 conditional or unconditional breakpoints

• Program patching using a single-line assembler/disassembler

• Session and/or command logging for later reference

• Loading and saving files to/from ADM memory

• Macro command definition and execution

• Display enable/disable of registers and memory

• Debug commands supporting multiple ADMs

• Hexadecimal/decimal/binary calculator

• Host operating system commands from within ADS user interface program

• Multiple as I/O file access from DSP56K object programs

• Fully compatible with the DSP56KCLASx design-in software package

• On-line help screens for each command and DSP56K register

11.3.3 Support Integrated Circuits:
• 8Kx24 Static RAM - MC56824

• DSP56ADC16 16-bit, sigma-delta 100-kHz analog-to-digital converter

• DSP56401 AES/EBU processor

• DSP56200 FIR filter

11.4 Dr. BuB ELECTRONIC BULLETIN BOARD
Dr. BuB is an electronic bulletin board which provides free source code for a large variety
of topics that can be used to develop applications with Motorola DSP products. The soft­
ware library contains files including FFTs, FIR filters, IIR filters, lattice filters, matrix alge­
bra routines, companding routines, floating-point routines, and others. In addition, the
latest product information and documentation (including information on new products
and improvements to existing products) is posted. Questions about Motorola DSP prod­
ucts posted on Dr. BuB are answered promptly. Access to Dr. BuB is through calling
(512) 891-3771 using a modem set to 8 data bits, no parity, and 1 stop bit. Dr. BuB will
automatically set the data transfer rate to match your modem (9600,4800,2400, 1200 or
300 BPS).

A partial list of the software available on Dr. BuB follows.

-

I Document 10 I Version Synopsis I Size I
Audio:

rvb1.asm 1.0 Easy-to-read reverberation routine 17056

rvb2.asm 1.0 Same as RVB1.ASM but optimized 15442

stereo.hlp 1.0 Help file for STEREO.ASM 620

dge.asm 1.0 Digital Graphic Equalizer code from 14880

Codec Routines:

loglin.asm 1.0 Companded CODEC to linear PCM data 4572
conversion

loglin.hlp Help for loglin.asm 1479

loglint.asm 1.0 Test program for loglin.asm 2184

loglint.hlp Help for loglint.asm 1993

linlog.asm 1.1 Linear PCM to companded CODEC data 4847
conversion

linlog.hlp Help for linlog.asm 1714

DTMF Routines:

clear.cmd 1.0 Explained in read.me file 119

data.lod 1.0 421

det.asm 1.0 Subroutine used in IIR DTMF 5923

dtmf.asm 1.0 Main routine used in IIR DTMF 10685

dtmf.mem 1.0 Memory for DTMF routine 48

dtmfmstr.asm 1.0 Main routine for multichannel DTMF 7409

dtmfmstr. mem 1.0 Memory for multichannel DTMF routine 41

dtmftwo.asm 1.0 10256

- ex56.bat 1.0 94

genxd.lod 1.0 Data file 183

genyd.lod 1.0 Data file 180

goertzel.asm 1.0 Goertzel routine 4393

goertzeLlnk 1.0 Link file for Goertzel routine 6954

goertzel.lst 1.0 List file for Goertzel routine 11600

load.cmd 1.0 46

tstgoert.mem 1.0 Memory for Goertzel routine 384

I Document ID I Version Synopsis I Size I
sub.asm 1.0 Subroutine linked for use in IIR DTMF 2491

read.me 1.0 Instructions 738

Fast Fourier Transforms:

sincos.asm 1.2 Sine-Cosine Table Generator for FFTs 1185

sincos.hlp Help for sincos.asm 887

sinewave.asm 1.1 Full-Cycle Sine wave Table Generator 1029
Generator Macro

sinewave.hlp for sinewave.asm 1395

fftr2a.asm 1.1 Radix 2, In-Place, DIT FFT (smallest) 3386

fftr2a.hlp Help for fftr2a.asm 2693

fftr2at.asm 1.1 Test Program for FFTs (fftr2a.asm) 999

fftr2at.hlp Help for fftr2at.asm 563

fftr2b.asm 1.1 Radix 2, In-Place, DIT FFT (faster) 4290

fftr2b.hlp Help for fftr2b.asm 3680

fftr2c.asm 1.2 Radix 2, In-Place, DIT FFT (even faster) 5991

fftr2c.hlp Help for fftr2c.asm 3231

fftr2d.asm 1.0 Radix 2, In-Place, DIT FFT (using 3727
DSP56001 sine-cosine ROM tables)

fftr2d.hlp Help for fftr2d.asm 3457

fftr2dt.asm 1.0 Test program for fftr2d.asm 1287

fftr2dt.hlp Help for fftr2dt.asm 614

fftr2e.asm 1.0 1024 Point, Non-In-Place, FFT (3.39ms) 8976

fftr2e.hlp Help for fftr2e.asm 5011

fftr2et.asm 1.0 Test program for fftr2e.asm 984

fftr2et.hlp Help for fftr2et.asm 408

dct1.asm 1.1 Discrete Cosine Transform using FFT 5493

dct1.hlp 1.1 Help file for dct1.asm 970

fftr2cc.asm 1.0 Radix 2, In-place Decimation-in-time 6524
complex FFT macro

fftr2cc.hlp 1.0 Help file for fftr2cc.asm 3533

I Document 10 I Version Synopsis I Size I
fftr2cn.asm 1.0 Radix 2, Decimation-in-time Complex FFT 6584

macro with normally ordered input/output

fftr2cn.hlp 1.0 Help file for fftr2cn.asm 2468

fftr2en.asm 1.0 1024 point, not-in-place, complex FFT 9723
macro with normally ordered input/output

fftr2en.hlp 1.0 Help file for fftr2en.asm 4886

dhit1.asm 1.0 Routine to compute Hilbert transform 1851
in the frequency domain

dhit1.hlp 1.0 Help file for dhit1.asm 1007

fftr2bf.asm 1.0 Radix-2, decimation-in-time FFT with 13526
block floating point

fftr2bf.hlp 1.0 Help file for fftr2bf.asm 1578

fftr2aa.asm 1.0 FFT program for automatic scaling 3172

Filters:

fir.asm 1.0 Direct Form FIR Filter 545

fir.hlp Help for fir.asm 2161

firt.asm 1.0 Test program for fir.asm 1164

iir1.asm 1.0 Direct Form Second Order All Pole 656
IIR Filter

iir1.hlp Help for iir1.asm 1786

iir1t.asm 1.0 Test program for iir1.asm 1157

iir2.asm 1.0 Direct Form Second Order All Pole 801
IIR Filter with Scaling

iir2.hlp Help for iir2.asm 2286

iir2t.asm 1.0 Test program for iir2.asm 1311

iir3.asm 1.0 Direct Form Arbitrary Order All 776
Pole IIR Filter

iir3.hlp Help for iir3.asm 2605

iir3t.asm 1.0 Test program for iir3.asm 1309

iir4.asm 1.0 Second Order Direct Canonic IIR Filter 713
(Biquad IIR Filter)

iir4.hlp Help for iir4.asm 2255

iir4t.asm 1.0 Test program for iir4.asm 1202

I Document ID I Version Synopsis I Size I
iir5.asm 1.0 Second Order Direct Canonic IIR Filter 842

with Scaling (Biquad IIR Filter)

iir5.hlp Help for iir5.asm 2803

iir5t.asm 1.0 Test program for iir5.asm 1289

iir6.asm 1.0 Arbitrary Order Direct Canonic IIR 923
Filter

iir6.hlp Help for iir6.asm 3020

iir6t.asm 1.0 Test program for iir6.asm 1377

iir7.asm 1.0 Cascaded Biquad IIR Filters 900

iir7.hlp Help for iir7.asm 3947

iir7t.asm 1.0 Test program for iir7.asm 1432

Ims.hlp 1.0 LMS Adaptive Filter Algorithm 5818

transiir.asm 1.0 Implements the transposed IIR filter 1981

transiir.hlp 1.0 Help file for transiir.asm 974

Floating-Point Routines:

fpdef.hlp 2.0 Storage format and arithmetic 10600
representation definition

fpcalls.hlp 2.1 Subroutine calling conventions 11876

fplist.asm 2.0 Test file that lists all subroutines 1601

fprevs.hlp 2.0 Latest revisions of floating-point lib 1799

fpinit.asm 2.0 Library initialization subroutine 2329

fpadd.asm 2.0 Floating point add 3860

fpsub.asm 2.1 Floating point subtract 3072

fpcmp.asm 2.1 Floating point compare 2605

fpmpy.asm 2.0 Floating point multiply 2250 -fpmac.asm 2.1 Floating point multiply-accumulate 2712

fpdiv.asm 2.0 Floating point divide 3835

fpsqrt.asm 2.0 Floating point square root 2873

fpneg.asm 2.0 Floating point negate 2026

fpabs.asm 2.0 Floating pOint absolute value 1953

fpscale.asm 2.0 Floating paint scaling 2127

I Document ID I Version Synopsis I Size I
fpfix.asm 2.0 Floating to fixed point conversion 3953

fpfloat.asm 2.0 Fixed to floating point conversion 2053

fpceil.asm 2.0 Floating point CEIL subroutine 1771

fpfloor.asm 2.0 Floating point FLOOR subroutine 2119

durbin.asm 1.0 Solution for LPC coefficients 5615

durbin.hlp 1.0 Help file for DURBIN.ASM 2904

fpfrac.asm 2.0 Floating point FRACTION subroutine 1862

Functions:

log2.asm 1.0 Log base 2 by polynomial 1118
approxi mation

log2.hlp Help for log2.asm 719

log2t.asm 1.0 Test program for log2.asm 1018

log2nrm.asm 1.0 Normalizing base 2 logarithm macro 2262

log2nrm.hlp Help for log2nrm.asm 676

log2nrmt.asm 1.0 Test program for log2nrm.asm 1084

exp2.asm 1.0 Exponential base 2 by polynomial 926
approxi mation

exp2.hlp Help for exp2.asm 759

exp2t.asm 1.0 Test program for exp2.asm 1019

sqrt1.asm 1.0 Square Root by polynomial 991
approximation, 7 bit accuracy

sqrt1.hlp Help for sqrt1.asm 779

sqrt1 t.asm 1.0 Test program for sqrt1.asm 1065

sqrt2.asm 1.0 Square Root by polynomial 899
approximation, 10 bit accuracy

sqrt2.hlp Help for sqrt2.asm 776

sqrt2t.asm 1.0 Test program for sqrt2.asm 1031

sqrt3.asm 1.0 Full precision Square Root Macro 1388

sqrt3.hlp Help for sqrt3.asm 794

sqrt3t.asm 1.0 Test program for sqrt3.asm 1053

tlLasm 1.1 Linear table lookup/interpolation 3253
routine for function generation

tlLhlp 1.1 Help for tlLasm 1510

I Document ID I Version Synopsis I Size I
bingray.asm 1.0 Binary to G ray code conversion macro 601

bingrayt.~sm 1.0 Test program for bingray.asm 991

rand1.asm 1.1 Pseudo Random Sequence Generator 2446

rand1.hlp Help for rand1.asm 704

Lattice Filters:

latfir1.asm 1.0 Lattice FIR Filter Macro 1156

latfir1.hlp Help for latfir1.asm 6327

latfir1 t.asm 1.0 Test program for latfir1.asm 1424

latfir2.asm 1.0 Lattice FIR Filter Macro 1174
(modified modulo count)

latfir2.hlp Help for latfir2.asm 1295

latfir2t.asm 1.0 Test program for latfir2.asm 1423

latiir.asm 1.0 Lattice IIR Filter Macro 1257

latiir.hlp Help for latiir.asm 6402

latiirt.asm 1.0 Test program for latiir.asm 1407

latgen.asm 1.0 Generalized Lattice FIRlIIR 1334
Filter Macro

latgen.hlp Help for latgen.asm 5485

latgent.asm 1.0 Test program for latgen.asm 1269

latnrm.asm 1.0 Normalized Lattice IIR Filter Macro 1407

latnrm.hlp Help for latnrm.asm 7475

latnrmt.asm 1.0 Test program for latnrm.asm 1595

Matrix Operations:

matmul1.asm 1.0 [1 x3][3x3] =[1 x3] Matrix Multiplication 1817 -matmul1.hlp Help for matmul1.asm 527

matmul2.asm 1.0 General Matrix Multiplication, C=AB 2650

matmul2.hlp Help for matmul2.asm 780

matmul3.asm 1.0 General Matrix Multiply-Accumulate, 2815
C=AB+Q

matmul3.hlp 1.0 Help for matmul3.asm 865

I Document 10 I Version Synopsis I Size I
Reed-Solomon Encoder:

readme.rs 1.0 Instructions for Reed-Solomon coding 5200

rscd.asm 1.0 Reed-Solomon coder for DSP56000 simulator 5822

newc.c 1.0 Reed-Solomon coder coded in C 4075

table1.asm 1.0 Include file for R-S coder 7971

table2.asm 1.0 Include file for R-S coder 4011

Sorting Routines:

sort1.asm 1.0 Array Sort by Straight Selection 1312

sort1.hlp Help for sort1 .asm 1908

sort1t.asm 1.0 Test program for sort1.asm 689

sort2.asm 1.1 Array Sort by Heapsort Method 2183

sort2.hlp Help for sort2.asm 2004

sort2t.asm 1.0 Test program for sort2.asm 700

Speech:

Igsol1.asm 2.0 Leroux-Gueguen solution for PARCOR 4861
(LPC) coefficients

Igsol1.hlp Help for Igsol1.asm 3971

durbin1.asm 1.2 Durbin Solution for PARCOR 6360
(LPC) coefficients

durbin1.hlp Help for durbin1.asm 3616

adpcm.asm 1.0 32 kbps CCITT ADPCM Speech Coder 120512

adpcm.hlp 1.0 Help file for adpcm.asm 14817

adpcmns.asm 1.0 Nonstandard ADPCM source code 54733

adpcmns.hlp 1.0 Help file for adpcmns.asm 9952

Standard 1/0 Equates:

ioequ.asm 1.1 Motorola Standard I/O Equate File 8774

ioequlc.asm 1.1 Lower Case Version of ioequ.asm 8788

intequ.asm 1.0 Standard Interrupt Equate File 1082

intequlc.asm 1.0 Lower Case Version of intequ.asm 1082

I Document ID I Version Synopsis I Size I
Tools and Utilities:

srec.c 4.10 Utility to convert DSP56000 OMF format 38975
to SREC.

srec.doc 4.10 Manual page for srec.c. 7951

srec.h 4.10 Include file for srec.c 3472

srec.exe 4.10 Srec executable for IBM PC 22065

sloader.asm 1.1 Serial loader from the SCI port for the 3986
DSP56001

sloader.hlp 1.1 Help for sloader.asm 2598

sloader.p 1.1 Serial loader s-record file for download 736
to EPROM

parity.asm 1.0 Parity calculation of a 24-bit number in 1641
accumulator A

parity.hlp 1.0 Help for parity.asm 936

parityt.asm 1.0 Test program for parity.asm 685

parityt.hlp 1.0 Help for parityt.asm 259

dspbug Ordering information for free debug 882
monitor for DSP56000/DSP56001

The following Is a list of current DSP56200 related software:

p1 1.0 Information on 56200 Filter Software 6343

p2 1.0 Interrupt Driven Adaptive Filter Flowchart. 10916

p3 1.0 "C" code implementation of p2 25795

p4 1.0 Polled 1/0 Adaptive Filter Flowchart 10361

p5 1.0 "C" code implementation of p4 24806

p6 1.1 Interrupt Driven Dual FIR Filter Flowchart. 9535

p7 1.0 "C" code implementation of p6 28489 -p8 1.0 Polled 1/0 Dual FIR Filter Flowchart 9656

p9 1.0 "C" code implementation of p8 28525

-

11.5 MOTOROLA DSP NEWS
The Motorola DSP News is a quarterly newsletter providing information on new products,
application briefs, questions and answers, DSP product information, third-party product
news, etc. This newsletter is free and is available upon request by calling the marketing
information phone number listed below.

11.6 MOTOROLA FIELD APPLICATION ENGINEERS
Information and assistance for DSP applications is available through the local Motorola
field office. See your local telephone directory for telephone numbers or call (512)891-
2030.

11.7 DESIGN HOTLlNE-1-800-521-6274
This is the Motorola number for information about any Motorola product.

11.8 DSP HELP LINE - (512) 891-3230
Design assistance for specific DSP applications is available by calling this number.

11.9 MARKETING INFORMATION- (512) 891-2030
Marketing information, including brochures, application notes, manuals, price quotes,
etc., for Motorola DSP-related products is available by calling this number.

11.10 THIRD-PARTY SUPPORT INFORMATION - (512) 891-3098
Information about third-party manufacturers who use and support Motorola DSP products
is available by calling this number. Third-party support includes:

Filter design software

Logic analyzer support

Boards for VME, IBM-PC/XT/AT, MACI! boards

Development systems

Data conversion cards

Operating system software

Debug software

Additional information is available on Dr. BuB and in DSP News.

11.11 UNIVERSITY SUPPORT - (512) 891-3098
Information concerning university support programs and university discounts for all
Motorola DSP products is available by calling this number.

11.12 TRAINING COURSES - (602) 897-3665 or (800) 521-6274
There are two DSPS6000 Family training courses available:

1. Introduction to the DSP5600X (MTT AS) is a 4.S-hour aUdio-tape course on the
DSPS6K Family architecture and programming.

2. Introduction to the DSPS600X (MTT31) is a four-day instructor-led course and
laboratory which covers the details of the DSP5600X architecture and
programming.

Additional information is available by writing to:

Motorola SPS Training and Technical Operations

Mail Drop ELS24

P. O. Box 21007

Phoenix, Arizona 8S036

or by calling the number above. A technical training catalog is available which describes
these courses and gives the current training schedule and prices.

11.13 REFERENCE BOOKS AND MANUALS
A list of DSP-related books is included here as an aid for the engineer who is new to the
field of DSP. This is a partial list of DSP references intended to help the new user find
useful information in some of the many areas of DSP applications. Many of the books
could be included in several categories but are not repeated.

General DSP:

ADVANCED TOPICS IN SIGNAL PROCESSING
Jae S. Lim and Alan V. Oppenheim
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1988

APPLICATIONS OF DIGITAL SIGNAL PROCESSING
A. V. Oppenheim
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1~78

DISCRETE-TIME SIGNAL PROCESSING
A. V. Oppenheim and R. W. Schafer
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1989

DIGITAL PROCESSING OF SIGNALS THEORY AND PRACTICE
Maurice Bellanger
New York, NY: John Wiley and Sons, 1984

DIGITAL SIGNAL PROCESSING
Alan V. Oppenheim and Ronald W. Schafer
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1975

DIGITAL SIGNAL PROCESSING: A SYSTEM DESIGN APPROACH
David J. DeFatta, Joseph G. Lucas, and William S. Hodgkiss
New York, NY: John Wiley and Sons, 1988

FOUNDATIONS OF DIGITAL SIGNAL PROCESSING AND DATA ANALYSIS
J. A. Cadzow
New York, NY: MacMillan Publishing Company, 1987

HANDBOOK OF DIGITAL SIGNAL PROCESSING
D. F. Elliott
San Diego, CA: Academic Press, Inc., 1987

INTRODUCTION TO DIGITAL SIGNAL PROCESSING
John G. Proakis and Dimitris G. Manolakis
New York, NY: Macmillan Publishing Company, 1988

MULTJRATE DIGITAL SIGNAL PROCESSING
R. E. Crochiere and L. R. Rabiner
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1983

SIGNAL PROCESSING ALGORITHMS
S. Stearns and R. Davis
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1988

SIGNAL PROCESSING HANDBOOK
C.H. Chen
New York, NY: Marcel Dekker, Inc., 1988

SIGNAL PROCESSING - THE MODERN APPROACH
James V. Candy
New York, NY: McGraw-Hili Company, Inc., 1988

THEORY AND APPLICATION OF DIGITAL SIGNAL PROCESSING
Rabiner, Lawrence R., Gold and Bernard
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1975

Digital Audio and Filters:

ADAPTIVE FILTER AND EQUALIZERS
B. Mulgrew and C. Cowan
Higham, MA: Kluwer Academic Publishers, 1988

ADAPTIVE SIGNAL PROCESSING
B. Widrow and S. D. Stearns
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1985

ART OF DIGITAL AUDIO, THE
John Watkinson
Stoneham. MA: Focal Press, 1988

DESIGNING DIGITAL FILTERS
Charles S. Williams
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1986

DIGITAL AUDIO SIGNAL PROCESSING AN ANTHOLOGY
John Strawn
William Kaufmann, Inc., 1985

DIGITAL CODING OF WAVEFORMS
N. S. Jayant and Peter Noll
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1984

DIGITAL FILTERS: ANALYSIS AND DESIGN
Andreas Antoniou
New York, NY: McGraw-Hili Company, Inc., 1979

DIGITAL FILTERS AND SIGNAL PROCESSING
Leland B. Jackson
Higham, MA: Kluwer Academic Publishers, 1986

DIGITAL SIGNAL PROCESSING
Richard A. Roberts and Clifford T. Mullis

. New York, NY: Addison-Welsey Publishing Company, Inc., 1987

INTRODUCTION TO DIGITAL SIGNAL PROCESSING
Roman Kuc
New York, NY: McGraw-Hili Company, Inc., 1988

INTRODUCTION TO ADAPTIVE FILTERS
Simon Haykin
New York, NY: MacMillan Publishing Company, 1984

MUSICAL APPLICATIONS OF MICROPROCESSORS (Second Edition)
H. Chamberlin
Hasbrouck Heights, NJ: Hayden Book Co., 1985

C Programming Language:

. C: A REFERENCE MANUAL
Samuel P. Harbison and Guy L. Steele
Prentice-Hall Software Series, 1987.

PROGRAMMING LANGUAGE - C
American National Standards Institute,
ANSI Document X3.159-1989
American National Standards Institute, inc., 1990

THE C PROGRAMMING LANGUAGE
Brian W. Kernighan, and Dennis M. Ritchie
Prentice-Hall, Inc., 1978.

Controls:

ADAPTIVE CONTROL
K. Astrom and B. Witten mark
New York, NY: Addison-Welsey Publishing Company, Inc., 1989

ADAPTIVE FILTERING PREDICTION & CONTROL
G. Goodwin and K. Sin
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1984

AUTOMATIC CONTROL SYSTEMS
B.C.Kuo
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1987

COMPUTER CONTROLLED SYSTEMS: THEORY & DESIGN
K. Astrom and B. Witten mark
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1984

DIGITAL CONTROL SYSTEMS
B.C.Kuo
New York, NY: Holt, Reinholt, and Winston, Inc., 1980

DIGITAL CONTROL SYSTEM ANALYSIS & DESIGN
C. Phillips and H. Nagle
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1984

ISSUES IN THE IMPLEMENTATION OF DIGITAL FEEDBACK
COMPENSATORS
P. Moroney
Cambridge, MA: The MIT Press, 1983

Graphics:

CGM AND CGI
D. B. Arnold and P. R. Bono
New York, NY: Springer-Verlag, 1988

COMPUTER GRAPHICS (Second Edition)
D. Hearn and M. Pauline Baker
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1986

FUNDAMENTALS OF INTERACTIVE COMPUTER GRAPHICS
J. D. Foley and A. Van Dam
Reading MA: Addison-Wesley Publishing Company Inc., 1984

GEOMETRIC MODELING
Michael E. Morteson
New York, NY: John Wiley and Sons, Inc.

GKS THEORY AND PRACTICE
P. R. Bono and I. Herman (Eds.)
New York, NY: Springer-Verlag, 1987

ILLUMINATION AND COLOR IN COMPUTER GENERATED IMAGERY
Roy Hall
New York, NY: Springer-Verlag

POSTSCRIPT LANGUAGE PROGRAM DESIGN
Glenn C. Reid - Adobe Systems, Inc.
Reading MA: Addison-Wesley Publishing Company, Inc., 1988

MICROCOMPUTER DISPLAYS, GRAPHICS, AND ANIMATION
Bruce A. Artwick
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1985

PRINCIPLES OF INTERACTIVE COMPUTER GRAPHICS
William M. Newman and Roger F. Sproull
New York, NY: McGraw-Hili Company, Inc., 1979

PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS
David F. Rogers
New York, NY: McGraw-Hili Company, Inc., 1985

RENDERMANINTERFACE,THE
Pixar
San Rafael, CA. 94901

Image Processing:

DIGITAL IMAGE PROCESSING
William K. Pratt
New York, NY: John Wiley and Sons, 1978

DIGITAL IMAGE PROCESSING (Second Edition)
Rafael C. Gonzales and Paul Wintz
Reading, MA: Addison-Wesley Publishing Company, Inc., 1977

DIGITAL IMAGE PROCESSING TECHNIQUES
M. P. Ekstrom
New York, NY: Academic Press, Inc., 1984

DIGITAL PICTURE PROCESSING
Azriel Rosenfeld and Avinash C. Kak
New York, NY: Academic Press, Inc., 1982

SCIENCE OF FRACTAL IMAGES, THE
M. F. Barnsley, R. L. Devaney, B. B. Mandelbrot, H. O. Peitgen,
D. Saupe, and R. F. Voss
New York, NY: Springer-Verlag

Motorola DSP Manuals:

MOTOROLA DSP56000 LINKER/LIBRARIAN REFERENCE MANUAL
Motorola, Inc., 1991.

MOTOROLA DSP56000 MACRO ASSEMBLER REFERENCE MANUAL
Motorola, Inc., 1991.

MOTOROLA DSP56000 SIMULATOR REFERENCE MANUAL
Motorola, Inc., 1991.

MOTOROLA DSP56000/DSP56001 USER'S MANUAL
Motorola, Inc.,1990.

Numerical Methods:

ALGORITHMS (THE CONSTRUCTION, PROOF, AND ANALYSIS OF
PROGRAMS)
P. Berliout and P. Bizard
New York, NY: John Wiley and Sons, 1986

MATRIX COMPUTATIONS
G. H. Golub and C. F. Van Loan
John Hopkins Press, 1983

NUMERICAL RECIPES IN C - THE ART OF SCIENTIFIC PROGRAMMING
William H. Press, Brian P. Flannery,
Saul A. Teukolsky, and William T. Vetterling
Cambridge University Press, 1988

NUMBER THEORY IN SCIENCE AND COMMUNICATION
Manfred R. Schroeder
New York, NY: Springer-Verlag, 1986

Pattern Recognition:

PATTERN CLASSIFICATION AND SCENE ANALYSIS
R. O. Duda and P. E. Hart
New York, NY: John Wiley and Sons, 1973

CLASSIFICATION ALGORITHMS
Mike James
New York, NY: Wiley-Interscience, 1985

Spectral Analysis:

STATISTICAL SPECTRAL ANALYSIS, A NON PROBABILISTIC THEORY
William A. Gardner
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1988

THE FAST FOURIER TRANSFORM AND ITS APPLICATIONS
E. Oran Brigham
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1988

THE FAST FOURIER TRANSFORM AND ITS APPLICATIONS
R. N. Bracewell
New York, NY: McGraw-Hili Company, Inc., 1986

Speech:

ADAPTIVE FILTERS - STRUCTURES, ALGORITHMS, AND APPLICATIONS
Michael L. Honig and David G. Messerschmitt
Higham, MA: Kluwer Academic Publishers, 1984

DIGITAL CODING OF WAVEFORMS
N. S. Jayant and P. Noll
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1984

DIGITAL PROCESSING OF SPEECH SIGNALS
Lawrence R. Rabiner and R. W. Schafer
Englwood Cliffs, NJ: Prentice-Hall, Inc., 1978

LINEAR PREDICTION OF SPEECH
J. D. Markel and A. H. Gray, Jr.
New York, NY: Springer-Verlag, 1976

SPEECH ANALYSIS, SYNTHESIS, AND PERCEPTION
J. L. Flanagan
New York, NY: Springer-Verlag, 1972

SPEECH COMMUNICATION - HUMAN AND MACHINE
D. O'Shaughnessy
Reading, MA: Addison-Wesley Publishing Company, Inc., 1987

Telecommunications:

DIGITAL COMMUNICATION
Edward A. Lee and David G. Messerschmitt
Higham, MA: Kluwer Academic Publishers, 1988

DIGITAL COMMUNICATIONS
John G. Proakis
New York, NY: McGraw-Hili Publishing Co., 1983

APPENDIX A
INSTRUCTION SET DETAILS

Arithmetic
ABS

ADC

IMPY

INC

INC24

MAC

MACR

MPY

MPYR

MPY(su,uu)

Program
Control

WAIT

A.1 APPENDIX A INTRODUCTION
This appendix contains detailed information about each instruction in the DSP56K
instruction set. It presents an instruction guide to help the user understand the individual
instruction descriptions and follows with sections on notation and addressing modes.
The instructions are then discussed in alphabetical order.

A.2 INSTRUCTION GUIDE
The following information is included in each instruction description with the goal of mak­
ing each description self-contained:

1. Name and. Mnemonic: The mnemonic is highlighted in bold type for easy refer­
ence.

2. Assembler Syntax and Operation: For each instruction syntax, the corresponding
operation is symbolically described. If there are several operations indicated on a
single line in the operation field, those operations do not necessarily occur in the
order shown but are generally assumed to occur in parallel. If a parallel data move
is allowed, it will be indicated in parenthesis in both the assembler syntax and oper­
ation fields. If a letter in the mnemonic is optional, it will be shown in parenthesis in
the assembler syntax field.

3. Description: A complete text description of the instruction is given together with
any special cases and/or condition code anomalies of which the user should be
aware when using that instruction.

4. Example: An example of the use of the instruction is given. The example is shown
in DSP56K assembler source code format. Most arithmetic and logical instruction
examples include one or two parallel data moves to illustrate the many types of par­
allel moves that are possible. The example includes a complete explanation, which
discusses the contents of the registers referenced by the instruction (but not those
referenced by the parallel moves) both before and after the execution of the instruc­
tion. Most examples are designed to be easily understood without the use of a cal­
culator.

5. Condition Codes: The status register is depicted with the condition code bits which
can be affected by the instruction highlighted in bold type. Not all bits in the status
register are used. Those which are reserved are indicated with a double asterisk
and are read as zeros.

6. Instruction Format: The instruction fields, the instruction opcode, and the instruc­
tion extension word are specified for each instruction syntax. When the extension

word is optional, it is so indicated. The values which can be assumed by each of the
variables in the various instruction fields are shown under the instruction field's
heading. Note that the symbols used in decoding the various opcode fields of an
instruction are completely arbitrary. Furthermore, the opcode symbols used in
one instruction are completely independent of the opcode symbols used in a dif­
ferent instruction.

7. Timing: The number of oscillator clock cycles required for each instruction syntax is
given. This information provides the user a basis for comparison of the execution
times of the various instructions in oscillator clock cycles. Refer to Table A-1 and
Section A.8 for a complete explanation of instruction timing, including the meaning
of the symbols "aio", "ap" , "ax", "ay", "axy", "ea", "jx", "mv", "mvb", "mvc", "mvm",
"mvp", "rx", "wio", "wp", "wx", and ''wy''.

8. Memory: The number of program memory words required for each instruction syn­
tax is given. This information provides the user a basis for comparison of the num­
ber of program memory locations required for each of the various instructions in 24-
bit program memory words. Refer to Table A-1 and Section A.8 for a complete
explanation of instruction memory requirements, including the meaning of the sym­
bols "ea" and "mv".

A.3 NOTATION
Each instruction description contains symbols used to abbreviate certain operands and
operations. Table A-1 lists the symbols used and their respective meanings. Depending
on the context, registers refer to either the register itself or the contents of the register.

Table A-1 Instruction Description Notation

Data ALU Registers Operands

Xn Input Register X1 or XO (24 Bits)

Yn Input Register Y1 or YO (24 Bits)

An Accumulator Registers A2, A1, AO (A2 - 8 Bits, A1 and AO - 24 Bits)

Bn Accumulator Registers B2, B1, BO (B2 - 8 Bits, B1 and BO - 24 Bits)

X Input Register X = X1 : XO (48 Bits)

Y Input Register Y = Y1 : YO (48 Bits)

A Accumulator A = A2: A 1: AO (56 Bits)*

B Accumulator B = B2: B1 : BO (56 Blts)*

AB Accumulators A and B = A1: B1 (48 Bits)*

BA Accumulators B and A = B1 : A1 (48 Bits)*

A10 Accumulator A = A1: AO (48 Bits)

B10 Accumulator B= B1 :BO (48 bits)

* NOTE: In data move operations, shifting and limiting are performed when this register is specified
as a source operand. When specified as a destination operand, sign extension and possibly
zeroing are performed.

Address ALU Registers Operands

Rn Address Registers RO - R7 (16 Bits)

Nn Address Offset Registers NO - N7 (16 Bits)

Mn Address Modifier Registers MO - M7 (16 Bits)

PC

MR

CCR

SR'

OMR

LA

LC

SP

SSH

SSL

SS

ea

eax

eay

xxxx

xxx

aa

pp

< ... >

X:

Y:

L:

P:

Table A-1 Instruction Description Notation (Continued)

Program Control Unit Registers Operands

Program Counter Register (16 Bits)

Mode Register (8 Bits)

Condition Code Register (8 Bits)

Status Register = MR:CCR (16 Bits)

Operating Mode Register (8 Bits)

Hardware Loop Address Register (16 Bits)

Hardware Loop Counter Register (16 Bits)

System Stack Pointer Register (6 Bits)

Upper Portion of the Current Top of the Stack (16 Bits)

Lower Portion of the Current Top of the Stack (16 Bits)

System Stack RAM = SSH: SSL (15 Locations by 32 Bits)

Address Operands

Effective Address

Effective Address for X Bus

Effective Address for Y Bus

Absolute Address (16 Bits)

Short Jump Address (12 Bits)

Absolute Short Address (6 Bits, Zero Extended)

I/O Short Address (6 Bits, Ones Extended)

Specifies the Contents of the Specified Address

X Memory Reference

Y Memory Reference

Long Memory Reference = X:Y

Program Memory Reference

Table A-1 Instruction Description Notation (Continued)

Miscellaneous Operands

S,Sn Source Operand Register

D,Dn Destination Operand Register

D[n] Bit n of D Destination Operand Register

#n Immediate Short Data (5 Bits)

#XX Immediate Short Data (8 Bits)

#XXX Immediate Short Data (12 Bits)

#XXXXXX Immediate Data (24 Bits)

Unary Operators

- Negation Operator

- Logical NOT Operator (Overbar)

PUSH Push Specified Value onto the System Stack (SS) Operator

PULL Pull Specified Value from the System Stack (SS) Operator

READ Read the Top of the System Stack (SS) Operator

PURGE Delete the Top Value on the System Stack (SS) Operator

I I Absolute Value Operator

Binary Operators

+ Addition Operator

- Subtraction Operator

* Multiplication Operator

+,/ Division Operator

+ Logical Inclusive OR Operator

. Logical AND Operator

ED Logical Exclusive OR Operator

-+ "Is Transferred To" Operator

Concatenation Operator

Table A-1 Instruction Description Notation (Continued)

Addressing Mode Operators

« 110 Short Addressing Mode Force Operator

< Short Addressing Mode Force Operator

> Long Addressing Mode Force Operator

Immediate Addressing Mode Operator

#> Immediate Long Addressing Mode Force Operator

#< Immediate Short Addressing Mode Force Operator

Mode Register (MR) Symbols

DM Double Precision Multiply Bit Indicating if the Chip is in Double Precision Multiply Mode

LF Loop Flag Bit Indicating When a DO Loop is in Progress

T Trace Mode Bit Indicating if the Tracing Function has been Enabled

S1, SO Scaling Mode Bits Indicating the Current Scaling Mode

11,10 Interrupt Mask Bits Indicating the Current Interrupt Priority Level

Condition Code Register (CCR) Symbols
Standard Definitions (Table A-5 in Section A.5 Describes Exceptions)

S Block Floating Point Scaling Bit Indicating Data Growth Detection

L Limit Bit Indicating Arithmetic Overflow and/or Data Shifting/Limiting

E Extension Bit Indicating if the Integer Portion of A or B is in Use

U Unnormalized Bit Indicating if the A or B Result is Unnormalized

N Negative Bit Indicating if Bit 55 of the A or B Result is Set

Z Zero Bit Indicating if the A or B Result Equals Zero

V Overflow Bit Indicating if Arithmetic Overflow has Occurred in A or B

C Carry Bit Indicating if a Carry or Borrow Occurred in A or B Result

aio

ap

ax

ay

axy

ea

jx

mv

mvb

mvc

mvm

mvp

rx

wio

wp

wx

wy

()

(...)
EXT

LS

LSP

MS

MSP

r

S/L

Sign Ext

Zero

Table A-1 Instruction Description Notation (Continued)

Instruction Timing Symbols

lime Required to Access an I/O Operand

lime Required to Access a P Memory Operand

lime Required to Access an X Memory Operand

lime Required to Access a V Memory Operand

lime Required to Access XV Memory Operands

lime or Number of Words Required for an Effective Address

lime Required to Execute Part of a Jump-Type Instruction

lime or Number of Words Required for a Move-Type Operation

lime Required to Execute Part of a Bit Manipulation Instruction

lime Required to Execute Part of a MOVEC Instruction

lime Required to Execute Part of a MOVEM Instruction

lime Required to Execute Part of a MOVEP Instruction

lime Required to Execute Part of an RTI or RTS Instruction

Number of Wait States Used in Accessing External 110

Number of Wait States Used in Accessing External P Memory

Number of Wait States Used in Accessing External X Memory

Number of Wait States Used in Accessing External V Memory

Other Symbols

Optional Letter, Operand, or Operation

Any Arithmetic or Logical Instruction Which Allows Parallel Moves

Extension Register Portion of an Accumulator (A2 or B2)

Least Significant

Least Significant Portion of an Accumulator (AO or BO)

Most Significant

Most Significant Portion of a n Accumulator (A1 or B1)

Rounding constant

Shifting and/or Limiting on a Data ALU Register

Sign Extension of a Data ALU Register

Zeroing of a Data ALU Register

-

-

A.4 ADDRESSING MODES
The addressing modes are grouped into three categories: register direct, address regis­
ter indirect, and special. These addressing modes are summarized in Table A-2. All
address calculations are performed in the address ALU to minimize execution time and
loop overhead. Addressing modes, which specify whether the operands are in registers,
in memory, or in the instruction itself (such as immediate data), provide the specific
address of the operands.

The register direct addressing mode can be subclassified according to the specific regis­
ter addressed. The data registers inch,Jde X1, XO, V1, VO, X, V, A2, A1, AO, B2, B1, BO,
A, and B. The control registers include SR, OMR, SP, SSH, SSL, LA, LC, CCR, and MR.

Address register indirect modes use an address register Rn (RO-R7) to point to locations
in X, V, and P memory. The contents of the Rn address register (Rn) is the effective
address (ea) of the specified operand, except in the "indexed by offset" mode where the
effective address (ea) is (Rn+Nn). Address register indirect modes use an address mod­
ifier register Mn to specify the type of arithmetic to be used to update the address register
Rn. If an addressing mode specifies an address offset register Nn, the given address off­
set register is used to update the corresponding address register Rn. The Rn address
register may only use the corresponding address offset register Nn and the correspond­
ing address modifier register Mn. For example, the address register RO may only use the
NO address offset register and the MO address modifier register during actual address
computation and address register update operations. This unique implementation allows
the user to easily address a wide variety of DSP-oriented data structures. All address
register indirect modes use at least one set of address registers (Rn, Nn, and Mn), and
the XV memory reference uses two sets of address registers, one for the X memory
space and one for the V memory space.

The special addressing modes include immediate and absolute addressing modes as
well as implied references to the program counter (PC), the system stack (SSH or SSL),
and program (P) memory.

Addressing modes may also be categorized by the ways in which they can be used.
Table A-2 and Table A-3 show the various categories to which each addressing mode
belongs. These addressing mode categories may be combined so that additional, more
restrictive classifications may be defined. For example, the instruction descriptions may
use a memory alterable classification, which refers to addressing modes that are both
memory addressing modes and alterable addressing modes. Thus, memory alterable
addressing modes use address register indirect and absolute addressing modes.

Table A-2 DSP56K Addressing Modes

Uses Mn Operand Reference
Addressing Mode

Modifier C D A P X V L XV S

Register Direct

Data or Control Register No X X X

Address Register Rn No X

Address Modifier Register No X
Mn

Address Offset Register Nn No X

Address Register Indirect

No Update No X X X X X

Postincrement by 1 Yes X X X X X

Postdecrement by 1 Yes X X X X X

Postincrement by Offset Nn Yes X X X X X

Postdecrement by Offset Nn Yes X X X X

Indexed by Offset Nn Yes X X X X

Predecrement by 1 Yes X X X X

Special

Immediate Data No X

Absolute Address No X X X X

Immediate Short Data No X

Short Jump Address No X

Absolute Short Address No X X X X

I/O Short Address No X X

Implicit No X X X

NOTE:
S = System Stack Reference X = X Memory Reference
C = Program Controller Register Reference Y = Y Memory Reference
D = Data ALU Register Reference L = L Memory Reference -A = Address ALU Register Reference XY = XV Memory Reference
P = Program Memory Reference

-

Table A-3 DSP56K Addressing Mode Encoding

Mode Reg Addressing Categories Assembler
Addressing Mode MMM RRR Syntax U P M A

Register Direct

Data or Control Register - - X (See Table A-1)

Address Register - - X Rn

Address Offset Register - - X Nn

Address Modifier Register - - X Mn

Address Register Indirect

No Update 100 Rn X X X (Rn)

Postincrement by 1 011 Rn X X X X (Rn) +

Postdecrement by 1 010 Rn X X X X (Rn) -

Postincrement by Offset Nn 001 Rn X X X X (Rn) + Nn

Postdecrement by Offset Nn 000 Rn X X X (RN) - Nn

Indexed by Offset Nn 101 Rn X X (Rn + Nn) .
Predecrement by 1 111 Rn X X - (Rn)

Special

Immediate Data 110 100 X #xxxxxx

Absolute Address 110 000 X X xxxx

Immediate Short Data - - #xx

Short Jump Address - - X xxx

Absolute Short Address - - X aa

I/O Short Address - - X pp

Implicit - - X

. Update Mode (U) - Modifies address registers without any associated data move.
Parallel Mode (P) - Used in instructions where two effective addresses are required.
Memory Mode (M) - Refers to operands in memory using an effective addressing field.
Alterable Mode (A) - Refers to alterable or writable registers or memory.

The address register indirect addressing modes require that the offset register number
be the same as the address register number. The assembler syntax "N" may be used
instead of liNn" in the address register indirect memory addressing modes. If "N" is spec­
ified, the offset register number is the same as the address register number.

A.4.1 Addressing Mode Modifiers
The addressing mode selected in the instruction word is further specified by the contents
of the address modifier register Mn. The addressing mode update modifiers (MO-M7) are
shown in Table A-4. There are no restrictions on the use of modifier types with any
address register indirect addressing mode.

-

Table A-4 Addressing Mode Modifier Summary

Binary MO-M7 Hex MO-M7 Addressing Mode Arithmetic

0000 0000 0000 0000 0000 Reverse Carry (Bit Reverse)

0000 0000 0000 0001 0001 Modulo 2

00000000 0000 0010 0002 Modulo 3

0111111111111110 7FFE Modulo 32767

0111 1111 1111 1111 7FFF Modulo 32768

1 000 0000 0000 0000 8000 Reserved

1000 0000 0000 0001 8001 Multiple Wrap-Around Modulo 2

1000 0000 0000 0010 8002 Reserved

1000000000000011 8003 Multiple Wrap-Around Modulo 4

Reserved

1 000 0000 0000 0111 8007 Multiple Wrap-Around Modulo 8

Reserved

1000000000001111 800F Multiple Wrap-Around Modulo 24

Reserved

100000000001 1111 801F Multiple Wrap-Around Modulo 25

Reserved

100000000011 1111 803F Multiple Wrap-Around Modulo 26

Reserved

100000000111 1111 807F Multiple Wrap-Around Modulo 27

Reserved

1 000 0000 1111 1111 80FF Multiple Wrap-Around Modulo 28

Reserved

10000001 1111 1111 81FF Multiple Wrap-Around Modulo 29

Reserved

1000 0011 1111 1111 83FF Multiple Wrap-Around Modulo 210

Reserved

10000111 1111 1111 87FF Multiple Wrap-Around Modulo 211

Reserved

-
1 000 1111 1111 1111 8FFF Multiple Wrap-Around Modulo 212

Reserved

1001 1111 1111 1111 9FFF Multiple Wrap-Around Modulo 213

Reserved

1011111111111111 BFFF Multiple Wrap-Around Modulo 214

Reserved

1111 1111 11111111 FFFF Linear (Modulo 215)

A.S CONDITION CODE COMPUTATION

15 14 13 12 11 10 9 8 7 6 4 3 2 o

I'F 10M I T I ** I 51 I SO I 11 I 10 I 5 I l I E I u N I z
.. MA .. oC eeA

The condition code register (CCR) portion of the status register (SR) consists of eight
defined bits:

S - Scaling Bit

L - Limit Bit

N - Negative Bit

Z - Zero Bit

E - Extension Bit V - Overflow Bit

U - Unnormalized Bit C - Carry Bit

The E, U, N, Z, V, and C bits are true condition code bits that reflect the condition of the
result of a data ALU operation. These condition code bits are not latched and are not
affected by address ALU calculations or by data transfers over the X, Y, or global
data buses. The L bit is a latching overflow bit which indicates that an overflow has
occurred in the data ALU or that data limiting has occurred when moving the contents of
the A and/or B accumulators. The S bit is a latching bit used in block floating pOint oper­
ations to indicate the need to scale the number in A or B. See SECTION 5 - PROGRAM
CONTROL UNIT for information on the MR portion of the status register.

The standard definition of the condition code bits follows. Exceptions to these stan­
dard definitions are given in the notes which follow Table A-5.

S (Scaling Bit)

L (Limit Bit)

- E (Extension Bit)

The scaling bit (S) is used to detect data growth, which is
required in Block Floating Point FFT operation. Typically, the bit
is tested after each pass of a radix 2 decimation-in-time FFT
and, if it is set, the appropriate scaling mode should be activated
in the next pass. The Block Floating Point FFT algorithm is
described in the Motorola application note APR4/D, "Implemen­
tation of Fast Fourier Transforms on Motorola's DS P56000/
DSP56001 and DSP96002 Digital Signal Processors." This bit is
computed according to the logical equations below when an
instruction or a parallel move moves the result of accumulator A
or B to XDB or YDB. It is a "sticky" bit, cleared only by an instruc­
tion that specifically clears it.

The following logical equations are used to compute the scaling
bit based upon the scaling mode bits:

If S1 =0 and So=o (no scaling)
then S = (A46 XOR A45) OR (B46 XOR B45)

If S1 =0 and SO=1 (scale down)
then S = (A47 XOR A46) OR (B47 XOR B46)

If S1 =1 and SO=O (scale up)
then S = (A45 XOR A44) OR (B45 XOR B44)

If S1 =1 and SO=1 (reserved)
then the S flag is undefined.

where Ai and Bi means bit i in accumulator A or B.

Set if the overflow bit V is set or if an instruction or a parallel
move causes the data shifter/limiters to perform a limiting opera­
tion. Not affected otherwise. This bit is latched and must be
reset by the user.

Cleared if all the bits of the signed integer portion of the A or B
result are the same - i.e., the bit patterns are either 00 ... 00 or
11 ... 11. Set otherwise. The signed integer portion is defined
by the scaling mode as shown in the following table:

S1 SO Scaling Mode Signed Integer Portion

0 0 No Scaling Bits 55, 54, 48,47
0 1 Scale Down Bits 55, 54, 49, 48
1 0 Scale Up Bits 55, 54, 47,46

Note that the signed Integer portion of an accumulator IS NOT necessarily the same as
the extension register portion of that accumulator. The signed integer portion of an accu­
mulator consists of the MS 8, 9, or 10 bits of that accumulator, depending on the scaling
mode being used. The extension register portion of an accumulator (A2 or B2) is always the
MS 8 bits of that accumulator. The E bit refers to the signed integer portion of an accu­
mulator and NOT the extension register portion of that accumulator. For example, if
the current scaling mode is set for no scaling (Le., 81 =SO=O), the signed integer portion of
the A or B accumulator consists of bits 47 through 55. If the A accumulator contained the
signed 56-bit value $00:800000:000000 as a result of a data ALU operation, the E bit
would be set (E=1) since the 9 MS bits of that accumulator were not all the same (Le., nei­
ther 00 .. 00 nor 11 .. 11). This means that data limiting will occur if that 56-bit value is
specified as a source operand in a move-type operation. This limiting operation will result in
either a positive or negative, 24-bit or 48-bit saturation constant being stored in the specified
destination. The only situation in which the signed integer portion of an accumulator and the
extension register portion of an accumulator are the same is in the "Scale Down" scaling
mode (i.e., S1 =0 and SO=1).

U (Un normalized Bit) Set if the two MS bits of the MSP portion of the A or B result are the
same. Cleared otherwise. The MSP portion is defined by the scal­
ing mode. The U bit is computed as follows:

N (Negative Bit)

Z (Zero Bit)

v (Overflow Bit)

S1

o
o
1

SO

o
1
o

Scaling Mode

No Scaling
Scale Down
Scale Up

U Bit Computation

U=(Bit 47 ffi Bit 46)
U=(Bit 48 ffi Bit 47)
U=(Bit 46 ffi Bit 45)

Set if the MS bit 55 of the A or B result is set. Cleared otherwise.

Set if the A or B result equals zero. Cleared otherwise.

Set if an arithmetic overflow occurs in the 56-bit A or B result. This
indicates that the result cannot be represented in the 56-bit accu­
mulator; thus, the accumulator has overflowed. Cleared otherwise. -

-

C (Carry Bit) Set if a carry is generated out of the MS bit of the A or B result of
an addition or if a borrow is generated out of the MS bit of the A
or B result of a subtraction. The carry or borrow is generated out
of bit 55 of the A or B result. Cleared otherwise.

Table A-5 shows how each condition code bit is affected by each instruction. Exceptions
to the standard definitions given above are indicated by a number or a "?". Consult the
corresponding note for the special definition that applies in each particular case.
Although many of the instructions allow optional parallel moves, Table A-5 applies when
there are no parallel moves associated with an instruction. With this restriction, the
states of the condition code bits are determined only by the execution of the instruction
itself. However, the Sand L bits may be determined differently than shown in the table
when a parallel move is associated with the instruction. When using an optional parallel
move, refer to the individual instruction's detailed description in Section A.7 to see how
the Sand L bits are determined.

Table A-5 Condition Code Computations for Instructions (No Parallel Move)

Mnemonic S L E U N Z V C Notes Mnemonic S L E U N Z V C Notes

ABS - ,/ ,/ ,/ ,/ ,/ ,/ - LSR - - - - 1 9 1 11

ADC - ,/ ,/ ,/ ,/ ,/ ,/ ,/ LUA - - - - - - - -
ADD - ,/ ,/ ,/ ,/ ,/ ,/ ,/ MAC - ,/ ,/ ,/ ,/ ,/ ,/ -
ADDL - ,/ ,/ ,/ ,/ ,/ 2 ,/ MACR - ,/ ,/ ,/ ,/ ,/ ,/ -
ADDR - ,/ ,/ ,/ ,/ ,/ ,/ ,/ MOVE ,/ ,/ - - - - - -
AND - - - - 8 9 1 - MOVEC ? ? ? ? ? ? ? ? 13

ANDI ? ? ? ? ? ? ? ? 3 MOVEM ? ? ? ? ? ? ? ? 13

ASL - ,/ ,/ ,/ ,/ ,/ 2 4 MOVEP ? ? ? ? ? ? ? ? 13

ASR - - ,/ ,/ ,/ ,/ 1 5 MPY - - ,/ ,/ ,/ ,/ 1 -
BCHG ? ? ? ? ? ? ? ? 14 MPYR - - ,/ ,/ ,/ ,/ 1 -
BCLR ? ? ? ? ? ? ? ? 14 NEG - ,/ ,/ ,/ ,/ ,/ ,/ -
BSET ? ? ? ? ? ? ? ? 14 NOP - - - - - - - -
BTST ? ? - - - - - ? 14 NORM - ,/ ,/ ,/ ,/ ,/ 2 -
CLR - - ,/ ,/ ,/ ,/ 1 - NOT - - - - 8 9 1 -
CMP - ,/ ,/ ,/ ,/ ,/ ,/ ,/ OR - - - - 8 9 1 -
CMPM - ,/ ,/ ,/ ,/ ,/ ,/ ,/ ORI ? ? ? ? ? ? ? ? 6

DEBUG - - - - - - - - REP ,/ ,/ - - - - - -
DEBUGec - - - - - - - - RESET - - - - - - - -
DEC - ,/ ,/ ,/ ,/ ,/ ,/ ,/ RND - ,/ ,/ ,/ ,/ ,/ ,/ -
DIV - ,/ - - - - 2 7 ROL - - - - 8 9 1 10

DO ,/ ,/ - - - - - - ROR - - - - 8 9 1 11

ENDDO - - - - - - - - RTI ? ? ? ? ? ? ? ? 12

EOR - - - - 8 9 1 - RTS - - - - - - - -
ILLEGAL - - - - - - - - SBC - ,/ ,/ ,/ ,/ ,/ ,/ ,/

INC - ,/ ,/ ,/ ,/ ,/ ,/ ,/ STOP - - - - - - - -
Jcc - - - - - - - - SUB - ,/ ,/ ,/ ,/ ,/ ,/ ,/

JCLR ? ? - - - - - - 14 SUBL - ,/ ,/ ,/ ,/ ,/ 2 ,/

JMP - - - - - - - - SUBR - ,/ ,/ ,/ ,/ ,/ ,/ ,/

JScc - - - - - - - - SWI - - - - - - - -
JSCLR ? ? - - - - - - 14 Tee - - - - - - - -
JSET ? ? - - - - - - 14 TFR - - - - - - - -
JSR - - - - - - - - TST - - ,/ ,/ ,/ ,/ 1 -
JSSET ? ? - - - - - - 14 WAIT - - - - - - - -
LSL - - - - 8 9 1 10

where: ,/ Set according to the standard definition of the operation
- Not affected by the operation
? or' Set according to a special definition (refer to the following notes) and can be a 0 or 1

-

-

The following notes apply to Table A-5:

1. The bit is cleared.

2. V - Set if an arithmetic overflow occurs in the 56-bit A or B result or if the MS bit
. of the destination operand is changed as a result of the left shift. Cleared otherwise.

3. For destination operand CCR, the bits are cleared if the corresponding bits in the
immediate data are cleared. Otherwise they are not affected. For other destination
operands, the bits are not affected.

4. C - Set if bit 55 of the source operand was set prior to instruction execution.
Cleared otherwise.

5. C - Set if bit 0 of the source operand was set prior to instruction execution. Cleared
otherwise.

6. For destination operand CCR, the bits are set if the corresponding bits in the imme­
diate data are set. Otherwise, they are not affected. For other destination operands,
the bits are not affected.

7. C - Set if bit 55 of the result is cleared. Cleared otherwise.

8. N - Set if bit 47 of the A or B result is set. Cleared otherwise.

9. Z - Set if bits 47 - 24 of the A or B result are zero. Cleared otherwise.

10. C - Set if bit 47 of the source operand was set prior to instruction execution.
Cleared otherwise.

11. C - Set if bit· 24 of the source operand was set prior to instruction execution.
Cleared otherwise.

12. Set according to the value pulled from the stack.

13. For destination operand SR, the bits are set according to the corresponding bit of
the source operand. If SR is not specified as a destination operand, the L bit is set
if data limiting occurred and the S bit is computed according to the definition. (See
Section A.5.) Otherwise, the bits are unaffected.

14. Due to complexity, refer to the detailed description of the instruction.

A.6 PARALLEL MOVE DESCRIPTIONS
Many of the instructions in the DSP56K instruction set allow optional parallel data bus
movement. Section A.7 indicates the parallel move option in the instruction syntax with
the statement "'parallel move)". The MOVE instruction is equivalent to a NOP with paral­
lel moves. Therefore, a detai led description of each parallel move is given with the
MOVE instruction details in Section A.7, beginning on page A-160.

A.7 INSTRUCTION DESCRIPTIONS
The following section describes each instruction in the DSPS6K instruction set in com­
plete detail. The format of each instruction description is given in Section A2. Instruc­
tions which allow parallel moves include the notation "(parallel move)" in both the
Assembler Syntax and the Operation fields. The example given with each instruction
discusses the contents of all the registers and memory locations referenced by the
opcode-operand portion of that instruction but not those referenced by the parallel move
portion of that instruction. Refer to page A-160 for a complete discussion of parallel
moves, including examples which discuss the contents of all the registers and memory
locations referenced by the parallel move portion of an instruction.

Note: Whenever an instruction uses an accumulator as both a destination operand for a
data ALU operation and as a source for a parallel move operation, the parallel move
operation occurs first and will use the data that exists in the accumulator before the exe­
cution of the data ALU operation has occurred.

Whenever a bit in the condition code register is defined according to the standard defini­
tion given in Section AS, a brief definition will be given in normal text in the Condition
Code section of that instruction description. Whenever a bit in the condition code register
is defined according to a special definition for some particular instruction, the special
definition of that bit will be given in the Condition Code section of that instruction in bold
text to alert the user to any special conditions concerning its use.

The definition and thus the computation of both the E (extension) and U (unnormalized)
bits of the condition code register (CCR) varies according to the scaling mode being
used. Refer to Section AS for complete details.

Note: The Signed integer portion of an accumulator is NOT necessarily the same as ei­
ther the A2 or 82 extension register portion of that accumulator. The signed integer
portion of an accumulator is defined according to the scaling mode being used and can
consist of the MS 8,9, or 10 bits of an accumulator. Refer to Section AS for complete de­
tails.

-

-

ABS Absolute Value ABS

Operation: Assembler Syntax:
I D I D (parallel move) ABS D (parallel move)

Description: Take the absolute value of the destination operand D and store the result
in the destination accumulator.

Example:

ABS A 1 #$123456,XO A,YO ;take abs. value, set up XO, save value

Before Execution After Execution

AI ~ ___ $_FF_:F_F_FF_F_F:F_F_FF_F_2 __ ~ A ~I ___ $_O_o:o_o_oo_oo_:o_OO_OO_E __ --'

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the
value $FF:FFFFFF:FFFFF2. Since this is a negative number, the execution of the ABS
instruction takes the twos complement of that value and returns $OO:OOOOOO:OOOOOE.

Note: For the case in which the D operand equals $80:000000:000000 (-256.0), the
ABS instruction will cause an overflow to occur since the result cannot be correctly ex­
pressed using the standard 56-bit, fixed-point, twos-complement data representation.
Data limiting does not occur (Le., A is not set to the limiting value of
$7F:FFFFFF:FFFFFF).

Condition Codes:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 I LF I OM 1 T I" 1 S1 1 SO 1 11 1 10 I "I LIE 1 U 1 N 1 z vic I

.... MR CCR

S - Computed according to the definition in A.5 CONDITION CODE COMPUTATION.
L - Set if limiting (parallel move) or overflow has occurred in result
E - Set if the signed integer portion of A or B result is in use
U - Set if A or B result is unnormalized
N - Set if bit 55 of A or B result is set
Z- Set if A or B result equals zero
V - Set if overflow has occurred in A or B result

Note: The definitions of the E and U bits vary according to the scaling mode being used.
Refer to Section A.5 for complete details.

ABS

Instruction Format:
ABSD

Opcode:

23

Instruction Fields:
Cd

AO
B 1

Absolute Value

8 7

DATA BUS MOVE FIELD I 0 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Timing: 2+mv oscillator clock cycles

Memory: 1 +mv program words

ABS

4 3 o
Old o

-

-

ACC Add Long with Carry ACC

Operation: Assembler Syntax:
S+C+D -+ D (parallel move) ADC S,D (parallel move)

Description: Add the source operand S and the carry bit C of the condition code register
to the destination operand D and store the result in the destination accumulator. Long
words (48 bits) may be added to the (56-bit) destination accumulator.

Note: The carry bit is set correctly for multiple precision arithmetic using long-word op­
erands if the extension register of the destination accumulator (A2 or B2) is the sign
extension of bit 47 of the destination accumulator (A or B).

Example:

MOVE L:<$O,X
MOVE L:<$1,A
MOVE L:<$2,V
ADD X,A L:<$3,B
ADC V,B A10,L:<$4
MOVE B10,L:<$5

Before Execution

A I $FF:800000:000000

X I $800000:000000

B I $00:000000:000001

V I $000000:000001

;get a 48-bit LS long-word operand in X
;get other LS long word in A (sign ext.)
;get a 48-bit MS long-word operand in V
;add LS words; get other MS word in B
;add MS words with carry, save LS sum
;save MS sum

After Execution

A I $FF:OOOOOO:oooooo

X I $800000:000000

B I $00:000000:000003

V I $000000:000001

Explanation of Example: This example illustrates long-word double-precision (96-bit)
addition using the ADC instruction. Prior to execution of the ADD and ADC instructions,
the double-precision 96-bit value $000000:000001 :800000:000000 is loaded into the V
and X registers (y:X), respectively. The other double-precision 96-bit value
$000000:000001 :800000:000000 is loaded into the B and A accumulators (B:A), respec­
tively. Since the 48-bit value loaded into the A accumulator is automatically sign
extended to 56 bits and the other 48-bit long-word operand is internally sign extended to
56 bits during instruction execution, the carry bit will be set correctly after the execution
of the ADD X,A instruction. The ADC V,B instruction then produces the correct MS 56-bit

ADC Add Long with Carry ADC

result. The actual 96-bit result is stored in memory using the A 10 and B10 operands
(instead of A and B) because shifting and limiting is not desired.

Condition Codes:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

I LF I OM I T I ** I 81 I 80 I 11 I lois I L I E I U N I z v I :.1 ~ MR .~ CCR

S - Computed according to the definition in A.5 CONDITION CODE COMPUTATION

L - Set if limiting (parallel move) or overflow has occurred in result
E - Set if the signed integer portion of A or B result is in use
U - Set if A or B result is unnormalized
N - Set if bit 55 of A or B result is set
Z- Set if A or B result equals zero
V - Set if overflow has occurred in A or B result

C - Set if a carry (or borrow) occurs from bit 55 of A or B result.

Note: The definitions of the E and U bits vary according to the scaling mode being used.

Refer to Section A.5 for complete details.

Instruction Format:
ADC S,D

Opcode:
23 8 7

DATA BUS MOVE FIELD 1 0 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:
S,D Jd

X,A 00
X,B 01

V,A 10
V,B 1 1

Timing: 2+mv oscillator clock cycles

Memory: 1 +mv program words

4 3 0

-

-

ADD Add ADD

Operation: Assembler Syntax:
S+D-+D (parallel move ADD S,D (parallel move)

Description: Add the source operand S to the destination operand D and store the result
in the destination accumulator. Words (24 bits), long words (48 bits), and accumulators
(56 bits) may be added to the destination accumulator.

Note: The carry bit is set correctly using word or long-word source operands if the ex­
tension register of the destination accumulator (A2 or B2) is the sign extension of bit 47 of
the destination accumulator (A or B). Thus, the carry bit is always set correctly using ac­
cumulator source operands, but can be set incorrectly if A1, B1, A1 0, or B1 0 are used as
source operands and A2 and B2 are not replicas of bit 47.

Example:

ADD XO,AA,X1 A,Y:(R1)+1 ;24-bit add, set up X1 , save prevo result

Before Execution After Execution

XO ~I ________ $_F_FF_FF_F __ ~ XO ~I ________ $F_FF_F_FF ____ ~

A 1~ ___ $_O_O:_OO_01_00_:0_00_0_00 __ ~ A ~I ___ $_O_O:O_O_OO_FF_:O_OO_O_OO_----'

Explanation of Example: Prior to execution, the 24-bit XO register contains the value
$FFFFFF and the 56-bit A accumulator contains the value $00:000100:000000. The
ADD instruction automatically appends the 24-bit value in the XO register with 24 LS
zeros, sign extends the resulting 48-bit long word to 56 bits, and adds the result to the
56-bit A accumulator. Thus, 24-bit operands are added to the MSP portion of A or B (A1
or B1) because all arithmetic instructions assume a fractional, twos complement data
representation. Note that 24-bit operands can be added to the LSP portion of A or B (AO
or BO) by loading the 24-bit operand into XO or YO, forming a 48-bit word by loading X1 or
Y1 with the sign extension of XO or YO and executing an ADD X,A or ADD Y,A instruc­
tion.

ADD Add ADD

Condition Codes:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

1 LF 10M 1 T 1-- I SI I so I 11 I lOiS I LIE I U N I z v I :.1
.... MR CCR _.

S - Computed according to the definition in A.5 CONDITION CODE COMPUTATION
L - Set if limiting (parallel move) or overflow has occurred in result
E - Set if the signed integer portion of A or B result is in use
U - Set if A or B result is unnormalized
N - Set if bit 55 of A or B result is set
Z - Set if A or B result equals zero
V - Set if overflow has occurred in A or B result
C - Set if a carry (or borrow) occurs from bit 55 of A or B result.

Note: The definitions of the E and U bits vary according to the scaling mode being used.
Refer to Section A.5 for complete details.

Instruction Format:
ADD S,D

Opcode:

23 8 7 4 3

DATA BUS MOVE FIELD I 0 J J J I d

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:
S,D JJJd S,D JJJd

B,A 0010 XO,A 1 000
A,B 001 1 XO,B 1 001
X,A 0100 VO,A 1 0 1 0
X,B o 1 01 VO,B 1 0 1 1
V,A o 1 1 0 X1,A 1 1 00
V,B o 1 1 1 X1,B 1 1 0 1

Timing: 2+mv oscillator clock cycles

Memory: 1 +mv program words

S,D JJJd

V1,A 1 1 1 0
V1,8 1 1 1 1

o
o 0 0

-

ADDL Shift Left and Add Accumulators ADDL

Operation: Assembler Syntax:
S+2*D~D (parallel move) ADDL S,D (parallel move)

Description: Add the source operand S to two times the destination operand D and
store the result in the destination accumulator. The destination operand D is arithmeti­
cally shifted one bit to the left, and a zero is shifted into the LS bit of D prior to the addi­
tion operation. The carry bit is set correctly if the source operand does not overflow as a
result of the left shift operation. The overflow bit may be set as a result of either the shift­
ing or addition operation (or both). This instruction is useful for efficient divide and deci­
mation in time (DIT) FFT algorithms.

Example:

ADDL A,B #$O,RO ;A+2*B~B, set up addr. reg. RO

Before Execution After Execution

A 1~ ____ $O_O:_OO_OO_O_O:O_O_01_23 __ ~ A ~I ___ $_O_O:O_O_OO_OO_:O_OO_12_3 __ ~

B ~I ___ $_O_O:_OO_50_00_:0_00_0_00 __ ~ BI L-___ $_O_O:O_O_AO_OO_:O_OO_1_23 __ ~

Explanation of Example: Prior to execution, the 56-bit accumulator contains the value
$00:000000:000123, and the 56-bit B accumulator contains the value
$00:005000:000000. The ADDL A,B instruction adds two times the value in the B accu­
mulator to the value in the A accumulator and stores the 56-bit result in the B accumula­
tor.

ADDL Shift Left and Add Accumulators ADDL

Condition Codes:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

1 LF I OM I T I·· I 81 I 80 I 11 lois I LEI U N I z v I :.1
.... MR CCR _.

S - Computed according to the definition in A.5 CONDITION CODE COMPUTATION
L - Set if limiting (parallel move) or overflow has occurred in result
E - Set if the signed integer portion of A or B result is in use
U - Set if A or B result is unnormalized
N - Set if bit 55 of A or B result is set
Z- Set if A or B result equals zero
V - Set If overflow has occurred In A or B result or if the MS bit of the destination

operand Is changed as a result of the Instruction's left shift
C - Set if a carry (or borrow) occurs from bit 55 of A or B result.

Note: The definitions of the E and U bits vary according to the scaling mode being used.
Refer to Section A.5 for complete details.

Instruction Format:
ADDL S,D

Opcode:

23 8 7

DATA BUS MOVE FIELD I 0 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:
S,D d

B,A 0
A,B 1

Timing: 2+mv oscillator clock cycles

Memory: 1 +mv program words

4 3 o
o 1 I d o o

-

ADDR Shift Right and Add Accumulators ADDR

Operation: Assembler Syntax:
S+D / 2--tD (parallel move) ADDR S,D (parallel move)

Description: Add the source operand S to one-half the destination operand D and store
the result in the destination accumulator. The destination operand D is arithmetically
shifted one bit to the right while the MS bit of D is held constant prior to the addition oper­
ation. In contrast to the ADDL instruction, the carry bit is always set correctly, and the
overflow bit can only be set by the addition operation and not by an overflow due to the
initial shifting operation. This instruction is useful for efficient divide and decimation in
time (DIT) FFT algorithms.

Example:

ADDR 8,A XO,X:(R1)+N1 YO,Y:(R4)- ;B+A / 2--tA, save XO and YO

Before Execution After Execution

A '~ ___ $8_0:_00_00_0_0:2_4_68_AC __ ~ A ,'----_$_C_0:0_13_57_0_:12_3_45_6_--'

B '~ __ $_0_0:0_1_35_70_:0_00_0_00 __ ~ B ,
'-------------~

$00:013570:000000

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the
value $80:000000:2468AC, and the 56-bit 8 accumulator contains the value
$00:013570:000000. The ADDR B,A instruction adds one-half the value in the A accu­
mulator to the value in the B accumulator and stores the 56-bit result in the A accumula­
tor.

ADDR Shift Right and Add Accumulators ADDR

Condition Codes:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 I LF I OM I T I .. I 8' I 80 I 11 I [0 I s I L I E I u I N I z
... MR • ~ CCR

S - Computed according to the definition in A.5 CONDITION CODE COMPUTATION
L - Set if limiting (parallel move) or overflow has occurred in result
E - Set if the signed integer portion of A or B result is in use

U - Set if A or B result is unnormalized
N - Set if bit 55 of A or B result is set
Z- Set if A or B result equals zero
V - Set if overflow has occurred in A or B result
C - Set if a carry (or borrow) occurs from bit 55 of A or B result.

Note: The definitions of the E and U bits vary according to the scaling mode being used.
Refer to Section A.5 for complete details.

Instruction Format:
ADDR 8,D

Opcode:

23 8 7 4 3

DATA BUS MOVE FIELD I 0 0 o 0 I d

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:
S,D d

B,A 0
A,B 1

Timing: 2+mv oscillator clock cycles

Memory: 1 +mv program words

o
o o

-

-

AND Logical AND AND

Operation: Assembler Syntax:
S - 0[47:24]-+0[47:24] (parallel move)
where -denotes the logical AND operator

AND S,O (parallel move)

Description: Logically AND the source operand S with bits 47-24 of the destination
operand 0 and store the result in bits 47-24 of the destination accumulator. This instruc­
tion is a 24-bit operation. The remaining bits of the destination operand 0 are not
.affected.

Example:

AND XO,A 1 (R5)-N5 ;AND XO with A 1, update R5 using N5

Before Execution After Execution

xo 1-1 _____ $F_F_OO_OO_-" xol '-________ $_F F_O 0_00 __ -"

A ,-I __ $_00_:1_23_4_56_:7_89_A_BC_----.J AI '-___ $_00_:12_0_00_0:7_8_9A_BC __ ~

Explanation of Example: Prior to execution, the 24-bit XO register contains the value
$FFOOOO, and the 56-bit A accumulator contains the value $00:123456:789ABC. The
AND XO,A instruction logically ANOs the 24-bit value in the XO register with bits 47-24 of
the A accumulator (A 1) and stores the result in the A accumulator with bits 55-48 and
23-0 unchanged.

Condition Codes:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 ° I LF I DM I T I ** I S1 I SO I 11 I 10 I s I LIE I u I N I z v I :. I
.... MR CCR _.

S - Computed according to the definition in A.5 CONDITION CODE COMPUTATION
L - Set if limiting occurs during parallel move
N - Set if bit 47 of A or B result is set
Z- Set if bits 47-24 of A or B result are zero
V - Always cleared

AND Logical AND

Instruction Format:
AND S,D

Opcode:

23 8 7 4 3

DATA BUS MOVE FIELD I 0 J J I d

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:
S JJ

XO 00
X1 1 0
YO 01
Y1 1 1

Dd

A 0 (only A 1 is changed)
8 1 (only 81 is changed)

Timing: 2+mv oscillator clock cycles

Memory: 1 +mv program words

AND

o
o

-

ANDI AND Immediate with Control Register

Operation:
#xx. D D
where • denotes the logical AND operator

Assembler Syntax:
AND(I) #xx,D

ANDI

Description: Logically AND the 8-bit immediate operand (#xx) with the contents of the
destination control register D and store the result in the destination control register. The
condition codes are affected only when the condition code register (CCR) is specified as
the destination operand.

Restrictions: The ANDI #xx,MR instruction cannot be used immediately before an
ENDDO or RTI instruction and cannot be one of the last three instructions in a DO loop
(at LA-2, LA-1, or LA).

The ANDI #xx,CCR instruction cannot be used immediately before an RTI instruction.

Example:

AND #$FE,CCR ;clear carry bit C in condo code register

Before Execution After Execution

CCR~I _______ $_3_1 ______ ~ CCR~I _______ $_30 ______ ~

Explanation of Example: Prior to execution, the 8-bit condition code register (CCR)
contains the value $31. The AND #$FE,CCR instruction logically ANDs the immediate 8-
bit value $FE with the contents of the condition code register and stores the result in the
condition code register.

ANDI AND Immediate with Control Register

Condition Codes:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 I: I DM I T I·· J:' I so I 11 I '~ I: I LIE I U CCR N I z

For CCR Operand:
S - Cleared if bit 7 of the immediate operand is cleared
L - Cleared if bit 6 of the immediate operand is cleared
E - Cleared if bit 5 of the immediate operand is cleared
U - Cleared if bit 4 of the immediate operand is cleared
N - Cleared if bit 3 of the immediate operand is cleared
Z - Cleared if bit 2 of the immediate operand is cleared
V - Cleared if bit 1 of the immediate operand is cleared
C - Cleared if bit 0 of the immediate operand is cleared

ANDI

o

For MR and OMR Operands: The condition codes are not affected using these oper­
ands.

Instruction Format:
AND(I) #xx,D

Opcode:

23 16 15

10 0 0 0 0 0 0 o 1 i i

Instruction Fields:
#xx=8-bit Immediate Short Data - iii iii i i

D EE

MR 00
CCR 01
OMR 10

Timing: 2 oscillator clock cycles

Memory: 1 program word

8 7 o
i 11 o 1 1 1 0 E E I

ASL Arithmetic Shift Accumulator Left ASL

55 47 23 o
Operation: cl ~ I~"'--I~"'-- I 0 (parallel move)

Assembler Syntax: ASL 0 (parallel move)

Description: Arithmetically shift the destination operand D one bit to the left and store
the result in the destination accumulator. The MS bit of 0 prior to instruction execution is
shifted into the carry bit C and a zero is shifted into the LS bit of the destination accumu­
lator D. If a zero shift count is specified, the carry bit is cleared. The difference between
ASL and LSL is that ASL operates on the entire 56 bits of the accumulator and therefore
sets the V bit if the number overflowed.

Example:

ASL A (R3)- ;multiply A by 2, update R3

Before Execution After Execution

A <-I __ $A_5o_
o
01_23_4_5:_01_234_5_---' AI <-__ $4_A_:0_24_68_A_:02_46_8_A_---'

SRIL-_____ $_03_00_---' SR I
~-------~

$0373

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the
value $A5:012345:012345. The execution of the ASL A instruction shifts the 56-bit value
in the A accumulator one bit to the left and stores the result back in the A accumulator.

ASL Arithmetic Shift Accumulator Left ASL

Condition Codes:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 I: IOMl T I ** I S1 I so I 11 I lois 1
L E I u I N I z v I ~I MA CCA ...

S - Computed according to the definition in A.5 CONDITION CODE COMPUTATION
L - Set if limiting (parallel move) or overflow has occurred in result
E - Set if the signed integer portion of A or B result is in use

U - Set if A or B result is unnormalized
N - Set if bit 55 of A or B result is set
Z- Set if A or B result equals zero
V - Set if bit 55 of A or B result is changed due to left shift
C - Set if bit 55 of A or B was set prior to instruction execution

Note: The definitions of the E and U bits vary according to the scaling mode being used.
Refer to Section A.5 for complete details.

Instruction Format:
ASL D

Opcode:

23 8 7 4 3 o
DATA BUS MOVE FIELD I 0 0 1 j d 0 o

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:
D d

A 0
B 1

Timing: 2+mv oscillator clock cycles

Memory: 1 +mv program words

ASR Arithmetic Shift Accumulator Right ASR

55 47 23 0
Operation: d 7 I-----tl~~ I----..... ~~ I C (parallel move)

Assembler Syntax: ASR 0 (parallel move)

Description: Arithmetically shift the destination operand 0 one bit to the right and store
the result in the destination accumulator. The LS bit of 0 prior to instruction execution is
shifted into the carry bit C, and the MS bit of 0 is held constant.

Example:

ASRB X:-(R3),R3 ;divide B by 2, update R3, load R3

Before Execution After Execution

B L-I _--=$_A8_:A_8_64_20_:A_864_21_---l BI __ $_D4_:5_43_2_10_:54_3_21_0_----'

SRI _____ $0_30_0_---' SR I _______ $_0_32_9_----'

Explanation of Example: Prior to execution, the 56-bit B accumulator contains the
value $A8:A86420:A86421. The execution of the ASR B instruction shifts the 56-bit value
in the B accumulator one bit to the right and stores the result back in the B accumulator.

ASR Arithmetic Shift Accumulator Right ASR

Condition Codes:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 I: I OM 1 T 1** JR S1 1 SO 1 11 1 '~ I: 1 LIE 1 U JR N 1 z 1 v 1 ~ I
S - Computed according to the definition in A.5 CONDITION CODE COMPUTATION
L - Set if data limiting occurs during parallel move
E - Set if the signed integer portion of A or B result is in use
U - Set if A or B result is un normalized
N - Set if bit 55 of A or B result is set
z- Set if A or B result equals zero
V - Always cleared
C - Set H bit 0 of A or B was set prior to instruction execution

Note: The definitions of the E and U bits vary according to the scaling mode being used.
Refer to Section A.5 for complete details.

Instruction Format:
ASR D

Opcode:

23 8 7 4 3 o
DATA BUS MOVE FIELD I 0 0 Old 0 o

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:
D d

A 0
B

Timing: 2+mv oscillator clock cycles

Memory: 1 +mv program words
-

BCHG Bit Test and Change BCHG

Operation: Assembler Syntax:
QI!:!] ~ C; BCHG #n,X:ea
O[n] ~ O[n]

QI!:!] ~ C; BCHG #n,X:aa
O[n] ~ O[n]

QI!:!] ~ C; BCHG #n,X:pp
O[n] ~ O[n]

QI!:!] ~ C; BCHG #n,Y:ea
O[n] ~ O[n]

QI!:!] ~ C; BCHG #n,Y:aa
O[n] ~ O[n]

QI!:!] ~ C; BCHG #n,Y:pp
O[n] ~ O[n]

QI!:!] ~ C; BCHG #n,O
O[n] ~ O[n]

Description: Test the nth bit of the destination operand 0, complement it, and store the
result in the destination location. The state of the nth bit is stored in the carry bit C of the
condition code register. The bit to be tested is selected by an immediate bit number from
0-23. This instruction performs a read-modify-write operation on the destination location
using two destination accesses before releasing the bus. This instruction provides a test­
and-change capability which is useful for synchronizing multiple processors using a
shared memory. This instruction can use all memory alterable addressing modes.

Example:

BCHG #$7,X:«$FFE2 ;test and change bit 7 in I/O Port BOOR

Before Execution After Execution

X:$FFE2 1'-___ ----:$'-00_0_00_0_----1 X;$FFE2 ,-I ____ $0_0_00_80 __ --'

SRI L-_____ $_0_3o_0_------' SRI'--_______ $_03_00 ____ --'

BCHG Bit Test and Change BCHG

Explanation of Example: Prior to execution, the 24-bit X location X:$FFE2 (lID port B
data direction register) contains the value $000000. The execution ~f the BCHG
#$7,X:«$FFE2 instruction tests the state of the 7th bit in X:$FFE2, sets the carry bit C
accordingly, and then complements the 7th bit in X:$FFE2.

Condition Codes:

15 14 13 12 11 10 9 8765432 I LF I OM I T 1·* I 81 I 80 I 11

~ MR

CCR Condition Codes:
For destination operand SR:

C - Changed if bit 0 is specified. Not affected otherwise.
V - Changed if bit 1 is specified. Not affected otherwise.
Z - Changed if bit 2 Is specified. Not affected otherwise.
N - Changed if bit 3 is specified. Not affected otherwise.
U - Changed if bit 4 is specified. Not affected otherwise.
E - Changed if bit 5 is specified. Not affected otherwise.
L - Changed if bit 6 is specified. Not affected otherwise.
S - Changed if bit 7 is specified. Not affected otherwise.

For destination operand A or B:

1 0

S -Computed according to the definition. See Notes on page A-47.
L - Set if data limiting has occurred. See Notes on page A-47.
E - Not affected
U - Not affected
N - Not affected
Z - Not affected
V - Not affected
C - Set if bit tested is set. Cleared otherwise.

BCHG

For other destination operands:
S - Not affected
L - Not affected
E - Not affected
U - Not affected
N - Not affected
Z - Not affected
V - Not affected

Bit Test and Change

C - Set if bit tested is set. Cleared otherwise.

MR Status Bits:
For destination operand SR:

10 - Changed if bit 8 is specified. Not affected otherwise.
11 - Changed if bit 9 is specified. Not affected otherwise.
SO - Changed if bit 10 is specified. Not affected otherwise.
S 1 - Changed if bit 11 is specified. Not affected otherwise.
T - Changed if bit 13 is specified. Not affected otherwise.
DM - Changed if bit 14 is specified. Not affected otherwise
LF - Changed if bit 15 is specified. Not affected otherwise.

For other destination operands:
10 - Not affected
11 - Not affected
SO - Not affected
S1 - Not affected
T - Not affected
DM - Not affected
LF - Not affected

BCHG

BCHG

Instruction Format:
BCHG #n,X:ea
BCHG #n,Y:ea

Opcode:

Bit Test and Change BCHG

23 16 15 8 7 0

0000101 1 I 0 1 M MMRRRIOSOb bb bb

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:
#n=bit number=bbbbb,
ea=6-bit Effective Address=MMMRRR

Effective
Addressing Mode MMMRRR Memory SpaceS

(Rn)-Nn o 0 0 r r r X Memory
(Rn)+Nn o 0 1 r r Y Memory
(Rn)- o 1 0 r
(Rn)+ o 1 r r
(Rn) 0 o r r r
(Rn+Nn) 0 r r r
-(Rn) r r r
Absolute address o 000

where "rrr" refers to an address register RO-R7

Timing: 4+mvb oscillator clock cycles

Memory: 1 +ea program words

0

Bit Number bbbbb

00000
•
•
•

10111

-

BCHG Bit Test and Change

Instruction Format:
BCHG #n,X:aa
BCHG #n,Y:aa

Opcode:
23 16 15 8 7

\0 0 0 0 1 0 1 1100 a a a a a

Instruction Fields:
#n=bit number=bbbbb,
aa=6-bit Absolute Short Address=aaaaaa

Absolute Short Address aaaaaa

000000
•
•

111111

Timing: 4+mvb osci lIator clock cycles

Memory: 1 +ea program words

Memory SpaceS

X Memory 0
Y Memory 1

BCHG

o
SOb b b b bl

Bit Number bbbbb

00000
•

10111

BCHG

Instruction Format:
BCHG #n,X:pp
BCHG #n,Y:pp

Opcode:
23

10 0 0 0 1 0 1

Instruction Fields:
#n=bit number=bbbbb,

Bit Test and Change

16 15

1 11 0 p p p p p

ea=6-bit liD Short Address=pppppp

8 7

1/0 Short Address pppppp Memory SpaceS

000000
•
•

111111

Timing: 4+mvb oscillator clock cycles

Memory: 1 +ea program words

X Memory
Y Memory

a

BCHG

o

SOb b b b bl

Bit Number bbbbb

00000
•

10111

BCHG Bit Test and Ch~nge

Instruction Format:
BCHG #n,D

Opcode:
23 16 15 8 7

10 0 0 0 1 0 1 1 11 1 00000010

Instruction Fields:
#n=bit number=bbbbb,
D=destination register=DDDDDD
xxxx=16-bit Absolute Address in extension word

Destination Register DDDDDD

4 registers in Data ALU o 0 0 1 D D
8 accumulators in Data ALU o 0 1 DDD
8 address registers in AGU o 1 0 T T T
8 address offset registers in AGU o 1 1 N N N
8 address modifier registers in AGU 1 0 0 F F F
8 program controller registers 1 1 G G G

BCHG

o
1 0 b b b b bl

Bit Number bbbbb

00000

•
10111

See Section A.1 0 and Table A-18 for specific register encodings.

BCHG Bit Test and Change BCHG

Notes: If A or 8 is specified as the destination operand, the following sequence of events
takes place:

1. The S bit is computed according to its definition (See Section A.5)

2. The accumulator value is scaled according to the scaling mode bits SO
and S1 in the status register (SR).

3. If the accumulator extension is in use, the output of the shifter is limited
to the maximum positive or negative saturation constant, and the L bit is
set.

4. The resulting 24 bit value is placed back into A1 or 81. AO or 80 is
cleared and the sign of A 1 or 81 is extended into A2 or 82.

5. The bit test and change is performed on A1 or 81, and the C bit is set if
the bit tested is set.

Timing: 4+mvb oscillator clock cycles

Memory: 1 +ea program words

BCLR Bit Test and Clear BCLR

Operation: Assembler Syntax:
O[n] -+ C; BelR #n,X:ea

0-+ O[n]

O[n] -+ C; BelR #n,X:aa
0-+ O[n]

D[n] -+ C; BClR #n,X:pp
0-+ D[n]

O[n] -+ C; BelR #n,Y:ea
0-+ D[n]

D[n] -+ C; BelR #n,Y:aa
0-+ D[n]

D[n] -+ C; BelR #n,Y:pp
0-+ D[n]

D[n] -+ C; BelR #n,D
0-+ D[n]

Description: Test the nth bit of the destination operand 0, clear it and store the result in
the destination location. The state of the nth bit is stored in the carry bit C of the condition
code register. The bit to be tested is selected by an immediate bit number from 0-23.
This instruction performs a read-modify-write operation on the destination location using
two destination accesses before releasing the bus. This instruction provides a test-and­
clear capability which is useful for synchronizing multiple processors using a shared
memory. This instruction can use all memory alterable addressing modes.

Example:

BClR #$E,X:«$FFE4 ;test and clear bit 14 in I/O Port B Data Reg.

Before Execution After Execution

X:$FFE4 <--I __ ---'-$_FF_F_FF_F __ ------' X:$FFE4 <--I __ ---'-$F_F_BF_F_F __ --"

SR 1'---___ $_03_0_0 __ -----' SR ,--I ____ $_03_0_1 __ ---'

BCLR Bit Test and Clear BCLR

Explanation of Example: Prior to execution, the 24-bit X location X:$FFE4 (110 port B
data register) contains the value $FFFFFF. The execution of the BCLR #$E,X:«$FFE4
instruction tests the state of the 14th bit in X:$FFE4, sets the carry bit C accordingly, and
then clears the 14th bit in X:$FFE4.

Condition Codes:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 I: I DM I T I ** JR S1 I so I 11 I : I ... " I LIE I U clR N I z I v I : 1
CCR Condition Codes:
For destination operand SR:

C - Cleared if bit 0 is specified. Not affected otherwise.
V - Cleared if bit 1 is specified. Not affected otherwise.
Z - Cleared if bit 2 is specified. Not affected. otherwise.
N - Cleared if bit 3 is specified. Not affected otherwise.
U - Cleared if bit 4 is specified. Not affected otherwise.
E - Cleared if bit 5 is specified. Not affected otherwise.
L - Cleared if bit 6 is specified. Not affected otherwise.
S - Cleared if bit 7 is specified. Not affected otherwise.

For destination operand A or B:
S -Computed according to the definition. See Notes on page A-55.
L - Set if data limiting has occurred. See Notes on page A-55.
E - Not affected
U - Not affected
N - Not affected
Z - Not affected
V - Not affected
C - Set if bit tested is set. Cleared otherwise.

BCLR Bit Test and Clear

For other destination operands:
C - Set If bit tested is set. Cleared otherwise.
V - Not affected
Z - Not affected
N - Not affected
U - Not affected
E - Not affected
L -Not affected
S - Not affected

MR Status Bits:
For destination operand SR:

10 - Cleared if bit 8 is specified. Not affected otherwise.

11 - Cleared if bit 9 is specified. Not affected otherwise.

SO - Cleared if bit 10 is specified. Not affected otherwise.

S 1 - Cleared if bit 11 is specified. Not affected otherwise.
T - Cleared if bit 13 is specified. Not affected otherwise.

DM - Cleared if bit 14 is specified. Not affected otherwise

LF - Cleared if bit 15 is specified. Not affected otherwise.

For other destination operands:

10 - Not affected
11 - Not affected

SO - Not affected

S 1 - Not affected

T - Not affected

DM - Not affected
LF - Not affected

BCLR

BClR

Instruction Format:
BClR #n,X:ea
BClR #n,Y:ea

Opcode:

Bit Test and Clear BClR

23 16 15 8 7 0

0000101 o 10 1 M M M R R Rio SOb b b b b

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:
#n=bit number=bbbbb,
ea=6-bit Effective Address=MMMRRR

Effective
Addressing Mode MMMRRR Memory SpaceS

(Rn)-Nn o 0 Orr X Memory
(Rn)+Nn o 0 r r Y Memory
(Rn)- o 1 o r r r
(Rn)+ o 1 r r r
(Rn) 0 o r r r
(Rn+Nn) 0 1 r r r
-(Rn) 1 r r r
Absolute address o 000

where "rrr" refers to an address register RO-R?

Timing: 4+mvb oscillator clock cycles

Memory: 1 +ea program words

0

Bit Number bbbbb

00000

•
•
•

10111

BCLR Bit Test and Clear

Instruction Format:
BClR #n,X:aa
BClR #n,Y:aa

Opcode:

23 16 15 8 7

10 0 0 0 1 0 1 0100 a a a a a alo

Instruction Fields:
#n=bit number=bbbbb,
aa=6-bit Absolute Short Address=aaaaaa

Absolute Short Address aaaaaa

000000
•
•

111111

Timing: 4+mvb oscillator clock cycles

Memory: 1 +ea program words

Memory SpaceS

X Memory 0
Y Memory 1

BCLR

o
SOb b b b bl

Bit Number bbbbb

00000
•

10111

BClR Bit Test and Clear

Instruction Format:
BClA #n ,X :pp
BClA #n,Y:pp

Opcode:
23

10 0 0 0 1 0 1

Instruction Fields:
#n=bit number=bbbbb,

16 15

o I 0 0 p p p p p

ea=6-bit 1/0 Short Address=pppppp

1/0 Short Address pppppp

000000
•
•

111111

Timing: 4+mvb oscillator clock cycles

Memory: 1 +ea program words

Memory SpaceS

X Memory 0
Y Memory

BClR

o
SOb b b b bl

Bit Number bbbbb

00000
•

10111

BCLR Bit Test and Clear

Instruction Format:
BCLR #n,D

Opcode:

23 16 15 8 7

10 0 0 0 1 0 1 o 11 1 D D D D D Dlo

Instruction Fields:
#n=bit number=bbbbb,
D=destination register=DDDDDD
xxxx=16-bit Absolute Address in extension word

Destination Register DDDDDD

4 registers in Data ALU o 0 0 1 D D
8 accumulators in Data ALU o 0 1 D D D
8 address registers in AGU o 1 0 T T T
8 address offset registers in AGU o 1 NNN
8 address modifier registers in AGU 1 0 0 F F F
8 program controller registers 1 1 G G G

BCLR

o
1 0 b b b b bl

Bit Number bbbbb

00000

•
10111

See Section A.1 0 and Table A-18 for specific register encodings.

BClR Bit Test and Clear BClR

Notes: If A or 8 is specified as the destination operand, the following sequence of events
takes place:

1. The S bit is computed according to its definition (See Section A.S)

2. The accumulator value is scaled according to the scaling mode bits SO
and S1 in the status register (SR).

3. If the accumulator extension is in use, the output of the shifter is limited
to the maximum positive or negative saturation constant, and the L bit is
set.

4. The resulting 24 bit value is placed back into A1 or 81. AO or 80 is
cleared and the sign of A 1 or 81 is extended into A2 or 82.

S. The bit test and clear is performed on A1 or 81, and the C bit is set if the
bit tested is set.

Timing: 4+mvb oscillator clock cycles

Memory: 1 +ea program words

BSET Bit Test and Set BSEl

Operation: Assembler Syntax:
D[n] ~ C; BSET #n,X:ea

1 ~ D[n]

D[n] ~ C; BSET #n,X:aa
1 ~ D[n]

D[n] ~ C; BSET #n,X:pp
1 ~ D[n]

D[n] ~ C; BSET #n,Y:ea
1 ~ D[n]

D[n] ~ C; BSET #n,Y:aa
1 ~ D[n]

D[n] ~ C; BSET #n,Y:pp
1 ~ D[n]

D[n] ~ C; BSET #n,D
1 ~ D[n]

Description: Test the nth bit of the destination operand 0, set it, and store the result in
the destination location. The state of the nth bit is stored in the carry bit C of the condition
code register. The bit to be tested is selected by an immediate bit number from 0-23.
This instruction performs a read-modify-write operation on the destination location using
two destination accesses before releasing the bus. This instruction provides a test-and­
set capability which is useful for synchronizing multiple processors using a shared mem­
ory. This instruction can use all memory alterable addressing modes.

Example:

BSET #$0,X:«$FFE5 ;test and clear bit 14 in liD Port B Data Reg.

Before Execution After Execution

X:$FFE5 1 '--____ $ 0_00_0_0 o __ -.l X:$FFE5 1L--__ --'-$°_°°_°°_1 __ --'

SRI '--____ $0_3_00 __ -.l SRI'--____ ~$_03_0_0 __ ~

BSET Bit Test and Set BSET

Explanation of Example: Prior to execution, the 24-bit X location X:$FFE5 (liD port C
data register) contains the value $000000. The execution of the BSET #$0,X:«$FFE5

instruction tests the state of the oth bit in X:$FFE5, sets the carry bit C accordingly, and
then sets the Oth bit in X:$FFE5.

Condition Codes:

15 14 13 12 11 10 9 8 7 6 5 4 3 2

I"F I OM I T I" I SI I SO I 11 I 10 I s I l
... MR • C CCR

CCR Condition Codes:
For destination operand SR:

C- Set if bit 0 is specified. Not affected otherwise.
V - Set if bit 1 is specified. Not affected otherwise.
Z - Set if bit 2 Is specified. Not affected otherwise.
N - Set if bit 3 is specified. Not affected otherwise.
U - Set if bit 4 is specified. Not affected otherwise.
E - Set if bit 5 Is specified. Not affected otherwise.
L - Set if bit 6 is specified. Not affected otherwise.
S - Set If bit 7 Is specified. Not affected othelWise.

For destination operand A or B:

1 0

S -Computed according to the definition. See Notes on page A-63.
L - Set if data limiting has occurred. See Notes on page A-63.
E - Not affected
U - Not affected
N - Not affected
Z - Not affected
V - Not affected
C - Set if bit tested Is set. Cleared othelWise.

BSEl Bit Test and Set

For other destination operands:
C - Set If bit tested Is set. Cleared otherwise.
V - Not affected
Z - Not affected
N - Not affected
U - Not affected
E - Not affected
L - Not affected
S - Not affected

MR Status Bits:
For destination operand SR:

10 - Set if bit 8 is specified. Not affected otherwise.
11 - Set if bit 9 is specified. Not affected otherwise.
SO - Set if bit 10 is specified. Not affected otherwise.
S1 - Set if bit 11 is specified. Not affected otherwise.
T - Set if bit 13 is specified. Not affected otherwise.
DM - Set if bit 14 is specified. Not affected otherwise
LF - Set if bit 15 is specified. Not affected otherwise.

For other destination operands:
10 - Not affected
11 - Not affected
SO - Not affected
S 1 - Not affected
T - Not affected
DM - Not affected
LF - Not affected

BSEl

BSET

Instruction Format:
BSET #n,X:ea
BSET #n,Y:ea

Opcode:

Bit Test and Set BSET

23 16 15 8 7 0

000010 10 1 01 M M M R R Rio S 1 b b b b b

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:
#n=bit number=bbbbb,
ea=6-bit Effective Address=MMMRRR

Effective
Addressing Mode MMMRRR Memory SpaceS

(Rn)-Nn o 0 o r r r X Memory
(Rn)+Nn o 0 1 r r r Y Memory
(Rn)- o 1 0 r r r
(Rn)+ o 1 1 r r r
(Rn) 1 0 o r r r
(Rn+Nn) 0 r r r
-(Rn) 1 r r r
Absolute address o 0 0 0

where "rrr" refers to an address register RO-R?

Timing: 4+mvb oscillator clock cycles

Memory: 1 +ea program words

0

Bit Number bbbbb

00000

•
•
•

10111

BSET Bit Test and Set

Instruction Format:
BSET #n,X:aa
BSET #n,Y:aa

Opcode:
23 16 15 8 7

10 0 0 0 1 0 1 o I 01 0 a a a a a a I 0

Instruction Fields:
#n=bit number=bbbbb,
aa=6-bit Absolute Short Address=aaaaaa

Absolute Short Address aaaaaa

000000
•
•

111111

Timing: 4+mvb oscillator clock cycles

Memory: 1 +ea program words

Memory SpaceS

X Memory 0
Y Memory 1

BSET

o
S 1 b b b b bl

Bit Number bbbbb

00000
•

10111

BSET Bit Test and Set

Instruction Format:
BSET #n,X:pp
BSET #n,Y:pp

Opcode:
23 16 15 8 7

10 0 0 0 1 0 1

Instruction Fields:
#n=bit number=bbbbb,
ea=6-bit liD Short Address=pppppp

1/0 Short Address pppppp

000000
•
•

111111

Timing: 4+mvb oscillator clock cycles

Memory: 1 +ea program words

Memory SpaceS

X Memory a
Y Memory

BSET

o
S 1 b b b b bl

Bit Number bbbbb

00000
•

10111

BSET Bit Test and Set

Instruction Format:
BSET #n,D

Opcode:
23 16 15

10 0 0 0 1 0 1 011 1 0 0 0 DO

Instruction Fields:
#n=bit number=bbbbb,
D=destination register=DDDDDD
xxxx=16-bit Absolute Address in extension word

Destination Register DDDDDD

4 registers in Data ALU o 0 0 1 D D
8 accumulators in Data ALU o 0 1 D D D
8 address registers in AGU o 1 0 T T T
8 address offset registers in AGU o 1 1 NNN
8 address modifier registers in AGU 0 0 F F F
8 program controller registers 1 1 G G G

BSET

8 7 o
o 1 0 1 1 b b b b bl

Bit Number bbbbb

00000

•
10111

See Section A.1 0 and Table A-18 for specific register encodings.

BSET Bit Test and Set BSET

Notes: If A or B is specified as the destination operand, the following sequence of events
takes place:

1. The S bit is computed according to its definition (See Section A.5)

2. The accumulator value is scaled according to the scaling mode bits SO
and S 1 in the status register (SR).

3. If the accumulator extension is in use, the output of the shifter is limited
to the maximum positive or negative saturation constant, and the L bit is
set.

4. The resulting 24 bit value is placed back into A1 or B1. AO or BO is
cleared and the sign of A 1 or 81 is extended into A2 or 82.

5. The bit test and set is performed on A1 or 81, and the C bit is set if the
bit tested is set.

Timing: 4+mvb oscillator clock cycles

Memory: 1 +ea program words

8TST Bit Test 8TST

Operation: Assembler Syntax:
D[n] -+ C; BTST #n,X:ea

D[n] -+ C; BTST #n,X:aa

D[n] -+ C; BTST #n,X:pp

D[n] -+ C; BTST #n,Y:ea

D[n] -+ C; BTST #n,Y:aa

D[n] -+ C; BTST #n,Y:pp

D[n] -+ C; BTST #n,D

Description: Test the nth bit of the destination operand D. The state of the nth bit is
stored in the carry bit C of the condition code register. The bit to be tested is selected by
an immediate bit number from 0-23. This instruction is useful for performing serial to par­
allel conversion when used with the appropriate rotate instructions. This instruction can
use all memory alterable addressing modes.

Example:

BTST
ROL

#$O,X:«$FFEE
A

Before Execution

X:$FFEE 1-1 ___ -'-$o_o_oo_o2 __ ---'

SR~I ___ ~$_03_00 ____ ---'

;read SSI serial input flag IF1 into C bit
;rotate carry bit C into LSB of A 1

After Execution

X:$FFEE 1'--___ $_00_00_02 __ --'

SRI'--___ ~$_03_01 ____ --'

Explanation of Example: Prior to execution, the 24-bit X location X:$FFEE (1/0 SSI sta­
tus register) contains the value $000002. The execution of the BTST #$1,X:«$FFEE
instruction tests the state of the 1 st bit (serial input flag IF1) in X:$FFEE and sets the
carry bit C accordingly. This instruction sequence illustrates serial to parallel conversion
using the carry bit C and the 24-bit A1 register.

BTST Bit Test

Condition Codes:
15 14 13 12 11 10 9 8 7 6 5 4 3 1 LF I OM I T I ** I 61 I 60 I 11 I lois I L I E I u I N I
~ MR

CCR Condition Codes:
For destination operand A or B:

C - Set If bit tested Is set. Cleared otherwise.
V - Not affected
Z - Not affected
N - Not affected
U - Not affected
E - Not affected

CCR

2

z I v

L - Set If data limiting has occurred. See Notes on page A-69.

BTST

0

I :1

S - Computed according to the definition. See Notes on page A-69.

For other destination operands:
C - Set H bit tested is set. Cleared otherwise.
V - Not affected
Z - Not affected
N - Not affected
U - Not affected
E - Not affected
L - Not affected
S - Not affected

MR Status bits are not affected.

SP - Stack Pointer:
For destination operand SSH: SP - Decrement by 1 .
For other destination operands: Not affected

BTST

Instruction Format:
BTST #n,X:ea
BTST #n,Y:ea

Opcode:

Bit Test BTST

23 16 15 870

0000101 1 I 0 1 M M M R R Rio S 1 b b b b b

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:
#n=bit number=bbbbb,
ea=6-bit Effective Address=MMMRRR

Effective
Addressing Mode MMMRRR Memory SpaceS

(Rn)-Nn o 0 0 X Memory
(Rn)+Nn o 0 1 Y Memory
(Rn)- o 1 0 r r r
(Rn)+ o 1 1 r r r
(Rn) 1 0 o r r r
(Rn+Nn) 1 0 1 r r r
-(Rn) 1 1 1 r r r
Absolute address 1 1 o 0 0 0

where "rrr" refers to an address register RO-R7

Timing: 4+mvb oscillator clock cycles

Memory: 1 +ea program words

0
1

Bit Number bbbbb

00000
•
•
•

10111

8TST

Instruction Format:
BTST #n,X:aa
BTST #n,Y:aa

Opcode:

Bit Test

23 16 15 8 7

10 0 0 0 1 0 1 1 10 0 a a a a a a 10

Instruction Fields:
#n=bit number=bbbbb,
aa=6-bit Absolute Short Address=aaaaaa

Absolute Short Address aaaaaa

000000
•
•

111111

Timing: 4+mvb oscillator clock cycles

Memory: 1 +ea program words

Memory SpaceS

X Memory a
Y Memory 1

8TST

o
S 1 b b b b bl

Bit Number bbbbb

00000
•

10111

-

8TST

Instruction Format:
BTST #n,X:pp
BTST #n,Y:pp

Opcode:

23

10 0 0 0 1 0 1

Instruction Fields:
#n=bit number=bbbbb,

16 15

ea=6-bit 110 Short Address=pppppp

1/0 Short Address pppppp

000000
•
•

111111

Timing: 4+mvb oscillator clock cycles

Memory: 1 +ea program words

Bit Test

8 7

Memory SpaceS

X Memory 0
Y Memory 1

8TST

o
S 1 b b b b bl

Bit Number bbbbb

00000
•

10111

8TST

Instruction Format:
BTST #n,D

Opcode:
23 16 15

10 0 0 0 1 0 1

Instruction Fields:
#n=bit number=bbbbb,
D=destination register=DDDDDD,

Bit Test

xxxx=16-bit Absolute Address in extension word

Destination Register DDDDDD

4 registers in Data ALU o 0 0 1 D D
8 accumulators in Data ALU o 0 1 D D D
8 address registers in AGU o 1 0 T T T
8 address offset registers ilJ AGU o 1 1 N N N
8 address modifier registers in AGU 0 0 F F F
8 program controller registers 1 1 G G G

8TST

8 7 o
o I 0 1 1 b b b b bl

Bit Number bbbbb

00000

•
10111

See Section A.1 0 and Table A-18 for specific register encodings.

Notes: If A or B is specified as the destination operand, the following sequence of events
takes place:

1. The S bit is computed according to its definition (See Section A.S)

2. The accumulator value is scaled according to the scaling mode bits SO
and S1 in the status register (SR).

3. If the accumulator extension is in use, the output of the shifter is limited
to the maximum positive or negative saturation constant, and the L bit is
set.

4. The bit test is performed on the resulting 24-bit value and the C bit is set

if the bit tested is~ set. The original contents of A or B are not changed.

Timing: 4+mvb oscillator clock cycles
Memory: 1 +ea program words

-

CLR Clear Accumulator CLR

Operation: Assembler Syntax:
o ~D (parallel move) CLR D (parallel move)

Description: Clear the destination accumulator. This is a 56-bit clear instruction.

Example:

CLR A #$7F,N ;clear A, set up NO addr. reg.

Before Execution After Execution

A~I ___ $_12_:3_45_6_78_:9_AB_C_D_E __ ~ A 1'--___ $0_0:_00_00_00_:0_00_0_00 __ ----'

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the
value $12:345678:9ABCDE. The execution of the CLR A instruction clears the 56-bit A
accumulator to zero.

Condition Codes:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 ° I: 1 OM 1 T 1** J:' 1 so 1 11 1 '~ I: 1 LIE 1 U JR N 1 z 1 vi: I
S - Computed according to the definition in A.5 CONDITION CODE COMPUTATION
L - Set if data limiting has occurred during parallel move
E - Always cleared
U - Always set
N - Always cleared
z- Always set
V - Always cleared

CLR Clear Accumulator

Instruction Format:
CLR D

Opcode:

23 8 7 4 3

DATA BUS MOVE FIELD I 0 0 o 1 I d

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:
o d

A 0
B

Timing: 2+mv oscillator clock cycles

Memory: 1 +mv program words

CLR

o
o

-

CMP Compare CMP

Operation: Assembler Syntax:
S2 - S1 (parallel move) CMP S1, S2 (parallel move)

Description: Subtract the source one operand, S1, from the source two accumulator,
S2, and update the condition code register. The result of the subtraction operation is not
stored.

Note: This instruction subtracts 56-bit operands. When a word is specified as S1, it is
sign extended and zero filled to form a valid 56-bit operand. For the carry to be set cor­
rectly as a result of the subtraction, S2 must be properly sign extended. S2 can be
improperly sign extended by writing A1 or B1 explicitly prior to executing the compare so
that A2 or B2, respectively, may not represent the correct sign extension. This note par­
ticularly applies to the case where it is extended to compare 24-bit operands such as XO
with A1.

Example:

CMP YO,B XO,X:(R6)+N6 Y1,Y:(RO)- ;comp. YO and B, save XO, Y1

Before Execution After Execution

B I $00:000020:000000 B I $00:000020:000000

YO I $000024 YO I $000024

SR I $0300 SR I $0319

Explanation of Example: Prior to execution, the 56-bit B accumulator contains the
value $00:000020:000000 and the 24-bit YO register contains the value $000024. The
execution of the CMP YO,B instruction automatically appends the 24-bit value in the YO
register with 24 LS zeros, sign extends the resulting 48-bit long word to 56 bits, subtracts
the result from the 56-bit B accumulator and updates the condition code register.

CMP Compare CMP

Condition Codes:

15 14 13 12 11 10 9 876543210

S - Computed according to the definition in A.5 CONDITION CODE COMPUTATION
L - Set if limiting (parallel move) or overflow has occurred in result
E - Set if the signed integer portion of A or B result is in use
U - Set if A or B result is unnormalized
N - Set if bit 55 of A or B result is set
z- Set if A or B result equals zero
V - Set if overflow has occurred in A or B result
C - Set if a carry (or borrow) occurs from bit 55 of A or B result.

Note: The definitions of the E and U bits vary according to the scaling mode being used.
Refer to Section A.5 for complete details.

Instruction Format:
CMP S1, S2

Opcode:
23 8 7 4 3

DATA BUS MOVE FIELD 1 0 J J J 1 d

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:
S1,S2 JJJd S1,82

B,A 0000 YO,B
A,B 0001 X1,A
XO,A 1000 X1,B
XO,B 1 001 Y1,A
YO,A 1 0 1 0 Y1,B

Timing: 2+mv oscillator clock cycles

Memory: 1 +mv program words

JJJd

1 0 1 1
1 1 00
1 1 0 1
1 1 1 0
1 1 1 1

o

-

-

CMPM Compare Magnitude CMPM

Operation: Assembler Syntax:
IS21-IS11(paraliel move) CMPM S1, S2 (parallel move)

Description: Subtract the absolute value (magnitude) of the source one operand, S1,
from the absolute value of the source two accumulator, S2, and update the condition
code register. The result of the subtraction operation is not stored.

Note: This instruction subtracts 56-bit operands. When a word is specified as S1, it is
sign extended and zero filled to form a valid 56-bit operand. For the carry to be set cor­
rectly as a result of the subtraction, S2 must be properly sign extended. S2 can be
improperly sign extended by writing A 1 or B1 explicitly prior to executing the compare so
that A2 or B2, respectively, may not represent the correct sign extension. This note par­
ticularly applies to the case where it is extended to compare 24-bit operands such as XO
with A1.

Example:

CMPM X1,A BA,L:-(R4) ;comp. YO and B, save XO, Y1

Before Execution After Execution

A I $00:000006:000000 A I $00:000006:000000

X1 I $FFFFF7 X1 I $FFFFF7

SR I $0300 SR I $0319

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the
value $00:000006:000000, and the 24-bit X1 register contains the value $FFFFF7. The
execution of the CMPM X1 ,A instruction automatically appends the 24-bit value in the X1
register with 24 LS zeros, sign extends the resulting 48-bit long word to 56 bits, takes the
absolute value of the resulting 56-bit number, subtracts the result from the absolute
value of the contents of the 56-bit A accumulator, and updates the condition code regis­
ter.

CMPM Compare Magnitude CMPM

Condition Codes:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 I LF I DM I T I ** I 81 I 80 I 11 I [0 I 8 I L I E I u I N I z v
I ~I CCR ... MR ~~

S - Computed according to the definition in A.5 CONDITION CODE COMPUTATION
L - Set if data limiting has occurred during a parallel move
E - Set if the signed integer portion of A or B result is in use
U - Set if A or B result is unnormalized
N - Set if bit 55 of A or B result is set
Z- Set if A or B result equals zero
V - Set if overflow has occurred in A or B result
C - Set if a carry (or borrow) occurs from bit 55 of A or B result.

Note: The definitions of the E and U bits vary according to the scaling mode being used.
Refer to Section A.5 for complete details.

Instruction Format:
CMPM 81, S2

Opcode:
23 8 7 4 3

DATA BUS MOVE FIELD I 0 J J J I d

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:
81,82 J J J d

B,A 0000
A,B 0001
XO,A 1 000

81,S2 J J J d

XO,B 1 001
YO,A 101 0
YO,B 1 0 1 1

Timing: 2+mv oscillator clock cycles

Memory: 1 +mv program words

81,S2 J J J d

X1,A 1 1 00
X1,B 1 1 0 1
Y1,A 1 1 1 0
Y1,B 1 1 1 1

o

-

-

DEBUG Enter Debug Mode DEB,UG

Operation: Assembler Syntax:

Enter the debug mode DEBUG

Description: Enter the debug mode and wait for OnCE commands.

Example:

DEBUG ;enter the debug mode

Explanation of Example: Upon executing the DEBUG instruction, the chip enters the
debug mode after the instruction following the DEBUG instruction has entered the
instruction latch. Entering the debug mode is acknowledged by the chip by pulsing low
the DSO line. This informs the external command controller that the chip has entered the
debug mode and is waiting for commands.

Condition Codes:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 I LF I OM I T I·· I 81 I 80 I 11 I 10 I 8 I L I E I U N z
• MR • • CCR

The condition codes are not affected by this instruction

Instruction Format:
DEBUG

DEBUG Enter Debug Mode

Opcode:
23 16 15

10 0 0 0 0 0 0 0100 0 0

Timing: 4 oscillator clock cycles

Memory: 1 program word

o 0 1

DEBUG

8 7 o

o I 0 o 0 0 0 0 0 01

-

-

DEBUGcc Enter Debug Mode Conditionally DEB U G cc

Operation: Assembler Syntax:

If cc, then enter the debug mode DEBUGcc

Description: If the specified condition is true, enter the debug mode and wait for OnCE

commands. If the specified condition is false, continue with the next instruction.

The term "cc" may specify the following conditions:

CC (HS)
CS (LO)
EC
EQ
ES
GE
GT
LC
LE
LS
LT
MI
NE
NR
PL
NN

where

"cc" Mnemonic
- carry clear (higher or same)
- carry set (lower)
- extension clear
- equal
- extension set
- greater than or equal
- greater than
-limit clear
- less than or equal
-limit set
-less than
- minus
- not equal
- normalized
-plus
- not normalized

U denotes the logical complement of U,
+ denotes the logical OR operator,
- denotes the logical AND operator, and
EB denotes the logical Exclusive OR operator

Condition Codes:

Condition
C=O
C=1
E=O
Z=1
E=1
NEB V=O
Z+(N EB V)=O
L=O
Z+(N EB V)=1
L=1
NEB V=1
N=1
Z=O
Z+(U-E)=1
N=O
Z+(U-E)=O

15 14 13 12 11 10 9 8 7 6 5 4 3 2

I LF I OM I T I ** I SI I SO I 11 I 10 I s I L I E I U N I z I v
... MR CCR

The condition codes are not affected by this instruction.

o

DEBUGcc Enter Debug Mode Conditionally DEB U G cc

Example:

CMP YO, B
DEBUGge

; Compare register YO with the B accumulator.
; Enter the debug mode if
; the previous test result is "greater than".

Explanation of Example: The results of the comparison between YO and B will be
recorded in the status register bits. The conditional debug instruction looks at the condi­
tions (for greater than or equal in this case) and if they are met (N ffi V=O) then the
DEBUG instruction will be executed. The chip enters the debug mode after the instruc­
tion following the DEBUG instruction has entered the instruction latch. The chip pulses
low the DSO line to inform the external command controller that it has entered the debug
mode and that the chip is waiting for commands.

Instruction Format:
DEBUGcc

Opcode:
23 16 15 8 7 0

10 0 0 o 0 0 0 o I 0 0 0 0 0 0 1 1 I 0 0 0 0 c c c c I

Instruction Fields:

Mnemonic c c c c Mnemonic c c c c
CC (HS) 0 0 0 0 CS (LO) 0 0 0
GE 0 0 0 1 LT 0 0 1
NE 0 0 1 0 EQ 0 1 0
PL 0 0 1 1 MI 0 1 1
NN 0 1 0 0 NR 1 0 0
EC 0 1 0 1 ES 1 0 1
LC 0 1 1 0 LS 1 1 0
GT 0 1 1 1 LE 1 1 1

Timing: 4 oscillator clock cycles

Memory: 1 program word

-

DEC

Operation:
0-1 -+ 0

Decrement by One DEC

Assembler Syntax:
DEC 0

Description: Decrement by one the specified operand and store the result in the destina­
tion accumulator. One is subtracted from the LSB of D.

Example:

DEC A ;Decrement the content of A accumulator by one

Explanation of Example: One is subtracted from the content of the A accumulator.

Condition Codes:

15 14 13 12 11 10 9 8 7 6 5 4 3 2

1 LF I DM I T 1** 1 S1 1 so 1 11 I 10 1 s 1 L E I u N I z
... MR ~ ... CCR

L - Set if overflow has occurred in result. Not affected otherwise
E - Set if the signed integer portion of result is in use
U- Set if result is unnormalized
N - Set if bit 55 of result is set
Z - Set if result equals zero
V - Set if overflow has occurred in result

-C - Set if a borrow occurs from bit 55 of result

0

v I
:1

DEC Decrement by One DEC

Instruction Format:
DEC D

Opcode:
23 16 15 8 7 a

10 a a a a a a 010 a a a a a a a I a a a a 1 a 1 dl

Instruction Fields:
D d

A 0
B

Timing: 2 oscillator clock cycles

Memory: 1 program word

-

-

DIV Divide Interation DIV

Operation: If D[55]ffiS[23]=1,

55 47 23 0

then I~I-- 1-- I+C+S+D

Destination Accumulator D

55 47 23 0

else I~I-- 1-- I+C-S+D

Destination Accumulator D

where ffi denotes the logical exclusive OR operator

Assembler Syntax: DIV S,D

Description:
Divide the destination operand D by the source operand S and store the result in the des-
tination accumulator D. The 48-bit dividend must be a positive fraction which has
been sign extended to 56-bits and Is stored in the full 56-bit destination accumula­
tor D. The 24-blt divisor is a signed fraction and Is stored in the source operand S.
Each DIV iteration calculates one quotient bit using a nonrestoring fractional division
algorithm (see description on the next page). After the execution of the first DIV instruc­
tion, the destination operand holds both the partial remainder and the formed quotient.
The partial remainder occupies the high-order portion of the destination accumulator D
and is a signed fraction. The formed quotient occupies the low-order portion of the desti­
nation accumulator D (AO or 80) and is a positive fraction. One bit of the formed quotient
is shifted into the LS bit of the destination accumulator at the start of each DIV iteration.
The formed quotient is the true quotient if the true quotient is positive. If the true quotient
is negative, the formed quotient must be negated. Valid results are obtained only
when IDI < lSI and the operands are Interpreted as fractions. Note that this condition
ensures that the magnitude of the quotient is less than one (Le., is fractional) and pre­
cludes division by zero.

DIV Divide Interation DIV

The DIV instruction calculates one quotient bit based on the divisor and the previous par­
tial remainder. To produce an N-bit quotient, the DIV instruction is executed N times
where N is the number of bits of precision desired in the quotient, 1 ;leN;le24. Thus, for a
full-precision (24 bit) quotient, 24 DIV iterations are required. In general, executing the
DIV instruction N times produces an N-bit quotient and a 48-bit remainder which has
(48-N) bits of precision and whose N MS bits are zeros. The partial remainder is not a
true remainder and must be corrected due to the nonrestoring nature of the division algo­
rithm before it may be used. Therefore, once the divide is complete, it is necessary to
reverse the last DIV operation and restore the remainder to obtain the true remainder.

The DIV instruction uses a nonrestoring fractional division algorithm which consists of
the following operations (see the previous Operation diagram):

1. Compare the source and destination operand sign bits: An exclusive OR
operation is performed on bit 55 of the destination operand D and bit 23 of the
source operand S;

2. Shift the partial remainder and the quotient: The 55-bit destination accumu­
lator D is shifted one bit to the left. The carry bit C is moved into the LS bit (bit
0) of the accumulator;

3. Calculate the next quotient bit and the new partial remainder: The 24-bit
source operand S (signed divisor) is either added to or subtracted from the
MSP portion of the destination accumulator (A1 or 81), and the result is stored
back into the MSP portion of that destination accumulator. If the result of the
exclusive OR operation previously described was a "1" (Le., the sign bits were
different), the source operand S is added to the accumulator. If the result of the
exclusive OR operation was a "0" (Le., the sign bits were the same), the
source operand S is subtracted from the accumulator. Due to the automatic
sign extension of the 24-bit signed divisor, the addition or subtraction opera­
tion correctly sets the carry bit C of the condition code register with the next
quotient bit.

-

-

DIV Divide Interation DIV

Example: (4-Quadrant division, 24-bit signed quotient, 48-blt signed remainder)
ABS A A,B ;make dividend positive, copy A1 to B1
EOR XO,B B,X:$O ;save rem. sign in X:$O, quo. sign in N
AND #$FE,CCR ;clear carry bit C (quotient sign bit)
REP #$18 ;form a 24-bit quotient
DIV XO,A ;form quotient in AO, remainder in A1
TFR A,B ;save quotient and remainder in B1,BO
JPL SAVEQUO ;go to SAVEQUO if quotient is positive
NEG 8 ;complement quotient if N bit set

SAVEQUO TFR XO,B BO,X1 ;save quo. in X1, get signed divisor
A8S B ;get absolute value of signed divisor
ADD A,B ;restore remainder in B1
JCLR #23,X:$O,DONE ;go to DONE if remainder is positive
MOVE #$0,80 ;clear LS 24 bits of 8
NEG B ;complement remainder if negative

DONE

Before Execution After Execution

A I $00:OE66D7:F2832C A I $FF:EDCCAA:654321

XO I $123456 XO I $123456

X1 I $000000 X1 I $654321

B I $00:000000:000000 B I $00:000100:654321

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the 56-
bit, sign-extended fractional dividend D (D=$00.OE66D7:F2832C=0.112513535894635
approx.) and the 24-bit XO register contains the 24-bit, signed fractional divisor S
(S=$123456=0.142222166061401). Since IDI<ISI, the execution of the previous divide
routine stores the correct 24-bit signed quotient in the 24-bit X1 register (N
XO=0.79111111164093=$654321 =X1). The partial remainder is restored by reversing
the last DIV operation and adding back the absolute value of the signed divisor in XO to
the partial remainder in A 1. This produces the correct LS 24 bits of the 48-bit signed
remained in the 24-bit 81 register. Note that the remainder is really a 48-bit value which
has 24 bits of precision. Thus, the correct 48-bit remainder is $000000:000100 which
equals 0.0000000000018190 approximately.

DIV Divide Interation DIV

Note that the divide routine used in the previous example assumes that the sign­
extended 56-bit signed fractional dividend is stored in the A accumulator and that the 24-
bit signed fractional divisor is stored in the XO register. This routine produces a full 24-bit
signed quotient and a 48-bit signed remainder.

This routine may be greatly simplified for the case in which only positive, fractional oper­
ands are used to produce a 24-bit positive quotient and a 48-bit positive remainder, as
shown in the following example:

1-Quadrant division, 24-bit unsigned quotient, 48-bit unsigned remainder
AND #$FE,CCR ;clear carry bit C (quotient sign bit)
REP #$18 ;form a 24-bit quotient and remainder
DIV XO,A ;form quotient in AO, remainder in A1
ADD XO,A ;restore remainder in A1

Note that this routine assumes that the 56-bit positive, fractional, sign-extended dividend
is stored in the A accumulator and that the 24-bit positive, fractional divisor is stored in
the XO register. After execution, the 24-bit positive fractional quotient is stored in the AO
register; the LS 24 bits of the 48-bit positive fractional remainder are stored in the A 1 reg­
ister.

There are many variations possible when choosing a suitable division routine for a given
application. The selection of a suitable division routine normally involves specification of
the following items:

1. the number of bits of precision in the dividend;

2. the number of bits of precision N in the quotient;

3. whether the value of N is fixed or is variable;

4. whether the operands are unsigned or signed;

5. whether or not the remainder is to be calculated.

-

DIV Divide Interatlon DIV

A complete discussion of the various division routines is beyond the scope of this man­
ual. For a more complete discussion of these routines, refer to the application note enti­
tled Fractional and Integer Arithmetic Using the DSP56001.

For extended precision division (Le., for N-bit quotients where N>24), the DIV instruction
is no longer applicable, and a user-defined N-bit division routine is required. For further
information on division algorithms, refer to pages 524-530 of Theory and Application of
Digital Signal Processing by Rabiner and Gold (Prentice-Hall, 1975), pages 190-199 of
Computer Architecture and Organization by John Hayes (McGraw-Hili, 1978), pages
213-223 of Computer Arithmetic: Principles, Architecture, and Design by Kai Hwang
(John Wiley and Sons, 1979), or other references as required.

Condition Codes:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 I LF I OM I T I ** I 81 I 80 I 11 I 10 I 8 I LIE I U N Z v I ~I
.~ MR CCR -.

L - Set if overflow bit V is set
V - Set If the MS bit of the destination operand is changed as a result of the

Instruction's left shift operation
C - Set if bit 55 of the result Is cleared.

DIV Divide Interation

Instruction Format:
DIV S,D

Opcode:

23 16 15 8 7

10 0 0 0 0 0 0 1 11 0 0 o 0 00 010

Instruction Fields:
S,D J J d

XO,A 000
XO,B 001
VO,A 010
VO,B 0 1 1

S,D

X1,A
X1,B
V1,A
V1,B

Timing: 2 oscillator clock cycles

Memory: 1 program word

JJd

100
1 0 1
1 1 0
111

DIV

o
1 J J d 0 0 01

-

-

DO Start Hardware Loop

Operation: Assembler Syntax:
SP+1 --t SP;LA --t SSH;LC --t SSL;X:ea --t LC
SP+1 --t SP;PC --t SSH;SR --t SSL;expr -1 --t LA
1 --t LF

SP+1 --t SP;LA --t SSH;LC --t SSL;X:aa --t LC
SP+1 --t SP;PC --t SSH;SR --t SSL;expr -1 --t LA
1 --t LF

SP+1 --t SP;LA --t SSH;LC --t SSL;Y:ea --t LC
SP+1 --t SP;PC --t SSH;SR --t SSL;expr -1 --t LA
1 --t LF

SP+1 --t SP;LA --t SSH;LC --t SSL;Y:aa --t LC
SP+1 --t SP;PC --t SSH;SR --t SSL;expr -1 --t LA
1 --t LF

SP+1 --t SP;LA --t SSH;LC --t SSL;#xxx --t LC
SP+1 --t SP;PC --t SSH;SR --t SSL;expr -1 --t LA
1 --t LF

SP+1 -4 SP;LA --t SSH;LC --t SSL;S --t LC
SP+1 --t SP;PC --t SSH;SR --t SSL;expr -1 --t LA
1 --t LF

End of Loop:
SSL(LF) --t SR;SP-1 --t SP
SSH --t LA;SSL --t LC;SP - 1 --t SP

DO X:ea,expr

DO X:aa,expr

DO Y:ea,expr

DO Y:aa,expr

DO #xxx,expr

DO S,expr

DO

Description: Begin a hardware DO loop that is to be repeated the number of times spec­
ified in the instruction's source operand and whose range of execution is terminated by
the destination operand (previously shown as "expr"). No overhead other than the execu­
tion of this DO instruction is required to set up this loop. DO loops can be nested and the
loop count can be passed as a parameter.

During the first instruction cycle, the current contents of the loop address (LA) and the
loop counter (LC) registers are pushed onto the system stack. The DO instruction's
source operand is then loaded into the loop counter (LC) register. The LC register con­
tains the remaining number of times the DO loop will be executed and can be accessed
from inside the DO loop subject to certain restrictions. If LC equals zero, the DO loop is

DO Start Hardware Loop DO

executed 65,536 times. All address register indirect addressing modes may be used to
generate the effective address of the source operand. If immediate short data is speci­
fied, the 12 LS bits of LC are loaded with the 12-bit immediate value, and the four MS bits
of LC are cleared.

During the second instruction cycle, the current contents of the program counter (PC)
register and the status register (SR) are pushed onto the system stack. The stacking of
the LA, LC, PC, and SR registers is the mechanism which permits the nesting of DO
loops. The DO instruction's destination operand (shown as "expr") is then loaded into the
loop address (LA) register. This 16-bit operand is located in the instruction's 24-bit abso­
lute address extension word as shown in the opcode section. The value in the program
counter (PC) register pushed onto the system stack is the address of the first instruction
following the DO instruction (Le., the first actual instruction in the DO loop). This value is
read (Le., copied but not pulled) from the top of the system stack to return to the top of
the loop for another pass through the loop.

During the third instruction cycle, the loop flag (LF) is set. This results in the PC being
repeatedly compared with LA to determine if the last instruction in the loop has been
fetched. If LA equals PC, the last instruction in the loop has been fetched and the loop
counter (LC) is tested. If LC is not equal to one, it is decremented by one and SSH is
loaded into the PC to fetch the first instruction in the loop again. If LC equals one, the
"end-of-Ioop" processing begins.

When executing a DO loop, the instructions are actually fetched each time through the
loop. Therefore, a DO loop can be interrupted. DO loops can also be nested. When DO
loops are nested, the end-of-Ioop addresses must also be nested and are not allowed to
be equal. The assembler generates an error message when DO loops are improperly
nested. Nested DO loops are illustrated in the example.

Note: The assembler calculates the end-of-Ioop address to be loaded into LA (the abso­
lute address extension word) by evaluating the end-of-Ioop expression "expr" and sub­
tracting one. This is done to accommodate the case where the last word in the DO loop
is a two-word instruction. Thus, the end-of-Ioop expression "expr" in the source code
must represent the address of the instruction AFTER the last instruction in the loop as
shown in the example.

During the "end-of-Ioop" processing, the loop flag (LF) from the lower portion (SSL) of SP
is written into the status register (SR), the contents of the loop address (LA) register are
restored from the upper portion (SSH) of (SP-1), the contents of the loop counter (LC)
are restored from the lower portion (SSL) of (SP-1) and the stack pOinter (SP) is decre-

-

-

DO Start Hardware Loop DO

mented by two. Instruction fetches now continue at the address of the instruction follow­
ing the last instruction in the DO loop. Note that LF is the only bit in the status register
(SR) that is restored after a hardware DO loop has been exited.

Note: The loop flag (LF) is cleared by a hardware reset.

Restrictions: The "end-of-Ioop" comparison previously described actually occurs at
instruction fetch time. That is, LA is being compared with PC when the instruction at LA-
2 is being executed. Therefore, instructions which access the program controller regis­
ters and/or change program flow cannot be used in locations LA-2, LA-1, or LA.

Proper DO loop operation is not guaranteed if an instruction starting at address LA-2,
L~-1, or LA specifies one of the program controller registers SR, SP, SSL, LA, LC, or
(implicitly) PC as a destination register. Similarly, the SSH program controller register
may not be specified as a source or destination register in an instruction starting at
address LA-2, LA-1, or LA. Additionally, the SSH register cannot be specified as a
source register in the DO instruction itself and LA cannot be used as a target for jumps
to subroutine (Le., JSR, JScc, JSSET, or JSCLR to LA). A DO instruction cannot be
repeated using the REP instruction.

The following instructions cannot begin at the indicated position(s) near the end of a DO
loop:

At LA-2, LA-1, and LA

At LA-1

DO
MOVEC from SSH
MOVEM from SSH
MOVEP from SSH
MOVEC to LA, LC, SR, SP, SSH, or SSL
MOVEM to LA, LC, SR, SP, SSH, or SSL
MOVEP to LA, LC, SR, SP, SSH, or SSL
ANDI MR
ORIMR
Two-word instructions which read LC, SP, or SSL

Single-word instructions (except REP) which read LC,
SP, or SSL, JCLR, JSET, two-word JMP, two-word Jcc

DO

At LA

Other Restrictions:

Start Hardware Loop

any two-word instruction*
Jcc
JCLR
JSET
JMP
JScc
JSR

REP
RESET
RTI
RTS
STOP
WAIT

DO

*This restriction applies to the situation in which the
DSP56K simulator's single-line assembler is used to
change the last instruction in a DO loop from a one­
word instruction to a two-word instruction.

DO SSH,xxxx
JSR to (LA) whenever the loop flag (LF) is set
JScc to (LA) whenever the loop flag (LF) is set
JSCLR to (LA) whenever the loop flag (LF) is set
JSSET to (LA) whenever the loop flag (LF) is set

A DO instruction cannot be repeated using the REP instruction.

Note: Due to instruction pipelining, if an AGU register (Mn, Nn, or Rn) is directly changed
with a MOVE-type instruction, the new contents may not be available for use until the
second following instruction. See the restrictions discussed in A.9.6 - R, N, and M Regis­
ter Restrictions on page A-310.This restriction also applies to the sitLiation in which the
last instruction in a DO loop changes an address register and the first instruction at the
top of the DO loop uses that same address register. The top instruction becomes the fol­
lowing instruction because of the loop construct.

Similarly, since the DO instruction accesses the program controller registers, the DO
instruction must not be immediately preceded by any of the following instructions:

Immediately before DO MOVEC to LA, LC, SSH, SSL, or SP
MOVEM to LA, LC, SSH, SSL, or SP
MOVEP to LA, LC, SSH, SSL, or SP
MOVEC from SSH
MOVEM from SSH
MOVEP from SSH -

-

DO

Example:

DO #cnt1, END1

DO #cnt2, END2

MOVE A,X:(RO)+

END2
ADD A,S X:(R1)+,XO

END1

Start Hardware Loop

;begin outer DO loop

;begin inner DO loop

;Iast instruction in inner loop
;(in outer loop)
;Iast instruction in outer loop
;first instruction after outer loop

DO

Explanation of Example: This example illustrates a nested DO loop. The outer DO loop
will be executed "cnt1" times while the inner DO loop will be executed ("cnt1" * "cnt2")
times. Note that the labels END1 and END2 are located at the first instruction past the end
of the DO loop, as mentioned above, and are nested properly.

Condition Codes:

15 14 13 12 11 10 9 8 7 6 5 4 3 2

I LF I DM I T I ** I 81 I 80 I 11 I 10 I s I L E I u N I z
CCR

For source operand A or S:
LF - Set when a DO loop is in progress

S - Computed according to the definition. See Notes on page A-97.
L - Set if data limiting occurred. See Notes on page A-97.

For other source operands:

LF - Set when a DO loop is in progress

o

DO Start Hardware Loop

Instruction Format:
DO X:ea, expr
DO Y:ea, expr

Opcode:

23 20 19 16 15 8 7

o 0 0 010 1 1 o I 0 1

ABSOLUTE ADDRESS EXTENSION

Instruction Fields:
ea=6-bit Effective Address=MMMRRR,
expr=16-bit Absolute Address in 24-bit extension word

Effective
Addressing Mode MMMRRR Memory SpaceS

(Rn)-Nn o 0 o r r r X Memory
(Rn)+Nn o 0 1 r r r Y Memory
(Rn)- o 1 o r r r
(Rn)+ o 1 1 r r r
(Rn) 1 0 o r r r
(Rn+Nn) 1 0 1 r r r
-(Rn) 1 1 1 r r r

where "rrr" refers to an address register RO-R?

Timing: 6+mv oscillator clock cycles

Memory: 2 program words

0
1

DO

o
SO 010000

-

DO Start Hardware Loop DO

Instruction Format:
DO X:aa, expr
DO Y:aa, expr

Opcode:
23 20 19 16 15 8 7 0

o 0 0 0 10 1 1 0100 a ala a a alo so 010000

ABSOLUTE ADDRESS EXTENSION

Instruction Fields:
ea=6-bit Effective Short Address=aaaaaa,
expr=16-bit Absolute Address in 24-bit extension word

Absolute Short Address aaaaaa

000000
•
•

111111

Timing: 6+mv oscillator clock cycles

Memory: 2 prog ram words

Memory SpaceS

X Memory 0
Y Memory 1

DO Start Hardware Loop

Instruction Format:
DO #xxx, expr

Opcode:
23 20 19 16 15 8 7

o 0 0 010 1 1 iii i i i 11

ABSOLUTE ADDRESS EXTENSION

Instruction Fields:
#xxx=12-bit Immediate Short Data = hhhhiiiiiiii,
expr=16-bit Absolute Address in 24-bit extension word

Immediate Short Data hhhh iii iii i i

000000000000
•
•

111111111111

Timing: 6+mv oscillator clock cycles

Memory: 2 program words

DO

o
00 olh h h h

-

-

DO Start Hardware Loop DO

Instruction Format:
DO S, expr

Opcode:
23 20 19 16 15 8 7 0

o 0 0 01 0 1 1 o 11 1 D DID D D DID 0 0 01 0 o 0 0

ABSOLUTE ADDRESS EXTENSION

Instruction Fields:
S=6-bit Source operand = 000000,
expr=16-bit Absolute Address in 24-bit extension word

S
Source D D D D D D S/L Source D D D D D D

XO 0 0 0 1 0 0 no SR 1 1 1 0 0 1
X1 0 0 0 1 0 1 no OMR 1 1 1 0 1 0
YO 0 0 0 1 1 0 no SP* 1 1 1 0 1 1
Y1 0 0 0 1 1 1 no SSL** 1 1 1 1 0 1
AO 0 0 1 0 0 0 no LA 1 1 1 1 1 0
BO 0 0 1 0 0 1 no LC 1 1 1 1 1 1
A2 0 0 1 0 1 0 no RO-R7 0 1 0 r r r
B2 0 0 1 1 0 0 no NO-N7 0 1 1 n n n
A1 0 0 1 1 0 1 no MO-M7 1 0 0 m m m
A 0 0 1 1 1 0 yes [see Notes on page A-97]
B 0 0 1 1 1 1 yes [see Notes on page A-97]
where rrr=Rn register
where nnn=Nn register
where mmm=Mn register

*For DO SP, expr The actual value that will be loaded into the loop counter (LC) is
the value of the stack pointer (SP) before the execution of the
DO instruction, incremented by 1.

Thus, if SP=3, the execution of the DO SP,expr instruction will load the loop
counter (LC) with the value LC=4.

**For DO SSL, expr The loop counter (LC) will be loaded with its previous value
which was saved on the stack by the DO instruction itself.

DO Start Hardware Loop DO

Notes: If A or B is specified as the destination operand, the following sequence of events
takes place:

1. The S bit is computed according to its definition (See Section A.S)

2. The accumulator value is scaled according to the scaling mode bits SO
and S1 in the status register (SR).

3. If the accumulator extension is in use, the output of the shifter is limited
to the maximum positive or negative saturation constant, and the L bit is
set.

4. The LS 16 bits of the resulting 24 bit value is loaded into the loop
counter (LC). The original contents of A or B are not changed.

Timing: 6+mv oscillator clock cycles

Memory: 2 program words

-

ENDDO End Current DO Loop ENDDO

Operation: Assembler Syntax:
SSL(LF) ~ SR;SP - 1 ~ SP ENDDO
SSH ~ LA; SSL ~ LC;SP -1 ~ SP

Description: Terminate the current hardware DO loop before the current loop counter
(LC) equals one. If the value of the current DO loop counter (LC) is needed, it must be
read before the execution of the ENDDO instruction. Initially, the loop flag (LF) is
restored from the system stack and the remaining portion of the status register (SR) and
the program counter (PC) are purged from the system stack. The loop address (LA) and
the loop counter (LC) registers are then restored from the system stack.

Restrictions: Due to pipelining and the fact that the ENDDO instruction accesses the
program controller registers, the ENDDO instruction must not be immediately preceded
by any of the following instructions:

Immediately before ENDDO MOVEC to LA, LC, SR, SSH, SSL, or SP
MOVEM to LA, LC, SR, SSH, SSL, or SP
MOVEP to LA, LC, SR, SSH, SSL, or SP
MOVEC from SSH
MOVEM from SSH
MOVEP from SSH
ORIMR
ANDI MR
REP

Also, the ENDDO instruction cannot be the last (LA) instruction in a DO loop.

Example:

DOYO,NEXT

MOVECLC,A
CMPY1,A
JNE ONWARD
ENDDO
JMP NEXT

ONWARD

NEXT MOVE #$123456,X1

;exec. loop ending at NEXT (YO) times

;get current value of loop counter (LC)
;compare loop counter with value in Y1
;go to ONWARD if LC not equal to Y1
;LC equal to Y1, restore all DO registers
;go to NEXT
;LC not equal to Y1, continue DO loop
;(Iast instruction in DO loop)
;(first instruction AFTER DO loop)

ENDDO End Current DO Loop ENDDO

Explanation of Example: This example illustrates the use of the ENDDO instruction to
terminate the current DO loop. The value of the loop counter (LC) is compared with the
value in the Y1 register to determine if execution of the DO loop should continue. Note
that the ENDDO instruction updates certain program controller registers but does not
automatically jump past the end of the DO loop. Thus, if this action is desired, a JMP
instruction (i.e., JMP NEXT as previously shown) must be included after the ENDDO
instruction to transfer program control to the first instruction past the end of the DO loop.

Condition Codes:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I"F I DM I T I ** I 81 I 80 I " I 10 I 8 I l I E I U N I z

Opcode:

23 16 15 8 7 o
10 0 0 0 0 0 0 o 10 0 0 0 0 0 0 0 11 o 0 0 1 1 0 01

Instruction Fields:
None

Timing: 2 oscillator clock cycles

Memory: 1 program word

EOR Logical Exclusive OR EOR

Operation: Assembler Syntax:
S E9 0[47:24] -+0[47:24] (parallel move) EOR S,O (parallel move)

where E9 denotes the logical Exclusive OR operator

Description: Logically exclusive OR the source operand S with bits 47-24 of the desti­
nation operand 0 and store the result in bits 47-24 of the destination accumulator. This
instruction is a 24-bit operation. The remaining bits of the destination operand 0 are not
affected.

Example:

EOR Y1 ,81 (R2)+ ;Exclusive OR Y1 with 81, update R2

Before Execution After Execution

Y1 1~ _______ $_00_00_0_3 __ ~ Y1 1~ ________ $_0_00_00_3 __ ~

B 1~ __ $_00_:0_00_0_05_:0_00_00_0 __ ~ B l-I ____ $0_0_:00_00_0_6:0_0_00_00 __ ---'

Explanation of Example: Prior to execution, the 24-bit Y1 register contains the value
$000003, and the 56-bit 8 accumulator contains the value $00:000005:000000. The
EOR Y1 ,8 instruction logically exclusive ORs the 24-bit value in the Y1 register with bits
47-24 of the 8 accumulator (81) and stores the result in the 8 accumulator with bits 55-
48 and 23-0 unchanged.

Condition Codes:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 ° I LF 1 DM 1 T 1** 1 81 1 80 1 11 1 10 I s I L I E I u N I z
... MR • III(CCR

S - Computed according to the definition in A.5 CONDITION CODE COMPUTATION
L - Set if data limiting has occurred during parallel move
N - Set if bit 47 of A or B result is set
Z- Set if bits 47 - 24 of A or B result are zero
V - Always cleared

EOR Logical Exclusive OR EOR

Instruction Format:
EOR S,D

Opcode:

23 8 7 4 3 o
DATA BUS MOVE FIELD I 0 J J I d 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:
S JJ 0 d

XO 00 A 0
X1 1 0 B 1
YO 01
Y1 1 1

Timing: 2+mv oscillator clock cycles

Memory: 1 +mv program words

-

ILLEGAL

Operation:
Begin Illegal Instruction

exception processing

Illegal Instruction Interrupt ILLEGAL

Assembler Syntax:
ILLEGAL

Description: The ILLEGAL instruction is executed as if it were a NOP instruction. Nor­
mal instruction execution is suspended and illegal instruction exception processing is ini­
tiated. The interrupt vector address is located at address P:$3E. The interrupt priority
level (11, 10) is set to 3 in the status register if a long interrupt service routine is used. The
purpose of the ILLEGAL instruction is to force the DSP into an illegal instruction excep­
tion for test purposes. If a fast interrupt is used with the ILLEGAL instruction, an infinite
loop will be formed (an illegal instruction interrupt normally"returns to the illegal instruc­
tion) which can only be broken by a hardware reset. Therefore, only long interrupts
should be used. Exiting an illegal instruction is a fatal error. The long exception routine
should indicate this condition and cause the system to be restarted.

If the ILLEGAL instruction is in a DO loop at LA and the instruction at LA-1 is being inter­
rupted, then LC will be decremented twice due to the same mechanism that causes LC
to be decremented twice if JSR, REP, etc. are located at LA. This is why JSR, REP, etc.
at LA are restricted. Clearly restrictions cannot be imposed on illegal instructions.

Since REP is uninterruptable, repeating an ILLEGAL instruction results in the interrupt
not being initiated until after completion of the REP. After servicing the interrupt, program
control will return to the address of the second word following the ILLEGAL instruction.
Of course, the ILLEGAL interrupt service routine should abort further processing, and the
processor should be reinitialized.

Example:

ILLEGAL ;begin ILLEGAL exception processing

Explanation of Example: The ILLEGAL instruction suspends normal instruction execu­
tion and initiates ILLEGAL exception processing.

ILLEGAL Illegal Instruction Interrupt

Condition Codes:

The condition codes are not affected by this instruction.

Instruction Format:
ILLEGAL

Opcode:

23 16 15

10 0 0 0 0 0 0 010 0 0 0 0 0 0

Instruction Fields:
None

Timing: 8 oscillator clock cycles

Memory: 1 program word

8 7

01 0

ILLEGAL

o
o 0 0 0 1

-

INC Increment by One INC

Operation: Assembler Syntax:
D-1 ~ D INC D

Description: Increment by one the specified operand and store the result in the destina­
tion accumulator. One is added from the LSB of D.

Example:

INC B ;Increment the content of the B accumulator by one

Explanation of Example: One is added to the content of the B accumulator.

Condition Codes:

15 14 13 12 11 10 9 8 7 6 5 4

1 LF I OM I T 1** 1 SI 1 SO 1 11 I ,0 1 s I L I E I u
eeR ... MR

L - Set if overflow has occurred in A or B result
E - Set if the signed integer portion of A or B result is in use
U - Set if A or B result is unnormalized
N - Set if bit 55 of A or B result is set
Z - Set if A or B result equals zero
V - Set if overflow has occurred in A or B result
C - Set if a carry is generated from bit 55 of A or B result

3 2 0

N Z
v 1 :1

INC Increment by One INC

Instruction Format:
INC D

Opcode:
23 16 15 8 7 o

10 0 0 0 0 0 0 0100 0 0 0 00 o I 0 o 0 0 1 0 0 dl

Instruction Fields:
D d

A 0
8

Timing: 2 oscillator clock cycles

Memory: 1 program word

-

Jcc

Operation:
If cc, then Oxxx -+PC

else PC+ 1 -+PC

If cc, then ea -+PC
else PC+ 1 -+PC

Jump Conditionally Jcc

Assem bier Syntax:
Jcc xxx

Jcc xxx

Description: Jump to the location in program memory given by the instruction's effective
address if the specified condition is true. If the specified condition is false, the program

counter (PC) is incremented and the effective address is ignored. However, the address
register specified in the effective address field is always updated independently of the
specified condition. All memory alterable addressing modes may be used for the effec­
tive address. A Fast Short Jump addressing mode may also be used. The 12-bit data is
zero extended to form the effective address. See Section A.9 for restrictions. The term
"cc" may specify the following conditions:

CC (HS)
CS (LO)
EC
EQ
ES
GE
GT
LC
LE
LS
LT
MI
NE
NR
PL
NN

where

"cc" Mnemonic
- carry clear (higher or same)
- carry set (lower)
- extension clear
- equal
- extension set
- greater than or equal
- greater than
-limit clear
- less than or equal
-limit set
-less than
- minus
- not equal
- normalized
-plus
- not normalized

IT denotes the logical complement of U,
+ denotes the logical OR operator,
• denotes the logical AND operator, and
Ee denotes the logical Exclusive OR operator

Condition
C=O
C=1
E=O
Z=1
E=1
NEe V=O
Z+(N Ee V)=O
L=O
Z+(N EE> V)=1
L=1
N E9 V=1
N=1
Z=O
Z+(UeE)=1
N=O
Z+(ITeE)=0

Jcc Jump Conditionally Jcc

Restrictions: A Jcc instruction used within a DO loop cannot begin at the address LA
within that DO loop.

A Jcc instruction cannot be repeated using the REP Instruction.

Example:

JNN - (R4) ;jump to P:(R4) -1 if not normalized

Explanation of Example: In this example, program execution is transferred to the
address P:(R4)-1 if the result is not normalized. Note that the contents of address regis­
ter R4 are predecremented by 1, and the resulting address is then loaded into the pro­
gram counter (PC) if the specified condition is true. If the specified condition is not true,
no jump is taken, and the program counter is incremented by one.

Condition Codes:

15 14 13 12 11 10 9 8 7 6 5 4 I LF I OM I T I" I 81 I 80 I 11 I 10 I 8 I L E I u

The condition codes are not affected by this instruction.

Instruction Format:
Jcc xxx

Opcode:

eeR

23 16 15 8 7

10 0 0 0 1 1 1 ole e e e a a a ala

3 2 o
N I z I v

o
a a a a a a al

-

Jcc Jump Conditionally Jcc

Instruction Fields:
cc=4-bit condition code=CCCC,
xxx=12-bit Short Jump Address=aaaaaaaaaaaa

Mnemonic C C C C Mnemonic C C C C

CC (HS) 0 0 0 0 CS (LO) 0 0 0
GE 0 0 0 1 LT 0 0 1
NE 0 0 1 0 EQ 0 1 0
PL 0 0 1 1 MI 0 1 1
NN 0 1 0 0 NR. 1 0 0
EC 0 1 0 1 ES 1 0 1
LC 0 1 1 0 LS 1 1 0
GT 0 1 1 1 LE 1 1 1

Timing: 4+jx oscillator clock cycles

Memory: 1 +ea program words

Instruction Format:
Jcc ea

Opcode:
23 16 15 8 7 0

0 0 0 0 1 0 1 o 11 1 M M M R R R 11 0 1 0 C C C C

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:
cc=4-bit condition code=CCCC,
ea=6-bit Effective Address=MMMRRR

Jcc Jump Conditionally

Effective
Addressing Mode

(Rn)-Nn
(Rn)+Nn
(Rn)-
(Rn)+
(Rn)
(Rn+Nn)
-(An)
Absolute Address

MMMRRR

o 0 0
o 0 1
o 1 o r r r
o 1 1 r r r
1 0 o r r r
1 0 1 r r r
1 1 1 r r r
1 1 o 0 0 0

where "rrr" refers to an address register AO-A7

Mnemonic C C C C Mnemonic

CC (HS) 0 0 0 0 CS (LO)
GE 0 0 0 1 LT
NE 0 0 0 EQ

PL 0 0 1 MI

NN 0 0 0 NA
EC 0 0 1 ES
LC 0 0 LS
GT 0 LE

Timing: 4+jx oscillator clock cycles

Memory: 1 +ea program words

C

Jcc

C C C

0 0 0
0 0 1
0 0
0 1

0 0
0 1

0

-

-

JCLR Jump If Bit Clear JCLR

Operation: Assembler Syntax:
If S[n]=O, then xxxx-+PC JCLR #n,X:ea,xxxx

else PC+ 1-+PC

If S[n]=O, then XXXX -+PC JCLR #n,X:aa,xxxx
else PC+ 1 -+PC

If S[n]=O, then XXXX -+PC JCLR #n,X:pp,xxxx
else PC+ 1 -+PC

If S[n]=O, then XXXX -+PC JCLR #n,Y:ea,xxxx

else PC+ 1 -+PC

If S[n]=O, then XXXX -+PC JCLR #n,Y:aa,xxxx
else PC+ 1 -+PC

If S[n]=O, then XXXX -+PC JCLR #n,Y:pp,xxxx
else PC+ 1 -+PC

If S[n]=O, then XXXX -+PC JCLR #n,S,xxxx
else PC+ 1 -+PC

Description: Jump to the 16-bit absolute address in program memory specified in the
instruction's 24-bit extension word if the nth bit of the source operand S is clear. The bit to
be tested is selected by an immediate bit number from 0-23. If the specified memory bit
is not clear, the program counter (PC) is incremented and the absolute address in the
extension word is ignored. However, the address register specified in the effective
address field is always updated independently of the state of the nth bit. All address reg­
ister indirect addressing modes may be used to reference the source operand S. Abso­
lute Short and I/O Short addressing modes may also be used.

JCLR Jump If Bit Clear JCLR

Restrictions: A JCLR instruction cannot be repeated using the REP instruction.

A JCLR located at LA, LA-1, or LA-2 of the DO loop cannot specify the program control­
ler registers SR, SP, SSH, SSL, LA, or LC as its target.

JCLR SSH or JCLR SSL cannot follow an instruction that changes the SP.

Example:

JCLR #$5,X:«$FFF1 ,$1234 ;go to P:$1234 if bit 5 in SCI SSR is clear

Explanation of Example: In this example, program execution is transferred to the
address P:$1234 if bit 5 (PE) of the a-bit read-only X memory location X:$FFF1 (1/0 SCI
interface status register) is a zero. If the specified bit is not clear, no jump is taken, and
the program counter (PC) is incremented by one.

Condition Codes:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 I LF I OM I T I" I 51 I SO I 11 I 10 I 5 I LIE I u I N I z v I ~ I

.~ MR CCR -.

For destination operand A or 8:
S -Computed according to the definition. See Notes on page A-115.
L - Set if data limiting has occurred. See Notes on page A-115.
E - Not affected
U - Not affected
N - Not affected
Z - Not affected
V - Not affected
C - Not affected

For other source operands:
The condition codes are not affected.

-

JCLR

Instruction Format:
JCLR #n,X:ea,xxxx
JCLR #n,Y:ea,xxxx

Opcode:

Jump if Bit Clear JCLR

23 16 15 870

0000101 o 10 1 M M M R R RI1 SOb b b b b

ABSOLUTE ADDRESS EXTENSION

Instruction Fields:
#n=bit number=bbbbb,
ea=6-bit Effective Address=MMMRRR
xxxx=16-bit Absolute Address in extension word

Effective
Addressing Mode MMMRRR Memory SpaceS

(Rn)-Nn o 0 o r r r X Memory
(Rn)+Nn o 0 1 r r Y Memory
(Rn)- o 1 0 r r
(Rn)+ o 1 1 r r
(Rn) 1 0 0 r r
(Rn+Nn) 1 0 1 r r r
-(Rn) 1 1 1 r r r

where "rrr" refers to an address register RO-R7

Timing: 6+jx oscillator clock cycles

Memory: 2 program words

0
1

Bit Number bbbbb

00000
•
•
•

10111

JCLR

Instruction Format:
JCLR #n,X:aa,xxxx
JCLR #n,Y:aa,xxxx

Opcode:
23

0000101

Jump If Bit Clear JCLR

16 15 870

0100 a a a a a al1 SOb b b b b

ABSOLUTE ADDRESS EXTENSION

Instruction Fields:
#n=bit number=bbbbb,
aa=6-bit Absolute Short Address=aaaaaa
xxxx=16-bit Absolute Address in extension word

Absolute Short Address aaaaaa Memory SpaceS

000000

•
•

111111

Timing: 6+jx oscillator clock cycles

Memory: 2 program words

X Memory
Y Memory

o
Bit Number bbbbb

00000

•
10111

-

JCLR

Instruction Format:
JCLR #n,X:pp,xxxx
JCLR #n,Y:pp,xxxx

Opcode:

Jump if Bit Clear JCLR

23 16 15 8 7 0

0000101 o 11 0 p p p p p p 11 SOb b b b b

ABSOLUTE ADDRESS EXTENSION

Instruction Fields:
#n=bit number=bbbbb,
pp=6-bit I/O Short Address=pppppp
xxxx=16-bit Absolute Address in extension word

I/O Short Address pppppp

000000

•
•

'111111

Timing: 6+jx oscillator clock cycles

Memory: 2 program words

Memory SpaceS

X Memory a
Y Memory

Bit Number bbbbb

00000

•
10111

JCLR Jump If Bit Clear JCLR

Instruction Format:
JCLR #n,S,xxxx

Opcode:
23 16 15 870

00001010111 D DDDDDIOOObbbbb

ABSOLUTE ADDRESS EXTENSION

Instruction Fields:
#n=bit number=bbbbb,
S=source register=DDDDDD
xxxx=16-bit Absolute Address in extension word

Source Register

4 registers in Data ALU
8 accumulators in Data ALU
8 address registers in AGU
8 address offset registers in AGU
8 address modifier registers in AGU
8 program controller registers

DDDDDD

o 0 0 1 D D
o 0 1 D D D
010 TT T
o 1 1 N N N
1 0 0 F F F
1 1 1 G G G

Bit Number bbbbb

00000
•

10111

See Section A.1 0 and Table A-18 for specific register encodings.

Notes: If A or B is specified as the destination operand, the following sequence of events
takes place:

1. The S bit is computed according to its definition (See Section A.5)

2. The accumulator value is scaled according to the scaling mode bits SO
and S1 in the status register (SR).

3. If the accumulator extension is in use, the output of the shifter is limited to
the maximum positive or negative saturation constant, and the L bit is set.

4. The bit test is performed on the resulting 24-bit value, and the jump is taken
if the bit tested is clear. The original contents of A or B are not changed.

Timing: 6+jx oscillator clock cycles

Memory: 2 program words

-

-

JMP

Operation:
Oxxx --t PC

ea --t PC

Jump

Assembler Syntax:
JMP xxx
JMPea

JMP

Description: Jump to the location in program memory given by the instruction's effective
address. All memory alterable addressing modes may be used for the effective address.
A Fast Short Jump addressing mode may also be used. The 12-bit data is zero extended
to form the effective address.

Restrictions: A JMP instruction used within a DO loop cannot begin at the address LA
within that DO loop.

A JMP instruction cannot be repeated using the REP instruction.

Example:

JMP (R1+N1) ;jump to program address P:(R1 +N1)

Explanation of Example: In this example, program execution is transferred to the pro­
gram address P:(R1 +N1).

Condition Codes:

15 14 13 12 11 10 9 8 7 6 5 4

1 LF I OM I T I ** I 81 I 80 I 11 I 10 1 8 I L I E I u
... MR

The condition codes are not affected by this instruction.

Instruction Format:
JMP xxx

Opcode:
23 16 15

10 0 0 0 1 1 0 0100 0 0 a a a

3 2 0

N I z
v I :1

CCR

o
a a a a a a al

JMP Jump

Instruction Fields:
xxx=12-bit Short Jump Address=aaaaaaaaaaaa

Timing: 4+jx oscillator clock cycles

Memory: 1 +ea program words

Instruction Format:
JMP ea

Opcode:
23 16 15

0000101 o 11 1

8 7

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:
ea=6-bit Effective Address=MMMRRR

Effective
Addressing Mode MMMRRR

(Rn)-Nn o 0 o r r r
(Rn)+Nn o 0 1 r r r
(Rn)- o 1 o r r r
(Rn)+ o 1 1 r r r
(Rn) 0 0 r r
(Rn+Nn) 0 r r
-(Rn) 1 r r r
Absolute address o 0 0 0

where "rrr" refers to an address register RO-R7

Timing: 4+jx oscillator clock cycles

Memory: 1 +ea program words

JMP

o
0000000

-

-

JScc Jump to Subroutine Conditionally JScc

Operation: .
If cc, then SP+ 1-+SP; PC-+SSH; SR-+SSL; Oxxx-+PC

else PC+ 1-+PC

If cc, then SP+ 1-+SP; PC-+SSH; SR-+SSL; ea-+PC
else PC+ 1-+PC

Assembler Syntax:
JScc xxx

JScc ea

Description: Jump to the subroutine whose location in program memory is given by the
instruction's effective address if the specified condition is true. If the specified condition is
true, the address of the instruction immediately following the JScc instruction (PC) and
the system status register (SR) are pushed onto the system stack. Program execution
then continues at the specified effective address in program memory. If the specified
condition is false, the program counter (PC) is incremented, and any extension word is
ignored. However, the address register specified in the effective address field is always
updated independently of the specified condition. All memory alterable addressing
modes may be used for the effective address. A fast short jump addressing mode may
also be used. The 12-bit data is zero extended to form the effective address. The term
"cc" may specify the following conditions:

CC (HS)
CS (LO)
EC
EQ
ES
GE
GT
LC
LE
LS
LT
MI
NE
NR
PL
NN

"CC" Mnemonic
- carry clear (higher or same)
- carry set (lower)
- extension clear
- equal
- extension set
- greater than or equal
- greater than
- limit clear
- less than or equal
-limit set
-less than
- minus
- not equal
- normalized
-plus
- not normalized

Condition
C=O
C=1
E=O
Z=1
E=1
N E9 V=O
Z+(N E9 V)=O
L=O
Z+(N E9 V)=1
L=1
N E9 V=1
N=1
Z=O
Z+ (UeE) = 1
N=O
Z+(UeE)=O

JScc Jump to Subroutine Conditionally

where o denotes the logical complement of U,
+ denotes the logical OR operator,
• denotes the logical AND operator, and
EB denotes the logical Exclusive OR operator

JScc

Restrictions: A JScc instruction used within a DO loop cannot specify the loop
address (LA) as its target.

A JScc instruction used within in a DO loop cannot begin at the address LA within that
DO loop.

A JScc instruction cannot be repeated using the REP instruction.

Example:

JSLS (R3+N3) ;jump to subroutine at P:(R3+N3) if limit set (L=1)

Explanation of Example: In this example, program execution is transferred to the sub­
routine at address P:(R3+N3) in program memory if the limit bit is set (L=1). Both the
return address (PC) and the status register (SR) are pushed onto the system stack prior
to transferring program control to the subroutine if the specified condition is true. If the
specified condition is not true, no jump is taken and the program counter is incremented
by 1.

Condition Codes:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 o I LF I DM I T I" I S1 I SO I 11 I 10 I S I L I E I u N I z

... MR • ... CCR

The condition codes are not affected by this instruction.

-

JScc Jump to Subroutine Conditionally JScc

Instruction Format:
JScc xxx

Opcode:

23 16 15 8 7 o
10 0 0 0 1 1 1 a a a a a a 81

Instruction Fields:
cc=4-bit condition code=CCCC,
xxx=12-bit Short Jump Address=aaaaaaaaaaaa

Mnemonic C C C C Mnemonic C C C C

CC (HS) 0 0 0 0 CS (LO) 0 0 0
GE 0 0 0 1 LT 0 0 1
NE 0 0 1 0 EQ 0 1 0
PL 0 0 1 1 MI 0 1 1
NN 0 1 0 0 NR 1 0 0
EC 0 1 0 1 ES 1 0 1
LC 0 1 1 0 LS 1 1 0
GT 0 1 1 1 LE 1 1 1

Timing: 4+jx oscillator clock cycles

Memory: 1 +ea program words

-

JScc Jump to Subroutine Conditionally JScc

Instruction Format:
JScc ea

Opcode:
23 16 15· 8 7 0

0000101 M MMRRRI1 0 10 CCCC

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:
cc=4-bit condition code=CCCC,
ea=6-bit Effective Address=MMMRRR

Effective
Addressing Mode M M M R R R Mnemonic C C C C
(Rn)-Nn 000 r r r CC (HS)
(Rn)+NnO 001 r r r GE
(Rn)- 010 r r NE
(Rn)+ o 1 1 r r PL
(Rn) 100 r r NN
(Rn+Nn) 1 0 1 r r EC
-(Rn) 1 1 1 r r r LC
Absolute address 1 1 000 0 GT

where "rrr" refers to an address register RO-R7

Timing: 4+jx oscillator clock cycles

Memory: 1 +ea program words

o 0 0 0
o 0 0 1
o 0 1 0
o 0 1 1
o 1 0 0
o 1 0 1
o 1 1 0
011 1

Mnemonic C C C

CS (LO) 100
LT 100
EQ 1 0 1
MI 1 0 1
NR 1 1 0
ES 1 1 0
LS 1 1 1
LE 1 1 1

C

0
1
0
1
0
1
0
1

-

-

JSCLR Jump to Subroutine If Bit Clear JSCLR

Operation:
If S[n]=O,

Assembler Syntax
JSCLR #n,X:ea,xxxx

then SP+ 1-+SP; PC-+SSH; SR-+SSL; XXXX -+PC
else PC+1 -+PC

f S[n]=O, JSCLR #n,X:aa,xxxx
then SP+ 1-+SP; PC-+SSH; SR-+SSL; xxxx-+PC
else PC+ 1-+PC

If S[n]=O, JSCLR #n,X:pp,xxxx
then SP+ 1-+SP; PC-+SSH; SR-+SSL; xxxx-+PC
else PC+ 1-+PC

If S[n]=O, JSCLR #n,Y:ea,xxxx
then SP+1-+SP; PC-+SSH; SR-+SSL; xxxx-+PC
else PC+ 1-+PC

If S[n]=O, JSCLR #n,Y:aa,xxxx
then SP+1-+SP; PC-+SSH; SR-+SSL; xxxx-+PC
else PC+ 1-+PC

If S[n]=O, JSCLR #n,Y:pp,xxxx
then SP+ 1-+SP; PC-+SSH; SR-+SSL; xxxx-+PC
else PC+ 1-+PC

If S[n]=O, JSCLR #n,S,xxxx
then SP+1-+SP; PC-+SSH; SR-+SSL; xxxx-+PC
else PC+ 1-+PC

Description: Jump to the subroutine at the 16-bit absolute address in program memory
specified in the instruction's 24-bit extension word if the nth bit of the source operand S is
clear. The bit to be tested is selected by an immediate bit number from 0-23. If the nth bit
of the source operand S is clear, the address of the instruction immediately following the
JSCLR instruction (PC) and the system status register (SR) are pushed onto the system
stack. Program execution then continues at the specified absolute address in the instruc­
tion's 24-bit extension word. If the specified memory bit is not clear, the program counter
(PC) is incremented and the extension word is ignored. However, the address register

JSCLR Jump to Subroutine if Bit Clear JSCLR

specified in the effective address field is always updated independently of the state of the
nth bit. All address register indirect addressing modes may be used to reference the
source operand S. Absolute short and I/O short addressing modes may also be used·

Restrictions: A JSCLR instruction used within a DO loop cannot specify the loop
address (LA) as its target.

A JSCLR located at LA, LA-1, or LA-2 of a DO loop, cannot specify the program control­
ler registers SR, SP, SSH, SSL, LA, or LC as its target.

JSCLR SSH or JSCLR SSL cannot follow an instruction that changes the SP.

A JSCLR instruction cannot be repeated using the REP instruction.

Example:

JSCLR #$1 ,Y:«$FFE3,$1357 ;go sub. at P:$1357 if bit 1 in Y:$FFE3 is clear

Explanation of Example: In this example, program execution is transferred to the sub­
routine at absolute address P:$1357 in program memory if bit 1 of the external I/O loca­
tion Y:«$FFE3 is a zero. If the specified bit is not clear, no jump is taken and the
program counter (PC) is incremented by 1.

-

-

JSCLR Jump to Subroutine if Bit Clear JSCLR

Condition Codes:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 1 LF I OM I T I.. I S1 I SO I 11 I lois I L I E I u I N I z I v I :1 eeR ... MR
For destination operand A or B:

S -Computed according to the definition. See Notes on page A-129.
L - Set if data limiting has occurred. See Notes on page A-129.
E - Not affected
U - Not affected
N - Not affected
Z - Not affected
V - Not affected
C - Not affected

For other source operands:
The condition codes are not affected.

JSCLR

Instruction Format:
JSCLR #n,X:ea,xxxx
JSCLR #n,Y:ea,xxxx

Opcode:

Jump to Subroutine If Bit Clear JSCLR

23 16 15 8 7 0

0000101 1 I 0 1 M M M R R RI1 SOb b b b b

Instruction Fields:
#n=bit number=bbbbb,

ABSOLUTE ADDRESS EXTENSION

ea=6-bit Effective Address=MMMRRR,
xxxx=16-bit Absolute Address in extension word

Effective
Addressing Mode MMMRRR Memory SpaceS

(Rn)-Nn o 0 o r r r X Memory
(Rn)+Nn o 0 1 r r r Y Memory
(Rn)- o 1 0 r r
(Rn)+ o 1 1 r r
(Rn) 1 0 0 r r r
(Rn+Nn) 1 0 1 r r r
-(Rn) 1 1 1 r r r

where "rrr" refers to an address register RO-R7

Timing: 6+jx oscillator clock cycles

Memory: 2 program words

0
1

Bit Number bbbbb

00000
•
•
•

10111

-

-

JSCLR

Instruction Format:
JSCLR #n,X:aa,xxxx
JSCLR #n,Y:aa,xxxx

Opcode:

Jump to Subroutine if Bit Clear JSCLR

23 16 15 8 7 0

0000101 1 1 0 0 a a a a a a 11 S Ob b b b b

ABSOLUTE ADDRESS EXTENSION

Instruction Fields:
#n=bit number=bbbbb,
aa=6-bit Absolute Short Address=aaaaaa,
xxxx=16-bit Absolute Address in extension word

Absolute Short Address aaaaaa

000000
•
•

111111

Timing: 6+jx oscillator clock cycles

Memory: 2 program words

Memory SpaceS

X Memory 0
Y Memory

Bit Number bbbbb

00000
•

10111

JSCLR

Instruction Format:
JSCLR #n,X:pp,xxxx
JSCLR #n,Y:pp,xxxx

Opcode:

Jump to Subroutine If Bit Clear JSCLR

23 16 15 870

0000101 p p p p p P 11 SOb b b b b

ABSOLUTE ADDRESS EXTENSION

Instruction Fields:
#n=bit number=bbbbb,
pp=6-bit I/O Short Address=pppppp,
xxxx=16-bit Absolute Address in extension word

110 Short Address aaaaaa

000000
•
•

111111

Timing: 6+jx oscillator clock cycles

Memory: 2 program words

Memory SpaceS

X Memory a
Y Memory

Bit Number bbbbb

00000
•

10111

-

JSCLR Jump to Subroutine if Bit Clear JSCLR

Instruction Format:
JSCLR #n,S,xxxx

Opcode:
23 16 15 8 7 0

0000101 D DDDDDIOOObbbbb

ABSOLUTE ADDRESS EXTENSION

Instruction Fields:
#n=bit number=bbbbb,
S=source register=DDDDDD,
xxxx=16-bit Absolute Address in extension word

Source Register

4 registers in Data ALU
8 accumulators in Data ALU
8 address registers in AGU
8 address offset registers in AGU
8 address modifier registers in AGU
8 program controller registers

DDDDDD

o 0 0 1 D D
o 0 1 D D D
o 1 0 T T T
o 1 1 N N N
1 0 0 F F F
1 1 1 G G G

Bit Number bbbbb

00000
•

10111

See Section A.1 0 and Table A-18 for specific register encodings.

JSCLR Jump to Subroutine If Bit Clear JSCLR

Notes: If A or B is specified as the destination operand, the following sequence of events
takes place:

1. The 8 bit is computed according to its definition (See Section A.5)

2. The accumulator value is scaled according to the scaling mode bits SO
and 81 in the status register (SR).

3. If the accumulator extension is in use, the output of the shifter is limited to
the maximum positive or negative saturation constant, and the L bit is set.

4. The bit test is performed on the resulting 24-bit value, and the jump to sub­
routine is taken if the bit tested is clear. The original contents of A or Bare
not changed.

Timing: 6+jx oscillator clock cycles

Memory: 2 program words

-

JSET

Operation:
If S[n]=O, then xxxx-+PC

else PC+ 1-+PC

If S[n]=1 , then xxxx-+PC
else PC+1-+PC

If S[n]=1 , then xxxx-+PC
else PC+1-+PC

If S[n]=1 , then XXXX -+PC
else PC+ 1-+PC

If S[n]=1 , then xxxx-+PC
else PC+ 1-+PC

If S[n]=1 , then XXXX -+PC
else PC+1-+PC

If S[n]=1 , then xxxx-+PC
else PC+ 1-+PC

If S[n]=1 , then xxxx-+PC
else PC+ 1-+PC

Jump If Bit Set JSET

Assembler Syntax:
JSET #n,X:ea,xxxx

JSET #n,X:ea,xxxx

JSET #n,X:aa,xxxx

JSET #n,X:pp,xxxx

JSET #n,Y:ea,xxxx

JSET #n,Y:aa,xxxx

JSET #n,Y:pp,xxxx

JSET #n,S,xxxx

Description: Jump to the 16-bit absolute address in program memory specified in the
instruction's 24-bit extension word if the nth bit of the source operand S is set. The bit to
be tested is selected by an immediate bit number from 0-23. If the specified memory bit
is not set, the program counter (PC) is incremented, and the absolute address in the
extension word is ignored. However, the address register specified in the effective
address field is always updated independently of the state of the nth bit. All address reg­
ister indirect addressing modes may be used to reference the source operand S. Abso­
lute short and 1/0 short addressing modes may also be used.

JSET Jump if Bit Set JSET

Restrictions: A JSET instruction used within a DO loop cannot specify the loop
address (LA) as its target.

A JSET located at LA, LA-1, or LA-2 of a DO loop cannot specify the program controller
registers SR, SP, SSH, SSL, LA, or LC as its target.

JSET SSH or JSET SSL cannot follow an instruction that changes the SP.

A JSET instruction cannot be repeated using the REP instruction.

Example:

JSET #12,X:«$FFF2,$4321 ;$4321 ~(PC) if bit 12 (SCI COD) is set

Explanation of Example: In this example, program execution is transferred to the
address P:$4321 if bit 12 (SCI COD) of the 16-bit read/write I/O register X:$FFF2 is a
one. If the specified bit is not set, no jump is taken and the program counter (PC) is incre­
mented by 1.

Condition Codes:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 o

I LF I DM I T I·· I 81 I 80 I 11

~ MR

N z I v
• ~ GGR

For destination operand A or B:
S -Computed according to the definition. See Notes on page A-135.
L - Set if data limiting has occurred. See Notes on page A-135.
E - Not affected
U - Not affected
N - Not affected
Z - Not affected
V - Not affected
C - Not affected

For other source operands:
The condition codes are not affected.

-

JSET

Instruction Format:
JSET #n,X:ea,xxxx
JSET #n,Y:ea,xxxx

Opcode:

Jump If Bit Set JSET

23 16 15 870

00001010101 M M M R R RI1 S 1 b b b b b

ABSOLUTE ADDRESS EXTENSION

Instruction Fields:
#n=bit number=bbbbb,
ea=6-bit Effective Address=MMMRRR
xxxx=16-bit Absolute Address in extension word

Effective
Addressing Mode MMMRRR Memory SpaceS

{Rn)-Nn o 0 o r r r X Memory
{Rn)+Nn o 0 1 r r r Y Memory
(Rn)- o 1 o r r r
(Rn)+ o 1 1 r r r
(Rn) 1 0 o r r r
(Rn+Nn) 1 0 1 r r
-(Rn) 1 1 1 r r

where "rrr" refers to an address register RO-R7

Timing: 6+jx oscillator clock cycles

Memory: 2 program words

0
1
•
•
10111

Bit Number bbbbb

00000
•

JSET

Instruction Format:
JSET #n,X:aa,xxxx
JSET #n,Y:aa,xxxx

Opcode:
23

Jump if Bit Set JSET

16 15 8 7 o
0000101 o I 0 0 a a a a a al1S1bbb b b

ABSOLUTE ADDRESS EXTENSION

Instruction Fields:
#n=bit number=bbbbb,
aa=6-bit Absolute Short Address=aaaaaa,
xxxx=16-bit Absolute Address in extension word

Absolute Short Address aaaaaa

000000

•
•

111111

Timing: 6+jx oscillator clock cycles

Memory: 2 program words

Memory SpaceS

X Memory 0
V Memory

Bit Number bbbbb

00000

•
10111

JSET

Instruction Format:
JSET #n,X:pp,xxxx
JSET #n,Y:pp,xxxx

Opcode:

Jump if Bit Set JSET

23 16 15 8 7 0

0000101 01 10 P P P P P P 11 S 1 b b b b b

ABSOLUTE ADDRESS EXTENSION

Instruction Fields:
#n=bit number=bbbbb,
pp=6-bit I/O Short Address=pppppp,
xxxx=16-bit Absolute Address in extension word

1/0 Short Address pppppp

000000

•
•

111111

Timing: 6+jx oscillator clock cycles

Memory: 2 program words

Memory SpaceS

X Memory 0
Y Memory

Bit Number bbbbb

00000

•
10111

JSET Jump If Bit Set JSET

Instruction Format:
JSET #n,S,xxxx

Opcode:
23 16 15 870

0000101 D DDDDDloo 1bbbbb

ABSOLUTE ADDRESS EXTENSION

Instruction Fields:
#n=bit number=bbbbb,
S=source register=DDDDDD,
xxxx=16-bit Absolute Address in extension word

Source Register

4 registers in Data ALU
8 accumulators in Data ALU
8 address registers in AGU
8 address offset registers in AGU
8 address modifier registers in AGU
8 program controller registers

DDDDDD

o 0 0 1 D D
001 DDD
010 TT T
o 1 1 N N N
1 0 0 F F F
1 1 1 G G G

Bit Number bbbbb

00000

•
10111

See Section A.1 0 and Table A-18 for specific register encodings.

Notes: If A or B is specified as the destination operand, the following sequence of events
takes place:

1. The S bit is computed according to its definition (See Section A.5)

2. The accumulator value is scaled according to the scaling mode bits SO
and 81 in the status register (SR).

3. If the accumulator extension is in use, the output of the shifter is limited to
the maximum positive or negative saturation constant, and the L bit is set.

4. The bit test is performed on the resulting 24-bit value, and the jump is taken
if the bit tested is set. The original contents of A or B are not changed.

Timing: 6+jx oscillator clock cycles

Memory: 2 program words

JSR Jump to Subroutine JSR

Operation: Assembler Syntax:
SP+1 SP; PC SSH; SR SSL; Oxxx PC JSR xxx

SP+ SP; PC SSH; SR SSL; ea-+PC JSR ea

Description: Jump to the subroutine whose location in program memory is given by the
instruction's effective address. The address of the instruction immediately following the
JSR instruction (PC) and the system status register (SR) is pushed onto the system
stack. Program execution then continues at the specified effective address in program
memory. All memory alterable addressing modes may be used for the effective address.
A fast short jump addressing mode may also be used. The 12-bit data is zero extended
to form the effective address.

Restrictions: A JSR instruction used within a DO loop cannot specify the loop
address (LA) as its target.

A JSR instruction used within a DO loop cannot begin at the address LA within that DO
loop.

A JSR instruction cannot be repeated using the REP instruction.

Example:

JSR (R5)+ ;jump to subroutine at (R5), update R5

Explanation of Example: In this example, program execution is transferred to the sub­
routine at address P:(R5) in program memory, and the contents of the R5 address regis­
ter are then updated.

Condition Codes:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 I LF I DM I T I ** I S1 I SO I 11 I 10 I s I L I E I u I N I z I v I~I CCR ... MR
The condition codes are not affected by this instruction.

JSR Jump to Subroutine JSR

Instruction Format:
JSR xxx

Opcode:
23 16 15 8 7 o

10 0 0 0 1 1 0 1100 0 0 a a a al a a a a a a a al

Instruction Fields:
xxx=12-bit Short Jump Address=aaaaaaaaaaaa

Timing: 4+jx oscillator clock cycles
Memory: 1 +ea program words

Instruction Format:
JSR ea

Opcode:
23 16 15 8 7 0

0000101 M MMRRRI1 0000000

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:
ea=6-bit Effective Address=MMMRRR

Effective
Addressing Mode MMMRRR

(Rn)-Nn o 0 0 r r
(Rn)+Nn o 0 r r
(Rn)- o 1 o r r r
(Rn)+ o 1 r r r
(Rn) 1 0 0 r r r
(Rn+Nn) 0 r r r
-(Rn) 1 r r r
Absolute address o 0 0 0
where "rrr" refers to an address register RO-R7

Timing: 4+jx oscillator clock cycles
Memory: 1 +ea program words

-

-

JSSET Jump to Subroutine if Bit Set JSSET

Operation:
If S[n]=1,
then SP+1-+SP; PC-+SSH; SR-+SSL; xxxx-+PC
else PC+ 1-+PC

If S[n]=1,
then SP+1-+SP; PC-+SSH; SR-+SSL; xxxx-+PC
else PC+ 1-+PC

If S[n]=1,
then SP+ 1-+SP; PC-+SSH; SR-+SSL; xxxx-+PC
else PC+ 1-+PC

If S[n]=1,
then SP+ 1-+SP; PC-+SSH; SR-+SSL; xxxx-+PC
else PC+ 1-+PC

If S[n]=1,
then SP+ 1-+SP; PC-+SSH; SR -+SSL; xxxx-+PC
else PC+ 1-+PC

If S[n]=1,
then SP+1-+SP; PC-+SSH; SR-+SSL; xxxx -+PC
else PC+ 1-+PC

If S[n]=1,
then SP+ 1-+SP; PC-+SSH; SR-+SSL; xxxx-+PC
else PC+ 1-+PC

Assembler Syntax
JSSET #n,X:ea,xxxx

JSSET #n,X:aa,xxxx

JSSET #n,X:pp,xxxx

JSSET #n,Y:ea,xxxx

JSSET #n,Y:aa,xxxx

JSSET #n,Y:pp,xxxx

JSSET #n,S,xxxx

Description: Jump to the subroutine at the 16-bit absolute address in program memory
specified in the instruction's 24-bit extension word if the nth bit of the source operand S is
set. The bit to be tested is selected by an immediate bit number from 0-23. If the nth bit
of the source operand S is set, the address of the instruction immediately following the
JSSET instruction (PC) and the system status register (SR) are pushed onto the system
stack. Prog ram execution then continues at the specified absolute address in the instruc­
tion's 24-bit extension word. If the specified memory bit is not set, the program counter
(PC) is incremented, and the extension word is ignored. However, the address register
specified in the effective address field is always updated independently of the state of the

JSSET Jump to Subroutine if Bit Set JSSET

nth bit. All address register indirect addressing modes may be used to reference the
source operand S. Absolute short and I/O short addressing modes may also be used.

Restrictions: A JSSET instruction used within a DO loop cannot specify the loop
address (LA) as its target.

A JSSET located at LA, LA-1, or LA-2 of a DO loop, cannot specify the program control­
ler registers SR, SP, SSH, SSL, LA, or LC as its target.

JSSET SSH or JSSET SSL cannot follow an instruction that changes the SP.

A JSSET instruction cannot be repeated using the REP instruction.

Example:

JSSET #$17,Y:<$3F,$1 00 ;go to sub. at P:$01 00 if bit 23 in Y:$3F is set

Explanation of Example: In this example, program execution is transferred to the sub­
routine at absolute address P:$0100 in program memory if bit 23 of Y memory location
Y:$003F is a one. If the specified bit is not set, no jump is taken and the program counter
(PC) is incremented by 1.

Condition Codes:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 I LF I DM I T I" I 81 I 80 I 11 I 10 I 8 I LIE I u I N I z I v I c I
.... MR ~.... eeR .,.

For destination operand A or B:
S -Computed according to the definition. See Notes on page A-143.
L - Set if data limiting has occurred. See Notes on page A-143.
E - Not affected
U - Not affected
N - Not affected
Z - Not affected
V - Not affected
C - Not affected

For other source operands:
The condition codes are not affected.

-

JSSET

Instruction Format:
JSSET #n,X:ea,xxxx
JSSET #n,Y:ea,xxxx

Opcode:

Jump to Subroutine If Bit Set JSSET

23 16 15 8 7 0

0000101 1 \ 0 1 M M M R R R \1 S 1 b b b b b

Instruction Fields:
#n=bit number=bbbbb,

ABSOLUTE ADDRESS EXTENSION

ea=6-bit Effective Address=MMMRRR,
xxxx=16-bit Absolute Address in extension word

Effective
Addressing Mode MMMRRR Memory SpaceS

(Rn)-Nn o 0 o r r r X Memory
(Rn)+Nn o 0 1 r r r Y Memory
(Rn)- o 1 0 r r
(Rn)+ o 1 1 r r
(Rn) 1 0 0 r r
(Rn+Nn) 1 0 1 r r
-(Rn) 1 1 1 r r r

where "rrr" refers to an address register RO-R7

Timing: 6+jx oscillator clock cycles

Memory: 2 program words

0
1

Bit Number bbbbb

00000
•
•
•

10111

JSSET

Instruction Format:
JSSET #n,X:aa,xxxx
JSSET #n,Y:aa,xxxx

Opcode:

Jump to Subroutine if Bit Set JSSET

23 16 15 8 7 0

0000101 1 I 0 0 a a aaaal1 S1bbbbb

ABSOLUTE ADDRESS EXTENSION

Instruction Fields:
#n=bit number=bbbbb,
aa=6-bit Absolute Short Address=aaaaaa,
xxxx=16-bit Absolute Address in extension word

Absolute Short Address aaaaaa

000000
•
•

111111

Timing: 6+jx oscillator clock cycles

Memory: 2 program words

Memory SpaceS

X Memory a
Y Memory 1

Bit Number bbbbb

00000
•

10111

-

JSSET

Instruction Format:
JSSET #n,X:pp,xxxx
JSSET #n,Y:pp,xxxx

Opcode:
23

Jump to Subroutine If Bit Set JSSET

16 15 8 7 o
0000101 P PPPPpl1S1bbb b b

ABSOLUTE ADDRESS EXTENSION

Instruction Fields:
#n=bit number=bbbbb,
pp=6-bit I/O Short Address=pppppp,
xxxx=16-bit Absolute Address in extension word

I/O Short Address pppppp

000000

•
•

111111

Timing: 6+jx oscillator clock cycles

Memory: 2 program words

Memory SpaceS

X Memory 0
Y Memory

Bit Number bbbbb

00000

•
10111

JSSET Jump to Subroutine if Bit Set JSSET

Instruction Format:
JSSET #n,S,xxxx

Opcode:
23 16 15 8 7 0

0000101 1 1 11 D DDDDDloo 1bbbbb

ABSOLUTE ADDRESS EXTENSION

Instruction Fields:
#n=bit number=bbbbb,
S=source register=DDDDDD,
xxxx=16-bit Absolute Address in extension word

Source Register

4 registers in Data ALU
8 accumulators in Data ALU
8 address registers in AGU
8 address offset registers in AGU
8 address modifier registers in AGU
8 program controller registers

DDDDDD

o 0 0 1 D D
o 0 1 D D D
o 1 0 T T T
o 1 1 N N N
1 0 0 F F F
1 1 1 G G G

Bit Number bbbbb

00000
•

10111

See Section A.1 0 and Table A-18 for specific register encodings.

Notes: If A or B is specified as the destination operand, the following sequence of
events takes place:

1. The S bit is computed according to its definition (See Section A.5)

2. The accumulator value is scaled according to the scaling mode bits SO
and S1 in the status register (SR).

3. If the accumulator extension is in use, the output of the shifter is limited to
the maximum positive or negative saturation constant, and the L bit is set.

4. The bit test is performed on the resulting 24-bit value, and the jump to sub­
routine is taken if the bit tested is set. The original contents of A or B are not
changed.

Timing: 6+jx oscillator clock cycles

Memory: 2 program words

-

LSL Logical ~hlft Left LSL

47 24

Operation: c..-I ------ 1..- 0 (parallel move)

Assembler Syntax: LSL D (parallel move)

Description: Logically shift bits 47-24 of the destination operand D one bit to the left
and store the result in the destination accumulator. Prior to instruction execution, bit 47 of
D is shifted into the carry bit C, and a zero is shifted into bit 24 of the destination accumu­
lator D. This instruction is a 24-bit operation. The remaining bits of the destination oper­
and D are not affected. If a zero shift count is specified, the carry bit is cleared. The
difference between LSL and ASL is that LSL operates on only A1 or B1 and always,
clears the V bit.

Example:

LSL B1 #$7F,RO ;shift B1 one bit to the left, set up RO

Before Execution After Execution

B ~I __ $_0_0:F_O_1~_4_:1_35_7_9B __ ~ B ~I ___ $_OO_:E_02_4_~_:1_35_79_B __ ~

SRI,-__________ $0_3_00 __ ----' SRI~ __________ $0_3_09 __ ~

Explanation of Example: Prior to execution, the 56-bit B accumulator contains the
value $OO:F01234:13579B. The execution of the LSL B instruction shifts the 24-bit value
in the B1 register one bit to the left and stores the result back in the B1 register.

LSL Logical Shift Left LSL

Condition Codes:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S - Computed according to the definition in A.5 CONDITION CODE COMPUTATION
L - Set if data limiting has occurred during parallel move
N - Set if bit 47 of A or B result is set
Z - Set if bits 47-24 of A or B result are zero
V - Always cleared
C - Set if bit 47 of A or B was set prior to instruction execution

Instruction Format:
LSLD

Opcode:

23 8 7

DATA BUS MOVE FIELD I 0 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:
Dd
AO
B 1

Timing: 2+mv oscillator clock cycles

Memory: 1 +mv program words

4 3

1 I d 0

o

LSR Logical Shift Right LSR

47 24

Operation: O~ I -----I.~ I ~ C (parallel move)

Assembler Syntax: LSR D (parallel move)

Description: Logically shift bits 47-24 of the destination operand D one bit to the right
and store the result in the destination accumulator. Prior to instruction execution, bit 24 of
D is shifted into the carry bit C, and a zero is shifted into bit 47 of the destination accumu­
lator D. This instruction is a 24-bit operation. The remaining bits of the destination oper­
and D are not affected.

Example:

LSR A 1 A 1, N4 ;shift A 1 one bit to the right, set up N4

Before Execution After Execution

A ~I ___ $3_7:_44_44_45_:8_28_1_80 __ ~ A 1'--_$_37_:2_22_22_2:_82_81_80_---'

SRI ~ ______ $_03_00_~ SR~I ________ $0_3_01_---'

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the
value $37:444445:828180. The execution of the LSR A instruction shifts the 24-bit value
in the A1 register one bit to the right and stores the result back in the A1 register.

LSR Logical Shift Right LSR

Condition Codes:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 I: IOMI T 1**J:, I S0 '1111~I .. s I LIE I UceRN I z v 1:.1
S - Computed according to the definition in A.S CONDITION CODE COMPUTATION
L - Set if data limiting has occurred during parallel move
N - Always cleared
Z- Set if bits 47-24 of A or B result are zero
V - Always cleared
C - Set if bit 24 of A or B was set prior to Instruction execution

Instruction Format:
LSR D

Opcode:

23 8 7

DATA BUS MOVE FIELD I 0 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:
Dd
AD
B 1

Timing: 2+mv oscillator clock cycles

Memory: 1 +mv program words

4 3

Old 0

o

LUA

Operation:
ea-+d

Load Updated Address LUA

Assembler Syntax:
LUAea,D

Description: Load the updated address into the destination address register D. The
source address register and the update mode used to compute the updated address are
specified by the effective address (ea). Note that the source address register speci­
fied in the effective address is not updated. All update addressing modes may be
used.

Note: This instruction is considered to be a move-type instruction. Due to instruction
pipelining, if an AGU register (Mn, Nn, or Rn) is directly changed with this instruction, the
new contents may not be available for use until the second following instruction. See the
restrictions discussed in A.9.6 - R, N, and M Register Restrictions on page A-31 o.
Example:

LUA (RO)+NO,R1 ;update R1 using (RO)+NO

Before Execution After Execution

RO I $0003 RO I $0003

NO I $0005 NO I $0005

MO I $FFFF MO I $FFFF

R1 I $0004 R1 I $0008

Explanation of Example: Prior to execution, the 16-bit address register RO contains the
value $0003, the 16-bit address register NO contains the value $0005, and the 16-bit
address register R1 contains the value $0004. The execution of the LUA (RO)+NO,R1
instruction adds the contents of the RO register to the contents of the NO register and
stores the resulting updated address in the R1 address register. Normally NO would be
added to RO and deposited in RO. However, for an LUA instruction, the contents of both
the RO and NO address registers are not affected.

LUA Load Updated Address

Condition Codes:

15 14 13 12 11 10 9 8 7 6 5 4 I LF I OM I T I.. I 81 I 80 I 11 I 10 I 8 I L I E I u
~ MR

The condition codes are not affected by this instruction.

Instruction Format:
LUA ea,D

Opcode:

3

I N

CCR

23 16 15 8 7

LUA

2 0

Z
v I ~I

o
10 0 0 0 0 1 0 01010 M M R R Rio o 0 1 d d d dl

Instruction Fields:
ea=5-bit Effective Address=MMRRR,
D=4-bit destination address register=dddd

Effective
Addressing Mode MMMRRR Dest. Addr. Reg. D

(Rn)-Nn 0 0 o r r r RO-R?
(Rn)+Nn 0 0 1 r r NO-N?
(Rn)- 0 0 r r
(Rn)+ 0 r r r

where "rrr" refers to a source address register RO-R?

d d

o n
n

where "nnn" refers to a destination address register RO-R? or NO-N?

Timing: 4 oscillator clock cycles

Memory: 1 program word

d d

n n
n n

MAC Signed Multiply-Accumulate MAC

Operation:
D±S1 *S2~D (parallel move)

D±S1 *S2~D (parallel move)

D±(S1 *2-n)~D (no parallel move)

Assembler Syntax:
MAC (±)S1 ,S2,D (parallel move)

MAC

MAC

(±)S2,S1 ,D (parallel move)

(±)S,#n,D (no parallel move)

Description: Multiply the two signed 24-bit source operands S1 and S2 (or the signed
24-bit source operand S by the positive 24-bit immediate operand 2-n) and add/subtract
the product to/from the specified 56-bit destination accumulator D. The ,,_It sign option is
used to negate the specified product prior to accumulation. The default sign option is "+".

Note: When the processor is in the Double Precision Multiply Mode, the following
instructions do not execute in the normal way and should only be used as part of the
double precision multiply algorithm shown in Section 3.4 DOUBLE PRECISION MUL TI­
PLY MODE:

MPYYO, XO, A
MAC X1, YO, A
MAC XO, Y1, A
MAC Y1, X1, A

MPYYO, XO, B
MAC X1, YO, B
MAC XO, Y1, B
MAC Y1, X1, B

All other Data ALU instructions are executed as NaP's when the processor is in the Dou­
ble Precision Multiply Mode.

Example 1:

MAC XO,XO,A X:(R2)+N2,Y1 ;square XO and store in A, update Y1 and R2

Before Execution After Execution

XO I $123456 XO I $123456

A I $00:100000:00000 AI $00:1296CD:9619C8

Explanation of Example 1: Prior to execution, the 24-bit XO register contains the value
of $123456 (0.142222166), and the 56-bit A accumulator contains the value
$00:100000:000000 (0.125). The execution of the MAC XO,XO,A instruction squares the
24-bit signed value in the XO register and adds the resulting 48-bit product to the 56-bit A
accumulator (XO*XO+IA=0.145227144519197 approximately= $00:1296CD :9619C8=A).

MAC Signed Multiply-Accumulate MAC

Condition Codes:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 I LF I DM I T I ** I SI I SO I 11 I 10 I s I LIE I u I N I z I v I c I
.• MR .,.. CCR .,.

S - Computed according to the definition in A.5 CONDITION CODE COMPUTATION.
L - Set if limiting (parallel move) or overflow has occurred in result
E - Set if the signed integer portion of A or B result is in use
U - Set if A or B result is unnormalized
N - Set if bit 55 of A or B result is set
Z - Set if A or B result equals zero
V - Set if overflow has occurred in A or B result

Note: The definitions of the E and U bits vary according to the scaling mode being used.
Refer to Section A.5 for complete details.

Instruction Format 1:
MAC (±)S 1 ,S2,D
MAC (±)S2,S1,D

Opcode: 1
23 8 7 4 3

DATA BUS MOVE FIELD 11 a a aid k

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:
81*82 Q Q Q Sign k D d

XOXO 0 0 0 + 0 A 0
YO YO 0 0 1 1 B 1
X1 XO 0 1 0
Y1 YO 0 1 1
XOY1 1 0 0
YOXO 1 0 1
X1 YO 1 1 0
Y1 X1 1 1 1

o
o

Note: Only the indicated S1 *S2 combinations are valid. X1 *X1 and Y1 *Y1 are not valid.

MAC Signed Multiply-Accumulate

Timing: 2+mv oscillator clock cycles

Memory: 1 +mv program words

Example 2:

MAC XO, #3, A

Before Execution

XO~I _________ $_65_4_32_1 __ ~

A~I ____ $_00_:1_00_00_0_:00_0_00_0 __ ~

After Execution

XOI~ _________ $6_54_32_1 __ ~

A~I ____ $0_0:_1C_A8_6_4:2_00_00_0 __ ~

MAC

Explanation of Example 2: The content of XO ($654321) is multiplied by 2-3 and then
added to the content of the A accumulator ($00:100000:000000). The result is then
placed in the A accumulator. The net effect of this operation is to divide the content of
XO by 23 and add the result to the accumulator. An alternate interpretation is that XO is
right shifted 3 places and filled with the sign bit (0 for a positive number and 1 for a neg­
ative number) and then the result is added to the accumulator.

Instruction Format 2:

MAC (±)S,#n,D

Opcode 2:

23 16 15 8 7 o
10 0 0 0 0 0 0 11000 S S ss sl1 1 a a d k 1 01

Instruction Fields:
S QQ Sign k D d

Y1 0 0 + 0 A 0
XO 0 1 1 B 1
YO 1 0
X1 1 1

MAC Signed Multiply-Accumulate

n sssss constant
1 00001 010000000000000000000000
2 00010 001000000000000000000000
3 00011 000100000000000000000000
4 00100 000010000000000000000000
5 00101 000001000000000000000000
6 00110 000000100000000000000000
7 00111 000000010000000000000000
8 01000 000000001000000000000000
9 01001 000000000100000000000000
10 01010 000000000010000000000000
11 01011 000000000001000000000000
12 01100 000000000000100000000000
13 01101 000000000000010000000000
14 01110 000000000000001000000000
15 01111 000000000000000100000000
16 10000 000000000000000010000000
17 10001 000000000000000001000000
18 10010 000000000000000000100000
19 10011 000000000000000000010000
20 10100 000000000000000000001000
21 10101 000000000000000000000100
22 10110 000000000000000000000010
23 10111 000000000000000000000001

Timing: 2 oscillator clock cycles

Memory: 1 program word

MAC

MACR Signed Multiply-Accumulate and Round MACR

Operation:
D±S1 *S2+r.-.D (parallel move)

D±S1 *S2+r.-. D (parallel move)

D±(S1 *2-n)+r.-.D (no parallel move)

Assembler Syntax:
MACR (±)S1,S2,D (parallel move)

MACR

MACR

(±)S2,S1,D (parallel move)

(±)S,#n,D (no parallel move)

Description: Multiply the two signed 24-bit source operands S1 and S2 (or the signed
24-bit source operand S by the positive 24-bit immediate operand 2-n), add/subtract the
product to/from the specified 56-bit destination accumulator D, and then round the result
using convergent rounding. The rounded result is stored in the destination accumulator
D.

The U_" sign option negates the specified product prior to accumulation. The default sign
option is u+".

The contribution of the LS bits of the result is rounded into the upper portion of the desti­
nation accumulator (A1 or B1) by adding a constant to the LS bits of the lower portion of
the accumulator (AO or BO). The value of the constant added is determined by the scal­
ing mode bits SO and S1 in the status register. Once rounding has been completed, the
LS bits of the destination accumulator D (AO or BO) are loaded with zeros to maintain an
unbiased accumulator value which may be reused by the next instruction. The upper por­
tion of the accumulator (A1 or B1) contains the rounded result which may be read out to
the data buses. Refer to the RND instruction for more complete information on the con­
vergent rounding process.

Example 1:

MACR XO,YO,B B,XO Y:(R4)+N4,YO ;XO*YO+B'-'B, and B, update XO,YO,R4

Before Execution After Execution

XO I $123456 XO I $100000

YO I $123456 YO I $987654

B I $00:100000:000000 B I $00:1296CE:000000

MACR Signed Multiply-Accumulate and Round MACR

Explanation of Example 1: Prior to execution, the 24-bit XO register contains the value
$123456 (0.142222166), the 24-bit YO register contains the value $123456
(0.142222166), and the 56-bit B accumulator contains the value $00:100000:000000
(0.125). The execution of the MACR XO,YO,B instruction multiples the 24-bit signed value
in the XO register by the 24-bit signed value in the YO register, adds the resulting product
to the 56-bit B accumulator, rounds the result into the B1 portion of the accumulator, and
then zeros the BO portion of the accumulator (XO*YO+B=0.145227144519197 approxi­

mately =$00:1296CD:9619C8, which is rounded to the value
$00:1296CE:000000=0.145227193832397=B).

Condition Codes:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 IlF I DM I T I.. I S1 I SO I 11 I 10 I s I L E I u I N I z v
I ~I CCA 41(MA

S - Computed according to the definition in A.5 CONDITION CODE COMPUTATION
L - Set if limiting (parallel move) or overflow has occurred in result
E - Set if the signed integer portion of A or B result is in use
U - Set if A or B result is unnormalized
N - Set if bit 55 of A or B result is set
Z- Set if A or B result equals zero
V - Set if overflow has occurred in A or B result

Note: The definitions of the E and U bits vary according to the scaling mode being used.
Refer to Section A.5 for complete details.

Instruction Format 1:
MACR (±)S1,S2,0
MACR (±)S2,S 1 ,0

Opcode 1:
23

DATA BUS MOVE FIELD

8 7 4 3

I 1 Q Q Q I d k

OPTIONAL EFFECTIVE ADDRESS EXTENSION

o

MACR Signed Multiply-Accumulate and Round MACR

Instruction Fields 1:
S1*S2 Q Q Q Sign k D d

XOXO 0 0 0 + 0 A 0
YO YO 0 0 1 1 8 1
X1 XO 0 1 0
Y1 YO 0 1 1
XOY1 1 0 0
YOXO 1 0 1
X1 YO 1 1 0
Y1 X1 1 1 1

Note: Only the indicated 81 *82 combinations are valid. X1 *X1 and Y1 *Y1 are not valid.

Timing: 2+mv oscillator clock cycles

Memory: 1 +mv program words

Example 2:

MACR -YO, #10,8

Before Execution After Execution

YO~I _________ $_65_4_32_1 __ ~ YO~I _________ $_6_M_32_1 __ ~

BI~ ____ $_OO_:1_00_00_o_:oo_o_oo_o __ ~ B~I ____ $O_O_:OF_E_6A_F_:O_OO_oo_o __ ~

Explanation of Example 2: The content of YO ($654321) is negated, multiplied by 2-1°,
added to the content of the 8 accumulator ($00:100000:000000), placed in the 8 accu­
mulator and then rounded to a single precision number (24 bits in 81). The net effect of
this operation is to negate the content of YO, divide the result by 210 and add the result
to the accumulator. An alternate interpretation is that YO is negated, right shifted 10
places, filled with the sign bit (0 for a positive number and 1 for a negative number), the
result is added to the accumulator and then rounded to a single precision number.

MACR Signed MUltiply-Accumulate and Round MACR

Instruction Format 2:
MACR (±)S,#n,D

Opcode 2:
23 16 15 8 7 o

\0 0 0 0 0 0 0 1\000 S S ss S\1 1 Q Q d k 1 11

Instruction Fields 2:
S QQ Sign k D d

Y1 0 0 + 0 A 0
XO 0 1 1 B 1
YO 1 0
X1 1 1

n sssss constant
1 00001 010000000000000000000000
2 00010 001000000000000000000000
3 00011 000100000000000000000000
4 00100 000010000000000000000000
5 00101 000001000000000000000000
6 00110 000000100000000000000000
7 00111 000000010000000000000000
8 01000 000000001000000000000000
9 01001 000000000100000000000000
10 01010 000000000010000000000000
11 01011 000000000001000000000000
12 01100 000000000000100000000000
13 01101 000000000000010000000000
14 01110 000000000000001000000000
15 01111 000000000000000100000000
16 10000 000000000000000010000000
17 10001 000000000000000001000000
18 10010 000000000000000000100000
19 10011 000000000000000000010000
20 10100 000000000000000000001000
21 10101 000000000000000000000100
22 10110 000000000000000000000010
23 10111 000000000000000000000001 -

Timing: 2 oscillator clock cycles

Memory: 1 program word

MOVE Move Data MOVE

Operation: Assembler Syntax:
S~D MOVE S,D

Description: Move the contents of the specified data source S to the specified destina­
tion D. This instruction is equivalent to a data ALU NOP with a parallel data move.

When a 56-bit accumulator (A or B) is specified as a source operand S, the accumulator
value is optionally shifted according to the scaling mode bits SO and S 1 in the system
status register (SR). If the data out of the shifter indicates that the accumulator extension
register is in use and the data is to be moved into a 24- or 48-bit destination, the value
stored in the destination D is limited to a maximum positive or negative saturation con­
stant to minimize truncation error. Limiting does not occur if an individual 24-bit accumu­
lator register (A1, AO, B1, or BO) is specified as a source operand instead of the full 56-bit
accumulator (A or B). This limiting feature allows block floating-point operations to be
performed with error detection since the L bit in the condition code register is latched.

When a 56-bit accumulator (A or B) is specified as a destination operand 0, any 24-bit
source data to be moved into that accumulator is automatically extended to 56 bits by
sign extending the MS bit of the source operand (bit 23) and appending the source oper­
and with 24 LS zeros. Similarly, any 48-bit source data to be loaded into a 56-bit accu­
mulator is automatically sign extended to 56 bits. Note that for 24-bit source operands
both the automatic sign-extension and zeroing features may be disabled by specifying
the destination register to be one of the individual 24-bit accumulator registers (A 1 or
B1). Similarly, for 48-bit source operands, the automatic sign-extension feature may be
disabled by using the long memory move addressing mode and specifying A10 or B10 as
the destination operand.

Example:

MOVE XO,A 1 ;move XO to A 1 without sign ext. or zeroing

xo ~I ________ ~$2_34_5_67 __ ~ xol ~ ________ ~$2_3_45_67 __ ~

A I~ __ $F_F_:F_FF_FF_F_:F_FF_F_FF __ ~ A ~I ____ $_FF_:2_34_56_7_:F_FF_FF_F __ --I

MOVE Move Data MOVE

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the
value $FF:FFFFFF:FFFFFF, and the 24-bit XO register contains the value $234567. The
execution of the MOVE XO,A 1 instruction moves the 24-bit value in the XO register into
the 24-bit A 1 register without automatic sign extension and without automatic zeroing.

Condition Codes:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 LF I OM I T I .. I S1 I SO I 11
10 1 s 1 L E I U N Z v

1:1 CCR ... MR
S - Computed according to the definition in A.5 CONDITION CODE COMPUTATION
L - Set if data limiting has occurred during parallel move.

Instruction Format:
MOVE S,D

Opcode:

23 8 7 4 3 o
DATA BUS MOVE FIELD I 0 o o o I 0 o o o

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:
See Parallel Move Descriptions for data bus move field encoding.

Timing: 2+mv oscillator clock cycles

Memory: 1 +mv program words

MOVE Move Data MOVE

Parallel Move Descriptions: Thirty of the sixty-two instructions allow an optional paral­
lel data bus movement over the X and/or Y data bus. This allows a data ALU operation to
be executed in parallel with up to two data bus moves during the instruction cycle. Ten
types of parallel moves are permitted, including register to register moves, register to
memory moves, and memory to register moves. However, not all addressing modes are
allowed for each type of memory reference. Addressing mode restrictions which apply to
specific types of moves are noted in the individual move operation descriptions. The fol­
lowing section contains detailed descriptions about each type of parallel move operation.

When a 56-bit accumulator (A or B) is specified as a source operand S, the accumulator
value is optionally shifted according to the scaling mode bits SO and S1 in the system
status register (SR). If the data out of the shifter indicates that the accumulator extension
register is in use and the data is to be moved into a 24- or 48-bit destination, the value
stored in the destination D is limited to a maximum positive or negative saturation con­
stant to minimize truncation error. Limiting does not occur if an individual 24-bit accumu­
lator register (A1, AD, B1, or BO) is specified as a source operand instead of the full 56-bit
accumulator (A or B). This limiting feature allows block floating-point operations to be
performed with error detection since the L bit in the condition code register is latched.

Note: Whenever an instruction uses an accumulator as both a destination operand for a
data ALU operation and as a source for a parallel move operation, the parallel move
operation occurs first and will use the data that exists in the accumulator before the
execution of the data ALU operation has occurred.

MOVE Move Data MOVE

When a 56-bit accumulator (A or B) is specified as a destination operand D, any 24-bit
source data to be moved into that accumulator is automatically extended to 56 bits by
sign extending the MS bit of the source operand (bit 23) and appending the source oper­
and with 24 LS zeros. Similarly, any 48-bit source data to be loaded into a 56-bit accu­
mulator is automatically sign extended to 56 bits. Note that for 24-bit source operands
both the automatic sign-extension and zeroing features may be disabled by specifying
the destination register to be one of the individual 24-bit accumulator registers (A 1 or
B1). Similarly, for 48-bit source operands, the automatic sign-extension feature may be
disabled by using the long memory move addressing mode and specifying A 10 or B 10 as
the destination operand.

Note that the symbols used in decoding the various opcode fields of an instruction or par­
allel move are completely arbitrary. Furthermore, the opcode symbols used in one
instruction or parallel move are completely Independent of the opcode symbols used in
a different instruction or parallel move.

-

-

No Parallel Data Move

Operation: Assembler Syntax:
(.....) (.....)

where (.....) refers to any arithmetic or logical instruction which allows parallel moves.

Description: Many (30 of the total 66) instructions in the DSP56K instruction set allow
parallel moves. The parallel moves have been divided into 10 opcode categories. This
category is a parallel move NOP and does not involve data bus move activity.

Example:

ADD XO,A ;add XO to A (no parallel move)

Explanation of Example: This is an example of an instruction which allows parallel
moves but does not have one.

Condition Codes:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
I LF I DM I T I - I S1 I SO I 11 I 10 I S I L I E I u N I z
~ MR .. III(CCR

The condition codes are affected by the instruction, not the move.

No Parallel Data Move

Instruction Format:
(.....)

Opcode:

23 15 8

0010000000000000

Instruction Format:
(defined by instruction)

Timing: mv oscillator clock cycles

Memory: mv program words

o
INSTRUCTION OPCODE

-

-

I

Operation:
(.....), #xx-4D

Immediate Short Data Move

Assembler Syntax:
(.....) #xx,D

I

where (.....) refers to any arithmetic or logical instruction which allows parallel moves.

Description: Move the 8-bit immediate data value (#xx) into the destination operand D.

If the destination register D is AO, A 1, A2, 80, 81, 82, RO-R7, or NO-N7, the 8-bit imme­
diate short operand is interpreted as an unsigned integer and is stored in the specified
destination register. That is, the 8-bit data is stored in the eight LS bits of the destination
operand, and the remaining bits of the destination operand D are zeroed.

If the destination register D is XO, X1, YO, Y1, A, or 8, the 8-bit immediate short operand
is interpreted as a signed fraction and is stored in the specified destination register.
That is, the 8-bit data is stored in the eight MS bits of the destination operand, and the
remaining bits of the destination operand D are zeroed.

If the arithmetic or logical opcode-operand portion of the instruction specifies a given
destination accumulator, that same accumulator or portion of that accumulator may not
be specified as a destination D in the parallel data bus move operation. Thus, if the
opcode-operand portion of the instruction specifies the 56-bit A accumulator as Its desti­
nation, the parallel data bus move portion of the instruction may not specify AO, A 1, A2,
or A as its destination D. Similarly, if the opcode-operand portion of the instruction speci­
fies the 56-bit 8 accumulator as its destination, the parallel data bus move portion of the
instruction may not specify 80, 81, 82, or 8 as its destination D. That is, duplicate des­
tinations are NOT allowed within the same instruction.

Note: Due to instruction pipelining, if an AGU register (Mn, Nn, or Rn) is directly changed
with this instruction, the new contents may not be available for use until the second fol­
lowing instruction. See the restrictions discussed in A.,9.6 - R, N, and M Register Restric­
tions on page A-310.

I Immediate Short Data Move I

Example:

ABS B #$18,R1 ;take absolute value of B, #$18~R1

Before Execution After Execution

R1 $0000 R1 ~I _______ $0_01_8 ______ ~

Explanation of Example: Prior to execution, the 16-bit address register R1 contains the
value $0000. The execution of the parallel move portion of the instruction, #$18,R1,
moves the 8-bit immediate short operand into the eight LS bits of the R1 register and
zeros the remaining eight MS bits of that register. The 8-bit value is interpreted as an
unsigned integer since its destination is the R1 address register.

-

-

I Immediate Short Data Move

Condition Codes:
15 14 13 12 11 10 9 8 7 6 5 4 3 2

1 LF 10M I T I ** I S1 I SO I 11 lOiS L E I U I N I z
AlII(MR CCR

The condition codes are not affected by this type of parallel move.

Instruction Format:
(.....) #xx,D

Opcode:
23 16 15 8 7

0

I v I C.I

001dddd di i INSTRUCTION OPCOOE

Instruction Fields:
#xx=8-bit Immediate Short Data=iiiiiiii

I

o

I Immediate Short Data Move I

D D
D d d d d d Sign Ext Zero

XO 0 0 1 0 0 no no
X1 0 0 1 0 1 no no
YO 0 0 1 1 0 no no
Y1 0 0 1 1 1 no no
AO 0 1 0 0 0 no no
80 0 1 0 0 1 no no
A2 0 1 0 1 0 no no
82 0 1 0 1 1 no no
A1 0 1 1 0 0 no no
81 0 1 1 0 1 no no
A 0 1 1 1 0 A2 AO
8 0 1 1 1 1 82 80
RO-R7 1 0 r r r
NO-N7 1 1 n n n

where "rrr"=Rn number
where "nnn"=Nn number

Timing: mv oscillator clock cycles

Memory: mv program words

-

-

R

Operation:
(.....); S-+D

Register to Register Data Move

Assembler Syntax:
(.....) S,D

R

where (.....) refers to any arithmetic or logical instruction which allows parallel moves.

Description: Move the source register S to the destination register D.

If the arithmetic or logical opcode-operand portion of the instruction specifies a given
destination accumulator, that same accumulator or portion of that accumulator may not
be specified as a destination D in the parallel data bus move operation. Thus, if the
opcode-operand portion of the instruction specifies the 56-bit A accumulator as its desti­
nation, the parallel data bus move portion of the instruction may not specify AO, A 1, A2,
or A as its destination D. Similarly, if the opcode-operand portion of the instruction speci­
fies the 56-bit B accumulator as its destination, the parallel data bus move portion of the
instruction may not specify BO, B1, B2, or B as its destination D. That is, duplicate des­
tinations are NOT allowed within the same Instruction.

If the opcode-operand portion of the instruction specifies a given source or destination
register, that same register or portion of that register may be used as a source S in the
parallel data bus move operation. This allows data to be moved in the same instruction in
which it is being used as a source operand by a data ALU operation. That is,duplicate
sources are allowed within the same instruction.

When a 24-bit source operand is moved into a 16-bit destination register, the 16 LS bits
of the 24-bit source operand are stored in the 16-bit destination register. When a 16-bit
source operand is moved into a 24-bit destination register, the 16 LS bits of the destina­
tion register are loaded with the contents of the 16-bit source operand, and the eight MS
bits of the 24-bit destination register are zeroed.

Note: The MOVE A,B operation will result in a 24-bit positive or negative saturation con­
stant being stored in the B1 portion of the B accumulator if the signed integer portion of
the A accumulator is in use.

Note: Due to instruction pipelining, if an AGU register (Mn, Nn, or Rn) is directly changed
with this instruction, the new contents may not be available for use until the second fol­
lowing instruction. See the restrictions discussed in A.9.6 - R, N, and M Register Restric­
tions on page A-310.

R Register to Register Data Move R

Example:

MACR-XO,YO,A (Y1 ,N5 ;-XO*YO+A--+A, move Y1--+N5

Before Execution After Execution

Y1 $001234 Y1 ~I ______ ~$0_0_12_34 ____ ~

N5~1 _________ $_OO_OO ____ ~ N5~1 _________ $_12_34 ____ ~
Explanation of Example: Prior to execution, the 24-bit Y1 register contains the value
$001234 and the 16-bit address offset register N5 contains the value $0000. The execu­
tion of the parallel move portion of the instruction, Y1 ,N5, moves the 16 LS bits of the 24-
bit value in the Y1 register into the 16-bit N5 register.

-

-

R Register to Register Data Move R

Condition Codes:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

1 ~ IOMI T 1- 1 ~ 1M I 11 I lOiS I L I E I U N I z I v 1:1 CCR ... MR
S - Computed according to the definition in A.S CONDITION CODE COMPUTATION
L - Set if data limiting has occurred during parallel move

Instruction Format:
(.....) S,D

Opcode:
23 16 15 8 7 0

o 0 1 0 0 0 e e e e e d d d d d INSTRUCTION OPCODE

R Register to Register Data Move R

Instruction Fields:
e e e e e S D D

SorD d d d d d S/L Sign Ext Zero

XO 0 0 1 0 0 no no no
X1 0 0 1 0 1 no no no
YO 0 0 1 1 0 no no no
Y1 0 0 1 1 1 no no no
AO 0 1 0 0 0 no no no
80 0 1 0 0 1 no no no
A2 0 1 0 1 0 no no no
82 0 1 0 1 1 no no no
A1 0 1 1 0 0 no no no
81 0 1 1 0 1 no no no
A 0 1 1 1 0 yes A2 AO
8 0 1 1 1 1 yes 82 80
RO-R7 1 0 r r r
NO-N7 1 1 n n n

where "rrr"=Rn number
where "nnn"=Nn number

Timing: mv oscillator clock cycles

Memory: mv program words

u

Operation:
(.....); ea-+Rn

Address Register Update

Assembler Syntax:
(.....) ea

u

where (.....) refers to any arithmetic or logical instruction which allows parallel moves.

Description: Update the specified address register according to the specified effective
addressing mode. All update addressing modes may be used.

Example:

RND 8 (R3)+N3 ;round value in 8 into 81, R3+N3-+R3

Before Execution After Execution

R31~ ____ ~$0_0_07 ______ ~ R31~ _____ $_00_OB ______ ~

N3 ~I _______ $~0_00_4 ____ ~ N3 1L-_____ $_00_04 _____ ~

Explanation of Example: Prior to execution, the 16-bit address register R3 contains the
value $0007, and the 16-bit address offset register N3 contains the value $0004. The
execution of the parallel move portion of the instruction, (R3)+N3, updates the R3
address register according to the specified effective addressing mode by adding the
value in the R3 register to the value in the N3 register and storing the 16-bit result back in
the R3 address register.

Condition Codes:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

1 LF I DM I T I" I 81 I 80 I 11 I 10 1 8 I LIE I u I N I z v I :.1
.... MR CCR _.

The condition codes are not affected by this type of parallel move.

u

Instruction Format:
(.....) ea

Opcode:

Address Register Update

23 16 15 8 7 0

o 0 1 0 0 0 0 0 0 10M M R R R INSTRUCTION OPCODE

Instruction Fields:
ea=5-bit Effective Address=MMRRR

Effective
Addressing Mode

(Rn)-Nn
(Rn)+Nn
(Rn)-
(Rn)+

MMRRR

o 0 r r r
o 1 r r r
1 0 r r
1 1 r r

where "rrr" refers to an address register RO-R7

Timing: mv oscillator clock cycles

Memory: mv program words

u

X: X Memory Data Move X:

Operation: Assem bier Syntax:
(.....); X:ea~D (.....) X:ea,D

(.....); X:aa~D (.....) X:aa,D

(.....); S~X:ea (.....) S,X:ea

(.....); S~X:aa (.....) S,X:aa

(.....);#xxxxxx~D (.....) #xxxxxx,D

where (.....) refers to any arithmetic or logical instruction which allows parallel moves.

Description: Move the specified word operand from/to X memory. All memory address­
ing modes, including absolute addressing and 24-bit immediate data, may be used.
Absolute short addressing may also be used.

If the arithmetic or logical opcode-operand portion of the instruction specifies a given
destination accumulator, that same accumulator or portion of that accumulator may not
be specified as a destination D in the parallel data bus move operation. Thus, if the
opcode-operand portion of the instruction specifies the 56-bit A accumu lator as its desti­
nation, the parallel data bus move portion of the instruction may not specify AO, A 1, A2,
or A as its destination D. Similarly, if the opcode-operand portion of the instruction speci­
fies the 56-bit 8 accumulator as its destination, the parallel data bus move portion of the
instruction may not specify 80, 81, 82, or B as its destination D. That is, duplicate des­
tinations are NOT allowed within the same instruction.

If the opcode-operand portion of the instruction specifies a given source or destination
register, that same register or portion of that register may be used as a source S in the
parallel data bus move operation. This allows data to be moved in the same instruction in
which it is being used as a source operand by a data ALU operation. That is, duplicate
sources are allowed within the same instruction.

When a 24-bit source operand is moved into a 16-bit destination register, the 16 LS bits
of the 24-bit source operand are stored in the 16-bit destination register. When a 16-bit
source operand is moved into a 24-bit destination register, the 16 LS bits of the destina­
tion register are loaded with the contents of the 16-bit source operand, and the eight MS
bits of the 24-bit destination register are zeroed.

X: X Memory Data Move X:

Note:Due to instruction pipelining, if an AGU register (Mn, Nn, or Rn) is directly changed
with this instruction, the new contents may not be available for use until the second fol­
lowing instruction. See the restrictions discussed in A.9.6 - R, N, and M Register R~stric­
tions on page A-31 o.
Example:

ASL A R2,X:-(R2) ;A*2-+A, save updated R2 in X:(R2)

Before Execution After Execution

~1~ ______ $_10_01 ______ ~ R2~1 ______ ~$1_00_0 ____ ~

X:$1000 1~ _____ $0_0_00_00 ______ ~ X:$1000 ~I ______ $0_01_00_0 ____ ~

Explanation of Example: Prior to execution, the 16-bit R2 address register contains the
value $1001, and the 24-bit X memory location X:$1000 contains the value $000000.
The execution of the parallel move portion of the instruction, R2,X:-(R2), predecrements
the R2 address register and then uses the R2 address register to move the updated con­
tents of the R2 address register into the 24-bit X memory location X:$1 000.

Condition Codes:

S - Computed according to the definition in A.5 CONDITION CODE COMPUTATION.
L - Set if data limiting has occurred during parallel move.

Note: The MOVE A,X:ea operation will result in a 24-bit positive or negative saturation
constant being stored in the specified 24-bit X memory location if the signed integer por­
tion of the A accumulator is in use.

X: X Memory Data Move X:

Instruction Format:
(.....) X:ea,D
(.....) S,X:ea
(.....) #xxxxxx,D

Opcode:
23 16 15 8 7 0

01ddOdd d/W 1 M M M R R R I INSTRUCTION OPCODE

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:
ea=6-bit Effective Address=MMMRRR

Effective
RegisterW Addressing Mode M MMRR R

Read S 0 (Rn)-Nn 0 0 0 r r r

Write ° 1 (Rn)+Nn 0 0 1 r r r
(Rn)- 0 1 0 r r r
(Rn)+ 0 1 1 r r r
(Rn) 1 0 0 r r r
(Rn+Nn) 1 0 1 r r r
-(Rn) 1 1 1 r r r
Absolute address 1 1 0 0 0 0
Immediate data 1 1 0 1 0 0

X: X Memory Data Move X:

S D D
S,D d d d d d S/L Sign Ext Zero

XO 0 0 1 0 0 no no no
X1 0 0 1 0 1 no no no
YO 0 0 1 1 0 no no no
Y1 0 0 1 1 1 no no no
AO 0 1 0 0 0 no no no
BO 0 1 0 0 1 no no no
A2 0 1 0 1 0 no no no
B2 0 1 0 1 1 no no no
A1 0 1 1 0 0 no no no
B1 0 1 1 0 1 no no no
A 0 1 1 1 0 yes A2 AO
B 0 1 1 1 1 yes 82 80
RO-R7 1 0 r r r
NO-N7 1 1 n n n

where "rrr"=Rn number
where "nnn"=Nn number

Timing: mv oscillator clock cycles

Memory: mv program words

X: X Memory Data Move

Instruction Format:
(.....) X:aa,D
(.....) S,X:aa

Opcode:

6 15 8 7

01 d dOd d d WO a a a a a a

Instruction Fields:
aa=6-bit Absolute Short Address=aaaaaa

Register W

Read S 0
Write D

Absolute Short Address a a a a a a

000000

•
1 1 1 111

X:

o
INSTRUCTION OPCODE

X: X Memory Data Move X:

S D D
S,D d d d d d S/L Sign Ext Zero

XO a a 1 a a no no no
X1 0 a 1 a 1 no no no
YO 0 a 1 1 a no no no
Y1 0 0 1 1 1 no no no
AO 0 1 0 0 0 no no no
80 a 1 0 0 1 no no no
A2 a 1 0 1 a no no no
82 a 1 0 1 1 no no no
A1 a 1 1 a a no no no
81 a 1 1 a 1 no no no
A a 1 1 1 a yes A2 AO
8 a 1 1 1 1 yes 82 80
RO-R? 1 a r r r
NO-N? 1 1 n n n

where "rrr"=Rn number
where "nnn"=Nn number

Timing: mv oscillator clock cycles

Memory: mv program words

X:R X Memory and Register Data Move

Operation:
Class I

(.....); X:ea 01; 82 02

(.....); 81 X:ea; 82 02

(.....); #xxxxxx 01; 82 02

Class II
(.....); A X:ea; XO A

(.....); B X:ea; XO B

Assembler Syntax:
Class I

(.....) X:ea,01 52,02

(.....) S1 ,X:ea S2,02

(.....) #xxxxxx,01 S2,02

Class II
(.....) A,X:ea

(.....) B,X:ea

XO,A

XO,B

X:R

where (.....) refers to any arithmetic or logical instruction which allows parallel moves.

Description: Class I: Move a one-word operand from/to X memory and move another
word operand from an accumulator (S2) to an input register (02). All memory addressing
modes, including absolute addressing and 24-bit immediate data, may be used. The reg­
ister to register move (82,02) allows a data ALU accumulator to be moved to a data ALU
input register for use as a data ALU operand in the following instruction.

Class II: Move one-word operand from a data ALU accumulator to X memory and one­
word operand from data ALU register XO to a data ALU accumulator. One effective
address is specified. All memory addressing modes, excluding long absolute addressing
and long immediate data, may be used.

For both Class I and Class II X:R parallel data moves, if the arithmetic or logical opcode­
operand portion of the instruction specifies a given destination accumulator, that same
accumulator or portion of that accumulator may not be specified as a destination 01 in
the parallel data bus move operation. Thus, if the opcode-operand portion of the instruc­
tion specifies the 56-bit A accumulator as its destination, the parallel data bus move por­
tion of the instruction may not specify AO, A1, A2, or A as its destination 01. Similarly, if
the opcode-operand portion of the instruction specifies the 56-bit Baccumulator as its
destination, the parallel data bus move portion of the instruction may not specify BO, B1,
B2, or B as its destination 01. That is, duplicate destinations are NOT allowed within
the same Instruction.

X:R X Memory and Register Data Move X:R

If the opcode-operand portion of the instruction specifies a given source or destination
register, that same register or portion of that register may be used as a source 81 and/or
82 in the parallel data bus move operation. This allows data to be moved in the same
instruction in which it is being used as a source operand by a data ALU operation. That
is, duplicate sources are allowed within the same instruction. Note that 81 and 82
may specify the same register.

Class I Example:

CMPM VO,A A,X:$1234 A,VO ;compare A,VO mag., save A, update VO

Before Execution After Execution

A 1~ _____ $0_0:_80_00_0_0:0_0_00_00 __ ~ A 1~ _____ $0_0_:80_0_00_0:_00_00_0_0~

X:$1234I
~--------------~

$000000 X:$12341~ __________ $7_FF_F_FF __J

yol~ ________ $_O_OO_OO_O __ ~ YOI~ ________ $_7F_F_FF_F __J

Explanation of the Class I Example: Prior to execution, the 56-bit A accumulator con­
tains the value $00:800000:000000, the 24-bit X memory location X:$1234 contains the
value $000000, and the 24-bit VO register contains the value $000000. The execution of
the parallel move portion of the instruction, A,X:$1234 A,VO, moves the 24-bit limited
positive saturation constant $7FFFFF into both the X:$1234 memory location and the VO
register since the signed portion of the A accumulator was in use.

-

-

X:R X Memory and Register Data Move X:R

Class II Example:

MAC XO,YO,A 8,X:(R1)+ XO,8 ;multiply XO and YO and accumulate .in A
;move 8 to X memory location pointed to
;by R1 and postincrement R1
;move XO to 8

Before Execution After Execution

XO I $400000 XO I $400000

YO I $600000 YO I $600000

A I $00:000000:000000 A I $00:300000:000000

B I $FF:7FFFFF:000000 B I $00:400000:000000

X:$1234 I $000000 X:$1234 I $800000

R1 I III $1234 R1 I $1235

Explanation of the Class II Example: Prior to execution, the 24-bit registers XO and YO
contain $400000 and $600000, respectively. The 56-bit accumulators A and 8 contain
the values $00:000000:000000 and $FF:7FFFFF:000000, respectively. The 24-bit X
memory location X:$1234 contains the value $000000, and the 16-bit R1 register con­
tains the value $1234. Execution of the parallel move portion of the instruction
(8,X:(R1)+XO,8).JT1oves the 24-bit limited value of 8 ($800000) into the X:$1234 memory
location and the ,.)(0 register ($400000) into accumulator 81 ($400000), sign extends 81
into 82 ($00), and zero fills 80 ($000000). It also increments R1 to $1235.

X:R X Memory and Register Data Move X:R

Condition Codes:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 I LF I DM I T I ** I S1 I SO I 11 I 10 I S I L I E I U N I z v
I ~I CCR AlII(MR ••

S - Computed according to the definition in A.S CONDITION CODE COMPUTATION
L - Set if data limiting has occurred during parallel move.

Class I Instruction Format:
(.....) X:ea,D1 S2,D2
(.....) S1 ,X:ea S2, D2
(.....) #Xxxxxx, S2,D2

Opcode:
23 16 15 870

o 0 0 1 f f d f Jw 0 M M M R R R l INSTRUCTION OPCODE

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:
ea=6-bit Effective Address=MMMRRR

Effective
RegisterW Addressing Mode M M M R R R

ReadS 0 (Rn)-Nn 0 0 0 r r
Write 0 1 (Rn)+Nn 0 0 1 r r

(Rn)- 0 1 o r r r
(Rn)+ 0 1 1
(Rn) 1 0 0
(Rn+Nn) 1 0 1 r r r
-(Rn) 1 1 1 r r r
Absolute address 1 1 0 0 0 0
Immediate data 1 1 0 1 0 0

where "rrr" refers to an address register RO-R7

X:R X Memory and Register Data Move X:R

51 01 01 S2 02 02
51,01 f f 5/L Sign Ext Zero 52 d SIL 02 f 5ign Ext Zero

XO o 0 no no no A 0 yes YO 0 no no
X1 o 1 no no no B 1 yes Y1 1 no no
A 1 0 yes A2 AO
B 1 1 yes B2 BO

Timing: mv oscillator clock cycles

Memory: mv program words

X:R X Memory and Register Data Move X:R

Class II Instruction Format:
(.....) A-+X:ea XO-+A
(.....) 8-+ X :ea XO-+8

Opcode:
23 16 15 8 7 0

0000100 dio 0 M M M R R R I INSTRUCTION OPCODE

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:
ea=6-bit Effective Address=MMMRRR

Effective
Addressing Mode MMMRRR

(Rn)-Nn o 0 o r r r
(Rn)+Nn o 0 1 r r
(Rn)- o 1 0 r r
(Rn)+ o 1 1 r r r
(Rn) 1 0 o r r r
(Rn+Nn) 0 r r r
-(Rn) r r r

where "rrr" refers to an address register RO-R7

S D D
SD SIL Sign Ext Zero d MOVE Opcode

XO no N/A N/A 0 A-+X:ea XO-+A
YO no N/A N/A 8-+X:ea XO-+8
A yes A2 AO
8 yes 82 80

Timing: mv oscillator clock cycles

Memory: mv program words

Y: V Memory Data Move Y:

Operation: Assembler Syntax:
(.....); Y:ea-+D (.....) Y:ea,D

(.....); Y:aa-+D (.....) Y:aa,D

(.....); S-+Y:ea (.....) S,Y:ea

(.....);S-+Y:aa (.....) S,Y:aa

(.....); #xxxxxx-+D (.....) #xxxxxx,D

where (.....) refers to any arithmetic or logical instruction which allows parallel moves.

Description: Move the specified word operand from/to Y memory. All memory address­
ing modes, including absolute addressing and 24-bit immediate data, may be used.
Absolute short addressing may also be used.

If the arithmetic or logical opcode-operand portion of the instruction specifies a given
destination accumulator, that same accumulator or portion of that accumulator may not
be specified as a destination D in the parallel data bus move operation. Thus, if the
opcode-operand portion of the instruction specifies the 56-bit A accumulator as its desti­
nation, the parallel data bus move portion of the instruction may not specify AO, A 1, A2,
or A as its destination D. Similarly, if the opcode-operand portion of the instruction speci­
fies the 56-bit B accumulator as its destination, the parallel data bus move portion of the
instruction may not specify BO, B 1 , B2, or B as its destination D. That is, duplicate des­
tinations are NOT allowed within the same instruction.

If the opcode-operand portion of the instruction specifies a given source or destination
register, that same register or portion of that register may be used as a source S in the
parallel data bus move operation. This allows data to be moved in the same instruction in
which it is being used as a source operand by a data ALU operation. That is, duplicate
sources are allowed within the same instruction.

When a 24-bit source operand is moved into a 16-bit destination register, the 16 LS bits
of the 12-bit source operand are stored in the 16-bit destination register. When a 16-bit
source operand is moved into a 24-bit destination register, the 16 LS bits of the destina­
tion register are loaded with the contents of the 16-bit source operand, and the eight MS
bits of the 24-bit destination register are zeroed.

Y: Y Memory Data Move Y:

Note: This parallel data move is considered to be a move-type instruction. Due to
instruction pipelining, if an AGU register (Mn, Nn, or Rn) is directly changed with this
instruction, the new contents may not be available for use until the second following
instruction. See the restrictions discussed in A.9.6 - R, N, and M Register Restrictions on
page A-310.

Example:

EOR XO,B #$123456,A ;exclusive OR XO and B, update A accumulator

Before Execution After Execution

A~I ___ $_F_F:_FF_FF_F_F:_FF_F_FF_F __ ~ AI~ ____ $o_o:_12_~_5_6:0_0_00_00 __ ~

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the
value $FF:FFFFFF:FFFFFF. The execution of the parallel move portion of the instruc­
tion, #$123456,A, moves the 24-bit immediate value $123456 into the 24-bit A 1 register,
then sign extends that value into the A2 portion of the accumulator, and zeros the lower
24-bit AO portion of the accumulator.

Condition Codes:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 o I LF I OM I T I ** I s, I so I 11 I 10 I s I L E I u I N I z I v
CCR ... MR

S - Computed according to the definition in A.5 CONDITION CODE COMPUTATION
L - Set if data limiting has occurred during parallel move.

V: Y Memory Data Move V:

Note: The MOVE A,Y:ea operation will result in a 24-bit positive or negative saturation
constant being stored in the specified 24-bit Y memory location if the signed integer por­
tion of the A accumulator is in use.

Instruction Format:
(.....) Y:ea,D

(.....) S,Y:ea

(.....) #xxxxxx,D

Opcode:
23 16 15 8 7 0

o 1 d d 1 d d d I W 1 M M M R R R I INSTRUCTION OPCODE

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:
ea=6-bit Effective Address=MMMRRR

Effective
RegisterW Addressing Mode M MMRR R

ReadS 0 (Rn}-Nn 0 0 0 r r r
Write D 1 (Rn}+Nn 0 0 1 r r

(Rn)- 0 1 0 r r
(Rn)+ 0 1 1 r r r
(Rn) 1 0 0 r r
(Rn+Nn) 1 0 1 r r
-(Rn) 1 1 1 r r r
Absolute address 1 1 0 0 0 0
Immediate data 1 1 0 1 0 0

where "rrr" refers to an address register RO-R7

Y: Y Memory Data Move Y:

S D D
S,D d d d d d S/L Sign Ext Zero

XO 0 0 1 0 0 no no no
X1 0 0 1 0 1 no no no
YO 0 0 1 1 0 no no no
Y1 0 0 1 1 1 no no no
AO 0 1 0 0 0 no no no
80 0 1 0 0 1 no no no
A2 0 1 0 1 0 no no no
82 0 1 0 1 1 no no no
A1 0 1 1 0 0 no no no
81 0 1 1 0 1 no no no
A 0 1 1 1 0 yes A2 AO
8 0 1 1 1 . 1 yes 82 80
RO-R? 1 0 r r r
NO-N? 1 1 n n n

where "rrr"=Rn number
where "nnn"=Nn number

Timing: mv oscillator clock cycles

Memory: mv program words

V: Y Memory Data Move

Instruction Format:
(.....) Y:aa,D
(.....) S,Y:aa

Opcode:

5 8

01 d d 1 d d d WO a a a a a a

Instruction Fields:
aa=6-bit Absolute Short Address=aaaaaa

Register W Absolute Short Address aaaaaa

Read S 0
Write D

000000

•
111111

V:

INSTRUCTION OPCODE

Y: Y Memory Data Move Y:

S D D
S,D d d d d d SIL Sign Ext Zero

XO 0 0 1 0 0 no no no
X1 0 0 1 0 1 no no no
YO 0 0 1 1 0 no no no
Y1 0 0 1 1 1 no no no
AO 0 1 0 0 0 no no no
BO 0 1 0 0 1 no no no
A2 0 1 0 1 0 no no no
B2 0 1 0 1 1 no no no
A1 0 1 1 0 0 no no no
B1 0 1 1 0 1 no no no
A 0 1 1 1 0 yes A2 AO
B 0 1 1 1 1 yes B2 BO
RO-R? 1 0 r r r
NO-N? 1 1 n n n

where "rrr"=Rn number
where "nnn"=Nn number

Timing: mv oscillator clock cycles

Memory: mv program words

R:V Register and V Memory Data Move R:V

Operation: Assembler Syntax:
Class I Class I

(.....); S1--+01 ; Y:ea--+02 (.....) S1 ,01 Y:ea,02

(.....); S1--+01; S2--+Y:ea (.....) S1 ,01 S2,Y:ea

(.....); S1--+01 ; #xxxxxx--+02 (.....) S1 ,01 #xxxxxx,02

Class II Class II
(.....); YO --+A; A--+Y:ea (.....) YO,A A,Y:ea

(.....); YO--+B; B--+Y:ea (.....) YO,B B,Y:ea

where (.....) refers to any arithmetic or logical instruction which allows parallel moves.

Description: Class I: Move a one-word operand from an accumulator (S1) to an input
register (01) and move another word operand from/to Y memory. All memory addressing
modes, including absolute addressing and 24-bit immediate data, may be used. The reg­
ister to register move (S1 ,01) allows a data ALU accumulator to be moved to a data ALU
input register for use as a data ALU operand in the following instruction.

Class II: Move one-word operand from a data ALU accumulator to Y memory and one­
word operand from data ALU register YO to a data ALU accumulator. One effective
address is specified. All memory addressing modes, excluding long absolute addressing
and long immediate data, may be used. Class II move operations have been added to
the R:Y parallel move (and a similar feature has been added to the X:R parallel move) as
an added feature available in the first quarter of 1989.

For both Class I and Class II R:Y parallel data moves, if the arithmetic or logical opcode­
operand portion of the instruction specifies a given destination accumulator, that same
accumulator or portion of that accumulator may not be specified as a destination 02 in
the parallel data bus move operation. Thus, if the opcode-operand portion of the instruc­
tion specifies the 56-bit A accumulator as its destination, the parallel data bus move por­
tion of the instruction may not specify AO, A1, A2, or A as its destination 02. Similarly, if
the opcode-operand portion of the instruction specifies the 56-bit B accumulator as its
destination, the parallel data bus move portion of the ins~ruction may not specify BO, B1,
B2, or B as its destination 02. That is, duplicate destinations are NOT allowed within the
same instruction.

R:V Register and V Memory Data Move R:Y

If the opcode-operand portion of the instruction specifies a given source or destination
register, that same register or portion of that register may be used as a source 81 and/or
82 in the parallel data bus move operation. This allows data to be moved in the same
instruction in which it is being used as a source operand by a data ALU operation. That
is, duplicate sources are allowed within the same Instruction. Note that 81 and 82
may specify the same register.

Class I Example:

ADDL B,A B,X1 Y:(R6)-N6,B ;2*A+B ~ A, update X1 ,B and R6

Before Execution After Execution

B I $80:123456:789ABC B I $00:654321 :000000

X1 $000000 X1 I $800000

R6 I $2020 R6 I $2000

N6 I $0020 N6 I $0020

Y:$2020 I $654321 Y:$2020 I $654321

Explanation of the Class I Example: Prior to execution, the 56-bit B accumulator con­
tains the value $80:123456:789ABC, the 24-bit X1 register contains the value $000000,
the 16-bit R6 address register contains the value $2020, the 16-bit N6 address offset
register contains the value $0020 and the 24-bit Y memory location Y:$2020 contains the
value $654321. The execution of the parallel move portion of the instruction, B,X1
Y:(R6)-N6,B, moves the 24-bit limited negative saturation constant $800000 into the X1
register since the signed integer portion of the B accumulator was in use, uses the value
in the 16-bit R6 address register to move the 24-bit value in the Y memory location
Y:$2020 into the 56-bit B accumulator with automatic sign extension of the upper portion
of the accumulator (B2) and automatic zeroing of the lower portion of the accumulator
(BO), and finally uses the contents of the 16-bit N6 address offset register to update the
value in the 16-bit R6 address register. The contents of the N6 address offset register
are not affected.

R:Y Register and Y Memory Data Move R:Y

Class II Example:

MAC XO,YO,A YO,B B,Y:(R1)+

Before Execution

XO I $400000

YO I $600000

A I $00:000000:000000

B I $00:800000:000000

Y:$1234 I $000000

R1 I $1234

;multiply XO and YO and accumulate in A
;move B to Y memory location pointed to
;by R1 and postincrement R1
;move YO to B

After Execution

xo I $400000

YO I $600000

A I $00:300000:000000

B I $00:600000:000000

Y:$1234 I $7FFFFF

R1 I $1235

Explanation of the Class II Example: Prior to execution, the 24-bit registers, XO and
YO, contain $400000 and $600000, respectively. The 56-bit accumulators A and B con­
tain the values $00:000000:000000 and $00:800000:000000 (+1.0000), respectively.
The 24-bit Y memory location Y:$1234 contains the value $000000, and the 16-bit R1
register contains the value $1234. Execution of the parallel move portion of the instruc­
tion (yO,B B,Y:(R1)+) moves the YO register ($600000) into accumulator B1 ($600000),
sign extends B1 into B2 ($00), and zero fills BO ($000000). It also moves the 24-bit lim­
ited value of B ($7FFFFF) into the Y:$1234 memory location and increments R1 to
$1235.

R:V Register and Y Memory Data Move R:Y

Condition Codes:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 1 LF 1 OM 1 T 1** 1 SI 1 SO 1 11 I lois 1 L I E I U N I z I v

1 :1 CCR ~ MR
S - Computed according to the definition in A.5 CONDITION CODE COMPUTATION
L - Set if data limiting has occurred during parallel move.

Class I Instruction Format:
(.....) S1 ,D1 Y:ea,D2
(.....) S1 ,D1 S2,Y:ea
(.....) S1 ,D1 #xxxxxx,D2

Opcode:
23 16 15 8 7 0

0001def f Iw 1 M M M R R R I INSTRUCTION OPCODE

OPTIONAL EFFECTIVE ADDRESS EXTENSION

R:V Register and V Memory Oata Move

Instruction Fields:
ea=6-bit Effective Address=MMMRRR

Effective
RegisterW Addressing Mode M

Read S2 0 (Rn)-Nn 0
Write D2 1 (Rn)+Nn 0

(Rn)- 0
. (Rn)+ 0

(Rn) 1
(Rn+Nn) 1
-(Rn) 1
Absolute address 1
Immediate data 1

where "rrr" refers to an address register RO-R7

51 01
51 d S/L 01 e 5ign Ext

A 0 yes XO 0 no
B 1 yes X1 no

Timing: mv oscillator clock cycles

Memory: mv program words

01
Zero

no
no

M M R R R

0 0 r r r
0 1 r r r
1 0 r r
1 1 r r
0 0 r r
0 1 r r r
1 1 r r r
1 0 0 o 0
1 0 1 o 0

52,02 f f

YO o 0
Y1 o 1
A 1 0
B 1 1

R:V

52 02 02
5/L Sign Ext Zero

no no no

no no no
yes A2 AO
yes B2 BO

R:V Register and Y Memory Data Move R:V

Class II Instruction Format:
(.....) YO ~ A A ~ Y:ea
(.....) YO ~ 8 8 ~ Y:ea

Opcode:
23 16 15 8 7 0

00001 0 0 d 110M M M R R R 1 INSTRUCTION OPCODE

OPTIONAL EFFECTIVE ADDRESS EXTENSION

·Instructlon Fields:
ea=6-bit Effective Address=MMMRRR

Effective
Addressing Mode MMMRRR

(Rn)-Nn o 0 o r r r
(Rn)+Nn o 0 1 r r r
(Rn)- o 1 0 r r
(Rn)+ o 1 1 r r
(Rn) 1 0 o r r r
(Rn+Nn) 1 0 1 r r
-(Rn) 1 1 1 r r

where "rrr" refers to an address register RO-R7

S,D
XO
YO
A
8

SRC
S/L
no
no
yes
yes

DEST
Sign Ext

N/A
N/A
A2
82

DEST
Zero
N/A
N/A
AO
80

Timing: mv oscillator clock cycles

Memory: mv program words

d
o
1

MOVEOpcode
YO ~ A A.~ Y:ea
YO ~ 8 8~Y:ea

L: Long Memory Data Move L:

Operation: Assembler Syntax:
(.....); X:ea .-. 01; Y:ea .-. 02 (.....) L:ea,O

(.....); X:aa .-. 01; Y:aa .-. 02 (.....) L:aa,O

(.....); S1 .-. X:ea; S2.-. Y:ea (.....) S,L:ea

(.....); S1 .-. X:aa; S2 .-. Y:aa (.....) S,L:aa

where (.....) refers to any arithmetic or logical instruction which allows parallel moves.

Description: Move one 48-bit long-word operand from/to X and Y memory. Two data
ALU registers are concatenated to form the 48-bit long-word operand. This allows effi­
cient moving of both double-precision (high:low) and complex (real:imaginary) data from/
to one effective address in L (X:Y) memory. The same effective address is used for both
the X and Y memory spaces; thus, only one effective address is required. Note that the
A, B, A 10, and B1 ° operands reference a single 48-bit signed (double-precision) quantity
while the X, Y, AB, and BA operands reference two separate (i.e., real and imaginary)
24-bit signed quantities. All memory alterable addressing modes may be used. Absolute
short addressing may also be used.

If the arithmetic or logical opcode-operand portion of the instruction specifies a given
destination accumulator, that same accumulator or portion of that accumulator may not
be specified as a destination 0 in the parallel data bus move operation. Thus, if the
opcode-operand portion of the instruction specifies the 56-bit A accumulator as its desti­
nation, the parallel data bus move portion of the instruction may not specify A, A 10, AB,
or BA as destination O. Similarly, if the opcode-operand. portion of the instruction speci­
fies the 56-bit B accumulator as its destination, the parallel data bus move portion of the
instruction may not specify B, B1 0, AB, or BA as its destination D. That is, duplicate des­
tinations are NOT allowed within the same instruction.

If the opcode-operand portion of the instruction specifies a given source or destination
register, that same register or portion of that register may be used as a source S in the
parallel data bus move operation. This allows data to be moved in the same instruction in
which it is being used as a source operand by a data ALU operation. That is, duplicate
sources are allowed within the same instruction.

Note: The operands A10, B10, X, Y, AB, and BA may be used only for a 48-bit long
memory move as previously described. These operands may not be used in any other
type of instruction or parallel move.

L: Long Memory Data Move L:

Example:

CMPYO,B A,L:$1234 ;compare YO and B, save 48-bit A1 :AO value

Before Execution After Execution

A 1~ __ $_01_:2_M_5_67_:8_9A_B_eD __ ~ A 1~ __ $0_1_:23_45_67_:8_9A_B_eD __ ~

X:$12M C $000000 X:$1234 1 ______ $7_FF_FF_F ____ ~

Y:$12M I $:000000 Y:$12341'--_____ $F_FF_FF_F ___ ~

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the
value $01 :234567:89ABCD, the 24-bit X memory location X:$1234 contains the value
$000000, and the 24-bit Y memory location Y:$1234 contains the value $000000. The
execution of the para"el move portion of the instruction, A,L:$1234, moves the 48-bit lim­
ited positive saturation constant $7FFFFF:FFFFFF into the specified long memory loca­
tion by moving the MS 24 bits of the 48-bit limited positive saturation constant ($7FFFFF)
into the 24-bit X memory location X:$1234 and by moving the LS 24 bits of the 48-bit lim­
ited positive saturation constant ($FFFFFF) into the 24-bit Y memory location Y:$1234
since the signed integer portion of the A accumulator was in use.

Condition Codes:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 LF I OM I T I ** 1 SI 1 SO 1 11 I lois 1 L E I u N I z v
1:1 eeR ~ MR

S - Computed according to the definition in A.5 CONDITION CODE COMPUTATION
L - Set if data limiting has occurred during para"el move.

Note: The MOVE A,L:ea operation will result in a 48-bit positive or negative saturation
constant being stored in the specified 24-bit X and Y memory locations if the signed inte­
ger portion of the A accumulator is in use. The MOVE AB,L:ea operation wi" result in
either one or two 24-bit positive and/or negative saturation constant(s) being stored in the
specified 24-bit X and/or Y memory location(s) if the signed integer portion of the A and/
or B accumulator(s) is in use.

L: Long Memory Data Move L:

Instruction Format:
(.....) L:ea,D
(.....) S,L:ea

Opcode:
23 16 15 870

01 OOLO L L/W 1 M M M R R R / INSTRUCTION OPCODE

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:
ea=6-bit Effective Address=MMMRRR

Effective
RegisterW Addressing Mode M M M R R R

ReadS 0 (Rn)-Nn 0 0 0 r r r
Write D 1 (Rn)+Nn 0 0 1 r r r

(Rn)- 0 1 0 r
(Rn)+ 0 1 1 r
(Rn) 1 0 0 r r
(Rn+Nn) 1 0 1 r r r
-(Rn) 1 1 0 r r r
Absolute address 1 1 0 0 0 0

where "rrr" refers to an address register RO-R7

5 D D
S 51 52 S/L D D1 D2 Sign Ext Zero L L L

A10 A1 AO no A10 A1 AO no no o 0 0
B10 B1 BO no B10 B1 BO no no o 0 1
X X1 XO no X X1 XO no no 010
Y Y1 YO no Y Y1 YO no no o 1 1
A A1 AO yes A A1 AO A2 no 1 0 0
B B1 BO yes B B1 BO B2 no 1 0 1

AB A B yes AB A B A2,B2 AO,BO 1 1 0
BA B A yes BA B A B2,A2 BO,AO 1 1 1

Timing: mv oscillator clock cycles

Memory: mv program words

L: Long Memory Data Move L:

Instruction Format:
(.....) L:aa,D
(.....) S,L:aa

Opcode:
23 16 15 8 7 0

o 1 0 0 L 0 L L I W 0 a a a a a a INSTRUCTION OPCODE

Instruction Fields:
aa=6-bit Absolute Short Address=aaaaaa

Register W Absolute Short Address aaaaaa

ReadS 0 000000
Write D 1 •

•
111111

S D D
S S1 82 S/L D 01 02 Sign Ext Zero L L L

A10 A1 AO no A10 A1 AO no no 000
B10 B1 BO no B10 B1 BO no no o 0 1
X X1 XO no X X1 XO no no 010
Y Y1 YO no Y Y1 YO no no 011
A A1 AO yes A A1 AO A2 no 1 0 0
B B1 BO yes B B1 BO B2 no 1 0 1

AB A B yes AB A B A2,B2 AO,BO 1 1 0
BA B A yes BA B A B2,A2 BO,AO 1 1 1

Timing: mv oscillator clock cycles

Memory: mv program words -

-

X: V: xv Memory Data Move X: V:

Operation: Assembler Syntax:
(.....); X:<eax> -+ 01; Y:<eay> -+ 02 (.....) X:<eax>,01 Y:<eaY>,02

(.....); X:<eax> -+ 01; S2 -+ Y:<eay> (.....) X:<eax>,01 S2,Y:<eay>

(.....); S1 -+ X:<eax>; Y:<eay> -+ 02 (.....) S1,X:<eax> Y:<eaY>,02

(.....); S1 -+ X:<eax>; S2 -+ Y:<eay> (.....) S1 ,X:<eax> S2,Y:<eay>

where (.....) refers to any arithmetic or logical instruction which allows parallel moves.

Description: Move a one-word operand from/to X memory and move another word
operand from/to Y memory. Note that two independent effective addresses are specified
«eax> and <eay» where one of the effective addresses uses the lower bank of address
registers (RO-R3) while the other effective address uses the upper bank of address reg­
isters (R4-R7). All parallel addressing modes may be used.

If the arithmetic or logical opcode-operand portion of the instruction specifies a given
destination accumulator, that same accumulator or portion of that accumulator may not
be specified as a destination 01 or 02 in the parallel data bus move operation. Thus, if
the opcode-operand portion of the instruction specifies the 56-bit A accumulator as its
destination, the parallel data bus move portion of the instruction may not specify A as its
destination 01 or 02. Similarly, if the opcode-operand portion of the instruction specifies
the 56-bit B accumulator as its destination, the parallel data bus move portion of the
instruction may not specify B as its destination 01 or 02. That is, duplicate destinations
are NOT allowed within the same Instruction. 01 and 02 may not specify the same
register.

If the opcode-operand portion of the instruction specifies a given source or destination
register, that same register or portion of that register may be used as a source S1 and/or
S2 in the parallel data bus move operation. This allows data to be moved in the same
instruction in which it is being used as a source operand by a data ALU operation. That
is, duplicate sources are allowed within the same instruction. Note that S1 and S2
may specify the same register.

X: Y: xv Memory Data Move X: Y:

Example:

MPYR X1 ,YO,A X1,X:(RO)+ YO,"Y:(R4)+N4 ;X1 *YO -+ A,save X1 and YO

Before Execution After Execution

X1 $123123 X1 $123123

YO $456456 YO I $456456

RO $1000 RO I $1001

R4 $0100 R4 I $0123

N4 $0023 N4 I $0023

X:$1000 $000000 X:$1000 I $123123

Y:$0100 I $000000 Y:$0100 I $456456

Explanation of Example: Prior to execution, the 24-bit X1 register contains the value
$123123, the 24-bit YO register contains the value $456456, the 16-bit RO address regis.:.
ter contains the value $1000, the 16-bit R4 address register contains the value $0100,
the 16-bit N4 address offset register contains the value $0023, the 24-bit X memory loca­
tion X:$1000 contains the value $000000, and the 24-bit Y memory location Y:$0100
contains the value $000000. The execution of the parallel move portion of the instruction,
X1,X:(RO)+ YO,Y:(R4)+N4, moves the 24-bit value in the X1 register into the 24-bit X
memory location X:$1 000 using the 16-bit RO address register, moves the 24-bit value in
the YO register into the 24-bit Y memory location Y:$0100 using the 16-bit R4 address
register, updates the 16-bit value in the RO address register, and updates the 16-bit R4
address register using the 16-bit N4 address offset register. The contents of the N4
address offset register are not affected.

Condition Codes:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 LF I DM I T I·· I S1 1 so 1 11 I 10 1 s 1 L I E I u I N I z v
1:1 CCR MR

S - Computed according to the definition in A.5 CONDITION CODE COMPUTATION
L - Set if data limiting has occurred during parallel move.

-

X: V: xv Memory Data Move X: V:

Note: The MOVE A,X:<eax> B,Y:<eay> operation will result in one or two 24-bit positive
and/or negative saturation constant(s) being stored in the specified 24-bit X and/or Y
memory location(s) if the signed integer portion of the A and/or B accumulator(s) is in use.

Instruction Format:
(.....) X:<eax>,D1 Y:<eay>,D2
(.....) X:<eax>,D1 52,Y:<eay>
(.....) 51 ,X:<eax> Y:<eay>,D2
(.....) 51,X:<eax> 52,Y:<eay>

Opcode:
23 16 15 8 7 0

1 w m m e e f f W r r M M R R R INSTRUCTION OPCODE

Instruction Fields:
X:<eax>=6-bit X Effective Address=WMMRRR (RO-R3 or R4-R7)
Y:<eay>=5-bit Y Effective Address=wmmrr (R4-R7 or RO-R3)

X Effective
Addressing Mode M M R R R

(Rn)+Nn 0 1 s s s
(Rn)- 1 0 s s s
(Rn)+ 1 1 s s s
(Rn) 0 0 s s s

where "sss" refers to an address register RO-R7

X: Y: xv Memory Data Move X: Y:

S1 D1 D1 V Effective
Register w S1, D1 ee S/L Sign Ext Zero Addressing Mode mm r r

Read 81 0 XO 00 no no no (Rn) +Nn o 1 t
Write D1 1 X1 o 1 no no no (Rn) - 1 0 t t

A 1 0 yes A2 AO (Rn) + 1 1 t t
8 1 1 yes 82 80 (Rn) o 0 t t

where "U" refers to an address register R4 - R7 or RO - R3 which is in the opposite
address register bank from the one used in the X effective address, previously described

S2 D2 D2
Register W S2,02 f f S/L Sign Ext Zero

Read 82 0 YO 00 no no no
Write 02 1 Y1 o 1 no no no

A 1 0 yes A2 AO
8 1 1 yes 82 80

Timing: mv oscillator clock cycles

Memory: mv program words

-

MOVEC Move Control Register MOVEC

Operation: Assembler Syntax:
X:ea-401 MOVE(C) X:ea,01

X:aa-401 MOVE(C) X:aa,01

S1-4X:ea MOVE(C) 81,X:ea

81-4X:aa MOVE(C) 81,X:aa

Y:ea-401 MOVE(C) Y:ea,01

Y:aa-401 MOVE(C) Y:aa,01

S1-4Y:ea MOVE(C) 81,Y:ea

81-4Y:aa MOVE(C) 81,Y:aa

81-402 MOVE(C) 81,02

82-401 MOVE(C) 82,01

#xxxx-401 MOVE(C) #xxxx,01

#xx-401 MOVE(C) #xx,01

Description: Move the contents of the specified source control register 81 or 82 to the
specified destination or move the specified source to the specified destination control
register 01 or 02. The control registers 81 and 01 are a subset of the S2 and 02 regis­
ter set and consist of the address ALU modifier registers and the program controller reg­
isters. These registers may be moved to or from any other register or memory space. AI
memory addressing modes, as well as an immediate short addressing mode, may be
used.

If the system stack register 88H is specified as a source operand, the system stack
pointer (8P) is postdecremented by 1 after 88H has been read. If the system stack reg­
ister 88H is specified as a destination operand, the system stack pOinter (SP) is prein­
cremented by 1 before 88H is written. This allows the system stack to be efficiently
extended using software stack pointer operations.

When a 56-bit accumulator (A or B) is specified as a source operand, the accumulator
value is optionally shifted according to the scaling mode bits 80 and S1 in the system

MOVEC Move Control Register MOVEC

status register (SR). If the data out of the shifter indicates that the accumulator extension
register is in use, and the data is to be moved into a 24-bit destination, the value stored in
the destination is limited to a maximum positive or negative saturation constant to mini­
mize truncation error. If the data is to be moved into a 16-bit destination and the accumu­
lator extension register is in use, the value is limited to a maximum positive or negative
saturation constant whose LS 16 bits are then stored in the 16-bit destination register.
Limiting does not occur if an individual 24-bit accumulator register (A 1, AD, 81, or 80) is
specified as a source operand instead of the full 56-bit accumulator (A or 8). This limiting
feature allows block floating-point operations to be performed with error detection since
the L bit in the condition code register is latched.

When a 56-bit accumulator (A or 8) is specified as a destination operand, any 24-bit
source data to be moved into that accumulator is automatically extended to 56 bits by
sign extending the MS bit of the source operand (bit 23) and appending the source oper­
and with 24 LS zeros. Whenever a 16-bit source operand is to be moved into a 24-bit
destination, the 16-bit value is stored in the LS 16 bits of the 24-bit destination, and the
MS 8 bits of that destination are zeroed. Similarly, whenever a 16-bit source operand is
to be moved into a 56-bit accumulator, the 16-bit value is moved into the LS 16 bits of the
MSP portion of the accumulator (A1 or 81), the MS 8 bits of the MSP portion of that
accumulator are zeroed, and the resulting 24-bit value is extended to 56 bits by sign
extending the MS bit and appending the result with 24 LS zeros. Note that for 24-bit
source operands both the automatic sign-extension and zeroing features may be dis­
abled by specifying the destination register to be one of the individual 24-bit accumulator
registers (A 1 or 81).

Note: Due to instruction pipelining, if an AGU register (Mn, Nn, or Rn) is directly changed
with this instruction, the new contents may not be available for use until the second fol­
lowing instruction. See the restrictions discussed in A.9.6 - R, N, and M Register Restric­
tions on page A-31 O.

Restrictions: The following restrictions represent very unusual operations which proba­
bly would never be used but are listed only for completeness.

A MOVEC instruction used within a DO loop which specifies SSH as the source oper­
and or LA, LC, SR, SP, SSH, or SSL as the destination operand cannot begin at the
address LA - 2, LA - 1, or LA within that DO loop.

-

-

MOVEC Move Control Register MOVEC

A MOVEC instruction which specifies SSH as the source operand or LA, LC, SSH, SSL,
or SP as the destination operand cannot be used immediately before a DO instruc­
tion.

A MOVEC instruction which specifies SSH as the source operand or LA, LC, SR, SSH,
SSL, or SP as the destination operand cannot be used immediately before an
ENDDO instruction.

A MOVEC instruction which specifies SSH as the source operand or SR, SSH, SSL, or
SP as the destination operand cannot be used immediately before an RTI instruction.

A MOVEC instruction which specifies SSH as the source operand or SSH, SSL, or SP
as the destination operand cannot be used immediately before an RTS instruction.

A MOVEC instruction which specified SP as the destination operand cannot be used
immediately before a MOVEC, MOVEM, or MOVEP instruction which specifies SSH or
SSL as the source operand.

A MOVEC SSH, SSH instruction is illegal and cannot be used.

Example:

MOVEC LC,XO ;move LC into XO

Before Execution After Execution

LC 1'--____ $_o1_oo __ -.1 LC ,'-_________ $0_10_0 ___ --'

xo~1 _____ $_12_34_5_6 ___ ~ xol~ _______ $_0_00_10_0 ____ ~

Explanation of Example: Prior to execution, the 16-bit loop counter (LC) register con­
tains the value $0100, and the 24-bit XO register contains the value $123456. The execu­
tion of the MOVEC LC,XO instruction moves the contents of the 16-bit LC register into
the 16 LS bits of the 24-bit XO register and zeros the 8 MS bits of the XO register.

MOVEC Move Control Register MOVEC

Condition Codes:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 I: I OM I T I ** J:' I so I 11 I ': I: I LIE I U JR N I z I v I : 1
For 01 or 02=SR operand:
S - Set according to bit 7 of the source operand
L - Set according to bit 6 of the source operand
E - Set according to bit 5 of the source operand
U - Set according to bit 4 of the source operand
N - Set according to bit 3 of the source operand
Z - Set according to bit 2 of the source operand
V - Set according to bit 1 of the source operand
C - Set according to bit 0 of the source operand

For 01 and 02*SR operand:
8 - Computed according to the definition in A.S CONDITION CODE COMPUTATION
L - Set if data limiting has occurred during the move

Instruction Format:
MOVE(C) X:ea,D1
MOVE(C) S1,X:ea
MOVE(C) Y:ea,D1
MOVE(C) 81,Y:ea
MOVE(C) #xxxx,D1

Opcode:
23

0000010

Instruction Fields:

16 15 8 7

1 Iw 1 M M M R R Rio s

OPTIONAL EFFECTIVE ADDRESS EXTENSION

ea=6-bit Effective Address=MMMRRR

o
1 d d d d d

-

MOVEC Move Control Register

Effective
Register W

Read S 0
Write D 1

Addressing Mode MMMRR

(Rn)-Nn 0 0
(Rn)+Nn 0 0
(Rn)- 0 1
(Rn)+ 0 1
(Rn) 1 0
(Rn+Nn) 1 0
-(Rn) 1 1
Absolute address 1 1
Immediate Data 1 1

where "rrr" refers to an address register RO-R7

Memory Space s
X Memory 0
Y Memory 1

S1,01
MO-M7
SR
OMR
SP
SSH
SSL
LA
LC

where "nnn" = Mn number (MO-M7)

Timing: 2+mvc oscillator clock cycles

Memory: 1 +ea program words

ddddd
OOnnn
1 1 001
1 1 01 0
1 1 0 1 1
1 1 1 00
1 1 1 0 1
1 1 1 1 0
1 1 111

0 r r
1 r
0 r
1 r
0 r
1 r r
1 r r
0 0 0
0 1 0

MOVEC

R

r
r
r
r
r
0
0

MOVEC

Instruction Format:
MOVE(C) X:aa,D1
MOVE(C) 51,X:aa
MOVE(C) Y:aa,D1
MOVE(C) S1,Y:aa

Opcode:

Move Control Register MOVEC

23 16 15 8 7 0

10 0 0 0 0 1 0 1 I W 0 a a a a a a los 1 d d d d d I
Instruction Fields:

aa=6-bit Absolute Short Address=aaaaaa

Register W Absolute Short Address aaaaaa
Read S 0 000000
Write D 1

Memory Space s
X Memory 0
Y Memory 1

•
•

111111

S1,D1
MO-M7
SR
OMR
SP
SSH
SSL
LA
LC

where "nnn" = Mn number (MO-M7)

Timing: 2+mvc oscillator clock cycles

Memory: 1 +ea program words

ddddd
OOnnn
1 1 001
1 1 0 1 0
1 1 0 1 1
1 1 1 00
1 1 1 0 1
1 1 1 1 0
1 1 111

-

MOVEC

Instruction Format:
MOVE(C) S1 ,02
MOVE(C) S2,01

Opcode:

23

Move Control Register MOVEC

16 15 8 7 o

10 0 0 0 0 1 0 o I W 1 99 9 99911 o 1 d d d d dl

Instruction Fields:

Register W S1,01 ddddd
Read S1 0 MO-M7 OOnnn
Write 01 1 SR 1 1 001

OMR 1 1 0 1 0
SP 1 1 0 1 1

Memory Space s SSH 1 1 1 00
X Memory 0 SSL 1 1 1 0 1
Y Memory 1 LA 1 1 1 1 0

LC 1 1 111

where "nnn" = Mn number (MO-M7)

S2 02 02
S2,02 eeeeee S/L Sign Ext Zero S2,02 eeeeee
XO 000100 no no no RO - R7 010nnn
X1 000101 no no no NO - N7 011 nnn
YO 000110 no no no MO- M7 100nnn
Y1 000111 no no no SR 111001
AO 001000 no no no OMR 111010
BO 001001 no no no SP 111011
A2 001010 no no no SSH 111100
B2 001011 no no no SSL 111101
A1 001100 no no no LA 111 1 1 0
B1 001101 no no no LC 111 1 1 1
A 001110 yes A2 AO
B 001111 yes B2 BO

where "nnn" = Rn number (RO - R7)
Nn number (NO - N7)
Mn number (MO - M7)

MOVEC Move Control Register MOVEC

Timing: 2+mvc oscillator clock cycles

Memory: 1 +ea program words

Instruction Format:
MOVE{C) #xx,D1

Opcode:

23 16 15

10000010 11i i

Instruction Fields:
#xx=8-bit Immediate Short Data=i iii iii i

01
MO-M7
SR
OMR
SP
SSH
SSL
LA
LC

ddddd
OOnnn
1 1 001
1 1 0 1 0
1 1 0 1 1
1 1 1 00
1 1 1 0 1
1 1 1 1 0
11111

where "nnn" = Mn number (MO-M7)

Timing: 2+mvc oscillator clock cycles

Memory: 1 +ea program words

8 7 o

i 11 0 1 d d d d dl

-

MOVEM
Operation:

S~P:ea

S~P:aa

P:ea~O

P:aa~O

Move Program Memory MOVEM
Assembler Syntax:

MOVE(M) S,P:ea

MOVE(M) S,P:aa

MOVE(M) P:ea,O

MOVE(M) P:aa,O

Description: Move the specified operand from/to the specified program (P) memory
location. This is a powerful move instruction in that the source and destination registers
Sand D may be any register. All memory alterable addressing modes may be used as
well as the absolute short addressing mode.

If the system stack register SSH is specified as a source operand, the system stack
pointer (SP) is postdecremented by 1 after SSH has been read. If the system stack reg­
ister SSH is specified as a destination operand, the system stack pOinter (SP) is prein­
cremented by 1 before SSH is written. This allows the system stack to be efficiently
extended using software stack pointer operations.

When a 56-bit accumulator (A or B) is specified as a source operand S, the accumulator
value is optionally shifted according to the scaling mode bits SO and S 1 in the system
status register (SR). If the data out of the shifter indicates that the accumulator extension
register is in use and the data is to be moved into a 24-bit destination, the value stored in
the destination is limited to a maximum positive or negative saturation constant to mini­
mize truncation error. If a 24-bit source operand is to be moved into a 16-bit destination
register 0, the 8 MS bits of the 24-bit source operand are discarded, and the 16 LS bits
are stored in the 16-bit destination register. Limiting does not occur if an individual 24-bit
accumulator register (A1, AO, B1, or BO) is specified as a source operand instead of the
full 56-bit accumulator (A or B). This limiting feature allows block floating-point operations
to be performed with error detection since the L bit in the condition code register is
latched.

When a 56-bit accumulator (A) is specified as a destination operand 0, any 24-bit
source data to be moved into that accumulator is automatically extended to 56 bits by
sign extending the MS bit of the source operand (bit 24) and appending the source oper­
and with 24 LS zeros. Whenever a 16-bit source operand S is to be moved into a 24-bit
destination, the 16-bit source is loaded into the LS 16 bits of the destination operand,
and the remaining 8 MS bits of the destination are zeroed. Note that for 24-bit source

MOVEM Move Program Memory MOVEM
operands, both the automatic sign-extension and zeroing features may be disabled by
specifying the destination register to be one of the individual 24-bit accumulator registers
(A1orB1).

Note: Due to instruction pipelining, if an AGU register (Mn, Nn, or Rn) is directly changed
with this instruction, the new contents may not be available for use until the second fol­
lowing instruction. See the restrictions discussed in A.9.6 - R, N, and M Register Restric­
tions on page A-31 o.
Restrictions: The following restrictions represent very unusual operations, which proba­
bly would never be used but are listed only for completeness.

A MOVEM instruction used within a DO loop which specifies SSH as the source oper­
and or LA, LC, SR, SP, SSH, or SSL as the destination operand cannot begin at the
address LA-2, LA-1, or LA within that DO loop.

A MOVEM instruction which specifies SSH as the source operand or LA, LC, SSH,
SSL, or SP as the destination operand cannot be used immediately before a DO
instruction.

A MOVEM instruction which specifies SSH as the source operand or LA, Le, SR, SSH,
SL, or SP as the destination operand cannot be used immediately before an ENDDO.
instruction.

A MOVEM instruction which specifies SSH as the source operand or SR, SSH, SSL, or
SP as the destination operand cannot be used immediately before an RTI instruction.

A MOVEM instruction which specifies SSH as the source operand or SSH, SSL, or SP
as the destination operand cannot be used immediately before an RTS instruction.

A MOVEM instruction which specifies SP as the destination operand cannot be used
immediately before a MOVEC, MOVEM, or MOVEP instruction which specifies SSH or
SSL as the source operand.

-

-

MOVEM Move Program Memory MOVEM
Example:

MOVEM P:(R5+N5), LC :move P :(R5+N5) into the loop counter (LC)

Before Execution After Execution

P:(R5 + N5) L-I ___ $_00_0_11_6 __ ----' P:(R5 + N5) 1 ___ $_00_0_116 ___ --'

$0116 ~I ____ $O_OO_O ___ ~ LC I
~-----------~

Explanation of Example: Prior to execution, the 16-bit loop counter (LC) register con­
tains the value $0000, and the 24-bit program (P) memory location P:(R5+N5) contains
the value $000116. The execution of the MOVEM P:(R5+N5), LC instruction moves the
16 LS bits of the 24-bit program (P) memory location P:(R5+N5) into the 16-bit LC regis­
ter.

Condition Codes:

15 14 13 12 11 10 9 8 7 6 5 4 I LF I DM I T I ** I 81 I 80 I 11 I 10 I s I L I E I u
.... MR ~ lilli(CCR

For D=SR operand:
S - Set according to bit 7 of the source operand
L.- Set according to bit 6 of the source operand
E - Set according to bit 5 of the source operand
U - Set according to bit 4 of the source operand
N - Set according to bit 3 of the source operand
Z - Set according to bit 2 of the source operand
V - Set according to bit 1 of the source operand
C - Set according to bit 0 of the source operand

For D*SR operand:

3 2 ° N I z

S - Computed according to the definition in A.5 CONDITION CODE COMPUTATION
L - Set if data limiting has occurred during the move

MOVEM Move Program Memory MOVEM
Instruction Format:

MOVE(M) S,P:ea
MOVE(M) P:ea,D

Opcode:
23

0000011

16 15 8 7 0

1 Iw 1 M M M R R RI1 0 d d d d d d

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:
ea=6-bit Effective Address=MMMRRR

Effective
RegisterW Addressing Mode M M M R R R

ReadS 0 (Rn)-Nn 0 o 0 r r
Write 0 1 (Rn)+Nn 0 0 1 r r

(Rn)- 0 1 0 r r
(Rn)+ 0 1 1 r r
(Rn) 1 o 0 r r
(Rn+Nn) 1 0 1 r r r
-(Rn) 1 1 1 r r r
Absolute address 1 1 0 0 0 0

where "rrr" refers to an address register RO-R7

-

MOVEM Move Program Memory MOVEM
S D D

S,D dddddd S/L Sign Ext Zero S,D dddddd
XO 000100 no no no RO - R7 010nnn
X1 000101 no no no NO - N7 011 nnn
YO 000110 no no no MO- M7 100nnn
Y1 000111 no no no SR 111001
AO 001000 no no no OMR 111010
80 001001 no no no SP 111011
A2 001010 no no no SSH 111100
82 001011 no no no SSL 111101
A1 001100 no no no LA 111110
81 001101 no no no LC 111 111
A 001110 yes A2 AO
8 001111 yes 82 80

where "nnn" = Rn number (RO - R7)
Nn number (NO - N7)
Mn number (MO - M7)

Timing: 2+mvm oscillator clock cycles

Memory: 1 +ea program words

-

MOVEM
Instruction Format:

MOVE(M) S,P:aa
MOVE(M) P:aa,D

Opcode:

Move Program Memory MOVEM

23 16 15 8 7 0

10 0 0 0 0 1 1 1 I W 0 a a a a a a I 0 0 d d d d d dl

Instruction Fields:
aa=6-bit Absolute Short Address=aaaaa

Register W Absolute Short Address aaaaaa
Read S 0 000000
Write D 1 •

•
111111

S D D
S,D dddddd SIL Sign Ext Zero S,D dddddd
XO 000100 no no no RO - R7 010nnn
X1 000101 no no no NO - N7 011nnn
YO 000110 no no no MO- M7 100nnn
Y1 000111 no no no SR 111001
AO 001000 no no no OMR 111010
80 001001 no no no SP 111011
A2 001010 no no no SSH 111100
82 001011 no no no SSL 111101
A1 001100 no no no LA 111110
B1 001101 no no no LC 111 1 1 1
A 001110 yes A2 AO
B 001111 yes B2 BO

where "nnn" = Rn number (RO - R7)
Nn number (NO - N7)
Mn number (MO - M7)

Timing: 2+mvm oscillator clock cycles

Memory: 1 +ea program words

-

-

MOVEP Move Peripheral Data MOVEP

Operation: Assembler Syntax:
X:pp -+ D MOVEP X:pp,D

X:pp -+ X:ea MOVEP X:pp,X:ea

X:pp -+ Y:ea MOVEP X:pp,Y:ea

X:pp -+ P:ea MOVEP X:pp,P:ea

S -+ X:pp MOVEP S,X:pp

#xxxxxx -+ X:pp MOVEP #xxxxxx,X :pp

X:ea-+ X:pp MOVEP X:ea,X:pp

Y:ea-+ X:pp MOVEP Y:ea,X:pp

P:ea-+ X:pp MOVEP P:ea,X:pp

Y:pp -+ D MOVEP Y:pp,D

Y:pp -+ X:ea MOVEP Y:pp,X:ea

Y:pp -+ Y:ea MOVEP Y:pp,Y:ea

Y:pp -+ P:ea MOVEP Y:pp,P:ea

S -+ Y:pp MOVEP S,Y:pp

#xxxxxx -+ Y:pp MOVEP #xxxxxx,Y:pp

X:ea -+ Y:pp MOVEP X:ea,Y:pp

Y:ea -+ Y:pp MOVEP Y:ea,Y:pp

P:ea -+ Y:pp MOVEP P:ea,Y:pp

Description: Move the specified operand from/to the specified X or V 1/0 peripheral.
The I/O short addressing mode is used for the I/O peripheral address. All memory
addressing modes may be used for the X or Y memory effective address; all memory
alterable addressing modes may be used for the P memory effective address.

If the system stack register SSH is specified as a source operand, the system stack
pointer (SP) is postdecremented by 1 after SSH has been read. If the system stack reg-

MOVEP Move Peripheral Data MOVEP
ister SSH is specified as a destination operand, the system stack pointer (SP) is prein­
cremented by 1 before SSH is written. This allows the system stack to be efficiently
extended using software stack pointer operations.

When a 56-bit accumulator (A or B) is specified as a source operand S, the accumulator
value is optionally shifted according to the scaling mode bits SO and S 1 in the system
status register (SR). If the data out of the shifter indicates that the accumulator extension
register is in use and the data is to be moved into a 24-bit destination, the value stored in
the destination is limited to a maximum positive or negative saturation constant to mini­
mize truncation error. If a 24-bit source operand is to be moved into a 16-bit destination
register D, the 8 MS bits of the 24-bit source operand are discarded, and the 16 LS bits
are stored in the 16-bit destination register. Limiting does not occur if an individual 24-bit
accumulator register (A 1, AO, B1, or BO) is specified as a source operand instead of the
full 56-bit accumulator (A or B). This limiting feature allows block floating-point operations
to be performed with error detection since the L bit in the condition code register is
latched.

When a 56:'bit accumulator (A or B) is specified as a destination operand 0, any 24-bit
source data to be moved into that accumulator is automatically extended to 56 bits by
sign extending the MS bit of the source operand (bit 23) and appending the source oper­
and with 24 LS zeros. Whenever a 16-bit source operand S is to be moved into a 24-bit
destination, the 16-bit source is loaded into the LS 16 bits of the destination operand,
and the remaining 8 MS bits of the destination are zeroed. Note that for 24-bit source
operands both the automatic sign-extension and zeroing features may be disabled by
specifying the destination register to be one of the individual 24-bit accumulator registers
(Afar B1).

Note: Unlike other MOVE-type instructions, if an AGU register (Mn, Nn, or Rn) is directly
changed with MOVEP, the new contents will be available for use during the immediately
following instruction. There is no instruction cycle pipeline delay associated with
MOVEP.

Restrictions: The following restrictions represent very unusual operations, which proba­
bly would never be used but are listed only for completeness.

A MOVEP instruction used within a DO loop which specifies SSH as the source oper­
and or ~, Le, SR, SP, SSH, or SSL as the destination operand cannot begin at the
address LA-2, LA-1, or LA within that DO loop.

-

-

MOVEP Move Peripheral Data MOVEP

A MOVEP instruction which specifies SSH as the source operand or LA, LC, SSH, SSL,
or SP as the destination operand cannot be used immediately before a DO instruc­
tion.

A MOVEP instruction which specifies SSH as the source operand or LA, LC, SR, SSH,
SSL, or SP as the destination operand cannot be used immediately before an
ENDDO instruction.

A MOVEP instruction which specifies SSH as the source operand or SR, SSH, SSL, or
SP as the destination operand cannot be used immediately before an RTI instruction.

A MOVEP instruction which specifies SSH as the source operand or SSH, SSL, or SP
as the destination operand cannot be used immediately before an RTS instruction.

A MOVEP instruction which specifies SP as the destination operand cannot be used
immediately before a MOVEC, MOVEM, or MOVEP instruction which specifies SSH or
SSL as the source operand.

Example:

MOVEP #1113,X:«$FFFE :initialize Bus Control Register wait states

Before Execution After Execution

X:$FFFE I $FFFF
(BCR) L-. _______ -----'

X:$FFFE I
(BCR) L-. ____ $1_11_3 ___ --'

Explanation of Example: Prior to execution, the 16-bit, X memory-mapped, 1/0 bus
control register (BCR) contains the value $FFFF. The execution of the MOVEP
#$1113,X:«$FFFE instruction moves the value $1113 into the 16-bit bus control regis­
ter X:$FFFE, resulting in one wait state for all external X, external Y, and external pro­
gram memory accesses and three wait states for all external 1/0 accesses.

MOVEP Move Peripheral Data MOVEP

Condition Codes:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 I LF I eM I T I ** I S1 I SO I 11 I 10 I s I LIE I U N I z I v I ~ I
..... MR CCR -.

For D=SR operand:
S - Set according to bit 7 of the source operand
-L - Set according to bit 6 of the source operand
E - Set according to bit 5 of the source operand
U - Set according to bit 4 of the source operand
N - Set according to bit 3 of the source operand
Z - Set according to bit 2 of the source operand
V - Set according to bit 1 of the source operand
C - Set according to bit 0 of the source operand

For D*SR operand:
S - Computed according to the definition in A.5 CONDITION CODE COMPUTATION
L - Set if data limiting has occurred during the move

-

MOVEP Move Peripheral Data

Instruction Format (X: or Y: Reference):
MOVEP X:ea,X:pp
MOVEP Y:ea,X:pp
MOVEP #xxxxxx,X:pp
MOVEP X:pp,X:ea
MOVEP X:pp,Y:ea
MOVEP X:ea,Y:pp
MOVEP Y:ea,Y:pp
MOVEP #xxxxxx,Y:pp
MOVEP Y:pp,Y:ea
MOVEP Y:pp,Y:ea

Opcode:
23

0000100

16 15

slw 1 M M M R R

MOVEP

8 7 o
RI1 Spp pp p p

OPTIONAL EFFECTIVE ADDRESS EXTENSION

MOVEP Move Peripheral Data MOVEP

Instruction Fields:
ea=6-bit Effective Address=MMMRRR,
pp=6-bit I/O Short Address=pppppp

Effective
Memory Space S Addressing Mode MM M R R R

X Memory 0 (Rn)-Nn 0 0 0 r r r
Y Memory 1 (Rn)+Nn 0 0 1 r r

(Rn)- 0 1 0 r r
Peripheral Space s (Rn)+ 0 1 1 r r r
X Memory 0 (Rn) 1 0 0 r r r
Y Memory 1 (Rn+Nn) 1 0 1 r r r

-(Rn) 1 1 1 r r r
Peripheral W Absolute address 1 1 0 0 0 0
Read 0 Immediate data 1 1 0 1 0 0
Write 1

where "rrr" refers to an address register RO-R7

Timing: 4+mvp oscillator clock cycles

Memory: 1 +ea program words

MOVEP Move Peripheral Data

Instruction Format (P: Reference):
MOVEP P:ea,X:pp
MOVEP X:pp,P:ea
MOVEP P:ea,Y:pp
~OVEP Y:pp,P:ea

Opcode:
23

0000100

16 15

SJw 1 M M M R R

8 7

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:
ea=6-bit Effective Address=MMMRRR
pp=6-bit I/O Short Address=pppppp

Effective
Peripheral Space S Addressing Mode

X Memory 0 (Rn)-Nn
Y Memory 1 (Rn)+Nn

(Rn)-
Peripheral W (Rn)+
Read 0 (Rn)
Write 1 (Rn+Nn)

-(Rn)
Absolute address

where "rrr" refers to an address register RO-R7

Timing: 4+mvp oscillator clock cycles

Memory: 1 +ea program words

MM M R R

0 0 0 r r
0 0 1 r r
0 1 0 r r
0 1 1 r r
1 0 0 r r
1 0 1 r r
1 1 1 r r
1 1 0 0 0

MOVEP

o
p p p p p p

R

r
r
r

r
r
0

MOVEP Move Peripheral Data MOVEP

Instruction Format (Register Reference):
MOVEP S,X:pp
MOVEP X:pp,D
MOVEP S,Y:pp
MOVEP Y:pp,D

Opcode:

23 16 15 8 7 o

10 0 0 0 1 0 0 s I W 1 d d d d d dl 0 o p p p P P I?I

Instruction Fields:
pp=6-bit I/O Short Address=pppppp

Peripheral Space S
X Memory 0
Y Memory

Peripheral W
Read 0
Write

S D D
S,D dddddd S/L Sign Ext Zero
XO 000100 no no no
X1 000101 no no no
YO 000110 no no no
Y1 000 1 1 1 no no no
AO 001000 no no no
80 001001 no no no
A2 001010 no no no
82 001011 no no no
A1 001100 no no no
81 001101 no no no
A 001110 yes A2 AO
8 001 1 1 1 yes 82 80

where "nnn" = Rn number (RO - R7)
Nn number (NO - N7)
Mn number (MO - M7)

Timing: 4+mvp oscillator clock cycles

Memory: 1 +ea program words

S,D dddddd
RO - R7 010nnn
NO - N7 011nnn
MO-M7 100nnn
SR 111001
OMR 111010
SP 111011
SSH 111100
SSL 111101
LA 111110
LC 111 1 1 1

MPY Signed Multiply MPY

Operation:
±S1 *S2 -+ D (parallel move)

±S1 *S2 -+ D (parallel move)

±(S1 *2-n)-+Q (no parallel move)

Assembler Syntax:
MPY (±)S1 ,S2,D (parallel move)

MPY (±)S2,S1 ,D (parallel move)

MPY (±)S,#n,D (no parallel move)

Description: Multiply the two signed 24-bit source operands S1 and S2 and store the
resulting product in the specified 56-bit destination accumulator D. Or, multiply the
signed 24-bit source operand S by the positive 24-bit immediate operand 2-n and add/
subtract to/from the specified 56-bit destination accumulator D. The "_" sign option is
used to negate the specified product prior to accumulation. The default sign option is "+".

Note: When the processor is in the Double Precision Multiply Mode, the following
instructions do not execute in the normal way and should only be used as part of the
double precision multiply algorithm shown in Section 3.4 DOUBLE PRECISION MUL TI­
PLY MODE:

MPYYO, XO, A
MACX1, YO, A
MACXO, Y1, A
MAC Y1, X1, A

MPYYO, XO, B
MACX1, YO, B
MACXO, Y1, B
MACY1, X1, B

All other Data ALU instructions are executed as NOP's when the processor is in the Dou­
ble Precision Multiply Mode.

Example 1:

MPY -X1 ,Y1 ,A #$543210,YO ;-(X1 *Y1) -+ A, update YO

Before Execution After Execution

X1 I $800000 X1 I $800000

Y1 I $COOOOO Y1 I $COOOOO

AI $00:000000:000000 AI $FF:COOOOO:OOOOOO

MPY Signed Multiply MPY

Explanation of Example 1: Prior to execution, the 24-bit X1 register contains the value
$800000 (-1.0), the 24-bit Y1 register contains the value $COOOOO, (-0.5), and the 56-bit
A accumulator contains the value $00:000000:000000 (0.0). The execution of the MPY­
X1 ,Y1 ,A instruction multiples the 24-bit signed value in the X1 register by the 24-bit
signed value in the Y1 register, negates the 48-bit product, and stores the result in the
56-bit A accumulator (-X1 *Y1 =-0.5=$FF:COOOOO:000000=A).

Condition Codes:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 I LF I DM I T I •• I 81 I 80 I 11 I 10 I 8 I LIE I u I N I z v I : I
.~ MR •. ~ CCR _.

S - Computed according to the definition in A.5 CONDITION CODE COMPUTATION
L - Set if limiting occurred during parallel move
E - Set if the signed integer portion of A or B result is in use
U - Set if A or B result is unnormalized
N - Set if bit 55 of A or B result is set
Z - Set if A or B result equals zero
V - Set if overflow has occurred in A or B result

Not~: The definitions of the E and U bits vary according to the scaling mode being used.
Refer to Section A.5 CONDITION CODE COMPUTATION for complete details.

Instruction Format 1:
MPY (±)S1,S2,0
MPY (±)S2,S1,0

Opcode 1:
23

DATA BUS MOVE FIELD

8 7 4 3

I 1 Q Q Q I d k

OPTIONAL EFFECTIVE ADDRESS EXTENSION

o
o

MPY Signed Multiply MPY

Instruction Fields 1:.
51*52 Q Q Q Sign k D d

XOXO 0 0 0 + 0 A 0
YO YO 0 0 1 1 B 1
X1 XO 0 1 0
Y1 YO 0 1 1
XOY1 1 0 0
YOXO 1 0 1
X1 YO 1 1 0
Y1 X1 1 1 1

Note: Only the indicated S1 *S2 combinations are valid. X1 *X1 and Y1 *Y1 are not valid.

Timing: 2+mv oscillator clock cycles

Memory: 1 +mv program words

Example 2:

MPY X1, . #9, A

Before Execution

X1 1~ ________ $_65_43_2_1 __ ~

AI~ ___ $_OO_:O_OO_OO_O_:OO_O_OO_O __ ~

After Execution

X1 ~I _________ $_6_54_32_1 __ ~

A~I __ ~$_OO_:O_03_2A_1_:9_08_00_0 __ ~

Explanation of Example 2: The content of X1 is multiplied by 2-9 and the result is
placed in the A accumulator. The net effect of this operation is to divide the content of
X1 by 29 and place the result in the accumulator. An alternate interpretation is that X1 is
right shifted 9 places and filled with the sign bit (0 for a positive number and 1 for a neg­
ative number) and then the result is placed in the accumulator.

MPY Signed Multiply MPY

Instruction Format 2:
MPY (±)S,#n,D

Opcode2:

23 16 15 8 7 o
\0 0 0 0 0 0 0 11000S S SSSI1 1 a a d k 0 01

Instruction Fields:
S QQ Sign k 0 d

Y1 0 0 + 0 A 0
XO 0 1 1 B 1
YO 1 0
X1 1 1

n sssss constant
1 00001 010000000000000000000000
2 00010 001000000000000000000000
3 00011 000100000000000000000000
4 00100 000010000000000000000000
5 00101 000001000000000000000000
6 00110 000000100000000000000000
7 00111 000000010000000000000000
8 01000 000000001000000000000000
9 01001 000000000100000000000000
10 01010 000000000010000000000000
11 01011 000000000001000000000000
12 01100 000000000000100000000000
13 01101 000000000000010000000000
14 01110 000000000000001000000000
15 01111 000000000000000100000000
16 10000 000000000000000010000000
17 10001 000000000000000001000000
18 10010 000000000000000000100000
19 10011 000000000000000000010000
20 10100 000000000000000000001000
21 10101 000000000000000000000100
22 10110 000000000000000000000010
23 10111 000000000000000000000001

Timing: 2 oscillator clock cycles

Memory: 1 program word

MPYR Signed Multiply and Round MPYR
Operation:

±S1 *S2+r -+ D (parallel move)

±S1 *S2+r -+ D (parallel move)

±(S1 *2-n)+r -+ D (no parallel move)

Assembler Syntax:
MPYR (±)S1,S2,D (parallel move)

MPYR (±)S2,S1,D (parallel move)

MPYR (±)S,#n,D (no parallel move)

Description: Multiply the two signed 24-bit source operands S1 and S2 (or the signed
24-bit source operand S by the positive 24-bit immediate operand 2-n), round the result
using convergent rounding, and store it in the specified 56-bit destination accumulator D.
The "-" sign option is used to negate the product prior to rounding. The default sign
option is "+". The contribution of the LS bits of the result is rounded into the upper portion
of the destination accumulator (A1 or B1) by adding a constant to the LS bits of the lower
portion of the accumulator (AO or BO). The value of the constant added is determined by
the scaling mode bits SO and S1 in the status register. Once the rounding has been com­
pleted, the LS bits of the destination accumulator D (AO or BO) are loaded with zeros to
maintain an unbiased accumulator value which may be reused by the next instruction.
The upper portion of the accumulator (A1 or B1) contains the rounded result which may
be read out to the data buses. Refer to the RND instruction for more complete informa­
tion on the convergent rounding process.

Example 1:

MPYR - YO,YO,B (R3)-N3 ;square and negate YO, update R3

Before Execution After Execution

YOI~ ________ $_65_4_32_1 __ ~ YOI~ ________ $_6_54_32_1 __ ~

BI~ ___ $_OO_:O_OO_OO_O_:OO_O_OO_O __ ~ BI~ ___ $_F_F:_AF_E_3E_D_:O_OO_OO_O __ ~

Explanation of Example 1: Prior to execution, the 24-bit YO register contains the value
$654321 (0.791111112), and the 56-bit B accumulator contains the value
$00:000000:000000 (0.0). The execution of the MPYR -YO,YO,B instruction squares the
24-bit signed value in the YO register, negates the resulting 48-bit product, rounds the
result into B1, and zeros BO (-YO*YO=-0.625856790961748 approximately=
$FF:AFE3EC:B76B7E, which is rounded to the value $FF:AFE3ED:000000=
-0.625856757164002=B).

MPYR Signed Multiply and Round MPYR

Condition Codes:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 I LF I DM I T I ~ I ., I .0 I 11 I 10 I s I LIE I u I N I z v I :1
.~ MR CCR _.

S - Computed according to the definition in A.5 CONDITION CODE COMPUTATION
L - Set if limiting occurred during parallel move
E - Set if the signed integer portion of A or B result is in use
U - Set if A or B result is unnormalized
N - Set if bit 55 of A or B result is set
Z- Set if A or B result equals zero
V - Set if overflow has occurred in A or B result

Note: The definitions of the E and U bits vary according to the scaling mode being used.
Refer to Section A.5 CONDITION CODE COMPUTATION for complete details.

Instruction Format 1:
MPYR (±)S1,S2,D
MPYR (±)S2,S1,D

Opcode 1:
23

DATA BUS MOVE FIELD

8 7 4 3 0

I 1 a a aid k 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

MPYR Signed Multiply and Round MPYR
Instruction Fields 1:

51*52 Q Q Q Sign k 0 d

XOXO 0 0
YO YO 0 0
X1 XO 0 1
Y1 YO 0 1
XOY1 1 0
YOXO 1 0
X1 YO 1 1
Y1 X1 1 1

0
1
0
1
0
1
0
1

+ o
1

A 0
B 1

Note: Only the indicated S1 *S2 combinations are valid. X1 *X1 and Y1 *Y1 are not valid.

Timing: 2+mv oscillator clock cycles

Memory: 1 +mv program words

Example 2:

MPYR -Y1, #14, B

Before Execution

Y1 1~ _________ $_65_4_32_1 __ ~

BI~ ____ $_OO_:O_OO_OO_O_:OO_O_OO_O __ ~

After Execution

$654321 Y1 I
~--------------~

B~I ____ $F_F_:FF_F_E6_B_:O_OO_oo_o __ ~

Explanation of Example 2: The content of Y1 is negated, multiplied by 2-14, rounded to
a single precision number (24 bits in B1) and placed in the B accumulator. The net effect
of this operation is negate the content of Y1 and divide the result by 214, place the result
in the accumulator and then round to a single precision number. An alternate interpreta­
tion is that X1 is negated and placed in the accumulator, right shifted 14 places, filled
with the sign bit (0 for a positive number and 1 for a negative number) and then rounded
to a single precision number.

MPYR Signed Multiply and Round MPYR
Instruction Format 2:

MPYR (±)S,#n,D

Opcode 2:

23 16 15 8 7 o
10 0 0 0 0 0 0 1 10 0 0 s s s s s 11 1 Q Q d k 0 11

Instruction Fields 2:
S QQ Sign k D d

Y1 0 0 + 0 A 0
XO 0 1 1 8 1
YO 1 0
X1 1 1

n sssss constant
1 00001 010000000000000000000000
2 00010 001000000000000000000000
3 00011 000100000000000000000000
4 00100 000010000000000000000000
5 00101 000001000000000000000000
6 00110 000000100000000000000000
7 00111 000000010000000000000000
8 01000 000000001000000000000000
9 01001 000000000100000000000000
10 01010 000000000010000000000000
11 01011 000000000001000000000000
12 01100 000000000000100000000000
13 01101 000000000000010000000000
14 01110 000000000000001000000000
15 01111 000000000000000100000000
16 10000 000000000000000010000000
17 10001 000000000000000001000000
18 10010 000000000000000000100000
19 10011 000000000000000000010000
20 10100 000000000000000000001000
21 10101 000000000000000000000100
22 10110 000000000000000000000010
23 10111 000000000000000000000001

Timing: 2 oscillator clock cycles

Memory: 1 program word

NEG Negate Accumulator NEG

Operation: Assembler Syntax:
0-0 ~ 0 (parallel move) NEG D (parallel move)

Description: Negate the destination operand D and store the result in the destination
accumulator. This is a 56-bit, twos-complement operation.

Example:

NEG B X1 ,X:(R3)+ Y:(R6)-,A ;O-B ~ B, update A,X1 ,R3,R6

Before Execution After Execution

BI~ __ $_0_0:_12_34_56_:7_89_A_BC __ ~ BI~ __ $F_F_:E_DC_B_A9_:8_76_54_4 __ ~

Explanation of Example: Prior to execution, the 56-bit B accumulator contains the
value $00:123456:789ABC. The NEG B instruction takes the twos complement of the
value in the B accumulator and stores the 56-bit result back in the B accumulator.

Condition Codes:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 I LF I DM I T I *. I 81 I 80 I 11 I 10 I s I LIE I u I N I z v I c I
.... MR •. ~ CCR •.

S - Computed according to the definition in A.5 CONDITION CODE COMPUTATION
L - Set if limiting (parallel move) or overflow has occurred in result
E - Set if the signed integer portion of A or B result is in use
U - Set if A or B result is unnormalized
N - Set if bit 55 of A or B result is set
Z - Set if A or B result equals zero
V - Set if overflow has occurred in A or B result

Note: The definitions of the E and U bits vary according to the scaling mode being used.
Refer to Section A.5 CONDITION CODE COMPUTATION for complete details.

NEG

Instruction Format:
NEG 0

Opcode:
23

Instruction Fields:
o d

A 0
B

Negate Accumulator

8 7

DATA BUS MOVE FIELD I 0 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Timing: 2+mv oscillator clock cycles

Memory: 1 +mv program words

NEG

4 3 o
1 I d o

NOP No Operation NOP

Operation: Assembler Syntax:
PC+1-+PC NOP

Description: Increment the program counter (PC). Pending pipeline actions, if any, are
completed. Execution continues with the instruction following the NOP.

Example:

NOP ;increment the program counter

Explanation of Example: The NOP instruction increments the program counter and
completes any pending pipeline actions.

Condition Codes:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 I: 1 OM 1 T 1** JR 81 I 80 1 11 1 : I: I LIE I U JR N I z I v I : I
The condition codes are not affected by this instruction.

NOP No Operation

Instruction Format:
NOP

Opcode:

23 16 15 8 7

10 0 0 0 0 0 0 0100 0 0 o 0 0 0 I 0

Instruction Fields:
None

Timing: 2 oscillator clock cycles

Memory: 1 program word

NOP

o
o 0 0 0 0 0 01

NORM Normalize Accumulator Iteration NORM

Operation: Assembler Syntax:
If E. U • Z=1, then ASL 0 and Rn-1~Rn
else if E=1, then ASR 0 and Rn+ 1 ~Rn
else NOP

where E denotes the logical complement of E, and
where • denotes the logical AND operator

NORM Rn,O

Description: Perform one normalization iteration on the specified destination operand 0,
update the specified address register Rn based upon the results of that iteration, and
store the result back in the destination accumulator. This is a 56-bit operation. If the
accumulator extension is not in use, the accumulator is un normalized, and the accumula­
tor is not zero, the destination operand is arithmetically shifted one bit to the left, and the
specified address register is decremented by 1. If the accumulator extension register is
in use, the destination operand is arithmetically shifted one bit to the right, and the speci­
fied address register is incremented by 1. If the accumulator is normalized or zero, a
NOP is executed and the specified address register is not affected. Since the operation
of the NORM instruction depends on the E, U, and Z condition code register bits, these
bits must correctly reflect the current state of the destination accumulator prior to execut­
ing the NORM instruction. Note that the L and V bits in the condition code register will be
cleared unless they have been improperly set up prior to executing the NORM instruc­
tion.

Example:

REP #$2F
NORM R3,A

;maximum number of iterations needed
;perform 1 normalization iteration

Before Execution After Execution

A 1,-_$_0_0:0_0_00_00_:0_00_00_1_--, AI~ ____ $_00_:4_00_0_00_:0_00_oo_0_~

R31~ _____ $0_O_OO_~ R31~ ______ $_FF_D_2 __ ~

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the
value $00:000000:000001, and the 16-bit R3 address register contains the value $0000.
The repetition of the NORM R3,A instruction normalizes the value in the 56-bit accumu­
lator and stores the resulting number of shifts performed during that normalization pro-

NORM Normalize Accumulator Iteration NORM

cess in the R3 address register. A negative value reflects the number of left shifts
performed; a positive value reflects the number of right shifts performed during the nor­
malization process.

Condition Codes:

15 14 13 12 11 10 9 8 7 6

I LF I DM I T I" I 81 I 80 I 11 I 10 I 8 I L

N - Set if bit 55 of A or B result is set
Z - Set if A or B result equals zero

5 4 3 2 1 0

E I U N Z

CCR

V - Set if bit 55 is changed as a result of a left shift

Note: The definitions of the E and U bits vary according to the scaling mode being used.
Refer to Section A.5 CONDITION CODE COMPUTATION for complete details.

Instruction Format:
NORM Rn,D

Opcode:

23 16 15

10 0 0 0 0 0 0

Instruction Fields:
o d Rn R R R

A 0 Rn n n n
B 1

where "nnn" = Rn number

Timing: 2 oscillator clock cycles

Memory: 1 program word

8 7 o
o 0 1 d 1 0 1 1

NOT Logical Complement NOT

Operation: Assembler Syntax:
0[47:24] -+ 0[47:24] (parallel move) NOT 0 (parallel move)
where "-" denotes the logical NOT operator

Description: Take the ones complement of bits 47-24 of the destination operand D and
store the result back in bits 47-24 of the destination accumulator. This is a 24-bit opera­
tion. The remaining bits of D are not affected.

Example:
NOT A 1 AB,L:(R2)+ ;save A 1 ,B 1 , take the ones complement of A 1

Before Execution After Execution

A~I ____ $0_0:_12_34_56_:7_89_A_BC __ ~ AI~ __ $_00_:E_DC_B_A9_:7_8_9A_B __ ~

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the
value $OO:123456:789ABC. The NOT A instruction takes the ones complement of bits
47-24 of the A accumulator (A1) and stores the result back in the A1 register. The
remaining bits of the A accumulator are not affected.

Condition Codes:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

I LF 1 OM 1 T 1** 1 81 1 80 1 11 1 10 lsi LIE 1 U N 1 z v 1 ~ I
.~ MA ~_~ CCA _.

S - Computed according to the definition in A.5 CONDITION CODE COMPUTATION
L - Set if data limiting has occurred during parallel move
N - Set if bit 47 of A or B result is set
Z - Set If bits 47-24 of A or B result are zero
V - Always cleared

NOT

Instruction Format:
NOT 0

Opcode:
23

Instruction Fields:
o d

A 0
8 1

Logical Complement

8 7

DATA BUS MOVE FIELD
1

00

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Timing: 2+mv oscillator clock cycles

Memory: 1 +mv program words

NOT

4 3 o
o 1 I d

OR Logical Inclusive OR OR

Operation: Assembler Syntax:
8+0[47:24] -+ 0[47:24] (parallel move) OR 8,0 (parallel move)
where + denotes the logical inclusive OR operator

Description: Logically inclusive OR the source operand 8 with bits 47-24 of the destina­
tion operand 0 and store the result in bits 47-24 of the destination accumulator. This
instruction is a 24-bit operation. The remaining bits of the destination operand 0 are not
affected.

Example:

OR Y1,B1 BA,L:$1234 ;save A1 ,B1, OR Y1 with B

Before Execution After Execution

Y11 ~ _________ $_FF_O_OO_o __ ~ Y1 ~I ________ ._$_FF_O_OO_o __ ~

BI ~ ____ $0_O:_12_34_56_:7_8_9A_B_C __ ~ B~I ____ $0_O:_FF_3_45_6:7_8_9A_B_C __ ~

Explanation of Example: Prior to execution, the 24-bit Y1 register contains the value
$FFOOOO, and the 56-bit B accumulator contains the value $00:123456:789ABC. The OR
Y1 ,B instruction logically ORs the 24-bit value in the Y1 register with bits 47-24 of the B
accumulator (B1) and stores the result in the B accumulator with bits 55-48 and 23-0
unchanged.

Condition Codes:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 I LF I OM I T I·· I 81 I 80 I 11 I 10 I s I LIE I u I N I z I v I :. I
.~ MR •. ~ eeR _.

8 - Computed according to the definition in A.5 CONDITION CODE COMPUTATION
L - 8et if data limiting has occurred during parallel move
N - Set if bit 47 of A or B result is set
Z - Set If bits 47-24 of A or B result are zero
V - Always cleared

OR Logical Inclusive OR

Instruction Format:
OR S,D

Opcode:
23 8 7

DATA BUS MOVE FIELD I 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:
S JJ Dd

XO 00
X1 1 0
YO 01
Y1 1 1

AO
81

Timing: 2+mv oscillator clock cycles

Memory: 1 +mv program words

OR

4 3 o
J J J d 0 o

ORI OR Immediate with Control Register ORI

Operation: Assembler Syntax:
#xx+D -4 D OR(I) #xx,D
where + denotes the logical inclusive OR operator

Description: Logically OR the 8-bit immediate operand (#xx) with the contents of the
destination control register D and store the result in the destination control register. The
condition codes are affected only when the condition code register is specified as the
destination operand.

Restrictions: The ORI #xx,MR instruction cannot be used Immediately before an
ENDDO or RTI instruction and cannot be one of the last three instructions in a DO loop
(at LA-2, LA-1, or LA).

Example:

OR #$8,MR ;set scaling mode bit 81 to scale up

Before Execution After Execution

MRI~ ________ $0_3 ______ ~ MR~I _______ $O_B ______ ~

Explanation of Example: Prior to execution, the 8-bit mode register (MR) contains the
value $03. The OR #$8,MR instruction logically ORs the immediate 8-bit value $8 with
the contents of the mode register and stores the result in the mode register.

Condition Codes:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o I LF I OM I T I·· I 81 I 80 I 11 I 10 I s I L I E I u I N I z v ~I

ORI OR Immediate with Control Register ORI

For MR and OMR operands:
The condition codes are not affected using these operands.

Instruction Format:
OR(I) #xx,D

Opcode:

23 16 15

10 0 0 0 0 0 0 o Iii

Instruction Fields:
#xx=8-bit Immediate Short Data = iii iii i i

o EE

MR 00
CCR 01
OMR 10

Timing: 2 oscillator clock cycles

Memory: 1 program word

8 7

i 11
o

1 1 1 1 0 E E I

REP Repeat Next Instruction REP

Operation: Assembler Syntax:
LC -+ TEMP; X:ea -+ LC REP X:ea
Repeat next instruction until LC=1
TEMP -+ LC

LC -+ TEMP; X:aa -+ LC REP X:aa
Repeat next instruction until LC=1
TEMP -+ LC

LC -+ TEMP; Y:ea -+ LC REP Y:ea
Repeat next instruction until LC=1
TEMP -+ LC

LC -+ TEMP; Y:aa -+ LC REP Y:aa
Repeat next instruction until LC=1
TEMP -+ LC

LC -+ TEMP; S -+ LC REP S
Repeat next instruction until LC=1
TEMP -+ LC

LC -+ TEMP; #xxx -+ LC REP #xxx
Repeat next instruction until LC=1
TEMP -+ LC

Description: Repeat the single-word instruction immediately following the REP
instruction the specified number of times. The value specifying the number of times the
given instruction is to be repeated is loaded into the 16-bit loop counter (LC) register.
The single-word instruction is then executed the specified number of times, decrement­
ing the loop counter (LC) after each execution until LC=1. When the REP instruction is in
effect, the repeated instruction is fetched only one time, and it remains in the instruction
register for the duration of the loop count. Thus, the REP instruction is not Interrupt­
Ible (sequential repeats are also not interruptible). The current loop counter (LC) value is
stored in an internal temporary register. If LC is set equal to zero, the instruction is
repeated 65,536 times. The instruction's effective address specifies the address of the
value which is to be loaded into the loop counter (LC). All address register indirect
addressing modes may be used. The absolute short and the immediate short addressing
modes may also be used. The four MS bits of the 12-bit immediate value are zeroed to
form the 16-bit value that is to be loaded into the loop counter (LC).

REP Repeat Next Instruction REP

Restrictions: The REP instruction can repeat any single-word instruction· except the
REP instruction itself and any instruction that changes program flow. The following
instructions are not allowed to follow an REP instruction:

Immediately after REP
DO
Jcc
JCLR
JMP
JSET
JScc
JSCLR
JSR

JSSET
REP
RTI
RTS
STOP
SWI
WAIT
ENDDO

Also, a REP instruction cannot be the last instruction in a DO loop (at LA). The assem­
bler will generate an error if any of the previous instructions are found immediately fol­
lowing an REP instruction.

Example:

REPXO ;repeat (XO) times
MAC X1 ,Y1 ,A X:(R1)+,X1 Y:(R4)+,Y1 ;X1 *Y1 +A ~ A, update X1 ,Y1

Before Execution After Execution

XO~' _________ $0_00_10_0 __ ~ X0l-' _________ $0_00_1_00 __ ~

LC 1-1 __________ $0_00_0 __ --' Lci I-~ ________ $O_O_OO __ ---,

REP Repeat Next Instruction REP

Explanation of Example: Prior to execution, the 24-bit XO register contains the value
$000100, and the 16-bit loop counter (LC) register contains the value $0000. The execu­
tion of the REP XO instruction takes the 24-bit value in the XO register, truncates the MS
8 bits, and stores the 16 LS bits in the 16-bit loop counter (LC) register. Thus, the single­
word MAC instruction immediately following the REP instruction is repeated $100 times.

Condition Codes:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 I LF I OM 1 T 1** 1 S1 1 so 1 11 1 10 I S 1 L 1 E 1 U N 1 z
~ MR ~ ~ . CCR

v 1 ~I
For source operand A or B:
S - Computed according to the definition. See Notes on page A-255.
L - Set if data limiting occurred. See Notes on page A-255.

For other source operands:
The condition code bits are not affected.

REP

Instruction Format:
REP X:ea
REP Y:ea

Opcode:
23

10 0 0 0 0 1 1

Instruction Fields:

Repeat Next Instruction

16 15 8 7

o I 0 1 M M M R R Rio

ea=6-bit Effective Address=MMMRRR,

Effective

REP

o
s 1 0 0 0 0 01

Addressing Mode

(Rn)-Nn

MMMRRR Memory Space s

(Rn)+Nn
(Rn)-
(Rn)+
(Rn)
(Rn+Nn)
-(Rn)

o 0 0 r r
o 0 1 r
o 1 0 r r
o 1 1 r r
1 0 0 r r
101rrr
1 1 1 r r r

X Memory 0
Y Memory 1

where "rrr" refers to an address register RO-R7

Timing: 4+mv oscillator clock cycles

Memory: 1 program word

-

REP Repeat Next Instruction

Instruction Format:
REP X:aa
REPY:aa

Opcode:
23 16 15 8 7

10 0 0 0 0 1 1 o 100 a a a a a al 0

Instruction Fields:
aa=6-bit Absolute Short Address=aaaaaa

Absolute Short Address aaaaaa

000000
•
•

111111

Timing: 4+mv oscillator clock cycles

Memory: 1 program word

Memory Space s

X Memory 0
Y Memory 1

REP

o
s 1 0 0 0 0 01

REP Repeat Next Instruction

Instruction Format:
REP #xxx

Opcode:

23 16 15 8 7

10 0 0 0 0 1 1 o 1 i i i 11

Instruction Fields:
#xxx=12-bit Immediate Short Data = hhhh iii iii i i

Immediate Short Data hhhh iii IIIII i

000000000000
•
•

111111111111

Timing: 4+mv oscillator clock cycles

Memory: 1 program word

REP

o
o 1 0 h h h hi

-

-

REP Repeat Next Instruction REP

Instruction Format:
REP S

Opcode:

23 16 15 6 7 o
10 0 0 0 0 1 1 o 11 1 d d d d d dl 0 o 1 0 0 0 0 01

Instruction Fields:
S

S dddddd S/L S dddddd
XO 000100 no RO - R7 o 1 0 n n n
X1 000101 no NO - N7 o 1 1 n n n
YO 000110 no MO- M7 100nnn
Y1 000111 no SR 1 1 1 0 0 1
AO 001000 no OMR 1 1 1 0 1 0
80 001001 no SP 1 1 1 0 1 1
A2 001010 no SSH 111100
82 001011 no SSL 1 1 1 1 0 1
A1 001100 no LA 1 1 1 1 1 0
81 001101 no LC 1 1 1 1 1 1
A 001110 yes (See Notes on page A-255)
B 001111 yes (See Notes on page A-255)

where "nnn" = Rn number (RO - R7)
Nn number (NO - N7)
Mn number (MO - M7)

REP Repeat Next Instruction REP

Notes: If A or B is specified as the destination operand, the following sequence of events
takes place:

1. The S bit is computed according to its definition (See Section A.5 CON­
DITION CODE COMPUTATION)

2. The accumulator value is scaled according to the scaling mode bits SO
and S1 in the status register (SR).

3. If the accumulator extension is in use, the output of the shifter is limited
to the maximum positive or negative saturation constant, and the L bit is
set.

4. The LS 16 bits of the resulting 24 bit value is loaded into the loop
counter (LC). The original contents of A or B are not changed.

If the system stack register SSH is specified as a source operand, the system stack
pointer (SP) is postdecremented by 1 after SSH has been read.

Timing: 4 oscillator clock cycles

Memory: 1 program word

-

RESET Reset On-Chip Peripheral Devices

Operation:
Reset the interrupt priority register

and all on-chip, peripherals

Assembler Syntax:
RESET

RESET

Description: Reset the interrupt priority register and all on-chip peripherals. This is a
software reset which is NOT equivalent to a hardware reset since only on-chip peripher­
als and the interrupt structure are affected. The processor state is not affected, and exe­
cution continues with the next instruction. All interrupt sources are disabl,ed except for
the trace, stack error, NMI, illegal instruction, and hardware reset interrupts.

Restrictions: A RESET instruction cannot be the last instruction in a DO loop (at LA).

Example:

RESET ;reset all on-chip peripherals and IPR

Explanation of Example: The execution of the RESET instruction resets all on-chip
peripherals and the interrupt priority register (IPR).

Condition Codes:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 I: I DM I T 1** JR 81 I 80 I 11 I :1.8 I liE I u 1 N I z I v I ~I

The condition codes are not affected by this instruction

RESET Reset On-Chip Peripheral Devices

Instruction Format:
RESET

Opcode:

23 16 15 8 7

la a a a a a a ala a a a a a a al1

Instruction Fields:
None

Timing: 4 oscillator clock cycles

Memory: 1 program word

RESET

a
a a a a 1 a al

RND Round Accumulator RND

Operation: Assembler Syntax:
D+r -+ D (parallel move) RND D (parallel move)

Description: Round the 56-bit value in the specified destination operand D and store the
result in the MSP portion of the destination accumulator (A 1 or 81). This instruction uses
a convergent rounding technique. The contribution of the LS bits of the result (AO and
80) is rounded into the upper portion of the result (A 1 or 81) by adding a rounding con­
stant to the LS bits of the result. The MSP portion of the destination accumulator con­
tains the rounded result which may be read out to the data buses.

The value of the rounding constant added is determined by the scaling mode bits SO and
51 in the system status register (SR). A "1" is added in the rounding position as shown
below:

Rounding Rounding Constant
S1 SO Scaling Mode Position 55-25 24 23 22 21 - 0

0 0 No Scaling 23 0 0 0 1 0 0 0

0 Scale Down 24 0 0 1 0 0 0 0

0 Scale Up 22 0 0 0 0 0 0

Normal or "standard" rounding consists of adding a rounding constant to a given
number of L5 bits of a value to produce a rounded result. The rounding constant
depends on the scaling mode being used as previously shown. Unfortunately, when
using a twos-complement data representation, this process introduces a positive bias in
the statistical distribution of the roundoff error.

RND Round Accumulator RND

Convergent rounding differs from "standard" rounding in that convergent rounding
attempts to remove the aforementioned positive bias by equally distributing the round-off
error. The convergent rounding technique initially performs "standard" rounding as previ­
ously described. Again, the rounding constant depends on the scaling mode being used.
Once "standard" rounding has been done, the convergent rounding method tests the
result to determine if all bits Including and to the right of the rounding position are
zero. If, and only if, this special condition is true, the convergent rounding method will
clear the bit immediately to the left of the rounding position. When this special condition
is true, numbers which have a "1" in the bit immediately to the left of the rounding posi­
tion are rounded up; numbers with a "0" in the bit immediately to the left of the rounding
position are rounded down. Thus, these numbers are rounded up half the time and
rounded down the rest of the time. Therefore, the roundoff error averages out to zero.
The LS bits of the convergently rounded result are then cleared so that the rounded
result may be immediately used by the next instruction.

Example:

RND A #$123456,X1 B,Y1 ;round A accumulator into A 1, zero AO

Before Execution After Execution

Case I: A 1 __ $_00_:1_23_4_56_:7_89_AB_C __ AI $00: 123456 :000000

Case II: A 1-1 __ $0_0:_12_34_5_6:8_0_00_00 __ AI $00:123456:000000

Case III: A 1 __ $0_0:_12_34_5_6:8_0_00_00 __ AI $00:123456:000000

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the
value $00:123456:789ABC for Case I, the value $00:123456:800000 for Case II, and the
value $00:123455:800000 for Case III. The execution of the RND A instruction rounds
the value in the A accumulator into the MSP portion of the A accumulator (A1), using
convergent rounding, and then zeros the. LSP portion of the A accumulator (AO). Note
that Case II is the special case that distinguishes convergent rounding from standard or
biased rounding. -

-

RND Round Accumulator RND

Condition Codes:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 I LF I DM I T I ** I 81 I 80 I 11 I 10 I s I LIE I u I N I z I v I c I
.... MR CCR ..,.

S - Computed according to the definition in A.5 CONDITION CODE COMPUTATION
L - Set if data limiting (parallel move) or overflow has occurred in result
E - Set if the signed integer portion of A or B result is in use
U - Set if A or B result is unnormalized
N - Set if bit 55 of A or B result is set
Z - Set if A or B result equals zero
V - Set if overflow has occurred in A or B result

Note: The definitions of the E and. U bits vary according to the scaling mode being used.
Refer to Section A.5 CONDITION CODE COMPUTATION for complete details.

RND Round Accumulator

Instruction Format:
RND D

Opcode:
23 8 7

DATA BUS MOVE FIELD
1

00

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:
D D
A 0
B 1

Timing: 4 oscillator clock cycles

Memory: 1 program word

RND

4 3 o
o 1 I d o 0

-

ROL Rotate Left ROL

47 24

Operation: r c.-I,-_ ... _____ b(parallel move)

Assembler Syntax: ROL D (parallel move)

Description: Rotate bits 47-24 of the destination operand D one bit to the left and store
the result in the destination accumulator. Prior to instruction execution, bit 47 of D is
shifted into the carry bit C, and, prior to instruction execution, the value in the carry bit C
is shifted into bit 24 of the destination accumulator D. This instruction is a 24-bit opera­
tion. The remaining bits of the destination operand D are not affected.

Example:

ROL A1 #314,N2 ;rotate A1 one left bit, update N2

Before Execution After Execution

A 1~ ___ $_O_o:_oo_oo_oo_:o_oo_o_oo_~ A 1~ ___ $_O_O:O_O_OO_01_:0_00_OO_0 __ ~

SR 1L-_________ $O_3_01 __ --' SR 1~ ________ $O_30_0 __ ~

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the
value $00:000000:000000. The execution of the ROL A instruction shifts the 24-bit value
in the A1 register one bit to the left, shifting bit 47 into the carry bit C, rotating the carry bit
C into bit 24, and storing the result back in the A 1 register.

ROL Rotate Left ROL

Condition Codes:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 LF 1 DM 1 T I.. I s, I so I 11 I lois 1 L E I U N I z v
1:1 CCR ... MR

S - Computed according to the definition in A.5 CONDITION CODE COMPUTATION
L - Set if data limiting has occurred during parallel move
N - Set If bit 47 of A or B result Is set
Z - Set if bits 47-24 of A or B result are zero
V - Always cleared
C - Set if bit 47 of A or B was set prior to instruction execution

Instruction Format:
ROL D

Opcode:

23 8 7

DATA BUS MOVE FIELD I 0 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:
o d
A 0
B

Timing: 2+mv oscillator clock cycles

Memory: 1 +mv program words

4 3

1 I d

o

ROR Rotate Right ROR

47 24

Operation: c: c~ I-----·-b (parallel move)

Assembler Syntax: ROR D (parallel move)

Description: Rotate bits 47-24 of the destination operand D one bit to the right and
store the result in the destination accumulator. Prior to instruction execution, bit 24 of D
is shifted into the carry bit C, and, prior to instruction execution, the value in the carry bit
C is shifted into bit 47 of the destination accumulator D. This instruction is a 24-bit opera­
tion. The remaining bits of the destination operand D are not affected.

Example:

ROR B1 #$1234,R2 ;rotate B1 right one bit, update R2

Before Execution After Execution

B ~I __ $0_0:_00_00_0_1:2_~_2_~_~ B ~I __ $_O_o:o_o_oo_oo_:~_~_~ __ -,-,

SR 1 _____ $_03_00_---' SRI _____ $0_3_05_~

Explanation of Example: Prior to execution, the 56-bit B accumulator contains the
value $00:000001 :222222. The execution of the ROR B instruction shifts the 24-bit value
in the B1 register one bit to the right, shifting bit 24 into the carry bit C, rotating the carry
bit C into bit 47, and storing the result back in the B1 register.

ROR Rotate Right ROR

Condition Codes:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o I LF I OM I T I ** I 81 I 80 I 11 10 I s I L E I U N Z

.. MR --".*'-~!---- CCR

S - Computed according to the definition in A.S CONDITION CODE COMPUTATION
L - Set if data limiting has occurred during parallel move
N - Set if bit 47 of A or B result is set
Z - Set if bits 47-24 of A or B result are zero
V - Always cleared
C - Set if bit 24 of A or B was set prior to instruction execution.

Instruction Format:
ROR D

Opcode:

23 8 7

DATA BUS MOVE FIELD 1 0 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:
o d
A 0
B

Timing: 2+mv oscillator clock cycles

Memory: 1 +mv program words

4 3

o Id
o

RTI Return from Interrupt RTI

Operation: Assembler Syntax:
SSH ~ PC; SSL ~ SR; SP-1 ~ SP RTI

Description: Pull the program counter (PC) and the status register (SR) from the system
stack. The previous program counter and status register are lost.

Restrictions: Due to pipelining in the program controller and the fact that the RTI
instruction accesses certain program controller registers, the RTI instruction must not be
immediately preceded by any of the following instructions:

Imm~dlately before RTI MOVEC to SR, SSH, SSL, or SP
MOVEM to SR, SSH, SSL, or SP
MOVEP to SR, SSH, SSL, or SP
MOVEC from SSH
MOVEM from SSH
MOVEP from SSH
ANDI MR or ANDI CCR
ORI MR or ORI CCR

An RTI instruction cannot be the last instruction in a DO loop (at LA).

An RTI instruction cannot be repeated using the REP instruction.

Example:

RTI ;pull PC and SR from system stack

Explanation of Example: The RTI instruction pulls the 16-bit program counter (PC) and
the 16-bit status register (SR) from the system stack and updates the system stack
pointer (SP).

RTI Return from Interrupt

Condition Codes:

15 14 13 12 11 10 9 8 7 6 5 4 Il. I OM I T I·· I 81 I 80 I 11 I 10 I s I l I E I u
~ MR • I11III(CCR

S - Set according to the value pulled from the stack
L - Set according to the value pulled from the stack
E - Set according to the value pulled from the stack
U - Set according to the value pulled from the stack
N - Set according to the value pulled from the stack
Z - Set according to the value pulled from the stack
V - Set according to the value pulled from the stack
C - Set according to the value pulled from the stack

Instruction Format:
RTI

Opcode:

23 16 15 8 7

10 0 0 0 0 0 0 0100 0 0 0 00 0\ 0

Instruction Fields:
None

Timing: 4+rx oscillator clock cycles

Memory: 1 program word

RTI

3 2 o
N I z v

o
o 0 0 0 1 0 01

RTS Return from Subroutine RTS

Operation: Assembler Syntax:
SSH -+ PC; SP-1 -+ SP RTS

Description: Pull the program counter (PC) from the system stack. The previous pro­
gram counter is lost. The status register (SR) is not affected.

Restrictions: Due to pipelining in the program controller and the fact that the RTS
instruction accesses certain controller registers, the RTS instruction must not be immedi­
ately preceded by any of the following instructions:

Immediately before RTS MOVEC to SSH, SSL, or SP
MOVEM to SSH, SSL, or SP
MOVEP to SSH, SSL, or SP
MOVEC from SSH
MOVEM from SSH
MOVEP from SSH

An RTS instruction cannot be the last instruction in a DO loop (at LA).

An RTS instruction cannot be repeated using the REP instruction.

Example:

RTS ;pull PC from system stack

Explanation of Example: The RTS instruction pulls the 16-bit program counter (PC)
from the system stack and updates the system stack pointer (SP).

Condition Codes:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

1 LF 10M 1 T 1** 1 81 1 80 1 11 1 10 1 8 I LIE I u I N I z v I :.1
.~ MR •. l1li(CCR _.

The condition codes are not affected by this instruction.

RTS Return from Subroutine

Instruction Format:
RTI

Opcode:

23 16 15

10 0 0 0 0 0 0 0100 0 0

Instruction Fields:
None

Timing: 4+rx oscillator clock cycles

Memory: 1 program word

8 7

o 0 0 0 I 0

RTS

o
o 0 0 1· 1001

SBC Subtract Long with Carry sec

Operation: Assembler Syntax:
o-s-c -+ 0 (parallel move) SBC S,D (parallel move)

Description: Subtract the source operand S and the carry bit C of the condition code
register from the destination operand D and store the result in the destination accumula­
tor. Long words (48 bits) may be subtracted from the (56-bit) destination accumulator.

Note: The carry bit is set correctly for multiple-precision arithmetic using long-word oper­
ands if the extension register of the destination accumulator (A2 or B2) is the sign exten­
sion of bit 47 of the destination accumulator (A or B).

Example:

MOVE L:<$O,X
MOVE L:<$1 ,A
MOVE L:<$2,Y
SUB X,A L:<$3,B
SBC YB A10,L:<$4
MOVE B10,L:<$5

Before Execution

AI $00:000000:000000

xl $800000:000000

BI $00:000000:000003

vi $000000 :000001

;get a 48-bit LS long-word operand in X
;get other LS long word in A (sign ext.)
;get a 48-bit MS long-word operand in Y
;sub. LS words; get other MS word in B
;sub. MS words with carry; save LS dif.
;save MS difference

After Execution

AI $00:800000:000000

xl $800000:000000

BI $00:000000:000001

vi $000000:000001

/

sec Subtract Long with Carry sec

Explanation of Example: This example illustrates long-word double-precision (96-bit)
subtraction using the SBe instruction. Prior to execution of the SUB and SBe instruc­
tions, the 96-bit value $000000:000001 :800000:000000 is loaded into the Y and X regis­
ters (X:y) , respectively. The other double-precision 96-bit value
$000000:000003:000000:000000 is loaded into the B and A accumulators (B:A), respec­
tively. Since the 48-bit value loaded into the A accumulator is automatically sign
extended to 56 bits and the other 48-bit long-word operand is internally sign extended to
56 bits during instruction execution, the carry bit will be set correctly after the execution
of the SUB X,A instruction. The SBe Y,B instruction then produces the correct MS 56-bit
result. The actual 96-bit result is stored in memory using the A10 and B10 operands
(instead of A and B) because shifting and limiting is not desired.

SBC Subtract Long with Carry SBC

Condition Codes:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I: I OM I T I·· JR S1 I so I 11 I '~ 1 .. 9 I LIE I U JR N I z I v I : 1
S - Computed according to the definition in A.5 CONDITION CODE COMPUTATION
L - Set if limiting (parallel move) or overflow has occurred in result
E - Set if the signed integer portion of A or B result is in use
U - Set if A or B result is unnormalized
N - Set if bit 55 of A or B result is set
Z - Set if A or B result equals zero

'V - Set if overflow has occurred in A or B result
C - Set if a carry (or borrow) occurs from bit 55 of A or B result

Note: The definitions of the E and U bits vary according to the scaling mode being used.
Refer to Section A.5 CONDITION CODE COMPUTATION for complete details.

sec

Instruction Format:
SBe S,D

Opcode:

23

Instruction Fields:
S,D Jd

X,A 00
X,B 01
V,A 1 0
V,B 11

Subtract Long with Carry

8 7

DATA BUS MOVE FIELD I 0 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Timing: 2+mv oscillator clock cycles

Memory: 1 +mv program words

sec

4 3 o
J I d o 1

STOP Stop Instruction Processing STOP,

Operation: Assembler Syntax:
Enter the stop processing state and STOP

stop the clock oscillator

Description: Enter the STOP processing state. All activity in the processor is suspended
until the RESET or IRQA pin is asserted. The clock oscillator is gated off internally. The
STOP processing state is a low-power standby state.

During the STOP state, port A is in an idle state with the control signals held inactive (Le.,
RD=WR=Vcc etc.), the data pins (DO-D23) are high impedance, and the address pins
(A 1-A 15) are unchanged from the previous instruction. If the bus grant was asserted
when the STOP instruction was executed, port A will remain three-stated until the DSP
exits the STOP state.

If the exit from the STOP state was caused by a low level on the RESET pin, then the
processor will enter the reset processing state. The time to recover from the STOP state
using RESET will depend on the oscillator used. Consult the DSP56001 Advance Infor­
mation Data Sheet (ADI1290) for details.

If the exit from the STOP state was caused by a low level on the IRQA pin, then the pro­
cessor will service the highest priority pending interrupt and will not service the IRQA
interrupt unless it is highest priority. The interrupt will be serviced after an internal delay
counter counts 65,536 clock cycles (or a three clock cycle delay if the stop delay bit in
the OMR is set to one) plus 17T (see the DSP56001 Technical Data Sheet (ADI1290) for
details). During this clock stabilization count delay, all peripherals and external interrupts
are cleared and re-enabled/arbitrated at the start of the 17T period following the count
interval. The processor will resume program execution at the instruction following the
STOP instruction that caused the entry into the STOP state after the interrupt has been
serviced or, if no interrupt was pending, immediately after the delay count plus 17T. If the
IRQA pin is asserted when the STOP instruction is executed, the clock will not be gated
off, and the internal delay counter will be started.

STOP Stop Instruction Processing

Restrictions:
A STOP instruction cannot be used in a fast interrupt routine.

A STOP instruction cannot be the last instruction in a DO loop (Le., at LA).

A STOP instruction cannot be repeated using the REP instruction.

Example:

STOP ;enter low-power standby mode

STOP

Explanation of Example: The STOP instruction suspends all processor activity until the
processor is reset or interrupted as previously described. The STOP instruction puts the
processor in a low-power standby state.

Condition Codes:

15 14 13 12 11 10 9 8 7 6 5 4 I LF I DM I T I" I 81 I 80 I 11 I 10 I 8 I L E I u
CCR

The condition codes are not affected by this instruction.

Instruction Format:
STOP

Opcode:

23 16 15 8 7

10 0 0 0 0 0 0 0100 0 0 0 00 011

Instruction Fields:
None

3 2 o
N I z

o
o 0 O' 0 1 1 1 I

Timing: The STOP instruction disables the internal clock oscillator and internal distribu­
tion of the external clock.

Memory: 1 program word

SUB Subtract SUB

Operation: Assembler Syntax:
O-S -4 D (parallel move) SUB S,D (parallel move)

Description: Subtract the source operand S from the destination operand 0 and store
the result in the destination operand O. Words (24 bits), long words (48 bits), and accu­
mulators (56 bits) may be subtracted from the destination accumulator.

Note: The carry bit is set correctly using word or long-word source operands if the exten­
sion register of the destination accumulator (A2 or B2) is the sign extension of bit 47 of the
destination accumulator (A or B). The carry bit is always set correctly using accumulator
source operands.

Example:

SUB X1 ,A X:(R2)+N2,RO ;24.;bit subtract, load RO, update R2

Before Execution After Execution

Xi 1~ _________ $_OO_O_OO_3 __ ~ Xii ~ _________ $_O_OO_OO_3 __ ~

A 1~ ___ $_OO_:O_OO_05_8_:24_2_42_4 __ --' A~I ____ $_OO_:O_OO_05_5_:24_2_42_4 __ ~

Explanation of Example: Prior to execution, the 24-bit X1 register contains the value
$000003, and the 56-bit A accumulator contains the value $00:000058:242424. The
SUB instruction automatically appends the 24-bit value in the X1 register with 24 LS
zeros, sign extends the resulting 48-bit long word to 56 bits, and subtracts the result from
the 56-bit A accumulator. Thus, 24-bit operands are subtracted from the MSP portion of
A or B (A 1 or B1) because all arithmetic instructions assume a fractional, twos comple­
ment data representation. Note that 24-bit operands can be subtracted from the LSP por­
tion of A or B (AO or BO) by loading the 24-bit operand into XO or YO, forming a 48-bit
word by loading X1 or Y1 with the sign extension of XO or YO, and executing a SUB X,A
or SUB Y,A instruction.

SUB Subtract SUB

Condition Codes:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 I: I OM I T I ** JR 51 I SO I 11 I '~ I: I LIE I U ClR N I z I v I ~ I
S - Computed according to the definition in A.5 CONDITION CODE COMPUTATION
L - Set if limiting (parallel move) or overflow has occurred in result
E - Set if the signed integer portion of A or B result is in use
U - Set if A or B result is unnormalized
N - Set if bit 55 of A or B result is set
Z - Set if A or B result equals zero
V - Set if overflow has occurred in A or B result
C - Set if a carry (or borrow) occurs from bit 55 of A or B result

Note: The definitions of the E and U bits vary according to the scaling mode being used.
Refer to Section A.5 CONDITION CODE COMPUTATION for complete details.

Instruction Format:
SUB S,D

Opcode:

23 8 7 4 3

DATA BUS MOVE FIELD I 0 J J J I d

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:
S,D J J J d

B,A 001 0
A,B 001 1
X,A 01 00
X,B 0 1 01
V,A 01 1 0
V,B 0 1 1 1

S,D J J J d

XO,A 1 000
XO,B 1 001
VO,A 1 010
VO,B 1 0 1 1
X1,A 1 100
X1,B 1 1 0 1

Timing: 2+mv oscillator clock cycles

Memory: 1 +mv program words

S,D J J J d

V1,A 1 1 1 0
V1,B 1 1 1 1

o
o 0

SUBL Shift Left and Subtract Accumulators SUBL

Operation: Assembler Syntax:
2* O-S 0 (parallel move) SUBL SO (parallel move)

Description: Subtract the source operand S from two times the destination operand 0
and store the result in the destination accumulator. The destination operand 0 is arith­
metically shifted one bit to the left, and a zero is shifted into the LS bit of 0 prior to the
subtraction operation. The carry bit is set correctly if the source operand does not over­
flow as a result of the left shift operation. The overflow bit may be set as a result of either
the shifting or subtraction operation (or both). This instruction is useful for efficient divide
and decimation in time (OIT) FFT algorithms.

Example:

SUBL A,B Y:(R5+N5),R7 ;2*B-A B, load R7, no R5 update

Before Execution After Execution

AI $00:004000:000000 AI $00:004000:000000

BI $00:005000:000000 BI $00:006000:000000

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the
value $00:004000:000000, and the 56-bit B accumulator contains the value
$00:005000:000000. The SUBL A,B instruction subtracts the value in the A accumulator
from two times the value in the B accumulator and stores the 56-bit result in the B accu­
mulator.

SUBL Shift Left and Subtract Accumulators SUBL

Condition Codes:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 I LF I OM I T I·· I S1 I SO I 11 I 10 I s I L I E I u I N I z
~ MR ~~ CCR

S_- Computed according to the definition in A.5 CONDITION CODE COMPUTATION
L - Set if limiting (parallel move) or overflow has occurred in result
E - Set if the signed integer portion of A or B result is in use
U - Set if A or B result is unnormalized
N - Set if bit 55 of A or B result is set
Z - Set if A or B result equals zero
V - Set if overflow has occurred in A or B result or if the MS bit of the destination

operand is changed as a result of the instruction's left shift
C - Set if a carry (or borrow) occurs from bit 55 of A or B result

Note: The definitions of the E and U bits vary according to the scaling mode being used.
Refer to Section A.5 CONDITION CODE COMPUTATION for complete details.

Instruction Format:
SUBL S,D

Opcode:

23 8 7 4 3

DATA BUS MOVE FIELD I 0 0 o 1 I d

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:
S,D d

B,A 0
A,B

Timing: 2+mv oscillator clock cycles

Memory: 1 +mv program words

o
o

SUBR Shift Right and Subtract Accumulators SUBR

Operation: Assembler Syntax:
0/2-S ~ D (parallel move) SUBR S,D (parallel move)

Description: Subtract the source operand S from one-half the destination operand 0
and store the result in the destination accumulator. The destination operand 0 is arith­
metically shifted one bit to the right while the MS bit of 0 is held constant prior to the sub­
traction operation. In contrast to the SUBL instruction, the carry bit is always set
correctly, and the overflow bit can only be set by the subtraction operation, and not byan
overflow due to the initial shifting operation. This instruction is useful for efficient divide
and decimation in time (DIT) FFT algorithms.

Example:

SUBR B,A N5,Y:-(R5) ;Al2-B ~ A, update R5, save N5

Before Execution After Execution

A~I ____ $8_0_:00_o_00_0:2_4_68_A_C __ ~ A~I ____ $_co_:o_oo_oo_o_:oo_o_oo_o __ ~

B~I ____ $_oo_:o_oo_OO_O_:12_3_45_6 __ ~ B~I ____ $_oo_:o_oo_OO_O_:12_3_45_6 __ ~

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the
value $80:000000:2468AC, and the 56-bit B accumulator contains the value
$00:000000:123456. The SUBR B,A instruction subtracts the value in the B accumulator
from one-half the value in the A accumulator and stores the 56-bit result in the A accu­
mulator.

SUBR Shift Right and Subtract Accumulators SUBR

Condition Codes:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o I LF I DM I T I ** I S1 I SO I 11 I 10 I s I L E I u N I z
CCR

S - Computed according to the definition in A.5 CONDITION CODE COMPUTATION
L - Set if limiting (parallel move) or overflow has occurred in result
E - Set if the signed integer portion of A or B result is in use
U - Set if A or B result is unnormalized
N - Set if bit 55 of A or B result is set
Z -Set if A or B result equals zero
V - Set if overflow has occurred in A or B result
C - Set if a carry (or borrow) occurs from bit 55 of A or B result

Note: The definitions of the E and U bits vary according to the scaling mode being used.
Refer to Section A.5 CONDITION CODE COMPUTATION for complete details.

Instruction Format:
SUBR S,D

Opcode:

23 8 7 4 3

DATA BUS MOVE FIELD I 0 0 o 0 J d

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:
S,D d

B,A 0
A,B

Timing: 2+mv oscillator clock cycles

Memory: 1 +mv program words

o
o

SWI Software Interrupt SWI

Operation: Assembler Syntax:
Begin SWI exception processing SWI

Description: Suspend normal instruction execution and begin SWI exception process­
ing. The interrupt priority level (11,10) is set to 3 in the status register (SR) if a long inter­
rupt service routine is used.

Restrictions:
An SWI instruction cannot be used in a fast interrupt routine.

An SWI instruction cannot be repeated using the REP instruction.

Example:

SWI ;begin SWI exception processing

Explanation of Example: The SWI instruction suspends normal instruction execution
and initiates SWI exception processing.

SWI Software Interrupt

Condition Codes:

15 14 13 12 11 10 9 8 7 6 5 4

I"F I DM I T I" I 81 I 80 I 11 10 I 8 I l E I u
~ MR --".*,-~I--

The condition codes are not affected by this instruction.

Instruction Format:
SWI

Opcode:

CCR

23 16 15 8 7

10 0 0 0 0 0 0 0100 0 0

Instruction Fields:
None

Timing: 8 oscillator clock cycles

Memory: 1 program word

o 0 0 0 I 0

SWI

3 2 o
N I z

o
o 0 0 0 1 1 01

-

-

Tee Transfer Conditionally Tee

Operation: Assembler Syntax:
If cc, then S1 ~ 01 Tcc S1,01

If cc, then S1 ~ 01 and S2 ~ 02 Tcc S1 ,01 S2,02

Description: Transfer data from the specified source register S1 to the specified desti­

nation accumulator 01 if the specified condition is true. If a second source register S2
and a second destination register 02 are also specified, transfer data from address reg­
ister S2 to address register 02 if the specified condition is true. If the specified condition
is false, a NOP is executed. The term "cc" may specify the following conditions:"

CC (HS)
CS (LO)
EC
EQ
ES
GE
GT
LC
LE
LS
LT
MI
NE
NR
PL
NN

where

"cc" Mnemonic
- carry clear (higher or same)
- carry set (lower)
- extension clear
- equal
- extension set
- greater than or equal
- greater than
-limit clear
- less than or equal
-limit set
-less than
- minus
- not equal
- normalized
-plus
- not normalized

o denotes the logical complement of U,
+ denotes the logical OR operator,
- denotes the logical ANO operator, and
EB denotes the logical Exclusive OR operator

Condition
C=O
C=1
E=O
Z=1
E=1
N E9 V=O
Z+(N E9 V)=O
L=O
Z+(N EB V)=1
L=1
N E9 V=1
N=1
Z=O
Z+(O'-E)=1
N=O
Z+(O-E)=0

When used after the CMP or CMPM instructions, the Tcc instruction can perform many

useful functions such as a "maximum value," "minimum value," "maximum absolute
value," or "minimum absolute value" function. The desired value is stored in the destina-

Tee Transfer Conditionally Tee

tion accumulator D1 . If address register S2 is used as an address pointer into an array of
data, the address of the desired value is stored in the address register D2. The Tec
instruction may be used after any instruction and allows efficient searching and sorting
algorith ms.

The Tcc instruction uses t~e internal data ALU paths and internal address ALU paths.
The Tce instruction does not affect the condition code bits.

Note: This instruction is considered to be a move-type instruction. Due to instruction
pipelining, if an AGU register (Mn, Nn, or Rn) is directly changed with this instruction, the
new contents may not be available for use until the second following instruction. See the
restrictions discussed in A9.6 - R, N, and M Register Restrictions on page A-31 O.

Example:

CMP XO,A
TGT XO,A RO,R1

;compare XO and A (sort for minimum)
;transfer XO -. A and RO -. R1 if XO<A

Explanation of Example: In this example, the contents of the 24-bit XO register are
transferred to the 56-bit A accumulator, and the contents of the 16-bit RO address regis­
ter are transferred to the 16-bit R1 address register if the specified condition is true. If the
specified condition is not true, a NOP is executed.

Condition Codes:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o I LF I DM I T I ** I S1 I SO I 11 I 10 I s I L I E I u N I z
~ MR ~ ~ CCR

The condition codes are not affected by this instruction.

Tee Transfer Conditionally Tee

Instruction Format:
Tcc S1,01

.Opcode:

23 16 15 8 7 0

10 0 o 0 0 0 1 ole c c c 0 0 0 01 0 J J J 000 01

Instruction Fields:
cc=4=bit condition code=CCCC

81,D1 J J J D Mnemonic CCCC Mnemonic CCCC
B,A 0 0 0 0 CC (HS) o 000 CS (LO) 0 o 0
A,B 0 0 0 1 GE o 0 0 1 LT 0 o 1
XO,A 1 0 0 0 NE 001 0 EQ 0 1 0
XO,B 1 0 0 1 PL o 0 1 1 MI 0 1 1
X1,A 1 1 0 0 NN o 1 0 0 NR 1 o 0
X1,B 1 1 0 1 EC o 1 0 1 ES 1 o 1
YO,A 1 0 1 0 LC o 1 1 0 LS 1 1 0
YO,B 1 0 1 1 GT o 1 1 1 LE 1 1 1
Y1,A 1 1 1 0
Y1,B 1 1 1 1

Timing: 2 oscillator clock cycles

Memory: 1 program word

Tee Transfer Conditionally Tee

Instruction Format:
Tcc S1,D1 S2,02

Opcode:
23 16 15 870

10 0 0 0 0 0 1 11c c C COt t

Instruction Fields:
cc=4=bit condition code=CCCC

81,01 J J J 0 82 t t t Mnemonic C C C C
B,A 0 0 0 0 Rn n n n CC (HS) 0 0 0 0
A,B 0 0 0 1 GE 0 0 0 1
XO,A 1 0 0 0 NE 0 0 1 0
XO,B 1 0 0 1 PL 0 0 1 1
X1,A 1 1 0 0 02 T T T NN 0 1 0 0
X1,B 1 1 0 1 Rn n n n EC 0 1 0 1
VO,A 1 0 1 0 LC 0 1 1 0
VO,B 1 0 1 1 GT 0 1 1 1
V1,A 1 1 1 0
V1,B 1 1 1 1

where "nnn"=Rn number (RO-R?)

Timing: 2 oscillator clock cycles

Memory: 1 program word

Mnemonic
CS (LO)
LT
EQ
MI
NR
ES
LS
LE

ecce
1 0 o 0
1 0 o 1
1 0 1 0
1 0 1 1
1 1 o 0
1 1 o 1
1 1 1 0
1 1 1 1

TFR Transfer Data ALU Register TFR

Operation: . Assembler Syntax:
S4D (parallel move) TFR S,D (parallel move)

Description: Transfer data from the specified source data ALU register S to the speci­
fied destination data ALU accumulator D. TFR uses the internal data ALU data paths;
thus, data does not pass through the data shifter/limiters. This allows the full 56-bit con­
tents of one of the accumulators to be transferred into the other accumulator without
data shifting and/or limiting. Moreover, since TFR uses the internal data ALU data paths,
parallel moves are possible. The TFR instruction only affects the L condition code bit
which can be set by data limiting associated with the instruction's parallel move opera­
tions.

Example:

TFR A,B A,X1 Y:(R4+N4),YO ;move A to B and X 1 , update YO

Before Execution After Execution

A~I ___ $_O_1:2_3_45_67_:8_9A_B_C_D __ ~ A~I ____ $O_1:_23_45_67_:8_9_AB_C_D __ ~

B ~I ___ $_FF_:F_F_FF_F_F:F_F_FF_F_F __ ~ B~I ____ $O_1:_23_45_67_:8_9_AB_C_D __ ~

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the
value $01 :234567:89ABCD, and the 56-bit B accumulator contains the value
$ff:FFFFFF:FFFFFF. The execution of the TFR A,B instruction moves the 56-bit value in
the A accumulator into the 56-bit B accumulator using the internal data ALU data paths
without any data shifting and/or limiting. The value in the B accumulator would have
been limited if a MOVE A,B instruction had been used. Note, however, that the parallel
move portion of the TFR instruction does use the data shifter/limiters. Thus, the value
stored in the 24-bit X1 register (not shown) would have been limited in this example.
This example illustrates a triple move instruction.

TFR Transfer Data ALU Register TFR

Condition Codes:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 I: I OM I T I ** J:' I so I 11 I : I .. s I LIE I U clR N I z I v I :1
S - Computed according to the definition in A.S CONDITION CODE COMPUTATION
L - Set if data limiting has occurred during parallel move

Instruction Format:
TFR S,D

Opcode:

23 8 7 4 3 o
DATA BUS MOVE FIELD I 0 J J J I d 001

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:

S,D J J J D
B,A 0 0 o 0
A;B 0 0 o 1
XO,A 1 0 o 0
XO,B 1 0 o 1
X1,A 1 1 o 0
X1,B 1 1 o 1
YO,A 1 0 1 0
YO,B 1 0 1 1
Y1,A 1 1 1 0
Y1,B 1 1 1 1

Timing: 2+mv oscillator clock cycles

Memory: 1 +mv program words -

-

TST Test Accumulator TST

Operation: Assembler Syntax:
, s-o (parallel move) TST S (parallel move)

Description: Compare the specified source accumulator S with zero and set the condi­
tion codes accordingly. No result is stored although the condition codes are updated.

Example:

TST A #$345678,B ;set CCR bits for value in A, update B

Before Execution After Execution

AI
~--------------~

$01 :020304:000000 A~I ____ $0_1_:02_0_30_4:_00_00_00 __ ~

CCR 1-1 __________ $0_3_00 __ ----' CCRI~ __________ $0_33_0 __ ~

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the
value $01 :020304:000000, and the 16-bit condition code register contains the value
$0300. The execution of the TST A instruction compares the value in the A register with
zero and updates the condition code register accordingly. The contents of the A accumu­
lator are not affected.

Condition Codes:

15 14 13 12 11 -10 9 8 7 6 5 4 3 2 0

I LF I OM I T I ** I 81 I 80 I 11 I 10 I 8 I LIE I U N I z I v I : I
.... MR CCR _.

S - Computed according to the definition in A.5 CONDITION CODE COMPUTATION
L - Set if data limiting has occurred during parallel move
E - Set if the signed integer portion of A or B result is in use
U - Set if A or B result is unnormalized
N - Set if bit 55 of A or B result is set
Z - Set if A or B result equals zero
V - Always cleared

Note: The definitions of the E and U bits vary according to the scaling mode being used.
Refer to Section A.5 CONDITION CODE COMPUTATION for complete details.

TST Test Accumulator

Instruction Format:
TST S

Opcode:

23 8 7 4 3

DATA BUS MOVE FIELD too o 0 I d

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Fields:
S d

A 0
B

Timing: 2+mv oscillator clock cycles

Memory: 1 +mv program words

TST

o
o

WAIT Wait for Interrupt WAIT

Operation:
Disable clocks to the processor core and

enter the WAIT processing state.

Assembler Syntax:
WAIT

Description: Enter the WAIT processing state. The internal clocks to the processor core
and memories are gated off, and all activity in the processor is suspended until an
unmasked interrupt occurs. The clock oscillator and the internal I/O peripheral clocks
remain active. If WAIT is executed when an interrupt is pending, the interrupt will be pro­
cessed; the effect will be the same as if the processor never entered the WAIT state and
three NOPs followed the WAIT instruction. When an unmasked interrupt or external
(hardware) processor RESET occurs, the processor leaves the WAIT state and be,gins
exception processing of the unmasked interrupt or RESET condition. The BRlBG circuits
remain active during the WAIT state. The WAIT state is a low-power standby state. The
processor always leaves the WAIT state in the T2 clock phase (see the DSP56001
Advance Information Data Sheet (ADI1290)). Therefore, multiple processors may be
synchronized by having them all enter the WAIT state and then interrupting them with a
common interrupt.

Restrictions: A WAIT instruction cannot be used in a fast interrupt routine.

A WAIT instruction cannot be the last instruction in a DO loop (at LA).

A WAIT instruction cannot be repeated using the REP instruction.

Example:

WAIT ;enter low power mode, wait for interrupt

Explanation of Example: The WAIT instruction suspends normal instruction execution
and waits for an unmasked interrupt or external RESET to occur.

WAIT Wait for Interrupt WAIT

Condition Codes:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o I LF I OM I T I ** I S1 I SO I 11 I 10 I s I L E I u N I z
GGR

The condition codes are not affected by this instruction.

Instruction Format:
WAIT

Opcode:
23 16 15 870

10 0 0 0 0 0 0 0100 0 0 0 00 01100001101

Instruction Fields:
None

Timing: The WAIT instruction takes a minimum of 16 cycles to execute when an internal
interrupt is pending during the execution of the WAIT instruction

Memory: 1 program word

-

-

A.a INSTRUCTION TIMING
This section describes how to calculate DSP56K instruction timing manually using the
tables provided. Three complete examples illustrate the "layered" nature of the tables.

Alternatively, the user can determine the number of instruction program words and the
number of oscillator clock cycles required for a given instruction by using the DSP56K
simulator. This method of determining instruction timing information is much faster and
much simpler than using the tables. This powerful software package is available for the
IBM*1M PC and SUN workstation.

• Table A-6 gives the number of instruction program words and the number of oscillator
clock cycles for each instruction mnemonic.

• Table A-7 gives the number of additional (if any) instruction words and additional (if
any) clock cycles for each type of parallel move operation.

• Table A-a gives the number of additional (if any) clock cycles for each type of
MOVEC operation.

• Table A-9 gives the number of additional (if any) clock cycles for each type of
MOVEP operation ..

• Table A-10 gives the number of additional (if any) clock cycles for each type of bit
manipulation (BCHG, BClR, BSET, and BTST) operation.

• Table A-11 gives the number of additional (if any) clock cycles for each type of jump
(Jcc, JClR, JMP, JScc, JSClR, JSET, JSR, and JSSET) operation.

• Table A-12 gives the number of additional (if any) clock cycles for the RTI and RTS
instructions.

• Table A-13 gives the number of additional (if any) instruction words and additional (if
any) clock cycles for each effective addressing mode.

• Table A-14 gives the number of additional (if any) clock cycles for external data,
external program, and external 110 memory accesses.

The number of words per instruction is dependent on the addressing mode and the type
of parallel data bus move operation specified. The symbols used reference subsequent
tables to complete the instruction word count.

The number of oscillator clock cycles per instruction is dependent on many factors,

*IBM is a trademark of International Business Machines.
SUN is a trademark of Sun Microsystems, Inc.

including the number of words per instruction, the addressing mode, whether the instruc­
tion fetch pipe is full or not, the number of external bus accesses, and the number of wait
states inserted in each external access. The symbols used reference subsequent tables
to complete the execution clock cycle count.

All tables are based on the following assumptions:

1. All instruction cycles are counted in oscillator clock cycles.

2. The instruction fetch pipeline is full.

3. There is no contention for instruction fetches. Thus, external program instruc­
tion fetches are assumed not to have to contend with external data memory
accesses.

4. There are no. wait states for instruction fetches done sequentially (as for non­
change-of-flow instructions), but they are taken into account for change-of-flow
instructions which flush the pipeline such as JMP, Jcc, RTI, etc.

To help the user better understand and use the timing tables, the following three exam­
ples illustrate the tables' "layered" nature. (Remember that it is faster and simpler to use
the DSP56K simulator to calculate instruction timing.)

Example 16: Arithmetic Instruction with Two Parallel Moves

Problem: Calculate the number of 24-bit instruction program words and the number of
oscillator clock cycles required for the instruction

where

MACR -XO,XO,A X1,X:(R6)- YO,Y:(RO)+

Operating Mode Register (OMR)
Bus Control Register (BCR)
R6 Address Register
RO Address Register

= $02 (normal expanded memory map),
=$1135,
= $0052 (internal X memory), and
= $0523 (external Y memory).

Solution: To determine the number of instruction program words and the number of
oscillator clock cycles required for the given instruction, the user should perform the fol­
lowing operations:

1. Look up the number of instruction program words and the number of oscillator clock
cycles required for the opcode-operand portion of the instruction in Table A-6.

According to Table A-6, the MACR instruction will require (1 +mv) instruction program
words and will execute in (2+mv) oscillator clock cycles. The term "mv" represents the
additional (if any) instruction program words and the additional (if any) oscillator clock

-

-

cycles that may be required over and above those needed for the basic MACR instruc­
tion due to the parallel move portion of the instruction.

2. Evaluate the "mv" term using Table A-7.

The parallel move portion of the MACR instruction consists of an XV memory move.
According to Table A-7, the parallel move portion of the instruction will require mv=O
additional instruction program words and mv=(ea+axy) additional oscillator clock cycles.
The term "ea" represents the number of additional (if any) oscillator clock cycles that are
required for the effective addressing move specified in the parallel move portion of the
instruction. The term "axy" represents the number of additional (if any) oscillator clock
cycles that are required to access an XV memory operand.

3. Evaluate the "ea" term using Table A-13.

The parallel move portion of the MACR instruction consists of an XV memory move
which uses both address register banks (RO-R3 and R4-R7) in generating the effective
addresses of the XV memory operands. Thus, the two effective address operations
occur in parallel, and the larger of the two "ea" terms should be used. The X memory
move operation uses the "postdecrement by 1" effective addressing mode. According to
Table A-13, this operation will require ea=O additional oscillator clock cycles. The V
memory move operation uses the "postincrement by 1" effective addressing mode.
According to Table A-13, this operation will also require ea=O additional oscillator clock
cycles. Thus, using the maximum value of "ea", the effective addressing modes used in
the parallel move portion of the MACR instruction will require ea=O additional oscillator
clock cycles.

4. Evaluate the "axy" term using Table A-14.

The parallel move portion of the MACR instruction consists of an XV memory move.
According to Table A-14, the term "axy" depends upon where the referenced X and V
memory locations are located in the DSP56K memory space. External memory
accesses require additional oscillator clock cycles according to the number of wait states
programmed into the DSP56K bus control register (SCR). Thus, assuming that the 16-bit
bus control register contains the value $1135, external X memory accesses require wx=1
wait state of additional oscillator clock cycle while external Y memory accesses require
wy=1 wait state or additional oscillator clock cycle. For this example, the X memory refer­
ence is assumed to be an Internal reference; the V memory reference is assumed to be
an external reference. Thus, according to Table A-14, the XV memory reference in the
parallel move portion of the MACR instruction will require axy=wy=1 additional oscillator
clock cycle.

5. Compute final results.

Thus, based upon the assumptions given for Table A-6 and those listed in the problem
statement for Example 1 , the instruction

MACR -XO,XO,A X1,X:(R6)- YO,Y:(RO)+

will require

and will execute in

(1 +mv)
= (1 +0)
= 1

= (2+mv)
= (2+ea+axy)
= (2+ea+wy)

instruction program word

= (2+0+1) oscillator clock cycles.
3

Note that if a similar calculation were to be made for a MOVEC, MOVEM, MOVEP, or
one of the bit manipulation (BCHG, BClR, BSET, or BTST) instructions, the use of Table
A-7 would no longer be appropriate. For one of these cases, the user would refer to
Table A-a, Table A-9, or Table A-1 0, respectively.

Example 17: Jump Instruction

Problem: Calculate the number of 24-bit instruction program words and the number of
oscillator clock cycles required for the instruction

JlC (R2+N2)

where Operating Mode Register (OMR)
Bus Control Register (BCR)
R2 Address Register
N2 Address Register

= $02 (normal expanded memory map),
= $2246,
= $1000 (external P memory), and
= $0037.

Solution: To determine the number of instruction program words and the number of
oscillator clock cycles required for the given instruction, the user should perform the fol­
lowing operations:

1. look up the number of instruction program words and the number of oscillator clock
cycles required for the opcode-operand portion of the instruction in Table A-6.

According to Table A-6, the Jcc instruction will require (1 +ea) instruction program words
and will execute in (4+jx) oscillator clock cycles. The term "ea" represents the number of

-

-

additional (if any) instruction program words that are required for the effective address of
the Jcc instruction. The term "jx" represents the number of additional (if any) oscillator
clock cycles required for a jump-type instruction.

2. Evaluate the "jx" term using Table A-11.

According to Table A-11, the Jcc instruction will require jx=ea+(2 * ap) additional oscilla­
tor clock cycles. The term "ea" represents the number of additional (if any) oscillator
clock cycles that are required for the effective addressing mode specified in the Jcc
instruction. The term "ap" represents the number of additional (if any) oscillator clock
cycles that are required to access a P memory operand. Note that the "+(2 * ap)" term
represents the two program memory instruction fetches executed at the end of a one­
word jump instruction to refill the instruction pipeline.

3. Evaluate the "ea" term using Table A-13.

The JLC (R2+N2) instruction uses the "indexed by offset Nn" effective addressing mode.
According to Table A-13, this operation will require ea=O additional instruction program
words and ea=2 additional oscillator clock cycles.

4. Evaluate the "ap" term using Table A-14.

According to Table A-14, the term "ap" depends upon where the referenced P memory
location is located in the DSP56K memory space. External memory accesses require
additional oscillator clock cycles according to the number of wait states programmed into
the DSP56K bus control register (8CR). Thus, assuming that the 16-bit bus control regis­
ter contains the value $2246, external P memory accesses require wp=4 wait states or
additional oscillator clock cycles. For this example, the P memory reference is assumed
to be an external reference. Thus, according to Table A-14, the Jcc instruction will use
the value ap=wp=4 oscillator clock cycles.

5. Compute final results.

Thus, based upon the assumptions given for Table A-6 and those listed in the problem
statement for Example 2, the instruction

will require

and will execute in

JLC (R2+N2)

= (1 +ea)
= (1 +0)
= 1

= (4+jx)

instruction program word

= (4+ea+(2 * ap»
= (4+ea+(2 * wp»
= (4+2+(2 * 4» oscillator clock cycles.
= 14

Example 18: RTll!lstruction

problem: Calculate the number of 24-bit instruction program words and the number of
oscillator clock cycles required for the instruction

where

RTI

Operating Mode Register (OMR)
Sus Control Register (SCR)
Return Address (on the stack)

= 02 (normal expanded memory map),
= $0012, and,
= $0100 (internal P memory).

Solution: To determine the number of instruction program words and the number of
oscillator clock cycles required for the given instruction, the user should perform the fol­
lowing operations:

1. Look up the number of instruction program words and the number of oscillator clock
cycles required for the opcode-operand portion of the instruction in Table A-6.

According to Table A-6, the RTI instruction will require one instruction program word and
will execute in (4+rx) oscillator clock cycles. The term "rx" represents the number of addi­
tional (if any) oscillator clock cycles required for an RTI or RTS instruction.

2. Evaluate the "rx" term using Table A-12.

According to Table A-12, the RTI instruction will require rx=(2 * ap) additional oscillator
clock cycles. The term "ap" represents the number of additional (if any) oscillator clock
cycles that are required to access a P memory operand. Note that the term "(2 * ap)" rep­
resents the two program memory instruction fetches executed at the end of an RTI or
RTS instruction to refill the instruction pipeline.

-

-

3. Evaluate the "ap" term using Table A-14.

According to Table A-14, the term "ap" depends upon where the referenced P memory
location is located in the DSP56K memory space. External memory accesses require
additional oscillator clock cycles according to the number of wait states programmed into
the DSP56K bus control register (BCR). Thus, assuming that the 16-bit bus control regis­
ter contains the value $0012, external P memory accesses require wp=1 wait state or
additional oscillator clock cycles. For this example, the P memory reference is assumed
to be an Internal reference. This means that the return address ($0100) pulled from the
system stack by the RTI instruction is in internal P memory. Thus, according to Table A-
14, the RTI instruction will use the value ap=O additional oscillator clock cycles.

4. Compute final results.

Thus, based upon the assumptions given for Table A-6 and those listed in the problem
statement for Example 3, the instruction

will require

and will execute in

RTI

(4+rx)

= (4+(2 * ap»
= (4+(2 * 0»

instruction program word

4 oscillator clock cycles

Table A-6 Instruction Timing Summary (see Note 3)

Instruction Osc. Instruction Osc.
Mnemonic Program Clock Notes Mnemonic Program Clock

Words Cycles Words Cycles

ABS 1 + mv 2+mv lSR 1 + mv 2+ mv
ADC 1 + mv 2+mv LUA 1 4

ADD 1 + mv 2+mv MAC 1 + mv 2+mv

ADDl 1 + mv 2+mv MACR 1 + mv 2+mv

ADDR 1 + mv 2+mv MOVE 1 + mv 2+mv

AND 1 + mv 2+mv MOVEC 1 + ea 2+ mvc

ANDI 1 2 MOVEM 1 + ea 6 + ea+ ap

ASl 1 + mv 2+mv MOVEP 1 + ea 2+ mvp

ASR 1 + mv 2+mv MPY 1 + mv 2+mv

BCHG 1 + ea 4+ mvb MPYR 1 + mv 2+mv

BClR 1 + ea 4+ mvb NEG 1 + mv 2+mv

BSET 1 + ea 4+ mvb NOP 1 2

BTST 1 + ea 4+ mvb NORM 1 2

ClR 1 + mv 2+mv NOT 1 + mv 2+mv

CMP 1 + mv 2+mv OR 1 + mv 2+mv

CMPM 1 +mv 2+mv ORI 1 2

DEBUG 1 4 REP 1 4+mv

DEBUGee 1 4 RESET 1 4

DEC 1 2 RND 1 + mv 2+mv

DIV 1 2 ROl 1 + mv 2+mv

DO 2 6+mv ROR 1 + mv 2+mv

ENDDO 1 2 RTI 1 4+ rx

EOR 1 +mv 2+mv RTS 1 4+ rx

INC 1 2 SBC 1 + mv 2+mv

Jee 1 + ea 4+jx STOP 1 nfa

JClR 2 6+jx SUB 1 + mv 2+mv

JMP 1 + ea 4+jx SUBl 1 + mv 2+mv

JScc 1 + ea 4+jx SUBR 1 + mv 2+mv

JSCLR 2 6+jx SWI 1 8

JSET 2 6+jx Tee 1 2

JSR 1 + ea 4+jx TFR 1 + mv 2+mv

JSSET 2 6+jx TST 1 + mv 2+mv

lSl 1 + mv 2+mv WAIT 1 nfa

Note 1: The STOP instruction disables the intemal clock oscillator. After clock tum on, an internal counter counts
65,536 clock cycles ~f bit 6 in the OMR is clear) before enabling the clock to the internal DSP circuits. If
bit 6 in the OMR is set, only six clock cycles are counted before enabling the clock to the external
DSP circuits.

Note 2: The WAlT instruction takes a minimum of 16 cycles to execute when an internal interrul1 is pending
during the execution of the WAIT instruction.

Note 3: If assumption 4 is not applicable, then to each one-word instruction timing, a "+ap" term should be
added, and, to each two-word instruction, a • +(2*ap)" term should be added to account for the program
memory wait states spent to fetch an instruction word to fill the pipeline.

Notes

1

2 -

-

Table A-7 Parallel Data Move Timing

Parallel Move Operation
+mv +mv

Comments
Words Cycles

No Parallel Data Move 0 0
I Immediate Short Data 0 0

R Register to Register 0 0

U Address Register Update 0 0

X: X Memory Move ea ea+ ax See Note 1

X:R X Memory and Register ea ea+ ax See Note 1

Y: Y Memory Move ea) ea+ ay See Note 1

R:Y Y Memory and Register ea ea+ ay See Note 1

L: Long Memory Move ea ea + axy

X:Y: XV Memory Move 0 ea+ axy

LMS(X) LMS X Memory Moves 0 ea+ ax See Notes 1 ,2

LMSM LMS Y Memory Moves 0 ea+ ay See Notes 1 ,2

Note 1: The ax or ay term does not apply to MOVE IMMEDIATE DATA.
Note 2: The ea term does not apply to ABSOLUTE ADDRESS and IMMEDIATE DATA.

Table A-a MOVEC Timing Summary (see Note 2)

MOVEC Operation
+mvc

Comments
Cycles

Immediate Short 4 Register 0
Register +-+ Register 0

X Memory+-+ Register ea+ax See Note 1

Y MemoryB Register ea + ay See Note 1

P Memory+-+ Register 4+ ea+ ap

Note 1: The ax or ay term does not apply to MOVE IMMEDIATE DATA.
Note 2: If assumption 4 is not applicable, then to each one-word instruction timing, a "+ ap" term should

be added, and to each two-word instruction, a "+ (2 * ap)" term should be added to account for
the program memory wait states spent to fetch an instruction word to fill the pipeline.

Table A-9 MOVEP Timing Summary (see Note 2)

MOVEP Operation +mvp
Comments

Cycles

Register+-+ Peripheral aio See Note 3

Register+-+ Peripheral 2+aio See Note 4
X Memory-0- Peripheral 2 + ea + ax + aio See Note 1

Y Memory+-+ Peripheral 2 + ea + ay + aio See Note 1

P Memory+-+ Peripheral 4 + ea + ap + aio

Note 1: The" 2+ax" or "2+ay" terms do not apply to MOVE IMMEDIATE DATA.
Note 2: If assump:ion 4 is not applicable, then to each one-word instruction timing,a "+ ap" term should be

added, and to each two-word instruction, a "+ (2 * ap)" term should be added to account for the
program memory wait states spent to fetch an instruction word to fill the pipeline.

Note 3: "Register" refers to DATA_ALU register
Note 4: "Register" refers to non DATA_ALU register

Note that the "ap" term in Table A-a and Table A-9 for the P memory move represents
the wait states spent when accessing the program memory during DATA read or write
operations and does not refer to instruction fetches.

Table A-10 Bit Manipulation Timing Summary (see Note 2)

Bit Manipulation Operation
+mvb

Comments
Cycles

Bxxx Peripheral 2 * aio See Note 1

Bxxx X Memory ea + (2 * ax) See Note 1

Bxxx Y Memory ea+ (2 * ay) See Note 1

Bxxx Register Direct 0 See Note 1

BTST Peripheral aio

BTST X Memory ea+ ax

BTST Y Memory ea+ ay

Note 1: Bxxx = BCHG, BCLR, or BSET.
Note 2: If assumliion 4 is not applicable, then to each one-word instruction timing,

a"+ ap" term should be added, and to each two-word instruction, a"+ (2 * ap)"
term should be added to account for the program memory wait states spent to
fetch an instruction word to fill the pipeline.

Table A-11 Jump Instruction Timing Summary

Jump Instruction Operation +Jx
Cycles

Jbit Register Direct 2 * ap
Jbit Peripheral aio + (2 * ap)

JbitXMemory ea+ ax+ (2 * ap)

JbitYMemory ea+ ay+ (2 * ap)

Jxxx

Note 1: Jbit = JCLR, JSCLR, JSET, and JSSET
Note 2: Jxxx = Jcc, JMP, JScc, and JSR

ea + (2 * ap)

Comments

See Note 1
See Note 1

See Note 1

See Note 1

See Note 2

All one-word jump instructions execute TWO program memory fetches to refill the pipe­
line, which is represented by the "+(2 * ap)" term.

All two-word jumps execute THREE program memory fetches to refill the pipeline, but
one of those fetches is sequential (the instruction word located at the jump instruction
2nd word address+ 1), so it is not counted as per assumption 4. If the jump instruction
was fetched from a program memory segment with wait states, another "ap" should be
added to account for that third fetch.

-

Table A-12 RTIIRTS Timing Summary

Operation
+ rx

Cycles

RTI 2 * ap
RTS 2 * ap

The term "2 * ap" comes from the two instruction fetches done by t~e RTI/RTS instruc­

tion to refi II the pipeline.

Table A-13 Addressing Mode Timing Summary

Effective Addressing +ea +ea
Mode Words Cycles

Address Register Indirect
No Update 0 0

Postincrement by 1 0 0

Postdecrement by 1 0 0

Postincrement by Offset Nn 0 0

Postdecrement by Offset Nn 0 0

Indexed by Offset Nn 0 2

Predecrement by 1 0 2

Special

Immediate Data 1 2

Absolute Address 1 2

Immediate Short Data 0 0

Short Jump Address 0 0

Absolute Sort Address 0 0

1/0 Short Address 0 0

Implicit 0 0

Table A-14 Memory Access Timing Summary

Access XMem YMem PMem
Type Access Access Access

X: Int - -
X: Ext - -
Y: - Int -
Y: - Ext -
P: - - Int

P: - - Ext
liD: - - -
liD: - - -
L:XY: Int Int -
L:XY: Int Ext -
L:XY: Ext Int -
L:XY: Ext Ext -

Note 1: wx = external X memory access wait states
wy = external Y memory access wait states
wp = external P memory access wait states
wio = external 110 memory access wait states

I/O +ax +ay +ap
Access Cycle Cycle Cycle

- 0 - -
- wx - -
- - 0 -
- - wy -
- - - 0

- - - wp

Int - - -
Ext - - -
- - - -
- - - -
- - - -
- - - -

+alo
Cycle

-
-
-
-
-
-
0

wio

-
-
-
-

Note 2: wx, wy, wp, and wio are programmable from 0 - 15 wait states in the port A bus control register (BCR).

A.9 INSTRUCTION SEQUENCE RESTRICTIONS

+axy
Cycle

-
-
-
-
-
-
-
-
0

wy

wx

2+wx+wy

Due to the pipelined nature of the DSP56K central processor, there are certain instruc­
tion sequences that are forbidden and will cause undefined operation. Most of these
restricted sequences would cause contention for an internal resource, such as the stack
register. The DSP assembler will flag these as assembly errors.

Most of the following restrictions represent very unusual operations which probably
would never be used but are listed only for completeness.

Note: The DSP56K macro assembler is designed to recognize all restrictions and flag
them as errors at the source code level. Since many of these are instruction sequence
restrictions, they cannot be flagged as errors at the object code level such as when using
the DSP56K simulator's single-line assembler. Therefore, if any changes are made at
the object code level using the simulator, the user should always re-assemble his pro­
gram at the source code level using the DSP56K macro assembler to verify that no
restricted instruction sequences have been generated. -

-

A.9.1 Restrictions Near the End of DO Loops
Proper DO loop operation is not guaranteed if an instruction starting at address LA-2,
LA-1, or LA specifies one of the program controller registers SR, SP, SSL, LA, LC, or
(implicitly) PC as a destination register. Similarly, the SSH register may not be specified
as a source or destination register in an instruction starting at address LA-2, LA-1, or
LA. Additionally, the SSH register cannot be specified as a source register in the DO
instruction itself, and LA cannot be used as a target for jumps to subroutine (Le., JSR,
JScc, JSSET, or JSCLR to LA). The following instructions cannot begin at the indicated
position(s) near the end of a DO loop:

At LA-2, LA-1, and LA

At LA

DO
BCHG LA, LC, SR, SP, SSH, or SSL
BCLR LA, LC, SR, SP, SSH, or SSL
BSET LA, LC, SR, SP, SSH, or SSL
BTSTSSH
JCLRlJSET/JSCLRlJSSET SSH
MOVEC from SSH
MOVEM from SSH
MOVEP from SSH
MOVEC to LA, LC, SR, SP, SSH, or SSL
MOVEM to LA, LC, SR, SP, SSH, or SSL
MOVEP to LA, LC, SR, SP, SSH, or SSL
ANDI MR
ORIMR

any two-word instruction *
Jcc
JMP
JScc
JSR
REP
RESET
RTI
RTS
STOP
WAIT

*This restriction applies to the situation in which the DSP56K simulator's single-line
assembler is used to change the last instruction in a DO loop from a one-word instruc­
tion to a two-word instruction. All changes made using the simulator should be reassem­
bled at the source code level using the DSP56K macro assembler to verify that no
restricted instruction sequences have been generated.

Other Restrictions DO SSH,xxxx
JSR to (LA) whenever the loop flag (LF) is set
JScc to (LA) whenever the loop flag (LF) is set
JSCLR to (LA) whenever the loop flag (LF) is set
JSSET to (LA) whenever the loop flag (LF) is set

Note: Due to pipelining, if an address register (RO-R7, NO-N7, or MO-M7) is changed
using a move-type instruction (LUA, Tcc, MOVE, MOVEC, MOVEM, MOVEP, or parallel
move), the new contents of the destination address register will not be available for use
during the following instruction (Le., there is a single instruction cycle pipeline delay).
This restriction also applies to the situation in which the last instruction in a DO loop
changes an address register and the first instruction at the top of the DO loop uses that
same address register. The top instruction becomes the following instruction because
of the loop construct. The assembler will generate a warning if this condition is detected.

A.9.2 Other DO Restrictions
Due to pipelining, the DO instruction must not be immediately preceded by any of the
following instructions:

Immediately before DO

A.9.3 ENDDO Restrictions

BCHG LA, LC, SSH, SSL, or SP
BCLR LA, LC, SSH, SSL, or SP
BSET LA, LC, SSH, SSL, or SP
MOVEC to LA, LC, SSH, SSL, or SP
MOVEM to LA, LC, SSH, SSL, or SP
MOVEP to LA, LC, SSH, SSL, or SP
MOVEC from SSH
MOVEM from SSH
MOVEP from SSH

Due to pipelining, the ENDDO instruction must not be immediately preceded by any of
the following instructions:

-

Immediately before ENDDO BCHG lA, lC, SR, SSH, SSl, or SP
BClR lA, lC, SR, SSH, SSl, or SP
BSET lA, lC, SR, SSH, SSl, or SP
MOVEC to LA, lC, SR, SSH, SSl, or SP
MOVEM to lA, lC, SR, SSH, SSl, or SP
MOVEP to lA, lC, SR, SSH, SSl, or SP
MOVEC from SSH
MOVEM from SSH
MOVEP from SSH
ANDI MR
ORIMR
REP

A.9.4 RTI and RTS Restrictions
Due to pipelining, the RTI and RTS instructions must not be Immediately preceded by
any of the following instructions:

Immediately before RTI

Immediately before RTS

BCHG SR, SSH, SSl, or SP
BClR SR, SSH, SSl, or SP
BSET SR, SSH, SSl, or SP
MOVEC to SR, SSH, SSl, or SP
MOVEM to SR, SSH, SSl, or SP
MOVEP to SR, SSH, SSl, or SP
MOVEC from SSH
MOVEM from SSH
MOVEP from SSH
ANDI MR or ANDI CCR
ORI MR or ORI CCR

BCHG SSH, SSl, or SP
BClR SSH, SSl, or SP
BSET SSH, SSl, or SP
MOVEC to SSH, SSl, or SP
MOVEM to SSH, SSl, or SP
MOVEP to SSH, SSl, or SP
MOVEC from SSH
MOVEM from SSH
MOVEP from SSH

A.9.S SP and SSH/SSL Manipulation Restrictions
In addition to all the above restrictions concerning MOVEC, MOVEM, MOVEP, SP, SSH,
and SSl, the following MOVEC, MOVEM, and MOVEP restrictions apply:

Immediately before MOVEC from SSH or SSL BCHG to SP
BClR to SP
BSETto SP

Immediately before MOVEM from SSH or SSL BCHG to SP
BClR to SP
BSETto SP

Immediately before MOVEP from SSH or SSL BCHG to SP
BClR to SP
BSETto SP

Immediately before MOVEC from SSH or SSL MOVEC to SP
MOVEM to SP
MOVEP to SP

Immediately before MOVEM from SSH or SSL MOVEC to SP
MOVEM to SP
MOVEP to SP

Immediately before MOVEP from SSH or SSL MOVEC to SP
MOVEM toSP
MOVEP to SP

Immediately before JCLR #n,SSH or SSL,xxxx MOVEC to SP
MOVEM to SP
MOVEP to SP

Immediately before JSET #n,SSH or SSL,xxxx MOVEC to SP
MOVEM to SP
MOVEP to SP

Immediately before JSCLR #n,SSH or SSL,xxxx MOVEC to SP
MOVEM to SP
MOVEP to SP

Immediately before JSSET #n,SSH or SSL,xxxx MOVEC to SP
MOVEM toSP
MOVEP to SP

Immediately before JCLR #n,SSH or SSL,xxxx

Immediately before JSET #n,SSH or SSL,xxxx

BCHG to SP
BClR to SP
BSETto SP

BCHG to SP
BClR to SP
BSETto SP

-

-

Immediately before JSCLR from SSH or SSL,xxxx BCHG to SP
BCLR to SP
BSET to SP

Immediately before JSSET from SSH or SSL,xxxx BCHG to SP
BCLR to SP
BSETto SP

Also, the instruction MOVEC SSH,SSH is illegal.

A.9.G R, N, and M Register Restrictions
Due to pipelining, if an address register Rn is the destination of a MOVE-type instruction
except MOVEP (MOVE, MOVEC, MOVEM, LUA, Tcc) , the new contents will not be
available for use as an address pointer until the second following instruction cycle.

Likewise, if an· offset register Nn or a modifier register Mn is the destination of a MOVE­
type instruction except MOVEP, the new contents will not be available for use in address
calculations until the second following instruction cycle.

However, if the processor is in the No Update addressing mode (where Mn and Nn are
ignored) and register Mn or Nn is the destination of a MOVE instruction, the next instruc­
tion may use the corresponding Rn register as an address pointer. Also, if the processor
is in the Postincrement by 1, Postdecrement by 1, or Predecrement by 1 addressing
mode (where Nn is ignored), a MOVE to Nn may be immediately followed by an instruc­
tion that uses Rn as an address pointer.

Note: This restriction also applies to the situation in which the last instruction in a DO
loop changes an address register using a move-type instruction and the first instruction
at the top of the DO loop uses that same address register. The top instruction becomes
the following instruction because of the loop construct. The DSP assembler will gener­
ate a warning if this condition is detected.

A.9.7 Fast Interrupt Routines
The following instructions may not be used in a fast interrupt routine:

In a fast interrupt rou~ine DO MOVEM from SSH
ENDDO MOVEP from SSH
RTI ORI MR or ORI CCR
RTS ANDI MR or ANDI CCR

STOP
SWI
WAIT

, MOVEC to LA, LC, SSH, SSL, SP, or SR
MOVEM to LA, LC, SSH, SSL, SP, or SR
MOVEP to LA, LC, SSH, SSL, SP, or SR
MOVEC from SSH

A.9.S REP Restrictions
The REP instruction can repeat any single-word instruction except the REP instruction
itself and any instruction that changes program flow. The following instructions are not
allowed to follow an REP instruction:

Immediately after REP DO
Jcc
JCLR
JMP
JSET
JScc
JSCLR
JSR
JSSET
REP
RTI
RTS
STOP

'SWI
WAIT
ENDDO

Also, an REP instruction cannot be the last instruction in a DO loop (at LA).

A.10 INSTRUCTION ENCODING
This section summarizes instruction encoding for the DSP56K instruction set. The
instruction codes are listed in nominally descending order. The symbols used in decod­
ing the various fields of an instruction are identical to those used in the Opcode section of
the individual instruction descriptions. The user should always refer to the actual instruc­
tion description for complete information on the encoding of the various fields of that
instruction.

Section A.10.1 gives the encodings for (1) various groupings of registers used in the
instruction encodings, (2) condition code combinations, (3) addressing, and (4) address­
ing modes.

Section A.10.2 gives the encoding for the parallel move portion of an instruction. These
16-bit partial instruction codes may be combined with the 8-bit data ALU opcodes listed
in Section A.1 0.3 to form a complete 24-bit instruction word.

Section A.10.3 gives the complete 24-bit instruction encoding for those instructions
which do not allow parallel moves.

-

-

Section A.10.4 gives the encoding for the data ALU portion of those instructions which
allow parallel data moves. These a-bit partial instruction codes may be combined with
the 16-bit parallel move opcodes listed in Section A.10.1 to form a complete 24-bit
instruction word.

A.10.1 Partial Encodings for Use in Instruction Encoding

Table A-15 Single-Bit Register Encodings

Code d* e f Where:

0 A XO YO d = 2 Accumulators in Data ALU

1 B X1 Y1 e = 2 Registers in Data ALU

f = 2 Registers in Data ALU

• For class II encodings for R:Y and X:R, see Table A-16

Table A-16 Single-Bit Special Register Encodings

d X:R Class II Opcode R:Y Class II Opcode

0 A ~ X:<ea> XO ~ A YO ~ AA ~ Y:<ea>

1 B ~ X:<ea> XO ~ B YO ~ B B ~ Y:<ea>

Table A-17 Double-Bit Register Encodings

Code DD ee

00 XO XO

01 X1 X1

10 YO A

11 Y1 B

Where: DD = 4 registers in data ALU
ee = 4 XDS registers in data ALU
ff = 4 YDS registers in data ALU

ff

YO
Y1

A

B

Table A-18 Triple-Bit Register Encodings

Code DDD LLL FFF NNN TTT GGG

000 AO A10 MO NO RO *
001 BO B10 M1 N1 R1 SR

010 A2 X M2 N2 R2 OMR

011 B2 Y M3 N3 R3 SP

100 A1 A M4 N4 R4 SSH

101 B1 B M5 N5 R5 SSL

110 A AB M6 N6 R6 LA

111 B BA M7 N7 R7 LC

* Reserved
Where: DOD: 8 accumulators in data ALU

LLL: 8 extended-precision registers in data ALU; LLL field is encoded as LOLL
FFF: 8 address modifier registers in address ALU
NNN: 8 address offset registers in address ALU
TTT: 8 address registers in address
FFF: 8 program controller registers

Table A-19(a) Four-Bit Register Encodings for 12 Registers in Data ALU

D D D D Description

0 0 X X Reserved

0 1 D D Data ALU Register

1 D D D Data ALU Register

Table A-19(b) Four-Bit Register Encodings for 16 Condition Codes

Mnemonic C C C C Mnemo'nic C C C c
CC(HS) 0 0 0 0 CS(LO) 1 0 0 0

GE 0 0 0 1 LT 1 0 0 1

NE 0 0 1 0 EQ 1 0 1 0

PL 0 0 1 1 MI 1 0 1 1

NN 0 1 0 0 NR 1 1 0 0

EC 0 1 0 1 ES 1 1 0 1

LC 0 1 1 0 LS 1 1 1 0

GT 0 1 1 1 LE 1 1 1 1

-

Table A-20 Five-Bit Register Encodings for
28 Registers in Data ALU and Address ALU

e e e e e
or

d d d d d

0 0 0 0 X
0 0 0 1 X

0 0 1 D D

0 1 D D D

1 0 T T T

1 1 N N N

Where: eeeee = source
ddddd = destination

Description

Reserved

Reserved

Data ALU Register

Data ALU Register

Address ALU Register

Address Offset Register

Table A-21 Six-Bit Register Encodings
for 43 Registers On-Chip

d d d d d d Description

0 0 0 0 X X Reserved

0 0 0 1 D D Data ALU Register

0 0 1 D D D Data ALU Register

0 1 0 T T T Address ALU Register

0 1 1 N N N Address Offset Register

1 0 0 F F F Address Modifier Register

1 0 1 X X X Reserved

1 1 0 X X X Reserved

1 1 1 G G G Program Controller Register

Table A-22 Write Control Encoding

W Operation

0 Read Register or Peripheral

1 Write Register or Peripheral

Table A-23 Memory Space Bit Encoding

S Operation

0 X Memory

1 Y Memory

Table A-24 Program Control Unit Register Encoding

E E Register

0 0 MR Mode Register

0 1 CCR Condition Code Register

1 0 OMR Operating Mode Register

1 1 - Reserved

Table A-25 Condition Code and Address Encoding

Code Code Definition

ecce 16 Condition Code Combinations

b bbbb 5-Bit Immediate Data

iiii iiii 8-Bit Immediate Data (int, trac, mask)

iiii iiii xxxx hhhh 12-Bit Immediate Data (iiii iiii hhhh)

aa aaaa 6-Bit Absolute Short (Low) Address

pp pppp 6-Bit Absolute I/O (High) Address

aaaa aaaa aaaa 12-Bit Fast Absolute Short (Low) Address

Table A-26 Effective Addressing Mode Encoding

M2 M1 MO R2 R1 RO Code Definition

0 0 0 r r r Post - N

0 0 1 r r r Post + N

0 1 0 r r r Post -1

0 1 1 r r r Post + 1

1 0 0 r r r No Update

1 0 1 r r r Indexed + N

1 1 1 r r r Pre - 1

1 1 0 0 0 0 Absolute Address

1 1 0 1 0 0 Immediate Data

MMM = three bits M2, M1, MO determine mode

RRR = three bits R2, R1 , RO determine which address register number where rrr refers to the
binary representation of the number

Notes:
(1) R2 is 0 for low register bank and 1 for the high register bank.
(2) M2 is 0 for all post update modes and 1 otherwise.
(3) M1 is 0 for update by register offset and no update and 1 otherwise.
(4) MO is 0 for minus and 1 for plus, except for predecrement which is also 1.
(5) For X:Y: parallel data moves, bits 14 and 13 of the opcode are a subset of the above RRR

and are labelled rr. See the XY parallel data move description for a detailed explanation.
(6) For X:Y: parallel data moves, bits 21 and 20 of the opcode are a subset of the above MMM

and are labelled mm. See the XY parallel data move description for a detailed explanation

-

A.10.2 Instruction Encoding for the Parallel Move Portion of an Instruction

X: V: Parallel Data Move

23 16 15 87 o
1Wmmee f f WrrMMRRR INSTRUCTION OPCODE

X: Parallel Data Move

23 16 15 87 o
01 ddOddd W1MMMRRR INSTRUCTION OPCODE

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0

o 1 d dOd d d W 0 a a a a a a INSTRUCTION OPCODE

V: Parallel Data Move

23 16 15 87 o
01 dd1ddd W1MMMRRR INSTRUCTION OPCODE

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 87 o
01 dd1ddd WOaaaaaa INSTRUCTION OPCODE

L: Parallel Data Move

23 16 15 87 o
01 OOLOLL W1MMMRRR INSTRUCTION OPCODE

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 87 0

o 1 0 0 L 0 L L W 0 a a a a a a INSTRUCTION OPCODE

- I: Immediate Short Parallel Data Move

23 16 15 87 o
o 0 d d d d d INSTRUCTION OPCODE

R: Register to Register Parallel Data Move

23 16 15 87 o
o 0 OOOee eeeddddd INSTRUCTION OPCODE

U: Address Register Update Parallel Data Move

23 16 15 87 0

o 0 o 0 0 0 0 0 10M M R R R INSTRUCTION OPCODE

Parallel Data Move NOP

23 16 15 87 0

o 0 o 0 0 0 0 i 0 0 0 0 0 0 0 0 i INSTRUCTION OPCODE

R:Y Parallel Data Move

(Class I)

23 16 15 87 0

o 0 0 1 d e f f W 1 M M M R R R INSTRUCTION OPCODE

(Class II)
23

o 0 0 0 1

X: R Parallel Data Move

(Class I)

OPTIONAL EFFECTIVE ADDRESS EXTENSION

16 15 8 7 0

00 di10M M M R R R i INSTRUCTION OPCODE

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 87 0

o 0 0 1 f f d f W 0 M M M R R R INSTRUCTION OPCODE

(Class II)
23

o 0 0 0 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

16 15 8 7 0

M M R R R I INSTRUCTION OPCODE

OPTIONAL EFFECTIVE ADDRESS EXTENSION

A.10.3 Instruction Encoding for Instructions Which Do Not Allow Parallel Moves

Note: For following bit class instructions bbbbb = 11 bbb is reserved:
JSSET, JSClR, JSET, JClR, BTST, BCHG, BSET, and BClA.

JScc xxx
23 16 15 87 0

I 0 0 0 0 1 1 1 1 C C C C a a a a I a a a a a a a a I

Jcc XXX

23 16 15 87 0

I 0 0 0 0 1 1 1 o I C C C C a a a a I a a a a a a a a I

JSR XXX

23 16 15 87 0

I 0 0 0 0 1 1 0 1 I 0 0 0 0 a a a a I a a a a a a a a I

JMP XXX

23 16 15 87 0

I 0 0 0 0 1 1 0 0 0 0 0 0 a a a a I a a a a a a a a I

JScc ea

23 16 15 87 0

0 0 0 0 1 0 1 1 1 1 M M M R R R 1 0 1 0 C C C C

OPTIONAL EFFECTIVE ADDRESS EXTENSION

JSR ea
23 16 15 87 0

0 0 0 0 1 0 1 1 1 1 M M M R R R 1 0 0 0 0 0 0 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Jcc ea
23 16 15 87 0

0 0 0 0 1 0 1 0 1 1 M M M R R R 1 0 1 0 C C C C

OPTIONAL EFFECTIVE ADDRESS EXTENSION

JMP ea
23 16 15 87 0

0 0 0 0 1 0 1 0 1 1 M M M R R R 1 0 0 0 0 0 0 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

JSSET
JSSET

JSCLR
JSCLR

JSET
JSET

JCLR
JCLR

JSSET
JSSET

JSCLR
JSCLR

#n,X:pp,XXXX
#n,Y:pp,xxxx

23 16 15 87

00001011

#n,X:pp,XXXX
#n,Y:pp,XXXX

10pppppp

ABSOLUTE ADDRESS EXTENSION

o
1 S 1 b b b b b

23 16 15 87 0

00001011

#n,X:pp,XXXX
#n,Y:pp,XXXX

10pppppp 1S0bbbbb

ABSOLUTE ADDRESS EXTENSION

23 1615 87 0

00001010 10pppppp 1S1 bbbbb

#n,X:pp,XXXX
#n,Y:pp,XXXX

ABSOLUTE ADDRESS EXTENSION

23 16 15 87 0

00001010 10pppppp 1S0bbbbb

#n,X:ea,xxxx
In, Y:ea,xxxx

ABSOLUTE ADDRESS EXTENSION

23 16 15 87

00001011

#n,X:ea,xxxx
In, Y:ea,xxxx

01MMMRRR 1S1 bbbbb

ABSOLUTE ADDRESS EXTENSION

o

23 16 15 87 0

00001011 01MMMRRR 1S0bbbbb

ABSOLUTE ADDRESS EXTENSION

JSET
JSET

JCLR
JCLR

JSSET
JSSET

JSCLR
JSCLR

JSET
JSET

JCLR
JCLR

#n,X:ea,xxxx
#n,Y:ea,xxxx

23 16 15 87

00001010 01MMMRRR 1S1

23

#n,X:ea,xxxx
In, Y:ea,xxxx

ABSOLUTE ADDRESS EXTENSION

16 15 87

b b b b b

00001010 01MMMRRR 1S0bbbbb

23

#n,X:aa,xxxx
#n,Y:aa,xxxx

0000101

#n,X:aa,xxxx
In, Y:aa,xxxx

ABSOLUTE ADDRESS EXTENSION

16 15 87

1 0 Oaaaaaa 1S1 b b b b b

ABSOLUTE ADDRESS EXTENSION

o

o

o

23 16 15 87 0

00001011 OOaaaaaa

23

#n,X:aa,xxxx
#n,Y:aa,xxxx

ABSOLUTE ADDRESS EXTENSION

16 15 87

0000101000aaaaaa

23

#n,X:aa,xxxx
In, Y:aa,xxxx

ABSOLUTE ADDRESS EXTENSION

16 15 87

0000101000aaaaaa

ABSOLUTE ADDRESS EXTENSION

1S0bbbbb

o
1 S 1 b b b b b

o
1S0bbbbb

JSSET #n,S,xxxx

23 16 15 87 0

00001011 11dddddd 001 bbbbb

ABSOLUTE ADDRESS EXTENSION

JSCLR #n,S,xxxx

23 16 15 87 0

00001011 11dddddd OOObbbbb

ABSOLUTE ADDRESS EXTENSION

JSET #n,S,xxxx

23 16 15 87 0

00001010 11dddddd 001 bbbbb

ABSOLUTE ADDRESS EXTENSION

JCLR #n,S,xxxx

23 16 15 87 o
00001010 11dddddd OOObbbbb

ABSOLUTE ADDRESS EXTENSION

BTST #n,X:pp
BTST #n,Y:pp

23 16 15 87 0

0 0 0 0 1 0 1 1 1 0 P P P P P P I 0 S 1 b b b b b

BCHG #n,X:pp
BCHG #n,Y:pp

23 16 15 87 0

I 0 0 0 0 1 0 1 1 I 1 0 P P P P P P I 0 S 0 b b b . b b I

BSET #n,X:pp
BSET #n,Y:pp

23 16 15 87 0

I 0 0 0 0 1 0 1 0 1 0 P P P P P P I 0 S 1 b b b b b I

BCLR
BCLR

BTST
BTST

BCHG
BCHG

BSET
BSET

BCLR
BCLR

BTST
BTST

23

#n,X:pp
#n,Y:pp

I 0 0 0 0

#n,X:ea
#n,Y:ea

16 15 87 0

101010ppppp plOSObbbbb

23 16 15 87 0

00001011 01MMMRRR OS1 bbbbb

#n,X:ea
#n,Y:ea

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 87 0

00001011 01MMMRRR OSObbbbb

#n,X:ea
#n,Y:ea

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 87 0

00001010 01MMMRRR OS1 bbbbb

#n,X:ea
#n,Y:ea

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 87 0

00001010 01MMMRRR OSObbbbb

#n,X:aa
#n,Y:aa

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 87 0

1 00 00 1 01 1 I 00 a a a a a a lOS 1 b b.b b b I

BCHG #n,X:aa
BCHG #n,Y:aa

23 16 15 87 0

I 0 0 0 0 1 0 1 1 0 0 a a a a a a I 0 s 0 b b b b b

BSET #n,X:aa
BSET #n,Y:aa

23 16 15 87 0

I 0 0 0 0 1 0 1 o I
0 0 a a a a a a I 0 S 1 b b b b b I

BClR #n,X:aa
BelR #n,Y:aa

23 16 15 87 0

I 0 0 0 0 1 0 1 o I
0 0 a a a a a a I 0 s 0 b b b b b I

BTST #n,O

23 16 15 87 0

I 0 0 0 0 1 0 1 1
I

1 1 d d d d d d I 0 1 b b b b b I

BCHG #n,O

23 16 15 87 0

I 0 0 0 0 1 0 1 1 I 1 1 d d d d d d I 0 1 0 b b b b b I

BSET #n,O

23 16 15 87 0

I 0 0 0 0 1 0 1 o I 1 1 d d d d d d I 0 1 b b b b b

BCLR #n,O
23

0 0 0 0 1 0

MOVEP X:ea,X:pp
MOVEP V:ea,X:pp
MOVEP #XXXXXX,X:pp
MOVEP X:pp,X:ea
MOVEP X:pp,V:ea
MOVEP X:ea,V:pp
MOVEP V:ea,V:pp
MOVEP #XXXXXX,V:pp
MOVEP V:pp,X:ea
MOVEP V:pp,V:ea

23

0 0 0 0

MOVEP P:ea,X:pp
MOVEP X:pp,P:ea
MOVEP P:ea,V:pp
MOVEP V:pp,P:ea

23

1 0

16 15 87

1 o \ 1 1 d d d d d d \ 0 1 0 b b b b b

16 15 87

0 S W 1 M M M R R R 1 s P P P P P P

OPTIONAL EFFECTIVE ADDRESS EXTENSION

16 15 87

0000100S W1MMMRRR 01 pppppp

MOVEP S,X:pp
MOVEP X:pp,O
MOVEP S,V:pp
MOVEP V:pp,O

OPTIONAL EFFECTIVE ADDRESS EXTENSION

0

0

o

23 16 15 87 0

\ 0 0 0 0

MOVE(M)
MOVE(M)

S,P:ea
P:ea,O

1 00S\W1dd d d d d\OOpppppp\

23 16 15 87 0

00000111 W1MMMRRR 10dddddd

OPTIONAL EFFECTIVE ADDRESS EXTENSION

MOVE(M) S,P:aa
MOVE(M) P:aa,D

23 16 15 87 0

I 0 0 0 0 0 1 1 1 IW 0 a a a a a a I 0 0 d d d d d d I

REP #XXX

23 16 15 87 0

1
0 0 0 0 0 1 1 o 1 11 0 1 0 h h h h I

REP S

23 16 15 87 0

I 0 0 0 0 0 1 1 o I 1 1 d d d d d d I 0 0 1 0 0 0 0 0

REP X:ea
REP Y:ea

23 16 15 87 0

1
0 0 0 0 0 1 1 o I 0 1 M M M R R R 1 0 s 1 0 0 0 0 0

REP X:aa
REP Y:aa

23 16 15 87 0

1
0 0 0 0 0 1 1 0

1
0 0 a a a a a a 1 0 s 1 0 0 0 0 o I

DO #xxx,expr

23 16 15 87 0

0 0 0 0 0 1 1 0 i i 1 0 0 0 h h h h

ABSOLUTE ADDRESS EXTENSION

DO S,expr

23 16 15 87 0

0 0 0 0 0 1 1 0 1 1 D D D D D D 0 0 0 0 0 0 0 0

ABSOLUTE ADDRESS EXTENSION

-

DO X:ea,expr
DO V:ea,expr

23 16 15 87 0

00000110 01MMMRRR OSOOOOOO

ABSOLUTE ADDRESS EXTENSION

DO X:aa,expr
DO V:aa,expr

23 16 15 87 o
00000110 OOaaaaaa OSOOOOOO

ABSOLUTE ADDRESS EXTENSION

MOVE(C) #xx,01
23 16 15 87 0

1000001011

MOVE(C)
MOVE(C)
MOVE(C)
MOVE(C)
MOVE(C)

23

X:ea,01
S1,X:ea
V:ea,01
S1,V:ea
#xxxx,01

16 15 87

00000101 W1MMMRRR Os1ddddd

MOVE(C)
MOVE(C)
MOVE(C)
MOVE(C)

X:aa,D1
S1,X:aa
V:aa,01
S1,V:aa

OPTIONAL EFFECTIVE ADDRESS EXTENSION

o

23 16 15 87 0

MOVE(C)
MOVE(C)

00000101 WOaaaaaa Os1 ddddd

S1,02
S2,01

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 87 0

o 0 .0 0 0 1 0 0 W 1 e e e e eel 1 0 1 d d d d d

LUA ea,O

23 16 15 87 0

I 0 0 0 0 0 1 0 0 I 0 1 o M M R R R I 0 0 0 1 d d d d I

Tee S1,01 S2,02

23 16 15 87 0

I 0 0 0 0 0 0 1 1 C C C C 0 t t I 0 J J J 0 T T TI

Tee S1,01

23 16 15 87 0

0 0 0 0 0 0 1 o I c c c c 0 0 0 o I 0 J J J 0 0 0 0

NORM Rn,O

23 16 15 87 0

I 0 0 0 0 0 0 0 1 I 1 1 0 1 1 R R R I 0 0 0 1 d 1 0 1

OIV S,O
23 16 15 87 0

I 0 0 0 0 0 0 0 1 I 1 0 0 0 0 0 0 o I 0 1 J J d 0 0 o I

MAC (±)S,#n,O

23 16 15 8 7 0

1
0 0 0 0 0 0 0 1 10 0 0 s s s s s I 1 Q Q d k 1 o 1

MACR (±)S,#n,O

23 16 15 8 7 0

1
0 0 0 0 0 0 0 1 1 0 0 0 s s s s s 11 Q Q d k 1 11

MPY (±)S,#n,O

23 16 15 8 7 0 -1
0 0 0 0 0 0 0 1 1 0 0 0 s s s s s 11 Q Q d k 0 o I

MPYR (±)S,#n,D

23 16 15 8 7 0

1
0 0 0 0 0 0 0 1 10 0 0 s s s s s I 1 Q Q d k 0 11

DEBUGcc
23 16 15 87 0

I 0 0 0 0 0 0 0 o I 0 0 0 0 0 0 1 1 I 0 0 0 0 c c c c I

DEBUG
23 16 15 87 0

I 0 0 0 0 0 0 0 o I 0 0 0 0 0 0 1 o I 0 0 0 0 0 0 0 o I

OR(I) #xx,D

23 16 15 87 0

0 0 0 0 0 0 0 o I 1 1 0 E E I

AND(I) #xx,D
23 16 15 87 0

0 0 0 0 0 0 0 o 1 11 0 1 0 E E 1

-

ENDDO

23 16 15 87 0

0 0 0 0 0 0 0 o 1 0 0 0 0 0 0 0 o 11 0 0 0 1 0 o 1

STOP
23 16 15 87 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 1 1 0 0 0 0 1

WAIT
23 16 15 87 0

1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

RESET
23 16 15 87 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0

RTS
23 16 15 87 0

1
0 0 0 0 0 0 0 o I 0 0 0 0 0 0 0 0 0 0 0 0 1 0 o I

DEC
23 16 15 87 0

0 1 d

INC
23 16 15 87 0

0 d

SWI
23 16 15 87 0

1
0 0 0 0 0 0 0 0 0 '0 0 0 0 0 0 0 0 0 0 0 0 0 -

-

ILLEGAL

23 16 15 87 0

I 0 0 0 0 0 0 0 o I 0 0 0 0 0 0 0 01 0 0 0 0 0 1 0 1

RTI

23 16 15 87 0

I 0 0 0 0 0 0 0 o I 0 0 0 0 0 0 0 o I 0 0 0 0 0 1 0 o I

NOP

23 16 15 87 0

I 0 0 0 0 0 0 0 o I 0 0 0 0 0 0 0 01 0 0 0 0 0 0 0 o I

A.10.4 Parallel Instruction Encoding of the Operation Code

The operation code encoding for the instructions which allow parallel moves is divided
into the multiply and non multiply instruction encodings shown in the following subsection.

Multiply Instruction Encoding

The a-bit operation code for multiply instructions allowing parallel moves has different
fields than the nonmultiply instruction's operation code.

The a-bit operation code=1 aaa dkkk whereQQQ=selects the inputs to the multiplier
kkk = three unencoded bits k2, k1, kO
d = destination accumulator
d=O-+A
d=1-+B

Table A-27 Operation Code KO-2 Decode

Code k2 k1 kO

0 positive mpyonly don't round

1 negative mpy and ace round

Table A-28 Operation Code QQQ Decode

Q Q Q S1 S2

0 0 0 xo xo

0 0 1 YO YO

0 1 0 X1 xo
0 1 1 Y1 YO

1 0 0 XO Y1

1 0 1 YO XO

1 1 0 X1 YO

1 1 1 Y1 X1

NOTE: S1 and S2 are the inputs to the multiplier.

MACR 851 ,52,0
MACR 52,51,0

23 87 43 0

DATA BUS MOVE FIELD

MAC B 51,82,0
MAC 52,51,0

23 87 43 0

DATA BUS MOVE FIELD

MPYR B 51,52,0
MPYR 52,81,0

23 87 43 0

DATA BUS MOVE FIELD

MPY () 51,52,0
MPY () 82,51,0 -23 87 43 0

DATA BUS MOVE FIELD

-

Nonmultlply Instruction Encoding

The a-bit operation code for instructions allowing parallel moves contains two 3-bit fields
defining which instruction the operation code represents and one bit defining the destina­
tion accumulator register.

The a-bit operation code = OJJJ Dkkk where JJJ=1/2 instruction number
kkk=1/2 instruction number
0=0'-' A
0=1 .-. B

Table A-29 Nonmultlply Instruction Encoding

JJJ

000

001

0102

011 2

0102

011 2

100

101

110

111

NOTES:

D=O D =1
Src Src

Oper Oper 000

B A MOVE'
B A ADD
B A -
B A -

X1XO X1XO ADD
Y1YO Y1YO ADD
XO_O XO_O ADD
YO_O YO_O ADD
X1_0 X1_0 ADD
Y1_0 yeO ADD

• = Reserved
1 = Special Case 11 (See Table A-30)
2 = Special Case f2 (See Table A-31)

001

TFR
RND
-
-

ADC
ADC
TFR
TFR
TFR
TFR

kick

010 011 100 101 110

ADDR TST * CMP SUBR
ADDL CLR SUB * SUBL
ASR LSR - - ABS
ASL LSL - - NEG
- - SUB SBC

- - SUB SBC
OR EOR SUB CMP AND
OR EOR SUB CMP AND
OR EOR SUB CMP AND
OR EOR SUB CMP AND

111

CMPM
NOT
ROR
ROL

CMPM
CMPM
CMPM
CMPM

Table A-30 Special Case #1

0 P E R CO D E Operation

0 0 0 0 0 0 0 0 MOVE

0 0 0 0 1 0 0 0 ReseNed

For JJJ=01 0 and 011, k1 qualifies source register selection:

Table A-31 Special Case #2

0 J J J d k k k Operation

0 0 1 0 x x 0 x Selects X1 XO

0 0 1 1 x x 0 x Selects Y1YO

0 0 1 x x x 1 x Selects NB

CMPM 81,82

23 87 43 0

DATA BUS MOVE FIELD

AND 8,D

23 87 43 0

DATA BUS MOVE FIELD

CMP 81,82

23 87 43 0

DATA BUS MOVE FIELD

SUB 8,D

23 87 43 0

DATA BUS MOVE FIELD

EOR S,D
23 87 43 0

DATA BUS MOVE FIELD

OR S,D
23 87 43 0

DATA BUS MOVE FIELD

TFR S,D

23 87 43 0

DATA BUS MOVE FIELD

ADD S,D
23 87 43 0

DATA BUS MOVE FIELD

SBC S,D

23 87 43 0

DATA BUS MOVE FIELD

ADC S,D

23 87 43 0

DATA BUS MOVE FIELD

ROL ° 23 43 0

DATA BUS MOVE FIELD

NEG D

23 87 43 0

DATA BUS MOVE FIELD

LSL D

23 87 43 0

DATA BUS MOVE FIELD

ASL D

23 87 0

DATA BUS MOVE FIELD

ROR D
23 87 43 0

DATA BUS MOVE FIELD

ABS D

23 87 43 0

DATA BUS MOVE FIELD

LSR D

23 87 43 0

DATA BUS MOVE FIELD

ASR D

23 87 43 0

DATA BUS MOVE FIELD

NOT D

23 87 43 0

DATA BUS MOVE FIELD

SUBL S,D
23 87 43 0

DATA BUS MOVE FIELD

CLR D
23 87 43 0

DATA BUS MOVE FIELD

ADDL S,D
23 87 43 0

DATA BUS MOVE FIELD

RND D
23 87 43 0

DATA BUS MOVE FIELD

SUBR S,D

23 87 43 0

DATA BUS MOVE FIELD

TST D

23 87 43 0

- DATA BUS MOVE FIELD

ADDR S,D

23 87 43 o
DATA BUS MOVE FIELD

MOVE S,D

23 87 43 o
DATA BUS MOVE FIELD

-

APPENDIX B
BENCHMARK PROGRAMS

-

lEI

B.1 INTRODUCTION
Table 8-1 provides benchmark numbers for 18 common DSP programs implemented on
the 27-MHz DSP56001.

The four code examples shown in Figures 8-1 to B-4 represent the benchmark programs
shown in Table B-1.

B.2 BENCHMARK PROGRAMS
Figure 8-1 is the code for the 20-tap FIR filter shown in Table 8-1. Figure B-2 is the code
for an FFT using a triple nested DO LOOP. Although this code is easier to understand
and very compact, it is not as fast as the code used for the benchmarks shown in Table
8-1, which are highly optimized using the symmetry of the FFT and the parallelism of the
DSP. Figure B-3 is the code for the 8-pole cascaded canonic biquad IIR filter, which uses
four coefficients (see Table B-1). Figure 8-4 is the code for a 2N delayed least mean
square (LMS) FIR adaptive filter, which is useful for echo cancelation and other adaptive
filtering applications.Thecode example shown in Figure 8-5 represents the Real FFT
code for the DSP56002, based on the Glenn Bergland algorithm.

The code for these and other programs is free and available through the Dr. 8uB elec­
tronic bulletin board.

Table 8-1 27-MHz Benchmark Results for the DSP56001 R27
Sample Rate Memory Number of

Benchmark Program (Hz) or Size Clock
Execution Time (Words) Cycles

20 - Tap FIR Filter 500.0 kHz 50 54

64 - Tap FIR Filter 190.1 kHz 138 142

67 - Tap FIR Filter 182.4 kHz 144 148

8 - Pole Cascaded Canonic
540.0 kHz 40 50 Siquad IIR Filter (4x)

8 - Pole Cascaded Canonic
465.5 kHz 45 58

Siquad IIR Filter (5x)

8 - Pole Cascaded Transpose
385.7 kHz 48 70

Siquad IIR Filter

Dot Product 444.4 ns 10 12

Matrix Multiply 2x2
1.556p..s 33 42

times2x2

Matrix Multiply 3x3
1.259 p..s 29 34 times 3x1

M-to-M FFT
98.33 p..s 489 2655 64 Point

M-to-M FFT
489.8 p..s 1641 13255

256 Point

M-to-M FFT
2.453 ms 6793 66240 1024 Point

P-to-M FFT
92.56 p..s 704 2499 64 Point

P-to-M FFT
347.9 p..s 2048 9394

256 Point

P-to-M FFT
1.489 ms 7424 40144 1024 Point

page 132,66,0,6
opt rc

.**************** •••• ************************************
I

;Motorola Austin DSP Operation June 30, 1988
.**
I

;DSP56000f1
;20 - tap FI R filter
;File name: 1-56.asm
.***
I

Maximum sample rate: 379.6 kHz at 20.5 MHzf500.0 kHz at 27.0 MHz
Memory Size: Prog: 4+6 words; Data: 2x20 words
Number of clock cycles: 54 (27 instruction cycles)
Clock Frequency: 20.5 MHzf27.0 MHz
Instruction cycle time: 97.6 nsf74.1 ns

.***
I

This FIR filter reads the input sample
from the memory location Y:input
and writes the filtered output sample
to the memory location Y:output

The samples are stored in the X memory
I The coefficients are stored in the Y memory
**

X MEMORY

X(n)

X(n-1)

X(n-k+1) X(n+1)

C(O)
x(n)

FIR

Y MEMORY

c(O)

c(1)

c(k-1)

G yen)
81---~

y(n)

k-l

Lc(p)x(n-p)

p=O

Figure 8-1 20-Tap FIR Filter Example (Sheet 1 of 2) -

.*._---*-----*-------**-------.... *_ .. * •••• _ •••••••••• * •••••• * •• -*.* •••• * •••• -.-•• -_ •• __ ••• _ •••• -* ••••• _-•• -* ••••• __ •• ,

initialization
-* •• _ ••••••••• -.* •••.••••.•••••... _* •••••

n
start
wddr
cddr
input
output

equ
equ
equ
equ
equ
equ

org
move
move
move
move

20
$40
$0
$0
$ffeO
$ffe1

p:start
#Wddr;rO
#cddr,r4
#n-1,mO
mO,m4

opt cc
filter loop :8+(n-1) cycles

;rO - samples
;r1 - coefficients
;set modulo arithmetic
;for the 2 circular buffers

.*_if_if •••• * ••••••• _ ••••• * ••••••••••• _.*_._*._ .. _* •• _ •• 'ltif*if •••• _._* .. _* _ ... _._ ... _ _. __ _*.* •• * ••• *_ •• ,
movep y:input,x: (rO) ;input sample in memory
elr a x:(rO)+,xO y: (r4)+,yO

rep #n-1
mac xO,yO,a x:(rO)+,xO y:(r4)+,yO
macr xO,xO,a (rO)-

movep a,y:output ;output filtered sample .*. __ ••• _ •••• _*_ .. __ _ _ ... * ••••• _ ••••• __ * ••• _*.if_*_ .•• * •• _.*_* .. __ _* •••• ** •• _* •••••••••• _ ••• _**.'It*.'It'ltif •••• ,
end

Figure 8-1 20-Tap FIR Filter Example (Sheet 2 of 2)

;This program originally available on the Motorola DSP bulletin board.
;It is provided under a DISCLAIMER OF WARRANlY available from
;Motorola DSP Operation, 6501 William Cannon Drive, Austin, TX, 78735

;Radix-2, In-Place, Decimation-In-Tlme FFT (smallest code size).

;Last Update 30 Sep 86

fftr2a
fftr2a

macro
ident

Version 1.1

points,data,coef
1,1

;Radix-2 Decimation-In-Time In-Place FFT Routine

Complex input and output data
Real data in X memory
Imaginary data in Y memory

Normally ordered input data
Bit reversed output data

Coefficient lookup table
-Cosine values in X memory
-Sine values in Y memory

;Macro Call - ffr2a points,data,coef

points
data
coef

number of points (2-32768, power of 2)
start of data buffer
start of sine/cosine table

;Alters Data ALU Registers
x1 xO
a2 a1
b2 b1

;Alters Address Registers

y1
aO
bO

rO nO mO
r1 n1 m1

n2

r4
r5
r6

n4
n5
n6

'Alters Program Control Registers
pc sr

;Uses 6 locations on System Stack

m4
m5
m6

yO
a
b

Figure 8-2 Radix 2, In-Place, Decimation-In-Time FFT (Sheet 1 of 2)

-

;Latest Revision - September 30, 1986

move #points/2,nO
move #1,n2
move #points/4,n6
move #-1,mO
move mO,m1
move mO,m4
move mO,m5
move #0,m6

;initialize butterflies per group
;initialize groups per pass
;initialize C pointer offset
;initialize A and B address modifiers
;for linear addressing

;initialize C address modifier for
;reverse carry (bit-reversed) addressing

;Perform all FFT passes with triple nested DO loop

do
move
move
lua
move
lua
move
move
move

do
move

move
move

do
mac

macr
subl
mac
macr
subl

_end_bfy
move
move

_end-9rp
move
Isr
lsi
move

_end-pass
endm

#@cvi (@log(points)/@log(2)+0.5),_end-pass
#data,rO ;initialize A input pointer
rO,r4 ;initialize A output pointer
(rO)+nO,r1 ;initialize B input pointer
#coef,r6 ;initialize C input pointer
(r1)-,r5 ;initialize B output pointer
nO,n1 ;initialize pointer offsets
nO,n4
nO,n5

n2,_end-9rp
x:(r1),X1 y:(r6),yO

x:(r5),a y:(rO),b
x:(r6)+n6,xO

nO,_end_bfy
x1,yO,b y:(r1)+,y1

-xO,y1,b
b,a
-x1,xO,b
-y1,yO,b
b,a

a,x:(r5)+
x:(rO),b
x:(rO)+,a
x:(r1),x1
b,x:(r4)+

y:(rO),a
b,y:(r4)
a,y:(r5)

y:(rO),b

a,x:(r5)+n5
x:(rO)+nO,x1

y:(r1)+n1 ,y1
y:(r4)+n4,y1

;Iookup -sine and
; -cosine values
;preload data
;update C pointer

;Radx20lT
;butterfly kernel

;update A and B pointers

nO,b1
b n2,a1

;divide butterflies per group by two
;multiply groups per pass by two

a b1,nO
a1,n2

Figure B-2 Radix 2, In-Place, Decimatlon-In-Time FFT (Sheet 2 of 2)

page 132,66,0,6
opt rc _ .. __ _ ... __ *-_ ... _ .. * •••••• _ •••••••• _-••••• ,

;Motorola Austin DSP Operation June 30, 1988
._ ••••• * ••• _ ••••• _ •• _ •• _ ••• _._--------_.--_. __ •••• _._-•••••

;DSP56000/1
;8-pole 4-multiply cascaded canonic IIR filter
;File name: 4-56.asm .•••• _. __ • ___ •••• _ •• _. ___ • ___ • _____ • _____ ._ •• __ • ___ ._ •• *_ •• _*._ _ ___ ._._. __ .. ____ *_ •• ___ •• __ ••• ___ *'It'lt •• _____ •

,
Maximum sample rate: 410.0 kHz at 20.5 MHz/540.0 kHz at 27.0 MHz
Memory Size: Prog: 6+10 words; Data: 4(2+4) words
Number of clock cycles: 50 (25 instruction cycles)
Clock Frequency: 20.5 MHz/27.0 MHz

, Instruction cycle time: 97.5 nsn4.1 ns
.***.*'It'lt'lt __ •• __ .** __ ._* ______ __ ._. ______ _.*._ 'It'lt'lt'lt'lt_._ •••

This IIR filter reads the input sample
from the memory location Y:input
and writes the filtered output sample
to the memory location Y:output

The samples are stored in the X memory
The coefficients are stored in the Y memory

The equations of the filter are:
w(n)= x(n)-ai1 *w(n-1)-ai2*w(n-2)
y(n)= w(n)+bi1 *w(n-1)+bi2*w(n-2)

wen)

x(n}/----(-)/----------1---+-1.,--------(+ }----- yen)

z w(n-1)

~ai1+bi1~
z-1 w(n-2)

f-o_--- ai2 __ -,----..._....Ll--l._--- bi2---__ -l

Figure 8-3 a-Pole 4-Multlply Cascaded Canonic IIR Filter (Sheet 1 of 2)

All coefficients are divided by 2:
w(n)/2=x(n)/2-ai 1/2*w(n-1)-ai2/2*w(n-2)
y(n)/2=w(n)/2+bi 1/2*w(n-1)+bi2/2*w(n-2)

X Memory Organization Y Memory Organization
b1 N/2 Coef. + 4*nsec - 1

wN(n-1) Data + 2*nsec - 1
wN(n-2)

w1 (n-1)
RO'" w1 (n-2) Data

b2N/2
a1N/2
a2N/2

b11/2
b2112
a11/2

R4.. a21/2 Coef.

.*** ,
initialization

.************************************* ,
nsec equ 4
start equ $40
data equ 0
coef equ 0
input equ $ffeO
output equ $ffe1
igain equ 0.5

ori #$08,mr ;set scaling mode
move #data,rO ;point to filter states
move #coef,r4 ;point to filter coefficients
move #2*nsec -1 ,mO
move #4*nsec -1 ,m4
move #igain,y1 ;y1 =initial gain

opt cc
filter loop: 4*nsec + 9

.*** ,

movep y:input,yO
mpy yO,y1,a x:(rO) +,xO y:(r4)+,yO

do #nsec,end_cell
mac -xO,yO,a x:(rO) -,x1 y:(r4) +,yO
macr -x1,yO,a x1 ,x:(rO) + y:(r4) +,yO
mac xO,yO,a a,x:(rO)+ y:(r4) +,yO
mac x1,yO,a x:(rO) +,xO y:(r4) +,yO

end_cell

;getsample
;xO=1st section w(n-2),yO=ai2/2

;do each section
;x1 =w(n-1),yO=ai1/2
;push w(n-1) to w(n-2),yO=bi2/2
;push w(n) to w(n-1),yO=bi1/2
;next iter:xO=w(n-2),yO=ai2/2

rnd a ;round result
movep a,y:output ;output sample

.** ,
end

Figure 8-3 8-Pole 4-Multiply Cascaded Canonic IIR Filter (Sheet 2 of 2)

page 132,60,1,1
;newlms2n.asm
; New Implementation of the delayed LMS on the DSPS6000 Revision C
;Memory map:
; Initial X H
; x(n) x(n-1) x(n-2) x(n-3) x(n-4) hx hO h1 h2 h3
;]]]
; ~ ~ ~
;hx is an unused value to make the calculations faster.

opt cc
ntaps equ 4
input equ $FFCO
output equ $FFC1

org x:$O
state ds S

org y:$O
coef ds 5

org p:$40
move #state,~
move #2,nO
move #ntaps,mO
move #ooef + 1,r4
move #ntaps,m4
move #ooef,rS
move m4,mS

_smploop
movep
move

;error signal is in y1
a,x:(rO)

;start of X

;modS
;coefficients
;modS
;coefficients
;modS

y:input,a

;FIR sum in a=a+h(k) old*x(n-k)
;h(k)new in b=h(k)old + error*x(n-k-1)

cir a x:(rO)+,xO
move x:(rO)+,x1 y:(r4)+,yO
do #taps/2,Jms
mac xO,yO,a yO,b b,y:(rS)+
macr x1,y1,b x:(rO)+,xO y:(r4)+,yO

mac x1,yO,a yO,b b,y:(r5)+
macr xO,y1,b, x:(rO)+,x1 y:(r4)+,yO

Ims -
move b,y:(rS)+
move (rO) -nO

,
;get input sample
;save input sample

;xO=x(n)
;x1 =x(n-1),yO=h(O)
,
;a=h(O)*x(n),b=h(O)
;b=h(0)+e*x(n-1)=h(O)new
;xO=x(n-2) yO=h(1)
;a=a+h(1)*x(n-1) b=h(1)
;b=h(1)+e*x(n-2)
;x1 =x(n-3) yO=H(2)

;save last new c()
;pointer update

;(Get d(n), subtract fir output (reg a), multiply by "u", put
;the result in y1. This section is application dependent.)

movep a,y:output ;outputfir if desired
jmp _smploop
end

Prog
word

1

1
1
2
1
1

Totals: 11

Figure 8-4 LMS FIR Adaptive Filter

Icyc

1
1
3
1
1

2N+8 -

Real input FFT based on Glenn Bergland algorithm

; Normal order input and normal order output.

; Since 56001 does not support bergland addressing, extra instruction cycles are needed
; for converting bergland order to normal order. It has been done in the last pass by
; looking at the bergtable.
; The micro 'bergsincos' generates SIN and COS table with size of points/4, COS in Y, SIN in X
; The micro 'bergorder' generates table for address conversion, the size of twiddle factors is half
; of FFT output's.
; The micro 'norm2berg' converts normal order data to bergland order.
; The micro 'rfft-56b' does FFT.

; Real input data are split into two parts, the first part is put in X, the second in Y.
; Real output data are in X, imaginary output data are in Y.
; The bergland table for converting berglang order to normal order is stored in output buffer.
; In the last pass the FFT output overwrites this table.
; The first real output plus the first imaginary output is DC value of the spectrum.
; Note that only DC to Nyquist frequency range is calculated by this algorithm.
; After twiddle factors and bergtable are generated, you may overwrite 'bergorder',
; 'norm2berg' by 'rfft-56b' for saving P memory.

Real input data points
64
128
256
512
1024

Performance

Clock cycle
1686
3846
8656
19296
49776

,--

P memory
87

Memory (word)

X memory
points/2 (real input) +
points/4 (SIN table) +
points/2 (real output) +
points/2 (bergtable)

Y memory
pOints/2 (imaginary input)
points/4 (COS table)
points/2 (imaginary output)

,---

rfft56bt ident 1,3
page 132,60
opt nomd,nomex,loc,nocex,mu
include 'bergsincos'
include 'bergorder'
include 'norm2berg'
include 'rfft-56b'

Figure B-5 Real Input FFT Based on Glenn Bergland Algorithm (Sheet 1 of 8)

,
; Main program to call the rfft-56b macro

Argument list
,
; Latest modifying date - 4-March-92

reset
start
points
binlogsz
idata
odata
bergtable
twiddle

bergsincos

bergorder
norm2berg
order
bergorder
rifft

bergsincos
bergsincos

pi
freq

sincos -

points -
coef -

equ 0
equ $40
equ 512
equ 9
equ $000
equ $400
equ $600
equ $800

points,odata ;generate normal order twiddle factors with size of points/4

opt mex
org p:reset
jmp start

org p:start
movep #O,x:$fffe
points/4,bergtable,odata
points/4,bergtable, twiddle

;0 wait states
;generates bergland table for twiddle factor
;converting twiddle factor from normal order to bergland

points/2,bergtable,odata ;table for final output
points,binlogsz,idata,odata,twiddle,bergtable
end

macro points,coef
ident 1,2

macro to generate sine and cosine coefficient
lookup tables for Decimation in lime FFT
twiddle factors.

number of points (2 - 32768, power of 2)
base address of sine/cosine table

negative cosine value in X memory
negative sine value in Y memory

equ 3.141592654
equ 2.0*pi/@cvf(points)

Figure 8-5 Real Input FFT Based on Glenn Bergland Algorithm (Sheet 2 of 8)

count

ount

count

count

org y:coef
set 0
dup points/4
dc @cos(@cvf(count)*freq)
set count+ 1
endm

org x:coef
set 0
dup points/4
dc @sin(@cvf(count)*freq)
set count+ 1
endm

endm ;end of bergsincos macro

bergorder macro points,bergtable,offset
bergorder ident 1,3
;bergorder generates bergland order table

generated

move #>4,a
move #points,r4 ;points=number of points of bergtable to be

move #>points/4,b ;nitial pointer
move #bergtable,rO ;table resides in
move b,nO ;init offset
move #>O,xO
move xO,x:(rO)+nO ;seeds
move #>2,xO
move xO,x:(rO)+nO
move #>1,xO
move xO,x:(rO)+nO
move #>3,xO
move xO,x:(rO)
move #bergtable,nO ;Iocation of bergtable
do #@cvi(@log(points/4)/@log(2)),_endl
move b,xO ;xO=i+i
Isr b ;b=i
move b,rO ;rO=i
nop
move a,x:(rO+nO)
lsi a
move a,y1
move r4,a
cmp xO,a

;k-> bergtable
;k=k*2
;save A content
;r4=# of points
;xO=j, if j< points, cont

Figure B-5 Real Input FFT Based on Glenn Bergland Algorithm (Sheet 3 of 8)

jle -'oop
move xO,rO
move y1,a
move x:(rO+nO),yO
sub yO,a
move b,x1
move rO,yO
add yO,b
move b,rO
nop
move a,x:(rO+nO)
add x1,b
move b,xO
move x1,b
jmp _star

-'oop move y1,a
_endl

move #>offset,a
move #bergtable,rO
do #points,_add_offset
move x:(rO),B
add A,B
move B,x:(rO)+

_add_offset
endm ;end of sincos macro

;convert normal order to berg lang order
norm2berg macro points,bergtable,twiddle
;points is actual size of table to be converting

move #bergtable,rO
move #twiddle,r2
move r2,r6
do #points,data_temp
move x:(rO)+,r3
move r3,r7
move x:(r3),a
move y:(r7),b
move a,x:(r2)+ b,y:(r6)+

endm

;rO=i+i=j,b=i
;recover A=k
;yO=bergtabl[j]
;k-bergtablU]
;save b, x1 =i
;yO=j=i+i
;b=j+i
;rO=j+i

;store bergtablU+i]
;b=j+i+i
;save b
;recover b=i

;recover a

;offset is the location of output data or twiddle

;rO=pointer of bergland table
;r2=twiddle pointer for X
;r6=twiddle pointer for Y

;get index

;get value
;write back

Figure B-5 Real Input FFT Based on Glenn Bergland Algorithm (Sheet 4 of 8)

; Real-Valued FFT for MOTOROLA DSP560001112
,
; based on Glenn Bergland's algorithm

,
rifft macro points,binlogsz,idata,odata, twiddle,bergtable

move #idata,rO
move #points/4,nO
move #twiddle+ 1,r7
lua (rO)+nO,r1
move rO,r4
move r1,r5
move #1,r3
move x:(rO),A y:(r4),yO

do nO,pass1

First Pass -- W(n) = 1

A---\ I---A'= Re[A + jB + (C + jD)] = A + C
B----'--L/----B'= Im[A + jB + (C + jD)] =j(D + B)
C----/I \----C'= Re[A + jB - (C + jD)] = A - C
D---I \---D'= Im[-A - jB + (C + jD)] =j(D - B)

, ---

sub yO,A x:(r1),xO y:(r5),B
add xO,B A,x:(r1)+ y:(r5),A
sub xO,A x:(rO)+,B B,y:(r4)+
add yO,B x:(rO)-, A A,y:(r5)+
move B,x:(rO)+ y:(r4),yO

pass 1

move #idata,rO

do #binlogsz-3,end-pass
move r7,r2
move r2,r6
move nO,A
Isr Ar3,B
lsi A,nO
move B,r3
lua (rO)+nO,r1
move rO,r4
move r1,r5
lua (r3)-,n2
move x:(rO),A y:(r4),yO

;rO = ptr to a
;bflys in ea group, half at ea pass
;r7 always points to start location of twiddle
;r1 = ptr to b
;r4 points to c
;r5 points to d,with predecrement
;group per pass, double at ea pass
;A=a,yO=c

;first pass is trivial, no multiplications

;A=a-c=c' ,B=d,xO=b,
;B=d+b=b', A=d,PUT c' to x:b
;A=d-b=d',B=a,PUT b' to y:c
;B=a+C=a', A=next a,PUT d'
;yO=next c, PUT a'

;rO = ptr to a

;do all passes except first and last
;r2 points to real twiddle
;r6 points to imag twiddle
;half bflys per group
;double group per pass

;r3 is temp reg.
;r1 = ptr to b
;r4 points to c
;r5 points to d
;n2=group per pass -1
;A=a, yO=c

Figure 8-5 Real Input FFT Based on Glenn Bergland Algorithm (Sheet 5 of 8)

do nO,FirstGrouplnPass
sub yO, A x:(r1),xO y:(r5),B
add xO,B A,x:(r1)+ y:(r5),A
sub xO,A x:(rO)+,B B,y:(r4)+
add yO,B x:(rO)-,A A,y:(r5)+
move B,x:(rO)+ y:(r4),yO

FirstGrouplnPass

do n2,end_group
move r5,rO
move rO,r4
lua (rO)+nO,r1
move r1,r5

;first group in a pass
;A=a-c=c',B=d,xO=b,
;B=d+b=b', A=d,PUT c' to x:b
;A=d-b=d',B=a,PUT b' to y:c
;B=a+c=a', A=next a,PUT d'
;yO=next c, PUT a'

;rest groups in this pass
;rO ptr to next group a
;r4 ptr to next group c
;r1 ptr to next group b
;r5 ptr to next group d

Intermediate Passes -- W(n) < 1

A---\ /---A'= Re[A + jC + (B - jO)W(k) 1 = A+BWr+OWi=A+ T1
B----'-L/----B'= Im[A + jC - (B - jO)W(k) 1 = C+OWr-BWi= T2+C
C----/ I \----C'= Re[A + jC - (B - jO)W(k) 1 = A-(BWr+OWi)=A-T1
0---/ \---0'= Im[-A - jC - (B - jO)W(k)] = -C+OWr-BWi= T2-C

end_bfly

end_group

endJ)ass

move x:(r2)+,xO y:(r6)+,yO
move x:(r1)-,x1 y:(r5),y1
move x:(r1),B

do nO,end_bfly
mpy -x1,xO,B B,x:(r1)
mac yO,y1,B y:(r4),A
sub A,B
addl B,A x:(r1)+,B B,x:(r5)+
mpy -x1,yO,B x:(rO),A A,y:(r4)+
mac -xO,y1,B x:(r1)-,x1
sub B,A
addl A,B A,x:(rO)+ y:(r5),y1

move B,x:(r1)+

move #idata,rO

;xO=Wi, yO=Wr
;x1 =b,y1 =d
;for pointer reason

;nO bfly in this group
;B=-bWi, PUT c' to x:b
;B=dWr-bWi= T2, A=c
;B= T2-c=d'

;A= T2+c=b', PUT d'
;B=-bWr, A=a, PUT b' to y:c
;B=-bWr-dWi=-T1, x1=next b
;A=a+T1=a'
;B=a-T1 =c', y1 =next d, PUT a'

;PUT last b'

;rO = ptr to a

;the last pass converts bergland order to normal order by calling bergtable
move r7,r2 ;r2 points to real twiddle
move r2,r6 ;r6 points to imag twiddle
move rO,r4 r4 points to c
move #bergtable,r3 ;r3=pointer of bergland table
move #(points/4)-1,n2 ;n2=group per pass -1
move x:(r3)+,r7 ;get first index
move x:(r3)+,r1 ;get second index
move #2,n4

Figure B-5 Real Input FFT Based on Glenn Bergland Algorithm (Sheet 6 of 8)

; first group in the last pass
move x:(rO)+,A y:(r4)+,B
sub B,A x:(rO)+,xO y:(r6)+,yO
addl A,B A,x:(r1) y:(r4),A
sub xO,A B,x:(r7)
move y:(r4)+,B
add xO,B A,y:(r1)
move x:(rO)+,A B,y:(r7)

move x:(r2)+,xO y:(r4)+,B

do n2,endJastg

Intermediate Passes -- W(n) < 1

;A=a, B=c
;A=a-c=c',xO=b, yO=Wr for next bfly
;B=a+C=a', A=d,PUT c' to x:b
;A=d-b=d',PUT a' to x
;B=d
;B=d+b=b', A=next a,PUT d'
;A=next a, PUT b'

;xO=Wi,B=next c

;rest groups in the last pass

A---\ /---A'= Re[A + jC + (B - jO)W(k)] = A+BWr+OWi=A+ T1
B----\-'-'----B'= Im[A + jC - (B - jO)W(k)] = C+OWr-BWi= T2+C
C----/I \----C'= Re[A + jC - (B - jO)W(k)] = A-(BWr+OWi)=A-T1
0---/ \---0'= Im[-A - jC - (B - jO)W(k)] = -C+OWr-BWi= T2-C

move x:(rO)+,x1 y:(r4)-,y1
mpy x1 ,yO,B x:(r3)+,r7
mac xO,y1,B x:(r3)+,r1
sub B,A
addl A,B A,x:(r1)
mpy y1 ,yO,A B,x:(r7)
mac -x1,xO,A y:(r4)+n4,B
sub B,A x:(r2)+,xO y:(r6)+,yO
addl A,B A,y:(r1)
move x:(rO)+,A B,y:(r7)
move y:(r4)+,B

endm

; Real input FFT based on Glenn Bergland algorithm

; Normal order input and normal order output.

;x1 =b, y1 =d, r4 ptr back to c
;A=bWr,
;B=bWr +dWi= T1 , get first index
;A=a-T1=c', get second index
;B=a+ T1 =a', PUT c' to x:b
;B=dWr, B=c PUT a'
;A=dWi-bWr= T2, B=c, r4 ptr to next c
;A= T2-c=d',xO=next Wi, yO=next Wr
;B= T2+c=b', update r4, A=next a, PUT d'
;PUT b', A=next a
;B=nextc

; Since 56001 does not support Bergland addressing, extra instruction cycles are needed
; for converting Bergland order to normal order.lt has been done in the last pass by
; looking at the bergtable.
; 'bergsincos' generates sin and cos table with size of points/4,COS in Y, SIN in X
; 'bergorder' generates table for address conversion, the size of twiddle factors is half
; of FFT output's
; 'rfft-56b' does FFT .
; Normal order input and normal order output.

Figure 8-5 Real Input FFT Based on Glenn Bergland Algorithm (Sheet 7 of 8)

; Real input data are split into two parts, the first part is put in X, the second in Y.
; Real output data are in X, imaginary output data are in Y.
; The first real output is DC
; The first imaginary output is the Nyquist frequency.
; Note that only DC to Nyquist frequency range is calculated by this algorithm
; After twiddle factors and bergtable are generated, you may overwrite 'bergorder',
; 'norm2berg' by 'rfft-56b' for saving P memory.

Performance
,-- - -----------------

Real input data points
64
128
256
512
1024

Memory (word)
, --

P memory
87

Clock cycle
1686
3846
8656
19296
49776

X memory
points/2+ (real input)
points/4+ (SIN table)
points/2+ (real output)
points/2 (bergtable)

Ymemory
points/2+ (imaginary input)
points/4+ (COS table)
pOints/2 (imaginary output)

Figure 8-5 Real Input FFT Based on Glenn Bergland Algorithm (Sheet 8 of 8)

-A-
A Accumulator ' 3-7
Aborted Instructions 7-25
ABS A-22
Absolute Address 6-14
Absolute Short 6-14
Accumulator 6-5
Accumulator Shifter 3-9
Accumulators, A and B 3-7
ADC A-24
ADD A-26
ADDl A-28
ADDR A-30
Address AlU 4-5
Address Bus Signals (AO-A 15) 8-3, 8-5
Address Buses 2-3, 2-4
Address Generation Unit (see AGU) 4-3
Address Modifier Arithmetic Types 4-14

linear modifier 4-16
modulo modifier . 4-18
reverse-carry modifier 4-22
summary 4-25

Address Operands 6-1 0
table A-6

Address Register Files 4-7
R, N, and M register restrictions A-31 0

Addressing Modes 4-3, 4-8, 6-12, A-10
address register direct 6-13
address register indirect 4-9
operators table A-8
register direct 6-13
special . 6-14
timing summary A-304

AGU
address AlU 4-5
address output multiplexers 4-6
address register 4-3, 4-7
address register restrictions 7-10
architecture 4-3
modifier register 4-5, 4-8
modifier register restrictions 7-10
offset register 4-4,4-7
offset register restrictions 7-10
register restrictions 7-10
registers 6-7
registers operands table A-5

AND A-32
ANDI A-34
Application Development System 11-6
Applications 1-7

Arithmetic Instructions 6-22
ASl A-36
ASR A-38
Assembler/Simulator 11-4
Assistance 11-16

-8-
B Accumulator 3-7
BCHG A-40
BClR A-48
Benchmark Programs B-3
Binary Operators A-7
Bit Manipulation Instructions 6-24
Bit Reverse 4-22
Bit Weighing 3-12
BSET A-56
BTST A-64
Bus Control Signals 8-3, 8-5
Buses

address 2-4
data 2-3
transfers between 2-5

Byte, length of 6-5

-c-
Carry Bit , 5-10, A-18
C-Compiler Features 11-5
CCR 5-9
CKOUT 9-10

considerations 9-13
synch with EXT Al 9-14

CKP , 9-10
ClGND 9-10
Clock Stabilization Delay 7-38
CLR A-70
ClVCC 9-10
CMP A-72
CMPM ' A-74
Condition Code Computations (table) A-19
Condition Code Register (CCR) 5-9, A-15

carry (bit 0) 5-10, A-18
extension (bit 5) 5-11, A-16
limit (bit 6) 5-11, A-16
negative (bit 3) 5-10, A-17
overflow (bit 1) 5-10, A-17
scaling (bit 7) 5-11, A-16
symbols table A-8
unnormalized (bit 4) 5-10, A-17

zero (bit 2) 5-10, A-17 memory expansion port (port A) 2-6
Condition Codes A-3 on-chip emulator (OnCE) 2-6
Convergent Rounding 3-6 phase-locked loop (PLL)

based clocking 2-6

-0-
program control unit 2-5

DataALU
double precision multiply mode 3-16

-E-
MAC 3-13 Edge Sensitive 7-16
MAC and logic unit 3-6 Edge Triggered 5-6
programming model 3-19 Electronic Bulletin Board 11-7
summary 3-19 Encodings A-311

Data ALU Accumulator Registers 3-7 condition code and address A-315
Data ALU components 3-3 double-bit register A-312
Data ALU Registers 3-3,6-6 effective addressing mode A-315

input registers 3-5 five-bit register A-314
operands table A-5 four-bit register A-313

Data Arithmetic Logic Unit (see Data ALU) ... 3-3 memory space bit A-314
Data Bus Move Field 6-5 no parallel move A-318
Data Bus Signals (00-015) 8-3, 8-5 nonmultiply instruction A-332
Data Buses 2-3 parallel instruction opcode A-330
Data Conversion 3-11 parallel move A-316
Data Organization 6-6, 6-9 program control unit registers A-315
Data Shifter/Limiter 3-9 single-bit register A-312
DEBUG A-76 six-bit register A-314
Debug Mode triple bit register A-313

entering .. 10-14 write control .. A-314
Debug Request Input (DR) 10-6 ENDDO A-98
Debug Serial Output (DSO) 10-5 ENDDO Instruction Restrictions 7-9
DEBUGcc A-78 EOR A-100
DEC A-80 Exception (Interrupt) Priorities 7-12
Design Verification Support 11-3 Exception Processing State 7-10
DFO-DF3 9-12 EXTAL
DIV A-82 synch w/CKOUT 9-14
DO A-88 Extension Bit 5-11 , A-16
DO Instruction Restrictions 7-8 External Interrupt Request Pins 5-6
DO loop control 2-5
Double Precision Multiply Mode 3-16

algorithm examples 3-16 -F-
Double Precision Multiply Mode Bit 5-13
Dr. BuB 11-7
DSP Applications 1-7
DSP Functions 1-7
DSP News 11-16
DSP56K Central Architecture

central components 2-3

Fast Interrupt 7-10,7-12
Fast Interrupt Execution 7-26
FFT Code ;..... B-3
FIR Filter B-3
Frequency Multiplication 9-3
Frequency Multiplier 9-5

address buses 2-4
address generation unit 2-5 -G-
data ALU . 2-5
data buses 2-3 Global Data Bus (GOB) 2-3

-H- fast 7-26

Hardware DO Loop 6-24, A-88
Hardware Interrupt 7-11
Hardware Interrupt Sources 7-16

IROA , 7-16
IROB 7-16
NMI 7-16
RESET 7-16

Hardware Reset
OnCE pins and 10-5

Helpline 11-16

long 7-29
Interrupt Instruction Fetch 7-24

instructions preCeding 7-25
Interrupt Masks 5-12
Interrupt Priority Levels (IPL) 5-6, 7-14
Interrupt Priority Register 7-14
Interrupt Priority Structure , 7-12
Interrupt Processing State 7-10
I nterrupt Sources 7-16

hardware 7-16
other 7-22
software 7-17

-1- trace 7-22
Interrupt Types 7-12

IIR Riter B-3 IPL 7-14
ILLEGAL A-102 IROA , ' , ... 5-6
Illegal Instruction Interrupt (III) 7-17 IRQB 5-6
Immediate Data•........ 6-14
Immediate Short 6-14
INC A-104 -J-
Instruction Descriptions A-21
Instruction Encoding A-311

Jcc A-106
JCLR A-110

Instruction Format 6-3, A-3
Instruction Groups 6-20
Instruction Guide A-3
Instruction Pipeline 5-6, 7-3

JMP '" A-116
JScc A-118
JSCLR ' A-122
JSET , A-130

restrictions . 7-8
Instruction Sequence Restrictions : .A-305
Instruction Syntax 6-3

JSR , , A-136
JSSET . A-138

Instruction Timing A-294
Instruction Timing Summary A-301 -L-
Instruction Timing Symbols A-9
Instructions

arithmetic 6-22
bit manipulation . 6-24
logical 6-23
loop 6-24
move , ... 6-26
program control . 6-27

Interrupt
fast 7-12
hardware 7-11
long 7-12
restrictions . 7-1 0
sources 7-11

Interrupt Arbitration 7-24
Interrupt Control Pins 2-6
Interrupt Controller 7-24
Interrupt Delay Possibilities 7-25
Interrupt Execution 7-26

LA 5-5, 5-17
LC 5-5,5-17
Level Sensitive 5-6, 7-16
Limit Bit 5-11 A-16
Limiting (Saturation Arithmetic)' .. 3-9
Linear Arithmetic4-14
Linear Modifier 4-16
Lock, PLL, loss of 9-13
Logic Unit 3-6
Logical Instructions 6-23
Long Interrupt 7-12
Long Interrupt Execution 7-29
Long Word 6-5
Loop Address (LA) Register 5-5, 5-17
Loop Counter (LC) Register 5-5, 5-17
Loop Flag Bit 5-13
Loop Instructions 6-24
Low Power Divider 9-3

Low Power Divider (LPD) 9-5 -0-
LSL A-144
LSR A-146
LUA A-148

Offset Reg isters4-4
OnCE 2-6, 10-3

using the OnCE 10-20
OnCE Bit Counter .. " 10-8

-M- OnCE Commands 10-19

MAC 3-6,3-13
MAC Instruction A-150
MACR A-154
Memory Breakpoint Control Bits 10-9
Memory Breakpoint Occurrence Bit 10-11
Memory Upper Limit Register 10-12
MFO-MF11 9-12
MODAlIROA 5-6
MODBIIROB 5-6
MODC/NMI 5-6
Mode Control Pins 2-6
Mode Register (MR) 5-9

double precision multiply mode (bit 14) .. 5-13
interrupt masks (bits 8 and 9) 5-12
loop flag (bit 15) 5-13
scaling mode (bits 10 and 11) 5-12
symbols table A-8
trace mode (bit 13) 5-13, 7-22

Modulo Arithmetic 4-14
Modulo Modifier 4-18

linear addressing 4-18
multiple wrap-around addressing 4-21

MOVE A-158
Move Instructions 6-26
MOVE(C) A-206
MOVE(M) A-214
MOVEP A-220
MPY A-228

OnCE Controller 10-6
OnCE Decoder 10-9
OnCE Memory Breakpoint 10-11
OnCE Pins 10-3
OnCE Serial Interface 10-6
OnCE Status and Control Register 10-9
On-Chip Emulator (OnCE) 2-6
Opcode '" 6-3
Opcode Field 6-5
Operands ; 6-3

accumulator 6-5
byte 6-5
long word 6-5
miscellaneous A-7
short word 6-5
symbols for 6-9
word 6-5

Operating Mode Register (OMR) 5-5, 5-14
stop delay (SO) bit 7-38

Operation Word 6-3
Operators

table, binary A-7
table, unary A-7

Optional Effective Address Extension Word ... 6-3
OR A-244
OR(I) " A-246
Overflow Bit 5-10, A-17
Overflow Protection 3-8

MPYR A-232
-p-

-N- Parallel Move Descriptions A-20, A-160

NEG A-236
Negative Bit 5-10, A-17
NMI 5-6,7-17
Nonmaskable Interrupt (NMI) " 7-17
NOP A-238
NORM A-240
Normal Processing State 7-3
NOT A-242

address register update A-172
immediate short data move A-164
long memory data move A-198
no parallel data move A-162
register and Y memory data move A-192
register to register data move A-168
X memory and register data move A-180
X memory data move A-17 4
XY memory data move A-202
Y memory data move A-186

PC " .. '" '" 5-5
PCAP 9-10

PGND 9-9
Phase Detector 9-4
Phase-Locked Loop (PLL) 2-6, 9-3
PINIT 9-10
PLL . 2-6, 9-3

frequency multiplier 9-5
hardware reset and 9-11
introduction 9-3
loss of lock 9-13
low power divider 9-5
operating frequency 9-11
operation while disabled 9-12
phase detector 9-4
PLL control register 9-5
stop processing state and 9-13
voltage controlled oscillator (VCO) 9-5

PLL Control Register 9-5
division factor bits 9-12
multiplication factor bits 9-12

PLL Pins 9-9
ckout 9-10
ckp '. 9-10
clgnd 9-10
clvcc 9-10
pcap 9-10
pgnd 9-9
pinit 9-10
plock 9-10
pvcc 9-9

PLOCK 9-10
Port A 2-6, 8-3
Port A Interface 8-3
Port A Signals 8-3

bus control 8-5
data bus 8-5
Port A address 8-5

Port A Wait States 8-6
Power Consumption 7-37
Processing States 7-3

interrupt (exception) 7-10
normal , 7-3
stop 7-37
wait , " ., '" 7-36

Program Address Bus (PAB) 2-4
Program Address Generator (PAG) 5-5
Program Control Instructions 6-27
Program Control Registers

OMR and SR 6-8
Program Control Unit 5-3

loop address (LA) 2-6
loop counter (LC) 2-6

operating mode register (OMR) 2-6
program address generator 2-5, 5-5
program counter (PC) 2-6
program decode controller. 2-5, 5-5
program interrupt controller 2-5, 5-6
registers operands table A-6
stack pointer (SP) 2-6
status register (SR) 2-6
system stack 2-5, 5-3

. Program Counter (PC) 5-5, 5-8
Program Data Bus (PDB) 2-3
Program Decode Controller 5-5
Program Interrupt Controller 5-6
Programming Model

AGU 4-6
data ALU 3-19
program control unit 5-8
summary 5-17

PVCC 9-9

-R-
Read/Write Controls 8-5
References

memory 6-11
operand 6-11
program 6-11
register 6-11
stack 6-11

Register Direct 6-13
Register Indirect4-8
Register References 6-11
REP Instruction 5-5, A-248
RESET Instruction A-256
RESET Pin 5-6
Reset Processing State

entering 7-33
leaving 7-33
PLL and 9-11

Reverse-Carry Arithmetic 4-14
Reverse-Carry Modifier4-22
RND A-258
ROL A-262
ROR A-264
Rounding 3-10
RTI A-266
RTI and RTS Instruction Restrictions 7-9
RTS A-268

-5-
Saturation Arithmetic 3-9
SBC A-270
Scaling 3-10
Scaling Bit 5-11, A-16
Scaling Mode Bits 5-12
SD Bit " 7-38
Short Jump 6-14
Short Word 6-5
Sign Extension 3-8
Simulator Features 11-5
Software Debug Occurrence Bit 10-11

. Software Interrupt Sources 7-17
illegal instruction (III) 7-18
SWI 7-17

SP 5-5,5-15
SS '" ... " .. 5-5
Stack Pointer (SP) Register 5-15

restrictions . 7-10
Stack Pointer Register (SP) 5-5
Status Register (SR) 5-5, 5-9

condition code register 5-9
mode register 5-9

Stop Cycles 7 -3~
Stop Delay Bit 7-38
STOP Instruction 7-37, A-274
Stop Processing State 7-37

debug request during 10-15
PLL and 7-41,9-13

SUB A-276
SUBL A-278
SUBR A-280
Support 11-3
SWllnstruction A-282
Syntax 6-3
System Stack (SS) 5-3, 5-5, 5-14

system stack high (SSH) 5-14
system stack high (SSH) restrictions ... 7-10
system stack low (SSL) 5-14
system stack low (SSL) restrictions 7-10

-T-
Tcc A-284
Tech nical Assistance 11-16
TFR " A-288
Timing Calculations A-294
Timing Skew 9-3
Trace Mode Bit 5-13,10-10
Trace Occurrence Bit 10-11

Tracing
OnCE trace logic 1 0-13

Tracing (DSP56000/56001 only) 7-22
Training 11-17
TST A-290

-u-
Unary Operators A-7
Unnormalized Bit 5-10, A-17
User Support 11-3

-v-
V-bit A-17
Voltage Controlled Oscillator (VCO) 9-5

-w-
WAIT Instruction 7-36, A-292
Wait Processing State 7-36

debug request during 10-15
PLL and 9-14

Word
length of 6-5
operation 6-3
optional effective address extension 6-3

-x-
X Address Bus (XAB) 2-4
X Data Bus (XDB) 2-3

-y-

Y Address Bus (YAB) 2-4
Y Data Bus (YDB) 2-3

-z-
Zero Bit 5-1 0, A-17

DSP56K FAMILY INTRODUCTION

DSP56K CENTRAL ARCHITECTURE OVERVIEW _

DATA ARITHMETIC LOGIC UNIT

ADDRESS GENERATION UNIT

PROGRAM CONTROL UNIT

INSTRUCTION SET INTRODUCTION

PROCESSING STATES

PORTA

PLL CLOCK OSCILLATOR

ON-CHIP EMULATION (OnCE) _

ADDITIONAL SUPPORT _

INSTRUCTION SET DETAILS

BENCHMARK PROGRAMS

INDEX

DSP56K FAMILY INTRODUCTION

_ DSP56K CENTRAL ARCHITECTURE OVERVIEW

DATA ARITHMETIC LOGIC UNIT

ADDRESS GENERATION UNIT

_ PROGRAM CONTROL UNIT

_ INSTRUCTION SET INTRODUCTION

_ PROCESSING STATES

PORTA

_ PLL CLOCK OSCILLATOR

_ ON-CHIP EMULATION (OnCE)

ADDITIONAL SUPPORT

INSTRUCTION SET DETAILS

BENCHMARK PROGRAMS

INDEX
1ATX31154-0 Prin1ed in USA 10/1192 BANTA CO. MOTa #13 20,000 DSP YGAVAA

