MOSEL 1990 CMOS Data Book

066 l 7 SOW

MEMORIES
F $\quad 0 \quad R$

TOMORROW

MOSEL CORPORATION

1990 DATA BOOK

914 W. Maude Avenue, Sunnyvale, CA 94086
Tel. 408-733-4556 Fax. 408-773-8415 Sales Fax. 408-733-2271
Printed in U.S.A. 6/90
.

HOW TO USE THE DATA BOOK

This book has been organized by product families, beginning with general information on the company and products. The products begin with Static RAMs, then Specialty Memories, ROMs, Voice ROMs, and Cache Products. Within each section, data sheets are arranged in the order of densities except Specialty Memories and Cache Products. Application Notes and Package Diagrams then follow, and finally the MOSEL Sales Network.

LIFE SUPPORT POLICY

MOSEL products are not authorized for use as critical components in life support devices or systems without the express written approval of the president of MOSEL Corporation.

1. Life support devices or systems are devices or systems which, are intended for surgical implant into the body to support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.
[^0]
TABLE OF CONTENTS

Section 1: General Information Page
MOSEL Company Background1
Quality Assurance 2
Product Selection Guide 4
Ordering Information6
Cross Reference
Section 2: Static RAMs (Random Access Memory)
Introduction to Static RAMs
Part Number Description
MS6516 $2 \mathrm{~K} \times 8$ Static RAM 15
MS6264 $8 \mathrm{~K} \times 8$ Static RAM 22
MS6264A 8K×8 Static RAM, High Speed 29
MS6264C 8Kx8 Static RAM, Low Power 37
MS62256 32Kx8 Static RAM 45
MS62256A 32Kx8 Static RAM, High Speed 52
MS62256B 32Kx8 Static RAM 59
MS88128 128Kx8 Static RAM, Module 67
MS628128 128Kx8 Static RAM 83
MS621000 128Kx8 Low Power Static RAM 75
MS6M8512 $512 \mathrm{Kx8}$ Static RAM, Module 84
Section 3: Specialty Memories
Introduction to Specialty Memories
Part Number Description
MS6394 4K×8 Latch RAM 112
MS6395 8Kx8 Latch RAM 112
MS6397 12Kx8 Latch RAM 119
MS6398 16Kx8 Latch RAM 126
MS6130 1Kx8 Dual Port 101
MS6134 8Kx8 Dual Port 111
MS64100 32 Kx 8 Parity RAM 133
MS64101 32Kx9 High Speed Static RAM 142
MS176 256×18 Video Color Palette 89
MS177 256x 18 Video Color Palette with Power Down 100
MS7200 256x9 FIFO 150
MS7201A 512x9 FIFO 150
MS7202A 1Kx9 FIFO 150
MS7203 $2 \mathrm{Kx9} 9 \mathrm{FIFO}$ 161
MS7204 4Kx9 FIFO 161
MS72105 256x16 Parallel-to-Serial CMOS FIFO 172
MS72115 512×16 Parallel-to-Serial CMOS FIFO 172
MS72215 512×18 Parallel Synchronous FIFO 183
MS72216 512×18 Parallel Synchronous FIFO 183
MS72225 1Kx18 Parallel Synchronous FIFO 183
MS72226 1Kx18 Parallel Synchronous FIFO 183
Section 4: ROMs (Read Only Memory)
Introduction to ROMs
Part Number Description
MS310128 16Kx8 CMOS Programmable ROM 187
MS310256 32Kx8 CMOS Programmable ROM 191

TABLE OF CONTENTS (continued)

MS310512 64Kx8 CMOS Programmable ROM 195
MS311002 128Kx8 CMOS Programmable ROM 199
MS311024 128Kx8 CMOS Programmable ROM 203
MS311025 128Kx8 CMOS Programmable ROM, High Speed 207
MS311026 128Kx8 CMOS Programmable ROM, High Speed 207
MS312001 256Kx8 CMOS Programmable ROM 211
MS312002 256Kx8 CMOS Programmable ROM 215
MS314001 512Kx8 CMOS Programmable ROM 219
MS314002 512 Kx 8 CMOS Programmable ROM 223
MS314003 256Kx16 / 512Kx8 CMOS Programmable ROM 227
MS318002 1024Kx8 CMOS Programmable ROM 231
MS318003 512Kx16 / 1024Kx8 CMOS Programmable ROM 235
Section 5: Voice ROMs
Introduction to Voice ROMs
Part Number Description Page
MSS0151 1.5 second Speech Synthesizer 241
MSS0281 2.8 second Speech Synthesizer 241
MSS0301 3 second Speech Synthesizer 247
MSS0601 6 second Speech Synthesizer 255
MSS1501 15 second Speech Synthesizer 263
MSS2001 20 second Speech Synthesizer 271
Section 6: Cache Products
Introduction to Cache Products
Part Number Description
MS8202 2Kx20 Cache Tag RAM 279
MS82C308 2x2Kx16 Cache Data RAM 295
MS82C330 Cache Chipset for 80386 System with Write-Through Cache 306
MS82C331 Cache Controller 306
MS82C332 Expansion Tag RAM 306
MS82C333 Quad Data RAM 306
MS82C340 Cache Chipset for 80386 System with Write-Back Cache 308
MS82C341 Cache Controller 308
MS82C342 Expansion Tag RAM 308
MS82C343 Quad Data RAM 308
MS82C440 Cache Chipset for 80486 System 310
MS82C44 Cache Controller 310
MS82C442 Expansion Tag RAM 310
MS82C443 Burst RAM 310
Section 7: Application Notes
Using the MOSEL MS82C308 Cache Data RAM with the Intel 82385 Cache Controller 313
Section 8: Package Diagrams
Section 9: MOSEL Sales Network

Alpha - Numeric Index

Part Number Description Page
176 256x18 Video Color Palette 89
177$256 \times 18$ Video Color Palette with Power Down100
310128 128x8 CMOS Programmable ROM 187
310256 256x8 CMOS Programmable ROM 191
310512 512×8 CMOS Programmable ROM 195
311002
128Kx8 CMOS Programmable ROM 199
311024 128Kx8 CMOS Programmable ROM 203
311025 128Kx8 CMOS Programmable ROM, High Speed 207
311026 128Kx8 CMOS Programmable ROM, High Speed 207
312001
256Kx8 CMOS Programmable ROM 211
312002 256Kx8 CMOS Programmable ROM 215
314001 512Kx8 CMOS Programmable ROM 219
314002 $512 \mathrm{~K} x 8$ CMOS Programmable ROM 223
314003 256Kx16 / 512Kx8 CMOS Programmable ROM 227
318002 1024Kx8 CMOS Programmable ROM 231
318003 512 Kx 16 / 1024Kx8 CMOS Programmable ROM 235
6130 1Kx8 Dual Port 101
613462646264A
8Kx8 Dual Port 111
8Kx8 Static RAM 22
8K×8 Static RAM, High Speed 29
6264C 8Kx8 Static RAM, Low Power 37
62256 32 Kx 8 Static RAM 4562256A62256B
32K×8 Static RAM, High Speed 52
32 Kx 8 Static RAM 59
628128
128Kx8 Static RAM 83
621000 128Kx8 Low Power Static RAM 75
64100 32Kx8 Parity RAM 133
64101 32Kx9 High Speed Static RAM 142
6394 $4 \mathrm{~K} \times 8$ Latch RAM 1126395
6397
63986516
$8 \mathrm{~K} \times 8$ Latch RAM 112
12Kx8 Latch RAM 119
16Kx8 Latch RAM 126
2Kx8 Static RAM 15
$512 \mathrm{Kx8}$ Static RAM Module 84
256x9 FIFO 150
512×9 FIFO 150
1 Kx9 FIFO 150
$2 \mathrm{Kx9}$ FIFO 161
4 Kx9 FIFO 161
256x16 Parallel-to-Serial CMOS FIFO 172
512×16 Parallel-to-Serial CMOS FIFO 172
512×18 Parallel Synchronous FIFO 183
72225$51 \times 18$ Parallel Synchronous FIFO18372226$1 \mathrm{Kx18}$ Parallel Synchronous FIFO183
1Kx18 Parallel Synchronous FIFO 1838202
82C3082 Kx 20 Cache Tag RAM.279
2952x2Kx16 Cache Data RAM
82С330 Cache Chipset for 80386 System with Write-Through Cache 306
82C331
82 C 331 Cache Controller 306
82C332 Expansion Tag RAM 306

Alpha - Numeric Index (continued)

Part Number Description Page

82C340
82C341
82C342
82C343
82C440
82C441
82C442
82C443
S0151
S0281
S0301
S0601
S1501
S2001
Cache Chipset for 80386 System with Write-Back Cache .. 308
Cache Controller 308
Expansion Tag RAM 308
Quad Data RAM 308
Cache Chipset for 80486 System 310
Cache Controller 310
Expansion Tag RAM 310
Burst RAM 310
1.5 second Speech Synthesizer 241
2.8 second Speech Synthesizer 241
3 second Speech Synthesizer 247
6 second Speech Synthesizer 255
15 second Speech Synthesizer 263
20 second Speech Synthesizer 271

General Information

MOSEL COMPANY BACKGROUND

Overview

MOSEL was founded in 1983 with the mission to develop Static RAM and specialty memory products for the office automation, communications, instrumentation, and consumer products industries. The company offers a selection of standard and specialty memory products including SRAMs, ROMs, Latch RAMs, Cache Data RAMs, Video Color Palette RAMs, FIFOs, Dual Port SRAMs and Voice ROMs with additional product families scheduled for release in 1990. With product sales up 100\% in 1988 and again in 1989, the company is one of the fastest growing in the semiconductor industry.

Memories For Tomorrow

At MOSEL, we hold the view that tomorrow's memories will not be simply larger, faster versions of today's products. In the future, an entire new generation of memory product architectures will be required, the Memories For Tomorrow.

Just as ASIC (application specific) logic products have replaced standard logic devices, application specific specialty memory products will replace standard memory products in many applications. System designers are rejecting the traditional memory architectures, which impose severe limitations on system performance and/or require use of additional external logic. These designers are crying out for a whole new generation of memory products which incorporate an increasing level of functional integration.

At MOSEL, our primary mission is to pioneer new families of specialty memory solutions that overcome these limitations and provide system designers with the memory solutions for tomorrow.

Products and Technology

MOSEL's current product offerings are divided into standard CMOS SRAMs, ROMs, and Specialty Memory Products and late in 1990, MOSEL will introduce our first DRAM products.

In the CMOS SRAM area MOSEL currently offers a family of JEDEC standard slow and high speed bytewide devices ranging in density from 16 K to 256 K bits and has begun sampling a 1 megabit SRAM. These standard memory products serve as the company's technology driver, and provide a solid foundation for continued growth.

In the CMOS ROM area, MOSEL offers Programmable Mask ROMs ranging in densities from 128 K to 8 Mega bits.

The Company also offers speech synthesizer chips or Voice ROMs in various durations. Voice ROMs have a variety of applications, including toy, office automation and automotive applications.

Specialty Memory Products currently include such products as dual-port SRAMs, high-speed FIFOs (First-In, First-Out memories), Latch RAMs, Cache Data RAMs, Video RAMDACs. Planned or under development are extensions to these product families and new families including Cache Controllers, Quad DataRAMS, Cache Tag RAMs and parity RAMs.

MOSEL has to date, successfully introduced 4 generations of CMOS memory technology (2.0, 1.5, 1.2, and $1.0 \mathrm{mi}-$ cron). Under development, the company has sub-micron CMOS and BiCMOS processes. A strong technology integration team provides highly manufacturable, low-cost production processes.

Manufacturing

MOSEL has entered into strategic alliances with several established semiconductor companies. The company has licensed proprietary process technology to these partners, and then contracted with them for manufacturing services. This strategy gives MOSEL access to nearly $\$ 1$ billion in manufacturing facilities, providing high volume manufacturing capability, fast growth rates and a dependable source of supply for its customers, while allowing MOSEL to focus its initial investments on product and process development. Through the use of these strategic alliances, MOSEL has achieved its initial sales and profitability goals.

In 1990, MOSEL will break ground on its own \$100,000,000 fab line which will be built in Hsin-Chu Science Industrial Park, Taiwan. This facility is scheduled for production beginning 1991. This fab line will significantly enhance the company's market position by allowing for greatly reduced process and product development cycles. It will also permit for the introduction of new product features which depend upon proprietary process enhancements. MOSEL will continue to rely on strategic partnerships to supply high volume production requirements.

QUALITY \& RELIABILITY ASSURANCE POLICY

MOSEL maintains the highest standards for the integrity of its product line. Each product is subjected to the most stringent quality and reliability screening beginning with initial product design.

Product quality and reliability are achieved by implementing a "Total Consideration" philosophy from inception through production.
This "Total Consideration" philosophy consists of:

- Reliability being built into every design;
- Quality being built into every process step;
- Stringent inspection after critical process steps and the final product and;
- Careful analysis of field data to further enhance the overall quality and reliability

Product flow and test procedures correspond to MIL-STD-833 or are in accordance with standard industry practices for the manufacture and test of high quality micro circuits (see Table I).

NEW PRODUCT ACCEPTANCE

Product reliability begins with design. At MOSEL, conformance to process design rules ensures adequate circuit margins and ease of manufacture. Simulation results are carefully reviewed before the design is committed to masking.

Upon receipt of "first silicon", the design is completely characterized to insure parametric distribution during manufacturing.

Once the design is proven, MOSEL imposes a New Product Qualification Test procedure on each new product to verify the design, process and packaging procedures (see Table II).

RELIABILITY MONITOR PROGRAM

After the product is transferred to production, the Reliability Monitor Program provides for periodic testing to insure that all MOSEL products comply with estab-
lished reliability levels. This program monitors specific product and process families and requires detailed failure analysis for reliability improvement and/or corrective action as indicated by the analysis results (see Table III).

VENDOR CERTIFICATION

Vendors to MOSEL take ownership of the products and services they supply. Certification begins with a Plant Survey of the quality and reliability procedures and practices. Each supplier then performs to his internal procedures and QRA program with periodic on-site reviews by MOSEL. Internal data is forwarded to MOSEL as required for review.

SUMMARY

You, the customer, are invited to review the total QRA program at MOSEL. We are happy to answer any questions you may have.

Quality \& Reliability Assurance Policy

TABLE I PRODUCT SCREENING FLOWS

SCREEN	MIL-STD-883 METHOD	PLASTIC PACKAGE (1)
Internal visual	2010	0.4% AQC
Burn-in Pre-burn-in electrical Burn-in	$25^{\circ} \mathrm{C}$ and power supply extreme Per device specification	100%
Final Electrical		100%
Functional, switching, dynamic (AC) and	(1) at $25^{\circ} \mathrm{C}$ and power supply extreme	
static (DC) test	(2) at temperature and power supply extremes	100%
MOSEL Quality Lot Acceptance		100%
External visual	Per device specification	0.65% AQL
Final electrical conformance	0.1% AQL	

TABLE II NEW PRODUCT QUALIFICATION TEST

TEST	$\begin{gathered} \text { MIL-STD-883 } \\ \text { METHOD } \\ \hline \end{gathered}$	CONDITIONS	LTPD	$\begin{gathered} \text { Periodicity } \\ \text { (Max.) } \\ \hline \end{gathered}$
High temperature operation life test	1005	$\mathrm{Ta}=125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ cond. $\mathrm{D}, 1000 \mathrm{hrs}$.	5	consecutive 3 lots
Steady State Life Test	1005	$\mathrm{Ta}=125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ cond. $\mathrm{D}, 1000 \mathrm{hrs}$.	5	$\begin{gathered} \text { consecutive } \\ 3 \text { lots } \\ \hline \end{gathered}$
Pressure pot		$121^{\circ} \mathrm{C}, 15 \mathrm{psi}, 100 \% 216 \mathrm{hrs}$.	7	consecutive 3 lots
Humidity with Bias		$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}, 85^{\circ} \mathrm{C} / 85 \% \mathrm{RH}, 5$ Static	7	consecutive 3 lots
External visual examination	2009		15	
Physical Dimension	2016		15	
Lead Fatigue	2004	Cond. B2	10	
Temperature Cycling	1010	Cond. C $50,100,200 \text { cycles }$	5	$\begin{gathered} \text { consecutive } \\ 3 \text { lots } \\ \hline \end{gathered}$
Thermal Shock	1011	Cond. C 50, 100, 200 cycles	5	$\begin{gathered} \text { consecutive } \\ 3 \text { lots } \\ \hline \end{gathered}$
ESD sensitivity	3015	1000 V	15	
Solderability	2003	Temp. $260^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}$	15	

TABLE III RELIABILITY MONITOR TEST

TEST	MIL-STD-883 METHOD	CONDITIONS	LTPD
Temperature Cycling	1010	$-65^{\circ} \mathrm{C} \mathrm{to}+150^{\circ} \mathrm{C}$ Air to Air No Bias, 200 cycles	7
Humidity	$85^{\circ} \mathrm{C} / 85 \% \mathrm{RH}$ 5.5 V Static 1000 HRS	7	
Operating Life	1005	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$, $V_{\mathrm{CC}}=5.5 \mathrm{~V}$ Dynamic	$121^{\circ} \mathrm{C}, 100 \% \mathrm{RH}$ 15 PSIG
Pressure Cooker			7

[^1]
PRODUCT SELECTION GUIDE

	Density	Part Number	Speed(s)	$\begin{array}{c\|} \hline \text { Icc } \\ \text { Max. } \mathrm{mA} \end{array}$	$\begin{gathered} \text { Iccsb } \\ \text { Max. } \mathrm{mA} \end{gathered}$	Package*
Static RAM s	$2 \mathrm{~K} \times 8$	MS6516	90, 100, 120 ns	70	2	P, S
	$8 \mathrm{~K} \times 8$	MS6264A	$45,55 \mathrm{~ns}$	100	15	N, P, S
	$8 \mathrm{~K} \times 8$	MS6264C	80, 100, 150 ns	60	2	F, N, P
	$8 \mathrm{~K} \times 8$	MS6264	70, 100 ns	85	3	F, P
	$32 \mathrm{~K} \times 8$	MS62256A	25, 35, 45, 55 ns	120	20	P
	$32 \mathrm{~K} \times 8$	MS62256B	70, 100, 120,	60	1	F, N, P
			150 ns			
	$32 \mathrm{~K} \times 8$	MS62256	70, 85, 100 ns	85	15	F, P
	$128 \mathrm{~K} \times 8$	MS88128	$100,120 \mathrm{~ns}$	95	15	Module
	128K x 8	MS621000	80, 100, 120 ns	80	3	F, P
	$512 \mathrm{Kx8}$	MS6M8512	$85,100,120 \mathrm{~ns}$	-	0.5	Module
Cache Data RAM Cache Tag RAM Dual Port Video Color Palette	$2 \times 2 \mathrm{~K} \times 16$	MS82C308	35, 45, 55 ns	150		J
	$2 \mathrm{~K} \times 20$	MS8202	20, 22, 25 ns			J
	$1 \mathrm{~K} \times 8$	MS6130	70, 90	120	0.01	D, P
	256×18	MS176	$40,50 \mathrm{MHz}$	180		J, P
	256×18	MS177	$40,50 \mathrm{MHz}$	180	2	J
Latch RAM	$8 \mathrm{~K} \times 8$	MS6395	45, 70, 100 ns	90	3	F, P
	$12 \mathrm{~K} \times 8$	MS6397	$45,70,100 \mathrm{~ns}$	90	3	F, P
	$16 \mathrm{~K} \times 8$	MS6398	45, 70, 100 ns	90	3	F, P
Parity RAM	$32 \mathrm{~K} \times 9$	MS64100	25, 35 ns	130/110	25	
	$32 \mathrm{~K} \times 9$	MS64101	25, 35 ns	130/110	25	
FIFOs	256×9	MS7200	25, $35,50,80 \mathrm{~ns}$	80	0.5	F, J, N, P
	512×9	MS7201A	$25,35,50,80 \mathrm{~ns}$	80	0.5	F, J, N, P
	1024×9	MS7202A	$25,35,50,80 \mathrm{~ns}$	80	0.5	$\mathrm{F}, \mathrm{~J}, \mathrm{~N}, \mathrm{P}$
	2048×9	MS7203	35, $50,80 \mathrm{~ns}$	125	2	F, J, N, P
	4096×9	MS7204	$35,50,80 \mathrm{~ns}$	125	2	F, J, N, P
	256×16	MS72105	25, $50,80 \mathrm{~ns}$	80	0.5	F, N
	512×16	MS72115	25,50,80 ns	80	0.5	F, N

D $=600$ mil Sidebraze
P = 600 mil PDIP
$\mathrm{F}=330 \mathrm{mil} \mathrm{SOG}$
$\mathrm{J}=\mathrm{PLCC}$
$\mathrm{N}=300 \mathrm{mil}$ PDIP
$\mathrm{S}=300 \mathrm{mil} \mathrm{SOG}$
X $=$ Die

PRODUCT SELECTION GUIDE (Continued)

	Density Duration	Part Number	Speed(s)	$\begin{gathered} \text { Icc } \\ \text { Max. } \mathrm{mA} \end{gathered}$	Iccsb Max. mA	Package*
ROMs	$16 \mathrm{~K} \times 8$	MS310128	150 ns	30		P
	$32 \mathrm{~K} \times 8$	MS310256	150 ns	30		P
	$64 \mathrm{~K} \times 8$	MS310512	150 ns	30		P
	$128 \mathrm{~K} \times 8$	MS311002	150, 200 ns	40	3	
	$128 \mathrm{~K} \times 8$	MS311024	150, 200 ns	40		P
	$128 \mathrm{~K} \times 8$	MS311025	100, 120, 150 ns	40	1.5	P
	$128 \mathrm{~K} \times 8$	MS311026	100, 120, 150 ns	40	1.5	P
	256K x 8	MS312001	150, 200 ns	40	1.5	P
	256K x 8	MS312002	200 ns	40	3	P
	$512 \mathrm{~K} \times 8$	MS314001	120, 150 ns	40	1.5	P
	$512 \mathrm{~K} \times 8$	MS314002	250 ns	50	3	P
	$\begin{aligned} & 256 \mathrm{~K} \times 16 / \\ & 512 \mathrm{~K} \times 8 \end{aligned}$	MS314003	$250 \mathrm{~ns}$	50	3	P
	1024K x 8	MS318002	200 ns	50	1	P, Q
	$\begin{aligned} & 512 \mathrm{~K} \times 16 / \\ & 1024 \mathrm{~K} \times 8 \end{aligned}$	MS318003	200 ns	50	1	P
Voice ROMs	1.5 sec	MSS0151				X
	2.8 sec	MSS0281				X
	3 sec	MSS0301				X
	6 sec	MSS0601				X
	15 sec	MSS1501				X
	20 sec	MSS2001				X

[^2]
ORDERING INFORMATION

MOSEL's ordering code number identifies the basic product, power, speed, package(s) available, operating temperature and processing method. The ordering code number is comprised of a series of alpha-numeric characters. Please refer to the following example:

Example:

(1) "MS" is the corporate identifier for MOS Electronic Corporation .
(2) Part number consists of maximum 6 alpha-numeric characters.
(3) A device power identifier. It is represented by "S" or blank as standard power consumption; or "L" as low power consumption.
(4) A device speed identifier. Its unit is either in nanoseconds or megahertz.
(5) Package types and codes:

N	-	P DIP 300 mil
P	-	P DIP 600 mil
T	-	Cer DIP 300 mil
D	-	Cer DIP 600 mil
L	-	LCC
J	-	PLCC
S	-	SOJ/SOG 300 mil
F	-	SOG 330 mil
Q	-	Quad Flatpack
X	-	Unpackaged Die
Y	-	Waffle Pack
Z	-	Plastic Zig-Zag In-Line

(6) Temperature Ranges:

C	$=$	Commercial	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
L	$=$	Limited	$-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
I	$=$	Industrial	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
M	$=$	Military	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

(7) Processing method identifier. The use of this code is optional.

SRAM CROSS REFERENCE

DEVICE	MANUFACTURER	PART NUMBER	MOSEL PART NO.	DEVICE	MANUFACTURER	PART NUMBER	MOSEL PART NO.
$2 \mathrm{~K} \times 8$	Fujitsu Goldstar Hitachi Hitachi Hyundai IDT NEC RCA SGS Thomson Toshiba Toshiba Toshiba UMC Winbond	MB8416 GM76C28 HM6116 HM6216 HY6116 IDT6116 uPD446 CDM6116 MK48T02B TC5517 TMM2016 TMM2018 UM6116 W2416	MS6516 MS6516	32K $\times 8$	Fujitsu Hitachi IDT Inova Mitsubishi Motorola NEC Samsung Sharp SMOS Sony Toshiba Toshiba Winbond	MB84256 HM62256 IDT71256 S32K8 M5M5256 MCM60L256 μ PD43256 KM62256 LH52256 SRM20256 CXK58257 TC55256 TC55257 W24256	MS62256 MS62256
$8 \mathrm{~K} \times 8$	Asahi Fujitsu Hitachi Hyundai IDT IDT IDT Micron Mitsubishi Mitsubishi Mitsubishi Motorola Motorola NEC NEC Samsung SGS Thomson SGS Thomson Sharp SMOS Sony Sony Toshiba UMC Winbond	AKM6264 MB8464 HM6264 HY6264 IDT7165 IDT7C165 IDT7164 MT5C6408 M5M5165 M5M5178 M5M6165 MCM6064 MCM6164 μ PD4364 μ PD4464 KM6264 MK48H65 MK48H74 LH5164 SRM2064 CXK5864 CXX5863 TC5563 TC5564 TC5565 TC5588 TMM2063 TMM2064 TMM2088 TMM2089 UM6264 W2464	MS6264 MS6264 MS6264 MS6264 MS6264A MS6264A MS6264A MS6264A MS6264 MS6264 MS6264 MS6264 MS6264A MS6264 MS6264 MS6264 MS6264A MS6264A MS6264				

FIFO CROSS REFERENCE

AMD	MOSEL	AM7203-80JC	7203-80JC
AM7200-25PC	7200-25PC	AM7204-35PC	$7204-35 \mathrm{PC}$
AM7200-35PC	7200-35PC	AM7204-50PC	7204-50PC
AM7200-50PC	7200-50PC	AM7204-60PC	7204-50PC
AM7200-65PC	$7200-50 \mathrm{PC}$	AM7204-120PC	7204-80PC
AM7200-80PC	$7200-80 \mathrm{PC}$	AM7204-35JC	7204-35JC
AM7200-25JC	7200-25JC	AM7204-50JC	7204-50JC
AM7200-35JC	7200-35JC	AM7204-65JC	7204-50JC
AM7200-50JC	7200-50JC	AM7204-80JC	7204-80JC
AM7200-65JC	7200-50JC	AM7204-120JC	7204-80JC
AM7200-80JC	$7200-80 \mathrm{JC}$		MOSEL
AM7200-25RC	$7200-25 \mathrm{NC}$	CYPRESS	MOSEL
AM7200-35RC	7200-35NC	CY7C420-30PC	7201A-25PC
AM7200-50RC	7200-50NC	CY7C420-40PC	7201A-35PC
AM7200-65RC	7200-50NC	CY7C420-65PC	7201A-50PC
AM7200-80RC	7200-80NC	CY7C421-30PC	7201A-25NC
AM7201-25PC	7201A-25PC	CY7C421-40PC	7201A-35NC
AM7201-35PC	7201A-35PC	CY7C421-65PC	7201A-50NC
AM7201-50PC	7201A-50PC	CY7C421-30JC	7201A-25JC
AM7201-65PC	7201A-50PC	CY7C421-40JC	7201A-35JC
AM7201-80PC	7201A-80PC	CY7C421-65JC	7201A-50JC
AM7201-25JC	7201A-25JC	CY7C424-30PC	7202A-25PC
AM7201-35JC	7201A-35JC	CY7C424-40PC	7202A-35PC
AM7201-50JC	7201A-50JC	CY7C424-65PC	7202A-50PC
AM7201-65JC	7201A-50JC	CY7C425-30PC	7202A-25NC
AM7201-80JC	7201A-80JC	CY7C425-40PC	7202A-35NC
AM7201-25RC	7201A-25NC	CY7C425-65PC	7202A-50NC
AM7201-50RC	7201A-35NC	CY7C425-30JC	7202A-25JC
AM7201-65RC	7201A-50NC	CY7C425-40JC	7202A-35JC
AM7201-80RC	7201A-80NC	CY7C425-65JC	7202A-50JC
AM7202-25PC	7202A-25PC	CY7C428-40PC	7203-35PC
AM7202-35PC	7202A-35PC	CY7C429-40PC	7203-50PC
AM7202-50PC	7202A-50PC	CY7C429-65PC	$7203-50 \mathrm{NC}$
AM7202-65PC	7202A-50PC	CY7C429-40JC	7203-35JC
AM7202-80PC	7202A-80PC $7202 \mathrm{~A}-25 \mathrm{JC}$	CY7C429-65JC	7203-50JC
AM7202-35JC	7202A-35JC	DALLAS	MOSEL
AM7202-50JC	7202A-50JC	DS2009-35	7201A-35PC
AM7202-65JC	7202A-50JC	DS2009-50	7201A-50PC
AM7202-80JC	7202A-80JC	DS2009-65	7201A-50PC
AM7202-25RC	7202A-25NC	DS2009-80	7201A-80PC
AM7202-35RC	7202A-35NC	DS2009R-35	7201A-35JC
AM7202-50RC	7202A-50NC	DS2009R-50	7201A-50JC
AM7202-65RC	7202A-50NC	DS2009R-65	7201A-50JC
AM7202-80RC	7202A-80NC	DS2009R-80	7201A-80JC
AM7203-35PC	$7203-35 \mathrm{PC}$	DS2010-35	7202A-35PC
AM7203-50PC	$7203-50 \mathrm{PC}$	DS2010-50	7202A-50PC
AM7203-65PC	$7203-50 \mathrm{PC}$	DS2010-65	7202A-50PC
AM7203-80PC	$7203-80 \mathrm{PC}$	DS2010-80	7202A-80PC
AM7203-35JC	7203-35JC	DS2010R-35	7202A-35JC
AM7203-50JC	7203-50JC	DS2010R-50	7202A-50JC
AM7203-65JC	7203-50JC		

FIFO CROSS REFERENCE

DS2010R-65	7202A-50JC	IDT7201LA35P	7201AL-35PC
DS2010R-80	7202A-80JC	IDT7201LA50P	7201AL-50PC
DS2011-35	7203A-35PC	IDT7201LA65P	7201AL-50PC
DS2011-50	7203A-50PC	IDT7201LA80P	7201AL-80JC
DS2011-65	7203A-50PC	IDT7201LA120P	7201AL-80JC
DS2011-80	7203A-80PC	IDT7201LA25TP	7201AL-25NC
DS2011R-35	7203A-35JC	IDT7201LA35TP	7201AL-35NC
DS2011R-50	7203A-50JC	IDT7201LA50TP	7201AL-50NC
DS2011R-65	7203A-50JC	IDT7201LA65TP	7201AL-50NC
DS2011R-80	7203A-80JC	IDT7201LA80TP	7201AL-80NC
IDT	MOSEL	IDT7201LA120TP	7201AL-80NC
IDT7200L25TP	7200L-25NC	IDT7201LA35J	7201AL-35JC
IDT7200L35TP	7200L-35NC	IDT7201LA50J	7201AL-50JC
IDT7200L50TP	7200L-50NC	IDT7201LA65J	7201AL-50JC
IDT7200L65TP	7200L-50NC	IDT7201LA80J	7201AL-80JC
IDT7200L80TP	7200L-80NC	IDT7201LA120J	7201AL-80JC
IDT7200L120TP	7200L-80NC	IDT7201LA25SO	7201AL-25FC
IDT7200L25J	7200L-25JC	IDT7201LA35SO	7201AL-35FC
IDT7200L35J	7200L-35JC	IDT7201LA50SO	7201AL-50FC
IDT7200L50J	7200L-50JC	IDT7201LA65SO	7201AL-50FC
IDT7200L65J	7200L-50JC	IDT7201LA80SO	7201AL-80FC
IDT7200L80J	7200L-80JC	IDT7201LA120SO	7201 AL-80FC
IDT7200L120J	7200L-80JC	IDT7201S50P	7201A-50PC
IDT7200L25SO	7200L-25FC	IDT7201S65P	7201A-50PC
IDT7200L35SO	7200L-35FC	IDT7201S80P	7201A-80PC
IDT7200L50SO	7200L-50FC	IDT7201S120P	7201A-80PC
IDT7200L65SO	7200L-50FC	IDT7201S50J	7201A-50JC
IDT7200L80SO	7200L-80FC	IDT7201S65J	7201A-50JC
IDT7200L120SO	7200L-80FC	IDT7201S80J	7201A-80JC
IDT7200S25TP	$7200-25 N C$	IDT7201S120J	7201A-80JC
IDT7200S35TP	$7200-35 N C$	IDT7201SA25P	7201A-25PC
IDT7200S50TP	7200-50NC	IDT7201SA35P	7201A-35PC
IDT7200S65TP	$7200-50 \mathrm{NC}$	IDT7201SA50P	7201A-50PC
IDT7200S80TP	$7200-80 \mathrm{NC}$	IDT7201SA65P	7201A-50PC
IDT7200S120TP	$7200-80 \mathrm{NC}$	IDT7201SA80P	7201A-80PC
IDT7200S25J	7200-25JC	IDT7201SA120P	7201A-80PC
IDT7200S35J	7200-35JC	IDT7201SA25TP	7201A-25NC
IDT7200S50J	7200-50JC	IDT7201SA35TP	7201A-35NC
IDT7200S65J	7200-50JC	IDT7201SA50TP	7201A-50NC
IDT7200S80J	7200-80JC	IDT7201SA65TP	7201A-50NC
IDT7200S120J	7200-80JC	IDT7201SA80TP	7201A-80NC
IDT7200S25SO	7200-25FC	IDT7201SA120TP	7201A-80NC
IDT7200S35SO	7200-35FC	IDT7201SA25J	7201A-25JC
IDT7200S50SO	7200-50FC	IDT7201SA35J	7201A-35JC
IDT7200S65SO	7200-50FC	IDT7201SA50J	7201A-50JC
IDT7200S80SO	7200-80FC	IDT7201SA65J	7201A-50JC
IDT7200S120SO	7200-80FC	IDT7201SA80J	7201A-80JC
IDT7201L50P	7201AL-50PC	IDT7201SA120J	7201A-80JC
IDT7201L65P	7201AL-50PC	IDT7201SA25SO	7201A-25FC
IDT7201L80P	7201AL-80PC	IDT7201SA35SO	7201A-35FC
IDT7201L120P	7201AL-80PC	IDT7201SA50SO	7201A-50FC
IDT7201L50J	7201AL-50JC	IDT7201SA65SO	7201A-50FC
IDT7201L65J	7201AL-50JC	IDT7201SA80SO	7201A-80FC
IDT7201L80J	7201AL-80JC	IDT7201SA120SO	7201A-80FC
IDT7201L120J	7201AL-80JC	IDT7202L50P	7202AL-50PC
IDT7201LA25P	7201AL-25PC	IDT7202L65P	7202AL-50PC

FIFO CROSS REFERENCE

IDT7202L80P	7202AL-80PC	IDT7202SA35SO	7202A-35FC
IDT7202L120P	7202AL-80PC	IDT7202SA50SO	7202A-50FC
IDT7202L50J	7202AL-50JC	IDT7202SA65SO	7202A-50FC
IDT7202L65J	7202AL-50JC	IDT7202SA80SO	7202A-80FC
IDT7202L80J	7202AL-80JC	IDT7202SA120SO	7202A-80FC
IDT7202L120J	7202AL-80JC	IDT7203L35P	7203L-35PC
IDT7202LA25P	7202AL-25PC	IDT7203L50P	7203L-50PC
IDT7202LA35P	7202AL-35PC	IDT7203L65P	7203L-50PC
IDT7202LA50P	7202AL-50PC	IDT7203L80P	7203L-80PC
IDT7202LA65P	7202AL-50PC	IDT7203L120P	7203L-80PC
IDT7202LA80P	7202AL-80PC	IDT7203L35J	7203L-35JC
IDT7202LA120P	7201AL-80PC	IDT7203L50J	7203L-50JC
IDT7202LA25TP	7202AL-25NC	IDT7203L65J	7203L-50JC
IDT7202LA35TP	7202AL-35NC	IDT7203L80J	7203L-80JC
IDT7202LA50TP	7202AL-50NC	IDT7203L120J	7203L-80JC
IDT7202LA65TP	7202AL-50NC	IDT7203S35P	7203-35PC
IDT7202LA80TP	7202AL-80NC	IDT7203S50P	7203-50PC
IDT7202LA120TP	7202AL-80NC	IDT7203S65P	7203-50PC
IDT7202LA25J	7202AL-25JC	IDT7203S80P	7203-80PC
IDT7202LA35J	7202AL-35JC	IDT7203S120P	7203-80PC
IDT7202LA50J	7202AL-50JC	IDT7203S35J	7203-35JC
IDT7202LA65J	7202AL-50JC	IDT7203S50J	7203-50JC
IDT7202LA80J	7202AL-80JC	IDT7203S65J	7203-50JC
IDT7202LA120J	7202AL-80JC	IDT7203S80J	7203-80JC
IDT7202LA25SO	7202AL-25FC	IDT7203S120J	7203-80JC
IDT7202LA35SO	7202AL-35FC	IDT7204L35P	7204L-35PC
IDT7202LA50SO	7202AL-50FC	IDT7204L50P	7204L-50PC
IDT7202LA65SO	7202AL-50FC	IDT7204L65P	7204L-50PC
IDT7202LA80SO	7202AL-80FC	IDT7204L80P	7204L-80PC
IDT7202LA120SO	7202AL-80FC	IDT7204L120P	7204L-80PC
IDT7202S50P	7202A-50PC	IDT7204L35J	7204L-35JC
IDT7202S65P	7202A-50PC	IDT7204L50J	7204L-50JC
IDT7202S80P	7202A-80PC	IDT7204L65J	7204L-50JC
IDT7202S120P	7202A-80PC	IDT7204L80J	7204L-80JC
IDT7202S50J	7202A-50JC	IDT7204L120J	7204L-80JC
IDT7202S65J	7202A-50JC	IDT7204S35P	7204-35PC
IDT7202S80J	7202A-80JC	IDT7204S50P	7204-50PC
IDT7201S120J	7202A-80JC	IDT7204S65P	7204-50PC
IDT7202SA25P	7202A-25PC	IDT7204S80P	7204-80PC
IDT7202SA35P	7202A-35PC	IDT7204S120P	7204-80PC
IDT7202SA50P	7202A-50PC	IDT7204S35J	7204-35JC
IDT7202SA65P	7202A-50PC	IDT7204S50J	7204-50JC
IDT7202SA80P	7202A-80PC	IDT7204S65J	7204-50JC
IDT7202SA120P	7202A-80PC	IDT7204S80J	7204-80JC
IDT7202SA25TP	7202A-25NC	IDT7204S120J	7204-80JC
IDT7202SA35TP	7202A-35NC	IDT72105L50TP	72105-50NC
IDT7202SA50TP	7202A-50NC	IDT72105L80TP	72105-80NC
IDT7202SA65TP	7202A-50NC	IDT72105L120TP	72105-80NC
IDT7202SA80TP	7202A-80NC	IDT72105L50SO	72105-50FC
IDT7202SA120TP	7202A-80NC	IDT72105L80SO	72105-80FC
IDT7202SA25J	7202A-25JC	IDT72105L120SO	72105-80FC
IDT7202SA35J	7202A-35JC	IDT72105L50J	72105-50JC
IDT7202SA50J	7202A-50JC	IDT72105L80J	72105-80JC
IDT7202SA65J	7202A-50JC	IDT72105L120J	72105-80JC
IDT7202SA80J	7202A-80JC	IDT72115L50TP	72115-50NC
IDT7202SA120J	7202A-80JC	IDT72115L80TP	72115-80NC
IDT7202SA25SO	7202A-25FC	IDT72115L120TP	72115-80NC

FIFO CROSS REFERENCE

IDT72115L50SO IDT72115L80SO IDT72115L120SO IDT72115L50J IDT72115L80J IDT72115L120J	$\begin{array}{\|l} \hline 72115-50 \mathrm{FC} \\ 72115-80 \mathrm{FC} \\ 72115-80 \mathrm{FC} \\ 72115-50 \mathrm{JC} \\ 72115-80 \mathrm{JC} \\ 72115-80 \mathrm{JC} \\ \hline \end{array}$	LH5497D-35 LH5497D-50 LH5498-35 LH5498-50 LH5498D-35 LH5498D-50	7202A-35NC 7202A-50NC 7203-35PC 7203-50PC 7203-35NC 7203-50NC
MOSTEK	MOSEL	TI	MOSEL
MK4501-10N MK4501-12N MK4501-15N MK4501-20N	$\begin{aligned} & \text { 7201A-80PC } \\ & 7201 \mathrm{~A}-80 \mathrm{PC} \\ & 7201 \mathrm{~A}-80 \mathrm{PC} \\ & 7201 \mathrm{~A}-80 \mathrm{PC} \end{aligned}$	SN74ACT7201A-35N SN74ACT7201A-50N SN74ACT7202-35N SN74ACT7202-50N	7201AL-35PC 7201AL-50PC 7202AL-35PC 7202AL-50PC
MK4501-65N MK4501-80N	$\begin{aligned} & 7201 \mathrm{~A}-50 \mathrm{PC} \\ & 7201 \mathrm{~A}-80 \mathrm{PC} \end{aligned}$	DUAL PORTS CROSS REFERENCE	
MK4503-10N	7203A-80PC	IDT	MOSEL
MK4503-15N MK4503-20N MK4503-65N MK4503-80N	$\begin{aligned} & \text { 7203A-80PC } \\ & \text { 7203A-80PC } \\ & \text { 7203A-50PC } \\ & \text { 7203A-80PC } \end{aligned}$	IDT7130LA55P IDT7130LA70P IDT7130LA90P IDT7130SA55P	$\begin{aligned} & \text { 6130L-55PC } \\ & 6130 \mathrm{~L}-70 \mathrm{PC} \\ & 6130 \mathrm{~L}-90 \mathrm{PC} \\ & 6130 \mathrm{~L}-55 \mathrm{PC} \end{aligned}$
SAMSUNG	MOSEL	IDT7130SA90P	$\begin{aligned} & 6130 \mathrm{~L}-70 \mathrm{PC} \\ & 6130 \mathrm{~L}-90 \mathrm{PC} \end{aligned}$
KM75C01AP-25 KM75C01AP-35 KM75C01AP-80 KM75C01AJ-25 KM75C01AJ-35 KM75C01AJ-80 KM75C01AN-25 KM75C01AN-35 KM75C01AN-80 KM75C02AP-25 KM75C02AP-35 KM75C02AP-80 KM75C02AJ-25 KM75C02AJ-35 KM75C02AJ-80 KM75C02AN-25 KM75C02AN-35 KM75C02AN-80 KM75C03AP-35 KM75C03AP-80 KM75C03AJ-35 KM75C03AJ-80 KM75C03AN-35 KM75C03AN-80	7201A-25PC 7201A-35PC 7201A-80PC 7201A-25JC 7201A-35JC 7201A-80JC 7201A-25NC 7201A-35NC 7201A-80NC 7202A-25PC 7202A-35PC 7202A-80PC 7202A-25JC 7202A-35JC 7202A-80JC 7202A-25NC 7202A-35NC 7202A-80NC 7203A-35PC 7203A-80PC 7203A-35JC 7203A-80JC 7203A-35NC 7203A-80NC		
SHARP	MOSEL		
LH5495D-25 LH5495D-35 LH5495D-45 LH5496-35 LH5496-50 LH5496D-35 LH5496D-50 LH5497-35 LH5497-50	7200-25NC 7200-35NC 7200-35NC 7201A-35PC 7201A-50PC 7201A-35NC 7201A-50NC 7202A-35PC 7202A-50PC		

BYTEWIDE STATIC RAMS

MOSEL has developed a broad line of slow and fast bytewide static RAMs from 16 K bits to 4 megabits, including monolithic products at $16 \mathrm{~K}, 64 \mathrm{~K}, 256 \mathrm{~K}$ and 1 megabit (sampling) and module products at 1 megabit and 4 megabits. SRAM products are offered in JEDEC standard plastic dip and/or plastic surface mount packages.

PRODUCTION PRODUCTS

At the 256 K density, MOSEL offers the $32 \mathrm{~K} \times 8$ MS62256L, MS62256AL and the MS62256BL products, with speeds of $45,55,70,85$ and 100 ns available today in the 600 mil dip and 330 SOG packages. Future product enhancements are planned for 1991 to provide faster speeds (15 to 25 ns), lower power, additional package options including the 300 mil dip package, and reduced costs.

At the 64 K density, Mosel offers the $8 \mathrm{~K} \times 8$ MS6264L, MS6264AL and MS6264CL products with speeds of 45, $55,70,85$ and 100 ns available today in the 300 mil DIP (45-70ns only), 600 mil DIP and 330 SOIC package. Future product enhancements are planned for 1991 to provide faster speeds (15 to 25ns) and to reduce power consumption.
At the 16 K density, the $2 \mathrm{~K} \times 8 \mathrm{MS} 6516$ is offered at 100 ns speed in the 600 mil dip package. Future product enhancements are planned to reduce the active power and to offer surface mount of 300 mil dip packages.

DEVELOPMENT PRODUCTS

MOSEL has successfully developed and has recently begun sampling the MS621000 monolithic 1 megabit $128 \mathrm{~K} \times 8$ SRAM, with speeds of 80 to 100 ns . Production release is scheduled for late 1990. Also under development are higher speed 1 megabit devices (20 to 25 ns) and the 4 megabit $512 \mathrm{~K} \times 8$ SRAM.

MODULE PRODUCTS

In module form, MOSEL, offers the MS88128 128K x 8 and has recently begun sampling the MS6M8512 512K x 8 SRAM module. These JEDEC pin out devices provide a prototype and pilot production vehicle for designers who want to use future generation density products today.

SRAM TECHNOLOGY

Since 1983, MOSEL has developed and transferred to production 4 generations of CMOS SRAM technology at $2.0,1.5,1.2$ and 1.0 micron geometries. Currently, 0.8 and 0.55 micron technologies are under development. During this time period, the size of the SRAM memory cell has been reduced from 815 square microns at 2 micron geometry, to 70 at 1 micron and on to 19 at 0.55 micron, a 40 fold reduction. These technology advances have permitted product density to increase from 16 K at 2 micron to 1 megabit at 1 micron and on to 4 Megabits at 0.55 microns. Meanwhile, product access times have been reduced from 70 ns at 2 micron, to 20 ns at 1 micron and on to 10 ns at 0.55 micron.

SUMMARY

MOSEL is committed to continue to build our bytewide static RAM product offering and advance our SRAM manufacturing technology. This includes plans to strengthen our support of older products such as the slow speed 16K $2 \mathrm{~K} \times 8$, $64 \mathrm{~K} 8 \mathrm{~K} x 8$ and $256 \mathrm{~K} 32 \mathrm{~K} \times 8$ SRAMs by redesigning using 1 megabit 0.8 micron technology which cuts costs, improve product specifications and extends product life. It also includes plans to increase density of our products to 1 and 4 megabits and to improve performance of existing products.
If you are interested in more information about our SRAM products, please contact your local MOSEL sales representative or franchised distributors listed in this book.

2K x 8 CMOS Static RAM

FEATURES

- Available in 100 and 120 ns (Max.) versions
- Automatic power-down when chip disabled
- Low power consumption (L-version):
- 385mW (Max.) Operating
- 11 mW (Max.) Standby
$-275 \mu \mathrm{~W}$ (Max.) Power-down
- TTL compatible interface levels
- Single 5V power supply
- Fully static operation
- Three state outputs
- Chip enable for simple memory expansion
- Data retention as low as 2 V

DESCRIPTION

The MOSEL MS6516 is a high performance, low power CMOS static RAM organized as 2048 words by 8 bits. The device supports easy memory expansion with an active LOW chip enable ($\overline{\mathrm{E}}$) as well as an active LOW output enable $(\overline{\mathrm{G}})$ and three-state outputs. An automatic powerdown feature is included which reduces the chip power by 85% in TTL standby mode, and by over 99% in full powerdown mode.

The device is manufactured in MOSEL's high performance CMOS process and operates from a single 5 V power supply. All inputs and outputs are TTL compatible. Data is retained to as low as $\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}$.
The MOSEL MS6516 is available in the JEDEC standard 24 pin 600 mil wide DIP and small outline package.

FUNCTIONAL BLOCK DIAGRAM

PIN DESCRIPTIONS

$A_{0}-A_{10} \quad$ Address Inputs
These 11 address inputs select one of the 2048 8-bit words in the RAM.

$\bar{E} \quad$ Chip Enable Input

$\overline{\mathrm{E}}$ is active LOW. The chip enable must be active to read from or write to the device. If it is not active, the device is deselected and is in a standby power mode. The DQ pins will be in the high-impedance state when deselected.

$\overline{\mathbf{G}}$ Output Enable Input

The output enable input is active LOW. If the output enable is active while the chip is selected and the write enable is inactive, data will be present on the DQ pins and they will be enabled. The DQ pins will be in the high impedance state when $\overline{\mathrm{G}}$ is inactive.

$\overline{\mathbf{W}}$ Write Enable Input

The write enable input is active LOW and controls read and write operations. With the chip enabled, when \bar{W} is HIGH and \bar{G} is LOW, output data will be present at the DQ pins; when \bar{W} is LOW, the data present on the DQ pins will be written into the selected memory location.

$D Q_{0}-D Q_{7} \quad$ Data Input/Output Ports

These 8 bidirectional ports are used to read data from or write data into the RAM.
$V_{c c} \quad$ Power Supply
GND Ground

TRUTH TABLE

MODE	$\overline{\mathbf{E}}$	$\overline{\mathbf{G}}$	$\overline{\mathbf{W}}$	I/O OPERATION
Standby	H	X	X	High Z
Read	L	L	H	D OUT
Read	L	H	H	High Z
Write	L	X	L	$\mathrm{D}_{\text {IN }}$

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

SYMBOL	PARAMETER	RATING	UNITS	
$V_{C C} \cdot G N D$	Supply Voltage	-0.3 to 7	V	
$\mathrm{~V}_{\mathrm{IN}}$	Input Voltage	-0.3 to 7		
$\mathrm{~V}_{\text {IO }}$	Input/Output Voltage Applied	-0.3 to V_{CC} +0.3		
$\mathrm{~T}_{\mathrm{BIAS}}$	Temperature Under Bias	Plastic	-10 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{STG}}$	Storage Temperature	Plastic	-40 to +125	${ }^{\circ} \mathrm{C}$
P_{D}	Power Dissipation	1.0	W	
$\mathrm{I}_{\mathrm{OUT}}$	DC Output Current	50	mA	

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

OPERATING RANGE

RANGE	AMBIENT TEMPERATURE	$\mathbf{V}_{\text {CC }}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

DC ELECTRICAL CHARACTERISTICS (over the commercial operating range)

PARAMETER NAME	PARAMETER	TEST CONDITIONS	MS6516L			MS6516S			UNITS
			MIN.	TYP.(1)	MAX.	MIN.	TYP.(1)	MAX.	
$\mathrm{V}_{\text {LL }}$	Guaranteed Input Low Voltage ${ }^{(2)}$		-0.3	-	+0.8	-0.3	-	+0.8	V
V_{IH}	Guaranteed Input High Voltage ${ }^{(2)}$		2.2		$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}}+ \\ 0.3 \\ \hline \end{gathered}$	2.2		$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}}+ \\ 0.3 \\ \hline \end{gathered}$	V
IIL	Input Leakage Current	$\mathrm{V}_{\text {CC }}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {CC }}$	-	-	10	-	-	10	$\mu \mathrm{A}$
l_{OL}	Output Leakage Current	$\begin{aligned} & V_{\mathrm{CC}}=\text { Max, } \overline{\mathrm{E}}=\mathrm{V}_{\mathrm{IH}} \text {, or } \overline{\mathrm{G}}=\mathrm{V}_{\mathrm{IH}}, \mathrm{~V}_{I N}=0 \mathrm{~V} \\ & t \circ V_{\mathrm{CC}} \end{aligned}$	-	-	10	-	-	10	$\mu \mathrm{A}$
V_{OL}	Output Low Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$	-	0.21	0.4	-	0.21	0.4	V
V_{OH}	Output High Voltage	$\mathrm{V}_{\text {CC }}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$	2.4	3.5	-	2.4	3.5	-	V
I_{CC}	Operating Power Supply Current	$\mathrm{V}_{\mathrm{CC}}=\operatorname{Max}, \overline{\mathrm{E}}=\mathrm{V}_{\text {IL }}, \mathrm{I}_{\text {IVO }}=0 \mathrm{~mA}, \mathrm{~F}_{\mathrm{max}}{ }^{(3)}$	-	40	70	-	60	90	mA
$\mathrm{I}_{\text {ccs }}$	Standby Power Supply Current	$\mathrm{V}_{\text {CC }}=\mathrm{Max}, \overline{\mathrm{E}}=\mathrm{V}_{1 \mathrm{H}}, \mathrm{I}_{\mathrm{I} \mathrm{O}}=0 \mathrm{~mA}$		0.5	2	-	2	10	mA
$\mathrm{I}_{\text {ccsB } 1}$	Power Down Power Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \overline{\mathrm{E}}>\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \overline{\mathrm{G}}>\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}>\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \text { or } \mathrm{V}_{\text {IN }}<0.2 \mathrm{~V} \end{aligned}$		1	10		10	100	$\mu \mathrm{A}$

1. Typical characteristics are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. These are absolute values with respect to device ground and all overshoots due to system or tester noise are included.
3. $F_{M A X}=1 / t_{R C}$.

CAPACITANCE ${ }^{(1)}\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)$

SYMBOL	PARAMETER	CONDITIONS	MAX.	UNIT
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{I N}=0 \mathrm{~V}$	8	pF
$\mathrm{C}_{V O}$	Input/Output Capacitance	$\mathrm{V}_{1 / \mathrm{O}}=0 \mathrm{~V}$	10	pF

1. This parameter is guaranteed and not tested.

DATA RETENTION CHARACTERISTICS (over the commercial operating range)

SYMBOL	PARAMETER	TEST CONDITIONS	MIN.	TYP(2)	MAX(3)	UNITS
V_{DR}	$\mathrm{V}_{\text {CC }}$ for Data Retention	$\overline{\mathrm{E}}=\mathrm{V}_{\mathrm{CC}}$	2.0	-	-	V
$\mathrm{I}_{\text {CCDR }}$	Data Retention Current	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ or V_{CC}	-	2	10	$\mu \mathrm{A}$
$\mathrm{t}_{\mathrm{CDR}}$	Chip Deselect to Data Retention Time	$\mathrm{V}_{C C}=2.0 \mathrm{~V}, \overline{\mathrm{E}}=\mathrm{V}_{\mathrm{CC}}$	0	-	-	ns
t_{R}	Operation Recovery Time	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ or V_{CC}	$\mathrm{t}_{\mathrm{RC}}{ }^{(2)}$	-	-	ns

1. $\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$
2. $\mathrm{t}_{\mathrm{RC}}=$ Read Cycle Time

TIMING WAVEFORM LOW V ${ }_{c c}$ DATA RETENTION WAVEFORM

MS6516

AC TEST CONDITIONS

Input Pulse Levels	0 V to 3.0 V
Input Rise and Fall Times	5 ns
Input and Output	1.5 V
Timing Reference Level	

KEY TO SWITCHING WAVEFORMS

WAVEFORM	INPUTS	OUTPUTS		
	MUST BE STEADY	WILL BE STEADY		
MAYCHANGE				
FROMHTOL				WILL BE
:---				
CHANGING				
FROM HTOL				

AC TEST LOADS AND WAVEFORMS

Figure 2

AC ELECTRICAL CHARACTERISTICS (over the commercial operating range) READ CYCLE

JEDEC PARAMETER	PARAMETER	PARAMETER	-10		-12		UNIT
NAME	NAME		MIN.	MAX.	MIN.	MAX.	
$t_{\text {AVAX }}$	t_{RC}	Read Cycle Time	100	-	120	-	ns
$\mathrm{t}_{\text {AVQV }}$	$t_{\text {AA }}$	Address Access Time	-	100	-	120	ns
$\mathrm{t}_{\text {ELQV }}$	$t_{\text {ACS }}$	Chip Enable Access Time	-	100	-	120	ns
$\mathrm{t}_{\text {GLQV }}$	t_{OE}	Output Enable to Output Valid	-	50	-	50	ns
$\mathrm{t}_{\text {ELQx }}$	${ }_{\text {t }}^{\text {cLZ }}$	Chip Enable to Output Low Z	5	-	10	-	ns
$\mathrm{t}_{\text {GLQX }}$	tolz	Output Enable to Output in Low Z	5	-	10	-	ns
$\mathrm{t}_{\text {EHQZ }}$	$\mathrm{t}_{\mathrm{CHZ}}$	Chip Disable to Output in High Z	0	40	0	40	ns
$\mathrm{t}_{\text {GHQZ }}$	$\mathrm{t}_{\mathrm{OHZ}}$	Output Disable to Output in High Z	0	35	0	40	ns
$\mathrm{t}_{\text {AXQX }}$	${ }^{\text {toH }}$	Output Hold from Address Change	5	-	10	-	ns

SWITCHING WAVEFORMS (READ CYCLE)

READ CYCLE $1^{(1)}$

READ CYCLE $\mathbf{2}^{(1,2,4)}$

READ CYCLE $3^{(1,3,4)}$

NOTES:

1. \bar{W} is High for READ Cycle.
2. Device is continuously selected $\overline{\mathrm{E}}=\mathrm{V}_{\mathrm{iL}}$.
3. Address valid prior to or coincident with E transition low.
4. $\bar{G}=V_{\mathrm{IL}}$.
5. Transition is measured $\pm 500 \mathrm{mV}$ from steady state with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as shown in Figure 1 b on page 4. This parameter is guaranteed and not 100% tested.

MS6516

AC ELECTRICAL CHARACTERISTICS (over the commercial operating range)
WRITE CYCLE

JEDEC PARAMETER NAME	PARAMETER NAME	PARAMETER	-10		-12		UNIT
$t_{\text {AVAX }}$	$t_{\text {WC }}$	Write Cycle Time	100	-	120	-	ns
$t_{\text {ELWH }}$	t_{c}	Chip Enable to End of Write	55	-	70	-	ns
$\mathrm{t}_{\text {AVWL }}$	$\mathrm{t}_{\text {AS }}$	Address Set up Time	0	-	0	-	ns
$\mathrm{t}_{\text {AVWH }}$	$t_{\text {AW }}$	Address Valid to End of Write	80	-	85	-	ns
$t_{\text {WLWH }}$	$t_{\text {WP }}$	Write Pulse Width	50	-	70	-	ns
$t_{\text {WHAX }}$	$t_{\text {WR }}$	Write Recovery Time	0	-	0	-	ns
$t_{\text {WLQZ }}$	${ }^{\text {twhz }}$	Write to Output in High Z	-	35	-	50	ns
$t_{\text {DVWH }}$	$t_{\text {DW }}$	Data Valid to End of Write	30	-	35	-	ns
$\mathrm{t}_{\text {WHDX }}$	$\mathrm{t}_{\text {DH }}$	Data Hold from Write Time	0	-	0	-	ns
$\mathrm{t}_{\text {GHZQ }}$	$\mathrm{t}_{\mathrm{OHZ}}$	Output Disable to Output in High Z	0	35	0	40	ns
${ }^{\text {WHOXX }}$	tow	Output Active from End of Write	0	-	5	-	ns

SWITCHING WAVEFORMS (WRITE CYCLE)

WRITE CYCLE $1^{(1)}$

SWITCHING WAVEFORMS (WRITE CYCLE)

WRITE CYCLE $\mathbf{2}^{(1,6)}$

NOTES:

1. \bar{W} must be high during address transitions.
2. The internal write time of the memory is defined by the overlap $\overline{\mathrm{E}}$ active and $\overline{\mathrm{W}}$ low. Both signals must be active to initiate and any one signal can terminate a write by going inactive. The data input setup and hold timing should be referenced to the second transition edge of the signal that terminates the write.
3. $T_{\text {wR }}$ is measured from the earlier of \bar{E} or \bar{W} going high at the end of write cycle.
4. During this period, DQ pins are in the output state so that the input signals of opposite phase to the outputs must not be applied.
5. If the E low transition occurs simultaneously with the $\overline{\mathrm{W}}$ low transitions or after the $\overline{\mathrm{W}}$ low transition, outputs remain in a high impedance state.
6. $\overline{\mathrm{G}}$ is continuously low $\left(\overline{\mathrm{G}}=\mathrm{V}_{\mathrm{k}}\right)$.
7. $D_{\text {out }}$ is the same phase of write data of this write cycle.
8. $D_{\text {out }}$ is the read data of next address.
9. If E is low during this period, DQ pins are in the output state. Then the data input signals of opposite phase to the outputs must not be applied to them.
10. Transition is measured $\pm 500 \mathrm{mV}$ from steady state with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as shown in Figure 1 b on page 4 . This parameter is guaranteed and not 100% tested.
11. t_{cw} is measured from $\overline{\mathrm{E}}$ going low to the end of write.

ORDERING INFORMATION

SPEED (ns)	ORDERING PART NUMBER	PACKAGE REFERENCE NO.	TEMPERATURE RANGE
100	MS6516L-10PC	P24-1	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
100	MS6516S-10PC		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
120	MS6516S-12SC	S24-1	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

8K x 8 CMOS Static RAM

FEATURES

- Available in 70/100 ns (Max.)
- Automatic power-down when chip disabled
- Lower power consumption:

MS6264

- 300mW (Typ.) Operating
- 100 wW (Typ.) Standby

MS6264L

- 275mW (Typ.) Operating
- 50 WW (Typ.) Standby
- TTL compatible interface levels
- Single 5V power supply
- Fully static operation
- Three state outputs
- Two chip enable (\bar{E}_{1} and E_{2}) for simple memory expansion
- Data retention as low as 2 V

PIN CONFIGURATIONS

DESCRIPTION

The MOSEL MS6264 is a high performance, low power CMOS static RAM organized as 8192 words by 8 bits. The device supports easy memory expansion with both an active LOW chip enable (\bar{E}_{1}) and an active High chip enable (E_{2}), as well as an active LOW output enable $(\overline{\mathrm{G}})$ and tri-state outputs. An automatic power-down feature is included which reduces the chip power by 80% in TTL standby mode, and by over 95\% in full power-down mode.
The device is manufactured in MOSEL's high performance CMOS process and operates from a single 5 V power supply. All inputs and outputs are TTL compatible. Data is retained to as low as $\mathrm{V}_{\mathrm{cc}}=2 \mathrm{~V}$.
The MOSEL MS6264 is packaged in the JEDEC standard 28 pin 600 mil wide DIP and 330 mil wide SOP.

FUNCTIONAL BLOCK DIAGRAM

PIN DESCRIPTIONS

A_{0} - $\mathrm{A}_{12} \quad$ Address Inputs

These 13 address inputs select one of the 81928 -bit words in the RAM.
\bar{E}_{1} Chip Enable 1 Input
E_{2} Chip Enable 2 Input
\bar{E}_{1} is active LOW and E_{2} is active HIGH. Both chip enables must be active to read from or write to the device. If either chip enable is not active, the device is deselected and is in a standby power mode. The DQ pins will be in the highimpedance state when the device is deselected.

$\overline{\mathrm{G}} \quad$ Output Enable Input

The output enable input is active LOW. If the output enable is active while the chip is selected and the write enable is inactive, data will be present on the DQ pins and they will be enabled. The DQ pins will be in the high impedance state when $\overline{\mathrm{G}}$ is inactive.

$\overline{\text { W }}$ Write Enable Input

The write enable input is active LOW and controls read and write operations. With the chip selected, when \bar{W} is HIGH and $\overline{\mathrm{G}}$ is LOW, output data will be present at the DQ pins; when \bar{W} is LOW, the data present on the DQ pins will be written into the selected memory location.

$D Q_{0}-\mathrm{DQ}_{7}$ Data Input/Output Ports

These 8 bidirectional ports are used to read data from or write data into the RAM.
$\mathrm{V}_{\mathrm{cc}} \quad$ Power Supply

GND Ground

TRUTH TABLE

MODE	$\overline{\text { W }}$	\bar{E}_{1}	E_{2}	$\overline{\mathrm{G}}$	I/O OPERATION	V_{cc} CURRENT
Not Selected	X	H	X	X	High Z	$\mathrm{I}_{\text {CCSB }}$, $\mathrm{I}_{\text {CCSB } 1}$
(Power Down)	X	X	L	X	High Z	$\mathrm{I}_{\text {CCSB }}, \mathrm{I}_{\text {CCSB } 1}$
Output Disabled	H	L	H	H	High Z	I_{cc}
Read	H	L	H	L	D ${ }_{\text {OUT }}$	I_{Cc}
Write	L	L	H	X	$\mathrm{D}_{\text {IN }}$	I_{CC}

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

SYMBOL	PARAMETER	RATING	UNITS
$\mathrm{V}_{\text {TERM }}$	Terminal Voltage with Respect to GND	-0.5 to +7.0	V
$\mathrm{~T}_{\text {BIAS }}$	Temperature Under Bias	-10 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-60 to +150	${ }^{\circ} \mathrm{C}$
P_{T}	Power Dissipation	1.0	W
$\mathrm{I}_{\text {OUT }}$	DC Output Current	20	mA

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

OPERATING RANGE

RANGE	AMBIENT TEMPERATURE	$\mathbf{V}_{\text {CC }}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

CAPACITANCE ${ }^{(1)}\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)$

SYMBOL	PARAMETER	CONDITIONS	MAX.	UNIT
$\mathrm{C}_{\mathbb{I N}}$	Input Capacitance	$\mathrm{V}_{\mathbb{I}}=0 \mathrm{~V}$	6	pF
C_{DQ}	Input/Output Capacitance	$\mathrm{V}_{/ / \mathrm{O}}=0 \mathrm{~V}$	8	pF

1. This parameter is guaranteed and not tested.

DC ELECTRICAL CHARACTERISTICS (over the operating range)

PARAMETER NAME	PARAMETER	TEST CONDITIONS	MS6264			MS6264L			UNITS
			MIN.	TYP.(1)	MAX.	MIN.	TYP.(1)	MAX.	
$\mathrm{V}_{\text {IL }}$	Guaranteed Input Low Voltage ${ }^{(2)}$		-0.5	-	+0.8	-0.5	-	+0.8	V
V_{IH}	Guaranteed Input High Voltage ${ }^{(2)}$		2.2	3.5	6.0	2.2	3.5	6.0	V
	Input Leakage Current	$\mathrm{V}_{\text {CC }}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {CC }}$	-	-	2	-	-	2	$\mu \mathrm{A}$
${ }_{\text {IOL }}$	Output Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \overline{\mathrm{E}}_{1}=\mathrm{V}_{\mathrm{H}}, \text { or } \mathrm{E}_{2}=\mathrm{V}_{\mathrm{IL}} \text {, or } \overline{\mathrm{G}}=\mathrm{V}_{\mathrm{IH}}, \\ & \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \end{aligned}$	-	-	2	-	-	2	$\mu \mathrm{A}$
V_{OL}	Output Low Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}$	-	-	0.4	-	-	0.4	V
V_{OH}	Output High Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{\mathrm{OH}}=-1 \mathrm{~mA}$	2.4	-	-	2.4	-	-	V
I_{CC}	Operating Power Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Max}, \mathrm{E}_{1}=\mathrm{V}_{\mathrm{IL}}, \mathrm{E}_{2}=\mathrm{V}_{\mathrm{IH}}, \mathrm{I}_{\mathrm{DQ}}=0 \mathrm{~mA}, \\ & \mathrm{~F}=\mathrm{F}_{\mathrm{max}}{ }^{(3)} \end{aligned}$		50	90	-	45	85	mA
$I_{\text {ccsb }}$	Standby Power Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \overline{\mathrm{E}}_{1}=\mathrm{V}_{\mathrm{HH}}$, or $\mathrm{E}_{2}=\mathrm{V}_{\mathrm{IL}}, \mathrm{I}_{\mathrm{DQ}}=0 \mathrm{~mA}$	-	-	15	-	-	3	mA
$\mathrm{I}_{\text {CCSB1 }}$	Power Down Power Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{E}_{1}>\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \mathrm{E}_{2}<0.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}>\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}}<0.2 \mathrm{~V} \\ & \hline \end{aligned}$. 02	2		. 01	0.1	mA

1. Typical characteristics are at $\mathrm{V}_{\mathrm{cC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. These are absolute values with respect to device ground and all overshoots due to system or tester noise are included.
3. $F_{\text {MAX }}=1 / \mathrm{t}_{\mathrm{RC}}$.

DATA RETENTION CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$)

SYMBOL	PARAMETER	TEST CONDITIONS	MIN.	TYP. ${ }^{(1)}$	MAX.	UNITS
$V_{D R}$	V_{CC} for Data Retention	$\begin{aligned} & \overline{\bar{E}}_{1} \geq V_{C C}-0.2 \mathrm{~V}, \mathrm{E}_{2} \leq 0.2 \mathrm{~V}, \\ & \mathrm{~V}_{\text {IN }} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \text { or } \mathrm{V}_{\text {IN }} \leq 0.2 \mathrm{~V} \\ & \hline \end{aligned}$	2.0	-	-	V
$I_{\text {CCDR }}$	Data Retention Current	$\begin{aligned} & \overline{\mathrm{E}}_{1} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \mathrm{E}_{2} \leq 0.2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathbb{I N}} \leq 0.2 \mathrm{~V} \end{aligned}$	-	2	50	$\mu \mathrm{A}$
${ }_{\text {t }}$	Chip Deselect to Data Retention Time	See Retention Waveform	0	-	-	ns
t_{R}	Operation Recovery Time		$\mathrm{trc}^{(2)}$			ns

1. $\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$
2. $\mathrm{t}_{\mathrm{Rc}}=$ Read Cycle Time

LOW $V_{c c}$ DATA RETENTION WAVEFORM (1) (\bar{E}_{1} Controlled)

LOW V ${ }_{c c}$ DATA RETENTION WAVEFORM (2) (E_{2} Controlled)

AC TEST CONDITIONS

Input Pulse Levels	0 V to 3.0 V
Input Rise and Fall Times	5 ns
Input and Output	1.5 V
Timing Reference Level	

AC TEST LOADS AND WAVEFORMS

KEY TO SWITCHING WAVEFORMS

WAVEFORM	INPUTS	OUTPUTS
	MUST BE STEADY	WILL BE STEADY
	MAY CHANGE FROM H TOL	WILL BE CHANGING FROM HTOL
	MAY CHANGE FROMLTOH	WILL BE CHANGING FROMLTOH
	DON'T CARE: ANY CHANGE PERMITTED	CHANGING: STATE UNKNOWN
	DOESNOT APPLY	CENTER LINE IS HIGH IMPEDANCE "OFF" STATE

AC ELECTRICAL CHARACTERISTICS (over the operating range)
 READ CYCLE

JEDEC PARAMETER	PARAMETER	PARAMETER		$\begin{gathered} \hline \text { MS6264-70 } \\ \text { MS6264L-70 } \end{gathered}$			$\begin{gathered} \text { MS6264-10 } \\ \text { MS6264L-10 } \end{gathered}$			UNIT
NAME	NAME			MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
$t_{\text {AVAX }}$	t_{RC}	Read Cycle Time		70	-	-	100	-	-	ns
$t_{\text {AVQV }}$	t_{AA}	Address Access Time		-	-	70	-	-	100	ns
$\mathrm{t}_{\text {E1LQV }}$	$t_{\text {ACS } 1}$	Chip Select Access Time	\bar{E}_{1}	-	-	70	-	-	100	ns
$\mathrm{t}_{\text {E2HQV }}$	$\mathrm{t}_{\mathrm{ACS} 2}$	Chip Select Access Time	E_{2}	-	-	70	-	-	100	ns
$\mathrm{t}_{\text {GLQV }}$	toe	Output Enable to Output Valid		-	-	35	-	-	50	ns
$\mathrm{t}_{\text {E1LQX }}$	$\mathrm{t}_{\mathrm{CLZ1}}$	Chip Select to Output Low Z	$\overline{E_{1}}$	5	-	-	5	-	-	ns
$t_{\text {E2 } 2 \mathrm{HQX}}$	$\mathrm{t}_{\mathrm{CLZ2}}$	Chip Select to to Output Low Z	E_{2}	5	-	-	5	-	-	ns
$\mathrm{t}_{\text {GLQX }}$	$\mathrm{t}_{\mathrm{LLZ}}$	Output Enable to Output in Low Z		5	-	-	5	-	-	ns
$\mathrm{t}_{\text {ETHQZ }}$	$\mathrm{t}_{\mathrm{CHZ} 1}$	Chip Deselect to Output in High Z	\bar{E}_{1}	0	-	35	0	-	35	ns
$t_{\text {E2 HQZ }}$	$\mathrm{t}_{\mathrm{CHZ2}}$	Chip Deselect to Output in High Z	E_{2}	0	-	35	0	-	35	ns
$\mathrm{t}_{\text {GHQZ }}$	$\mathrm{t}_{\mathrm{OHZ}}$	Output Disable to Output in High Z		0	-	30	0	-	35	ns
$\mathrm{t}_{\mathrm{AXQX}}$	${ }_{\text {toh }}$	Output Hold from Address Change		5	-	-	5	-	-	ns

SWITCHING WAVEFORMS (READ CYCLE)
READ CYCLE $1^{(1,2,4)}$

MS6264

READ CYCLE $\mathbf{2}^{(1,3,4)}$

READ CYCLE $3^{(1,4)}$

NOTES:

1. \bar{W} is high for READ Cycle.
2. Device is continuously selected $\overline{\mathrm{E}}_{1}=\mathrm{V}_{11}$ and $\mathrm{E}_{2}=\mathrm{V}_{t H}$.
3. Address valid prior to or coincident with \bar{E}_{1} transition low and/or E_{2} transition high.
4. $\overline{\mathrm{G}}=\mathrm{V}_{\mathrm{IL}}$.
5. Transition is measured $\pm 500 \mathrm{mV}$ from steady state with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as shown in Figure 1 b . This parameter is guaranteed but not 100% tested.

AC ELECTRICAL CHARACTERISTICS (over the operating range)

WRITE CYCLE

JEDEC PARAMETER NAME	PARAMETER NAME	PARAMETER		$\begin{gathered} \text { MS6264-70 } \\ \text { MS6264L-70 } \end{gathered}$			$\begin{gathered} \text { MS6264-10 } \\ \text { MS6264L-10 } \end{gathered}$			UNIT
				MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
$t_{\text {AVax }}$	${ }_{\text {twc }}$	Write Cycle Time		70	-	-	100	-	-	ns
$\mathrm{t}_{\text {E1LWH }}$	t_{cW}	Chip Select to End of Write		45	-	-	80	-	-	ns
$\mathrm{t}_{\text {AVWL }}$	$\mathrm{t}_{\text {AS }}$	Address Set up Time		0	-	-	0	-	-	ns
$\mathrm{t}_{\text {AVWH }}$	t_{AW}	Address Valid to End of Write		65	-	-	80	-	-	ns
$\mathrm{t}_{\text {WLWH }}$	${ }_{\text {twp }}$	Write Pulse Width		45	-	-	60	-	-	ns
$\mathrm{t}_{\text {WHAX }}$	${ }_{\text {WR } 1}$	Write Recovery Time	$\bar{E}_{1}, \overline{\mathrm{~W}}$	5	-	-	5	-	-	ns
$\mathrm{t}_{\text {E2LAX }}$	$\mathrm{t}_{\text {WR2 }}$	Write Recovery Time	E_{2}	5	-	-	5	-	-	ns
twlaz	${ }^{\text {twhz }}$	Write to Output in High Z		0	-	30	-	-	35	ns
$t_{\text {dVWH }}$	t_{DW}	Data to Write Time Overlap		30	-	-	40	-	-	ns
${ }^{\text {W }}$ HDX ${ }^{\text {d }}$	t_{DH}	Data Hold from Write Time		0	-	-	0	-	-	ns
$\mathrm{t}_{\text {GHQZ }}$	$\mathrm{t}_{\mathrm{OHz}}$	Output Disable to Output in High Z		0	-	30	0	-	35	ns
$\mathrm{t}_{\text {WHQX }}$	tow	End of Write to Output Active		5	-	-	5	-	-	ns

SWITCHING WAVEFORMS (WRITE CYCLE)

WRITE CYCLE $1^{(1)}$

NOTES:

1. $\overline{\mathrm{W}}$ must be high during address transitions.
2. The internal write time of the memory is defined by the overlap of \bar{E}_{1} and E_{2} active and \bar{W} low. All signals must be active to initiate a write and any one signal can terminate a write by going inactive. The data input setup and hold timing should be referenced to the second transition edge of the signal that terminates the write.
3. $T_{W R}$ is measured from the earlier of E_{1} or W going high or E_{2} going low at the end of write cycle.
4. During this period, $D Q$ pins are in the output state so that the input signals of opposite phase to the outputs must not be applied.
5. If the \bar{E}_{1} low transition or the E_{2} high transition occurs simultaneously with the $\overline{\mathrm{W}}$ low transitions or after the $\overline{\mathrm{W}}$ transition, outputs remain in a high impedance state.
6. $\overline{\mathrm{G}}$ is continuously low ($\overline{\mathrm{G}}=\mathrm{V}_{\mathrm{k}}$).
7. $\mathrm{D}_{\text {out }}$ is the same phase of write data of this write cycle.
8. $\mathrm{D}_{\mathrm{OUT}}$ is the read data of next address.
9. If E_{1} is low and E_{2} is high during this period, $D Q$ pins are in the output state. Then the data input signals of opposite phase to the outputs must not be applied to them.
10. Transition is measured $\pm 500 \mathrm{mV}$ from steady state with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as shown in Figure 1 b on page 4. This parameter is guaranteed but not 100% tested.
11. t_{cw} is measured from the later of $\overline{\mathrm{E}}_{1}$ going low or E_{2} going high to the end of write.

ORDERING INFORMATION

SPEED (ns)	ORDERING PART NUMBER	PACKAGE REFERENCE NO.	TEMPERATURE RANGE
70	MS6264-70PC	P28-1	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
70	MS6264-70FC	$\mathrm{S} 28-2$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
70	MS6264L-70PC	$\mathrm{P} 28-1$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
70	MS6264L-70FC	$\mathrm{S} 28-2$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
100	MS6264-10PC	$\mathrm{P} 28-1$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
100	MS6264-10FC	$\mathrm{S} 28-2$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
100	MS6264L-10PC	$\mathrm{P} 28-1$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
100	MS6264L-10FC	$\mathrm{S} 28-2$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

8K x 8 High Speed CMOS Static RAM

FEATURES

- High speed $-45 / 55$ ns (Max.)
- Automatic power-down when chip disabled
- Lower power consumption:
-550 mW (Max.) Operating
- 85mW (Max.) Standby
- $550 \mu \mathrm{~W}$ (Max.) Power-down
- TTL compatible interface levels
- Single 5V power supply
- Fully static operation
- Three state outputs
- Two chip enables (\bar{E}_{1} and E_{2}) for simple memory expansion
- Data retention as low as 2 V

DESCRIPTION

The MOSEL MS6264A is a high performance, low power CMOS static RAM organized as 8192 words by 8 bits. The device supports easy memory expansion with both an active LOW chip enable (\bar{E}_{1}) and an active High chip enable (E_{2}), as well as an active LOW output enable (\bar{G}) and three-state outputs. An automatic power-down feature is included which reduces the chip power by 85% in TTL standby mode, and by over 99% in full power-down mode.
The device is manufactured in MOSEL's high performance CMOS process and operates from a single 5 V power supply. All inputs and outputs are TTL compatible. Data is retained to as low as $\mathrm{V}_{\mathrm{cc}}=2 \mathrm{~V}$.

The MOSEL MS6264A is available in the JEDEC standard 28 pin 600 mil wide DIP, in the space saving 300 mil wide DIP, and in surface mount packages.

PIN CONFIGURATIONS

FUNCTIONALBLOCK DIAGRAM

PIN DESCRIPTIONS

$A_{0}-A_{12} \quad$ Address Inputs
These 13 address inputs select one of the 8192 8-bit words in the RAM.
\bar{E}_{1} Chip Enable 1 Input
E_{2} Chip Enable 2 Input
\bar{E}_{1} is active LOW and E_{2} is active HIGH. Both chip enables must be active to read from or write to the device. If either chip enable is not active, the device is deselected and is in a standby power mode. The DQ pins will be in the highimpedance state when the device is deselected.

$\overline{\mathbf{G}}$ Output Enable Input

The output enable input is active LOW. If the output enable is active while the chip is selected and the write enable is inactive, data will be present on the DQ pins and they will be enabled. The DQ pins will be in the high impedance state when $\overline{\mathrm{G}}$ is inactive.

W Write Enable Input

The write enable input is active LOW and controls read and write operations. With the chip selected, when \bar{W} is HIGH and \bar{G} is LOW, output data will be present at the DQ pins; when \bar{W} is LOW, the data present on the DQ pins will be written into the selected memory location.

$D Q_{0}-\mathrm{DQ}_{7} \quad$ Data Input/Output Ports

These 8 bidirectional ports are used to read data from or write data into the RAM.
$V_{c c} \quad$ Power Supply

GND Ground

TRUTH TABLE

MODE	\bar{W}	\bar{E}_{1}	E_{2}	$\overline{\mathrm{G}}$	I/O OPERATION	V_{cc} CURRENT
Not Selected	X	H	X	X	High Z	$\mathrm{I}_{\text {CCSB }}, \mathrm{I}_{\text {CCSB } 1}$
(Power Down)	X	X	L	X	High Z	$\mathrm{I}_{\text {ccss }}$, $\mathrm{I}_{\text {CCSB } 1}$
Output Disabled	H	L	H	H	High Z	I_{cc}
Read	H	L	H	L	$\mathrm{D}_{\text {OUT }}$	I_{CC}
Write	L	L	H	X	$\mathrm{D}_{\text {IN }}$	I_{CC}

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

SYMBOL	PARAMETER	RATING	UNITS
$\mathrm{V}_{\text {TERM }}$	Terminal Voltage with Respect to GND	-0.5 to +7.0	V
$\mathrm{~T}_{\text {BIAS }}$	Temperature Under Bias	-0 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-60 to +150	${ }^{\circ} \mathrm{C}$
P_{T}	Power Dissipation	1.0	W
$\mathrm{I}_{\text {OUT }}$	DC Output Current	20	mA

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

OPERATING RANGE

RANGE	AMBIENT TEMPERATURE	$\mathbf{V}_{\mathbf{c c}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

DC ELECTRICAL CHARACTERISTICS (over the operating range)

PARAMETER NAME	PARAMETER		MS6264AL	MEST CONDITIONS

1. Typical characteristics are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. These are absolute values with respect to device ground and all overshoots due to system or tester noise are included.
3. $F_{M A X}=1 / t_{R C}$.

CAPACITANCE ${ }^{(1)}\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)$

SYMBOL	PARAMETER	CONDITIONS	MAX.	UNIT
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	6	pF
C_{DQ}	Input/Output Capacitance	$\mathrm{V}_{\mathrm{I} / \mathrm{O}}=0 \mathrm{~V}$	8	pF

[^3]
AC TEST CONDITIONS

Input Pulse Levels	OV to 3.0V
Input Rise and Fall Times	5 ns
Input and Output	1.5 V
Timing Reference Level	

AC TEST LOADS AND WAVEFORMS

OUTPUT O-O 1.73 V
ALL INPUT PULSES

Figure 2

KEY TO SWITCHING WAVEFORMS

WAVEFORM	INPUTS	OUTPUTS
	MUST BE STEADY	WILL BE STEADY
	MAY CHANGE FROM HTOL	WILL BE CHANGING FROMHTOL
	MAY CHANGE FROM LTOH	WILL BE CHANGING FROMLTOH
	DON'T CARE: ANY CHANGE PERMITTED	CHANGING: STATE UNKNOWN
	DOES NOT APPLY	CENTER LINE IS HIGH IMPEDANCE "OFF" STATE

AC ELECTRICAL CHARACTERISTICS (over the operating range)

READ CYCLE

JEDEC PARAMETER NAME	PARAMETER NAME	PARAMETER		MS6264AL-45			MS6264AL-55			UNIT
$t_{\text {AVAX }}$	t_{RC}	Read Cycle Time		45	-	-	55	-	-	ns
$t_{\text {AVQV }}$	$t_{\text {AA }}$	Address Access Time		-	-	45	-	-	55	ns
$t_{\text {E1LQV }}$	$t_{\text {ACS } 1}$	Chip Enable Access Time	\bar{E}_{1}	-	-	45	-	-	55	ns
$\mathrm{t}_{\text {E2HQX }}$	$\mathrm{t}_{\text {ACS2 }}$	Chip Enable Access Time	E_{2}	-	-	45	-	-	55	ns
$\mathrm{t}_{\text {GLQV }}$	t_{OE}	Output Enable to Output Valid		-	-	20	-	-	25	ns
$\mathrm{t}_{\text {E1LQX }}$	$\mathrm{t}_{\mathrm{CLZ} 1}$	Chip Enable to Output Low Z	\bar{E}_{1}	5	-	-	5	-	-	ns
$\mathrm{t}_{\text {E2HQx }}$	$\mathrm{t}_{\text {cLZ2 }}$	Chip Enable to to Output Low Z	E_{2}	5	-	-	5	-	-	ns
$\mathrm{t}_{\text {GLQX }}$	tolz	Output Enable to Output in Low Z		5	-	-	5	-	-	ns
$\mathrm{t}_{\text {E1HQZ }}$	$\mathrm{t}_{\mathrm{CHZ1}}$	Chip Disable to Output in High Z	\bar{E}_{1}	0	-	20	0	-	20	ns
$t_{\text {E2LQZ }}$	${ }^{\text {t }} \mathrm{CHZ2}$	Chip Disable to Output in High Z	E_{2}	0	-	20	0	-	20	ns
$\mathrm{t}_{\text {GHQZ }}$	$\mathrm{t}_{\mathrm{OHz}}$	Output Disable to Output in High Z		0	-	20	0	-	20	ns
$\mathrm{t}_{\mathrm{AXQX}}$	${ }^{\text {OH}}$	Output Hold from Address Change		5	-	-	5	-	-	ns

SWITCHING WAVEFORMS (READ CYCLE)

READ CYCLE $1^{(1,2,4)}$

READ CYCLE $\mathbf{2}^{(1,3,4)}$

READ CYCLE $3^{(1,4)}$

NOTES:

1. \bar{W} is high for READ Cycle.
2. Device is continuously selected $\bar{E}_{1}=V_{I L}$ and $E_{2}=V_{I H}$.
3. Address valid prior to or coincident with E_{1} transition low and/or E_{2} transition high.
4. $\bar{G}=V_{I L}$.
5. Transition is measured $\pm 500 \mathrm{mV}$ from steady state with $C_{L}=5 p F$ as shown in Figure 1 b . This parameter is guaranteed but not 100% tested.

MS6264A

AC ELECTRICAL CHARACTERISTICS (over the operating range)

WRITE CYCLE

SWITCHING WAVEFORMS (WRITE CYCLE)

WRITE CYCLE $1^{(1)}$

WRITE CYCLE $\mathbf{2}^{(1,6)}$

NOTES:

1. \bar{W} must be high during address transitions.
2. The internal write time of the memory is defined by the overlap of \bar{E}_{1} and E_{2} active and \bar{W} low. All signals must be active to initiate a write and any one signal can terminate a write by going inactive. The data input setup and hold timing should be referenced to the second transition edge of the signal that terminates the write.
3. $T_{w R}$ is measured from the earlier of \bar{E}_{1} or \bar{W} going high or E_{2} going low at the end of write cycle.
4. During this period, DQ pins are in the output state so that the input signals of opposite phase to the outputs must not be applied.
5. If the $\overline{\mathrm{E}}$, low transition or the E_{2} high transition occurs simultaneously with the \bar{W} low transitions or after the \bar{W} transition, outputs remain in a high impedance state.
6. $\overline{\mathrm{G}}$ is continuously low ($\overline{\mathrm{G}}=\mathrm{V}_{\mathrm{it}}$).
7. $D_{\text {out }}$ is the same phase of write data of this write cycle.
8. $D_{\text {out }}$ is the read data of next address.
9. If E_{1} is low and E_{2} is high during this period, DQ pins are in the output state. Then the data input signals of opposite phase to the outputs must not be applied to them.
10. Transition is measured $\pm 500 \mathrm{mV}$ from steady state with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as shown in Figure 1 b on page 4 . This parameter is guaranteed but not 100% tested.
11. t_{cw} is measured from the later of $\overline{\mathrm{E}}_{1}$ going low or E_{2} going high to the end of write.

MS6264A

DATA RETENTION CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$)

SYMBOL	PARAMETER	TEST CONDITIONS	MIN.	TYP(1)	MAX.	UNITS
$V_{\text {DR }}$	V_{Cc} for Data Retention	$\begin{aligned} & \bar{E}_{1} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \mathrm{E}_{2} \leq 0.2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \end{aligned}$	2.0	-	-	V
$I_{\text {CCDR }}$	Data Retention Current	$\begin{aligned} & \bar{E}_{1} \geq V_{C C}-0.2 \mathrm{~V}, \mathrm{E}_{2} \leq 0.2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \text { or } \mathrm{V}_{\text {IN }} \leq 0.2 \mathrm{~V} \\ & \hline \end{aligned}$	-	2	50	$\mu \mathrm{A}$
IIL	Input Leakage Current		-	-	2	$\mu \mathrm{A}$
${ }_{\text {ctor }}$	Chip Deselect to Data Retention Time	See Retention Waveform	0	-	-	ns
t_{R}	Operation Recovery Time		$\mathrm{t}_{\mathrm{RC}}{ }^{(2)}$	-	-	ns

1. $\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$
2. $\mathrm{t}_{\mathrm{Rc}}=$ Read Cycle Time

LOW $V_{c c}$ DATA RETENTION WAVEFORM (1) (\bar{E}_{1} Controlled)

LOW V ${ }_{c c}$ DATA RETENTION WAVEFORM (2) (E_{2} Controlled)

ORDERING INFORMATION

SPEED (ns)	ORDERING PART NUMBER	PACKAGE REFERENCE NO.	TEMPERATURE RANGE
45	MS6264AL-45NC	P28-2	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
45	MS6264AL-45PC	$\mathrm{P} 28-1$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
45	$\mathrm{MS6264AL-45SC}$	$\mathrm{~S} 28-1$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
55	$\mathrm{MS6264AL-55NC}$	$\mathrm{P} 28-2$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
55	$\mathrm{MS6264AL-55PC}$	$\mathrm{P} 28-1$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
55	$\mathrm{MS6264AL-55SC}$	$\mathrm{~S} 28-1$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

8K x 8 Low Power CMOS SRAM

FEATURES

- Available in 80/100/150 ns (Max.)
- Automatic power-down when chip disabled
- Lower power consumption:

MS6264C

- 1 mA (Max.) Data Retention Current
- 11 mW (Max.) Standby

MS6264CL
$-25 \mu \mathrm{~A}$ (Max.) Data Retention Current

- 0.55mW (Max.) Standby

MS6264CLL
$-2 \mu \mathrm{~A}$ (Max.) Data Retention Current

- 0.55 mW (Max.) Standby
- TTL compatible interface levels
- Single 5V power supply
- Fully static operation, no clock required
- Three state outputs
- Two chip enable (\bar{E}_{1} and E_{2}) for simple memory expansion
- Data retention as low as 2 V

PIN CONFIGURATIONS

DESCRIPTION

The MOSEL MS6264C is a high performance, low power CMOS static RAM organized as 8192 words by 8 bits. The device supports easy memory expansion with both an active LOW chip enable ($\overline{\mathrm{E}}_{1}$) and an active High chip enable (E_{2}), as well as an active LOW output enable ($\left.\overline{\mathrm{G}}\right)$ and tri-state outputs. An automatic power-down feature is included which reduces the chip power by 80% in TTL standby mode, and by over 95\% in full power-down mode.
The device is manufactured in MOSEL's high performance CMOS process and operates from a single 5 V power supply. All inputs and outputs are TTL compatible. Data is retained to as low as $\mathrm{V}_{C C}=2 \mathrm{~V}$.

The MOSEL MS6264C is packaged in the JEDEC standard 28 pin 600 mil wide DIP, 330 mil wide SOP and 28 pin 300 mil thin DIP.

FUNCTIONALBLOCK DIAGRAM

PIN DESCRIPTIONS

$A_{0}-A_{12} \quad$ Address Inputs
These 13 address inputs select one of the 81928 -bit words in the RAM.

\bar{E}_{1} Chip Enable 1 Input

E_{2} Chip Enable 2 Input
\bar{E}_{1} is active LOW and E_{2} is active HIGH. Both chip enables must be active to read from or write to the device. If either chip enable is not active, the device is deselected and is in a standby power mode. The DQ pins will be in the highimpedance state when the device is deselected.

$\overline{\mathbf{G}}$ Output Enable Input

The output enable input is active LOW. If the output enable is active while the chip is selected and the write enable is inactive, data will be present on the DQ pins and they will be enabled. The DQ pins will be in the high impedance state when \bar{G} is inactive.

\bar{W} Write Enable Input

The write enable input is active LOW and controls read and write operations. With the chip selected, when \bar{W} is HIGH and \bar{G} is LOW, output data will be present at the DQ pins; when \bar{W} is LOW, the data present on the DQ pins will be written into the selected memory location.

$D Q_{1}-\mathrm{DQ}_{8} \quad$ Data Input/Output Ports

These 8 bidirectional ports are used to read data from or write data into the RAM.
$\mathrm{V}_{\mathrm{cc}} \quad$ Power Supply
GND Ground

TRUTH TABLE

MODE	\bar{W}	$\overline{\mathbf{E}}_{1}$	$\mathbf{E}_{\mathbf{2}}$	$\overline{\mathbf{G}}$	I/O OPERATION	V_{CC} CURRENT
Not Selected (Power Down)	X	H	X	X	High Z	$\mathrm{I}_{\mathrm{CCSB}}, \mathrm{I}_{\text {CCSB } 1}$
	X	X	L	X	High Z	$\mathrm{I}_{\mathrm{CCSB}}, \mathrm{I}_{\text {CCSB } 1}$
Output Disabled	H	L	H	H	High Z	I_{CC}
Read	H	L	H	L	$\mathrm{D}_{\mathrm{OUT}}$	I_{CC}
Write	L	L	H	X	D_{IN}	I_{CC}

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

SYMBOL	PARAMETER	RATING	UNITS
V $_{\text {TERM }}$	Terminal Voltage with Respect to GND	-0.5 to +7.0	V
$\mathrm{~T}_{\text {BIAS }}$	Temperature Under Bias	-10 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-60 to +150	${ }^{\circ} \mathrm{C}$
P_{T}	Power Dissipation	1.0	W
$\mathrm{I}_{\text {OUT }}$	DC Output Current	20	mA

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

OPERATING RANGE

RANGE	TEMPERATURE	V $_{\text {CC }}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

CAPACITANCE ${ }^{(1)}\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)$

SYMBOL	PARAMETER	CONDITIONS	MAX.	UNIT
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	6	pF
C_{DQ}	Input/Output Capacitance	$\mathrm{V}_{/ / \mathrm{O}}=0 \mathrm{~V}$	8	pF

1. This parameter is guaranteed and not tested.

DC ELECTRICAL CHARACTERISTICS (over the operating range)

PARAMETER NAME	PARAMETER	TEST CONDITIONS	$\begin{gathered} \text { MS6264C- } \\ 80 / 10 / 15 \end{gathered}$			$\begin{gathered} \text { MS6264CL/LL- } \\ 80 / 10 / 15 \end{gathered}$			UNITS
			MIN.		MAX.	MIN.		MAX.	
$\mathrm{V}_{\text {IL }}$	Guaranteed Input Low Voltage ${ }^{(2)}$		-2.0	-	+0.8	-2.0	-	+0.8	V
V_{IH}	Guaranteed Input High Voltage ${ }^{(2)}$		2.2		$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}}+ \\ 0.3 \end{gathered}$	2.2		$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}}+ \\ 0.3 \\ \hline \end{gathered}$	V
$1 / 2$	Input Leakage Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {CC }}$	-1	-	2	-1	-	2	$\mu \mathrm{A}$
${ }_{\text {loL }}$	Output Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \overline{\mathrm{E}}_{1}=\mathrm{V}_{\mathrm{IH}}, \text { or } \mathrm{E}_{2}=\mathrm{V}_{\mathrm{IL}}, \text { or } \overline{\mathrm{G}}=\mathrm{V}_{\mathrm{IH}}, \\ & \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \end{aligned}$	-2	-	2	-2	-	2	$\mu \mathrm{A}$
V_{OL}	Output Low Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{LL}}=4 \mathrm{~mA}$	-	-	0.4	-	-	0.4	V
V_{OH}	Output High Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$	2.4	-	-	2.4	-	-	V
$I_{\text {cc }}$	Operating Power Supply Current	$\begin{aligned} & V_{C C}=\operatorname{Max}, \bar{E}_{1}=V_{\mathrm{IL}}, \mathrm{E}_{2}=\mathrm{V}_{\mathrm{IH}}, \mathrm{I}_{\mathrm{DQ}}=0 \mathrm{~mA}, \\ & F=\mathrm{F}_{\max }{ }^{(3)} \end{aligned}$	-	-	60	-	-	60	mA
${ }_{\text {ccsb }}$	Standby Power Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \overline{\mathrm{E}}_{1}=\mathrm{V}_{\mathrm{IH}}$, or $\mathrm{E}_{2}=\mathrm{V}_{\mathrm{IL}}, \mathrm{I}_{\mathrm{DQ}}=0 \mathrm{~mA}$	-	-	2	-	0.001	0.1	mA
ICCSB	Power Down Power Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{E}_{1}>\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \mathrm{E}_{2}<0.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}>\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}}<0.2 \mathrm{~V} \\ & \hline \end{aligned}$		-	3	-	-	3	mA

1. Typical characteristics are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. These are absolute values with respect to device ground and all overshoots due to system or tester noise are included.
3. -2.0 V Min. for pulse width less than $20 \mathrm{~ns} .\left(\mathrm{V}_{\mathrm{LL}} \mathrm{Min} .=-0.3 \mathrm{~V}\right.$ at DC level $)$
4. $F_{\text {MAX }}=1 / t_{\mathrm{RC}}$.

DATA RETENTION CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$)

SYMBOL	PARAMETER	TEST CONDITIONS		MIN.	TYP.(1)	MAX.	UNITS
V_{DR}	V_{CC} for Data Retention	$\begin{aligned} & \mathrm{E}_{1} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \mathrm{E}_{2} \leq 0.2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \end{aligned}$		2.0	-	5.5	V
$\mathrm{I}_{\text {CCDR }}$	Data Retention Current	$\begin{aligned} & \overline{\mathrm{E}}_{1} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \mathrm{E}_{2} \leq 0.2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \end{aligned}$	Standard	-	-	1.0	mA
			L-Version	-	1.0	2.5	$\mu \mathrm{A}$
			LL-Version (3)	-	1.0	2.0	$\mu \mathrm{A}$
$\mathrm{t}_{\text {CDR }}$	Chip Deselect to Data Retention Time	See Retention Waveform		0	-	-	ns
t_{R}	Operation Recovery Time			$\mathrm{trc}^{(2)}$	-	-	ns

1. $\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$
2. $\mathrm{t}_{\mathrm{RC}}=$ Read Cycle Time
3. $\mathrm{V}_{\mathrm{DR}}=3.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$

LOW $V_{c c}$ DATA RETENTION WAVEFORM (1) (\bar{E}_{1} Controlled)

LOW $V_{c c}$ DATA RETENTION WAVEFORM (2) (E_{2} Controlled)

MS6264C

AC TEST LOADS AND WAVEFORMS

- Input Pulse Levels:
- Input Pulse Rise and Fall Times:
0.6 V to 2.4 V

5ns (Transient Time between 0.8 V and 2.2 V)

- Timing Reference Levels:

Input: $\quad \mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=2.2 \mathrm{~V}$
Output: $\mathrm{V}_{\mathrm{OL}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.0 \mathrm{~V}$

- Output Load:

	$\mathbf{R}_{\mathbf{1}}$	$\mathbf{R}_{\mathbf{2}}$	\mathbf{C}_{L}	Parameter Measured
Load I	$1.8 \mathrm{~K} \Omega$	990Ω	100 pF	except $\mathrm{t}_{\mathrm{CLZ}}, \mathrm{t}_{\mathrm{OLZ}}, \mathrm{t}_{\mathrm{CHZ}}, \mathrm{t}_{\mathrm{OHZ}}$, $\mathrm{t}_{\mathrm{WLZ}}$, and $\mathrm{t}_{\mathrm{WHZ}}$
Load II	$1.8 \mathrm{KK} \Omega$	990Ω	5 pF	$\mathrm{t}_{\mathrm{CLZ}}, \mathrm{t}_{\mathrm{OLZ}}, \mathrm{t}_{\mathrm{CHZ}}, \mathrm{t}_{\mathrm{OHZ}}$, $\mathrm{t}_{\mathrm{WLZ}}$, and $\mathrm{t}_{\mathrm{WHZ}}$

KEY TO SWITCHING WAVEFORMS
$\left.\begin{array}{lll|}\hline \text { WAVEFORM } & \text { INPUTS } & \text { OUTPUTS } \\ & \begin{array}{l}\text { MUST BE } \\ \text { STEADY }\end{array} & \begin{array}{l}\text { WILL BE } \\ \text { STEADY }\end{array} \\ \text { MAY CHANGE } \\ \text { FROMHTOL }\end{array} \quad \begin{array}{l}\text { WILL BE } \\ \text { CHANGING } \\ \text { FROM HTOL }\end{array}\right\}$
*Including Jig and Stray Capacitance

AC ELECTRICAL CHARACTERISTICS (over the operating range) READ CYCLE

JEDEC PARAMETER NAME	PARAMETERNAME	PARAMETER		$\begin{gathered} \text { MS6264C-80 } \\ \text { MS6264CL-80 } \\ \text { MS6264CLL-80 } \end{gathered}$			MS6264C-10 MS6264CL-10 MS6264CLL-10			MS6264C-15 MS6264CL-15 MS6264CLL-15			UNIT
				MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
$t_{\text {AVAX }}$	t_{RC}	Read Cycle Time		80	-	-	100	-	-	150	-	-	ns
$\mathrm{t}_{\text {AVQV }}$	t_{AA}	Address Access Time		-	-	80	-	-	100	-	-	150	ns
teilav	$\mathrm{t}_{\text {ACS } 1}$	Chip Select Access Time	E_{1}	-	-	80	-	-	100	-	-	150	ns
te2HQV	$\mathrm{t}_{\text {ACS2 }}$	Chip Select Access Time	E_{2}	-	-	80	-	-	100	-	-	150	ns
t glav	toe	Output Enable to Output Valid		-	-	35	-	-	45	-	-	55	ns
$\mathrm{t}_{\text {E1Lax }}$	$\mathrm{t}_{\text {CLZ1 }}$	Chip Select to Output Low Z	\bar{E}_{1}	10	-	-	10	-	-	10	-	-	ns
$\mathrm{t}_{\text {E2Hax }}$	$\mathrm{t}_{\text {CLZ2 }}$	Chip Select to to Output Low Z	E_{2}	10	-	-	10	-	-	10	-	-	ns
tgiax	tolz	Output Enable to Output in Low Z		5	-	-	5	-	-	5	-	-	ns
$\mathrm{t}_{\text {E1HOZ }}$	$\mathrm{t}_{\mathrm{CHZ} 1}$	Chip Deselect to Output in High Z	\bar{E}_{1}	-	-	35	-	-	35	-	-	40	ns
$\mathrm{t}_{\text {E2 }}$ HQZ	$\mathrm{t}_{\mathrm{CHZ2}}$	Chip Deselect to Output in High Z	E_{2}	-	-	35	-	-	35	-	-	40	ns
$\mathrm{t}_{\text {GHQZ }}$	$\mathrm{t}_{\text {OHZ }}$	Output Disable to Output in High Z		-	-	30	-	-	35	-	-	40	ns
$\mathrm{t}_{\text {AXax }}$	t_{OH}	Output Hold from Address Change		10	-	-	10	-	-	10	-	-	ns

SWITCHING WAVEFORMS (READ CYCLE)

READ CYCLE $1^{(1,2,4)}$

READ CYCLE $\mathbf{2}^{(1,3,4)}$

READ CYCLE $3^{(1,4)}$

NOTES:

1. \bar{W} is high for READ Cycle.
2. Device is continuously selected $\bar{E}_{1}=V_{I L}$ and $E_{2}=V_{I H}$.
3. Address valid prior to or coincident with \bar{E}_{1} transition low and/or E_{2} transition high.
4. $\bar{G}=V_{i L}$.
5. Transition is measured $\pm 500 \mathrm{mV}$ from steady state with $C_{L}=5 \mathrm{pF}$ as shown in Figure 1 b . This parameter is guaranteed but not 100% tested.

MS6264C

AC ELECTRICAL CHARACTERISTICS (over the operating range)

WRITE CYCLE

JEDEC PARAMETER NAME	PARAMETER NAME	PARAMETER	$\begin{aligned} & \text { MS6264C-80 } \\ & \text { MS6264CL-80 } \\ & \text { MS6264CLL-80 } \end{aligned}$			$\begin{gathered} \text { MS6264C-10 } \\ \text { MS6264CL-10 } \\ \text { MS6264CLL-10 } \end{gathered}$			$\begin{gathered} \text { MS6264C-15 } \\ \text { MS6264CL-15 } \\ \text { MS6264CLL-15 } \end{gathered}$			UNIT
$t_{\text {AVAX }}$	$t_{\text {WC }}$	Write Cycle Time	80	-	-	100	-	-	150	-	-	ns
$\mathrm{t}_{\text {E1LWH }}$	t_{CW}	Chip Select to End of Write	60	-	-	80	-	-	100	-	-	ns
$t_{\text {AVWL }}$	$t_{\text {AS }}$	Address Set up Time	0	-	-	0	-	-	0	-	-	ns
$t_{\text {AVWH }}$	$\mathrm{t}_{\text {AW }}$	Address Valid to End of Write	60	-	-	80	-	-	100	-	-	ns
$\mathrm{t}_{\text {WLWH }}$	$t_{\text {WP }}$	Write Pulse Width	60	-	-	70	-	-	90	-	-	ns
$t_{\text {WHAX }}$	$t_{\text {WR } 1}$	Write Recovery Time $\overline{\mathrm{E}}_{1}, \overline{\mathrm{~W}}$	10	-	-	10	-	-	10	-	-	ns
$\mathrm{t}_{\text {ELLAX }}$	$t_{\text {WR2 }}$	Write Recovery Time E_{2}	10	-	-	10	-	-	10	-	-	ns
$t_{\text {WLQZ }}$	${ }_{\text {WHHZ }}$	Write to Output in High Z	-	-	30	-	-	35	-	-	40	ns
$t_{\text {DVWH }}$	$t_{\text {DW }}$	Data to Write Time Overlap	30	-	-	35	-	-	40	-	-	ns
$t_{\text {WHDX }}$	t_{DH}	Data Hold from Write Time	5	-	-	5	-	-	5	-	-	ns
$\mathrm{t}_{\text {GHQZ }}$	$\mathrm{t}_{\mathrm{OHZ}}$	Output Disable to Output in High Z										ns
$t_{\text {WHOX }}$	tow	End of Write to Output Active										ns

SWITCHING WAVEFORMS (WRITE CYCLE)

WRITE CYCLE $1^{(1)}$

WRITE CYCLE $\mathbf{2}^{(1,6)}$

NOTES:

1. \bar{W} must be high during address transitions.
2. The internal write time of the memory is defined by the overlap of \bar{E}_{1} and E_{2} active and \bar{W} low. All signals must be active to initiate a write and any one signal can terminate a write by going inactive. The data input setup and hold timing should be referenced to the second transition edge of the signal that terminates the write.
3. $T_{w R}$ is measured from the earlier of \bar{E}_{1} or \bar{W} going high or E_{2} going low at the end of write cycle.
4. During this period, $D Q$ pins are in the output state so that the input signals of opposite phase to the outputs must not be applied.
5. If the $\overline{\mathrm{E}}$, low transition or the E_{2} high transition occurs simultaneously with the $\overline{\mathrm{W}}$ low transitions or after the $\overline{\mathrm{W}}$ transition, outputs remain in a high impedance state.
6. \bar{G} is continuously low ($\overline{\mathrm{G}}=\mathrm{V}_{1}$).
7. $D_{\text {out }}$ is the same phase of write data of this write cycle.
8. D is the read data of next address.
9. If E, is low and E_{2} is high during this period, $D Q$ pins are in the output state. Then the data input signals of opposite phase to the outputs must not be applied to them.
10. Transition is measured $\pm 500 \mathrm{mV}$ from steady state with $\mathrm{C}_{\llcorner }=5 \mathrm{pF}$ as shown in Figure 1 b on page 4 . This parameter is guaranteed but not 100% tested.
11. $t_{c w}$ is measured from the later of \bar{E}_{1} going low or E_{2} going high to the end of write.

ORDERING INFORMATION

SPEED (ns)	ORDERING PART NUMBER	PACKAGE REFERENCE NO.	TEMPERATURE RANGE
80	MS6264C-80PC	$\mathrm{P} 28-4$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
80	MS6264C-80NC	$\mathrm{P} 28-5$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
80	MS6264C-80FC	$\mathrm{S} 28-5$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
100	MS6264C-10PC	$\mathrm{P} 28-4$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
100	MS6264C-10NC	$\mathrm{P} 28-5$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
100	MS6264C-10FC	$\mathrm{S} 28-5$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
150	MS6264C-15PC	$\mathrm{P} 28-4$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
150	MS6264C-15NC	$\mathrm{P} 28-5$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
150	MS6264C-15FC	$\mathrm{S} 28-5$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Note 1: For the low power part number, add "L" after the "B" and before the "-". Example MS6264BL-80PC.
Note 2: For the low/low power part number, add "LL" after the "B" and before the "-". Example MS6264BLL-80PC.

32K x 8 CMOS Static RAM

FEATURES

- High-speed - 70/85/100 ns
- Low Power dissipation:

MS62256L
225mW (Typ.) Operating
$30 \mu \mathrm{~W}$ (Typ.) Standby

- Fully static operation
- All inputs and outputs directly TTL compatible
- Three state outputs
- Ultra low data retention supply current at $V_{c C}=2 \mathrm{~V}$

DESCRIPTION

The MOSEL MS62256 is a 262,144 -bit static random access memory organized as 32,768 words by 8 bits and operates from a single 5 volt supply. It is built with MOSEL's high performance twin tub CMOS process. Inputs and three-state outputs are TTL compatible and allow for direct interfacing with common system bus structures. The MS62256 is available in a standard 28-pin 600 mil plastic DIP package and 330 mil SOP.

FUNCTIONALBLOCK DIAGRAM

PIN DESCRIPTIONS

$A_{0}-A_{14} \quad$ Address Inputs
These 15 address inputs select one of the 32768 8-bit words in the RAM.

$\bar{E} \quad$ Chip Enable Input

$\overline{\mathrm{E}}$ is active LOW. The chip enable must be active to read from or write to the device. If it is not active, the device is deselected and is in a standby power mode. The DQ pins will be in the high-impedance state when deselected.

$\overline{\mathrm{G}}$ Output Enable Input

The output enable input is active LOW. If the output enable is active while the chip is selected and the write enable is inactive, data will be present on the DQ pins and they will be enabled. The DQ pins will be in the high impedance state when $\overline{\mathrm{G}}$ is inactive.

$\overline{\mathbf{W}}$ Write Enable Input

The write enable input is active LOW and controls read and write operations. With the chip enabled, when \bar{W} is HIGH and \bar{G} is LOW, output data will be present at the DQ pins; when \bar{W} is LOW, the data present on the DQ pins will be written into the selected memory location.

$D Q_{0}-D Q_{7} \quad$ Data Input/Output Ports

These 8 bidirectional ports are used to read data from or write data into the RAM.
$V_{c c} \quad$ Power Supply

GND Ground

TRUTH TABLE

MODE	\mathbf{W}	\mathbf{E}	\mathbf{G}	I/O OPERATION
Standby	H	X	X	High Z
Read	L	L	H	DOUT
Read	L	H	H	High Z
Write	L	X	L	$\mathrm{D}_{\text {IN }}$

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

SYMBOL	PARAMETER		RATING	UNITS
V_{CC}	Supply Voltage	-0.3 to 7	V	
$\mathrm{~V}_{\mathrm{IN}}$	Input Voltage	-0.3 to 7		
$\mathrm{~V}_{\mathrm{DQ}}$	Input/Output Voltage Applied		-0.3 to 6	
$\mathrm{~T}_{\text {BIAS }}$	Temperature Under Bias	Plastic	-10 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage Temperature	Plastic	-40 to +150	${ }^{\circ} \mathrm{C}$
P_{D}	Power Dissipation	1.0	W	
$\mathrm{I}_{\text {OUT }}$	DC Output Current	50	mA	

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

OPERATING RANGE

RANGE	AMBIENT TEMPERATURE	$\mathbf{V}_{\text {CC }}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

DC ELECTRICAL CHARACTERISTICS (over the commercial operating range)

PARAMETER NAME	PARAMETER	TEST CONDITIONS		-70, -85			-10			UNITS
				MIN.	TYP.(1)	MAX.	MIN.	TYP.(1)	MAX.	
$V_{\text {IL }}$	Guaranteed Input Low Voltage ${ }^{(2)(3)}$			-0.3	-	+0.8	-0.3	-	+0.8	V
V_{IH}	Guaranteed Input High Voltage ${ }^{(2)}$			2.2	-	6.0	2.2	-	6.0	V
$1 / L$	Input Leakage Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to V_{CC}		-	-	2	-	-	2	$\mu \mathrm{A}$
${ }^{1} \mathrm{OL}$	Output Leakage Current	$\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Max}, \overline{\mathrm{E}}=\mathrm{V}_{\mathrm{IH}}, \text { or } \overline{\mathrm{G}}=\mathrm{V}_{\mathbb{I}}, \mathrm{V}_{I N}=0 \mathrm{~V} \\ & \text { to } \mathrm{V} \mathrm{~V}_{\mathrm{CC}} \end{aligned}$		-	-	2	-	-	2	$\mu \mathrm{A}$
V_{OL}	Output Low Voltage	$\mathrm{V}_{\text {CC }}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$		-	-	0.4	-	-	0.4	V
V_{OH}	Output High Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$		2.4	3.5	-	2.4	3.5	-	V
${ }_{\text {ICC }}$	Operating Power Supply Current	$\mathrm{V}_{C C}=\mathrm{Max}, \overline{\mathrm{E}}=\mathrm{V}_{\mathrm{L}}, \mathrm{I}_{1 / \mathrm{O}}=0 \mathrm{~mA}, \mathrm{~F}_{\text {max }}{ }^{(4)}$		-	-	85	-	-	70	mA
$\mathrm{I}_{\text {ccsb }}$	Standby Power Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \overline{\mathrm{E}}=\mathrm{V}_{1 \mathrm{H}}, \mathrm{I}_{1 / \mathrm{O}}=0 \mathrm{~mA}$		-	-	3	-	-	3	mA
${ }^{\text {c CSSB } 1}$	Power Down Power	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \overline{\mathrm{E}}>\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}>\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}}<0.2 \mathrm{~V} \end{aligned}$	MS62256L	-	-	0.1	-	-	0.1	mA
	Supply Current		MS62256	-	-	1	-	-	1	mA

1. Typical characteristics are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. These are absolute values with respect to device ground and all overshoots due to system or tester noise are included.
3. V_{iL} (Min.) $=-3.0 \mathrm{~V}$ for pulse width $\leq 20 \mathrm{~ns}$
4. $F_{\operatorname{MAX}}=1 / t_{R C}$.

CAPACITANCE ${ }^{(1)}\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)$

SYMBOL	PARAMETER	CONDITIONS	MAX.	UNIT
C_{IN}	Input Capacitance	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	8	pF
$\mathrm{C}_{V \mathrm{O}}$	Input/Output Capacitance	$\mathrm{V}_{I / \mathrm{O}}=0 \mathrm{~V}$	10	pF

1. This parameter is guaranteed and not tested.

DATA RETENTION CHARACTERISTICS (over the commercial operating range)

| SYMBOL | PARAMETER | TEST CONDITIONS | MIN. | TYP(2) | MAX(3) |
| :---: | :--- | :--- | :---: | :---: | :---: | UNITS

1. Applies to L verion only
. $V_{C C}=2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$
2. $V_{c c}=3 V$
3. $\mathrm{t}_{\mathrm{RC}}=$ Read Cycle Time

TIMING WAVEFORM LOW V_{cc} DATA RETENTION WAVEFORM

AC TEST CONDITIONS

Input Pulse Levels	0 V to 3.0 V
Input Rise and Fall Times	5 ns
Timing Reference Level	1.5 V

KEY TO SWITCHING WAVEFORMS

AC TEST LOADS AND WAVEFORMS

AC ELECTRICAL CHARACTERISTICS (over the commercial operating range) READ CYCLE

SWITCHING WAVEFORMS (READ CYCLE)

READ CYCLE $1^{(1)}$

READ CYCLE $\mathbf{2}^{(1,2,4)}$

READ CYCLE $3^{(1,3,4)}$

NOTES:

1. \bar{W} is High for READ Cycle.
2. Device is continuously selected $\overline{\mathrm{E}}=\mathrm{V}_{\mathrm{u}}$.
3. Address valid prior to or coincident with $\overline{\mathrm{E}}$ transition low.
4. $\bar{G}=V_{t}$.
5. Transition is measured $\pm 500 \mathrm{mV}$ from steady state with $C_{L}=5 p F$ as shown in Figure 1 b on page 4. This parameter is guaranteed and not 100% tested.

AC ELECTRICAL CHARACTERISTICS (over the commercial operating range)
WRITE CYCLE

JEDEC			MS62256L-70			MS82256L-85			MS82256L-10			
NAME	NAME	PARAMETER	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	MIN.	TYP.	max.	UNIT
$\mathrm{t}_{\text {AVAX }}$	$\mathrm{t}_{\text {wc }}$	Write Cycle Time	70	-	-	85	-	-	100	-	-	ns
$t_{\text {ELWH }}$	t_{cw}	Chip Enable to End of Write	45	-	-	60	-	-	70	-	-	ns
$\mathrm{t}_{\text {AVWL }}$	$\mathrm{t}_{\text {AS }}$	Address Set up Time	0	-	-	0	-	-	0	-	-	ns
$\mathrm{t}_{\text {AVWH }}$	$t_{\text {AW }}$	Address Valid to End of Write	65	-	-	65	-	-	70	-	-	ns
${ }^{\text {t }}$ LWLH	$\mathrm{t}_{\text {wp }}$	Write Pulse Width	40	-	-	40	\cdot	-	50	-	-	ns
$\mathrm{t}_{\text {WHAX }}$	$\mathrm{t}_{\text {WR }}$	Write Recovery Time	5	-	-	5	-	-	0	-	-	ns
${ }^{\text {twLaz }}$	${ }_{\text {t }}{ }^{\text {HHz }}$	Write to Output in High Z	0	-	25	0	-	30	0	-	35	ns
$\mathrm{t}_{\text {DVWH }}$	$\mathrm{t}_{\text {bw }}$	Data Valid to End of Write	30	-	-	30	-	-	30	-	-	ns
$\mathrm{t}_{\text {WHDX }}$	t_{DH}	Data Hold from Write Time	5	-	-	5	-	-	0	-	-	ns
$\mathrm{t}_{\text {GHZQ }}$	$\mathrm{t}_{\text {OHz }}$	Output Disable to Output in High Z	0	-	25	0	-	30	0	-	35	ns
${ }^{\text {whax }}$	tow	Output Active from End of Write	5	-	-	5	-	-	5	-	-	ns

SWITCHING WAVEFORMS (WRITE CYCLE)

WRITE CYCLE $1^{(1)}$

SWITCHING WAVEFORMS (WRITE CYCLE)

WRITE CYCLE $\mathbf{2}^{(1,6)}$

NOTES:

1. $\overline{\mathrm{W}}$ must be high during address transitions.
2. The internal write time of the memory is defined by the overlap $\overline{\mathrm{E}}$ active and $\overline{\mathrm{W}}$ low. Both signals must be active to initiate and any one signal can terminate a write by going inactive. The data input setup and hold timing should be referenced to the second transition edge of the signal that terminates the write.
3. $T_{w R}$ is measured from the earlier of \bar{E} or \bar{W} going high at the end of write cycle.
4. During this period, DQ pins are in the output state so that the input signals of opposite phase to the outputs must not be applied.
5. If the \bar{E} low transition occurs simultaneously with the \bar{W} low transitions or after the \bar{W} low transition, outputs remain in a high impedance state.
6. $\overline{\mathrm{G}}$ is continuously low ($\overline{\mathrm{G}}=\mathrm{V}_{\mathrm{u}}$).
7. $D_{\text {out }}$ is the same phase of write data of this write cycle.
8. $D_{\text {out }}$ is the read data of next address.
9. If E is low during this period, DQ pins are in the output state. Then the data input signals of opposite phase to the outputs must not be applied to them.
10. Transition is measured $\pm 500 \mathrm{mV}$ from steady state with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as shown in Figure 1 b on page 4. This parameter is guaranteed and not 100% tested.
11. t_{cw} is measured from \bar{E} going low to the end of write.

ORDERING INFORMATION

SPEED (ns)	ORDERING PART NUMBER	PACKAGE REFERENCE NO.	TEMPERATURE RANGE
70	MS62256L-70FC	S28-3	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
70	MS62256L-70PC	$\mathrm{P} 28-1$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
85	MS62256L-85FC	$\mathrm{S} 28-3$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
85	MS62256L-85PC	$\mathrm{P} 28-1$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
100	MS62256L-10FC	$\mathrm{S} 28-2$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
100	MS62256L-10PC	P28-1	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

32K x 8 High Speed CMOS Static RAM

FEATURES

- High-speed - 25/35/45/55 ns
- Low Power dissipation:

MS62256AL
225mW (Typ.) Operating
$30 \mu \mathrm{~W}$ (Typ.) Standby

- Fully static operation
- All inputs and outputs directly TTL compatible
- Three state outputs
- Ultra low data retention supply current at $\mathrm{V}_{\mathrm{cc}}=2 \mathrm{~V}$

DESCRIPTION

The MOSEL MS62256A is a 262,144 -bit static random access memory organized as 32,768 words by 8 bits and operates from a single 5 volt supply. It is built with MOSEL's high performance twin tub CMOS process. Inputs and three-state outputs are TTL compatible and allow for direct interfacing with common system bus structures. The MS62256A is available in a standard 28pin 600 mil plastic DIP package.

PIN CONFIGURATIONS

FUNCTIONALBLOCK DIAGRAM

PIN DESCRIPTIONS

$A_{0}-A_{14} \quad$ Address Inputs
These 15 address inputs select one of the 32768 8-bit words in the RAM.

\bar{E} Chip Enable Input

\bar{E} is active LOW. The chip enable must be active to read from or write to the device. If it is not active, the device is deselected and is in a standby power mode. The DQ pins will be in the high-impedance state when deselected.

$\overline{\mathbf{G}}$ Output Enable Input

The output enable input is active LOW. If the output enable is active while the chip is selected and the write enable is inactive, data will be present on the DQ pins and they will be enabled. The DQ pins will be in the high impedance state when $\overline{\mathrm{G}}$ is inactive.

\bar{W} Write Enable Input

The write enable input is active LOW and controls read and write operations. With the chip enabled, when \bar{W} is HIGH and \bar{G} is LOW, output data will be present at the DQ pins; when \bar{W} is LOW, the data present on the DQ pins will be written into the selected memory location.

$D Q_{0}-D Q_{7} \quad$ Data Input/Output Ports

These 8 bidirectional ports are used to read data from or write data into the RAM.

V_{cc}	Power Supply
GND	Ground

TRUTH TABLE

MODE	$\overline{\mathbf{E}}$	$\overline{\mathbf{G}}$	$\overline{\mathbf{W}}$	I/O OPERATION
Standby	H	X	X	High Z
Read	L	L	H	D Out
Read	L	H	H	High Z
Write	L	X	L	$\mathrm{D}_{\text {IN }}$

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

SYMBOL	PARAMETER		RATING	UNITS
$\mathrm{V}_{\text {CC }}$	Supply Voltage		-0.3 to 7	
$\mathrm{V}_{\text {IN }}$	Input Voltage		-0.3 to 7	v
V_{DQ}	Input/Output Voltage Applied		-0.3 to 6	
$\mathrm{T}_{\text {BIAS }}$	Temperature Under Bias	Plastic	-10 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage Temperature	Plastic	-40 to +150	${ }^{\circ} \mathrm{C}$
P_{D}	Power Dissipation		1.0	W
lout	DC Output Current		50	mA

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

OPERATING RANGE

RANGE	AMBIENT TEMPERATURE	V $_{\text {CC }}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

DC ELECTRICAL CHARACTERISTICS (over the commercial operating range)

PARAMETER NAME	PARAMETER	TEST CONDITIONS	MS62256A			UNITS
			MIN.	TYP.(1)	MAX.	
$\mathrm{V}_{1 \mathrm{~L}}$	Guaranteed Input Low Voltage ${ }^{(2,3)}$		-0.3	-	0.8	V
V_{IH}	Guaranteed Input High Voltage ${ }^{(2)}$		2.2	-	6.0	V
ILL	Input Leakage Current	$\mathrm{V}_{\text {CC }}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {CC }}$	-	-	2	$\mu \mathrm{A}$
l_{OL}	Output Leakage Current	$\mathrm{V}_{\mathrm{CC}}=$ Max, $\overline{\mathrm{E}}=\mathrm{V}_{\text {IH }}$ or $\overline{\mathrm{G}}=\mathrm{V}_{1 H}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$ to V_{CC}	-	-	2	$\mu \mathrm{A}$
$\mathrm{V}_{\text {OL }}$	Output Low Voltage	$\mathrm{V}_{\mathrm{CC}} \equiv \mathrm{Min}, \mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}$	-	-	0.4	V
V_{OH}	Output High Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$	2.4	-	-	V
I_{CC}	Operating Power Supply Current	$\mathrm{V}_{\mathrm{CC}}=$ Max, $\overline{\mathrm{E}}=\mathrm{V}_{\mathrm{LL}}, \mathrm{I}_{\mathrm{DQ}}=0 \mathrm{~mA}, \mathrm{~F}=\mathrm{F}_{\mathrm{max}}{ }^{(4)}$	-	-	120	mA
$\mathrm{I}_{\text {cCsB }}$	Standby Power Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \overline{\mathrm{E}}=\mathrm{V}_{\mathrm{IH}}, \mathrm{I}_{\mathrm{DQ}}=0 \mathrm{~mA}$	-	-	20	mA
$\mathrm{I}_{\text {CCSB } 1}$	Power Down Power Supply Current	$\mathrm{V}_{C C}=$ Max, $\overline{\mathrm{E}}>\mathrm{V}_{\text {CC }}-0.2 \mathrm{~V}$	-	$-$	2	mA
		$\mathrm{V}_{\text {IN }}>\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$ or $\mathrm{V}_{\text {IN }}<0.2 \mathrm{~V}$	-	-	.$^{(5)}$	

1. Typical characteristics are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. These are absolute values with respect to device ground and all overshoots due to system or tester noise are included.
3. $V_{I L}$ (Min.) $=-3.0 \mathrm{~V}$ for pulse width $\leq 20 \mathrm{~ns}$
4. $F_{M A X}=1 / t_{R C}$.
5. L version only.

CAPACITANCE ${ }^{(1)}\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)$

SYMBOL	PARAMETER	CONDITIONS	MAX.	UNIT
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\mathbb{I N}}=0 \mathrm{~V}$	8	pF
$\mathrm{C}_{V O}$	Input/Output Capacitance	$\mathrm{V}_{1 / \mathrm{O}}=0 \mathrm{~V}$	10	pF

1. This parameter is guaranteed and not tested.

DATA RETENTION CHARACTERISTICS (over the commercial operating range)

SYMBOL	PARAMETER	TEST CONDITIONS	MIN.	TYP(1)	MAX ${ }^{(2)}$	UNITS
V_{DR}	V_{CC} for Data Retention	$\begin{aligned} & E \geq V_{C C}-0.2 \mathrm{~V}, \overline{\mathrm{G}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \end{aligned}$	2.0	-	-	V
$I_{\text {CCDR }}$	Data Retention Current	$\begin{aligned} & \bar{E} \geq V_{C C}-0.2 \mathrm{~V}, \bar{G} \geq V_{C C}-0.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \end{aligned}$	-	2	50	$\mu \mathrm{A}$
$t_{\text {cor }}$	Chip Deselect to Data Retention Time	See Retention Waveform	0	-	-	ns
$t_{\text {R }}$	Operation Recovery Time		$\mathrm{t}_{\mathrm{RC}}{ }^{(3)}$	-	-	ns

. $\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$
2. $V_{C C}=3 V$
3. $t_{\mathrm{RC}}=$ Read Cycle Time

TIMING WAVEFORM LOW V ${ }_{c c}$ DATA RETENTION WAVEFORM

MS62256A

AC TEST CONDITIONS

Input Pulse Levels	0 V to 3.0 V
Input Rise and Fall Times	5 ns
Timing Reference Level	1.5 V

KEY TO SWITCHING WAVEFORMS

WAVEFORM	INPUTS	OUTPUTS
	MUST BE STEADY	WILL BE STEADY
MAY CHANGE		
FROM HTOL		

AC TEST LOADS AND WAVEFORMS

AC ELECTRICAL CHARACTERISTICS (over the commercial operating range)
READ CYCLE

			MS62256A-25		MS62256A-35		MS62256A-45		MS62256A-55		
NAME	NAME	PARAMETER	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	UNIT
$\mathrm{t}_{\text {AVAX }}$	t_{RC}	Read Cycle Time	25	-	35	-	45	-	55	-	ns
$\mathrm{t}_{\text {AVQV }}$	$t_{\text {AA }}$	Address Access Time	-	25	-	35	-	45	-	55	ns
telov	$\mathrm{t}_{\text {ACS }}$	Chip Enable Access Time	-	25	-	35	-	45	-	55	ns
$\mathrm{t}_{\text {GLQX }}$	toe	Output Enable to Output Valid	-	15	-	20	-	20	-	25	ns
$\mathrm{t}_{\text {EHQZ }}$	$\mathrm{t}_{\text {cLZ }}$	Chip Enable to Output Low Z	5	-	5	-	5	-	5	-	ns
$\mathrm{t}_{\text {GLQ }}$	tolz	Output Enable to Output in Low Z	0	-	0	-	0	-	0	-	ns
$\mathrm{t}_{\text {EHOZ }}$	${ }_{\text {t }}$	Chip Disable to Output in High Z	-	15	-	20	-	20	0	25	ns
$\mathrm{t}_{\mathrm{GHQZ}}$	$\mathrm{t}_{\mathrm{OHz}}$	Output Disable to Output in High Z	-	15	-	20	-	20	0	25	ns
$\mathrm{t}_{\text {Axax }}$	t_{OH}	Output Hold from Address Change	5	-	5	-	5	-	5	-	ns

SWITCHING WAVEFORMS (READ CYCLE)

READ CYCLE $1^{(1)}$

READ CYCLE $\mathbf{2}^{(1,2,4)}$

READ CYCLE $3^{(1,3,4)}$

NOTES:

1. \bar{W} is High for READ Cycle.
2. Device is continuously selected $\overline{\mathrm{E}}=\mathrm{V}_{\mathrm{IL}}$.
3. Address valid prior to or coincident with \bar{E} transition low.
4. $\overline{\mathrm{G}}=\mathrm{V}_{\mathrm{IL}}$.
5. Transition is measured $\pm 500 \mathrm{mV}$ from steady state with $C_{L}=5 p F$ as shown in Figure $1 b$ on page 4. This parameter is guaranteed and not 100\% tested.

AC ELECTRICAL CHARACTERISTICS (over the commercial operating range)

WRITE CYCLE

JEDEC PARAMETER NAME	PARAMETER NAME	PARAMETER	MS62256A-25		MS62256A-35		MS62256A-45		MS62256A-55		UNIT
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
$t_{\text {AVAX }}$	$t_{\text {wc }}$	Write Cycle Time	25	-	35	-	45	-	55	-	ns
$\mathrm{t}_{\text {ELWH }}$	${ }^{\text {c }}$ CW	Chip Enable to End of Write	20	-	30	-	40	-	50	-	ns
$\mathrm{t}_{\text {AVWL }}$	$t_{\text {AS }}$	Address Set up Time	0	-	0	-	0	-	0	-	ns
$\mathrm{t}_{\text {AVWH }}$	$t_{\text {AW }}$	Address Valid to End of Write	20	-	30	-	40	-	50	-	ns
$t_{\text {WLWH }}$	$t_{\text {WP }}$	Write Pulse Width	20	-	25	-	30	-	35	-	ns
$\mathrm{t}_{\text {WHAX }}$	$t_{\text {WR }}$	Write Recovery Time	0	-	3	-	3	-	3	-	ns
$\mathrm{t}_{\text {WL.QZ }}$	$\mathrm{t}_{\mathrm{WHZ}}$	Write to Output in High Z	0	15	0	20	0	25	0	30	ns
$t_{\text {DVWH }}$	$t_{\text {DW }}$	Data to Write Time Overlap	15	-	20	-	20	-	25	-	ns
$t_{\text {WHDX }}$	t_{DH}	Data Hold from Write Time	0	-	0	-	0	-	0	-	ns
$\mathrm{t}_{\text {GHQZ }}$	$\mathrm{t}_{\mathrm{OHZ}}$	Output Disable to Output in High Z	0	15	0	20	0	20	0	25	ns
$\mathrm{t}_{\text {WHOX }}$	tow	Output Active from End of Write	5	-	5	-	5	-	5	-	ns

SWITCHING WAVEFORMS (WRITE CYCLE)

WRITE CYCLE $1^{(1)}$

SWITCHING WAVEFORMS (WRITE CYCLE)

WRITE CYCLE $\mathbf{2}^{(1,6)}$

NOTES:

1. \bar{W} must be high during address transitions.
2. The internal write time of the memory is defined by the overlap $\overline{\mathrm{E}}$ active and \bar{W} low. Both signals must be active to initiate and any one signal can terminate a write by going inactive. The data input setup and hold timing should be referenced to the second transition edge of the signal that terminates the write.
3. $T_{W R}$ is measured from the earlier of \bar{E} or \bar{W} going high at the end of write cycle.
4. During this period, DQ pins are in the output state so that the input signals of opposite phase to the outputs must not be applied.
5. If the \bar{E} low transition occurs simultaneously with the \bar{W} low transitions or after the \bar{W} low transition, outputs remain in a high impedance state.
6. \bar{G} is continuously low $\left(\bar{G}=V_{L L}\right)$.
7. $D_{\text {out }}$ is the same phase of write data of this write cycle.
8. $\mathrm{D}_{\text {Out }}$ is the read data of next address.
9. If \bar{E} is low during this period, $D Q$ pins are in the output state. Then the data input signals of opposite phase to the outputs must not be applied to them.
10. Transition is measured $\pm 500 \mathrm{mV}$ from steady state with $C_{L}=5 \mathrm{pF}$ as shown in Figure 1 b on page 4. This parameter is guaranteed and not 100% tested.
11. t_{cw} is measured from $\overline{\mathrm{E}}$ going low to the end of write.

ORDERING INFORMATION

SPEED (ns)	ORDERING PART NUMBER	PACKAGE REFERENCE NO.	TEMPERATURE RANGE
25	MS62256A-25PC	P28-1	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
25	MS62256AL-25PC		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
35	MS62256A-35PC		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
35	MS62256AL-35PC		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
45	MS62256A-45PC		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
45	MS62256AL-45PC		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
55	MS62256A-55PC		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
55	MS62256AL-55PC		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

ADVANCE INFORMATION

FEATURES

- High-speed - 70/100/120/150 ns
- Low Power dissipation:
- 440mW (Max) Operating
- 16.5mW (Max) Standby
- 5.5 mW (Max) Power-down (MS62256B)
- 0.55mW (Max) Power-down (MS62256BL/BLL)
- Fully static operation
- All inputs and outputs directly TTL compatible
- Three state outputs
- Ultra low data retention supply current at $\mathrm{V}_{\mathrm{cc}}=2 \mathrm{~V}$

32K x 8 CMOS Static RAM

DESCRIPTION

The MOSEL MS62256B is a 262,144-bit static random access memory organized as 32,768 words by 8 bits and operates from a single 5 volt supply. It is built with MOSEL's high performance twin tub CMOS process. Inputs and three-state outputs are TTL compatible and allow for direct interfacing with common system bus structures. The MS62256B is available in a standard 28pin 600 mil plastic DIP package and 330 mil SOP.

PIN CONFIGURATIONS

FUNCTIONAL BLOCK DIAGRAM

PIN DESCRIPTIONS

A_{0} - $\mathbf{A}_{14} \quad$ Address Inputs
These 15 address inputs select one of the 32768 8-bit words in the RAM.

\bar{E} Chip Enable Input

$\overline{\mathrm{E}}$ is active LOW. The chip enable must be active to read from or write to the device. If it is not active, the device is deselected and is in a standby power mode. The DQ pins will be in the high-impedance state when deselected.

$\overline{\mathbf{G}}$ Output Enable Input

The output enable input is active LOW. If the output enable is active while the chip is selected and the write enable is inactive, data will be present on the DQ pins and they will be enabled. The DQ pins will be in the high impedance state when $\overline{\mathrm{G}}$ is inactive.

$\bar{W} \quad$ Write Enable Input

The write enable input is active LOW and controls read and write operations. With the chip enabled, when \bar{W} is HIGH and \bar{G} is LOW, output data will be present at the DQ pins; when \bar{W} is LOW, the data present on the DQ pins will be written into the selected memory location.

$\mathrm{DQ}_{1}-\mathrm{DQ}_{8} \quad$ Data Input/Output Ports

These 8 bidirectional ports are used to read data from or write data into the RAM.
$V_{c c} \quad$ Power Supply
GND Ground

TRUTH TABLE

MODE	$\overline{\text { E }}$	$\overline{\mathbf{G}}$	$\overline{\mathbf{W}}$	I/O OPERATION
Standby	H	X	X	High Z
Read	L	L	H	$\mathrm{D}_{\text {OUT }}$
Read	L	H	H	High Z
Write	L	X	L	$\mathrm{D}_{\text {IN }}$

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

SYMBOL	PARAMETER	RATING	UNITS
V_{CC}	Supply Voltage	-0.5 to 7	V
$\mathrm{~V}_{\mathrm{IN}}$	Input Voltage	-0.5 to 7	
$\mathrm{~V}_{\mathrm{DQ}}$	Input/Output Voltage Applied	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	
$\mathrm{~T}_{\mathrm{BIAS}}$	Temperature Under Bias	-10 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-40 to +125	${ }^{\circ} \mathrm{C}$
P_{D}	Power Dissipation	1.0	W
$\mathrm{I}_{\text {OUT }}$	DC Output Current	25	mA

[^4]
OPERATING RANGE

RANGE	TEMPERATURE	V $_{\text {cc }}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

DC ELECTRICAL CHARACTERISTICS (over the commercial operating range)

PARAMETER NAME	PARAMETER	TEST CONDITIONS		MIN.	$\begin{gathered} -70 \\ \text { TYP.(1) } \end{gathered}$	MAX.	MIN.	$\begin{aligned} & \text { 10/12/1! } \\ & \text { TYP.(1) } \end{aligned}$	MAX.	UNITS
$V_{\text {IL }}$	Guaranteed Input LOW Voltage ${ }^{(2)(3)}$			-0.3	-	+0.8	-0.3	-	+0.8	V
V_{IH}	Guaranteed Input HIGH Voltage ${ }^{(2)}$			2.2		$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}}+ \\ 0.3 \\ \hline \end{gathered}$	2.2		$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}}+ \\ 0.3 \end{gathered}$	V
$\mathrm{I}_{\text {IL }}$	Input Leakage Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to V_{CC}		-1	-	1	-1	-	1	$\mu \mathrm{A}$
$\mathrm{IOL}^{\text {a }}$	Output Leakage Current	$\mathrm{V}_{\mathrm{CC}}=$ Max, $\overline{\mathrm{E}}=\mathrm{V}_{\mathbb{H}}, \mathrm{V}_{\mathbb{I N}}=0 \mathrm{~V}$ to V_{CC}		-1	-	1	-1	-	1	$\mu \mathrm{A}$
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{\mathrm{OL}}=2.1 \mathrm{~mA}$		-	-	0.4	-	-	0.4	V
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$		2.4	3.5	-	2.4	3.5	-	V
I_{CC}	Operating Power Supply Current	$\mathrm{V}_{\mathrm{CC}}=\operatorname{Max}, \overline{\mathrm{E}}=\mathrm{V}_{\mathrm{IL}}, \mathrm{I}_{1 / \mathrm{O}}=0 \mathrm{~mA}, \mathrm{~F}=\mathrm{F}_{\mathrm{max}}{ }^{(4)}$		-	-	80	-	-	70	mA
$I_{\text {ccsb }}$	Standby Power Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \overline{\mathrm{E}}=\mathrm{V}_{1 \mathrm{H}}, \mathrm{I}_{1 / \mathrm{O}}=0 \mathrm{~mA}$		-	-	3	-	-	3	mA
$\mathrm{I}_{\text {ccsB } 1}$	Power Down Power Supply Current	$\mathrm{V}_{\mathrm{CC}}=\operatorname{Max}, \overline{\mathrm{E}}>\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$	MS62256BL/LL	-	-	0.1	-	-	0.1	mA
			MS62256B	-	-	1.0	-	-	1.0	

1. Typical characteristics are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. These are absolute values with respect to device ground and all overshoots due to system or tester noise are included.
3. V_{IL} (Min.) $=-3.0 \mathrm{~V}$ for pulse width $\leq 20 \mathrm{~ns}$
4. $F_{M A X}=1 / t_{R C}$.

CAPACITANCE ${ }^{(1)}\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)$

SYMBOL	PARAMETER	CONDITIONS	MAX.	UNIT
$\mathrm{C}_{\mathbb{I}}$	Input Capacitance	$\mathrm{V}_{\mathbb{I N}}=0 \mathrm{~V}$	7	pF
$\mathrm{C}_{V O}$	Input/Output Capacitance	$\mathrm{V}_{\mathrm{I} / \mathrm{O}}=0 \mathrm{~V}$	8	pF

1. This parameter is guaranteed and not tested.

DATA RETENTION CHARACTERISTICS (over the commercial operating range)

SYMBOL	PARAMETER		TEST CONDITIONS	MIN.	TYP. ${ }^{1}$)	MAX	UNITS
$V_{\text {DR }}$	$\mathrm{V}_{\text {cC }}$ for Data Retention		$\overline{\mathrm{E}} \geq \mathrm{V}_{\mathrm{cc}}-0.2 \mathrm{~V}$	2.0	-	5.5	V
$\mathrm{I}_{\text {CCDR }}$	Data Retention Current	MS62256B		-	2	1.0	mA
		MS62256BL	$\mathrm{V}_{\mathrm{DR}}=3.0 \mathrm{~V}, \overline{\mathrm{E}} \geq \mathrm{V}_{\mathrm{DR}}-0.2 \mathrm{~V}^{(2)}$	-	1.0	50	$\mu \mathrm{A}$
		MS62256BLL		-	1.0	5.0	$\mu \mathrm{A}$
$\mathrm{t}_{\text {cDR }}$	Chip Deselect to Data Retention Time		See Retention Waveform	0	-	-	ns
t_{R}	Operation Recovery Time			$\mathrm{t}_{\mathrm{RC}}{ }^{(3)}$	-	-	ns

1. $\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$
2. $\mathrm{T}_{\mathrm{A}}=40^{\circ} \mathrm{C}$
3. $t_{R C}=$ Read Cycle Time

TIMING WAVEFORM LOW V_{cc} DATA RETENTION WAVEFORM

AC TEST CONDITIONS

Input Pulse Levels	0 V to 3.0 V
Input Rise and Fall Times	5 ns
Timing Reference Level	1.5 V

KEY TO SWITCHING WAVEFORMS

AC TEST LOADS AND WAVEFORMS

AC ELECTRICAL CHARACTERISTICS (over the commercial operating range) READ CYCLE

JEDEC PARAMETER NAME	PARAMETER NAME	PARAMETER	$\begin{aligned} & \text { MS62256B-70 } \\ & \text { MIN. TYP. MAX. } \end{aligned}$	$\begin{aligned} & \text { MS62256B-10 } \\ & \text { MIN. TYP. MAX. } \end{aligned}$	$\begin{aligned} & \text { MS62256B-12 } \\ & \text { MIN. TYP. MAX } \end{aligned}$	$\begin{aligned} & \text { MS62256B-15 } \\ & \text { MIN. TYP. MAX. } \end{aligned}$	UNIT
$t_{\text {AVAX }}$	t_{RC}	Read Cycle Time	70	100	120	150	ns
$t_{\text {AVQV }}$	$t_{\text {AA }}$	Address Access Time	70	100	- 120	- 150	ns
$t_{\text {ELQV }}$	$\mathrm{t}_{\text {ACS }}$	Chip Enable Access Time	70	100	120	150	ns
$\mathrm{t}_{\text {GLQX }}$	t_{OE}	Output Enable to Output Valid	35	50	50	60	ns
$t_{\text {EHQZ }}$	$\mathrm{t}_{\text {CLZ }}$	Chip Enable to Output Low Z	5	10	10	10	ns
$\mathrm{t}_{\text {GLQX }}$	tolz	Output Enable to Output in Low Z	5	10	10	10	ns
$\mathrm{t}_{\text {EHQZ }}$	$\mathrm{t}_{\mathrm{CHZ}}$	Chip Disable to Output in High Z	0 30	$0 \quad 35$	$0 \quad 40$	50	ns
$\mathrm{t}_{\mathrm{GHQZ}}$	$\mathrm{t}_{\mathrm{OHZ}}$	Output Disable to Output in High Z	030	0	0	50	ns
$\mathrm{t}_{\text {AXQX }}$	t_{OH}	Output Hold from Address Change	10	10	20	20	ns

SWITCHING WAVEFORMS (READ CYCLE)

READ CYCLE $1^{(1)}$

READ CYCLE $\mathbf{2}^{(1,2,4)}$

READ CYCLE $3^{(1,3,4)}$

NOTES:

1. \bar{W} is High for READ Cycle.
2. Device is continuously selected $\overline{\mathrm{E}}=\mathrm{V}_{\mathrm{tL}}$.
3. Address valid prior to or coincident with \bar{E} transition low.
4. $\bar{G}=V_{n}$.
5. Transition is measured $\pm 500 \mathrm{mV}$ from steady state with $C_{L}=5 p F$ as shown in Figure 1 b on page 4 . This parameter is guaranteed and not 100% tested.

AC ELECTRICAL CHARACTERISTICS (over the commercial operating range)

WRITE CYCLE

JEDEC PARAMETER NAME	PARAMETER NAME	PARAMETER	$\begin{aligned} & \text { MS62256B-70 } \\ & \text { MIN. TYP. MAX. } \end{aligned}$	$\begin{array}{\|l\|} \text { MS62256B-10 } \\ \text { MIN. TYP. MAX } \\ \hline \end{array}$	$\begin{aligned} & \text { MS62256B-12 } \\ & \text { MIN. TYP. MAX. } \end{aligned}$	$\begin{aligned} & \text { MS62256B-15 } \\ & \text { MIN. TYP. MAX } \end{aligned}$	UNIT
$t_{\text {AVAX }}$	$t_{\text {wc }}$	Write Cycle Time	70	100	120	100	ns
$\mathrm{t}_{\text {ELWH }}$	t_{CW}	Chip Enable to End of Write	45	70	85	100	ns
$\mathrm{t}_{\text {AVWL }}$	$t_{\text {AS }}$	Address Set up Time	0	0	0	0	ns
$\mathrm{t}_{\text {AVWH }}$	$\mathrm{t}_{\text {AW }}$	Address Valid to End of Write	65	70	85	180	ns
$t_{\text {WLWH }}$	$t_{\text {WP }}$	Write Pulse Width	40	50	70	90	ns
$t_{\text {WHAX }}$	$t_{\text {WR }}$	Write Recovery Time	5	5	5	5	ns
$t_{\text {WLQZ }}$	$t_{W H Z}$	Write to Output in High Z	025	035	0	50	ns
$t_{\text {DVWH }}$	$\mathrm{t}_{\text {DW }}$	Data Valid to End of Write	30	30	45	50	ns
$t_{\text {WHDX }}$	$t_{\text {DH }}$	Data Hold from Write Time	5	10	0	0	ns
$\mathrm{t}_{\text {GHZQ }}$	$\mathrm{t}_{\mathrm{OHZ}}$	Output Disable to Output in High Z	025	$0 \quad 35$	$0 \quad 40$	45	ns
$\mathrm{t}_{\text {WHQX }}$	tow	Output Active from End of Write	5	5	5	5	ns

SWITCHING WAVEFORMS (WRITE CYCLE)

WRITE CYCLE $1^{(1)}$

SWITCHING WAVEFORMS (WRITE CYCLE)

WRITE CYCLE $\mathbf{2}^{(1,6)}$

NOTES:

1. \bar{W} must be high during address transitions.
2. The internal write time of the memory is defined by the overlap $\overline{\mathrm{E}}$ active and $\overline{\mathrm{W}}$ low. Both signals must be active to initiate and any one signal can terminate a write by going inactive. The data input setup and hold timing should be referenced to the second transition edge of the signal that terminates the write.
3. $T_{W A}$ is measured from the earlier of E or \bar{W} going high at the end of write cycle.
4. During this period, $D Q$ pins are in the output state so that the input signals of opposite phase to the outputs must not be applied.
5. If the \bar{E} low transition occurs simultaneously with the \bar{W} low transitions or after the \bar{W} low transition, outputs remain in a high impedance state.
6. $\overline{\mathrm{G}}$ is continuously low $\left(\overline{\mathrm{G}}=\mathrm{V}_{11}\right)$.
7. $D_{\text {out }}$ is the same phase of write data of this write cycle.
8. $D_{\text {OuT }}$ is the read data of next address.
9. If E is low during this period, $D Q$ pins are in the output state. Then the data input signals of opposite phase to the outputs must not be applied to them.
10. Transition is measured $\pm 500 \mathrm{mV}$ from steady state with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as shown in Figure 1 b on page 4. This parameter is guaranteed and not 100% tested.
11. t_{cw} is measured from $\overline{\mathrm{E}}$ going low to the end of write.

ORDERING INFORMATION

SPEED (ns)	ORDERING PART NUMBER	PACKAGE REFERENCE NO.	TEMPERATURE RANGE
70	MS62256B-70PC	P28-4	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
70	MS62256B-70FC	$\mathrm{S} 28-5$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
100	MS62256B-10PC	P28-4	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
100	MS62256B-10FC	$\mathrm{S} 28-5$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
120	MS62256B-12PC	P28-4	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
120	MS62256B-12FC	S28-5	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
150	MS62256B-15PC	P28-4	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
150	MS62256B-15FC	$\mathrm{S} 28-5$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Note 1: For the low power part number, add an L after the " B " and before the "-". Example MS62256BL-70PC
Note 2: For the low/low power part number, add an "LL" after the "B" and before the "-". Example MS62256BLL-70PC.

$128 \mathrm{~K} \times 8$ CMOS Static RAM Module

FEATURES

- Compatible with JEDEC standard pinout for monolithic megabit 128K x 8
- 600 mil wide JEDEC footprint
- Available in $100 / 120$ ns versions
- Low Power dissipation:

250mW (Typ.) Operating
10mW (Typ.) Standby

- Fully static operation
- All inputs and outputs directly TTL compatible
- Three state outputs

DESCRIPTION

The Mosel MS88128 is a 1 Megabit ($1,048,576$ bits) static random access memory module organized as 128 K $(131,072)$ words by 8 bits. It is built using four surface mounted $32 \mathrm{~K} x 8$ static RAMs and a single surface mounted 1 of 4 decoder buried in the substrate to provide compatibility with the JEDEC $128 \mathrm{~K} \times 8$ pin definitions. The MS88128 is offered in a 600 mil wide 32 pin dual-in-line package.

PIN CONFIGURATIONS

FUNCTIONAL BLOCK DIAGRAM

PIN DESCRIPTIONS

$A_{0}-A_{16}$ Address Inputs

These 17 address inputs select one of the 131,072 8-bit words in the RAM.

\bar{E} Chip Enable Input

\bar{E} is active LOW. The chip enable must be active to read from or write to the device. If it is not active, the device is deselected and is in a standby power mode. The DQ pins will be in the high-impedance state when deselected.

$\overline{\mathbf{G}}$ Output Enable Input

The output enable inputs are active LOW. If the output enable is active while the chip is selected and the write enable is inactive, data will be present on the DQ pins and they will be enabled. The DQ pins will be in the high impedance state when $\overline{\mathrm{G}}$ is inactive.

$\overline{\text { W }}$ Write Enable Input

The write enable input is active LOW and controls read and write operations. With the chip enabled, when \bar{W} is HIGH and $\overline{\mathrm{G}}$ is LOW, output data will be present at the DQ pins; when \bar{W} is LOW, the data present on the DQ pins will be written into the selected memory location.

DQ 0_{0} - DQ $\mathbf{7}_{7}$ Data Input/Output Ports

These 8 bidirectional ports are used to read data from or write data into the RAM.

$V_{c c} \quad$ Power Supply
GND Ground

TRUTH TABLE

MODE	$\overline{\mathbf{E}}$	$\overline{\mathbf{G}}$	$\overline{\mathbf{W}}$	I/O OPERATION
Standby	H	X	X	High Z
Read	L	L	H	Dout $^{\text {L }}$
Output Disabled	L	H	H	High Z
Write	L	X	L	$\mathrm{D}_{\text {IN }}$

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

SYMBOL	PARAMETER		RATING	UNITS
V_{CC}	Supply Voltage	-0.3 to 7	V	
$\mathrm{~V}_{\text {IN }}$	Input Voltage	-0.3 to 7		
$\mathrm{~V}_{\mathrm{DQ}}$	Input/Output Voltage Applied		-0.3 to 6	
$\mathrm{~T}_{\text {BIAS }}$	Temperature Under Bias	Plastic	-10 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage Temperature	Plastic	-65 to +150	${ }^{\circ} \mathrm{C}$
P_{D}	Power Dissipation	1.0	W	
$\mathrm{I}_{\text {OUT }}$	DC Output Current	20	mA	

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

OPERATING RANGE

RANGE	AMBIENT TEMPERATURE	V $_{\text {CC }}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

DC ELECTRICAL CHARACTERISTICS (over the commercial operating range)

PARAMETER NAME	PARAMETER	TEST CONDITIONS	MS88128			UNITS
			MIN.	TYP. (1)	MAX.	
$\mathrm{V}_{\text {IL }}$	Guaranteed Input Low Voltage ${ }^{(2)}$		-0.3	-	+0.8	V
V_{IH}	Guaranteed Input High Voltage ${ }^{(2)}$		2.2	-	6.0	V
ILL	Input Leakage Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {CC }}$	-	-	10	$\mu \mathrm{A}$
loL	Output Leakage Current	$\mathrm{V}_{\text {CC }}=$ Max, $\overline{\mathrm{E}}=\mathrm{V}_{\text {IH }}$, or $\overline{\mathrm{G}}=\mathrm{V}_{\text {IH }}, \mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {CC }}$	-	-	10	$\mu \mathrm{A}$
V_{OL}	Output Low Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{\mathrm{OL}}=2.1 \mathrm{~mA}$	-	-	0.4	V
V_{OH}	Output High Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$	2.4	-	-	V
I_{CC}	Operating Power Supply Current	$\mathrm{V}_{\text {CC }}=\mathrm{Max}, \overline{\mathrm{E}}=\mathrm{V}_{\mathrm{IL}}, \mathrm{I}_{\mathrm{i} / \mathrm{O}}=0 \mathrm{~mA}, \mathrm{~F}_{\text {max }}{ }^{(3)}$	-	50	95	mA
$\mathrm{I}_{\text {CCsB }}$	Standby Power Supply Current	$V_{C C}=$ Max, $\bar{E} \geq V_{H}$	-	2	15	mA
$\mathrm{I}_{\text {ccsb } 1}$	Power Down Power Supply Current	$\begin{aligned} & V_{C C}=M a x, \bar{E}>V_{C C}-0.2 \mathrm{~V}, V_{I N}>V_{C C}-0.2 \mathrm{~V} \text { or } V_{I N}< \\ & 0.2 \mathrm{~V} \end{aligned}$	-	50	500	$\mu \mathrm{A}$

1. Typical characteristics are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. These are absolute values with respect to device ground and all overshoots due to system or tester noise are included.
3. $F_{\text {MAX }}=1 / \mathrm{t}_{\mathrm{RC}}$.

CAPACITANCE ${ }^{(1)}\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)$

SYMBOL	PARAMETER	PINS	MAX.	UNIT
C_{1}	Input Capacitance (except D/Q)	$\overline{\mathrm{G}}, \mathrm{A}_{0}-\mathrm{A}_{16}$	TBD	pF
$\mathrm{C}_{\mathrm{D} / \mathrm{Q}}$	Capacitance on DQ pins	$\mathrm{DQ}_{0}-\mathrm{DQ}_{7}$	TBD	pF
C_{C}	Input Capacitance Control Lines	$\overline{\mathrm{E}}$	TBD	pF
C_{W}	Input Capacitance W Line	$\overline{\mathrm{W}}$	TBD	pF

1. This parameter is guaranteed and not tested.

AC TEST CONDITIONS

Input Pulse Levels	OV to 3.0V
Input Rise and Fall Times	5 ns
Input and Output	1.5 V
Timing Reference Level	

KEY TO SWITCHING WAVEFORMS

AC TEST LOADS AND WAVEFORMS

AC ELECTRICAL CHARACTERISTICS (over the commercial operating range)
READ CYCLE

JEDEC PARAMETER NAME	PARAMETER NAME	PARAMETER	MS88128-10		MS88128-12		UNIT
			MIN.	MAX.	MIN.	MAX.	
$\mathrm{t}_{\text {AVAX }}$	t_{RC}	Read Cycle Time	100	-	120	-	ns
$\mathrm{t}_{\text {AVQV }}$	t_{AA}	Address Access Time	-	100	-	120	ns
$\mathrm{t}_{\text {ELQV }}$	$\mathrm{t}_{\text {ACS }}$	Chip Enable Access Time	-	100	-	120	ns
$\mathrm{t}_{\text {GLQV }}$	$\mathrm{t}_{\text {OE }}$	Output Enable to Output Valid	-	50	-	60	ns
$\mathrm{t}_{\text {ELQX }}$	$\mathrm{t}_{\mathrm{CLZ}}$	Chip Enable to Output Low Z	30	-	30	-	ns
$\mathrm{t}_{\text {GLQX }}$	$\mathrm{t}_{\mathrm{OLZ}}$	Output Enable to Output in Low Z	10	-	10	-	ns
$\mathrm{t}_{\text {EHQZ }}$	$\mathrm{t}_{\mathrm{CHZ}}$	Chip Disable to Output in High Z	-	30	-	40	ns
$\mathrm{t}_{\text {GHQZ }}$	$\mathrm{t}_{\mathrm{OHZ}}$	Output Disable to Output in High Z	-	30	-	40	ns
$\mathrm{t}_{\text {AXQX }}$	t_{OH}	Output Hold from Address Change	10	-	10	-	ns

SWITCHING WAVEFORMS (READ CYCLE)

READ CYCLE 1
$\overline{\text { W }}$ HIGH, \bar{G}, \bar{E} LOW

READ CYCLE 2
\bar{W} HIGH

MS88128

AC ELECTRICAL CHARACTERISTICS (over the commercial operating range)

WRITE CYCLE

JEDEC PARAMETER	PARAMETER	PARAMETER	MS88128-10		MS88128-12		UNIT
NAME	NAME		MIN.	MAX.	MIN.	MAX.	
$\mathrm{t}_{\text {AVAX }}$	${ }^{\text {WC }}$	Write Cycle Time	100	-	120	-	ns
$\mathrm{t}_{\text {ELWH }}$	t_{CW}	Chip Enable to End of Write	80	-	90	-	ns
$\mathrm{t}_{\text {AVWL }}$	$\mathrm{t}_{\text {AS }}$	Address Set up Time	20	-	20	-	ns
$t_{\text {WLWH }}$	${ }^{\text {W }}$ W	Write Pulse Width	60	-	70	-	ns
$t_{\text {WHAX }}$	$t_{\text {WR }}$	Write Recovery Time	0	-	0	-	ns
${ }_{\text {t }}^{\text {WLQZ }}$	$t_{\text {WHZ }}$	Write to Output in High Z	0	35	0	40	ns
$\mathrm{t}_{\text {DVWH }}$	$t_{\text {DW }}$	Data to Write Time Overlap	35	-	40	-	ns
$\mathrm{t}_{\text {WHDX }}$	t_{DH}	Data Hold from Write Time	20	-	20	-	ns
$t_{\text {WHOX }}$	$\mathrm{t}_{\text {OW }}$	Output Active from End of Write	0	-	0	-	ns

SWITCHING WAVEFORMS (WRITE CYCLE)

WRITE CYCLE 1

SWITCHING WAVEFORMS (WRITE CYCLE)

WRITE CYCLE 2
EARLY WRITE
\bar{E} CONTROLLED

DATA RETENTION CHARACTERISTICS (over the commercial operating range)

SYMBOL	PARAMETER	TEST CONDITIONS	MS88128			UNITS
			MIN.	TYP(2)	MAX ${ }^{(2)}$	
V_{DR}	VCC for Data Retention	$\begin{aligned} & \bar{E} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \overline{\mathrm{G}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \end{aligned}$	2.0	-	-	V
$\mathrm{I}_{\text {CCDR }}$	Data Retention Current	$\begin{aligned} & \bar{E}_{1} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \overline{\mathrm{G}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \\ & \operatorname{or} \mathrm{~V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \end{aligned}$	-	20	100	$\mu \mathrm{A}$
${ }^{\text {c }}$ DR	Chip Deselect to Data Retention Time	See Retention Waveform	0	-	-	ns
t_{R}	Operation Recovery Time		$\mathrm{t}_{\mathrm{RC}}{ }^{(4)}$	-	-	ns

1. $\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$
2. $\mathrm{V}_{\mathrm{cc}}=3 \mathrm{~V}$
3. $\mathrm{t}_{\mathrm{RC}}=$ Read Cycle Time

TIMING WAVEFORM LOW V ${ }_{c c}$ DATA RETENTION WAVEFORM

MS88128

ORDERING INFORMATION

SPEED (ns)	ORDERING PART NUMBER	PACKAGE REFERENCE NO.	TEMPERATURE RANGE
100	MS88128-10PC	$M-1$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
120	MS88128-12PC		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

1048576 (131,072 x 8) CMOS Static RAM with Data Retention and Low Power

FEATURES

- Available in $80 / 100 / 120 \mathrm{~ns}$ (Max.)
- Automatic power-down when chip disabled
- Lower power consumption:

MS621000

- $5.5 \mu \mathrm{~W}$ (Typ.) Standby

MS621000L

- 1.1 mA (Typ.) Standby
- TTL compatible interface levels
- Single 5V power supply
- Fully static operation
- Three state outputs
- Two chip enable (\bar{E}_{1} and E_{2}) for simple memory expansion
- Data retention as low as 2 V

DESCRIPTION

The MOSEL MS621000 is a high performance, low power CMOS static RAM organized as 131,072 words by 8 bits. The device supports easy memory expansion with both an active LOW chip enable (\bar{E}_{1}) and an active High chip enable (E_{2}), as well as an active LOW output enable (\bar{G}) and tri-state outputs. An automatic power-down feature is included which reduces the chip power by 80% in TTL standby mode, and by over 95% in full power-down mode.
The device is manufactured in MOSEL's high performance CMOS process and operates from a single 5 V power supply. All inputs and outputs are TTL compatible. Data is retained to as low as $\mathrm{V}_{\mathrm{cc}}=2 \mathrm{~V}$.
The MOSEL MS621000 is packaged in the JEDEC standard 32 pin 600 mil wide DIP and 525 mil wide SOP.

PIN CONFIGURATIONS

FUNCTIONALBLOCK DIAGRAM

MS621000

PIN DESCRIPTIONS

$A_{0}-A_{16} \quad$ Address Inputs

These 17 address inputs select one of the 131,072 8-bit words in the RAM.

\bar{E}_{1} Chip Enable 1 Input

E_{2} Chip Enable 2 Input
\bar{E}_{1} is active LOW and E_{2} is active HIGH. Both chip enables must be active to read from or write to the device. If either chip enable is not active, the device is deselected and is in a standby power mode. The DQ pins will be in the highimpedance state when the device is deselected.

$\overline{\mathbf{G}}$ Output Enable Input

The output enable input is active LOW. If the output enable is active while the chip is selected and the write enable is inactive, data will be present on the DQ pins and they will be enabled. The DQ pins will be in the high impedance state when \bar{G} is inactive.

W Write Enable Input

The write enable input is active LOW and controls read and write operations. With the chip selected, when \bar{W} is HIGH and \bar{G} is LOW, output data will be present at the DQ pins; when \bar{W} is LOW, the data present on the DQ pins will be written into the selected memory location.

$D Q_{1}-D Q_{8} \quad$ Data Input/Output Ports

These 8 bidirectional ports are used to read data from or write data into the RAM.
$\mathrm{V}_{\mathrm{cc}} \quad$ Power Supply

GND Ground

TRUTH TABLE

MODE	$\overline{\mathbf{W}}$	$\overline{\mathbf{E}}_{\mathbf{1}}$	$\mathrm{E}_{\mathbf{2}}$	$\overline{\mathbf{G}}$	I/O OPERATION	V_{CC} CURRENT
Not Selected (Power Down)	X	H	X	X	High Z	$\mathrm{I}_{\mathrm{CCSB}}, \mathrm{I}_{\text {CCSB } 1}$
	X	X	L	X	High Z	$\mathrm{I}_{\mathrm{CCSB}}, \mathrm{I}_{\mathrm{CCSB} 1}$
Output Disabled	H	L	H	H	High Z	I_{CC}
Read	H	L	H	L	$\mathrm{D}_{\mathrm{OUT}}$	I_{CC}
Write	L	L	H	X	$\mathrm{D}_{\mathbb{N}}$	I_{CC}

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

SYMBOL	PARAMETER	RATING	UNITS
$\mathrm{V}_{\text {TERM }}$	Terminal Voltage with Respect to GND	-0.5 to +7.0	V
$\mathrm{~T}_{\text {BIAS }}$	Temperature Under Bias	-10 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-40 to +125	${ }^{\circ} \mathrm{C}$
P_{T}	Power Dissipation	1.0	W
$\mathrm{I}_{\text {OUT }}$	DC Output Current	20	mA

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

OPERATING RANGE

RANGE	TEMPERATURE	V $_{\text {cc }}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

CAPACITANCE ${ }^{(1)}\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)$

SYMBOL	PARAMETER	CONDITIONS	MAX.	UNIT
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathbb{I N}}=\mathrm{OV}$	8	pF
C_{DQ}	Input/Output Capacitance	$\mathrm{V}_{/ / \mathrm{O}}=0 \mathrm{~V}$	10	pF

[^5]DC ELECTRICAL CHARACTERISTICS (over the operating range)

PARAMETER		TEST CONDITIONS	MS621000			MS621000L			UNITS
NAME	PARAMETER		MIN.	TYP.(1)	MAX.	MIN.	TYP.(1)	MAX.	
V_{LL}	Guaranteed Input Low Voltage ${ }^{(2)}$		-0.3	-	+0.8	-0.3	-	+0.8	V
V_{IH}	Guaranteed Input High Voltage ${ }^{(2)}$		2.2	-	+0.3	2.2	-	+0.3	V
$1 /$	Input Leakage Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {CC }}$	-1	-	1	-1	-	1	$\mu \mathrm{A}$
${ }^{1} \mathrm{~L}$	Output Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \bar{E}_{1}=\mathrm{V}_{\mathrm{IH}}, \text { or } \mathrm{E}_{2}=\mathrm{V}_{\mathrm{IL}}, \text { or } \overline{\mathrm{G}}=\mathrm{V}_{\mathrm{IH}}, \\ & \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \text { to } \mathrm{V} \mathrm{C}_{\mathrm{CC}} \end{aligned}$	-2	-	2	-2	-	2	$\mu \mathrm{A}$
$\mathrm{V}_{\text {OL }}$	Output Low Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$	-	-	0.4	-	-	0.4	V
V_{OH}	Output High Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$	2.4	-	-	2.4	-	-	V
${ }^{\text {cc }}$	Operating Power Supply Current	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{Max}, \mathrm{E}_{1}=\mathrm{V}_{\mathrm{IL}}, \mathrm{E}_{2}=\mathrm{V}_{\mathrm{IH}}, I_{\mathrm{DQ}}=0 \mathrm{~mA}, \\ & F=\mathrm{F}_{\mathrm{max}}^{(3)} \end{aligned}$			80		-	80	mA
${ }^{\text {c Casb }}$	Standby Power Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \bar{E}_{1}=\mathrm{V}_{\mathrm{IH}}$, or $\mathrm{E}_{2}=\mathrm{V}_{\mathrm{IL}}, \mathrm{I}_{\mathrm{DQ}}=0 \mathrm{~mA}$	-	-	3	-	-	3	mA
$\mathrm{I}_{\text {ccsB } 1}$	Power Down Power Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{E}_{1}>\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \mathrm{E}_{2}<0.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}>\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}}<0.2 \mathrm{~V} \\ & \hline \end{aligned}$	-	-	1	-	-	0.2	mA

1. Typical characteristics are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. These are absolute values with respect to device ground and all overshoots due to system or tester noise are included.
3. $F_{M A X}=1 / t_{R C}$.

DATA RETENTION CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$)

SYMBOL	PARAMETER	TEST CONDITIONS	MIN.	TYP(1)	MAX.	UNITS
V_{DR}	V_{CC} for Data Retention	$\begin{aligned} & \bar{E}_{1} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \mathrm{E}_{2} \leq 0.2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \end{aligned}$	2.0	-	5.5	V
$\mathrm{ICCDR}^{(1)}$	Data Retention Current	MS621000	-	-	0.5	mA
		MS621000L	-	-	0.1	mA
$t_{\text {CDR }}$	Chip Deselect to Data Retention Time	See Retention Waveform	0	-	-	ns
$t_{\text {R }}$	Operation Recovery Time		$\mathrm{t}_{\mathrm{RC}}{ }^{(2)}$	-	-	ns

1. $V_{C C}=V_{D R}=3 V$
$\bar{E}_{1} \geq V_{D R}=0.2 V, E_{2} \geq V_{D R}-0.2 V$ or $E_{2} \leq 0.2 V$ (at E_{1} controlled)
2. $t_{\mathrm{RC}}:$ Read Cycle Time

LOW $V_{c c}$ DATA RETENTION WAVEFORM (1) (\bar{E}_{1} Controlled)

LOW V ${ }_{c c}$ DATA RETENTION WAVEFORM (2) (E_{2} Controlled)

AC TEST CONDITIONS

Input Pulse Levels	0.6 V to 2.4 V
Input Rise and Fall Times	5 ns
Input and Output	IN $\mathrm{V}_{\mathrm{IL}}=0.8, \mathrm{~V}_{\mathrm{IH}}=2.2 \mathrm{~V}$
Timing Reference Level	OUT $\mathrm{V}_{\mathrm{OL}}=0.8, \mathrm{~V}_{\mathrm{OH}}=2.0 \mathrm{~V}$

AC TEST LOADS AND WAVEFORMS

Figure 1a

Figure 1b

KEY TO SWITCHING WAVEFORMS

WAVEFORM	INPUTS	OUTPUTS
	MUST BE STEADY	WILL BE STEADY
	MAY CHANGE FROMHTOL	WILL BE CHANGING FROM HTOL
MAY CHANGE		

Equivalent to:
THEVENIN EQUIVALENT

ALL INPUT PULSES

Figure 2

AC ELECTRICAL CHARACTERISTICS (over the operating range)
 READ CYCLE

JEDEC PARAMETER NAME	PARAMETER nAME	PARAMETER		$\begin{gathered} \text { MS621000/L } \\ -80 \end{gathered}$			$\begin{gathered} \hline \text { MS621000/L } \\ -10 \end{gathered}$			$\begin{gathered} \hline \text { MS621000/L } \\ -12 \end{gathered}$			UNIT
$t_{\text {AVAX }}$	$t_{\text {RC }}$	Read Cycle Time		80	-	-	100	-	-	120	-		ns
tavav	$t_{\text {AA }}$	Address Access Time		-	-	80	-	-	100	-	-	120	ns
$\mathrm{t}_{\text {E1LQV }}$	$t_{\text {ACS } 1}$	Chip Select Access Time	E_{1}	-	-	80	-	-	100	-	-	120	ns
$\mathrm{t}_{\text {ETHQV }}$	$\mathrm{t}_{\text {ACS2 }}$	Chip Select Access Time	E_{2}	-	-	80	-	-	100	-	-	120	ns
- tiglov	toe	Output Enable to Output Valid		-	-	35	-	-	40	-	-	50	ns
te1LQx	$\mathrm{t}_{\text {CLZ1 }}$	Chip Select to Output Low Z	\bar{E}_{1}	10	-	-	10	-	-	10	-	-	ns
$\mathrm{t}_{\text {E2HQX }}$	$\mathrm{t}_{\text {clZ2 }}$	Chip Select to to Output Low Z	E_{2}	10	-	-	10	-	-	10	-	-	ns
$\mathrm{t}_{\text {GLax }}$	tolz	Output Enable to Output in Low Z		5	-	-	5	-	-	5	-	-	ns
$\mathrm{t}_{\text {E1HQZ }}$	$\mathrm{t}_{\mathrm{CHZ} 1}$	Chip Deselect to Output in High Z	\bar{E}_{1}	0	-	30	0	-	35	0	-	40	ns
$\mathrm{t}_{\text {E2 }}$ HQZ	$\mathrm{t}_{\mathrm{CHZ} 2}$	Chip Deselect to Output in High Z	E_{2}	0	-	30	0	-	35	0	-	40	ns
$\mathrm{t}_{\text {GHQZ }}$	$\mathrm{t}_{\mathrm{OHz}}$	Output Disable to Output in High Z		0	-	30	0	-	30	0	-	40	ns
${ }_{\text {t }}^{\text {xax }}$	t_{OH}	Output Hold from Address Change		10	-	-	10	-	-	10	-	-	ns

SWITCHING WAVEFORMS (READ CYCLE)

READ CYCLE $1^{(1,2,4)}$

READ CYCLE $\mathbf{2}^{(1,3,4)}$

READ CYCLE $3^{(1,4)}$

NOTES:

1. \bar{W} is high for READ Cycle.
2. Device is continuously selected $\bar{E}_{1}=V_{k}$ and $E_{2}=V_{t H}$
3. Address valid prior to or coincident with \bar{E}_{1} transition low and/or E_{2} transition high.
4. $\bar{G}=V_{\text {It }}$.
5. Transition is measured $\pm 500 \mathrm{mV}$ from steady state with $C_{L}=5 \mathrm{pF}$ as shown in Figure 1 b. This parameter is guaranteed but not 100% tested.

AC ELECTRICAL CHARACTERISTICS (over the operating range)

WRITE CYCLE

$\begin{gathered} \text { JEDEC } \\ \text { PARAMETER } \\ \text { NAME } \\ \hline \end{gathered}$	PARAMETERNAME	PARAMETER		MS621000/L-80			MS621000/L-10			$\begin{gathered} \text { MS621000/L } \\ -12 \end{gathered}$			UNIT
				MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
$\mathrm{t}_{\text {AVAX }}$	twc	Write Cycle Time		80	-	-	100	-	-	120	-	-	ns
$\mathrm{t}_{\text {E1LWH }}$	t_{c} w	Chip Select to End of Write		60	-	-	80	-	-	85	-	-	ns
$t_{\text {AVWL }}$	$\mathrm{t}_{\text {AS }}$	Address Set up Time		0	-	-	0	-	-	0	-	-	ns
$\mathrm{t}_{\text {AVWH }}$	t_{AW}	Address Valid to End of Write		60	-	-	80	-	-	85	-	-	ns
$t_{\text {WLWH }}$	$t_{\text {wp }}$	Write Pulse Width		50	-	-	60	-	-	70	-	-	ns
${ }_{\text {Whax }}$	$t_{\text {WR1 }}$	Write Recovery Time	$\overline{\mathrm{E}}_{1}, \overline{\mathrm{~W}}$	5	-	-	5	-	-	5	-	-	ns
$\mathrm{t}_{\text {ELLAX }}$	$\mathrm{t}_{\text {WR2 }}$	Write Recovery Time	E_{2}	5	-	-	5	-	-	5	-	-	ns
${ }^{\text {twLQz }}$	${ }_{\text {twhz }}$	Write to Output in High Z		0	-	30	-	-	35	-	-	40	ns
t ${ }_{\text {DVWH }}$	t_{DW}	Data to Write Time Overlap		30	-	-	40	-	-	45	-	-	ns
$\mathrm{t}_{\text {WHDX }}$	t_{DH}	Data Hold from Write Time		0	-	-	0	-	-	0	-	-	ns
$\mathrm{t}_{\text {GHQZ }}$	$\mathrm{t}_{\mathrm{OHz}}$	Output Disable to Output in High Z		0	-	30	0	-	35	-	-	40	ns
$\mathrm{t}_{\text {WHax }}$	tow	End of Write to Output Active		5	-	-	5	-	-	5	-	-	ns

SWITCHING WAVEFORMS (WRITE CYCLE)

WRITE CYCLE $1^{(1)}$

WRITE CYCLE $\mathbf{2}^{(1,6)}$

NOTES:

1. $\overline{\mathrm{W}}$ must be high during address transitions.
2. The internal write time of the memory is defined by the overlap of \bar{E}_{1} and E_{2} active and \bar{W} low. All signals must be active to initiate a write and any one signal can terminate a write by going inactive. The data input setup and hold timing should be referenced to the second transition edge of the signal that terminates the write.
3. $T_{\text {wA }}$ is measured from the earlier of \bar{E}_{1} or \bar{W} going high or E_{2} going low at the end of write cycle.
4. During this period, DQ pins are in the output state so that the input signals of opposite phase to the outputs must not be applied.
5. If the $\overline{\mathrm{E}}$, low transition or the E_{2} high transition occurs simultaneously with the \bar{W} low transitions or after the \bar{W} transition, outputs remain in a high impedance state.
6. $\overline{\mathrm{G}}$ is continuously low $\left(\overline{\mathrm{G}}=\mathrm{V}_{\mathrm{t}}\right)$.
7. $D_{\text {OUt }}$ is the same phase of write data of this write cycle.
8. $D_{\text {out }}$ is the read data of next address.
9. If E_{1} is low and E_{2} is high during this period, $D Q$ pins are in the output state. Then the data input signals of opposite phase to the outputs must not be applied to them.
10. Transition is measured $\pm 500 \mathrm{mV}$ from steady state with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as shown in Figure 1 b on page 4. This parameter is guaranteed but not 100% tested.
11. t_{cw} is measured from the later of $\overline{\mathrm{E}}_{1}$ going low or E_{2} going high to the end of write.

ORDERING INFORMATION

SPEED (ns)	ORDERING PART NUMBER	PACKAGE REFERENCE NO.	TEMPERATURE RANGE
80	MS621000-80PC	$\mathrm{P} 32-2$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
80	MS621000-80FC	$\mathrm{S} 32-1$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
80	MS621000L-80PC	$\mathrm{P} 32-2$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
80	MS621000L-80FC	$\mathrm{S} 32-1$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
100	MS621000-10PC	$\mathrm{P} 32-2$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
100	MS621000-10FC	$\mathrm{S} 32-1$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
100	MS621000L-10PC	$\mathrm{P} 32-2$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
100	MS621000L-10FC	$\mathrm{S} 32-1$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
120	MS621000-12PC	$\mathrm{P} 32-2$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
120	$\mathrm{MS} 621000-12 \mathrm{FC}$	$\mathrm{S} 32-1$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
120	$\mathrm{MS} 621000 \mathrm{~L}-12 \mathrm{PC}$	$\mathrm{P} 32-2$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
120	$\mathrm{MS} 621000 \mathrm{~L}-12 \mathrm{FC}$	$\mathrm{S} 32-1$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$128 \mathrm{~K} \times 8$ CMOS Static RAM

DESCRIPTION

The MOSEL MS628128 is a 1 Megabit static random access memory organized as 131,072 words by 8 bits and operates from a single 5 volt supply. It is built with MOSEL's high performance twin tub CMOS process. Inputs and three-state outputs are TTL compatible and allow for direct interfacing with common system bus structures. The MS628128 is available in a standard 32-pin 600 mil plastic DIP package and 525 mil SOP.

FUNCTIONALBLOCK DIAGRAM

512K x 8 CMOS Static RAM Module

FEATURES

- 4Mb SRAM module compatible with JEDEC standard pinout for 512k x 8 SRAM
- Available in $100 / 120 \mathrm{~ns}$ access times
- Fully static operation
- All inputs and outputs directly TTL compatible
- Three state outputs
- Single 5V power supply
- Low Power dissipation:

$$
\begin{array}{cl}
350 \mathrm{~mW} & \text { (typ.) } \\
25 \mathrm{~mW} \text { (typ.) } & \text { Standby } \\
50 \mu \mathrm{~W} \text { (typ.) } & \text { Power-Down }
\end{array}
$$

- 2 V battery backup/data retention
- Packaged in JEDEC 600 mil PDIP

DESCRIPTION

The Mosel MS6M8512 is a 4 Megabit ($4,194,304$ bits) static random access memory module organized as 512 K $(524,288)$ words by 8 bits. It is built using four surface mounted $128 \mathrm{~K} \times 8$ static RAMs and a single surface mounted decoder. The device provides both an active LOW chip enable ($\overline{\mathrm{E}}$) and an active LOW output enable $(\overline{\mathrm{G}})$. An automatic power-down feature is included which reduces the chip power by 90% in TTL standby mode, and by over 99% in full power-down mode.
The MOSEL MS6M8512 is available in the JEDEC standard 32 pin 600 mil wide DIP package, and matches the JEDEC standard footprint and pin configuration for a monolithic $512 \mathrm{~K} \times 8$ SRAM.

FUNCTIONAL BLOCK DIAGRAM

PIN DESCRIPTIONS

A_{0} - $\mathrm{A}_{18} \quad$ Address Inputs
These 19 address inputs select one of the 524,288 8bit words in the RAM.

$\overline{\mathbf{E}} \quad$ Chip Enable Input

$\overline{\mathrm{E}}$ is active LOW. The chip enable must be active to read from or write to the device. If it is not active, the device is deselected and is in a standby power mode. The DQ pins will be in the high-impedance state when deselected.

$\overline{\mathbf{G}} \quad$ Output Enable Input

The output enable input is active LOW. If the output enable is active while the chip is selected and the write enable is inactive, data will be present on the DQ pins and they will be enabled. The DQ pins will be in the high impedance state when \bar{G} is inactive.

W Write Enable Input

The write enable input is active LOW and controls read and write operations. With the chip enabled, when \bar{W} is HIGH and $\overline{\mathrm{G}}$ is LOW, output data will be present at the DQ pins; when \bar{W} is LOW, the data present on the DQ pins will be written into the selected memory location.
$D Q_{0}-D Q_{7} \quad$ Data Input/Output Ports
These 8 bidirectional ports are used to read data from or write data into the RAM.
$\mathrm{V}_{\mathrm{cc}} \quad$ Power Supply
GND Ground

TRUTH TABLE

MODE	$\overline{\mathbf{E}}$	$\overline{\mathbf{G}}$	$\overline{\mathbf{W}}$	I/O OPERATION
Standby	H	X	X	High Z
Output Disabled	L	H	H	High Z
Read	L	L	H	D Dut
Write	L	X	L	D IN

Specialty Memories

SPECIALTY MEMORIES

MOSEL is developing a comprehensive family of specialty memory products, including second sources of popular architectures of FIFOs, Dual Port SRAMs, and Video Color Palette products. In addition, MOSEL is pioneering new memory standards such as the Latch RAM for microcontrolier applications shown in this section, Parity RAMs, Cache products (Section 6), and Voice ROM products (Section 5), with more specialty memory families to follow in the future.

FIFOS

In FIFOs, MOSEL offers the widest range of $x 9$ devices available, ranging from the 256×9 to the $4 \mathrm{~K} \times 9$. We offer both low and standard power versions as well as a variety of speeds ranging from 10 to 30 MHz . All of MOSEL's standard x9 FIFOs are cascadable in depth and width and are pin and function compatible, making density upgrades simple. Two DIP ($300 \& 600 \mathrm{mils}$) and surface mount (32-pin PLCC \& 330mil SOG) package types are offered. Plus MOSEL is one of the first companies in the industry to offer the $4 \mathrm{~K} x 9$ in a 300 mil DIP and 330 mil SOG. MOSEL also offers two parallel-to-serial FIFOs, the MS72105 (256×16 to 1) and the MS72115 (512 x 16 to 1). These FIFOs are well suited for any serial data output buffers such as are found in laser printers, fax machines, LANs, video frame buffers, disk and tape controllers.

DUAL PORT

Presently, MOSEL offers one Dual Port SRAM in the $1 \mathrm{~K} \times 8$ size. However, we plan on offering further extensions to the product line later this year starting with an $8 \mathrm{~K} \times 8$. Dual Ports provide two independent ports with separate control, address and I/O pins that permit independent, asynchronous access for reads or writes to any location in memory. An automatic power down feature, controlled by chip enable, permits the on-chip circuitry of each port to enter a very low standby power mode. The $1 \mathrm{~K} \times 8$ is offered in a 48-pin DIP.

LATCH RAM

The Latch RAM family of products is a new line of SRAMs with on-chip transparent address latches that retain memory address information. These devices were created to interface with microcontrollers that have multiplexed address and data on the same pins (such as the Intel 8051). Because the typical microcontroller application is usually price sensitive, MOSEL will offer finer gradations of memory sizes that include a 4 K $x 8,8 \mathrm{~K} \times 8,12 \mathrm{~K} \times 8,16 \mathrm{~K} \times 8$ and $32 \mathrm{~K} \times 8$. This allows
the designer to purchase only the amount of memory necessary for the application. All of the products are offered in multiple speeds with power down chip enable and are packaged in both 28 pin 300 mil DIP and 330 mil SOG.

VIDEO COLOR PALETTE

MOSEL's MS176 is an Inmos IMSG176/171 compatible Video Color Palette typically used for VGA graphics applications. The MS176 is offered at 35 and 50 MHz in 600 mil DIP and 44 pin PLCC packages. The MS177 currently under development is function compatible with the MS176, but offers a power down mode to significantly reduce standby power for portable computer applications.

PARITY RAMs

For years systems designers have requested memory products that would facilitate designing memory subsystems that support parity. For years semiconductor suppliers have resisted. This year, MOSEL is introducing two Parity RAM products. The MS64100 is a $32 \mathrm{~K} \times 8$ SRAM (32K $\times 9$ internal) with on board parity generation and checking along with a Parity Error Signal. The MS64101 is a $32 \mathrm{~K} \times 9$ SRAM for application where parity is generated and checked externally. Both products are offered at 25 and 35 ns , making them suitable for a variety of applications including high speed cache.

SUMMARY

With advances in memory technology, a single memory chip is enough for an increasing number of system applications. Previously, when multiple memory chips were required for these applications, the path to improving price performance was to increase the density of memory chip until only one memory chip was needed. For these applications, the path to future price performance improvement is to increase the level of functional integration, That is, to add logic and/or analog functions on chip with the memory array and in the process create new specialty memory architectures.

MOSEL is committed to pioneering and second sourcing new specialty memory architectures to create new standards for applications specific memory products. If you would like more information about MOSEL's specialty memory products, please contact your local MOSEL sales representative or franchise distributor listed in this book.

256 x 18 Video Color Palette

FEATURES

- RGB analog outputs, 6-bit DAC per channel with composite blank.
- Combines high speed Color Palette RAM and Triple Video DAC.
- Displays 256 colors simultaneously from a palette of 256 K colors.
- Supports pixel rates up to 50 MHz .
- Direct replacement for INMOS G171 and G176.
- Up to 6-bit per pixel resolution.
- Directly drives singly or doubly terminated 75Ω transmission lines.
- Pixel word mask for single cycle color updates.
- Asynchronous microprocessor compatible interface.
- TTL compatible inputs, single $5 \mathrm{~V} \pm 10 \%$ power supply.
- Packaged in JEDEC standard 28 pin 600 mil DIP and 44 pin PLCC packages.

PIN CONFIGURATIONS

GENERAL DESCRIPTION

The MOSEL MS176 is a high speed RAMDAC designed for video graphics applications. It combines a 256×18 color look-up table, triple 6-bit video digital to analog converters and an asynchronous bidirectional microprocessor interface into a single device.

The MS176 can display 256 colors selected from a total of 256 K colors. The on-chip pixel word mask allows displayed colors to be changed in a single write cycle rather than by modifying the color look-up table. Each of the RED, GREEN and BLUE analog output signals can drive a single or doubly terminated 75Ω transmission line directly.

Intended for high-resolution graphics applications, the MOSEL MS176 is available with pixel rates ranging from 40 MHz to 50 MHz . It is a direct pin and function replacement for the Inmos G-171 and G-176, and is fully compatible with VGA industry standards. The MS176 is offered in a JEDEC standard 28-pin, 600 mil plastic DIP and 44 pin PLCC packages.

FUNCTIONAL BLOCK DIAGRAM

PIN DESCRIPTION

ANALOG INTERFACE

RED, GREEN, BLUE Color Signal Outputs
These three signals are the outputs of the three 6 bit video DACs. These signals drive a singly or doubly terminated (75Ω) transmission line. Each DAC is composed of a number of current sources whose outputs are summed. The number of active current sources is controlled by the applied binary value. A compatible monitor or video amplifier can be directly driven by these color signals.

$I_{\text {REF }}$ Reference Current

$I_{\text {REF }}$ provides a reference for the internal video DACs. $I_{\text {REF }}$ must be driven by an external current sink providing a regulated current. The reference current drawn from V_{CC} through the $\mathrm{I}_{\text {REF }}$ pin determines the current sourced by each of the DACs current sources.

PIXEL INTERACE

PCLK Pixel Clock Input

The Pixel Clock is a positive edge triggered signal. It is used to latch the pixel addresses and the blanking signal. This clock also controls the three-stage pipeline of the color palette and DAC to the outputs. Each Pixel Clock period corresponds to one pixel displayed on the monitor.

$\mathbf{P}_{0}-\mathbf{P}_{7}$ Pixel Address Inputs

These 8 inputs are latched on the rising edge of PCLK. The value of these 8 inputs are ANDed with the corresponding bits of the Pixel Mask Register. The resulting address is used to specify the desired RAM word in the color look-up table. This 18 bit wide color value is then output to the DACs.

BLANK Blanking Control Input

The blanking control input is active LOW, and is latched on the rising edge of PCLK. The BLANK signal is used for blanking the display during retrace. When BLANK is LOW the color value from the lookup table is ignored and the DAC outputs are forced to the blanking level. BLANK has the same pipeline delay as $P_{0}-P_{7}$.

DIGITAL INTERFACE

$\overline{\mathbf{R}}$ Read Enable Input

The read enable input is active LOW. When active, output data will be present at the DQ pins. The values of the register select inputs are latched on the falling edge of $\overline{\mathrm{R}}$ and are decoded to determine the source of the output data. When $\overline{\mathrm{R}}$ is HIGH, the DQ pins will be in the high-impedance state.

$\overline{\mathbf{W}}$ Write Enable Input

The write enable input is active LOW. When active, data present at the DQ pins will be written into the device. The values of the register select inputs are latched on the falling edge of \bar{W} and are decoded to determine the destination of the write data.

$\mathbf{R S}_{0}-\mathbf{R S}_{1}$ Register Select Inputs

The value of these inputs specifies which of the internal registers is to be read or written. The values of these inputs are latched at the beginning of a read or write cycle. The cycle begins on the falling edge of either the $\overline{\mathrm{R}}$ or $\overline{\mathrm{W}}$ input.

$D Q_{0}-D Q_{7}$ Data Input/Output Ports

These 8 bidirectional ports are used to read data from or write data to the device internal registers. The Pixel Address Register and the Pixel Mask Register use all 8 bits, the Color Value Register uses only the lower six bits $\left(\mathrm{DQ}_{0}-\mathrm{DQ}_{5}\right)$.
V_{cc} Positive Power Supply
GND Ground

TABLE 1. REGISTER SELECT TRUTH TABLE

RS $_{\mathbf{1}}$	RS $_{\mathbf{0}}$	REGISTER ASSIGNMENT
0	0	Pixel Address Register (RAM Write)
1	1	Pixel Address Register (RAM Read)
0	1	Color Value Register
1	0	Pixel Mask Register

FUNCTIONAL DESCRIPTION

The MOSEL MS176 is designed for use as the output stage of a raster scan video system. This high speed video color palette combines a 256×18 color look-up table, triple 6 -bit video digital to analog converters and an asynchronous bidirectional microprocessor interface into a single compact package.

The MS176 consists of three distinct sections. The first section includes the pixel address, timing and $\overline{B L A N K}$ information. The second section contains the color look-up table and the three video DACs, while the third section is the digital microprocessor interface.

Video Path

The pixel address inputs $\mathrm{P}_{0}-\mathrm{P}_{7}$ are latched on the rising edge of PCLK. The value of these 8 inputs are ANDed with the corresponding bits of the pixel mask register before being passed as an address to the color look-up table. The contents of the specified location are then transferred to the video DACs.

The $\overline{\text { BLANK }}$ signal is used to blank the display during retrace. The $\overline{B L A N K}$ input is latched at the same time as $P_{0}-P_{7}$, and is delayed internally so that it arrives at the analog outputs synchronized with the pixel stream. When BLANK is LOW the color value from the look-up table is ignored and the video DAC outputs are forced to the blanking level.

Microprocessor Interface

The microprocessor interface is used to read to and write from the color look-up table as well as the pixel mask register. The microprocessor interface is internally synchronized so that operations may occur at any time without waiting for retrace. Table 1 shows the microprocessor interface registers and how they are addressed.

Writing to the Color Look-Up Table

In order to define a new color value, the desired address in the color look-up table must first be written to the Pixel Address Register (RAM write). The appropriate values are set on the register select pins $\left(\mathrm{RS}_{0}-\mathrm{RS}_{1}\right)$. This is latched on the falling edge of $\overline{\mathrm{W}}$. The desired address is set on pins $D Q_{0}-D Q_{7}$ and is loaded into the Pixel Address Register. Following this, the values for the red, green and blue intensities are
then written into the Color Value Register. This is accomplished by three additional write cycles (with the Color Value Register selected by the register select inputs). The Color Value Register loads only the values on $D Q_{0}-D Q_{5}$.
After the blue value is loaded on the third write cycle, the contents of the Color Value Register are written to the selected address in the color look-up table, and the Pixel Address Register is automatically incremented. This allows color values to be defined for sequential locations with no need to rewrite the Pixel Address Register.

Reading from the Color Look-Up Table

To read a color value contained in the look-up table the desired address must first be written to the Pixel Address Register (RAM read). The appropriate values are set on the register select pins $\left(\mathrm{RS}_{0}-\mathrm{RS}_{1}\right)$. This is latched on the falling edge of \bar{W}. The desired address is set on pins $D Q_{0}-D Q_{7}$ and is loaded into the Pixel Address Register. The contents of the specified location are written into the Color Value Register and the Pixel Address Register is automatically incremented.

The red, green and blue values are then read by a sequence of three read cycles (with the Color Value Register Selected by the register select inputs). The values are output on $D Q_{0}-D Q_{5}$. After the blue value is read on the third cycle, the contents of the location specified by the Pixel Address Register (which has already been incremented) are written into the Color Value Register. This allows color values to be read for sequential locations with no need to rewrite the Pixel Address Register.

Reading and Writing the Pixel Mask Register

The Pixel Mask Register is written to in a similar fashion as the Pixel Address Register. The appropriate values for selecting the Pixel Mask Register are set on the register select pins, the desired contents are placed on $\mathrm{DQ}_{0}-\mathrm{DQ}_{7}$, and a single write cycle is executed. The contents of the Pixel Mask Register may be read by placing the appropriate values on the register select pins and executing a single read cycle. The contents of the Pixel Mask Register can then be read on $D Q_{0}-D Q_{7}$.

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

SYMBOL	PARAMETER	VALUE	UNITS
$\mathrm{V}_{\text {CC }}$	$\mathrm{V}_{\text {CC }}$ Supply Voltage	7.0	V
$\mathrm{~V}_{\text {TERM }}$	Voltage on All Other Pins	-1.0 to $\mathrm{V}_{\text {CC }}+0.5$	V
$\mathrm{t}_{\text {BIAS }}$	Temperature Under Bias	-40 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\text {STG }}$	Storage Temperature	-60 to +150	${ }^{\circ} \mathrm{C}$
$\mathrm{I}_{\text {REF }}$	Reference Current	-15	mA
I_{O}	Analog Output Current ${ }^{(2)}$	45	mA
$\mathrm{I}_{\text {OUT }}$	DC Digital Output Current ${ }^{(3)}$	25	mA
P_{D}	Power Dissipation	1	W

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. Per output
3. One output at a time, maximum one second duration.

OPERATING RANGE

RANGE	AMBIENT TEMPERATURE	$\mathbf{v}_{\text {cc }}$
Commercial	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

CAPACITANCE ${ }^{(1,2)}$

SYMBOL	PARAMETER	CONDITIONS	MAX	UNITS
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	7	pF
C_{DQ}	Digital Input/Output Capacitance	$\mathrm{V}_{\mathrm{DO}}=\mathrm{OV} \overline{\mathrm{R}}=\mathrm{V}_{\text {IH }}$	7	pF
C_{OA}	Analog Output Capacitance	$\mathrm{V}_{\mathrm{OA}}=0 \mathrm{~V} \overline{\mathrm{BLANK}}=\mathrm{V}_{\mathrm{IL}}$	10	pF

1. This parameter is guaranteed and not tested.
2. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$.

DC ELECTRICAL CHARACTERISTICS (over the operating range)

DIGITAL INTERFACE

PARAMETER NAME	PARAMETER	TEST CONDITIONS	MIN.	TYP. ${ }^{(1)}$	MAX.	UNITS
$V_{\text {IL }}$	Guaranteed Input LOW Voltage ${ }^{(2)(3)}$		-0.5	-	+0.8	V
$\mathrm{V}_{\text {IH }}$	Guaranteed Input HIGH Voltage ${ }^{(2)}$		2.0	-	$\mathrm{V}_{\mathrm{cc}}+0.5$	V
$\mathrm{I}_{\text {REF }}$	Reference Current		-7.0	-8.88	-10	mA
$\mathrm{V}_{\text {REF }}$	Voltage $\mathrm{I}_{\text {REF }}$ Input (pin 4)		$\mathrm{V}_{\mathrm{cc}}{ }^{-3}$	-	V_{cc}	V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{cc}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=5 \mathrm{~mA}$	-	-	0.4	V
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{cc}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=-5 \mathrm{~mA}$	2.4	-	-	V
$\mathrm{I}_{\text {IN }}$	Input Leakage Current	$\mathrm{V}_{\text {cc }}=$ Max, $\mathrm{V}_{\text {SS }} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {cc }}$	-	-	± 10	$\mu \mathrm{A}$
$\mathrm{I}_{\text {OLK }}$	Output Leakage Current	$\mathrm{V}_{\text {cC }}=$ Max, $\mathrm{V}_{\text {ss }} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\mathrm{cC}}, \overline{\mathrm{R}} \geq \mathrm{V}_{\text {IH }}$	-	-	± 50	$\mu \mathrm{A}$
I_{cc}	Operating Power Supply Current	$\mathrm{V}_{\text {cC }}=$ Min, $\mathrm{I}_{0}=$ Max, $\mathrm{I}_{\text {Da }}=0 \mathrm{~mA}, \mathrm{~F}=\mathrm{F}_{\text {Max }}{ }^{(4)}$	-	120	180	mA

ANALOG INTERFACE

PARAMETER NAME	PARAMETER	TEST CONDITIONS	MIN.	TYP. ${ }^{(1)}$	MAX.	UNITS
V_{0} (max)	Analog Output Voltage	$\mathrm{I}_{0} \leq 10 \mathrm{~mA}$	-	-	1.5	V
$\mathrm{I}_{0}(\max)$	Analog Output Current	$\mathrm{V}_{0} \leq 1 \mathrm{~V}$	21	-	-	mA
	Full Scale Error	(5. 6)	-	-	± 5	\%
	DAC to DAC Correlation	(6, 7, 11)	-	-	± 2	\%
	Integral Non-Linearity	(8, 11)	± 0.5	-	-	LSB
	Full Scale Settling Time	MS176-50 ${ }^{(9,10,11)}$	-	-	20	ns
		MS176-40 ${ }^{(9,10,11)}$	-	-	28	ns
	Rise Time (10\% to 90\%)	(10, 11)	-	-	6	ns
	Glitch Energy	$(10,11)$	-	-	200	pV SEC

NOTES:

1. Typical characteristics are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. These are absolute values with respect to device ground and all overshoots due to system or tester noise are included.
3. $\quad \mathrm{V}_{\mathrm{IL}}(\mathrm{min})=-1.0 \mathrm{~V}$ for pulse width $<10 \mathrm{~ns}$.
4. $F_{\text {MAX }}=1 / \mathrm{t}_{\mathrm{CHCH}}$
5. Full scale error is measured from the value derived from the design equation.
6. $R_{L}=37.5 \Omega, I_{\text {REF }}=-8.88 \mathrm{~mA}$.
7. About the mid-point of the distribution of the three DACs measured at full scale deflection.
8. Measured from least squares best fit line. Monotonicity is guaranteed.
9. Measured from a 2% change in the output voltage until settling to within 2% of the final value.
10. $I_{\text {REF }}=-8.88 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=37.5 \Omega, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ as shown in Figure 2 a .
11. This parameter is sampled but not 100% tested.

MS176

AC TEST CONDITIONS

Input Pulse Levels	0 V to 3.0 V
Input Rise and Fall Times (10\% to 90%)	3 ns
Digital Input Timing Reference Level	1.5 V
Digital Output Timing Reference Level	0.8 V and 2.4 V

KEY TO SWITCHING WAVEFORMS

AC TEST LOADS AND WAVEFORMS

Figure 1a

Figure 1c

Figure 1b

Figure 2

AC ELECTRICAL CHARACTERISTICS (over the operating range)

VIDEO OPERATION

NO.	PARAMETER NAME	PARAMETER	$\begin{aligned} & \text { MS176-50 } \\ & \text { MIN. } \quad \text { MAX. } \end{aligned}$		$\begin{aligned} & \text { MS176-40 } \\ & \text { MIN. } \quad \text { MAX. } \end{aligned}$		UNITS
1	$\mathrm{t}_{\mathrm{CHCH}}$	PCLK Period	20	-	25	-	ns
2	$\mathrm{t}_{\mathrm{CLCH}}$	PCLK Width LOW	6	-	9	-	ns
3	$\mathrm{t}_{\mathrm{CHCL}}$	PCLK Width HIGH	6	-	7	-	ns
4	$\Delta \mathrm{t}_{\text {CHCH }}$	PCLK Jitter ${ }^{(1)}$	-	± 2.5	-	± 2.5	\%
5	$\mathrm{t}_{\text {PVCH }}$	Pixel Word Setup Time ${ }^{(2)}$	4	-	4	-	ns
6	$\mathrm{t}_{\text {cHPX }}$	Pixel Word Hold Time ${ }^{(2)}$	4	-	4	-	ns
7	$\mathrm{t}_{\mathrm{BVCH}}$	BLANK Setup Time	4	-	4	-	ns
8	$\mathrm{t}_{\text {chBX }}$	BLANK Hold Time	4	-	4	-	ns
9	$\mathrm{t}_{\text {chav }}$	PCLK to DAC Output Valid ${ }^{(3)}$	5	30	5	30	ns
10	$\Delta \mathrm{t}_{\text {CHAV }}$	DAC to DAC Skew ${ }^{(4)}$	-	2	-	2	ns

READ CYCLE

NO.	PARAMETER NAME	PARAMETER	$\begin{aligned} & \text { MS176-50 } \\ & \text { MIN. } \quad \text { MAX. } \end{aligned}$		$\begin{gathered} \text { MS176-40 } \\ \text { MIN. } \quad \text { MAX. } \end{gathered}$		UNITS
11	$\mathrm{t}_{\text {RLBH }}$	Read Pulse Width	50	-	50	-	ns
12	$\mathrm{t}_{\text {sVRL }}$	Register Select Setup Time	10	-	15	-	ns
13	$\mathrm{t}_{\mathrm{RLSX}}$	Register Select Hold Time	10	-	15	-	ns
14	$\mathrm{t}_{\text {RLaX }}$	Read Enable to Output in Low Z	5	-	5	-	ns
15	$\mathrm{t}_{\mathrm{RLOV}}$	Read Enable to Output Valid	-	40	-	40	ns
16	$\mathrm{t}_{\text {RHaX }}$	Output Hold Time	5	-	5	-	ns
17	$\mathrm{t}_{\mathrm{RHOz}}$	Read Disable to Output in High $\mathbf{Z}^{(5)}$	-	20	-	20	ns
18	$\mathrm{t}_{\text {RHRL1 }}$	Successive Read Interval ${ }^{(6)}$	$3\left(\mathrm{t}_{\mathrm{CHCH}}\right)$	-	$3\left(\mathrm{t}_{\mathrm{CHCH}}\right)$	-	ns
19	$\mathrm{t}_{\text {RHWL1 }}$	Read Write Interval ${ }^{(6)}$	$3\left(\mathrm{t}_{\mathrm{CHCH}}\right)$	-	$3\left(\mathrm{t}_{\mathrm{CHOH}}\right)$	-	ns
20	$\mathrm{t}_{\text {RHRL2 }}$	Read After Color Read Interval ${ }^{(6)}$	$6\left(\mathrm{t}_{\mathrm{CHCH}}\right)$	-	$6\left(\mathrm{t}_{\mathrm{CHOH}}\right)$	-	ns
21	$\mathrm{t}_{\text {RHWL2 }}$	Write After Color Read Interval ${ }^{(6)}$	$6\left(\mathrm{t}_{\mathrm{CHCH}}\right)$	-	$6\left(\mathrm{t}_{\mathrm{CHCH}}\right)$	-	ns

WRITE CYCLE

No.	PARAMETER NAME	PARAMETER	$\begin{gathered} \text { MS176-50 } \\ \text { MIN. } \quad \text { MAX. } \end{gathered}$		$\begin{gathered} \text { MS176-40 } \\ \text { MIN. } \quad \text { MAX. } \end{gathered}$		UNITS
22	$\mathrm{t}_{\text {wLWH }}$	Write Pulse Width	50	-	50	-	ns
23	$\mathrm{t}_{\text {svwL }}$	Register Select Setup Time	10	-	15	-	ns
24	$\mathrm{t}_{\text {wLsx }}$	Register Select Hold Time	10	-	15	-	ns
25	$\mathrm{t}_{\text {Dvw }}$	Data Setup to W High	10	-	15	-	ns
26	$\mathrm{t}_{\text {whox }}$	Data Hold From W High	5	-	5	-	ns
27	$t_{\text {wHWL1 }}$	Successive Write Interval ${ }^{(6)}$	$3\left(\mathrm{t}_{\mathrm{CHCH}}\right)$	-	$3\left(\mathrm{t}_{\text {chich }}\right)$	-	ns
28	$t_{\text {wHRL1 }}$	Write to Read Interval ${ }^{(6)}$	$3\left(\mathrm{t}_{\mathrm{CHCH}}\right)$	-	$3\left(\mathrm{t}_{\mathrm{CHCH}}\right)$	-	ns
29	$\mathrm{t}_{\text {wHWL2 }}$	Write After Color Write Interval ${ }^{(6)}$	$3\left(\mathrm{t}_{\mathrm{CHCH}}\right)$	-	$3\left(\mathrm{t}_{\mathrm{CHCH}}\right)$	-	ns
30	$\mathrm{t}_{\text {whRL2 }}$	Read After Color Write Interval ${ }^{(6)}$	$3\left(\mathrm{t}_{\mathrm{CHCH}}\right)$	-	$3\left(\mathrm{t}_{\mathrm{CHCH}}\right)$	-	ns
31	$\mathrm{t}_{\text {whRL3 }}$	Read After Read Address Write ${ }^{(6)}$	$6\left(\mathrm{t}_{\text {СНСН }}\right)$	-	$6\left(\mathrm{t}_{\mathrm{CHCH}}\right)$	-	ns

NOTES:

1. This parameter is the allowed pixel clock frequency variation. It does not permit the pixel clock to vary outside the minimum value for PCLK period ($\mathrm{t}_{\mathrm{cHCH}}$).
2. Pixel address inputs must be set to a valid logic level with the appropriate setup and hold time at each rising edge of PCLK (this requirement includes the blanking period).
3. Valid DAC output is measured at the 50% point between successive DAC values.
4. Between different analog outputs on the same device.
5. Transition is measured $\pm 200 \mathrm{mV}$ from steady state output voltage with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as shown in Figure 1 C . This parameter is guaranteed and not 100% tested.
6. This parameter allows synchronization between operations on the microprocessor interface and the pixel stream being processed by the color palette.

SYSTEM TIMING DIAGRAM

TIMING DIAGRAM DETAILING TIMING SPECIFICATIONS

MS176

BASIC READ CYCLE

BASIC WRITE CYCLE

WRITE TO PIXEL MASK REGISTER FOLLOWED BY READ

READ FROM PIXEL MASK OR PIXEL ADDRESS REGISTER (READ OR WRITE MODE) FOLLOWED BY READ

WRITE TO PIXEL MASK REGISTER FOLLOWED BY WRITE

READ FROM PIXEL MASK OR PIXEL ADDRESS REGISTER (READ OR WRITE MODE) FOLLOWED BY WRITE

COLOR VALUE READ FOLLOWED BY ANY READ

COLOR VALUE READ FOLLOWED BY ANY WRITE

COLOR VALUE WRITE FOLLOWED BY ANY READ

MS176

COLOR VALUE WRITE FOLLOWED BY ANY WRITE

READ COLOR VALUE THEN READ PIXEL ADDRESS REGISTER (RAM READ)

WRITE AND READ BACK PIXEL ADDRESS REGISTER (READ MODE)

WRITE AND READ BACK PIXEL ADDRESS REGISTER (RAM WRITE)

SYSTEM APPLICATIONS NOTES

Current Reference Decoupling

The DACs in the MOSEL MS176 are composed of switched current sources which are based around a current mirror. The total current output of each DAC is determined by the number of active current sources and the reference current $I_{\text {REF }}$. $I_{\text {REF }}$ develops a voltage reference relative to V_{cc} for the current mirror. Voltage variation in V_{CC} not managed by the current reference circuit will result in variations in the DAC output current. If the bandwidth of the current reference circuit is not sufficient to track these V_{CC} variations, it is recommended that a high frequency capacitor in parallel with a larger capacitor be used to
couple the $I_{\text {REF }}$ input to $V_{C C}$. This will enable the current source to track both high and low frequency variations of V_{Cc}. (A coupling capacitor in the range of 47 to $100 \mu \mathrm{~F}$ is appropriate for most applications.) If the variations of V_{cc} are minor, or are controlled by the reference circuit, then a coupling capacitor should not be used.

Power Supply

The MOSEL MS176 is a high speed device. During operation it may draw large transient currents from the power supply. To ensure proper operation good high frequency board layout techniques and power supply distribution should be used.

ORDERING INFORMATION

SPEED	ORDERING PART NUMBER	PACKAGE REFERENCE NO.	TEMPERATURE
RANGE			

PRELIMINARY

FEATURES

- Combines high speed Color Palette RAM and Triple Video DAC.
- Power-Down mode requires only 2mA max. supply current. Excellent for laptop or battery backup systems.
- Displays 256 colors simultaneously from a palette of 256 K colors.
- RGB analog outputs, 6-bit DAC per channel with composite blank.
- Supports pixel rates up to 65 MHz .
- Operates with either current or voltage reference
- Up to 6-bit per pixel resolution.
- Directly drives singly or doubly terminated 75Ω transmission lines.
- Pixel word mask for single cycle color updates.
- Asynchronous microprocessor compatible interface.
- TTL compatible inputs, single $5 \mathrm{~V} \pm 10 \%$ power supply.
- Packaged in JEDEC standard 44 pin PLCC package.

PIN CONFIGURATION

256 x 18 Video Color Palette with Power Down

GENERAL DESCRIPTION

The MOSEL MS177 is a high speed RAMDAC designed for video graphics applications. It combines a 256×18 color look-up table, triple 6 -bit video digital to analog converters and an asynchronous bidirectional microprocessor interface into a single device.

Designed to support laptop and battery backed-up systems, the MS177 offers a special power-down mode. In this mode the palette clock and analog current sources are shut down, reducing supply current to only 2 mA maximum. It also supports both current and voltage reference modes, and offers differential and integral linearity errors of less than 0.5 LSB over the full temperature and voltage range.

The MS177 can display 256 colors selected from a total of 256 K colors. The on-chip pixel word mask allows displayed colors to be changed in a single write cycle rather than by modifying the color look-up table. Each of the RED, GREEN and BLUE analog output signals can drive a single or doubly terminated 75Ω transmission line directly.

Intended for high-resolution graphics applications, the MOSEL MS177 is available with pixel rates ranging from 40 MHz to 65 MHz . and is fully compatible with VGA industry standards. It is pin compatible with the Brooktree Bt471 and can replace that device when overlay registers are not used. The MS177 is offered in the JEDEC standard 44 pin PLCC package.

FUNCTIONAL BLOCK DIAGRAM

MOSEL Corporation 914 West Maude Avenue, Sunnyvale, CA 94086 U.S.A. 408-733-4556

[^6]
1K x 8 CMOS Dual Port SRAM

DESCRIPTION

The MOSEL MS6130 is a 8,192 bit dual port static random access memory organized as 1,024 words by 8 bits. It is built with MOSEL's high performance twin tub CMOS process. Eight-transistor full CMOS memory cell provides low standby current and high reliability. The low power (L) version offers a battery backup data retention capability where the circuit typically consumes only $2 \mu \mathrm{~W}$ off a 2 V battery. The MS6130 is packaged in a 48-pin 600 mil-DIP.

PIN CONFIGURATIONS

FUNCTIONAL BLOCK DIAGRAM

PIN DESCRIPTIONS

LEFT PORT	RIGHT PORT	NAMES
$\overline{\mathrm{CE}} \mathrm{L}$	$\overline{C E}_{R}$	CHIP ENABLE
$\mathrm{R} / \bar{W}_{\mathrm{L}}$	$\mathrm{R} / \bar{W}_{\text {R }}$	READ/WRITE ENABLE
$\overline{\mathrm{OE}}_{\mathrm{L}}$	$\overline{\mathrm{OE}}_{\mathrm{R}}$	OUTPUT ENABLE
$\overline{B U S Y}_{L}$	$\overline{B U S Y}_{\text {R }}$	BUSY FLAG
$\overline{\mathrm{NT}} \mathrm{L}_{\mathrm{L}}$	$\overline{N T T}_{\text {R }}$	INTERRUPT FLAG
$\mathrm{A}_{0 \mathrm{~L}}-\mathrm{A}_{9 \mathrm{~L}}$	$\mathrm{A}_{0 \mathrm{~B}}-\mathrm{A}_{9 R}$	ADDRESS
$1 / \mathrm{O}_{0 L}-1 / \mathrm{O}_{7 \mathrm{~L}}$	$1 / \mathrm{O}_{0 \mathrm{R}^{-1 /}} / \mathrm{O}_{7 \mathrm{R}}$	\qquad
V_{CC}		POWER
GND		GROUND

FUNCTIONAL DESCRIPTION

The MS6130 provides two ports with separate controls, address and I / O that permit independent access for reads or writes to any location in memory. The MS6130 has an automatic power-down feature controlled by $\overline{\mathrm{CE}}$. The $\overline{\mathrm{CE}}$ controls on-chip power-down circuitry that permits the respective port to go into a standby mode when not selected (CE high). When a port is enabled, access to the entire memory array is permitted. Each port has its own Output Enable control ($\overline{\mathrm{OE}})$. In the read mode, the port's $\overline{\mathrm{OE}}$ turns on the output drivers when set LOW. Non-contention READ/WRITE conditions are illustrated in Table 1.
The interrupt ($(\overline{\mathrm{NT}})$ permits communication between ports or systems. If the user chooses to use the interrupt function a memory location (mail box or message center) is assigned to each port. The left port interrupt flag $\left({ }^{\left(\mathrm{NT}_{L}\right)}\right)$ is set when the right port writes to memory location 3FE (HEX). The left port clears the interrupt by reading address location 3 FE. Likewise, the right port interrupt flag $\left({ }^{(\mathbb{N T}}{ }_{B}\right)$ is set when the left port writes to memory location 3FF (HEX) and to clear the interrupt flag ($\left.{ }^{\mathbb{N}} \mathrm{T}_{\mathrm{R}}\right)$, the right port must read the memory location $3 F F$. The message (8 -bits) at 3 FE or $3 F F$ is userdefined. If the interrupt function is not used, address location 3FE and 3FF are not used as mail boxes but as part of the random access memory. Refer to Table II for the interrupt operation. The INTs have open drain drivers to allow OR-tied operation.

OPERATING RANGE

RANGE	AMBIENT TEMPERATURE	Vcc
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

ARBITRATION LOGIC, FUNCTIONAL DESCRIPTION:

The arbitration logic will resolve an address match or a chip enable match down to 5 ns minimum and determine which port has access. In all cases, an active $\overline{B U S Y}$ flag will be set for the delayed port.
The $\overline{B U S Y}$ flags are provided for the situation when both ports simultaneously access the same memory location. When this situation occurs, on-chip arbitration logic will determine which port has access and sets the delayed port's $\overline{B U S Y}$ flag. $\overline{B U S Y}$ is set at speeds that permit the processor to hold the operation and its respective address and data. It is important to note that the WRITE operation is invalid for the port that has BUSY set LOW. Both ports have READ access (valid data output) even the port that has $\overline{B U S Y}$ set LOW. The delayed port will have access for WRITE operation when BUSY goes inactive.

Contention occurs when both left and right ports are active and both addresses match. When this situation occurs, the on-chip arbitration logic determines access. Two modes of arbitration are provided: (1) if the addresses match and are valid before $\overline{\mathrm{CE}}$, on-chip control logic arbitration between $\overline{\mathrm{CE}}_{\mathrm{L}}$ and $\overline{\mathrm{CE}}_{\mathrm{R}}$ for access (refer to Table III, $\overline{\mathrm{CE}}$ Arbitration); or (2) if the $\overline{\mathrm{CE}}$ s are low before an address match, on-chip control logic arbitrates between left and right addresses for access (refer to Table IV, Address Arbitration). In either mode of arbitration, the delayed port's BUSY flag is set and will reset when the port granted access completes its operation. The BUSYs are open drain outputs allowing OR-tied operation.

TRUTH TABLES

TABLE I - NON-CONTENTION READ/WRITE CONTROL

LEFT PORT INPUTS ${ }^{(1)}$			RIGHT PORT INPUT ${ }^{(1)}$			FLAGS ${ }^{(2)}$		FUNCTION
$\mathrm{R} / \bar{W}_{\mathrm{L}}$	$\overline{C E}_{L}$	$\overline{O E}_{L}$	$\mathrm{R} / \bar{W}_{\text {R }}$	$\overline{\mathrm{CE}}_{\mathrm{R}}$	$\overline{\mathrm{OE}}_{\mathrm{R}}$	$\overline{B U S Y}_{L}$	$\overline{\mathrm{BUSY}}_{\mathrm{R}}$	
X	H	X	X	X	X	H	H	Left Port in Power Down Mode
X	X	X	X	H	X	H	H	Right Port in Power Down Mode
L	L	X	X	X	X	H	H	Data on Left Port Written Into Memory
H	L	L	X	X	X	H	H	Data in Memory Output on Left Port
X	X	X	L	L	X	H	H	Data on Right Port Written Into Memory
X	X	X	H	L	L	H	H	Data in Memory Output on Right Port

NOTES:

1. $A_{O L}-A_{9 L} \neq A_{O R}-A_{9 R}$
2. INT Flags DON'T CARE
$H=H I G H, L=L O W, X=$ DON'T CARE
TABLE II - INTERRUPT FLAG

LEFT PORT						RIGHT PORT						FUNCTION
$\mathrm{R} / \bar{W}_{\mathrm{L}}$	$\overline{\mathrm{CE}}_{\mathrm{L}}$	$\overline{\mathrm{OE}}_{\mathrm{L}}$	$\mathrm{A}_{0 L}-\mathrm{A}_{9 \mathrm{~L}}$	$\overline{\text { BUSY }}$ L	$\overline{\mathrm{INT}} \mathrm{T}_{\mathrm{L}}$	$\mathrm{R} / \bar{W}_{\mathrm{R}}$	$\overline{\mathrm{CE}}_{\mathrm{R}}$	$\overline{\mathrm{OE}}_{\mathrm{R}}$	$A_{0 R}-A_{9 R}$	$\overline{\text { BUSY }}_{\text {R }}$	$\overline{\mathrm{INT}} \mathrm{L}^{\text {L }}$	
L	L	X	3FF	H	X	X	X	X	X	X	L	Set Right ${\overline{\mathrm{N}} \mathrm{T}_{\text {R }} \text { Flag }}^{\text {d }}$
X	X	X	X	X	X	H	L	L	3FF	H	H	Reset Right $\overline{\mathrm{INT}}_{\mathrm{R}}$ Flag
X	X	X	X	X	L	L	L	X	3FE	H	X	Set Left $\overline{\mathrm{NT}}_{\text {L }}$ Flag
H	L	L	3FE	H	H	X	X	X	X	X	X	Reset Left $\overline{\mathrm{INT}}_{\mathrm{L}}$ Flag

NOTE:

$H=H I G H, L=L O W, X=$ DON'T CARE

TABLE III - $\overline{\mathrm{CE}}$ ARBITRATION WITH ADDRESS MATCH BEFORE $\overline{\mathrm{CE}}$

LEFT PORT										RIGHT PORT				FLAGS $^{(1)}$		FUNCTION

NOTE:

1. $\overline{\mathrm{NT}}$ Flags DON'T CARE

X = DON'T CARE, L = LOW, H = HIGH, LST = Low Same Time, LBR = Low Before Right, LBL = Low Before Left.

TABLE IV - ADDRESS ARBITRATION WITH CE LOW BEFORE ADDRESS MATCH

LEFT PORT				RIGHT PORT				$\overline{\mathrm{FLAGS}}^{(1)}$		FUNCTION

NOTE:

1. INT Flags DON'T CARE
$\mathrm{X}=$ DON'T CARE, $\mathrm{L}=\mathrm{LOW}, \mathrm{H}=\mathrm{HIGH}, \mathrm{VST}=$ Valid Same Time, VBR = Valid Before Right, VBL = Valid Before Left.

MS6130

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

SYMBOL	PARAMETER	CONDITION	UNIT
$\mathrm{V}_{\text {TERM }}$	Terminal Voltage with Repect to GND	-0.5 to +7.0	V
$\mathrm{~T}_{\text {BIAS }}$	Temperature Under Bias	-10 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-40 to +150	${ }^{\circ} \mathrm{C}$
P_{T}	Power Dissipation	1.0	W
$\mathrm{I}_{\text {OUT }}$	DC Output Current	20	mA

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=0$ to $\left.+70^{\circ} \mathrm{C}\right)$

SYMBOL	PARAMETER	TEST CONDITIONS	$\xrightarrow{\text { MS6130 }}$			MS6130L			UNITS
$\|\mathrm{L}\|$	Input Leakage Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {CC }}$	-	-	10	-	-	5	$\mu \mathrm{A}$
\|hol	Output Leakage Current	$\overline{\mathrm{CE}}=\mathrm{V}_{\text {IH }}, \mathrm{V}_{\text {OUT }}=0 \mathrm{Vt} \mathrm{o} \mathrm{V}_{\text {CC }}$	-	-	10	-	-	5	$\mu \mathrm{A}$
$\mathrm{V}_{\text {IH }}$	Input High Voltage		2.2	-	6.0	2.2	-	6.0	V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage		-0.5	-	0.8	-0.5	-	0.8	V
Icc	Dynamic Operating Current (Both Ports Active)	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$, Outputs Open	-	65	170	-	65	120	mA
$\mathrm{I}_{\text {SB1 }}$	Standby Current (Both Ports Standby)	$\overline{\mathrm{CE}}_{\mathrm{L}}$ and $\overline{\mathrm{CE}}_{\mathrm{R}} \geq \mathrm{V}_{\mathrm{H}}$	-	25	40	-	25	30	mA
$\mathrm{I}_{\text {SB2 }}$	Standby Current (One Port Standby)	$\overline{\mathrm{CE}}_{\mathrm{L}}$ and $\overline{\mathrm{CE}}_{\mathrm{R}} \geq \mathrm{V}_{\mathrm{IH}}$ Active Port Outputs Open	-	40	110	-	40	75	mA
$\mathrm{I}_{\text {SB3 }}$	Full Standby Current (Both Ports Full Standby)	Both Ports $\overline{\mathrm{CE}}_{\mathrm{L}}$ and $\overline{\mathrm{CE}}_{\mathrm{R}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$ $\mathrm{V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$ or $\mathrm{V}_{\text {IN }} \leq 0.2 \mathrm{~V}$	-	0.001	0.5	-	0.001	0.1	mA
$\mathrm{I}_{\text {SB4 }}$	Full Standby Current (One Port Full Standby)	One Ports $\overline{\mathrm{CE}}_{\mathrm{L}}$ and $\overline{\mathrm{CE}}_{\mathrm{R}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$ $\mathrm{V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V}$ Active Port Outputs Open	-	40	90	-	35	65	mA
V_{OL}	Output Low Voltage	$\mathrm{I}_{\mathrm{OL}}=3.5 \mathrm{~mA}$	-	-	0.4	-	-	0.4	V
	$\left(1 / O_{0}-1 / O_{7}\right)$	$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$	-	-	0.5	-	-	0.5	
V_{OL}	Open Drain Output Low Voltage ($\overline{\mathrm{BUSY}}, \overline{\mathrm{INT}}$)	$\mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$	-	-	0.5	-	-	0.5	V
V_{OH}	Output High Voltage	$\mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA}$	2.4	-	-	2.4	-	-	V

NOTE:

1. $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.

CAPACITANCE ${ }^{(1)}\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)$

SYMBOL	PARAMETER	CONDITION	MAX.	UNIT
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	10	pF
$\mathrm{C}_{\text {OUT }}$	Input/Output Capacitance	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	10	pF

1. This parameter is guaranteed and not 100% tested.

AC ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=0 \text { to }+70^{\circ} \mathrm{C} \text {, unless otherwise noted) }\right)^{(3)}$

SYMBOL	PARAMETER			$\begin{aligned} & \hline \text { MS6130-70 } \\ & \text { MS6130L-70 } \end{aligned}$		$\begin{aligned} & \text { MS6130-90 } \\ & \text { MS6130L-90 } \end{aligned}$		UNITS
READ CYCLE								
t_{RD}	Read Cycle Time	55	-	70	-	90	-	ns
t_{AA}	Address Access Time	-	55	-	70	-	90	ns
$\mathrm{t}_{\text {ACE }}$	Chip Enable Access Time	-	55	-	70	-	90	ns
$\mathrm{t}_{\text {AOE }}$	Output Enable Access Time	-	30	-	35	-	40	ns
${ }^{\text {toh }}$	Output Hold From Address Change	5	-	10	-	10	-	ns
t_{Lz}	Output Low Z Time ${ }^{(1,2)}$	5	-	5	-	5	-	ns
t_{HZ}	Output High Z Time ${ }^{(1,2)}$	-	30	-	35	-	40	ns
t_{PU}	Chip Enable to Power Up Time ${ }^{(2)}$	0	-	0	-	0	-	ns
$t_{\text {PD }}$	Chip Disable to Power Down Time ${ }^{(2)}$	-	35	-	40	-	50	ns

$\mathrm{t}_{\text {WC }}$	Write Cycle Time	55	-	70	-	90	-	ns
$\mathrm{t}_{\text {EW }}$	Chip Enable to End of Write	50	-	65	-	85	-	ns
$\mathrm{t}_{\text {AW }}$	Address Valid to End of Write	50	-	65	-	85	-	ns
$t_{\text {AS }}$	Address Setup Time	0	-	0	-	0	-	ns
${ }_{\text {t }}^{\text {w }}$	Write Pulse Width	40	-	45	-	60	-	ns
$\mathrm{t}_{\text {WR }}$	Write Recovery Time	0	-	0	-	0	-	ns
t_{DW}	Data Valid to End of Write	30	-	35	-	40	-	ns
t_{Hz}	Output High Z Time ${ }^{(1,2)}$	-	30	-	35	-	40	ns
$\mathrm{t}_{\text {DH }}$	Data Hold Time	0	-	0	-	0	-	ns
$t_{\text {wz }}$	Write Enabled to Output in High ${ }^{(1,2)}$	0	30	0	35	0	40	ns
tow	Output Active From End of Write ${ }^{(1,2)}$	0	-	0	-	0	-	ns
BUSY TIMING								
t_{RC}	Read Cycle Time	55	-	70	-	90	-	ns
$t_{\text {wc }}$	Write Cycle Time	55	-	70	-	90	-	ns
$\mathrm{t}_{\text {BAA }}$	BUSY Access Time to Address	-	30	-	35	-	45	ns
$t_{\text {BDA }}$	BUSY Disable Time to Address	-	30	-	35	-	45	ns
$\mathrm{t}_{\text {BAC }}$	$\overline{\text { BUSY Access Time to Chip Enable }}$	-	30	-	35	-	45	ns
$\mathrm{t}_{\mathrm{BDC}}$	BUSY Disable Time to Chip Enable	-	30	-	35	-	45	ns
$\mathrm{t}_{\text {APS }}$	Arbitration Priority Set Up Time	5	-	5	-	5	-	ns
INTERRUPT TIMING								
$\mathrm{t}_{\text {AS }}$	Address Set Up Time	0	-	0	-	0	-	ns
$t_{\text {wr }}$	Write Recovery Time	0	-	0	-	0	-	ns
$\mathrm{t}_{\text {INS }}$	Interrupt Set Time	-	40	-	45	-	55	ns
$\mathrm{t}_{\text {INR }}$	Interrupt Reset Time	-	40	-	45	-	55	ns

NOTES:

1. Transition is measured $\pm 500 \mathrm{mV}$ from low or high impedance voltage with load (Figures $1,2 \& 3$).
2. This parameter guaranteed but not tested.
3. A minimum 0.5 ms time delay is required after application of $\mathrm{V}_{\mathrm{cc}}(5 \mathrm{~V})$ before device operation is achieved.

AC TEST CONDITIONS

Input Pulse Levels	GND to 3.0V
Input Rise and Fall Times	5 ns
Input Timing Reference Levels	1.5 V
Output Reference Levels	1.5 V
Output Load	See Figures 1, 2, and 3

*Including scope and jig.

Figure 1 Output Load

Figure 2 Output Load (for $\mathrm{t}_{\mathrm{HZ}}, \mathrm{t}_{\mathrm{LZ}}$, and t_{OW})

Figure 2 BUSY and INT Output Load

MS6130

TIMING WAVEFORMS
READ CYCLE NO. 1 EITHER SIDE ${ }^{(1,2,6)}$

READ CYCLE NO. 2 EITHER SIDE ${ }^{(1,3)}$

WRITE CYCLE NO. 1 EITHER SIDE ${ }^{(4,7)}$

TIMING WAVEFORMS
WRITE CYCLE NO. 2 EITHER SIDE ${ }^{(4,7)}$

CONTENTION CYCLE NO. 1 CE ARBITRATION

$\overline{C E}_{\mathrm{L}}$ VALID FIRST:

$\overline{\mathrm{CE}}_{\mathrm{R}}$ VALID FIRST:

MS6130

TIMING WAVEFORMS
CONTENTION CYCLE NO. 2 ADDRESS VALID ARBITRATION ${ }^{(5)}$
LEFT ADDRESS VALID FIRST:

RIGHT ADDRESS VALID FIRST:

INTERRUPT MODE ${ }^{(5,8)}$
LEFT SIDE SETS $\overline{I N T}_{\mathrm{R}}$:

RIGHT SIDE CLEARS $\overline{\operatorname{INT}}_{\mathrm{R}}$:

TIMING WAVEFORMS

RIGHT SIDE SETS $\overline{\text { INT }_{L}}$:

LEFT SIDE CLEARS $\overline{\operatorname{NT}}_{\mathbf{L}}$:

NOTES:

1. R/W is high for Read Cycles.
2. Device is continuously enabled, $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$.
3. Addresses valid prior to or coincident with CE transition low.
4. If $\overline{\mathrm{CE}}$ goes high simultaneously with $\mathrm{R} / \overline{\mathrm{W}}$ high, the outputs remain in the high impedance state.
5. $\overline{\mathrm{CE}}_{\mathrm{L}}=\overline{\mathrm{CE}}_{\mathrm{R}}=\mathrm{V}_{\mathrm{IL}}$.
6. $\overline{O E}=V_{1}$.
7. $\mathrm{R} / \overline{\mathrm{W}}=\mathrm{V}_{\mathrm{H}}$ during address transition.
8. $\overline{\mathrm{NT}}_{\mathrm{R}}$ and $\overline{\mathrm{NT}}_{\mathrm{L}}$ are reset (high) during power up.

MS6130

DATA RETENTION CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=\mathbf{0}$ to $+\mathbf{7 0 ^ { \circ }} \mathrm{C}$, L Version Only)

SYMBOL	PARAMETER	TEST CONDITIONS	MIN.	TYP. ${ }^{(1)}$	MAX.	UNIT
V_{DR}	$\mathrm{V}_{C C}$ for Data Retention		2.0	-	-	V
$\mathrm{I}_{\text {CCDR }}$	Data Retention Current	$\begin{aligned} & \hline V_{C C}=2.0 \mathrm{~V} \\ & C S \geq V_{C C}-2.0 \mathrm{~V} \\ & V_{I N} \geq V_{C C}-2.0 \mathrm{~V} \text { or } \leq 0.2 \mathrm{~V} \end{aligned}$	-	1.0	20	$\mu \mathrm{A}$
$\mathrm{t}_{\mathrm{CDR}}$	Chip Deselect to Data Retention Time		0	-	-	ns
t_{R}	Operation Recovery Time		$\mathrm{t}_{\mathrm{RC}}{ }^{(2)}$	-	-	ns

NOTES:

1. $T_{A}=25^{\circ} \mathrm{C}$
2. $\mathrm{t}_{\mathrm{Rc}}=$ Read Cycle Time

LOW V_{cc} DATA RETENTION WAVEFORM

ORDERING INFORMATION

SPEED (ns)	ORDERING PART NUMBER	PACKAGE REFERENCE NO.	TEMPERATURE RANGE
55	MS6130-55PC	P48-1	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
55	MS6130L-55PC		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
55	MS6130-55DC	D48-1	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
55	MS6130L-55DC		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
70	MS6130-70PC	P48-1	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
70	MS6130L-70PC		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
70	MS6130-70DC	D48-1	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
70	MS6130L-70DC		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
90	MS6130-90PC	P48-1	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
90	MS6130L-90PC		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
90	MS6130-90DC	D48-1	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
90	MS6130L-90DC		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

ADVANCED INFORMATION

FEATURES

- High-speed access: 45/55/70ns available
- Low Power consumption

Both ports active: 660 mW
Both ports standby: 1.1 mW

- Wider word widths of 16 -bits or more can easily be created by using the Master/Slave chip select and cascading more than one device
- On-chip arbitration logic
- Single $\overline{B E}$ pin for Master or Slave operation
- INT flag for port-to-port communication
- Fully asynchronous operation from either port
- Battery backup operation: 2 volts data retention
- TTL compatible, single $5 \mathrm{~V}(\pm 10 \%$ power supply
- Available in a 64-lead gull wing plastic flatpack with 40mil lead spacing

8K x 8 Dual-Port Static RAM

DESCRIPTION

The MOSEL MS6134 is a high-speed $8 \mathrm{~K} \times 8$ dual-port SRAM. The MS6134 is designed to be used as a stand-alone 64 K -bit dual-port or as a combination Master/Slave dual-port for 16-bit or more word width systems. By grounding the Busy Output Enable (BE) pin to designate it as the Master and programming all others high as Slaves, error free operation is possible without any additional logic.

Both devices provide two independent ports with separate control, address and I/O pins that permit asynchronous operation from either port. In situations where a memory location is accessed simultaneously from both ports, arbitration logic decides which port has priority access and a busy signal (BUSY) is provided for the other port that is denied access. These parts also have port-to-port communication capability which uses two message registers each paired with an Interrupt Flag (INT).
Fabricated using Mosel's high performance CMOS technology, these devices operate at a maximum of 120 mA of supply current. These devices also have dual chip-select power down capability with a maximum of $200 \mu \mathrm{~A}$ standby current. This allows for battery back-up data retention for low power applications.

The MS6134 is packaged in a 64-lead gull-wing plastic flatpack with 40 mil lead spacing and operates over the commercial product temperature range.

FUNCTIONAL BLOCK DIAGRAM

PRELIMINARY

$4 \mathrm{~K} \times 8$ and $8 \mathrm{~K} \times 8$ SRAMs with Address Latch and Chip Enable for Microcontroller Applications

FEATURES

- Supports direct interface to high-speed microcontrollers with multiplexed address and data.
- On-chip transparent address latches
- 45/70/100 ns access times available support high-speed microcontrollers
- Chip enable for powerdown 3 mA current
- Output enable for easy bus access
- Low power consumption: 350 mW (typ.) Operating
- Fully static operation
- Three-state outputs
- Packaged in 28 pin 300 mil PDIP and 330 mil SOG

PIN CONFIGURATIONS

28 PIN DIP and SOG

DESCRIPTION

The MOSEL MS6394 and MS6395 are CMOS static RAMs optimized for use with high-speed microcontrollers with multiplexed addresses (such as the Intel 8051). The devices are organized as 4096 words by 8 bits and 8192 words by 8 bits, and contain on-chip transparent address latches to retain memory address information. One device can replace a SRAM and an octal latch. These configurations offer a significant density and cost advantage over discrete implementations.
The MS6394 and MS6395 are manufactured in MOSEL's high performance CMOS technology and operate from a single 5 V power supply. All inputs and outputs are TTL compatible. The devices are available packaged in a space saving 28 pin 300 mil DIP and in a standard 330 mil SO package.

FUNCTIONAL BLOCK DIAGRAM (MS6394/6395)

MS6394/6395

PIN DESCRIPTIONS

$A_{0}-A_{12} \quad$ Address Inputs

These 12 or 13 address inputs select one of the 4096 or 8192 8-bit words in the RAM.

ALE Address Latch Enable

This active HIGH pin controls the internal transparent latches on pins $A_{0}-A_{12}$. When ALE is HIGH the latch is transparent and the inputs on the address pins are applied to the memory array. On the falling edge of ALE the current input states of pins $A_{0}-A_{12}$ are latched and remain applied to the memory array until ALE returns to the HIGH state.

$\overline{\mathrm{G}}$ Output Enable

The output enable input is active LOW. If the output enable is active and the write enable is inactive, data will be present on the DQ pins and they will be enabled. The DQ pins will be in the high-impedance state when \bar{G} is inactive.

$\bar{E} \quad$ Chip Enable

$\overline{\mathrm{E}}$ is active LOW. The chip enable must be active to read from or write to the device. If the chip enable is not active, the device is deselected and is in a standby power mode. The DQ pins will be in the high-impedance state when the device is deselected.

$\bar{W} \quad$ Write Enable Input

The write enable input is active LOW and controls read and write operations. When \bar{W} is HIGH and $\overline{\mathrm{G}}$ is LOW, output data will be present at the DQ pins; when \bar{W} is LOW, the data present on the DQ pins will be written into the selected memory location.

$\mathrm{DQ}_{1}-\mathrm{DQ}_{8} \quad$ Data Input/Output Ports

These 8 bidirectional ports are used to read data from or write data into the RAM.
V_{cc} Power Supply
GND Ground

TRUTH TABLE

MODE	$\overline{\mathbf{W}}$	$\overline{\mathbf{E}}$	$\overline{\mathrm{G}}$	I/O OPERATION	\mathbf{V}_{CC} CURRENT
Power Down	X	H	X	High Z	$\mathrm{I}_{\mathrm{CCS}}, \mathrm{I}_{\mathrm{CCSB}}$
Output Disabled	H	L	H	High Z	I_{CC}
Read	H	L	L	$\mathrm{D}_{\mathrm{OUT}}$	I_{CC}
Write	L	L	X	D_{IN}	I_{CC}

MS6394/6395

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

SYMBOL	PARAMETER	VALUE	UNITS
$\mathrm{V}_{\text {TERM }}$	Terminal Voltage with Respect to GND	-0.5 to +7.0	V
$\mathrm{~T}_{\text {BIAS }}$	Temperature Under Bias	-10 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-60 to +150	${ }^{\circ} \mathrm{C}$
P_{T}	Power Dissipation	1.0	W
$\mathrm{I}_{\text {OUT }}$	DC Output Current	20	mA

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Esposure to absolute maximum rating conditions for extended periods may affect reliability.

OPERATING RANGE

RANGE	AMBIENT TEMPERATURE	$\mathbf{V}_{\text {cc }}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

DC ELECTRICAL CHARACTERISTICS (over the commercial operating range)

PARAMETER NAME	PARAMETER	TEST CONDITIONS	MS6394/6395			UNITS
			MIN.	TYP. (1)	MAX.	
$\mathrm{V}_{\text {IL }}$	Guaranteed Input Low Voltage ${ }^{(2)}$		-0.3	-	+0.8	V
$\mathrm{V}_{\text {IH }}$	Guaranteed Input High Voltage ${ }^{(2)}$		2.2	3.5	6.0	V
$1 / 1$	Input Leakage Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=\mathrm{GND}$ to V_{C}	-	-	5	$\mu \mathrm{A}$
I_{OL}	Output Leakage Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \overline{\mathrm{G}}=\overline{\mathrm{E}}=\mathrm{V}_{\text {IH }}, \mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ toV $\mathrm{V}_{\text {CC }}$	-	-	5	$\mu \mathrm{A}$
V_{OL}	Output Low Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$	-	-	0.4	V
V_{OH}	Output High Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$	2.4	-	-	V
I_{Cc}	Operating Power Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \overline{\mathrm{E}}=\mathrm{V}_{\mathrm{LL}}, \mathrm{I}_{\mathrm{DQ}}=0 \mathrm{~mA}, \mathrm{~F}=\mathrm{F}_{\mathrm{max}}{ }^{(3)}$	-	-	90	mA
$\mathrm{I}_{\text {ccsb } 1}$	Standby Power Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \overline{\mathrm{E}}=\mathrm{V}_{\text {IH }}, \mathrm{I}_{\mathrm{DQ}}=0 \mathrm{~mA}$	-	8	15	mA
${ }^{\text {CCSB2 }}$	Power Down Power Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \overline{\mathrm{E}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}- \\ & 0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \end{aligned}$	-	0.2	3	mA

1. Typical characteristics are at $\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. These are absolute values with respect to device ground and all overshoots due to system or tester noise are included.
3. $F_{\text {MAX }}=1 / t_{\mathrm{RC}}$.

CAPACITANCE ${ }^{(1)}\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)$

SYMBOL	PARAMETER	CONDITIONS	MAX.	UNIT
$\mathrm{C}_{\mathbb{I N}}$	Input Capacitance	$\mathrm{V}_{\mathbb{I}}=0 \mathrm{~V}$	6	pF
C_{DQ}	Input/Output Capacitance	$\mathrm{V}_{\mathrm{DQ}}=0 \mathrm{~V}$	8	pF

[^7]AC TEST CONDITIONS

Input Pulse Levels	0 V to 3.0 V
Input Rise and Fall Times	$\leq 5 \mathrm{~ns}$
Input and Output	1.5 V
Timing Reference Level	

AC TEST LOADS AND WAVEFORMS

KEY TO SWITCHING WAVEFORMS

waveform	inputs	outputs
	M M Stit be	${ }_{\text {STE }}^{\text {WILEAE }}$
11	Marchange	$\underset{\text { CHIL BE }}{\text { CHANGG }}$ from Hot
$\sqrt{1 /}$	$\xrightarrow{\text { MaY Change }}$ fROMLTOH	will be CROMLTOH
$\otimes 8$	$\begin{aligned} & \text { DONT CARE: } \\ & \text { ANY CANGE } \\ & \text { PERMITTED } \end{aligned}$	CHANGING: UNKNOW
\mathbb{H}		

AC ELECTRICAL CHARACTERISTICS (over the commercial operating range) READ CYCLE

JEDECPARAMETERNAME	PARAMETERNAME	PARAMETER	MS6394-45 MS6395-45		$\begin{aligned} & \text { MS6394-70 } \\ & \text { MS6395-70 } \end{aligned}$		$\begin{aligned} & \hline \text { MS6394-10 } \\ & \text { MS6395-10 } \end{aligned}$		UNIT
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
$\mathrm{t}_{\text {AVAX }}$	t_{RC}	Read Cycle Time	45	-	70	-	100		ns
$\mathrm{t}_{\text {AVQV }}$	$t_{\text {AA }}$	Address Access Time	-	45	-	70	-	100	ns
$\mathrm{t}_{\text {ELQV }}$	$\mathrm{t}_{\text {ACE }}$	Chip Enable Access Time	-	45	-	70	-	100	ns
$\mathrm{t}_{\text {GLQV }}$	t_{OE}	Output Enable to Output Valid	-	25	-	30	-	30	ns
$\mathrm{t}_{\text {ELQX }}$	${ }_{\text {t }}^{\text {CLZ }}$	Chip Enable to Output in Low Z	5	-	5	-	5	-	ns
$\mathrm{t}_{\text {GLQX }}$	$\mathrm{t}_{\text {OLZ }}$	Output Enable to Output in Low Z	5	-	5	-	5	-	ns
$\mathrm{t}_{\text {EHQZ }}$	${ }_{\text {t }}^{\text {CHZ }}$	Chip Disenable to Output in HighZ	-	35	-	35	-	35	ns
$\mathrm{t}_{\text {GHQZ }}$	$\mathrm{t}_{\mathrm{OHz}}$	Output Disable to Output in High Z	-	30	-	30	-	30	ns
$\mathrm{t}_{\text {AXQX }}$	t_{OH}	Output Hold from Address Change	5	-	5	-	5	-	ns
	$\mathrm{t}_{\text {AS }}$	Address Latch Setup Time	3	-	3	-	3	-	ns
	$\mathrm{t}_{\text {AH }}$	Address Latch Hold Time	15	-	15	-	20	-	ns
	${ }^{\text {c }}$ CPWL	ALE Width Low	15	-	20	-	30	-	ns
	$\mathrm{t}_{\text {cPWH }}$	ALE Width High	15	-	20	-	30	-	ns
	$\mathrm{t}_{\text {AALE }}$	Access Time from ALE	-	55	-	70	-	100	ns

SWITCHING WAVEFORMS (READ CYCLE)

READ CYCLE $1^{(1,2,3)}$ (ADDRESS ACCESS TIME - NON-PIPELINED)

READ CYCLE $\mathbf{2}^{(1,4)}$ (CHIP ENABLE AND OUTPUT ENABLE ACCESS)

READ CYCLE $3^{(1)}$ (PIPELINED)

Notes:

1. \bar{W} is high during all read cycles.
2. ALE must be high during non-pipelined cycles.
3. Output is continuously enabled.
4. Address must be valid sufficiently before \bar{G} transition low to ensure address access specification not violated.
5. Transition is measured $\pm 500 \mathrm{mV}$ from steady state with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as shown in Figure 1 b on page 4. This parameter is guaranteed and not 100% tested.

AC ELECTRICAL CHARACTERISTICS (over the commercial operating range)

WRITE CYCLE

JEDEC PARAMETER NAME	PARAMETER NAME	PARAMETER	$\begin{aligned} & \hline \text { MS6394-45 } \\ & \text { MS6395-45 } \end{aligned}$		MS6394-70 MS6395-70		$\begin{aligned} & \text { MS6394-10 } \\ & \text { MS6395-10 } \end{aligned}$		UNIT
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
$\mathrm{t}_{\text {AVAX }}$	${ }^{\text {wc }}$	Write Cycle Time	45	-	70	-	100	-	ns
$\mathrm{t}_{\text {ELWH }}$	${ }_{\text {t }}$ W	Chip Enable to End of Write	40	-	60	-	80	-	ns
${ }^{\text {WLWH }}$	$\mathrm{t}_{\text {WP }}$	Write Pulse Width	35	-	50	-	50	-	ns
$t_{\text {WHQL }}$	${ }_{\text {w }}^{\text {WLZ }}$	Write to Output in Low Z	5	-	5	-	5	-	ns
$t_{\text {wLQz }}$	${ }_{\text {whHz }}$	Write to Output in High Z	-	30	-	30	-	35	ns
$t_{\text {dVWH }}$	$\mathrm{t}_{\text {DW }}$	Data Valid to End of Write	20	-	30	-	40	-	ns
${ }^{\text {W WHDX }}$	$t_{\text {DH }}$	Data Hold from WriteTime	0	-	0	-	0	-	ns
	$\mathrm{t}_{\text {AW }}$	Address Valid to End of Write	40	-	60	-	80	-	ns
$\mathrm{t}_{\text {AVWL }}$	$t_{\text {WAS }}$	Address to Write Setup Time	8	-	10	-	15	-	ns
$\mathrm{t}_{\text {WHAX }}$	$\mathrm{t}_{\text {WR }}$	Write Recovery Time	0	-	0	-	0	-	ns
	${ }_{\text {t }}^{\text {AS }}$	Address Latch Setup Time	3	-	3	-	3	-	ns
	$\mathrm{t}_{\text {AH }}$	Address Latch Hold Time	15	-	15	-	20	-	ns

SWITCHING WAVEFORMS (WRITE CYCLE)

WRITE CYCLE $1{ }^{(1)}$

Notes:

1. \bar{W} must be high during address transitions.
2. During this period, DQ pins are in the output state so that the input signals of opposite phase to the outputs must not be applied.
3. $D_{\text {out }}$ is the same phase of write data of this write cycle.
4. Transition is measured $\pm 500 \mathrm{mV}$ from steady state with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as shown in Figure 1 b on page 4. This parameter is guaranteed and not 100\% tested.

MS6394/6395

ORDERING INFORMATION
MS6394 (4K x 8 Latch RAM)

SPEED (ns)	ORDERING PART NUMBER	PACKAGE REFERENCE NO.	TEMPERATURE RANGE
45	MS6394-45NC		P28-2

MS6395 (8K x 8 Latch RAM)

SPEED (ns)	ORDERING PART NUMBER	PACKAGE REFERENCE NO.	TEMPERATURE RANGE
45	MS6395-45NC	P28-2	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
70	MS6395-70NC		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
100	MS6395-10NC		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
45	MS6395-45FC		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
70	MS6395-70FC		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
100	MS6395-10FC		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

FEATURES

- Supports direct interface to high-speed microcontrollers with multiplexed address and data.
- On-chip transparent address latches
- 96K static RAM replaces 5 discrete chips
-45/70/100 ns access times available support high-speed microcontrollers
- Chip enable for powerdown 3 mA current
- Output enable for easy bus access
- Low power consumption: 350 mW (typ.) Operating
- Fully static operation
- Three-state outputs
- Packaged in 28 pin 300 mil PDIP and 330 mil SOG

DESCRIPTION

The MOSEL MS6397 is a CMOS static RAM optimized for use with high-speed microcontrollers with multiplexed addresses (such as the Intel 8051). The device is organized as 12288 words by 8 bits, and contains on-chip transparent address latches to retain memory address information. One MS6397 can replace an $8 \mathrm{~K} \times 8$ SRAM, two $2 \mathrm{~K} \times 8$ SRAMs and 2 octal latches. This configuration offers a significant density and cost advantages over a discrete implementation.

The MS6397 is manufactured in MOSEL's high performance CMOS technology and operates from a single 5 V power supply. All inputs and outputs are TTL compatible. The device is available packaged in a space saving 28 pin 300 mil DIP and in a standard 330 mil SO package.

FUNCTIONAL BLOCK DIAGRAM

PIN DESCRIPTIONS

$A_{0}-A_{13} \quad$ Address Inputs

These 14 address inputs select one of the 12288 8-bit words in the RAM.

ALE Address Latch Enable

This active HIGH pin controls the internal transparent latches on pins $A_{0}-A_{13}$. When ALE is HIGH the latch is transparent and the inputs on the address pins are applied to the memory array. On the falling edge of ALE the current input states of pins $A_{0}-A_{13}$ are latched and remain applied to the memory array until ALE returns to the HIGH state.

$\overline{\mathrm{G}}$ Output Enable

The output enable input is active LOW. If the output enable is active and the write enable is inactive, data will be present on the DQ pins and they will be enabled. The DQ pins will be in the high-impedance state when \bar{G} is inactive.

$\overline{\mathrm{E}} \quad$ Chip Enable

\bar{E} is active LOW. The chip enable must be active to read from or write to the device. If the chip enable is not active, the device is deselected and is in a standby power mode. The DQ pins will be in the high-impedance state when the device is deselected.

W Write Enable Input

The write enable input is active LOW and controls read and write operations. When \bar{W} is HIGH and $\overline{\mathrm{G}}$ is LOW, output data will be present at the DQ pins; when \bar{W} is LOW, the data present on the DQ pins will be written into the selected memory location.

$\mathrm{DQ}_{1}-\mathrm{DQ}_{8} \quad$ Data Input/Output Ports

These 8 bidirectional ports are used to read data from or write data into the RAM.
$V_{c c}$ Power Supply
GND Ground

TRUTH TABLE

MODE	$\overline{\mathbf{W}}$	$\overline{\mathbf{E}}$	$\overline{\mathbf{G}}$	I/O OPERATION	$\mathbf{V}_{\text {CC }}$ CURRENT
Power Down	X	H	X	High Z	$\mathrm{I}_{\mathrm{CCSB}}, \mathrm{I}_{\mathrm{CCSB} 1}$
Output Disabled	H	L	H	High Z	I_{CC}
Read	H	L	L	$\mathrm{D}_{\mathrm{OUT}}$	I_{CC}
Write	L	L	X	D_{IN}	I_{CC}

MEMORY BLOCK SELECT

$\mathbf{A}_{\mathbf{1 3}}$	$\mathbf{A}_{\mathbf{1 2}}$	DQ Status; Memory Block Selected
H	H	High Z; Chip Deselected
H	L	Active; Top 4K block
L	H	Active; Mid 4K block
L	L	Active; Low 4K block

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

SYMBOL	PARAMETER	VALUE	UNITS
$\mathrm{V}_{\text {TERM }}$	Terminal Voltage with Respect to GND	-0.5 to +7.0	V
$\mathrm{~T}_{\text {BIAS }}$	Temperature Under Bias	-10 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-60 to +150	${ }^{\circ} \mathrm{C}$
P_{T}	Power Dissipation	1.0	W
$\mathrm{I}_{\text {OUT }}$	DC Output Current	20	mA

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Esposure to absolute maximum rating conditions for extended periods may affect reliability.

OPERATING RANGE

RANGE	AMBIENT TEMPERATURE	$\mathbf{V}_{\text {cc }}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

DC ELECTRICAL CHARACTERISTICS (over the commercial operating range)

PARAMETER NAME	PARAMETER	TEST CONDITIONS	MS6397			UNITS
			MIN.	TYP. (1)	MAX.	
$\mathrm{V}_{\text {IL }}$	Guaranteed Input Low Voltage ${ }^{(2)}$		-0.3	-	+0.8	V
$\mathrm{V}_{\text {IH }}$	Guaranteed Input High Voltage ${ }^{(2)}$		2.2	3.5	6.0	V
ILL	Input Leakage Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=\mathrm{GND}$ to V_{CC}	-	-	5	$\mu \mathrm{A}$
I_{OL}	Output Leakage Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \overline{\mathrm{G}}=\overline{\mathrm{E}}=\mathrm{V}_{\text {IH }}, \mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ toV VC_{C}	-	-	5	$\mu \mathrm{A}$
V_{OL}	Output Low Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{LL}}=4 \mathrm{~mA}$	-	-	0.4	V
V_{OH}	Output High Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{\mathrm{OH}}=-1 \mathrm{~mA}$	2.4	\bullet	-	V
I_{CC}	Operating Power Supply Current	$\mathrm{V}_{\mathrm{CC}}=\operatorname{Max}, \overline{\mathrm{E}}=\mathrm{V}_{\mathrm{LL}}, \mathrm{I}_{\mathrm{DQ}}=0 \mathrm{~mA}, \mathrm{~F}=\mathrm{F}_{\mathrm{max}}{ }^{(3)}$	-	-	90	mA
'CCsB1	Standby Power Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \overline{\mathrm{E}}=\mathrm{V}_{\mathrm{H}}, \mathrm{I}_{\mathrm{DQ}}=0 \mathrm{~mA}$	-	8	15	mA
$\mathrm{I}_{\text {CCSB2 }}$	Power Down Power Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \overline{\mathrm{E}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}- \\ & 0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \end{aligned}$	\cdot	0.2	3	mA

1. Typical characteristics are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. These are absolute values with respect to device ground and all overshoots due to system or tester noise are included.
3. $F_{\text {MAX }}=1 / t_{R C}$

CAPACITANCE ${ }^{(1)}\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right.$)

SYMBOL	PARAMETER	CONDITIONS	MAX.	UNIT
$\mathrm{C}_{\mathbb{I N}}$	Input Capacitance	$\mathrm{V}_{\mathbb{I N}}=0 \mathrm{~V}$	6	pF
C_{DQ}	Input/Output Capacitance	$\mathrm{V}_{\mathrm{DQ}}=0 \mathrm{~V}$	8	pF

1. This parameter is guaranteed and not tested.

AC TEST CONDITIONS

Input Pulse Levels	0 V to 3.0 V
Input Rise and Fall Times	$\leq 5 \mathrm{~ns}$
Input and Output	1.5 V
Timing Reference Level	

AC TEST LOADS AND WAVEFORMS

KEY TO SWITCHING WAVEFORMS

WAVEFORM	INPUTS	OUTPUTS
	MUST BE STEADY	WILL BE STEADY
	MAY CHANGE FROM HTOL	WILL BE CHANGING FROM HTOL
	MAY CHANGE FROMLTOH	WILL BE CHANGING FROMLTOH
	DON'T CARE: ANY CHANGE PERMITTED	CHANGING: STATE UNKNOWN
	DOES NOT APPLY	CENTER LINE IS HIGH IMPEDANCE "OFF" STATE

AC ELECTRICAL CHARACTERISTICS (over the commercial operating range) READ CYCLE

JEDEC PARAMETER NAME	PARAMETER NAME	PARAMETER	MS6397-45		MS6397-70		MS6397-10		UNIT
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
$t_{\text {AVAX }}$	t_{RC}	Read Cycle Time	45	-	70	-	100		ns
$\mathrm{t}_{\text {AVQV }}$	$\mathrm{t}_{\text {AA }}$	Address Access Time	-	45	-	70	-	100	ns
$\mathrm{t}_{\text {ELQV }}$	$t_{\text {ACE }}$	Chip Enable Access Time	-	45	-	70	-	100	ns
$t_{\text {GLQV }}$	t_{OE}	Output Enable to Output Valid	-	25	-	30	-	30	ns
$\mathrm{t}_{\text {ELQX }}$	$\mathrm{t}_{\mathrm{CLZ}}$	Chip Enable to Output in Low Z	5	-	5	-	5	-	ns
$\mathrm{t}_{\text {GLQX }}$	$\mathrm{t}_{\mathrm{OLZ}}$	Output Enable to Output in Low Z	5	-	5	-	5	-	ns
$\mathrm{t}_{\text {EHQZ }}$	$\mathrm{t}_{\mathrm{CHZ}}$	Chip Disenable to Output in HighZ	-	35	-	35	-	35	ns
$\mathrm{t}_{\text {GHQZ }}$	$\mathrm{t}_{\mathrm{OHZ}}$	Output Disable to Output in High Z	-	30	-	30	-	30	ns
$\mathrm{t}_{\text {AXQX }}$	t_{OH}	Output Hold from Address Change	5	-	5	-	5	-	ns
	$\mathrm{t}_{\text {AS }}$	Address Latch Setup Time	3	-	3	-	3	-	ns
	t_{AH}	Address Latch Hold Time	15	-	15	-	20	-	ns
	${ }^{\text {cPWL }}$	ALE Width Low	15	-	20	-	30	-	ns
	$\mathrm{t}_{\text {CPWH }}$	ALE Width High	15	-	20	-	30	-	ns
	$\mathrm{t}_{\text {AALE }}$	Access Time from ALE	-	55	-	70	-	100	ns

SWITCHING WAVEFORMS (READ CYCLE)

READ CYCLE $1^{(1,2,3)}$ (ADDRESS ACCESS TIME - NON-PIPELINED)

READ CYCLE $\mathbf{2}^{(1,4)}$ (CHIP ENABLE AND OUTPUT ENABLE ACCESS)

READ CYCLE $3^{(1)}$ (PIPELINED)

Notes:

1. \bar{W} is high during all read cycles.
2. ALE must be high during non-pipelined cycles.
3. Output is continuously enabled.
4. Address must be valid sufficiently before $\overline{\mathrm{G}}$ transition low to ensure address access specification not violated.
5. Transition is measured $\pm 500 \mathrm{mV}$ from steady state with $C_{L}=5 p F$ as shown in Figure $1 b$ on page 4. This parameter is guaranteed and not 100% tested.

AC ELECTRICAL CHARACTERISTICS (over the commercial operating range)

WRITE CYCLE

JEDEC PARAMETER	PARAMETER NAME	PARAMETER	MS6397-45		MS6397-70		MS6397-10		UNIT
NAME			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
$\mathrm{t}_{\text {AVAX }}$	${ }^{\text {WC }}$	Write Cycle Time	45	-	70	-	100	-	ns
$\mathrm{t}_{\text {ELWH }}$	t_{CW}	Chip Enable to End of Write	40	-	60	-	80	-	ns
$t_{\text {WLWH }}$	$t_{\text {WP }}$	Write Pulse Width	35	-	50	-	50	-	ns
$\mathrm{t}_{\text {WHQL }}$	$t_{\text {WLZ }}$	Write to Output in Low Z	5	-	5	-	5	-	ns
$\mathrm{t}_{\text {WLQZ }}$	$t_{\text {WHZ }}$	Write to Output in High Z	-	30	-	30	-	35	ns
$t_{\text {DVWH }}$	$\mathrm{t}_{\text {DW }}$	Data Valid to End of Write	20	-	30	-	40	-	ns
$t_{\text {WHDX }}$	t_{DH}	Data Hold from WriteTime	0	-	0	-	0	-	ns
	$\mathrm{t}_{\text {AW }}$	Address Valid to End of Write	40	-	60	-	80	-	ns
${ }_{\text {t }}$ AVWL	$t_{\text {WAS }}$	Address to Write Setup Time	8	-	10	-	15	-	ns
${ }_{\text {WHAX }}$	${ }^{\text {WR }}$	Write Recovery Time	0	-	0	-	0	-	ns
	$\mathrm{t}_{\text {AS }}$	Address Latch Setup Time	3	-	3	-	3	-	ns
	$t_{\text {AH }}$	Address Latch Hold Time	15	-	15	-	20	-	ns

SWITCHING WAVEFORMS (WRITE CYCLE)

WRITE CYCLE $1^{(1)}$

Notes:

1. W must be high during address transitions.
2. During this period, DQ pins are in the output state so that the input signals of opposite phase to the outputs must not be applied.
3. $D_{\text {out }}$ is the same phase of write data of this write cycle.
4. Transition is measured $\pm 500 \mathrm{mV}$ from steady state with $C_{L}=5 p F$ as shown in Figure 1 b on page 4. This parameter is guaranteed and not 100\% tested.

ORDERING INFORMATION

SPEED (ns)	ORDERING PART NUMBER	PACKAGE REFERENCE NO.	TEMPERATURE
45	MS6397-45NC		$\mathrm{P} 28-2$
RANGE			

16K x 8 SRAM with Address Latch and Chip Enable for Microcontroller Applications

FEATURES

- Supports direct interface to high-speed microcontrollers with multiplexed address and data.
- On-chip transparent address latches
- 45/70/100 ns access times available support high-speed microcontrollers
- Chip enable for powerdown 3 mA current
- Output enable for easy bus access
- Low power consumption: 350 mW (typ.) Operating
- Fully static operation
- Three-state outputs
- Packaged in 28 pin 300 mil PDIP and 330 mil SOG

DESCRIPTION

The MOSEL MS6398 is a CMOS static RAM optimized for use with high-speed microcontrollers with multiplexed addresses (such as the Intel 8051). The device is organized as 16384 words by 8 bits, and contain on-chip transparent address latches to retain memory address information. One device can replace a combination of SRAMs, and an octal latch. This configuration offers a significant density and cost advantage over a discrete implementation.
The MS6398 is manufactured in MOSEL's high performance CMOS technology and operate from a single 5 V power supply. All inputs and outputs are TTL compatible. The device is available packaged in a space saving 28 pin 300 mil DIP and in a standard 330 mil SO package.

FUNCTIONAL BLOCK DIAGRAM

PIN DESCRIPTIONS

A_{0} - $A_{13} \quad$ Address Inputs

These 14 address inputs select one of the 16384 8-bit words in the RAM.

ALE Address Latch Enable

This active HIGH pin controls the internal transparent latches on pins $A_{0}-A_{13}$. When ALE is HIGH the latch is transparent and the inputs on the address pins are applied to the memory array. On the falling edge of ALE the current input states of pins $A_{0}-A_{13}$ are latched and remain applied to the memory array until ALE returns to the HIGH state.

$\overline{\mathrm{G}}$ Output Enable

The output enable input is active LOW. If the output enable is active and the write enable is inactive, data will be present on the DQ pins and they will be enabled. The DQ pins will be in the high-impedance state when $\overline{\mathrm{G}}$ is inactive.

$\bar{E} \quad$ Chip Enable

$\overline{\mathrm{E}}$ is active LOW. The chip enable must be active to read from or write to the device. If the chip enable is not active, the device is deselected and is in a standby power mode. The DQ pins will be in the high-impedance state when the device is deselected.

$\overline{\text { W }} \quad$ Write Enable Input

The write enable input is active LOW and controls read and write operations. When \bar{W} is HIGH and $\overline{\mathrm{G}}$ is LOW, output data will be present at the DQ pins; when \bar{W} is LOW, the data present on the DQ pins will be written into the selected memory location.
$D Q_{1}-D Q_{8} \quad$ Data Input/Output Ports
These 8 bidirectional ports are used to read data from or write data into the RAM.
$V_{\text {cc }}$ Power Supply
GND Ground

TRUTH TABLE

MODE	$\overline{\mathbf{W}}$	$\overline{\mathbf{E}}$	$\overline{\mathbf{G}}$	I/O OPERATION	$\mathbf{V}_{\text {CC }}$ CURRENT
Power Down	X	H	X	High Z	$\mathrm{I}_{\mathrm{CCS}}, \mathrm{I}_{\mathrm{CCSB} 1}$
Output Disabled	H	L	H	High Z	I_{CC}
Read	H	L	L	$\mathrm{D}_{\mathrm{OUT}}$	I_{CC}
Write	L	L	X	D_{IN}	I_{CC}

MS6398

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

SYMBOL	PARAMETER	VALUE	UNITS
$\mathrm{V}_{\text {TERM }}$	Terminal Voltage with Respect to GND	-0.5 to +7.0	V
$\mathrm{~T}_{\text {BIAS }}$	Temperature Under Bias	-10 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-60 to +150	${ }^{\circ} \mathrm{C}$
P_{T}	Power Dissipation	1.0	W
$\mathrm{I}_{\text {OUT }}$	DC Output Current	20	mA

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Esposure to absolute maximum rating conditions for extended periods may affect reliability.

OPERATING RANGE

RANGE	AMBIENT TEMPERATURE	V $_{\text {CC }}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

DC ELECTRICAL CHARACTERISTICS (over the commercial operating range)

PARAMETER NAME	PARAMETER	TEST CONDITIONS	MS6398			UNITS
			MIN.	TYP. (1)	MAX.	
$\mathrm{V}_{\text {IL }}$	Guaranteed Input Low Voltage ${ }^{(2)}$		-0.3	-	+0.8	V
$\mathrm{V}_{\text {IH }}$	Guaranteed Input High Voltage ${ }^{(2)}$		2.2	3.5	6.0	\checkmark
IIL	Input Leakage Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=\mathrm{GND}$ to $\mathrm{V}_{\text {c }}$	-	-	5	$\mu \mathrm{A}$
I_{OL}	Output Leakage Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \overline{\mathrm{G}}=\overline{\mathrm{E}}=\mathrm{V}_{\text {IH }}, \mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ toV V_{CC}	-	-	5	$\mu \mathrm{A}$
V_{OL}	Output Low Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$	-	-	0.4	V
V_{OH}	Output High Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$	2.4	-	-	V
I_{CC}	Operating Power Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \overline{\mathrm{E}}=\mathrm{V}_{\mathrm{IL}}, \mathrm{I}_{\mathrm{DQ}}=0 \mathrm{~mA}, \mathrm{~F}=\mathrm{F}_{\mathrm{max}}{ }^{(3)}$	-	-	90	mA
$\mathrm{I}_{\text {ccsb1 }}$	Standby Power Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \overline{\mathrm{E}}=\mathrm{V}_{\text {IH }}, \mathrm{I}_{\mathrm{DQ}}=0 \mathrm{~mA}$	-	8	15	mA
$\mathrm{I}_{\text {CCSB2 }}$	Power Down Power Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \overline{\mathrm{E}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}- \\ & 0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \end{aligned}$	-	0.2	3	mA

1. Typical characteristics are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. These are absolute values with respect to device ground and all overshoots due to system or tester noise are included.
3. $F_{M A X}=1 / t_{R C}$.

CAPACITANCE ${ }^{(1)}\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right.$)

SYMBOL	PARAMETER	CONDITIONS	MAX.	UNIT
$\mathrm{C}_{\mathbb{I N}}$	Input Capacitance	$\mathrm{V}_{\mathbb{I N}}=0 \mathrm{~V}$	6	pF
C_{DQ}	Input/Output Capacitance	$\mathrm{V}_{\mathrm{DQ}}=0 \mathrm{~V}$	8	pF

1. This parameter is guaranteed and not tested.

AC TEST CONDITIONS

Input Pulse Levels	0 V to 3.0 V
Input Rise and Fall Times	$\leq 5 \mathrm{~ns}$
Input and Output	1.5 V
Timing Reference Level	

AC TEST LOADS AND WAVEFORMS

Figure 1a

THEVENIN EQUIVALENT

ALL INPUT PULSES

KEY TO SWITCHING WAVEFORMS

WAVEFORM	INPUTS	OUTPUTS
	MUST BE STEADY	WILL BE STEADY
	MAY CHANGE FROM HTOL	WILL BE CHANGING FROM H TO L
	MAY CHANGE FROM LTO H	WILL BE CHANGING FROMLTOH
	DON'T CARE: ANY CHANGE PERMITTED	CHANGING: STATE UNKNOWN
	DOES NOT APPLY	CENTER LINE IS HIGH IMPEDANCE "OFF" STATE

AC ELECTRICAL CHARACTERISTICS (over the commercial operating range)

READ CYCLE

JEDEC PARAMETER NAME	PARAMETER NAME	PARAMETER	MS6398-45		MS6398-70		MS6398-10		UNIT
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
$\mathrm{t}_{\text {AVAX }}$	$t_{\text {R }}$	Read Cycle Time	45	-	70	-	100		ns
$\mathrm{t}_{\text {AVQV }}$	$t_{\text {AA }}$	Address Access Time	-	45	-	70	-	100	ns
$\mathrm{t}_{\text {ELQV }}$	$\mathrm{t}_{\text {ACE }}$	Chip Enable Access Time	-	45	-	70	-	100	ns
$\mathrm{t}_{\text {GLQV }}$	$\mathrm{t}_{\text {OE }}$	Output Enable to Output Valid	-	25	-	30	-	30	ns
$\mathrm{t}_{\text {ELQX }}$	${ }^{\text {ctLz }}$	Chip Enable to Output in Low Z	5	-	5	-	5	-	ns
$\mathrm{t}_{\text {GLQX }}$	$\mathrm{t}_{\text {olz }}$	Output Enable to Output in Low Z	5	-	5	-	5	-	ns
$\mathrm{t}_{\text {EHQZ }}$	${ }^{\text {cha }}$	Chip Disenable to Output in HighZ	-	35	-	35	-	35	ns
$\mathrm{t}_{\mathrm{GHQZ}}$	$\mathrm{t}_{\mathrm{OHZ}}$	Output Disable to Output in High Z	-	30	-	30	-	30	ns
$t_{\text {AXQX }}$	t_{OH}	Output Hold from Address Change	5	-	5	-	5	-	ns
	$\mathrm{t}_{\text {AS }}$	Address Latch Setup Time	3	-	3	-	3	-	ns
	$\mathrm{t}_{\text {AH }}$	Address Latch Hold Time	15	-	15	-	20	-	ns
	$\mathrm{t}_{\text {CPWL }}$	ALE Width Low	15	-	20	-	30	-	ns
	$\mathrm{t}_{\text {CPWH }}$	ALE Width High	15	-	20	-	30	-	ns
	$\mathrm{t}_{\text {AALE }}$	Access Time from ALE	-	55	-	70	-	100	ns

SWITCHING WAVEFORMS (READ CYCLE)

READ CYCLE $1^{(1,2,3)}$ (ADDRESS ACCESS TIME - NON-PIPELINED)

READ CYCLE $2^{(1,4)}$ (CHIP ENABLE AND OUTPUT ENABLE ACCESS)

READ CYCLE $3^{(1)}$ (PIPELINED)

Notes:

1. \bar{W} is high during all read cycles.
2. ALE must be high during non-pipelined cycles.
3. Output is continuously enabled.
4. Address must be valid sufficiently before $\overline{\mathrm{G}}$ transition low to ensure address access specification not violated.
5. Transition is measured $\pm 500 \mathrm{mV}$ from steady state with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as shown in Figure 1 b on page 4 . This parameter is guaranteed and not 100% tested.

AC ELECTRICAL CHARACTERISTICS (over the commercial operating range)

WRITE CYCLE

JEDEC PARAMETER NAME	PARAMETER NAME	PARAMETER	MS6398-45		MS6398-70		MS6398-10		UNIT
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
$\mathrm{t}_{\text {AVAX }}$	$t_{\text {wc }}$	Write Cycle Time	45	-	70	-	100	-	ns
$\mathrm{t}_{\text {ELWH }}$	${ }^{\text {cW }}$	Chip Enable to End of Write	40	-	60	-	80	-	ns
$t_{\text {WLWH }}$	${ }_{\text {t }}^{\text {W }}$	Write Pulse Width	35	-	50	-	50	-	ns
$t_{\text {WHQL }}$	$t_{\text {WLZ }}$	Write to Output in Low Z	5	-	5	-	5	-	ns
$\mathrm{t}_{\text {WLQZ }}$	$t_{\text {WHZ }}$	Write to Output in High Z	-	30	-	30	-	35	ns
$\mathrm{t}_{\text {DVWH }}$	$\mathrm{t}_{\text {DW }}$	Data Valid to End of Write	20	-	30	-	40	-	ns
${ }^{\text {WHHDX }}$	${ }_{\text {d }}$	Data Hold from WriteTime	0	-	0	-	0	-	ns
	$\mathrm{t}_{\text {AW }}$	Address Valid to End of Write	40	-	60	-	80	-	ns
$\mathrm{t}_{\text {AVWL }}$	$t_{\text {WAS }}$	Address to Write Setup Time	8	-	10	-	15	-	ns
${ }_{\text {t WHAX }}$	$t_{\text {WR }}$	Write Recovery Time	0	-	0	-	0	-	ns
	$t_{\text {AS }}$	Address Latch Setup Time	3	-	3	-	3	-	ns
	${ }^{\text {AH }}$	Address Latch Hold Time	15	-	15	-	20	-	ns

SWITCHING WAVEFORMS (WRITE CYCLE)

WRITE CYCLE $1{ }^{(1)}$

Notes:

1. \bar{W} must be high during address transitions.
2. During this period, DQ pins are in the output state so that the input signals of opposite phase to the outputs must not be applied.
3. $D_{\text {out }}$ is the same phase of write data of this write cycle.
4. Transition is measured $\pm 500 \mathrm{mV}$ from steady state with $C_{L}=5 p F$ as shown in Figure $1 b$ on page 4. This parameter is guaranteed and not 100% tested.

MS6398

ORDERING INFORMATION

SPEED (ns)	ORDERING PART NUMBER	PACKAGE REFERENCE NO.	TEMPERATURE RANGE
45	MS6398-45NC	P28-2	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
70	MS6398-70NC		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
100	MS6398-10NC		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
45	MS6398-45FC	S28-2	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
70	MS6398-70FC		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
100	MS6398-10FC		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

FEATURES

- High speed - 25/35 ns (Max.)
- 32K x 8 external; 32K x 9 internal
- On chip parity generation and checking
- Automatic power-down when chip disabled
- Lower power consumption:
- 715 mW (Max.) Operating
- 138mW (Max.) Standby
- TTL compatible interface levels
- Single 5V power supply
- Fully static operation
- Three state outputs
- Two chip enables (\bar{E}_{1} and E_{2}) for simple memory expansion
- Fast E_{2} access time (14ns) to support cache applications

DESCRIPTION

The MOSEL MS64100 Parity RAM is a high speed, CMOS Static RAM with on board parity generation and parity error detection circuitry. It is organized as 32,768 words of 8 bits each externally. Internally the organization is $32,768 \times 9$; the 9th parity bit is generated and checked on chip.

The MS64100 is ideal for use in cache or main memory applications for high reliability systems that require extra system diagnostic capability and/or protection from soft errors. Such applications Include financial transaction processing, medical or military systems.
The MS64100 insures the detection of all single bit errors, providing several orders of magnitude of increased protection against alpha-particle induced soft errors and other bit error mechanisms. In a cache application the correct data can be retrieved from main memory in the event of an error.
The MS64100 operates from a single 5 volt power supply. All inputs and outputs are TTL compatible. The MOSEL MS64100 is packaged in a space saving 32 pin 300 mil plastic DIP package and 330 mil SO package.

PIN CONFIGURATIONS

FUNCTIONAL BLOCK DIAGRAM

MS64100

PIN DESCRIPTIONS

A_{0} - $A_{12} \quad$ Address Inputs

These 13 address inputs select one of the 8192 8-bit words in the RAM.

\bar{E}_{1} Chip Enable 1 Input

E_{2} Chip Enable 2 Input
\bar{E}_{1} is active LOW and E_{2} is active HIGH. Both chip enables must be active to read from or write to the device. If either chip enable is not active, the device is deselected and is in a standby power mode. The DQ pins will be in the highimpedance state when the device is deselected.

$\overline{\mathbf{G}}$ Output Enable Input

The output enable input is active LOW. If the output enable is active while the chip is selected and the write enable is inactive, data will be present on the DQ pins and they will be enabled. The DQ pins will be in the high impedance state when \bar{G} is inactive.

$\overline{\text { PE Parity Error }}$

During a read cycle, the $\overline{\mathrm{PE}}$ goes low to signal that a parity error has occurred, or remains in the high Z state if there is no parity error. During a write cycle, the MS64100 generates a 9th parity bit on chip which is written into the memory array. If the $\overline{\mathrm{PE}}$ pin is forced low during the write, a false entry will be made for the parity bit. This will result in a parity error signal during subsequent read cycles.

$\overline{\text { W }}$ Write Enable Input

The write enable input is active LOW and controls read and write operations. With the chip selected, when \bar{W} is HIGH and $\overline{\mathrm{G}}$ is LOW, output data will be present at the DQ pins; when \bar{W} is LOW, the data present on the DQ pins will be written into the selected memory location.
$D Q_{1}-D Q_{8} \quad$ Data Input/Output Ports
These 8 bidirectional ports are used to read data from or write data into the RAM.
$\mathrm{V}_{\mathrm{cc}} \quad$ Power Supply

GND Ground

TRUTH TABLE

$\overline{\mathbf{E}}_{\mathbf{1}}$	$\mathrm{E}_{\mathbf{2}}$	$\overline{\mathrm{W}}$	$\overline{\mathrm{G}}$	MODE	SUPPLY CURRENT	I/O, PE STATE
H	X	X	X	Standby	I_{SB}	High Z
L	L	X	X	Deselect	I_{CC}	I_{CC}
L	H	H	H	$\mathrm{D}_{\text {OUT }}$ Disable	I_{CC}	High Z
L	H	H	L	Read	I_{CC}	$\mathrm{D}_{\text {OUT }}$
L	H	L	X	Write	$\mathrm{D}_{\text {IN }}$	

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

SYMBOL	PARAMETER	RATING	UNITS
$\mathrm{V}_{\text {TERM }}$	Terminal Voltage with Respect to GND	-0.5 to +7.0	V
$\mathrm{~T}_{\text {BIAS }}$	Temperature Under Bias	-0 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-45 to +125	${ }^{\circ} \mathrm{C}$
P_{T}	Power Dissipation	1.0	W
$\mathrm{I}_{\text {OUT }}$	DC Output Current	20	mA

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

OPERATING RANGE

RANGE	TEMPERATURE	V $_{\text {cc }}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

DC ELECTRICAL CHARACTERISTICS (over the operating range)

PARAMETER NAME	PARAMETER	TEST CONDITIONS		MS64100			UNITS
				MIN.	TYP.(1)	MAX.	
$\mathrm{V}_{1 \mathrm{~L}}$	Guaranteed Input Low Voltage ${ }^{(2)}$			-2.0	-	0.8	V
V_{IH}	Guaranteed Input High Voltage ${ }^{(2)}$			2.2	-	6.0	V
1 L	Input Leakage Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {CC }}$		-5	-	5	$\mu \mathrm{A}$
I_{O}	Output Leakage Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \overline{\mathrm{E}}_{1}=\mathrm{V}_{\text {IH }}$, or $\mathrm{E}_{2}=\mathrm{V}_{\mathrm{LL}}$, or $\overline{\mathrm{G}}=\mathrm{V}_{\text {IH }}$,	o V ${ }_{\text {c }}$	-5	-	5	$\mu \mathrm{A}$
V_{OL}	Output Low Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{\mathrm{OL}}=8 \mathrm{~mA}$		-	-	0.4	V
V_{OH}	Output High Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA}$		2.4	-	-	V
${ }_{\text {IC }}$	Operating Power Supply Current	$\mathrm{V}_{\mathrm{CC}}=$ Max, $\mathrm{E}_{1}=\mathrm{V}_{\text {IL }}, \mathrm{I}_{1 / \mathrm{O}}=0 \mathrm{~mA}, \mathrm{~F}=\mathrm{F}_{\mathrm{max}}{ }^{(3)}$	25 ns	-	-	130	mA
			35 ns	-	-	110	
$\mathrm{I}_{\text {ccs }}$	Standby Power Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \overline{\mathrm{E}}_{1}=\mathrm{V}_{\mathrm{IH}}, \mathrm{I}_{1 / \mathrm{O}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V}$		-	-	25	mA
${ }^{\text {ccSB1 }}$	Power Down Power Supply Current	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \bar{E}_{1}>\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \\ & \mathrm{~V}_{\text {IN }}>\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \text { or } \mathrm{V}_{\text {IN }}<0.2 \mathrm{~V} \end{aligned}$		-		15	mA

1. Typical characteristics are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. These are absolute values with respect to device ground and all overshoots due to system or tester noise are included; $-2.0 \mathrm{~V}_{\mathrm{kL}}$ min for pulse width of less than $20 \mathrm{~ns}: \mathrm{V}_{\mathrm{IL}} \mathrm{min}=-0.5 \mathrm{~V}$ at DC levels
3. $F_{M A X}=1 / t_{R C}$.

CAPACITANCE ${ }^{(1)}\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)$

SYMBOL	PARAMETER	CONDITIONS	MAX.	UNIT
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	7	pF
C_{DQ}	Input/Output Capacitance	$\mathrm{V}_{\mathrm{IO}}=0 \mathrm{~V}$	8	pF

1. This parameter is guaranteed and not tested.

MS64100

AC TEST CONDITIONS

Input Pulse Levels	0.6 to 2.4 V
Input Rise and Fall Times	3 ns
Input and Output	Input : $\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{IH}}=2.2 \mathrm{~V}$
Timing Reference Level	Output: $\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{OH}}=2.2 \mathrm{~V}$

AC TEST LOADS AND WAVEFORMS

KEY TO SWITCHING WAVEFORMS

WAVEFORM	INPUTS	OUTPUTS
	MUSTBE STEADY	WILL BE STEADY
	MAY CHANGE FROMHTOL	WILL BE CHANGING FROM HTOL
FROMLTOHE		

THEVENIN EQUIVALENT
OUTPUT $\mathrm{O}-1.73 \mathrm{~V}$

ALL INPUT PULSES

Figure 2

AC ELECTRICAL CHARACTERISTICS (over the operating range)
 READ CYCLE

JEDECPARAMETERNAME	PARAMETER NAME	PARAMETER		MS64100-25			MS64100-35			UNIT
				MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
$t_{\text {AVAX }}$	t_{RC}	Read Cycle Time		25	-	-	35	-	-	ns
$\mathrm{t}_{\text {AVQV }}$	t_{AA}	Address Access Time		-	-	25	-	-	35	ns
$\mathrm{t}_{\text {E1LQV }}$	$\mathrm{t}_{\text {ACS1 }}$	Chip Enable Access Time	\bar{E}_{1}	-	-	25	-	-	35	ns
$\mathrm{t}_{\text {E2 } 2 \mathrm{HQX}}$	$\mathrm{t}_{\text {ACS2 }}$	Chip Enable Access Time	E_{2}	-	-	14	-	-	15	ns
$\mathrm{t}_{\text {GLLQV }}$	t_{OE}	Output Enable to Output Valid		-	-	12	-	-	14	ns
$\mathrm{t}_{\text {E1Lax }}$	$\mathrm{t}_{\text {CLZ1 }}$	Chip Enable to Output Low Z	$\overline{E_{1}}$	5	-	-	8	-	-	ns
$\mathrm{t}_{\text {E2HQX }}$	$\mathrm{t}_{\text {CLZ2 }}$	Chip Enable to to Output Low Z	E_{2}	2	-	-	3	-	-	ns
$\mathrm{t}_{\text {GLax }}$	tolz	Output Enable to Output in Low Z		2	-	-	3	-	-	ns
$\mathrm{t}_{\text {E1HOZ }}$	$\mathrm{t}_{\mathrm{CHZ} 1}$	Chip Disable to Output in High Z	$\overline{\bar{E}_{1}}$	1	-	15	1	-	15	ns
$\mathrm{t}_{\text {E2LQz }}$	$\mathrm{t}_{\mathrm{CHZ2}}$	Chip Disable to Output in High Z	E_{2}	1	-	15	1	-	15	ns
$\mathrm{t}_{\text {GHQZ }}$	$\mathrm{t}_{\mathrm{OHZ}}$	Output Disable to Output in High Z		1	-	15	1	-	15	ns
$\mathrm{t}_{\text {AXQX }}$	t_{OH}	Output Hold from Address Change		3	-	-	3	-	-	ns

SWITCHING WAVEFORMS (READ CYCLE)

READ CYCLE $1^{(1,2,4)}$

READ CYCLE $\mathbf{2}^{(1,3,4)}$

READ CYCLE $3^{(1,4)}$

NOTES:

1. \bar{W} is high for READ Cycle.
2. Device is continuously selected $\mathrm{E}_{1}=\mathrm{V}_{12}$ and $\mathrm{E}_{2}=\mathrm{V}_{I H}$
3. Address valid prior to or coincident with E_{1} transition low and/or E_{2} transition high.
4. $\bar{G}=V_{1 L}$.
5. Transition is measured $\pm 500 \mathrm{mV}$ from steady state with $C_{L}=5 p F$ as shown in Figure 1 b . This parameter is guaranteed but not 100% tested.

MS64100

AC ELECTRICAL CHARACTERISTICS (over the operating range)

WRITE CYCLE

JEDEC PARAMETER NAME	PARAMETER NAME	PARAMETER	MS64100-25		MS64100-35			UNIT
$t_{\text {AVAX }}$	$t_{\text {wC }}$	Write Cycle Time	25	- -	35	-	-	ns
$\mathrm{t}_{\text {E1LWH }}$	$\mathrm{t}_{\mathrm{CW} 1}$	Chip Enable to End of Write	16	- -	26	-	-	ns
$\mathrm{t}_{\text {E2LWH }}$	$\mathrm{t}_{\mathrm{CW} 2}$	Chip Enable to End of Write	13	- -	20	-	-	ns
$t_{\text {AVWL }}$	$t_{\text {AS }}$	Address Set up Time	0	- -	0	-	-	ns
$\mathrm{t}_{\text {AVWH }}$	$\mathrm{t}_{\text {AW }}$	Address Valid to End of Write	18	- -	28	-	-	ns
$t_{\text {WLWH }}$	$t_{\text {WP }}$	Write Pulse Width	15	- -	20	-	-	ns
$t_{\text {WHAX }}$	$t_{\text {WR1 }}$	Write Recovery Time \bar{E}_{1}, \bar{W}	0	- -	0	-	-	ns
$t_{\text {ELLAX }}$	$t_{\text {WR2 }}$	Write Recovery Time E_{2}	0	- -	0	-	-	ns
$t_{\text {WLQZ }}$	$t_{\text {WHZ }}$	Write to Output in High Z	0	8	0	-	14	ns
$\mathrm{t}_{\text {DVWH }}$	$t_{\text {DW }}$	Data to Write Time Overlap	8	- -	12	-	-	ns
$\mathrm{t}_{\text {WHDX }}$	$t_{\text {DH }}$	Data Hold from Write Time	0	- -	0	-	-	ns
$\mathrm{t}_{\text {GHQZ }}$	$\mathrm{t}_{\mathrm{OHZ}}$	Output Disable to Output in High Z	1	15	1	-	15	ns
$\mathrm{t}_{\text {WHQX }}$	tow	Output Active from End of Write	0	- -	0	-	-	ns

SWITCHING WAVEFORMS (WRITE CYCLE)

WRITE CYCLE $1^{(1)}$

WRITE CYCLE $\mathbf{2}^{(1,6)}$

NOTES:

1. \bar{W} must be high during address transitions.
2. The internal write time of the memory is defined by the overlap of \bar{E}_{1} and E_{2} active and \bar{W} low. All signals must be active to initiate a write and any one signal can terminate a write by going inactive. The data input setup and hold timing should be referenced to the second transition edge of the signal that terminates the write.
3. $T_{\text {we }}$ is measured from the earlier of \bar{E}_{1} or \bar{W} going high or E_{2} going low at the end of write cycle.
4. During this period, $D Q$ pins are in the output state so that the input signals of opposite phase to the outputs must not be applied.
5. If the $\overline{\mathrm{E}}$, low transition or the E_{2} high transition occurs simultaneously with the $\overline{\mathrm{W}}$ low transitions or after the $\overline{\mathrm{W}}$ transition, outputs remain in a high impedance state.
6. $\overline{\mathrm{G}}$ is continuously low ($\overline{\mathrm{G}}=\mathrm{V}_{11}$).
7. $D_{\text {OUt }}$ is the same phase of write data of this write cycle.
8. $\mathrm{D}_{\text {out }}$ is the read data of next address.
9. If E_{1} is low and E_{2} is high during this period, DQ pins are in the output state. Then the data input signals of opposite phase to the outputs must not be applied to them.
10. Transition is measured $\pm 500 \mathrm{mV}$ from steady state with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as shown in Figure 1 b on page 4. This parameter is guaranteed but not 100% tested.
11. $\mathrm{t}_{\mathrm{cw} 1}$ is measured from $\overline{\mathrm{E}}_{1}$ going low to the end of write; $\mathrm{t}_{\mathrm{cw} 2}$ is measured from E_{2} going high to the end of write.

AC CHARACTERISTIC - Parity Read Cycle ${ }^{(1)}$ (over the operating range)

PARAMETER NAME	PARAMETER		MS64100-25			MS64100-35			UNIT
			MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
t_{RC}	Read Cycle Time		25	-	-	35	-	-	ns
$\mathrm{t}_{\text {APA }}$	Parity Error Access from Address ${ }^{(2)}$		-	-	28	-	-	40	ns
$t_{\text {APCS } 1}$	Parity Error Access from $\mathrm{E}_{1}{ }^{(3)}$	\bar{E}_{1}	-	-	28	-	-	40	ns
$\mathrm{t}_{\text {APCS2 }}$	Parity Error Access from $\mathrm{E}_{2}{ }^{(3)}$	E_{2}	-	-	14	-	-	15	ns
$\mathrm{t}_{\text {APoE }}$	Parity Error Access from $\overline{\mathrm{G}}$		-	-	12	-	-	14	ns
$\mathrm{t}_{\text {POH }}$	Parity Error Hold from Address Change	\bar{E}_{1}	3	-	-	3	-	-	ns
$\mathrm{t}_{\text {PHZA }}$	Parity Error Disable from Address Change ${ }^{(4,5)}$	E_{2}	1	-	20	1	-	25	ns
$\mathrm{t}_{\text {PHZ1 }}$	Parity Error Disable from $\bar{E}_{1}{ }^{(4,5)}$		1	-	15	1	-	15	ns
$\mathrm{t}_{\text {PHZ2 }}$	Parity Error Disable from $\mathrm{E}_{2}{ }^{(4,5)}$	\bar{E}_{1}	1	-	15	1	-	15	ns
$\mathrm{t}_{\text {POHz }}$	Parity Error Disable from $\overline{\mathrm{G}}^{(4,5)}$	E_{2}	1	-	15	1	-	15	ns

NOTES:

1. \bar{W} is high for the Read Cycle.
2. Device is continuously selected, $\bar{E}_{1}=\mathrm{V}_{\mathrm{LL}}, \mathrm{E}_{2}=\mathrm{V}_{\mathrm{tH}}$ and $\overline{\mathrm{G}}=\mathrm{V}_{\mathrm{L}}$.
3. Address valid prior to or coincident with \bar{E}_{1} transition low, E_{2} transition high.
4. Transition is specified at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.
5. This parameter is specified with Load II in Fig. 2.

PARITY READ FUNCTION TIMING DIAGRAM ${ }^{(1,6)}$

1) ADDRESS CONTROLLED

2) $\mathrm{E}_{1}, \mathrm{E}_{2}$ CONTROLLED ${ }^{(3)}$

NOTES:

1. \bar{W} is high for the Read Cycle.
2. Device is continuously selected, $\bar{E}_{1}=" L ", E_{2}=" H "$ and $\bar{G}=" L "$.
3. Address valid prior to or coincident with $\overline{\mathrm{E}}_{\text {}}$ transition low, E_{2} transition high.
4. Transition is specified at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.
5. This parameter is specified with Load II in Fig. 2.
6. When error occurred, $\overline{\mathrm{PE}}$ pin outputs "L". But when no error, $\overline{\mathrm{PE}}$ pin is in High-Z state.

ORDERING INFORMATION

SPEED (ns)	ORDERING PART NUMBER	PACKAGE REFERENCE NO.	TEMPERATURE RANGE
25	MS64100-25NC		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
25	MS64100-25FC		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
35	MS64100-35NC		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
35	MS64100-35FC		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

32K x 9 High Speed CMOS Static RAM

FEATURES

- High speed - 25/35 ns (Max.)
-9th bit for parity
- Automatic power-down when chip disabled
- Lower power consumption:
- 715mW (Max.) Operating
- 138mW (Max.) Standby
- TTL compatible interface levels
- Single 5V power supply
- Fully static operation
- Three state outputs
- Two chip enables (\bar{E}_{1} and E_{2}) for simple memory expansion
- Fast E_{2} access time (14ns) to support cache applications.

PIN CONFIGURATIONS

DESCRIPTION

The MOSEL MS64101 is a high performance, low power CMOS static RAM organized as 32768 words by 9 bits. The device supports easy memory expansion with both an active LOW chip enable (\bar{E}_{1}) and an active High chip enable (E_{2}), as well as an active LOW output enable (\bar{G}) and three-state outputs. An automatic power-down feature is included which reduces the chip power significantly.
The device operates from a single 5 Volt power supply. All inputs and outputs are TTL compatible.

The MOSEL MS6287 is packaged in a space saving 32 pin 300 mil plastic DIP package and 330 mil SO package.

FUNCTIONAL BLOCK DIAGRAM

PIN DESCRIPTIONS

$A_{0}-A_{12} \quad$ Address Inputs

These 13 address inputs select one of the 8192 8-bit words in the RAM.
\bar{E}_{1} Chip Enable 1 Input
E_{2} Chip Enable 2 Input
\bar{E}_{1} is active LOW and E_{2} is active HIGH. Both chip enables must be active to read from or write to the device. If either chip enable is not active, the device is deselected and is in a standby power mode. The DQ pins will be in the highimpedance state when the device is deselected.

\bar{G} Output Enable Input

The output enable input is active LOW. If the output enable is active while the chip is selected and the write enable is inactive, data will be present on the DQ pins and they will be enabled. The DQ pins will be in the high impedance state when \bar{G} is inactive.

$\overline{\mathbf{W}}$ Write Enable Input

The write enable input is active LOW and controls read and write operations. With the chip selected, when \bar{W} is HIGH and \bar{G} is LOW, output data will be present at the DQ pins; when \bar{W} is LOW, the data present on the DQ pins will be written into the selected memory location.

$D Q_{1}-Q_{8} \quad$ Data Input/Output Ports

These 8 bidirectional ports are used to read data from or write data into the RAM.
$\mathrm{V}_{\mathrm{cc}} \quad$ Power Supply

TRUTH TABLE

\bar{E}_{1}	$\mathbf{E}_{\mathbf{2}}$	$\overline{\mathbf{W}}$	$\overline{\mathbf{G}}$	MODE	SUPPLY CURRENT	I/O STATE
H	X	X	X	Standby	I_{SB}	I_{CC}
L	L	X	X	Deselect	I_{CC}	High Z
L	H	H	H	$\mathrm{D}_{\text {OUT }}$ Disable		
L	H	H	L	Read	I_{CC}	High Z
L	H	L	X	Write	I_{CC}	$\mathrm{D}_{\text {OUT }}$

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

SYMBOL	PARAMETER	RATING	UNITS
$\mathrm{V}_{\text {TERM }}$	Terminal Voltage with Respect to GND	-0.5 to +7.0	V
$\mathrm{~T}_{\text {BIAS }}$	Temperature Under Bias	-0 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-45 to +125	${ }^{\circ} \mathrm{C}$
P_{T}	Power Dissipation	1.0	W
$\mathrm{I}_{\text {OUT }}$	DC Output Current	20	mA

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

OPERATING RANGE

RANGE	TEMPERATURE	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

DC ELECTRICAL CHARACTERISTICS (over the operating range)

PARAMETER NAME	PARAMETER	TEST CONDITIONS		MS64101			UNITS
				MIN.	TYP.(1)	MAX.	
$\mathrm{V}_{\text {IL }}$	Guaranteed Input Low Voltage ${ }^{(2)}$			-2.0	-	0.8	V
V_{IH}	Guaranteed Input High Voltage ${ }^{(2)}$			2.2	-	6.0	V
ILL	Input Leakage Current	$\mathrm{V}_{\text {CC }}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {CC }}$		-5	-	5	$\mu \mathrm{A}$
l_{OL}	Output Leakage Current	$\mathrm{V}_{\mathrm{CC}}=$ Max, $\overline{\mathrm{E}}_{1}=\mathrm{V}_{\mathrm{IH}}$, or $\mathrm{E}_{2}=\mathrm{V}_{\mathrm{IL}}$, or $\overline{\mathrm{G}}=\mathrm{V}_{\mathbb{I H}}, \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ to V_{CC}		-5	-	5	$\mu \mathrm{A}$
V_{OL}	Output Low Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$		-	-	0.4	V
V_{OH}	Output High Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA}$		2.4	-	-	V
I_{CC}	Operating Power Supply Current	$\mathrm{V}_{\mathrm{CC}}=$ Max, $\mathrm{E}_{1}=\mathrm{V}_{\mathrm{LL}}, \mathrm{I}_{1 / O}=0 \mathrm{~mA}, \mathrm{~F}=\mathrm{F}_{\text {max }}{ }^{(3)}$	25 ns	-	-	130	mA
			35 ns	-	-	110	
$\mathrm{l}_{\text {ccse }}$	Standby Power Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \overline{\mathrm{E}}_{1}=\mathrm{V}_{1 \mathrm{H},} \mathrm{I}_{1 / \mathrm{O}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V}$		-	-	25	mA
ICCSB^{1}	Power Down Power Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \bar{E}_{1}>\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \\ & \mathrm{~V}_{\text {IN }}>\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \text { or } \mathrm{V}_{\text {IN }}<0.2 \mathrm{~V} \\ & \hline \end{aligned}$		-	-	15	mA

1. Typical characteristics are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. These are absolute values with respect to device ground and all overshoots due to system or tester noise are included; $-2.0 \mathrm{~V}_{\mathrm{k}} \min$ for pulse width of less than $20 \mathrm{~ns}: \mathrm{V}_{\mathrm{kL}} \min =-0.5 \mathrm{~V}$ at DC levels
3. $F_{\text {MAX }}=1 / t_{\text {RC }}$.

CAPACITANCE ${ }^{(1)}\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)$

SYMBOL	PARAMETER	CONDITIONS	MAX.	UNIT
$\mathrm{C}_{\mathbb{I N}}$	Input Capacitance	$\mathrm{V}_{\mathbb{I N}}=0 \mathrm{~V}$	7	pF
C_{DQ}	Input/Output Capacitance	$\mathrm{V}_{/ / \mathrm{O}}=0 \mathrm{~V}$	8	pF

1. This parameter is guaranteed and not tested.

AC TEST CONDITIONS

Input Pulse Levels	0.6 to 2.4 V
Input Rise and Fall Times	3 ns
Input and Output	Input : $\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{IH}}=2.2 \mathrm{~V}$
Timing Reference Level	Output: $\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{IH}}=2.2 \mathrm{~V}$

AC TEST LOADS AND WAVEFORMS

KEY TO SWITCHING WAVEFORMS

WAVEFORM	INPUTS	OUTPUTS
	MUST BE STEADY	WILL BE STEADY
	MAY CHANGE FROM HTOL	WILL BE CHANGING FROMHTOL
	MAY CHANGE FROM LTOH	WILL BE CHANGING FROMLTOH
	DON'T CARE: ANY CHANGE PERMITTED	$\begin{aligned} & \text { CHANGING: } \\ & \text { STATE } \\ & \text { UNKNOWN } \end{aligned}$
	DOES NOT APPLY	CENTER LINE IS HIGH IMPEDANCE "OFF" STATE

AC ELECTRICAL CHARACTERISTICS (over the operating range)
 READ CYCLE

JEDEC NAME	PARAMETER NAME	PARAMETER		$\begin{array}{r} \text { MiN. } \\ \text { Min } \end{array}$	6410 TYP.	1-25	MS64101-35			UNIT
$\mathrm{t}_{\text {AVAX }}$	t_{RC}	Read Cycle Time		25	-	-	35	-	-	ns
$\mathrm{t}_{\text {AVQV }}$	t_{AA}	Address Access Time		-	-	25	-	-	35	ns
$\mathrm{t}_{\text {ETLL }}$	$\mathrm{t}_{\text {ACS1 }}$	Chip Enable Access Time	\bar{E}_{1}	-	-	25	-	-	35	ns
$\mathrm{t}_{\text {E2HOV }}$	$\mathrm{t}_{\text {ACS2 }}$	Chip Enable Access Time	E_{2}	-	-	14	-	-	15	ns
$\mathrm{t}_{\text {GLQV }}$	t_{OE}	Output Enable to Output Valid		-	-	12	-	-	14	ns
${ }_{\text {E1LQX }}$	$\mathrm{t}_{\text {CLZ1 }}$	Chip Enable to Output Low Z	$\overline{E_{1}}$	5	-	-	8	-	-	ns
${ }_{\text {E } 2 \text { HQX }}$	$\mathrm{t}_{\text {cLZ2 }}$	Chip Enable to to Output Low Z	E_{2}	2	-	-	3	-	-	ns
$\mathrm{t}_{\text {GLQX }}$	tolz	Output Enable to Output in Low Z		2	-	-	3	-	-	ns
$\mathrm{t}_{\text {E1HQZ }}$	$\mathrm{t}_{\mathrm{CHZ} 1}$	Chip Disable to Output in High Z	\bar{E}_{1}	1	-	15	1	-	15	ns
te2Laz	$\mathrm{t}_{\mathrm{CHZ} 2}$	Chip Disable to Output in High Z	E_{2}	1	-	15	1	-	15	ns
$\mathrm{t}_{\text {GHQZ }}$	$\mathrm{t}_{\mathrm{OHz}}$	Output Disable to Output in High Z		1	-	15	1	-	15	ns
$\mathrm{t}_{\text {AXQX }}$	t_{OH}	Output Hold from Address Change		3	-	-	3	-	-	ns

SWITCHING WAVEFORMS (READ CYCLE)

READ CYCLE $1^{(1,2,4)}$

READ CYCLE $\mathbf{2}^{(1,3,4)}$

READ CYCLE $3^{(1,4)}$

NOTES:

1. \bar{W} is high for READ Cycle.
2. Device is continuously selected $\bar{E}_{1}=V_{t L}$ and $E_{2}=V_{t H}$.
3. Address valid prior to or coincident with E_{1} transition low and/or E_{2} transition high.
4. $\bar{G}=V_{i t}$.
5. Transition is measured $\pm 500 \mathrm{mV}$ from steady state with $C_{L}=5 \mathrm{pF}$ as shown in Figure 1 b . This parameter is guaranteed but not 100% tested.

AC ELECTRICAL CHARACTERISTICS (over the operating range)

WRITE CYCLE

SWITCHING WAVEFORMS (WRITE CYCLE)

WRITE CYCLE $1^{(1)}$

WRITE CYCLE $\mathbf{2}^{(1,6)}$

NOTES:

1. \bar{W} must be high during address transitions.
2. The internal write time of the memory is defined by the overlap of \bar{E}_{1} and E_{2} active and \bar{W} low. All signals must be active to initiate a write and any one signal can terminate a write by going inactive. The data input setup and hold timing should be referenced to the second transition edge of the signal that terminates the write.
3. $T_{W A}$ is measured from the earlier of \bar{E}_{1} or \bar{W} going high or E_{2} going low at the end of write cycle.
4. During this period, $D Q$ pins are in the output state so that the input signals of opposite phase to the outputs must not be applied.
5. If the $\overline{\mathrm{E}}$, low transition or the E_{2} high transition occurs simultaneously with the $\overline{\mathrm{W}}$ low transitions or after the $\overline{\mathrm{W}}$ transition, outputs remain in a high impedance state.
6. \bar{G} is continuously low $\left(\bar{G}=V_{1 I}\right)$.
7. $\mathrm{D}_{\text {out }}$ is the same phase of write data of this write cycle.
8. $D_{\text {out }}$ is the read data of next address.
9. If E_{1} is low and E_{2} is high during this period, $D Q$ pins are in the output state. Then the data input signals of opposite phase to the outputs must not be applied to them.
10. Transition is measured $\pm 500 \mathrm{mV}$ from steady state with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as shown in Figure 1 b on page 4. This parameter is guaranteed but not 100% tested.
11. $t_{\mathrm{cw} 1}$ is measured from $\overline{\mathrm{E}}_{1}$ going low to the end of write; $\mathrm{t}_{\mathrm{cw} 2}$ is measured from E_{2} going high to the end of write,

ORDERING INFORMATION

SPEED (ns)	ORDERING PART NUMBER	PACKAGE REFERENCE NO.	TEMPERATURE
25	MS64101-25NC	$\mathrm{P} 32-3$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
35	MS64101-35NC		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
25	MS64101-25FC		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
35	$M S 64101-35 \mathrm{FC}$		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$256 \times 9,512 \times 9,1 \mathrm{~K} \times 9$ CMOS FIFO
 PRELIMINARY

FEATURES

- First-In/First-Out static RAM based dual port memory
- Three densities in a x9 configuration
- Low power versions
- Includes empty, full, and half full status flags
- Direct replacement for industry standard Mostek and IDT
- Ultra high-speed 30 MHz FIFOs available with 33 ns cycle times.
- Fully expandable in both depth and width
- Simultaneous and asynchronous read and write
- Auto retransmit capability
- TTL compatible interface, single $5 \mathrm{~V} \pm 10 \%$ power supply
- Available in 28 pin 300 mil and 600 mil plastic DIP, 32 Pin PLCC and 330 mil SOG

PIN CONFIGURATIONS

28-PIN PDIP

32-PIN PLCC

DESCRIPTION

The MOSEL MS7200/7201A/7202A are dual-port static RAM based CMOS First-In/First-Out (FIFO) memories organized in nine-bit wide words. The devices are configured so that data is read out in the same sequential order that it was written in. Additional expansion logic is provided to allow for unlimited expansion of both word size and depth.

The dual-port RAM array is internally sequenced by independent Read and Write pointers with no external addressing needed. Read and write operations are fully asynchronous and may occur simultaneously, even with the device operating at full speed. Status flags are provided for full, empty, and half-full conditions to eliminate data underflow and overflow. The x9 architecture provides an additional bit which may be used as a parity or control bit. In addition, the devices offer a retransmit capability which resets the Read pointer and allows for retransmission from the beginning of the data.

The MS7200/7201A/7202A are available in a range of frequencies from 10 to 30 MHz ($33-100 \mathrm{~ns}$ cycle times). A low power version with a $500 \mu \mathrm{~A}$ power down supply current is available. They are manufactured on MOSEL's high performance 1.2μ CMOS process and operate from a single 5 V power supply.

BLOCK DIAGRAM

MOSEL Corporation 914 West Maude Avenue, Sunnyvale, CA 94086 U.S.A 408-733-4556

SIGNAL DESCRIPTIONS

INPUTS:

Data In ($D_{0}-D_{8}$)
These data inputs accept 9-bit data words for sequential storage in the FIFO during write operations.

CONTROLS:

Reset ($\overline{\mathrm{RS}}$)

The reset input is active LOW. When asserted, the device is asynchronously reset, and both the read and write internal pointers are set to the first location in the FIFO. A Reset is required after power-up before a write operation can occur. Both Read Enable ($\overline{\mathrm{R}}$) and Write Enable $(\overline{\mathrm{W}})$ must be HIGH during Reset.

Read Enable ($\overline{\mathbf{R}}$)

The read enable input is active LOW. As long as the Empty Flag ($\overline{\mathrm{EF}}$) is not set, the read cycle is started on the falling edge of this signal. The data is accessed on a First-In/First-Out basis, independent of any write activity, and is presented on the Data Output pins (Q0-Q8). When $\overline{\mathrm{R}}$ goes HIGH the Data Output pins return to the high impedance state, and the read pointer is incremented. When the FIFO is empty or all of the data has been read, the Empty Flag will be set and further read operations are inhibited until a valid write operation has been performed.

Write Enable ($\overline{\mathrm{W}}$)

The write enable input is active LOW. As long as the Full Flag ($(\overline{\mathrm{FF}}$) is not set, the write cycle is started on the falling edge of this signal. The data present on the Data Input pins (D0 - D8) is stored sequentially, independent of any read activity. When \bar{W} goes HIGH the write cycle is terminated and the write pointer is incremented. When the maximum capacity of the FIFO has been reached the Full Flag will be set, and further write operations are inhibited until a valid read operation has been performed.

Expansion $\ln (\overline{\mathrm{XI}})$

This input pin serves two purposes. When grounded, it indicates that the device is being operated in the single device mode. In Depth Expansion mode, this pin is connected to the Expansion Out Output ($\overline{\mathrm{XO}}$) of the previous device.

First Load/Retransmit ($\overline{\mathrm{FL}} / \overline{\mathrm{RT}}$)

This is a dual-purpose input. In single device mode (when Expansion In ($\overline{\mathrm{X}})$ is grounded) this pin acts as the retransmit input. A LOW pulse on this will reset the read pointer to the first memory location of the FIFO. The write pointer is unaffected. Both the read enable $(\overline{\mathrm{R}})$ and write enable (\bar{W}) inputs must remain HIGH during the retransmit cycle.
In Depth Expansion mode this pin acts as a first load indicator. It must be grounded on the first device in the chain to indicate which device is the first to receive data.

OUTPUTS:

Data Output $\left(Q_{0}-Q_{8}\right)$
A 9 bit data word from the FIFO is output on these pins during read operations. They are in the high impedance state whenever $\overline{\mathrm{R}}$ is HIGH.

Empty Flag ($\overline{\mathrm{EF}}$)

This output is active LOW. When all of the data has been read from the FIFO (defined as when the Read pointer is one location behind the Write pointer) this flag will be set. The Data Output pins will be forced into the high impedance state, and all further read operations will be inhibited until a valid write operation has been performed (which will reset this flag).

Full Flag ($\overline{\mathrm{FF}}$)

This output is active LOW. To prevent data overflow, when the maximum capacity of the FIFO has been reached (defined as when the Write pointer is one location behind the Read pointer) this flag will be set. All further write operations will be inhibited until a valid read operation has been performed (which will reset this flag).

Expansion Out/Half Full Flag ($\overline{\mathrm{XO}} / \overline{\mathrm{HF}}$)

This dual-purpose output is active LOW'. In single device mode (when Expansion In (XI) is grounded) this flag will be set at the falling edge of the next write operation after the FIFO has reached one-half of its maximum capacity. This flag will remain set as long as the difference between the read pointer and the write pointer is greater than one-half of the maximum capacity of the FIFO.
In Depth Expansion mode, this output is connected to the Expansion In Input of the next device in the chain. The Expansion Out pin provides a pulse to the next device in the chain when the last memory location has been reached.

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

SYMBOL	PARAMETER	CONDITION	UNIT
$\mathrm{V}_{\text {TERM }}$	Terminal Voltage with Repect to GND	-0.5 to +7.0	V
$\mathrm{~T}_{\text {BIAS }}$	Temperature Under Bias	-10 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-60 to +150	${ }^{\circ} \mathrm{C}$
P_{T}	Power Dissipation	1.0	W
$\mathrm{I}_{\text {OUT }}$	DC Output Current	20	mA

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

OPERATING RANGE

RANGE	AMBIENT TEMPERATURE	Vcc
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

CAPACITANCE ${ }^{(1)}\left(\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)$

SYMBOL	PARAMETER	CONDITION	MAX.	UNIT
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	4	pF
C_{Q}	Output Capacitance	$\mathrm{V}_{\mathrm{DQ}}=0 \mathrm{~V}$	6	pF

DC ELECTRICAL CHARACTERISTICS (over the commercial operating range)

PARAMETER			$\begin{gathered} \hline \text { MS7200/7201A } \\ 7202 A \\ (-25,-35) \end{gathered}$			$\begin{gathered} \hline \text { MS7200/7201A } \\ 7202 \mathrm{~A} \\ (-50,-80) \end{gathered}$			UNITS
NAME	PARAMETER	TEST CONDITIONS	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
$\mathrm{V}_{\text {IL }}$	Input Low Voltage		-	-	0.8	-	-	0.8	V
$\mathrm{V}_{\text {IH }}$	Input High Voltage		2.0	-	-	2.0	-	-	V
$\mathrm{I}_{1 /}$	Input Leakage Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=0 \mathrm{Vto} \mathrm{V}_{\text {CC }}$	-1		1	-1		1	$\mu \mathrm{A}$
l_{OL}	Output Leakage Current	$\mathrm{V}_{\text {CC }}=\mathrm{Max}, \overline{\mathrm{R}}=\mathrm{V}_{\text {IH }}, \mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ toV $\mathrm{V}_{\text {CC }}$	-10		10	-10		10	$\mu \mathrm{A}$
$\mathrm{V}_{\text {OL }}$	Output Low Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{IOL}=8 \mathrm{~mA}$	-	-	0.4	-	-	0.4	V
V_{OH}	Output High Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}$	2.4	-	-	2.4	-	-	V
$\mathrm{I}_{\mathrm{CC} 1}$	Operating Power Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{I}_{1 / \mathrm{O}}=0 \mathrm{~mA}, \mathrm{~F}=\mathrm{F}_{\text {max }}$	-	-	125	-	50	80	mA
$\mathrm{I}_{\text {CC2 }}$	Average Standby Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \overline{\mathrm{R}}=\overline{\mathrm{W}}=\overline{\mathrm{RS}}=\overline{\mathrm{FL}} / \overline{\mathrm{RT}}=\mathrm{V}_{\mathrm{IH}}, \\ & \mathrm{I}_{I / O}=0 \mathrm{~mA} \end{aligned}$	-	-	15	-	5	8	mA
$\mathrm{I}_{\mathrm{CcsB}(\mathrm{S})}$	Power Down Supply Current (Standard Power)	$\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Max}, \overline{\mathrm{R}}=\overline{\mathrm{W}}=\overline{\mathrm{RS}}=\overline{\mathrm{FL}} / \overline{\mathrm{RT}}>\mathrm{V}_{\mathrm{CC}}- \\ & 0.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}>\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}}<0.2 \mathrm{~V} \end{aligned}$	-	-	5	-	-	5	mA
${ }^{\operatorname{ccss}(L)}$	Power Down Supply Current (Low Power)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \overline{\mathrm{R}}=\overline{\mathrm{W}}=\overline{\mathrm{RS}}=\overline{\mathrm{FL}} / \overline{\mathrm{RT}}>\mathrm{V}_{\mathrm{CC}}- \\ & 0.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}>\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \text { or } \mathrm{V}_{\text {IN }}<0.2 \mathrm{~V} \end{aligned}$		-	500	-	-	500	$\mu \mathrm{A}$

TRUTH TABLES

SINGLE DEVICE CONFIGURATION/WIDTH EXPANSION MODE

MODE	INPUTS			INTERNAL STATUS		OUTPUTS		
Reset	$\overline{\mathbf{R S}}$	$\overline{\mathbf{R T}}$	$\overline{\mathbf{X I}}$	Read Pointer	Write Pointer	$\overline{\mathbf{E F}}$	$\overline{\mathrm{FF}}$	$\overline{\mathbf{H F}}$
	0	X	0	Location Zero	Location Zero	0	1	1
	1	0	0	Location Zero	Unchanged	X	X	X
Read/Write	1	1	0	Increment ${ }^{(1)}$	Increment $^{(1)}$	X	X	X

NOTE:

1. Pointer will increment if flag is high.

DEPTH EXPANSION/COMPOUND EXPANSION MODE

MODE	INPUTS			INTERNAL STATUS		OUTPUTS	
Reset-First Device	$\overline{\mathbf{R S}}$	$\overline{\mathrm{FL}}$	$\overline{\mathbf{X I}}$	Read Pointer	Write Pointer	$\overline{\mathbf{E F}}$	$\overline{\mathrm{FF}}$
	0	0	(1)	Location Zero	Location Zero	0	1
	0	1	(1)	Location Zero	Unchanged	0	1
Read/Write	1	X	(1)	X	X	X	X

NOTE:

1. $\overline{\bar{X}}$ is connected to $\overline{X O}$ of previous device. See Figure 15.
$\overline{\mathrm{RS}}=$ Reset Input. $\overline{\mathrm{FL}} / \mathrm{RT}=$ First Load/Retransmit. EF $=$ Empty Flag Output. $\overline{\mathrm{FF}}$ Full Flag Output. $\overline{\mathrm{XI}}=$ Expansion Input.

AC ELECTRICAL CHARACTERISTICS (over the commercial operating range)

PARAMETER NAME	PARAMETER	MS7200-25 MS7201A-25 MS7202A-25		MS7200-35 MS7201A-35 MS7202A-35		$\begin{array}{\|c} \hline \text { MS7200-50 } \\ \text { MS7201A-50 } \\ \text { MS7202A-50 } \end{array}$		MS7200-80 MS7201A-80 MS7202A-80		UNITS
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
$f_{\text {S }}$	Shift Frequency	--	30	--	22.2	--	15	--	10	MHz
READ CYCLE										
t_{RC}	Read Cycle Time	33	--	45	--	65	--	100	--	ns
$t_{\text {A }}$	Access Time	--	25	--	35	--	50	--	80	ns
$\mathrm{t}_{\text {RPW }}$	Read Pulse Width	25	--	35	--	50	--	80	--	ns
t_{RR}	Read Recovery Time	8	--	10	--	15	--	20	--	ns
$\mathrm{t}_{\mathrm{RLZ}}{ }^{(2)}$	Read Pulse Low to Data Bus at Low Z	5	--	5	--	10	--	10	--	ns
$\mathrm{t}_{\mathrm{RHZ}}{ }^{(2,3)}$	Read Pulse High to Data Bus at High Z	--	18	--	20	--	30	--	30	ns
t_{DV}	Data Valid from Read Pulse High	5	--	5	--	5	--	5	--	ns
WRITE CYCLE										
$\mathrm{t}_{\text {wc }}$	Write Cycle Time	33	--	45	--	65	--	100	--	ns
$\mathrm{t}_{\text {wpw }}{ }^{(1)}$	Write Pulse Width	25	--	35	--	50	--	80	--	ns
$\mathrm{t}_{\text {WR }}$	Write Recovery Time	8	--	10	--	15	--	20	--	ns
t_{DS}	Data Setup Time	15	--	18	--	30	--	40	--	ns
t_{DH}	Data Hold Time	0	--	0	--	5	--	10	--	ns
$\mathrm{t}_{\mathrm{WLz}}{ }^{(2,3)}$	Write Pulse High to Data Bus at Low Z	5	--	10	--	15	--	20	--	ns
FLAG TIMING										
$\mathrm{t}_{\text {REF }}$	Read Low to Empty Flag Low	--	25	--	30	--	45	--	60	ns
$\mathrm{t}_{\text {RHF }}$	Read High to Half Full Flag High	--	33	--	45	--	65	--	100	ns
$\mathrm{t}_{\text {RFF }}$	Read High to Fuil Flag High	--	25	--	30	--	45	--	60	ns
$t_{\text {WEF }}$	Write High to Empty Flag High	--	25	--	30	--	45	--	60	ns
$\mathrm{t}_{\text {WFF }}$	Write Low to Full Flag Low	--	25	--	30	--	45	--	60	ns
$\mathrm{t}_{\text {WHF }}$	Write Low to Half Full Flag Low	--	33	--	45	--	65	--	100	ns
$\mathrm{t}_{\text {RPE }}$	Read Pulse Width After EF High	25	--	35	--	50	--	80	--	ns
$\mathrm{t}_{\text {WPF }}$	Write Pulse Width After FF High	25	--	35	--	50	--	80	--	ns
RESET TIMING										
$\mathrm{t}_{\mathrm{RSC}}$	Reset Cycle Time	33	--	45	--	65	--	100	--	ns
$\mathrm{t}_{\text {RS }}{ }^{(1)}$	Reset Pulse Width	25	--	35	--	50	--	80	--	ns
$\mathrm{t}_{\text {RSS }}$	Reset Set Up Time	25	--	35	--	50	--	80	--	ns
$\mathrm{t}_{\mathrm{RSR}}$	Reset Recovery Time	8	--	10	--	15	--	20	--	ns
$\mathrm{t}_{\text {EFL }}$	Reset to Empty Flag Low	--	33	--	45	--	65	--	100	ns
$\mathrm{t}_{\text {HFH }}$	Reset to Half Full Flag High	--	33	--	45	--	65	--	100	ns
$\mathrm{t}_{\text {FFH }}$	Reset to Full Flag High	--	33	--	45	--	65	--	100	ns
RETRANSMIT TIMING										
$\mathrm{t}_{\text {RTC }}$	Retransmit Cycle Time	33	--	45	--	65	--	100	--	ns
$\mathrm{t}_{\mathrm{RT}}{ }^{(1)}$	Retransmit Pulse Width	25	--	35	--	50	--	80	--	ns
$\mathrm{t}_{\text {RTS }}$	Retransmit Set up Time	25	--	35	--	50	--	80	--	ns
$\mathrm{t}_{\text {RTR }}$	Retransmit Recovery Time	8	--	10	--	15	--	20	--	ns
EXPANSION TIMING										
$\mathrm{t}_{\mathrm{XOL}}$	Read/Write to XO Low	--	25	--	35	--	50	--	80	ns
$\mathrm{t}_{\mathrm{XOH}}$	Read/Write to $\overline{\mathrm{XO}}$ High	--	25	--	35	--	50	--	80	ns
t_{x}	$\overline{\mathrm{X}}$ Pulse Width	25	--	35	--	50	--	80	--	ns
t_{XI}	$\overline{\bar{X}}$ S Set up Time	15	--	15	--	15	--	15	--	ns
$\mathrm{t}_{\text {XiR }}$	$\overline{\text { XI }}$ Recovery Time	8	--	10	--	10	--	10	--	ns

NOTES:

1. Pulse widths less than minimum value are not allowed.
2. Values guaranteed by design, not currently tested.
3. Only applies to read data flow-through mode.

AC TEST CONDITIONS

Input Pulse Levels	$0 \mathrm{~V} \sim 3.0 \mathrm{~V}$
Input Rise and Fall Times	5 ns
Timing Reference Level	1.5 V

AC TEST LOADS AND WAVEFORMS

KEY TO SWITCHING WAVEFORMS

TIMING WAVEFORMS

RESET

ASYNCHRONOUS READ OPERATION

TIMING WAVEFORMS

ASYNCHRONOUS WRITE OPERATION

RETRANSMIT

EMPTY FLAG TIMING

TIMING WAVEFORMS

FULL FLAG TIMING

$t_{\text {WPF }}$: EFFECTIVE WRITE PULSE
WIDTH AFTER FULL FLAG HIGH

HALF-FULL FLAG TIMING

FULL FLAG FROM LAST WRITE TO FIRST READ

TIMING WAVEFORMS

EMPTY FLAG FROM LAST READ TO FIRST WRITE

READ DATA FLOW-THROUGH MODE

WRITE DATA FLOW-THROUGH MODE

timing waveforms

EXPANSION IN

EXPANSION OUT

OPERATING MODES:

(Note: The7201A is used as example - these figures apply to all three devices, MS7200/7201A/7202A

SINGLE DEVICE MODE

When one MS7201A is used standalone in Single Device Mode, the Expansion $\ln (\overline{\mathrm{XI}})$ control input pin must be grounded. See Figure 3.

Figure 3. Single Device Mode

MS7200/ 7201A/ 7202A

WIDTH EXPANSION MODE

Word width may be expanded by connecting the corresponding control input signals of multiple devices together. The EMPTY, HALF FULL and FULL FLAGS $(\overline{\mathrm{EE}}, \overline{\mathrm{HF}}$ and $\overline{\mathrm{FF}})$ can be detected by any particular
device. Figure 4 shows an 18 bit wide configuration using two devices. They may be configured to any word width in this manner.

HALF FULL FLAG (HF)

NOTES:
Figure 4. Width Expansion Mode
Flag detection is accomplished by monitoring the $\overline{\mathrm{EF}}, \overline{\mathrm{HF}}$ and $\overline{\mathrm{EF}}$ pins on the device used in the Width Expansion Mode. Do not connect output control signals together.

DEPTH EXPANSION (DAISY CHAIN) MODE

Word depths may be expanded in multiples of 512 words by Daisy Chaining the devices together as follows:

1. The FIRST LOAD ($\overline{\mathrm{FL}})$ control signal of the first device must be grounded. This FIFO represents word 1-512.
2. All other devices in the Daisy Chain must have the FIRST LOAD ($\overline{\mathrm{FL}})$ control signal tied to V_{CC} in the inactive-high state.
3. The EXPANSION OUT ($\overline{\mathrm{XO}})$ pin of each device must be connected to the EXPANSION IN (XI) pin of the next device as shown in Figure 5.
4. External logic is required to generate a common FULL FLAG ($\overline{\mathrm{FF}}$) and EMPTY FLAG ($\overline{\mathrm{EF}}$) signal by ORing all of the FFs together and ORing all of the $\overline{\mathrm{EF}}$ s together.
5. The RETRANSMIT ($\overline{\mathrm{RT}}$) fuction and HALF FULL FLAG ($\overline{\mathrm{HF}}$) are not available in Daisy Chain Mode.

Figure 5. Diagram of a 1536×9 FIFO in Depth Expansion Mode

BIDIRECTIONAL MODE

Data buffering between two systems can be achieved by pairing two FIFO arrays as shown in Figure 6. This allows each system to READ and WRITE shared data. The FULL FLAG ($\overline{\mathrm{FF}})$ must be monitored on the FIFO where WRITE ENABLE (\bar{W}) is used and the EMPTY FLAG ($\overline{\mathrm{EF}})$ must be monitored on the FIFO where READ ENABLE $(\overline{\mathrm{R}})$ is used. Both Width Expansion and Depth

Expansion Modes may be used in combination with Bidirectional Mode.

COMPOUND EXPANSION MODE:

Both Width Expansion Mode and Depth Expansion (Daisy Chain) Mode can be used together to configure a large FIFO array (See Figure 4 and 5).

Figure 6. BiDirectional FIFO Mode

ORDERING INFORMATION

SPEED (ns)	ORDERING PART NUMBER ${ }^{(1)}$				TEMPERATURE

[^8]
2K x 9, 4K x 9 CMOS FIFO

DESCRIPTION

The MOSEL MS7203/7204 are dual-port static RAM based CMOS First-In/First-Out (FIFO) memories organized in nine-bit wide words. The devices are configured so that data is read out in the same sequential order that it was written in. Additional expansion logic is provided to allow for unlimited expansion of both word size and depth.

The dual-port RAM array is internally sequenced by independent Read and Write pointers with no external addressing needed. Read and write operations are fully asynchronous and may occur simultaneously, even with the device operating at full speed. Status flags are provided for full, empty, and half-full conditions to eliminate data underflow and overflow. The x9 architecture provides an additional bit which may be used as a parity or control bit. In addition, the devices offer a retransmit capability which resets the Read pointer and allows for retransmission from the beginning of the data.

The MS7203/7204 are available in a range of frequencies from 10 to 22.2 MHz (45-100 ns cycle times). A low power version with a $500 \mu \mathrm{~A}$ power down supply current is available. They are manufactured on MOSEL's high performance 1.2μ CMOS process and operate from a single 5 V power supply.

BLOCK DIAGRAM

SIGNAL DESCRIPTIONS

INPUTS:
Data In ($D_{0}-D_{8}$)
These data inputs accept 9-bit data words for sequential storage in the FIFO during write operations.

CONTROLS:

Reset ($\overline{\mathrm{RS}}$)

The reset input is active LOW. When asserted, the device is asynchronously reset, and both the read and write internal pointers are set to the first location in the FIFO. A Reset is required after power-up before a write operation can occur. Both Read Enable ($\overline{\mathrm{R}}$) and Write Enable ($\overline{\mathrm{W}}$) must be HIGH during Reset.

Read Enable ($\overline{\mathbf{R}}$)

The read enable input is active LOW. As long as the Empty Flag ($\overline{\mathrm{EF} \text {) is not set, the read cycle is started on }}$ the falling edge of this signal. The data is accessed on a First-In/First-Out basis, independent of any write activity, and is presented on the Data Output pins (Q0-Q8). When $\overline{\mathrm{R}}$ goes HIGH the Data Output pins return to the high impedance state, and the read pointer is incremented. When the FIFO is empty or all of the data has been read, the Empty Flag will be set and further read operations are inhibited until a valid write operation has been performed.

Write Enable ($\overline{\mathrm{W}}$)

The write enable input is active LOW. As long as the Full Flag ($(\stackrel{F F}{ }$) is not set, the write cycle is started on the falling edge of this signal. The data present on the Data Input pins (D0 - D8) is stored sequentially, independent of any read activity. When \bar{W} goes HIGH the write cycle is terminated and the write pointer is incremented. When the maximum capacity of the FIFO has been reached the Full Flag will be set, and further write operations are inhibited until a valid read operation has been performed.

Expansion In ($\overline{\mathbf{X I}}$)

This input pin serves two purposes. When grounded, it indicates that the device is being operated in the single device mode. In Depth Expansion mode, this pin is connected to the Expansion Out Output ($\overline{\mathrm{XO}}$) of the previous device.

First Load/Retransmit ($\overline{\mathrm{FL}} / \overline{\mathrm{RT}}$)

This is a dual-purpose input. In single device mode (when Expansion In ($\overline{\mathrm{XI}})$ is grounded) this pin acts as the retransmit input. A LOW pulse on this will reset the read pointer to the first memory location of the FIFO. The write pointer is unaffected. Both the read enable $(\overline{\mathrm{R}})$ and write enable (\bar{W}) inputs must remain HIGH during the retransmit cycle.
In Depth Expansion mode this pin acts as a first load indicator. It must be grounded on the first device in the chain to indicate which device is the first to receive data.

OUTPUTS:
 Data Output $\left(Q_{0}-Q_{8}\right)$

A 9 bit data word from the FIFO is output on these pins during read operations. They are in the high impedance state whenever $\overline{\mathrm{R}}$ is HIGH.

Empty Flag ($\overline{\mathrm{EF}}$)

This output is active LOW. When all of the data has been read from the FIFO (defined as when the Read pointer is one location behind the Write pointer) this flag will be set. The Data Output pins will be forced into the high impedance state, and all further read operations will be inhibited until a valid write operation has been performed (which will reset this flag).

Full Flag ($\overline{\mathrm{FF}}$)

This output is active LOW. To prevent data overflow, when the maximum capacity of the FIFO has been reached (defined as when the Write pointer is one location behind the Read pointer) this flag will be set. All further write operations will be inhibited until a valid read operation has been performed (which will reset this flag).

Expansion Out/Half Full Flag ($\overline{\mathrm{XO}} / \overline{\mathrm{HF}}$)

This dual-purpose output is active LOW. In single device mode (when Expansion In (XI) is grounded) this flag will be set at the falling edge of the next write operation after the FIFO has reached one-half of its maximum capacity. This flag will remain set as long as the difference between the read pointer and the write pointer is greater than one-half of the maximum capacity of the FIFO.
In Depth Expansion mode, this output is connected to the Expansion In Input of the next device in the chain. The Expansion Out pin provides a pulse to the next device in the chain when the last memory location has been reached.

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

SYMBOL	PARAMETER	CONDITION	UNIT
$\mathrm{V}_{\text {TERM }}$	Terminal Voltage with Repect to GND	-0.5 to +7.0	V
$\mathrm{~T}_{\text {BIAS }}$	Temperature Under Bias	-10 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-60 to +150	${ }^{\circ} \mathrm{C}$
P_{T}	Power Dissipation	1.0	W
$\mathrm{I}_{\text {OUT }}$	DC Output Current	20	mA

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

OPERATING RANGE

RANGE	AMBIENT TEMPERATURE	Vcc
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

CAPACITANCE ${ }^{(1)}\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)$

SYMBOL	PARAMETER	CONDITION	MAX.	UNIT
$\mathrm{C}_{\mathbb{I N}}$	Input Capacitance	$\mathrm{V}_{\mathrm{IN}^{\prime}}=0 \mathrm{~V}$	4	pF
C_{Q}	Output Capacitance	$\mathrm{V}_{\mathrm{DQ}}=0 \mathrm{~V}$	6	pF

DC ELECTRICAL CHARACTERISTICS (over the commercial operating range)

PARAMETER NAME	PARAMETER	TEST CONDITIONS	MS7203, MS7204$(-35,-50,-80)$			UNITS
			MIN.	TYP.	MAX.	
$\mathrm{V}_{\text {IL }}$	Input Low Voltage		-	-	0.8	V
$\mathrm{V}_{\text {IH }}$	Input High Voltage		2.0	-	-	V
	Input Leakage Current	$\mathrm{V}_{\text {CC }}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=0 \mathrm{Vto} \mathrm{V}_{\text {CC }}$	-1		1	$\mu \mathrm{A}$
I_{OL}	Output Leakage Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \overline{\mathrm{R}}=\mathrm{V}_{\mathrm{H}}, \mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to V_{CC}	-10		10	$\mu \mathrm{A}$
$\mathrm{V}_{\text {OL }}$	Output Low Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$	-	-	0.4	V
V_{OH}	Output High Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}$	2.4	-	-	V
$\mathrm{I}_{\mathrm{CC} 1}$	Operating Power Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{I}_{1 / \mathrm{O}}=0 \mathrm{~mA}, \mathrm{~F}=\mathrm{F}_{\text {max }}$	-	-	125	mA
$\mathrm{I}_{\text {cc2 }}$	Average Standby Current	$\begin{aligned} & V_{C C}=M a x, \bar{R}=\bar{W}=\overline{R S}=\overline{F L} / \overline{R T}=V_{I H}, \\ & I_{I / O}=0 \mathrm{~mA} \end{aligned}$	-	-	15	mA
$\mathrm{I}_{\operatorname{CcsB}(\mathrm{S})}$	Power Down Power Supply Current (Standard Power)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \overline{\mathrm{R}}=\overline{\mathrm{W}}=\overline{\mathrm{RS}}=\overline{\mathrm{FL}} / \overline{\mathrm{RT}}>\mathrm{V}_{\mathrm{Cc}}-0.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}> \\ & \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}}<0.2 \mathrm{~V} \end{aligned}$	-	-	8	mA
$\mathrm{I}_{\operatorname{CCsB}(\mathrm{L})}$	Power Down Power Supply Current (Low Power)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \overline{\mathrm{R}}=\overline{\mathrm{W}}=\overline{\mathrm{RS}}=\overline{\mathrm{FL}} / \overline{\mathrm{RT}}>\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}> \\ & \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}}<0.2 \mathrm{~V} \end{aligned}$	-	-	2	mA

TRUTH TABLES

SINGLE DEVICE CONFIGURATION/WIDTH EXPANSION MODE

MODE	INPUTS			INTERNAL STATUS		OUTPUTS		
Reset	$\overline{\mathbf{R S}}$	$\overline{\mathbf{R T}}$	$\overline{\mathrm{XI}}$	Read Pointer	Write Pointer	$\overline{\mathrm{EF}}$	$\overline{\mathrm{FF}}$	$\overline{\mathrm{HF}}$
	0	X	0	Location Zero	Location Zero	0	1	1
	1	0	0	Location Zero	Unchanged	X	X	X
Read/Write	1	1	0	Increment ${ }^{(1)}$	Increment ${ }^{(1)}$	X	X	X

NOTE:

1. Pointer will increment if flag is high.

DEPTH EXPANSION/COMPOUND EXPANSION MODE

MODE	INPUTS			INTERNAL STATUS		OUTPUTS	
Reset-First Device	$\overline{\mathbf{R S}}$	$\overline{\mathrm{FL}}$	$\overline{\mathbf{X I}}$	Read Pointer	Write Pointer	$\overline{\mathrm{EF}}$	$\overline{\mathrm{FF}}$
	0	0	(1)	Location Zero	Location Zero	0	1
	0	1	(1)	Location Zero	Unchanged	0	1
Read/Write	1	X	(1)	X	X	X	X

NOTE:

1. $\overline{\mathrm{XI}}$ is connected to $\overline{\mathrm{XO}}$ of previous device. See Figure 5.
$\mathrm{RS}=$ Reset Input. $\overline{\mathrm{FL}} / \overline{\mathrm{RT}}=$ First Load/Retransmit. EF $=$ Empty Flag Output. FF Full Flag Output. $\overline{\mathrm{XI}}=$ Expansion Input.

MS7203/ 7204

AC ELECTRICAL CHARACTERISTICS (over the commercial operating range)

PARAMETERNAME	PARAMETER	$\begin{aligned} & \text { MS7203-35 } \\ & \text { MS7204-35 } \end{aligned}$		$\begin{aligned} & \text { MS7203-50 } \\ & \text { MS7204-50 } \end{aligned}$		$\begin{aligned} & \text { MS7203-80 } \\ & \text { MS7204-80 } \end{aligned}$		UNITS
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
$\mathrm{f}_{\text {S }}$	Shift Frequency	--	22.2	--	15.3	--	10	MHz
READ CYCLE								
t_{RC}	Read Cycle Time	45	--	65	--	100	--	ns
$t_{\text {A }}$	Access Time	--	35	--	50	--	80	ns
$\mathrm{t}_{\text {APW }}$	Read Pulse Width	35	--	50	--	80	--	ns
$\mathrm{t}_{\text {RR }}$	Read Recovery Time	10	--	15	--	20	--	ns
$\mathrm{t}_{\mathrm{RLZ}}{ }^{(2)}$	Read Pulse Low to Data Bus at Low Z	5	--	10	--	10	--	ns
$\mathrm{t}_{\mathrm{RHz}}{ }^{(2,3)}$	Read Pulse High to Data Bus at High Z	--	20	--	30	--	30	ns
t_{DV}	Data Valid from Read Pulse High	5	--	5	--	5	--	ns
WRITE CYCLE								
$\mathrm{t}_{\text {wc }}$	Write Cycle Time	45	--	65	--	100	--	ns
$\mathrm{t}_{\text {wp }}{ }^{(1)}$	Write Pulse Width	35	--	50	--	80	--	ns
$\mathrm{t}_{\text {WR }}$	Write Recovery Time	10	--	15	--	20	--	ns
t_{DS}	Data Setup Time	18	--	30	--	40	--	ns
t_{DH}	Data Hold Time	0	--	5	--	10	--	ns
$\mathrm{t}_{\mathrm{wLz}}{ }^{(2,3)}$	Write Pulse High to Data Bus at Low Z	10	--	15	--	20	--	ns
FLAG TIMING								
$\mathrm{t}_{\text {feF }}$	Read Low to Empty Flag Low	--	30	--	45	--	60	ns
$\mathrm{t}_{\text {RHF }}$	Read High to Half Full Flag High	--	45	--	65	--	100	ns
$t_{\text {RFF }}$	Read High to Full Flag High	--	30	--	45	--	60	ns
$\mathrm{t}_{\text {WEF }}$	Write High to Empty Flag High	--	30	--	45	--	60	ns
$\mathrm{t}_{\text {WFF }}$	Write Low to Full Flag Low	--	30	--	45	--	60	ns
${ }^{\text {W }}$ WHF	Write Low to Half Full Flag Low	--	45	--	65	--	100	ns
$\mathrm{t}_{\text {PPE }}$	Read Pulse Width After EF High	35	--	50	--	80	--	ns
$\mathrm{t}_{\text {WPF }}$	Write Pulse Width After FF High	35	--	50	--	80	--	ns
RESET TIMING								
$\mathrm{t}_{\mathrm{RSC}}$	Reset Cycle Time	45	--	65	--	100	--	ns
$\mathrm{t}_{\text {RS }}{ }^{(1)}$	Reset Pulse Width	35	--	50	--	80	--	ns
$\mathrm{t}_{\text {RSS }}$	Reset Set Up Time	35	--	50	--	80	--	ns
$\mathrm{t}_{\text {RSR }}$	Reset Recovery Time	10	--	15	--	20	--	ns
$\mathrm{t}_{\text {EFL }}$	Reset to Empty Flag Low	--	45	--	65	--	100	ns
$\mathrm{t}_{\text {HFH }}$	Reset to Half Full Flag High	--	45	--	65	--	100	ns
$\mathrm{t}_{\text {FFH }}$	Reset to Full Flag High	--	45	--	65	--	100	ns
RETRANSMIT TIMING								
$\mathrm{t}_{\text {RTC }}$	Retransmit Cycle Time	45	--	65	--	100	--	ns
$\mathrm{t}_{\mathrm{RT}}{ }^{(1)}$	Retransmit Pulse Width	35	--	50	--	80	--	ns
$\mathrm{t}_{\text {RTS }}$	Retransmit Set up Time	35	--	50	--	80	--	ns
$\mathrm{t}_{\text {RTR }}$	Retransmit Recovery Time	10	--	15	--	20	--	ns
EXPANSION TIMING								
$\mathrm{t}_{\mathrm{XOL}}$	Read/Write to XO Low	--	35	--	50	--	80	ns
$\mathrm{t}_{\mathrm{XOH}}$	Read/Write to XO High	--	35	--	50	--	80	ns
$\mathrm{t}_{\mathrm{x}_{1}}$	XI Pulse Width	35	--	50	--	80	--	ns
$\mathrm{t}_{\mathrm{XIS}}$	XI Set up Time	15	--	15	--	15	--	ns
$\mathrm{t}_{\mathrm{XIR}}$	XI Recovery Time	10	--	10	--	10	--	ns

NOTES:

1. Pulse widths less than minimum value are not allowed.
2. Values guaranteed by design, not currently tested.
3. Only applies to read data flow-through mode.

AC TEST CONDITIONS

Input Pulse Levels	$0 \mathrm{~V} \sim 3.0 \mathrm{~V}$
Input Rise and Fall Times	5 ns
Timing Reference Level	1.5 V

AC TEST LOADS AND WAVEFORMS

KEY TO SWITCHING WAVEFORMS

WAVEFORM	INPUTS	OUTPUTS
	MUST BE STEADY	WILL BE STEADY
	MAY CHANGE FROM H TOL	WILL BE CHANGING FROM HTOL
	MAY CHANGE FROM LTOH	WILL BE CHANGING FROM LTOH
	DON'T CARE: ANY CHANGE PERMITTED	CHANGING: STATE UNKNOWN
	DOES NOT APPLY	CENTER LINE IS HIGH MPEDANCE "OFF" STATE

ASYNCHRONOUS WRITE OPERATION

RETRANSMIT

EMPTY FLAG TIMING

$t_{\text {RPE }}$: EFFECTIVE READ PULSE WIDTH AFTER EMPTY FLAG HIGH

TIMING WAVEFORMS

FULL FLAG TIMING

$t_{\text {WPF }}$: EFFECTIVE WRITE PULSE WIDTH AFTER FULL FLAG HIGH

HALF-FULL FLAG TIMING

FULL FLAG FROM LAST WRITE TO FIRST READ

TIMING WAVEFORMS

EMPTY FLAG FROM LAST READ TO FIRST WRITE

READ DATA FLOW-THROUGH MODE

WRITE DATA FLOW-THROUGH MODE

TIMING WAVEFORMS

EXPANSION IN

EXPANSION OUT

OPERATING MODES:

(Note: The7204 is used as example - these figures apply to both devices, MS7203/7204.

SINGLE DEVICE MODE

When one MS7204 is used standalone in Single Device Mode, the Expansion $\operatorname{In}(\overline{\mathrm{XI}})$ control input pin must be grounded. See Figure 3.

Figure 3. Single Device Mode

WIDTH EXPANSION MODE

Word width may be expanded by connecting the corresponding control input signals of multiple devices together. The EMPTY, HALF FULL and FULL FLAGS
(EE, HF and FF) can be detected by any particular
device. Figure 4 shows an 18 bit wide configuration using two devices. They may be configured to any word width in this manner.

NOTES:
Figure 4. Width Expansion Mode
Flag detection is accomplished by monitoring the $\overline{\mathrm{EF}}, \overline{\mathrm{HF}}$ and $\overline{\mathrm{EF}}$ pins on the device used in the Width Expansion Mode. Do not connect output control signals together.

DEPTH EXPANSION (DAISY CHAIN) MODE

Word depths may be expanded in multiples of 4096 words by Daisy Chaining the devices together as follows:

1. The FIRST LOAD ($\overline{\mathrm{FL}}$) control signal of the first device must be grounded. This FIFO represents word 1-4096.
2. All other devices in the Daisy Chain must have the FIRST LOAD (FL) control signal tied to V_{cc} in the inactive-high state.

Figure 5. Diagram of a 16384×9 FIFO in Depth Expansion Mode

BIDIRECTIONAL MODE

Data buffering between two systems can be achieved by pairing two FIFO arrays as shown in Figure 6. This allows each system to READ and WRITE shared data. The FULL FLAG ($\overline{\mathrm{FF}}$) must be monitored on the FIFO where WRITE ENABLE (\bar{W}) is used and the EMPTY FLAG ($\overline{\mathrm{EF}})_{\text {must be monitored on the FIFO where READ }}$ ENABLE $(\overline{\mathrm{R}})$ is used. Both Width Expansion and Depth

Expansion Modes may be used in combination with Bidirectional Mode.

COMPOUND EXPANSION MODE:

Both Width Expansion Mode and Depth Expansion (Daisy Chain) Mode can be used together to configure a large FiFO array (See Figure 4 and 5).

Figure 6. BiDirectional FIFO Mode

ORDERING INFORMATION

| SPEED (ns) | ORDERING PART NUMBER ${ }^{(1)}$ | | TEMPERATURE |
| :---: | :---: | :---: | :---: | :---: |
| RANGE | | | |

[^9]
256x16 \& 512x16 Parallel-to-Serial FIFOs

FEATURES

- $25 n s$ parallel port access time
- 50 MHz serial output port shift rate
- Easily expandable in both word width and depth
- Asynchronous and simultaneous read/write operation
- Five memory status flags: Empty, Full, Half-full, Almost-empty and Almost-full
- Least Significant or Most Significant bit first read selectable for two sided printing
- Low power, power down capability
- Dual port RAM architecture with zero fall through time
- Available in 28-pin 300mil plastic DIP or 330mil SOIC gull wing

DESCRIPTION

The MS72105 and MS72115 are high-speed, low power 16-bit parallel-to-serial FIFOs. These FIFOs are well suited for any serial date output buffering such as are found in laser printers, FAX machines, local area networks, video frame buffers, disk and tape controllers. They are fully asynchronous and allow simultaneous read and write operations.

Wider and deeper FIFOs can be assembled using multiple devices. MOSEL's on-chip expansion logic (SIX, SOX \& $\overline{F L} / D I R)$ makes this possible and requires no external components. The serial output is clocked out by signalling the serial output clock pin (SOC) and data is available on the serial out pin (SO). The Least Significant or Most Significant bit can be read first by programming the DIR pin after Reset.
The device has five flags: empty, full, half full, almost-empty and almost-full. The empty and full flags prevent data underflow or overflow. The empty, full and half-full flags are available in both single device and expansion configurations. The almost-empty and almost-full are only available in the single device configuration.
The MS72105 and MS72115 designs are based on a self addressing dual port RAM architecture. This allows for a zero fall through delay and quick flag logic response. The MS72105 and MS72115 are fabricated on MOSEL's full CMOS process.

FUNCTIONAL BLOCK DIAGRAM

PIN DESCRIPTIONS

$D_{0}-D_{15}$ Inputs

Data inputs for 16 -bit wide data.

$\overline{\text { MR }} \quad$ Master Reset

When $\overline{M R}$ is set low, internal READ and WRITE pointers are set to the first location of the RAM array. $\overline{\mathrm{FF}}$ and $\overline{\mathrm{HF}}$ go HIGH. $\overline{\mathrm{EF}}$ and $\overline{\mathrm{AEF}}$ go LOW. A master reset is required before an initial WRITE after power-up. \bar{W} must be high during the $\overline{M R}$ cycle. Also the First Load pin ($\overline{\mathrm{FL} / \text {) is progammed only during }}$ Reset.

$\bar{W} \quad$ Write

A write cycle is initiated on the falling edge of WRITE if the Full Flag ($\overline{\mathrm{FF}}$) is not set. Data set-up and hold times must be adhered to with respect to the rising edge of WRITE. Data is stored in the RAM array sequentially and independently of any ongoing read operation.

SOC Serial Output Clock

A serial bit read cycle is initiated on the rising edge of SOC if the Empty Flag ($\overline{\mathrm{EF}}$) is not set. In both Depth and Serial Word Width Expansion modes, all of the SOC pins are tied together.

FL/DIR First Load/Direction

This is a dual purpose input used in the width and depth expansion configurations. The First Load ($\overline{\mathrm{FL}})$ function is programmed only during Master Reset (MR) and a LOW on $\overline{\mathrm{FL}}$ indicates the first device to be loaded with a byte of data. All other devices should be programmed HIGH. The Direction (DIR) function is programmed during operation after MASTER Reset and tells the device whether to read out the Least Significant or Most Significant bit first.

SIX Read Serial in Expansion

In the single device configuration, SIX is set HIGH. In depth expansion or daisy chain expansion. SIX is connected to SOX (expansion out) of the previous device.

SO Serial Output

Serial data is output on the Serial Output (SO) pin. Data is clocked out LSB or MSB depending on the Direction pin programming. During Expansion the SO pins are tied together.

$\overline{F F} \quad$ Full Flag

When $\overline{\mathrm{FF}}$ goes low, the device is full and further WRITE operations are inhibited. When $\overline{\mathrm{FF}}$ is high, the device is not full.

$\overline{\text { EF }} \quad$ Empty Flag

When $\overline{E F}$ goes low, the device is empty and further READ operations are inhibited. When $\overline{\mathrm{EF}}$ is high, the device is not empty.

$\overline{\mathrm{HF}} \quad$ Half Full Flag

When $\overline{\mathrm{HF}}$ is LOW, the device is more than half full. When $\overline{\mathrm{HF}}$ is HIGH, the device is empty to half full.

SOX/AEF Serial Out Expansion, Almost Empty, Almost Full Flag

This is a dual purpose output. In the single device configuration (RSIX HIGH), this is an $\overline{\mathrm{AEF}}$ output pin. When $\overline{\mathrm{AEF}}$ is LOW, the device is empty to $1 / 8$ full -1 or $7 / 8$ full +1 to full. When $\overline{\mathrm{AEF}}$ is HIGH, the device is $1 / 8$ full up to $7 / 8$ full. In the Expansion configuration (SOX connected to SIX of the next device) a pulse is sent from SOX to SIX to coordinate the width, depth or daisy chain expansion.
\mathbf{V}_{cc} Power Supply
Single power supply of 5 V .

GND Ground

Single ground of OV.

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

SYMBOL	RATING	COMMERCIAL	UNIT
$\mathrm{V}_{\text {TERM }}$	Terminal Voltage with Respect to GND	-0.5 to +7.0	V
$\mathrm{~T}_{\mathrm{A}}$	Operating Temperature	0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {BIAS }}$	Temperature Under Bias	-55 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-55 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{I}_{\text {OUT }}$	DC Output Current	50	mA

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to ABSOLUTE MAXIMUM RATINGS for extended periods may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
V_{CC}	Commercial Supply Voltage	4.5	5.0	5.5	V
GND	Supply Voltage	0	0	0	V
$\mathrm{~V}_{\text {IH }}$	Input High Voltage	2.0	-	-	V
$\mathrm{V}_{\text {IL }}{ }^{(1)}$	Input Low Voltage	-	-	0.8	V

1. 1.5 V undershoots are allowed for 10 ns once per cycle.

DC ELECTRICAL CHARACTERISTICS (Commercial: $\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}+0+70^{\circ} \mathrm{C}$)

SYMBOL	PARAMETER	MIN.	MS72105 MS72115 TYP.	MIAX.	UNITS
$\mathrm{I}_{\text {LL }}{ }^{(1)}$	Input Leakage Current (Any Input)	-1	-	1	$\mu \mathrm{A}$
$\mathrm{IOL}^{(2)}$	Output Leakage Current	-10	-	10	$\mu \mathrm{A}$
V_{OH}	Output Logic "1" Voltage $\mathrm{I}_{\text {Out }}=-2 \mathrm{~mA}{ }^{(\%)}$	-	-	-	V
$\mathrm{V}_{\text {OL }}$	Output Logic "0" Voltage $\mathrm{I}_{\text {OUT }}=8 \mathrm{~mA}{ }^{(6)}$	-	-	0.4	V
$\mathrm{ICC1}^{(3)}$	Power Supply Current	-	90	140	mA
$\mathrm{ICC2}^{(3)}$	Average Standby Current $\left(\overline{\mathrm{R}}=\overline{\mathrm{W}}=\overline{\mathrm{RS}}=\overline{\mathrm{FL}} / \mathrm{DIR}=\mathrm{K}_{\mathrm{L}}\right)$	-	8	12	mA
$\left.\mathrm{ICC3}^{(L)}\right)^{(3,4)}$	Power Down Current	-	-	8	mA

1. Measurements with $0.4 \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {out }}$.
2. $\overline{\mathrm{MR}} \leq \mathrm{V}_{\mathrm{t}}, 0.4 \leq \mathrm{V}_{\text {out }} \leq \mathrm{V}_{\mathrm{cc}}$
3. $I_{c \mathrm{c}}$ measurements are made with outputs open.
4. $\overline{\mathrm{MR}}=\overline{\mathrm{FL}} / \mathrm{DIR}=\overline{\mathrm{W}}=\widehat{\mathrm{SOC}}=\mathrm{V}_{\mathrm{cc}}-0.2 \mathrm{~V}$; all other inputs $\geq \mathrm{V}_{\mathrm{cc}}-0.2 \mathrm{~V}$ or $\leq 0.2 \mathrm{~V}$.
5. For SO, $\mathrm{I}_{\text {OUT }}=-4 \mathrm{~mA}$
6. For $\mathrm{SO}, \mathrm{I}_{\text {OUT }}=16 \mathrm{~mA}$

STATUS FLAGS

NUMBER OF WORDS IN FIFO		$\overline{\text { FF }}$	$\overline{\text { AEF }}$	$\overline{H F}$	$\overline{\mathrm{EF}}$
MS72105	MS72115				
0	0	H	L	H	L
1-31	1-63	H	L	H	H
32-128	64-256	H	H	H	H
129-224	257-448	H	H	L	H
225-255	449-511	H	L	L	H
256	512	L	L	L	H

AC ELECTRICAL CHARACTERISTICS (Commercial: $\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\left(10+70^{\circ} \mathrm{C}\right.$)

SYMBOL	PARAMETER	$\begin{gathered} \text { MS72105 } \\ \text { MS72115 } \\ 25 \end{gathered}$		$\begin{gathered} \text { MS72105 } \\ \text { MS72115 } \\ 50 \end{gathered}$		$\begin{gathered} \text { MS72105 } \\ \text { MS72115 } \\ 80 \end{gathered}$		UNITS
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
t_{s}	Parallel Shift Frequency	-	22.2	-	15	-	10	MHz
$\mathrm{t}_{\text {SOCP }}$	Serial Shift Frequency	-	50	-	40	-	28	MHz
$t_{\text {wc }}$	Write Cycle Time	35	-	65	-	100	-	ns
$t_{\text {wPW }}$	Write Pulse Width	25	-	50	-	80	-	ns
${ }_{\text {twr }}$	Write Recovery Time	10	-	15	-	20	-	ns
$\mathrm{t}_{\text {DS }}$	Data Set-up Time	10	-	15	-	15	-	ns
${ }^{\text {d }}$ H	Data Hold Time	0	-	5	-	5	-	ns

$\mathrm{t}_{\text {SOCP }}$	Serial Clock Cycle Time	20	-	25	-	35	-	ns
$\mathrm{t}_{\text {SOCW }}$	Serial Clock Width High/Low	8	-	10	-	15	-	ns
$\mathrm{t}_{\text {SOPD }}$	SOC Rising Edge to SO Valid Data	-	10	-	12	-	17	ns
$\mathrm{t}_{\text {SOHZ }}$	SOC Rising Edge to SO at High Z ${ }^{(1)}$	3	10	3	12	3	17	ns
$\mathrm{t}_{\text {SOLZ }}$	SOC Rising Edge to SO at Low Z ${ }^{(1)}$	3	10	3	12	3	17	ns

$t_{\text {WEF }}$	Write High to EF High	-	20	-	25	-	35	ns
$\mathrm{t}_{\text {WFF }}$	Write Low to FF Low	-	30	-	40	-	50	ns
$\mathrm{t}_{\text {WF }}$	Write Low to Transitioning $\overline{\mathrm{HF}}, \overline{\mathrm{AEF}}$	-	30	-	40	-	50	ns
${ }^{\text {W }}$ WPF	Write Pulse Width After FF High	25	-	50	-	80	-	ns
${ }^{\text {t }}$ SOCEF	SOC Rising Edge to EF Low	-	20	-	25	-	35	ns
${ }^{\text {t }}$ SOCFF	SOC Rising Edge to FF High	-	30	-	40	-	50	ns
${ }^{\text {t }}$ SOCF	SOC Rising Edge to Transitioning $\overline{H F}, \overline{A E F}$		30	-	40	-	50	ns
$\mathrm{t}_{\text {REFSO }}$	SOC Delay After EFFHigh	35	-	65	-	100	-	ns

$t_{\text {RSC }}$	Reset Cycle Time	35	-	65	-	100	-
$t_{\text {RS }}$	Reset Pulse Width	25	-	50	-	80	-
$t_{\text {RSS }}$	Reset Set-up Time	25	-	50	-	80	-
$t_{\text {RSR }}$	Reset Recovery Time	10	-	15	-	20	-

$\mathrm{t}_{\text {fLS }}$	FL Set-up Time to RS Rising Edge	5	-	7	-	10	-	ns
$\mathrm{t}_{\text {FLH }}$	$\overline{F L}$ Hold Time to $\overline{\text { RS }}$ Rising Edge	0	-	0	-	5	-	ns
$\mathrm{t}_{\text {DIRS }}$	DIR Set-up Time to SOCPRising Edge	5	-	7	-	10	-	ns
$\mathrm{t}_{\text {DIRH }}$	DIR Hold Time from SOC Rising Edge	0	-	0	-	5	-	ns
$\mathrm{t}_{\text {SOXD1 }}$	SOC Rising Edge to SOX Rising Edge	3	11	3	15	3	20	ns
$\mathrm{t}_{\text {SOXD2 }}$	SOC Rising Edge to SOX Falling Edge	3	11	3	15	3	20	ns
$t_{\text {sIXS }}$	SIX Set-up Time to SOC Rising Edge	5	-	7	-	10	-	ns
${ }_{\text {tIXH }}$	SIX Hold Time from SOC Rising Edge	0	-	0	-	5	-	ns

1. Guaranteed by design minimum times, not tested.

AC TEST CONDITIONS

Input Pulse Levels Input Rise/Fall Times

Input Timing Reference Levels Output Reference Levels
Output Load
GND to 3.0 V
5 ns
1.5 V
1.5 V
See Figure A

CAPACITANCE $\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)$

SYMBOL	PARAMETER ${ }^{(1)}$	CONDITIONS	MAX.	UNIT
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	10	pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	12	pF

1. This parameter is sampled and not 100% tested.

FUNCTIONAL DESCRIPTION

Parallel Data Input

The device must be reset before beginning operation so that all flags are set to location zero. In width or depth expansion the First Load pin ($\overline{\mathrm{FL}} /$) must be programmed to indicate the first device.
The data is written into the FIFO in parallel through the D_{0-15} input data lines. A write cycle is initiated on the falling edge of

Figure A. Output Load

1. Includes jig and scope capacitances.
2. For $\mathrm{SO}, \mathrm{Rx}=100 \Omega$. For all other outputs, $\mathrm{Rx}=200 \Omega$
the Write (\bar{W}) signal provided the Full Flag $(\overline{\mathrm{FF}})$ is not asserted. If the \bar{W} signal changes from HIGH-to-LOW and the Full Flag $(\overline{\mathrm{FF}})$ is already set, the write line is inhibited internally from incrementing the write pointer and no write operation occurs.
Data set-up and hold times must be met with respect to the rising edge of Write. The data is written to the RAM at the write pointer. On the rising edge of \bar{W}, the write pointer is incremented. Write operations can occur simultaneously or asynchronously with read operations.

Figure 1. Write Operation

Serial Data Output

The serial data is output on the SO pin. The data is clocked out on the rising edge of SOC providing the Empty Flag (EF) is not asserted. If the Empty Flag is asserted then the next data word is inhibited from moving to the output register and being clocked out by SOC.

The serial word is shifted out Least Significant Bit or Most Significant Bit first depending on the FL/DIR level during operation. A LOW on DIR will cause the Least Significant Bit to be read out first. A HIGH on DIR will cause the Most Significant Bit to be read out first.

Figure 2. Read Operation

Figure 3. Full Flag from Last Write to First Read

Figure 4. Empty Flag from Last Read to First Write
Note:

1. SOC should not be clocked until $\overline{\mathrm{EF}}$ goes high.

Figure 5. Empty Boundry Condition Timing
Note:

1. SOC should not be clocked until $\overline{\mathrm{EF}}$ goes high.

Figure 6. Full Boundary Condition Timing

Figure 7. Half Full, Almost Full and Almost Empty Timings

Figure 8. Master Reset

Note:

1. $\overline{\mathrm{EF}}, \overline{\mathrm{FF}}, \overline{\mathrm{HF}}$ and $\overline{\mathrm{AEF}}$ may change status during Master Reset, but flags will be valid at $\mathrm{t}_{\text {RSC }}$.

Figure 9. Serial Read Expansion

MS72105/ 72115

OPERATING CONFIGURATIONS

Single Device Mode

The device must be reset before beginning operation so that all flags are set to location zero. In the standalone
case, the SIX line is tied HIGH and indicates single device operation to the device. The SOX/AEF pin defaults to AEF and outputs the Almost Empty and Almost Full Flag.

Figure 10. Single Device Configuration
TABLE 1: MASTER RESET AND FIRST LOAD TRUE TABLE-
SINGLE DEVICE CONFIGURATION

MODE	INPUTS			INTERNAL STATUS			OUTPUTS		
	$\overline{\mathbf{M R}}$	$\overline{\mathrm{FL}}$	DIR	READ POINTER	WRITE POINTER	$\overline{\mathbf{A E F}, \overline{\mathrm{EF}}}$	$\overline{\mathrm{FF}}$	$\overline{\mathrm{HF}}$	
Reset	0	X	X	Location Zero	Location Zero	0	1	1	
Read/Write	1	X	0,1	Increment $^{(1)}$	Increment ${ }^{(1)}$	X	X	X	

1. Pointer will increment if appropriate flag is HIGH.

Width Expansion Mode

In the cascaded case, word widths of more than 16 bits can be achieved by using more than one device. By tying the SOX and SIX pins together as shown in Figure 11 and programming which is the Least Significant Device, a cascaded serial word is achieved. The Least Significant Device is programmed by a LOW on the FL/DIR pin during reset. All other devices should be programmed HIGH on the FL/DIR pin at reset.

The Serial Data Output (SO) of each device in the serial word must be tied together. Since the SO pin is three stated, only the device which is currently shifting out is enabled and driving the 1-bit bus. NOTE: After reset, the level on the FL/ DIR pin decides if the Least Significant or Most Significant Bit is read first out of each device.

The three flag outputs, Empty ($\overline{\mathrm{EF}}$), Half Full ($\overline{\mathrm{HF}) \text { and Full }{ }^{\text {a }} \text {, }}$ ($\overline{\mathrm{FF}}$), should be taken from the Most Significant Device (in the example, FIFO \#2). The Almost Empty and Almost Full Flag is not available due to using the SOX pin for expansion.

Figure 11. Width Expansion for 32-bit Parallel Data In

Depth Expansion (Daisy Chain) Mode

The MS72105/72115 can easily be adapted to applications where the requirements are for greater than 512 words. Figure 12 demonstrates Depth Expansion using three MS72115 and an Address Decoder. Any depth can be attained by adding additional devices. The Address Decoder is necessary to determine which FIFO to write data into. A byte of data should be written sequentially into each FIFO so that the SOX/SIX handshake can control reading out the data in the correct sequence. The MS72105/72115 operate in the Depth Expansion Mode when the following conditions are met:

1. The first device must be designated by programming $\overline{\mathrm{FL}}$ LOW at Reset. All other devices to be programmed HIGH.
2. The Serial Out Expansion (SOX) of each device must be tied to the Serial In Expansion (SIX of the next device in the manner shown).
3. External logic is needed to generate composite Empty, Half Full and Full Flags. This requires the OR-ing of all $\overline{\mathrm{EF}}, \overline{\mathrm{HF}}$ and $\overline{F F}$ Flags.
4. The Almost Empty and Almost Full Flag is not available due to using the SOX pin for expansion.

Figure 12. A 1536×16 Parallel-to-Serial FIFO using the MS72115

TABLE 2: MASTER RESET AND FIRST LOAD TRUE TABLEWIDTH/DEPTH COMPOUND EXPANSION MODE

MODE	INPUTS			INTERNAL STATUS		OUTPUTS	
	$\overline{\text { MR }}$	$\overline{\mathrm{FL}}$	$\overline{\mathrm{DIR}}$	READ POINTER	WRITE POINTER	$\overline{\mathbf{E F}}$	$\overline{\mathbf{H F}, \overline{\mathrm{FF}}}$
Reset-First Device	0	0	X	Location Zero	Location Zero	0	1
Reset all Other Devices	0	1	X	Location Zero	Location Zero	0	1
Read/Write	1	X	0,1	X	X	X	X

[^10]
MS72105/ 72115

Compound Expansion (Daisy Chain) Mode

The MS72105/72115 can be expanded in both depth and width as Figure 13 indicates:

1. The SOX-to-SIX expansion signals are wrapped around sequentially.
2. The write (\bar{W}) signal is expanded in width.
3. Flag signals are only taken from the Most Significant Devices.
4. The Least Significant device in the array must be programmed with a LOW on FL/DIR during reset.

Figure 13. A 1536×32 Parallel-to-Serial FIFO using the MS72115

ORDERING INFORMATION

SPEED (ns)	ORDERING PART NUMBER	PACKAGE REFERENCE NO.	TEMPERATURE RANGE
25	MS72105-25NC	P28-2	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
25	MS72115-25NC		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
25	MS72105-25FC	S28-2	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
25	MS72115-25FC		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
50	MS72105-50NC	P28-2	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
50	MS72115-50NC		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
50	MS72105-50FC	S28-2	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
50	MS72115-50FC		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
80	MS72105-80NC	P28-2	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
80	MS72115-80NC		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
80	MS72105-80FC	S28-2	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
80	MS72115-80FC		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

ADVANCE INFORMATION

FEATURES

- Full CMOS clocked synchronous FIFOs
- Read and write clocks can be synchronous or asynchronous
- Master / Slave devices make depth and width expansion easy
- Two densities: 512×18 and 1024×18
- 20ns read / write cycle time
- Dual port memory architecture
- Five Flags for memory status:
- Empty and Full Flags
- Two Programmable Flags
- Half Full Flag available in single device configuration
- Master device supplies all flag outputs in depth expansion
- Output Enable puts output in high impedance
- Available in 68-lead pin grid array (PGA), and plastic leaded chip carrier (PLCC)

512×18 \& 1024×18 Parallel Synchronous FIFOs

DESCRIPTION

The MS72215/16 and MS72225/26 are clocked registered FIFOs that are particularly useful in synchronous design applications. This architecture allows for a user friendly part with a very high speed cycle time of 50 MHz . The MS72215 and MS72225 are the master versions and the MS72216 and MS72226 are the slave versions. Typical applications for these designs are data buffering for workstation graphics, interprocessor communications, and high speed LANs.
All four devices have 18-bit wide parallel data inputs and outputs. The input port is controlled by a free running clock (WCLK), and a write enable pin (WEN). Data is written into the FIFO only when both the lock pin and write enable are active. The output port is controlled by separate clock (RCLK) and a read enable (REN) pins. The read clock can be tied to the write clock for single clock operation or the two clocks can run independently. The devices also have an output enable $(\overline{\mathrm{OE}})$ for three-state control of the output.
These FIFOs have a total of five flags. That is two fixed flags, Empty $(\overline{\mathrm{EF}})$ and Full ($\overline{\mathrm{FF})}$, two programmable flags, ($\overline{\mathrm{PAE}})$ and (PAF), plus a Half Full (HF) flag available in single device operation. The programmable flags are programmed by asserting the Load (LD) pin and clocking in the next two words on the inputs.

The MS72215 and MS72225 are both width and depth expandable. The pins $\overline{\mathrm{XI}}$ and $\overline{\mathrm{XO}}$ are required to expand the FIFOs in depth. To permit programmable flags in depth expansion, a master device (MS72215/25) controls the flags, and the flags are ignored on all the other slave devices (MS72216/26).

FUNCTIONAL BLOCK DIAGRAM

MOSEL Corporation 914 West Maude Avenue, Sunnyvale, CA 94086 U.S.A 408-733-4556

PIN CONFIGURATIONS

PGA TOP VIEW

PIN DESCRIPTIONS

$D_{0}-D_{17} \quad$ Data Inputs

Data inputs for 18 -bit wide data.

$\overline{\mathbf{R S}} \quad$ Reset

When $\overline{\mathrm{RS}}$ is set low, internal read and write pointers are set to the first location of the RAM array, $\overline{\mathrm{FF}}$ and $\overline{\text { PAF go high, and } \overline{\text { PAE }} \text { and }}$ $\overline{\mathrm{EF}}$ go low. A reset is required before an initial WRITE after powerup.

WCLK Write Clock

When WEN is enabled (low), a write cycle is initiated on the low-to-high transition of every WCLK clock, if the FIFO is not full.

WEN

Write Enable

When $\overline{\text { WEN }}$ is low, data can be loaded into the FIFO on the low-to-high transition of every WCLK clock. When WEN is high, the FIFO holds the previous data. When the FIFO is full ($\overline{\mathrm{FF}}=\mathrm{low}$), the internal WRITE operation is blocked.

RCLK
 Read Clock

When $\overline{\operatorname{REN}}$ is enabled (low), data can be read on the outputs on the low-to-high transition of the read clock RCLK if the FIFO is not empty.

REN Read Enable

When REN is (low), data can be read from the FIFO on the low-tohigh transition of every RCLK clock. When $\overline{\operatorname{REN}}$ is high, the output register holds the previous data. When the FIFO is empty ($\overline{\mathrm{EF}}=$ low), the internal READ operation is blocked.

$\overline{\mathrm{OE}}$

Output Enable

When $\overline{\mathrm{OE}}$ is enabled (low), the parallel output buffers receive data from the output register. When OE is disabled (high), the Q output bus is in a high impedance state.

LD

Load

When $\overline{\mathrm{LD}}$ is low, data on the inputs $\mathrm{D}_{0}-\mathrm{D}_{17}$ is written to the offset and depth registers on the low-to-high transition of the WCLK.

PLCC TOP VIEW

$\overline{\mathbf{X I}} \quad$ Expansion Input

In the single device or width expansion configuration, $\overline{X l}$ is grounded. In the depth expansion configuration, $\overline{\mathrm{XI}}$ is connected to $\overline{\mathrm{XO}}$ (expansion out) of the previous device.

$\overline{\text { FF }} \quad$ Full Flag

When $\overline{F F}$ goes low, the device is full and further WRITE operations are inhibited. When $\overline{F F}$ is high, the device is not full. $\overline{F F}$ is synchronized with WCLK.

$\overline{\mathrm{EF}} \quad$ Empty Flag

When $\overline{E F}$ goes low, the device is empty and further READ operations are inhibited. When EF is high, the device is not empty. EF is synchronized with RCLK.

$\overline{\text { PAF }} \quad$ Programmable Almost-Full Flag

When PAF is low, the device is almost full based on the programmable full offset. If there is no offset specified, the device is $7 / 8$ full or more.

$\overline{\text { PAE }}$ Programmable Almost-Empty Flag

When $\overline{\text { PAE }}$ is low, the device is almost empty based on the programmable empty offset. If there is no offset specified, the device is empty to $1 / 8$ full.

$\overline{\mathrm{XO}} / \overline{\mathrm{HF}} \quad$ Expansion Out/Half-Full Flag

In the single device or width expansion configuration, the device is more than half full when $\overline{\mathrm{HF}}$ is low. In the depth expansion configuration, a pulse is sent from $\overline{\mathrm{XO}}$ to $\overline{\mathrm{XI}}$ when the last location in the FIFO is filled.
$Q_{0}-Q_{17} \quad$ Outputs
Data outputs for 18-bit wide data.
V_{cc}

> Power Supply

Nine +5 V power supply pins.

GND Ground

Ten ground pins

CMOS STATIC ROMS

MOSEL has developed a broad line of CMOS ROMs (read only memory) from 128 K to 8 megabits, including products at $128 \mathrm{~K}, 256 \mathrm{~K}, 512 \mathrm{~K}, 1024 \mathrm{~K}, 2048 \mathrm{~K}, 4096 \mathrm{~K}$ and 8192 K in density. All standard packages are available including 28,32 and 40 pin plastic dips and 28 or 32 pin SOG packages. MOSEL offers fast turnaround of four to six weeks for engineering samples and/or first production units.

PRODUCTION PRODUCTS

At the 1 megabit density, MOSEL offers the 1 megabit $128 \mathrm{~K} \times 8$ MS311024 and MS311002, with speeds of $100,120,150$ and 200 ns , available today in the 600 mil 28 and 32 pin DIP packages and 28 and 32 pin SOG packages. The CMOS MS311024 provides significant power savings as compared with the NMOS products, with typical standby power below $10 \mu \mathrm{~A}$.
MOSEL also offers products at 512 K , the $64 \mathrm{~K} \times 8$ MS310512, at 256K, the 32K x 8 MS310256, and 128K, the $16 \mathrm{~K} \times 8 \mathrm{MS} 310128$. These products are available in 150 ns , and provide similar standby power savings as the megabit product as compared with NMOS designs. Both 28 pin dip and surface mount packages are supported.

DEVELOPMENT PRODUCTS

MOSEL is now supplying or has under development 2 , 4 , and 8 Megabit ROM products at speeds of 120 to 200ns including:
The $256 \mathrm{~K} \times 8$ MS312001 at 120-150ns in a 32 pin DIP. The $256 \mathrm{~K} \times 8$ MS312002 at 200ns in a 32 pin DIP.
The $256 \mathrm{~K} \times 16 / 512 \mathrm{~K} \times 8$ MS314003 at 200 ns in a 40 pin DIP and 64 pin PQFP.
The $512 \mathrm{~K} \times 8$ MS314001 at $100-150 \mathrm{~ns}$ in a 32 pin DIP.
The $512 \mathrm{~K} \times 8$ MS314002 at 200 ns in a 32 pin DIP.
The 1024K $\times 8$ MS318002 at 200 ns in a 32 pin DIP.
The $512 \mathrm{~K} \times 16$ / $1024 \mathrm{~K} \times 8$ MS318003 at 200 ns in a 40 pin DIP and 64 pin PQFP.

SUMMARY

MOSEL offers a broad family of high speed low power CMOS ROM products.
If you are interested in more information about MOSEL's ROM products, such as information about our quick turn service, special speed or power screening or other special handling, please contact your local sales representatives or franchise distributors listed in this book.

16,384x8 CMOS Mask Programmable ROM

FEATURES

- Access time: 150ns max
- Low Power operation:

Operating: 30mA max.
Standby: 30 A A max.

- Fully static operation
- Automatic power down
- TTL compatible inputs outputs
- 3-state outputs for wired-OR expansion
- EPROMs accepted as program data input
- Ultra low data retention supply
- Pin 20/22/27 controls (sense and type)

PIN CONFIGURATIONS

DESCRIPTION

The MS310128 is a high performance Read Only Memory organized as 16,384 words by eight bits with an access time of 150 ns . It is designed to be compatible with all microprocessors and similar applications where high performance mass storage and simple interfacing are important design considerations.

The MS310128 offers automatic powerdown with powerdown controlled by the Chip Enable ($\overline{\mathrm{CE}} / \mathrm{CE}$) inputs. When $\overline{\mathrm{CE}} / \mathrm{CE}$ goes HIGH/LOW the device will automatically power down and remain in a low power standby mode as long as $\overline{\mathrm{CE}} / \mathrm{CE}$ remains HIGH/LOW. This unique feature provides system level power savings of as much as 99%. The function of Pin 22 and Pin 27 are $\overline{\mathrm{OE}}_{1} / \mathrm{OE}_{1}$ and $\overline{\mathrm{OE}}_{2} / \mathrm{OE}_{2} /$ NC, respectively. Pin 20 may also be programmed as $\overline{O E} / \mathrm{OE}$ (active HIGH or LOW) in order to eliminate bus contention in multiple bus microprocessor systems. Pins 22 and 27 can be programmed to allow decoding of four $16 \mathrm{k} \times 8$ parts for $1 / 2$ megabit ROM emulation.

BLOCK DIAGRAM

PIN DESCRIPTIONS

PIN NO.	SYMBOL	FUNCTION
$2-10,21,23-26$	$\mathrm{~A}_{0}-\mathrm{A}_{13}$	Address Input
$11-13,15-19$	$\mathrm{O}_{0}-\mathrm{O}_{7}$	Data Output
14	GND	Ground
28	$\mathrm{~V}_{\mathrm{CC}}$	Power Supply
20	$\overline{\mathrm{CE}} / \mathrm{CE}$ or	
$\overline{\mathrm{OE}} / \mathrm{OE}$	Chip Enable Input or Output Enable	
22	$\overline{\mathrm{OE}}_{1} / \mathrm{OE}_{1}$	Additional Output Enable Pin
27	$\overline{\mathrm{OE}}_{2} / \mathrm{OE}_{2}$	Additional Output Enable Pin

OPERATING RANGE

RANGE	AMBIENT TEMPERATURE	Vcc
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

Ambient Operating Temperature	$-10^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential	-0.5 V to +7.0 V
Applied Output Voltage	-0.5 V to +7.0 V
Applied Input Voltage	-0.5 V to +7.0 V
Power Dissipation	300 mW
Soldering Temperature and Time	$260^{\circ} \mathrm{C}, 10 \mathrm{sec}$

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not recommended. Exposure to ABSOLUTE MAXIMUM RATINGS for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS (over the commercial operating range)

PARAMETER NAME	PARAMETER	TEST CONDITIONS	MS310128			UNITS
			MIN.	TYP.	MAX.	
$\mathrm{V}_{\text {IL }}$	Input Low Voltage		-0.5	-	0.8	V
$\mathrm{V}_{\text {IH }}$	Input High Voltage		2.2		$\mathrm{c}^{+}+0.3$	V
$\mathrm{I}_{\text {IL }}$	Input Leakage Current	$\mathrm{V}_{\text {CC }}=$ Max, $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {CC }}$	-	-	10	$\mu \mathrm{A}$
I_{OL}	Output Leakage Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {CC }}$	-	-	10	$\mu \mathrm{A}$
V_{OL}	Output Low Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{\mathrm{OL}}=3.2 \mathrm{~mA}$	-	-	0.4	V
V_{OH}	Output High Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{\mathrm{OH}}=-1 \mathrm{~mA}$	2.4	-	V_{cc}	V
I_{CC}	Operating Power Supply Current ${ }^{(1)}$		-	10	30	mA
$I_{\text {CCSB }}$	Standby Power Supply Current	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}, \mathrm{CE}=\mathrm{V}_{\mathrm{IL}}$	-	10	30	mA
Ios	Output Short Circuit Current ${ }^{(2)}$		-	-	70	mA

1. Measured with device selected and outputs unloaded.
2. For a duration not to exceed 30 seconds.

CAPACITANCE $\left(\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)^{(1)}$

SYMBOL	PARAMETER	CONDITION	MAX.	UNIT
C_{1}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	10	pF
C_{O}	Output Capacitance	$\mathrm{F}=1.0 \mathrm{MHz}$	10	pF

1. This parameter is guaranteed but not 100% tested.

TRUTH TABLE

PIN 20 CE	PIN 22 OE_{1}	PIN 27 OE_{2}	OUTPUTS $\mathrm{O}_{\mathbf{0}}-\mathbf{O}_{7}$	MODE
I	X	X	High Z	Power Down
A	I	X	High Z	Output Disable
A	X	I	High Z	Output Disable
A	A	A	Output Data	Read

AC TEST CONDITIONS

Input Pulse Levels	$0.4 \sim 2.4 \mathrm{~V}$
Input Rise and Fall Times	10 ns
Timing Measurement Level	$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{IH}}=2.2 \mathrm{~V}$
Reference	$\mathrm{V}_{\mathrm{OL}}=0.8 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{H}}=2.0 \mathrm{~V}$
Output Load	See Figure 1

- INCLUDING SCOPE AND JIG

Figure 1 Output Load Circuit

AC ELECTRICAL CHARACTERISTICS (over the operating range)

PARAMETER NAME		MS310128 MAX.	
$\mathrm{t}_{\mathrm{CYC}}$	PyCle Time	UNIT	
t_{AA}	Address Access Time	120	-
$\mathrm{t}_{\mathrm{ACE}}$	Chip Enable Access Time	ns	
$\mathrm{t}_{\mathrm{ACS}}$	Chip Select Access Time	-	150
t_{LZ}	Output LOW Z Delay ${ }^{(1)}$	-	150
t_{HZ}	Output HIGH Z Delay ${ }^{(2)}$	ns	
t_{OH}	Output Hold from Address Change	-	70
t_{PU}	Power-Up Time	10	-
t_{PD}	Powerdown Time	ns	

1. Output LOW impedance delay (t_{12}) is measured from $\overline{\mathrm{CE} / \mathrm{CE}}$ or $\overline{\mathrm{OE} / \mathrm{OE}}$ going active.
2. Output HIGH impedance delay $\left(t_{\mathrm{Hz}}\right)$ is measured from the earlier of $\overline{\mathrm{CE}} / \mathrm{CE}$ or $\overline{\mathrm{OE} / O E}$ going active.

TIMING DIAGRAMS

PROPAGATION DELAY FROM ADDRESS (CE/ $\overline{\mathrm{CE}}=\mathrm{ACTIVE,OE/} \mathrm{\overline{OE}}=\mathrm{ACTIVE})$

PROPAGATION DELAY FROM CHIP ENABLE, CHIP SELECT (ADDRESS VALID)

ORDERING INFORMATION

SPEED (ns)	ORDERING PART NUMBER	PACKAGE REFERENCE NO.	TEMPERATURE
RANGE			
150	MS310128-15PC	P28-3	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
150	MS310128-15XC	Chip	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

32,768x8 CMOS Mask Programmable ROM

FEATURES

- Access time: 150ns max
- Low Power operation:

Operating: 30 mA max.
Standby: $30 \mu \mathrm{~A}$ max.

- Fully static operation
- Automatic power down
- TTL compatible inputs and outputs
- 3-state outputs for wired-OR expansion
- EPROMs accepted as program data input
- Ultra low data retention supply

PIN CONFIGURATIONS

DESCRIPTION

The MS310256 is a high performance Read Only Memory organized as 32,768 words by 8 bits. It is designed to be compatible with all microprocessors and similar applications where high performance mass storage and simple interfacing are important design considerations.
The MS310256 offers automatic powerdown with powerdown controlled by the Chip Enable ($\overline{\mathrm{CE}} / \mathrm{CE}$) input. When $\overline{\mathrm{CE}} / \mathrm{CE}$ goes HIGH/LOW the device will automatically power down and remain in a low power standby mode as long as $\overline{\mathrm{CE}} / \mathrm{CE}$ remains HIGH/LOW. Pin 22 may be mask programmed as $\overline{\mathrm{OE}} / \mathrm{OE} / \mathrm{NC}$ (active HIGH, active LOW or no connection). In order to eliminate bus contention in multiple bus microprocessor systems.

MS310256

PIN DESCRIPTIONS

PIN NO.	SYMBOL	FUNCTION
$2-10,21,23-27$	$A_{0}-A_{14}$	Address Input
$11-13,15-19$	$\mathrm{O}_{0}-\mathrm{O}_{7}$	Data Output
14	GND	Ground
28	$\mathrm{~V}_{\text {CC }}$	Power Supply
20	$\overline{\mathrm{CE}} / \mathrm{CE}$	Chip Enable Input
22	$\overline{\mathrm{OE} / \mathrm{OE} / \mathrm{NC}}$	Output Enable Input /No Connection
1	NC	No Connection

OPERATING RANGE

RANGE	AMBIENT TEMPERATURE	Vcc
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

Ambient Operating Temperature	$-10^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential	-0.5 V to +7.0 V
Output Voltage	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Input Voltage	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Power Dissipation	400 mW
Soldering Temperature and Time	$260^{\circ} \mathrm{C}, 10 \mathrm{sec}$

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not recommended. Exposure to ABSOLUTE MAXIMUM RATINGS for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS (over the commercial operating range)

PARAMETER NAME	PARAMETER	TEST CONDITIONS	MS311024			UNITS
			MIN.	TYP.	MAX.	
$\mathrm{V}_{\text {IL }}$	Input Low Voltage		-0.5	-	0.8	V
$\mathrm{V}_{\text {IH }}$	Input High Voltage		2.2		C+0.3	V
$\mathrm{HIL}_{\text {L }}$	Input Leakage Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {CC }}$	-	-	10	$\mu \mathrm{A}$
\|bul	Output Leakage Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {CC }}$	-	-	10	$\mu \mathrm{A}$
V_{OL}	Output Low Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{O}_{\mathrm{OL}}=3.2 \mathrm{~mA}$	-	-	0.4	V
V_{OH}	Output High Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{\mathrm{OH}}=-1 \mathrm{~mA}$	2.4	-	V_{CC}	V
1 CC	Operating Power Supply Current ${ }^{(1)}$		-	15	30	mA
$I_{\text {ccse }}$	Standby Power Supply Current	$\overline{C E}=\mathrm{V}_{\text {HH }}, \mathrm{CE}=\mathrm{V}_{\mathrm{IL}}$	-	0.2	1.5	mA
$\mathrm{I}_{\text {ccse } 1}$	Super Standby Power Supply Current	$\overline{C E}=\mathrm{V}_{\text {CC }}-0.2 \mathrm{~V}, \mathrm{CE}=0.2 \mathrm{~V}$	-	10	30	$\mu \mathrm{A}$
los	Output Short Circuit Current ${ }^{(2)}$		-	-	70	mA

1. Measured with device selected and outputs unloaded.
2. For a duration not to exceed 30 seconds.

CAPACITANCE $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)^{(1)}$

SYMBOL	PARAMETER	CONDITION	MAX.	UNIT
C_{1}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	10	pF
C_{O}	Output Capacitance	$\mathrm{F}=1.0 \mathrm{MHz}$	10	pF

1. This parameter is guaranteed but not 100% tested.

AC TEST CONDITIONS

Input Pulse Levels	$0.4 \sim 2.4 \mathrm{~V}$
Input Rise and Fall Times	10 ns
Timing Measurement Level	$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{IH}}=2.2 \mathrm{~V}$
Reference	$\mathrm{V}_{\mathrm{OL}}=0.8 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{OH}}=2.0 \mathrm{~V}$
Output Load	See Figure 1

- INCLUDING SCOPE AND JIG

Figure 1 Output Load Circuit

AC ELECTRICAL CHARACTERISTICS (over the operating range)

PARAMETER NAME		MS310256-15 MAX.	
$\mathrm{t}_{\mathrm{YYC}}$	Pycle Time	UNIT	
t_{AA}	Address Access Time	150	-
$\mathrm{t}_{\mathrm{ACE}}$	Chip Enable Access Time	-	150
$\mathrm{t}_{\mathrm{ACS}}$	Output Enable Access Time	ns	
t_{LZ}	Output LOW Z Delay ${ }^{(1)}$	-	150
t_{HZ}	Output HIGH Z Delay ${ }^{(2)}$	-	85
t_{OH}	Output Hold After Address Change	ns	
t_{PU}	Power-Up Time	10	-
t_{PD}	Powerdown Time	0	ns

1. Output LOW impedance delay $\left(\mathrm{t}_{\mathrm{LZ}}\right)$ is measured from $C E / \overline{C E}$ or $O E / \overline{O E}$ going active.
2. Output HIGH impedance delay $\left(\mathrm{t}_{\mathrm{Hz}}\right)$ is measured from the earlier of CE/CE or OE/OE going inactive.

TIMING DIAGRAMS

PROPAGATION DELAY FROM ADDRESS (CE/ $\overline{C E}=A C T I V E, O E / \overline{O E}=$ ACTIVE)

PROPAGATION DELAY FROM CHIP ENABLE, OUTPUT ENABLE (ADDRESS VALID)

ORDERING INFORMATION

SPEED (ns)	ORDERING PART NUMBER	PACKAGE REFERENCE NO.	TEMPERATURE
RANGE			
150	MS310256-15PC	P28-3	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
150	MS310256-15XC	Chip	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

65,536x8 CMOS Mask Programmable ROM

FEATURES

- Access time: 150 ns max
- Low Power operation:

Operating: 30mA max.
Standby: $30 \mu \mathrm{~A}$ max.

- Masked Programmed for chip enable (powerdown) $\mathrm{CE} / \overline{\mathrm{CE}}$ and output enable $\mathrm{OE} / \overline{\mathrm{OE} / \mathrm{NC}}$
- Fully static operation
- Automatic power down
- TTL compatible inputs outputs
- Available in 28 pin DIP package (MS310512) or in chip form (MS310512H)
- 3-state outputs for wired-OR expansion
- EPROMs accepted as program data input
- Ultra low data retention supply

PIN CONFIGURATIONS

DESCRIPTION

The MS310512 is a high-performance Read Only Memory organized as 65,536 words by 8 bits. It is designed to be compatible with all microprocessors and similar applications where high performance mass storage and simple interfacing are important design considerations.

The MS310512 offers automatic powerdown with powerdown controlled by the Chip Enable CE/CE input. When $\overline{\mathrm{CE}} / \mathrm{CE}$ goes HIGH/LOW the device will automatically power down and remain in a low power standby mode as long as CE/CE remains HIGH/LOW. Pin 22 may be mask programmed as $\overline{\mathrm{OE}} / \mathrm{OE} / \mathrm{NC}$ (active HIGH, active LOW or no connection). In order to eliminate bus contention in multiple bus microprocessor systems.

BLOCK DIAGRAM

PIN DESCRIPTIONS

PIN NO.	SYMBOL	FUNCTION
$2-10,21,23-27$	$\mathrm{~A}_{0}-\mathrm{A}_{15}$	Address Input
$11-13,15-19$	$\mathrm{O}_{0}-\mathrm{O}_{7}$	Data Output
14	GND	Ground
28	$\mathrm{~V}_{\mathrm{CC}}$	+5 V Power Supply
20	$\overline{\mathrm{CE}} / \mathrm{CE}$	Chip Enable Input
22	$\overline{\mathrm{OE}} / \mathrm{OE} /$ NC	Output Enable Input No Connection
1	NC	No Connection

OPERATING RANGE

RANGE	AMBIENT TEMPERATURE	Vcc
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

Ambient Operating Temperature	$-10^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential	-0.5 V to +7.0 V
Output Voltage	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Applied Input Voltage	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Power Dissipation	400 mW
Soldering Temperature and Time	$260^{\circ} \mathrm{C}, 10 \mathrm{sec}$

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not recommended. Exposure to ABSOLUTE MAXIMUM RATINGS for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS ${ }_{\text {(over the commercial operating range) }}$

PARAMETER NAME	PARAMETER	TEST CONDITIONS	MS310512			UNITS
			MIN.	TYP.	MAX.	
$\mathrm{V}_{\text {IL }}$	Input Low Voltage		-0.5	-	0.8	V
$\mathrm{V}_{\text {IH }}$	Input High Voltage		2.2		+ 0.3	V
$\mathrm{I}_{\text {IL }}$	Input Leakage Current	$\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to V_{CC}	-	-	10	$\mu \mathrm{A}$
I_{OL}	Output Leakage Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {CC }}$	-	-	10	$\mu \mathrm{A}$
V_{OL}	Output Low Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{\mathrm{OL}}=3.2 \mathrm{~mA}$	-	-	0.4	V
V_{OH}	Output High Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{\mathrm{OH}}=-1 \mathrm{~mA}$	2.4	-	V_{cc}	V
I_{CC}	Operating Power Supply Current ${ }^{(1)}$		-	15	30	mA
$\mathrm{I}_{\text {CCSB }}$	Standby Power Supply Current	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}, C E=\mathrm{V}_{\mathrm{IL}}$	-	0.2	1.5	mA
$\mathrm{I}_{\text {CCSB1 }}$	Super Standby Power Supply Current	$\overline{\mathrm{CE}}=\mathrm{V}_{C C}-0.2 \mathrm{~V}, \mathrm{CE}=0.2 \mathrm{~V}$	-	10	30	$\mu \mathrm{A}$
los	Output Short Circuit Current ${ }^{(2)}$		-	-	70	mA

1. Measured with device selected and outputs unloaded.
2. For a duration not to exceed 30 seconds.

CAPACITANCE ($\left.\mathbf{T a =} \mathbf{2 5}^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)^{(1)}$

SYMBOL	PARAMETER	CONDITION	MAX.	UNIT
$\mathrm{C}_{\boldsymbol{I}}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	10	pF
C_{O}	Output Capacitance	$\mathrm{F}=1.0 \mathrm{MHz}$	10	pF

1. This parameter is guaranteed but not 100% tested.

TRUTH TABLE

PIN 20 $(\overline{\mathrm{CE}} / \mathrm{CE})$	PIN 22 $\mathrm{OE} / \mathrm{OE} / \mathrm{NC}$	OUTPUTS $\mathrm{O}_{\mathbf{0}}-\mathrm{O}_{7}$	MODE
I	X	$\mathrm{HI}-\mathrm{Z}$	Power Down
A	I	$\mathrm{HI}-\mathrm{Z}$	Output Disable
A	A	LO-Z	Read

1. If mask programmable pin, pin 22, is customer-specified at NC (no-connection) state, the input state of pin 22 will be internally fixed at active state.

AC TEST CONDITIONS

Input Pulse Levels	$0.4 \sim 2.4 \mathrm{~V}$
Input Rise and Fall Times	10 ns
Timing Measurement Level	$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{IH}}=2.2 \mathrm{~V}$
Reference	$\mathrm{V}_{\mathrm{OL}}=0.8 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{H}}=2.0 \mathrm{~V}$
Output Load	See Figure 1

* INCLUDING SCOPE AND JIG

Figure 1 Output Load Circuit

AC ELECTRICAL CHARACTERISTICS (over the operating range)

PARAMETER NAME	PARAMETER	MS310512		UNIT
		MIN.	MAX.	
$\mathrm{t}_{\mathrm{CYC}}$	Cycle Time	150	-	ns
t_{AA}	Address Access Time	-	150	ns
$t_{\text {ACE }}$	Chip Enable Access Time	-	150	ns
$\mathrm{t}_{\text {ACS }}$	Output Enable Access Time	-	85	ns
$\mathrm{t}_{\text {LZ }}$	Output LOW Z Delay ${ }^{(1)}$	10	-	ns
$t_{\text {HZ }}$	Output HIGH Z Delay ${ }^{(2)}$	0	85	
t_{OH}	Output Hold After Address Change	10	-	ns
$t_{\text {PU }}$	Power-Up Time	0	-	ns
$t_{\text {PD }}$	Powerdown Time	-	85	ns

1. Output LOW impedance delay $\left(\mathrm{t}_{12}\right)$ is measured from $\overline{\mathrm{CE}} / \mathrm{CE}$ or $\mathrm{OE} / \overline{\overline{O E}}$ going active.
2. Output HIGH impedance delay ($t_{H Z}$) is measured from the earlier of $\overline{C E} / E$ or $O E / \overline{O E}$ going inactive.

TIMING DIAGRAMS

PROPAGATION DELAY FROM ADDRESS ($\overline{\mathrm{CE}} / \mathrm{CE}=\mathrm{ACTIVE}, \overline{\mathrm{OE}} / \overline{\mathrm{OE}}=\mathrm{ACTIVE})$

PROPAGATION DELAY FROM CHIP ENABLE or OUTPUT ENABLE (ADDRESS VALID)

ORDERING INFORMATION

	ORDERING SPEED (ns)	PART NUMBER	PACKAGE REFERENCE NO.

131,072 X 8 CMOS Mask Programmable ROM 28 Pin DIP

DESCRIPTION

The MS311002 high performance Read Only Memory is organized as 131,072 bytes by 8 bits. It is designed to be compatible with all microprocessors and similar applications where high performance, low cost, mass storage and simple interfacing are important design considerations.
The MS311002 offer automatic powerdown with powerdown controlled by the Chip Enable ($\overline{\mathrm{CE}}$) inputs. When $\overline{\mathrm{CE}}$ goes HIGH the device will automatically power down and remain in a low power standby mode as long as CE remains HIGH. The MS311002 is available in a 28 pin package.

PIN CONFIGURATIONS

BLOCK DIAGRAM

PIN DESCRIPTIONS

SYMBOL	PIN NO.	FUNCTION
$A_{0}-A_{16}$	$1-10,21-27$	Address Input
$O_{0}-O_{7}$	$11-13,15-19$	Data Output
$\overline{C E}$	20	
GND	14	Ground
$V_{C C}$	28	Power Supply

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

Temperature Under Bias	$-10^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature	$-45^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential	-0.3 V to +7.0 V
Applied Output Voltage	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5$
Applied Input Voltage	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5$

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not recommended. Exposure to ABSOLUTE MAXIMUM RATINGS for extended periods may affect device reliability.

OPERATING RANGE

RANGE	AMBIENT TEMPERATURE	Vcc
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

DC ELECTRICAL CHARACTERISTICS

PARAMETER	PARAMETER	TEST CONDITIONS	MS311002			UNITS
NAME			MIN.	TYP.	MAX.	
$\mathrm{V}_{\text {IL }}$	Input Low Voltage		-0.3	-	0.8	V
$\mathrm{V}_{\text {IH }}$	Input High Voltage		2.2		$\mathrm{c}^{+} 0.3$	V
	Input Leakage Current	$\mathrm{V}_{\mathrm{CC}}=$ Max, $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ to V_{CC}	-	-	10	$\mu \mathrm{A}$
I_{OL}	Output Leakage Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {CC }}$	-	-	10	$\mu \mathrm{A}$
V_{OL}	Output Low Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=2.1 \mathrm{~mA}$	-	-	0.4	V
V_{OH}	Output High Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=-400 \mathrm{~mA}$	2.4	-	V_{cc}	V
I_{CC}	Operating Power Supply Current ${ }^{(1)}$		-	-	40	mA
$\mathrm{I}_{\text {CCSB }}$	Standby Power Supply Current	$\overline{\mathrm{CE}}=\mathrm{V}_{1 \mathrm{H}}, \mathrm{CE}=\mathrm{V}_{\text {IL }}$	-	-	3	mA
ICCSB1	Super Standby Power Supply Current	$\overline{\mathrm{CE}}=\mathrm{V}_{\text {cc }}-0.2 \mathrm{~V}, \mathrm{CE}=0.2 \mathrm{~V}$	-	-	50	$\mu \mathrm{A}$

1. Measured with device selected and outputs unloaded.

CAPACITANCE $\left(\mathbf{T a}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)^{(1)}$

SYMBOL	PARAMETER	CONDITION	MAX.	UNIT
CI	Input Capacitance	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	10	pF
CO	OutputCapacitance	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	7	pF

1. This parameter is guaranteed but not 100% tested.

TRUTH TABLE

MODE	$\overline{\mathbf{C E}}$	OUTPUT OPERATION
Steady	H	High Z
Read	L	DOUT

AC TEST CONDITIONS

Input Pulse Levels	$0.6 \sim 2.4 \mathrm{~V}$	
Input Rise and Fall Times	10 ns	
Timing Measurement Level	$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{HH}}=2.2 \mathrm{~V}$	
Reference	$\mathrm{V}_{\mathrm{OL}}=0.8 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{OH}}=2.0 \mathrm{~V}$	
Output Load	1 TTL Gate +100 pF	

AC ELECTRICAL CHARACTERISTICS (over the operating range)

PARAMETER		MS311002-15	MS311002-20	
NAME	PARAMETER	MIN.	MAX.	MIN.
t_{AA}	Address Access Time	-	150	-
$\mathrm{t}_{\mathrm{ACE}}$	Chip Enable Access Time	UNIT		
t_{DF}	Output Disable Time	-	150	-
t_{OH}	Output Hold Time	-	60	-

TIMING DIAGRAMS

MS311002

ORDERING INFORMATION

SPEED (ns)	ORDERING PART NUMBER	PACKAGE REFERENCE NO.	TEMPERATURE
RANGE			

131,072 X 8 CMOS Mask Programmable ROM

FEATURES

- Access time: 150ns/200ns max
- Low Power operation:

40mA max. Operating
$30 \mu \mathrm{~A}$ max. Standby

- Fully static operation
- Automatic power down ($\overline{\mathrm{OE}} / \mathrm{OE}$)
- Complete TTL compatibility
- 3-state outputs for wired-OR expansion
- EPROMs accepted as program data input
- Ultra low data retention supply
- Pin 20 control options (sense and type)

PIN CONFIGURATIONS

DESCRIPTION

The MS311024 high performance Read Only Memory is organized as 131,072 bytes by 8 bits. It is designed to be compatible with all microprocessors and similar applications where high performance, low cost, mass storage and simple interfacing are important design considerations.

The MS311024 offers automatic powerdown with powerdown controlled by the Chip Enable ($\overline{\mathrm{OE} / \mathrm{OE} \text {) }) ~}$ inputs. When $\overline{O E} / O E$ goes HIGH/LOW the device will automatically power down and remain in a low power standby mode as long as $\overline{\mathrm{OE}} / \mathrm{OE}$ remains HIGH/LOW. Pin 20 may also be programmed as $\overline{\mathrm{CE}} /$ CE (active LOW or HIGH), output enable, in order to eliminate bus contention in multiple bus microprocessor systems.

BLOCK DIAGRAM

MS311024

PIN DESCRIPTIONS

PIN NO.	SYMBOL	FUNCTION
$1-10,21-27$	$\mathrm{~A}_{0}-\mathrm{A}_{16}$	Address Input
$11-13,15-19$	$\mathrm{O}_{0}-\mathrm{O}_{7}$	Data Output
14	GND	Ground
28	Vcc	Power Supply
20	$\overline{\mathrm{OE} / \mathrm{OE} / \overline{\mathrm{CE}} / \mathrm{CE}}$	Chip Enable Inputs, Output Enable Inputs

OPERATING RANGE

RANGE	AMBIENT TEMPERATURE	Vcc
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

Ambient Operating Temperature	$-10^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential	-0.5 V to +7.0 V
Applied Output Voltage	-0.5 V to +7.0 V
Applied Input Voltage	-0.5 V to +7.0 V
Power Dissipation	300 mW
Soldering Temperature and Time	$260^{\circ} \mathrm{C}, 10$ seconds

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not recommended. Exposure to ABSOLUTE MAXIMUM RATINGS for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS ${ }_{\text {(over the commercial operating range) }}$

PARAMETER NAME	PARAMETER	TEST CONDITIONS	MS311024			UNITS
			MIN.	TYP.	MAX.	
$\mathrm{V}_{\text {IL }}$	Input Low Voltage		-0.5	-	0.8	V
$\mathrm{V}_{\text {IH }}$	Input High Voltage		2.0		$\mathrm{c}^{+} 0.3$	V
$1 /$	Input Leakage Current	$\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {CC }}$	-	-	10	$\mu \mathrm{A}$
I_{OL}	Output Leakage Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {CC }}$	-	-	10	$\mu \mathrm{A}$
$\mathrm{V}_{\text {OL }}$	Output Low Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=3.2 \mathrm{~mA}$	-	-	0.4	V
V_{OH}	Output High Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{IOH}=-1 \mathrm{~mA}$	2.4	-	V_{CC}	V
I_{CC}	Operating Power Supply Current ${ }^{(1)}$		-	-	40	mA
$I_{\text {CCSB }}$	Standby Power Supply Current	$\overline{\mathrm{E}}=\mathrm{V}_{1 \mathrm{H}}, \mathrm{E}=\mathrm{V}_{1 \mathrm{~L}}$	-	-	1.5	mA
$\mathrm{I}_{\text {CCSB } 1}$	Super Standby Power Supply Current	$\overline{\mathrm{E}}=\mathrm{V}_{C C}-0.2 \mathrm{~V}, \mathrm{E}=0.2 \mathrm{~V}$	-	-	50	$\mu \mathrm{A}$
Ios	Output Short Circuit Current ${ }^{(2)}$		-	-	70	mA

1. Measured with device selected and outputs unloaded.
2. For a duration not to exceed 30 seconds.

CAPACITANCE $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)^{(1)}$

SYMBOL	PARAMETER	CONDITION	MAX.	UNIT
CI	Input Capacitance	$\mathrm{V}_{\text {IN }^{\prime}}=0 \mathrm{~V}$	10	pF
CO	Output Capacitance	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	10	pF

1. This parameter is guaranteed but not 100% tested.

TRUTH TABLE

PIN 20	$\overline{\mathrm{CE}}$	$\overline{\mathrm{OE}}$	MODE	$\mathrm{D}_{0}-\mathrm{D}_{7}$	SUPPLY CURRENT
Chip Select	L/H	-	Selected	$\mathrm{D}_{\text {Out }}$	Operating ($\mathrm{I}_{\text {cc }}$)
Operation	H/L	-	Non selected	High Z	Standby
Output Enable Operation	-	L/H	Selected	D ${ }_{\text {Uut }}$	Operating (I_{cc})
	-	H/L	Non selected	High Z	

AC TEST CONDITIONS

Input Pulse Levels	$0.4 \sim 2.4 \mathrm{~V}$
Input Rise and Fall Times	10 ns
Timing Measurement Level	$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{IH}}=2.2 \mathrm{~V}$
Reference	$\mathrm{V}_{\mathrm{OL}}=0.8 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{H}}=2.0 \mathrm{~V}$
Output Load	See Figure 1

* INCLUDING SCOPE AND JIG

Figure 1 Output Load Circuit
AC ELECTRICAL CHARACTERISTICS (over the operating range)

PARAMETER NAME	PARAMETER	MS311024-15		MS311024-20		UNIT
		MIN.	MAX.	MIN.	MAX.	
$\mathrm{t}_{\mathrm{CrC}}$	Cycle Time	150	-	200	-	ns
t_{AA}	Address Access Time	-	150	-	200	ns
$\mathrm{t}_{\text {ACE }}$	Chip Enable Access Time	-	150	-	200	ns
$\mathrm{t}_{\text {OE }}$	Output Enable Access Time	-	85	-	100	ns
$\mathrm{t}_{\text {Lz }}$	Output LOW Z Delay ${ }^{(1)}$	10	-	10	-	ns
t_{HZ}	Output HIGH Z Delay ${ }^{(2)}$	0	85	0	100	ns
t_{OH}	Output Hold After Address Change	10	-	10	-	ns
t_{PU}	Power-Up Time	0	-	0	-	ns
$t_{\text {PD }}$	Powerdown Time	-	85	-	100	ns

1. Output LOW impedance delay ($\mathrm{t}_{\mathrm{Lz}_{2}}$) is measured from OE/DE or CE/ $\overline{\mathrm{CE}}$ going active.
2. Output HIGH impedance delay (t_{Hz}) is measured from the earlier of $\mathrm{OE} / \mathrm{OE}$ or $\mathrm{CE} / \mathrm{CE}$ going active.

TIMING DIAGRAMS

PROPAGATION DELAY FROM ADDRESS ($\overline{\mathrm{OE} / O E ~=~ A C T I V E, ~} \overline{\mathrm{CE}} / \mathrm{CE}=\mathrm{ACTIVE}$)

PROPAGATION DELAY FROM CHIP ENABLE, CHIP SELECT OR OUTPUT ENABLE (ADDRESS VALID)

MS311024

ORDERING INFORMATION

SPEED $(\mathbf{n s})$	ORDERING PART NUMBER	PACKAGE REFERENCE NO.	TEMPERATURE RANGE
150	MS311024-15PC		P28-3

High Speed 131,072 X 8 CMOS Mask Programmable ROM Compatible with All 32 Pin DIP EPROMs

FEATURES

- Access time: $100 \mathrm{~ns} / 120 \mathrm{~ns} / 150 \mathrm{~ns}$
- Low Power operation:

40mA max. Operating
$50 \mu \mathrm{~A}$ max. Standby

- Fully static operation
- Automatic power down ($\overline{\mathrm{CE}} / \mathrm{CE}$)
- Complete TTL compatibility
- 3-state outputs for wired-OR expansion
- EPROMs accepted as program data input
- Ultra low data retention supply
- Pins 2, 22, 30, 31 control options (sense and type)

PIN CONFIGURATIONS

DESCRIPTION

The MS311025/311026 high performance Read Only Memory is organized as 131,072 bytes by 8 bits. It is designed to be compatible with all microprocessors and similar applications where high performance, low cost, mass storage and simple interfacing are important design considerations.
The MS311025/311026 offer automatic powerdown with powerdown controlled by the Chip Enable ($\overline{\mathrm{CE}} / \mathrm{CE}$) inputs. When $\overline{\mathrm{CE}} / \mathrm{CE}$ goes HIGH/LOW the device will automatically power down and remain in a low power standby mode as long as $\overline{C E} / C E$ remains HIGH/LOW. Pins 2, 22, 30, 31 allow Chip Select ($\overline{\mathrm{CE}}_{N}$) or Output Enable ($\overline{\mathrm{OE}}_{\mathrm{N}}$) or No Connect (NC) operations from 1 to 8 devices to eliminate bus contention in multiple bus microprocessor systems.

BLOCK DIAGRAM

MS311025/ 311026

PIN DESCRIPTIONS

PIN NO.	SYMBOL	FUNCTION
$3-12,23,25-29$	$\mathrm{~A}_{0}-\mathrm{A}_{15}$	Address Input
$13-15,17-21$	$\mathrm{O}_{0}-\mathrm{O}_{7}$	Data Output
16	GND	Ground
32	$\mathrm{~V}_{\mathrm{CC}}$	Power Supply
1	NC	No Connection
22	$\mathrm{CE} / \mathrm{CE} / \overline{\mathrm{OE} / \mathrm{OE}}$	Chip Select/Chip Enable or Input or
2	$\mathrm{OE}_{1} / \overline{\mathrm{OE}}_{1} / \mathrm{NC}(-\mathrm{A})$	Output Enable 1 ${ }^{(2)}$
	$\mathrm{A}_{16} \overline{(-\mathrm{B})}$	Address Input
24	$\mathrm{~A}_{16}(-\mathrm{A})$	Address Input
	$\mathrm{OE}_{1} / \mathrm{OE}_{1} / \mathrm{NC}(-\mathrm{B})$	Output Enable 1 ${ }^{(2)}$
31	$\mathrm{OE}_{2} / \mathrm{OE} 2 / \mathrm{NC}$	Output Enable 2 ${ }^{(2)}$
30	$\mathrm{OE}_{3} / \mathrm{OE} 3_{3} / \mathrm{NC}$	Output Enable $3^{(2)}$

1. This pin is user-definable as active high or active low.
2. N/C is "No Connection".

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

Ambient Operating Temperature	$-10^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential	-0.5 V to +7.0 V
Applied Output Voltage	-0.5 V to +7.0 V
Applied Input Voltage	-0.5 V to +7.0 V
Power Dissipation	300 mW
Soldering Temperature and Time	$260^{\circ} \mathrm{C}, 10 \mathrm{sec}$

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not recommended. Exposure to ABSOLUTE MAXIMUM RATINGS for extended periods may affect device reliability.

OPERATING RANGE

RANGE	AMBIENT TEMPERATURE	Vcc
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

DC ELECTRICAL CHARACTERISTICS ${ }_{\text {(over the commercial operating range) }}$

PARAMETER NAME	PARAMETER	TEST CONDITIONS	MS312001			UNITS
			MIN.	TYP.	MAX.	
$\mathrm{V}_{\text {IL }}$	Input Low Voltage		-0.5	-	0.8	V
$\mathrm{V}_{\text {IH }}$	Input High Voltage		2.0		C+ 0.3	V
$\mathrm{I}_{\text {IL }}$	Input Leakage Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ to V_{CC}	-	-	10	$\mu \mathrm{A}$
I_{OL}	Output Leakage Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {CC }}$	-	-	10	$\mu \mathrm{A}$
V_{OL}	Output Low Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min, $\mathrm{I}_{\mathrm{OL}}=3.2 \mathrm{~mA}$	-	-	0.4	V
V_{OH}	Output High Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$	2.4	-	V_{cc}	V
I_{cc}	Operating Power Supply Current ${ }^{(1)}$		-	-	40	mA
$I_{\text {ccse }}$	Standby Power Supply Current	$\overline{\mathrm{CE}}=\mathrm{V}_{\text {IH }}, \mathrm{CE}=\mathrm{V}_{\mathrm{IL}}$	-	-	1.5	mA
$\mathrm{I}_{\text {cCsB } 1}$	Super Standby Power Supply Current	$\overline{\mathrm{CE}}=\mathrm{V}_{C C}-0.2 \mathrm{~V}, \mathrm{CE}=0.2 \mathrm{~V}$	-	-	30	$\mu \mathrm{A}$
los	Output Short Circuit Current ${ }^{(2)}$		-	-	70	mA

1. Measured with device selected and outputs unloaded.
2. For a duration not to exceed 30 seconds.

CAPACITANCE ($\left.\mathrm{Ta}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)^{(1)}$

SYMBOL	PARAMETER	CONDITION	MAX.	UNIT
Cl	Input Capacitance	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	10	pF
CO	OutputCapacitance	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	10	pF

1. This parameter is guaranteed but not 100% tested.

TRUTH TABLE

CE	OE_{1} MS311025 (Pin 2) MS311026 (Pin 24)	OE_{2}	OE_{3}	$\mathrm{O}_{\mathbf{0}}-\mathrm{O}_{7}$	MODE
A	A	A	A	Output Data	Read
I	X	X	X	$\mathrm{HI}-\mathrm{Z}$	Power Down
A	X	X	X	$\mathrm{HI}-\mathrm{Z}$	Output Disable
A	X	I	X	$\mathrm{HI}-\mathrm{Z}$	Output Disable
A	X	X	$\mathrm{HI}-\mathrm{Z}$	Output Disable	

1. $\mathrm{CE} / \overline{\mathrm{CE}}, \mathrm{OE}_{1} / \overline{\mathrm{OE}}_{1} / \mathrm{NC}, \mathrm{OE}_{2} / \overline{\mathrm{OE}}_{2} / \mathrm{NC}, \mathrm{OE}_{3} / \overline{\mathrm{OE}}_{3} / \mathrm{NC}$ are mask programmable which can be selected for active low, active high or no connection.
2. "A" means "Active." "l" means "Inactive." "X" means "Don't Care."
3. If $C E / C E$ is a no-connection, the input level will be internally pulled high.

AC TEST CONDITIONS

Input Pulse Levels	$0.4 \sim 2.4 \mathrm{~V}$
Input Rise and Fall Times	10 ns
Timing Measurement Level	$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{iH}}=2.2 \mathrm{~V}$
Reference	$\mathrm{V}_{\mathrm{OL}}=0.8 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{OH}}=2.0 \mathrm{~V}$
Output Load	See Figure 1

* INCLUDING SCOPE AND JIG

Figure 1 Output Load Circuit

AC ELECTRICAL CHARACTERISTICS (over the operating range)

PARAMETER NAME	PARAMETER	$\begin{gathered} \text { MS311025 } \\ \text { MS311026 } \\ -10 \end{gathered}$		$\begin{gathered} \text { MS311025 } \\ \text { MS311026 } \\ -12 \end{gathered}$		$\begin{gathered} \hline \text { MS311025 } \\ \text { MS311026 } \\ -15 \end{gathered}$		UNIT
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
$\mathrm{t}_{\text {CYC }}$	Cycle Time	100	-	120	-	150	-	ns
$t_{\text {AA }}$	Chip Access Time	-	100	-	120	-	150	ns
$t_{\text {ACE }}$	Chip Enable Access Time	-	100	-	120	-	150	ns
$t_{\text {ACS }}$	Chip Select Access Time	-	75	-	85	-	100	ns
$\mathrm{t}_{\text {AOE }}$	Output Enable Access Time	-	50	-	60	-	90	ns
t_{OH}	Output Hold After Address Change	10	-	10	-	10	-	ns
t_{HZ}	Output High Z Delay ${ }^{(1)}$	-	50	-	50	-	50	ns
$t_{L Z}$	Output Low Z Delay	10	-	10	-	10	-	ns
t_{PU}	Power-Up Time	0	-	0	-	0	-	ns
$t_{P D}$	Power-Down Time	-	50	-	50	-	50	ns

1. Output HIGH impedance delay $\left(\mathrm{t}_{\mathrm{HZ}}\right)$ is measured from the earlier of $\mathrm{CE} / \overline{\mathrm{CE}}$ or $\mathrm{OE} / \overline{\mathrm{OE}}$ going active.

TIMING DIAGRAMS

PROPAGATION DELAY FROM ADDRESS ($\overline{\mathrm{CE}} / \mathrm{CE}=$ LOW/HIGH, $\overline{\mathrm{OE}} / \mathrm{OE}=\mathrm{ACTIVE})$

TIMING DIAGRAMS
PROPAGATION DELAY FROM CHIP ENABLE, CHIP SELECT OR OUTPUT ENABLE (ADDRESS VALID)

ORDERING INFORMATION

SPEED (ns)	ORDERING PART NUMBER	PACKAGE REFERENCE NO.	TEMPERATURE
RANGE			

High Speed 262,144 X 8 CMOS Mask Programmable ROM Compatible with All 32 Pin DIP EPROMs

FEATURES

- Access time: $100 \mathrm{~ns} / 120 \mathrm{~ns}$
- Low Power operation:

40mA max. Operating
$30 \mu \mathrm{~A}$ max. Standby

- Fully static operation
- Automatic power down ($\overline{\mathrm{CE}} / \mathrm{CE}$)
- Complete TTL compatibility
- 3-state outputs for wired-OR expansion
- EPROMs accepted as program data input
- Ultra low data retention supply
- Pins 2, 22, 31 control options (sense and type)

PIN CONFIGURATIONS

DESCRIPTION

The MS312001 high performance Read Only Memory is organized as 262,144 bytes by 8 bits. It is designed to be compatible with all microprocessors and similar applications where high performance, low cost, mass storage and simple interfacing are important design considerations.

The MS312001 offer automatic powerdown with powerdown controlled by the Chip Enable (CE/CE) inputs. When CE/CE goes HIGH/LOW the device will automatically power down and remain in a low power standby mode as long as $\overline{\mathrm{CE}} / \mathrm{CE}$ remains HIGH/ LOW. Pins 2, 22, 31 allow Chip Select ($\overline{\mathrm{CE}}_{\mathrm{N}}$) or Output Enable $\left(\overline{\mathrm{OE}}_{\mathrm{N}}\right)$ or No Connect (NC) operations from 1 to 8 devices to eliminate bus contention in multiple bus microprocessor systems.

BLOCK DIAGRAM

MS312001

PIN DESCRIPTIONS

PIN NO.	SYMBOL	FUNCTION
2-12, 23, 25-30	$\mathrm{A}_{0}-\mathrm{A}_{17}$	Address Input
13-15, 17-21	$\mathrm{O}_{0}-\mathrm{O}_{7}$	Data Output
16	GND	Ground
32	V_{CC}	Power Supply
1	NC	No Connection
22	CE/ $\overline{C E}$	Chip Select/Chip Enable or Input ${ }^{(1)}$ or
24	$\overline{\mathrm{OE}}_{1} / \mathrm{OE}_{1} / \mathrm{NC}$	Output Enable $1^{(2)}$
31	$\mathrm{OE}_{2} / \overline{\mathrm{OE}}_{2} / \mathrm{NC}$	Output Enable $2^{(2)}$

1. This pin is user-definable as active high or active low.
2. N/C is "No Connection".

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

Ambient Operating Temperature	$-10^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential	-0.5 V to +7.0 V
Applied Output Voltage	-0.5 V to +7.0 V
Applied Input Voltage	-0.5 V to +7.0 V
Power Dissipation	300 mW
Soldering Temperature and Time	$260^{\circ} \mathrm{C}, 10$ sec

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not recommended. Exposure to ABSOLUTE MAXIMUM RATINGS for extended periods may affect device reliability.

OPERATING RANGE

RANGE	AMBIENT TEMPERATURE	Vcc
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

DC ELECTRICAL CHARACTERISTICS (over the commercial operating range)

PARAMETER	PARAMETER	TEST CONDITIONS	MS312001			UNITS
NAME			MIN.	TYP.	MAX.	
$\mathrm{V}_{\text {IL }}$	Input Low Voltage		-0.5	-	0.8	V
$\mathrm{V}_{\text {IH }}$	Input High Voltage		2.0		$c^{+} 0.3$	\checkmark
	Input Leakage Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to V_{CC}	-	-	10	$\mu \mathrm{A}$
1 OL	Output Leakage Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {CC }}$	-	-	10	$\mu \mathrm{A}$
V_{OL}	Output Low Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min, $\mathrm{IOL}=3.2 \mathrm{~mA}$	-	-	0.4	V
V_{OH}	Output High Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$	2.4	-	V_{CC}	V
Icc	Operating Power Supply Current ${ }^{(1)}$		-	-	40	mA
$I_{\text {CCsB }}$	Standby Power Supply Current	$\overline{\mathrm{CE}}=\mathrm{V}_{\text {IH }}, \mathrm{CE}=\mathrm{V}_{\text {IL }}$	-	-	1.5	mA
$\mathrm{I}_{\text {ccsB } 1}$	Super Standby Power Supply Current	$\overline{\mathrm{CE}}=\mathrm{V}_{\text {cc }}-0.2 \mathrm{~V}, \mathrm{CE}=0.2 \mathrm{~V}$	-	-	30	$\mu \mathrm{A}$
Ios	Output Short Circuit Current ${ }^{(2)}$		-	-	70	mA

1. Measured with device selected and outputs unloaded.
2. For a duration not to exceed 30 seconds.

CAPACITANCE $\left(\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)^{(1)}$

SYMBOL	PARAMETER	CONDITION	MAX.	UNIT
CI	Input Capacitance	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	10	pF
CO	OutputCapacitance	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	10	pF

1. This parameter is guaranteed but not 100% tested.

TRUTH TABLE

$\mathrm{CE}_{1} / \overline{\mathrm{CE}}_{\mathbf{1}}$	$\mathrm{CE}_{\mathbf{2}} / \overline{\mathrm{CE}}_{\mathbf{2}} / \mathrm{NC}$	$\mathbf{O E} / \overline{\mathrm{OE}} / \mathbf{N C}$	$\mathbf{O}_{\mathbf{0}}-\mathbf{O}_{\mathbf{7}}$	MODE
A	A	A	Output Data	Read
I	X	X	$\mathrm{HI}-\mathrm{Z}$	Power Down
X	I	X	$\mathrm{HI}-\mathrm{Z}$	Output Disable
A	A	$\mathrm{HI}-\mathrm{Z}$	Output Disable	

1. $\mathrm{CE}_{1} / \overline{C E}_{1} / \mathrm{NC}, \mathrm{CE}_{2} / \overline{C E}_{2} / \mathrm{NC}, \mathrm{OE} / \overline{\mathrm{OE}} / \mathrm{NC}$ are mask programmable which can be selected for active low, active high or no connection.
2. "A" means "Active." "I" means "Inactive." "X" means "Don't Care."
3. If $C E / C E$ is a no-connection, the input level will be internally pulled high.

AC TEST CONDITIONS

Input Pulse Levels	$0.4 \sim 2.4 \mathrm{~V}$
Input Rise and Fall Times	10 ns
Timing Measurement Level	$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{IH}}=2.2 \mathrm{~V}$
Reference	$\mathrm{V}_{\mathrm{OL}}=0.8 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{OH}}=2.0 \mathrm{~V}$
Output Load	See Figure 1

* INCLUDING SCOPE AND JIG

Figure 1 Output Load Circuit

AC ELECTRICAL CHARACTERISTICS (over the operating range)

PARAMETER NAME	PARAMETER	$\begin{gathered} \text { MS312001 } \\ -12 \end{gathered}$		$\begin{gathered} \text { MS312001 } \\ -15 \end{gathered}$		UNIT
$\mathrm{t}_{\mathrm{CYC}}$	Cycle Time	120	-	150	-	ns
$t_{\text {AA }}$	Chip Access Time	-	120	-	150	ns
$t_{\text {ACE }}$	Chip Enable Access Time	-	120	-	150	ns
$t_{\text {ACS }}$	Chip Select Access Time	-	85	-	100	ns
$\mathrm{t}_{\text {AOE }}$	Output Enable Access Time	-	60	-	85	ns
t_{OH}	Output Hold After Address Change	10	-	10	-	ns
t_{HZ}	Output High Z Delay ${ }^{(1)}$	-	60	-	85	ns
t_{Lz}	Output Low Z Delay	10	-	10	-	ns
$t_{\text {PU }}$	Power-Up Time	0	-	0	-	ns
$t_{\text {PD }}$	Power-Down Time	-	60	-	85	ns

1. Output HIGH impedance delay (t_{HZ}) is measured from the earlier of $\mathrm{CE} / \overline{\mathrm{CE}}$ or $\mathrm{OE} / \overline{\mathrm{OE}}$ going active.

TIMING DIAGRAMS

PROPAGATION DELAY FROM ADDRESS ($\overline{\mathrm{CE}} / \mathrm{CE}=$ LOW/HIGH, $\overline{\mathrm{OE}} / \mathrm{OE}=\mathrm{ACTIVE})$

MS312001

TIMING DIAGRAMS

PROPAGATION DELAY FROM CHIP ENABLE, CHIP SELECT OR OUTPUT ENABLE (ADDRESS VALID)

ORDERING INFORMATION

$\operatorname{SPEED}(\mathrm{ns})$	ORDERING PART NUMBER	PACKAGE REFERENCE NO.	TEMPERATURE RANGE
120	MS312001-12PC	P32-1	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
150	MS312001-15PC		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

262,144 X 8 CMOS Mask Programmable ROM 32 Pin DIP

DESCRIPTION

The MS312002 high performance Read Only Memory is organized as 262,144 bytes by 8 bits. It is designed to be compatible with all microprocessors and similar applications where high performance, low cost, mass storage and simple interfacing are important design considerations.
The MS312002 offer automatic powerdown with powerdown controlled by the Chip Enable ($\overline{\mathrm{CE}}$) inputs. When $\overline{\mathrm{CE}}$ goes HIGH the device will automatically power down and remain in a low power standby mode as long as $\overline{\mathrm{CE}}$ remains HIGH.

BLOCK DIAGRAM

MS312002

PIN DESCRIPTIONS

SYMBOL	PIN NO.	FUNCTION
$\mathrm{A}_{0}-\mathrm{A}_{17}$	$2-12,25-30$	Address Input
$\mathrm{O}_{0}-\mathrm{O}_{7}$	$13-15,17-21$	Data Output
GND	16	Ground
V_{CC}	32	Power Supply
NC	1,31	No Connection
$\overline{\mathrm{CE}}$	22	Chip Enable
$\overline{\mathrm{OE}}$	24	Output Enable 1 ${ }^{(2)}$

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

Storage Temperature Under Bias	$-10^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature	$-45^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential	-0.3 V to +7.0 V
Applied Output Voltage	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5$
Applied Input Voltage	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5$

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not recommended. Exposure to ABSOLUTE MAXIMUM RATINGS for extended periods may affect device reliability.

OPERATING RANGE

RANGE	AMBIENT TEMPERATURE	Vcc
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

DC ELECTRICAL CHARACTERISTICS (over the commercial operating range)

PARAMETER NAME	PARAMETER	TEST CONDITIONS	MS312002		UNITS
			MIN.	TYP. MAX.	
$\mathrm{V}_{\text {IL }}$	Input Low Voltage		-0.3	0.8	V
$\mathrm{V}_{\text {IH }}$	Input High Voltage		2.2	$\mathrm{V}_{\mathrm{CC}}+0.3$	V
	Input Leakage Current	$\mathrm{V}_{\mathrm{CC}}=$ Max, $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to V_{CC}	-	10	$\mu \mathrm{A}$
I_{OL}	Output Leakage Current	$\overline{\mathrm{CE}}=\mathrm{V}_{\text {IH }}, \overline{\mathrm{OE}}=\mathrm{V}_{\text {IH }}$	-	10	$\mu \mathrm{A}$
$\mathrm{V}_{\text {OL }}$	Output Low Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=2.1 \mathrm{~mA}$	-	0.4	V
V_{OH}	Output High Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=-400 \mathrm{~mA}$	2.4	- -	V
I_{cc}	Operating Power Supply Current ${ }^{(1)}$	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$, Min. Cyc.	-	40	mA
$I_{\text {ccsb }}$	Standby Power Supply Current	$\overline{\mathrm{CE}}=\mathrm{V}_{\text {IH }}$	-	3	mA
$\mathrm{I}_{\text {ccsB } 1}$	Super Standby Power Supply Current	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{SS}}$ or V_{CC}	-	- 50	$\mu \mathrm{A}$

CAPACITANCE $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)^{(1)}$

SYMBOL	PARAMETER	CONDITION	MAX.	UNIT
Cl	Input Capacitance	$\mathrm{V}_{\mathbb{I N}^{\prime}}=0 \mathrm{~V}$	10	pF
CO	Output Capacitance	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	15	pF

1. This parameter is guaranteed but not 100% tested.

MS312002

TRUTH TABLE

$\overline{\mathbf{C E}}$	$\overline{\mathbf{O E}}$	MODE	OUTPUT	POWER MODE
H	X	Not Selected	High-Z	Standby
L	H	Not Selected	High-Z	Active
L	L	Selected	Data Out	Active

AC TEST CONDITIONS

Input Pulse Levels Input Rise and Fall Times
Timing Measurement Level Reference
Output Load
0.6 to 2.4 V

5 ns
$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{H}}=2.2 \mathrm{~V}$
$\mathrm{V}_{\mathrm{OL}}=0.8 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{OH}}=2.2 \mathrm{~V}$
1 TTL Load and 100pF

Figure 1. Output Load Circuit

AC ELECTRICAL CHARACTERISTICS (over the operating range)

PARAMETER NAME	PARAMETER	TEST CONDITION	MS312001-12		UNIT
			MIN.	TYP. MAX.	
t_{AA}	Address Access Time	$\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{L}}$	-	200	ns
$t_{\text {ACE }}$	CE Access Time	$\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$	-	200	ns
$\mathrm{t}_{\text {OE }}$	OE Access Time	Note 1	-	100	ns
t_{DF}	Output Disable Time	Note 2	-	60	ns
t_{OH}	Output Hold Time	$\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{V}_{L}$	0	-	ns

Note 1: $\overline{\mathrm{OE}}$ may be delayed up to $\left(\mathrm{t}_{\mathrm{A}}-\mathrm{t}_{\mathrm{OE}}\right)$ after the falling edge of $\overline{\mathrm{CE}}$ without impact on $\mathrm{t}_{\mathrm{ACE}}$.
Note 2: t_{DF} is specified from $\overline{\mathrm{OE}}$ or $\overline{\mathrm{CE}}$, whichever occurs earlier.

TIMING DIAGRAM

ORDERING INFORMATION

	ORDERING		TEMPERATURE
SPEED (ns)	PART NUMBER	PACKAGE REFERENCE NO.	RANGE
200	MS312001A-20PC	P32-2	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

524,288 X 8 CMOS Mask Programmable ROM Compatible with All 32 Pin DIP EPROMs

FEATURES

- Access time: $120 \mathrm{~ns} / 150 \mathrm{~ns}$
- Low Power operation:

50mA max. Operating
$30 \mu \mathrm{~A}$ max. Standby

- Fully static operation
- Automatic power down ($\overline{\mathrm{CE}} / \mathrm{CE}$)
- Complete TTL compatibility
- 3-state outputs for wired-OR expansion
- EPROMs accepted as program data input
- Ultra low data retention supply
- Pin 22 Chip Enable
- Pin 24 Output Enable OE/ $\overline{\mathrm{OE}}$
- Pin 1 Optional Output Enable

PIN CONFIGURATIONS

DESCRIPTION

The MS314001 high performance Read Only Memory is organized as 524,288 bytes by 8 bits. It is designed to be compatible with all microprocessors and similar applications where high performance, low cost, mass storage and simple interfacing are important design considerations.

The MS314001 offer automatic powerdown with powerdown controlled by the Chip Enable ($\overline{\mathrm{CE}} / \mathrm{CE}$) inputs. When $\overline{\mathrm{CE}} / \mathrm{CE}$ goes HIGH/LOW the device will automatically power down and remain in a low power standby mode as long as CE/CE remains HIGH/ LOW. Pins 1 and 24 allow output enable selections for control of up to 4 devices to eliminate bus contention in multiple bus microprocessor systems.

BLOCK DIAGRAM

PIN DESCRIPTIONS

PIN NO.	SYMBOL	FUNCTION
$2-12,23,25-31$	$\mathrm{~A}_{0}-\mathrm{A}_{18}$	Address Input
$13-15,17-21$	$\mathrm{O}_{0}-\mathrm{O}_{7}$	Data Output
16	GND	Ground
32	$\mathrm{~V}_{\mathrm{CC}}$	Power Supply
1	$\mathrm{OE}_{1} / \overline{\mathrm{OE}}_{1} / \mathrm{NC}$	Optional Output Enable ${ }_{1}{ }^{(2)}$
22	$\mathrm{CE} / \overline{\mathrm{CE}}$	Chip Enable
24	$\mathrm{OE} / \overline{\mathrm{OE}}$	Output Enable

1. This pin is user-definable as active high or active low.
2. N/C is "No Connection".

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

Ambient Operating Temperature	$-10^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential	-0.5 V to +7.0 V
Applied Output Voltage	-0.5 V to +7.0 V
Applied Input Voltage	-0.5 V to +7.0 V
Power Dissipation	800 mW
Soldering Temperature and Time	$260^{\circ} \mathrm{C}, 10 \mathrm{sec}$

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not recommended. Exposure to ABSOLUTE MAXIMUM RATINGS for extended periods may affect device reliability.

OPERATING RANGE

RANGE	AMBIENT TEMPERATURE	Vcc
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

DC ELECTRICAL CHARACTERISTICS ${ }_{\text {(over the commercial operating range) }}$

PARAMETER NAME	PARAMETER	TEST CONDITIONS	MS314001			UNITS
			MIN.	TYP.	MAX.	
$\mathrm{V}_{\text {IL }}$	Input Low Voltage		-0.5	-	0.8	V
$\mathrm{V}_{\text {IH }}$	Input High Voltage		2.0		$\mathrm{C}^{+} 0.3$	V
$1 / 1$	Input Leakage Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1 \mathrm{~N}}=0 \mathrm{~V}$ to V_{CC}	-	-	10	$\mu \mathrm{A}$
I_{OL}	Output Leakage Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}, \mathrm{CE}=\mathrm{V}_{1 H}$	-	-	10	$\mu \mathrm{A}$
V_{OL}	Output Low Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{\mathrm{OL}}=3.2 \mathrm{~mA}$	-	-	0.4	V
V_{OH}	Output High Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$	2.4	-	V_{cc}	V
I_{Cc}	Operating Power Supply Current ${ }^{(1)}$		-	-	40	mA
$I_{\text {CCSB }}$	Standby Power Supply Current	$\overline{\mathrm{CE}}=\mathrm{V}_{1 \mathrm{H}}, \mathrm{CE}=\mathrm{V}_{\text {IL }}$	-	-	1.5	mA
$\mathrm{I}_{\text {ccsb } 1}$	Super Standby Power Supply Current	$\overline{\mathrm{CE}}=\mathrm{V}_{\text {CC }}-0.2 \mathrm{~V}, \mathrm{CE}=0.2 \mathrm{~V}$	-	-	30	$\mu \mathrm{A}$
los	Output Short Circuit Current ${ }^{(2)}$		-	-	50	mA

1. Measured with device selected and outputs unloaded.
2. For a duration not to exceed 30 seconds.

CAPACITANCE $\left(\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{f}=\mathbf{1 . 0 M H z}\right)^{(1)}$

SYMBOL	PARAMETER	CONDITION	MAX.	UNIT
Cl	Input Capacitance	$\mathrm{V}_{\mathrm{IN}^{\prime}}=0 \mathrm{~V}$	10	pF
CO	OutputCapacitance	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	10	pF

1. This parameter is guaranteed but not 100% tested.

MS314001

TRUTH TABLE

CE	OE_{1}	OE_{2}	$\mathrm{O}_{0}-\mathrm{O}_{7}$	MODE
A	A	A	Output Data	Read
I	X	X	$\mathrm{HI}-\mathrm{Z}$	Power Down
A	I	X	$\mathrm{HI}-\mathrm{Z}$	Output Disable
A	X	I	$\mathrm{HI}-\mathrm{Z}$	Output Disable
A	X	X	$\mathrm{HI}-\mathrm{Z}$	Output Disable

1. $\mathrm{CE} / \overline{\mathrm{CE}}, \mathrm{OE} / \overline{\mathrm{OE}} / \mathrm{NC}$, are mask programmable which can be selected for active low, active high or no connection.
2. "A" means "Active." "I" means "Inactive." "X" means "Don't Care."
3. If $C E / \overline{C E}$ is a no-connection, the input level will be internally pulled high.

AC TEST CONDITIONS

Input Pulse Levels	$0.4 \sim 2.4 \mathrm{~V}$	
Input Rise and Fall Times	10 ns	
Timing Measurement Level	$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{IH}}=2.2 \mathrm{~V}$	
Reference	$\mathrm{V}_{\mathrm{OL}}=0.8 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{OH}}=2.0 \mathrm{~V}$	
Output Load	See Figure 1	

- INCLUDING SCOPE AND JIG

Figure 1 Output Load Circuit

AC ELECTRICAL CHARACTERISTICS (over the operating range)

PARAMETER NAME	PARAMETER	$\begin{gathered} \hline \text { MS314001 } \\ -12 \end{gathered}$		$\begin{gathered} \text { MS314001 } \\ -15 \end{gathered}$		UNIT
		MIN.	MAX.	MIN.	MAX.	
$\mathrm{t}_{\mathrm{CYC}}$	Cycle Time	120	-	150	-	ns
$\mathrm{t}_{\text {AA }}$	Chip Access Time	-	120	-	150	ns
$\mathrm{t}_{\text {ACE }}$	Chip Enable Access Time	-	120	-	150	ns
$\mathrm{t}_{\text {AOE }}$	Output Enable Access Time	-	45	-	45	ns
t_{OH}	Output Hold After Address Change	10	-	10	-	ns
t_{Hz}	Output High Z Delay ${ }^{(1)}$	-	45	-	45	ns
t_{Lz}	Output Low Z Delay	10	-	10	-	ns
$\mathrm{t}_{\text {PU }}$	Power-Up Time	0	-	0	-	ns
$t_{\text {PD }}$	Power-Down Time	-	50	-	50	ns

1. Output HIGH impedance delay $\left(\mathrm{t}_{\mathrm{HZ}}\right)$ is measured from the earlier of $\mathrm{CE} / \overline{\mathrm{CE}}$ or $\mathrm{OE} / \overline{\mathrm{OE}}$ going active.

TIMING DIAGRAMS

PROPAGATION DELAY FROM ADDRESS ($\left.\overline{\mathrm{CE}} / \mathrm{CE}=\mathrm{LOW} / \mathrm{HIGH}, \overline{O E}_{N} / O E_{N}=\mathrm{ACTIVE}\right)$

TIMING DIAGRAMS
PROPAGATION DELAY FROM CHIP ENABLE, CHIP SELECT OR OUTPUT ENABLE (ADDRESS VALID)

ORDERING INFORMATION

SPEED (ns)	ORDERING PART NUMBER	PACKAGE REFERENCE NO.	TEMPERATURE
RANGE			
120	MS314001-12PC		P32-1
150	MS314001-15PC		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$			

524,288 X 8 CMOS Mask Programmable ROM Compatible with All 32 Pin DIP EPROMs

FEATURES

- Access time: 200ns
- Ultra Low Power operation:

275mW max., Operating
5.5 mW max., Standby, TTL input level
$275 \mu \mathrm{~W}$ max., Standby, CMOS input level

- Fully static operation
- Automatic power down ($\overline{\mathrm{CE}})$
- Complete TTL compatibility
- 3-state outputs for wired-OR expansion
- EPROMs accepted as program data input
- Ultra low data retention supply

PIN CONFIGURATIONS

DESCRIPTION

The MS314002 high performance Read Only Memory is organized as 524,288 bytes by 8 bits. It is designed to be compatible with all microprocessors and similar applications where high performance, low cost, mass storage and simple interfacing are important design considerations.
The MS314002 offer automatic powerdown with powerdown controlled by the Chip Enable ($\overline{\mathrm{CE}}$) inputs. When $\overline{\mathrm{CE}}$ goes LOW the device will automatically power down and remain in a low power standby mode as long as $\overline{C E}$ remains LOW.

BLOCK DIAGRAM

MS314002

PIN DESCRIPTIONS

PIN NO.	SYMBOL	FUNCTION
$2-12,23,25-31$	$\mathrm{~A}_{0}-\mathrm{A}_{18}$	Address Input
$13-15,17-21$	$\mathrm{O}_{0}-\mathrm{O}_{7}$	Data Output
16	GND	Ground
32	$\mathrm{~V}_{\mathrm{CC}}$	Power Supply
1	NC	No Connection
22	$\overline{\mathrm{CE}}$	Chip Enable
24	$\overline{\mathrm{OE}}$	Output Enable

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

Temperature Under Bias	$-10^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature	$-45^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential	-0.5 V to +7.0 V
Applied Output Voltage	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5$
Applied Input Voltage	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5$
Power Dissipation	220 mW

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not recommended. Exposure to ABSOLUTE MAXIMUM RATINGS for extended periods may affect device reliability.

OPERATING RANGE

RANGE	AMBIENT TEMPERATURE	Vcc
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

DC ELECTRICAL CHARACTERISTICS (over the commercial operating range)

PARAMETER NAME	PARAMETER	TEST CONDITIONS	MS314002			UNITS
			MIN.	TYP.	MAX.	
$\mathrm{V}_{\text {IL }}$	Input Low Voltage		-0.3	-	0.8	V
$\mathrm{V}_{\text {IH }}$	Input High Voltage		2.2		c+ 0.3	V
$\mathrm{I}_{\text {IL }}$	Input Leakage Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {CC }}$	-	-	10	$\mu \mathrm{A}$
I_{OL}	Output Leakage Current	$\overline{\mathrm{CE}}=\mathrm{V}_{1 H}, \overline{\mathrm{OE}}=\mathrm{V}_{1 H}$	-10	-	10	$\mu \mathrm{A}$
V_{OL}	Output Low Voltage	2.1 mA	-	-	0.4	V
V_{OH}	Output High Voltage	$\mathrm{IOH}^{\text {}}=-400 \mu \mathrm{~A}$	2.4	-	-	V
I_{cc}	Operating Power Supply Current ${ }^{(1)}$		-	-	40	mA
$\mathrm{I}_{\text {ccse }}$	Standby Power Supply Current	$\overline{\mathrm{CE}}=\mathrm{V}_{1 H}$	-	-	1	mA
$\mathrm{I}_{\text {CCSB } 1}$	Super Standby Power Supply Current	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{H}}, \mathrm{GND}$	-	-	50	$\mu \mathrm{A}$
Ios	Output Short Circuit Current ${ }^{(2)}$		-	-	50	mA

1. Measured with device selected and outputs unloaded.
2. For a duration not to exceed 30 seconds.

CAPACITANCE $\left(\mathbf{T a}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)^{(1)}$

SYMBOL	PARAMETER	CONDITION	MAX.	UNIT
Cl	Input Capacitance	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	10	pF
CO	Output Capacitance	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	15	pF

1. This parameter is guaranteed but not 100% tested.

TRUTH TABLE

$\mathbf{C E}$	OE	MODE	OUTPUT	POWER DISSIPATION MODE
L	L	Selected	Output Data	Active
L	H	Not Selected	High-Z	Active
H	X	Not Selected	High-Z	Standby

AC TEST CONDITIONS

Input Pulse Levels	0.6 to 2.4 V
Input Rise and Fall Times	$\mathrm{t}_{\mathrm{R}}=5 \mathrm{~ns}$
Timing Measurement Level	$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{HH}}=2.2 \mathrm{~V}$
Reference	$\mathrm{V}_{\mathrm{OL}}=0.8 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{OH}}=2.0 \mathrm{~V}$
Output Load	See Figure 1

Figure 1. Output Load Circuit

AC ELECTRICAL CHARACTERISTICS (over the operating range)

PARAMETER NAME	PARAMETER	TEST CONDITION	MS314002-25		UNIT
			MIN.	MAX.	
$t_{\text {AA }}$	Chip Access Time	$\overline{C E}=\overline{O E}=V_{I L}$	-	200	ns
$\mathrm{t}_{\text {CE }}$	Chip Enable Access Time	$\overline{O E}=\mathrm{V}_{\mathrm{IL}}$	-	200	ns
$\mathrm{t}_{\text {OE }}$	Output Enable Access Time	Note 1	-	80	ns
t_{OH}	Output Disable	$\overline{C E}=\overline{O E}=V_{\text {IL }}$	0	60	ns
t_{DF}	Output Hold After Address Change	Note 2	-		ns

Note 1: Maximum $\overline{O E}$ delay which does not affect $t_{A A}$ is $t_{A A}-t_{O E}$
Note 2: t_{DF} is specified by either of $\overline{\mathrm{CE}}$ or $\overline{\mathrm{OE}}$ changing to HIGH earlier.

TIMING DIAGRAMS

ORDERING INFORMATION

	ORDERING		TEMPERATURE
SPEED (ns)	PART NUMBER	PACKAGE REFERENCE NO.	RANGE
200	MS314002-20 PC	P32-2	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

ADVANCE INFORMATION

FEATURES

- Two organizations selectable by BYTE pin

262,144 words $\times 16$ bits
524,288 words x 8 bits

- Access time: 150 ns
- Low Power operation:

275 mW max. Operating
5.5 mW max. Standby, TTL input level
$275 \mu \mathrm{~W}$ max. Standby, CMOS input level

- Fully static operation
- Automatic power down (CE/CE)
- Complete TTL compatibility
- 3-state outputs for wired-OR expansion
- Single 5V power supply
- Standard 40-pin Plastic DIP
- 64-pin Plastic Flat package

PIN CONFIGURATIONS

256K X 16, 512K X 8 CMOS Mask Programmable ROM DESCRIPTION

The MS314003 is a CMOS SI-gate mask-programmable static read only memory organized as 262,144 words by 16 bits. (524,288 words by 8 bits).
The MS314003 has TTL-compatible I/O 3-state output level with fully-static operation (i.e. no need of clock signal) and single +5 V power supply. Also, the MB834200 is designed for applications such as character generator or program storage which require large memory capacity and high-speed/low-power operation.
Memory organization of MS314003 is changeable between 16 bits and 8 bits. (ex. The system using 8 bits CPU and 16 bits CPU can use common data on the same chip.)

BLOCK DIAGRAM

MS314003

PIN DESCRIPTIONS

SYMBOL	FUNCTION
$A_{0}-A_{18}$	Address Input
$\mathrm{O}_{0}-\mathrm{O}_{16}$	Data Output
GND	Ground
V_{CC}	Power Supply
NC	No Connection
$\overline{\mathrm{CE}}$	Chip Enable
$\overline{\mathrm{OE}}$	Output Enable
$\overline{\mathrm{BYTE}}$	Selects 16 or 8 bit Data Out

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

Temperature Under Bias	$-10^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential	-0.5 V to +7.0 V
Applied Output Voltage	-0.5 V to +7.0 V
Applied Input Voltage	-0.5 V to +7.0 V
Power Dissipation	275 mW

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not recommended. Exposure to ABSOLUTE MAXIMUM RATINGS for extended periods may affect device reliability.

OPERATING RANGE

RANGE	AMBIENT TEMPERATURE	Vcc
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

DC ELECTRICAL CHARACTERISTICS (over the commercial operating range)

PARAMETER NAME	PARAMETER	TEST CONDITIONS	MS314003			UNITS
			MIN.	TYP.	MAX.	
$\mathrm{V}_{\text {IL }}$	Input Low Voltage		-0.5	-	0.8	V
$\mathrm{V}_{\text {IH }}$	Input High Voltage		2.0		c+0.3	V
$I_{\text {IL }}$	Input Leakage Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {CC }}$	-	-	10	$\mu \mathrm{A}$
$\mathrm{I}_{\text {OL }}$	Output Leakage Current	$\overline{\mathrm{CE}}=\mathrm{V}_{1 H}, \overline{\mathrm{OE}}=\mathrm{V}_{1 H}$	-10	-	10	$\mu \mathrm{A}$
V_{OL}	Output Low Voltage	$\mathrm{I}_{\mathrm{OL}}=2.1 \mathrm{~mA}$	-	-	0.4	V
V_{OH}	Output High Voltage	$\mathrm{IOH}=-400 \mu \mathrm{~A}$	2.4	-	-	V
${ }_{\text {ICC }}$	Operating Power Supply Current ${ }^{(1)}$		-	-	50	mA
$I_{\text {ccse }}$	Standby Power Supply Current	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}$	-	-	3	mA
$\mathrm{I}_{\text {ccsB } 1}$	Super Standby Power Supply Current	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{CC}}-0.2, \mathrm{~V}_{\mathrm{IH}}, \mathrm{GND}$	-	-	50	$\mu \mathrm{A}$
Ios	Output Short Circuit Current ${ }^{(2)}$		-	-	70	mA

1. Measured with device selected and outputs unloaded.
2. For a duration not to exceed 30 seconds.

CAPACITANCE $\left(\mathbf{T a}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)^{(1)}$

SYMBOL	PARAMETER	CONDITION	MAX.	UNIT
Cl	Input Capacitance	$\mathrm{V}_{\text {IN }=0 \mathrm{~V}}$	10	pF
CO	OutputCapacitance	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	15	pF

1. This parameter is guaranteed but not 100% tested.

TRUTH TABLE

$\overline{\mathbf{C E}}$	$\overline{\mathbf{O E}}$	MODE	OUTPUT	POWER DISSIPATION MODE
H	X	Not Selected	High-Z	Standby
L	X	Not Selected	High-Z	Active
L	L	Selected	Dout	Active

OUTPUT SELECTION MODE

$\mathbf{A}_{\mathbf{- 1}}$	$\overline{\text { BYTE }}$	$\mathrm{O}_{\mathbf{1}}$ to $\mathrm{O}_{\mathbf{8}}$	$\mathrm{O}_{\mathbf{9}}$ to $\mathrm{O}_{\mathbf{1 5}}$	$\mathrm{O}_{\mathbf{1 6}}$
X	H	$\mathrm{O}_{\mathbf{1}}$ to O_{8}	O_{15}	D_{15}
L	L	O_{1} to O_{8}	High-Z	A_{1}
H	L	O_{9} to O_{16}	High-Z	A_{1}

AC TEST CONDITIONS

Input Pulse Levels	$0.6 \sim 2.4 \mathrm{~V}$
Input Rise and Fall Times	5 ns
Timing Measurement Level	$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{IH}}=2.2 \mathrm{~V}$
Reference	$\mathrm{V}_{\mathrm{OL}}=0.8 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{OH}}=2.0 \mathrm{~V}$
Output Load	See Figure 1

Figure 1. Output Load Circuit

AC ELECTRICAL CHARACTERISTICS (over the operating range)

PARAMETER	PARAMETER	TEST CONDITION	MS314003-25		UNIT
NAME			MIN.	MAX.	
$\mathrm{t}_{\text {AA }}$	Chip Access Time	$\overline{C E}=\overline{O E}=V_{L}$	-	250	ns
$t_{\text {CE }}$	Chip Enable Access Time	$\overline{O E}=\mathrm{V}_{\text {IL }}$	-	250	ns
t_{OE}	Output Enable Access Time	Note 1	-	100	ns
t_{OH}	Output Hold After Address Change	$\overline{C E}=\overline{O E}=V_{L}$	0	-	ns
t_{DF}	Output Disable	Note 2	-	60	ns

Note 1: Maximum $\overline{O E}$ delay which does not affect $t_{A A}$ is $t_{A A}-t_{O E}$
Note 2: t_{DF} is specified by either of $\overline{\mathrm{CE}}$ or $\overline{\mathrm{OE}}$ changing to HIGH earlier.

TIMING DIAGRAMS

() shows a case of 8 bit outputs

MS314003

ORDERING INFORMATION

SPEED (ns)	ORDERING PART NUMBER	PACKAGE REFERENCE NO.	TEMPERATURE RANGE
250	MS314003-25PC	P40-1	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
250	MS314003-25QC	Q64-1	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

ADVANCE INFORMATION

FEATURES

- Access time: 200ns
- Low Power operation:

257 mW (Active)
5.5mW Standby TTL levels
275μ W Standby CMOS levels

- Fully static operation
- Automatic power down ($\overline{\mathrm{CE}}$)
- Complete TTL compatibility
- 3-state outputs for wired-OR expansion
- EPROMs accepted as program data input
- 32 Pin DIP

1,048,576 X 8 CMOS Mask Programmable ROM 32 Pin DIP

DESCRIPTION

The MS318002 high performance Read Only Memory is organized as $1,048,576$ bytes by 8 bits. It is designed to be compatible with all microprocessors and similar applications where high performance, low cost, mass storage and simple interfacing are important design considerations.

The MS318002 offer automatic powerdown with powerdown controlled by the Chip Enable ($\overline{\mathrm{CE}}$) input. When $\overline{\mathrm{CE}}$ goes HIGH the device will automatically power down and remain in a low power standby mode as long as CE remains HIGH.

PIN CONFIGURATIONS

BLOCK DIAGRAM

PIN DESCRIPTIONS

SYMBOL	FUNCTION
$A_{0}-A_{18}$	Address Input
$\mathrm{O}_{0}-\mathrm{O}_{7}$	Data Output
GND	Ground
V_{CC}	Power Supply
NC	No Connection
$\overline{\mathrm{CE}}$	Chip Enable
$\overline{\mathrm{OE}}$	Output Enable

1. This pin is user-definable as active high or active low.
2. N/C is "No Connection".

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

Temperature Under Bias	$-10^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature	$-45^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential	-0.3 V to +7.0 V
Applied Output Voltage	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5$
Applied Input Voltage	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5$

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not recommended. Exposure to ABSOLUTE MAXIMUM RATINGS for extended periods may affect device reliability.

OPERATING RANGE

RANGE	AMBIENT TEMPERATURE	Vcc
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

DC ELECTRICAL CHARACTERISTICS ${ }_{\text {(over the commercial operating range) }}$

PARAMETER	PARAMETER	TEST CONDITIONS	MS318002			UNITS
NAME			MIN.	TYP.	MAX.	
$\mathrm{V}_{\text {IL }}$	Input Low Voltage		-0.3	-	0.8	V
$\mathrm{V}_{\text {IH }}$	Input High Voltage		2.2		c+ 0.3	V
$\mathrm{I}_{1 /}$	Input Leakage Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to V_{CC}	-	-	10	$\mu \mathrm{A}$
I_{OL}	Output Leakage Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {DD }}, \overline{C E}=\mathrm{V}_{\text {IH }}, \overline{\mathrm{OE}}=\mathrm{V}_{\text {IH }}$	-	-	10	$\mu \mathrm{A}$
V_{OL}	Output Low Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=2.1 \mathrm{~mA}$	-	-	0.4	V
V_{OH}	Output High Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=-400 \mathrm{~mA}$	2.4	-	-	V
I_{Cc}	Operating Power Supply Current ${ }^{(1)}$	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$, Minimum Cycle	-	-	50	mA
$I_{\text {CCSB }}$	Standby Power Supply Current	$\overline{C E}=V_{\text {IH }}, C E=V_{\text {IL }}$	-	-	1	mA
$\mathrm{I}_{\text {CCSB } 1}$	Super Standby Power Supply Current	$\overline{C E}=\mathrm{V}_{C C}-0.2 \mathrm{~V}, \mathrm{CE}=0.2 \mathrm{~V}$	-	-	50	$\mu \mathrm{A}$

1. Measured with device selected and outputs unloaded.

CAPACITANCE $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)^{(1)}$

SYMBOL	PARAMETER	CONDITION	MAX.	UNIT
Cl	Input Capacitance	$\mathrm{V}_{\text {IN }=0 \mathrm{~V}}$	10	pF
CO	Output Capacitance	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	15	pF

[^11]TRUTH TABLE

$\overline{\mathbf{C E}}$	$\overline{\mathbf{O E}}$	MODE	OUTPUT	POWER DISSIPATION MODE
H	X	Not Selected	High-Z	Standby
L	H	Not Selected	High-Z	Active
L	L	Selected	Data Out	Active

AC TEST CONDITIONS

Input Pulse Levels	0.6 to 2.4 V	
Input Rise and Fall Times	5 ns	
Timing Measurement Level	$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{HH}}=2.2 \mathrm{~V}$	
Reference	$\mathrm{V}_{\mathrm{OL}}=0.8 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{OH}}=2.0 \mathrm{~V}$	
Output Load	1 TTL Gate and 100pF	

Figure 1. Output Load Circuit

AC ELECTRICAL CHARACTERISTICS (over the operating range)

PARAMETER NAME	PARAMETER		MEST CONDITION	MIN.
t_{AA}	Address Access Time	$\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$	-	200
$\mathrm{t}_{\mathrm{ACE}}$	Chip Enable Access Time	$\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$	ns	
t_{OE}	Output Enable Access Time	Note 1	-	200
t_{DF}	Output Disable Time	Note 2	-	80
t_{OH}	Output Hold Time	$\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$	-	80

Note 1: Maximum $\overline{O E}$ delay which does not affect $t_{A C E}$ is $t_{A C E}-t_{O E}$.
Note 2: t_{DP} is specified by either of $\overline{\mathrm{CE}}$ or $\overline{\mathrm{OE}}$ changing to Hih earlier.

TIMING DIAGRAMS

MS318002

ORDERING INFORMATION

	ORDERING		TEMPERATURE
SPEED (ns)	PART NUMBER	PACKAGE REFERENCE NO.	RANGE
200	MS318002-20 PC	P32-2	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

512K X 16, 1 MEG X 8 CMOS Mask Programmable ROM

DESCRIPTION

The MOSEL MS318003 is a CMOS SI-gate mask-programmable static read only memory organized as 524,288 words by 16 bits, or $1,048,576$ words by 8 bits.
The MS318003 has TTL compatible I/O 3-state output level with full-static operation (i.e. no need of clock signal) and single +5 V power supply. Also, the MS318003 is designed for applications such as character generator or program storage which require large memory capacity and high-speed/low-power operation.

Memory output organization of MS318003 is selectable between 16 bits and 8 bits. (ex. The system using 8 bit CPU and 16 bit CPU can use common data from ROM.)

- Organization (selectable by $\overline{\text { BYTE }}$ pin):

524,288 words $\times 16$ bits
1,048,576 words $\times 8$ bits

- 42 pin PDIP package
- 64 pin Quad Flat package

PIN CONFIGURATIONS

BLOCK DIAGRAM

PIN DESCRIPTIONS

SYMBOL	FUNCTION
$\mathrm{A}_{0}-\mathrm{A}_{18}$	Address Input
$\mathrm{O}_{0}-\mathrm{O}_{16}$	Data Output
GND	Ground
V_{CC}	Power Supply
NC	No Connection
$\overline{\mathrm{CE}}$	Chip Enable
$\overline{\mathrm{OE}}$	Output Enable
$\overline{\mathrm{BYTE}}$	Selects 16 or 8 bit Data Out

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

Temperature Under Bias	$-10^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature	$-45^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential	-0.3 V to +7.0 V
Applied Output Voltage	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Applied Input Voltage	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Power Dissipation	275 mW

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not recommended. Exposure to ABSOLUTE MAXIMUM RATINGS for extended periods may affect device reliability.

OPERATING RANGE

RANGE	TEMPERATURE	Vcc
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

DC ELECTRICAL CHARACTERISTICS ${ }_{\text {(over the commercial operating range) }}$

PARAMETER NAME	PARAMETER	TEST CONDITIONS	MS318003		UNITS
			MIN.	MAX.	
$\mathrm{V}_{\text {IL }}$	Input Low Voltage		-0.3	- 0.8	V
$\mathrm{V}_{\text {IH }}$	Input High Voltage		2.2	$\mathrm{V}_{\mathrm{cc}}+0.3$	V
I_{IL}	Input Leakage Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to V_{CC}	-10	- 10	$\mu \mathrm{A}$
I_{OL}	Output Leakage Current	$C E=V_{1 H}, O E=V_{1 H}$	-10	- 10	$\mu \mathrm{A}$
V_{OL}	Output Low Voltage	$\mathrm{I}_{\mathrm{OL}}=2.1 \mathrm{~mA}$	-	- 0.4	V
V_{OH}	Output High Voltage	$\mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$	2.4	- -	V
I_{CC}	Operating Power Supply Current ${ }^{(1)}$		-	50	mA
$\mathrm{I}_{\text {CCSB }}$	Standby Power Supply Current	$\overline{\mathrm{CE}}=\mathrm{V}_{1 H}$	-	- 1	mA
$\mathrm{I}_{\text {CCSB1 }}$	Super Standby Power Supply Current	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{CC}}-0.2, \mathrm{~V}_{1 \mathrm{H}}$, GND	-	- 50	$\mu \mathrm{A}$

1. Measured with device selected and outputs unloaded.

CAPACITANCE $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)^{(1)}$

SYMBOL	PARAMETER	CONDITION	MAX.	UNIT
CI	Input Capacitance	$\mathrm{V}_{\mathrm{IN}^{\prime}}=0 \mathrm{~V}$	10	pF
CO	Output Capacitance	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	15	pF

1. This parameter is guaranteed but not 100% tested.

TRUTH TABLE

$\overline{\mathbf{C E}}$	$\overline{\mathrm{OE}}$	MODE	OUTPUT	POWER DISSIPATION MODE
H	X	Not Selected	High-Z	Standby
L	H	Not Selected	High-Z	Active
L	L	Selected	Dout	Active

OUTPUT SELECTION MODE

A_{-1}	$\overline{\mathrm{BYTE}}$	$\mathrm{O}_{\mathbf{1}}$ to O_{8}	O_{9} to O_{15}	O_{16}
X	H	O_{1} to O_{8}	O_{9} to O_{15}	D_{15}
L	L	O_{1} to O_{8}	High-Z	A_{-1}
H	L	O_{9} to O_{16}	High-Z	A_{-1}

AC TEST CONDITIONS

Input Pulse Levels	$0.6 \sim 2.4 \mathrm{~V}$	
Input Rise and Fall Times	$\mathrm{t}_{\mathrm{R}}=5 \mathrm{~ns}$	
Timing Measurement Level	$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{IH}}=2.2 \mathrm{~V}$
Reference	$\mathrm{V}_{\mathrm{OL}}=0.8 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}=2.0 \mathrm{~V}$

* Output Load

AC ELECTRICAL CHARACTERISTICS (over the operating range)

PARAMETER	PARAMETER	TEST CONDITION	MS318003-20		UNIT
NAME			MIN.	MAX.	
$\mathrm{t}_{\text {AA }}$	Chip Access Time	$\overline{C E}=\overline{O E}=Y_{L}$	-	200	ns
$t_{\text {ACE }}$	Chip Enable Access Time	$\overline{O E}=V_{\text {IL }}$	-	200	ns
t_{OE}	Output Enable Access Time	Note 1	-	80	ns
t_{OH}	Output Hold After Address Change	$\overline{C E}=\overline{O E}=Y_{L}$	0	-	ns
t_{DF}	Output Disable	Note 2	-	60	ns

Note 1: Maximum $\overline{O E}$ delay which does not affect $t_{A A}$ is $t_{A A}-t_{O E}$
Note 2: t_{DF} is specified by either of $\overline{\mathrm{CE}}$ or $\overline{\mathrm{OE}}$ changing to HIGH earlier.

TIMING DIAGRAMS

() shows a case of 8 bit outputs

MS318003

ORDERING INFORMATION

SPEED (ns)	ORDERING PART NUMBER	PACKAGE REFERENCE NO.	TEMPERATURE RANGE
200	MS318003-20PC	P42-1	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
200	MS318003-20QC	Q64-1	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Voice ROMs

Cocha Houducts

VOICE ROM

MOSEL's Voice Rom products are a CMOS VLSI solution to PCM speech synthesis. A wide variety of speech lengths and controls offer a choice of unit price and complexity as well as speech duration. PCM sound allows all types of audio signals to be frozen in a solidstate ROM memory.
Voice, animal sounds, noises, machine sounds, music and lyrics are all producible with this technology. With the addition of a battery, a switch mechanism and a speaker or buzzer, the sound unit can be placed in a toy, gift, book or magazine, electronic clock, thermostat, or any compact electronic module.
These CMOS devices work on voltages down to 2 volts, shut down automatically after the programmed sound
terminates and can be made to repeat, mute, and restart using metal mask options on most of the control inputs.
The family members now allow durations of 1.5 seconds to 20 seconds. A new 28 second device will be available in 2nd half of 1990.
MOSEL supports the Voice Rom product by converting the customer's sound to EPROM data, demonstrates digitized sound, makes 15 samples of the actual VLSI device for evaluation and starts chip production to meet a customer's critical delivery schedule. MOSEL will also assume prime contractor status to manage the assembly of modules containing the speech chip for the most economical and reliable solution.

Speech Synthesizer (Voice ROM)

FEATURES

- Single power can operate at 2.4 V through 5 V .
- Direct drive buzzer and one current output to drive speaker.
- Total maximum duration is $1.5 / 2.8$ seconds, speech + mute is about 6 seconds.
- Automatic power down.
- Repeat function that can repeat up to 8 times.
- Cascade function that can extend the speech duration by $2.8 \times n$ seconds with n pieces of MSS0281.
- Bonding option for edge trigger (CDS photoresistor application) or level trigger.

DESCRIPTION

The MSS0281 is a single-chip speech synthesizing CMOS VLSI that can synthesize voice and other sounds up to 2.8 seconds. The chip contains most of the necessary circuitry such as the RC oscillator, ROM, D/A, buzzer buffer, control and timing logic. Sound generation is possible with a minimum of external components. Several chips can be cascaded to reach longer voice duration (longer than 1.5/ 2.8 seconds). Customer speech data will be edited and programmed into ROM by changing only one mask during the device fabrication. MOSEL provides sound analysis, digitizing and editing from customer provided audio tapes.

BLOCK DIAGRAM

MOSEL Corporation 2 FL., No. 9, Industrial E. IV. Rd., Science-Based Industrial Park, Hsinchu, Taiwan (035) 773-187 914 West Maude Avenue, Sunnyvale, CA 94086 U.S.A 408-733-4556

PIN DESCRIPTIONS (DIE BONDING PADS)

PIN NO.	SYMBOL	FUNCTION
1	V $_{\text {DD }}$	Positive power supply
2	OSC	RC oscillator input
3	E/L	Open, edge trigger; pull high, level trigger
4	STP/TST	One-shot stop signal output/Test mode, active high; (for production test only)
5	TG	Trigger input, active high
6	C OUT	Current output for driving speaker
7	VOUT1	Speech signal voltage output (for buzzer)
8	V $_{\text {OUT2 }}$	Speech signal voltage output (for buzzer)
9	$\mathrm{~V}_{\text {SS }}$	Negative power supply

Note: Substrate is $V_{D D}$

BONDING DIAGRAM

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS

SYMBOL	RATING	UNITS
$\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}$	$-0.5 \sim+7.0$	V
$\mathrm{~V}_{\text {IN }}(\mathrm{TG}-\mathrm{E} / \mathrm{L})$	$\mathrm{V}_{\mathrm{SS}}-0.3<\mathrm{V}_{\text {IN }}<\mathrm{V}_{\mathrm{DD}}+0.3$	V
$\mathrm{~V}_{\text {OUT }}(\mathrm{STP})$	$\mathrm{V}_{\mathrm{SS}}<\mathrm{V}_{\text {OUT }}<\mathrm{V}_{\mathrm{DD}}$	V
T (Operating)	$-10 \sim+60$	${ }^{\circ} \mathrm{C}$
T (Storage)	$-55 \sim+125$	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS

PARAMETER NAME	PARAMETER		TEST CONDITIONS	MSS0151/0281			UNITS	
			MIN.	TYP.	MAX.			
$V_{\text {DD }}$	Operating Voltage				2.4	4.5	5	V
$\mathrm{I}_{\text {SB }}$	Supply Current	Stand by	$V_{D D}=4.5 \mathrm{~V}$ I/O Open	-	-	0.1	$\mu \mathrm{A}$	
Iop		Operating		-	-	70		
$\mathrm{V}_{\text {IH }}$	Input Voltage (TG)		$V_{D D}=4.5 \mathrm{~V}$	4	4.5	5	V	
V_{LL}			-0.3	0	0.3			
${ }_{\text {IH }}$	Input Current (TG)			$V_{D D}=4.5 \mathrm{~V}$	-	-	5	$\mu \mathrm{A}$
$I_{\text {IL }}$			-		0	-		
${ }_{\text {IH }}$	Input Current (E/L)		$V_{D D}=4.5 \mathrm{~V}$	-	-	10	$\mu \mathrm{A}$	
1 IL			-	0	-			
$\mathrm{IOH}^{\text {I }}$	O/P Current ($\mathrm{V}_{\text {OUT } 1}, \mathrm{~V}_{\text {OUT2 }}$)	Drive		$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O} / \mathrm{P}}=4 \mathrm{~V}$	-	-5	-	mA
I_{OL}		Sink	$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O} / \mathrm{P}}=0.5 \mathrm{~V}$	-	5	-		
$\mathrm{IOH}^{\text {a }}$	Output Current (STP)		$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O} / \mathrm{P}}=4 \mathrm{~V}$	-	-1	-	mA	
I_{OL}			$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O} / \mathrm{P}}=0.5 \mathrm{~V}$	-	1	-		
$\mathrm{T}_{\text {STP }}$	Pulse W	th (STP)	$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$	-	-	5	$\mu \mathrm{S}$	
I_{CO}	Output Cu	ent (Cout)	$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$	-	-1	-	mA	
$\Delta \mathrm{F} / \mathrm{F}$	Frequency Stability		$\mathrm{F}_{\text {OSC }}(4.5 \mathrm{~V})-\mathrm{F}_{\text {OSC }}(4 \mathrm{~V})$	-	-	5	\%	
			$\mathrm{F}_{\text {Osc }}(4.5 \mathrm{~V})$					
$\Delta \mathrm{F} / \mathrm{F}$	Frequency Variati		$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}, \mathrm{R}_{\mathrm{OSC}}=1.2 \mathrm{M} \Omega$	-	-	15	\%	

MSS0151/ 0281

timing waveforms
I. Edge Mode

1. Edge trigger

2. Level trigger

II. Level Mode
3. Edge trigger

4. Level trigger

APPLICATION CIRCUITS

1. Typical application

2. Parallel application
(Could extend up to desired voice sections in parallel arrangement)

3. Cascade application
(Could extend to desired voice length in serial arrangement)

MSS0151/ 0281

APPLICATION CIRCUITS

4. CDS Application

Notes:

a. R1 (resistor) $=1.2 \mathrm{M} \Omega, \mathrm{R} 2=470 \Omega, \mathrm{~T}$ (transistor) $=B>$ $150, \mathrm{~S}$ (speaker) $=1 / 4 \mathrm{~W}, 8 \Omega, \mathrm{CDS}=$ Resistance variaton range (50 K to 1.5 M); all typical.
b. Piezzo buzzer resonant frequency is around 1 KHz .
c. It is recommended to add a capacitor ($0.1 \mu \mathrm{f}$ typical) between trigger pad and ground for noise immunity purpose.
5. Use $\mathrm{V}_{\text {outi }}$ to drive speaker.

Note:
$R 3=1 \mathrm{~K}$ typical, C1 $=0.1 \mu \mathrm{f}$ typical.

Speech Synthesizer (Voice ROM)

FEATURES

- Single power supply can operate at 2.4 V through 5 V .
- 3 seconds speech duration that can be separated into 4 sections.
- Duration of the 4 sections can be different and the total maximum duration is about 3 seconds.
- Automatic power down.
- Repeat function that can repeat up to 16 times for each selected section.
- Cascade function that can extend the speech duration by $3 \times n$ seconds with n pieces of MSS0301.
- Mask option for edge trigger (CDS photoResistor Application) or level trigger.

DESCRIPTION

The MSSO301 is a single-chip speech synthesizing CMOS VLSI that can synthesize voice and other sounds up to 3 seconds. The chip contains most of the necessary circuit such as the RC oscillator, ROM, D/A , buzzer buffer, control and timing logic. Sound generation is possible with a minimum of external components. Several chips can be cascaded to reach longer voice duration (longer than 3 seconds). Customer speech data will be edited and programmed into ROM by changing only one mask during the device fabrication. MOSEL provides sound analysis, digitizing and editing from customer provided audio tapes.

BLOCK DIAGRAM

MOSEL Corporation 2 FL., No. 9, Industrial E. IV. Rd., Science-Based Industrial Park, Hsinchu, Taiwan (035) 773-187 914 West Maude Avenue, Sunnyvale, CA 94086 U.S.A 408-733-4556

MSS0301

PIN DESCRIPTIONS

PIN NO.	SYMBOL	FUNCTION
1	$\mathrm{~V}_{\mathrm{DD}}$	Positive power supply
2	OSC	RC oscillator input
3	TST	Test mode for production test only
4	STP_{1}	Section 1 one-shot stop signal output
5	TG_{1}	Section 1 trigger input, active high
6	TG_{2}	Section 2 trigger input, active high
7	STP_{2}	Section 2 one-shot stop signal output
8	TG_{3}	Section 3 trigger input, active high
9	TG_{4}	Section 4 trigger input, active high
10	$\mathrm{~V}_{\text {OUT1 }}$	Speech signal voltage output (for buzzer)
11	$\mathrm{~V}_{\text {OUT2 }}$	Speech signal voltage output (for buzzer)
12	$\mathrm{~V}_{\mathrm{SS}}$	Negative power supply

Note: Substrate is $V_{D D}$

PIN CONFIGURATION

BONDING DIAGRAM

| 1. | V_{DD} | $(-838.6,-145.3)$ |
| :--- | :--- | :--- | :--- |
| 2. | OSC | $(-766.1,-478.5)$ |
| 3. | TST | $(-766.1,-766.3)$ |
| 4. | STP_{1} | $(-589.0,-1020.6)$ |
| 5. | TG_{1} | $(-304.0,-1011.2)$ |
| 6. | TG_{2} | $(-16.2,-1011.2)$ |
| 7. | STP_{2} | $(-266.4,-1020.6)$ |
| 8. | TG_{3} | $(472.3,-1011.2)$ |
| 9. | TG_{4} | $(760.1,-1011.2)$ |
| 10. | $\mathrm{V}_{\text {OUT1 }}$ | $(781.4,-430.3)$ |
| 11. | $\mathrm{V}_{\text {OUT2 }}$ | $(781.4,-733.4)$ |
| 12. | V_{SS} | $(765.7,1002.5)$ |

Note: Substrate is $\mathrm{V}_{\mathrm{DD}} \quad$ Unit: $\mu \mathrm{M}$

ABSOLUTE MAXIMUM RATINGS

SYMBOL	RATING	UNITS
$\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}$	$-0.5 \sim+0.7$	V
$\mathrm{~V}_{\mathbb{I}}\left(T \mathrm{G}_{1} \sim \mathrm{TG}_{4}\right)$	$\mathrm{V}_{\mathrm{SS}}-0.3<\mathrm{V}_{\text {IN }}<\mathrm{V}_{\mathrm{DD}}+0.3$	V
$\mathrm{~V}_{\text {OUT }}\left(\mathrm{STP}_{1} \sim \mathrm{STP}_{2}\right)$	$\mathrm{V}_{\mathrm{SS}}<\mathrm{V}_{\text {OUT }}<\mathrm{V}_{\mathrm{DD}}$	V
T (Operating $)$	$-10 \sim+60$	${ }^{\circ} \mathrm{C}$
T (Storage)	$-55 \sim+125$	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS

PARAMETER	PARAMETER		TEST CONDITIONS	MSS0301			UNITS	
NAME			MIN.	TYP.	MAX.			
$V_{D D}$	Operating Voltage				2.4	4.5	5	V
$\mathrm{I}_{\text {SB }}$	Supply Current	Stand by	$\begin{array}{\|l} \hline V_{D D}=4.5 \mathrm{~V} \\ \text { I/O Open } \\ \hline \end{array}$	-	-	0.1	$\mu \mathrm{A}$	
Iop		Operating		-	-	70		
$\mathrm{V}_{\text {IH }}$	Input Voltage$\left(T G_{1} \sim T G_{4}\right)$		$V_{D D}=4.5$	4	4.5	5	V	
$\mathrm{V}_{\text {IL }}$			-0.3	0	0.3			
I_{H}	Input Current ($\mathrm{TG}_{1} \sim \mathrm{TG}_{4}$)			$V_{D D}=4.5$	-	-	5	$\mu \mathrm{A}$
$1 / 1$			-		0	-		
${ }^{\mathrm{IOH}}$	O/P Current $\mathrm{V}_{\text {OUT1 }}, \mathrm{V}_{\text {OUT2 }}$	Drive	$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O} / \mathrm{P}}=4 \mathrm{~V}$	-	-5	-	mA	
l_{OL}		Sink	$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O} / \mathrm{P}}=0.5 \mathrm{~V}$	-	5	-		
I_{OH}	Output Current$S T P_{1} \sim S T P_{2}$		$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O} / \mathrm{P}}=4 \mathrm{~V}$	-	-1	-	mA	
lot			$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O} / \mathrm{P}}=0.5 \mathrm{~V}$	-	1	-		
$\mathrm{T}_{\text {STP }}$	STP $_{1}$, STP $^{\text {P }}$	Pulse Width	$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$	-	-	5	$\mu \mathrm{S}$	
$\Delta \mathrm{F} / \mathrm{F}$	Frequency Stability		$\mathrm{F}_{\text {OSC }}(4.5 \mathrm{~V})-\mathrm{F}_{\text {OSC }}(4 \mathrm{~V})$	-	-	5	\%	
			$\mathrm{F}_{\text {OSC }}(4.5 \mathrm{~V})$					
$\Delta \mathrm{F} / \mathrm{F}$	Frequency Variation		$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}, \mathrm{R}_{\mathrm{OSC}}=1.2 \mathrm{M} \Omega$	-	-	15	\%	

MSS0301

TIMING WAVEFORMS
I. Edge Mode

1. Edge trigger
a.

b.

2. Level trigger
a.

b.

TIMING WAVEFORMS

II. Level Mode

1. Edge trigger
a.

b.

2. Level trigger
a.

b.

Notes:
a. TGN and TGM could be any one of TG $\sim \mathrm{TG}_{4}$
b. AUD is the speech signal output $V_{\text {oUT1 }}, V_{\text {OUT2 }}$
c. STPN and STPM could be any one of STP or STP ${ }_{2}$.

APPLICATION CIRCUITS

1. Typical application

2. Parallel application
(Could extend up to desired voice sections in parallel arrangement)

APPLICATION CIRCUITS

3. Cascade application
(Could extend to desired voice length in serial arrangement)

4. Speech with melody application
(Interface with melody IC could have desired voice/melody system)

Note: For some melody IC which needs longer pulse to trigger, a delay circuit is needed.

MSS0301

APPLICATION CIRCUITS
5. CDS Application

Notes:
a. $R 1=1.2 \mathrm{M} \Omega, \mathrm{R} 2=1 \mathrm{~K} \Omega, \mathrm{C} 1=0.1 \mu \mathrm{f}, \mathrm{T}$ (transistor) $=B>$ $150, S$ (speaker) $=1 / 4 \mathrm{~W}, 8 \Omega$, all typical.
b. In the melody cascade application, melody I.C. must have tristate output.

c. Piezzo buzzer resonant frequency is around 1 KHz .
d. It is recommended to bond all the unused trigger pad to ground and add a capacitor ($0.1 \mu \mathrm{f}$ typical) between used trigger pad and ground for noise immunity purpose.

Speech Synthesizer (Voice ROM)

DESCRIPTION

The MSS0601 is a single-chip speech synthesizing CMOS VLSI that can synthesize voice and other sounds up to 6 seconds. The chip contains most of the necessary circuit such as the RC oscillator, ROM, D/A converter, output buffer control and timing logic. Sound generation is possible with a minimum of external components. Several chips can be cascaded to reach longer voice duration (longer than 6 seconds). Customer speech data will be edited and programmed into ROM by changing only one mask during the device fabrication. MOSEL provides sound analysis, digitizing and editing from customer provided audio tapes.

BLOCK DIAGRAM

MOSEL Corporation 2 FL., No. 9, Industrial E. IV. Rd., Science-Based Industrial Park, Hsinchu, Taiwan (035) 773-187 914 West Maude Avenue, Sunnyvale, CA 94086 U.S.A 408-733-4556

MSS0601

PIN DESCRIPTIONS

PIN NO.	SYMBOL	FUNCTION
1	$\mathrm{~V}_{\text {DD }}$	Positive power supply
2	OSC	RC oscillator input
3	TEST	Test mode for production test only
4	BUSY	Active high
5	STP_{1}	Section 1 one-shot stop signal output
6	TG_{1}	Section 1 trigger input, active high
7	TG_{2}	Section 2 trigger input, active high
8	STP_{2}	Section 2 one-shot stop signal output
9	STP_{3}	Section 3 one-shot stop signal output
10	TG_{3}	Section 3 trigger input, active high
11	TG_{4}	Section 4 trigger input, active high
12	STP_{4}	Section 4 one-shot stop signal output
13	$\mathrm{C}_{\text {OUT }}$	Speech signal current output (for speaker)
14	$\mathrm{~V}_{\text {OUT1 }}$	Speech signal voltage output (for buzzer)
15	$\mathrm{~V}_{\text {OUT2 }}$	Speech signal voltage output (for buzzer)
16	$\mathrm{~V}_{\text {SS }}$	Negative power supply

Note: Substrate is $V_{D D}$

PIN CONFIGURATION

BONDING DIAGRAM

		.7,
	OSC	97.4, -375.6)
		92.2, -663.4)
		-1095.0, -935.9)
5.		(-793.0, -1020.4)
6		($-586.1,-1012.5$)
		($-298.3,-1017.8$)
8		(-25.8, -1020
		(485
		(773.0
	STP_{4}	(1045.6, -1020
		(1085.4, -801
		1054.9, -590.6)
		1054.9, -382.8)
16.	V_{ss}	(1131.7, 131.3)

Note: Substrate is V_{DD} Unit: $\mu \mathrm{M}$

ABSOLUTE MAXIMUM RATINGS

SYMBOL	RATING	UNITS
$\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}$	$-0.5 \sim+0.7$	V
$\mathrm{~V}_{\text {IN }}\left(\mathrm{TG}_{1} \sim \mathrm{TG}_{4}\right)$	$\mathrm{V}_{\mathrm{SS}}-0.3<\mathrm{V}_{\mathrm{IN}}<\mathrm{V}_{\mathrm{DD}}+0.3$	V
$\mathrm{~V}_{\text {OUT }}\left(\mathrm{STP}_{1} \sim \mathrm{STP}_{4}\right)$	$\mathrm{V}_{\mathrm{SS}}<\mathrm{V}_{\text {OUT }}<\mathrm{V}_{\mathrm{GD}}$	V
T (Operating)	$-10 \sim+60$	${ }^{\circ} \mathrm{C}$
T (Storage)	$-55 \sim+125$	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS

PARAMETER NAME	PARAMETER		TEST CONDITIONS	MSS0601			UNITS	
			MIN.	TYP.	MAX.			
V_{DD}	Operating Voltage				2.4	4.5	5	V
$I_{\text {SB }}$	Supply Current	Stand by	$V_{D D}=4.5 \mathrm{~V}$ I/O Open	-	-	0.1	$\mu \mathrm{A}$	
I_{OP}		Operating		-	-	70		
V_{IH}	Input Voltage$\left(T G_{1} \sim T G_{4}\right)$		$V_{D D}=4.5$	4	4.5	4.5	V	
$\mathrm{V}_{\text {IL }}$			-0.3	0	0.3			
I_{H}	Input Current$\left(T G_{1} \sim T G_{4}\right)$			$V_{\text {DD }}=4.5$	-	-	5	$\mu \mathrm{A}$
$1 / 1$			-		0	-		
I_{OH}	O/P Current $\mathrm{V}_{\text {OUT1 }}, \mathrm{V}_{\text {OUT2 }}$	Drive	$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O} / \mathrm{P}}=4 \mathrm{~V}$	-	-5	-	mA	
I_{OL}		Sink	$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O} / \mathrm{P}}=0.5 \mathrm{~V}$	-	5	-		
I_{co}	Output Current (cout)		$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$	-	-1	-	mA	
I_{OH}	Output Current STP $_{1} \sim$ STP $_{4}$		$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O} / \mathrm{P}}=4 \mathrm{~V}$	-	-1	-	mA	
1 OL			$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O} / \mathrm{P}}=0.5 \mathrm{~V}$	-	1	-		
$\mathrm{T}_{\text {STP }}$	Pulse Width $\mathrm{STP}_{1} \sim \mathrm{STP}_{4}$		$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$	-	-	5	$\mu \mathrm{S}$	
$\Delta \mathrm{F} / \mathrm{F}$	Frequency Stability		$\mathrm{F}_{\text {OSC }}(4.5 \mathrm{~V})-\mathrm{F}_{\text {OSC }}(4 \mathrm{~V})$	-	-	5	\%	
			$\mathrm{F}_{\text {Osc }}(4.5 \mathrm{~V})$					
$\Delta \mathrm{F} / \mathrm{F}$	Frequency Varia		$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}, \mathrm{R}_{\mathrm{OSC}}=1.2 \mathrm{M} \Omega$	-	-	15	\%	

MSS0601
TIMING WAVEFORMS
I. Edge Mode

1. Edge trigger

2. Level trigger
a.

b.

TIMING WAVEFORMS

II. Stand-alone Edge Mode

1. Edge trigger
a.

b.

2. Level trigger
a.

b.

Notes:
a. TGN and TGM could be any one of TG \sim TG
b. AUD is the speech signal output $\mathrm{V}_{\text {oUT1 }}, \mathrm{V}_{\text {OUT2 }}$ or $\mathrm{C}_{\text {oUt }}$
c. STPN and STPM could be any one of STP $1 \sim$ STP $_{4}$

APPLICATION CIRCUITS

1. Typical application

2. Parallel application
(Could extend up to desired voice sections in parallel arrangement)

APPLICATION CIRCUITS

3. Cascade application (for long sentence)
(Could extend to desired voice length in serial arrangement)

4. Speech with melody application

Note:
a. For some melody IC which needs longer pulse trigger, a delay circuit is needed.
b. $R 3=1 \mathrm{~K} \Omega$ typical.

APPLICATION CIRCUITS

5. CDS Application

Notes:

a. $R 1=1.2 \mathrm{M} \Omega, R 2=470 \Omega, C 1=0.1 \mu \mathrm{f}, \mathrm{T}$ (transistor) $=$ with $B>150$, $S($ speaker $)=1 / 4 \mathrm{~W}, 8 \Omega, C D S=$ Resistance variation range $(50 \mathrm{~K} \sim$ 1.5 M), all typical.
b. Piezzo buzzer resonant frequency is around 1 KHz .
c. In the melody cascade application, melody I.C. must have tristate output.
d. It is recommended to bond all the unused trigger pad to ground and add a capacitor ($0.1 \mu \mathrm{f}$ typical) between used trigger pad and ground for noise immunity purpose.
6. Use $\mathrm{V}_{\text {outi }}$ to drive speaker.

Note: R3 $=1 K \Omega, C 1=0.1 \mu \mathrm{f}$ typical

Speech Synthesizer (Voice ROM)

FEATURES

- Can synthesize human voices and most animal sounds
- Direct drive buzzer and one current output combined with a single transistor can drive the speaker
- Up to 15 second speech duration that can be separated into 64 sections for μ p mode, 8 sections for SA (stand alone) mode, 16 repetitive sections (in addition to original 8 sections) for both TT (Table Trigger) or RT (Ring Trigger) mode.
- Duration of the 64 (8) sections can be different and determined by customer's voice content of each section, the total maximum duration is about 15 seconds.
- Mute is available for each section up to 48 seconds.
- Expandable, can extend the speech duration by $15 \times n$ seconds with n pieces of MSS1501
- Single power supply can operate at 2.4 V through 6.0V.
- Automatic power down function: (selected by bonding option). Starts operating upon receiving a speech synthesis command, and powers down upon conclusion (unvoiced).

DESCRIPTION

The MSS1501 is a CMOS single-chip speech synthesizing ROM that can synthesize up to 15 seconds of voice using the PCM Quantified Coding method.

The chip contains most of the necessary circuit such as the Oscillator, ROM, D/A converter, sequence control logic and interface circuit for key switches and microcomputers. Application to widely used voice systems with minimum external parts is possible. Micro-Processor ($\mu \mathrm{P}$) mode, Stand-Alone (SA) mode, Table trigger (TT) mode and Ring trigger (RT) mode are available and selected by mask option. Up to 64 sections of speech are available for μ p mode, up to 8 sections are available for SA mode, and up to 16 repetitive sections (in addition to original 8 sections) are available for both TT or RT mode. Several chips can be combined to reach longer voice duration (longer than 15 seconds). Customer speech data is edited and programmed into ROM with a single mask during the device fabrication.

TT mode means with original 8 sections, it could be masked as 16 repetitive sections with jump function, all the masked sections will play out consecutively with one trigger signal. RT mode means with origional 8 sections, it could be masked as 16 repetitive sections with jump function, the masked sections will play out one section by one trigger signal consecutively. TT mode and RT mode could return back to SA mode by bonding option.

BLOCK DIAGRAM

MOSEL Corporation 2 FL., No. 9, Industrial E. IV. Rd., Science-Based Industrial Park, Hsinchu, Taiwan (035) 773-187 914 West Maude Avenue, Sunnyvale, CA 94086 U.S.A 408-733-4556

PIN DESCRIPTIONS

PIN NO.	SYMBOL	FUNCTION
1	$\mathrm{~V}_{\mathrm{DD}}$	Positive power supply
2	OSC	Oscillator input
3	PWR	Active high for non-power down
4	BUSY	Busy signal output, active high
5	TST_{1}	Test mode, active high
6	TST_{2}	Test mode, active high
7	$\mathrm{C}_{\text {OUT }}$	Audio current output
8	$\mathrm{~V}_{\text {OUT1 }}$	Audio voltage output
9	$\mathrm{~V}_{\text {OUT2 }}$	Audio voltage output
10	$\mathrm{~V}_{\mathrm{SS}}$	Negative power supply
11	$\mathrm{E}_{2}, \overline{\mathrm{~T}}_{\mathrm{G} 7}$	Enable 2 / Trigger 7, active low
12	$\mathrm{E}_{1}, \overline{\mathrm{~T}}_{\mathrm{G} 6}$	Trigger 6, active low Enable 1, active high
13	$\overline{\mathrm{~T}}_{\mathrm{G} 5}$	Trigger 5 / address 5, active low
14	$\overline{\mathrm{~T}}_{\mathrm{G} 4}$	Trigger 4 / address 4, active low
15	$\overline{\mathrm{~T}}_{\mathrm{G} 3}$	Trigger 3 / address 3, active low
16	$\overline{\mathrm{~T}}_{\mathrm{G} 2}$	Trigger 2 / address 2, active low
17	$\overline{\mathrm{~T}}_{\mathrm{G} 1}$	Trigger 1 / address 1, active low
18	$\overline{\mathrm{~T}}_{\mathrm{G} 0}$	Trigger 0 / address 0, active low

BONDING DIAGRAM

ABSOLUTE MAXIMUM RATINGS

SYMBOL	RATING	UNITS
$\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}$	$-0.5 \sim+0.7$	V
$\mathrm{~V}_{\mathbb{N}}\left(\mathrm{T}_{\mathrm{G} 0}-\mathrm{T}_{\mathrm{G} 7}, \mathrm{E}_{1}, \mathrm{E}_{2}, \mathrm{PWR}\right)$	$\mathrm{V}_{\mathrm{SS}}-0.3<\mathrm{V}_{\mathrm{IN}}<\mathrm{V}_{\mathrm{DD}}+0.3$	V
$\mathrm{~V}_{\mathrm{OUT}}$ (BUSY)	$\mathrm{V}_{\mathrm{SS}}<\mathrm{V}_{\text {OUT }}<\mathrm{V}_{\mathrm{DD}}$	V
T (Operating)	$-10 \sim+60$	${ }^{\circ} \mathrm{C}$
T (Storage)	$-55 \sim+125$	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS

PARAMETER	PARAMETER		TEST CONDITIONS	MSS1501			UNITS	
NAME			MIN.	TYP.	MAX.			
$V_{D D}$	Operating Voltage				2.4	4.5	5	V
Is	Supply Current	Stand by	$V_{D D}=4.5,1 / O$ open	-	-	0.6	$\mu \mathrm{A}$	
10		Operating		-	-	100		
$\mathrm{V}_{\text {IH }}$	$\begin{gathered} \text { Input Voltage } \\ \left(\bar{T}_{\mathrm{GO}}-\overline{\mathrm{T}}_{\mathrm{G} 7}, \mathrm{E}_{1}, \overline{\mathrm{E}}_{2}, \mathrm{PWR}\right) \end{gathered}$		$V_{D D}=4.5$	4	4.5	4.5	V	
$\mathrm{V}_{\text {IL }}$			-0.3	0	0.3			
11.	Input Current$\left(\overline{\mathrm{T}}_{\mathrm{GO}}-\overline{\mathrm{T}}_{\mathrm{G} 7}\right)$			$V_{\text {DD }}=4.5$	-	-	5	$\mu \mathrm{A}$
I_{H}			-		0	-		
I_{IH}	Input Current for PWR		$V_{D D}=4.5$	-	-	10	$\mu \mathrm{A}$	
$I_{\text {IL }}$			-	0	-			
I_{OH}	O/P Current $\mathrm{V}_{\text {OUT1 }}, \mathrm{V}_{\text {OUT2 }}$	Drive		$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O} / \mathrm{P}}=4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O} / \mathrm{P}}=0.5 \mathrm{~V} \end{aligned}$	-	-5	-	mA
IOL		Sink	-		5	-		
I_{OH}	Output Current (BUSY)		$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O} / \mathrm{P}}=4 \mathrm{~V}$	-	-1	-	mA	
$\mathrm{I}_{\text {CL }}$			$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O} / \mathrm{P}}=0.5 \mathrm{~V}$	-	1	-		
$\Delta \mathrm{F} / \mathrm{F}$	Frequency Stability		$\mathrm{F}_{\text {OSC }}(4.5 \mathrm{~V})-\mathrm{F}_{\text {Osc }}(4 \mathrm{~V})$	-	-	5	\%	
			$\mathrm{F}_{\text {Osc }}(4.5 \mathrm{~V})$					
$\Delta \mathrm{F} / \mathrm{F}$	Frequency Variation		$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}, \mathrm{R}_{\mathrm{OSC}}=1 \mathrm{M}$	-	-	15	\%	
I_{CO}	Output Current (COUT)		$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$	-	-1		mA	

AC ELECTRICAL CHARACTERISTICS

Stand - alone Mode				Micro - processor Mode			
PARAMETER NAME	PARAMETER	MIN.	MAX.	PARAMETER NAME	PARAMETER	MIN.	MAX.
T_{t}	Trigger pulse width	15 ms		T_{w}	Write Enable pulse width	300 ns	
$\mathrm{T}_{\text {td }}$	Trigger to Debounce delay time		10 ms	T_{h}	Trigger address hold time	80 ns	
$T_{\text {db }}$	Debounce to BUSY delay time		$200 \mu \mathrm{~s}$	$T_{\text {wb }}$	Write Enable to BUSY delay time		$200 \mu \mathrm{~s}$
T_{da}	Debounce to Audio delay time		$250 \mu \mathrm{~s}$	$\mathrm{T}_{\text {wa }}$	Write Enable to Audio delay time		$250 \mu \mathrm{~s}$

MSS1501

TIMING WAVEFORMS
I. Stand-alone level Mode

1. Level trigger

2. Edge trigger

II. Stand-alone Edge Mode
3. Pulse-Mode Edge trigger

TIMING WAVEFORMS

2. Level trigger

III. Stand-alone TT mode
3. Level trigger

4. Edge trigger

MSS1501

TIMING WAVEFORMS

IV. Stand-alone RT mode

1. Level mode

2. Edge mode

V. CPU mode

APPLICATION CIRCUITS

1. Typical application

d) CPU mode/Speaker
2. Parallel application
(Could extend up to the number of desired voice sections in a parallel application)

MSS1501

APPLICATION CIRCUITS

3. Cascade application

(Could extend to a desired voice length in serial arrangement)

Notes:

1. $R_{1}=1.2 \mathrm{M} \mathrm{OHM}, \mathrm{C}=0.1 \mu \mathrm{f}, \mathrm{R}_{2}=470 \Omega, \mathrm{~T}=$ Transistor with $B>150, S=1 / 4 \mathrm{~W}, 8 \Omega$; all typical
2. In UP Mode cascade and parallel application is acceptable.
3. All applications for buzzer are the same as above just substitute speaker by connecting buzzer to $\mathrm{V}_{\text {oUT1 }}$ and $\mathrm{V}_{\text {out2 }}$.
4. Using VOUT1 or VOUT2 output pads, another speaker driving circuit could be used for increasing sound volume.

APPLICATION CIRCUIT DEFINITIONS

1. $\mathrm{Sn}=\mathrm{Sth}$ speech section, $\mathrm{TS}=$ all section of speech in table
2. $\overline{\mathrm{T}}_{\mathrm{GN}}$ means $\overline{\mathrm{T}}_{\mathrm{GO}}-\overline{\mathrm{T}}_{\mathrm{G} 7}$, AUD means $\mathrm{C}_{\text {OUT }}, \mathrm{V}_{\text {OUT1 }}, \mathrm{V}_{\text {OUT2. }}$.
3. $\overline{\mathrm{T}}_{\mathrm{G} 0}-\overline{\mathrm{T}}_{\mathrm{G} 5}, \overline{\mathrm{~T}}_{\mathrm{G} G}, \overline{\mathrm{E}}_{2}, \overline{\mathrm{~T}}_{\mathrm{G} 7}$ are internally pulled high.
4. For stand alone mode $\bar{T}_{G 0}-\bar{T}_{G 7}$ use as section trigger input (low active)
5. For cpu mode, $\overline{\mathrm{T}}_{\mathrm{G} 0}-\bar{T}_{\mathrm{G} 5}$ use as section address bus, $\mathrm{E}_{1}, \overline{\mathrm{E}}_{2}$ use as trigger input.
6. No matter what status the chip is, every retrigger action will reload address and play the speech from beginning.

Note:

1. $\mathrm{R} 3=1 \mathrm{~K}, \mathrm{C} 1=0.1 \mu \mathrm{f}$; all typical

Speech Synthesizer (Voice ROM)

FEATURES

- Can synthesize human voices and most animal sounds.
- Direct current output combined with a single transistor can drive a speaker.
- Up to 20 seconds speech duration that can be separated into 64 sections for μ p mode, 8 sections for SA (Standalone) mode.
- Duration of the 64 (8) sections can be different and determined by customer's voice content of each section, the total maximum duration is about 20 seconds.
- Mute is available for each section up to 48 seconds.
- Expandable, can extend the speech duration by $15 \times \mathrm{n}$ seconds with n pieces of MSS2001.
- Single power supply can operate at 2.4 V through 6.0V.
- Automatic power down function: (selected by bonding option). Starts operating upon receiving a speech synthesis command, and powers down upon conclusion (unvoiced).

DESCRIPTION

The MSS2001 is a CMOS single-chip speech synthesizing ROM that can synthesize up to 20 seconds of voice using the PCM Quantified Coding method.
The chip contains most of the necessary circuit such as the Oscillator, ROM, D/A converter, sequence control logic and interface circuit for key switches and microcomputers. Application to widely used voice systems with minimum external parts is possible. Up to 64 sections of speech are available for μ p mode, up to 8 sections are available for SA mode. Several chips can be combined to reach longer voice duration (longer than 20 seconds). Customer speech data is edited and programmed into ROM with a single mask during the device fabrication.

BLOCK DIAGRAM

MOSEL Corporation 2 FL., No. 9, Industrial E. IV. Rd., Science-Based Industrial Park, Hsinchu, Taiwan (035) 773-187 914 West Maude Avenue, Sunnyvale, CA 94086 U.S.A 408-733-4556

PIN DESCRIPTION

PIN NO.	SYMBOL	FUNCTION
1	$V_{D D}$	Positive power supply
2	OSC	Oscillator Input
3	BUSY	Busy signal output; active high
4	TST1	Test mode production test only
5	TST2	Test mode, production test only
6	$\mathrm{C}_{\text {OUT }}$	Speech signal current outputs
7	$V_{S S}$	Negative power supply
8	P_{WR}	Active high for non-power down
9	$\mathrm{E} 2, \overline{\mathrm{~T}}_{\mathrm{G7}}$	Enable 2; active high, Trigger 7; active low
10	$E 1, T_{G 6}$	Enable 1/Trigger 6; active low
11	$\bar{T}_{\text {G5 }}$	Trigger/Address 5; active low
12	$\mathrm{T}_{\mathrm{G} 4}$	Trigger/Address 4; active low
13	$\mathrm{T}_{\mathrm{G} 3}$	Trigger/Address 3; active low
14	$\mathrm{T}_{\mathrm{G} 2}$	Trigger/Address 2; active low
15	$\mathrm{T}_{\mathrm{G} 1}$	Trigger/Address 1; active low
16	$\bar{T}_{\mathrm{G} 0}$	Trigger/Address 0; active low

BONDING DIAGRAM

PIN CONFIGURATION

PIN NO.	DESIGNATION	X	Y
1.	V_{DD}	-1778.3	-1701.6
2.	OSC	-455.3	-1764.5
3.	BUSY	-171.8	-1785.6
4.	TST ${ }_{1}$	125.0	-1764.5
5.	TST,	416.8	-1764.5
6.	COUT	1612.2	1762.9
7.	$\mathrm{V}_{\text {ss }}$	1737.0	1762.9
8.	PWR	1442.2	1765.5
9.	$\bar{T}_{\text {G }} 7$ E2	944.9	1765.5
10.		551.4	1765.6
11.	$\mathrm{T}_{\text {G }}$	253.7	1764.7
12.	$\bar{T}_{\text {G }}$	-188.2	764.6
13.	T_{63}	-486.0	765.5
14.	$\bar{T}_{\text {T }}{ }^{\text {a }}$	-927.9	1764.6
15.	$\overline{\mathrm{T}}_{61}$	-1225.7	1765.5
16.	$\overline{\mathrm{T}}_{\text {go }}$	-1627.2	1765.5
*Note	Substrate is V_{DD}		Unit: $\mu \mathrm{M}$

ABSOLUTE MAXIMUM RATINGS

SYMBOL	RATING	UNITS
$\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}$	$-0.5 \sim+0.7$	V
$\mathrm{~V}_{\mathrm{IN}}\left(\overline{\mathrm{T}}_{\mathrm{G} 0} \sim \overline{\mathrm{~T}}_{\mathrm{G} 7}, \mathrm{P}_{\mathrm{WR}}\right)$	$\mathrm{V}_{\mathrm{SS}}-0.3<\mathrm{V}_{\mathrm{IN}}<\mathrm{V}_{\mathrm{DD}}+0.3$	V
$\mathrm{~V}_{\mathrm{OUT}}(\mathrm{BUSY})$	$\mathrm{V}_{\mathrm{SS}}<\mathrm{V}_{\mathrm{OUT}}<\mathrm{V}_{\mathrm{DD}}$	V
T (Operating)	$-10 \sim+60$	${ }^{\circ} \mathrm{C}$
T (Storage)	$-55 \sim+125$	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS

PARAMETER	PARAMETER		TEST CONDITIONS	MSS2001			UNITS	
NAME			MIN.	TYP.	MAX.			
$V_{D D}$	Operating Voltage				2.4	4.5	5	V
$I_{\text {SB }}$	Supply Current	Stand by	$V_{D D}=4.5,1 / O$ Open	-	-	0.6	$\mu \mathrm{A}$	
Iop		Operating		-	-	120		
$\mathrm{V}_{\text {IH }}$	Input Voltage$\left(\overline{\mathrm{T}}_{\mathrm{G} 0} \sim \overline{\mathrm{~T}}_{\mathrm{G} 7,} \mathrm{E} 1, \mathrm{E} 2, \mathrm{P}_{\mathrm{WR}}\right)$		$V_{D D}=4.5 \mathrm{~V}$	4	4.5	5	V	
$\mathrm{V}_{\text {IL }}$			-0.3	0	0.3			
IIL	Input Current ($\mathrm{T}_{\mathrm{G} 0} \sim \mathrm{~T}_{\mathrm{G} 7 \text {) }}$			$V_{D D}=4.5 \mathrm{~V}$	-	-	5	$\mu \mathrm{A}$
I_{H}			-		0	-		
I_{co}	Output Curren	(${ }_{\text {Out }}$	$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$	-	-1	-	mA	
I_{H}	Input Current for PWR		$V_{D D}=4.5 \mathrm{~V}$	-	-	10	$\mu \mathrm{A}$	
1 L			-	0	-			
I_{OH}	Output Current (BUSY)			$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O} / \mathrm{P}}=4 \mathrm{~V}$	-	-1	-	mA
${ }^{\text {OL }}$			$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O} / \mathrm{P}}=0.5 \mathrm{~V}$	-	1	-		
$\Delta \mathrm{F} / \mathrm{F}$	Frequency Stability		$\mathrm{F}_{\text {OSC }}(4.5 \mathrm{~V})-\mathrm{F}_{\text {OSC }}(4 \mathrm{~V})$	-	-	5	\%	
			$\mathrm{F}_{\text {Osc }}(4.5 \mathrm{~V})$					
$\Delta \mathrm{F} / \mathrm{F}$	Frequency Variation		$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}, \mathrm{R}_{\mathrm{OSC}}=1.2 \mathrm{M} \Omega$	-	-	15	\%	

MSS2001

AC ELECTRICAL CHARACTERISTICS

STANDALONE MODE			
TIMING		MIN.	MAX.
T_{T}	Trigger pulse width	15 ms	
$\mathrm{T}_{\text {TD }}$	Trigger to Debounce delay time		10 ms
T_{DB}	Debounce to BUSY delay time		200us
T_{DA}	Debounce to Audio delay time		$250 \mu \mathrm{~s}$
MICROPROCESSOR MODE			
TIMING		MIN.	MAX.
$\mathrm{T}_{\text {W }}$	Write Enable pulse width	30ns	
T_{H}	Trigger address hold time	80ns	
$\mathrm{T}_{\text {wb }}$	Write Enable to BUSY delay time		200رs
$\mathrm{T}_{\text {WA }}$	Write Enable to Audio delay time		250 s

TIMING WAVEFORMS

I. Standalone-Level Mode

1. Level Trigger

2. Edge Trigger

Notes:

1. $\bar{T}_{G 0} \sim \bar{T}_{G 7}$ are low active.
2. $\bar{T}_{\mathrm{G} 0} \sim \overline{\mathrm{~T}}_{\mathrm{G} 7}^{\mathrm{G} 7}$ are internal pull high.

TIMING WAVEFORMS

II. Standalone-Edge Mode

1. Edge Trigger

2. Level trigger

Note:
$\overline{\mathrm{T}}_{\mathrm{Go}} \sim \overline{\mathrm{T}}_{\mathrm{G} 7}$ are internal pull high.

III. CPU Mode

Notes:

1. $\overline{\mathrm{T}}_{\mathrm{G} 0} \sim \overline{\mathrm{~T}}_{\mathrm{G} 5}$ are used as address bus.
2. $\overline{\mathrm{E}}, \mathrm{E} 2$, are used as trigger input.
3. $\overline{\mathrm{T}}_{\mathrm{Go}} \sim \overline{\mathrm{T}}_{\mathrm{G} 5}, \overline{\mathrm{E} 1}, \mathrm{E} 2$, are internally pulled high.
4. Every retrigger action will reload address and play the speech from the beginning.
5. In CPU mode to avoid unwanted noise caused by abrupt change between different sections of voice messages, it is recommended to program PWR pin to high $\left(\mathrm{V}_{\mathrm{DD}}\right)$ during voice processing.

APPLICATION CIRCUITS

1. Typical application
a. Standalone

b. CPU Mode

2. Parallel application
(Could extend up to desired number of voice sections in parallel arrangement)

3. Cascade application
(Could extend to desired voice length in serial arrangement)

Notes:
a. R1 (resistor) $=1.2 \mathrm{M} \Omega, R 2=470 \Omega, T$ (transistor) $=B>150, S$ (speaker) $=1 / 4 \mathrm{~W}, 8 \Omega, C 1=0.1 \mu f$; all typical.
b. Both cascade and parallel application can apply to CPU mode.

Cache Products

6

AMage Diagrams

CACHE PRODUCTS

CACHE PRODUCTS

MOSEL is developing a family of high performance cache products for microprocessor based applications, including Data RAM, Cache Tag RAM, and Cache Controller products.
As microprocessors advance, faster memory is needed to tap the increasing performance potential. Slow DRAM memory requires wait states that reduce processor performance. In order to keep microprocessors running at full speed, system designers are using high speed SRAM caches.
Traditional SRAM memory product architectures can be used to implement crude cache solutions, although many chips are required to implement even simple cache architectures. By developing specialized memory architectures for the cache application, it is possible to implement sophisticated new features that increase system performance. Three distinct functions are needed to implement a cache solution:

1. Cache Data RAM and Burst RAM:
2. Cache Tag or Directory:
3. Controller:

Stores the data required by the microprocessor.

Keeps track of what data is stored in the cache.

Control logic that provides all the signals to make it work. Often the controllers include Tag RAM.

MOSEL is developing specialized products that perform each of these functions.
When used together, MOSEL's products provide complete cache subsystem solution for many microprocessor applications.

CACHE DATA RAM PRODUCTS

One of the first such products offered, MOSEL's MS82C308 Cache Data RAM architecture provides an efficient cost effective cache subsystem building block. Designed for use with first generation cache controllers such as the Intel 82285 or the Chips \& Technologies 82C307/82C327, the $2 \mathrm{~K} \times 16 \times 2$ set MS82C308 provides a minimum chip count solution for 2 set cache implementation, with 20 and 25 MHz versions offered today, and a shrink version at 33 MHz scheduled for later this year.

Now under development is a totally new generation architecture for Cache Data RAM products, the Quad Data RAM family, which sets a new platform for cache performance. The pioneering dual ported $16 \mathrm{~K} \times 9$ Quad Data RAM architecture supports a whole new generation of Cache features: simultaneous processor/main memory transactions, reduced capacitive loading on processor, burst mode quad fetch, support for parity. Scheduled for production release in late 1990, the Quad Data RAM products will be offered in 25 and 33 MHz versions with later performance upgrade to 40 and 50 MHz .

CACHE TAG RAM PRODUCTS

The 2K x 20 MS8202 Cache Tag RAM provides a high integration cache subsystem building block for custom cache implementations. With high speed 20, 22 and 25 ns match times, the MS8202 supports many popular microprocessor families.

Now under development is our new generation Expansion Tag RAM family, a new concept in Tag RAM. Designed for use with MOSEL's cache controller products, the Expansion Tag RAM serves as a tag array extension for the controller to permit larger cache sizes without large line sizes that degrade system performance. As a stand alone Tag RAM for custom cache implementations, the expansion Tag RAM provides new features such as a snoop bus for cache coherency and a synchronous interface for simplified design.

CACHE CONTROLLER PRODUCTS

MOSEL has three cache chipsets currently under development: the MS82C440 for 80486 systems; the MS82C330 for 80386 systems with write-through cache; and the MS82C340 chipset for 80386 systems with write-back cache.
These products represent a new generation in cache control, supporting new features such as simultaneous processor/main memory transactions, burst mode quad fetch with demand word priority and abort option, write back and/or write through option. Other features include: a snoop bus for cache coherency, on chip support for noncacheable regions, and math co-processors, cache sizes of 64 K bytes to 256 K bytes. All three products are scheduled for production release in 1991.

2K x 20 Cache Tag RAM

FEATURES

- Pin for pin compatible with SGS-Thomson MK4202 Cache Tag RAM
- High Speed Match (to 20ns) supports high performance processors including 68020, 68030, 68040, 80386 and 80486
- High Integration $2 \mathrm{~K} \times 20$ Tag array provides single chip tag RAM solution for direct map cache applications or one chip per set in multiple set cache implementations.
- Multiple chip selects permit building of deeper cache using multiple tag RAMs
- Clear function facilitates development of virtual memory cache
- Low Power: 250 mA max. active; 50 mA max. standby
- Significantly reduces board real estate required for custom cache controller implementations

DESCRIPTION

The MOSEL MS8202 is a high performance CMOS Cache Tag RAM optimized for use in microprocessor cache applications.
The $2 \mathrm{~K} \times 20$ Tag RAM array is an ideal building block for custom direct map or multiple set caches having sufficient depth (2K) and width ($\times 20$) to provide a single chip Tag RAM solution (per set) for most cache implementations.
The MS8202 is available with fast match access times down to 20 ns (max) which facilitates use with many popular high performance microprocessor families including Motorola's 68xxx series (68020,68030 and 68040) and Intel's iAPX86 series (80286,80386 and 80486).

Each 8202 replaces $4-6$ traditional Cache Tag RAMs ($4 \mathrm{~K} x$ $4,512 \times 9$, etc.) plus additional discrete logic. This offers significant reduction in board real estate, power, cost and capacitive loading.
The MS8202 is manufactured using a high performance CMOS process and operates from a single 5 volt power supply. All inputs and outputs are TTL compatible. The device is supplied in a space saving JEDEC standard 68 pin PLCC package.

PIN CONFIGURATION

PIN DESCRIPTIONS

$A_{0}-A_{10} \quad$ Index Address Inputs
These 11 address inputs select one of 204821 bit Tag Array words.

$\overline{\mathbf{S}} \quad$ Chip Select Input

This pin is active LOW. When active, it enables the read and write operations.

$\mathrm{E}_{0}-\mathrm{E}_{3} \quad$ Chip Enable Inputs

These four enable pins are selectable to be either active HIGH or active LOW. All four enable pins must be active to enable the chip. The DQ pins will be in the high impedance state when any one of the enable pins is not active.
$\mathbf{P}_{0}-\mathbf{P}_{3} \quad$ Chip Enable Program Inputs
These four pins are used to select the polarity of the corresponding chip enable pins $E_{0}-E_{3}$. For example, if P_{0} is tied HIGH, E_{0} will be active HIGH; if P_{0} is tied LOW, E_{0} will be active LOW.

$\overline{\mathbf{G}} \quad$ Output Enable Input

The output enable is active LOW. If the output enable is active while the chip is selected and the write enable is inactive, data will be output on pins $D Q_{1}$ through $D Q_{19}$ and $C D Q_{0} . D Q_{1}-\mathrm{DQ}_{19}$ and CDQ_{0} will be in the high-impedance state when $\overline{\mathrm{G}}$ is inactive.

$\overline{\mathrm{W}} \quad$ Write Enable Input

The write enable input is active LOW and controls read and write operations. With the chip selected and enabled, when \bar{W} is HIGH and $\overline{\mathrm{G}}$ is LOW, output data will be presented at the DQ pins; when \bar{W} is LOW, the data present on the DQ pins will be written into the addressed memory location.
$\overline{\mathbf{C G}}_{0}-\overline{\mathbf{C G}}_{1} \quad$ Compare Output Enable Inputs
These inputs are active LOW. CG $_{0}$ enables the C_{0} compare output hit or miss signal. CG $_{1}$ enables the C_{1} compare output signal.
$\bar{H}_{0}-\bar{H}_{1} \quad$ Force Hit Inputs
These pins are active LOW and are used to force the compare outputs HIGH (signifying a hit). H_{0} controls compare output C_{0} and H_{1} controls compare output C_{1}
$\bar{M}_{0}-\overline{\mathbf{M}}_{1} \quad$ Force Miss Inputs
These pins are active LOW and are used to force the compare outputs LOW (signifying a miss). M_{0} controls compare output C_{0} and $\overline{\mathrm{M}}_{1}$ controls compare output C_{1}.

$\overline{\text { RS }}$ Reset Input

This reset pin is active LOW. When active it resets the 2048 bits in $C D Q_{0}$ to a logic zero.

$\mathrm{C}_{0}-\mathrm{C}_{1} \quad$ Compare Outputs

When the chip is in compare mode (\bar{W} and \bar{G} HIGH and $E_{0}-E_{3}$ enabled), C_{0} and C_{1} will be HIGH signaling a cache hit if the data inputs $D Q_{1}-\mathrm{DQ}_{19}$ and CDQ_{0} match the contents of the Tag RAM array stored at address $A_{0}-A_{10} . C_{0}$ and C_{1} will be LOW signalling a cache miss if the aforementioned data does not match. Signals $C G_{0}$ and $C G_{1}$ must be low to enable the compare signals C 0 and C 1 . When $\overline{\mathrm{CG}}_{0}$ or $\overline{\mathrm{CG}}_{1}$ are high, the C_{0} and C_{1} outputs will be in the high impedence state.

$\mathrm{CDQ}_{0} \quad$ Clearable Tag Data Input / Output Port

 This bidirectional port is used in conjunction with $D Q_{1}-D Q_{19}$ to read data from or write data to the tag RAM array. In addition, during a Reset cycle all 2048 internal RAM bits accessed by $C D Q_{0}$ are cleared to a logic zero. This output can be used as a tag valid bit.$D_{1}-Q_{19} \quad$ Tag Data Input / Output Ports
These 19 bidirectional ports are used to read data from or write data into the tag RAM array.

$\mathbf{V}_{\text {cc }}$	Power Supply
$\mathbf{V}_{\text {cco }}$	Output Power Supply
$\mathbf{V}_{\text {ss }}$	Ground
$\mathbf{V}_{\text {sso }}$	Output Ground

FUNCTIONAL BLOCK DIAGRAM

FUNCTIONAL DESCRIPTION AND FEATURES

The MOSEL MS8202 is designed to be connected directly to a high performance 32 bit microprocessor, allowing the elimination of the logic delays associated with collecting Hit or Miss outputs into a subsequent gate or the RC delays associated with wired-OR open collector match outputs.
The MS8202 cache tag RAM has four major features that allow direct connection:

1. Wide enough for almost any tag RAM application without requiring multiple chip width expansion and the delays that would result.
2. Four (4) programmable chip enable inputs, allowing depth expansion without any of the attendant chip enable decode delays that would otherwise be required.
$P_{0}-P_{3}$ should be tied directly to V_{cc} or V_{SS}, or through pull-up or pull-down resistors. The MS8202 is selected when $E_{0}-E_{3}$ equals $P_{0}-P_{3}$ in a binary match. (Example: $E_{0}-E_{1}=0110, P_{0}-P_{3}=0110$.)
3. Three-state compare outputs, allowing all Compare outputs to be bused together so the Address-toCompare access time for a depth expanded application is identical to that of a single device. The pro-
grammable chip enables prevent bus contention by assuring that only one tag RAM at a time drives each Compare bus when in Compare mode.
4. Dual compare outputs (C_{0} and C_{1}) and forced hit ($\overline{\mathrm{H}}_{0}$ and \bar{H}_{1}) and forced miss (\bar{M}_{0} and \bar{M}_{1}) inputs for each. The arrangement allows direct connection of the tag RAM to two separate processor inputs (such as BERR and HALT on the 68030), and connection of all signals that would otherwise have been connected to those processor inputs to be passed through the tag RAM; eliminating the need for a subsequent gate to collect the COMPARE output and other BERR or HALT signal sources to the processor. The net effect is that the Address-to-Compare access time demonstrated by the MS8202 is the only delay the user must consider. The alternative approach, using narrow tag RAMs with open collector outputs or narrow tag RAMs with 2-state outputs and a 10 ns programmable logic device, requires that the narrow tag RAMs demonstrate a 10 ns Address-to-Compare access time to yield the same performance in a user's system that the MS8202 provides.

TRUTH TABLE

$\overline{\mathbf{R S}}$	$\overline{\mathbf{S}}$	\mathbf{E}	$\overline{\mathbf{W}}$	$\overline{\mathbf{G}}$	$\overline{\mathbf{M}}_{\mathbf{X}}$	$\overline{\mathbf{H}}_{\mathbf{X}}$	$\overline{\mathbf{C G}}_{\mathbf{X}}$		Mode	$\mathbf{C}_{\mathbf{X}}$	DQ	Notes
H	-	X	-	-	L	X	X	Force Miss	Low	-	1	
H	-	X	-	-	H	L	X	Force Hit	High	-	1	
H	-	X	-	-	H	H	H	Comp disable	Hi-Z	-	1	
H	X	F	X	X	H	H	H	Standby	Hi-Z	Hi-Z		
H	X	T	H	H	H	H	H	Compare	Hi-Z	D in		
H	X	T	H	H	H	H	L	Compare	Hi or Lo	D in		
H	H	T	L	X	H	H	L	Hit	High	Hi-Z		
H	H	T	X	L	H	H	L	Hit	High	Hi-Z		
H	L	T	L	X	H	H	L	Write	High	D in		
H	L	T	H	L	H	H	L	Read	High	D Out		
L	H	X	X	X	-	-	-	Reset	-	Hi-Z		
L	X	F	X	X	-	-	-	Reset	-	Hi-Z		
L	X	X	H	H	-	-	-	Reset	-	Hi-Z		
L	X	X	H	L	-	-	-	Reset	-	Lo-Z		
L	L	T	L	X	-	-	-	Not Allowed	-	Hi-Z	2	
L	X	T	H	H	H	H	L	Reset	L	D in	3	

Key: $\quad X=$ Don't Care
$\bar{H}_{x}=\bar{H}_{0}$ or \bar{H}_{1}
$\bar{M}_{x}=\bar{M}_{0}$ or \bar{M}_{1}
$\overline{\mathrm{CG}}_{\mathrm{x}}=\overline{\mathrm{CG}}_{0}$ or $\overline{\mathrm{CG}}_{1}$
$F=$ (False) $E_{0}-E_{0}$ pattern DOES NOT match $P_{0}-P_{3}$ pattern.
$T=$ (True) $E_{0}-E_{0}$ pattern DOES match $P_{0}-P_{3}$ pattern.

- = Not related to identified mode of operation.

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

SYMBOL	PARAMETER	VALUE	UNIT
$\mathrm{V}_{\text {TERM }}$	Terminal Voltage with Respect to GND	-0.3 to 7.0	V
$\mathrm{~T}_{\text {STG }}$	Storage Temperature	-55 to 125	${ }^{\circ} \mathrm{C}$
P_{T}	Device Power Dissipation	2.5	Watts
$\mathrm{I}_{\text {OUT }}$	DC Output Current (per Pin)	25	mA

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

OPERATING RANGE

RANGE	AMBIENT TEMPERATURE	Vcc
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

DC ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=0\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$

PARAMETER NAME	PARAMETER	TEST CONDITIONS	MIN.	TYP. ${ }^{(1)}$	MAX.	UNITS
$\mathrm{V}_{\text {IL }}$	Guaranteed Input LOW Voltage		-0.3	-	0.8	V
$\mathrm{V}_{\text {IH }}$	Guaranteed Input HIGH Voltage		2.2	-	$\mathrm{V}_{\mathrm{CC}}+0.3$	V
	Input Leakage Current	$\mathrm{V}_{\text {CC }}=$ Max, $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {CC }}$	-1	-	+1	$\mu \mathrm{A}$
I_{OL}	Output Leakage Current ${ }^{(2)}$	$\mathrm{V}_{\text {CC }}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {CC }}$	-10	-	+10	$\mu \mathrm{A}$
V_{OL}	Output LOW Voltage ${ }^{(3)}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$	-	-	0.4	V
V_{OH}	Output HIGH Voltage ${ }^{(3)}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA}$	2.4	-	-	V
I_{CC}	Average Power Supply Current ${ }^{(4)}$				250	mA
$\mathrm{I}_{\text {CCA }}$	Active Power Supply Current ($\ddagger=0)^{(4)}$				200	mA
$\mathrm{I}_{\text {CCsB }}$	Standby Power Supply Current ${ }^{(4)}$				50	mA

1. Typical characteristics are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{t}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
2. Measured at $C D Q_{0}, D Q_{1}-D Q_{19}, C_{0}$ and C_{1}.
3. All voltages referenced to $\mathrm{V}_{\text {sso }}$
4. Measured with outputs open. $\vee_{c c}$ max.

CAPACITANCE ${ }^{(1)}\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)$

SYMBOL	PARAMETER	VALUE	UNIT
		Max.	
$\mathrm{C}_{\text {IN }}$	Input Capacitance	4	pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	10	pF

[^12]MS8202

AC TEST CONDITIONS

Input Levels	0 V to 3V
Transition Times	5 ns
Input and Output Timing Reference Level	1.5 V

KEY TO SWITCHING WAVEFORMS

READ MODE

The MS8202 is in the Read mode whenever \bar{W} is HIGH, and $\overline{\mathrm{G}}$ is LOW provided Chip Select $(\overline{\mathrm{S}})$ is LOW and a true Chip Enable pattern $\left(E_{0}-E_{3}\right)$ is applied. The 11 address inputs ($\mathrm{A}_{0}-\mathrm{A}_{10}$) define a unique index address giving access to 20 of 40,960 bits of data in the static memory array. Valid data will be present at the 20 output pins within $t_{\text {Avav }}$ of the last stable address provided Chip Enable, Chip Select ($\overline{\mathrm{S}}$), and Output Enable ($\overline{\mathrm{G}}$) access
times have been met. If Chip Enable, $\overline{\mathrm{S}}$, or $\overline{\mathrm{G}}$ access times are not met, data access will measured from the latter falling edge or limiting parameter ($\mathrm{t}_{\text {Evav }}, \mathrm{t}_{\text {slov }}$, or $\left.t_{\text {GLov }}\right)$. The state of the tag data $/ / O$ pins is controlled by the $\left(E_{0}-E_{3}\right), \bar{S}, \bar{G}$, and \bar{W} input pins. The data lines may be indeterminate at $t_{\text {EVax }}$, or $t_{\text {sLox }}$, or $t_{G L Q x}$, but will always have valid data at $\mathrm{t}_{\mathrm{Avav}}$.

AC ELECTRICAL CHARACTERISTICS (over the operating range)
 READ CYCLE

READ CYCLE

Figure 1

ADDRESS READ CYCLE

Figure 2

CHIP ENABLE READ CYCLE

Figure 3

CHIP SELECT READ CYCLE

Figure 4

OUTPUT ENABLE READ CYCLE

Figure 5

WRITE MODE

The MS8202 is in the Write mode whenever \bar{W} is LOW provided Chip Select $(\overline{\mathrm{S}})$ is LOW and a true Chip Enable pattern $\left(E_{0}-E_{3}\right)$ is applied (\bar{G} may be in either logic state). Addresses must be held valid throughout a write cycle, with either \bar{W} or $\overline{\mathrm{S}}$ inactive HIGH during address transitions. \bar{W} may fall with stable addresses, but must remain valid for $\mathrm{t}_{\text {wLwH. }}$. Since the write begins with the
concurrence of \bar{W} and $\overline{\mathrm{S}}$, should $\overline{\mathrm{W}}$ become active first, then $\mathrm{t}_{\text {sLSH }}$ must be satisfied. Either $\overline{\mathrm{W}}$ or $\overline{\mathrm{S}}$ can terminate the write cycle, therefore $\mathrm{t}_{\mathrm{DvwH}}$ or $\mathrm{t}_{\text {DVSH }}$ must be satisfied before the earlier rising edge. If the outputs are active with \bar{G} and \bar{S} asserted LOW and with true Chip Enable, then \bar{W} will return the outputs to high impedance within $t_{\text {wLHz }}$ of its falling edge.

ELECTRICAL CHARACTERISTICS (over the operating range)
 WRITE CYCLE

JEDEC PARAMETER NAME	PARAMETERNAME	PARAMETER	-20		-22		-25	UNIT	NOTES
			Min.	Max.	Min.	Max.	Min. Max.		
$\mathrm{t}_{\text {AVAV }}$	${ }^{\text {c }}$	Cycle Time	25	-	25		30	ns	
$\mathrm{t}_{\text {AVWL }}$	$\mathrm{t}_{\text {AS }}$	Address Set-up Time to \bar{W} LOW	0	-	0		0	ns	
${ }^{\text {WHAX }}$	${ }_{\text {t }}^{\text {AH }}$	Address Hold Time from \bar{W} HIGH	0	-	0		0	ns	
$\mathrm{t}_{\text {AVSL }}$	$\mathrm{t}_{\text {AS }}$	Address Set-up Time to $\overline{\mathrm{S}}$ LOW	0	-	0		0	ns	
$\mathrm{t}_{\text {SHAX }}$	$\mathrm{t}_{\text {AH }}$	Address Hold Time from $\overline{\text { S HIGH}}$	0	-	0		0	ns	
$\mathrm{t}_{\text {EVWL }}$	$\mathrm{t}_{\text {ES }}$	Chip Enable Set-up Time to \bar{W} LOW	3	-	3		3	ns	
${ }^{\text {WHEX }}$	t_{EH}	Chip Enable Hold Time from \bar{W} HIGH	0	-	0		0	ns	
$\mathrm{t}_{\text {EVSL }}$	$\mathrm{t}_{\text {ES }}$	Chip Enable Set-up Time to $\overline{\text { S }}$ LOW	3	-	3		3	ns	
$\mathrm{t}_{\text {SHEX }}$	t_{EH}	Chip Enable Hold Time to $\overline{\mathrm{S}} \mathrm{HIGH}$	0	-	0		0	ns	
$t_{\text {WLWH }}$	$t_{\text {wW }}$	Write Pulse Width	15	-	15		18	ns	
$\mathrm{t}_{\text {SLSH }}$	$\mathrm{t}_{\text {SW }}$	Chip Select Pulse Width	16	-	16		20	ns	
$\mathrm{t}_{\text {DVWH }}$	$t_{\text {DS }}$	Data Set-up Time to $\bar{W} \mathrm{HIGH}$	12	-	12		15	ns	
$t_{\text {WHDX }}$	$t_{\text {DH }}$	Data Hold Time from \bar{W} HIGH	0	-	0		0	ns	
$\mathrm{t}_{\text {DVSH }}$	t_{DS}	Data Set-up Time to $\overline{\mathrm{S}} \mathrm{HIGH}$	12	-	12		15	ns	
$t_{\text {SHDX }}$	${ }_{\text {t }}{ }_{\text {H }}$	Data Hold Time from $\overline{\text { S }}$ HIGH	0	-	0		0	ns	
$t_{\text {WLQZ }}$	${ }^{\text {WZ }}$	Outputs Hi-Z from \bar{W} LOW	-	8		8	10	ns	
${ }^{\text {WHHOX }}$	${ }^{\text {WL }}$	Outputs Low-Z from $\overline{\text { W }}$ HIGH	5	-	5		5	ns	

MS8202

WRITE ENABLE CONTROLLED WRITE CYCLE

Figure 6

CHIP SELECT CONTROLLED WRITE CYCLE

Figure 7

COMPARE MODE

The MS8202 is in the Compare mode whenever \bar{W} and \bar{G} are HIGH provided a true Chip Enable $\left(E_{0}-E_{3}\right)$ pattern is applied. Chip Select (S) is regarded as a don't care since the user is not concerned with the data outputs, but only with the Compare (C_{x}) outputs. \bar{M}_{x} and \bar{H}_{x} must be HIGH, and $C G_{x}$ active LOW to enable the Compare outputs for a valid compare hit or miss.
The 11 index address inputs ($\mathrm{A}_{0}-\mathrm{A}_{10}$) define a unique location in the static RAM array. The data presented on the Data Inputs $\left(\mathrm{DQ}_{1}-\mathrm{DQ}_{19}\right.$ and $\left.\mathrm{CDQ}_{0}\right)$ as Tag Data is compared to the internal RAM data as specified by the index. If all bits are equal (match) then a hit condition occurs ($\mathrm{C}_{\mathrm{x}}=\mathrm{HIGH}$). If at least one bit is not equal, then a miss occurs ($C_{x}=$ LOW).

The Compare output will be valid $\mathrm{t}_{\text {Avcv }}$ from stable address, or $\mathrm{t}_{\mathrm{Dvcv}}$ from valid tag data provided Chip Enable is true, and $C G_{x}$ is active LOW. Should the address be stable with valid tag data, and Chip Enable false, then compare access will be within $t_{\text {evcv }}$ from true Chip Enable. When executing a write-to-compare cycle ($\bar{W}=$ LOW, and $\bar{G}=$ LOW or HIGH, C_{x} will be valid $t_{\text {whcv }}$ or $t_{\text {GHcv }}$ from the latter rising edge of W or G respectively. Finally, when gating the C_{x} output in the compare mode with CG_{x}, the compare output will be valid $\mathrm{t}_{\mathrm{ccl} \text {-cv }}$ from the falling edge of $C G_{x}$.

ELECTRICAL CHARACTERISTICS (over the operating range)

COMPARE CYCLE

JEDEC PARAMETER NAME	PARAMETER NAME	PARAMETER	-20	-22	-25	UNIT	NOTES
			Min. Max.	Min. Max.	Min. Max.		
$\mathrm{t}_{\text {AVCV }}$	$\mathrm{t}_{\text {ACA }}$	Cycle Address Compare Access Time	20	22	25	ns	
$\mathrm{t}_{\text {AXCX }}$	$\mathrm{t}_{\mathrm{ACOH}}$	Address Compare Output Hold Time	5	5	5	ns	
$t_{\text {dvcV }}$	$\mathrm{t}_{\text {DCA }}$	Tag Data Compare Access Time	16	18	20	ns	
$\mathrm{t}_{\mathrm{DXCX}}$	$\mathrm{t}_{\mathrm{DCH}}$	Tag Data Compare Hold Time	2	2	2	ns	
$t_{\text {WLCH }}$	${ }^{\text {W }}$ WCH	$\overline{\text { W }}$ LOW to Compare HIGH	10	11	12	ns	
$\mathrm{t}_{\text {WHCH }}$	${ }^{\text {WCOH }}$	$\overline{\text { W }}$ Compare Output hold Time	3	3	3	ns	
$t_{\text {wLCx }}$	$t_{\text {wLCz }}$	$\overline{\text { W }}$ to Compare HOLD	3	3	3	ns	
${ }^{\text {WHCV }}$	$\mathrm{t}_{\text {WCV }}$	\bar{W} to Compare Valid	10	10	12	ns	
$\mathrm{t}_{\text {GLCH }}$	$\mathrm{t}_{\mathrm{GCH}}$	$\overline{\mathrm{G}}$ Low to Compare HIGH	10	11	12	ns	
$\mathrm{t}_{\text {GHCX }}$	$\mathrm{t}_{\mathrm{CGOH}}$	$\overline{\mathrm{G}}$ Compare Output Hold Time	3	3	3	ns	
$\mathrm{t}_{\text {GLCX }}$	$\mathrm{t}_{\text {GLCZ }}$	$\overline{\mathrm{G}}$ to Compare to HOLD	3	3	3	ns	
$\mathrm{t}_{\text {GHCV }}$	$\mathrm{t}_{\mathrm{GCV}}$	$\overline{\mathrm{G}}$ to Compare Valid	10	10	12	ns	
$t_{\text {EVCV }}$	$\mathrm{t}_{\text {ECA }}$	E True to Compare Access Time	20	22	25	ns	
$\mathrm{t}_{\text {EXCX }}$	$\mathrm{t}_{\mathrm{ECOH}}$	E False Compare Hold Time	4	4	4	ns	
$t_{\text {EvCx }}$	$\mathrm{t}_{\text {ECLZ }}$	E True to Compare Low-Z	4	4	4	ns	
$\mathrm{t}_{\text {EXCZ }}$	$\mathrm{t}_{\text {ECHZ }}$	E False to Compare high-Z	8	8	10	ns	
$\mathrm{t}_{\text {CGL-CV }}$	$\mathrm{t}_{\text {CGA }}$	$\overline{\mathrm{CG}}_{\mathrm{x}}$ to Compare Access Time	8	8	10	ns	
${ }^{\text {t }}$ CGH-CX	$\mathrm{t}_{\mathrm{CGOH}}$	$\overline{\mathrm{CG}}_{\mathrm{x}}$ to Compare Hold Time	2	2	2	ns	
$\mathrm{t}_{\text {cGL-Cx }}$	$\mathrm{t}_{\text {cGLz }}$	$\overline{\mathrm{CG}}_{\mathrm{x}}$ LOW to Compare low-Z	2	2	2	ns	
${ }^{\text {t }}$ CGH-Cz	${ }^{\text {t }}$ cGHz	$\overline{\mathrm{CG}}_{\mathrm{x}} \mathrm{HIGH}$ to Compare High-Z	8	8	10	ns	

SUMMARY COMPARE CYCLE

Note:
$\overline{\mathrm{W}}$ and $\overline{\mathrm{G}}$ are both assumed to be HIGH.
\bar{H}_{x} and \bar{M}_{x} are both assumed to be HIGH.

COMPARE CYCLE

Figure 9
Note:
\bar{W} and \bar{G} are both HIGH, $\overline{C G}_{x}$ is LOW, and a true Chip Enable pattern is present. \bar{H}_{x} and \bar{M}_{x} are both assumed to be HIGH.

RESET MODE

The MS8202 allows an asynchronous reset whenever RS is LOW regardless of the logic state on the other input pins. Reset clears all internal RAM bits in CDQ_{0} (2048 bits) to a logic zero. This output can be used as a valid tag bit to insure a valid compare miss or hit. It should be noted that a valid write cycle is not allowed during a reset cycle $(\bar{W}=$ LOW, $\bar{S}=$ LOW, $\overline{R S}=$ LOW,
and Chip Enable is true). The state of the data outputs is determined by the input control logic pins: Chip Enable, $\overline{\mathrm{S}}, \overline{\mathrm{G}}$, and $\overline{\mathrm{W}}$ (see truth table). Should a reset occur during a valid compare cycle, and the CDQ_{0} valid tag bit is set to a logic (1), then C_{x} will go LOW at $t_{\text {RSL-cL }}$ from the falling edge of RS.

ELECTRICAL CHARACTERISTICS (over the operating range)
RESET CYCLE

JEDEC PARAMETER NAME	PARAMETER NAME	PARAMETER	-20	-22	-25	UNIT	NOTES
			Min. Max.	Min. Max.	Min. Max.		
$t_{\text {RLSL-AV }}$	$\mathrm{t}_{\text {RSC }}$	Reset Cycle Time	20	25	30	ns	
$\mathrm{t}_{\text {RSL-RSH }}$	$t_{\text {RSW }}$	Reset pulse Width	25	25	30	ns	
$\mathrm{t}_{\text {RSL-CL }}$	$\mathrm{t}_{\text {RSCL }}$	RS LOW to Compare Output LOW	25	25	30	ns	
$\mathrm{t}_{\text {RSH-AV }}$	$\mathrm{t}_{\text {RSR }}$	Address Recovery Time	0	0	0	ns	
$\mathrm{t}_{\text {RSH-EV }}$	$\mathrm{t}_{\mathrm{RSR}}$	Chip Enable Recovery Time	0	0	0	ns	

RESET CYCLE

Figure 10
Note: Reset during an active write cycle is not allowed. A write cycle may disrupt Reset, but will not damage device.

VALID COMPARE - RESET

Figure 11
Note: $C D Q_{0}$ is presumed to be HIGH .

FORCE HIT AND FORCE MISS

The MS8202 can force either a miss or hit condition on the C_{x} output by asserting \bar{M}_{x} or \bar{H}_{x} LOW. A Force Miss overrides a Force Hit condition and is not dependent upon Compare Output Enable ($\left.\overline{\mathrm{CG}}_{\mathrm{x}}\right)$ (see truth table).

The $\overline{\mathrm{C}}_{x}$ output will go HIGH within $\overline{\mathrm{t}_{\mathrm{HLCH}}}$ from the falling edge of \bar{H}_{x} or \bar{C}_{x} will go LOW within $\bar{t}_{\text {MLCL }}$ from the falling edge of \bar{M}_{x}. All $\frac{\bar{M}_{x}}{}$ and $\overline{\mathrm{H}}_{x}$ inputs must be HIGH during a valid compare cycle.

ELECTRICAL CHARACTERISTICS (over the operating range)
FORCE HIT OR MISS CYCLE

JEDEC PARAMETER NAME	PARAMETER NAME	PARAMETER	-20	-22	-25	UNIT	NOTES
			Min. Max.	Min. Max.	Min. Max.		
$\mathrm{t}_{\mathrm{HLCH}}$	t_{HA}	\bar{H}_{x} to Force Hit Access Time	8	8	10	ns	
$\mathrm{t}_{\mathrm{HHCV}}$	$\mathrm{t}_{\mathrm{HHZ}}$	\bar{H}_{x} to Compare High-Z	5	5	8	ns	
$\mathrm{t}_{\text {HL-CGX }}$	t_{HS}	Force hit to $\overline{\mathrm{CG}}_{x}$ don't care	2	2	2	ns	
$\mathrm{t}_{\text {HH-CGH }}$	t_{HR}	Force hit to $\overline{C G}{ }_{x}$ recognized	2	2	2	ns	
$\mathrm{t}_{\text {MLCL }}$	$\mathrm{t}_{\text {MA }}$	\bar{M}_{x} to Force Miss Access Time	8	8	10	ns	
$\mathrm{t}_{\text {MHCZ }}$	$\mathrm{t}_{\mathrm{MHZ}}$	\bar{M}_{x} to Compare to high-Z	5	5	8	ns	
$\mathrm{t}_{\text {ML-CGX }}$	$\mathrm{t}_{\text {MS }}$	Force Miss to $\overline{C G} \times$ don't care	2	2	2	ns	
$\mathrm{t}_{\text {MH-CGH }}$	$\mathrm{t}_{\text {MR }}$	Force Miss to $\overline{C G_{x}}$ recognized	2	2	2	ns	
$\mathrm{t}_{\text {MLHX }}$	$\mathrm{t}_{\text {MHS }}$	Force Miss to \bar{F}_{x} don't care	2	2	2	ns	
$\mathrm{t}_{\text {MHНH }}$	$\mathrm{t}_{\text {MHR }}$	Force Miss to \bar{H}_{x} recognized	2	2	2	ns	

FORCE HIT AND FORCE MISS

Figure 12

LATE WRITE - HIT CYCLE

Figure 13
Note: $\overline{\mathrm{G}}$ is HIGH and aValid Address is present, $\overline{\mathrm{H}}_{\mathrm{x}}$ and $\overline{\mathrm{M}}_{\mathrm{x}}$ are both assumed to be HIGH, with $\overline{\mathrm{CG}}_{\mathrm{x}}$ LOW.

COMPARE - WRITE HIT - COMPARE CYCLE

Figure 14
Note: $\overline{\mathrm{G}}$ is HIGH and a Valid Address is present, $\overline{\mathrm{H}}_{\mathrm{x}}$ and $\overline{\mathrm{M}}_{\mathrm{x}}$ are both assumed to be HIGH, with $\overline{\mathrm{CG}}_{\mathrm{x}}$ LOW, with $\overline{\mathrm{CG}}_{\mathrm{x}}$ LOW.

LATE READ - HIT CYCLE

Figure 15
Note: $\overline{\mathrm{W}}$ is HIGH and a Valid Address is present, $\overline{\mathrm{H}}_{\mathrm{x}}$ and $\overline{\mathrm{M}}_{\mathrm{x}}$ are both assumed to be HIGH, (with $\overline{\mathrm{CG}}_{\mathrm{x}}$ LOW.)

COMPARE - READ HIT - COMPARE CYCLE

Figure 16
Note: $\overline{\mathrm{W}}$ is HIGH and a Valid Address is present, $\overline{\mathrm{H}}_{\mathrm{x}}$ and $\overline{\mathrm{M}}_{\mathrm{x}}$ are both assumed to be HIGH , with $\overline{\mathrm{CG}}_{\mathrm{x}}$ LOW.

EARLY WRITE - HIT CYCLE

Figure 17

Note: \bar{G} is HIGH and a Valid Address is present, with $\left(E_{0}-E_{3}\right)=$ True. $\overline{\mathrm{H}}_{x}$ and \bar{M}_{x} are both assumed to be HIGH.

EARLY READ - HIT CYCLE

Figure 18
Note: \bar{W} is HIGH and a Valid Address is present, with $\left(E_{0}-E_{3}\right)=$ True. $\overline{\mathrm{H}}_{x}$ and $\overline{\mathrm{M}}_{\mathrm{x}}$ are both assumed to be HIGH.

POWER DISTRIBUTION

The MOSEL MS8202 being a 20 output device, obviously requires the use of good power bussing techniques. The MS8202 has been designed in such a way as to allow the user to minimize the effects of switching transients on overall circuit operation. Of particular interest is the separate bussing of the $V_{c c}$ and $V_{s s}$ lines to the output drivers. The advantage provided by these separate power pins, designated $V_{\text {cco }}$ and $V_{s s Q}$, is that voltage sags and ground bumps seen on these pins are not reflected into the other portions of the chip, particularly the input structures. As a result, switching noise in
the supply has much less effect on input levels, providing the user with more noise margin than would otherwise be available.
Of course V_{cc} and $\mathrm{V}_{\text {cco }}$ must always be at the same DC potential. V_{SS} and $\mathrm{V}_{\text {sso }}$ must match as well. Differences between them due to $A C$ effects are expected, but must be minimized through the adequate use of bussing and bypassing. All specifications and testing are done with $V_{S S}=V_{S S Q} \pm 10 \mathrm{mV}$ RMS, $V_{c C}=V_{\mathrm{cCQ}} \pm 10 \mathrm{mV}$ RMS with instantaneous peak differences not exceeding 50 mV .

APPLICATION BLOCK SCHEMATIC

ORDERING INFORMATION

SPEED (ns)	ORDERING PART NUMBER	PACKAGE REFERENCE NO.	TEMPERATURE RANGE
20	MS8202-20JC	J68-1	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
22	MS8202-22JC		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
25	MS8202-25JC		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$2 \times 2 \mathrm{~K} \times 16$ Cache Data RAM

FEATURES

- Supports 16 bit wide 80286 and 32 bit wide 80386 system cache data requirements directly.
- High speed access supports $16 / 20 / 25 \mathrm{MHz}$ 80386 systems.
- On-board x16 SRAM organized as 2 sets of 2K x 16 .
- On-board address latches support pipelined accesses with no external components.
- Easliy supports 2-way and 4-way set associative cache subsystems.
- Supports both pipelined and non-pipelined cycles.
- 16 bit bi-directional data path.
- Built-in alternate address multiplexer allows quick word selection during line replacement.
- Interfaces directly with Intel 82385, Chips \& Technologies 82C307/82C327 and other cache controllers.
- Significantly reduces board real estate required for cache data storage.
- Packaged in JEDEC standard 44 terminal PLCC.

PIN CONFIGURATIONS

DESCRIPTION

The MOSEL 82C308 is a high performance CMOS static RAM optimized for use as cache subsystem data buffers in 80386 and 80286 systems. The device has a full 16 bit wide bi-directional data path, and is configured as 2 banks of $2 \mathrm{~K} \times 16$ memory. This configuration offers significant design, density and power advantages over designs using traditional RAM architectures in caches for these systems.
The MS82C308 is available with fast address access times down to 35 ns (max), and with very fast output enable times (12ns max.), and supports 80386 systems up to 25 MHz .
The MS82C308 contains all the logic on-board to interface directly with the Intel 82385, Chips \& Technologies 82C307/82C327 and other cache controllers. Its' on-board address latches allow it to support both pipelined and nonpipelined memory accesses. An additional on-board alternate address multiplexer is provided to allow fast selection or words during line replacement.
For a 32 bit 80386 system with a 16 KB cache, only 2 devices are needed. For a 32 bit 80386 system with a full 32 KB cache, only 4 MS 82 C 308 devices are needed, replacing the standard requirement of $164 \mathrm{~K} \times 4$ SRAMS and additional discrete logic. This offers a significant reduction in board real estate, power, cost and capacitive loading.
The MS82C308 is manufactured in MOSEL's high performance CMOS process and operates from a single 5 V power supply. All inputs and outputs are TTL compatible. The terminal PLCC package.

SPEED SELECTION

80386 SPEED	RECOMMENDED MS82C308
16 MHz	-55
20 MHz	-45
25 MHz	-35

PIN DESCRIPTIONS

$A_{0}-A_{10}$ Address Inputs

These 11 address inputs select one of the 2048 16-bit words in each RAM bank.

$A_{0}-A_{2}$ Alternate Address Inputs

These 3 alternate address inputs are used to select words within the same page. They are used in conjuction with AAS.

AAS Alternate Address Select

This pin is active high. When LOW, address inputs $\mathrm{A}_{0}-\mathrm{A}_{2}$ will be input to the array; when HIGH, alternate address inputs $A A_{0}-A A_{2}$ will be input to the array.

ALE Address Latch Enable

This active HIGH pin controls the internal transparent latches on pins $A_{0}-A_{11}$. When ALE is HIGH the latch is transparent and the inputs on the address pins are applied to the memory array. On the falling edge of ALE the current input states of pins $A_{0}-A_{11}$ are latched and remain applied to the memory array until ALE returns to the active HIGH state.

G0 Output Enable 0 Input
 G1 Output Enable 1 Input

These output enables are active LOW. $\overline{\mathrm{G}}_{0}$ active will enable data output from Bank 0 , while \bar{G}_{1} will enable data output from Bank 1. These two pins can not both be active simultaneously. The DQ pins will be in the high-impedance state when deselected.

$\overline{\mathbf{S}}$ Chip Select Input

This pin is active low. The DQ pins will be in the highimpedance state when deselected.

$\overline{\text { BO }}$ Byte Enable 0 Input B1 Byte Enable 1 Input

These pins are active LOW. During a write operation, these pins select whether the upper or lower byte of the addressed 16 -bit word will be written.

$\overline{\mathrm{FB}}$ Force Byte Enable Input

This pin is active LOW. If the $\overline{\mathrm{FB}}$ pin is active during a write operation, both the upper and low bytes of the addressed 16 -bit word will be written.

W0 Write Enable 0 Input
 W1 Write Enable 1 Input

The chip is selected and either byte enable input or the force byte enable input is active, bring a write enable pin active will cause the data present on the DQ pins to be written into the selected bank.

$D Q_{0}-D Q_{15}$ Data Input/Output Ports

These 16 bidirectional ports are used to read data from or write data into the RAM.
V_{cc} Power Supply
GND Ground

FUNCTIONAL BLOCK DIAGRAM

FUNCTIONAL DESCRIPTION

The MS82C308 is a high performance CMOS static RAM intended for use as a data buffer in caches for 80386 or 80286 systems. A two byte wide data path is provided for use in 16 and 32 bit systems. The array is configured as two banks to allow a fast output enable to be generated by a search of the cache directory concurrent with the data buffer access. It replaces four $4 \mathrm{~K} \times 4$ or $2 \mathrm{~K} \times 8$ chips and several TTL MSI and SSI chips with a small footprint 44 pin PLCC. In addition, power, cost and capacitive loading are significantly reduced.
Two chips are needed for a 32 bit 80386 system with a 16 KB cache while a single chip can be used to implement and 8KB 80286 cache. The arrays could be doubled to implement a 4-way set associative system if desired.

For a 32 bit 80386 system with a full 32 KB cache, four MS82C308 chips would be needed. The cache depth can be expanded as desired. For example, for a system with a 64 KB cache, 8 MS82C308's are needed.

Address Latch

An on-board address latch is used to store the address directly from the 80386 local address bus. Two different modes of operations (pipelined cycle vs. non-pipelined cycle) are possible in an 80386 based system. The transparent address latch is enabled by the ALE pin. In non-pipelined accesses, the address will change during the ALE cycle. In pipelined accesses the address will change before the rising edge of ALE.

The access time in non-pipelined cycles will be determined by address access time, while it will be measured from the rising edge of ALE in pipe-lined cycles.

Alternate Address Multiplexer

A 3 bit multiplexer is provided to allow selection of words within the same block of 2,4 or 8 words. This is necessary in cache systems when the line or sub-line (unit of memory that is replaced) is greater than one word.

RAM Array

The RAM is logically configured as two banks of 2 K words of 2 bytes. Both banks are always accessed simultaneously; the two output enables are used to select which word is outputted to the data bus.

Output Enable Decode

Two $\overline{\mathrm{G}}$ inputs are provided, one for each bank. $\overline{\mathrm{G0}}$ will gate the data from first bank and $\overline{\mathrm{G} 1}$ will gate the data from second bank. If either of the two write enable signals are active, the output enable signals will be overridden to prevent the 82 C 308 from driving the bus. Two $\overline{\mathrm{G}}$'s ($\overline{\mathrm{G} 0}$ and $\overline{\mathrm{G} 1}$) inputs can not be active at the same time. Otherwise, undetermined results would appear at the 16 data outputs.

Write Enable Decode

Two \bar{W} inputs are provided, one for each bank. When either of the write enables are asserted, the array outputs are disabled to prevent driver conflicts. Individual byte enables are provided that control the writes in either or both of the two bytes of the 82C308. The FB input is provided to allow forcing both byte write enables during a move-in (fetch) operation. This eliminates the external gating of write enable required in a store-in cache implementation.

Array Expansion

A chip select input $(\overline{\mathrm{S}}$) is provided to allow for expansion of the cache array in the vertical (more words) dimension. The access time from chip select is less than the address to data time to allow for external decoding circuitry.

Set Associativity

While the MS82C308 is intended to be used in a twoway set associative cache implementation, it is very simple to increase the size of the cache by increasing the associativity to 4 or more ways by paralleling MS82C308's (2 for 4 way, 4 for 8 way, etc).

TRUTH TABLE

INPUTS											OUTPUTS		FUNCTION
	ALE	AAS	G0	G1	$\overline{\text { S }}$	$\overline{\text { B0 }}$	$\overline{\text { B1 }}$	$\overline{\text { FB }}$	W0	W1	$\mathrm{DQ}_{0}-\mathrm{DQ}_{7}$	$\mathrm{DQ}_{8}-\mathrm{DQ}_{15}$	
1	X	X	X	X	H	X	X	X	X	X	Hi-Z	HI-Z	Deselected
2	X	X	H	H	L	H	H	H	H	H	Hi-Z	HI-Z	Outputs Disabled
3	L	X	-	-	-	-	-	-	-	-	-	-	Address Latch Enabled
4	H	X	-	-	-	-	-	-	-	-	-	-	Address Latch Transparent
5	X	H	-	-	-	-	-	-	-	-	-	-	Alternate Address Selected
6	H	X	L	H	L	H	H	H	H	H	Dout	Dout	Read Current Address (Bank 0)
7	H	X	H	L	L	H	H	H	H	H	Dout	Dout	Read Current Address (Bank 1)
8	L	L	L	H	L	H	H	H	H	H	D ${ }_{\text {OUT }}$	D ${ }_{\text {Out }}$	Read Latched Address (Bank 0)
9	L	L	H	L	L	H	H	H	H	H	D ${ }_{\text {OUT }}$	Dout	Read Latched Address (Bank 1)
10	X	H	L	H	L	H	H	H	H	H	D OUT	Dout	Read Alternate Address (Bank 0)
11	X	H	H	L	L	H	H	H	H	H	Dout	D ${ }_{\text {OUT }}$	Read Alternate Address (Bank 1)
12	H	X	X	X	L	L	H	H	L	H	$\mathrm{D}_{\text {IN }}$	HI-Z	Write to Lower Byte of Current Address (Bank 0)
13	H	X	X	X	L	H	L	H	L	H	HI-Z	$\mathrm{D}_{\text {IN }}$	Write to Upper Byte of Current Address (Bank 0)
14	H	X	X	X	L	L	L	H	L	H	$\mathrm{D}_{\text {IN }}$	$\mathrm{D}_{\text {IN }}$	Write to Both Bytes of Current Address (Bank 0)
15	H	X	X	X	L	X	X	L	L	H	$\mathrm{D}_{\text {IN }}$	$\mathrm{D}_{\text {IN }}$	Write to Both Bytes of Current Address (Bank 0)
16	H	X	X	X	L	L	H	H	H	L	$\mathrm{D}_{\text {IN }}$	HI-Z	Write to Lower Byte of Current Address (Bank 1)
17	H	X	X	X	L	H	L	H	H	L	HI-Z	$\mathrm{D}_{\text {IN }}$	Write to Upper Byte of Current Address (Bank 1)
18	H	X	X	X	L	L	L	H	H	L	$\mathrm{D}_{1 \mathrm{~N}}$	$\mathrm{D}_{\text {IN }}$	Write to Both Bytes of Current Address (Bank 1)
19	H	X	X	X	L	X	X	L	H	L	$\mathrm{D}_{\text {IN }}$	$\mathrm{D}_{\text {IN }}$	Write to Both Bytes of Current Address (Bank 1)
20	L	L	X	X	L	L	H	H	L	H	$\mathrm{D}_{\text {IN }}$	HI-Z	Write to Lower Byte of Latched Address (Bank 0)
21	L	L	X	X	L	H	L	H	L	H	$\mathrm{HI}-\mathrm{Z}$	$\mathrm{D}_{\text {IN }}$	Write to Upper Byte of Latched Address (Bank 0)
22	L	L	X	X	L	L	L	H	L	H	$\mathrm{D}_{\text {IN }}$	$\mathrm{D}_{\text {IN }}$	Write to Both Bytes of Latched Address (Bank 0)
23	L	L	X	X	L	X	X	L	L	H	$\mathrm{D}_{\text {IN }}$	$\mathrm{D}_{\text {IN }}$	Write to Both Bytes of Latched Address (Bank 0)
24	X	H	X	X	L	L	H	H	L	H	$\mathrm{D}_{\text {IN }}$	HI-Z	Write to Lower Byte of Alternate Address (Bank 0)
25	X	H	X	X	L	H	L	H	L	H	HI-Z	$\mathrm{D}_{\text {IN }}$	Write to Upper Byte of Alternate Address (Bank 0)
26	X	H	X	X	L	L	L	H	L	H	$\mathrm{D}_{\text {IN }}$	$\mathrm{D}_{\text {IN }}$	Write to Both Bytes of Alternate Address (Bank 0)
27	X	H	X	X	L	X	X	L	L	H	$\mathrm{D}_{\text {IN }}$	$\mathrm{D}_{\text {IN }}$	Write to Both Bytes of Alternate Address (Bank 0)
28	L	L	X	X	L	L	H	H	H	L	$\mathrm{D}_{\text {IN }}$	HI-Z	Write to Lower Byte of Latched Address (Bank 1)
29	L	L	X	X	L	H	L	H	H	L	HI-Z	$\mathrm{D}_{\text {IN }}$	Write to Upper Byte of Latched Address (Bank 1)
30	L	L	X	X	L	L	L	H	H	L	$\mathrm{D}_{\text {IN }}$	$\mathrm{D}_{\text {IN }}$	Write to Both Bytes of Latched Address (Bank 1)
31	L	L	X	X	L	X	X	L	H	L	$\mathrm{D}_{\text {IN }}$	$\mathrm{D}_{\text {IN }}$	Write to Both Bytes of Latched Address (Bank 1)
32	X	H	X	X	L	L	H	H	H	L	$\mathrm{D}_{\text {IN }}$	HI-Z	Write to Lower Byte of Alternate Address (Bank 1)
33	X	H	X	X	L	H	L	H	H	L	HI-Z	$\mathrm{D}_{\text {IN }}$	Write to Upper Byte of Latched Address (Bank 1)
34	X	H	X	X	L	L	L	H	H	L	$\mathrm{D}_{\text {IN }}$	$\mathrm{D}_{\text {IN }}$	Write to Both Bytes of Alternate Address (Bank 1)
35	X	H	X	X	L	X	X	L	H	L	$\mathrm{D}_{\text {IN }}$	$\mathrm{D}_{\text {IN }}$	Write to Both Bytes of Alternate Address (Bank 1)

MS82C308

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

SYMBOL	PARAMETER	CONDITION	UNIT
$\mathrm{V}_{\text {TERM }}$	Terminal Voltage with Repect to GND	-0.5 to +7.0	V
$\mathrm{t}_{\text {BIAS }}$	Temperature Under Bias	-10 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\text {STG }}$	Storage Temperature	-60 to +150	${ }^{\circ} \mathrm{C}$
P_{T}	Power Dissipation	1.0	W
$\mathrm{I}_{\text {OUT }}$	DC Output Current	20	mA

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

OPERATING RANGE

RANGE	AMBIENT TEMPERATURE	Vcc
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 5 \%$

DC ELECTRICAL CHARACTERISTICS (over the commercial operating range)

PARAMETER NAME	PARAMETER	TEST CONDITIONS	MIN.	TYP. ${ }^{(1)}$	MAX.	UNITS
$\mathrm{V}_{\text {IL }}$	Guaranteed Input Low Voltage ${ }^{(2)(3)}$		-0.5	-	0.8	V
$\mathrm{V}_{\text {IH }}$	Guaranteed Input High Voltage ${ }^{(2)}$		2.0	-	6.0	V
$I_{\text {IL }}$	Input Leakage Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to V_{CC}	-	-	2	$\mu \mathrm{A}$
I_{OL}	Output Leakage Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \overline{\mathrm{GO}}=\mathrm{V}_{1 H}, \overline{\mathrm{G1}}=\mathrm{V}_{1 H}, \mathrm{~V}_{1 \mathrm{~N}}=0 \mathrm{~V}$ toV V_{CC}	-	-	10	$\mu \mathrm{A}$
V_{OL}	Output Low Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$	-	-	0.4	V
V_{OH}	Output High Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{\mathrm{OH}}=-4 \mathrm{~mA}$	2.4	-	-	V
$I_{\text {CC }}$	Operating Power Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \overline{\mathrm{GO}}=\mathrm{V}_{\mathrm{IL}} \text { or } \overline{\mathrm{Gl}}=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{~S}}=\mathrm{V}_{\mathrm{IL}} \\ & \mathrm{I}_{\mathrm{I} / \mathrm{O}}=0 \mathrm{~mA}, \mathrm{~F}=\mathrm{F}_{\mathrm{MAX}}{ }^{(4)} \end{aligned}$	-	-	150	mA

NOTES:

1. Typical characteristics are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{t}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. These are absolute values with respect to device ground and all overshoots due to system or tester noise are included.
3. $\mathrm{V}_{\mathrm{IL} \text { (MIN) }}=-3.0$ for pulse width $<20 \mathrm{~ns}$.
4. $F_{\operatorname{MAX}}^{(\mathrm{MN})}=1 / \mathrm{t}_{\mathrm{RC}}$

CAPACITANCE ${ }^{(1)}\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)$

SYMBOL	PARAMETER	CONDITION	MAX.	UNIT
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	6	pF
C_{DQ}	Input/Output Capacitance	$\mathrm{V}_{\mathrm{DQ}}=0 \mathrm{~V}$	8	pF

1. This parameter is guaranteed and not tested.

AC TEST CONDITIONS

Input Pulse Levels	0 V to 3.0 V
Input Rise and Fall Times	5 ns
Input and Output	1.5 V
Timing Reference Level	

AC TEST LOADS AND WAVEFORMS

Figure 1a

Figure 1b
Equivalent to:
THEVENIN EQUIVALENT
OUTPUT O—O 1.73 V
ALL INPUT PULSES

Figure 2

KEY TO SWITCHING WAVEFORMS

WAVEFORM	INPUTS	OUTPUTS
	MUST BE STEADY	WILL BE STEADY
MAY CHANGE		
FROMHTOL		

AC ELECTRICAL CHARACTERISTICS (over the operating range)
 READ CYCLE

JEDEC PARAMETER NAME	PARAMETER NAME	PARAMETER	MS82C308-35		MS82C308-45		MS82C308-55		UNITS
$\mathrm{t}_{\text {AVAX }}$	t_{RC}	Read Cycle Time	35	-	45	-	55	-	ns
$\mathrm{t}_{\text {AVQV }}$	t_{AA}	Address Access Time		35		45		55	ns
${ }_{\text {tsLQV }}$	$t_{\text {ACS }}$	Chip Select Access Time		25		35		45	ns
$\mathrm{t}_{\text {GLQV }}$	$\mathrm{t}_{\text {OE }}$	Output Enable to Output Valid		12		15		18	ns
$t_{\text {GLQX }}$	$\mathrm{t}_{\mathrm{LL} 2}$	Output Enable to Output Low Z	2	10	2	15	2	20	ns
$\mathrm{t}_{\text {GHOZ }}$	$\mathrm{t}_{\mathrm{OHZ}}$	Output Disable to Output in High Z	2	15	2	15	2	15	ns
$\mathrm{t}_{\text {sLax }}$	${ }_{\text {ctiz }}$	Chip Select to Output in Low Z	2	10	2	15	2	20	ns
$\mathrm{t}_{\text {SHQZ }}$	$\mathrm{t}_{\mathrm{CHZ}}$	Chip Deselect to Output in High Z	0	20	0	20	0	20	ns
$\mathrm{t}_{\mathrm{AXQX}}$	t_{OH}	Output Hold from Address Change	5	-	5	-	5	-	ns
	$\mathrm{t}_{\text {crwh }}$	ALE Width High	10	-	12	-	15	-	ns
	$\mathrm{t}_{\text {CPWL }}$	ALE Width Low	10	-	12	-	15	-	ns
	$\mathrm{t}_{\text {AS }}$	Address Latch Setup Time	3	-	3	-	3	-	ns
	${ }_{\text {t }}{ }_{\text {A }}$	Address Latch Hold Time	5	-	5	-	5	-	ns
	$\mathrm{t}_{\text {AALE }}$	Access Time from ALE	-	45	-	55	-	55	ns
	$\mathrm{t}_{\text {SAA }}$	AAS to Alternate Address Setup Time	3	-	3	-	3	-	ns
	$\mathrm{t}_{\text {AAA }}$	Access Time from AAS or Alternate Address	-	35	-	35	-	35	ns
	$\mathrm{t}_{\text {OHAA }}$	Output Hold from AA, AAS Change	3	-	3	-	3	-	ns

SWITCHING WAVEFORMS (READ CYCLE)
READ CYCLE $1^{(1,2,3,4,5)}$
ADDRESS ACCESS TIME - NON-PIPELINE

READ CYCLE $\mathbf{2}^{(1,3,4)}$
ALTERNATE ADDRESS ACCESS

READ CYCLE $3^{(1,3,6)}$
OUTPUT ENABLE ACCESS

READ CYCLE 5 ${ }^{(1)}$

PIPELINED

NOTES:

1. $\overline{\mathrm{WO}}, \overline{\mathrm{W} 1}$ and $\overline{\mathrm{FB}}$ are high during all read cycles.
2. ALE must be high during non-pipelined cycles.
3. Device is continuously selected: $\bar{S}=V_{L}$
4. Output is continuously enabled: either $\overline{\mathrm{GO}}=\mathrm{V}_{\mathrm{IL}}$ or $\overline{\mathrm{G} 1}=\mathrm{V}_{\mathrm{IL}}$ (but not both).
5. AAS may not change during cycle.
6. Address must be valid sufficiently before $\overline{\mathrm{G}}$ or $\overline{\mathrm{S}}$ transition low to ensure address access specification not violated.
7. Transition is measured $\pm 500 \mathrm{mV}$ from steady state with $C_{L}=5 \mathrm{pF}$ as shown in Figure 1 b on page 6 . This parameter is guaranteed and not 100% tested.

AC ELECTRICAL CHARACTERISTICS (over the operating range)
WRITE CYCLE

JEDEC PARAMETER NAME	PARAMETER NAME	PARAMETER	MS82C308-35		MS82C308-45		MS82C308-55		UNITS
			MIN.	TYP. MAX.	MIN.	TYP. MAX.	MIN.	TYP. MAX.	
$\mathrm{t}_{\text {AVAX }}$	$t_{\text {wC }}$	Write Cycle Time	35	-	45	-	55	-	ns
$t_{\text {WLWH }}$	$t_{\text {WP }}$	Write Pulse Width	20	-	20	-	25	-	ns
$\mathrm{t}_{\text {WLQZ }}$	$\mathrm{t}_{\text {WHZ }}$	Write to Output in High Z	2	15	2	15	2	15	ns
$t_{\text {WHOL }}$	$t_{\text {WLZ }}$	Write to Output in Low Z	2	15	2	15	2	15	ns
$\mathrm{t}_{\text {DVWH }}$	$\mathrm{t}_{\text {DS }}$	Data Setup Time	8	-	10	-	10	-	ns
${ }^{\text {WHOX }}$	$\mathrm{t}_{\text {DH }}$	Data Hold from Write Time	3	-	5	-	5	-	ns
	$\mathrm{t}_{\text {AS }}$	Address Latch Setup Time	3	-	3	-	3	-	ns
	$\mathrm{t}_{\text {AH }}$	Address Latch Hold Time	5	-	5	-	5	-	ns
$\mathrm{t}_{\text {AVWL }}$	$t_{\text {WAS }}$	Address to Write Setup Time	3	-	5	-	5	-	ns
	$t_{\text {SAA }}$	AAS to Alternate Address Setup Time	3	-	3	-	3	-	ns
	$t_{\text {WAAS }}$	Alt Address Setup Time	6	-	6	-	6	-	ns
	$t_{\text {WAAH }}$	Alt Address Hold Time	2	-	2	-	2	-	ns
	$\mathrm{t}_{\text {BW }}$	Byte Enable to Write Pulse Setup	0	-	0	-	0	-	ns
	$t_{\text {FW }}$	Force Byte Enable to Write Pulse Setup	0	-	0	-	0	-	ns
	$t_{\text {AW }}$	Address Valid to End of Wtrite	30	-	35	-	40	-	ns
$\mathrm{t}_{\text {SLWH }}$	${ }^{\text {SW }}$	Chip Select to Wtrite Pulse End	20	-	25	-	30	-	ns
$\mathrm{t}_{\text {WHAX }}$	${ }_{\text {WR }}$	Write Recovery Time	2	-	2	-	2	-	ns

SWITCHING WAVEFORMS (WRITE CYCLE)

WRITE CYCLE $1^{(1)}$

SWITCHING WAVEFORMS (WRITE CYCLE)
WRITE CYCLE $\mathbf{2}^{(1)}$

NOTES:

1. $\overline{\mathrm{W}}$ must be high during address transitions.
2. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{B}}$ or $\overline{\mathrm{FB}}$ low, $\overline{\mathrm{S}}$ low and $\overline{\mathrm{W}}$ low. All signals must be active to initiate a write and any one signal can terminate a write by going inactive. The data input setup and hold timing should be referenced to the second transition edge of the signal that terminates the write.
3. $\mathrm{t}_{\text {wA }}$ or $\mathrm{t}_{\text {waAH }}$ is measured from the earlier of $\overline{\mathrm{B}}$ or $\overline{\mathrm{FB}}$, or $\overline{\mathrm{S}}$ or $\overline{\mathrm{W}}$ going high at the end of write cycle.
4. During this period, DQ pins are in the output state so that the input signals of opposite phase to the outputs must not be applied
5. If the $\overline{\mathrm{S}}$ low transition occurs simultaneously with the $\overline{\mathrm{W}}$ low transitions or after the $\overline{\mathrm{W}}$ transition, outputs remain in a high impedance state.
6. $D_{\text {out }}$ is the same phase of write data of this write cycle.
7. Transition is measured $\pm 500 \mathrm{mV}$ from steady state with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as shown in Figure 1 b on page 6 . This parameter is guaranteed and not 100% tested.

ORDERING INFORMATION

			TEMPERATURE
SPEED (ns)	ORDERING PART NUMBER (1)	PACKAGE REFERENCE NO.	RANGE
35	MS82C308-35JC	$\mathrm{J} 44-1$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
45	MS82C308-45JC		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
55	MS82C308-55JC	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	

Cache Chipset for 80386 Systems with Write-Thru Cache

FEATURES

- Highly integrated VLSI components offer complete cache solution
- MS82C331 Cache Controller
- MS82C332 Expansion Tag RAM
- MS82C333 Quad Data RAM
- Tightly coupled 80386 interface
- Caches full 4GB memory space
- Full speed support for 80386 non-pipelined operations
- Performance match for 20,25 and 33 MHz processors
- Future migration to 40 and 50 MHz
- Supports 32, 64, 128 or 256 Kbyte caches
- Controller integrates 64Kbyte tag directory onboard
- For larger caches each expansion tag ram offers additional 64 KB true vertical cache expansion for highest hit rates
- Direct mapped, 2-way and 4 -way set associative cache mapping options supported
- Quad fetch mode uses 16 byte subblocks for improved hit rate
- Demand word fetch first strategy reduces miss penalty
- Line abort capability eliminates penalty for back-to-back misses
- Write-thru replacement strategy with control for write buffer
- LRU cache line replacement
- Allows buffered or non-buffered I/O writes
- Flexible on-chip support for 4 non-cachable regions
- On-chip Gate A20 support
- On-chip decoding for 80387 and Weitek 3167 coprocessors
- Asynchronous snoop bus ensures cache coherency
- Direct interface to standard SRAMs or unique MOSEL Quad Data RAM.
- Quad Data RAM offers maximum performance by allowing cache hits and memory fetches to be done in parallel

The MOSEL MS82C330 Chip Set is the industry's first complete solution for high performance 80386 systems with write-thru cache. This solution allows the processor to run at full speed by providing virtually 0 wait state memory accesses at only a small additional cost. The MS82C331 cache controller incorporates enhanced capabilities such as multiple cache associativity options, quad fetch with demand word fetch priority, main memory burst fill and line abort capability to ensure high hit rates and optimum performance. Highly integrated designs incorporate support for non-cachable regions, co-processors and other functions into the chipset, requiring a minimum of external logic and offering significant reductions in system chip count and board space requirements.
MOSEL's advanced memory technology and expertise has allowed the development of an innovative high speed data path offering significantly improved performance and higher integration. The proprietary dualaccess architecture of the MS82C333 Quad DataRAM allows for processor memory accesses and main memory fetches to occur in parallel, offering major improvements in hit rates and processor performance. Addition of the (optional) MS82C332 Expansion Tag RAM allows true vertical cache expansion up to 256 KB for highest performance without increased miss penalty as with other controllers.
This unique scalable architecture offers maximum performance at every density, while allowing the system designer flexibility to select optimum tradeoffs of cost and performance. It also allows for product families and significant product differentiation - no cookie-cutter systems here!

Cache Benefits

As microprocessor speeds continue to increase, these powerful CPUs are hampered by slow access times of mainmemory built from inexpensive DRAMs. The addition of a cache subsystem dramatically improves overall system performance by reducing processor wait states and system bus accesses.

Cache Considerations

The two most important factors which influence system performance are cache hit rate and cache management policies. Hit rate is a function of cache size, cache organization, line size, and sub-block size, as well as external factors relating to software design. Cache management policies include such considerations as memory mapping, memory write mechanism, cache miss handling, line replacement and cache coherency.
The MS82C330 Cache Chipset optimizes the tradeoffs between these factors for an 80386 system with write-thru cache. Its' enhanced capabilities and innovative features offer superior performance, design flexibility and integration to the designer while being extremely economical and easy to use.

MS82C331 Cache Controller and MS82C332 Expansion Tag RAM

The MS82C331 is a sophisticated second generation cache controller for designers wanting a write-thru cache. It supports direct-mapped, 2-way and 4-way set-associative cache mapping and provides all management logic for a highperformance cache. The 82C331 integrates 64 KB tag directory with 2 K entries on-chip. Addition of the MS82C332 Expansion Tag RAM allows true vertical cache expansion up to 256 KB for highest performance without increased miss penalty as with other controllers.
In order to increase hit rate, the 82C331 normally operates in quad fetch mode. In this mode each cache miss results in the requested word and the three adjacent words being loaded into the cache. Unlike other controllers, demand word fetch priority ensures that the necessary data is returned to the processor first to minimize processor wait states. Additionally, line abort capability allows quad fetch to be terminated. These features significantly improve the hit rate while virtually eliminating additional miss penalties.
The MS82C331 uses a write-thru memory write scheme. In this method main memory is updated for every processor write cycle. Additional performance is gained by allowing for "buffered" write which enables the processor to continue executing while the main memory write is being performed. Bus snooping is used to maintain cache coherency.

Non-cachable memory is supported with four general purpose non-cachable regions on-chip. These eliminate the need for fast external logic. Two of these regions may be specified as non-writable to support ROM or BIOS caching. Additional support is included for the 80387 and Weitek 3167 coprocessors.

MS82C333 Quad DataRAM

While the 82C331 and 82C332 provide excellent performance when used with standard SRAMs, the use of the 82C333 Quad DataRAM offers a dramatic performance improvement. The advanced dual-port architecture of the Quad DataRAM isolates the processor and system data buses. Since the cache will typically be operating at hit rates $>95 \%$, this allows main memory operations to proceed simultaneously with processor cache accesses.
This innovative approach offers a quantum leap improvement in data path architecture, removing a major bottleneck to increased performance.

SYSTEM BLOCK DIAGRAM

Cache Chipset for 80386 Systems with Write-Back Cache

FEATURES

- Highly integrated VLSI components offer complete cache solution
- MS82C341 Cache Controller
- MS82C342 Expansion Tag RAM
- MS82C343 Quad Data RAM
- Write-back cache update strategy
- 0 wait-state write hit and miss cycles
- Improves system bus utilization
- Speeds up DMA operations
- Maintains cache coherency in multi-processor systems
- LRU cache line replacement
- Tightly coupled 80386 interface
- Caches full 4GB memory space
- Full speed support for 80386 non-pipelined operations
- Performance match for 20,25 and 33 MHz processors.
- Future migration to 40 and 50 MHz
- Supports 32, 64, 128 or 256 Kbyte caches
- Controller integrates 64 Kbyte tag directory on-board
- For larger caches each ExpansionTag RAM offers additional 64 KB true vertical cache expansion for highest hit rates
- Direct mapped, 2-way and 4-way set associative cache mapping options supported
- Quad fetch mode uses 16 byte sub-blocks for improved hit rate
- Demand word fetch first strategy reduces miss penalty
- Line abort capability eliminates penalty for back-toback misses and system bus access
- Flexible on-chip support for 4 non-cachable regions
- On-chip Gate A20 support
- On-chip decoding for 80387 and Weitek 3167 co-processors
- Bus snooping ensures cache coherency
- Direct interface to standard SRAMs or unique Mosel Quad DataRAM
- Quad DataRAM offers maximum performance by allowing cache hits and memory fetches to be done in parallel
- Quad DataRAM allows write-back line replacement cycles to be hidden from processor, providing $8 x$ performance improvement over alternative implementations.

The MOSEL MS82C340 Chip Set is the industry's first complete solution for high performance 80386 systems with write-back cache. This solution allows the processor to run at full speed by providing virtually 0 wait state memory accesses at only a small additional cost. The MS82C341 cache controller incorporates enhanced capabilities such as multiple cache associativity options, quad fetch with demand word fetch priority, main memory burst fill, and line abort capability to ensure high hit rates and optimum performance. It uses a write-back cache update strategy, which improves system bus utilization, speeds up DMA operations, and assures cache coherency without performance degradation in high-performance multiprocessor systems. Highly integrated designs incorporate support for non-cachable regions, co-processors and other functions into the chipset, requiring a minimum of external logic and offering significant reductions in system cost, chip count, and board space requirements.

Mosel's advanced memory technology and expertise has allowed the development of an innovative high speed data path offering significantly improved performance and higher integration. The proprietary dualaccess architecture of the MS82C343 Quad DataRAM allows for processor accesses and main memory accesses to occur in parallel, offering major improvements in hit rates and processor performance. Addition of the (optional) MS82C342 Expansion Tag RAM allows true vertical cache expansion up to 256 KB for highest performance without increased miss penalty as with other controllers.

This unique scalable architecture offers the highest performance at every density, while allowing the system designer flexibility to select optimum tradeoffs of cost and performance. It also allows for product families and significant product differentiation. The MS82C340 cache chipset offers maximum performance with a minimum of cost and board space.

MOSEL Corporation 914 West Maude Avenue, Sunnyvale, CA 94086 U.S.A 408-733-4556

Cache Benefits

As microprocessor speeds continue to increase, these powerful CPUs are hampered by slow access times of main-memory built from inexpensive DRAMs. The addition of a cache subsystem dramatically improves overall system performance by reducing processor wait states and system bus accesses.

Cache Considerations

The two most important factors which influence system performance are cache hit rate and cache management policies. Hit rate is a function of cache size, cache organization, line size, and sub-block size, as well as external factors relating to software design. Cache management policies include such considerations as memory mapping, memory write mechanism, cache miss handling, line replacement, cache coherency and noncachable memory.

In a write-thru cache, every write operation from the processor is treated as a miss and written to main memory. This provides a simple mechanism for maintaining cache coherency, but sacrifices performance (since writes to main memory take more cycles) and bus bandwidth (since the system bus is occupied with processor writes). In contrast, a write-back cache reduces system bus traffic by writing to main memory only when a cache line which has been modified by the CPU is about to be replaced by new data from main memory. This drastically reduces the frequency of main memory write accesses, and frees up system bus bandwidth for DMA operations and other system accesses.

The MS82C340 Cache Chipset optimizes the tradeoffs between these factors for an 80386 system with writeback cache. Its' enhanced capabilities and innovative features offer superior performance, design flexibility and integration to the designer while being economical and easy to use.

MS82C341 Cache Controller and MS82C342 Expansion Tag RAM

The MS82C341 is a sophisticated second generation write-back cache controller. It supports direct-mapped, 2way and 4 -way set-associative cache mapping and provides all management logic for a high-performance cache. The MS82C341 integrates 64KB tag directory with 2K entries on-chip. Addition of the MS82C342 Expansion Tag RAM allows true vertical cache expansion up to 256 KB for highest performance without increased miss penalty as with other controllers.

In order to increase hit rate, the MS82C341 normally operates in quad fetch mode. In this mode each cache miss results in the requested word and the three adjacent words being loaded into the cache. Unlike other controllers, demand word fetch priority ensures that the requested data is returned to the processor immediately. Additionally, line abort capability allows the quad fetch to be terminated on a subsequent miss to immediately fetch
the newly requested data. These features significantly improve the hit rate while virtually eliminating additional miss penalties.

The MS82C341 uses a write-back memory write strategy with an 8 line block size. Bus snooping is included to maintain cache coherency. Non-cachable memory is supported with four general purpose non-cachable regions on-chip. These eliminate the need for fast external logic. Two of these regions may be specified as non-writable to support ROM or BIOS caching. Additional support is included for the 80387 and Weitek 3167 co-processors.

MS82C343 Quad DataRAM

While the MS82C341 and MS82C342 provide excellent performance when used with standard SRAMs, the use of the MS82C343 Quad DataRAM offers a dramatic performance improvement. The advanced dual-access architecture of the Quad DataRAM isolates the processor and system data buses. Since the cache will typically be operating at hit rates $>95 \%$, this allows main memory operations to proceed simultaneously with processor cache accesses. Write-back line replacement cycles are hidden from the processor, providing up to an 8X performance improvement in miss processing over other cache implementations. This innovative approach offers a quantum leap improvement in data path architecture, removing a major bottleneck to increased performance.

SYSTEM BLOCK DIAGRAM

Cache Chipset for 80486 Systems

FEATURES

- Highly integrated VLSI components offer complete solution for secondary cache for 80486 systems
- MS82C441 Cache Controller
- MS82C442 Expansion Tag RAM
- MS82C443 Burst RAM
- Supports true 80486 burst reads with 0 wait states
- Write-back cache update strategy with 16 byte sub-blocks
- 0 wait-state read hits, write hits and write misses
- Improves system bus utilization
- Speeds up DMA operations
- Maintains cache coherency in multi-processor systems
- LRU cache line replacement
- Supports burst reads and writes between cache and main memory
- Allows both sequential and 80486 burst sequence memory requests
- With Burst RAM allows use of standard cost-effective 32 bit main memory organization (No bank interleaving required). Automatically handles resequencing of data back to 80486
- Tightly coupled 80486 interface
- Caches full 4GB memory space
- Cache invalidation cycles supported back to the 80486
- Performance match for 25 and 33 MHz processors.
- Future migration to 40 and 50 MHz
- Supports 32, 64, 128 , 256 Kbyte and larger caches
- Controller integrates 64 Kbyte tag directory on-board
- For larger caches each Expansion Tag RAM offers additional 64 KB true vertical cache expansion for highest hit rates without extending line size
- Direct mapped, 2-way and 4-way set associative cache mapping options supported
- Flexible on-chip support for 4 non-cachable regions. Full support for KEN\#.
- On-chip Gate A20 support
- Supports Weitek 4167 co-processor
- Bus snooping ensures cache coherency.
- Direct interface to standard SRAMs or unique Mosel Burst RAMs
- Burst RAMs offer maximum performance by allowing cache hits and memory accesses to be done in parallel
- x9 width of Burst RAM allows use of parity functions offered by 80486
- Burst RAMs allow write-back line replacement cycles to be hidden from processor, providing up to $8 x$ performance improvement over alternative implementations.

The MOSEL MS82C440 Chip Set is the industry's first complete solution for high performance 80486 systems. This solution allows the processor to run at full speed by providing virtually 0 wait state memory accesses at only a small additional cost. The MS82C441 cache controller incorporates enhanced capabilities such as full support for 80486 burst reads, multiple cache associativity options and burst reads and writes between cache and main memory. It uses a write-back cache update strategy, which improves system bus utilization, speeds up DMA operations, and assures cache coherency without performance degradation in high-performance systems. Highly integrated designs incorporate support for non-cachable regions, co-processors and other functions into the chipset, requiring a minimum of external logic and offering significant reductions in system cost, chip count and board space requirements.

Mosel's advanced memory technology and expertise has allowed the development of an innovative high speed data path offering significantly improved performance and higher integration. The proprietary dualaccess architecture of the MS82C443 Burst RAM allows for processor accesses and main memory accesses to occur in parallel, offering major improvements in system performance. Addition of the (optional) MS82C442 Expansion Tag RAM allows true vertical cache expansion to 256 KB and beyond for highest performance without increased miss penalty or lengthy line replacement cycle times.

This unique scalable architecture offers the highest performance at every density, while allowing the system designer flexibility to select optimum tradeoffs of cost and performance. It also allows for product families and significant product differentiation. The MOSEL MS82C440 cache chipset offers maximum performance with a minimum of cost and board space.

MS82C440

Cache Benefits

As microprocessor speeds continue to increase, these powerful CPUs are hampered by slow access times of main-memory built from inexpensive DRAMs. The addition of a cache subsystem dramatically improves overall system performance by reducing processor wait states and system bus accesses.

Cache Considerations

The two most important factors which influence system performance are cache hit rate and cache management policies. Hit rate is a function of cache size, cache organization, line size, and sub-block size, as well as external factors relating to software design. Cache management policies include such considerations as memory mapping, memory write mechanism, cache miss handling, line replacement, cache coherency and noncachable memory.

In a write-thru cache, every write operation from the processor is treated as a miss and written to main memory. This provides a simple mechanism for maintaining cache coherency, but sacrifices performance (since writes to main memory take more cycles) and bus bandwidth (since the system bus is occupied with processor writes). In contrast, a write-back cache reduces system bus traffic by writing to main memory only when a cache line which has been modified by the CPU is about to be replaced by new data from main memory. This drastically reduces the frequency of main memory write accesses, and frees up system bus bandwidth for DMA operations and other system accesses.

The MS82C440 Cache Chipset optimizes the tradeoffs between these factors for an 80486 system. Its' enhanced capabilities and innovative features offer superior performance, design flexibility and integration to the designer while being economical and easy to use

MS82C441 Cache Controller and MS82C442 Expansion Tag RAM

The MS82C441 is a sophisticated second generation write-back cache controller for use with the Intel 80486 microprocessor. It supports direct-mapped, 2-way and 4way set-associative cache mapping and provides all management logic for a high-performance cache. The MS82C441 integrates 64KB tag directory with 2 K entries on-chip. Addition of the MS82C442 Expansion Tag RAM allows true vertical cache expansion up to 256 KB and beyond for highest performance without increased miss penalty or extending cache line length (which can severely impact performance).

Full support for the 80486 is provided by the MS82C441 cache controller, including 0 wait state burst reads and non-cachable regions through KEN\#. It also supports burst reads and writes between cache and main memory,
and can handle both sequential and 80486 burst sequence memory organizations.

The MS82C441 uses a write-back memory write strategy with an 8 line sub-block size. Bus snooping is included to maintain cache coherency. Non-cachable memory is supported with four general purpose non-cachable regions on-chip. These eliminate the need for fast external logic. Two of these regions may be specified as non-writable to support ROM or BIOS caching. Additional support is included for the Weitek 4167 co-processor.

MS82C443 Burst RAM

While the MS82C441 and MS82C442 provide excellent performance when used with standard SRAMs, the use of the MS82C443 Burst RAM offers an additional dramatic performance improvement. The advanced dual-access architecture of the Burst RAM isolates the processor and system data buses. Since the cache will typically be operating at hit rates $>96 \%$, this allows main memory operations to proceed simultaneously with processor cache accesses. Write-back line replacement cycles are hidden from the processor, providing up to an 8X performance improvement in miss processing over other implementations. This innovative approach offers a quantum leap improvement in data path architecture, removing a major bottleneck to increased performance.

The MS82C443 Burst RAM also allows the use of standard, cost-effective 32 bit main memory designs. In conjunction with the MS82C441 cache controller, standard sequential DRAM access modes can be used, and the data will automatically be resequenced into the proper order for the 80486 . This unique capability eliminates the need to develop complex and expensive memory architectures such as 64 bit memory buses or bank interleaved memory, while providing maximum performance.

SYSTEM BLOCK DIAGRAM

Application Notes

7
age Dlagrams

MOSEL Sales Network

Using the MOSEL MS82C308 Cache Data RAM with the Intel 82385 Cache Controller

High speed 80386 systems place severe demands on memory designers to develop economical methods to maintain processor throughput without incurring enormous costs. One proven, effective solution is to use a relatively small high speed SRAM cache in addition to the large DRAM main memory to achieve high average memory bandwidth with only small additional cost. Memory systems incorporating a cache can eliminate wait states for well over 90% of all memory accesses at only a small fraction of the cost of a complete high speed memory system.
The Intel 82385 is an integrated cache controller which provides all of the control signals needed to add a high speed cache to an 80386 system. It supports direct-mapped and 2-way set associative caches of up to 32 KB . When used in conjuction with the Mosel MS82C308 Cache Data Ram, a complete 32 KB 2 -way set associative cache can be implemented with only 5 chips. Earlier methods required from 18-28 chips to perform the same function. The result is a dramatic reduction in design complexity and board space, as well as a significant cost savings.
The Mosel MS82C308 Cache Data Ram is a high speed SRAM device optimized for cache applications. Each device is organized as 2 sets on-chip, with each set being $2 \mathrm{~K} \times 16$. In addition, the address latches, data transceivers and control functions are all integrated onto the device. Versions are currently available to support up to 25 MHz 80386 systems, with even faster versions under development.

BUILDING A 32KB CACHE

Interfacing with MS82C308 with the Intel 82385 cache controller for a 32 KB cache is an easy task. Figure 1 shows the connection diagram for a 32 KB 2-way set associative cache. Address inputs A0A10 on the 4 cache data rams are connected in parallel to addresses A2-A12 of the 80386 local address bus. The data input/output pins of the 4 data rams are then connected to DQ0-DQ31 of the 80386 local data bus.
(In Figure 1, devices A and C provide the high order bits of set 0 and 1 , respectively). The 4 chip select outputs from the 82385 are connected to the byte enables on the data rams. The output enables and write enables for sets 0 and 1 from the 82385 (COEA\#, COEB\#, CWEA\#, CWEB\#) are then connected to the appropriate enable pin on each of the 4 data rams. The CALEN output from the 82385 is connected to the ALE pin on each data ram. Finally, the force byte enable ($\overline{\mathrm{FB}}$) on each device should tied HIGH, and the alternate address select pin (AAS) on each data ram should be tied LOW. (These enhanced functions are not supported by the 82385).

The last step needed is to decode between the upper and lower segments of the cache memory. For this, address A13 is brought out from the 80386 and is latched (using a 74F373 or similar latch). The output of the latch is used to drive the chip select (\bar{S}) pins of the data rams. One set of data rams (in this case devices A and B) are designated as the lower segment and their chip selects are driven directly by the latched output; the other set (devices C and D) are the upper segment and their chip selects are driven by the invert of the latched output.

BUILDING A 16KB CACHE

There may be occasions when the designer chooses to implement a smaller cache for the system. Reasons for this may include such factors as system cost or board space considerations. Figure 2 shows how a 16KB 2way set associative cache can be implemented with just 2 Mosel MS82C308 Cache Data Rams and the Intel 82385 cache controller. With the exception of the select circuit, all of the connections are the same as for the 32 KB cache. The primary difference is that since there is only one memory segment, the data rams are continuously enabled. Therefore the chip select (S) pins on the data rams should be tied LOW.

APPLICATION NOTE AN-1

General Imommation

Sptwiaky whemonns

ROMs (Read Only Memory)

Volce ROMS

Cache Products

Aramman hotes

Package Diagrams
8

PACKAGE DIAGRAMS

48 pin Sidebraze

J32-1 32 pin Plastic Leaded Chip Carrier

PACKAGE DIAGRAMS

J44-1 $\quad 44$ pin Plastic Leaded Chip Carrier

PACKAGE DIAGRAMS

J44-2 $\quad 44$ pin Plastic Leaded Chip Carrier

J68-1 68 pin Plastic Leaded Chip Carrier

PACKAGE DIAGRAMS

M-1
32 pin Module

P24-1
24 pin Plastic Dual-in-line - 600 mil

P28-1
28 pin Plastic Dual-in-line - 600 mil

PACKAGE DIAGRAMS

P28-3
28 pin Plastic Dual-in-line - 600 mil

PACKAGE DIAGRAMS

P28-5
28 pin Plastic Dual-in-line Package

PACKAGE DIAGRAMS

PACKAGE DIAGRAMS

$\frac{.010 \pm .002}{(0.25 \pm 0.05)}$

P40-1 40 pin Plastic Dual-in-line Package

PACKAGE DIAGRAMS

PACKAGE DIAGRAMS

Q64-1

64 pin Plastic Flat Package

S24-1
24 pin Small Outline Package - 600 mil

PACKAGE DIAGRAMS

NOTE:

1. MATTE SURFACE: TOP AND BOTTOM SURFACE ONLY VDI 21.
2. LEADS ARE COPPER ALLOY EITHER TIN PLATED OR SOLDER COATED.
3. ALL TOLERANCES ARE ± 2 UNLESS OTHERWISE SPECIFIED.

PACKAGE DIAGRAMS

PACKAGE DIAGRAMS

S32-1
32 pin Plastic Small Outline Package

PACKAGE DIAGRAMS

ROMS (Pead Only Memory)

SALES NETWORK

MOSEL U.S. CORPORATE HEADQUARTERS:
914 W. Maude Avenue, Sunnyvale, CA 94086 Tel. 408-733-4556 Fax. 408-773-8415 Sales Fax. 408-733-2271

MOSEL U.S. AREA SALES OFFICES:

EASTERN REGION

71 Spitbrook Road, \#306
Nashua, NH 03062
Tel. 603-891-2007
Fax. 603-891-3597

CENTRAL REGION
425 N. Martingale, Suite 700
Schaumburg, IL 60173
Tel. 708-706-3714
Fax. 708-706-3719
MOSEL MANUFACTURER REPRESENTATIVES:

ALABAMA

Electramark
4950 Corporate Dr., Suite 130L
Huntsville, 35805
Tel. 205-830-4400
Fax. 205-830-4406

ARIZONA

Compass Marketing \& Sales
801 N. Tantum Blvd., Suite 101
Phoenix, AZ 85028
Tel. 602-996-0635
Fax. 602-996-0586
Compass Marketing \& Sales
1760 E. River Road, Suite 253
Tucson, AZ 85718
Tel. 602-577-5146
Fax. 602-577-5147
CALIFORNIA
Eagle Technical Sales
Associates
1900 Sunset Drive, Suite A
Escondido, CA 92025
Tel. 619-743-6550
Fax. 619-743-6585
Electec
3211 Scott Blvd.
Santa Clara, 95054
Tel. 408-496-0706
Fax. 408-727-9617
Electec
8465 Royal Oaks Dr.
Roseville, 95661
Tel. 916-797-0414
Fax. 916-791-3391
Spinnaker Sales
17870 Skypark Circle, Suite 107
Irvine, CA 92714-6242
Tel. 714-261-7233
Fax. 714-261-0963

CANADA

Har-Tech Electronics
5000 Dufferin St., Suite 216
Downsview, ONT., Canada M3H 5T5
Tel. 416-665-7773
Fax. 416-665-7290
Har-Tech Electronics
6600 Trans Canada Hwy., Suite 460
Pointe Claire, Quebec, Canada H9R 4S2
Tel. 514-694-6110
Fax. 514-694-8501
Har-Tech Electronics
1 Bonner Street
Nepean, Ontario, Canada K2H 7S9
Tel. 613-726-9410
Fax. 613-726-8834

CONNECTICUT

Comptech
60 Connolly Pkwy.
Hamden, 06154
Tel. 203-934-6757
Fax. 203-934-6952

FLORIDA

Electramark
1700 N. Dixie Hwy., Suite 126
Boca Raton, 33423
Tel. 407-392-1763
Fax. 407-392-7188
Electramark
401 Whooping Loop, Suite 1565
Altamonte Springs, 32701
Tel. 407-830-0844
Fax. 407-830-0847
Electramark
6105E Memorial Hwy.
Tampa, 33615
Tel. 813-889-7775
Fax. 813-889-7772

GEORGIA

Electramark
6030-H Unity Dr.
Norcross, 30071
Tel. 404-446-7915
Fax. 404-263-6389

ILLINOIS

Victoria Sales Inc.
200 W. Higgins Rd.
Schaumburg, 60195
Tel. 708-490-0300
Fax. 708-491-1499

INDIANA

Valentine \& Associates
1000 Madison Avenue N
P.O. Box 242

Greenwood, 46142
Tel. 317-888-2260
Fax. 317-881-4904

KANSAS

BC Electronics
1140 Adams
Kansas City, 66103
Tel. 913-342-1211
Fax. 913-342-0207
MASSACHUSETTS
Comptech
1 Bridgeview Circle
Tyngsboro, 01879
Tel. 508-649-3030
Fax. 508-649-3276

NORTHWESTERN REGION

914. W. Maude Avenue

Sunnyvale, CA 94086
Tel. 408-733-4556
Fax. 408-733-2271

MARYLAND

Avtek Associates
9051M Red Branch Rd.
Columbia, 21045-2103
Tel. 301-740-5100
Fax. 301-740-5103
MICHIGAN
R.P. Urban

24634 Five Mile Rd.
Detroit, 48239
Tel. 313-535-2355
Fax. 313-535-7109
R.P. Urban

2335 Burton St. S.E.
Grand Rapids, 49510
Tel. 616-245-0511
Fax. 616-245-4083
MINNESOTA
Cahill, Schmitz \& Cahill
315 N. Pierce
St. Paul, 55104
Tel. 612-646-7217
Fax. 612-646-4484

MISSOURI

BC Electronics
3579 Penridge Dr.
Bridgeton, 63135
Tel. 314-739-6683
Fax. 314-344-3180
NEW JERSEY
Metro Logic
271 Route 46 West, Suite D202
Fairfield, 07006
Tel. 201-575-5585
Fax. 201-575-8023
Tritek Sales
21 East Euclid Ave.
Haddonfield, 08033
Tel. 609-429-1551
Fax. 609-429-4915

NEW MEXICO

Compass Marketing \& Sales
4100 Osuna Road NE, Suite 208
Albuquerque, NM 87109
Tel. 505-344-9990
Fax. 505-345-4848

NEW YORK

Metro Logic
554 Polaris St.
North Babylon, 11703
Tel. 516-243-5617
Fax. 516-242-1670
Pi'Tronics
Picard Bldg. Office 110
5858 Molly Rd.
Syracuse, 13211
Tel. 315-455-7346
Fax. 315-455-2630

SOUTHWESTERN REGION
6 Venture, Suite 100
Irvine, CA 92718
Tel. 714-727-0443
Fax. 714-727-4235

NORTH CAROLINA
Blue Ridge Sales
1001 Navaho Dr., \#210
Raleigh, 27609
Tel. 919-876-1883
Fax. 919-876-1640

OHIO

Omega Sales
240 West Elmwood Dr., Suite 2015
Centerville, 45459
Tel. 513-434-5507
Fax. 513-434-5772
Omega Sales
4555 Emery Industrial Pkwy.
Suite 104
Cleveland, 44128
Tel. 216-360-9400
Fax. 216-360-0712

OREGON

Olson Technical Sales
12150 S.W. 1st
Beaverton, 97005
Tel. 503-643-9488
Fax. 503-626-1985

TEXAS

Southern States Marketing
1143 Rockingham, Suite 106
Richardson, 75080
Tel. 214-238-7500
Fax. 214-231-7662
Southern States Marketing
10700 Richmond, Suite 253
Houston, 77042
Tel. 713-789-2426
Fax. 713-789-3202
Southern States Marketing
400 E. Anderson Lane, Suite 111
Austin, 78752
Tel. 512-835-5822
Fax. 512-835-1404

WASHINGTON

Olson Technical Sales
12727 NE 20th, Suite 3
Bellevue, 98005
Tel. 206-883-7792
Fax. 206-883-9478

WISCONSIN

Victory Sales Inc.
N81 W12920 Leon Rd.
Meomonee Falls, 53051
Tel. 414-255-6015
Fax. 414-255-6017

SALES NETWORK

MOSEL ASIAN CORPORATE HEADQUARTERS:
Taiwan MOSEL, 3F No. 52, Park Avenue 2, Science Based Industrial Park, Hsinchu City, Taiwan Tel. 35-773-187 Fax. 35-778-210

MOSEL FAR EAST SALES OFFICES:

Taiwan MOSEL, Taipei
9F No. 180, Nan-King E. Road
4 sec . Taipei, Taiwan
Tel. 02-740-0829(30)
Fax. 02-740-0659

Japan MOSEL
Kanagawa Science Park
R\&D C-4F
100-1, Sakado, Takatsu-Ku
Kawasaki 213
Tel. 44-812-7430
Fax. 44-812-7433

MOSEL INTERNATIONAL SALES REPRESENTATIVES AND DISTRIBUTORS:

AUSTRALIA

ACD Itronics
100 Belmore Road NTH
Riverwood, N.S.W. 2210
Tel. 2-534-6200
Fax. 2-534-4910

BELGIUM

Rodelco
Limburg Stirumlaan 243
B-1810 Wemmel
Tel. 2-460-05-60
Fax. 2-460-02-71

DENMARK

C-88 AS
101 Kokkedal Industri Park
DK-2980 Kokkedal
Tel. 2-244-88
Fax. 2-244-889

ENGLAND

Force Technology
Tudor House 24 High Street Twyford, Berkshire RG 109AG
Tel. 7-3434-2991
Fax. 7-3434-2780
Mogul
C/O Lex Electronics
Stirling Way, Bretton Ind.
Estate
Peterborough, Cambridgesher
Tel. 7-3274-1841
Fax. 7-3274-0394
FINLAND
Fintronic
Italahdenkatu22
00210 Helsinki
Tel. 0-692-6022
Fax. 0-674-886

FRANCE

Almex
48 Rue de L'Aubepine BP 102 Antony Cedex
Tel. 1-4666-2112
Fax. 1-4666-6028
HONG-KONG
Galent
RM A, 6th F, Kam Wing Commercial Bldg.
28 Minden Ave., T.S.T. Kowloon
Tel. 852-3-3113603
Fax. 852-3-3112341
Techno Mind Ltd.
Suite 108, Estate Centre Bldg., 19 Dai Cheong Street,
Tai Po Industrial Estate
Tai Po, N.T.
Tel. 852-065-60663
Fax. 852-065-18993

ISRAEL

Unitec
1 Maskit Street
P.O. Box 2123

Herzlia
Tel. 52-576-006
Fax. 52-576-790
ITALY
Silverstar
Viale Fulvio Testin 280
20126 Milano
Tel. 2-661-251
Fax. 2-6610-1359
JAPAN
Teksel Co. Ltd.
Kanagawa Science Park, R\&D
C-4F
100-1, Sakado, Takatsu-Ku
Kawasaki 213
Tel. 44-812-7430
Fax. 44-812-7433

KOREA

Patech Co. Ltd.
740 Yuksam-Dong
Kangnam-Ku, Seoul
Tel. 822-563-4147(8)
Fax. 822-563-4149
KST
3rd F, Samho Bldg.,
997-9 Taechi-Dong
Kangnam-Ku, Seoul
Tel. 822-568-3921
Fax. 822-558-3019

SINGAPORE

Electec
12, Lorong Bakar Batu
Unit 04-02, Spore 1334
Tel. 65-742-4922
Fax. 65-742-6800

SPAIN

ADM Electronica, S.A.
Menorca, 3
28009 Madrid
Tel. 91-409-4725
Fax. 91-409-6903

SWEDEN

Titan
Bergkallavagen 25
19107 Sollentuna
Tel. 8-754-8915
SWITZERLAND
Electronitel S.A.
Chemin Du Grand-Clos 1
Ch-1752 Villars/Glane
Tel. 374-10060
Fax. 374-10070
TAIWAN
Amus
5F-1, No. 118,
Nan-Ching East Road, Taipei
Tel. 02-709-7626
Fax. 02-760-2385

Ever Plus
Taipei World Trade Center,
6F, \#8
Tel. 02-725-2104
Fax. 02-725-2105
Katek
4F-1, No. 374, Section 2
Ba-De Road, Taipei
Tel. 02-731-7279
Fax. 02-755-3394
Mitronics
Hyatt Tower 7F
No. 696, Tung Hua S. Road
Taipei
Tel. 2-709-7626
Fax. 2-755-3394

WEST GERMANY

API Electronik
Vertriebs GmbH
Lorenz-Braren-Str. 32
8062 Markt Indersdorf
Tel. 81-367092
Fax. 81-367398
SC'X GmbH
Lipizzaner Strasse 5
8156 Otterfing
Tel. 89-6422038
Fax. 89-6422321
USE
Leopoldstrasse
D-8000
Tel. 89-339-292
Fax. 89-339-083

SALES NETWORK

MOSEL DISTRIBUTORS

ALABAMA

Hall-Mark Electronics Corporation Huntsville, 205-837-8700

TIME Electronics
Huntsville, 205-721-1133

ARIZONA

A.V.E.D.

Scottsdale, 602-951-9788
Hall-Mark Electronics Corporation
Phoenix, AZ 85040
602-437-1200
TIME Electronics
Tempe, 602-967-2000

CALIFORNIA

A.V.E.D.

San Diego, 619-558-8890
A.V.E.D.

Tustin, 714-259-8258
A.V.E.D.

Visialia, 209-734-8861

A.V.E.D.

Westlake Village, 818-889-2861
Hall-Mark Electronics Corporation Chatsworth, 818-773-4500

Hall-Mark Electronics Corporation Irvine, 714-727-6000

Hall-Mark Electronics Corporation Rocklin, 916-624-9781
Hall-Mark Electronics Corporation San Diego, 619-268-1201
Hall-Mark Electronics Corporation San Jose, 408-432-4000

Merit Electronics

San Jose, 408-434-0800
TIME Electronics
Anaheim, 714-937-0911
TIME Electronics
Chatsworth, 818-998-7200
TIME Electronics
San Diego, 619-586-1331
TIME Electronics
Sunnyvale, 408-734-9888
TIME Electronics
Torrance, 213-320-0880

CANADA

Future Electronics
Montreal, 514-694-7710
Future Electronics
Ottawa, 613-820-8313
Future Electronics Quebec City, 418-682-8092

Future Electronics
Toronto, 416-638-4771
Future Electronics
Vancouver, 604-294-1166
TIME Electronics
Ontario, 416-672-5300

COLORADO

A.V.E.D.

Wheat Ridge, 303-422-1701
Hall-Mark Electronics Corporation
Englewood, 303-790-1662
TIME Electronics
Englewood, 303-799-8851
CONNECTICUT
Cronin Electronics
Wallingford, 203-265-3134
Time Electronics
Cheshire, 203-271-3200
Hall-Mark Electronics Corporation Cheshire, 203-271-2844

FLORIDA

Hall-Mark Electronics Corporation Casselberry, 407-830-5855

Hall-Mark Electronics Corporation Largo, 813-541-7440

Hall-Mark Electronics Corporation Pompano Beach, 305-971-9280
RM Electronics
Longwood, 407-862-9191
TIME Electronics
Ft. Lauderdale, 305-484-7778
TIME Electronics
Orlando, 407-841-6565

GEORGIA

Hall-Mark Electronics Corporation Norcross, 404-447-8000

TIME Electronics
Norcross, 404-448-4448
ILLINOIS
Hall-Mark Electronics Corporation Wood Dale, 312-860-3800
TIME Electronics
Schaumburg, 708-303-3000

INDIANA

Hall-Mark Electronics Corporation Indianapolis, 317-872-8875

RM Electronics
Indianapolis, 317-291-7110

KANSAS

Hall-Mark Electronics Corporation Lenexa, 913-888-4747

MASSACHESETTS
Cronin Electronics
Needham, 617-449-5000
Hall-Mark Electronics Corporation Billerica, 617-935-9777

TIME Electronics
Peabody, 617-532-6200

MARYLAND

TIME Electronics
Columbia, 301-964-3090
Hall-Mark Electronics Corporation
Columbia, 301-988-9800

MICHIGAN
Hall-Mark Electronics Corporation
Livonia, 313-462-1205
RM Electronics
Grand Rapids, 616-531-9300

MINNESOTA

Hall-Mark Electronics Corporation Eden Prarie, 612-941-2600

TIME Electronics
Edina, 612-835-1250

MISSOURI

Hall-Mark Electronics Corporation Earth City, 314-291-5350
TIME Electronics
St. Louis, 314-391-6444

NEW HAMPSHIRE

Cronin Electronics
Manchester, 603-624-0105

NEW JERSEY

Hall-Mark Electronics Corporation Mt. Laurel, 609-235-1900

Hall-Mark Electronics Corporation Parsippany, 201-515-3000

Time Electronics
Marlton, 215-337-0900

NEW YORK

Cronin Electronics
East Syracuse, 315-433-0033
Hall-Mark Electronics Corporation Ronkonkoma, 516-737-0600
Hall-Mark Electronics Corporation Fairport, 716-425-3300
Micro Genesis
Holbrook, 800-727-8020
TIME Electronics
East Syracuse, 315-432-0355
TIME Electronics
Hauppauge, 516-273-0100

NORTH CAROLINA

Hall-Mark Electronics Corporation Raleigh, 919-872-0712
TIME Electronics
Charlotte, 704-522-7600
OHIO
Hall-Mark Electronics Corporation Solon, 216-349-4632

Hall-Mark Electronics Corporation Worthington, 614-888-3313

TIME Electronics
Dublin, 614-761-1100

OKLAHOMA

Hall-Mark Electronics Corporation Tusla, 918-254-6110

OREGON
TIME Electronics
Portland, 503-684-3780

TEXAS
A.V.E.D.

Austin, 512-454-8845
A.V.E.D.

Dailas, 214-404-1144
TIME Electronics
Austin, 512-339-3051
Hall-Mark Electronics Corporation Austin, 512-258-8848
Hall-Mark Electronics Corporation Dallas, 214-553-4300

Hall-Mark Electronics Corporation Houston, 713-781-6100

TIME Electronics
Carrolton, 214-241-7441

UTAH

A.V.E.D.

West Valley City, 801-975-9500
TIME Electronics
West Valley, 801-973-8181

WASHINGTON

Hall-Mark Electronics Corporation
Seattle, 206-547-0415
Merit Electronics
Redmond, 206-869-7557
TIME Electronics
Redmond, 206-882-1600

WISCONSIN

Hall-Mark Electronics Corporation
New Berlin, 414-797-7844
TIME Electronics
McFarland, 608-838-8456

$$
\begin{aligned}
& \text { Sasman } \\
& \text { Prueras } \\
& \text { いin mision } \\
& \text { rie, L Gumet Ame } \\
& \text { Lebtentatw, hamoly } \\
& \text { T统 } \\
& \text { milgray } \\
& \text { 48t } \\
& \text { - } 61401 \\
& \because \quad \because \because 1
\end{aligned}
$$

MOSEL

914 West Maude Avenue

Sunnyvale, CA 94086

408-733-4556

FAX 408-733-2271

[^0]: Mosel reserves the right to make changes to its products at any time without notice in order to improve design and supply the best possible product. We assume no responsiblity for any errors which may appear in this publication.

[^1]: Note:

 1. The tests shown in the above Tables are typical requirements. Additional tests and the test sequence may vary by product.
[^2]: $P=600$ mil PDIP
 $Q=$ Quad Flatpack
 X = Die

[^3]: 1. This parameter is guaranteed and not tested.
[^4]: 1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
[^5]: 1. This parameter is guaranteed and not tested.
[^6]: Mosel reserves the right to make changes to its products at any time without notice in order to improve design and supply the best possible product. We assume no responsiblity for any errors which may appear in this publication.

[^7]: 1. This parameter is guaranteed and not tested.
[^8]: ${ }^{\text {(1) }}$ For the low power version, add L after part number and before dash information. For example, MS7200L-25PC.

[^9]: ${ }^{(1)}$ For the low power version, add L after part number and before dash information. For example, MS7200L-25PC.

[^10]: 1. $\overline{\mathrm{MR}}=$ Master Reset,$\overline{\mathrm{FL}} / \mathrm{DIR}=$ First Load/Direction, $\overline{\mathrm{EF}}=$ Empty Flag Output, $\overline{\mathrm{HF}}=$ Half Full Flag Output, $\overline{\mathrm{FF}}=$ Full Flag Output
[^11]: 1. This parameter is guaranteed but not 100% tested.
[^12]: 1. This parameter is guaranteed but not tested.
