
MOSTEI(®
zao MICROCOMPUTER SYSTEMS

Operations Manual

FLP-80DOS
FLEXIBLE DISK

OPERATING SYSTEM ·V2.1

FLP-80DOS Operations Manual

VERSION 2.1

SECTION
NUMBER

1

TABLE OF CONTENTS

PARAGRAPH
NUMBER

1-1

1-4
1-5

1-6

1-7
1-8
1-9

1-10
1-13
1-15
1-16

1-18
1-19

1-20
1-21
1-23

1-27

1-31

1-36

1-41

TITLE

I PART 1 USER INFORMATION I
FLP-80DOS GENERAL DESCRIPTION

INTRODUCTION
MONITOR
DESIGNER'S DEVELOPMENT
TOOL-DDT
TEXT EDITOR-EDIT
Z80 ASSEMBLER-ASM
LINKER-LINK
PERIPHERAL INTERCHANGE
PROGRAfvl-PIP
I/O SYSTEM
OTHER PROGRAfvlS

REFERENCE DOCUMENTS
DEFINITION OF SYMBOLS USED
IN THIS MANUAL
CONSOLE INTERACTION

ENTERING DATA ON THE
CONSOLE
CONSOLE ESCAPE

CONCEPT OF DATASET
CONCEPT OF LOGICAL UNIT
NUMBERS
DATE FEATURE
FLEXIBLE DISK HANDLING
PROCEDURE
START UP PROCEDURES
MEMORY AND I/O SUMMARY

PAGE
NUMBER

1-1
1-4

1-4
1-4

1-4
1-5

1-5

1-5

1-6

1-9

1-9

1-9

1-9

1-10
1-12

1-14
1-14
1-16

1-18
1-21

i

i i

TABLE OF CONTENTS cont.

SECTION PARAGRAPH PAGE
NUMBER NUMBER TITLE NUMBER

1-42 ME MO R Y MAP 1-21
1-44 PORT f'liAP 1-23

2 MON I TOR
2-1 INTRODUCTION 2-1
2-3 OPERATIONS SUMMARY 2-1
2-4 SYSTEM RESET 2-1
2-6 POWER UP SEQUENCE 2-2
2-7 MONITOR COMMAND SUMMARY 2-2
2-9 IMPLIED RUN COMMAND 2-3
2-12 COMMAND ENTRY 2-4
2-13 DEFINITIONS 2-4
2-14 ASSIGN COMMAND 2-5

2-17 BEGIN COMMAND 2-6
2-20 CLEAR COMMAND 2-6
2-23 DDT COMMAND 2-7
2-26 DTABLE COMMAND 2-7
2-29 DUMP COMMAND 2-8
2-32 GET COMMAND 2-8

2-35 INIT COMMAND 2-9
2-38 RTABLE COMMAND 2-9
2-41 SAVE COMMAND 2-10
2-45 CONSOLE ESCAPE 2-10

3 PERIPHERAL INTERCHANGE PROGRAM (PIP)
3-1 INTRODUCITON 3-1
3-2 ENTERING PIP 3-1

SECTION
NUMBER

4

TABLE OF CONTENTS cant

PARAGRAPH
N.UMBER

3-5
3-9

3-12

3-18

3-19
3-23

3-27

3-34

3-37

3-41

3-44

4-1

4-3

4-5

4-8
4-9

4-11

TITLE

PIP COMMAND SYNTAX
APPEND COMMAND
COpy COMMAND
DATE COMMAND
DIRECT COMMAND
ERASE COMMAND
FORMAT COMMAND
INIT COMMAND
RENAME COMMAND
STATUS COMMAND
QUIT COMMAND

FLP-80DOS TEXT EDITOR (EDIT)
INTRODUCTION
CAPABILITIES
SOFTWARE CONFIGURATION
DEFINITIONS
USING THE TEXT EDITOR
CONSOLE INTERACTION
USING THE TEXT EDITOR
ENTERING COMMANDS

iii

PAGE
NUMBER

3-1

3-2

3-3

3-5

3-5
3-7

3-8

3-10

3-10
3-11

3-12

4-1

4-1

4-1

4-2
4-5

4-6

4-13 USING THE TEXT EDITOR-FIRST 4-7

4-15

4-16

4-17

STEPS
USING THE TEXT EDITOR
BASIC COMMANDS

I - INSERT
An - ADVANCE

4-8

4-8

4-9

i v

SECTION
NUMBER

5

TABLE OF CONTENTS cont

PARAGRAPH
NUMBER

4-19
4-20
4-21

4-22
4-23

4-24

4-25
4-26
4-27

4-28
4-29

4-30

4-31
4-32
4-33
4-34
4-36
4-41

5-1

TITLE

Bn - BACKUP
On - DELETE
Ln - GO TO RECORD
NUMBER n
Vn - VERIFY

TEXT EDITOR ADVANCED
COMMANDS

Cn /string1/string2/ -
CHANGE
En - EXCHANGE
Fn - PRINT FLAG OPTION
G dataset - GET RECORDS
FROM DATASET
Mn-t~ACRO

Pn - dataset - PUT N RE
CORDS TO DATASET
Sn /source image/ -
SEARCH
T - INSERT AT TOP
Wn - WRITE
Xn - EXECUTE

EDITING LARGE FILES
EDITOR MESSAGES
SAMPLE EDITING SESSION

FLP-80DOS ASSEMBLER (ASM)
INTRODUCTION

PAGE
NUMBER

4-10
4-10
4-11

4-11
4-12

4-12

4-13
4-14
4-14

4-15
4-15

4-16

4-17
4-17
4-17
4-18
4-18
4-20

5-1

v

TABLE OF CONTENTS cont

SECTION PARAGRAPH PAGE
NUMBER NUMBER TITLE NUMBER

5-5 DEFINITIONS 5-1
5-9 ASSEMBLY LANGUAGE SYNTAX 5-3
5-11 DELI[viITERS 5-3

5-12 LABELS 5-3
5-13 OPCODES 5-6
5-14 PSEUDO-OPS 5-6
5-15 OPERAND 5-11
5-16 GENERIC OPERAND 5-11
5-20 COMMENTS 5-15
5-21 OBJECT OUTPUT 5-17
5-23 ASSEMBLY LISTING OUTPUT 5-17
5-25 ABSOLUTE MODULE RULES 5-17
5-27 RELOCATABLE MODULE RULES 5-18
5-33 GLOBAL SYMBOL HANDLING 5-19
5-36 GLOBAL SYMBOL BASIC RULES 5-21
5-37 GLOBAL SYMBOL ADVANCED 5-22

RULES
5-38 USE OF THE "NAME" PSEUDO-OP 5-23
5-40 USING THE ASSEMBLER 5-24
5-42 ASSEMBLER OPTIONS 5-25
5-44 ERROR MESSAGES 5-26
5-46 ADVANCED OPERATIONS 5-26
5-47 PASS 2 ONLY OPERATION 5-26

(SINGLE PASS OPERATION)
5-49 ASSEMBLING SEVERAL 5-27

SOURCE MODULES TOGETHER
5-50 SAMPLE ASSEMBLY SESSION 5-27

vi

TABLE OF CONTENTS cant

SECTION PARAGRAPH PAGE
NUMBER NUMBER TITLE NUMBER

6 LINKER
6-1 INTRODUCTION 6-1
6-3 LIN KE R COMMAND 6-1
6-8 A OPTION 6-2
6-9 C OPTION 6-3
6-10 L OPTION 6-3
6-11 S OPTION 6-4
6-13 LINKER OPERATION 6-4
6-15 LINKER RESTRICTIONS 6-5
6-17 EXAMPLES OF LINK COMMAND 6-6

7 DDT-80 DEBUG SYSTEM
7-1 INTRODUCTION 7-1
7-3 SOFTWARE CONFIGURATION 7-1
7-7 COMMAND SUMMARY 7-6
7-8 CONVENTIONS 7-6
7-10 PREPARATION 7-8
7-13 DESCRIPTION OF DDT COMMANDS 7-8
7-14 COMMAND FORMAT 7-8
7-17 OPERANDS 7-9
7-27 OPERAND EXAMPLES 7-10
7-28 COMMAND TERMINATORS 7-11
7-30 SPECIAL KEYS 7-11
7-32 ERRORS 7-12
7-34 B-BREAKPOINT COMMAND 7-13

! 7-42 C-COPY MEMORY BLOCK COMMAND 7-16
7-45 E-EXECUTE COMMAND 7-17

vii

TABLE OF CONTENTS cont

SECTION PARAGRAPH PAGE
NUMBER NUMBER TITLE NUMBER

7-48 F-FILL MEMORY COMMAND 7-18
7-51 H-HEXADECIMAL ARITHMETIC 7-19
7-54 L-LOCATE 8-BIT PATTERN 7-20

COMMAND
7-57 M-DISPLAY AND UPDATE 7-21

MEMORY OR REGISTER COMMAND
7-68 M-TABULATE MEMORY 7-24

COMMAND
7-71 O-SET OFFSET COMMAND 7-25
7-74 P-DISPLAY AND UPDATE 7-26

PORTS COMMAND
7-77 Q-QUIT COMMAND 7-27
7-80 R-DISPLAY CPU REGISTERS 7-28

COMMAND
7-84 V-VERIFY MEMORY COMMAND 7-30
7-87 W-WALK THROUGH A PROGRAM 7-31

COMMAND
7-91 DEBUGGER ESCAPE (CNTL-C) 7-32

PART 2

TECHNICAL INFORMATION
8 RDCHR AND WRCHR SUBROUTINES

8-1 INTRODUCTION 8-1
8-3 RDCHR - READ ONE BYTE 8-1
8-4 CALLING SEQUENCE 8-1
8-5 ENTRY PARAMETERS 8-1
8-6 EXIT PARAMETERS 8-2

vii i

TABLE OF CONTENTS cant

SECTION PARAGRAPH PAGE
NUMBER NUMBER TITLE NUMBER

8-7 OPERATION 8-2

8-9 WRCHR - WRITE ONE BYTE 8-2
8-10 CALLING SEQUENCE 8-2

8-11 ENTRY PARAMETERS 8-2
8-12 EXIT PARAMETERS 8-3

8-13 OPERATION 8-3
8-15 DDT OPERATION 8-3

9 INPUT/OUTPUT CONTROL SYSTEM (IOCS)
9-1 INTRODUCTION 9-1
9-3 VECTOR DEFINITION 9-1

9-6 LUNIT 9-4
9-9 DVCE 9-5

9-10 UN I T 9-6
9-11 FNAM 9-6

9-12 FEXT 9-6

9-13 VERS 9-7

9-14 USER 9-7
9-15 RQST 9-7

9-16 FMAT 9-8
9-23 HADDR 9-10

9-24 ERRA 9-10
9-25 CFLGS 9-11

9-32 SFLGS 9-13
9-33 ERRC 9-13

9-34 PBFFR 9-13
9-35 UBFFR 9-13

SECTION
NUMBER

10

TABLE OF CONTENTS cant

PARAGRAPH
NUMBER

9-36

9-37

9-38

9-39

9-40

9-42

9-43

9-46

9-52

9-55

9-59

9-60

9-66

10-1

10-3

10-5

10-6

10-8

10-9

10-10

10-12

10-14

TITLE

USIZE
NREC
HSCR
ISCR

HOW TO USE IOCS
SET UP A VECTOR

DEVICE HANDLER REQUIREMENTS
PHYSICAL I/O BUFFERS
SYSTEM INTERRUPT TABLE
IOCS MEMORY MAP
WRITING A DEVICE HANDLER
CHARACTER-ORIENTED
DEVICES
RECORD-ORIENTED DEVICES

FLOPPY DISK HANDLER (FDH)
INTRODUCTION
COMMUNICATION
DOS RELATED VECTOR
PARAMETERS
CALLING CONVENTIONS
GENERAL PURPOSE DISK MACRO
REQUESTS
COMPLETE DOS REQUEST CODES
ERROR RETURN
DIRECTORY
DISK FORMAT

i x

PAGE
NUMBER

9-13

9-14

9-14

9-14

9-14

9-14

9-16

9-17

9-18

9-19

9-21

9-21

9-23

10-1

10-1

10-2

10-3

10-3

10-6

10-10

10-13

10-14

x

SECTION
NUMBER

11

12

TABLE OF CONTENTS cont

PARAGRAPH
NUMBER

10-17
10-18
10-19

10-20

11-1
11-3
11-5
11-7
11-9

11-11
11-13
11-15

TITLE

SECTOR AND TRACK FORMATS
DISKETTE - IDENTIFICATION
NAME OF DISKETTE AND SPACE
ALLOCATION
DATA (FILES)

DISK CONTROLLER FIRMWARE (DCF)
INTRODUCTION
SOFTWARE CONFIGURATION
CONTROLLER OVERVIEW
DISK CONTROLLER REQUESTS
DISK CONTROLLER ERROR
RETURN CODES
LINKED FILE LOADER
INTERACTIVE BOOT PROCESS
INTERACTIVE SAVE PROCESS

I/O HANDLERS

PAGE
NUMBER

10-18
10-18
10-18

10-19

11-1
11-1
11-1
11-3
11-4

11-5
11-5
11-6

12-1 INTRODUCTION 12-1
12-3 CR - CARD READER 12-2
12-4 CP - CENTRONICS LINE P~INTER 12-4
12-5 LP - DATA PRODUCTS LINE 12-5

PRINTER
12-6
12-7
12-8

PR - PAPER TAPE READER
PP - PAPER TAPE PUNCH
TI - SILENT 700 CASSETTE
INPUT

12-6
12-7
12-8

SECTION
NUMBER

13

xi

TABLE OF CONTENTS cant

PARAGRAPH
NUMBER

12-9

12-10
12-11

12-12

13-1
13-3
13-6
13-10

13-11
13-12

13-13

13-14
13-15
13-16
13-17

13-18
13-19

13-20

TITLE

TK - KEYBOARD
TT - CONSOLE OUTPUT
TO - SILENT 700 CASSETTE
OUTPUT
TR - TELETYPE PAPER TAPE
READER

SYSTEM ROUTINES
INTRODUCTION
PROM RESIDENT ROUTINES
RAM RESIDENT ROUTINES
ASBIN - CONVERT ASCII DIGIT
TO BINARY
ASTCHK-ASTERISK CHECK

PAGE
NUMBER

12-9

12-10
12-12

12-13

13-1
13-1
13-2
13-4

13-5
CRLF - OUTPUT CARRIAGE RETURN 13-6
AND LINE FEED
CSI - COMMAND STRING
INTERPRETER
CSISYN-JTASK CODE 7
CSIPAR-JTASK CODE 6
RENTRY - DDT-80 RE-ENTRY
ECHO - I~PUT AND ECHO A
CHARACTER
EH - SYSTEM ERROR HANDLER
GETHL - GET A LINE OF INPUT
FROM CONSOLE
GETVEC - GET DEFAULT VECTOR

13-7

13-8
13-9
13-12
13-13

13-14
13-16

13-17

xii

TABLE OF CONTENTS cant

SECTION PARAGRAPH PAGE
NUMBER NUMBER TITLE NUMBER

ADDRESS
13-21 MINDIS - DISABLE MINIMAL 13-18

LISTENER
13-22 MINEN - ENABLE MINIMAL 13-19

LISTENER
13-23 MRENT - MONITOR RE-ENTRY 13-20
13-24 PACC - PRINT ASCII CONTENTS 13-21

OF THE ACCUMULATOR
13-25 PTXT - PRINT TEXT STRING 13-22
13-26 PVECT - PRINT VECTOR DATASET 13-23
13-27 REBOOT - SYSTEM REBOOT 13-24

SEQUENCE
13-28 SCAN - INTERACTIVE SCAN 13-25
13-29 SEARCH - FIND DIRECTORY 13-26

ENTRY OF A FILE
13-30 SPACE - OUTPUT A SPACE 13-27
13-31 SRCHR, SRCHU - SEARCH 13-28

MN EMON I C TABLES

14 BATCH MODE OPERATION
14-1 INTRODUCTION 14-1
14-3 PRINCIPLES OF OPERATION 14-1
14-7 BATCH COMMAND SEQUENCE 14-2

SYNTAX
14-12 EXAMPLE 1 14-3
14-13 EXAMPLE 2 14-4

SECTION
NUMBER

15

APPENDIX

A

B

C

D

E

F

G

TABLE OF CONTENTS cant

PARAGRAPH
NUMBER

15-1
15-4

15-5
15-6
15-10
15-12

15-14

15-16

TITLE

SYSTEM GENERATION
INTRODUCTION
SYSTEM GENERATION PROCEDURE
(SYSGEN)
OPERATING SYSTEM MODULES
STANDARD I/O DRIVERS
ADDING NEW I/O DRIVERS
CHANGING THE DEFAULT LOGICAL
UNITS
CHANGING THE NUMBER OF DISK
UNITS IN THE SYSTEM
SYSTEM GENERATION OF A 64K
OPERATING SYSTEM

ZSO OPCODES
MOSTEK OBJECT OUTPUT DEFINITION
SCRATCHPAD MEMORY MAP
TESTING/DIAGNOSTICS
FLP-80DOS ERROR DICTIONARY
SYSTEM LINKAGES
DISK RECOVERY UTILITY

xii i

PAGE
NUMBER

15-1
15-1

15-4
15-5
15-6
15-7

15-7

15-7

xiv

FIGURE
NUMBER

1-1
1-2
1-3
1-4

1-5

1-6
1- 7

1-8
4-1

4-2
5-1

5-2

6-1

7-1
7-2
8-1
9-1

10-1

10-2
15-1

B-1

LIST OF FIGURES

TITLE

DEVELOPMENT SYSTEM PROGRAMS
FLP-80DOS SYSTEM
INPUT/OUTPUT LOGICAL UNIT NUMBERS
DISKETTE
RELATIONSHIP OF SYSTEM PROGRAMS IN
FLP-80DOS
STANDARD FLP-80DOS MEMORY MAP
OEM-80 PORT ALLOCATION
FLP-80DOS COMMAND SUMMARY
EDITOR MEMORY MAP
LOGICAL UNIT NUMBER STRUCTURE
ASSEMBLER MEMORY MAP
LOGICAL UNIT NUMBER STRUCTURE
EXAMPLE LOAD MAP, GLOBAL CROSS RE
FERENCE, AND GLOBAL SYMBOL TABLE
DDT USER REGISTER MAP
DDT DATA PATHS
EXAMPLE OF RDCHR AND WRCHR
IOCS MEMORY MAP
EFFECTS OF FDH COMMANDS
FLP-80DOS V2.1 DISKETTE FORMAT
SAMPLE SYSTEM GENERATION
EXTERNAL SYMBOL LINK LIST

PAGE
NUMBER

1-3

1-8
1-15

1-17
1-20

1-22
1-24
1-25
4-3
4-4
5-4

5-5

6-8

7-3

7-4
8-5

9-20

10-9

10-16
15-8

8-5

xv

LIST OF TABLES

TABLE PAGE
NUMBER TITLE NUMBER

4-1 SUMMARY OF FLP-80DOS EDITOR COMMANDS 4-22

5-1 ALLOWED CHARACTERS 5-9

5-2 GENERIC OPERANDS 5-13

5-3 ALLOWED OPERATORS AND HIERARCHIES 5-16

IN FLP-80DOS ASSEMBLER
7-1 MNEMONICS RECOGNIZED BY DDT-80 7-5

7-2 DDT COMMAND SUMMARY 7-7

9-1 VECTOR DEFINITION 9-3

9-2 FLP-80DOS DEVICE MNEMONICS 9-5

9-3 GENERAL PURPOSE REQUESTS 9-7

9-4 FORMAT REQUEST CODES 9-8

9-5 PHYSICAL BUFFER ALLOCATION 9-17

NOTE: Certain sections of this manual refer to specific hardware
configurations existing on the MOSTEK AID-BOF Development System.
In the future, FLP-BODOS will also be implemented on other
hardware configurations. Since there will be minor differences
in hardware implementation (e.g. I/O port numbers) the user
should refer to the appropriate hardware manual for information
concerning his system configurations.

PART 1

USER INFORMATION

1-1

SECTION 1

FLP-80DOS

GENERAL DESCRIPTION

1-1. INTRODUCTION
NOTE: This section should be read in its entirety. It discusses
concepts which are used throughout the system.

1-2. FLP-80DOS is the MOSTEK Disk Operating System for the Z80.

It is a software package designed to work with the following
minimum hardware configuration:

1. Z80 CPU with a minumum of 16K Bytes of RAM
2. 4K Byte EPROM and a 256 Byte Scratchpad RAM

3. Floppy Disk Interface and 1 to 4 flexible disk units.

1-3. FLP-80DOS consists of development system software and OEM
software. The development system programs are diagrammed in
Figure 1-1. Each of these programs is discussed in detail in the
next 6 sections of this manual. These programs provide

state-of-the-art software for developing Z80 programs. The
complete FLP-80DOS system is diagrammed in Figure 1-2. The
component parts of the system establish a firm basis for OEM
products. This diagram is discussed in detail in Sections 8
through 13 of thi s manual. The foll owi ng programs are suppl i ed
in the FLP-80DOS package:

1. Monitor
2. Debugger
3. Text Editor
4. ZSO Assembler
5. Peripheral Interchange Program

1-2

6. Linker
7. A generalized I/O system for peripherals

These programs provide
Z80 programs as well
products.

state-of-the-art software for developing
as establishing a firm basis for OEM

1-3

FIGURE 1-1. DEVELOPMENT SYSTEM PROGRAMS

FLP-aODOS
MONITOR

J t J t
DEBUGGER

TEXT zao PERIPHERAL
LINKER EDITOR ASSEMBLER INTERCHANGE

(DDT) (EDIT) (ASM) PRPG~)AM (LINK)
PIP

1-4

1-4. MONITOR. The Monitor provides a user interface from the

console to the rest of the software. The user can load and run

system programs, such as the Assembler, using one simple command.

Programs in binary format can be loaded into and dumped from RAM.

All I/O is done via channels which are identified by Logical Unit

Numbers. The Monitor allows any software device handler to be

assigned to any Logical Unit Number. Thus, the software provides

complete flexibility in configuring the system with different

peripherals.

1-5. DESIGNER'S DEVELOPMENT TOOL - DDT. The DDT debugger

program is supplied in PROM. It provides a complete facility for

interactively debugging relative and absolute lBO programs.

Standa rd commands allow di spl ayi ng and modi fyi ng memory and CPU

registers,

Additional

setting

commands

breakpoi nts,

allow use

and executing programs.

of the MOSTEK AIM-BO to

interactively debug a target system. Mnemonics are used to

represent lBO registers, thus simplifying the command language.

1-6. TEXT EDITOR - EDIT. The FLP-BODOS Editor permits random

access editing of ASCII character strings. The Editor works on

blocks of characters which are rolled in from the disk. It can

be used as a line or character-oriented editor. Individual

characters may be located by position or context. Each edited

block is automatically rolled out to disk after editing.

Although the Editor is used primarily for creating and modifying

lBO assembly language source statements, it may be applied to any

ASCII text delimited by "carriage returns."

1-7. lBO ASSEMBLER - ASM. The FLP-BODOS Assembler reads lBO
source mnemonics and pseudo-ops and outputs an assembly listing

and object code. The assembly listing shows address, machine

code, statement number, and source statement. The code is in

industry-standard, hexadecimal format modified for relocatable,

1-5

linkable assemblies. The Assembler supports conditional
assemblies, global symbols, relocatable programs, and a printed
s y m b 01 tab 1 e • It can ass em b 1 e a ny 1 eng t h pro g ram, 1 i mit e don 1 y
by a symbol table size which is dependent on available RAM.
Expressions involving arithmetic and logical operations are
allowed. Although normally used as a two-pass assembler, the
Assembler can also be run as a single-pass assembler.

1-8. LINKE R-L INK. The Linker provi des capabi 1 i ty for 1 i nk i ng
object modules together and creating a binary (RAM image) file on
disk. A binary file can be loaded using the Monitor GET or
IMPLIED RUN command. Modules are linked together using global
symbols for communication between modules. The Linker produces a
global symbol table and a global cross-reference table which may
be 1 i sted on any output devi ce. The Linker a 1 so provi des a
library search option for all global symbols undefined after the
specified object modules are processed. If a symbol is
undefined, the Linker searches the disk for an object file having
the filename of the symbol. If the file is found, it is opened
and linked with the main module in an attempt to resolve the
undefined symbol.

1-9. PERIPHERAL INTERCHANGE PROGRAM PIP. The Peripheral
Interchange Program provides complete file maintenance facilities
for the system. In addition, it can be used to copy information
from any device or file to any other device or file. The command
language is easy to use and resembles that used on DEC
minicomputers.

1-10. I/O SYSTEM. The I/O software, which is the heart of the
FLP-80DOS development system, can be used directly in OEM
applications. The software consists of two programs which
provide a complete disk-handling facility.

1-6

1-11. The first package is called the I/O Control system (laCS).
This is a generalized blocker/deblocker which can interface to
any device handler. Input and output can be done via the laCS in
any of four modes:

1. single byte transfer.
2. line at a time, where the end of a line is defined by

carriage return.
3. multibyte transfers, where the number of bytes to be

transferred is defined as the logical record length.
4. continuous tranfer to end-of-file, which is used for

binary (RAM-image) files.

The laCS provides easy appl ication of I/O oriented packages to
any device. There is one entry point, and all parameters are
pas sed v i a a ve c tor de fin e d by the calli n g pro g ram. Any g i ve n
de vic e han d 1 e r de fin est h e p hy sic a 1 at t rib ute s 0 fits de vic e
which are, in turn, used by the laCS to perform blocking and de
blocking.

1-12. The Floppy Disk Handler (FDH) interfaces from the laCS to
a firmware controller for up to 4 floppy disk units. The FDH
provides a sophisticated command structure to handle advanced OEM
products. The firmware controller interfaces to MOSTEK's Disk
Controller Board. The disk format is soft-sectored. The
software directly handles double-sided disks. The FDH has
advanced error recovery capability. It supports a bad sector map
and an extensive directory which allows multiple users. The file
structure is doubly linked to increase data integrity on the
disk. A bad file can be recovered from either its start or end.

1-13. OTHER PROGRAMS

1-7

1-14. MOSTEK offers a number of programs which work with
FLP-80DOS. These programs are purchasable options for the Micro
computer. The foll owi ng programs wi 11 be of interest to many
users:

FZCASM

ZAIM-72

MOSTEK LIBRARY

BASIC

FORTRAN IV

MACRO-80

MACRO-70

-The 3870jF8 Cross Assembler allows as
sembly of all F8 opcodes on the
AID-80F. The FLP-80DOS Text Editor and
Linker can be used with the Cross As
sembler to produce programs which can
be debugged.
-This 3870 family debugger program is
to be used with the MOSTEK AIM-72 board
for debugging 3870, 3872, or 3876
programs.
-The Library consists of a set of
utilities which are used at Mostek.
Programs include a word processor,
Lawrence Livermore Laboratory BASIC
(oriented to controller applications),
a disk recovery utility, an 8080 to Z80
source translator, a hexadecimal dump
util ity, and others. Complete source
files are included.
-MOSTEK BASIC features string and array
manipulation, random access disk, and a
complete set of standard BASIC com
mands.
-MOSTEK FORTRAN is ANSI X3.3(1966)
standard FORTRAN IV. It features an
extensive run-time library.

Powerful Macro Assembler for Z80.

Powerful Macro Assembler for 3870jF8.

1-8

FIGURE 1-2. FLP-80DOS SYSTEM

FLP-80DOS
MONITOR

: ; ; ; ~
DEBUGGER

TEXT Z80 PERIPHERAL
LINKER

OEM
EDITOR ASSEMBLER INTERCHANGE APPLICATION

(DDT) PROGRAM (LINK) (E 0 IT) (ASM) (PIP) PROGRAM

; ; ; ; :
I/O CONTROL

SYSTEM
(I OCS)

•
• • ~

CONSOLE LINE FLOPPY DISK OTHER
DEVICE PRINTER HANDLER DEVICE

HANDLER HANDLER (FDH) HANDLERS

;
HARDWARE HARDWARE DISK

CONTROLLER UART PIO FIRMWARE

;
(CONSOLE ~E FLP-80

PRINTER HARDWARE

-

D D (FLOPPY)
DISK

UNITS

1-15. REFERENCE DOCUMENTS
AID-80F Operations Manual
SDB-80 Software Development Board Operations
Manual
SDB-80E (European version)
FLP-80 Hardware Operations Manual
FLP-80E (European version)
RAM-80B Operations Manual
RAM-80BE (European Version)
DSS-80 Development System Software Program Listing

(OEM users only - restricted distribution)
DOPS-80 Disk Operating Software Program Listing

(OEM users only - restricted distribution)

1-16. DEFINITION OF SYMBOLS USED IN THIS MANUAL

1-9

MK7B569
MK78544

MK78548
MK78560
MK78561
MK785"45
MK78555
MK78588

MK78589

1-17. The following conventions are used throughout this manual:
All user input from the console device is underlined.
All hexadecimal numbers are identified by a subscript H,
except where an example of program input or output is
given.
(CR) means carriage return.
aaaa means any hexadecimal number.

1-18. CONSOLE INTERACTION

1-19. ENTERING DATA ON THE CONSOLE. Each line of input from the
console is terminated with a carriage return in FLP-80DOS. The
maximum length of a line of input is 160 characters. Before end
ing a line with carriage return, the user can modify the line
with the following keys (Note that these standards do not apply
to DDT, the debugger):

1. TAB (ASCII 09H) -move the console cursor over
mod-8 spaces.
every 8 spaces.

Tabs are set

1-10

2. RUBOUT (ASCII 7FH) -delete the previous character
entered. A blackslash is
printed on either side of the
characters which are deleted.

BACKSPACE (ASCII 08H) -delete the previous char-

4. CNTL-U (ASCII 15H)

5. SPACE BAR

acter. It is erased from the
(CRT) screen by overprinting
with a

blank, and the cursor is moved
backward. Backspacing over a
tab character will back the
cursor to the correct screen
position.

-delete the current line of
input and reprompt for an
other line.
-used to alternately start and
stop listing to console device.
This is useful when a long file
is being spooled to a CRT
screen and the user wishes to
view the file a page at a time.

1-20. CONSOLE ESCAPE ("Minimal Listener"). Any executing
program in FLP-8000S can be interrupted from the console device.
(This feature is inhibited while DDT, the debugger, is being
used.) The following key inputs are allowed:

1. CNTL-X (ASCII 18H) - Monitor Escape. Entering this
code from the console keyboard
immediately reboots the .system
software and returns control to
the FLP-80DOS Monitor. After a
brief delay while the disk is

NOTE:

1-11

accessed, the Monitor prompt
will appear on the console. The
Monitor prompting character is a
$. The Monitor escape cannot be
used during use of the Debugger
(DDT) or the Editor (EDIT).

Monitor Escape is designed to provide an immediate reboot
of the Monitor without finishing the currently executing program.
Any output files which were open when the Monitor Escape was
performed will not be closed. This means that those files will
have no information stored in them.

2. CNTL-C (ASCII 03H)- Debugger Escape. Entering this
code from the console keyboard
immediately returns control to
the debugger (DDT). The current
Z80 regi sters wi 11 be pri nted on
the can sol e, and DDT wi 11 wa it
for a command. To resume ex
ecut i on, enter a dot (.), then
the command I E I. For further de
tails on using DDT as a debugging

aid, please see Section 7 of this
manual. Thi s escape cannot be
used if DDT is called up by the
Monitor, or during use of the
Editor.

NOTE Debugger Escape is designed to allow a program to be sus
pended by the user. It al so provides a software asynchronous
interrupt which is useful in debugging programs. It is not ac
tive during usage of DDT, the debugger (i.e., the user cannot use

1-12

Debugger Escape when using DDT). I t may be used any number of
times during the execution of a program.

1-21. CONCEPT OF DATASET

1-22. A dataset is a logical grouping of data associated with an
I/O device. Throughout FLP-80DOS a dataset is identified as fol
lows:

DEV:FILENAME.EXT[UIC]
where:
DEV = The device mnemonic consisting of two letters and a

decimal digit terminated by a colon. The letters
identify the device and the digit identifies the unit
(e.g.,DK1: is disk unit 1). If no digit is entered,
unit 0 is assumed. If the device mnemonic itself
does not appear, the system disk (DKO:) is assumed.
The following devices can be handled by FLP-80DOS
supplied

DEVICE NAMES
CP:
CR:
DKO:
DK1:
LP:
P P :

PR:
T I :
TO :
TT:

to you:
DESCRIPTION
Line Printer (Centronics)
Documation M300 card reader
System Disk Unit (right hand unit)
User Disk Unit (left hand unit)
Line Printer (Data Products)
High-Speed Paper Tape Punch
High-Speed Paper Tape Reader
Silent 700 Cassette Tape Reader Input
Silent 700 Cassette Tape Output
Teletype Typehead, CRT Screen, or Silent
700 Printer

TK: Terminal Keyboard
Additional devices and their corresponding software hand-
lers can be added by the user.

1-13

FILENAME = The file name specification consists of one or
more letters or digits. The first six letters
or digits specify the name. The first character
must be a letter. All letters or digits in ex-

EXT =

UIC =

cess
used

the
The

od,
The

of 6 are ignored. The file name is not
if the device is not a file device (e.g.,

line printer).
extension specification consists of a peri

followed by one or more letters or digits.
first three letters or digits specify the

extension. All letters or digits in excess of
three are ignored. If an extension does not ap

pear in the dataset, a default extension of 3

blanks is assumed. The extension does not ap-

pear if the device is not a file device. The
extension 'BIN I is reserved for binary (RAM im

age) files. The extension 'OBJ ' is reserved for
object files. The extension 'TMP ' is reserved

for temporary files by the Editor. The ex-
tension 'CRS ' is used by the Assembler and the

Linker for cross-reference files. The extension
'LST ' is used by the Assembler for listing

files.
The user identification code UIC consists of a

left square bracket, followed by one to three
decimal digits, followed by a right square

bracket. The largest valid decimal number is
255. If the user identification code does not

appear, a default code of 1 is assumed. The UIC
is maintained on all disk files. It can be used
to identify files of different users. The UIC
does not appear if the device is not a file de

vice.

1-14

1-23. CONCEPT OF LOGICAL UNIT NUMBERS

1-24. All FLP-80DOS input and output is done in terms of logical
unit numbers, just as in FORTRAN. A Logical Unit Number (LUN) is
any number in the range 0 - FFH. Any dataset can be assigned
to any Logical Unit Number (LUN) (using the Monitor ASSIGN com
mand). The LUN acts as a channel through which a program
performs input and output. This is diagrammed in Figure 1-3.

1-25. Logical Unit Numbers 0-5 are always pre-assigned when the
system is powered up or reset. These are all "default" LUNls and
they are assigned the following meanings:

LUN meaning
o console input
1 console output
2 object input
3 object output
4 source input
5 source output

1-26. LUN 0 and 1 are always assigned to the user console
device. LUNls 0-5 have special features which make them useful
for writing your own programs (more detail is given in Sections 8
and 9 0 f t his man u a 1) • L U N F F H can not b ere ass i g ned t o. a
device. This means that any program using LUN FFH is
responsible for making the device assignment. Further detail' is
given in Section 2 under the Monitor IIASSIGN II command.

1-27. DATE FEATURE

1-28. The date feature in FLP-80DOS V2.1 allows you to record
the date of creation or last update of a file. This is done
automatically by the system except for binary files.

1-15

FIGURE 1-3. INPUT/OUTPUT LOGICAL UNIT NUMBERS

INPUT
DEVICE

DEVICE
HANDLER

(SOFTWARE)

LOGICAL
UNIT NUMBER

APPLICATION

PROGRAM

OR
SYSTEM

PROGRAM

LOGICAL
UNIT NUMBER

DEVICE
HANDLER

(SOFTWARE)

OUTPUT
DEVICE

1-16

1-29. At power-up time, after system reset, the date can be
entered at the system1s request. (See start-up procedures in
paragraph 1-36 for information on entering the date). Once the
date has been entered correctly, it will remain in the system
until turned off. A system reset does not destroy the date. In
this case the date will appear after the sign-on message and no
request to enter it will appear. If the user wishes to change
the current date for any reason, it can be done through the DATE
command in PIP. (see paragraph 3-18).

1-30. When a new file is created or an old one is updated, for
example through the Editor, the current date is stored in its
directory entry at the load-address bytes, with the exception of
binary files in which case the load-address bytes contain that
information and no date is recorded. We recommend that the user
create a cross-reference file along with his binary file through
the Linker, using option C. (see paragraph 6-9).

1-31. FLEXIBLE DISK HANDLING PROCEDURE

1-32. The 2 diskettes supplied with the system are both system
diskettes. That is, each contains all of the FLP-80DOS software.
The format is soft-sectored. It is recommended that burni shed
and qualified diskettes be used with FLP-80 system. New disket
tes do not have to be pre-formatted because the system provides
formatting capability. Each diskette in the system has all the
system software on it. Each has 1964 available sectors of 124
data bytes (243536 bytes total). The capacity is double this for
double-sided diskettes.

1-33. Figure 1-4 shows the diskette. The following precautions
should be followed in handling the diskettes:

1. Do not bend or fold the diskette.

1-17

FIGURE 1-4. DISKETTE

.ABELS RECORDING
SLOT

HOLE

INDEX HOLE
(USED FOR FORMATTING)

1-18

2. Do not touch the exposed recording area of the disket
te.

3. Do not place heavy materials on or write on the disket
te with other than a felt-tip marker.

4 • Don 0 t P 1 ace the dis k e t t e .n ear s t ron g mag net i c fie 1 d s •

1-34. Diskettes are inserted into the drives as follows:
1. Insert the diskette as far as it will go into the disk

unit slot. The recording slot should be to the rear
and the label should be on the right-hand side.

2. Slowly close the door until it latches.

1-35. Diskettes are removed fro~ the disk unit by depressing the
latch button. The disk unit door should spring open and the dis
kette should be pushed out of the unit.

CAUTION: Do not power up or power down the system with a diskette
inserted in a disk unit. Doing so may destroy the integrity of
the data on the diskette.

NOTE: It is recommended that all user files be backed up on
separate diskettes whenever changes are made. This precaution
guards against loss of a file in case a non-recoverable disk er
ror occurs.

1-36. START UP PROCEDURES

1-37. Configure the hardware system as explained in the System
Operations Manual. Power up. Insert the FLP-80DOS diskette
into the right-hand disk drive, disk unit zero (DKO:), and close
the door. Depress the I carri age return I key on the consol e de
vice. There should be a slight delay while the system software
is read into RAM from disk. Then the Monitor prompt should be

printed on the console:
MOSTEK FLP-80DOS V2.1
$

A. PLEASE ENTER DATE (DD-MMM-YY) -->

1-19

B. The user enters the date by typing first the day of
the month, followed by the first three letters of
the month, and then by the last two digits for the
year; each item is separated from the next by a
hyphen. The entered line can be edited using rub-

out, backspace, and control-u. If the user enters
an invalid date, a syntax error message is printed,
and the date is ignored. If the user does not wish
to use the date option he can enter just a carriage
return.

Example: PLEASE ENTER DATE (DD-MMM-YY) 7-APR-79 (CR)

1-38. Figure 1-5 shows the relationships among the programs in
FLP-80DOS. The user initializes the system by depressing the
'RESET ' button on the system and 'carriage return l on his console
device. The Boot Procedure reads the system software into RAM
from disk and gives control to the Monitor. From the Monitor,
any system program can be executed by entering its name (plus any
other required information) from the console device.

The Debugger, Text Editor, and Peripheral Interchange Program can
be exited by entering IQI (for a IQuit l), at which point control

is given back to the Monitor. The Z80 Assembler and Linker
return control to the Monitor when their tasks are completed. In

the system programs the system can be rebooted by entering CNTL-X
(Monitor Escape) except EDIT. The Debugger can be entered

1-20

FIGURE 1-5. RELATIONSHIP OF SYSTEM PROGRAMS IN FLP-80DOS

INITIALIZE
('RESET 1 a ICARRIAGE RETURNI)

MONITOR ESCAPE ----"'..
(CNTL - X) ')

BREAKPOI NT ENCOUNTERED OR
DEBUGGER ESCAPE (CNTL-C)

j

BOOT
PROCEDURE

DDT (COMPLETION)
DEBUGGER

EDIT file

TEXT
EDITOR

K-

ASM file

\/ \)

MONITOR

PIP

LINKER

-ULINK file
I--------l

Q

PERIPHERAL
INTERCHANGE

PROGRAM

\/ (COMPLETION)

Z80
ASSEMBLER

1-21

1-39. You now have one of the most powerful Z80 development
systems at your finger tips. You will probably first wish to
create a file on diskette. If so, proceed to Section 4 of this
manual.

1-40. If the prompt does not appear on the console, see the
troubleshooting section (Appendix D).

1-41. MEMORY SUMMARY

1-42. MEMORY MAP. Figure 1-5 depicts the memory map of the
FLP-80DOS software. The standard system is supplied with 32K of
RAM starting at address zero, 4-1K PROM's starting at EOOOH,
and 256 bytes of "scratchpad" RAM starting at FFOOH.

1-43. The PROM located at ECOOH is the Disk Controller
Firmware. It has the responsibility of translating track and
sector information into commands to control the FLP-80 board.
The three PROM's starting at EOOOH contain the power up
procedure and the DDT debugger. The rest of the system software
is read into the upper 9K of RAM from disk. This leaves the
first 23K of RAM free for user programs and debugging (in a 32K
system). The Editor, Assembler, PIP and the Linker also use this
area. The 256 byte "scratchpad" RAM, located at FFOOH, is used
by the DDT debugger and the Monitor.

1-22

FIGURE 1-6. STANDARD FLP-80DOS MEMORY MAP

FFFF _64 K

E F F F --- w-,~~,..,..,..,...,..,..,...

7 F F F --- ~"""7""'7'..,..,...,..,~,-,.I

256 BYTE SCRATCH PAD RAM

4_-1 K PROMS - BOOTSTRAP
SEQUENCE, DEBUGGER, AND
DISK CONTROllER FIRMWARE.

32 K

MON ITOR t SYSTEM PROGRAMS

AND FLEXIBLE DISK HANDLER

RESIDE AT TOP OF 32 K RAM

MEMORY SPACE.

ABOUT 23K RAM AVA I lABlE

FOR USER PROGRAMS

1-23

1-44. PORT MAP. Figure 1-6 defines the port allocation on the

SOB-BO. Ports 00-07 are the PIO ports that come out to top edge

connectors on the SOB-BO. Ports DB-DB are the counter timer

circuit ports; port DB is the timer for the UART baud rate. Port

DE is used for controlling dataset ready (OSR), clear to send

(CTS), and reader step (RS). Also, Port DE is used for sensing

the state of data terminal ready (OTR), request to send (RTS),

and serial bit string of measuring baud rate (used by the

operati ng system). Ports OC and 00 are the UART ports. Ports

E2-E7 are the disk controller ports. MOSTEK is reserving ports

EBH thru FFH for future expansion of its development system.

Ports 7C-70 are also used by the FLP-BOOOS Software Version 2.1

and above. It is recommended that the user limit his development

system application to ports OOH thru CFH. Of course, for an

OEM application all 256 ports are available to the user. In the

event any development system add-on peri pheral woul d exceed the

assigned number of ports, MOSTEK would start with CFH and work

down.

1-24

FIGURE 1-7. OEM-SO PORT ALLOCATION

FF

EO

E7

E6

E5

E4

E3

E2

E1

EO

DF

DE

DD

DC

DB

DA

D9

DB

D7

D6

D5

D4

D3

D2

D1

DO

CF

00

.......

1

FUTURE SDB-BO EXPANSION

DISK CONTROLLER

DISK CONTROLLER

DISK CONTROLLER

DISK CONTROLLER

DISK CONTROLLER

DISK CONTROLLER

FUTURE EXPANSION

FUTURE EXPANSION

DEBUG CONTROL

SYSTEM CONTROL

UART CONTROL

UART DATA

CTC CHANNEL 3

CTC CHANNEL 2

CTC CHANNEL 1

CTC CHANNEL 0

PIO-D6 CONTROL

PIO-D6 DATA

PIO-D4 CONTROL

PIO-D4 DATA

PIO-D2 CONTROL

PIO-D2 DATA

PIO-DO CONTROL

PIO-DO DATA

USER DEFINED PORTS
...

I

1-25

FIGURE 1-8. FLP-80DOS COMMAND SUMMARY

POWER UP OR RESET

Depress "CARRIAGE RETURN"

CONSOLE INTERACTON (Except DDT)

DEL delete the previous character
BACKSPACE delete the previous character.
CNTL-U - delete the current 1 i n e •
CNTL-C - suspend operation.
CN TL-X - abort to Monitor and reinitialize.
RETURN - end of command 1 i n e •
CN T L - I - tab over 8 spaces".

MONITOR
$ASSIGN 1 un, dataset - assign dataset to LUN
$BEGIN [aaaa] - start execution at

address aaaa.
$CLEAR lun - clear an assignment

i n the redirect
table.

$DDT - enter DDT, the debug-
ger.

$DTABLE - print default LUN
table.

$DUfViP aaaa,bbbb,dataset[.OBJ] - dump absolute object
module to dataset.

$GET dataset[.BIN] - load binary file into
RAM.

$! NIT - initialize dis k.

1-26

$RTABLE

$SAVE

- print redirect table
of LUN's.

aaaa,bbbb,dataset[.BIN] - save binary file from
RAM.

ASSEMBLER
$ASM source dataset [TO listing dataset[,object dataset]]

OPTIONS

C - Print cross reference listing
K - no listing
L - listing (default)
N - no object output
o - object output (default)
P - pass 2 only

Q - quit - return to Monitor
R - reset symbo 1 table (pass 2 only operation)
S - print symbo 1 table.

DESIGNER'S DEVELOPMENT TOOL
$DDT

NOTE: The console interaction for DDT is slightly different from
the rest of FLP-80DOS.

Terminator = Carriage return, 1\,/ , or dot.
The space between command and operands is printed by the
system.

M aaaa,bbbb -Display, update, or tabulate the contents of

P aa

E [aaaaJ

memory.
-Display and/or update the contents of an I/O

port.
-Transfer control from DDT-80 to a user's

program.

1-27

H +aaaa+bbbb= ••• -Perform 16 bit hex a dec i rna 1 addition and/or

subtraction.

C aaaa,bbbb,cccc -C opy the contents of a b lock of memo ry to an-
other location i n memory.

B aaaa -Insert a break poi nt i n the user's program.

R 1 ,X -0 is pl ay the contents of the user registers x=O

short, x=l-long.
o aaaa -Set the offset constant.

L aaaa,bbbb,cccc -Locate all occurrences of an 8 or 16 bit data
pattern.

F aaaa,bbbb,cc -Fill memory limits with an 8 bit data pattern.
V aaaa,bbbb,cccc -Verify that 2 blocks of memory are equal.

W aaaa,nn,xxx -Software single step (walk) for nn steps.
xx=HO means print register heading.

Q -Quit 00T-80 and return to the system Monitor.

EDITOR
$EOIT file

An Advance n records

Bn

Cn/string1/string2/

Dn

En
Fn
G dataset

Ln

Mn

Backup n records.

Change n occurrences of string 1 to string

2 •

Delete n records, starting with current re

cord.

Exchange n records with inserted records.
Flag print option: O=no print, not O=print

Get dataset and insert after current re
cord.

Insert records after current record.
Line: Access record number n.

Macro: Place command string into alternate
com rna n d b u f fer lor 2.

1-28

Pn dataset

Q

Sn/string/
T

Vn
Wn

Xn

Put n records out to a different dataset
(file).
Quit: Save the file on disk and terminate
the editor.
Search for nth occurrence of the string.
Top: I nsert at top of fi 1 e before the
first record.
Verify n records on the console device.
Write n records with record numbers to LUN
5.

Execute alternate command buffer n (1 or
2) •

In all commands, except Fn and Ln, if n is zero or if n is
not entered, it is assumed to equal one (1). n can take
the form n1 thru n2 by entering n1 - n2.

LINKER

$LINK dataset 1 , •• ,datasetn [TO dataset B [,dataset C]]
where dataset land datasetn are object files, dataset B is bin
ary file, and dataset C is a load map and cross reference list
i ng.

A - enter starting link address.
C - global cross reference table output to dataset C.
L - Library search on a disk unit.
S - global symbol table output to dataset C.
U - print list of undefined global symbols.

PERIPHERAL INTERCHANGE PROGRAM

$PIP
APPEND datasetl TO dataset 2 -append.

COpy

DATE

DIRECT

ERASE
FORMAT

INIT

RENAME
STATUS

QUIT

dataset2, ••• ,dataset n TO dataset 1

dataset 1 [TO dataset 2J

dataset 1 , ••• ,dataset n
name

dataset 1 TO dataset 2
dataset 1 TO dataset 2

1-29

-copy.
-examine/change
date.
-pri nt di rec
tory.

-erase a file.
-format a disk

in disk unit
1.

-initialize
disk units.

-rename file.
-print status

of disk.
-return to

Monitor

2-1

SECTION 2

MONITOR

2-1. INTRODUCTION

2-2. The Monitor provides communication with the user via the
con sol e term ina 1 en a b 1 i n g him to loa dan d s tar t ex e cut ion 0 f
either system (e.g., PIP, EDITOR, ASM, LINKER) or user programs.
In addition, the Monitor provides utility functions such as reas
signment of logical unit devices and the creation of RAM image
files. After power up or reset, the system automatically enters
the Monitor environment awaiting entry of user commands. The
prompting character for the Monitor is a $.

2-3. OPERATIONS SUMMARY

2-4. SYSTEM RESET.

2-5. The FLP-80DOS operating system may be reset by depressing
the system RESET switch and then typi ng a II carr iage return ll on
the console terminal. This starts the system reset sequence

which first calculates the terminal baud rate and then loads the
operating system into memory from the file OS.BIN[255] and begins
execution at its starting address. The Monitor which is the
first module in the operating system (See Figure 15-1) begins by
initializing the following system parameters.

1. Default logical units 0-5

2. Logical unit redirect table
3. RAM mnemonic table (see Paragraph 15-10).
4. IOCS buffer allocation table (see paragraph 9-46)
5. All disk units containing diskettes (DKO,DKI and etc.)

After the initialization sequence is completed, the Monitor

2-2

prints the system sign on message followed by the date or a
prompt to enter the date if the system does Rot have a valid date
stored, (this will always occur after power-up). Then a $ prompt
will appear on the console.

2-6. POWER UP SEQUENCE. The power up sequence is identical'to
reset (See paragraph 2-4).

2-7. MONITOR COMMAND SUMMARY

2-8. Some of the Monitor commands utilize dataset specifications
(See para. 1-21). A dataset can consist of device specifications
(e.g. PR:) or file specifications (e.g. DKl:BINDEC.OBJ). When
entering a monitor command name, only the number of characters
required for uniqueness must be entered. These characters are
underlined in the command syntax definition. Monitor commands
can be divided into the following functional categories.

1. File Creation and Loading
SAVE - Saves a binary file on disk.
GET - Loads a binary file into RAM.
DUMP - Saves an absolute object file.
BEGIN - Begins execution of a loaded program.

2. Logical Unit Assignment and Table Functions.
$QI.ABLE - Lists the logical unit default table.
$ASSIGN - Assigns the redirect of a logical unit.
$.f.LEAR - Clears the redirect of a logical unit.
$RTABLE - Lists the logical unit redirect table.

3. Miscellaneous

$QQT

$.!.NIT
- Enters DDT environment.
- Initialize system for newly inserted disket-

tes.

2-3

2-9. IMPLIED RUN COMMAND. As the user types a command, its
characters are entered directly into the command buffer. After a
carriage return is entered, the Monitor compares the command name
in the buffer vlith a list of Monitor commands. If a Monitor
command is not entered, the Monitor assumes the command name is a
binary file (extension = BIN) on the system disk. The system disk
which is disk unit 0 (DKO:) is then searched for the specified
file. If the file is not found, the following message is printed
on the console.

****ERROR 04 FILE NOT FOUND
If the file is found, it is loaded and execution is started at
its load address. The implied run command also enables the
IIminimal listener ll which provides a console escape during program
execution (see paragraph 2-45).

2-10. The implied run command provides the facility for loading
and executing both system programs and user programs. The
following commands transfer control from the Monitor to system
programs which reside on the system disk (DKO:).

$EDIT
$PIP
$AS~l

$LINK

- Enter Editor
- Enter Peripheral Interchange Program
- Enter Assembler
- Enter Linker

2-11. A user program can also be
by enteri ng a program fi 1 ename.
dataset (See Paragraph 1-21) and

executed in an identical manner
The filename must be a valid

cannot contain imbedded blanks.
A binary extension (BIN) or a blank extension which defaults to
binary are the only allowed extensions. The file can reside on
any supported disk unit (e.g. DKO, DK1). The following examples
illustrate execution of user programs using the implied run
command.

PROG1
DK1:PROG2.BIN

2-4

Upon entry into the user program, the DE register points to the
next location (blank or carriage return) in the command buffer
after the program name. Using the implied run command, a
convenient facility is available for adding either new commands
or user extensions to the Monitor.

2-12. COMMAND ENTRY. When entering a command from the terminal
the command line may exceed the maximum terminal line length
(usually 80 characters). If this occurs, the terminal output
driver (TT) will automatically issue a CR and LF to enable con
tinuation of the command on the next line. Since a carriage re
turn input from the keyboard is interpreted by the Monitor to be
the termi nator of the command stri ng, the user shoul d not en
ter a carriage return until the entire command has been entered.
The maximum command length is set by the command buffer size
which is 160 characters.

2-13. DEFINITIONS.

1. DEFAULT TABLE - the default logical unit table. After
power up or system reset a default logical unit table
consisting of logical units 0 through 5 is created.
This provides the user with 6 predefined I/O channels
which can be used by application programs. The system
subroutines RDCHR and WRCHR (see section 8) can be used
for I/O transfers by specifying the logical unit in
the E register. After power up or reset, logical unit
o is always assigned the console input device (TK:) and
logical unit 1 is assigned the console output device
(TT:). Logical units 2-5 are initialized on power up
or reset to values which are defined during the system
SYSGEN procedure (See paragraph 15-12). At execution
time the default table may be modified if a device is

2-5

opened after being redirected by the ASSIGN command

(See paragraph 2-14). In this case system reset can be
used to initialize the table.

2. REDIRECT TABLE - the logical unit redirect table. If
the user wishes to change a logical unit device
specification, he can redirect it to a new device using
the Assign command. The redirect table consists of a
list of all the currently redirected logical units.

3. BINARY FILE - A RAM-image file created by either the SAVE
command or the Linker. A binary file generally contains
executable machine code but may also contain data. A

binary file has the extension BIN.

4. OBJECT FILE - a file created by the object output of
either the Assembler or the DUMP command. The object
module is in ASCII (See Mostek Object Format, Appendix
B). The object module contains data and may also contain

relocating and linking information for use by the Linker.
An object file has the extension OBJ.

2-14. ASSIGN COMMAND

2-15. SYNTAX: ASSIGN N,Dataset

2-16. The ASSIGN command assigns a dataset to a logical unit
number. This reassignment enables the user to change a logical
unit device specification at run time. A dataset contains a de
vice specification and a filename if the device is file struc
tured. The logical unit number N is a hexadecimal number between

a and FE (254 decimal). The ASSIGN command places the logical
unit number and dataset into the Redirect Table. After an open

2-6

request (See IOCS Section 9) is executed, the assigned dataset
is copied into the I/O vector being referenced. All future I/O
transfers for the specified logical unit number use the newly as
signed dataset.
EXAMPLE 1. Assign logical unit 2 to the paper tape reader device.

$ASSIGN 2,PR:(CR)
EXAMPLE 2. Assign logical unit 0 to a batch input file con
ta i ni ng system commands (See Sect ion 14 for batch mode
operation).

$ASSIGN O,DKO:BATCH.CMD(CR)

2-17. BEGIN COMMAND

2-18. SYNTAX: BEGIN [aaaa]

2-19. The BEGIN command starts execution of a previously loaded
program. The hexadecimal address aaaa is the starting address
which may be specified by the user. If this address is not
specified, execution begins at the starting address of the
previously loaded program. The program starting or execution
address is stored in the user's PC (program counter) register
(address FFFEH) after loading a program with the GET command.
The BEGIN command also enables the "minimal listener" providing a
console escape during program execution (See paragraph 2-45).

EXAMPLE 1. Begin program execution at location 0100H.
$BEGIN 100(CR)

2-20. CLEAR COMMAND

2-21. SYNTAX: CLEAR [N]

2-22. The CLEAR command removes logical unit N from the redirect

2-7

table. This cancels any previous reassignment of a logical unit
mad e wi t h the ASS I G Nco m man d • I f N i s not e n t e red, a 11 e n.t r i e s
in the Redirect Table are removed.

EXAMPLE 1. Clear logical unit 3.
$CLEAR 3(CR)

2-23. DDT COMMAND

2-24. SYNTAX: DDT

2-25. The DDT command transfers control to the DDT edvironment
(See Section 7).

2-26. DTABLE COMMAND

2-27. SYNTAX: DTABLE

2-28. The DTABLE command lists the default logical unit table on
the console output device. After power up or reset the default
logical unit table consisting of logical units 0 through 5 is
created. Logical unit 0 is always assigned the console input
device (TK:) and logical unit 1 is assigned the console output
device (TT:). Default values for logical units 2-5 are defined
when the operating system is created using the SYSGEN procedure
(See Paragraph 15-12).
EXAMPLE List default logical unit table.

$DTABLE(CR)
LU DATASET
00 TKO:
01 TTO:
02 TKO:
03 CPO:
04 TKO:
05 CPO:

2-8

2-29. DUMP COMMAND

2-30. SYNTAX: DUMP aaaa,bbbb,Dataset

2-31. The DUMP command outputs the contents of memory in
absolute object format (See Appendix B) to the specified output
dataset. The hexadecimal address aaaa is the beginning address
and bbbb is the ending address of the data in memory. The ad
dresses aaaa and bbbb can be terminated by a comma or a space and
any number of spaces may be entered between command elements. The
dataset specification can be any supported output device. If the
dataset is an output file, the extension must be either OBJ
or blank. If the extension is not entered (blank), the Monitor
assumes OBJ.
EXAMPLE 1. Create the object file BINDEC which resides between

locations 1000 and 1400, then dump it to paper tape.
$DUMP 1000, 1400, BINDEC(CR)
$PIP(CR)
#C BINDEC.OBJ TO PP:(CR)
#Q(CR)

2-32. GET COMMAND

2-33. SYNTAX: GET Dataset

2-34. The GET command loads a binary file specified by the
dataset into memory. The program execution address is also
loaded into the user's PC (program counter) register. This en
ables program execution to be initiated using the BEGIN command
(See Section 2-17) without specifying the starting address. The
execution address of a binary file is the first address or lowest
program address in memory. The dataset extension must be either
BIN or blank. If the extension is not entered (blank), the Mon-

itor assumes BIN.
EXAMPLE 1. Load the binary file BINDEC from disk unit DKO.

$GET BINDEC(CR)

2-9

EXAMPLE 2. Load the binary file PROG22 from disk unit OKI and
begin execution at the starting address.
$GET DKl:PROG22.BIN(CR)
$BEGIN(CR)

2-35. IN IT COMMAND

2-36. SYNTAX: INIT

2-37. THE INIT COMMAND MUST BE GIVEN ANYTIME A DISKETTE IS NEWLY
INSERTED AND THE USER WISHES TO CONTINUE EXECUTING MONITOR
COMMANDS. This guarantees that the proper sector and track maps
are in memory during file operations on the newly inserted
diskette. If the user fails to give this command, files on the
newly inserted diskette may be irretrievably lost. During power
up or reset the INIT command is automatically executed by the
Monitor. The INIT command may also be given from the PIP
environment (See Section 3).

2-38. RTABLE COMMAND

2-39. SYNTAX: RTABLE

2-40. The RTABLE command lists the logical unit redirect table
on the console output device. The redirect table contains a list
of all the currently redirected logical units.
EXAMPLE List redirected logical units.

$RTABLE(CR)
LU DATASET
02 CRO:
05 DKl:FILE22.MAC[1]

2-10

2-41. SAVE COMMAND

2-42. SYNTAX: SAVE aaaa,bbbb,Dataset

2-43. The SAVE command outputs the contents of memory in a RAM
image form to the disk file specified by the dataset. The
hexadecimal address aaaa is the beginning address and bbbb is the
ending address of the data in memory. The addresses aaaa and bbbb
can be terminated by a comma or a space and any number of spaces
may be entered between command elements. The dataset extension
must be either BIN or blank. If the extension is not entered
(blank), the Monitor assumes BIN.
EXAMPLE 1. Save the memory contents from 0 to 0100 by creating a

binary file FILE1.BIN.
$SAVE 0,100,FILE1{CR)

EXAMPLE 2. Create the binary file BINDEC.BIN on disk unit 1.

$SAVE 1000,1400,DK1:BINDEC.BIN{CR)

2-44. The SAVE command creates a binary file which can be up to
255 sectors in length. Each sector contains 124 bytes allowing a
maximum file length of 31620 decimal or 7B84 hexadecimal bytes.
When loading a binary file the GET command loads a fixed number
of sectors into memory. A save block size (bbbb-aaaa) will not
always equal an integral number of sectors. This can cause
(worst case) up to 123 extra bytes to be loaded beyond the end
address bbbb.

2-45. CONSOLE ESCAPE

2-46. The IIMinimal Listener ll is a background interrupt processor
which detects the console input codes Control-X and Control-C.
This provides the facility for a console exit from an executing

2-11

program to either the Monitor or DDT. The console escape can be
a very useful tool during program debugging. The console input of
Control-X suspends execution of a program and reboots the
operating system returning control to the tvlonitor (prompt=$). A
console input of Control-C suspends execution and enters DDT
(prompt=.). DDT displays the program registers (similar to
breakpoint) and execution can be resumed from DDT using the E
command. (See Section 7-45).

2-47. The Minimal Listener is enabled only by the BEGIN and
IMPLIED RUN commands (See paragraphs 2-9 and 2-17). It is
disabled within the Monitor enviroment, and in the Editor and
DDT.

3-1

SECTION 3

PERIPHERAL INTERCHANGE PROGRAM (PIP)

3-1. INTRODUCTION

3-2. The transferring of files and data between devices is the

primary function of the Peripheral Interchange Program (PIP).

PIP uses the device independent features of the I/O control

system (IOCS), allowing data to be transferred from any system

input device to any output device. In addition, PIP performs

utility functions such as listing disk directories, renaming

files, and formatting diskettes.

3-3. ENTERING PIP

3-4. The user can enter the PIP environment by typing the file

name PIP as a command in the Monitor environment. The Monitor

then loads the file PIP.BIN from disk unit DKO and starts its

execution. The PIP prompting character is a #. To return to

the ~lonitor the operator enters the QUIT command as illustrated

in the following example.

EXAMPLE $PIP(CR) ;Enter PIP environment

#Q(CR) ;Return to Monitor

3-5. PIP COMMAND SYNTAX

3-6. Each PIP command contains a command name followed by a

command operand field. The command names which are up to 6

characters in length denote the function to be performed. Only

the first character of each name has to be entered to execute

the selected function.

COMMAND NAMES

APPEND
COpy

DATE

DIRECT

ERASE

FORMAT

INIT

RENAME

STATUS

QUIT

3-2

COMMAND SYNTAX

NAME Input Datasets(l ••• N) TO Output Dataset

3-7. The second part of each command is the command operand

field which consists of a single dataset or a series of datasets

depending upon the selected comma'nd. The keyword 'TO' has spe

cial significance in the command operand field. A dataset ap

pearing to the right of 'TO' is defined as an output dataset. A

dataset on the left of 'TO' is defined as an input dataset.

There can be only one output dataset designation although there

can be any number of input datasets (limited only by the command

line length of 160 characters). The character ')' can be used in

place of the keyword 'TO', performing the identical function.

3-8. A dataset can contain a single device (e.g. PR:) or a de

vic e, f i 1 en am e , ext ens ion and use r n u m b e r (e • g. D K 1 : F I L E 22 • MAC

[2 J) i f the d e vic e i s f i 1 est r u c t u red. The form 0 fad a t a set i s

described in paragraph 1-21. An asterisk can be used to replace

the filename, extension or user number in an input dataset, but

it is illegal in the output dataset. The asterisk specifies all

occurrences of an element.

3-9. APPEND COMMAND

3-10. SYNTAX: APPEND Dataset 1 TO Dataset 2

3-11. The Append command attaches a copy of dataset 1 to the end

of dataset 2. Dataset 1 remains un~hanged. Both datasets must

contain file structured devices (e.g.DK) and neither can be a

bin a ry f i 1 e (E x ten s ion = BIN).

EXAMPLE

Append the file F1 on disk unit DKO to the file F2 on DKO.

HAPPEND F1 TO F2(CR)

3-3

3-12. COPY COMMAND

3-13. SYNTAX: COPY Dataset 2, ••••• Dataset N TO Dataset 1

3-14. The Copy command can be used for a variety of purposes
such as listing files, concatenating individual files, or copying

all the files from one device (e.g. DKO) to a second device (e.g.
DK1). The Copy command copies the contents of the input datasets
(Datasets 2, •• ,N) to the output dataset (Dataset 1). If the file
in the output dataset already exists, the following message
appears on the console:

Dataset, ALREADY EXISTS

ERASE?
If the operator responds by entering a Y (followed by a carriage

return) PIP deletes the file in the output dataset. The input
datasets are then copied to the output dataset, assuming its

name. No act i on is performed if a res ponse other than Y is
given. If a file specified in the input datasets does not exist,

the following message is sent to the console:
Dataset, NO SUCH FILE

3-15. The Copy command does not permit binary (extension = BIN)

and non-binary file types to be mixed. If an attempt to copy a
binary file to a source file is made, the error message INCOMPAT

IBLE EXTENSIONS is output to the console.

3-16. If a Copy is executed to a file-structured device with no
filename (e.g.OK1), then the filename, extension and user number

of the input dataset remains unchanged after transfer to the out
put device. However, if a filename is specified in an output

dataset, the input datasets are concatenated and copied to the
output file. In any case the file date of the output file will be

the same as in the input file.

3-17. An asteri sk can be used to repl ace the fi 1 ename, ex-

3-4

tension, or user number in a Copy input dataset. The asterisk

specifies all occurrences of an element. If an asterisk is

specified in an input dataset, PIP automatically prints on the

console each input file as it is copied. In order to illustrate

the many possible uses of the Copy command, the following ex

amples are given, classified according to output dataset types.

EXAMPLE 1. Copy to a non-file structured output device.

a. Transfer data from the paper tape reader to the

paper tape punch. Input data from the paper tape

reader is terminated by either an EOF mark of

04H or by 50 trailing nulls after the end of

data.

#COPY PR: TO PP:(CR)

b. List the contents of FILEl on OKI to the 1 ine

printer.

HC OKl:FILEl TO LP:(CR)

EXAMPLE 2. Copy to a file structured device with no filename

(e.g.OKl:).

a. Transfer the files Fl, F2 and F3 from disk unit

OKO to disk unit OKl.

#C Fl,F2,F3 TO OKl:(CR)

b. Transfer all files from disk unit OKO to disk unit

OKlo The diskette in OKO contains 5 files.

#C *.*[*] TO DKl:(CR}

DKO:ASM .SRC[l]

OKO:ASM .BIN[l]

DKO:PIP .BIN[l]

DKO:EDIT .SRC[l]

DKO:EDIT .BIN[l]

Copy all the f i 1 e s with the extension c. SRC from

user number 1 to user number 2.

#C *.SRC[l] TO DKO:[2] (CR}

DKO:ASM .SRC[l]
DKO:EDIT .SRC[l]

3-5

EXAMPLE 3. Copy to a specified filename on a file structured

device.
a. Copy FILEA.OBJ on DK1 to FILEB.OBJ on disk unit

DKO.
#C DK1:FILEA.OBJ TO FILEB.OBJ(CR)

b. Concatenate the three source files F1,F2 and F3
and copy them to F123.
#C F1,F2,F3 TO F123(CR)

3-18. DATE COMMAND

SYNTAX: DATE

The DATE command is used to examine and/or modify the system1s
date. After entering the command, the date on the system will be
printed if it exists and the following message will allow you to
change it if desired:

ENTER DATE (DD-MMM-YY)

If only a carriage return is entered then the current system date
is retained. Otherv-Jise, type the day of the month first, then
the first 3 letters of the month, and then the last 2 digits of
the year with each item separated by a dash (-). This date will
be stored in the di rectory of non-bi nary fi 1 es when they are
created or updated for reference by the user and will be
displayed by a Directory command (see QIRECT).

3-19. DIRECT COMMAND

3-20. SYNTAX: DIRECT [Dataset 1 TO Dataset 2J

3-6

3-21. The DIRECT command is used to list the directory of disk
devices. The input dataset (Dataset 1) is used to specify the
disk unit (DKO,DK1 and etc.) for which the directory listing will
be generated. I f the input dataset is omitted, DKO is as
sumed. If a filename, extension or user number is specified,
only those files with the specified filename, extension and user
number will be listed. An asterisk can replace a dataset element
(e.g.Filename=*) to specify all or every occurrence of that ele
ment (e.g. All Filenames). The output dataset (Dataset 2) is op
tional and can be used to output the directory listing to any
specified device. The default output device is the console.

3-22. The heading of the directory listing contains the disk
unit (e.g. DKO) and the Diskette Name which were entered when the
disk was formatted (See Paragraph 3-27). A file is identified in
the directory by its filename, extension and user number. The
directory 1 isting al so specifies the number of records used by
each file and the starting track and sector location of the file,
and the date of creation or last update.

To prevent information from being scrolled off the screen when
listing large directories to a video terminal, the listing may be
stopped by entering a space from the keyboard. The listing will
resume when a second space is entered.
illustrate the DIRECT command.

The following examples

EXAMPLE 1. List entire directory of system disk on the console
device.

#D(CR)
DIRECTORY DKO: DISKETTE BACK UP 1
FILENAME EXT USER RECORDS TRK SECT
PIP .BIN 1 25 09H 01H
BINDEC .SRC 1 5 OBH 04H

Listed on 8-MAR-79
Date

4-MAR-79

3-7

BINDEC .OBJ 1 3 OBH OBH 4-MAR-79
BINDEC .BIN 1 2 OBH OEH

EXAMPLE 2. List all files of disk unit 1 with the extension OBJ
on the line printer.

#D DKl:*.OBJ[I] TO LP: {CR)
DIRECTORY DKl: DISKETTE BACK UP 2 On 15-Jun-79
FILENA~IE EXT USER RECORDS TRK SECT Date
FADD .OBJ 1 3 09H 01H 10-APR-79
FMUL .OBJ 1 3 09H 04H 1 -JUN-79

3-23. ERASE COMMAND

3-24. SYNTAX: ERASE Dataset 1 [, Dataset 2 , ••• ,Dataset NJ

3-25. The Erase command removes the specified file or files from
the disk unit and makes the space available for use. A filename
must be entered for the ERASE command. The extension and user
number if not entered will default to a blank extension and a
user number of 1. After the ERASE command is entered, PIP will
print the following message on the console:

ERASE?

If the operator responds by entering a Y (followed by a carriage
return) PIP deletes the specified file or files. No action is
performed if a response other than Y is given. If the file
specified in the dataset does not exist, the following message
is sent to the console:

Dataset, NO SUCH FILE
3-26. An asterisk can be used to replace the filename, extension
or user number in the dataset to be erased. The asterisk
specifies all occurrences of an element. The following examples

3-8

illustrate the ERASE command:
EXAMPLE 1. Erase the files Fl and F2 on the disk in DKO. Note

the device defaults to DKO and the user number to 1.

#ERASE Fl,F2(CR)
EXAMPLE 2. Erase an object file from OKI with a user number of

3.

#ERASE DKl:Fl.0BJ[3](CR)
EXAMPLE 3. ERASE all binary files (EXT=BIN) with a user number

of 1 on OK!.
#ERASE DKl:*.BIN(CR)

EXAMPLE 4. Erase all files on disk DKO.
#ERASE *.*[*](CR)

3-27. FORMAT COMMAND

3-28. SYNTAX: FORMAT Name

3-29. The Format command formats each track and sector of a dis
kette in unit DKI with the information necessary for proper ac
cessing of data from the disk. The operand name used by the
Format command gives each formatted disk an identifier for future
reference. The name is eleven characters in length and can con
tain any printable characters. The DIRECT and STATUS commands
output this name as a part of their headings to aid in referenc
ing individual diskettes. After the FORMAT command is entered,
PIP will print the following message on the console:

FORMAT?
If the operator responds by entering a Y (followed by a carriage
return) PIP formats the diskette in unit OK!. No action i s
performed if a response other than Y i s given.

3-30. To provide additional file protection, it is recommended

3-9

that each diskette be formatted with a unique name. The disk

operating system prior to an Erase or Close operation verifies

that the name of the diskette in a unit (DKO or DKl) agrees with

the name of the last previously initialized diskette in that

unit. All disk units are initialized when entering PIP from the
Monitor or after execution of the INIT command (See paragraph
3 -3 4) •

3-31. Formatting of a diskette initializes all sectors making
them available for use (See STATUS paragraph 3-41). A disk must

be formatted before it can be used the first time in the system.
An unformatted diskette should not be inserted into the the sys

tem until just prior to execution of the format command. A
previously used diskette can be reformatted; however, any files

on the diskette will be destroyed.

3-32. The format command requires that an operational system
disk is resident in unit DKO. A system disk is defined as a

previously formatted disk containing the required operating sys
tem programs. The diskette to be formatted is placed in disk

unit 1. The system programs are automatically copied to the new
diskette in DKI during the execution of format.

3-33. The following examples illustrate the Format command:

EXAMPLE 1. Format the disk in unit DKI giving it a name of BACK
UP 1.

'FORMAT BACK UP 1(CR)

EXAMPLE 2. Format a new disk and also copy the FLP-80DOS As

sembler, Editor, Linker and PIP programs to the new
ly-formatted disk.

'FORMAT SYS DISK 1(CR)

3-10

#C ASM.BIN, EDIT.BIN, LINK.BIN, PIP.BIN TO DK1:{CR)

NOTE: Using the above procedure the user can generate his own
system disks containing only the system application programs
(E.G.ASM and PIP) which he desires.

3-34. IN IT COMMAND

3-35. SYNTAX: INIT

3-36. The Init command should be issued any time a new diskette
is inserted and the user wishes to continue executing PIP com
mands. This guarantees that the proper sector and track maps are
in memory during file operations on the newly inserted diskette.
When entering PIP from the Monitor, the Init command is auto
matically executed by PIP.

3-37. RENAME COMMAND

3-38. SYNTAX: RENAME Dataset 1 TO Dataset 2

3-39. The Rename command is used to change the name of a
specified file. The filename, extension and user number in
Dataset 1 is changed to the filename, extension and user number
in Dataset 2. If the file in the output dataset (Dataset 2)
already exists, the following message appears on the console:

Dataset, ALREADY EXISTS
ERASE?

If the operator responds by entering a Y (followed by a carriage
return) PIP deletes the file in Dataset 2. The file in Dataset 1
is then renamed to the name specified in Dataset 2. No action is
performed if a response other than Y is given.

3-11

3-40. The RENAME command does not permit a binary extension
(BIN) to be changed to a nonbinary extension or a nonbinary ex
tension to be changed to a binary extension. The following ex
amples illustrate the Rename command:
EXAMPLE 1. Rename the file FILE1 on disk unit OKO to

FILE2.SRC.
#RENAME FILE1 TO FILE2.SRC(CR)

EXAMPLE 2. Rename the file FILEX1.0BJ on disk unit OKI.
#RENAME DK1:FILEX1.0BJ[1] TO DK1:FILEX2.0BJ[3](CR)

3-41. STATUS COMMAND

3-42. SYNTAX: STATUS [Dataset 1 TO Dataset 2]

3-43. The Status command is used to list the diskette name, the
total number of sectors available, the number of sectors used and
the number of bad sectors. The diskette name which identifies
the individual disk is entered when the disk is formatted (See
paragraph 3-27). The input dataset (Dataset 1) of the status

• command id~ntifies the disk unit (DKO or DK1) for which status is
desired. The output dataset is optional and can be used to
output the status listing to any output device. The default is
the console device. The following examples illustrate the STATUS
command.
EXAMPLE 1. List the status of disk unit DKI to the line

printer.
#STATUS OK1: TO L P : (C R }
STATUS DK1: DISKETTE BACK UP 2
SECTORS AVAILABLE 1668

SECTORS USED 152
SECTORS BAD 0
List the status of disk unit DKO. EXAMPLE 2. Note if the
input dataset is not specified it defaults to DKO.

3-12

The diskette name, is IBACK UP 11

#S{CR)
STATUS DKO: DISKETTE BACK UP 1
SECTORS AVAILABLE 1020
SECTORS USED 800
SECTORS BAD 0

3-44. QUIT COMMAND

3-45. SYNTAX: QUIT

3-46. The Quit command exits PIP and returns control to the
FLP-80DOS Monitor.

4 -1

SECTION 4

FLP-80DOS TEXT EDITOR (EDIT)

4-1. INTRODUCTION

4 - 2 • The F L P - 800 0 S T ext E d ito r ass i s t s the use r i nor i gin at ion
and modification of assembly language source programs and English
text documentation. The Editor resides on the FLP-80DOS System
Diskette. It permits random access editing of ASCII diskette
files. The Editor is designed for usage with the MOSTEK FLP-80
system, but it can be adapted to other systems for OEM uses.

4-3. CAPABILITIES

4-5. The FLP-80DOS Text Editor permits random access editing of
ASCII diskette files on a line and character basis. Whole lines
and c h a r act e r s t r i n g s em bed d e d wit h i n 1 i n esc a n be a c c e sse d ,
changed, deleted, or added to an existing or new diskette file.

The size of the file to be edited is limited only by diskette
capacity. All I/O operations to the diskette are transparent to
the user.

4-5. SOFTWARE CONFIGURATION

4-6. The Editor is resident on diskette. When loaded, it starts
at RAM address zero. Figure 4-1 shows the memory map for the

Editor. Editor buffers and variables are placed in RAM between
the top of the Editor and bottom of the Flexible Disk Handler.

4-7. The Editor uses Logical Unit Numbers 0 and 1 for console
interaction and Logical Unit Number 5 for outputting records with

4-2

line numbers. Logical Unit Number 5 is typically assigned to a
line printer device. All I/O to the disk is via LUN FFH' which
cannot be reassigned via the Monitor 'ASSIGN I command.
4-2 depicts this structure.

4-8. DEFINITIONS

Figure

1. SOURCE - ASCII characters comprising a Z80 assembly
language program or some other text.

2. RECORD - A single source statement ending with a car
riage return.

3. FILE - A diskette file which contains the source.

4. POINTER ~ the position in the source where the next ac
tion of the Editor will be initiated.

5. CURRENT RECORD - the record in the source pointed to by
the pointer.

6. RECORD NUMBER - the decimal number of a record, begin
ning at one (0001) for the first record
in a file and increasing sequentially
for each record.

7. INSERT - Installation of record(s) i n a file im-
mediately following the current record.
Inserted records are assigned sequentially

increasing line numbers.

8. DELETE - removal of the current record from a f 11 e.

FIGURE 4-1. EDITOR MEMORY MAP

FLEXIBLE

DISK

HANDLER

I/O BUFFERS

FOR 10CS

EDITOR

BUFFERS

a
VARIABLES

............

~ COO H - ----------------1

FLP - 80 DOS

EDITOR

0- L-____________ --...I

4-3

4-4

FIGURE 4-2. LOGICAL UNIT NUMBER STRUCTURE

II111111111111

LUN el

LUN F F H

CONSOLE
INTERACTION

FLP-80 DOS

TEXT

EDITOR

o·

LUN I

LUN 5

SOURCE
WITH
LINE
NUMBERS

FLEXIBLE

DISK

FILE

4-5

4-9. USING THE TEXT EDITOR - CONSOLE INTERACTION

4-10.

device.
All user interaction with the EDITOR is via the console

The Editor issues prompts and messages to direct the
user. The user responds by entering commands or data via the
console keyboard. Each command or data record is terminated by a
carriage return. The user can modify a record before depressing
carriage return with the following console keys:

1. DEL: RUBOUT (ASCII 7FH). Delete the previous
character. Successive characters may be deleted by en
tering more than one 'rubout ' • The characters which

are deleted will be printed on the console device be
tween two backslash characters (,).

2. CNTL-H: BACKSPACE (ASCII 08H). Performs the same
function as RUBOUT, but the backslash is not printed on
the console device.

3. CNTL-U: NEGATIVE ACKNOWLEDGE (ASCII 15H). Deletes
the current line of entered information and reprompts
the user for a new record of input.

4-6

4-11. USING THE TEXT EDITOR - ENTERING COMMANDS

4-12. When the Editor prompts for a command (», the user may
enter commands via the console. Modification of the input is al
lowed with RUBOUT, BACKSPACE, and CNTL-U functions. All commands
can be entered in lower case as well as upper case. Multiple
commands may be entered on one 1 i ne if they are separated from
each other by blanks or commas. A command line is terminated by
a carriage return. A command line may have up to 80 characters
in it, including carriage return.

EXAMPLE >I(CR)
- insert mode command

>B I(CR)
- backup and insert

>b i(CR)
- backup and insert

>L10(CR)
- go to line number 10.

>L 10,I(CR)
- go to line 10 and insert.

Several commands allow an operand n to be entered with the com
mand. The operand may be a decimal number in the range 0-9999.
It may be entered immediately following the command or separated
from the command by one or more blanks or commas.
EXAMPLE

>L 10(CR)
>L10(CR)

- go to line number 10.

4-7

Alternatively, the operand may be two decimal numbers separated
by a minus sign. In this case, the line number specified by the
fi rst number is accessed, then the operat ion is performed from
that line through and including the line specified by the second
number. If the first number is greater than the second number,
then an error prompt is printed and the command is not done.
EXAMPLE >VI0-20(CR)

- verify lines numbered 10 through 20 on
the user console.

4-13. USING THE TEXT EDITOR - FIRST STEPS

4-14. The FLP-80DOS Text Editor is executed by the following
monitor command:

$EDIT filename(CR) - where fi 1 ename is the name of the
disk file to be edited.

The Editor responds with the following message:
FLP-80DOS EDITOR V2.1

If the user does not enter the filename with the EDIT command,

then the Editor requests it:
ENTER FILE NAME TO BE EDITED>

The user then types in the name of the file to be edited. If the
file does not exist, then a new one with that name is created.
EXAMPLE: $EDIT DKl:MYFILE(CR)

EXAMPLE: $EDIT NEWFIL.SRC(CR)
- defaults to device DKO:.

EXAMPLE: $EDIT(CR)
ENTER FILE NAME TO BE EDITED>NEWFILE(CR)

4-8

The only restriction on the file name is that it cannot have ex
tension 'BIN' or extension 'TMP'. Further, files with extension
'OBJ' are reserved for object files.

If the file does not exist, then the Editor outputs the following
message:

-->NEW FILE
0001<

- Editor prompts for insert records (see "INSERT
COMMAND") •

At the end of Editing, the new file will automatically be
created. If the file does exist on disk, then editing of that
file will be done. The Editor prompts for a command:

>
- Editor prompts for a command. ·See list of com

mands.

4-15. USING THE TEXT EDITOR - BASIC COMMANDS

4-16. I - INSERT
FORMAT: >I(CR)

or
>i (CR)

This command is used to insert records following the current re
cord or to build new files.

The Editor responds with:
-->INSERT MODE

The user then enters records ending with carriage returns. After
each record which is inserted, the Editor reprompts with the next
line number. To terminate the insertions, the user enters a sin-

4-9

gle carriage return. Note that blank lines must be entered as
'space, carriage return' because a single" carriage return ter
minates the insert mode. If an unprintable character is entered,
than a warning message is printed on the console. After the user
terminates the insert mode, the Editor prompts for a new command
(>) •
EXAMPLE >I(CR) -user selects in -

sert mode.
-->INSERT MUDE -Editor prompts user.
0002<THIS IS AN INSERTED LINE (CR) -user enters record

to be inserted.
0003<lf!U

>

-user terminates in
sert mode.
-Editor prompts for
another command.

Note that modification of entered records can be done with RUB-
OUT, BACKSPACE, and CNTL-U. Inserted records are automatically
assigned sequential record numbers. Inserted records can be up
to 160 characters long, including the carriage return.

4-17. An - ADVANCE

4-18. This command is used to advance the record pointer a
specified number of records.
Format: or > An(CR)

> an(CR)

If n is zero or if n is omitted, the pOinter will be positioned
to the next record in the file. The record which is accessed is
printed on the console after this command.

4-10

EXAMPLE > A5(CR) - advance record pointer 5 records.
0015 ANY STATEMENT - the new current record of the file

is printed on the console device
by the Editor.

EXAMPLE > A(CR) - advance to next record.
0016 NEXT STATEMENT - the next record in the fi 1 e is

printed.

4-19. Bn - BACKUP
FORMAT: or > Bn(CR}

> bn(CR)

This command is used to backup the record pointer a specified
number of records.

If n is zero or if n is omitted, then the pointer is position to
the previous record in the file. The record which is accessed is
printed on the console after this command.
EXAMPLE > B3(CR) - backup record pointer 3 records.

0012 SOME STATEMENT - the new current record of the file
is printed on the console device
by the Editor.

EXAMPLE > B(CR)
0011 A STATEMENT

4-20. On - DELETE
FORMAT: or > Dn(CR}

> dn(CR}

- backup to previous record.
the previous record in the file is
printed.

Thi s command del etes the speci fi ed number of records from the
file starting with the current record.

4-11

If the the constant n is not entered or if n is equal to zero,
only the current record will be deleted.
EXAMPLE > D5(CR) - the current record and the following 4

EXAMPLE > D(CR)
records will be deleted from the file.

- only the current record will be deleted
from the file.

4-21. Ln - GO TO RECORD NUMBER n
FORMAT: or > Ln(CR)

> In(CR)

This command positions the pOinter to the record numbered n.

The constant n must be entered and it must be greater than zero.
The record which is accessed is printed on the console device.
EXAMPLE > L10(CR)

0010 LINE NUMBERED 10.

If the record number cannot be found because it is larger than
the 1 ast record number in the fi 1 e, then the poi nter wi 11 be
positioned at the last record of the file.

EXAMPLE > L2001(CR)
-->EOF
0943 LAST LINE OF FILE

4-22. Vn-VERIFY
FORMAT: or > Vn(CR)

> vn(CR)

4-12

This command prints the specified number of records on the con
sole device. The record pointer is updated to the last record
printed. If n is zero or if n is not entered, one record (the
current record) is printed on the console. Unprintable
characters are printed as dots (.) to identify them.
EXAMPLE > V2(CR)

0005 CURRENT STATEMENT
0006 NEXT STATEMENT

- two records are verified, i.e., printed on
the console device. The current record is
number 6.

4-23. TEXT EDITOR ADVANCED COMMANDS

4-24. Cn /string1/string2/- CHANGE
FORMAT: > Cn /string 1/string 2/(CR)

or > cn /string 1/string 2/(CR)
where n indicates the number of occurrences to change,
string 1 represents the characters to be changed, string2
represents the substitute or new characters, and / re
presents a delimiter character which does not appear in
either string.

This command changes the next n occurrences of character string 1
to string 2 starting with the current record. Any character
which does not appear in either string 1 or string 2 may be used
as a delimiter. All three delimiters must be identical. If n is
zero or if n is not entered, then only one occurrence of string 1
is changed. Each record which is changed will be printed on the
console device. If string 2 is not entered, then string 1 will
be deleted when it is found. The record pointer will be posi
tioned at the record of the last occurrence of the change. If n

4-13

is one or is not entered, then only the current record will be
searched for string 1. If string 1 is not present, then a ques
tion mark prompt will be printed and the record pointer will re
main at the same record:

?>
For n greater than 1, if string 1 is not found before the end of
the file, then an end-of-file warning message is printed on the
console and the pointer will be positioned at the last record in
the file.
EXM1PLE

EXAMPLE

> V(CR)
0010 THIS IS A RECORD.
> C /THIS/THAT/(CR)
0010 THAT IS A RECORD.
> C /IS/WAS/(CR)
0010 THAT WAS A RECORD.
> C /WAS A /(CR)
0010 THAT RECORD.
> C2 /T/V/(CR)
0010 VHAV RECORD.

> C2/XENON/ARGON/(CR)

--> EOF
-The string 'XENON' cannot be found by the
Editor.

4-25. En - EXCHANGE
FORMAT: > En (CR)

or > en (CR)

This command exchanges the specified number of records (starting
with the current record) with records to be inserted. It is
exactly equivalent to the command sequence:

4-14

4-26. Fn
FORMAT:

or

>Dn (CR)
>B1 (CR)
>1 (CR)

- delete n records.
- back up one record.

-->INSERT MODE - enter insert mode.

- PRINT FLAG OPTION
>FO {CR} - n=O, inhibit printing after all but
>fO {CR} the 'Vn-VERIFY' command.
>Fn {CR} - n not=O, allow printing after all

change
>fn {CR} or access commands.

The Editor normally prints on the console device any record which
is accessed or changed. Thus, the following commands print out a
record: An, Bn, Cn, Ln, Sn, Vn. In order to reduce print out
time on a slower console device (such as a teleytype), this
command can be used to inhibit print out on all of the commands
except Vn - VERIFY.

4-27. G dataset - GET RECORDS FROM DATASET
FORMAT: >G dataset (CR}

or >g dataset {CR}

The command inputs records from a dataset (which must be a disk
file) and inserts then in sequence after the current record. A
carriage return must follow the dataset specification.

EXAMPLE > G FILEX(CR}
-get records from FILEX in DKO: and insert them
after the current record in the file being
edited.

4-15

4-28. Mn - MACRO
> Ml{CR}

or> m1{CR}
> M2{CR}

or> m2{CR}

This command allows a command string to be entered into one of
two alternate command buffers (labeled 111 and 12 1). The
alternate command buffers wi 11 accept character stri ngs of 80
characters or less. The Editor responds with the following
prompt:

EXAMPLE > M1 (CR)
l>S /OlD/ D1 B1 (CR}

- The user enters into alternate command
buffer 1 the commands which:
1. Search for the 1st occurrence of

the string IOlD I , starting with the
next record.

2. delete that record.
3. backup one record.

4-29. Pn dataset - PUT N RECORDS TO DATASET
FORMAT: > Pn dataset (CR)

or > pn dataset (CR)

Thi s command outputs the speci fi ed number of records (start i ng
with the current record) to a dataset which must be a disk file.
If n is zero or n is not entered, then only the current record is
output. The records which are output are not deleted. If the
file being

4-16

output to exists, it will be erased before any records are writ
ten to it. This command may be used with the G(GET) command to
move records around in a file. A carriage return must follow the
dataset specification.

EXAMPLE
>P25 XFILE (CR)
- output the next 25 lines in the file being

edited to a new file named XFILE on DKO:
>P100-125DK1:FILE1(CR)
- output lines 100 through 125 from the file

being edited to file DK1:FILE1.

4-30. Sn /source image/ - SEARCH
FORMAT: > Sn /source image/ (CR)

or> sn /source image/ (CR)
where n is the number of the occurrence, source image re
presents any set of characters which is to be search for,
and / represents a delimiter character which does not ap
pear in the string.

This command searches the file, starting with the next record,
for the nth occurrence of the character string between the de
limiters. The pointer is then positioned at the record in which
the string is found. This command always searches forward in the
file. Any character which does not exist in the source image may
be used as delimiter. Both the starting and terminating de
l imiters must be identical. If n is zero or n is not entered,
then the fi rst occurrence of the source image wi 11 be sought.
The record in which the source image is found will be printed on
the console. If the string is not encountered before the end of
the file, then an end-of-file warning is printed on the console
device and the pointer will be positioned at the last record in
the file.

4-17

EXAMPLE > S JORDj (CR)
0023 SOME RECORD DATA

Editor searches forward for the character
stri ng lORD I, fi nds the 1 st occurrence,
and prints the record on the console.

EXAMPLE > 510 j9AHj(CR).

-->EOF
0048 LAST RECORD

4-31. T - INSERT AT TOP
FORMAT: >T(CR)

or >t(CR)

-Editor could not find the
tenth occurrence of the
st ri.ng I 9AH I.

is printed
end-of-file and
record in the
printed.

A warning
indicating

the 1 ast
file is

This command inserts records at the top of the file before the
first record. See the II - INSERT ' command for proper usage.

4-32. Wn - WRITE
FORMAT: >Wn (CR)

or >wn (CR)

This command performs the same function
except that output is directed to LUN
assigned to a line printer device via
command before the Editor is used:

$ASSIGN 5,LP:(CR)

4-33. Xn - EXECUTE
> Xl {CR}

or > xl (C R ~
> X2 (CR}

or > x2 (CR)

as the VERIFY command,
5 which is typically
the following monitor

4-18

This command executes the commands stored in the alternate
command buffer numbered 1 or 2. After an alternate command
buffer has been executed, control is returned to the Editor which
prints a prompt for a new command (». The alternate command
buffer is not destroyed during the operation. If n is equal to
zero or is not entered, then alternate command buffer 1 is
selected.
EXAMPLE > M1 (CR)

> S /OlD/ 01 B1 (CR)
> Xl (CR)
0010 FIRST OCCURRENCE OF OLD.

- 'OLD' is located and the record is deleted.
0009 lINE NUMBER 9.

Backup command prints its record.

NOTE The pseudo-macro command capability is executed by the 'M'
and 'X ' commands. The user puts his macro command string into
alternate buffer 1 or 2 and executes that macro string via the
'X ' command.

4-34. EDITING lARGE FILES

4-35. Editing of larges file is no different than editing small
files. All commands are fully functional. However, diskette
access may be required for certain operations and a delay may be
apparent before the Editor responds.

4-36. EDITOR MESSAGES

4-37. If the user enters on unrecognizable file name, a syntax
error will be indicated and the Editor will reprompt for another
file name.
EXAMPLE ENTER FILE NAME TO BE EDITED>lAST=l(CR)

4-19

*****SYNTAX ERROR
ENTER FILE NAME TO EDITED>

4-38. If the user enters an unrecognizable command, then the
Editor will print a question mark and another prompt.
EXAMPLE > R20 (CR)

?>

If the user enters the same name for a put file as the name of
the file being edited during a PUT command, the Editor will
print: -->USE DIFFERENT FILE NAME FOR PUT and it will reprompt
for a new command: ?>

4-39. All I/O errors to and from disk result in termination of
the Editor with an appropriate error message. The original file
should be backed up on another diskette before using the Editor.

4-40. The Editor prompts the user with several messages to the
console device.

--> NEW FILE
- indicates that a new file is being created

rather than editing of an old file.
--> INSERT MODE

--> TOF

- indicates that records of data are to be en-
tered rather than Editor commands.

- indicates that the top of file (beginning of
file) has been encountered.

--> END OF EDITING
- indicates that the Editor has successfully

completed. Control is then returned to the
FLP-80DOS Monitor.

--> PLEASE WAIT.
- indicates that a long disk access is taking

place.
--> END OF WINDOW. USE 'ADVANCE ' TO SEE NEXT RECORD.

- occurs only with VERIFY command. Follow the
directions.

4-20

-->IS THE OUTPUT DEVICE READY? (Y/N)
- occurs after the issue of a W command to

alert the user that the I/O device assigned
to LUN 5 must be configured to his system.

-->THERE MAY NOT BE ENOUGH SPACE IN DISK TO EDIT YOUR FILE.
DO YOU WISH TO CONTINUE? (Y/N)

- occurs only if at the start of the editing
session the free space on the diskette unit
of the input fi 1 e is not at 1 east equal to
125% of the size of the input file. It
serves as a warning against the possible
loss of that file because of a disk-full er
ror. (Error OB).

4-41. SAMPLE EDITING SESSION

4-42. The user is urged to follow the steps given here to become
acquainted with the FLP-80DOS Editor.

$EDIT NEWONE(CR)
-user selects to use FLP-80DOS Editor.

(There will be a slight delay while the Editor is read into RAM
from disk.)

0001

0002<
0003<
0004<
0005<

FLP-80DOS EDITOR V2.1

- user selects to create a new file on
unit zero), with file name IN E WON E I

tension.

--> NEW FILE
--> INSERT MODE
< TITLE ECHO PROGRAM (CR}

- Editor prompts for records to be input
sole. User begins keying in a program.

THIS PROGRAM READS A CHARACTER (CR)
FROM THE CONSOLE AND ECHOS IT.(CR)
CNTL-U RETURNS CONTROL TO THE MONITOR.(CR)

(CR)

DKO: (disk
and no ex-

via the con-

0006< INCLUDE SYSLNK (CR)
0007< LD E,O ; CONSOLE LUN (CR)
OOOS<LOP CALL RDCHR ; READ A CHARACTER (CR)
0009< CP 15H ; CHECK FOR CNTL-U (CR)
0010< JP Z,7AOOH ; IF SO, RETURN TO MONITOR(CR)
0011< CALL WRCHR ; ELSE ECHO IT (CR)
0012< JR LOOP-$ AND LOOP FOR MORE (CR)
0013< END (CR)
0014<1£!U

- user terminates insert mode operation
>B99V20(CR)

4-21

- user goes to beginning of file and verifies 20 re
cords in the file.

-->EOF
- Editor shows that end of file has been encountered.

>LS (CR)
OOOS LOP CALL RDCHR ; READ A CHARACTER

- user verifies line S and observes an error.
>C /LOP/LOOP/(CR)
OOOS LOOP CALL RDCHR ; READ A CHARACTER

- user modifies line.
>S /7AOO/(CR)
0010 JP Z,7AOOH ; IF SO, RETURN TO MONITOR

- user searches for the string 7AOO.
>C /7AOOH/REBOOT/(CR)
0010 JP,Z REBOOT; IF SO, RETURN TO MONITOR

>Q (CR)
- user changes the record.

- user terminates editing session. The new file will
now be on disk unit 0 (DKO) with file name NEWONE.

4-22

TABLE 4-1. SUMMARY OF FLP-80 EDITOR COMMANDS

CONSOLE INTERACTION COMMAND PROMPT
INSERT PROMPT

>
< BACKSPACE

CNTL-U

Delete the previous
character.

- Delete the current line. MESSAGE IDENTIFIER -->

COMMAND DESCRIPTION

An
Bn

Advance n records.
Backup n records.

Cn /string1/string2/ Change n occurrences of string 1 to string
2

Dn

En
Fn

Delete n records, starting with current
record.
Exchange n records with inserted records.
Flag print option: 0 = no print, not 0 =
print.

G dataset Get records from dataset and insert them
after current record.

I
Ln
Mn

Pn
Q

Sn
T

Vn
Wn

Xn

dataset

/string/

Insert records after current record.
Line: Access record number n.
Macro: Place command string into alternate
command buffer 1 or 2.
Put n records out to dataset.
Quit: Save the file on disk and terminate
the editor.
Search for nth occurrence of the string.
Top: Insert at top of file before the
first record.
Verify n records on the console device.
Write n records with record numbers to LUN
5
Execute alternate command buffer n (lor
2) •

In all commands, except Fn and Ln, if n is zero or if n
is not entered, it is assumed to equal one (I). The
operand n may be entered as n1 n2 which performs
the operation on lines n1 through n2.

5 -1

SECTION 5

FLP-80DOS ASSEMBLER (ASM)

5-1. INTRODUCTION

5-2. The Mostek FLP-80DOS Assembler is provided on flexible dis

kette. In conjunction with the resident Text Editor and the

Linker it provides the means for editing, assembling, and linking

Z 80 pro gram s • The Ass em b 1 err e ads Z 80s 0 u r c e m n em 0 n i c san d

pseudo-ops and outputs an assembly listing and object code. The

object code is in industry standard hexadecimal format modified

for relocatable, linkable assemblies.

5-3. The Assembler recognizes all standard Z80 source mnemonics.

Its u P po r t s con d i t ion a 1 ass em b 1 i e s , g lob a 1 s ym b 0 1 s, r e 1 0 cat a b 1 e

pro g ram s , and apr i n ted s ym b 0 1 and c r 0 s s ref ere n c eta b 1 e. The

Assembler can assemble any length program, limited only by the

symbol table size (which is based on available RAM) and available

disk space. In a 16K RAM system, the Assembler supports a symbol

table size of about 150 symbols. In a 32K RAM system, the size

is over 700 symbols.

5-4. Figure 5-2 shows the Assembler with typical device usage.

The source module is read from a disk file, the object output is

directed to a disk file, and the assembly listing is directed to

a line printer. User interaction is via the console device.

Note that the Assembler can interact with any dataset.

5-5. DEFINITIONS

1. SOURCE MODULE - the user's source program. Each source

module is assembled into one object module by the As

sembler. The end of a source module is defined by an EOT

5-2

character (04H) on input or an IENDI pseudo-ope

2. OBJECT MODULE - the object output of the Assembler for one

source module. The object module contains linking informa

tion, address and relocating information, machine code, and

checksum information for use by the MOSTEK Linker. The ob

ject module is in ASCII. A complete definition of the

MOSTEK object format is in Appendix B. The object module

is typically output to a disk file with extension IOBJ I •

3 • LOA D MO D U LEt he bin a r y mac h i n e cod e 0 f 0 n e com p 1 e t e

program. The load module is defined in RAM as an ex

ecutable program or on disk as a binary file (extension

IBIN I). It is created by the MOSTEK Linker from one or

more object modul es (extension IOBJ I).

4. LOCAL SYMBOL - a symbol in a source module which appears in

the label field of a source statement.

5. INTERNAL SYMBOL - a symbol in a source (and object) module

which is to be made known to all other modules which are

loaded with it by the Linker. An internal symbol is also

called global, defined, public, or common. Internal sym

bols are defined by the GLOBAL pseudo-oPe An internal sym

bol must appear in the label field of the same source mod

ule. Internal symbols are assumed to be addresses, not

constants, and they will be relocated by the Linker.

6. EXTERNAL SYMBOL - a symbol which is used in a source module

but which does not appear in the label field of a state

ment. External symbol s are defi ned by the GLOBAL pseudo

OPe External symbols may not appear in an expression which

uses operators. An external symboJ is a reference to a

symbol that exi sts and is defi ned as internal in another

program module.

7. GLOBAL DEFINITION - both internal and external symbol s are

defined as IIGLOBAL II in a source module. The Assembler de-

termines which are internal and which are external.

8. POSITION INDEPENDENT - a program which can be pl aced any-

where in memory. It does not require relocating informa-

5-3

tion in the object module.

9. ABSOLUTE - a program which has no relocation information in

the object module. An absolute program which is not posi

t ion independent can be loaded only in one pl ace in memory

in order to work properly.

10. RELOCATABLE - a program which has extra information in the

object module which allows the Linker to place the program

anywhere in memory.

11. LINKABLE - a program which has extra

ject module which defines internal

information in the ob

and external symbols.

The Lin k e r use s the i n for rna t ion t 0 con n e c t , res 0 1 ve 0 r

link, external references to internal symbols.

5-9. ASSEMBLY LANGUAGE SYNTAX

5-10. An assembly language program (source module) consists of

labels, opcodes, pseudo-ops, operands, and comments in a sequence

which defines the user's program. The assembly language con

ventions are described below.

5-11. DELIMITERS. L abe 1 s, opc odes, opera nds, and p se udo- op s

must be separated from each other by one of more commas, spaces,

or tab characters (ASCII 09H). The label may be separated from

the opcode by a colon, only, if desi red.

5-12. LABELS. A 1 abel is composed of one or more characters.

If more than 6 characters are used for the label, only the first

6 are recognized by the Assembler. The characters in the label

cannot include I () * + , - 1 = • / : / < > or space. In ad-

dition, the first character cannot be a number (0-9). Table 5-1

summarizes the allowed characters in a label or symbol. A label
can start in any column if immediately followed by a colon (:).

It does not require a colon if started in column one.

5-4

FIGURE 5-1. ASSEMBLER MEMORY MAP

./
",-

FLEXIBLE
DISK

HANDLER

800 H
I /0 BUFFERS

FOR loes

L
~~

ASSEMBLER
,~ SYMBOL

TABLE

~2200H -

FLP - 80 DOS

ASSEMBLER

300H -

ASSEMBLER
VARIABLES AND

STACK

0-

o.
FLEXIBLE
DISK
FILE

FIGURE 5-2. LOGICAL UNIT NUMBER STRUCTURE

LUN 0

SOURCE
INPUT

1,,111111 'Iiil

CONSOLE
INTERACTION

FLP-80 DOS

ASSEMBLER

o

LUN FFH
OBJECT
OUTPUT

o

LUN I

SOURCE
OUTPUT

FLEXIBLE

DISK

FILE

ASSEMBLY
LISTING

5-5

5-6

EXAMPLE allowed

LAB

L923

$25

ACCOUNT PAYABLE

A25E:

not allowed

9LAB ;STARTS WI TH A NUMBER

L)AB ;ILLEGAL CHARACTER IN LABE L

L:ABC ;ILLEGAL CHARACTER IN LABEL

5 -13. OPCODES. There are 74 generic opcodes (such as ILDI), 25

operand key words (such as IAI), and 693 legitimate combinations

of opcodes and operands in the Z80 instruction set. The full set

of these opcodes is documented in the "Z80 CPU TECHNICAL MANUAL"

and listed in Appendix A of this manual. The FLP-80DOS Assembler

allows one other opcode which is not explicitly shown in the Z80

CPU Technical Manual:

IN F,(C) ;SET THE CONDITION BITS ACCORDING

;TO THE CONTENTS OF THE PORT DEFINED BY THE

C-REGISTER

5-14. PSEUDO-OPS. Pseudo-ops are used to define assembly time

parameters. Pseudo-ops appear like ZSO op-codes in the source

modul e. Several pseudo-ops requi re a 1 abel. The follow; ng

pseudo-ops are recognized by the Assembler:

1. ORG nn -orgin - sets the program counter to

the value of the expression nne Each

origin statement in a program must be

greater than the fi rst origi n of the

program to assure proper program link-

2. label EQU nn

3. label DEFL nn

4. DEFM laa l

5. DEFB n,n,n •••

5-7

ing. (See Section 6).
-equate - sets the value of a label to
nn in the program, where nn is an ex
pre s s ion; can 0 c cur 0 n 1 yon c e for any

1 a be 1 •

-defi ne 1 abel sets the val ue of a

label to nn in the program, where nn is
an expression. This may be repeated in
the program with different values for
the same label. At any point in the
program, the 1 abel assumes the 1 ast
previously defined value.

-define message - defines the contents
of successive bytes of memory to be the

ASCII equivalent code of characters
within quotes. Maximum length of the
message is 63 characters. The de
limiting quote characters are required.

A quote character may be placed in a
message by a sequence of two quotes (I

1) •

-define byte - defines the contents of
bytes located at the current program
counter address to be n, where n is any

expression.
6. DEFW nn,nn,nn, ••• -define word - defines the contents of

two-byte words to be the val ue of any
expression nne The least significant

byte is located at the current program
counter address. The most significant

byte is located at the program counter
address plus one.

5-8

7. DEFS nn

8. END nn

9. GLOBAL symbol

10. NAME symbol

-define storage - reserves nn bytes of

memory starting at the current program

counter, where nn is an expression.

When loaded, these bytes are not over

written, i.e., they will contain what

was previously in memory. This

pseudo-op cannot be used at the end of

a program to reserve storage.

-end statement - defines the last line

of the program. The 'END' statement is

not required. The expression nn is op

tional and represents the transfer ad

dress (starting execution address) of

the program. The transfer address de

faults to the first address of the

pro gram. Not e t hat for bin a ry f i 1 e s

the transfer address must be the same

as the starting address of the program.

-define global symbol any symbol

which is to be made known among several

separately assembled modules must ap

pear in this type of statement. The

Assembler determines if the symbol is

internal (defined as a label in the

program), or external (used in the

program but not defined as a label).

-module name -This pseudo-op defines

the name of the program (source and ob

j e c t) • The n a me i s p 1 ace din the he a d -

i n g 0 f the ass em b 1 y 1 i s tin g and i s

pl aced in the fi rst record of the ob

ject module to identify it. This

pseudo-op is designed primarily to

5-9

TABLE 5-1. ALLOWED CHARACTERS

0 1 2 3 4 5 6 7

LSD 000 001 010 011 100 101 110 111

0 0 @ p
P

0001 A Q a q

2 0010 " B R b r

3 0011 # C S c s

4 0100 $ D T d t

5 % E U e u

6 F V f v

7 0111 G W 9 1-
w

S 1000 H X h x

9 1001 Y Y

A 1010 J Z 1

B 1011 K (k

C 1100 L \

D 1101 M) m

E 1110 N " n

F 1111 ? 0 0

NOT ALLOWED

~ ~ ADDITIONAL CHARACTERS NOT ALLOWED AS FIRST CHARACTER

5-10

11. PSECT op

12. IF nn

13. ENDIF

14.
15.

16.

COND nn
ENDC
INCLUDE

facilitate future compiler design. The
name of the module defaults to 6
blanks.
-program section - This pseudo-op may
appear only once at the start of a
source module. It defines the program
module attributes for the following
operands:

REL - relocatable program (defaults).
ABS - absolute program. No relocating

i nformat i on is generated in the
object module by the Assembler.
The module will be loaded where
it is origined.

-conditional assembly - If the expres
sion nn is true (non-zero), the IF
pseudo-op is ignored. I f the expres
sion is false (zero), the assembly of
subsequent statements is disabled.
'IF' pseudo-ops cannot be nested.
-end of conditional assembly
re-enables assembly of subsequent
statements.
-same function as IF pseudo-ope
-same function as ENDIF pseudo-ope

dataset-include source from another dataset -
allows source statements from another
dataset to be included within the body
of the given program. The file i s
searched for first on DKO: , then on
DKl:. If the dataset cannot be opened
properly, then assembly is aborted.

LIST

NLIST
EJECT

5-11

The source module must not end with an
IENDI pseudo-op (otherwise, assembly

would be terminated). The source mod

ule must end with an EOT character
(04), which is true for all FLP-80DOS
ASCII datasets. The INCLUDE pseudo-op
cannot be nested, but it can be

chained. The means that an incl uded
dataset can have an INCLUDE pseudo-op

at the end of it. At the end of the
last included dataset, assembly con

tinues in the original module.
Note: The INCLUDE pseudo-op cannot be

followed by a comment on the same line.
- turn listing on.

- turn listing off.
- eject a page of listing.

TITLE S - print title lSI at top of each page of listing.
lSI may be up to 32 characters long.

5-15. OPERAND. There may be zero, one, or more operands in a

statement depending on the opcode or pseudo-op used. Operands in
the Assembler may take the following forms:

5-16. GENERIC OPERAND. Such as the letter IAI, which stands for

the Accumulator. Table 5-2 summarizes these operands and their

meanings.

5-17.

OFFFFH.
1.

Constant. The constant must be in the range 0 through

It can be in the following forms:
Decimal -this is the default mode of the As

sembler. Any number may be denoted as

decimal by following it with the letter
10 1• E.g., 35, 2490.

5-12

2. Hexadecimal -must begin with a number (0-9) and end
with the letter I HI. E. g. , OAF1H.

3. Octal -must end with the letter IQ I or 10 1 •

E. 9 • , 3 77Q, 2770.
4. Binary -must end with the letter I B I • E • g • ,

0110111B.
5. ASCII -letters enclosed i n quote marks will be

converted to their ASCII equivalent
value. E • g. , I A I = 41H'

5-18. A LABEL which appears elsewhere in the program. Note that
labels cannot be defined by labels which have not yet appeared in
the user program (this is an inherent limitation of a two-pass
assembler).

not allowed
L EQU H
H EQU I

I EQU 7
allowed
I EQU 7
H EQU I
L EQU H

A

B

C

D

E

F

H

L

AF
AF'
BC
DE
HL

SP
$

I

R

I X

IV

NZ
Z

NC
C

PO
PE
P

M

TABLE 5-2. GENERIC OPERANDS

A register (accumul ator)
B register
C register
D register
E register
F register
H register
L register

AF register pair
AF'register pair
BC register pair
DE register pair
HL register pair

SP Stack Pointer register
Pro gram Co un t e r

I register (interrupt vector MS byte)
Refresh register

IX index register
IV index register

Not zero
Zero
Not Carry
Carry
Parity odd/not overflow
Parity even/overflow
Sign positive
Sign negative

5-13

5-14

5-19. AN EXPRESSION-the MOSTEK FLP-8000S Assembler accepts a

wide range of expressions in the operand field of a statement.

All expressions are evaluated left to right constrained by the

hierarchies shown in Table 5-3. Parentheses may be used to

ensure correct expression evaluation. Table 5-3 shows the

allowed operators and their hierarchies. The symbol 1$1 is used

to represent the val ue of the program counter of the current

instruction. Note that enclosing an expression wholly in

parentheses indicates a memory address. The contents of the

memory address equivalent to the expression value will be used as

the operand value. Integer twols complement arithmetic is used

throughout. The negative (2 1 s complement) of an expression or

quantity may be formed by preceding it with a minus sign. The

one's complement of an expression may be formed by preceding it

with the I .NOT. I operator.

In doing relative addressing, the current value of the program

counter must be subtracted from the label if a branch is to be

made to that label address.

EXAMPLE:

JR LOOP-$

••• will jump relative to 'LOOP'.

The allowed range of an expression depends on the context of its

use. An error message will be generated if this range is ex

ceeded during its evaluation. In general, the limits on the

range of an expresson are 0 through OFFFFH. The limits on the

range of a relative jump ('JR' or 'OJNZ') are -126 bytes and +129

bytes. The Assembler monitors the number of items in an expres-

sion. If an expression is too long, an error message will be out-

put. This limit will probably never be reached by a typical

program. For relocatable programs, the Assembler will output

relocation information in the object module for those addresses

which are to be relocated by the Linker. Expressions are de

termined to be relocatable addresses or non-relocatable constants

5-15

according to the following rules:

(constant) (operation) (constant) = (constant)
(constant) (operation) (relocatable) = (relocatable)
(relocatable) (operation) (constant) = (relocatable)
(relocatable) (operation) (relocatable) = (constant)

EXAMPLE ;CONSTANT DEFINITION I EQU 1
DEFW I
LAB EQU $

;CONSTANT WHICH WILL NOT BE RELOCATED
;RELOCATABLE DEFINITION

JP LAB
JR LAB-$
JR +5+(1)

;RELOCATABLE OPERAND
;CONSTANT OPERAND
;CONSTANT OPERAND

For a further discussion of relocatable values, see paragraph
5-27.

5-20. COMMENTS. A comment is defi ned as any characters fo 1-
lowing a semicolon in a line. A semicolon which appears in
quotes in an operand is treated as an expression rather than a
comment starter. Comments are ignored by the Assembler, but they
are printed in the assembly listing. Comments can begin in any
column. Note also that the Assembler ignores any statements
which have an asterisk (*) in column one.

5-16

TABLE 5-3. ALLOWED OPERATORS AND HIERARCHIES
IN FLP-80DOS ASSEMBLER

.RES. o
-reset overflow. Anytime the .RES. operator is found,
the overflow indicator will be unconditionally reset
after the expression is evaluated. This can be used
to prevent overflow errors in certain arithmetic ex
pressions.

Unary plus
Unary minus
Logical NOT
Multipl ication
Division
Addition
Subtraction
Log i cal AN D

Logical OR
Logical XOR
Logical shift right
Logical shift left
Shift right 8

(+)

(-) (2's complement)
(.NOT.) (l's complement)
(*)

(j)
(+)

(-)

(• AN 0 •)

(.OR.)
(.XOR.)
(.SHR.)
(.SHL.)
(.)

1

1

1

2

2

3

3

4

4

4

4

4

4

The shift operators (.SHR. and SHL.) shift their first argument
right or left by the number of bit positions given in their
second argument. Zeros are shifted into the high-order or low
order bits respectively. The dot operator (.) may be placed at
the end of an expression. Its effect is to shift a 16 bit value
right by 8 bits so the most significant byte can be accessed.
Zeros are shifted into the higher order bits.

5 -1 7

5-21. OBJECT OUTPUT

5-22. The object module of the Assembler can be loaded by an
Intel hexadecimal loader for non-linkable programs. Extra
information is inserted into the object module for linkable and
re1ocatab1e programs for using the MOSTEK Linker. For a complete
discussion of the object format, see Appendix B.

5-23. ASSEMBLY LISTING OUTPUT

5-24. The user must insert tabs in the source to obtain columns
in the assembly listing. The value of each equated symbol will
be p r i n ted wit hap 0 i n t e r (» n ext t 0 it. A ny add res s w h i chi s
re1ocatab1e wi 11 be identified with a quote (.) character. The
statement number and page number are printed in decimal. Listing
control pseudo-ops do not appear in the listing but they are
assigned statement numbers. If the listing option is not
selected, errors will be output to the console device.

5-25. ABSOLUTE MODULE RULES

5-26. The pseudo-op 'PSECT ABS' defines a module to be absolute.
The program will be loaded in the exact addresses at which it is
assembled. This is useful for constants, a common block of
global symbols, or a software driver whose position must be
known. This method can also be used to define a list of global
constants.
EXAMPLE PSECT

GLOBAL
AA EQU

ABS

AA
o

GLOBAL AB

;ABSOLUTE ASSEMBLY

5-18

AB EQU OE3H
GLOBAL AC

AC EQU 25H
GLOBAL AD

AD EQU OAF3H
END

All symbols in the above module will assume constant values which
may be used by any other program.

5-27. RELOCATABLE MODULE RULES

5-28. The following rules apply to re1ocatab1e programs.
1. Programs default to re1ocatab1e if the 'PSECT ABS'

pseudo-op is not used or if 'PSECT REL' is specified.
2. Only those values which are 16-bit address values will

be relocated. 16-bit constants will not be relocated
(internal symbols are exceptions).

EXAMPLE AA EQU OA13H ;ABSOLUTE VALUE
LD A, (AA) ;AA NOT RELOCATED

AR EQU $;RELOCATABLE VALUE
LD A, (AR) ;AR WILL BE RELOCATED UPON

LOADING

5-29. Re1ocatab1e quantities may not be used as 8-bit operands.
This restriction exists because only 16-bit operands are re
located by the Linker.
EXAMPLE LAB EQU $;RELOCATABLE DEFINITION

DEFB LAB ;NOT ALLOWED
LD A,LAB ;NOT ALLOWED
LD A,(LAB) ;ALLOWED
LD HL,LAB ;ALLOWED

5-19

5-30. Label s equated to 1 abel s wh i ch are constants wi 11 be
treated as constants. Labels equated to labels which are
relocatable values wi 11 relocated. Internal symbols are
exceptions.
EXAMPLE B8 EQU 20H ;ABSOLUTE VALUE

C8 EQU B8 ;ABSOLUTE VALUE
LD A, (C8) ;C8 WILL NOT BE RELOCATED

AR EQU $;RELOCATABLE VALUE
BR EQU AR ;RELOCATABLE VALUE

LD A,(BR) ;BR WILL BE RELOCATED

5-31. Internal symbols will always be marked relocatable. This
point is important because an internal symbol will be relocated
even though it looks like a constant. This point is discussed
further, below.

5-32. External symbols will always be marked relocatable,
except for the first usage in the program.

5-33. GLOBAL SYMBOL HANDLING

5-34. A global symbol is a symbol which is known by more than
one module. A global symbol has its value defined in one module.
It can be used by that module and any other module. A global
symbol is defined as such by the GLOBAL pseudo-op. For example:

GLOBAL SYM1
SYM1 is a symbol which is defined as "global".

An internal symbol is one which is defined as global and also
appears in the label field of a statement in the same program.

5-20

EXAMPLE GLOBAL SYMI

EXAMPLE

CALL SYMI

•

END

SYMI

GLOBAL

EQU

-SYMI is an external symbol

SYMI

$

LD A,(SYMl)

END

-SYMI is an internal symbol. Its value is

the address of the LD instruction.

If these two programs were linked by the MOSTEK Linker, all

global symbol references would be IIresolvedli. This means that

each address in which an external symbol was used would be mod

ified to the value of the corresponding internal symbol. The

loaded programs would be equivalent (using our example) to one

program written as follows.

EXAMPLE CALL SYMI

•

SYMI EQU $

5-21

LD A,(SYMl)

END

5-35. Global symbols are used to allow large programs to be
broken up into smaller modules. The smaller modules are used to
ease programming, facilitate changes or allow programming by dif
ferent members of the same team. The Assembler has several rules
which apply to global symbols. The examples in the following
paragraphs should be studied carefully.

5-36. GLOBAL SYMBOL BASIC RULES. Both passes of the Assembler
must be done in their entirety if global symbols are used. This
restriction exists because symbols are defined as global during
pass 1, and an external reference link list is built up during
pass 2.

1. Global symbols follow the same syntax rules as labels.
They may not start with a number (0-9) or a restricted
character. They may not contain restricted characters.

EXAMPLE allowed
GLOBAL SYMI
GLOBAL A&&
GLOBAL $BB

not allowed
GLOBAL lAB
GLOBAL A=B

;STARTS WITH A NUMBER
;CONTAINS A RESTRICTED CHARACTER

2. An external symbol may not appear in an expression.
EXAMPLE GLOBAL SYMI ;EXTERNAL SYMBOL

CALL SYMI ;OK

5-22

LD HL, (SYMl) ;OK
LD HL,SYMl+25H ;NOT ALLOWED
JP SYMl+2 ;NOT ALLOWED

3. An external symbol is always considered to be a 16-bit
address. Therefore, an external symbol may not appear .
in an instruction requiring an 8-bit operand. It may
not be used for a displacement or an 8-bit constant.

EXAMPLE GLOBAL SYMI ;EXTERNAL SYMBOL
CALL SYMI ;OK
LD A,(SYMl) ;OK
LD A,SYMI ;NOT ALLOWED
LD (IX+SYMl),A ;NOT ALLOWED
BIT SYMl,A ;NOT ALLOWED

4. In relocatable assembly, a global symbol is always con
sidered to be a relocatable 16-bit address. This ap
plies to both internal and external symbols. It does
not apply to absolute assemblies (PSECT ABS).

5. By definition, an external symbol cannot also be an
internal symbol.

6 • For a set 0 f ·m 0 d u 1 est 0 bel ink ed, nod up 1 i cat ion 0 f
internal symbol names is allowed. That is, an internal
symbol can be defined only once in a set of modules to
be linked together.

5-37. GLOBAL SYMBOL ADVANCED RULES.
1. An external symbol cannot appear in the operand field

of a 'EQU' or 'DEFL' pseudo-oPe Thus, an external sym
b 0 1 m u s t bee x p 1 i cit 1 y d e fi ned a s g lob a 1 •

EXAMPLE GLOBAL SYMI ;EXTERNAL SYMBOL
SYM2 EQU SYMI ;NOT ALLOWED
SYM3 DEFL SYMI ;NOT ALLOWED

5-23

2. All references to an external symbol are marked re
locatable 5 except the first reference in a program.
The object code for these references is actually a
backward link list 5 terminating in the constant
OFFFFH. (See definition of object format in Appendix
B) (This rule does not apply to absolute assemblies).

3. An internal symbol is always marked relocatable 5 except
for absolute assemblies. This point is important 5 be
cause an internal symbol will be relocated even though
it looks like a constant.

EXAMPLE

YY

PSECT
GLOBAL
EQU
LD

REL
YY
OAF3H
A5(YY)

;RELOCATABLE MODULE
;INTERNAL SYMBOL
;YY WILL ALWAYS BE MARKED RELOCATABLE
;YY WILL BE RELOCATED WHEN LOADED.

;THE ABOVE INSTRUCTION LOADS THE CONTENTS OF THE ADDRESS YY 5
;RELOCATED 5 INTO THE A-REGISTER.

EXAMPLE PSECT ABS ;ABSOLUTE ASSEMBLY
GLOBAL YY ;INTERNAL SYMBOL

YY EQU OAF3H ;YY IS AN ABSOLUTE VALUE
LD A5 (YY) ;THIS LOADS THE CONTENTS OF ADDRESS

;OAF3H INTO THE A-REGISTER
4. All other rules that apply to local symbols also apply

to internal symbols.

5-38. USE OF THE "NAME" PSEUDO-OPe

5-39. The NAME pseudo-op can be used to identify both a source
module and an object module. The name of the module being as
sembled can be assigned by the NAME pseudo-ope The name is
placed in the heading of the assembly listing. The name is also
placed in the first record of he object module. The first record
is the module definition record (record type 05)5 and it is de
scribed in Appendix B. The name of a module follows the same
rules as a local symbol.

5-24

5-40. USING THE ASSEMBLER

5-41. The FLP-80DOS Assembler is resident on the FLP-80DOS
s y stem fl ex i b 1 e dis k e t t e • The use r fir s t pre par e s his sou r c e
modules using the FLP-80DOS Editor. Then the source file may be
assembled. The command to invoke the Assembler is:

$ASM dataset 1 [TO datasetL [,datasetO]](CR)
where
dataset 1 = source input dataset.
dataset L = assembly listing output dataset (optional).
dataset 0 = object output dataset (optional).

The Assembler can interact with any dataset. Datasetl must be a
disk file. DatasetL and a datasetO are optional in the command.
DatasetL defaults to the same unit and filename as datasetl with
an extension of 'LST'; datasetO defaults to the same unit and
filename as datasetl with an extension of 'OBJ I. DatasetL and
datasetO can be specified in the command. If datasetO is a disk
file, it must have an extension of 'OBJ ' or a blank extension
w h i c h de f au 1 t s to lOB J I • D a t a set 1 and d a t as e t L may not h a vet h e
following extensions: OBJ, BIN, or CRS. The Assembler then
outputs the following message to the console output device:

MOSTEK FLP-80DOS ASSEMBLER V2.1. OPTIONS?

Options are described in paragraph 5-67. If no options are to be
entered, the use enters "carriage return". The Assembler then
reads the source module for pass 1. During pass 1, the symbol
table and external references are defined. The name of the
module is defined, and the external symbol link list is built.
At the end of readi ng, the source dataset is rewound, and the
following message is printed on the console device:

PASS 1 DONE
The Assembler proceeds into pass 2 automatically. During pass 2,

5-25

the assembly listing and object module are output. At the end of
pass 2, the following message is output on the console output de
vice:

ERRORS = nnnn

where nnnn is the total number of errors (in decimal) which were
found by the Assembler. Control is then returned to the
FLP-80DOS Monitor.

5-42. ASSEMBLER OPTIONS

5-43. The Assembler allows the user to select the following op
tions from the console. When the Assembler outputs the message:

MOSTEK FLP-80DOS ASSEMBLER V2.1. OPTIONS?
The user may enter any of the following codes. A carriage return
terminates the options. Normal editing of a line is allowed.

C-Cross Reference Listing. This option prints a symbol
cross reference table at the end of the assembly listing.

K-No listing. This suppresses the assembly listing output.
All errors will be output to the console device.

L-Listing (default). The assembly listing is normally out
put.

N-No object output. This suppresses object output from the
Assembler.

O-Object output (defaul t). The object output is normally
output.

P-Pass 2 only. This selects and runs only pass 2 of the
Assembler.

Q-Quit. This returns control to the FLP-80DOS Monitor.
R-Reset the symbol table. This option clears the symbol

table of all previous symbol references. This operation
is automatically done for pass 1. It is used primarily
for single pass operations (described in paragraph 5-78).

5 -26

S-Symbol table. The symbol table is normally not output by
the Assembler. This option prints a symbol table at the
end of the assembly listing.

EXAMPLE
OPTIONS? NS(CR)

- the user has selected no object output and a
printed symbol table.

5-44. ERROR MESSAGES

5-45. Any error which is found is denoted in the assembly list
ing. A message is printed immediately after the statement which
is in error. Appendix E defines all Assembler error codes and
messages.
EXAMPLE

H2: LC A,B
*****ERROR 41 INVALID OPCODE

Several errors abort the Assembler when they are encountered.
These are noted in Appendix E. Abort error messages are output
only to the console output device. Control is immediately re
turned to the FLP-80DOS Monitor. Abort errors may occur during
pass 1 or pass 2.

5-46. ADVANCED OPERATIONS

5-47. PASS 2 ONLY OPERATION (SINGLE PASS OPERATION). The
FLP-80DOS Assembler can be used as a single pass assembler under
the following restrictions:

1. No GLOBAL symbols are defined.
2. No forward symbol references occur.
3. The NAME pseudo-op is not in the source.

The Assembler will correctly assemble Z80 programs under the

5-27

above restrictions during pass 2. This is useful for assembling
data tables and certain types of programs. The Assembler symbol
table should be initialized to assure proper operation in this
mode. This may be done by using the 'R' option to reset the sym
bol table prior to assembling using pass 2 only as follows:

$ASM MYFILE(CR)
MOSTEK FLP-80 ASSEMBLER V2.1. Options? PR(CR)

-user selects pass 2 only operation and resets the
symbol table prior to assembly.

The symbol table initialization described above only has to be
done after power up and after symbols are left in the table from
a previous assembly.

5-49. ASSEMBLING SEVERAL SOURCE MODULES TOGETHER. Several
source modules may be assembled together to form one object mod
ule. The 'INCLUDE ' pseudo-op may be used several times in one
module to properly sequence a set of source modules.
EXAMPLE

NAME
INCLUDE
INCLUDE
INCLUDE
END

MYFILE
FILEI
FILE2
FILE3

;name of final object module

-the object module named 'MYFILE ' will be built by
the assembly of FILEI + FILE2 + FILE3.

5-50. SAMPLE ASSEMBLY SESSION

5-28

5-51. Assume that the file to be assembled is named PROG1. The
diskette on which PROGI exists is in disk unit 1 (DK1).- The
object output of the Assembler is to be directed to file
PROG1.0BJ on disk unit 1. The assembly listing is to be
directed to a line printer (LP:). A printed symbol table is to
be obtained. The following sequence will perform the assembly:
EXAMPLE

$ASM DK1:PROG1 TO LP: (CR)
MOSTEK FLP-80 ASSEMBLER V2.1. OPTIONS? S(CR}

-user selects a printed symbol table.

ERROR = 0000

$

- indication of zero assembly errors

-indication that assembly is done, and control is
returned to the Monitor.

6-1

SECTION 6

LINKER

6-1. INTRODUCTION

6-2. The Linker program provides the capabil ity for linking
object f i 1 e s together and creating a binary (EXT=BIN) or RMl
image file. The Linker concatenates modules together and
resolves global symbol references which provide communication

between modules. A starting link address may be entered to
position a linked module anywhere in the memory map. The Monitor

GET or Implied Run command can be used to load binary files
allowing fast access of linked modules.

6-3. LINKER COMMAND

6-4. SYNTAX: LINK Dataset 1, ••••• Dataset N TO Dataset B

[,Dataset C](CR)

6-5. The input datasets (Dataset 1 •••• Dataset N) are object
files produced by either the Assembler or the Monitor DUMP

command. The object files must be on a supported disk unit (e.g.
DKO or DK1). In the Linker command the object input datasets
must have an extension of OBJ or blank. If a blank extension is
entered the Linker will assume an extension of OBJ. Dataset B is

the binary output file which is created by the linker.
Specification of Dataset B by the user is optional. If Dataset B

is not specified it automatically defaults to a file having an
extension of BIN and a filename of Dataset 1 which is the first

input dataset. If Dataset B is specified it must be on a
supported disk unit (e.g. DKO, DK1) and must have an extension of

BIN or blank. If a blank extension is entered, the Linker will
assume an extension of BIN. Dataset C is the output file for

6 -2

the global cross reference table and symbol table when the C and
S options are specified (See Paragraph 6-9 and 6-11). Dataset C
can be any supported output device (e.g. LP: ,TT:). Specifica
tion of Dataset C is optional. If Dataset C is not specified it
automatically defaults to a file having the extension of CRS and
the filename of Dataset B.

6-6. When entering the Linker command if a large number of input
datasets are specified the command line may exceed the maximum
term ina 1 1 i n e 1 eng t h (u sua 11 y 80 c h a r act e r s) • 1ft his 0 c cur s ,
the terminal output driver (TT) will automatically issue a CR and
LF to enable continuation of the command on the next line. Since
a carri age return input from the keyboard is interpreted by the
Linker to be the terminator of the command string, the user

should not enter a carriage return until the entire Linker
command has been entered. The maximum length of the Linker
command string is 160 characters, however, the library search
option (See Paragraph 6-10) may be used if the user wishes to
link additional datasets.

6-7. After a val id command is entered the Linker outputs the
following message on the console.

OPTIONS?
The user can then enter any of the supported Linker opt ions
(A,C,L,U,S). A carriage return terminates the options list.

6-8. A OPTION. The A option enables the user to enter
1 ink address. After the A option is entered the
message is output to the console.

ENTER STARTING LINK ADDRESS >

a starting
following

The user may then specify the starting link address for the first
object module. The beginning load address of the first
relocatable module is the starting link address plus the module
starting address defined by the Assembler ORG pseudo-op. If the

6-3

ORG pseudo-op is omitted or its address is 0, then the starting
1 ink address equals the beginning load address. If an object
module is absolute the A option is ignored and the module is
always loaded at its starting address as defined by the ORG

pseudo-op. The PSECT pseudo-op of the Assembler defines a module
as either relocatable or absolute. If the A option is not
specified the Linker assumes a starting link address of O. The

beginning and ending address of each module is printed on the

console by the Linker during Pass 2.

6-9. C OPTION. The C option causes the global cross reference

table (See Figure 6-1) to be generated and output to the device
specified in Dataset C. The global cross reference table contains

the symbol name, definition address and reference addresses. A
global symbol can be defined only once but can be referenced many
times. A symbol is defined by a module if it occurs in the label
field of the module and is specified by the GLOBAL pseudo-op. A
global symbol is referenced within a module when it occurs in the
operand field. When the C option is specified a load map is also
output which specifies the object input files linked and their

beginning and ending addresses.

6-10. L OPTION. The L option enables the user to perform a
library search for undefined global symbols. If any symbols are
undefined after linking the input datasets (Dataset 1 ..•• Dataset
N) during Pass 1, the Linker prints out the number of undefined
symbols. (The U option prints out a list of undefined symbols.)
If the L option has been selected the Linker prints the following

message on the console.
SEARCH DISK UNIT l/O?

The user may then initiate a library search by entering a 1 or 0
followed by a carriage return. Any other response terminates the
search and Pass 2 execution is started. If a library search has
been requested the Linker searches the disk unit specified for

6-4

an object file having the filename of the first undefined symbol.
If the file is found, it is linked into the binary output· file
and any global references which are defined are resolved. This
process is repeated for each undefined symbol in the original
list. After the search has been cqmpleted for the first list of
symbol s, the sequence can be repeated for a new 1 i st if any

symbols remain undefined. After the original list has been
searched more undefined symbols might actually exist if a file
from the previous list contains additional undefined symbols.
Each time the search is repeated either disk unit may be

searched. Disks should not be removed or inserted between
library searches. The library search option may be used to

minimize the number of input files that must be typed in the Link
command. This can be done by giving an object file the same name

as a global symbol definition within the module.

6 -11. S OPTION. The S option causes the global symbol table
(See Figure 6-1) to be generated and outputted to the device
specified in Dataset C. The global symbol table contains the
symbol name and definition address. A symbol is defined by a

module if it occurs in the label field of the module and is
specified by the GLOBAL pseudo-oPe If a global symbol is

referenced but not defined it is marked undefined (UNDEF=****).
A global symbol is referenced within a module when it occurs in
the operand field. When the S option is specified a load map is
also output which specifies the object input files linked and
their beginning and ending addresses.

6-12. U OPTION. The U option prints out a list of undefined
global symbols after the Linker has completed Pass 1.

6-13. LINKER OPERATION

6-14. During Pass 1 the Linker reads the specified object files

6-5

and places the global symbol definitions in the symbol table. In
Pass 2 the global symbols are defined and a binary or rami mage
output file is produced. As each object module is read in Pass 2
its beginning and ending address in memory is printed on the
console. The module type is also listed as either absolute or
relocatable (ABS/REL). Absolute modules are always positioned at
their starting address in memory as defined by the ORG pseudo-oPe
Relocatable modules are positioned at the next location after the
end address of the previous module. If the first input module is
relocatable, it is positioned by the starting link address (See
Para. 6-8). If the starting link address is not specified by the
A option it assumes a value of O.

6-15. LINKER RESTRICTIONS

6-16. When absolute modules are being linked together, the files
in the LINK command must appear in sequential order according to
their starting addresses in memory. If an absolute module is
encountered having a starting address lower in memory than a
previous module the following error message is printed on the
console.

****ERROR 35 MODULE SEQUENCE ERROR

The maximum size allowed for an individual object input module is
limited by the linker buffer size which is dynamically allocated
depending upon the size of the memory. On the standard system
having 32K of RAM, it is 18K bytes in length and on the minimum
system having 16K of RAM it is 4.5K bytes. There is no
restriction on the length of the binary output file.

When loading a binary file using the Monitor GET or Implied Run
commands the entire memory space is available except for 48 bytes
in scratchpad RAM starting at OFF60H. This space is reserved for
the Monitor I/O vector and cannot be overlayed during a load
sequence.

6-6

6-17. EXAMPLES OF LINK COMMAND

EXAMPLE 1. Link the relocatable object modules MAINl.0BJ,
SUB1.0BJ,SUB2.0BJ and SUB3.0BJ together starting at 2000H and
produce the binary file TEST.BIN. Also generate a symbol table,
cross reference table and load map and store them in the file
TEST.CRS. This file may be printed using the PIP copy command
(See Figure 6-1).
$LINK MAINl,SUBl,SUB2,SUB3 TO TEST(CR)

OPTIONS? A C S(CR)
ENTER STARTING LINK ADDRESS 2000
DKO:MAINI .OBJ[1]
DKO:SUBI .0BJ[1]
DKO:SUB2 .0BJ[1]
DKO:SUB3 .0BJ[1]
UNDEFINED SYMBOLS 00
PASS 2
DKO:MAINI .OBJ[1] REL BEG ADDR
DKO:SUBI .0BJ[I] REL BEG ADDR
DKO:SUB2 .0BJ[I] REL BEG ADDR
DKO:SUB3 .0BJ[1] REL BEG ADDR

$

2000 END ADDR 2033
2034 END ADDR 20DB
20DC END ADDR 20F6
20F7 END ADDR 2120

EXAMPLE 2. Link the absolute file MAIN.OBJ and the relocatable
subroutines SUB1.0BJ, SUB2.0BJ, SUB3.0BJ together producing the
binary file MAIN.BIN. Access the object files DKO:SUB1.0BJ,
DKO:SUB2.0BJ and DKl:SUB3.0BJ using the library search option.
$LINK MAIN (CR)
OPTIONS? L U (CR)
DKO:MAIN .OBJ[l]
MODNO MSGBEG MSGEND MSGMAI PRINT
SUBI SUB2 SUB3
UNDEFINED SYMBOLS 08

6-7

SEARCH DISK UNIT 1/0 ? o {CR l
DKO:SUB1 .0BJ[1]
DKO:SUB2 .0BJ[1]
MODNO SUB3
UNDEFINED SYMBOLS 02
SEARCH DISK UNIT 1/0 ? 1 (CR)
DK1:SUB3 .0BJ[1]
UNDEFINED SYMBOLS 00
PASS 2
DKO:MAIN .0BJ[1] ABS BEG ADDR 1000 END ADDR 1025
DKO:SUB1 .0BJ[1] REL BEG ADDR 1026 END ADDR 10CD
DKO:SUB2 .0BJ[1] REL BEG ADDR 10CE END ADDR 10E8
DK1:SUB3 .0BJ[1] REL BEG ADDR 10E9 END ADDR 1115

6-8

FIGURE 6-1. EXAMPLES OF LOAD MAP, GLOBAL CROSS REFERENCE,
AND GLOBAL SYMBOL TABLE

LOAD MAP

o KO : MA IN 1 .0BJ[1] REL BEG AODR 2000 END ADDR 2033
OKO:SUB1 .0BJ[1] REL BEG AODR 2034 END ADOR 200B
OKO:SUB2 .0BJ[1] REL BEG ADDR 200C END ADDR 20F6
DKO:SUB3 .OBJ[l] REL BEG ADDR 20F7 END AOOR 2120

GLOBAL CROSS REFERENCE TABLE

SYMBOL AOOR REFERENCES
CRLF 2030 211A 20F4
MAIN 2000
MODNO 2109 20E2 200F 203A 2037 2011 200E
t~SGBEG 2040 2006
MSGEND 2073 2023
MSGMAI 2098 2014
MSGMOO 2000 210F
MSGSB2 20A3 20E5
MSGSB3 20A9 2100
PRINT 20EE 2103 204A 2040 2026 2017 2009
PTEST 2046 2106 20EB
SUB1 2034 201A
SUB123 2110
SUB2 20DC 201D
SUB3 20F7 2020

GLOBAL S Y MBO L TABLE

CRLF 2030 MAIN 2000 MOONO 2109 MSGBEG 2040
MSGENO 2073 MSGMAI 2098 MSGMOO 2000 MSGSB2 20A3
MSGSB3 20A9 PRINT 20EE PTEST 2046 SUB1 2034
SUB123 2110 SUB2 200C SUB3 20F7

7-1

SECTION 7

DDT-80 DEBUG SYSTEM

7-1. INTRODUCTION

7-2. This section describes the functions and operation of
DDT-80 (Designer's Development Tool 80) resident in the FLP-80DOS
system. The DDT software provides a complete facility for
interactively debugging relative and absolute Z80 programs.
Standard commands allow displaying and modifying memory and CPU
registers, setting
Additional commands
interactively debug

breakpoints, and executing
allow use of the MOSTEK

a target system. Mnemonics

programs.
AI M-80 to

are used to
represent Z80 registers, thus simplifying the command language.

7-3. SOFTWARE COfiFIGURATION

7-4.
E OOOH
PROM,

DDT-80 is
to EFFFH)
DDT uses

a program that res ides in PROM (located from
on the SDB-80 board. In addition to the

256x8 of RAM for scratch RAM and temporary
storage. This RAM resides at locations FFOOH - FFFFH.

7-5. The 256x8 Scratchpad RAM is used by the DDT for temporary
storage and a push down stack (for return address, etc.). This
RAM also holds an image (or map) of all the user's internal CPU
regi sters. Figure 7 -1 is a deta i 1 ed memory map of the 256x8
Scratch pad RAM.

7-6. An important concept in DDT is preservation of the user's
internal CPU registers. The state of the CPU is described by the
contents of the registers. To preserve the state of the CPU for
a user's program while debugging, DDT keeps an image or map of
all the user's registers. This image or map is referred to as the

7-2

User Register Map throughout this documentation. DDT installs or
makes the CPU regi sters equa 1 to the user regi ster map when
control is transferred from DDT to a user program (as in the E
command discussed in paragraph 7-45). DDT-80 saves the user
register map when DDT is commanded (breakpoint command discussed
in paragraph 7-34) to interrupt a user program. DDT allows
modification to this register map with the display and/or update
memory command (M command, discussed in paragraph 7-57). The user
register map resides in the 256x8 Scratchpad, locations FFE6H
thru FFFFH, as shown in Figure 7-1. Figure 7-2 shows the data
paths between the user regi ster map and the CPU reg; sters. A 1 so
shown is the modification path between DDT and the User Register
Map.

7-3

FIGURE 7-1. DDT USER REGISTER MAP

MEMORY USER
LOCATION REGISTER

FFFF PC PROGRAM MSB

FFFE COUNTER LSB

FFFD A

FFFC F

FFFB I

FFFA IF

FFF9 B

FFF8 C

FFF7 D

FFF6 E

FFF5 H

FFF4 L

FFF3 A'

FFF2 F'

FFF1 B'

FFFO C'

FFEF D'

FFEE E'

FFED H'

FFEC L'

FFEB IX MSB

FFEA LSB

FFE9 IY MSB

FFE8 LSB

FFE7 SP STACK MSB

FFE6 POINTER LSB

7-4

FIGURE 7-2. DDT DATA PATHS

CPU REGISTERS

PC Restore registers,

A transfer control
A h...

GhfIII?F ... "lP'
to user' s program
(E Command)

Save registers,
intercept the

.&I

user's program

SP (B Command)

NOTE: During • W' S ·S· command,

the reqisters are
saved and reloaded
after every instruction
step.

USER

REGISTER MAP

PC
A

SP

~

Display and/or
Update

(M Command)

• 7

DDT

FFFI

FFFE

7-5

TABLE 7-1- MNEMONICS RECOGNIZED BY DDT-80

Unrecognized mnemonics are resolved with a value of zero.
MNEMONIC ADDRESS REPRESENTED DATA SAVED AT THAT ADDRESS

BY THE MNH10N I C
:PC* FFFE User's PC Register
:A FFFD User's A Register
: F FFFC User's F Register
: I FFFB User's I Register
: IF FFFA User's IFF Register
: 8 FFF9 User's B Register
: C FFF8 User's C Register
: 0 FFF7 User's 0 Register
: E FFF6 User's E Register
: H FFF5 User's H Register
: L FFF4 User's L Register
: A I FFF3 User's AI Register
: F I FFF2 User's F' Register
: B I FFFI User's 8 1 Register
: C I FFFO User's CI Register
: D I FFEF User's 0 1 Register
: E I FFEE User's E' Register
: H I FFED User's HI Register
: L I FFEC User's L' Register
: I X * FFEA User's I X Register
:IY* FFE8 User's IY Register
:SP* FFE6 User's SP Register

* = 2 byte mnemonics

7-6

7-7. COMMAND SUMMARY

Table 7-2 lists all the DDT commands for reference.

7-8. CONVENTIONS

7-9. Hexadecimal numbers are denoted by the number followed by a
subscript H. E.g., AF3H. In a command sequence user input is
underlined. (CR) means carriage return. Bracketed items [J in a
command line are optional. Items in a command line which must be
entered exactly as they appear are shown as upper case. Items in
a command line which are variables are shown as lower case.

7-7

TABLE 7-2. DDT COMMAND SUMMARY

TO INVOKE DDT:

$DDT(CR)

CONSOLE INTERACTION:

(CR)
• or cntl-U

COMMANDS:

prompt character

terminate a command
abort

B aaaa insert a breakpoint in user's program.
C aaaa,bbbb,cccc copy memory aaaa thru bbbb to cccc and

above
E aaaa execute user's program

F aaaa,bbbb,cc fill memory aaaa thru thru bbbb with data
cc.

H hexadecimal arithmetic.
L aaaa,bbbb,cccc locate all occurrences of data cccc in

memory aaaa thru bbbb.
M aaaa,bbbb

0 aaaa

p aa
Q

R a,bb

W aaaa ,bb

V aaaa,bbbb,cccc

display, update, or tabulate memory or

registers.
set offset constant
programs.
display and update port.

quit - return to Monitor.
display user registers.

for relocatable

single step starting at address aaaa for
bb steps.

verify that two blocks of memory are

identical.

7-8

7-10. PREPARATION

7-11. Create, assemble, and link your Z80 program as described

in Section 4, 5, and 6 of this manual.

7-12. You should now be ready to debug a binary file which has
your Z80 program on it. To debug the program, use the ~10nitor

GET command to load the program into RAM:
$GET file(CR)

where file is the name of the binary file created by the
LINK process.

Then execute DDT:
$ODT(CR)

The dot (.) indicates that DDT is ready to accept commands.

7-13. DESCRIPTION OF DDT COMMANDS

7-14. COMMAND FORMAT.

7-15. DDT recognizes commands which consist of three parts:
1. A single letter command.
2. An operand or operands separated by commas or blanks.
3. A terminator to either abort the command or cause it

to be executed.
EXAMPLE
.M 100,102(CR)
1. 2. 3.

7-16. In the command mode DDT prompts on the user console with a
dot (.). The user may enter any single letter command. A space
is then printed on the console. The user may then enter any re
quired operands and a terminator. Operands are separated from
each other by a space or a comma. The terminator may be a

7-9

carriage return, dot (.) or control-U. Carriage return causes

execution of the command. A dot or control-U aborts the com
mand, and the user is prompted again.

NOTE The format of entering commands in DDT differs from
FLP-80DOS Monitor commands in that DDT automatically inserts a
space after a command to separate it from the operands.

7 -17. OPERANDS

7-18. Operands are separated from each other by a space or com
ma. An operand may take anyone of the following forms.

7-19. Hexadecimal number. Leading zeros need not be entered.
The last four digits are used for the value entered for address
values. The last two digits are used for data values.

7-20. ASCII literal value. Any characters preceded by the let-
ter IILII are converted to their ASCII equivalent value.

LA(=41H), LAB(=4142H).

E • G • ,

7 -21. Relative Address. A hexadecimal number preceded by the
character IIRII causes the offset specified by the 0 command to be

added to the number. A relative address is identified by an
apostrophe next to it. E.g., (assuming offset = 100H)

RO(=100H), R4FF(=5FFH)'

7-22. The offset and relative address functions are useful when
debugging modules of a program which have been relocated by the
Linker.

7-23. Program Counter. The character 11$11 is used to represent
the current address. It is used with the M command to calculate
relative branch displacements.

7-10

7-24. Added or subtracted numbers. Hexadecimal numbers may be
added to or subtracted from each other to represent an operand.
E.g., A + A (=14H), 5A + A - 10 (=54H).

7-25. Equal Sign. An equal sign (=) may be entered at any time
to display the current value of an operand as 4 hexadecimal
digits. E.G., 5A + A -10 = 0054, LAC = 4143.

7-26. Mnemonic. A mnemonic consists of one or two characters
following a colon (:). Mnemonics are used to represent Z80 CPU
registers. Table 7-1 lists all the allowed mnemonics in DDT and
their meanings.

7-27. OPERAND EXAMPLES

4F7F

:PC

5038-5000
5038-5000=0038

5038-$

5038-$=0036

305038

305038=5038

LAB=4142

LA=2041

R100=1100

The operand value is equal to 4F7FH.
The mnemonic PC is equivalent to the
save location of the us ."s program
counter.
The operand value is 38H,
The same as above except "=" was entered
to display the operand value.
If current address = 5000H, then
$=5002H and the operand value equals
36H for relative jump instructions.
The same as above except the equal sign
was entered.
More than 4 digits entered, therefore
only the 1 ast 4 have meani ng. Operand
value = 5038H.
The same as above except the equal sign
was entered.
Operand i s equal to the ASCII value of
"AB" •
Operand i s equal (LSB) to ASCII vlue of
I A I •

Assumes offset = 1000.

7-11

7-28. COMMAND TERMINATORS

7-29. The command terminator immediately follows the operand(s)

and signals DOT that the command has been entered. Depending on

the terminator, DOT will do one of the following

Terminator

(C R)

• OR CNTL-U

f\

/

7-30. SPECIAL KEYS

Action

Carriage return.
tered command.

DDT executes the en-

Period or CNTL-U. DDT aborts the com
mand. The user is prompted for another

command.

Carat or up arrow. Thi s termi nator is

valid only for the M and P commands.

When updating a memory location (M) or a

port (P) , it signals DDT to display the
contents of t'he location or port just

updated, or if the location was not u p-
dated, the previous location.

Slash. This terminator is valid only

for the t>'1 command. This causes the data

entered to replace the old data and then

return to the command mode. If no data
was entered, it is treated as a period.

7-31. Several keys have special meaning in DDT:

period (.) memory printouts on the console (L,M, or V
commands) may be aborted by entering a

period. Single stepping (W Command) may
also be aborted this way. DDT then enters

the command mode.

7-12

Space bar

7-32. ERRORS

The space bar may be used to start and stop
single stepping (W command).

7-33. Any time erroneous input is detected, a question mark (?)

is printed and DDT returns to the command mode.

7-13

7-34. B COMMAND, BREAKPOINT COMMAND

7-35. Format:

7-36.

.~ aaaa(CR)

• B J..ill

Set breakpoint at memory address
aaaa •
Clear previous breakpoint.

Overview. When the breakpoint command is used, a "trap"
which consists of three bytes is placed into the user's program.
The original program bytes are automatically saved.

7-37. The user then uses the E (execute) command to start ex-
ecution of the program. When the trap is encountered, DDT is
signalled and execution is stopped. The registers from the CPU
are then transferred to DDT and printed out on the user console.
To resume execution of the program, the user must use the E (ex
ecute) command again or the W (single step) command.

7-38. Description. The user types the command identifier B fol
lowed by the address where it is desired to place a breakpoint
"trap". DDT proceeds to remove any pre-existing breakpoint,
extracts and saves 3 bytes of the user's program at the
breakpoint address, and places a 3 byte trap into the address.
DDT then returns to the command mode. The user may start program
execution via the E(execute) command. ~Jhen the breakpoint trap
is encountered, execution is stopped and control is transferred
back to DDT. DDT then restores the three bytes of user code at
the breakpoint address, reads all the target CPU registers and
prints them out(see R-register command).

7-39. DDT then waits for the user to enter one of the following
characters:

1. Period (.) returns DDT to the command mode.
2. Carriage return causes one program instruction to be

7-14

stepped. After the instruction is executed, the tar
get registers will be printed again and DDT will again
wait for user input.

3. Line feed has the same effect as carriage return, but
a heading to identify the registers will be printed
out.

4. Space bar starts automatically single stepping. Sin
gle stepping will continue for 256 steps or until the
space bar is pressed again. The user can thus start
and stop single stepping of his target program. (See

W-Step command).

NOTE: The contents of the registers reflect the effect of the
last instruction before the breakpoint was encountered.

7-40. One breakpoint can be set at a time before execution is
begun. A breakpoint can be reset by entering the B command with
no operands. A breakpoint at a specific address can be cleared
by executing that address.

7-41. There are certain characteristics of the DDT breakpoint
facility which the user should be aware of during debugging:

1. The trap sequence used by DDT-SO is as follows:
JP DDT Jump to DDT Breakpoint Processor

2. Since DDT replaces three bytes of the user program, a break
point should be set such that when the user program is ex
ecuted, control can only be transferred to the first byte of
the trap sequence. In addition, the breakpoint must re
ference the first byte of an instruction. For example in the
following sequence:

Ll JR NZ,L3-$

L2 LD A,O
L3 LD B,OFH

7-15

A breakpoint shoul d not be set at L2 because if the branch
condition at L1 is met, control would be transferred to the
third byte of the trap sequence.

3. No error indication is given if one attempts to set a break
point in ROM.

4. After a breakpoint has been set, it can be changed simply by
entering a new breakpoint. The act of entering a new break
point automatically clears the previous breakpoint.

5. When a breakpoint is encountered in a user program, DDT-80
saves the state of interrupts (through IFF) in the: IF re
gister. The state of interrupts is restored or set according
to the content of :IF when control is transferred to the user
program.

6. Breakpoint will not work in areas where executable code is
modified by the program.

EXAMPLE
.B 24E(CR)

-Set a breakpoint at location 24EH •
• 0 100(CR}

-Set offset •
• ~ R4F3{CR)

-Set breakpoint at relative address 4F3H (=5F3H
absolute).

7-16

7-42. C-COPY MEMORY BLOCKS COMMAND

7-43. Format •
• C aaaa,bbbb,cccc(CR) Copy locations aaaa through bbbb

inclusive to the memory block
starting at address cccc.

7-44. Description. The user enters the command identifier C
followed by the starting address aaaa and ending address bbbb of
the block to be moved, followed by the starting address cccc of
the block receiving the data. The operands may be absolute or
relative and are separated by commas or blanks. Upon terminating
with a carriage return, DDT performs the requested copy
operation, and returns to the command mode. The copy command
permits any block of memory data to be moved to any area of
memory. The move may be forward or backward and the new block
mayor may not overlap with the original memory block. Entire
programs or subroutines may be moved around in this way. Care
should be taken to copy complete instructions on both ends of the
block when copying programs, and any relative jump instructions
contained within a block to be moved should not jump outside the
block. If the second operand entered (bbbb) is smaller than the
first (aaaa), a question mark (?) is printed and control returns
to the command mode.
EXAtvlPLE •

• C 100,200,1200(CR)

• C 100,200,150(CR)

.0 lOO(CR)

• C RO,RI00,R50(CR)

Copy memory 1 ocat ions lOOH through
200H inclusive to locations 1200H
through 1300H •
Copy memory locations, 100H through
200H inclusive to locations 150H
through 250H. (overlapping copy)
Set relative offset to 100H •

This would be the same as the prev
ious example.

7-45. E-EXECUTE COMMAND

7-46. Format •

. I aaaa(CR)

• E l0U

7-17

Transfer control to the program start
ing at address aaaa •

Transfer control to the address

specified by register:PC.

7-47. Description. To cause execution of a program the user
types the identifier E followed by the desired entry address of
his program. Upon typing carriage return DDT loads the zao CPU
registers and then transfers control to the program entry point.
The contents of the register map reflect the effect of the last
instruction before the breakpoint was encountered. If no entry
address is specified after the E command, DDT will transfer con
trol to the address specified by the :PC register (program
counter).
Example •

• E 1200(CR) Execute the program starting at loca
tion 1200H.

To return control to DDT the user l s program must encounter a
breakpoint (see B-Breakpoint Command) •

• 11 :PC(CR)
:PC 62FF 1220(CR)

·I 1ill

Examine user's program counter (PC).
Set user's PC to 1220H.
Execute program start i ng at 1 ocat ion

1220H.

The execute command may be used together with the breakpoint
command to execute portions of programs while debugging.

7-18

7-48. F-FILL MEMORY COMMAND

7-49. Format:
.F aaaa,bbbb,cc(CR) Fill memory locations aaaa

through bbbb inclusive with cc.

7 - 5 a . Des c rip t ion. the use r en t e r s the c omm and ide n t i fie r F
followed by the starting address aaaa and ending address bbbb,
followed by the data cc. The operands are separted by commas or
blanks. Upon terminating with a carriage return, DDT performs
the requested fi 11 ope rat i on and then pri nts a "." to i nd i cate
that DDT is ready to accept another command.
Example

.F 100,IFF,5A 1£Rl

• 0 100(CR)
• F RO,RFF,5A(CR)

I nsert a 5A in every memory
location from 100H through

1 FFH •
Set relative offset to 100H •
Fi 11 same addresses as fi rst
example.
DDT waiting for next command.

7-19

7-51. H-HEXADECIMAL ARITHMETIC

7-52. Format •
• H +aaaa-bbbb+ ••• +yyyy=zzzz~ Perform hexadecimal

arithmetic.

7-53. Description. The user enters the command identifier and
then enters the arithmetic expression. Only + and - are legal
operations. If the sign of the first operand is omitted, it is
assumed +. The equal sign causes the 4 digit (least significant

4 digits) result to be displayed. When the terminator is entered
DDT returns to accept another

EXAMPLES •
• H 5000-4FFF=0001~
• H 5000+4FFF=9FFF~

command.

Subract 4FFFH from 5000H •

Add 4FFFH to 5000H.
The equal sign caused the 4

digit result to be printed.
DOT waiting for next command.

7-20

7-54. L-LOCATE 8-BIT DATA PATTERN COMMAND

7-55. Format •
• L aaaa,bbbb,cccc(CR) Locate and print the address of ev

ery occurrence of cccc from aaaa to
and including bbbb.

7-56. Description. The user enters the command identifier L
followed by the starting address aaaa and ending address bbbb,
followed by the data cccc to be located. Upon terminating with a
carri age return, DDT pri nts every address between aaaa and bbbb
which contains cccc. If cccc is less than 100H, then a one
byte comparison is made. If cccc is greater than or equal to
100H' then a two byte comparison is made. The data to be
located should be entered with the most significant two digits of
data first followed by the least significant two digits of data
(if location 1000H contained 13 and location 1001H contained
92, the user would enter 9213 as the data to locate).
EXAMPLE:

.L 0,750,35(CR)

0052 35

00F3 35
0542 35
0750 35
.1. 750,35FF(CR)

00F3 35
0542 35

Locate every occurrence of 35H between
address 0 and 750H.
Every location containing 35 is printed
between (and including) 0 and 750H'

Locate every occurrence of the 2 byte
value FF35H between address 0 and

750H'
Every address where 35FF is
found is printed out. The location
previous to the location printed out
contains the least significant two
digits.

7-21

7-57. M-DISPLAY AND UPDATE MEMORY OR REGISTER COMMAND

7-58. Format:

.li aaaa(CR)

7-59. Description. The user enters the command identifier M and
the operand aaaa followed by a carriage return. DDT prints the
memory address or mnemonic on the next line, followed by the con
tents of that particular address in hexadecimal. If the content
is to be changed, the new value is entered. Any number of digits
may be entered, but only the least significant two (or four)
digits are accepted.

7-60. Terminators. When the user is examining and/or modifying
a register or memory
signals the action DDT

location, the accompanying terminator
is to take. The possible operand (new

value entered) and terminator combinations are:
Te rm i nator
(CR)

1\

/

aa.

aa(CR)

aa /\

aa/

Meanings
No operand entered, display next address or
register.
No operand entered, di spl ay previ ous ad
dress or register.
No operand entered, display next address or
register.
Operand aa entered but II II . aborts command
with no change to value at address.
Operand aa entered, change value at address
to aa and step to next address.
Operand aa entered, change value at address
to aa and display same address with the new
value aa displayed.
Operand entered, change value at address to
aa then exit to command mode.

7 -2 2

7 -61. Memory display.
k! 16A(CR)
016A 3F1.£.!U..

016B 92 /\

016A 3F 34FF/\

016A FF1.£.!U..
016B 92 •

Memory locations are accessed as
Examine memory location 016AH.
It contains 3FH do not change,
next location.

Next 10catiQn contains

follows:

step to

do not
change, go back to previous locaton.
Change contents of 016A to FFH and dis
play same location. Note that only the
last 2 digits typed are stored in 016A (the
entry 34 was in error).
New contents displayed, step to next.

DDT waiting for next command.

7-62. When accessing relative memory locations, the user sets
the offset with the 110 11 command and uses the IIRII prefix with the

memory address •
. li RO(CR)
10000 1000

Assuming the offset was set to 1000:

xx. The relative address, absolute address and
data are printed out.
DDT waiting for next command.

7-63. Register display. The user may examine and change his CPU
registers. They may be initialized, for example, prior to
program execution, or after a breakpoint has been encountered in
the program to be debugged. The contents of the userls registers

may be accessed through the use of the mnemonics discussed in
paragraph 7-26.

~ :A(CR) Examine userls accumulator.

:A 18 25(CR)

:PC 0010 •

.M :PC(CR)

Change register A to 25H, examine next
location.
Userls PC Register, return to command
mode.
Examine userls PC (program counter) re
gister.

7-23

:PC 0010 Return to command mode.
DDT waiting for next command.

7-64. When resuming execution of the user's program, these new

values will be inserted into the user's Z80 CPU registers.

7-65. Relative branches. A special feature of DDT allows the
user to conveniently compute relative addresses used in relative
branch instructions. The value of the symbol 11$11 is defined as

the value of the current location and only has meaning during
display and update commands.

7-66. This example shows the entering of a jump relative

instruction at location 0H to branch to location 38H •

• M O(CR) Examine location 0H.
0000 20 18(CR) Insert First byte of jump (JR 38H-$)

o a a 1 F 8 38 - $ = a 0 3 60 Com put e a 'n d dis P 1 a y r e 1 at i ve dis -

placement for branch from 0H to

38H·
0001 36 • Branch displacement of 36 shown.

DDT waiting for next command.

7-67. It should be noted that the maximum allowed displacement
value for forward branches is 7FH and for backward is 80H.

It is simple to determine if the relative branch is within its

range by examining the most significant two digits of the com

puted displacement. For forward branches, the most significant

two digits should be OOH and for backward branches, the most

significant two digits should be FFH.

7-24

7-68. M-TABULATE MEMORY COMMAND

7-69. Format

.k! aaaa,bbbb(CR) Dis play me m 0 r y 1 0 cat ion a a a a t h r 0 ugh
bbbb.

7-70. Description. The user enters the command identifier M
followed by the starting (aaaa) and ending (bbbb) addresses of

the memory block. Upon terminating with a carriage return DDT
pri nts ali ne feed, and then pri nts the contents of aaaaH to
bbbbH inclusive with up to 16 values per line. DDT then returns
to the command mode. The tabulation may be stopped at any time
by entering 11.11 on the console. When the IRI prefix is used, the
relative address is printed before absolute.

EXAMPLE
.k! 4100,4127(CR) display memory locations through

4127H inclusive

4100 2B 90 12 20
4110 81 11 34 21

4120 90 OC A5 81

00 B7 A5 21
07 94 17 45

09 21 40 22

10 94 04 20
12 55 A5 18

CA B7 44 18
21 80 C5 55

:Q 4100(CR) set offset to 4100 •
• M RO,R27(CR)
10000 4100 2B 90 12 20
10010 4110 81 11 34 21

10020 4120 90 OC A5 81

00 B7 A5 21
07 94 17 45

09 21 40 22

10 94 04 20
12 55 A5 18

CA B7 44 18
21 80 C5 55

7-25

7-71. O-SET OFFSET CONSTANT COMMAND

7-72. Format:

.Q aaaa(CR) Set offset equal to aaaa.

7-73. Description. The user enters the command identifier a
followed by the offset aaaa. Upon terminating with a carriage

return, DDT saves the 16 bit offset. After the offset has been

set, both relative and absolute addresses are printed any time

addresses are displayed and until the offset is cleared. The

offset can be cleared by entering the 0 command with no operands.

EXAMPLE
.0 200(CR) Set offset •

• !!. RO= 0200iill Display value of offset.

DDT waiting for next command.

7-26

7-74. P-DISPLAY AND UPDATE PORTS COMMAND

7-75. Format •
. f aa(CR)

7-76. Description. the user enters the command identifier P
followed by the port address aa and a carriage return. DDT re
sponds by printing the port address and the value at that port.
If the value at that port is to be changed, the user enters the
new value. The new value entered is a 2 hexadecimal digit oper
and. When the user is examining and/or modifying a port, the
terminator signals the action DDT is to take. The possible oper
and (new value entered) and terminator combinations are:

Terminator
(CR)

aa.

aa(CR)

EXAMPLE
.P E2(CR)
E2 00 12(CR)
E3 15 •

Meaning
No operand entered, display next port.
No operand entered, display previous port.
No operand entered, return to command
mode.
Operand aa entered, but 11.11 aborts com
mand with no change to the port.
Operand aa entered, change the port value
to aa and step to di spl ay the val ue at
the next port.

User displays port E2H.
User changes value to 12H.
Return to command mode.
DDT waiting for next command.

7-27

7-77. Q-QUIT COMMAND

7-78. Format

7-79. Description. The user enters Q to exit DDT and return to
the FLP-80DOS Monitor. The Monitor prints $ upon entry.
EXAMPLE.

.Q(CR)
$

exit DDT.
enter Monitor (Monitor prompts $)

7-28

7-80. R-DISPLAY CPU REGISTERS COMMAND

7-81. Formats.

·R .iill
• R 1(CR)

• R 1,aa(CR)

Print the contents of the CPU registers •
Pri nt a headi ng to 1 abel the CPU re
gi sters on one 1 i ne, on the next 1 i ne
print the contents of the CPU registers •
Pri nt a headi n9 to 1 abel the CPU re
gisters and set the long/short flag as
follows. aa=O SHORT, aa=1 LONG. Long
causes all registers to be printed after
breakpoint and single step. Short causes
only PC and AF to be printed. The
LONG/SHORT FLAG remains set until changed
by the • R· command.

7-82. Description. The user enters the comma command identifier
R. If the user wants a heading to be printed that labels the re
gister contents, an operand of 1 is entered. If no heading is de
sired, then no operand is entered. If the ·0· command has been
used to set an offset, the relative PC is also printed (PC·).
The second operand is optional and has the following meaning:

aa=O - short form: only the Z80 program counter and AF re
gister will be displayed.

aa=1 - long form. All CPU registers will be displayed.

7 -2 9

7-83. Note that aa remains set to the value entered during all
following commands until it is reset.
Examples.

·R 1lli
AOOO 0100 0104 CFB3 C09A FFEE EDF6 9C3E C3DC FE9B D6ED F1BE FFB4

PC
AOOO

.R 1 (CR)
AF I IF BC DE HL AIFI BIC I DIEI HILI I X IY SP
0181 0104 CFB3 0010 C09A FFEE EDF6 C3DC FE9B D6EC F1BE FFB4

PC contains AOOOH
A contains 01H F =
F contains 81H
I contains 01H

IF contains 04 (Bit 3

I Y contains F1BEH

SP contains FFB4H

bit
7 0
1 0 0 0 0 0 0 1
S Z X H X P/V N C

= 1 impl ies IFF = 1)

S = sign flag
Z = ze ro flag
X = indeterminate flag
H = half ca rry (for BCD operations)

P/V = parity or overflow flag
N = BCD add/subtract flag
C = carry flag

7-30

7-84. V-VERIFY MEMORY COMMAND

7-85. Format •

. v aaaa,bbbbacccc(CR) Compare memory location aaaa to
bbbb with the memory starting at
cccc.

7-86. Description. The user enters command identifier V fol
lowed by the starting address aaaa and ending address bbbb, fol
lowed by the starting address cccc of the second memory block.
The operands are separated by commas or blanks. Upon terminating
with a carriage return, every address from aaaa to bbbb is com
pared with the corresponding address starting at cccc. Any dis
crepancies are printed on the console. (lladdress data address
data ll). When the comparison is complete, DDT is ready to accept
another command. Printing of addresses may be aborted by en
tering a period (.) from the user console at anytime.
Example •

• v 0aFF,1000(CR)

• Q 100(CR)
. y RO aRFF aR1000(CR)

10000 0100 BC 11000 1100 CC

Compare every location from 0 to
FFH inclusive •

Set offset •
Compare relative address.
Relative and absolute address on
non-matches.

7-31

7-87. W-WALK THROUGH A PROGRAM COMMAND

The walk command, also known as software single-step, allows

stepping through a program which is contained in RAM. The user's
registers are saved and displayed after each step.

7-88. Format •

• W aaaa,nn,xxx(CR) Begin software single-step at address

aaaa, for nnH steps, xxx = HD re
quests register heading, xxx = DIS

requests disassembly (AIM-80 required
for DIS) •

• W Raaaa,nn,xxx(CR) Relative address.

7-89. Description. The user enters the command identifier W
followed by the starting address aaaa, the number of steps to

take nn, and the options operand xxx. The operands are separated
by commas or spaces. Upon terminating with a carriage return,

the DDT begins "walking" through the user's program (RAM re
sident). After each step the user's registers are displayed (See

'R' command). When nn steps have been taken, DDT waits for the
user to enter a carriage return, line feed, space, or ".". A

carriage return causes the next instruction to be executed and
wait again for input. A line feed causes the register heading to

be printed before executing the next instruction. A space causes
single stepping to continue for 256 instructions or until another
space is entered to stop stepping. If nn is omitted, the default
is 1. If aaaa is omitted, the last value of the user's program

counter (:PC) is used to begin "walking". The stepping may
always be stopped by entering any of the characters described
above. When the address entered is relative, the IpC is also
printed (relative PC).

7 -3 2

7-90. Restrictions to W Command.
1. Only operates with programs i n RAM.
2. Cannot CALL or RESTART to an address one or two

locations before the CALL or RESTART.
3. Walking through self modifying code is not allowed.

7-91. DEBUGGER ESCAPE (CNTL-C)

7-92. During normal use of DDT the Debugger Escape is not en
abled because the minimal listener is not enabled. However, if
execution of the user program is begun with the Monitor Implied
Run Command or by the Monitor BEGIN command, the minimal listener
is enabled. Debugger Escape can be used to trap out of the
executing program as if a breakpoint had been encountered. The
CPU registers will be saved and all DDT commands can be used. In
this mode, Debugger Escape can be used any number of times.

EXAMPLE
$FILE1(CR)

-user uses Implied RUN command to load and execute
his program from disk file FILE1.

(cntl-C)
-user depresses cntl-C to cause Debugger Escape.

AOOO 0100 0103 CFB3 C09A FFEE EDF6 9C3E C3DC FE9B D6ED F1BE FFB4
-DDT is entered as if a breakpoint had been

encountered.

PART 2

TECHNICAL INFORMATION

8-1

SECTION 8

ROCHR AND WRCHR SUBROUTINES

8-1. INTRODUCTION
NOTE: These two routines allow the simplest way of performing
device I/O on the FLP-8000S system. It is suggested that the
example shown in this section be programmed to acquaint the user
with this system.

8-2. ROCHR and WRCHR are two subroutines which allow simplified
byte I/O to any of the 6 default Logical Unit Numbers. ROCHR
returns one byte from a device via LUN 0, 2, or 4. WRCHR writes
one character to a device via LUN 1,3,or 5. Each subroutine
assumes that the selected Logical Unit Number has been assigned
to a device handler via the Monitor $ASSIGN command. The
following paragraphs define entry and exit parameters. Users of
DOT-80 V1.3 and ASMB-80 from the SDB-80 paper-tape system will
recognize that this protocol is exactly the same as ROCHR and
WRCHR in that software package. This allows current paper tape
users to easily upgrade to the FLP-8000S software.

8-3. RDCHR - READ ONE BYTE

8-4. CALLING SEQUENCE.
CAL L RDCH R ;ROCHR Address is specified in Appendix F.

8-5. ENTRY PARAMETERS.
E register:

Bits 0-2 = LUN (0-5).
Bits 3 = 1 to initialize or open the device.
Bits 4,5 - reserved.
Bit 7 = 1 for immediate return.

8-2

8-6. EXIT PARAMETERS.
A register and 0 register = byte which was read (ASCII).
E register:

Bit 3 reset after initialization.
Bit 6 = 1 if error occurred on input.
Bit 7 reset if operation was performed.

All other registers are maintained.

8-7. OPERATION. The driver uses LUN 0,2,4 or input. Lun's 1, 3
and 5 are modified to 0,2,4, respectively, within the subroutine.
If the initialize bit (3) is set, OPENR request will be per
formed. Each READ request wi 11 return one byte (Byte Format
I/O). Upon encountering 04H (EOT), the close request will be
performed. Bit 6 will indicate if an I/O error occurred.

8-8. If bit 7 is set upon entry, the device status is read, but
no read operation is initiated unless the device is ready.
However control is always returned to the caller whether or not
the operation was performed. This feature is not available with
the disk.

8-9. WRCHR - WRITE ONE BYTE

8-10. CALLING SEQUENCE
CALL WRCHR ;WRCHR Address is specified in Appendix F.

8-11. ENTRY PARAMETERS
E register:
Bits 0-2 = LUN (0-5).
Bits 3 = 1 for initialize.
Bits 4,5 - reserved.
Bits 7 = 1 for immediate return.

o register = byte to be output (ASCII).

8-12. EXIT PARAMETERS
A register - changed.
E register:

Bit 3 reset after initialization.
Bit 6 = 1 if error occurred on output.
Bit 7 reset if operation was performed.

All other registers are maintained.

8-3

8-13. OPERATION. The driver uses LUN 1,3 or 5 for output.
LUN's 0,2, and 4 default to 1,3,5 respectively within the
subroutine. If the initialize bit is set, OPENW request will be
performed. If the unit is a disk unit and if the file exists, it
will be erased and reopened. Each WRITE request outputs one byte
(Byte Format I/O). If the byte is 04H (EOT), it will be output
and a close request will be performed. Bit 6 indicates if an
error occurred. The error number will be in the default vector
for the correct LUN.

8-14. If bit 7 is set upon entry, the status port will be read,
but no write operation is initiated unless the device is ready.
However, control is always returned to the caller whether or not
the operation was performed. This feature is not available with
the disk.

8-15. DDT OPERATION

8-16. During execution of DDT (debugger) all I/O is directed to
the console drivers without using the 10CS facilities. This
allows the user to use all of available RAM and facilitates the
AIM-80 memory map and operation. This mode can be forced by the
programmer by setting location FF12H to the value 2.
EXAMPLE - See Figure 8-1.

CAUTION: When using RDCHR, the last character of a file, which

8-4

will be EOT (04H), must be read in order to properly

close the file. When using WRCHR, the last character

output must be EOT (04H) in order to properly close

the file.

NOTE The call i ng addresses for ROCHR and WRCHR wi 11 not change

in future versions of FLP-8000S.

:G8_1 EXAMPLE OF RDCHR & WRCHR MOSTEK FLP-80 ASSEMBLER V2.0 PAGE 0001
,DDR OBJECT ST # SOURCE STATEMENT DATASET = DKO:FIG8D1.

0000
0003

0005
0008
0009
OOOA
OOOC

OOOE
0011

'0013
'0014
'0017
'0018
'0019
'001B

'001D
'001F

')0022
'OOA2

212200'
1EOO

CDFFFF
77
23
FEOD
20F7

212200'
1E01

56
CDFFFF
23
7A
FEOD
20F6

3E01
C3FFFF

00

ERRORS=OOOO

NAME

THIS PROGRAM READS CHARACTERS INTO A BUFFER UNTIL
A CARRIAGE RETURN IS ENCOUNTERED. THEN THE EUFFER

; IS PRINTED OUT ON THE CONSOLE DEVICE.

0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026 ;
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044

THIS PROGRAM MUST BE LINKED WITH 'SYSLNK' IN ORDER
TO RESOLVE THE EXTERNAL REFERENCES.
E.G.: SLINK FIG8D1,SYSLNK

EXTERNAL LINKAGES TO SYSTEM ROUTINES

GLOBAL
GLOBAL
GLOBAL

LD
LD

JTASK
RDCHR
WRCHR

HL,BUF
E,O

iGET BUFFER ADDRESS
iCONSOLE LOGICAL UNIT ~UMBER

LOOP CALL
LD
INC
CP
JR

RDCHR iREAD ONE CHARACTER FPOM CONSOLE

LOOP2

LD
LD

LD
CALL
INC
LD
CP
JR

LD
JP

(HL),A iPLACE IT INTO THE BUFFER
HL iINCREMENT BUFFER POINTER
ODH iCHECK FOR CARRIAGE RETURN
NZ,LOOP-S iIF NOT, LOOP FOR MORE

HL,BUF
E,1

iREINITIALIZE BUFFER POINTER
;CONSOLE OUTPUT LUN

D,(HL) iGET CHARACTER FROM BUFFER
WRCHR ;WRITE IT OUT TO CONSOLE LUN
HL iINCREMENT BUFFER POINTER
A,D iGET CHARACTER INTO A-REG
ODH iCHECK FOR CARRIAGE RETU?N
NZ,LOOP2-$;IF NOT, LOOP FOR MORE

A,1
JTASK iELSE RETURN TO MONITOR

INPUT/OUTPUT BUFFER . ,
BUF DEFS

DEFB
END

128
o iDEFS CANNOT TERMINATE A MODULE

9-1

SECTION 9

INPUT/OUTPUT CONTROL SYSTEM (IOCS)

9-1. INTRODUCTION

9-2. The Input/Output Control System (IOCS) provides a general
purpose means of access i ng a 11 types of I/O devi ces. It makes
any differences between devices as transparent as possible to the
user. IOCS may be used to access data from a device or write
data to a device. This may be achieved in a user program by
filling a vector within the user program with information
regarding the type of I/O action required and calling IOCS. IOCS
not only uses the information contained in the vector, but also
ret urn sin form a t ion tot he use r i nth eve c tor. S eve r a 1 s y s tern
routines exist to aid the user in working with IOCS and are
described in Section 13.

9-3. VECTOR DEFINITION

9-4. IOCS requires that a 48 byte (30H) vector be filled with
information regarding the type of I/O action to be performed and
where that act i on is to take p1 ace. The vector may be fi 11 ed
within the user program or by using the $ASSIGN command previous
to entering the program {see section 2 of this manual}. If the
$ASSIGN command is used, IOCS fills the vector pointed to by the
IY register when an OPEN request is made {see Section 9-15}.

When a user makes a request to IOCS, the IY register must point
to the first address of the vector being used. Bytes 0-29 of the
vector are the user interface to IOCS. Bytes 30-39 are reserved
for I/O device handler usage. Bytes 40-47 are reserved

9-2

for IOCS usage. Table 9-1 lists the sections of the vector and
ass i g n san am e toe a c h sec t ion for e a s y ref ere n c e • E a c h ve c tor
name contained in table 9-1 will be discussed in detail. The
user may reference the sample program in section 9-71 to see how
the vector and IOCS are used.

9-3

TABLE 9-1. VECTOR DEFINITION

IELD HBYTES OFFSET NAME DESCRIPTION FORM

1 1 * (I Y +0) LUNIT Logical Unit Number
(Binary)

2 2 *(IY+l) DVCE Device Mnemonic (ASCII)
3 1 *(IY+3) UNIT Unit Number (ASCII)
4 6 *(IY+4) FNAM File Name (ASCII)
5 3 *(IY+I0) FEXT F i 1 e Extension (ASCII)
6 1 *(IY+13) VERS F i 1 e Version (Binary
7 1 *(IY+14) USER User Number (Binary
8 1 *(IY+15) RQST Request Code (Binary
9 1 *(IY+16) FMAT I/O Format (Binary

lO 2 (IY+17) HADDR Device Handler Address (Binary
II 2 *(IY+19) ERRA User Specified Error Return Address (Binary
l2 1 *(IY+21) CFLGS Control Flags (B ina ry
l3 1 (IY+22) SFLGS Status Flags (Binary
14 1 (IY+23) ERRC Error Code (Binary
15 1 (IY+24) PBFFR Physical Buffer Number (Binary
16 2 *(IY+25) UBFFR User's Buffer Address (Binary
17 2 *(IY+27) USIZE User's Buffer Size (Binary
18 1 (IY+29) NREC Number of Records (Binary
19 10 (IY+30) HSCR Device Handler Scratch
20 8 (IY+40) ISCR laCS Scratch

where * appears indicates the parameter is to be set up by the user prior
to calling laCS.

9-4

9-5. The following paragraphs describe each field in the IOCS

vector.

9-6. LUNIT. The LUNIT field in the vector is the Logical Unit

Number. There may be as many as 256 logical units, numbered

O-FFH. The number stored in the LUNIT field corresponds to the

logical unit number used in the Monitor $ASSIGN command (See

Section 2). When an OPEN request is made in IOCS, the REDIRECT

TABLE is searched for a logical unit number which has been

redi rected vi a the $ASSIGN command correspondi ng to the number

stored in the LUNIT field of the vector. LUN FFH is never

redirected. If a match is found, the data found in the REDIRECT

TABLE is stored in the user vector and the requested operation is

performed. Logical unit numbers 0 - 5 are the default loyical

units and are assigned by FLP-80DOS at power up and when

FLP-80DOS is booted from disk into RAM (See Section 2 of this

manual). Vectors for the default logical units already exist in

RA~l and the user need not set up additional vectors for them.

The addresses of the default vectors may be accessed by loading

the D-reg. with the default logical unit number and calling

GETVEC (see Section 13). These vectors are used by FLP-80DOS

utility programs, and they may also be used by user application

programs. Lun's 0 and 1 are always assigned to the console input

and console output devices respectively. All other LUN's require

that memory space be allocated for the 48-byte vector by the

program using the LUN.

9-7. Any LUN may be assigned to a device handler by setting up

the device information in the vector. (See below). Any LUN

(except FFH) may be redirected to any device by the Monitor

$ASSIGN command (See Section 2). LUN FFH is never redirected:

the de vic e i n form a t ion p 1 ace din the ve c tor i s the i n form at ion

used by IOCS. In addition when LUN 0 and 1 are reassigned in the

9-5

Monitor they are closed and reopened immediately to facilitate

batch mode operation (See Section 14).

9-8. The
vectors.

same
This

LUN
can

may be used
facil itate a

in .a ny number of
multi-user system

different
in which

several different programs use a LUN with a separate vector for
each program. Further, LUN FFH can be used for any number of

different vectors within the same program. The FLP-80DOS Text
Editor uses this feature.

NOTE An LUN is redirected to a different device by using the

Monitor $ASSIGN command. However, the redirection does not take
place until the LUN is opened. (Except for LUN 0 and LUN 1).

Section 2 describes this in more detail.

9-9. DVCE. The DVCE field is composed of two ASCII character
mnemonic which represents an I/O device. IOCS calls an external
routine which searches for the mnemonics in a table. The
Mnemonic Lookup Table also contains the corresponding address of

the device handler. FLP-80DOS provides an expandable Mnemonic
Lookup Table with a number of pre-assigned device mnemonics in
it. The list of available FLP-80DOS device mnemoncs is shown in
Table 9-2.

MN EMON I C

CP

CR
DK
LP
PP

TABLE 9-2. FLP-80DOS DEVICE MNEMONICS

DESCRIPTION

Line Printer (Centronics compatible)

Card Reader (Documation M200)
Flexible Disk

Line Printer (Data products compatible)
Paper Tape Punch

9-6

PR Paper Tape Reader
TI Silent 700 digital cassette reader (ADC i s re-

quired)
TK Te rm ina 1 Keyboard

TO Silent 700 digital cassette write (ADC i s re-
quired)

TR Teletype paper tape reader (step control i s
required)

TT Teletype Printer or CR T screen, or Silent 700
printer.

9-10. UNIT. The UNIT field specifies one of a number of devices
having the mnemonic specified in DVCE. For example if the DVCE
was lOKI (Flexible Disk), the Unit field would specify which disk

unit the I/O operation is directed to. The device handler is re
sponsible for decoding and using the UNIT field. In FLP-80DOS,
all supplied handlers access one device (UNIT=O) except the Flex
ible Disk Handler (FDH).

9-11. FNAM. The FNAM (Filename) field is used only when ac
cessing file structured devices. The six (6) ASCII bytes of the
fi 1 ename to be accessed are fi 11 ed in by the user in the user

program previous to calling IOCS or by use of the $ASSIGN command
(See Section 2). In FLP-80DOS, the filename starts at the begin
ning of the field and is padded with blanks.

9 -12. FEXT. The FEXT is an extension on a filename. In
FLP-80DOS the following system extensions are reserved:

OBJ ASCII hexadecimal object format
BIN Binary RAM Image format
CRS Linker Cross Reference file
TMP Editor or Assembler temporary file

LST Assembler listing file

9-7

The user may define and use other extensions as required. If the
$ASSIGN command was used to enter the filename, the extension

defaults to three (3) blanks.

9-13. VERSo The VERS field (version) is another extension on
the filename. FLP-80DOS system programs do not support the

version number. However, laCS and the Floppy Disk Handler (FDH)
do support it, but it is used for the date implementation in

version 2.1 of FLP-80DOS.

9-14. USER. The USER field can be used to further identify a
file. FLP-80DOS system programs support the USER field, but they

do not support a multi-user environment. OEM users may wish to
use this facility to develop a multi-user system. The default
user number is one.

9-15. RQST. The RQST field is the request code. This field
defines which type of action will be performed by IOCS. How a

device handler interfaces to these request codes is described
later in this section. The FLP-80DOS Flexible Disk Handler (FDH)

supports an extended range of request codes which may be passed
to IOCS. These codes are described in Section 10 of this manual.

TABLE 9-3. GENERAL PURPOSE REQUESTS

RQST CODE (HEX) NAME DESCRIPTION

00 OPENR OPEN this unit for READING
01 o PENW a PEN this unit for WRITING
02 CLO SE Close this logical unit
03 READ Read data from this unit
04 WRITE Write data to this unit
05 REWIND Go to beginning of input/file
06 INIT Initialize all units of this device type

07 ERASE Erase this f i 1 e

9-8

9-16. FMAT. The FMAT field in the vector describes the I/O
format selected by the user (high order 4 bits of the FMAT field)
as well as the number of physical records to be allocated by the
physical buffer allocator when the unit is opened (low order 4

bits (x) of the FMAT field). The user must select the format
code best suited for the type of actlon required and the type of
file being used.

FMAT CODE (HEX)

OX

IX

2X

3X

TABLE 9-4. FORMAT REQUEST CODES

TYPE

Byte I/O

ASCII Line

Logical Buffer

Binary ram image

DESCRIPTION

Pass single bytes through
A-REG.
Read/Write until carriage
return.
Read/Write number of bytes
specified by USIZE.
RAM IMAGE to/from di sk for
binary save or load.

9-17. In all formats except Binary Format, double buffering
takes place. That is, when a READ or WRITE request is made, data
is placed in a buffer at the top of available RAM (the address of
the buffer is determined by the physical buffer allocator). When
a READ request is made to laCS, data is retrieved from the buffer
rather than the disk file. When a WRITE request is made, data is
placed into the buffer until the buffer is filled before
outputting the data to a disk file. laCS handles all
blocking/deblocking functions.

9-18. The size of the buffer used for storing data is controlled
by the user in the low order 4 bits (x) of the FMAT field. This

9-9

number (O-FH) corresponds to the number of physical records to
be allocated. For example, if the user selected to read data
from a fi 1 e and sel ected to store 4 records of data in the
buffer, the buffer size would be 496 bytes in length (4 records
124 bytes per record). The user must sel ect the best trade-off
for his particular application. If the user chooses a small
number of records to be allocated, more memory will be available
for user programs in RAM. However, disk access time may be
greater. A large number of allocated records will cause disk
access time to be reduced but user RAM will be reduced also.

9-19. In Byte I/O Format, a single character may be written to a
device. The character to be written is passed to IOCS in the
A-register.
A-register.

When reading, the byte read is passed back in the

9-20. In ASCII Line Format, data may be written to a device or
read from a device on a line-at-a-time basis. If reading from a
device, UBFFR (IY+25) contains the address (least significant
byte first) where the line is to be stored in RAM. If writing to
a device, UBFFR contains the address in RAM where the ASCII line
to be written begins. Action on each line continues until a
carriage return/line feed is encountered. The contents of UBFFR
are not destroyed after the request is completed.

9-21. In Logical Buffer Format, the user can control the number
of bytes to read or write with the USIZE (IY+27) parameter. To
read data from a device, the user should load the UBFFR (IY+25)
parameter with the address of the beginning area in RAM where
data is to be stored. The USIZE parameter should be filled with
the number of bytes to read. IOCS will read data from the device
specified, store the data in RAM beginning at the address
contained in UBFFR, and continue this operation until the USIZE

9-10

parameter is satisfied. To write data to a device, the user

should load UBFFR with the address of the beginning area in RAM

where data is to be written from. Ioes will begin reading data

from RAM pointed to by UBFFR and writing the data to a device

until the USIZE parameter is satisfied. If writing to a disk

file, USIZE must be less than or equal to IX I times 124, where

'x' is the number of physical records allocated as specified in

the FMAT (IY+16) field.

9-22. Binary Format is reserved for binary disk files. When an

OPENR (open for reading) request is made, the load address is

read from the directory and placed in the UBFFR (IY+25) para

meter. UBFFR determines where the contents of the binary file

are to be loaded in RAM. The user may alter the address in UBFFR

previ ous to mak i ng READ request to IOeS to load the data ina

different area in RAM. The binary file will be read and stored

in RAM beginning at the address contained in UBFFR and continue

until end-of-file is encountered. When an OPENW (open for

writing) request is made, the address contained in UBFFR is

stored in the directory. The USIZE (IY+27) parameter specifies

the number of bytes to be saved. This will be rounded mod-124 in

FLP-80DOS. When a WRITE request is made to IOeS, data will be

read from RAM beginning at the address contained in UBFFR and

stored on a disk file. This action will continue until the USIZE

parameter has been satisfied.

9-23. HADDR. The HADDR field is the address of the device

handler. This field is filled in by the IOeS when the logical

unit is opened. (OPENR or OPENW request).

9-24. ERRA. The ERRA field is a user-specified error return

9 -11

address, least significant byte first. If the field is left
zero, then IOCS will return without calling the return address.
If bit 4 of CFLGS (See Section 9-28) is set, the system error
handler will print a message on the device assigned to default
Logical Unit 1.

9-25. CFLGS. The CFLGS field specifies various
I/O options as listed in the following table:

user specified

BIT /I

0

1

2

3

4

5

6

7

9-26.

print

FLAG DESCRIPTION

IIMOUNT II / II DISMOUNT II Upon Open/Close
Auto Echo Serial Device
Immediate Return
Read after Write requested
Error Print Request
Strip Parity

NAME

MOUNT
ECHO
IRET
RDWR
ERRPR
NPAR

If the MOUNT bit is set in the CFLGS Field, then IOCS will
the following message for OPEN and CLOSE requests:
for OPENR or OPENW

MOUNT XXY, TYPE C WHEN READY:
for CLOSE

DISMOUNT XXY, TYPE C WHEN READY:
where XX is device mnemonic
and Y is unit

This allows the user to output a message to ensure the device he
is trying to access is made ready before execution.

9-27. If the ECHO bit is set, in ASCII line input, each

9-12

character read in is echoed to the console output device (as
specified in default Logical Unit 1). Additional editing is per
formed on the line (Backspace, Rubout, Control-U, Tab). The
following conventions are used:

BACKSPACE (ASCII OSf-d - delete character from the buf
fer. The cursor movement is backspace, overprint
with a blank, and backspace again.

RUBOUT (ASCII 7FH) - delete previous character from the
buffer. A backslash is printed on either side of
the characters which are deleted.

CONTROL-U (ASCII 15H) - delete line.
TAB (ASCII 09H) - the tab character is entered into the

buffer and the cursor is moved over mod 8
spaces.

9-2S. If the IRET bit is set, then any device handler which

supports IRET will return immediately to the caller regardless of
the status of the device. The device handler interrogates the
device status. If the device is not ready, IRET flag set will be
returned to caller. If tile device is ready, the I/O operation
will be performed and IRET flag reset will be returned to caller.
This facility can be used by OEM users in a multitasking

environment for handling I/O devices. Immediate Return can be
used to check for time out on certain devices.

9-29. If the RDWR bit is set, then those handlers which support

this facility will perform a read and verification after write.
The FLP-80DOS Floppy Disk Handler (FDH) supports this facility.

9-30. If the ERRPR bit is set, then any error generated by a
device handler or IOCS will be printed on the console device by
IOCS. Appendix E shows the format of the messages.

9-31. If the NPAR bit is set, then bit 7 of every byte of I/O

will be unconditionally reset by IOCS.

9-13

9-32. SFLGS. The SFLGS field contains flags used by 10CS to
keep track of the status of a logical unit. This field must be
cleared (OOH) by user before opening a logical unit.

BIT II

0
1

2

3

4

5

6

7

FLAG DESCRIPTION

Unit open
Un it open for write
Unit on
End of File Detected

NAME

UNOP
UNOPW
UNON
EOF

9-33. ERRC. The ERRC is a system error code inserted by 10CS or
a device handler upon detection of an error. ERRC should be
interrogated after each call to 10CS by the application program.
Appendix E lists all the error codes for FLP-80DOS.

9-34. PBFFR. The PBFFR field is used by 10CS when assigning a
physical buffer for an open logical unit.
change this field.

The user must not

9-35. UBFFR. The UBFFR (user buffer) field is specified by the
user to direct 10CS where to locate the I/O data. This field is
left unchanged by IOCS except in I/O Format 3X, in which case it
is changed by IOCS to point to the last byte transferred +1. The
buffer address is entered least significant byte first. The user
should refer to the section regarding the type of format being
used.

9-36. USIZE. The USIZE field is the user's buffer size (in

9-14

bytes), least significant byte first. In I/O Format 2X (LOGICAL

B U F FER I / a), the laC S fill s the en t ire b u f fer on are-a dan d
outputs the entire buffer on a write. If the end of file is

reached for format 2X on read operat i on before the UBFFR is
filled, then USIZE is changed by. laCS to the actual number of
bytes read. In I/O Format 3X (BINARY RAM IMAGE I/O), the USIZE
parameter specifies the number of bytes to be saved (rounded

mOd-124). The user should refer to the section reqarding the
type of format being used.

9-37. NREC. The NREC field tells the device handler the number
of physical records to read, write or skip. This field is used
by IOCS.

9-38. HSCR. The HSCR field is available to the device handler
to use for scratch variables associated with logical unit.

9-39. ISCR. The ISCR is reserved for IOCS to use as scratch
variables.

9-40. HOW TO USE laCS

9-41. When a user wishes to access an I/O device via IOCS, the
following procedure should be followed.

9-42. SET UP A VECTOR. The vector should be first initialized
to zeros, then appropriate data should be placed into the vector.
In FLP-80DOS, the default vectors O~5 are available for use by an
application program but a and 1 are reserved for the console

device. Recall that the vectors for LUN's 0-5 already exist;
their starting addresses are defined via GETVEC (See Section 13).
All other LUN's require that the application program provide the
vector space (48 bytes). The following fields should

9-15

be preset by the user program: LUN, DVCE, UNIT, FNAM, FEXT,

VERS, and USER, if file structured device is used; RQST, FfvlAT,

ERRA (if used) CFLGS; and UBFFR and USIZE if ASCII Line Format,

Logical Buffer Format, or Binary Format is used.

1. SET IY equal to the address of the first byte of the

vector.

2. OPEN the device. Insert an OPENR (open for read) or

OPENW (open for write) request code into the R(.JST

field of the vector, then call laCS: CALL JIOCS ;the

address of JIOCS is shown in Appendix F.

NOTE: The calling address of laCS (=JIOCS) will not

change in further versions of FLP-80DOS.

3. The READ/WRITE request is placed into the RQST field

and IOCS is called once for each I/O operation.

4. CLOSE THE DEVICE. The CLOSE request is placed into

the RQST field of the vector and IOeS is called when

no more I/O is to be done. FLP-80DOS uses 04H as

end-of-file indicator for ASCII files.

5. j\fter each call to IOCS, the ERRC field should be

checked for errors.

were encountered.

If it is zero, then no errors

Some errors are fatal or non-

recoverable, such as DISK I/O ERROR. Others are

merely indicators, such as END OF FILE.

Idiosyncracies of the Flexible Disk Handler are described in Sec

tion 10 this manual.

9-16

9-43. DEVICE HANDLER REQUIREMENTS

9-44. Each device handler must begin with a displacement table
for each of the supported IOCS requests. If a function is
supported, the displacement is added to the table address to
determine the handler entry point for a given function. If a
function is not supported, then IOCS generates an error code and
returns to call ere The fo11 owi ng is an examp1 e of paper tape
device handler.

PTAPE

PTOPEN
PTCLOS
PTREAD

DEFB
DEFB
DEFB
DEFB
DEFB

3

PTOPEN-$
o

PTCLOS-$
PTREAD-$

RET

The largest request code supported
Displacement for OPENR (RQST 0)
OPENW is not su~ported (RQST 1)

Displacement for CLOSE (RQST 2)
Displacement for READ (RQST 3)
Initialize Paper Tape RDR
Disable Paper Tape Reader
Read a Byte

9-45. The first byte of the handler specifies that the largest
request supported is 3. Any request code between 0 and 3 must
have a zero displacement if it is not supported. When a device
handler is opened, it must pass the physical buffer size back to
IOCS in the BC register. If the .BIN data type is supported by a
device, the handler must generate and/or strip off all non-data
bytes such as sync characters and CRC. For devices that do not
support REWIND, IOCS wi 11 pri nt the fo11 owi ng message on the
console when REWIND is requested:

IIREWIND XXY, ENTER C WHEN READY: II

Where XX is the device mnemonic and Y is the unit number.
NOTE I/O Device Handlers must not destroy the alternate register

set or the main set of registers.

9-17

9-46. PHYSICAL I/O BUFFERS

9-47. When the user opens a file for use with I/O format 0, 1 or
2 (Byte I/O, ASCII line, or logical record I/O), then IOCS
allocates a physical record buffer for the device. When the
handler returns control to IOCS after an OPENR or OPENW, the BC
register contains the physical record size (in bytes) for the
device. IOCS then allocates that number (IF >1) of bytes and
assigns a physical buffer number to PBFFR in the vector. IOCS
maintains a physical buffer allocation table and can allocate up
to 16 concurrent buffers.

9-4B. The allocation table contains the start address for each
physical buffer wich is shown in following table:

BUFFRO
BUFFRI
BUFFR2
BUFFR3
BUFFR4
BUFFR5
BUFFR6
BUFFR7
BUFFRB
BUFFR9
BUFFRA
BUFFRB
BUFFRC
BUFFRD
BUFFRE
BUFFRF

TABLE 9-5. PHYSICAL BUFFER ALLOCATION TABLE

DEFS 2
DEFS 2
DEFS 2
DEFS 2
DEFS 2
DEFS 2
DEFS 2
DEFS 2
DEFS 2
DEFS 2
DEFS 2
DEFS 2
DEFS 2
DEFS 2
DEFS 2
DEFS 2

Present location of I/O Buffer #0.
Present location of I/O Buffer #1.
Present location of I/O Buffer #2.
Present location of I/O Buffer #3.
Present location of I/O Buffer #4.
Present location of I/O Buffer #5.
Present location of I/O Buffer #6.
Present location of I/O Buffer #7.
Present location of I/O Buffer #B.
Present location of I/O Buffer #9.
Present location of I/O Buffer #A.
Present location of I/O Buffer #B.
Present location of I/O Buffer #C.
Present location of I/O Buffer #D.
Present location of I/O Buffer #E.
Present location of I/O Buffer #F.

9-49. IOCS allocates the first buffer with a buffer number of o.

9-18

This number is placed in the PBFFR field of the VECTOR. The

buffer number placed in the vector is FFH for byte oriented
devices (physical buffersize = 1).

9-50. The actual physical buffers contain the number of bytes
specified by (BC) after an OPENR or OPENW plus eight bytes for
deblocking and de-allocaton as follows:

(start of buffer)
DEFS 2 Size of Buffer (not including first 8 bytes)

DEFS 2 Temporary Buffer Pointer
DEFS 2 The physical record size = (BC) after OPENR or OPENW

DEFS 2 Last address transferred after a read

9-51. When a logical unit which had a physical buffer assigned
to it is closed, IOCS de-allocates the buffer space and com

presses the buffers, removing any holes in the buffer block.

9-52. SYSTEM INTERRUPT TABLE

9-53. The top 32 bytes in the user RAM space are reserved for
the system Interrupt table. The program module DK reserves a 32
byte buffer for this purpose so the end address of OS.BIN [255]
can be positioned at the top of RAM (see SYSGEN Section 15).

During the system boot sequence the Monitor automatically
calculates the top of RAM memory and stores that value in TOR

(OFFOOH). The following displacements from TOR have been
reserved for system devices.

TOR DISPLACEMENT
5

7

9

11

13

21-31

DEVICE
Operating System Minimal Listener

LP:
PR:

PP:
CR:
Reserved for User Interrupt Devices

9-19

9-54. The Open routine within a device handler may use the value

in TOR (FFOOH) and its designated displacement (see above
table) to calculate the position of its interrupt vector. The
open routine should pl ace the MSB of the Interrupt vector into

the I register and output the LSB to the designated PIO. The
open routine should also place the address of the device
interrupt service routine into the interrupt vector in the
interrupt table. (See Paragraph 9-63).

9-55. rocs MEMORY MAP

9-56. The Default Logical Unit Table, the Logical Unit Redirect
table and the laCS buffer allocation table are included in the
program module IOCS. IOCS is an operating system module which is

linked into OS.BIN [255J during the SYSGEN procedure (See Section
15). laCS physical I/O buffers are allocated dynamically

downward from the operating system as outlined in figure 9-1.

9-57. The Logical Unit Redirect Table contains the assignment of
device handl ers to logical unit numbers by the Monitor ASSIGN

command. Each item in the table is 15 bytes long. These 15
bytes correspond exactly with the first 15 bytes of the laCS

vector (See Section 9-4). Up to 6 items can be placed into the
redirect table. The redirect table is terminated by a logical

unit number (1st byte of an item) of FFH (Recall that this is
the Logical Unit Number which cannot be redirected).

9-58. Bottom of Allocated RAM (BALR) is a pointer to the bottom

of the system routines
(dynamically) by IOCS.

less
The

any
BALR

physical buffers allocated

scratch pad locations FF02-FF03H and
pointer is
is updated

allocates and de-allocates physical buffers.

maintained
by laC S as

i n

it

9-20

FIGURE 9-1. laCS MEMORY MAP

....

INTERRUPT TABLE

(32 BYTES)

OS. BIN[255]

10CS PHYSICAL

BUFFERS

j • BALR

""'-

USER RAM

9-21

9-59. WRITING A DEVICE HANDLER

9-60. CHARACTER-ORIENTED DEVICES

9-61. Introduction. Device handlers for character oriented de
vices are rather straightforward in their design. The paper tape
reader for FLP-80DOS is included in Section 12 of this man
ual. The following discussion examines the design in detail.

9-62. Design Criteria. The handler is to input one character at
a time. It will be interrupt driven. Control and I/O will be
done via a Z80 PIO~ which takes two sequential port addresses (in
thi s case~ DOH for control and D1H for data). The control
port number is contained in a byte in the handler.

9-63. Open Process.
1. Disable interrupts while the l80 PIa is programmed.

The reader is directed to the "ZBO PIO Technical Man
ual" for details of programming the device.

2. Access the control port number. The least significant
bit is used as a ready flag.

3. Access item number in Interrupt Pointer Table (C-reg =

0, the first item).
4. Access the interrupt handler address (RINT).
5. This address is place into the first items of the

Interrupt Pointer Table.
6. Program the ZBO PIa for proper operation.
7. Initialize the status bit to zero (not ready).
8. Program the interrupt handler vector into ZBO PIO (LS

byte) and into the l80 I-register (MS byte). ZBO
I nterrupt Mode 3 is used throughout FLP-80DUS. The
reader is referred to the "l80 CPU Technical Manual"
for further discussion.

9-22

9. Set up a physical buffer size of one for one byte
transfers (BC-reg = 1).

10. Perform first I/O operation to start reader.
11. Enable interrupts and return to caller.

9-64. Close Process. No operation is performed; return to cal
ler.

9-65. Read Process.
1. Access port number and strip off status bit (bit 0).
2. Set up an initial time out of about 250 msec.
3. Enable interrupts.
4. Check the status flag. The status flag is set in the

RINT routine when an interrupt occurs.
5. If the status flag is not set (not ready), then check

for immediate return. If immediate return is set,
then return to the caller (IOCS) without performing
any input operation. Otherwise check for time out.
If time out occurs, call the system Error Handler(EH)
(Described in Section 13) with the time out error code
in the A-reg. Then reinitialize the timeout counter
and loop on status. Thus the time out error message
will be output periodically until the system is reset
or the device goes ready.

6. If the status flag is set (device ready, data is
avail able), then read the data from the data port.
Reset the status flag and the immediate return flag.
Complement the data and return it in the A -
The complement operation is dependent
interface to the device.

register.
upon the

9-23

9-66. RECORD ORIENTED DEVICES.

9-67. Introduction. Device Handlers which operate on a physical

record basis must meet additional requirements for IOCS. The

handler must place bytes directly into the IOCS buffer ,rather

than passing them via the A-register. The handler must also

properly process multiple record requests by IOCS. An optional

Card Reader Driver is shown in Section 12 of this manual. The

Card Reader Dri ver is suppl i ed on the FLP-SODOS di skette in

source and relocatable object format, but it is not integrated

into the system. The following discussion examines the design in

detail.

9-6S. Design Criteria. The handler is to input one card at a

time. The physical buffer size is 80 bytes plus 2 more for car-

riage return and line feed. Control and I/O will be done via a

ZSO PIO which takes 4 sequential port addresses (starting at

69 H in this case). The first port number is taken from a byte

in the handler. The handler uses interrupts where each interrupt

corresponds to one card column read. Thus, after card pick, the

handler must process SO fast, sequential interrupts. The handler

must read as many cards as are requested by IOCS.

9-69. Open Process. Interrupts are disabled. The card reader

interrupt handler address (CRDRDR) is placed into the Interrupt

Pointer Table. The least significant byte of the interrupt

vector is programmed into the ZSO PIO. The most significant byte

is loaded into the ZSO I-register (Interrupt Mode 3 is used).

The PIO is programmed for handshake (See the ZSO PIO Technical

Manual for full details). A physical buffer size of S2 is

returned to IOCS via the Be-register.

9-70. Close Process. No operation is performed; return to cal-

l e r.

9-71. Read Process.

1. The number of records (NREC) being requested by IOCS

9-24

is accessed and saved in the handler scratch area

(HSCR) of the laCS vector. Then NREC is set to zero.
NREC becomes the counter of the actual number of re
cords (cards) read by the handler.

2. The laCS physical buffer address is accessed. This is
the starting address
data which is read.

where the handler is to place
Recall that this buffer was

dynamically allocated by laCS when the device was
opened.

3. The card reader is tested for ready condition. If it
is not ready after 4 seconds, then a time out error

message is issued. The time out is reprogrammed and
loop on status. Note that immediate return is allowed
here (IRET bit).

4. When the card reader goes ready, PIa local interrupts
are enabled and a card pick is forced. CPU interrupts
are enabled.

5. A loop is entered until 80 columns have been read.
The interrupt handler (CRDRDR) has the responsibility

of reading the data and incrementing the column coun
ter (A-reg).

6. Interrupt Handler. (CRDRDR). The interrupt hand 1 er

7.

reads data from the PIa ports after each interrupt.
One interrupt corresponds to one card col umn. The
data is converted from hollerith image to ASCII via
the HOLTAB table. The data is then stored into the
physical buffer, pointed to by the DE register. The
DE-register is then incremented, as is the column
counter (A-register). Return from interrupt is done
after reenab1 i ng interrupts.
After all 80 columns of a card have been read CPU and
1 oc a 1 PIa interrupts are disabled. The number of re-
cords (NREC) is incremented.

9-25

8. The first column of the card is accessed in the phys

ical buffer. If the byte is EaT (ASCI I 04H, punch

9-7), then this is the end of file indicator. Upon

end of fi 1 e, the end of fi 1 e error code is pl aced in

the laCS vector, the buffer pointer is updated, and

return is made to caller.

9. If end of file was not found, then trailing blanks are

compressed in the physical buffer. Carriage return

and line feed are appended to the card image.

10. The number of records read is checked. If all have

been read, then the laCS buffer pointer is updated and

return to call ere

read is initiated.

at he rw i s e , an 0 the rca r d pic k and

~OSTEK FLP-80 ASSEMBLER V2.0 PAGE 0001
:2 OBJEC r ST # SOURCE STATEMENT DATASET = DKO:EXAM

0001
0002 THIS PROGgAM IS TO DE~ONSTRATE SOME OF THE USES
J003 OF IOCS. THE PROGRAM READS A LINE OF TEXT FROM
0004 A FILE ON DISK UNIT a IN BYTE 1/0 FORMAT. A COUNTER
0005 IS KEPT TO IDS~TIFY EACH LINE AND IS PLACED AT THE
0006 BEGINNING OF EA:H LINE. THE NEW LINE WITH THE LINE
0007 ~UMBER IS THEN OUTPUT TO ANOTHER FILE ON DISK UNIT
oe08 C IN ASCII LI~E FORMAT. THE FILE BEING READ IS
0009 CALLED 'PROGR~.INP'. THE NEW FILE IS CALLED 'PROGRM
0010 .OUT'. THE USER MAY USE THIS PROGRAM AS A GUIDE TO
0011 SETTING UP VECTORS AND FOR USING IOCS TO PERFORM
0012 VARIOUS FUNCTIONS. THE PROGRAM USES GLOBAL REF-
0013 RENCES AND MUST BE LINKED WITH SYSLNK.OBJ (SHIPPED
0014 ON THE SYSTEM DISKETTE).
0015
0016 GLOBAL JTASK
0017 GLOBAL JIOCS
0018 GLOBAL ?TXT
0019
0020 THIS SECTION CLEARS THE INPUT AND OUTPUT VECTORS
0021

00 219A01'
03 119A01'
06 13

0022 START
0023
0024
0025
0026
0027
0023

LD
LD
IN C
XOR
LD
LD
LDIR

HL,INVEC
DE,INVEC
DE

iHL -) INPUT VECTOR

;DE -) INPUT VEC + 1
07 }\F
08 77

109 015FOO
IOC SDBO

0029

A
(HL) , A

3C,95
iLOAD INITIAL 0 IN VECTOR
iSET UP LOOP COUNT TO •••
; ••• ZERO BOTH VECTORS.

0030 THIS SECTION STUFFS THE INPUT VECTOR AND PREPARES

)or:
) 12
)16
) 1ji.

)1£
::22
)26
J2A
J 2E
032
036
03A
03E
042
046
o 4A
04£
052
056
OSA
05£
062
)'56
o 6.n.

,0 71

0031 TO OPEN THE INPUT FILE FOR READING.
0032

FD219AJ1' 0033
FD3600FF 0034
F;)360144 0035
FD36024B 0036
FD360330 0037
FD360450 0038
FD3605S2 0039
FJ36054F 0040
FD3607!..t7 0041
FD360352 0042
FD36094D 0043
FD360A49 8044
FD360B4:: 0045
FD360:S0 0046
FD360DOO OEl47
?i:J360E01 0048
FD360FOJ 001-19
FD3610J4 0050
Fi.-)3613)OJ051
FD3614)0 0052
FD361'~10 0053
FD361500 0054
FI!36137C 0055
FD361C:OO 0056
2DFFFF 0057
FD7E.17 J058

LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LJ)
LD
LD
L)
LD
LD
LD
LD
LD
CALL
LD

1Y,I~VEC
(1Y+O) ,OFFH
(IY+1),'D'
(IY+2),'K'
(IY+3),'O'
(IY+4),'P'
(IY+5),'R'
(IY +6) , , 0 '
(IY+7),'G'
(IY+8),'R'
CIY+9),'M'
(1Y+10),'I'
(IY+11),'N'
(IY+12),'P'
(1Y+13),0
(IY+14),1
(IY+1S),Q
(IY+16),4
OY+19),0
(1Y+20),0
(IY+21),10H
(IY+22),O
(IY+27),07CH
OY+28) ,0
JI02S
A,(IY+23)

;IY -) VECTOR ADDRESS
;SET LUN = FF
;SET DEVICE TO DK:

;SET UNIT TO 0
;SEr FILE NAME TO 'PROGRM'

;SET EXT TO 'INP'

;SET VERSION TO 0
;SET USER # TO 1
;RE~UEST TO OPEN FOR READ
;FORMAT TO BYTE IIO, 4 REC
iCLEAR ERROR RETURN ADDR

;SET CFLAGS TO PRINT ERRORS
;CLEAR STATUS FLAGS
iSET USIZE TO 124 (7CH)

;OPEN INPUT FILE
iTEST FOR ERRORS

ADDR OBJECT

'0074 A7
'0075 C23F01'

'0078
'007C
'OOBO
'0084
'OOBB
'OOBC
'0090
'0094
'0098
'009C
'OOAO
'OOA4
'OOA8
'OOAC
'OOBO
'0084
'00B8
':)OBC
'ooeo
'OOC4
'OOC8
'OOCC
'OODO
'OOD4
'OOD8
, OODS
'OODE
, OODF

, 00£2
, ODES
'(; 0 EA
'ODED
, OOFO
'OOF1
, JOF4
'OOF5
'OOFB
'OOF9
'GOFB
, GOFE
'OOFF
'0100
'0102

FD21CA01'
FD3600FF
FD360144
FD36024B
FD360330
FD360450
;D360552
FD36054F
FD360747
FD360852
FD36094D
FD360A4F
FD360B55
fD360C54
FD360DOO
FD360E01
FD360F01
FD361014
FD361300
FD361400
FD361510
FD361600
FD361B7C
FD361COO
CD6FOO'
FD7E17
A7
C23FO 1 '

FD219A.01'
FD360F:)3
21FD01'
CDD900'
57
FD7E17
A7
C23FO 1 '
7A
FE04
CA4701'
77
23
FEOA
20E9

'0104 3}'l,.4E02'
'0107 3C
'0108 324£02'
'010B 21FA01'

MOSTEK FLP-80 ASSEMBLER V2.0 PAGE 000
ST # SOURCE STATEMENT DATASET = DKO:EXAM

0059
0060
0061 ;

AND
JP

A
NZ,ERMSG ~IF FOUND, PRINT MSG.

0062 ; THIS SECTION STUFFS THE
0063 ; TO OPEN THE OUTPUT FILE

OUTPUT VECTOR AND PREPARES
FOR WRITE.

0064 LD IY,OUTVEC
0065 LD (IY+O),OFFH
0066 LD (IY+1),'D'
0067 LD (IY+2),'K'
0068 LD (IY+3),'O'
0069 LD (IY+4),'P'
0070 LD (IY+5),'R'
0071 LD (IY+6),'0'
0072 LD (IY+7),'G'
0073 LD (IY+8),'R'
0074 LD (IY+9),'M'
0075 LD (IY+10),'O'
0076 LD (IY+11),'U'
0077 LD (IY+12),'T'
0078 LD (IY+13),0
0079 LD (IY+14),1
0080 LD (IY+15),1
0081 LD (IY+16),14H
0082 LD (IY+19),0
0083 LD (IY+20),0
0084 LD (IY+21),10H
0085 LD (IY+22),0
0086 LD (IY+27),07CH
0087 LD (IY+28),0
0088
0089
0090
0091

CALL
LD
AND
JP

JIOCS
A,(IY+23)
A
NZ,ERMSG

;IY -) VECTOR ADDRESS
i8ET LUN = FF
iSET DEVICE TO DK:

;SET UNIT TO 0
;5ET FILE NAME TO 'PROG:

;SET EXT TO 'OUT'

;SET VERSION TO a
iSET USER # TO 1
iREQUEST TO OPEN FOR RE~
;FORMAT=ASCII LINE, 4 RE
;CLEAR ERROR RETURN ADDB

iSET CFLAGS TO PRINT ERR
;CLEAR STATUS FLAGS
;SET USIZE TO 124 (7CH)

iOPEN INPUT FILE
;TEST FOR ERRORS

;IF FOUND, PRINT MSG.
0092 ;
0093 ;
0094

THIS SECTION READS DATA FROM THE INPUT FILE,
ADDS THE LI~E # TO THE BEGINNING OF THE LINE,
AJD OUTPUTS THE NEW LINE TO THE OUTPUT FILE. 0095 ;

0096 ;
0097 HEAD
0098
0099
0100 INLOOP
0101
0102
0103
0104
0105
0106
0107
0108
0109
0110
0111
0112
0113
0114
0115
0116

LD
LD
LD
CALL
LD
LD
AND
JP
LD
CP
JP
LD
INC
CP
JR

LD
INC
LD
LD

IY,INVEC
OY+15),3
HL,INBUF
JIOCS
D,A
A,(1Y+23)
A
NZ,ERMSG
A,D
04H
Z,£XIT
(HL),A
HL
o AH
NZ,INLOOP-S

A,(LINE)
A
(LINE),.~

HL,OUT3UF

iIY -) INPUT VECTOR
;REQUEST FOR READ
;HL -) BUFFER
;READ 1 BYTE FROM FILE
;STORE CHAR IN DREG
;TEST FOR ERROR

;RESTORE CHAR IN A
iTEST FOR END OF FILE
;EXIT IF FOUND.
;STORE CHAR IN BUFFER
;INC BUFFER POINTER
;TEST FOR LF
iNO, CONTINUE READING

;GET CURRENT LINE NUMBER
;INC NUMBER
iSTORE NEW NUMBER
;HL -) OUTPUT BUFFER

MOSTEK FLP-80 ASSEMBLER V2.0 PAGE 0003
DDt~ 03JECr ST # SOURCE STATEMENT DAT~SET = DKO:EXAM

,10F:
110F
'110
\ 111
) 112
) 113
) 11 6
) 117
) 118
) 11 9
) 1 1 C
) 11 D
) 11 £
)120

J 1 21
0125
0128
0121"3
0122
0132
0136
0139
013C
J13D

F5
OF
OF
OF
OF
CD7201'
77
23
F1
CD7201 '
77
23
3:t:20
77

FD21CA01 '
21FA01'
FD751:J
FD741.i
FD360?04
FD361S00
CDZEOO'
FD7E17
A7
28A3

'0117
0118
0119
C120
0121
0122
0123
0124
0125
0125
C127
0128
0129
0130
0131
0132
0133
0134
0135
0135
0137
0133
0139
0140
0141
0142

PUSH
RRCA
RRCA
RRCA
RRCA
CALL
LD
INC
POP
CALL
LD
INC
lD
LD

LD
LD
1D
LD
LD
1D
CALL
LD
A~D

AF

}\SCII
(H1),}\
HL
AF
.I'1SC11
CHL) ,A
HL
A,' ,
CEL),A

IY,OUTVEC
HL,OUTBUF
(IY+25),L
(IY+26),H
(IY+1S),04
(IY+21),O
JIOCS
A,(IY+23)
A
Z,READ-$

iGET UPPER DIGIT OF LINE #

;CONVERT DIGIT TO ASCII
iSTORE ASCII CHAR IN BUFFER
;INC BUFFER POINTER
iGET LOWER DIGIT
;CONVERT TO ASCII
iSTORE ASCII CHAR IN BUFFER

iSTORE SPACE AFTER LINE #

;IY -) OUTPUT VECTOR

iSTORE ADDRESS OF BUFFER •••
; ••• IN UBFFR FOR WRITING.

;TURN OFF ERROR PRINT
iOUTPUT NEW LINE
iTEST FOR ERROR

;NO ERROR, GET NEXT LINE

0143 T~IS SECTION PRINTS AN ERROR MESSAGE
0144 AND EXITS ~iTER CLOSING THE FILES.

013F
::142
0144

'0147
I C' 143
, 014 F
, 0 1 S2
'')156
'[:159
'J15C
'015F
'J153
';)166
'016A

0145
217C01' 0146 EBMSG
1r::OO 0147
CD??FF 0148
FD219A01' 0149 EXIT
FD360F02 0150
C)3701' :,151
FD21C1\'01 ')152
217BO'1' 0153
FD7519 0154
FD741l1. C155
FD360204 0156
C1)5001' 0157
FJ3502'02 0158
CD6401' 01S9

'J16J 3t:81
'()16F C;)FFFF

016 C'
I) 1 61
0162

LD
LD
CALL
1D
L)
C,lUL
LD
LD
LD
LD
LD
CALL
L)

CALL
1D
CALL

HL,!1SC;
E,O
PTXT
IY,INVEC
(1Y+1S),2
JIOCS
IY,)UTVEC
HL,FILEND
(IY+25),L
(IY+26),H
(1Y+15),4
JIOCS
(IY+15),2
,nocs
A , 1
JTASK

;HL -) MESSAGE TO PRINT
;SET FOR CONSOLE DEVICE
;PRINT MESSAGE
;IY -) INPUT VECTOR
iREQUEST TO CLOSE INPUT
;CLOSE FILE
;IY -) OUTPUT VECTOR

iPREPARE TO WRITE 04H AT ••
; ••• END OF OUTPUT FILE.
;REJUEsr TO WRITE
iOUTPUT 04
;CLOSE REQUEST
;CLOS£ OUPTUT FILE

;RETURN TO MONITOR

0163 ROUTINE TO CONVERT 4 BIT HEX INTO ASCII
t) 164

'0172 i60F
'0174 C590
'0176 27
"0177 C;:I.+O
'0179 27
·01n. C9

'0173
'::;,17C
'017 .:;

04
OJOA
4552524F

0165 n.SCII
0165
0167
0168
') 1 69
0170
0171
0172 FILEND
iJ 17 3
0174

A~D

ADD
D~A

ADC
DAA
RET

DEFB
DEE'W
DEFM

O ~·· :: ti

F.,90H

1\,4011

0411
:) A ') DE
'E~qOR FOUND DURNG EXECUTION'

MOSTEK FLP-80 ASSEMBLER V2.0 PAGE OOOL
ADDE OBJECT ST # SOURCE STATEMENT DATASET = DKO:EXAM

5220464F
554E4420
4455524E
47204558
45435554
494F4E

'0199 03 0175 DEFB 03H
0176 ;

')019A 0177 I~VEC DEFS 48
')01CA 0178 OUTVEC DEFS 48
')01FA 0179 OUTBUF DEFS 3
')01FD 0180 INBUF DEFS 80
, J24D 00 0181 DEFB 0
'024E 00 0182 LINE DEFB 0

0183 END

ERRORS=OOOO

10-1

SECTION 10

FLOPPY DISK HANDLER (FDH)

10-1. INTRODUCTION

10-2. All calls for communication with the disk will be through

the Floppy Disk Handler. Because a disk is not a character
oriented device, all calls will be for a file whose minimum

length is 1 record of 124 bytes. By maintaining a directory in
the first two tracks of the disk, file operations may take place
independent of the physical location of the data on the disk.

The Disk Handler System not only provides file reading and

writing capability but special pointer manipulation, record
deletion and insertion, and directory manipulations such as file

creation, renaming, and deletion. The FDH outlined here can
serve as a building block for a file maintenance system, a disk

based Assembler and Text Editor, BASIC and other high level
languages.

10-3. COMMUNICATION

10-4. The FDH can be communicated with by a calling vector

(equivalent to the IOCS calling vector-pointed to by IY) which
contains all parameter information with each parameter having a

fixed displacement from the vector pointer. This vector has been
appended to the I/O Control System vector. The purpose of the

IOCS is to generalize all calls to the peripheral devices so as
to di ssol ve any device dependence of data structure. However,

because the disk is a file oriented device as opposed to being a
character oriented device, much additional calling information is

required. The required entries into the 48 byte IOCS defined
vector are listed as follows.

10-2

10- 5. DOS RELATED VECTOR PARAMETERS

FIELD HBYTES OFFSET NAME DESCRIPTION FORM

3 1 (IY+3) UNIT UN IT n umbe r (ASCII)

4 6 (IY+4) FNAM Filename (ASCII)

5 3 (IV+I0) F EXT F i 1 e ext ens ion (ASCII)

6 1 (IV+13) VERS Fil e Version (Binary)

7 1 (IV+14) USER User n umbe r (Binary)

8 1 (IV+15) RQST Request Code (Binary)

14 1 (IV+23) ERRC Error Code (Binary)

16 2 (IV+25) UBFFR User's Buffer (Binary)

Address

18 1 (IV+29) NREC Number of records (Bin a ry)

to be transferred

19 1 (IV+30) SCTR Current sector (Binary)

pointer

20 1 (IV+31) TRCK Current track (B ina ry)

pointer

21 1 (IV+32) LSCTR Last Sector (Binary)

22 1 (IY+33) LTRK Last Track (Binary)

10-3

23 1 (IY+34) NSCTR Next Sector (Binary)

24 1 (I Y +3 5) NTRK Next Track (Binary)

10-6. CALLING CONVENTIONS

10-7. There are three ways for a user to communicate with the
Disk System. The user may make calls through the IOCS defined
general purpose request codes 0-7H. These request codes are con
verted to a set of Macros of request codes made up from the com
plete set of DOS request codes. This permits the disk system to
be used as if it were any standard character type device. The
second way to communicate is through the complete set of disk re
quest codes. This allows use of more complex but more powerful
requests that would be used by sophisticated environments such as
the Text Editor. The third communication technique is through
direct disk controller commands. See Section 11 for more
information.

10-8. GENERAL PURPOSE IOCS DISK MACRO REQUESTS

CALLING SEQUENCE - LD
CALL

RQST CODE NAME

02H CLOSE

03H READ

A,O
JTASK

;FDH JTASK CODE
;CALL FDH VIA JTASK

DESCRIPTION

The Close command wi 11 store off all
linkage information into the direc-
tory and update the sector and track
maps of the diskette containing the
fil e.

Read Next N Records - Reads the next

10-4

RQST CODE NAME

04H WRITE

05H REWIND

06H IN IT

07H ERASE

DESCRIPTION (CONT.)

N records~ where N is in (IY+29)~

into memory starting at transfer ad
dress given (UBFFR). The pointer
will be positioned on the last re
cord read and if error exit is re
quired~ NREC contains the actual
number of records transferred.

Insert N Records Allocates and
writes N records from memory start
ing at the Data Transfer Address~

(UBFFR) with the first record writ
ten after the current one. The
pointer will be left positioned at
the last record written.

The Rewind command positions the
pointer back to the directory entry
for the file. All records will now
be written before any existing re

cords ~ or the fi rst record may now
be read.

Initialize - Reads sector and track
maps from all disks which are ready
and clears active file table of the
FDH.

Erase File Writes reformatted
directory entry over the entry for

the file~ de-allocates all re-

RQST CODE NAME

10-5

DESCRIPTION (CONT.)

cords in the file, removes the ac

tive file entry from the table, and

rewrites the updated sector map.

Any records foll owi ng one not re

adable will not be reallocated. The

file must be opened before it can be

erased.

10-6

10-9. COMPLETE DOS REQUEST CODES

REQUEST CODE

18H

1CH

1EH

20H

22H

DESCRIPTION

Initialize - Reads sector and track maps from all
diskettes which are ready and clears active file
table of the FDH. This is equivalent to request
code 06H.

Open Fi 1 e - Finds fi 1 e in directory and creates
an entry in the active file table; pointer re
mains on the directory but the number of records
in file is placed in NREC. If file has a BIN ex
tension, UBFFR is set to the binary load address.

Create File - Creates directory entry for a file
and creates entry in active file table. Error is
returned if file already exists and the operation
is aborted. Pointer is positioned to the direc
tory entry for the file.

Close File - Writes updated directory entry back
to the Di sk Di rectory, removes the act i ve fi 1 e
table entry, and rewrites the updated sector map.
This is equivalent to request code 02H.

Era s e F i 1 e - W r it e s ref 0 rm at ted d ire c tor yen try
over the entry for the file, de-allocates all re
cords in the file, removes the active file entry
from the table, and rewrites the updated sector
map. Any records following one not readable will
not be reallocated. Thi sis equival ent to re-

10-7

COMPLETE DOS REQUEST CODES (CONT.)

REQUEST CODE

24H

26H

28H

OPERATIONS

quest code 07H.

Rename Fil e Takes a second filename and
filetype starting in the second parameter vector
(IY+48) and verifies that it does not exist or

takes error exit. The directory entry for the
first filename is replaced by the one for the
second. Two contiguous I/O vectors must be de-
fined. The first is a complete 48 byte I/O
vector and contains the current name of the f i 1 e
(which must be ope n) • The second contains the
new name of the file and may consist of only the
first 15 bytes of the standard I/O vector (con
tains only the new filename).

Rewind File - Repositions the pointer for the
file to the directory entry with the next record
poi nt i ng to the fi rst record to be read by Read
Next Record. This is equivalent to request code
05H.

Read Next N Records - Reads the next N records,
where N is in (IY+29), into memory starting at
transfer address given in (UBFFR). The pointer
will be positioned on the last record read and if
error exit is required, NREC contains actual
number of records transferred. Thi sis equi va
lent to request code 03H.

10-8

COMPLETE DOS REQUEST CODES (CONT.)

REQUEST CODE

2AH

2CH

2EH

30H

32H

34H

36H

OPERATIONS

Read Current Record - Reads the single current
record into memory starting at the transfer ad
dress. The pointer will not be moved.

Read Previous Record - Reads the single record
previous to the current one into memory starting
at the transfer address given. The pointer will
be positioned on this record.

Skip Forward N Records - Moves pointer N records
forward but no data will be transferred.

Skip Backward N Records - Moves the pointer N re
cords backward but no data will be transferred.

Repl ace (Rewrite) Current Record - Rewrites the
single current record from memory starting at the
Data Transfer Address. The pointer is not moved.

Insert N Records - Allocates and writes N records
from memory starting at the Data Transfer Ad
dress, (UBFFR) with the first record coming after
the current one. The pointer will be left posi
tioned at the last record written. This is
equivalent to request code 04H.

Delete N Records - The current record and the
next N-1 records are de-allocated and removed
from the file.

FIGURE 10-1. EFFECTS OF FDH COMMANDS

REQUEST FILENAME, EXT, VERS, USER NREC UBFFR SCTR/TRK

OOH OPENR File length Load Address Directory
01H OPENW 0 Directory
02H CLOSE 0 Unknown
03H READ Number sectors (UBFFR) Last sector read

read + N * 124
04H WRITE Number sectors (UBFFR) + Last sector written

written + N * 124

05H REWIND 0 Directory
06H INIT 0 Unknown
07H ERASE File length Unknown, File closed

lCH OPEN File length Load address Directory
lEH CREATE 0 Directory
24H RENAME Moved from vector following 0 Directory

this one.

2AH RDCURR 0 (UBFFR)+124
2CH RDPRVR 1 (UBFFR)+124 Previous sector
2EH SKIPFWD Number successful Last sector read

skips
30H SKIPBKD Number successful Last sector read

skips
32H RPCURR 0 (UBFFR)+124
36H DELETE Number records Previous sector

deleted
3CH JUMP 0
3EH DISKID Disk id (11 characters) 0
40H STATUS Sectors available, used 0

and bad (2 bytes each)

10-9

10-10

3CH

3EH

40H

Jump - Go to sector/track defined by SCTR (IY+30)
and TRK (IY+31). No data is transferred.

Read Disk Id - Loads disk name (11 bytes) into
filename, extension and version fields of the I/O
vector.

Read Status Loads available, used and bad
sector counts into filename field of the vector.
2 bytes each (total of 6 bytes).

10-10. ERROR RETURN

10-11. The error parameter is in (IY+23) and is returned at the
end of a DOS operation the contents of (IY+23) is also in the
accumulator. A 0 return indicates th·at no error has occurred.
The error return codes are:

ERROR CODE
Bits 0-5

OlH

02H

03H

INTERPRETATION

Invalid Operation - A request word was specified
which is not a valid DOS request.

Duplicate File - An attempt was made to create a
directory entry for a file that already exists.
Can occur only on create or rename. In the case
of OPENW, the file is opened but this error is
reported only as a flag.

Active File Table Full - An attempt was made to
insert another entry in the active file table
when it is full. Can occur only on open or cre
ate. A maximum of 7 files may be open at any
time.

ERROR CODE

05H

06H

08H

09H

OAH

OBH

10-11

INTERPRETATION

name.

Directory Full - There is no more space to insert
another directory entry.

Wri te Protect - Di skette is wri te protected and
an attempt has been made to write on it.

File Not Open - An attempt was made to close or
perform some record operation on a file which had
not been opened. Can occur on any operation ex
cept initialize, open, or create.

End of File - An attempt was made to advance the
pointer beyond the last record in the file. The
error can occur on any read, delete or skip oper
ation. In the case of delete it indicates an at
tempted delete operation on the directory.

Disk Error - A disk I/O error occurred during the
operation. Data may have been lost. Can occur
on any operation except rewind.

Disk Full - Diskette is full and will not allow
the allocation of another record. Can occur only
on insert. The number of records successfully
transferred is left in NREC. The file must be
explictly closed or erased

10-12

ERROR CODE

OCH

ODH

OEH

OFH

10H

11H

INTERPRETATION

Pointer Error - The pointers read do not agree
with the next or previous record. Can occur on
any record operation except rewind. Pointer er
rors occur because a sector is not readable or
because an appl ication program has written on a

disk without intializing the handler first, or
two diskettes were used with the same Disk 10.

Directory or map transfer error. A read or write
error occurred during operations involving the
disk directory or sector and track maps. If

operation occurred during a close or erase,
directory or maps could be destroyed.

File Already Open - An attempt was made to open

or create a file which is currently active.

Disk Not Ready - Can occur on any operation when
a diskette is not fully inserted and door closed.

Wrong Disk - A file is being accessed on a disk
whose 10 is different from the one currently in
memory. This can occur if disks are changed dur

ing operations without initializing. Can occur
only on close, open and erase. Error can be
avoided by initializing diskette before oper
ations begin.

Non-Existent Disk A unit number has been

specified which is not supported by the FDH.
Typically, units DK2 or DK3. See Section 15 for

details on how to SYSGEN a system to handle more

1AH

1BH

1 CH

1DH

1EH

20H

10-13

than two disk drives.

Begi nni ng Of File - An attempt was made to move
the poi nter backwards past the begi nni ng of the
fil e. Can occur on read previ ous record, ski p
backward, read current record, or rewrite current
record.

Invalid drive, track, or sector. Controller has
received invalid drive number, or sector and
track out of normal range. Can occur on jump or
as a result of some fatal FDH error.

Controller not able to locate track during seek,
read, or write operation.

Sector not found - Sector address marks not re
adable.

CRC Operation - incorrect data has been flagged
by CRC check during reading.

Data lost - hardware problem causing data overrun
in reading or writing.

10-12. DIRECTORY

10-13. Associated with each diskette is, a 4K block of storage
divided into 32 sectors which contain the Directory information:
track 0, sector 1-26, track 1, sector 1-6. Each sector contains
6 entries of 20 bytes/entry. Each file name will be entered into
the Directory or accessed from the Directory by a hash function

10-14

for the Filename. This facilitates searches for Directory

entries and reduces RAM requirements for Hie Directory buffer.

The format for each Directory entry is the following:

BYTE
0-5

6-8

9

10

11

12-13

14

15

16

17
18

19

CONTENTS

Filename, left justified, blank filled

Extension

Version - Reserved by Mostek for future use
User

Key - Reserved by Mostek for future use

Number of records in file

Sector - Location for first record in file

Track

Sector - Location for last record in file

Track

LSB - Address for Load Lo£ation for Binary File,

MSB - or file-date storage if non-Binary File

Each file is composed of one or more records with each record

containing trailer information consisting of a forward and

backward pointer to locate the next and preceeding records

respectively. A null pointer (FFH) is used to indicate no next

record or no previous record.

10-14. DISK FORMAT

10-15. Should any of the file structures become disjoint by

extended periods of erasing and inserting of new and different

length files, the operation of backing up a disk (copying) will

optimize the actual file structure on the new disk. The FDH

treats the disk as a continuous string of 1964 sectors. Every

other sector is written on each track and a 5 sector shift is

used between starting sectors of contiguous tracks to allow for

10-15

head motion. This allows a complete track to be read or written

in 2.2 revolutions. The sector allocator looks for the first

string of available sectors which is large enough for the file

being stored (defined by NREC) when inserts are done.

10-16

FIGURE 10-2. FLP-80DOS V2.1 DISKETTE FORMAT

DIRECTORY
Track 0 SCTR 0 thru TRK 1 SCTR 6. Each sector contains 6
20-byte entries. See section 10-13 of FLP-80DOS Manual.

SECTOR MAP
TRK1 SCTR7 thru

4 byte group
FORMAT: 1 BYTE

TRACK 0 -
1 8 9 16 17

SECTOR NUMBER

TRACK 1 -
1 8 9 16 17

EACH SECTOR ON THE DISK IS ASSOCIATED
MAP:

BIT = 0 =) SECTOR NOT IN USE
BIT = 1 =) SECTOR IN USE OR BAD.

First
Side

TRACK 76
1 8 9 16 17

TRACK 77
Second
Side
(A 1 1 Zeros .
for single-sided
Diskette)

TRACK 153

010 1 010 1 0

Track 1 Sector B

24

24

WITH ONE

24

101

0
25,26

25,26

BIT IN

o 0

Last 6
bits in
each
4-byte
group is
not used

THE SECTOR

PHYSICAL
TRACK 1

o 1 0 1 SECTOR B

Last 4 bytes of TRK 1 SECTOR B is all 111"s. The "11" pattern is
not a required pattern.

10-17

NAME OF DISKETTE AND SPACE ALLOCATION

TRACK 1 SECTOR C

First 73 bytes (bytes 0 thru 72) of TRK! SCTR Care 1I11 1 S.

Diskette name is 11 sequential ASCII bytes starting in byte 73.

AvailabL:; space on disk is number of sectors. Quantity is

located in two hex bytes, least significant byte first, in bytes
84 & 85.

Used space is in bytes 86 & 87, same format.

Number of bad sectors is in bytes 88 & 89, same format.

Diskette number is in bytes 90 & 91 (random number given by the

system).

The rest of sector C is not used.

DATA (FILES)
Data begins in TRK! Sector D.

Double sided disk uses same format.

Track 77 is on second side opposite Track 0, Track 153 is on

second side opposite track 76.

10-18

10-17. SECTOR AND TRACK FORMATS

10-18. The sector map is stored in track-sector location 1-7
through I-B. Each bit of each byte in the sector map represents

one sector. A bit is set for its respective sector if:
1) The sector has been linked into the doubly linked list

of the file structure.
or
2) The operating system has tried without success to store

information in the sector and has therefore made this
sector not available.

The sector map resides in memory along with FDH and is changed
w hen any f i 1 e i s be i n gal t ere d bye r as u r e, del e t ion, 0 r ins e r
tion. The map is stored off when these operations are com
plete. Bad sector locations will be de-allocated as if they were
in use.

10-18. DISKETTE - IDENTIFICATION

10-19. NAME OF DISKETTE AND SPACE ALLOCATION

Diskette identification and space allocation information reside
on track 1 sector C. The first 73 bytes of this sector are 11H
-this is not a required pattern. The diskette name is contained
in the following sequential bytes (73 through 83). The available
space on the diskette (in sectors) is contained in bytes 84 and
85, most significant byte last. The number of used sectors is

contained in bytes 86 and 87; the number of bad sectors in bytes
88 and 89. The diskette number is in bytes 90 & 91. This number
is randomly assigned at format time. The rest of sector C is not
used.

10-19

10-20. DATA (FILES)

Data is stored beginning on track 1 sector D. A double-sided

disk uses the format described above, except that track 77 is on
the opposite side from track 0 and track 153 is on the opposite
side from track 76.

11-1

SECTION 11

DISK CONTROLLER FIRMWARE (DCF)

11-1. INTRODUCTION

11-2. The Disk Controller Firmware (OCF) interfaces from the
Flexible Disk Handler (FDH) to the Mostek FLP-80 Disk Controller

Board. Input to the OCF consists of request code, unit number,

track number, and sector number. Control of the hardware is

exercised via 6 parallel I/O, ports which are decoded on the
FLP-80 board. A bootstrap sequence is included in the OCF which

is used to boot binary files from disk into RAM. Interactive

boot and save sequences are also available.

11-3. SOFTWARE CONFIGURATION

11-4. The DCF resides on the SOB-80 in one 2708 PROM located at

address ECOOH. It is approximately lK bytes long.

11-5. CONTROLLER OVERVIEW

11-6. The calling address for the OCF is ECOOH. All requests
are made via the 48-byte IOCS parameter vector. See Section 9 of
this manual for a complete definition of the vector. After each

request is processed and the operation is completed, return is
made to the caller. This is not an interrupt driven program;

rather, the operation must be completed before further processing

can take place. All I/O to the disk is done via a hardware FIFO.
A complete sector (128 bytes) is buffered in the FIFO before

transfer from/to the DCF takes place. All registers except the

flags are preserved by the ocr. After an operation takes place,

11-2

the zero flag is set if no error occurred. The zero flag is re-
set if any errors occurred during the operation. If any error
occurred, then bit zero of the vector ERRC parameter is also set.
The Unit number is assumed to be in the vector UNIT parameter,
the track number in TRK, and the sector number in SCTR. The re
quest code must be in RQST. The unit may be 0-3. The track may be
0-76 for single-sided drives or 0-153 for double sided drives.
The type of drive is indicated by bit a of port E2H; if set, a
double-sided drive is indicated. The sector may be 1-26. The re
ader is referred to the Disk Drive Controller Hardware Manual for
his hardware configuration. A complete software 1 isting of the
controller is given in 'OOPS-80 Program Source Listing', MK78589,
which is available only to OEM users. The following IOCS vector
parameters must be set up; IV must contain the first address of
the vector. Numbers enclosed in parenthesis indicate
displacement from the beginning of the vector.

UNIT (3) - disk unit number (either binary or ASCII)
RQST (15) - request code, described in paragraph 11-7.
UBFFR (25) - transfer address for data for read or write

SCTR (30)
TRK (31)

operation.
- sector number
- track number

The following parameters are returned:

ERRC (23)

SCTR (30)
TRK (31)

- bi t 0 set if an error occurred. The error
code is saved in location FF09H. Note that
bit 0 only is set or reset. The rest of the
byte is left unchanged.

- not changed
- not changed

11-3

LSCTR (32) - last sector pointer
LTRK (33) - last track pointer
NSCTR (34) - next sector pointer
NTRK (35) - next track pointer

NOTE: OFFH in LSCTR and LTRK indicate the current record is
the first record in the file. OFFH in NSCTR and NTRK indicate
end of file.

11-7. DISK CONTROLLER REQUESTS

11-8. On the following controller operations, request codes are
placed in RQST, sector and track into SCTR and TRK, and transfer
address into UBFFR. On exit, UBFFR is incremented by 124 if data
is transferred. Only one sector is transferred per call.

COMMAND CODE COMMAND

10H Status

IIH Read

12H Write

13H Seek

OPERATION

Returns disk drive status of disk
drive not ready, disk drive not safe,
disk drive write protected (see 11-9
for status code format).

Transfers a sector of data to host
specified buffer area.

Write a sector of data with ad-
dress marks and CRC from specified
host buffer.

Positions head to track location
specified in TRK.

11-4

14H

15H

16H

17H

Restore

Read 10

Write
Deleted

Forma t

In it i ali ze s the disk unit and
position the head to track a (out
ermost track).

Reads next available sector 10 and

track, and places it into a two
byte read 10 buffer. Byte 0 i s
the sect 0 r and Byte 1 i s the
track.

Identical
that a
replaces
ma rk •

to write command except
deleted data address mark

regular data address

Formats track specified in TRK to
IBM 3740 specification.

NOTE that this formatting operation is not the same as the PIP
formatting operation (see section 3). While this format command
causes sector address and timing marks to be copied from a user
created buffer to the disk being formatted, the PIP format
command formats and also builds a file directory on the disk. A
4992 byte buffer is required (pointed to by UBFFR) which contains
timing marks and other formatting information.
command is not recommended.

11- 9. DISK CONTROLLER ERROR RETURN CODES

11-10. U po n encountering an e r ro r, Bit a of the

Use of this

E.RRC parameter
i n the IOeS vector i s set. An error code i s placed i nt 0 loca-
tion F F09H to indicate the type of error:

BIT ERROR IF SET
7 Invalid drive, track or sector

6

5

4

3

2

1

o

Disk unit not ready
Track seek error
Sector not found
CRC error
Data lost
Disk is write protected
Attempt to read a deleted sector

11-5

The Z flag is set if no error was detected otherwise it is
reset.

11-11. LINKED FILE LOADER

11-12. The Linked File Loader is a part of the DCF PROM. It ac
cesses the disk at a given track and sector and loads information
from the di sk unt il the 1 ast sector in the 1 inked structure is
found. The Unit, Track/Sector address and load address are
passed via an laCS vector which is pointed to by the IY-register.
10 retries are performed. The laCS vector is set up as shown for
the DCF, described above. Entry address is EC03H. No request
code is required.

11-13. INTERACTIVE BOOT PROCESS

NOTE: This procedure is used only to load programs into areas
different than the load address defined in the directory.

11-14. This DCF program allows the user to specify the starting
track and sector number of a file to be loaded directly into RAM.
All interaction is via the console device. The FLP-80DOS system
must be in RAM because laCS is used. The information from disk
is loaded sector by sector. The linked structure on the disk is
followed until the last sector in the file is loaded.

To use this process, perform the following command sequence:
$DDT(CR)
.f EC09(CR) - user executes the starting address of

the interactive boot process.

11-6

LOAD ·ADR: aaaa(CR) - user enters RAM starting load address
(in hexadecimal) for information from
the disk. Console interaction at
this point is the same as DDT (See

Sections 7-12 and 7-18).
UNIT,TRK,SCTR: u,t,s(CR)

- user enters disk unit number
(0,1,2,3), starting track number and
starting sector number of information
to be loaded from disk. All three
numbers are entered in hexadecimal.

- after loading is complete, the DDT
prompt is issued.

If any errors occurred during the load process, then the fol
lowing message will be printed on the console:

DSK ERR

If the FLP-80DOS system is not in RAM, then a small section of
code which performs the following instructions must be executed
to bypass usage of IOCS for console interaction:

LD A,2
LD (OFFI2H),A
JP ECOgH

11-15. INTERACTIVE SAVE PROCESS

NOTE This procedure may be used only for modifying the direc-
tory or Track/Sector maps. Improper use can destroy
files.

11-16. This DCF program allows the user to save a section of RAM
on disk as a set of sequential sectors. The doubly linked struc
ture is maintained on disk, but tracks and sectors are not al.;.
located as in the Di sk Handl ere The sectors are allocated
sequentially and without regard to the disk directory. All

11-7

interaction is via the console device. The FLP-80DOS system must

be in RAM because 10CS is used for consoie I/O. To use this proc
ess, perform the following command sequence:

$DDT(CR)

.l EC06(CR) - user executes the starting address of the
interactive save process.

SAVE ADR,#SCTRS: aaaa,bb(CR)

- user enters the starting address of the
information to be saved on disk and the

number of sectors to be saved. Each sector
is 124 bytes long, and up to FFH sectors may
be saved (31744 bytes). Console interaction
is the same as DDT. The two parameters are

entered in hexadecimal.
UNIT,TRK,SCTR: u,t,s(CR)

- user enters d·isk unit number (0,1,2 or 3),
starting track number and starting sector

n u m b e r for i n form a t ion to be s a v e don dis k •

Sectors and tracks are allocated sequentially

increasing. All three numbers are entered in
hexadecimal.
after saving is finished, the DDT prompt is

issued.

If any errors occurred during the save process, then the fol

lowing message will be printed on the console:
DSK ERR

If the FLP-80DOS system is not in RAt~ then a small section of

code which performs the following instructions must be executed
to bypass usage of IOCS for console interaction:

LD A,2
LD (OFF12H),A ;SET DEBUG FLAG

JP OEC06H

12-1

SECTION 12

I/O HANDLERS

12-1. INTRODUCTION

12-2. This section describes the I/O handlers supplied with
FLP-80DOS. In addition, listings of these handlers are included
here to aid the user in writing his own handlers for his own de
vices. The system that is shipped to you contains only TK (key
board), TT (console output), and CP (Centronics line printer)

handlers linked into it. The other handlers are supplied as
source and relocatable object modules. In order to use them in
your system, you must perform a SYSGEN (System Generation);
Hardware configurations are documented in the appropriate system

Manual.

12-2

12-3. CR - CARD READER

DESCRIPTION - I/O handler. This handler interfaces a Documation
M200 Card Reader to the FLP-80 system via two PIO
ports. It is callable by IOCS. This is an inter
rupt driven driver. Immediate return is supported.

OPERATION

OPEN.

CLOSE.

READ.

Interrupts are disabled. The address of the card
reader interrupt handler is entered into the FLP-80
Interrupt Handler Address Table. The interrupt
handler address is also programmed in to Port A
control. Port A is then programmed for mode 2,
and local interrupts are disable. The least
significant byte of the interrupt handler address
is also programmed
then programmed.
to physical record

into Port B control. Port B is
Finally, the BC register is set
size of 82 (80 card columns plus

carriage return and line feed). Interrupts are re
enabled.

No operation is performed in the handler.

Initialize. The number of physical records to be
read (NREC) is recorded, then zeroed. The assigned
buffer area is noted. The card reader is checked
to see if it is ready. Initial time out is 4
seconds. Immediate return is supported at this
point. Additional time out counts are 20 seconds
each. When the reader goes ready, a card pick is

12-3

initiated.

Card Input. Each column of data on the card causes
an interrupt which is monitored by ICRDRDRI. The
interrupts are counted by the A - register until 80
interrupts are regi stered. During reading, con
version of the card EBCDIC data is done in ICRDRDR 1

via table IHOLTABI.

Card Massaging. After the card has been read into the IOCS buf
fer, interrupts are disabled in the CPU and locally. If an EOT
(ASCII 04H) exists in column 1 of the last card, an end-of-file
sequence is initiated (discussed below). Trailing blanks on the
card are compressed. A carriage return and line feed are
appended to the resultant card image. NREC is incremented and
checked to see if all cards requested were read. If not, another
card is read. Otherwise, the IOCS buffer pointer is updated to
the byte following the last card image and the subroutine returns
to caller.

End-of-file. Upon end-of-fil e (04H in card col umn 1), the EOF
error code (9) is placed in the IERRC 1 parameter of the vector.
The IOCS buffer pointer is updated and return is made to caller.

12-4

12-4. CP-CENTRONICS LINE PRINTER

DESCRIPTION - I/O handler. This handler interfaces to any Cen
tronics line printer. Immediate return is not
supported. I/O timeout is checked. Tab (09H)
and form feed (OCH) are decoded and the ap
propriate horizontal and vertical spacing is done.

OPERATION

OPEN The ports are initialized, the horizontal and
vertical counters are initialized, and a physical
record size of one is returned.

CLOSE A form feed is a issued to eject the paper from
the printer at the end of an operation. The form
feed is translated into a series of line feeds as
described below.

WRITE The character to be written is checked. IF it is
a tab, then it is translated to spaces mod-So If
it is a line feed then the vertical counter is
incremented. If it is a form feed, then the page
is ejected by issuing a series of line feeds.
Users with form feed option may wish to delete
this function. If it is a carriage return, then
the horizontal counter is initialized. The line
width is checked to truncate each line to 'LWIDTH '
characters. Status is checked. If not ready,
then the timeout is checked. If time out has oc
curred, then an error message is output and a new
time out is set up. If ready, the character is
output with the appropriate interface signals.

12-5

12-5. LP-DATA PRODUCTS LINE PRINTER

DESCRIPTION - I/O handler. This handler interfaces to any Data

OPERATION

Products

driven;

mediate

checked.

line printer. The handler is interrupt

one character at a time is output. Im-

return is supported. I/O timeout is

OPEN - The port is initialized. The line printer inter-

CLOSE

WRITE

rupt handler address is stored in the IOCS Inter

rupt Address Table. The vector address is program

med to the PIO. The tab count is initialized. A

physical record size of one is returned.

- No action.

- An initial 3 second time out is set up. The ready

bit of the status (bit 0 of LPST) is checked. Im

mediate return is supported. If the device does

not go ready, an error message is issued and the

timeout is reprogrammed to 20 seconds. When the

device goes ready, the ready bit is reset and the

character is checked. If the character is not a

tab, then it is output to the device. If the

character is a tab then, it is expanded into spaces

mod-So

12- 6

12-6. PR - PAPER TAPE READER

DESCRIPTION - I/O handler. This handler interfaces a paper tape

OPERATION

OPE N.

CL 0 S E.

READ.

rea de r to F L P - 8 OD 0 S v i a a P I 0 po r t • T his han d 1 e r

is called by IOCS. It is interrupt driven. One

c h a rae t era tat i m e i sin put. I m me d i ate ret urn i s

supported. I/O timeout is checked.

The port is initialized. The paper tape reader

interrupt handler address is stored in the IOCS

interrupt handler address table. The first read

Operation is initiated. A physical record size of

1 is returned to laCS.

No action is performed.

Upon reception of an interrupt, Bit 0 of 'PRST' is

set to i n die ate t hat the rea d e r i s rea dy wit han

other character.

An initial timeout of 250 msec is programmed. The

status flag located in the LS bit of address PRST

is checked. If it is set, then an interrupt has

occurred. This indicates that a character is re-

a dy • The c h a rae t e r i s rea dan d com p 1 e me n ted and

return is made to caller.

12-7

12-7. PP-PAPER TAPE PUNCH

DESCRIPTION - I/O handler. This handler interfaces a paper tape
punch to FLP-80DOS. It is interrupt driven and im
mediate return is supported. One character at a
time is output. I/O timeout is checked. The oper
ation of this handler is similar to LP -Data
Products Line Printer handler except that tabs are
not expanded.

12-8

12-8. TI-SILENT 700 CASSETTE INPUT

DESCRIPTION - I/O handler. This handler interfaces a Silent 700

HARD WAR E

OPERATION

digital cassette for input to FLP-80DOS via the

serial ASCII port. Thus, the Silent 700 is also

the system termin.91. The handler is not interrupt

driven and immediate return is not supported. This

handler wi 11 read tapes recorded in LINE or CON

TINUOUS mode. The handler is compatible with other

MOSTEK Systems.

- ADC option is required (this is a Texas Instruments

field-installable option). The handler will work

if RDC is installed, but not all functions of the

RDC option will be used. The option to allow

printing on the Silent 700 printer must be enabled.

This handler will work for 300 or 1200 baud rate.

OPEN. - Buffer count and null count are initialized to

zero. The IIMinimal Listener ll is disabled to prev

ent false triggering of the IIDebugger Escape ll • A

physical record size of one is returned to caller.

CLOSE. - A DC3 (13H) character is issued to the Silent 700

to assure that the tape transport is turned off.

The buffer count is reinitialized and the IIMinimal

Listener ll is reenabled.

READ. - The read funct i on reads one record from the cas-

sette tape into a buffer and deblocks that buffer

one byte at a time. When the buffer

other record is read. End of record

DC3 (13H)' End of file on the tape

EaT (04H), a sequence or 127 nulls,

condition greater than 2 seconds.

is

is

i s

or

empty, a n-

defined by

defined by

a time out

12-9

12-9. TK-KEYBOARD

DESCRIPTION - I/O handler. This handler interfaces the terminal
keyboard for input to the FLP-80DOS via the serial
ASCII port. This handler is called by IOCS. It is
not interrupt driven. One character at a time is
input. Immediate return is supported. I/O timeout
is not checked.

HARDWARE

OPERATION

OPEN

CLOSE

- Any serial terminal with ASCII keyboard. Allowed
baud rates are 110~ 300~ 600~ 1200~ 2400~ 4800 and
9600. RS-232 and 20mA current loop interfaces are
supported.

A physical record size of 1 is returned to IOCS.

- No action is performed.

READ - If a character was entered via the IIMinimal
Listenerll~ it is taken as the keyed-in character.
Otherwise the Status of the UART is checked. Im
mediate return is supported. When the UART goes
ready~ a character is read.
and the Minimal Listener

Parity bit is cleared
holding register is

cleared. If the Minimal Listener is enabled~ then a
test is made for CNTL-C (Debugger Escape) or CNTL-X
(reboot). A positive test branches to the ap-
propriate routine. If the Minimal Listener is not
enabled~ then return is made to caller.

12-10

12-10. TT - CONSOLE OUTPUT

DESCRIPTION - I/O handler. This handler is used for all output
to the console device. It will support the fol-
lowing terminals depending on the baud rate.

BAUD RATE TERMINAL TYPE
110 Teletype or CRT
300 Silent 700 or CRT
600 CRT
1200
2400-9600

Silent 700 or CRT
CRT

Tabs are expanded by the handler, and an automatic carriage re
turn/line feed is issued when the right side of the screen is re
ached. Immediate return is not supported.

HARDWARE

OPERATION

- Any terminal with RS-232 or 20mA current loop
interface.

OPEN A physical record size of one byte is returned.

CLOSE - No action.

WRITE - The character to be output is checked.
tab (ASCII 09H), then the required

If it is a
number of

spaces to position the print head or cursor mod-8
is output. If the character is a backspace, then
the position counter is decremented and the back
space is output. For any character other than a
carriage return (OOH) or form feed (OCH), the
width of the current line is checked. If the

12-11

cursor is at the right side of the screen specified
by 'LWIOTH '), then a carriage return and line feed
are output. The position counter is then updated
and the UART status is checked. When ready, the
character is output to the device. If the device
is a TTY or Silent ioo, then a form feed (OCH) is
translated to 6 line feeds to prevent uncontrolled
paper scrolling. If the baud rate is 1200 baud for
a Silent 700, then a 32 msec del ay is executed
after each character output. If the character is a
carriage return and the baud rate is 300 or 1200,
then an extra 210 msec delay is executed to allow
full return of the print head. After each carriage
return to output (OOH) the keyboard status byte,
(TKST) in the scratchpad, in checked and if it con
tains a space (020H) then it is cleared and checked
again in a loop until the next space is input from
T K for r e 1 e a s e to co n tin u e out put. T his a 11 ow s
pausing the listing of a file to the console device
by pressing the space bar once, and continuing the
listing by pressing the space bar once again.

12-12

12-11. TO - SILENT 700 CASSETTE OUTPUT

DESCRIPTION - I/O handler. This handler interfaces a Silent 700
digital cass~tte for output to the FLP-80DOS system
via the serial port. Thus, the Silent 700 is also
the system terminal. This handler is not interrupt
driven. Immediate return is not supported. This
handler will record tapes in LINE or CONTINUOUS
mode. It is compatible with other MOSTEK products.

HARDWARE - See descri pt i on for I T I I.

OPERATION -

OPEN - A buffer pointer is initial ized and a physical re
cord size of one of returned to caller.

CLOSE - A DC4 (14 H) is issued to the Silent 700 to as
sure that the tape transport is off.

WRITE - Characters are blocked into a buffer one at a time
until an end of record is encountered. An end of
record is defi ned as ali ne feed character. When
the end of record is encountered, the buffer is
output to the device. The record format is: data,
CR, LF, DC3, RUBOUT. If an end of file (EOT=04H)
is to be output, then any bytes in the buffer are
output. Then the EOT is output followed by a car
riage return (ODH) to terminate LINE mode. A
series of null characters is written to the device
to assure that this last record is written to the
tape in CONTINUOUS mode.

12-13

12-12. TR - TELETYPE PAPER TAPE READER

DESCRIPTION - I/O handler. This handler interfaces a teletype

HARDWARE

OPERATION

OPEN

CLOSE

WRITE

paper tape reader to FLP-80DS via the serial I/O
port. This handler is called by IOCS. It is not
interrupt driven. One character at a time is out
put. Immediate return is not supported. I/O time

out is 250 milliseconds and returns to caller.

- Reader step control is required on the teletype.

The 'Minimal Listener ' is turned off.
record size of 1 is returned to IOCS.

A physical

- The 'Minimal Listener ' is turned on and returns to
caller.

The reader is turned on. The UART is checked. A
timeout of 250 milliseconds is initiated. If the
UART does not go ready, return is made to caller.
Otherwise, the reader is turned off the the
character is read via TKREAD.

:LP COPYRIGHT 1977 MOSTEK CORP MOSTEK FLP-80 ASSEMBLER V2.0 PAGE 0001
ADDR OBJECT ST # SOURCE STATEMENT DATASET = DKO:LPC .SRC

>0000
>0004
>0005
>OODO
>00D1
>00D2
>00D3
>0007
>0042
>0050

'0000
'0001
'0002
'0003
'0004
'O~~S
, 0006
'0007

'0008
'OOOA
'oooc
'OOOE

04
00
06
30
00
35
00
01

3EOF
D3D1
3ECF
D3D3

NAME CLP
.** ,

0002
0003
0004 i*
0005 i*
0006 ;*
0007 ;*

TITLE: CENTRONIX LINE PRINTER DRIVER *
*

ID: CLP VERSION 2.0 6/15/78 *
*

0008 i* PROGRAMMERS: M. FREEMAN
0009 i* JOHN BATES

*
*

0010 ;**
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024 i
0025
0026
0027
0028 i
0029 i
0030
0031
0032
0033

THIS IS THE INTERFACE FOR PRINTERS WHICH REQUIRE
A PULSE INSTEAD OF AN EDGE FOR DATA TRANSFER. FOR
EACH CHARACTER TRANSFERED, A 7.6 US. PULSE WILL
BE SENT 16.4 US. AFTER DATA IS SENT TO THE PRINTER.
BUSY IS USED TO INDICATE THAT THE BUFFER IS FULL
OR A RETURN OR LINE FEED HAS BEEN SENT.
100 US./CHAR IS THE FASTEST RATE THAT THE DRIVER
CAN OUTPUT DATA.

BOTH BITS 4 AND 5 MUST BE LOW FROM THE PRINTER
FOR DATA TO BE TRANSFERED. THE 7402 ON PORT
D2 INVERTS THE DATA, THEREFORE BOTH BITS MUST
BE HIGH IN THE ACC AFTER THE INPUT INSTRUCTION.
AFTER SCANNING FOR 1 SEC IF BOTH BITS ARE NOT HIGH
A TIMEOUT MESSAGE WILL BE PRINTED BY THE DRIVER.

BESIDES THE NORMAL PRINTABLE ASCII CHARACTERS, THIS
DRIVER RESPONDS TO 2 ASCII CONTROL CHARACTERS. THESE
CONTROL CHARACTERS ARE DECODED BY THE DRIVER AND ARE
TRANSLATED CHARACTERS WHICH EVERY PRINTER CAN USE.
THEN ARE: TAB (09H) AND FORM FEED (OCH).

CP
EH

LPCSTB
LPPE
LPBSY
LPDP
LPDC
LPSP
LPSC
TIM OUT
PAGE
LWIDTH

0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046 i
0047 CP
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059

GLOBAL
GLOBAL
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

o
4
5
ODOH
OD1H
OD2H
OD3H
07
66
80

; STROBE FOR CENTRONICS TYPE
i PAPER EMPTY
; PRINTER BUSY
;DATA PORT
iCONTROL PORT
iSTROBE/BUSY PORT
;STROBE/BUSY CONTROL PORT
;TIMEOUT ERROR CODE
iPAGE LENGTH
iMAXIMUM LINE WIDTH

HCNTR
VCNTR
i
LPOPEN

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

LD
OUT
LD
OUT

4
o
LPOPEN-$
LPCLOS-$
o
LPWRIT-S
o
1

A,OFH
(LPDC),A
A,OCFH
(LPSC),A

iMAX REQUEST
;OPENR

iREAD
iWRITE
i COLUMN COUNTER
iLINE COUNTER

iPORT A MODE 0

; PORT B 110DE 3

CLP COPYRIGHT 1977 !1OSTEK CORP MOSTEK FLP-80 ASSEMBLER V2.0 PAGE 000
ADDR OBJECT ST # SOURCE STATEMENT DATASET = DKO:LPC .SRC

'0010 3£FO 0060 LD A,OFOH iHIGH HALF FOR INPUTS
'0012 D3D3 0061 OUT (LPSC),A
'0014 3£03 0062 LD A,3 iDISABLE INTPS
'0016 D3D1 0063 OUT (LPDC),A
'0018 3E 11 0064 LD A,11H i SELECT WITH DC1
'001A D3DO 0065 OUT (LPDP),A
'001C DBD2 0066 IN A,(LPSP) i RESET LP CSTROBE
'001E CBC7 0067 SET LPCSTB,A
'0020 0602 0068 LD B,2
'0022 D3D2 0069 LPOPN1 OUT (LPSP) ,A
'0024 EE01 0070 XOR 1 i 2**LPCSTB
'0026 10FA 0071 DJNZ LPOPN1-$
'0028 AF 0072 XOR A
'0029 320600' 0073 LD (HCNTR),A
'002C 320700' 0074 LD (VCNTR),A
'002F 010100 0075 LD BC,1 iPHYSICAL RECORD SIZE =
'0032 C9 0076 RET

0077 ;
'0033 3EOD 0078 LPCLOS LD A,ODH ;OUTPUT CARRIAGE RETURN
'0035 CD3AOO' 0079 CALL LPWRIT
'0038 3EOC 0080 LD A,OCH ;OUTPUT FORM FEED

0081
0082 . ,

'003A FE09 0083 LPWRIT CP 9 TAB?
'003C 2015 0084 JR NZ~LP2A-$ NO
'003E C5 0085 PUSH BC YES
'003F 3A0600' 0086 LD A,(HCNTR)
'0042 47 0087 LD B,A
'0043 E6F8 0088 AND OF8H
'0045 C608 0089 ADD A,8 NEXT TAB LOC
'0047 OE20 0090 LD C, , i SPACE OUT
'0049 90 0091 LP3A SUB B . # SPACES ,
'004A 47 0092 LD B,A
'004B 79 0093 LP3 LD A,C OUTPUT SPACE
'004C CD6200' 0094 CALL LP2
'004F 10FA 0095 DJNZ LP3-$
'0051 C1 0096 POP BC
'0052 C9 0097 RET
'0053 FEOC 0098 LP2A CP OCH . FORM FEED? ,
'0055 200B 0099 JR NZ,LP2-$ iNOTE: THIS LOGIC GENERl
'0057 C5 0100 PUSH BC iTO EJECT PAGE. IF LINE
'0058 3A0700' 0101 LD A,(VCNTR) iHARDWARE SUPPORTS A Fa}
'005B 47 0102 LD B,A iTHIS LOGIC SHOULD BE or
'005C 3E42 0103 LD A,PAGE
'005E OEOA 0104 LD C,OAH
'0060 18E7 0105 JR LP3A-$ i LINE FEED OUT

0106 i
'0062 F5 0107 LP2 PUSH AF iSAVE CHARACTER
'0063 FEOA 0108 CP OAH iLINE FEED?
'0065 200E 0109 JR NZ,LP5-$
'0067 3A0700' 0110 LD A,(VCNTR) iIF CHAR IS LINE FEED
'006A 3C 0111 INC A iTHEN UPDATE VERTICLE
'006B FE42 0112 CP PAGE iCOUNTER AND RESET
'006D 2001 0113 JR NZ,LP4-$ iTO ZERO AFTER MAX PAGE
'006F AF 0114 XOR A iLENGTH HAS BEEN REACHEI
'0070 320700' 0115 LP4 LD (VCNTR),A
'0073 1813 0116 JR LP20-$

0117

.P COPYRIGHT 1977 MOSTEK CORP MOSTEK FLP-80 ASSEMBLER V2.C PAGE 0003
IDDR OBJECT ST # SOURCE STATEMENT DATASET = DKO:LPC .SRC

)075 FEOD 0118 LPS CP ODH iIF CARRAGE RET
)077 3EOO 0119 LD A,O ;ZERO HORIZONTAL CTR.
)079 280A 0120 JR Z,LP10-$

0121
)07B 3A0600' 0122 LP6 LD A,(HCNTR) iFETCH HORIZONTAL CTR
)07E FE50 0123 CP LWIDTH
)080 2002 0124 JR NZ,LP8-S iIF MAX LINE WIDTH
)082 F1 0125 POP AF iIS REACHED THEN RETURN.
)083 C9 0126 RET
)084 3C 0127 LP8 INC A
)085 320600' 0128 LP10 LD (HCNTR),A iUPDATE HORIZONTAL CTR

0129
~088 C5 0130 LP20 PUSH BC ;SAVE BC
0089 01C409 0131 LD BC,2500 ; 2.5 SECOND DELAY COUNT
008C C5 0132 LP22 PUSH BC
008D 062F 0133 LD B,47 iMSEC COUNTER

0134
008F DBD2 0135 LP24 IN A,(LPSP) iEXIT TO PRINT CHARACTER
0091 E630 0136 AND 030H iIF BOTH STATUS BITS 4 £: 5
0093 FE30 0137 CP 030H iARE SET INDICATING PAPER
0095 2813 0138 JR Z,LP30-$ i1S NOT EMPTY AND PRINTER
0097 DB 0139 DEC BC iIS NOT BUSY
0098 10F5 0140 DJNZ LP24-$ iLOOP FOR 1 MSEC

0141
009A C1 0142 POP BC
009B OB 0143 DEC BC iDECREMENT COUNT
009C 78 0144 LD A,B
009D B1 0145 OR C
009E 20EC 0146 JR NZ,LP22-$

0147
'OOAO 3E07 0148 LD A,TIMOUT iPRINT TIMEOUT ERROR
, 00A2 CDFFFF 0149 CALL EH
, OOA5 01204E 0150 LD BC,20000 iNEW TIME OUT
'00A8 18E2 0151 JR LP22-$

0152 i
'OOAA C1 0153 LP30 POP BC iADJUST STACK
, OOAB C1 0154 POP BC ;RESTORE BC
'OOAC F1 0155 POP AF iGET CH!\R
'OOAD D3DO 0156 OUT (LPDP),A iOUTPUT CHAP
'OOAF F5 0157 PUSH AF iSAVE CHAR
, OOBO DBD2 0158 IN A,(LPSP)
'00B2 CB87 0159 RES LPCSTB,A ;RESET STROBE
'00B4 D3D2 0160 OUT (LPSP),A iGENERATING PCLSE.
'00B6 CBC7 0161 SET LPCSTB,A
'00B8 D3D2 0162 OUT (LPSP),A
'OOBA F1 0163 POP AF iRESTORE CHAP
'OOBB C9 0164 RET

0165
0166 END

ERRORS=OOOO

LPDATA COPYRIGHT 1978 MOSTEK CORP MOSTEK FLP-80 ASSEMBLER V2.0 PAGE 0001
ADDR OBJECT ST # SOURCE STATEMENT DATASET = DKO:LPD .SHC

)FFOO
)0002
)0015
)0007

')0000
'0000
'0001
'0002
'0003
'0004
'0005

'0006
)0007

'0007
'0008
'0008
'OOOE
'OOOF
'0011
'0012
'0015
'0016
'0017
'0018
'0019
'001C
'001E
'001F
'0021
'0023
, 0025
, 0027
'0029
, 002A
'002C
'002E
'0031
, 0033
'0036
'0038
'003B
'003E
'003F

, 0040
'0041

04
00
05
3C
00
38

AA

F3
2AOOFF
110700
B7
ED52
E5
11A500'
73
23
72
D1
210600'
CBC6
4E
3EOF
ED79
ED59
3E83
ED79
7A
ED47
3EOC
CD4000'
3EOD
CD4000'
3E08
32AFOO'
010100
FB
C9

E5
C5

NAME LPDATA 0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015 LP
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059

DATA PRODUCTS LINE PRINTER HANDLER

TOR
IRET
CFLGS
TIMOUT

LPST
LPDIS

LPOPEN

LPCLOS

LPWRIT

GLOBAL
GLOBAL

EQU
EQU
EQU
EQU

EQU
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
EQU

DI
LD
LD
OR
SBC
PUSH
LD
LD
INC
LD
POP
LD
SET
LD
LD
OUT
OUT
LD
OUT
LD
LD
LD
CALL
LD
CALL
LD
LD
LD
EI
RET

PUSH
PUSH

LP
EH

OFFOOH
2
21
7

$
4
o
LPOPEN-$
LPCLOS-$
o
LPWRIT-$

OAAH
7

iMAX RQST

iVECTOR DISPLACEMENT FROM TOR

iOPEN
HL,(TOR)
DE,LPDIS

DEVICE
iACCESS INTERRUPT TABLE

A
HL, DE
HL
DE,LINT
(HL) , E
HL
(HL),D
DE
HL,LPST
O,(HL)
C,(HL)
A,OFH
(C) , A
(C) , E
A,83H
(C) , A

A,D
I,A
A,OCH
LPWRIT
A,ODH
LPWRIT
A,8
(CNT),A
BC,1

HL
BC

iSAVE VECTOR ADDR
iGET INTERRUPT HANDLER ADDRESS
iSAVE IN VECTOR

iGET VECTOR ADDRESS
iHL -) STATUS BYTE
iSET READY BIT
iGET PORT FOR CONTROL
iOUTPUT CONTROL

iOUTPUT VECTOR LSBYTE

iSET UP VECTOR MSBYTE

iOUTPUT FORM FEED TO INITIALIZE

iAND A CR

iINITIALIZE TAB COUNT

iENABLE
iRETURN TO CALLER

iSAVE REGS

LPDATA COPYRIGHT 1978 MOSTEK CORP MOSTEK FLP-80 ASSEMBLER V2.0 PAGE 0002
ADDR OBJECT ST # SOURCE STATEMENT DATASET = DKO:LPD .SRC

'0042
'0043
'0046
'0049
'004A
'004C
'004D
'004F
'0051
'0055
, 0057
'0059
'005A
'005B
'005C
'005D

'005F
'0061
'0064
'0067

'0069
'006A
'006B
'006C
'006D

'006E
'006F
'0070
'0072
'0073
'0075
, 0077
'0079
'007B
'007E
'0080
'0082
'0083
'0086
'0088
'0089
'008B

'008D
'008F
'0091
'0093
'0096
'0097

, 0099
'009B
'009E
'OOA2
'OOA3

F5
210600'
01B80B
C5
0629
FB
CB46
201D
FDCB1556
2012
10F3
C1
OB
78
B1
20EA

3E07
CDFFFF
01204E
18EO

C1
F1
C1
E1
C9

C1
F1
CB86
4E
FE09
2016
3E20
ED79
3AAFOO'
FE08
2819
3D
32AFOO'
3E09
F5
20BE
180C

ED79
FEOD
2806
3AAFOO'
3D
2002

3E08
32AFOO'
FDCB1596
C1
E1

0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102
0103
0104
0105
0106
0107
0108
0109
0110
o 1 1 1
0112
0113
0114
0115
0116
0117

LPA

LPL

LPI

LPR

LPR2

PUSH
LD
LD
PUSH
LD
EI
BIT
JR
BIT
JR
DJNZ
POP
DEC
LD
OR
JR

LD
CALL
LD
JR

POP
POP
POP
POP
RET

POP
POP
RES
LD
CP
JR
LD
OUT
LD
CP
JR
DEC
LD
LD
PUSH
JR
JR

OUT
CP
JR
LD
DEC
JR

AF
HL,LPST
BC,3000
BC
B,41

;SAVE BYTE TO OUTPUT
;HL -) STATUS BYTE
;3 SECOND TIME OUT
;SAVE
;MSEC COUNTER
;ENABLE INTPS

O,(HL) ;CHECK FOR READY
NZ,LPR-$;YES, SKIP OUT
IRET,(IY+CFLGS) ;CHECK IMMED RETURN
NZ,LPI-$ iYES, SKIP OUT
LPL-$;LOOP FOR TIMEOUT
BC
BC iDECREMENT COUNT
A,B
C
NZ,LPA-$

A,TIMOUT
EH iOUTPUT
BC,20000
LPA-$

BC
AF
BC
HL

iLOOP FOR TIMEOUT

;TIME OUT ERROR
IT
iNEW TIMEOUT

BC ;RESTORE STACK
AF iGET BYTE
O,(HL) ;RESET READY BIT
C,(HL) iGET DATA PORT NER
9 iIS THIS A TAB CHARACTER?
NZ,LPR2-S iNO, SKIP
A," i IF TAB OUTPUT A BLA. NK
(C) ,A
A,(CNT) iDECREMENT COUNT
8 iCHECK IF AT END OF TAB SPACE
Z,LPR4-S iIF SO, SKIP OUT
A iUNTIL IT TURNS TO ZERO
(CNT),A
A,9 iREINITIALIZE CHARACTER=TAB
AF
NZ,LPA-$;IF NOT DONE, OUTPUT MORE
LPR3-$ iELSE REINIT TAB COUNTER

(C),A iOUTPUT NON-TAB CHARACTER
ODH iIF CARRIAGE RETURN
Z,LPR3-$;GO REINIT TAB COUNTER
A, (CNT) ; DECREMENT COUNTER
A
NZ,LPR4-$;IF NOT ZERO, SKIP

i*******************NOTE: DESTROYS A-REG
LPR3 LD A,8 iREINIT TAB COUNTER
LPR4 LD (CNT),A iSET TAB COUNTER

RES IRET,(IY+CFLGS) iRESET IMMED RETURN
POP BC
POP HL

LPDATA COPYRIGHT 1978 MOSTEK CORP MOSTEK FLP-80 ASSEMBLER V2.0 PAGE 0003
ADDR OBJECr ST # SOURCE STATEMENT DATASET = DKO:LPD .SEC

'OOA4 C9 0118 RET ;RETURN TO CALLER
0119
0120

'OOA5 E5 0121 LINT PUSH HL ;LINE PRINTER INTERRUPT HANDLER
'OOA6 210600' 0122 LD HL,LPST
'OOA9 CBC6 0123 SET 0, CHL) ;SET READY BIT
'OOAB E1 0124 POP HL
'OOAC FB 0125 E1
'OOAD ED4D 0126 RET1

0127
'OOAF 00 0128 CNT DEFB 0 ;TAB COUNTER

ERRORS=OOOO

R COPYRIGHT 1977 MOSTEK CORP MOSTEK FLP-80 ASSEMBLER V2.0 PAGE 0001
ADDR OBJECT ST # SOURCE STATEMENT DATASET = DKO:CR .SRC

>FFOO

>0019
>0015
>0017
>001E
>0002
>001D

>0004
>0007
>0009

'>0000
'0000
'0001
'0002
'0003
'0004

'0005
>OOOD

'0006
'0007
'OOOA
'OOOD

03
05
00
D3
3F

AD

F3
2AOOFF
110DOO
B7

0002 NAME CR
0003 ;TITLE: CARD READER DRIVER FOR FLP-80
0004 *
0005 *ID: ZCR80 V2.0 27MAY78
0006 *
0007 *TYPE: SUBROUTINE
0008 *
0009 *SYSTEM: AID-80F WITH FLP-80DOS
0010 *
0011 *DESCRIPTION: THIS DRIVER INTERFACES A DOCUMATION
0012 * M200 CARD READER TO THE AID-BOF VIA TWO
0013 * PIO PORTS. REQUIRES FLP-80DOS.
0014 *
0015 *STACK USAGE: MAX 10 ENTRIES
0016 *
0017 *CALLED ROUTINES: EH
0018 *
0019 *PROGRAMMER: D. LEITCH
0020 P. FORMANIAK
0021 *
0022
0023
0024 ;
0025
0026

EXTERNAL SYMBOLS

GLOBAL EH

0027 SCRATCHPAD EQUATES
0028 TOR EOU OFFOOH
0029
0030 ; IOCS VECTOR EQUATES
0031
0032
0033
0034
0035

UBFFR
CFLGS
ERRC
HSCR

0036 IRET
0037 NREC
0038

EOU
EOU
EQU
EOU
EOU
EQU

0039 ; LOCAL EQUATES
0040
0041
0042
0043
0044
0045

EOT
TIMOUT
EOFERR

EQU
EOU
EOU

25
21
23
30
2
29

4
7
9

CR
$

;USER BUFFER OFFSET IN VECTOR-

;EOT CHARACTER
;T1MOUT ERROR NUMBER
;END OF FILE ERROR NUMBER

0046 CR
0047

GLOBAL
EQU
DEFB
DEFB
DEFB
DEFB
DEFB

3 ;MAX REQUEST
0048
0049
0050
0051
0052
0053 CRPORT DEFB
0054 CRDIS EOU
0055
0056 CROPEN
0057
0058
0059

D1
LD
LD
OR

CROPEN-$;OPEN FOR READ
o iOPEN FOR WRITE
CRCLOS-$;CLOSE
CRREAD-$;READ

OADH
ODH

iPORT FOR CARD READEh
iINTP VECTOR DISPLACE~ENT FROM TO

iOPEN
HL,(TOR)
DE,CRDIS
A

CARD READER
iGET VECTOR ADDRESS
iOFFSET OF VECTOR FROM TO

CR COPYRIGHT 1977 MOSTEK CORP MOSTEK FLP-80 ASSEMBLER V2.0 PAGE 000:
ADDR OBJECT ST # SOURCE STATEMENT DATASET = DKO:CR .SRC

'OOOE
'0010
'0013
'0014
'0015
'0016
'0017
'001A
'001B
'001D
'001E
'0020
'0022
'0024
'0026
'0028
'0029
'002A
'002C
'002E
'0030
'0032
'0034
'0036
, 0038
'003A
'003C
'003F
'0041
, 0042

')0043
'0043
'0044
, 0045
, 0046
'0049
'004C
'0050
'0053

, 0056
'0059
'005A
'005B
'005E
'0060
'0062
'0064
'0066
'006A
'006C
'006E
'006F
'0070
'0071

ED52
11D700'
73
23
72
2B
3A0500'
4F
ED69
7C
ED47
3E8F
ED79
3E03
ED79
OC
OC
ED69
3ECF
ED79
3EFF
ED79
3E17
ED79
3EFF
ED79
015200
ED5E
FB
C9

E5
D5
C5
FD7E1D
FD771E
FD361DOO
FD5E19
FD561A

3A0500'
4F
OC
21AOOF
0626
ED78
CB5F
281C
FDCB1556
2011
10F2
2B
7C
B5
20EB

0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102
0103
0104
0105
0106
0107
0108
0109
0110
0111
0112
0113
0114
0115
0116
0117

SBC HL,DE
LD DE,CRDRDR iGET INTP HANDLER ADDRE~

LD (HL),E iSAVE INTO VECTOR
INC HL
LD (HL),D
DEC HL iGET VECTOR ADDR
LD A,(CRPORT) iGET CARD READER POPRT
LD C,A
OUT (C),L iLSBYTE OF VECTOR TO PORT
LD A,H iMSBYTE OF VECTOR INTO I-REG
LD I,A
LD A,8FH iSET MODE =2
OUT (C),A
LD A,03H iDISABLE A INTERRUPTS
OUT (C),A
INC C ;ADJUST TO B CNTL
INC C
OUT (C),L iLSBYTE OF VECTOR
LD A,OCFH iSET MODE =3
OUT (C),A
LD A,OFFH iALL 1/0 LINES=INPUT
OUT (C),A
LD A,17H ;DISABLE B INTERRUPTS
OUT (C),A
LD A,OFFH iNO 1/0 LINES=INTERRUPT
OUT (C),A
LD BC,82 iSET BUFFER LENGTH
1M 2
EI
RET

CRREAD EQU
PUSH
PUSH
PUSH
LD
LD
LD
LD
LD

$
HL
DE
BC
A,(IY+NREC)
(IY+HSCR),A
(1Y+NREC),O
E, (IY+UBFFR)
D, (IY+UBFFR+1)

iGET NBR OF CARDS TO REAl
iSAVE IN HANDLER SCRATCH
iZERO NBR OF CARDS READ
iSET UP BUFFER POINTER

CRLOOP LD A,(CRPORT) iGET CARD READER PORT

CRDYL
CRDYO

LD C,A
INC C
LD HL,4000
LD B,38
IN A,(C)
BIT 3,A

;ADJUST TO PORT B
iINITIAL TIME OUT
;ONE MSEC COUNTER
iTEST READY BIT

DATA
IN MSEC

JR Z,CRGO-$;IF READY, SKIP OUT
BIT IRET,(IY+CFLGS) iCHECK FOR IMMEDIATE RETl
JR NZ,ZRET-$;RETURN ZERO IF SO
DJNZ CRDYO-$;LOOP FOR ONE MSEC COUNT
DEC HL ;DECREMENT TIME OUT COUNTER
LD A,H
ORL ;CHECK FOR ZERO
JR NZ,CRDYL-S iIF NOT DONE, LOOP FOR Me

TIMEOUT ERROR. OUTPUT THE ERROR TO CONSOLE. THEN LOOP

COPYRIGHT 1977 MOSTEK CORP MOSTEK FLP-80 ASSEMBLER V2.0 PAGE 0003
)DR OBJECT ST # SOURCE STATEMENT DATASET = DKO:CR .SRC

)73
)75
)78
)7B

)7D
)7E
D7F
)80
081

)82
083
085
087
088
089
08B
08C
008D
08D
08F
091
092
093
094
096

098
099
09A
09B
09E
OA1
OA2
OA4
OA5
OA6
OA8
OAA

10AE

lOBO
lOB 1
IOB2
IOB4
)OB6

OB7
IOB8
)OBA
)OBB
lOBD

3E07
CDFFFF
21204E
18E1

97
C1
D1
E1
C9

OD
3E83
ED79
AF
OD
ED79
C5
FB

FE50
20FC
F3
C1
OD
3E03
E079

D5
E1
C5
FD341D
015000
B7
E042
7E
C1
FE04
2006
FD361709
1817

1B
1A
FE20
28FA
13

EB
360D
23
360A
23

i UNTIL

;
ZRET

CRGO

CBZY1

DEVICE
LD
CALL
LD
JR

SUB
POP
POP
POP
RET

DEC
LD
OUT
XOR
DEC
OUT
PUSH
EI
EQU
CP
JR
DI
POP
DEC
LO
OUT

GOES READY.
A,TIMOUT iTIME OUT ERROR NBR
EH iOUTPUT THE ERROR
HL,20000 ;20 SECOND TIMEOUT
CRDYL-$ iAND LOOP FOR MORE

A
BC
DE
HL

C
A,83H
(C) , A
A
C
(C) , A

BC

iRETURN ZERO TO CALLER

iADJUST TO A CNTL
iENABLE INTERRUPTS

iCLEAR A
iADJUST TO A DATA
iFORCE A PICK
iSAVE BC

$ iGO READ THE CARD VIA INTFS
80 iA=80 =) FINISHED
NZ,CBZY1-$

BC
C
A,3
(C) , A

iRESTORE BC
iADJUST TO A CNTL
iDISABLE I/O INTERRUPTS

FROM HER!

0118
0119
0120
0121
0122
0123
0124
0125
0126
0127
0128
0129
0130
0131
0132
0133
0134
0135
0136
0137
0138
0139
0140
0141
0142
0143
0144
0145
0146
0147 ;
0148
0149
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160
0161
0162
0163
0164
0165
0166
0167
0168
0169
0170
0171
0172
0173
0174
0175

CHECK FOR EOT (04H) IN COLUMN 1

PUSH
POP
PUSH
INC
LD
OR
SBC
LD
POP
CP
JR
LD
JR

DE
HL

iDE INTO HL

BC iSAVE BC-REG
(IY+NREC) iINCREMENT NER OF CARDS
BC,80 iACCESS FIRST CHARACTER OF CARO
A
HL,BC
A,(HL) iGET CHARACTER IN COLUMN 1
BC
EOT iCHECK FOR END OF FILE INDICATOR
NZ,NEOT-S iNOT EOT, SKIP

REA

(IY+ERRC),EOFERR iSET UP ENO OF FILE
CREOT-$;AND SKIP OUT

NOT EOT, COMPRESS TRAILING BLANKS ON CARD

NEOT DEC
LO
CP
JR
INC

EX
LD
INC
LD
INC

DE iDECREMENT POINTER
A,(DE) iGET CHARACTER
20H ;BLANK?
Z,NEOT-$ iYES, KEEP COMPRESSING
OE iCORRECT POINTER

DE,HL iHL
(HL),ODH

-) END OF CARD BUFFER
iSTUFF A CR

HL
(HL),OAH
HL

CR COPYRIGHT 1977 MOSTEK CORP MOSTEK FLP-80 ASSEMBLER V2.0 PAGE 0001
ADDR OBJECT ST # SOURCE STATEMENT DATASET = DKO:CR .SRC

'OOBE
'OOBF
'00C2
'OOC5

'OOC7
'OOCA
'OOCD
'OOCE
'OOCF
'OODO
'OOD4
'OOD5

'OOD6

'OOD7
'OOD8
'OODA
'OODD
'OODE
'OODF
'OOE1
'OOE2
'00E3
'OOE4
'OOE5
'OOE7
'OOE9
'OOEB
'OOED
'OOEF
'OOF 1
'OOF3
'OOF6

'00F8
'OOF9
'OOFA
'OOFC
'DOFF
'0100
'0101
'0102
'0103
'0104
'0105
'0106

'0108
'0109
'010A
'010B
'010C
'010D

EB
FD7E1D
FD961E
208F

FD7319
FD721A
C1
D1
E1
FDCB1596
FB
C9

C9

F5
0607
3A0500'
4F
OD
ED78
2F
6F
OC
OC
ED78
E6FO
CB7D
2802
F608
CBBD
CB25
FAF800'
10F9

80
4F
0600
210801'
09
7E
12
13
F1
3C
FB
ED4D

20
31
32
33
34
35

0176
0177
0178
0179
0180
0181
0182
0183
0184
0185
0186
0187
0188

CREOT

0189 ;
· ,

EX
LD
SUB
JR

LD
LD
POP
POP
POP
RES
EI
RET

0190
0191
0192

CRCLOSE RET

0193
0194
0195
0196
0197
0198
0199
0200
0201
0202
0203
0204
0205
0206
0207
0208
0209
0210
0211
0212
0213
0214
0215
0216
0217
0218
0219
0220
0221
0222
0223
0224
0225
0226

· ,
CRDRDR

CRD1
CRD2

· ,
CRD3

0227 ;
0228 HOLTAB
0229
0230
0231
0232
0233

PUSH
LD
LD
LD
DEC
IN
CPL
LD
INC
INC
IN
AND
BIT
JR
OR
RES
SLA
JP
DJNZ

ADD
LD
LD
LD
ADD
LD
LD
INC
POP
INC
EI
RETI

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DE,HL ;DE->
A,(IY+NREC)
(IY+HSCR)
NZ,CRLOOP-S

C.l\RD BUFFER
;CHECK FOR
;THAT WERE
;~OT DONE,

ALL CARDS RE!
REQUESTED
LOOP FOR NEX:

(IY+UBFFR),E ;UPDATE EUFFER POINTER I
(IY+UBFFR+1),D
BC ;RESTORE BC REG
DE
HL
IRET,(IY+CFLGS) ;RESET IMMEDIATE RETURN

;CLOSE

AF ;SAVE AF AND BC
B,7
A,(CRPORT) ;GET CARD READER PORT
C,A
C
A, (C)

L,A
C
C

;ADJUST TO A DATA
iINPUT A DATA
iCOM DATA FROM A
;SAVE A DATA
;ADJUST TO B DATA

A,(C) iB DATA
OFOH iMASK OFF LS 4BITS
7,L iMOVE BIT 7 FROM A
Z,CRD1-$ TO BIT3 OF B
8
7,L iBIT 7 OF A=O
L iCOUNT LOWER FIELD PUNCHES
M,CRD3
CRD2-$

A,B iLS 3 BITS OF DISPLACE-
C,A i MENT ADDED IN
B,O ;BC=TOTAL DISPLACEMENT
HL,HOLTAB ;HL=HOLLERITH TABLE
HL,BC ;GET ADDRESS OF CHAR
A,(HL) ;GET CHARACTER
(DE),A ;STORE INTO BUFFER
DE ;INCR PTR
AF
A ;COUNT INTERRUPTS

, ,
, 1 '
'2 '
, 3'
, 4 '
, 5'

;BLANK
; 1
i2
;3
;4
;5

CR COPYRIGHT 1977 MOSTEK CORP MOSTEK FLP-80 ASSEMBLER V2.0 PAGE 0005
AD DR OBJECT ST # SOURCE STATEMENT DATASET = DKO:CR .SRC

'010E 36 0234 DEFB '6 ' ;6
'010F 37 0235 DEFB '7 ' ;7
'0110 38 0236 DEFB '8 ' ; 8
'0111 60 0237 DEFB 60H ; 8-1 BACK QUOTE
'0112 3l1. 0238 DEFB ' : ' ;8-2
'0113 23 0239 DEFB '# ' ;8-3
'0114 40 0240 DEFB ' ,[, ;8-4
'0115 27 0241 DEFB 27H ;8-5
'0116 3D 0242 DEFB ' = . ;8-6
'0117 22 0243 DEFB ;8-7
'0118 39 0244 DEFB '9 ' ;9
'0119 00 0245 DEFB 0 ; 9-1
'011 A 16 0246 DEFB 16H ;9-2
'011 B 00 0247 DEFB 0 ;9-3
'011C 00 0248 DEFB 0 ;9-4
'011D 00 0249 DEFB 0 ;9-5
'011E 00 0250 DEFB 0 ;9-6
'011F 04 0251 DEFB 04H ;9-7
'0120 00 0252 DEFB 0 ;9-8
'0121 00 0253 DEFB 0 ;9-8-1
'0122 00 0254 DEFB 0 ;9-8-2
'0123 00 0255 DEFB 0 ;9-8-3
'0124 14 0256 DEFB 14H ;9-8-4
'0125 15 0257 DEFB 15H ;9-8-5
'0126 00 0258 DEFB 0 ;9-8-6
'0127 1A 0259 DEFB 1AH ;9-8-7
'0128 30 0260 DEFB '0 ' ;0
'0129 2F 0261 DEFB ' / ' ;0-1
'012A 53 0262 DEFB ' S' ;
'012B 54 0263 DEFB ' T' ;0-3
'012C 55 0264 DEFB ' U' ;0-4
'012D 56 0265 DEFB ' V' ;0-5
'012E 57 0266 DEFB 'W' ;0-6
'012F 58 0267 DEFB ' X ' ;0-7
'0130 59 0268 DEFB 'Y' ;0-8
'0131 00 0269 DEFB 0 ;0-8-1
'0132 5D 0270 DEFB 5DH ;0-8-2
'0133 2C 0271 DEFB

, , ;0-8-3 ,
'0134 25 0272 DEFB ' % ' ;0-8-4
'0135 SF 0273 DEFB 5FH ; 0 -8 - 5
'0136 3E 0274 DEFB '> ' ;0-8-6
'0137 3F 0275 DEFB '? ' ;0-8-7
'0138 5A 0276 DEFB 'Z' ;0-9
'0139 00 0277 DEFB 0 ;0-9-1
'013A 00 0278 DEFB 0 ;0-9-2
'013B 00 0279 DEFB 0 ;0-9-3
'013C 00 0280 DEFB 0 ;0-90-4
'013D OA 0281 DEFB OAH ;0-9-5
'013E 17 0282 DEFB 017H ;0-9-6
'013F 1B 0283 DEFB 1BH ;0-9-7
'0140 00 0284 DEFB 0 ;0-9-8
'0141 00 0285 DEFB 0 ;0-9-8-1
'0142 00 0286 DEFB 0 ;0-9-8-2
'0143 00 0287 DEFB 0 ;0-90-8-3
'0144 00 0288 DEFB 0 ;0-9-8-4
'0145 05 0289 DEFB 05H ;0-9-8-5
'0146 06 0290 DEFB 06H ;0-9-8-6
'0147 07 0291 DEFB 07H ;0-9-8-7

CR COPYRIGHT 1977 MOSTEK CORP MOSTEK FLP-80 ASSEMBLER V2.0 PAGE 000
ADDR OBJECT ST # SOURCE STATEMENT DATASET = DKO:CR .SRC

'0148 2D 0292 DEFB '- , ; 11
'0149 4A 0293 DEFB ' J ' ; 11-1
'014A 4B 0294 DEFB 'K' ;11-2
'014B 4C 0295 DEFB ' L' ;11-3
'014C 4D 0296 DEFB 'M' ;11-4
'014D 4E 0297 DEFB 'N' ;11-5
'014E 4F 0298 DEFB ' 0 ' ;11-6
'014F SO 0299 DEFB 'P' ;11-7
'0150 51 0300 DEFB 'Q' ;11-8
'0151 00 0301 DEFB 0 ;11-8-1
'0152 21 0302 DEFB ' ! ' ;11-8-2
'0153 24 0303 DEFB '$, ;11-8-3
'0154 2A 0304 DEFB '* ' ;11-8-4
'0155 29 0305 DEFB ') , ;11-8-5
'0156 3B 0306 DEFB ' . , ;11-8-6 ,
'0157 5C 0307 DEFB 5CH ;11-8-7
'0158 52 0308 DEFB 'R' ; 11-9
'0159 11 0309 DEFB 11H ;11-9-1
'015A 12 0310 DEFB 12H ;11-9-2
'015B 13 0311 DEFB 13H ;11-9-3
'015C 00 0312 DEFB 0 ;11-9-4
'015D 00 0313 DEFB 0 ;11-9-5
'015E 08 0314 DEFB 08H ;11-9-6
'015F 00 0315 DEFB 0 ;11-9-7
'0160 18 0316 DEFB 18H ;11-9-8
'0161 13 0317 DEFB 19 ;11-9-8-1
'0162 00 0318 DEFB 0 ;11-9-8-2
'0163 00 0319 DEFB 0 ;11-9-8-3
'0164 1C 0320 DEFB 1CH ;11-9-8-4
'0165 1D 0321 DEFB 1DH ;11-9-8-5
'0166 1E 0322 DEFB 1EH ;11-9-8-6
'0167 1F 0323 DEFB 1FH ;11-9-8-7
'0168 7D 0324 DEFB 7DH ;11-0
'0169 7E 0325 DEFB 7EH ;11-0-1
'016A 73 0326 DEFB 73H ;11-0-2
'016B 74 0327 DEFB 74H ;11-0-3
'016C 75 0328 DEFB 75H ;11-0-4
'016D 76 0329 DEFB 76H ;11-0-5
'016E 77 0330 DEFB 77H ;11-0-6
'016F 78 0331 DEFB 78H ;11-0-7
'0170 79 0332 DEFB 79H ;11-0-8
'0171 00 0333 DEFB 0 ;11-0-8-1
'0172 00 0334 DEFB 0 ;11-0-8-2
'0173 00 0335 DEFB 0 ;11-0-8-3
'0174 00 0336 DEFB 0 ;11-0-8-4
'0175 00 0337 DEFB 0 ;11-0-8-5
'0176 00 0338 DEFB 0 ;11-0-8-6
'0177 00 0339 DEFB 0 ;11-0-8-7
'0178 7A 0340 DEFB 7AH ;11-0-9
'0179 00 0341 DEFB 0 ;11-0-9-1
'017A 00 0342 DEFB 0 ;11-0-9-2
'017B 00 0343 DEFB 0 ;11-0-9-3
'017C 00 0344 DEFB 0 ;11-0-9-4
'017D 00 0345 DEFB 0 ;11-0-9-5
'017E 00 0346 DEFB 0 ;11-0-9-6
'017F 00 0347 DEFB 0 ;11-9-0-7
'0180 00 0348 DEFB 0 ;11-0-9-8
'0181 00 0349 DEFB 0 ;11-0-9-8-1

CR COPYRIGHT 1977 MOSTEK CORP MOSTEK FLP-80 ASSEMBLER V2.0 PJI.GE 0007
ADDR OBJECT ST # SOURCE STATEMENT DATASET = DKO:CR .SHC

'0182 00 0350 DEFB 0 ;11-0-9-8-2
'0183 00 0351 DEFB 0 ;11-0-9-8-3
'0184 00 0352 DEFB 0 ;11-0-9-8-4
'0185 00 0353 DEFB 0 ;11-0-9-8-5
'0186 00 0354 DEFB 0 ;11-0-9-8-6
'0187 00 0355 DEFB 0 ;11-0-9-8-7
'0188 26 0356 DEFB 26H ; 12
'0189 41 0357 DEFB 'A' ;12-1
'018A 42 0358 DEFB 'B' ;12-2
'018B 43 0359 DEFB 'C' ;12-3
'018C 44 0360 DEFB 'D' ;12-4
'018D 45 0361 DEFB 'E' ;12-5
'018£ 46 0362 DEFB 'F' ;12-6
'018F 47 0363 DEFB 'G' ;12-7
'0190 48 0364 DEFB 'H' ;12-8
'0191 00 0365 DEFB 0 ; 12-8-1
'0192 5B 0366 DEFB 5BH ;12-8-2
'0193 2E 0367 DEFB , , ; 12-8-3 .
'0194 3C 0368 DEFB '< ' ;12-8-4
'0195 28 0369 DEFB ' (, ; 12-8-5
'0196 2B 0370 DEFB '+ ' ;12-8-6
'0197 5E 0371 DEFB 5EH ;12-8-7
'0198 49 0372 DEFB 'I' ;12-9-
'0199 01 0373 DEFB 0'1H ;12-9-1
'019A 02 0374 DEFB 02H ;12-9-2
'019B 03 0375 DEFB o 3H ;12-9-3
'019C 00 0376 DEFB 0 ;12-9-4
'019D 09 0377 DEFB 09H ; 12-9-5
'019E 00 0378 DEFB 0 ;12-9-6
'019F 7F 0379 DEFB 7FH ;12-9-7
'01AO 00 0380 DEFB 0 ;12-98
'01 A 1 00 0381 DEFB 0 ;12-9-8-1
'01A2 00 0382 DEFB 0 ;12-9-8-2
'01A3 OB 0383 DEFB OBH ;12-9-8-3
'01A4 OC 0384 DEFB OCH ;12-9-8-4
'01A5 OD 0385 DEFB ODH ;12-9-8-5
'01A6 OE 0386 DEFB OEH ;12-9-8-6
'01A7 OF 0387 DEFB OFH ;12-9-8-7
'01A8 7B 0388 DEFB 7BH ;12-0
'01A9 61 0389 DEFB 61H ; 12-0-1
'01AA 62 0390 DEFB 62H ;12-0-2
'01AB 63 0391 DEFB 63H ;12-0-3
'01 AC 64 0392 DEFB 64H ;12-0-4
'01AD 65 0393 DEFB 65H ;12-0-5
'01AE 66 0394 DEFB 66H ;12-0-6
'01AF 67 0395 DEFB 67H ;12-0-7
'01BO 68 0396 DEFB 68H ;12-0-8
'01 B 1 00 0397 DEFB 0 ;12-0-8-1
'01B2 00 0398 DEFB 0 ;12-0-8-2
'01B3 00 0399 DEFB 0 ;12-0-8-3
'01B4 00 0400 DEFB 0 ;12-0-8-4
'01B5 00 0401 DEFB 0 ;12-0-8-5
'01B6 00 0402 DEFB 0 ;12-0-806
'01B7 00 0403 DEFB 0 ;12-0-8-7
'01B8 69 0404 DEFB 69H ;12-0-9
'01B9 00 0405 DEFB 0 ;12-0-9-1
'01BA 00 0406 DEFB 0 ;12-0-9-2
'01BB 00 0407 DEFB 0 ;12-0-9-3

CR COPYRIGHT 1977 110STEK CORP MOSTEK FLP-80 ASSEMBLER V2.0 PAGE OOOt
ADDR OBJECT ST # SOURCE STATEMENT DATASET = DKO:CR .SHC

'01BC 00 0408 DEFB 0 ;12-0-9-4
• 0 1BD 00 0409 DEFB 0 ;12-0-9-5
'01BE 00 0410 DEFB 0 ;12-0-9-6
'01BF 00 0411 DEFB 0 ;12-0-9-7
• 01 CO 00 0412 DEFB 0 ;12-0-9-8
'01C1 00 0413 DEFB 0 ;12-0-9-8-1
'01C2 00 0414 DEFB 0 ;12-0-9-8-2
'01C3 00 0415 DEFB 0 ;12-0-9-8-3
'01C4 00 0416 DEFB 0 ;12-0-9-8-4
• 0 1C5 00 0417 DEFB 0 ;12-0-9-8-5
'01C6 00 0418 DEFB 0 ; 12-0-9-8-6
'01C7 00 0419 DEFB 0 ;12-0-9-8-7
'01C8 7C 0420 DEFB 7CH ;12-11
'01C9 6A 0421 DEFB 6AH ;12-11-1
'01CA 6B 0422 DEFB 6BH ;12-11-2
'01CB 6C 0423 DEFB 6CH ;12-11-3
'01CC 6D 0424 DEFB 6DH ;12-11-4
'01CD 6E 0425 DEFB 6EH ;12-11-5
• 0 1CE 6F 0426 DEFB 6FH ;12-11-6
'01CF 70 0427 DEFB 70H ;12-11-7
'01 DO 71 0428 DEFB 71H ;12-11-8
'0 1 D 1 00 0429 DEFB a ;12-11-8-1
'01D2 00 0430 DEFB 0 ;12-11-8-2
'01D3 00 0431 DEFB 0 ;12-11-8-3
'01D4 00 0432 DEFB 0 ;12-11-8-4
'0 1D5 00 0433 DEFB 0 ;12-11-8-5
'a 1D6 00 0434 DEFB 0 ;12-11-8-6
'01D7 00 0435 DEFB 0 ;12-11-8-7
'01D8 72 0436 DEFB 72H ;12-11-9
'01D9 00 0437 DEFB 0 ;12-11-9-1
'01DA 00 0438 DEFB 0 ;12-11-9-2
'01DB 00 0439 DEFB 0 ;12-11-9-3
'01DC 00 0440 DEFB 0 ;12-11-9-4
'01 DD 00 0441 DEFB 0 ;12-11-9-5
'01DE 00 0442 DEFB a ;12-11-9-6
'01DF 00 0443 DEFB a ;12-11-9-7
'0 1EO 00 0444 DEFB 0 ;12-11-9-8
'01E1 10 0445 DEFB 10H ;12-11-9-8-1
'01E2 00 0446 DEFB 0
'01E3 00 0447 DEFB 0
'01E4 00 0448 DEFB 0
'01E5 00 0449 DEFB 0
'01E6 00 0450 DEFB 0
'01E7 00 0451 DEFB 0
'01E8 00 0452 DEFB 0
'01E9 00 0453 DEFB 0
'01EA 00 0454 DEFB 0
'01EB 00 0455 DEFB 0
'01EC 00 0456 DEFB 0
'01ED 00 0457 DEFB 0
'01EE 00 0458 DEFB 0
'01EF 00 0459 DEFB 0
'01FO 00 0460 DEFB 0
'01F1 00 0461 DEFB 0
'01 F2 00 0462 DEFB 0
'01F3 00 0463 DEFB 0
'01F4 00 0464 DUB 0
'01F5 00 0465 DEFB 0

CR COPYRIGHT 1977 NOSTEK CORP MOSTEK FLP-80 ASSEMBLER V2.0 PAGE 0009
ADDR OBJECT ST # SOURCE STATEMENT DATASET = DKO:CR .SRC

'01F6 00 0466 D£FB 0
'01F7 00 0467 DEFB 0
'01F8 00 0468 DEFB 0
'01F9 00 0469 DEFB 0
'01FA 00 0470 DEFB 0
'01FB 00 0471 DEFB 0
'01FC 00 0472 DEFB 0
'01FD 00 0473 DEFB 0
'01FE 00 0474 DEFB 0
'01FF 00 0475 DEFB 0
'0200 00 0476 DEFB 0
'0201 00 0477 DEFB 0
'0202 00 0478 DEFB 0
, 0203 00 0479 DEFB 0
'0204 00 0480 DEFB 0
'0205 00 0481 DEFB 0
'0206 00 0482 DEFB 0
, 0207 00 0483 DEFB 0
'0208 00 0484 DEFB 0
'0209 00 0485 DEFB 0

0486 END

ERRORS=OOOO

PP COPYRIGHT 1978 MOSTEK CORP MOSTEK FLP-SO ASSEMBLER V2.0 PAGE 0001
ADDR OBJECT ST # SOURCE STATEMENT DATASET = DKO:PP .SRC

)FFOO
)0002
)0015
)0007

')0000
'0000
'0001
'0002
'0003
'0004
'0005

'0006
)OOOB

'0007
'0008
'OOOB
'OOOE
'OOOF
'0011
'0012
'0015
'0016
'0017
'0018
'0019
'001C
'001E
'001F
'0021
'0023
'0025
'0027
, 0029
'002A
'002C
'002F
, 0030

'0031
, 0032
'0033
'0034
'0037
'003A
'003B
'003D

04
00
05
2D
00
2C

AA

F3
2AOOFF
110BOO
B7
ED52
E5
116DOO'
73
23
72
D1
210600'
CBC6
4E
3EOF
ED79
ED59
3E83
ED79
7A
ED47
010100
FB
C9

E5
C5
F5
210600'
01D007
C5
0629
FB

0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013 ;
0014
0015 PP
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059

NAME PP

PAPER TAPE PUNCH DRIVER FOR FLP-80DOS V2.0

TOR
IRET
CFLGS
TIMOUT

PPST
PPDIS

PPOPEN

GLOBAL
GLOBAL

EOU
EQU
EOU
EOU

EOU
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
EOU

DI
LD
LD
OR
SBC
PUSH
LD
LD
INC
LD
POP
LD
SET
LD
LD
OUT
OUT
LD
OUT
LD
LD
LD
EI

PPCLOSE RET

PPWRIT

PPA

PPL

PUSH
PUSH
PUSH
LD
LD
PUSH
LD
EI

PP
EH

OFFOOH
2
21
7

$
4 ;MAX ROST
o
PPOPEN-$
PPCLOS-S
o
PPWRIT-$

OAAH iPAPER TAPE PUNCH POPT
OBH iOFFSET fROM TOR FOR VECTOR

iOPEN
HL,(TOR)
DE,PPDIS

DEVICE
iACCESS INTERRUPT TABLE
;VECTOR OFFSET FROM TOR

A
HL,DE
HL
DE,PINT
(HL) ,E
HL
(HL),D
DE
HL,PPST
O,(HL)
C, (HL)
A,OFH
(C) ,A
(C) , E

A,83H
(C) , A
A,D
LA
BC,1

HL
BC
AF
HL,PPST
BC,2000
BC
B,41

iDE -) INTERRUPT HANDLER
iSAVE VECTOR ADDRESS

iDE = VECTOR ADDRESS
iHL -) STATUS BYTE
iSET READY BIT
iGET PORT FOR CONTROL
iOUTPUT CONTROL

iOUTPUT INTP VECTOR LSBYTE
iOUTPUT CONTROL

iSET VECTOR MSBYTE

iPHYSICAL RECORD SIZE

iRETURN TO CALLER

iSAVE BYTE TO OUTPUT
iHL -) STATUS BYTE
i2000 MSEC TIME OUT COUNT

iMSEC COUNTER
iENABLE INTPS

PP COPYRIGHT 1978 MOSTEK CORP MOSTEK FLP-80 ASSEMBLER V2.0 PAGE 000
ADDR OBJECT ST # SOURCE STATEMENT DATASET = DKO:PP .SRC

'003E CB46 0060 BIT O,(HL) ;CHECK FOR READY
'0040 201D 0061 JR NZ,PPR-S ;YES, SKIP
'0042 FDCB1556 0062 BIT IRET,(IY+CFLGS) ;CHECK IMMED RETURN
'0046 2012 0063 JR NZ,PPI-$;YES, SKIP OUT
'0048 10F3 0064 DJNZ PPL-S iLOOP FOR TIMEOUT
'004A C1 0065 POP BC
'0043 OB 0066 DEC BC ;DECREMENT COUNT
'004C 78 0067 LD A,B \
'OO4D B1 0068 OR C
'004E 20EA 0069 JR NZ,PPA-$;LOOP FOR TIMEOUT
'0050 3E07 0070 LD A,TIMOUT ;TIMEOUT ERROR MESSAGE
'0052 CDFFFF 0071 CALL EH ;OUTPUT THE MESSAGE
'0055 01204E 0072 LD BC,20000 ;NEW TIMEOUT
'0058 18EO 0073 JR PPA-$;LOOP AGAIN

0074 i
'005A C1 0075 PP1 POP BC ;RESTORE STACK
'OOSB F1 0076 POP AF ;RESTORE BYTE
'OOSC C1 0077 POP BC ;RESTORE REGS
'OOSD E1 0078 POP HL
'OOSE C9 0079 RET iRETURN TO CALLER

0080 . ,
'OOSF C1 0081 PPR POP BC ;RESTORE STACK
'0060 F1 0082 POP AF ;GET BYTE
'0061 CB86 0083 RES O,(HL) iRESET READY BIT
'0063 4E 0084 LD C,(HL) ;GET PORT NUMBER
'0064 ED79 0085 OUT (C) , A iOUTPUT DATA TO PP
'0066 FDCB1596 0086 RES IRET,(IY+CFLGS) ;RESET IMMED RETURN BIT
'006A C1 0087 POP BC ;RESTORE REGS
'006B E1 0088 POP HL
'006C C9 0089 RET ;RETURN TO CALLER

0090
0091 . ,

'006D E5 0092 PINT PUSH HL ;PAPER TAPE PUNCH 1NTP HANDLER
'006E 210600' 0093 LD HL,PPST
'0071 CBC6 0094 SET O,(HL)
'0073 E1 0095 POP HL
'0074 FB 0096 E1
'0075 ED4D 0097 RE'rI

ERRORS=OOOO

'R COPYRIGHT 1978 MOSTEK CORP MOSTEK FLP-80 ASSEMBLER V2.0 PAGE 0001
ADDR OBJECT ST # SOURCE STATEMENT DATASET = DKO:PR .SRC

)0007
)FFOO
)0002
)0015

')0000
'0000
'0001
'0002
'0003
'0004

'0005
)0009

'0006
'0007
'OOOA
'OOOD
'OOOE
'0010
'0011
'0014
'0015
'0016
'0017
'0018
'001B
'001D
'001E
'0020
'0022
'0024
'0026
'0028
'0029
'00213
'002D
'002E
, 0030
'0033
'0034

'0035
'0036
'0037
'003A
'003D

03
05
00
31
31

A8

F3
2AOOFF
110900
B7
ED52
E5
116FOO'
73
23
72
D1
210500'
CBC6
4E
3E4F
ED79
ED59
3E83
ED79
7A
ED47
CB86
4E
ED70
010100
FB
C9

E5
C5
210500'
01FAOO
C5

0002
0003

NAME PR

0004
0005

PAPER TAPE READER DRIVER FOR FLP-80DOS V2.0

0006
0007

TIMOUT
TOR
IRET
CFLGS

0008 i
0009
0010
0011
0012
0013
0014
0015 PR
0016
0017
0018
0019
0020
0021 i
0022
0023
0024

PRST
PRDIS

0025 i
0026 PROPEN
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053

PRCLOS

0054 i
0055 PRREAD
0056
0057
0058
0059 PRA

GLOBAL
GLOB.n. L

EQU
EQU
EQU
EQU

EQU
DEFB
DEFB
DEFB
DEFB
DEPB

DEFB
EQU

DI
LD
LD
OR
SBC
PUSH
LD
LD
INC
LD
POP
LD
SET
LD
LD
OUT
OUT
LD
OUT
LD
LD
RES
LD
IN
LD
EI
RET

PUSH
PUSH
LD
LD
PUSH

PR
EH

7
OFFOOH
2
21

$
3 ~MAX REQST
PROPEN-$
o ~ OPENW
PRCLOS-$
PRREAD-$

OA8H
09

iREADER PORT NUMBER
iVECTOR OFFSET FROM TOR

iDISABLE INTPS
HL,(TOR) iACCESS INTERRUPT TABLE
DE,PRDIS
A

;ACCESS START OF TABLE
;SAVE IT

HL,DE
HL
DE,RINT
(HL),E
HL
(HL),D
DE
HL,PRST
O,(HL)
C,(HL)
A,4FH
(C) , A

(C) , E
A,83H
(C) , A

A,D

;PR INTERRUPT IS FIRST ENTRY
;SAVE HANDLER ADDRESS

I,A
O,(HL)
C,(HL)
F, (C)
BC,1

HL
BC

;IN INTP TABLE

;DE = VECTOR ADDRESS
iHL = STATUS BYTE
;SET FOR CONTROL
~GET PORT NUMBER
;OUTPUT CONTROL

;OUTPUT VECTOR LSBYTE
;OUTPUT CONTROL

;SET UP VECTOR MSEYTE

iINIT STATUS BIT
;GET PORT
;READ PORT TO INITIALIZE
;PHYSICAL RECORD SIZE= 1
iENABLE INTPS
iRETURN TO CALLER

HL,PRST ;HL -) STATUS BYTE
BC,250 iTIMEOUT = 250 MSEC
BC iSAVE

OPERATIC
BYTE

PR COPYRIGHT 1978 MOSTEK CORP MOSTEK FLP-80 ASSEMBLER V2.0 PAGE 0002
ADDR OBJECT ST # SOURCE STATEMENT DATASET = DKO:PR .SRC

'003E 0629 0060 LD B,41 ;MSEC COUNTER
'0040 FB 0061 PRL EI ;.ENABLE INTPS
'0041 CB46 0062 BIT O,(HL) ;CHECK IF READY
'0043 2018 0063 JR NZ,PRR-$;YES, SKIP
'0045 FDCB1556 0064 BIT IRET,(1Y+CFLGS) ;CHECK FOR 11111ED RETURN
'0049 2020 0065 JR NZ,PR1-$;IF SO, SKIP OUT
'004B 10F3 0066 DJNZ PRL-$;LOOP FOR TIMEOUT
'004D C1 0067 POP BC
'004E OB 0068 DEC BC ;DECREMENT COUNTER
'004F 78 0069 LD A,B iCHECK COUNT
'0050 B1 0070 OR C
'0051 20EA 0071 JR NZ,PRA-$
'0053 3E07 0072 LD A,TIMOUT ;TIME OUT ERROR CODE
'0055 CDFFFF 0073 CALL EH
'0058 01204£ 0074 LD BC,20000 iNEW TIME OUT COUNT
'005B 18EO 0075 JR PRA-$

0076
'005D C1 0077 PRR POP BC
'005E CB86 0078 RES O,(HL) iZERa DATA AVAILABLE FLAG
'0060 4E 0079 LD C, (HL) iGET PORT FOR DATA
'0061 ED78 0080 IN A, (C) iGET DATA
'0063 2F 0081 CPL iCOMPLEMENT THE DATA
'0064 FDCB1596 0082 RES IRET, (IY+CFLGS) iRESET IMMED R ETUHN
'0068 C1 0083 POP BC
'0069 E1 0084 POP HL
'006A C9 0085 RET iRETURN TO CALLER

0086 ;
'0069 C1 0087 PRI POP BC
'006C C1 0088 POP BC
'006D E1 0089 POP HL
'006£ C9 0090 RET ;RETURN TO CALLER

0091
0092 ;

'006F E5 0093 RINT PUSH HL ;READER INTERRUPT HANDLER
'0070 210500' 0094 LD HL,PRST
'0073 CBC6 0095 SET 0, (HL) ;SET READY BIT
'0075 E1 0096 POP HL
'0076 FB 0097 E1
'0077 ED4D 0098 RET1

ERRORS=OOOO

TI COPYRIGHT 1978 MOSTEK CORP MOSTEK FLP-80 ASSEMBLER V2.0 PAGE 0001
ADDR OBJECT ST # SOURCE STATEMENT DATASET = DKO:STI .SRC

)001E
)0011
)0013

')0000
'0000
'0001
'0002
'0003
'0004

'0005
'0009
'OOOD
'0010
'0013

'0014
'0015
'0016
'0019
'001A

'001C
'001E
'0021
'0024
'0027
, 0028
'002A
'002C
, 002£
'0030
'0032
'0033
, 0034
'0035
'0036
'0038

'003A
'0033
'003D
'003F

03
04
00
FD
10

FD361EOO
FD362000
CDFFFF
010100
C9

E5
C5
FD7E1E
A7
2051

3E11
CDOD01'
218000'
01D007
C5
0630
DBDD
CB77
200A
10F8
C1
OB
78
B1
20EF
1811

C1
DBDC
E67F
200E

0002
0003
0004 ;
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015 TI
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059

NAME TI

SILENT 700 TAPE INPUT HANDLER FOR FLP-80DOS V2.0
COMPATIBLE WITH PREVIOUS SYSTEMS

HSCR
DC1
DC3

TIOPEN

;
TIREA D

GLOBAL
GLOBAL
GLOBAL

EQU
EQU
EQU

EQU
DEFB
DEFB
DEFB
DEFB
DEFB

LD
LD
CALL
LD
RET

PUSH
PUSH
LD
AND
JR

MINDIS
MINEN
TI

30
11H
13H

$
3
TIOPEN-$
o
T1CLOS-$
T1READ-S

(1Y+HSCR),O iZERO BUFFER COUNTER
(IY+HSCR+2),0 iZERO NULL COUNTER
M1NDIS ;DISABLE MINIMAL LISTENER
BC,1 iPHYSICAL RECORD SIZE

HL
BC
A,(IY+HSCR)
A ; CHECK
NZ,TIB-$

iGET BUFFER CCUNT
IT

;IF NOT ZERO, SKIP

READ A RECORD FROM TAPE INTO THE BUFFER

LD
C.I\.LL
LD

TI1 LD
TI1A PUSH

LD
TI2 IN

BIT
JR
DJNZ
POP
DEC
LD
OR
JR
JR

TI3 POP
IN
AND
JR

NULL FOUND,
FORCE EOT =

A,DC1 ;START THE TRA~SPORT
S700P
HL,T1BUF iHL -) BUFFER
BC,2000 ;2 SECOND TIMEOUT
BC
B,48 iMSEC COUNT
A,(ODDH) iCHECK THE UART STATUS
6,A
NZ,TI3-$;IF READY, SKIP
T12-$ iLOOP FOR MSECOND
BC
BC iDECREMENT BC COUNTER
A,B ;CHECK TIMEOUT COUNTER
C
NZ,TI1A-$; IF NOT TIMEOUT,LOOP
T13A-$ iELSE FAKE AN END OF FILE

BC
A,(ODCH) iGET DATA BYTE
7FH ;REMOVE PARITY
NZ,TI4-S ;IF NOT NULL, SKIP

COUNT IT. IF UP TO 127 NULLS,
04H.

TI COPYRIGHT 1978 MOSTEK CORP MOSTEK FLP-80 ASSEMBLER V2.0 PAGE 000:
ADDR OBJECT ST # SOURCE STATEMENT DATASET = DKO:STI .SRC

'0041
'0044
, 0047
'0049
'004B
'004D

'004F
'0053
'0055
'0057
'0059
'005B
'005C
'005F
'0060
'0062

'0064
'0066
'0069

'006D
'0070
, 0072
'0075
, 0076
'0077
'007A
'007D
, 007E
'007F

')0080

'0100
'0102
'0105
'0109
'010C

'010D
'010£
'0110
'0112
'0114
'0115
'0117

FD3420
FD7E20
FE7F
38D9
3E04
180C

FD362000
FE7F
28CD
FE13
2809
77
FD341E
23
FE04
20CO

3E13
CDODO 1 '
FD361FOO

FD4E1F
0600
218000'
09
7E
FD341F
FD351E
C1
E1
C9

3E13
CDOD01'
FD361EOO
CDFFFF
C9

F5
DBDD
CB7F
28FA
F1
D3DC
C9

ERRORS=OOOO

0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081

TI3A

TI4

TI4A

TIS

INC
LD
CP
JR
LD
JR

LD
CP
JR
CP
JR
LD
INC
INC
CP
JR

LD
CALL
LD

(IY+HSCR+2) ;INCR NULL COUNTER
A,(IY+HSCR+2) ;GET NULL COUNTER
127 ;CHECK IT FOR MAX
C,TI1-$;IF NOT TOO BIG, JUST IGNORE
A,4 ;ELSE FORCE EOT
TI4A-$;AND GET OUT

(IY+HSCR+2),Q ;REINIT NULL COUNTER
7FH ;IGNORE RUBOUT
Z,TI1-$
DC3 ;CHECK FOR END OF RECORD
Z,TI5-$;YES, SKIP
(HL),A ;ELSE STUFF THE BUFFER
(IY+HSCR) ;INCREMENT COUNTER
HL ;INCREMENT BUFFER POI~TER

4 ;CHECK FOR END OF FILE
NZ,TI1-$;NO, LOOP FOR MORE

A,DC3 ;TURN OFF TRANSPORT
S700P
(IY+HSCR+1) ,0 ;ZERO BUFFER POINTER

0082 ;
0083
0084
0085

DEBLOCK THE BUFFER

0086
0087
0088
0089
0090
0091
0092
0093

;
TIB

0094 ;
0095 TIBUF
0096
0097
0098
0099
0100
0101
0102
0103
0104
0105
0106
0107
0108
0109

TICLOS

S700P
S700R

0110 ;

LD
LD
LD
ADD
LD
INC
DEC
POP
POP
RET

DEFS

LD
CALL
LD
CALL
RET

PUSH
IN
BIT
JR
POP
OUT
RET

C, <IY +HSCR+ 1)
B,O
HL,TIBUF
HL,BC ;GET
A,(HL) ;GET
(IY+HSCR+1)
(IY+HSCR)
BC

;GET BUFFER POINTER

;HL -) BUFFER
BUFFER ADDRESS
RETURNED CHARACTER

;INCREMENT BUFFER POINTE
;DECREMENT COUNTER

HL ;RESTORE REGS
;RETURN TO CALLER

128

A,DC3
S700P

;ASSURE TRANSPORT IS OFF

(IY+HSCR),O iZERO BUFFER COUNTER
MINEN ;REENABLE MINIMAL LISTENER

AF ;OUTPUT CHARACTER
A,(ODDH)
7,A
Z,S700R-$
AF ;GET
(ODCH),A

;CHECK UART STATUS

;IF NOT READY, LOOP
BYTE

;OUTPUT IT

TK COPYRIGHT MOSTEK CORP 1978 MOSTEK FLP-80 ASSEMBLER V2.0 PAGE 0001
ADDR OBJECT ST # SOURCE STATEMENT DATASET = DKO:TK .SRC

>OOD9
>0015
>0002
>FF25
>FF24
>FF06
>FF13
>OODD
>OODC
>0003
>0018

'>0000
'0000
'0001
'0002
'0003
'0004

'>0005
'0005
'0007
'0009
'OOOC

'>OOOD
'OOOD
'0010
'0011
'0013
'0015

03
04
00
09
09

3E03
D3DE
010100
C9

3A25FF
B7
2010
DBDD
CB77

0002 N.l'l.ME TK
.** , 0003

0004 i *
0005 i*
0006 ;*
0007 :*
0008 ;*
0009 ;*
0010 ;*
0011
0012
0013
0014

· * ,
· * ,

*
KEYBOARD INPUT DRIVER AND *
MINIMAL LISTNER SERVICE ROUTINE.*

ID: TK

PROGRAMMER: JOHN BATES
M. FREEMAN

DATE: 6/1/78

*
*
*
*
*
*

.** ,

0015
0016
0017
0018 ;
0019
0020
0021
0022
0023 ;
0024 ;
0025 ;
0026 CTC1
0027 CFLGS
0028 IRET
0029 TKST
0030 MINFLG
0031 COUNT
0032 LONG
0033 UCTL
0034 UDATA
0035 ETX
0036 CAN

INTERNAL GLOBAL VARIABLES

GLOBAL
GLOBAL

TK
MINLIS

EXTERNAL GLOBAL VARIABLES

GLOBAL
GLOBAL

ENTRY
REBOOT

SYSTEM VARIABLES

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

OD9H
21
2
OFF25H
OFF24H
OFF06H
OFF13H
ODDH
ODCH
03
18H

;DDT-80 BREAK PT ENTRY
iSYSTE~ REBOOT ADDRESS

;UART CONTROL PORT

.******************************** , 0037
0038
0039
0040 TK
0041

· * , TK INPUT DRIVER *
.******************************** ,

0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052

TKOPEN

TK01

TKCLOS

0053 ;
0054
0055
0056

TKREAD
TTl

0057
0058
0059

TTIDO

EQU
DEFB
DEFB
DEFB
DEFB
DEFB

EQU
LD
OUT
LD
RET

EQU
LD
OR
JR
IN
BIT

$
3 ;MAX REQUEST
TKOPEN-$ iOPENR
o iOPENW
TKCLOS-$ iCLOSE
TKREAD-S iREAD

$
A,3
(ODEH),A

TURN ON CTS

BC,1 iPHYS REC SIZE
iRETURN TO CALLER

$
A,(TKST)
A
NZ,TTID1A-$
A,(ODDH)
6,A

FROM ESCAPE TEST
IF NZ

iCHECK UART STATUS

TK COPYRIGHT MOSTEK CORP 1978 MOSTEK FLP-80 ASSEMBLER V2.0 PAGE 000
ADDR OBJECT ST # SOURCE STATEMENT DATASET = DKO:TK .SRC

'0017
'0019
'001 D
'001F
'0020

')0021
'0021
'0023
, 0027
'0029
'002A
'0028
'002E
, 0031
'0032
'0034
, 0035
'0036
'0037
'0039
'003B
'003D
'003E
, 0040
, 0043
'0046
'0049
'004B
'004D

'0050
, 0051
'0053
'0055
'0057
, 0059
'005B
'005D
'005F
'0061
'0063
, 0065
'0068
'006B
, 006C
'006D
'0070
'0071
'0073
, 0076
'0077
'0078

2008
FDCB1556
28EE
BF
C9

DBDC
FDCB1596
CBBP
F5
AF
3225FF
31\24FF
B7
2002
F1
C9
F1
FE18
280E
FE03
CO
3E01
3213FF
3206FF
C3FFFF
3E01
D3D9
C3FFFF

FS
DBDD
CB77
281F
DBDC
E67F
FE18
281B
FE03
2010
3E01
3206FF
3213FF
F1
E5
214700'
E3
1804
322SFF
F1
FB
ED4D

0060
0061
0062
0063
0064
0065 ;
0066 TTID1
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089

TTID1A

TT1D1B

TTICAN

JR
BIT
JR
CP
RET

EQU
IN
RES
RES
PUSH
XOR
LD
LD
OR
JR
POP
RET
POP
CP
JR
CP
RET
LD
LD
LD
JP
LD
OUT
JP

NZ,TTID1-$
IRET,(IY+CFLGS)
2,TTI-$
A

iRE!\DY, SKIP
;IMMED RETURN?
iNO, LOOP

i YES, EXIT

$
A,(ODCH)
IRET, (IY+CFLGS)
7,A
AF
A
(TKST),A
A,(MINFLG)
A
NZ,TT1D1B-$
AF

AF
CAN
2,TTICAN-$
ETX
NZ
A , 1
(LONG),A
(COUNT),A
ENTRY
A,1
(OD9H),A
REBOOT

;GET DATA
iCLEAR IM1'1ED RET BIT
iCLEAR PARITY

i CLEAR HOLD REG.
iMINIMAL LISTNER ENABLE

iIF YES, TEST FOR TRAPS

iNORMAL DATA
iEXIT TO DDT

iJUMP TO DDT BREAK PT

;KILL MIN. LIST.

.** , 0090
0091 ;*
0092 ;*
0093 ;*
0094 ;*
0095
0096
0097
0098
0099
0100
0101
0102
0103
0104
0105
0106
0107
0108
0109
0110
o 1 1 1
0112
0113
0114
0115
0116
0117

MINIMAL LISTNER INTERRUPT
SERVICE ROUTINE

*
*
*
*

.** ,
MINLIS

MLIS4

ML1S2
MLIS1
MLISO

PUSH AF
IN A,(UCTL)
BIT 6,A
JR Z,ML1S1-$
IN A,(UDATA)
AND 7FH
CP CAN
JR Z,ML1S3-$
CP ETX
JR NZ,MLIS2-$
LD A, 1
LD (COUNT),A
LD (LONG),A
POP AF
PUSH HL
LD HL,ENTRYiCTL
EX (SP),HL
JR MLISO-$
LD (TKST),A
POP AF
EI
RETI

iSAVE CHARACTER
iDATA READY?

iGET A CHAR

;CNTL X ?

;CNTL C
iEXIT

;GOTO DDT

C TRAP TO DDT

;SAVE FOR BACKGROUND
;SAVE AF

;EXIT

COPYRIGHT MOSTEK CORP 1978 MOSTEK FLP-80 ASSEMBLER V2.0 PAGE 0003
IDDR OBJECT ST # SOURCE STATEMENT DATASET = DKO:TK .SRC

)07A
)07C
)07E
)081

3E01
D3D9
214EOO'
18ED

RRORS=OOOO

0118 MLIS3
0119
0120
0121
0122
0123

LD
OUT
LD
JR

END

A, 1
(CTC1),A
HL,REBOOT
MLIS4-$

;TURN OFF MINIMAL LISTNER
;CTL X TRAP TO B001

~ COPYRIGHT 1978 MOSTEK CORP MOSTEK FLP-80 ASSEMBLER V2.0 PAGE 0001
~DDR OBJECT ST # SOURCE STATEMENT DATASET = DKO:STO .SRC

)001E
)0011
)0012
)0013
)0014

)0000
0000
0001
0002
'0003
'0004
'0005

'0006
'OOOA
'OOOD

'OOOE
'OOOF
'0010
'0013
'0015
'0018
'0019
'001A
• 001 D
'001F
'0021
'0023

'0025
'0027
'002A

'002D
'002E
'002F
'0031
'0033
'0035
'0037
'0039

'003B

04
00
04
6D
00
09

FD361EOO
010100
C9

C5
E5
FD4E1E
0600
217AOO'
09
77
FD341E
FEOA
2804
FE04
2048

3E12
CDFAOO'
217AOO I

7E
23
FE7F
28FA
FE11
3804
FE15
38F2

CDFAOO'

NAME TO 0002
0003
0004 ;
0005
0006 i
0007 i
0008
0009
0010
0011
0012
0013
0014
0015
0016 i
0017 TO
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043 i
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059

SILENT 700 TAPE OUTPUT ~ANDLER
COMPATIBLE WITH PREVIOUS SYSTEMS
FOR FLP-80DOS V2.0

. ,
HSCR
DC1
DC2
DC3
DC4

i
TOOPEN

i
TOWRIT

GLOBAL

EQU
EQU
EQU
EQU
EQU

EQU
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

LD
LD
RET

PUSH
PUSH
LD
LD
LD
ADD
LD
INC
CP
JR
CP
JR

TO

30
11H
12H
13H
14H

$
4
o
TOOPEN-$
TOCLOS-$
o
TOWRIT-$

(IY+HSCR),O iZERa POINTER
BC,1 ;PHYS RECORD SIZE

iRETURN TO CALLER

BC
HL
C,(IY+HSCR)
B,O

iGET BUFFER COUNT

HL,TOBUF iHL -) BLOCKING BUFFER
HL,BC iGET TO POINT IN BUFFER
(HL),A iPUT CHAR INTO BUFFER
(IY+HSCR) iINCREMENT POINTER
OAH iCHECK FOR LF
Z,TOB-$ iYES, SKIP OUT
4 iCHECK FOR END OF FILE
NZ,T05-$

WRITE OUT BUFFER TO DEVICE . ,
TOB

i
T02

i
T03

LD
CALL
LD

LD
INC
CP
JR
CP
JR
CP
JR

CALL

A,DC2
S700P
HL,TOBUF

A,(HL)
HL
7FH
Z,T02-$
DC1
C,T03-$
DC4+1
C,T02-$

S700P

iSTART RECORD OPERATION

iHL -) BUFFER

iGET CHARACTER FROM EUFFER

iIGNORE RUBOUT

iIGNORE DC1 - DC4

iOUTPUT THE CHARACTER

TO COPYRIGHT 1978 MOSTEK CORP MOSTEK FLP-80 ASSEMBLER V2.0 PAGE OOl
ADDR OBJECT ST # SOURCE STATEMENT DATASET = DKO:STO .SRC

'003E
'0040

'0042
'0044
'0045
'0048

'004A
'004C
'004F

'0051
'0053

'0055
'0057
'005A
'005C
'005F
'0061
'0064
'0066
'0069
'006D
'006E
'006F

'0070
'0072
'0075
'0079

')007A

'OOFA
'OOFB
'OOFD
'OOFF
'0101
'0102
'0104

FE04
200F

0656
AF
CDFAOO'
10FA

3EOD
CDFAOO'
1804

FEOA
20D8

3E13
CDFAOO'
3E7F
CDFAOO'
3E14
CDFAOO'
3E7F
CDFAOO'
FD361EOO
E1
C1
C9

3E14
CDFAOO'
FD361EOO
C9

F5
DBDD
CB7F
28FA
F1
D3DC
C9

ERRORS=OOOO

CP 4 ;CHECK FOR END OF FILE
JR NZ,T03A-$;NO, SKIP

i OUTPUT 86 NULLS TO FLUSH BUFFER TO

0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088 i
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102
0103
0104 i

; TERMINATE CONTINUOUS MODE
LD B,86

T03L XOR A
CALL S700P
DJNZ T03L-$

OUTPUT A CARRIAGE RETURN AFTER THE EOT

i
T03A

T04

TOS

i
TOCLOS

. ,
TOBUF
i
S700P
S700R

LD A,ODH iFOR LINE MODE TERMINATION
CALL S700P
JR T04-$;AND SKIP OUT

CP
JR

LD
CALL
LD
CALL
LD
CALL
LD
CALL
LD
POP
POP
RET

LD
CALL
LD
RET

DEFS

PUSH
IN
BIT
JR
POP
OUT
RET

OAH iCHECK FOR LF
NZ,T02-$ iIF NOT, LOOP FOR MORE

A,DC3
S700P
A,7FH
S700P

;OUTPUT CONTROL CHARACTERS
iAT END OF RECORD

A,DC4
S700P
A,7FH
S700P
(IY+HSCR),O
HL
BC

iREINIT BUFFER POINTER

iRETURN TO CALLER

A,DC4 iASSURE TAPE IS OFF
S700P
(IY+HSCR),O

128

iREINIT POINTER

AF iSAVE BYTE
A,(ODDH) iCHECK UART STATUS
7,A
Z,S700R-$
AF iOUTPUT THE BYTE
(ODCH),A

TR COPYRIGHT 1978 MOSTEK CORP MOSTEK FLP-80 ASSEMBLER V2.0 PAGE 0001
ADDR OBJECT ST # SOURCE STATEMENT DATASET = DKO:TR .SRC

>0011
>0012
>0013
>0014
>0017
>0015
>0007
>1A40
>0002

'>0000
'0000
'0001
'0002
'0003
'0004

'>0005
'0005
'0008
'OOOB

'OOOC
'QOOF

'0010
'0011
'0013

'0015
'0018
'001A
'001C
'001E
'OOH'
'0020
, 0021
'0023

03
04
00
09
OC

CDFFFF
010100
C9

CDFFFF
C9

C5
3E07
D3DE

01401A
DBDE
CB7F
200B
OB
78
B1
20F5
FD361707

0002 NAME TR
.** ,

TITLE: DRIVER FOR TELETYPE TAPE READER

ID: PR VERSION 2.0

PROGRAMMER: JOHN BATES

DATE: 6/20/78

*
*
*
*
*
*
*

.** ,

DC1
DC2
DC3
DC4
ERRC
CFLGS
TIMOUT
MS250
IRET

TROPEN

SYSTEM EQUATES

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
GLOBAL
GLOBAL
GLOBAL

EQU
DEFB
DEFB
DEFB
DEE'B
DEFB

EQU
CALL
LD
RET

11H
12H
13H
14H
23
21
7
6720
2
MINDIS
MINEN
TR

$

;ERROR CODE OFFSET

;TIME OUT ERROR CODE

3 ;MAX REQUEST
TROPEN-$;OPENR
o ;OPENW
TRCLOS-$;CLOSE
TRREAD-S iREAD

$
MINDIS
BC,1

iDISABLE MINIr-!AL
;PHYSICAL RECORD SIZE=1

LISTNER

0003
0004 ; *
0005 ; *
0006 ;*
0007 ;*
0008 ;*
0009 ; *
0010 ; *
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029 TF
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041 ;
0042 TRCLOS CALL

RET
MINEN ;ENABLE MINIMAL LISTNER

0043
0044
0045
0046
0047 TRREAD
0048
0049
0050
0051
0052 TRD1
0053
0054
0055
0056
0057
0058
0059

PUSH
LD
OUT

LD
IN
BIT
JR
DEC
LD
OR
JR
LD

BC iSAVE BC-REG
A,7 ;TURN ON READER
(ODEH),A

BC,MS250 ;TIME OUT
A,(ODEH) TEST FOR START OF CHAR
7,A
NZ,TRD2-$ GOT IT
BC
A,B
C
NZ,TRD1-$
(IY+ERRC),TIMOUT ;TIMEOUT ERROR

TR COPYRIGHT 1978 MOSTEK CORP MOSTEK FLP-80 ASSEMBLER V2.0 PAGE 000
ADDR OBJECT ST # SOURCE STATEMENT DATASET = DKO:TR .SRC

'0027 C1 0060 POP BC . ERROR OUT ,
'0028 C9 0061 RET

0062
'0029 3E03 0063 TRD2 LD A,3 ;TURN OFF READER
'002B D3DE 0064 OUT (ODEH),A
'002D C1 0065 POP BC
'002E 180B 0066 JR TKREAD-$ iGET CHAR

0067 . ,
'0030 F5 0068 TTWRIT PUSH AF iSAVE CHAR
'0031 DBDD 0069 TTODO IN A,(ODDH) iCHECK UART STATUS
'0033 CB7F 0070 BIT 7,A
'0035 28FA 0071 JR Z,TTODO-$ iIF NOT READY, LOOP
'0037 F1 0072 TTOD1 POP AF iRESTORE CHARACTER
'0038 D3DC 0073 OUT (ODCH),A iOUTPUT IT
'003A C9 0074 RET

0075
'003B DBDD 0076 TKREAD IN A,(ODDH) ;CHECK UART STATUS
'003D CB77 0077 BIT 6,A
'003F 2008 0078 JR NZ,TTID1-$ i REA D, SKIP
'0041 FDCB1556 0079 BIT IRET,(IY+CFLGS) iIMMED RETURN?
'0045 28F4 0080 JR Z,TKREAD-$ iNO, LOOP
'0047 BF 0081 CP A
'0048 C9 0082 RET iYRES, EXIT

0083 i
'0049 DB DC 0084 TTID1 IN . A,(ODCH) iGET DATA
'004B FDCB1596 0085 TTID1A RES IRET,(IY+CFLGS) iCLEAR IMMED PET BIT
'004F CBBF 0086 RES 7,A iCLBAR PARITY
'0051 C9 0087 RET

0088 i
0089 END

ERRORS=OOOO

TT COPYRIGHT 1977 MOSTEK CORP MOSTEK FLP-80 ASSEMBLER V2.C PAGE 0001
ADDR OBJECT ST # SOURCE STATEMENT DATASET = DKO:TT .SEC

')0000

'0000
'0001
'0002
'0003
'0004
'0005

)FFEO
)0050

'0006

'0007
'OOOA

'OOOB
'OOOD
'OOOF
'00 1 0
'0013
'0014
'0016
'0018
'001A
'001B
'001C
'001 D
'0020
, 0022
'0023

'0024
'0025
'0027
'0029
'002C
'002D
'0030

04
00
05
07
00
06

00

010100
C9

FE09
2015
C5
3A0600'
47
E6F8
C60S
OE20
90
47
79
CD2400'
10FA
C1
C9

F5
FEOS
2009
3A0600'
3D
320600'
181D

NAME TT
.** ,

TERMINAL OUTPUT DRIVER
(CRT,S700 OR TELETYPE)

ID: TT VERSION 2.0

PROGRAMMER: JOHN BATES

DATE: 6/16/78

*
*
*
*
*
*
*
*

.** ,

GLOBAL
EQU

TELETYPE, S700

BRATE
LWIDTH
HCTR

,
TTOPEN
TTCLOS

WRITE

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

EQU
EQU
DEFB

LD
RET

TT
$

OR CRT DRIVER

4 iMAX REQUEST
o iOPENR
TTOPEN-$ iOPENW
TTCLOS-S iCLOSE
o iREAD
WRITE-S iWRITE

OFFEOH
80
o

iBAUD RATE VARIABE
iTERMINAL LINE WIDTH
iHORIZONTAL COLUMN COUNTER

BC,1 iPHYSICAL RECORD SIZE = 1

9
NZ,WRITE1-$
BC

iCHAR = TAB?

0002
0003
0004 ;*
0005 ;*
0006 i*
0007 i*
0008 i*
0009 i*
0010 ;*
0011 ;*
0012
0013
0014
0015
0016 TT
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059

CP
JR
PUSH
LD
LD
AND
ADD
LD
SUB
LD
LD
CALL
DJNZ
POP
RET

A,(HCTR)
B,A

iIF TAB THEN FETCH HCTR

TT6

WRITE1 PUSH
CP
JR
LD
DEC
LD
JR

OF8H
A,8
C,' ,
B
B,A
A,C
WRITE1
TT6-$
BC

iFIND NEXT TAB LOC
iSPACE OUT
iNUMBER OF SPACES

iOUTPUT SPACE

AF iSAVE CHARACTER
8 iDECREMENT CHARACTER COUNTER
NZ,TT6A-$ iBACKSPACE = OSH
A,(HCTR)
A
(HCTR),A
TT20-$

FOR

TT COPYRIGHT 1977 MOSTEK CORP' MOSTEK FLP-80 ASSEMBLER V2.0 PAGE OOO~

ADDR OBJECT ST # SOURCE STATEMENT DATASET = DKO:TT .SRC

'0032
'0034
'0036
'0038
'003B
'003D
'003F
'0041
'0044
'0046
'0049
'004B
'004C
'004F
'0052
'0054
'0056
'0058

'005A

'005B
'005D
'005E
'005F
'0061
'0063
'0065
'0066
'0068

'0069
'006A
'006C
'006E
'006F
'0071
'0073
'0076
'0078

'0079
'007A
'007D
'0080
'0082
'0084
'0086
'0089
'008A
'008C
'008F
'0090

FEOD
3819
2811
3A0600'
FE50
200C
3EOD
CD2400'
3EOA
CD2400'
3EFF
3C
320600'
3AEOFF
FE10
2804
FE08
300F

F1

FE04
C8
F5
DBDD
CB7F
28FA
F1
D3DC
C9

F1
FEOC
200B
C5
0605
3EOA
CD7900'
10FB
C1

F5
CD5BOO'
3AEOFF
FE57
280C
FE08
CC9200'
F1
FEOD
CC9700'
C9
F1

TT6A 0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079 i
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092 ;
0093
0094 ;
0095
0096
0097
0098
0099
0100
0101
0102
0103
0104
0105
0106
0107
0108
0109
0110
0111
0112
0113
0114
0115
0116
0117

TT14
TT16

TT20

i
CRT
i
TTWRIT

TT100

. ,
TTFF

STO

. ,
STWRIT

TTRET

CP
JR
JR
LD
CP
JR
LD
CALL
LD
CALL
LD
INC
LD
LD
CP
JR
CP
JR

ODH
C,TT20-$
Z,TT14-$
A, (HCTR)
LWIDTH
NZ,TT16-S
A,ODH
WRITE1
A,OAH
WRITE1
A,OFFH
A
(HCTR),A
A,(BRATE)
010H
Z,CRT-$
08H
NC,TTFF-$

iDO NOT INCREMENT HCTR
iFOR LF=OA OR FF=OC.
iIF CHAR=CR CLEAR HCTR

;END OF LINE REACHED ?
;IF NOT INCRREMENT HCTR
iIF END OF LNE IS
;REACHED THEN AUTOMATICA
;OUTPUT A CR AND IF.

iRESET HCTR TO ZERO

i600 BAUD?

;110, 300, 1200 BAUD?

DRIVER FOR CRT (BAUD RATES 600 AND 2400 AND GREA

POP

CP
RET
PUSH
IN
BIT
JR
POP
OUT
RET

AF

04
Z
AF
A,(ODDH)
7,A
Z,TT100-$
AF
(ODCH),A

;RESTORE CHAR

iIGNORE 04

iSAVE CHAR
;CHECK UART STATUS

iIF NOT READY, LOOP
;RESTORE CHAR
;OUTPUT IT

DRIVER FOR S700 (300 AND 1200 BAUD) AND TELETYPE

POP
CP
JR
PUSH
LD
LD
CALL
DJNZ
POP

PUSH
CALL
LD
CP
JR
CP
CALL
POP
CP
CALL
RET
POP

AF
OCH
NZ,STWRIT-$
BC
B,5
A,OAH
STWRIT
STO-$
BC

AF
TTWRIT
A,(BRATE)
57H
Z,TTRET-$
08H
Z,DEL32
AF
ODH
Z,DEL210

AF

iRESTORE CHARACTER
iFORM FEED?

iIF FORM FEED THEN OUTPU
;6 LINE FEEDS

iRESTORE BC

;SAVE CHAR
iOUTPUT CHARACTER

;110 BAUD?

;1200 BAUD?
;DELAY 32 MSEC IF 1200 B.
;RESTORE CHAR

iDELAY 210 MSEC IF CHAR=(

iRESTORE CHAR

COPYRIGHT 1977 MOSTEK CORP MOSTEK FLP-80 ASSEMBLER V2.0 PAGE 0003
LDDR OBJECT ST # SOURCE STATEMENT DATASET = DKO:TT .SRC

1091 C9 0118 RET
0119 .

I

1092 C5 0120 DEL32 PUSH BC iDELAY 32 i1SEC
)093 OE20 0121 LD C,32
)095 1803 0122 JR DELAY-$
)097 C5 0123 DEL210 PUSH BC iDELAY 210 MSEC
)098 OED2 0124 LD C,210
)09A 06BF 0125 DELAY LD B,191
)09C 10FE 0126 DEL1 DJNZ DEL1-$ i1 MSEC DELAY
)09E OD 0127 DEC C
)09F 20F9 0128 JR NZ,DELAY-$
lOA 1 C1 0129 POP BC
)OA2 C9 0130 RET

0131 i
0132 END

~RORS=OOOO

13-1

SECTION 13

SYSTEM ROUTINES

13-1. INTRODUCTION

13-2. Many subroutines in FLP-80DOS are accessable to the user.
The following pages describe these routines, which fall into two
major categories: PROM resident routines and RAM resident
routines (within the RAM portion of the operating system).

13-3. PROM RESIDENT ROUTINES

13-4. Since the routines located in PROM reside at fixed ad
dresses, they may be called directly. The usual method of cal
ling one of these routines is to declare the name of that routine
as a GLOBAL symbol. The routine may then be called just as if it
resided within the calling program. To actually resolve the cal
ling address of the routine, the file SYSLNK.OBJ must be included
when linking the program.

13-5. Example. Suppose that the System Error Handler (EH) is to
be called with an error number held in variable "ERRCOD."

GLOBAL

ERRUR LD
CALL

EH

A,{ERRCUD}
EH

;SYSTEM ERROR HANDLER

;GET ERROR CUDE

13-2

When'the program is linked, SYSLNK.OBJ would be included.
$LINK PROG,SYSLNK TO PROG(CR)

13-6. RAM RESIDENT ROUTINES

13-7. User callable system subroutines that reside within the
RAM-based portion of the operating sytem may not be accessed in
the same manner as the PROM resident routines. With the SYSGEN
Feature in FLP-80DOS, the user is given the option to position
the operating system at any location in RAM. This positioning
causes the addresses of the callable routines within the
operating system to change depending on where the current
operating system was positioned during the SYSGEN procedure (See
Section 15).

13-8. This problem is solved in the following manner. A routine
call ed JTASK is located in scratchpad RAM and has a fi xed ad
dress. JTASK contains a mechanism for locating all RAM resident
callable routines. Each of these routines has been assigned a
number which is placed into register A just prior to calling
JTASK. JTASK then jumps to the appropriate routine (all other
calling parameters are as described for that routine later in
this secttion). These codes are listed below. Individual
routines not reserved for system use are described in greater de
tail later in this section.

Code Routine

0 FDH (Floppy Disk Handler). Described i n Section
10.

1 MRENT (Monitor Reentry Point).
2 IOCS RDC (Read Character), reserved for system

use.
3 rocs WRC (Write Character), reserved for system

use.

13-3

4 PVECT (Print Vector Contents).
5 GETLIN (Get Line Into Monitor Command Buffer).

Reserved for system use.
6 CSIPAR (Parse Dataset Specifications Into Vector).
7 CSISYN (Check Syntax of Dataset Specifications).
8 ASTCHK (Check For Asterisk In I/O Vector).
9 GETHL (Get Line From Console Into Buffer).

10 GETVEC (Get Address of Default LUN Buffer).
11 SEARCH (Get Directory entry for a given file).

13-9. The following is an example of the calling sequence used
to access these RAM resident routines.

GLOBAL JTASK
GETVEC EQU 10
MRENT EQU 1

;SYSTEM LINKAGE ROUTINE
;GETVEC JTASK CODE
;MRENT JTASK CODE

LD 0,1 ;CONSOLE OUTPUT LUN
LD A,GETVEC ;GETVEC JTASK CODE
CALL JTASK ;CALL GETVEC

LD A,MRENT ;MRENT JTASK CODE
JP JTASK ;JP MRENT

END

;END OF PROGRAM
;SO DON'T CALL
;JTASK-JUST JUMP

13-4

13-10. ASBIN - CONVERT ASCII DIGIT TO BINARY
- PROM RESIDENT

DESCRIPTION - Convert ASCII representation of a hex digit to bin
ary. No error checking is done, so the binary lIequivalentll of
any ASCII character can be found using ASBIN.

ENTRY PARAMETERS - A - reg contains the ASCII character to be
converted (8-bits).

Normal Conversion: INPUT OUTPUT
31 00000001B
32 OUUOO010B

39 00001001B
41 00001010B
42 00001011B
43 00001100B
44 UOOO1101B
45 00001110B
46 00001111B

EXIT PARAMETERS - A - reg contains the corresponding binary value
of the ASCII character.

CALLING SEQUENCE - CALL ASBIN
EXAMPLE - GLOBAL ASBIN

LD A,'AI ;CONVERT ASCII IAI TO

CALL ASBIN ;BINARY
;A = 00001010B = AH

13-11. ASTCHK - ASTERISK CHECK
- RAM RESIDENT
- JTASK CODE 8

13-5

DESCRIPTION - This routine checks for asterisk (*) in an IOCS
vector. If an asterisk is found in the device code, filename,
ext ens ion, or user i dent i fi cat i on code, then zero fl ag is set.
This routine is called after a CSI routine.

ENTRY PARAMETERS - IY reg points to start of an IOCS vector to be
checked.

EXIT PARAMETER -
Z flag = 1 if asterisk found in string.
Z flag = 0 if no asterisk found in string.

CALLING SEQUENCE - LD A,8
CALL JTASK

EXAMPLE - GLOBAL JTASK
LD IY,VECTOR
LD A,8
CALL JTASK
JP Z,ASTFND

NO ASTERISKS FOUND - CONTINUE

;IY = VECTOR ADDRESS
;ASTCHK JTASK CODE

;IF ASTERISK, JUMP

13-6

13-12. CRLF - OUTPUT CARRIAGE RETURN AND LINE FEED
- PROM RESIDENT

DESCRIPTION - Output a carriage return (ODH) and line feed
(OAH).

ENTRY PARAMETERS - E - reg. designates LUN as in WRCHR (see Sec
tion 8).

EXIT PARAMETERS - A - reg is destroyed.
D - reg contains line feed (OAH).

CALLING SEQUENCE - CALL CRLF

EXAMPLE - GLOBAL CRLF
LD
CALL

E ,1

CRLF
;CONSOLE OUT LUN
;OUTPUT CARRIAGE RETURN
;AND LINE FEED TO
;CONSOLE

13-7

13-13. CSI - COMMAND STRING INTERPRETER
- RAM RESIDENT
- JTASK CODES 6 (CSIPAR) AND 7 (CSISYN)

DESCRIPTION - The Command String Interpreter is a system routine
which reads command strings containing dataset
specifications. CSI is used extensively by
FLP-80DOS system programs (MONITOR, PIP, ASM, etc.)
but is also available for use in application
programs. CSI assumes that the HL register points
to a command stri ng contai ni ng datasets whi ch is
terminated by a carriage return. A dataset (See
paragraph 1-21) is defined as follows:

NAME

CSISYN

CSIPAR

DEV:FILENAME.EXT[UIC]
The command string interpreter contains the fol
lowing subroutines.

FUNCTION

Checks the syntax of a command string con
taining datasets.
Parses a single dataset and places dataset
specifications in I/O vector.

13-8

13-14. CSISYN - JTASK CODE 7

CALLING SEQUENCE - LD
CALL

ENTRY PARAMETERS
1. HL pOints to the first character or a blank preceding

the first character of the dataset portion of the com
mand string. The end of the string must be terminated
by a carriage return.

EXIT PARAMETERS
1. REGISTER A

o - Indicates Valid Dataset Specifications (no Syntax
Errors). Zero flag is set.

2 - Invalid Dataset Specifications (Syntax Error).
Zero flag is cleared.

2. Other Registers Modified: None

13-9

13-15. CSIPAR - JTASK CODE 6

CALLING SEQUENCE - LD A,6
CALL JTASK

EXIT PARAMETERS
1. HL points to the first character or a blank preceding

the first character of the dataset portion of the com
mand string.

2. IY points to I/O vector.

13-14. On
1.

Exit From CSIPAR
REGISTER A
o - Indicates Dataset Found and Parsed.

set.

Zero flag is

1 - Dataset Not Found. End of line (carriage return)
was encountered. Zero flag is cleared.

2 - Syntax Error (Note CSIPAR does partial but not com-
plete syntax check. For complete check call
CSISYN). Zero flag is cleared.

2. REGISTER C
Register C contains the character that terminates the
dataset.

DATASET
TERMINATOR

CARRIAGE RETURN
10

>

NOTE: > is equivalent to TO.

C REGISTER
ON EXIT

I I ,
UDH
, T'

, T'

13-10

3. HL REGISTER
If a valid dataset is found (A=O) then HL points to the
next character after the dataset.

4. I/O Vector
If a dataset is found, then the device, filename, ex
tension and user number are placed in the I/O vector
(See para. 9-3). The following default conditions are
assumed if the dataset element is not specified.

ELEMENT DEFAULT NAME
Device
Unit No.
Filename
Extension
User Code

5. REGISTER 0 1

1 - If user number was entered.

2 blanks
o
6 blanks
3 blanks
1

o - If user number was not entered.

6. Other Registers Modified: AI

EXAMPLE - Upon entry to a program from the Monitor, the DE
register points to the rest of the command buffer after the
program name. For example, the command:

$MYPROG DK1:FILE1(CR)
loads and executes the file 'MYPROG.BIN ' • Upon entry to MYPROG,
the DE-register points to the blank after 'MYPROG ' in the command
line. To syntax check and parse the dataset specification into
its I/O vector, the following sequence of code may be used.

CSIPAR
CSISYN

GLOBAL
EQU
EQU

JTASK
6

7

13 -11

MYPROG PUSH DE ;MOVE POINTER
POP HL ; TO HL
LD A,CSISYN ;CHECK SYNTAX
CAL L JTASK ;OF DATASET
JP NZ,ERR ; IF SYNTAX ERROR, SKIP
LD IY,VECT ;GET VECTOR ADDRESS
LD A,CSIPAR ; PARSE DATASET
CAL L JT ASK ; INTO VE CTOR
JP NZ,ERR ;IF ERROR, SKIP

13-12

13-16. RENTRY - DDT-80 RE-ENTRY

- PROM RESIDENT

DESCRIPTION - Entry address to

jumped to, not called. DDT will

feed, and a period (.) prompt.

saved when jumping to RENTRY. DDT

mand.

DDT. This address should be

print a carriage return, line

The user register map is not

is then ready to accept a com-

13-17. ECHO - INPUT AND ECHO A CHARACTER
- PROM RESIDENT

13-13

DESCRIPTION - Read and write a character through the same LUN
pair. Input LUN is 0, 2, or 4. Output LUN is 1,

3, or 5. Valid LUN pairs are (0,1), (2,3), (4,5).
ENTRY PARAMETERS -

E - reg designates the LUN as in ROCHR and WRCHR. Immediate
return is not valid when calling ECHO.

EXIT PARAMETERS -
A - reg is destroyed
o - reg contains the character read and printed

CALLING SEQUENCE - CALL ECHO

EXAMPLE -
GLOBAL ECHO
LD E,O

CALL ECHO

;REAO AND WRITE
;CHARACTER TO
;CONSOLE

13-14

13-18. EH - SYSTEM ERROR HANDLER
- PROM RESIDENT

DESCRIPTION - Print error message in the following format:
***** ERROR nn (message) (dataset specification)
where nn is the error code in hexadecimal, the
message is obtained from a lookup table within
EH, and the dataset is the one defined by IY.

FLP-80DOS all I/O error messages (numbers 1-lFH)
are cataloged in EH. If an error code not as
sociated with a message is input, then the output
is:

***** ERROR nn
Output is directed via the DDT console output hand
ler (thus bypassing IOCS).

Error messages for FLP-80DOS are shown in Appendix E.

ENTRY PARAMETERS -
A - reg = error code (8 bits). If A = 1 through 1FH

then the standard message format will be output.
IY - reg = vector address containing a dataset specifica

tion of the dataset for which the error occurred.

EXIT PARAMETERS -
All registers remain unchanged.

CALLING SEQUENCE - CALL EH

13-15

EXAMPLE -
GLOBAL EH
GLOBAL JIOCS
GLOBAL JTASK

LD IY,VECTOR ;IY = VECTOR ADDRESS
LD (IY+RQST) ,OPENR ;OPE N READ REQUEST
CALL JIOCS ;OPEN THE FILE
LO A,(IY+ERRC) ;GET ERROR CODE
AND A ;CHECK FOR ERRORS
JR Z,CONT-$;IF NONE, SKIP
CALL EH ;ELSE PRINT ERROR
LD A,1 ;MRENT CODE
JP JTASK ;RETURN TO MONITOR

CONT ----------

13-16

13-19. GETHL - GET LINE FROM THE CONSOLE DEVICE
- RAM RESIDENT
- JTASK CODE 9

DESCRIPTION - GETHL inputs a line of data from the console de
vice into the buffer pointed to by HL. All line
editing functions are active: tab, backspace, rub
out, and line delete (CNTL-U). Return is made to
caller upon carriage return.

ENTRY PARAMETERS - HL-reg pair points to input buffer.
D - reg contains reprompt character for line
del ete funct i on (see above). Th is character
is displayed on the console whenever a line is
deleted via CNTL-U.

EXIT PARAMETERS - Data is placed into buffer. All registers are
saved.

CALLING SEQUENCE -

EXAMPLE -

INBUF

LD
CALL

GLOBAL
LD
LD
LD
CALL

DEFS

A,9

JTASK

JTASK
HL,INBUF
D,II$II

A,9

JTASK

160

;INPUT BUFFER POINTER
;REPROMPT CHARACTER
;GETHL CODE

;MAXIMUM SIZE = 160
BYTES

13-20. GETVEC - GET DEFAULT VECTOR ADDRESS
- RAM RESIDENT
- JTASK CODE 10

13-17

DESCRIPTION - This routine calculates the default vector address
for LUNls 0-5.

ENTRY PARAMETERS -
D-reg contains default vector number (0 through 5).

EXIT PARAMETERS -
IY reg points to
Carry bit set if
is reset.

start of IOCS default vector address.

CALLING SEQUENCE -

EXAMPLE -

IV

A - reg> 5 upon entry, otherwise carry

LD
CALL

GLOBAL
LD
LD
CALL
pOints

A,10
JTASK

JTASK
D,O
A,10
JTASK

;GET VECTOR ADDRESS
;FOR LUN 0

to default vector for LUN a

13-18

13-21. MINDIS - DISABLE MINIMAL LISTENER
- PROM RESIDENT

DESCRIPTION - This subroutine turns off the minimal listener
function to disaple Console Escape (control-X) and
Debugger Escape (control-C).

ENTRY PARAMETERS - None

EXIT PARAMETERS - None

CALLING SEQUENCE - CALL MINDIS

13-22. MINEN - ENABLE MINIMAL LISTENER
- PROM RESIDENT

13-19

DESCRIPTION - This subroutine turns on the Minimal Listener func
t ion toe nab 1 e Con s 0.1 e Esc ape (con t r 01 - X) and De
bugger Escape (control-C).

ENTRY PARAMETERS - None

EXIT PARAMETERS - None

CALLING SEQUENCE - CALL MINEN

13-20

13-23. MRENT - MONITOR RE-ENTRY
- RAM RESIDENT
- JTASK CODE 1

DESCRIPTION - This is the normal re-entry address to the Monitor.
Program exits should return to the Monitor via a
jump to this address if the system software has not
been overlayed.

CALLING SEQUENCE - LD A,l
JP JTASK

13-24. PACC - PRINT ASCII CONTENTS OF THE ACCUMULATOR
- PROM RESIDENT

13-21

DESCRIPTION - Print the contents of the A - register in ASCII
equivalent.

ENTRY PARAMETERS -
E - reg designates LUN as for WRCHR (see Section 8). Im

mediate return is not valid when calling PACC.
A - reg contains the binary equivalent of the 2 hexadecimal

digits to be printed in ASCII.

EXIT PARAMETERS -
E - reg used as in WRCHR.
A - reg is destroyed.

CALLING SEQUENCE - CALL PACC

EXAMPLE - LD A,25H
LD E,1
CALL PACC

;A=25
;SELECT CONSOLE LUN
;PRINT THE
;CHARACTERS
; '25' ON CONSOLE
: DEVICE

13-22

13-25. PTXT - PRINT TEXT STRING
- PROM RESIDENT

DESCRIPTION - Print a text string. The string terminates with
ETX (03H), which is not output.

ENTRY PARAMETERS -
E - reg designates LUN as in WRCHR (see Section 8). Im

mediate return is not valid when calling PTXT.
HL - reg pair contains the beginning address where the text

string is stored in memory. The text string must ter
minate with ETX (03H).

EXIT PARAMETERS -
A - reg is destroyed
D - reg contains ETX (03H)

HL - reg pair contains address in memory where the ETX ter
minator is stored.

CALLING SEQUENCE - CALL

EXAMPLE - LD HL,~ISG

LD E,1
CALL PTXT

PTXT

;GET MESSAGE ADDRESS

;SELECT CONSOLE LUN
;PRINT MESSAGE

f'lISG DEFM
DEFB

'THIS IS A MESSAGE'
3 ;ETX

13-26. PVECT - PRINT VECTOR DATASET
- PROM RESIDENT

13-23

DESCRIPTION - This routine prints out a dataset specification
from an IOCS vector on the device specified by the
console output LUN (LUNl).

ENTRY PARAMETERS -
IY reg points to start of IOCS vector.

EXIT PARAMETERS - None.

CALLING SEQUENCE - CALL PVECT

EXAMPLE - LD
CALL

IY,VECTOR
PVECT

;IY POINTS TO
;START OF VECTOR

13-24

13-27. REBOOT - SYSTEM REBOOT SEQUENCE
- PROM RESIDENT

DESCRIPTION - Reboot System. This is the beginning of the
initialization sequence after the terminal baud
rate is determined. The system software is booted
in RAM from OS.BINL255J and the Monitor prompt ($)

is issued to the console.

This location should be jumped to, not called. It is the
entry point for Monitor Escape (CNTL-X).

CALLING SEQUENCE - JP REBOOT

13-28. SCAN - INTERACTIVE SCAN
- PROM RESIDENT

13-25

DESCRIPTION - This routine is the interactive scan routine used
in DDT. It can be called to return up to 3 para
meters from the user termi nal in the interact i ve
mode described for DDT. The hexadecimal operands
are converted from ASCII into 16-bit binary. Up to
3 operands may be entered, separated by commas or
blanks. If more than three operands are entered,
then the third operand is updated to the last one
entered.

ENTRY PARAMETERS - None.

EXIT PARAMETERS -
OPFLG = FF1AH number of a operands entered, 0,1,2, or

3.
OPR1 = FFl4H first operand (16 bits).
OPR2 = FF16H - second operand (16 bits).
OPR3 = FFl8H third operand (16 bits).
NXTCHR = FFl B - 1 as t character processed by the SCAN

routine.

CALLING SEQUENCE - CALL SCAN

13-26

13-29. SEARCH - FIND DIRECTORY ENTRY OF A FILE
- RAM RESIDENT
- JTASK CODE 11

DESCRIPTION - This routine finds the directory entry for the file
specified in the IOCS vector.

ENTRY PARAMETERS -
IY reg points to the file vector.

EXIT PARAMETERS -
DE reg has the directory address
C reg has the unit number
The Z flag is set if found
The NZ flag is set if not found.

CALLING SEQUENCE - LD A,11
CALL JTASK

EXAMPLE - GLOBAL JTASK
LD IV, VINP ;POINT TO VECTOR
LD A,11
CALL JTASK

13-~O. SPACE - OUTPUT A SPACE
- PROM RESIDENT

DESCRIPTION - Output a blank (20H).

ENTRY PARAMETERS -
E - reg designates LUN as in WRCHR.

EXIT PARAMETERS -
A - reg is destroyed.
B - reg contains blank (20H).

CALLING SEQUENCE -

EXAMPLE - LD
CALL

CALL SPACE

E , 1

SPACE
;CONSOLE LUN
;OUTPUT A SPACE

13-27

13-28

13-31. SRCHR, SRCHU - SEARCH MNEMONIC TABLES
- PROM RESIDENT

DESCRIPTION - Search resident mnemonic table (SRCHR) or search
user mnemonic table (SRCHU) for a match. The re
sident menmonic table contains the user registers
and their save locations accessed by DDT. This
table exists in PROM. The user mnemonic table con
tains the device handlers and -their addresses. The
user mnemonic table in part of the SYSGEN FILE (RAM
resident).

ENTRY PARAMETERS -
HL - reg pair points to 2 character mnemonic to be

searched for. The first character goes into L, the
second goes into H.

EXIT PARAMETERS -
Zero flag reset if no match.
Zero flag set if match found and HL reg pair equals 16 bit
address associated with the mnemonic.

CALLING SEQUENCE - CALL SRCHR
CALL SRCHU

EXAMPLE - LD H,·P·
LD L,·L·
CALL SRCHU

;GET ADDRESS OF
;LP = HANDLER
;HL = ADDRESS OF
;HANDLER ON EXIT

14- 1

SECTION 14

BATCH MODE OPERATION

14-1. INTRODUCTION

14-2. FLP-8000S directly supports batch mode operation in

configurations with more than 16K of RAM. In batch mode

operation, all commands are entered via a batch input device. The

batch input device is specified by the dataset assigned to

logical unit 0 and may be any input device such as a card

reader, paper tape reader, or a disk file. All responses by the

system to the batch input device may be directed to any other

output dataset. In batch mode operation, all input from an input

ctataset corresponds exactly to what the user would normally type

in via the terminal keyboard. There is no difference between

commands entered via the console or in batch mode. Batch mode

operation can be applied to all programs in FLP-8000S, except

DDT, the debugger. Insert mode in the Editor also cannot be

activated in batch mode from a disk file. User programs which

interface to the console device via laCS may also be used

directly in batch mode operation.

14-3. PRINCIPLES OF OPERATION

14-4. The key to batch mode operation in FLP-80DOS is the

system's ability to reassign the console channels (Logical Unit

Numbers 0 and I). LUN 0 is used for all console input. LUN 1 is

used for all consol e output. These LUN' s may be reassi gned to

any other dataset via the f'ilonitor ASSIGN command. When the

Monitor makes an assignment of a dataset to LUN 0 or 1, the

Monitor automatically closes the currently assigned dataset.

Then it opens the new dataset. This operation is different from

14-2

the other LUN assignments in which the Monitor does not
automatically open the new dataset.

14-5. When an assignment is made to LUN a (Console In), the
assigned dataset referred to as the batch input device is opened
and input is automatically started by the Monitor. Commands
input from the dataset are called the Batch Command Sequence
(BCS), and they control the system operation. Reassignment back
to the original user terminal is then the responsibility of the
batch command sequence from the dataset.

14-6. When an assignment ;s made to LUN 1 (Console Out), the new
dataset is opened and all output which would normally
the use r term; n a 1 ; s d ire c ted tot hen ew d a t a set.
assignment, if it is to be done, should be done by
statement of a batch command sequence (BCS).

14-7. BATCH COMMAND SEQUENCE SYNTAX

appear on
Such an

the first

14-8. The syntax of a batch command sequence (BCS) is exactly
like the user input from the terminal. In this manual, all user
i n put i sun d e r 1 i ned • E a c h 1 i n e 0 fin put ina B C Sis term ina ted
with a carriage return. A RCS can be built on a disk file by
using the FLP-80DOS Text Editor. If a card reader is interfaced
to the system, the BCS can be on cards.

14-9. If the console output is to be directed to a non-console
dataset, the assignment should be the first record of the BCS:

ASSIGN 1,LP:

14-10. The last record of the BCS should be assignment of LUN's
o and 1 back to the original console datasets:

ASSIGN 1,TT:
ASSIGN O,TK:

14-3

14-11. During Batch Mode Operation, no initialization of the
disk units is performed by the system. This means that diskettes
cannot be switched during batch mode. This restriction is neces
sary because during initialization the disk handler's active file

table is cleared. This action would clear the BCS disk file, and
further BCS records could not be accessed.

14-12. EXAMPLE 1. Build a BCS on a disk file called IIBATCH II

which accesses PIP and prints out the directory and status of
each disk unit on the line printer. The following commands are
entered from the user terminal (interactive mode) to build the
BATCH file:

$EOIT BATCH(CR)
FLP-8000S EDITOR V2.0
-- > NEW FILE

-- > INSERT MODE
0001 < PIP{CR}
0002 < 0 TO LP: {CR)
0003 < S TO LP:{CR}
0004 < 0 OK1: TO LP:{CR}
0005 < S OK1: TO LP:{CR}
0006 < Q{CR)
0007 < ASSIGN O,TK:{CR)
0008 < J1Bl
>Q{CR}

To execute the batch file, the following command should be
entered:

$ASSIGN 0, BATCH{CR)

The BATCH file will be executed, command by command. The
total command sequence will be printed on the terminal.
The directory and status listings will be directed to the
line printer.

14-4

14-13. EXAMPLE 2. Assemble two files in batch mode, directing
all printable output to the line printer. The BCS to be built up
as a file (named IBSCI I) is:

ASSIGN 1, LP:
ASM FILE 1 TO LP:
S

-this is the lIoptionll input to the Assembler.
ASM FILE2 TO LP:
S

ASSIGN I,TT:
ASSIGN O,TK:
The BCS is executed by entering the following Monitor com
mand:

$ASSIGN O,BCSI(CR)

15-1

SECTION 15

SYSTEM GENERATION

15-1. INTRODUCTION

15-2. After reset or power up the system boot routine resident
in PROM loads the operating system from the fi Ie OS.BIN L2~5J

into memory and starts execution at its beginning address. The
system generation or SYSGEN procedure can be used to link oper
ating system object modules together to generate a modified
OS.BIN [255] if desired. The following parameters are defined
during SYSGEN.

1. Operating System starting address.
2. Number of disk drives (1-4)
3. I/O drivers linked into system (E.G., LP,CR and etc.)
4. Default I/O vectors for logical units 2-5

15-3. The standard system as shipped from the factory contains
32K of RAM (see Figure 15-1) and contains the I/O drivers TK:,
TT: and CP:. The SYSGEN procedure which may be used to modify
the operating system is performed as outlined below and is also
illustrated in Figure 15-1. All system object files are on the
MOSTEK supplied system disk.

15-4. SYSTEM GENERATION PROCEDURE (SYSGEN)
STEP 1. Place a Version 2.0 system diskette containing the
operating system object files in disk unit DKO. Depress
reset and the carriage return key to boot up the system.
If a change in the number of disk drives to be supported
needs to be made, follow the instructions in paragraph
15-15. If the user wishes to change the system device

15-2

table for purposes of adding a mnemonic for a new I/O
driver, he should follow the instructions starting at para
graph 15-10. If modifications to the default logical units
are required see paragraph 15-13.

STEP 2. Use the LINKER to create a test operating sys
tem file. The Linker A option is used to specify the oper
ating system beginning address.

EXAMPLE:
$LINK MONITOR,lOCS,SYSGEN,CSI,TASK 2 TK,TT,LPC,DKUNIT,DKTAB,DK,
SYSLNK TO TEST.BIN(CR)

OPTIONS? A U C(CR)
ENTER STARTING LINK ADDRESS)5AOO(CR)

NOTES

1). The user may arbitrarily choose the starting address.
The LINKER generates a load map listing the beginning
and ending addresses of each module (see Figure 15-1).
Step 2 may be repeated a second time in order to posi
tion the operating system at the top of the user's RAM
space, thereby maximizing the amount of RAM available
for the user.

2). When entering the Linker command from the terminal the
command line may exceed the maximum terminal line
length (usually 80 characters). If this occurs, the
terminal output driver will automatically issue a CR
and LF to enable continuation of the command on the
next 1 ine. Since a carriage return input from the

3 } •

15-3

keyboard is interpreted by the Linker to be the ter
minator of the command string, the user should not en
ter a carriage return until the entire Linker command
has been entered. Maximum command line length is 160
characters.

The terminal
linked into
(Eo ,G., LPC)

I/O drivers TK and TT must always be
the system. Additional I/O drivers

may also be linked into the system.

4}. The order in which the system modules are linked must
be maintained as shown in the table in paragraph 15-5.
The Monitor must be the first module and SYSLNK must
be the last module. Additional I/O drivers should be
added after the TT driver.

5}. The Linker C option may be used to save a copy of the
new operating sytem load map (See figure 15-1) and the
global cross reference table for future reference.
The Cross reference output defaults to the file
TEST.CRS unless another output device is specified
(See LINKER Section 6).

6}. The Linker U option is used to list all of the I/O
drivers which are not linked into the new operating
system but are in the System Device Table (See Para
gaph 15-7). The linker load map specifies all the I/O
drivers which have been linked into the system.

STEP 3. Place the diskette on which the new operating sys
tem is to be copied into the disk unit OK1. Enter PIP and
copy the new operating system to OS.BIN 255 on OK1 as
shown below. Other system programs such as PIP,LINK,EOIT
and ASM may also be copied to the diskette OK1 should they

15-4

STEP 4.

they already not be on that diskette.
$PIP(CR}
HC TEST.BIN TO DK1:0S.BIN 255 (CR)
HC PIP.BIN,LINK.BIN,EDIT.BIN,ASM.BIN TO DK1: (CR)

NOTE: The user may also copy the file TEST.CRS
w h i c h con t a i ns the 0 per a tin g s y s t em loa d map t 0

DK1:0S.CRS[255] which may be listed using PIP.

Move the diskette with the modified OS.BIN 255
operating system from disk unit DK1 to DKO. Depress reset
and carriage return on the terminal and verify that the
modified operating system responds with sign on message:

MOSTEK FLP-80DOS V2.0
The sign on message should be followed by a $ indicating
that the user is in the monitor environment and that the
new operating sytem has been created successfully. The en
vironments EDIT,ASM,LINK and PIP may be entered next to
verify that all system programs are operational.

This completes the System Generation Procedure.

15-5. OPERATING SYSTEM MODULES

The following is a list of the system object modules in the order
in which they must be linked into the operating system during the
SYSGEN procedure. (See STEP 2).

MODULE DESCRIPTION

1. MONITOR System Monitor
2. IOCS I/O Control system

3. SYSGEN
4. CSI
5. TASK
6. TK
7. TT
8. I/O DRIVERS
9. DKUNIT

10. DKTAB
II. DK
12. SYSLNK

See description on next page
Command String Interpreter
Task selector for system subroutines
Term ina 1 I n put Dr i v e r
Terminal Output Driver
See description below
Specifies Number of Disk Units

15-5

Table or buffer space for disk drives
Disk handler
Linkages to system software in PROM
(EOOO-EFFF)

15-6. STANDARD I/O DRIVERS

15-7. The user may link up to a maximum of 12 I/O drivers into
his system at one time using the SYSGEN procedure. The following
is a list of the standard I/O devices which are in the system de

vice table (See Pargraph 15-9) and are also supplied ~"ith the
system diskette.

DRIVER FILE NAME

TT: TT
TK: TK
LP: LPD
CP: LPC

TR: TR
CR: CR
PR: PP
PP: PR
TI: STI
TO: STO

DESCRIPTION

Terminal Output Device
Terminal Keyboard
Data Products Line Printer
Centronics Line Printer
Teletype tape reader
Card Reader
Paper tape reader
paper tape punch
Silent 700 Cassette Tape Input
Silent 700 Cassette Tape Output

15-8. SYSTEM DEVICE TABLE. The system device table is in the

15-6

operating system module SYSGEN.OBJ. It contains a mnemonic and a
GLOBAL reference for each I/O device. The devices listed in
paragraph 15-7 represent the standard System Device Table sup
plied for FLP-80DOS.

15-9. After system reset or power up the Monitor creates a RAM
mnemonic table in scratchpad RAM starting at OFF2FH (See Appendix
C). The RAM mnemonic table contains the mnemonics for the I/O
devices which are supported by the operating system at execution
time. Devices which are not in the RAM mnemonic table will
generate the error message UNSUPPORTED DEVICE if an I/O trans
action is attempted. In order for a device to be placed in the
RAM mnemonic table during the Monitor initialization sequence the
following conditions must be met.

1. The mnemonic for the device is in the System Device
Table in the program module SYSGEN.OBJ which is linked
into the operating system in OS.BIN 255.

2. The I/O driver itself is linked into the operating sys
tem (See STEP 2 in SYSGEN procedure paragraph 15-4).

15-10. ADDING NEW I/O DRIVERS

15-11. A new or modified I/O driver having a mnemonic which is
in the system device table (e.g. LP:) may be linked directly into
the operating system as outlined in STEP 2 of the SYSGEN
procedure. However, if the mnemonic of the new driver is not in
the System Device Table (See paragraph 15-7) the table can be
modified by the user. Changes to the table are made by editing
and assembling the file SYSGEN.SRC. After the System Device
Table is modified the user should then link the new I/O driver
module into the operating sytem (See STEP 2 of SYSGEN procedure).

15-7

15-12. CHANGING THE DEFAULT LOGICAL UNITS

15-13. The default dataset definitions for logical units 2-5 may
be changed by the user with the SYSGEN procedure. Changes to the
default vectors are made by editing and assembling the file
SYSGEN.SRC and then linking the new SYSGEN module into the
operating system (see STEP 2 of SYSGEN procedure, paragraph
15-4).

15-14. CHANGING THE NUMBER OF DISK UNITS IN THE SYSTEM

15-15. The variable NMUNIT in the files DKUNIT and DKTAS
specifies the number of disk units in the system. NMUNIT is set
to 2 for the standard Mostek system. If the user wishes to add
additional disk drives (up to 4), NMUNIT should be modified in
DKUNIT.SRC and DKTAB.SRC and these modules should be reassembled
prior to performing the SYSGEN procedure.

15-16. SYSTEM GENERATION OF A 64K OPERATING SYSTEM

15-17. The hardware modifications to produce a system with 60K
total RAM are discussed in the system hardware operations manual.
For this configuration, the FLP-80DOS may be split to place most
of the operating system below the PROM's (which start at 56K) and
part of the operating system above the PROM's (which end at
60K). Here is the procedure to follow.

15-18. Create a
instructions on it.

PSECT
ORG
NOP
END

ABS
OEFFFH

module called 'SPACE'
Assemble the module.

with the following

15-8

FIGURE 15-1. SAMPLE SYSTEM GENERATION

$LINK MONITO,IOCS,SYSGEN,CSI,TASK,TK,TT,LPC,DKUNIT,DKTAB,DK,
SYSLNK TO TEST
OPTIONS? C U A
ENTER STARTING LINK ADDRESS > 5B35
DKO:MONITO.OBJ[I]
DKO:IOCS .0BJ[I]
DKO:SYSGEN.OBJ[I]
DKO:CSI .0BJ[I]
DKO:TASK .OBJ[lj
DKO:TK .0BJ[I]
DKO:TT .0BJ[I]
DKO:LPC .OBJ[I]
DKO:DKUNIT.OBJ[I]
DKO:DKTAB .OBJ[I]
DKO:DK .0BJ[1]
DKO:SYSLNK.OBJ[l]
CR LP PP
TO TR
UNDEFINED SYMBOLS 07
PASS 2
DKO:MONITO.OBJ[I]
DKO:IOCS .0BJ[I]
DKO:SYSGEN.OBJ[l]
DKO:CSI .0BJ[I]
DKO :TASK .0BJ[l]
DKO:TK .0BJ[I]
DKO :TT .OBJ[l]
DKO:LPC .0BJ[I]
DKO:DKUNIT.OBJ[I]
DKO:DKTAB .OBJ[I]
DKO:DK .OBJ[I]
DKO:SYSLNK.OBJ[I]

PP

REL
REL
REL
REL
REL
REL
REL
REL
ABS
REL
REL
ABS

TI

BEG
BEG
BEG
BEG
BEG
BEG
BEG
BEG
BEG
BEG
BEG
BEG

ADDR
ADDR
ADDR
ADDR
ADDR
ADDR
ADDR
ADDR
ADDR
ADDR
ADDR
ADDR

5A~A
612A
6AC1
6B63
6DB5
6E7C
6EFF
6FB5
7071
7073
76BE
8000

END
END
END
END
END
END
END
END
END
END
END
END

ADDR
ADDR
ADDR
ADDR
ADDR
ADDR
ADDR
ADDR
ADDR
ADDR
ADDR
ADDR

6129
6ACO
6B62
6DB4
6E7B
6EFE
6FB4
7070
7072
76BD
7FFF
8000

NOTE: The above exampl e is the Linker Load Map resu 1 t i ng from
the SYSGEN procedure on a system having 32K of RAM
(TOR=7FFF). Since the module SYSLNK is only used by the
Linker to resolve global addresses the end address of the
module OK is allowed to be the top location of addressable
RAM. The end address of OK must not exceed that of the
top of RAM. Since additional I/O drivers may be added
and module sizes might change in the future, the starting
link address should be adjusted during each system genera
tion to correctly position the end address of OK.

15-9

15-19. Link the modules of the operating system together with

'SPACE.OBJ ' • The constraints are as follows: 1) the lower part

of the OS must have an end address below OFEOH; 2) the upper

part of the OS will start above 'SPACE ' (start address = OFOOOH),

and it must have an end address below FFOOH.

15-20. Figure 15-2 shows an example of how to link a 64K OS.

Note that both the centroni cs and Data Products 1 i ne pri nter

handlers (LPC and LPO) were linked in this example. The lower

part of OS ends with module 'OKTAB ' whose end address is belwo

OFEOH. The upper part of OS starts with 'CSI I and ends with

'SYSLNK ' whose end address is below FFOOH.

15-10

FIGURE 15-2 LINKING A 64K OPERATING SYSTEM

LINK
MONITOR,IOCS,SYSGEN,TASK,DKUNIT,DKTAB,SPACE,CSI,TK,TT,LPC,LPD,DK,
SYSLNK TO TEST
CUA
C7F7
Y

Y

LOAD ;·~AP

DKO:MONITO.OBJ[l] REL BEG ADDR C7F7 END ADDR CE96
DKO: IOCS .0BJ[1] REL BEG ADDR CE97 END ADDR D82D
DKO:SYSGEN.OBJ[l] REL BEG ADDR D82E END ADDR D8CFl
DKO: TASK .0BJ[1] REL BEG ADDR D8DO END ADDR D991
DKO:DKUNIT.OBJ[l] ABS BEG ADDR D992 END ADDR D992
DKO :DKTAB .0BJ[1] REL BEG ADDR DFDE END ADDR DFDE
DKO:SPACE .0BJ[1] ABS BEG ADDR EFFF END ADDR EFFF
DKO:CSI .OBJ[l] REL BEG ADDR FOOO END ADDR F251
DKO: TK .OBJ[l] REL BEG ADDR F252 END ADDR F2D4
DKO : TT .OBJ[l] REL BEG ADDR F2D5 END ADDR F377
DKO:LPC .0BJ[1] REL BEG ADDR F378 END ADDR F433
DKO:LPD .OBJ[l] REL BEG ADDR F434 END ADDR F4E7
DKO:DK .0BJ[1] REL BEG ADDR F4E8 END ADDR FDA3
DKO:SYSLNK.OBJ[l] ABS BEG ADDR FDA4 END ADDR FDA4

APPENDIX A

Z80 OPCODES

IPCODE Z80 OPCODE LISTING MOSTEK FLP-80 ASSEMBLER V2.0 PAGE 0001
ADDR OBJECT ST # SOURCE STATEMENT DATASET = DKO:OPCODE.

0002 ; PSEUDO OPS
0003 · ,
0004 NAME OPCODES

)0000 0005 ORG a
0006 PSECT REL
0007 ;

0000 AA 0008 DEFB OAAH
)0001 0009 L2 DEFL $

)55AA 0010 L2 DEFL 55AAH
0001 41424344 0011 DEFM 'ABCD'
')0005 0012 NN DEFS 2
0007 BBAA 0013 DEFW OAABBH
)AABB 0014 L1 EQU OAABBH
)0005 0015 rND EQU 5
)0020 0016 N EQU 20H
)0030 0017 DIS EQU 30H

0018 GLOBAL NN
0019 IF 0
0020 SHOULD NOT BE ASSEMBLED
0021 LD A,B
0022 ENDIF
0023 IF 1
0024 SHOULD BE ASSEMBLED

'0009 78 0025 LD A,B
0026 ENDIF
0027 ; TURN LISTING OFF
0032 · LISTING SHOULD BE ON ,
0033 · ,
0034
0035 · ,
0036 · Z80 OPCODES ,
0037 ;

'OOOB 8E 0038 ADC A,(HL)
'OOOC DD8E05 0039 ADC A,(IX+IND)
'OOOF FD8E05 0040 ADC A, (lY+IND)
'0012 8F 0041 ADC A,A
'0013 88- 0042 ADC A,B
'0014 89 0043 ADC A,C
'0015 8A 0044 ADC A,D
'0016 8B 0045 ADC A,E
'0017 8C 0046 ADC A,H
'0018 8D 0047 ADC A,L
'0019 CE20- 0048 ADC A,N
'001B ED4A 0049 ADC HL,BC
'001D ED5A 0050 ADC HL,DE
'001F ED6A 0051 ADC HL,HL
'0021 ED7A 0052 ADC HL,SP

0053 · ,
'0023 86 0054 ADD A,(HL)
'0024 DD8605 0055 ADD A,(lX+IND)
'0027 FD8605 0056 ADD A,(IY+IND)
'002A 87 0057 ADD A,A
'002B 80 0058 ADD A,B
'002C 81 0059 ADD A,C
'002D 82 0060 ADD A,D
'002E 83 0061 ADD A,E
'002F 84 0062 ADD A,H
'0030 85 0063 ADD A,L

OPCODE Z80 OPCODE LISTING MOSTEK FLP-80 ASSEMBLER V2.0 PAGE 00
ADDR OBJECT ST # SOURCE STATEMENT DATASET = DKO:OPCODE.

'0031 C620 0064 ADD A,N
'0033 09 0065 ADD HL,BC
'0034 19 0066 ADD HL,DE
'0035 29 0067 ADD HL,HL
'0036 39 0068 ADD HL,SP
'0037 DD09 0069 ADD IX,BC
'0039 DD19 0070 ADD IX,DE
'003B DD29 0071 ADD IX',IX
'003D DD39 0072 ADD IX,SP
'003F FD09 0073 ADD IY,BC
, 0041 FD19 0074 ADD IY,DE
'0043 FD29 0075 ADD IY,IY
'0045 FD39 0076 ADD IY,SP

0077 ;
'0047 A6 0078 AND (HL)
'0048 DDA605 0079 AND (IX+IND)
'004B FDA 605 0080 AND (IY+IND)
'004E A7 0081 AND A
'004F AO 0082 AND B
'0050 A1 0083 AND C
'0051 A2 0084 AND D
'0052 A3 0085 AND E
'0053 A4 0086 AND H
'0054 AS 0087 AND L
'0055 E620 0088 AND N

0089 . ,
'0057 CB46 0090 BIT O,(HL)
'0059 DDCB0546 0091 BIT O,(IX+IND)
'005D FDCB0546 0092 BIT O,(IY+IND)
, 0061 CB47 0093 BIT O,A
'0063 CB40 0094 BIT O,B
'0065 CB41 0095 BIT O,C
'0067 CS42 0096 BIT O,D
'0069 CB43 0097 BIT O,E
'006B CB44 0098 BIT O,H
'006D CB45 0099 BIT O,L

0100 . ,
'006F CB4E 0101 BIT 1,(HL)
'0071 DDCB054E 0102 BIT 1,(IX+IND)
'0075 FDCB054E 0103 BIT 1,(IY+IND)
'0079 CB4F 0104 BIT 1 ,A
'007B CB48 0105 BIT 1, B
'007D CB49 0106 BIT 1 , C
'007F CB4A 0107 BIT 1, D
'0081 CB4B 0108 BIT 1,E
'0083 CB4C 0109 BIT 1,H
'0085 CB4D 0110 BIT 1,L

0111 ;
'0087 CB56 0112 BIT 2, (HL)
'0089 DDCB0556 0113 BIT 2,(IX+IND)
'008D FDCB0556 0114 BIT 2,(IY+IND)
'0091 CB57 0115 BIT 2,A
'0093 CB50 0116 BIT 2,B
'0095 CB51 0117 BIT 2,C
'0097 CB52 0118 BIT 2,D
'0099 CB53 0119 BIT 2,E
'009B CB54 0120 BIT 2,H
'009D CB55 0121 BIT 2,L

'CODE Z80 OPCODE LISTING MOSTEK FLP-80 ASSEMBLER V2.0 PAGE 0003
.DDR OBJECT ST # SOURCE STATEMENT DATASET = DKO:OPCODE.

0122
~O 9F CB5E 0123 BIT 3,(HL)
lOA 1 DDCB055E 0124 BIT 3,(IX+IND)
IOA5 FDCB055E 0125 BIT 3,(IY+IND)
~O A 9 CB5F 0126 BIT 3,A
10AB CB58 0127 BIT 3,B
lOAD CB59 0128 BIT 3,C
~OAF CB5A 0129 BIT 3,D
~O B 1 CB5B 0130 BIT 3,E
)OB3 CB5C 0131 BIT 3,H
lOBS CB5D 0132 BIT 3,L

0133 . ,
IOB7 CB66 0134 BIT 4,(HL)
IOB9 DDCB0566 0135 BIT 4,(IX+IND)
)OBD FDCB0566 0136 BIT 4,(IY+IND)
10C 1 CB67 0137 BIT 4,A
)OC3 CB60 0138 BIT 4,B
lOC5 CB61 0139 BIT 4,C
)OC7 CB62 0140 BIT 4,D
)OC9 CB63 0141 BIT 4,E
)OCB CB64 0142 BIT 4,H
)OCD CB65 0143 BIT 4,L

0144 ;
)OCF CB6E 0145 BIT 5 7 (HL)
lOD1 DDCB056E 0146 BIT 5,(IX+IND)
lOD5 FDCB056E 0147 BIT 5,(IY+IND)
lOD9 CB6F 0148 BIT 5,A
)ODB CB68 0149 BIT 5,B
)ODD· CB69 0150 BIT 5,C
)ODF CB6A 0151 BIT 5,.D
JOE 1 CB6B 0152 BIT 5,E
)OE3 CB6C 0153 BIT 5,H
)OE5 CB6D 0154 BIT 5,L

0155 ;
)OE7 CB76 0156 BIT 6,(HL)
)OE9 DDCB0575 0157 BIT 6,(IX+IND)
)OED FDCB0576 0158 BIT 6,(IY+IND)
)OF 1 CB77 0159 BIT 6,A
)OF 3 CB70 0160 BIT 6,B
)OF5 CB71 0161 BIT 6,C
)OF7 CB72 0162 BIT 6,D
)OF9 CB73 0163 BIT 6,E
)OFB CB74 0164 BIT 6,H
)OFD CB75 0165 BIT 6,L

0166 ;
)OFF CB7E 0167 BIT 7,(HL)
) 1 0 1 DDCB057E 0168 BIT 7,(IX+IND)
) 1 05 FDCB057E 0169 BIT 7,(IY+IND)
) 1 09 CB7F 0170 BIT 7,A
) 1 OB CB78 0171 BIT 7,B
) 1 OD CB79 0172 BIT 7,C
) 10F CB7A 0173 BIT 7,D
) 111 CB7B 0174 BIT 7,E
) 113 CB7C 0175 BIT 7,H
) 115 CB7D 0176 BIT 7,L

0177 ;
) 117 DC0500' 0178 CALL C,NN
) 11 A FC0500' 0179 CALL M"NN

OPCODE Z80 OPCODE LISTING MOSTEK FLP-80 ASSEMBLER V2.0 PAGE OC
ADDR OBJECT ST # SOURCE STATEMENT DATASET = DKO:OPCODE.

'011D D40500' 0180 CALL NC,NN
'0120 CD0500' 0181 CALL NN
'0123 C40500' 0182 CALL NZ,NN
'0126 F40500' 0183 CALL P,NN
'0129 EC0500' 0184 CALL PE,NN
'012C E40500' 0185 CALL PO,NN
'012F CC0500' 0186 CALL Z,NN

0187
'0132 3F 0188 CCF

0189 ;
'0133 BE 0190 CP (HL)
'0134 DDBE05 0191 CP (IX+IND)
'0137 FDBE05 0192 CP (IY+IND)
'013A BF 0193 CP A
'013B B8 0194 CP B
'013C B9 0195 CP C
'013D BA 0196 CP D
'013E BB 0197 CP E
'013F BC 0198 CP H
'0140 BD 0199 CP L
'0141 FE20 0200 CP N

0201 . ,
'0143 EDA9 0202 CPD
'0145 EDB9 0203 CPDR
'0147 EDA1 0204 CPI
'0149 EDB1 0205 CPIR

0206 ;
'014B 2F 0207 CPL

0208
'014C 27 0209 DAA

0210 . ,
'014D 35 0211 DEC (HL)
'014E DD3505 0212 DEC (IX+IND)
'0151 FD3505 0213 DEC (IY+IND)
'0154 3D 0214 DEC A
'0155 05 0215 DEC B
'0156 OB 0216 DEC BC
'0157 OD 0217 DEC C
'0158 15 0218 DEC D
'0159 1B 0219 DEC DE
'015A 1D 0220 DEC E
'015B 25 0221 DEC H
'015C 2B 0222 DEC HL
'015D DD2B 0223 DEC IX
'015F FD2B 0224 DEC IY
'0161 2D 0225 DEC L
'0162 3B 0226 DEC SP

0227
'0163 F3 0228 DI

0229 ;
'0164 102E 0230 DJNZ DIS

0231
'0166 FB 0232 EI

0233 ;
'0167 E3 0234 EX (SP),HL
'0168 DDE3 0235 EX (SP),IX
'016A FDE3 0236 EX (SP),IY
'016C 08 0237 EX AF,AF'

)PCODE Z80 OPCODE LISTING MOSTEK FLP-80 ASSEMBLER V2.0 PAGE 0005
ADDR OBJECT ST # SOURCE STATEMENT DATASET = DKO:OPCODE.

'016D EB 0238 EX DE,HL
'016E D9 0239 EXX

0240 . ,
'016F 76 0241 HALT

0242 ;
'0170 ED46 0243 1M 0
'0172 ED56 0244 1M 1
'0174 ED5E 0245 1M 2

0246
'0176 ED78 0247 IN A, (C)
'0178 DB20 0248 IN A, (N)
'017A ED40 0249 IN B, (C)
'017C ED48 0250 IN C,(C)
'017E ED50 0251 IN D, (C)
'0180 ED58 0252 IN E, (C)
'0182 ED70 0253 IN F,(C)
'0184 ED60 0254 IN H, (C)
'0186 ED68 0255 IN L, (C)

0256
'0188 34 0257 INC (HL)
'0189 FD3405 0258 INC (IY+IND)
'018C DD3405 0259 INC (IX+IND)
'018F 3C 0260 INC A
'0190 04 0261 INC B
'0191 03 0262 INC BC
'0192 OC 0263 INC C
'0193 14 0264 INC D
'0194 13 0265 INC DE
'0195 1C 0266 INC E
'0196 24 0267 INC H
'0197 23 0268 INC HL
'0198 DD23 0269 INC IX
'019A FD23 0270 INC IY
'019C 2C 0271 INC L
'019D 33 0272 INC SP

0273 ;
'019E EDAA 0274 IND
'01 AO EDBA 0275 INDR
'01A2 EDA2 0276 INI
'01A4 EDB2 0277 INIR

0278 ;
'01 A6 E9 0279 JP (HL)
'01A7 DDE9 0280 JP (IX)
'01A9 FDE9 0281 JP (IY)
'01AB DA0500' 0282 JP C,NN
'01AE FA0500' 0283 JP M,NN
'01B1 D20500' 0284 JP NC,NN
'01B4 C30500' 0285 JP NN
• 0 1B7 C20500' 0286 JP NZ,NN
'01BA F20500' 0287 JP P,NN
'01BD EA0500' 0288 JP PE,NN
'01CO E20500' 0289 JP PO,NN
'01C3 CA0500' 0290 JP Z,NN

0291 ;
'01C6 382E 0292 JR C,DIS
'01C8 182E 0293 JR DIS
'01CA 302E 0294 JR NC,DIS
'01CC 202E 0295 JR NZ,DIS

OPCODE Z80 OPCODE LISTING MOSTEK FLP-80 ASSEMBLER V2.C PAGE OO(
ADDR OBJECT ST # SOURCE STATEMENT DATASET = DKO:OPCODE.

'01CE 282E 0296 JR Z,DIS
0297

'01DO 02 0298 LD (BC) ,A
'01D1 12 0299 LD (DE),A
'01D2 77 0300 LD (HL) ,A
'01D3 70 0301 LD (HL) ,B
'01D4 71 0302 LO (HL),C
'0105 72 0303 LD (HL),D
'0106 73 0304 LD (HL),E
'01D7 74 0305 LO (HL) ,H
'01D8 75 0306 LO (HL),L
'01D9 3620 0307 LD (HL),N

0308
'01DB D07705 0309 LD (IX+IND),A
'01DE DD7005 0310 LO (IX+INO),B
'01E1 DD7105 0311 LD (IX+IND),C
'01E4 D07205 0312 LD (IX+IND),D
'01E7 DD7305 0313 LO (IX+INO),E
'01EA D07405 0314 LD (IX+IND),H
'01ED D07505 0315 LD (IX+INO) ,L
'01FO DD360520 0316 LO (IX+IND),N

0317 . ,
'01F4 FD7705 0318 LO (IY+INO),A
'01F7 FD7005 0319 LO (IY+IND),B
'01 FA FD7105 0320 LO (IY+IND),C
'01FD F07205 0321 LO (IY+IND),O
'0200 FD7305 0322 LO (IY+IND),E
'0203 F07405 0323 LO (IY+IND),H
'0206 F07505 0324 LD (IY+INO),L
'0209 F0360520 0325 LO (IY+INO),N

0326 ;
'020D 320500' 0327 LO (NN),A
'0210 ED430500' 0328 LD (NN) ,BC
'0214 ED530500' 0329 LO (NN),OE
'0218 220500' 0330 LO (NN),HL
'021B OD220500' 0331 LO (NN),IX
'021F F0220500' 0332 LO (NN),IY
'0223 ED730500' 0333 LO (NN),SP

0334 ;
'0227 OA 0335 LD A,(BC)
'0228 1A 0336 LD A,(DE)
'0229 7E 0337 LD A, (HL)
'022A DD7E05 0338 LD A,(IX+IND)
'022D FD7E05 0339 LD A,(IY+IND)
'0230 3A0500' 0340 LD A,(NN)
'0233 7F 0341 LD A,A
'0234 78 0342 LD A,B
'0235 79 0343 LD A,C
'0236 7A 0344 LD A,D
'0237 7B 0345 LD A,E
'0238 7C 0346 LD A,H
'0239 ED57 0347 LD A,I
'023B 7D 0348 LD A,L
'023C 3E20 0349 LD A,N
'023E ED5F 0350 LD A,R

0351 ;
'0240 46 0352 LD B,(HL)
'0241 DD4605 0353 LD B,(IX+IND)

PCODE Z80 OPCODE LISTING MOSTEK FLP-80 ASSEMBLER V2.0 PAGE 0007
ADDR OBJECT ST # SOURCE STATEMENT DATASET = DKO:OPCODE.

0244 FD4605 0354 LD B,(IY+IND)
0247 47 0355 LD B,A
0248 40 0356 LD B,B
0249 41 0357 LD B,C
024A 42 0358 LD B,D
024B 43 0359 LD B,E
024C 44 0360 LD B,H
024D 45 0361 LD B,L
024E 0620 0362 LD B,N

0363
0250 ED4B0500' 0364 LD BC,(NN)
0254 010500' 0365 LD BC,NN

0366
0257 4E 0367 LD C,(HL)
0258 DD4E05 0368 LD C,(IX+IND)
025B FD4E05 0369 LD C,(IY+IND)
025E 4F 0370 LD C,A
025F 48 0371 LD C,B
0260 49 0372 LD C,C
0261 4A 0373 LD C,D
0262 4B 0374 LD C,E
0263 4C 0375 LD C,H
0264 4D 0376 LD C,L
0265 OE20 0377 LD C,N

0378
0267 56 0379 LD D,(HL)
0268 DD5605 0380 LD D,(IX+IND)
026B FD5605 0381 LD D,(IY+IND)
026E 57 0382 LD D,A
026F 50 0383 LD D,B
0270 51 0384 LD D,e
0271 52 0385 LD D,D
0272 53 0386 LD D,E
0273 54 0387 LD D,H
0274 55 0388 LD D,L
0275 1620 0389 LD D,N

0390
0277 ED5B0500' 0391 LD DE,(NN)
027B 110500' 0392 LD DE,NN

0393
027E 5E 0394 LD E, (HL)
027F DD5E05 0395 LD E,(IX+IND)
0282 FD5E05 0396 LD E,(IY+IND)

, 0285 5F 0397 LD E,A
'0286 58 0398 LD E,B
, 0287 59 0399 LD E,C
'0288 5A 0400 LD E,D
0289 5B 0401 LD E,E
028A 5C 0402 LD E,H
028B 5D 0403 LD E,L

·028C 1E20 0404 LD E,N
0405 ;

028E 66 0406 LD H, (HL)
028F DD6605 0407 LD H,(IX+IND)
0292 FD6605 0408 LD H,(IY+IND)
'0295 67 0409 LD H,A
0296 60 0410 LD H,B

, 0297 61 0411 LD H,e

OPCODE Z80 OPCODE LISTING MOSTEK FLP-80 ASSEMBLER V2.0 PAGE 001
ADDR OBJECT ST # SOURCE STATEMENT DATASET = DKO:OPCODE.

'0298 62 0412 LD H,D
'0299 63 0413 LD H,E
'029A 64 0414 LD H,H
'029B 65 0415 LD H,L
'029C 2620 0416 LD H,N

0417 ;
'029E 2A0500' 0418 LD HL,(NN)
'02A 1 210500' 0419 LD H'L, NN

0420 ;
'02A4 ED47 0421 LD I,A

0422
'02A6 DD2A0500' 0423 LD IX,(NN)
'02AA DD210500' 0424 LD IX,NN

0425
, 02AE FD2A0500 • 0426 LD IY,(NN)
'02B2 FD210500' 0427 LD IY,NN

0428
'02B6 6£ 0429 LD L,(HL)
'02B7 DD6E05 0430 LD L, (IX+IND)
'02BA FD6E05 0431 LD L,(IY+IND)
'02BD 6F 0432 LD L,A
'02BE 68 0433 LD L,B
'02BF 69 0434 LD L,C
'02CO 6A 0435 LD L,D
'02C1 6B 0436 LD L,E
'02C2 6C 0437 LD L,H
'02C3 6D 0438 LD L,L
'02C4 2E20 0439 LD L,N

0440 ;
'02C6 ED4F 0441 LD R,A

0442 · ,
'02C8 ED7B0500' 0443 LD SP,(NN)
'02CC F9 0444 LD SP,HL
'02CD DDF9 0445 LD SP,IX
'02CF FDF9 0446 LD SP,IY
'0 2D 1 310500' 0447 LD SP,NN

0448 · ,
'02D4 EDA8 0449 LDD
'02D6 EDB8 0450 LDDR
'02D8 EDAO 0451 LDI
'02DA EDBO 0452 LDIR

0453 ;
'02DC ED44 0454 NEG

0455 · ,
'02DE 00 0456 NOP

0457 ;
'02DF B6 0458 OR (HL)
'02EO DDB605 0459 OR (IX+IND)
'02E3 FDB605 0460 OR (IY+IND)
'02E6 B7 0461 OR A
'02E7 BO 0462 OR B
'02E8 B1 0463 OR C
'02E9 B2 0464 OR D
'02EA B3 0465 OR E
'02EB B4 0466 OR H
'02EC B5 0467 OR L
'02ED F620 0468 OR N

0469 · ,

~PCODE Z80 OPCODE LISTING MOSTEK FLP-80 ASSEMBLER V2.0 PAGE 0009
ADDR OBJECT ST # SOURCE STATEMENT DATASET = DKO:OPCODE.

02EF EDBB 0470 OTDR
02F1 EDB3 0471 OTIR

0472
02F3 ED79 0473 OUT (C) , A
02F5 ED41 0474 OUT (C),B
02F7 ED49 0475 OUT (C) , C
02F9 ED51 0476 OUT (C),D
02FB ED59 0477 OUT (C),E
02FD ED61 0478 OUT (C),H
02FF ED69 0479 OUT (C),L
0301 D320 0480 OUT (N) , A

0481 . ,
0303 EDAB 0482 OUTD
0305 EDA3 0483 OUTI

0484
0307 F1 0485 POP AF
0308 C1 0486 POP BC
0309 D1 0487 POP DE
030A E1 0488 POP HL
030B DDE1 0489 POP IX
030D FDE1 0490 POP IY
030F F5 0491 PUSH AF
0310 C5 0492 PUSH BC
0311 D5 0493 PUSH DE
0312 £5 0494 PUSH HL
0313 DDE5 0495 PUSH IX
0315 FDE5 0496 PUSH IY

0497 ;
0317 CB86 0498 RES 0, (HL)
0319 DDCB0585 0499 RES O,(IX+IND)
031D FDCB0586 0500 RES O,(IY+IND)
0321 CB87 0501 RES O,A
0323 CB80 0502 RES O,B
0325 CB81 0503 RES O,C
0327 CB82 0504 RES O,D
0329 CB83 0505 RES O,E
0323 CB84 0506 RES O,H
032D CB85 0507 RES O,L

0508
032F CB8E 0509 RES 1,(HL)
0331 DDCB058E 0510 RES 1,(IX+IND)
0335 FDCB058E 0511 RES 1,(IY+IND)
0339 CB8F 0512 RES 1, A
033B CB88 0513 RES 1,B
033D CB89 0514 RES 1,C
033F CB8A 0515 RES 1,D
0341 CB8B 0516 RES 1,E
0343 CB8C 0517 RES 1,H
0345 CB8D 0518 RES 1,L

0519 ;
0347 CB96 0520 RES 2,(HL)
0349 DDCB0596 0521 RES 2,(IX+IND)
034D FDCB0596 0522 RES 2,(IY+IND)
0351 CB97 0523 RES 2,A
0353 CB90 0524 RES 2,B
0355 CB91 0525 RES 2,C
0357 CB92 0526 RES 2,D
0359 CB93 0527 RES 2,E

OPCODE Z80 OPCODE LISTING MOSTEK FLP-80 ASSEMBLER V2.0 PAGE 00
ADDR OBJECT ST # SOURCE STATEMENT DATASET = DKO:OPCODE.

'035B CB94 0528 RES 2,H
'035D CB95 0529 RES 2,L

0530 · ,
'035F CB9E 0531 RES 3, (HL)
'0361 DDCB059E 0532 RES 3,(IX+IND)
'0365 FDCB059E 0533 RES 3,(IY+IND)
'0369 CB9F 0534 RES 3,A
'036B CB98 0535 RES 3,B
'036D CB99 0536 RES 3,C
'036F CB9A 0537 RES 3,D
'0371 CB9B 0538 RES 3,E
'0373 CB9C 0539 RES 3,H
'0375 CB9D 0540 RES 3,L

0541 · ,
'0377 CBA6 0542 RES 4,(HL)
'0379 DDCB05A6 0543 RES 4,(IX+IND)
'037D FDCB05A6 0544 RES 4,(IY+IND)
'0381 CBA7 0545 RES 4,A
'0383 CBAO 0546 RES 4,B
'0385 CBA1 0547 RES 4,C
'0387 CBA2 0548 RES 4,D
'0389 CBA3 0549 RES 4,E
'038B CBA4 0550 RES 4,H
'038D CBA5 0551 RES 4,L

0552 ;
'038F CBAE 0553 RES 5,(HL)
'0391 DDCB05AE 0554 RES 5,(IX+IND)
'0395 FDCB05AE 0555 RES 5,(IY+IND)
'0399 CBAF 0556 RES 5,A
'039B CBA8 0557 RES 5,B
'039D CBA9 0558 RES 5,C
'039F CBAA 0559 RES 5,D
'03A1 CBAB 0560 RES 5,E
'03A3 CBAC 0561 RES 5,H
'03A5 CBAD 0562 RES 5,L

0563 · ,
'03A 7 CBB6 0564 RES 6,(HL)
'03A9 DDCB05B6 0565 RES 6,(IX+IND)
'03AD FDCB05B6 0566 RES 6, (IY+IND)
'03B1 CBB7 0567 RES 6,A
'03B3 CBBO 0568 RES 6,B
'03B5 CBB1 0569 RES 6,C
'03B7 CBB2 0570 RES 6,D
'03B9 CBB3 0571 RES 6,E
'03BB CBB4 0572 RES 6,H
'03BD CBB5 0573 RES 6,L

0574 ;
'03BF CBBE 0575 RES 7 , (HL)
'03C1 DDCB05BE 0576 RES 7,(IX+IND)
'03C5 FDCB05BE 0577 RES 7,(IY+IND)
'03C9 CBBF 0578 RES 7,A
'03CB CBB8 0579 RES 7,B
'03CD CBB9 0580 RES 7,C
'03CF CBBA 0581 RES 7,D
'03D1 CBBB 0582 RES 7,E
'03D3 CBBC 0583 RES 7,H
'03D5 CBBD 0584 RES 7,L

0585 · ,

OPCODE Z80 OPCODE LISTING MOSTEK FLP-80 ASSEMBLER V2.0 PAGE 001'
ADDR OBJECT ST # SOURCE STATEMENT DATASET = DKO:OPCODE.

'03D7 C9 0586 RET
'03D8 D8 0587 RET C
'03D9 F8 0588 RET M
'03DA DO 0589 RET NC
'03DB CO 0590 RET NZ
'03DC FO 0591 RET P
'03DD E8 0592 RET PE
'03DE EO 0593 RET PO
'03DF C8 0594 RET Z

0595
'03EO ED4D 0596 RETI
'03E2 ED45 0597 RETN

0598 ;
'03E4 CB16 0599 RL (HL)
'03E6 DDCB0516 0600 RL (IX+IND)
'03EA FDCB0516 0601 RL (IY+IND)
'03EE CB17 0602 RL A
'03FO CB10 0603 RL B
'03F2 CB 11 0604 RL C
'03F4 CB12 0605 RL D
'03F6 CB13 0606 RL E
'03F8 CB14 0607 RL H
'03FA CB15 0608 RL L

0609 ;
'03FC 17 0610 RLA

0611 ;
'03FD CB06 0612 RLC (HL)
'03FF DDCB0506 0613 RLC (IX+IND)
'0403 FDCB0506 0614 RLC (IY+IND)
'0407 CB07 0615 RLC A
'0409 CBOO 0616 RLC B
'040B CB01 0617 RLC C
'040D CB02 0618 RLC D
'040F CB03 0619 RLC E
'0411 CB04 0620 RLC H
, 0413 CB05 0621 RLC L

0622 ;
'0415 07 0623 RLCA

0624
'0416 ED6F 0625 RLD

0626 ;
'0418 CB1E 0627 RR (HL)
'041A DDCB051E 0628 RR (IX+IND)
, 041E FDCB051E 0629 RR (IY+IND)
'0422 CB1F 0630 RR A
'0424 CB18 0631 RR B
'0426 CB19 0632 RR C
'0428 CB1A 0633 RR D
'042A CB1B 0634 RR E
'042C CB1C 0635 RR H
'042E CB1D 0636 RR L

0637
'0430 1F 0638 RRA

0639 ;
'0431 CBOE 0640 RRC (HL)
'0433 DDCB050E 0641 RRC (IX+IND)
'0437 FDCB050E 0642 RRC (IY+IND)
'043B CBOF 0643 RRC A

OPCODE Z80 OPCODE LISTING MOSTEK FLP-80 ASSEMBLER V2.0 PAGE 00
ADDR OBJECT ST # SOURCE STATEMENT DATASET = DKO:OPCODE.

'043D CB08 0644 RRC B
'043F CB09 0645 RRC C
'0441 CBOA 0646 RRC D
'0443 CBOB 0647 RRC E
'0445 CBOC 0648 RRC H
'0447 CBOD 0649 RRC L

0650 ;
'0449 OF 0651 RRCA

0652 · ,
'044A ED67 0653 RRD

0654 · ,
'044C C7 0655 RST 0
'044D CF 0656 RST 08H
'044£ D7 0657 RST 10H
'044F DF 0658 RST 18H
'0450 £7 0659 RST 20H
'0451 EF 0660 RST 28H
'0452 F7 0661 RST 30H
'0453 FF 0662 RST 38H

0663 ;
'0454 9£ 0664 SBC A,(HL)
'0455 DD9E05 0665 SBC A,(IX+IND)
'0458 FD9E05 0666 SBC A,(IY+IND)
'045B 9F 0667 SBC A,A
'045C 98 0668 SBC A,B
'045D 99 0669 SBC A,C
'045E 9A 0670 SBC A,D
'045F 9B 0671 SBC A,E
'0460 9C 0672 SBC A,H
'0461 9D 0673 SBC A,L
'0462 DE20 0674 SBC A,N

0675 ;
• 0464 ED42 0676 SBC HL,BC
'0466 ED52 0677 SBC HL,DE
'0468 ED62 0678 SBC HL,HL
'046A ED72 0679 SBC HL,SP

0680 · ,
'046C 37 0681 SCF

0682
'046D CBC6 0683 SET O,(HL)
'046F DDCB05C6 0684 SET O,(IX+IND)
'0473 FDCB05C6 0685 SET O,(IY+IND)
'0477 CBC7 0686 SET O,A
'0479 CBCO 0687 SET O,B
'047B CBC1 0688 SET O,C
'047D CBC2 0689 SET O,D
'047F CBC3 0690 SET O,E
'0481 CBC4 0691 SET O,H
'0483 CBC5 0692 SET O,L

0693 ;
'0485 CBCE 0694 SET 1,(HL)
'0487 DDCB05CE 0695 SET 1,(IX+IND)
'048B FDCB05CE 0696 SET 1, (IY+IND)
'048F CBCF 0697 SET 1,A
• 0491 CBC8 0698 SET 1 , B
'0493 CBC9 0699 SET 1,C
'0495 CBCA 0700 SET 1,D
• 0497 CBCB 0701 SET 1,E

~CODE Z80 OPCODE LISTING MOSTEK FLP-80 ASSEMBLER V2.0 PAGE 0013
lDDR OBJECT ST # SOURCE STATEMENT DATASET = DKO:OPCODE.

)499 CBCC 0702 SET 1,H
)49B CBCD 0703 SET 1,L

0704
)49D CBD6 0705 SET 2,(HL)
)49F DDCB05D6 0706 SET 2,(IX+IND)
)4A3 FDCB05D6 0707 SET 2,(IY+IND)
)4A 7 CBD7 0708 SET 2,A
)4A9 CBDO 0709 SET 2,B
)4AB CBD1 0710 SET 2,C
)4AD CBD2 0711 SET 2,D
)4AF CBD3 0712 SET 2,E
)4B1 CBD4 0713 SET 2,H
)4B3 CBD5 0714 SET 2,l

0715 ;
)4B5 CBDE 0716 SET 3,(HL)
)4B7 DDCB05DE 0717 SET 3,(IX+IND)
)4BB FDCB05DE 0718 SET 3,(IY+IND)
)4BF CBDF 0719 SET 3,A
)4C1 CBD8 0720 SET 3,B
)4C3 CBD9 0721 SET 3,C
)4C5 CBDA 0722 SET 3,D
)4C7 CBDB 0723 SET 3,E
)4C9 CBDC 0724 SET 3,H
)4CB CBDD 0725 SET 3,L

0726
)4CD CBE6 0727 SET 4,(HL)
)4CF DDCB05E6 0728 SET 4,(IX+IND)
)4D3 FDCB05E6 0729 SET 4,(IY+IND)
)4D7 CBE7 0730 SET 4,A
)4D9 CBEO 0731 SET 4,B
04DB CBE1 0732 SET 4,C
:>4DD CBE2 0733 SET 4,D
)4DF CBE3 0734 SET 4,E
:>4E1 CBE4 0735 SET 4,H
:>4E3 CBE5 0736 SET 4,L

0737 . ,
)4E5 CBEE 0738 SET 5,(Hl)
:>4E7 DDCB05EE 0739 SET 5,(IX+IND)
)4EB FDCB05EE 0740 SET 5,(IY+IND)
:>4EF CBEF 0741 SET 5,A
)4F 1 CBES 0742 SET 5,B
:>4F 3 CBE9 0743 SET 5,C
04F5 CBEA 0744 SET 5,D
:>4F7 CBES 0745 SET 5,E
)4F9 CBEC 0746 SET 5,H
:>4FB CBED 0747 SET 5,L

0748 ;
:>4FD CBF6 0749 SET 6,(HL)
)4FF DDCB05F6 0750 SET 6,(IX+IND)
:>503 FDCBOSF6 0751 SET 6,(IY+IND)
0507 CBF7 0752 SET 6,A
0509 CSFO 0753 SET 6,B
)50B CBF1 0754 SET 6,C
050D CBF2 0755 SET 6,D
050F CSF3 0756 SET 6,E
)511 CBF4 0757 SET 6,H
)513 CBF5 0758 SET 6,L

0759 . ,

OPCODE Z80 OPCODE LISTING MOSTEK FLP-80 ASSEMBLER V2.0 PAGE 00
ADDR OBJECT ST # SOURCE STATEMENT DATASET = DKO:OPCODE.

'0515 CBFE 0760 SET 7,(HL)
'0517 DDCB05FE 0761 SET 7,(IX+IND)
'051B FDCB05FE 0762 SET 7,(IY+IND)
'051F CBFF 0763 SET 7,A
'0521 CBF8 0764 SET 7,B
'0523 CBF9 0765 SET 7,C
'0525 CBFA 0766 SET 7,D
'0527 CBFB 0767 SET 7,~
'0529 CBFC 0768 SET 7,H
'052B CBFD 0769 SET 7,L

0770 . ,
'052D CB26 0771 SLA (HL)
'052F DDCB0526 0772 SLA (IX+IND)
'0533 FDCB0526 0773 SLA (IY+IND)
'0537 CB27 0774 SLA A
'0539 CB20 0775 SLA B
'053B CB21 0776 SLA C
'053D CB22 0777 SLA D
'053F CB23 0778 SLA E
'0541 CB24 0779 SLA H
'0543 CB25 0780 SLA L

0781 ;
'0545 CB2E 0782 SRA (HL)
'0547 DDCB052E 0783 SRA (IX+IND)
'054B FDCB052E 0784 SRA (IY+IND)
'054F CB2F 0785 SRA A
'0551 CB28 0786 SRA B
'0553 CB29 0787 SRA C
'0555 CB2A 0788 SRA D
'0557 CB2B 0789 SRA E
'0559 CB2C 0790 SRA H
'055B CB2D 0791 SRA L

0792
'055D CB3E 0793 SRL (HL)
'055F DDCB053E 0794 SRL (IX+IND)
'0563 FDCB053E 0795 SRL (IY+IND)
'0567 CB3F 0796 SRL A
'0569 CB38 0797 SRL B
'056B CB39 0798 SRL C
'056D CB3A 0799 SRL D
'056F CB3B 0800 SRL E
'0571 CB3C 0801 SRL H
'0573 CB3D 0802 SRL L

0803
'0575 96 0804 SUB (HL)
'0576 DD9605 0805 SUB (IX+IND)
'0579 FD9605 0806 SUB (IY+IND)
'057C 97 0807 SUB A
'057D 90 0808 SUB B
'057E 91 0809 SUB C
'057F 92 0810 SUB D
'0580 93 0811 SUB E
'0581 94 0812 SUB H
'0582 95 0813 SUB L
'0583 D620 0814 SUB N

0815
, 0585 AE 0816 XOR (HL)
'0586 DDAE05 0817 XOR (IX+IND)

'CODE Z80 OPCODE LISTING MOSTEK FLP-80 ASSEMBLER V2.0 PAGE 0015
,DDR OBJECT ST # SOURCE STATEMENT DATASET = DKO:OPCODE.

~ 58 9
~58 C
~5 8 D
)58E
)58F
)590
)591
) 59 2
)593

FDAE05
AF
A8
A9
AA
AB
AC
AD
EE20

~RORS=OOOO

0818
0819
0820
0821
0822
0823
0824
0825
0826
0827
0828

XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR

END

(IY+IND)
A
B
C
D
E
H
L
N

APPENDIX B

MOSTEK OBJECT OUTPUT DEFINITION

B-1

APPENDIX B

MOSTEK OBJECT OUTPUT DEFINITION

B-1. INTRODUCTION

B-2. Each record of an object module begins with a delimiter
(colon or dollar sign) and ends with carriage return and line
feed. A colon (:) is used for data records and end of file re
cord. A dollar sign ($) is used for records containing re
location information and linking information. An Intel loader
will ignore such information and allow loading of non-re1oca
table, non-linkable programs. All information is in ASCII. Each
record is identified by a "type". The type appears in the 8th and
9th bytes of the record and can take the following values:

00 - data record

01 - end-of-fi1e
02 - internal symbol

03 - external symbol
04 - relocation information

05 - module definition

B-3. DATA RECORD FORMAT (TYPE 00)

Byte 1

2-3

4-5

6-7

Colon (:) delimiter.
Number of binary bytes of data in this record.
The maximum is 32 binary bytes (64 ASCII bytes).
Most significant byte of the start address of
data.
Least significant byte of start address of data.

8-9 ASCII zeros. This is the "record type" for data.
10- Data bytes.
Last two bytes - Checksum of all bytes except the de

limiter, carriage return, and line feed. The

B-2

checksum is the negative of the binary sum of all
bytes in the record.

CRLF Carriage return, line feed.

B-4. END-OF-FILE RECORD (TYPE 01)
Byte 1 Colon (:) delimiter.
2-3 ASCII zeros.
4-5 Most significant byte of the transfer address of

the program. This transfer address appears as an
argument in the IENDI Pseudo-op of a program. It
represents the starting execution address of the
program.

6-7

8-9

10-11
CRLF

Least significant byte of the transfer address.
Record type 01.
Checksum.
Carriage return, line feed.

8-5. INTERNAL SYMBOL RECORD (TYPE 02)

Byte 1

2-7

8-9

10-13

14-15

Dollar sign ($) delimiter.
Up to 6 ASCII characters of the internal symbol
name. The name is left justified, blank filled.
Record type 02.

Address of the internal symbol, most significant
byte first.
Binary checksum. Note that the ASCII letters of
the symbol are converted to binary before the
checksum is calculated. Binary conversion is done
without regard to errors.

CRLF Carriage return, line feed.

8-6. EXTERNAL SYMBOL RECORD (TYPE 03)

Byte 1 Dollar Sign ($) Delimiter.

CODE Z80 OPCODE LISTING MOSTEK FLP-80 ASSEMBLER V2.0 PAGE 0013
DDR OBJECT ST # SOURCE STATEMENT DATASET = DKO:OPCODE.

499 CBCC 0702 SET 1 , H
49B CBCD 0703 SET 1 , L

0704
49D CBD6 0705 SET 2,(HL)
49F DDCB05D6 0706 SET 2,(IX+IND)

14A3 FDCB05D6 0707 SET 2,(IY+IND)
14A 7 CBD7 0708 SET 2,A
14A9 CBDO 0709 SET 2,B
14AB CBD1 0710 SET 2,C
14AD CBD2 0711 SET 2,D
14AF CBD3 0712 SET 2,E
14B1 CBD4 0713 SET 2,H
14B3 CBD5 0714 SET 2,L

0715 ;
)4B5 CBDE 0716 SET 3,(HL)
)4B7 DDCB05DE 0717 SET 3,(IX+IND)
)4BB FDCB05DE 0718 SET 3,(IY+IND)
) 4BF CBDF 0719 SET 3,A
)4C 1 CBD8 0720 SET 3,B
)4C3 CBD9 0721 SET 3,C
)4C5 CBDA 0722 SET 3,D
)4C7 CBDB 0723 SET 3,E
)4C9 CBDC 0724 SET 3,H
)4CB CBDD 0725 SET 3,L

0726
)4CD CBE6 0727 SET 4,(HL)
D4CF DDCB05E6 0728 SET 4,CIX+IND)
04D3 FDCB05E6 0729 SET 4,CIY+IND)
04D7 CBE7 0730 SET 4,A
04D9 CBEO 0731 SET 4,B
04DB CBE1 0732 SET 4,C
04DD CBE2 0733 SET 4,D
04DF CBE3 0734 SET 4,E
04E1 CBE4 0735 SET 4,H
04E3 CBE5 0736 SET 4,L

0737 ;
04E5 CBEE 0738 SET 5,(HL)
04E7 DDCB05EE 0739 SET 5,(IX+IND)
04EB FDCB05EE 0740 SET 5,(IY+IND)
04EF CBEF 0741 SET 5,A
04F1 CBE8 0742 SET 5,B
04F 3 CBE9 0743 SET S,C
04F5 CBEA 0744 SET 5,D
04F7 CBEB 0745 SET 5,E
04F9 CBEC 0746 SET 5,H
04FB CBED 0747 SET 5,L

0748
04FD CBF6 0749 SET 6,(HL)
04FF DDCB05F6 0750 SET 6,(IX+IND)

'0503 FDCB05F6 0751 SET 6,(IY+IND)
'0507 CBF7 0752 SET 6,A
'0509 CBFO 0753 SET 6,B
050B CBF1 0754 SET 6,C
050D CBF2 0755 SET 6,D

'050F CBF3 0756 SET 6,E
, 0511 CBF4 0757 SET 6,H
'0513 CBFS 0758 SET 6,L

0759

OPCODE Z80 OPCODE LISTING MOSTEK FLP-80 ASSEMBLER V2.0 PAGE 0
ADDR OBJECT ST # SOURCE STATEMENT DATASET = DKO:OPCODE.

'0515 CBFE 0760 SET 7,(HL)
'0517 DDCB05FE 0761 SET 7,(IX+IND)
'051B FDCB05FE 0762 SET 7,(IY+IND)
'051F CBFF 0763 SET 7,A
'0521 CBF8 0764 SET 7,B
'0523 CBF9 0765 SET 7,C
'0525 CBFA 0766 SET 7,D
'0527 CBFB 0767 SET 7,F;.
'0529 CBFC 0768 SET 7,H
'052B CBFD 0769 SET 7,L

0770 . ,
'052D CB26 0771 SLA (HL)
'052F DDCB0526 0772 SLA (IX+IND)
'0533 FDCB0526 0773 SLA (IY+IND)
'0537 CB27 0774 SLA A
'0539 CB20 0775 SLA B
'053B CB21 0776 SLA C
'053D CB22 0777 SLA D
'053F CB23 0778 SLA 1:' ...
'0541 CB24 0779 SLA H
'0543 CB25 0780 SLA L

0781 ;
'0545 CB2E 0782 SRA (HL)
'0547 DDCB052E 0783 SRA (IX+IND)
, 054B FDCB052E 0784 SRA (IY+IND)
'054F CB2F 0785 SRA A
'0551 CB28 0786 SRA B
, 0553 CB29 0787 SRA C
, 0555 CB2A 0788 SRA D
'0557 CB2B 0789 SRA E
'0559 CB2C 0790 SRA H
, 055B CB2D 0791 SRA L

0792
'055D CB3E 0793 SRL CHL)
'055F DDCB053E 0794 SRL (IX+IND)
'0563 FDCB053E 0795 SRL (IY+IND)
'0567 CB3F 0796 SRL A
'0569 CB38 0797 SRL B
'056B CB39 0798 SRL C
'056D CB3A 0799 SRL D
'056F CB3B 0800 SRL E
'0571 CB3C 0801 SRL H
• 057 3 CB3D 0802 SRL L

0803
'0575 96 0804 SUB CHL)
'0576 DD9605 0805 SUB (IX+IND)
'0579 FD9605 0806 SUB (IY+IND)
'057C 97 0807 SUB A
'057D 90 0808 SUB B
'057E 91 0809 SUB C
'057F 92 0810 SUB D
'0580 93 0811 SUB E
'0581 94 0812 SUB H
'0582 95 0813 SUB L
'0583 D620 0814 SUB N

0815 ;
'0585 AE 0816 XOR (HL)
'0586 DDAE05 0817 XOR (IX+IND)

2-7 Up to 6 ASCII characters of the external symbol
name. The name is left justified, blank filled.

8-9 Record type 03.

B-3

10-13 Last address which uses the external symbol. This
is the start of a link list in the object data re
cords which is described below. The most signific

ant byte is first.
14-15 Binary checksum.

CRLF Carriage return, line feed.
The Assembler outputs the external symbol name and the last ad

dress in the program where the symbol is used. The data records
which follow contain a link list pointing to all occurrences of

that symbol in the object code. This is illustrated in Figure

B-1.

1. The external symbol record shows the symbol (ILABI) and
the 1 as t location in the program which uses the symbol

(212AH)·
2. The object code at 212AH has a pointer which shows

where the previous reference to the external symbol oc-
curred (200FH)·

3. This backward reference list continues until a ter
minator ends the list. This terminator is FFFFH. This
method is easy to generate and decode. It has the
advantage of reducing the number of bytes of object
code needed to define all external references in a
program.

B-7. RELOCATING INFORMATION RECORD (TYPE 04)

The addresses in the program which must be relocated are ex
plicitly defined in these records. Up to 16 addresses (64 ASCII
characters) may

Byte 1

2-3

be defined in each record.

Dollar sign ($) delimiter.
Number of sets of 2 ASCII characters, where 2

sets define an address.

B-4

4-7 ASCII zeros.
8-9 Record type 04.
10- Addresses which must be relocated, most signific

ant byte first.
Last two bytes - Binary checks4m.
CRLF Carriage return, line feed.

B-8. MODULE DEFINITION RECORD (TYPE 05)

This record has the name of the module (defined by the 'NAME'

pseudo-op) and a loading flag byte. The flag byte is determined
by the 'PSECT ' pseudo-oPe

Byte 1 Dollar sign ($) delimiter.
2-7 Name of the module, left justified, blank filled.
8-9 Record type 05.
10-11

12-13
CRLF

Flag byte. When converted to binary, the flag

byte is defined as follows:
Bit a = 0 For absolute

= 1 For relocatable
Bit 1 = 0 For ZSO Data Format

(LSB First)
= 1 For 3870 Data Format

(MSB First)
Binary checksum.
Carriage return, line feed.

B-5

FIGURE B-1. EXTERNAL SYMBOL LINK LIST

$ LABbbb032l2A defines last reference to
external symbol 'LAB'

APPENDIX C

SCRATCHPAD MEMORY MAP

C-l

APPENDIX C

SCRATCHPAD MEMORY MAP

C-l. INTRODUCTION

C-2. The FLP-80DOS operating system makes extensive use of the
256 x 8 scratchpad memory from OFFOOH to OFFFFH for system
variables. This area is reserved for the operating system and
should not be modified by user programs.

C-3. DESCRIPTION OF PARAMETERS

SCRATCH PAD MAP

ME MO R Y
LOCATION MN EMON I C DESCRIPTION
FFOO-Ol TOR Top of contiguous RAM Memory

(calculated by Monitor)
FF02-03 BALR Bottom of Allocated RAM
FF04-05 COATE Current Date
FF06 Count DDT variables
FF07 CMDSV Disk Controller Command Save

location
FF08 TRK Disk Controller Variable
FF09 ERSTAT Disk Controller Error Status

Flag
FFOA SCTR Disk Controller Variable
FFOB SCTRSIZE Disk Controller Variable
FFOC-FFll Software Break Point Control
FF12 FLAG Debug Flag
FF13 LON G Register Map long/short flag

C-2

MEMORY
LOCATION MNEMONIC DESCRIPTION

FF14-FF19 OPR1,OPR2, OPR3 DDT OPERANDS, 124 Byte Buffer
for Reset Boot sequence

FF1A OPFLG DDT Operand Flag
FF1B NXCHR DDT Variable
FF1C CMD DDT Variable
FF1D-1E MAP DDT Variable
FF1F-20 OFFSET DDT Offset Address
FF21 EXCTL DDT Variable
FF22 FSAVE DDT Variable
FF23 BUSY FLG IOCS busy fl ag
FF24 ~IINFLG DDT Variable
FF25 TKST DDT Variable
FF26-28 JTASK Jump to the routine TASK
FF29-2B JIOCS Jump to IOCS
FF2C-2E Not used. Reserved for future

use
FF2F-5F Ram Mnemonic Table*
FF60-FF8F Monitor I/O Vector, Reset Boot

Vector
FF90-FF98 AIM-80 Flags
FFA9 User Stack Origin
FFAA-FFDF Monitor and DDT Stack and

Breakpoint Area
FFEO BRATE Baud Rate Flag
FFE1 Not used. Reserved for future

use
FFE2-E3 SPSV FLP-80 Disk Controller Stack

Pointer Save

FFE4-FFFF DDT User Register Save Area

*The RAM mnemonic table is initialized by the Monitor. It con
tains device mnemonics for I/O drivers which are linked into the
operating system during the System Generation procedure (See Sec
tion 15).

APPENDIX D

TESTING/DIAGNOSTICS

0-1

APPENDIX 0

TESTING/DIAGNOSTICS

0-1. INTRODUCTION

0-2. This Appendix contain a description of Software/Firmware
troubleshooting techniques and instructions for using the Disk
Diagnostic Utility. For problems in areas other than those
listed above, consult the appropriate hardware or software man
u a 1 •

0-3. SOFWARE/FIRMWARE TROUBLE SHOOTING

0-4. Double check the hardware and associated interfaces. As
sure that the FLP-80DOS PROMS are in the correct sockets and that
the strapping options are correct. Double check connections from
the terminal to the serial port. If you suspect a hardware
problem perform the diagnostic tests listed in the hardware
manuals.

0-5. POWER UP SEQUENCE WITHOUT DISKETTE
1. Assure that no diskettes are in the drives.
2. Power up the system.
3. Depress II carriage return ll on your terminal. The sys

tem should print the following:
DSK ERR

The dot is the DDT-80 prompt.
4. If the above message was not printed and all hardware

appears correct, the problem is probably bad PROM's
which should be replaced.

0-6. POWER UP SEQUENCE WITH DISKETTE

0-2

1. Assure that no diskettes are in the drives.
2. Power up the system.
3. Place a system diskette in the rfght hand drive (DKO:).
4. Depress "carri age return" on your termi nal.

5. The disk should be accessed.
6. If the disk was not accessed, then a controller or disk

controller Firmware problem is indicated. Double check
the strapping options on the disk drive board. Then
proceed to paragraph 0-7, DISK CONTROLLER FIRMWARE
TEST.

7. If the sign-on message was printed on the terminal but
a disk error was indicated (*****ERROR OA DISK I/O ER
ROR), then the diskette is bad and should be replaced.

8. If the following message is displayed on the terminal:

OS. BIN 255 NOT FOUND

the 0 per a tin g s y s t e m bin a r.y f i 1 e i s not 0 nth e dis kin
DKO:. The period is the DDT-80 prompt.

9. If the sign-on message and Monitor prompt (1$1) ap
peared on the terminal, proceed to paragraph 0-8, rv'lON

ITOR CHECKOUT.

0-7. DISK CONTROLLER FIRMWARE TEST (only for FLP-80 card. See
Hardware manual for other cards).

1. Perform the following sequence •

. £ 0,7F,AA(CR)

.f EC06(CR)
SAVE AOR, #SCTRS: ~(CR)
UNIT,TRK,SCTR: O,A,1(CR)

If a disk error is indicated, then a disk controller
problem is indicated for WRITE •

. £ 0,7F ,O(CR)

.f EC09(CR)
LOAD ADR: O(CR)
UNIT,TRK,SCTR: O,A,1(CR)

0-3

.li 0,7F(CR)
Check locations 0-7FH for the pattern AAH. If any dis-
crepancies are found, then failure in the disk controller
or disk unit is indicated for READ.

Consult the FLP-80 Operations Manual; MK78560.

0-8. MONITOR CHECKOUT

0-9. A major portion of the system software and hardware can be
checked out by performing the following procedure:

$DDT
.£. O,FF,AA(CR)
.Q(CR)
$SAVE O,FF ,TEST(CR)
$DOT(CR)
.£. O,FF,O(CR)
.Q(CR)
$GET TEST(CR)
$DOT(CR)
.k! O,FF(CR)

All of the displayed locations should have AA in them. If not,
then the Disk Diagnostic should be executed.

0-10. DISK DIAGNOSTIC UTILITY

0-11. PURPOSE

0-12. The Disk Diagnostic Utility allows the user to perform a
battery of tests on the disk controller and individual disk
drives.

0-13. USER INTERFACE

0-14. The Disk Diagnostic Utility is executed by the user

0-4

by entering the following while in the Monitor environment.
$OSKOIA(CR)

0-15. At this point~ the program will print a list of available
tests and how to call for them. A brief description of the
available tests follows.

0-16. DESCRIPTION OF TESTS

1. TEST 20 Write and read every sector. This test
causes random data to be written to and read from each
sector of the diskette in the unit specified. The data
is verified as it is read in.

2. TEST 21 -- read every sector. Every sector of the dis
kette in the unit specified is read. No check of the
input data is performed~ however format information is
checked.

3. TEST 22 read 10. Thi s test allows the user to
specify a random track and sector address~ which the
program will then attempt to access.

4. TEST 23 -- random write and read (single drive). Ran
dom track and sector addresses are generated and random
data is written to the sector at that address. The
data is then read and verified.

5. TEST 24 -- random ~'rite and read (both drives). This
test is the same as the 23 except that both drives are
used.

6. TEST 27 -- format diskette. The diskette in the unit
specified is formatted in IBM compatible format (Note~

this is not to be confused with the PIP format com
mand).

7. TEST 30 Memory test. This tests all memory
locations from the end of the program to location
7FFFH (32K system).

0-5

8. TEST 31 -- fifo test. This test causes writing to and

reading from the fifo on the disk controller board.

NOTE -- the removal of disks containing data to be saved from

their respective drives is highly recommended immediately after

the Disk Diagnostic Utility is loaded. This will prevent ac

cidential overwriting of data during tests 20, 23, 24, and 27.

APPENDIX E

FLP-80DOS ERROR DICTIONARY

E-1

APPENDIX E

ERROR MESSAGE/DESCRIPTION

1 INVALID RQST

A request word was specified which is not a valid DOS re
quest.

2 DUPLICATE FILE

An attempt was made to create a directory entry for a file
that already exists. Can occur only on create or rename.
In the case of OPENW, the file is opened but this error is
reported only as a flag.

3 FILE TABLE FULL

An attempt was made to insert another entry in the active
file table when it is full. Can occur only on open or cre
ate. Up to 7 files can be open at one time.

4 FILE NOT FOUND
The requested file was not found in the directory. Can oc
cur only on open or rename.

5 DIR FULL
There is no more space to insert another directory entry.

The directory can have up to 192 entries in it.

6 DISK WRITE PROTECT
Diskette is write protected and an attempt has been made to
write on it. Write protection is documented in the Shugart
SASOO/S01 OEM Manual, paragraphs S.2 and S.3.

7 I/O TIME OUT

The maximum time allowed for an I/O device to go ready has
been exceeded. This is a non-terminating error printed on

E-2

the console device by an I/O device handler. In MOSTEK I/O
handlers, the message is output every 20 seconds until the
I/O device is made ready by the user. The user may ter
minate the wait loop via RESET or Console Escape (CNTL-C or
CNTL-X from the keyboard).

8 FILE NOT OPEN
An attempt was made to close or perform some record oper
ation on a file which had not been .opened. Can occur on
any operation except initialize, open, or create.

9 READ PAST EOF
An attempt was made to advance the pointer beyond the last
record in the file. The error can occur on read next, skip
forward, or delete. In the case of delete it points to a
null record, with the previous record being the last one.

OA DISK I/O ERR
A disk I/O error occurred during the operation. Data may
have been lost. Can occur on any operation except rewind.

OB DISK FULL
Diskette is full and will not allow the allocation of an
other record. Can occur only on insert.

OC DISK PTR ERR
The pointers read do not agree with the next or previous
record. Can occur on any record operation except rewind.
Poi nter errors occur because a sector is not readabl e or
because an application program has written on a non
initialized disk.

OD DIR MAP ERR
A read or write error occurred during operations involving

E-3

the disk directory or sector and track maps. If operation
occurred during a close or erase, directory or maps could
be destroyed.

OE FILE ALREADY OPEN
An attempt was made to open or create a file which is cur
rently active.

OF DISK NOT READY
Can occur on any operation when a diskette is not fully
inserted and ready.

10 INITIALIZE
A file is being closed on a disk whose ID is different from
the one currently in memory. This can occur if disks are
changed during operations without initializing. Can occur
only on close and erase. Recovery is by initializing disks
before operations begin (INIT command).

11 BAD UNIT
A unit has been specified other than 0/-3 for any command.

12 INVALID RQST
An inval id request code was passed to 10CS in the 10CS
vector. The programmer should assure that each request
code is one which is described in Section 9 of this manual
and that the code is allowed for the selected device.

13 UNIT ALREADY OPEN
An attempt was made to open the same device more than once.
This applies to non-file-structured devices and file
structured devices. The user should open a device only
once. The device must be closed via a CLOSE request before
it can be opened again.

E-4

14 UNIT NOT OPEN
An I/O operation was attempted on a device which had not
been opened. This applies to non-file-structured devices
and file structured devices. The user should assure that
any device to be accessed is opened for read or write via
an OPENR or OPENW request.

15 UNSUPPORTED DEVICE
An operation was attempted on a device whose two character
device name was not recognized by the system. The user
should assure that an allowable device name is being used.
Alternatively, new device names may be added to the system
(See Section 7-29). This error occurs at the laCS level.
Allowed device names are shown in Section 9-12.

16 INVALID FMAT
The format specification (FMAT) in the IOCS vector is
invalid. The programmer should assure that a valid format
specification is used (See Section 9).

17 ALLOC ERR
This error occurs if the user at~empts to open more than 16
files or devices requiring physical buffers at the same
time.

18 DE-ALLOC ERR
This error occurs during a CLOSE request if the physical
buffer number (PBFFR) in the IOCS vector contained an er
roneous number, or if the physical buffer had previously
been de-allocated.

19 BAD FILE NAME
An invalid file name was specified. A file name may have

E-5

up to 6 alphanumeric characters and must start with an
alphabetic character.

lA An attempt was made to read from or write into the direc-
tory area of the diskette. These operations are not al
lowed via the FDH, but they are allowed via the Disk Con
troller Firmware (DCF). Occurrence of this error during
normal operation of the software indicates that the disket
te has not been initialized or that track and sector
pointers on the diskette have been corrupted. The diskette
should be reformatted via PIP's FORMAT command.

IB BAD UNIT, TRK, OR SCTR
Controller has received invalid drive number, or sector and
track out of normal range.

lC SEEK ERR
Controller not able to locate track during seek, read, or
write operation.

1D SCTR NOT FOUND
Sector address marks not readable.

IE CRC ERR
Incorrect data has been fl agged by CRC check duri ng re
ading.

IF DATA LOST
Hardware problem causing data overrun in reading or writ
ing.

20 INVALID DEVICE SPEC
An I/O device was specified in a command which is not al-

E-6

lowed in the system. The user should assure that an al

lowable device mnemonic is being used. See Section 9-12.

Alternatively, new mnemonics may be added to the system

(See Section 15-6). This error occurs at the system

program level and is used in' PIP. The Append command, for

example, is only supported on the disk device OK.

21 INCOMPATIBLE EXTENSIONS

An attempt was made to perform some PIP command on files

whose extensions are not compatible. Specifically, binary

files (extension 'BIN') cannot be intermixed with non

binary files. The user should assure that binary file

operations are associated only with binary files. The PIP

commands Rename and Copy wi 11 generate thi s error if the

extensions are incompatible.

22 BINARY EXTENSION NOT ALLOWED

Binary files (extension 'BIN') cannot be appended. This

error is generated by the PIP Append command.

23 RESERVED FOR FUTURE USE

24 I/O FILES EQUAL

An input and output file in a PIP copy command were the

same file. The user should assure that any file is not

used for both input and output in PIP.

25-2B Reserved for future use.

MONITOR ERROR MESSAGES

2C INVALID LUN

The Logical Unit Number (LUN) specified in a Monitor com-

E-7

mand was not all owed. LUN ' s may be O/-FEH. LUN FFH is
reserved for applications in which the LUN is not to be
redirected.

20 SAVE TOO LARGE
The amount of memory to be saved as a binary file via the
Monitor SAVE command exceeded the maximum allowable, which
is 256x124=31744 bytes. The user should assure that the
maximum size of the area to be saved does not exceed 31744
byt e s.

2E INVALID EXTENSION
A valid extension consists of one to three alphanumeric
digits.

2F ASSIGN TABLE FULL
Too many redirects were attempted via the Monitor ASSIGN
command. The maximum number of allowed redirects is 6.
The user should eliminate some of the redirects via the
Monitor CLEAR command.

30 MEMORY FAULT LOC
A memory location was found to be faulty. The address is
printed out.

31 CHECKSUM
A checksum error was encountered by the LINKER within an
object module. The user should regenerate the object mod
ule and then try linking it.

32 GLOBAL DOUBLE DEF
The LINKER generates this error when a global symbol is
multiply defined in two different modules.

E-8

33-34 RESERVED FOR FUTURE USE

35 MODULE SEQUENCE ERROR
During use of the LINKER, specification of modules to be
linked did not match during both passes.

36 NOT ENOUGH MEMORY AVAILABLE
During use of the LINKER, the largest object module to be
linked exceeded the available memory.

37-3E Reserved for future use.

ASSEMBLER ERROR MESSAGES

3F BAD RELOCATABLE USAGE
A relocatable value was used .in an 8-bit operand. The user
should assure that relocatable quantities are used only for
16-bit operand values (addresses), or the PSECT ABS
pseudo-op should be used.

40 BAD LABEL
An invalid label was specified. A label may consist of any
printable ASCII characters except I () * + , - = /
: ; or space. In addition, the first character cannot be a
number. A label may start in any column if followed by a
colon. It does not require a colon if started in column
one.

41 BAD OPCODE
An invalid Z80 opcode or pseudo-op was specified. This er
ror will also occur for a label which starts beyond column
1 and is not followed by a colon.

E-9

42 BAD OPERAND
An invalid operand or combination of operands was specified
for a given opcode.

43 BAD SYNTAX
The specification of an operand was invalid.

44 UNDEF SYMBOL
A symbol was used in an operand which was not defined in
the program, either locally or as an external symbol.

45 MULTIPLE DEF
A symbol was defined more than once in the same program.

46 MULTIPLE PSECT USAGE
A PSECT pseudo-op was used more than once or was defined
after the first code producing opcode. The PSECT pseudo-op
should be used only once at the beginning of a program.

47 SYMBOL TABLE FULL

48

The symbol table of the Assembler is full and will accept
no more symbols. The user should reduce the number of sym
bols in his program or break the program up into one or
more linkable modules.

BAD EXTERNAL USAGE
An external symbol was used in an expression or as the
operand of an IEQU 1 or IDEFLI pseudo-op. The user should
assure that an external symbol is not used i n these
situations.

49 MACROS NOT ALLOWED WITH THIS VERSION

The current version of the Assembler does not support
macros.

E-10

4A UNBALANCED QUOTES
An uneven number of quote characters (I) occurred in an
operand or operands.

4B LABEL REQUIRED
A label was not used on an 'EQU ' or 'DEFL' pseudo-oPe

Each 'EQU ' or 'DEFL' pseudo-op must have a label associated
with it.

4C OVERFLOW IN EXPRESSION
In evaluating an expression, the value of the expression
exceeded 65536 (O/FFFFH). The user shoul d check the ex
pression for validity. Alternatively, the .RES. operation
may be used to ignore the overflow condition and only the
least significant 16 bits of the expression will be used.

40 OPERAND OUT OF RANGE
The final value of an operand was found to be out of the
range allowed for the given opcode. For example, the valid
range of the JR operand is -126 through +129.

4E BAD DIGIT
An invalid digit was found in a number.

4F BAD OPERATOR
An invalid operator was found in an expression.

50 BAD SYMBOL TABLE LIMITS
The available RAM is not sufficient for the Assembler sym
bol table. The user should assure that 'BALR' (Bottom of
Allocated RAM) is correct for his configuration. 'BALR' is
defined in locations FF02H and FF03H. All system routines
exist above BALR and must not be overwritten. See SYSGEN,

E-ll

51 INPUT TRUNCATED

The input statement exceeded 80 characters in length. This
is the system input 1 imit for all FLP-80DOS Software.

52 MULTIPLE NAME

The 'NAME' pseudo-op was used more than once in the same
program. The user should use the NAME pseudo-op only once

per source module.

53 The 'INCLUDE ' pseudo-op was nested. The user should assure
that the 'INCLUDE ' pseudo-op is not used in the body of an

included module.

54 The expression evaluator stack reached its limit. The user
should reduce the complexity of the expression in the

statement with caused the errror.

55 The cross reference table became too large. This is a
warning message indicating that not all cross references

will be output in the cross reference listing.

APPENDIX F

SYSTEM LINKAGES
(SYSLNK)

F-1

F-1. INTRODUCTION

F-2. FLP-80DOS system routines are documented in Section 13 of
this manual. The linkage addresses for these routines are
documented here, and they are set up in a file on the system
diskette called SYSLNK. SYSLNK contains linkages for all system
routines resident in PROM (EOOO-EFFF). It also contains the
variable JTASK which is the linkage to the RAM resident system
routines in the operating system (See Section 13), and the
linkage to JIOCS for calls to IOCS.

F-3. Any program using a system routine should declare that
routine name as an external global symbol.
EXAMPLE

GLOBAL ROCHR
GLOBAL WRCHR
GLOBAL JTASK

F-4. When the user program is loaded or linked, the SYSLNK.OBJ
file should be linked in with it to resolve these external
references.
EXAMPLE

$LINK MYFILE,SYSLNK(CR)

F-5. The source and object files SYSLNK.SRC and SYSLNK.OBJ are
both included on FLP-80DOS system diskettes.

LNK COPYRIGHT 1978 MOSTEK CORP MOSTEK FLP-80 ASSEMBLER V2.0 PAGE 0001
DR OBJECT ST # SOURCE STATEMENT DATASET = DKO:SYSLNK.SRC

>E56A

>E583

>E59C

>E597

>E003

>EC23

>ECOO

>EC03

>E3B3

>E534

>E58B

>E61C

>E5AA

>E3C7

NAME
PSECT

SYSLNK
ABS

.** ,

0002
0003
0004
0005 ; *
0006 ; *
0007 ; *
0008 ; *
0009 ; *
0010 ; *
0011 ; *
0012 ; *
0013 ;*
0014 ;*
0015 ;*
0016 ;*
0017 ;*
0018 ;*
0019 ; *
0020 ;*
0021 ;*
0022 ;*
0023 ;*
0024 ;*

SYSTEM LINKAGES FOR FLP-80DOS V2.0

ID: SYSLNK VERSION 2.0 5/22/78

PROGRAMMER: JOHN BATES

*
*
*
*
*
*

DESCRIPTION: *
THIS IS AN ABSOLUTE LINK BLOCK FOR *
FLP-80DOS SYSTEM SUBROUTINES. MOST OF *
THESE ROUTINES ARE RESIDENT IN THE *
SYSTEM FIRMWARE AREA (EOOO-EFFF). *
ADDITIONAL RAM RESIDENT SYSTEM ROUTINES *
IN OS.BIN[255] MAY BE ACCESSED THROUGH *
LINKAGES IN SCRATCH PAD RAM (E.G.TASK). *
EACH SYSTEM SUBROUTINE IS IDENTIFIED BY *
ITS ASSIGNED NAME AND ITS ASSOCIATED *
STARTING ADDRESS. THIS SOURCE MODULE *
SHOULD BE ASSEMBLED SO ITS OBJECT MODULE*
MAY BE LINKED WITH USER PROGRAMS OR *
SYSTEM PROGRAMS (E.G. PIP). *

0025 ;**
0026 ;
0027 ;
0028
0029 ;
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040 EH
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059

AORN

ASBIN

CRLF

ECHO

FATAL

FLOPPY

LOADER

MINDIS

MINEN

PACC

PADDO

PASP

PTXT

SYSTEM SUBROUTINES IN FIRMWARE SPACE (EOOO-EFFF)

GLOBAL
EQU
GLOBAL
EQU
GLOBAL
EQU
GLOBAL
EQU
GLOBAL
EQU
GLOBAL
EQU
GLOBAL
EQU
GLOBAL
EQU
GLOBAL
EQU
GLOBAL
EQU
GLOBAL
EQU
GLOBAL
EQU
GLOBAL
EQU
GLOBAL
EQU
GLOBAL

AORN
OE56AH
ASBIN
OE583H
CRLF
OE59CH
ECHO
OE597H
EH
OE003H
FATAL
OEC23H
FLOPPY
OECOOH
LOADER
OEC03H
MINDIS
OE3B3H
MINEN
OE534H
PACC
OE58BH
PADDO
OE61CH
PASP
OE5AAH
PTXT
OE3C7H
RDCHR

;ERROR HANDLER

;FATAL ERROR EXIT

;FLOPPY CONTROLLER

;LINKED FILE LOADER

;DISABLE MINIMAL LISTNER

;ENABLE MINIMAL LISTNER

;PRINT ACC AND SPACE

SYSLNK COPYRIGHT 1978 MOSTEK CORP MOSTEK FLP-80 ASSEMBLER V2.0 PAGE (
ADDR OBJECT ST # SOURCE STATEMENT DATASET = DKO:SYSLNK.SRC

>E522 0060 RDCHR EQU OE522H
0061 GLOBAL RENTRY

>E11D 0062 RENTRY EQU OE11DH ;DDT-80 RENTRY POINT
0063 GLOBAL ENTRY

>E066 0064 ENTRY EQU OE066H ;BREAK PT REENTRY
0065 GLOBAL RUN

>EFE1 0066 RUN EQU OEFE1H ;EXIT FOR IMPILIED RUN CMD
0067 GLOBAL SCAN

>E414 0068 SCAN EQU OE414H
0069 GLOBAL SPACE

>E5A5 0070 SPACE EQU OE5A5H
0071 GLOBAL SRCHU

>E547 0072 SRCHU EQU OE547H
0073 GLOBAL WRCHR

>E527 0074 WRCHR EQU OE527H
0075 GLOBAL REBOOT

>E006 0076 REBOOT EQU OEOO6H
0077 ;
0078 . SCRATCH PAD VARIABLES ,
0079
0080 GLOBAL ERSTAT

>FF09 0081 ERSTAT EQU OFF09H ;ERROR STATUS
0082 GLOBAL JTASK

>FF26 0083 JTASK EQU OFF26H ;JUMP TO TASK
0084 GLOBAL JIOCS

>FF29 0085 JIOCS EQU OFF29H ;JUMP TO Ioes
0086 . ,
0087 END

ERRORS=OOOO

APPENDIX G

DISK RECOVERY UTILITY

G-l

APPENDIX G

DISK RECOVERY UTILITY

G-l. INTRODUCTION

G-2. The Disk Recovery Utility may be used to recover ASCII text
files that are inaccessible to other programs due to some form of
error within the file. TypicallYt the Disk Recovery Utility
would be used to recover files that have experienced a pointer
error.

G-3. USER INTERFACE

G-4. The file to be recovered must be on the diskette currently
in unit DKl:. As its contents are recovered t they are copied to
a file on unit DKO: (the file is automatically created by the
Disk Recovery Utility).

G-S. The Disk Recovery Utility is invoked by entering the
following from the console while in the monitor environment:

$DSKREC DKl:sfilename TO DKO:dfilename (CR)

G-6. The parameter Isfilename l is the name of the input (source)
file that is to be recovered. The parameter Idfilename l is the
name of the output (destination) file that is to receive the
recovered data. This is optional and defaults to the name of the
source file.

G-7. After t he above is entered by
attempts to recover the source file.
following messages may then be printed.

the user t
One or

the
more

program
of the

G-2

G-8. MESSAGES

G-9. Error messages that may be pri nted by the Di sk Recovery
Utility are listed in Appendix E (FLP-80DOS ERROR MESSAGES/
DESCRIPTION)

G-IO. The following messages indicates normal termination of the
Disk Recovery Utility:

G-l1.

DSKREC> FILE VERIFIED--NO ERRORS

This indicates that the file was recovered and that no er
rors of any sort were detected.

DSKREC> FILE RECOVERED--POSSIBLE ERRORS

The source file has been partially recovered. An error was

detected in the file and therefore some data may have been
los t •

When some form of error is detected ina fi 1 e bei ng
recovered, the Disk Recovery Utility inserts a message into the
recovered copy of the file at the point were the error occurred.
This message is highly visible and enables the user to quickly
locate the area in the recovered fi 1 e at which data may be
garbled and/or lost. This message should be deleted from the
recovered copy of the file when the user has verified the data in
the area of the message. The message will appear as follows:

* I/O OR POINTER ERROR OCCURRED HERE*

G-12. METHOD OF OPERATION

G-13. The procedure used by the Disk Recovery Utility to recover
disk files is descibed below.

G-14. The directory entry for the source (input) file is

G-3

obtained from the disk fil e directory. Within this entry the
addresses of the first and 1 ast sectors in the source fil e are
found. These are copied and saved. At this point the
destination file is created on unit DKO: •

G-15. The source file is then read and copied to the destination
fi 1 e sector by sector unt i 1 ei ther an end of fi 1 e or error
condition is detected. If an end of file condition is detected,
the output file is closed and a message is printed on the console
indicating trat no errors were detected. The program returns
control to the Monitor. If an error condition is detected, the
program retries the operation 50 times. If the error is still
present, the program then writes a message to the destination
file that will aid the user in locating the area in the file
where data is suspect.

G-16. The program then begins reading sectors backward starting
at the last sector in the file (the address was saved
previously). No sectors are written to the destination file
during this pass. Reading continues until an error condition is
detected and 50 retries are performed.

G-17. Sectors are then read forward, begi nni ng at the 1 ast
sector correctly read (in G-16, above). These sectors are
written to the destination file. Reading and copying continues
until the end of the source file is detected, at which time a
message is printed on the console indicating that errors have
been detected. The program then returrls control to the Monitor.

MOSTEI(®
· Z80. F8Covering the full

spectrum of
'38~O micrpcC?mputer
. 'I' applicatIOns.

1215 W: Crosby Rd .• Carrollton, Texas 75006·214/323-6000
In Europe, Contact: MOSTEK Brussels

150 Chaussee de la Hulpe, B1170, Belgium;
Telephone: 660.69.24

Mostek reserV!ls the right to make changes in specificatIons at any time and without notice. The information furnished by Mostek in this publication is believed
to be accurate and reliable. However. no responsibility is assumed by Mostek for its use; nor for any infringements of patents or other rights of third parties
resulting from its use. No license is granted under any patents or patent rights of Mostek.

PRINTED IN USA May 1979
Publication No. MK78557

Copyright 1979 by Mostek Corporation
All rights reserved

