Programmable Array Logic Family PAL® Series 20AP With Programmable Output Polarity

U.S. Patent 4124899

Features/Benefits

- 15 ns typical propagation delay
- Programmable output polarity
- Power-up reset for all registers
- Preload feature during testing
- Programmable replacement for TTL logic
- Reduces chip count by greater than 4 to 1
- Expedites prototyping and board layout
- Programmed on standard PAL/PROM programmers
- Programmable three-state outputs
- Last fuse prevents duplication on a PAL/PROM programmer

Functional Description

The PAL Series 20AP represents an enhancement of existing PAL architectures which provides greater design flexibility and improved testability. Several new features have been incorporated into the family, including programmable output polarity, power-up reset, and register preload.
The programmable output polarity feature allows the user to program individual outputs either active high or active low. This feature eliminates any possible need for inversion of signals outside the device.
The registered members of the Series 20AP have been designed to reset during system power-up. Upon application of power, all registers are initialized to a logic 0 state, setting all outputs to a logic 1.
The testability of the registered devices has been increased through the use of the preload feature. During testing, registers can be loaded with any arbitrary state value, thereby allowing full logical verification.

General Description

The PAL Series utilitizes Monolithic Memories advanced selfaligned washed-emitter high-speed bipolar process and the bipolar PROM fusible-link technology to provide user-programmable logic for replacing conventional SSI/MSI gates and flip-flops at reduced chip count.
The family lets the systems engineer "design his own chip" by blowing fusible links to configure AND and OR gates to perform his desired logic function. Complex interconnections which previously required time-consuming layout are thus "lifted" from the PC board and are placed on silicon where they can be easily modified during prototype check-out or production.

PART NUMBER	PKG	GATE ARRAY DESCRIPTION
PAL16P8A	N,J,F,L	Octal 16 input And-Or
PAL16RP8A	N,J,F,L	Octal 16 input Registered And-Or
PAL16RP6A	N,J,F,L	Hex 16 input registered And-Or
PAL16RP4A	N,J,F,L	Quad 16 input registered And-Or

The PAL transfer function is the familiar sum of products. Like the PROM, the PAL has a single array of fusible links. Unlike the PROM, the PAL is a programmable AND array driving a fixed OR array (the PROM is a fixed AND array driving a programmable OR array). In addition the PAL provides these options:

- Variable input/output pin ratio
- Programmable three-state outputs
- Registers with feedback

Unused inputs are tied directly to V_{CC} or GND. Product terms with all fuses blown assume the logical high state, and product terms connected to both true and complement of any single input assume the logical low state. Registers consist of D-type flip-flops which are loaded on the low-to-high transition of the clock. The registers power up with high $\left(\mathrm{V}_{\mathrm{OH}}\right)$ at the output pin, regardless of the polarity fuse. PAL Logic Diagrams are shown with all fuses blown, enabling the designer to use the diagrams as coding sheets.
The entire PAL family is programmed on inexpensive conventional PAL/PROM programmers with appropriate personality and socket adapter modules. Once the PAL is programmed and verified, two additional fuses may be blown to defeat verification. This feature gives the user a proprietary circuit which is very difficult to copy.

Ordering Information

PAL Series 20AP with Programmable Output Polarity

Operating Conditions

SYMBOL	PARAMETER			MILITARY			COMMERCIAL			UNIT
				MIN	TYP	MAX	MIN	TYP	MAX	
V_{CC}	Supply voltage			4.5	5	5.5	4.75	5	5.25	V
${ }^{\text {t }}$ w	Width of Clock	Low		25	14		20	14		ns
		High		15	6		10	6		
${ }^{\text {tsu }}$	Set up time from input or feedback to clock	16RP8A	Polarity fuse intact	30	15		$25 \dagger$	15		ns
		16RP4A	Polarity fuse blown	35	20		30	20		
t^{\prime}	Hold time			0	-10		0	-10		ns
$\mathrm{T}_{\text {A }}$	Operating free-air temperature			-55			0		75	${ }^{\circ} \mathrm{C}$
T_{C}	Operating case temperature					125				${ }^{\circ} \mathrm{C}$

Electrical Characteristics Over Operating Conditions

SYMBOL	PARAMETER	TEST CONDITION		MIN	TYP MAX	UNIT
$V_{\text {IL }}{ }^{*}$	Low-level input voltage				0.8	V
$\mathrm{V}_{1 \mathrm{H}}{ }^{\text {* }}$	High-level input voltage			2		V
$\mathrm{V}_{\text {IC }}$	Input clamp voltage	$V_{C C}=$ MIN	$I_{1}=-18 \mathrm{~mA}$		$\begin{array}{ll}-0.8 & -1.5\end{array}$	V
IIL	Low-level input current $\dagger \dagger$	$V_{C C}=M A X$	$\mathrm{V}_{1}=0.4 \mathrm{~V}$		-0.02-0.25	mA
${ }^{1} \mathrm{IH}$	High-level input current $\dagger \dagger$	$V_{C C}=M A X$	$\mathrm{V}_{1}=2.4 \mathrm{~V}$		25	$\mu \mathrm{A}$
1	Maximum input current	$V_{C C}=M A X$	$\mathrm{V}_{1}=5.5 \mathrm{~V}$		1	mA
V_{OL}	Low-level output voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$	MIL $\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$		0.30 .5	V
			COM $\mathrm{IOL}=24 \mathrm{~mA}$			
V_{OH}	High-level output voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$	MIL $\mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}$	2.4	2.8	V
			$\mathrm{COM} \mathrm{OHH}=-3.2 \mathrm{~mA}$			
${ }^{\text {O OLL }}$	Off-state output current $\dagger \dagger$	$V_{C C}=M A X$	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$		-100	$\mu \mathrm{A}$ $\mu \mathrm{A}$
${ }^{1} \mathrm{OZH}$			$\mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}$		100	
Ios	Output short-circuit current**	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	-30	-70 -130	mA
${ }^{\text {ICC }}$	Supply current	$V_{C C}=M A X$			120180	mA

Switching Characteristics Over Operating Conditions

SYMBOL	PARAMETER		TEST CONDITIONS	MIN	IILITAR TYP	Y MAX	$\begin{aligned} & \text { COM } \\ & \text { MIN } \end{aligned}$	$\begin{aligned} & \text { ИMER } \\ & \text { TYP } \end{aligned}$	CIAL MAX	UNIT
${ }^{\text {P PD }}$	16RP8A, 16RP6A, 16RP4A Input or feedback to output	Polarity fuse intact	$\begin{aligned} & \mathrm{R}_{1}=200 \Omega \\ & \mathrm{R}_{2}=390 \Omega \end{aligned}$		15	30		15	25	ns
		Polarity fuse blown			20	35		20	30	
${ }^{\text {t CLK }}$	Clock to output or feedback				10	20		10	15	ns
${ }^{\text {t }}$ PZX	Pin 11 to output enable except 16P8A				10	25		10	20	ns
${ }^{\text {t PXZ }}$	Pin 11 to output disable except 16P8A				11	25		11	20	ns
	Input to output enable	16RP6A, 16RP4A, and 16RP8A			10	30		10	25	ns
${ }^{\text {t }} \mathrm{PZX}$	Input to output disable	16RP6A, 16RP4A, and 16RP8A			13	30		13	25	ns
${ }^{\text {f }}$ MAX	$\begin{aligned} & \text { 16RP8A, 16RP6A, 16RP4A } \\ & \text { Maximum } \\ & \text { frequency } \end{aligned}$	Polarity fuse intact		20	40		28.5	40		MHz
		Polarity fuse blown		18.5	33		25	33		

Absolute Maximum Ratings
OperatingProgramming
Supply voltage $V_{\text {CC }}$.. . . 0.5 to 7.0 V -0.5 to 12.0 V
Input voltage -1.5 to 5.5 V -1.0 to 22 V
Off-state output voltage 5.5 V 12.0 V
Storage temperature -65 to $+150^{\circ} \mathrm{C}$

Test Load

Schematic of Inputs and Outputs

Typical notes for all the previous specifications

NOTES: Apply to electrical and switching characteristics
\dagger Can select 20 ns upon customer request.
$\dagger \dagger$ I/O pin leakage is the worst case of I_{OZX} or I_{IX}, i.e. I_{IL} and $\mathrm{I}_{\mathrm{OZH}}$.

* These are absolute voltages with respect to the ground pin on the device and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.
* * Only one output shorted at a time.

Output Register PRELOAD

The PRELOAD function allows the register to be loaded from data placed on the output pins. This feature aids functional testing which would otherwise require a state sequencer for test coverage. The procedure for PRELOAD is as follows:

1 Raise V_{CC} to 4.5 V .
2 Disable output registers by setting pin 11 to V_{IH}.
3 Apply $V_{I L} / V_{I H}$ to all output registers.
4 Pulse pin 8 to V_{p}. Then back to 0 V .
5 Remove $\mathrm{V}_{\mathrm{IL}} / \mathrm{V}_{\mathrm{IH}}$ from all output registers.

6 Lower pin 11 to $V_{I L}$ to enable the output registers.
7 Verify for $\mathrm{V}_{\mathrm{OL}} / \mathrm{V}_{\mathrm{OH}}$ at all output registers.

PAL Legend

PAL Logic Diagram

PAL Series 20AP with Programmable Output Polarity

16P8A

PAL Series 20AP with Programmable Output Polarity

Logic Diagram

16RP8A

Logic Diagram

16RP6A

PAL Series 20AP with Programmable Output Polarity

Logic Diagram

16RP4A

Programming/Verifying Procedure

NOTES: For programming purposes many PAL pins have double functions.
As long as Pin 1 is at $\mathrm{V}_{\mathrm{IHH}}$, Pin 11 is at ground, and Pin 12 is either at V_{IH} or Z (as defined in Table 1) - Pins 16, 17, 18 and 19 are outputs. The other pin functions are: 10 (Pin 2) through 17 (Pin 9) plus Pin 12 address the proper row; A0 (Pin 15), A1 (Pin 14), and A2 (Pin 13) address the proper product lines.
When Pin 11 is at V_{IH}, Pin 1 is at ground and Pin 19 is either at V_{IH} or Z - Pins 12, 13, 14, and 15 are outputs. The other pin functions are: 10 (Pin 2) through 17 (Pin 9) plus Pin 19 address the proper row; A0 (now Pin 18), A1 (now Pin 17), and A2 (now Pin 16) address the proper product lines.
5.1 Pre-verification
5.1.1. Pre-verification-Security-Fuses
5.1.1.1 Raise Pin 2 to VP
5.1.1.2 Place a $2 k$ resistor to ground on Pin 1 and measure voltage across it.

- Reject part if measured voltage is less than 1.5 V
5.1.1.3 Place a $2 k$ resistor to ground on Pin 11 and measure voltage across it.
- Reject part if measured voltage is less than 1.5 V
5.1.2 Pre-verification - Array
5.1.2.1 Raise V_{CC} to 5.0 V
5.1.2.2 Raise output disable, OD, to VIHH.
5.1.2.3 Select an input line by specifying inputs and L/R as shown in Table 1.
5.1.2.4 Select a product line by specifying A0, A1, and A2 one-of-eight select as shown in Table 2.
5.1.2.5 Pulse the CLOCK pin and verify (with CLOCK at VIL) that the output pin, O is TTL high.
- For TTL high, continue procedure - For TTL low, stop procedure and reject part.
5.1.3 Pre-verification - Programmable Polarity Fuses (METHOD 1)
5.1.3.1 Raise V_{CC} to 5.0 V
5.1.3.2 Raise Pin 3 to VP.
5.1.3.3 Raise Pin 4 to VP.
5.1.3.4 Pulse the CLOCK pin and test (with CLOCK at VIL) the state of the output pin, O.
- For unblown polarity fuse the output will be at logic 0 .
- For blown polarity fuse the output will be at logic 1.
5.1.4 Pre-verification — Programmable Polarity Fuses (METHOD 2)
5.1.4.1 Raise Vcc to 5.0 V
5.1.4.2 For any input condition determine the state of each output.
5.1.4.3 Raise Pin 7 to VP.
5.1.4.4 Compare the output states now with their states at 5.1.4.2.
- If the state of the output has changed, then the output polarity fuse is unblown.
- If the state of the output is unchanged, then the output polarity fuse is blown.
5.1.5 Pre-verification - Programmable Polarity Fuses
(METHOD 3)
5.1.5.1 Raise V_{CC} to 5.0 V
5.1.5.2 Raise all inputs to VIHH.
5.1.5.3 Raise Pin 11 to VIHH.
5.1.5.4 Pulse the CLOCK pin and verify (with CLOCK at VIL) the state of the output pin.
- If output is at logic 0 , then the output polarity fuse is unblown.
- If output is at logic 1 , then the output polarity fuse is blown.

Programming Algorithm

5.2.1 Raise Output Disable pin, OD, to VIHH
5.2.2 Programming pass. For all fuses to be blown:
5.2.2.1 Lower CLOCK pin to ground.
5.2.2.2 Select an input line by specifying inputs and L/R as shown in Table 1
5.2.2.3 Select a product line by specifying A0, A1, and A2 one-of-eight select as shown in Table 2.
5.2.2.4 Raise V_{CC} to VIHH .
5.2.2.5 Program the fuse by pulsing the output pins of the selected product group one at a time to VIHH .
5.2.2.6 Lower V_{C} to 5.0 V
5.2.2.7 Repeat this procedure from 5.2.2.2 until pattern is complete.
5.2.3 First verification pass. For all fuse locations:
5.2.3.1 Select an input line by specifying inputs and L / R as shown in Table 1.
5.2.3.2 Select a product line by specifying A0, A1, and A2 one-of-eight select as shown in Table 2.
5.2.3.3 Pulse the CLOCK pin and verify (with CLOCK at VIL) that the output pin, O is in the correct state.

- For verify output state, continue procedure
- For overblow condition, stop procedure and reject part.
- For underblow condition, reexecute steps 5.2.2.4 through 5.2.2.6 and 5.2.2.3. If successful, continue procedure. After three attempts to blow fuse without success, reject part.
5.2.3.4 Repeat this procedure from 5.2.3.1 until the entire array is exercised.
5.2.4 High Voltage Verify. For all fuse locations:
5.2.4.1 Raise V_{CC} to 5.5 V
5.2.4.2 Select an input line by specifying inputs and L / R as shown in Table 1.
5.2.4.3 Select a product line by specifying A0, A1, and A2 one-of-eight select as shown in Table 2.
5.2.4.4 Pulse the CLOCK pin and verify (with CLOCK at VIL) that the output pin, O is in the correct state. - For verified output state, continue procedure - For invalid output state, stop procedure and reject part.

PAL Series 20AP with Programmable Output Polarity

5.2.4.5 Repeat this procedure from 5.2.4.2 until the entire array is exercised.
5.2.5 Low Voltage Verify. For all fuse locations:
5.2.5.1 Lower V_{C} to 4.5 V
5.2.5.2 Select an input line by specifying inputs and L / R as shown in Table 1
5.2.5.3 Select a product line by specifying A0, A1, and A2 one-of-eight select as shown in Table 2.
5.2.5.4 Pulse the CLOCK pin and verify (with CLOCK at VIL) that the output pin, O , is in the correct state. - For verified output state, continue procedure.

- For invalid output state, continue procedure and reject part.
5.2.5.5 Repeat this procedure from 5.2.5.2 until entire array is exercised.

Programming the Security Fuses

5.3.1 Verify per Section 5.2 .4 and 5.2.5.
5.3.2 Raise $V_{C C}$ to 5.5
5.3.3 - Program the first fuse by pulsing Pin 1 to VP. (From 1 to 5 pulses are acceptable.)

- Program the second fuse by pulsing Pin 11 to VP. (From 1 to 5 pulses are acceptable.)
5.3.4 Verify per Section 5.1.
- A device is "secured" if it verifies as blank per section 5.1.

Programming the Output Polarity Fuses.

5.4.1 Initial Programming Pass.
5.4.1.1 Raise V_{CC} to 5.5 V .
5.4.1.2 Set all inputs and output pins to Z
5.4.1.3 Raise output disable, OD , to V_{IH} to disable the selected outputs.
5.4.1.4 Raise Polarity Enable, POLE to VP.
5.4.1.5 Program the fuse by pulsing the desired output to VIHH.
5.4.1.6 Lower POLE to VIH
5.4.1.7 Lower OD to VIL.
5.4.1. Repeat this procedure from 5.4.1.3 to 5.4.1.7 until all desired outputs are programmed.

Programming Parameters

SYMBOL	PARAMETER		MIN	LIMITS TYP	MAX	UNIT
$\mathrm{V}_{\text {IHH }}$	Program-level input voltage		11.5	11.75	12	V
${ }^{1} \mathrm{HH}$	Program-level input current	Output Program Pulse			50	mA
		OD, L/R			50	
		All other inputs			15	
${ }^{1} \mathrm{CCH}$	Program Supply Current				900	mA
$\mathrm{t}_{\mathrm{VCCP}}$	Pulse Width of $\mathrm{V}_{\mathrm{CC}} @ \mathrm{~V}_{\mathrm{IHH}}$				60	$\mu \mathrm{S}$
T_{P}	Program Pulse Width		10	20	50	$\mu \mathrm{S}$
${ }^{\text {t }}$ D	Delay Time		100			ns
${ }^{\text {t }}$ 2	Delay Time after L/R Pin		10			$\mu \mathrm{S}$
	$V_{\text {CCP }}$ Duty Cycle				20	\%
V_{P}	Output Polarity and Security Fuse Programming Voltage		19.5	20	20.5	V
$\mathrm{I}_{\mathrm{P} 1}$	Security Fuse Programming Supply Current				400	mA
${ }^{1} \mathrm{P} 2$	Output Polarity Programming Supply Current				200	mA
TPP	Output Polarity and Security Fuse Programming Pulse Width		10	40	70	$\mu \mathrm{S}$
	Output Polarity and Security Fuse Programming Duty Cycle				50	\%
${ }^{\text {t }} \mathrm{RP}$	Rise time of output programming and address pulses		1	1.5	10	$\mathrm{V} / \mu \mathrm{S}$
${ }^{\text {t }} \mathrm{RP}$	Rise Time of security fuse programming pulses		1	1.5	10	$\mathrm{V} / \mu \mathrm{S}$
$\mathrm{V}_{\text {CCOP }}$	V_{CC} value during output polarity programming		5.25	5.5	5.25	V
$\mathrm{V}_{\text {CCPP }}$	$\mathrm{V}_{\text {CC }}$ value during security fuse programming		5.25	5.5	5.75	
	$\mathrm{V}_{\text {CC }}$ value for first verify		4.75	5.0	5.25	I
	V_{CC} value for High V_{CC} verify		5.4	5.5	5.6	
	$\mathrm{V}_{\text {CC }}$ value for Low $\mathrm{V}_{\text {CC }}$ verify		4.4	4.5	4.6	

Array Verify

$V_{C C}$ (Low Voltage Verity) $\mathbf{=} \mathbf{4 . 5}$ volts
$V_{C C}$ (High Volatge Verify) $=\mathbf{5 . 5}$ volts
$V_{C C}$ (First Verify) $\mathbf{=} \mathbf{5 . 0}$ volts
A Delay (tD2) must always precede the Positive
Clock Transition. (e.g. see section 5.23.3 for underblow condition)

Array Programming

Security Fuse Programming

vcc

PIN 1

PIN 11

Output Polarity Programming

Programming Pin Configurations

Voltage Legend

INPUT LINE NUMBER	PIN IDENTIFICATION								
	17	16	15	14	13	12	11	10	L/R
0	HH	L	Z						
1	HH	H	Z						
2	HH	L	HH						
3	HH	H	HH						
4	HH	HH	HH	HH	HH	H	L	HH	Z
5	HH	HH	HH	HH	HH	H	H	HH	Z
6	HH	HH	HH	HH	HH	HH	L	HH	HH
7	HH	HH	HH	HH	HH	H	H	HH	HH
8	HH	HH	HH	HH	HH	L	HH	HH	Z
9	HH	HH	HH	HH	HH	H	HH	HH	Z
10	HH	HH	HH	HH	HH	L	HH	HH	HH
11	HH	HH	HH	HH	HH	H	HH	HH	HH
12	HH	HH	HH	HH	L	HH	HH	HH	Z
13	HH	HH	HH	HH	H	HH	HH	HH	Z
14	HH	HH	HH	HH	L	HH	HH	HH	HH
15	HH	HH	HH	HH	H	HH	HH	HH	HH
16	HH	HH	HH	L	HH	HH	HH	HH	Z
17	HH	HH	HH	H	HH	HH	HH	HH	Z
18	HH	HH	HH	L	HH	HH	HH	HH	HH
19	HH	HH	HH	H	HH	HH	HH	HH	HH
20	HH	HH	L	HH	HH	HH	HH	HH	Z
21	HH	HH	H	HH	HH	HH	HH	HH	Z
22	HH	HH	L	HH	HH	HH	HH	HH	HH
23	HH	HH	H	HH	HH	HH	HH	HH	HH
24	HH	L	HH	HH	HH	HH	HH	HH	Z
25	HH	H	HH	HH	HH	HH	HH	HH	Z
26	HH	L	HH						
27	HH	H	HH						
28	L	HH	Z						
29	H	HH	Z						
30	L	HH							
31	H	HH							

Table 1 Input Line Select
$\mathrm{L}=$ Low-level input voltage, V_{IL}
$\mathrm{H}=$ High-level input voltage, V_{IH}
$\mathrm{HH}=$ High-level program voltage, V_{IH}
$Z=$ High impedance (e.g., $10 \mathrm{k} \Omega$ to 5.0 V)

PRODUCT LINE NUMBER	PIN IDENTIFICATION						
	O_{3}	O_{2}	O_{1}	O_{0}	A_{2}	A_{1}	A_{0}
0, 32	Z	Z	Z	HH	Z	Z	Z
1,33	z	z	Z	HH	Z	Z	HH
2, 34	Z	Z	z	HH	Z	HH	Z
3, 35	Z	Z	Z	HH	Z	HH	HH
4,36	Z	Z	Z	HH	HH	Z	Z
5, 37	Z	Z	Z	HH	HH	Z	HH
6, 38	Z	Z	Z	HH	HH	HH	Z
7, 39	Z	Z	Z	HH	HH	HH	HH
8,40	Z	Z	HH	Z	Z	Z	Z
9, 41	z	Z	HH	Z	Z	z	HH
10, 42	Z	Z	HH	Z	Z	HH	Z
11, 43	Z	Z	HH	Z	Z	HH	HH
12, 44	Z	Z	HH	Z	HH	Z	Z
13, 45	Z	Z	HH	Z	HH	Z	HH
14, 46	Z	Z	HH	Z	HH	HH	Z
15, 47	z	Z	HH	Z	HH	HH	HH
16, 48	z	HH	Z	Z	Z	Z	Z
17, 49	Z	HH	Z	Z	Z	Z	HH
18, 50	Z	HH	Z	Z	Z	HH	Z
19, 51	Z	HH	Z	Z	Z	HH	HH
20, 52	Z	HH	Z	Z	HH	Z	Z
21, 53	Z	HH	Z	Z	HH	Z	HH
22, 54	Z	HH	Z	Z	HH	HH	Z
23, 55	Z	HH	Z	Z	HH	HH	HH
24, 56	HH	Z	Z	Z	Z	Z	Z
25, 57	HH	Z	Z	Z	Z	Z	HH
26,58	HH	z	Z	Z	Z	HH	Z
27, 59	HH	Z	Z	Z	Z	HH	HH
28, 60	HH	Z	Z	Z	HH	Z	Z
29, 61	HH	Z	z	Z	HH	Z	HH
30, 62	HH	Z	Z	Z	HH	HH	Z
31, 63	HH	Z	Z	Z	HH	HH	HH

Table 2 Product Line Select

Programmer/Development System

VENDOR	PAL20AP	PAL20	PAL24 (STD)	PAL24 (FAST)
Data 1/O	- Logic PAK	- Logic PAK	- Logic PAK	- Logic PAK
Structured Design	- SD 1000	$\begin{aligned} & \text { - SD 20/24 } \\ & \text { - SD } 1000 \end{aligned}$	$\begin{aligned} & \text { - SD 20/24 } \\ & \text { - SD } 1000 \end{aligned}$	$\begin{aligned} & \hline \text { - SD 20/24 } \\ & \text { - SD } 1000 \end{aligned}$
Stag	- ZL 30	- PM 202 (rev 3) - Stag ZL 30	- PM 202 (rev 3) - Stag ZL 30	- PM 202 (rev 3) - Stag ZL 30
Digelec		$\begin{aligned} & \text { - UP } 803 \text { (FAM 51) } \\ & \text { or (FAM 52) } \end{aligned}$	$\begin{aligned} & \text { - UP } 803 \text { (FAM 51) } \\ & \text { or (FAM 52) } \end{aligned}$	$\begin{gathered} \text { - UP } 803 \text { (FAM 51) } \\ \text { or (FAM 52) } \end{gathered}$
Kontron		- MPP 80S MOD 21	- MPP 80S MOD 21	
Varix		- Omni programmer	- Omni programmer	

Package Drawings

N20 Molded DIP

J20 Ceramic DIP

Package Drawings

UNLESS OTHERWISE SPECIFIED:
ALL DIMENSIONS MIN.-MAX. IN INCHES ALL DIMENSIONS MIN.-MAX. IN MILLIMETERS

L20 Leadless Chip Carrier

BOTTOM VIEW

Monolithic Memories

Americas
Monolithic Memories
2175 Mission College Blvd. Santa Clara, CA 95050 Phone (408) 970-9700 Telex (910) 338-2374
Telex (910) 338-2376
Fax (408) 980-0675

France

Monolithic Memories France S.A.R.L.
Silic 463
F 94613 Rungis Cedex
France
Phone 1-6874500
Telex 202146
Fax 1-6876825

Japan

Monolithic Memories Japan KK 5-17-9 Shinjuku Shinjuku
Tokyo 160
Japan
Phone 3-207-3131
Telex 232-3390 MMIKKJ
Fax 3-207-3139
United Kingdom
Monolithic Memories, Ltd.
Lynwood House
1 Camp Road
Farnborough, Hampshire
England GU146EN
Phone 9-011-44-252-517431
Telex 858051 MONO UKG
Fax (0252) 43724

Fax (0252) 43724

