C. MOS Technology A Commodore Company

MOS Technology
A Commodore Company
CONTENTS

Numerical and Functional Indexes Product Cross Reference Guide

CMOS

3
Microprocessors
Peripherals
ROMs
Consumer Products

LCD 4

Packaging Information 5

Application Notes
 6

Representatives and Distributors
7

SECTION4

Product Cross Reference Guide

connmodore conைModore connmodore connmodore connmoodome cロMMMロరుయ connMoodore
 connMoodore conmiocodore coñMo doMe commiodome commindopre comnModore commodore semiconductor group

NUNMERTCAL \& FUNCTIONAL INDEK

NUMERICAL INDEX NMOS

Device Descriptlon Page
23128 Static ROM (16384×8) 2-153
2316 Static ROM (2048×8) 2-137
2332 Static ROM (4096x8) 2-141
2333 Static ROM (4096x8) 2-145
2364 Static ROM (8192×8) 2-149
6500 Microprocessor Family 2-14
6500/1 Single Chip Microcomputer 2-2
6502 Microprocessor 2-22
6503 Microprocessor 2-22
6504 Microprocessor 2-22
6505 Microprocessor 2-22
6506 Microprocessor 2-23
6507 Microprocessor 2-23
6508 Microprocessor, with RAM and I/O 2-25
6509 Microprocessor, with Memory Management 2-35
6510 Microprocessor, with I/O 2-36
6512 Microprocessor 2-23
6513 Microprocessor 2-24
6514 Microprocessor 2-24
6515 Microprocessor 2-24
6520 Peripheral Adapter 2-46
6522 Versatile Interface Adapter (VIA) 2-50
6523 Tri-Port Interface 2-66
65245 Octal Bus Transceiver with 3 State Outputs 2-73
6525 Tri-Port Interface 2-76
6526 Complex Interface Adapter (CIA) 2-84
6529 Single Port Interface 2-92
6530 2-96
Memory, I/O, Timer Array
6532 2-107
Memory, 1/O, Timer Array
6545-1 2-117
6551 Asynchronous Communication Interface Adapter 2-129
MMS 6508-1 Micromodule Board 2-154
NUMERICAL INDEX CMOS
Device Description Page
23C16 Static ROM (2048×8) 3-18
23C32 Static ROM (4096×8) 3-22
65C00 Microprocessor Family 3-2
65C02 Microprocessor 3-10
65C03 Microprocessor 3-10
65C04 Microprocessor 3-10
65C05 Microprocessor 3-10
65C06 Microprocessor 3-11
65C07 Microprocessor 3-11
65 C 12 Microprocessor 3-11
65 C 13 Microprocessor 3-12
65 C 14 Microprocessor 3-12
65 C 15 Microprocessor 3-12
65 C 23 Tri-Port Interface 3-13

NUMERICAL \& FONCTIONAL INDEK

NUMERICAL INDEX CMOS

Device Description Page
6600 Low Power CMOS Remote Control Transmitter 3-35
8223 6 -Function $31 / 2-4$-Digit Stopwatch, $1 / 2$-Multiplexed LCD Display Drive 3-37
8268 4-Digit 6F Alarm with Snooze, $1 / 2$ Multiplexed Display Drive 3-42
8668 5 -Function 8 -Digit Watch, $1 / 2$ Multiplexed LCD Display Drive 3-48
8868 8 -Digit 6F Alarm with Snooze, $1 / 2$ Multiplexed LCD Display 3-52
887X 5-Function 8-Digit LCD Alarm Watch 7-Segment Programmable Animation, $1 / 2$ Multiplexed 3-57
NUMERICAL INDEX LCD
Device Description5002 K5002 K
5½ Digit Direct Drive Melody Alarm Clock Display 4-2
4003 K 4 Digit Biplexed Alarm Clock Display with Alarm, PM, and Data Flag 4-3
4004 L 4 Digit Direct Drive Clock Display with Alarm, AM and PM Flags 4-4
4005 N 4 Digit Direct Drive Alarm Clock with AM and PM Flags 4-5
4006 L 4 Digit Biplexed Clock Display with Alarm and PM Flags 4-6
4007 N 4 Digit Biplexed Alarm Clock Display with PM and Alarm Display 4-7
5015 F Men's 6 Digit Direct Drive Watch Display with Alarm Flags 4-8
5017 B Ladies' $31 / 2$ Direct Drive Watch Display with Alarm and PM Flags 4-9
5018 E Men's 31122 Digit Direct Drive Watch Display with Alarm and PM Flags 4-10
5053 BB Ladies' $31 / 2$ Digit Biplexed Watch Display 4-11
5056 I Men's $51 / 2$ Digit Direct Drive Watch Display Unit with Melody Alarm Flag 4-12
5060 B Ladies' $31 / 2$ Digit Biplexed Watch Display 4-13
5061 E Men's $31 / 2$ Digit Biplexed Watch Display 4-14
5075 A 3½ Digit Biplexed Pen Display 4-15
5101 C Ladies' $31 / 2$ Large Digit Biplexed Watch Display 4-16
5102 E Men's Biplexed Watch Display with PM, Alarm and Day Flag 4-17
5103 C Ladies' 4 Digit Biplexed Watch Display with Alarm, PM and Day Flags 4-18
51041 Men's 8 Digit Biplexed Watch Display with AM, PM, Alarm and Day Flags 4-19
5107 B Ladies' 4 Digit Biplexed Watch Display with Alarm and PM Flags 4-20
5108 E Men's Biplexed Watch Display with PM and Alarm Flags 4-21
5109 C Ladies' $3^{1 / 2}$ Digit Biplexed Watch Display with Alarm, PM and Day Flags 4-22
5111 AA 3½ Digit Direct Drive Pen Display with Alarm and PM Flags 4-23
5112 AA $31 / 2$ Digit Biplexed Pen Display with Alarm and PM Flags 4-24
5114 AA $31 / 2$ Digit Biplexed Pen Display 4-25
5115 E Men's Biplexed Watch Display with PM, One Second Interval Stopwatch and Day Flags 4-26
PACKAGING INFORMATION 5-2
APPLICATION NOTES

1. Octal Bus Transceiver, Our Equivalent Asynchronous Two-Way Communicator, TL-CMOS Compatible 6-2
2. MPS 6525 Versus MC6821/8255 6-3
3. Handling the "RDY" Line in 6500 CPUs 6-4
4. MPS6520 Versus MC6820/MC6821 6-5
5. Dual Processor Configuration with the MPS6508 6-6
6. 6551 Versus 6850 6-7
7. Memory Expansion with the 6508 6-8
8. MPS 6545-1 Versus Competition 6-9
9. MPS 6508 - An "Active" CPU During Block DMA 6-10
10. FR208X - The "Melody" Chip 6-11

NUMRERLCAL \& FUNCTOONAL INDEK
APPLICATION NOTES
Page
11. MPS6508 Handling Vectored Interrupts 6-12
12. MPS - A Two in One Deal 6-13
13. 6508 RAM - Two Places at Once? 6-14
14. MPS 6500/IE - EPROM Applications 6-15
15. MPS6500/1 - RAM Memory Expansion 6-16
16. Simple Clock Generator for the MPS 6500 Microprocessor Family 6-17
CMOS/LCD Watch-Clock Circuits 6-18
REPRESENTATIVES AND DISTRIBUTORS
Representatives 7-2
Distributors 7.5
FUNCTIONAL INDEX NMOS
MICROCOMPUTERS Page
6500/1 Single Chip Microcomputer 2-2
MICROPROCESSORS
6500 Microprocessor Family 2-14
6502 Microprocessor 2-22
6503 Microprocessor 2-22
6504 Microprocessor 2-22
6505 Microprocessor 2-22
6506 Microprocessor 2-23
6507 Microprocessor 2-23
6508 Microprocessor, with RAM and I/O 2-25
6509 Microprocessor, with Memory Management 2-35
6510 Microprocessor, with I/O 2-36
6512 Microprocessor 2-23
6513 Microprocessor 2-24
6514 Microprocessor 2-24
6515 Microprocessor 2-24
PERIPHERALS
6520 Peripheral Adapter 2-46
6522 Versatile Interface Adapter (VIA) 2-50
6523 Tri-Port Interface 2-66
65245 Octal Bus Transceiver with 3 State Outputs 2-73
6525 Tri-Port Interface 2-76
6526 Complex Interface Adapter (CIA) 2-84
6529 Single Port Interface 2-92
6530 Memory, I/O, Timer Array 2-96
6532 Memory, I/O, Timer Array 2-107
6545-1 CRT Controller 2-117
6551 Asynchronous Communication Interface Adapter 2-129
ROMs
2316 Static ROM (2048×8) 2-137
2332 Static ROM (4096x8) 2-141
2333 Static ROM (4096×8) 2-145
2364 Static ROM (8192×8) 2-149
23128 Static ROM (16384×8) 2-153
NOMMERICAL \& FONCTIONAL INDEX
FUNCTIONAL INDEX NMOS Page
BOARDS
MMS 6508-1 Micromodule Board 2-154
FUNCTIONAL INDEX CMOS
MICROPROCESSORS Page
65C00 Microprocessor Family 3-2
65 CO 2 Microprocessor 3-10
65C03 Microprocessor 3-10
65 C 04 Microprocessor 3-10
65C05 Microprocessor 3-10
65C06 Microprocessor 3-11
65C07 Microprocessor 3-11
65 C 12 Microprocessor 3-11
65 C 13 Microprocessor 3-12
65 C 14 Microprocessor 3-12
65 C 15 Microprocessor 3-12
PERIPHERALS
65C23 Tri-Port Interface 3-13
ROMs
23 C 16 Static ROM (2048x8) 3-18
23C32 Static ROM (4096x8) 3-22
commodore
semiconductor group

AMD Part No.
AM9217BPC AM9217BDC AM9232BPC
AM9232BDC

AMI	Commodore
S68316A	MPS2316
S68332	MPS2332

EA
EA2316B
EA2332
G.I.
RO-3-9316B

RO-3-9332B

Intel
P2316B
C2316B
P2332
C2332

Motorola
MCM68316B
MCM68332

National
MM2316B
MM52132
MM52164

NEC
UPD2316B
UPD2332
UPD2364

MFS2332

Commodore
MPS2316
MPS2332
Commodore Replacement Part MPS2316 MCS2316 MPS2332 MCS2332

MPS2332

Commodore
MPS2316
MPS2332

Commodore
MPS2316
MCS2316
MPS2332
MCS2332

Commodore
MPS2316
MPS2332

Commodore
MPS2316
MPS2332
MPS2364

Commodore
MPS2316
MPS2332
MPS2364
Signetlcs
Part No.
2632 N
2664 N

Commodore Replacement Part MPS2332 MPS2364

T.I. Commodore

TMS4732NL TMS4732JL TMS4764NL

MPS2332
MCS2332 TMS4764JL

Mostek Commodore

MK31000N-3
MCS2316 MK31000P-3 MPS2316 MK36000P-5 MPS2364 MK36000N-5 MCS2364

MICROPROCESSORS

Synertek
SYP=Plastic SYC=Ceramic SYP/C6502 SYP/C6503 SYP/C6504 SYC/C6505 SYP/C6506 SYP/C6507 SYP/C6512 SYP/C6513 SYP/C6514 SYP/C6515

```
A=2MHz
B=3MHz
SYP/C6502A
SYP/C6502B
SYP/C6503A
SYP/C6503B
SYP/C6504A
\(\mathrm{A}=2 \mathrm{MHz}\)
\(\mathrm{B}=3 \mathrm{MHz}\)
MPS/CS6502A MPS/CS6502B MPS/CS6503A MPS/CS6503B MPS/CS6504A
```

Commodore
MPS=Plastic MCS=Ceramic MPS/CS6502 MPS/CS6503 MPS/CS6504 MPS/CS6505 MPS/CS6506 MPS/CS6507 MPS/CS6512 MPS/CS6513 MPS/CS6514 MPS/CS6515

Synertek Part No.

SYP/C6504B SYP/C6505A SYP/C6505B SYP/C6506A SYP/C6506B SYP/C6507A SYP/C6507B SYP/C6512A SYP/C6512B SYP/C6513A SYP/C6513B SYP/C6514A SYP/C6514B SYP/C6515A SYP/C6515B SYP6520 SYP6520A SYC6520 SYC6520A SYP6522 SYP6522A SYC6522 SYC6522A SYP6530 SYC6530 SYP6532 SYP6532A SYC6532 SYC6532A SYP6545-1 SYC6545-1 MCS6545-1 SYP6551 MPS6551 SYC6551 MCS6551

Rockwell

R6502P
R6502AP
R6502C
R6502AC R6503P

Commodore Replacement Part MPS/CS6504B MPS/CS6505A MPS/CS6505B MPS/CS6506A MPS/CS6506B MPS/CS6507A MPS/CS6507B MPS/CS6512A MPS/CS6512B MPS/CS6513A MPS/CS6513B MPS/CS6514A MPS/CS6514B MPS/CS6515A MPS/CS6515B MPS6520 MPS6520A MCS6520 MCS6520A MPS6522 MPS6522A MCS6522 MCS6522A MPS6530 MCS6530 MPS6532 MPS6532A MCS6532 MCS6532A MPS6545-1 MPS6551

Commodore MPS6502 MPS6502A MCS6502 MCS6502A MPS6503

$\frac{\text { MICROPROCESSORS }}{\text { DOCOC }}$

Rockwell	Commodore	Rockwell	Commodore
Part No.	Replacement Part	Part No. Replacement Part	
R6503AP	MPS6503A	R6515AC	MCS6515A
R6503AC	MCS6503A	R6520P	MPS6520
R6504P	MPS6504	R6520AP	MPS6520A
R6504AP	MPS6504A	R6520C	MCS6520
R6504C	MCS6504	R6520AC	MCS6520A
R6504AC	MCS504A	R6522P	MPS6522
R6505P	MPS6505	R6522AP	MPS6522A
R6505AP	MPS6505A	R6522C	MCS6522
R6505C	MCS6505	R6522AC	MCS6522A
R6505AC	MCS6505A	R6530P	MPS6530
R6506P	MPS6506	R6530C	MCS6530
R6506AP	MPS6506A	R6532P	MPS6532
R6506C	MCS6506	R6532AP	MPS6532A
R6506AC	MCS6506A	R6532C	MCS6532
R6507P	MPS6507	R6532AC	MCS6532A
R6507AP	MPS6507A	R6500/IP	MPS6500/I
R6507C	MCS6507	R6500/AP	MPS6500/IA
R6507AC	MCS6507A	RR500/IC	MCS6500/I
R6512P	MPS6512	R6500/AC	MCS6500/IA
R6512AP	MPS6512A	R6545-IP	MPS6545-I
R6512C	MCS6512	R6545-IC	MCS6545-I
R6512AC	MCS6512A	R6551P	MPS6551
R6513P	MPS6513	R6551C	MCS6551
R6513AP	MPS6513A		
R6513C	MCS6513	Motorola	Commodore
R6513AC	MCS513A	MC6820	MPS6520
R6514P	MPS6514	MC6821	MPS6520
R6514AP	MPS6514A	MC68B21	MPS6520A
R6514C	MCS6514	MC6845	MPS6545-1
R6514AC	MCS6514A		AMI
R6515P	MPS6515	R6515AP	MPS6515A
R6515C	MCS6515	S6821	MPS6520
R68B21	MPS6520A		

SECTION2

NMOS

connMoodore
connioodore
ConnMo dore
conninodore
connioodore
conninodore
conninodore
comminoobore
ConnModore
comnMo doMe
ConnMoodore
commodore
semiconductor group

MPS

6500/1 ONE-CHIP MICROCOMPUTER

INTRODUCTION

The MOS Technology 6500/1 is a complete, high-performance 8-bit NMOS microcomputer on a single chip, and is totally upward/downward software compatible with all members of the 6500 family.

The 6500/1 consists of a 6502 CPU, an internal clock oscillator, 2048 bytes of Read Only Memory (ROM), 64 bytes of Random Access Memory (RAM) and flexlble interface circuitry. The interface circuitry includes a 16 -blt programmable counter/latch with four operating modes, 32 bidirectional input/output lines (including two edgesensitive lines), five interrupts and a counter I/O line.

PRODUCT SUPPORT

To allow prototype circuit development, Mos Technology offers a PROM compatible 64-pin Emulator device. This device provides all $6500 / 1$ interface lines plus routing the address bus, data bus, and assoclated control lines off the chip to be connected to external memory.

ORDERING INFORMATION

Order	Package	Frequency	Temperature
Number	Type	Option	Range
MPS6500/1	Plastic	1 MHz	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MCS6500/1	Ceramic	1 MHz	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MPS6500/1A	Plastic	2 MHz	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MCS6500/1A	Ceramic	2 MHz	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
CS	nulator De	ce 1 MHz	
CS6500/1EA	nulator	ice 2MHz	

Note: The RC frequency option is available only in the 1 MHz 6500/1.

Interface Dlagram

FEATURES

- 6502 CPU
-Software upward/downward compatibility
-Decimal or binary arithmetic modes
- 13 addressing modes
-True direct and indirect indexing
-Memory addressable I/O
- 2048×8 mask programmable ROM
- 64×8 static RAM
- 32 bi-directional TTL compatible I/O lines (4 ports)
- 1 bi-directional TTL compatible counter I/O line
- 16 -bit programmable counter/latch with four modes
-Interval Timer -Event Counter
-Pulse Generator -Pulse Width Measurement
- Five Interrupts
$\begin{array}{ll}\text {-Two external edge sensitive } \\ \text {-Neset } & \\ \text {-Non-maskable } & \text {-Counter }\end{array}$
- 1 of 3 frequency references
-Crystal —Clock —RC (resistor only)
- 4 MHz max crystal or clock external frequency
- 2 MHz or 1 MHz internal clock
- $1 \mu \mathrm{~s}$ minimum instruction execution
- N-channel, silicon gate, depletion load technology
- Single +5 V power supply
- 500 mW operating power
- Separate power pin for RAM
- 40 pin DIP
- 64 pin PROM compatible Emulator device

FUNCTIONAL DESCRIPTION

CENTRAL PROCESSING UNIT (CPU)

Clock Oecillator

The Clock Oscillator provides the basic timing signals used by the 6500/1 CPU. The reference frequency is provided by an external source, and can be from a crystal, clock or RC network input. The RC network mode is a mask option. The external frequency can vary from 200 kHz to 4 MHz . The internal Phase 2 ($\varnothing 2$) frequency is one-half the external reference fre quency. A 4.7 K ohm resistor will provide nominal 2 MHz oscillation and 1 MHz internal operation in the RC mask option ($\pm 35 \%$).

Timing Control

The Timing Control Logic keeps track of the specific instruction cycle being executed. Each data transfer which takes place between the registers is caused by decoding the contents of both the Instruction Register and Timing Control Logic.

Program Counter

The 16 -bit Program Counter provides the addresses which step the CPU through sequentlal instructions in a program. The Program Counter is incremented each time an instruction or data is fetched from memory.

Instruction Register and Decode

Instructions fetched from memory are gated onto the Internal Data Bus. These instructions are latched Into the Instruction Register then decoded, along with timing and interrupt signals, to generate control signals for the various registers.

Arthmetic and Logic Unit (ALU)

All arithmetic and logic operations take place in the ALU, including Incrementing and decrementing internal registers (except the Program Counter).

Accumulator

The accumulator is a general purpose 8 -bit reglster that stores the results of most arithmetic and logic operations. In addition, the accumulator usually contains one of the two data words used in these operations.

Index Reglsters

There are two 8 -bit index registers, X and Y . These registers can be used for general purpose storage, or as a displacement to modify the base address and thus obtain a new effective address. Pre or postindexing of indirect addresses is possible.

Stack Pointer

The Stack Pointer is an 8-blt register. It is automatically incremented and decremented under control of the CPU to perform stack manipulation under direction of either the program or interrupts NMI and IRQ. The stack allows simple implementation of nested subroutines and multiple level interrupts.

Processor Status Register

Processor Status Register

The 8 -bit Processor Status Register contains seven status flags. Some of the flags are controlled by the program, others may be controlled both by the program and the CPU. The 6500 instruction set contains a number of conditional branch Instructions which are designed to allow testing of these flags.

Interupt Logle

Interrupt logic controls the sequencing of three interrupts; RES, NMI and IRQ. IRQ is generated by any one of three conditions: Counter Overflow, PAO Positive Edge Detected, and PA1 Negative Edge Detected.

MEMORY

2048×8 ROM

The 2048 byte Read-Only Memory (ROM) contains the program instructions and other fixed constants. These program Instructions and constants are mask programmed into the ROM during fabrication of the 6500/1 device. The 6500/1 ROM is memory mapped from 800 to FFF.

64×8 RAM

The 64 byte Random Access Memory (RAM) is used for read/write memory during system operation, and contains the stack. This RAM is completely static in operation and requires no clock or dynamic refresh. A standby power pin, VRR, allows RAM memory to be maintained on 10% of the operating power in the event that VCC power is lost.

In order to take advantage of efficient zero page addressing capabilities, the RAM is assigned memory addresses 0 to 03F.

INPUTIOUTPUT

Bldirectional IO Ports

The 6500/1 provides four 8-bit input/output ports (PA, PB, PC, and PD). Assoclated with the $I O$ ports are four 8 -bit registers located on page zero. See the system memory map for specific addresses. Each l/O Iline is individually selectable as an input or an output without line grouping or port association restrictions.

An internal active transistor drives each I/O line to the low state. An internal passive resistance pulls the $1 / O$ lines to the high state, eliminating the need for external pull-up resistors.

An option is available to delete the internal pull-up resistance on 8-bit port groups or on the CNTR line at mask time. This option is employed to permanently assign an 8 -bit port group to input functions, to interface with CMOS drivers, or to interface with external pull-up devices.

Inputs

Inputs are enabled by setting the appropriate bit of the I/O port to the high state (Logic 1). A low input signal causes a loglc 0 to be read. A high input signal causes a logic 1 to be read. RES loads Logic 1 into the I/O ports, thereby Initlalizing all I/O lines as inputs.

Outputs

Outputs are set by loading the desired bit pattern into the corresponding I/O ports. A Logic 1 selects a high output; a Logic 0 selects a low output.

CONTROL REGISTER

The Control Register (CR) controls four Counter operating modes and three maskable interrupts. It also reports the status of three interrupt condilions. There are five control bits and three status bits. The control bits are set to Logic 1 or cleared to Logic 0 by writing the desired state into the respective bit positions. The Control Register is cleared to Logic 0 by the occurrence of RES.

Control Reglster

EDGE DETECT CAPABILITY

There is an asynchronous edge detect capability on two of the Port A l/O lines. This capabillty exists in addition to and independently from the normal Port A I/O functions. The maximum rate at which an edge can be detected is one-half the $\varnothing 2$ clock rate. The edge detect logic is continuously active. Each edge detect signal is assoclated with a maskable interrupt.

PAO Posiflive Edge Detection

A positive (rising) edge is detectable on PAO. When this edge is detected, the PAO Positlve Edge Detected bli-Bit 6 in the Control Register-is set to Logic 1. When both this blt and the PAO Interrupt Enable Bit-Bit 3 of the Control Register-are set to Logic 1, an IRQ interrupt request is generated. The PAO Positive Edge Detected bit is cleared by writing to address 089.

PA1 Negative Edge Defection

A negative (falling) edge is detectable on PA1. When this edge is detected, the PA1 Negative Edge Detected bit-Bit 5 of the Control Register-is set to Loglc 1. When both this blt and the PA1 Interrupt Enable bit-Bit 2 of the Control Register-are set to Logic 1, an IRQ interrupt request is generated. The PA1 Negatlve Edge Detected bit is cleared by writing to address 08A.

COUNTER/LATCH

The Counter/Latch consists of a 16 -bit decrementIng Counter and a 16 -bit Latch. The Counter is comprised of two 8 -bit registers. Address 086 contalns the Upper Count (UC) and address 087 contains the Lower Count (LC). The Counter counts either $\varnothing 2$ clock perlods or occurrences of an external event, depending on the selected counter mode. The UC and LC can be read at any time without affecting counter operation.
The Latch contains the Counter preset value. The Latch consists of two 8-bit registers. Address 084 contains the Upper Latch (UL) and address 085 contains the lower latch (LL). The 16 -bit Latch can hold a count from 0 to 65,535 . The Latch can be accessed as two write-only memory locations.

The Latch registers can be loaded at any time by storing into UL and LL. The UL can also be loaded by writing into address 088.

The Counter can be preset at any time by writing to address 088 . Presetting the Counter in this manner causes the contents of the accumulator to be stored into the UL before the 16 -bit value in the Latch (UL and LL) is transferred in the Counter (UC and LC).

The Counter is preset to the Latch value when the Counter overflows. When the counter decrements from 0000 , Counter overflow occurs causing the next counter value to be the Latch value, not FFFF.

When the Counter overflows, Counter Overflow bit-Bit 7 of the Control Register-is set to Logic 1. When both this bit and the Counter Interrupt Enable bit-Bit 4 of the Control Register-are set, an IRQ interrupt request is generated. The Counter Overflow bit in the Control Register can be examined in an IRQ interrupt service routine to determine that the IRQ was generated by Counter overfiow.

The Counter Overflow bit is cleared when the LC is read or Counter preset is performed by writing into address 088.

COUNTER MODES

The Counter operates in any of four modes. These modes are selected by the Counter Mode Control blts in the Control Register.

Mode	CMC 1	CMC 0
Interval Timer	0	0
Pulse Generator	0	1
Event Counter	1	0
Pulse Width Measurement	1	1

The Interval Timer, Pulse Generator, and Pulse Width Measurement Modes are $\varnothing 2$ clock counter modes. The Event Counter Mode counts the occurrences of an external event on the CNTR line.

Interval Timer (Mode 0)

In this mode the Counter is free running and decrements at the $\varnothing 2$ clock rate. Counter overflow sets the Control Register status blt and causes the Counter to be preset to the Latch value.
The CNTR line is heid in the high state.
Pulse Generator (Mode 1)
In this mode the Counter is free running and decrements at the $\varnothing 2$ clock rate. Counter overflow sets the Control Register status bit and causes the Counter to be preset to the Latch value.

The CNTR line toggles from one state to the other when Counter overflow occurs. Writing to address 088 will also toggle the CNTR line.

A symmetric or asymmetic output waveform can be generated on the CNTR line in this mode. A oneshot waveform can easily be generated by changing from Mode 1 to Mode 0 after only one occurrence of the output toggle condition.

Event Counter (Mode 2)

In this mode the CNTR line is used as an event input line. The Counter decrements each time a rising odge is detected on CNTR. The maximum rate at which this edge can be detected is one-half the $\varnothing 2$ clock rate. Counter overflow sets the Control Register status blt and causes the Counter to be preset to the Latch value.

Pulse Width Measurement (Mode 3)

This mode allows the accurate measurement of the duration of a low state on the CNTR line. The Counter decrements at the $\varnothing 2$ clock rate as long as the CNTR Ilne is held in the low state. The Counter is stopped when CNTR is in the high state. If the CNTR pin is left disconnected, this mode may be selected to stop the Counter since the internal pull-up device will cause the CNTR input to be in the high state.

RESET CONSIDERATIONS

The occurrence of $\overline{\text { RES }}$ golng from low to high causes initialization of various conditions in the $6500 / 1$. All of the $/ / O$ ports (PA, PB, PC, and PD) and

CNTR are forced to the high (Logic 1) state. All bits of the Control Register are reset to Logic 0 , causing the Interval Timer Mode (Mode 0) to be selected and all in. terrupt enabled bits to be cleared. Nelther the Latch nor the Counter registers are initialized by RES. The Interrupt Disable blt in the CPU Processor Status Register is set and the program starts execution at the address contained in the Reset Vector location.

TEST LOGIC

Speclal test logic provides a method for thoroughly testing the $6500 / 1$. Applying a +10 V signal to the $\overline{\text { RES }}$ line places the 6500/1 in the test mode. While in this mode, all memory fetches are made from Port PC. External test equipment can use this feature to test internal CPU logic and I/O. A program can be loaded into RAM allowing the contents of the instruction ROM to be dumped to any port for external verification.

All 6500/1 microcomputers are tested by MOS Technology using this feature.

MEMORY ADDRESSABLE IIO

The I/O ports, registers, and commands are treated as memory and are assigned specific addresses. See the system memory map for the addresses. This I/O technique allows the full set of CPU instructions to be used in the generation and sampling of I/O commands and data. When an instruction is executed with an I/O address and appropriate RNW state, the corresponding I/O function is performed.

SYSTEM MEMORY MAP

Notes:

(1) I/O command only; i.e., no stored data.
(2) Clears Counter Overflow-Bit 7 in Control Register.

MPS
6500/1

6500/1 Block Diagram

SIGNAL

30 Main power supply +5 V
1 Separate power pin for RAM. In the event that VCC power is lost, this power retains RAM data.
12 Signal ground
10 Crystal, clock or RC network input for Internal clock oscillator.
11 Crystal or RC network output from internal clock oscillator.
RES

39 The Reset input is used to initialize the 6500/1. This signal must not transition from low to high for at least elght cycles after VCC reaches operating range and the internal oscillator has stabilized.
+10 V input enables the test mode.

SIGNAL PIN NAME NO. DESCRIPTION

40 A negative going edge on the NonMaskable Interrupt signal requests that a non-maskable interrupt be generated within the CPU.
PAO-PA7 38-31 Four 8 bit ports used for elther PBO-PB7 29-22 input/output. Each line consists PCO-PC7 20-13 of an active transistor to VSS and PCO-PC7 20-13 a passive pull-up to +5 V . The two PDO-PD7 9.2 lower bits of the PA port (PAO and PA1) also serve as edge detect inputs with maskable interrupts.
CNTR 21 This line is used as a Counter input/output line. CNTR is an input in the Event Counter and Pulse Width Measurement modes and is an output in the Interval Timer and Pulse Generator modes.

Pin Configuration

ADDRESSING MODES

ACCUMULATOR ADDRESSING-This form of addressing is represented with a one byte instruction, Implying an operation on the accumulator.

IMMEDIATE ADDRESSING-In immediate addressing, the operand is contained in the second byte of the Instruction, with no further memory addressing required.

ABSOLUTE ADDRESSING-In absolute addressing, the second byte of the instruction specifies the eight low order blts of the effective address while the third byte specifies the eight high order bits.

ZERO PAGE ADDRESSING-The zero page instructions allow for shorter code and execution times by only fetching the second byte of the instruction and assuming a zero high address byte. Careful use of the zero page can result in significant increase in code efficiency.

INDEXED ZERO PAGE ADDRESSING- $(X, Y$ index-ing)-This form of addressing is used in conjunction with the index register and is referred to as "Zero Page, X " or "Zero Page, Y ." The effective address is calculated by adding the second byte to the contents of the Index register. Since this is a form of "Zero Page" addressing, the content of the second byte references a location in page zero. Additlonally due to the "Zero Page" addressing nature of this mode, no carry is added to the high order 8 bits of memory and crossing of page boundaries does not occur.

INDEXED ABSOLUTE ADDRESSING-(X, Y index-ing)-This form of addressing is used in conjunction with X and Y index register and is referred to as "Absoiute, X ", and "Absolute, Y." The effectlve address is formed by adding the contents of X or Y to the address contalned in the second and third bytes of the instruction. This mode allows the index register to contaln the index or count value and the instruction to contain the base address. This type of indexing allows any location referencing and the index to modify multiple flelds resulting in reduced coding and execution time.

IMPLIED ADDRESSING-In the implied addressIng mode, the address containing the operand is implicitly stated in the operation code of the instruction.

RELATIVE ADDRESSING-Relative addressing is used only with branch instructions and establishes a destination for the conditional branch.

The second byte of the instruction becomes the operand which is an "Offset" added to the contents of the lower eight blts of the program counter when the counter is set at the next instruction. The range of the offset is $\mathbf{- 1 2 8}$ to +127 bytes from the next instructlon.

INDEXED INDIRECT ADDRESSING-In indexed indirect addressing (referred to as [indirect, X D, the second byte of the instruction is added to the contents of the X Index register, dlscarding the carry. The result of this addition points to a memory location on page zero whose contents is the low order eight bits of the effective address. The next memory location in page zero contains the high order eight bits of the effective address. Both memory locations specifying the high and low order bytes of the effective address must be in page zero.

INDIRECT INDEXED ADDRESSING-In indirect indexed addressing (referred to as [indirect, Y), the second byte of the instruction points to a memory location in page zero. The contents of this memory location are added to the contents of the Y index register, the result being the low order eight bits of the effective address. The carry from this addition is added to the contents of the next page zero memory location, the result being the high order eight bits of the effective address.
ABSOLUTE INDIRECT-The second byte of the instruction contains the low order eight bits of a memory location. The high order eight bits of that memory location are contained in the third byte of the instruction. The contents of the fully specified memory location are the low order byte of the effective address. The next memory location contains the high order byte of the effective address which is loaded into the sixteen bits of the program counter.

matancinem		-menatis			semer vit			waspact			4 cve			-7, ${ }^{0}$			(1ate 5_{1}			Hasiv			29461					am:			mistm			manct 1		$20.61{ }^{2}$			Conominet costs	
Hemex	cramige	OP	N		OP	N	$=$	OP	N	-	OP	N	40	OP	N		OP ${ }^{\text {a }}$	N		OP	N		OP)	N	\ldots	OpN	N	O	N	-	Of	N	O	Of		Op	N	*	N	2 Cl 1
$\begin{array}{\|c\|c\|} \hline A D C \\ A N O D \\ A S L \\ B C C \\ B C S \\ \hline \end{array}$		69	2	2	$\begin{aligned} & \hline 80 \\ & 20 \\ & \hline 0 E \end{aligned}$	4 4 6	3	$\begin{aligned} & 65 \\ & 25 \\ & 66 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 5 \end{aligned}$	$\begin{array}{\|l\|} \hline 2 \\ 2 \\ 2 \end{array}$	faca	2	1				$\begin{aligned} & 61 \\ & 21 \end{aligned}$		$\begin{array}{l\|l} 2 & 7 \\ 2 & 3 \end{array}$	$\left[\begin{array}{l} 71 \\ 31 \end{array}\right.$			$\left\|\begin{array}{l} 75 \\ 35 \\ 16 \end{array}\right\|$	$\left.\right\|_{4} ^{4}$	2 2 2		$\begin{array}{ll} 4 & 3 \\ 4 & 3 \\ 7 & 3 \end{array}$	79	4	3	$\begin{aligned} & 90 \\ & 80 \end{aligned}$									$\begin{array}{lll}1 & 1 & - \\ 1 & - \\ 1 & - & - \\ 1 & - & - \\ -1 & - & - \\ -1 & - & -\end{array}$
$\begin{aligned} & \hline \text { BEG } \\ & \text { BIT } \\ & \text { BMI } \\ & \text { ONE } \\ & \text { BPL } \end{aligned}$	BRANCH ON Z"1 121 AAM BRANCH ON N: 121 BRANCH ON Z -0 121 BRANCH ON N- 121				2 C	4	3	24	3	2																					$\begin{aligned} & F 0 \\ & 30 \\ & 00 \\ & 10 \end{aligned}$	$\begin{array}{\|l\|} \hline 2 \\ 2 \\ 2 \\ 2 \\ \hline \end{array}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & \hline \end{aligned}$							- - - - - - - - - - - - - - - - -
															$\begin{aligned} & 7 \\ & 2 \\ & 2 \end{aligned}$																$\left.\begin{aligned} & 50 \\ & 70 \end{aligned} \right\rvert\,$	$\left\|\begin{array}{l} 2 \\ 2 \end{array}\right\|$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$						-	$\begin{array}{ccccc}- & - & - & - & - \\ - & - & - & - & - \\ - & - & - & - & - \\ - & 0 & - & - & - \\ - & - & - & -\end{array}$
$\begin{aligned} & C L I \\ & C L V \\ & C M P \\ & C P X \\ & C P V \end{aligned}$	$0 \rightarrow 1$ $0-V$ $M-M$ $X-M$ $V-M$		2	2 2 2	$\begin{aligned} & \mathrm{CD} \\ & \mathrm{EC} \\ & \mathrm{cc} \end{aligned}$	4 4 4 4	3 3 3	$\begin{array}{\|l\|} \mathrm{C} \\ \mathrm{EA} \\ \mathrm{CA} \\ \hline \end{array}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \end{aligned}$	2 2 2				58 88	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	c	${ }^{4} 16$	6	210	D1	5	2	05	4	2	D0 4	43	O9	4	3										
$\begin{array}{\|l\|} \hline \text { DEC } \\ \text { DEX } \\ \text { DEY } \\ \text { EOR } \\ \text { INC } \\ \hline \end{array}$	$\begin{array}{ll} \hline M-1-M & \\ X-1-X & \\ Y-1-V & \\ M \forall M-A & \\ M+1-M & \\ \hline \end{array}$	49	2	2		${ }^{6}$		$\begin{array}{\|c\|} \hline C 6 \\ 45 \\ \hline \\ \hline \end{array}$	$\begin{aligned} & 5 \\ & 3 \\ & 5 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & \hline \end{aligned}$				$\left\|\begin{array}{c} \mathrm{CA} \\ 88 \end{array}\right\|$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	4	41	6	25	51	5	2	06 58 $F 6$	${ }_{6}^{6}$	2	OE 7 SO 7 FE 7	$\begin{array}{\|l\|l\|} \hline 7 & 3 \\ \hline & 3 \\ 7 & 3 \\ \hline \end{array}$	3 S	4	3									1 1 1 1 1	1-- - - -
$\begin{aligned} & \text { INX } \\ & \text { INY } \\ & \text { JMA } \\ & \text { JSA } \\ & \text { LDA } \end{aligned}$	$\begin{aligned} & x+1-x \\ & x+1 \rightarrow y \end{aligned}$ SUMP TO NEW LOC ISee Fin 21 WUMP SUE $M-A$	A9	2		AC	3 6 4	3 3 3	A5						E8 2	2	AI	Al)			81	5	2	85		2	$80 \cdot 4$	43	389	4	3				BC 5	3				1 1 -	, - - - -

Note: MOS Technology cannot assume liability for the use of undefined OP Codes

SPECIFICATIONS

Maximum Ratinge

Rating	Symbol	Value	Unit
Supply Voltage	V_{CC}	-0.3 to +7.0	Vdc
Input Voltage	$\mathrm{V}_{\text {in }}$	-0.3 to +7.0	Vdc
Operating Temperature Range	T_{A}	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

This device contains circultry to protect the inputs against damage due to high static voltages, however, it is advised that-normal precautions be taken to avoid application of any voltage higher than maximum rated voitages to this circult.

Static D.C. Characteristics $\mathbf{V}_{\mathbf{C C}}=\mathbf{5 V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ}-70^{\circ} \mathrm{C}$)

Characteristic	Symbol	Min	Typ	Max	Unit
Power Dlssipation (Outputs High)	$P_{\text {D }}$	-	500	-	mW
RAM Standby Voltage (Retention Mode)	$V_{\text {RR }}$	3.5	-	V_{CC}	Vdc
RAM Standby Current (Retention Mode)	IRR	-	10	-	mAdc
Input High Voltage (Normal Operating Levels)	$\mathrm{V}_{1 \mathrm{H}}$	+ 2.0	-	V_{CC}	Vdc
Input Low Voltage (Normal Operating Levels)	$V_{\text {IL }}$	-0.3	-	+0.8	Vdc
Input Leakage Current $V_{\text {In }}=0 \text { to } 5.0 \mathrm{Vdc}$ RES, NMI	If	-	± 1.0 ± 1.0	± 2.5	μ Adc μ Adc
Input High Voltage (XTLI)	$\mathrm{V}_{\text {IHXT }}$	+4.0	-	$V_{\text {cc }}$	Vdc
Input Low Voltage (XTLI)	$V_{\text {ILXT }}$	-0.3	-	+0.8	Vdc
Input Low Current $\left.N_{\mathrm{IL}}=0.4 \mathrm{Vdc}\right)$	ILL	-	- 1.0	-1.6	mAdc
Output High Voltage $\left.N_{C C}=\text { min, } l_{\text {Load }}=-100 \mu \mathrm{Adc}\right)$	V_{OH}	-2.4	-	-	Vdc
Output High Voltage $\left.N_{C C}=\min \right)$ Output Low Voltage	$\mathrm{V}_{\text {CMOS }}$	$\mathrm{V}_{\mathrm{CC}}-30 \%$	-	-	Vdc
$\left.N_{\mathrm{CC}}=\mathrm{min}, \mathrm{I}_{\text {Load }}=1.6 \mathrm{mAdc}\right)$ Output High Current (Sourcing)	V_{OL}	-	-	+ 0.4	Vdc
$\left(\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{Vdc}\right)$	${ }^{\mathrm{I}} \mathrm{OH}$	- 100	-	-	${ }_{\mu}$ Adc
Output Low Current (Sinking) $\left(\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{Vdc}\right)$ Input Capacitance	${ }^{\mathrm{I}} \mathrm{OL}$	1.6	-	-	mAdc
$\left(V_{\text {in }}-0, T_{A}=25^{\circ} \mathrm{C}, f=1.0 \mathrm{MHz}\right)$ PA, PB, PC, PD, CNTR XTLI, XTLO	$\mathrm{C}_{\text {in }}$	-	-	10 50	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$
Output Capacitance $\left(V_{\mathrm{in}}-0, T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\text {out }}$	-	-	10	pF
1/O Port Resistance	R_{L}	3.0	6.0	11.5	K Ω
PAO-PA7, PBO-PB7, PC0-PC7, PDO-PD7, CNTR					

NOTE: Negative sign indicates outward current flow, positive indicates inward flow.

NMOS

AC Characteristics ($\mathrm{V}_{\mathrm{CC}}=\mathbf{5 V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ}$ to $70^{\circ} \mathrm{C}$)

Parameter	Symbol	1 MHz		2 MHz		Unit
		Min	Max	Min	Max	
XTLI Input Clock Cycle Time	$\mathrm{T}_{\text {cyc }}$	0.500	5.0	0.250	5.0	$\mu \mathrm{sec}$
Internal Write to Peripheral Data Valid (TTL)	TPDW	1.0	-	0.5	-	$\mu \mathrm{sec}$
Internal Write to Peripheral Data Valid (CMOS)	TCMOS	2.0	-	1.0	-	$\mu \mathrm{sec}$
Peripheral Data Setup Time	TPDSU	400	-	200	-	nsec
Count and Edge Detect Pulse Width	TPW	1.0	-	0.5	-	$\mu \mathrm{sec}$

TIMING CHARACTERISTICS

PROGRAMMING INSTRUCTIONS FOR MOS TECHNOLOGY 6500/1

MOS Technology utilizes computer aided techniques to manufacture and test custom bit patterns. New custom bit data and address information is supplied on standard 80 column computer cards, 1 Inch wide paper tape, or standard $1 / 4$ inch wide audio tape cassette, or 2708/2716 EPROMS. ROM Data will also be accepted in other formats. Consult MOS Technology for details.

MOS TECHNOLOGY (6500) CARD FORMAT

All addresses and related bit patterns must be completely defined. Each deck of cards consists of: 1) Four Title Cards, 2) Address and Memory Data Records.

Positive logic is generally used on all input cards: A logic " 1 " is the most positive or high level (True), and logic " 0 " is the most negative or low level (False). This includes chip select specifications as well as bit patterns.

TITLE CARDS

	COLUMN	INFORMATION
FIRST CARD	$\begin{aligned} & 1.4 \\ & 5.80 \\ & \hline \end{aligned}$	MOS PART NUMBER (6500/1) BLANK (FOR MOS TECHNOLOGY USE)
SECOND CARD	$\begin{array}{r} 1-20 \\ 21-40 \\ 41-60 \\ 61-80 \\ \hline \end{array}$	CUSTOMER NAME CUSTOMER PART NUMBER CUSTOMER TECHNICAL CONTACT (PERSON) CUSTOMER PHONE NUMBER
THIRD CARD	$\begin{array}{r} 1-20 \\ 21.40 \\ 41-60 \\ \\ 61-80 \\ \hline \end{array}$	DATA FORMAT (PUNCH "MOS") LOGIC FORMAT (PUNCH "POSITIVE" OR "NEGATIVE) VERIFICATION CODE (PUNCH "HOLD" IF CUSTOMER APPROVAL REQ., PUNCH "OKAY" IF FINAL APPROVAL NOT REQ.) BLANK (FOR MOS TECHNOLOGY USE)
FOURTH CARD	$\begin{gathered} 1-6 \\ \hline 7 \\ 8 \\ 9 \\ 10 \end{gathered}$	PULLUP SELECT CARD (PUNCH "PULLUP") PULLUP OPTION FOR I/O PORT A: $1=$ PULLUP PULLUP OPTION FOR I/O PORT B;1 = PULLUP PULLUP OPTION FOR I/O PORT $\mathrm{C}_{;} 1=$ PULLUP PULLUP OPTION FOR I/O PORT $\mathrm{D} ; 1=$ PULLUP

A set of four (4) Title Cards should accompany each data deck. These cards provide our computer programs additional information necessary to accurately produce the ROM Data. These four Title Cards must contain the above information.

MOS CARD DECK FORMAT

Output data is punched on standard 80 column cards in ASCII Hollerith Code. Each byte of data to be stored is converted to two half bytes. The half bytes (whose possible values are 0 to $\mathrm{F}_{\mathrm{HEX}}$) are translated into their ASCII equivalents and punched onto cards. Each record contains record length, memory address, and checksum information in addition to data. A column by column description of a data record follows.

COLUMN ONE -Record Mark. Signals start of record. ASCII character " ; " (HEX 3B)
COL. $2 \rightarrow 3$-Record Length. Two ASCII characters representing a HEX number in the range 0 to 18 HEX $(0$ to 24). This is the count of actual data bytes in the record. A record length of 0 indicates end of file.
COL. 4 $\rightarrow 7$-Load Address. Four ASCII characters. The starting address high and starting address low are the left and right bytes respectively. The first data byte is stored in the memory location pointed to by the load address, succeeding data bytes are loaded into ascending address.
COL. $8 \rightarrow n \quad$-Data. Each 8 bit memory word is represented by two ASCII characters (0 to $9, \mathrm{~A}$ to F) to represent a hexadecimal number (0 to 255).
$\left\{n=8+2^{*}\left(\frac{\text { RECORD }}{\text { LENGTH }}\right)-1\right\}$
COL. $n+1 \rightarrow n+5-$ Checksum. The sum of all 8 bit bytes in the record since the record mark (;) in four ASCII characters (HEX).

REMAINING -Not Used. Leave blank or use for comment or labels.
COLUMNS
$\begin{array}{ll}\text { SPECIAL LAST } & \text { - As mentioned above, a record length of zero (" } 0 \text { ' }) \text { indicates an end of file. Following the re- } \\ \text { cord length on this terminal record should be a four character ASCII (} \mathrm{HEX} \text {) count of all data } \\ \text { records in deck. Following this is the usual checksum for this record. }\end{array}$
See the example under heading "MOS PAPER TAPE FORMAT."
A set of four title cards should accompany each data deck.

MOS PAPER TAPE FORMAT

The paper tape which should be used is $1^{\prime \prime}$ wide paper tape using 7 or 8 blt ASCll code. Each byte of data to be stored is converted to two half bytes. The half bytes (whose possible values are 0 to FHEX) are translated into their ASCII equivalents and written onto paper tape in this form.

Each record output begins with a semicolon (";") character (ASCll 3B) to mark the start of a valid record. The next byte transmitted (Range: 1 to ${ }^{18} \mathrm{HEX}$) is the number of data bytes contained in the record. The record's starting address high (1 byte, 2 characters), starting address low (1 byte, 2 characters), and data (usually 24 bytes, 48 characters) follow. Each record is terminated by the record's check-sum (2 bytes, 4 characters), a carriage return (ASCII OD), Line Feed (ASCII OA), and six "NULL" characters (ASCII 0). No other characters, such as rubouts, are allowed anywhere.
The last record transmitted has zero data bytes (indicated by ;00). The starting address field is replaced by a four digit HEX number representing the total number of data records contained in the transmission, followed by the records usual check-sum digits. An "XOFF" character ends the transmission.

EXAMPLE:

;180000FFEEDDCCBBAA0099887766554433221122334455667788990AFC;0000010001

All records must be punched in consecutive order and the data at each address must be completely and explicitly defined. All invalid data will be lgnored and zeros substituted. Additional information as described in section entitled "TITLE CARDS" should be provided at transmission.

Commodore Semiconductor Group reserves the right to make changes to any products herein to improve reliability, function or design. Commodore Semiconductor Group does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.

6500 MICROPROCESSORS

THE 6500 MICROPROCESSOR FAMILY CONCEPT --

The 6500 Series Microprocessors represent the first totally software compatible microprocessor family. This family of products includes a range of software compatible microprocessors which provide a selection of addressable memory range, interrupt input options and on-chip clock oscillators and drivers. All of the microprocessors in the 6500 group are software compatible within the group and are bus compatible with the M6800 product offering.

The family includes six microprocessors with on-board clock oscillators and drivers and four microprocessors driven by external clocks. The on-chip clock versions are aimed at high performance, low cost applications where single phase inputs, crystal or RC inputs provide the time base. The external clock versions are geared for the multi processor system applications where maximum timing control is mandatory. All versions of the microprocessors are available in $1 \mathrm{MHz}, 2 \mathrm{MHz}$ ("A" suffix on product numbers), and 3 MHz (" B " suffix on product numbers) maximum operating frequencies.

FEATURES OF THE 6500 FAMILY

- Single + 5 volt supply
- N channel, silicon gate, depletion load technology
- Elght bit parallel processing
- 56 Instructions
- Decimal and binary arithmetic
- Thirteen addressing modes
- True indexing capability
- Programmable stack pointer
- Variable length stack
- Interrupt capability
- Non-maskable interrupt
- Use with any type or speed memory
- 8 BIT Bi-directional Data Bus
- Addressable memory range of up to 65K bytes
- "Ready" input (for single cycle execution)
- Direct memory access capability
- Bus compatible with M6800
- Choice of external or on-board clocks
- $1 \mathrm{MHz}, 2 \mathrm{MHz}$, and 3 MHz operation
- On-the-chip clock options
* External single clock input
* RC time base input
* Crystal time base input
- Pipeline architecture

MEMBERS OF THE 6600 MICROPROCESSOR (CPU) FAMILY
Microprocessors with On-Chip Clock Oscillator

Model	Addressable Memory
R8502	65K Bytes
R6503	4K Bytes
R6504	8K Bytes
R8505	4K Bytes
R6506	4K Bytes
R6507	8K Bytes

Microprocessors with External Two Phase
Clock Inputs
Model
R8512
A6513
P6514

- 8K Bytes

4K Bytes

ORDER NUMBER: MXX 65XX

FREQUENCY RANGE NO SUFFIX $=1 \mathrm{MHz}$

$$
A=2 \mathrm{MHz}
$$

$$
\mathrm{B}=3 \mathrm{MHz}
$$

MODEL DESIGNATOR $X X=02,03,04, \ldots 15$

PACKAGE DESIGNATOR $C=$ CERAMIC $P=$ PLASTIC

COMMENTS ON THE DATA SHEET

The data sheet is constructed to review first the basic "Common Characteristics"-those features which are common to the general family of microprocessors. Subsequent to a review of the family characteristics will be sections devoted to each member of the group with specific features of each.

COMMON CHARACTERISTICS

Note: 1. Clock Generator is not Included on 6512,13,14,15
2. Addressing Capability and control options vary with each of the 6500 Products.

6500 Intemal Architecture

MPS
6500

COMMON CHARACTERISTICS

MAXIMUM RATINGS

RATING	SYMBOL	VALUE	UNIT
SUPPLY VOLTAGE	Vcc	-0.3 to +7.0	Vdc
INPUT VOLTAGE	VIn	-0.3 to +7.0	Vdc
OPERATING TEMPERATURE	TA $_{\text {A }}$	0 to +70	${ }^{\circ} \mathrm{C}$
STORAGE TEMPERATURE	TSTG	-55 to +150	${ }^{\circ} \mathrm{C}$

This device contains input protection against damage due to high static voltages or electric flelds; however, precautions should be taken to avold application of volteges higher than the maximum rating.

ELECTRICAL CHARACTERISTICS $\mathbf{V c c}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{Vss}=0, \mathrm{~T}_{\mathrm{A}}=0^{\circ}$ to $+70^{\circ} \mathrm{C}$) $Q_{1}, \varnothing_{2}(\mathrm{in})$ applies to $6512,13,14,15 ; \varnothing_{\circ}(\mathrm{in})$ applies to $6502,03,04,05,06$ and 07

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
Input High Voltage Input High Voltage $\overline{\text { AES }}, \overline{N M I}$, ROY, $\overline{\text { RRD, }}$, Data, S.O.	VIH	$\begin{aligned} & \text { Vss }+2.4 \\ & \text { Vcc }-0.2 \\ & \text { Vss }+2.0 \end{aligned}$		$\begin{gathered} V c c \\ V c c+1.0 \mathrm{~V} \end{gathered}$	Vdc Vdc Vdc
Input Low Voltage $\begin{aligned} & \text { Logle, } \varnothing_{0}(i n) \\ & Q_{1}, \varnothing_{2}(\mathrm{n}) \end{aligned}$ RES, NMI, RDY, IRG, Data, S.O.	VIL	$\begin{aligned} & \text { Vss }-0.3 \\ & \text { Vss - } 0.3 \end{aligned}$	-	$\begin{aligned} & \text { Vss }+0.4 \\ & \text { Vss }+0.2 \\ & \text { Vss }+0.8 \end{aligned}$	Vdc Vdc Voc
Input Leakage Current $\begin{gathered} \left.N_{\text {in }}=0 \text { to } 5.25 \mathrm{~V}, \text { Vcc }=5.25 \mathrm{~V}\right) \\ \text { Logic (Excl. RDY,S.O.) } \\ \Theta_{1} \varnothing_{2}(\mathrm{in}) \\ \varnothing_{0}(\mathrm{in}) \end{gathered}$	IIn	- - -	$-$	$\begin{array}{r} 2.5 \\ 100 \\ 10.0 \end{array}$	$\mu \mathrm{A}$ MA $\mu \mathrm{A}$
Three State (Off State) Input Current $\begin{gathered} \left.N_{\text {in }}=0.4 \text { to } 2.4 \mathrm{~V}, \mathrm{Vcc}=5.25 \mathrm{~V}\right) \\ \text { Data Lines } \end{gathered}$	ITSI	-	-	10	$\mu \mathrm{A}$
Output High Voltage $\left.{ }^{(1} \mathrm{OH}=-100 \mu \mathrm{Adc}, \mathrm{Vcc}=4.75 \mathrm{~V}\right)$ 8YNC, Data, AO-A15, RWW	VOH	Vss +2.4	-	-	Vdc
Out Low Voltage $\begin{aligned} & (\mathrm{OLL}=1.6 \mathrm{mAdc}, \mathrm{Vcc}=4.75 \mathrm{~V}) \\ & \text { BYNC, Data, AO-A15, RW } \end{aligned}$	VOL	-	-	Vss +0.4	Vdc
Power Supply Current	${ }^{1} \mathrm{CC}$	-	70	160	mA
Capacitance $\begin{aligned} & \mathrm{N}_{\mathrm{ln}}=\mathrm{O},\left.\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}\right) \\ & \text { Logic } \\ & \text { Data } \\ & \mathrm{AO}-\mathrm{A} 15, \mathrm{RWW}, \mathrm{SYNC} \\ & \varnothing_{\mathrm{o}(\mathrm{in})} \\ & Q_{1} \\ & Q_{2} \end{aligned}$	C $C_{i n}$ $C_{\text {out }}$ $C_{\varnothing \text { (in) }}$ $C_{\varnothing}{ }_{\square}$ C_{\varnothing},	$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & \mathbf{3 0} \\ & 50 \end{aligned}$	10 15 12 15 50 80	pF

Now: $\overline{\mathrm{IRQ}}$ and $\overline{\mathrm{N}} \mathrm{MI}$ require 3K pull-up reelators.

NWOS

COMMON CHARACTERISTICS

Ciock Timing- $\quad 6502,03,04,05,06,07$

Timing for Reading Data from Memory or Peripherals

Timing for Writing Data to Memory or Peripherals

Clock Timing -
$6512,13,14,15$

Timing for Reading Data from Memory or Peripherals

Timing for Writing Data to Memory or Peripherals

COMMON CHARACTERISTICS

$1 \mathbf{M H}_{\mathbf{z}}$ TIMING

2 MHz $_{2}$ TIMING

$3 \mathrm{MH}_{\mathbf{z}}$ timina

Electrical Characteristics: $\left(\mathrm{Vcc}=5 \mathrm{~V} \pm 5 \%, \mathrm{Vss}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ}-70^{\circ} \mathrm{C}\right)$ Minimum clock frequency $=50 \mathrm{KH}_{\mathbf{z}}$

CLOCK TMMING-0002, $\mathbf{0 8}, \mathbf{0 4}, \mathbf{0 5}, \mathbf{0 8}, 07$

CHARACTERABTIC	8YMBOL	MIN.	TYP.	MAX.
Cycie Time	${ }^{T}$ cre	1000	-	-
$\theta_{\text {O(N) }}$ Putee Whith (meeeured at 1.50)	PWHO_{0}	400	-	520
$\varnothing_{0 \text { ON) }}$ Rame, Fat Tme	$T R \varnothing_{0} T F \varnothing_{0}$	-	-	10
Detivy Thme between Clocke (meeoured at 1.80)	T_{0}	5	-	-
$\theta_{\text {10, }}$ Pin Pise With (meeeured at 1.50)	PWHO1	${ }^{P W H} \varnothing_{\text {O }} \mathrm{OL}^{-20}$	-	$\mathrm{PWH} \square_{\mathrm{OL}}$
$Q_{\text {PKOID }}$ Putee Wath meeeured at 1.5 y	PWHO_{2}	$\mathrm{PWH}^{(8)} \mathrm{OH}^{-40}$	-	PWH $\square_{\text {OH }}{ }^{-10}$
$\theta_{10 \mathrm{OH}} \varnothing_{\text {aOU }}$ Five, Fell Time (meseured ov to 2.0n) (Loed $1 / 230 \mathrm{pt} 1 / 31$ TL	T_{R}, T_{F}	-	-	25

MIN.	TYP	MAX.
500	-	-
240	-	200
-	-	10
5	-	-
PWH $\varnothing_{\mathrm{OL}_{4}-20}$	-	PWH $\varnothing_{\mathrm{OL}}$
PWH $\varnothing_{\mathrm{OH}}-40$	-	PWH $\varnothing_{\mathrm{OH}}-10$
-	-	25

MIN	TYP	MAX	UNIR
323	-	-	n
100	-	170	n
-	-	10	n
5	-	-	$n s$
PWH $\varnothing_{\mathrm{OL}}-20$	-	PWH $\varnothing_{\mathrm{OL}}$	n
PWH $\varnothing_{\mathrm{OH}}-40$	-	PWH $\varnothing_{\mathrm{OH}}-10$	n
-	-	25	n

CLOCK TIMING-6512, 13, 14, 15

CHARACTERASTIC	SYMBOL	MIN.	TYP.	MAX.
Cycle Time	${ }^{T}$ CYC	1000	-	-
$\begin{array}{ll}\text { Clock Pulee With } & \varnothing 1 \\ \text { ancesered at } V_{e c}-0.2 \mathrm{~N} & 02\end{array}$	PWH 81 PWH ©2	$\begin{aligned} & 430 \\ & 470 \end{aligned}$	-	-
Fall Time, Fise Time (Maseured from 0.2v to $\mathrm{V}_{6 \mathrm{C}}-0.2 \mathrm{M}$	$T_{F} \cdot T_{\text {P }}$	-	-	25
Delay Time between Clocks (Meewired at 0.2n)	T_{0}	0	-	-

MIN.	TPP	MAX
500	-	-
215		
235	-	-
-	-	15
0	-	-

MIN.	TVP.	MAX.	UNIT8
333	-	-	ns
150			ns
160	-	-	
-	-	15	ne
0	-	-	$n 8$

REAOWRITE TMING LLOAD $=1$ ITL

CHARACTEPISTIC	SYMBCOL	MIN.	TVP.	MAX.
ReedWrite setup Time from 0500	$\mathrm{T}_{\text {FW8 }}$	-	100	300
Mdderees Setup Time from 0600	TADS	-	100	300
Mernory fiead Accose Time.	TAcc	-	-	575
Date stebllty Time Pertod	$T_{\text {DSN }}$	100	-	-
Orta Hold Trme-Reed	$T_{\text {HP }}$	10	-	-
Data Hold Time-Write	$T_{\text {HW }}$	30	$\boldsymbol{0}$	-
Data setup Time from 6000	TMP8	-	150	200
8.0. Setup time	$\mathrm{T}_{\mathbf{S . O}}$.	100	-	-
8YNC Setup Time from e600	TSYNC	-	-	360
Addrees Hold 7ime	THA	30	00	-
RNW Hoid Time	THRW	30	60	-
RODY Setup Time	TRDY	100	-	-

MIN.	TYP.	MAX.
-	100	150
-	100	150
-	-	300
50	-	-
10	-	-
30	60	-
-	75	100
50	-	-
-	-	175
30	00	-
30	60	-
50	-	-

MIN.	TYP.	MAX	UNIT8
-	80	110	n
-	60	125	n
-	-	170	n
50	-	-	$n s$
10	-	-	n
10	-	-	$n s$
-	70	100	$n s$
50	-	-	$n s$
-	-	120	$n s$
10	30	-	$n s$
10	30	-	$n s$
-	-	15	$n s$

NaOS

COMMON CHARACTERISTICS

INSTRUCTION SET - OP CODES, Execution Time, Memory Requirements

Note: MOS Technology cannot assume liability for the use of undefined OP Codes

COMMON CHARACTERISTICS

0600 SIGNAL DESCRIPTION

Clocks $\left(\varnothing_{1}, \varnothing_{2}\right)$

The 661X requires a two phase non-overiapping clock that runs at the Vcc voltage level.
The 650X clocks are supplied with an internal clock generator. The frequency of these clocks is externally controlled.

These outputs are TTL compatible, capable of driving one standard TTL load and 130 pf .

Data Bue ($D_{0}-D_{7}$)

Eight pins are used for the data bus. This is a bi-directional bus, transferring data to and from the device and peripherals. The outputs are tristate buffers capable of driving one standard TTL load and 130pf.

Data Bus Enablo (DBE)

This TTL compatible input allows external control of the tri-state data output buffers and will enable the microprocessor bus driver when in the high state. In normal operation DBE would be driven by the phase two (\varnothing_{2}) clock, thus allowing data output from microprocessor only during \varnothing_{2}. During the read cycle, the data bus drivers are internally disabled, becoming essentially an open clicult. To disable data bus drivers externally, DBE should be held low.

Ready (RDY)

This input signal allows the user to single cycle the microprocessor on all cycies except write cycles. A negative transition to the low state during or coincident with phase one $\left(\varnothing_{1}\right)$ and up to 100 ns after phase two $\left(\varnothing_{2}\right)$ will halt the microprocessor with the output address lines reflecting the current address being fetched. This condition will remain through a subsequent phase two $\left(\varnothing_{2}\right)$ in which the Ready signal is low. This feature allows microprocessor interfacing with low speed PROMS as well as fast (max. $\mathbf{2}$ cycle) Direct Memory Access (DMA). If Ready is low during a write cycle, it is ignored until the following read operation.

Interrupt Request (IRO)

This TTL level input requests that an interrupt sequence begin within the microprocessor. The microprocessor will complete the current instruction being executed before recognizing the request. At that time, the interrupt mask bit in the Status Code Register will be examined. If the interrupt mask flag is not set, the microprocessor will begin an interrupt sequence. The Program Counter and Processor Status Register are stored in the stack. The microprocessor will then set the interrupt mask flag high so that no further interrupts may occur. At the end of this cycle, the program counter low will be loaded from address FFFE, and program counter high from location FFFF, therefore transferring program control to the memory vector located at these addresses. The RDY signal must be in the high state for any interrupt to be recognized. A $3 \mathrm{~K} \Omega$ external resistor should be used for proper wire-OR operation.

Non-Maskable Interrupt (NMI)

A negative going edge on this input requests that a non-maskable interrupt sequence be generated within the microprocessor.
NMI is an unconditional interrupt. Following completion of the current instruction, the sequence of operations defined for IRQ will be performed, regardless of the interrupt mask flag status. The vector address loaded into the program counter, low and high, are locations FFFA and FFFB respectively, thereby transferring program control to the memory vector located at these addresses. The instructions loaded at these locations cause the microprocessor to branch to a non-maskable interrupt routine in memory.
NMI also requires an external $3 \mathrm{~K} \Omega$ resister to Vcc for proper wire-OR operations.
inputs IRQ and NMI are hardware interrupt lines that are sampled during \varnothing_{2} (phase 2) and will begin the appropriate interrupt routine on the \varnothing_{1} (phase 1) following the completion of the current instruction.

Set Overtlow Fieg (S.O.)

A NEGATIVE going edge on this input sets the overflow bit in the Status Code Register. This signal is sampled on the tralling edge of \varnothing_{1}.

SYNC

This output line is provided to identify those cycles in which the microprocessor is doing an OP CODE fetch. The SYNC line goes high during \varnothing_{1} of an OP CODE fetch and stays high for the remainder of that cycle. If the RDY line is pulled low during the $\varnothing_{\text {, clock pulse in which SYNC went high, the processor will stop in its current state and will remain in the state until the RDY line }}$ goes high. In this manner, the SYNC signal can be used to control RDY to cause single instruction execution.

Reset

This input is used to reset or start the microprocessor from a power down condition. During the time that this line is held low, writing to or from the microprocessor is inhibited. When a positive edge is detected on the input, the microprocessor will immediately begin the reset sequence.
After a system initialization time of six clock cycles, the mask interrupt flag will be set and the microprocessor will load the program counter from the memory vector locations FFFC and FFFD. This is the start location for program control.

After Vcc reaches 4.75 volts in a power up routine, reset must be held low for at least two clock cycles. At this time the RNW and (SYNC) signal will become valid.
When the reset signal goes high following these two clock cycles, the microprocessor will proceed with the normal reset procedure detailed above.

COMMON CHARACTERISTICS

ACCUMULATOR ADDRESSING-This form of addressing is represented with a one byte instruction, implying an operation on the accumulator.

IMMEDIATE ADDRESSING - In immediate addressing, the operand is contained in the second byte of the instruction, with no further memory addressing required.

ABSOLUTE ADDRESSING-In absolute addressing, the second byte of the instruction specifies the eight low order bits of the effective address while the third byte specifies the eight high order bits. Thus, the absolute addressing mode allows access to the entire 65 K bytes of addressable memory.

ZERO PAGE ADDRESSING-The zero page instructions allow for shorter code and execution times by only fetching the second byte of the instruction and assuming a zero high address byte. Careful use of the zero page can result in significant increase in code efficiency.
INDEXED ZERO PAGE ADDRESSING-(X, Y in-dexing)-This form of addressing is used in conjunction with the index register and is referred to as "Zero Page, X " or "Zero Page, Y." The effective address is calculated by adding the second byte to the contents of the index register. Since this is a form of "Zero Page" addressing, the content of the second byte references a location in page zero. Additionally, due to the "Zero Page" addressing nature of this mode, no carry is added to the high order 8 bits of memory and crossing of page boundaries does not occur.
INDEXED ABSOLUTE ADDRESSING-(X, Y in-dexing)- This form of addressing is used in conjunction with X and Y index register and is referred to as "Absolute, X," and "Absolute, Y." The effective address is formed by adding the contents of X and Y to the address contained in the second and third bytes of the instruction. This mode allows the index register to contain the index or count value and the instruction to contain the base address. This type of indexing allows any location referencing and the index to modify multiple fields resulting in reduced coding and execution time.

ADDRESSING MODES

IMPLIED ADDRESSING-In the implied ad dressing mode, the address containing the operand is implicitly stated in the operation code of the instruction.

RELATIVE ADDRESSING—Relative addressing is used only with branch instructions and establishes a destination for the conditional branch.

The second byte of the instruction becomes the operand which is an "Offset" added to the contents of the lower eight bits of the program counter when the counter is set at the next instruction. The range of the offset is -128 to +127 bytes from the next instruction.

INDEXED INDIRECT ADDRESSING-in indexed indirect addressing (referred to as (indirect, X$)$), the second byte of the instruction is added to the contents of the X index register, discarding the carry. The result of this addition points to a memory location on page zero whose contents is the low order eight bits of the effective address. The next memory location in page zero contains the high order eight bits of the effective address. Both memory locations specifying the high and low order bytes of the effective address must be in page zero.

INDIRECT INDEXED ADDRESSING-In indirect indexed addressing (referred to as (Indirect), Y), the second byte of the instruction points to a memory location in page zero. The contents of this memory location is added to the contents of the Y index register, the result being the low order eight bits of the effective address. The carry from this addition is added to the contents of the next page zero memory location, the result being the high order eight bits of the effective address.

ABSOLUTE INDIRECT-The second byte of the instruction contains the low order eight bits of a memory location. The high order eight bits of that memory location is contained in the third byte of the instruction. The contents of the fully specified memory location is the low order byte of the effective address. The next memory location contains the high order byte of the effective address which is loaded into the sixteen bits of the program counter.

INSTRUCTION SET-ALPHABETIC SEQUENCE

ADC	Add Memory to Accumulator with Carry
AND	"AND" Memory with Accumulator
ASL	Shift left One Bit (Memory or Accumulator)
BCC	Branch on Carry Clear
BCS	Branch on Carry Set
BEC	Branch on Result Zero
BIT	Test Bits in Memory with Accumulator
BMI	Branch on Result Minus
BNE:	Branch on Result not Zero
BPL	Branch on Result Plus
BRK	Force Break
BVC	Branch on Overflow Clear
BVS	Branch on Overflow Set
CLC	Clear Carry Flag
CLD	Clear Decimal Mode
CLI	Clear Interfupt Disable Bit
CLV	Clear Overflow Flag
CMF	Compare Memory and Accumulator
CPX	Compare Memory and index X
CPY	Compare Memory and Index Y
DEC	Decrement Memory by One
DEX	Decrement Index X by One
DEY	Decrement Index Y by One
EOR	"Exclusive-or" Memory with Accumulator
INC	Increment Mermory by One
INX	Increment Index X by One
INY	Increment index Y by One
JMP	Jump to New Location
JSR	Jump to New Location Saving Return Address

LDA	Load Accumulator with Memory
LDX	Load Index X with Memory
LDY	Load Index Y with Memory
LSA	Shift One Bit Right (Memory or Accumulator)
NOP	No Operation
ORA	"OR" Memory with Accumulator
PHA	Push Accumulator on Stack
PHP	Push Processor Status On Stack
PLA	Pull Accumulator from Stack
PLP	Pull Processor Status from Stack
ROL	Rotate One Bit Left (Memory or Accumulator)
ROR	Rotate One Bit Right (Memory or Accumulator)
RTI	Return from Interrupt
RTS	Return from Subroutine
SBC	Subtract Mernory from Accumulator with Borrow
SEC	Set Carry Flag
SED	Set Decimal Mode
SEI	Set Interrupt Disable Status
STA	Store Accumulator in Memory
STX	Store Index X in Memory
STY	Store Index in Memory
TAX	Transfer Accumulator to Index X
TAY	Transfer Accumulator to Index Y
TSX	Transfer Stack Pointer to Index X
TXA	Transfer Index X to Accumulator
TXS	Transfer Index X to Stack Register
TYA	Transfer Index Y to Accumulator

```
\begin{tabular}{|c|c|c|}
\hline VSS 1 & 40 & 己 \(\overline{\mathrm{RES}}\) \\
\hline RDY \(\mathrm{S}^{2}\) & 39 & \(\varnothing_{2}\)（OUT） \\
\hline \(\phi_{1}\)（OUT） C \(^{3}\) & 38 & s．o． \\
\hline IRQ S \(^{4}\) & 37 & －\(\phi_{0}\)（ N\()\) \\
\hline N．C．\(=5\) & 36 & S．C． \\
\hline NMI－ 6 & 35 & \(\square\) N．C． \\
\hline SYNC［－7 & 34 & ת RNW \\
\hline vcc－ 8 & 33 & CO \\
\hline \(A 0-9\) & 32 & ת 1 \\
\hline A1 510 & 31 & PD2 \\
\hline A2 011 & 30 & ¢ 13 \\
\hline A3 © 12 & 29 & 24 \\
\hline A4 E 13 & 28 & －\({ }^{\text {D }}\) \\
\hline A5－ 14 & 27 & －D6 \\
\hline \({ }^{\text {A } 6} \mathrm{C}^{1} 15\) & 26 & CD7 \\
\hline A7 \(\mathrm{Cl}^{16}\) & 25 & A15 \\
\hline A8 \({ }^{\text {c }} 17\) & 24 & S 14 \\
\hline A9－ 18 & 23 & P A13 \\
\hline A10 19 & 22 & P A12 \\
\hline A11 20 & 21 & 5 VSS \\
\hline
\end{tabular}
```


6502－40 Pin Package

```
Features of 6502
－65K Addressable Bytes of Memory（A0－A15）
－IRQ Interrupt
－On－the－chip Clock
TTL Level Single Phase Input RC Time Base Input Crystal Time Base Input
－SYNC Signal （can be used for single instruction execution）
－RDY Signal （can be used to halt or single cycle execution）
－Two Phase Output Clock for Timing of Support Chips
－NMI Interrupt
```

$\overline{\mathrm{RES}}=$	28	］ϕ_{2} IOUT
VSS $=$	27	$\varnothing_{0}(\mathrm{~N})$
$\overline{\mathrm{RO}}$－ 3	$2 ¢$	R R／W
NMI－ 4	25	\checkmark DO
$\mathrm{VCC}=5$	24	ص D1
$A 0=6$	23	C D2
A1－ 7	22	－D3
A2－ 8	21	－D4
A3 $=9$	20	－D5
A4 $)^{10}$	19	D6
A5 $\quad 11$	18	D7
A6－ 12	17	－A11
A7＝ 13	16	－A10
A8 $=14$	15	－A9

6503－28 Pin Package

Features of 6503
－4K Addressable Bytes of Memory（A0－A11）
－On－the－chip Clock
－IRQ Interrupt
－$\overline{\text { NMI Interrupt }}$
－ 8 Bit Bidirectional Data Bus

$\overrightarrow{\mathrm{RES}}=1$	28	\varnothing_{2}（OUT）
VSS $=2$	27	$\square \phi_{0}$（IN）
$\overline{\mathrm{RO}}=3$	26	－RM
VCC $=4$	25	己D0
AO $=5$	24	－01
A1 -6	23	－D2
$\mathrm{A}_{2} \mathrm{C} 7$	22	ك D3
A3 $=8$	21	$\square \mathrm{D} 4$
A4 \％ 9	20	已 D5
A5 ${ }^{10}$	19	－D6
A6＝ 11	18	己 D7
A7 512	17	P A12
A8 $=13$	16	A11
A9＝ 14	15	－A10

6504－28 Pin Package

Features of 6504
－8K Addressable Bytes of Memory（AO－A12）
－On－the－chip Clock
－IRQ Interrupt
－ 8 Bit Bidirectional Data Bus

6505－28 Pin Package
Features of 6505
－4K Addressable Bytes of Memory（AO－A11）
－On－the－chip Clock
－IRQ Interrupt
－RDY Signal
－ 8 Bit Bidirectional Data Bus

RES $=1$	28	\emptyset_{2}（OUT）
vss $=2$	27	ص \varnothing_{0}（1N）
ϕ_{1}（OUT）$=3$	$? 6$	R A／W
$\overline{I R Q}=4$	25	$\square \mathrm{DO}$
$\mathrm{VCC}=5$	24	－D1
$A 0=6$	23	صD2
$A 1-7$	22	－D3
A2 H^{8}	21	صD4
A3 $=9$	20	P D5
A4 $=10$	19	－D6
A5＝ 11	18	－D7
A6 $=12$	17	己 A11
A7 $=13$	16	د A10
AB $=14$	15	－${ }^{\text {a }}$

6506－28 Pin Package

Features of 6506
－4K Addressable Bytes of Memory（AO－A11）
－On－the－chip Clock
－$\overline{\mathrm{RQ}}$ Interrupt
－Two phase output clock for timing of support chips
－ 8 Bit Bidirectional Data Bus

$\overline{R E S} \sqrt{1}$	28	二 \varnothing_{2}（OUT）
VSS -2	27	－\varnothing_{0}（IN）
RDY 03	26	－R／W
VCC $=4$	25	－D0
$A 0$－ 5	24	－D1
$\mathrm{A}_{1}=6$	23	حD2
A2 27	22	己 D3
A3 $=8$	21	$\square \square^{\square} 4$
A4 $=9$	20	－D5
$\mathrm{A}_{5}=10$	19	\square D6
$\mathrm{A}_{6}=11$	18	$\square{ }^{\text {D7 }}$
A7 $=12$	17	－ 112
A8 $=13$	16	A11
A9 $=14$	15	P 110

6507－28 Pin Package

Features of 6507
－ 8 K Addressable Bytes of Memory（AO－A12）
－On－the－chip Clock
－RDY Signal
－ 8 Bit Bidirectional Data Bus

6512－40 Pin Package

Features of 6512
－65K Addressable Bytes of Memory（A0－A15）
－$\overline{\operatorname{RQQ}}$ Interrupt
－NMI Interrupt
－RDY Signal
－ 8 Bit Bidirectional Data Bus
－SYNC Signal
－Two phase clock input
－Data Bus Enable

vss $=^{1}$	28] $\overline{\mathrm{RES}}$
$\phi_{1}(\mathrm{IN})=2$	27	- $\varnothing_{2 \text { (IN }}$
$\overline{\mathrm{RQ}}$ - 3	26	2 RN
NMI $=4$	25	- D0
$\mathrm{VCC}=5$	24	-01
$A 0=6$	23	-02
A1 - 7	22	- D3
A2 $=8$	21	己 04
А $3=9$	20	- 05
A4 $E 10$	19	- D6
A5 511	18	- D7
A6 $=12$	17	- A11
A7 Cl^{13}	16	$\square \mathrm{A} 10$
A8 $=14$	15	- A 9

6513-28 Pin Package

Features of 6513

- 4K Addressable Bytes of Memory (AO-A11)
- Two phase clock input
- IRQ Interrupt
- NMI Interrupt
- 8 Bit Bidirectional Data Bus

vSS $\quad 1$	28	$\overline{\mathrm{AES}}$
$\phi_{1}(\mathrm{IN})=$?	27	$\emptyset_{2 \mathrm{IN}}$
$\overline{\mathrm{RO}}=3$	26	R/W
$\mathrm{VCC}=4$	25	D0
AO $=5$	24	S1
$\mathrm{A}_{1}=6$	23	-D2
A2 $=$	22	C3
АЗ -8	21	- 04
$A_{4}{ }^{-1}$	20	- D5
A5 $=10$	19	ح66
A6 11	18	D7
A7 $=12$	17	A12
A8 C^{13}	16	A11
A9 - 14	15	A10

6514-28 Pin Package

Features of 6514

- 8 K Addressable Bytes of Memory (AO-A12)
- Two phase clock input
- IRQ Interrupt
- 8 Bit Bidirectional Data Bus

vSs ${ }^{1}$	28	R RES
RDY $=2$	27	- \emptyset_{2} (IN
$\emptyset_{1}(\mathrm{IN})=3$	26	- R/W
$\overrightarrow{\mathrm{TQ}}=4$	25	- Do
$\mathrm{VCC}=5$	24	D 1
$\mathrm{AO}^{0}=6$	23	- D2
A^{1} -	22	D3
$A_{2}=8$	21	- D4
A3 9	20	ح D5
A4 $=10$	19	- D6
A5 E 11	18	- D7
A6 -12	17	- 111
A7 $=13$	16	ح A10
A8 -14	15	- A9

6515-28 Pin Package

Features of 6515

- 4K Addressable Bytes of Memory (A0-A11)
- Two phase clock input
- $\overline{\operatorname{RQ}}$ Interrupt
- RDY Signal
- 8 Bit Bidirectional Data Bus

MOS TECHNOLOGY, INC. reserves the right to make changes to any products herein to improve reliability, function or design. MOS TECHNOLOGY, INC. does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.

DESCRIPTION

The 6508 is a low-cost microcomputer system capable of solving a broad range of small-systems and peripheral-control problems at minimum cost to the user.

One full page (256 bytes) of RAM is located (on chip) concurrently at Page 0 and Fage 1, allowing Zero Page Addressing and stack operations with no additional RAM.

An 8-bit Bi-Directional I/O Port is located on-chip with the Output Register at Address 0001 and the Data-Direction Register at Address 0000 . The I/O Port is bit-by-bit programmable.
The Three-State sixteen-bit Address Bus allows Direct Memory Accessig (DMA) and multiprocessor systems sharing a common memory.

The internal processor architecture is identical to the MOS Technotogy 6502 to provide software compatibility.

6508 PIN CONFIGURATION

FEATURES OF THE 6508 ...

- 8-Bit Bi-Directional I/O Port
- 256 Bytes fully Static RAM (internal)
- Single +5 volt supply
- N channel, silicon gate, depletion load techpology
- Eight bit parallel processing
- 56 Instructions
- Decimal and binary arithmétic
- Thirteen addressing modes
- True indexing capability
- Programmable stack ponter
- Variable length stack
- Interrupt cabability
- 8 Bit Bi-biectional Data Bus
- Addressabiornemory range of up to 65 K bytes
- Direct memoryaccess capability
- Bus compatible yith M6800
- Pipeline architecture
- $1 \mathrm{MHz}, 2 \mathrm{MHz}$ (Suffix "A"), and 3 MHz (Suffix "B")
- Use with any type or speed memory

$\overline{\text { RES }}$	1		40	$ø_{2} \mathrm{IN}$
$\emptyset_{1} \mathrm{IN}$	2		39	R/W
$\overline{\text { PQ }}$	3		38	DB_{0}
AEC	4		37	DB,
V_{CC}	5		36	DB_{2}
A_{0}	6		35	DB,
A_{1}	7		34	DB.
A_{2}	8		33	DB,
A_{3}	9		32	DB.
A.	10	6508	31	DB,
As,	11		30	$\mathrm{P}^{\text {o }}$
A_{0}	12		29	$P^{\text {P }}$
A,	13		28	P_{2}
A_{s}	14		27	P
A_{s}	15		26	P.
A_{10}	16		25	$P_{\text {s }}$
A_{11}	17		24	P。
A_{12}	18		23	$\mathrm{P}_{\text {, }}$
A_{13}	19		22	$A_{1,}$
$\mathrm{V}_{\text {SS }}$	20		21	$A_{1 .}$

6508 BLOCK DIAGRAM

NNOS

MAXIMUM RATINGS

RATING	SYMBOL	VALUE	UNIT
SUPPLY VOLTAGE	Vcc	-0.3 to +7.0	Vdc
INPUT VOLTAGE	VIn	-0.3 to +7.0	Vdc
OPERATING TEMPERATURE	TA $_{\text {A }}$	0 to +70	${ }^{\circ} \mathrm{C}$
STORAGE TEMPERATURE	TSTG	-55 to +150	${ }^{\circ} \mathrm{C}$

This device contains input protection against damage due to high static voltages or electric fields; however, precautions should be taken to avold application of voltages higher than the maximum ratiag.

ELECTRICAL CHARACTERISTICS $\mathbf{N c c}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{Vss}^{\mathrm{V}}=0, \mathrm{~T}_{\mathrm{A}}=\mathbf{0}^{\circ}$ to $+70^{\circ} \mathrm{C}$)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
Input High Voltage					
$\varnothing_{1}, \varnothing_{2(1 \mathrm{n})}$	VIH	$\mathrm{Vcc}-0.2$	-	$\mathrm{Vcc}+1.0 \mathrm{~V}$	Vdc
Input High Voltage $\overline{\operatorname{RES}}, \mathrm{P}_{0} \cdot \mathbf{P}, \overline{\mathrm{RQ}}$, Data		Vss +2.0	-	-	Vdc
Input Low Voltage					
$\varnothing_{1}, \varnothing_{2(i n)}$	VIL	Vss - 0.3	-	Vss +0.2	Vdc
$\overline{\text { RES }}, \mathrm{P}_{0} \cdot \mathbf{P}, \overline{\mathrm{TRQ}}$, Data		-	-	Vss +0.8	Vdc
Input Leakage Current					
$\mathrm{V}_{\mathrm{ln}}=0$ to $5.25 \mathrm{~V}, \mathrm{Vcc}=5.25 \mathrm{~V}$) Logic	lin	-	-	2.5	$\mu \mathrm{A}$
$\varnothing_{1}, \varnothing_{2(1 \mathrm{n})}$		-	-	100	$\mu \mathrm{A}$
Three State (Off State) Input Current					
Data Lines	ITSI	-	-	10	$\mu \mathrm{A}$
Output High Voltage					
$\begin{gathered} \left(\mathrm{IOH}_{\mathrm{O}}=-100 \mu \mathrm{Adc}, \mathrm{VCC}=4.75 \mathrm{~V}\right) \\ \text { Data, AO-A15, RW, } \mathrm{P}_{0} \cdot \mathrm{P}_{r} \end{gathered}$	VOH	Vss +2.4	-	-	Vdc
Out Low Voltage					
Data, AO-A15, RNW, $P_{0} \cdot P_{r}$	VOL	-	-	Vss +0.4	Vdc
Power Supply Current	ICC	-	125		mA
Capacitance ${ }^{\text {c }}$					pF
$V_{\text {in }}=0, T_{\text {A }}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$)					
Logic, $P_{0} \cdot P_{r}$	$\mathrm{C}_{\text {In }}$	-	-	10	
Data		-	-	15	
AO-A15, RNW	Cout	-	-	12	
\varnothing,	$\mathrm{C}_{\varnothing}{ }_{1}$	-	30	50	
\varnothing_{2}	$\mathrm{C}_{\varnothing_{2}}$	-	50	80	

CLOCK TIMING

TIMING FOR READING DATA FROM MEMORY OR PERIPHERALS

NMOS

TIMING FOR WRITING DATA TO MEMORY OR PERIPHERALS

AC CHARACTERISTICS

ELECTRICAL CHARACTERISTICS $\left(\mathrm{VCC}=5 \mathrm{~V} \pm 5 \%, \mathrm{VSS}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ}-70^{\circ} \mathrm{C}\right)$ Minimum Clock Frequency $=50 \mathrm{KHz}$

CLOCK TIMING

ChARACTERISTIC	SYMBOL	MIN.	TYP.	max.
Cycle Time	TCYC	1000	-	-
$\begin{array}{ll}\text { Clock Pulse Width } \\ \text { (Measured at VCC } & \text { 0.2V } \\ \text { Ø1 } \\ \text { Ø2 }\end{array}$	PWH01 PWH02	$\begin{aligned} & 430 \\ & 470 \end{aligned}$	-	-
Fall Time, Rise Time (Measured from 0.2 V to $\mathrm{VCC}-0.2 \mathrm{~V}$)	$\mathrm{T}_{\mathrm{F}, \mathrm{T}_{\mathrm{R}} \mathrm{L}}$	-	-	25
Delay Time between Clocks (Measured at 0.2 V)	${ }^{\text {T }}$	0	-	-

MIN.	TYP.	MAX.
500	-	-
215 235	-	-
-	-	15
0	-	-

MIN.	TYP.	MAX.	UNITS
333	-	-	ns
150 160	-	-	ns
-	-	15	ns
0	-	-	ns

READ/WRITE TIMING (LOAD=1TTL)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.
Read/Write Setup Time from 6508	TRWS	-	100	300
Address Setup Time from 6508	TADS	-	100	300
Memory Read Access Time	$\mathrm{T}_{\mathrm{ACC}}$	-	-	575
Data Stability Time Period	TDSU	100	-	-
Data Hold Time-Read	THR	10	-	-
Data Hold Time-Write	THW	10	30	-
Data Setup Time from 6508	TMDS	-	150	200
Address Hold Time	THA	10	30	-
R/W Hold Time	THRW	10	30	-
Delay Time, $\emptyset 2$ negative transition to Peripheral Data valid	TPDW	-	-	1
Peripheral Data Setup Time	Tposu	300	-	-
Address Enable Setup Time	TAES	-	-	60

MIN.	TYP.	MAX.
-	100	150
-	100	150
-	-	300
50	-	-
10	-	-
10	30	-
-	75	100
10	30	-
10	30	-
-	-	0.5
150	-	-
-	-	60

MIN.	TYP.	MAX.	UNITS
-	80	110	ns
-	80	125	ns
-	-	170	ns
50	-	-	ns
10	-	-	ns
10	-	-	ns
-	70	100	ns
10	30	-	ns
10	30	-	ns
-	-	0.333	-
75	-	-	ns
-	-	60	ns

NMOS

MPS

6508

SIGNAL DESCRIPTION

Clocks $\left(\varnothing_{1}, \varnothing_{2}\right)$
The 6510 requires a two phase non-overlapping clock that runs at the Vcc voltage level.

Address Bus ($\mathrm{A}_{0} \cdot \mathrm{~A}_{15}$)

The three state outputs are TTL compatible, capable of driving one standard TTL load and 130 pf.

Data Bus ($\mathbf{D}_{0} \cdot \mathbf{D}_{7}$)

Eight pins are used for the data bus. This is a Bi-Directional bus, transferring data to and from the device and peripherals. The outputs are tri-state buffers capable of driving one standard TTL load and 130 pf.

Reset

This input is used to reset or start the microprocessor from a power down condition. During the time that this line is held low, writing to or from the microprocessor is inhibited. When a positive edge is detected on the input, the microprocessor will immediately begin the reset sequence.

After a system initialization time of six clock cycles, the mask interrupt flag will be set and the microprocessor will load the program counter from the memory vector locations FFFC and FFFD. This is the start location for program control.

After Vcc reaches 4.75 volts in a power up routine, reset must be held low for at least two clock cycles. At this time the R/W signal will become valid.

When the reset signal goes high following these two clock cycles, the microprocessor will proceed with the normal reset procedure detailed above.

Interrupt Request ($\overline{\mathbf{R Q}}$)

This TTL level input requests that an interrupt sequence begin within the microprocessor. The microprocessor will complete the current instruction being executed before recognizing the request. At that time, the interrupt mask bit in the Status Code Register will be examined. If the interrupt mask flag is not set, the microprocessor will begin an interrupt sequence. The Program Counter and Processor Status Register are stored in the stack. The microprocessor will then set the interrupt mask flag high so that no further interrupts may occur. At the end of this cycle, the program counter low will be loaded from address FFFE, and program counter high from location FFFF, therefore transferring program control to the memory vector located at these addresses.

Address Enable Control (AEC)

The Address Bus is valid only when the Address Enable Control line is high. When low, the Address Bus is in a high-impedance state. This feature allows easy DMA and multiprocessor systems.

I/O Port ($\mathbf{P}_{0}-\mathbf{P}_{7}$)

Eight pins are used for the peripheral port, which can transfer data to or from peripheral devices. The Output Register is located in RAM at Address 0001, and the Data Direction Register is at Address 0000 . The outputs are capable at driving one standard TTL load and 130 pf.

Read/Write (R/W)

This signal is generated by the microprocessor to control the direction of data transfers on the Data Bus. This line is high except when the microprocessor is writing to memory or a peripheral device.

ACCUMULATOR ADDRESSING-This form of addressing is represented with a one byte instruction, implying an operation on the accumulator.

IMMEDIATE ADDRESSING-In Immediate addressing, the operand is contained in the second byte of the instruction, with no further memory addressing required.

ABSOLUTE ADDRESSING-In absolute addressing, the second byte of the instruction specifies the eight low order bits of the effective address while the third byte specifies the eight high order bits. Thus, the absolute addressing mode allows access to the entire 65 K bytes of addressable memory.

ZERO PAGE ADDRESSING-The zero page instructions allow for shorter code and execution times by only fetching the second byte of the instruction and assuming a zero high address byte. Careful use of the zero page can result in significant increase in code efficiency.

INDEXED ZERO PAGE ADDRESSING—(X, Y in-dexing)-This form of addressing is used in conjunction with the index register and is referred to as "Zero Page, X " or "Zero Page, Y." The effective address is calculated by adding the second byte to the contents of the index register. Since this is a form of "Zero Page" addressing, the content of the second byte references a location in page zero. Additionally, due to the "Zero Page" addressing nature of this mode, no carry is added to the high order 8 bits of memory and crossing of page boundaries does not occur.
INDEXED ABSOLUTE ADDRESSING- X, Y indexing) - This form of addressing is used in conjunction with X and Y index register and is referred to as "Absolute, X," and "Absolute, Y." The effective address is formed by adding the contents of X and Y to the address contained in the second and third bytes of the instruction. This mode allows the index register to contain the index or count value and the instruction to contain the base address. This type of indexing allows any location referencing and the index to modify multiple fields resulting in reduced coding and execution time.

ADDRESSING MODES

\square - d

IMPLIED ADDRESSING-In the implied addressing mode, the address containing the operand is implicitly stated in the operation code of the instruction.
RELATIVE ADDRESSING-Relative addressing is used only with branch instructions and establishes a destination for the conditional branch.

The second byte of the instruction becomes the operand which is an "Offset" added to the contents of the lower eight bits of the program counter when the counter is set at the next instruction. The range of the offset is $\mathbf{- 1 2 8}$ to +127 bytes from the next instruction.
INDEXED INDIRECT ADDRESSING-in indexed indirect addressing (referred to as [Indirect, X]), the second byte of the instruction is added to the contents of the X index register, discarding the carry. The result of this addition points to a memory location on page zero whose contents is the low order eight bits of the effective address. The next memory location in page zero contains the high order eight bits of the effective address. Both memory locations specifying the high and low order bytes of the effective address must be in page zero.
INDIRECT INDEXED ADDRESSING-In indirect indexed addressing (referred to as [Indirect, Y]). the second byte of the instruction points to a memory location in page zero. The contents of this memory location is added to the contents of the Y index register, the result being the low order eight bits of the effective address. The carry from this addition is added to the contents of the next page zero memory location, the result being the high order eight bits of the effective address.

ABSOLUTE INDIRECT-The second byte of the instruction contains the low order eight bits of a memory location. The high order eight bits of that memory location is contained in the third byte of the instruction. The contents of the fully specified memory location is the low order byte of the effective address. The next memory location contains the high order byte of the effective address which is loaded into the sixteen bits of the program counter.

INSTRUCTION SET-ALPHABETIC SEQUENCE

ADC AND ASL	Add Memory to Accumulator with Carry AND" Memory with Accumulator Shift left One Bit (Memory or Accumulatori
BCC	Branch on Carry Clear
BCS	Branch on Carry Set
BEQ	Branch on Result Zero
BIT	Test Bits in Memory with Accumulator
BMI	Branch on Result Minus
BNE	Branch on Result nol Zero
BPL	Branch on Result Plus
BRK	Force Break
BVC	Branch on Overflow Clear
BVS	Branch on Overflow Set
CLC	Clear Carry Flag
CLO	Clear Decimal Mode
CLI	Clear Interrupt Disable Bit
CLV	Clear Overflow Flag
CMP	Compare Memory and Accumulator
CP.X	Compare Memory and Index X
CPY	Compare Memory and Index Y
DEC	Decrement Memory by One
DEX	Decrement Index X by One
DEY	Decrement Index Y by One
EOR	"Exclusive-or" Memory with Accumulator
INC	Increment Memory by One
INX	Increment Index X by One
INY	Increment Index Y by One
JMP	Jump to New Location
JSR	Jump to New Location Saving Return Addre

LDA	Load Accumulator with Memory
LDX	Load Index X with Memory
LDY	Load Index Y with Memory
LSA	Shift One Bit Right (Memory or Accumulator)
NOP	No Operation
ORA	"OR" Memory with Accumulator
PHA	Push Accumulator on Stack
PHP	Push Processor Status on Stack
PLA	Pull Accumulator from Stack
PLP	Pull Processor Status from Stack
ROL	Rotate One Bit Left (Memory or Accumulator)
ROR	Rotate One Bit Right (Memory or Accumulator)
RTI	Feturn from Interrupt
RTS	Peturn from Subroutine
SBC	Subtract Memory from Accumulator with Borrow
SEC	Sel Carry Flag
SED	Set Decimal Mode
SEI	Set Interrupt Disable Status
STA	Store Accumulator in Memory
STX	Store Index X in Memory
STY	Store Index Y in Memory
TAX	Transier Accumulator to Index X
TAY	Transfer Accumulator to Index Y
TSX	Transfer Stack Pointer to Index X
TXA	Transfer Index X to Accumulator
TXS	Transfer Index X to Stack Register
TYA	Transfer Index Y to Accumulator

PROGRAMMING MODEL

INSTRUCTION SET - OP CODES, Execution Time, Memory Requirements

Note: Commodore Semiconductor Group cannot assume liability for the use of undefined OP Codes

6508 MEMORY MAP

APPLICATIONS NOTES

Locating the Output Register at the internal I/O Port in Page Zero enhances the powerful Zero Page Addressing instructions of the 6510.

By assigning the I/O Pins as inputs (using the Data Direction Register) the user has the ability to change the contents of address 0001 (the Output Register) using peripheral devices. The ability to change these contents using peripheral inputs, together with Zero Page Indirect Addressing instructions, allows novel and versatile programming techniques not possible earlier.

COMMODORE SEMICONDUCTOR GROUP reserves the right to make changes to any products herein to improve reliability, function or design. COMMODORE SEMICONDUCTOR GROUP does not assume any liability arising ot of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.

6509 MICROPROCESSOR WITH MEMORY MANAGEMENT

DESCRIPTION

The 6509 is a low-cost microprocessor capable of solving a broad range of smantinastens and memory management problems at minimum cost to the user.

A memory management system allows for up to One Mega-Byte of nemory fot gase in down loading languages, operating systems or other data.

The Three-State sixteen-bit Address Bus allows Direct Memorx Acdessing (DMA) and multiprocessor systems sharing a common memory while the Foyr-bit Extended Address Register allows for up to one Mega-byte of data storage.

The internal processor architecture is identical to-the MQS-Technology 6502 to provide software compatibility.

FEATURES OF THE 6509

- Memory management
- On board clock logic
- Addressable memory range of up to 1 M, bytes
- Single +5 volt supply
- N channel, silicon gate, depletifon load Jechnology
- Eight bit parallel processifieg
- 56 Instructions
- Decimal and binary afithmetio
- Thirteen addressing modes
- True indexing capability
- Programmable stáck póinter
- Variable length stack
- Interrupt gapability
- 8 Bit Bi-Directionqal Data Bus
- Program Addressable memory range of up to 65 K bytes
- Direct memory access capability
- Bus compatible with M6800

Pipeline architecture
$-\mathrm{MHz}, 2 \mathrm{MHz}$ and 3 MHz operation
"Usol with any type or speed memory

6510 MICROPROCESSOR WITH I/O

DESCRIPTION

The 6510 is a low-cost microcomputer system capable of solving a broad range of small-systems and peripheral-control problems at minimum cost to the user.

An 8-bit Bi-Directional I/O Port is located on-chip with the Output Register at Addnes 50000 and the Data-Direction Register at Address 000 1. The I/O Port is bit-by-bit programmable.

The Three-State sixteen-bit Address Bus allows Direct Memory Accessing) (DMA) abd multiprocessor systems sharing a common memory.

The internal processor architecture is identical to the MOS Technology 6502 to provide software compatibility.

FEATURES OF THE 6510...

- 8-Bit Bi-Directional I/O Port
- Single +5 volt supply
- N channel, silicon gate, depletion
- Eight bit parallel processing
- 56 Instructions
- Decimal and binary arithmetic
- Thirteen addressing modeg
- True indexing capabilify
- Programmable stack pointer
- Variable length stack
- Interrupt capabiitity
- 8 Bit Bi-Directionatoata Bus
- Addressable memory ange of up to 65 K bytes
- Direct merroy accoss eapability
- Bus cormpatible with M6800
- Pipeline archifecture
- 1 MHz and ZAHz operation
- Use with any type or speed memory

PIN CONFIGURATION

$\overline{\text { RES }}$	1		40	$\varphi_{2}{ }^{1 N}$
$\phi_{1} 1 \mathrm{~N}$	2		39	RN
$\overline{\mathrm{RO}}$	3		38	DB_{0}
AEC	4		37	DB.
v_{CC}	5		36	DB_{2}
A_{0}	6		35	DB_{3}
A.	7		34	DB.
A,	8		33	DB,
A.	9		32	DB。
A.	10	6510	31	DB,
A.	${ }^{11}$		30	P。
A_{0}	12		29	$P_{\text {P }}$
A.	13		28	P_{2}
A.	14		27	P_{3}
A.	15		26	P.
$A_{\text {A }}$	16		25	Ps,
$A_{\text {A, }}$	17		24	P_{0}
$A_{1,}$,	18		23	$P_{\text {P }}$
A,	19		22	A 1,
$\mathrm{v}_{\text {Ss }}$	20		21	A.4

6510 CHARACTERISTICS

MAXIMUM RATINGS

RATING	SYMBOL	VALUE	UNIT
SUPPLY VOLTAGE	Vcc	-0.3 to +7.0	Vdc
INPUT VOLTAGE	VIn	-0.3 to +7.0	Vdc
OPERATING TEMPERATURE	T_{A}	0 to +70	${ }^{\circ} \mathrm{C}$
STORAGE TEMPERATURE	TSTG	-55 to +150	${ }^{\circ} \mathrm{C}$

This device contains input protection against damage due to high static voltages or electric fields; however, precautions should be taken to avoid application of voltages higher than the maximum rating.

ELECTRICAL CHARACTERISTICS (Vcc $=5.0 \mathrm{~V} \pm 5 \%, \mathrm{Vss}=0, \mathrm{TA}_{\mathrm{A}}=0^{\circ}$ to $+70^{\circ} \mathrm{C}$)

CLOCK TIMING

TIMING FOR READING DATA FROM MEMORY OR PERIPHERALS

CLOCK TIMING

TIMING FOR WRITING DATA TO MEMORY OR PERIPHERALS

AC CHARACTERISTICS

1 MHz TIMING

ELECTRICAL CHARACTERISTICS $\left(V C C=5 \mathrm{~V} \pm 5 \%, V S S=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ}-70^{\circ} \mathrm{C}\right)$ Minimum Clock Frequency $=50 \mathrm{KHz}$

CLOCK TIMING

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX	MIN.	TYP.	MAX	UNITS
Cycle Time	TCYC	1000	-	-	500	-	-	ns
Clock Pulse Width $\varnothing 1$ (Measurधd at VCC -0.2 V) $\varnothing 2$	PWH $¢ 1$ PWH $¢ 2$	$\begin{aligned} & 430 \\ & 470 \end{aligned}$	-	-	215 235	-	-	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
Fall Time, Rise Time (Measured from 0.2 V to $\mathrm{VCC}-0.2 \mathrm{~V}$)	T_{F}, T_{R}	-	-	25	-	-	15	ns
Delay Time between Clocks (Measured at 0.2 V)	${ }^{\text {D }}$	0	-	-	0	-	-	ns

READNRITE TIMING (LOAD = 1TTL)

CHARACTERISTIC
ReadWrite Setup Time from 6508
Address Setup Time from 6508
Memory Read Access Time
Data Stabillty Time Period
Data Hold Time-Read
Data Hold Time-Write
Data Setup Time from 6510
Address Hold Time
R/W Hold Time
Delay Time, Address valid to $\varnothing 2$ positive transition Delay Time, $\varnothing 2$ negative transition to Peripheral Data valid Peripheral Data Setup Time Address Enable Setup Time

SYMBOL	MIN.	TYP.	MAX
$T_{\text {RWS }}$	-	100	300
$T_{\text {ADS }}$	-	100	300
$T_{\text {ACC }}$	-	-	575
$T_{\text {DSU }}$	100	-	-
$T_{\text {HR }}$		-	-
$T_{\text {HW }}$	10	30	-
$T_{M D S}$	-	150	200
$T_{\text {HA }}$	10	30	-
$T_{\text {HRW }}$	10	30	-
$T_{\text {AEW }}$	180	-	-
$T_{\text {PDW }}$	-	-	1
$T_{\text {PDSU }}$	300	-	-
$T_{\text {AES }}$			60

MIN.	TYP.	MAX.	UNITS
-	100	150	ns
-	100	150	ns
-	-	300	ns
50			ns
			ns
10	30		ns
-	75	100	ns
10	30		ns
10	30		ns
			ns
		0.5	ns
			ns
		60	ns

NMOS

SIGNAL DESCRIPTION

Clocks ($\varnothing_{1}, \varnothing_{2}$)
The 6510 requires a two phase non-overlapping clock that runs at the Vcc voltage level.

Address Bus ($\mathbf{A}_{0} \cdot \mathbf{A}_{15}$)

The three state outputs are TTL compatible, capable of driving one standard TTL load and 130 pf .

Data Bus ($\mathrm{D}_{0}-\mathrm{D}_{7}$)

Eight pins are used for the data bus. This is a Bi-Directional bus, transferring data to and from the device and peripherals. The outputs are tri-state buffers capable of driving one standard TTL load and 130 pf.

Reset

This input is used to reset or start the microprocessor from a power down condition. During the time that this line is held low, writing to or from the microprocessor is inhibited. When a positive edge is detected on the input, the microprocessor will immediately begin the reset sequence.

After a system initialization time of six clock cycles, the mask interrupt flag will be set and the microprocessor will load the program counter from the memory vector locations FFFC and FFFD. This is the start location for program control.

After Vcc reaches 4.75 volts in a power up routine, reset must be held low for at least two clock cycles. At this time the R/W signal will become valid.

When the reset signal goes high following these two clock cycles, the microprocessor will proceed with the normal reset procedure detailed above.

Interrupt Request ($\overline{\mathrm{R}} \overline{\mathrm{Q}}$)

This TTL level input requests that an interrupt sequence begin within the microprocessor. The microprocessor will complete the current instruction being executed before recognizing the request. At that time, the interrupt mask bit in the Status Code Register will be examined. If the interrupt mask flag is not set, the microprocessor will begin an interrupt sequence. The Program Counter and Processor Status Register are stored in the stack. The microprocessor will then set the interrupt mask flag high so that no further interrupts may occur. At the end of this cycle, the program counter low will be loaded from address FFFE, and program counter high from location FFFF, therefore transferring program control to the memory vector located at these addresses.

Address Enable Control (AEC)

The Address Bus is valid only when the Address Enable Control line is high. When low, the Address Bus is in a high-impedance state. This feature allows easy DMA and multiprocessor systems.

I/O Port ($\mathrm{P}_{\mathrm{o}} \cdot \mathrm{P}_{7}$)

Eight pins are used for the peripheral port, which can transfer data to or from peripheral devices. The Output Register is located in RAM at Address 0001, and the Data Direction Register is at Address 0000. The outputs are capable at driving one standard TTL load and 130 pf .

Read/Write (R/W)

This signal is generated by the microprocessor to control the direction of data transfers on the Data Bus. This line is high except when the microprocessor is writing to memory or a peripheral device.

ADDRESSING MODES

ACCUMULATOR ADDRESSING-This form of addressing is represented with a one byte instruction, implying an operation on the accumulator.

IMMEDIATE ADDRESSING-In Immediate addressing, the operand is contained in the second byte of the instruction, with no further memory addressing required.
ABSOLUTE ADDRESSING-In absolute addressing, the second byte of the Instruction specifies the eight low order bits of the effective address while the third byte specifies the eight high order bits. Thus, the absolute addressing mode allpws access to the entire 65 K bytes of addressable memory.
ZERO PAGE ADDRESSING - The zero page instructions allow for shorter code and execution times by only fetching the second byte of the instruction and assuming a zero high address byte. Careful use of the zero page can result in significant increase in code efficiency.
INDEXED ZERO PAGE ADDRESSING-(X, Y indexing) - This form of addressing is used in conjunction with the index register and is referred to as "Zero Page, X " or "Zero Page, Y." The effective address is calculated by adding the second byte to the contents of the index register. Since this is a form of "Zero Page" addressing, the content of the second byte references a location in page zero. Additionally, due to the "Zero Page" addressing nature of this mode, no carry is added to the high order 8 bits of memory and crossing of page boundaries does not occur.
INDEXED ABSOLUTE ADDRESSING- $(X, Y$ indexing) - This form of addressing is used in conjunction with X and Y index register and is referred to as "Absolute, X," and "Absolute, Y." The effective address is formed by adding the contents of X and Y to the address contained in the second and third bytes of the instruction. This mode allows the index register to contain the index or count value and the instruction to contain the base address. This type of indexing allows aryy location referencing and the index to modify multiple fields resulting in reduced coding and execution time.

IMPLIED ADDRESSING-In the implied addressing mode, the address containing the operand is implicitly stated in the operation code of the instruction.

RELATIVE ADDRESSING—Relative addressing is used only with branch instructions and estab. lishes a destination for the conditional branch.
The second byte of the instruction becomes the operand which is an "Offset" added to the contents of the lower eight bits of the program counter when the counter is set at the next instruction. The range of the offset is -128 to +127 bytes from the next instruction.
INDEXED INDIRECT ADDRESSING-In indexed indirect addressing (referred to as (Indirect, X]), the second byte of the instruction is added to the contents of the X index register, discarding the carry. The result of this addition points to a memory location on page zero whose contents is the low order eight bits of the effective address. The next memory location in page zero contains the high order eight bits of the effective address. Both memory locations specifying the high and low order bytes of the effective address must be in page zero.
INDIRECT INDEXED ADDRESSING-In indirect indexed addressing (referred to as [Indirect, Y]). the second byte of the instruction points to a memory location in page zero. The contents of this memory location is added to the contents of the Y index register, the result being the low order eight bits of the effective address. The carry from this addition is added to the contents of the next page zero memory location, the result being the high order eight bits of the effective address.

ABSOLUTE INDIRECT-The second byte of the instruction contains the low order eight bits of a memory location. The high order eight bits of that memory location is contained in the third byte of the instruction. The contents of the fully specified memory location is the low order byte of the effective address. The next memory location contains the high order byte of the effective address which is loaded into the sixteen bits of the program counter.

INSTRUCTION SET-ALPHABETIC SEQUENCE

ADC
AND
ASL
BCC
BCS
BEO
BIT
BMI
BNE
BPL
BRK
BVC
BVS
CLC
CLD
CLI
GLV
CMP
CPX
CPY
DEC
DEX
DEY
EOR
INC
INX
INY
JMP
JSA

Add Memory to Accumulator with Carry
"AND" Memory with Accumulator
Shift left One Bit (Memory or Accumulator)
Branch on Carry Clear
Branch on Carry Set
Branch on Result Zero
Test Bits in Memory with Accumulator
Branch on Result Minus
Branch on Result not Zero
Branch on Result Plus
Force Break
Force Break
Branch on Overflow Clear
Branch on Overflow Set
Clear Carry Flag
Clear Decimal Mode
Clear Interrupt Disable Bit
Clear Overflow Flag
Compare Memory and Accumulator
Compare Memory and Index X
Compare Memory and Index Y
Compare Memory and Index Y
Decrement Memory by One
Decrement Index x by One
Decrement Index Y by One
Decrement Index Y by One
"Exclusive-or" Memory with Accumulator
Increment Memory by One
Increment Index x by One
Increment Index Y by One
Jump to New Location
Jump to New Location Saving Return Address

Load Index X with Memory
LSR Load Index Y with Memory

Push Accumulator on Stack
PHP Push Processor Status on Stack
PLA Pull Accumulator from Stack
PLP Pull Processor Status from Stack
ROL Rotate One Bit Left (Memory or Accumulaton)
ROR Rotate One Bit Right (Memory or Accumulator) RTI Return from interrupt

Return from Subroutine
Subtract Memory from Accumulator with Borrow Set Carry Flag
Set Decimal Mode
Set Interrupt Disable Status
Store Accumulator in Memory
Store Index X in Memory
Store Index Y in Memory
Store Index Y in Memory
Transfer Accumulator to Index X
Transfer Accumulator to Index Y
Transfer Stack Pointer to Index X
Transfer Index X to Accumulator
Transfer Index X to Stack Register
Transfer Index Y to Accumulator

ACCUMULATOR	A
INDEX REGISTER	Y
INDEX REGISTER	X
PROGRAM COUNTER "PC"	
STACK POINTER	" $\mathrm{S} "$

INSTRUCTION SET - OP CODES, Execution TIme, Memory Requirements

Note: Commodore Semiconductor Group cannot assume llability for the use of undefined OP Codes

6510 MEMORY MAP

APPLICATIONS NOTES

Locating the Output Register at the internal I/O Port in Page Zero enhances the powerful Zero Page Addressing instructions of the 6510.

By assigning the I/O Pins as inputs (using the Data Direction Register) the user has the ability to change the contents of address 0001 (the Output Register) using peripheral devices. The ability to change these contents using peripheral inputs, together with Zero Page Indirect Addressing instructions, allows novel and versatile programming techniques not possible earlier.

COMMODORE SEMICONDUCTOR GROUP reserves the right to make changes to any products herein to improve reliability, function or design. COMMODORE SEMICONDUCTOR GROUP does not assume any liability arising of of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.

6520 PERIPHERAL ADAPTER

DESCRIPTION

The 6520 Peripheral Adapter is designed to solve a broad range of peripheral control problems in the implementation of microcomputer systems. This device allows a very effective trade-off between software and hardware by providing significant capability and flexibility in a low cost chip. When coupled with the power and speed of the 6500 family of microprocessors, the 6520 allows implementation of very complex systems at a minimum overall cost.

Control of peripheral devices is handled primarily through two 8 -bit bi-directional ports. Each of these lines can be programmed to act as either an input or an output. In addition, four peripheral control/interrupt input lines are provided. These lines can be used to interrupt the processor or for "hand-shaking" data between the processor and a peripheral device.

FEATURES

- High performance replacement for Motorola/AMI /MOSTEK/Hitachi peripheral adapter.
- N channel, depletion load technology, single +5 V supply.
- Completely Static and TTL compatible.
- CMOS compatible peripheral control lines.
- Fullyautomatic "hand-shake" allows very positive control of data transfers between processor and peripheral devices.

SUMMARY OF 6520 OPERATION

See MOS TECHNOLOGY Microcomputer Hardware Manual for detailed description of 6520 operation.

CA1/CBI CONTROL

CRA (CRB)		Active Transition of Input Signal*	IRQA (IRQB) Interrupt Outputs
Bit 1	Bit 0		
0	0	negative	Disable - remain high
0	1	negative	Enable-goes low when bit 7 in CRA (CRB) is set by active transition of signal on CA1 (CB1)
1	0	positive	Disable - remain high
1	1	positive	Enable - as explained above
	e:	of CRA (CRB) will This is indepen	to a logic 1 by an active transition of the CA1 (CB1) the state of Bit 0 in CRA (CRB).

CA2/CB2 INPUT MODES

CRA (CRB)			CA2/CB2 INPUT MODES	
Bit 5	Blt 4	Bit 3	Active Transition of Input Signal*	IRQA (IRQB) Interrupt Output
0	0	0	negative	Disable - remains high
0	0	1	negative	Enable - goes low when bit 6 in CRA (CRB) is set by active transition of signal on CA2 (CB2)
0	1	0	positive	Disable - remains high
0	1	1	positive	Enable - as explained above

*Note: Bit 6 of CRA (CRB) will be set to a logic 1 by an active transition of the CA2 (CB2) signal. This is independent of the state of Bit 3 in CRA (CRB)

CA2 OUTPUT MODES

Bit 5	CRA	Bit 3	Mode
1	0	0	"Handshake" on Read
1	0	1	Pulse Output
1	1	0	Manual Output 1
1	1	Manual Output	

Description

CA2 is sethigh on an active transition of the CA1 interrupt input signat and set low by a microprocessor "Read A Data" operation. This allows positive control of data transfers from the peripheral device to the microprocessor. CA2 goes low for one cycle after a "Read A Data" operation. This pulse can be used to signal the peripheral device that data was taken.
CA2 set low
CA2 set high

CB2 OUTPUT MODES

| Bit 5 | CRB | Bit 4 | Bit 3 |
| :---: | :---: | :---: | :---: | Mode | Mandshake" |
| :---: |
| on Write |
| 1 |

Description

CB2 is set low on microprocessor "Write B Data" operation and is set high by an active transition of the CB1 interrupt input signal. This allows positive control of data transfers from the microprocessor to the peripheral device.
CB2 goes low for one cycle after a microprocessor "Write B Data" operation. This can be used to signal the peripheral device that data is available.
CB2 set low
CB2 set high

MAXIMUM RATINGS

Supply Voltage, VCC
-0.3 to +7.0 V
Input Voltage, VIN
Operating Temperature Range, T_{A}
Storage Temperature Range, TSTG
This device contains circuitry to protect the inputs against damage due to high static voltages, however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this circuit.

COMMENT

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of this device at these or any other conditions above those indicated in the operational sections of this specification is not implied and exposure to absolute maximum rating conditions for extended periods may affect device reliability.

STATIC D.C. CHARACTERISTICS (VCC $=5.0 \mathrm{~V} \pm \mathbf{5 \%}, \mathrm{V}_{\mathbf{S S}}=0, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Input High Voltage (Normal Operating Leveis)	$V_{1 H}$	+2.0	-	$V_{C C}$	Vdc
Input Low Voltage (Normal Operating Leveis)	$V_{\text {IL }}$	-0.3	-	+ 8	Vdc
Input Threshold Voitage	$V_{\text {IT }}$	0.8	-	2.0	$V \mathrm{dc}$
Input Leakage Current	In			uAdc	$\mu \mathrm{Adc}$
$\mathrm{V}_{\text {in }}=0$ to 5.0 Vdc R/W, Reset, RS0,RS1, CSO 0 CS $1, \overline{C S} 2, \mathrm{CA} 1, \mathrm{CB} 1, \varnothing 2$		-	± 1.0	± 2.5	
Three-State (Off State Input Current)	ITSI				
$\left(V_{\text {in }}=0.4\right.$ to $\left.2.4 \mathrm{Vdc}, V_{C C}=\max \right) \mathrm{DO}-\mathrm{D7}, \mathrm{~PB} 0-\mathrm{PB} 7, \mathrm{CB} 2$		-	± 2.0	± 10	$\mu \mathrm{Adc}$
Input High Current $\left(\mathrm{V}_{\mathrm{IH}}=2.4 \mathrm{Vdc}\right) \mathrm{PAO}-\mathrm{PA} 7, \mathrm{CA} 2$	1 H	-100	-250	-	$\mu \mathrm{Adc}$
Input Low Current	IIL				
$\left(\mathrm{V}_{\text {IL }}=0.4 \mathrm{Vdc}\right) \mathrm{PAO}-\mathrm{PA} 7 . \mathrm{CA} 2$		-	-1.0	-1.6	mAdc
Output High Voltage	VOH				Vdc
(VCC $=\mathrm{min}, 1 \mathrm{Load}=-100 \mathrm{uAdC})$		2.4	-	-	Vdc
Output Low Voltage $\left(\mathrm{V}_{\mathrm{CC}}=\mathrm{min}, 1\right.$ Load $\left.=1.6 \mathrm{mAdC}\right)$	VOL	-	-	+0.4	Vdc
Output High Current (Sourcing)	${ }^{1} \mathrm{OH}$				
($\mathrm{OH}=2.4 \mathrm{Vdc}$)		$\begin{aligned} & -100 \\ & -1.0 \end{aligned}$	$\begin{gathered} -1000 \\ -2.5 \end{gathered}$	-	$\mu \mathrm{Adc}$ mAdc
$N_{\mathrm{O}}=1.5 \mathrm{Vdc}$, the current for driving other than TLL, e.g., Darlington Base) PB0-PB7,CB2					
Output Low Current (Sinking)	IOL				
(V OL $=0.4 \mathrm{Vdc}$)		1.6.	-	-	mAdc
Output Leakage Current (Off State) I $\overline{\mathrm{RQA}}, \mathrm{IRQB}$	1 loff	-	1.0	10	$\mu \mathrm{Adc}$
Power Dissipation	PD	-	200	500	mW
Input Capacitance	Cin				pF
		-	-		
RM, Reset,RSO,RS1,CSO,CS1,CS2,		-	-	7.0	
CA1,CB1, $\varnothing 2$		-	-	20	
Output Capacitance	Cout				
$\left(\mathrm{V}_{\text {in }}-0, \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right.$)		-	-	10	pF

NOTE: Negative sign indicates outward current flow, positive indicates inward flow.
FIGURE 1 - READ TIMING CHARACTERISTICS

NMOS

FIGURE 2 - WRITE TIMING CHARACTERISTICS

A.C. CHARACTERISTICS

Figure 1 - Read Timing Characteristics (Loading 130 pF and one TTL load)

Characteristlics	Symbol	Min	Typ	Max	Unit
Delay Time, Address valid to Enable positive transition	TAEW	180	-	-	$n s$
Delay Time, Enable positive transition to Data valid on bus	TEDR	-	-	395	$n s$
Peripheral Data Setup Time	TPDSU	300	-	-	n
Data Bus Hold Time	THR	10	-	-	$n s$
Delay Time, Enable negative transition to CA2 negative transition	TCA2	-	-	1.0	μs
Delay Time, Enable negative transition to CA2 positive transition	TRS1	-	-	1.0	μs
Rise and Fall Time for CA1 and CA2 input signals	trif	-	-	1.0	μs
Delay Time from CA1 active transition to CA2 positive transition	TRS2	-	-	2.0	μs
Rise and Fall Time for Enable input	TrE,te	-	-	25	$n s$

Figure 2 - Write Timing Characteristics

Characteristics	Symbol	Min	Typ	Max	Unit
Enable Pulse Width	TE	0.470	-	25	$\mu \mathrm{s}$
Delay Time, Address valid to Enable positive transition	TAEW	180	-	-	ns
Delay Time, Data valid to Enable negative transition	TDSU	300	-	-	ns
Delay Time, Read/Write negative transition to Enable positive transition	TWE	130	-	-	ns
Data Bus Hold Time	THW	10	-	-	ns
Delay Time, Enable negative transition to Peripheral Data valid	TPDW	-	-	1.0	$\mu \mathrm{s}$
Delay Time, Enable negative transition to Peripherai Data valid, CMOS (VCC - 30\%) PAO-PA7, CA2	TCMOS	-	-	2.0	$\mu \mathrm{s}$
Delay Time, Enable positive transition to CB2 negative transition	${ }^{\text {T }}$ CB2	$\overline{0}$	-	1.0	μs
Delay Time, Peripheral Data valid to CB2 negative transition	TDC	0	-	1.5	μs
Delay Time, Enable positive transition to CB2 positive transition	TRS1	-	-	1.0	$\mu \mathrm{s}$
Rise and Fall Time for CB1 and CB2 input signals	$\mathrm{tr}_{\text {r }}$ If	-	-	1.0	$\mu \mathrm{s}$
Delay Time, CB1 active transition to CB2 positive transition	TRS2	-	-	2.0	$\mu \mathrm{s}$

COMMODORE SEMICONDUCTOR GROUP reserves the right to make changes to any products herein to improve reliability, function or design. COMMODORE SEMICONDUCTOR GROUP does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.

6522 VERSATILE INTERFACE ADAPTER

DESCRIPTION

The 6522 Versatile Interface Adapter (VIA) provides all of the capability of the 6520. In addition, this device contains a pair of very powerful interval timers, a serial-to-parallel/parallel-to-serial shift register and input data latching on the peripheral ports. Expanded handshaking capability allows control of bi-directional data transfers between VIA's in multiple processor systems.

Control of peripheral devices is handled primarily through two 8 -bit bi-directional ports. Each of these lines can be programmed to act as either an input or an output. Also, several peripheral I/O lines can be controlled directly from the interval timers for generating programmable-frequency square waves and for counting externally generated pulses. To facilitate control of the many powerful features of this chip, the internal registers have been organized into an interrupt flag register, an interrupt enable register and a pair of function control registers.

FEATURES

- Very powerful expansion of basic 6520 capability.
- N channel, depletion load technology, single +5 V supply.
- Completely static and TTL compatible.
- CMOS compatible peripheral control lines.
- Expanded "handshake" capability allows very positive control of data transfers between processor and peripheral devices.

6522 Interface Diagram

Figure 1. 6522 Block Diagram

PROCESSOR INTERFACE

This section contains a description of the buses and control lines which are used to interface the 6522 to the system processor. AC and DC parameters associated with this interface are specified on pages 21 through 24 of this document.

1. Phase Two Clock ($\varnothing \mathbf{2}$)

Data transfers between the 6522 and the system processor take place only while the Phase Two Clock is high. In addition, $\emptyset 2$ acts as the time base for the various timers, shift registers, etc. on the chip.

2. Chip Select Lines (CS1, $\overline{\mathbf{C S 2}}$)

The two chip select inputs are normally connected to processor address lines either directly or through decoding. The selected 6522 register will be accessed when CS1 is high and $\overline{\mathrm{CS}}$ is low.

3. Register Select Lines (RSO, RS1, RS2, RS3)

The four Register select lines are normally connected to the processor address bus lines to allow the processor to select the internal 6522 register which is to be accessed. The sixteen possible combinations access the registers as follows:

RS3	RS2	RS1	RSO	Register	Remarks
L	L	L	L	ORB	
L	L	L	H	ORA	Controls Handshake
L	L	H	L	DDRB	
L	L	H	H	DDRA	
L	H	L	L	T1L-L T1C-L	Write Latch Read Counter
L	H	H	L	T1C-H	Trigger T1L-L T1C-LTransf.
L	H	H	L	T1L-L	
L	H	H	H	T1L-H	

4. Read/Write Line (R/W)

The direction of data transfers between the 6522 and the system processor is controlled by the R/W line. If R/W is low, data will be transferred out of the processor into the selected 6522 register (write operation). If R/W is high and the chip is selected, data will be transferred out of the 6522 (read operation).

5. Data Bus (DBO-DB7)

The 8 bi-directional data bus lines are used to transfer data between the 6522 and the system processor. The internal drivers will remain in the high-impedance state except when the chip is selected $(\operatorname{CS} 1=1, \overline{C S 2}=0)$, Read/Write is high and the Phase Two Clock is high. At this time, the contents of the selected register are placed on the data bus. When the chip is selected, with Read/Write low and $\varnothing 2=1$, the data on the data bus will be transferred into the selected 6522 register.

6. Reset ($\overline{\text { RES }}$)

The Reset input clears all internal registers to logic 0 (except T1, T2 and SR). This places all peripheral interface lines in the input state, disables the timers, shift register, etc. and disables interrupting from the chip.

RS3	RS2	RS1	RS0	Register	Remarks
H	L	L	L	T2L-L T2C-L	Write Latch Read Counter
H	L	L	H	T2C-H	Triggers T2L-L/ T2C-L Transfer
H	L	H	L	SR	
H	L	H	H	ACR	
H	H	K	K	PCR	
H	H	L	H	IFR	
H	H	H	L	IER	
H	H	H	H	ORA	No Effect on Handshake

7．Interrupt Request（IRQ）

The Interrupt Request output goes low whenever an internal interrupt flag is setand the corresponding interrupt enable bit is a logic 1．This output is＂open－drain＂to allow the interrupt request signal to be＂wire－or＇ed＂with other equivalent signals in the system．

PERIPHERAL INTERFACE

This section contains a brief description of the buses and control lines which are used to drive peripheral devices under control of the internal 6522 registers．

1．Peripheral A Port（PAO－PA7）

The Peripheral A port consists of 8 lines which can be individually programmed to act as an input or an output under control of a Data Direction Register．The polarity of output pins is controlled by an Output Register and input data can be latched into an internal register under control of the CA1 line．All of these modes of operation are controlled by the system processor through the internal control registers．These lines represent one standard TL load in the input mode and will drive one standard TTL load in the output mode．

2．Peripheral A Control Lines（CA1，CA2）

The two peripheral A control lines act as interrupt inputs or as handshake outputs．Each line controls an internal interrupt flag with a corresponding interrupt enable bit．In addition，CA1 controls the latching of data on Peripheral A Port input lines． The various modes of operation are controlled by the system processor through the internal control registers．CA1 is a high－ impedance input only while CA2 represents one standard TTL load in the input mode．CA2 will drive one standard TTL load in the output mode．

3．Peripheral B Port（PBO－PB7）

The Peripheral B port consists of 8 bi－directional lines which are controlled by an output register and a data direction register in much the same manner as the PA port．In addition，the polarity of the PB7 output signal can be controlled by one of the interval timers while the second timer can be programmed to count pulses on the PB6 pin．These lines represent one standard TTL load in the input mode and will drive one standard TTL load in the output mode．In addition，they are capable of sourcing 30 ma at 1.5 VDC in the output mode to allow the outputs to directly drive Darlington transistor switches．

4．Peripheral B Control Lines（CB1，CB2）

The Peripheral B control lines act as interrupt inputs or as handshake outputs．As with CA1 and CA2，each line controls an interrupt flag with a corresponding interrupt enable bit．In addition，these lines act as a serial port under control of the Shift

Register．These lines represent one standard TTL load in the input mode and will drive one standard TTL load in the output mode．In addition，they are capable of sourcing 1.0 ma at 1.5 VDC in the output mode to allow the outputs to directly drive Darlington transistor switches．

6522 OPERATION

This section contains a discussion of the various blocks of logic shown in Figure 1．In addition，the internal operation of the 6522 is described in detail．

A．Data Bus Buffers（DB），Peripheral A Buffers（PA）， Peripheral B Buffers（PB）

The characteristics of the buffers which provide the required voltage and current drive capability were discussed in the previous section．AC and DC parameters for these buffers are specified on pages 21 through 24 of this document．

B．Chip Access Control

The Chip Access Control contains the necessary logic to detect the chip select condition and to decode the Register Select inputs to allow accessing the desired internal register．In addition，the RNW and $\emptyset 2$ signals are utilized to control the direction and timing of data transfers．When writing into the 6522，data is first latched into a data input register during $\varnothing 2$. Data is then transferred into the desired internal register during $\emptyset 2$－Chip Select．This allows the peripheral I／O line to change without＂glitching．＂When the processor reads the 6522，data is transferred from the desired internal register directly onto the Data Bus during $\emptyset 2$ ．

C．Port A Registers，Port B Registers

Three registers are used in accessing each of the 8 －bit peripheral ports．Each port has a Data Direction Register （DDRA，DDRB）for specitying whether the peripheral pins are to act as inputs or outputs．A 0 in a bit of the Data Direction Register causes the corresponding peripheral pin to act as an input．A 1 causes the pin to act as an output．

Each peripheral pin is also controlled by a bit in the Output Register（ORA，ORB）and an Input Register（IRA，IRB）．When the pin is programmed to act as an output，the voltage on the pin is controlled by the corresponding bit of the Output Register．A 1 in the Output Register causes the pin to go high，and a 0 causes the pin to go low．Data can be written into Output Register bits corresponding to pins which are programmed to act as inputs；however，the pin will be unaffected．

Reading a peripheral port causes the contents of the Input Register（IRA，IRB）to be transferred onto the Data Bus．With input latching disabled，IRA will always reflect the data on the

Figure 2．Peripheral Output Buffers

NMOS

PA pins. With input latching enabled, IRA will reflect the contents of the Port A prior to setting the CA1 Interrupt Flag (IFR1) by an active transition on CA1.

The IRB register operates in a similar manner. However, for output pins, the corresponding IRB bit will reflect the contents of the Output Register bit instead of the actual pin. This allows proper data to be read into the processor if the output pin is not allowed to go to full voltage. With input latching enabled on Port B, setting CB1 interrupt flag will cause IRB to latch this combination of input data and ORB data until the interrupt flag is cleared.

D. Handshake Control

The 6522 allows very positive control of data transfers between the system processor and peripheral devices through the operation of "handshake" lines. Port A lines (CA1, CA2) handshake data on both a read and a write operation while the Port B lines (CB1, CB2) handshake on a write operation only.

Read Handshake

Positive control of data transfers from peripheral devices into the systern processor can be accomplished very effectively using "Read" handshaking. In this case, the peripheral device must generate "Data Ready" to signal the processor that valid data is present on the peripheral port. This signal normally interrupts the processor, which then reads the data, causing
generation of a "Data Taken" signal. The peripheral device responds by making new data available. This process continues until the data transfer is complete.

In the 6522, automatic "Read" handshaking is possible on the Peripheral A port only. The CA1 interrupt input pin accepts the "Data Ready" signal and CA2 generates the "Data Taken" signal. The Data Ready signal will set an internal flag which may interrupt the processor or which can be polled under software control. The Data Taken signal can be either a pulse or a DC level which is set low by the system processor and is cleared by the Data Ready signal. These options are shown in Figure 3 which illustrates the normal Read Handshaking sequence.

Write Handshake

The sequence of operations which allows handshaking data from the system processor to a peripheral device is very similar to that described in Section A for Read Handshaking. However, for "Write" handshaking, the processor mustgenerate the "Data Ready" signal (through the 6522) and the peripheral device must respond with the "Data Taken" signal. This can be accomplished on both the PA port and the PB port on the 6522. CA2 or CB2 acts as a Data Ready output in either the DC level or pulse mode and CA1 or CB1 accepts the "Data Taken" signal from the peripheral device, setting the interrupt flag and clearing the "Data Ready" output. This sequence is shown in Figure 4.

Figure 3. Read Handshake Timing Sequence

Figure 4. Write Handshake Timing Sequence

TIMER 1

Introduction

Interval Timer T1 consists of two 8-bit latches and a 16-bit counter. The latches are used to store data which is to be loaded into the counter. After loading, the counter decrements at system clock rate, i.e., under control of the clock applied to the Phase Two input pin. Upon reaching zero, an interrupt flag will be set, and IRQ will go low. The timer will then disable any further interrupts, or will automatically transfer the contents of the latches into the counter and will continue to decrement. In addition, the timer can be instructed to invert the output signal on a peripheral pin each time it "times-out." Each of these modes is discussed separately below.

Writing the Timer 1 Reglsters

The operations which take place when writing to each of the four T 1 addresses are as follows:

Transfer low order latch into low order

RS3	RS2	RS1	RSO	Operation (R/W = L)
L	H	L	L	Write into low order latch.
L	H	L	H	Write into high order latch. Write into high order counter. Transfer low order latch intolow order counter Reset T1 interrupt flag.
L	H	H	L	Write low order latch.
L	H	H	H	Write high order latch. Reset T1 interrupt flag.

Note that the processor does not write directly into the low order counter (T1C-L). Instead, this half of the counter is loaded automatically from the low order latch when the processor writes into the high order counter. In fact, it may not be necessary to write to the low order counter in some applications since the timing operation is triggered by writing to the high order counter.

The second set of addresses allows the processor to write into the latch register without affecting the count-down in progress. This is discussed in detail below.

Reading the Timer 1 Registers

For reading the Timer 1 registers, the four addresses relate directly to the four registers as follows:

RS3	RS2	RS1	RS0	Operation (R/W = H)
L	H	L	L	Read T1 low order counter.
				Reset T1 interrupt flag.
L	H	L	H	Read T1 high order counter.
L	H	H	L	Read T1 low order latch.
L	H	H	H	Read T1 high order latch.

Timer 1 Operating Modes

Two bits are provided in the Auxiliary Control Register to allow selection of the T1 operating modes. These bits and the four possible modes are as follows:

ACR7 Output Enable	"Free-Run" Enable	Mode
0	0	Generate a single time-out interrupt each time T1 is loaded. PB7 disabled.
0	1	Generate continuous interrupts. PB7 disabled. 1
1	1	Generate a single interrupt and an outputpulse on PB7 for each T1 load operation. Generate continuous interrupts and a square wave output on PB7.

Timer 1 One-Shot Mode

The interval timer one-shot mode allows generation of a single interrupt for each timer load operation. As with any interval timer, the delay between the "write T1C-H" operation and generation of the processor interrupt is a direct function of the data loaded into the timing counter. In addition to generating a single interrupt, Timer 1 can be programmed to produce a single negative pulse on the PB7 peripheral pin. With the output enabled (ACR\& $=1$) a "write T1C-H" operation will cause PB7 to go low. PB7 will return high when Timer 1 times out. The result is a single programmable width pulse.

NOTE

PB7 will act as an output if DDRB7 $=1$ or if $\mathrm{ACR7}=1$. However, if both DDRB7 and ACR7 are logic 1, PB7 will be controlled from Timer 1 and ORB7 will have no effect on the pin.

In the one-shot mode, writing into the high order latch has no effect on the operation of Timer 1 . However, it will be necessary to assure that the low order latch contains the proper data before initiating the count-down with a "write T1C-H" operation. When the processor writes into the high order counter, the T1 interrupt flag will be cleared, the contents of the low order latch will be transferred into the low order counter, and the timer will begin to decrement at system clock rate. If the PB7 output is enabled, this signal will go low on the phase two following the write operation. When the counter reaches zero; the T1 interrupt flag will be set, the $\overline{R Q}$ pin will go low (interrupt enabled), and the signal on PB7 will go high. At this time the counter will continue to decrement at system clock rate. This allows the system processor to read the contents of the counter to determine the time since interrupt. However, the T1 interrupt flag cannot be set again unless it has been cleared as described on page 13 of this specification.

Timing for the 6522 interval timer one-shot modes is shown in Figure 5.

Notes:

1. $R / W=L, C S 2=L, C S 1=H, R S 3=L, R S 2=H, R S 1=R S O=H$.

Figure 5. Interval Timer "One-shot" Mode Timing Sequence.

Timer 1 Free-Running Mode

The most important advantage associated with the latches in T1 is the ability to produce a continuous series of evenly spaced interrupts and the ability to produce a square wave on PB7 whose frequency is not affected by variations in the processor interrupt response time. This is accomplished in the "free-running" mode.

In the free-running mode (ACR6 = 1), the interrupt flag is set and the signal on PB7 is inverted each time the counter reaches zero. However, instead of continuing to decrement from zero after a time-out, the timer automatically transfers the contents of the latch into the counter (16 bits) and continues to decrement from there. The interrupt flag can be cleared by writing T1C-H, by reading T1C-L, or by writing directly into the flag as described below. However, it is not necessany to rewrite the timer to enable setting the interrupt flag on the next time-out.

All interval timers in the 6500 family devices are "retriggerable." Rewriting the counter will always re-initialize the time-out period. In fact, the time-out can be prevented completely if the processor continues to rewrite the timer before it reaches zero. Timer 1 will operate in this manner if the processor writes into the high order counter (T1C-H). However, by loading the latches only, the processor can access the timer during each down-counting operation without affecting the time-out in process. Instead, the data loaded into the latches will determine the length of the next time-out period. This capability is particylarly valuable in the free-running mode with the output enabled. In this mode, the signal on PB7 is inverted and the interrupt flag is set with each time-out. By responding to the interrupts with new data for the latches, the processor can determine the period of the next half cycle during each half cycle of the output signal on PB7. In this manner, very complex waveforms can be generated. Timing for the free-running mode is shown in Figure 6.

TIMER 2

Timer 2 operates as an interval timer (in the "one-shot" mode only), or as a counter for counting negative pulses on the PB6
peripheral pin. A single control bit is provided in the Auxiliary Control Register to select between these two modes. This timer is comprised of a "write-only" low-order latch (T2L-L), a "readonly" low-order counter and a read/write high-order counter. The counter registers act as a 16 -bit counter which decrements at $\emptyset 2$ rate.

Timer 2 addressing can be summarized as follows:

RS3	RS2	RS1	RS0	R/W = 0	R/W = 1
H	L	L	L	Write T2L-L	Read T2C-L Clear Interrupt flag H
L	L	H	Write T2C-H Transfer T2L-L to T2C-L Clear Interrupt flag		

Timer 2 Interval Timer Mode

As an interval timer, T2 operates in the "one-shot" mode similar to Timer 1 . In this mode, $T 2$ provides a single interrupt for each "write T2C-H" operation. After timing out, the counter will continue to decrement. However, setting of the interrupt flag will be disabled after initial time-out so that it will not be set by the counter continuing to decrement through zero. The processor must rewrite T2C-H to enable setting of the interrupt flag. The interrupt flag is cleared by reading T2C-L or by writing T2C-H. Timing for this operation is shown in Figure 5.

Timer 2 Pulse Counting Mode

In the pulse counting mode, T 2 serves primarily to count a predetermined number of negative-going pulses on PB6. This is accomplished by first loading a number into T 2 . Writing into T2C-H clears the interrupt flag and allows the counter to decrement each time a pulse is applied to PB6. The interrupt flag will be set when $T 2$ reaches zero. At this time the counter will continue to decrement with each pulse on PB6. However, it is necessary to rewrite T2C-H to allow the interrupt flag to set on subquent down-counting operations. Timing for this mode is shown in Figure 7. The pulse must be low on the leading edge $\not \square 2$.

Figure 6. Timer 1 "Free-Running" Mode

Figure 7. Timer 2 Pulse Counting Mode

SHIFT REGISTER

The Shift Register (SR) performs serial data transfers into and out of the CB2 pin under control of an internal modulo-8 counter. Shift pulses can be applied to the CB1 pin from an external source or, with the proper mode selection, shift pulses generated internally will appear on the CB1 pin for controlling shifting in external devices.

The control bits which allow control of the various shift register operating modes are located in the Auxiliary Control Register. These bits can be set and cleared by the system processor to select one of the operating modes discussed in the following paragraphs.

Shift Reglster Input Modes

Bit 4 of the Auxiliary Control Register selects the input or output modes. There are three input modes and four output modes, differing primarily in the source of the pulses which control the shifting operation. With ACR4 $=0$ the input modes are selected by ACR3 and ACR2 as follows:

ACR4	ACR3	ACR2	Mode
0	0	0	Shift Register Disabled
0	0	1	Shift in under controt of Timer 2
0	1	0	Shit in at System Clock Rate.
0	1	1	Shit in under control of external input pulses

Mode 000 - Shift Register Dlsabled

The 000 mode is used to disable the Shift Register. In this mode the microprocessor can write or read the SR, but the shifting operation is disabled and operation of CB1 and CB2 is controlled by the appropriate bits in the Peripheral Control Register (PCR). In this mode the SR Interrupt Flag is disabled (held to a logic 0).

Mode 001 - Shift In under Control of Timer 2

In this mode the shifting rate is controlled by the low order 8 bits of T2. Shift pulses are generated on the CB1 pin to control shifting in external devices. The time between transitions of this output clock is a function of the system clock period and the contents of the low order T2 latch.

The shifting operation is triggered by writing or reading the shift register. Data is shifted first into the low order bit of SR and is then shifted into the next higher order bit of the shaft register on the trailing edge of each clock pulse. As shown in Figure 8, the input data should change before the leading edge of the clock pulse. This data is loaded into the shift register during the system clock cycle following the trailing edge of the clock pulse. After 8 clock pulses, the shift register interrupt flag will be set and IRQ will go low.

Mode 010 - Shift In at System Clock Rate

In this mode the shift rate is a direct function of the system clock frequency. CB1 becomes an output which generates shift pulses for controlling external devices. Timer 2 operates as an independent interval timer and has no effect on SR. The shifting operation is triggered by reading or writing the Shift Register. Data is shifted first into bit 0 and is then shifted into the next higher order bit of the shift register on the trailing edge of each clock pulse. After 8 clock pulses, the shift register interrupt flag will be set, and the output clock pulses on CB1 will stop.

Mode 011 - Shift In under Control of External Clock

In this mode CB1 becomes an input. This allows an external device to load the shift register at its own pace. The shift register counter will interrupt the processor each time 8 bits have been shifted in. However, the shift register counter does not stop the shitting operation; it acts simply as a pulse counter. Reading or

Figure 8. Shifting in Under Control of T2

Figure 9. Timing Sequence for Shifting in at System Clock Rate

NMOS
writing the Shift Register resets the Interrupt flag and initializes the SR counter to count another 8 pulses.

Note that data is shifted during the first system clock cycle following the leading edge of the CB1 shift pulse. For this reason, data must be held stable during the first full cycle following CB1 going high. Timing for this operation is illustrated in Figure 10.

Shift Register Output Modes

The four Shift Register Output Modes are selected by setting the Input/Output Control Bit (ACR4) to a logic 1 and then selecting the specific output mode with ACR3 and ACR2. In each of these modes the Shift Register shifts data out of bit 7 to the CB2 pin. At the same time the contents of bit 7 are shifted back into bit 0 . As in the input modes, CB1 is used either as an output to provide shifting pulses out or as an input to allow shifting from an external pulse. The four modes are as follows:

ACR4	ACR3	ACR2	Mode
1	0	0	Shift out - Freerunning mode. Shift tate controlled by T2.
1	0	1	Shift Shift put - Shises gitrate contrated on CB1 by T2.
1	1	0	Shitt out at system clock rate. Shit out under control of an external
1	1	1	pulse.

Mode 100 Free-Running Output

This mode is very similar to mode 101 in which the shifting rate is set by T2. However, in mode 100 the SR Counter does not stop the shifting operation. Since the Shift Register bit 7 (SR7) is recirculated back into bit 0 , the 8 bits loaded into the shift register will be clocked onto CB2 repetitively. In this mode the shift register counter is disabled.

Mode 101 - Shift out under Control of T2

In this mode the shift rate is controlled by T2 (as in the previous mode). However, with each read or write of the shift register the SR Counter is reset and 8 bits are shifted onto CB2. At the same time, 8 shift pulses are generated on CB1 to control shifting in external devices. After the 8 shift pulses, the shifting is disabled, the SR Interrupt flag is set and CB2 goes to a state determined by the CB2 Control bit (PC5) in the Peripheral Control Fiegister.

If the shift register is reloaded before the last time-out, the shifting will continue. This sequence is illustrated in Figure 11.

Mode 110 - Shifting out at System Clock Rate

In this mode the shift register operation is similar to that shown in Figure 11. However, the shifting rate is a function of the system clock on the chip enable pin (02) and is independent of T2. Timer 2 resumes its normal function as an independent interval timer. Figure 12 illustrates the timing sequence for mode 110.

Mode 111 - Shift out under Control of an External Pulse
In this mode, shifting is controlled by pulses applied to the CB1 pin by an external device. The SR counter sets the SR Interrupt flag each time it counts 8 pulses but it does not disable the shifting function. Each time the microprocessor writes or reads the shift register, the SR Interrupt flag is reset and the SR Counter is initialized to begin counting the next 8 shift pulses on pin CB1. Atter 8 shift pulses, the interrupt flag is set. The microprocessor can then load the shift register with the next byte of data.

Figure 10. Timing sequence for shifting in under control of external clock

1. Data out determined by CB2 control in PCR.

Figure 11. Shifting out under Control of T2.

INTERRUPT CONTROL

Controlling interrupts within the 6522 involves three principal operations. These are flagging the interrupts, enabling interrupts and signalling to the processor that an active interrupt exists within the chip. Interrupt flags are set by interrupting conditions which exist within the chip or on inputs to the chip. These flags normally remain set until the interrupt has been serviced. To determine the source of an interrupt, the microprocessor must examine these flags in order from highest to lowest priority. This is accomplished by reading the flag register into the processor accumulator, shifting this register either right or left and then using conditional branch instructions to detect an active interrupt.

Associated with each interrupt flag is an interrupt enable bit. This bit can be set or cleared by the processor to enable interrupting the processor from the corresponding interrupt flag. If an interrupt flag is set to a logic 1 by an interrupting condition, and the corresponding interrupt enable bit is set to a 1, the Interrupt Request Output (IRQ) will go low. $\overline{\mathrm{IRQ}}$ is an "open-collector" output which can be "wire or'ed" with other devices in the system to interrupt the processor.

In the 6522, all the interrupt flags are contained in one register. In addition, bit 7 of this register will be read as a logic 1 when an interrupt exists within the chip. This allows very convenient polling of several devices within a system to locate the source of an interrupt.

	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Interrupt Flag Register Interrupt Enable Register	IRQ	T 1	T 2	CB 1	CB 2	SR	CA 1	CA 2
Set/ clear control	T 1	T 2	CB 1	CB 2	SR	$\mathrm{CA1}$	CA 2	

Interrupt Flag Register

The IFR is a read/bit-clear register. When the proper chip select and register signals are applied to the chip, the contents of this register are placed on the data bus. Bit 7 indicates the status of the IRQ output. This bit corresponds to the logic function: IRQ $=$ IFR6 \times IER6 + IFR5 X IER5 + IFR4 \times IER4 + IFR3 \times IER3 + IFR2 \times IER2 + IFR1 \times IER1 + IFR0 \times IERO. Note: $X=$ logic AND, $+=$ Logic OR.

Bits six through zero are latches which are set and cleared as follows:

Bit \#	Set by	Cleared by
0	Active transition of the signal on the CA2 pin.	Reading or writing the A Port Output Register (ORA) using address 0001.
1	Active transition of the signat on the CA1 pin. Completion of eight shits	Reading or writing the A Port Output Register (ORA) using address O001. Reading or writing the Shift Register.
3	Active transition of the signal on the CB2 pin.	Reading or writing the B Port Output Register.
5	Active transition of the signal on the CB1 pin. Time-out of Timer 2.	Reading or writing the B Port Output Register. Reading T2 low order counter. Writing T2 high order counter.
6	Timeout of Timer 1.	Reading T1 lower order counter. Writing T1 high order latch.

The IFR bit 7 is not a flag. Therefore, this bit is not directly cleared by writing a logic 1 into it. It can only be cleared by clearing all the flags in the register or by disabiling all the active interrupts as discussed in the next section.
Interrupt Enable Register (IER)
For each interrupt flag in IFR, there is a corresponding bit in the Interrupt Enable Register. The system processor can set or clear selected bits in this register to facilitate controlling individual interrupts without affecting others. This is accomplished by writing to address 1110 (IER address). If bit 7 of the data placed on the system data bus during this write operation is a 0 , each 1 in bits 6 through 0 clears the corresponding bit in the Interrupt Enable Register. For each zero in bits 6 through 0, the corresponding bit is unaffected.

Setting selected bits in the Interrupt Enable Register is accomplished by writing to the same address with bit 7 in the data word set to a logic 1 . In this case, each 1 in bits 6 through 0 will set the corresponding bit. For each zero, the corresponding bit will be unaffected. This individual control of the setting and clearing operations allows very convenient control of interrupts during system operation.

In addition to setting and clearing IER bits, the processor can read the contents of this register by placing the proper address on the register select and chip select inputs with the R/W line high. Bit 7 will be read as a logic 0 .

Figure 12. Shifting out under Control of System Clock

Figure 13. Shifting out under Control of External Clock

FUNCTION CONTROL

Control of the various functions and operating modes within the 6522 is accomplished primarily through two registers, the Peripheral Control Register (PCR), and the Auxiliary Control Register (ACR). The PCR is used primarily to select the operating mode for the four peripheral control pins. The Auxiliary Control Register selects the operating mode for the interval timers ($\mathrm{T} 1, \mathrm{~T} 2$), and the serial port (SR).

Peripheral Control Register

The Peripheral Control Register is organized as follows:

Bit \#-	7	6	5	4	3	2	1	0
Function-	CB2 Control			CB1 Control	CA2 Control		CA1 Control	

Each of these functions is discussed in detail below.

1. CA1 Control

Bit 0 of the Peripheral Control Register selects the active transition of the input signal applied to the CA1 interrupt input pin. If this bit is a logic 0 , the CA1 interrupt flag will be set by a negative transition (high to low) of the signal on the CA1 pin. If PCRO is a logic 1, the CA1 interrupt flag will be set by a positive transition (low to high) of this signal.

2. CA2 Control

The CA2 pin can be programmed to act asn an interrupt input or as a peripheral control output. As an input, CA2 operates in two modes, differing primarily in the methods available for resetting the interrupt flag. Each of these two input modes can operate with either a positive or a negative active transition as described above for CA1.

In the output mode, the CA2 pin combines the operations performed on the CA2 and CB2 pins of the 6520. This added flexibility allows processor to perform a normal "write" handshaking in a system which uses CB1 and CB2 for the serial operations described above. The CA2 operating modes are selected as follows:

PCR3	PCR2	PCR1	Mode
0	0	0	$\begin{array}{l}\text { Input mode - Set CA2 interrupt flag (IFRO) on a } \\ \text { negative transition of the input signal. Clear IFRO } \\ \text { on a read or write of the Peripheral A Output } \\ \text { Register. }\end{array}$
0	0	1	$\begin{array}{l}\text { Independent interrupt inputmode - Set IFRO on } \\ \text { a negative transition of the CA2 input signal. }\end{array}$
0	1	0	$\begin{array}{l}\text { Reading or writing ORA does not clear the CA2 } \\ \text { interrupt fiag. }\end{array}$
0	1	1	$\begin{array}{l}\text { Input mode -Set CA2 interrupt flag on a positive } \\ \text { transition of the CA2 input signal. Clear IFRO with } \\ \text { a read orwrite of the PeripheralA Output Register. }\end{array}$
1	0	0	$\begin{array}{l}\text { Independent interrupt input mode - Set IFRO on } \\ \text { a positive transition of the CA2 input signal. } \\ \text { Reading or writing ORA does not clear the CA2 }\end{array}$
interrupt flag.			
Handshake output mode - Set CA2 output low			
on a read or write of the Peripheral A Output			
Register. ResetCA2 high with an active transition			
on CA1.			
Pulse Output mode - CA2 goes lowfor one cycle			

In the independent input mode, writing or reading the ORA register has no effect on the CA2 interrupt flag. This flag must be cleared by writing a logic 1 into the appropriate IFR bit. This mode allows the processor to handle interrupts which are independent of any operations taking place on the peripheral I/O ports.

The handshake and pulse output modes have been described previously. Note that the timing of the output signal varies slightly depending on whether the operation is initiated by a read or a write.

3. CB1 Control

Control of the active transition of the CB1 input signal operates in exactly the same manner as that described above for CA1. If PCR4 is a logic 0 the CB1 interrupt flag (IFR4) will be set by a negative transition of the CB1 input signal and cleared by a read or write of the ORB register. If PCR4 is a logic 1, IFR4 will be set by a positive transition of CB1.

If the Shift Register function has been enabled, CB1 will act as an input or output for the shift register clock signals. In this mode the CB1 interrupt flag will still respond to the selected transition of the signal on the CB1 pin.

4. CB2 Control

With the serial port disabled, operation of the CB2 pin is a function of the three high order bits of the PCR. The CB2 modes are very similar to those described previously for CA2. These modes are selected as follows:

PCR7	PCR6	PCR5	Mode		
0	0	0	$\begin{array}{l}\text { Interrupt input mode - Set CB2 interrupt flag } \\ \text { (IFR3) on a negative transition of the CB2 input } \\ \text { signal. Clear IFR3 on a read or write of the }\end{array}$		
0	0	1	$\begin{array}{l}\text { Peripheral B Output Register. } \\ \text { Independent interrupt input mode - Set IFR3 on } \\ \text { a negative transition of the CB2 input signal. } \\ \text { Reading or writing ORB does not cear the }\end{array}$		
interrupt flag.				$]$	Input mode - Set CB2 interrupt flag on a positive
:---					
transition of the CB2 input signal. Clear the CB2					
interrupt flag on a read or write of ORB.					
0					

Auxiliary Control Register

Many of the functions in the Auxiliary Control Register have been discussed previously. However, a summary of this register is presented here as a convenient reference for the 6522 user. The Auxiliary Control Register is organized as follows:

Bit \#-	1	6	5	4	3	2	1	0
Function-	T1 Control	T 2 Control	Shift Register Control				PB Latch Enable	PA Latch Enable

1. PA Latch Enable

The 6522 provides input latching on both the PA and PB ports. In this mode, the data present on the peripheral A input pins will be latched within the chip when the CA1 interrupt flag is set. Reading the PA port will result in these latches being transferred into the processor. As long as the CA1 interrupt flag is set, the data on the peripheral pins can change without affecting the data in the latches. This input latching can be used with any of the CA2 input or output modes.

It is important to note that on the PA port, the processor always reads the data on the peripheral pins (as reflected in the latches). For output pins, the processor still reads the latches. This may or may not reflect the data currently in the ORA. Proper system operation requires careful planning on the part of the system designer if input latching is combined with output pins on the peripheral ports.

Input latching is enabled by setting bit 0 in the Auxiliary Control Register to a logic 1. As long as this bit is a 0 , the latches will directly reflect the data on the pins.

2. PB Latch Enable

Input latching on the PB port is controlled in the same manner as that described for the PA port. However, with the peripheral B port the input latch will store either the voltage on the pin or the contents of the Output Register (ORB) depending on whether the pin is programmed to act as an input or an output. As with the PA port, the processor always reads the input latches.
3. Shift Register Control

The Shift Register operating mode is selected as follows:

ACR4	ACR3	ACR2	Mode
0	0	0	Shift Register Disabled.
0	0	1	Shift in under control of Timer 2.
0	1	0	Shift in under control of system clock.
0	1	1	Shift in under control of external clock pulses.
1	0	0	Free-running outputat rate determinedby Timer 2.
1	0	1	Shift out under control of Timer 2.
1	1	0	Shift out under control of the system clock.
1	1	1	Shift out under control of external clock pulses.

4. T2 Control

Timer 2 operates in two modes. If ACR5 $=0$, T2 acts as an interval timer in the one-shot mode. If ACR5 $=1$, Timer 2 acts to count a predetermined number of pulses on pin PB6.

5. T1 Control

Timer 1 operates in the one-shot or free-running mode with the PB7 output control enabled or disabled. These modes are selected as follows:

ACR7	ACR6	Mode
0	0	One-shot mode-Output to PB7 disabled.
0	1	Free-running mode-Output to PB7 disabled.
1	0	One-shot mode - Output to PB7 enabled.
1	1	Free-running mode. Output to PB7 enabled.

APPLICATION OF THE 6522

The 6522 represents a significant advance in generalpurpose microprocessor I/O. Unfortunately, its many powerful features, coupled with a set of very flexible operating modes, cause this device to appear to be very complex at first glance. wever, a detailed analysis will show that the VIA is organized to allow convenient control of these powerful features. This section seeks to assist the system designer in his understanding of the 6522 by illustrating how the device can be used in microprocessor-based systems.
A. Control of 6522 Interrupts

Organization of the 6522 interrupt flags into a single register greatly facilitates the servicing of interrupts from this device. Since there is only one IRQ output for the seven possible sources of interrupt within the chip, the processor must examine these flags to determine the cause of an interrupt. This is best accomplished by first transferring the contents of the flag register into the accumulator. At this time it may be necessary to mask off those flags which have been disabled in the Interrupt Enable Register. This is particularly important for the edge detecting inputs where the flags may be set whether or not the interrupting function has been enabled. Masking off those flags can be accomplished by performing an AND operation between the IER and the accumulator or by performing an "AND IMMEDIATE." The second byte of this AND \# instruction should specify those flags which correspond to interrupt functions which are to be serviced.

If the N flag is set after these operations, an active interrupt exists within the chips. This interrupt can be detected with a series of shift and branch instructions.
Clearing interrupt flags is accomplished very conveniently by writing a logic 1 directly into the appropriate bit of the Interrupt Flag Register. This can be combined with an interrupt enable or disable operation as follows:

LDA \#@10010000	initialize accumulator
STA IFR	clear interrupt fiag
STA IER	set interrupt enable flag

or:
LDA \#@00001000
initialize accumulator
STA IFR
STA IFR clear interrupt flag disable interrupt
Another very useful technique for clearing interrupt flags is to simply transfer the contents of the flag register back into this register as follows:

LDA IFR	transfer IFR to accumulator
STA IFR	clear flags corresponding to active
interrupts	

After completion of this operation the accumulator will still contain the interrupt flag information. Most important, writing into the flag register clears only those flags which are already set. This eliminates the possibility of inadvertently clearing a flag while it is being set.

B. Use of Timer 1

Timer 1 represents one of the most powerful features of the 6522. The ability to generate very evenly spaced interrupts and the ability to control the voltage on PB7 makes this timer particularly valuable in various timing, data detection and waveform generation applications.

Time-of-Day Clock Applications

An important feature of many systems is the time-of-day clock. In microprocessor-based systems the time of day is usually maintained in memory and is updated in an interrupt service routine. A regular processor interrupt will then assure that this time of day will always be available when it is needed in the main program.

Generating very regular interrupts using previously available timers presented difficulties because of the need to re-load the timer for each interrupt. Unfortunately, the time between the interrupts will fluctuate due to variations in the interrupt response time. This program is eliminated in the Timer 1 "free-running" mode. The accuracy of these "free-running" interrupts is only a function of the system clock and is not affected by interrupt response time.

Asynchronous Data Detection

The extraction of clock and data information from serial asynchronous ASCII signals or from any single channel data recording device relies on the ability to establish accurate strobes. As discussed previously, the period of these strobes can be seriously affected by the interrupt response time using conventional timers. However, T1 again allows generation of very accurate interrupts. The processor responds to these interrupts by strobing the input data. The ability to reload the T1 latches without affecting the count-down in progress is very useful in this application. This allows the strobe time to be doubled or halved during data detection. See Figure 14 for sequence of operations.

Waveform Generation with Timer 1

In addition to generating processor interrupts, Timer 1 can be used to control the output voltage on peripheral pin PB7
(output mode). In this mode a single negative pulse can be generated on PB7 (one-shot mode), or in the free-running mode, a continuous waveform can be generated. In this latter mode the voltage on PB7 will be inverted each time $T 1$ times out.

A single solenoid can be triggered very conveniently in the one-shot mode if the PB7 signal is used to control the solenoid directly. With this configuration the solenoid can be triggered by simply writing to $\mathrm{T1C} \mathrm{C}$.

Generating very complex waveforms can be a simple problem if T1 is used to control PB7 in the free-running mode. During any count-down process the latches can be loaded to determine the length of the next count-down period. Figure 15 shows this timing sequence for generating ASCII serial data.

An application where this mode of operation is also very powerful is in the generation of bi-phase encoded data for tape or disk storage. This encoding technique and the sequence of operations which would take place are illustrated in Figure 16.

These applications represent only a tiny portion of the potential T1 applications. Some other possibilities are pulse width modulation waveforms, sound generation for video games, A / D techniques requiring very accurate pulse widths, and waveform synthesis in electronic games.

Figure 14. Detecting Asynchronous Data Using Timer 1

1. Load T into $T 1$ counter and latch. Load T into $T 2$ to trigger $T 1$ latch reload
2. Load 2 T into T 1 latch during this bit time. Load 2 T into T 2

N
3. Load T into T 1 latch anytime during this period. Load NT into $\mathrm{T} 2 . \mathrm{N}=$ number of
I's or 0 's which follow.

A sories of 1 's and 0 's
A series of 1 's and O's will be generated until the T1 latch is again changed Note that the use of T2 to control reloading the T1 latch eliminates the need to interrupt on each transition.

Figure 15. ASCII Serial Data Generation Using T1

1. Load T1 counter and latch.
2. Shift T1 latch one bit to the right during this period
3. Shift T1 latch left during this period.
4. Shift T1 latch right during this period

Note that T1 must be accessed only when the output data changes. A string of 1 's and O's can be generated without processor intervention

Figure 16. Generating Bi-phase Encoded Data

NKOS

Using the 6522 Shift Reglster

The Shift Register in the 6522 is designed primarily as a synchronous serial communications port for distributed systems. These systems can be either single-processor with distributed peripheral controllers or distributed processor systems. The most important characteristic of the Shift Register in these applications is its ability to transfer information at relatively slow data rates to allow the use of R-C noise suppression techniques. This transfer can be accomplished while the processor is servicing other aspects of the system. An example of a simple 2-processor distributed system is shown in Figure 17. Use of the 6522 Shift Register allows effective communication between the two systems without the use of relatively complex asynchronous communications techniques.

Figure 17. Using Shift Reglster for Inter-System Communicatlon

In a system with distributed peripherals, the Shift Register can be used to transfer data to the peripheral interface devices. This is illustrated in Figure 18 for a system with a number of distributed status displays. These displays are serviced by stand-alone controllers which actuate the lamps in the status displays through simple drivers. The data and clock lines are wired in parallel to each unit. In addition, a single 6522 peripheral port output allows selection of the display to be loaded. These select lines can be eliminated if all displays are to contain the same information. With the system shown, the status display can be updated at any time by simply selecting the desired display and then writing to the Shift Register.

Remote input devices can be serviced in much the same manner by shifting data into the Shift Register under control of a peripheral port output as shown in Figure 18. Each set of input switches can be polled by first selecting the set to be polled and then triggering the shifting operation with a Shift Register read operation. A shift register interrupt can be used to cause the processor to read the resulting input information after shifting is complete.

The techniques described above can be utilized to expand 1/O capability in a microprocessor based system. In a system with many status lamps or many input switches, simple TTL shift registers will provide the necessary I/O in a very cost effective manner. This is illustrated in Figure 19.

Figure 18. Using the Shift Register for Servicing Remote Status Displays

Figure 19. Expanding System I/O Using Shift Register

Clock Generation Using the Shift Register

In all output modes the data shifted out of bit 7 will also be shifted into bit 0 . For this reason the Shift Register need not be re-loaded if the same data is to be shifted out each time. A Shift Register read operation can be used to trigger the shifting operation.

This capability is very useful for generating peripheral clocks in the continuous output mode. This mode allows an 8 -bit pattern to be shifted out continuously. This is illustrated in Figure 20. Note that in this mode the shifting operation is controlled by Timer 2. A single bit time can therefore be up to 256 clock cycles in length.

CB1

CB2

Flgure 20. Clock Generation Using SR Free-Running Mode

MAXIMUM RATINGS

Supply Voltage, VCC Input/Output Voltage, VIN Operating Temperature, T_{OP} Storage Temperature, TSTG
-0.3 V to +7.0 V -0.3 V to +7.0 V 0 C to 70 C -55 C to 150 C

All inputs contain protection circuitry to prevent damage due to high static discharges. Care should be exercised to prevent unnecessary application of voltages in excess of the allowable limits.

COMMENT

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of this device at these or any other conditions above those indicated in the operational sections of this specification is not implied and exposure to absolute maximum rating conditions for extended periods may affect device reliability.

STATIC D.C. CHARACTERISTICS $\left(\mathrm{Vcc}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{Vss}=0, \mathrm{~T}_{\mathrm{A}}=0\right.$ to $+70^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Input high voltage (normal operation)	$\mathrm{V}_{1} \mathrm{H}$	+2.4	-	Vcc	Vdc
Input low voltage (normal operation)	$\mathrm{V}_{\text {IL }}$	-0.3	-	+0.4	Vdc
Input leakage current- $\mathrm{V}_{\text {in }}=0$ to 5 Vdc R/W, RES, RS0, RS1, RS2, RS3, CS1, CS2, CA1, ø2	.IIN	-	± 1.0	± 2.5	$\mu \mathrm{Adc}$
Off-state input current- $\mathrm{V}_{\text {in }}=.4$ to 2.4 V Vcc = Max, D0 to D7	ITSI	-	± 2.0	± 10	$\mu \mathrm{Adc}$
Input high current- $\mathrm{V}_{\mathrm{IH}}=2.4 \mathrm{~V}$ PA0-PA7, CA2, PB0-PB7, CB1, CB2	IIH	-100	-250	-	$\mu \mathrm{Adc}$
Input low current- $\mathrm{VIL}_{\mathrm{IL}}=0.4 \mathrm{Vdc}$ PA0-PA7, CA2, PB0-PB7, CB1, CB2	IIL	-	-1.0	-1.6	mAdc
Output high voltage $\begin{aligned} & \text { Vcc }=\min , \text { load }=-100 \mu \mathrm{Adc} \\ & \text { PA0-PA7, CA2, PB0-PB7, CB1, CB2 } \end{aligned}$	V_{CH}	2.4	-	-	Vdc
Output low voltage Vcc $=\mathrm{min}, l_{\text {load }}=1.6 \mathrm{mAdc}$	VOL	-	-	$+0.4$	Vdc
Output high current (sourcing) $\begin{aligned} & \mathrm{VOH}=2.4 \mathrm{~V} \\ & \mathrm{VOH}=1.5 \mathrm{~V}, \mathrm{~PB} 0-\mathrm{PB} 7, \mathrm{CB} 1, \mathrm{CB} 2 \end{aligned}$	${ }^{\mathrm{I}} \mathrm{OH}$	$\begin{array}{r} -100 \\ -3.0 \end{array}$	$\begin{gathered} -1000 \\ -5.0 \end{gathered}$	-	$\mu \mathrm{Adc}$ mAdc
Output low current (sinking) $\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{Vdc}$.	IOL	1.6	-	-	mAdc
Output leakage current (off state) IRQ	IOFF	-	1.0	10	$\mu \mathrm{Adc}$
Input Capacitance- $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$ R/W, $\overline{\text { RES }}$, RS0, RS1, RS2, RS3, CS1, $\overline{\text { CS2 }}$ D0-D7, PAO-PA7, CA2, PB0-PB7, CB1, CB2 $\emptyset 2$ input	$\mathrm{CIN}^{\text {N }}$	-	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 7.0 \\ & 10 \\ & 20 \end{aligned}$	pF pF pF
Output capacitance $-\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	COUT	-	-	10	pF
Power dissipation	PD	-		1000	MW

Figure 21. Read Timing Characteristics

Figure 22. Write Timing Characteristics
A.C. CHARACTERISTICS

Read Timing Characteristics (loading 130 pF and one TTL load)

Characteristic	Symbol	Min	Typ	Max	Unit
Delay time, address valid to clock positive transition	TACR	180	-	-	nS
Delay time, clock positive transition to data valid on bus	TCDR	-	-	395	nS
Peripheral data setup time	TPCR	300	-	-	nS
Data bus hold time	THR	10	-	-	nS
Rise and fall time for clock input	$T_{R C}$	-	-	25	nS
	TRF				

Write Timing Characteristics

Characteristic	Symbol	Min	Typ	Max	Unit
Enable pulse width	${ }^{\text {T } C}$	0.47	-	25	$\mu \mathrm{S}$
Delay time, address valid to clock positive transition	TACW	180	-	-	$n \mathrm{~S}$
Delay time, data valid to clock negative transition	TDCW	300	-	-	nS
Delay time, read/write negative transition to clock positive transition	TWCW	180	-	-	ns
Data bus hold time	THW	10	-	-	nS
Delay time, Enable negative transition to peripheral data valid	TCPW	-	-	1.0	$\mu \mathrm{S}$
Delay time, clock negative transition to peripheral data valid CMOS NCC-30\%)	TCMOS	-	-	2.0	$\mu \mathrm{S}$

Figure 23. I/O Timing Characteristics

Peripheral Interface Characteristics

Characteristics	Symbol	Min	Typ	Max	Unit
Rise and fall time for CA1, CB1, CA2 and CB2 input signals.	TRF	-	-	1.0	$\mu \mathrm{S}$
Delay time, clock negative transition to CA2 negative transition (read handshake or pulse mode).	TCA2	-	-	1.0	$\mu \mathrm{S}$
Delay time, clock negative transition to CA2 positive transition (pulse mode).	TRS1	-	-	1.0	$\mu \mathrm{S}$
Delay time, CA1 active transition to CA2 positive transition (handshake mode).	TRS2	-	-	2.0	$\mu \mathrm{S}$
Delay time, clock positive transition to CA2 or CB2 negative transition (write handshake).	TWHS	-	-	1.0	$\mu \mathrm{S}$
Delay time, peripheral data valid to CB2 negative transition.	${ }^{T} D C$	0	-	1.5	$\mu \mathrm{S}$
Delay time, clock positive transition to CA2 or CB2 positive transition (pulse mode).	TRS3	-	-	1.0	$\mu \mathrm{S}$
Delay time, CB1 active transition to CA2 or CB2 positive transition (handshake mode).	TRS4	-	-	2.0	$\mu \mathrm{S}$
Delay time, peripheral data valid to CA1 or CB1 active transition (input latching).	TIL	300	-	-	nS
Delay time, CB1 negative transition to CB2 data valid (internal SR clock, shift out).	TSR1	-	-	300	nS
Delay time, negative transition of CB1 input clock to CB2 data valid (external clock. shift out).	TSR2	-	-	300	nS
Delay time. CB2 data valid to positive transition of CB \dagger clock (shift in. internal or external clock)	TSR3	-	-	300	nS
Pulse Width - PB6 Input Puise	TIPW	2	-	-	$\mu \mathrm{S}$
Pulse Width - CB1 Input Clock	TICW	2	-	-	NS
Pulse Spacing - PB6 Input Pulse	IIPS	2	-	-	$\mu \mathrm{S}$
Pulse Spacing - CB1 Input Pulse	IICS	2	-	-	$\mu \mathrm{S}$

COMMODORE SEMICONDUCTOR GROUP reserves the right to make changes to any products herein to improve reliability, function or design. COMMODORE SEMICONDUCTOR GROUP does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.

6523 TRI-PORT INTERFACE

CONCEPT ...

The 6523 TRI-PORT Interface (TPI) is designed to simplify the implementation of complex I/O operations in microcomputer systems. It has three dedicated 8-bit I/O ports which provide 24 individually programmable I/O lines.

FEATURES:

- 24 individually programmable I/O lines
- Completely static operation
- Two TTL Drive Capability
- 6 directly addressable registers

6523 REGISTERS

$* * 000$	R0	PRA - Port Register A
001	R1	PRB - Port Register B
010	R2	PRC - Port Register C
011	R3	DDRA - Data Direction Register A
100	R4	DDRB - Data Direction Register B
101	R5	DDRC - Data Direction Register
110	Illegal States	
111	Illegal States	
*NOTE: RS2, RS1, RSO respectively		

6523 PIN CONFIGURATION

VSS	1	40	DB7
PA0	2	39	DB6
PA1	3	38	DB5
PA2	4	37	DB4
PA3	5	36	DB3
PA4	6	35	DB2
PA5	7	34	DB1
PA6	8	33	DB0
PA7	9	32	PC7
PB0	10	31	PC6
PB1	11	30	PC5
PB2	12	29	PC4
PB3	13	28	PC3
PB4	14	27	PC2
PB5	15	26	PC1
PB6	16	25	PC0
PB7	17	24	RS0
CS	18	23	RS1
R/w	19	22	RS2
VDD	20	21	RES

NMOS

6523 INTERNAL ARCHITECTURE

MAXIMUM RATINGS

Supply Voltage, VCC Input/Output Voltage, VIN Operating Temperature, TOP Storage Temperature, TSTG
All inputs contain protection circuitry to prevent damage due to high. static discharges. Care should be exercised to prevent unnecessary application of voltages in excess of the allowable limits.

COMMENT

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of this device at these or any other conditions above those indicated in the operational sections of this specification is not implied and exposure to absolute maximum rating conditions for extended periods may affect device reliability.

CHARACTERISTICS (VCC $=5.0 \mathrm{~V} \pm \mathbf{5 \%}, \mathrm{V} S S^{\mathrm{SS}}=\mathbf{0 V}, \mathrm{T}_{\mathrm{A}}=\mathbf{0}^{\circ}$ to $\mathbf{7 0}{ }^{\circ} \mathrm{C}$)

CHARACTERISTIC	SYMBOL	MIN	TYP	MAX	UNIT
Input High Voltage (Normal Operating Levels)	V_{IH}	$+2.0$		$V_{C C}$	V
Input Low Voltage (Normal Operating Levels)	$\mathrm{V}_{\text {IL }}$	-0.3		+0.8	\checkmark
Input Leakage Current $v_{\text {in }}=0 \text { to } 5.0 \mathrm{~V}$ WRITE, RES, CS, RS2-RSO	IIN	0	± 1.0	± 2.5	$\mu \mathrm{A}$
Three-State (Off State) Input Current $\left(V_{\text {in }}=0.4\right.$ to $\left.2.4 \vee V_{C C}=\max \right)$ DO-D7, PAO-P7, PBO-PB7, PCO-PC7	ITSI ,	0	± 2.0	± 10	$\mu \mathrm{A}$
Output High Voltage $\left(V_{C C}=\min , \text { Load }=200 \mu \mathrm{~A}\right)$	VOH	2.4	3.5	$V_{C C}$	v
Output Low Voltage $\left(V_{C C}=\min\right.$, Load $\left.=3.2 \mathrm{~mA}\right)$	VOL	VSS	0.2	0.4	v
Output High Current (Sourcing) $(\mathrm{VOH}=2.4 \mathrm{~V})$	IOH	-200	-1000	-	$\mu \mathrm{A}$
Output Low Current (Sinking) $\left(\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}\right)$	IOL	3.2	-	-	mA
Supply Current	ICC	-	50	100	mA
```Input Capacitance (Vin OV, T T = 25 C, f=1.0 MHz) D0-D7, PAO-PA7, PB0-PB7, PC0-PC7 WRITE, RES, RS2-RSO,CS```	$\mathrm{Cin}_{\text {in }}$	-	7	10	pF
Output Capacitance $\left(\mathrm{V}_{\text {in }}=0 \mathrm{~V}_{,} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\text {out }}$	-	7	10	pF

Note: Negative sign indicates outward current flow, positive indicates inward flow.

NAMOS

READ CYCLE


WRITE CYCLE


Note: All timings referenced to $V_{I L}$ max,$V_{I H}$ min on inputs and $V_{O L} \max , V_{O H}$ min on outputs.

## READ CYCLE TIMING

SYMBOL	CHARACTERISTIC	6523		6523A		6523B		UNITS
		MIN	MAX	MIN	MAX	MIN	MAX	
Trc	Read Cycle	450	-	225	-	165	-	ns
TACC	Access Time ${ }^{1}$	-	450	-	225	-	165	ns
Tco	$\overline{\mathrm{CS}}$ to Output Valid	-	270	-	120	-	70	ns
Trics	R/W high to $\overline{C S}$ Setup	0	-	0	-	0	-	ns
Trich	R/W high to $\overline{C S}$ Hold	0	-	0	-	0	-	ns
Totd	$\overline{C S}$ to Output Off Delay	20	120	20	120	20	120	ns
TAOD	Address to Output Delay	50	-	50	-	50	-	ns
Tpds	Port Input Setup	120	-	60	-	40	-	ns
TPDH	Port Input Hold	150	-	150	-	150	-	ns

Note 1: Access Time measured from later of WRITE high or RS stable.

## WRITE CYCLE TIMING

SYMBOL	CHARACTERISTIC	6523		6523A		6523B		UNITS
		MIN	MAX	MIN	MAX	MIN	MAX	
TWC	Write Cycle	450	-	225	-	165	-	ns
TWA	Write Active Time ${ }^{2}$	420	-	200	-	150	-	ns
TAWS	Address to R/W low Setup	0	-	0	-	0	-	ns
TAWH	Address to R/W low Hold	0	-	0	-	0	-	ns
TDS	Data bus in Setup	150	-	100	-	50	-	ns
TDH	Data bus in Hold	0	-	0	-	0	-	ns
TWPD	Write active to Port out Delay	-	1000	-	500	-	330	ns

Note 2: TWA is the time while both $\overline{C S}$ and R/W are low.

## 6523 FUNCTIONAL DESCRIPTION

Three 8 bit bi-directional ports ( $A, B, C$ ) are available on the 6523. Each port has two associated read/write registers:

## Data Direction Registers (DDRA, DDRB, DDRC)

Each bit of the data direction registers controls the corresponding pin of the associated port as follows:

DDR bit	Direction of port pin
0	Input (Output driver disabled)
1	Output (Output driver enabled)

## Port Registers (PRA, PRB, PRC)

Reading the Port Register returns the logic states of the associated port pins. The pin voltage levels must meet the $V_{1 H}$ and $V_{I L}$ specification limits to ensure valid data. (Excessive loading of the output driver may cause the data read to differ from the expected output.) If the port pin is programmed as an output by the DDR, the output driver is set to the last data written to the corresponding PR bit.

## 6523 INTERFACE SIGNALS

## $\overline{\mathbf{C S}}$ - Chip Select Input

The $\overline{\mathrm{CS}}$ input controls the activity of the 6523. A low level on $\overline{\mathrm{CS}}$ causes the device to respond to signals on the R/W and address (RS) lines. A high on $\overline{C S}$ prevents these lines from controlling the 6523. The $\overline{\mathrm{CS}}$ line is normally activated (low) by the appropriate address combination from the processor.

## R/W - Read/Write Input

The R/W signal is normally supplied by the microprocessor and controls the direction of data transfers of the 6523. A high on RNW indicates a read (data transfer out of the 6523). while a low indicates a write (data transfer into the 6523).

## RS $\mathbf{2}$-RSO - Address Inputs

The address inputs select the internal registers (in conjunction with $\overline{C S}$ and $R / W$ ) as indicated by the register table.

## DB7-DBO - Data Bus Inputs/Outputs

The eight data bus pins transfer information between the 6523 and the system data bus. These pins are high impedance inputs unless $\overline{C S}$ is low and $\mathrm{R} / \mathrm{W}$ is high, to read the device. During this read, the data bus output buffers are enabled, driving the data from the selected register onto the system data bus.

## RES - Reset Input

A low on the RES pin clears internal registers. This sets all three ports as inputs (fioating), preventing any conflicts on the bidirectional port lines. For port pins to be used as outputs, the desired output data may be written to the port register before enabling the output driver. This sequence can eliminate undesired output conditions when the outputs are enabled via the DDR.

COMMODORE SEMICONDUCTOR GROUP reserves the right to make changes to any products herein to improve reliability, function or design. COMMODORE SEMICONDUCTOR GROUP does not assume any liability arising out of the application or use of any product or circuit described herein: neither does it convey any license under its patent rights nor the rights of others.

## 65245 OCTAL BUS TRANSCEIVER WITH 3-STATE OUTPUTS

## DESCRIPTION

The 65245 is an octal bus transceiver designed for asynchronous, bi-directional communication between data busses.

The level of the Direction input (DIR) allows data transmission from bus A to bus B or from bus B to bus $A$. The Enable input ( $\overline{\mathrm{E}}$ ) can be used to provide isolation between the busses.

The device is fully TTL and CMOS compatible, and is pin-for-pin compatible with the 74LS245.

TRUTH TABLE		
$\bar{E}$	DIR	OUTPUT
L L H	L $H$ $X$	$B$ data to $A$ bus A data to $B$ bus Isolation
$\begin{aligned} & \mathrm{L}=\text { LOW level } \\ & \mathrm{H}=\mathrm{HIGH} \text { level } \\ & \mathrm{X}=\text { Irrelevant } \end{aligned}$		



MAXIMUM RATINGS

RATING	SYMBOL	VALUE	UNIT
SUPPLY VOLTAGE	Vcc	-0.3 to +7.0	Vdc
INPUT VOLTAGE	Vin	-0.3 to +7.0	Vdc
OPERATING TEMPERATURE	$T_{A}$	0 to +70	${ }^{\circ} \mathrm{C}$
STORAGE TEMPERATURE	TSTG	-55 to +150	${ }^{\circ} \mathrm{C}$

This device contains circultry to protect the inputs against damage due to high static voltages，however，it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this circuit．

ELECTRICAL CHARACTERISTICS（Vcc $=5.0 \mathrm{~V} \pm 5 \%, \mathrm{Vss}=0, \mathrm{~T}_{\mathrm{A}}=\mathbf{0}^{\circ}$ to $+\mathbf{7 0}{ }^{\circ} \mathrm{C}$ ）

CHARACTERISTIC	SYMBOL	MIN．	TYP．	MAX	UNIT
Input High Voltage	VIH	2.0	－	－	Vdc
Input Low Voltage	VIL	－	－	0.8	Vdc
$\begin{aligned} & \text { Output High Voltage } \\ & \begin{array}{l} \mathrm{VCC}=\mathrm{MIN}, \mathrm{VIH}=2.0 \mathrm{~V} \\ \mathrm{IOH}=-3 \mathrm{~mA} \\ \mathrm{IOH}=-15 \mathrm{~mA} \end{array} \end{aligned}$	VOH	$\begin{aligned} & 2.4 \\ & 2.0 \end{aligned}$		$-$	Vdc
$\begin{aligned} & \text { Output Low Voltage } \\ & \begin{array}{l} \text { Vcc }=\mathrm{MIN}, \mathrm{VIL}=0.8 \mathrm{~V} \\ I O L=12 \mathrm{~mA} \\ 1 O L=24 \mathrm{~mA} \end{array} \end{aligned}$	VOL	－		$\begin{aligned} & 0.4 \\ & 0.5 \end{aligned}$	Vdc
High－Impedance Output Current $\begin{aligned} & \bar{E}=2.0 \mathrm{~V}, \mathrm{Vcc}=\mathrm{MAX} \\ & V_{\text {out }}=2.7 \mathrm{~V} \end{aligned}$	IOZH	－	－	50	$\mu \mathrm{A}$
High－Impedance Output Current $\begin{aligned} & \bar{E}=2.0 \mathrm{~V}, \mathrm{Vcc}=\mathrm{MAX} \\ & \mathrm{~V}_{\text {out }}=0.4 \mathrm{~V} \end{aligned}$	IOZL	－	－	－50	$\mu \mathrm{A}$
High－Level Input Current $\mathrm{Vcc}=\mathrm{MAX}, \mathrm{VIH}=2.7 \mathrm{~V}$	IIH	－	20	100	nA
Low－Level Input Current $V \mathrm{Vcc}=\mathrm{MAX}, \mathrm{VIL}=0.4 \mathrm{~V}$	IIL	－	20	－100	nA
High－Level Output Current $\mathrm{Vcc}=\mathrm{NOM}, \mathrm{V}_{\text {Out }}=2.4 \mathrm{~V}$	IOH	－	－	$\rightarrow 15$	mA
Low－Level Output Current $\mathrm{Vcc}=\mathrm{NOM}, \mathrm{~V}_{\mathrm{Out}}=0.4 \mathrm{~V}$	IOL	－	－	24	mA
Power Supply Current Outputs High Outputs．Low Outputs Hi－Z	ICC	－	$\begin{aligned} & 47 \\ & 44 \\ & 56 \end{aligned}$	$\begin{array}{r} 64 \\ 100 \\ 105 \end{array}$	mA

NMOS

AC CHARACTERISTICS (VCC $=5.0 \mathrm{~V}, \mathrm{VSS}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ )

CHARACTERISTIC	SYMBOL	CONDITIONS	MIN.	TYP.	MAX	UNIT
Propagation Delay Data to Output	$\begin{aligned} & \text { TPLH } \\ & \text { TPHL } \end{aligned}$	SEE BELOW	-	-	$\begin{aligned} & 40 \\ & 40 \end{aligned}$	ns
Output Enable Time	$\begin{aligned} & \text { TPZH } \\ & \text { TPZL } \end{aligned}$		-	-	$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
Output Disable Time	$\begin{aligned} & \text { TPHZ } \\ & \text { TPLZ } \end{aligned}$		-	-	40 40	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$



Commodore Semiconductor Group reserves the right to make changes to any products herein to improve reliability, function or design. Commodore Semiconductor Group does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.

## 6525 TRI-PORT INTERFACE

## CONCEPT ...

The 6525 TRI-PORT Interface (TPI) is designed to simplify the implementation of complex I/O operations in microcomputer systems. It combines two dedicated 8 -bit I/O ports with a third 8 -bit port programmable for either normal I/O operation or priority interrupt/handshaking control. Depending on the mode selected, the 6525 can provide 24 individually programmable I/O lines or 16 I/O lines, 2 handshake lines and 5 priority interrupt inputs.

## FEATURES:

- 24 individually programmable I/O lines or 16 I/O lines, 2 handshake lines and 5 interrupt inputs.
- Priority or non-priority interrupts
- Automatic handshaking
- Completely static operation
- Two TTL Drive Capability
- 8 directly addressable registers
- $1 \mathrm{MHz}, 2 \mathrm{MHz}$ and 3 MHz operation


## 6525 REGISTERS

*000	R0	PRA-Port Register A
001	R1	PRB-Port Register B
010	R2	PRC-Port Register C
011	R3	DDRA - Data Direction Register A
100	R4	DDRB - Data Direction Register B
101	R5	DDRC - Data Direction Register C
110	R6	CR-Control Register
111	R7	AIR-Active Interrupt Register

*NOTE: RS2, RS1, RS0 respectively


6525 INTERNAL ARCHITECTURE


## MAXIMUM RATINGS

Supply Voltage, VCC Input/Output Voltage, VIN Operating Temperature, TOP Storage Temperature, TSTG

## COMMENT

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of this device at these or any other conditions above those indicated in the operational sections of this specification is not implied and exposure to absolute maximum rating conditions for extended periods may affect device reliability.

All inputs contain protection circuitry to prevent damage due to high static discharges. Care should be exercised to prevent unnecessary application of voltages in excess of the allowable limits.

$$
\begin{array}{r}
-0.3 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-0.3 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to } 150^{\circ} \mathrm{C}
\end{array}
$$

## READ CYCLE TIMING



WRITE CYCLE TIMING


Note: All timings referenced to $V_{I L}$ max, $V_{I H}$ min on inputs and $V_{O L}$ max, $V_{O H}$ min on outputs.

READ CYCLE TIMING

Symbol	Characteristic	6525		6525A		6525B		UNITS
		MIN	MAX	MIN	MAX	MIN	MAX	
TRC	Read Cycle	450	-	225	-	165	-	ns
TACC	Access Time ${ }^{1}$	-	450	-	225	-	155	ns
TCO	$\overline{\mathrm{CS}}$ to Output Valid	-	270	-	120	-	70	ns
TACS	RS to $\overline{C S}$ Set Up	0	-	0	-	0	-	ns
$\mathrm{T}_{\mathrm{ACH}}$	RS to $\overline{\mathrm{CS}}$ Hold	0	-	0	-	0	-	ns
TRCS	R/W high to CSSet Up	0	-	0	-	0	-	ns
$\mathrm{T}_{\mathrm{RCH}}$	R/W high to $\overline{C S}$ Hold	0	-	0	-	0	-	ns
TOTD	$\overline{\mathrm{CS}}$ to Output off Delay	20	120	20	120	20	100	ns
TPDS	Port Input Set Up	120	-	60	-	40	-	ns
TPDH	Port Input Hold	150	-	150	-	150	-	ns

NOTE 1 - Access time measured from later of R/W high or RS stable.

WRITE CYCLE TIMING

Symbol	Characteristic	6525		6525A		6525B		UNITS
		MIN	MAX	MIN	MAX	MIN	MAX	
TWC	Write Cycle	450	-	225	-	165	-	ns
TACS	RS to $\overline{C S}$ Set Up	0	-	0	-	0	-	ns
TACH	RS to $\overline{\mathrm{CS}}$ Hold	0	-	0	-	0	-	ns
TWCS	R/W low to $\overline{C S}$ Set Up	0	-	0	-	0	-	ns
TWCH	R/W low to $\overline{C S}$ Hold	0	-	0	-	0	-	ns
TDS	Data Bus to $\overline{\mathrm{CS}}$ Set Up	150	-	100	-	50	-	ns
TDH	Data Bus to $\overline{\mathrm{CS}}$ Hold	0	-	0	-	0	-	ns
TCPD	$\overline{\mathrm{CS}}$ to Port Out Delay	-	1000	-	500	-	330	ns
TCSP	$\overline{\text { CS }}$ Pulse Width	420	-	200	-	150	-	ns

NNOS

## 6525 INTERNAL REGISTERS

AdDress				REgister bits								register name	COMMENT
RS2	RS1	RSo	MC	D7	D6	D5	D4	D3	D2	D1	Do		
0	0	0	X	$\mathrm{PA}_{7}$	$\mathrm{PA}_{6}$	$\mathrm{PA}_{5}$	$\mathrm{PA}_{4}$	$\mathrm{PA}_{3}$	$\mathrm{PA}_{2}$	$\mathrm{PA}_{1}$	PA0	Port Register A (PRA)	
0	0	1	$x$	$\mathrm{PB}_{7}$	$\mathrm{PB}_{6}$	$\mathrm{PB}_{5}$	$\mathrm{PB}_{4}$	$\mathrm{PB}_{3}$	$\mathrm{PB}_{2}$	$\mathrm{PB}_{1}$	$\mathrm{PB}_{0}$	Port Register B (PRB)	
0	1	0	0	$\mathrm{PC}_{7}$	$\mathrm{PC}_{6}$	$\mathrm{PC}_{5}$	$\mathrm{PC}_{4}$	$\mathrm{PC}_{3}$	$\mathrm{PC}_{2}$	$\mathrm{PC}_{1}$	$\mathrm{PC}_{0}$	Port Register C (PRC)	
0	1	0	1	CB	CA	$\overline{\mathrm{RQ}}$	$\mathrm{H}_{4}$	$\mathrm{IL}_{3}$	$\mathrm{IL}_{2}$	$\mathrm{IL}_{1}$	$\mathrm{H}_{0}$	Port Register C (PRC)	Handshake and Interrupt Latches (MODE 1)
0	1	1	$x$	$\mathrm{DA}_{7}$	$\mathrm{DA}_{6}$	$\mathrm{DA}_{5}$	$\mathrm{DA}_{4}$	$\mathrm{DA}_{3}$	$\mathrm{DA}_{2}$	$D A_{1}$	$\mathrm{DA}_{0}$	Data Direction   Register A (DDRA)	$0=$ Input; $1=$ Output
1	0	0	$x$	$\mathrm{DB}_{7}$	$\mathrm{DB}_{6}$	$\mathrm{DB}_{5}$	$D B_{4}$	$\mathrm{DB}_{3}$	$\mathrm{DB}_{2}$	$\mathrm{DB}_{1}$	$\mathrm{DB}_{0}$	Data Direction Register B (DDRB)	$0=$ Input; $1=$ Output
1	0	1	0	$\mathrm{DC}_{7}$	$\mathrm{DC}_{6}$	$\mathrm{DC}_{5}$	$D C_{4}$	$D C_{3}$	$\mathrm{DC}_{2}$	$D C_{1}$	DC0	Data Direction   Register C (DDRC)	$0=$ Input: $1=$ Output ( MODE 0 )
1	0	1	1	-	-	-	$\mathrm{M}_{4}$	$M_{3}$	$\mathrm{M}_{2}$	$M_{1}$	$\mathrm{M}_{0}$	Interrupt Mask Register	$0=$ Mask: $1=$ Enable (MODE 1)
1	1	0	x	$\mathrm{CB}_{1}$	$\mathrm{CB}_{0}$	$\mathrm{CA}_{1}$	$\mathrm{CAO}_{0}$	$\mathrm{IE}_{4}$	$\mathrm{EE}_{3}$	IP	MC	Control Register (CR)	Mode Selected by MC
1	1	1	1	-	-	-	$\mathrm{Al}_{4}$	$\mathrm{Al}_{3}$	$\mathrm{Al}_{2}$	$\mathrm{Al}_{1}$	$\mathrm{AlO}_{0}$	Active Interrupt Register (AIR)	

## 6525 FUNCTIONAL DESCRIPTION

## Control Register (CR)

The bits of the control register select the various operating modes of the 6525. Although the exact function of each bit is explained throughout the functional description. the functions are summarized here for convenience.


## MODE O- (MC=0)

In Mode 0 , three 8 bit bi-directional ports ( $\mathrm{A}, \mathrm{B}, \mathrm{C}$ ) are available on the 6525. Each port has two associated read/ write registers:

## Data Direction Registers (DDRA, DDRB, DDRC)

Each bit of the data direction registers controls the corresponding pin of the associated port as follows:

DDR bit	Direction of port pin
0	Input (Output driver disabled)   1
Output (Output driverenabled)	

## Port Registers (PRA, PRB, PRC)

Reading the Port Register returns the logic states of the associated port pins. The pin voltage levels must meet the $V_{I H}$ and $V_{I L}$ specification limits to ensure valid data. (Excessive loading of the output driver may cause the data read to differ from the expected output.) If the port pin is programmed as an output by the DDR. the output driver is set to the last data written to the corresponding PR bit.

MODE 1 - (MC=1)
In Mode 1, the 6525 provides 28 -bitbi-directional ports (A and $B$ ) as in Mode 0 . By writing $\mathrm{MC}=1$, Port C is automatically converted to a 5 level priority interrupt controller with interrupt output ( $(\overline{\mathrm{RQ}})$ and a handshake control line for each port (CA and CB).

| MODE 0 PIN NAMES | $P C 7$ | $P C 6$ | $P C 5$ | $P C 4$ | $P C 3$ | $P C 2$ | $P C 1$ | $P C 0$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: |
| $M O D E 1$ PIN NAMES | CB | CA | $\overline{\mathrm{TRQ}}$ | 14 | 13 | 12 | 11 | 10 |

## Port Register C - PRC (Mode 1)

All bits of the PRC can be read as in Mode 0 but the state of the interrupt latches, rather than the interrupt pins, is returned in the five low order bits of PRC. Writing " 0 " to a PRC bit clears the corresponding interrupt latch but has no effect on the CA, CB, or IRQ outputs. Writing "1" to a PRC bit has no effect on Mode 1.

| MODE 0 BIT NAMES | $\mathrm{PC}_{7}$ | $\mathrm{PC}_{6}$ | $\mathrm{PC}_{5}$ | $\mathrm{PC}_{4}$ | $\mathrm{PC}_{3}$ | $\mathrm{PC}_{2}$ | $\mathrm{PC}_{1}$ | $\mathrm{PC}_{0}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| MODE 1 BIT NAMES | CB | CA | IRQ | $\mathrm{IL}_{4}$ | IL | $\mathrm{IL}_{2}$ | $\mathrm{IL}_{1}$ | $\mathrm{IL}_{0}$ |

## CA and CB Outputs - (PC6 and PC7)

CA and CB may be used as general purpose outputs or as data transfer signals for ports A and B . The operation of $C A$ and CB is selected as follows:

$\mathrm{CA}_{1}$	$\mathrm{CA}_{0}$	CA OUTPUT MODE	$\mathrm{CB}_{1}$	$\mathrm{CB}_{0}$	CB OUTPUT MODE
0	0	Set high by active transition of 13. Reset low by reading PRA	0	0	Set low by writing PRB. Reset high by active transition of 14.
0	1	Pulses low for at least 500 ns after reading PRA.	0	1	Pulses low forat least 500 ns after writing PRB.
1	0	CA low	1	0	CB low
1	1	CA high	1	1	CB high

## IRQ Output - (PC5)

The Interrupt Request is set low when an unmasked interrupt (see below) is activated. $\overline{\mathrm{IRQ}}$ is reset high by reading the Active Interrupt Register (AIR). The $\overline{\mathrm{RQ}}$ output has an open drain to allow wire AND tying of multiple outputs.

## 14, I3, 12, 11, 10 Inputs - (PC4-PCO)

The five low order pins of Port C are interrupt inputs in Mode 1. A negative (high to low) transition on 12,11 or 10 sets the corresponding latch in PRC to indicate an interrupt, while either transition of 13 or 14 can be selected to set its latch as follows:

IE3	I3 EDGE SELECTION	IE4	I4 EDGE SELECTION
0	I3 sets I I 3 latch on negative   (hi-low) transition.	0	I4 sets IL4 latch on negative   transition.
1	I3 sets IL3 latch as positive   (low-hi) transition.	1	I4 sets IL4 latch on positive   transition.

## Interrupt Mask Register (DDRC in Mode 1)

In Mode 1, the five low order bits of the DDRC are utilized as interrupt mask bits of the five corresponding interrupt latches. Writing a " 1 " to the mask register enables the corresponding interrupt latch to initiate an interrupt while a " 0 " masks the interrupt latch output. Masking does not prevent the interrupt latch from being set by an active input transition. The interrupt mask register can be read and written.

## Active Interrupt Register (AIR)

The five low order bits of the AIR contain the present interrupt status of the 6525. A "1" in a bit of the AIR indicates that the corresponding interrupt is active. Reading the AIR clears all AIR bits and resets any interrupt latch which had set a bit in the AIR. READING AND WRITING OF THE AIR AFFECTS THE INTERRUPT PRIORITY STACK. Therefore, the AIR should be accessed only in strict accordance to the following rules:

1. READTHEAIRONLYTOINDICATE BEGINNING OF INTERRUPT SERVICE.
2. WRITE THE AIR ONLYTO INDICATE CONCLUSION OF INTERRUPT SERVICE.

## DESCRIPTION OF PRIORITY INTERRUPT OPERATION

## No Priority Operation Selected - (IP=0)

When an active transition occurs on an interrupt input (see 14-10), the corresponding interrupt latch is set. If this latch is not masked, the corresponding bit of the AIR is set, $\overline{\mathrm{RQ}}(\mathrm{PC} 5)$ is activated low, and other interrupt latches are prevented from setting new bits in the AIR. After reading the AIR, the interrupt latch corresponding with the bit set in the AIR is cleared to await new input and $I \overline{R Q}$ is reset high. Any interrupt latches remaining set will now restart this interrupt sequence. If multiple interrupts have been received in the interim, multiple bits will be set in the AIR and all corresponding interrupt latches will be cleared when the AIR is read. Therefore, software must recognize the occurrence of multiple interrupts when no priority operation is selected.

## Priorlty Operation Selected - (IP=1)

The five interrupt inputs have a fixed priority: $14>|3>|2>| 1>10$. When priority operation is selected, only the highest priority interrupt is placed in the AIR, ensuring only one bit set in the AIR at any time. When an interrupt occurs, the corresponding interrupt latch is set as before but is then compared with the present active interrupt, the new bit in the AIR is set and IRQ is activated low. When AIR is read, the contents of the AIR are pushed onto a 5 level stack for comparison with subsequent interrupts and AIR is cleared.

After servicing the new interrupt, the processor must write to the AIR (clearing the AIR) to instruct the 6525 that this interrupt service is complete. The previous interrupt status is then recalled (popped) to the top of the stack to be used for evaluating new interrupt inputs. Interrupts of lesser priority than the active interrupt are masked until all higher level interrupts are acknowledged and completed by the processor (as indicated by AIR reads and writes). When all higher priority interrupts have been serviced, the 6525 will allow a lower priority interrupt to indicate a new interrupt sequence.
The following examples illustrate the priority interrupt operation:
A. Single Interrupt

1. Interrupt received by negative transition on 11.
2. Interrupt latch 1 (IL1) is set.
3. Bit $A_{1}$ set in AIR.
4. $\overline{\mathrm{RQQ}}$ activated low.
5. Processor responds by reading AIR to determine which interrupt occurred.
6. AIR is pushed onto interrupt stack and latch 1 is cleared.
7. AIR is cleared and $\overline{R Q}$ reset high.
8. Upon completion of service, processor writes to AIR.
9. Interrupt stack is popped, restoring previous interrupt status.
B. Lower priority interrupt received during active interrupt
10. It received and latched.
11. $A_{1}$ is set and $\overline{\mathrm{RQ}}$ activated low.
12. Processor reads AIR to determine 11 is active.
13. AIR pushed onto stack and ILy cleared.
14. AIR cleared and $\overline{R Q}$ reset high.
15. Processor is servicing 11 while 10 occurs and sets $\mathrm{IL}_{0}$.
16. Interrupt stack prevents lower priority $\mathrm{IL}_{0}$ from initiating a new interrupt.
17. Upon completion of 11 service, processor writes to AIR, popping it interrupt out of stack.
18. ILo is now permitted to initiate a new interrupt service.
C. Higher priority interrupt received during active interrupt 1. Interrupt 11 received and latched.
19. $A_{1}$ is set and $\overline{\mathrm{RQ}}$ activated low.
20. Processor reads AIR to determine 11 is active.
21. AIR is pushed onto stack and ILy cleared.
22. AIR cleared and I $\overline{R Q}$ reset high.
23. Processor is servicing 11 when 12 occurs and sets $\mathrm{IL}_{2}$.
24. $A_{2}$ is set and $I \overline{R Q}$ activated low because $I_{2}$ has higher priority than 11 in stack.
25. Processor recognizes interrupt request and calls interrupt service routine.
26. Processor reads AIR to determine I 2 is active.
27. New AIR is pushed onto interrupt stack and IL2 cleared.
28. AIR cleared and $I \overline{R Q}$ reset high.
29. Processor services 12.
30. Upon completion of 12 service, processor writes to AIR popping 12 interrupt from stack, restoring I1 status to top of stack (still preventing an 10 interrupt).
31. Processor return from interrupt resumes services of suspended 11 routine.
32. Upon completion of 11, processor writes to AIR, popping 11 interrupt from stack, leaving no active interrupts.

## 6525 INTERFACE AND CONTROL

## Initialization

A low on the $\overline{\mathrm{RES}}$ pin clears all 6525 internal registers. This puts the 6525 in Mode 0 with all three ports selected as inputs (floating), preventing any conflicts on the bi-directional port lines. For port pins to be used as outputs, the desired output data may be written to the port register before enabling the output driver. This sequence can eliminate undesired output conditions when the outputs are enabled via the DDR.

When selecting Mode 1 , all interrupt inputs and IE3, IE4 must be stable before writing MC bit to " 1 ." If this can not be ensured, the interrupt latches ( $\mathrm{PRC}_{4}-\mathrm{PRC} 0$ ) should be cleared by writing 0 to PRC after $\mathrm{MC}=1$ and before unmasking the interrupt latches. Similarly, if CA and CB are to be used as data transfer handshake lines, no PRA reads or PRB writes should occur after RES or before actual data transfers are to begin.

## Processor Interface

The 6525 is a fully static device with interface characteristics similar to a static RAM. To read, the RS and R/W lines are stabilized and then $\overline{\mathrm{CS}}$ is switched low, gating the desired register onto the system data bus. (In 650X systems, $\overline{\mathrm{CS}}$ may be gated with $\varnothing 2$ ). The system timing must accommodate both the TACC (address) and TCO (chip select) delays before requiring valid data. To write to the 6525, similar timing is required, with the processor providing valid write data at least DS before $\overline{C S}$ switches high. To guarantee proper operation of the 6525, THE R/W LINE MUST BE STABLE ANY TIME CS IS LOW.

COMMODORE SEMICONDUCTOR GROUP reserves the right to make changes to any products herein to improve reliability, function or design. COMMODORE SEMICONDUCTOR GROUP does not assume any liability arising of of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.

## 6526 COMPLEX INTERFACE ADAPTER (CIA)

## DESCRIPTION

The 6526 Complex Interface Adapter (CIA) is a 65XX bus compatible peripheral Interface device with extremely flexible timing and I/O capabilities.

## FEATURES

- 16 Individually programmable I/O lines
- 8 or 16-Bit handshaking on read or write
- 2 independent, linkable 16-Bit interval timers
- 24-hour (AM/PM) time of day clock with programmable alarm
- 8-Bit shift register for serial I/O
- 2 TTL Load capability
- CMOS compatible I/O lines
- 1 or 2 MHz operation available

ORDERING INFORMATION



MPS
6526


NMOS

## MAXIMUM RATINGS

Supply Voltage, VCC Input/Output Voltage, VIN Operating Temperature, TOP Storage Temperature, TSTG
-0.3 V to +7.0 V
-0.3 V to +7.0 V
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

All inputs contain protection circuitry to prevent damage due to high static discharges. Care should be exercised to prevent unnecessary application of voltages in excess of the allowable limits.

## COMMENT

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of this device at these or any other conditions above those indicated in the operational sections of this specification is not implied and exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{VCC} \pm 5 \%, \mathrm{VSS}=0 \mathrm{v}, \mathrm{T}_{\mathrm{A}}=0-70^{\circ} \mathrm{C}\right)$

Characteristic	Symbol	Min.	Typ.	Max.	Unit
Input High Voltage	$\mathrm{V}_{\mathrm{IH}}$	+ 2.4	-	$v_{C C}$	V
Input Low Voltage	VIL	-0.3	-	+0.8	V
Input Leakage Current; $\mathrm{V}_{\mathrm{IN}}=\mathrm{VSS}_{S S}+5 \mathrm{~V}$ (TOD, R/W, FLAG, $\varnothing 2, \overline{\text { RES, RSO-RS3, }} \overline{\text { CS }}$ )	IIN	-	1.0	2.5	$\mu \mathrm{A}$
Port Input Pull-up Resistance	RPI	3.1	5.0	-	$k \Omega$
Output Leakage Current for High Impedance State (Three State); $\mathrm{V}_{\mathbb{I N}}=4 \mathrm{v}$ to 2.4 v ; (DBO-DB7, SP, CNT, IRQ)	ITSI	-	$\pm 1.0$	$\pm 10.0$	$\mu \mathrm{A}$
Output High Voltage VCC $=$ MIN, ILOAD $<-200 \mu A$ (PAO-PA7, $\overline{P C}$ PB0-PB7, DB0-DB7)	$\mathrm{V}_{\mathrm{OH}}$	+ 2.4	-	$v_{C C}$	v
Output Low Voltage $\mathrm{VCC}=\mathrm{MIN}, \mathrm{ILOAD}<3.2 \mathrm{~mA}$	VOL	-	-	+ 0.40	v
Output High Current (Sourcing);   $\mathrm{VOH}>2.4 \mathrm{v}$ (PA0-PA7, PB0-PB7, PC, DB0-DB7)	$\mathrm{IOH}^{\prime}$	-200	-1000	-	$\mu \mathrm{A}$
Output Low Current (Sinking); VOL < . 4 v   (PAO-PA7, $\overline{\mathrm{PC}}, \mathrm{PBO}-\mathrm{PB} 7, \mathrm{DBO} 0-\mathrm{DB7})$	IOL	3.2	-	-	mA
Input Capacitance	CIN	-	7	10	pf
Output Capacitance	COUT	-	7	10	pf
Power Supply Current	ICC	-	70	100	mA

## 6526 WRITE TIMING DIAGRAM



## 6526 READ TIMING DIAGRAM



## 6526 INTERFACE SIGNALS

## $\not \boldsymbol{q}_{2}$ - Clock Input

The $\emptyset 2$ clock is a $\Pi L$ compatible input used for internal device operation and as a timing reference for communicating with the system data bus.

## $\overline{\mathbf{C S}}$ - Chip Select Input

The CS input controls the activity of the 6526. A low level on $\overline{C S}$ while $\varnothing 2$ is high causes the device to respond to signals on the $R / W$ and address (RS) lines. A high on $\overline{C S}$ prevents these lines from controlling the 6526. The CS line is normally activated (low) at $\varnothing 2$ by the appropriate address combination.

## R/W - Read/Write Input

The R/W signal is normally supplied by the microprocessor and controls the direction of data transfers of the 6526. A high on R/W indicates a read (data transfer out of the 6526), while a low indicates a write (data transfer into the 6526).

## RS3-RSO - Address Inputs

The address inputs select the internal registers as described by the Register Map.

## DB7-BDO - Data Bus Inputs/Outputs

The eight data bus pins transfer information between the 6526 and the system data bus. These pins are high impedance inputs unless $\overline{\mathrm{CS}}$ is low and R/W and $\emptyset 2$ are high, to read the device. During this read, the data bus output buffers are enabled, driving the data from the selected register onto the system data bus.

## $\overline{\mathbf{I R Q}}$ - Interrupt Request Output

$\overline{\mathrm{RQ}}$ is an open drain output normally connected to the processor interrupt input. An external pullup resistor holds the signal high, allowing multiple IRQ outputs to be connected together. The $\overline{R Q Q}$ output is normally off (high impedance) and is activated low as indicated in the functional description.

## RES - Reset Input

A low on the RES pin resets all internal registers. The port pins are set as inputs and port registers to zero (although a read of the ports will return all highs because of passive pullups). The timer control registers are set to zero and the timer latches to all ones. All other registers are reset to zero.

## 6526 TIMING CHARACTERISTICS

Symbol	Charactoristle	1 MHz		2 MHz		Unit
		MIN	MAX	MIN	MAX	
	$\phi_{2}$ Clock					
TCYC	Cycle Time	1,000	20,000	500	20,000	nS
$T_{\text {Th, }} \mathrm{T}_{\mathrm{F}}$	Rise and Fall Time	-	25	-	25	ns
TCHW	Clock Pulse Width (High)	420	10,000	200	10,000	nS
TCLW	Clock Pulse Width (Low)	420	10,000	200	10,000	nS
	Write Cycle					
TPD	Output Delay From $\varnothing_{2}$	-	1,000	$\overline{-}$	500	ns
TwCs	CS low while $\emptyset_{2}$ high	420	-	200	-	nS
${ }^{T}$ ADS	Address Setup Time	0	-	0	-	nS
TADH	Address Hold Time	10	-	5	-	ns
TRWS	R/W Setup Time	0	-	0	-	nS
TRWH	R/W Hold Time	0	-	0	-	nS
${ }^{\text {T }}$ DS	Data Bus Setup Time	150	-	75	-	ns
TDH	Data Bus Hold Time	0	-	0	-	nS
	Read Cycle					
TPS	Port Setup Time	300	-	150	-	nS
TWCS(2)	CS low while $\varnothing_{2}$ high	420	-	200	-	nS
TADS	Address Setup Time	0	-	0	-	nS
TADH	Address Hold Time	10	-	5	-	nS
${ }^{T}$ RWS	R/W Setup Time	0	-	0	-	ns
${ }^{T}$ TRWH	R/W Hold Time	0	-	0	-	nS
${ }^{T}$ ACC	Data Access from RS3-RS0	-	550	-	275	nS
${ }^{\text {T }} \mathrm{CO}(3)$	Data Access from $\overline{\text { CS }}$	$\overline{5}$	320	$\bar{\square}$	150	ns
TDR	Data Release Time	50	-	25	-	nS

NOTES: 1 - All timings are referenced from $V_{I L}$ max and $V_{I H}$ min on inputs and $V_{O L}$ max and $V_{O H}$ min on outputs. 2 - TWCS is measured from the later of $\varnothing 2$ high or CS low. CS must be low at least until the end of $\varnothing 2$ high.
3 - TCO is measured from the later of $\varnothing 2$ high or CS low. Valid data is available only after the later of $T_{A C C}$ or $T_{C O}$.

## REGISTER MAP



PERIPHERAL DATA REG A PERIPHERAL DATA REG B DATA DIRECTION REG A DATA DIRECTION REG B TIMER A LOW REGISTER TIMER A HIGH REGISTER TIMER B LOW REGISTER TIMER B HIGH REGISTER 10THS OF SECONDS REGISTER SECONDS REGISTER MINUTES REGISTER HOURS - AM/PM REGISTER SERIAL DATA REGISTER INTERRUPT CONTROL REGISTER CONTROL REG A CONTROL REG B

## 6526 FUNCTIONAL DESCRIPTION

## I/O Ports (PRA, PRB, DDRA, DDRB)

Ports A and B each consist of an 8 -bit Peripheral Data Register (PR) and an 8-bit Data Direction Register (DDR). If a bit in the DDR is set to a one, the corresponding bit in the PR is an output, if a DDR bit is set to a zero, the corresponding PR bit is defined as an input. On a READ, the PR reflects the information present on the actual port pins (PA0-PA7, PB0-PB7) for both input and output bits. Port A and Port B have passive pull-up devices as well as active pull-ups, providing both CMOS and TTL compatibility. Both ports have two TTL load drive capability. In addition to normal I/O operation, PB6 and PB7 also provide timer output functions.

## Handshaking

Handshaking on data transfers can be accomplished using the $\overline{P C}$ output pin and the $\bar{F}$ LAG input pin. PC will go low for one cycle following a read or write of PORT B. This signal can be used to indicate "data ready" at PORT B or "data accepted" from PORT B. Handshaking on 16 -bit data transfers (using both PORTA and PORT B) is possible by always reading or writing PORTA first. FLAG is a negative edge sensitive input which can be used for receiving the PC output from another 6526, or as a general purpose interrupt input. Any negative transition on FLAG will set the FLAG interrupt bit.

REG	NA	D	$\mathrm{D}_{6}$	$\mathrm{D}_{5}$	$\mathrm{D}_{4}$	$\mathrm{D}_{3}$	$\mathrm{D}_{2}$	D	$\mathrm{D}_{0}$
0	PRA	$\mathrm{PA}_{7}$	$\mathrm{PA}_{6}$	$\mathrm{PA}_{5}$	$\mathrm{PA}_{4}$	$\mathrm{PA}_{3}$	$\mathrm{PA}_{2}$	$\mathrm{PA}_{1}$	$\mathrm{PA}_{0}$
1	PRB	$\mathrm{PB}_{7}$	$\mathrm{PB}_{6}$	$\mathrm{PB}_{5}$	$\mathrm{PB}_{4}$	$\mathrm{PB}_{3}$	$\mathrm{PB}_{2}$	$\mathrm{PB}_{1}$	$\mathrm{PB}_{0}$
2	DDRA	$\mathrm{DPA}_{7}$	$\mathrm{DPA}_{6}$	$\mathrm{DPA}_{5}$	$\mathrm{DPA}_{4}$	$\mathrm{DPA}_{3}$	$\mathrm{DPA}_{2}$	$\mathrm{DPA}_{1}$	$\mathrm{DPA}_{0}$
3	DDRE	$\mathrm{DPB}_{7}$	$\mathrm{DPB}_{6}$	$\mathrm{DPB}_{5}$	$\mathrm{DPB}_{4}$	$\mathrm{DPB}_{3}$	$\mathrm{DPB}_{2}$	$\mathrm{DPB}_{1}$	DPB0

## Interval Timers (Timer A, Timer B)

Each interval timer consists of a 16 -bit read-only Timer Counter and a 16-bit write-only Timer Latch. Data written to the timer are latched in the Timer Latch, while data read from the timer are the present contents of the Timer Counter. The timers can be used independently or linked for extended operations. The various timer modes allow generation of long time delays, variable width pulses, pulse trains and variable frequency waveforms. Utilizing the CNT input, the timers can count external pulses or measure frequency, pulse width and delay times of external signals. Each timer has an associated control register, providing independent control of the following functions:

## Start/Stop

A control bit allows the timer to be started or stopped by the microprocessor at any time.

## PB On/Off:

A control bit allows the timer output to appear on a PORT B output line (PB6 for TIMER A and PB7 for TIMER B). This function overrides the DDRB control bit and forces the appropriate PB line to an output.

## Toggle/Pulse

A control bit selects the output applied to PORT B. On every timer undierflow the output can either toggle or generate a single positive pulse of one cycle duration. The Toggle output is set high whenever the timer is started and is set low by RES.

## One-Short/ContInuous

A control bit selects either timer mode. In one-shot mode, the timer will count down from the latched value to zero, generate an interrupt, reload the latched value, then stop. In continuous mode, the timer will count from the latched value to zero, generate an interrupt, reload the latched value and repeat the procedure continuously.

## Force L.oad

A strobe bit allows the timer latch to be loaded into the timer counter at any time, whether the timer is running or not.

## Input Mode:

Control bits allow selection of the clock used to decrement the timer. TIMER A can count $\phi 2$ clock pulses or external pulses applied to the CNT pin. TIMER B can count $\emptyset 2$ pulses, external CNT pulses, TIMER A underflow pulses or TIMER A underflow pulses while the CNT pin is held high.

The timer latch is loaded into the timer on any timer underflow, on a force load or following a write to the high byte of the prescaler while the timer is stopped. If the timer is running, a write to the high byte will load the timer latch, but not reload the counter.

READ (TIMER)									
REG NAME									
4	TA L.O	$\mathrm{TAL}_{7}$	TAL6	TAL5	TAL4	TAL3	$\mathrm{TAL}_{2}$	$\mathrm{TAL}_{1}$	$\mathrm{TAL}_{0}$
5	TA HII	$\mathrm{TAH}_{7}$	$\mathrm{TAH}_{6}$	$\mathrm{TAH}_{5}$	$\mathrm{TAH}_{4}$	$\mathrm{TAH}_{3}$	$\mathrm{TAH}_{2}$	$\mathrm{TAH}_{1}$	$\mathrm{TAH}_{0}$
6	TB L.O	$\mathrm{TBL}_{7}$	TBL6	TBL5	TBL4	$\mathrm{TBL}_{3}$	TBL2	TBL	TBLo
7	TB HI	$\mathrm{TBH}_{7}$	$\mathrm{TBH}_{6}$	$\mathrm{TBH}_{5}$	$\mathrm{TBH}_{4}$	$\mathrm{TBH}_{3}$	$\mathrm{TBH}_{2}$	TBH 1	$\mathrm{TBH}_{0}$

## WRITE (PRESCALER)

## REG NAME

TA LO	PAL7	PAL6	PAL5	PAL4	PAL3	PAL2	PAL 1	PALO
TA HI	$\mathrm{PAH}_{7}$	$\mathrm{PAH}_{6}$	$\mathrm{PAH}_{5}$	$\mathrm{PAH}_{4}$	$\mathrm{PAH}_{3}$	$\mathrm{PAH}_{2}$	$\mathrm{PAH}_{1}$	$\overline{\mathrm{PAH}}{ }_{0}$
TB LO	PBL7	$\mathrm{PBL}_{6}$	PBL5	PBL4	$\mathrm{PBL}_{3}$	PBL2	PBL 1	PBL0
TB HI	$\mathrm{PBH}_{7}$	$\mathrm{PBH}_{6}$	$\mathrm{PBH}_{5}$	$\mathrm{PBH}_{4}$	$\mathrm{PBH}_{3}$	$\mathrm{PBH}_{2}$	$\mathrm{PBH}_{1}$	PBH0

## Time of Day Clock (TOD)

The TOD clock is a special purpose timer for real-time applications. TOD consists of a 24 -hour (AM/PM) clock with $1 / 10$ th second resolution. It is organized into 4 registers: 10ths of seconds, Seconds, Minutes and Hours. The AM/PM flag is in the MSB of the Hours rrgister for easy bit testing. Each register reads out in BCD format to simplify conversion for driving displays, etc. The clock requires an external 60 Hz or 50 Hz (programmable) TL level input on the TOD pin for accurate time-keeping. In addition to time-keeping, a programmable ALARM is provided for generating an interrupt at a desired time. The ALARM registers are located at the same addresses as the corresponding TOD registers. Access to the ALARM is governed by a Control Register bit. The ALARM is write-only; any read of a TOD address will read time regardless of the state of the ALARM access bit.

A specific sequence of events must be followed for proper setting and reading of TOD. TOD is automatically stopped whenever a write to the Hours register occurs. The clock will not start again until after a write to the 10 ths of seconds register. This assures TOD will always start at the desired time. Since a carry
from one stage to the next can occur at any time with respect to a read operation, a latching function is included to keep all Time Of Day information constant during a read sequence. All four TOD registers latch on a read of Hours and remain latched until after a read of 10 ths of seconds. The TOD clock continues to count when the output registers are latched. If only one register is to be read, there is no carry problem and the register can be read "on the fly," provided that any read of Hours is followed by a read of 10 ths of seconds to disable the latching.

## READ

REG NAME

8	TOD 10THS	0	0	0	0	$\mathrm{T}_{8}$	$\mathrm{T}_{4}$	$\mathrm{T}_{2}$	T1
9	TOD SEC	0	$\mathrm{SH}_{4}$	$\mathrm{SH}_{2}$	$\mathrm{SH}_{1}$	$\mathrm{SL}_{8}$	$\mathrm{SL}_{4}$	SL2	$\mathrm{SL}_{1}$
A	TOD MIN	0	$\mathrm{MH}_{4}$	$\mathrm{MH}_{2}$	$\mathrm{MH}_{1}$	ML8	ML4	$\mathrm{ML}_{2}$	$\mathrm{ML}_{1}$
B	TOD HR	PM	0	0	HH	HL8	$\mathrm{HL}_{4}$	$\mathrm{HL}_{2}$	$\mathrm{HL}_{1}$

## WRITE

$\mathrm{CRB}_{7}=0 \mathrm{TOD}$
$\mathrm{CRB}_{7}=1$ ALARM
(SAME FORMAT AS READ)

## Serial Port (SDR)

The serial port is a buffered, 8 -bit synchronous shift register system. A control bit selects input or output mode. In input mode, data on the SP pin is shifted into the shift register on the rising edge of the signal applied to the CNT pin. After 8 CNT pulses, the data in the shift register is dumped into the Serial Data Register and an interrupt is generated. In the output mode, TIMER A is used for the baud rate generator. Data is shifted out on the SP pin at $1 / 2$ the underflow rate of TIMER A. The maximum baud rate possible is $\phi 2$ divided by 4 , but the maximum useable baud rate will be determined by line loading and the speed at which the receiver responds to input data. Transmission will start following a write to the Serial Data Register (provided TIMER A is running and in continuous mode). The clock signal derived from TIMER A appears as an output on the CNT pin. The data in the Serial Data Register will be loaded into the shift register then shift out to the SP pin when a CNT pulse occurs. Data shifted out becomes valid on the falling edge of CNT and remains valid until the next falling edge. After 8 CNT pulses, an interrupt is generated to indicate more data can be sent. If the Serial Data Register was loaded with new information prior to this interrupt, the new data will automatically be loaded into the shift register and transmission will continue. If the microprocessor stays one byte ahead of the shift register, transmission will be continuous. If no further data is to be transmitted, after the 8th CNT pulse, CNT will return high and SP will remain at the level of the last data bit transmitted. SDR data is shifted out MSB first and serial input data should also appear in this format.

The bidirectional capability of the Serial Port and CNT clock allows many 6526 devices to be connected to a common serial communication bus on which one 6526 acts as a master, sourcing data and shift clock, while all other 6526 chips act as slaves. Both CNT and SP outputs are open drain to allow such a common bus. Protocol for master/slave selection can be transmitted over the serial bus, or via dedicated handshaking lines.

## REG NAME

C

NAME
SDR
$\mathrm{s}_{7}$ $\mathrm{~s}_{6}$ $\mathrm{~s}_{5}$ $\mathrm{~s}_{4}$ $\mathrm{~s}_{3}$ $\mathrm{~s}_{2}$ $\mathrm{~s}_{1}$

## Interrupt Control (ICR)

There are five sources of interrupts on the 6526: underflow from TIMER A, underflow from TIMER B, TOD ALARIM, Serial Port full/empty and FLAG. A single register provides masking and interrupt information. The Interrupt Control Register consists of a write-only MASK register and a read-only DATA register. Any interrupt will set the corresponding bit in the DATA register. Any interrupt which is enabled by the MASK register will set the IR bit (MSB) of the DATA register and bring the $\overline{\mathrm{RQ}}$ pin low. In a multi-chip system, the IR bit can be polled to detect which chip has generated an interrupt request. The interrupt DATA register is cleared and the IRQ line returns high following a read of the DATA register. Since each interrupt sets an interrupt bit regardless of the MASK, and each interrupt bit can be selectively masked to prevent the generation of a processor interrupt, it is possible to intermix polled interrupts with true interrupts. However, polling the IR bit will cause the DATA register to clear, therefore, it is up to the user to preserve the information contained in the DATA register if any polled interrupts were present.

The MASK register provides convenient control of individual mask bits. When writing to the MASK register, if bit 7 (SET/CLEAR) of the data written is a ZERO, any mask bit written with a one will be cleared, while those mask bits written with a zero will be unaffected. If bit 7 of the data written is a ONE, any mask bit written with a one will be set, while those mask bits written with a zero will be unaffected. In order for an interrupt flag to set IR and generate an Interrupt Request, the corresponding MASK bit must be set.

## READ (INT DATA)

REG NAME

D ICR | IR | 0 | 0 | $F L G$ | SP | ALRM | TB | TA |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

WRITE (INT MASK)
PEG NAME

D ICR | $S / C$ | $X$ | $X$ | $F L G$ | $S P$ | $A L R M$ | $T B$ | $T A$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## CONTROL REGISTERS

There are two control registers in the 6526, CRA and CRB. CRA is associated with TIMER A and CRB is associated with TIMER B. The register format is as follows:

## CRA:

Bit	t Name	Function
0	START	$1=$ START TIMER A, $0=$ STOP TIMER A. This bit is automatically reset when underflow occurs during one-shot mode.
1	PBON	$1=$ TIMER A output appears on PB6, $0=$ PB6 normal operation.
2	OUTMODE	$1=$ TOGGLE, $0=$ PULSE
3	RUNMODE	$1=$ ONE-SHOT, $0=$ CONTINUOUS
4	LOAD	$1=$ FORCE LOAD (this is a STROBE input, there is no data storage, bit 4 will always read back a zero and writing a zero has no effect).
5	INMODE	$1=$ TIMER A counts positive CNT transitions, $0=$ TIMER A counts $\emptyset 2$ pulses.
6	SPMODE	$1=$ SERIAL PORT output (CNT sources shift clock), $0=$ SERIAL PORT input (external shift clock required).
7	TODIN	$1=50 \mathrm{~Hz}$ clock required on TOD pin for accurate time, $0=60 \mathrm{~Hz}$ clock required on TOD pin for accurate time.

## CRB:

## Bit Name Function

(Bits CRB0-CRB4 are identical to CRAO-CRA4 for TIMER B with the exception that bit 1 controls the output of TIMER B on PB7).
5.6 INMODE Bits CRB5 and CRB6 select one of four input modes for TIMER B as:

## CRB6 CRB5

CRE	TIMER B counts $\varnothing 2$ pulses.	
0	0	TIMER B counts positive CNT transistions.
0	1	TIMER B counts TIMER A underflow pulses.
1	0	TIMER B counts TIMER A underflow pulses while CNT is high.
1	1	=writing to TOD registers sets ALARM, O=writing to TOD registers sets TOD clock.



All unused register bits are unaffected by a write and are forced to zero on a read.

COMMODORE SEMICONDUCTOR GROUP reserves the right to make changes to any products herein to improve reliability, function or design. COMMODORE SEMICONDUCTOR GROUP does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.

## 6529 SINGLE PORT INTERFACE

## DESCRIPTION

The 6529 is a static microprocessor compatible, 8-bit I/O Port with passive output pull-up devices. Data is written to the port when $\overline{C S}$ and R/W are low. Data is read from the port when $\overline{C S}$ is low and R/W is high. The passive output pull-ups allow a single bit to act as either an input or an output without I/O mode switching.

This device is provided with special circuitry to provide power-on reset. Under normal fast poweron conditions the outputs will initialize in the input high impedance state. With very slow or noisy power-up, there is some possibility the device will initialize with outputs driven low. It is recommended that the 6529 be interfaced to open collector output type devices.

TRUTH TABLE

$C S$	RNW	DO-D7
$L$	$L$	DATA BUS TO PORT
$L$	$H$	PORT TO DATA BUS
$H$	$X$	ISOLATION

L = LOW Level
H= HIGH Level
X = Irrelevant

ORDER INFORMATION
MXS 6529 $\qquad$
FREQUENCY RANGE NO SUFFIX $=1 \mathrm{MHz}$ $\mathrm{A}=2 \mathrm{MHz}$ $\mathrm{B}=3 \mathrm{MHz}$

PACKAGE DESIGNATOR
$\mathrm{C}=$ Ceramic $\mathrm{P}=$ Plastic

PIN CONFIGURATION

R/W $=$	1		20	$\checkmark \mathrm{V} D$
P0 =	2		19	$\overline{C S}$
P1 =	3		18	DB0
P2 =	4		17	DB1
P3 =	5	6529	16	DB2
P4 =	6		15	DB3
P5 =	7		14	DB4
P6	8		13	- DB5
P7 =	9		12	- DB6
$V_{\text {SS }}=$	10			- DB7

MAXIMUM RATINGS

RATING	SYMBOL	VALUE	UNIT
SUPPLY VOLTAGE	$V_{\mathrm{CC}}$	-0.3 to +7.0	$V_{\mathrm{dc}}$
INPUT VOLTAGE	$V_{\text {in }}$	-0.3 to +7.0	$V_{\mathrm{dc}}$
OPERATING TEMPERATURE RANGE	$\mathrm{T}_{\mathrm{A}}$	0 to +70	${ }^{\circ} \mathrm{C}$
STORAGE TEMPERATURE RANGE	$\mathrm{T}_{\mathrm{stg}}$	-55 to +150	${ }^{\circ} \mathrm{C}$

This device contains circuitry to protect the inputs against damage due to high static voltages, however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this circuit.

CHARACTERISTICS ( $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ}$ to $70^{\circ} \mathrm{C}$ )

CHARACTERISTIC	SYMBOL	MIN	MAX	UNIT
Input High Voltage(Normal Operating Levels)	$\mathrm{V}_{\mathrm{IH}}$	+2.0	VCC	Vdc
Input Low Voltage (Normal Operating Levels)	VIL	-0.3	+0.8	Vdc
Input Leakage Current $\mathrm{V}_{\text {in }}=0$ to 5.0 Vdc WRITE, $\overline{C S}$	IIN	-	$\pm 2.5$	$\mu \mathrm{Adc}$
Three-State (Off State Input Current) $\mathrm{V}_{\text {in }}=0.4$ to $\left.2.4 \mathrm{Vdc}, \mathrm{VCC}_{\mathrm{CC}}=\mathrm{Max}\right)$ $\mathrm{D}_{0}$-D7	ITSI	-	$\pm 10$	$\mu \mathrm{Adc}$
$\begin{aligned} & \text { Output High Voltage } \\ & \left.\qquad \text { VCC }=\text { Min, Load }=-600 \mu \mathrm{Adc}, \mathrm{P}_{0}-\mathrm{P}_{7}\right) \\ & \left(V_{C C}=\text { Min, Load }=-200 \mu \mathrm{Adc}, \mathrm{D}_{0} \mathrm{D}_{7}\right) \end{aligned}$	VOH	2.4	-	Vdc
$\begin{aligned} & \text { Output Low Voltage } \\ & \text { NCC } \left.=\text { Max, Load }=6.4 \mathrm{mAdc}, \mathrm{PO}_{0}-\mathrm{P} 7\right) \\ & \left.\mathrm{NCC}=\text { Max, Load }=3.2 \mathrm{~mA}, \mathrm{D}_{0}-\mathrm{D} 7\right) \end{aligned}$	VOL	-	+0.4	Vdc
$\begin{array}{ll}\text { Output High Current (Sourcing) } & \mathrm{PO}_{0}-\mathrm{P}_{7} \\ \text { (VOH }=2.4 \mathrm{Vdc}) & \mathrm{D}_{0}-\mathrm{D}_{7}\end{array}$	$\begin{aligned} & \mathrm{IOH} \\ & \mathrm{IOH} \end{aligned}$	$\begin{aligned} & -600 \\ & -200 \end{aligned}$	-	MAdc $\mu A d c$
Output Low Current (Sinking) $\mathrm{Po}_{0}^{-\mathrm{P}_{7}}$   $(\mathrm{VOL}=0.4 \mathrm{Vdc})$ $\mathrm{D}_{0}-\mathrm{D}_{7}$	$\begin{aligned} & \text { IOL } \\ & \text { IOL } \end{aligned}$	$\begin{aligned} & 6.4 \\ & 3.2 \end{aligned}$	-	mAdc mAdc
Supply Current	ICC	-	80	mA

NOTE: Negative sign indicates outward current flow, positive indicates inward flow.

## 6529 WRITE CYCLE TIMING DIAGRAM



Note: All timings referred to $V_{I L} \max , V_{I H} \min$ for inputs and $V_{O L} \max , V_{O H}$ min for outputs.

## 6529 WRITE CYCLE CHARACTERISTICS

Symbol	Characteristic	1 MHz		2 MHz		3 MHz		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	
TWA*	Write Active	450	-	225	-	160	-	ns
TCPD	$\overline{\text { CS }}$ to Port Out Delay	-	1000	-	500	-	330	ns
TDS	Data to $\overline{C S}$ Setup	150	-	100	-	100	-	ns
TDH	Data to $\overline{\mathrm{CS}} \mathrm{Hold}$	0	-	0	-	0	-	ns

*TWA is the time while both $\overline{C S}$ and R/W are low

NMOS

## 6529 READ CYCLE DIAGRAM



Note: All timings referenced to $V_{I L} \max , V_{I H}$ min for inputs and $V_{O L} \max , V_{O H}$ min for outputs.

6529 READ CYCLE CHARACTERISTICS

Symbol	Characteristic	1 MHz		2 MHz		3 MHz		UNITS
		MIN	MAX	MIN	MAX	MIN	MAX	
TACC	Access Time	-	450	-	225	-	160	ns
TPDS	Port Input Setup	120	-	60	-	40	-	ns
TPDH	Port Input Hold	30	-	30	-	30	-	ns
TRCS	R/W to $\overline{C S}$ Setup	0	-	0	-	0	-	ns
TRCH	R/W to $\overline{C S}$ Setup	0	-	0	-	0	-	ns
TOTD	$\overline{\text { CS }}$ to Output Off Delay	20	120	20	120	20	120	ns

COMMODORE SEMICONDUCTOR GROUP reserves the right to make changes to any products herein to improve reliability, function or design. COMMODORE SEMICONDUCTOR GROUP does not assume any liability arising out of the application or use of any product or circuit described herein; nelther does it convey any license under its patent rights nor the rights of others.

## 6530 (MEMORY, I/O, TIMER ARRAY)

## DESCRIPTION

The 6530 is designed to operate in conjunction with the 650X Microprocessor Family. It is comprised of a mask programmable $1024 \times 8$ ROM, a $64 \times 8$ static RAM, two software controlled 8 bit bi-directional data ports allowing direct interfacing between the microprocessor unit and peripheral devices, and a software programmable interval timer with interrupt, capable of timing in various intervals from 1 to 262,144 clock periods.

## FEATURES

- 8 bit bi-directional Data Bus for direct communication with the microprocessor
- $1024 \times 8$ ROM
- $64 \times 8$ static RAM
- Two 8 bit bi-directional data ports for interface to peripherals
- Two programmable I/O Peripheral Data Direction Registers
- Programmable Interval Timer
- Programmable Interval Timer Interrupt
- TL \& CMOS compatible peripheral lines
- Peripheral pins with Direct Transistor Drive Capability
- High Impedance Three-State Data Pins
- Allows up to 7 K contiguous bytes of ROM with no external decoding

Figure 1. 6530 Block Diagram


## MAXIMUM RATINGS

Supply Voltage, $V_{C C}$
-0.3 V to +7.0 V Input/Output Voltage, VIN Operating Temperature, TOP Storage Temperature, TSTG

$$
-0.3 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
$$

0 C to 70 C
-55 C to 150 C
All inputs contain protection circuitry to prevent damage due to high static discharges. Care should be exercised to prevent unnecessary application of voltages in excess of the allowable limits.

## COMMENT

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of this device at these or any other conditions above those indicated in the operational sections of this specification is not implied and exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{VCC}=5.0 \mathrm{v} \pm 5 \%, \mathrm{VSS}=0 \mathrm{v}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ )

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
Input High Voltage	VIH	$\mathrm{V}_{\text {SS }}+2.4$		VCC	V
Input Low Voltage	$\mathrm{V}_{\text {IL }}$	VSS-. 3		VSS+. 4	V
Input Leakage Current; $\mathrm{V} \mid \mathrm{N}=\mathrm{V}$ SS +5 V A0-A9, RS, R/W, RES, $\varnothing 2$, PB6*, PB5*	IIN		1.0	2.5	$\mu \mathrm{A}$
Input Leakage Current for High Impedance State (Three State); $\mathrm{V}_{\mathrm{IN}}=.4 \mathrm{v}$ to 2.4 v ; D0-D7	ITSI		$\pm 1.0$	$\pm 10.0$	$\mu \mathrm{A}$
Input High Current; $\mathrm{V} \mid \mathrm{N}=2.4 \mathrm{v}$ PAO-PA7, PBO-PB7	IIH	-100.	-300.		$\mu \mathrm{A}$
$\begin{aligned} & \text { Input Low Current; } \mathrm{V} \text { IN }=.4 \mathrm{v} \\ & \text { PAO-PA7, PB0-PB7 } \\ & \hline \end{aligned}$	IIL		-1.0	-1.6	MA
Output High Voltage $\begin{gathered} \mathrm{VCC}=\mathrm{MIN}, \mathrm{ILOAD} \leq-100 \mathrm{\mu A}(\mathrm{PAO}-\mathrm{PA} 7, \mathrm{~PB} 0-\mathrm{PB} 7, \mathrm{DO}-\mathrm{D} 7) \\ \text { ILOAD } \leq-3 \mathrm{MA}(\mathrm{PAO}-\mathrm{PBO}) \end{gathered}$	V OH	$\begin{aligned} & \text { VSS }+2.4 \\ & \text { VSS }+1.5 \end{aligned}$			V
$\begin{aligned} & \text { Output Low Voltage } \\ & \text { VCC=MIN, ILOAD } \leq 1.6 \mathrm{MA} \end{aligned}$	VOL			VSS+. 4	V
Output High Current (Sourcing); $\mathrm{VOH} \geq 2.4 \mathrm{v}$ (PAO-PA7,PB0-PB7,D0-D7) $\geq 1.5 \mathrm{v}$ Available for other than TTL (Darlingtons) (PA0,PB0)	${ }^{\mathrm{I}} \mathrm{OH}$	$\begin{aligned} & -100 \\ & -3.0 \end{aligned}$	$\begin{gathered} -1000 \\ -5.0 \end{gathered}$		$\begin{aligned} & \text { UA } \\ & \text { MA } \end{aligned}$
	IOL	1.6			MA
Clock Input Capacitance	$\mathrm{C}_{\text {Clk }}$			30	pF
Input Capacitance	CIN			10	pF
Output Capacitance	COUT			10	pF
Power Dissipation	PD		500	1000	MW

*When programmed as address pins. All values are D.C. readings.

WRITE TIMING CHARACTERISTICS

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
Clock Period	TCYC	1		10	$\mu S$
Rise \& Fall Times	TR, TF			25	NS
Clock Pulse Width	TC	470			NS
R/W valid before positive transition of clock	TWCW	180		NS	
Address valid before positive transition of clock	TACW	180		NS	
Data Bus valid before negative transition of clock	TDCW	300		NS	
Data Bus Hold Time   Peripheral data valid after negative transition   of clock   Peripheral data valid after negative transition   of clock driving CMOS (Level=VCC-30\%)	TCPWOS	THW	10		NS

READ TIMING CHARACTERISTICS

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
RNW valid before positive transition of clock	TWCR	180			NS
Address valid before positive transition of clock	TACR	180			NS
Peripheral data valid before positive transition   of clock	TPCR	300		NS	
Data Bus valid after positive transition of clock   Data Bus Hold Time	TCDR			395	NS
$\overline{R Q}$ (Interval Timer Interrupt) valid before   positive transition of clock	THR	10			NS

Loading $=30 \mathrm{pF}+1 \mathrm{TL}$ load for PA0-PA7, PB0-PB7
$=130 \mathrm{pF}+1$ TTL load for DO-D7

NMOS


Figure 2 Write Timing Characteristics


Figure 3 Read Timing Characteristics

## INTERFACE SIGNAL DESCRIPTION

## Reset ( $\overline{\text { RES }}$ )

During system initialization a Logic " 0 " on the $\overline{\text { RES }}$ input will cause a zeroing of all four I/O registers. This in turn will cause all I/O buses to act as inputs thus protecting external components from possible damage and erroneous data while the system is being configured under software control. The Data Bus Buffers are put into an OFF-STATE during Reset. Interrupt capability is disabled with the RES signai. The $\overline{\text { RES }}$ signal must be held low for at least one clock period when reset is required.

## Input Clock

The input clock is a system Phase Two clock which can be either a low level clock ( $\mathrm{V}_{\text {IL }}<0.4, \mathrm{~V}_{\text {IH }}>2.4$ ) or high level clock $\left(\mathrm{VIL}_{\mathrm{IL}}<0.2, \mathrm{~V}_{\mathrm{IH}}=\mathrm{VCc}_{-.2}^{+.3}\right.$ ).

## Read/Write (R/W)

The R/W signal is supplied by the microprocessor array and is used to control the transfer of data to and from the microprocessor array and the 6530. A high on the R/W pin allows the processor to read (with proper addressing) the data supplied by the 6530. A low on the R/W pin allows a write (with proper addressing) to the 6530 .

## Interrupt Request (IRQ)

The $\overline{R Q}$ pin is an interrupt pin from the interval timer. This same pin, if not used as an interrupt, can be used as a peripheral I/O pin (PB7). When used as an interrupt, the pin should be set up as an input by the data direction register. The pin will be normally high with a low indicating an interrupt from the 6530. An external pull-up device is not required; however, if collector-OR'd with other devices, the internal pullup may be omitted with a mask option.

## Data Bus (DO-D7)

The 6530 has eight bi-directional data pins (D0-D7). These pins connect to the system's data lines and allow transfer of data to and from the microprocessor array. The output buffers remain in the off state except when a Read operation occurs.

## Peripheral Data Ports

The 6530 has 16 pins available for peripheral I/O operations. Each pin is individually software programmable to act as either an input or an output. The 16 pins are divided into 28 -bit ports, PAO-PA7 and PB0PB7. PB5, PB6 and PB7 also have other uses which are discussed in later sections. The pins are set up as an input by writing a " 0 " into the corresponding bit of the data direction register. A "1" into the data direction register will cause its corresponding bit to be an output. When in the input mode, the peripheral output buffers are in the " 1 " state and a pull-up device acts as less than one TTL load to the periphera data lines. On a Read operation, the microprocessor unit reads the peripheral pin. When the peripheral device gets information from the 6530 it receives data stored in the data register. The microprocessor will read correct information if the peripheral lines are greater than 2.0 volts for a " 1 " and less than 0.8 volts for a " 0 " as the peripheral pins are all TTL compatible. Pins PAO and PBO are also capable of sourcing 3 ma at 1.5 v , thus making them capable of Darlington drive.

## Address Lines (AO-A9)

There are 10 address pins. In addition to these 10, there is the ROM SELECT pin. The above pins, A0-A9 and ROM SELECT, are always used as addressing pins. There are 2 additional pins which are mask programmable and can be used either individually or together as CHIP SELECTS. They are pins PB5 and PB6. When used as peripheral data pins they cannot be used as chip selects.

## INTERNAL ORGANIZATION

A block diagram of the internal architecture is shown in Figure 1. The 6530 is divided into four basic sections, RAM, ROM, I/O and TIMER. The RAM and ROM interface directly with the microprocessor through the system data bus and address lines. The I/O section consists of 28 -bit halves. Each half contains a Data Direction Register (DDR) and an I/O Register.

## ROM 1K Byte (8K Bits)

The 8 K ROM is in a $1024 \times 8$ configuration. Address lines A0-A9, as well as RS0 are needed to address the entire ROM. With the addition of CS1 and CS2, seven 6530 's may be addressed, giving $7168 \times 8$ bits of contiguous ROM.

## RAM - 64 Bytes ( 512 Bits)

A $64 \times 8$ static RAM is contained on the 6530. It is addressed by A0-A5 (Byte Select), RS0, A6, A7, A8, A9 and, depending on the number of chips in the system, CS1 and CS2.

## Internal Peripheral Registers

There are four internal registers, two data direction registers and two peripheral I/O data registers. The two data direction registers ( $A$ side and $B$ side) control the direction of the data into and out of the peripheral pins. A"1" written into the Data Direction Register sets up the corresponding peripheral buffer pin as an output. Therefore, anything then written into the I/O Register will appear on that corresponding peripheral pin. A " 0 " written into the DDR inhibits the output buffer from transmitting data to or from the $1 / O$ Register. For example, a " 1 " loaded into data direction register $A$, position 3, sets up peripheral pin PA3 as an output. If a " 0 " had been loaded, PA3 would be configured as an input and remain in the high state. The two data I/O registers are used to latch data from the Data Bus during a Write operation until the peripheral device can read the data supplied by the microprocessor array.

During a read operation the microprocessor is not reading the I/O Registers but in fact is reading the peripheral data pins. For the peripheral data pins which are programmed as outputs the microprocessor will read the corresponding data bits of the $1 / O$ Register. The only way the I/O Register data can be changed is by a microprocessor Write operation. The I/O Register is not affected by a Read of the data on the peripheral pins.

## Interval Timer

The Timer section of the 6530 contains three basic parts: preliminary divide down register, programmable 8 -bit register and interrupt logic. These are illustrated in Figure 4.

The interval timer can be programmed to count up to 256 time intervals. Each time interval can be either $1 \mathrm{~T}, 8 \mathrm{~T}, 64 \mathrm{~T}$ or 1024 T increments, where T is the system clock period. When a full count is reached, an interrupt flag is set to a logic "1." After the interrupt flag is set the internal clock begins counting down to a maximum of $-255 T$. Thus, after the interrupt flag is set, a Read of the timer will tell how long since the flag was set up to a maximum of 255 T .

The 8 bit system Data Bus is used to transfer data to and from the Interval Timer. If a count of 52 time intervals were to be counted, the pattern 00110100 would be put on the Data Bus and written into the Interval Time register.

At the same time that data is being written to the Interval Timer, the counting intervals of 1,8,64,1024T are decoded from address lines A0 and A1. During a Read or Write operation address line A3 controls the interrupt capability of PB7, i.e., $\mathrm{A}_{3}=1$ enables $I R Q$ on PB7, $\mathrm{A}_{3}=0$ disables IRQ on PB7. When PB7 is to be used as an interrupt flag with the interval timer it should be programmed as an input. If PB7 is enabled by A3 and an interrupt occurs PB7 will go low. When the timer is read prior to the interrupt flag being set, the number of time intervals remaining will be read, i.e., 51 , 50,49 , etc.

When the timer has counted down to 00000000 on the next count time an interrupt will occur and the counter will read 11111111 After interrupt, the timer register decrements at a divide by " 1 " rate of the system clock. If after interrupt, the timer is read and a value of 11100100 is read, the time since interrupt is 28T. The value read is in two's complement.

Value read $=11100100$
Complement $=00011011$
$\operatorname{ADD} 1=00011100=28$.

Thus, to arrive at the total elapsed time, merely do a two's complement add to the original time written into
the timer. Again, assume time written as 00110100 ( $=52$ ). With a divided by 8 , total time to interrupt is ( $52 x$ $8)+1=417 \mathrm{~T}$. Total elapsed time would be $416 \mathrm{~T}+28 \mathrm{~T}$ $=444 \mathrm{~T}$, assuming the value read after interrupt was 11 100100.

After the interrupt, whenever the timer is written or read the interrupt is reset. However, the reading of the timer at the same time the interrupt occurs will not reset the interrupt flag. When the interrupt flag is read on DB7 all other DB outputs (DB0 thru DB6) go to "0". Figure 5 illustrates an example of interrupt.

When reading the timer after an interrupt, A3 should be low so as to disable the $\overline{\mathrm{RQ}}$ pin. This is done so as to avoid future interrupts until after another Write timer operation.


Figure 4. Basic Elements of Interval Timer


WRITE T
$\overline{\operatorname{RQ}}$

1. Data written into interval timer is $00110100=5210$
2. Data in Interval timer is $00011001=2510$
$52-\frac{213}{8}-1=52-26-1=25$
3. Data in Interval timer is $00000000=010$ $52-\frac{415}{8}-1=52-51-1=0$
4. Interrupt has occurred at $\varnothing_{2}$ pulse \#416

Data in Interval timer $=11111111$
5. Data in Interval timer is 10101100 two's complement is $01010100=8410$ $84+(52 \times 8)=500_{10}$

Figure 5

## ADDRESSING

Addressing of the 6530 offers many variations to the user for greater flexibility. The user may configure his system with RAM in lower memory, ROM in higher memory, and I/O registers with interval timers between the extremes. There are 10 address lines (A0-A9). In addition, there is the possibility of 3 additional address lines to be used as chip-selects and to distinguish between ROM, RAM, I/O and interval timer. Two of the additional lines are chip-selects 1 and 2 (CS1 and CS2). The chip-select pins can also be PB5 and PB6. Whether the pins are used as chip-selects or peripheral I/O pins is a mask option and must be specified when ordering the part. Both pins act independently of each other in that either or both pins may be designated as a chip-select. The third additional address line is RSO. The 6502 and 6530 in a 2-chip system would use RSO to distinguish between ROM and non-ROM sections of the 6530 . With the addressing pins available, a total of 7 K contiguous ROM may be addressed with no external decode. Below is an example of a 1 chip and a 7-chip 6530 Addressing Scheme.

## One-Chip Addressing

Figure 6 illustrates a 1 -chip system decode for the 6530.

## Seven-Chip Addressing

In the 7-chip system the objective would be to have 7 K of contiguous ROM, with RAM in low order memory. The 7 K of ROM could be placed between addresses 65,535 and 1024. For this case, assume A13, A1 4 and A15 are all 1 when addressing ROM, and 0 when addressing RAM or I/O. This would place the 7 K ROM between Addresses 65,535 and 58,367 . The 2 pins designated as chip-select or 1/O would be masked programmed as chip-select pins. Pin RSO would be connected to address line A10. Pins CS1 and CS2 would be connected to address lines A11 and A12 respectively. See Figure 7.

The two examples shown would allow addressing of the ROM and RAM; however, once the I/O or timer has been addressed, further decoding is necessary to select which of the I/O registers are desired, as well as the coding of the interval timer.

## I/O Register - Timer Addressing

Figure 8 illustrates the address decoding for the internal elements and timer programming. Address lines A2 distinguishes I/O registers from the timer. When A2 is high and I/O timer select is high, the I/O registers are addressed. Once the I/O registers are addressed, address lines A1 and AO decode the desired register.
When the timer is selected A1 and A0 decode the divide by matrix. This decoding is defined in Figure 8. In addition, Address A3 is used to enable the interrupt flag to PB7.

NMOS

A. $X$ indicates mask programming
i.e. ROM select=CS1 $\bullet$ RSO

RAM select $=\overline{\mathrm{CS} 1} \bullet \overline{\mathrm{RSO}} \cdot \overline{\mathrm{A} 9}$ - A7 • A6
I/O TIMER SELECT $=\overline{\mathrm{CS}} \cdot \overline{\mathrm{RSO}} \bullet \mathrm{A} 9 \bullet \mathrm{~A} 8 \bullet \mathrm{~A} 7 \bullet \mathrm{~A} 6$
B. Notice that $A 8$ is a don't care for

RAM select
C. CS2 can be used as PB5 in this example.

Figure6. 6530 One Chip Address Encoding Diagram

The addressing of the ROM select, RAM select and I/O Timer select lines would be as follows:

		$\begin{aligned} & \text { CS2 } \\ & \text { A12 } \end{aligned}$	$\begin{aligned} & \text { CS1 } \\ & \text { A11 } \end{aligned}$	$\begin{aligned} & \text { RSO } \\ & \text { A10 } \end{aligned}$	A9	A8	A7	A6
6530 \#1,	ROM SELECT	0	0	1	X	X	X	X
	RAM SELECT	0	0	0	0	0	0	0
	I/O TIMER	0	0	0	1	0	0	0
6530 \#2,	ROM SELECT	0	1	0	X	X	X	X
	RAM SELECT	0	0	0	0	0	0	1
	I/O TIMER	0	0	0	1	0	0	1
6530 \#3,	ROM SELECT	0	1	1	X	X	X	X
	RAM SELECT	0	0	0	0	0	1	0
	I/O TIMER	0	0	0	1	0	1	0
6530 \#4,	ROM SELECT	1	0	0	$x$	$x$	$x$	$x$
	RAM SELECT	0	0	0	0	0	1	1
	I/O TIMER	0	0	0	1	0	1	1
6530 \#5,	ROM SELECT	1	0	1	$x$	X	$x$	X
	RAM SELECT	0	0	0	0	1	0	0
	I/O TIMER	0	0	0	1	1	0	0
6530 \#6,	ROM SELECT	1	1	0	X	X	X	X
	RAM SELECT	0	0	0	0	1	0	1
	I/O TIMER	0	0	0	1	1	0	1
6530 \#7.	ROM SELECT	1	1	1	$x$	X	X	X
	RAM SELECT	0	0	0	0	1	1	0
	I/O TIMER	0	0	0	$\dagger$	1	1	0

*RAM select for $6530 \# 5$ would read $=\overline{A 12} \cdot \overline{\mathrm{~A} 11} \cdot \overline{\mathrm{~A} 10} \bullet \overline{\mathrm{~A} 9} \bullet \mathrm{~A} 8 \cdot \overline{\mathrm{~A} 7} \cdot \overline{\mathrm{~A} 6}$

Figure 7. 6530 Seven Chip Addressing Scheme

NWOS

	ROM SELECT	RAM SELECT	I/O TIMER SELECT	R/W	A3	A2	A1	AO
READ ROM	1	0	0	1	$x$	X	$x$	$x$
WRITE RAM	0	1	0	0	$x$	$x$	$x$	$X$
READ RAM	0	1	0	1	$x$	$x$	X	X
WRITE DDRA	0	0	1	0	$x$	0	0	1
READ DDRA	0	0	1	1	$x$	0	0	1
WRITE DDRB	0	0	1	0	$x$	0	1	1
READ DDRB	0	0	1	1	$x$	0	1	1
WRITE PER. REG. A	0	0	1	0	$x$	0	0	0
READ PER. REG. A	0	0	1	1	$x$	0	0	0
WRITE PER. REG. $B$	0	0	1	0	$x$	0	1	0
READ PER. REG. $B$	0	0	1	1	X	0	1	0
WRITE TIMER								
$\div 1 \mathrm{~T}$	0	0	1	0	*	1	0	0
$\div 8 T$	0	0	1	0	*	1	0	1
$\div 64 \mathrm{~T}$	0	0	1	0	*	1	1	0
$\div 1024 \mathrm{~T}$	0	0	$!$	0	*	1	1	1
READ TIMER	0	$\bigcirc$	1	1	*	1	$x$	0
READ INTERRUPT FLAG	0	0	1	1	$\times$	1	$x$	1

${ }^{*} A_{3}=1$ Enables $I R Q$ to $P B 7$
$A_{3}=O$ Disables $1 R Q$ to PB7
Figure 8. Addressing Decode for I/O Register and Timer


## 6532 (MEMORY, IIO, TIMER ARRAY)

## THE 6532 CONCEPT-

The 6532 is designed to operate in conjunction with the MCS650X Microprocessor Family. It is comprised of a $128 \times 8$ static RAM, two software controlied 8 bit bi-directional data ports allowing direct interfacing between the microprocessor unit and peripheral devices, a software programmable interval timer with interrupt capable of timing in various intervals from 1 to 262,144 clock periods, and a programmable edge detect circuit.

## FEATURES OF THE 6532

- 8 bit bi-directional Data Bus for direct communication with the microprocessor
- Programmable edge-sensitive interrupt
- $128 \times 8$ static RAM
- Two 8 bit bi-directional data ports for interface to peripherals
- Two programmable I/O Peripheral Data Direction Registers
- Programmable Interval Timer
- Programmable Interval Timer Interrupt
- TTL \& CMOS compatible peripheral lines
- Peripheral pins with Direct Transistor Drive Capability

ORDERING INFORMATION


- High Impedance Three-State Data Pins - $1 \mathrm{MHz}, 2 \mathrm{MHz}$ and 3 MHz operation


## BLOCK DIAGRAM



## MAXIMUM RATINGS

RATING	SYMBOL	VOLTAGE	UNIT
Supply Voltage	VCC	-.3 to +7.0	V
Input/Output Voltage	VIN	-.3 to +7.0	V
Operating Temperature Range	TOP	0 to 70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	TSTG	-55 to +150	${ }^{\circ} \mathrm{C}$

All inputs contain protection circuitry to prevent damage due to high static charges. Care should be exercised to prevent unnecessary application of voltage outside the specified range.

ELECTRICAL CHARACTERISTICS (VCC $=5.0 \mathrm{~V} \pm 5 \%, V S S=O V, T_{A}=0.70^{\circ} \mathrm{C}$ )

CHARACTEPISTIC	SYMBOL	MIN.	TYP.	MAX	UNIT
Input High Voltage	$V_{\text {IH }}$	$V_{S S}+2.4$	1.3	VCC	v
Input Low Voltage	$V_{\text {IL }}$	$\mathbf{V S S}_{\text {S }} \mathbf{3}$	1.1	$V_{S S}+.8$	V
Input Leakage Current; $V_{\mathbb{N}}=V_{S S}+5 v$ AO-AB, RS, RWW, RES, ©2, CS1, CS2	IN	-	1.0	2.5	$\mu \mathrm{A}$
Input Leakage Current for High Impedance State (Three State); $V_{\mathbb{N}}=.4 \mathrm{v}$ to $2.4 \mathrm{v}, \mathrm{DO}-\mathrm{D7}$	'TSI	-	$\pm 1.0$	$\pm 10.0$	$\mu \mathrm{A}$
Input High Current; $V_{I N}=2.4 \mathrm{~V}$ PAO-PAT, PGO-PB7	I/H	- 100.	-300.	-	$\mu \mathrm{A}$
Input Low Current; $V_{I N}=.4 v$ PAO-PAT, PBO-PB7	IL	-	- 1.0	- 1.6	mA
Output High Voltage $V C C=M I N, I L O A D \leq-100 \mu A(P A O-P A 7, P B O-P B 7, D O-D 7$	VOH	VSS + 2.4	3.5	VCC	V
Output Low Voltege $V C C=M I N, I L O A D \leq 1.6 \mathrm{MA}$	VOL	VSS	. 2	VSS + . 4	V
Output High Current (Sourcing): $\mathrm{VOH} \geq 2.4 \mathrm{~V}$ (PAO-PA7, PBO-PB7, DO.D7)	$\mathrm{IOH}$	-100	- 1000	-	$\mu \mathrm{A}$
Output Low Current (Sinking); VOL $\leq .4 \mathrm{~V}$ (PAO-PA7) (PBO-PB7)	IOL	1.6	3.0	--	mA
Clock Input Capacitance	${ }^{\text {clk }}$	-	18	30	pf
Input Capacitance	$\mathrm{CIN}_{1}$	-	7	10	pt
Output Capacitance	Cout	-	7	10	pf
Power Diasipation	PD	-	500	1000	mW

## WRITE TIMING CHARACTERISTICS



READ TIMING CHARACTERISTICS


NMOS

WRITE TIMING CHARACTERISTICS

CHARACTERISTIC	SYMBOL	1 MHz		$\mathbf{2 M H z}$		3MHz		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	
Clock Period	TCYC	1	20	. 5	10	0.33	10	$\mu \mathrm{S}$
Rise \& Fall Times	TR, TF	-	25	-	25	-	25	nS
Clock Pulse Width	TC	. 470	10	. 235	5	0.160	5	$\mu \mathrm{S}$
R/W valid before positive transition of clock	TwCW	180	-	90	-	60	-	nS
Address valid before positive transition of clock	TACW	180	-	90	-	60	-	nS
Data Bus valid before negative transition of clock	TDCW	300	-	150	-	100	-	nS
Data Bus Hold Time	THW	10	-	10	-	10	-	nS
Peripheral data valid after negative transition of clock	TCPW	-	1	-	. 500	-	. 333	$\mu \mathrm{S}$
Peripheral data valid after negative transition of clock driving CMOS (Level=VCC-30\%)	TCMOS	-	2	-	1	-	. 666	$\mu S$

READ TIMING CHARACTERISTICS

CHARACTERISTIC	SYMBOL	1 MHz		2MHz		3MHz		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	
R/W valid before positive transition of clock	TWCR	180	-	90	-	60	-	nS
Address valid before positive transition of clock	TACR	180	-	90	-	60	-	nS
Peripheral data valid before positive transition of clock	TPCR	300	-	150	-	100	-	nS
Data Bus valid after positive transition of clock	TCDR	-	400	-	200	-	135	nS
Data Bus Hold Time	THR	10	-	10	-	10	-	nS
$\overline{\mathrm{IRQ}}$ valid before positive transition of clock	TIC	200	-	100	-	75	-	nS

Loading $=30 \mathrm{pf}+1 \mathrm{TTL}$ load

## INTERNAL ORGANIZATION

A block diagram of the internal architecture is shown in Figure 1. The 6532 is divided into four basic sections, RAM, IIO, TIMER, and Interrupt Control. The RAM interfaces directly with the microprocessor through the system data bus and address lines. The I/O section consists of two 8 -bit halves. Each half contains a Data Direction Register (DDR) and an I/O Register.

## RAM-128 Bytes (1024 Blis)

The $128 \times 8$ Read/Write memory acts as a conventional static RAM. Data can be written into the RAM from the microprocessor by selecting the chip ( $C S 1=1, \mathrm{CS2}=0$ ) and by setting RS to a logic $0(0.4 \mathrm{v})$. Address lines AO through A6 are then used to select the desired byte of storage.

## Intemal Peripheral Registers

The Peripheral A IIO port consists of eight lines which can be individually programmed to act as either an input or an output. A logic zero in a bit of the Data Direction Register (DDRA) causes the corresponding line of the PA port to act as an input. A logic one causes the corresponding PA line to act as an output. The voltage on any line programmed to be an output is determined by the corresponding bit in the Output Register (ORA).

Data is read directly from the PA pins during any read operation. For any output pin, the data transferred into the processor will be the same as that contained in the Output Register if the voltage on the pin is allowed to go to 2.4 v for a logic one. Note that for input lines, the processor can write into the corresponding bit of the Output Register. This will not affect the polarity on the pin until the corresponding bit of DDRA is set to a logic one to allow the peripheral pin to act as an output.

In addition to acting as a peripheral IIO line, the PA7 line can be used as an edge-detecting input. In this mode, an active transition will set the internal interrupt flag (bit 6 of the Interrupt Flag register). Setting the interrupt flag will cause IRQ output to go low if the PA7 interrupt has been enabled. The PA7 line should be set up as an input for this mode.

Control of the PA7 edge detecting mode is accomplished by writing to one of four addresses. In this operation, A0 controls the polarity of the active transition and A1 acts to enable or disable interrupting of the processor. The data which is placed on the Data Bus during this operation is discarded and has no effect on the control of PA7.

Setting of the PA7 interrupt flag will occur on an active transition even if the pin is being used as a normal input or as a peripheral control output. The flag will also be set by an active transition if interrupting from PA7 is disabled. The reset signal (RES) will disable the PA7 interrupt and will set the active transition to negative (high to low). During the system initialization routine, it is possible to set the interrupt flag by a negative transition. It may also be set by changing the polarity of the active interrupt. It is therefore recommended that the interrupt flag be cleared before enabiling interrupting from PA7.

Clearing of the PA7 Interrupt Flag occurs when the microprocessor reads the Interrupt Flag Register.
The operation of the Peripheral B input/Output port is exactly the same as the normal I/O operation of the Peripheral A port. The eight lines can each be programmed to act as either an input or as an output by placing a 0 or a 1 into the Data Direction register (DDRB). In the output mode, the voltage on a peripheral pin is controlled by the Output Register (ORB).

The primary difference between the PA and the PB ports is in the operation of the output buffers which drive these pins. The buffers are push-pull devices which are capable of sourcing 3 ma at 1.5 v . This allows these pins to directly drive transistor switches. To assure that the microprocessor will read proper data on a "Read PB" operation, sufficient logic is provided in the chip to allow the microprocessor to read the Output Register instead of reading the peripheral pin as on the PA port.

## INTERFACE SIGNAL DESCRIPTION

## Reset (RES)

During system initialization a logic " 0 " on the RES input will cause a zeroing of all four I/O registers. This in turn will cause all I/O buses to act as inputs thus protecting external components from possible damage and erroneous data while the system is being configured under software control. The Data Bus Buffers are put into an OFFSTATE during Reset. Interrupt capability is disabled with the RES signal. The RES signal must be held low for at least one clock period when reset is required.

## Input Clock

The input clock is a system Phase Two clock which can be either a low level clock ( $\mathrm{V}_{\mathrm{IL}}<0.4, \mathrm{~V}_{\text {IL }}>\mathbf{2 . 4}$ ) or high level clock $V_{\mathrm{IL}}<0.2, \mathrm{~V}_{\mathrm{IH}}=\mathrm{Vcc}_{-.}^{+.2}$ )

## Read/Write (R/W)

The RNW signal is supplied by the microprocessor array and is used to control the transfer of data to and from the microprocessor array and the 6532. A high on the RW pin allows the processor to read (with proper addressing) the data supplied by the 6532. A low on the RW pin allows a write (with proper addressing) to the 6532.

## Interrupt Request (IRQ)

The IRQ pin is an interrupt pin from the interrupt control logic. The pin will be normally high with a low indicating an interrupt from the 6532. An external pull-up device is required. The IRQ pin may be activated by a transition on PA7 or timeout of the interval timer.

## Data Bus (DO-D7)

The 6532 has eight bi-directional data pins (DO-D7). These pins connect to the system's data lines and allow transfer of data to and from the microprocessor array. The output buffers remain in the off state except when a Read operation occurs and are capable of driving one standard TTL load and 130 pf.

## Peripheral Data Ports

The 6532 has 16 pins available for peripheral I/O operations. Each pin is individually software programmable to act as either an input or an output. The 16 pins are divided into 28 -bit ports, PAO-PA7 and PBO-PB7. PA7 also has other uses which are discussed in later sections. The pins are set as inputs by writing a " 0 " into the corresponding bit of the data direction register. $A$ " 1 " into the data direction register will cause the corresponding pin to be an output. When in the input mode, the peripheral output buffers are in the " 1 " state and pull-up device acts as less than one TTL load to the peripheral data lines. On a Read operation, the microprocessor unit reads the peripheral pin. When the peripheral device gets information from the 6532 it receives data stored in the data register. The microprocessor will read correct information if the peripheral lines are greater than 2.0 volts for a " 1 " and less than 0.8 volts for a " 0 " as the peripheral pins are all TTL compatible. Pins PB0-PB7 are also capable of sourcing 3 ma at 1.5 v , thus making them capable of Darlington drive.

## Address Lines (AO-A6)

There are 7 address pins. In addition to these 7 , there is a RAM SELECT pin. These pins, AO-A6 and RAM SELECT, are always used as addressing pins. There are two additional pins which are used as CHIP SELECTS. They are pins CS1 and CS2.

## Interval Timer

The TImer section of the 6532 contains three basic parts: preliminary divide down register, programmable 8-bit register and interrupt logic.

Figure 2. BASIC ELEMENTS OF INTERVAL TIMER


The interval time can be programmed to count up to 255 time intervals. Each time interval can be either 1T, 8T, 64T or 1024T increments, where $T$ is the system clock period. When a full count is reached, an interrupt flag is set to a logic " 1 ". After the interrupt flag is set the internal clock begins counting down to a maximum of -255 T. Thus, after the interrupt flag is set, a Read of the timer will tell how long since the flag was set up to a maximum of 255T.

The 8 bit system Data Bus is used to transfer data to and from the Interval Timer. If a count of 52 time intervals were to be counted, the pattern 00110100 would be put on the Data Bus and written into the interval Time register.

At the same time that data is being written to the Interval Timer, the counting intervals of $1,8,64,1024 \mathrm{~T}$ are decoded from address lines A0 and A1. During a Read or Write operation address line A3 controls the interrupt capability; i.e., $A_{3}=1$ enables $\overline{\mathrm{RQQ}}, A_{3}=0$ disables $\overline{\mathrm{RQ}}$. When the timer is read prior to the interrupt flag being set, the number of time intervals remaining will be read, l.e., $51,50,49$, etc.

When the timer has counted thru 00000000 on the next count time an interrupt will occur and the counter will read 11111111 . After interrupt, the timer register decrements at a divide by " 1 " rate of the system clock. If after interrupt, the timer is read and a value of 11100100 is read, the time since interrupt is $27 T$. The value read is in two's complement, but remember that interrupt occurred on count number. Therefore, we must subtract 1.

```
Value read = 11100100
Complement = 00011011
ADD 1 = 00011100=28 Equals two's complement of register
SUB1 = 00011011=27
```

Thus, to arrive at the total elapsed time, merely do a two's complement add to the original time written into the timer. Again, assume time written as $00110100(=52)$. With a divide by 8 , total time to interrupt is $(52 \times 8)+1=$ 417T. Total elapsed time would be 416T $+28 \mathrm{~T}=444 \mathrm{~T}$, assuming the value read after interrupt was 11100100.

After the interrupt, whenever the timer is written or read the interrupt is reset. However, the reading of the timer at the same time the interrupt occurs will not reset the interrupt flag. When the interrupt flags are read (DB7 for the timer, DB6 for edge detect) data bus lines DO-D5 go to 0.

Figure 3. TIMER INTERRUPT TIMING

warte $T$


6

1. Data written into interval timers is $00110100=52_{10}$
2. Data in Interval timer is $00011001=25_{1}$

$$
52-{ }_{8}^{213}-1=52-26-1=25
$$

3. Data in Interval timer is $00000000=0$ 10

$$
52-\frac{415}{8}-1=52-51-1=0
$$

4. Interrupt has occurred at 02 pulse \#416

Data in Interval timer $=11111111$
5. Data in Interval timer is 10101100
two's complement is $01010100=84_{10}$

$$
84+(52 \times 8)=500_{10}
$$

When reading the timer after an interrupt, A3 should be low so as to disable the $\overline{\mathbb{R} Q}$ pin. This is done so as to avoid future interrupts until after another Write operation.

## Intermupt Flag Register

The Interrupt Flag Register consists of two bits: the timer interrupt flag and the PA7 interrupt flag. When a read operation is performed on the Interrupt Flag Register, the bits are transferred to the processor on the data bus, as the diagram below, Indicates.

Figure 4. INTERRUPT FLAG REGISTER


The PA7 flag is cleared when the Interrupt Flag Register is read. The timer flag is cleared when the timer register is either written or read.

## ADDRESSING

Addessing of the 6532 is accomplished by the 7 addressing pins, the $\overline{R S}$ pin and the two chip select pins CS1 and CS2. To address the RAM, CS1 must be high with CS2 and RS low. To address the I/O and Interval timer CS1 and RS must be high with CS2 low. As can be seen to access the chip CS1 is high and CS2 is low. To distinguish between RAM or I/O Timer the RS pin is used. When this pin is low the RAM is addressed, when high the I/O Interval timer section is addressed. To distinguish between timer and I/O address line A2 is utilized. When A2 is high the interval timer is accessed. When A2 is low the I/O section is addressed. Table 1 illustrates the chip addressing.

## Edge Sense Interrupt

In addition to its use as a peripheral I/O line, the PA7 pin can function as an edge sensitive input. In this mode, an active transition on PA7 will set the internal interrupt flag (bit 6 of the Interrupt Flag Register). When this occurs, and providing the PA7 interrupt is enabled, the IRQ output will go low.

Control of the PA7 edge detecting logic is accomplished by performing a write operation for one of four addresses. The data lines for this operation are "don't care" and the addresses to be used are found in Figure 4.

The setting of the internal interrupt flag by an active transition on PA7 is always enabled, no matter whether PA7 is set up as an input or an output.

The RES signal disables the PA7 Interrupt and sets the active transition to the negative edge-detect state. During the reset operation, the interrupt flag may be set by a negative transition. It may, therefore, be necessary to clear the flag before its normal use as an edge detecting input is enabled. This can be achieved by reading the Interrupt Flag Register, as defined by Figure 4 immediately after reset.

## VO Register-Timer Addressing

Table 1 illustrates the address decoding for the internal elements and timer programming. Address line A2 distinguishes I/O registers from the timer. When A2 is low and $\overline{\mathrm{RS}}$ is high, the I/O registers are addressed. Once the I/O registers are addressed, address lines A1 and AO decode the desired register.

When the timer is selected A1 and A0 decode the "divide-by" matrix. This decoding is defined in Table 1. In addition, Address A3 is used to enable the interrupt flag to IRQ.

Table 1: ADDRESSING DECODE

OPERATION	Fis	RW	A 4	A3	A2	A1	A0
Write RAM	0	0	-	-	-	-	-
Read RAM	0	1	-	-	-	-	-
Write DDRA	1	0	-	-	0	0	1
Paed DDRA	1	1	-	-	0	0	1
Write DORB	1	0	-	-	0	1	1
Read DDRB	1	1	-	-	0	1	1
Write Output Reg A	1	0	-	-	0	0	0
Peed Output Reg A	1	1	-	-	0	0	0
Write Output Reg B	1	0	-	$\cdots$	0	1	0
Reed Output Reg 8	1	1	-	-	0	1	0
Write Timer							
+1T	1	0	1	(a)	1	0	0
+8T	1	0	1	(a)	1	0	1
+64T	1	0	1	(a)	1	1	0
+1024T	1	0	1	(a)	1	1	1
Road Tirner	1	1	-	(a)	1	-	0
Pead Interrupt Flag(s)	1	1	-	-	1	-	1
Write Edge Detect Control	1	0	0	-	1	(b)	(c)

NOTES:- = Don't Care, "1" $=$ High level ( $>2.4 \mathrm{~V}$ )," 0 " = Low level ( $<0.4 \mathrm{~V}$ )
(a) $\mathbf{A 3}=\mathbf{0}$ to disable interrupt from timer to IFO
$A 3=1$ to enable interrupt from timer to IRO
b) $A 1=0$ to disable interrupt from PA7 to IRO
$A 1=1$ to enable Interrupt from PA7 to IRO
(c) $A O=0$ for negative edge-detect
$A 0=1$ for positive edge-detect

COMMODORE SEMICONDUCTOR GROUP reserves the right to make changes to any products herein to improve reliability, function or design. COMMODORE SEMICONDUCTOR GROUP does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.

## 6545-1 CRT Controller (CRTC)

## CONCEPT

The 6545-1 is a CRT Controller intended to provide capability for interfacing the 6500/6800 microprocessor families to CRT or TV-type raster scan displays. A unique feature is the inclusion of several modes of operation, so that the system designer can configure the system with a wide assortment of techniques.

## FEATURES:

- Single +5 volt ( $\pm 5 \%$ ) power supply.
- Alphanumeric and limited graphics capabilities.
- Fully programmable display (rows, columns, blanking, etc.).
- Non-interlaced scan.
- $50 / 60 \mathrm{~Hz}$ operation.
- Fully programmable cursor.
- External light pen capability.
- Capable of addressing up to 16 K character video display RAM.
- No DMA required.
- Pin-compatible with MC6845.
- Row/Column or straight-binary addressing for video display RAM.
- Internal 8-bit status register.

ORDERING INFORMATION


6545-1 PIN DESIGNATION

GND $\quad 1$	40	VsYnc
RES $=2$	39	HSYNC
LPEN = 3	38	Rao
CCOMAO - 4	37	ح Ra1
CC1/MA1 - 5	36	Ra2
CC2/MA2 - 6	35	R Ra3
CC3/MA3 - 7	34	R RA4
CC4/MA4 $=8$	33	C DBo
CC5/MA5 - 9	32	DB1
CC6/MA6 - 10	31	- DB2
CC7/MAT - 11	30	- DB3
CRO/MA8 - 12	29	- D84
CR1/MA9 - 13	28	D DB5
CR2/MA10 - 14	27	- DB6
CR3/MA11 - 15	26	- DB7
CR4/MA12 - 16	25	$\overline{\text { CS }}$
CR5/mat3 - 17	24	RS
display enable 18	23	¢2
CURSOR - 19	22	$\mathrm{R} / \overline{\mathrm{w}}$
$v_{\text {CC }}=20$	21	CCLK

## MAXIMUM RATINGS

Supply Voltage, $\mathrm{V}_{\mathrm{CC}}$ Input/Output Voltage, VIN Operating Temperature, TOP Storage Temperature, TSTG

$$
-0.3 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
$$

$$
-0.3 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
$$

$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

Allinputs contain protection circuitryto prevent damage due to high static discharges. Care should be exercised to prevent unnecessary application of voltages in excess of the allowable limits.

## COMMENT

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of this device at these or any other conditions above those indicated in the operational sections of this specification is not implied and exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS $N C C=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Characteristic	Min.	Max.	Unit
$V_{\text {IH }}$	Input High Voltage	2.0	$V_{C C}$	V
$V_{\text {IL }}$	Input Low Voltage	-0.3	0.8	V
IIN	Input Leakage ( $\varnothing 2, \mathrm{R} / \overline{\mathrm{w}}, \overline{\mathrm{RES}}, \overline{\mathrm{CS}}, \mathrm{RS}$, LPEN, CCLK)	-	2.5	$\mu A$
ITSI	Three-State Input Leakage (DB0-DB7) $V_{I N}=0.4 \text { to } 2.4 \mathrm{~V}$	-	10.0	$\mu \mathrm{A}$
VOH	Output High Voltage   LIOAD $=205 \mu$ A (DB0-DB7)   ILOAD $=100 \mu \mathrm{~A}$ (all others)	2.4	$\mathrm{V}_{\mathrm{CC}}$	V
VOL	Output Low Voltage $I_{L O A D}=1.6 \mathrm{~mA}$	VSS	0.4	v
PD	Power Dissipation	-	1000	mW
CIN	Input Capacitance $\phi 2, R / \bar{W}, \overline{R E S}, \overline{C S}, R S$, LPEN, CCLK DB0-DB7	-	$\begin{aligned} & 10.0 \\ & 12.5 \end{aligned}$	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$
COUT	Output Capacitance	-	10.0	pF

## INTERFACE DIAGRAM

MPU 1/F


NNOS

## MPU BUS INTERFACE CHARACTERISTICS

## write cycle



## WRITE TIMING CHARACTERISTICS

(VCC $=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Characteristic	6545-1		6545A-1		Unit
		Min.	Max.	Min.	Max.	
${ }^{\text {t Cry }}$	Cycle Time	1.0	40	0.5	40	$\mu s$
${ }^{\text {t }} \mathrm{C}$	$\phi 2$ Pulse Width	470	-	235	-	ns
tacw	Address Set-Up Time	180	-	90	-	ns
${ }^{\text {t }}$ CAH	Address Hold Time	0	-	0	-	ns
twCW	R/ $\bar{W}$ Set-Up Time	180	-	90	-	ns
${ }^{\text {t CWH }}$	R/ $\bar{W}$ Hold Time	0	-	0	-	ns
tDCW	Data Bus Set-Up Time	265	-	100	-	ns
thw	Data Bus Hold Time	10	-	10	-	ns

( $\mathrm{t}_{\mathrm{r}}$ and $\mathrm{tf}_{\mathrm{f}}=10$ to 30 ns )

## MPU BUS INTERFACE CHARACTERISTICS



## READ TIMING CHARACTERISTICS

$V_{C C}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Characteristic	6545-1		6545A-1		Unit
		Min.	Max.	Min.	Max.	
tCyc	Cycle Time	1.0	40	0.5	40	$\mu \mathrm{S}$
tc	ø2 Pulse Width	470	-	235	-	ns
tAGR	Address Set-Up Time	180	-	90	-	ns
tCAR	Address Hold Time	0	-	0	-	ns
tWCR	R/w Set-Up Time	180	-	90	-	ns
t CDR	Read Access Time	-	340	-	150	ns
thR	Read Hold Time	10	-	10	-	ns
tcDA	Data Bus Active Time (Invalid Data)	40	-	40	-	ns

( $\mathrm{tr}_{\mathrm{r}}$ and $\mathrm{t}_{\mathrm{f}}=10$ to 30 ns )

## MEMORY AND VIDEO INTERFACE CHARACTERISTICS

NCC $=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}$, unless otherwise noted)


SYSTEM TIMING PARAMETERS $\left(\mathrm{VCC}=5.0 \mathrm{~V}+5 \%, \mathrm{~T}_{\mathrm{A}}=0\right.$ to $70^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Characteristics	6545-1		6545A-1		Unit
		Min.	Max.	Min.	Max.	
${ }^{\text {t CCY }}$	Charácter Clock Cycle Time	0.40	40	0.40	40	$\mu \mathrm{s}$
$\mathrm{tCCH}^{\text {che }}$	Character Clock Pulse Width	200	-	200	-	ns
tMAD	MAO-MA13 Propagation Delay	-	300	-	300	ns
trad	RAO-RA4 Propagation Delay	-	300	-	300	ns
tDTD	DISPLAY ENABLE Propagation Delay	-	375	-	375	ns
tHSD	HSYNC Propagation Delay	-	375	-	375	ns
IVSD	VSYNC Propagation Delay	-	375	-	375	ns
t ${ }^{\text {c }}$	CURSOR Propagation Delay	-	375	-	375	ns
tLPH	LPEN Hold Time	100	-	100	-	ns
tLP1	LPEN Set-up Time	20	-	20	-	ns
tLP2	CCLK to LPEN Delay	0	-	0	-	ns

$t_{r}, t_{f}=20 \mathrm{~ns}$ (max)
LIGHT PEN STROBE TIMING DEFINITIONS


NOTE: "Safe" time position for LPEN positive edge to cause address $n+2$ to load into Light Pen Register. tLP2 and ILP1 are time positions causing uncertain results.

## MPU INTERFACE SIGNAL DESCRIPTION

## \$2 (Clock)

The input clock is the system $\varnothing 2$ clock and is used to trigger all data transfers between the system microprocessor and the 6545-1.

## R/w (Read/Write)

The $R / \bar{w}$ signal is generated by the microprocessor and is used to control the direction of data transfers. A high on the $\mathrm{R} / \mathrm{w}$ pin allows the processor to read the data supplied by the 6545-1; a low on the $R / \bar{w}$ pin allows a write to the $6545-1$.

## $\overline{\mathbf{c s}}$ (Chip Select)

The Chip Select input is normally connected to the processor address bus either directly or through a decoder. The $6545-1$ is selected when $\overline{\mathrm{CS}}$ is low.

## RS (Register Select)

The Register Select input is used to access internal registers. A low on this pin permits writes into the Address Register and reads from the Status Register. The contents of the Address Register is the identity of the register accessed when RS is high.

## $\mathrm{DBO}_{0}-\mathrm{DB}_{7}$ (Data Bus)

The $\mathrm{DB}_{0}-\mathrm{DB}_{7}$ pins are the eight data lines used for transfer of data between the processor and the 6545-1. These lines are bi-directional and are normally high-impedance except during read cycles when the chip is selected.

## VIDEO INTERFACE SIGNAL DESCRIPTION

## HSYNC (Horizontal Sync)

The HSYNC signal is an active-high output used to determine the horizontal position of displayed text. It may drive a CRT monitor directly or may be used for composite video generation. HSYNC time position and width are fully programmable.

## VSYNC (Vertical Sync)

The VSYNC signal is an active-high output used to determine the vertical position of displayed text. Like HSYNC, VSYNC may be used to drive a CRT monitor or composite video generation circuits. VSYNC position and width are both fully programmable.

## DISPLAY ENABLE

The DISPLAY ENABLE signal is an active-high output and is used to indicate when the 6545-1 is generating active display information. The number of horizontal displayed characters and the number of vertical displayed characters are both fully programmable and together are used to generate the DISPLAY ENABLE signal. Display Enable can be delayed by one character time by setting bit 4 of R8 to a "1".

## CURSOR

The CURSOR signal is an active-high output and is used to indicate when the scan coincides with the programmed cursor position. The cursor position may be programmed to be any character in the address field. Furthermore, within the character, the cursor may be programmed to be anyblock of scan lines, since the start scan line and the end scan line are both programmable. The CURSOR position may be delayed by one character time by setting bit 5 of R8 to a " 1 ."

## LPEN

The LPEN signal is an edge-sensitive input and is used to load the internal Light Pen Register with the contents of the Refresh Scan Counter at the time the active edge occurs. The active edge of LPEN is the low-to-high transition.

## CCLK

The CCLK signal is the character timing clock input and is used as the time base for all internal count/control functions.

## $\overline{\text { RES }}$

The $\overline{R E S}$ signal is an active-low input used to initialize all internal scan counter circuits. When RES is low, all internal counters are stopped and cleared, all scan and video outputs are low, and control registers are unaffected. RES must stay low for at least one CCLK period. All scan timing is initiated when $\overline{\text { RES }}$ goes high. In this way, $\overline{\mathrm{RES}}$ can be used to synchronize display frame timing with line frequency.

## MEMORY ADDRESS SIGNAL DESCRIPTION

## MAO-MA13 (Refresh RAM Address Lines)

These signals are active-high outputs and are used to address the Refresh RAM for character storage and display operations. The starting scan address is fully programmable and the ending scan address is determined by the total number of characters displayed, which is also programmable, in terms of characters/line and lines/frame.
There are two selectable address modes for MA0-MA13:
In the straight binary mode, characters are stored in successive memory locations. Thus, the software must be designed so that row and column character co-ordinates are translated into sequentially-numbered addresses. In the row/column mode MAO-MA7 become column addresses CCO-CC7 and MA8-MA13 become row addresses CROCRT5. In this case, the software can manipulate characters in terms of row and column locations, but additional address compression circuits are needed to convert the CCO-CC7 and CRO-CR5 addresses into a memory efficient binary address scheme.

## RAO-RA4 (Raster Address LInes)

These signals are active-high outputs and are used to select each raster scan within an individual character row. The number of raster scan lines is programmable and determines the character height, including spaces between character rows.

NWOS

## DESCRIPTION OF INTERNAL REGISTERS

Figure 1 illustrates the format of a typical video display and is necessary to understand the functions of the various 6545-1 internal registers. Figure 2 illustrates vertical and horizontal timing. Figure 3 summarizes the internal registers and indicates their address selection and read/write capabilities.

## Address Reglster

This is a 5-bit register which is used as a "pointer" to direct 6545-1 data transfers to and from the system MPU. Its contents is the number of the desired register ( $0-31$ ). When RS is low, then this register may be loaded; when RS is high, then the register selected is the one whose identity is stored in this register.

## Status Register

This register is used to monitor the status of the CRTC, as follows:


## Horizontal Total (RO)

This 8-bit register contains the total of displayed and non-displayed characters, minus one, per horizontal line. The frequency of HSYNC is thus determined by this register.

## Horizontal Displayed (R1)

This 8 -bit register contains the number of displayed characters per horizontal line.

## Horizontal Sync Position (R2)

This 8-bit register contains the position of the HSYNC on the horizontal line, in terms of the character location number on the line. The position of the HSYNC determines the left-to-right location of the displayed text on the video screen. In this way, the side margins are adjusted.


Figure 1. Video Display Format


## Horizontal and Vertical SYNC Widths (R3)

This 8-bit register contains the widths of both HSYNC and VSYNC, as follows:

*IF BITS $4 \sim 7$ ARE ALL " $O$ ", THEN VSYNC WILL BE 16 SCAN LINES WIDE

Control of these parameters allows the 6545-1 to be interfaced to a variety of CRT monitors, since the HSYNC and VSYNC timing signals may be accommodated without the use of external one-shot timing.

## Vertical Total (R4)

The Vertical Total Register is a 7-bit register containing the total number of character rows in a frame, minus one. This register, along with R5, determines the overall frame rate, which should be close to the line frequency to ensure flicker-free appearance. If the frame time is adjusted to be longer than the period of the line frequency, then $\overline{\text { RES }}$ may be used to provide absolute synchronism.


Notes - Designates binary bit
$X$ Designates unusued bit. Reading this bit is always " $O$ ", except for R31, which does not drive the data bus at all, and for CS "1" which operates likewise.

Figure 3. Internal Register Summary

## Vertical Total Adjust (R5)

The Vertical Total Adjust Register is a 5 -bit write only register containing the number of additional scan lines needed to complete an entire frame scan and is intended as a fine adjustment for the video frame time.

## Vertical Displayed (R6)

This 7-bit register contains the number of displayed character rows in each frame. In this way, the vertical size of the displayed text is determined.

## Vertical Sync Position (R7)

This 7-bit register is used to select the character row time at which the VSYNC pulse is desired to occur and, thus, is used to position the displayed text in the vertical direction.

## Mode Control (R8)

This register is used to select the operating modes of the $6545-1$ and is outlined as follows:


## Scan Line (R9)

This 5-bit register contains the number of scan lines per character row, including spacing.

## Cursor Start (R10) and Cursor End (R11)

These 5 -bit registers select the starting and ending scan lines for the cursor. In addition, bits 5 and 6 of R10 are used to select the cursor mode, as follows:

BIT		CURSOR MODE
6	5	
0	0	No Blinking   0
1	0	No Cursor   1
	1	Blink at $1 / 16$ field rate
1	Blink at $1 / 32$ field rate	

Note that the ability to program both the start and end scan line for the cursor enables either block cursor or underline to be accommodated. Registers R14 and R15 are used to control the character position of the cursor over the entire 16 K address field.

## Display Start Address High (R12) and Low (R13)

These registers together comprise a 14 -bit register whose contents is the memory address of the first character of the displayed scan (the character on the top left of the video display, as in Figure 1). Subsequent memory addresses are generated by the $6545-1$ as a result of CCLK input pulses. Scrolling of the display is accomplished by changing R12 and R13 to the memory address associated with the first character of the desired line of text to be displayed first. Entire pages of text may be scrolled or changed as well via R12 and R13.

## Cursor Position High (R14) and Low (R15)

These registers together comprise a 14 -bit register whose contents is the memory address of the current cursor position. When the video display scan counter (MA lines) matches the contents of this register, and when the scan line counter (RA lines) falls within the bounds set by R10 and R11, then the CURSOR output becomes active. Bit 5 of the Mode Control Register (R8) may be used to delay the CURSOR output by a full CCLK time to accommodate slow access memories.

## LPEN High (R16) and Low (R17)

These registers together comprise a 14 -bit register whose contents is the light pen strobe position, in terms of the video display address at which the strobe occurred. When the LPEN input changes from low to high, then, on the next negative-going edge of CCLK, the contents of the internal scan counter is stored in registers R16 and R17.

## DETAILED DESCRIPTION OF OPERATION

## Register Formats

Register pairs R12/R13, R14/R15, and R16/R17 are formatted in one of two ways:

1. Straight binary if register R8, bit 2 is a " 0 ".
2. Row/Column if register R8, bit 2 is a " 1 ". In this case the low byte is the Character Column and the high byte is the Character Row.

Figure 4 illustrates the address sequence for the video display control for each mode.
Note from Figure 4 that the straight-binary mode has the advantage that all display memory addresses are stored in a continuous memory block, starting with address 0 and ending at 1919. The disadvantage with this method is that, if it is desired to change a displayed character location, the row and column identity of the location must be converted to its binary address before the memory may be written. The row/column mode, on the other hand, does not need to undergo this conversion. However, memory is not used as efficiently, since the memory addresses are not continuous, but gaps exist. This requires that the system be equipped with more memory than is actually used and this extra memory is wasted. Alternatively, address compression logic may be employed to translate the row/column format into a continuous address block.

In this way, the user may select whichever mode is best for the given application. The trade-offs between the modes are software versus hardware. Straight-binary mode minimizes hardware requirements and row/column requires minimum software.

## Memory Contention Schemes for Memory Addressing

From the diagram of Figure 4, it is clear that both the 6545-1 and the system MPU must be capable of addressing the video display memory. The 6545-1 repetitively fetches character information to generate the video signals in order to keep the screen display active. The MPU occasionally accesses the memory to change the displayed information or to read out current data characters. Three ways of resolving this dual-contention requirements are apparent:

- MPU Priority

In this technique, the address lines to the video display memory are normally driven by the 6545-1 unless the MPU needs access, in which case the MPU addresses immediately override those from the 6545-1 and the MPU has immediate access.

- $\phi 1 / \phi 2$ Memory Interleaving

This method permits both the 6545-1 and the MPU access to the video display memory by time-sharing via the system 01 and $\varnothing 2$ clocks. During the $\varnothing 1$ portion of each cycle (the time when $\varnothing 2$ is low), the 6545-1 address


STRAIGHT BINARY ADDRESSING SEQUENCE


ROW/COLUMN ADDRESSING SEQUENCE

Figure 4. Display Address Sequences (with Start Address $=0$ ) for $80 \times 24$ Example


Figure 5. Typical System Configuration
cMOS
outputs are gated to the video display memory. In the $\varnothing 2$ time, the MPU address lines are switched in. In this way, both the 6545-1 and the MPU have unimpeded access to the memory. Figure 6 illustrates the timings.

## Cursor and Dlsplay Enable Skew Control

Bits 4 and 5 of the Mode Control register (R8) are used to delay the Display Enable and Cursor outputs, respectively. Figure 7 illustrates the effect of the delays.


Figure 7. Cursor and Display Enable Skew


Figure 8. Operation of Vertical Blanking Status Bit

Commodore Semiconductor Group reserves the right to make changes to any products herein to improve reliability, function or design. Commodore Semiconductor Group does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.

## 6551 ASYNCHRONOUS COMMUNICATION INTERFACE ADAPTER

## CONCEPT:

The 6551 is an Asynchronous Communication Adapter (ACIA) intended to provide for interfacing the 6500/6800 microprocessor families to serial communication data sets and modems. A unique feature is the inclusion of an on-chip programmable baud rate generator, with a crystal being the only external component required.

## FEATURES:

- On-chip baud rate generator: 15 programmable baud rates derived from a standard 1.8432 MHz external crystal ( 50 to 19,200 baud).
- Programmable interrupt and status register to simplify software design.
- Single +5 volt power supply.
- Serial echo mode.
- False start bit detection. with the microproeessor.
- External $16 \times$ clodaninutitornor-standard baud rates (up to 125 Khaud$)$.
- Programmable: Word lengths; number of stop bits; and parity bit "generation "and detection.
- Gata set and modern control signals provided.

Rahity: (Qud even, none, mark, space).
Fừ-duplex or halt-duplex operation.

- 8-bit bi-directional data bus for direct communication

5, 6, 7,8 get 9 bit transmission.

## 6551 PIN CONFIGURATION

GND $=1$	28	R/W
$\mathrm{CSO}_{0}=2$	27	万ø2
$\overline{C S}_{1}-3$	26	$\bigcirc \overline{\mathrm{R}} \mathrm{Q}$
RES $=4$	25	$\mathrm{DB}_{7}$
$\mathrm{RxC}=5$	24	- D86
XTAL1 $=6$	23	$\mathrm{CB}_{5}$
XTAL2 7	22	$\mathrm{DB}_{4}$
$\overline{\text { RTS }}$ - 8	21	$\square^{\text {D }}{ }_{3}$
$\overline{\text { CTS }}=9$	20	$\checkmark \mathrm{DB}_{2}$
TXD $=10$	19	$\mathrm{DB}_{1}$
$\overline{\text { DTR }} 111$	18	- $\mathrm{DB}_{0}$
RxD $=12$	17	$\square \overline{\text { DSR }}$
$\mathrm{RS}_{0}=13$	16	$\bigcirc \overline{D C D}$
$\mathrm{RS}_{1}=14$	15	$\mathrm{L}^{\mathrm{CCC}}$

Figure 1. Block Diagram


## MAXIMUM RATINGS

Supply Voltage, VCC Input/Output Voltage, VIN Operating Temperature, TOP Storage Temperature, TSTG
-0.3 V to +7.0 V
-0.3 V to +7.0 V
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ $-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

All inputs contain protection circuitry to prevent damage due to high static discharges. Care should be exercised to prevent unnecessary application of voltages in excess of the allowable limits.

## COMMENT

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of this device at these or any other conditions above those indicated in the operational sections of this specification is not implied and exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}+5 \%, \mathrm{TA}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}$, unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Input High Voltage	$\mathrm{V}_{\mathrm{IH}}$	2.0	-	$\mathrm{V}_{\mathrm{CC}}$	V
Input Low Voltage	VIL	-0.3	-	0.8	V
Input Leakage Current: $V_{I N}=0$ to 5 V . $\left(\varnothing 2, R / \bar{W}, \overline{\mathrm{RES}}, \overline{\mathrm{CS}}, \mathrm{CS} 1, \mathrm{RS}_{0}, \mathrm{RS}_{1}, \overline{\mathrm{CTS}}, \mathrm{R} \times \mathrm{D}, \overline{\mathrm{DCD}}\right.$, $\overline{\mathrm{DSR}})$	1 N	-	$\pm 1.0$	$\pm 2.5$	$\mu \mathrm{A}$
Input Leakage Current for High Impedance State (Three State)	ITS।	-	$\pm 2.0$	$\pm 10.0$	$\mu \mathrm{A}$
Output High Voltage: $\mathrm{ILOAD}^{\text {a }}=-100 \mu \mathrm{~A}$	VOH	2.4	-	-	$\checkmark$
Output Low Voltage: ILOAD $=1.6 \mathrm{~mA}$ ( $\mathrm{DB}_{0}-\mathrm{DB} 7, \mathrm{~T} \times \mathrm{D}, \mathrm{R} \times \mathrm{C}, \overline{\mathrm{RTS}}, \overline{\mathrm{DTR}}, \overline{\mathrm{RQ}}$ )	$\mathrm{V}_{\mathrm{OL}}$	-	-	0.4	V
Output High Current (Sourcing): $\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V}$	OH	-250	-	-	$\mu \mathrm{A}$
Output Low Current (Sinking): $\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	IOL.	1.6	-	-	$\mu \mathrm{A}$
Output Leakage Current (off state): VOUT $=5 \mathrm{~V}$ ( $\overline{\mathrm{RQ}}$ )	IOFF	-	1.0	10.0	$\mu \mathrm{A}$
Clock Capacitance (ø2)	CCLK	-	-	20	pF
Input Capacitance (except XTAL1 and XTAL2)	CIN	-	-	10	pF
Output Capacitance	COUT	-	-	10	pF
Power Dissipation ${ }^{\prime}$	PD	-	170	300	mw

Power Dissipation vs Temperature



Figure 4a. Transmit Timing with External Clock


NOTE: RXD rate is $1 / 16$ RxC rate.
Figure 4c. Recelve External Clock Timing

TRANSMIT/RECEIVE CHARACTERISTICS

Characteristic	Symbol	6551		6551A		Unit
		Min	Max	Min	Max	
Transmit/Receive Clock Rate	tcCy	400*	-	400*	-	ns
Transmit/Receive Clock High Time	${ }^{\text {t }} \mathrm{CH}$	175	-	175	-	ns
Transmit/Receive Clock Low Time	${ }^{\text {t }} \mathrm{CL}$	175	-	175	-	ns
XTAL1 to TxD Propagation Delay	tD	-	500	-	500	ns
$\overline{\mathrm{RTS}}$ Propagation Delay	tRTS	-	500	-	500	ns
$\overline{\mathrm{RQ}}$ Propagation Delay (Clear)	tIRQ	-	500	-	500	ns

( $\mathrm{tr}_{\mathrm{r}} \mathrm{tf}_{\mathrm{f}}=10$ to 30 nsec )
$*$ The baud rate with external clocking is: $\quad$ Baud Rate $=\frac{1}{16 \times \mathrm{T} C \mathrm{CY}}$

## INTERFACE SIGNAL DESCRIPTION

## RES (Reset)

During system initialization a low on the $\overline{R E S}$ input will cause internal registers to be cleared.

## ¢2 (Input Clock)

The input clock is the system $\varnothing 2$ clock and is used to trigger all data transfers between the system microprocessor and the 6551 .

## R/W (Read/Write)

The $R \bar{W}$ is generated by the microprocessor and is used to control the direction of data transfers. A high on the $R \bar{W}$ pin allows the processor to read the data supplied by the 6551. A low on the $R \bar{W}$ pin allows a write to the 6551.

## $\overline{\mathbf{I R Q}}$ (Interrupt Request)

The $\overline{I R Q}$ pin is an interrupt signal from the interrupt control logic. It is an open drain output, permitting several devices to be connected to the common IRQ microprocessor input. Normally a high level, $\overline{\mathrm{RQ}}$ goes low when an interrupt occurs.

## $\mathrm{DB}_{0}$ - DB7(Data Bus)

The $\mathrm{DB}_{0}-\mathrm{DB}_{7}$ pins are the eight data lines used for transfer of data between the processor and the 6551. These lines are bi-directional and are normally high-impedance except during Read cycles when selected.

## CSO, $\overline{\mathbf{C S}}_{1}$ (Chip Selects)

The two chip select inputs are normally connected to the processor address lines either directly or through decoders. The 6551 is selected when $\mathrm{CS}_{0}$ is high and $\overline{\mathrm{CS}}_{1}$ is low.

Figure 2.

$N_{C C}=5.0 \mathrm{~V} \pm 5 \%, T_{A}=0$ to $70^{\circ} \mathrm{C}$, unless otherwise noted)

Characteristic	Symbol	6551		8551A		Unlt
		Min	Max	Min	Max	
Cycle Time	${ }^{\prime} \mathrm{CYC}$	10	40	0.5	40	$\mu \mathrm{s}$
¢0 Pulse Width	C	470	-	235	-	ns
Address Set-Up Time	IACW	180	-	90	-	ns
Address Hold Time	tcan	0	-	0	-	ns
R $\overline{\mathcal{N}}$ Ser-Up Time	twCw	180	-	90	-	ns
R/W Hold Time	town	0	-	0	-	ns
Data Bus Sel-Up Time	10CW	300	-	150	-	ns
Data Bus Hold Time	thw	10	-	10	-	ns

## Clock Generation



Figure 3.
Read Timing Characteristics

$N_{C C}=5.0 \mathrm{~V} \pm 5 \%, T_{A}=0$ to $70^{\circ} \mathrm{C}$, unless otherwise noted)

Charactorlatic	8ymbol	6851		6581A		Unit
		Min	Max	Min	max	
Cycle Time	${ }_{\text {tay }}$	1.0	40	0.5	40	$\mu 8$
Pulse Width (62)	tc	470	-	235	-	ns
Adoress Set-Up Time	tach	180	-	90	-	ns
Address Hold Time	tcan	0	-	0	-	ns
R $\bar{W}$ Set-Up Time	tWCR	180	-	90	-	ns
Read Access Time	tCDR	-	395	-	200	$n 8$
Read Hold Time	thr	10	-	10	-	ns



Test Load for Data Bus (DBo-DB7) TXB, DTR, RTS Outputs

NWOS

## RSO, $\mathbf{R S}_{\mathbf{1}}$ (Register Selects)

The two register select lines are normally connected to the processor address lines to allow the processor to select the various 6551 internal registers. The following table indicates the internal register select coding:

$\mathbf{R S}_{1}$	RSO	Write	Read
0	0	Transmit Data   Register	Receiver Data   Register
0	1	Programmed   Reset (Data is   "Don't Care")	Status Register
1	0	Command Register	
1	1	Control Register	

The table shows that only the Command and Control registers are read/write. The Programmed Reset operation does not cause any data transfer, but is used to clear the 6551 registers. The Programmed Reset is slightly different from the Hardware Reset (RES) and these differences are described in the individual register definitions.

## ACIA/MODEM INTERFACE SIGNAL DESCRIPTION

XTAL1, XTAL2 (Crystal Pins)
These pins are normally directly connected to the external crystal ( 1.8432 MHz ) used to derive the various baud rates. Alternatively, an externally generated clock may be used to drive the XTAL1 pin, in which case the XTAL2 pin must float. XTAL1 is the input pin for the transmit clock.

## TxD (Transmit Data)

The TxD output line is used to transfer serial NRZ (non-return-to-zero) data to the modem. The LSB (least significant bit) of the Transmit Data Register is the first data bit transmitted and the rate of data transmission is determined by the baud rate selected.

## RxD (Receive Data)

The RxD input line is used to transfer serial NRZ data into the ACIA from the modem, LSB first. The receiver data rate is either the programmed baud rate or the rate of an externally generated receiver clock. This selection is made by programming the Control Register.

## RxC (Receive Clock)

The $R \times C$ is a bi-directional pin which serves as either the receiver $16 x$ clock input or the receiver $16 x$ clock output. The latter mode results if the internal baud rate generator is selected for receiver data clocking.

## $\overline{\text { RTS }}$ (Request to Send)

The $\overline{\mathrm{RTS}}$ outpin pin is used to control the modem from the processor. The state of the RTS pin is determined by the contents of the Command Register.

## $\overline{\text { CTS }}$ (Clear to Send)

The $\overline{\mathrm{CTS}}$ input pin is used to control the transmitter operation. The enable state is with CTS low. The transmitter is automatically disabled if CTS is high.

## $\overline{D T R}$ (Data Terminal Ready)

This ouput pin is used to indicate the status of the 6551 to the modem. A low on DTR indicates the 6551 is enabled and a high indicates it is disabled. The processor controls this pin via bit 0 of the Command Register.

## $\overline{\text { DSR }}$ (Data Set Ready)

The $\overline{\mathrm{DSR}}$ input pin is used to indicate to the 6551 the status of the modem. A low indicates the "ready" state and a high, "not-ready." DSR is a high-impedance input and must not be a no-connect. If unused, it should be driven high or low, but not switched.
Note: If Command Register Bit $0=1$ and a change of state on $\overline{\mathrm{DSR}}$ occurs, $\overline{\mathrm{RQ}}$ will be set, and Status Register Bit 6 will reflect the new level. The state of DSR does not affect either Transmitter or Receiver operation.

## DCD (Data Carrier Detect)

The DCD input pin is used to indicate to the 6551 the status of the carrier-detect output of the modem. A low indicates that the modem carrier signal is present and a high, that is is not. $\overline{\mathrm{DCD}}$. like $\overline{\mathrm{DSR}}$, is a high-impedance input and must not be a no-connect.
Note: If Command Register Bit $0=1$ and a change of state on $\overline{D C D}$ occurs. IRQ will be set. and Status Register Bit 5 will reflect the new level. The state of DCD does not affect Transmitter operation. but must be low for the Receiver to operate.

## INTERNAL ORGANIZATION

The Transmitter/Receiver sections of the 6551 are depicted by the block diagram in Figure 5.


Figure 5. Transmitter/Receiver Clock Circuits
Bits 0-3 of the Control Register select the divisor used to generate the baud rate for the Transmitter. If the Receiver clock is to use the same baud rate as the Transmitter, then RxC becomes an output pin and can be used to slave other circuits to the 6551 .

NWOS

## MPS <br> 6551

## CONTROL REGISTER

The Control Register is used to select the desired mode for the 6551. The word length, number of stop bits, and clock controls are all determined by the Control Register, which is depicted in Figure 6.

CONTROL REGISTER

*This allows for 9-bit transmission ( 8 data bits plus parity).
HARDWARE RESET

HROGRAM RESET $\quad$\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \& 7 \& 6 \& 5 \& 4 \& 3 \& 2 \& 1 <br>
0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 <br>
\hline

$\quad$

0 <br>
\hline
\end{tabular}

Figure 6. Control Register Format

COMMAND REGISTER
The Command Register is used to control Specific
Transmit/Receive functions and is shown in Figure 7.
F'ARITY CHECK CONTROLS

BIT			OPERATION
7	6	5	
-	-	0	Parity Disabled - No Parity Bit   Generated - No Parity Bit Received
0	0	1	Odd Parity Receiver and Transmitter
0	1	1	Even Parity Receiver and   Transmitter
1	0	1	Mark Parity Bit Transmitted,   Parity Check Disabled
1	1	1	Space Parity Bit Transmitted,   Parity Check Disabled


BIT		TRANSMIT   INTERRUPT	$\overline{\text { RTS }}$   LEVEL	TRANSMITTER
3	2	Disabled	High	Off
0	0	Disled	On	
0	1	Enabled	Low	On
1	0	Disabled	Low	On
1	1	Disabled	Low	Transmit BRK

    must be " 0 ")
    |  | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HARDWARE RESET | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| PROGRAM RESET | - | - | - | 0 | 0 | 0 | 0 | 0 |

Figure 7. Command Register Format

## STATUS REGISTER

The Status Register is used to indicate to the processor the status of various 6551 functions and is outlined in Figure 8.


- NO INTERRUPT GENERATED FOR THESE CONDITIONS. -CLEARED AUTOMATICALLY AFTER A READ OF ROR AND THE NEXT ERROR FREE RECEIPT OF DATA


Figure 8. Status Reglster Format

## TRANSMIT AND RECEIVE DATA REGISTERS

These registers are used as temporary data storage for the 6551 Transmit and Receive circuits. The Transmit Data Register is characterized as follows:

- Bit 0 is the leading bit to be transmitted
- Unused data bits are the high-order bits and are "don't care" for transmission.
The Receive Data Register is characterized in a similar fashion:
- Bit 0 is the leading bit received.
- Unused data bits are the high-order bits and are "0" for the receiver.
- Parity bits are not contained in the Receive Data Register, but are stripped-off after being used for external parity checking. Parity and all unused highorder bits are " 0 ".

Figure 9 illustrates a single transmitted or received data word, for the example of 8 data bits, parity, and 1 stop bit.


Figure 9 Serial Data Stream Example

COMMODORE SEMICONDUCTOR GROUP reserves the right to make changes to any products herein to improve reliability, function or design. COMMODORE SEMICONDUCTOR GROUP does not assume any liability arising ot of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.

## 2316 STATIC READ ONLY MEMORY (2048x8)

## DESCRIPTION

The 2316 high performance read only memory is organized 2048 words by 8 bits with access times of less than 350 ns . This ROM is designed to be compatible with all microprocessor and similar applications where high performance, large bit storage and simple interfacing are important design considerations.

The 2316 operates totally asynchronously. No clock input is required. The three programmable chip select inputs allow eight 16 K ROMS to be OR-tied without external decoding.

Designed to replace two 2708 8K EPROMS, the 2316 can eliminate the need to redesign printed circuit boards for volume mask programmed ROMS after prototyping with EPROMS.

- 400 mV Noise Immunity on Inputs
- $2048 \times 8$ Bit Organization
- Single +5 Volt Supply
- Access Time - $450 \mathrm{~ns}, 350 \mathrm{~ns}$
- Totally Static Operation
- TTL Compatible
- Three-State Outputs for Wire-OR Expansion
- Three Programmable Chip Selects
- Pin Compatible with 2716 EPROM
- Replacement for two 2708s
- 2708/2716 EPROMS Accepted as Program Data Inputs

ORDERING INFORMATION
MXS 2316 $\qquad$


FREQUENCY RANGE
NO SUFFIX $=450 \mathrm{~ns}$
$\mathrm{A}=350 \mathrm{~ns}$

PACKAGE DESIGNATOR
$\mathrm{C}=$ CERAMIC
$\mathrm{P}=\mathrm{PLASTIC}$

PIN CONFIGURATION


NaOS

## ABSOLUTE MAXIMUM RATINGS

Ambient Temperature under Bias Storage Temperature
Supply Voltage to Ground Potential
Applied Output Voltage
Applied Input Voltage
Power Dissipation

## COMMENT

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
D. C. CHARACTERISTICS $\quad\left(T_{A}=0^{\circ} \mathrm{C}\right.$ to $+70^{\circ} \mathrm{C}, \mathrm{VCC}=5.0 \mathrm{~V} \pm 5 \%$, unless otherwise specified)

Symbol	Parameter	Min.	Max.	Units	Test Conditions
ICC1	Power Supply Current		100	mA	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{0}=$ Open, $\mathrm{T}_{A}=0^{\circ} \mathrm{C}$
ICC2	Power Supply Current		95	mA	$V_{\text {IN }}=V_{C C}, V_{0}=$ Open, $T_{A}=25^{\circ} \mathrm{C}$
10	Output Leakage Current		10	$\mu A$	Chip Deselected, $\mathrm{V}_{0}=0$ to $\mathrm{V}_{\mathrm{CC}}$
11	Input Load Current		10	$\mu \mathrm{A}$	$V_{C C}=$ Max. $V_{\text {IN }}=0$ to $V_{C C}$
VOL	Output Low Voltage		0.4	Volts	$V_{C C}=\mathrm{Min} . \mathrm{IOL}=2.1 \mathrm{~mA}$
VOH	Output High Voltage	2.4		Volts	$V_{C C}=\mathrm{Min} .1 \mathrm{IOH}=-400 \mu \mathrm{~A}$
VIL	Input Low Voltage	-0.5	0.8	Volts	See Note 1
VIH	Input High Voltage	2.0	$\mathrm{V}_{\mathrm{CC}}+1$	Volts	

A. C. CHARACTERISTICS $\left(T_{A}=0^{\circ} \mathrm{C}\right.$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%$, unless otherwise specified)

Symbol	Parameter	2316		2316A		Units	Test Conditions
		Min.	Max.	Min.	Max.		
tacc	Address Access Time		450		350	ns	
tco	Chip Select Delay		200		200	ns	
tDF	Chip Deselect Delay		175		175	ns	See Note 2
tOH	Previous Data Valid After Address Change Delay	40		40		ns	

CAPACITANCE $\quad \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$, See Note 3)

Symbol	Parameter	Min.	Max.	Units	Test Conditions
CIN	Input Capacitance		8	pF	All Pins except Pin under
COUT	Output Capacitance		10	pF	Test Tied to AC Ground

Note 1: Input levels that swing more negative than -0.5 V will be clamped and may cause damage to the device.
Note 2: Loading $1 \mathrm{TLL}+100 \mathrm{pF}$, input transition time: 20 ns Timing measurement levels: input 1.5 V , output 0.8 V and 2.0 V .
Note 3: This parameter is periodically sampled and is not $100 \%$ tested.

TIMING DIAGRAMS


BLOCK DIAGRAM


## TYPICAL CHARACTERISTICS



## PACKAGING DIAGRAM



MOLDED PACKAGE


Commodore Semiconductor Group reserves the right to make changes to any products herein to improve reliability, function or design. Commodore Semiconductor Group does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.

## 2332 STATIC READ ONLY MEMORY (4096x8)

## DESCRIPTION

The 2332 high performance read only memory is organized 4096 words by 8 bits with access times of less than 350 ns . This ROM is designed to be compatible with all microprocessor and similar applications where high performance, large bit storage and simple interfacing are important design considerations. This device offers TTL input and output levels.

The 2332 operates totally asynchronously. No clock input is required. The two programmable chip select inputs allow four 32 K ROMS to be OR-tied without external decoding.

Designed to replace two 2716 16K EPROMS. the 2332 can eliminate the need to redesign printed circuit boards for volume mask programmed ROMS after prototyping with EPROMS.

- $4096 \times 8$ Bit Organization
- Single +5 Volt Supply
- Access Time - 2332450 ns 2332A 350 ns
- Completely TTL Compatible
- Totally Static Operation
- Three-State Outputs for Wire-OR Expansion
- Two Programmable Chip Selects
- Pin Compatible with 2716 \& 2732 EPROM
- Replacement for Two 2716s
- 2708/2716 EPROMS Accepted as Program Data Inputs
- 400 mV Noise Immunity on Inputs


## ORDERING INFORMATION

MXS 2332


FREQUENCY RANGE
NO SUFFIX $=450 \mathrm{~ns}$
$A=350 \mathrm{~ns}$
PACKAGE DESIGNATOR
$\mathrm{C}=\mathrm{CERAMIC}$
$\mathrm{P}=\mathrm{PLASTIC}$

FIM COMFIGUBATION


## ABSOLUTE MAXIMUM RATINGS

Ambient Operating Temperature Storage Temperature
Supply Voltage to Ground Potential
Applied Output Vohage
Applied Input Voltage
Power Dissipation

## COMMENT

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

## D.C. CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%$ (unless otherwise specified)

Symbol	Parameter	Min.	Max.	Units	Test Conditions
${ }^{1} \mathrm{CC1}$	Power Supply Current		100	mA	$V_{\text {IN }}=V_{\text {CC }}, V_{\text {O }}=$ Open, $T_{A}=0^{\circ} \mathrm{C}$
${ }^{1} \mathrm{CC2}$	Power Supply Current		95	mA	$V_{\text {IN }}=V_{\text {CC }}, V_{\text {O }}=$ Open, $T_{A}=25^{\circ} \mathrm{C}$
${ }^{1} \mathrm{O}$	Output Leakage Current		10	$\mu \mathrm{A}$	Chip Deselected, $\mathrm{V}_{\mathrm{O}}=O$ to $\mathrm{V}_{\mathrm{CC}}$
1	Input Load Current		10	$\mu \mathrm{A}$	$V_{\text {CC }}=$ Max. $V_{\text {IN }}=O$ to $V_{\text {CC }}$
$\mathrm{V}_{\mathrm{OL}}$	Output Low Voltage		0.4	Volts	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} . \mathrm{l}_{\mathrm{OL}}=2.1 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{OH}}$	Output High Voltage	2.4		Volts	$V_{\mathrm{CC}}=\mathrm{Min} . \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$
$V_{\text {IL }}$	Input Low Voltage	-0.5	0.8	Volts	See note 1
$V_{\text {IH }}$	Input High Voltage	2.0	$\mathrm{v}_{\mathrm{CC}}{ }^{+1}$	Volts	

A. C. CHARACTERISTICS
$T_{A}=0^{c} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%$ (unless otherwise specified)

Symbol	Parameter	2332		2332A		Units	Test Conditions
		Min.	Max.	Min.	Max.		
${ }^{\text {taCC }}$	Address Access Time		450		350	ns	
${ }^{\text {t }} \mathrm{CO}$	Chip Select Delay		200		200	ns	See Note 2
${ }^{\text {t }} \mathrm{DF}$	Chip Deselect Delay		175		175	ns	See Note 2
${ }^{\text {toh }}$	Previous Data Valid After Address Change Delay	40		40		ns	

## CAPACITANCE

$T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$, See Note 3

Symbol	Parameter	Min.	Max.	Units	Test Conditions
$\mathrm{C}_{\mathbb{I N}}$	Input Capacitance		8	pF	All Pins except Pin under   $\mathrm{C}_{\text {OUT }}$
Output Capacitance		10	pF	Test Tied to AC Ground	

Note 1: Input levels that swing more negative than - 0.5 V will be clamped and may cause damage to the device.
Note 2: Loading 1 TTL +100 pF , input transition time: 20 ns .
Timing measurement levels: input 1.5 V , output 0.8 V and $2.0 \mathrm{~V} . \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$.
Note 3: This parameter is periodically sampled and is not $100 \%$ tested.



## TMFELL EMAMGTEAISTES





COMMODORE SEMICONDUCTOR GROUP reserves the right to make changes to any products herein to improve reliability, function or design. COMMODORE SEMICONDUCTOR GROUP does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.

## 2333 STATIC READ ONLY MEMORY (4096x8)

## DESCRIPTION

The 2333 high performance read only memory is organized 4096 words by 8 bits with access times of less than 350 ns . This ROM is designed to be compatible with all microprocessor and similar applications where high performance, large bit storage and simple interfacing are important design considerations. This device offers TTL input and output levels.

The $\mathbf{2 3 3 3}$ operates totally asynchronously. No clock input is required. The two programmable chip select inputs allow four 32K ROMS to be OR-tied without external decoding.

Designed to replace two 2716 16K EPROMS, the 2333 can eliminate the need to redesign printed circuit boards for volume mask programmed ROMS after prototyping with EPROMS.

- $4096 \times 8$ Bit Organization
- Single + 5 Volt Supply
- Three Week Prototype Turnaround
- Access Time-2333 450 ns 2333A 350 ns
- Completely TTL Compatible
- Totally Static Operation
- Three-State Outputs for Wire-OR Expansion
- Two Programmable Chip Selects
- Pin Compatible with 2716 \& 2732 (INTEL) EPROMS
- Replacement for Two 2716s
- 2708/2716 EPROMS Accepted as Program Data Inputs
- 400 mV Noise Immunity on Inputs


## ORDERING INFORMATION:

Part	Package   Number*	Access   Type	Temperature   Range
MPS2333	Molded	450 ns	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
MPS2333A	Molded	350 ns	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
MCS2333	Ceramic	450 ns	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
MCS2333A	Ceramic	350 ns	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

*Final Part Number will be assigned by manufacturer


## ABSOLUTE MAXIMUM RATINGS

Ambient Operating Temperature
Storage Temperature
Supply Voltage to Ground Potential
Applied Output Voltage
Applied Input Voltage
Power Dissipation

## COMMENT

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

## D.C. CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%$ (unless otherwise specified)

Symbol	Parameter	Min.	Max.	Units	Test Conditions
${ }^{\text {ICCI }}$	Power Supply Current		125	mA	$V_{\text {IN }}=V_{C C}, V_{O}=$ Open, $T_{A}=0 C$
${ }^{1} \mathrm{CC2}$	Power Supply Current		120	mA	$V_{\text {IN }}=V_{C C}, V_{O}=$ Open, $T_{A}=25 \mathrm{C}$
${ }^{1}$	Output Leakage Current		10	$\mu \mathrm{A}$	Chip Deselected, $\mathrm{V}_{\mathrm{O}}=0$ to $\mathrm{V}_{\mathrm{CC}}$
1	Input Load Current		10	$\mu \mathrm{A}$	$V_{C C}=$ Max. $V_{\text {IN }}=0$ to $V_{\text {CC }}$
$\mathrm{V}_{\mathrm{OL}}$	Output Low Voltage		0.4	Volts	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} . \mathrm{I}_{\mathrm{OL}}=2.1 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{OH}}$	Output High Voltage	2.4		Volts	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} . \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$
$V_{\text {IL }}$	Input Low Voltage	-0.5	0.8	Volts	See note 1
$\mathrm{V}_{\mathrm{IH}}$	Input High Voltage	2.0	$\mathrm{V}_{\mathrm{CC}}{ }^{+1}$	Volts	

A. C. CHARACTERISTICS
$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%$ (unless otherwise specified)

Symbol	Parameter	2333		23334		Units	Test Conditions
		Min.	Max.	Min.	Max.		
tacc	Address Access Time		450		350	ns	
${ }^{\text {t Co }}$	Chip Select Delay		200		200	ns	
${ }^{\text {t }} \mathrm{DF}$	Chip Deselect Delay		175		175	ns	See Note 2
${ }^{1} \mathrm{OH}$	Previous Data Valid After Address Change Delay	40		40		ns	

CAPACITANCE
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$, See Note 3

Symbol	Parameter	Min.	Max.	Units	Test Conditions
$\mathrm{C}_{\mathrm{IN}}$	Input Capacitance		8	pF	All Pins except Pin under   $C_{\text {OUT }}$
Output Capacitance		10	pF	Test Tied to AC Ground	

Note 1: Input levels that swing more negative than -0.5 V will be clamped and may cause damage to the device.
Note 2: Loading 1 TTL +100 pF , input transition time: 20 ns .
Timing measurement levels: input 1.5 V , output 0.8 V and $2.0 \mathrm{~V} . \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$.
Note 3: This parameter is periodically sampled and is not $100 \%$ tested.

MPS
2333


BLOCK DIAGRAM


## TYPICAL CHARACTERISTICS






COMMODORE SEMICONDUCTOR GROUP reserves the right to make changes to any products herein to improve reliability, function or design. COMMODORE SEMICONDUCTOR GROUP does not assume any liability arising ot of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.
commodore semiconductor group

## MPS

2364
STATIC READ ONLY MEMORY (8192x8)

## 2364 STATIC READ ONLY MEMORY (8192x8)

## DESCRIPTION

The 2364 high performance read only memory is organized 8192 words by 8 bits with access times of less than 350 ns . This ROM is designed to be compatible with all microprocessor and similar applications where high performance, large bit storage and simple interfacing are important design considerations. This device offers TTL input and output levels.

The 2364 operates totally asynchronously. No clock input is required. The programmable chip select input allows two 64K ROMS to be OR-tied without external decoding.

Designed to replace two 2732 32K EPROMS, the 2364 can eliminate the need to redesign printed circuit boards for volume mask programmed ROMS after prototyping with EPROMS.

- $8192 \times 8$ Bit Organization
- Single +5 Volt Supply
- Access Time - $450 \mathrm{~ns}, 350 \mathrm{~ns}$
- Completely TTL Compatible
- Totally Static Operation
- Three-State Outputs for Wire-OR Expansion
- One Programmable Chip Select
- Pin Compatible with 2716 \& 2732 EPROM
- Replacement for Two 2732s
- 2716/2732 EPROMS Accepted as Program Data Inputs
- 400 mV Noise Immunity on Inputs

ORDERING INFORMATION
MXS 2364


FREQUENCY RANGE
NO SUFFIX $=450 \mathrm{~ns}$
$A=350 \mathrm{~ns}$
PACKAGE DESIGNATOR
C = CERAMIC
$P=P L A S T I C$


TIMING DIAGRAM


BLOCK DIAGRAM


## ABSOLUTE MAXIMUM RATINGS

Ambient Temperature under Bias Storage Temperature Supply Voltage to Ground Potential Applied Output Voltage Applied Input V.Itage Power Dissipation
${ }^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
-0.5 V to +7.0 V
-0.5 V to +7.0 V
-0.5 V to +7.0 V
1.0W

## COMMENT

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
D. C. CHARACTERISTICS $\left(T_{A}=0 C\right.$ to $+70 C, V_{C C}=5.0 \mathrm{~V} \pm 5 \%$, unless otherwise specified)

Symbol	Parameter	Min.	Max.	Units	Test Conditions
ICC1	Power Supply Current		100	mA	$V_{\text {IN }}=V_{C C}, V_{0}=$ Open, $T_{A}=0^{\circ} \mathrm{C}$
ICC2	Power Supply Current		95	mA	$V_{I N}=V_{C C}, V_{0}=$ Open, $T_{A}=25^{\circ} \mathrm{C}$
10	Output Leakage Current		10	$\mu \mathrm{A}$	Chip Deselected, $\mathrm{V}_{0}=0$ to VCC
11	Input Load Current		10	$\mu \mathrm{A}$	$V_{C C}=$ Max. $\mathrm{VIN}^{\text {d }}=0$ to $\mathrm{V}_{C C}$
VOL	Output Low Voltage		0.4	Volts	$\mathrm{V}_{C C}=\mathrm{Min} . \mathrm{IOL}=2.1 \mathrm{~mA}$
V OH	Output High Voltage	2.4		Volts	$V_{C C}=\mathrm{Min} .1 \mathrm{IOH}=-400 \mu \mathrm{~A}$
$V_{\text {IL }}$	Input Low Voltage	-0.5	0.8	Volts	See Note 1
$\mathrm{V}_{\mathrm{IH}}$	Input High Voltage	2.0	$\mathrm{V}_{\mathrm{CC}}+1$	Volts	

A. C. CHARACTERISTICS $\pi_{A}=0 C$ to $+70 \mathrm{C} . V_{C C}=5.0 \mathrm{~V} \pm 5 \%$. unless otherwise specified)

		2364		2364A			
Symbol	Parameter	Min.	Max.	Min.	Max.	Units	
tACC	Address Access Time		450		350	ns	
tCO	Chip Select Delay		200		200	ns	
tDF	Chip Deselect Delay		175		175	ns	See Note 2
toH	Previous Data Valid	40		40		ns	
	After Address Change						
	Delay						

CAPACITANCE $\left(T_{A}=25 \mathrm{C}, \mathfrak{f}=1.0 \mathrm{MHz}\right.$. See Note 3)

Symbol	Parameter	Min.	Max.	Units	Test Conditions
CIN	Input Capacitance		8	pF	All Pins except Pin under   Test Tied to AC Ground
COUT	Output Capacitance		10	pF	

Note 1: Input levels that swing more negative than -0.5 V will be clamped and may cause damage to the device.
Note 2: Loading $1 \mathrm{TL}+100 \mathrm{pF}$, input transition time: 20 ns
Timing measurement levels: input 1.5 V , output 0.8 V and $2.0 \mathrm{~V} . \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
Note 3: This parameter is periodically sampled and is not $100 \%$ tested.


COMMODORE SEMICONDUCTOR GROUP reserves the right to make changes to any products herein to improve reliability, function or design. COMMODORE SEMICONDUCTOR GROUP does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.

## 23128 - 128K STATIC READ ONLY MEMORY (16384x8)

## DESCRIPTION

The 23128 high performance read only memory is organized as 16384 words by 8 bits. This $\mathcal{R Q M}$ is designed to be compatible with all microprocessor and similar applications where high performance, large bit storage and simple interfacing are important design considerations, This device offers TTL input and output levels.

The 23128 operates totally asynchronously. No clock input is required. The 23128 access time is 250 ns max.

The 23128 offers a power down feature which is controlled by $\overline{C E}$. When the CEpingees high the device will automatically power down and remain in a low power mode aşlong as $\overline{C E}$ remains high.

Designed to replace two 64 K EPROMs, the 23128 can eliminate thened to redesign printed circuit boards for volume mask programmed ROMs after prototyping with EPROMS.

## FEATURES

- Output Enable Function ( $\overline{\mathrm{OE}})$
- 16384x8 Bit organization
- Single +5 Volt Supply
- Completely TL Compatible
- Totally Static Operation
- Three State Outputs for Wire-OR Expansion
- Pin Compatible with both 25 XX and 27XX EPROM amilies
- 23128 ispoin compatible with 27128 (JEDE' Standard)
2328 is pincompatible with 2528 (TI version)
- 400 mV Noise Immunity on Inputs
- Ástomatic power down ( $\overline{\mathrm{CE}})$

PIN CONFIGURATION


23128


## MMS 6508-1 MICROMODULE BOARD

## Description

The MMS 6508-1 is the first in a family of single board microcomputers, designed for easy system development. The heart of this micromodule is the new 6508 microprocessor. It has as enhancements, an on-chip eight-bit I/O port, 256 bytes of RAM, and a tri-state address bus.

The micromodule board has four sockets that allow the user to have from 8 to 16 K bytes of program memory. The sockets are designed to accept ROMs, as well as 2716 or 2532 EPROMS, using +5 v supply.

The micromodule board also features the new 6525 tri-port interface. This chip has three eight-bit I/O ports that are bit programmable as twenty-four I/O lines, or sixteen I/O lines, five priority interrupts and two handshake lines.


## Features

- Use $+5 \mathrm{v} / 2 \mathrm{~A}$ power supply
- 1 MHz Operation
- 32 I/O lines or 24 I/O lines and 5 prioritized interrupts
- 16K ROM/EPROM Area
- 1K External RAM
- 256 bytes RAM on 6508

Edge Connector

Pin	Assignment	Pin	Assignment
1	$\left.\begin{array}{l}\text { P6 } \\ \text { P4 }\end{array}\right] 6508$	A	$\left.\begin{array}{l}\text { P7 } \\ \text { P5 }\end{array}\right] 6508$
3	P2 Port	C	P3 - Port
4	P0 $]$	D	P1
5	01 In	E	IRQ
6	Reset	F	02 In
7	GND	H	GND
8	GND	J	GND
9	+5v	K	+5v
10	$+5 v$	L	$+5 v$
11	PC7 7	M	PAO 7
12	PC6	N	PA1
13	PC5	P	PA2
14	PC4	R	PA3
15	PC3	S	PA4
16	PB4-6525	T	PA5 - 6525
17	PC2 Port	U	PA6 - Port
18	PB5	V	PA7
19	PC1	W	PB0
20	PB6	X	PB1
21	PCO	Y	PB2
22	PB7	Z	PB3




MEMORY MAP

I/O Port	Address	Assignment
PORT A	8000	PORT REGISTER A
	8003	DATA DIRECTION   REGISTER A
PORT B	8001	PORT REGISTER B
	8004	data direction REGISTER B
PORT C	8002	PORT REGISTER C
	8005	DATA DIRECTION REGISTER C/ INTERRUPT MASK REGISTER
	8006	CONTROL REGISTER
	8007	ACTIVE INTERRUPT REGISTER
PORT M	0001	OUTPUT REGISTER
	0000	DATA DIRECTION REGISTER

## BOARD LAYOUT



COMMODORE SEMICONDUCTOR GROUP reserves the right to make changes to any products herein to improve reliability, function or design. COMMODORE SEMICONDUCTOR GROUP does not assume any liability arising ot of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.

## sEcylon

## CMOS

connioodore
 connmodore connmodolre Connmoldore cロMనM๐ロロロ connModobre

 connioldore connioldore commiodore connModore coñMo dome commodore semiconductor group

## 65C00 MICROPROCESSORS

## THE 65COO MICROPROCESSOR FAMILY CONCEPT -

The 65C00 Series Microprocessors represent the first totally software compatible microprocessor family. This family of products includes a range of software compatible microprocessors which provide a selection of addressable memory range, interrupt input options and on-chip clock oscillators and drivers. All of the microprocessors in the 65C00 group are software compatible within the group and are bus compatible with the M6800 product offering.

The family includes six microprocessors with on-board clock oscillators and drivers and four microprocessors driven by external clocks. The on-chip clock versions are aimed at high performance, low cost applications where single phase inputs, crystal or RC inputs provide the time base. The external clock versions are geared for the multi processor system applications where maximum timing control is mandatory. All versions of the microprocessors are available in 1 MHz maximum operating frequencies.

## FEATURES OF THE 6500 FAMILY

- Single +5 volt supply
- Eight bit parallel processing
- 56 Instructions
- Decimal and binary arithmetic
- Thirteen addressing modes
- True indexing capability
- Programmable stack pointer
- Variable length stack
- Interrupt capability
- Non-maskable interrupt
- Use with any type or speed memory
- 8 BIT Bi-directional Data Bus
- Addressable memory range of up to 65 K bytes
- "Ready" input (for single cycle execution)
- Direct memory access capability
- Bus compatible with M6800
- Choice of external or on-board clocks
- 1 MHz operation
- On-the-chip clock options
*External single clock input
*RC time base input
*Crystal time base input
- Pipeline architecture


## MEMBERS OF THE 65COO MICROPROCESSOR (CPU) FAMILY

Microprocessors with On-ChipClock Oscillator

## Model

MPS65C02
MPS65C03
MPS65C04
MPS65C05
MPS65C06
MPS65C07

Addressable Memory 65K Bytes 4K Bytes 8 K Bytes 4K Bytes 4K Bytes 8K Bytes
Microprocessors with External Two Phase Clock Inputs

MPS65C12	65K Bytes
MPS65C13	4K Bytes
MPS65C14	8K Bytes
MPS65C15	4K Bytes

ORDER NUMBER:
MXS 65CXX


MODEL DESIGNATOR
$X X=02,03,04, \ldots 15$
PACKAGE DESIGNATOR
$C=$ CERAMIC
$P=$ PLASTIC

## COMMENTS ON THE DATA SHEET

The data sheet is constructed to review first the basic "Common Characteristics"-those features which are common to the general family of microprocessors. Subsequent to a review of the family characteristics will be sections devoted to each member of the group with specific features of each.

COMMON CHARACTERISTICS


Note 1. Clock Generator is not included on 65C12, 13, 14,15
2. Addressing Capability and control options vary with each of the 65 COO Products.

65C00 Internal Architecture

## COMMON CHARACTERISTICS

## maXimum ratings

RATING	SYMBOL	VALUE	UNIT
SUPPLY VOLTAGE	Vcc	-0.3 to +7.0	Vdc
INPUT VOLTAGE	Vin	-0.3 to +7.0	Vdc
OPERATING TEMPERATURE	$T_{A}$	0 to +70	${ }^{\circ} \mathrm{C}$
STORAGE TEMPERATURE	TSTG STG	-55 to +150	${ }^{\circ} \mathrm{C}$

This device contains input protection against damage due to high static voltages or electric fields; however, precautions should be taken to avoid application of voltages higher than the maximum rating.

ELECTRICAL CHARACTERISTICS (Vcc $=5.0 \mathrm{~V} \pm 5 \%, \mathrm{Vss}=0, \mathrm{~T}_{\mathrm{A}}=0^{\circ}$ to $+70^{\circ} \mathrm{C}$ )
$\emptyset_{1}, \varnothing_{2(\mathrm{in})}$ applies to $65 \mathrm{C} 12,13,14,15 ; \varnothing_{0}(\mathrm{in})$ applies to $65 \mathrm{C} 02,03,04,05,06$ and 07

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX	UNIT
Input High Voltage $\begin{aligned} & \text { Logic, } \varnothing_{0}(\mathrm{In}) \\ & \Theta_{1}, \Theta_{1(\mathrm{in})} \end{aligned}$   Input High Voltage   $\overline{\text { RES }}, \overline{N M}$, RDY, $\overline{\mathrm{IRO}}$, Data, S.O.	VIH	$\begin{aligned} & \text { Vss }+2.4 \\ & V_{c c}-0.2 \\ & \\ & \text { Vss }+2.0 \end{aligned}$	-	$\begin{gathered} V c c \\ V c c+1.0 \mathrm{~V} \end{gathered}$	Vdc   Vdc   Vdc
Input Low Voltage $\begin{aligned} & \text { Logic, } \varnothing_{0} \text { (in) } \\ & Q_{1}, Q_{2}(\mathrm{in}) \end{aligned}$   RES, NM, RDY, $\overline{\text { IRQ, }}$, Data, S.O.	VIL	$\begin{aligned} & \text { Vss }-0.3 \\ & \text { Vss }-0.3 \end{aligned}$	_	$\begin{aligned} & \text { Vss }+0.4 \\ & \text { Vss }+0.2 \\ & \text { Vss }+0.8 \end{aligned}$	Vdc   Vde   Vdc
Input Leakage Current $\begin{aligned} & V_{\text {in }}=0 \text { to } 5.25 \mathrm{~V}, \mathrm{Vcc}=5.25 \mathrm{~V}) \\ & \text { Loglc (Excl. RDY,S.O.) } \\ & \\ & \varnothing_{1}, \Omega_{2}(\mathrm{In}) \\ & \varnothing_{\mathrm{o}}(\mathrm{in}) \end{aligned}$	11 n	-	-	$\begin{array}{r} 2.5 \\ 100 \\ 10.0 \end{array}$	MA $\mu \mathrm{A}$ $\mu \mathrm{A}$
Three State (OHf State) Input Current $\begin{gathered} \left.N_{\text {in }}=0.4 \text { to } 2.4 \mathrm{~V}, \mathrm{Vcc}=5.25 \mathrm{~V}\right) \\ \text { Data Lines } \end{gathered}$	ITS!	-	-	10	$\mu \mathrm{A}$
Output High Voltage $\begin{aligned} & \left({ }^{( } \mathrm{OH}=-100 \mu \mathrm{Adc}, \mathrm{VCc}=4.75 \mathrm{~V}\right) \\ & \text { 8YNC, Data, AO-A15, RW } \end{aligned}$	VOH	Vss +2.4	-	-	Vdc
Out Low Vottage $\begin{aligned} & \left({ }^{1} \mathrm{OL}=1.6 \mathrm{mAdc}, \mathrm{Vcc}=4.75 \mathrm{~V}\right) \\ & \text { 8YNC, Data, AO-A15, RW } \end{aligned}$	VOL	-	-	Vss +0.4	Vdc
Supply Current	lcc	-		20	mA
Capacitance $N_{l n}=0, T_{A}=25^{\circ} \mathrm{C}, 1=1 \mathrm{MHz}$   Logic   Data   AO-A15,RW, SYNC   $\varnothing_{0}$ (in)   $a$   a.	C   $C_{\text {in }}$   $\mathrm{C}_{\text {out }}$   $C_{\square}$ (in)   $\mathrm{C}_{\mathscr{O}}$,   $C_{\varnothing}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & 30 \\ & 50 \end{aligned}$	$\begin{aligned} & 10 \\ & 15 \\ & 12 \\ & 15 \\ & 50 \\ & 80 \end{aligned}$	pF

Note: $\overline{\mathrm{RO}}$ and $\overline{\mathrm{NM}} \mathrm{I}$ require 3 K pulltup resistors.

## COMMON CHARACTERISTICS



## COMMON CHARACTERISTICS

```
1 MHz TIMING
Electrical Characteristics: \(\left(\mathrm{Vcc}=5 \mathrm{~V} \pm 5 \%, \mathrm{Vss}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ}-70^{\circ} \mathrm{C}\right)\)
```

CLOCK TIMING - 65C02, 03, 04, 05

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.
Cycle Time	TCYC	1000	-	-
$\varnothing_{\mathrm{O}(\mathrm{IN})}$ Pulse Width (measured at 1.5 v )	PWH $\varnothing_{0}$	460	-	520
$\varnothing_{0 \text { (IN) }}$ Rise, Fall Time	TR $\varnothing_{0}$, TF $\varnothing_{0}$	-	-	10
Delay Time between Clocks (measured at 1.5 v )	TD	5	-	-
$\varnothing_{1 \text { (OUT) Pulse Width (measured at }} 1.5 \mathrm{v}$ )	PWH $\varnothing_{1}$	PWH $\varnothing_{\mathrm{OL}}-20$	-	$\mathrm{PWH} \varnothing_{\mathrm{OL}}$
$\phi_{2 \text { (OUT) }}$ Pulse Width (measured at 1.5 v )	PWH $\varphi_{2}$	PWH O $^{\text {OH-40 }}$	-	PWH $\varnothing_{\mathrm{OH}}{ }^{-10}$
$\varnothing_{1 \text { (OUT), }} \phi_{2(\text { OUT) }}$ Rise, Fall Time (measured .8 v to 2.0 v ) (Load $1 / 230$ pf $1 / 21 \mathrm{TL}$ )	$T_{R}, T_{F}$	-	-	25

CLOCK TIMING: 65C12, 13, 14, 15

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.
Cycle Time	TCYC	1000	-	-
Clock Pulse Width $\quad \varnothing_{1}$ (Measured at $V_{C C}-0.2 v$ ) $\quad 2$	PWH $\varnothing 1$ PWH $\varnothing_{2}$	$\begin{aligned} & 430 \\ & 470 \end{aligned}$	-	-
Fall Time, Rise Time (Measured from $0.2 v$ to $\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{v}$ )	$\mathrm{T}_{\mathrm{F}}, \mathrm{T}_{\mathrm{R}}$	-	-	25
Delay Time between Clocks (Measured at 0.2v)	TD	0	-	-

READ/ WRITE TIMING (LOAD = ITTL)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.
Read/ Write Setup Time from 65C00	TRWS	-	100	300
Address Setup Time from 65C00	TADS	-	100	300
Memory Read Access Time	TACC	-	-	575
Data Stability Time Period	TDSU	100	-	-
Data Hold Time - Read	THR	10	-	-
Data Hold Time - Write	THW	30	60	-
Data Setup Time from 65C00	TMDS	-	150	200
S.O. Setup Time	TS.O.	100	-	-
SYNC Setup Time from 6500	TSYNC	-	-	350
Address Hold Time	THA	30	60	-
RWW Hold Time	THRW	30	60	-
RDY Setup Time	TRDY	100	-	-

## COMMON CHARACTERISTICS <br> 65COO SIGNAL DESCRIPTION

Clocks ( $\varnothing_{1}, \varnothing_{2}$ )
The 65C1X requires a two phase non-overlapping clock that runs at the Vcc voltage level.
The 65COX clocks are supplied with an internal clock generator. The frequency of these clocks is externally controlled.

## Address Bus $\left(A_{0} \cdot A_{15}\right)$

These outputs are TTL compatible, capable of driving one standard TTL load and 130 pf.

## Data Bus ( $D_{0} \cdot D_{7}$ )

Eight pins are used for the data bus. This is a bi-directional bus, transferring data to and from the device and peripherals. The outputs are tri-state buffers capable of driving one standard TTL load and 130pf.

## Data Bus Enable (DBE)

This TTL compatible input allows external control of the tri-state data output buffers and will enable the microprocessor bus driver when in the high state. In normal operation DBE would be driven by the phase two $\left(\varnothing_{2}\right)$ clock, thus allowing data output from microprocessor only during $\varnothing_{2}$. During the read cycle, the data bus drivers are internally disabled, becoming essentially an open circuit. To disable data bus drivers externally, DBE should be held low.

## Ready (RDY)

This input signal allows the user to single cycle the microprocessor on all cycles except write cycles. A negative transition to the low state during or coincident with phase one $\left(\varnothing_{1}\right)$ and up to 100 ns after phase two $\left(\varnothing_{2}\right)$ will halt the microprocessor with the output address lines reflecting the current address being fetched. This condition will remain through a subsequent phase two $\left(\varnothing_{2}\right)$ in which the Ready signal is low. This feature allows microprocessor interfacing with low speed PROMS as well as fast (max. 2 cycle) Direct Memory Access (DMA). If Ready is low during a write cycle, it is ignored until the following read operation.

## Intemupt Request ( $\overline{\mathrm{R} Q}$ )

This TLL level input requests that an interrupt sequence begin within the microprocessor. The microprocessor will complete the current instruction being executed before recognizing the request. At that time, the interrupt mask bit in the Status Code Register will be examined. If the interrupt mask flag is not set, the microprocessor will begin an interrupt sequence. The Program Counter and Processor Status Register are stored in the stack. The microprocessor will then set the interrupt mask flag high so that no further interrupts may occur. At the end of this cycle, the program counter low will be loaded from address FFFE, and program counter high from location FFFF, therefore transferring program control to the memory vector located at these addresses. The RDY signal must be in the high state for any interrupt to be recognized. A $3 \mathrm{~K} \Omega$ external resistor should be used for proper wire-OR operation.

## Non-Maskable Interrupt (NMI)

A negative going edge on this input requests that a non-maskable interrupt sequence be generated within the microprocessor.
$\overline{\mathrm{NMI}}$ is an unconditional interrupt. Following completion of the current instruction, the sequence of operations defined for IRQ will be performed, regardless of the interrupt mask flag status. The vector address loaded into the program counter, low and high, are locations FFFA and FFFB respectively, thereby transferring program control to the memory vector located at these addresses. The instructions loaded at these locations cause the microprocessor to branch to a non-maskable interrupt routine in memory.
$\overline{\text { NMI }}$ also requires an external $3 \mathrm{~K} \Omega$ resister to Vcc for proper wire-OR operations.
Inputs $\overline{\mathrm{RQ}}$ and $\overline{\mathrm{NMI}}$ are hardware interrupt lines that are sampled during $\varnothing_{2}$ (phase 2 ) and will begin the appropriate interrupt routine on the $\varnothing_{1}$ (phase 1) following the completion of the current instruction.

## Set Overifow Flag (S.O.)

A NEGATIVE going edge on this input sets the overflow bit in the Status Code Register. This signal is sampled on the trailing edge of $\varnothing_{1}$.

## SYNC

This output line is provided to identify those cycles in which the microprocessor is doing an OP CODE fetch. The SYNC line goes high during $\varnothing_{1}$ of an OP CODE fetch and stays high for the remainder of that cycle. If the RDY line is pulied low during the $\varnothing_{\text {, clock pulse in which SYNC went high, the processor will stop in its current state and will remain in the state until the RDY line }}$ goes high. In this manner, the SYNC signal can be used to control RDY to cause single instruction execution.

## Reset

This input is used to reset or start the microprocessor from a power down condition. During the time that this line is held low, writing to or from the microprocessor is inhibited. When a positive edge is detected on the input, the microprocessor will immediately begin the reset sequence.

After a system initialization time of six clock cycles, the mask interrupt flag will be set and the microprocessor will load the program counter from the memory vector locations FFFC and FFFD. This is the start location for program control.
After Vcc reaches 4.75 volts in a power up routine, reset must be held low for at least two clock cycles. At this time the RW and (SYNC) signal will become valid.

When the reset signal goes high following these two clock cycles, the microprocessor will proceed with the normal reset procedure detailed above.

## COMMON CHARACTERISTICS

ACCUMULATOR ADDRESSING - This form of addressing is represented with a one byte instruction, implying an operation on the accumulator.

IMMEDIATE ADDRESSING - In immediate addressing, the operand is contained in the second byte of the instruction, with no further memory addressing required.
ABSOLUTE ADDRESSING-In absolute addressing, the second byte of the instruction specifies the eight low order bits of the effective address while the third byte specifies the eight high order bits. Thus, the absolute addressing mode allows access to the entire 65 K bytes of addressable memory.
ZERO PAGE ADDRESSING - The zero page instructions allow for shorter code and execution times by only fetching the second byte of the instruction and assuming a zero high address byte. Careful use of the zero page can result in significant increase in code efficiency.
INDEXED ZERO PAGE ADDRESSING - $(X, Y$ in-dexing)-This form of addressing is used in conjunction with the index register and is referred to as "Zero Page, X " or "Zero Page, Y." The effective address is calculated by adding the second byte to the contents of the index register. Since this is a form of "Zero Page" addressing, the content of the second byte references a location in page zero. Additionally, due to the "Zero Page" addressing nature of this mode, no carry is added to the high order 8 bits of memory and crossing of page boundaries does not occur.
INDEXED ABSOLUTE ADDRESSING-( $X, Y$ indexing) - This form of addressing is used in conjunction with $X$ and $Y$ index register and is referred to as "Absolute, $X$," and "Absolute, $Y$." The effective address is formed by adding the contents of $X$ and $Y$ to the address contained in the second and third bytes of the instruction. This mode allows the index register to contain the index or count value and the instruction to contain the base address. This type of indexing allows any location referencing and the index to modify multiple fields resulting in reduced coding and execution time.

## ADDRESSING MODES

$\qquad$

cMOS

## COMMON CHARACTERISTICS

PROGRAMMING MODEL


INSTRUCTION SET - OP CODES, Execution Time, Memory Requirements


Note: MOS Technology cannot assume liability for the use of undefined OP Codes

vSs 1	40	$\overline{\text { RES }}$
RDY ${ }^{2}$	39	$\phi_{2}$（OUT）
$\phi_{1}$（OUT）C－3	38	S．O．
$\overline{\mathrm{RQ}} \mathrm{S}^{4}$	37	－$\phi_{0}(\mathrm{IN})$
N．C． 5	36	N．C．
NM1－ 6	35	N．C．
SYNC E ${ }^{7}$	34	$\square_{\text {RN }}$
VCC 8	33	－
$A 0-9$	32	己D1
$\mathrm{A}_{1}$－ 10	31	CD2
A2 $\square^{11}$	30	D3
А 3 － 12	29	己D4
$\mathrm{A}_{4} \mathrm{C}^{13}$	28	－D5
A5 $=14$	27	$\checkmark$ D6
A6－ 15	26	CD7
A7 ${ }^{\text {a }} 16$	25	A15
A8 $\mathrm{Cl}^{17}$	24	A14
A9 18	23	A13
A10 C 19	22	P A12
A11－ 20	21	VSs

## 65C02－ 40 Pin Package

Features of 65C02
－65K Addressable Bytes of Memory（A0－A15）
－IRQ Interrupt
－On－the－chip Clock
TTL Level Single Phase Input RC Time Base Input
Crystal Time Base Input
－SYNC Signal
（can be used for single instruction execution）
－RDY Signal
（can be used to halt or single cycle execution）
－Two Phase Output Clock for Timing of Support Chips
－NMI Interrupt

$\overline{\text { AES }}$	1	28	$\phi_{2}$（OUT）
VSS	2	27	$\varnothing_{0}(\mathrm{IN})$
$\overline{\text { IRQ }}$	3	26	R／W
NMI	4	25	DO
VCC	5	24	D1
A0	6	23	D2
A1	7	22	D3
A2	8	21	D4
A3	9	20	D5
A4	10	19	D6
A5	11	18	D7
A6	12	17	A11
A7	13	16	A10
A8	14	15	A9

## 65C03－ 28 Pin Package

Features of 65C03
－ 4 K Addressable Bytes of Memory（A0－A11）
－On－the－chip Clock
－IRQ interrupt
－$\overline{\text { NMI Interrupt }}$
－ 8 Bit Bidirectional Data Bus

RES	1	28	$\varnothing_{2}$（OUT）
VSS	2	27	$\square \varnothing_{0}$（IN）
IRQ	3	26	$\sim \mathrm{R}$ W
VCC	4	25	－D0
AO	5	24	$\checkmark$ D1
A1	6	23	D2
A2	7	22	¢ D3
A3	8	21	$\square$ D4
A4	9	20	－D5
A5	10	19	D6
A6	11	18	C D7
A7	12	17	－A12
A8	13	16	¢ A11
A9	14	15	¢ A10

## 65C04－28 PIn Package

Features of 65CO4
－ － 8 K Addressable Bytes of Memory（AO－A12）
－On－the－chip Clock
－$\overline{\mathrm{RQ}}$ Interrupt
－ 8 Bit Bidirectional Data Bus

$\overline{\text { RES }} \boldsymbol{-}$	28	$\square \varnothing_{2}$（OUT）
VSS C 2	27	－$\varnothing_{0}$（IN）
RDY $=3$	26	$\square \mathrm{R}$ W
$\overline{\text { IRQ }}=4$	25	صD0
VCC ㄷ 5	24	－D1
$A 0=6$	23	己D2
A1－ 7	22	己D3
A2－ 8	21	¢D4
A3 $=9$	20	己 D5
A4 $口 10$	19	己D6
A5 11	18	－D7
$A 6=12$	17	صA11
A7 ¢ 13	16	己A10
A8 $=14$	15	二A9

## 65C05－ 28 Pin Package

## Features of 65C05

－4K Addressable Bytes of Memory（AO－A11）
－On－the－chip Clock
－$\overline{\mathrm{R} Q}$ Interrupt
－RDY Signal
－ 8 Bit Bidirectional Data Bus

$\overline{R E S}=1$	28	F $\varnothing_{2}$ (OUT)
VSS $=$ ?	27	$\square \emptyset_{0}(\mathrm{IN})$
$\varnothing_{1}$ (OUT) $=3$	26	R/W
$\overline{\mathrm{IFQ}}=4$	25	صD0
$\mathrm{VCC}=5$	24	صD1
A0 $=6$	23	$\square \mathrm{D} 2$
A1 $\mathrm{Cf}{ }^{7}$	22	$\square \mathrm{D} 3$
A2 $=8$	21	己D4
A3 -9	20	صD5
A4 $=10$	19	PD6
A5 = 11	18	- D7
A6 = 12	17	صA11
A $7=13$	16	- ${ }^{\text {al0 }}$
A8 = 14	15	- A9

## 65C06 - 28 Pin Package

Features of 65C06

- 4K Addressable Bytes of Memory (A0-A11)
- On-the-chip Clock
- $\overline{\operatorname{R} Q}$ Interrupt
- Two phase output clock for timing of support chips
- 8 Bit Bidirectional Data Bus



## 65C07 - 28 Pin Package

Features of 65C07

- 8 K Addressable Bytes of Memory (AO-A12)
- On-the-chip Clock
- RDY Signal
- 8 Bit Bidirectional Data Bus


65C12 - 40 Pin Package
Features of 65C12

- 65K Addressable Bytes of Memory (A0-A15)
- IRQ Interrupt
- $\overline{\mathrm{NMI}}$ Interrupt
- RDY Signal
- 8 Bit Bidirectional Data Bus
- SYNC Signal
- Two phase clock input
- Data Bus Enable

vss $=1$	28	ح $\overline{\mathrm{RES}}$
$\phi_{1}(\mathrm{IN})=2$	27	$\varnothing_{2(1 N)}$
$\overline{\underline{R Q}}=3$	26	R/W
$\overline{\mathrm{NMI}}=4$	25	D0
VCC - 5	24	D1
$A 0=6$	23	- D2
$\mathrm{A}_{1}=$ ?	22	- D3
$A 2=8$	21	- D4
A3 $=9$	20	- DS
A4 - 10	19.	- 06
A5 = 11	18	- D7
A6 = 12	17	- A11
$A 7=13$	16	- A10
A8 $=14$	15	- A 9

## 65C13 - 28 Pin Package

Features of 65C13

- 4K Addressable Bytes of Memory (A0-A11)
- Two phase clock input
- IRQ Interrupt
- NMI Interrupt
- 8 Bit Bidirectional Data Bus

Vss ${ }^{1}$	28	己 $\overline{\mathrm{RES}}$
$\varnothing_{1}(\mathrm{IN})=2$	27	$\emptyset_{2}$ (IN
$\overline{\mathrm{TRO}}=3$	26	- R/W
$\mathrm{VCC}=4$	25	$\square \mathrm{DO}$
$A_{0}=5$	24	-D1
$A_{1}=6$	23	صD2
A2 $=7$	22	- D3
A3 $=8$	21	-D4
A4 \% 9	20	己D5
A5 = 10	19	- D6
A6 - 11	18	- 07
A7 = 12	17	صA12
A8 $=13$	16	-A11
A9 = 14	15	- ${ }^{\text {A10 }}$

## 65C14-28 Pin Package

## Features of 65C14

- 8K Addressable Bytes of Memory (A0-A12)
- Two phase clock input
- $\overline{\mathrm{RQ}}$ Interrupt
- 8 Bit Bidirectional Data Bus

vss $f 1$	28	$\overline{R E S}$
RDY $=2$	27	$\phi_{2}(\mathbb{N}$
$\emptyset_{1}\left(1 N^{\prime}\right)=3$	26	R/W
$\overline{\mathrm{IQQ}}=4$	25	D0
VCC = 5	24	D1
AO $=6$	23	D2
A1 -7	22	D3
A2 - 8	21	D4
A3 $=9$	20	D5
A4 $=10$	19	D6
A5 = 11	18	D7
A6 $=12$	17	A11
A7 $=13$	16	A10
A8 14	15	A9

## 65C15-28 Pin Package

Features of 65C15

- 4 K Addressable Bytes of Memory (A0-A11)
- Two phase clock input
- $\overline{\text { IRQ }}$ Interrupt
- RDY Signal
- 8 Bit Bidirectional Data Bus

COMMODORE SEMICONDUCTOR GROUP reserves the right to make changes to any products herein to improve reliability, function or design. COMMODORE SEMICONDUCTOR GROUP does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.

MPS

## 65C23 TRI-PORT INTERFACE

## CONCEPT . . .

The 65C23 TRI-PORT Interface (TPI) is designed to simplify the implementation of complex I/O operations in microcomputer systems. It has three dedicated 8 -bit I/O ports which provide 24 individually programmable I/O lines.

## FEATURES:

- 24 individually programmable I/O lines
- Completely static operation
- Two TTL Drive Capability
- 6 directly addressable registers
- 1 MHz operation

65C23 Addressing			
65C23	REGISTERS (Direct Addressing)		
000	R0	PRA - Port Register A	
001	R1	PRB - Port Register B	
010	R2	PRC - Port Register C	
011	R3	DDRA - Data Direction Register A	
100	R4	DDRB - Data Direction Register B	
101	R5	DDRC - Data Direction Register C	
110	Illegal States		
111	Illegal States		
$*$ NOTE: RS2. RS1. RS0 respectively			

ORDER NUMBER:
MXS 65C23

PACKAGE DESIGNATOR
C = CERAMIC
$\mathrm{P}=\mathrm{PLASTIC}$

65C23 PIN CONFIGURATION

VSS	1	40	DB7
PA0	2	39	DB6
PA1	3	38	DB5
PA2	4	37	DB4
PA3	5	36	DB3
PA4	6	35	DB2
PA5	7	34	DB1
PA6	8	33	DB0
PA7	9	32	PC7
PB0	10	31	PC6
PB1	11	30	PC5
PB2	12	29	PC4
PB3	13	28	PC3
PB4	14	27	PC2
PB5	15	26	PC1
PB6	16	25	PC0
PB7	17	24	RS0
CS	18	23	RS1
WRITE			
VDD	19	22	RS2

## 65C23 INTERNAL ARCHITECTURE



MAXIMUM RATINGS

RATING	SYMBOL	VALUE	UNIT
SUPPLY VOLTAGE	$\mathrm{V}_{\mathrm{Gc}}$	-0.3 to +7.0	$\mathrm{~V}_{\mathrm{dc}}$
INPUT VOLTAGE	$\mathrm{V}_{\mathrm{in}}$	-0.3 to +7.0	$\mathrm{~V}_{\mathrm{dc}}$
OPERATING TEMPERATURE RANGE	$T_{A}$	0 to +70	${ }^{\circ} \mathrm{C}$
STORAGE TEMPERATURE RANGE	$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

This device contains circuitry to protect the inputs against damage due to high static voltages, however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this circuit.

CHARACTERISTICS $V_{C C}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{VSS}_{\mathrm{SS}}=\mathrm{OV}, \mathrm{T}_{\mathrm{A}}=0^{\circ}$ to $70^{\circ} \mathrm{C}$ )

CHARACTERISTIC	SYMBOL	MIN	TYP	MAX	UNIT
Input High Voltage (Normal Operating Levels)	$V_{\text {IH }}$	+ 2.0	-	$\mathrm{V}_{\mathrm{CC}}$	Vdc
Input Low Voltage (Normal Operating Levels)	$V_{\text {IL }}$	-0.3	-	$+.8$	Vdc
Input Leakage Current $\begin{aligned} & V_{\text {in }}=0 \text { to } 5.0 \mathrm{Vdc} \\ & \text { WRITE } \overline{\text { RST, }} \overline{\mathrm{CS}}, \mathrm{RS}_{0} \cdot \mathrm{RS}_{2} \end{aligned}$	In	0	$\pm 1.0$	$\pm 2.5$	$\mu \mathrm{Adc}$
Three-State (Off State) Input Current $\begin{aligned} & \left.V_{\text {in }}=0.4 \text { to } 2.4 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{CC}}=\max \right) \\ & \mathrm{DO}-\mathrm{D} 7, \mathrm{PAO}-\mathrm{PA} 7, \mathrm{PBO}-\mathrm{PB} 7, \mathrm{PCO}-\mathrm{PC} 7 \end{aligned}$	'TSI	0	$\pm 2.0$	$\pm 10$	$\mu \mathrm{Adc}$
Output High Voltage $\left.N_{C C}=\min , \text { Load }=200 \mu \mathrm{AdC}\right)$	$\mathrm{V}_{\mathrm{OH}}$	2.4	3.5	${ }^{\mathrm{C} C}$	Vdc
Output Low Voltage $\left.N_{\mathrm{CC}}=\min , \text { Load }=3.2 \mathrm{mAdc}\right)$	$\mathrm{V}_{\mathrm{OL}}$	VSS	0.2	+ 0.4	Vdc
Output High Current (Sourcing) $\left(\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{Vdc}\right)$	IOH	-200	$-1000$	-	$\mu \mathrm{Adc}$
Output Low Current (Sinking) $\left(\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{Vdc}\right)$	${ }^{\prime} \mathrm{OL}$	3.2	-	-	mAdc
Supply Current	${ }^{1} \mathrm{CC}$	-		10	mA
Input Capacitance $\left.N_{\text {in }}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, f=1.0 \mathrm{MHz}\right)$   DO-D7, PAO-PA7, PBO-PB7. PCO-PC7   $\overline{\text { WRITE }} \overline{\text { RST, }} \mathrm{RS}_{0}-\mathrm{RS}_{2}, \overline{\mathrm{CS}}$	$C_{\text {in }}$	-	7	10	.pF
Output Capacitance $\left(V_{\text {ln }}-0, T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)$	Cout	-	7	10	pF

Note: Negative sign Indicates outward current flow, positive indicates inward flow.

READ CYCLE


WRITE CYCLE


Note: All timings referenced to $V_{I L} \max , V_{I H}$ min on inputs and $V_{O L} \max , V_{O H}$ min on outputs.

CMOS

## READ CYCLE

Symbol	Parameter	MIN	MAX	UNITS
T FiC	Read Cycle	450	-	nS
TACC	Access Time ${ }^{1}$	-	450	ns
TCO	$\overline{\mathrm{CS}}$ to Output Valid	-	270	ns
Trics	RNW high to $\overline{C S}$ Setup	0	-	nS
Trich	R/W high to $\overline{C S}$ Hold	0	-	ns
TOTD	$\overline{\mathrm{CS}}$ to Output Off Delay	20	120	ns
TADD	Address to Output Delay	50	-	nS
TPDS	Port Input Setup	120	-	ns
TPIDH	Port Input Hold	150	-	ns

Note 1: Access Time measured from later of WRITE high or RS stable.

## WRITE CYCLE

Syrnbol	Parameter	MIN	MAX	UNITS
TW/C	Write Cycle	450	-	nS
TWA	Write Active Time 2	420	-	nS
TAWS	Address to RW low Setup	0	-	nS
TAWH	Address to RW low Hold	0	-	nS
TDIS	Data bus in Setup	150	-	nS
TDH	Data bus in Hold	0	-	nS
TWPD	Write active to Port out Delay	-	1000	nS

Note 2: TWA is the time while both $\overline{C S}$ and R/W are low.

COMMODORE SEMICONDUCTOR GROUP reserves the right to make changes to any products herein to improve reliability, function or design. COMMODORE SEMICONDUCTOR GROUP does not assume any liability arising ot of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.

## $23 C 16$ STATIC READ ONLY MEMORY (2048x8)

## DESCRIPTION

The 23C16 high performance read only memory is organized 2048 words by 8 bits with access times of less than 450 ns . This ROM is designed to be compatible with all microprocessor and similar applications where high performance, large bit storage and simple interfacing are important design considerations.

The 23C16 operates totally asynchronously. No clock input is required. The three programmable chip select inputs allow eight 16K ROMS to be OR-tied without external decoding.

Designed to replace two 2708 8K EPROMS, the 23C16 can eliminate the need to redesign printed circuit boards for volume mask programmed ROMS after prototyping with EPROMS.

- 400mV Noise Immunity on Inputs
- $2048 \times 8$ Bit Organization
- Single +5 Volt Supply
- Access Time - 450 ns
- Totally Static Operation
-TLL Compatible
- Three-State Outputs for Wire-OR Expansion
- Three Programmable Chip Selects
- Pin Compatible with 2716 EPROM
- Replacement for two 2708s
- 2708/2716 EPROMS Accepted as Program Data Inputs


ABSOLUTE MAXIMUM RATINGS
Ambient Temperature under Bias Storage Temperature
Supply Voltage to Ground Potential Applied Output Voltage Applied Input Voltage Power Dissipation
${ }^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
-0.5 V to +7.0 V
-0.5 V to +7.0 V
-0.5 V to +7.0 V 1.0W

## COMMENT

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
D. C. CHARACTERISTICS $\quad T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%$, unless otherwise specified)

Symbol	Parameter	Min.	Max.	Units	Test Conditions
ICC	Power Supply Current		10	mA	$\mathrm{F}=1 \mathrm{MHz}$
ICCS	Stand-by Power Supply Current		10	$\mu \mathrm{A}$	Chip Deselected
10	Output Leakage Current		10	$\mu \mathrm{A}$	Chip Deselected
11	Input Load Current		10	$\mu \mathrm{A}$	$V_{C C}=$ Max. Gnd $\leq V_{\text {IN }} \leq V_{C C}$
VOL	Output Low Voltage		0.4	Volts	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} . \mathrm{IOL}=2.1 \mathrm{~mA}$
VOH	Output High Voltage	2.4		Volts	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} .1 \mathrm{OH}=-400 \mu \mathrm{~A}$
VIL	Input Low Voltage	-0.5	0.8	Volts	See Note 1
V IH	Input High Voltage	2.0	$\mathrm{VCC}_{\mathrm{Cl}}+1$	Volts	

A. C. CHARACTERISTICS $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5.0 \mathrm{~V} \pm 5 \%$, unless otherwise specified)

Symbol	Parameter	Min.	Max.	Units	Test Conditions
tACC	Address Access Time		450	ns	
tCO	Chip Select Delay		200	ns	
tDF	Chip Deselect Delay		100	ns	See Note 2
toH	Previous Data Valid   After Address Change	40		ns	

CAPACITANCE $\quad\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right.$, See Note 3)

Symbol	Farameter	Min.	Max.	Units	Test Conditions
CIN	Input Capacitance		8	pF	All Pins except Pin under   COUT
Olutput Capacitance		10	pF	Test Tied to AC Ground	

Note 1: Input levels that swing more negative than -0.5 V will be clamped and may cause damage to the device.
Note 2: Loading $1 \mathrm{TLL}+100 \mathrm{pF}$, input transition time: 20 ns
Timing measurement levels: input 1.5 V , output 0.8 V and 2.0 V .
Note 3: This parameter is periodically sampled and is not $100 \%$ tested.


CWOS

## PACKAGING DIAGRAM



MOLDED PACKAGE


COMMODORE SEMICONDUCTOR GROUP reserves the right to make changes to any products herein to improve reliability, function or design. COMMODORE SEMICONDUCTOR GROUP does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.

## $23 G 32$ STATIC READ ONLY MEMORY (4096x8)

## DESCRIPTION

The 23C32 high performance read only memory is organized 4096 words by 8 bits with access times of less than 450 ns . This ROM is designed to be compatible with all microprocessor and similar applications where high performance, large bit storage and simple interfacing are important design considerations.

The 23C32 operates totally asynchronously. No clock input is required. The two programmable chip select inputs allow four 32K ROMS to be OR-tied without external decoding.

Designed to replace two 2716 16K EPROMS, the 23C32 can eliminate the need to redesign printed circuit boards for volume mask programmed ROMS after prototyping with EPROMS.

- 400 mV Noise Immunity on Inputs
- $4096 \times 8$ Bit Organization
- Single +5 Volt Supply
- Access Time - 450 ns
- Totally Static Operation
- TL Compatible
- Three-State Outputs for Wire-OR Expansion
- Two Programmable Chip Selects
- Pin Compatible with 2716 \& 2532 EPROM
- Replacement for 2716
- 2708/2716 EPROMS Accepted as Program Data Inputs

ORDERING INFORMATION:
MXS 23C32

PACKAGE DESIGNATOR
$\mathrm{C}=$ CERAMIC
$\mathrm{P}=\mathrm{PLASTIC}$

PIN CONFIGURATION


## ABSOLUTE MAXIMUM RATINGS

Ambient Temperature under Bias Storage Temperature Supply Voltage to Ground Potential Applied Output Voltage Applied Input Voltage

C to $+70^{\prime \prime} \mathrm{C}$
-65 C to $+150^{\circ} \mathrm{C}$
-0.5 V to +7.0 V
-0.5 V to +7.0 V
-0.5 V to +7.0 V

## COMMENT

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
D. C. CHARACTERISTICS ( $T_{A}=0 \mathrm{C}$ to $+70 \mathrm{C}, V_{C C}=5.0 \mathrm{~V} \pm 5 \%$, unless otherwise specified)

Symbol	Parameter	Min.	Max.	Units	Test Conditions
ICC	Power Supply Current		17	mA	$\mathrm{F}=1 \mathrm{MHz}$
ICCS	Stand-by Power Supply Current		10	$\mu \mathrm{A}$	Chip Deselected
10	Output Leakage Current		10	$\mu \mathrm{A}$	Chip Deselected
11	Input Load Current		10	$\mu \mathrm{A}$	$V_{C C}=$ Max. Gnd $\leq V_{\text {IN }} \leq V_{C C}$
VOL	Output Low Voltage		0.4	Volts	$V_{C C}=\mathrm{Min} .1 \mathrm{OL}=2.1 \mathrm{~mA}$
$\mathrm{VOH}^{\text {O }}$	Output High Voltage	2.4		Volts	$V_{C C}=\mathrm{Min} .10 \mathrm{l}=-400 \mu \mathrm{~A}$
VIL	Input Low Voltage	-0.5	0.8	Volts	See Note 1
VIH	input High Voltage	2.0	$\mathrm{V}_{\mathrm{CC}}+1$	Volts	

A. C. CHARACTERISTICS $\left(T_{A}=0 \mathrm{C}\right.$ to $+70 \mathrm{C} . V_{C C}=5.0 \mathrm{~V} \pm 5 \%$. unless otherwise specified)

Symbol	Parameter	Min.	Max.	Units	Test Conditions
tACC	Address Access Time		450	ns	
tCO	Chip Select Delay		200	ns	
tDF	Chip Deselect Delay		100	ns	See Note 2
tOH	Previous Data Valid	40		ns	
	After Address Change				

CAPACITANCE: $\quad\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right.$, See Note 3 )

Symbol	F'arameter	Min.	Max.	Units	Test Conditions
CIN	Input Capacitance		8	pF	All Pins except Pin under
COUT	Cutput Capacitance		10	pF	Test Tied to AC Ground

Note 1: Input levels that swing more negative than -0.5 V will be clamped and may cause damage to the device.
Note 2: Loading $1 \mathrm{TLL}+100 \mathrm{pF}$, input transition time: 20 ns
Timing measurement levels: input 1.5 V , output 0.8 V and 2.0 V .
Note 3: This parameter is periodically sampled and is not $100 \%$ tested.

TIMING DIAGRAMS


ROMS

BLOCK DIAGRAM


## PACKAGING DIAGRAM



COMMOLORE SEMICONDUCTOR GROUP reserves the right to make changes to any products herein to improve reliability, function or design. COMMODORE SEMICONDUCTOR GROUP does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.

## SECTION4



Pin Schedule

| Half Digit | 12 | Seg $E_{4}$ | 23 | Seg $B_{5}$ | 34 | Seg $G_{3}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Seg $E_{1}$ | 13 | Seg $J_{4}$ | 24 | Seg $A_{5}$ | 35 | Seg $B_{2}$ |
| Seg $D_{1}$ | 14 | Seg $D_{4}$ | 25 | Seg $F_{5}$ | 36 | Seg $A_{2}$ |
| Seg $C_{1}$ | 15 | Seg $C_{4}$ | 26 | Seg $B_{4}$ | 37 | Seg $F_{2}$ |
| Colon | 16 | Seg $E_{5}$ | 27 | Seg $A_{4}$ | 38 | Seg $G_{2}$ |
| Seg $E_{2}$ | 17 | Seg $D_{5}$ | 28 | Seg $H_{4}$ | 39 | Seg $B_{1}$ |
| Seg $D_{2}$ | 18 | Seg $L_{5}$ | 29 | Seg $F_{4}$ | 40 | Seg $A_{1}$ |
| Seg C $C_{2}$ | 19 | Seg $C_{5}$ | 30 | Seg $G_{4}$ | 41 | Seg $F_{1}$ |
| Seg $E_{3}$ | 20 | Seg $G_{5}$ | 31 | Seg $B_{3}$ | 42 | Seg $G_{1}$ |
| Seg $D_{3}$ | 21 | Backplane | 32 | Seg $A_{3}$ |  |  |
| Seg $C_{3}$ | 22 | Melody | 33 | Seg $F_{3}$ |  |  |

Model
4003K
4 DIGIT BIPLEXED ALARM CLOCK DISPLAY WITH ALARM, PM, AND DATA FLAG.

## MODEL 4003K 4 DIGIT BIPLEXED ALARM CLOCK DISPLAY WITH ALARM, PM, AND DATE FLAGS


) COMPATIBLE WITH CMOS P/N FR8267
2) DIMENSIONS IN PARENTHESES* ARE IN MILLIMETERS
3) TOLERANCE UNLESS SPECIFIED: $X X X= \pm .005(0,13)$.

Pin Schedule

	BP A	BP B		BP A	BP B
1)	$B P A$		11)	A2	COLON
2)	BLANK	ALARM	12)	F3	E3
3)	BLANK	BLANK	13)	G3	D3
4)	BLANK	BLANK	14)	B3	C3
5)	BLANK	BLANK	15)	F4	E4
6)	A,G,E,D1	BLANK	16)	G4	D4
7)	B1	C1	17)	B4	C4
8)	F2	E2	18)	A4	DATE
9)	G2	D2	19)	A3	PM
10)	B2	C2	20)		BP B

## MODEL 4004L 4 DIGIT DIRECT DRIVE CLOCK DISPLAY WITH ALARM, AM AND PM FLAGS.

Outside Dimensions . $709(18,01) \times 1.575(40,01)$
Digit Height . $248(6,30)$


NOTES:
1.) DIMENSIONS IN PARENTHESES ARE IN MILLIMETERS.
2.) TOLERANCE UNLESS SPECIFIED: $X \times X={ }^{\dagger} .005(0,13)$

MODEL 4005N 4 DIGIT DIRECT DRIVE ALARM CLOCK WITH AM AND PM FLAGS.
Outside Dimensions $.866(22,00) \times 2.047(51,99)$
Digit Height $3937(10,00)$


Pin Schedule

1	COMMON	9	Seg E3	16	Seg A4	23	Seg B2
2	Seg PM	10	Seg D3	17	Seg F4	24	Seg A2
3	Seg A,G,E,D1	11	Seg C3	18	Seg G4	25	Seg F2
4	Seg C1	12	Seg E4	19	Seg B3	26	Seg G2
5	Seg E2	13	Seg D4	20	Seg A3	27	Seg B1
6	Seg D2	14	Seg C4	21	Seg F3	28	AM
7	Seg C2	15	Seg B4	22	Seg G3	29	ALARM
8	COLON						



NOTES:

1) COMPATIBLE WITH CMOS P/N FR8267.
2) DIMENSIONS IN PARENTHESES ARE IN MILLIMETERS.
3) TOLERANCE UNLESS SPECIFIED: $. X X X \pm .005(0,13)$.

Pin Schedule

$B P B$

ALARM
BLANK
BLANK
BLANK
BLANK
C1
E2
D2
C2

BP A
BP B
11) A2

COLON
12) F3
13) G3
14) B 3
15) F 4
16) G4
17) B4
18) A 4
19) A3
20)

	BP A	BP B		BP A	BP B
1)	BP A		11)	A2	COLON
2)	BLANK	ALARM	12)	F3	E3
3)	BLANK	BLANK	13)	G3	D3
4)	BLANK	BLANK	14)	B3	C3
5)	BLANK	BLANK	15)	F4	E4
6)	A,G,E,D1	BLANK	16)	G4	D4
7)	B1	C1	17)	B4	C4
8)	F2	E2	18)	A4	BLANK
9)	G2	D2	19)	A3	PM
10)	B2	C2	20)		BP B



Pin Schedule

	BP A	BP B		BP A	BP B
1)	BP A		11)	A2	COLON
2)	BLANK	ALARM	12)	F3	E3
3)	BLANK	BLANK	13)	G3	D3
4)	BLANK	BLANK	14)	B3	C3
5)	BLANK	BLANK	15)	F4	E4
6)	A,G,E,D1	BLANK	16)	G4	D4
7)	B1	C1	17)	B4	C4
8)	F2	E2	18)	A4	BLANK
9)	G2	D2	19)	A3	PM
10)	B2	C2	20)		BP B

MODEL 5015F MEN'S 6 DIGIT DIRECT DRIVE WATCH DISPLAY WITH ALARM FLAG

1.) COMPATIBLE WITH CMOS P/N FR 2568
2.) DIMENSIONS IN PARENTHESES ARE IN MILLIMETERS
3.) TOLERANCES UNLESS SPECIFIED: $x \times x=$ $.005(0,13)$

Pin Schedule

1	Seg $E_{1}$	13	Seg $C_{4}$	25	Seg $B_{6}$	37	Seg $B_{3}$
2	Seg $D_{1}, A_{1}$	14	Seg $E_{5}$	26	Seg $A_{6}$	38	Seg $F_{3}$
3	Seg $C_{1}$	15	Seg $J_{5}$	27	Seg $F_{6}$	39	Seg $G_{3}$
4	Seg $E_{2}$	16	Seg $D_{5}$	28	Seg $B_{5}$	40	Seg $B_{2}$
5	Seg $D_{2}$	17	Seg $C_{5}$	29	Seg $A_{5}$	41	Seg $A_{2}$
6	Seg $C_{2}$	18	Seg $E_{6}$	30	Seg $H_{5}$	42	Seg $F_{2}$
7	Colon	19	Seg $D_{6}$	31	Seg $F_{5}$	43	Seg $G_{2}$
8	Seg $E_{3}$	20	Seg $L_{6}$	32	Seg $G_{5}$	44	Seg $B_{1}$
9	Seg $A_{3}, D_{3}$	21	Seg $C_{6}$	33	Seg $B_{4}$	45	Seg $F_{1}$
10	Seg $C_{3}$	22	Seg $G_{6}$	34	Seg $A_{4}$	46	Seg $G_{1}$
11	Seg $E_{4}$	23	Backplane	35	Seg $F_{4}$		
12	Seg $D_{4}$	24	Alarm	36	Seg $G_{4}$		



Pin Schedule

| 1 | Backplane | 8 | Seg $D_{2}$ | 15 | Seg $B_{3}$ | 22 | Seg $G_{2}$ |
| :--- | :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | Half Digit | 9 | Seg $C_{2}$ | 16 | Seg $A_{3}$ | 23 | Seg $B_{1}$ |
| 3 | Seg $E_{1}$ | 10 | Seg $E_{3}$ | 17 | Seg $F_{3}$ | 24 | Seg $A_{1}$ |
| 4 | Seg $D_{1}$ | 11 | Seg $D_{3}$ | 18 | Seg $G_{3}$ | 25 | Seg $F_{1}$ |
| 5 | Seg $C_{1}$ | 12 | Seg $C_{3}$ | 19 | $\operatorname{Seg} B_{2}$ | 26 | Seg $G_{1}$ |
| 6 | Colon | 13 | PM | 20 | Seg $A_{2}$ |  |  |
| 7 | Seg $E_{2}$ | 14 | Alarm | 21 | Seg $F_{2}$ |  |  |

MODEL 5018E MEN'S $31 / 2$ DIGIT DIRECT DRIVE WATCH DISPLAY WITH ALARM AND PM FLAGS


Pin Schedule

1	Backplane
2	Half Digit
3	Seg $E_{1}$
4	Seg $D_{1}$
5	Seg C 1
6	Colon
7	Seg $E_{2}$


8	Seg $D_{2}$
9	Seg $C_{2}$
10	Seg $E_{3}$
11	Seg $D_{3}$
12	Seg
13	$C_{3}$
13	PM
14	Alarm


15	Seg $B_{3}$
16	Seg $A_{3}$
17	Seg $F_{3}$
18	Seg $G_{3}$
19	Seg $B_{2}$
20	Seg $A_{2}$
21	Seg $F_{2}$


22	Seg $G_{2}$
23	Seg $B_{1}$
24	Seg $A_{1}$
25	Seg $F_{1}$
26	Seg $G_{1}$

MODEL 5053BB LADIES' $31 / 22$ DIGIT BIPLEXED WATCH DISPLAY


Pin Schedule

	A	B		A	B
1	Backplane		9.	Seg $\mathrm{A}_{2}$	Seg B 2
2	Half Digit	$\operatorname{Seg} \mathrm{E}_{1}$	10.	-OFF-	Seg $\mathrm{E}_{3}$
3	Seg F 1	Seg $\mathrm{D}_{1}$	11.	Seg $\mathrm{F}_{3}$	Seg $\mathrm{D}_{3}$
4	Seg G 1	Seg $\mathrm{C}_{1}$	12.	Seg $\mathrm{G}_{3}$	Seg C ${ }_{3}$
5	Seg $A_{1}$	Seg $\mathrm{B}_{1}$	13.	Seg $\mathrm{A}_{3}$	Seg B 3
6	Colon	Seg $\mathrm{E}_{2}$	14.	Month-Date	-OFF-
7	Seg $\mathrm{F}_{2}$	Seg $\mathrm{D}_{2}$	15.		Backplane
8	Seg G 2	Seg $\mathrm{C}_{2}$			

MODEL 5056 I MEN'S $5 ½$ DIGIT DIRECT DRIVE WATCH DISPLAY WITH MELODY ALARM FLAG


Pin Schedule

$\overline{8}$	1	Half Digit	12	Seg $\mathrm{E}_{4}$	23	Seg	$B_{5}$	34	Seg $\mathrm{G}_{3}$
	2	Seg $\mathrm{E}_{1}$	13	Seg J ${ }_{4}$	24	Seg	$A_{5}$	35	Seg $\mathrm{B}_{2}$
	3	Seg $\mathrm{D}_{1}$	14	Seg $\mathrm{D}_{4}$	25	Seg	$F_{5}$	36	Seg $\mathrm{A}_{2}$
	4	Seg $\mathrm{C}_{1}$	15	Seg $\mathrm{C}_{4}$	26	Seg	$\mathrm{B}_{4}$	37	Seg $\mathrm{F}_{2}$
	5	Colon	16	Seg $\mathrm{E}_{5}$	27	Seg	$\mathrm{A}_{4}$	38	Seg $\mathrm{G}_{2}$
	6	Seg $E_{2}$	17	Seg $\mathrm{D}_{5}$	28	Seg	$\mathrm{H}_{4}$	39	Seg $\mathrm{B}_{1}$
	7	Seg $\mathrm{D}_{2}$	18	Seg $\mathrm{L}_{5}$	29	Seg	$\mathrm{F}_{4}$	40	Seg $A_{1}$
	8	Seg $\mathrm{C}_{2}$	19	Seg $\mathrm{C}_{5}$	30	Seg	$\mathrm{G}_{4}$	41	Seg $\mathrm{F}_{1}$
	9	Seg $\mathrm{E}_{3}$	20	Seg $\mathrm{G}_{5}$	31	Seg	$\mathrm{B}_{3}$	42	Seg $\mathrm{G}_{1}$
	10	Seg $\mathrm{D}_{3}$	21	Backplane	32	Seg	$\mathrm{A}_{3}$		
	11	Seg $\mathrm{C}_{3}$	22	Melody	33	Seg	$\mathrm{F}_{3}$		



1) COMPATIBLE WITH CMOS P/N FR222.4
2) DIMENSIONS IN PARENTHESES ARE IN MILLIMETERS.
3) TOLERANCE UNLESS SPECIFIED: $. X X X \pm .005(0,13)$.

Pin Schedule

	A	B		A	B
1	Backplane		8	Seg $\mathrm{G}_{2}$	Seg $\mathrm{C}_{2}$
2	Half Digit	Seg $\mathrm{E}_{1}$	9	Seg $\mathrm{A}_{2}$	Seg $\mathrm{B}_{2}$
3	Seg $\mathrm{F}_{1}$	Seg $\mathrm{D}_{1}$	10	-OFF-	Seg $\mathrm{E}_{3}$
4	Seg $\mathrm{G}_{1}$	Seg $\mathrm{C}_{1}$	11	Seg $\mathrm{F}_{3}$	Seg $\mathrm{D}_{3}$
5	Seg $\mathrm{A}_{1}$	Seg $\mathrm{B}_{1}$	12	Seg $\mathrm{G}_{3}$	Seg $\mathrm{C}_{3}$
6	Colon	Seg $\mathrm{E}_{2}$	13	Seg $\mathrm{A}_{3}$	Seg $\mathrm{B}_{3}$
7	Seg $\mathrm{F}_{2}$	Seg $\mathrm{D}_{2}$	14		Backplane

MODEL 5061E MEN'S $3 ½$ DIGIT BIPLEXED WATCH DISPLAY


Pin Schedule

A

1	Back plane
2	Half Digit
3	Seg F 1
4	Seg G 1
5	Seg $A_{1}$
6	Colon
7	Seg F 2
8	Seg G 2

B

Seg $E_{1}$
Seg $\mathrm{D}_{1}$
Seg $\mathrm{C}_{1}$
Seg $B_{1}$
$\operatorname{Seg} E_{2}$
Seg $D_{2}$
Seg $C_{2}$

A
9. Seg $A_{2}$
10. -OFF-
11. $\operatorname{Seg} \mathrm{F}_{3}$
12. $\operatorname{Seg} \mathrm{G}_{3}$
13. $\mathrm{Seg} \mathrm{A}_{3}$
14. Month-Date
15.

## B

Seg $\mathrm{B}_{2}$
Seg $E_{3}$
Seg $D_{3}$
$\operatorname{Seg} C_{3}$
Seg B 3
-OFF-
Backplane


Pin Schedule

	$\underline{A}$	$\underline{B}$		$\underline{B}$	
1	Backplane		8	Seg $G_{2}$	Seg $C_{2}$
2	Half Digit	Seg $E_{1}$	9	Seg $A_{2}$	Seg $B_{2}$
3	Seg $F_{1}$	Seg $D_{1}$	10	$-O F F-$	Seg $E_{3}$
4	Seg G1	Seg $C_{1}$	11	Seg $F_{3}$	Seg $D_{3}$
5	Seg $A_{1}$	Seg $B_{1}$	12	Seg G	Seg $C_{3}$
6	Colon	Seg $E_{2}$	13	Seg $A_{3}$	Seg $B_{3}$
7	Seg $F_{2}$	Seg $D_{2}$	14		Backplane



Pin Schedule

	A
	Backplane
2	Half Digit
3	Seg $F_{1}$
4	Seg $G_{1}$
5	Seg $A_{1}$
6	Colon
7	Seg $F_{2}$

B
Seg $E_{1}$
Seg $D_{1}$
Seg $C_{1}$
Seg $B_{1}$
Seg $E_{2}$
$\operatorname{Seg} D_{2}$

A

8	Seg $G_{2}$
9	Seg $A_{2}$
0	$-\mathrm{OFF}-$
1	Seg $F_{3}$
2	$\operatorname{Seg} G_{3}$
3	Seg $A_{3}$

Seg $C_{2}$
Seg $\mathrm{B}_{2}$
Seg $\mathrm{E}_{3}$
Seg $\mathrm{D}_{3}$
Seg $\mathrm{C}_{3}$
Seg $\mathrm{B}_{3}$
Backplane

MODEL 5102E MEN'S BIPLEXED WATCH DISPLAY WITH PM, ALARM, AND DAY FLAGS.


NOTES:

1) COMPATIBLE WITH CMOS P/N FR 8268.
2) DIMENSIONS IN PARENTHESES ARE MILLIMETERS.
3) TOLERANCE UNLESS SPECIFIED: $X X X=\div .005(0,13)$.
4) SU PERMANENTLY PRINTED ON DISPLAY IN RED.
5) DAYS OF WEEK AND ALARM FRAME PERMANENTLY PRINTED ON DISPLAY IN BLACK.

Pin Schedule

	$B P$ A	$B \mathrm{BP}$		BP A	BP B
1)	BP A		11)	A2	COLON
2)	SU	ALARM	12)	F3	E3
3)	MO	SA	13)	G3	D3
4)	TU	FR	14)	B3	C3
5)	WE	TH	15)	F4	E4
6)	A,G,E,D1	BLANK	16)	G4	D4
7)	B1	C1	17)	B4	C4
8)	F2	E2	18)	A4	BLANK
9)	G2	D2	19)	A3	PM
10)	B2	C2	20)		BP B



Pin Schedule

BP B

ALARM
SA
FR
TH
BLANK
C1
E2
D2
C2

BP A
11) $A 2$
12) F3
13) G3
14) $B 3$
15) F4
16) G4
17) B 4
18) A 4
19) A 3
20)

BP B
COLON
E3
D3
C3
E4
D4
C4
BLANK
PM BP B

MODEL 5104 I MEN'S 8 DIGIT BIPLEXED WATCH DISPLAY WITH PM, AM, ALARM, AND DAY FLAGS.
Outside Dimensions $.599(14,20) \times .941(23,90)$
Digit Height . $173(4,39)$


## MODEL 5107B LADIES' 4 DIGIT BIPLEXED WATCH DISPLAY WITH ALARM AND PM FLAGS



Pin Schedule

	BP A	$\underline{B P B}$		BP A	BP B
1)	BP A		11)	A2	COLON
2)	BLANK	ALARM	12)	F3	E3
3)	BLANK	BLANK	13)	G3	D3
4)	BLANK	BLANK	14)	B3	C3
5)	BLANK	BLANK	15)	F4	E4
6)	A,G,E,D1	BLANK	16)	G4	D4
7)	B1	C1	17)	B4	C4
8)	F2	E2	18)	A4	BLANK
9)	G2	D2	19)	A3	PM
10)	B2	C2	20)		BP B

MODEL 5108E MEN'S BIPLEXED WATCH DISPLAY WITH PM AND ALARM FLAGS

I) COMPATIBLE WITH CMOS P/N FR8220 OR 8267.
2) DIMENSIONS IN PARENTHESES ARE IN MILLIMETETERS.
3) TOLERANCES UNLESS SPECIFIED: $. \mathrm{XXX} \pm .005(0,13)$.

Pin Schedule

	BP A	BP B		BP A	BP B
1)	BP A		11)	A2	COLON
2)	BLANK	ALARM	12)	F3	E3
3)	BLANK	BLANK	13)	G3	D3
4)	BLANK	BLANK	14)	B3	C3
5)	BLANK	BLANK	15)	F4	E4
6)	A,G,E,D1	BLANK	16)	G4	D4
7)	B1	C1	17)	B4	C4
8)	F2	E2	18)	A4	BLANK
9)	G2	D2	19)	A3	PM
10)	B2	C2	20)		BP B

MODEL 5109C LADIES' $3 ½$ DIGIT BIPLEXED WATCH DISPLAY WITH ALARM, PM, AND DAY FLAGS


Pin Schedule

	BP A	BP B		BP A	BP B
1)	BP A		11)	A2	COLON
2)	SU	ALARM	12)	F3	E3
3)	MO	SA	13)	G3	D3
4)	TU	FR	14)	B3	C3
5)	WE	TH	15)	F4	E4
6)	BLANK	BLANK	16)	G4	D4
7)	B1	C1	17)	B4	C4
8)	F2	E2	18)	A4	BLANK
9)	G2	D2	19)	A3	PM
10)	B2	C2	20)		BP B

MODEL 5111AA $3 ½$ DIGIT DIRECT DRIVE PEN DISPLAY WITH ALARM AND PM FLAGS
Outside Dimensions $.551(13,99) \times .295(7,49)$
Digit Height $.117(2,97)$


## Pin Schedule

1	Backplane	8	Seg $D_{2}$	15	Seg $B_{3}$	22	Seg $G_{2}$
2	Half Digit	9	Seg $C_{2}$	16	Seg $A_{3}$	23	Seg $B_{1}$
3	Seg $E_{1}$	10	Seg $E_{3}$	17	Seg $F_{3}$	24	Seg $A_{1}$
4	Seg $D_{1}$	11	Seg $D_{3}$	18	Seg $G_{3}$	25	Seg $F_{1}$
5	Seg C $C_{1}$	12	Seg $C_{3}$	19	$\operatorname{Seg} B_{2}$	26	Seg $G_{1}$
6	Colon	13	PM	20	Seg $A_{2}$		
7	Seg $E_{2}$	14	Alarm	21	Seg $F_{2}$		

## Model <br> 5112AA

 FLAGS.

Pin Schedule

BP B

ALARM
C1
E2
D2
C2
COLON
E3

BP A
9) G3
10) B 3
11) F 4
12) G4
13) B 4
14) $A 4$
15) A 3
16)

BP B

D3
C3
E4
D4
C4
BLANK
PM
BP B

## MODEL 5114AA 3½ DIGIT BIPLEXED PEN DISPLAY



Pin Schedule

	A	B		A	B
1	Backplane		8	Seg G ${ }_{2}$	Seg $\mathrm{C}_{2}$
2	Half Digit	Seg $\mathrm{E}_{1}$	9	Seg $A_{2}$	Seg $\mathrm{B}_{2}$
3	Seg $\mathrm{F}_{1}$	Seg $\mathrm{D}_{1}$	10	-OFF-	Seg $E_{3}$
4	Seg $\mathrm{G}_{1}$	Seg $\mathrm{C}_{1}$	11	Seg $\mathrm{F}_{3}$	Seg $\mathrm{D}_{3}$
5	Seg $\mathrm{A}_{1}$	Seg $\mathrm{B}_{1}$	12	Seg $\mathrm{G}_{3}$	Seg $\mathrm{C}_{3}$
6	Colon	Seg $\mathrm{E}_{2}$	13	Seg $A_{3}$	Seg B3
7	Seg $\mathrm{F}_{2}$	Seg $\mathrm{D}_{2}$	14		Backplane

## MODEL 5115E MEN'S BIPLEXED WATCH DISPLAY WITH PM, ONE SECOND INTERVAL STOPWATCH, AND DAY FLAGS.



NOTES:

1) COMPATIBLE WITH CMOS P/N FR 8223.
2) DIMENSIONS IN PARENTHESES ARE MILEIMETERS.
3) TOLERANCES UNLESS SPECIFIED: $X X X==.005(0,13)$. 4) SU PERMANENTLY PRINTED ON DISPLAY IN RED. 5) DAYS OF THE WEEK ARE PERMANENTLY PRINTED ON DISPLAY IN BLACK.

Pin Schedule

	BP A	BP B		BP A	BP B
1)	BP A		11)	A2	COLON
2)	SU	STOPWATCH	12)	F3	E3
3)	MO	SA	13)	G3	D3
4)	TU	FR	14)	B3	C3
5)	WE	TH	15)	F4	E4
6)	A,G,E,D1	BLANK	16)	G4	D4
7)	- B 1	C1	17)	B4	C4
8)	F2	E2	18)	A4	BLANK
9)	G2	D2	19)	A3	PM
10)	B2	C2	20)		BP B

## SECTION 5

## Packaging Information

connModore connioodore
 connioodore comninodore conm conninodore comnioodore Conninodore connioodore conninodore conninodore comninodore comncoodome commodore semiconductor group

commodore semiconductor group

## PACKAGING INPORMATION



## sEcilone

## Application Notes

conninodore comnioodore ఁommiocdore conniolodore comnioodore cృonnoodore conninodore
 conninodore conminodore connMoodore comొMoロdore
 connioodore commodore semiconductor group



## OCTAL BUS TRANSCEIVER, OUR EQUIVALENT ASYNCHRONOUS TWO-WAY COMMUNICATOR, TTL-CMOS COMPATIBLE

65245 MOS	SYMBOL	SN74LS245   TI, MMI, FCI, MOT, SIG
The Same (OK)	Package	20 PIN DIP
The Same (OK)	$\frac{\mathrm{IOL}}{\text { Fan }}-\overline{O-u t}$	IOL 12ma Vol. . 4 V IOL 24 ma Vol. .5 V
Typical Bad 47 ma Better 44 ma Better 56 ma	Power   loc   Supply Current	Typical   25ma Total Outputs Hi 62ma Total Outputs Low. 64ma Outputs at HiZ
Typical   Better 20na   Better 20na	Input Current ITH IIL	$\begin{aligned} & \text { Typical } \\ & 20 \mu a \\ & -200 \mu a \end{aligned}$
Our Best 20na, Typica Our Worst 47ns, Typica	$\frac{\text { Speed }}{\frac{\operatorname{tpHL}}{\operatorname{tpZL}}}$	8ns Typical (Their Best) 25ns Typical (Their Worst)

SUMMATION: Generally, we are better in supply current and input current, but slower in speed.

Logic Bymbol


## MPS 6525 VERSUS MC6821/ 8255

The MPS 6525 Tri-Port Interface Adapter combines three 8-bit I/O ports providing 24 individually programmable I/O lines. The third port is programmable for normal I/O operation or priority interrupt/handshaking control. The 6525 essentially has two basic modes: 1) 24 individually programmable I/O lines; or 2) 16 I/O lines, 2 handshake and 5 priority interrupt inputs.

This device is designed to offer enhancements over similar type circuits through flexibility and greater I/O capabilities. Table 1 compares the MPS 6525 to its competitors.

TABLE 1

	MPS 6525	MC6821	8255A
I/O	24	16	$24^{\star}$
Static	Yes	Yes	Yes
Control Lines	2	4	$8^{\star \star}$
Priority Interrupt	Yes (5)	No	No
Frequency	$1,2,3 \mathrm{MHZ}$	$1,1.5,2 \mathrm{MHZ}$	****

[^0]
## HANDLING THE ‘RDY’ LINE IN 6500 CPUs

The 6500 series of CPUs use two phase clocks $\phi_{1}$ and $\phi_{2}$. Since clock stretching is not possible, the only way of interfacing with slow memories, performing dynamic refresh and Direct Memory Access is through the use of the RDY line.

The RDY line allows the user to insert one or more wait machine cycles between two instruction execution machine cycles.

To cause the CPU to insert wait cycles, the RDY line must make high to low transition during $\emptyset_{1}$, high clock pulse. This transition may occur during any non write cycle. Wait machine cycles will be inserted until the RDY line is sensed high during a $\phi_{2}$ high pulse.

If the RDY high to low transition occurs during a write cycle, the wait cycle will be inserted following the next non write cycle.


FIGURE 1

An important point of note is the fact that in the 6500 series of CPUs, an acknowledge signal is not available. To insure that the machine cycle following the RDY high to low transition is a WAIT, the user has to make sure that the negative transition occurs on a non write cycle. Figure 1 shows a simple circuit to guarantee this. The timing is illustrated in Figure 2.

The wait cycles generated can then be utilized to give the slow memories time to respond and dynamic memories can be refreshed.

Direct Memory Access is also possible during this time. Since Address and Data buses are not floated, alternate address and data paths are provided through the use of tristate buffers.


FIGURE 2

## MPS 6520 VERSUS MC6820/MC6821

The MPS 6520 Peripheral Adapter is a 16 line ( 2 port) bi-directional $1 / O$ device with four peripheral control/interrupt lines. The MPS 6520 is pin and funcitonally compatible with the MC6820 Peripheral Interface Adapter from Motorola/Hitachi. The MPS 6520 is pin compatible with the MC6821 PIA, but the functional differences are outlined in the table below.

CHARACTERISTIC	MPS 6520   MAX	MC6821   MAX
IL, Input Low Current   PAØ-PA7, CA2 (VIL $=0.4 \mathrm{Vdc})$	-1.6 mAdc	-2.4 mAdc
ILOAD		
NCC $=$ min., VOL $=0.4 \mathrm{Vdcmax})$.	1.6 mAdc	3.2 mAdc

The other functional difference between the MPS 6520 and the MC6821 is that the 6520 has a max. enable cycle time of $25 \mu \mathrm{sec}$. while the MC6821 is fully static. If the above differences are not critical to the user, than the MPS 6520 may be substituted for the MC6821 as well as the MC6820.

## DUAL PROCESSOR CONFIGURATION WITH THE MPS 6508

The MPS 6508 has been designed with a non-overlapping two phase clock. The potential behind this may not be apparent until one examines a control line that is available on the 6508the AEC. What this means to the user is the power to design a dual processor system capable of running at full speed with virtually no overhead.

The AEC line can be used to tri-state the address bus. Since data is valid only during phase two high, with minimal logic, it will be possible for two 6508s to access common memory on opposite phase of the same clock.

Figure 1 shows a simple block diagram connecting two processors together. The timings are illustrated in Figure 2.


FIGURE 1
$\emptyset_{A}$

$\varnothing_{B}$


Addr, Data \& R $\bar{W}$
(Proc 1)


Addr, Data \& $\mathrm{R} \bar{W}$ (Proc 2)


NOTE: Open Collector NAND Gates (7401) used for R $\bar{W}$ Signal.
FIGURE 2

## 6551 VERSUS 6850

The MPS 6551 is an enhanced version of the MC6850. On chip baud rate generation represents the principal enhancement. Baud rate can be generated internally by either connecting a crystal across the XTAL1 and XTAL2 pins or by inputting a clock signal through XTAL1. Various baud rates can then be generated under program control. In both cases, the device outputs a clock signal through RxC pin at 16 times the programmed baud rate. This can be used to synchronize a multiple 6551 System.

The 6551 also has all five Standard Modem Control Signals, unlike the 6850 which has only three. Thus, in the 6551 the RTS (Request-to-Send)
does not have to double up for the $\overline{\mathrm{SR}}$ (Data Set Ready) like the 6850. The DSR is a signal used by many modems.

The 6551 has four addressable locations against the two provided by the 6850. Thus, the 6551 through these additional locations offers many more software programmable options to the user.

To add to all this, the 6551 offers a hardware master reset in addition to the software reset offered by the 6850.

From all of the above, it can be seen that the 6551 is a superior device to the 6850.

## 6551 VERSUS COMPETITION

	$\mathbf{6 5 5 1}$	$\mathbf{6 8 5 0}$	$\mathbf{8 2 5 1}{ }^{\mathbf{1}}$
Baud RateGenerator 2   (On-Board)	Yes	No	No
$5-8$ Bit3   Characters   XTAL Oscillator   (On-Board)			
Full Modem Controls	Yes	No	No
Baud Rates   (Programmable)	Yes	No	No

1 Includes synchronous operation.
21.8432 MHZ external crystal attaches directly to 6551 pins for 15 programmable baud rates.

36551 includes 9-Bit character transmission.
4 Spec. Max. BPS (Bits Per Second) through external clock input.

## MEMORY EXPANSION WITH THE 6508

How often is it that you have wished for an additional address line or two in your system? The MPS 6508 offers the user the flexibility of accessing up to 16 MBYTES of address space in segments of 64 K with almost no overhead.

The 6508 has on board, an eight bit data port. This port is accessible through two registers, a data direction register and a data port register. By setting up a few of the I/O lines as output, and loading the port with the segment value, it will be possible to address a unique 64 K of address space. Reloading the data port with a different value now enables the addressing of a different 64 K address space.

The additional software needed is fairly trivial and is given below:

STA DDR

LDA \# SEG

STA DPR

Store in Data Direction Register.
; SEG is a number from 0 to 255 that decides 64 K segment being accessed.
; Store in Data Port Register.

After this, any time a new 64 K segment has to be accessed, only the last 2 lines of code have to be executed.

This expanded addressing capability along with ability for external hardware to decide the address segment to be accessed gives the user a powerful microprocessor.

LDA \# Config. ; Config. is used to set up individual lines as input or output.


MPS 6508 - EXPANDED MEMORY CONFIGURATION

## MPS 6545-1 VERSUS COMPETITION

The MPS 6545-1 CRT Controller is an enhanced version of the MC6845. The major improvements are the addition of a status register and the ability to program the type of screen memory addressing desired (linear or row/column). The status register is used to monitor the status of the MPS 6545-1. There is a vertical blanking status bit which can be tested to determine when the vertical retrace is occurring. At this time, the microprocessor can access screen memory since the MPS 6545 does not require
access to screen memory during vertical retrace. There is also a light pen full bit. This bit is used to determine when a new value has been stored in the light pen position register. No provision for this is available on the MC6845.

As can be seen in the chart, the MPS 6545-1 stacks up favorably against the MC6845 as well as the other CRT controllers on the market.

	MPS 6545-1 COMMODORE/ MOS TECHNOLOGY	$\begin{gathered} 6845 \\ \text { MOTOROLA } \end{gathered}$	$\begin{aligned} & 8275 \\ & \text { INTEL } \end{aligned}$	$\begin{gathered} \text { DP8350 } \\ \text { NSC } \end{gathered}$	$\begin{aligned} & 5027 \\ & \text { SMC } \end{aligned}$
Display Format Characters/Row Row/Frame Scan Lines/Row	$\begin{gathered} 1-256 \\ 1-128 \\ 1-32 \end{gathered}$	$\begin{gathered} 1-256 \\ 1-128 \\ 1-32 \end{gathered}$	$\begin{aligned} & 1-80 \\ & 1-64 \\ & 1-16 \end{aligned}$	$\begin{gathered} 5-110 \\ 1-64 \\ 1-16 \end{gathered}$	$\begin{gathered} 20-132 \\ 1-64 \\ 1-16 \end{gathered}$
Screen Memory Addressing	Linear or Row/Column	Linear	Linear	Linear	Row/Column
Light Pen Logic	Yes	Yes	Yes	No	No
Accessible Registers	Screen Format Timing Cursor Light Pen Top-of-Page Status	Screen Format Timing Cursor Light Pen Top-of-Page	Cursor Status Light Pen	Cursor Top-of-Page New Row	$\qquad$
Interlaced Mode	No*	Yes	No	No	Yes

[^1]
## MPS 6508 AN ‘ACTIVE’ CPU DURING BLOCK DMA

A big problem faced with most users is that during Direct Memory access (DMA), the processor is idle. Thus, when processing speed is critical, in most systems the use of DMA block transfer mode is not recommended. However, with an MPS 6508 based system, it is possible for the processor to be executing even during DMA.

The 6508 has an AEC input pin which has to be sensed low in order for the processor to float its address bus. During this time, DMA is possible. The 6508 has on board 256 bytes of RAM which reside concurrently in page zero and page one. The processor also has an 8 bit I/O port which is accessible through a Data Direction Register at address 000016 and a Data Port Restister at address 000116.

Even though the external bus has been tristated, the processor still has an active internal bus through which it can function off the internal RAM and communicate with the external world through the I/O port.

Thus, in any system where handling block transfers is essential and high processor thorughput is desirable, the MPS 6508 will prove to be a wise choice.

FR208X
THE 'MELODY' CHIP

The FR208X is a musical chip that comes in several versions. In essence, the 208X is capable of playing musical notes for up to about a minute. The chip can be used either in a stand alone mode or with many common alarm chips. In order to get longer tunes (i.e., greater than a minute), it is possible to cascade the chip with no interface logic being required.

The main difference between the various versions of this chip are given below:

VERSION FEATURE
FR2081 Single Tune Chip
FR2082 Dual Tune Chip - User selects desired tune
FR2083 Custom Dual Tune Chip

FR2084
Dual Tune Chip - Alternates between tune $A$ and tune $B$ each time the alarm triggers the 2084

The FR208X is designed in metal gate C-MOS, and draws current in the low microampere range, while standby current is less that one microampere. This chip should, therefore, find a comfortable place in the low cost, low power consumer application market.

A list of all the standard tunes available can be obtained by contacting the factory.

The figures below illustrate some simple ways of using the melody chip.


## MPS 6508 HANDLING VECTORED INTERRUPTS

In many microprocessor systems, handling multiple interrupts is an adventure into the realm of complex peripheral chips -- Priority Interrupt Controllers, Parallel I/O Devices and so on. The MPS 6508 offers a simple solution for the user who is conscious about his on board real estate.

The 6508 has available on the chip, an eight bit I/O port, accessible through a Data Direction Register and a Data Port Register. This port can be configured very flexibly to handle a variety of interrupt processing.

In this applications brief, we will consider Vectored Interrupts and Priority Control. Most systems that use a vectored interrupt structure work off a jump table for processing the interrupt. In such a case, the peripheral requesting the interrupt needs to supply only the low byte of the interrupt vector, the interrupt vector that resides at FFFE and FFFF being the base address of the jump table. The number of $1 / O$ lines being dedicated as inputs will be a function of the number of peripherals capable of requesting interrupt processing.

Interrupt priority handling is a useful, if not essential part of any interrupt based system. Instead of using a complex and expensive peripheral for arbitration, the I/O port of the 6508 can be set up to do the job. After sensing an interrupt, the 6508 could read the port to see which peripherals were requesting an interrupt. Based on priority arbitration software, a few I/O lines programmed as outputs could then be used to indicate to the peripherals which one is being selected.

From the above, we can immediately see the potential of the MPS 6508 and its wide application in many systems where low cost and board space are a premium.

## MPS 6525 A TWO IN ONE DEAL

The MPS 6525 in its simplest form can be looked upon as a triport I/O chip. It provides the user with 24 I/O lines that can be programmed individually, organized as three 8 bit ports.

The device is accessed through eight contiguous locations in the systems address space ... 3 Data Direction Registers, 3 Data Port Registers, a Control Register, and an Active Interrupt Register. This in itself provides the user with a chip that has more I/O capability than almost anything else available.

However, the MPS 6525 does not stop there. Through a bit in the control register, the device can be set up to behave as an Interrupt Controller.

In this mode, two ports are still dedicated to l/O while the third port is set up to handle upto five interrupts. The interrupt controller can be set up to be either prioritized or non prioritized. In the prioritized mode, through the use of a built in interrupt stack, the 6525 makes writing software a piece of cake. Also, when used as an interrupt controller, this device provides the user with two dedicated lines for handshaking ... one on data in and one on data out.

What in essence this does is enable the user to replace two chips, the MC682। (Peripheral Interface Adaptor) and the MC6828 (Priority Interrupt Controller) in most applications, thus giving him a reduction in both cost and space.

## THE 6508 RAM - TWO PLACES AT ONCE?

How can a processor have both page zero and page one with only 256 bytes of RAM? One way is to combine both pages into one, and this is what the 6508 does.

On the 6508 , the 256 bytes are actually located at 010016 to $01 \mathrm{FF}_{16}$, or the normal 6500 family stack area. Internal logic decodes the zero page instructions so that they appear to begin at 010216 ( 010016 and 010116 are used by the I/O port registers). The stack area starts at 01FF16 and grows down. Care must be taken so that the stack does not become large enough to overwrite the zero page area. This, however, is not a problem with most applications.


6508 Internal RAM Memory Map

## MPS 6500/1E - EPROM APPLICATIONS

The MPS 6500/1E is the 64 pin emulator version of the MPS 6500/1 single-chip microcomputer. It is electrically identical except there is no ROM on-chip. The extra pins are used to connect to the internal processor bus so that external eproms may be used for system development. This brief presents two eprom connection schemes. Example 1 is a 2 K 2716 version, while example 2 is a 3 K 2732 application. Both schemes are designed with a minimum part count in mind.


Example 1.2716 EPROM (2k Bytes)



Example 2. 2732 EPROM (3k Bytes)

## MPS 6500/1 - RAM MEMORY EXPANSION

The MPS 6500/1 is a single-chip microcomputer containing 2 K bytes of ROM and 64 bytes of RAM. The RAM is used for both data storage and stack memory. In most applications, this is an adequate amount of memory; however, in some cases, it may be desired to expand the RAM memory beyond 64 bytes. This brief describes a simple way to achieve this.

It is possible to attach conventional static RAMS directly to the MPS 6500/1 I/O lines and perform read and write operations with simple software steps. This approach will not work for stack expansion and cannot be adapted to program memory (ROM), since these elements require a direct connection to the processor busses.

The example presented here will provide 1024 bytes of RAM storage using two 2114's. No other hardware is needed.

Some observations are noteworthy:

- Port A of the MPS 6500/1 is the first 8 bits of the address for the RAM. All pins are outputs.
- Port B of the MPS 6500/1 contains bits 8 and 10 of the address; bits PB0 and PB1 respectively. Also, bit PB7 is used to supply the RNW signal to the memory. Pins PBO, PB1 and PB7 are outputs; all other pins are free.
- Port C is used for the bi-directional data bus.
- The CE for 2114 is tied to system ground, so the memory is always enabled.


Figure 1 - Schematic for 1 K Byte Expansion

## SIMPLE CLOCK GENERATION FOR THE MPS 6500 MICROPROCESSOR FAMILY

Clock generation for the MPS 6500 family microprocessor can easily be accomplished with only a handful of components by using one of the following circuits.

Figure 1 illustrates a single phase clock. This clock can be used to drive the 6502,6503,6504, 6505,6506 and 6507. Figure 2 is a two-phase clock, which is used for the $6508,6510,6512$, 6513, 6514 and 6515.


Figure 1 Single-Phase Clock

Figure 2 Two-Phase Clock

## CMOS/LCD WATCH-CLOCK CIRCUITS

## APPLICATION NOTE

## COMMODORE LOW POWER/LOW COST TIMEKEEPING COMPONENTS

As one of the world's leading suppliers of state-of-the-art timekeeping circuits and LCD displays, Commodore introduces a new family of low power, low cost multiplexed components for watch, clock, and general timekeeping applications.

COMMODORE/FRONTIER CMOS/LSI multiplexed timekeeping circuits operate from 1.3-1.7 volts with currents typically in the $1.0 \mu \mathrm{~A}-1.5 \mu \mathrm{~A}$ range. All parts have been designed for low cost and ease of application as well. The following is a brief description of available multiplexed circuits and matching LCD displays from COMMODORE OPTOELECTRONICS:

PART NUMBER		
CMOS	LCD	DESCRIPTION
2224	$5060,5061,5075$	$31 / 2$ Digits 5 Functions
8220	5107,5108	4 Digits, 5 Functions
8221	5107,5108	4 Digits, 5 Functions, Stopwatch
8222	5102,5103	4 Digits, 6 Functions, (Day Flags)
8223	5102,5103	4 Digits, 6 Functions, Stopwatch
8267	$5107,5108,5112$	4 Digits, 5 Functions, Alarm
8268	$5102,5103,5109$	4 Digits, 6 Functions (Day Flags), Alarm
8668	5104	8 Digits, 5 Functions (Day Flags)
8868	5104	8 Digits, 6 Functions, Alarm
$887 X$	In Development	8 Digits, 5 Functions, Alarm, Day Flag,
		Programmable Animation

Note: All products have $12 / 24$ HR option excepting 2224. All Alarms have Snooze feature.

## PRODUCT DESCRIPTIONS:

1. 2224-3½ digits and 5 functions (Hours: Minutes, Month, Date,: Seconds).

This circuit is the most basic unit available. One button controls the viewing of the three sets of information; the use of another button allows for setting. Typical current drain is less than $1.0 \mu_{\text {A }}$ operating with a watch display. Applications utilizing larger displays will tend to draw somewhat greater current. This part has a total of 27 pins.

Some available Commodore displays for this part are:
5060 B Ladies' Watch Display
5061 E Men's Watch Display
5075 A Smaller display for miniature applications such as LCD pens.
2. 8220-4 digits and 5 functions with $12 / 24$ hour option. The part functions similar to the 2224 ; 24 hour (military) time format option is present. This part has a total of 30 active pins.

Some available Commodore displays for this part are:
5107 B Ladies' Watch Display
5108 E Men's Watch Display
3. 8221-4 digits and 5 functions with 1 second accuracy stopwatch and 12/24 hour option. The stopwatch is accessible by use of a third switch and measures elapsed time. The part otherwise operates like a two switch 8220. This part has a total of 30 active pins. The available displays are the same as for 8820 .
4. 8222-4 digits and 6 functions(Hours: Minutes and Day of Week Flags, Month Date and Day of Week Flags, and: Seconds with Day Flags). The part operates like an 8220 with the addition of the Day indicators for the sixth function. The part has a total of 33 pins.

Some available Commodore displays for this part are:
5102 E Men's Watch Display
5103 C Ladies' Watch Display
5. 8223-4 digits and 6 functions with 1 second accuracy Stopwatch and $12 / 24$ hour option. This part operates like the 8221 with the addition of the Day indicators for the sixth function. The part has a total of 33 pins. The available displays are the same as for 8222.
6. 8268/8368-4 digits, 6 functions with Alarm, Day Flags, and 12/24 hour option. This part operates as a simple two button Alarm watch or clock. The Alarm functions (viewing, setting and arming/disarming) are extremely simple and modeled after other popular Commodore Alarm chips. This part has a total of 34 active pins. Note: The 8368 will be identical to the 8268 except that the 3 second delay entering the set mode will be eliminated.

Some available commodore displays for this part are:
5102 E Men's Watch Display
5103 C Ladies Watch Display
5109 C Ladies' Watch Display
7. $8267 / 8367-4$ digits, 5 function with Alarm and 12/24 hour option. The part operates like the $8268 / 8368$ with no Day Flags; it has 31 active pins. The available displays are:

5107 B Ladies' Watch Display
5108 E Men's Watch Display
5112 AA Miniature Pen Display
4003 K Large Digit Clock Display
4006 L Large Digit Clock Display
4007 N Large Digit Clock Display
8. 8668-8 digits 5 functions with $12 / 24$ hour option. This watch displays Hours: Minutes, Seconds, Date and Day of Week Flags simultaneously. This type of timepiece has been dubbed "No Hands" because all essential functions are displayed simultaneously. The part has a total of 44 pins.

Some available commodore displays for this part are:
5104 I Men's Watch Display
9. 8868-8 digits 6 functions with alarm, Snooze and 12/24 hour option. This part displays all information of the 8668 "No Hands" with the additional feature of an Alarm. The Alarm is operated in a manner identical to 8267 and 8268 . The part has a total of 46 pins. The available display is the same as for the 8668.
10. $887 \times-8$ digits, 5 functions with Alarm and 7 programmable flags for Animation. The chip will allow the design of very novel and unique products combining LCD animated motion under switch or alarm control with time. Toys, watches, clocks, promotional items etc. are among the many target markets. This part has a total of 46 pins.

The implementation of any of the above circuits is illustrated in Figure 1. Note that fundamental timekeeping is accomplished with the following basic parts:
A. 1 chip on PC Board
B. 1 LCD Display
C. 132 KHZ Quartz Crystal
D. 3 Capacitors
E. 1 Trimmer Cap
F. 2 Switches
G. 1-2 "Zebra" interconnecting Strips
H. 1 1.5-1.6V Battery

The addition of an Alarm can be accomplished with as little as a piezo electric transducer. The addition of an NPN transistor and coil allows the Alarm sound to be greatly enhanced. Musical alarms are also possible with the addition of the 208 X .


With all of the above products, the dramatic advances in technology and high volumes inherent in the timekeeping industry allow the potential introduction of Time with multi-features into numerous new, low cost applications. A few such applications are:

1. LCD Clocks for automotive accessories having Alarm or Stopwatch for trip timing.
2. L.CD Alarm Clocks as an added feature cooking aid for outdoor BBQ/Gas grills.
3. Low cost time functions for games.
4. Low cost time functions for telephones; stopwatch for timing long distance calls.
5. L.ow cost time functions for appliances (e.g. Radios, TV, Stereo equipment etc.).
6. Timekeeping promotional items (e.g. paper weights, penholders etc.). This field may be especially good for watches with "customized" musical alarms which play music such as company or product theme songs.

Although the above circuits and displays are most commonly available and utilized in die form on hybrid circuit substrates, Commodore will gladly quote the above components in any form suitable to the customer (i.e. raw die or packaged parts) Inquiries regarding special applications for chips and/or LCD displays are always welcomed.

In any form, Commodore's many years of experience and long term dedication to the field of timekeeping are assurance of continuing competitive, cost-effective products.

COMMODORE SEMICONDUCTOR GROUP reserves the right to make changes to any products herein to improve reliability, function or design. COMMODORE SEMICONDUCTOR GROUP does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.

## SECTION 7

## Representatives and Distributors









 connMModore



 commodore semiconductor group

## REPRESENTATTVESS

## Connecticut

Sales Engineering Co.
P.O. Box 863

153 Main St.
Salem, NH 03079
(603) 893-5521

## Upstate New York

Techmark/Upstate Assoc.
P.O. Box 173

Mendon, NY 14506
(716) 624-3840

Techmark/Upstate Assoc.
2 Andrews Way
Canandaigua, NY 14425
(716) 396-2498

Techmark/Upstate Assoc.
P.O. Box 120

Endicott, NY 13760
(607) 748-7473

Metro New York
North New Jersey
J-Square Marketing, Inc.
P.O. Box 103

Jericho, NY 11753
(516) 935-3200

## Delaware

Maryland
Washington, D.C.
Virginia
West Virginia
Component Sales, Inc.
3701 Old Court Rd. \#14
Baltimore, MD 21208
(301) 484-3647

## Massachusetts <br> Rhode Island <br> Vermont <br> Maine <br> New Hampshlre <br> Minuteman Marketing, Inc. <br> 279 Cambridge Street <br> 1 Colonial Park, Suite 102 <br> Burlington, MA 01803 <br> (617) 272-0035 <br> Pennsylvanla <br> South New Jersey <br> The Rep Force <br> 18 East Commerce Street, Suite A <br> Bridgeton, NJ 08302 <br> (609) 455-0891

Florida
HAI
10212 W. Sample Road
Coral Springs, FL 33065
(305) 752-7520/7550

HAI
10312136 Street North
Largo, FL 33540
(813) 595-8170

## North Carolina <br> South Carolina <br> East Tennessee

Component Sales, Inc.
P.O. Box 18821

Raleigh, NC 27609
(919) 782-8433

Missourl
Kansas
Nebraska
Southern IIIInols lowa

R\&D Sales, Inc. 13013 St. Andrews Drive Kansas City, MO 64145 (816) 941-9280

## REPRRESNTATHVES

## MIchigan (except Berrien County) Ohio

Jim Finnegan and Co.
P.O. Box 8825

Cleveland, OH 44136
(216) 238-5905

Jim Finnegan and Co.
1236 Clubview Blva.
Worthington, OH 43085
(614) 436-7227

Jim Finnegan and Co.
5527 Fawn Court
West Chester, OH 45069
(513) 874-5937

## Texas

Loulslana
Arkansas
Oklahoma
W. Pat Fralia Company

600 Avenue H. East, Suite 210
Arlington, TX 76011
(817) 640-9101
W. Pat Fralia Company

300 E. Huntland Blvd., Suite 210
Huntland Professional Building
Austin, TX 78752
(512) 451-3325
W. Pat Fralia Company

4411 Bluebonnett
Stafford, TX 77477
(713) 491-9336
N. Illinols

Wisconsin
Michigan (Berrien County only)
Janus, Inc.
3166 Des Plaines Avenue
Des Plaines, IL 60018
(312) 298-9330

Janus, Inc.
11430 W. Blue Mound Road
Milwaukee, WI 53226
(414) 476-9104

## Northern Californla

Criterion
3350 Scott Boulevard
Building \#44
Santa Clara, CA 95051
(408) 988-6300

## Colorado

High Tech Associates
2950 S. Jamaica Court, Suite 100
Aurora, CO 80014
(303) 695-1900

## New Mexico

SynTech
8016-A Zuni Road SE
Albuquerque, NM 87108
(505) 266-7951

## Oregon

Washington
W. Idaho

Quest
15 S. Grady Way, Suite 203
Kenton, WA 98055
(206) 223-1541

Quest
6220 S. W. 130th, \#10
Beaverton, OR 97005
(503) 644-8077

Vancouver, B.C.
Conti Electronics 7204 Main Street Vancouver, BC Canada V5X 3J4 (604) 324-0505

## REPRESENTAATIVES

## Southern Californla

$\mathrm{SC}^{3}$
14101 Yorba Street, Suite 104
Tustin, CA 92680
(714) 731-9206
$S^{3}$
240 Lombard Street
Thousand Oaks, CA 91360
(805) 496-7307

## Arlzona

Sermi-Systems 10333 N. Scottsdale Road, Suite 1 Scottsdale, AZ 85253
(602) 991-1151

## Alabama <br> Mlssissippi <br> West Tennessee

BJR Manufacturers Representatives 12021 S. Memorial Parkway, Suite D Huntsville, AL 35803
(205) 881-3569

## Kentucky

 IndianaWilson Technical Sales, Inc.
P.O. Box 40699

Indianapolis, IN 46240
(317) 259-4032

North Dakota
South Dakota
Minnesota
Electric Component Sales
8700 W. 36th Street
Minneapolis, MN 55426
(612) 933-2594

## Southern California

VSI Electronics, Inc.
3137 W. Warner Ave.
Santa Ana, CA 92704 (213) 299-7760 or, (714) 557-7131

Mouser Electronics 11433 Woodside Ave. Lakeside, CA 92040
(714) 449-2220

NESCO
7110 Gerald Ave.
Van Nuys, CA 91406
(213) 781-0505

## Northern California

VSI Electronics, Inc. 543 Weddell Dr. Sunnyvale, CA 94086
(408) 734-5470

Western Microtechnology 10040 Bubb Rd.
Cupertino, CA 95014 (408) 725-1660

## Central Californla

 NevadaVSI Electronics
8259 Canyon Rd.
Citrus Heights, CA 95610
(916) 722-8060

## Arizona

Western Microtechnology
7740 E. Redfield Dr.
Suite 105
Scottsdale, AZ 85260
(602) 948-4240

## Washington

Shannon Ltd. 7030 S. 188th St. Kent, WA 98031 (206) 763-0545

## New Jersey

Falk Baker Associates 382 Franklin Ave. Nutley, NJ 07110 (201) 661-2430

## New Hampshire

Astrum Electronics, Inc. Village Square Rt. \#111
Hampstead, NH 03841
(603) 329-5656

## Connecticut

Cobra Components, Inc. 53 Water St.
Nonwalk, CT 06854
(203) 853-8228

## NATIONAL SALES OFFICE:

3330 Scott Boulevard
Santa Clara, CA 95051
Attention: Howard Sharek
(408) 727-1130

MOS Technology
A Commodore Company


[^0]:    *Port A and Port B Byte I/O programmable; Port C Nibble I/O programmable. All three ports of MPS 6525 are Bit I/O programmable through data direction registers.
    **For control lines Port C is totally dedicated to this function.
    ***Port C will be dedicated if priority interrupts are used.
    ****Read Access 150 nsec (max.) for 8255A.
    100 nsec (Max.) for 8255A-5 from RD high to low.

[^1]:    *MOS MPS 6545 has interlaced mode

