MOGSTEK

Z80 MICROCOMPUTER SYSTEMS

Operations Manual

FLP-80DOS
FLEXIBLE DISK

o OPERATING SYSTEM V2.1

FLP-80D0S Operations Manual

VERSION 2.1

SECTION
NUMBER

TABLE OF CONTENTS

PARAGRAPH
NUMBER

1-10
1-13
1-15
1-16

1-18
1-19

1-20
1-21
1-23

1-27
1-31

1-36
1-41

TITLE

PART 1 USER INFORMATION

FLP-80D0OS GENERAL DESCRIPTION

INTRODUCTION
MONITOR
DESIGNER'S DEVELOPMENT
TOOL-DDT
TEXT EDITOR-EDIT
Z80 ASSEMBLER-ASM
LINKER-LINK
PERIPHERAL INTERCHANGE
PROGRAM-PIP
I1/0 SYSTEM
OTHER PROGRAMS
REFERENCE DOCUMENTS
DEFINITION OF SYMBOLS USED
IN THIS MANUAL
CONSOLE INTERACTION
ENTERING DATA ON THE
CONSOLE
CONSOLE ESCAPE
CONCEPT OF DATASET
CONCEPT OF LOGICAL UNIT
NUMBERS
DATE FEATURE
FLEXIBLE DISK HANDLING
PROCEDURE
START UP PROCEDURES
MEMORY AND I/0 SUMMARY

PAGE
NUMBER

e e e
1
O W O Oy O

1-10
1-12

1-14
1-14
1-16

1-18
1-21

ii

SECTION PARAGRAPH
NUMBER - NUMBER

1-42
1-44

2-1
2-3
2-4
2-6
2-7
2-9
2-12
2-13
2-14
2-17
2-20
2-23
2-26
2-29
2-32
2-35
2-38
2-41
2-45

TABLE OF CONTENTS cont.

TITLE

MEMORY MAP
PORT MAP

MONITOR

INTRODUCTION

OPERATIONS SUMMARY

SYSTEM RESET

POWER UP SEQUENCE
- MONITOR COMMAND SUMMARY
IMPLIED RUN COMMAND

COMMAND ENTRY
DEFINITIONS
ASSIGN COMMAND
BEGIN COMMAND
CLEAR COMMAND
DDT COMMAND
DTABLE COMMAND
DUMP COMMAND
GET COMMAND
INIT COMMAND
RTABLE COMMAND
SAVE COMMAND
CONSOLE ESCAPE

INTRODUCITON
ENTERING PIP

PAGE
NUMBER

1-21
1-23

[]
S H W NN R

(ARSI ST DO T R AR AT S AS A A ST A ST A CRE D SR A C AR AN
] 1
X NN Oy O

NN
1 1
O o

2-9
2-10
2-10

PERIPHERAL INTERCHANGE PROGRAM (PIP)

3-1
3-1

SECTION PARAGRAPH
NUMBER NUMBER

3-5

3-9

3-12
3-18
3-19
3-23
3-27
3-34
3-37
3-41
3-44

4-11

4-13

4-15

4-16
4-17

TABLE OF CONTENTS cont

TITLE

PIP COMMAND SYNTAX
APPEND COMMAND
COPY COMMAND
DATE COMMAND
DIRECT COMMAND
ERASE COMMAND
FORMAT COMMAND
INIT COMMAND
RENAME COMMAND
STATUS COMMAND
QUIT COMMAND

FLP-80D0OS TEXT EDITOR (EDIT)

INTRODUCTION
CAPABILITIES
SOFTWARE CONFIGURATION
DEFINITIONS
USING THE TEXT EDITOR-
CONSOLE INTERACTION
USING THE TEXT EDITOR-
ENTERING COMMANDS
USING THE TEXT EDITOR-FIRST
STEPS
USING THE TEXT EDITOR-
BASIC COMMANDS

I - INSERT

An - ADVANCE

PAGE
NUMBER

iv

SECTION PARAGRAPH
NUMBER NUMBER

4-19
4-20
4-21

4-22
4-23

4-24

4-25
4-26
4-27

4-28
4-29

4-30

4-31
4-32
4-33
4-34
4-36
4-41

5-1

TABLE OF CONTENTS cont

TITLE

Bn - BACKUP

Dn - DELETE

Ln - GO TO RECORD
NUMBER n

Vn - VERIFY

TEXT EDITOR ADVANCED
COMMANDS

Cn /stringl/string2/ -

CHANGE
En - EXCHANGE

Fn - PRINT FLAG OPTION
G dataset - GET RECORDS

FROM DATASET
Mn-MACRO

Pn - dataset - PUT N RE-

CORDS TO DATASET
Sn /source image/ -
SEARCH
T - INSERT AT TOP
Wn - WRITE
Xn - EXECUTE
EDITING LARGE FILES
EDITOR MESSAGES
SAMPLE EDITING SESSION

FLP-80DOS ASSEMBLER (ASM)

INTRODUCTION

PAGE
NUMBER

4-10
4-10
4-11

4-11
4-12

4-12

4-13
4-14
4-14

4-15
4-15

4-16

4-17
4-17
4-17
4-18
4-18
4-20

5-1

SECTION PARAGRAPH
NUMBER NUMBER

5-5

5-9

5-11
5-12
5-13
5-14
5-15
5-16
5-20
5-21
5-23
5-25
5-27
5-33
5-36
5-37

5-38
5-40
5-42
5-44
5-46
5-47

5-49

5-50

TABLE OF CONTENTS cont

TITLE

DEFINITIONS
ASSEMBLY LANGUAGE SYNTAX
DELIMITERS
LABELS
OPCODES
PSEUDO-0PS
OPERAND
GENERIC OPERAND
COMMENTS
0BJECT OUTPUT
ASSEMBLY LISTING OUTPUT
ABSOLUTE MODULE RULES
RELOCATABLE MODULE RULES
GLOBAL SYMBOL HANDLING
GLOBAL SYMBOL BASIC RULES
GLOBAL SYMBOL ADVANCED
RULES
USE OF THE "NAME" PSEUDO-OP
USING THE ASSEMBLER
ASSEMBLER OPTIONS
ERROR MESSAGES
ADVANCED OPERATIONS
PASS 2 ONLY OPERATION
(SINGLE PASS OPERATION)
ASSEMBLING SEVERAL
SOURCE MODULES TOGETHER
SAMPLE ASSEMBLY SESSION

PAGE
NUMBER

5-1
5-3
5-3
5-3
5-6
5-6
5-11
5-11
5-15
5-17
5-17
5-17
5-18
5-19
5-21
5-22

5-23
5-24
5-25
5-26
5-26
5-26

5-27

5-27

Vi

SECTION PARAGRAPH
NUMBER NUMBER

6-1
6-3
6-8
6-9
6-10
6-11
6-13
6-15
6-17

TABLE OF CONTENTS cont

TITLE

LINKER

INTRODUCTION
LINKER COMMAND
A OPTION
C OPTION
L OPTION
S OPTION
LINKER OPERATION
LINKER RESTRICTIONS
EXAMPLES OF LINK COMMAND

DDT-80 DEBUG SYSTEM

INTRODUCTION

SOFTWARE CONFIGURATION
COMMAND SUMMARY

CONVENTIONS

PREPARATION

DESCRIPTION OF DDT COMMANDS
COMMAND FORMAT

OPERANDS

OPERAND EXAMPLES

COMMAND TERMINATORS

SPECIAL KEYS

ERRORS

B-BREAKPOINT COMMAND

C-COPY MEMORY BLOCK COMMAND
E-EXECUTE COMMAND

PAGE
NUMBER

OO O OO0 O o0 OO o0 OO O
1 1 1
SO oW W N e e

7-1
/-1
7-6
7-6
7-8
7-8
/-8
7-9
7-10
7-11
7-11
7-12
7-13
7-16
7-17

SECTION
NUMBER

TABLE OF CONTENTS cont

PARAGRAPH
NUMBER

7-48

7-51

7-54

7-57

7-68

7-71
71-74

1-717
7-80

7-84
7-87

7-91

TITLE

F-FILL MEMORY COMMAND
H-HEXADECIMAL ARITHMETIC
L-LOCATE 8-BIT PATTERN
COMMAND

M-DISPLAY AND UPDATE

MEMORY OR REGISTER COMMAND

M-TABULATE MEMORY
COMMAND

0-SET OFFSET COMMAND
P-DISPLAY AND UPDATE
PORTS COMMAND

Q-QUIT COMMAND

R-DISPLAY CPU REGISTERS
COMMAND

V-VERIFY MEMORY COMMAND
W-WALK THROUGH A PROGRAM
COMMAND

DEBUGGER ESCAPE (CNTL-C)

PART 2
TECHNICAL INFORMATION

RDCHR AND WRCHR SUBROUTINES
INTRODUCTION
RDCHR - READ ONE BYTE
CALLING SEQUENCE
ENTRY PARAMETERS
EXIT PARAMETERS

PAGE
NUMBER

7-18

7-19

7-20

7-21

7-24

71-25
71-26

71-27
7-28

7-30
7-31

7-32

viii

TABLE OF CONTENTS cont

SECTION PARAGRAPH PAGE

NUMBER NUMBER TITLE NUMBER
8-7 OPERATION 8-2
8-9 WRCHR - WRITE ONE BYTE 8-2
8-10 CALLING SEQUENCE 8-2
8-11 ENTRY PARAMETERS 8-2
8-12 EXIT PARAMETERS 8-3
8-13 OPERATION 8-3
8-15 DDT OPERATION 8-3

9 INPUT/OUTPUT CONTROL SYSTEM (IOCS)

9-1 INTRODUCTION 9-1
9-3 VECTOR DEFINITION 9-1
9-6 LUNIT 9-4
9-9 DVCE 9-5
9-10 UNIT 9-6
9-11 FNAM 9-6
9-12 FEXT 9-6
9-13 VERS 9-7
9-14 USER 9-7
9-15 RQST 9-7
9-16 FMAT 9-8
9-23 HADDR 9-10
9-24 ERRA 9-10
9-25 CFLGS 9-11
9-32 SFLGS 9-13
9-33 ERRC 9-13
9-34 PBFFR 9-13

9-35 UBFFR 9-13

SECTION
NUMBER

10

TABLE OF CONTENTS cont

PARAGRAPH

NUMBER

9-36
9-37
9-38
9-39
9-40
9-42
9-43
9-46
9-52
9-55
9-59
9-60

9-66

10-1
10-3
10-5

10-6
10-8

10-9

10-10
10-12
10-14

TITLE

USTZE

NREC

HSCR

ISCR
HOW TO USE I0CS

SET UP A VECTOR
DEVICE HANDLER REQUIREMENTS
PHYSICAL I/0 BUFFERS
SYSTEM INTERRUPT TABLE
I0CS MEMORY MAP
WRITING A DEVICE HANDLER
CHARACTER-ORIENTED
DEVICES
RECORD-ORIENTED DEVICES

FLOPPY DISK HANDLER (FDH)

INTRODUCTION

COMMUNICATION

DOS RELATED VECTOR
PARAMETERS

CALLING CONVENTIONS
GENERAL PURPOSE DISK MACRO
REQUESTS

COMPLETE DOS REQUEST CODES
ERROR RETURN

DIRECTORY

DISK FORMAT

ix

PAGE
NUMBER

9-13
9-14
9-14
9-14
9-14
9-14
9-16
9-17
9-18
9-19
9-21
9-21

9-23

10-1
10-1
10-2

10-3
10-3

10-6

10-10
10-13
10-14

SECTION
NUMBER

11

12

TABLE OF CONTENTS cont

PARAGRAPH

NUMBER

10-17
10-18
10-19

10-20

11-1
11-3
11-5
11-7
11-9

11-11
11-13
11-15

12-1
12-3
12-4
12-5

12-6
12-7
12-8

TITLE

SECTOR AND TRACK FORMATS
DISKETTE - IDENTIFICATION
NAME OF DISKETTE AND SPACE
ALLOCATION

DATA (FILES)

DISK CONTROLLER FIRMWARE (DCF)

INTRODUCTION

SOFTWARE CONFIGURATION
CONTROLLER OVERVIEW

DISK CONTROLLER REQUESTS
DISK CONTROLLER ERROR
RETURN CODES

LINKED FILE LOADER
INTERACTIVE BOOT PROCESS
INTERACTIVE SAVE PROCESS

I/0 HANDLERS

INTRODUCTION

CR - CARD READER

CP - CENTRONICS LINE PRINTER
LP - DATA PRODUCTS LINE
PRINTER

PR - PAPER TAPE READER

PP - PAPER TAPE PUNCH

TI - SILENT 700 CASSETTE
INPUT

PAGE
NUMBER

10-18
10-18
10-18

10-19

11-1
11-1
11-1
11-3
11-4

11-5
11-5
11-6

12-1
12-2
12-4
12-5

12-6
12-7
12-8

SECTION
NUMBER

13

TABLE OF CONTENTS cont

PARAGRAPH

NUMBER

12-9
12-10
12-11

12-12

13-1
13-3
13-6
13-10

13-11
13-12

13-13
13-14
13-15
13-16

13-17

13-18
13-19

13-20

TITLE

TK - KEYBOARD

TT - CONSOLE QUTPUT

TO - SILENT 700 CASSETTE
OUTPUT

TR - TELETYPE PAPER TAPE
READER

SYSTEM ROUTINES

INTRODUCTION

PROM RESIDENT ROUTINES

RAM RESIDENT ROUTINES

ASBIN - CONVERT ASCII DIGIT
TO BINARY

ASTCHK-ASTERISK CHECK

CRLF - OUTPUT CARRIAGE RETURN

AND LINE FEED

CSI - COMMAND STRING
INTERPRETER

CSISYN-JTASK CODE 7
CSIPAR-JTASK CODE 6

RENTRY - DDT-80 RE-ENTRY
ECHO - INPUT AND ECHO A
CHARACTER

EH - SYSTEM ERROR HANDLER
GETHL - GET A LINE OF INPUT
FROM CONSOLE

GETVEC - GET DEFAULT VECTOR

X i

PAGE
NUMBER

12-9
12-10
12-12

12-13

13-1
13-1
13-2
13-4

13-5
13-6

13-7
13-8
13-9
13-12

13-13

13-14
13-16

13-17

xii

SECTION
NUMBER

14

TABLE OF CONTENTS cont

PARAGRAPH

NUMBER

13-21

13-22

13-23
13-24

13-25
13-26
13-27

13-28
13-29

13-30
13-31

14-1
14-3
14-7

14-12
14-13

TITLE

ADDRESS

MINDIS - DISABLE MINIMAL
LISTENER

MINEN - ENABLE MINIMAL
LISTENER

MRENT - MONITOR RE-ENTRY
PACC - PRINT ASCII CONTENTS
OF THE ACCUMULATOR

PTXT - PRINT TEXT STRING
PVECT - PRINT VECTOR DATASET
REBOOT - SYSTEM REBOOT
SEQUENCE

SCAN - INTERACTIVE SCAN
SEARCH - FIND DIRECTORY
ENTRY OF A FILE

SPACE - OUTPUT A SPACE
SRCHR, SRCHU - SEARCH
MNEMONIC TABLES

BATCH MODE OPERATION

INTRODUCTION
PRINCIPLES OF OPERATION
BATCH COMMAND SEQUENCE
SYNTAX

EXAMPLE 1

EXAMPLE 2

PAGE
NUMBER

13-18

13-19

13-20
13-21

13-22
13-23
13-24

13-25
13-26

13-27
13-28

14-1
14-1
14-2

14-3
14-4

Xiii

TABLE OF CONTENTS cont

SECTION PARAGRAPH PAGE
NUMBER NUMBER TITLE NUMBER
15 SYSTEM GENERATION
15-1 INTRODUCTION 15-1
15-4 SYSTEM GENERATION PROCEDURE 15-1
(SYSGEN)
15-5 OPERATING SYSTEM MODULES 15-4
15-6 STANDARD I/0 DRIVERS 15-5
15-10 ADDING NEW I/0 DRIVERS 15-6
15-12 CHANGING THE DEFAULT LOGICAL 15-7
UNITS
15-14 CHANGING THE NUMBER OF DISK 15-7
UNITS IN THE SYSTEM
15-16 SYSTEM GENERATION OF A 64K 15-7

OPERATING SYSTEM

APPENDIX

Z80 OPCODES

MOSTEK OBJECT OUTPUT DEFINITION
SCRATCHPAD MEMORY MAP
TESTING/DIAGNOSTICS

FLP-80DOS ERROR DICTIONARY
SYSTEM LINKAGES

DISK RECOVERY UTILITY

o M m O o W X

Xiv

FIGURE
NUMBER

1
_ N R N = 0NN O

(o2 TN S 2 BN & B R S L)
1

LIST OF FIGURES

TITLE

DEVELOPMENT SYSTEM PROGRAMS
FLP-80DOS SYSTEM

INPUT/OUTPUT LOGICAL UNIT NUMBERS
DISKETTE

RELATIONSHIP OF SYSTEM PROGRAMS IN
FLP-80DOS

STANDARD FLP-80DOS MEMORY MAP
0EM-80 PORT ALLOCATION

FLP-80DOS COMMAND SUMMARY

EDITOR MEMORY MAP

LOGICAL UNIT NUMBER STRUCTURE
ASSEMBLER MEMORY MAP

LOGICAL UNIT NUMBER STRUCTURE
EXAMPLE LOAD MAP, GLOBAL CROSS RE-
FERENCE, AND GLOBAL SYMBOL TABLE
DDT USER REGISTER MAP

DDT DATA PATHS

EXAMPLE OF RDCHR AND WRCHR

10CS MEMORY MAP

EFFECTS OF FDH COMMANDS

FLP-80D0OS V2.1 DISKETTE FORMAT
SAMPLE SYSTEM GENERATION

EXTERNAL SYMBOL LINK LIST

PAGE
NUMBER

1-3
1-8
1-15
1-17
1-20

1-22
1-24
1-25
4-3
4-4
5-4
5-5
6-8

7-3
/-4
8-5
9-20
10-9
10-16
15-8
B-5

TABLE
NUMBER

LIST OF TABLES

TITLE

SUMMARY OF FLP-80D0S EDITOR COMMANDS
ALLOWED CHARACTERS

GENERIC OPERANDS

ALLOWED OPERATORS AND HIERARCHIES
IN FLP-80D0OS ASSEMBLER

MNEMONICS RECOGNIZED BY DDT-80
DDT COMMAND SUMMARY

VECTOR DEFINITION

FLP-80D0OS DEVICE MNEMONICS
GENERAL PURPOSE REQUESTS

FORMAT REQUEST CODES

PHYSICAL BUFFER ALLOCATION

XV

PAGE
NUMBER

4-22
5-9

5-13
5-16

W W W W W N
1
— 00 N Ol W~ o

NOTE: Certain sections of this manual refer to specific hardware
configurations existing on the MOSTEK AID-80F Development System.
In the future, FLP-80D0S will also be implemented on other
hardware configurations. Since there will be minor differences
in hardware implementation (e.g. I/0 port numbers) the wuser
should refer to the appropriate hardware manual for information
concerning his system configurations.

PART 1

USER INFORMATION

1-1

SECTION 1

FLP-80DOS

GENERAL DESCRIPTION

1-1. INTRODUCTION
NOTE: This section should be read in its entirety. It discusses
concepts which are used throughout the system.

1-2. FLP-80D0OS 1is the MOSTEK Disk Operating System for the Z80.
It is a software package designed to work with the following
minimum hardware configuration:

1. Z80 CPU with a minumum of 16K Bytes of RAM

2. 4K Byte EPROM and a 256 Byte Scratchpad RAM

3. Floppy Disk Interface and 1 to 4 flexible disk units.

1-3. FLP-80D0S consists of development system software and OEM
software. The development system programs are diagrammed in
Figure 1-1. Each of these programs is discussed in detail in the
next 6 sections of this manual. These programs provide
state-of-the-art software for developing Z80 programs. The
complete FLP-80D0S system 1is diagrammed 1in Figure 1-2. The
component parts of the system establish a firm basis for OEM
products. This diagram is discussed in detail in Sections 8
through 13 of this manual. The following programs are supplied
in the FLP-80D0S package:

1. Monitor

2. Debugger

3. Text Editor

4, 180 Assembler

5. Peripheral Interchange Program

1-2

6. Linker .
7. A generalized I/0 system for peripherals

These programs provide state-of-the-art software for developing
Z80 programs as well as establishing a firm basis for OEM
products.

1-3

FIGURE 1-1. DEVELOPMENT SYSTEM PROGRAMS
FLP-80 DOS
MONITOR
|
] x x
[\
ER
DEBUGGER TEXT 280 P R R e LINKER
o) EDITOR ASSEMBLER TERCHAN NG
(EDIT) (ASM) (PIP)

1-4

1-4, MONITOR. The Monitor provides a user interface from the
console to the rest of the software. The user can load and run
system programs, such as the Assembler, using one simple command.
Programs in binary format can be loaded into and dumped from RAM.
A11 I1/0 is done via channels which are identified by Logical Unit
Numbers. The Monitor allows any software device handler to be
assigned to any Logical Unit Number. Thus, the software provides
complete flexibility in configuring the system with different
peripherals.

1-5, DESIGNER'S DEVELOPMENT TOOL - DDT. The DDT debugger
program is supplied in PROM. It provides a complete facility for
interactively debugging relative and absolute Z80 programs.
Standard commands allow displaying and modifying memory and CPU
registers, setting breakpoints, and executing programs.
Additional commands allow wuse of the MOSTEK AIM-80 to
interactively debug a target system. Mnemonics are used to
represent Z80 registers, thus simplifying the command language.

1-6. TEXT EDITOR - EDIT. The FLP-80D0S Editor permits random
access editing of ASCII character strings. The Editor works on
blocks of characters which are rolled in from the disk. It can
be used as a line or character-oriented editor. Individual
characters may be located by position or context. Each edited
block is automatically rolled out to disk after editing.
Although the Editor is used primarily for creating and modifying
280 assembly language source statements, it may be applied to any
ASCII text delimited by "carriage returns."

1-7. Z80 ASSEMBLER - ASM. The FLP-80D0S Assembler reads Z80
source mnemonics and pseudo-ops and outputs an assembly listing
and object code. The assembly listing shows address, machine
code, statement number, and source statement. The code is in
industry-standard, hexadecimal format modified for relocatable,

1-5

linkable assemblies. The Assembler supports conditional
assemblies, global symbols, relocatable programs, and a printed
symbol table. It can assemble any length program, limited only
by a symbol table size which is dependent on available RAM.
Expressions involving arithmetic and Tlogical operations are
allowed. ATthough normally used as a two-pass assembler, the
Assembler can also be run as a single-pass assembler.

1-8. LINKER-LINK. The Linker provides capability for Tlinking
object modules together and creating a binary (RAM image) file on
disk. A binary file can be Tloaded using the Monitor GET or
IMPLIED RUN command. Modules are linked together using global
symbols for communication between modules. The Linker produces a
global symbol table and a global cross-reference table which may

be 1listed on any output device. The Linker also provides a
library search option for all global symbols undefined after the
specified object modules are processed. If a symbol s

undefined, the Linker searches the disk for an object file having
the filename of the symbol. If the file is found, it is opened
and Tinked with the main module in an attempt to resolve the
undefined symbol.

1-9. PERIPHERAL INTERCHANGE PROGRAM - PIP. The Peripheral
Interchange Program provides complete file maintenance facilities
for the system. In addition, it can be used to copy information
from any device or file to any other device or file. The command
language is weasy to wuse and resembles that wused on DEC
minicomputers.

1-10. I/0 SYSTEM. The I/0 software, which is the heart of the
FLP-80D0S development system, can be wused directly in O0EM
applications. The software consists of two programs which
provide a complete disk-handling facility.

1-6

1-11. The first package is called the I/0 Control system (IOCS).
This is a generalized blocker/deblocker which can interface to
any device handler. Input and output can be done via the IOCS in
any of four modes:
1. single byte transfer.
2. line at a time, where the end of a line is defined by
carriage return.
3. multibyte transfers, where the number of bytes to be
transferred is defined as the logical record length.
4, continuous tranfer to end-of-file, which is used for
binary (RAM-image) files.

The I0CS provides easy application of I/0 oriented packages to
any device. There is one entry point, and all parameters are
passed via a vector defined by the calling program. Any given
device handler defines the physical attributes of its device
which are, in turn, used by the IOCS to perform blocking and de-
blocking.

1-12. The Floppy Disk Handler (FDH) interfaces from the IOCS to
a firmware controller for up to 4 floppy disk units. The FDH
provides a sophisticated command structure to handle advanced OEM
products. The firmware controller interfaces to MOSTEK's Disk
Controller Board. The disk format 1is soft-sectored. The
software directly handles double-sided disks. The FDH has
advanced error recovery capability. It supports a bad sector map
and an extensive directory which allows multiple users. The file
structure 1is doubly 1linked to increase data integrity on the
disk. A bad file can be recovered from either its start or end.

1-13. OTHER PROGRAMS

1-14. MOSTEK offers

1-7

number of programs which work with

FLP-80D0OS. These programs are purchasable options for the Micro-
computer. The following programs will be of interest to many

users:
FZCASM

LAIM-T72

MOSTEK LIBRARY

BASIC

FORTRAN 1V

MACRO-80

MACRO-70

-The 3870/F8 Cross Assembler allows as-
sembly of all F8 opcodes on the
AID-80F. The FLP-80D0OS Text Editor and
Linker can be used with the Cross As-
sembler to produce programs which can
be debugyged.

-This 3870 family debugger program is
to be used with the MOSTEK AIM-72 board
for debugging 3870, 3872, or 3876
programs.

-The Library consists of a set of
utilities which are wused at Mostek.
Programs include a word processor,
Lawrence Livermore Laboratory BASIC
(oriented to controller applications),
a disk recovery utility, an 8080 to 280
source translator, a hexadecimal dump
utility, and others. Complete source
files are included.

-MOSTEK BASIC features string and array
manipulation, random access disk, and a
complete set of standard BASIC com-
mands.

-MOSTEK FORTRAN is ANSI X3.3(1966)
standard FORTRAN IV. It features an
extensive run-time library.

Powerful Macro Assembler for Z80.

Powerful Macro Assembler for 3870/F8.

1-8

FIGURE 1-2

. FLP-80DOS SYSTEM

FLP-80DOS
MONITOR
\
A |
PERIPHERAL
DEBUGGER £DITOR ASSEMBLER| [NTERCHANGE LINKER APPLIGATION
(DDT) PROGRAM (LINK)
(EDIT) (ASM) (PIP) PROGRAM
[
Y
170 CONTROY
SYSTEM
(10CS)
T 17
+ + |
CONSOLE LINE FLOPPY DISK OTHER
DEVICE PRINTER HANDLER DEVICE
HANDLER HANDLER (FDH) HANDLERS
DISK
HARDWARE HARDWARE
CONTROLLER
UART PIO FIRMWARE
\
LINE FLP-80
CONSOLE ;Jﬂﬂfiii’ HARDWARE
FLOPPY
DISK
UNITS

1-9

1-15. REFERENCE DOCUMENTS

AID-80F Operations Manual MK78569
SDB-80 Software Development Board Operations MK78544
Manual

SDB-80E (European version) MK78548
FLP-80 Hardware Operations Manual MK78560
FLP-80E (European version) MK78561
RAM-80B Operations Manual MK78545
RAM-80BE (European Version) MK78555

DSS-80 Development System Software Program Listing MK78588
(OEM users only - restricted distribution)

DOPS-80 Disk Operating Software Program Listing MK78589
(OEM users only - restricted distribution)

1-16. DEFINITION OF SYMBOLS USED IN THIS MANUAL

1-17. The following conventions are used throughout this manual:
A11 user input from the console device is underlined.
A11 hexadecimal numbers are identified by a subscript H,
except where an example of program input or output is
given.
(CR) means carriage return.
aaaa means any hexadecimal number.

1-18. CONSOLE INTERACTION

1-19. ENTERING DATA ON THE CONSOLE. Each line of input from the
console is terminated with a carriage return in FLP-80D0S. The
maximum length of a line of input is 160 characters. Before end-
ing a line with carriage return, the user can modify the line
with the following keys (Note that these standards do not apply
to DDT, the debugger):
1. TAB (ASCII 09y) -move the console cursor over
mod-8 spaces. Tabs are set
every 8 spaces.

1-10

2. RUBOUT (ASCII 7Fy) -delete the previous character
entered. A blackslash is
printed on either side of the

N?‘ characters which are deleted.
Ry . BACKSPACE (ASCII 08y) -delete the previous char-
gx acter. It is erased from the

(CRT) screen by overprinting
with a

blank, and the cursor is moved
backward. Backspacing over a
tab character will back the
cursor to the correct screen
position.

4. CNTL-U (ASCII 15y) -delete the current line of
input and reprompt for an-
other Tine.

5. SPACE BAR -used to alternately start and
stop Tisting to console device.
This is useful when a long file
is being spooled to a CRT
screen and the user wishes to
view the file a page at a time.

1-20. CONSOLE ESCAPE ("Minimal Listener"). Any executing
program in FLP-80D0S can be interrupted from the console device.
(This feature 1is inhibited while DDT, the debugger, is being
used.) The following key inputs are allowed:

1. CNTL-X (ASCII 18y) - Monitor Escape. Entering this
code from the console keyboard
immediately reboots the system
software and returns control to
the FLP-80D0OS Monitor. After a
brief delay while the disk s

1-11

accessed, the Monitor prompt
will appear on the console. The
Monitor prompting character is a
$. The Monitor escape cannot be
used during use of the Debugger
(DDT) or the Editor (EDIT).

NOTE: Monitor Escape is designed to provide an immediate reboot
of the Monitor without finishing the currently executing program.
Any output files which were open when the Monitor Escape was
performed will not be closed. This means that those files will
have no information stored in them.

2. CNTL-C (ASCII 03j)- Debugger Escape. Entering this
code from the console keyboard
immediately returns control to
the debugger (DDT). The current
280 registers will be printed on
the console, and DDT will wait
for a command. To resume ex-
ecution, enter a dot (.), then
the command 'E'. For further de-
tails on using DDT as a debugging
aid, please see Section 7 of this
manual. This escape cannot be
used if DDT 1is called up by the
Monitor, or during use of the
Editor.

NOTE Debugger Escape is designed to allow a program to be sus-
pended by the user. It also provides a software asynchronous
interrupt which is useful in debugging programs. It is not ac-
tive during usage of DDT, the debugger (i.e., the user cannot use

1-12

Debugger Escape when using DDT). It may be used any number of
times during the execution of a program.

1-21. CONCEPT OF DATASET

1-22. A dataset is a logical grouping of data associated with an
I1/0 device. Throughout FLP-80D0S a dataset is identified as fol-
lows:

DEV:FILENAME.EXTLUIC]

where:

DEV = The device mnemonic consisting of two letters and a
decimal digit terminated by a colon. The Tetters
identify the device and the digit identifies the unit
(esge,DK1: is disk unit 1). If no digit is entered,
unit 0 is assumed. [f the device mnemonic itself
does not appear, the system disk (DKO:) 1is assumed.
The following devices can be handled by FLP-80DOS
supplied to you:

DEVICE NAMES DESCRIPTION

CP: Line Printer (Centronics)

CR: Documation M300 card reader

DKO: System Disk Unit (right hand unit)

DK1: User Disk Unit (left hand unit)

LP: Line Printer (Data Products)

PP: High-Speed Paper Tape Punch

PR: High-Speed Paper Tape Reader

TI: Silent 700 Cassette Tape Reader Input

TO: Silent 700 Cassette Tape Qutput

TT: Teletype Typehead, CRT Screen, or Silent
700 Printer

TK: Terminal Keyboard

Additional devices and their corresponding software hand-
lers can be added by the user.

1-13

FILENAME = The file name specification consists of one or
more letters or digits. The first six letters
or digits specify the name. The first character
must be a Tetter. All letters or digits in ex-
cess of 6 are ignored. The file name is not
used if the device is not a file device (e.g.,
the line printer).

EXT = The extension specification consists of a peri-
od, followed by one or more letters or digits.
The first three letters or digits specify the
extension. All Tletters or digits in excess of
three are ignored. If an extension does not ap-
pear in the dataset, a default extension of 3
blanks is assumed. The extension does not ap-
pear if the device is not a file device. The
extension 'BIN' 1is reserved for binary (RAM im-
age) files. The extension 'OBJ' is reserved for
object files. The extension 'TMP' is reserved
for temporary files by the Editor. The ex-
tension 'CRS' is used by the Assembler and the
Linker for cross-reference files. The extension
"LST' is used by the Assembler for 1listing
files.

Uulic = The user identification code UIC <consists of a
left square bracket, followed by one to three
decimal digits, followed by a right square
bracket. The largest valid decimal number is
255, If the user identification code does not
appear, a default code of 1 is assumed. The UIC
is maintained on all disk files. It can be used
to identify files of different users. The UIC
does not appear if the device is not a file de-
vice.

1-14

1-23. CONCEPT OF LOGICAL UNIT NUMBERS

1-24. A11 FLP-80DOS input and output is done in terms of logical
unit numbers, just as in FORTRAN. A Logical Unit Number (LUN) is

any number in the range 0 - FFy. Any dataset can be assigned
to any Logical Unit Number (LUN) (using the Monitor ASSIGN com-
mand) . The LUN acts as a channel through which a program

performs input and output. This is diagrammed in Figure 1-3.

1-25. Logical Unit Numbers 0-5 are always pre-assigned when the
system is powered up or reset. These are all "default" LUN's and
they are assigned the following meanings:

LUN meaning

0 console input
1 console output
2 object input

3 object output
4 source input

5 source output

1-26. LUN 0 and 1 are always assigned to the user console
device. LUN's 0-5 have special features which make them useful
for writing your own programs (more detail is given in Sections 8
and 9 of this manual). LUN FFy cannot be reassigned to a
device. This means that any program wusing LUN FFy s
responsible for making the device assignment. Further detail' is
given in Section 2 under the Monitor "ASSIGN" command.

1-27. DATE FEATURE

1-28. The date feature in FLP-80DOS V2.1 allows you to record
the date of creation or last update of a file. This is done
automatically by the system except for binary files.

1-15

FIGURE 1-3. INPUT/OUTPUT LOGICAL UNIT NUMBERS

INPUT
DEVICE
| |
DEVICE
HANDLER
(SOFTWARE)
APPLICATION
LOGICAL PROGRAM LOGICA
- - OR - L
UNIT NUMBER SYSTEM UNIT NUMBER
PROGRAM
DEVICE
HANDLER
(SOF TWARE)
[

OUTPUT

DEVICE

1-16

1-29. At power-up time, after system reset, the date can be
entered at the system's request. (See start-up procedures in
paragraph 1-36 for information on entering the date). Once the
date has been entered correctly, it will remain in the system
until turned off. A system reset does not destroy the date. In
this case the date will appear after the sign-on message and no
request to enter it will appear. If the user wishes to change
the current date for any reason, it can be done through the DATE
command in PIP. (see paragraph 3-18).

1-30. When a new file is created or an old one is updated, for
example through the Editor, the current date is stored in its
directory entry at the load-address bytes, with the exception of
binary files in which case the load-address bytes contain that
information and no date is recorded. We recommend that the user
create a cross-reference file along with his binary file through
the Linker, using option C. (see paragraph 6-9).

1-31. FLEXIBLE DISK HANDLING PROCEDURE

1-32. The 2 diskettes supplied with the system are both system
diskettes. That is, each contains all of the FLP-80D0OS software.
The format is soft-sectored. [t is recommended that burnished
and qualified diskettes be used with FLP-80 system. New disket-
tes do not have to be pre-formatted because the system provides
formatting capability. Each diskette in the system has all the
system software on it. Each has 1964 available sectors of 124
data bytes (243536 bytes total). The capacity is double this for
double-sided diskettes.

1-33. Figure 1-4 shows the diskette. The following precautions
should be followed in handling the diskettes:
1. Do not bend or fold the diskette.

1-17

FIGURE 1-4. DISKETTE

.ABELS -
RECORDING

SLOT

SPINDLE HOLE

INDEX HOLE
(USED FOR FORMATTING)

1-18

2. Do not touch the exposed recording area of the disket-
te.

3. Do not place heavy materials on or write on the disket-
te with other than a felt-tip marker.

4. Do not place the diskette near strong magnetic fields.

1-34. Diskettes are inserted into the drives as follows:

1. Insert the diskette as far as it will go into the disk
unit slot. The recording slot should be to the rear
and the label should be on the right-hand side.

2. Slowly close the door until it latches.

1-35. Diskettes are removed from the disk unit by depressing the
latch button. The disk unit door should spring open and the dis-
kette should be pushed out of the unit.

CAUTION: Do not power up or power down the system with a diskette
inserted in a disk unit. Doing so may destroy the integrity of
the data on the diskette.

NOTE: It is recommended that all user files be backed up on
separate diskettes whenever changes are made. This precaution
guards against loss of a file in case a non-recoverable disk er-
ror occurs.

1-36. START UP PROCEDURES

1-37. Configure the hardware system as explained in the System
Operations Manual. Power wup. Insert the FLP-80D0S diskette
into the right-hand disk drive, disk unit zero (DKO:), and close
the door. Depress the 'carriage return' key on the console de-
vice. There should be a slight delay while the system software
is read into RAM from disk. Then the Monitor prompt should be

1-19

printed on the console:
MOSTEK FLP-80DOS V2.1
$

A. PLEASE ENTER DATE (DD-MMM-YY) -->

B. The user enters the date by typing first the day of
the month, followed by the first three letters of
the month, and then by the last two digits for the
year; each 1item 1is separated from the next by a
hyphen. The entered line can be edited using rub-
out, backspace, and control-u. If the user enters
an invalid date, a syntax error message is printed,
and the date is ignored. If the user does not wish
to use the date option he can enter just a carriage
return.

Example: PLEASE ENTER DATE (DD-MMM-YY) 7-APR-79 (CR)

1-38. Figure 1-5 shows the relationships among the programs in
FLP-80DOS. The user initializes the system by depressing the
'"RESET' button on the system and 'carriage return' on his console
device. The Boot Procedure reads the system software into RAM
from disk and gives control to the Monitor. From the Monitor,
any system program can be executed by entering its name (plus any
other required information) from the console device.

The Debugger, Text Editor, and Peripheral Interchange Program can
be exited by entering 'Q' (for a 'Quit'), at which point control
is given back to the Monitor. The Z80 Assembler and Linker
return control to the Monitor when their tasks are completed. In
the system programs the system can be rebooted by entering CNTL-X
(Monitor Escape) except EDIT. The Debugger can be entered

1-20

FIGURE 1-5.

MONITOR ESCAPE

INITIALIZE

('RESET' & 'CARRIAGE RETURN')

(CNTL = X)

RELATIONSHIP OF SYSTEM PROGRAMS IN FLP-80D0S

BOOT
BREAKPOINT ENCOUNTERED OR
DEBUGGER ESCAPE (CNTL-C) PROCEDURE
DDT (COMPLETION)
DEBUGGER LINKER
i> \7 LINK file
MONITOR
EDIT file :—
AN Q
Q PIP
PERIPHERAL
il INTERCHANGE
=PITOR PROGRAM
ASM file
v (COMPLETION)

Z80
ASSEMBLER

1-21

1-39. You now have one of the most powerful Z80 development
systems at your finger tips. You will probably first wish to
create a file on diskette. [If so, proceed to Section 4 of this
manual.

1-40. If the prompt does not appear on the console, see the
troubleshooting section (Appendix D).

1-41. MEMORY SUMMARY

1-42. MEMORY MAP. Figure 1-5 depicts the memory map of the
FLP-80D0S software. The standard system is supplied with 32K of
RAM starting at address zero, 4-1K PROM's starting at EO00Oy,
and 256 bytes of "scratchpad" RAM starting at FFOOy.

1-43. The PROM located at ECOOy 1is the Disk Controller
Firmware. It has the responsibility of translating track and
sector information into commands to control the FLP-80 board.
The three PROM's starting at EO00y contain the power up
procedure and the DDT debugger. The rest of the system software
is read into the upper 9K of RAM from disk. This leaves the
first 23K of RAM free for user programs and debugging (in a 32K
system). The Editor, Assembler, PIP and the Linker also use this
area. The 256 byte "scratchpad" RAM, located at FFOOy, is used
by the DDT debugger and the Monitor.

1-22

FFFF

FFo@

EFFF

EQ00Q

7FFF

FIGURE 1-6. STANDARD FLP-80D0OS MEMORY MAP

64 K

v,

256 BYTE SCRATCHPAD RAM

4-1K PROMS - BOOTSTRAP
SEQUENCE, DEBUGGER, AND
DISK CONTROLLER FIRMWARE.

‘32K

MONITOR, SYSTEM PROGRAMS
AND FLEXIBLE DISK HANDLER
RESIDE AT TOP OF 32K RAM
MEMORY SPACE.

ABOUT 23K RAM AVAILABLE
FOR USER PROGRAMS

1-23

1-44, PORT MAP. Figure 1-6 defines the port allocation on the
SDB-80. Ports DO-D7 are the PI0O ports that come out to top edge
connectors on the SDB-80. Ports D8-DB are the counter timer
circuit ports; port D8 is the timer for the UART baud rate. Port
DE is used for controlling dataset ready (DSR), clear to send
(CTS), and reader step (RS). Also, Port DE is used for sensing
the state of data terminal ready (DTR), request to send (RTS),
and serial bit string of measuring baud rate (used by the
operating system). Ports DC and DD are the UART ports. Ports
E2-E7 are the disk controller ports. MOSTEK is reserving ports
E8y thru FFy for future expansion of its development system.
Ports 7C-7D are also used by the FLP-80D0S Software Version 2.1
and above. It is recommended that the user 1imit his development
system application to ports 004 thru CFy. Of course, for an
OEM application all 256 ports are available to the user. In the
event any development system add-on peripheral would exceed the
assigned number of ports, MOSTEK would start with CFy and work
down.

1-24

FIGURE 1-7.

{

FF

EO

E7
E6

E5
E4

E3
E2

E1
EO

DF
DE
DD
bC
DB
DA
D9
D8
D7
D6
D5
D4
D3
D2
D1

DO

CF

00

OEM-80 PORT ALLOCATION

FUTURE SDB-80 EXPANSION

DISK CONTROLLER
DISK CONTROLLER
DISK CONTROLLER
DISK CONTROLLER
DISK CONTROLLER
DISK CONTROLLER

FUTURE EXPANSION
FUTURE EXPANSION

DEBUG CONTROL
SYSTEM CONTROL
UART CONTROL
UART DATA

CTC CHANNEL 3
CTC CHANNEL 2
CTC CHANNEL 1
CTC CHANNEL O
PIO-D6 CONTROL
PIO-D6 DATA
PIO-D4 CONTROL
PIO-D4 DATA
PIO-D2 CONTROL
PIO-D2 DATA
PIO-DO CONTROL
PIO-DO DATA

/ L
77

USER DEFINED PORTS

/ L
77

FIGURE 1-8.

POWER UP OR RESET

Depress "CARRIAGE RETURN"

CONSOLE INTERACTON (Except DDT)

DEL
BACKSPACE
CNTL-U
CNTL-C
CNTL-X
RETURN
CNTL-I

MONITOR
$ASSIGN
$BEGIN

$CLEAR

$DDT

$DTABLE

$DUMP

$GET

$INIT

1-25

FLP-80D0OS COMMAND SUMMARY

- delete the previous character

- suspend operation.

delete the current line.

delete the previous character.

- abort to Monitor and reinitialize.

- end of command line.
- tab over 8 spaces.

lun, dataset
[aaaal]

lun

aaaa,bbbb,dataset[.0BJ]

dataset[.BIN]

assign dataset to LUN
start execution at
address aaaa.

clear an assignment
in the redirect
table.

enter DDT, the debug-
ger.

print default LUN
table.

dump absolute object
module to dataset.
load binary file into
RAM.

initialize disk.

1-26

$RTABLE - print redirect table
of LUN's.
$SAVE aaaa,bbbb,dataset[.BIN] - save binary file from
RAM.
ASSEMBLER

$ASM source dataset [TO listing dataset[,object dataset]]

OPTIONS

- Print cross reference listing

- no listing

- listing (default)

- no object output

object output (default)

- pass 2 only

- quit - return to Monitor

- reset symbol table (pass 2 only operation)
- print symbol table.

»w VO v O 22T X O
]

DESIGNER'S DEVELOPMENT TOOL
$DDT

NOTE: The console interaction for DDT is slightly different from
the rest of FLP-80DOS.
Terminator = Carriage return, N,/ , or dot.
The space between command and operands is printed by the

system.
M aaaa,bbbb -Display, update, or tabulate the contents of
memory.
P aa -Display and/or update the contents of an I/0
port.
E [aaaal -Transfer control from DDT-80 to a wuser's

program.

1-27

16 bit addition

subtraction.

+aaaatbbbb=... -Perform hexadecimal and/or

aaaa,bbbb,cccc -Copy the contents of a block of memory to an-

other location in memory.

aaaa -Insert a breakpoint in the user's program.

1,X -Display the contents of the user registers x=0
short, x=1-long.

aaaa -Set the offset constant.

aaaa,bbbb,cccc -Locate all occurrences of an 8 or 16 bit data
pattern,

aaaa,bbbb,cc -Fill memory limits with an 8 bit data pattern.

aaaa,bbbb,cccc -Verify that 2 blocks of memory are equal.

-Software single step (walk) for nn

xx=HD means print register heading.

-Quit DDT-80 and return to the system Monitor.

aaaa,nn,xxx steps.

EDITOR

$EDIT file
An Advance n records
Bn Backup n records.

Cn/stringl/string2/

Change n occurrences of string 1 to string
2.

Dn Delete n records, starting with current re-
cord.

En Exchange n records with inserted records.

Fn Flag print option: O0=no print, not O=print

G dataset Get dataset and insert after current re-
cord.

I Insert records after current record.

Ln Line: Access record number n.

Mn Macro: Place command string into alternate

command buffer 1 or 2.

1-28

Pn dataset Put n records out to a different dataset
(file).

Q Quit: Save the file on disk and terminate
the editor.

Sn/string/ Search for nth occurrence of the string.

T Top: Insert at top of file before the
first record.

Vn Verify n records on the console device.

Wn Write n records with record numbers to LUN
5.

Xn Execute alternate command buffer n (1 or
2).

In all commands, except Fn and Ln, if n is zero or if n is
not entered, it is assumed to equal one (1). n can take
the form ny thru np by entering ny; - np.

LINKER

$LINK dataset 1 ,..,datasetn [TO dataset B [,dataset CJ]]
where dataset 1 and datasetn are object files, dataset B is bin-
ary file, and dataset C is a load map and cross reference list-

ing.

A - enter starting link address.

C - global cross reference table output to dataset C.
L - Library search on a disk unit.

S - global symbol table output to dataset C.

U - print 1Tist of undefined global symbols.

PERIPHERAL INTERCHANGE PROGRAM

$PIP
APPEND datasetl TO dataset 2 -append.

COPY
DATE

DIRECT

ERASE

FORMAT

INIT

RENAME
STATUS

QUIT

dataset?2,...,dataset n TO

dataset 1 [TO dataset 2]

dataset 1
name

,eeessdataset n

dataset 1 TO dataset 2
dataset 1 TO dataset 2

1-29

dataset 1 -copy.
-examine/change
date.

-print direc-
tory.

-erase a file.
-format a disk
in disk unit

l.
-initialize
disk units.
-rename file.
-print status
of disk.
-return to

Monitor

2-1

SECTION 2
MONITOR
2-1. INTRODUCTION

2-2. The Monitor provides communication with the user via the
console terminal enabling him to 1load and start execution of
either system (e.g., PIP, EDITOR, ASM, LINKER) or user programs.
In addition, the Monitor provides utility functions such as reas-
signment of logical unit devices and the creation of RAM 1image
files. After power up or reset, the system automatically enters
the Monitor environment awaiting entry of user commands. The
prompting character for the Monitor is a §$.

2-3. OPERATIONS SUMMARY
2-4. SYSTEM RESET.

2-5. The FLP-80D0S operating system may be reset by depressing
the system RESET switch and then typing a "carriage return" on
the console terminal. This starts the system reset sequence
which first calculates the terminal baud rate and then loads the
operating system into memory from the file 0S.BIN[255] and begins
execution at 1its starting address. The Monitor which 1s the
first module in the operating system (See Figure 15-1) begins by
initializing the following system parameters.

1. Default logical units 0-5

2. Logical unit redirect table

3. RAM mnemonic table (see Paragraph 15-10).

4., 10CS buffer allocation table (see paragraph 9-46)

5. Al1 disk units containing diskettes (DKO,DK1l and etc.)
After the initialization sequence 1is completed, the Monitor

2-2

prints the system sign on message followed by the date or a
prompt to enter the date if the system does not have a valid date
stored, (this will always occur after power-up). Then a $ prompt
will appear on the console.

2-6. POWER UP SEQUENCE. The power up sequence is identical to
reset (See paragraph 2-4).

2-7. MONITOR COMMAND SUMMARY

2-8. Some of the Monitor commands utilize dataset specifications
(See para. 1-21). A dataset can consist of device specifications
(e.g. PR:) or file specifications (e.g. DK1:BINDEC.0BJ). When
entering a monitor command name, only the number of characters
required for uniqueness must be entered. These characters are
underlined in the command syntax definition. Monitor commands
can be divided into the following functional categories.

1. File Creation and Loading

SAVE - Saves a binary file on disk.

GET - Loads a binary file into RAM.

DUMP - Saves an absolute object file.

BEGIN - Begins execution of a loaded program.

2. Logical Unit Assignment and Table Functions.
$DTABLE - Lists the logical unit default table.
$ASSIGN - Assigns the redirect of a logical unit.
$CLEAR - Clears the redirect of a logical unit.
$RTABLE =~ Lists the logical unit redirect table.

3. Miscellaneous
$DDT - Enters DDT environment.
$INIT - Initialize system for newly inserted disket-
tes.

2-3

2-9. IMPLIED RUN COMMAND. As the user types a command, its
characters are entered directly into the command buffer. After a
carriage return is entered, the Monitor compares the command name
in the buffer with a 1list of Monitor commands. If a Monitor
command is not entered, the Monitor assumes the command name is a
binary file (extension = BIN) on the system disk. The system disk
which is disk unit 0 (DKO:) is then searched for the specified
file. If the file is not found, the following message is printed
on the console.
****ERROR 04 FILE NOT FOUND

If the file is found, it is loaded and execution is started at
its 1load address. The 1implied run command also enables the
"minimal listener" which provides a console escape during program
execution (see paragraph 2-45).

2-10. The implied run command provides the facility for loading
and executing both system programs and user programs. The
following commands transfer control from the Monitor to system
programs which reside on the system disk (DKO:).

$EDIT - Enter Editor

$PIP - Enter Peripheral Interchange Program
$ASM - Enter Assembler

$LINK - Enter Linker

2-11. A user program can also be executed in an identical manner
by entering a program filename. The filename must be a valid
dataset (See Paragraph 1-21) and cannot contain imbedded blanks.
A binary extension (BIN) or a blank extension which defaults to
binary are the only allowed extensions. The file can reside on
any supported disk unit (e.g. DKO, DK1l). The following examples
illustrate execution of wuser programs using the implied run
command.

PROG1

DK1:PROG2.BIN

2-4

Upon entry into the user program, the DE register points to the
next location (blank or carriage return) in the command buffer
after the program name. Using the implied run command, a
convenient facility is available for adding either new commands
or user extensions to the Monitor.

2-12. COMMAND ENTRY. When entering a command from the terminal
the command 1line may exceed the maximum terminal 1line Tlength
(usually 80 characters). If this occurs, the terminal output
driver (TT) will automatically issue a CR and LF to enable con-
tinuation of the command on the next line. Since a carriage re-
turn input from the keyboard is interpreted by the Monitor to be
the terminator of the command string, the user should not en-
ter a carriage return until the entire command has been entered.
The maximum command length 1is set by the command buffer size
which is 160 characters.

2-13. DEFINITIONS.

1. DEFAULT TABLE - the default logical unit table. After
power up or system reset a default logical unit table
consisting of 1logical units 0 through 5 1is created.
This provides the user with 6 predefined I/0 channels
which can be used by application programs. The system
subroutines RDCHR and WRCHR (see section 8) can be used
for I/0 transfers by specifying the logical wunit in
the E register. After power up or reset, logical unit
0 is always assigned the console input device (TK:) and
logical unit 1 is assigned the console output device
(TT:). Logical units 2-5 are initialized on power up
or reset to values which are defined during the system
SYSGEN procedure (See paragraph 15-12). At execution
time the default table may be modified if a device is

2-5

opened after being redirected by the ASSIGN command
(See paragraph 2-14). 1In this case system reset can be
used to initialize the table.

2. REDIRECT TABLE - the Tlogical unit redirect table. If
the user wishes to ~change a logical wunit device
specification, he can redirect it to a new device using
the Assign command. The redirect table consists of a
list of all the currently redirected logical units.

3. BINARY FILE - A RAM-image file created by either the SAVE
command or the Linker. A binary file generally contains
executable machine code but may also contain data. A
binary file has the extension BIN.

4. OBJECT FILE - a file created by the object output of
either the Assembler or the DUMP command. The object
module is in ASCII (See Mostek Object Format, Appendix
B). The object module contains data and may also contain
relocating and linking information for use by the Linker.
An object file has the extension 0BJ.

2-14. ASSIGN COMMAND

2-15. SYNTAX: ASSIGN N,Dataset

2-16. The ASSIGN command assigns a dataset to a logical unit
number. This reassignment enables the user to change a logical
unit device specification at run time. A dataset contains a de-
vice specification and a filename if the device is file struc-
tured. The logical unit number N is a hexadecimal number between
0 and FE (254 decimal). The ASSIGN command places the logical
unit number and dataset into the Redirect Table. After an open

2-6

request (See IOCS Section 9) is executed, the assigned dataset
is copied into the I/0 vector being referenced. All future I/0
transfers for the specified logical unit number use the newly as-
signed dataset.

EXAMPLE 1. Assign logical unit 2 to the paper tape reader device.

$ASSIGN 2,PR:(CR)

EXAMPLE 2. Assign 1logical unit 0 to a batch input file con-
taining system commands (See Section 14 for batch mode

operation).
$ASSIGN 0,DKO0:BATCH.CMD(CR)

2-17. BEGIN COMMAND
2-18. SYNTAX: BEGIN [aaaal

2-19., The BEGIN command starts execution of a previously loaded
program. The hexadecimal address aaaa is the starting address
which may be specified by the wuser. If this address is not
specified, execution begins at the starting address of the
previously loaded program. The program starting or execution
address 1is stored in the user's PC (program counter) register
(address FFFEy) after loading a program with the GET command.
The BEGIN command also enables the "minimal Tistener" providing a
console escape during program execution (See paragraph 2-45).

EXAMPLE 1. Begin program execution at location 0100y.
$BEGIN 100(CR)

2-20. CLEAR COMMAND
2-21. SYNTAX: CLEAR [N]

2-22. The CLEAR command removes logical unit N from the redirect

2-17

table. This cancels any previous reassignment of a logical unit
made with the ASSIGN command. If N is not entered, all entries
in the Redirect Table are removed.

EXAMPLE 1. Clear logical unit 3.
$CLEAR 3(CR)

2-23. DDT COMMAND

2-24. SYNTAX: DDT
2-25. The DDT command transfers control to the DDT eavironment
(See Section 7).

2-26. DTABLE COMMAND

2-27. SYNTAX: DTABLE

2-28. The DTABLE command lists the default logical unit table on
the console output device. After power up or reset the default
logical unit table consisting of logical units O through 5 is
created. Logical unit 0 is always assigned the console input
device (TK:) and logical unit 1 is assigned the console output
device (TT:). Default values for Tlogical units 2-5 are defined
when the operating system is created using the SYSGEN procedure
(See Paragraph 15-12).
EXAMPLE List default logical unit table.

$DTABLE (CR)

LU DATASET

00 TKO:

01 TTO:

02 TKO:

03 CPO:

04 TKO:

05 CPO:

2-8

2-29. DUMP COMMAND
2-30. SYNTAX: DUMP aaaa,bbbb,Dataset

2-31. The DUMP command outputs the contents of memory in
absolute object format (See Appendix B) to the specified output
dataset. The hexadecimal address aaaa is the beginning address
and bbbb is the ending address of the data in memory. The ad-
dresses aaaa and bbbb can be terminated by a comma or a space and
any number of spaces may be entered between command elements. The
dataset specification can be any supported output device. If the
dataset is an output file, the extension must be either 0BJ
or blank. If the extension is not entered (blank), the Monitor
assumes OBJ.
EXAMPLE 1. Create the object file BINDEC which resides between
locations 1000 and 1400, then dump it to paper tape.
$DUMP 1000, 1400, BINDEC(CRl

$PIP(CR)
#C BINDEC.0BJ TO PP:(CR)

#Q(CR)

2-32. GET COMMAND

2-33. SYNTAX: GET Dataset

2-34. The GET command loads a binary file specified by the
dataset into memory. The program execution address is also
loaded into the user's PC (program counter) register. This en-
ables program execution to be initiated using the BEGIN command
(See Section 2-17) without specifying the starting address. The
execution address of a binary file is the first address or lowest
program address in memory. The dataset extension must be either
BIN or blank. If the extension is not entered (blank), the Mon-

2-9

itor assumes BIN.

EXAMPLE 1. Load the binary file BINDEC from disk unit DKO.
$GET BINDEC(CR)

EXAMPLE 2. VLoad the binary file PR0OG22 from disk unit DKl and
begin execution at the starting address.
$GET DK1:PROG22.BIN(CR)

$BEGIN(CR)

2-35. INIT COMMAND
2-36. SYNTAX: INIT

2-37. THE INIT COMMAND MUST BE GIVEN ANYTIME A DISKETTE IS NEWLY
INSERTED AND THE USER WISHES TO CONTINUE EXECUTING MONITOR
COMMANDS. This guarantees that the proper sector and track maps
are in memory during file operations on the newly inserted
diskette. If the user fails to give this command, files on the
newly inserted diskette may be irretrievably lost. During power
up or reset the INIT command is automatically executed by the
Monitor. The INIT command may also be given from the PIP
environment (See Section 3).

2-38. RTABLE COMMAND
2-39. SYNTAX: RTABLE

2-40. The RTABLE command lists the logical unit redirect table
on the console output device. The redirect table contains a list
of all the currently redirected logical units.
EXAMPLE List redirected logical units.

$RTABLE (CR)

LU DATASET

02 CRO:

05 DK1:FILE22.MAC[1]

2-10

2-41. SAVE COMMAND

2-42. SYNTAX: SAVE aaaa,bbbb,Dataset

2-43. The SAVE command outputs the contents of memory in a RAM
image form to the disk file specified by the dataset. The
hexadecimal address aaaa is the beginning address and bbbb is the
ending address of the data in memory. The addresses aaaa and bbbb
can be terminated by a comma or a space and any number of spaces
may be entered between command elements. The dataset extension
must be either BIN or blank. If the extension is not entered
(blank), the Monitor assumes BIN.
EXAMPLE 1. Save the memory contents from 0O to 0100 by creating a
binary file FILE1.BIN.
$SAVE 0,100,FILEI(CR)
EXAMPLE 2. Create the binary file BINDEC.BIN on disk unit 1.

$SAVE 1000,1400,DK1:BINDEC.BIN(CR)

2-44, The SAVE command creates a binary file which can be up to
255 sectors in length. Each sector contains 124 bytes allowing a
maximum file length of 31620 decimal or 7B84 hexadecimal bytes.
When loading a binary file the GET command loads a fixed number
of sectors into memory. A save block size (bbbb-aaaa) will not
always equal an integral number of sectors. This can cause
(worst case) up to 123 extra bytes to be loaded beyond the end
address bbbb.

2-45, CONSOLE ESCAPE
2-46. The "Minimal Listener" is a background interrupt processor

which detects the console input codes Control-X and Control-C.
This provides the facility for a console exit from an executing

2-11

program to either the Monitor or DDT. The console escape can be
a very useful tool during program debugging. The console input of
Control-X suspends execution of a program and reboots the
operating system returning control to the Monitor (prompt=$). A
console input of Control-C suspends execution and enters DDT
(prompt=.). DDT displays the program registers (similar to
breakpoint) and execution can be resumed from DDT wusing the E
command. (See Section 7-45).

2-47. The Minimal Listener 1is enabled only by the BEGIN and
IMPLIED RUN commands (See paragraphs 2-9 and 2-17). It s
disabled within the Monitor enviroment, and in the Editor and
DDT.

3-1

SECTION 3
PERIPHERAL INTERCHANGE PROGRAM (PIP)
3-1. INTRODUCTION

3-2. The transferring of files and data between devices is the
primary function of the Peripheral Interchange Program (PIP).
PIP uses the device independent features of the I/0 control
system (IOCS), allowing data to be transferred from any system
input device to any output device. In addition, PIP performs
utility functions such as 1listing disk directories, renaming
files, and formatting diskettes.

3-3. ENTERING PIP

3-4. The user can enter the PIP environment by typing the file
name PIP as a command in the Monitor environment. The Monitor
then loads the file PIP.BIN from disk unit DKO and starts its
execution. The PIP prompting character is a #. To return to
the Monitor the operator enters the QUIT command as illustrated
in the following example.

EXAMPLE $PIP(CR) ;Enter PIP environment
#Q(CR) ;Return to Monitor

3-5. PIP COMMAND SYNTAX

3-6. Each PIP command contains a command name followed by a
command operand field. The command names which are up to 6
characters in Tlength denote the function to be performed. Only
the first character of each name has to be entered to execute
the selected function.

COMMAND NAMES

APPEND DIRECT INIT QUIT

COoPY ERASE RENAME

DATE FORMAT STATUS

3-2

COMMAND SYNTAX
NAME Input Datasets(l...N) TO Output Dataset

3-7. The second part of each command is the command operand
field which consists of a single dataset or a series of datasets
depending upon the selected command. The keyword 'TO' has spe-
cial significance in the command operand field. A dataset ap-
pearing to the right of 'TO' is defined as an output dataset. A
dataset on the 1left of 'TO' is defined as an input dataset.
There can be only one output dataset designation although there
can be any number of input datasets (limited only by the command
line length of 160 characters). The character '>' can be used in
place of the keyword 'TO', performing the identical function.

3-8. A dataset can contain a single device (e.g. PR:) or a de-
vice, filename, extension and user number (e.g. DK1:FILE22.MAC
[2]) if the device is file structured. The form of a dataset is
described in paragraph 1-21. An asterisk can be used to replace
the filename, extension or user number in an input dataset, but
it is illegal in the output dataset. The asterisk specifies all
occurrences of an element.

3-9. APPEND COMMAND
3-10. SYNTAX: APPEND Dataset 1 TO Dataset 2

3-11. The Append command attaches a copy of dataset 1 to the end
of dataset 2. Dataset 1 remains unchanged. Both datasets must
contain file structured devices (e.g.DK) and neither can be a
binary file (Extension = BIN).
EXAMPLE
Append the file F1 on disk unit DKO to the file F2 on DKO.
#APPEND F1 TO F2(CR)

3-3

3-12. COPY COMMAND
3-13. SYNTAX: COPY Dataset 2,.....Dataset N TO Dataset 1

3-14. The Copy command can be used for a variety of purposes
such as listing files, concatenating individual files, or copying
all the files from one device (e.g. DKO) to a second device (e.g.
DK1). The Copy command copies the contents of the input datasets
(Datasets 2,..,N) to the output dataset (Dataset 1). If the file
in the output dataset already exists, the following message
appears on the console:

Dataset, ALREADY EXISTS

ERASE?
If the operator responds by entering a Y (followed by a carriage
return) PIP deletes the file in the output dataset. The input
datasets are then copied to the output dataset, assuming its
name. No action is performed if a response other than Y s
given. If a file specified in the input datasets does not exist,
the following message is sent to the console:

Dataset, NO SUCH FILE

3-15. The Copy command does not permit binary (extension = BIN)
and non-binary file types to be mixed. If an attempt to copy a
binary file to a source file is made, the error message INCOMPAT-
IBLE EXTENSIONS is output to the console.

3-16. If a Copy is executed to a file-structured device with no
filename (e.g.DK1l), then the filename, extension and user number
of the input dataset remains unchanged after transfer to the out-
put device. However, if a filename is specified in an output
dataset, the input datasets are concatenated and copied to the
output file. In any case the file date of the output file will be
the same as in the input file.

3-17. An asterisk can be used to replace the filename, ex-

3-4

tension, or user number in a Copy input dataset. The asterisk
specifies all occurrences of an element. If an asterisk is
specified in an input dataset, PIP automatically prints on the
console each input file as it is copied. In order to illustrate
the many possible uses of the Copy command, the following ex-
amples are given, classified according to output dataset types.
EXAMPLE 1. Copy to a non-file structured output device.

a. Transfer data from the paper tape reader to the
paper tape punch. Input data from the paper tape
reader is terminated by either an EOF mark of
04y or by 50 trailing nulls after the end of
data.

#COPY PR: TO PP:(CR)
b. List the contents of FILEl on DKl to the Tine
printer.
#C DK1:FILEl TO LP:(CR)
EXAMPLE 2. Copy to a file structured device with no filename
(e.g.DK1:).

a. Transfer the files F1, F2 and F3 from disk unit
DKO to disk unit DKI1.

#C F1,F2,F3 TO DK1:(CR)

b. Transfer all files from disk unit DKO to disk unit
DK1. The diskette in DKO contains 5 files.

#C *,*[*] TO DK1:(CR)
DKO:ASM +SRC[1]
DKO:ASM .BIN[1]
DKO:PIP «BIN[1]
DKO:EDIT .SRC[1]
DKO:EDIT .BIN[1]

c. Copy all the files with the extension SRC from
user number 1 to user number 2.

#C *,SRC[1] TO DKO:[2] (CR)

3-5

DKO:ASM .SRC[1]
DKO:EDIT .SRC[1]
EXAMPLE 3. Copy to a specified filename on a file structured
device.

a. Copy FILEA.OBJ on DK1 to FILEB.OBJ on disk wunit
DKO.
#C DK1:FILEA.OBJ TO FILEB.OBJ(CR)

b. Concatenate the three source files F1,F2 and F3
and copy them to F123.
#C F1,F2,F3 T0O F123(CR)

3-18. DATE COMMAND
SYNTAX: DATE

The DATE command is used to examine and/or modify the system's
date. After entering the command, the date on the system will be
printed if it exists and the following message will allow you to
change it if desired:

ENTER DATE (DD-MMM-YY)

If only a carriage return is entered then the current system date
is retained. Otherwise, type the day of the month first, then
the first 3 letters of the month, and then the TlTast 2 digits of
the year with each item separated by a dash (-). This date will
be stored in the directory of non-binary files when they are
created or updated for reference by the wuser and will be
displayed by a Directory command (see DIRECT).

3-19. DIRECT COMMAND

3-20. SYNTAX: DIRECT [Dataset 1 TO Dataset 2]

3-6

3-21. The DIRECT command is used to list the directory of disk
devices. The input dataset (Dataset 1) is used to specify the
disk unit (DKO,DK1 and etc.) for which the directory listing will
be generated. If the input dataset 1is omitted, DKO is as-
sumed. If a filename, extension or user number is specified,
only those files with the specified filename, extension and user
number will be Tisted. An asterisk can replace a dataset element
(e.g.Filename=*) to specify all or every occurrence of that ele-
ment (e.g. Al11 Filenames). The output dataset (Dataset 2) is op-
tional and can be used to output the directory 1listing to any
specified device. The default output device is the console.

3-22. The heading of the directory 1listing contains the disk
unit (e.g. DKO) and the Diskette Name which were entered when the
disk was formatted (See Paragraph 3-27). A file is identified 1in
the directory by its filename, extension and user number. The
directory listing also specifies the number of records used by
each file and the starting track and sector location of the file,
and the date of creation or last update.

To prevent information from being scrolled off the screen when
listing large directories to a video terminal, the listing may be
stopped by entering a space from the keyboard. The listing will
resume when a second space is entered. The following examples
illustrate the DIRECT command.

EXAMPLE 1. List entire directory of system disk on the console

device.
#D (CR)
DIRECTORY DKO: DISKETTE BACK UP 1 Listed on 8-MAR-79
FILENAME EXT USER RECORDS TRK SECT Date
PIP .BIN 1 25 O9H O1H

BINDEC .SRC 1 5 OBH 04H 4-MAR-79

3-7

BINDEC .0BJ 1 3 OBH OBH 4-MAR-79
BINDEC .BIN 1 2 OBH OEH
#

EXAMPLE 2. List all files of disk unit 1 with the extension 0BJ
on the line printer.
#D DK1:*,0BJ[1] TO LP:(CR)

DIRECTORY DK1: DISKETTE BACK UP 2 On 15-Jdun-79

FILENAME EXT USER RECORDS TRK SECT Date

FADD .0BJ 1 3 O9H O1H 10-APR-79

FMUL .0BJ 1 3 09H 04H 1 -JUN-79
#

3-23. ERASE COMMAND
3-24. SYNTAX: ERASE Dataset 1 [, Dataset 2 ,...,Dataset N]

3-25. The Erase command removes the specified file or files from
the disk unit and makes the space available for use. A filename
must be entered for the ERASE command. The extension and user
number if not entered will default to a blank extension and a
user number of 1. After the ERASE command is entered, PIP will
print the following message on the console:

ERASE?

If the operator responds by entering a Y (followed by a carriage
return) PIP deletes the specified file or files. No action is
performed if a response other than Y 1is given. If the file
specified in the dataset does not exist, the following message
is sent to the console:
Dataset, NO SUCH FILE

3-26. An asterisk can be used to replace the filename, extension
or user number in the dataset to be erased. The asterisk
specifies all occurrences of an element. The following examples

3-8

illustrate the ERASE command:
EXAMPLE 1. Erase the files F1 and F2 on the disk in DKO. Note
the device defaults to DKO and the user number to 1.

#ERASE F1,F2(CR)

EXAMPLE 2. Erase an object file from DKl with a user number of
3.
#ERASE DK1:F1.0BJ[3J(CR)

EXAMPLE 3. ERASE all binary files (EXT=BIN) with a user number
of 1 on DKI1.
#ERASE DK1:*.,BIN(CR)

EXAMPLE 4. Erase all files on disk DKO.
#ERASE *,*[*](CR)

3-27. FORMAT COMMAND
3-28. SYNTAX: FORMAT Name

3-29. The Format command formats each track and sector of a dis-
kette in unit DK1 with the information necessary for proper ac-
cessing of data from the disk. The operand name used by the
Format command gives each formatted disk an identifier for future
reference. The name is eleven characters in length and can con-
tain any printable characters. The DIRECT and STATUS commands
output this name as a part of their headings to aid in referenc-
ing individual diskettes. After the FORMAT command is entered,
PIP will print the following message on the console:
FORMAT?

If the operator responds by entering a Y (followed by a carriage
return) PIP formats the diskette in unit DKI1. No action is
performed if a response other than Y is given.

3-30. To provide additional file protection, it is recommended

3-9

that each diskette be formatted with a unique name. The disk
operating system prior to an Erase or Close operation verifies
that the name of the diskette in a unit (DKO or DK1) agrees with
the name of the 1last previously initialized diskette in that
unit. A1l disk units are initialized when entering PIP from the
Monitor or after execution of the INIT command (See paragraph
3-34).

3-31. Formatting of a diskette initializes all sectors making
them available for use (See STATUS paragraph 3-41). A disk must
be formatted before it can be used the first time in the system.
An unformatted diskette should not be inserted into the the sys-
tem wuntil just prior to execution of the format command. A
previously used diskette can be reformatted; however, any files
on the diskette will be destroyed.

3-32. The format command requires that an operational system
disk is resident in unit DKO. A system disk is defined as a
previously formatted disk containing the required operating sys-
tem programs. The diskette to be formatted is placed in disk
unit 1. The system programs are automatically copied to the new
diskette in DKl during the execution of format.

3-33. The following examples illustrate the Format command:
EXAMPLE 1. Format the disk in unit DKl giving it a name of BACK
up 1.
#FORMAT BACK UP 1(CR)

EXAMPLE 2. Format a new disk and also copy the FLP-80D0OS As-
sembler, Editor, Linker and PIP programs to the new-
ly-formatted disk.

#FORMAT SYS DISK 1(CR)

3-10

#C ASM.BIN, EDIT.BIN, LINK.BIN, PIP.BIN TO DK1:(CR)

NOTE : Using the above procedure the user can generate his own
system disks containing only the system application programs
(E<.G.ASM and PIP) which he desires.

3-34. INIT COMMAND

3-35. SYNTAX: INIT

3-36. The Init command should be issued any time a new diskette
is inserted and the user wishes to continue executing PIP com-
mands. This guarantees that the proper sector and track maps are
in memory during file operations on the newly inserted diskette.
When entering PIP from the Monitor, the Init command is auto-
matically executed by PIP.

3-37. RENAME COMMAND

3-38. SYNTAX: RENAME Dataset 1 TO Dataset 2

3-39. The Rename command is used to change the name of a
specified file. The filename, extension and user number in
Dataset 1 is changed to the filename, extension and user number
in Dataset 2. If the file in the output dataset (Dataset 2)
already exists, the following message appears on the console:
Dataset, ALREADY EXISTS
ERASE?
If the operator responds by entering a Y (followed by a carriage
return) PIP deletes the file in Dataset 2. The file in Dataset 1
is then renamed to the name specified in Dataset 2. No action is
performed if a response other than Y is given.

- 3-11

3-40. The RENAME command does not permit a binary extension
(BIN) to be changed to a nonbinary extension or a nonbinary ex-
tension to be changed to a binary extension. The following ex-
amples illustrate the Rename command:
EXAMPLE 1. Rename the file FILEl on disk unit DKO to
FILE2.SRC.
#RENAME FILE1l TO FILE2.SRC(CR)
EXAMPLE 2. Rename the file FILEX1.0BJ on disk unit DK1.
#RENAME DK1:FILEX1.0BJ[1] TO DK1:FILEX2.0BJ[3](CR)

3-41. STATUS COMMAND
3-42. SYNTAX: STATUS [Dataset 1 TO Dataset 2]

3-43. The Status command is used to list the diskette name, the
total number of sectors available, the number of sectors used and
the number of bad sectors. The diskette name which identifies
the individual disk is entered when the disk is formatted (See
paragraph 3-27). The input dataset (Dataset 1) of the status
command identifies the disk unit (DKO or DK1) for which status is
desired. The output dataset is optional and can be wused to
output the status listing to any output device. The default is
the console device. The following examples illustrate the STATUS
command.
EXAMPLE 1. List the status of disk wunit DKl to the Tline

printer.

#STATUS DK1: TO LP:(CR)

STATUS DK1: DISKETTE BACK UP 2

SECTORS AVAILABLE 1668

SECTORS USED 152

SECTORS BAD 0
EXAMPLE 2. List the status of disk unit DKO. Note if the

input dataset is not specified it defaults to DKO.

3-12

The diskette name. is 'BACK UP 1'
#S(CR)

STATUS DKO: DISKETTE BACK UP 1
SECTORS AVAILABLE 1020

SECTORS USED 800

SECTORS BAD 0

3-44. QUIT COMMAND
3-45. SYNTAX: QUIT

3-46. The Quit command exits PIP and returns control to the
FLP-80D0OS Monitor.

SECTION 4

FLP-80D0OS TEXT EDITOR (EDIT)

4-1. INTRODUCTION

4-2. The FLP-80DO0S Text Editor assists the user in origination
and modification of assembly language source programs and English
text documentation. The Editor resides on the FLP-80D0S System
Diskette. It permits random access editing of ASCII diskette
files. The Editor is designed for usage with the MOSTEK FLP-80
system, but it can be adapted to other systems for OEM uses.

4-3. CAPABILITIES

4-5, The FLP-80D0S Text Editor permits random access editing of
ASCITI diskette files on a line and character basis. Whole lines
and character strings embedded within 1lines can be accessed,
changed, deleted, or added to an existing or new diskette file.
The size of the file to be edited is 1imited only by diskette
capacity. All I/0 operations to the diskette are transparent to
the user.

4-5. SOFTWARE CONFIGURATION

4-6. The Editor is resident on diskette. When loaded, it starts
at RAM address zero. Figure 4-1 shows the memory map for the
Editor. Editor buffers and variables are placed in RAM between
the top of the Editor and bottom of the Flexible Disk Handler.

4-7. The Editor uses Logical Unit Numbers 0 and 1 for console
interaction and Logical Unit Number 5 for outputting records with

4-2

line numbers. Logical Unit Number 5 is typically assigned to a
line printer device. ATl I/0 to the disk is via LUN FFy, which
cannot be reassigned via the Monitor 'ASSIGN' command. Figure
4-2 depicts this structure.

4-80

DEFINITIONS

1.

SOURCE - ASCII characters comprising a Z80 assembly
language program or some other text.

RECORD - A single source statement ending with a car-
riage return.

FILE - A diskette file which contains the source.

POINTER - the position in the source where the next ac-
tion of the Editor will be initiated.

CURRENT RECORD - the record in the source pointed to by
the pointer.

RECORD NUMBER - the decimal number of a record, begin-
ning at one (0001) for the first record
in a file and increasing sequentially
for each record.

INSERT - Installation of record(s) in a file im-
mediately following the current record.
Inserted records are assigned sequentially
increasing line numbers.

DELETE - removal of the current record from a file.

s

COOH

FIGURE 4-1. EDITOR MEMORY MAP

_/\

FLEXIBLE
DISK
HANDLER

I/0 BUFFERS
FOR 10CS

EDITOR
BUFFERS

&
VARIABLES

FLP-80 DOS
EDITOR

4-3

4-4

FIGURE 4-2. LOGICAL UNIT NUMBER STRUCTURE

()
_ y,
LUN O CONSOLE LUN |
INTERACTION
[
FLP-80 DOS LUNS
TEXT SOURCE
WITH
EDITOR LINE
NUMBERS

LUN FF

FLEXIBLE

DISK
FILE

4-9. USING THE TEXT EDITOR - CONSOLE INTERACTION

4-10. A1l user interaction with the EDITOR is via the console
device. The Editor issues prompts and messages to direct the
user. The user responds by entering commands or data via the
console keyboard. Each command or data record is terminated by a
carriage return. The user can modify a record before depressing
carriage return with the following console keys:

1. DEL: RUBOUT (ASCII 7Fy). Delete the previous
character. Successive characters may be deleted by en-
tering more than one ‘'rubout'. The characters which
are deleted will be printed on the console device be-
tween two backslash characters (\).

2. CNTL-H: BACKSPACE (ASCII 08y). Performs the same
function as RUBOUT, but the backslash is not printed on
the console device.

3. CNTL-U: NEGATIVE ACKNOWLEDGE (ASCII 15y). Deletes
the current 1line of entered information and reprompts
the user for a new record of input.

4-6

4-11. USING THE TEXT EDITOR - ENTERING COMMANDS

4-12. When the Editor prompts for a command (>), the user may
enter commands via the console. Modification of the input is al-
lTowed with RUBOUT, BACKSPACE, and CNTL-U functions. A1l commands
can be entered in lower case as well as upper case. Multiple
commands may be entered on one line if they are separated from
each other by blanks or commas. A command line is terminated by
a carriage return. A command line may have up to 80 characters
in it, including carriage return.

EXAMPLE >I(CR)

- insert mode command

>B_I(CR

- backup and insert
>b i(CR

- backup and insert
>L10(CR)

- go to line number 10.
>L 10,I(CR)

- go to line 10 and insert.

Several commands allow an operand n to be entered with the com-
mand. The operand may be a decimal number in the range 0-9999.
It may be entered immediately following the command or separated
from the command by one or more blanks or commas.

EXAMPLE

>L 10(CR)
>L10(CR)

- go to line number 10.

Alternatively, the operand may be two decimal numbers separated
by a minus sign. In this case, the line number specified by the
first number is accessed, then the operation is performed from
that line through and including the line specified by the second
number. If the first number is greater than the second number,
then an error prompt is printed and the command is not done.
EXAMPLE >V10-20(CR)

- verify lines numbered 10 through 20 on

the user console.

4-13. USING THE TEXT EDITOR - FIRST STEPS

4-14, The FLP-80D0OS Text Editor is executed by the following
monitor command:
$EDIT filename(CR) - where filename is the name of the
disk file to be edited.
The Editor responds with the following message:
FLP-80D0OS EDITOR V2.1
If the user does not enter the filename with the EDIT command,

then the Editor requests it:
ENTER FILE NAME TO BE EDITED>
The user then types in the name of the file to be edited. If the
file does not exist, then a new one with that name is created.
EXAMPLE: $EDIT DK1:MYFILE(CR)

EXAMPLE: $EDIT NEWFIL.SRC(CR)
- defaults to device DKO:.

EXAMPLE: $EDIT(CR)

ENTER FILE NAME TO BE EDITED>NEWFILE(CR)

The only restriction on the file name is that it cannot have ex-
tension 'BIN' or extension 'TMP'. Further, files with extension
'OBJ' are reserved for object files.

If the file does not exist, then the Editor outputs the following
message:
-->NEW FILE
0001«
- Editor prompts for insert records (see "INSERT
COMMAND").

At the end of Editing, the new file will automatically be
created. If the file does exist on disk, then editing of that
file will be done. The Editor prompts for a command:
>
- Editor prompts for a command. See list of com-
mands.

4-15. USING THE TEXT EDITOR - BASIC COMMANDS

4-16. I - INSERT
FORMAT: >I(CR)
or

>i(CR)

This command is used to insert records following the current re-
cord or to build new files.

The Editor responds with:

-->INSERT MODE
The user then enters records ending with carriage returns. After
each record which is inserted, the Editor reprompts with the next
line number. To terminate the insertions, the user enters a sin-

gle carriage return. Note that blank lines must be entered as

‘space, carriage return' because a single carriage return ter-
minates the insert mode. If an unprintable character is entered,
than a warning message is printed on the console. After the user
terminates the insert mode, the Editor prompts for a new command

(>).

EXAMPLE >I(CR) -user selects in-
sert mode.
-->INSERT MODE -Editor prompts user.

0002<THIS IS AN INSERTED LINE (CR) -user enters record

to be inserted.
0003<(CR) -user terminates in-
sert mode.

> -Editor prompts for
another command.

Note that modification of entered records can be done with RUB-
0UT, BACKSPACE, and CNTL-U. Inserted records are automatically
assigned sequential record numbers. Inserted records can be up
to 160 characters long, including the carriage return.

4-17. An - ADVANCE

4-18. This command is wused to advance the record pointer a
specified number of records.

Format: or > An(CR)
> anQCR}

If n is zero or if n is omitted, the pointer will be positioned
to the next record in the file. The record which is accessed is
printed on the console after this command.

4-10

EXAMPLE > A5(CR) - advance record pointer 5 records.
0015 ANY STATEMENT the new current record of the file

is printed on the console device
by the Editor.
EXAMPLE > A(CR) - advance to next record.
0016 NEXT STATEMENT

the next record in the file 1is
printed.

4-19. Bn - BACKUP

FORMAT: or > Bn(CR)
> anCR}

This command is used to backup the record pointer a specified
number of records.

If n is zero or if n is omitted, then the pointer is position to
the previous record in the file. The record which is accessed is
printed on the console after this command.

EXAMPLE > B3(CR) - backup record pointer 3 records.

0012 SOME STATEMENT the new current record of the file

is printed on the console device
by the Editor.
EXAMPLE > B(CR) - backup to previous record.
0011 A STATEMENT

the previous record in the file is
printed.

4-20. Dn - DELETE

FORMAT: or > Dn(CR)
> dn(CR)

This command deletes the specified number of records from the
file starting with the current record.

4-11

If the the constant n is not entered or if n is equal to zero,
only the current record will be deleted.

EXAMPLE > D5(CR) =~ the current record and the following 4
records will be deleted from the file.
EXAMPLE > D(CR) - only the current record will be deleted

from the file.

4-21. Ln - GO TO RECORD NUMBER n

FORMAT: or > Ln(CR)
> In(CR)

This command positions the pointer to the record numbered n.

The constant n must be entered and it must be greater than zero.
The record which is accessed is printed on the console device.

EXAMPLE > L10(CR)
0010 LINE NUMBERED 10.

[f the record number cannot be found because it is larger than
the last record number in the file, then the pointer will be
positioned at the last record of the file.

EXAMPLE > L2001 (CR)
-->EOF

0943 LAST LINE OF FILE

4-22. Vn-VERIFY

FORMAT: or > Vn(CR)
> vnfCR}

4-12

This command prints the specified number of records on the con-
sole device. The record pointer is updated to the last record
printed. If n is zero or if n is not entered, one record (the

current record) is printed on the console. Unprintable
characters are printed as dots (.) to identify them.
EXAMPLE > V2(CR)

0005 CURRENT STATEMENT
0006 NEXT STATEMENT
- two records are verified, i.e., printed on
the console device. The current record is
number 6.

4-23. TEXT EDITOR ADVANCED COMMANDS

4-24, Cn /stringl/string2/- CHANGE
FORMAT : > Cn /string 1/string 2/(CR)
or > cn /string 1/string 2/(CR)
where n indicates the number of occurrences to change,
string 1 represents the characters to be changed, string2
represents the substitute or new characters, and / re-

presents a delimiter character which does not appear in
either string.

This command changes the next n occurrences of character string 1
to string 2 starting with the current record. Any character
which does not appear in either string 1 or string 2 may be used
as a delimiter. A1l three delimiters must be identical. If n is
zero or if n is not entered, then only one occurrence of string 1
is changed. Each record which is changed will be printed on the
console device. If string 2 is not entered, then string 1 will
be deleted when it is found. The record pointer will be posi-
tioned at the record of the last occurrence of the change. If n

4-13

is one or is not entered, then only the current record will be
searched for string 1. If string 1 is not present, then a ques-
tion mark prompt will be printed and the record pointer will re-
main at the same record:

?>
For n greater than 1, if string 1 is not found before the end of
the file, then an end-of-file warning message is printed on the
console and the pointer will be positioned at the last record in
the file.
EXAMPLE > V(CR)

0010 THIS IS A RECORD.

> C /THIS/THAT/(CR)

0010 THAT IS A RECORD.

> C /IS/WAS/(CR)

0010 THAT WAS A RECORD.

> C /WAS A /(CR)

0010 THAT RECORD.

> C2 /T/V/(CR)

0010 VHAV RECORD.

EXAMPLE > C2/XENON/ARGON/ (CR)
--> EOF
-The string 'XENON' cannot be found by the
Editor.

4-25. En - EXCHANGE

FORMAT: > En (CR}
or > en (CR)

This command exchanges the specified number of records (starting
with the current record) with records to be inserted. It 1is
exactly equivalent to the command sequence:

4-14

>Dn_(CR) - delete n records.
>B1 (CR) - back up one record.

>I (CR)

-=->INSERT MODE - enter insert mode.

4-26. Fn - PRINT FLAG OPTION

FORMAT : >F0 (CR) - n=0, inhibit printing after all but
or >f0 (CR) the 'Vn-VERIFY' command.
>Fn (CR - n not=0, allow printing after all
change
>fn _(CR) or access commands.

The Editor normally prints on the console device any record which
is accessed or changed. Thus, the following commands print out a
record: An, Bn, Cn, Ln, Sn, Vn. In order to reduce print out
time on a slower console device (such as a teleytype), this
command can be used to inhibit print out on all of the commands
except Vn - VERIFY.

4-27. G dataset - GET RECORDS FROM DATASET
FORMAT : >G dataset (CR)
or >g dataset (CR)

The command inputs records from a dataset (which must be a disk
file) and inserts then in sequence after the current record. A
carriage return must follow the dataset specification.

EXAMPLE > G FILEX(CR)
-get records from FILEX in DKO: and insert them

after the current record in the file being
edited.

4-15

4-28. Mn - MACRO

> M1(CR)
or> ml(CR)
> M2(CR)
or> m2(CR)
This command allows a command string to be entered into one of
two alternate command buffers (labeled 'l1' and '2'). The
alternate command buffers will accept character strings of 80
characters or Tless. The Editor responds with the following
prompt:

EXAMPLE > M1 (CR)
1>S /0LD/ D1 Bl (CR)
- The user enters into alternate command
buffer 1 the commands which:

1. Search for the 1st occurrence of
the string 'OLD', starting with the
next record.

2. delete that record.

3. backup one record.

4-29. Pn dataset - PUT N RECORDS TO DATASET
FORMAT: > Pn dataset (CR)
or > pn dataset (CR)

This command outputs the specified number of records (starting
with the current record) to a dataset which must be a disk file.
If n is zero or n is not entered, then only the current record is

output. The records which are output are not deleted. I[f the
file being

4-16

output to exists, it will be erased before any records are writ-
ten to jit. This command may be used with the G(GET) command to
move records around in a file. A carriage return must follow the
dataset specification.
EXAMPLE
>P25 XFILE (CR)
- output the next 25 1lines in the file being
edited to a new file named XFILE on DKO:
>P100-125DK1:FILE1(CR)
output Tlines 100 through 125 from the file
being edited to file DK1:FILEL.

4-30. Sn /source image/ - SEARCH
FORMAT: > Sn /source image/ (CR)
or> sn /source image/ (CR)

where n is the number of the occurrence, source image re-
presents any set of characters which is to be search for,
and / represents a delimiter character which does not ap-
pear in the string.

This command searches the file, starting with the next record,
for the nth occurrence of the character string between the de-
limiters. The pointer is then positioned at the record in which
the string is found. This command always searches forward in the
file. Any character which does not exist in the source image may
be used as delimiter. Both the starting and terminating de-
limiters must be identical. If n is zero or n is not entered,
then the first occurrence of the source image will be sought.
The record in which the source image is found will be printed on
the console. If the string is not encountered before the end of
the file, then an end-of-file warning is printed on the console
device and the pointer will be positioned at the last record in
the file.

EXAMPLE

EXAMPLE

4"31.
FORMAT:

> S JORD/ (CR)

0023 SOME RECORD DATA

4-17

- Editor searches forward for the character

string

finds the 1st occurrence,

and prints the record on the console.

> S10 /9AH/(CR)
-->EOF
0048 LAST RECORD

T - INSERT AT TOP

>T§CR}
or >thRQ

-Editor could not find the
tenth occurrence of the
string '9AH'.
is printed indicating
end-of-file and the Tlast
record in the file s

A warning

printed.

This command inserts records at the top of the file before the

first record.

4-32.
FORMAT:

Wn - WRITE

>Wn_(CR)
or >wn QCR}

See the 'I - INSERT'

command for proper usage.

This command performs the same function as the VERIFY command,

except

that output 1is directed to

assigned to a 1line printer

command before the Editor is used:
$ASSIGN 5,LP:(CR)

4-33.

Xn - EXECUTE

> X1 (CR)
or > x1 (CR)
> X2 (CR)
or > x2 (CR)

LUN 5 which 1is typically
via the following monitor

4-18

This command executes the commands stored 1in the alternate
command buffer numbered 1 or 2. After an alternate command
buffer has been executed, control is returned to the Editor which
prints a prompt for a new command (>). The alternate command
buffer is not destroyed during the operation. If n is equal to
zero or 1is not entered, then alternate command buffer 1 s
selected.

EXAMPLE > M1 (CR)
> S /0LD/ D1 B1 (CR)

> X1 (CR)
0010 FIRST OCCURRENCE OF OLD.

- '0OLD" is located and the record is deleted.
0009 LINE NUMBER 9.

- Backup command prints its record.

NOTE The pseudo-macro command capability is executed by the 'M'
and 'X' commands. The user puts his macro command string into

alternate buffer 1 or 2 and executes that macro string via the
'X' command.

4-34. EDITING LARGE FILES

4-35. Editing of larges file is no different than editing small
files. A1l commands are fully functional. However, diskette
access may be required for certain operations and a delay may be
apparent before the Editor responds.

4-36. EDITOR MESSAGES

4-37. If the user enters on unrecognizable file name, a syntax
error will be indicated and the Editor will reprompt for another
file name.

EXAMPLE ENTER FILE NAME TO BE EDITED>LAST=1(CR)

4-19

*k*x%x%*SYNTAX ERROR
ENTER FILE NAME TO EDITED>

4-38. If the user enters an unrecognizable command, then the
Editor will print a question mark and another prompt.
EXAMPLE > R20 (CR

?>

If the user enters the same name for a put file as the name of
the file being edited during a PUT command, the Editor will
print: -->USE DIFFERENT FILE NAME FOR PUT and it will reprompt
for a new command: ?>

4-39. Al11 1/0 errors to and from disk result in termination of
the Editor with an appropriate error message. The original file
should be backed up on another diskette before using the Editor.

4-40. The Editor prompts the user with several messages to the
console device.
-=> NEW FILE
- indicates that a new file is being created
rather than editing of an old file.
--> INSERT MODE
- indicates that records of data are to be en-
tered rather than Editor commands.
-=> TOF
- indicates that the top of file (beginning of
file) has been encountered.
--> END OF EDITING
- indicates that the Editor has successfully
completed. Control is then returned to the
FLP-80DOS Monitor.
--> PLEASE WAIT.
- indicates that a long disk access is taking
place.
--> END OF WINDOW. USE 'ADVANCE' TO SEE NEXT RECORD.
- occurs only with VERIFY command. Follow the
directions.

4-20

-->IS THE OUTPUT DEVICE READY ? (Y/N)

- occurs after the issue of a W command to
alert the user that the I/0 device assigned
to LUN 5 must be configured to his system.

-->THERE MAY NOT BE ENOUGH SPACE IN DISK TO EDIT YOUR FILE.
DO YOU WISH TO CONTINUE? (Y/N)

- occurs only if at the start of the editing
session the free space on the diskette unit
of the input file is not at least equal to
125% of the size of the input file. It
serves as a warning against the possible
loss of that file because of a disk-full er-
ror. (Error 0B).

4-41. SAMPLE EDITING SESSION

4-42. The user is urged to follow the steps given here to become
acquainted with the FLP-80D0OS Editor.
$EDIT NEWONE (CR)
-user selects to use FLP-80D0S Editor.
(There will be a slight delay while the Editor is read into RAM
from disk.)
FLP-80D0OS EDITOR V2.1

- user selects to create a new file on DKO: (disk
unit zero), with file name 'NEWONE' and no ex-
tension.

--> NEW FILE

--> INSERT MODE
0001 < TITLE ECHO PROGRAM (CR)
- Editor prompts for records to be input via the con-

sole. User begins keying in a program.
0002< ; THIS PROGRAM READS A CHARACTER (CR)
0003< ; FROM THE CONSOLE AND ECHOS IT.(CR)
0004< ; CNTL-U RETURNS CONTROL TO THE MONITOR.(CR)

0005<_; (CR)

4-21

0006¢< INCLUDE SYSLNK (CR)
0007« LD E,0 ; CONSOLE LUN (CR)
0008<LOP CALL RDCHR ; READ A CHARACTER (CR)
0009¢« CP 15H ; CHECK FOR CNTL-U (CR)
0010« JP Z,7A00H ; IF SO, RETURN TO MONITOR(CR)
0011< CALL WRCHR ; ELSE ECHO IT (CR)
0012< JR LOOP-$; AND LOOP FOR MORE (CR)
0013¢< END (CR)
0014<(CR)
- user terminates insert mode operation
>B99V20(CR)
- user goes to beginning of file and verifies 20 re-

cords in the file.

-->EOQOF
- Editor shows that end of file has been encountered.
>L8 (CR
0008 LOP CALL RDCHR ; READ A CHARACTER
- user verifies line 8 and observes an error.
>C /LOP/LOOP/(CR)
0008 LOOP CALL RDCHR ; READ A CHARACTER
- user modifies line.
>S /7A00/(CR)
0010 JP Z,7A00H ; IF SO, RETURN TO MONITOR
- user searches for the string 7A00.
>C /7A00H/REBOOT/(CR)
0010 JP,Z REBOOT ; IF SO, RETURN TO MONITOR
- user changes the record.

>Q (CR
- user terminates editing session. The new file will
now be on disk unit O (DKO) with file name NEWONE.

4-22

TABLE 4-1. SUMMARY OF FLP-80 EDITOR COMMANDS

CONSOLE INTERACTION COMMAND PROMPT >
BACKSPACE - Delete the previous INSERT PROMPT <
character.
CNTL-U - Delete the current line. MESSAGE IDENTIFIER =-=>
COMMAND DESCRIPTION
An Advance n records.
Bn Backup n records.

Cn /stringl/string2/ Change n occurrences of string 1 to string
2

Dn Delete n records, starting with current
record.

En Exchange n records with inserted records.

Fn Flag print option: 0 = no print, not 0 =
print.

G dataset Get records from dataset and insert them
after current record.

I Insert records after current record.

Ln Line: Access record number n.

Mn Macro: Place command string into alternate
command buffer 1 or 2.

Pn dataset Put n records out to dataset.

Q Quit: Save the file on disk and terminate
the editor.

Sn /string/ Search for nth occurrence of the string.

T Top: Insert at top of file before the
first record.

Vn Verify n records on the console device.

Wn grite n records with record numbers to LUN

Xn E§ecute alternate command buffer n (1 or
2).

In all commands, except Fn and Ln, if n is zero or if n
is not entered, it is assumed to equal one (1). The
operand n may be entered as ny3 - n2 which performs
the operation on Tines ny through njp.

5-1

SECTION 5

FLP-80D0S ASSEMBLER (ASM)

5-1. INTRODUCTION

5-2. The Mostek FLP-80D0OS Assembler is provided on flexible dis-
kette. In conjunction with the resident Text Editor and the
Linker it provides the means for editing, assembling, and linking
Z80 programs. The Assembler reads Z80 source mnemonics and
pseudo-ops and outputs an assembly listing and object code. The
object code is in industry standard hexadecimal format modified
for relocatable, 1inkable assemblies.

5-3. The Assembler recognizes all standard Z80 source mnemonics.
It supports conditional assemblies, global symbols, relocatable
programs, and a printed symbol and cross reference table. The
Assembler can assemble any length program, limited only by the
symbol table size (which is based on available RAM) and available
disk space. In a 16K RAM system, the Assembler supports a symbol
table size of about 150 symbols. In a 32K RAM system, the size
is over 700 symbols.

5-4, Figure 5-2 shows the Assembler with typical device usage.
The source module is read from a disk file, the object output is
directed to a disk file, and the assembly listing is directed to
a line printer. User interaction is via the console device.
Note that the Assembler can interact with any dataset.

5-5. DEFINITIONS
1. SOURCE MODULE - the user's source program. Each source

module is assembled into one object module by the As-
sembler. The end of a source module is defined by an EOT

5-2

character (04y) on input or an 'END' pseudo-op.

OBJECT MODULE - the object output of the Assembler for one
source module. The object module contains linking informa-
tion, address and relocating information, machine code, and
checksum information for use by the MOSTEK Linker. The ob-
ject module dis 1in ASCII. A complete definition of the
MOSTEK object format is in Appendix B. The object module
is typically output to a disk file with extension 'OBJ'.
LOAD MODULE - the binary machine code of one complete
program. The 1load module is defined in RAM as an ex-
ecutable program or on disk as a binary file (extension
'BIN'). It is created by the MOSTEK Linker from one or
more object modules (extension 'OBJ').

LOCAL SYMBOL - a symbol in a source module which appears in
the label field of a source statement.

INTERNAL SYMBOL - a symbol in a source (and object) module
which is to be made known to all other modules which are
loaded with it by the Linker. An internal symbol is also
called global, defined, public, or common. Internal sym-
bols are defined by the GLOBAL pseudo-op. An internal sym-
bol must appear in the label field of the same source mod-
ule. Internal symbols are assumed to be addresses, not
constants, and they will be relocated by the Linker.
EXTERNAL SYMBOL - a symbol which is used in a source module
but which does not appear in the label field of a state-
ment. External symbols are defined by the GLOBAL pseudo-
op. External symbols may not appear in an expression which
uses operators. An external symbol is a reference to a
symbol that exists and is defined as internal in another
program module.

GLOBAL DEFINITION - both internal and external symbols are
defined as "GLOBAL" in a source module. The Assembler de-
termines which are internal and which are external.
POSITION INDEPENDENT - a program which can be placed any-
where in memory. It does not require relocating informa-

5-3

tion in the object module.

9. ABSOLUTE - a program which has no relocation information in
the object module. An absolute program which is not posi-
tion independent can be loaded only in one place in memory
in order to work properly.

10. RELOCATABLE - a program which has extra information in the
object module which allows the Linker to place the program
anywhere in memory.

11. LINKABLE - a program which has extra information in the ob-
ject module which defines internal and external symbols.
The Linker uses the information to connect, resolve or
1ink, external references to internal symbols.

5-9. ASSEMBLY LANGUAGE SYNTAX

5-10. An assembly language program (source module) consists of
labels, opcodes, pseudo-ops, operands, and comments in a sequence
which defines the user's program. The assembly language con-
ventions are described below.

5-11. DELIMITERS. Labels, opcodes, operands, and pseudo-ops
must be separated from each other by one of more commas, spaces,
or tab characters (ASCII 09y). The label may be separated from
the opcode by a colon, only, if desired.

5-12. LABELS. A Tlabel is composed of one or more characters.
If more than 6 characters are used for the label, only the first
6 are recognized by the Assembler. The characters in the label
cannot include ' () *+ , - 1= .,/ : / < > or space. In ad-
dition, the first character cannot be a number (0-9). Table 5-1
summarizes the allowed characters in a label or symbol. A Tlabel
can start in any column if immediately followed by a colon (:).
It does not require a colon if started in column one.

5-4

FIGURE 5-1. ASSEMBLER MEMORY MAP

/\—/\/

FLEXIBLE
DISK
HANDLER
T /0 BUFFERS
800 H FOR 10CS

ASSEMBLER ,
,? SYMBOL o
g TABLE

A 2200H

FLP-80 DOS
ASSEMBLER

300H

ASSEMBLER
VARIABLES AND
STACK

FIGURE 5-2. LOGICAL UNIT NUMBER STRUCTURE

é)
_ Y
i
LUN @ CONSOLE LUN |
INTERACTION
|

FLP-80 DOS LUN FFy, ASSEMBLY
- LISTING

SOURCE
INPUT

ASSEMBLER SOURCE

OUTPUT -—/'"

FLEXIBLE
DISK LUN FFy
FILE OBJECT

OUTPUT

FLEXIBLE

DISK
FILE

5-6

EXAMPLE allowed
LAB
L923
$25
ACCOUNT _PAYABLE

A25E :
not allowed

9LAB ;STARTS WITH A NUMBER
L)AB sILLEGAL CHARACTER IN LABEL
L:ABC s ILLEGAL CHARACTER IN LABEL

5-13. OPCODES. There are 74 generic opcodes (such as 'LD'), 25
operand key words (such as 'A'), and 693 legitimate combinations
of opcodes and operands in the Z80 instruction set. The full set
of these opcodes is documented in the "Z80 CPU TECHNICAL MANUAL"
and Tisted in Appendix A of this manual. The FLP-80D0S Assembler
allows one other opcode which is not explicitly shown in the Z80
CPU Technical Manual:
IN F,(C) ;SET THE CONDITION BITS ACCORDING
;70 THE CONTENTS OF THE PORT DEFINED BY THE
C-REGISTER

5-14. PSEUDO-OPS. Pseudo-ops are used to define assembly time
parameters. Pseudo-ops appear like Z80 op-codes in the source
module. Several pseudo-ops require a Tlabel. The following
pseudo-ops are recognized by the Assembler:

1. ORG nn -orgin - sets the program counter to
the value of the expression nn. Each
origin statement in a program must be
greater than the first origin of the
program to assure proper program link-

2.

3.

4.

5.

6.

label EQU nn

label DEFL nn

DEFM 'aa'

DEFB n,n,n...

DEFW nn,nn,nn,..

5-7

ing. (See Section 6).

-equate - sets the value of a label to
nn in the program, where nn is an ex-
pression; can occur only once for any
label.

-define label - sets the value of a
label to nn in the program, where nn is
an expression. This may be repeated in
the program with different values for
the same Tabel. At any point in the
program, the Tlabel assumes the last
previously defined value.

-define message - defines the contents
of successive bytes of memory to be the
ASCII equivalent <code of characters
within quotes. Maximum length of the
message 1is 63 characters. The de-
limiting quote characters are required.
A quote character may be placed in a
message by a sequence of two quotes ('
.

-define byte - defines the contents of
bytes located at the current program
counter address to be n, where n is any
expression.

.~define word - defines the contents of
two-byte words to be the value of any
expression nn. The least significant
byte is located at the current program
counter address. The most significant
byte is located at the program counter
address plus one.

5-8

10.

DEFS nn

END nn

GLOBAL symbol

NAME symbol

-define storage - reserves nn bytes of
memory starting at the current program
counter, where nn is an expression.
When loaded, these bytes are not over-
written, i.e., they will contain what
was previously in memory. This
pseudo-op cannot be used at the end of
a program to reserve storage.

-end statement - defines the last Tline
of the program. The 'END' statement is
not required. The expression nn is op-
tional and represents the transfer ad-
dress (starting execution address) of
the program. The transfer address de-
faults to the first address of the
program. Note that for binary files
the transfer address must be the same
as the starting address of the program.
-define global symbol - any symbol
which is to be made known among several
separately assembled modules must ap-
pear in this type of statement. The
Assembler determines if the symbol is
internal (defined as a 1label in the
program), or external (used 1in the
program but not defined as a label).
-module name -This pseudo-op defines
the name of the program (source and ob-
ject). The name is placed in the head-
ing of the assembly 1listing and is
placed in the first record of the ob-
ject module to identify it. This
pseudo-op is designed primarily to

5-9

TABLE 5-1. ALLOWED CHARACTERS

MSD 0 1 2 3 4 5 6 7
LSD 000 001 010 011 100 101 110 111
o 0000] NUL o% @ P : 0
| RV
1 0001 | ! C 1 / A Q a q
//’//
2 0010 " ; 2 /) B R b r
s ’
7
3 0011 # /(;3 C S C s
/ /
4 0100 s [_4///‘ D T d t
5 0101 % 5 E U e u
6 0110 ‘6 7/ F v f v
s
7 011 7 G W g , w
v/
8 1000 H X h X
/
9 1001 g | Y i y
A 1010 J z i z
B 1011 K (k [
C 1100 L \ [!
D 1101 M) m |
E 1110 N A n -
F 1111 (0] _ o

NOT ALLOWED

ADDITIONAL CHARACTERS NOT ALLOWED AS FIRST CHARACTER

5-10

11. PSECT op

12.

13.

14.
15.
16.

IF nn

ENDIF

COND nn
ENDC

facilitate future compiler design. The

name of the module defaults to ©6

blanks.

-program section - This pseudo-op may

appear only once at the start of a

source module. It defines the program

module attributes for the following

operands:

REL - relocatable program (defaults).

ABS - absolute program. No relocating
information is generated in the
object module by the Assembler.
The module will be loaded where
it is origined.

-conditional assembly - If the expres-

sion nn is true (non-zero), the IF

pseudo-op 1is 1ignored. If the expres-

sion is false (zero), the assembly of

subsequent statements is disabled.

'"IF' pseudo-ops cannot be nested.

-end of conditional assembly -

re-enables assembly of subsequent

statements.

-same function as IF pseudo-op.

-same function as ENDIF pseudo-op.

INCLUDE dataset-include source from another dataset -

allows source statements from another
dataset to be included within the body
of the given program. The file is
searched for first on DKO:, then on
DK1:. If the dataset cannot be opened
properly, then assembly 1is aborted.

LIST
NLIST
EJECT
TITLE S

5-11

The source module must not end with an
'END' pseudo-op (otherwise, assembly
would be terminated). The source mod-
ule must end with an EOT <character
(04), which is true for all FLP-80DOS
ASCII datasets. The INCLUDE pseudo-op
cannot be nested, but it can Dbe
chained. The means that an included
dataset can have an INCLUDE pseudo-op
at the end of it. At the end of the
last included dataset, assembly con-
tinues in the original module.

Note: The INCLUDE pseudo-op cannot be
followed by a comment on the same line.

turn listing on.

turn listing off.

eject a page of listing.

print title 'S' at top of each page of listing.

'S' may be up to 32 characters long.

5-15. OPERAND. There
statement depending on
the Assembler may take

5-16. GENERIC OPERAND.

may be zero, one, or more operands in a
the opcode or pseudo-op used. Operands in
the following forms:

Such as the letter 'A', which stands for

the Accumulator. Table 5-2 summarizes these operands and their

meanings.

5-17. Constant. The constant must be in the range 0 through
OFFFFH. It can be in the following forms:

1. Decimal

-this is the default mode of the As-
sembler. Any number may be denoted as
decimal by following it with the Tetter
'D'. E.g., 35, 249D.

5-12

2. Hexadecimal -must begin with a number (0-9) and end
with the letter 'H'. E.g., OAF1H.

3. Octal -must end with the letter 'Q' or '0'.
E.qg., 377Q, 2770.

4, Binary -must end with the letter 'B'. E.g.,
0l1101118B.

5. ASCII -letters enclosed in quote marks will be

converted to their ASCII equivalent
value. E.g., 'A' = 41y.

5-18. A LABEL which appears elsewhere in the program. Note that
labels cannot be defined by labels which have not yet appeared in
the user program (this is an inherent limitation of a two-pass
assembler).

not allowed

L EQU H

H EQU I

I EQU 7
allowed
I EQU 7
H EQU I
L EQU H

5-13

TABLE 5-2. GENERIC OPERANDS

A A register (accumulator)
B B register

C C register

D D register

E E register

F F register

H H register

L L register

AF AF register pair

AF' _ AF'register pair

BC BC register pair

DE DE register pair

HL HL register pair

SP SP Stack Pointer register
$ Program Counter

I I register (interrupt vector MS byte)
R Refresh register

IX IX index register

| IY index register

NZ Not zero

Z Zero

NC Not Carry

C Carry

PO Parity odd/not overflow
PE Parity even/overflow

p Sign positive

M Sign negative

5-14

5-19. AN EXPRESSION-the MOSTEK FLP-80D0S Assembler accepts a
wide range of expressions in the operand field of a statement.
A1l expressions are evaluated Tleft to right constrained by the
hierarchies shown 1in Table 5-3. Parentheses may be wused to
ensure correct expression evaluation. Table 5-3 shows the
allowed operators and their hierarchies. The symbol '$' is used
to represent the value of the program counter of the current
instruction. Note that enclosing an expression wholly in
parentheses indicates a memory address. The contents of the
memory address equivalent to the expression value will be used as
the operand value. Integer two's complement arithmetic is used
throughout. The negative (2's complement) of an expression or
quantity may be formed by preceding it with a minus sign. The
one's complement of an expression may be formed by preceding it
with the '.NOT.' operator.

In doing relative addressing, the current value of the program
counter must be subtracted from the label if a branch is to be
made to that label address.

EXAMPLE:

JR LOOP-$%

eeewill jump relative to 'LOOP'.
The allowed range of an expression depends on the context of its
use. An error message will be generated if this range is ex-
ceeded during its evaluation. In general, the 1limits on the
range of an expresson are 0 through OFFFFy. The limits on the
range of a relative jump ('JR' or 'DJNZ') are -126 bytes and +129
bytes. The Assembler monitors the number of items in an expres-
sion. If an expression is too long, an error message will be out-
put. This Timit will probably never be reached by a typical
program. For relocatable programs, the Assembler will output
relocation information in the object module for those addresses
which are to be relocated by the Linker. Expressions are de-
termined to be relocatable addresses or non-relocatable constants

5-15

according to the following rules:

(constant) (operation) (constant) = (constant)
(constant) (operation) (relocatable) = (relocatable)
(relocatable) (operation) (constant) = (relocatable)
(relocatable) (operation) (relocatable) = (constant)
EXAMPLE I EQU 1 sCONSTANT DEFINITION

DEFW I 3CONSTANT WHICH WILL NOT BE RELOCATED

LAB EQU $;RELOCATABLE DEFINITION

JP LAB ;RELOCATABLE OPERAND

JR LAB-$;CONSTANT OPERAND

JR +5+ (1) ;CONSTANT OPERAND
For a further discussion of relocatable values, see paragraph
5-27.

5-20. COMMENTS. A comment 1is defined as any characters fol-
lowing a semicolon in a line. A semicolon which appears in
quotes in an operand is treated as an expression rather than a
comment starter. Comments are ignored by the Assembler, but they
are printed in the assembly listing. Comments can begin in any
column. Note also that the Assembler ignores any statements
which have an asterisk (*) in column one.

5-16

TABLE 5-3. ALLOWED OPERATORS AND HIERARCHIES
IN FLP-80DOS ASSEMBLER

.RES. 0
-reset overflow. Anytime the .RES. operator is found,
the overflow indicator will be unconditionally reset
after the expression is evaluated. This can be used
to prevent overflow errors in certain arithmetic ex-
pressions.
Unary plus +
Unary minus

Logical NOT

(2's complement)
0T.) (1's complement)

* o

(+)

(-)

(<N

Multiplication (*)

Division (/)

Addition (+)

Subtraction (-)
Logical AND (
Logical OR (.0
Logical XOR (
Logical shift right (.
Logical shift left (
(.

Shift right 8

AND.)
R.)
XOR.

)

SHR.)
.SHL.)
)

EE ST R R~ R~ R VR VO A A S

The shift operators (.SHR. and SHL.) shift their first argument
right or 1left by the number of bit positions given in their
second argument. Zeros are shifted into the high-order or low-
order bits respectively. The dot operator (.) may be placed at
the end of an expression. Its effect is to shift a 16 bit value
right by 8 bits so the most significant byte can be accessed.
Zeros are shifted into the higher order bits.

5-17

5-21. OBJECT OUTPUT

5-22. The object module of the Assembler can be loaded by an
Intel hexadecimal loader for non-linkable programs. Extra
information is inserted into the object module for linkahle and
relocatable programs for using the MOSTEK Linker. For a complete
discussion of the object format, see Appendix B.

5-23. ASSEMBLY LISTING OUTPUT

5-24. The user must insert tabs in the source to obtain columns
in the assembly Tlisting. The value of each equated symbol will
be printed with a pointer (>) next to it. Any address which is
relocatable will be identified with a quote (') character. The
statement number and page number are printed in decimal. Listing
control pseudo-ops do not appear in the 1listing but they are
assigned statement numbers. If the 1listing option is not
selected, errors will be output to the console device.

5-25. ABSOLUTE MODULE RULES

5-26. The pseudo-op 'PSECT ABS' defines a module to be absolute.
The program will be loaded in the exact addresses at which it is
assembled. This 1is wuseful for constants, a common block of
global symbols, or a software driver whose position must be
known. This method can also be used to define a list of global
constants.

EXAMPLE PSECT ABS ;ABSOLUTE ASSEMBLY
GLOBAL AA
AA EQU 0

GLOBAL AB

5-18

AB EQU OE3H
GLOBAL AC

AC EQU 25H
GLOBAL AD

AD EQU OAF3H
END

A1l symbols in the above module will assume constant values which
may be used by any other program.

5-27. RELOCATABLE MODULE RULES

5-28. The following rules apply to relocatable programs.
1. Programs default to relocatable 1if the 'PSECT ABS'
pseudo-op is not used or if 'PSECT REL' is specified.
2. Only those values which are 16-bit address values will
be relocated. 16-bit constants will not be relocated
(internal symbols are exceptions).

EXAMPLE AA EQU 0A13H ;ABSOLUTE VALUE
LD A, (AA) ;AA NOT RELOCATED
AR EQU $ sRELOCATABLE VALUE
LD A, (AR) ;AR WILL BE RELOCATED UPON
LOADING

5-29. Relocatable quantities may not be used as 8-bit operands.
This restriction exists because only 16-bit operands are re-
located by the Linker.

EXAMPLE LAB EQU $ sRELOCATABLE DEFINITION
DEFB LAB ;NOT ALLOWED
LD A,LAB sNOT ALLOWED
LD A,(LAB) ;ALLOWED

LD HL,LAB sALLOWED

5-19

5-30. Labels equated to 1labels which are constants will be
treated as constants. Labels equated to Tlabels which are
relocatable values will relocated. Internal symbols are

exceptions.

EXAMPLE B8 EQU 20H ;ABSOLUTE VALUE
C8 EQU B8 sABSOLUTE VALUE
LD A,(C8) ;C8 WILL NOT BE RELOCATED
AR EQU $;RELOCATABLE VALUE
BR EQU AR ;RELOCATABLE VALUE

LD A,(BR) ;BR WILL BE RELOCATED

5-31. Internal symbols will always be marked relocatable. This
point is important because an internal symbol will be relocated
even though it looks Tike a constant. This point is discussed
further, below.

5-32. External symbols will always be marked relocatable,
except for the first usage in the program.

5-33. GLOBAL SYMBOL HANDLING

5-34. A global symbol is a symbol which is known by more than
one module. A global symbol has its value defined in one module.
It can be used by that module and any other module. A global
symbol is defined as such by the GLOBAL pseudo-op. For example:
GLOBAL SYM1
- SYM1 is a symbol which is defined as "global".

An internal symbol 1is one which is defined as global and also
appears in the Tlabel field of a statement in the same program.

5-20

EXAMPLE GLOBAL SYMI1

CALL SYM1
END
-SYM1 is an external symbol
EXAMPLE

GLOBAL SYM1
SYM1I EQU $

LD A,(SYM1)

END

-SYM1 is an internal symbol. Its value is
the address of the LD instruction.

If these two programs were linked by the MOSTEK Linker, all
global symbol references would be "resolved". This means that
each address in which an external symbol was used would be mod-
ified to the value of the corresponding internal symbol. The
loaded programs would be equivalent (using our example) to one
program written as follows.

EXAMPLE CALL SYM1

SYM1 EQU $

5-21

LD A,(SYM1)

END

5-35. Global symbols are used to allow large programs to be
broken up into smaller modules. The smaller modules are used to
ease programming, facilitate changes or allow programming by dif-
ferent members of the same team. The Assembler has several rules
which apply to global symbols. The examples in the following
paragraphs should be studied carefully.

5-36. GLOBAL SYMBOL BASIC RULES. Both passes of the Assembler
must be done in their entirety if global symbols are used. This
restriction exists because symbols are defined as global during
pass 1, and an external reference link list is built up during
pass 2.
1. Global symbols follow the same syntax rules as labels.
They may not start with a number (0-9) or a restricted
character. They may not contain restricted characters.
EXAMPLE allowed
GLOBAL SYM1
GLOBAL A&&
GLOBAL $BB
not allowed
GLOBAL 1AB ;STARTS WITH A NUMBER
GLOBAL A=B ;CONTAINS A RESTRICTED CHARACTER
2. An external symbol may not appear in an expression.
EXAMPLE GLOBAL SYMI1 ;EXTERNAL SYMBOL
CALL SYM1 ; 0K

5-22

LD HL, (SYM1) ; 0K
LD HL,SYM1+25H ;NOT ALLOWED
JP SYM1+2 ;NOT ALLOWED

3. An external symbol is always considered to be a 16-bit
address. Therefore, an external symbol may not appear
in an instruction requ%ring an 8-bit operand. It may
not be used for a displacement or an 8-bit constant.

EXAMPLE GLOBAL SYMI1 sEXTERNAL SYMBOL
CALL SYM1 3 0K
LD A,(SYM1) ; 0K
LD A,SYM1 ;NOT ALLOWED
LD (IX+SYM1),A ;NOT ALLOWED
BIT SYM1,A ;NOT ALLOWED

4, In relocatable assembly, a global symbol is always con-
sidered to be a relocatable 16-bit address. This ap-
plies to both internal and external symbols. It does
not apply to absolute assemblies (PSECT ABS).

5. By definition, an external symbol cannot also be an
internal symbol.

6. For a set of modules to be linked, no duplication of
internal symbol names is allowed. That is, an internal
symbol can be defined only once in a set of modules to
be linked together.

5-37. GLOBAL SYMBOL ADVANCED RULES.

1. An external symbol cannot appear in the operand field
of a '"EQU' or 'DEFL' pseudo-op. Thus, an external sym-
bol must be explicitly defined as global.

EXAMPLE GLOBAL SYM1 sEXTERNAL SYMBOL
SYM2 EQU SYM1 ;NOT ALLOWED
SYM3 DEFL SYM1 yNOT ALLOWED

2. A1l references to an external symbol are marked re-
locatable, except the first reference in a program.
The object code for these references 1is actually a
backward 1ink 1list, terminating in the <constant
OFFFFy. (See definition of object format in Appendix
B) (This rule does not apply to absolute assemblies).

3. An internal symbol is always marked relocatable, except
for absolute assemblies. This point is important, be-
cause an internal symbol will be relocated even though
it Tooks like a constant.

EXAMPLE PSECT REL ;RELOCATABLE MODULE
GLOBAL YY s INTERNAL SYMBOL
YY EQU OAF3H 3YY WILL ALWAYS BE MARKED RELOCATABLE
LD A,(YY) ;YY WILL BE RELOCATED WHEN LOADED.

; THE ABOVE INSTRUCTION LOADS THE CONTENTS OF THE ADDRESS YY,
;RELOCATED, INTO THE A-REGISTER.

EXAMPLE PSECT ABS sABSOLUTE ASSEMBLY
GLOBAL YY s INTERNAL SYMBOL
YY EQU OAF3H ;YY IS AN ABSOLUTE VALUE
LD A, (YY) ;THIS LOADS THE CONTENTS OF ADDRESS

;OAF3H INTO THE A-REGISTER
4. A1l other rules that apply to local symbols also apply
to internal symbols.

5-38. USE OF THE "NAME" PSEUDO-OP.

5-39. The NAME pseudo-op can be used to identify both a source
module and an object module. The name of the module being as-
sembled can be assigned by the NAME pseudo-op. The name 1is
placed in the heading of the assembly listing. The name is also
placed in the first record of he object module. The first record
is the module definition record (record type 05), and it is de-
scribed in Appendix B. The name of a module follows the same
rules as a local symbol.

5-24

5-40. USING THE ASSEMBLER

5-41., The FLP-80DOS Assembler is resident on the FLP-80DOS
system flexible diskette. The user first prepares his source
modules using the FLP-80D0S Editor. Then the source file may be
assembled. The command to invoke the Assembler is:

$ASM dataset 1 [TO datasetL [,dataset0]](CR)

where

dataset 1 = source input dataset.

dataset L = assembly listing output dataset (optional).
dataset 0 = object output dataset (optional).

The Assembler can interact with any dataset. Datasetl must be a
disk file. DatasetL and a datasetO are optional in the command.
DatasetL defaults to the same unit and filename as datasetl with
an extension of 'LST'; dataset0 defaults to the same unit and
filename as datasetl with an extension of 'OBJ'. DatasetlL and
dataset0 can be specified in the command. If datasetO is a disk
file, it must have an extension of 'OBJ' or a blank extension
which defaults to 'OBJ'. Datasetl and datasetL may not have the
following extensions: 0BJ, BIN, or CRS. The Assembler then
outputs the following message to the console output device:
MOSTEK FLP-80D0OS ASSEMBLER V2.1. OPTIONS?

Options are described in paragraph 5-67. If no options are to be
entered, the use enters "carriage return". The Assembler then
reads the source module for pass 1. During pass 1, the symbol
table and external references are defined. The name of the
module is defined, and the external symbol 1link Tist is built.
At the end of reading, the source dataset is rewound, and the
following message is printed on the console device:
PASS 1 DONE
The Assembler proceeds into pass 2 automatically. During pass 2,

5-25

the assembly listing and object module are output. At the end of
pass 2, the following message is output on the console output de-
vice:

ERRORS = nnnn

where nnnn is the total number of errors (in decimal) which were
found by the Assembler. Control is then returned to the
FLP-80D0OS Monitor.

5-42. ASSEMBLER OPTIONS

5-43. The Assembler allows the user to select the following op-
tions from the console. When the Assembler outputs the message:
MOSTEK FLP-80D0OS ASSEMBLER V2.1. OPTIONS?
The user may enter any of the following codes. A carriage return
terminates the options. Normal editing of a Tine is allowed.
C-Cross Reference Listing. This option prints a symbol
cross reference table at the end of the assembly listing.
K-No listing. This suppresses the assembly listing output.
A1l errors will be output to the console device.
L-Listing (default). The assembly listing is normally out-
put.
N-No object output. This suppresses object output from the
Assembler.
0-0Object output (default). The object output is normally
output.
P-Pass 2 only. This selects and runs only pass 2 of the
Assembler.
Q-Quit. This returns control to the FLP-80D0S Monitor.
R-Reset the symbol table. This option clears the symbol
table of all previous symbol references. This operation
is automatically done for pass 1. It is used primarily
for single pass operations (described in paragraph 5-78).

5-26

S-Symbol table. The symbol table is normally not output by
the Assembler. This option prints a symbol table at the
end of the assembly listing.
EXAMPLE
OPTIONS? NS(CR)
- the wuser has selected no object output and a
printed symbol table.

5-44. ERROR MESSAGES

5-45., Any error which is found is denoted in the assembly list-
ing. A message is printed immediately after the statement which
is in error. Appendix E defines all Assembler error codes and
messages.
EXAMPLE

H2: LC A,B

***x**FRROR 41 INVALID OPCODE
Several errors abort the Assembler when they are encountered.
These are noted in Appendix E. Abort error messages are output
only to the console output device. Control 1is immediately re-
turned to the FLP-80D0OS Monitor. Abort errors may occur during
pass 1 or pass 2.

5-46. ADVANCED OPERATIONS

5-47. PASS 2 ONLY OPERATION (SINGLE PASS OPERATION). The
FLP-80D0OS Assembler can be used as a single pass assembler under
the following restrictions:

1. No GLOBAL symbols are defined.

2. No forward symbol references occur.

3. The NAME pseudo-op is not in the source.

The Assembler will correctly assemble Z80 programs wunder the

5-27

above restrictions during pass 2. This is useful for assembling
data tables and certain types of programs. The Assembler symbol
table should be initialized to assure proper operation in this
mode. This may be done by using the 'R' option to reset the sym-
bol table prior to assembling using pass 2 only as follows:

$ASM MYFILE(CR)

MOSTEK FLP-80 ASSEMBLER V2.1. Options? PR(CR)

-user selects pass 2 only operation and resets the
symbol table prior to assembly.

The symbol table initialization described above only has to be
done after power up and after symbols are left in the table from
a previous assembly.

5-49. ASSEMBLING SEVERAL SOURCE MODULES TOGETHER. Several
source modules may be assembled together to form one object mod-
ule. The 'INCLUDE' pseudo-op may be used several times 1in one
module to properly sequence a set of source modules.
EXAMPLE
NAME MYFILE ;name of final object module
INCLUDE FILEL
INCLUDE FILE2
INCLUDE FILE3
END
-the object module named 'MYFILE' will be built by
the assembly of FILE1l + FILE2 + FILE3.

5-50. SAMPLE ASSEMBLY SESSION

5-28

5-51. Assume that the file to be assembled is named PROGl. The
diskette on which PROGl exists is in disk unit 1 (DK1l). The
object output of the Assembler is to be directed to file
PROG1.0BJ on disk wunit 1. The assembly 1listing is to be
directed to a line printer (LP:). A printed symbol table is to
be obtained. The following sequence will perform the assembly:
EXAMPLE

$ASM DK1:PROG1 TO LP: (CR)

MOSTEK FLP-80 ASSEMBLER V2.1. OPTIONS? S(CR)

-user selects a printed symbol table.

0000
indication of zero assembly errors

ERROR

-indication that assembly is done, and control is
returned to the Monitor.

SECTION 6

L INKER

6-1. INTRODUCTION

6-2. The Linker program provides the capability for 1linking
object files together and creating a binary (EXT=BIN) or RAM
image file. The Linker concatenates modules together and
resolves global symbol references which provide communication
between modules. A starting 1link address may be entered to
position a linked module anywhere in the memory map. The Monitor
GET or Implied Run command can be used to Tload binary files
allowing fast access of linked modules.

6-3. LINKER COMMAND

6-4. SYNTAX: LINK Dataset 1,..... Dataset N TO Dataset B
[,Dataset CJ(CR)

6-5. The input datasets (Dataset 1....Dataset N) are object
files produced by either the Assembler or the Monitor DUMP
command. The object files must be on a supported disk unit (e.g.
DKO or DK1). In the Linker command the object input datasets
must have an extension of OBJ or blank. If a blank extension is
entered the Linker will assume an extension of 0BJ. Dataset B is
the binary output file which is «created by the Tinker.
Specification of Dataset B by the user is optional. If Dataset B
is not specified it automatically defaults to a file having an
extension of BIN and a filename of Dataset 1 which is the first
input dataset. If Dataset B is specified it must be on a
supported disk unit (e.g. DKO, DK1) and must have an extension of
BIN or blank. If a blank extension is entered, the Linker will
assume an extension of BIN. Dataset C is the output file for

6-2

the global cross reference table and symbol table when the C and
S options are specified (See Paragraph 6-9 and 6-11). Dataset C
can be any supported output device (e.g. LP:,TT:). Specifica-
tion of Dataset C is optional. If Dataset C is not specified it
automatically defaults to a file having the extension of CRS and
the filename of Dataset B.

6-6. When entering the Linker command if a large number of input
datasets are specified the command line may exceed the maximum
terminal 1ine length (usually 80 characters). If this occurs,
the terminal output driver (TT) will automatically issue a CR and
LF to enable continuation of the command on the next line. Since
a carriage return input from the keyboard is interpreted by the
Linker to be the terminator of the command string, the user
should not enter a carriage return until the entire Linker
command has been entered. The maximum 1length of the Linker
command string is 160 characters, however, the Tlibrary search
option (See Paragraph 6-10) may be used if the user wishes to
1ink additional datasets.

6-7. After a valid command is entered the Linker outputs the
following message on the console.

OPTIONS?
The wuser can then enter any of the supported Linker options
(A,C,L,U,S). A carriage return terminates the options list.

6-8. A OPTION. The A option enables the user to enter a starting
link address. After the A option is entered the following
message is output to the console.
ENTER STARTING LINK ADDRESS >

The user may then specify the starting link address for the first
object module. The beginning 1load address of the first
relocatable module is the starting 1ink address plus the module
starting address defined by the Assembler ORG pseudo-op. If the

6-3

ORG pseudo-op is omitted or its address is 0, then the starting
link address equals the beginning load address. If an object
module is absolute the A option is ignored and the module is
always Tloaded at 1its starting address as defined by the ORG
pseudo-op. The PSECT pseudo-op of the Assembler defines a module
as either relocatable or absolute. If the A option is not
specified the Linker assumes a starting link address of O. The
beginning and ending address of each module is printed on the
console by the Linker during Pass 2.

6-9. C OPTION. The C option causes the global cross reference
table (See Figure 6-1) to be generated and output to the device
specified in Dataset C. The global cross reference table contains
the symbol name, definition address and reference addresses. A
global symbol can be defined only once but can be referenced many
times. A symbol is defined by a module if it occurs in the label
field of the module and is specified by the GLOBAL pseudo-op. A
global symbol is referenced within a module when it occurs in the
operand field. When the C option is specified a load map is also
output which specifies the object input files linked and their
beginning and ending addresses.

6-10. L OPTION. The L option enables the user to perform a
library search for undefined global symbols. If any symbols are
undefined after linking the input datasets (Dataset 1l.... Dataset
N) during Pass 1, the Linker prints out the number of undefined
symbols. (The U option prints out a list of undefined symbols.)
If the L option has been selected the Linker prints the following
message on the console.
SEARCH DISK UNIT 1/07?

The user may then initiate a library search by entering a 1 or O
followed by a carriage return. Any other response terminates the
search and Pass 2 execution is started. If a library search has
been requested the Linker searches the disk unit specified for

6-4

an object file having the filename of the first undefined symbol.
If the file is found, it is linked into the binary output file
and any global references which are defined are resolved. This
process is repeated for each undefined symbol in the original
list. After the search has been completed for the first list of
symbols, the sequence can be repeated for a new 1list if any
symbols remain undefined. After the original 1ist has been
searched more undefined symbols might actually exist if a file
from the previous 1list contains additional undefined symbols.
Each time the search 1is repeated either disk wunit may be
searched. Disks should not be removed or inserted between
library searches. The 1library search option may be wused to
minimize the number of input files that must be typed in the Link
command. This can be done by giving an object file the same name
as a global symbol definition within the module.

6-11. S OPTION. The S option causes the global symbol table
(See Figure 6-1) to be generated and outputted to the device
specified in Dataset C. The global symbol table contains the
symbol name and definition address. A symbol 1is defined by a
module if it occurs in the 1label field of the module and 1is
specified by the GLOBAL pseudo-op. If a global symbol is
referenced but not defined it is marked undefined (UNDEF=***%*),
A global symbol is referenced within a module when it occurs in
the operand field. When the S option is specified a load map is
also output which specifies the object input files 1linked and
their beginning and ending addresses.

6-12. U OPTION. The U option prints out a list of undefined
global symbols after the Linker has completed Pass 1.

6-13. LINKER OPERATION

6-14. During Pass 1 the Linker reads the specified object files

6-5

and places the global symbol definitions in the symbol table. 1In
Pass 2 the global symbols are defined and a binary or ramimage
output file is produced. As each object module is read in Pass 2
its beginning and ending address 1in memory 1is printed on the
console. The module type is also listed as either absolute or
relocatable (ABS/REL). Absolute modules are always positioned at
their starting address in memory as defined by the ORG pseudo-op.
Relocatable modules are positioned at the next location after the
end address of the previous module. If the first input module is
relocatable, it is positioned by the starting link address (See
Para. 6-8). If the starting link address is not specified by the
A option it assumes a value of 0.

6-15. LINKER RESTRICTIONS

6-16. When absolute modules are being linked together, the files
in the LINK command must appear in sequential order according to
their starting addresses in memory. If an absolute module is
encountered having a starting address 1lower in memory than a
previous module the following error message is printed on the
console.

****ERROR 35 MODULE SEQUENCE ERROR

The maximum size allowed for an individual object input module is
limited by the linker buffer size which is dynamically allocated
depending upon the size of the memory. On the standard system
having 32K of RAM, it is 18K bytes in length and on the minimum
system having 16K of RAM it is 4.5K bytes. There 1is no
restriction on the Tength of the binary output file.

When loading a binary file using the Monitor GET or Implied Run
commands the entire memory space is available except for 48 bytes
in scratchpad RAM starting at OFF60H. This space is reserved for
the Monitor I/0 vector and cannot be overlayed during a 1load
sequence.

6-6

6-17. EXAMPLES OF LINK COMMAND

EXAMPLE 1. Link the relocatable object modules MAIN1.0BJ,
SUB1.0BJ,SUB2.0BJ and SUB3.0BJ together starting at 2000H and
produce the binary file TEST.BIN. Also generate a symbol table,
cross reference table and load map and store them in the file
TEST.CRS. This file may be printed using the PIP copy command
(See Figure 6-1).
$LINK MAIN1,SUB1,SUB2,SUB3 TO TEST(CR)

OPTIONS? A C S(CR)

ENTER STARTING LINK ADDRESS 2000

DKO:MAIN1 .0BJ[1]

DKO:SUB1 .0BJ[1]

DKO:SUB2 .0BJ[1]

DKO:SUB3 .0BJ[1]

UNDEFINED SYMBOLS 00

PASS 2

DKO:MAIN1 .0BJ[1] REL BEG ADDR 2000 END ADDR 2033

DKO:SUB1 .0BJ[1] REL BEG ADDR 2034 END ADDR 20DB

DKO:SUB2 .0BJ[1] REL BEG ADDR 20DC END ADDR 20F6

DKO:SUB3 .0BJ[1] REL BEG ADDR 20F7 END ADDR 2120

EXAMPLE 2. Link the absolute file MAIN.OBJ and the relocatable
subroutines SUB1.0BJ, SUB2.0BJ, SUB3.0BJ together producing the
binary file MAIN.BIN. Access the object files DKO:SUB1.0BJ,
DKO:SUB2.0BJ and DK1:SUB3.0BJ using the library search option.
$LINK MAIN (CR)

OPTIONS? L U (CR)

DKO:MAIN .0BJ[1]

MODNO MSGBEG MSGEND MSGMAI PRINT

SUB1 SUB2 SUB3

UNDEFINED SYMBOLS 08

SEARCH DISK UNIT 1/0

DKO:SUB1 .O0BJ[1]
DKO:SUB2 .0BJ[1]
MODNO SUB3
UNDEFINED SYMBOLS 02
SEARCH DISK UNIT 1/0
DK1:SUB3 .0BJ[1]
UNDEFINED SYMBOLS 00
PASS 2

DKO:MAIN .0BJ[1]
DKO:SUB1 .0BJ[1]
DKO:SUB2 .0BJ[1]
DK1:SUB3 .0BJ[1]

? 0 (CR

? 1(CR)

ABS
REL
REL
REL

BEG ADDR 1000
BEG ADDR 1026
BEG ADDR 10CE
BEG ADDR 10E9

END ADDR
END ADDR
END ADDR
END ADDR

1025
10CD
10E8
1115

6-8

FIGURE 6-1.

LOAD MAP

DKO :MAIN1
DKO:SUB1
DKO :SUB2
DKO:SUB3

GLOBAL CROSS

SYMBOL
CRLF
MAIN
MODNO
MSGBEG
MSGEND
MSGMAI
MSGMOD
MSGSB2
MSGSB3
PRINT
PTEST
SuB1l
SUB123
SUB?2
SUB3

GLOBAL

CRLF

MSGEND
MSGSB3
SUB123

ADDR
2030
2000
2109
204D
2073
2098
2000
20A3
20A9
20EE
2046
2034
211D
20DC
20F7

EXAMPLES OF LOAD MAP, GLOBAL CROSS REFERENCE,

AND GLOBAL SYMBOL TABLE

.0BJ[1] REL BEG ADDR 2000 END ADDR 2033
.0BJ[1] REL BEG ADDR 2034 END ADDR 20DB
.0BJ[1] REL BEG ADDR 20DC END ADDR 20F6
.0BJ[1] REL BEG ADDR 20F7 END ADDR 2120

REFERENCE TABLE

REFERENCES
211A 20F4

20E2 20DF 203A 2037 2011 200E
2006

2023

2014

210F

20E5S

2100

2103 204A 2040 2026 2017 2009
2106 20EB

201A

201D
2020

SYMBOL TABLE

2030
2073
20A9
211D

MAIN 2000 MODNO 2109 MSGBEG 204D
MSGMAT 2098 MSGMOD 20DO MSGSB2 20A3
PRINT 20EE PTEST 2046 SUB1 2034
SuB2 20DC SUB3 20F7

7-1

SECTION 7
DDT-80 DEBUG SYSTEM
7-1. INTRODUCTION

7-2. This section describes the functions and operation of
DDT-80 (Designer's Development Tool 80) resident in the FLP-80DOS
system. The DDT software provides a complete facility for
interactively debugging relative and absolute Z80 programs.
Standard commands allow displaying and modifying memory and CPU
registers, setting breakpoints, and executing programs.
Additional commands allow use of the MOSTEK AIM-80 to
interactively debug a target system. Mnemonics are used to
represent Z80 registers, thus simplifying the command language.

7-3. SOFTWARE CONFIGURATION

7-4. DDT-80 is a program that resides in PROM (located from
E0O00y to EFFFy) on the SDB-80 board. In addition to the
PROM, DDT wuses 256x8 of RAM for scratch RAM and temporary
storage. This RAM resides at locations FFOOH - FFFFH.

7-5. The 256x8 Scratchpad RAM is used by the DDT for temporary
storage and a push down stack (for return address, etc.). This
RAM also holds an image (or map) of all the user's internal CPU
registers. Figure 7-1 is a detailed memory map of the 256x8
Scratchpad RAM.

7-6. An important concept in DDT 1is preservation of the user's
internal CPU registers. The state of the CPU is described by the
contents of the registers. To preserve the state of the CPU for
a user's program while debugging, DDT keeps an image or map of
all the user's registers. This image or map is referred to as the

7-2

User Register Map throughout this documentation. DDT installs or
makes the CPU registers equal to the user register map when
control is transferred from DDT to a user program (as in the E
command discussed 1in paragraph 7-45). DDT-80 saves the user
register map when DDT is commanded (breakpoint command discussed
in paragraph 7-34) to interrupt a wuser program. DDT allows
modification to this register map with the display and/or update
memory command (M command, discussed in paragraph 7-57). The user
register map resides in the 256x8 Scratchpad, locations FFE6Y
thru FFFFy, as shown in Figure 7-1. Figure 7-2 shows the data
paths between the user register map and the CPU registers. Also
shown is the modification path between DDT and the User Register
Map.

FIGURE 7-1. DDT USER REGISTER MAP

MEMORY USER
LOCATION REGISTER
FFFF PC PROGRAM MSB
FFFE COUNTER LSB
FFFD A
FFFC F
FFFB !
FFFA IF
FFF9 B
FFF8 C
FFF7 D
FFF6 E
FFF5 H
FFF4 L
FFF3 A’
FFF2 F’
FFF1 B’
FFFO c'
FFEF D’
FFEE E'
FFED H’
FFEC L
FFEB IX MSB
FFEA LSB
FFE9 1Y MSB
FFE8 LSB
FFE7 SP STACK MSB
FFE®6 POINTER LSB

7-4

FIGURE 7-2. DDT DATA PATHS

USER
CPU REGISTERS REGISTER MAP
FFFI
PC Restore registers, PC
A transfer control A
to user’s program
(E Command)
Save registers,
intercept the
user's program
SP (B Command) SP
FFF€

Display and/or
Update

NOTE: During 'W'& 'S' command,
(M Command)

the registers are
saved and reloaded
after every instruction
step.

DDT

TABLE 7-1. MNEMONICS RECOGNIZED BY DDT-80

Unrecognized mnemonics are resolved with a value of zero.
DATA SAVED AT THAT ADDRESS

MNEMONIC ADDRESS REPRESENTED
BY THE MNEMONIC

:PC* FFFE
:A FFFD
:F FFFC
3 FFFB
: TF FFFA
:B FFF9
:C FFF8
:D FFF7
:E FFF6
tH FFF5
:L FFF4
A FFF3
:F FFF2
‘B FFF1
:c' FFFO
D" FFEF
:E FFEE
R FFED
L FFEC
IX* FFEA
1Y* FFE8
:SP* FFE6
* =

2 byte mnemonics

User's
User's
User's
User's
User's
User's
User's
User's
User's
User's
User's
User's
User's
User's
User's
User's
User's
User's
User's
User's
User's
User's

PC

Register

A Register

F Register

I Register

IFF Register

B

I m T O

L

A
F
B
c
D"
X
He
K
IX
LY
SP

Register
Register
Register
Register
Register
Register

Register
Register
Register
Register
Register
Register
Register
Register
Register
Register
Register

7-5

7-6

7-7. COMMAND SUMMARY
Table 7-2 1ists all the DDT commands for reference.
7-8. CONVENTIONS

7-9. Hexadecimal numbers are denoted by the number followed by a
subscript H. E.g., AF3y. In a command sequence user input is
underlined. (CR) means carriage return. Bracketed items [] in a
command line are optional. Items in a command line which must be
entered exactly as they appear are shown as upper case. Items in
a command line which are variables are shown as lower case.

TABLE 7-

TO INVOKE DDT:

$DDT(CR)

CONSOLE INTERACTION:

(CR)
or cntl-U
COMMANDS:
B aaaa
C aaaa,bbbb,cccc
E aaaa
F aaaa,bbbb,cc
aaaa,bbbb,cccc
M aaaa,bbbb
0 aaaa
P aa
Q
R a,bb
W aaaa ,bb
V aaaa,bbbb,cccc

71-1

2. DDT COMMAND SUMMARY

prompt character
terminate a command
abort

insert a breakpoint in user's program.
copy memory aaaa thru bbbb to cccc and
above

execute user's program

fill memory aaaa thru thru bbbb with data
cc.

hexadecimal arithmetic.

locate all occurrences of data cccc in
memory aaaa thru bbbb.

display, update, or tabulate memory or
registers.

set offset constant for relocatable
programs.

display and update port.

quit - return to Monitor.

display user registers.

single step starting at address aaaa for
bb steps.

verify that two blocks of memory are
identical.

7-8

7-10. PREPARATION

7-11. Create, assemble, and 1link your Z80 program as described
in Section 4, 5, and 6 of this manual.

7-12. You should now be ready to debug a binary file which has
your Z80 program on it. To debug the program, use the Monitor
GET command to load the program into RAM:
$GET file(CR)
where file is the name of the binary file created by the
LINK process.

Then execute DDT:

$DDT(CR)

The dot (.) indicates that DDT is ready to accept commands.
7-13. DESCRIPTION OF DDT COMMANDS
7-14. COMMAND FORMAT.

7-15. DDT recognizes commands which consist of three parts:
1. A single letter command.
2. An operand or operands separated by commas or blanks.
3. A terminator to either abort the command or cause it
to be executed.

EXAMPLE
.M 100,102 (CR)
1. 2. 3.

7-16. In the command mode DDT prompts on the user console with a
dot (.). The user may enter any single letter command. A space
is then printed on the console. The user may then enter any re-
quired operands and a terminator. Operands are separated from
each other by a space or a comma. The terminator may be a

7-9

carriage return, dot (.) or control-U. Carriage return causes
execution of the command. A dot or control-U aborts the com-
mand, and the user is prompted again.

NOTE The format of entering commands in DDT differs from
FLP-80D0S Monitor commands in that DDT automatically inserts a
space after a command to separate it from the operands.

7-17. OPERANDS

7-18. Operands are separated from each other by a space or com-
ma. An operand may take any one of the following forms.

7-19. Hexadecimal number. Leading zeros need not be entered.
The last four digits are used for the value entered for address
values. The last two digits are used for data values.

7-20. ASCII Tliteral value. Any characters preceded by the let-
ter "L" are converted to their ASCII equivalent value. E.G.,
LA(=41y), LAB(=4142y).

7-21. Relative Address. A hexadecimal number preceded by the
character "R" causes the offset specified by the 0 command to be
added to the number. A relative address is identified by an
apostrophe next to it. E.g.<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>