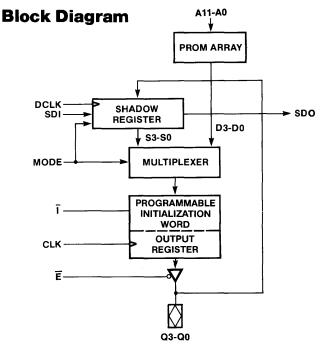
2048 x 4 Diagnostic **Registered PROM**

53DA841 63DA841

with Asynchronous Enable and Output Initialization

Patent Pend.

Features/Benefits

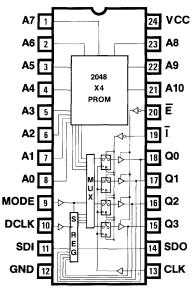

- Asynchronous output enable
- Programmable asynchronous output initialization
- Provides system diagnostic testing with system • controllability and observability
- Shadow register eliminates shifting hazards
- Edge-triggered "D" registers simplifies system timing ٠
- Cascadable for wide control words used in . microprogramming
- 24-pin SKINNYDIP® saves space
- Ti-W fusible link technology guarantees greater than • 98% programming yield
- 24 mA output drive capability
- **Replaces embedded diagnostic code**

Applications

- Microprogram control store with built-in system diagnostic testing
- Serial character generator •
- Serial code converter
- Parallel in/serial out memory
- Cost-effective board testing

Description

The 53/63DA841 is a 2Kx4 PROM with registered three-state outputs, programmable asynchronous initialization and a shadow register for diagnostic capabilities. Shadow register diagnostics allow observation and control of the system without introduc-


SKINNYDIP® is a registered trademark of Monolithic Memories

Ordering Information

ME	MORY	TEMP.	PACKAGE		PART NO.
SIZE	ORG.		PINS	TYPE	FANTINO.
0.1/	Com 24		24	NS, JS	63DA841
8 K	2048 x 4	Mil	(28)	(NL),(L)	53DA841

ing intermediate illegal states. The output register, which can receive parallel data from either the PROM array or the shadow register is loaded on the rising edge of CLK. The shadow register, which can receive parallel data from the output register or serial data from SDI, is loaded on the rising edge of DCLK. When the output drivers are disabled, the shadow register receives its parallel data from the output bus. During diagnostics, data loaded into the output register from the PROM array can be parallel-loaded into the shadow register and serially shifted out through SDO, allowing observation of the system. Similarly, diagnostic data can be serially shifted into the shadow register through SDI, and parallel-loaded into the output register, allowing control and test scanning to be imposed on the system. Since the output register and the shadow register are loaded by different input signals, they can be operated independently of one another. In addition, diagnostic PROMs can be cascaded to construct wide control words used in microprogramming. When exercised, the Initialization input loads the register with a userprogrammable initialization word, independent of the state of CLK. This feature is a superset of preset and clear functions, and can be used to generate an arbitrary microinstruction for system reset or interrupt.

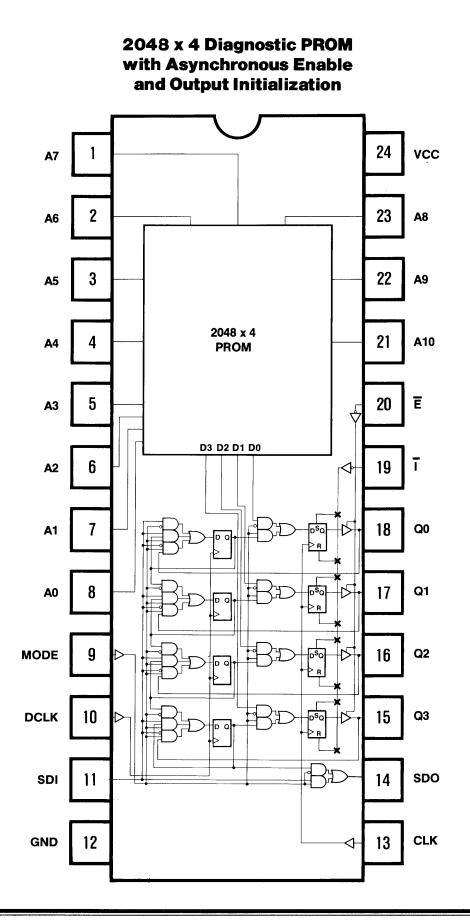
Logic Symbol

2175 Mission College Boulevard, Santa Clara, CA 95050 Tel: (408) 970-9700 TWX: 910-338-2374

TWX: 910-338-2376

Function Table

	INP	UTS			OUTPUTS		
MODE	SDI	CLK	DCLK	Q3-Q0	S3-S0	SDO	OPERATION
L	х	t	*	Qn ← PROM	HOLD	S3	Load output register from PROM array
	x	*	•	HOLD	Sn ← Sn-1	60	Chift chodow register data
L	~			HOLD	S0 ← SDI	S3	Shift shadow register data
L	X	•	•	Qn ← PROM	Sn ← Sn-1	60	Load output register from PROM array
L	^	1			S0 ← SDI	S3	while shifting shadow register data
Н	х	t	*	Qn ← Sn	HOLD	SDI	Load output register from shadow register
Н	L	*	t	HOLD	Sn ← Qn	SDI	Load shadow register from output bus
H.	Н	*	t	HOLD	HOLD	SDI	No operation †


* Clock must be steady or falling.

† Reserved operation for SN54/74S818 8-Bit Diagnostic Register.

Definition of Signals

MODE	The MODE pin controls the output register mul- tiplexer and the shadow register. When MODE is LOW, the output register receives data from	DCLK	The diagnostic clock pin loads or shifts the shadow register on the rising edge of DCLK.
	the PROM array and the shadow register is con- figured as a shift register with SDI as its input. When MODE is HIGH, the output register receives data from the shadow register. The shadow reg- ister is controlled by SDI as well as MODE. With	Q3-Q0	Qn represents the data outputs of the output register. During a shadow register load these pins are the internal data inputs to the shadow register.
	MODE HIGH and SDI LOW, the shadow regis- ter receives parallel data from the output register.	S3-S0	Sn represents the internal shadow register outputs.
	With MODE and SDI both HIGH, the shadow register holds its present data.	A10-A0	An represents the address inputs to the PROM array.
SDI	The Serial Data In pin is the input to the least		array.
	significant bit of the shadow register when operating in the shift mode. SDI is also a control input to the shadow register when it is not in the shift mode.	Ē	The Output Enable pin operates independent of CLK. When \overline{E} is LOW the outputs are enabled. When \overline{E} is HIGH, the outputs are in the high-impedance state.
SDO	The Serial Data Out pin is the output from the		
	most significant bit of the shadow register when operating in the shift mode. When the shadow register is not in the shift mode, SDO displays the logic level present at SDI, decreasing serial shift time for cascaded diagnostic PROMs.	T	The asynchronous output register initialization input pin operates independent of CLK. When \overline{I} is LOW, the output register is loaded with a user-programmable initialization word. Programmable initialization is a super-set of preset and clear
CLK	The clock pin loads the output register on the rising edge of CLK.		functions, and can be used to generate any microinstruction for system reset or interrupt.

Logic Diagram

Monolithic

53/63DA841

Absolute Maximum Ratings

-	Operating	Programming
Supply voltage V _{CC}	0.5 V to 7 V	
Input voltage	1.5 V to 7 V	7 V
Input current		
Off-state output voltage		
Storage temperature		

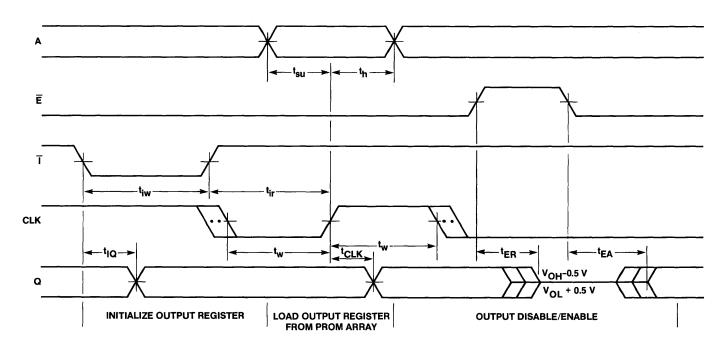
Operating Conditions

SYMBOL	PARAMETER	MIN	ILITAF TYP [†]		COI MIN	MMER TYP	CIAL MAX	UNIT
v _{cc}	Supply voltage	4.5	5	5.5	4.75	5	5.25	V
Т _А	Operating free-air temperature	-55	25	125	0	25	75	°C
t _w	Width of CLK (HIGH or LOW)	25	10		20	10		ns
t _{su}	Set up time from address to CLK	45	27		40	27		ns
^t h	Hold time for CLK	0	-15		0	-15		ns
^t wd	Width of DCLK (HIGH or LOW)	45	15		40	15		ns
^t sud	Set up time from control inputs (SDI, MODE) to CLK, DCLK	50	20		45	20		ns
^t hd	Hold time for DCLK	0	-5		0	-5		ns
t _{iw}	Initialization pulse width (LOW)	25	10		20	10		ns
t _{ir}	Initialization recovery time	45	30		40	30		ns

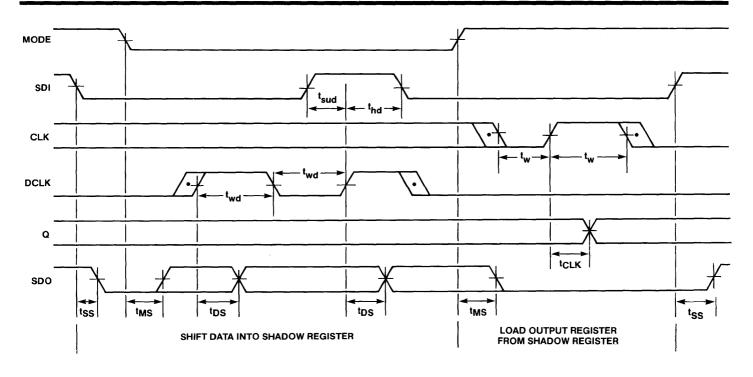
Electrical Characteristics Over Operating Conditions

SYMBOL	PARAMETER	TEST CONDITIONS			TYP†	MAX	UNIT
VIL	Low-level input voltage					0.8	V
VIH	High-level input voltage			2			V
VIC	Input clamp voltage	V _{CC} = MIN	l _l = –18 mA			-1.2	V
۱ _{IL}	Low-level input current	V _{CC} = MAX	V _I = 0.4 V			-0.25	mA
Чн	High-level input current	V _{CC} = MAX	V _I = V _{CC}			40	μA
V _{OL}	Low-level output voltage	V _{CC} = MIN	Mil I _{OL} = 16 mA Com I _{OL} = 24 mA			0.5	v
v _{OH}	High-level output voltage	V _{CC} = MIN	Mil I _{OH} = −2 mA Com I _{OH} = −3.2 mA	2.4			v
lozl	011		V _O = 0.4 V			-100	
lozн	Off-state output current	V _{CC} = MAX	V _O = 2.4 V			40	μΑ
I _{OS}	Output short-circuit current*	V _{CC} = MAX	V _O = 0 V	-20		-90	mA
^I cc	Supply Current	V _{CC} = MAX. All	outputs open.		140	185	mA

* Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second.


 $^{\dagger}\,$ Typical at 5.0 V V_{CC} and 25°C T_A.

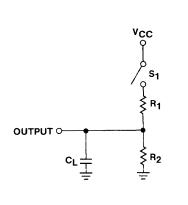
SYMBOL	PARAMETER		MILITAI N TYP†			MER TYP†	CIAL MAX	UNIT
^t CLK	CLK to output		13	25		13	20	ns
tER	Enable time		16	30		16	25	ns
^t EA	Disable time		16	30		16	25	ns
t _{IQ}	Initialization to output delay		23	40		23	35	ns
fMAXD	Maximum diagnostic clock frequency	7	18		10	18		MHz
t _{DS}	DCLK to SDO delay (MODE = LOW)		19	35		19	30	ns
t _{SS}	SDI to SDO delay (MODE = HIGH)		16	30		16	25	ns
tMS	MODE to SDO delay		14	30		14	25	ns


Switching Characteristics Over Operating Conditions and Using Standard Test Load

 \dagger Typical at 5.0 V V_{CC} and 25°C T_A.

Definition of Waveforms

NORMAL PROM OPERATION (MODE = LOW)


SYSTEM CONTROL

SYSTEM OBSERVATION

Switching Test Load

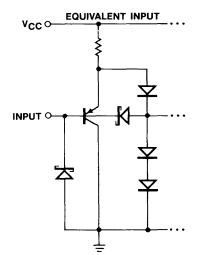
Definition of Timing Diagram

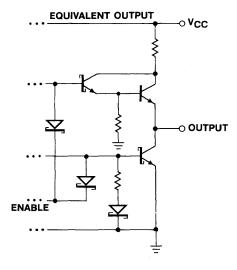
WAVEFORM INPUTS DON'T CARE; CHANGING; CHANGE PERMITTED STATE UNKNOWN NOT CENTER LINE IS HIGH IMPEDANCE STATE APPLICABLE

MUST BE STEADY

WILL BE STEADY

OUTPUTS


NOT APPLICABLE


NOTES:

- 1. For commercial operating range $R_1 = 200\Omega R_2 = 390\Omega$. For military operating range $R_1 = 300\Omega R_2 = 600\Omega$.
- 2. Input pulse amplitude 0 V to 3.0 V.
- 3. Input rise and fall times 2-5 ns from 0.8 V to 2.0 V.
- 4. Input access measured at the 1.5 V level.
- 5. Data delay is tested with switch S₁ closed. C_L = 30 pF and measured at 1.5 V output level.
- t_{EA} is measured at the 1.5 V output level with C_L = 30 pF. S₁ is open for high-impedance to "1" test and closed for high-impedance to "0" test.

 t_{ER} is measured C_L = 5pF. S₁ is open for "1" to high-impedance test, measured at V_{OH} -0.5 V output level; S₁ is closed for "0" to high-impedance test measured at V_{OL} +0.5 V output level.

Schematic of Inputs and Outputs

Device Description

All of the High Performance Generic Ti-W PROM Families are manufactured with all outputs LOW in all PROM array storage locations. To product a HIGH at a particular word, a Titanium-Tungsten Fusible-Link must be changed from a low resistance to a high resistance. This procedure is called programming.

The output register initialization word is manufactured with all outputs HIGH and must be programmed to produce a LOW at a particular output.

Programming Description

To program a particular bit normal TTL levels are applied to all inputs. Programming occurs when:

- 1. V_{CC} is raised to an elevated level.
- 2. The output to be programmed is raised to an elevated level.
- 3. T is lowered to V_{IL}.

In order to avoid misprogramming the PROM only one output at a time is to be programmed. Outputs not being programmed should be connected to V_{CC} via 5K Ω resistors.

Unless specified, inputs to VIL.

Programming Sequence

The sequence of programming conditions is critical and must occur in the following order:

- 1. Select the appropriate address with SDI = HIGH for array programming, or set SDI = LOW for initialize programming.
- 2. Increase V_{CC} to programming voltage
- 3. Increase appropriate output voltage to programming voltage
- 4. Lower I to VIL for programming pulse width
- 5. Decrease V_{OUT} and V_{CC} to normal levels

Programming Timing

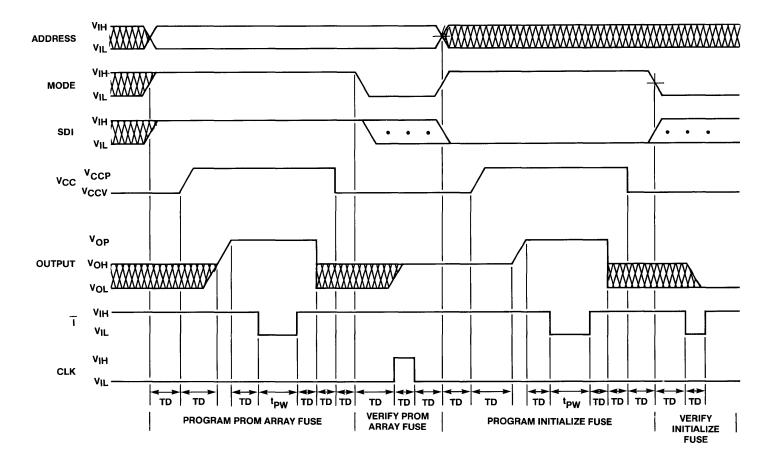
In order to insure the proper sequence, a delay of 100ns or greater must be allowed between steps. The enabling pulse must not occur less than 100ns after the output voltage reaches programming level. The rise time of the voltage on V_{CC} and the output must be between 1 and 10 V/ μ s.

Verification

After each programming pulse, verification of the programmed bit should be made with both low and high V_{CC} and the outputs enabled. The loading of the output is not critical and any loading within the DC specifications of the part is satisfactory.

Additional Pulses

Up to 10 programming pulses should be applied until verification indicates that the bit has programmed. Following verification, apply five additional programming pulses to the bit being programmed.


Programming Parameters

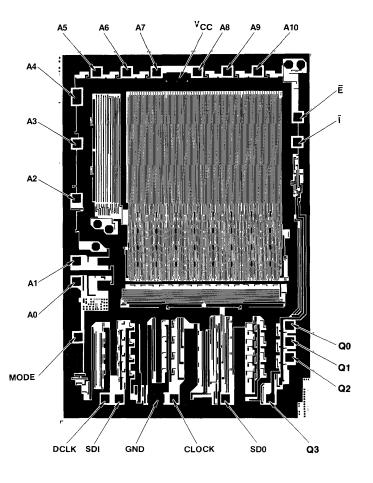
Do not test these parameters or you may program the device.

SYMBOL	PARAMETER	MIN	RECOMMENDED VALUE	МАХ	UNIT
V _{CCP}	Required V _{CC} for programming	11.5	11.75	12.0	V
V _{OP}	Required output voltage for programming	10.5	11.0	11.5	V
^t R	Rise time of V_{CC} or V_{OUT}	1.0	5.0	10.0	V/µs
ICCP	Current limit of V _{CCP} supply	800	1200		mA
IOP	Current limit of V _{OP} supply	15	20		mA
^t PW	Programming pulse width (enabled)	9	10	11	μS
V _{CC}	Low V _{CC} for verification	4.2	4.3	4.4	V
V _{CC}	High V _{CC} for verification	5.8	6.0	6.2	· V
MDC	Maximum duty cycle of V _{CCP}	_	25	25	%
t _D	Delay time between programming steps	100	120		ns
VIL	Input low level	0	0	0.5	V
VIH	Input high level	2.4	3.0	5.5	V

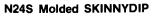
Programming Waveforms

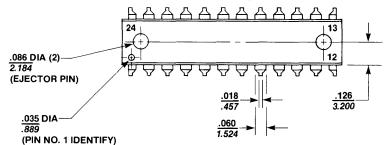
Commercial Programmers

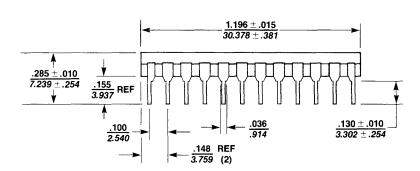
Monolithic Memories PROMs are designed and tested to give a programming yield greater than 98%. If your programming yield is lower, check your programmer. It may not be properly calibrated.

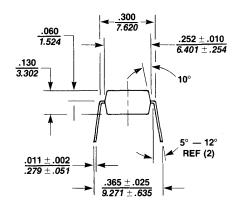

Programming is final manufacturing — it must be qualitycontrolled. Equipment must be calibrated as a regular routine, ideally under the actual conditions of use. Each time a new board or a new programming module is inserted, the whole system should be checked. Both timing and voltage must meet published specifications for the device.

Remember — The best PROMs available can be made unreliable by improper programming techniques.

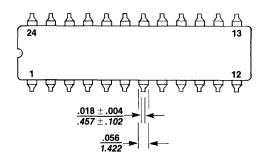

MANUFACTURER	PROGRAMMER		PROGRAMMING	SOCKET	
	TYPE		MODULE	CONFIGURATION	
Data I/O*	Unipack Unipack 2	Rev V07 Rev V05	Family Code AA	Pinout Code AD	

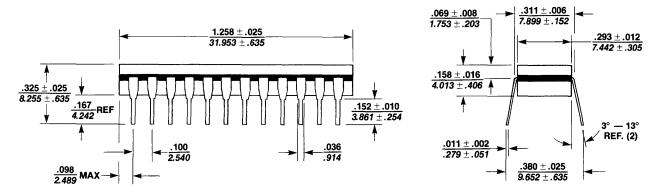

* Use socket adapter 351A-073 Rev. A.


Metal Mask Layout

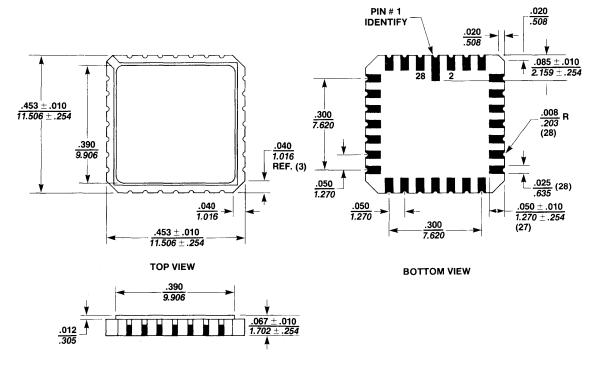


Package Drawings





UNLESS OTHERWISE SPECIFIED: ALL DIMENSIONS MIN.-MAX. IN INCHES ALL DIMENSIONS MIN.-MAX. IN MILLIMETERS


Monolithic

J24S Ceramic SKINNYDIP

L28 Leadless Chip Carrier

UNLESS OTHERWISE SPECIFIED: ALL DIMENSIONS MIN.-MAX. IN INCHES ALL DIMENSIONS MIN.-MAX. IN MILLIMETERS

Monolithic [11] Memories

Americas

Monolithic Memories 2175 Mission College Blvd. Santa Clara, CA 95050 Phone (408) 970-9700 Telex (910) 338-2374 Telex (910) 338-2376 Fax (408) 988-4254 France Monolithic Memories France S.A.R.L. Silic 463 F 94613 Rungis Cedex France Phone 1-6874500 Telex 202146 Fax 1-6876825

United Kingdom Monolithic Memories, Ltd.

Monolithic House 1 Queens Road Farnborough, Hants England GU146DJ Phone 9-011-44-252-517431 Telex 858051 MONO UKG Fax (0252) 43724 Japan Monolithic Memories Japan KK 5-17-9 Shinjuku Shinjuku Tokvo 160

Shinjuku Tokyo 160 Japan Phone 3-207-3131 Telex 232-3390 MMIKKJ Fax 3-207-3139

Germany

Monolithic Memories, GmbH

Mauerkircherstr 4 D 8000 Munich 80 West Germany Phone 89-984961 Telex 524385 Fax 89-983162

Monolithic Memories reserves the right to make changes in order to improve circuitry and supply the best product possible.

Monolithic Memories cannot assume responsibility for the use of any circuitry described other than circuitry entirely embodied in their product. No other circuit patent licenses are implied.

Printed in U.S.A.