MITSUBISH SINGLE-CHIP 8-BIT MICROCOMPUTERS Vol. 2

 SINGLE-CHIP 8-BIT MICROCOMPUTERS Vol. 2

All values shown in this catalogue are subject to change for product improvement.

The information, diagrams and all other data included herein are believed to be correct and reliable. However, no responsibility is assumed by Mitsubishi Electric Corporation for their use, nor for any infringements of patents or other rights belonging to third parties which may result from their use.

GUIDANCE

SERIES 38000

2

SERIES 7450

3

SERIES 7470
4

MELPS 740 CPU CORE BASIC FUNCTIONS

APPENDICES

MITSUBISHI MICROCOMPUTERS INDEX

1 gUIDANCE
Index by Function 1-3
Development Support Systems 1-8
Ordering Information -14
Package Outlines -17
Letter Symbols for The Dynamic Parameters -30
Symbology -33
Quality Assurance and Reliability Testing 1-36
Precautions in Handling MOS IC/LSIs 1-43
2 SERIES 38000
Series 38000 Index by Function 2-3
M3800x Group Single-Chip 8-Bit CMOS Microcomputer 2-4
M3806x Group Single-Chip 8-Bit CMOS Microcomputer 2-37
M3810x Group Single-Chip 8-Bit CMOS Microcomputer 2-75
M3811x Group Single-Chıp 8-Bit CMOS Microcomputer 2-112
M3817x Group Single-Chip 8-Bit CMOS Microcomputer 2-160
M3818x Group Single-Chip 8-Bit CMOS Microcomputer- 2-209
3 SERIES 7450
3-1 Mask ROM type microcomputers
M37450M2-XXXSP/FP, M37450M4-XXXSP/FP, M37450M8-XXXSP/FPSingle-Chip 8-Bit CMOS Microcomputer..3-3
M37450S1SP/FP, M37450S2SP/FP, M37450S4SP/FP
8-Bit CMOS Microcomputer 3-43
M37451M4-XXXSP/FP/GP, M37451M8-XXXSP/FP/GP, M37451MC-XXXSP/FP/GP Single-Chip 8-Bit CMOS Microcomputer 3-59
M37451SSP/FP/GP 8-Bit CMOS Microcomputer 3-106
3-2 Extended Operating Temperature Version of microcomputers M37450M4TXXXSP/J Extended Operating Temperature Version of M37450M4-XXXSP 3-125
M37451M4DXXXSP/FP, M37451M8DXXXSP/FP
Extended Operating Temperature Version of M37451M4-XXXSP/FP, M37451M8-XXXSP/FP 3-139
3-3 Piggyback type microcomputers
M37450PSS Piggyback for M37450M2-XXXSP, M37450M4-XXXSP, M37450M8-XXXSP 3-141
M37450PFS Piggyback for M37450M2-XXXFP, M37450M4-XXXFP, M37450M8-XXXFP 3-148
3-4 Built-in PROM type microcomputers
M37450E4-XXXSP/FP, M37450E4SS/FS PROM Version of M37450M4-XXXSP/FP 3-156
M37450E8-XXXSP/FP, M37450E8SS/FS PROM Version of M37450M8-XXXSP/FP 3-174
M37450E4TXXXSP/J PROM Version of M37450M4TXXXSP/J. 3-192
M37451E4-XXXSP/FP/GP, M37451E8-XXXSP/FP/GP, M37451EC-XXXSP/FP/GP,M37451E4SS/FS, M37451E8SS/FS, M37451ECSS/FS
PROM Version of M37451 GROUP 3-210
M37451E4DXXXSP/FP, M37451E8DXXXSP/FP
PROM Version of M37451M4DXXXSP/FP, M37451M8DXXXSP/FP 3-222
4 SERIES 7470
4-1 Mask ROM type microcomputersM37470M2-XXXSP, M37470M4-XXXSP, M37470M8-XXXSP
Single-Chip 8-bit CMOS Microcomputer 4-3
M37471M2-XXXSP/FP, M37471M4-XXXSP/FP, M37471M8-XXXSP/FP
Single-Chip 8-bit CMOS Microcomputer 4-30
4-2 Built-in PROM type microcomputersM37470E4-XXXSP, M37470E8-XXXSP PROM Version of M37470M4-XXXSP, M37470M8-XXXSP-4-64
M37471E4-XXXSP/FP, M37471E8-XXXSP/FP, M37471E8SS
PROM Version of M37471M4-XXXSP/FP, M37471M8-XXXSP/FP 4-72
5 MELPS 740 CPU CORE BASIC FUNCTIONS 5-3
6 APPENDICES
Series MELPS 740 Mask ROM Ordering Method 6-3 6-57
Mark Specification Form
Mark Specification Form

TSeries MELPS 740 single－chip microcomputers

Type	Circuit function and organization	Structure	Supply voltage （V）	Electrical characteristics			Package	Page
				Typ pwr dissipation （mW）	Min． cycle tume （ $\mu \mathrm{s}$ ）			
M50708－XXXSP／FP＊	6K－Byte Mask－Prog．ROM，128－Byte RAM， Serial I／O	C，Si	$5 \pm 10 \%$	15	2	4	64P4B／72P6	Note1
M50740A－XXXSP／FP \times	3K－Byte Mask－Prog．ROM，96－Byte RAM	C，Si	$5 \pm 10 \%$	15	2	4	52P4B／50P6	Note1
M50740ASP＊	External ROM Type，96－Byte RAM	C， Si	$5 \pm 10 \%$	15	2	4	52P4B	Note1
M50741－XXXSP／FP＊	4K－Byte Mask－Prog．ROM，96－Byte RAM	C，Si	$5 \pm 10 \%$	15	2	4	52P4B／50P6	Note1
M50742－XXXSP／FP＊	4K－Byte Mask－Prog．ROM，128－Byte RAM， Serial I／O	C，Sı	$5 \pm 10 \%$	15	2	4	64P4B／72P6	Note1
M50743－XXXSP／FP＊	4K－Byte Mask－Prog．ROM，128－Byte RAM	C，Si	$5 \pm 10 \%$	30	1	8	64P4B／72P6	Note1
M50744－XXXSP／FP＊	4K－Byte Mask－Prog．ROM，144－Byte RAM	C, Si	$5 \pm 10 \%$	15	2	4	64P4B／72P6	Note1
M50745－XXXSP／FP \times	6K－Byte Mask－Prog．ROM，192－Byte RAM	C，Si	$5 \pm 10 \%$	15	2	4	64P4B／60P6	Note1
M50746－XXXSP／FP＊	6K－Byte Mask－Prog．ROM，144－Byte RAM	C，Si	$5 \pm 10 \%$	15	2	4	64P4B／72P6	Note1
M50747－XXXSP／FP＊	8K－Byte Mask－Prog．ROM，256－Byte RAM	C，Si	$5 \pm 10 \%$	30	1	8	64P4B／72P6	Note1
M50747H－XXXSP／FP	8K－Byte Mask－Prog．ROM，256－Byte RAM	C，SI	$5 \pm 5 \%$	45	0.67	12	64P4B／72P6	Note1
M50752－XXXSP＊	4K－Byte Mask－Prog．ROM，128－Byte RAM， High Voltage Port，CR Oscillation Type	C，SI	$5 \pm 10 \%$	15	2	4	52P4B	Note1
M50753－XXXSP／FP	6K－Byte Mask－Prog．ROM，96－Byte RAM， 8－Bit A－D Converter	C，Si	$5 \pm 10 \%$	15	2	4	64P4B／60P6	Note1
M50754－XXXSP／FP／GP	6K－Byte Mask－Prog．ROM，160－Byte RAM， PWM，High Voltage Port，Serial I／O	C，SI	4～5．5	20	1.90	4． 2	$\begin{aligned} & \text { 64P4B/72P6/ } \\ & 64 \mathrm{P} 6 \mathrm{~W} \end{aligned}$	Note1
M50757－XXXSP＊	3K－Byte Măsk－Prog．ROM，96－Byte RAM， High Voltage Port，CR Oscillation Type	C，Si	$5 \pm 10 \%$	15	2	4	52P4B	Note1
M50758－XXXSP \times	3K－Byte Mask－Prog ROM，96－Byte RAM， High Voltage Port，Ceramic Oscillation Type	$\mathrm{C}, \mathrm{Si}^{\text {－}}$	$5 \pm 10 \%$	15	2	4	52P4B	Note1
M50930－XXXFP	4K－Byte Mask－Prog．ROM，128－Byte RAM， LCD Controller／Driver，Serial I／O	C， Si	$5 \pm 10 \%$	15	1.86	4.3	80P6	Note2
M50931－XXXFP	4K－Byte Mask－Prog．ROM，512－Byte RAM， LCD Controller／Driver，Serial I／O	C，Si	$5 \pm 10 \%$	15	1.86	4.3	80P6	
M50932－XXXFP	8K－Byte Mask－Prog．ROM，512－Byte RAM， LCD Controller／Driver，Serial I／O	C，Si	$5 \pm 10 \%$	15	1.86	4.3	80P6	
M50933－XXXFP	6K－Byte Mask－Prog．ROM，192－Byte，RAM， LCD Controller／Driver，Serial I／O	C， Si	3．8～5．5	15	1.86	4． 3	80P6	Note2
M50934－XXXFP	8K－Byte Mask－Prog．ROM，256－Byte RAM， LCD Controller／Driver，Serial I／O	C，Si	3．8～5．5	15	1.86	4.3	80P6	
M50940－XXXSP／FP	4K－Byte Mask－Prog ROM，128－Byte RAM， 8－Bit A－D Converter，High Voltage Port， Serial I／O	C，Si	$5 \pm 10 \%$	15	2	4	64P4B／72P6	Note2
M50941－XXXSP／FP	8K－Byte Mask－Prog ROM，192－Byte RAM， 8－Bit A－D Converter，High Voltage Port， Serial I／O	C，SI	$5 \pm 10 \%$	15	2	4	64P4B／72P6	
M50943－XXXSP／FP	8K－Byte Mask－Prog．ROM，192－Byte RAM， 8－Bit A－D Converter，Serial I／O	C，Si	$5 \pm 10 \%$	30	1	8	64P4B／60P6	Note1
M50944－XXXSP／FP	12K－Byte Mask－Prog．ROM，192－Byte RAM， 8－Bit A－D Converter，Two Serial $/ \mathrm{O}_{\text {s }}$	C，Si	$3 \sim 5.5$	15	1.91	4． 19	64P4B／64P6S	Note2
M50945－XXXSP／FP	16K－Byte Mask－Prog．ROM，256－Byte RAM， 8－Bit A－D Converter，High Voltage Port， Serial I／O	C，Si	$5 \pm 10 \%$	15	2	4	64P4B／72P6	Note2
M50950－XXXSP	6K－Byte Mask－Prog．ROM，144－Byte RAM， High Voltage Port，Two Serial I／Os	C，Si	$5 \pm 10 \%$	20	1.6	5	52P4B	Note1
M50951－XXXSP	4K－Byte Mask－Prog ROM，144－Byte RAM， High Voltage Port，Two Serial I／Os	C，Si	$5 \pm 10 \%$	20	－1．6	5	52P4B	Note1
M50954－XXXSP／FP／GP	8K－Byte Mask－Prog．ROM，192－Byte RAM， PWM，High Voltage Port，Serial I／O	C， Si	4～5．5	20	1.90	4． 2	$\begin{aligned} & \text { 64P4B/72P6/ } \\ & 64 \mathrm{P} 6 \mathrm{~W} \\ & \hline \end{aligned}$	Note1
M50955－XXXSP／FP／GP	10K－Byte Mask－Prog．ROM，192－Byte RAM， PWM，High Voltage Port，Serial I／O	C，Si	$4 \sim 5.5$	20	1.90	4． 2	$\begin{aligned} & \text { 64P4B/72P6/ } \\ & \text { 64P6W } \end{aligned}$	Note1

\star ：New product $\star \star$ ：Under development
Note1 ：Refer to the＂1989 MITSUBISHI SEMICONDUCTORS DATA BOOK 〈SINGLE－CHIP 8－BIT MICROCOMPUTERS＂＂
2 ：Refer to the＂1990 MITSUBISHI SEMICONDUCTORS DATA BOOK＜SINGLE－CHIP 8－BIT MICROCOMPUTERS Enlarged edition）＂
3 ：Refer to the＂1992 MITSUBISHI SEMICONDUCTORS DATA BOOK 〈SINGLE－CHIP 8－BIT MICROCOMPUTERS〉Vol 1．＂
※：The production of this product is no longer planned due to announcement of new series or upgrades．

Type	Circuit function and organızation	Structure	Supply voltage （V）	Electrical characteristics			Package	Page
				Typ pwr dissipation $(m W)$	Mın． cycle tıme （ $\mu \mathrm{s}$ ）	Max． fre－ quency （MHz）		
M50957－XXXSP／FP	10K－Byte Mask－Prog．ROM，256－Byte RAM， PWM，High Voltage Port，4－Bit Comparator， Serial I／O	C，Sı	$4 \sim 5.5$	20	1.90	4.2	64P4B／72P6	Note2
M50958－XXXSP／FP ${ }_{\text {＊}}$	12K－Byte Mask－Prog．ROM，256－Byte RAM， PWM，High Voltage Port，4－Bit Comparator， Serial I／O	C，Si	$4 \sim 5.5$	20	1.90	4． 2	64P4B／72P6	
M50959－XXXSP／FP＊	16K－Byte Mask－Prog．ROM，256－Byte RAM， PWM，High Voltage Port，4－Bit Comparator Serial I／O	C，Si	4～5．5	20	1.90	4． 2	64P4B／72P6	
M50963－XXXSP／FP＊	10K－Byte Mask－Prog．ROM，160－Byte RAM， 8－Bit A－D Converter，5－Bit D－A Converter，PWM， Serial I／O	C，Si	$5 \pm 10 \%$	15	2	4	64P4B／72P6	Note1
M50964－XXXSP／FP ※	6K－Byte Mask－Prog．ROM，160－Byte RAM， 8－Bit A－D Converter，5－Bit D－A Converter，PWM， Serial I／O	C，Si	$5 \pm 10 \%$	15	2	4	64P4B／72P6	Note1
M50734SP／FP	External ROM，RAM Type，5－Timer，8－Bit A－D Converter，Serial I／O	C，Si	$5 \pm 10 \%$	30	1	8	64P4B／72P6	
M50734SP／FP－10	External ROM，RAM Type，5－Timer，8－Bit A－D Converter，Serial I／O	C，Si	$5 \pm 10 \%$	35	0.8	10	64P4B／72P6	Note2
M37100M8－XXXSP／FP	16K－Byte Mask－Prog．ROM，320－Byte RAM， Two Serial I／Os，A－D Converter，OSD Function	C，Si	$5 \pm 10 \%$	27.5	2	4	64P4B／80P6	Note3
M37102M8－XXXSP／FP＊	16K－Byte Mask－Prog．ROM，320－Byte RAM， Two Serial I／Os，A－D Converter，PWM，OSD Function	C，Si	$5 \pm 10 \%$	110	1	4	64P4B／80P6N	Note3
M37103M4－XXXSP＊	8K－Byte Mask－Prog．ROM，320－Byte RAM， Serial I／O，A－D Converter，PWM，OSD Function	C，Si	$5 \pm 10 \%$	35	2	4	64P4B	Note3
M37120M6－XXXFP＊	12K－Byte Mask－Prog．ROM，256－Byte RAM， Serial I／O，A－D Converter，D－A Converter，OSD Function	C，Si	$5 \pm 10 \%$	75	1	4	80P6N	Note3
M37201M6－XXXSP＊	24K－Byte Mask－Prog．ROM，384－Byte RAM， Two Serial I／Os，A－D Converter，PWM，OSD Function	C，Si	$5 \pm 10 \%$	110	1	4	64P4B	Note3
M37202M3－XXXSP ${ }^{\text {® }}$＊	12K－Byte Mask－Prog．ROM，256－Byte RAM， Serial I／O，A－D Converter，PWM，OSD Function， Four Timers	C，Sı	$5 \pm 10 \%$	110	1	4	64P4B	Note3
M37204M8－XXXSP \star ћ	32K－Byte Mask－Prog ROM，512－Byte RAM， Serial I／O，A－D Converter，D－A Converter，PWM， OSD Function，Four Timers	C，Si	$5 \pm 10 \%$	110	1	4	64P4B	Note3
M37250M6－XXXSP＊	24K－Byte Mask－Prog．ROM，384－Byte RAM， Serial I／O，A－D Converter，PWM，OSD Function， PLL Function，Four Timers	C，Si	$5 \pm 10 \%$	137.5	1	4	64P4B	Note3
M37260M6－XXXSP＊＊	24K－Byte Mask－Prog．ROM，320－Byte RAM， 8－Byte Serial I／O，OSD Function，Four Timers	C，Si	$5 \pm 10 \%$	110	1	4	52P4B	Note3
M37408M2－XXXSP／FP $\star \star$	4K－Byte Mask－Prog．ROM，128－Byte RAM， Dual－Port RAM，UART，Bus Interface， Timer	C，Si	$5 \pm 10 \%$	50	0.8	10	42P4B／44P6N	Note3
M37409M2－XXXSP／FP	4K－Byte Mask－Prog．ROM，128－Byte RAM， Dual－Port RAM，Three UARTs，Bus Interface，Timer	C，Si	$5 \pm 10 \%$	50	0.8	10	52P4B／56P6N	Note3
M37410M3HXXXFP	6K－Byte Mask－Prog．ROM，192－Byte RAM， Serial I／O，A－D Converter，LCD Controller／Driver	C，Si	$2.5 \sim 5.5$	30	1	8	80P6S	Note3
M37410M4HXXXFP	8K－Byte Mask－Prog．ROM，256－Byte RAM	C，Si	2．5～5．5	30	1	8	80P6S	
M37410M6HXXXFP	12K－Byte Mask－Prog．ROM，256－Byte RAM	C，Si	2．5～5．5	30	1	8	80P6S	
M37412M4－XXXFP	8K－Byte Mask－Prog．ROM，160－Byte RAM，Serial I／O，PWM，8－Bit A－D Converter，5－Bit D－A Converter	C，Si	$5 \pm 10 \%$	15	2	4	72P6	Note3
M37413M4HXXXFP	8K－Byte Mask－Prog．ROM，256－Byte RAM， Serial I／O，A－D Converter	C，Si	$2.5 \sim 5.5$	30	1	8	80P6S	Note3
M37413M6HXXXFP ${ }^{\text {＊}}$	12K－Byte Mask－Prog．ROM， 256－Byte RAM	C，Si	$2.5 \sim 5.5$	30	1	8	80P6S	Note3
M37414M5－XXXFP＊	10K－Byte Mask－Prog．ROM，160－Byte RAM，Serial I／O，PWM，8－Bit A－D Converter，5－Bit D－A Converter	C，Si	$5 \pm 10 \%$	15	2	4	72P6	Note3
M37415M4－XXXFP	8K－Byte Mask－Prog．ROM，512－Byte RAM， Serial I／O，LCD Controller／Driver，DTMF Generator	C，Si	$2.5 \sim 5.5$	20	2.5	3.2	80P6	Note3

\star ：New product $\star \star$ ：Under development
Note1 ：Refer to the＂ 1989 MITSUBISHI SEMICONDUCTORS DATA BOOK 〈SINGLE－CHIP 8－BIT MICROCOMPUTERS〉＂
2 ：Refer to the＂ 1990 MITSUBISHI SEMICONDUCTORS DATA BOOK＜SINGLE－CHIP 8－BIT MICROCOMPUTERS Enlarged edition＞＂
3 ：Refer to the＂1992 MITSUBISHI SEMICONDUCTORS DATA BOOK＜SINGLE－CHIP 8－BIT MICROCOMPUTERS〉Vol．1．＂
※：The production of this product is no longer planned due to announcement of new series or upgrades．

Series MELPS 740 single－chip microcomputers（continued）

Type	Circuit function and organization	Structure	Supply voltage （V）	Electrical characteristics			Package	Page
				Typ pwr disspation （mW）	Min． cycle tıme （ $\mu \mathrm{s}$ ）	Max． fre－ quency （MHz）		
M37416M2－XXXSP／FP＊	4K－Byte Mask－Prog．ROM，128－Byte RAM，UART， Comparator，Bus interface，Key on wake up	C，Sı	$5 \pm 10 \%$	50	1	8	52P4B／56P6N	Note3
M37420M4－XXXSP	8K－Byte Mask－Prog．ROM，256－Byte RAM，PWM， Serial I／O，A－D Converter，D－A Converter，Timer	C，Si	$5 \pm 10 \%$	30	1	8	52P4B	Note3
M37420M6－XXXSP	12K－Byte Mask－Prog．ROM，256－Byte RAM	C，Si	$5 \pm 10 \%$	30	1	8	52P4B	
M37421M6－XXXSP／FP	12K－Byte Mask－Prog．ROM，320－Byte RAM，PWM， Serial I／O，High Voltage Port，4－Bit Comparator	C, Si	$5 \pm 10 \%$	25	0.95	4.2	64P4B／72P6	Note3
M37424M8－XXXSP＊${ }^{\text {k }}$	16K－Byte Mask－Prog．ROM，256－Byte RAM，PWM， Serial I／O，8－Bit A－D Converter，5－Bit D－A Converter， Timer	C, Si	$5 \pm 10 \%$	30	1	4	64P4B	Note3
M37524M4－XXXSP $\star \star$	16K－Byte Mask－Prog．ROM，256－Byte RAM， PWM，Serial I／O，8－Bit A－D Converter，5－Bit D－A Converter，Timer	C, Si	$5 \pm 10 \%$	30	1	4	64P4B	Note3
M37428M4－XXXFP＊${ }^{\text {k }}$	8K－Byte Mask－Prog．ROM，384－Byte RAM， UART，LCD Controller／Driver，Timer	C，Si	$5 \pm 10 \%$	15	1	8	80P6N	Note3
M37450M2－XXXSP／FP	4K－Byte Mask－Prog．ROM，128－Byte RAM， 8－Bit A－D Converter，8－Bit D－A Converter，UART， DBB，Three Timers，PWM	C，Si	$5 \pm 10 \%$	30	0.8	10	64P4B／80P6	3－3
M37450M4－XXXSP／FP	8K－Byte Mask－Prog．ROM，256－Byte RAM	C，Si	$5 \pm 10 \%$	30	0.8	10	64P4B／80P6	
M37450M8－XXXSP／FP	16K－Byte Mask－Prog ROM，384－Byte RAM	C，Si	$5 \pm 10 \%$	30	0.8	10	64P4B／80P6	
M37450S1SP／FP	External ROM，128－Byte RAM	C，Si	$5 \pm 10 \%$	30	0.8	10	64P4B／80P6	3－43
M37450S2SP／FP	External ROM，256－Byte RAM	C, Si	$5 \pm 10 \%$	30	0.8	10	64P4B／80P6	
M37450S4SP／FP	External ROM，384－Byte RAM	C，Si	$5 \pm 10 \%$	30	0.8	10	64P4B／80P6	
M37451M4－XXXSP／FP／GP＊	8K－Byte Mask－Prog．ROM，256－Byte RAM， 8－Bit A－D Converter，8－Bit D－A Converter，UART， DBB，Three Timers，PWM	C，Sı	$5 \pm 10 \%$	40	0.64	12.5	64P4B／ 80P6N／80P6S	3－59
M37451M8－XXXSP／FP／GP＊	16K－Byte Mask－Prog．ROM，384－Byte RAM	C，Si	$5 \pm 10 \%$	40	0.64	12.5	$\begin{aligned} & \text { 64P4B/ } \\ & \text { 80P6N/80P6S } \end{aligned}$	
M37451MC－KXXSP／FP／GP \quad＊	24K－Byte Mask－Prog．ROM，512－Byte RAM	C, St	$5 \pm 10 \%$	40	0.64	12.5	$\begin{aligned} & \text { 64P4B/ } \\ & \text { 80P6N/80P6S } \end{aligned}$	
M37451SSP／FP／GP＊＊	External ROM，1024－Byte RAM	C, Si	$5 \pm 10 \%$	40	0.64	12.5	$\begin{aligned} & \text { 64P4B/ } \\ & \text { 80P6N/80P6S } \end{aligned}$	3－106
M37470M2－XXXSP＊	4K－Byte Mask－Prog ROM，128－Byte RAM， Serial I／O，A－D Converter	C, Si	2．7～5．5	17.5	1	4	32P4B	4－3
M37470M4－XXXSP＊	8K－Byte Mask－Prog．ROM，192－Byte RAM	C，Si	$2.7 \sim 5.5$	17.5	1	4	32P4B	
M37470M8－XXXSP＊	16K－Byte Mask－Prog．ROM，384－Byte RAM	C, Si	$2.7 \sim 5.5$	17.5	1	4	32P4B	
M37471M2－XXXSP／FP＊	4K－Byte Mask－Prog．ROM，128－Byte RAM， Serial I／O，A－D Converter	C，Si	$2.7 \sim 5.5$	17.5	1	4	42P4B／56P6N	4－30
M37471M4－XXXSP／FP＊	8K－Byte Mask－Prog ROM，192－Byte RAM	C，Si	2．7～5．5	17.5	1	4	42P4B／56P6N	
M37471M8－XXXSP／FP \quad－	16K－Byte Mask－Prog．ROM，384－Byte RAM	C，Si	2．7～5．5	17.5	1	4	42P4B／56P6N	

\star ：New product $\star \star$ ：Under development
Note1 ：Refer to the＂1989 MITSUBISHI SEMICONDUCTORS DATA BOOK 〈SINGLE－CHIP 8－BIT MICROCOMPUTERS＂＂
2 ：Refer to the＂ 1990 MITSUBISHI SEMICONDUCTORS DATA BOOK 〈SINGLE－CHIP 8－BIT MICROCOMPUTERS Enlarged edition＞＂
3 ：Refer to the＂1992 MITSUBISHI SEMICONDUCTORS DATA BOOK 〈SINGLE－CHIP 8－BIT MICROCOMPUTERS〉VoI．1．＂
※：The production of this product is no longer planned due to announcement of new series or upgrades．

Extended operating temperature version of microcomputers

Type	Circuit function and organization	Structure	Supply voltage （V）	Electrical characteristics			Package	Page
				Typ pwr disspation (mW)	Min cycle time （ $\mu \mathrm{s}$ ）	Max fre－ quency (MHz)		
M50744T－XXXSP \times	4K－Byte Mask－Prog．ROM，144－Byte RAM， Extended Operating Temperature Version of M50744－XXXSP	C，Si	$5 \pm 10 \%$	15	2	4	64P4B	Note1
M50747T－XXXSP	8K－Byte Mask－Prog．ROM，256－Byte RAM， Extended Operating Temperature Version of M50747－XXXSP	C，Si	$5 \pm 10 \%$	30	1	8	64P4B	Note1
M50753T－XXXSP	6K－Byte Mask－Prog ROM，96－Byte RAM， Extended Operating Temperature Version of M50753－XXXSP	C，Si	$5 \pm 10 \%$	15	2	4	64P4B	Note1
M50930T－XXXFP	4K－Byte Mask－Prog．ROM，128－Byte RAM， Extended Operating Temperature Version of M50930－XXXFP	C，Si	$5 \pm 10 \%$	20	1.86	4． 3	80P6	Note1
M37450M4TXXXSP／J	8K－Byte Mask－Prog ROM，256－Byte RAM， Extended Operating Temperature Version of M37450M4－XXXSP	C，Sı	$5 \pm 10 \%$	30	0.8	10	64P4B／84PO	3－125
M37451M4DXXXSP／FP＊ᄎ	8K－Byte Mask－Prog ROM，256－Byte RAM， Extended Operating Temperature Version of M37451M4－XXXSP／FP	C，Sı	$5 \pm 10 \%$	40	0.64	12.5	64P4B／80P6N	
M37451M8DXXXSP／FP ＊ᄎ	16K－Byte Mask－Prog ROM，384－Byte RAM， Extended Operating Temperature Version of M37451M8－XXXSP／FP	C，Si	$5 \pm 10 \%$	40	0． 64	12.5	64P4B／80P6N	

Type	Circuit function and organization	Structure	Supply voltage （V）	Electrical characteristics			Package	Page
					Mın cycle tıme （ $\mu \mathrm{s}$ ）	Max fre－ quency MHz		
M50740－PGYS	Piggyback for M50740／M50741	C，SI	$5 \pm 5 \%$	－	2	4	$52 \mathrm{S1M}$	Note1
M50742－PGYS	Piggyback for M50742／M50708	C，Si	$5 \pm 5 \%$	－	2	4	64S1M	Note1
M50743－PGYS	Piggyback for M50743	C，Si	$5 \pm 5 \%$	－	1	8	64S1M	Note1
M50745－PGYS	Piggyback for M50745	C，Si	$5 \pm 5 \%$	－	2	4	64S1M	Note1
M50752－PGYS	Piggyback for M50757／M50752	C，SI	$5 \pm 5 \%$	－	2	4	52S1M	Note1
M50753－PGYS	Piggyback for M50753	C，Si	$5 \pm 5 \%$	－	2	4	64S1M	Note1
M50931－PGYS	Piggyback for M50930／M50931／M50932	C，SI	$5 \pm 5 \%$	－	2	4	80S6M	Note1
M50945－PGYS	Piggyback for M50940／M50941／M50945	C，Si	$5 \pm 5 \%$	－	2	4	64S1M	Note2
M50950－PGYS	Piggyback for M50950／M50951	C，Si	$5 \pm 5 \%$	－	1.6	5	52S1M	Note1
M50955－PGYS	Piggyback for M50754／M50954／M50955	C，SI	$5 \pm 5 \%$	－	1.9	4.2	64S1M	Note1
M50957－PGYS	Piggyback for M50957／M50958／M50959	C，Si	$5 \pm 5 \%$	－	1.9	4.2	64S1M	Note2
M50964－PGYS	Piggyback for M50964／M50963	C，SI	$5 \pm 5 \%$	－	2	4	64S1M	Note1
M37409PSS＊	Piggyback for M37409M2－XXXSP	C，SI	$5 \pm 5 \%$	－	0.8	10	52S1M	Note3
M37415PFS	Piggyback for M37415M4－XXXFP	C，SI	3．0～5．5	－	2.5	3.2	80S6M	Note3
$\begin{aligned} & \text { M37421P-000SS } \\ & \text { M37421P_001SS } \end{aligned}$	Piggyback for M37421M6－XXXSP	C，Si	$5 \pm 5 \%$	－	0.95	4.2	64S1M	Note3
M37450PSS	Piggyback for M37450M2／M4／M8－XXXSP	C，Si	5士5\％	－	0.8	10	64S1M	3－141
M37450PFS	Piggyback for M37450M2／M4／M8－XXXFP	C，Si	$5 \pm 5 \%$	－	0.8	10	80S6M	3－148

\star ：New product $\star \star$ ：Under development
Note1 ：Refer to the＂1989 MITSUBISHI SEMICONDUCTORS DATA BOOK 〈SINGLE－CHIP 8－BIT MICROCOMPUTERS〉＂
2 ：Refer to the＂1990 MITSUBISHI SEMICONDUCTORS DATA BOOK＜SINGLE－CHIP 8－BIT MICROCOMPUTERS Enlarged edition＞＂
3 ：Refer to the＂1992 MITSUBISHI SEMICONDUCTORS DATA BOOK 〈SINGLE－CHIP 8－BIT MICROCOMPUTERS〉VoI． 1 ＂
※：The production of this product is no longer planned due to announcement of new series or upgrades

■uilt－In PROM type microcomputers

Type	Circuit function and organization	Structure	Supply voltage （V）	Electrical characteristics			Package	Page
				Typ． pwr dissipatuon （mW）	Min． cycle time （ $\mu \mathrm{s}$ ）	Max fre－ quency （MHz）		
M50746E－XXXSP／FP	One Time Programmable Version of M50746－XXXSP／FP	C，Si	$5 \pm 5 \%$	15	2	4	64P4B／72P6	Note1
M50746ES／EFS	PROM Version of M50746－XXXSP／FP	C，Si	$5 \pm 5 \%$	15	2	4	64S1B／72S6	Note1
M50747E－XXXSP／FP	One Time Programmable Version of M50747－XXXSP／FP	C，Si	$5 \pm 5 \%$	30	1	8	64P4B／72P6	Note1
M50747ES／EFS	PROM Version of M50747－XXXSP／FP	C, Si	$5 \pm 5 \%$	30	1	8	64S1B／72S6	Note1
M50944E－XXXSP／FP	One Time Programmable Version of M50944－XXXSP／FP	C，Si	3～5．5	15	1.9	4． 2	64P4B／64P6S	Note1
M50944ES	PROM Version of M50944－XXXSP	C，Si	3－5．5	15	1.9	4.2	64S1B	
M50957E－XXXSP	One Time Programmable Version of M50957－XXXSP	C， Si	$5 \pm 5 \%$	20	1.9	4.2	64P4B	Note1
M50957ES	PROM Version of M50957－XXXSP	C，Si	$5 \pm 5 \%$	20	1.9	4.2	64S1B	
M50963E－XXXSP／FP	One Time Programmable Version of M50963－XXXSP	C，Si	$5 \pm 5 \%$	15	2	4	64P4B／72P6	Note1
M50963ES／EFS	PROM Version of M50963－XXXSP／FP	C，SI	$5 \pm 5 \%$	15	2	4	64S1B／72S6	Note1
M37102E8－XXXSP／FP	One Time Programmable Version of M37102M8－XXXSP／FP	C，Si	$5 \pm 10 \%$	110	1	4	64P4B／80P6N	Note3
M37120E6－XXXFP＊	PROM Version of M37120M6－XXXFP	C，Si	$5 \pm 5 \%$	75	1	4	80P6N	Note3
M37201E6－XXXSP＊	One Time Programmable Version of M37201M6－XXXSP		$5 \pm 10 \%$	110	1	4	64P4B	Note3
M37410E6HXXXFP	One Time Programmable Version of M37410M6HXXXFP	C，Si	$2.5 \sim 5.5$	30	1	8	80P6S	Note3
M37410E6HFS	PROM Version of M37410M6HXXXFP	C，Si	2．5～5．5	30	1	8	8056	
M37412E5－XXXFP	One Time Programmable Version of M37412M4－XXXFP	C，Si	$5 \pm 5 \%$	15	2	4	72P6	Note3
M37413E6HXXXFP ${ }^{\text {k }}$ ，	One Time Programmable Version of M37413M6HXXXFP	C，Si	2．5～5．5	30	1	8	80P6S	Note3
M37413E6HFS $\star \star$	PROM Version of M37413M6HXXXFP	C，Si	$5 \pm 5 \%$	30	1	8	8056	
M37414E5－XXXFP \quad ¢	One Time Programmable Version of M37414M5－XXXFP	C，Si	$5 \pm 5 \%$	15	2	4	$72 \mathrm{P6}$	Note3
M37420E6－XXXSP \quad ¢	One Time Programmable Version of M37420M6－XXXSP	C，Si	$5 \pm 5 \%$	30	1	8	52P4B	Note3
M37420E6SS $\quad \star$	PROM Version of M37420M6－XXXSP	C，Si	$5 \pm 5 \%$	30	1	8	52S1	
M37424E8－XXXSP $\star \star$	One Time Programmable Version of M37424M8－XXXSP	C，Si	$5 \pm 10 \%$	30	1	4	64P4B	Note3
M37524E4－XXXSP $\star \star$	One Time Programmable Version of M37524M4－XXXSP	C，Si	$5 \pm 10 \%$	30	1	4	64P4B	Note3
M37450E4－XXXSP／FP	One Time Programmable Version of M37450M4－XXXSP／FP	C，Si	$5 \pm 5 \%$	30	0.8	10	64P4B／80P6	3－156
M37450E4SS／FS	PROM Version of M37450M4－XXXSP／FP	C，Si	$5 \pm 5 \%$	30	0.8	10	64S1B／80S6	
M37450E8－XXXSP／FP＊	One Time Programmable Version of M37450M8－XXXSP／FP	C，Si	$5 \pm 5 \%$	30	0.8	10	64P4B／80P6	3－174
M37450E8SS／FS \star	PROM Version of M37450M8－XXXSP／FP	C，Si	$5 \pm 5 \%$	30	0.8	10	64S1B／80D0	
M37450E4TXXXSP／J＊	One Time Programmable Version of M37450M4TXXXSP／J	C，Si	$5 \pm 5 \%$	30	0.8	10	64P4B／84P0	3－192
M37451E4－XXXSP／FP／GP＊	One TIme Programmable Version of M37451M4－XXXSP／FP／GP	C，Si	$5 \pm 10 \%$	40	0.64	12.5	64P4B／80P6N／ 80P6S	3－210
M37451E4SS／FS \quad－	PROM Version of M37451M4－XXXSP／FP	C，Si	$5 \pm 10 \%$	40	0.64	12.5	64S1B／80D0	
M37451E8－XXXSP／FP／GP＊	One Time Programmable Version of M37451M8－XXXSP／FP／GP	C，Si	$5 \pm 10 \%$	40	0.64	12.5	$\begin{aligned} & \text { 64P4B/80P6N/ } \\ & 80 \mathrm{P} 6 \mathrm{~S} \end{aligned}$	
M37451E8SS／FS＊	PROM Version of M37451M8－XXXSP／FP	C, SI	$5 \pm 10 \%$	40	0.64	12.5	64S1B／8000	
M37451EC－XXXSP／FP／GP＊${ }^{\text {a }}$	One Time Programmable Version of M37451MC－XXXSP／FP／GP	C，Si	$5 \pm 10 \%$	40	0.64	12.5	64P4B／80P6N／ 80 P 6 S 80P6S	
M37451ECSS／FS $\star \star$	PROM Version of M37451MC－XXXSP／FP	C，Si	$5 \pm 10 \%$	40	0.64	12.5	64S1B／80D0	
M37451E4DXXXSP／FP $\star \star$	One Time Programmable Version of M37451M4DXXXSP／FP	C， Si	$5 \pm 10 \%$	40	0.64	12.5	64P4B／80P6N	3－222
M37451E8DXXXSP／FP $\star \star$	One Time Programmable Version of M37451M8DXXXSP／FP	C，Si	$5 \pm 10 \%$	40	0.64	12.5	64P4B／80P6N	
M37470E4－XXXSP \star	One Time Programmable Version of M37470M4－XXXSP	C，Si	$2.7 \sim 5.5$	17.5	1	4	32P4B	－64
M37470E8－XXXSP＊	One Time Programmable Version of M37470M8－XXXSP	C，Si	2．7～5．5	17.5	1	4	32P4B	
M37471E4－XXXSP／FP＊	One Time Programmable Version of M37471M4－XXXSP／FP	C， Si	2．7～5．5	17.5	1	4	42P4B／56P6N	4－72
M37471E8－XXXSP／FP＊	One Time Programmable Version of M37471M8－XXXSP／FP	C，Si	2．7～5．5	17.5	1	4	42P4B／56P6N	
M37471E8SS $\quad \star$	PROM Version of M37471M8－XXXSP	C，Si	2．7～5．5	17.5	1	4	42S1B	

\star ：New product $\star \star$ ：Under development
Note1：Refer to the＂1989 MITSUBISHI SEMICONDUCTORS DATA BOOK 〈SINGLE－CHIP 8－BIT MICROCOMPUTERS〉＂
2：Refer to the＂ 1990 MITSUBISHI SEMICONDUCTORS DATA BOOK＜SINGLE－CHIP 8－BIT MICROCOMPUTERS Enlarged edition＞＂
3 ：Refer to the＂1992 MITSUBISHI SEMICONDUCTORS DATA BOOK 〈SINGLE－CHIP 8－BIT MICROCOMPUTERS〉VoI．1．＂
※：The production of this product is no longer planned due to announcement of new series or upgrades．

Series 38000 single－chip microcomputers

Refer to the＂1991 MITSUBISHI SEMICONDUCTORS DATA BOOK〈SINGLE－CHIP 8－BIT MICROCOMPUTERS〉
Vol．3．＂

Development support systems (1)

MELPS 740		Assembler	Debug system			For evaluation
Type name	Processor mode		Debugger	Option board	Control software	
M50740A-XXXSP/FP M50741-XXXSP/FP M50740ASP	Single-chip mode	SRA74	PC4000E	PCA4040	RTT74	M50740-PGYS
M50742-XXXSP/FP M50708-XXXSP/FP	Single-chip mode			PCA4042		M50742-PGYS
M50743-XXXSP/FP	Single-chip mode			PCA4043 or PCA4043R		M50743-PGYS
M50744-XXXSP/FP M50744T-XXXSP	Single-chip mode			PCA4044G02 or PCA4044R		M50746ES/EFS (Note 2)
M50746E-XXXSP/FP M50746ES/EFS	Microprocessor mode			PCA4044XG02		
M50745-XXXSP/FP	Single-chip mode			PCA4045 or PCA4045R		M50745-PGYS
M50747-XXXSP/FP M50747H-XXXSP/FP	Single-chip mode			PCA4047G02 or PCA4047RG02		M50747ES/EFS (Note 2)
M50747E-XXXSP/FP M50747ES/EFS	Microprocessor mode			PCA4047XG02 or PCA4047XRG02		
M50752-XXXSP M50757-XXXSP M50758-XXXSP	Single-chip mode			PCA4057		M50752-PGYS
M50753-XXXSP/FP M50753T-XXXSP	Single-chip mode			PCA4053		$\begin{aligned} & \text { M50753-PGYS } \\ & \text { (Note 2) } \end{aligned}$
M50754-XXXSP/FP/GP M50954-XXXSP/FP/GP M50955-XXXSP/FP/GP	Single-chip mode			PCA4054G02 or PCA4054RG02		M50955-PGYS
$\begin{aligned} & \text { M50930-XXXFP } \\ & \text { M50930T-XXXFP } \\ & \text { M50931-XXXFP } \\ & \text { M50932-XXXFP } \\ & \text { M50933-XXXFP } \\ & \text { M50934-XXXFP } \\ & \hline \end{aligned}$	Single-chip mode			PCA4093 or PCA4093R		M50931-PGYS (Note 2,3)
M50940-XXXSP/FP M50941-XXXSP/FP M50945-XXXSP/FP	Single-chip mode			PCA4094 or PCA4094RG02		M50945-PGYS
M50943-XXXSP/FP	Single-chip mode			PCA4033		$\begin{gathered} \text { PCA4333G02 } \\ (\text { Note 1) } \end{gathered}$
M50944-XXXSP/FP M50944E-XXXSP/FP M50944ES	Single-chip mode			PCA7044		M50944ES
$\begin{aligned} & \text { M50950-XXXSP } \\ & \text { M50951-XXXSP } \end{aligned}$	Single-chip mode			PCA4095		M50950-PGYS
M50957-XXXSP/FP M50957E-XXXSP M50957ES M50958-XXXSP/FP M50959-XXXSP/FP	Single-chip mode			PCA4054G02 or PCA4054RG02		$\begin{aligned} & \text { M50957-PGYS } \\ & \text { M50957ES } \end{aligned}$
M50963-XXXSP/FP M50963E-XXXSP/FP M50963ES/EFS M50964-XXXSP/FP	Single-chip mode			PCA4064 or PCA4064R		M50963ES/EFS

\star : New products $\quad \star \star$: Under development
Note 1 : Evaluation board
2: Notes for operating temperature range about the extended operating temperature version microcomputer.
3 : Notes for supply voltage range about the M50932-XXXFP, M50933-XXXFP.

MITSUBISHI MICROCOMPUTERS DEVELOPMENT SUPPORT SYSTEMS

Development support systems (2)

MITSUBISHI MICROCOMPUTERS
 DEVELOPMENT SUPPORT SYSTEMS

Development support systems (3)

MELPS 740		Assembler		Debug system		
	Type name			Debugger	Option board	Control software
M50734SP/FP M50734SP-10				PC4000E	PCA4034G02 or PCA4034RG02	

Development support systems (4) series 7450

Series 7450		Assembler	Debug system					For evaluation
			Control software	Base PC4000E		Base PC4600		
Type name	Processor mode			Debugger	Option board	Debugger	Emulator MCU	
M37450M2-XXXSP/FP M37450M4-XXXSP/FP M37450M4TXXXSP/J M37450M8-XXXSP/FP M37450E4-XXXSP/FP M37450E4TXXXSP/J M37450E4SS/FS M37450E8-XXXSP/FP M37450E8SS/FS M37450S1SP/FP M37450S2SP/FP M37450S4SP/FP	Single-chip mode Microprocessor mode Microprocessor mode	SRA74	$\begin{gathered} \text { RTT74 } \\ \text { (Note 1) } \end{gathered}$	PC4000E	$\begin{gathered} \text { M37450T-OPT } \\ \text { or } \\ \text { M37450T-RTT } \\ \hline \text { M37450TX-OPT } \\ \text { or } \\ \text { M37450TX-RTT } \end{gathered}$		M37450RSS or M37450RFS (Note 2)	M37450PSS/PFS, M37450E4SS/FS or M37450E8SS/FS ${ }^{\star}$ (Note 3)
M37451M4-XXXSP/FP/GP M37451M8-XXXSP/FP/GP M37451MC-XXXSP/FP/GP M37451E4-XXXSP/FP/GP M37451E4SS/FS M37451E8-XXXSP/FP/GP M37451E8SS/FS M37451EC-XXXSP/FP/GP M37451ECSS/FS M37451M4DXXXSP/FP M37451M8DXXXSP/FP M37451E4DXXXSP/FP M37451E8DXXXSP/FP M37451SSP/FP/GP	Single-chip mode Microprocessor mode Microprocessor mode				-		M37451RSS or M37451RFS (Note 2)	```M37451E4SS/FS*, M37451E8SS/FS* or M37451ECSS/FS** (Note 3)```

\star : New products
Note 1: PC4600 is supported by software version up.
2 : Pitch converter PCA4932 is necessary to RFS type.
3 : Notes for operating temperature range about the extended operating temperature version microcomputer
Development support systems (5) series 7470

Series 7470		Assembler	Debug system			For evaluation
Type name	Processor mode		Control software	Debugger	Emulator MCU	
M37470M2-XXXSP M37470M4-XXXSP M37470M8-XXXSP M37470E4-XXXSP M37470E8-XXXSP	Single-chip mode	SRA74	RTT74 (Note 1)	$\begin{gathered} \text { PC4000E } \\ + \\ \text { PC4600^ } \end{gathered}$	M37471RSS (Note 2,3)	$\begin{aligned} & \text { M37470E4-XXXSP } \\ & \text { M37470E8-XXXSP } \end{aligned}$
M37471M2-XXXSP/FP M37471M4-XXXSP/FP M37471M8-XXXSP/FP M37471E4-XXXSP/FP M37471E8-XXXSP/FP M37471E8SS						M37471E8SS*

» : New products
Note 1 : PC4600 is supported by software version up.
2 : Pitch converter PCA4906 is necessary to M37470
3 : Pitch converter PCA4907 is necessary to QFP package type.

Development support systems (6) series 38000

Type name	Assembler	Debug system			For evaluation
		Control software	Debugger	Emulation MCU	
M38002M2-XXXSP/FP M38002E2-XXXSP/FP M38002E2SS/FS M38002M4-XXXSP/FP M38002E4-XXXSP/FP M38002E4SS/FS M38003M6-XXXSP/FP M38003E6-XXXSP/FP M38003E6SS/FS M38004M8-XXXSP/FP M38004E8-XXXSP/FP M38004E8SS/FS M38007M4-XXXSP/FP M38007E4-XXXSP/FP M38007E4SS/FS	SRA74	RTT74 (Note 1)	$\begin{gathered} \text { PC4000E } \\ + \\ \text { PC4600^ } \end{gathered}$	M38007RSS (Note 2)	M38002E2SS/FS M38002E4SS/FS M38003E6SS/FS M38004E8SS/FS M38007E4SS/FS
M38042M3-XXXFP M38042E3-XXXFP M38042E3FS				Under development	M38042E3FS
M38062M3-XXXFP/GP M38062E3-XXXFP/GP M38062E3FS M38062M4-XXXFP/GP M38062E4-XXXFP/GP M38062E4FS M38063M6-XXXFP/GP M38063E6-XXXFP/GP M38063E6FS M38064M8-XXXFP/GP M38064E8-XXXFP/GP M38064E8FS				M38067RFS (Note 3)	M38062E3FS M38062E4FS M38063E6FS M38064E8FS
M38102M5-XXXSP/FP M38102E5-XXXSP/FP M38102E5SS M38103M6-XXXSP/FP M38103E6-XXXSP/FP M38103E6SS				M38107RSS (Note 2)	M38102E5SS M38103E6SS
M38112M4-XXXSP/FP M38112E4-XXXSP/FP M38112E4SS				M38117RSS (Note 2)	M38112E4SS
M38172M4-XXXFP M38172E4-XXXFP M38172E4FS M38173M6-XXXFP M38173E6-XXXFP M38173E6FS M38174M8-XXXFP M38174E8-XXXFP M38174E8FS				M38177RFS (Note 3)	M38172E4FS M38173E6FS M38174E8FS
M38184M8-XXXFP M38184E8-XXXFP M38184E8FS				M38187RFS ${ }^{\star \star}$ (Note 3)	M38184E8FS

\star : New products $\star \star$: Under development
Note 1 : PC 4600 is supported by software version up
2 : Pitch converter M38007T-PRB is necessary to QFP package type.
3 : Pitch converter PCA4932 is necessary.

Program writing adapter for built-in
PROM type microcomputers

Bult--in PROM type microcomputers type name	Program writing adapter
M50746E-XXXSP	PCA4700G02
M50746ES	
M50746EFS	PCA4701G02
M50746E-XXXFP	
M50747E-XXXSP	PCA4700G02
M50747ES	
M50747E-XXXFP	PCA4701G02
M50747EFS	
M50944E-XXXSP	PCA4715
M50944ES	
M50944E-XXXFP	PCA4714
M50957E-XXXSP	PCA4703
M50957ES	
M50963E-XXXSP	PCA4700G02
M50963ES	
M50963E-XXXFP	PCA4701G02
M50963EFS	
M37102E8-XXXSP	PCA4724
M37102E8SS	
M37102E8-XXXFP	PCA4725
M37102E8FS	
M37120E6-XXXFP	PCA4716(Note 1)
M37201E6-XXXSP	PCA4723
M37201E6SS	
M37202E3-XXXSP	PCA4726*
M37202E3SS	
M37204E8-XXXSP	
M37204E8SS	
M37250E6-XXXSP	
M37250E6SS	
M37260E6-XXXSP	PCA4736*
M37260E6SS	
M37260E6-XXXFP	PCA4737*
M37260E6FS	
M37410E6HXXXFP	PCA4705
M37410E6HFS	PCA4706
M37412E5-XXXFP	PCA4720
M37413E6HXXXFP	PCA4728
M37413E6HFS	PCA4729
M37414E5-XXXFP	PCA4720
M37420E6-XXXSP	PCA4727
M37420E6SS	
M37424E8-XXXSP	PCA4721
M37424E8SS	
M37524E8-XXXSP	
M37524E8SS	
M37450E4-XXXSP	PCA4710
M37450E4SS	
M37450E8-XXXSP	
M37450E8SS	
M37451E4-XXXSP	
M37451E4SS	
M37451E8-XXXSP	
M37451E8SS	
M37451EC-XXXSP	

Program writing adapter for built-in PROM type microcomputers (continued)

Bult-in PROM type microcomputers type name	Program writing adapter
M37451ECSS	
M37450E4TXXXSP	PCA4710
M37450E4TXXXJ	PCA4712(Note 1)
M37450E4-XXXFP	PCA4711
M37450E4FS	
M37450E8-XXXFP	
M37450E8FS	PCA4719
M37451E4FS	
M37451E8FS	
M37451ECFS	
M37451E4-XXXFP	PCA4751*
M37451E8-XXXFP	
M 37451 EC -XXXFP	
M37451E4-XXXGP	PCA4752*
M37451E8-XXXGP	
M37451EC-XXXGP	
M37451E4DXXXSP	PCA4710
M37451E8DXXXSP	
M37451E4DXXXFP	PCA4751*
M37451E8DXXXFP	
M37460E8-XXXFP	PCA4713(Note 1)
M37470E4-XXXSP	PCA4730
M37470E8-XXXSP	
M37471E4-XXXSP	
M37471E8-XXXSP	
M37471E8SS	
M37471E4-XXXFP	PCA4731
M37471E8-XXXFP	
M38002E2-XXXSP	Under development
M38002E2-XXXFP	
M38002E2SS	
M38002E2FS	
M38002E4-XXXSP	PCA4738S-64
M38002E4-XXXFP	PCA4738F-64
M38002E4SS	PCA4738S-64
M38002E4FS	PCA4738L-64*ᄎ
M38003E6-XXXSP	Under development
M38003E6-XXXFP	
M38003E6SS	
M38003E6FS	
M38004E8-XXXSP	
M38004E8-XXXFP	
M38004E8SS	
M38004E8FS	
M38007E4-XXXSP	
M38007E4-XXXFP	
M38007E4SS	
M38007E4FS	
M38042E3-XXXFP	
M38042E3FS	
M38062E3-XXXFP	
M38062E3-XXXGP	
M38062E3FS	

\star : New product $\star \star$: Under development Note 1: Be necessary to order producing this board.

Program writing adapter for built-in PROM type microcomputers (continued)

Built-In PROM type microcomputers type name	Program writing adapter
M38062E4-XXXFP	Under development
M38062E4-XXXGP	
M38062E4FS	
M38063E6-XXXFP	PCA4738F-80
M38063E6-XXXGP	PCA4738G-80
M38063E6FS	PCA4738L-80
M38064E8-XXXFP	Under development
M38064E8-XXXGP	
M38064E8FS	
M38102E5-XXXSP	PCA4738S-64
M38102E5-XXXFP	PCA4738F-64
M38102E5SS	PCA4738S-64
M38103E6-XXXSP	Under development
M38103E6-XXXFP	
M38103E6SS	
M38112E4-XXXSP	PCA4738S-64
M38112E4-XXXFP	PCA4738F-64
M38112E4SS	PCA4738S-64
M38172E4-XXXFP	Under development
M38172E4FS	
M38173E6-XXXFP	
M38173E6FS	
M38174E8-XXXFP	
M38174E8FS	
M38184E8-XXXFP	PCA4738F-100*
M38184E8FS	Under development

«: New product $\star \star$: Under development

FUNCTION CODE

Mitsubishi integrated circuits may be ordered using the following simplified alphanumeric type-codes which define the function of the IC/LSIs and the package style.

1. Mitsubishi Original Products

Example 1
M

Example 2.

2. PACKAGE CODE

Package style may be specified by using the following simplified alphanumeric code.

Secondary outline code
Special-purpose secondary codes describing outline are included as necessary. For details, contact your sales representative.

42P4B

42pin molded plastic DIP
Dimension in mm

52S1M

52pin piggyback DIP
Dimension in mm

(1)
(32)

64 P6W	64pin molded plastic QFP

Dimension in mm

$0.35{ }_{-0.05}^{+0.1}$

84PO
84 pin molded plastic leaded chip carrier

1. INTRODUCTION

A system of letter symbols to be used to represent the dynamic parameters of intergrated circuit memories and other sequential circuits especially for single-chip microcomputers, microprocessors and LSIs for peripheral circuits has been discussed internationally in the TC47 of the International Electrotechnical Committee (IEC). Finally the IEC has decided on the meeting of TC47 in February 1980 that this system of letter symbols will be a Central Office document and circulated to all countries to vote which means this system of letter symbols will be a international standard.
The system is applied in this LSI data book for the new products only. Future editions of this data book will be applied this system. The IEC document which describes "Letter symbols for dynamic parameters of sequential integrated circuits, including memories" is introduced below. In this data book, the dynamic parameters in the IEC document are applied to timing requirements and switching characteristics.

2. LETTER SYMBOLS

The system of letter symbols outlined in this document enables symbols to be generated for the dynamic parameters of complex sequential circuits, including memories, and also allows these symbols to be abbreviated to simple mnemonic symbols when no ambiguity is likely to arise.

2.1. General Form

The dynamic parameters are represented by the general symbol of the form:-
$t_{A(B C-D C) F}$
where:
Subscript A indicates the type of dynamic parameter being represented, for example; cycle time, setup time, enable time, etc.
Subscript B indicates the name of the signal or terminal for which a change of state or level (or establishment of a state or level) constitutes a signal event assumed to occur first, that is, at the beginning of the time interval. If this event actually occurs last, that is, at the end of the time interval, the value of the time interval is negative.
Subscript C indicates the direction of the transition and/or the final state or level of the signal represented by B. When two letters are used, the initial state or level is also indicated.

Subscript D indicates the name of the signal or terminal for which a change of state or level (or establishment of a state or level) constitutes a signal event assumed to occur last, that is, at the end of the time interval. If this event actually occurs first, that is, at the beginning of the time interval, the value of the time interval is negative.
Subscript E indicates the direction of the transition and/or the final state or level of the signal represented by D. When two letters are used, the initial state or level is also indicated.
Subscript F indicates additional information such as mode of operation, test conditions, etc.
Note 1 Subscripts A to F may each consists of one or more letters
2 Subscripts D and E are not used for transition times
3 The "-" in the symbol (1) above is used to indicate "to", hence the symbol represents the time interval from signal event B occuring to signal event D occuring, and it is important to note that this convention is used for all dynamic parameters including hold times Where no misunderstaniding can occur the hyphen may be omitted

2.2. Abbreviated Form

The general symbol given above may be abbreviated when no misunderstanding is likely to arise. For example to :
$t_{A(B-D)}$
or $\quad t_{A(B)}$
or $\quad t_{A(D)}$ - often used for hold times
or $t_{A F} \quad-$ no brackets are used in this case
or $\quad t_{A}$
or $\quad t_{B C-D E}$ - often used for unclassified time intervals

2.3. Allocation of Subscripts

In allocating letter symbols for the subscripts, the most commonly used subscripts are given single letters where practicable and those less commonly used are designated by up to three letters. As far as possible, some form of mnemonic representation is used. Longer letter symbols may be used for specialised signals or terminals if this aids understanding.

3. SUBSCRIPT A
 (For Type of Dynamic Parameter

The subscript A represents the type of dynamic parameter to be designated by the symbol and, for memories, the parameters may be divided into two classes:
a) those that are timing requirements for the memory and
b) those that are characteristics of the memory.

The letter symbols so far proposed for memory circuits are listed in sub-clauses 3.1 and 3.2 below.
All subscripts A should be in lower-case.

3.1. Timing Requirements

The letter symbols for the timing requirements of semiconductor memories are as follows:

Term	Subscript
Cycle time	c
Time interval between two signal events	d
Fall time	f
Hold time	h
Precharging time	pc
Rise time	r
Recovery time	rec
Refresh time interval	rf
Setup time	su
Transition time	t
Pulse duration (width)	w

3.2. Characteristics

The letter symbols for the dynamic characteristics of semiconductor memories are as follows:

Characteristic

Access time	a
Disable time	dis
Enable time	en
Propagation time	\mathbf{P}
Recovery time	rec
Transition time	\mathbf{T}
Valid time	\mathbf{v}

Note Recovery time for use as a characteristic is limited to sense recovery ume

4. SUBSCRIPTS B AND D

 (For Signal Name or Terminal Name)The letter symbols for the signal name or the name of the terminal are as given below.
All subscripts B and D should be in upper-case.

Signal or terminal

Address	A
Clock	C
Column address	CA
Column address strobe	CAS
Data input	D
Data input/output	DQ
Chip enable	E

Erasure	ER
Output enable	G
Program	PR
Data output	Q
Read	R
Row address	RA
Row address strobe	RAS
Refresh	RF
Read/Write	RW
Chip select	S
Write (write enable)	W

Note 1 In the letter symbols for time intervals, bars over the subscripts, for example CAS, should not be used
2 It should be noted, when further letter symbols are chosen, that the subscript should not end with H, K, V, X, or Z (See clause 5)
3 If the same terminal, or signal, can be used for two functions (for example Data input/output, Read Write) the waveform should be labelled with the dual function, if appropriate, but the symbols for the dynamic parameters should include only that part of the subscript relevant to the parameter

5. SUBSCRIPTS C AND E (For Transition of Signal)

The following symbols are used to represent the level or state of a signal :
Transition of signal
High logic level
Low logic level
Valid steady-state level (either low or high)
Unknown, changing, or 'don't care' level
High-impedance state of three-state output
The direction of transition is expressed by two letters,
the direction being from the state represented by the
first letter to that represented by the second letter, with
the letters being as given above.
When no misunderstanding can occur, the first letter
may be omitted to give an abbreviated symbol for sub-
scripts C and E as indicated below.
All subscripts C and E should be in upper-case.

Subscript

Examples

Transition from high level to low level

HL L
Transition from low level to high level

LH H
Transition from unknown or changing state to valid state
Transition from valid state to unknown or changing state

XV V
vx $\quad \mathrm{x}$
Transition from high-impedance
state to valid state

ZV V
Note Since subscripts C and E may be abbreviated, and since subscripts B and D may contain an indeterminate number of letters, it is necessary to put the restriction on the subscripts B and D that they should not end with H, L, V, X, or Z, so as to avoid possible confusion

6. SUBSCRIPT F (For Additional Information)

If necessary, subscript F is used to represent any additional qualification of the parameter such as mode of operation, test conditions, etc. The letter symbols for subscript F are given below.
Subscript F should be in upper-case.

Modes of operation	Subscript
Power-down	PD
Page-mode read	PGR
Page-mode write	PGW
Read	R
Refresh	RF
Read-modify-write	RMW
Read-write	RW
Write	W

MITSUBISHI MICROCOMPUTERS

 SYMBOLOGY
FOR DIGITAL INTEGRATED CIRCUITS

New symbol	Foriner symbol	Parameter-definition
C_{1}		Input capacitance
C_{0}		Output capacitance
$\mathrm{C}_{1 / 0}$		Input/output terminal capacitance
Cl(¢ $^{\text {) }}$		Input capacitance of clock input
f		Frequency
${ }^{\prime}(\phi)$		Clock frequency
1		Current-the current into an integrated circuit terminal is defined as a positive value and the current out of a terminal is defined as a negative value
1 BB		Supply current from $V_{B B}$
${ }^{\prime} \mathrm{BB}(\mathrm{AV})$		Average supply current from $V^{\text {BB }}$
1 cc		Supply current from Vcc
$\operatorname{ICC}(A V)$		Avarage supply current from Vcc
$1 \mathrm{CC}(\mathrm{PD})$		Power down supply current from Vcc
I DD		Supply current from $V_{\text {DD }}$
$\operatorname{IDD}(A V)$		Average supply current from $V_{\text {DD }}$
I GG		Supply current from $\mathrm{V}_{\text {GG }}$
$I_{\text {GG (}} \mathrm{AV}$)		Average supply current from V_{GG}
11		Input current
$\mathrm{I}_{\text {IH }}$		High-level input current-the value of the input current when V_{OH} is applied to the input considered
IIL		Low levei input current-the value of the input current when $\mathrm{V}_{\text {OL }}$ is applied to the input considered
I Load		Built-in resistor current
$\mathrm{l}_{\text {PEAK }}$		Peak current
IOH		High-level output current-the value of the output current when V_{OH} is applied to the output considered
Iol		Low-level output current-the value of the output current when V_{OL} is applied to the output considered
loz		Off-state (high-impedance state) output current-the current into an output having a three-state capability with input condition so applied that It will establish according to the product specification, the off (high-impedance) state at the output
1 OZH		Off-state (high-impedance state) output current, with high-level voltage applied to the output
Iozl		Off-state (high-impedance state) output current, with low-level voltage applied to the output
los		Short-circuit output current
Iss		Supply current from $\mathrm{V}_{\text {SS }}$
Pd		Power dissipation
NEW		Number of erase/write cycles
NRA		Number of read access unrefreshed
R_{1}		Input resistance
R_{L}		External load resistance
$\mathrm{R}_{\text {OFF }}$		Off-state output resistance
Ron		On-state output resistance
ta_{a}		Access time-the time interval between the application of a specified input pulse during a read cycle and the availability of valid data signal at an output
$t_{\text {a }}(\mathrm{A})$	$t \mathrm{a}(\mathrm{AD})$	Address access time-the time interval between the application of an address input pulse and the availability of valid data signals at an output
$t a(C A S)$		Column address strobe access time
$t_{a(E)}$	$t a(C E)$	Chip enable access time
$t_{\text {a (G) }}$	ta (OE)	Output enable access time
$t_{a(P R)}$		Data access time after program
$t_{a(R A S)}$		Row address strobe access time
$t_{a}(S)$	ta(cs)	Chip select access time
t_{c}		Cycle time
$t_{C R}$	$t_{C(R D)}$	Read cycle time-the time interval between the start of a read cylce and the start of the next cycle
$t_{C R F}$	$t_{C}^{\text {(REF) }}$	Refresh cycle time-the time interval between successive signals that are intended to restore the level in a dynamic memory cell to its original level
$t_{\text {cPG }}$	$\mathrm{t}_{\mathrm{C}}(\mathrm{PG})$	Page-mode cycle time ,

MITSUBISHI MICROCOMPUTERS SYMBOLOGY

New symbol F	Former symbol	Parameter-definition
$t_{\text {cRMW }}$	t_{C} (RMR)	Read-modify-write cycle time-the time interval between the start of a cycle in which the memory is read and new data is entered, and the start of the next cycle
tow	t_{c} (WR)	Write cycle time-the time interval between the start of a write cycle and the start of the next cycle
t_{d}		Delay time-the time between the specified reference points on two pulses
$t_{d}(\phi)$		Delay tıme between clock pulses-e g , symbology, delay tıme, clock 1 to clock 2 or clock 2 to clock 1
t_{d} (CAS-RAS)		Delay time, column address strobe to row address strobe
$t_{\text {d }}$ (CAS-w)	$t_{\text {d }}(C A S W R)$	Delay time, column address strobe to write
$t_{d}($ RAS $-C A S)$		Delay time, row address strobe to column address strobe
t_{d} (RAS-w)	$t_{\text {d }}$ (RAS-WR)	Delay time, row address strobe to write
$t_{\text {dis }}(R-Q)$	$t_{\text {dis }}(R-D A)$	Output disable time after read
$t_{\text {dis }}(\mathrm{s})$	tPXZ(CS)	Output disable time after chip select
$t_{\text {dis }}(\mathrm{w})$	$t_{P \times Z}(W R)$	Output disable time after write
t_{DHL} tolu.		$\left.\begin{array}{l}\text { High-level to low-level delay tıme } \\ \text { Low-level to high-level delay tıme }\end{array}\right\}$ the time interval between specified reference points on the input and on the output pulses, when the output is going to the low (high) level and when the device is driven with a specified loading networks
$\operatorname{ten}(A-Q)$	$t P Z V(A-D Q)$	Output enable tıme after address
$\operatorname{ten}(R-Q)$	$t_{P Z V}(R-D Q)$	Output enable time after read
$\operatorname{ten}(S-Q)$	$\mathrm{t}_{\mathrm{PZX}}(\mathrm{CS}-\mathrm{DQ})$	Output enable time after chip select
t_{f}		Fall tıme
th		Hoid time-the interval of time during which a signal at a specified input terminal appears after an active transition occurs at another specified input terminal
$\operatorname{th}(A)$	$\operatorname{th}(A D)$	Address hold time
$\operatorname{th}(A-E)$	$\operatorname{th}(A D-C E)$	Chip enable hold time after address
$\operatorname{th}(A-P R)$	$t h$ (AD-PRO)	Program hold time after address
$t h(C A S-C A)$		Column address hold time after column address strobe
$t h$ ($C A S-D)$	$t h(C A S-D A)$	Data-in hold time after column address strobe
th (CAS-Q)	th (CAS-OUT)	Data-out hold time atter column address strobe
$t \mathrm{th}$ (CAS-RAS)		Row address strobe hold time after column address strobe
th(CAS-w)	t_{h} (CAS $\cdot \mathrm{WR}$)	Write hold time after column address strobe
$t \mathrm{th}(\mathrm{D})$	$t h$ ($D A$)	Data-ın hold time
$\operatorname{th}(\mathrm{D}-\mathrm{PR})$	$t h$ (DA-PRO)	Program hold time after data-in
$\operatorname{th}(E)$	th (CE)	Chip enable hold time
$\operatorname{th}(E-D)$	$t h$ ($C E-D A$)	Data-in hold time after chip enable
$\operatorname{th}(E-G)$	th (CE-OF.)	Output enable hold time after chip enable
$t \mathrm{th}(\mathrm{R})$	th (RD)	Read hold time
$t h(R A S-C A)$		Column address hold time after row address strobe
$t \mathrm{~h}$ (RAS-CAS)		Column address strobe hold time after row address strobe
$t h$ (RAS - D)	$t h(R A S-D A)$	Data-ın hold time after row address strobe
th (RAS-W)	$t \mathrm{th}$ (RAS-WR)	Write hold time after row address strobe
$t \mathrm{th}(\mathrm{S})$	th(CS)	Chip select hold time
$\operatorname{th}(w)$	th (wR)	Write hold time
$\operatorname{th}(w-C A S)$	th (WR-CAS)	Column address strobe hold time after write
$\operatorname{th}(w-D)$	th (WR-DA)	Data-in hold time after write
$\operatorname{th}(W-R A S)$	th (WR-RAS)	Row address hold time after write
tPML		$\left.\begin{array}{l}\text { High-level to low-level propagation tıme } \\ \text { Low-level to high-level propagation time }\end{array}\right\}$the tıme interval between specified reference points on the input and on the output pulses when the output is going to the low (high) level and when the device is driven and loaded by typical devices of stated type Rise time
trec (w)	$t_{w r}$	Write recovery time-the time interval between the termination of a write pulse and the initiation of a new cycle
trec (PD)	$t_{R(P, D)}$	Power-down recovery time
$\mathrm{t}_{\text {tsu }}{ }^{\text {tsu (A) }}$	$\mathrm{t}_{\text {su (}}$ (AD)	Setup time-the time interval between the application of a signal which is maintained at a specifed input terminal and a consecutive active tarnsition at another specified input terminal Address setup time

New symbol	Former symbol	Parameter-definition
$t_{\text {su }}(A-E)$	$t_{\text {su (}}$ ($\left.D-C E\right)$	Chip enable setup time before address
$t \mathrm{su}(\mathrm{A}-\mathrm{w})$	tsu(AD-WR)	Write setup time before address
$\mathrm{t}_{\text {su (}}^{\text {(CA-RAS }}$)		Row address strobe setup time before column address
t su($\mathrm{D}_{\text {) }}$	$\mathrm{t}_{\text {su }}(\mathrm{DA})$	Data-In setup time
tsu(D-E)	$\mathrm{t}_{\text {su }}(\mathrm{DA}-\mathrm{CE})$	Chip enable setup time before data-in
tsu(D-W)	tsu(DA-wry	Write setup time before data in
$\mathrm{t}_{\text {su (}}$ ()	$\mathrm{t}_{\text {su (}}^{\text {(} E \text {) }}$	Chip enable setup time
$\mathrm{t}_{\text {su }}(\mathrm{E}-\mathrm{P})$	tsu(CE-P)	Precharge setup time before chip enable
$\mathrm{t}_{\text {su }}(\mathrm{G}-\mathrm{E})$	tsu(OE-CE)	Chip enable setup time before output enable
$\mathrm{t}_{\text {su }}(P-E)$	ts, (P -CE)	Chip enable setup time before precharge
$\mathrm{t}_{\text {su }}(\mathrm{PD})$		Power-down setup time
$\mathrm{t}_{\text {su (R) }}$	$\mathrm{t}_{\text {su }}(\mathrm{RD})$	Read setup time
tsu(R-CAS)	$t_{\text {su }}$ (RA-CAS)	Column address strobe setup time before read
$\mathrm{t}_{\text {su }}$ (RA-CAS)		Column address strobe setup tume before row address
$\mathrm{t}_{\text {su (}} \mathrm{s}$)	$t_{\text {su (cS) }}$	Chip select setup time
tsu(s-w)	tsu (cs-wR)	Write setup time before chip select
$\mathrm{t}_{\text {su }}(\mathrm{w})$	tsu(wR)	Write setup time
t THL $\mathrm{t}_{\text {TL }}$		$\left.\begin{array}{l}\text { High-level to low-level transition time } \\ \text { Low-level- to high-level transition time }\end{array}\right\}$the time interval between specified reference points on the edge of the output pulse when the output is going to the low (high) level and when a specified input signal is applied through a specified network and the output is loaded by another specified network
$\mathrm{t}_{\mathrm{v}}(\mathrm{A})$	$t_{d v}(A D)$	Data valid time after address
$\left.\mathrm{t}_{\mathrm{v}}^{(\mathrm{E}} \mathrm{E}\right)$	$t_{d v}(C E)$	Data valid tume after chip enable
$\mathrm{t}_{\mathrm{v} \text { (E) } \mathrm{ER}}$	$\mathrm{t}_{\mathrm{V} \text { (CE) PR }}$	Data valid time after chip enable in program mode
$\mathrm{t}_{\mathrm{v} \text { (} \mathrm{G})}$	$\mathrm{t}_{\mathrm{V} \text { (OE) }}$	Data valid time after output enable
$t v(P R)$		Data valid time after program
$\mathrm{t}_{\mathrm{v}}(\mathrm{S})$	$t_{v(c s)}$	Data valid time after chip select
t_{w}		Pulse width (pulse duration) the time interval between specified reference points on the leading and training edges of the waveforms
$t_{w(E)}$	$\mathrm{t}_{\mathrm{W} \text { (} C E)}$	Chip enable pulse width
$t_{w(E H)}$	$\mathrm{t}_{\mathrm{w} \text { (CEH) }}$	Chip enable high pulse width
$t_{w(E L)}$	$\mathrm{t}_{\mathrm{w}(\mathrm{EL})}$	Chip enable low pulse width
$t_{w(P R)}$		Program pulse width
$t_{w(R)}$	$\mathrm{t}_{\mathrm{W}(\mathrm{RD})}$	Read pulse width
$t_{w(S)}$	$t_{w(C S)}$	Chip select pulse width
$t_{w}(\mathrm{w})$	t_{w} (WR)	Wrtie pulse width
$t_{w(\phi)}$		Clock pulse width
Ta		Ambient temperature
Topr		Operating temperature
Tstg		Storage temperature
$V_{B B}$		V_{BB} supply voltage
$V_{\text {CC }}$		$V_{\text {CC }}$ supply voltage
$V_{D D}$		$V_{\text {DD }}$ supply voltage
$V_{G G}$		$V_{G G}$ supply voltage
V_{1}		Input voltage
$V_{\text {IH }}$		High-level input voltage-the value of the permitted high-state voltage at the input
$V_{\text {IL }}$		Low-level input voltage-the value of the permitted low-state voltage at the input
V_{0}		Output voltage
V_{OH}		High-level output voltage-the value of the guaranteed high-state voltage range at the output
$V_{\text {OL }}$		Low-level output voltage-the value of the guaranteed low-state voltage range at the output
VSS		, $\mathrm{V}_{\text {SS }}$ supply voltage

Note 1. These letter symbols are based on the IEC publication 148 except a part of them

1 INTRODUCTION

IC \& LSI have made rapid technical progress in electrical performances of high integration, high speed, and sophisticated functionality. And now they have got boundless wider applications in electronic systems and electrical applances.
To meet the above trend of expanding utilization of IC \& LSI, Mitsubishi considers that it is extremely important to supply stable quality and high reliable products to customers.
Mitsubishi Electric places great emphasis on quality as a basic policy "Quality First", and has striven always to improve quality and reliability.
Mitsubishi has already developed the Quality Assurance System covering design, manufacturing, inventory and delivery for IC \& LSI, and has supplied highly reliable products to customers for many years. The following articles describe the Quality Assurance System and examples of reliability control for Mitsubishi Single-chip 8-bit Microcomputer.

2. QUALITY ASSURANCE SYSTEM

The Quality Assurance System places emphasis on built-in reliability in designing and built-in quality in manufacturing. The System from development to delivery is summarized in Fig. 1.

2.1 Quality Assurance in Designing

The following steps are applied in the designing stage for a new product.
(1) Setting of perfomance, quality and reliability target for new product.
(2) Discussion of performance and quality for circuit design, device structure, process, material and package.
(3) Verification of design by CAD system to meet standardized design rule.
(4) Functional evaluation for bread-board device to confirm electrical performance.
(5) Reliability evaluation for TEG (Test Element Group) chip to detect basic failure mode and investigate failure mechanism.
(6) Reliability test (In-house qualification) for new product to confirm quality and reliability target.
(7) Decision of pre-production from the standpoint of performance, reliability, production flow/conditions, production capability, delivery and etc.

2.2 Quality Assurance in Manufacturing

Quality assurance in manufacturing is performed as follows.
(1) Environment control such as temperature, humidity and dust as well as deionized water and utility gases.
(2) Maintenance and calibration control for automatized manufacturing equipments, automatic testing equipments, and measuring instruments.
(3) Material control such as silicon wafer, lead frame, packaging material, mask and chemicals.
(4) In-process inspections in wafer-fabrication, assembly and testing.
(5) 100% final inspection of electrical characteristics, visual inspection and burn-in, if necessary.
(6) Quality assurance test
-Electrical characteristics and visual inspection, lot by lot sampling
-Environment and endurance test, periodical sampling.
(7) Inventory and shipping control, such as storage environment, date code identification, handling and ESD (Electro Static Discharge)'preventive procedure.

2.3 Reliability Test

To verify the reliability of a product as described in the Mitsubishi Quality Assurance System, reliability tests are performed at three different stages in new product development, pre-production and mass-production.
At the development of a new product the reliability test plan is fixed corresponding to the quality and reliability target of each product, respectively. The test plan includes in-house qualification test and TEG evaluation, if necessary. TEG chips are designed and prepared for new device structure, new process and new material.
After the proto-type product has passed the in-house qualification test, the product advances to the pre-production. In the pre-production stage, the specific. reliability tests are programmed and performed again to verify the quality of pre-production product.
In the mass production, the reliability tests are performed periodically to confirm the quality of the mass production product according to the quality assurance test program. Table 1 shows an example of reliability test program for plastic encapsulated IC \& LSI.

Table 1. TYPICAL RELIABILITY TEST PROGRAM FOR PLASTIC ENCAPSULATED IC \& LSI

Group	Test	Test condition
1	Solderability	$230^{\circ} \mathrm{C}, 5 \mathrm{sec}$. Rosin flux
2	Soldering heat	$260^{\circ} \mathrm{C}, 10 \mathrm{sec}$
	Thermal shock	$-55^{\circ} \mathrm{C}, 125^{\circ} \mathrm{C}, 15 \mathrm{cycles}$
	Temperature cycling	$-65^{\circ} \mathrm{C}, 150^{\circ} \mathrm{C}, 100 \mathrm{cycles}$
3	Lead fatigue	$250 \mathrm{gr}, 90^{\circ}$, 2arcs
4	Shock	$1500 \mathrm{G}, 0.5 \mathrm{msec}$.
	Vibration	$\begin{aligned} & 20 \mathrm{G}, 100 \sim 2000 \mathrm{~Hz} \\ & \mathrm{X}, \mathrm{Y}, \mathrm{Z} \text { direction } \\ & 4 \mathrm{~min} . / \text { cycle, } 4 \text { cycles/direction } \end{aligned}$
	Constant acceleration	20000G, Y direction, 1 min .
5	Operatıon life	$\mathrm{T}_{\mathrm{a}}=125^{\circ} \mathrm{C}$, Vccmax 1000hours
6	High temperature storage life	$\mathrm{T}_{\mathrm{a}}=150^{\circ} \mathrm{C}, 1000$ hours
7	High temperature and high humidity	$85^{\circ} \mathrm{C}, 85 \%, 1000$ hours
	Pressure cooker	$121^{\circ} \mathrm{C}, 100 \%, 100 \mathrm{hours}$

Fig. 1 FLOW CHART OF QUALITY ASSURANCE SYSTEM

2.4 Returned Product Control

When failure analysis is requested by a customer, the failed devices are returned to Mitsubishi Electric via the sales office of Mitsubishi using the form of "Analysis Request of Returned Product"
Mitsubishi provides various failure analysis equipments to analyze the returned product. A failure analysis report is
generated to the customer upon completion of the analysis. The failure analysis result enforces taking corrective action for the design, fabrication, assembly or testing of the product to improve reliability and realize lower failure rate.
Fig. 2 shows the procedure of returned product control from customer.

Fig. 2 PROCEDURE OF RETURNED PRODUCT CONTROL

3 RELIABILITY TEST RESULTS

The reliability test results for Mitsubishi Single-chip 8-bit Microcomputers are shown in Table 2, Table 3 and Table 4. Table 2 shows the result of endurance tests of high temparature operation life and high temperature storage life test
for representative types of Single-chip 8-bit Microcomputers.

Table 2. ENDURANCE TEST RESULTS

Test	Series	Type Number	Test Condition	Number of Samples	Device Hours (Hours)	Number of Failures
High Temperature Operation Life	38000 Series	M38002M2-XXXFP	$125^{\circ} \mathrm{C} 7 \mathrm{~V}$	22	22000	0
		M38063M6-XXXFP		22	22000	0
		M38102M5-XXXSP		22	22000	0
		M38112M4-XXXSP		22	22000	0
		M38173M6-XXXFP		22	22000	0
		M38002E4-XXXFP		22	22000	0
		M38063E6-XXXFP		22	22000	0
		M38173E6-XXXFP		22	22000	0
	37450 Series	M37450M8-XXXFP		22	22000	0
		M37451M4-XXXSP		22	22000	0
		M37450M4TXXXSP		22	22000	0
		M37451M4DXXXSP		22	22000	0
		M37450E4-XXXSP		22	22000	0
		M37451E8-XXXSP		22	22000	0
		M37451E8DXXXSP		22	22000	0
	37470 Series	M37470M2-XXXSP		22	22000	0
		M37470M8-XXXSP		22	22000	0
		M37471M8-XXXSP		22	22000	0
		M37470E8-XXXSP		22	22000	0
		M37471E4-XXXSP		22	22000	0
		M37471E8-XXXSP		22	22000	0
High Temperature Storage Life	38000 Series	M38002M2-XXXFP	$175^{\circ} \mathrm{C}$	22	22000	0
		M38063M6-XXXFP		22	22000	0
		M38102M5-XXXSP		22	22000	0
		M38112M4-XXXSP		22	22000	0
		M38173M6-XXXFP		22	22000	0
		M38002E4-XXXFP		22	22000	0
		M38063E6-XXXFP		22	22000	0
		M38173E6-XXXFP		22	22000	0
	37450 Series	M37450M8-XXXFP		22	22000	0
		M37451M4-XXXSP		22	22000	0
		M37450E4-XXXSP		22	22000	0
		M37451E8-XXXSP		22	22000	0
	37470 Series	M37470M8-XXXSP		22	22000	0
		M37471M8-XXXFP		22	22000	0
		M37470E4-XXXSP		22	22000	0
		M37471E8-XXXSP		22	22000	0
Low Temperature Storage Life	38000 Series	M38063M6DXXXFP	$-55^{\circ} \mathrm{C} \quad 5.5 \mathrm{~V}$	22	22000	0
		M38063E6DXXXFP		22	22000	0
	37450 Series	M37450M4TXXXSP		22	22000	0
		M37451E8DXXXSP		22	22000	0

ELECTRIC

Table 3 shows the results of the environment tests of thermal stress high temperature/high humidity and pressure cooker test for the same type of products in regards to en-
durance tests.
Table 4 shows the results of mechanical tests for representative products of various package types.

Table 3. ENVIRONMENTAL TEST RESULTS

Test	Series	Type Number	Test Condition	Number of Samples	Device Hours (Hours)	Number of Failures
High Temperature High Humidity Life	38000 Series	M38002M2-XXXFP	$85^{\circ} \mathrm{C} \quad 85 \% \mathrm{RH} \quad 5.5 \mathrm{~V}$	22	22000	0
		M38063M6-XXXFP		22	22000	0
		M38102M5-XXXSP		22	22000	0
		M38112M4-XXXSP		22	22000	0
		M38173M6-XXXFP		22	22000	0
		M38002E4-XXXFP		22	22000	0
		M38063E6-XXXFP		22	22000	0
		M38102E5-XXXFP		22	22000	0
		M38173E6-XXXFP		22	22000	0
	37450 Series	M37450M8-XXXFP		22	22000	0
		M37451M4-XXXSP		22	22000	0
		M37450E4-XXXSP		22	22000	0
		M37451E8-XXXSP		22	22000	0
	37470 Series	M37470M8-XXXSP		22	22000	0
		M37471M8-XXXFP		22	22000	0
		M37470E4-XXXFP		22	22000	0
		M37471E8-XXXSP		22	22000	0

Test	Series	Type Number	Test Condition	96Hours	240Hours	500Hours
Pressure Cooker	38000 Series	M38002M2-XXXFP	$121^{\circ} \mathrm{C} \quad 100 \% \mathrm{RH}$	0/22	0/22	-
		M38063M6-XXXFP		0/22	0/22	-
		M38102M5-XXXSP		0/22	0/22	-
		M38112M4-XXXSP		0/22	0/22	-
		M38173M6-XXXFP		0/22	0/22	-
		M38002E4-XXXFP		0/22	0/22	-
		M38063E6-XXXFP		0/22	0/22	-
		M38173E6-XXXFP		0/22	0/22	-
	37450 Series	M37450M8-XXXFP		0/22	0/22	-
		M37451M4-XXXSP		0/22	0/22	-
		M37450E4-XXXSP		0/22	0/22	-
		M37451E8-XXXSP		0/22	0/22	-
	37470 Series	M37470M8-XXXSP		0/22	0/22	-
		M37471M8-XXXSP		0/22	0/22	-
		M37470E4-XXXSP		0/22	0/22	-
		M37471E8-XXXSP		0/22	0/22	-

Test	Series	Type Number	Test Condition	10Cycles	100Cycles	300Cycles
Temperature Cycling	38000 Series	M38002M2-XXXFP	$-65^{\circ} \mathrm{C} \sim 150^{\circ} \mathrm{C}$	0/22	0/22	0/22
		M38063M6-XXXFP		0/22	0/22	0/22
		M38102M5-XXXSP		0/22	0/22	0/22
		M38112M4-XXXSP		0/22	0/22	0/22
		M38173M6-XXXFP		0/22	0/22	0/22
		M38002E4-XXXFP		0/22	0/22	0/22
		M38063E6-XXXFP		0/22	0/22	0/22
		M38173E6-XXXFP		0/22	0/22	0/22
	37450 Series	M37450M8-XXXFP		0/22	0/22	0/22
		M37451M4-XXXSP		0/22	0/22	0/22
		M37450E4-XXXSP		0/22	0/22	0/22
		M37451E8-XXXSP		0/22	0/22	0/22
	37470 Series	M37470M8-XXXSP		0/22	0/22	0/22
		M37471M8-XXXFP		0/22	0/22	0/22
		M37470E4-XXXSP		0/22	0/22	0/22
		M37471E8-XXXSP		0/22	0/22	0/22

Table 4. MECHANICAL TEST RESULTS

Test	Test Condition	Package						
		32P4B	42P4B	64P4B	64P6N	80P6N	80P6	80P6S
Soldering Heat	$260^{\circ} \mathrm{C}$ 10sec	0/110	0/110	0/110	0/110	0/110	0/110	0/110
Thermal Shock	$-40^{\circ} \mathrm{C} \sim 125^{\circ} \mathrm{C}$ 15cycle	0/110	0/110	0/110	0/110	0/110	0/110	0/110
Solderebility	$230^{\circ} \mathrm{C}$ 5sec Using a rosın-type Flux	0/110	0/110	0/110	0/110	0/110	0/110	0/110
Shock	1500G $0.5 \mathrm{msec} X, Y$, and Z directions 3times	0/110	0/110	0/110	0/110	0/110	0/110	0/110
Vibration	20G X, Y, and Z directions 4times $100 \sim 2000 \mathrm{~Hz} 4$ 4ınutes/Cycle	0/110	0/110	0/110	0/110	0/110	0/110	0/110
Constant Acceleration	20000G Y_{1} direction 1 minute	0/110	$0 / 110$	0/110	0/110	0/110	0/110	0/110
Free Fall	75 cm onto a maple wood board 3tımes	0/110	0/110	0/110	0/110	0/110	0/110	0/110
Lead Integrity	$250 \mathrm{~g} 90^{\circ}$ Berding 2times (QFP, 125g)	0/110	0/110	0/110	0/110	0/110	0/110	0/110
Lead Integrity	500 g Tension 30sec (QFP, 250g)	0/110	0/110	0/110	0/110	0/110	0/110	0/110

4 FAILURE ANALYSIS

Accelerated reliability tests are applied to observe failures casued by temperature, voltage, humidity, current, mechanical stress and those combined stresses on chips and packages.
Examples of typical failure modes are shown below.
(1) Wire Bonding Failure by Thermal Stress

Fig. 3, Fig. 4 and Fig. 5 are example of a failure occurred by temperature storage test of $225^{\circ} \mathrm{C}, 1000$ hours.

Fig. 4
Au-Al plague formation on bonding pad

Au-Al intermetallic formation so-called "Purple plague" by thermal overstress makes Au wire lift off from aluminum metallization. The activation energy of this failure mode is estimated approximately 1.0 eV and no failure has been observed so far in practical uses.
(2) Aluminum Corrosion Failure by Temperature/Humidity Stress.
Fig. 6, Fig 7 and Fig. 8 are an example of corroded failure of aluminum metallization in plastic encapsulated IC after accelerated temperature/humidity storage test (pressure cooker test) of $121^{\circ} \mathrm{C}, 100 \% \mathrm{RH}, 1000$ hours duration.
Aluminum bonding pad is dissolved by penetrated water from plastic package, and chlorine concentration is observed on corroded aluminum bonding pad as shown in Fig. 8.

Fig. 6
Micrograph of corroded
Aluminum metallization

Fig. 7
Enlarged micrograph of corroded Aluminum bonding pad

Fig. 8 Cl distribution on corroded Aluminum bonding pad
(3) Destructive Failure by Electrical Overstress ESD have been performed to reproduce the electrical overstress failure in field uses.
Fig. 9 and Fig. 10 are an example of failure observed by surge voltage test. The trace of destruction is verified as the aluminum bridge by X-ray micro analysis.

Fig. 10
Aluminum trace of destructive spot
(4) Aluminum Electromigration

Fig. 11 shows an open circuit of aluminum metallization in high current density region caused by accelerated operating life test. This failure is caused by the aluminum electromigration. Voids and hillock have been formed in aluminum metallization by high current density.

5 SUMMARY

The Mitsubishi quality assurance system and examples of reliability control have been discussed. Customer's interest and requirement for high reliable IC \& LSI are increasing significantly. To satisfy customer's expectancy. Mitsubishi as an IC vendor, would like to make perpetual efforts in the following areas.
(1) Emphasis on built-in reliability at design stage and reliability evaluation to investigate latent failure modes and acceleration factors.
(2) Execution of periodical endurance, environment and mechanical test to verify reliability target and realize higher reliability.
(3) Focus on development of advanced failure analysis techniques. Detail failure analysis, intensive corrective action and quick response to customer's analysis request.
(4) Collection of customer's quality data in qualification, incoming inspection, production and field use to improve PPM, fraction defective and FIT, failure rate.
Mitsubishi would highly appreciate if the customer would provide quality and reliability data of incoming inspection or field failure rate essential to verify and improve the quality/ reliability of IC \& LSI.

A MOS transistor has a very thin oxide insulator under the gate electrode on the silicon substrate. It is operated by altering the conductance (g_{m}) between source and drain to control mobile charges in the channel formed by the applied gate voltage.
If a high voltage were applied to a gate terminal, the insulator-film under the gate electrode could be destroyed, and all Mitsubishi MOS IC/LSIs contain internal protection circuits at each input terminal to prevent this. It is inherently necessary to apply reverse bias to the P-N junctions of a MOS IC/LSI
Under certain conditions, however, it may be impossible to completely avoid destruction of the thin insulator-film due to the application of unexpectedly high voltage or thermal destruction due to excessive current from a forward biased $\mathrm{P}-\mathrm{N}$ junction. Therefore the following recommendations should be followed in handling MOS devices.

1. KEEPING VOLTAGE AND CURRENT TO EACH TERMINAL BELOW MAXIMUM RATINGS

1. The recommended ranges of operating conditions provide adequate safety margins. Operating within these limıts'will assure maxımum equipment performance and quality.
2. Forward bias should not be applied to any terminal since excessive current may cause thermal destruction.
3. Output terminals should not be connected directly to the power supply. Short-circuiting of a terminal to a power supply having low impedance may cause burn-out of the internal leads or thermal destruction due to excessive current.

2. KEEPING ALL TERMINALS AT THE SAME POTENTIAL DURING TRANSPORT AND STORAGE

When MOS IC/LSIs are not in use, both input and output terminals can be in a very high impedance state so that they are easily subjected to electrostatic induction from AC fields of the surrounding space or from charged objects in their vicinity. For this reason, MOS IC/LSIs should be protected from electrostatic charges while being transported and stored by conductive rubber foam, alumınum foil, shielded boxes or other protective precautions.
3. KEEPING ELECTRICAL EQUIPMENT, WORK TABLES AND OPERATING PERSONNEL AT THE SAME POTENTIAL
ing personnel should be grounded. Work tables should be covered with copper or aluminum plates of good conductivity, and grounded. One method of grounding personnel, after making sure that there is no potential difference with electrical equipment, is by the use of a wristwatch metallic ring, etc. attached around the wrist and grounded in series with a $1 \mathrm{~m} \Omega$ resistor. Be sure that the grounding meets national regulations on personnel safety.
2. Current leakage from electric equipment must be prevented not only for personnel safety, but also to avert the destruction of MOS IC/LSIs, as described above. Items such as testers, curve-tracers and synchroscopes must be checked for current leakage before being grounded

4. PRECAUTIONS FOR MOUNTING OF MOS IC/LSIs

1. The printed wiring lines between input and output terminals of MOS IC/LSIs should not be close to or parallel to high-voltage or high-power signal lines. Turning power on while the device is short-circuited, either by a solder bridge made during assembly or by a probe during adjusting and testing, may cause maximum ratings to be exceeded, which can result in the destruction of the device.
2. When input/output, or input and/or output, terminals of MOS IC/LSIs (now open-circuits) are connected, we must consider the possibility of current leakage and take precautions similar to $\S 2$ above. To reduce such undesirable trouble, it is recommended that an interface circuit be inserted at the input or output terminal, or a resistor with a resistance that does not exceed the output driving capability of the MOS IC/LSI be inserted between the power supply and the ground.
3. A filter circuit should be inserted in the AC power supply line to absorb surges which can frequently be strong enough to destroy a MOS IC/LSI.
4. Terminal connections should be made as described in the catalog while being careful to meet specifications.
5. Ungrounded metal plates should not be placed near input or output terminals of any MOS IC/LSIs, since destruction of the insulation may result if they become electrostatically charged.
6. Equipment cases should provide shielding from electrostatic charges for more reliable operation. When a plastic case is used, it is desirable to coat the inside of the case with conductive paint and to ground it. This is considered necessary even for battery-operated equipment.

■Typical type

Group name	Clock oscillation frequency (MHz)	Shortest instruction execution time ($\mu \mathrm{s}$)	1/O port (number)	Timer (btX X number)	Function					Interrupt cause		Package
					Serial I/O		A-D converter (bit×channel)	D-A converter (bit×channel)	$\begin{aligned} & \text { 8-bit } \\ & \text { PWM } \end{aligned}$			
			1/0		UART/Clocksynchronized	Clocksynchronized (bit×number)				External	Internal	
M3800x	8	0.5	58	8×4	1	-	-	-	-	8	6	64P4B/64P6N
M3806x	8	0.5	72	8×4	1	8×1	8×8	8×2	-	7	8	80P6N/80P6S

- Internal high-breakdown-voltage port type

Group name			I/O port (number)			$-\begin{gathered} \text { Timer } \\ \text { (bitXnumber) } \end{gathered}$	Function											Interrupt cause		Package	
						Serial I/O	A-D converter (bitXchannel)	Comparator (bitXchannel)	PWM		$\left\|\begin{array}{c} \text { Sub } \\ \text { clock } \end{array}\right\|$	$\begin{gathered} \text { High- } \\ \text { breakdown- } \\ \text { voitage port } \\ \text { (number) } \end{gathered}$		$\begin{gathered} \text { FLP } \\ \text { controller } \end{gathered}$							
										With an								$\begin{array}{\|l\|l} \stackrel{\rightharpoonup}{\mathbf{L}} \\ \text { 希 } \end{array}$			
			input	Output	I/O				(bitXnumber)	$\left.\begin{array}{\|l\|} \hline \end{array}\right) \left.\begin{gathered} \text { data transier } \\ \text { function } \end{gathered} \right\rvert\,$		8-bit	tor	Output	1/0	Segment	Digit				
M3810x	4.2	0.95	1	28	28		8×4	8×2	-	-	4×1	-	1	\bigcirc	28	-	-	-	4	6	64P4B/ 64P6N
M3811x	4.2	0.95	1	28	28	8×4	8×1	8×1	-	4×1	-	1	\bigcirc	28	-	8~16	8~16	4	9	64P4B/ 64P6N	
M3817x	6.3	0.63	1	24	45	8×6	8×1	8×1	8×8	-	1	1	\bigcirc	24	8	8~24	4~16	5	12	80P6N	
M3818x	6.3	0.63	3	20	67	8×6	8×1	8×1	8×8	-	1	1	\bigcirc	20	12	8~24	4~16	5	12	100P6S	

MITSUBISHI MICROCOMPUTERS M3800x Group

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

DESCRIPTION

The M3800x group is made up of 8-bit microcomputers based on the MELPS 740 core.
The M3800x group is designed for office automation equipment, household appliances and include four timers, serial I/O function.
The various microcomputers in the M3800x group include variations of internal memory size and packaging. For details, see the section on part numbering.
For details on availability of microcomputers in the M3800x group, see the section on group expansion.

FEATURES

- Basic machine-language instructions 71
- Instruction execution time $0.5 \mu \mathrm{~s}$
(shortest instruction at 8 MHz oscillation frequency)
- Memory size ROM 4K to 32K bytes
RAM 192 to 1024 bytes
- Programmable input/output ports 58
- Interrupts 15 sources, 15 vectors
- Timers.. 8 bit $\times 4$
- Serial I/O $\cdots \cdots \cdots$ - 8 -bit $\times 1$ (UART or Clock-synchronized)
- Clock generation circuit $\cdots \cdots \cdot$ Internal feedback amplifier (connect to external ceramic resonator or quartz crystal)
- Supply voltage .. 3.0 to 5.5 V
- Low power dissipation ...32mW
- Memory expansion possible
- Operating temperature range $\cdots \cdots \cdots \cdots \cdots \cdots-20$ to $85^{\circ} \mathrm{C}$

APPLICATIONS

Office automation, factory automation, household appliances, and other consumer applications, etc.

PIN CONFIGURATION (TOP VIEW)

Package type: 64P6N
64-pin plastic-molded QFP

PIN CONFIGURATION (TOP VIEW)

Package type: 64P4B
64-pin shrink plastic-molded DIP

FUNCTIONAL BLOCK DIAGRAM (Package : 64P4B)

yヨindW000801W SOW0 118-8 diH0-379NIS

MITSUBISHI MICROCOMPUTERS

PIN DESCRIPTION

Pin	Name	Function	Alternate Function
V_{cc}	Power supply	Power supply inputs 30 to 55 V to V_{CC}, and 0 V to $\mathrm{V}_{\text {Ss }}$	
$\mathrm{V}_{\text {ss }}$			
$\mathrm{CNV}_{\text {ss }}$	$\mathrm{CNV}_{\text {ss }}$	This pin controls the operation mode of the chip. Normally connected to V_{SS} if this pin is connected to V_{CC}, the internal ROM is inhibited and external memory is accessed.	
RESET	Reset input	To reset the microcomputer, this pin should be kept at an "L" level for more than 2μ s under normal operating conditions	
XIN	Clock input	Input and output signals for the internal clock generation curcuit. Connect a ceramic resonator or quartz crystal between the $X_{\text {IN }}$ and $X_{\text {OUt }}$ pins to set the oscillation frequency if an external clock is used, connect the clock source to the $X_{\text {iN }}$ pin and leave the $X_{\text {out }}$ pin open	
X ${ }_{\text {Out }}$	Clock output		
$\mathrm{PO}_{0}-\mathrm{PO} 0_{7}$	I/O port P0	An 8 bit CMOS I/O port An I/O direction register allows each pin to be individually programmed as either input or output At reset this port is set to input mode In modes other than single-chip, these pins are used as address, data, and control bus I/O pins	
$\mathrm{P} 1_{0}-\mathrm{P} 1_{7}$	$1 / \mathrm{O}$ port P1		
$\mathrm{P} 2_{0}-\mathrm{P} 2_{7}$	I/O port P2		
$\mathrm{P} 3_{0}-\mathrm{P} 3_{7}$	I/O port P3		
P4o, P4,	I/O port P4	An 8-bit CMOS I/O port with the same function as port PO	
$\begin{aligned} & \mathrm{P}_{2} / \mathrm{INT}_{0}, \\ & \mathrm{P}_{3} / \mathrm{INT}_{1} \end{aligned}$			External interrupt input pins
$\begin{aligned} & {\mathrm{P} 44_{4} / \mathrm{R}_{\times} \mathrm{D}} \\ & \mathrm{P} 4_{5} / \mathrm{T}_{\mathrm{X}} \mathrm{D}, \\ & \mathrm{P} 4_{6} / \mathrm{S}_{\mathrm{CLK}}, \\ & \mathrm{P} 4_{7} / \mathrm{S}_{\mathrm{RDY}} \end{aligned}$		-	Serial I/O I/O pins
$\begin{aligned} & \mathrm{P5}_{0} / \mathrm{INT}_{2}- \\ & \mathrm{P5}_{3} / \mathrm{INT}_{5} \end{aligned}$	I/O port P5	An 8-bit CMOS I/O port with the same function as port P0	External interrupt input pins
$\mathrm{P5}_{4} /$ CNTR $_{0}$, $\mathrm{P}_{5} /$ CNTR $_{1}$			Tımer X and Tımer Y I/O pıns
$\mathrm{P} 56, \mathrm{P} 57$			
$\mathrm{P} 6_{0}-\mathrm{P} 6_{7}$	I/O port P6	An 8-bit CMOS I/O port with the same function as port P0	
P70, P7 ${ }_{1}$	I/O port P7	An 2-bit CMOS I/O port with the same function as port PO	

PART NUMBERING

Product name M3800

GROUP EXPANSION

Mitsubishi plans to expand the M3800x group as follows:
(1) Support for mask ROM, one-time programmable, and EPROM versions
ROM/PROM capacity........................ 8K to 32K bytes
RAM capacity 384 to 1024 bytes
(2) Packages

64P4B Shrink plastic molded DIP
64P6N ..astic molded QFP
64S1B Shrink ceramic DIP
64D0 ... Ceramic LCC

Memory expansion plan

The development schedule and other details of products under development may be revised without notice
Currently supported products are listed below

As of March 1992

Product name	(P) ROM size (bytes)	RAM spize (bytes)	Package	Remarks
M38002M4-XXXSP	16K	384	64P4B	Mask ROM version
M38002E4-XXXSP				One-time programmable version
M38002E4SP				One-time programmable version (blank)
M38002M4-XXXFP			64P6N	Mask ROM version
M38002E4-XXXFP				One-tıme programmable version
M38002E4FP				One-time programmable version (blank)
M38002E4SS			64S1B	EPROM version
M38002E4FS			64D0	EPROM version
M38002M2-XXXSP	8K	384	64P4B	Mask ROM version
M38002E2-XXXSP				One-time programmable version
M38002E2SP				One-tıme programmable version (blank)
M38002M2-XXXFP			64P6N	Mask ROM version
M38002E2-XXXFP				One-tıme programmable version
M38002E2FP				One-tıme programmable version (blank)
M38002E2SS			64S1B	EPROM version
M38002E2FS			64D0	EPROM version
M38004M8-XXXSP	32K	640	64P4B	Mask ROM version
M38004E8-XXXSP				One-time programmable version
M38004E8SP				One-time programmable version (blank)
M38004M8-XXXFP			64P6N	Mask ROM version
M38004E8-XXXFP				One-time programmable version
M38004E8FP				One-time programmable version (blank)
M38004E8SS			64S1B	EPROM version
M38004E8FS			64D0	EPROM version
M38007M4-XXXSP	8K	1024	64P4B	Mask ROM version
M38007E4-XXXSP				One-time programmable version
M38007E4SP				One-tıme programmable version (blank)
M38007M4-XXXFP				Mask ROM version
M38007E4-XXXFP			64P6N	One-time programmable version
M38007E4FP				One-tıme programmable version (blank)
M38007E4SS			64S1B	EPROM version
M38007E4FS			64D0	EPROM version
M38003E6-XXXSP	24K	512	64P4B	One-time programmable version
M38003E6SP				One-tıme programmable version (blank)
M38003E6-XXXFP			64P6N	One-tıme programmable version
M38003E6FP				One-tıme programmable version (blank)
M38003E6SS			64S1B	EPROM version
M38003E6FS			64D0	EPROM version

FUNCTIONAL DESCRIPTION

Central Processing Unit (CPU)

Microcomputers of the M3800x group use the standard MELPS 740 instruction set. Refer to the table of MELPS 740 addressing modes and machine instructions or the MELPS 740 Software Manual for details on the instruction set.
Machine-resident MELPS 740 instructions are as follows-
The FST and SLW instructions are not available for use.
The STP, WIT, MUL, and DIV instructions can be used.

CPU Mode Register

The CPU mode register (address $003 \mathrm{~B}_{16}$) contains processor mode bits that specify the operating mode of the chip. The CPU mode register also contains the stack page select bit.

Fig. 1 Structure of CPU mode register

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

MEMORY

- Special Function Register (SFR) Area

The Special Function Register area contains registers which control functions such as I/O ports and timers, and is located in the zero page area.

- RAM

RAM is used for data storage as well for stack area.

- ROM

The first 128 bytes and the last two bytes of ROM are reserved for device testing and the rest is user area for storing programs.

- Interrupt Vector Area

The interrupt vector area contains reset and interrupt vectors.

- Zero Page

The 256 bytes from addresses 0000_{16} to $00 \mathrm{FF}_{16}$ are called the zero page area. The internal RAM and the special function registers (SFR) are allocated to this area. The zero page addressing mode can be used to specify memory and register addresses in the zero page area. This dedicated zero page addressing mode enables access to this area with only 2 bytes.

- Special Page

The 256 bytes from addresses FFO_{16} to FFFF_{16} are called the special page area. The special page addressing mode can be used to specify memory addresses in the special page area. This dedicated special page addressing mode enables access to this area with only 2 bytes.

RAM area

RAM capacity (bytes)	Address $\times \times X X_{16}$
192	$00 \mathrm{FF}_{16}$
256	$013 F_{16}$
384	$01 \mathrm{BF}_{16}$
512	$023 F_{16}$
640	$02 \mathrm{BF}_{16}$
768	$033 F_{16}$
896	$03 \mathrm{BF}_{16}$
1024	$043 F_{16}$

ROM area

ROM capacity (bytes)	Address YYYY 16	Address ZZZZ_{16}
4096	F000 ${ }_{16}$	F080 ${ }_{16}$
8192	$\mathrm{E} 000{ }_{16}$	$\mathrm{E080}_{16}$
12288	DOOO_{16}	$\mathrm{DO8O}_{16}$
16384	COOO_{16}	$\mathrm{C080}_{16}$
20480	BOOO_{16}	$\mathrm{B080}_{16}$
24576	$\mathrm{A}^{000}{ }_{16}$	$\mathrm{A}^{080} 0_{16}$
28672	9000_{16}	$9080{ }_{16}$
32768	8000_{16}	8080_{16}

Fig. 2 Memory map diagram

$0^{0000}{ }_{16}$	Port P0 (PO)
$0^{0001}{ }_{16}$	Port PO direction register (POD)
0_{0002}^{16}	Port P1 (P1)
0_{0003}^{16}	Port P1 direction register (P1D)
0004 ${ }_{16}$	Port P2 (P2)
OOOO_{16}	Port P2 direction register (P2D)
0_{000616}	Port P3 (P3)
0_{0007}^{16}	Port P3 direction regıster (P3D)
0_{0008}^{16}	Port P4 (P4)
0_{0009}^{16}	Port P4 direction register (P4D)
000A ${ }_{16}$	Port P5 (P5)
$0^{000 B_{16}}$	Port P5 direction register (P5D)
$000 \mathrm{C}_{16}$	Port P6 (P6)
$0^{000 D_{16}}$	Port P6 direction register (P6D)
$000 \mathrm{E}_{16}$	Port P7 (P7)
$0^{000} \mathrm{~F}_{16}$	Port P7 direction register (P7D)
$0_{0010}{ }_{16}$	
0011 ${ }_{16}$	
0012 ${ }_{16}$	
$0_{0013}{ }_{16}$	
0014 ${ }_{16}$	
0015 ${ }_{16}$	
$0_{0016}{ }_{16}$	
$0_{0017}{ }_{16}$	
0_{0018}^{16}	Transmit/receive buffer (TB/RB)
$0_{0019}{ }_{16}$	Serial I/O status register (SIOSTS)
001A ${ }_{16}$	Serial I/O control register (SIOCON)
$001 \mathrm{~B}_{16}$	UART control register (UARTCON)
$0_{001 C_{16}}$	Baud rate generator (BRG)
$001 \mathrm{D}_{16}$	
$001 \mathrm{E}_{16}$	
$001 \mathrm{~F}_{16}$	

0020 ${ }_{16}$	Prescaler 12 (PRE12)
$0021{ }_{16}$	Timer 1 (T1)
$0022{ }_{16}$	Timer 2 (T2)
$0023{ }_{16}$	Timer XY mode register (TM)
0024 ${ }_{16}$	Prescaler X (PREX)
$0025{ }_{16}$	Timer X (TX)
$0026{ }_{16}$	Prescaler Y (PREY)
$0027{ }_{16}$	Timer Y (TY)
$0028{ }_{16}$	
002916	
002A ${ }_{16}$	
$002 \mathrm{~B}_{16}$	
$002 \mathrm{C}_{16}$	
$002 \mathrm{D}_{16}$	
$002 \mathrm{E}_{16}$	
$002 \mathrm{~F}_{16}$	
$0030{ }_{16}$	
$0031{ }_{16}$	
$0032{ }_{16}$	
0033_{16}	
0034_{16}	
$0035{ }_{16}$	
$0036{ }_{16}$	
$0037{ }_{16}$	
$0038{ }_{16}$	
$0039{ }_{16}$	
003A ${ }_{16}$	Interrupt edge selection register (INTEDGE)
$003 \mathrm{~B}_{16}$	CPU mode register (CPUM)
$0^{003 C_{16}}$	Interrupt request register 1 (IREQ1)
003D ${ }_{16}$	Interrupt request register 2 (IREQ2)
$003 \mathrm{E}_{16}$	Interrupt control register 1 (ICON1)
$003 \mathrm{~F}_{16}$	Interrupt control register 2 (ICON2)

Fig. 3 Memory map of special function register (SFR)

I/O PORTS

Direction Registers

The M3800x group microprocessors have 72 programmable I/O pins arranged in nine I/O ports (ports PO to P7). The I/O ports have direction registers which determine the input/ output direction of each individual pin. Each bit in a direction register corresponds to one pin, each pin can be set to be input or output. When " 0 " is written to the bit corresponding to a pin, that pin becomes an input pin. When "1" is written to that bit, that pin becomes an output pin.

If data is read from a pin which is set for output, the value of the port output latch is read, not the value of the pin itself. Pins set to input are floating. If a pin set to input is written to, only the port output latch is written to and the pin remains floating.

Pin	Name	Input/Output	I/O Format	Non-Port Function	Related SFRs	Ref No.
$\mathrm{PO}_{0}-\mathrm{PO}_{7}$	Port P0	Input/output, individual bits	CMOS 3-state output CMOS level input	Address lower-byte output	CPU mode register	(1)
$\mathrm{P} 1_{0}-\mathrm{P} 1_{7}$	Port P1	Input/output, individual bits	CMOS 3-state output CMOS level input	Address upper-byte output	CPU mode register	
$\mathrm{P} 2_{0}-\mathrm{P} 2_{7}$	Port P2	Input/output, individual bits	CMOS 3-state output CMOS level input	Data bus 1/O	CPU mode register	
$P 3_{0}-\mathrm{P} 3_{7}$	Port P3	Input/output, individual bits	CMOS 3-state output CMOS level input	Control signal I/O	CPU mode register	
P40, P41	Port P4	Input/output, individual bits	CMOS 3-state output CMOS level input			
$\begin{aligned} & \mathrm{P}_{2} / \mathrm{INT} \mathrm{~N}_{0}, \\ & \mathrm{P}_{3} / \mathrm{NT}_{1} \end{aligned}$				External interrupt input	Interrupt edge selection register	(2)
$\mathrm{P} 4_{4} / \mathrm{R}_{\mathrm{x}} \mathrm{D}$,				Serial I/O function I/O	Serial I/O control register UART control register	(3)
$\mathrm{P}_{5} / \mathrm{T}_{\times} \mathrm{D},$						(4)
$\mathrm{P}_{6} / \mathrm{S}_{\mathrm{CLK}},$						(5)
$\mathrm{P} 47 / \overline{S_{\text {ROV }}}$						(6)
$\mathrm{P}_{5} / \mathrm{INT}_{2}$, $\mathrm{P}_{1} / \mathrm{INT}_{3}$, $\mathrm{P5}_{2} / \mathrm{NNT}_{4}$, $\mathrm{P}_{3} / \mathrm{INT}_{5}$	Port P5	Input/output, individual bits	CMOS 3-state output CMOS level input	External interrupt input	Interrupt edge selection register	(7)
$\mathrm{P5}_{4} / \mathrm{CNTR}_{0}$, $\mathrm{P5}_{5} / \mathrm{CNTR}_{1}$				Tımer XY function I/O		(8)
$\mathrm{P5}_{6}, \mathrm{P} 57$						(9)
$P 6_{0}-\mathrm{Pb}_{7}$	Port P6	Input/output, individual bits	CMOS 3-state output CMOS level input			
P70, P7 ${ }_{1}$	Port P7	Input/output, individual bits	CMOS 3-state output CMOS level input			

Note: For details of the functions of ports PO to P3 in modes other than single-chip mode, and how to use double-function ports as function I/O ports, see the applicable sections
(1) Port P0, P1, P2, P3, P4 ${ }_{0}$ or P41

(3) Port $\mathrm{P4}_{4}$

(5) Port P46

(7) Port P_{o} to P_{3}

(4) Port P45

(6) Port P47

(2) Port $\mathrm{P4}_{2}$ or P_{3}

(8) Port $\mathrm{P5}_{4}$ or $\mathrm{P5}_{5}$

(9) Port $\mathrm{P5}_{6}, \mathrm{P5}_{7}, \mathrm{P} 6$ or P 7

Fig. 4 Port block diagram (single-chip mode)

MITSUBISHI MICROCOMPUTERS M3800x Group

INTERRUPTS

A total of 15 sources can generate interrupts: 8 external, 6 internal, and 1 software.

- Interrupt Control

Each interrupt is controlled by an interrupt request bit, an interrupt enable bit, and the interrupt disable flag-except for the software interrupt set by the BRK instruction. An interrupt is generated if the corresponding interrupt request and enable bits are " 1 " and the interrupt disable flag is " 0 ". Interrupt enable bits can be set or cleared by software Interrupt request bits can be cleared by software, but cannot be set by software.
The I flag disables all interrupts except for the BRK instruction interrupt.

- Interrupt Operation

When an interrupt is received, the program counter and processor status register are automatically pushed onto the stack. The interrupt disable flag is set to inhibit other interrupts from interfering. The corresponding interrupt request bit is cleared and the interrupt jump destination address is read from the vector table into the program counter.

- Notes on Use

When the active edge of an external interrupt (INT_{0} to $\mathrm{INT}_{5}, \mathrm{CNTR}_{0}$, or CNTR_{1}) is changed, the corresponding interrupt request bit may also be set. To insure proper operation when selecting the active edge, disable interrupts before setting the interrupt edge selection.

Table 1 Interrupt vector addresses and priorities

Interrupt cause	Priority	Vector address (Note 1)		Interrupt request generation conditions	Remarks
		High	Low		
Reset (Note 2)	1	FFFD_{16}	FFFC_{16}	At reset	Non-maskable
INTo	2	FFFB_{16}	FFFA $_{16}$	At detection of either rising or falling edge of INT_{0} input	External interrupt (active edge selectable)
INT_{1}	3	FFF9 ${ }_{16}$	FFF8 ${ }_{16}$	At detection of either rising or falling edge of INT_{1} input	External interrupt (active edge selectable)
Serial 1/O reception	4	FFF7 ${ }_{16}$	FFF6 ${ }_{16}$	At end of serial I/O1 data reception	Valid when serial I/O1 is selected
Serial I/O transmission	5	FFF5 ${ }_{16}$	FFF4 ${ }_{16}$	At end of serial 1/O1 transfer shift or when transmission buffer is empty	Valid when serial I/O1 is selected
Tımer X	6	FFF_{16}	FFF^{16}	At timer X overflow	
Timer Y	7	FFF1 ${ }_{16}$	FFFO_{16}	At tımer Y overflow	
Tımer 1	8	FFEF_{16}	FFEE_{16}	At timer 1 overflow	STP release timer overflow
Timer 2	9	FFED_{16}	FFEC_{16}	At timer 2 overflow	
CNTR ${ }_{0}$	10	FFEB_{16}	FFEA $_{16}$	At detection of either rising or falling edge of CNTR ${ }_{0}$ input	External interrupt (active edge selectable)
CNTR ${ }_{1}$	11	FFE9 ${ }_{16}$	FFE8 ${ }_{16}$	At detection of either rising or falling edge of CNTR Clinput $^{\text {inf }}$	External interrupt (active edge selectable)
$\mathrm{INT}{ }_{2}$	12	FFE_{16}	FFE6 ${ }_{16}$	At detection of either rising or falling edge of INT_{2} input	External interrupt (active edge selectable)
INT_{3}	13	FFE5 ${ }_{16}$	FFE4 ${ }_{16}$	At detection of either rising or falling edge of INT_{3} input	External interrupt (active edge selectable)
INT_{4}	14	FFE_{16}	FFE2 ${ }_{16}$	At detection of either rising or falling edge of INT_{4} input	External interrupt (active edge selectable)
INT_{5}	15	FFE1 ${ }_{16}$	FFE0 ${ }_{16}$	At detection of either rising or falling edge of INT_{5} input	External interrupt (active edge selectable)
BRK instruction	16	FFDD_{16}	FFDC_{16}	At BRK instruction execution	Non-maskable software interrupt

Note 1 : Vector addresses contaın interrupt jump destınation addresses
2 : Reset function in the same way as an interrupt with the highest priority

MITSUBISHI MICROCOMPUTERS M3800x Group

Fig. 5 Interrupt control

Fig. 6 Structure of interrupt-related registers

TIMERS

Microcomputers of the M3800x group have 4 timers: timer X , timer Y, timer 1, and timer 2.
The timers count down. Once a timer reaches 00_{16}, the next count pulse reloads the contents of the corresponding timer latch into the timer, and sets the corresponding interrupt request bit to 1.
The divide ratio of each timer or prescaler is given by $1 /(n+1)$, where n is the value in the corresponding timer or prescaler latch.

Fig. 7 Structure of timer $X Y$ register

Timer 1 and Timer 2

The count source of prescaler 12 is the oscillation frequency divided by 16. The output of prescaler 12 is counted by timer 1 and timer 2, and a timer overflow sets the interrupt request bit.

Timer X and Timer Y

Timer X and Timer Y can each be set to operate in one of four operating modes by setting the timer $X Y$ mode register.

1. Timer Mode

In timer mode, the timer counts a signal that is the oscillation frequency divided by 16.
2. Pulse Output Mode

Timer X (or timer Y) counts a signal which is the oscillation frequency divided by 16. Whenever the contents of the timer reach " 0 ", the signal output from the $C N T R_{0}$ (or CNTR_{1}) pin is inverted. If the CNTR_{0} (or CNTR ${ }_{1}$) active edge select bit is " 0 ", output begins at " H ". If it is " 1 ", output starts at " L ". When using a timer in this mode, set the corresponding port $\mathrm{P5}_{4}$ (or port $\mathrm{P5}_{5}$) direction register to output mode.
3. Event Counter Mode

Operation in event counter mode is the same as in timer mode, except the timer counts signals input through the CNTR $_{0}$ or CNTR 1 pin.
4. Pulse Width Measurement Mode

If the CNTR_{0} (or CNTR_{1}) active edge select bit is " 0 ", the timer counts at the oscillation frequency divided by 16 while the CNTR_{0} (or CNTR_{1}) pin is at "H". If the CNTR_{0} (or CNTR_{1}) active edge select bit is " 1 ", the count continues during the time that the CNTR_{0} (or CNTR_{1}) pin is at " L "
In all of these modes, the count can be stopped by setting the timer X (timer Y) count stop bit to " 1 ". Every time a timer overflows, the corresponding interrupt request bit is set.

Fig. 8 Block diagram of timer X, timer Y, timer 1, and timer 2

SERIAL I/O
Serial I/O can be used as either clock synchronous or asynchronous (UART) serial I/O. A dedicated timer is also provided for baud rate generation.
(1) Clock Synchronous Serial I/O

Clock synchronous serial I/O mode can be selected by
setting the mode select bit of the serial I/O control register to " 1 "
For clock-synchronized serial I/O, the transmitter and the receiver must use the same clock. If an internal clock is used, transfer is started by a write signal to the transmit or receive buffer.

Fig. 9 Block diagram of clock-synchronized serial I/O

Fig. 10 Operation of clock-synchronized serial I/O function
(2) Asynchronous serial I/O (UART) mode

Clock asynchronous serial I/O mode (UART) can be selected by clearing the serial I/O mode select bit of the serial I/O control register to " 0 ".
Eight serial data transfer formats can be selected, and the transfer formats used by a transmitter and receiver must be identical.
The transmit and receive shift registers each have a buffer, but the two buffers have the same address in mem-
ory. Since the shift register cannot be written to or read from directly, transmit data is written to the transmit buffer, and receive data is read from the receive buffer. The transmit buffer can also hold the next data to be transmitted, and the receive buffer can hold a character while the next character is being received.

Fig. 11 Block diagram of UART serial I/O

Fig. 12 Operation of UART serial I/O function
[Serial //O Control Register (SIOCON) 001A $_{16}$]
The serial I/O control register contains eight control bits for the serial I/O function.
[UART Control Register (UARTCON) 001B ${ }_{16}$]
The UART control register consists of four control bits (bits 0 to 3) which are valid when asynchronous serial I/O is selected and set the data format of an data transfer. One bit in this register (bit 4) is always valid and sets the output structure of the $P 4_{5} / T_{x} D$ pin.
[Serial I/O Status Register (SIO1STS) 0019 ${ }_{16}$]
The read-only serial I/O status register consists of seven flags (bits 0 to 6) which indicate the operating status of the serial I/O function and various errors.
Three of the flags (bits 4 to 6) are valid only in UART mode.
The receive buffer full flag (bit 1) is cleared to " 0 " when the receive buffer is read.
If there is an error, it is detected at the same time that data is transferred from the receive shift register to the receive buffer, and the receive buffer full flag is set. A write to the serial I/O status register clears all the error flags OE, PE,

FE, and SE (bit 3 to bit six, respectively). Writing " 0 " to the serial I/O enable bit SIOE (bit 7 of the Serial I/O Control Register) also clears all the status flags, including the error flags.
All bits of the serial I/O status register are initialized to " 0 " at reset, but if the transmit enable bit (bit 4) of the serial I/O control register has been set to " 1 ", the transmitter shift completion flag (bit 2) and the transmitter buffer empty flag (bit 0) become " 1 ".

[Transmit Buffer/Receive Buffer (TB/RB) 0018 ${ }_{16}$]

The transmit buffer and the receive buffer are located at the same address. The transmit buffer is write-only and the receive buffer is read-only. If a character bit length is 7 bits, the MSB of data stored in the receive buffer is " 0 "

[Baud Rate Generator (BRG) 001C $\mathbf{1 6}^{16}$]

 The baud rate generator determines the baud rate for serial transfer.The baud rate generator divides the frequency of the count source by $1 /(n+1)$, where n is the value written to the Baud Rate Generator.

Fig. 13 Structure of serial I/O control registers

RESET CIRCUIT

A microcomputer in the M3800x group is reset if the RESET pin is held at a " L " level for at least 2μ s then is returned to a " H " level (the power supply voltage should be between 4.0 V and 5.5 V). In order to give the $\mathrm{X}_{\text {IN }}$ clock time to stabilize, internal operation does not begin until after 8 to $12 X_{\text {IN }}$ clock cycles are complete. After the reset is completed, the program starts from the address contained in address FFFD_{16} (upper byte) and address FFFC_{16} (lower byte).
Make sure that the reset input voltage is no more than 0.8 V for a power supply voltage of 4.0 V .

Fig. 14 Example of reset circuit

Fig. 15 Internal status of microcomputer after reset

Fig. 16 Timing of reset

CLOCK GENERATION CIRCUIT

An oscillation circuit can be created by connecting a resonator between $X_{\text {IN }}$ and $X_{\text {OUT }}$. When using an external clock signal, input the clock signal to the $X_{\text {IN }}$ pin and leave the $X_{\text {out }}$ pin open.

Oscillation Control

(1) Stop Mode

If the STP instruction is executed, osciilation stops with the internal clock ϕ at " H ". Timer 1 is set to " FF_{16} " and prescaler 12 is set to " $01_{16 \text { " }}$.
Oscillation restarts when an external interrupt is received, but the internal clock ϕ remains at " H " until timer 1 overflows.
This allows time for the clock circuit oscillation to stabilize. If oscillation is restarted by a reset, no wait time is generated, so keep the $\overline{\operatorname{RESET}}$ pin at " L " level until oscillation has stabilized.
(2) Wait Mode

If the WIT instruction is executed, the internal clock ϕ stops at a " H " level, but the oscillator itself does not stop. The internal clock restarts if a reset occurs or when an interrupt is received.
Since the oscillator does not stop, normal operation can be started immediately after the clock is restarted.
To ensure that interrupts will be received to release the STP or WIT state, interrupt enable bits must be set to " 1 " before the STP or WIT instruction is executed.

When the STP status is released, prescaler 12 and timer 1 will start counting and reset will not be released until timer 1 overflows, so set the timer 1 interrupt enable bit to " 0 " before the STP instruction is executed.

Fig. 17 Ceramic resonator circuit

Fig. 18 External clock input circuit

Fig. 19 Block diagram of clock generation circuit

PROCESSOR MODES

Single-chip mode, memory expansion mode, and microprocessor mode can be selected by changing the contents of the processor mode bits CM_{0} and CM_{1} (bits 0 and 1 of address $003 \mathrm{~B}_{16}$). In memory expansion mode and microprocessor mode, memory can be expanded externally through ports PO to P3. In these modes, ports PO to P3 lose their I/O port functions and become bus pins.

Table 2 Functions of ports in memory expansion mode and microprocessor mode

Port Name	Function
Port P0	Outputs lower byte of address
Port P1	Outputs upper byte of address.
Port P2	Operates as $1 / O$ pins for data D_{7} to D_{0} (Including instruction codes)
Port P3	$P 3_{0}$ and $P 3_{1}$ function only as output pins (except that the port latch cannot be read) P_{2} is the $\overline{\text { ONW }}$ input pin P_{3} is the RESETout output pin. (Note) P_{4} is the ϕ output pin P_{5} is the SYNC output pin $P 3_{6}$ is the $\overline{W R}$ output pin, and $P 3_{7}$ is the $\overline{\mathrm{RD}}$ output pin.

Note: If $\mathrm{CNV}_{\text {ss }}$ is connected to $\mathrm{V}_{\text {ss }}$, the microcomputer goes to singlechip mode after a reset, so this pin cannot be used as the $\overline{\text { RESET }}$ OUT output pin

- Single-Chip Mode

Select this mode by resetting the microcomputer with $\mathrm{CNV}_{\text {ss }}$ connected to $\mathrm{V}_{\text {ss }}$.

- Memory Expansion Mode

Select this mode by setting the processor mode bits to " 01 " in software with $C N V_{s s}$ connected to $V_{\text {Ss }}$. This mode enables external memory expansion while maintaining the validity of the internal ROM. Internal ROM will take precedence over external memory if addresses conflict.

- Microprocessor Mode

Select this mode by resetting the microcomputer with $\mathrm{CNV}_{\mathrm{Ss}}$ connected to V_{CC}, or by setting the processor mode bits to " 10 " in software with $\mathrm{CNV}_{\text {ss }}$ connected to V_{Ss}. In microprocessor mode, the internal ROM is no longer valid and external memory must be used.

Fig. 20 Memory maps in various processor modes

Fig. 21 Structure of CPU mode register

Bus Control with Memory Expansion

Microcomputers of the M3800x group have a built-in ONW function to facilitate access to extra memory and I/O functions in memory expansion mode or microprocessor mode. If an " L " level signal is input to the $\overline{O N W}$ pin when the CPU is in a read or write state, the corresponding read or write cycle is extended by one cycle of ϕ. During this extended period, the $\overline{R D}$ or $\overline{W R}$ signal remains at " L ". This extension period is valid only for writing to and reading from addresses 0000_{16} to 0007_{16} and 0440_{16} to FFFF_{16}, and only read and write cycles are extended.

Fig. 22 ONW function timing

NOTES ON PROGRAMMING
 Processor Status Register

The contents of the processor status register (PS) after a reset are undefined, except for the interrupt disable flag (I) which is " 1 ". Therefore, flags that affect program execution must be initialized after a reset
In particular, it is essential to initialize the T and D flags because of their effect on calculations.

Interrupts

The contents of the interrupt request bits do not change immediately after they have been written. After writing to an interrupt request register, execute at least one instruction before performing a BBC or BBS instruction.

Decimal Calculations

To calculate in decimal notation, set the decimal mode flag (D) to "1", then execute a ADC or SBC instruction. Only the ADC and SBC instructions yield proper decimal results. After executing an ADC or SBC instruction, execute at least one instruction before executing a SEC, CLC, or CLD instruction.

In decimal mode, the values of the negative (N), overflow (V), and zero (Z) flags are invalid.

The carry flag can be used to indicate whether a carry or borrow has occurred, but must be initialized before each calculation. Clear the carry flag before an ADC and set the flag before an SBC.

Timers

If a value n (between 0 and 255) is written to a timer latch, the frequency division ratio is $1 /(n+1)$

Multiplication and Division Instructions

The MUL and DIV instructions do not affect the T and D flags.
The execution of these instructions does not change the contents of the processor status register.

Ports

The contents of the port direction registers cannot be read. Programs can not use the value of a direction register as an index, or bit-test a direction register (BBC or BBS), or perform a read-modify-write instruction such as ROR, CLB, or SEB. Use instructions such as LDM and STA to set the port direction registers.

Serial I/O

In clock synchronous serial I/O, if the receive side is using an external clock and it is to output the $\overline{S_{R D Y}}$ signal, set the transmit enable bit, the receive enable bit, and the $\overline{S_{R D Y}}$ output enable bit to " 1 ".
Serial I/O continues to output the final bit from the $T_{x} D$ pin after transmission is completed.

Instruction Execution Time

The instruction execution time is obtained by multiplying the frequency of the internal clock ϕ by the number of cycles needed to execute an instruction.
The number of cycles required to execute an instruction is shown in the list of machine instructions.
The frequency of the internal clock ϕ is half of the $X_{\text {IN }}$ frequency.
When the ONW function is used in modes other than sing-le-chip mode, the frequency of the internal clock ϕ may be one fourth the $X_{\text {IN }}$ frequency.

DATA REQUIRED FOR MASK ORDERS

The following are necessary when ordering a mask ROM production:

1. Mask ROM Order Confirmation Form
2. Mask Specification Form
3. Data to be written to ROM, in EPROM form (three identical copies)

ROM Writing Method

The built-in PROM of the blank one-time programmable version and built-in EPROM version can be read from and written to with an normal EPROM writer using a special write adapter.

Package	Name of Write Adapter
64P4B, 64S1B	PCA4738S-64
64P6N	PCA4738F-64
$64 D 0$	PCA4738L-64

The PROM of the blank one-time programmable version is not tested or screened after assembly. To ensure proper operation after writing, the procedure shown in Figure 23 is recommended to verify programming.

Fig. 23 Writing and testing of one-time programmable version

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratıngs	Unit
V_{cc}	Supply voltage	All voltages measured with reference to the $\mathrm{V}_{\text {Ss }}$ pin, output transistors isolated	-0.3 to 7.0	V
V_{1}	$\begin{aligned} & \text { Input voltage } \mathrm{PO}_{0}-\mathrm{P} 0_{7}, \mathrm{P} 1_{0}-\mathrm{P} 1_{7}, \mathrm{P} 2_{0}-\mathrm{P} 2_{7}, \\ & \mathrm{P} 3_{0}-\mathrm{P} 3_{7}, \mathrm{P} 4_{0}-\mathrm{P} 4_{7}, \mathrm{P} 5_{0}-\mathrm{P} 5_{7}, \\ & \mathrm{P} 6_{0}-\mathrm{P} 6_{7}, \mathrm{P} 7_{0}, P 7_{1} \\ & \hline \end{aligned}$		-0.3 to $\mathrm{V}_{\mathrm{Cc}}+0.3$	V
V_{1}	Input voltage $\overline{\text { RESET, }} \mathrm{X}_{\text {IN }}$		-0.3 to $V_{C C}+0.3$	V
V_{1}	Input voltage $\mathrm{CNV}_{\text {Ss }}$		-0.3 to 13	V
V_{\circ}	$\begin{array}{r} \hline \text { Output voltage } \mathrm{PO}_{0}-\mathrm{P0}_{7}, \mathrm{P}_{0}-\mathrm{P} 1_{7}, \mathrm{P}_{0}-\mathrm{P} 2_{7}, \\ \mathrm{P}_{0}-\mathrm{P3}_{7}, \mathrm{P}_{0}-\mathrm{P}_{7}, \mathrm{P} 5_{0}-\mathrm{P} 5_{7}, \\ \mathrm{P}_{0}-\mathrm{P}_{7}, \mathrm{P}_{0}, \mathrm{P} 7_{1}, \mathrm{X}_{\text {out }} \end{array}$		-0.3 to $\mathrm{V}_{\mathrm{cc}}+0.3$	V
$\mathrm{Pd}_{\text {d }}$	Power dissipation	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$	1000(Note)	mW
Topr	Operatıng temperature		-20 to 85	${ }^{\circ} \mathrm{C}$
Tstg	Storage temperature		-40 to 125	${ }^{\circ} \mathrm{C}$

Note: 300 mW in case of the flat package

RECOMMENDED OPERATING CONDITIONS ($\mathrm{V}_{\mathrm{cc}}=3.0$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathbf{a}}=-20$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Limits			Unit
		Min	Typ	Max	
V_{cc}	Supply voltage ($\mathrm{f}\left(\mathrm{X}_{\text {IN }}\right) \leqq 2 \mathrm{MHz}$)	3.0	5.0	5.5	V
	Supply voltage ($\mathrm{f}\left(\mathrm{X}_{\text {IN }}\right)>2 \mathrm{MHz}$)	4.0	5.0	5.5	
$\mathrm{V}_{\text {Ss }}$	Supply voltage		0		V
V_{1+}	$\begin{gathered} \text { " } \mathrm{H} \text { " input voltage } \mathrm{PO}_{0}-\mathrm{P}_{7}, \mathrm{P}_{0}-\mathrm{P} 1_{7}, \mathrm{P}_{2}-\mathrm{P} 2_{7}, \mathrm{P}_{0}-\mathrm{P} 3_{7}, \mathrm{P} 4_{0}-\mathrm{P} 4_{7}, \\ \mathrm{P5}_{0}-\mathrm{P5}_{7}, \mathrm{P6}_{0}-\mathrm{P}_{7}, \mathrm{P7}_{0}, \mathrm{P} 7_{1} \\ \hline \end{gathered}$	0.8V V_{cc}		V_{cc}	V
V_{IH}	" H " input voltage $\overline{\mathrm{RESET}}, \mathrm{X}_{\text {IN }}, \mathrm{CNV}_{\text {SS }}$	$0.8 \mathrm{~V}_{\mathrm{cc}}$		V_{cc}	V
$V_{\text {IL }}$	$\begin{gathered} \text { "L" input voltage } \mathrm{PO}_{0}-\mathrm{P} 0_{7}, \mathrm{P} 1_{0}-\mathrm{P} 1_{7}, \mathrm{P} 2_{0}-\mathrm{P} 2_{7}, \mathrm{P} 3_{0}-\mathrm{P} 3_{7}, \mathrm{P} 4_{0}-\mathrm{P} 4_{7}, \\ \mathrm{P} 5_{0}-\mathrm{P} 5_{7}, P 6_{0}-P 6_{7}, P 7_{0}, P 7_{1} \\ \hline \end{gathered}$	0		0.2V V_{cc}	V
$\mathrm{V}_{\text {IL }}$	"L" input voltage $\overline{\mathrm{RESET}}$	0		$0.2 \mathrm{~V}_{\mathrm{cc}}$	V
$V_{\text {IL }}$	"L" input voitage X_{IN}	0		$0.16 \mathrm{~V}_{C C}$	V
$V_{\text {IL }}$	"L" input voltage CNV ${ }_{\text {Ss }}$	0		$0.2 \mathrm{~V}_{\mathrm{CC}}$	V
$\Sigma \mathrm{Ioh}$ (peak)	"H" total peak output current $\mathrm{PO}_{0}-\mathrm{P0}_{7}, \mathrm{P} 1_{0}-\mathrm{P} 1_{7}, \mathrm{P}_{2}-\mathrm{P}_{7}, \mathrm{P3}_{0}-\mathrm{P} 3_{7}$ (Note 1)			-80	mA
$\Sigma I_{\text {oh(peak }}$	"H" total peak output current $\mathrm{P4}_{0}-\mathrm{P} 4_{7}, \mathrm{P5}-\mathrm{P} 5_{7}, \mathrm{P6}_{0}-\mathrm{P} 6_{7}, \mathrm{P} 7_{0}, \mathrm{P} 7_{1}$ (Note 1)			-80	mA
Σ lol(peak)	"L" total peak output current $\mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P1}_{0}-\mathrm{P} 1_{7}, \mathrm{P}_{2}-\mathrm{P} 2_{7}, \mathrm{P}_{3}-\mathrm{P3}_{7}$ (Note 1)			80	mA
Σ lol(peak)	"L" total peak output current $\mathrm{P4}_{0}-\mathrm{P} 4_{7}, \mathrm{P5} 5_{0}-\mathrm{P5} 5_{7}, \mathrm{P} 6_{0}-\mathrm{P} 6_{7}, \mathrm{P} 7_{0}, \mathrm{P} 7_{1}$ (Note 1)			80	mA
$\Sigma \mathrm{l}_{\text {OH(avg }}$)	" H " total average output current $\mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P1}_{0}-\mathrm{P1}_{7}, \mathrm{P}_{2}-\mathrm{P}_{2}, \mathrm{P3}_{0}-\mathrm{P}_{7}$ (Note 1)			-40	mA
$\Sigma l_{\text {OH(avg }}$)	"H" total average output current $\mathrm{P4}_{0}-\mathrm{P} 4_{7}, \mathrm{P5}_{0}-\mathrm{P5}_{7}, \mathrm{P6}_{0}-\mathrm{P} 6_{7}, \mathrm{P} 7_{0}, \mathrm{P} 7_{1}$ (Note 1)			-40	mA
$\Sigma \mathrm{l}_{\text {OL(avg }}$	"L" total average output current $\mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P1}_{0}-\mathrm{P1} 7_{7}, \mathrm{P} 2_{0}-\mathrm{P} 2_{7}, \mathrm{P}_{0}-\mathrm{P} 3_{7}$ (Note 1)			40	mA
$\Sigma l_{\text {OL(avg }}$	"L" total average output current $\mathrm{P} 4_{0}-\mathrm{P} 4_{7}, \mathrm{P5}_{0}-\mathrm{P5}_{7}, \mathrm{P6}_{0}-\mathrm{P6}_{7}, \mathrm{P} 7_{0}, \mathrm{P} 7_{1}$ (Note 1)			40	mA
Іон(peak)	"H" peak output current $\mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P1}_{0}-\mathrm{P} 1_{7}, \mathrm{P2}_{0}-\mathrm{P} 2_{7}, \mathrm{P3}_{0}-\mathrm{P} 3_{7}, \mathrm{P} 4_{0}-\mathrm{P} 4_{7}$, $\mathrm{P5}_{0}-\mathrm{P5}_{7}, \mathrm{P6}_{0}-\mathrm{P6}_{7}, \mathrm{P} 7_{0}, \mathrm{P} 7_{1}$ (Note 2).			-10	mA
Iol(peak)	$\begin{gathered} \text { "L" peak output current } \mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P1}_{0}-\mathrm{P} 1_{7}, \mathrm{P} 2_{0}-\mathrm{P} 2_{7}, \mathrm{P} 3_{0}-\mathrm{P} 3_{7}, \mathrm{P} 4_{0}-\mathrm{P} 4_{7}, \\ \mathrm{P5}_{0}-\mathrm{P5}_{7}, \mathrm{P} 6_{0}-\mathrm{P6}_{7}, \mathrm{P} 7_{0}, \mathrm{P} 7_{1} \text { (Note 2) } \\ \hline \end{gathered}$			10	mA
loh(avg)	$\begin{gathered} \text { "H" average output current } \mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P} 1_{0}-\mathrm{P1}_{7}, \mathrm{P}_{0}-\mathrm{P}_{7}, \mathrm{P3}_{0}-\mathrm{P} 3_{7}, \mathrm{P} 4_{0}-\mathrm{P} 4_{7}, \\ \\ \mathrm{P5} 5_{0}-\mathrm{P5}_{7}, \mathrm{P6}_{0}-\mathrm{P6}_{7}, \mathrm{P7}_{0}, \mathrm{P} 7_{1}(\text { Note 3) } \end{gathered}$			-5	mA
lol(avg)	$\begin{gathered} \text { "L" average output current } \mathrm{PO}_{0}-\mathrm{P}_{7}, \mathrm{P} 1_{0}-\mathrm{P} 1_{7}, \mathrm{P}_{0}-\mathrm{P} 2_{7}, \mathrm{P}_{0}-\mathrm{P} 3_{7}, \mathrm{P} 4_{0}-\mathrm{P} 4_{7}, \\ \mathrm{P5} 5_{0}-\mathrm{P} 5_{7}, \mathrm{P}_{0}-\mathrm{P} 6_{7}, \mathrm{P} 7_{0}, \mathrm{P} 7_{1} \text { (Note 3) } \\ \hline \end{gathered}$			5	mA
$f\left(X_{\text {IN }}\right)$	Internal clock oscillation frequency ($\mathrm{V}_{\mathrm{CC}}=4.0 \sim 5.5 \mathrm{~V}$)			8	MHz
	Internal clock oscillation frequency ($\mathrm{V}_{\mathrm{CC}}=3.0 \sim 5.5 \mathrm{~V}$)			2	

Note 1 The total output current is the sum of all the currents flowing through all the applicable ports The total average current is an average value measured over 100 ms The total peak current is the peak value of all the currents
2 The peak output current is the peak current flowing in each port
3 The average output current I_{OL} (avg), I_{OH} (avg) in an average value measured over 100 ms

ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{CC}}=4.0$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-20$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test conditions		Limits			Unit
				Min	Typ	Max	
V_{OH}	$\begin{array}{\|l} \text { "H" output voltage } \\ \\ \\ \mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P} 1_{0}-\mathrm{P} 1_{7}, \mathrm{P} 2_{0}-\mathrm{P} 2_{7}, \\ \\ \\ \mathrm{P} 3_{0}-\mathrm{P3}_{7}, \mathrm{P} 4_{0}-\mathrm{P} 4_{7}, \mathrm{P} 7_{0}, \mathrm{P} 7_{1}(\text { Note }) \\ \hline \end{array}$	$\begin{aligned} & \mathrm{l}_{\mathrm{OH}}=-10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=4.0 \sim 5.5 \mathrm{~V} \end{aligned}$		$\mathrm{V}_{\mathrm{cc}}-2.0$			V
		$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=3.0 \sim 5.5 \mathrm{~V} \end{aligned}$		$\mathrm{V}_{\mathrm{cc}}-1.0$			
V_{OL}	$\begin{aligned} & \text { "L" output voltage } \mathrm{PO}_{0}-\mathrm{P} 0_{7}, \mathrm{P} 1_{0}-\mathrm{P} 1_{7}, \mathrm{P} 2_{0}-\mathrm{P} 2_{7}, \\ & \mathrm{P} 3_{0}-\mathrm{P} 3_{7}, \mathrm{P} 4_{0}-\mathrm{P} 4_{7}, \mathrm{P} 5_{0}-\mathrm{P} 5_{7}, \\ & \mathrm{P6}_{0}-\mathrm{P} 6_{7}, \mathrm{P} 7_{0}, \mathrm{P} 7_{1} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=4.0 \sim 5.5 \mathrm{~V} \end{aligned}$				2.0	V
		$\begin{aligned} & \mathrm{I}_{\mathrm{oL}}=1.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=3.0 \sim 5.5 \mathrm{~V} \end{aligned}$				1.0	
$\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\mathrm{T}-}$	Hysteresis $\mathrm{CNTR}_{0}, \mathrm{CNTR}_{1}, \mathrm{INT}_{0}-\mathrm{INT} \mathrm{S}_{5}$				0.4		V
$\mathrm{V}_{T+}-\mathrm{V}_{T-}$	Hysteresis $\mathrm{R}_{\times} \mathrm{D}, \mathrm{S}_{\text {CLK }}$				0.5		V
$\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\mathrm{T}-}$	Hysteresis RESET				0.5		V
$\mathrm{I}_{\mathbf{H}}$	$\begin{array}{r} \text { "H" input current } \mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P} 1_{0}-\mathrm{P} 1_{7}, \mathrm{P}_{0}-\mathrm{P} 2_{7}, \\ \\ \mathrm{P}_{0}-\mathrm{P} 3_{7}, \mathrm{P4}_{0}-\mathrm{P} 4_{7}, \mathrm{P} 5_{0}-\mathrm{P} 5_{7}, \\ \\ \mathrm{P} 6_{0}-\mathrm{P} 6_{7}, \mathrm{P} 7_{0}, \mathrm{P} 7_{1} \\ \hline \end{array}$	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{cc}}$				5.0	$\mu \mathrm{A}$
$\mathrm{I}_{\mathbf{I H}}$	"H" input current RESET, CNV ${ }_{\text {SS }}$	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{cc}}$				5.0	$\mu \mathrm{A}$
I_{IH}	"H" input current $\mathrm{X}_{\text {IN }}$	$\mathrm{V}_{1}=\mathrm{V}_{\text {cc }}$			4		$\mu \mathrm{A}$
IIL		$v_{1}=v_{s s}$				-5.0	$\mu \mathrm{A}$
IIL	"L" input current $\mathrm{X}_{\text {IN }}$	$\mathrm{V}_{1}=\mathrm{V}_{\text {ss }}$ With			-4		$\mu \mathrm{A}$
$\mathrm{V}_{\text {RAM }}$	RAM hold voltage	With clock stopped		2.0		5.5	V
Icc	Supply current	$\mathrm{f}\left(\mathrm{X}_{\text {IN }}\right)=8 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$			6.4	13	mA
		$f\left(X_{\text {IN }}\right)=5 \mathrm{MHz}, \mathrm{V}_{\text {CC }}=5 \mathrm{~V}$			4	8	
		$f\left(X_{\text {IN }}\right)=2 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$			0.8	2.0	
		When WIT instruction is executed with$f\left(X_{I N}\right)=8 M H z, V_{C C}=5 V$			1.5		
		When WIT instruction is executed with$f\left(X_{\text {IN }}\right)=5 M H z, V_{C C}=5 V$			1		
		When WIT instruction is executed with$f\left(X_{I N}\right)=2 M H z, V_{C C}=3 V$			0.2		
		When STP instruction is executed with clock stopped, output transistors isolated	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$		0.1	1	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{a}}=85^{\circ} \mathrm{C}$			10	

Note: $\mathrm{P} 4_{5}$ is measured when the $\mathrm{P4}_{5} / \mathrm{T}_{x} \mathrm{D}$ P-channel output disable bit of the UART control register (bit 4 of address $001 \mathrm{~B}_{16}$) is " 0 "

TIMING REQUIREMENTS $1\left(\mathrm{~V}_{\mathrm{cC}}=4.0\right.$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-20$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Limits			Unit
		Mın	Typ.	Max	
$t_{\text {W }}(\overline{\text { RESET }})$	Reset input "L" pulse width	2			μs
$\mathrm{t}_{\mathbf{C}\left(\mathrm{X}_{\text {IN }}\right)}$	External clock input cycle tıme	125			ns
$\mathrm{t}_{\text {WH }}\left(\mathrm{X}_{\text {IN }}\right)$	External clock input "H" pulse width	50			ns
$t_{\text {WL }\left(X_{\text {IN }}\right)}$	External clock input "L" pulse width	50			ns
$\mathrm{t}_{\mathrm{C} \text { (CNTR) }}$	CNTR $_{0}$, CNTR $_{1}$ input cycle time	200			ns
$\mathrm{t}_{\text {WH }}$ (CNTR)	CNTR $_{0}$, CNTR $_{1}$ input " H " pulse width	80			ns
$\mathrm{t}_{\text {WH (INT) }}$	INT ${ }_{0}$ to INT_{5} input "H" puise width	80			ns
$t_{\text {WL(CNTR }}$	CNTR $_{0}$, CNTR $_{1}$ input " L " pulse width	80			ns
$\mathbf{t}_{\text {WL(INT) }}$	$\mathrm{INT} \mathrm{T}_{0}$ to $\mathrm{INT} \mathrm{S}_{5}$ input " L " pulse width	80			ns
$\mathrm{t}_{\left.\mathrm{C} \text { (} \mathrm{S}_{\text {CLK }}\right)}$	Serıal I/O clock input cycle time (Note)	800			ns
$t_{\text {WH }}\left(S_{\text {CLK }}\right)$	Serial I/O clock input "H" pulse width (Note)	370			ns
$\mathrm{t}_{\mathrm{WL}\left(\mathrm{s}_{\mathrm{CLK}}\right)}$	Serial I/O clock input "L" pulse width (Note)	370			ns
$\mathrm{t}_{\mathbf{S u}}\left(\mathrm{R}_{\mathrm{X}} \mathrm{D}-\mathrm{s}_{\text {CLK }}\right)$	Serıal 1/O input set up tıme	220			ns
$\mathrm{th}^{\left(S_{C L K}-R_{X} D\right)}$	Serial 1/O input hold time	100			ns

Note: When $f\left(X_{I N}\right)=5 \mathrm{MHz}$ and bit 6 of address $001 A_{16}$ is " 1 " Divide this value by four when $f\left(X_{I N}\right)=5 \mathrm{MHz}$ and bit 6 of address $001 A_{16}$ is " 0 "

TIMING REQUIREMENTS $2\left(\mathrm{~V}_{\mathrm{cc}}=3.0\right.$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-20$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Limits			Unit
		Min	Typ	Max	
$t_{\text {W }}(\overline{\text { RESET }}$)	Reset input "L" pulse width	2			$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{C}}\left(\mathrm{X}_{\mathbf{I N}}\right)$	External clock input cycle time	500			ns
$\mathrm{t}_{\text {wh(}} \mathrm{X}_{\text {IN }}$)	External clock input "H" pulse width	200			ns
$t_{\text {WL }}\left(\mathrm{X}_{\text {IN }}\right)$	External clock input "L" pulse width	200			ns
t_{C} (CNTR)	CNTR $_{0}$, CNTR 1 input cycle time	500			ns
$\mathrm{t}_{\text {WH (CNTR) }}$	CNTR $_{0}$, CNTR $_{1}$ input "H" pulse width	230			ns
$\mathrm{t}_{\text {WH (INT) }}$	INT_{0} to NNT_{5} input " H " pulse width	230			ns
$t_{\text {WL (CNTR }}$	$\mathrm{CNTR}_{0}, \mathrm{CNTR}_{1}$ input "L" pulse width	230			ns
$t_{\text {WL(INT) }}$	INT ${ }_{0}$ to INT_{5} input "L" pulse width	230			ns
$\mathrm{t}_{\mathrm{C}}\left(\mathrm{s}_{\text {CLK }}\right)$	Serial I/O clock input cycle time (Note)	2000			ns
$\mathrm{t}_{\text {WH }}\left(\mathrm{s}_{\text {CLK }}\right)$	Serial I/O clock input "H" pulse width (Note)	950			ns
$\mathrm{t}_{\text {WL }}\left(\mathrm{s}_{\text {CLK }}\right)$	Serial I/O clock input "L" pulse width (Note)	950			ns
$\mathrm{t}_{\text {Su }}\left(\mathrm{R}_{\mathrm{X}} \mathrm{D}-\mathrm{s}_{\text {CLK }}\right)$	Serial I/O input set up time	400			ns
$\mathrm{th}_{(}\left(S_{\text {CLK }}-R_{X} D\right)$	Serial I/O input hold tıme	200			ns

Note: When $f\left(X_{I N}\right)=5 \mathrm{MHz}$ and bit 6 of address $001 \mathrm{~A}_{16}$ is " 1 " Divide this value by four when $f\left(X_{I N}\right)=5 \mathrm{MHz}$ and bit 6 of address $001 \mathrm{~A}_{16}$ is " 0 "

SWITCHING CHARACTERISTICS 1 ($\mathrm{v}_{\mathrm{cc}}=4.0$ to $5.5 \mathrm{~V}, \mathrm{v}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-20$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Limits			Unit
		Min	Typ	Max	
${ }^{\text {WHH(}}{ }_{\text {cLK }}$)	Serial I/O clock output "H" pulse width	$\mathrm{t}_{\mathrm{C}\left(\mathrm{s}_{\text {CLK }}\right) / 2-30}$			ns
$\mathrm{t}_{\text {WL }}\left(\mathrm{s}_{\text {CLK }}\right)$	Serial I/O clock output "L" pulse width	${ }^{\mathrm{t}_{\mathrm{C}}\left(\mathrm{s}_{\mathrm{CLK}}\right) / 2-30}$			ns
$t_{\text {d }}\left(s_{C L K}-T_{X} \mathrm{D}\right)$	Serial I/O output delay time (Note 1)			140	ns
$t_{V\left(S_{C L K}-T_{X}\right.}{ }^{\text {d }}$	Serial I/O output valid tıme (Note 1)	-30			ns
$t_{\text {r }}\left(s_{\text {CLK }}\right)$.	Serial I/O clock output rise time			30	ns
$\mathrm{t}_{\mathrm{f}}\left(\mathrm{s}_{\text {cLK }}\right)$	Serial I/O clock output fall time			30	ns
$\mathrm{tr}_{\text {(CMOS }}$	CMOS output rise time (Note 2)		10	30	ns
$\mathrm{tf}_{\text {(cmos) }}$	CMOS output fall time (Note 2)		10	30	ns

Note 1 : When the $\mathrm{P}_{5} / T_{x} \mathrm{D}$ P-channel output disable bit of the UART control register (bit 4 of address $001 \mathrm{~B}_{16}$) is " 0 " 2: $X_{\text {out }}$ pin excluded

SWITCHING CHARACTERISTICS 2 ($\mathrm{V}_{\mathrm{cc}}=3.0 \mathrm{to} 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-20$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Limits			Unit
		Min	Typ	Max	
$\mathrm{t}_{\text {WH(SCLK }}$)	Serial I/O clock output "H" pulse width	$\mathrm{t}_{\mathrm{C}\left(\mathrm{s}_{\text {CLK }}\right)} / 2-50$			ns
${ }^{\text {whL }}$ ($\mathrm{s}_{\text {CLK }}$)	Serial I/O clock output "L" pulse width	$\mathrm{t}_{\mathrm{C}\left(\mathrm{s}_{\text {CLK }}\right) / 2-50}$			ns
$\mathrm{t}_{\mathrm{d}}\left(\mathrm{s}_{\text {CLK }}-T_{\mathrm{X}} \mathrm{D}\right)$	Serial I/O output delay tume (Note 1)			350	ns
$\mathrm{t}_{\mathrm{V}\left(\mathrm{s}_{\text {CLK }}-T_{X} \mathrm{D}\right.}{ }^{\text {a }}$	Serial I/O output valid time (Note 1)	-30			ns
$\operatorname{tr}_{\text {(}}\left(\mathrm{s}_{\text {CLK }}\right)$	Serial I/O clock output rise time			50	ns
$\mathrm{tf}_{\mathrm{f}}\left(s_{\text {cLK }}\right)$	Serial I/O clock output fall time			50	ns
tr(cmos)	CMOS output rise time (Note 2)		20	50	ns
$\mathrm{tf}_{\text {(CMOS }}$	CMOS output fall time (Note 2)		20	50	ns

Note 1 : When the P_{5} / T_{x} D P-channel output disable bit of the UART control register (bit 4 of address $001 \mathrm{~B}_{16}$) is " 0 " 2 : Xout pin excluded

Fig. 24 Circuit for measuring output switching characteristics (1)

TIMING REQUIREMENTS IN MEMORY EXPANSION MODE AND MICROPROCESSOR MODE
($\mathrm{V}_{\mathrm{CC}}=4.0$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-20$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Limits			Unit
		Min	Typ	Max	
$t_{\text {su }}(\overline{O N W}-\phi)$	ONW input set up time	-20			ns
$t_{\text {l }}(\phi-\overline{O N W})$	$\overline{\text { ONW }}$ input hold time	-20			ns
$\mathrm{t}_{\text {Su }}(\underline{D B-\phi})$	Data bus set up time	60			ns
th($\phi-\mathrm{DB}$)	Data bus hold time	0			ns

SWITCHING CHARACTERISTICS IN MEMORY EXPANSION MODE AND MICROPROCESSOR MODE

($\mathrm{V}_{\mathrm{cc}}=4.0$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-20$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Lımits			Unit
		Min	Typ	Max	
$t_{C}(\phi)$	ϕ clock cycle tıme		$2 \mathrm{Xt}_{\mathrm{C}}(\mathrm{XIN})$		ns
$\mathrm{t}_{\text {WH }(\phi)}$	ϕ clock "H" puise width	$\mathrm{t}_{\mathrm{C}\left(\mathrm{x}_{1 \mathrm{~N}}\right)-10}$			ns
$\mathbf{t}_{\mathbf{W L}(\phi)}$	ϕ clock "L" pulse width	$\mathrm{t}_{\mathrm{C}}\left(\mathrm{xin}^{\prime}\right)-10$			ns
$\mathrm{t}_{\mathrm{d}}(\phi-A H)$	$A D_{15}$ to $A D_{8}$ delay tıme		20	40	ns
$t_{V(\phi-A H)}$	$A D_{15}$ to $A D_{8}$ valıd tıme	6	10		ns
$t_{\text {d }}(\phi-A L)$	$A D_{7}$ to $A D_{0}$ delay tıme		25	45	ns
$t_{V(\phi-A L)}$	$A D_{7}$ to $A D_{0}$ valıd tıme	6	10		ns
$\mathrm{t}_{\mathrm{d} \text { (} \phi \text {-SYNC) }}$	SYNC delay tıme		20		ns
$t_{V(\phi-S Y N C)}$	SYNC valıd tıme		10		ns
$\mathrm{t}_{\mathrm{d}}(\phi-\overline{\mathrm{WR}})$	$\overline{\mathrm{RD}}$ and $\overline{W R}$ delay tıme		10	20	ns
$t_{V(\phi-\overline{W R})}$	$\overline{\mathrm{RD}}$ and $\overline{W R}$ valıd tıme	3	5	10	ns
$t_{\text {d }}(\phi-\mathrm{DB})$	Data bus delay tıme		20	70	ns
$t_{V(\phi-D B)}$	Data bus valıd tıme	15			ns
$\mathrm{t}_{\mathrm{d}}(\overline{\text { RESET }}-\overline{\text { RESETOUT }}$)	RESET $_{\text {OUT }}$ output delay tıme (Note)			200	ns
$\mathrm{t}_{\mathbf{V}(\phi-\overline{\text { RESET }} \text {) }}$	RESET OUT output valıd time (Note)	0		200	ns

Note: The RESET Out output goes "H" in sync with the rise of the ϕ clock that is anywhere between about 1 cycle and 19 cycles after the RESET input goes "H"

Fig. 25 Circuit for measuring output switching characteristics (2)

TIMING DIAGRAM
(1) Timing diagram

CNTR 0_{0}, CNTR $_{1}$

$\mathrm{INT}_{0}-\mathrm{INT}_{5}$

$\overline{\text { RESET }}$

$X_{\text {IN }}$

$\mathrm{s}_{\mathrm{CLK}}$
$R_{x} D$
$T_{x} D$

(2) Timing diagram in memory expansion mode and microprocessor mode

(3) Timing diagram in microprocessor mode

MITSUBISHI MICROCOMPUTERS
 M3806x Group

DESCRIPTION

The $M 3806 x$ group is made up of 8 -bit microcomputers based on the MELPS 740 core.
The M3806x group is designed for controlling systems that require analog signal processing and include two serial I/O functions, A-D converters, and D-A converters.

The various microcomputers in the M3806x group include variations of internal memory size and packaging. For details, see the section on part numbering.
For details on availability of microcomputers in the M3806x group, see the section on group expansion.

FEATURES

- Basic machine-language instructions71

(shortest instruction at 8 MHz oscillation frequency)
- Memory size

RAM .. 192 to 1024 bytes
- Programmable input/output ports 72
- Interrupts 16 sources, 16 vectors
- Timers ... 8 bit×4
- Serial I/O1 $\cdots \cdots \cdot 8$-bit $\times 1$ (UART or Clock-synchronized)
- Serial I/O2 $\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdot$ - ${ }^{\text {-bit }}$ - 1 (Clock-synchronized)

- Clock generation circuit $\cdots \cdots$. Internal feedback amplifier (connect to external ceramic resonator or quartz crystal)
- Supply voltage.. to 5.5 V
- Low power dissipation .. mW
- Memory expansion possible
- Operating temperature range $\cdots \cdots \cdots \cdots \cdots \cdots-20$ to $85^{\circ} \mathrm{C}$

APPLICATIONS

Office automation, VCRs, tuners, musical instruments, cameras, air conditioners, etc.

PIN CONFIGURATION (TOP VIEW)

FUNCTIONAL BLOCK DIAGRAM (Package: 80P6N)

MITSUBISHI MICROCOMPUTERS

PIN DESCRIPTION

PART NUMBERING

\author{

GROUP EXPANSION

Mitsubishi plans to expand the M3806x group as follows:
(1) Support for mask ROM, one-time programmable, and EPROM versions
ROM/PROM capacity........................12K to 32K bytes
RAM capacity................................. 384 to 1024 bytes
(2) Packages

80P6N $\cdots \cdots \cdots \cdots \cdots \cdots \cdots$.............. mm-pitch plastic molded QFP
80P6S $\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdot 0.65 \mathrm{~mm}$-pitch plastic molded QFP

Memory expansion plan

The development schedule and other details of products under development may be revised without notice
Currently supported products are listed below

As of March 1992

Product name	(P) ROM size (bytes)	RAM size (bytes)	Package	Remarks
M38062M3-XXXFP	12K	384	80P6N	Mask ROM version
M38062E3-XXXFP				One-tıme programmable version
M38062E3FP				One-time programmable version (blank)
M38062M3-XXXGP			80P6S	Mask ROM version
M38062E3-XXXGP				One-tıme programmable version
M38062E3GP				One-tıme programmable version (blank)
M38062E3FS			80D0	EPROM version
M38062M6-XXXFP	24K	512	80P6N	Mask ROM version
M38062E6-XXXFP				One-tıme programmable version
M38063E6FP				One-time programmable version (blank)
M38063M6-XXXGP			80P6S	Mask ROM version
M38063E6-XXXGP				One-time programmable version
M38063E6GP				One-time programmable version (blank)
M38063E6FS			80D0	EPROM version

FUNCTIONAL DESCRIPTION

Central Processing Unit (CPU)

Microcomputers of the M3806x group use the standard MELPS 740 instruction set. Refer to the table of MELPS 740 addressing modes and machine instructions or the MELPS 740 Software Manual for details on the instruction set.
Machine-resident MELPS 740 instructions are as follows:
The FST and SLW instructions are not available for use.
The STP, WIT, MUL, and DIV instructions can be used.

CPU Mode Register

The CPU mode register (address $003 \mathrm{~B}_{16}$) contains processor mode bits that specify the operating mode of the chip. The CPU mode register also contains the stack page select bit.

Fig. 1 Structure of CPU mode register

MEMORY

- Special Function Register (SFR) Area

The Special Function Register area contains registers which control functions such as I/O ports and timers, and is located in the zero page area.

- RAM

RAM is used for data storage as well for stack area.

- ROM

The first 128 bytes and the last two bytes of ROM are reserved for device testing and the rest is user area for storing programs.

- Interrupt Vector Area

The interrupt vector area contains reset and interrupt vectors.

- Zero Page

The 256 bytes from addresses 0000_{16} to $00 \mathrm{FF}_{16}$ are called the zero page area. The internal RAM and the special function registers (SFR) are allocated to this area. The zero page addressing mode can be used to specify memory and register addresses in the zero page area. This dedicated zero page addressing mode enables access to this area with only 2 bytes.

- Special Page

The 256 bytes from addresses FFO_{16} to FFFF_{16} are called the special page area. The special page addressing mode can be used to specify memory addresses in the special page area. This dedicated special page addressing mode enables access to this area with only 2 bytes.

RAM area

RAM capacity (bytes)	Address XXXX_{16}
192	$00 \mathrm{FF}_{16}$
256	$013 \mathrm{~F}_{16}$
384	$01 \mathrm{BF}_{16}$
512	$023 \mathrm{~F}_{16}$
640	$02 \mathrm{BF}_{16}$
768	$033 \mathrm{~F}_{16}$
896	$03 \mathrm{BF}_{16}$
1024	$043 \mathrm{~F}_{16}$

ROM area

ROM capacity (bytes)	Address YYYY_{16}	Address $\mathbf{Z Z Z Z}_{16}$
4096	$\mathrm{F} 000{ }_{16}$	F080 ${ }_{16}$
8192	$E 000{ }_{16}$	$E 080{ }_{16}$
12288	DOOO_{16}	D080 ${ }_{16}$
16384	COOO_{16}	$\mathrm{C080}_{16}$
20480	BOOO_{16}	$\mathrm{B080}_{16}$
24576	$\mathrm{A}^{000}{ }_{16}$	$\mathrm{A} 080^{16}$
28672	9000_{16}	9080_{16}
32768	8000_{16}	8080_{16}

Fig. 2 Memory map diagram

0020_{16}
0021_{16}
0022_{16}
0023_{16}
0024_{16}
0025_{16}
0026_{16}
0027_{16}
0028_{16}
0029_{16}
$002 \mathrm{~A}_{16}$
$002 \mathrm{~B}_{16}$
$002 C_{16}$
$002 \mathrm{D}_{16}$
$002 E_{16}$
$002 \mathrm{~F}_{16}$ 0030_{16}
0031_{16}
0032_{16}
0033_{16}
0034_{16}
0035_{16}
0036_{16}
0037_{16}
0038_{16}
0039_{16}
$003 \mathrm{~A}_{16}$
$003 \mathrm{~B}_{16}$
$003 \mathrm{C}_{16}$
003D 16
$003 E_{16}$
$003 F_{16}$

Fig. 3 Memory map of special function register (SFR)

I/O PORTS

Direction Registers

The M3806x group microprocessors have 72 programmable I/O pins arranged in nine I/O ports (ports PO to P8). The I/O ports have direction registers which determine the input/ output direction of each individual pin. Each bit in a direction register corresponds to one pin, each pin can be set to be input or output. When " 0 " is written to the bit corresponding to a pin, that pin becomes an input pin. When " 1 " is written to that bit, that pin becomes an output pin.

If data is read from a pin. which is set for output, the value of the port output latch is read, not the value of the pin itself. Pins set to input are floating. If a pin set to input is written to, only the port output latch is written to and the pin remains floating.

Pin	Name	Input/Output	1/O Format	Non-Port Function	Related SFRs	Ref No
$\mathrm{PO}_{0}-\mathrm{PO} 0_{7}$	Port PO	Input/output, individual bits	CMOS 3-state output CMOS level input	Address lower-byte output	CPU mode register	(1)
$\mathrm{P} 1_{0}-\mathrm{P} 1_{7}$	Port P1	Input/output, individual bits	CMOS 3-state output CMOS level input	Address upper-byte output	CPU mode register	
$\mathrm{P} 2_{0}-\mathrm{P} 2_{7}$	Port P2	Input/output, individual bits	CMOS 3-state output CMOS level input	Data bus I/O	CPU mode register	
$P 3_{0}-\mathrm{P} 3_{7}$	Port P3	Input/output, individual bits	CMOS 3-state output CMOS level input	Control signal I/O	CPU mode register	
$\mathrm{P} 4_{0}, \mathrm{P} 4_{1}$	Port P4	Input/output, individual bits	CMOS 3-state output CMOS level input			
$\begin{aligned} & \mathrm{P}_{2} / \mathrm{INT}_{0}, \\ & \mathrm{P4}_{3} / \mathrm{INT}_{1} \end{aligned}$				External interrupt input	Interrupt edge selection register	(2)
$\mathrm{P}_{4} / \mathrm{R}_{\times} \mathrm{D}$,				Serial I/O1 function I/O	Serial I/O control register UART control register	(3)
$\mathrm{P} 4{ }_{5} / \mathrm{T}_{\times} \mathrm{D}$,						(4)
$\mathrm{P}_{6} / \mathrm{S}_{\mathrm{CLK} 1},$						(5)
$\mathrm{P}_{47} / \overline{\mathrm{S}_{\mathrm{RDY} 1}}$						(6)
$\mathrm{P} 5_{0}$	Port P5	Input/output, individual bits	CMOS 3-state output CMOS level input			(1)
$\begin{aligned} & \mathrm{P} 5_{1} / \mathrm{INT}_{2}, \\ & \mathrm{P} 5_{2} / \mathrm{NT}_{3}, \\ & \mathrm{P5}_{3} / \mathrm{INT}_{4} \end{aligned}$				External interrupt input	Interrupt edge selection register	(2)
$\mathrm{P}_{4} / \mathrm{CNTR}_{0}$, $\mathrm{PS}_{5} / \mathrm{CNTR}_{1}$				Timer XY function I/O		(7)
$\begin{aligned} & \mathrm{P}_{6} / \mathrm{DA}_{1}, \\ & \mathrm{P}_{7} / \mathrm{DA}_{2} \end{aligned}$				D-A converter output	AD/DA control register	(8)
$\begin{aligned} & \mathrm{P} 6_{0} / \mathrm{AN}_{0}- \\ & \mathrm{P}_{7} / \mathrm{AN}_{7} \end{aligned}$	Port P6	Input/output, individual bits	CMOS 3-state output CMOS level input	A-D converter input		(9)
$\mathrm{P} 7_{0} / \mathrm{S}_{\text {IN } 2}$,	Port P7	Input/output, individual bits	N -channel open-drain output CMOS level input	Serial I/O2 function 1/O	Serial I/O2 control regıster	(10)
$\mathrm{P} 71 / \mathrm{S}_{\text {OUT } 2}$,						(11)
$\mathrm{P} 7_{2} / \mathrm{S}_{\mathrm{CLK} 2},$						(12)
$\mathrm{P} 73 / \overline{\mathrm{S}_{\mathrm{RDY} 2}}$						(13)
$\mathrm{P} 7_{4}-\mathrm{P} 7_{7}$						(14)
$\mathrm{P} 8_{0}-\mathrm{P} 8_{7}$	Port P8	Input/output, individual bits	CMOS 3-state output CMOS level input			(1)

Note : For details of the functions of ports P0 to P3 in modes other than single-chip mode, and how to use double-function ports as function I/O ports, see the applicable sections.
(1) Port P0, P1, P2, P3, P4 $4_{0}, \mathrm{P}_{1}, \mathrm{P}_{0}$, or P8

(3) Port P_{4}

(4) Port P_{5}
(2) Port $\mathrm{P} 4_{2}, \mathrm{P4}_{3}, \mathrm{P5}_{1}, \mathrm{P5}_{2}$, or $\mathrm{P} 5_{3}$

(6) Port $\mathrm{P4}_{7}$

(7) Port $\mathrm{P5}_{4}$ or $\mathrm{P5}_{5}$

(8) Port $\mathrm{P5}_{6}$ or $\mathrm{P5}_{7}$

Fig. 4 Port block diagram (single-chip mode) (1)

Fig. 5 Port block diagram (single-chip mode) (2)

INTERRUPTS

A total of 16 sources can generate interrupts: 7 external, 8 internal, and 1 software.

- Interrupt Control

Each interrupt is controlled by an interrupt request bit, an interrupt enable bit, and the interrupt disable flag-except for the software interrupt set by the BRK instruction. An interrupt is generated if the corresponding interrupt request and enable bits are " 1 " and the interrupt disable flag is " 0 ". Interrupt enable bits can be set or cleared by software.
Interrupt request bits can be cleared by software, but cannot be set by software.
The I flag disables all interrupts except for the BRK instruction interrupt.

- Interrupt Operation

When an interrupt is received, the program counter and processor status register are automatically pushed onto the stack. The interrupt disable flag is set to inhibit other interrupts from interfering. The corresponding interrupt request bit is cleared and the interrupt jump destination address is read from the vector table into the program counter.

- Notes on Use

When the active edge of an external interrupt (INT T_{0} to $\mathrm{INT}_{4}, \mathrm{CNTR}_{0}$, or CNTR_{1}) is changed, the corresponding interrupt request bit may also be set. To insure proper operation when selecting the active edge, disable interrupts before setting the interrupt edge selection.

Table 1 Interrupt vector addresses and priorities

Interrupt cause	Priority	Vector address (Note 1)		Interrupt request generation conditions	Remarks
		High	Low		
Reset (Note 2)	1	FFFD_{16}	FFFC $_{16}$	At reset	Non-maskable
INT ${ }_{0}$	2	FFFB_{16}	FFFA $_{16}$	At detection of either rising or falling edge of INT $_{0}$ input	External interrupt (active edge selectable)
INT ${ }_{1}$	3	FFF9 ${ }_{16}$	FFF8 ${ }_{16}$	At detection of either rising or falling edge of INT_{1} input	External interrupt (active edge selectable)
Serial I/O1 reception	4	FFF7 ${ }_{16}$	FFF6 ${ }_{16}$	At end of serial I/O1 data reception	Valid when serial I/O1 is selected
Serial I/O1 transmission	5	FFF5 ${ }_{16}$	FFF4 ${ }_{16}$	At end of serial 1/O1 transfer shift or when transmission buffer is empty	Valid when serial I/O1 is selected
Timer X	6	$\mathrm{FFF3}_{16}$	$\mathrm{FFF}_{16}{ }_{16}$	At tımer X overflow	
Timer Y	7	FFF1 ${ }_{16}$	FFFO_{16}	At timer Y overflow	
Timer 1	8	FFEF_{16}	FFEE_{16}	At tımer 1 overflow	STP release timer overflow
Timer 2	9	FFED_{16}	FFEC_{16}	At timer 2 overflow	
CNTR ${ }_{0}$	10	FFEB_{16}	FFEA $_{16}$	At detection of either rising or falling edge of CNTR 0_{0} input	External interrupt (active edge selectable)
CNTR ${ }_{1}$	11	FFE9 $_{16}$	FFE8 ${ }_{16}$	At detection of either rising or falling edge of CNTR Input $^{\text {In }}$	External interrupt (active edge selectable)
Serial I/O2	12	FFE7 $_{16}$	FFE6 ${ }_{16}$	At end of serial I/O2 data transfer	Valid when serial I/O2 is selected
$\mathrm{INT} \mathbf{2}^{2}$	13	FFE5 ${ }_{16}$	FFE4 ${ }_{16}$	At detection of either rising or falling edge of INT_{2} input	External interrupt (active edge selectable)
INT_{3}	14	$\mathrm{FFE3}_{16}$	FFE2 $_{16}$	At detection of either rising or falling edge of INT_{3} input	External interrupt (active edge selectable)
INT_{4}	15	FFE1 ${ }_{16}$	FFEO_{16}	At detection of either rising or falling edge of INT_{4} input	External interrupt (actıve edge selectable)
A-D converter	16	FFDF_{16}	FFDE_{16}	At end of A-D conversion	
BRK instruction	17	FFDD_{16}	FFDC $_{16}$	At BRK instruction execution	Non-maskable software interrupt

Note 1 : Vector addresses contain interrupt jump destınatıon addresses
2 : Reset function in the same way as an interrupt with the highest priority

Fig. 6 Interrupt control

Fig. 7 Structure of interrupt-related registers

TIMERS

Microcomputers of the M3806x group have 4 timers: timer X , timer Y, timer 1, and timer 2.
The timers count down. Once a timer reaches 00_{16}, the next count pulse reloads the contents of the corresponding timer latch into the timer, and sets the corresponding interrupt request bit to 1 .
The divide ratio of each timer or prescaler is given by $1 /(n+1)$, where n is the value in the corresponding timer or prescaler latch.

Fig. 8 Structure of timer XY register

Timer 1 and Timer 2

The count source of prescaler 12 is the oscillation frequency divided by 16 . The output of prescaler 12 is counted by timer 1 and timer 2 , and a timer overflow sets the interrupt request bit.

Timer X and Timer Y

Timer X and Timer Y can each be set to operate in one of four operating modes by setting the timer XY mode register.

1. Timer Mode

In timer mode, the tirner counts a signal that is the oscillation frequency divided by 16.
2. Pulse Output Mode

Timer X (or timer Y) counts a signal which is the oscillation frequency divided by 16. Whenever the contents of the timer reach " 0 ", the signal output from the CNTR_{0} (or CNTR_{1}) pin is inverted. If the CNTR_{0} (or CNTR_{1}) active edge select bit is " 0 ", output begins at " H ". If it is " 1 ", output starts at " L " When using a timer in this mode, set the corresponding port $\mathrm{P5}_{4}$ (or port $\mathrm{P5}_{5}$) direction register to output mode.
3. Event Counter Mode

Operation in event counter mode is the same as in timer mode, except the timer counts signals input through the CNTR_{0} or CNTR_{1} pin.
4. Pulse Width Measurement Mode

If the CNTR_{0} (or CNTR_{1}) active edge select bit is " 0 ", the timer counts at the oscillation frequency divided by 16 while the CNTR_{0} (or CNTR_{1}) pin is at " H ". If the CNTR ${ }_{0}$ (or CNTR ${ }_{1}$) active edge select bit is " 1 ", the count continues during the time that the CNTR_{0} (or CNTR_{1}) pin is at " L ".
In all of these modes, the count can be stopped by setting the timer X (timer Y) count stop bit to " 1 ". Every time a timer overflows, the corresponding interrupt request bit is set.

Fig. 9 Block diagram of timer X, timer Y, timer 1, and timer 2

SERIAL I/O1
Serial I/O1 can be used as either clock synchronous or asynchronous (UART) serial I/O. A dedicated timer is also provided for baud rate generation.
(1) Clock Synchronous Serial I/O

Clock synchronous serial I/O1 mode can be selected by
setting the mode select bit of the serial I/O1 control register to " 1 "
For clock-synchronized serial I/O1, the transmitter and the receiver must use the same clock. If an internal clock is used, transfer is started by a write signal to the transmit or receive buffer.

Fig. 10 Block diagram of clock-synchronized serial I/O1

Fig. 11 Operation of clock-synchronized serial I/O1 function
(2) Asynchronous serial I/O (UART) mode

Clock asynchronous serial I/O mode (UART) can be selected by clearing the serial I/O mode select bit of the serial I/O control register to " 0 ".
Eight serial data transfer formats can be selected, and the transfer formats used by a transmitter and receiver must be identical.
The transmit and receive shift registers each have a buffer, but the two buffers have the same address in mem-
ory. Since the shift register cannot be written to or read from directly, transmit data is written to the transmit buffer, and receive data is read from the receive buffer. The transmit buffer can also hold the next data to be transmitted, and the receive buffer can hold a character while the next character is being received.

Fig. 12 Block diagram of UART serial I/O

Fig. 13 Operation of UART serial I/O function
[Serial I/O Control Register (SIO1CON) 001A ${ }_{16}$] The serial I/O control register contains eight control bits for the serial I/O function.
[UART Control Register (UARTCON) 001B ${ }_{16}$]
The UART control register consists of four control bits (bits 0 to 3) which are valid when asynchronous serial I/O is selected and set the data format of an data transfer. One bit in this register (bit 4) is always valid and sets the output structure of the $P 4_{5} / T_{x} D$ pin.
[Serial l/O1 Status Register (SIO1STS) 0019 ${ }_{16}$]
The read-only serial I/O1 status register consists of seven flags (bits 0 to 6) which indicate the operating status of the serial I/O function and various errors.
Three of the flags (bits 4 to 6) are valid only in UART mode.
The receive buffer full flag (bit 1) is cleared to " 0 " when the receive buffer is read.
If there is an error, it is detected at the same time that data is transferred from the receive shift register to the receive buffer, and the receive buffer full flag is set. A write to the serial I/O status register clears all the error flags OE, PE,

FE, and SE (bit 3 to bit six, respectively). Writing " 0 " to the serial I/O enable bit SIOE (bit 7 of the Serial I/O Control Register) also clears all the status flags, including the error flags.
All bits of the serial I/O1 status register are initialized to " 0 " at reset, but if the transmit enable bit (bit 4) of the serial I/O control register has been set to " 1 ", the transmitter shift completion flag (bit 2) and the transmitter buffer empty flag (bit 0) become " 1 ".
[Transmit BufferReceive Buffer (TB/RB) 0018_{16}] The transmit buffer and the receive buffer are located at the same address. The transmit buffer is write-only and the receive buffer is read-only. If a character bit length is 7 bits, the MSB of data stored in the receive buffer is " 0 ".
[Baud Rate Generator (BRG) 001C 16 $_{16}$]
The baud rate generator determines the baud rate for serial transfer.
The baud rate generator divides the frequency of the count source by $1 /(n+1)$, where n is the value written to the Baud Rate Generator

Fig. 14 Structure of serial I/O control registers

SERIAL I/O2

The serial I/O2 function can be used only for clock synchronous serial I/O.
For clock synchronous serial I/O the transmitter and the receiver must use the same clock. If the internal clock is used, transfer is started by a write signal to the serial I/O2 register.

Serial /O2 Control Register (SIO2CON) 001D ${ }_{16}$ The serial I/O2 control register contains seven bits which control various serial I/O functions.

Fig. 15 Structure of serial I/O2 control register

Fig. 16 Block diagram of serial I/O2 function

Fig. 17 Timing of serial I/O2 function

A-D CONVERTER

The functional blocks of the A-D converter are described below.

[A-D Conversion Register]

The A-D conversion register is a read-only register which contains the result of an A-D conversion. This register should not be read during an A-D conversion.

[AD/DA Control Register]

The AD/DA control register controls the A-D conversion process. Bits 0 to 2 select a specific analog input pin. Bit 3 signals the completion of an A-D conversion. The value of this bit remains at " 0 " during an A-D conversion, and changes to " 1 " when an A-D conversion ends. Writing " 0 " to this bit starts the A-D conversion. Bits 6 and 7 are used to control the output of the D-A converter.

[Comparison Voltage Generator]

The comparison voltage generator divides the voltage between $\mathrm{AV}_{\mathrm{SS}}$ and $\mathrm{V}_{\text {REF }}$ into 256 steps for comparison to the analog input.

[Channel Selector]

The channel selector selects one of the ports $\mathrm{P} 6_{0} / \mathrm{AN}_{0}$ to $\mathrm{P}_{7} / \mathrm{AN}_{7}$, and inputs the voltage to the comparator.

[Comparator and Control Circuit]

The comparator and control circuit compares an analog input voltage with the comparison voltage, then stores the result in the A-D conversion register. When an A-D conversion is complete, the control circuit sets the A-D conversion completion bit and the A-D interrupt request bit to " 1 ".
The comparator contains a capacitor, so $f\left(X_{I N}\right)$ should be at least 500 kHz during an A-D conversion.

Fig. 18 Structure of AD/DA control register

Fig. 19 Block diagram of A-D converter

D-A CONVERTER

Microcomputers of the M3806x group have two internal D-A converters (D-A1 and D-A2) with 8-bit resolutions.
The D-A converter outputs a voltage corresponding to the value in the $D-A$ conversion register. The voltage is output from the $D A_{1}$ or $D A_{2}$ pin by setting the D-A output enable bit to " 1 ".
When using the D-A converter, the corresponding port direction register bit $\left(D A_{1} / P 5_{6}\right.$ or $\left.D A_{2} / P 5_{7}\right)$ should be set to " 0 " (input status).
The output analog voltage V is determined by the value n (base 10) in the D-A conversion register as follows:
$V=V_{\text {REF }} \times n / 256(n=0$ to 255$)$
Where $\mathrm{V}_{\text {REF }}$ is the reference voltage.
At reset, the D-A conversion registers are cleared to " 00 ", the D-A output enable bits are cleared to " 0 ", and the $\mathrm{P5}_{6}$ / DA_{1} and $\mathrm{P} 5_{7} / \mathrm{DA}_{2}$ pins are set to input (high impedance). The D-A output is not buffered, so the user must supply an external buffer when driving a low-impedance load. Set V_{CC} to at least 4.0 V , when using the D-A converter.

Fig. 20 Block diagram of D-A converter

Fig. 21 Equivalent connection circuit of D-A converter

RESET CIRCUIT

A microcomputer in the M3806x group is reset if the RESET pin is held at a " L " level for at least 2μ s then is returned to a " H " level (the power supply voltage should be between 4.0 V and 5.5 V). In order to give the X_{IN} clock time to stabilize, internal operation does not begin until after 8 to $12 \mathrm{X}_{\mathrm{IN}}$ clock cycles are complete. After the reset is completed, the program starts from the address contained in address FFFD_{16} (upper byte) and address FFFC_{16} (lower byte).
Make sure that the reset input voltage is no more than 0.8 V for a power supply voltage of 4.0 V .

Fig. 22 Example of reset circuit

Fig. 23 Internal status of microcomputer after reset

Fig. 24 Timing of reset

CLOCK GENERATION CIRCUIT

An oscillation circuit can be created by connecting a resonator between $X_{I N}$ and $X_{\text {OUT }}$. When using an external clock signal, input the clock signal to the $X_{\text {IN }}$ pin and leave the $X_{\text {out }}$ pin open.

Oscillation Control

(1) Stop Mode

If the STP instruction is executed, oscillation stops with the internal clock ϕ at " H ". Timer 1 is set to " FF_{16} " and prescaler 12 is set to " 01_{16} ".
Oscillation restarts when an external interrupt is received, but the internal clock ϕ remains at " H " until timer 1 overflows.
This allows time for the clock circuit oscillation to stabilize. If oscillation is restarted by a reset, no wait time is generated, so keep the $\overline{R E S E T}$ pin at " L " level until oscillation has stabilized.
(2) Wait Mode

If the WIT instruction is executed, the internal clock ϕ stops at a " H " level, but the oscillator itself does not stop. The internal clock restarts if a reset occurs or when an interrupt is received.
Since the oscillator does not stop, normal operation can be started immediately after the clock is restarted.
To ensure that interrupts will be received to release the STP or WIT state, interrupt enable bits must be set to " 1 " before the STP or WIT instruction is executed.

When the STP status is released, prescaler 12 and timer 1 will start counting and reset will not be released until timer 1 overflows, so set the timer 1 interrupt enable bit to " 0 " before the STP instruction is executed.

Fig. 25 Ceramic resonator circuit

Fig. 26 External clock input circuit

Fig. 27 Block diagram of clock generation circuit

PROCESSOR MODES

Single-chip mode, memory expansion mode, and microprocessor mode can be selected by changing the contents of the processor mode bits CM_{0} and CM_{1} (bits 0 and 1 of address $003 \mathrm{~B}_{16}$). In memory expansion mode and microprocessor mode, memory can be expanded externally through ports P0 to P3. In these modes, ports P0 to P3 lose their I/O port functions and become bus pins.

Table 2 Functions of ports in memory expansion mode and microprocessor mode

Port Name	Function
Port P0	Outputs lower byte of address.
Port P1	Outputs upper byte of address
Port P2	Operates as I/O pins for data D_{7} to D_{0} (including instruction codes)
Port P3	$P 3_{0}$ and $P 3_{1}$ function only as output pins (except that the port latch cannot be read) P_{2} is the $\overline{\mathrm{ONW}}$ input pin. $\mathrm{P3}_{3}$ is the RESETOuT output pin (Note) PB_{4} is the ϕ output pin. $\mathrm{P3}_{5}$ is the SYNC output pin. $P 3_{6}$ is the WR output pin, and $P 3_{7}$ is the $\overline{\mathrm{RD}}$ output pin

Note: If $\mathrm{CNV}_{\text {ss }}$ is connected to V_{Ss}, the microcomputer goes to singlechip mode after a reset, so this pin cannot be used as the RESET ${ }_{\text {OUt }}$ output pin

- Single-Chip Mode

Select this mode by resetting the microcomputer with $\mathrm{CNV}_{\text {ss }}$ connected to $\mathrm{V}_{\text {ss }}$.

- Memory Expansion Mode

Select this mode by setting the processor mode bits to " 01 " in software with $\mathrm{CNV}_{\text {SS }}$ connected to $\mathrm{V}_{\text {Ss }}$. This mode enables external memory expansion while maintaining the validity of the internal ROM. Internal ROM will take precedence over external memory if addresses conflict.

- Microprocessor Mode

Select this mode by resetting the microcomputer with $\mathrm{CNV}_{\mathrm{ss}}$ connected to V_{cc}, or by setting the processor mode bits to " 10 " in software with $\mathrm{CNV}_{\text {ss }}$ connected to V_{ss}. In microprocessor mode, the internal ROM is no longer valid and external memory must be used.

Fig. 28 Memory maps in various processor modes

Fig. 29 Structure of CPU mode register

Bus Control with Memory Expansion

Microcomputers of the M3806x group have a built-in ONW function to facilitate access to extra memory and I/O functions in memory expansion mode or microprocessor mode. If an " L " level signal is input to the $\overline{O N W}$ pin when the CPU is in a read or write state, the corresponding read or write cycle is extended by one cycle of ϕ. During this extended period, the $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ signal remains at " L ". This extension period is valid only for writing to and reading from addresses 0000_{16} to 0007_{16} and 0440_{16} to FFFF_{16}, and only read and write cycles are extended.

Fig. $30 \overline{\mathrm{ONW}}$ function timing

MITSUBISHI MICROCOMPUTERS
 M3806x Group

NOTES ON PROGRAMMING

Processor Status Register

The contents of the processor status register (PS) after a reset are undefined, except for the interrupt disable flag (I) which is " 1 ". Therefore, flags that affect program execution must be initialized after a reset.
In particular, it is essential to initialize the T and D flags because of their effect on calculations.

Interrupts

The contents of the interrupt request bits do not change immediately after they have been written. After writing to an interrupt request register, execute at least one instruction before performing a BBC or BBS instruction.

Decimal Calculations

To calculate in decimal notation, set the decimal mode flag (D) to "1", then execute a ADC or SBC instruction. Only the ADC and SBC instructions yield proper decimal results. After executing an ADC or SBC instruction, execute at least one instruction before executing a SEC, CLC, or CLD instruction.

In decimal mode, the values of the negative (N), overflow (V), and zero (Z) flags are invalid.

The carry flag can be used to indicate whether a carry or borrow has occurred, but must be initialized before each calculation. Clear the carry flag before an ADC and set the flag before an SBC.

Timers

If a value n (between 0 and 255) is written to a timer latch, the frequency division ratio is $1 /(n+1)$.

Multiplication and Division Instructions

The MUL and DIV instructions do not affect the T and D flags.
The execution of these instructions does not change the contents of the processor status register.

Ports

The contents of the port direction registers cannot be read. Programs can not use the value of a direction register as an index, or bit-test a direction register (BBC or BBS), or perform a read-modify-write instruction such as ROR, CLB, or SEB. Use instructions such as LDM and STA to set the port direction registers.

Serial I/O

In clock synchronous serial I/O, if the receive side is using an external clock and it is to output the $\overline{S_{R D Y 1}}$ signal, set the transmit enable bit, the receive enable bit, and the $\overline{\mathrm{S}_{\mathrm{RDY1}}}$ output enable bit to " 1 ".
Serial I/O1 continues to output the final bit from the $T_{x} D$ pin after transmission is completed. The Sout2 pin from serial 1/O2 goes to high impedance after transmission is completed

A-D Converter

The comparator uses internal capacitors whose charge will be lost if the clock frequency is too low.
Make sure that $f\left(X_{I N}\right)$ is at least 500 kHz during an A-D conversion. (If the ONW pin has been set to "L", the A-D conversion will take twice as long to match the longer bus cycle, and so $f\left(X_{I N}\right)$ must be at least 1 MHz .)
Do not execute the STP or WIT instruction during an A-D conversion.

D-A Converter

The accuracy of the D-A converter becomes poor rapidly under the $V_{C C}=4.0 \mathrm{~V}$ or less condition. So set $V_{C C}$ to at least 4.0 V , when using the D-A converter.

Instruction Execution Time

The instruction execution time is obtained by multiplying the frequency of the internal clock ϕ by the number of cycles needed to execute an instruction.
The number of cycles required to execute an instruction is shown in the list of machine instructions.
The frequency of the internal clock ϕ is half of the $X_{\text {IN }}$ frequency.
When the $\overline{O N W}$ function is used in modes other than singlechip mode, the frequency of the internal clock ϕ may be one fourth the $X_{I N}$ frequency.

DATA REQUIRED FOR MASK ORDERS

The following are necessary when ordering a mask ROM production:

1. Mask ROM Order Confirmation Form
2. Mask Specification Form
3. Data to be written to ROM, in EPROM form (three identical copies)

ROM Writing Method

The built-in PROM of the blank one-time programmable version and built-in EPROM version can be read from and written to with an normal EPROM writer using a special write adapter

Package	Name of Write Adapter
$80 P 6 N$	PCA4738F-80
$80 P 6 S$	PCA4738G-80
$80 D 0$	PCA4738L-80

The PROM of the blank one-time programmable version is not tested or screened after assembly. To ensure proper operation after writing, the procedure shown in Figure 31 is recommended to verify programming

Note: The screening temperature is far higher than the storage temperature Do not leave the microcomputer at $150^{\circ} \mathrm{C}$ for longer than 100 hours

Fig. 31 Writing and testing of one-time programmable version

MITSUBISHI MICROCOMPUTERS
 M3806x Group

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
V_{CC}	Supply voltage	All voltages measured with reference to the $\mathrm{V}_{\text {ss }}$ pin, output transistors isolated	-0.3 to 7.0	V
V_{1}			-0.3 to $\mathrm{V}_{\mathrm{CC}}+0.3$	V
V_{1}	Input voltage $\overline{\text { RESET }}$, $\mathrm{X}_{\text {IN }}$		-0.3 to $\mathrm{V}_{\mathrm{cc}}+0.3$	V
V_{1}	Input voltage $\mathrm{CNV}_{\text {SS }}$		-0.3 to 13	V
V_{0}	$\begin{aligned} & \text { Output voltage } \mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P1}_{0}-\mathrm{P} 1_{7}, \mathrm{P} 2_{0}-\mathrm{P} 2_{7}, \\ & \\ & \mathrm{P} 3_{0}-\mathrm{P} 3_{7}, \mathrm{P} 4_{0}-\mathrm{P} 4_{7}, \mathrm{P} 5_{0}-\mathrm{P} 5_{7}, \\ & \\ & \mathrm{P} 6_{0}-\mathrm{P} 6_{7}, \mathrm{P} 7_{0}-\mathrm{P} 7_{7}, \mathrm{P} 8_{0}-\mathrm{P} 8_{7}, \mathrm{X}_{\text {OUT }} \end{aligned}$		-0.3 to $\mathrm{V}_{\mathrm{cc}}+0.3$	V
P_{d}	Power dissipation	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$	500	mW
Topr	Operating temperature		-20 to 85	${ }^{\circ} \mathrm{C}$
Tstg	Storage temperature		-40 to 125	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS ($\mathrm{V}_{\mathrm{cc}}=3.0$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-20$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Limits			Unit
		Min	Typ	Max	
V_{CC}	Supply voltage ($f\left(\mathrm{X}_{\text {IN }}\right) \leqq 2 \mathrm{MHz}$)	3.0	5.0	5.5	V
	Supply voltage ($\mathrm{f}\left(\mathrm{X}_{\text {IN }}\right)>2 \mathrm{MHz}$)	4.0	5.0	5.5	
	Supply voltage (when D-A converter is used)	4.0	5.0	5.5	
$\mathrm{V}_{\text {SS }}$	Supply voltage		0		V
$V_{\text {REF }}$	Analog reference voltage (when A-D converter is used)	2.0		V_{cc}	V
	Analog reference voltage (when D-A converter is used)	4.0		V_{Cc}	
$\mathrm{AV}_{\text {SS }}$	Analog power voltage		0		V
$V_{\text {IA }}$	Analog input voltage $\mathrm{AN}_{0}-\mathrm{AN}_{7}$	$\mathrm{AV}_{\text {SS }}$		V_{CC}	V
V_{1+}	"H" input voltage $\mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P1}_{0}-\mathrm{P1}_{7}, \mathrm{P}_{2}-\mathrm{P}_{7}, \mathrm{P3}_{0}-\mathrm{P3}_{7}, \mathrm{P4}_{0}-\mathrm{P} 4_{7}$, $\mathrm{P5}_{0}-\mathrm{P} 5_{7}, \mathrm{~Pb}_{0}-\mathrm{P} 6_{7}, \mathrm{P} 7_{0}-\mathrm{P} 7_{7}, \mathrm{P} 8_{0}-\mathrm{P} 8_{7}$	0. $8 \mathrm{~V}_{\mathrm{Cc}}$		V_{cc}	V
$\mathrm{V}_{\text {IH }}$	" H " input voltage $\overline{\mathrm{RESET}}, \mathrm{X}_{\text {IN }}, \mathrm{CNV}_{\text {SS }}$	0.8V V_{CC}		V_{Cc}	V
V_{IL}	$\begin{gathered} \text { "L" input voltage } \mathrm{PO}_{0}-\mathrm{P} 0_{7}, \mathrm{P} 1_{0}-\mathrm{P} 1_{7}, \mathrm{P} 2_{0}-\mathrm{P} 2_{7}, \mathrm{P}_{0}-\mathrm{P} 3_{7}, \mathrm{P} 4_{0}-\mathrm{P} 4_{7}, \\ \\ \mathrm{P} 5_{0}-\mathrm{P} 5_{7}, \mathrm{~Pb}_{0}-\mathrm{P} 6_{7}, \mathrm{P} 7_{0}-\mathrm{P} 7_{7}, \mathrm{P} 8_{0}-\mathrm{P} 8_{7} \\ \hline \end{gathered}$	0		$0.2 \mathrm{~V}_{\mathrm{cc}}$	V
V_{12}	"L" input voltage $\overline{\text { RESET }}$	0		$0.2 \mathrm{~V}_{\mathrm{cc}}$	V
$\mathrm{V}_{\text {IL }}$	"L" input voltage $\mathrm{X}_{\text {IN }}$	0		0.16V V_{cc}	V
$\mathrm{V}_{\text {IL }}$	"L" input voltage CNV ${ }_{\text {SS }}$	0		$0.2 \mathrm{~V}_{\mathrm{cc}}$	V
$\sum l_{\text {OH }}$ (peak)	"H" total peak output current $\mathrm{P0}_{0}-\mathrm{P0}_{7}, \mathrm{P1}_{0}-\mathrm{P1} 7_{7}, \mathrm{P}_{2}-\mathrm{P} 2_{7}, \mathrm{P3}_{0}-\mathrm{P} 3_{7}, \mathrm{P} 8_{0}-\mathrm{P} 8_{7}$ (Note 1)			-80	mA
$\sum 1$ OH(peak)	" H " total peak output current $\mathrm{P}_{4}-\mathrm{P} 4_{7}, \mathrm{P5}_{0}-\mathrm{P5} 5_{7}, \mathrm{P6}_{0}-\mathrm{P} 6_{7}$ (Note 1)			-80	mA
$\Sigma l_{\text {oL(peak }}$	"L" total peak output current $\mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P1}_{0}-\mathrm{P1} 1_{7}, \mathrm{P2}_{0}-\mathrm{P} 2_{7}, \mathrm{P} 3_{0}-\mathrm{P} 3_{7}, \mathrm{P} 8_{0}-\mathrm{P} 8_{7}$ (Note 1)			80	mA
$\sum \mathrm{loL}$ (peak)	" L " total peak output current $\mathrm{P4}_{0}-\mathrm{P4}_{7}, \mathrm{P5}_{0}-\mathrm{P5}_{7}, \mathrm{P6}_{0}-\mathrm{P6}_{7}, \mathrm{P7}_{0}-\mathrm{P7} 7_{7}$ (Note 1)			80	mA
$\Sigma I_{\text {OHf(avg) }}$	" H " total average output current $\mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P1}_{0}-\mathrm{P} 1_{7}, \mathrm{P}_{0}-\mathrm{P} 2_{7}, \mathrm{P}_{0}-\mathrm{P} 3_{7}$, $\mathrm{P}_{0}-\mathrm{P}_{7}$ (Note 1)			-40	mA
$\sum \mathrm{I}_{\text {OH(avg }}$	"H" total average output current $\mathrm{P4}_{4}-\mathrm{P4}_{7}, \mathrm{P5}_{0}-\mathrm{P5}_{7}, \mathrm{P6}_{0}-\mathrm{P6}_{7}$ (Note 1)			-40	mA
Σ Iol(avg)	" L " total average output current $\mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P} 1_{0}-\mathrm{P} 1_{7}, \mathrm{P}_{2}-\mathrm{P} 2_{7}, \mathrm{P}_{0}-\mathrm{P} 3_{7}$, $\mathrm{P}_{8}-\mathrm{P} 8_{7}$ (Note 1)			40	mA
$\Sigma l_{\text {OL(avg }}$	"L" total average output current $\mathrm{P4}_{0}-\mathrm{P} 4_{7}, \mathrm{P5}_{0}-\mathrm{P} 5_{7}, \mathrm{P} 6_{0}-\mathrm{P} 6_{7}, \mathrm{P} 7_{0}-\mathrm{P} 7_{7}$ (Note 1)			40	mA
$\mathrm{I}_{\text {OH(peak) }}$	"H" peak output current $\mathrm{P0}_{0}-\mathrm{PO}_{7}, \mathrm{P1}_{0}-\mathrm{P} 1_{7}, \mathrm{P2}_{0}-\mathrm{P} 2_{7}, \mathrm{P}_{0}-\mathrm{P} 3_{7}, \mathrm{P} 4_{0}-\mathrm{P} 4_{7}$, $\mathrm{P}_{5}-\mathrm{P5}_{7}, \mathrm{~Pb}_{0}-\mathrm{Pb}_{7}, \mathrm{P}_{0}-\mathrm{P} 8_{7}$ (Note 2)			-10	mA
Iol(peak)	" L " peak output current $\mathrm{P0}_{0}-\mathrm{PO}_{7}, \mathrm{P1}_{0}-\mathrm{P} 1_{7}, \mathrm{P}_{2}-\mathrm{P}_{7}, \mathrm{P}_{0}-\mathrm{P3}_{7}, \mathrm{P4}_{0}-\mathrm{P} 4_{7}$, $\mathrm{P} 5_{0}-\mathrm{P5} 5_{7}, \mathrm{P6}_{0}-\mathrm{P} 6_{7}, \mathrm{P7}_{0}-\mathrm{P} 7_{7}, \mathrm{P} 8_{0}-\mathrm{P} 8_{7}$ (Note 2)			10	mA
$\mathrm{IOH}(\mathrm{avg})$	"H" average output current $\mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P1}_{0}-\mathrm{P} 1_{7}, \mathrm{P}_{0}-\mathrm{P} 2_{7}, \mathrm{P3}_{0}-\mathrm{P3}_{7}, \mathrm{P4}_{0}-\mathrm{P} 4_{7}$, $\mathrm{P5}_{0}-\mathrm{P5}_{7}, \mathrm{~Pb}_{0}-\mathrm{P}_{7}, \mathrm{P}_{0_{0}}-\mathrm{P} 8_{7}$ (Note 3)			-5	mA
lol(avg)	"L" average output current $\mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P1}_{0}-\mathrm{P} 1_{7}, \mathrm{P}_{0}-\mathrm{P} 2_{7}, \mathrm{P}_{0}-\mathrm{P3}_{7}, \mathrm{P} 4_{0}-\mathrm{P} 4_{7}$, $\mathrm{P} 5_{0}-\mathrm{P5}_{7}, \mathrm{P} 6_{0}-\mathrm{P} 6_{7}, \mathrm{P} 7_{0}-\mathrm{P} 7_{7}, \mathrm{P} 8_{0}-\mathrm{P} 8_{7}$ (Note 3)			5	mA
$f\left(X_{\text {IN }}\right)$	Internal clock oscillation frequency ($\mathrm{V}_{\mathrm{CC}}=4.0 \sim 5.5 \mathrm{~V}$)			8	MHz
	Internal clock oscillation frequency ($\mathrm{V}_{\mathrm{CC}}=3.0 \sim 5.5 \mathrm{~V}$)			2	

Note 1 The total output current is the sum of all the currents flowing through all the applicable ports The total average current is an average value measured over 100 ms The total peak current is the peak value of all the currents
2 The peak output current is the peak current flowing in each port
3 The average output current $\mathrm{I}_{\mathrm{OL}}(\mathrm{avg}), \mathrm{I}_{\mathrm{OH}}$ (avg) in an average value measured over 100 ms

ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{CC}}=3.0$ to $5.5 \mathrm{~V}, \mathrm{v}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-20$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test conditions		Limits			Unit
				Min.	Typ.	Max	
V_{OH}	$\begin{aligned} & \text { " } \mathrm{H} \text { " output voltage } \mathrm{P}_{0}-\mathrm{PO}_{7}, \mathrm{P}_{0}-\mathrm{P} 1_{7}, \mathrm{P}_{0}-\mathrm{P} 2_{7}, \\ & \mathrm{P}_{0}-\mathrm{P}_{7}, \mathrm{P}_{0}-\mathrm{P} 4_{7}, \mathrm{P}_{0}-\mathrm{P} 5_{7}, \\ & \mathrm{P}_{0}-\mathrm{P}_{7}, \mathrm{P}_{0}-\mathrm{P} 8_{7}(\text { Note } 1) \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{l}_{\mathrm{OH}}=-10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=4.0 \sim 5.5 \mathrm{~V} \end{aligned}$		$\mathrm{V}_{\text {CG }}-2.0$			V
		$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=3.0 \sim 5.5 \mathrm{~V} \end{aligned}$		$\mathrm{V}_{\mathrm{cc}}-1.0$			
$\mathrm{V}_{\text {OL }}$		$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=4.0 \sim 5.5 \mathrm{~V} \\ & \hline \end{aligned}$				2.0	V
		$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=1.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{cc}}=3.0 \sim 5.5 \mathrm{~V} \end{aligned}$				1.0	
$\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\mathrm{T}-}$					0.4		V
$\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\mathrm{T}-}$	Hysteresis $\mathrm{R}_{\mathrm{X}} \mathrm{D}, \mathrm{S}_{\mathrm{CLK} 1}, \mathrm{~S}_{\mathrm{IN} 2}, \mathrm{~S}_{\mathrm{CLK} 2}$				0.5		V
$\mathrm{V}_{\mathrm{T}+}-\dot{V}_{T-}$	Hysteresis RESET				0.5		V
I_{H}		$\mathrm{V}_{\mathrm{l}}=\mathrm{V}_{\mathrm{cc}}$				5.0	$\mu \mathrm{A}$
I_{IH}	"H" input current RESET, $\mathrm{CNV}^{\text {SS }}$	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{cc}}$				5.0	$\mu \mathrm{A}$
I_{IH}	" H " input current $\mathrm{X}_{\text {IN }}$	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{cc}}$			4		$\mu \mathrm{A}$
IIL	$\begin{aligned} & \text { "L" input current } \mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P1}_{0}-\mathrm{P} 1_{7}, \mathrm{P}_{0}-\mathrm{P} 2_{7}, \\ & \mathrm{P}_{0}-\mathrm{P3}_{7}, \mathrm{P4}_{0}-\mathrm{P} 4_{7}, \mathrm{P5}_{0}-\mathrm{P} 5_{7}, \\ & \mathrm{P6}_{0}-\mathrm{P6}_{7}, \mathrm{P} 7_{0}-\mathrm{P} 7_{7}, \mathrm{P8}_{0}-\mathrm{P} 8_{7}, \\ & \mathrm{RESET}, \mathrm{CNV}_{S S} \\ & \hline \end{aligned}$	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{ss}}$				-5.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	"L" input current $\mathrm{X}_{\text {IN }}$	$\mathrm{V}_{1}=\mathrm{V}_{\text {ss }}$			-4		$\mu \mathrm{A}$
$V_{\text {RAM }}$	RAM hold voltage	With clock stopped		2.0		5.5	V
Icc	Supply current	$f\left(\mathrm{X}_{\text {IN }}\right)=8 \mathrm{MHz}, \mathrm{V}_{\text {CC }}=5 \mathrm{~V}$			6.4	13	mA
		$\mathrm{f}\left(\mathrm{X}_{\text {IN }}\right)=5 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$			4	8	
		$\mathrm{f}\left(\mathrm{X}_{\text {IN }}\right)=2 \mathrm{MHz}, \mathrm{V}_{\text {CC }}=3 \mathrm{~V}$			0.8	2.0	
		When WIT instruction is executed with $f\left(X_{\text {IN }}\right)=8 \mathrm{MHz}, V_{C C}=5 \mathrm{~V}$			1.5		
		When WIT nstruction is executed with $f\left(X_{\text {IN }}\right)=5 \mathrm{MHz}, V_{C C}=5 \mathrm{~V}$			1		
		When WIT instruction is executed with $\mathrm{f}\left(\mathrm{X}_{\mathrm{I}}\right)=2 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$			0.2		
		When STP Instruction is executed with clock stopped output transistors Isolated	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ (Note 2)		0.1	1	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{a}}=85^{\circ} \mathrm{C}$ (Note 2)			10	

Note 1: $\mathrm{P} 4_{5}$ is measured when the $P 4_{5} / T_{x} D$ P-channel output disable bit of the UART control register (bit 4 of address $001 B_{16}$) is " 0 "
2 : With output transistors isolated and A-D converter having completed conversion, and not including current flowing through $\mathrm{V}_{\mathrm{REF}}$ pin

A-D CONVERTER CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{CC}}=3.0\right.$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{AV} \mathrm{VS}_{S S}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=2.0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}, \mathrm{T}_{\mathrm{a}}=-20$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Unit
			Mın	Typ	Max	
-	Resolution				8	Bits
-	Absolute accuracy (excluding quantization error)			± 1	± 2.5	LSB
$\mathrm{t}_{\text {CONV }}$	Conversıon tıme				50	$\mathrm{t}_{\mathrm{C}}(\phi)$
$\mathrm{R}_{\text {LADDER }}$	Ladder resistor			35		$k \Omega$
IVREF	Reference power source input current (Note)	$\mathrm{V}_{\text {REF }}=5.0 \mathrm{~V}$	50	150	200	$\mu \mathrm{A}$
$I_{\text {I (AD }}$	A-D port input current			0.5		$\mu \mathrm{A}$

Note : When D-A conversion registers (addresses 0036_{16} and 0037_{16}) contaın " 00_{16} "

D-A CONVERTER CHARACTERISTICS

($\mathrm{V}_{\mathrm{CC}}=4.0$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=A \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=4.0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}, \mathrm{T}_{\mathrm{a}}=-20$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test conditions	Lımits			Unit
			Min	Typ	Max	
-	Resolution				8	Bits
-	Absolute accuracy				1.0	\%
$\mathrm{t}_{\text {su }}$	Setting time				3	$\mu \mathrm{S}$
R_{0}	Output resistor		1	2.5	4	$k \Omega$
IVREF	Reference power source input current (Note)				3.2	mA

Note : Using one D-A converter, with the value in the D-A conversion register of the other D-A converter being " 00_{16} ", and excluding currents flowing through the A-D resistance ladder

TIMING REQUIREMENTS 1 ($\mathrm{V}_{\mathrm{CC}}=4.0$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-20$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Limits			Unit
		Min	Typ	Max.	
$\mathrm{t}_{\mathrm{W}}(\overline{\text { RESET }})$	Reset input "L" pulse width	2			$\mu \mathrm{s}$
$t_{C}\left(x_{1 N}\right)$	External clock input cycle time	125			ns
$t_{\text {WH }}\left(\mathrm{X}_{1 \times}\right)$	External clock input "H" pulse width	50			ns
$t_{\text {WL }}\left(\mathrm{X}_{\text {IN }}\right)$	External clock input "L" pulse width	50			ns
$\mathrm{t}_{\mathrm{C} \text { (CNTR) }}$	CNTR ${ }_{0}$, CNTR $_{1}$ input cycle time	200			ns
$t_{\text {WH(CNTR) }}$	$\mathrm{CNTR}_{0}, \mathrm{CNTR}_{1}$ input " H " pulse width	80			ns
$\mathrm{t}_{\text {WH(INT }}$	INT ${ }_{0}$ to INT_{4} input " H " pulse width	80			ns
$\mathrm{t}_{\text {WL }}$ (CNTR)	CNTR $_{0}$, CNTR ${ }_{1}$ input " L " pulse width	80			ns
$t_{\text {WL(INT })}$	INT ${ }_{0}$ to INT_{4} input "L" pulse width	80			ns
$\mathrm{t}_{\mathbf{C} \text { (} \mathrm{S}_{\text {CLK1 }} \text {) }}$	Serial I/O1 clock input cycle time (Note)	800			ns
$\mathbf{t}_{\mathbf{C}\left(\mathbf{s}_{\text {CLK } 2}\right)}$	Serial I/O2 clock input cycle tıme	1000			ns
$t_{\text {WH }} \mathrm{s}_{\text {CLK1 }}$)	Serial I/O1 clock input "H" pulse width (Note)	370			ns
$\mathrm{t}_{\text {WH }}\left(\mathrm{S}_{\text {CLK } 2}\right)$	Serial I/O2 clock input "H" pulse width	400			ns
$t_{\text {WL }}\left(s_{\text {CLK } 1}\right)$	Serial I/O1 clock input "L" pulse width (Note)	370			ns
$t_{\text {WL }}\left(s_{\text {CLK2 }}\right)$	Serial I/O2 clock input "L" pulse width	400			ns
$t_{\text {Su }}\left(R_{X}{ }^{\text {D }}\right.$ - CLKI)	Serial I/O1 input set up time	220			ns
	Serial I/O2 input set up time	200			ns
	Serial I/O1 input hold tıme	100			ns
$\mathrm{th}^{\left(\mathrm{s}_{\text {CLK2 } 2}-\mathrm{S}_{\mathrm{IN} 2}\right)}$	Serial I/O2 input hold time	200			ns

Note : When $f\left(X_{I N}\right)=8 \mathrm{MHz}$ and bit 6 of address $001 \mathrm{~A}_{16}$ is " 1 " Divide this value by four when $f\left(X_{I N}\right)=8 \mathrm{MHz}$ and bit 6 of address $001 \mathrm{~A}_{16}$ is " 0 "

TIMING REQUIREMENTS 2 ($\mathrm{V}_{\mathrm{cc}}=3.0$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~T}_{\mathbf{a}}=-20$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Limits			Unit
		Min	Typ	Max	
$\mathrm{t}_{\mathbf{W}(\overline{\text { RESET }} \text {) }}$	Reset input "L" pulse width	2			$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{C}}\left(\mathrm{X}_{\text {IN }}\right)$	External clock input cycle tıme	500			ns
$t_{\text {WH }}\left(\mathrm{XISN}_{\text {IN }}\right)$	External clock input " H " pulse width	200			ns
$t_{\text {WL }}\left(x_{\text {IN }}\right)$	External clock input "L" pulse width	200			ns
$\mathbf{t}_{\text {C (CNTR) }}$	CNTR $_{0}$, CNTR $_{1}$ input cycle time	500			ns
$t_{\text {WH }}$ (CNTR)	CNTR $_{0}$, CNTR $_{1}$ input "H" pulse width	230			ns
$\mathbf{t}_{\text {WH }}$ (INT)	INT_{0} to INT_{4} input "H" pulse width	230			ns
$t_{\text {WL (CNTR }}$	CNTR_{0}, CNTR $_{1}$ input " L " pulse width	230			ns
$\mathbf{t}_{\mathbf{W L}(\text { INT }}$	INT_{0} to INT_{4} input " L " pulse width	230			ns
$\mathbf{t}_{\text {C(}}^{\text {SLK } 1}$)	Serıal I/O1 clock input cycle time (Note)	2000			ns
$\mathrm{t}_{\mathrm{C}}\left(\mathrm{s}_{\text {CLK2 } 2}\right)$	Serial I/O2 clock input cycle time	2000			ns
$\mathbf{t w H}_{\text {W }} \mathrm{S}_{\text {CLK } 1}$)	Serial I/O1 clock input "H" pulse width (Note)	950			ns
$t_{\text {WH }}\left(s_{\text {CLK } 2}\right)$	Serial I/O2 clock input "H" pulse width	950			ns
$t_{\text {WL }}\left(s_{\text {CLK } 1}\right)$	Serial I/O1 clock input "L" puise width (Note)	950			ns
$t_{\text {WL }}\left(S_{\text {CLK } 2}\right)$	Serial I/O2 clock input "L" pulse width	950			ns
$\mathrm{t}_{\text {SU(}} \mathrm{RXX}^{\text {D-S }} \mathrm{S}_{\text {CLK } 1}$)	Serial I/O1 input set up tıme	400			ns
$\mathrm{t}_{\text {SU(}} \mathrm{S}_{\left.\mathbf{I N} 2-\mathrm{S}_{\text {CLK } 2}\right)}$	Serial I/O2 input set up tıme	400			ns
$\mathrm{th}^{\left(S_{\text {CLK1 }}-\mathrm{R}_{\mathrm{X}} \mathrm{D}\right.}$)	Serial I/O1 input hold tıme	200			ns
$t^{\prime}\left(S_{\text {CLK } 2}-\mathrm{S}_{\text {IN } 2}\right)$	Serial I/O2 input hold time	300			ns

Note: When $f\left(X_{I N}\right)=2 M H z$ and bit 6 of address $001 A_{16}$ is " 1 " Divide this value by four when $f\left(X_{I N}\right)=2 M H z$ and bit 6 of address $001 A_{16}$ is " 0 "

SWITCHING CHARACTERISTICS 1 ($\mathrm{v}_{\mathrm{CC}}=4.0$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{v}, \mathrm{T}_{\mathrm{a}}=-20$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Limits			Unit
		Min	Typ	Max	
$\mathrm{t}_{\text {WH }} \mathrm{S}_{\text {CLK1 }}$)	Serial I/O1 clock output "H" pulse width	${ }^{\text {t }}$ (SCLK1) ${ }^{\text {c/2-30 }}$			ns
$\mathrm{t}_{\text {WH }}\left(\mathrm{S}_{\text {CLK2 }}\right)$	Serial I/O2 clock output "H" pulse width	$\mathrm{t}_{\mathrm{C}}(\mathrm{SCLKK} 2 / 2-160$			ns
$t_{\text {WL }}\left(s_{\text {CLK } 1}\right)$	Serial I/O1 clock output "L" pulse width	${ }^{\mathrm{t}_{\mathrm{C}}\left(\mathrm{SCLK1}^{1}\right)^{\prime} / 2-30}$			ns
$t_{\text {WL }}\left(s_{\text {CLK2 } 2}\right)$	Serial I/O2 clock output "L" pulse width	$\mathrm{t}_{\mathrm{C}}(\mathrm{SCLK} 2 / 2-160$			ns
$t_{\text {d }}\left(S_{\text {CLK }}{ }^{-T_{X} \mathrm{D}}\right.$)	Serial I/O1 output delay time (Note 1)			140	ns
$\mathrm{t}_{\mathrm{d}\left(s_{\text {CLK } 2}-s_{\text {OUT } 2}\right)}$	Serial I/O2 output delay time			$0.2 \times \mathrm{t}_{\mathrm{C}\left(\mathrm{s}_{\mathrm{CLK} 2}\right)}$	ns
$\mathrm{t}_{\mathrm{V}\left(\mathrm{S}_{\text {CLK1 }}-T_{X} \mathrm{D}\right)}$	Serial I/O1 output valid time (Note 1)	-30			ns
$\mathrm{t}_{\mathrm{V}\left(\mathrm{s}_{\text {CLK2 }}-\mathrm{s}_{\text {OUT } 2}\right)}$	Serial I/O2 output valid time	0			ns
$\operatorname{tr}\left(\mathrm{s}_{\text {cLK1 }}\right)$	Serial I/O1 clock output rise time			30	ns
$\mathrm{t}_{\mathbf{f}\left(\mathrm{s}_{\text {CLK } 1}\right)}$	Serial I/O1 clock output fall time			30	ns
$\mathbf{t f}_{\mathbf{f}}\left(\mathrm{s}_{\text {CLK2 } 2}\right)$	Serial I/O2 clock output fall time			40	ns
$\mathrm{tr}_{\text {(cmos) }}$	CMOS output rise time (Note 2)		10	30	ns
$\mathrm{tf}_{\text {(cmos) }}$	CMOS output fall time (Note 2)		10	30	ns

Note 1: When the $\mathrm{P4}_{5} / T_{x} \mathrm{D}$ P-channel output disable bit of the UART control register (bit 4 of address $001 \mathrm{~B}_{16}$) is " 0 " $2: X_{\text {out }}$ pin excluded.

Fig. 32 Circuit for measuring output switching characteristics (1)

SWITCHING CHARACTERISTICS 2 ($\mathrm{v}_{\mathrm{cc}}=3.0$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{v}, \mathrm{T}_{\mathrm{a}}=-20$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Limits			Unit
		Min	Typ	Max	
$\mathrm{t}_{\text {WH(}} \mathrm{S}_{\text {CLK1 }}$)	Serial I/O1 clock output "H" pulse width				ns
$\mathrm{t}_{\text {WH }}\left(\mathrm{S}_{\text {CLK2 } 2}\right)$	Serial I/O2 clock output "H" pulse width	$\mathrm{t}_{\mathrm{C}}\left(\mathrm{S}_{\text {CLK2 } 2} / 2-240\right.$			ns
$t_{\text {WL }}\left(\mathrm{s}_{\text {CLK } 1}\right)$	Serial I/O1 clock output "L" pulse width	$\mathrm{t}_{\mathrm{C}}\left(\mathrm{SCLK} 1^{1} / 2-50\right.$			ns
$t_{\text {WL }}\left(s_{\text {CLK } 2}\right)$	Serial I/O2 clock output "L" pulse width	$\mathrm{t}_{\mathrm{c}}\left(\mathrm{S}_{\text {CLK2 } 2} / 2-240\right.$			ns
$\mathrm{t}_{\mathrm{d}\left(\mathrm{s}_{\text {CLK1 } 1}-T_{\mathrm{X}} \mathrm{D}\right)}$	Serial I/O1 output delay time (Note 1)			350	ns
$\mathrm{t}_{\mathrm{d}\left(\mathrm{s}_{\text {CLK2 }}-\text { Sout2 } \text {) }\right.}$	Serial I/O2 output delay time			$0.2 \times \mathrm{t}_{\mathrm{C}\left(\mathrm{s}_{\text {CLK2 }}\right)}$	ns
$\mathrm{t}_{\mathrm{V}\left(\mathrm{s}_{\text {CLK }}-T_{X} \mathrm{D}\right)}$	Serial I/O1 output valid time (Note 1)	-30			ns
$\mathrm{t}_{\mathrm{V}\left(\mathrm{S}_{\text {CLK2 }}-\mathrm{S}_{\text {OUT } 2}\right)}$	Serial 1/O2 output valid tıme	0			ns
$t_{\text {r }}^{\left(s_{\text {clik } 1}\right)}$	Serial I/O1 clock output rise time			50	ns
$\mathrm{t}_{\mathbf{f}\left(\mathrm{s}_{\text {CLK } 1}\right)}$	Serial I/O1 clock output fall time			50	ns
$\mathrm{t}_{\mathbf{f}}\left(\mathrm{s}_{\text {CLK2 } 2}\right)$	Serial I/O2 clock output fall time			50	ns
$\mathrm{tr}_{\text {(cmos) }}$	CMOS output rise time (Note 2)		20	50	ns
$\mathrm{t}_{\text {(cmos) }}$	CMOS output fall time (Note 2)		20	50	ns

Note 1: When the $\mathrm{P}_{5} / \mathrm{T}_{\mathrm{x}} \mathrm{D}$ P-channel output disable bit of the UART control register (bit 4 of address $001 \mathrm{~B}_{16}$) is " 0 "
2 : $X_{\text {OUT }}$ pin excluded.

MITSUBISHI MICROCOMPUTERS
 M3806x Group

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

TIMING REQUIREMENTS IN MEMORY EXPANSION MODE AND MICROPROCESSOR MODE
($\mathrm{V}_{\mathrm{CC}}=4.0$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-2 \mathrm{~b}$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Lımits			Unit
		Min.	Typ	Max	
$\mathrm{t}_{\text {su }}(\overline{O N W}-\phi)$	$\overline{\text { ONW }}$ input set up trme	-20			ns
$t_{\text {h }}(\phi-\overline{O N W})$	ONW input hold time	-20			ns
$\mathrm{t}_{\text {Su }}(\mathrm{DB}-\phi$)	Data bus set up time	60			ns
$t_{\text {l }}(\phi-D B)$	Data bus hold tıme	0			ns

SWITCHING CHARACTERISTICS IN MEMORY EXPANSION MODE AND MICROPROCESSOR MODE

$\left(\mathrm{V}_{\mathrm{cc}}=4.0\right.$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-20$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Limits			Unit
		Min	Typ	Max	
$\mathrm{t}_{\mathbf{C}(\phi)}$	ϕ clock cycle time		$2 \times \mathrm{t}_{\mathrm{c}\left(\mathrm{x}_{1}\right)}$		ns
$\mathrm{t}_{\mathrm{WH}(\phi)}$	ϕ clock "H" pulse width	$t_{\text {c }\left(x_{1 N}\right)}-10$			ns
$t_{\text {WL }(\phi)}$	ϕ clock "L" pulse width	$\mathrm{t}_{\mathrm{C}}\left(\mathrm{x}_{1 \times}\right)^{-10}$			ns
$t_{\text {d }}(\phi-A H)$	$A D_{15}$ to $A D_{8}$ delay time		20	40	ns
$\mathrm{t}_{\mathrm{V}(\phi-A H)}$	$A D_{15}$ to $A D_{8}$ valid tıme	6	10		ns
$\mathrm{t}_{\mathrm{d}(\phi-\mathrm{AL})}$	$A D_{7}$ to $A D_{0}$ delay time		25	45	ns
$\mathrm{t}_{\mathrm{V}(\phi-A L)}$	$A D_{7}$ to $A D_{0}$ valid time	6	10		ns
$t_{d}(\phi-S Y N C)$	SYNC delay time		20		ns
$\mathrm{t}_{\mathrm{V}(\boldsymbol{\phi}-\mathrm{SYNC})}$	SYNC valid time		10		ns
$\mathrm{t}_{\mathrm{d}(\phi-\overline{\mathrm{WR}})}$	$\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$ delay time		10	20	ns
$\mathrm{t}_{\mathrm{V}(\phi-\overline{\mathrm{W}} \text { (})}$	$\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$ valid tıme	3	5	10	ns
$\mathrm{t}_{\mathrm{d}(\phi-\mathrm{DB})}$	Data bus delay time		20	70	ns
$\mathrm{t}_{\mathrm{V}(\phi-\mathrm{DB})}$	Data bus valıd tıme	15			ns
$t_{\text {d }}(\overline{\text { RESET }}-\overline{\text { RESETOUT }}$)	$\overline{\text { RESET Out output delay time (Note 1) }}$			200	ns
$\mathrm{t}_{\mathrm{V}(\phi-\overline{\mathrm{RESET}})}$	$\overline{\text { RESET }}$ OUT output valid time (Note 1)	0		200	ns

Note 1: The RESET ${ }_{\text {Out }}$ output goes " H " in sync with the rise of the ϕ clock that is anywhere between about 1 cycle and 19 cycles after the RESET input goes "H"

Fig. 33 Circuit for measuring output switching characteristics (2)

MITSUBISHI MICROCOMPUTERS M3806x Group

TIMING DIAGRAM
(1) Timing diagram

CNTR $_{0}$, CNTR $_{1}$

$\mathrm{INT}_{0}-\mathrm{INT}_{4}$

$\overline{\text { RESET }}$

$X_{\text {IN }}$

$\mathrm{S}_{\mathrm{CLK} 1}$
$\mathrm{S}_{\mathrm{CLK} 2}$
$R_{x} D$
$\mathrm{S}_{\mathrm{IN} 2}$
$T_{x} D$
Sout2

(2) Timing diagram in memory expansion mode and microprocessor mode
ϕ
$A D_{15}-A D_{8}$
$\mathrm{AD}_{7}-\mathrm{AD}_{0}$

SYNC
$\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$

(3) Timing diagram in microprocessor mode
$\overline{\text { RESET }}$
ϕ
$\mathrm{DB}_{0}-\mathrm{DB}_{7}$ (At CPU writing)
$\overline{\text { RESET }_{\text {OUT }}}$

MITSUBISHI MICROCOMPUTERS
 M3810x Group

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

DESCRIPTION

The M3810x group is made up of 8-bit microcomputers based on the MELPS 740 core.
The M3810x group is designed mainly for VCR control, and include four 8-bit timers, a PWM function, and a 4-bit comparator circuit.
The various microcomputers in the M3810x group include variations of internal memory size and packaging. For details, see the section on part numbering.
For details on availability of microcomputers in the M3810x group, see the section on group expansion.

FEATURES

- Basic machine-language instructions............................... 71
- Instruction execution time.. $0 . \mathrm{s}$
(shortest instruction at 4.19 MHz oscillation frequency)
- Memory size

ROM .. 4K to 32K bytes

- Programmable input/output ports 27
- High-breakdown-voltage output ports 28
- Interrupts 11 sources, 11 vectors

- Serial I/O8-bit $\times 2$ (Clock-synchronized)

- Comparator circuit .. 4-bitX1
- 2 Clock generation circuit

Clock ($\mathrm{X}_{\mathrm{IN}^{\prime}}-\mathrm{X}_{\text {OUT }}$) $\cdots \cdots \cdots \cdots \cdots \cdot$ Internal feedback amplifier
Sub clock ($X_{\text {CIN }}-X_{\text {COUT }}$) $\cdots \cdots$ Internal amplifier without feedback

- Supply voltage ... 4.0 to 5.5 V
- Low power dissipation

(at 4.19 MHz oscillation frequency)
In low-speed operation .. $300 \mu \mathrm{~W}$
(at 32 kHz oscillation frequency)
- Operating temperature range $\cdots \cdots \cdots \cdots \cdots-10$ to $+85^{\circ} \mathrm{C}$

APPLICATIONS

VCRs, tuners, musical instruments; office automation, etc.

PIN CONFIGURATION (TOP VIEW)

Package type: 64P6N

64-pin plastic-molded QFP

PIN CONFIGURATION (TOP VIEW)

$\begin{aligned} & \mathrm{v}_{\mathrm{CC}} \square \\ & \mathrm{v}_{\mathrm{EG}} \rightarrow \frac{1}{2} \\ & \mathrm{PG}_{7} \rightarrow \square \end{aligned}$		
$\mathrm{PG}_{6} / \mathrm{AN} \rightarrow 4$		61 $\rightarrow \mathrm{P}_{3}$
$\mathrm{Pb}_{5} \leftrightarrow \mathrm{~S}^{\text {a }}$		60) $\rightarrow \mathrm{P}_{4}$
$\mathrm{Pb}_{4} \rightarrow \mathrm{C}^{\text {a }}$		59 $\rightarrow \mathrm{P}_{5}$
$\mathrm{Pb}_{3} \rightarrow$ 7		58] $\rightarrow \mathrm{P}_{6}$
$\mathrm{Pb}_{2} \leftrightarrow \frac{8}{8}$		$57 \rightarrow \mathrm{P}_{7}$
P6, \rightarrow 回		56 $\rightarrow \mathrm{PO}_{0}$
P6 $0_{0} /$ PWM $\leftrightarrow 0^{10}$		55. $\rightarrow \mathrm{PO}_{1}$
		$54 \rightarrow \mathrm{PO}_{2}$
$\mathrm{P} 5_{6} / \mathrm{S}_{\text {CLK2 } 2} \rightarrow \mathrm{l}^{12}$		53 $\rightarrow \mathrm{PO}_{3}$
$\mathrm{P}_{5} / \mathrm{S}_{\text {OUT } 2} \rightarrow{ }^{\text {a }}$		$52 \rightarrow \mathrm{PO}_{4}$
		51 $\rightarrow \mathrm{PO}_{5}$
$\mathrm{P}_{3} / \overline{S_{\text {ROY } 1}} \rightarrow{ }^{\text {a }}$		$50 \rightarrow \mathrm{PO}_{6}$
$\mathrm{P5}_{2} / \mathrm{S}_{\text {CLK } 1} \leftrightarrow \mathrm{l}^{16}$		$49 \rightarrow \mathrm{PO}_{7}$
		$48 \rightarrow \mathrm{P} 10$
$\mathrm{P} 5_{0} / \mathrm{S}_{\mathrm{IN1} 1} \rightarrow 18$		$47 \rightarrow \mathrm{P} 1_{1}$
$\mathrm{P}_{7} / \mathrm{T}_{\text {OUT }} \leftrightarrow \mathrm{P}^{19}$		$46 \rightarrow \mathrm{Pl}_{2}$
P_{6} ¢ ${ }^{20}$		$45 \rightarrow \mathrm{P}_{3}$
$\mathrm{P4}_{5} / \mathrm{CNTR} \leftrightarrow 2^{2}$		${ }^{44} \rightarrow \mathrm{P}_{1}$
$\mathrm{P} 44^{\text {¢ } 22}$		$43 \rightarrow \mathrm{P} 1_{5}$
$\mathrm{P}_{4} \rightarrow{ }^{\text {23}}$		$4^{42} \rightarrow \mathrm{P}_{1}$
$\mathrm{P}_{2} / \mathrm{INT}_{2} \rightarrow{ }^{24}$		$41 \rightarrow \mathrm{P}_{1}$
$\mathrm{P}_{1} / \mathrm{INT}_{1} \rightarrow 25$		$40 \rightarrow \mathrm{P} 2_{0}$
$\mathrm{P}_{4} / 1 \mathrm{NT}_{0} \rightarrow$ 26		$39 \rightarrow \mathrm{P}_{1}$
RESET $\rightarrow 2$		$38 \rightarrow \mathrm{P}_{2}$
$\mathrm{X}_{\mathrm{CIN}} \rightarrow 28$		$37 \rightarrow \mathrm{P}_{3}$
$\mathrm{X}_{\text {COUT }} \leftarrow$ 29		36 $\leftrightarrow \mathrm{P}_{2}$
$\mathrm{X}_{1 \text { IN }} \rightarrow$ 30		35 $\rightarrow \mathrm{P}_{2}$
$\mathrm{X}_{\text {OUT }} \leftarrow{ }^{\text {a }}$		34 $\leftrightarrow \mathrm{P}_{2}{ }_{6}$
$\mathrm{v}_{\text {ss }}$ [32		33) $\rightarrow \mathrm{P}_{7}{ }_{7}$

Package type: 64P4B
64-pin shrink plastic-molded DIP

צヨIndWOOO甘OIW SOWO 118-8 diHO-375NIS
M3810x Group

MITSUBISHI MICROCOMPUTERS
M3810x Group

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

PIN DESCRIPTION

Pın	Name	Function	Alternate Function
$\mathrm{V}_{\mathrm{Cc}}, \mathrm{V}_{\mathrm{ss}}$	Power supply	Power supply inputs 40 to 55 V to V_{Cc}, and 0 V to $\mathrm{V}_{\text {Ss }}$.	
$V_{\text {EE }}$	Pull-down power input	Applies voltage supplied to pull-down resistors of ports $\mathrm{P} 0, \mathrm{P} 1, \mathrm{P}_{2}-\mathrm{P}_{2}$, and P 3	
RESET	Reset input	To reset the microcomputer, this pin should be kept at an "L" level for more than 2μ s under high-speed operating conditions In low-speed operation start mode, internal reset is not released untll the $\mathrm{X}_{\text {CII }}-\mathrm{X}_{\text {cout }}$ clock has had time to stabulize	
$\mathrm{XIN}_{\text {IN }}$	Clock input	Input and output signals for the internal clock generation circuit it consist of internal feedback amplifier Connect a ceramic resonator or quartz crystal between the $X_{\text {IN }}$ and $X_{\text {OUT }}$ pins to set the oscillation frequency if an external clock is used, connect the clock source to the X_{IN} pin and leave the $\mathrm{X}_{\text {OUT }}$ pin open This clock is used as system clok	
$\mathrm{X}_{\text {Out }}$	Clock output		
$\mathrm{X}_{\text {CIN }}$	Sub clock input	Input and output signals for the internal sub clock generation circuit it consist of internal amplifier without feedback Connect a ceramic resonator or quartz crystal and external feedback resistor between the $X_{\text {CIN }}$ and $X_{\text {COUT }}$ pIns if an external clock is used, connect the clock source to the $X_{\text {CIN }}$ pin and leave the $X_{\text {Cout }}$ pin open This clock can also be used as the system clock	
$\mathrm{X}_{\text {cout }}$	Sub clock output		
$\mathrm{PO}_{0}-\mathrm{PO}_{7}$	Output port P0	8-bit output port The output structure is high-breakdown-voltage P-channel open dran with internal pull-down resistors connected between the output and the V_{EE} pin	
$\mathrm{P} 1_{0}-\mathrm{P} 1_{7}$	Output port P1		
$\mathrm{P} 2_{0}-\mathrm{P} 2_{3}$	Output port P2	A 4-bit output port with the same function as port P0.	
$\mathrm{P} 2_{4}-\mathrm{P} 2_{7}$	I/O port P2	A 4-bit I/O port An I/O direction register allows each pin to be individually programmed as either input or output At reset this port is set to input mode The output structure of this port is CMOS 3 -state, and the input levels are TTL compatible.	
$\mathrm{P} 3_{0}-\mathrm{P} 3_{7}$	Output port P3	An 8-bit output port with the same function as port P0	
$\mathrm{P}_{4} / \mathrm{INT}_{0}$	Input port P40	1-bit CMOS input pin	External interrupt input pins
$\begin{aligned} & \mathrm{P}_{1} / \mathrm{INT}_{1}, \\ & \mathrm{P}_{2} / \mathrm{INT}_{2} \end{aligned}$	I/O port P4	A 7-bit CMOS I/O port with the same function as port $\mathrm{P}_{2}{ }_{4}$ $P 2_{7}$, with CMOS compatible input levels.	
$\mathrm{P4}_{3}, \mathrm{P4}_{4}$			
P4 ${ }_{5}$ /CNTR			Event counter input pin
P46			
$\mathrm{P}_{7} / \mathrm{T}_{\text {out }}$			Timer output pin
$\begin{aligned} & \mathrm{P} 5_{\mathrm{o}} / \mathrm{S}_{\mathrm{IN} 1}, \\ & \mathrm{P}_{1} / \mathrm{S}_{\mathrm{OUT} 1}, \\ & \mathrm{P}_{2} / \mathrm{S}_{\mathrm{CLK} 1}, \\ & \mathrm{P}_{3} / \mathrm{S}_{\mathrm{RDYY}} \end{aligned}$	I/O port P5	An 8-bit CMOS I/O port with the same function as port $\mathrm{P}_{4}-\mathrm{P} 2_{7}$ The output structure of this port is N -channel open drain, and the input levels are CMOS compatible Keep the input voitage of this port between OV and V_{CC}	Serial I/O1 I/O pıns
$\begin{aligned} & \mathrm{P}_{4} / \mathrm{S}_{\mathrm{IN} 2}, \\ & \mathrm{P} 5_{5} / \mathrm{S}_{\mathrm{ouT} 2}, \\ & \mathrm{P} 5_{6} / \mathrm{S}_{\mathrm{CLK} 2}, \\ & \mathrm{P} 5_{7} / \mathrm{S}_{\mathrm{RDY} 2} \end{aligned}$			Serial I/O2 I/O pins
P60/PWM	I/O port P6	An 8-bit CMOS I/O port with the same function as port $P 2_{4}-P 2_{7}$, with CMOS compatible input levels	14-bit PWM output pın
$\mathrm{P} 6_{1}-\mathrm{P} 6_{5}$			
$\mathrm{P6}_{6} / \mathrm{AN}$			Comparator input pin
$\mathrm{P6}_{7}$			

PART NUMBERING

Product name M3810

MITSUBISHI MICROCOMPUTERS M3810x Group

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

GROUP EXPANSION

Mitsubishi plans to expand the M3810x group as follows:
(1) Support for mask ROM, one-time programmable, and EPROM versions
ROM/PROM capacity
12K-24K bytes
RAM capacity.......................................384-512 bytes
(2) Packages

64P4B Shrink plastic molded DIP
64P6NPlastic molded QFP
64S1B Shrink ceramic DIP
64DO Ceramic LCC

Memory expansion plan

The development schedule and other details of products under development may be revised without notice Currently supported products are listed below

As of March 1992

Product name	(P) ROM size (bytes)	RAM size (bytes)	Package	Remarks
M38102M5-XXXSP	20K	384		Mask ROM version
M38102E5-XXXSP			64P4B	One-time programmable version
M38102E5SP				One-time programmable version (blank)
M38102M5-XXXFP				Mask ROM version
M38102E5-XXXFP			64P6N	One-time programmable version
M38102E5FP				One-tıme programmable versıon (blank)
M38102E5SS			64S1B	EPROM version
M38102E5FS			64D0	EPROM version
M38103M6-XXXSP	24K	512	64P4B	Mask ROM version
M38103E6-XXXSP				One-time programmable version
M38103E6SP				One-tıme programmable version (blank)
M38103M6-XXXFP			64P6N	Mask ROM version
M38103E6-XXXFP				One-tıme programmable version
M38103E6FP				One-tıme programmable version (blank)
M38103E6SS			64S1B	EPROM version
M38103E6FS			64D0	EPROM version

FUNCTIONAL DESCRIPTION

CENTRAL PROCESSING UNIT (CPU)
Microcomputers of the M3810x group use the standard MELPS 740 instruction set. Refer to the table of MELPS 740 addressing modes and machine instructions or the MELPS 740 Software Manual for details on the instruction set.
Machine-resident MELPS 740 instructions are as follows:
The FST and SLW instructions are not available for use. The STP, WIT, MUL, and DIV instructions can be used.

CPU MODE REGISTER

The CPU mode register is allocated to address $003 \mathrm{~B}_{16}$. Bits 0 and 1 of this register are processor mode bits and should always be set to " 0 ".
The CPU mode register contains the stack page selection bit.
For details of the $X_{\text {cout }}$ drivability selection bit, main clock stop bit, and internal system clock selection bit, see the section on the clock generation circuit.

Fig. 1 Structure of CPU mode register

MEMORY

Special Function Register (SFR) Area
The Special Function Register area contains registers which control functions such as I/O ports and timers, and is located in the zero page area.

RAM

RAM is used for data storage as well for stack area.
ROM
The first 128 bytes and the last two bytes of ROM are reserved for device testing and the rest is user area for storing programs.
Interrupt Vector Area
The interrupt vector area contains reset and interrupt vectors.

Zero Page

The 256 bytes from addresses 0000_{16} to $00 \mathrm{FF}_{16}$ are called the zero page area. The internal RAM and the special function registers (SFR) are allocated to this area.
The zero page addressing mode can be used to specify memory and register addresses in the zero page area. This dedicated zero page addressing mode enables access to this area with only 2 bytes.

Special Page

The 256 bytes from addresses FFOO_{16} to FFFF_{16} are called the special page area. The special page addressing mode can be used to specify memory addresses in the special page area. This dedicated special page addressing mode enables access to this area with only 2 bytes.
RAM area

RAM capacity (bytes)	Address XXXX
16	
192	$00 \mathrm{FF}_{16}$
256	$013 \mathrm{~F}_{16}$
384	$01 \mathrm{BF}_{16}$
512	$023 F_{16}$
640	$02 \mathrm{BF}_{16}$
768	$033 F_{16}$
896	$03 B F_{16}$
1024	$043 F_{16}$

ROM area

ROM capacity (bytes)	Address YYYY 16	Address $\mathbf{Z Z Z Z}_{16}$
4096	FOOO_{16}	FOPO_{16}
8192	$\mathrm{E} 000{ }_{16}$	E080 ${ }_{16}$
12288	DOOO_{16}	$\mathrm{D} 080{ }_{16}$
16384	COOO_{16}	$\mathrm{C}^{2} 80{ }_{16}$
20480	BOOO_{16}	$\mathrm{B080}_{16}$
24576	$\mathrm{A} 000^{16}$	$\mathrm{A} 080^{16}$
28672	9000_{16}	9080_{16}
32768	8000_{16}	8080_{16}

Fig. 2 Memory map diagram

Fig. 3 Memory map of special function register (SFR)

MITSUBISHI MICROCOMPUTERS

 M3810x Group
I/O PORTS

Direction Registers

The M3810x group microprocessors have 27 programmable I / O pins arranged in four I/O ports (ports $\mathrm{P}_{4} \sim \mathrm{P2}_{7}, \mathrm{P4}_{1} \sim$ $\mathrm{P}_{4}, \mathrm{P} 5$, and P 6). The I/O ports have direction registers which determine the input/output direction of each individual pin. Each bit in a direction register corresponds to one pin, each pin can be set to be input or output.
When " 0 " is written to the bit corresponding to a pin, that pin becomes an input pin. When " 1 " is written to that bit, that pin becomes an output pin.
If data is read from a pin which is set for output, the value of the port output latch is read, not the value of the pin itself. Pins set to input are floating. If a pin set to input is written to, only the port output latch is written to and the pin remains floating.

High-Breakdown-Voltage Output Ports

The M3810x group microprocessors have four ports with high-breakdown-voltge pins (ports $\mathrm{P} 0, \mathrm{P} 1, \mathrm{P}_{2} \sim \mathrm{P}_{3}$, and P 3). The high-breakdown-voltage ports have P -channel open drain output with a breakdown voltage of $\mathrm{V}_{\mathrm{CC}}-40 \mathrm{~V}$. Each pin has an internal pull-down resistor connected to $\mathrm{V}_{\text {EE }}$. At reset, the P-channel output transistor of each port latch is turned off, so it. is forced to the level of V_{EE} by the pull-down resistor.
Writing " 1 " to bit 0 of the high-breakdown-voltage port control register (address 0038_{16}) slows the transition of the output transistors to reduce transient noise. At reset, bit 0 of the high-breakdown-voltage port control register is set to " 0 " (strong drive).

Pin	Name	Input/Output	I/O Format	Non-Port Function	Related SFRs	Diagram No
$\mathrm{PO}_{0}-\mathrm{PO}_{7}$	Port PO	Output	High-breakdown-voltage Pchannel open-drain output with pull-down resistor		High-breakdown-voltage port control register	
$\mathrm{P}_{1}-\mathrm{P} 1_{7}$	Port P1	Output	High-breakdown-voltage Pchannel open-drain output with pull-down resistor		High-breakdown-voltage port control register	(1)
$\mathrm{P} 2_{0}-\mathrm{P} 2_{3}$	Port P2	Output	High-breakdown-voltage Pchannel open-drain output with pull-down resistor		High-breakdown-voltage port control register	
$\mathrm{P} 2_{4}-\mathrm{P} 27$		Input/output, individual bits	TTL level input CMOS 3-state output			(2)
$\mathrm{P} 3_{0}-\mathrm{P} 3_{7}$	Port P3	Output	High-breakdown-voltage Pchannel open-drain output with pull-down resistor	「	High-breakdown-voltage port control register	(1)
P40 ${ }_{\text {I }} \mathrm{NT}_{0}$	Port P4	Input	CMOS level input	External interrupt input	Interrupt edge selection regıster	(3)
$\begin{aligned} & \mathrm{P} 4_{1} / \mathrm{INT}_{1}, \\ & \mathrm{P}_{2} / \mathrm{INT}_{2} \\ & \hline \end{aligned}$		Input/output, individual bits	CMOS level input CMOS 3-state output			(4)
$\mathrm{P4}_{3}, \mathrm{P4}_{4}$						(2)
$\mathrm{P4}_{5} /$ CNTR				Event counter input	Timer 34 mode register	(4)
P46						(2)
$\mathrm{P}_{7} / \mathrm{T}_{\text {OUT }}$				Timer 3 output	Timer 34 mode register	(5)
$\mathrm{P} 50 / \mathrm{S}_{\text {IN1 } 1}$,	Port P5	Input/output, individual bits	CMOS level input N -channel open-drain output	Serial 1/O1 function 1/O	Serial I/01 control regıster	(6)
$\begin{aligned} & \mathrm{P} 5_{1} / \mathrm{S}_{\mathrm{out} 1}, \\ & \mathrm{P} 5_{2} / \mathrm{S}_{\mathrm{CLK} 1}, \end{aligned}$						(7)
$\mathrm{P5}_{3} / \overline{\mathrm{S}_{\mathrm{RDY} 1}}$						(8)
$\mathrm{P5}_{4} / \mathrm{S}_{\text {IN2 } 2}$,				Serial I/O2 function I/O	Serial I/O2 control register	(6)
$\begin{aligned} & \mathrm{P5}_{5} / \mathrm{S}_{\mathrm{out} 2}, \\ & \mathrm{P5}_{6} / \mathrm{S}_{\mathrm{CLK} 2}, \end{aligned}$						(7)
$\mathrm{P} 57 / \overline{\mathrm{S}_{\mathrm{RDY} 2}}$						(8)
P60/PWM	Port P6	Input/output, individual bits	CMOS level input CMOS 3-state output	14-bit PWM output	PWM control register PWML register PWMH register	(9)
$\mathrm{P} 6_{1}-\mathrm{P} 6_{5}$						(2)
$P 6_{6} / \mathrm{AN}$				Comparator input	Comparator register	(10)
$\mathrm{P6}_{7}$						(2)

Note Make sure that the input level at each pin is either 0 V or V_{CC} during execution of the STP instruction.
If an input level is at an intermediate potential, a current will flow in the input-stage gate

MITSUBISHI MICROCOMPUTERS
 M3810x Group

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
(1) Port P0, P1, P2 ${ }_{0} \sim \mathrm{P}_{3}, \mathrm{P} 3$

(3) Port P4o

(5) Port P47

(2) Port $\mathrm{P2}_{4} \sim \mathrm{P} 2_{7}, \mathrm{P4}_{3}, \mathrm{P4}_{4}, \mathrm{P} 4_{6}, \mathrm{P6}_{1} \sim \mathrm{P6}_{5}, \mathrm{P} 6_{7}$

(4) Port $\mathrm{P4}_{1}, \mathrm{P4}_{2}, \mathrm{P4}_{5}$

(6) Port $\mathrm{P5}_{0}, \mathrm{P5}_{4}$

* High-breakdown-voltage P-channel transistor

Fig. 4 Port block diagram (1)

Fig. 5 Port block diagram (2)

INTERRUPTS

A total of 11 sources can generate interrupts: 4 external, 6 internal, and 1 software.

Interrupt Control

Each interrupt is controlled by an interrupt request bit, an interrupt enable bit, and the interrupt disable flag-except for the software interrupt set by the BRK instruction. An interrupt is generated if the corresponding interrupt request and enable bits are " 1 " and the interrupt disable flag is " 0 ".
Interrupt enable bits can be set or cleared by software.
Interrupt request bits can be cleared by software, but cannot be set by software.
The I flag disables all interrupts except for the BRK instruction interrupt.

Interrupt Operation

When an interrupt is received, the program counter and processor status register are automatically pushed onto the stack. The interrupt disable flag is set to inhibit other interrupts from interfering. The corresponding interrupt request bit is cleared and the interrupt jump destination address is read from the vector table into the program counter.

Notes on Use

If you will change interrupt edge selection from rising edge to falling edge, interrupt request bit will be set to "1" automatically. Therefore, please make following process;
(1) Disable INT which is selected.
(2) Change INT edge selection.
(3) Clear interrupt request which is selected.
(4) Enable INT which is selected.

Table 1. Interrupt vector addresses and priorities

Interrupt cause	Priority	Vector address (Note 1)		Interrupt request generation conditions	Remarks
		High	Low		
Reset (Note 2)	1	FFFD_{16}	FFFC ${ }_{16}$	At reset	Non-maskable
INT_{0}	2	FFFB_{16}	FFFA $_{16}$	At detection of either rising or falling edge of $I N T_{0}$ input	External interrupt (active edge selectable)
INT ${ }_{1}$	3	$\mathrm{FFF9}_{16}$	FFF8 ${ }_{16}$	At detection of either rising or falling edge of INT_{1} input	External interrupt (active edge selectable)
INT_{2}	4	FFF7 ${ }_{16}$	FFF6 ${ }_{16}$	At detection of elther rising or falling edge of INT_{2} input	External interrupt (active edge selectable)
Serial 1/01	5	FFF5 ${ }_{16}$	FFF4 4_{16}	At end of serial I/O1 data transfer	Valid when serial I/O1 is selected
Serial 1/O2	6	FFF_{16}	FFF2 ${ }_{16}$	At end of serial 1/O2 data transfer	Valid when serial I/O2 is selected
Timer 1	7	FFF1 ${ }_{16}$	FFFO_{16}	At timer 1 overflow	
Timer 2	8	FFEF $_{16}$	FFEE_{16}	At timer 2 overflow	STP release timer overflow
Timer 3	9	FFED_{16}	FFEC_{16}	At timer 3 overflow	
Tımer 4	10	FFEB_{16}	FFEA_{16}	At timer 4 overflow	
CNTR	11	FFE9 $_{16}$	FFE8 ${ }_{16}$	At detection of either rising or falling edge of CNTR input	External interrupt (active edge selectable)
BRK instruction	12	FFDD_{16}	FFDC_{16}	At BRK instruction execution	Non-maskable software interrupt

Note 1 Vector addresses contaın interrupt jump destination addresses
2 Reset function in the same way as an interrupt with the highest priority

MITSUBISHI MICROCOMPUTERS M3810x Group

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

Fig. 6 Interrupt control

interrupt request register 1 (IREQ1 : address $003 \mathrm{C}_{16}$)
$-1 N T_{0}$ interrupt request bit INT, interrupt request bit NT_{2} interrupt request bit Serial I/O1 interrupt request bit Serial I/O2 interrupt request bit Timer 1 interrupt request bit Timer 2 interrupt request bit Timer 3 interrupt request bit

7
0

0 : No interrupt request issued
1 : Interrupt request issued

0 : Interrupts disabled
1 : Interrupts enabled

Fig. 7 Structure of interrupt-related registers

TIMERS

Microcomputers of the M3810x group have four built-in timers. The timers count down. Once a timer reaches 00_{16}, the next count pulse loads the contents of the corresponding timer latch into the timer, and sets the corresponding interrupt request bit to 1. Each timer also has a stop bit that stops the count of that timer when it is set to " 1 "

Note that the system clock ϕ can be set to either high-speed mode or low-speed mode by the CPU mode register.

Timer 1 and Timer 2

The count sources of timer 1 and timer 2 can be selected by setting the timer 12 mode register.
When the chip is reset or the STP instruction is executed, all bits of the timer 12 mode register are cleared, timer 1 is set to FF_{16}, and timer 2 is set to 01_{16}.

Timer 3 and Timer 4

The count sources of timer 3 and timer 4 can be selected by setting the timer 34 mode register.
Timer 3 can also output a rectangular waveform from the $\mathrm{P}_{7} /$
$T_{\text {out }}$ pin. The waveform changes polarity each time timer 3 overflows.
When timer 4 is assigned to external event count mode, rising edge is active.

Fig. 8 Structure of timer-related registers

Fig. 9 Timer block diagram

MITSUBISHI MICROCOMPUTERS
 M3810x Group

SERIAL I/O
Microcomputers of the M3810x group have two built-in 8-bit clock synchronized serial I/O channels (serial I/O1 and serial l/O2).
Serial I/O1 has the same function as serial I/O2.

The I/O pins of the serial I/O function also operate as I/O port P5, and their operation is selected by the serial I/O control registers (adresses 0019_{16} and $001 \mathrm{D}_{16}$).

Fig. 10 Serial I/O block diagram

[Serial IO Control Registers]SIO1CON, SIO2CON

Each of the serial I/O control registers (addresses 0019 ${ }_{16}$ and $001 \mathrm{D}_{16}$) contains seven bits that select various control parameters of the serial I/O function.

1 : Internal clock

Fig. 11 Structure of serial I/O control registers

MITSUBISHI MICROCOMPUTERS
 M3810x Group

Operation In Serial I/O Mode

Either an internal clock or an external clock can be selected as the synchronization clock for serial I/O transfer. A dedicated divider is built-in as the internal clock, giving a choice of six clocks.
If internal clock is selected, transfer start is activated by a write signal to a serial $1 / O$ register (address $001 \mathrm{~B}_{16}$ or $001 F_{16}$). After eight bits have been transferred, the Sout pin goes to high impedance.

If external clock is selected, the clock must be controlled externally because the contents of the serial I/O register continue to shift while the transfer clock is input. In this case, note that the $\mathrm{S}_{\text {out }}$ pin does not go to high impedance at the completion of data transfer. The interrupt request bit is set at the end of the transfer of eight bits, regardless of whether the internal or external clock is selected.

Fig. 12 Serial I/O timing (for LSB first)

PULSE WIDTH MODULATION (PWM)

 OUTPUT CIRCUITMicrocomputers in the M3810x group have a PWM function with a 14-bit resolution. When the oscillation frequency $X_{I N}$ is 4 MHz , the minimum resolution bit width is 500 ns and the cycle period is $8192 \mu \mathrm{~s}$. The PWM timing generator supplies a PWM control signal based on a signal that is half the frequency of the $X_{\text {IN }}$ clock.

The explanation in the rest of this data sheet assumes X_{IN} $=4 \mathrm{MHz}$.

Fig. 13 PWM block diagram

MITSUBISHI MICROCOMPUTERS
 M3810x Group

(1) Date Set-up

The PWM output pin also functions as port P_{0}. Set port $\mathrm{P} 6_{0}$ to be the PWM output pin by setting bit 0 of the PWM mode register (address $002 \mathrm{~B}_{16}$). The upper eight bits of output data are set in the upper PWM register PWMH (address $002 \mathrm{C}_{16}$) and the lower six bits are set in the lower PWM register PWML (address $002 \mathrm{D}_{16}$).

2) Transfer From Register to Latch

Date written to the PWML register is transferred to the PWM latch once in each PWM period (every $8192 \mu \mathrm{~s}$), and data written to the PWMH register is transferred to the PWM latch once in each sub-period (every $128 \mu \mathrm{~s}$). When the PWML register is read, the contents of the latch are read. However, bit 7 of the PWML register indicates whether the transfer to the PWM latch is completed; the transfer is completed when bit 7 is " 0 ".

Table 2. Relationship between lower 6 bits of data and period set by the ADD bit

Lower 6	Bits of Data(PWML)	Sub-periods tm Lengthened $(m=0$ to 63)			
0	0	0	0	0	0
0	0	0	0	0	1
LSB	None				
0	0	0	0	1	0
0	0	0	1	0	0
0	0	1	0	0	0
0	1	0	0	0	0
1	0	0	0	0	0

(3) PWM Operation

The timing of the 14-bit PWM function is shown in Fig. 16. The 14-bit PWM data is divided into the lower six bits and the upper eight bits in the PWM latch.

The upper eight bits of data determine how long an " H "level signal is output during each sub-period. There are 64 sub-periods in each period, and each sub-period is $256 \times$ $\tau(128 \mu \mathrm{~s})$ long. The signal is " H " for a length equal to N times τ, where τ is the minimum resolution (500 ns).

The contents of the lower six bits of data enable the lengthening of the high signal by τ (500 ns). As shown in Fig. 13, the six bits of PWML determine which sub-cycles are lengthened.
As shown in Fig. 16, the leading edge of the pulse is lengthened. By changing the length of specific sub-periods instead of simply changing the " H " duration, an accurate waveform can be duplicated without the use of complex external filters.

For example, if the upper eight bits of the 14-bit data are 03_{16} and the lower six bits are 05_{16}, the length of the " H "level output in sub-periods $t_{8}, t_{24}, t_{32}, t_{40}$, and t_{56} is 4τ, and its length 3τ in all other sub-periods.

Fig. 14 PWM timing

MITSUBISHI MICROCOMPUTERS
 M3810x Group

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

Fig. 15 Structure of PWM mode register

Fig. 16 14-bit PWM timing

COMPARATOR CIRCUIT

Comparator Configuration

The comparator circuit consists of a switch tree, ladder resistors, a comparator, a comparator control circuit, a comparator register (address 0030_{16}), and an analog signal input pin ($\mathrm{P6}_{6} / \mathrm{AN}$). The analog signal input pin ($\mathrm{P6}_{6} / \mathrm{AN}$) also functions as an ordinary digital port.

Comparator Register (CMP)

The comparator register is a 5 -bit register of which bits 0 to 3 can be used to generate internal reference voltages in steps of $1 / 16 \mathrm{~V}_{\mathrm{CC}}$. The result of the comparison between the analog input voltage and an internal reference voltage is stored in bit 4 of the comparator register.

Comparator Operation

To activate the comparator, first set port Pb_{6} to input mode by setting the corresponding direction register (address $000 \mathrm{D}_{16}$) to " 0 "-this ensures that port $\mathrm{P6}_{6} / \mathrm{AN}$ is used as an analog voltage input pin. Then write a digital value corresponding to the internal comparison voltage into bits 0 to 3 of the comparator register (address 0030_{16}). This write operation immediately activates the comparison. After 14 cycles of the system clock ϕ (the time required for the comparison), the comparison result is stored in bit 4 of the comparator.

If the analog input voltage is greater than the internal reference voltage, bit 4 is " 1 "; if it is less than the internal reference voltage, bit 4 is " 0 ". To perform another comparison, the comparator must be written to again, even if the same internal reference voltage is to be used.

Table 3. Correspondence between bits 0 to 3 of the comparator register and internal reference voltage

Comparator register				Internal reference voltage
Bit 3	Bit 2	Bit 1	Bit 0	
0	0	0	0	$1 / 32 \mathrm{~V}_{\mathrm{CC}}$
0	0	0	1	$1 / 16 \mathrm{~V}_{\mathrm{CC}}+1 / 32 \mathrm{~V}_{\mathrm{CC}}$
0	0	1	0	$2 / 16 \mathrm{~V}_{\mathrm{CC}}+1 / 32 \mathrm{~V}_{\mathrm{CC}}$
0	0	1	1	$3 / 16 \mathrm{~V}_{\mathrm{CC}}+1 / 32 \mathrm{~V}_{\mathrm{CC}}$
0	1	0	0	$4 / 16 \mathrm{~V}_{\mathrm{CC}}+1 / 32 \mathrm{~V}_{\mathrm{CC}}$
0	1	0	1	$5 / 16 \mathrm{~V}_{\mathrm{CC}}+1 / 32 \mathrm{~V}_{\mathrm{CC}}$
0	1	1	0	$6 / 16 \mathrm{~V}_{\mathrm{CC}}+1 / 32 \mathrm{~V}_{\mathrm{CC}}$
0	1	1	1	$7 / 16 \mathrm{~V}_{\mathrm{CC}}+1 / 32 \mathrm{~V}_{\mathrm{CC}}$
1	0	0	0	$8 / 16 \mathrm{~V}_{\mathrm{CC}}+1 / 32 \mathrm{~V}_{\mathrm{CC}}$
1	0	0	1	$9 / 16 \mathrm{~V}_{\mathrm{CC}}+1 / 32 \mathrm{~V}_{\mathrm{CC}}$
1	0	1	0	$10 / 16 \mathrm{~V}_{\mathrm{CC}}+1 / 32 \mathrm{~V}_{\mathrm{CC}}$
1	0	1	1	$11 / 16 \mathrm{~V}_{\mathrm{CC}}+1 / 32 \mathrm{~V}_{\mathrm{CC}}$
1	1	0	0	$12 / 16 \mathrm{~V}_{\mathrm{CC}}+1 / 32 \mathrm{~V}_{\mathrm{CC}}$
1	1	0	1	$13 / 16 \mathrm{~V}_{\mathrm{CC}}+1 / 32 \mathrm{~V}_{\mathrm{CC}}$
1	1	1	0	$14 / 16 \mathrm{~V}_{\mathrm{CC}}+1 / 32 \mathrm{~V}_{\mathrm{CC}}$
1	1	1	1	$15 / 16 \mathrm{~V}_{\mathrm{CC}}+1 / 32 \mathrm{~V}_{\mathrm{CC}}$

Fig. 17 Comparator circuit

MITSUBISHI MICROCOMPUTERS
 M3810x Group

RESET CIRCUIT

After a reset, the microcomputer will start in high-speed mode or low-speed mode depending on a maskprogrammable option.

High-Speed Start Mode

In high-speed start mode, reset occurs if the RESET pin is held at a " L " level for at least 2μ s then is returned to a " H " level (the power supply voltage should be between 4.0 V and 5.5 V). Both the $X_{I N}$ and the $X_{\text {CIN }}$ clocks begin oscillating. In order to give the $X_{\text {IN }}$ clock time to stabilize, internal operation does not begin until after $13 \mathrm{X}_{\mathrm{IN}}$ clock cycles are complete. After the reset is completed, the program starts from the address contained in address FFFD_{16} (upper byte) and address FFFC_{16} (lower byte).

Low-Speed Start Mode

In low-speed start mode, reset occurs if the RESET pin is held at a "L" level for at least 2μ s then is returned to a " H "

Fig. 18 Power-on reset circuit example
level (the power supply voltage should be between 2.8 V and 5.5 V). The $X_{I N}$ clock does not begin oscillating. In order to give the $X_{\text {CIN }}$ time to stabilize, timer 1 and timer 2 are connected together and 512 cycles of the $X_{\text {CIN }} / 16$ are counted before internal operation begins. After the reset is completed, the program starts from the address contained in address FFFD_{16} (upper byte) and address FFFC_{16} (lower byte).
If the $X_{\text {CIN }}$ clock is stable, reset will complete after approximately 250 ms (assuming $f\left(X_{\mathrm{CIN}}\right)=32.768 \mathrm{kHz}$). Immediately after a power-on, the stability of the clock circuit will determine the reset timing and will vary according to the characteristics of the oscillation circuit used.

Note on Use

Make sure that the reset input voltage is no more than 0.8 V in high-speed start mode, or no more than 0.5 V in lowspeed start mode.

Fig. 19 Internal status at reset

Fig. 20 Reset sequence in high-speed operation mode

Fig. 21 Reset sequence in low-speed operation mode

MITSUBISHI MICROCOMPUTERS
 M3810x Group

CLOCK GENERATION CIRCUIT

When using an external clock signal, input the clock signal to the $X_{I N}\left(X_{\text {CIN }}\right)$ pin and leave the $X_{\text {OUT }}\left(X_{\text {COUT }}\right)$ pin open.If the $X_{\text {CIN }}$ clock is not used, connect the $X_{\text {CIN }}$ pin to $V_{S S}$, and leave the $X_{\text {cout }}$ pin open.
Either high-speed operation start mode or low-speed operation start mode can be selected by using a mask option.

(1) High-Speed Operation Start Mode

After reset has completed, the internal clock ϕ is half the frequency of $X_{I N}$. Immediately after power-on, both the $X_{I N}$ and $X_{\text {CIN }}$ clock start oscillating. To set the internal clock ϕ to low-speed mode, set bit 7 of the CPU mode register (address $003 B_{16}$) to " 1 ".

(2) Low-Speed Operation Start Mode

After reset has completed, the internal clock ϕ is half the frequency of $X_{\text {CIN }}$. Immediately after power-on, only the $X_{\text {CIN }}$ clock starts oscillating. To set the internal clock ϕ to normal operation mode, first set bit $6\left(\mathrm{CM}_{6}\right)$ of the CPU mode register (address $003 \mathrm{~B}_{16}$) to " 0 ", the set bit $7\left(\mathrm{CM}_{7}\right)$ to " 0 " . Note that the program must allow time for oscillation to stabilize.

(3) Oscillation Control

Stop mode

If the STP instruction is executed, oscillation stops with the internal clock ϕ at an " H " level. Timer 1 is set to " $F F_{16}$ " and timer 2 is set to " 01_{16} ".
Either $X_{I N}$ or $X_{\text {CIN }}$ divided by 16 is input to timer 1 , and the output of timer 1 is connected to timer 2. The timer 1 and timer 2 interrupt enable bits must be set to disabled (" 0 "), so a program must set these bits before executing a STP instruction. Oscillation restarts at reset or when an external interrupt is received, but the internal clock ϕ is not supplied to the CPU until timer 2 overflows. This allows time for the clock circuit oscillation to stabilize.

Wait mode

If the WIT instruction is executed, the internal clock ϕ stops at a "H" level but the oscillator itself does not stop. The internal clock restarts if a reset occurs or when an interrupt is received. Since the oscillator does not stop, normal operation can be started immediately after the clock is restarted.

Low-speed mode

If the internal clock is generated from the sub clock ($X_{\text {CIN }}$), a low power consumption operation can be entered by stopping only the main clock $X_{I N}$. To stop the main clock, set bit $6\left(\mathrm{CM}_{6}\right)$ of the CPU mode register $\left(003 \mathrm{~B}_{16}\right)$ to " 1 ". When the main clock $X_{I N}$ is restarted, the program must allow enough time to for oscillation to stabilize.
Note that in low-power-consumption mode the $X_{\mathrm{CIN}^{-}}-\mathrm{X}_{\text {COUT }}$ drive performance can be reduced, allowing even lower
power consumption ($20 \mu \mathrm{~A}$ with $X_{\mathrm{CIN}}=32 \mathrm{kHz}$). To reduce the $X_{\text {CIN }}-X_{\text {COUT }}$ drive performance, clear bit $5\left(\mathrm{CM}_{5}\right)$ of the CPU mode register $\left(003 B_{16}\right)$ to " 0 ". At reset or when a STP instruction is executed, this bit is set to " 1 " and strong drive is selected to help the oscillation to start.

Fig. 22 Ceramic resonator circuit

Fig. 23 External clock input circuit

MITSUBISHI MICROCOMPUTERS
 M3810x Group

Note: The values of CM_{7} and CM_{6} at reset are determined by a mask option

Fig. 24 System clock generation circuit block diagram

The example assumes that 4 MHz is being applied to the $X_{I N}$ pin and 32 kHz to the $X_{\text {CIN }}$ pin

Note 1 When the STP state is ended, a delay of approximately 2 ms is automatically generated by timer 1 and timer 2
2 The delay after the STP state ends is approximately 025 s
3 If the internal clock ϕ divided by 8 is used as the timer count source, the frequency of the count source is $f\left(X_{\text {CIN }}\right) / 16$
4 Specify this option when ordering a mask ROM version

Fig. 25 State transitions of system clock

NOTES ON PROGRAMMING

Processor Status Register

The contents of the processor status register (PS) after a reset are undefined, except for the interrupt disable flag (I) which is " 1 ". Therefore, flags that affect program execution must be initialized after a reset.In particular, it is essential to initialize the T and D flags because of their effect on calculations.

Interrupts

The contents of the interrupt request bits do not change immediately after they have been written.
After writing to an interrupt request register, execute at least one instruction before performing a BBC or BBS instruction.

Decimal Calculations

To calculate in decimal notation, set the decimal mode flag (D) to "1", then execute a ADC or SBC instruction. Only the ADC and SBC instruction yield proper decimal results. After executing an ADC or SBC instruction, execute at least one instruction before executing a SEC, CLC, or CLD instruction.

In decimal mode, the values of the negative (N), overflow $(\mathrm{V}$), and zero (Z) flags are invalid. The carry flag can be used to indicate whether a carry or borrow has occurred, but must be initialized before each calculation. Clear the carry flag before an ADC and set the flag before an SBC.

Timers

If a value n (between 0 and 255) is written to a timer latch, the frequency division ratio is $1 /(n+1)$.

Multiplication and Division Instructions

The MUL and DIV instructions do not affect the T and D flags.
The execution of these instructions does not change the contents of the processor status register.

Ports

The contents of the port direction registers cannot be read. Programs can not use the value of a direction register as an index, or bit-test a direction register (BBC or BBS), or perform a read-modify-write instruction such as ROR, CLB, or SEB. Use instructions such as LDM and STA to set the port direction registers.

Serial I/O

When using an external clock, input " H " to the external clock input pin and clear the serial I/O interrupt request bit before executing a serial I/O transfer.
When using the internal clock, set the synchronization clock to internal clock, then clear the serial I/O interrupt request
bit before executing a serial I/O transfer.

Instruction Execution Timing

The instruction execution time is obtained by multiplying the frequency of the internal clock ϕ by the number of cycles needed to execute an instruction. The number of cycles required to execute an instruction is shown in the list of machine instructions. The frequency of the internal clock ϕ is half of the $X_{\text {IN }}$ or $X_{\text {CIN }}$ frequency.

DATA REQUIRED FOR MASK ORDERS

The following are necessary when ordering a mask ROM production:
(1) Mask ROM Order Confirmation Form
(2) Mask Specification Form
(3) Data to be written to ROM, in EPROM form (three identical copies)

If required, specify the following option on the Mask Confirmation Form:

- Operation start mode switching option

ROM Writing Method

The built-in PROM of the blank one-time programmable version and built-in EPROM version can be read from and written to with an normal EPROM writer using a special write adapter.

Package	Name of Write Adapter
64P4B, 64S1B	PCA4738S-64
$64 P 6 \mathrm{~N}$	PCA4738F-64
$64 D 0$	PCA4738L-64

The PROM of the blank one-time programmable version is not tested or screened after assembly. To ensure proper operation after writing, the procedure shown in Figure 26 is recommended to verify programming.

Fig. 26 Writing and testing of one-time programmable version

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratıngs	Unit
$V_{C C}$	Supply voltage	All voltages measured based on the $\mathrm{V}_{\mathrm{SS}} \mathrm{pIn}$ Output transistors are isolated.	-0.3 to 7.0	V
$\mathrm{V}_{\text {EE }}$	Pull-down power supply voltage		$\mathrm{V}_{C C}-40$ to $\mathrm{V}_{C C}+0.3$	V
V_{1}	Input voltage $\mathrm{P}_{4}-\mathrm{P} 2_{7}, \mathrm{P} 4_{1}-\mathrm{P} 4_{7}, \mathrm{P5}_{0}-\mathrm{P} 5_{7}, \mathrm{P6} 6_{0}-\mathrm{P6} 7_{7}$		-0.3 to $\mathrm{V}_{\mathrm{CC}}+0.3$	V
V_{1}	Input voltage P_{4}		-0.3 to $\mathrm{V}_{\mathrm{CC}}+0.3$	V
V_{1}	Input voltage $\overline{\text { RESET }}$, $\mathrm{X}_{\text {IN }}$		-0.3 to $\mathrm{V}_{\mathrm{CC}}+0.3$	V
V_{1}	Input voltage $\mathrm{X}_{\mathrm{CIN}}$		-0.3 to $\mathrm{V}_{\mathrm{CC}}+0.3$	V
V_{0}	Output voltage $\mathrm{P}_{0}-\mathrm{P} 0_{7}, \mathrm{P1}_{0}-\mathrm{P} 1_{7}, \mathrm{P2}_{0}-\mathrm{P} 2_{3}, \mathrm{P3}_{0}-\mathrm{P} 3_{7}$		$\mathrm{V}_{C C}-40$ to $\mathrm{V}_{C C}+0.3$	V
V_{0}	Output voltage $\mathrm{P}_{4}-\mathrm{P} 2_{7}, \mathrm{P} 4_{1}-\mathrm{P} 4_{7}, \mathrm{P5}_{0}-\mathrm{P} 5_{7}, \mathrm{P} 6_{0}-\mathrm{P} 6_{5}$, $\mathrm{P7}_{0}-\mathrm{P} 7_{7}, \mathrm{X}_{\text {OUT }}, \mathrm{X}_{\text {COUT }}$		-0.3 to $\mathrm{V}_{\mathrm{cc}}+0.3$	V
$\mathrm{Pd}_{\text {d }}$	Power dissıpation	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$	1000(Note 1)	mW
Topr	Operating temperature		-10 to 85	${ }^{\circ} \mathrm{C}$
Tstg	Storage temperature		-40 to 125	${ }^{\circ} \mathrm{C}$

Note 1600 mW in case of the flat package

RECOMMENDED OPERATING CONDITIONS ($\mathrm{V}_{\mathrm{cc}}=4.0$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-10$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter		Limits			Unit
			Min	Typ	Max	
V_{cc}	Supply voltage	High-speed operation mode	4.0	5.0	5.5	V
		Low-speed operation mode	2.8	5.0	5.5	
$\mathrm{V}_{\text {SS }}$	Supply voltage			0		V
$\mathrm{V}_{\text {EE }}$	Pull-down power supply voltage		$\mathrm{V}_{\mathrm{cc}}-38$		V_{cc}	V
$\mathrm{V}_{1 \text { I }}$	Analog input voltage		0		V_{cc}	V
V_{1+}	" H " input voltage $\mathrm{P}_{2}-\mathrm{P} 2_{7}$		$0.4 \mathrm{~V}_{\mathrm{cc}}$		V_{cc}	V
$\mathrm{V}_{1 H}$	"H" input voltage P_{4}		$0.75 \mathrm{~V}_{\mathrm{cc}}$		$V_{C C}$	V
$\mathrm{V}_{\text {IH }}$	" H " input voitage $\mathrm{P4}_{1}-\mathrm{P4} 4_{7}, \mathrm{P5}_{0}-\mathrm{P5}_{7}, \mathrm{P6}_{0}-\mathrm{P6} 6_{7}$		$0.75 \mathrm{~V}_{\mathrm{cc}}$		V_{cc}	V
$\mathrm{V}_{\text {IH }}$	" H " input voltage $\overline{\mathrm{RESET}}$		$0.8 \mathrm{~V}_{\mathrm{cc}}$		V_{cc}	V
$\mathrm{V}_{\text {IH }}$	" H " input voltage $\mathrm{X}_{\text {IN }}, \mathrm{X}_{\mathrm{CIN}}$		$0.8 \mathrm{~V}_{\mathrm{CC}}$		V_{cc}	V
$\mathrm{V}_{\text {IL }}$	"L" input voltage $\mathrm{P}_{2}-\mathrm{P} 2_{7}$		0		$0.16 \mathrm{~V}_{\mathrm{cc}}$	V
$\mathrm{V}_{\text {IL }}$	"L" input voltage $\mathrm{P} 4_{0}$		0		$0.25 \mathrm{~V}_{\mathrm{cc}}$	V
$\mathrm{V}_{\text {IL }}$	"L" input voltage $\mathrm{P4}_{1}-\mathrm{P4} 4_{7}, \mathrm{P5}_{0}-\mathrm{P5}_{7}, \mathrm{P6}_{0}-\mathrm{P} 6_{7}$		0		$0.25 \mathrm{~V}_{\mathrm{cc}}$	V
$\mathrm{V}_{\text {IL }}$	"L" input voltage $\overline{\mathrm{RESET}}$		0		$0.2 \mathrm{~V}_{\mathrm{CC}}$	V
$\mathrm{V}_{\text {IL }}$	"L" input voltage $\mathrm{X}_{\mathrm{IN}}, \mathrm{X}_{\mathrm{CIN}}$		0		$0.2 \mathrm{~V}_{\mathrm{cc}}$	V

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

RECOMMENDED OPERATING CONDITIONS ($\mathrm{V}_{\mathrm{cc}}=4.0$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-10$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Limits			Unit
		Min	Typ	Max	
$\Sigma \mathrm{IOH}_{\text {(peak }}$	" H " total peak output current $\mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P}_{1}-\mathrm{P} 1_{7}$, (Note 1) $\quad \mathrm{P}_{2}-\mathrm{P}_{7}, \mathrm{P}_{3}-\mathrm{P}_{7}$			-240	mA
$\Sigma \mathrm{l}_{\text {OH(}}$ (peak)	"H" total peak output current $\mathrm{P4}_{1}-\mathrm{P4}_{7}, \mathrm{P6}_{0}-\mathrm{P} 6_{7}$			-60	mA
$\Sigma \mathrm{loL}_{\text {(peak }}$	$\begin{aligned} & \text { "L" total peak output current } \begin{array}{l} P 2_{4}-P 2_{7}, P 4_{1}-P 4_{7}, \\ \\ P 5_{0}-P 5_{7}, P 6_{1}-P 6_{7} \\ \hline \end{array} \end{aligned}$			100	mA
$\Sigma \mathrm{loL}$ (peak)	"L" total peak output current $\mathrm{P6}_{0}$			3.0	mA
$\Sigma l_{\text {OH(avg) }}$	" H " total average output current $\mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P1}_{0}-\mathrm{P} 1_{7}$, (Note 1) $\quad \mathrm{P}_{0}-\mathrm{P}_{2}, \mathrm{P3}_{0}-\mathrm{P3}_{7}$			-120	mA
$\Sigma \mathrm{l}_{\text {OH(avg }}$	" H " total average output current $\mathrm{P4}_{1}-\mathrm{P4}_{7}, \mathrm{P6}_{0}-\mathrm{P6}_{7}$			-30	mA
$\Sigma l_{\text {OL(avg }}$	" L " total average output current $\mathrm{P}_{4}-\mathrm{P}_{2}, \mathrm{P}_{1}-\mathrm{P} 4_{7}$, $\mathrm{P5}_{0}-\mathrm{P5}_{7}, \mathrm{P6}_{1}-\mathrm{P} 6_{7}$			50	mA
$\Sigma l_{\text {OL }}$ (avg)	"L" total average output current $\mathrm{P6}_{0}$			1.5	mA
Іон(peak)	" H " peak output current $\mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P1}_{0}-\mathrm{P1}_{7}, \mathrm{P2}_{0}-\mathrm{P} 2_{3}$, $\mathrm{P}_{0}-\mathrm{P3}_{7}$ (Note 2)			-40	mA
$\mathrm{IOH}^{\text {(peak) }}$	"H" peak output current $\mathrm{P2}_{4}-\mathrm{P} 2_{7}, \mathrm{P4}_{1}-\mathrm{P} 4_{7}, \mathrm{P6}_{0}-\mathrm{P} 6_{7}$			-10	mA
lol(peak)	"L" peak output current $\mathrm{P}_{2}-\mathrm{P}_{7}, \mathrm{P6}_{1}-\mathrm{P} 6_{7}$			10	mA
lol(peak)	"L" peak output current $\mathrm{P}_{4}-\mathrm{P}_{4}, \mathrm{P}_{0}-\mathrm{P5}_{7}$			10	mA
IoL(peak)	"L" peak output current $\mathrm{P6}_{0}$			3.0	mA
ІОН(avg)	" H " average output current $\mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P}_{0}-\mathrm{P} 1_{7}$, (Note 3) $\quad \mathrm{P}_{0}-\mathrm{P}_{3}, \mathrm{P}_{3}-\mathrm{P} 3_{7}$			-18	mA
IOH(avg)	" H " average output current $\mathrm{P}_{4}-\mathrm{P}_{7}, \mathrm{P}_{4}-\mathrm{P} 4_{7}$, $\mathrm{P}_{6}-\mathrm{P}_{7}$			-5.0	mA
Iol(avg)	"L" average output current $\mathrm{P}_{4}-\mathrm{P}_{7}, \mathrm{P6}_{1}-\mathrm{P6}_{7}$			5.0	mA
IoL(avg)	"L" average output current $\mathrm{P4}_{1}-\mathrm{P} 4_{7}, \mathrm{P}_{5}-\mathrm{P} 5_{7}$			10	mA
lol(avg)	"L" average output current $\mathrm{P6}_{0}$			1.5	mA
f(CNTR)	Clock input frequency for timers 4 (duty cycle 50\%)			250	kHz
$f\left(X_{\text {IN }}\right)$	Main clock input oscillation frequency (Note 4)			4.2	MHz
$f\left(X_{\text {CIN }}\right)$	Sub clock input oscillation frequency (Note 4,5)		32. 768	50	kHz

Note 1. The total output current is the sum of all the currents flowing through all the applicable ports The total average current is an average value measured over 100 ns The total peak current is the peak value of all the currents.
2. The peak output current is the peak current flowing in each port
3. The average output current in an average value measured over 100 ms
4. When the oscillation frequency has a duty cycle of 50%.
5. When using the microcomputer in low-speed mode, make sure that the sub clock's input frequency $f\left(X_{\text {CIN }}\right)$ is less than $f\left(X_{\text {IN }}\right) / 3$

MITSUBISHI MICROCOMPUTERS
 M3810x Group

ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{CC}}=4.0$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-10$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test conditions		Limits			Unit
				Min.	Typ.	Max	
V_{OH}	"H" output voltage $\mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P1}_{0}-\mathrm{P} 1_{7}, \mathrm{P}_{2}-\mathrm{P} 2_{3}, \mathrm{P}_{0}-\mathrm{P} 3_{7}$	$\mathrm{I}_{\mathrm{OH}}=-18 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=4.5$ to 5.5 V		$\mathrm{V}_{\text {cc }}-2.0$			V
V_{OH}	"H" output voltage $\mathrm{P}_{4}-\mathrm{P} 2_{7}, \mathrm{P4}_{4}-\mathrm{P4}_{7}, \mathrm{P6}_{0}-\mathrm{P} 6_{7}$	$\mathrm{I}_{\mathrm{OH}}=-10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=4.5$ to 5.5 V		$\mathrm{V}_{\mathrm{Cc}}-2.0$			V
V_{OL}	"L" output voltage $\mathrm{P}_{4}-\mathrm{P} 2_{7}, \mathrm{P} 4_{1}-\mathrm{P} 4_{7}, \mathrm{P} 5_{0}-\mathrm{P} 5_{7}, \mathrm{P} 6_{1}-\mathrm{P} 6_{7}$	$\mathrm{I}_{\mathrm{OL}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=4.5$ to 5.5 V				2.0	V
V_{OL}	"L" output voltage $\mathrm{P6}_{0}$	$\mathrm{I}_{\mathrm{LL}}=1.5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=4.5$ to 5.5 V				0.5	V
$\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\text {T- }}$	Hysteresis $\overline{\mathrm{INT}}_{0}-\overline{\mathrm{INT}}_{2}, \mathrm{~S}_{\mathrm{IN}^{\prime}}, \mathrm{S}_{\mathrm{IN} 2}, \mathrm{CLK} 1, \mathrm{CLK} 2, \mathrm{CNTR}$	When using a non-port function			0.4		V
$\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\mathrm{T}-}$	Hysteresis RESET, $\mathrm{X}_{\text {IN }}$	$\overline{\text { RESET }}$: $\mathrm{V}_{\mathrm{CC}}=2.8 \mathrm{~V}$ to 5.5 V			0.5		V
$\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\mathrm{T}-}$	Hysteresis $\mathrm{X}_{\text {CIN }}$				0.5		V
I_{IH}	"H" input current $\mathrm{P2}_{4}-\mathrm{P} 2_{7}, \mathrm{P4}_{1}-\mathrm{P} 4_{7}, \mathrm{P5}_{0}-\mathrm{P5}_{7}, \mathrm{P6}_{0}-\mathrm{P6}_{7}$	$\mathrm{V}_{1}=\mathrm{v}_{\mathrm{cc}}$				5.0	$\mu \mathrm{A}$
I_{IH}	"H" input current $\mathrm{P} 4_{0}$	$\mathrm{V}_{1}=\mathrm{v}_{\mathrm{cc}}$				5.0	$\mu \mathrm{A}$
I_{H}	" H " input current $\overline{\text { RESET, }}$, $\mathrm{X}_{\text {CIN }}$	$V_{1}=V_{c c}$				5.0	$\mu \mathrm{A}$
I_{IH}	" H " input current $\mathrm{X}_{\text {IN }}$	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{cc}}$			4		$\mu \mathrm{A}$
I_{12}	"L" input current $\mathrm{P2}_{4}-\mathrm{P} 2_{7}, \mathrm{P4} 4_{1}-\mathrm{P4} 7, \mathrm{P5}_{0}-\mathrm{P5}_{7}, \mathrm{P6}_{0}-\mathrm{P6} 7_{7}$	$\mathrm{V}_{1}=\mathrm{V}_{\text {ss }}$				-5.0	$\mu \mathrm{A}$
$I_{\text {IL }}$	"L" input current P40	$\mathrm{V}_{1}=\mathrm{V}_{\text {ss }}$				-5.0	$\mu \mathrm{A}$
IIL	"L" input current $\overline{\text { RESET, }} \mathrm{X}_{\text {CIN }}$	$\mathrm{V}_{1}=\mathrm{V}_{\text {ss }}$				-5.0	$\mu \mathrm{A}$
ILL	"L" input current $\mathrm{X}_{\text {IN }}$	$\mathrm{V}_{1}=\mathrm{V}_{\text {S }}$			-4		$\mu \mathrm{A}$
I Load	Output load current $\mathrm{P}_{0}-\mathrm{P0}_{7}, \mathrm{P1}_{0}-\mathrm{P} 1_{7}, \mathrm{P}_{2}-\mathrm{P} 2_{3}, \mathrm{P3}_{0}-\mathrm{P} 3_{7}$	$\mathrm{V}_{\mathrm{EE}}=\mathrm{V}_{\mathrm{CC}}-36 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}},$ With output transistors off		150	500	900	$\mu \mathrm{A}$
I Leak	Output leakage current $\mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P1}_{0}-\mathrm{P1}_{7}, \mathrm{P}_{2}-\mathrm{P} 2_{3}$, $\mathrm{P}_{0}-\mathrm{P} 3_{7}$	$\mathrm{V}_{\mathrm{EE}}=\mathrm{V}_{\mathrm{CC}}-38 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=\mathrm{v}_{\mathrm{CC}}-38 \mathrm{~V},$ With output transistors off (Except for reset)				-10	$\mu \mathrm{A}$
$V_{\text {RAM }}$	RAM hold voltage	When clock is stopped		2.0	5	5.5	V
(emm	Power supply current	In high-speed operation mode $\begin{aligned} & f\left(X_{\text {IN }}\right)=4 \mathrm{MHz} \\ & f\left(X_{\text {CIN }}\right)=32 \mathrm{kHz} \end{aligned}$ Output transistors off Comparator operating				10	mA
		In high-speed operation mode $f\left(X_{\text {IN }}\right)=4 \mathrm{MHz}$ (in WIT state) $f\left(X_{\mathrm{CIN}}\right)=32 \mathrm{kHz}$ Output transistors off Comparator stopped			1		mA
		In low-speed operation mode $f\left(X_{\text {IN }}\right)=$ stopped $f\left(X_{\text {CIN }}\right)=32 \mathrm{kHz}$ Low-power dissipation mode set $\left(\mathrm{CM}_{5}=0\right)$ Output transistors off			60	200	$\mu \mathrm{A}$
		In low-speed operation mode $\mathrm{f}\left(\mathrm{X}_{\mathrm{IN}}\right)=$ stopped $f\left(X_{\text {CIN }}\right)=32 \mathrm{kHz}$ (In WIT state) Low-power dissipation mode set (CM5 $=0$) Output transistors off			20	40	$\mu \mathrm{A}$
		All oscillation stopped (in STP state) Output transistors off	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$		0.1	1.0	$\mu \mathrm{A}$
			$T_{a}=85^{\circ} \mathrm{C}$			10	

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

COMPARATOR CHARACTERISTICS
($\mathrm{V}_{\mathrm{CC}}=4.0$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-10$ to $85^{\circ} \mathrm{C}$, high-speed operation mode, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Unit
			Min.	Typ	Max	
-	Resolution				4	Bits
-	Absolute accuracy				1/2	LSB
TCONV	Conversion time				7	$\mu \mathrm{S}$
$\mathrm{l}_{\text {IA }}$	Analog port input current				5.0	$\mu \mathrm{A}$
$\mathbf{R}_{\text {LADDER }}$	Ladder resistor			30		k Ω

TIMING REQUIREMENTS ($\mathrm{V}_{\mathrm{CC}}=4.0$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathbf{a}}=-10$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Unit
			Mın	Typ	Max	
$\mathrm{t}_{\mathbf{W}}(\overline{\text { RESET }}$)	Reset input "L" pulse width		2			$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{C}(\mathrm{X} \mid \mathrm{N})}$	Main clock input cycle time ($\mathrm{X}_{\text {IN }}$ input)		238			ns
$t_{\text {WH(} \mathrm{XIN}^{\prime} \text {) }}$	Main clock input "H" pulse width		60			ns
$\mathrm{t}_{\left.\mathrm{WL} \text { (} \mathrm{X}_{1 / \mathrm{N}}\right)}$	Main clock input "L" pulse width		60			ns
$\mathrm{t}_{\mathrm{C}\left(\mathrm{X}_{\mathrm{CIN}}\right)}$	Sub clock input cycle time ($\mathrm{X}_{\text {CIN }}$)		2.0			ms
$t_{w(X C I N)}$	Sub' clock input pulse width ($\mathrm{X}_{\text {CIN }}$)		1.0			ms
$t_{\text {c }}$ (CNTR)	CNTR input cycle time		4			$\mu \mathrm{s}$
$\mathrm{t}_{\text {WH (CNTR) }}$	CNTR input "H" pulse width		1.6			$\mu \mathrm{s}$
$\mathrm{t}_{\text {WL (CNTR) }}$	CNTR input "L" pulse width		1.6			$\mu \mathrm{s}$
$\mathrm{t}_{\text {WH }}$ (INT)	$1 \mathrm{NT}_{0} \sim \mathrm{INT}_{2}$ input "H" pulse width		80			ns
$\mathrm{t}_{\text {WL(INT }}$	INTo $\sim 1 N T_{2}$ input "L" pulse width		80			ns
$\mathrm{t}_{\mathrm{C}}\left(\mathrm{SCLK}^{\text {a }}\right.$	Serial clock input cycle tıme		1		1000	$\mu \mathrm{s}$
$\mathrm{t}_{\text {WH }}$ (SCLK)	Serial clock input "H" pulse width		40	1		\%
$\mathrm{t}_{\text {WL (SCLK }}$	Serial clock input "L" puise width		40			\%
$\mathrm{tr}_{\text {(}}^{\text {SCLK }}$)	Serial clock input clock rise time		5		50	ns
$\mathrm{tr}_{\text {(SCLK }}$)	Serial clock input clock fall time		5		40	ns
th(SCLK-SiN)	Serial input hold time		0.2tc			ns
$\mathrm{t}_{\text {Su }}\left(\right.$ SCLK-SIN $^{\text {a }}$	Serial input setup time		0.2 tc			ns

SWITCHING CHARACTERISTICS ($\mathrm{V}_{\mathrm{CC}}=4.0$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-10$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Unit
			Min	Typ	Max	
$\mathrm{t}_{\mathbf{W H} \text { (} \text { ScLK }}$	Serial clock output "H" pulse width	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	$\mathrm{t}_{\mathrm{c}} / 2-160$			ns
$t_{\text {WL (SCLK }}$	Serial clock output "L" pulse width	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	$\mathrm{t}_{\mathrm{C}} / 2-160$			ns
$t_{\text {d(sclK-SOUT }}$)	Serial clock delay time				$0.2 t_{c}$	ns
t_{V} (SCLK-SOUT)	Serial clock hold tıme		0			ns
$t_{f}($ SCLK)	Serial clock output fall time	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$			40	ns
$\mathrm{tr}_{\text {(}}^{\text {ch }}$ - strg)	P-channel high-breakdown voltage output rise time (Note 1)	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{V}_{\mathrm{EE}}=\mathrm{V}_{\mathrm{CC}}-36 \mathrm{~V}$		55		ns
$\mathrm{t}_{\mathrm{r}}\left(\mathrm{P}_{\text {ch-weak }}\right)$	P-channel high-breakdown voltage output fall tıme (Note 2)	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{V}_{\mathrm{EE}}{ }^{\prime} \mathrm{V}_{\mathrm{CC}}-36 \mathrm{~V}$		1.8		ns

Note 1. When bit 0 of the high-breakdown voltage port control register (address 0038_{16}) is at " 0 "
2. When bit 0 of the high-breakdown voltage port control register (address 0038_{16}) is at " 1 "

Serial clock output port

P-channel output port

Fig. 27 Output switching characteristics measurement circuit

MITSUBISHI MICROCOMPUTERS
 M3810x Group

TIMING CHART

$$
X_{\text {IN }}
$$

MITSUBISHI MICROCOMPUTERS M3811x Group

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

DESCRIPTION

The M3811x group is made up of 8-bit microcomputers based on the MELPS 740 core.
The M3811x group is designed mainly for VCR timer/function control, and include four 8-bit timers, a fluorescent display automatic display circuit, a PWM function, and a comparator.
The various microcomputers in the M3811x group include variations of internal memory size and packaging. For details, see the section on part numbering.
For details on availability of microcomputers in the M3811x group, see the section on group expansion.

FEATURES

- Basic machine-language instructions........................ 71
- Instruction execution time $0.95 \mu \mathrm{~s}$
(shortest instruction at 4.19 MHz oscillation frequency)
- Memory size

ROM .. 4K to 32K bytes
RAM \cdot... 192 to 1024 bytes

- Programmable input/output ports 27
- High-breakdown-voltage output ports 28
- Interrupts …............................. 14 sources, 12 vectors
- Timers 8 -bit×4
- Serial I/O......................... Clock-synchronized 8-bit×2 (Serial I/O1 has an automatic data transfer function)

- Fluorescent display function

Segments ….. 8 to 16
Digits ... 8 to 16

- 2 Clock generation circuit

Clock ($\mathrm{X}_{\text {IN }}-\mathrm{X}_{\text {OUT }}$) $\cdots \cdots \cdots \cdots \cdots$.......... nternal feedback amplifier
Sub clock ($\mathrm{X}_{\mathrm{CIN}}-\mathrm{X}_{\mathrm{COUT}}$) $\cdots \cdots$. Internal amplifier without feedback

- Supply voltage
4.0 to 5.5 V
- Low power dissipation

In high-speed operation 25 mW
(at 4.19 MHz oscillation frequency)
In low-speed operation
$300 \mu \mathrm{~W}$
(at 32 kHz oscillation frequency)

- Operating temperature range
-10 to $85^{\circ} \mathrm{C}$

APPLICATIONS

VCRs, tuners, musical instruments, office automation, etc.

PIN CONFIGURATION (TOP VIEW)

> Package type $: 64 \mathrm{P} 6 \mathrm{~N}$
> 64-pin plastic molded QFP

PIN CONFIGURATION (TOP VIEW)

Outline 64P4B
64-pin shrink plastic molded DIP

M3811x Group

sy3ındwooozoiw ihsiansilw

PIN DESCRIPTION

Pin	Name	Function	Alternate Function
$\mathrm{V}_{\mathrm{cc}}, \mathrm{V}_{\text {ss }}$	Power supply	Power supply inputs 40 to 5.5 V to V_{cc}, and OV to $\mathrm{V}_{\text {ss }}$.	
$\mathrm{V}_{\text {EE }}$	Pull-down power input	Applies voltage supplied to pull-down resistors of ports $\mathrm{P} 0, \mathrm{P} 1, \mathrm{P}_{2}-\mathrm{P}_{3}$ and P 3 .	
RESET	Reset input	To reset the microcomputer, this pin should be kept at an "L" level for more than 2μ s under high-speed operating conditions. In low-speed operation start mode, internal reset is not released until the $\mathrm{X}_{\mathrm{CIN}}-\mathrm{X}_{\text {COUT }}$ clock has had time to stabilize	
$\mathrm{XIN}_{\text {IN }}$	Clock input	Input and output signals for the internal clock generation circuit. It consist of internal feedback amplifier Connect a ceramic resonator or quartz crystal between the $X_{I N}$ and $X_{\text {OUT }}$ pins to set the oscillation frequency if an external clock is used, connect the clock source to the $\mathrm{X}_{\text {IN }}$ pin and leave the $\mathrm{X}_{\text {OUT }}$ pin open This clock is used as system clock	
$\mathrm{X}_{\text {OUT }}$	Clock output		
$\mathrm{X}_{\text {cin }}$	Sub clock input	Input and output signals for the internal sub clock generation circuit it consist of internal amplifier without feedback Connect a ceramic resonator or quartz crystal and external feedback resistor between the $X_{\text {CIN }}$ and $X_{\text {Cout }}$ pins if an external clock is used, connect the clock source to the $X_{\text {CIN }}$ pin and leave the $X_{\text {Cout }}$ pin open This clock can also be used as the system clock.	
$\mathrm{X}_{\text {cout }}$	Sub clock output		
$\begin{aligned} & \mathrm{PO}_{0} / \mathrm{SEG}_{8} / \\ & \mathrm{DIG}_{0^{-}} \\ & \mathrm{PO}_{7} / \mathrm{SEG}_{15} / \\ & \mathrm{DIG}_{7} \end{aligned}$	Output port P0	An 8-bit output port The output structure is high-breakdown-voltage P-channel open drain with internal pull-down resistors connected between the output and the $V_{E E}$ pIn Are " L " at reset.	FLD automatic display pıns
$\begin{aligned} & \mathrm{P}_{10} / \mathrm{DIG}_{8}- \\ & \mathrm{P} 17^{7} / \mathrm{DIG}_{15} \end{aligned}$	Output port P1	An 8-bit output port with the same function as port P0.	FLD automatic display pins
$\begin{aligned} & \mathrm{P}_{0} / \mathrm{DIG}_{16}- \\ & \mathrm{P}_{3} / \mathrm{DIG}_{19} \end{aligned}$	Output port	A 4-bit output port with the same function as port P0	FLD automatic display pins
$\mathrm{P}_{2}-\mathrm{P} 2_{7}$	1/O port P2	A 4-bit CMOS I/O port An I/O direction register allows each pin to be individually programmed as either input or output. At reset this port is set to input mode The input levels are TTL compatible	
$\begin{aligned} & \mathrm{P3}_{0} / \mathrm{SEG}_{0}- \\ & \mathrm{P3}_{7} / \mathrm{SEG}_{7} \end{aligned}$	Output port P3	An 8-bit output port with the same function as port P0	FLD automatic dısplay pins
$\mathrm{P}_{4} / \mathrm{INT}_{0}$	Input port P40	A 1-bit CMOS input pin	External interrupt input pin
$\begin{aligned} & \mathrm{P}_{1} / \mathrm{INT}_{1}, \\ & \mathrm{P}_{2} / \mathrm{INT}_{2} \end{aligned}$	I/O port P4	A 7-bit CMOS I/O port with the same function as port $\mathrm{P}_{4}{ }_{4}$ $\mathrm{P}_{2}{ }_{7}$, with CMOS compatible input levels	External interrupt input pins
$\mathrm{P4}_{3}, \mathrm{P4}_{4}, \mathrm{P4}_{6}$			
P45/CNTR			Event count input pin
$\mathrm{P}_{47} / \mathrm{T}_{\text {out }}$			Timer output pin
$\begin{aligned} & \mathrm{P}_{5} / \mathrm{S}_{\mathrm{IN} 1}, \\ & \mathrm{P}_{1} / \mathrm{S}_{\mathrm{ouT} 1}, \\ & \mathrm{P}_{2} / \mathrm{S}_{\mathrm{CLK} 11}, \\ & \mathrm{P}_{3} / \overline{\mathrm{S}} \mathrm{RD1} 1 / \\ & \hline \mathrm{CS} / \mathrm{S}_{\mathrm{CLK} 12} \end{aligned}$	I/O port P5	An 8-bit I/O port with the same function as port $\mathrm{P}_{4}-\mathrm{P} 2_{7}$ The output structure of this port is N -channel open drann, and the input levels are CMOS compatible Keep the input voltage of this port between OV and V_{Cc}.	Serial 1/01 1/O pins
$\begin{aligned} & \mathrm{P5}_{4} / \mathrm{S}_{\mathrm{IN} 2}, \\ & \mathrm{PS}_{5} / \mathrm{S}_{\mathrm{ouT} 2}, \\ & \mathrm{P5}_{6} / \mathrm{S}_{\mathrm{CLK} 2}, \\ & \mathrm{P}_{5} / \overline{\mathrm{S}_{\mathrm{RDY} 2}} \end{aligned}$			Serial I/O2 I/O pins

PIN DESCRIPTION

Pin	Name	Function	Alternate Function
P60/PWM	I/O port P6	An 8-bit CMOS I/O port with the same function as port $\mathrm{P}_{4}-\mathrm{P} 2_{7}$, with CMOS compatible input levels.	14-bit PWM output pins
P6 $\mathbf{1}_{1}$ P6 $6_{5}, \mathrm{P6}_{7}$			
P66/AN			Comparator input pin

PART NUMBERING

GROUP EXPANSION

Mitsubishi plans to expand the M3817x group as follows:
(1) Support for mask ROM, one-time programmable, and EPROM versions

RAM size .. 384 to 640 bytes
(3) Packages

64P4B Shrink plastic molded DIP
64P6N Plastic molded QFP
64S1B Window type shrink ceramic DIP
80D0Window type ceramic LCC

Memory Expansion Plan

The development schedule and other details of products under development may be revised without notice.

Currently supported products are listed below.
As of March 1992

Product name	(P) ROM size (bytes)	RAM size (bytes)	Package	Remarks
M38112M4-XXXSP	16K	' 382	64P4B	Mask ROM version
M38112E4-XXXSP				One-time programmable version
M38112E4SP				One-time programmable version (blank)
M38112E4SS			64S1B	EPROM version
M38112M4-XXXFP				Mask ROM version
M38112E4-XXXFP			64P6N	One-time programmable version
M38112E4FP				One-time programmable version (blank)
M38112E4FS			64D0	EPROM version

FUNCTIONAL DESCRIPTION CENTRAL PROCESSING UNIT (CPU)

Microcomputers of the M3811x group use the standard MELPS 740 instruction set. Refer to the table of MELPS 740 addressing modes and machine instructions or the MELPS 740 Software Manual for details on the instruction set.
Machine-resident MELPS 740 instructions are as follows:
The FST and SLW instructions are not available for use.
The STP, WIT, MUL, and DIV instructions can be used.

CPU MODE REGISTER

The CPU mode register is allocated to address $003 \mathrm{~B}_{16}$. Bits 0 and 1 of this register are processor mode bits and should always be set to " 0 ".
The CPU mode register contains the stack page selection bit.
For details of the $X_{\text {cout }}$ drivability selection bit, main clock stop bit, and internal system clock selection bit, see the section on the clock qeneration circuit.

Fig. 1 Structure of CPU mode register

MEMORY

- Special Function Register (SFR) Area

The Special Function Register area contains registers which control functions such as I/O ports and timers, and is located in the zero page area.

- RAM

RAM is used for data storage as well for stack area.

- ROM

The first 128 bytes and the last two bytes of ROM are reserved for device testing and the rest is user area for storing programs.

- Interrupt Vector Area

The interrupt vector area contains reset and interrupt vectors.

- Zero Page

The 256 bytes from addresses 0000_{16} to $00 \mathrm{FF}_{16}$ are called the zero page area. The internal RAM and the special function registers (SFR) are allocated to this area. The zero page addressing mode can be used to specify memory and register addresses in the zero page area. This dedicated zero page addressing mode enables access to this area with only 2 bytes.

- Special Page

The 256 bytes from addresses FFOO_{16} to FFFF_{16} are called the special page area. The special page addressing mode can be used to specify memory addresses in the special page area. This dedicated special page addressing mode enables access to this area with only 2 bytes.

Fig. 2 Memory map diagram

Fig. 3 Memory map of special function register (SFR)

I/O PORTS

- Direction Registers

The M3811x group microprocessors have 27 programmable I/O pins arranged in four I/O ports (ports $\mathrm{P}_{2}-\mathrm{P} 2_{7}$, $\mathrm{P} 4_{1}-\mathrm{P} 4_{7}, \mathrm{P} 5$ and P 6). The $1 / \mathrm{O}$ ports have direction registers which determine the input/output direction of each individual pin. Each bit in a direction register corresponds to one pin, each pin can be set to be input or output.
When " 0 " is written to the bit corresponding to a pin, that pin becomes an input pin. When " 1 " is written to that bit, that pin becomes an output pin.
If data is read from a pin which is set for output, the value of the port output latch is read, not the value of the pin itself. Pins set to input are floating. If a pin set to input is written to, only the port output latch is written to and the pin remains floating.

- High-Breakdown-Voltage Output Ports

The M3811x group microprocessors have four ports with high-breakdown-voltage pins (ports $\mathrm{P} 0, \mathrm{P} 1, \mathrm{P}_{2}-\mathrm{P} 2_{3}, \mathrm{P} 3$). The high-breakdown-voltage ports have P -channel open drain output with a breakdown voltage of $\mathrm{V}_{\mathrm{CC}}-40 \mathrm{~V}$. Each pin in Ports P0, P1, $\mathrm{P}_{0}-\mathrm{P}_{3}$ and P 3 has an internal pulldown resistor connected to V_{EE}. At reset, the P-channel output transistor of each port latch is turned off, so it is forced to the level of V_{EE} by the pull-down resistor.
Writing " 1 " to bit 0 of the high-breakdown-voltage port control register(address 0038_{16}) slows the transition of the output transistors to reduce transient noise. At reset, bit 0 of the high-breakdown-voltage port control register is set to " 0 ". (strong drive).

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

Pin	Name	Input/Output	1/O Format	Non-Port Function	Related SFRs	Diagram No.
$\begin{aligned} & \mathrm{PO}_{0} / \mathrm{SEG}_{8} / \\ & \mathrm{DIG}_{0^{-}} \\ & \mathrm{PO}_{7} / \mathrm{SEG}_{15} / \\ & \mathrm{DIG}_{7} \end{aligned}$	Port PO	Output	High-breakdownvoltage P-channel open-drain output with pull-down resistor	FLD automatic display function	FLDC mode register Segment/digıt switching register High-breakdownvoltage port control register	(1)
$\begin{aligned} & \mathrm{P}_{0} / \mathrm{DIG}_{8}- \\ & \mathrm{P}_{7} / \mathrm{DIG}_{15} \end{aligned}$	Port P1	Output	High-breakdownvoltage P-channel open-drain output with pull-down resistor	FLD automatic display function	FLDC mode register High-breakdownvoltage port control register	(2)
$\begin{aligned} & \mathrm{P}_{0} / \mathrm{DIG}_{16}- \\ & \mathrm{P}_{3} / \mathrm{DIG}_{19} \end{aligned}$	Port P2	Output	High-breakdownvoltage P-channel open-drain output with pull-down resistor	FLD automatic display function	FLDC mode register Digit/port switchıng regıster High-breakdownvoltage port control regıster	(3)
$\mathrm{P} 24_{4}-\mathrm{P} 27$		Input/output, individual bits	TTL level input CMOS 3-state output			(4)
$\begin{aligned} & \mathrm{P3}_{0} / \mathrm{SEG}_{0}- \\ & \mathrm{P}_{7} / \mathrm{SEG}_{7} \end{aligned}$	Port P3	Output	High-breakdownvoltage P-channel open-drain output with pull-down resistor	FLD automatic display function	FLDC mode register High-breakdownvoltage port control register	(5)
$\mathrm{P} 4_{0} / \mathrm{INT}_{0}$	Port P4	Input	CMOS level input	External interrupt input	Interrupt edge selection register	(6)
$\begin{aligned} & \mathrm{P}_{4} / \mathrm{INT}_{1}, \\ & \mathrm{P}_{2} / \mathrm{INT}_{2} \end{aligned}$		Input/output, individual bits	CMOS level input CMOS 3-state output	External interrupt input	Interrupt edge selection register	(7)
$\mathrm{P4}_{3}, \mathrm{P4}_{4}, \mathrm{P4}_{6}$						(4)
P45/CNTR				Event count input	Timer 34 mode register	(7)
$\mathrm{P} 47 / \mathrm{T}_{\text {OUT }}$				Timer 3 output	Tımer 34 mode register	(8)
$\mathrm{P} 50 / \mathrm{S}_{\mathrm{IN} 1}$,	Port P5	Input/output, individual bits	CMOS level input N -channel open-drain output	Serial I/O1 function I/O	Serial 1/O1 control register Serial I/O automatic transfer control regıster	(9)
$\begin{aligned} & \mathrm{P} 5_{1} / \mathrm{S}_{\mathrm{OUT} 1}, \\ & \mathrm{P5}_{2} / \mathrm{S}_{\mathrm{CLK} 1}, \end{aligned}$						(10)
$\begin{aligned} & \mathrm{P5}_{3} / \overline{\mathrm{S}_{\mathrm{RDY} 1}} / \\ & \mathrm{CS} / \mathrm{S}_{\mathrm{CLK} 12} \end{aligned}$						(11)
$\mathrm{P}_{54} / \mathrm{S}_{\text {IN } 2}$,				Serial I/O2 function I/O	Serial I/O2 control regıster	(9)
$\mathrm{P5}_{5} / \mathrm{S}_{\text {OUT2 }}$, $\mathrm{P5}_{6} / \mathrm{S}_{\text {CLK2 }}$,						(10)
$\mathrm{P} 57^{/} \overline{\mathrm{S}_{\mathrm{RDY} 2}}$						(11)
P6 ${ }_{0}$ /PWM	Port P6	Input/output, individual bits	CMOS level input CMOS 3-state output	14-bit PWM output	PWM mode register PWML register PWMH register	(12)
$\mathrm{P6} 6_{1}-\mathrm{P6} 6_{5}, \mathrm{P} 6_{7}$						(4)
$\mathrm{P} 6_{6} / \mathrm{AN}$				Comparator input	Comparator register	(13)

Note. Make sure that the input level at each pin is either $O V$ or $V_{C C}$ during execution of the STP instruction
If an input level is at an intermediate potential, a current will flow in the input-stage gate

(2) Port P1

(3) Port $\mathrm{P2}_{0}-\mathrm{P}_{3}$

(4) Port $\mathrm{P2}_{4}-\mathrm{P} 2_{7}, \mathrm{P4}_{3}, \mathrm{P4}_{4}, \mathrm{P4}_{6}, \mathrm{P6}_{1}-\mathrm{P6}_{5}, \mathrm{P6}_{7}$

(6) Port P_{4}

(7) Port $\mathbf{P 4}_{1}, \mathrm{P4}_{2}, \mathbf{P 4} 5$

* : High-breakdown-voltage P-channel transistor

Note. The dimmer signal sets the Toff timing

Fig. 4 Port block diagram (1)

Fig. 5 Port block diagram (2)

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

INTERRUPTS

A total of 14 source can generate interrupts: 4 external, 9 internal, and 1 software.

- Interrupt Control

Each interrupt is controlled by its interrupt request bit, its interrupt enable bit, and the interrupt disable flag except for the software interrupt set by the BRK instruction. An interrupt is generated if the corresponding interrupt request and enable bits are " 1 " and the interrupt disable flag is " 0 ".
Interrupt enable bits can be set or cleared by software.
Interrupt request bits can be cleared by software, but cannot be set by software.
The I flag disables all interrupts except for the BRK instruction interrupt.

- Interrupt Operation

When an interrupt is received, the program counter and processor status register are automatically pushed onto the stack. The interrupt disable flag is set to inhibit other interrupts from interfering. The corresponding interrupt request bit is cleared and the interrupt jump destination address is read from the vector table into the program counter.

- Notes on Use

If you will change interrupt edge selection from rising edge to falling edge, interrupt request bit will be set to " 1 " automatically. Therefore, please make following process;
(1) Disable INT which is selected.
(2) Change INT edge selection.
(3) Clear interrupt request which is selected.
(4) Enable INT which is selected.

Table 1. Interrupt vector addresses and priorities

Interrupt Cause	Priority	Vector Address (Note 1)		Interrupt Request Generation Conditions	Remarks
		High	Low		
Reset (Note 2)	1	FFFD_{16}	FFFC $_{16}$	At reset	Non-maskable
INTo	2	FFFB_{16}	FFFA $_{16}$	At detection of either rising or falling edge of INTo input	External interrupt (active edge selectable)
INT_{1}	3	FFF9 ${ }_{16}$	FFF8 ${ }_{16}$	At detection of either rising or falling edge of INT_{1} input	External interrupt (active edge selectable)
INT ${ }_{2}$	4	FFF7 ${ }_{16}$	FFF6 ${ }_{16}$	At detection of either rising or falling edge of INT_{2} input	External interrupt (active edge selectable)
Serial I/O1	5	FFF5 ${ }_{16}$	FFF4 ${ }_{16}$	At end of data transfer	Valid when serial 1/O normal mode is selected
Serial I/O automatic transfer				At end of final data transfer	Valid when serial I/O automatic transfer mode is selected
Serial I/O2	6	$\mathrm{FFF3}_{16}$	FFF2 ${ }_{16}$	At end of data transfer	
Timer 1	7	FFF1 ${ }_{16}$	FFFO_{16}	At timer 1 overflow	
Timer 2	8	FFEF_{16}	FFEE_{16}	At timer 2 overflow	STP release timer overflow
Timer 3	9	FFED $_{16}$	FFEC $_{16}$	At timer 3 overflow	
Timer 4	10	FFEB_{16}	FFEA $_{16}$	At timer 4 overflow	
CNTR	11	FFE9 ${ }_{16}$	FFE8 ${ }_{16}$	At detection of either rising or falling edge of CNTR input	External interrupt (active edge selectable)
FLD blanking	12	FFE5 ${ }_{16}$	FFE4 ${ }_{16}$	At fall of final digit	Valid when FLD blanking interrupt is selected
FLD digit				At rise of each digit	Valid when FLD digit interrupt is selected
BRK instruction	13	FFDD_{16}	FFDC ${ }_{16}$	At BRK instruction execution	Non-maskable software interrupt

Note 1. Vector addresses contain interrupt jump destination addresses.
2. Reset function in the same way as an interrupt with the highest priority.

MITSUBISHI MICROCOMPUTERS M3811x Group

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

Fig. 6 Interrupt control

Fig. 7 Structure of interrupt-related registers

TIMERS

Microcomputers of the M3811x group have four built-in timers. The timers count down. Once a timer reaches 00_{16}, the next count pulse loads the contents of the corresponding timer latch into the timer, and sets the corresponding interrupt request bit to 1 . Each timer also has a stop bit that stops the count of that timer when it is set to " 1 ".
Note that the system clock ϕ can be set to either highspeed mode or low-speed mode by the CPU mode register.

- Timer 1 and Timer 2

The count sources of timer 1 and timer 2 can be selected by setting the timer 12 mode register.
When the chip is reset or the STP instruction is executed, all bits of the timer 12 mode register are cleared, timer 1 is set to FF_{16}, and timer 2 is set to 01_{16}.

- Timer 3 and Timer 4

The count sources of timer 3 and timer 4 can be selected by setting the timer 34 mode register.
Timer 3 can also output a rectangular waveform from the $\mathrm{P}_{7} / \mathrm{T}_{\text {Out }} \mathrm{pin}$. The waveform changes polarity each time timer 3 overflows.
When Timer 4 is assigned to external event count mode, rising edge is active.

Fig. 8 Structure of timer-related registers

MITSUBISHI MICROCOMPUTERS
 M3811x Group

Fig. 9 Timer block diagram

SERIAL 1/O
Microcomputers of the M3811x group have two built-in 8-bit clock synchronized serial I/O channels (serial I/O1 and serial I/O2).
Serial I/O1 has a built-in automatic transfer function.Normal serial operation can be set via the serial I/O automatic transfer control register (address $001 \mathrm{~A}_{16}$).

Serial I/O2 can only be used in normal operation mode.
The I/O pins of the serial I/O function also operate as I/O port P5, and their operation is selected by the serial I/O control registers (addresses 0019_{16} and $001 \mathrm{D}_{16}$).

Fig. 10 Serial I/O block diagram
(Serial I/O Control Registers) SIO1CON, SIO2CON Each of the serial I/O control registers (addresses 0019_{16} and $001 \mathrm{D}_{16}$) contains seven bits that select various control parameters of the serial I/O function.

Fig. 11 Structure of serial I/O control registers
(1) Operation in Normal Serial I/O Mode

Either an internal clock or an external clock can be selected as the synchronization clock for serial 1/O transfer. A dedicated divider is built-in as the internal clock, giving a choice of six clocks.
If internal clock is selected, transfer start is activated by a write signal to a serial $1 / O$ register (address $001 \mathrm{~B}_{16}$ or $001 \mathrm{~F}_{16}$). After eight bits have been transferred, the $S_{\text {out }}$ pin goes to high impedance.

If external clock is selected, the clock must be controlled externally because the contents of the serial $1 / 0$ register continue to shift while the transfer clock is input. In this case, note that the Sout pin does not go to high impedance at the completion of data transfer. The interrupt request bit is set at the end of the transfer of eight bits, regardless of whether the internal or external clock is selected.

Interrupt request bit set
Note. If internal clock is selected, the $\mathrm{S}_{\text {оut }}$ pin is at high impedance after transfer ends.

Fig. 12 Serial I/O timing in normal mode (for LSB first)
(2) Serial I/O Automatic Transfer Mode

The serial I/O1 function has an automatic transfer function. For automatic transfer, switch to the automatic transfer mode by setting the serial I/O automatic transfer control register (address $001 \mathrm{~A}_{16}$).
The following memory spaces are added to the circuits used for the serial 1/O1 function in ordinary mode, to enable automatic transfer mode:

- 32 bytes of serial I/O automatic transfer RAM
- A serial I/O automatic transfer control register
- A serial I/O automatic transfer interval register
- A serial I/O automatic transfer data pointer

When using serial I/O automatic transfer, set the serial I/O control register (address 0019_{16}) in the same way as for ordinary mode. However, note that if external clock is selected and bit 4 (the $\overline{\mathrm{S}_{\mathrm{RDY}}}$ output selection bit) of the serial I/O1 control register is set to "1", port $\mathrm{P5}_{3}$ becomes the $\overline{\mathrm{CS}}$ input pin.

(Serial I/O Automatic Transfer Control Register) SIOAC

The serial I/O automatic transfer control register (address $001 \mathrm{~A}_{16}$) contains four bits that select various control parameters for automatic transfer.

Fig. 13 Structure of serial I/O automatic transfer control register

MITSUBISHI MICROCOMPUTERS
 M3811x Group

(Serial I/O Automatic Transfer Data Pointer) SIODP
The serial I/O automatic transfer data pointer (address $0018{ }_{16}$) contains five bits that indicate addresses in serial I/O automatic transfer RAM (each address in memory is actually the value in the serial I/O automatic transfer data pointer plus 0100_{16}).
Set the serial $1 / O$ automatic transfer data pointer to (the number of transfer data-1), to specify the storage position of the start of data.

- Serial I/O Automatic Transfer RAM

The serial I/O automatic transfer RAM is the 32 bytes from address 0100_{16} to address $011 \mathrm{~F}_{16}$.

Fig. 14 Bit allocation of serial I/O automatic transfer RAM

Fig. 15 Serial I/O automatic transfer interval timing

- Setting of Serial I/O Automatic Transfer Timing

Use the serial I/O1 control register (address 0019_{16}) and the serial I/O automatic transfer interval register (address $001 \mathrm{C}_{16}$) to set the timing of serial I/O automatic transfer.
The serial I/O1 control register sets the transfer clock speed, and the serial I/O automatic transfer interval register sets the serial I/O automatic transfer interval.
This setting of transfer interval is valid only when internal clock is selected as the clock source.

- Start of Serial I/O Automatic Transfer

Automatic transfer mode is set by writing " 1 " to bit 0 of the serial I/O automatic transfer control register (address $001 \mathrm{~A}_{16}$), then automatic transfer starts when " 1 " is written to that bit. Bit 1 of the serial I/O automatic transfer control register is always " 1 " during automatic transfer; writing " 0 " to it is one way to end automatic transfer.

- Operation in Serial I/O Automatic Transfer Modes

There are two modes for serial I/O automatic transfer: full duplex mode and transmit-only mode. Either internal or external clock can be selected for each of these modes.

(2.1) Operation in Full Duplex Mode

In full duplex mode, data can be transmitted and received at the same time. Data in the automatic transfer RAM is sent in sequence and simultaneously receive data is written to the automatic transfer RAM, in accordance with the serial I/O automatic transfer data pointer.
The transfer timing of each bit is the same as in ordinary operation mode, and the transfer clock stops at " H " after eight transfer clocks are counted. If internal clock is selected, the transfer clock remains at " H " for the time set by the serial I/O automatic transfer interval register, then the data at the next address indicated by the serial I/O automatic transfer data pointer is transferred. If external clock is selected, the setting of the automatic transfer interval register is invalid, so the user must ensure that the transfer clock is controlled externally.
Data transfer ends when the contents of the serial I/O automatic transfer pointer reach " 00_{16} ". At that point, the serial I/O automatic transfer interrupt request bit is set to " 1 " and bit 1 of the serial I/O automatic transfer control register is cleared to " 0 " to complete the serial I/O automatic transfer.

(2.2) Operation in Transmit-Only Mode

The operation in transmit-only mode is the same as that in full duplex mode, except that data is not transferred from the serial I/O1 register to the serial I/O automatic transfer RAM.

Fig. 16 Serial I/O1 register in fuil duplex mode

(2.3) If Internal Clock is Selected

If internal clock is selected, the $\mathrm{P}_{3} / \overline{\mathrm{S}_{\mathrm{RDY} 1}} / \overline{\mathrm{CS}} / \mathrm{S}_{\mathrm{CLK} 12}$ pin can be used as the $\overline{\mathrm{S}_{\text {RDY1 }}}$ pin by setting the SC_{4} bit to " 1 ". If internal clock is selected, the $\mathrm{P5}_{3}$ pin can be used as the synchronization clock output pin $\mathrm{S}_{\text {cLK12 }}$ by setting the SIOAC_{3} bit to " 1 ". In this case, the $\mathrm{S}_{\mathrm{CLK} 11}$ pin is at high impedance.
Select the function of the $\mathrm{P5}_{3} / \overline{\mathrm{S}_{\mathrm{RDY} 1}} / \overline{\mathrm{CS}} / \mathrm{S}_{\mathrm{CLK} 12}$ and $\mathrm{P5}_{2} /$ $\mathrm{S}_{\mathrm{CLK} 11}$ pins by setting bit $3\left(\mathrm{SC1}_{3}\right)$, bit $4\left(\mathrm{SC1}_{4}\right)$, and bit 6 $\left(S C 1_{6}\right)$ of the serial I/O1 control register (address 0011_{16}) and bit $3\left(\mathrm{SIOAC}_{3}\right)$ of the serial I/O automatic transfer control register (address $001 \mathrm{~A}_{16}$). (See Table 2.)

If using the $\mathrm{S}_{\text {CLK11 }}$ and $\mathrm{S}_{\text {CLK12 }}$ pins for switching, set the $\mathrm{P5}_{3} / \overline{\mathrm{S}_{\mathrm{RDY} 1}} / \overline{\mathrm{CS}} / \mathrm{S}_{\mathrm{CLK} 12}$ pin to $\mathrm{P5}_{3}$ by setting the $\mathrm{SC1}_{4}$ bit to " 0 ", and set the $\mathrm{P5}_{3}$ direction register to input mode.
Make sure that the SIOAC_{3} bit is switched after automatic transfer is completed, while the transfer clock is still " H ".

Table 2. $\mathrm{S}_{\mathrm{CLK} 11}$ and $\mathrm{S}_{\mathrm{CLK} 12}$ selection

$\mathrm{SC1}_{6}$	$\mathrm{SC1}_{4}$	SC_{3}	SIOAC_{3}	$\mathrm{P5}_{2} / \mathrm{S}_{\mathrm{CLK} 11}$	$\mathrm{P5}_{3} / \mathrm{S}_{\mathrm{CLK} 12}$
1	0	1	0	$\mathrm{~S}_{\mathrm{CLK} 11}$	$\mathrm{P5}_{3}$
	0	1	HIgh Impedanse	$\mathrm{S}_{\mathrm{CLK} 12}$	

Note. $\mathrm{SC1}_{3}$: Serial I/O1 port selection bit
$\mathrm{SC1}_{4}: \overline{\mathrm{S}_{\mathrm{RDY}}}$ output selection bit
$\mathrm{SC1}_{6}$: Synchronization clock selection bit SIOAC_{3} : Synchronization clock output pin selection bit

Fig. 17 Timing during serial I/O automatic transfer (internal clock selected, $\overline{\mathrm{S}_{\mathrm{RDY}}}$ used)

Fig. 18 Timing during serial I/O automatic transfer (internal clock selected, $\mathrm{S}_{\mathrm{CLK} 11}$ and $\mathrm{S}_{\mathrm{CLK} 12}$ used)

(2.4) If External Clock is Selected

If an external clock is selected, the internal clock and the transfer interval set by the serial I/O automatic transfer interval register are invalid, but the serial I/O output pin Sout and the internal transfer clock can be controlled from the outside by setting the $\overline{\mathrm{S}_{\mathrm{RDY}}}$ and $\overline{\mathrm{CS}}$ (input) pins.
When the $\overline{C S}$ input is " L ", the $S_{\text {out }}$ pin and the internal transfer clock are enabled. When the $\overline{C S}$ input is " H ", the $\mathrm{S}_{\text {out }}$ pin is at high impedance and the internal transfer clock is at " H ".
Select the function of the $\mathrm{P5}_{3} / \overline{\mathrm{S}_{\mathrm{RDY} 1}} / \overline{\mathrm{CS}} / \mathrm{S}_{\mathrm{CLK} 12}$ pin by setting bit $4\left(\mathrm{SC1}_{4}\right)$ and bit $6\left(\mathrm{SC1}_{6}\right)$ of the serial I/O1 control register (address 0019_{16}) and bit 0 (SIOAC_{0}) of the serial I/O automatic transfer control register (address 001 A_{16}).
Make sure that the $\overline{C S}$ pin switches from " L " to " H " or from " H " to " L " while the transfer clock ($\mathrm{S}_{\mathrm{cLK}}$ input) is " H " after one byte of data has been transferred.
If external clock is selected, make sure that the external clock goes " L " after at least nine cycles of the internal system clock ϕ after the start bit is set. Leave at least 11 cy cles of the system clock ϕ free for the transfer interval after one byte of data has been transferred.

If $\overline{\mathrm{CS}}$ input is not being used, note that the $\mathrm{S}_{\text {Out }}$ pin will not go high impedance, even after transfer is completed.
If $\overline{C S}$ input is not being used, or if $\overline{C S}$ is " L ", control the external clock because the data in the serial I/O register will continue to shift while the external clock is input, even after the completion of automatic transfer. (Note that the automatic transfer interrupt request bit is set and bit 1 of the automatic transfer register is cleared at the point at which the specified number of bytes of data have been transferred.)

Table 3. $\mathrm{P5}_{3} / \overline{\mathrm{S}_{\mathrm{ROY} 1}} / \overline{\mathrm{CS}}$ selection

SC_{6}	$\mathrm{SC1}_{4}$	SIOAC_{0}	$\mathrm{P5}_{3} / \overline{\mathrm{SBDY}_{1}} \overline{\mathrm{CS}}$
0	0	\times	$\overline{\mathrm{P5}_{3}}$
	1	0	$\overline{\mathrm{SRDY}^{1}}$
		1	$\overline{\mathrm{CS}}$

Note. $\mathrm{SC1}_{4}: \overline{\mathrm{S}_{\mathrm{RDY} 1}}$ output selection bit
$\mathrm{SC1}_{6}$: Synchronization clock selection bit
SIOAC $_{0}$: Automatic transfer control bit

Fig. 19 Timing during serial I/O automatic transfer (external clock selected)

PULSE WIDTH MODULATION (PWM) OUTPUT CIRCUIT

Microcomputers of the M3811x group have a PWM function with a 14-bit resolution. When the oscillation frequency $X_{\text {IN }}$ is 4 MHz , the minimum resolution bit width is 500 ns and the cycle period is $8192 \mu \mathrm{~s}$. The PWM timing generator supplies a PWM control signal based on a signal that is half the frequency of the $X_{\text {IN }}$ clock.

The explanation in the rest of this data sheet assumes $X_{I N}=$ 4 MHz .

Fig. 20 PWM block diagram

(1) Data Set-up

The PWM output pin also functions as port $\mathrm{P} 6_{0}$. Set port $\mathrm{P} 6_{0}$ to be the PWM output pin by setting bit 0 of the PWM mode register (address $002 \mathrm{~B}_{16}$). The upper eight bits of output data are set in the upper PWM register PWMH (address $002 \mathrm{C}_{16}$) and the lower six bits are set in the lower PWM register PWML (address $002 \mathrm{D}_{16}$).
(2) Transfer From Register to Latch

Data written to the PWML register is transferred to the PWM latch once in each PWM period (every $8192 \mu \mathrm{~s}$), and data written to the PWMH register is transferred to the PWM latch once in each sub-period (every $128 \mu \mathrm{~s}$). When the PWML register is read, the contents of the latch are read. However, bit 7 of the PWML register indicates. whether the transfer to the PWM latch is completed; the transfer is completed when bit 7 is " 0 ".

Table 4. Relationship between lower 6 bits of data and period set by the ADD bit

Lower 6 Bits of Data(PWML)	Sub-perıods tm Lengthened ($\mathrm{m}=0$ to 63)
$000000^{\text {LSB }}$	None
000001	$\mathrm{m}=32$
000010	$\mathrm{m}=16,48$
000100	$\mathrm{m}=8,24,40,56$
001000	$\mathrm{m}=4,12,20,28,36,44,52,60$
010000	$\mathrm{m}=2,6,10,14,18,22,26,30,34,38,42,46,50,54,58,62$
100000	$\mathrm{m}=1,3,5,7, \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots,{ }^{\text {c }}$, $57,59,61,63$

(3) PWM Operation

The timing of the 14-bit PWM function is shown in Fig. 23. The 14-bit PWM data is divided into the lower six bits and the upper eight bits in the PWM latch.

The upper eight bits of data determine how long an " H "level signal is output during each sub-period. There are 64 sub-periods in each period, and each sub-period is $256 \times$ $\tau(128 \mu \mathrm{~s})$ long. The signal is " H " for a length equal to N times τ, where τ is the minimum resolution (500 ns).

The contents of the lower six bits of data enable the lengthening of the high signal by τ (500 ns). As shown in Fig. 20, the six bits of PWML determine which sub-cycles are lengthened.
As shown in Fig. 23, the leading edge of the pulse is lengthened. By changing the length of specific sub-periods instead of simply changing the " H " duration, an accurate waveform can be duplicated without the use of complex external filters.

For example, if the upper eight bits of the 14-bit data are 03_{16} and the lower six bits are 05_{16}, the length of the " H "level output in sub-periods $\mathrm{t}_{8}, \mathrm{t}_{24}, \mathrm{t}_{32}, \mathrm{t}_{40}$, and t_{56} is 4τ, and its length 3τ in all other sub-periods.

Fig. 21 PWM timing

Fig. 22 Structure of PWM mode register

Fig. 23 14-bit PWM timing

MITSUBISHI MICROCOMPUTERS
 M3811x Group

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

COMPARATOR CIRCUIT

Comparator Configuration

The comparator circuit consists of a switch tree, ladder resistors, a comparator, a comparator control cricuit, a comparator register (address 0030_{16}), and an analog signal input pin ($\mathrm{P}_{6} / \mathrm{AN}$). The analog signal input pin ($\mathrm{Pb}_{6} / \mathrm{AN}$) also functions as an ordinary digital I/O port.

Comparator Register (CMP)

The comparator register is a 5 -bit register of which bits 0 to 3 can be used to generate internal refernce voltage in steps of $1 / 16 \mathrm{~V}_{\mathrm{CC}}$, The result of the comparision between the analog input voltage and an internal reference voltage is stored in bit 4 of comparator register.

Comparator Operation

To activate the comparator, first set port $\mathrm{P6}_{6}$ to input mode by setting the corresponding direction register (address $000 D_{16}$) to " 0 "-this ensures that port $\mathrm{P6}_{6} / \mathrm{AN}$ is used as an analog voltage input pin. Then write a digital value corresponding to the internal comparison voltage into bits 0 to 3 of the comparator register (address 0030_{16}). This write operation immediately activates the comparison. After 14 cycles of the system clock ϕ (the time required for the comparison), the comparison result is stored in bit 4 of the comparator.

If the analog input voltage is greater than the internal reference voltage, bit 4 is " 1 "; if it is less than the internal reference voltage, bit 4 is " 0 ". To perform another omparison, the comparator must be written to again, even if the same internal reference voltage is to be used.

Table 5. Correspondence between bits 0 to 3 of the comparator register and internal reference voltage

Comparator register				Internal reference voltage
Bit 3	Bit 2	Bit 1	Bit 0	
0	0	0	0	$1 / 32 V_{c c}$
0	0	0	1	$1 / 16 V_{c c}+1 / 32 V_{c c}$
0	0	1	0	$2 / 16 \mathrm{~V}_{c c}+1 / 32 \mathrm{~V}_{c c}$
0	0	1	1	$3 / 16 \mathrm{~V}_{\mathrm{cc}}+1 / 32 \mathrm{~V}_{\mathrm{cc}}$
0	1	0	0	$4 / 16 \mathrm{~V}_{\mathrm{cc}}+1 / 32 \mathrm{~V}_{\mathrm{cc}}$
0	1	0	1	$5 / 16 \mathrm{~V}_{c c}+1 / 32 \mathrm{~V}_{c c}$
0	1	1	0	$6 / 16 \mathrm{~V}_{\mathrm{cc}}+1 / 32 \mathrm{~V}_{\mathrm{cc}}$
0	1	1	1	$7 / 16 \mathrm{~V}_{\mathrm{cc}}+1 / 32 \mathrm{~V}_{\mathrm{cc}}$
1	0	0	0	$8 / 16 \mathrm{~V}_{C C}+1 / 32 \mathrm{~V}_{\mathrm{Cc}}$
1	0	0	1	$9 / 16 \mathrm{~V}_{\mathrm{cc}}+1 / 32 \mathrm{~V}_{\mathrm{cc}}$
1	0	1	0	$10 / 16 \mathrm{~V}_{c c}+1 / 32 \mathrm{~V}_{\mathrm{cc}}$
1	0	1	1	$11 / 16 \mathrm{~V}_{c c}+1 / 32 \mathrm{~V}_{c c}$
1	1	0	0	$12 / 16 \mathrm{~V}_{\mathrm{cc}}+1 / 32 \mathrm{~V}_{\mathrm{cc}}$
1	1	0	1	$13 / 16 \mathrm{~V}_{\mathrm{cc}}+1 / 32 \mathrm{~V}_{\mathrm{cc}}$
1	1	1	0	$14 / 16 \mathrm{~V}_{c c}+1 / 32 \mathrm{~V}_{c c}$
1	1	1	1	$15 / 16 \mathrm{~V}_{\mathrm{cc}}+1 / 32 \mathrm{~V}_{\mathrm{cc}}$

Fig. 24 Comparator circuit

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

FLD CONTROLLER

Microcomputers of the M3811x group have fluorescent display (FLD) drive and control circuits.
The FLD controller consists of the following components:

- 16 pins for segments
- 20 pins for digits
- FLDC mode register
- FLD data pointer
- FLD data pointer reload register
- Port P0 segment/digit switching register
- Port P2 digit/port switching register
- Key-scan blanking register
- 32-byte FLD automatic display RAM

Eight to sixteen pins can be used as segment pins and eight to sixteen pins can be used as digit pins.
Note that only 28 pins (maximum) can be used as segment and digit pins.

Fig. 25 FLD control circuit block diagram

FLDC Mode Register (FLDM)

The FLDC mode register (address 0016_{16}) is a seven bit control register which is used to control the FLD automatic display.

Key-scan Blanking Register (KSCN)

The key-scan blanking register (address 0015_{16}) is a two bit register which sets the blanking period $\mathrm{T}_{\text {scan }}$ between the last digit and the first digit of the next cycle.

Fig. 26 Structure of FLDC mode register (FLDM)

Fig. 27 Structure of key-scan blanking register (KSCN)

FLD Automatic Display Pins

The FLD automatic display function of Ports P0, P1, P2 ${ }_{0}{ }^{-}$ $P 2_{3}$, and $P 3$ is selected by setting the automatic display control bit of the FLDC mode register (address 0016_{16}) to
"1".
When using the FLD automatic display mode, set the number of segments and digits for each port.

Table 6. Pins in FLD automatic display mode

Port Name	Automatıc Display Pins	Setting Method
$\mathrm{P}_{3}-\mathrm{P} 3_{7}$	SEG_{0}-SEG $_{7}$	None (segment only)
$\mathrm{PO}_{0}-\mathrm{PO}_{7}$	$\begin{gathered} \mathrm{SEG}_{8}-\mathrm{SEG}_{15} \\ \text { or } \\ \mathrm{DIG}_{0}-\mathrm{DIG}_{7} \\ \hline \end{gathered}$	The individual bits of the segment/digit switching register (address 0012_{16}) can be used to set each pin to segment (" 1 ") or digit (" 0 ") (Note)
$\mathrm{P} 1_{0}-\mathrm{P} 1_{7}$	DIG_{8}-DIG ${ }_{15}$	None (digit only)
$\mathrm{P}_{2}-\mathrm{P} 2_{3}$	$\begin{gathered} \mathrm{DIG}_{16}-\mathrm{DIG}_{19} \\ \text { or } \\ \mathrm{P}_{2}-\mathrm{P}_{3} \\ \hline \end{gathered}$	The individual bits of the digit/port switching register (address 0014 ${ }_{16}$) can be used to set each pin to digit ("1") or normal port output ("0") (Note)

Note. Always set digits in sequence

Fig. 28 Segment/digit setting example

FLD Automatic Display RAM

The FLD automatic display RAM area is the 32 bytes from address 0040_{16} to $005 F_{16}$. The FLD automatic display RAM area can be used to store 2-byte data items for a maximum of 16 digits. Addresses 0040_{16} to $004 \mathrm{~F}_{16}$ are used for P3 segment data, addresses 0050_{16} to $005 \mathrm{~F}_{16}$ are used for P0 segment data.

- FLD Data Pointer and FLD Data Pointer Reload Register The FLD data pointer indicates the data address in the FLD automatic display RAM to be transferred to a segment, and the FLD data pointer reload register indicates the address of the first digit of segment P 0 .

Both the FLD data pointer and the FLD data pointer reload register are allocated to address 0017_{16} and are 5bits wide. Data written to this address is written to the FLD data pointer reload register, data read from this address is read from the FLD data pointer.
The actual memory address is the value of the data pointer plus $40_{16}, 50_{16}$.
The contents of the FLD data pointer indicate the start address of segment P0 at the start of automatic display. If segment PO data is transferred to the segment, the FLD data pointer returns - 16; if segment P3 data is transferred, it returns +15 . After it reaches " 00 ", the value in the FLD data pointer reload register is transferred to the FLD data pointer. In this way, two bytes of data for the P0 and P3 segments of one digit are transferred.

Address Bit	7	6	5	4	3	2	1	0	
$0040{ }_{16}$	SEG_{7}	SEG_{6}	SEG_{5}	SEG_{4}	SEG_{3}	SEG_{2}	SEG_{1}	SEG ${ }_{0}$	(final data of
$0041{ }_{16}$	SEG_{7}	SEG ${ }_{6}$	SEG ${ }_{5}$	SEG_{4}	SEG_{3}	SEG_{2}	SEG_{1}	SEG ${ }_{0}$	segment P3)
0041_{16}	SEG_{7}	SEG ${ }_{6}$	SEG ${ }_{5}$	SEG_{4}	SEG_{3}	SEG ${ }_{2}$	SEG ${ }_{1}$	SEG ${ }_{0}$	
-									Segment P3 data area
$004 \mathrm{D}_{16}$	SEG_{7}	SEG ${ }_{6}$	SEG ${ }_{5}$	SEG_{4}	SEG_{3}	SEG_{2}	SEG_{1}	SEG_{0}	
$004 \mathrm{E}_{16}$	SEG_{7}	SEG ${ }_{6}$	SEG_{5}	SEG_{4}	SEG_{3}	SEG ${ }_{2}$	SEG ${ }_{1}$	SEG ${ }_{0}$	
004F ${ }_{16}$	SEG_{7}	SEG_{6}	SEG ${ }_{5}$	SEG_{4}	SEG_{3}	SEG ${ }_{2}$	SEG ${ }_{1}$	SEG ${ }_{0}$	Final digit
$0^{0050}{ }_{16}$	SEG_{15}	SEG_{14}	SEG_{13}	SEG_{12}	SEG_{11}	SEG_{10}	SEG ${ }_{9}$	SEG_{8}	(final data of
$0051{ }_{16}$	SEG_{15}	SEG_{14}	SEG_{13}	SEG_{12}	SEG_{11}	SEG_{10}	SEG ${ }_{9}$	SEG_{8}	segment PO)
0052 ${ }_{16}$	SEG_{15}	SEG_{14}	SEG_{13}	SEG_{12}	SEG_{11}	SEG_{10}	SEG9	SEG_{8}	
\vdots \vdots									Segment P0 data area
$005 \mathrm{D}_{16}$	SEG_{15}	SEG_{14}	SEG_{13}	SEG_{12}	SEG_{11}	SEG_{10}	SEG9	SEG_{8}	
$005 \mathrm{E}_{16}$	SEG_{15}	SEG_{14}	SEG_{13}	SEG_{12}	SEG_{11}	SEG_{10}	SEG_{9}	SEG_{8}	
$005 \mathrm{~F}_{16}$	SEG_{15}	SEG_{14}	SEG_{13}	SEG_{12}	SEG_{11}	SEG_{10}	SEG ${ }_{9}$	SEG_{8}	

Fig. 29 FLD automatic display RAM and bit allocation

- Data Setup

When data is stored in the FLD automatic display RAM, the end of segment P3 data is stored at address 0040_{16}, and the end of segment PO data is stored at address 0050_{16}. The head of each of the segment P3 and P0 data is stored at an address that is the number of digits - 1 away from the corresponding address $0040_{16}, 0050_{16}$.

Set the FLD data pointer reload register to the value given by the number of digits -1 . " 1 " is always written to bit 4. Note that " 0 " is always read from bit 4 during a read.

For 12 segments and 16 digits
(FLD data pointer reload register $=15$)

$\begin{aligned} & \text { Bit } \\ & \text { Address } \end{aligned}$	7	6	5	4	3	2	1	0
$0040{ }_{16}$	17						1	71
0041_{16}	1							
0041_{16}	1	,						
004316		-						
$0044{ }_{16}$		1						
004516		,						
$0046{ }_{16}$	1	,						
0047 ${ }_{16}$	$\sqrt{ }$	1						
$0048{ }_{16}$	1	1						
0049_{16}	$\sqrt{ }$	1						
004A ${ }_{16}$	1	,				1	,	
$004 \mathrm{~B}_{16}$	1	1						
$004 \mathrm{C}_{16}$	1	,		1			-	
004D ${ }_{16}$		1					-	
$004 \mathrm{E}_{16}$		1					1	
$004 \mathrm{~F}_{16}$	1						1	
005016							,	
$0051{ }_{16}$,	
0051_{16}					1		,	
$0053{ }_{16}$,	
0054 ${ }_{16}$							-	
0_{0055}^{16}							-	
$0056{ }_{16}$								
0057_{16}							1	
$0058{ }_{16}$							-	
0_{0059}^{16}						1	,	
$005 \mathrm{~A}_{16}$								
$005 \mathrm{~B}_{16}$								
$005 \mathrm{C}_{16}$								
005D ${ }_{16}$								
$005 \mathrm{E}_{16}$								
$005 \mathrm{~F}_{16}$							1	1

For 16 segments and 12 digits
(FLD data pointer reload register $=11$)

$$	7	6	5	4	3	2	1	0
0040 ${ }_{16}$								
$0041{ }_{16}$		7	7					
0042 ${ }_{16}$								
0043_{16}								
0044_{16}								
0045 ${ }_{16}$								
$0046{ }_{16}$	1 max							
$0047{ }_{16}$								
$0048{ }_{16}$								
$0049{ }_{16}$,							
$004 \mathrm{~A}_{16}$	$1 \times 10 \mathrm{NaN}$							
$004 \mathrm{~B}_{16}$								
$004 \mathrm{C}_{16}$								
004D 16								
$004 \mathrm{E}_{16}$						-		
$004 \mathrm{~F}_{16}$								
$0050{ }_{16}$								
$0051{ }_{16}$	$\cdots 1+1$							
005216	/							
005316	-1+ $+\cdots \rightarrow+$							
0054 ${ }_{16}$								
0051_{16}	1 max							
005616								
$0057{ }_{16}$								
$0058{ }_{16}$	1×141							
$0059{ }_{16}$			1		7	7		71
$005 \mathrm{~A}_{16}$								
$005 \mathrm{~B}_{16}$								
$005 \mathrm{C}_{16}$								
005D ${ }_{16}$								
$005 \mathrm{E}_{16}$								
$005 \mathrm{~F}_{16}$								

Note. $Z 7 \square$ Shaded areas are not used
Fig. 30 Example of using the FLD automatic display RAM.

- Timing Setting

The digit timing (Tdisp) and digit/segment turn-off timing ($T_{\text {off }}$) can be set by the FLDC mode register (address 0016_{16}). The scan timing ($T_{\text {scan }}$) can be set by the keyscan blanking register (address 0015_{16}).
Note that flickering will occur if the repetition frequency ($1 /\left(T_{\text {disp }} \times\right.$ number of digits $\left.+T_{\text {scan }}\right)$) is an integral multiple of the digit timing $T_{\text {disp }}$

- FLD Start

To perform FLD automatic display, you have to use the following registers.

- Port PO segment/digit switching register
- Port P2 digit/port switching register
- Key-scan blanking register
- FLDC mode register
- FLD data pointer

Automatic display mode is activated by writing " 1 " to bit 0 of the FLDC mode register (address 0016_{16}), and the
automatic display is started by writing " 1 " to bit 1 .
During automatic display bit 1 always keeps " 1 ", automatic display can be interrupted by writing " 0 " to bit 1 .

If key-scan is to be performed by segment during the key-scan blanking period $\mathrm{T}_{\text {scan }}$,

1. Write " 0 " to bit 0 (automatic display control bit) of FLDC mode register (address $0016{ }_{16}$).
2. Set the port corresponding to the segment to the normal port.
3. After the key-scan is performed, write "1" (automatic display mode) to bit 0 of FLDC mode register (address 0016 ${ }_{16}$).

Note on performance of key-scan in the above 1 to 3 order.

1. Do not write " 0 " to bit 1 of FLDC mode register (address 0016 ${ }_{16}$).
2. Do not write " 1 " to the port corresponding to the digit.

Fig. 31 FLDC timing

RESET CIRCUIT

After a reset, the microcomputer will start in high-speed operation start mode or low-speed operation start mode depending on a mask-programmable option.

- High-Speed Operation Start Mode

In high-speed operation start mode, reset occurs if the RESET pin is held at an " L " level for at least 2μ s then is returned to an "H" level (the power supply voltage should be between 4.0 V and 5.5 V). Both the $\mathrm{X}_{1 \mathrm{~N}}$ and the $X_{\text {CIN }}$ clocks begin oscillating. In order to give the $X_{I N}$ clock time to stabilize, internal operation does not begin until after $13 X_{\text {IN }}$ clock cycles are complete. After the re-

Fig. 32 Power-on reset circuit example
set is completed, the program starts from the address contained in address FFFD_{16} (upper byte) and address FFFC_{16} (lower byte).

- Low-Speed Operation Start Mode

In low-speed operation start mode, reset occurs if the RESET pin is held at an "L" level for at least 2μ s then is returned to an " H " level (the power supply voltage should be between 2.8 V and 5.5 V). The X_{IN} clock does not begin oscillating. In order to give the $X_{\text {CIN }}$ time to stabilize, timer 1 and timer 2 are connected together and 512 cycles of the $X_{\text {CIN }} / 16$ are counted before internal operation begins. After the reset is completed, the program starts from the address contained in address FFFD_{16} (upper byte) and address FFFC_{16} (lower byte).
If the $X_{\text {CIN }}$ clock is stable, reset will complete after approximately 250 ms (assuming $\mathrm{f}\left(\mathrm{X}_{\mathrm{CIN}}\right)=32.768 \mathrm{kHz}$).
Immediately after a power-on, the stability of the clock circuit will determine the reset timing and will vary according to the characteristics of the oscillation circuit used.

- Note on Use

Make sure that the reset input voltage is no more than 0.8 V in high-speed operation start mode, or no more than 0.5 V in low-speed operation start mode.

Fig. 33 Internal status at reset

Fig. 34 Reset sequence in high-speed operation mode

Fig. 35 Reset sequence in low-speed operation mode

CLOCK GENERATION CIRCUIT

When using an external clock signal, input the clock signal to the $\mathrm{X}_{\text {IN }}\left(\mathrm{X}_{\text {CIN }}\right)$ pin and leave the $\mathrm{X}_{\text {OUT }}\left(\mathrm{X}_{\text {COUT }}\right)$ pin open. If the $X_{\text {CIN }}$ clock is not used, connect the $X_{\text {CIN }}$ pin to $V_{\text {SS }}$, and leave the $X_{\text {cout }}$ pin open.
Either high-speed operation start mode or low-speed start mode can be selected by using a mask option.

- High-Speed Operation Start Mode

After reset has completed, the internal clock ϕ is half the frequency of $X_{\text {IN }}$. Immediately after power-on, both the $X_{\text {IN }}$ and $X_{\text {CIN }}$ clock start oscillating. To set the internal clock ϕ to low-speed operation mode, set bit 7 of the CPU mode register (address $003 \mathrm{~B}_{16}$) to " 1 ".

- Low-Speed Operation Start Mode

After reset has completed, the internal clock ϕ is half the frequency of $\mathrm{X}_{\text {CIN }}$. Immediately after power-on, only the $\mathrm{X}_{\mathrm{CIN}}$ clock starts oscillating. To set the internal clock ϕ to high-speed operation mode, first set bit $6\left(\mathrm{CM}_{6}\right)$ of the CPU mode register (address $003 \mathrm{~B}_{16}$) to " 0 ", the set bit 7 $\left(\mathrm{CM}_{7}\right)$ to " 0 ". Note that the program must allow time for oscillation to stabilize.

- Oscillation Control

Stop Mode
If the STP instruction is executed, oscillation stops with the internal clock ϕ at an " H " level. Timer 1 is set to " FF_{16} " and timer 2 is set to " 01_{16} ".
Either $X_{\text {IN }}$ or $X_{\text {CIN }}$ divided by 16 is input to timer 1 , and the output of timer 1 is connected to timer 2 . The timer 1 and timer 2 interrupt enable bits must be set to disabled (" 0 "), so a program must set these bits before executing an STP instruction. Oscillation restarts at reset or when an external interrupt is received, but the internal clock ϕ is not supplied to the CPU until timer 2 overflows. This allows time for the clock circuit oscillation to stabilize.

Wait Mode

If the WIT instruction is executed, the internal clock ϕ stops at an " H " level but the oscillator itself does not stop. The internal clock restarts if a reset occurs or when an interrupt is received. Since the oscillator does not stop, normal operation can be started immediately after the clock is restarted.

Low-Speed Mode

If the internal clock is generated from the sub clock ($\mathrm{X}_{\text {CIN }}$), a low power consumption operation can be entered by stopping only the main clock $X_{\text {IN }}$. To stop the main clock, set bit $6\left(\mathrm{CM}_{6}\right)$ of the CPU mode register $\left(003 \mathrm{~B}_{16}\right)$ to " 1 ". When the main clock X_{IN} is restarted, the program must allow enough time to for oscillation to stabilize.
Note that in low-power-consumption mode the $X_{\text {CIN }^{-}}$ $\mathrm{X}_{\text {cout }}$ drive performance can be reduced, allowing even lower power consumption ($20 \mu \mathrm{~A}$ with $\mathrm{X}_{\mathrm{CIN}}=32 \mathrm{kHz}$). To
reduce the $\mathrm{X}_{\text {CIN }}-\mathrm{X}_{\text {COUT }}$ drive performance, clear bit 5 (CM_{5}) of the CPU mode register ($003 \mathrm{~B}_{16}$) to " 0 ". At reset or when an STP instruction is executed, this bit is set to " 1 " and strong drive is selected to help the oscillation to start.

Fig. 36 Ceramic resonator circuit

Fig. 37 External clock input circuit

Note. The values of CM_{7} and CM_{6} at reset are determined by a mask option

Fig. 38 System clock generation circuit block diagram

The example assumes that 4 MHz is being applied to the $X_{I N}$ pin and 32 kHz to the $X_{\text {CIN }}$ pin
Note 1. When the STP state is ended, a delay of approximately 2 ms is automatically generated by timer 1 and timer 2
2. The delay after the STP state ends is approximately 0.25 s
3. If the internal clock ϕ divided by 8 is used as the timer count source, the frequency of the count source is $f\left(X_{\text {CIN }}\right) / 16$
4. Specify this option when ordering a mask ROM version

Fig. 39 State transitions of system clock

NOTES ON PROGRAMMING

- Processor Status Register

The contents of the processor status register (PS) after a reset are undefined, except for the interrupt disable flag (I) which is " 1 ". Therefore, flags that affect program execution must be initialized after a reset. In particular, it is essential to initialize the T and D flags because of their effect on calculations.

- Interrupts

The contents of the interrupt request bits do not change immediately after they have been written.
After writing to an interrupt request register, execute at least one instruction before performing a BBC or BBS instruction.

- Decimal Calculations

To calculate in decimal notation, set the decimal mode flag (D) to " 1 ", then execute a ADC or SBC instruction. Only the ADC and SBC instruction yield proper decimal results. After executing an ADC or SBC instruction, execute at least one instruction before executing a SEC, CLC, or CLD instruction.
In decimal mode, the values of the negative (N), overflow (V), and zero (Z) flags are invalid.
The carry flag can be used to indicate whether a carry or borrow has occurred, but must be initialized before each calculation. Clear the carry flag before an ADC and set the flag before an SBC.

- Timers

If a value n (between 0 and 255) is written to a timer latch, the frequency division ratio is $1 /(n+1)$.

- Multiplication and Division Instructions The MUL and DIV instructions do not affect the T and D flags.
The execution of these instructions does not change the contents of the processor status register.
- Ports

The contents of the port direction registers cannot be read. Programs can not use the value of a direction register as an index, or bit-test a direction register (BBC or BBS), or perform a read-modify-write instruction such as ROR, CLB, or SEB. Use instructions such as LDM and STA to set the port direction registers.

- Serial I/O

When using an external clock, input " H " to the external clock input pin and clear the serial I/O interrupt request bit before executing a serial I/O transfer.
When using the internal clock, set the synchronization clock to internal clock, then clear the serial I/O interrupt request bit before executing a serial I/O transfer.

- Instruction Execution Timing

The instruction execution time is obtained by multiplying the frequency of the internal clock ϕ by the number of cycles needed to execute an instruction.
The number of cycles required to execute an instruction
is shown in the list of machine instructions.
The frequency of the internal clock ϕ is half of the $X_{\text {IN }}$ or $X_{\text {CIN }}$ frequency.

DATA REQUIRED FOR MASK ORDERS

The following are necessary when ordering a mask ROM production:
(1) Mask ROM Order Confirmation Form
(2) Mark Specification Form
(3) Data to be written to ROM, in EPROM form (three identical copies)
If required, specify the following option on the Mask Confirmation Form:

- Operation start mode switching option

ROM Writing Method

The built-in PROM of the blank one-time programmable version and built-in EPROM version can be read from and written to with an normal EPROM writer using a special write adapter.

Package	Name of Write Adapter
$64 \mathrm{P4B}, 64 \mathrm{~S} 1 \mathrm{~B}$	PCA4738S-64
64 P 6 N	PCA4738F-64
64 DO	PCA4738L-64

The PROM of the blank one-time programmable version is not tested or screened after assembly. To ensure proper operation after writing, the procedure shown in Figure 40 is recommended to verify programming

Fig. 40 Writing and testing of one-time programmable version

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
V_{cc}	Supply voltage	All voltages measured based on the $V_{S S}$ pin Output transistors are isolated	-0.3 to 7.0	V
$\mathrm{V}_{\text {EE }}$	Pull-down power supply voltage		$\mathrm{V}_{\mathrm{CC}}-40$ to $\mathrm{V}_{\mathrm{CC}}+0.3$	V
V_{1}	Input voltage $\mathrm{P}_{4}-\mathrm{P} 2_{7}, \mathrm{P4}_{1}-\mathrm{P4}_{7}, \mathrm{P5}_{0}-\mathrm{P5}_{7}, \mathrm{P6}_{0}-\mathrm{P6} 7_{7}$		-0.3 to $\mathrm{V}_{\mathrm{CC}}+0.3$	V
V_{1}	Input voltage $\mathrm{P4}_{0}$		-0.3 to $\mathrm{V}_{\mathrm{cc}}+0.3$	V
V_{1}	Input voltage RESET, $\mathrm{X}_{\text {IN }}$		-0.3 to $\mathrm{V}_{\mathrm{CC}}+0.3$	V
V_{1}	Input voltage $\mathrm{X}_{\text {CIN }}$		-0.3 to $\mathrm{V}_{\mathrm{cc}}+0.3$	V
V_{0}	Output voltage $\mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P1}_{0}-\mathrm{P1} 7_{7}, \mathrm{P2}_{0}-\mathrm{P2}_{3}, \mathrm{P3}_{0}-\mathrm{P} 3_{7}$		$\mathrm{V}_{C C}-40$ to $\mathrm{V}_{\mathrm{CC}}+0.3$	V
V_{0}	Output voltage $\mathrm{P}_{4}-\mathrm{P}_{7}, \mathrm{P}_{1}-\mathrm{P} 4_{7}, \mathrm{P5}_{0}-\mathrm{P} 5_{7}$, $\mathrm{P6}_{0}$-P6 ${ }_{7}, \mathrm{X}_{\text {OUT }}, \mathrm{X}_{\text {COUT }}$		-0.3 to $\mathrm{V}_{\mathrm{cc}}+0.3$	V
Pd	Power dissipation	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$	1000(Note 1)	mW
Topr	Operating temperature		-10 to 85	${ }^{\circ} \mathrm{C}$
Tstg	Storage temperature		, -40 to 125	${ }^{\circ} \mathrm{C}$

Note 1:600mW in case of the flat package

RECOMMENDED OPERATING CONDITIONS ($\mathrm{V}_{\mathrm{CC}}=4.0$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-10$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter		Limits			Unit
			Min	Typ	Max	
V_{cc}	Supply voltage	High-speed operation mode	4.0	5.0	5.5	V
		Low-speed operation mode	2.8	5.0	5.5	
$\mathrm{V}_{\text {SS }}$	Supply voltage			0		V
$V_{\text {EE }}$	Pull-down power supply voltage		$\mathrm{V}_{C C}-38$		V_{cc}	V
$\mathrm{V}_{\text {IA }}$	Analog input voltage		0		V_{cc}	V
$\mathrm{V}_{\text {IH }}$	" H " input voltage $\mathrm{P}_{4}-\mathrm{P} 2_{7}$		$0.4 \mathrm{~V}_{\mathrm{CC}}$		V_{cc}	V
V_{IH}	" H " input voltage $\mathrm{P} 4_{0}$		$0.75 \mathrm{~V}_{\mathrm{CC}}$		V_{cc}	V
V_{IH}	"H" input voltage $\mathrm{P4}_{4}-\mathrm{P} 4_{7}, \mathrm{P5}_{0}-\mathrm{P5}_{7}, \mathrm{P6}_{0}-\mathrm{P} 6_{7}$		$0.75 \mathrm{~V}_{\mathrm{cC}}$		V_{cc}	V
$\mathrm{V}_{\text {IH }}$	" H " input voltage $\overline{\mathrm{RESET}}$		$0.8 \mathrm{~V}_{\mathrm{CC}}$		V_{CC}	V
V_{IH}	" H " input voltage $\mathrm{X}_{\text {IN }}, \mathrm{X}_{\mathrm{CIN}}$		0.8 V cc		V_{cc}	V
$\mathrm{V}_{\text {IL }}$	" L " input voltage $\mathrm{P}_{4}-\mathrm{P} 2_{7}$		0		$0.16 \mathrm{~V}_{\mathrm{cc}}$	V
$\mathrm{V}_{\text {IL }}$	"L" input voltage $\mathrm{P4}_{0}$		0		$0.25 \mathrm{~V}_{c c}$	V
$\mathrm{V}_{\text {IL }}$	"L" input voltage $\mathrm{P4}_{4}-\mathrm{P} 4_{7}, \mathrm{P5} 5_{0}-\mathrm{P5} 7_{7}, \mathrm{P6} 6_{0}-\mathrm{P} 6_{7}$		0		$0.25 \mathrm{~V}_{c c}$	V
$\mathrm{V}_{\text {IL }}$	"L" input voltage $\overline{\text { RESET }}$		0		$0.2 \mathrm{~V}_{\mathrm{cc}}$	V
$\mathrm{V}_{\text {IL }}$	"L" input voltage $\mathrm{X}_{\text {IN }}, \mathrm{X}_{\mathrm{CIN}}$		0		$0.2 \mathrm{~V}_{\mathrm{cc}}$	V

RECOMMENDED OPERATING CONDITIONS ($\mathrm{V}_{\mathrm{cc}}=4.0$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-10$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Limits			Unit
		Min	Typ	Max	
$\Sigma I_{\text {OH(peak }}$	" H " total peak output current $\mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P1}_{0}-\mathrm{P1}_{7}$, (Note 1) $\quad \mathrm{P}_{2}-\mathrm{P}_{7}{ }_{7}, \mathrm{P}_{3}-\mathrm{P}_{7}$			-240	mA
$\Sigma \mathrm{l}_{\text {OH(peak }}$	"H" total peak output current $\mathrm{P}_{4} 1-\mathrm{P} 4_{7}, \mathrm{P6}_{0}-\mathrm{P} 6_{5}$			-60	mA
$\Sigma l_{\text {oL(peak }}$	$\begin{array}{r} \text { "L" total peak output current } \begin{aligned} & \mathrm{P}_{4}-\mathrm{P} 2_{7}, \mathrm{P}_{1}-\mathrm{P} 4_{7}, \\ & \mathrm{P} 5_{0}-\mathrm{P} 5_{7}, \mathrm{P} 6_{1}-\mathrm{P} 6_{7} \end{aligned} \end{array}$			100	mA
$\Sigma l_{\text {oL(peak) }}$	" L " total peak output current $\mathrm{P6}_{0}$			3.0	mA
$\Sigma \mathrm{IOH}_{\text {(avg }}$	" H " total average output current $\mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P1}_{0}-\mathrm{P1}_{7}$, (Note 1) $\mathrm{P}_{4}-\mathrm{P}_{7}, \mathrm{P}_{3}-\mathrm{P}_{7}$			-120	mA
$\Sigma \mathrm{l}_{\mathrm{OH}}(\mathrm{avg}$)	" H " total average output current $\mathrm{P4}_{1}-\mathrm{P}_{7}, \mathrm{P6}_{6}-\mathrm{P} 6_{7}$			-30	mA
$\Sigma l_{\text {oL(avg }}$)	" L " total average output current $\mathrm{P}_{2}-\mathrm{P} 2_{7}, \mathrm{P} 4_{1}-\mathrm{P} 4_{7}$, $\mathrm{P5}_{0}-\mathrm{P5}_{7}, \mathrm{P6}_{1}-\mathrm{P} 6_{7}$			50	mA
$\Sigma \mathrm{I}_{\text {OL }}(\mathrm{avg})$	" L " total average output current $\mathrm{P6}_{0}$			1.5	mA
$\mathrm{l}_{\text {OH(peak) }}$	" H " peak output current $\mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P1}_{0}-\mathrm{P} 1_{7}, \mathrm{P2}_{0}-\mathrm{P} 2_{3}$, $\mathrm{P3}_{0}-\mathrm{P3}_{7}$ (Note 2)			-40	mA
Ior(peak)	"H" peak output current $\mathrm{P}_{4}-\mathrm{P} 2_{7}, \mathrm{P4}_{4}-\mathrm{P} 4_{7}, \mathrm{P6}_{0}-\mathrm{P} 6_{7}$			-10	mA
Iol(peak)	"L" peak output current $\mathrm{P}_{4}-\mathrm{P} 2_{7}, \mathrm{P}_{1}-\mathrm{P} 6_{7}$			10	mA
Iol(peak)	"L" peak output current $\mathrm{P4}_{1}-\mathrm{P} 4_{7}, \mathrm{P5}_{0}-\mathrm{P5} 5_{7}$			10	mA
lol(peak)	"L" peak output current PG_{6}			3.0	mA
$\mathrm{IOH}(\mathrm{avg})$	" H " average output current $\mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P1}_{0}-\mathrm{P1}_{7}, \mathrm{P}_{0}-\mathrm{P}_{3}$, (Note 3) $\quad \mathrm{P}_{3}-\mathrm{P}_{7}$			-18	mA
ІОн(avg)	" H " average output current $\mathrm{P}_{4}-\mathrm{P} 2_{7}, \mathrm{P4}_{1}-\mathrm{P} 4_{7}$, $\mathrm{P} 6_{0}-\mathrm{P} 6_{7}$			-5.0	mA
lol(avg)	" L " average output current $\mathrm{P}_{4}-\mathrm{P}_{7}, \mathrm{P6}_{1}-\mathrm{P6}_{7}$			5.0	mA
lol(avg)	" L " average output current $\mathrm{P} 4_{1}-\mathrm{P} 4_{7}, \mathrm{P5}_{0}-\mathrm{P5} 5_{7}$			5.0	mA
lol(avg)	"L" average output current $\mathrm{P} 6_{0}$			1.5	mA
f (CNTR)	Clock input frequency for timer 4 (duty cycle 50\%)			250	kHz
$f\left(X_{\text {IN }}\right)$	Main clock input oscillation frequency (Note 4)			4.2	MHz
$f\left(X_{\text {CIN }}\right)$	Sub clock input oscillation frequency (Note 4,5)		32. 768	50	kHz

Note 1. The total output current is the sum of all the currents flowing through all the applicable ports The total average current is an average value measured over 100 ms . The total peak current is the peak value of all the currents
2. The peak output current is the peak current flowing in each port.
3. The average output current in an average value measured over 100 ms
4. When the oscillation frequency has a duty cycle of 50%
5. When using the microcomputer in low-speed operation mode, make sure that the sub clock's input frequency $f\left(X_{\text {CIN }}\right)$ is less than $f\left(X_{\text {IN }}\right) / 3$

ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{CC}}=4.0$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-10$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test conditions		Lımits			Unit
				Min	Typ	Max	
$\mathrm{V}_{\text {OH }}$		$\mathrm{I}_{\mathrm{OH}}=-18 \mathrm{~mA}$		$\mathrm{V}_{\mathrm{cc}}-2.0$			V
V_{OH}	"H" output voltage $\mathrm{P}_{4}-\mathrm{P}_{7}, \mathrm{P4}_{4}-\mathrm{P4}_{7}, \mathrm{P6}_{0}-\mathrm{P6}_{7}$	$\mathrm{I}_{\mathrm{OH}}=-10 \mathrm{~mA}$		$\mathrm{V}_{C C}-2.0$			V
V_{ol}	$\begin{gathered} \text { "L" output voltage }{\mathrm{P} 2_{4}-\mathrm{P} 2_{7}, \mathrm{P} 4_{1}-\mathrm{P} 4_{7}, \mathrm{P5} 5_{0}-\mathrm{P} 5_{7},}^{\mathrm{P} 6_{1}-\mathrm{P} 6_{7}} \end{gathered}$	$\mathrm{l}_{\mathrm{OL}}=10 \mathrm{~mA}$				2.0	V
V_{OL}	"L" output voltage Pb_{0}	$\mathrm{IOL}=1.5 \mathrm{~mA}$				0.5	V
$\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\mathrm{T}-}$		When using a non-	-port function		0.4		V
$\mathrm{V}_{T+}-\mathrm{V}_{T-}$	Hysteresis RESET, $\mathrm{X}_{\text {IN }}$	RESET : $\mathrm{V}_{\mathrm{CC}}=2.8$	V to 5.5 V		0.5		V
$\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\mathrm{T}-}$	Hysteresis $\mathrm{X}_{\text {CIN }}$				0.5		V
I_{IH}	"H" input current $\mathrm{P}_{2}{ }_{4}-\mathrm{P} 2_{7}, \mathrm{P} 4_{1}-\mathrm{P} 4_{7}, \mathrm{P5}_{0}-\mathrm{P} 5_{7}, \mathrm{P6}_{0}-\mathrm{P6} 7_{7}$	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{cc}}$				5.0	$\mu \mathrm{A}$
I_{IH}	" H " input current $\mathrm{P} 4_{0}$	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$				5.0	$\mu \mathrm{A}$
I_{H}	"H" input current $\overline{\mathrm{RESET}}$, $\mathrm{X}_{\text {CIN }}$	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{cc}}$				5.0	$\mu \mathrm{A}$
I_{H}	" H " input current $\mathrm{X}_{\text {IN }}$	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{cc}}$			4.0		$\mu \mathrm{A}$
ILL	"L" input current $\mathrm{P}_{4}{ }_{4}-\mathrm{P} 2_{7}, \mathrm{P4}_{1}-\mathrm{P} 4_{7}, \mathrm{P5}_{0}-\mathrm{P5}_{7}, \mathrm{P6}_{0}-\mathrm{P6} 7_{7}$	$\mathrm{V}_{1}=\mathrm{V}_{\text {Ss }}$				-5.0	$\mu \mathrm{A}$
ILL	"L" input current P40	$\mathrm{V}_{1}=\mathrm{V}_{\text {S }}$				-5.0	$\mu \mathrm{A}$
$I_{\text {IL }}$	"L" input current $\overline{\text { RESET, }} \mathrm{X}_{\text {CIN }}$	$\mathrm{V}_{1}=\mathrm{V}_{\text {Ss }}$				-5.0	$\mu \mathrm{A}$
ILL	"L" input current $\mathrm{XIN}^{\text {IN }}$	$\mathrm{V}_{1}=\mathrm{V}_{\text {ss }}$			-4.0		$\mu \mathrm{A}$
I load	Output load current $\mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P1}_{0}-\mathrm{P} 1_{7}, \mathrm{P}_{2}-\mathrm{P} 2_{3}, \mathrm{P}_{0}-\mathrm{P} 3_{7}$	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=\mathrm{V}_{\mathrm{CC}}-36 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{OL}}=\mathrm{V}_{\mathrm{CC}}, \end{aligned}$ With output transistors		150	500	900	$\mu \mathrm{A}$
$I_{\text {Leak }}$	Output leakage current $\mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P1}_{0}-\mathrm{P} 1_{7}, \mathrm{P}_{2}-\mathrm{P}_{3}$, $\mathrm{P}_{0}-\mathrm{P}_{7}$	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=\mathrm{V}_{\mathrm{CC}}-38 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{OL}}=\mathrm{V}_{\mathrm{CC}}-38 \mathrm{~V}, \end{aligned}$ With output transistors	ff (Except for reset)	.		-10	$\mu \mathrm{A}$
$\mathrm{V}_{\text {RAM }}$	RAM hold voltage	When clock is stopped		2.0		5.5	V
I_{CC}	Power supply current	In high-speed operation mode $\begin{aligned} & f\left(X_{I N}\right)=4 M H z \\ & f\left(X_{\mathrm{CIN}}\right)=32 \mathrm{kHz} \end{aligned}$ Output transistors off Comparator operatıng			5	10	mA
		In high-speed operation mode $\mathrm{f}\left(\mathrm{X}_{\text {IN }}\right)=4 \mathrm{MHz}$ (in WIT state) $f\left(X_{\text {CIN }}\right)=32 \mathrm{kHz}$ Output transistors off Comparator stopped			1		mA
		In low-speed operation mode $f\left(X_{\text {IN }}\right)=$ stopped, $f\left(X_{\text {CIN }}\right)=32 \mathrm{kHz}$ Low-power dissipation mode set (CM5 $=0$) Output transistors off		'	60	200	$\mu \mathrm{A}$
		In low-speed operation mode $\mathrm{f}\left(\mathrm{X}_{\text {IN }}\right)=$ stopped $f\left(X_{\text {CIN }}\right)=32 \mathrm{kHz}$ (In WIT state) Low-power dissipation mode set $\left(\mathrm{CM}_{5}=0\right)$ Output transistors off		,	20	40	$\mu \mathrm{A}$
		All oscillation stopped (in STP state) Output transistors off	Ta $=25^{\circ} \mathrm{C}$		0.1	1.0	$\mu \mathrm{A}$
			Ta $=85^{\circ} \mathrm{C}$			10	

MITSUBISHI MICROCOMPUTERS M3811x Group

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

COMPARATOR CHARACTERISTICS
$\left(\mathrm{V}_{\mathrm{CC}}=4.0\right.$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-10$ to $85^{\circ} \mathrm{C}$, high-speed operation mode, $\mathrm{f}\left(\mathrm{X}_{\mathrm{IN}}\right)=500 \mathrm{kHz}$ to 4 MHz unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Unit
			Min	Typ	Max	
-	Resolution				4	Bits
-	Absolute accuracy				1/2	LSB
TCONV	Conversion time				7	$\mu \mathrm{s}$
$1{ }_{\text {IA }}$	Analog port input current				5.0	$\mu \mathrm{A}$
$\mathrm{R}_{\text {LADDER }}$	Ladder resistor			30		$\mathrm{k} \Omega$

TIMING REQUIREMENTS ($\mathrm{V}_{\mathrm{CC}}=4.0$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-10$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Unit
			Min	Typ	Max	
$\mathrm{t}_{\text {W (}}^{\text {(RESET }}$)	Reset input "L" pulse width		2			$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{C}\left(\mathrm{X}_{\text {IN }}\right)}$	Main clock input cycle time ($\mathrm{X}_{\text {IN }}$ input)		238			ns
$t_{\text {wh }}\left(X_{\text {\| }}\right)$	Main clock input "H" pulse width		60			ns
$t_{\text {WL }}\left(x_{1 N}\right)$	Main clock input " L " pulse width		60			ns
$t_{\mathbf{C}}\left(\mathrm{X}_{\mathrm{CIN}}\right)$	Sub clock input cycle time ($\mathrm{X}_{\text {CIN }}$ input)		2.0			ms
$t_{\text {WH' }}{ }^{\text {(}}$ (${ }_{\text {CIN }}$)	Sub clock input "H" pulse width		0.5			ms
	Sub clock input "L" pulse width		0.5			ms
$\mathrm{t}_{\mathbf{C} \text { (CNTR) }}$	CNTR input cycle time		4			$\mu \mathrm{s}$
$\mathrm{t}_{\text {WH (CNTR) }}$	CNTR input "H" pulse width		1.6			$\mu \mathrm{s}$
$t_{\text {WL(CNTR }}$	CNTR input "L" pulse width		1.6			$\mu \mathrm{s}$
$\mathrm{t}_{\text {WH(INT) }}$	$\mathrm{INT} \mathrm{T}_{0}-\mathrm{NT}_{2}$ input " H " puise width		80			ns
$t_{\text {WL(INT) }}$	$\mathrm{INT} \mathrm{O}_{0}-\mathrm{NNT} \mathrm{I}_{2}$ input "L" pulse width		80			ns
$\mathrm{t}_{\mathbf{C} \text { (SCLK) }}$	Serial clock input cycle time		1			$\mu \mathrm{s}$
$\mathrm{t}_{\text {WH (SCLK) }}$	Serial clock input clock "H" pulse width		400			ns
$\mathrm{t}_{\text {WL(}} \mathrm{SCLK}^{\text {c }}$	Serial clock input clock " L " pulse width		400			ns
$t_{\text {SUL }}$ (SCLK-SIN)	Serial input setup time		200			ns
th($\left.\mathrm{sclk}_{\text {cik }} \mathrm{s}_{\text {IN }}\right)$	Serial input hold time		200			ns

SWITCHING CHARACTERISTICS ($\mathrm{v}_{\mathrm{cc}}=4.0$ to $5.5 \mathrm{v}, \mathrm{V}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-10$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Unit
			Min	Typ	Max	
$\mathrm{t}_{\text {WH (}}^{\text {clik }}$)	Serial clock output "H" pulse width	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	$\mathrm{t}_{\mathrm{c}} / 2-160$			ns
$t_{\text {WL(SCLK }}$	Serial clock output "L" pulse width	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	$\mathrm{t}_{\mathrm{C}} / 2-160$			ns
$t_{\text {d }}\left(S_{C L K}-S_{\text {OUT }}\right)$	Serial output delay time				$0.2 t_{c}$	ns
$t_{V}\left(\right.$ Sclu-S $_{\text {Cout }}$	Serial output hold time		0			ns
$\mathrm{t}_{\mathrm{f} \text { (}} \mathrm{CLLK}$)	Serial clock output fall time	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$			40	ns
$\mathrm{tr}_{\text {(Pch-strg }}$)	P-channel high-breakdown voltage output rise time (Note 1)	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{V}_{\mathrm{EE}}=\mathrm{V}_{\mathrm{CC}}-36 \mathrm{~V}$		55		ns
t_{r} (PCh-weak)	P-channel high-breakdown voltage output rise time (Note 2)	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{V}_{\mathrm{EE}}=\mathrm{V}_{\mathrm{CC}}-36 \mathrm{~V}$		1.8		μs

Note 1. When bit 0 of the high-breakdown voltage port control register (address 0038_{16}) is at " 0 "
2. When bit 0 of the high-breakdown voltage port control register (address 0038_{16}) is at " 1 "

Fig. 41 Output switching characteristics measurement circuit

Timing Chart

CNTR

$\mathrm{NNT}_{0}-\mathrm{INT}_{2}$

$\overline{\text { RESET }}$

$\mathrm{X}_{\text {IN }}$

MITSUBISHI MICROCOMPUTERS M3817x Group

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

DESCRIPTION

The M3817x group is made up of 8-bit microcomputers based on the MELPS 740 core.
The M3817x group is designed mainly for VCR timer/function control, and include six 8-bit timers, a fluorescent display automatic display circuit, a PWM function, and an 8channel A-D converter.
The various microcomputers in the M3817x group include variations of internal memory size and packaging. For details, see the section on part numbering.
For details on availability of microcomputers in the M3817x group, see the section on group expansion.

FEATURES

- Basic machine-language instructions 71

(shortest instruction at 6.3 MHz oscillation frequency)
- Memory size

ROM ... 4 K to 32K bytes
RAM \cdot... 192 to 1024 bytes

- Programmable input/output ports 45
- High-breakdown-voltage output ports 32
- Interrupts 18 sources, 15 vectors
- Timers
- Serial I/OClock-synchronized 8-bit×2 (Serial I/O1 has an automatic data transfer function)
- PWM output circuit. 14-bit×1
8 -bit $\times 1$ (also functions as timer 6)
- A-D converter•......................................-bit $\times 8$ channels
- Fluorescent display function
\qquad
\qquad
- 2 Clock generation circuit Clock ($\mathrm{X}_{\mathrm{IN}^{-}} \mathrm{X}_{\mathrm{OUT}}$) $\cdots \cdots \cdots \cdots \cdots \cdot$ Internal feedback amplifier Sub clock ($\mathrm{X}_{\mathrm{CIN}^{-}} \mathrm{X}_{\text {COUT }}$) $\cdots \cdots$ Internal amplifier without feedback
- Supply voltage .. 4.0 to 5.5V
- Low power dissipation In high-speed operation ... 38 mW
(at 6.3 MHz oscillation frequency)
In low-speed operation
$300 \mu \mathrm{~W}$
(at 32 kHz oscillation frequency)
- Operating temperature range $\ldots \ldots \ldots \ldots \ldots \ldots . .10$ to $85^{\circ} \mathrm{C}$

APPLICATIONS

VCRs, tuners, musical instruments, office automation, etc.

PIN CONFIGURATION (TOP VIEW)

[^0]M3817x Group

PIN DESCRIPTION

Pin	Name	Function	Alternate Function
$\mathrm{V}_{\mathrm{cc}}, \mathrm{V}_{\text {ss }}$	Power supply	Power supply inputs 40 to 55 V to V_{CC}, and 0 V to $\mathrm{V}_{\text {SS }}$	
$V_{\text {EE }}$	Pull-down power input	Applies voltage supplied to pull-down resistors of ports P0, P1, P2 and P3	
$\mathrm{V}_{\text {REF }}$	Analog reference voltage	Reference voltage input pin for A-D converter .	
$\mathrm{AV}_{\text {Ss }}$	Analog power supply	GND input pin for A-D converter Keep at the same potential as $\mathrm{V}_{\text {SS }}$	
RESET	Reset input	To reset the microcomputer, this pin shouid be kept at an " L " level for more than 2μ s under high-speed operating conditions in low-speed operation start mode, internal reset is not released until the $\mathrm{X}_{\mathrm{CIN}}-\mathrm{X}_{\mathrm{COUT}}$ clock has had time to stabilize	
$\mathrm{X}_{1 \times}$	Clock input	Input and output signals for the internal clock generation circuit it consist of internal feedback amplifier Connect a ceramic resonator or quartz crystal between the $X_{I N}$ and $X_{\text {OUT }}$ pins to set the oscillation frequency If an external clock is used, connect the clock source to the $X_{\text {IN }}$ pin and leave the $X_{\text {OUT }}$ pin open This clock is used as system clock	
X OUT	Clock output		
$\mathrm{X}_{\text {CIN }}$	Sub clock input	Input and output signals for the internal sub clock generation circuit it consist of internal amplifier without feedback Connect a ceramic resonator or quartz crystal and external feedback resistor between the $X_{\text {CIN }}$ and $X_{\text {cout }}$ pins if an external clock is used, connect the clock source to the $X_{\text {CIN }}$ pin and leave the $X_{\text {cout }}$ pin open This clock can also be used as the system clock	
$X_{\text {cout }}$	Sub clock output		
$\begin{aligned} & \mathrm{PO}_{0} / \mathrm{SEG}_{16} / \\ & \mathrm{DIG}_{0^{-}} \\ & \mathrm{PO}_{7} / \mathrm{SEG}_{23} / \\ & \mathrm{DIG}_{7} \end{aligned}$	Output port P0	An 8-bit output port The output structure is high-breakdown-voltage P-channel open drain with internal pull-down resistors connected between the output and the $V_{E E}$ pin Are "L" at reset	FLD automatic display pins
$\begin{aligned} & \mathrm{P}_{0} / \mathrm{DIG}_{8^{-}} \\ & \mathrm{P}_{7} / \mathrm{DIG}_{15} \end{aligned}$	Output port P1	An 8-bit output port with the same function as port P0	FLD automatıc display pıns
$\mathrm{P}_{2}-\mathrm{P} 2_{7}$	1/O port P2	An 8 -bit CMOS I/O port An I/O direction register allows each pin to be individually programmed as either input or output At reset this port is set to input mode The input levels are TTL compatible	
$\begin{aligned} & \mathrm{P}_{0} / \mathrm{SEG}_{8}-^{-} \\ & \mathrm{P}_{7} / \mathrm{SEG}_{15} \end{aligned}$	Output port P3	An 8-bit output port with the same function as port P0	FLD automatic display pins
P40 ${ }_{0}$ INT ${ }_{0}$	Input port P40	A 1-bit CMOS input pin	External interrupt input pin
$\begin{aligned} & \mathrm{P}_{1} / \mathrm{INT}_{1}- \\ & \mathrm{P}_{4} / \mathrm{INT}_{4} \end{aligned}$	1/O port P4	A 7-bit CMOS I/O port with the same function as port P2, with CMOS compatible input levels	External interrupt input pins
P45			
$\begin{aligned} & \mathrm{P} 46 / \mathrm{T} 1_{\text {out }}, \\ & \mathrm{P} 47 / \mathrm{T} 3_{\text {out }} \end{aligned}$			Timer output pın
$P 5_{0} / S_{\mathrm{S}_{1} 1}$, $\mathrm{P}_{1} / \mathrm{S}_{\text {out } 1}$, $\mathrm{P5}_{2} / \mathrm{S}_{\mathrm{CLK} 11}$, $\mathrm{P5}_{3} / \overline{\mathrm{S}_{\mathrm{ROY} 1}} /$ $\overline{\mathrm{CS}} / \mathrm{S}_{\mathrm{CLK} 12}$	I/O port P5	An 8-bit I/O port with the same function as port P2 The output structure of this port is N -channel open drain, and the input levels are CMOS compatible Keep the input voltage of this port between OV and V_{CC}	Serial I/O1 I/O pins
$\begin{aligned} & \mathrm{P5}_{4} / \mathrm{S}_{\mathrm{IN} 2}, \\ & \mathrm{P5}_{5} / \mathrm{S}_{\mathrm{ouT} 2}, \\ & \mathrm{P5}_{6} / \mathrm{S}_{\mathrm{CLK} 2}, \\ & \mathrm{P}_{7} / \frac{\mathrm{S}_{\mathrm{RDY} 2}}{} \end{aligned}$			Serial I/O2 I/O pins

PIN DESCRIPTION

Pin	Name	Function	Alternate Function
P60/PWM ${ }_{0}$	1/O port P6	A 6-bit CMOS I/O port with the same function as port P2, with CMOS compatible input levels.	14-bit PWM output pin
$\mathrm{P6}_{1} / \mathrm{PWM}_{1}$			8-bit PWM output pin
$\mathrm{Pb}_{2} /$ CNTR $_{0}$, $\mathrm{Pb}_{3} /$ CNTR $_{1}$			Event counter input pins
P64, P6 ${ }_{5}$			
$\begin{aligned} & \mathrm{P} 7_{0} / \mathrm{AN}_{0}- \\ & \mathrm{P} 7_{7} / \mathrm{AN}_{7} \end{aligned}$	I/O port P7	An 8-bit CMOS I/O port with the same function as port P2, with CMOS compatible input levels.	A-D converter input pins
$\begin{aligned} & \mathrm{P}_{0} / \mathrm{SEG}_{0}- \\ & \mathrm{P}_{7} / \mathrm{SEG}_{7} \end{aligned}$	I/O port P8	An 8-bit I/O port with the same function as port P2. The output structure of this port is P-channel open drain, and the input levels are CMOS compatible. Please note that this port does not have internal pull-down resistors.	FLD automatic display pins

PART NUMBERING

GROUP EXPANSION

Mitsubishi plans to expand the M3817x group as follows:
(1) Support for mask ROM, one-time programmable, and EPROM versions

RAM size ….................................... 384 to 640 bytes
(3) Packages

80D0 $\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots$...................Window type ceramic LCC

The development schedule and other details of products under development may be revised without notice

Currently supported products are listed below.
As of March 1992

Product name	(P) ROM size (bytes)	RAM size (bytes)	Package	Remarks
M38173M6-XXXFP	24K	512	80P6N	Mask ROM version
M38173E6-XXXFP				One-tıme programmable version
M38173E6FP				One-tıme programmable version (blank)
M38173E6FS			80D0	EPROM version
M38174M8-XXXFP	32K	640	80P6N	Mask ROM version
M38174E8-XXXFP				One-tıme programmable version
M38174E8FP				One-tıme programmable version (blank)
M38174E8HXXXFP				One-time programmable version (High-speed operation start version)
M38174E8HFP				One-tıme programmable version (blank) (High-speed operation start version)
M38174E8FS			80D0	EPROM version

FUNCTIONAL DESCRIPTION
 CENTRAL PROCESSING UNIT (CPU)

Microcomputers of the M3817x group use the standard MELPS 740 instruction set. Refer to the table of MELPS 740 addressing modes and machine instructions or the MELPS 740 Software Manual for details on the instruction set.
Machine-resident MELPS 740 instructions are as follows:
The FST and SLW instructions are not available for use.
The STP, WIT, MUL and DIV instructions can be used.

CPU MODE REGISTER

The CPU mode register is allocated to address $003 \mathrm{~B}_{16}$. Bits 0 and 1 of this register are processor mode bits and should always be set to " 0 ".
The CPU mode register contains the stack page selection bit.
For details of the $X_{\text {cout }}$ drivability selection bit, main clock stop bit, and internal system clock selection bit, see the section on the clock generation circuit.

Fig. 1 Structure of CPU mode register

MEMORY

- Special Function Register (SFR) Area

The Special Function Register area contains registers which control functions such as I/O ports and timers, and is located in the zero page area.

- RAM

RAM is used for data storage as well for stack area.

- ROM

The first 128 bytes and the last two bytes of ROM are reserved for device testing and the rest is user area for storing programs.

- Interrupt Vector Area

The interrupt vector area contains reset and interrupt vectors.

- Zero Page

The 256 bytes from addresses 0000_{16} to $00 \mathrm{FF}_{16}$ are called the zero page area. The internal RAM and the special function registers (SFR) are allocated to this area. The zero page addressing mode can be used to specify memory and register addresses in the zero page area. This dedicated zero page addressing mode enables access to this area with only 2 bytes.

- Special Page

The 256 bytes from addresses FFO_{16} to FFFF_{16} are called the special page area. The special page addressing mode can be used to specify memory addresses in the special page area. This dedicated special page addressing mode enables access to this area with only 2 bytes.

Fig. 2 Memory map diagram

Fig. 3 Memory map of special function register (SFR)

I/O PORTS

- Direction Registers

The M3817x group microprocessors have 45 programmable I/O pins arranged in six I/O ports (ports P2 and P4 to P 8). The I/O ports have direction registers which determine the input/output direction of each individual pin. Each bit in a direction register corresponds to one pin each pin can be set to be input or output.
When " 0 " is written to the bit corresponding to a pin, that pin becomes an input pin. When " 1 " is written to that bit, that pin becomes an output pin.
If data is read from a pin which is set for output, the value of the port output latch is read, not the value of the pin itself. Pins set to input are floating. If a pin set to input is written to, only the port output latch is written to and the pin remains floating.

- High-Breakdown-Voltage Output Ports

The M3817x group microprocessors have four ports with high-breakdown-voltage pins (ports P0, P1, P3, P8). The high-breakdown-voltage ports have P-channel open drain output with a breakdown voltage of $\mathrm{V}_{\mathrm{CC}}-40 \mathrm{~V}$. Each pin in Ports P0, P1, and P3 has an internal pull-down resistor connected to V_{EE}. Port P8 has no internal pull-down resistors and external resistors should be used if necessary. At reset, the P-channel output transistor of each port latch is turned off, so it is forced to the level of V_{EE} by the pulldown resistor.
Writing " 1 " to bit 0 of the high-breakdown-voltage port control register(address 0038_{16}) slows the transition of the output transistors to reduce transient noise. At reset, bit 0 of the high-breakdown-voltage port control register is set to " 0 " (strong drive).

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

Pin	Name	Input/Output	I/O Format	Non-Port Function	Related SFRs	Diagram No
$\begin{aligned} & \mathrm{PO}_{0} / \mathrm{SEG}_{16} / \\ & \mathrm{DIG}_{0^{-}} \\ & \mathrm{PO}_{7} / \mathrm{SEG}_{23} / \\ & \mathrm{DIG}_{7} \end{aligned}$	Port PO	Output	High-breakdownvoltage P-channel open-drain output with pull-down resistor	FLD automatic display function	FLDC mode register Segment/digit switching register High-breakdownvoltage port control register	(1)
$\begin{aligned} & \mathbf{P 1} 1_{0} / \mathrm{DIG}_{8}- \\ & \mathrm{P1}_{3} / \mathrm{DIG}_{11} \end{aligned}$	Port P1	Output	High-breakdownvoltage P -channel open-draın output with pull-down resistor	FLD automatıc display function	FLDC mode register High-breakdownvoltage port control register	(2)
$\begin{aligned} & \mathrm{P}_{4} / \mathrm{DIG}_{12^{-}} \\ & \mathrm{P}_{7} / \mathrm{DIG}_{15} \end{aligned}$					FLDC mode regıster Digit/port switching register High-breakdownvoltage port control register	(3)
$\mathrm{P} 2_{0}-\mathrm{P} 2_{7}$	Port P2	Input/output, individual bits	TTL level input CMOS 3-state output			(4)
$\begin{aligned} & \mathrm{P}_{0} / \mathrm{SEG}_{8}- \\ & \mathrm{P}_{7} / \mathrm{SEG}_{15} \end{aligned}$	Port P3	Output	High-breakdownvoltage P-channel open-drain output with pull-down resistor	FLD automatic display function	FLDC mode register High-breakdownvoltage port control regıster	(5)
$\mathrm{P} 4_{0} / \mathrm{INT}_{0}$	Port P4	Input	CMOS level input	External interrupt input	Interrupt edge selection register	(6)
$\begin{aligned} & \mathrm{P} 4_{1} / \mathrm{NNT}_{1}- \\ & \mathrm{P}_{4} / \mathrm{INT}_{4} \end{aligned}$		Input/output, individual bits	CMOS level input CMOS 3-state output	External interrupt input	Interrupt edge selection register	(7)
P45						(4)
P46/T1 ${ }_{\text {Out }}$,				Timer output	Timer 12 mode register	
$\mathrm{P} 47 / \mathrm{T} 3_{\text {OUT }}$					Timer 34 mode regıster	(8)
$\mathrm{P} 5_{0} / \mathrm{S}_{\text {IN } 1}$,	Port P5	Input/output, individual bits	CMOS level input N -channel open-draın output	Serial I/O1 function I/O	Serial I/O1 control register Serial I/O automatic transfer control register	(9)
$\begin{aligned} & \mathrm{P} 5_{1} / \mathrm{S}_{\mathrm{OUT} 1}, \\ & \mathrm{P} 5_{2} / \mathrm{S}_{\mathrm{CLK} 1}, \end{aligned}$						(10)
$\begin{aligned} & \mathrm{P} 53 / \overline{\mathrm{S}_{\mathrm{RDY} 1}} / \\ & \overline{\mathrm{CS}} / \mathrm{S}_{\mathrm{CLK} 12} \end{aligned}$						(11)
$\mathrm{P5}_{4} / \mathrm{S}_{\text {IN2 } 2}$,				Serial I/O2 function I/O	Serial I/O2 control register	(9)
$\begin{aligned} & \mathrm{P5}_{5} / \mathrm{S}_{\mathrm{OUT} 2}, \\ & \mathrm{P}_{6} / \mathrm{S}_{\mathrm{CLK} 2}, \end{aligned}$						(10)
$\mathrm{P} 57 / \overline{\mathrm{S}_{\mathrm{RDY} 2}}$						(11)
P6 ${ }_{0} / \mathrm{PWM}_{0}$	Port P6	Input/output, individual bits	CMOS level input CMOS 3-state output	14-bit PWM output	PWM control register PWML register PWMH register	(12)
P61/PWM ${ }_{1}$				8-bit PWM output	Timer 56 mode register Timer6 PWM regıster	(8)
$\mathrm{P}_{2}{ }_{2}$ CNTR $_{0}$, $\mathrm{P6}_{3}$ /CNTR $_{1}$				External count input	Interrupt edge selection regıster	(7)
$\mathrm{P6}_{4}, \mathrm{P}_{5}$						(4)
$\begin{aligned} & \mathrm{P} 7_{0} / \mathrm{AN}_{0}- \\ & \mathrm{P} 7_{7} / \mathrm{AN}_{7} \\ & \hline \end{aligned}$	Port P7	Input/output, individual bits	CMOS level input CMOS 3-state output	A-D converter input	A-D control register	(13)
$\begin{aligned} & \mathrm{P}_{0} / \mathrm{SEG}_{0}- \\ & \mathrm{P}_{7} / \mathrm{SEG}_{7} \end{aligned}$	Port P8	Input/output, individual bits	CMOS level input High-breakdownvoltage P-channel open-drain output without pull-down resistor	FLD automatic display function	FLDC mode register Segment/port switching register High-breakdownvoltage port control registor	(14)

[^1]

Fig. 4 Port block diagram (1)

Fig. 5 Port block diagram (2)

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

INTERRUPTS

A total of 18 source can generate interrupts: 5 external, 12 internal, and 1 software.

- Interrupt Control

Each interrupt is controlled by its interrupt request bit, its interrupt enable bit, and the interrupt disable flag except for the software interrupt set by the BRK instruction. An interrupt is generated if the corresponding interrupt request and enable bits are " 1 " and the interrupt disable flag is " 0 ".
Interrupt enable bits can be set or cleared by software. Interrupt request bits can be cleared by software, but cannot be set by software.
The I flag disables all interrupts except for the BRK instruction interrupt.

- Interrupt Operation

When an interrupt is received, the program counter and processor status register are automatically pushed onto the stack. The interrupt disable flag is set to inhibit other interrupts from interfering. The corresponding interrupt request bit is cleared and the interrupt jump destination address is read from the vector table into the program counter.

- Notes on Use

If you will change interrupt edge selection from rising edge to falling edge, interrupt request bit will be set to " 1 " automatically. Therefore, please make following process;
(1) Disable INT which is selected.
(2) Change INT edge selection.
(3) Clear interrupt request which is selected.
(4) Enable INT which is selected.

Table 1. Interrupt vector addresses and priorities

Interrupt Cause	Priority	Vector Address (Note 1)		Interrupt Request Generation Conditions	Remarks
		High	Low		
Reset (Note 2)	1	FFFD_{16}	FFFC ${ }_{16}$	At reset	Non-maskable
INT_{0}	2	FFFB_{16}	FFFA $_{16}$	At detection of ether rising or falling edge of INT_{0} input	External interrupt (active edge selectable)
INT ${ }_{1}$	3	$\mathrm{FFF9}_{16}$	FFF8 ${ }_{16}$	At detection of elther rising or falling edge of INT ${ }_{1}$ input	External interrupt (active edge selectable)
INT_{2}	4	FFF_{16}	FFF6 ${ }_{16}$	At detection of either rising or falling edge of INT_{2} input	External interrupt (active edge selectable)
Serial I/O1	5	FFF5 ${ }_{16}$	FFF4 ${ }_{16}$	At end of data transfer \qquad At end of final data transfer	Valıd when serıal 1/O normal mode is selected
Serial I/O automatic transfer					Valid when serial I/O automatic transfer mode is selected
Serial I/O2	6	$\mathrm{FFF3}_{16}$	FFF2 ${ }_{16}$	At end of data transfer	
Timer 1	7	FFF1 ${ }_{16}$	FFFO_{16}	At timer 1 overflow	
Timer 2	8	FFEF_{16}	FFEE $_{16}$	At timer 2 overflow	STP release timer overflow
Timer 3	9	FFED_{16}	FFEC $_{16}$	At timer 3 overflow	
Timer 4	10	FFEB_{16}	FFEA $_{16}$	At timer 4 overflow	
Timer 5	11	FFE9 ${ }_{16}$	$\mathrm{FFE8}_{16}$	At timer 5 overflow	
Timer 6	12	$\mathrm{FFE}_{16}{ }^{6}$	FFE6 $_{16}$	At timer 6 overflow	
INT_{3}	13	FFE5 ${ }_{16}$	FFE4 ${ }_{16}$	At detection of either rising or falling edge of INT_{3} input	External interrupt (active edge selectable)
INT_{4}	14	FFE_{16}	FFE2 ${ }_{16}$	At detection of either rising or falling edge of INT_{4} input	External interrupt valid when INT_{4} interrupt is selected (active edge selectable)
A-D converter				At end of A-D conversion	Valid when A-D interrupt is selected
FLD blankıng	15	FFE1 $_{16}$	FFEO_{16}	At fall of final digit	Valıd when FLD blanking interrupt is selected
FLD digıt				At rise of each digit	Valıd when FLD digit interrupt is selected
BRK instruction	16	FFDD_{16}	FFDC_{16}	At BRK instruction execution	Non-maskable software interrupt

Note 1. Vector addresses contain ınterrupt jump destınatıon addresses
2. Reset function in the same way as an interrupt with the highest priority

Fig. 6 Interrupt control

[^2]

Interrupt control register 1 (ICON1 : address $003 \mathrm{E}_{16}$)
${ }^{\operatorname{NN}} \mathrm{T}_{0}$ interrupt enable bit INT T_{1} interrupt enable bit INT_{2} interrupt enable bit

Serial I/O1 interrupt enable bit, or Serial I/O automatic transfer interrupt enable bit

Serial I/O2 interrupt enable bit Tımer 1 interrupt enable bit Timer 2 interrupt enable bit Timer 3 interrupt enable bit

0 : No interrupt request issued
1 : Interrupt request issued

Tımer 4 interrupt enable bit
Tımer 5 interrupt enable bit
Timer 6 interrupt enable bit
INT_{3} interrupt enable bit
INT_{4} interrupt enable bit, or A-D conversion interrupt enable bit
FLD blanking interrupt enable bit, or FLD digit interrupt enable bit
Not used (returns " 0 " when read)
Not used
(do not write " 1 " to this bit)
: Interrupts disabled
1 : Interrupts enabled

Fig. 7 Structure of interrupt-related registers

TIMERS

Microcomputers of the M3817x group have six built-in timers. The timers count down. Once a timer reaches 00_{16}, the next count pulse loads the contents of the corresponding timer latch into the timer, and sets the corresponding interrupt request bit to 1 . Each timer also has a stop bit that stops the count of that timer when it is set to " 1 ".
Note that the system clock ϕ can be set to either highspeed mode or low-speed mode by the CPU mode register.

- Timer 1 and Timer 2

The count sources of timer 1 and timer 2 can be selected by setting the timer 12 mode register.
Timer 1 can also output a rectangular waveform from the $\mathrm{P} 4_{6} / \mathrm{T} 1_{\text {оut }} \mathrm{pin}$. The waveform changes polarity each time timer 1 overflows.
The active edge of the external signal CNTR_{0} can be set by the interrupt edge selection register.
When the chip is reset or the STP instruction is executed, all bits of the timer 12 mode register are cleared, timer 1 is set to FF_{16}, and timer 2 is set to 01_{16}.

- Timer 3 and Timer 4

The count sources of timer 3 and timer 4 can be selected by setting the timer 34 mode register.
Timer 3 can also output a rectangular waveform from the $\mathrm{P}_{7} / \mathrm{T}_{\text {Out }}$ pin. The waveform changes polarity each time timer 3 overflows.
The active edge of the external signal CNTR 1 can be set by the interrupt edge selection register.

- Timer 5 and Timer 6

The count sources of timer 5 and timer 6 can be selected by setting the timer 56 mode register.
Timer 6 can also output a rectangular waveform from the $\mathrm{P} 6_{1} / \mathrm{PWM}_{1}$ pin. The waveform changes polarity each time timer 6 overflows.

- Timer 6 PWM $_{1}$ Mode

Timer 6 can also output a rectangular waveform of n cycles high and m cycles low. The n is the value set in timer latch 6 (address 0025_{16}) and m is the value in the timer 6 PWM register (address 0027_{16}). If n is " 0 ", the $P W M_{1}$ output is " L ", if m is " 0 " and n is not " 0 ", then the PWM_{1} output is " H ". In PWM mode, interrupts are generated at the rising edge of the $P W M_{1}$ output.

Fig. 8 Timer block diagram

Fig. 9 Structure of timer-related registers

Fig. 10 Timing in timer 6 PWM $_{1}$ mode

SERIAL I/O

Microcomputers of the M3817x group have two built-in 8-bit clock synchronized serial I/O channels (serial I/O1 and serial I/O2).
Serial I/O1 has a built-in automatic transfer function. Normal serial operation can be set via the serial 1/O automatic transfer control register (address $001 \mathrm{~A}_{16}$).

Serial I/O2 can only be used in normal operation mode.
The I/O pins of the serial I/O function also operate as I/O port P5, and their operation is selected by the serial $1 / O$ control registers (addresses 0019_{16} and $001 D_{16}$).

Fig. 11 Serial I/O block diagram
(Serial I/O Control Registers) SIO1CON, SIO2CON Each of the serial I/O control registers (addresses 0019_{16} and $001 \mathrm{D}_{16}$) contains seven bits that select various control parameters of the serial I/O function.

* : Valıd only in serıal I/O automatıc transfer mode

Fig. 12 Structure of serial I/O control registers

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

(1) Operation in Normal Serial I/O Mode

Either an internal clock or an external clock can be selected as the synchronization clock for serial 1/O transfer. A dedicated divider is built-in as the internal clock, giving a choice of six clocks.
If internal clock is selected, transfer start is activated by a write signal to a serial $1 / O$ register (address $001 \mathrm{~B}_{16}$ or $001 \mathrm{~F}_{16}$). After eight bits have been transferred, the $S_{\text {Out }}$ pin goes to high impedance.

If external clock is selected, the clock must be controlled externally because the contents of the serial I/O register continue to shift while the transfer clock is input. In this case, note that the Sout pin does not go to high impedance at the completion of data transfer. The interrupt request bit is set at the end of the transfer of eight bits, regardless of whether the internal or external clock is selected.

Fig. 13 Serial I/O timing in normal mode (for LSB first)
(2) Serial I/O Automatic Transfer Mode

The serial I/O1 function has an automatic transfer function. For automatic transfer, switch to the automatic transfer mode by setting the serial I/O automatic transfer control register (address $001 \mathrm{~A}_{16}$).
The following memory spaces are added to the circuits used for the serial I/O1 function in ordinary mode, to enable automatic transfer mode:

- 32 bytes of serial I/O automatic transfer RAM
- A serial I/O automatic transfer control register
- A serial I/O automatic transfer interval register
- A serial I/O automatic transfer data pointer

When using serial I/O automatic transfer, set the serial I/O control register (address 0019_{16}) in the same way as for ordinary mode. However, note that if external clock is selected and bit 4 (the $\overline{\mathrm{S}_{\mathrm{RDY}}}$ output selection bit) of the serial I/O1 control register is set to "1", port $P 5_{3}$ becomes the $\overline{\mathrm{CS}}$ input pin.

(Serial I/O Automatic Transfer Control Register) SIOAC

The serial I/O automatic transfer control register (address $001 \mathrm{~A}_{16}$) contains four bits that select various control parameters for automatic transfer.

Fig. 14 Structure of serial 1/O automatic transfer control register
(Serial I/O Automatic Transfer Data Pointer) SIODP
The serial I/O automatic transfer data pointer (address 0018_{16}) contains five bits that indicate addresses in serial I/O automatic transfer RAM (each address in memory is actually the value in the serial I/O automatic transfer data pointer plus 0100_{16}).
Set the serial I/O automatic transfer data pointer to (the number of transfer data-1), to specify the storage position of the start of data.

- Serial I/O Automatic Transfer RAM

The serial I/O automatic transfer RAM is the 32 bytes from address 0100_{16} to address $011 F_{16}$.

Fig. 15 Bit allocation of serial I/O automatic transfer RAM

Fig. 16 Serial I/O automatic transfer interval timing

- Setting of Serial I/O Automatic Transfer Timing Use the serial I/O1 control register (address 0019_{16}) and the serial I/O automatic transfer interval register (address $\mathrm{OO1C}_{16}$) to set the timing of serial I/O automatic transfer.
The serial I/O1 control register sets the transfer clock speed, and the serial I/O automatic transfer interval register sets the serial I/O automatic transfer interval.
This setting of transfer interval is valid only when internal clock is selected as the clock source.
- Start of Serial I/O Automatic Transfer

Automatic transfer mode is set by writing " 1 " to bit 0 of the serial I/O automatic transfer control register (address $001 \mathrm{~A}_{16}$), then automatic transfer starts when " 1 " is written to that bit. Bit 1 of the serial I/O automatic transfer control register is always " 1 " during automatic transfer; writing " 0 " to it is one way to end automatic transfer.

- Operation in Serial I/O Automatic Transfer Modes

There are two modes for serial I/O automatic transfer: full duplex mode and transmit-only mode. Either internal or external clock can be selected for each of these modes.

(2.1) Operation in Full Duplex Mode

In full duplex mode, data can be transmitted and received at the same time. Data in the automatic transfer RAM is sent in sequence and simultaneously receive data is written to the automatic transfer RAM, in accordance with the serial I/O automatic transfer data pointer.
The transfer timing of each bit is the same as in ordinary operation mode, and the transfer clock stops at " H " after eight transfer clocks are counted If internal clock is selected, the transfer clock remains at " H " for the time set by the serial I/O automatic transfer interval register, then the data at the next address indicated by the serial I/O automatic transfer data pointer is transferred. If external clock is selected, the setting of the automatic transfer interval register is invalid, so the user must ensure that the transfer clock is controlled externally.
Data transfer ends when the contents of the serial I/O automatic transfer pointer reach " 00_{16} ". At that point, the serial I/O automatic transfer interrupt request bit is set to " 1 " and bit 1 of the serial I/O automatic transfer control register is cleared to " 0 " to complete the serial I/O automatic transfer.

(2.2) Operation in Transmit-Only Mode

The operation in transmit-only mode is the same as that in full duplex mode, except that data is not transferred from the serial I/O1 register to the serial I/O automatic transfer RAM.

Fig. 17 Serial I/O1 register in full duplex mode

(2.3) If Internal Clock is Selected

If internal clock is selected, the $\mathrm{P5}_{3} / \overline{\mathrm{S}_{\mathrm{RDY} 1}} / \overline{\mathrm{CS}} / \mathrm{S}_{\mathrm{CLK} 12}$ pin can be used as the $\overline{\mathrm{S}_{\mathrm{RDY}}}$ pin by setting the $\mathrm{SC1}_{4}$ bit to " 1 ". If internal clock is selected, the P_{3} pin can be used as the synchronization clock output pin $\mathrm{S}_{\text {cLK12 }}$ by setting the SIOAC_{3} bit to " 1 ". In this case, the $\mathrm{S}_{\mathrm{CLK} 11}$ pin is at high impedance.
Select the function of the $\mathrm{P5}_{3} / \overline{\mathrm{S}_{\mathrm{RDY} 1}} / \overline{\mathrm{CS}} / \mathrm{S}_{\mathrm{CLK} 12}$ and $\mathrm{P5}_{2} /$ $\mathrm{S}_{\mathrm{CLK} 11}$ pins by setting bit $3\left(\mathrm{SC1}_{3}\right)$, bit $4\left(\mathrm{SC1}_{4}\right)$, and bit 6 $\left(S C 1_{6}\right)$ of the serial I/O1 control register (address 0019_{16}) and bit $3\left(\mathrm{SIOAC}_{3}\right)$ of the serial I/O automatic transfer control register (address $001 \mathrm{~A}_{16}$). (See Table 2.)

If using the $\mathrm{S}_{\text {CLK11 }}$ and $\mathrm{S}_{\text {CLK12 }}$ pins for switching, set the $\mathrm{P}_{3} / \overline{\mathrm{S}_{\text {RDY1 }}} / \overline{\mathrm{CS}} / \mathrm{S}_{\text {CLK12 }}$ pin to P_{3} by setting the $\mathrm{SC1}_{4}$ bit to " 0 ", and set the $\mathrm{P5}_{3}$ direction register to input mode.
Make sure that the SIOAC_{3} bit is switched after automatic transfer is completed, while the transfer clock is still " H ".

Table 2. $\mathrm{S}_{\mathrm{CLK} 11}$ and $\mathrm{S}_{\mathrm{CLK} 12}$ selection

SC_{6}	SC_{4}	SC_{3}	SIOAC_{3}	$\mathrm{P5}_{2} / \mathrm{S}_{\mathrm{CLK} 11}$	$\mathrm{P5}_{3} / \mathrm{S}_{\mathrm{CLK} 12}$
1	0	1	0	$\mathrm{~S}_{\mathrm{CLK} 11}$	$\mathrm{P5}_{3}$
	0	1	HIgh impedanse	$\mathrm{S}_{\mathrm{CLK} 12}$	

Note. $\mathrm{SC1}_{3}$: Serial I/O1 port selection bit
$\mathrm{SC1}_{4}: \overline{\mathrm{S}_{\mathrm{RDY}}}$ output selection bit
$\mathrm{SC1}_{6}$: Synchronization clock selectıon bit
SIOAC_{3} : Synchronization clock output pin selection bit

Fig. 18 Timing during serial I/O automatic transfer (internal clock selected, $\overline{\mathrm{S}_{\mathrm{RDY}}}$ used)

Fig. 19 Timing during serial I/O automatic transfer (internal clock selected, $\mathrm{S}_{\mathrm{CLK} 11}$ and $\mathrm{S}_{\mathrm{CLK} 12}$ used)

(2.4) If External Clock is Selected

If an external clock is selected, the internal clock and the transfer interval set by the serial I/O automatic transfer interval register are invalid, but the serial I/O output pin Sout and the internal transfer clock can be controlled from the outside by setting the $\overline{S_{R D Y 1}}$ and $\overline{C S}$ (input) pins.
When the $\overline{C S}$ input is " L ", the $S_{\text {out }}$ pin and the internal transfer clock are enabled. When the $\overline{\mathrm{CS}}$ input is " H ", the Sout pin is at high impedance and the internal transfer clock is at " H ".
Select the function of the $\mathrm{P5}_{3} / \overline{\mathrm{S}_{\mathrm{ROY} 1}} / \overline{\mathrm{CS}} / \mathrm{S}_{\mathrm{CLK} 12}$ pin by setting bit $4\left(\mathrm{SC1}_{4}\right)$ and bit $6\left(\mathrm{SC1}_{6}\right)$ of the serial I/O1 control register (address 0019_{16}) and bit $0\left(\mathrm{SIOAC}_{0}\right)$ of the serial I/O automatic transfer control register (address 001A A_{16}).
Make sure that the $\overline{\mathrm{CS}}$ pin switches from " L " to " H " or from " H " to " L " while the transfer clock ($\mathrm{S}_{\mathrm{CLK}}$ input) is " H " after one byte of data has been transferred.
If external clock is selected, make sure that the external clock goes "L" after at least nine cycles of the internal system clock ϕ after the start bit is set. Leave at least 11 cy cles of the system clock ϕ free for the transfer interval after one byte of data has been transferred.

If $\overline{C S}$ input is not being used, note that the $\mathrm{S}_{\text {Out }}$ pin will not go high impedance, even after transfer is completed.
If $\overline{\mathrm{CS}}$ input is not being used, or if $\overline{\mathrm{CS}}$ is " L ", control the external clock because the data in the serial I/O register will continue to shift while the external clock is input, even after the completion of automatic transfer. (Note that the automatic transfer interrupt request bit is set and bit 1 of the automatic transfer register is cleared at the point at which the specified number of bytes of data have been transferred.)

Table 3. $\mathrm{P5}_{3} / \overline{\mathrm{S}_{\mathrm{RDY} 1}} / \overline{\mathrm{CS}}$ selection

SC_{6}	$\mathrm{SC1}_{4}$	SIOAC_{0}	$\mathrm{P5}_{3} / \overline{\mathrm{SADY}^{2}} / \overline{\mathrm{CS}}$
0	0	\times	$\overline{\mathrm{P5}_{3}}$
	1	0	$\overline{\mathrm{~S}_{\mathrm{RDY}}}$
		1	$\overline{\mathrm{CS}}$

Note. $\mathrm{SC1}_{4}: \overline{\mathrm{S}_{\mathrm{RDY}}}$ output selection bit
$\mathrm{SC1}_{6}$: Synchronization clock selection bit
SIOAC_{0} : Automatic transfer control bit

Fig. 20 Timing during serial I/O automatic transfer (external clock selected)

PULSE WIDTH MODULATION (PWM) OUTPUT CIRCUIT

Microcomputers of the M3817x group have a PWM function with a 14-bit resolution. When the oscillation frequency $X_{\text {IN }}$ is 4 MHz , the mınimum resolution bit width is 500 ns and the cycle period is $8192 \mu \mathrm{~s}$. The PWM timing generator supplies a PWM control signal based on a signal that is half the frequency of the $\mathrm{XIN}_{\text {IN }}$ clock.

The explanation in the rest of this data sheet assumes $X_{I N}=$ 4 MHz .

Fig. 21 PWM block diagram
(1) Data Set-up

The PWM output pin also functions as port $\mathrm{P6} 6_{0}$. Set port $P 6_{0}$ to be the PWM output pin by setting bit 0 of the PWM mode register (address $002 \mathrm{~B}_{16}$). The upper eight bits of output data are set in the upper PWM register PWMH (address $002 \mathrm{C}_{16}$) and the lower six bits are set in the lower PWM register PWML (address $002 \mathrm{D}_{16}$).
(2) Transfer From Register to Latch

Data written to the PWML register is transferred to the PWM latch once in each PWM period (every $8192 \mu \mathrm{~s}$), and data written to the PWMH register is transferred to the PWM latch once in each sub-period (every $128 \mu \mathrm{~s}$). When the PWML register is read, the contents of the latch are read. However, bit 7 of the PWML register indicates whether the transfer to the PWM latch is completed; the transfer is completed when bit 7 is " 0 ".

Table 4. Relationship between lower 6 bits of data and period set by the ADD bit

Lower 6 Bits of Data(PWML)	Sub-periods tm Lengthened ($\mathrm{m}=0$ to 63)
0000000	None
000001	$\mathrm{m}=32$
000010	$\mathrm{m}=16,48$
000100	$\mathrm{m}=8,24,40,56$
001000	$\mathrm{m}=4,12,20,28,36,44,52,60$
010000	$\mathrm{m}=2,6,10,14,18,22,26,30,34,38,42,46,50,54,58,62$
100000	

(3) PWM Operation

The timing of the 14-bit PWM function is shown in Fig. 24. The 14-bit PWM data is divided into the lower six bits and the upper eight bits in the PWM latch.

The upper eight bits of data determine how long an "H"-level signal is output during each sub-period. There are 64 sub-periods in each period, and each sub-period is $256 \times \tau(128 \mu \mathrm{~s})$ long. The signal is "H" for a length equal to N times τ, where τ is the minimum resolution (500ns).

The contents of the lower six bits of data enable the lengthening of the high signal by τ (500 ns). As shown in Fig. 21, the six bits of PWML determine which subcycles are lengthened.
As shown in Fig. 24, the leading edge of the pulse is lengthened. By changing the length of specific subperiods instead of simply changing the " H " duration, an accurate waveform can be duplicated without the use of complex external filters.

For example, if the upper eight bits of the 14-bit data are 03_{16} and the lower six bits are 05_{16}, the length of the "H"-level output in sub-periods $t_{8}, t_{24}, t_{32}, t_{40}$, and t_{56} is 4τ, and its length 3τ in all other sub-periods.

Fig. 22 PWM timing

Fig. 23 Structure of PWM mode register

Fig. 24 14-bit PWM timing

A－D CONVERTER

The functional blocks of the A－D converter are described below．

〔A－D Conversion Register〕 AD

The $A-D$ conversion register is a read－only register that contains the result of an A－D conversion．This register should not be read during an A－D conversion．

〔A－D Control Register〕ADCON

The A－D control register controls the A－D conversion pro－ cess．Bits 0 to 2 of this register select specific analog input pins．Bit 3 signals the completion of an A－D conversion．The value of this bit remains at＂ 0 ＂during an A－D conversion， then changes to＂ 1 ＂when the A－D conversion is completed． Writing＂ 0 ＂to this bit starts the A－D conversion．

〔Comparison Voltage Generator〕

The comparison voltage generator divides the voltage be－ tween $A V_{S S}$ and $V_{\text {REF }}$ by 256 ，and outputs the divided vol－ tages．

〔Channel Selector〕

The channel selector selects one of the input ports $\mathrm{P} 7_{7} / \mathrm{AN}_{7}$ to $P 7_{0} / A N_{0}$

〔Comparator and Control Circuit〕

The comparator and control circuit compares an analog in－ put voltage with the comparison voltage and stores the re－ sult in the A－D conversion register．When an A－D conver－ sion is complete，the control circuit sets the A－D conversion completion bit and the A－D interrupt request bit to＂ 1 ＂． Note that the comparator is constructed linked to a capaci－ tor，so set $f\left(X_{\text {IN }}\right)$ to at least 500 kHz during A－D conversion．

Fig． 25 Structure of A－D control register

Fig． 26 A－D converter block diagram

FLD CONTROLLER

Microcomputers of the M3817x group have fluorescent dis play (FLD) drive and control circuits.
The FLD controller consists of the following components:

- 24 pins for segments
- 16 pins for digits
- FLDC mode register
- FLD data pointer
- FLD data pointer reload register
- Port P0 segment/digit switching register
- Port P1 digit/port switching register
- Port P8 segment/port switching register
- Key-scan blanking register
- 48-byte FLD automatic display RAM

Eight to twenty-four pins can be used as segment pins and four to sixteen pins can be used as digit pins.
Note that only 32 pins (maximum) can be used as segment and digit pins.

Fig. 27 FLD control circuit block diagram

FLDC Mode Register (FLDM)

The FLDC mode register (address 0036_{16}) is a seven bit control register which is used to control the FLD automatic display.

Key-scan Blanking Register (KSCN)

The key-scan blanking register (address 0035_{16}) is a two bit register which sets the blanking period $T_{\text {scan }}$ between the last digit and the first digit of the next cycle.

Fig. 28 Structure of FLDC mode register (FLDM)

Fig. 29 Structure of key-scan blanking register (KSCN)

FLD Automatic Display Pins

The FLD automatic display function of Ports P0, P1, P3, and P8 is selected by setting the automatic display control bit of
Table 5. Pins in FLD automatic display mode
the FLDC mode register (address 0036_{16}) to " 1 ".
When using the FLD automatic display mode, set the number of segments and digits for each port.

Port Name	Automatıc Display Pıns	Setting Method
$\mathrm{P} 8_{0}-\mathrm{P} 8_{7}$	$\begin{gathered} \mathrm{SEG}_{0}-\mathrm{SEG}_{7} \\ \text { or } \\ \mathrm{PB}_{0}-\mathrm{P8}_{7} \\ \hline \end{gathered}$	The individual bits of the segment/port switching register (address 0034_{16}) can be used to set each pin to ether segment (" 1 ") or normal port input (" 0 ") (Note)
$P 3_{0}-P 3_{7}$	$\mathrm{SEG}_{8}-\mathrm{SEG}_{15}$	None (segment only)
$\mathrm{PO}_{0}-\mathrm{PO}{ }_{7}$	$\begin{gathered} \mathrm{SEG}_{16}-\mathrm{SEG}_{23} \\ \text { or } \\ \mathrm{DIG}_{0}-\mathrm{DIG}_{7} \\ \hline \end{gathered}$	The individual bits of the segment/digit switching register (address 0032_{16}) can be used to set each pin to segment (" 1 ") or digit (" 0 ") (Note)
$\mathrm{P} 1_{0}-\mathrm{P} 1_{3}$	DIG_{8} - DIG_{11}	None (digit only)
$\mathrm{P1}_{4}-\mathrm{P} 1_{7}$	$\begin{gathered} \mathrm{DIG}_{12}-\mathrm{DIG}_{15} \\ \text { or } \\ \mathrm{P1}_{4}-\mathrm{P1}_{7} \\ \hline \end{gathered}$	The individual bits of the digit/port switching regıster (address 0033_{16}) can be used to set each pin to digit ("1") or normal port output ("0") (Note)

Note. Always set digits in sequence.

Number of segments
Number of digits

Port P8
(has segment/port
switching register)

Port P3
(segment only)

Port P0
(has segment/dıgit switching register)

Port P1
(has digit/port switching register)

16	
4	
0	$\mathrm{P} 8_{0}$
0	$\mathrm{P} 8_{1}$
0	$\mathrm{P} 8_{2}$
0	$\mathrm{P} 8_{3}$
0	$\mathrm{P} 8_{4}$
0	$\mathrm{P} 8_{5}$
0	$\mathrm{P} 8_{6}$
0	$\mathrm{P} 8_{7}$

	8
12	
0	$\mathrm{P} 8_{0}$
0	$\mathrm{P} 8_{1}$
0	$\mathrm{P} 8_{2}$
0	$\mathrm{P} 8_{3}$
0	$\mathrm{P8}$
0	$\mathrm{P8}$
0	$\mathrm{P8}$

16	
10	
0	$\mathrm{P} 8_{0}$
0	$\mathrm{P} 8_{1}$
0	$\mathrm{P} 8_{2}$
0	$\mathrm{P8}_{3}$
1	SEG_{4}
1	SEG_{5}
1	SEG_{6}
1	SEG_{7}

24	
8	
1	SEG_{0}
1	SEG_{1}
1	SEG_{2}
1	SEG_{3}
1	SEG_{4}
1	SEG_{5}
1	SEG_{6}
1	SEG_{7}

16	
16	
1	SEG_{0}
1	SEG_{1}
1	SEG_{2}
1	SEG_{3}
1	SEG_{4}
1	SEG_{5}
1	SEG_{6}
1	SEG_{7}

1	SEG_{16}
1	SEG_{17}
1	SEG_{18}
1	SSG_{19}
1	SEG_{20}
1	SEG_{21}
1	SEG_{22}
1	SEG_{23}

0	$\mathrm{DIG}_{0} \rightarrow \mathrm{G} 12$
0	$\mathrm{DIG}_{1} \rightarrow \mathrm{G} 11$
0	$\mathrm{DIG}_{2} \rightarrow \mathrm{G10}$
0	$\mathrm{DIG}_{3} \rightarrow \mathrm{G} 9$
0	$\mathrm{DIG}_{4} \rightarrow \mathrm{G} 8$
0	$\mathrm{DIG}_{5} \rightarrow \mathrm{G} 7$
0	$\mathrm{DIG}_{6} \rightarrow \mathrm{G} 6$
0	$\mathrm{DIG}_{7} \rightarrow \mathrm{G} 5$

1	SEG_{16}
1	SEG_{17}
1	SEG_{18}
1	SEG_{19}
0	$\mathrm{DIG}_{4} \rightarrow \mathrm{G10}$
0	$\mathrm{DIG}_{5} \rightarrow \mathrm{G} 9$
0	$\mathrm{DIG}_{6} \rightarrow \mathrm{G8}$
0	$\mathrm{DIG}_{7} \rightarrow \mathrm{G7}$

1	SEG_{16}
1	SEG_{17}
1	SEG_{18}
1	SEG_{19}
1	SEG_{20}
1	SEG_{21}
1	SEG_{22}
1	SEG_{23}

0	$\mathrm{DIG}_{0} \rightarrow \mathrm{G} 16$
0	$\mathrm{DIG}_{1} \rightarrow \mathrm{G} 15$
0	$\mathrm{DIG}_{2} \rightarrow \mathrm{G} 14$
0	$\mathrm{DIG}_{3} \rightarrow \mathrm{G13}$
0	$\mathrm{DIG}_{4} \rightarrow \mathrm{G12}$
0	$\mathrm{DIG}_{5} \rightarrow \mathrm{G11}$
0	$\mathrm{DIG}_{6} \rightarrow \mathrm{G10}$
0	$\mathrm{DIG}_{7} \rightarrow \mathrm{G} 9$

	$\mathrm{DIG}_{8} \rightarrow \mathrm{G} 4$
$\mathrm{DIG}_{9} \rightarrow \mathrm{G} 3$	
	$\mathrm{DIG}_{10} \rightarrow \mathrm{G} 2$
	$\mathrm{DIG}_{11} \rightarrow \mathrm{G} 1$
0	Pl_{4}
0	Pl_{5}
0	Pl_{6}
0	Pl_{7}

	$\mathrm{DIG}_{8} \rightarrow \mathrm{G} 4$
	$\mathrm{DIG}_{9} \rightarrow \mathrm{G} 3$
	$\mathrm{DIG}_{10} \rightarrow \mathrm{G} 2$
	$\mathrm{DIG}_{11} \rightarrow \mathrm{G1}$
0	Pl_{4}
0	Pl_{5}
0	Pl_{6}
0	Pl_{7}

	$\mathrm{DIG}_{8} \rightarrow \mathrm{G} 6$
	$\mathrm{DIG}_{9} \rightarrow \mathrm{G} 5$
	$\mathrm{DIG}_{10} \rightarrow \mathrm{G} 4$
	$\mathrm{DIG}_{11} \rightarrow \mathrm{G} 3$
1	$\mathrm{DIG}_{12} \rightarrow \mathrm{G} 2$
1	$\mathrm{DIG}_{13} \rightarrow \mathrm{G} 1$
0	Pl_{6}
0	Pl_{7}

	$\mathrm{DIG}_{8} \rightarrow \mathrm{G} 8$			
	$\mathrm{DIG}_{9} \rightarrow \mathrm{G} 7$			
	$\mathrm{DIG}_{10} \rightarrow \mathrm{G} 6$			
	$\mathrm{DIG}_{11} \rightarrow \mathrm{G} 5$			
1	$\mathrm{DIG}_{12} \rightarrow \mathrm{G} 4$			
1	$\mathrm{DIG}_{13} \rightarrow \mathrm{G} 3$			
1	$\mathrm{DIG}_{14} \rightarrow \mathrm{G} 2$			
1	$\mathrm{DIG}_{15} \rightarrow \mathrm{G1}$			

	$\mathrm{DIG}_{8} \rightarrow \mathrm{G} 8$
	$\mathrm{DIG}_{9} \rightarrow \mathrm{G7}$
	$\mathrm{DIG}_{10} \rightarrow \mathrm{G} 6$
	$\mathrm{DIG}_{11} \rightarrow \mathrm{G} 5$
1	$\mathrm{DIG}_{12} \rightarrow \mathrm{G} 4$
1	$\mathrm{DIG}_{13} \rightarrow \mathrm{G} 3$
1	$\mathrm{DIG}_{14} \rightarrow \mathrm{G} 2$
1	$\mathrm{DIG}_{15} \rightarrow \mathrm{G} 1$

Fig. 30 Segment/digit setting example

FLD Automatic Display RAM

The FLD automatic display RAM area is the 48 bytes from address 0040_{16} to $006 \mathrm{~F}_{16}$. The FLD automatic display RAM area can be used to store 3-byte data items for a maximum of 16 digits. Addresses 0040_{16} to $004 \mathrm{~F}_{16}$ are used for P8 segment data, addresses 0050_{16} to $005 \mathrm{~F}_{16}$ are used for P3 segment data, and addresses 0060_{16} to $006 \mathrm{~F}_{16}$ are used for P0 segment data.

- FLD Data Pointer and FLD Data Pointer Reload Register The FLD data pointer indicates the data address in the FLD automatic display RAM to be transferred to a segment, and the FLD data pointer reload register indicates the address of the first digit of segment P3.

Both the FLD data pointer and the FLD data pointer reload register are allocated to address 0037_{16} and are 6bits wide. Data written to this address is written to the FLD data pointer reload register, data read from this address is read from the FLD data pointer
The actual memory address is the value of the data pointer plus $40_{16}, 50_{16}$, or 60_{16}.
The contents of the FLD data pointer indicate the start address of segment $P 0$ at the start of automatic display. If segment P0 or P3 data is transferred to the segment, the FLD data pointer returns - 16; if segment P8 data is transferred, it returns +31 . After it reaches " 00 ", the value in the FLD data pointer reload register is transferred to the FLD data pointer. In this way, three bytes of data for the P0, P3, and P8 segments of one digit are transferred

Fig. 31 FLD automatic display RAM and bit allocation

MITSUBISHI MICROCOMPUTERS
 M3817x Group

- Data Setup

When data is stored in the FLD automatic display RAM, the end of segment P8 data is stored at address 0040_{16}, the end of segment P3 data is stored at address $0050{ }_{16}$, and the end of segment PO data is stored at address 0060_{16}. The head of each of the segment P8, P3, and P0 data is stored at an address that is the number of digits-1 away from the corresponding address 0040_{16}, $0050_{16}, 0060_{16}$.

Set the FLD data pointer reload register to the value given by the number of digits -1 . " 1 " is always written to bit 5 , and " 0 " is always written to bit 4 . Note that " 0 " is always read from bit 5 or 4 during a read.

For 24 segments and 8 digits
(FLD data pointer reload register $=7$)
(30,

Note. V / \triangle Shaded areas are not used
Fig. 32 Example of using the FLD automatic display RAM.

- Timing Setting

The digit timing ($T_{\text {disp }}$) and digit/segment turn-off timing ($T_{\text {off }}$) can be set by the FLDC mode register (address 0036_{16}). The scan timing ($T_{\text {scan }}$) can be set by the keyscan blanking register (address 0035_{16}).
Note that flickering will occur if the repetition frequency ($1 /\left(T_{\text {disp }} \times\right.$ number of digits $\left.+T_{\text {scan }}\right)$) is an integral multiple of the digit timing $T_{\text {disp }}$.

- FLD Start

To perform FLD automatic display, you have to use the following registers.

- Port P0 segment/digit switching register
- Port P1 digit/port switching register
- Port P8 segment/port switching register
- Key-scan blanking register
- FLDC mode register
- FLD data pointer

Automatic display mode is activated by writing " 1 " to bit 0 of the FLDC mode register (address 0036_{16}), and the
automatic display is started by writing " 1 " to bit 1 . During automatic display bit 1 always keeps " 1 ", automatic display can be interrupted by writing " 0 " to bit 1 .

If key-scan is to be performed by segment during the key-scan blanking period $\mathrm{T}_{\text {scan }}$,

1. Write " 0 " to bit 0 (automatic display control bit) of FLDC mode register (address 0036_{16}).
2. Set the port corresponding to the segment to the normal port.
3. After the key-scan is performed, write "1" (automatic display mode) to bit 0 of FLDC mode register (address 0036_{16}).

Note on performance of key-scan in the above 1 to 3 order.

1. Do not write " 0 " to bit 1 of FLDC mode register (address 0036_{16}).
2. Do not write "1" to the port corresponding to the digit.

Fig. 33 FLDC timing

MITSUBISHI MICROCOMPUTERS
 M3817x Group

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

RESET CIRCUIT

After a reset, the microcomputer will start in high-speed operation start mode or low-speed operation start mode depending on a mask-programmable option.

- High-Speed Operation Start Mode

In high-speed operation start mode, reset occurs if the RESET pin is held at an " L " level for at least $2 \mu \mathrm{~s}$ then is returned to an " H " level (the power supply voltage should be between 4.0 V and 5.5 V). Both the $\mathrm{X}_{\text {IN }}$ and the $X_{\text {CIN }}$ clocks begin oscillating. In order to give the $X_{I N}$ clock time to stabilize, internal operation does not begin until after $13 X_{\text {IN }}$ clock cycles are complete. After the reset is completed, the program starts from the address contained in address FFFD_{16} (upper byte) and address FFFC_{16} (lower byte).

- Low-Speed Operation Start Mode

In low-speed operation start mode, reset occurs if the RESET pin is held at a " L " level for at least 2μ s then is
returned to an " H " level (the power supply voltage should be between 2.8 V and 5.5 V). The X_{IN} clock does not begin oscillating. In order to give the $\mathrm{X}_{\mathrm{CIN}}$ time to stabilize, timer 1 and timer 2 are connected together and 512 cycles of the $\mathrm{X}_{\mathrm{CIN}} / 16$ are counted before internal operation begins. After the reset is completed, the program starts from the address contained in address FFFD $_{16}$ (upper byte) and address FFFC_{16} (lower byte). If the $X_{\text {CIN }}$ clock is stable, reset will complete after approximately 250 ms (assuming $\mathrm{f}\left(\mathrm{X}_{\mathrm{CIN}}\right)=32.768 \mathrm{kHz}$). Immediately after a power-on, the stability of the clock circuit will determine the reset timing and will vary according to the characteristics of the oscillation circuit used.

- Note on Use

Make sure that the reset input voltage is no more than 0.8 V in high-speed operation start mode, or no more than 0.5 V in low-speed operation start mode.

Fig. 34 Power-on reset circuit example

Fig. 35 Internal status at reset

Fig. 36 Reset sequence in high-speed operation mode

Fig. 37 Reset sequence in low-speed operation mode

CLOCK GENERATION CIRCUIT

When using an external clock signal, input the clock signal to the $X_{I N}\left(X_{\text {CIN }}\right)$ pin and leave the $X_{\text {OUT }}\left(X_{\text {COUT }}\right)$ pin open. If the $X_{\text {CIN }}$ clock is not used, connect the $X_{\text {CIN }}$ pin to $V_{S S}$, and leave the $X_{\text {Cout }}$ pin open.
Either high-speed operation start mode or low-speed operation start mode can be selected by using a mask option.

- High-Speed Operation Start Mode

After reset has completed, the internal clock ϕ is half the frequency of $X_{I N}$. Immediately after power-on, both the $X_{I N}$ and $X_{\text {CIN }}$ clock start oscillating. To set the internal clock ϕ to low-speed operation mode, set bit 7 of the CPU mode register (address $003 \mathrm{~B}_{16}$) to " 1 ".

- Low-Speed Operation Start Mode

After reset has completed, the internal clock ϕ is half the frequency of $X_{\text {CIN }}$. Immediately after power-on, only the $\mathrm{X}_{\text {CIN }}$ clock starts oscillating. To set the internal clock ϕ to high-speed operation mode, first set bit $6\left(\mathrm{CM}_{6}\right)$ of the CPU mode register (address $003 \mathrm{~B}_{16}$) to " 0 ", the set bit 7 $\left(\mathrm{CM}_{7}\right)$ to " 0 ". Note that the program must allow time for oscillation to stabilize.

- Oscillation Control

Stop Mode

If the STP instruction is executed, oscillation stops with the internal clock ϕ at an "H" level. Timer 1 is set to " FF_{16} " and timer 2 is set to " 01_{16} ".
Either $X_{I N}$ or $X_{\text {CIN }}$ divided by 16 is input to timer 1 , and the output of timer 1 is connected to timer 2 . The timer 1 and timer 2 interrupt enable bits must be set to disabled (" 0 "), so a program must set these bits before executing a STP instruction. Oscillation restarts at reset or when an external interrupt is received, but the internal clock ϕ is not supplied to the CPU until timer 2 overflows. This allows time for the clock circuit oscillation to stabilize.

Wait Mode

If the WIT instruction is executed, the internal clock ϕ stops at a "H" level but the oscillator itself does not stop. The internal clock restarts if a reset occurs or when an interrupt is received. Since the oscillator does not stop, normal operation can be started immediately after the clock is restarted.

Low-Speed Mode

If the internal clock is generated from the sub clock ($\mathrm{X}_{\text {CIN }}$), a low power consumption operation can be entered by stopping only the main clock $X_{I N}$. To stop the main clock, set bit $6\left(\mathrm{CM}_{6}\right)$ of the CPU mode register $\left(003 B_{16}\right)$ to "1". When the main clock $X_{\text {IN }}$ is restarted, the program must allow enough time to for oscillation to stabilize.
Note that in low-power-consumption mode the $X_{\text {CIN }^{-}}$ $X_{\text {cout }}$ drive performance can be reduced, allowing even lower power consumption $\left(20 \mu \mathrm{~A}\right.$ with $X_{\mathrm{CIN}}=32 \mathrm{kHz}$). To reduce the $X_{\text {CIN }}-X_{\text {COUT }}$ drive performance, clear bit 5 $\left(\mathrm{CM}_{5}\right)$ of the CPU mode register $\left(003 \mathrm{~B}_{16}\right)$ to " 0 ". At re-
set or when a STP instruction is executed, this bit is set to "1" and strong drive is selected to help the oscillation to start.

Fig. 38 Ceramic resonator circuit

Fig. 39 External clock input circuit

Note. The values of CM_{7} and CM_{6} at reset are determined by a mask option.

Fig. 40 System clock generation circuit block diagram

The example assumes that 6.3 MHz is being applied to the $X_{\text {IN }}$ pin and 32 kHz to the $X_{\text {CIN }}$ pin
Note 1. When the STP state is ended, a delay of approximately 1.3 ms is automatically generated by timer 1 and timer 2
2. The delay after the STP state ends is approximately 0.25 s
3. If the internal clock ϕ divided by 8 is used as the timer count source, the frequency of the count source is $f\left(X_{\text {CIN }}\right) / 16$
4. Specify this option when ordering a mask ROM version

Fig. 41 State transitions of system clock

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

NOTES ON PROGRAMMING

- Processor Status Register

The contents of the processor status register (PS) after a reset are undefined, except for the interrupt disable flag (I) which is " 1 ". Therefore, flags that affect program execution must be initialized after a reset. In particular, it is essential to initialize the T and D flags because of their effect on calculations.

- Interrupts

The contents of the interrupt request bits do not change immediately after they have been written.
After writing to an interrupt request register, execute at least one instruction before performing a BBC or BBS instruction.

- Decimal Calculations

To calculate in decimal notation, set the decimal mode flag (D) to " 1 ", then execute a ADC or SBC instruction. Only the ADC and SBC instruction yield proper decimal results. After executing an ADC or SBC instruction, execute at least one instruction before executing a SEC, CLC, or CLD instruction.
In decimal mode, the values of the negative (N), overflow (V), and zero (Z) flags are invalid.
The carry flag can be used to indicate whether a carry or borrow has occurred, but must be initialized before each calculation. Clear the carry flag before an ADC and set the flag before an SBC.

- Timers

If a value n (between 0 and 255) is written to a timer latch, the frequency division ratio is $1 /(n+1)$.

- Multiplication and Division Instructions The MUL and DIV instructions do not affect the T and D flags.
The execution of these instructions does not change the contents of the processor status register.

- Ports

The contents of the port direction registers cannot be read. Programs can not use the value of a direction register as an index, or bit-test a direction register (BBC or BBS), or perform a read-modify-write instruction such as ROR, CLB, or SEB. Use instructions such as LDM and STA to set the port direction registers.

- Serial I/O

When using an external clock, input " H " to the external clock input pin and clear the serial I/O interrupt request bit before executing a serial I/O transfer.
When using the internal clock, set the synchronization clock to internal clock, then clear the serial I/O interrupt request bit before executing a serial I/O transfer.

- Instruction Execution Timing

The instruction execution time is obtained by multiplying the frequency of the internal clock ϕ by the number of cycles needed to execute an instruction.
The number of cycles required to execute an instruction
is shown in the list of machine instructions.
The frequency of the internal clock ϕ is half of the $X_{I N}$ or $X_{\text {CIN }}$ frequency.

DATA REQUIRED FOR MASK ORDERS

The following are necessary when ordering a mask ROM production:
(1) Mask ROM Order Confirmation Form
(2) Mark Specification Form
(3) Data to be written to ROM, in EPROM form (three identical copies)
If required, specify the following option on the Mask Confirmation Form:

- Operation start mode switching option

ROM Writing Method

The built-in PROM of the blank one-time programmable version and built-in EPROM version can be read from and written to with an normal EPROM writer using a special write adapter.

Package	Name of Write Adapter
$80 P 6 N$	PCA4738F-80
80 D 0	PCA4738L-80

The PROM of the blank one-time programmable version is not tested or screened after assembly. To ensure proper operation after writing, the procedure shown in Figure 42 is recommended to verify programming.

Fig. 42 Writing and testing of one-time programmable version

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
V_{Cc}	Supply voltage	All voltages measured based on the $\mathrm{V}_{\text {SS }}$ pin Output transistors are isolated	-0.3 to 7.0	V
$\mathrm{V}_{\text {EE }}$	Pull-down power supply voltage		$\mathrm{V}_{\mathrm{cc}}-40$ to $\mathrm{V}_{\mathrm{cc}}+0.3$	V
V_{1}	$\begin{gathered} \text { Input voltage } \mathrm{P} 2_{0}-\mathrm{P} 2_{7}, \mathrm{P} 4_{1}-\mathrm{P} 4_{7}, \mathrm{P} 5_{0}-\mathrm{P} 5_{7}, \\ \mathrm{P} 6_{0}-\mathrm{P} 6_{5}, \mathrm{P} 7_{0}-\mathrm{P} 7_{2} \\ \hline \end{gathered}$		-0.3 to $\mathrm{V}_{\mathrm{Cc}}+0.3$	V
V_{1}	Input voltage $\mathrm{P4}_{0}$		-0.3 to $\mathrm{V}_{\mathrm{CC}}+0.3$	V
V_{1}	Input voltage $\mathrm{P}_{8}-\mathrm{P}_{7}$		$\mathrm{V}_{\mathrm{CC}}-40$ to $\mathrm{V}_{\mathrm{cc}}+0.3$	V
V_{1}	Input voltage $\overline{\text { RESET }}$, $\mathrm{X}_{\text {IN }}$		-0.3 to $\mathrm{V}_{\mathrm{CC}}+0.3$	V
V_{1}	Input voltage $\mathrm{X}_{\text {CIN }}$		-0.3 to $\mathrm{V}_{\mathrm{CC}}+0.3$	V
V_{0}	$\begin{gathered} \text { Output voltage } \mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P1}_{0}-\mathrm{P} 1_{7}, \mathrm{P3}_{0}-\mathrm{P} 3_{7}, \\ \mathrm{P} 8_{0}-\mathrm{P} 8_{7} \end{gathered}$		$\mathrm{V}_{\mathrm{CC}}-40$ to $\mathrm{V}_{\mathrm{CC}}+0.3$	V
V_{0}	Output voltage $\mathrm{P}_{4}-\mathrm{P} 2_{7}, \mathrm{P} 4_{1}-\mathrm{P} 4_{7}, \mathrm{P} 5_{0}-\mathrm{P} 5_{7}$, $\mathrm{P} 6_{0}-\mathrm{P} 6_{5}, \mathrm{P} 7_{0}-\mathrm{P} 7_{7}, \mathrm{X}_{\text {OUt }}, \mathrm{X}_{\text {COUT }}$		-0.3 to $\mathrm{V}_{\mathrm{cc}}+0.3$	V
Pd	Power dissipation	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$	600	mW
Topr	Operating temperature		-10 to 85	${ }^{\circ} \mathrm{C}$
Tstg	Storage temperature		-40 to 125	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS ($\mathrm{V}_{\mathrm{cc}}=4.0$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-10$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter		Limits			Unit
			Min	Typ	Max.	
V_{cc}	Supply voltage	High-speed operation mode	4.0	5.0	5.5	V
		Low-speed operation mode	2.8	5.0	5.5	
$\mathrm{V}_{\text {ss }}$	Supply voltage			0		V
$V_{\text {EE }}$	Pull-down power supply voltage		$\mathrm{V}_{\mathrm{Cc}}-38$		V_{cc}	V
$\mathrm{V}_{\text {REF }}$	Reference input voltage		2		V_{cc}	V
$\mathrm{AV}_{\text {SS }}$	Analog power voltage			0		V
$V_{1 A}$	Analog input voltage		0		V_{cc}	V
$\mathrm{V}_{1 H}$	" H " input voltage $\mathrm{P}_{2} \mathrm{O}_{0}-\mathrm{P} 2_{7}$		$0.4 \mathrm{~V}_{\text {cc }}$		V_{cc}	V
$\mathrm{V}_{1 H}$	"H" input voltage $\mathrm{P} 4_{0}$		$0.75 \mathrm{~V}_{\mathrm{cc}}$		V_{Cc}	V
V_{IH}	$\begin{gathered} \text { " } \mathrm{H} \text { " input voltage } \mathrm{P} 4_{1}-\mathrm{P} 4_{7}, \mathrm{P} 5_{0}-\mathrm{P} 5_{7}, \mathrm{P} 6_{0}-\mathrm{P} 6_{5}, \\ \mathrm{P} 7_{0}-\mathrm{P} 7_{7} \\ \hline \end{gathered}$		$0.75 \mathrm{~V}_{\mathrm{cc}}$		V_{cc}	V
$\mathrm{V}_{\text {IH }}$	" H " input voltage $\mathrm{P8}_{0}-\mathrm{P} 8_{7}$		$0.8 \mathrm{~V}_{\mathrm{CC}}$		V_{cc}	V
$\mathrm{V}_{1} \mathrm{H}$	" H " input voltage $\overline{\mathrm{RESET}}$		0.8 V CC		V_{cc}	V
$\mathrm{V}_{\text {IH }}$	"H" input voltage $\mathrm{X}_{\text {IN }}, \mathrm{X}_{\mathrm{CIN}}$		0.8 V CC		V_{cc}	V
$V_{\text {IL }}$	"L" input voltage $\mathrm{P}_{2}{ }_{4}-\mathrm{P} 2_{7}$		0		$0.16 \mathrm{~V}_{\mathrm{cc}}$	V
$\mathrm{V}_{\text {IL }}$	"L" input voltage $\mathrm{P} 4_{0}$		0		$0.25 \mathrm{~V}_{\mathrm{cc}}$	V
$\mathrm{V}_{\text {IL }}$	$\begin{gathered} \text { "L" input voltage } \mathrm{P} 4_{1}-\mathrm{P} 4_{7}, \mathrm{P} 5_{0}-\mathrm{P} 5_{7}, \mathrm{P6}_{0}-\mathrm{P} 6_{5}, \\ \mathrm{P} 7_{0}-\mathrm{P} 7_{7} \\ \hline \end{gathered}$		0		$0.25 \mathrm{~V}_{\mathrm{cc}}$	V
$\mathrm{V}_{1 \mathrm{~L}}$	"L" input voltage $\mathrm{P} 8_{0}-\mathrm{P} 8_{7}$		0		$0.2 \mathrm{~V}_{\mathrm{cc}}$	V
$\mathrm{V}_{\text {IL }}$	" L " input voltage $\overline{\text { RESET }}$		0		$0.2 \mathrm{~V}_{\mathrm{cc}}$	V
$\mathrm{V}_{\text {IL }}$	"L" input voltage $\mathrm{X}_{\mathrm{IN}}, \mathrm{X}_{\mathrm{CIN}}$		0		$0.2 \mathrm{~V}_{\mathrm{cc}}$	V

MITSUBISHI MICROCOMPUTERS
 M3817x Group

RECOMMENDED OPERATING CONDITIONS ($\mathrm{V}_{\mathrm{cc}}=4.0$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-10$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Limits			Unit
		Min	Typ	Max	
$\Sigma \mathrm{I}_{\mathrm{OH} \text { (peak) }}$	$\begin{array}{ll} \text { "H" total peak output current } & \mathrm{PO}_{0}-\mathrm{P0}_{7}, \mathrm{P1}_{0}-\mathrm{P} 1_{7}, \\ \text { (Note 1) } & \mathrm{P2}_{0}-\mathrm{P}_{7}, \mathrm{P3}_{0}-\mathrm{P3}_{7}, \\ & \mathrm{P}_{0}-\mathrm{P8}_{7} \\ \hline \end{array}$			-240	mA
$\Sigma \mathrm{I}_{\mathrm{OH} \text { (peak) }}$	" H " total peak output current $\mathrm{P} 4_{1}-\mathrm{P} 4_{7}, \mathrm{P6}_{0}-\mathrm{P} 6_{5}$, $P 7_{0}-P 7_{7}$			-60	mA
$\Sigma \mathrm{IOL}$ (peak)	$\begin{aligned} & \text { "L" total peak output current } \mathrm{P} 2_{4}-\mathrm{P} 2_{7}, \mathrm{P} 4_{1}-\mathrm{P} 4_{7}, \\ & \\ & \mathrm{P} 5_{0}-\mathrm{P} 5_{7}, \mathrm{P} 6_{1}-\mathrm{P} 6_{5}, \\ & \\ & \mathrm{P} 7_{0}-\mathrm{P} 7_{7} \\ & \hline \end{aligned}$			100	mA
$\Sigma \mathrm{loL}$ (peak)	"L" total peak output current P60			3.0	mA
$\Sigma \mathrm{I}_{\mathrm{OH}(\mathrm{avg})}$	$\begin{array}{ll} \text { " } \mathrm{H} \text { " total average output current } & \mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P1}_{0}-\mathrm{P} 1_{7}, \\ \text { (Note 1) } & \mathrm{P}_{0}-\mathrm{P} 2_{7}, \mathrm{P} 3_{0}-\mathrm{P} 3_{7}, \\ & \mathrm{P} 8_{0}-\mathrm{P} 8_{7} \\ \hline \end{array}$			-120	mA
$\Sigma \mathrm{IOH}_{\mathrm{OH}}(\mathrm{avg})$	" H " total average output current $\mathrm{P} 4_{1}-\mathrm{P} 4_{7}, \mathrm{P6}_{0}-\mathrm{P6}_{5}$			-30	mA
$\Sigma I_{\text {OL(avg })}$	$\begin{aligned} & \text { "L" total average output current } \mathrm{P} 2_{0}-\mathrm{P} 2_{7}, \mathrm{P} 4_{1}-\mathrm{P} 4_{7}, \\ & \\ & \mathrm{P} 5_{0}-\mathrm{P} 5_{7}, \mathrm{P} 6_{1}-\mathrm{P} 6_{5}, \\ & \mathrm{P} 7_{0}-\mathrm{P} 7_{7} \\ & \hline \end{aligned}$			50	mA
$\Sigma I_{\text {OL }(\text { avg })}$	" L " total average output current $\mathrm{P6}_{0}$			1.5	mA
IOH (peak)	"H" peak output current $\mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P1}_{0}-\mathrm{P} 1_{7}, \mathrm{P3}_{0}-\mathrm{P} 3_{7}$, (Note 2) $\mathrm{P8}_{0}-\mathrm{P} 8_{7}$			-40	mA
$\mathrm{I}_{\mathrm{OH} \text { (peak) }}$	$\begin{aligned} & \text { "H" peak output current } \mathrm{P}_{0}-\mathrm{P} 2_{7}, \mathrm{P} 4_{1}-\mathrm{P} 4_{7}, \mathrm{P}_{0}-\mathrm{P} 6_{7}, \\ & \qquad \mathrm{P7}_{0}-\mathrm{P} 7_{7} \\ & \hline \end{aligned}$			-10	mA
Iol(peak)	"L" peak output current $\mathrm{P} 2_{0}-\mathrm{P} 2_{7}, \mathrm{P} 6_{1}-\mathrm{P} 6_{5}, \mathrm{P} 7_{0}-\mathrm{P} 7_{7}$			10	mA
lol(peak)	"L" peak output current $\mathrm{P4}_{1}-\mathrm{P} 4_{7}, \mathrm{P5}_{0}-\mathrm{P} 5_{7}$			10	mA
lol(peak)	"L" peak output current $\mathrm{P}_{6}{ }_{0}$			3.0	mA
$\mathrm{IOH}(\mathrm{avg})$	" H " average output current $\mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P1}_{0}-\mathrm{P} 1_{7}$, (Note 3) $\quad \mathrm{P}_{0}-\mathrm{P} 3_{7}, \mathrm{P8}_{0}-\mathrm{P} 8_{7}$			-18	mA
$\mathrm{IOH}(\mathrm{avg})$	"H" average output current$\mathrm{P}_{0}-\mathrm{P} 2_{7}, \mathrm{P}_{1}-\mathrm{P} 4_{7}$, $\mathrm{P}_{6}-\mathrm{P6}_{7}, \mathrm{P}_{0}-\mathrm{P} 7_{7}$			-5.0	mA
Iol (avg)	" L " average output current $\mathrm{P}_{0}-\mathrm{P} 2_{7}, \mathrm{P} 6_{1}-\mathrm{P} 6_{5}$, $\mathrm{P} 7_{0}-\mathrm{P} 7_{7}$			5.0	mA
l OL(avg)	"L" average output current $\mathrm{P} 4_{1}-\mathrm{P} 4_{7}, \mathrm{P}_{5}-\mathrm{P} 5_{7}$			5.0	mA
l OL(avg)	"L" average output current $\mathrm{P6}_{0}$			1.5	mA
$\mathrm{f}\left(\mathrm{CNTR}_{0}\right)$ $f\left(\mathrm{CNTR}_{1}\right)$	Clock input frequency for timers 2 and 4 (duty cycle 50\%)			250	kHz
$f\left(X_{\text {IN }}\right)$	Main clock input oscillatıon frequency (Note 4)			6.3	MHz
$f\left(X_{\text {CIN }}\right)$	Sub clock input oscillation frequency (Note 4,5)		32. 768	50	kHz

Note 1. The total output current is the sum of all the currents flowing through all the applicable ports The total average current is an average value measured over 100 ms The total peak current is the peak value of all the currents.
2. The peak output current is the peak current flowing in each port
3. The average output current in an average value measured over 100 ms
4. When the oscillation frequency has a duty cycle of 50%
5. When using the microcomputer in low-speed operation mode, make sure that the sub clock's input frequency $f\left(X_{\text {CIN }}\right)$ is less than $f\left(X_{\text {IN }}\right) / 3$

ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{cc}}=4.0$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-10$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test conditions	Lımits			Unit
			Min	Typ	Max	
V_{OH}	$\begin{gathered} " \mathrm{H} \text { " output voltage } \mathrm{PO}_{0}-\mathrm{P} 0_{7}, \mathrm{P1}_{0}-\mathrm{P} 1_{7}, \mathrm{P3}_{0}-\mathrm{P} 3_{7}, \\ \mathrm{P8}_{0}-\mathrm{P} 8_{7} \\ \hline \end{gathered}$	$\mathrm{I}_{\mathrm{OH}}=-18 \mathrm{~mA}$	$\mathrm{V}_{C C}-2.0$			V
V_{OH}	$\begin{gathered} \text { " } \mathrm{H} \text { " output voltage } \mathrm{P} 2_{0}-\mathrm{P} 2_{7}, \mathrm{P} 4_{1}-\mathrm{P} 4_{7}, \mathrm{P} 6_{0}-\mathrm{P} 6_{5}, \\ \\ \mathrm{P} 7_{0}-\mathrm{P} 7_{7} \\ \hline \end{gathered}$	$\mathrm{IOH}^{\prime}=-10 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}-2.0$			V
$\mathrm{V}_{\text {OL }}$	$\begin{gathered} \text { "L" output voltage } P 2_{4}-P 2_{7}, P 4_{1}-P 4_{7}, P 5_{0}-P 5_{7}, \\ P 6_{1}-P 6_{5} \\ \hline \end{gathered}$	$\mathrm{l}_{\mathrm{ol}}=10 \mathrm{~mA}$			2.0	V
V_{OL}	" L " output voltage $\mathrm{P6}_{0}$	$\mathrm{l}_{\mathrm{OL}}=1.5 \mathrm{~mA}$			0.5	V
$\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\mathrm{T}-}$	Hysteresis $\overline{\mathrm{NT}_{0}-1 \mathrm{NT}_{4}}, \mathrm{~S}_{\mathrm{IN} 1}, \mathrm{~S}_{\mathrm{IN} 2}, \mathrm{~S}_{\mathrm{CLK} 1}, \mathrm{~S}_{\mathrm{CLK} 2}$, CNTR ${ }_{0}$, CNTR 1	When using a non-port function		0.4		V
$\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\mathrm{T}-}$	Hysteresis $\overline{\text { RESET }}$, $\mathrm{XIN}_{\text {IN }}$	RESET : $\mathrm{V}_{\mathrm{CC}}=2.8 \mathrm{~V}$ to 5.5 V		0.5		V
$\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\mathrm{T}-}$	Hysteresis $\mathrm{X}_{\text {CIN }}$			0.5		V
$\mathrm{I}_{\mathbf{H}}$	$\begin{gathered} \text { "H" input current } \mathrm{P}_{2}-\mathrm{P} 2_{7}, \mathrm{P} 4_{1}-\mathrm{P} 4_{7}, \mathrm{P5}_{0}-\mathrm{P} 5_{7}, \\ \\ \mathrm{P} 6_{0}-\mathrm{P} 6_{5}, \mathrm{P} 7_{0}-\mathrm{P} 7_{7} \\ \hline \end{gathered}$	$\mathrm{V}_{\mathrm{l}}=\mathrm{V}_{\mathrm{cc}}$			5.0	$\mu \mathrm{A}$
$\mathrm{I}_{\mathbf{H}}$	"H" input current $\mathrm{P}_{4} 0$	$\mathrm{V}_{1}=\mathrm{V}_{\text {cc }}$			5.0	$\mu \mathrm{A}$
I_{IH}	" H " input current $\mathrm{P8}_{8}-\mathrm{P} 8_{7}$ (Note 1)	$\mathrm{V}_{1}=\mathrm{V}_{\text {cc }}$			5.0	$\mu \mathrm{A}$
I_{IH}	" H " input current $\overline{\text { RESET, }}$, $\mathrm{X}_{\text {CIN }}$	$\mathrm{V}_{1}=\mathrm{V}_{C C}$			5.0	$\mu \mathrm{A}$
I_{H}	"H" input current $\mathrm{X}_{\text {IN }}$	$\mathrm{V}_{1}=\mathrm{V}_{\text {cc }}$		4		$\mu \mathrm{A}$
IIL	$\begin{gathered} \text { "L" input current } \mathrm{P}_{0}-\mathrm{P}_{7}, \mathrm{P4}_{1}-\mathrm{P} 4_{7}, \mathrm{P5}_{0}-\mathrm{P} 5_{7}, \\ \mathrm{P6}_{0}-\mathrm{P6}_{5}, \mathrm{P} 7_{0}-\mathrm{P} 7_{7} \end{gathered}$	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{ss}}$			-5. 0	$\mu \mathrm{A}$
I_{1}	"L" input current $\mathrm{P} 4_{0}$	$V_{1}=V_{\text {ss }}$			-5.0	$\mu \mathrm{A}$
ILL	"L" input current $\mathrm{P}_{8}{ }_{0}-\mathrm{P} 8_{7}$ (Note 1)	$V_{1}=V_{\text {SS }}$			-5.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {LL }}$	"L" input current $\overline{\mathrm{RESET}}, \mathrm{X}_{\mathrm{CIN}}$	$V_{1}=v_{\text {S }}$			-5.0	$\mu \mathrm{A}$
I_{L}	"L" input current $\mathrm{X}_{\text {IN }}$	$V_{1}=V_{\text {ss }}$		-4		$\mu \mathrm{A}$
I load	Output load current $\mathrm{PO}_{0}-\mathrm{P} 0_{7}, \mathrm{P}_{1}-\mathrm{P} 1_{7}, \mathrm{P3}_{0}-\mathrm{P} 3_{7}$	$\begin{aligned} & \mathrm{v}_{\mathrm{EE}}=\mathrm{v}_{\mathrm{CC}}-36 \mathrm{~V}, \\ & \mathrm{v}_{\mathrm{OL}}=\mathrm{v}_{\mathrm{CC}}, \end{aligned}$ With output transistors off	150	500	900	$\mu \mathrm{A}$
$\mathrm{I}_{\text {Leak }}$	Output leakage current $\mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P1}_{0}-\mathrm{P1}_{7}, \mathrm{P3}_{0}-\mathrm{P} 3_{7}$, $\mathrm{P} 8_{0}-\mathrm{P} 8_{7}$	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=\mathrm{V}_{\mathrm{CC}}-38 \mathrm{~V}, \\ & \mathrm{v}_{\mathrm{OL}}=\mathrm{V}_{\mathrm{CC}}-38 \mathrm{~V}, \end{aligned}$ With output transistors off (Except for reset)			-10	$\mu \mathrm{A}$
$V_{\text {RAM }}$	RAM hold voltage	When clock is stopped	2.0		5.5	V

Note 1. Except when reading ports P8.

ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{CC}}=4.0$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathbf{a}}=-10$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test conditions		Lımits			Unit
				Mın	Typ	Max	
Icc	Power supply current	In high-speed operation mode $\begin{aligned} & f\left(X_{\text {IN }}\right)=6.3 \mathrm{MHz} \\ & f\left(X_{\text {CIN }}\right)=32 \mathrm{kHz} \end{aligned}$ Output transistors off A-D converter operating			7.5	15	mA
		In high-speed operation mode $f\left(X_{\text {IN }}\right)=6.3 \mathrm{MHz}$ (In WIT state) $f\left(X_{\text {CIN }}\right)=32 \mathrm{kHz}$ Output transistors off A-D converter stopped			1.5		mA
		in low-speed operation mode $f\left(X_{\text {IN }}\right)=$ stopped, $f\left(X_{\text {CIN }}\right)=32 \mathrm{kHz}$ Low-power dissipation mode set $\left(\mathrm{CM}_{5}=0\right)$ Output transistors off			60	200	$\mu \mathrm{A}$
		In low-speed operation mode $f\left(X_{\text {IN }}\right)=\text { stopped }$ $f\left(X_{\text {CIN }}\right)=32 \mathrm{kHz}$ (in WIT state) Low-power dissipation mode set $\left(\mathrm{CM}_{5}=0\right)$ Output transistors off			20	40	$\mu \mathrm{A}$
		All oscillation stopped (in STP state) Output transistors off	Ta $=25^{\circ} \mathrm{C}$		0.1	1.0	$\mu \mathrm{A}$
			$\mathrm{Ta}_{\mathrm{a}}=85^{\circ} \mathrm{C}$			10	

A-D CONVERTER CHARACTERISTICS

($\mathrm{V}_{\mathrm{CC}}=4.0$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-10$ to $85^{\circ} \mathrm{C}$, high-speed operation mode, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Unit
			Min	Typ.	Max	
-	Resolution				8	Bits
-	Absolute accuracy	$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{REF}}=5.12 \mathrm{~V}$		± 1	± 2.5	LSB
T CONV	Conversion time		49		50	$\mathrm{t}_{\mathrm{C}}(\phi)$
$\mathrm{V}_{\text {REF }}$	Reference input voltage		2		V_{cc}	V
IVREF	Reference input current	$\mathrm{V}_{\text {REF }}=5 \mathrm{~V}$	50	150	200	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IA }}$	Analog port input current			0.5	5.0	$\mu \mathrm{A}$
$\mathrm{R}_{\text {LADDER }}$	Ladder resistor			35		$\mathrm{k} \Omega$

TIMING REQUIREMENTS ($\mathrm{V}_{\mathrm{cc}}=4.0$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-10$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test conditions	Lımits			Unit
			Mın	Typ	Max	
$\mathbf{t}_{\mathbf{W}(\overline{\text { RESET }} \text {) }}$	Reset input "L" pulse width		2			μs
$t_{C(X \mid N)}$	Main clock input cycle tıme (X_{IN} input)		158			ns
$\mathrm{t}_{\text {WH }}\left(\mathrm{XIN}_{\text {IN }}\right)$	Main clock input "H" pulse width		40			ns
$t_{\text {WL }\left(X_{\text {IN }}\right)}$	Main clock input "L" pulse width		40			ns
$t_{C\left(X_{\text {CIN }}\right)}$	Sub clock input cycle time ($\mathrm{X}_{\text {CIN }}$ Input)		2.0			ms
$\mathbf{t}_{\text {WH }}\left(\mathrm{X}_{\text {CIN }}\right)$	Sub clock input "H" pulse width		0.5			ms
$t_{\text {WL }}\left(\mathrm{X}_{\text {CIN }}\right)$	Sub clock input "L" pulse width		0.5			ms
$\mathbf{t}_{\text {C (CNTR }}$	CNTR $_{0}$, CNTR $_{1}$ input cycle tıme		4			μs
$t_{\text {WH }}$ (CNTR)	CNTR $_{0}$, CNTR $_{1}$, input "H" pulse width		1.6			μs
$\mathbf{t}_{\mathbf{W L} \text { (CNTR) }}$	CNTR $_{0}$, CNTR $_{1}$, input "L" puise width		1.6			μs
$\mathbf{t}_{\text {WH }}$ (INT)	$\mathrm{INT}_{0}-\mathrm{INT}_{4}$ input "H" pulse width		80			ns
$\mathbf{t}_{\text {WL (INT) }}$	INT $\mathrm{I}_{0}-\mathrm{INT}_{4}$ input " L " pulse width		80			ns
$\mathbf{t}_{\text {C (SCLK }}$	Serial clock input cycle time		1			μs
$\mathrm{t}_{\text {WH (SCLK }}$	Serial clock input clock "H" pulse width		400			ns
$\mathbf{t}_{\text {WL }}\left(S_{\text {CLK }}\right)$	Serial clock input clock "L" pulse width		400		,	ns
$t_{\text {Su }}\left(S_{\text {CLK }}-S_{\text {IN }}\right)$	Serial input setup tıme		200			ns
$t_{\text {h }}\left(S_{C L K}-S_{\text {IN }}\right)$	Serial input hold tıme		200			ns

SWITCHING CHARACTERISTICS ($\mathrm{V}_{\mathrm{cc}}=4.0$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-10$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Unit
			Min	Typ	Max	
$\mathrm{t}_{\text {WH }}$ (SCLK)	Serial clock output "H" pulse width	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	$\mathrm{t}_{\mathrm{c}} / 2-160$			ns
$\mathrm{t}_{\text {WL }}\left(\mathrm{SCLKK}^{\text {c }}\right.$	Serial clock output "L" pulse width	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	$\mathrm{t}_{\mathrm{c}} / 2-160$			ns
$t_{\text {d(SCLK }}$ - $\mathrm{S}_{\text {OUT }}$	Serial output delay time				$0.2 t_{c}$	ns
	Serial output hold tıme		0			ns
$\mathbf{t f}_{\text {(}}^{\text {SCLK }}$)	Serial clock output fall time	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$			40	ns
$\mathrm{tr}_{\text {(}}^{\text {Pch-strg }}$)	P-channel high-breakdown voltage output rise time (Note 1)	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{V}_{\mathrm{EE}}=\mathrm{V}_{\mathrm{CC}}-36 \mathrm{~V}$		55		ns
t_{r} (Pch-weak)	P-channel high-breakdown voltage output rise time (Note 2)	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{V}_{\mathrm{EE}}=\mathrm{V}_{\mathrm{CC}}-36 \mathrm{~V}$		1.8		$\mu \mathrm{s}$

Note 1. When bit 0 of the high-breakdown voltage port control register (address 0038_{16}) is at " 0 "
2. When bit 0 of the high-breakdown voltage port control register (address 0038_{16}) is at " 1 "

Fig. 43 Output switching characteristics measurement circuit

Timing Chart

CNTR $_{0}$, CNTR $_{1}$

$\mathrm{INT}_{0}-\mathrm{INT}_{4}$

$\overline{\text { RESET }}$

$X_{\text {IN }}$

$X_{\text {CIN }}$

MITSUBISHI MICROCOMPUTERS M3818x Group

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

DESCRIPTION

The M3818x group is made up of 8 -bit microcomputers based on the MELPS 740 core.
The M3818x group is designed mainly for VCR timer/function control, and include six 8 -bit timers, a fluorescent display automatic display circuit, a PWM function, and an 8channel A-D converter.
The various microcomputers in the M3818x group include variations of internal memory size and packaging. For details, see the section on part numbering.

FEATURES

- Basic machine-language instructions 71
- Instruction execution time................................ $0.63 \mu \mathrm{~s}$
(shortest instruction at 6.3 MHz oscillation frequency)
- Memory size

ROM ... 4K to 40K bytes
RAM
192 to 1024 bytes

- Programmable input/output ports 67
- High-breakdown-voltage output ports 32

- Timers 8 -bit $\times 6$
- Serial I/O \qquad Clock-synchronized 8 -bit $\times 2$ (Serial I/O1 has an automatic data transfer function)
- PWM output circuit 8-bit $\times 1$ (also functions as timer 6)
- A-D converter - 8 -bit $\times 8$ channels
- Fluorescent display function

Segments 8 to 24
Digits 4 to 16

- 2 Clock generation circuit

Clock ($\mathrm{X}_{\text {IN }}-\mathrm{X}_{\text {OUT }}$) $\cdots \cdots$. Internal feedback amplifier
Sub clock ($\mathrm{X}_{\text {CIN }}-\mathrm{X}_{\text {COUT }}$) \cdots Internal amplifier without feedback

- Supply voltage
4.0 to 5.5 V
- Low power dissipation In high-speed operation 38 mW (at 6.3 MHz oscillation frequency) In low-speed operation $300 \mu \mathrm{~W}$ (at 32 kHz oscillation frequency)
- Operating temperature range $\cdots \cdots \cdots \cdots \cdots \cdots \cdots-10$ to $85^{\circ} \mathrm{C}$

APPLICATIONS

VCRs, microwave ovens, domestic appliances, ECRs, etc.

PIN CONFIGURATION (TOP VIEW)

Package type: 100P6S
100-pin plastic molded QFP

FUNCTIONAL BLOCK DIAGRAM

dno.t 58 T8EW
sy3indwojoyolw Ihsignsliw

PIN DESCRIPTION

Pin	Name	Function	Alternate Function
$\mathrm{V}_{\mathrm{cc}}, \mathrm{V}_{\text {Ss }}$	Power supply	Power supply inputs 40 to 55 V to V_{cc}, and 0 V to $\mathrm{V}_{\text {ss }}$.	
V_{EE}	Pull-down power input	Applies voltage supplied to pull-down resistors of ports P0, P3 and 8	
$\mathrm{V}_{\text {feF }}$	Analog reference voltage input	Reference voltage input pin for A-D converter	
$\mathrm{AV}_{\text {Ss }}$	Analog power supply	GND input pin for A-D converter Keep at the same potential as $\mathrm{V}_{\text {Ss }}$	
RESET	Reset input	To reset the microcomputer, this pin should be kept at an "L" level for more than 2μ s under high-speed operating conditions In low-speed operation start mode, internal reset is not released until the $\mathrm{X}_{\mathrm{CIN}}-\mathrm{X}_{\text {cout }}$ clock has had time to stabilize.	
$\mathrm{X}_{\text {IN }}$	Clock input	Input and output signals for the internal clock generation circuit. It consist of internal feedback amplifier Connect a ceramic resonator or quartz crystal between the X_{IN} and $\mathrm{X}_{\text {Out }}$ pins to set the oscillation frequency If an external clock is used, connect the clock source to the $\mathrm{X}_{\text {IN }}$ pIn and leave the $\mathrm{X}_{\text {OUT }}$ pin open This clock is used as system clock	
$\mathrm{X}_{\text {OUt }}$	Clock output		
$\mathrm{X}_{\text {CIN }}$	Sub clock input	Input and output signals for the internal sub clock generation circuit it consist of internal amplifier without feedback Connect a ceramic resonator or quartz crystal and external feedback resistor between the $X_{\text {CIN }}$ and $X_{\text {COut }}$ pins if an external clock is used, connect the clock source to the $X_{\text {CIN }}$ pin and leave the $X_{\text {cout }}$ pin open This clock can also be used as the system clock	
$\mathrm{X}_{\text {cout }}$	Sub clock output		
$\begin{aligned} & \mathrm{PO}_{0} / \mathrm{DIG}_{8}- \\ & {\mathrm{P} 0_{7} / \mathrm{DIG}_{15}}^{\text {a }} \end{aligned}$	Output port P0	An 8-bit output port The output structure is high-breakdown-voltage P-channel open drain with internal pull-down resistors connected between the output and the $V_{E E}$ pin Are " L " at reset	FLD automatic display pins
$\mathrm{P} 1_{0}-\mathrm{P} 1_{7}$	I/O port P1	An 8-bit CMOS I/O port An I/O direction register allows each pin to be individually programmed as either input or output At reset this port is set to input mode The input levels are CMOS compatible	
$\mathrm{P}_{2}-\mathrm{P} 2_{7}$	I/O port P2	An 8-bit CMOS I/O port with the same function as port P1 The input levels are TTL compatible	
$\begin{aligned} & \mathrm{P}_{3} / \mathrm{SEG}_{16} / \\ & \mathrm{DIG}_{0}-\mathrm{P3}_{7} / \\ & \mathrm{SEG}_{23} / \mathrm{DIG}_{7} \end{aligned}$	Output port P3	An 8-bit output port with the same function as port P0	FLD automatic display pins
P40 $/{ }^{\text {INT }}$	Input port P40	A 1-bit CMOS input port	External interrupt input pin
$\begin{aligned} & \mathrm{P}_{1} / \mathrm{INT}_{1}- \\ & \mathrm{P}_{4} / \mathrm{INT}_{4} \end{aligned}$	I/O port P4	A 7-bit CMOS I/O port with the same function as port P1, with CMOS compatible input levels	External interrupt input pins
P45			
$\begin{aligned} & \mathrm{P} 4_{6} / \mathrm{T} 1_{\text {out }}, \\ & \mathrm{P} 4_{7} / \mathrm{T} 3_{\text {out }} \end{aligned}$			Timer output pin
$P 5_{0} / S_{\mathrm{IN}_{1}}$, P5 $1 /$ S $_{\text {out } 1}$, $\mathrm{P}_{2} / \mathrm{S}_{\mathrm{CLK} 11}$, $\mathrm{P5}_{3} / \overline{\mathrm{S}_{\mathrm{RDY} 1}} /$ $\overline{\mathrm{CS}} / \mathrm{S}_{\mathrm{CLK} 12}$	I/O port P5	An 8-bit I/O port with the same function as port P1 The output structure of this port is N -channel open drain, and the input levels are CMOS compatible Keep the input voltage of this port between OV and V_{Cc}	Serial I/O1 I/O pins
$\begin{aligned} & \mathrm{P}_{4} / \mathrm{S}_{\mathrm{IN} 2}, \\ & \mathrm{P5}_{5} / \mathrm{S}_{\mathrm{OUT} 2}, \\ & \mathrm{P}_{6} / \mathrm{S}_{\mathrm{CLLK} 2}, \\ & \mathrm{P}_{7} / \overline{\mathrm{S}_{\mathrm{RDY} 2}} \end{aligned}$			Serial I/O2 I/O pins

PIN DESCRIPTION

Pın	Name	Function	Alternate Function
P60/PWM ${ }_{0}$	I/O port P6	An 8-bit CMOS I/O port with the same function as port P1, with CMOS compatible input levels	14-bit PWM output pin
P6 ${ }_{1} / \mathrm{PWM}_{1}$			8-bit PWM output pin
$\mathrm{P}_{2} / \mathrm{CNTR}_{0},$ $\mathrm{P}_{3} / \mathrm{CNTR}_{1}$			Event counter input pins
$\mathrm{P6}_{4}-\mathrm{P} 6_{7}$			
$\begin{aligned} & \mathrm{P} 7_{0} / \mathrm{AN}_{0}- \\ & \mathrm{P} 7_{7} / \mathrm{AN}_{7} \end{aligned}$	1/O port P7	An 8-bit CMOS I/O port with the same function as port P1, with CMOS compatible input levels	A-D converter input pins
$\begin{aligned} & \mathrm{P}_{0} / \mathrm{SEG}_{0}- \\ & \mathrm{P}_{7} / \mathrm{SEG}_{7} \end{aligned}$	I/O port P8	An 8-bit I/O port with the same function as port P1 The output structure of this port is P-channel open drain, and ' the input levels are CMOS compatible Please note that this port does not have internal pull-down resistors	FLD automatic dısplay pins
$\begin{aligned} & \mathrm{P9}_{0} / \mathrm{SEG}_{8}- \\ & \mathrm{Pg}_{3} / \mathrm{SEG}_{11} \end{aligned}$	I/O port P9	A 4-bit I/O port with the same function as port P1 The output structure of this port is P-channel open drain, and the input levels are CMOS compatible This port has internal pull-down resistors	FLD automatic display pins
$\begin{aligned} & \mathrm{Pg}_{4} / \mathrm{SEG}_{12}- \\ & \mathrm{Pg}_{7} / \mathrm{SEG}_{15} \end{aligned}$	Output port P9	A 4-bit output port with the same function as port P0	FLD automatic dısplay pıns
$\mathrm{PA}_{0}-\mathrm{PA}_{7}$	I/O port PA	An 8-bit CMOS I/O port with the same function as port P1, w	with CMOS compatible input levels
$\mathrm{PB}_{0}, \mathrm{~PB}_{1}$	Input port PB	A 2-bit CMOS input port	

PART NUMBERING

The first 128 bytes and the last two bytes of ROM are reserved areas; they cannot be used

Memory type

M : Mask ROM version
E.EPROM or one-time programmable version

RAM size
0192 bytes

1. 256 bytes
$2 \cdot 384$ bytes
3 . 512 bytes
4 : 640 bytes
5768 bytes
$6 \cdot 896$ bytes
$7 \cdot 1024$ bytes

GROUP EXPANSION

Mitsubishi plans to expand the M3818x group as follows:
(1) Support for mask ROM, one-time programmable, and EPROM versions
 RAM size
. 640 bytes
(3) Packages

100P6S - Plastic molded QFP

100D0….........................Window type ceramic LCC

The development schedule and other details of products under development may be revised without notice

FUNCTIONAL DESCRIPTION
 CENTRAL PROCESSING UNIT (CPU)

Microcomputers of the M3818x group use the standard MELPS 740 instruction set. Refer to the table of MELPS 740 addressing modes and machine instructions, or the MELPS 740 Software Manual for details on the instruction set.
Machine-resident MELPS 740 instructions are as follows:
The FST and SLW instructions are not available for use.
The STP, WIT, MUL and DIV instructions can be used.

CPU MODE REGISTER

The CPU mode register is allocated to address $003 \mathrm{~B}_{16}$. Bits 0 and 1 of this register are processor mode bits and should always be set to " 0 ".
The CPU mode register contains the stack page selection bit.
For details of the $\mathrm{X}_{\text {Cout }}$ drivability selection bit, main clock stop bit, and internal system clock selection bit, see the section on the clock qeneration circuit.

Fig. 1 Structure of CPU mode register

MEMORY

- Special Function Register (SFR) Area

The Special Function Register area contains registers which control functions such as I/O ports and timers, and is located in the zero page area.

- RAM

RAM is used for data storage as well for stack area.

- ROM

The first 128 bytes and the last two bytes of ROM are reserved for device testing and the rest is user area for storing programs.

- Interrupt Vector Area

The interrupt vector area contains reset and interrupt vectors.

- Zero Page

The 256 bytes from addresses 0000_{16} to $00 \mathrm{FF}_{16}$ are called the zero page area. The internal RAM and the special function registers (SFR) are allocated to this area.
The zero page addressing mode can be used to specify memory and register addresses in the zero page area. This dedicated zero page addressing mode enables access to this area with only 2 bytes.

- Special Page

The 256 bytes from addresses FFOO_{16} to FFFF_{16} are called the special page area. The special page addressing mode can be used to specify memory addresses in the special page area. This dedicated special page addressing mode enables access to this area with only 2 bytes.

RAM area

RAM capacity (bytes)	Address XXXX_{16}
192	$00 \mathrm{FF}_{16}$
256	$013 \mathrm{~F}_{16}$
384	$01 \mathrm{BF}_{16}$
512	$023 \mathrm{~F}_{16}$
640	$02 \mathrm{BF}_{16}$
768	$033 \mathrm{~F}_{16}$
896	$03 \mathrm{BF}_{16}$
1024	$043 \mathrm{~F}_{16}$

ROM area

ROM capacity (bytes)	Address YYYY_{16}	Address $\mathbf{Z Z Z Z}_{16}$
4096	$\mathrm{F} 000{ }_{16}$	F080 ${ }_{16}$
8192	$\mathrm{E} 000_{16}$	$E 080{ }_{16}$
12288	DOOO_{16}	D080 ${ }_{16}$
16384	$\mathrm{C} 000{ }_{16}$	$\mathrm{C} 080{ }_{16}$
20480	BOOO_{16}	$\mathrm{B080}_{16}$
24576	$\mathrm{A}^{0} 00{ }_{16}$	$\mathrm{A}^{080}{ }_{16}$
28672	9000_{16}	9080_{16}
32768	8000_{16}	8080_{16}
36864	$7000{ }_{16}$	$7080{ }_{16}$
40960	6000_{16}	6080_{16}

Fig. 2 Memory map diagram

$0000{ }_{16}$	Port P0 (PO)
$0001{ }_{16}$	
$0002{ }_{16}$	Port P1 (P1)
$0003{ }_{16}$	Port P1 direction register (P1D)
0004_{16}	Port P2 (P2)
$0005{ }_{16}$	Port P2 direction register (P2D)
0_{000616}	Port P3 (P3)
$0^{0007}{ }_{16}$	
$0008{ }_{16}$	Port P4 (P4)
0_{0009}^{16}	Port P4 direction register (P4D)
$000 \mathrm{~A}_{16}$	Port P5 (P5)
$000 \mathrm{~B}_{16}$	Port P5 direction register (P5D)
$0_{000 C_{16}}$	Port P6 (P6)
$000 \mathrm{D}_{16}$	Port P6 direction register (P6D)
$000 \mathrm{E}_{16}$	Port P7 (P7)
$000 \mathrm{~F}_{16}$	Port P7 direction register (P7D)
0010 ${ }_{16}$	Port P8 (P8)
$0011{ }_{16}$	Port P8 direction register (P8D)
0012 ${ }_{16}$	Port P9 (P9)
$0013{ }_{16}$	Port P9 direction register (P9D)
$0014{ }_{16}$	Port PA (PA)
0015 ${ }_{16}$	Port PA direction register (PAD)
$0_{0016}{ }_{16}$	Port PB (PB)
$0_{0017}{ }_{16}$	
0_{0018}^{16}	Serial I/O automatic transfer data pointer (SIODP)
0019 ${ }_{16}$	Serial I/O1 control register (SIO1CON)
$001 \mathrm{~A}_{16}$	Serial I/O automatic transfer control register (SIOAC)
$001 \mathrm{~B}_{16}$	Serial 1/O1 register (SIO1)
$0_{01 C_{16}}$	Serial I/O automatic transfer interval register (SIOAI)
001D ${ }_{16}$	Serial I/O2 control register (SIO2CON)
$001 \mathrm{E}_{16}$	
$001 \mathrm{~F}_{16}$	Serial 1/O2 register (SIO2)

0020 ${ }_{16}$	Timer 1 (T1)
0021 ${ }_{16}$	Timer 2 (T2)
0022 ${ }_{16}$	Timer 3 (T3)
0_{0023}^{16}	Timer 4 (T4)
0024 ${ }_{16}$	Timer 5 (T5)
0025 ${ }_{16}$	Timer 6 (T6)
0_{0026}^{16}	
0_{0027}^{16}	Timer 6 PWM register (T6PWM)
0_{0028}^{16}	Timer 12 mode register (T12M)
0_{0029}^{16}	Timer 34 mode register (T34M)
002A ${ }_{16}$	Timer 56 mode register (T56M)
$0_{002 B_{16}}$	PWM control register (PWMCON)
$002 \mathrm{C}_{16}$	PWM register (upper)(PWMH)
$002 \mathrm{D}_{16}$	PWM register (lower)(PWML)
$002 \mathrm{E}_{16}$	
$002 \mathrm{~F}_{16}$	
0030 ${ }_{16}$	A-D control register (ADCON)
$0031{ }_{16}$	A-D conversion register (AD)
0032 ${ }_{16}$	Port P3 segment/digit switching register (P3SDR)
0033_{16}	Port P0 digit/port switching register (PODPR)
0034 ${ }_{16}$	Port P8 segment/port switching register (P8SPR)
003516	Key-scan blankıng register (KSCN)
003616	FLDC mode regıster (FLDM)
$0037{ }_{16}$	FLD data pointer (FLDDP)
$0038{ }_{16}$	High-breakdown-voltage port control register (HVPC)
$0039{ }_{16}$	
003A ${ }_{16}$	Interrupt edge selection register (INTEDGE)
$003 \mathrm{~B}_{16}$	CPU mode register (CUPM)
$003 \mathrm{C}_{16}$	Interrupt request register 1 (IREQ1)
$003 \mathrm{D}_{16}$	Interrupt request regıster 2 (IREQ2)
$003 \mathrm{E}_{16}$	Interrupt control register 1 (ICON1)
$003 \mathrm{~F}_{16}$	Interrupt control register 2 (ICON2)

Fig. 3 Memory map of special function register (SFR)

I/O PORTS

- Direction Registers

The M3818x group microprocessors have 67 programmable I/O pins arranged in nine $1 / \mathrm{O}$ ports (ports $\mathrm{P} 1, \mathrm{P} 2$, $\mathrm{P} 4_{1}-\mathrm{P} 4_{7}, \mathrm{P} 5-\mathrm{P} 8, \mathrm{P9} 9_{0}-\mathrm{P9} 9_{3}$ and PA). The I / O ports have direction registers which determine the input/output direction of each individual pin. Each bit in a direction register corresponds to one pin, each pin can be set to be input or output.
When " 0 " is written to the bit corresponding to a pin, that pin becomes an input pin. When " 1 " is written to that bit, that pin becomes an output pin.
If data is read from a pin which is set for output, the value of the port output latch is read, not the value of the pin itself. Pins set to input are floating. If a pin set to input is written to, only the port output latch is written to and the pin remains floating.

- High-Breakdown-Voltage Output Ports

The M3818x group microprocessors have four ports with high-breakdown-voltage pins (ports P0, P3, P8, P9). The high-breakdown-voltage ports have P -channel open drain output with a breakdown voltage of $\mathrm{V}_{\mathrm{CC}}-40 \mathrm{~V}$. Each pin in Ports P0, P3, and P9 has an internal pull-down resistor connected to V_{EE}. Port P8 has no internal pull-down resistors and external resistors should be used if necessary. At reset, the P-channel output transistor of each port latch is turned off, so it is forced to the level of V_{EE} by the pulldown resistor.
Writing " 1 " to bit 0 of the high-breakdown-voltage port control register(address 0038_{16}) slows the transition of the output transistors to reduce transient noise. At reset, bit 0 of the high-breakdown-voltage port control register is set to " 0 " (strong drive).

Pin	Name	Input/Output	I/O Format	Non-Port Function	Related SFRs	Diagram No.
$\begin{aligned} & \mathrm{PO}_{0} / \mathrm{SEG}_{8}- \\ & \mathrm{PO}_{3} / \mathrm{DIG}_{11} \end{aligned}$	Port P0	Output	High-breakdownvoltage P-channel open-drain output with pull-down resistor	FLD automatic display function	FLDC mode register High-breakdownvoltage port control register	(1)
$\begin{aligned} & \mathrm{PO}_{4} / \mathrm{SEG}_{12}- \\ & \mathrm{PO}_{7} / \mathrm{SEG}_{15} \end{aligned}$					FLDC mode register Dıgit/port switching register High-breakdownvoltage port control register	(2)
$\mathrm{P} 1_{0}-\mathrm{P} 1_{7}$	Port P1	Input/output, individual bits	CMOS level input CMOS 3-state output			(3)
$\mathrm{P} 2_{0}-\mathrm{P} 2_{7}$	Port P2	Input/output, individual bits	TTL level input CMOS 3-state output			(3)
$\begin{aligned} & \mathrm{P}_{0} / \mathrm{SEG}_{16} / \\ & \mathrm{DIG}_{16}-\mathrm{P3}_{7} / \\ & \mathrm{SEG}_{23} / \mathrm{DIG}_{7} \end{aligned}$	Port P3	Output	High-breakdownvoltage P-channel open-drain output with pull-down resistor	FLD automatic display function	FLDC mode regıster Segment/digit switching register High-breakdownvoltage port control register	(4)
P4osinto	Port P4	Input	CMOS level input	External interrupt input	Interrupt edge selection register	(5)
$\begin{aligned} & \mathrm{P} 4_{1} / \mathrm{INT}_{1}- \\ & \mathrm{P4}_{4} / \mathrm{INT}_{4} \\ & \hline \end{aligned}$		Input/output, individual bits	CMOS level input CMOS 3-state output	External interrupt input	Interrupt edge selection register	(6)
P45						(3)
P46/T1 ${ }_{\text {OUT }}$,				Tımer output	Timer 12 mode regıster	
$\mathrm{P} 4{ }_{7} / \mathrm{T} 3_{\text {OUT }}$					Timer 34 mode register	
$\mathrm{P} 5_{0} / \mathrm{S}_{\text {IN1 }}$,	Port P5	Input/output, individual bits	CMOS level input N -channel open-draın output	Serial I/O1 function I/O	Serial I/O1 control register Serial I/O automatic transfer control regıster	(8)
$\begin{aligned} & \mathrm{P} 5_{1} / \mathrm{S}_{\mathrm{OUT} 1}, \\ & \mathrm{P5}_{2} / \mathrm{S}_{\mathrm{CLK} 1}, \end{aligned}$						(9)
$\begin{aligned} & \mathrm{P}_{3} / \overline{\mathrm{S}_{\mathrm{RDY} 1}} / \\ & \overline{\mathrm{CS}} / \mathrm{S}_{\mathrm{CLK} 12} \end{aligned}$						(10)
$\mathrm{P5}_{4} / \mathrm{S}_{\text {IN2 }}$,				Serial I/O2 function I/O	Serial I/O2 control regıster	(8)
$\begin{aligned} & \mathrm{P5}_{5} / \mathrm{S}_{\mathrm{OUT} 2}, \\ & \mathrm{P}_{6} / \mathrm{S}_{\mathrm{CLK} 2}, \end{aligned}$						(9)
$\mathrm{P} 57 / \overline{\mathrm{S}_{\mathrm{RDY} 2}}$						(10)
$\mathrm{P6}_{0} / \mathrm{PWM}_{0}$	Port P6	Input/output, individual bits	CMOS level input CMOS 3-state output	14-bit PWM output	PWM control register PWML register PWMH regıster	(11)
$\mathrm{P6}_{1} / \mathrm{PWW}_{1}$				8-bit PWM output	Tımer 56 mode register Timer 6 PWM register	(7)
$\begin{aligned} & \mathrm{P6}_{2} \text { /CNTR }_{0}, \\ & \mathrm{P6}_{3} / \text { CNTR }_{1} \end{aligned}$				External count input	Interrupt edge selection register	(6)
$\mathrm{P6}_{4}-\mathrm{P6}_{7}$						(3)
$\begin{aligned} & \mathrm{P}_{0} / \mathrm{AN}_{0}- \\ & \mathrm{P}_{7} / \mathrm{AN}_{7} \end{aligned}$	Port P7	Input/output, individual bits	CMOS level input CMOS 3-state output	A-D converter input	A-D control register	(12)
$\begin{aligned} & \mathrm{P}_{0} / \mathrm{SEG}_{0}- \\ & \mathrm{P}_{7} / \mathrm{SEG}_{7} \end{aligned}$	Port P8	Input/output, individual bits	CMOS level input High-breakdownvoltage P-channel open-drain output without pull-down resistor	FLD automatic display function	FLDC mode register Segment/port switching register High-breakdownvoltage port control registor	(13)

Note. Make sure that the input level at each pin is either $O \mathrm{~V}$ or V_{Cc} during execution of the STP instruction
If an input level is at an intermediate potential, a current will flow in the input-stage gate

Pin	Name	Input/Output	1/O Format	Non-Port Function	Related SFRs	Diagram No.
$\begin{aligned} & \mathrm{P9}_{0} / \mathrm{SEG}_{8}- \\ & \mathrm{Pg}_{3} / \mathrm{SEG}_{11} \end{aligned}$	Port P9	Input/output, individual bits	CMOS level input High-breakdownvoltage P-channel open-drain output with pull-down resistor	FLD automatic display function	FLDC mode register High-breakdownvoltage port control registor	(14)
$\begin{aligned} & \mathrm{P9}_{4} / \mathrm{SEG}_{12}- \\ & \mathrm{P9}_{7} / \mathrm{SEG}_{15} \end{aligned}$		Output	High-breakdownvoltage P-channel open-drain output with pull-down resistor			(15)
$P A_{0}-\mathrm{PA}_{7}$	Port PA	Input/output, individual bits	CMOS level input CMOS 3-state output			(3)
$\mathrm{PB}_{0}, \mathrm{~PB}_{1}$	Port PB	Input	CMOS level input			(16)

Fig. 4 Port block diagram (1)

Fig. 5 Port block diagram (2)

INTERRUPTS

A total of 18 source can generate interrupts: 5 external, 12 internal, and 1 software.

- Interrupt Control

Each interrupt is controlled by its interrupt request bit, its interrupt enable bit, and the interrupt disable flag except for the software interrupt set by the BRK instruction. An interrupt is generated if the corresponding interrupt request and enable bits are " 1 " and the interrupt disable flag is " 0 ".
Interrupt enable bits can be set or cleared by software.
Interrupt request bits can be cleared by software, but cannot be set by software.
The I flag disables all interrupts except for the BRK instruction interrupt.

- Interrupt Operation

When an interrupt is received, the program counter and processor status register are automatically pushed onto the stack. The interrupt disable flag is set to inhibit other interrupts from interfering. The corresponding interrupt request bit is cleared and the interrupt jump destination address is read from the vector table into the program counter.

- Notes on Use

If you will change interrupt edge selection from rising edge to falling edge, interrupt request bit will be set to " 1 " automatically. Therefore, please make following process;
(1) Disable INT which is selected.
(2) Change INT edge selection.
(3) Clear interrupt request which is selected.
(4) Enable INT which is selected.

Table 1. Interrupt vector addresses and priorities

Interrupt Cause	Priority	Vector Address (Note 1)		Interrupt Request Generation Conditions	Remarks
		Hıgh	Low		
Reset (Note 2)	1	FFFD 16	FFFC $_{16}$	At reset	Non-maskable
INTo	2	FFFB ${ }_{16}$	FFFA_{16}	At detection of either rising or falling edge of $\operatorname{IN} T_{0}$ input	External interrupt (active edge selectable)
INT_{1}	3	FFF9 ${ }_{16}$	FFF8 $_{16}$	At detection of either rising or falling edge of INT ${ }_{1}$ input	External interrupt (active edge selectable)
INT_{2}	4	FFF7 ${ }_{16}$	FFF6 $_{16}$	At detection of elther rising or falling edge of INT_{2} input	External interrupt (active edge selectable)
Serial I/O1 Serial 1/O automatic transfer	5	FFF5 $_{16}$	FFF4 ${ }_{16}$	At end of data transfer At end of final data transfer	Valid when serial I/O normal mode is selected Valid when serial I/O automatic transfer mode is selected
Serial 1/O2	6	FFF_{16}	$\mathrm{FFF}_{16}{ }_{16}$	At end of data transfer	
Timer 1	7	FFF_{16}	FFFO_{16}	At timer 1 overflow	
Timer 2	8	FFEF $_{16}$	FFEE $_{16}$	At timer 2 overfiow	STP release tımer overflow
Timer 3	9	FFED $_{16}$	FFEC_{16}	At timer 3 overfiow	
Timer 4	10	FFEB $_{16}$	FFEA_{16}	At timer 4 overflow	
Timer 5	11	$\mathrm{FFE9}_{16}$	$\mathrm{FFE8}_{16}$	At tımer 5 overflow	
Timer 6	12	FFE_{16}	FFE6 ${ }_{16}$	At timer 6 overflow	
INT_{3}	13	FFE_{16}	FFE4 ${ }_{16}$	At detection of ether rising or falling edge of INT_{3} input	External interrupt (active edge selectable)
INT_{4} A-D converter	14	FFE_{16}	FFE2 ${ }_{16}$	At detection of either risıng or falling edge of INT 4 input At end of A-D conversion	External interrupt valid when INT_{4} interrupt is selected (active edge selectable) Valid when A-D interrupt is selected
FLD blanking FLD digit	15	FFE1 16	FFEO_{16}	At fall of final digit At rise of each digit	Valıd when FLD blanking interrupt is selected Valid when FLD digit interrupt is selected
BRK instruction	16	FFDD_{16}	FFDC_{16}	At BRK instruction execution	Non-maskable software interrupt

Note 1. Vector addresses contain interrupt jump destınation addresses
2. Reset function in the same way as an interrupt with the highest priority

Fig. 6 Interrupt control

Interrupt edge selection regıster (INTEDGE : address 003A ${ }_{16}$)

- INT T_{0} active edge select bit INT IN_{1} active edge select bit INT_{2} active edge select bit INT_{3} active edge select bit
INT_{4} active edge select bit ${ }^{*}$ $\mathrm{INT}_{4} / \mathrm{A}$-D conversion interrupt switching bit

CNTR $_{0}$ active edge select bit
CNTR $_{1}$ active edge select bit
0 : Falling edge active
1 : Rising edge active
$0: \mathrm{INT}_{4}$ interrupt
1 : A-D interrupt
0 : Count at rising edge
: Count at falling edge

0 : Interrupts disabled
1 : Interrupts enabled

Fig. 7 Structure of interrupt-related registers

TIMERS

Microcomputers of the M3818x group have six built-in timers. The timers count down. Once a timer reaches 00_{16}, the next count pulse loads the contents of the corresponding timer latch into the timer, and sets the corresponding interrupt request bit to 1 . Each timer also has a stop bit that stops the count of that timer when it is set to " 1 ".
Note that the system clock ϕ can be set to either highspeed mode or low-speed mode by the CPU mode register.

- Timer 1 and Timer 2

The count sources of timer 1 and timer 2 can be selected by setting the timer 12 mode register.
Timer 1 can also output a rectangular waveform from the $\mathrm{P} 4{ }_{6} / \mathrm{T} 1_{\text {out }}$ pin. The waveform changes polarity each time timer 1 overflows.
The active edge of the external signal CNTR_{0} can be set by the interrupt edge selection register.
When the chip is reset or the STP instruction is executed, all bits of the timer 12 mode register are cleared, timer 1 is set to FF_{16}, and timer 2 is set to 01_{16}.

- Timer 3 and Timer 4

The count sources of timer 3 and timer 4 can be selected by setting the timer 34 mode register.
Timer 3 can also output a rectangular waveform from the $\mathrm{P} 4_{7} / \mathrm{T3}_{\text {out }}$ pin. The waveform changes polarity each time timer 3 overflows.
The active edge of the external signal CNTR ${ }_{1}$ can be set by the interrupt edge selection register.

- Timer 5 and Timer 6

The count sources of timer 5 and timer 6 can be selected by setting the timer 56 mode register.
Timer 6 can also output a rectangular waveform from the $\mathrm{P}_{1} / \mathrm{PWM}_{1}$ pin. The waveform changes polarity each time timer 6 overflows.

- Timer 6 PWM $_{1}$ Mode

Timer 6 can also output a rectangular waveform of n cycles high and m cycles low. The n is the value set in timer latch 6 (address 0025_{16}) and m is the value in the timer 6 PWM register (address 0027_{16}). If n is " 0 ", the $P^{\prime} M_{1}$ output is " L ", if m is " 0 " and n is not " 0 ", then the PWM_{1} output is " H ". In PWM mode, interrupts are generated at the rising edge of the PWM_{1} output.

Fig. 8 Timer block diagram

Fig. 9 Structure of timer-related registers

Fig. 10 Timing in timer $6 \mathrm{PWM}_{1}$ mode

SERIAL I/O

Microcomputers of the M3818x group have two built-in 8-bit clock synchronized serial I/O channels (serial I/O1 and serial I/O2).
Serial I/O1 has a built-in automatic transfer function.Normal serial operation can be set via the serial I/O automatic transfer control register (address $001 \mathrm{~A}_{16}$).

Serial I/O2 can only be used in normal operation mode.
The I/O pins of the serial I/O function also operate as I/O port P5, and their operation is selected by the serial I/O control registers (addresses 0019 ${ }_{16}$ and $001 D_{16}$).

Fig. 11 Serial I/O block diagram
(Serial I/O Control Registers) SIO1CON, SIO2CON Each of the serial I/O control registers (addresses 0019 ${ }_{16}$ and $001 \mathrm{D}_{16}$) contains seven bits that select various control parameters of the serial I/O function.

Fig. 12 Structure of serial I/O control registers
(1) Operation in Normal Serial I/O Mode

Either an internal clock or an external clock can be selected as the synchronization clock for serial I/O transfer. A dedicated divider is built-in as the internal clock, giving a choice of six clocks.
If internal clock is selected, transfer start is activated by a write signal to a serial $1 / O$ register (address $001 \mathrm{~B}_{16}$ or $001 \mathrm{~F}_{16}$). After eight bits have been transferred, the $S_{\text {out }}$ pin goes to high impedance.

If external clock is selected, the clock must be controlled externally because the contents of the serial I/O register continue to shift while the transfer clock is input. In this case, note that the Sout pin does not go to high impedance at the completion of data transfer. The interrupt request bit is set at the end of the transfer of eight bits, regardless of whether the internal or external clock is selected.

Note. If internal clock is selected, the $\mathrm{S}_{\text {Out }}$ pin is at high impedance after transfer ends

Fig. 13 Serial I/O timing in normal mode (for LSB first)
(2) Serial I/O Automatic Transfer Mode

The serial I/O1 function has an automatic transfer function. For automatic transfer, switch to the automatic transfer mode by setting the serial I/O automatic transfer control register (address $001 \mathrm{~A}_{16}$).
The following memory spaces are added to the circuits used for the serial I/O1 function in ordinary mode, to enable automatic transfer mode:

- 32 bytes of serial I/O automatic transfer RAM
- A serial I/O automatic transfer control register
- A serial I/O automatic transfer interval register
- A serial I/O automatic transfer data pointer

When using serial I/O automatic transfer, set the serial I/O control register (address 0019_{16}) in the same way as for ordinary mode. However, note that if external clock is selected and bit 4 (the $\overline{\mathrm{S}_{\mathrm{RDY}}}$ output selection bit) of the serial I/O1 control register is set to "1", port $\mathrm{P5}_{3}$ becomes the $\overline{\mathrm{CS}}$ input pin.

(Serial I/O Automatic Transfer Control Register) SIOAC

The serial I/O automatic transfer control register (address $001 \mathrm{~A}_{16}$) contains four bits that select various control parameters for automatic transfer.

Fig. 14 Structure of serial I/O automatic transfer control register

MITSUBISHI MICROCOMPUTERS
 M3818x Group

(Serial I/O Automatic Transfer Data Pointer) SIODP
The serial I/O automatic transfer data pointer (address 0018_{16}) contains five bits that indicate addresses in serial I/O automatic transfer RAM (each address in memory is actually the value in the serial I/O automatic transfer data pointer plus 0100_{16}).
Set the serial I/O automatic transfer data pointer to (the number of transfer data-1), to specify the storage position of the start of data.

- Serial I/O Automatic Transfer RAM

The serial I/O automatic transfer RAM is the 32 bytes from address 0100_{16} to address $011 \mathrm{~F}_{16}$.

- Setting of Serial I/O Automatic Transfer Data When data is stored in the serial I/O automatic transfer RAM, it is stored with the start of the data at the address set by the serial I/O automatic transfer data pointer and the end of the data at address 0100_{16}.

(Serial I/O Automatic Transfer Interval Register) SIOAI

The serial I/O automatic transfer interval register (address $001 \mathrm{C}_{16}$) consists of a 5 -bit counter that determines the transfer interval Ti during automatic transfer.
If a value \boldsymbol{n} is written to the serial I/O automatic transfer interval register, a value of $\mathrm{Ti}=(\mathrm{n}+2) \times \mathrm{Tc}$ is generated, where Tc is the length of one bit of the transfer clock. However, note that this transfer interval setting is only valid when internal clock has been selected as the clock source.

Fig. 15 Bit allocation of serial I/O automatic transfer RAM

Fig. 16 Serial I/O automatic transfer interval timing

MITSUBISHI MICROCOMPUTERS
 M3818x Group

- Setting of Serial I/O Automatic Transfer Timing Use the serial I/O1 control register (address 0019_{16}) and the serial I/O automatic transfer interval register (address $001 \mathrm{C}_{16}$) to set the timing of serial I/O automatic transfer.
The serial I/O1 control register sets the transfer clock speed, and the serial I/O automatic transfer interval register sets the serial I/O automatic transfer interval.
This setting of transfer interval is valid only when internal clock is selected as the clock source.
- Start of Serial I/O Automatic Transfer

Automatic transfer mode is set by writing " 1 " to bit 0 of the serial I/O automatic transfer control register (address $001 \mathrm{~A}_{16}$), then automatic transfer starts when " 1 " is written to that bit. Bit 1 of the serial I/O automatic transfer control register is always " 1 " during automatic transfer; writing " 0 " to it is one way to end automatic transfer.

- Operation in Serial I/O Automatic Transfer Modes

There are two modes for serial I/O automatic transfer: full duplex mode and transmit-only mode. Either internal or external clock can be selected for each of these modes

(2.1) Operation in Full Duplex Mode

In full duplex mode, data can be transmitted and received at the same time. Data in the automatic transfer RAM is sent in sequence and simultaneously receive data is written to the automatic transfer RAM, in accordance with the serial I/O automatic transfer data pointer.
The transfer timing of each bit is the same as in ordinary operation mode, and the transfer clock stops at " H " after eight transfer clocks are counted. If internal clock is selected, the transfer clock remains at " H " for the time set by the serial I/O automatic transfer interval register, then the data at the next address indicated by the serial I/O automatic transfer data pointer is transferred. If external clock is selected, the setting of the automatic transfer interval register is invalid, so the user must ensure that the transfer clock is controlled externally.
Data transfer ends when the contents of the serial I/O automatic transfer pointer reach " 00_{16} ". At that point, the serial I/O automatic transfer interrupt request bit is set to " 1 " and bit 1 of the serial I/O automatic transfer control register is cleared to " 0 " to complete the serial I/O automatic transfer.

(2.2) Operation in Transmit-Only Mode

The operation in transmit-only mode is the same as that in full duplex mode, except that data is not transferred from the serial I/O1 register to the serial I/O automatic transfer RAM.

Fig. 17 Serial I/O1 register in full duplex mode

MITSUBISHI MICROCOMPUTERS M3818x Group

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

(2.3) If Internal Clock is Selected

If internal clock is selected, the $\mathrm{P5}_{3} / \overline{\mathrm{S}_{\mathrm{RDY} 1}} / \overline{\mathrm{CS}} / \mathrm{S}_{\mathrm{CLK} 12}$ pin can be used as the $\overline{\mathrm{S}_{\text {RDY }}}$ pin by setting the SC_{4} bit to " 1 ".
If internal clock is selected, the P_{3} pin can be used as the synchronization clock output pin $\mathrm{S}_{\text {CLK12 }}$ by setting the SIOAC_{3} bit to " 1 ". In this case, the $\mathrm{S}_{\mathrm{CLK} 11}$ pin is at high impedance.
Select the function of the $\mathrm{P5}_{3} / \overline{\mathrm{S}_{\mathrm{RDY} 1}} / \overline{\mathrm{CS}} / \mathrm{S}_{\mathrm{CLK} 12}$ and $\mathrm{P5}_{2} /$ $\mathrm{S}_{\mathrm{CLK} 11}$ pins by setting bit $3\left(\mathrm{SC1}_{3}\right)$, bit $4\left(\mathrm{SC1}_{4}\right)$, and bit 6 $\left(\mathrm{SC1}_{6}\right)$ of the serial I/O1 control register (address 0011_{16}) and bit $3\left(\mathrm{SIOAC}_{3}\right)$ of the serial I/O automatic transfer control register (address $001 \mathrm{~A}_{16}$). (See Table 2.)

If using the $\mathrm{S}_{\text {CLK11 }}$ and $\mathrm{S}_{\text {CLK12 }}$ pins for switching, set the $\mathrm{P5}_{3} / \overline{\mathrm{S}_{\mathrm{RHY} 1}} / \overline{\mathrm{CS}} / \mathrm{S}_{\mathrm{CLK} 12}$ pin to P_{3} by setting the $\mathrm{SC1}_{4}$ bit to " 0 ", and set the $\mathrm{P5}_{3}$ direction register to input mode.
Make sure that the SIOAC_{3} bit is switched after automatic transfer is completed, while the transfer clock is still " H ".

Table 2. $\mathrm{S}_{\mathrm{CLK} 11}$ and $\mathrm{S}_{\text {CLK12 }}$ selection

SC_{6}	SC_{4}	SC_{3}	SIOAC_{3}	$\mathrm{P5}_{2} / \mathrm{S}_{\mathrm{CLK} 11}$	$\mathrm{P5}_{3} / \mathrm{S}_{\mathrm{CLK} 12}$
1	0	1	0	$\mathrm{~S}_{\mathrm{CLK} 11}$	$\mathrm{P5}_{3}$
	0	1	HIgh Impedanse	$\mathrm{S}_{\mathrm{CLK} 12}$	

Note. $\mathrm{SC1}_{3}:$ Serial I/O1 port selection bit
$\mathrm{SC1}_{4}$: $\overline{\mathrm{S}_{\mathrm{RDY}}}$ output selection bit
SC1 ${ }_{6}$: Synchronization clock selection bit SIOAC_{3} : Synchronization clock output pin selection bit

Fig. 18 Timing during serial I/O automatic transfer (internal clock selected, $\overline{\mathrm{S}_{\mathrm{RDY}}}$ used)

Fig. 19 Timing during serial I/O automatic transfer (internal clock selected, $\mathrm{S}_{\mathrm{CLK} 11}$ and $\mathrm{S}_{\mathrm{CLK} 12}$ used)

(2.4) If External Clock is Selected

If an external clock is selected, the internal clock and the transfer interval set by the serial I/O automatic transfer interval register are invalid, but the serial I/O output pin $\mathrm{S}_{\mathrm{Out}}$ and the internal transfer clock can be controlled from the outside by setting the $\overline{S_{R D Y 1}}$ and $\overline{C S}$ (input) pins.
When the $\overline{\mathrm{CS}}$ input is " L ", the Sout pin and the internal transfer clock are enabled. When the $\overline{\mathrm{CS}}$ input is " H ", the Sout pin is at high impedance and the internal transfer clock is at " H ".
Select the function of the $\mathrm{P5}_{3} / \overline{\mathrm{S}_{\mathrm{RDY} 1}} / \overline{\mathrm{CS}} / \mathrm{S}_{\mathrm{CLK} 12}$ pin by setting bit $4\left(\mathrm{SC1}_{4}\right)$ and bit $6\left(\mathrm{SC1}_{6}\right)$ of the serial I/O1 control register (address 0019_{16}) and bit $0\left(\mathrm{SIOAC}_{0}\right)$ of the serial I/O automatic transfer control register (address 001A A_{16}).
Make sure that the $\overline{C S}$ pin switches from " L " to " H " or from " H " to " L " while the transfer clock ($S_{\text {CLK }}$ input) is " H " after one byte of data has been transferred
If external clock is selected, make sure that the external clock goes " L " after at least nine cycles of the internal system clock ϕ after the start bit is set. Leave at least 11 cy cles of the system clock ϕ free for the transfer interval after one byte of data has been transferred.

If $\overline{\mathrm{CS}}$ input is not being used, note that the $\mathrm{S}_{\text {Out }}$ pin will not go high impedance, even after transfer is completed. If $\overline{\mathrm{CS}}$ input is not being used, or if $\overline{\mathrm{CS}}$ is " L ", control the external clock because the data in the serial I/O register will continue to shift while the external clock is input, even after the completion of automatic transfer. (Note that the automatic transfer interrupt request bit is set and bit 1 of the automatic transfer register is cleared at the point at which the specified number of bytes of data have been transferred.)

Table 3. $\mathrm{P5}_{3} / \overline{\mathrm{S}_{\mathrm{RDY}}} / \overline{\mathrm{CS}}$ selection

$\mathrm{SC1}_{6}$	$\mathrm{SC1}_{4}$	SIOAC_{0}	$\mathrm{P5}_{3} / \overline{\mathrm{SROY}_{1}} / \overline{\mathrm{CS}}$
0	0	\times	$\overline{\mathrm{P} 5_{3}}$
	1	0	$\overline{\mathrm{~S}_{\mathrm{RDY}}}$
	1	1	$\overline{\mathrm{CS}}$

Note. $\mathrm{SC1}_{4}: \overline{\mathrm{S}_{\mathrm{RDY} 1}}$ output selection bit
$\mathrm{SC1}_{6}$: Synchronization clock selection bit
SIOAC $_{0}$: Automatic transfer control bit

Fig. 20 Timing during serial I/O automatic transfer (external clock selected)

PULSE WIDTH MODULATION (PWM) OUTPUT CIRCUIT

Microcomputers of the M3818x group have a PWM function with a 14-bit resolution. When the oscillation frequency $X_{\text {IN }}$ is 4 MHz , the minimum resolution bit width is 500 ns and the cycle period is $8192 \mu \mathrm{~s}$. The PWM timing generator supplies a PWM control signal based on a signal that is half the frequency of the $X_{\text {IN }}$ clock.

The explanation in the rest of this data sheet assumes $X_{I N}=$ 4 MHz .

Fig. 21 PWM block diagram

MITSUBISHI MICROCOMPUTERS M3818x Group

(1) Data Set-up

The PWM output pin also functions as port $\mathrm{P} 6_{0}$. Set port $\mathrm{P} 6_{0}$ to be the PWM output pin by setting bit 0 of the PWM mode register (address $002 \mathrm{~B}_{16}$). The upper eight bits of output data are set in the upper PWM register PWMH (address $002 \mathrm{C}_{16}$) and the lower six bits are set in the lower PWM register PWML (address $002 \mathrm{D}_{16}$).

(2) Transfer From Register to Latch

Data written to the PWML register is transferred to the PWM latch once in each PWM period (every $8192 \mu \mathrm{~s}$), and data written to the PWMH register is transferred to the PWM latch once in each sub-period (every $128 \mu \mathrm{~s}$). When the PWML register is read, the contents of the latch are read. However, bit 7 of the PWML register indicates whether the transfer to the PWM latch is completed; the transfer is completed when bit 7 is " 0 ".

Table 4. Relationship between lower 6 bits of data and period set by the ADD bit

Lower 6 Bits of Data(PWML)	Sub-periods tm Lengthened $(m=0$ to 63)					
0	0	0	0	0	0	None
0	0	0	0	0	1	$m=32$
0	0	0	0	1	0	$m=16,48$
0	0	0	1	0	0	$m=8,24,40,56$
0	0	1	0	0	0	$m=4,12,20,28,36,44,52,60$
0	1	0	0	0	0	$m=2,6,10,14,18,22,26,30,34,38,42,46,50,54,58,62$
1	0	0	0	0	0	$m=1,3,5,7, \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots, 57,59,61,63$

(3) PWM Operation

The timing of the 14-bit PWM function is shown in Fig. 24. The 14 -bit PWM data is divided into the lower six bits and the upper eight bits in the PWM latch.

The upper eight bits of data determine how long an " H "level signal is output during each sub-period. There are 64 sub-periods in each period, and each sub-period is $256 \times$ $\tau(128 \mu \mathrm{~s})$ long. The signal is " H " for a length equal to N times τ, where τ is the minimum resolution (500 ns).

The contents of the lower six bits of data enable the lengthening of the high signal by τ (500 ns). As shown in Fig. 21, the six bits of PWML determine which sub-cycles are lengthened.
As shown in Fig. 24, the leading edge of the pulse is lengthened. By changing the length of specific sub-periods instead of simply changing the " H " duration, an accurate waveform can be duplicated without the use of complex external filters.

For example, if the upper eight bits of the 14 -bit data are 03_{16} and the lower six bits are 05_{16}, the length of the " H "level output in sub-periods $t_{8}, t_{24}, t_{32}, t_{40}$, and t_{56} is 4τ, and its length $3 \mathbf{T}$ in all other sub-periods.

Fig. 22 PWM timing

Fig. 23 Structure of PWM mode register

Fig. 24 14-bit PWM timing

A－D CONVERTER

The functional blocks of the A－D converter are described below．

〔A－D Conversion Register〕AD

The A－D conversion register is a read－only register that contains the result of an A－D conversion．This register should not be read during an $A-D$ conversion．

〔A－D Control Register〕 ADCON

The A－D control register controls the A－D conversion pro－ cess．Bits 0 to 2 of this register select specific analog input pins．Bit 3 signals the completion of an A－D conversion．The value of this bit remains at＂ 0 ＂during an A－D conversion， then changes to＂ 1 ＂when the A－D conversion is completed． Writing＂ 0 ＂to this bit starts the A－D conversion．

［Comparison Voltage Generator］

The comparison voltage generator divides the voltage be－ tween $A V_{\text {SS }}$ and $V_{\text {REF }}$ by 256 ，and outputs the divided vol－ tages．

〔Channel Selector〕

The channel selector selects one of the input ports $\mathrm{P} 7_{7} / \mathrm{AN}_{7}$ to $P 7_{0} / A N_{0}$ ．

［Comparator and Control Circuit］

The comparator and control circuit compares an analog in－ put voltage with the comparison voltage and stores the re－ sult in the A－D conversion register．When an A－D conver－ sion is complete，the control circuit sets the A－D conversion completion bit and the A－D interrupt request bit to＂ 1 ＂．
Note that the comparator is constructed linked to a capaci－ tor，so set $f\left(X_{\text {IN }}\right)$ to at least 500 kHz during A－D conversion．

Fig． 25 Structure of A－D control register

Fig． 26 A－D converter block diagram

FLD CONTROLLER

Microcomputers of the M3818x group have fluorescent display (FLD) drive and control circuits.
The FLD controller consists of the following components:

- 24 pins for segments
- 16 pins for digits
- FLDC mode register
- FLD data pointer
- FLD data pointer reload register
- Port P3 segment/digit switching register
- Port PO digit/port switching register
- Port P8 segment/port switching register
- Key-scan blanking register
- 48-byte FLD automatic display RAM

Eight to twenty-four pins can be used as segment pins and four to sixteen pins can be used as digit pins.
Note that only 32 pins (maximum) can be used as segment and digit pins.

Fig. 27 FLD control circuit block diagram

FLDC Mode Register (FLDM)

The FLDC mode register (address 0036_{16}) is a seven bit control register which is used to control the FLD automatic display.

Key-scan Blanking Register.(KSCN)

The key-scan blanking register (address 0035_{16}) is a two bit register which sets the blanking period $\mathrm{T}_{\text {scan }}$ between the last digit and the first digit of the next cycle.

Fig. 28 Structure of FLDC mode register (FLDM)

Fig. 29 Structure of key-scan blanking register (KSCN)

FLD Automatic Display Pins

The FLD automatic display function of Ports P3, P0, P9, and P8 is selected by setting the automatic display control bit of
Table 5. Pins in FLD automatic display mode
the FLDC mode register (address 0036_{16}) to " 1 ".
When using the FLD automatic display mode, set the number of segments and digits for each port.

Port Name	Automatic Display Pıns	Settıng Method
$\mathrm{P} 8_{0}-\mathrm{P} 8_{7}$	$\begin{gathered} \mathrm{SEG}_{0}-\mathrm{SEG}_{7} \\ \text { or } \\ \mathrm{P}_{0}-\mathrm{P8}_{7} \\ \hline \end{gathered}$	The individual bits of the segment/port switching register (address 0034_{16}) can be used to set each pin to etther segment ("1") or normal port input ("0")
$\mathrm{P} 9_{0}-\mathrm{P9} 7$	$\mathrm{SEG}_{8}-\mathrm{SEG}_{15}$	None (segment only)
$P 3_{0}-\mathrm{P} 3_{7}$	$\begin{gathered} \mathrm{SEG}_{16}-\mathrm{SEG}_{23} \\ \text { or } \\ \mathrm{DIG}_{0}-\mathrm{DIG}_{7} \end{gathered}$	The individual bits of the segment/digit switching register (address 0032_{16}) can be used to set each pin to segment (" 1 ") or digit (" 0 ") (Note)
$\mathrm{PO}_{0}-\mathrm{PO}_{3}$	DIG_{8} - DIG_{11}	None (dıgıt only)
$\mathrm{PO}_{4}-\mathrm{PO}_{7}$	$\begin{gathered} \mathrm{DIG}_{12}-\mathrm{DIG}_{15} \\ \text { or } \\ \mathrm{PO}_{4}-\mathrm{PO}_{7} \\ \hline \end{gathered}$	The individual bits of the digit/port switching register (address 0033_{16}) can be used to set each pin to digit ("1") or normal port output ("0") (Note)

Note. Always set digits in sequence

Number of segments Number of dıgits	16		8		16		24		16	
		4		12		10		8		16
	0	$\mathrm{P} 8{ }_{0}$	0	$\mathrm{P} 8_{0}$	0	P80	1	SEG ${ }_{0}$	1	SEG_{0}
Port P8 (has segment/port switching register)	0	P81	0	$\mathrm{P} 8_{1}$	0	P81	1	SEG ${ }_{1}$	1	SEG ${ }_{1}$
	0	P_{2}	0	P_{2}	0	P_{2}	1	SEG ${ }_{2}$	1	SEG_{2}
	0	P_{3}	0	$\mathrm{P8}_{3}$	0	P_{3}	1	SEG_{3}	1	SEG_{3}
	0	P_{4}	0	P_{4}	1	SEG_{4}	1	SEG_{4}	1	SEG_{4}
	0	$P 8_{5}$	0	P85	1	SEG ${ }_{5}$	1	SEG ${ }_{5}$	1	SEG_{5}
	0	$P 8_{6}$	0	$\mathrm{P} 8_{6}$	1	SEG_{6}	1	SEG_{6}	1	SEG_{6}
	0	P_{7}	0	P_{7}	1	SEG_{7}	1	SEG_{7}	1	SEG_{7}
Port P9 (segment only)		SEG_{8}	SEG_{8}		SEG_{8}		SEG_{8}		SEG_{8}	
		SEG_{9}	SEG_{9}		SEG $_{9}$		SEG_{9}		SEG9	
		SEG_{10}	SEG_{10}		SEG_{10}		SEG_{10}		SEG_{10}	
		SEG_{11}	SEG_{11}		SEG_{11}		SEG_{11}		SEG_{11}	
		SEG_{12}	SEG_{12}		SEG_{12}		SEG_{12}		SEG_{12}	
		SEG_{13}	SEG_{13}		SEG_{13}		SEG_{13}		SEG_{13}	
		SEG $_{14}$	SE.G14		SEG_{14}		SEG_{14}			SEG_{14}
		SEG_{15}	SEG_{15},		SEG_{15}		SEG $_{15}$		SEG_{15}	
Port P3 (has segment/dıgıt switching register)	1	SEG_{16}	0	$\mathrm{DIG}_{0} \rightarrow \mathrm{G12}$	1	SEG_{16}	1	SEG_{16}	0	$\mathrm{DIG}_{0} \rightarrow \mathrm{G} 16$
	1	SEG_{17}	0 $\mathrm{DIG}_{1} \rightarrow \mathrm{G11}$		1	SEG_{17}	1	SEG_{17}	0	$\mathrm{DIG}_{1} \rightarrow \mathrm{G} 15$
	1	SEG 18	$0 \mathrm{DIG}_{2} \rightarrow \mathrm{G} 10$		1	SEG_{18}	1	SEG_{18}	0	$\mathrm{DIG}_{2} \rightarrow \mathrm{G} 14$
	1	SSG ${ }_{19}$	O $0 \mathrm{DIG}_{3} \rightarrow \mathrm{G} 9$		1	SEG_{19}	1	SEG_{19}	0	$\mathrm{DIG}_{3} \rightarrow \mathrm{G13}$
	1	SEG_{20}	$\mathrm{O}_{0} \mathrm{DIG}_{4} \rightarrow \mathrm{G8}$		-0 $\mathrm{DIG}_{4} \rightarrow \mathrm{G10}$		1	SEG_{20}	0 $\mathrm{DIG}_{4} \rightarrow \mathrm{G12}$	
	1	SEG_{21}	$0 \mathrm{DIG}_{5} \rightarrow \mathrm{G7}$		0 $\mathrm{DIG}_{5} \rightarrow \mathrm{G} 9$		SEG_{21}		$0 \mathrm{DIG}_{5} \rightarrow \mathrm{G11}$	
	1	SEG_{22}	$0 \mathrm{DIG}_{6} \rightarrow \mathrm{G6}$		0	$\mathrm{DIG}_{6} \rightarrow \mathrm{G} 8$		SEG_{22}	0	$\mathrm{DIG}_{6} \rightarrow \mathrm{G} 10$
	1	SEG_{23}	0 $\mathrm{DIG}_{7} \rightarrow \mathrm{G} 5$		0	$\mathrm{DIG}_{7} \rightarrow \mathrm{G} 7$		SEG_{23}	0	$\mathrm{DIG}_{7} \rightarrow \mathrm{G} 9$
Port P0 (has digit/port switching register)		$\mathrm{DIG}_{8} \rightarrow \mathrm{G} 4$		$\mathrm{DIG}_{8} \rightarrow \mathrm{G4}$	$\mathrm{DIG}_{8} \rightarrow \mathrm{G} 6$		$\mathrm{DIG}_{8} \rightarrow \mathrm{G8}$			$\mathrm{DIG}_{8} \rightarrow \mathrm{G8}$
		$\mathrm{DIG}_{9} \rightarrow \mathrm{G} 3$		$\mathrm{DIG}_{9} \rightarrow \mathrm{G} 3$	$\mathrm{DIG}_{9} \rightarrow \mathrm{G} 5$		$\mathrm{DIG}_{9} \rightarrow \mathrm{G7}$			$\mathrm{DIG}_{9} \rightarrow \mathrm{G7}$
		$\mathrm{DIG}_{10} \rightarrow \mathrm{G} 2$		$\mathrm{DIG}_{10} \rightarrow \mathrm{G} 2$	$\mathrm{DIG}_{10} \rightarrow \mathrm{G} 4$			$\mathrm{DIG}_{10} \rightarrow \mathrm{G} 6$		$\mathrm{DIG}_{10} \rightarrow \mathrm{G6}$
		$\mathrm{DIG}_{11} \rightarrow \mathrm{G1}$		$\mathrm{DIG}_{11} \rightarrow \mathrm{G1}$		$\mathrm{DIG}_{11} \rightarrow \mathrm{G} 3$		$\mathrm{DIG}_{11} \rightarrow \mathrm{G} 5$		$\mathrm{DIG}_{11} \rightarrow \mathrm{G} 5$
	0	PO_{4}	0	PO_{4}	1	$\mathrm{DIG}_{12} \rightarrow \mathrm{G} 2$		$\mathrm{DIG}_{12} \rightarrow \mathrm{G4}$	1	$\mathrm{DIG}_{12} \rightarrow \mathrm{G4}$
	0	PO_{5}	0	PO_{5}	$1 \mathrm{DIG}_{13} \rightarrow \mathrm{G} 1$. 1	$\mathrm{DIG}_{13} \rightarrow \mathrm{G} 3$	1	$\mathrm{DIG}_{13} \rightarrow \mathrm{G} 3$
	0	PO_{6}	0	PO_{6}	0	PO_{6}	1	$\mathrm{DIG}_{14} \rightarrow \mathrm{G} 2$	1	$\mathrm{DIG}_{14} \rightarrow \mathrm{G} 2$
	0	PO_{7}	$0 \mathrm{PO}_{7}$			$0 \mathrm{PO}_{7}$	1	$\mathrm{DIG}_{15} \rightarrow \mathrm{G} 1$	1	$\mathrm{DIG}_{15} \rightarrow \mathrm{G} 1$

Fig. 30 Segment/digit setting example

MITSUBISHI MICROCOMPUTERS M3818x Group

FLD Automatic Display RAM

The FLD automatic display RAM area is the 48 bytes from addresses 0040_{16} to $006 \mathrm{~F}_{16}$. The FLD automatic display RAM area can be used to store 3-byte data items for a maximum of 16 digits. Addresses 0040_{16} to $004 \mathrm{~F}_{16}$ are used for P 8 segment data, addresses 0050_{16} to $005 \mathrm{~F}_{16}$ are used for P9 segment data, and addresses 0060_{16} to $006 \mathrm{~F}_{16}$ are used for P3 segment data.

- FLD Data Pointer and FLD Data Pointer Reload Register The FLD data pointer indicates the data address in the FLD automatic display RAM to be transferred to a segment, and the FLD data pointer reload register indicates the address of the first digit of segment P9.

Both the FLD data pointer and the FLD data pointer reload register are allocated to address 0037_{16} and are 6bits wide. Data written to this address is written to the FLD data pointer reload register, data read from this address is read from the FLD data pointer.
The actual memory address is the value of the data pointer plus $40_{16}, 50_{16}$, or 60_{16}.
The contents of the FLD data pointer indicate the start address of segment P9 at the start of automatic display. If segment P3 or P9 data is transferred to the segment, the FLD data pointer returns - 16; if segment P8 data is transferred, it returns +31 . After it reaches " 00 ", the value in the FLD data pointer reload register is transferred to the FLD data pointer. In this way, three bytes of data for the P3, P9, and P8 segments of one digit are transferred.

Fig. 31 FLD automatic display RAM and bit allocation

MITSUBISHI MICROCOMPUTERS M3818x Group

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

- Data Setup

When data is stored in the FLD automatic display RAM, the end of segment P8 data is stored at address 0040_{16}, the end of segment P9 data is stored at address 0050_{16}, and the end of segment P3 data is stored at address 0060_{16}. The head of each of the segment P8, P9, and P3 data is stored at an address that is the number of digits-1 away from the corresponding address 0040_{16} $0050_{16}, 0060_{16}$.

Set the FLD data pointer relóad register to the value given by the number of digits -1 . " 1 " is always written to bit 5 , and " 0 " is always written to bit 4 . Note that " 0 " is always read from bit 5 or 4 during a read.

For 17 segments and 15 digits
(FLD data pointer reload register=14)

For 24 segments and 8 digits
(FLD data pointer reload register $=7$)
(

Note. V/D Shaded areas are not used
Fig. 32 Example of using the FLD automatic display RAM

- Timing Setting

The digit timing ($T_{\text {disp }}$) and digit/segment turn-off timing ($T_{\text {off }}$) can be set by the FLDC mode register (address 0036_{16}). The scan timing ($\mathrm{T}_{\text {scan }}$) can be set by the keyscan blanking register (address 0035 ${ }_{16}$).
Note that flickering will occur if the repetition frequency ($1 /\left(T_{\text {disp }} \times\right.$ number of digits $\left.+T_{\text {scan }}\right)$) is an integral multiple of the digit timing $T_{\text {disp }}$.

- FLD Start

To perform FLD automatic display, you have to use the following registers.

- Port P3 segment/digit switching register
- Port P0 digit/port switching register
- Port P8 segment/port switching register
- Key-scan blanking register
- FLDC mode register
- FLD data pointer

Automatic display mode is activated by writing " 1 " to bit 0
of the FLDC mode register (address 0036_{16}), and the automatic display is started by writing " 1 " to bit 1.
During automatic display bit 1 always keeps " 1 ", automatic display can be interrupted by writing " 0 " to bit 1.

If key-scan is to be performed by segment during the key-scan blanking period $\mathrm{T}_{\text {scan }}$,

1. Write " 0 " to bit 0 (automatic display control bit) of FLDC mode register (address 0036_{16}).
2. Set the port corresponding to the segment to the normal port.
3. After the key-scan is performed, write "1" (automatic display mode) to bit 0 of FLDC mode register (address 0036 ${ }_{16}$).

Note on performance of key-scan in the above 1 to 3 order.

1. Do not write " 0 " to bit 1 of FLDC mode register (address 0036_{16}).
2. Do not write "1" to the port corresponding to the digit.

Fig. 33 FLDC timing

RESET CIRCUIT

After a reset, the microcomputer will start in high-speed operation start mode or low-speed operation start mode depending on a mask-programmable option.

- High-Speed Operation Start Mode

In high-speed operation start mode, reset occurs if the RESET pin is held at an "L" level for at least 2μ s then is returned to an " H " level (the power supply voltage should be between 4.0 V and 5.5 V). Both the X_{IN} and the $X_{\text {CIN }}$ clocks begin oscillating. In order to give the $X_{I N}$ clock time to stabilize, internal operation does not begin until after $13 X_{\text {IN }}$ clock cycles are complete. After the reset is completed, the program starts from the address contained in address FFFD_{16} (upper byte) and address FFFC_{16} (lower byte).

- Low-Speed Operation Start Mode

In low-speed operation start mode, reset occurs if the $\overline{\text { RESET }}$ pin is held at an "L" level for at least 2μ s then is
returned to an " H " level (the power supply voltage should be between 2.8 V and 5.5 V). The $\mathrm{X}_{\text {IN }}$ clock does not begin oscillating. In order to give the $\mathrm{X}_{\mathrm{CIN}}$ time to stabilize, timer 1 and timer 2 are connected together and 512 cycles of the $\mathrm{X}_{\text {CIN }} / 16$ are counted before internal operation begins. After the reset is completed, the program starts from the address contained in address FFFD_{16} (upper byte) and address FFFC_{16} (lower byte). If the $X_{\text {CIN }}$ clock is stable, reset will complete after approximately 250 ms (assuming $f\left(X_{\text {CIN }}\right)=32.768 \mathrm{kHz}$).
Immediately after a power-on, the stability of the clock circuit will determine the reset timing and will vary according to the characteristics of the oscillation circuit used.

- Note on Use

Make sure that the reset input voltage is no more than 0.8 V in high-speed operation start mode, or no more than 0.5 V in low-speed operation start mode.

Fig. 34 Power-on reset circuit example

Fig. 35 Internal status at reset

Fig. 36 Reset sequence in high-speed operation mode

Fig. 37 Reset sequence in low-speed operation mode

CLOCK GENERATION CIRCUIT

When using an external clock signal, input the clock signal to the $X_{\text {IN }}\left(X_{\text {CIN }}\right)$ pin and leave the $X_{\text {OUt }}\left(X_{\text {COUT }}\right)$ pin open. If the $X_{\text {CIN }}$ clock is not used, connect the $X_{\text {CIN }}$ pin to $V_{S S}$, and leave the $X_{\text {cout }}$ pin open.
Either high-speed operation start mode or low-speed operation start mode can be selected by using a mask option.

- High-Speed Operation Start Mode

After reset has completed, the internal clock ϕ is half the frequency of $X_{\text {IN }}$. Immediately after power-on, both the $X_{\text {IN }}$ and $X_{\text {CIN }}$ clock start oscillating. To set the internal clock ϕ to low-speed operation mode, set bit 7 of the CPU mode register (address $003 \mathrm{~B}_{16}$) to " 1 ".

- Low-Speed Operation Start Mode

After reset has completed, the internal clock ϕ is half the frequency of $\mathrm{X}_{\text {CIN }}$. Immediately after power-on, only the $\mathrm{X}_{\mathrm{CIN}}$ clock starts oscillating To set the internal clock ϕ to high-speed operation mode, first set bit $6\left(\mathrm{CM}_{6}\right)$ of the CPU mode register (address $003 \mathrm{~B}_{16}$) to " 0 ", the set bit 7 $\left(\mathrm{CM}_{7}\right)$ to " 0 ". Note that the program must allow time for oscillation to stabilize.

- Oscillation Control

Stop Mode

If the STP instruction is executed, oscillation stops with the internal clock ϕ at an " H " level. Timer 1 is set to " FF_{16} " and timer 2 is set to " 01_{16} ".
Either $X_{\text {IN }}$ or $X_{\text {CIN }}$ divided by 16 is input to timer 1, and the output of timer 1 is connected to timer 2 . The timer 1 and timer 2 interrupt enable bits must be set to disabled ("0"), so a program must set these bits before executing an STP instruction. Oscillation restarts at reset or when an external interrupt is received, but the internal clock ϕ is not supplied to the CPU until timer 2 overflows. This allows time for the clock circuit oscillation to stabilize Wait Mode
If the WIT instruction is executed, the internal clock ϕ stops at an " H " level but the oscillator itself does not stop. The internal clock restarts if a reset occurs or when an interrupt is received. Since the oscillator does not stop, normal operation can be started immediately after the clock is restarted.

Low-Speed Mode

If the internal clock is generated from the sub clock ($\mathrm{X}_{\mathrm{CIN}}$), a low power consumption operation can be entered by stopping only the main clock $X_{\text {IN }}$. To stop the main clock, set bit $6\left(\mathrm{CM}_{6}\right)$ of the CPU mode register $\left(003 B_{16}\right)$ to " 1 ". When the main clock $X_{\text {IN }}$ is restarted, the program must allow enough time to for oscillation to stabilize.
Note that in low-power-consumption mode the $\mathrm{X}_{\mathrm{CIN}^{-}}$ $\mathrm{X}_{\text {cout }}$ drive performance can be reduced, allowing even lower power consumption ($20 \mu \mathrm{~A}$ with $\mathrm{X}_{\text {CIN }}=32 \mathrm{kHz}$). To reduce the $X_{\text {CIN }}-X_{\text {COUT }}$ drive performance, clear bit 5 $\left(\mathrm{CM}_{5}\right)$ of the CPU mode register ($003 \mathrm{~B}_{16}$) to " 0 ". At re-
set or when an STP instruction is executed, this bit is set to " 1 " and strong drive is selected to help the oscillation to start.

Fig. 38 Ceramic resonator circuit

Fig. 39 External clock input circuit

MITSUBISHI MICROCOMPUTERS M3818x Group

Note. The values of CM_{7} and CM_{6} at reset are determıned by a mask option

Fig. 40 System clock generation circuit block diagram

The example assumes that 6.3 MHz is being applied to the $X_{I N}$ pin and 32 kHz to the $X_{\text {CIN }}$ pin

Note 1. When the STP state is ended, a delay of approximately 1.3 ms is automatically generated by timer 1 and timer 2
2. The delay after the STP state ends is approximately 0.25 s
3. If the internal clock ϕ divided by 8 is used as the timer count source, the frequency of the count source is $f\left(X_{\text {CIN }}\right) / 16$
4. Specify this option when ordering a mask ROM version

Fig. 41 State transitions of system clock

NOTES ON PROGRAMMING

- Processor Status Register

The contents of the processor status register (PS) after a reset are undefined, except for the interrupt disable flag (I) which is " 1 ". Therefore, flags that affect program execution must be initialized after a reset. In particular, it is essential to initialize the T and D flags because of their effect on calculations.

- Interrupts

The contents of the interrupt request bits do not change immediately after they have been written.
After writing to an interrupt request register, execute at least one instruction before performing a BBC or BBS instruction.

- Decimal Calculations

To calculate in decimal notation, set the decimal mode flag (D) to " 1 ", then execute a ADC or SBC instruction. Only the ADC and SBC instruction yield proper decimal results. After executing an ADC or SBC instruction, execute at least one instruction before executing a SEC, CLC, or CLD instruction.
In decimal mode, the values of the negative (N), overflow (V), and zero (Z) flags are invalid.
The carry flag can be used to indicate whether a carry or borrow has occurred, but must be initialized before each calculation. Clear the carry flag before an ADC and set the flag before an SBC.

- Timers

If a value n (between 0 and 255) is written to a timer latch, the frequency division ratio is $1 /(n+1)$.

- Multiplication and Division Instructions The MUL and DIV instructions do not affect the T and D flags.
The execution of these instructions does not change the contents of the processor status register.
- Ports

The contents of the port direction registers cannot be read. Programs can not use the value of a direction register as an index, or bit-test a direction register (BBC or BBS), or perform a read-modify-write instruction such as ROR, CLB, or SEB. Use instructions such as LDM and STA to set the port direction registers.

- Serial I/O

When using an external clock, input " H " to the external clock input pin and clear the serial I/O interrupt request bit before executing a serial I/O transfer.
When using the internal clock, set the synchronization clock to internal clock, then clear the serial I/O interrupt request bit before executing a serial I/O transfer.

- Instruction Execution Timing

The instruction execution time is obtained by multiplying the frequency of the internal clock ϕ by the number of cycles needed to execute an instruction.
The number of cycles required to execute an instruction
is shown in the list of machine instructions.
The frequency of the internal clock ϕ is half of the $X_{\text {IN }}$ or $X_{\text {CIN }}$ frequency.

DATA REQUIRED FOR MASK ORDERS

The following are necessary when ordering a mask ROM production:
(1) Mask ROM Order Confirmation Form
(2) Mark Specification Form
(3) Data to be written to ROM, in EPROM form (three identical copies)
If required, specify the following option on the Mask Confirmation Form:

- Operation start mode switching option

ROM Writing Method

The built-in PROM of the blank one-time programmable version and built-in EPROM version can be read from and written to with an normal EPROM writer using a special write adapter.

In case PROM is 32K bytes or under;

Package	Name of Write Adapter
100 P 6 S	PCA4738F-100
100 D	PCA4738L-100

In case PROM is 36 K bytes or over;

Package	Name of Write Adapter
100 P 6 S	Under development
100 D 0	Under development

The PROM of the blank one-time programmable version is not tested or screened after assembly. To ensure proper operation after writing, the procedure shown in Figure 42 is recommended to verify programming.

Fig. 42 Writing and testing of one-time programmable version

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratıngs	Unit
V_{cc}	Supply voltage	All voltages measured based on the V_{Ss} pin Output transistors are isolated	-0.3 to 7.0	V
V_{EE}	Puil-down power supply voltage		$\mathrm{V}_{\mathrm{CC}}-40$ to $\mathrm{V}_{\mathrm{CC}}+0.3$	V
V_{1}	$\begin{aligned} & \text { Input voltage } \mathrm{P1}_{0}-\mathrm{P} 1_{7}, \mathrm{P}_{2}-\mathrm{P2}_{7}, \mathrm{P4}_{1}-\mathrm{P4}_{7}, \mathrm{P5}_{0}-\mathrm{P5}_{7}, \\ & \mathrm{P6}_{0}-\mathrm{P6}_{7}, \mathrm{P7}_{0}-\mathrm{P7}_{2}, \mathrm{P9}_{0}-\mathrm{P9}_{3}, \mathrm{PA}_{0}-\mathrm{PA}_{7} \\ & \mathrm{~PB}_{0}, \mathrm{~PB}_{1} \\ & \hline \end{aligned}$		-0.3 to $\mathrm{V}_{\mathrm{cc}}+0.3$	V
V_{1}	Input voltage $\mathrm{P} 4_{0}$		-0.3 to $\mathrm{V}_{\mathrm{cc}}+0.3$	V
V_{1}	Input voltage $\mathrm{P}_{0}-\mathrm{P} 8_{7}$		$\mathrm{V}_{\mathrm{CC}}-40$ to $\mathrm{V}_{\mathrm{CC}}+0.3$	V
V_{1}	Input voltage $\overline{\text { RESET, }}$, $\mathrm{X}_{\text {IN }}$		-0.3 to $\mathrm{V}_{\mathrm{CC}}+0.3$	V
V_{1}	Input voltage $\mathrm{X}_{\text {CIN }}$		-0.3 to $V_{c C}+0.3$	V
V_{0}	$\begin{array}{r} \text { Output voltage } \mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P3}_{0}-\mathrm{P3}_{7}, \\ \mathrm{P} 8_{0}-\mathrm{P} 8_{7}, \mathrm{Pg}_{0}-\mathrm{Pg}_{7} \end{array}$		$\mathrm{V}_{\mathrm{cc}}-40$ to $\mathrm{V}_{\mathrm{cc}}+0.3$	V
V_{0}	Output voltage $\mathrm{P1}_{0}-\mathrm{P} 1_{7}, \mathrm{P}_{2}-\mathrm{P} 2_{7}, \mathrm{P4}_{1}-\mathrm{P} 4_{7}, \mathrm{P5}_{0}-\mathrm{P} 5_{7}$, $\mathrm{P} 6_{0}-\mathrm{P6}_{7}, \mathrm{P7}_{0}-\mathrm{P7}_{7}, \mathrm{PA}_{0}-\mathrm{PA}_{7}, \mathrm{X}_{\text {OUT }}, \mathrm{X}_{\text {COUT }}$		-0.3 to $\mathrm{V}_{\mathrm{cc}}+0.3$	V
$\mathrm{Pd}_{\text {d }}$	Power dissipation	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$	- 600	mW
Topr	Operating temperature		-10 to 85	${ }^{\circ} \mathrm{C}$
Tstg	Storage temperature		-40 to 125	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS ($\mathrm{V}_{\mathrm{cc}}=4.0$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-10$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter		Limits			Unit
			Min	Typ	Max	
V_{cc}	Supply voltage	High-speed operation mode	4.0	5.0	5.5	V
		Low-speed operation mode	2.8	5.0	5.5	
$\mathrm{V}_{\text {ss }}$	Supply voltage			0		V
$V_{\text {EE }}$	Pull-down power supply voltage		$\mathrm{v}_{\mathrm{cc}}-38$		V_{cc}	V
$\mathrm{V}_{\text {REF }}$	Reference input voltage		2		V_{cc}	V
$\mathrm{AV}_{\text {SS }}$	Analog power voltage			0		V
$V_{\text {IA }}$	Analog input voltage		0		V_{cc}	V
V_{1+}	$\begin{aligned} & \text { " } \mathrm{H} \text { " input voltage } \mathrm{P}_{1}-\mathrm{P1}_{7}, \mathrm{P}_{1}-\mathrm{P}_{7}, \mathrm{P5}_{0}-\mathrm{P5}_{7}, \\ & \mathrm{P}_{0}-\mathrm{P}_{7}, \mathrm{P7}_{0}-\mathrm{P7}_{7}, \mathrm{PA}_{0}-\mathrm{PA}_{7}, \\ & \mathrm{~PB}_{0}, \mathrm{~PB}_{1} \\ & \hline \end{aligned}$		0. 75 V cc		V_{cc}	V
V_{IH}	"H" input voltage $\mathrm{P}_{2}-\mathrm{P} 2_{7}$		$0.4 \mathrm{~V}_{\mathrm{cc}}$		V_{cc}	V
$\mathrm{V}_{\text {IH }}$	" H " input voltage P_{4}		$0.75 \mathrm{~V}_{\mathrm{cc}}$		V_{CC}	V
$\mathrm{V}_{\text {IH }}$	" H " input voltage $\mathrm{P} 8_{0}-\mathrm{P} 8_{7}, \mathrm{P9}_{0}-\mathrm{P9}_{3}$		$0.8 \mathrm{~V}_{\mathrm{cc}}$		V_{cc}	V
V_{IH}	"H" input voltage $\overline{\text { RESET }}$		$0.8 \mathrm{~V}_{\mathrm{CC}}$		$V_{c c}$	V
V_{IH}	" H " input voltage $\mathrm{X}_{\text {IN }}, \mathrm{X}_{\mathrm{CIN}}$		$0.8 \mathrm{~V}_{\mathrm{CC}}$		V_{CC}	V
V_{IL}	$\begin{gathered} \text { "L" input voltage } \mathrm{P1}_{0}-\mathrm{P1}_{7}, \mathrm{P4}_{1}-\mathrm{P4}_{7}, \mathrm{P5}_{0}-\mathrm{P5}_{7}, \mathrm{P6}_{0}-\mathrm{P6}_{7}, \\ \mathrm{P7}_{0}-\mathrm{P7}_{7}, \mathrm{PA}_{0}-\mathrm{PA}_{7}, \mathrm{~PB}_{0}, \mathrm{~PB}_{1} \\ \hline \end{gathered}$		0		$0.25 \mathrm{~V}_{\mathrm{cc}}$	V
$\mathrm{V}_{\text {IL }}$	"L" input voltage $\mathrm{P}_{0}-\mathrm{P} 2_{7}$		0		$0.16 \mathrm{~V}_{\mathrm{cc}}$	V
$\mathrm{V}_{\text {IL }}$	"L" input voltage $\mathrm{P4}_{0}$		0		$0.25 \mathrm{~V}_{\mathrm{cc}}$	V
$\mathrm{V}_{\text {IL }}$	"L" input voltage $\mathrm{P8}_{0}-\mathrm{P8} 8_{7}, \mathrm{P9}_{0}-\mathrm{P9} 9_{3}$		0		$0.2 \mathrm{~V}_{\mathrm{cc}}$	V
$\mathrm{V}_{\text {IL }}$	"L" input voltage $\overline{\mathrm{RESET}}$		0		$0.2 \mathrm{~V}_{\mathrm{cc}}$	V
$\mathrm{V}_{\text {IL }}$	"L" input voltage $\mathrm{X}^{\text {IN }}, \mathrm{X}_{\text {CIN }}$		0		$0.2 \mathrm{~V}_{\mathrm{cc}}$	V

RECOMMENDED OPERATING CONDITIONS ($\mathrm{v}_{\mathrm{cc}}=4.0$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-10$ to $85^{\circ} \mathrm{C}$, uniess otherwise noted)

Symbol	Parameter	Limits			Unit
		Min	Typ	Max	
$\Sigma I_{\text {OH(peak }}$	$\begin{aligned} & \hline \text { "H" total peak output current } \mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P1}_{0}-\mathrm{P} 1_{7}, \\ & \text { (Note 1) } \mathrm{P}_{0}-\mathrm{P2}_{7}, \mathrm{P3}_{0}-\mathrm{P3}_{7}, \\ & \mathrm{P8}_{0}-\mathrm{P8}_{7}, \mathrm{P9}_{0}-\mathrm{P9}_{7} \\ & \hline \end{aligned}$			-240	mA
$\Sigma \mathrm{l}_{\text {OH(peak) }}$	" H " total peak output current $\mathrm{P}_{1}-\mathrm{P}_{7}, \mathrm{P}_{0}-\mathrm{P} 6_{5}$, $\mathrm{P7}_{0}-\mathrm{PT}_{7}, \mathrm{PA}_{0}-\mathrm{PA}_{7}$			-60	mA
Σ loc(peak)	$\begin{array}{\|l\|} \hline \text { "L" total peak output current } \mathrm{P} 1_{0}-\mathrm{P} 1_{7}, \mathrm{P}_{0}-\mathrm{P} 2_{7}, \mathrm{P4} 1-\mathrm{P} 4_{7}, \\ \\ \mathrm{P5} 5_{0}-\mathrm{P} 5_{7}, \mathrm{P6}_{1}-\mathrm{P6}_{7}, \\ \\ \mathrm{P} 7_{0}-\mathrm{P} 7_{7}, \mathrm{PA}_{0}-\mathrm{PA}_{7} \\ \hline \end{array}$			100	mA
Σ lol(peak)	"L" total peak output current $\mathrm{P6}_{0}$			3.0	mA
$\Sigma I_{\text {OH(avg }}$	"H" total average output current $\mathrm{PO}_{0}-\mathrm{P} 0_{7}, \mathrm{P1}_{0}-\mathrm{P} 1_{7}$, (Note 1) $\mathrm{P}_{0}-\mathrm{P2}_{7}, \mathrm{P3}_{0}-\mathrm{P} 3_{7}$, $\mathrm{P8}_{0}-\mathrm{P8}_{7}, \mathrm{P9}_{0}-\mathrm{P9}_{7}$			-120	mA
$\Sigma \mathrm{l}_{\text {OH }}(\mathrm{avg})$	" H " total average output current $\mathrm{P}_{1}-\mathrm{P}_{7}, \mathrm{P}_{6}-\mathrm{P}_{7}$, $\mathrm{P7}_{0}-\mathrm{P7}_{7}, \mathrm{PA}_{0}-\mathrm{PA}_{7}$			-30	mA
$\Sigma \mathrm{I}_{\text {oL(avg }}$)	$\begin{aligned} & \text { "L" total average output current } \begin{aligned} & \mathrm{P}_{1}-\mathrm{P} 1_{7}, \mathrm{P}_{0}-\mathrm{P} 2_{7}, \\ & \mathrm{P} 4_{1}-\mathrm{P} 4_{7}, \mathrm{P} 5_{0}-\mathrm{P} 5_{7}, \\ & \mathrm{P} 6_{1}-\mathrm{P} 6_{7}, \mathrm{P} 7_{0}-\mathrm{P} 7_{7}, \\ & \mathrm{PA}_{0}-\mathrm{PA}_{7} \\ & \hline \end{aligned} \\ & \hline \end{aligned}$			50	mA
$\Sigma \mathrm{l}_{\text {OL }}(\mathrm{avg})$	"L" total average output current $\mathrm{P6}_{0}$			1.5	mA
$\mathrm{IOH}_{\text {(peak) }}$	" H " peak output current $\mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P3}_{0}-\mathrm{P3}_{7}, \mathrm{P8}_{0}-\mathrm{P8}_{7}$, $\mathrm{P9}_{0}-\mathrm{P9}_{7}$ (Note 2)			-40	mA
Іон(peak)	" H " peak output current $\mathrm{P1}_{0}-\mathrm{P} 1_{7}, \mathrm{P}_{0}-\mathrm{P} 2_{7}, \mathrm{P} 4_{1}-\mathrm{P} 4_{7}$, $\mathrm{P}_{0}-\mathrm{Pb}_{7}, \mathrm{P7}_{0}-\mathrm{P7}_{7}, \mathrm{PA}_{0}-\mathrm{PA}_{7}$			-10	mA
lol(peak)	$\begin{array}{r} \text { "L" peak output current } \mathrm{P1}_{0}-\mathrm{P} 1_{7}, \mathrm{P}_{2}-\mathrm{P2}_{7}, \mathrm{P4}_{1}-\mathrm{P4}_{7}, \\ \\ \mathrm{P} 6_{1}-\mathrm{P} 6_{7}, \mathrm{P7}_{0}-\mathrm{P}_{7}, \mathrm{PA}_{0}-\mathrm{PA}_{7} \\ \hline \end{array}$			10	mA
lol(peak)	"L" peak output current $\mathrm{P5}_{0}-\mathrm{P5} 7$			10	mA
lol(peak)	"L" peak output current $\mathrm{P6}_{0}$			3.0	mA
$\mathrm{IOH}(\mathrm{avg})$	" H " average output current $\mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P3}_{0}-\mathrm{P3}_{7}$, $\mathrm{P}_{0}-\mathrm{P8}_{7}, \mathrm{P9}_{0}-\mathrm{P9} 9_{7}$			-18	mA
ІОн(avg)	$\begin{array}{r} \text { " } \mathrm{H} \text { " average output current } \mathrm{P1}_{0}-\mathrm{P1}_{7}, \mathrm{P2}_{0}-\mathrm{P2}_{7}, \mathrm{P4}_{1}-\mathrm{P} 4_{7}, \\ \mathrm{P}_{1}-\mathrm{P}_{7}, \mathrm{P7}_{0}-\mathrm{P7}_{7}, \mathrm{PA}_{0}-\mathrm{PA}_{7} \\ \hline \end{array}$			-5.0	mA
Iol(avg)	$\begin{aligned} & \text { "L" average output current } \mathrm{P}_{1}-\mathrm{P}_{7}, \mathrm{P}_{0}-\mathrm{P} 2_{7}, \\ & \text { (Note 3) } \mathrm{P}_{1}-\mathrm{P}_{7}, \mathrm{P6}_{0}-\mathrm{P}_{7}, \\ & \mathrm{P}_{7}-\mathrm{P}_{7}, \mathrm{PA}_{0}-\mathrm{PA}_{7} \\ & \hline \end{aligned}$			5.0	mA
Iol(avg)	" L " average output current $\mathrm{P5}_{0}-\mathrm{P5} 7$			5.0	mA
lol (avg)	"L" average output current $\mathrm{P6}_{0}$			1.5	mA
$\mathrm{f}\left(\mathrm{CNTR}_{0}\right)$ $f\left(\right.$ CNTR $\left._{1}\right)$	Clock input frequency for timers 2 and 4 (duty cycle 50\%)			250	kHz
$f\left(X_{\text {IN }}\right)$	Main clock input oscillation frequency (Note 4)			6.3	MHz
$f\left(X_{\text {CIN }}\right)$	Sub clock input oscillation frequency (Note 4, Note 5)		32. 768	50	kHz

Note 1. The total output current is the sum of all the currents flowing through all the applicable ports The total average current is an average value measured over 100 ms The total peak current is the peak value of all the currents
2. The peak output current is the peak current flowing in each port
3. The average output current in an average value measured over 100 ms
4. When the oscillation frequency has a duty cycle of 50%
5. When using the microcomputer in low-speed operation mode, make sure that the sub clock's input frequency $f\left(X_{\text {CIN }}\right)$ is less than $f\left(X_{\text {IN }}\right) / 3$

ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{cC}}=4.0$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathbf{a}}=-10$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test conditions		Limits			Unit
				Min.	Typ	Max	
V_{OH}	$\begin{gathered} \text { " } \mathrm{H} " \text { output voltage } \mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P3}_{0}-\mathrm{P3}_{7}, \mathrm{P8}_{0}-\mathrm{P8}_{7}, \\ \mathrm{Pg}_{0}-\mathrm{Pg}_{7} \end{gathered}$	$\cdot \mathrm{IOH}=-18 \mathrm{~mA}$		$\mathrm{V}_{\mathrm{cc}}-2.0$			V
V_{OH}	$\begin{array}{r} \text { " } \mathrm{H} \text { " output voltage } \mathrm{P} 1_{0}-\mathrm{P} 1_{7}, \mathrm{P}_{0}-\mathrm{P}_{2}, \mathrm{P4}_{1}-\mathrm{P} 4_{7}, \\ \mathrm{P}_{0}-\mathrm{P}_{7}, \mathrm{P}_{0}-\mathrm{P7}_{7}, \mathrm{PA}_{0}-\mathrm{PA}_{7} \end{array}$	$\mathrm{IOH}^{\text {a }}=-10 \mathrm{~mA}$		$\mathrm{V}_{C C}-2.0$			V
V_{OL}	$\begin{gathered} \text { "L" output voltage } \mathrm{P} 1_{0}-\mathrm{P} 1_{7}, \mathrm{P} 2_{0}-\mathrm{P} 2_{7}, \mathrm{P} 4_{1}-\mathrm{P} 4_{7}, \\ \\ \mathrm{P5} 5_{0}-\mathrm{P} 5_{7}, \mathrm{P} 6_{1}-\mathrm{P} 6_{7}, \mathrm{P} 7_{0}-\mathrm{P} 7_{7}, \\ \\ \mathrm{PA} A_{0}-\mathrm{PA} A_{7} \\ \hline \end{gathered}$	$\mathrm{lOL}_{\mathrm{ol}}=10 \mathrm{~mA}$				2.0	V
V_{OL}	"L" output voltage Pb_{0}	$\mathrm{l}_{\mathrm{OL}}=1.5 \mathrm{~mA}$				0.5	V
$\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\mathrm{T}-}$	Hysteresis $\overline{\mathrm{NT}_{0}}-\overline{\mathrm{INT}_{4}}, \mathrm{~S}_{\mathrm{N} 1}, \mathrm{~S}_{\mathrm{IN} 2}, \mathrm{~S}_{\mathrm{CLK} 1}, \mathrm{~S}_{\mathrm{CLK} 2}$, CNTR $_{0}$, CNTR $_{1}$	When using a non-port function			0.4		V
$\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\mathrm{T}_{-}}$	Hysteresis $\overline{\mathrm{RESET}}, \mathrm{X}_{\text {IN }}$	RESET : $\mathrm{V}_{C C}=2.8 \mathrm{~V}$ to 5.5 V			0.5		V
$\mathrm{V}_{\mathrm{T}_{+}-} \mathrm{V}_{T-}$	Hysteresis $\mathrm{X}_{\text {CIN }}$				0.5		V
I_{H}	" H " input current $\mathrm{P1}_{1}-\mathrm{P1}_{7}, \mathrm{P2}_{0}-\mathrm{P2}_{7}, \mathrm{P4}_{1}-\mathrm{P4}_{7}, \mathrm{P5}_{0}-\mathrm{P5}_{7}$, $\mathrm{Pb}_{0}-\mathrm{P6}_{7}, \mathrm{P}_{0}-\mathrm{P7}_{7}, \mathrm{PA}_{0}-\mathrm{PA}_{7}, \mathrm{~PB}_{0}, \mathrm{~PB}_{1}$	$\mathrm{V}_{1}=\mathrm{V}_{\text {c }}$,	5.0	$\mu \mathrm{A}$
I_{IH}	" H " input current $\mathrm{P} 4_{0}$	$\mathrm{v}_{1}=\mathrm{v}_{\mathrm{cc}}$				5.0	$\mu \mathrm{A}$
I_{IH}	" H " input current $\mathrm{P8}_{0}-\mathrm{P8} 7, \mathrm{P9}_{0}-\mathrm{P9}_{3}$ (Note 1)	$\mathrm{V}_{1}=\mathrm{v}_{\mathrm{cc}}$				5.0	$\mu \mathrm{A}$
I_{IH}	"H" input current $\overline{\mathrm{RESET}}$, $\mathrm{X}_{\text {CIN }}$	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{cc}}$				5.0	$\mu \mathrm{A}$
I_{H}	" H " input current $\mathrm{X}_{\text {IN }}$	$\mathrm{V}_{1}=\mathrm{V}_{C C}$			4.0		$\mu \mathrm{A}$
$I_{\text {IL }}$	" L " input current $\mathrm{P1}_{0}-\mathrm{P} 1_{7}, \mathrm{P}_{0}-\mathrm{P}_{7}, \mathrm{P4}_{1}-\mathrm{P}_{7}, \mathrm{P5}_{0}-\mathrm{P5}_{7}$, $\mathrm{P6}_{0}-\mathrm{P6}_{7}, \mathrm{P7}_{0}-\mathrm{P7}_{7}, \mathrm{PA}_{0}-\mathrm{PA}_{7}, \mathrm{~PB}_{0}, \mathrm{~PB}_{1}$	$\mathrm{v}_{1}=\mathrm{v}_{\mathrm{ss}}$				-5.0	$\mu \mathrm{A}$
I_{12}	"L" input current P40	$\mathrm{V}_{1}=\mathrm{V}_{\text {ss }}$				-5.0	$\mu \mathrm{A}$
I_{12}	" L " input current $\mathrm{P8}_{0}-\mathrm{P8} 7_{7}, \mathrm{P9}_{0}-\mathrm{P9}_{3}$ (Note 1)	$\mathrm{V}_{1}=\mathrm{V}_{\text {Ss }}$				-5.0	$\mu \mathrm{A}$
ILL	"L" input current $\overline{\text { RESET, }} \mathrm{X}_{\text {CIN }}$	$\mathrm{V}_{1}=\mathrm{V}_{\text {SS }}$				-5.0	$\mu \mathrm{A}$
I_{1}	"L" input current $\mathrm{X}_{\text {IN }}$	$\mathrm{V}_{1}=\mathrm{V}_{\text {Ss }}$			-4.0		$\mu \mathrm{A}$
I load	Output load current $\mathrm{P0}_{0}-\mathrm{PO}_{7}, \mathrm{P3}_{0}-\mathrm{P3}_{7}, \mathrm{P9}_{0}-\mathrm{P9}_{7}$	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=\mathrm{V}_{\mathrm{CC}}-36 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{OL}}=\mathrm{V}_{\mathrm{CC}}, \end{aligned}$ With output transistors off		150	500	900	$\mu \mathrm{A}$
$I_{\text {Leak }}$	Output leakage current $\mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P3}_{0}-\mathrm{P} 3_{7}, \mathrm{~PB}_{0}-\mathrm{P} 8_{7}$, $\mathrm{P9}_{0}-\mathrm{P9}_{7}$	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=\mathrm{V}_{\mathrm{CC}}-38 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{OL}}=\mathrm{V}_{\mathrm{CC}}-38 \mathrm{~V}, \end{aligned}$ With output transistors off (Except for reset)				-10	$\mu \mathrm{A}$
$\mathrm{V}_{\text {RAM }}$	RAM hold voltage	When clock is stopped		2.0		5.5	V
I_{cc}	Power supply current	In high-speed operation mode $\begin{aligned} & f\left(X_{\text {IN }}\right)=6.3 \mathrm{MHz} \\ & f\left(X_{\text {CIN }}\right)=32 \mathrm{kHz} \end{aligned}$ Output transistors off A-D converter operating			7.5	15	mA
		In high-speed operation mode $f\left(X_{\text {IN }}\right)=6.3 \mathrm{MHz}$ (In WIT state) $f\left(X_{\text {CIN }}\right)=32 \mathrm{kHz}$ Output transistors off A-D converter stopped			1.0		mA
		In low-speed operation mode $f\left(X_{\text {IN }}\right)=$ stopped, $f\left(X_{\text {CIN }}\right)=32 k H z$ Low-power dissipation mode set (CM5 $=0$) Output transistors off			60	200	$\mu \mathrm{A}$
		In low-speed operation mode $\mathrm{f}\left(\mathrm{X}_{\text {IN }}\right)=$ stopped $f\left(X_{\text {CIN }}\right)=32 \mathrm{kHz}$ (in WIT state) Low-power dissipation mode set (CM5 ${ }_{5}=0$) Output transistors off			20	40	$\mu \mathrm{A}$
		All oscillation stopped (In STP state) Output transistors off	$\mathrm{Ta}_{\mathrm{a}}=25^{\circ} \mathrm{C}$		0.1	1.0	$\mu \mathrm{A}$
			$\mathrm{Ta}_{\mathrm{a}}=85^{\circ} \mathrm{C}$			10	

Note 1. Except when reading ports P 8 or ports $\mathrm{P9}_{0}-\mathrm{P9}_{3}$

MITSUBISHI MICROCOMPUTERS
 M3818x Group

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

A-D CONVERTER CHARACTERISTICS

($\mathrm{V}_{\mathrm{CC}}=4.0$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-10$ to $85^{\circ} \mathrm{C}$, high-speed operation mode, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Unit
			Min	Typ	Max	
-	Resolution				8	Bits
-	Absolute accuracy	$\mathrm{V}_{\text {CC }}=\mathrm{V}_{\text {REF }}=5.12 \mathrm{~V}$		± 1	± 2.5	LSB
TCONV	Conversion time		49		50	$\mathrm{t}_{\mathrm{C}}(\phi)$
$\mathrm{V}_{\text {REF }}$	Reference input voltage		2		V_{cc}	V
$\mathrm{I}_{\text {VREF }}$	Reference input current	$\mathrm{V}_{\mathrm{REF}}=5 \mathrm{~V}$	50	150	200	$\mu \mathrm{A}$
$\mathrm{l}_{\text {IA }}$	Analog port input current			0.5	5.0	$\mu \mathrm{A}$
$\mathrm{R}_{\text {LADDER }}$	Ladder resistor			35		$\mathrm{k} \Omega$

TIMING REQUIREMENTS ($\mathrm{V}_{\mathrm{cc}}=4.0$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-10$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Unit
			Min	Typ	Max	
$\mathrm{t}_{\mathbf{W} \text { (} \overline{\text { RESET }} \text {) }}$	Reset input "L" pulse width		2.0			$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{C}\left(\mathrm{x}_{\text {IN }}\right)}$	Main clock input cycle tıme ($\mathrm{X}_{\text {IN }}$ input)		158			ns
$t_{\text {WH(} \mathrm{X}_{\text {IN }}}$	Main clock input "H" pulse width		40			ns
	Main clock input "L" pulse width		40			ns
$\mathrm{t}_{\mathbf{C}\left(\mathrm{X}_{\mathrm{C}, \mathbb{N}}\right)}$	Sub clock input cycle time ($\mathrm{X}_{\text {cIN }}$ input)		2.0			ms
$\mathrm{t}_{\text {WH }\left(\mathrm{x}_{\text {CIN }}\right)}$	Sub clock input "H" pulse width		0.5			ms
$t_{\text {WL }}\left(\mathrm{X}_{\text {CIN }}\right)$	Sub clock input "L" pulse width	-	0.5			ms
t_{C} (CNTR)	CNTR 0_{0}, CNTR ${ }_{1}$ input cycle time		4.0			$\mu \mathrm{s}$
$t_{\text {WH(CNTR) }}$	CNTR $_{0}$, CNTR $_{1}$, input "H" pulse width		1.6			$\mu \mathrm{s}$
$\mathrm{t}_{\text {WL (CNTR) }}$	CNTR ${ }_{0}$, CNTR $_{1}$, input "L" pulse width		1.6			$\mu \mathrm{s}$
$\mathrm{t}_{\text {WH (INT) }}$	$\mathrm{INT}_{0}-\mathrm{INT}_{4}$ input " H " pulse width		80			ns
$t_{\text {WL(INT) }}$	INT ${ }_{0}$ - NST_{4} input "L" pulse width		80			ns
t_{C} (SCLK)	Serial clock input cycle time		1.0			$\mu \mathrm{s}$
$\mathrm{t}_{\text {WH (SCLK) }}$	Serial clock input clock "H" pulse width		400			ns
$t_{\text {WL (}}^{\text {SCLK }}$)	Serial clock input clock "L" pulse width		400			ns
$t_{\text {su }}$ (sclk- $\mathrm{SiN}_{\text {IN }}$)	Serial input setup time		200			ns
	Serial input hold time		200			ns

SWITCHING CHARACTERISTICS ($\mathrm{V}_{\mathrm{CC}}=4.0$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-10$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Unit
			Mın	Typ	Max	
$\mathrm{t}_{\text {WH (SCLK) }}$	Serial clock output "H" pulse width	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	$\mathrm{t}_{\mathrm{c}} / 2-160$			ns
$\mathrm{t}_{\text {WL (SCLK) }}$	Serial clock output "L" puise width	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	$\mathrm{t}_{\mathrm{c}} / 2-160$			ns
$\mathrm{t}_{\mathrm{d} \text { (} \mathrm{SCLK}_{\text {L }} \mathrm{S}_{\text {OUT }}}$	Serial output delay time				$0.2 t_{c}$	ns
$t_{\text {V(SCLK }} \mathrm{SO}_{\text {OUT }}$	Serial output hold time		0			ns
$\mathrm{t}_{\mathrm{f}}\left(\mathrm{S}_{\text {CLK }}\right)$	Serial clock output fall time	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$			40	ns
$t_{\text {r }}($ Pch-strg $)$	P-channel high-breakdown voltage output rise time (Note 1)	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{V}_{\mathrm{EE}}=\mathrm{V}_{\mathrm{CC}}-36 \mathrm{~V}$		55		ns
$\mathrm{tr}_{\text {(Pch-weak }}$)	P-channel high-breakdown voltage output rise time (Note 2)	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{V}_{\mathrm{EE}}=\mathrm{V}_{\mathrm{CC}}-36 \mathrm{~V}$		1.8		$\mu \mathrm{s}$

Note 1. When bit 0 of the high-breakdown voltage port control register (address 0038_{16}) is at " 0 "
2. When bit 0 of the high-breakdown voltage port control register (address 0038_{16}) is at " 1 "

Fig. 43 Output switching characteristics measurement circuit

Timing Chart

CNTR $_{0}$, CNTR $_{1}$

$\mathrm{INT}_{0}-\mathrm{NNT}_{4}$

RESET

XIN

$X_{\text {CIN }}$

$S_{\text {IN }}$

MITSUBISHI MICROCOMPUTERS M37450M2-XXXSP/FP,M37450M4-XXXSP/FP M37450M8-XXXSP/FP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

DESCRIPTION

The M37450M2-XXXSP/FP is a single-chip microcomputer designed with CMOS sillicon gate technology. It is housed in a 64-pin shrink plastic molded DIP or an 80-pin plastic molded QFP.
In addition to its simple instruction sets, the ROM, RAM, and I/O addresses are placed on the same memory map to enable easy programming.
It is suited for office automation equipment and control devices. The low power consumption made by the use of a CMOS process makes it especially suitable for battery powered devices requiring low power consumption. It also has a unique feature that enables it to be used as a slave microcomputer.
The differences among M37450M2-XXXSP/FP, M37450M4XXXSP/FP and M37450M8-XXXSP/FP are as shown below. The descriptions that follow describe the M37450M2XXXSP/FP (abbreviated as M37450) unless otherwise noted.

Type name	ROM size	RAM size
M37450M2-XXXSP/FP	4096 bytes	128 bytes
M37450M4-XXXSP/FP	8192 bytes	256 bytes
M37450M8-XXXSP/FP	16384 bytes	384 bytes

The number of analog input pins for the 80 -pin model (FP version) is different from the 64 -pin model (SP version). In addition, the $80-\mathrm{pin}$ model has special pins for $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$, RESET ${ }_{\text {OUT }}$, DAV $_{\text {REF }}, A D V_{\text {REF }}, A V_{C C}$ and the 64 -pin model has a special $V_{\text {REF }}$ pin.

FEATURES

- Number of basic instructions... 71 69 MELPS 740 basic instructions +2 multiply/divide instructions
- Instruction execution time
(minimum instructions at 10 MHz frequency) $\cdots \cdots \cdots 0.8 \mu \mathrm{~s}$
- Single power supply..................................... $5 \mathrm{~V} \pm 10 \%$
- Power dissipation normal operation mode
(at 10 MHz frequency) 30 mW
- Subroutine nesting 64 levels max. (M37450M2) 96 levels max.(M37450M4, M37450M8)
- Interrupt 15 events
- Master CPU bus interface 1 byte
- 16-bit timer 3
- 8-bit timer (Serial I/O use)
- Serial I/O (UART or clock synchronous)
- A-D converter (8 -bit resolution) 3 channels (DIP) 8 channels (QFP)
- D-A converter (8-bit resolution) 2 channels
- PWM output (8 bit or 16 bit)
- Programmable I/O ports
\qquad
- Input port (Port P4) $\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots$............... 3(DIP), 8(QFP)
- Output ports (Ports D-A, D-A)

APPLICATION

Slave controller for PPCs, facsimiles, and page printers.

HDD, optical disk, inverter, and industrial motor controllers. Industrial robots and machines.

M37450M2－XXXSP BLOCK DIAGRAM

M37450M2-XXXFP BLOCK DIAGRAM

yヨ1ndwoગ0yગIw sow $119-8$ diH0-3า9NIS

FUNCTIONS OF M37450M2-XXXSP/FP, M37450M4-XXXSP/FP, M37450M8-XXXSP/FP

Parameter			Functions
Number of basic instructions			71(69 MELPS 740 basic instructions+2)
Instruction execution time			$08 \mu \mathrm{~s}$ (minımum instructions, at 10MHz frequency)
Clock frequency			10 MHz (max)
Memory size	M37450M2-XXXSP/FP	ROM	4096 bytes
		RAM	128 bytes
	M37450M4-XXXSP/FP	ROM	8192 bytes
		RAM	256 bytes
	M37450M8-XXXSP/FP	ROM	16384 bytes
		RAM	384 bytes
Input/Output ports	P0-P3, P5, P6	I/O	8 -bit $\times 6$,
	P4	Input	3 -bit $\times 1$ (8-bit $\times 1$ for 80 -pin model)
	D-A	Output	2-bit $\times 1$
Serial I/O			UART or clock synchronous
Timers			16-bit timer $\times 3$, 8 -bit timer (serial I/O baud rate generator) $\times 1$
A-D converter			8 -bit $\times 3$ channels (8 channels for $80-\mathrm{pm}$ model)
D-A converter			8 -bit $\times 2$ channels
Pulse width modulator			8 -bit or 16-bit $\times 1$
Data bus buffer			1-byte input and output each
Subroutine nesting			64 -levels (max for M37450M2)
			96-levels (max for M37450M4, M37450M8)
Interrupt			6 external interrupts, 8 internal interrupts 1 software interrupt
Clock generating circuit			Built-in (ceramıc or quarts crystal oscillator)
Supply voltage			$5 \mathrm{~V} \pm 10 \%$
Power dissipation			30 mW (at 10 MHz frequency)
Input/Output characters	Input/Output voltage		5 V
	Output current		$\pm 5 \mathrm{~mA}$ (max.)
Memory expansion			Possible
Operating temperature range			-10 to $70^{\circ} \mathrm{C}$
Device structure			CMOS silicon gate
Package	M37450M2-XXXSP		64-pın shrink plastic molded DIP
	M37450M4-XXXSP		
	M37450M8-XXXSP		
	M37450M2-XXXFP		
	M37450M4-XXXFP		80-pin plastic molded QFP
	M37450M8-XXXFP		

MITSUBISHI MICROCOMPUTERS

PIN DESCRIPTION

Pin	Name	Input/ Output	Functions
$\begin{aligned} & \mathrm{V}_{\mathrm{cc}} \\ & \mathrm{v}_{\mathrm{ss}} \end{aligned}$	Supply voltage		Power supply inputs $5 \mathrm{~V} \pm 10 \%$ to V_{cc}, and 0 V to V_{ss}
CNV ${ }_{\text {Ss }}$	$\mathrm{CNV}_{\text {ss }}$		Controls the processor mode of the chip. Normally connected to V_{SS} or V_{CC}
$\overline{\text { RESET }}$	Reset input	Input	To enter the reset state, the reset input pin must be kept at a " L " for more than 8 clock cycles (under normal V_{CC} conditions). If more time is needed for the crystal oscillator to stabilize, this "L" condition should be maintained for the required time
XIN	Clock input	Input	This chip has an internal clock generating curcuit To control generating frequency, an external ceramic or a
X Out	Clock output	Output	source should be connected to the $\mathrm{X}_{\text {IN }}$ pin and the $\mathrm{X}_{\text {Out }}$ pin should be left open
ϕ	Tıming output	Output	Outputs signal consisting of oscillating frequency divided by four
SYNC	Synchronous signal output	Output	This signal is output " H " during operation code fetch and is used to control single stepping of programs
R/W	Read/Write status output	Output	This signal determines the direction of the data bus It is "H" during read and "L" during write
$\mathrm{PO}_{0}-\mathrm{PO} 0_{7}$	1/O port PO	$1 / 0$	Port PO is an 8-bit I/O port with directional registers allowing each I/O bit to be individually programmed as input or output The output structure is CMOS output The low-order bits of the address are output except in single-chip mode
$\mathrm{P} 1_{0}-\mathrm{P} 1_{7}$	I/O port P1	1/0	Port P1 is an 8-bit I/O port and has basically the same functions as port P0 The high-order bits of the address are output except in single-chip mode
$\mathrm{P} 2_{0}-\mathrm{P} 2_{7}$	1/O port P2	1/0	Port P 2 is an 8 -bit $/ / O$ port and has basically the, same functions as port PO Used as data bus except in single-chip mode
$\mathrm{P3}_{0}-\mathrm{P} 3_{7}$	I/O port P3	1/0	Port P3 is an 8-bit I/O port and has basically the same functions as port PO Serial I/O, PWM output, or event I/O function can be selected with a program
$\begin{aligned} & \mathrm{P} 4_{0}-\mathrm{P} 4_{2} \\ & \left(\mathrm{P} 4_{0}-\mathrm{P} 4_{7}\right) \end{aligned}$	Input port P4	Input	Analog input pin for the A-D converter The $64-\mathrm{pin}$ model has three pins and the $80-\mathrm{pin}$ model has eight pins They may also be used as digital input pins
$\mathrm{P5}_{0}-\mathrm{P} 57$	1/O port P5	1/0	Port P5 is an 8-bit I/O port and has basically the same functions as port PO This port functions as an 8-bit data bus for the master CPU when slave mode is selected with a program
$\mathrm{P} 6_{0}-\mathrm{P} 6_{7}$	1/O port P6	1/0	Port P 6 is an 8 -bit I/O port and has basıcally the same function as port $\mathrm{P} 0 \mathrm{Pins}^{\mathrm{P6}} 6_{3}-\mathrm{P6}_{7}$ change to a control bus for the master CPU when slave mode is selected with a program Pins $\mathrm{P} 6_{0}-\mathrm{P} 6_{2}$ may be programmed as external interrupt input pins
$D-A_{1}, \mathrm{D}-\mathrm{A}_{2}$	D-A output	Output	Analog signal from D-A converter is output
$V_{\text {REF }}$	Reference voltage input	Input	Reference voltage input pin for A-D and D-A converter This pin is for 64-pin model only
$\mathrm{ADV}_{\text {REF }}$	A-D reference voltage input	Input	Reference voltage input pin for A-D converter This pin is for 80 -pin model only
DAV VEFF	D-A reference voltage input	Input	Reference voltage input pin for D-A converter This pin is for 80-pin model only
$\mathrm{AV}_{\text {SS }}$	Analog power supply		Ground level input pin for A-D and D-A converter Same voltage as $\mathrm{V}_{\text {SS }}$ is applied
$\mathrm{AV}_{\mathrm{cc}}$	Analog power supply		Power supply input pin for A-D converter This pin is for 80 -pin model only Same voltage as $V_{C C}$ is applied In the case of the 64 -pin model, $\mathrm{AV}_{\mathrm{CC}}$ is connected to V_{CC} internally
$\overline{\mathrm{RD}}$	Read signal output	Output	Control signal output as active "L" when valid data is read from data bus This pin is for 80-pin model only
$\overline{W R}$	Write sıgnal output	Output	Control signal output as active " L " when writing data from data bus to external component This pin is for 80-pin model only
RESET ${ }_{\text {OUT }}$	Reset output	Output	Control signal output as active " H " during reset it is used as a reset output signal for peripheral components This pin is for 80 -pin model only

FUNCTIONAL DESCRIPTION

Central Processing Unit (CPU)

The M37450 microcomputers use the standard MELPS 740 instruction set. For details of instructions, refer to the MELPS 740 CPU core basic functions, or the MELPS 740 Software Manual.
Machine-resident instructions are as follows:
The FST and SLW instructions are not provided.
The MUL and DIV instructions can be used.
The WIT instruction can be used.
The STP instruction can be used.

MISRG2 Register

The MISRG2 register is allocated to address $00 \mathrm{DF} \mathrm{F}_{16}$. Bits 0 and 1 of this register are processor mode bits. This register also has a stack page selection bit.

Fig. 1 Structure of MISRG2 register

MEMORY

- Special Function Register (SFR) Area

The special function register (SFR) area contains the registers relating to functions such as I/O ports and timers.

- RAM

RAM is used for data storage as well as a stack area.

- ROM

ROM is used for storing user programs as well as the interrupt vector area.

- Interrupt Vector Area

The interrupt vector area is for storing jump destination addresses used at reset or when an interrupt is generated.

- Zero Page

Zero page addressing mode is useful because it enables access to this area with fewer instruction cycles.

- Special Page

Special page addressing mode is useful because it enables access to this area with fewer instruction cycles.

Fig. 2 Memory map

MITSUBISHI MICROCOMPUTERS

Fig. 3 SFR (Special Function Register) memory map

INTERRUPTS

Interrupts can be caused by 15 different events consisting of six external, eight internal, and one software events.
Interrupts are vectored interrupts with priorities shown in Table 1. Reset is also included in the table because its operation is similar to an interrupt.
When an interrupt is accepted, the registers are pushed interrupt inhibit flag I is set, and the program jumps to the address specified in the vector table. The interrupt request flag is cleared automatically. The reset and BRK instruction interrupt can never be inhibited. Other interrupts are disabled when the interrupt inhibit flag is set.

All interrupts except the BRK instruction interrupt have an interrupt request bit and an interrupt enable bit. The interrupt request bits are in interrupt request registers 1 and 2 and the interrupt enable bits are in interrupt control registers 1 and 2 . Figure 4 shows the structure of the interrupt request registers 1 and 2 and interrupt control registers 1 and 2.
Interrupts other than the BRK instruction interrupt and reset are accepted when the interrupt enable bit is " 1 ", interrupt request bit is " 1 ", and the interrupt inhibit bit is " 0 ". The interrupt request bit can be reset with a program, but not set. The interrupt enable bit can be set and reset with a program.
Reset is treated as a non-maskable interrupt with the highest priority. Figure 5 shows interrupts control.

Table 1. Interrupt vector address and priority.

MITSUBISHI MICROCOMPUTERS

Interrupt request register 1 (address 00FC ${ }_{16}$)

- Input buffer full interrupt request bit Output buffer empty interrupt

Fig. 4 Structure of registers related to interrupt

Fig. 5 Interrupt control

TIMER

The M37450 has three independent 16-bit internal timers as shown in Figure 6.
The timers are controlled by the timer i control register ($i=$ $1,2,3$) and MISRG1 shown in Figure 7 and 8.
The timer and the timer latch are independent of each other and a value must be written in both when setting a timer.
A write to a timer is performed in the order of T_{L} to T_{H} after setting the count enable bit to count inhibit " 0 ".
A read from a timer is performed in the order of T_{H} to T_{L}. The value of T_{L} is latched in the read timer latch at the timing when T_{H} is read. All timers are decrement counters and are started by setting the timer i count enable bit to " 1 ". When the value of the timer reaches 0000_{16}, and overflow occurs and the timer i interrupt request bit is set to "1" at the next count pulse.
During a reset or an STP instruction execution, the loworder byte of the timer 1 register is set to $F F_{16}$ and the high-order byte is set to 03_{16} Also, when an STP instruction is executed, a frequency obtained by dividing the oscillating frequency by four becomes the timer 1 input regardless of the timer 1 count source selection bit. This condition is canceled and the original count source is resumed when the timer i interrupt request bit is set to "1" or when a reset - occurs. Refer to the section on the clock generator for detalls concerning the operation of the STP instruction.
The M37450 provides seven timer modes selectable with the timer mode selection bit in the timer i control register.

Fig. 7 Structure of timer i control register

Fig. 8 Structure of MISRG1

Fig. 6 Timer block diagram

(1) 16-bit Timer Mode [000]

In this mode, an interrupt request occurs and the value of the timer latch is loaded in the timer each time the timer overflows.
The timer count source is set to $f\left(X_{I N}\right)$ divided by four regardless of the count sorce selection bit. Assuming that the timer latch is n, the frequency dividing ratio is $1 /(n+1)$.
Figure 9 shows the timer operation duruing 16-bit timer mode.

Fig. 9 16-bit timer mode operation

(2) Event Count Mode [001]

In this mode, the EVi pin input signal are counted in the direction selected by the event input polarity selection bit.
The input signal from the EVi pin is used as the count source regardless of the count source selection bit. The operation is the same as with the 16 -bit timer mode except for the difference in the count source.
Both the " H " and " L " pulse width of the EVi pin input signal must be not less than $\left(4 / \mathrm{f}\left(\mathrm{X}_{\text {IN }}\right)\right)+100 \mathrm{~ns}$.
Figure 10 shows the timer operation during event count mode.

Fig. 10 Event counter mode operation

(3) Pulse Output Mode [010]

In this mode, a 50% duty pulse is output from the EVi pin.
The count source selected with the count source selection bit is counted. When it overflows, the phase of the EVi pin output level is reversed and the value of the timer latch is loaded in the timer.
When this mode is selected, the EVi pin output level is initialized to " L ".
Figure 11 shows the timer operation during pulse output mode.

Fig. 11 Square wave output mode

(4) Pulse Period Measurement Mode [011]

This mode is used to measure the pulse period of the EVi pin input signal.
The timer counts the count source selected by the count source selection bit between the rise-to-rise or fall-to-fall interval (selected with the event input polarity selection bit in the timer i control register) of the EVi pin input signal.
At a valid edge on the EVi pin input, the 1's complement of the timer value is stored in the timer latch and the timer value is set to FFFF_{16}.
Figure 12 shows the timer operation during pulse frequency measurement mode.

Fig. 12 Pulse period measurement mode

(5) Pulse Width Measurement Mode [100]

This mode measures the pulse width while the EVi pin input signal is " H " or " L ".
Whether to measure the " H " or " L " interval is determined by the event input polarity selection bit. If this bit is " 0 ", the count source selected with the count source selection bit is counted while the input pulse is " H ". If it is " 1 ", the count source is counted while the input pulse is " L ". A 1 's complement of the timer value is stored in the timer latch for a valid edge on the EVi pin input. In addition, the timer value is set to FFFF_{16} for an edge (both rise and fall) on the EVi pin input. Figure 13 shows the timer operation during pulse width measurement mode.

Fig. 13 Pulse width measurement mode
In pulse period measurement mode [011] and pulse width measurement mode [100], an EVi interrupt request is issued at the valid edge selected by the event phase selection bit. That is, an interrupt occurs at the end of the pulse period measurement or pulse width measurement. Also, when a timer overflow occurs, the count continues from FFFF $_{16}$ without the value of the timer latch being loaded in the timer.
Write to timer latch is inhibited in these modes. Furthermore, EVi interrupt is disabled during STP instruction execution.

(6) Programmable Waveform Generation Mode [101]

In this mode, the level set in the output level latch of the timer i control register is output to the EVi pin every time the timer overflows.
The timer counts the source selected by the count source selection bit and when it overflows, the value in the timer latch is loaded in the timer.
After it overflows, the value of the output level latch and the timer latch can be modified to generate any waveform from the EVi pin.
Figure 14 shows the timer operation during programmable waveform generation mode.

Fig. 14 Programmable waveform generation mode

(7) Programmable One-shot Generation Mode [110]

This mode uses the INTi pin input signal as a trigger and counts by writing the value of the timer latch in the timer. The output level of the EVi pin goes " H " when the trigger is issued and goes " L " when the timer overflows.
The EVi pin level is initialized to " L " when this mode is selected.
The timer count souce is set to $f\left(X_{\text {IN }}\right)$ divided by four regardless of the count source selection bit.
A valid edge of the INTi pin input trigger signal is determined by the INTi phase selection bit of MISRG1 ($00 D E_{16}$). Figure 15 shows the timer operation during programmable one-shot generation mode.

Fig. 15 Programmable one-shot generation mode
When the INTi pin input signal is selected as the count source for pulse output mode [010], pulse period measurement mode [011], pulse width measurement mode [100], and programmable waveform generation mode [101], the " H " and " L " pulse width of the input signal must not be less than $\left(6 / f\left(X_{\text {IN }}\right)\right)+100$ ns.

MITSUBISHI MICROCOMPUTERS

SERIAL I/O

Sérial I/O can operate in either clock synchronous or clock asynchronous (UART) mode. An exclusive baud rate gen-
eration timer (baud rate generator) is provided for serial I/O operation. Figure 16 shows the structure of the registers used for serial I/O.

Fig. 16 Structure of registers related to serial I/O

(1) Clock Synchronous Serial I/O

Clock synchronous serial I/O is selected by setting the mode selection bit of the serial I/O control register to " 1 ". Figure 17 shows a block diagram of clock synchronous serial I/O and Figure 18 shows its operation.

With clock synchronous serial I/O, the same clock is used as the operating clock between the transmitting and receiving microcomputers. If an internal clock is used for operating clock, transmit/receive is started by writing a signal in the transmit/receive buffer register.

Fig. 17 Clock synchronous serial I/O block diagram

Fig. 18 Clock synchronous serial I/O operation

MITSUBISHI MICROCOMPUTERS

 M37450M2-XXXSP/FP,M37450M4-XXXSP/FP M37450M8-XXXSP/FP
(2) Asynchronous Serial I/O (UART)

UART is selected by setting the mode selection bit of the serial I/O control register to "0". Figure 19 shows a block diagram of UART and Figure 20 shows its operation.
With the M37450, one of eight serial data transmission formats can be selected with the UART control register as shown in Figure 16. The transmission format must be agreed upon between the transmit side and the receive side.

The transmit shift register and the receive shift register has its buffer register respectively to perform serial data transfer (same memory addresses).
Data cannot be written or read directly to/from the shift registers. Therefore, the data to be transmitted is written to a buffer register and the received data is read from a buffer register. The buffer registers can also be used to store data to be transmitted next or to receive 2-byte data consecutively.

Fig. 19 UART serial I/O block diagram

Fig. 20 UART serial I/O operation

[Serial I/O control register] SIOCON

The serial I/O control register is an 8-bit register consisting of selection bits for controlling the serial I/O function.

- Serial I/O enable bit SIOE

When this bit is set to " 1 ", serial I / O is enabled and pins $\mathrm{P3}_{4} \sim \mathrm{P} 3_{7}$ can be used as serial I/O function pins.

- Serial I/O mode selection bit SIOM

This bit is used to select the serial I/O operation mode. When this bit is " 0 ", asynchronous serial I/O (UART), which transfers data using start and stop bits, is selected. When it is " 1 ", clock synchronous serial I/O which performs transmission and receive using the same clock is selected.

- Receive enable bit RE

Receive operation is enabled when this bit is set to " 1 " and pin P_{4} becomes a serial data input pin.

- Transmission enable bit TE

Transmission operation is enabled when this bit is set to "1". Pin $\mathrm{P3}_{5}$ becomes a serial data output pin and shift data is output.

- Transmission interrupt source selection bit TIC

This bit is used to selelct events that can cause a transmission interrupt.

- $\mathbf{S}_{\text {ROY }}$ output enable bit SRDY

If this bit is set to " 1 " when clock synchronous serial I/O is selected, pin P_{7} becomes an $\overline{\mathrm{S}_{\text {RDY }}}$ signal output pin and $\overline{\mathrm{S}_{\mathrm{RDY}}}$ signal is output.
When an external clock is used during clock synchronous serial I/O, the $\overline{S_{R D Y}}$ signal is used to notify the clock sender that it can send the serial clock signal. It goes " L " when data is written in the transmit/receive buffer register and goes "H" at the first fall of the receive clock. When using the $\overline{S_{R D Y}}$ signal, the transmission enable bit must be set to "1" even when performing receive only.

- Serial I/O synchronous clock selection bit SCS

When this bit is " 1 ", pin $\mathrm{P3}_{6}$ becomes an input pin and the external clock input from the $\mathrm{S}_{\mathrm{CLK}}$ pin is selected as the serial I/O synchronous clock. When this bit is " 0 ", the baud rate generator (BRG) overflow signal is selected as the serial I/O synchronous clock. Also, when this bit is " 0 " during clock synchronous serial I/O, pin P_{6} becomes an output pin and the shift clock is output from the $\mathrm{S}_{\mathrm{CLK}}$ pin.
When clock synchronous serial $1 / O$ is selected, the baud rate generator (BRG) output signal divided by four or an external clock input is used. When UART is selected, the BRG output signal divided by sixteen or an external clock input signal divided by sixteen is used.

- BRG count source selection bit CSS

The baud rate generator is an 8-bit counter with a reload register. By setting a value n in the BRG register (address $00 E A_{16}$), the count source selected by the BRG count source selection bit is divided by $(n+1)$.

[UART control register】 UARTCON

The UART control regsiter is a 4-bit register consisting of control bits that are valid when UART is selected. The content of this register is used to set the data format for serial data transmission/receiving.

- Character length selection bit CHAS

This bit is used to select the transmission/receiving character length.

- Parity enable bit PARE

When this bit is set to " 1 ", a parity bit is added next to the most significant bit (MSB) of the transmission data and parity is checked during receive.

- Parity selection bit PARS

This bit is used to specify the type of parity to be generated during transmission and checked when data is received. The number of 1 's in the data is set to even or odd according to this bit.

- Stop bit length selection STPS

This bit is used to determine the number of stop bits to be used during transmission.

[Serial I/O status register】 SIOSTS

The serial $1 / 0$ status register is a 7-bit read only register consisting of serial 1/O operation status flags and error flags. Bits, 4 to 6 are valid only during UART mode.
All bits of this register are initialized to " 0 " at reset, and when the transmit enable bit in the serial I/O control register is set to " 1 ", bits " 0 " and " 2 " change to " 1 ".

- Transmission buffer empty flag TBE

This bit is cleared to " 0 " when transmission data is written in the transmission buffer register and set to " 1 " when that data is transferred to the transmit shift register. It is also cleared when $T E=0$.

- Receive buffer full flag RBF

When receiving serial data, data is transferred to the receive buffer register and this bit is set to "1" when the receive shift register completes receiving a data byte. This bit is cleared when the data is read. This bit is also cleared when $\mathrm{RE}=0$.

- Transmit shift register shift completion flag TSC

This bit is cleared to " 0 " when the data in the transmission buffer register is transferred to the transmit shift register and set to " 1 " when data shift completes. It is also set to " 1 " when TE=0.

- Overrun error flag OE

When continuously receiving serial data, this bit is set when the next data fill the receive shift register before the data in the receive buffer register has been read.

- Parity error flag PE

When receiving serial data with parity, this bit is set to "1" if the parity of the received data differs from the specified parity.

- Framing error flag FE

This bit is set to " 1 " when there is no stop bit when transferring data from the receive shift register to the receive buffer.

- Summing error flag SE

This bit is set when either overrun, a parity, or a framing error occurs.
Tests for these errors are performed as soon as the data is transferred from the receive shift register to the receive buffer register and at the same time the receive buffer full flag is set. The error flags (OE, PE, FE, and SE) are cleared when any data is written in the serial I/O status register. Also, all status flags including error flags are cleared when $\mathrm{SIOE}=0$.

BUS INTERFACE

The M37450 is equipped with a bus interface that is functionally similar to the MELPS 8-41 series. Its operation can be controlled with control signals from the host CPU (slave mode).
The M37450 bus interface can be connected directly to either a R/W type CPU or separate $\overline{R D}, \overline{W R}$ type CPU. Figure 21 shows a block diagram of the bus interface function. Slave mode is selected with MISRG2 (address 00DF ${ }_{16}$) bit 2 and 3 as shown in Figure 22.
An input buffer full interrpt occurs when data is received from the host CPU and an output buffer empty interrupt occurs when data is read by the host CPU.
In slave mode, ports $\mathrm{P5}_{0}-\mathrm{P} 5_{7}$ become a tri-state data bus used to transfer data, commands, and status to and from the host CPU.
Furthermore, ports $\mathrm{P6}_{4}-\mathrm{P} 6_{7}$ become host CPU control signal input pins and $\mathrm{P6}_{3}$ becomes a slave status output pin.

[Data bus buffer status register】 DBBSTS

This is an 8 -bit register. Bits 0,1 , and 3 are read-only bits indicating the status of the data bus buffer. Bits $2,4,5,6$, and 7 are read/write enabled user-definable flags that can be set with a .program. The host CPU can only read these flags by setting the AO pin to "H".

Fig. 22 Structure of bus interface relation registers

Fig. 21 Bus interface circuit diagram

－Output buffer full flag OBF

This flag is set when data is written in the output data bus buffer and cleared when the host CPU reads the data in the output data bus buffer．It is initialized to＂1＂at reset and cleared to＂ 0 ＂when the slave mode is selected with the bus interface enable bit set．
－Input buffer full flag IBF
This flag is set when the host CPU writes data in the input data bus buffer and cleared when the slave CPU reads the data in the input data bus buffer．This bit is initialized to＂ 0 ＂ at reset．

AO Flag

The level of the A0 pin is latched when the host CPU writes data in the input data bus buffer．

【Input data bus buffer】 DBBIN

Data on the data bus is latched in DBBIN when there is a write request from the host CPU．The data in DBBIN can be read from the data bus buffer register（SFR address $00 \mathrm{E} 4_{16}$ ）．

［Output data bus buffer】 DBBOUT

Data is written in DBBOUT by writing data in data bus buf－ fer register（SFR address $00 \mathrm{E} 4_{16}$ ）．The data in DBBOUT is output to the data bus（P5）when the host CPU issues a read request with setting the AO pin to＂L＂．

Table 2．Control I／O pin functions when bus interface function is selected

Pın	Name	Bus interface mode bit	Input／ Output	Function
$\mathrm{P6}_{3}$	$\overline{P_{\text {RDr }}}$	－	Output	Status output The NOR of OBF and IBF is output
$\mathrm{P6}_{4}$	AO	－	Input	Address input Used to select between DBBSTS and DBBOUT during host CPU read Also used to identify commands and data during write
Pb_{5}	$\overline{\mathrm{CS}}$	－	Input	Chip select input Used to select the data bus buffer Select when＂L＂
$\mathrm{P6} 6$	$\overline{\mathrm{R}}$	0	Input	Timing signal used by the host CPU to read data from the data bus buffer
	E	1	Input	Inputs a timing signal E or inverse of ϕ
P 67	W	0	Input	Timing signal used by the host CPU to write data to the data bus buffer
	R／W	1	Input	Input R / \bar{W} signal used to control the data transfer direction When this signal is＂ L ＂， data bus buffer write is synchronized with the E signal When it is＂ H ＂，data bus buffer read is synchronized with the E signal

PWM

The PWM generator has two program-selectable modes; the high-speed mode (8-bit resolution) and the highprecision mode (16-bit resolution). Figure 23 shows a block diagram.
The register MISRG2 (address 00DF ${ }_{16}$) shown in Figure 22 is used to enable/disable the PWM and change its mode. When the PWM enable bit is set, the PWM timer starts from its initial state.
As shown in Figure 24, the output frequency is
$(2 X 255) / f\left(X_{\text {IN }}\right) \quad 51 \mu \mathrm{~s}$ at $\mathrm{f}\left(\mathrm{X}_{\text {IN }}\right)=10 \mathrm{MHz}$
in high-speed mode and
$(2 X 65535) / f\left(X_{\text {IN }}\right) \quad 13.107 \mathrm{~ms}$ at $\mathrm{f}\left(\mathrm{X}_{\text {IN }}\right)=10 \mathrm{MHz}$
in high-precision mode.
The " H " width of the output pulse is determined by setting a value only in the $P W M_{L}$ register for high-speed mode and in both the $P W M_{H}$ and $P W M_{L}$ in this order for highprecision mode.
If the value set in the PWM register is m, the " H " width of the output pulse is
(PWM period $\times \mathrm{m}$)/255 for high-speed mode and
(PWM period $\times \mathrm{m}$)/65535 for high-precision mode.

Fig. 24 PWM output

Fig. 23 PWM generator block diagram

A-D CONVERTER

An A-D converter is an 8-bit successive approximation method. Figure 26 shows a block diagram of the A-D converter.
The 64-pin model has three analog voltage input pins, the 80 -pin model has eight.
A-D conversion is started by a write operation to the analog input pin selection bit of the A-D control register shown in Figure 25 and by selecting the analog voltage input pin. The A-D interrupt request bit in the interrupt request register 2 is set when A-D conversion completes. The result of A-D conversion is stored in the A-D register.
The contents of the A-D register must not be read during A-D conversion and $f\left(X_{I N}\right)$ must be no less than 1 MHz during A-D conversion.

Note : Do not select pins other than $\mathrm{AN}_{0}-\mathrm{AN}_{2}$ with the 64-pin model
Fig. 25 Structure of A-D control register

Fig. 26 A-D converter block diagram

D-A CONVERTER

Two 8-bit resolution D-A converter channels are provided. Figure 27 shows a block diagram of the D-A converter.
D-A conversion is performed by setting a value in the $D-A i$ register (addresses $00 E 0_{16}$ and $00 E 1_{16}$). The result of $D-A$ conversion is output from the D-Ai output pin.
The output analog voltage $V_{D A}$ is determined by the value n (decimal) set in the D-Ai register as follows:
$\mathrm{V}_{\mathrm{DA}}=\mathrm{DAV}_{\mathrm{REF}}{ }^{*} \times \mathrm{n} / 256$
$* V_{\text {REF }}$ for 64-pin model.

Fig. 27 D-A converter block diagram

RESET CIRCUIT

The M37450 is reset according to the sequence shown in Figure 30. It starts the program from the address formed by using the content of address FFFF_{16} as the high order address and the content of the address FFFE_{16} as the low order address, when the $\overline{\operatorname{RESET}}$ pin is held at " L " level for no less than 8 clock cycles while the power voltage is $5 \mathrm{~V} \pm$

	address							
	Port P0 directional register Port P1 directional register	00D1 16	00_{16}					
		$00 \mathrm{D} 3_{16}$	00_{16}					
	Port P2 directional register	00D5 ${ }_{16}$	00_{16}					
	Port P3 directional register	00D7 ${ }_{16}$	0016					
	Port P4 directional register	$00 \mathrm{DB}_{16}$	00_{16}					
	Port P5 directional register	$00 \mathrm{DD}{ }_{16}$	00_{16}					
	MISRG1	$00 D E_{16}$	0	0		0	0	0
	MISRG2	00DF 16	0016					
	D-A1 register	$00 E 0{ }_{16}$	00_{16}					
	D-A2 register	$00 \mathrm{E1} 1_{16}$	00_{16}					
	Data bus buffer status register	00E5 ${ }_{16}$					0	1
(12) Serial 1/O status register $\quad 00 \mathrm{E} 7_{16} \quad$								
	Serial I/O control register	$00 \mathrm{E} 8_{16}$	00_{16}					
	UART control register	00E916				0	0	0
	Timer 1 control register	$00 E D_{16}$		0		0	0	0
(16) Timer 2 control register $00 \mathrm{EE}_{16}$				0		0	0	0
(17) Timer 3 control register				0		0	0	0
(18) Timer 1 register (low order)			FF_{16}					
(19) Timer 2 register (high order) 00F1 1_{16}			03_{16}					
	Interrupt request register 1	00 FC 16	00_{16}					
(21) Interrupt request register $2 \quad 00 F D_{16} \quad \square$								
(22) Interrupt control register $1 \quad 00 \mathrm{FE} \mathrm{l}_{16}$			00_{16}					
	Interrupt control register 2	$00 \mathrm{FF}_{16}$		0		0	0	0
(24) Processor status register						1		
(25) Program counter		$\left(\mathrm{PC}_{\mathrm{H}}\right)$	Contents of address FFFF 16					
		(PC_{L})	Contents of address FFFE ${ }_{16}$					
Note. Since the contents of both registers other than those listed above (including timer 1 , timer 2 , timer 3 , and the serial I/O register) and the RAM are undefined at reset, it is necessary to set initial values								

Fig. 28 Internal state of microcomputer at reset
10% and the crystal oscillator oscillation is stable and then returned to " H " level. The internal initializations following reset are shown in Figure 28.
An example of the reset circuit is shown in Figure 29. The reset input voltage must be kept below 0.6 V until the supply voltage surpasses 4.5 V .

Fig. 29 Example of reset circuit

Fig. 30 Timing diagram at reset

I/O PORTS

(1) Port PO

Port PO is an 8-bit I/O port with CMOS output.
As shown in the memory map (Figure 2), port P0 can be accessed at zero page memory address 00D0 0_{16}.
Port P0 has a directional register (address 00D1 ${ }_{16}$) which can be used to program each individual bit as input (" 0 ") or as output (" 1 "). If the pins are programmed as output, the output data is latched to the port register and then output. When data is read from the output port the output pin level is not read, only the latched data in the port register is read. This allows a previously ouptut value to be read correctly even though the output voltage level is shifted up or down. Pins set as input are in the floating state and the signal levels can thus be read. When data is written into the input port, the data is latched only to the port latch and the pin still remains in the floating state.
Depending on the contents of the processor status register (bit 0 and bit 1 at address $00 D F_{16}$), three different modes can be selected; single-chip mode, memory expanding mode and microprocessor mode.
In these modes it functions as address $\left(A_{7}-A_{0}\right)$ output port (excluding single-chip mode). For more details, see the processor mode information.
(2) Port P1

In single-chip mode, port P1 has the same function as port PO. In other modes, it functions as address $\left(A_{15}\right.$ A_{8}) output port.
Refer to the section on processor modes for details.
(3) Port P2

In single-chip mode, port P2 has the same function as port PO. In other modes, it functions as data ($D_{0}-D_{7}$) input/output port. Refer to the section on processor modes for details.
(4) Port P3

Port P3 is an 8-bit I/O port with function similar to port P0. All pins have program selectable dual functions. When a serial I/O function is selected, the input and output from pins $\mathrm{P3}_{4}-\mathrm{P} 3_{7}$ are determined by the contents of the serial I/O registers.
This port is unaffected by the processor mode.
(5) Port P4

This is an input-only port and may be used as an analog voltage input port. The number of ports is different for the $64-$ pin model and $80-$ pin model. The $64-$ pin model has three ports and the 80 -pin model has eight ports.
(6) Port P5

This is an 8-bit I/O port with function similar to port P0. When slave mode is selected with a program, all ports change to the data bus for the master CPU. In this case, port input/output is unaffected by the directional register.

This port is unaffected by the processor mode register.
(7) Port P6

This is an 8-bit input/output port with function similar to port PO.
When slave mode is selected with a program, ports $\mathrm{P6}_{3}-\mathrm{P} 6_{7}$ change to the control bus for the bus interface function. In this case, port input/output is unaffected by the directional register.
Ports $\mathrm{Pb}_{0}-\mathrm{P6}_{2}$ are shared with the external interrupt input pins ($I N T_{1}-I N T_{3}$). The INT interrupt constantly monitors the status of this port and generates an interrupt at a valide edge. Therefore, if the INT interrupt is not used, it must be disabled and if it is used, this port must be set to input.
(8) Port D-A

Port D-A consists of two analog voltage output pins. Any analog voltage can be generated by setting a value in the D-A register.
(9) ϕ pin

The internal system clock (1/4 the frequency of the oscillator connected between the $X_{I N}$ and $X_{\text {OUT }}$ pins) is output from this pin. If an STP or WIT instruction is executed, output stops after going " H ".
(10) SYNC pin

This pin outputs a signal that is " H " during one cycle of the ϕ during operation code fetch.
(11) R/W pin

This is a control signal output pin that indicates the local bus direction in memory expanding and microprocessor modes.
(12) $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$ pins

These are local bus write and read timing signal output pins for memory expanding and microprocessor modes. A signal equivalent to the signal otuput from the R/ \bar{W} separated by the ϕ signal is output.
These pins are used exclusively by the $80-$ pin model.
(13) RESET out $^{\text {pin }}$

This pin goes "H" while the microprocessor is being reset. It can be used as a reset signal output pin for peripheral devices.
This pin is used exclusively by the 80-pin model.

Fig. 31 Ports P0-P6 block diagram (single-chip mode) and output only pin output format (1)

$P 3_{7}$

$P 5_{0}-\mathrm{P5}_{7}$

(1) $\mathrm{P5}_{0}$ does not have a status register and OBF flag is set (2) $\mathrm{P} 5{ }_{1}$ does not have a status register and IBF flag is set (3) $\mathrm{P5}_{3}$ does not have a status register and A0 flag is set
Pb_{3}

Port P4

$\phi, \mathrm{R} / \overline{\mathrm{W}}$, SYNC, $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$, RESET ${ }_{\text {out }}$

$P 6_{0}-P 6_{2}$

DBB control input $\mathrm{P6}_{4} \cdots \cdots \cdot \mathrm{AO}$ input
$\mathrm{P}_{5} \cdots \cdots \cdot \overline{\mathrm{CS}}$ input
$\mathrm{P6}_{6} \cdots \cdots \cdot \overline{\mathrm{R}} / \mathrm{E}$ input
$\mathrm{P}_{7} \cdots \cdots \cdot \overline{\mathrm{~W}} / \mathrm{R} / \overline{\mathrm{W}}$ input

Fig. 32 Ports P0-P6 block diagram (single-chip mode) and output only pin output format (2)

PROCESSOR MODE

By changing the contents of the processor mode bit (bit 0 and 1 at address $00 D F_{16}$), three different operation modes can be selected; single-chip mode, memory expanding mode, and microprocessor mode
In the memory expanding mode and the microprocessor mode, ports P0-P2 can be used as address, and data input/output pins.
Figure 34 shows the functions of ports P0-P2.
The memory map for the single-chip mode is illustrated in Figure 1 and for other modes, in Figure 33.
By connecting $\mathrm{CNV}_{\mathrm{Ss}}$ to V_{Ss}, all three modes can be selected through software by changing the processor mode bits. Connecting $C N V_{S S}$ to $V_{C C}$ automatically forces the microcomputer into microprocessor mode.
The three different modes are explained as follows:

(1) Single-chip mode [00]

The microcomputer will automatically be in the singlechip mode when started from reset, if $\mathrm{CNV}_{S S}$ is connected to $\mathrm{V}_{\text {ss }}$. Ports P0-P2 will work as original I/.O ports
(2) Memory expanding mode [01]

The microcomputer will be placed in the memory expanding mode when $\mathrm{CNV}_{\mathrm{SS}}$ is connected to V_{ss} and the processor mode bits are set to " 01 ". This mode is used to add external memory when the internal memory is not sufficient.
In this mode, port P0 and port P1 are as a system address bus and the original I/O pin function is lost.
Port P2 becomes the data bus of $D_{7}-D_{0}$ (including instruction code) and loses its normal I/O functions.
(3) Microprocessor mode [10]

After connecting $C N V_{S S}$ to V_{CC} and initiating a reset or connecting $C N V_{S S}$ to $V_{\text {ss }}$ and the processor mode bits are set to " 10 ", the microcomputer will automatically default to this mode. In this mode, the internal ROM is inhibited so the external memory is required Other functions are same as the memory expanding mode. The relationship between the input level of $C N V_{\text {ss }}$ and the processor mode is shown in Table 3.

Fig. 33 External memory area in processor mode (M37450M2)

Fig. 34 Processor mode and function of port P0-P2

Table 3. Relationship between $\mathrm{CNV}_{\text {ss }}$ pin input level and processor mode

$\mathrm{CNV}_{S S}$	Mode	Explanation
V_{SS}	- Single-chip mode - Memory expanding mode • Microprocessor mode	The single-chip mode is set by the reset All modes can be selected by changing the processor mode bit with the program
V_{CC}	- Microprocessor mode	The microprocessor mode is set by the reset

CLOCK GENERATING CIRCUIT

The built-in clock generating circuits are shown in Figure 37.

When an STP instruction is executed, the internal clock ϕ stops oscillating at "H" level At the same time, FF_{16} is set in the low-order byte of timer $1,03_{16}$ is set in the high-order byte, and timer 1 count source is forced to $f\left(X_{\text {IN }}\right)$ divided by four. This connection is cleared when timer 1 overflows or the reset is in, as discussed in the timer section.
The oscillator is restarted when an interrupt is accepted However, the clock ϕ keeps its " H " level until timer 1 overflows.
This is because the oscillator needs a set-up period if a ceramic or a quartz crystal oscillator is used.
When the WIT instruction is executed, the clock ϕ stops in the "H" level but the oscillator continues running. This wait state is cleared when an interrupt is accepted Since the oscillation does not stop, the next instructions are executed at once.
To return from the stop or the wait status, the interrupt enable bit must be set to " 1 " before executing STP or WIT instruction. Especially, to return from the stop status, the timer 1 count enable bit must be set to " 1 " and the timer 1 interrupt enable bit must be set to " 0 " before executing STP instruction.
With the M37450, the MISRG2 bit 6 shown in Figure 22 can be used to double the bus cycle. However, the timer, UART, and PWM operations are unafffected. This facılitates
accessing of slow peripheral LSIs when external memory and $1 / O$ are extended in memory expanding mode or microprocessor mode Note that this bit also affects the bus cycle in single-chip mode.
The circuit example using a ceramic oscillator (or a quartz crystal oscillator) is shown in Figure 35.
The constant capacitance will differ depending on which oscillator is used, and should be set to the manufactures suggested value.
The example of external clock usage is shown in Figure 36. $X_{\text {IN }}$ is the input, and $X_{\text {OUT }}$ is open.

Fig. 35 External ceramic resonator circuit

Fig. 36 External clock input circuit

Fig. 37 Block diagram of clock generating circuit

PROGRAMMING NOTES

(1) Processor status register

1. Except for the interrupt inhibit flag (I) being set to " 1 ", the content of the processor status register (PS) is unpredictable after a reset. Therefore, flags affecting program execution must be initialized.
The T flag and D flag which affect arithmetic operations, must always be initialized.
2. A NOP instruction must be used after the execution of a PLP instruction.
(2) Interrupts

Even though the BBC and BBS instructions are executed just after the interrupt request bits are modified (by the program), those instructions are only valid for the contents before the modification. Also, at least one instruction cycle must be used (such as a NOP) between the modification of the interrupt request bits and the execution of the BBC and BBS instructions.
(3) Decimal operations

1. Decimal operations are performed by setting the decimal mode flag (D) and executing the ADC or SBC instruction. In this case, there must be at least one instruction following the ADC or SBC instruction before executing the SEC, CLC, or CLD instruction.
2. The N (Negative), V (Overflow), and Z (Zero) flags are ignored during decimal mode.
(4) Timers
3. The frequency dividing ratio when n (0 to 65535) is written in the timer latch is $1 /(n+1)$.
4. When directly writing a value in the timer, set the count enable bit to count disable (0) and write in the low-order byte first and then in the high-order byte.
5. The timer value must be read from the high-order byte first.
(5) Serial I/O

In clock synchronous serial I/O mode, if the receiver is to output an $\overline{\mathrm{S}_{\mathrm{RDY}}}$ using an external clock, the receive enable bit, $\overline{\mathrm{S}_{\mathrm{ROY}}}$ output enable bit, and transmission enable bit must be set to " 1 ".
(6) A-D conversion

The comparator consists of coupling capacitors that lose their charge when the clock frequency is low. Therefore, $\mathrm{f}\left(\mathrm{X}_{\mathrm{IN}}\right)$ must be no less than 1 MHz during A-D conversion. (If the bus cycle control bit is " 1 ", the bus cycle is doubled and the A-D conversion time is also doubled, therefore, $f\left(X_{I N}\right)$ must not be less than 2 MHz .) Also, the STP and WIT instructions must not be executed during A-D conversion.
(7) STP instruciton

The STP instruction must be executed after setting the timer 1 count enable bit (bit 4 at address $00 D E_{16}$) to enable (" 1 ").
(8) Multiply/Divide instructions

1. The MUL and DIV instructions are not affected by the T and D flags.
2. The contents of the processor status register are unaffected by multiply or divide instructions.

DATA REQUIRED FOR MASK ORDERING

Please send the following data for mask orders.

- mask ROM order confirmation form
- mark specification form
- ROM data…..EPROM 3 sets

MITSUBISHI MICROCOMPUTERS M37450M2-XXXSP/FP,M37450M4-XXXSP/FP M37450M8-XXXSP/FP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratıngs	Unit
V_{cc}	Supply voltage	With respect to V_{Ss} Output transistors are at "off" state	-0.3 to 7	V
V_{1}	Input voltage $\mathrm{X}_{\text {IN }}$, $\overline{\mathrm{RESET}}$		-0.3 to 7	V
V_{1}	Input voltage $\mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P1}_{0}-\mathrm{P1}_{7}, \mathrm{P2}_{0}-\mathrm{P}_{7}$, $\mathrm{P}_{3}-\mathrm{P3}_{7}, \mathrm{P4}_{0}-\mathrm{P}_{7}, \mathrm{P}_{0}-\mathrm{P} 5_{7}$, $\mathrm{P}_{0}-\mathrm{P} 6_{7}, \mathrm{ADV}_{\text {REF }}, \mathrm{DAV}_{\text {REF }}$, $\mathrm{V}_{\text {REF }}, \mathrm{AV}_{\mathrm{CC}}$		-0.3 to $\mathrm{V}_{\mathrm{cc}}+0.3$	V
V_{1}	Input voltage $\mathrm{CNV}_{\text {SS }}$		-0.3 to 13	V
V_{0}	$\begin{aligned} & \text { Output voltage } \mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P1}_{0}-\mathrm{P} 1_{7}, \mathrm{P}_{0}-\mathrm{P} 2_{7}, \\ & \mathrm{P} 3_{0}-\mathrm{P} 3_{7}, \mathrm{P} 5_{0}-\mathrm{P} 5_{7}, \mathrm{P} 6_{0}-\mathrm{P} 6_{7}, \mathrm{X}_{\text {OUT },} \phi \\ & \mathrm{R} / \overline{\mathrm{W}}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \mathrm{SYNC}, \mathrm{RESET} \end{aligned}$		-0.3 to $\mathrm{V}_{\mathrm{CC}}+0.3$	V
$\mathrm{Pd}_{\text {d }}$	Power dissıpatıon	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$	1000(Note 1)	mW
Topr	Operating temperature		-10 to 70	${ }^{\circ} \mathrm{C}$
Tstg	Storage temperature		-40 to 125	${ }^{\circ} \mathrm{C}$

Note 1: 500 mW in case of the flat package

RECOMMENDED OPERATING CONDITIONS

($\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{Ta}=-10$ to $70^{\circ} \mathrm{C}$ unless otherwise noted)

Symbol	Parameter	Limits			Unit
		Min	Typ	Max	
V_{cc}	Supply voltage	4.5	5	5.5	V
$\mathrm{V}_{\text {Ss }}$	Supply voltage		0		V
$\mathrm{V}_{\text {IH }}$	" H " input voltage $\overline{\mathrm{RESET}}$, $\mathrm{X}_{\text {IN }}, \mathrm{CNV}_{\text {Ss }}$ (Note 1)	$0.8 \mathrm{~V}_{\mathrm{cc}}$		V_{CC}	V
$\mathrm{V}_{1 \mathrm{H}}$	$\begin{aligned} \text { "H" input voltage } & \mathrm{P}_{0}-\mathrm{PO}_{7}, \mathrm{P1}_{0}-\mathrm{P} 1_{7}, \mathrm{P}_{0}-\mathrm{P} 2_{7}, \\ & \mathrm{P}_{0}-\mathrm{P}_{7}, \mathrm{P}_{0}-\mathrm{P} 4_{7}, \mathrm{P5}_{0}-\mathrm{P} 5_{7}, \\ & \mathrm{P}_{0}-\mathrm{P} 6_{7} \\ & \text { (expect Note 1) } \end{aligned}$	2.0		V_{cc}	V
$\mathrm{V}_{\text {IL }}$	"L" input voltage $\mathrm{CNV}_{\text {SS }}$ (Note 1)	0		0. $2 \mathrm{~V}_{\mathrm{CC}}$	V
$\mathrm{V}_{\text {IL }}$	$\begin{aligned} \text { "L" input voltage } & \mathrm{P}_{0}-\mathrm{PO}_{7}, \mathrm{P1}_{0}-\mathrm{P} 1_{7}, \\ & \mathrm{P}_{0}-\mathrm{P} 2_{7}, \\ & \mathrm{P}_{0}-\mathrm{P3}_{7}, \mathrm{P4}_{0}-\mathrm{P} 4_{7}, \mathrm{P5}_{0}-\mathrm{P} 5_{7}, \\ & \mathrm{P}_{0}-\mathrm{P} 6_{7} \\ & \text { (expect Note 1) } \end{aligned}$	0		0.8	V
$\mathrm{V}_{\text {IL }}$	"L" input voltage $\overline{\text { RESET }}$	0		$0.12 \mathrm{~V}_{\mathrm{cc}}$	V
$V_{\text {IL }}$	"L" input voltage $\mathrm{X}_{\text {IN }}$	0		$0.16 \mathrm{~V}_{\mathrm{cc}}$	V
lol(peak)	$\begin{aligned} & \text { "L" peak output current } \begin{aligned} & \mathrm{PO}_{0}-\mathrm{P} 0_{7}, \\ & \mathrm{P} 1_{0}-\mathrm{P} 1_{7}, \\ & \mathrm{P}_{0}-\mathrm{P} 2_{7}, \\ & \mathrm{P} 5_{0}-\mathrm{P} 5_{7}- \mathrm{P} 3_{7}, \\ & \mathrm{P}_{0}-\mathrm{P} 6_{7} \end{aligned} \\ & \hline \end{aligned}$			10	mA
lol(avg)				5	mA
$\mathrm{I}_{\text {OH(peak) }}$	$\begin{aligned} & \text { "H" peak output current } \mathrm{PO}_{0}-\mathrm{PO} 0_{7}, \\ & \mathrm{P1}_{0}-\mathrm{P} 1_{7}, \\ & \mathrm{P2}_{0}-\mathrm{P} 2_{7}, \\ & \mathrm{P} 5_{0}-\mathrm{P} 3_{7}, \\ & \hline \end{aligned}$			-10	mA
ІОН(avg)				-5	mA
$f\left(X_{\text {IN }}\right)$	Internal clock oscillating frequency	1		10	MHz

Note 1 : Ports operating as special function pins $I N T_{1}-I N T_{3}\left(P 6_{0}-P 6_{2}\right), E V_{1}-E V_{3}\left(P 3_{0}-P 3_{2}\right), R_{X} D\left(P 3_{4}\right)$,

$$
\mathrm{S}_{\mathrm{CLK}}\left(\mathrm{P}_{6}\right)
$$

$2: \mathrm{I}_{\mathrm{OL}(\mathrm{avg})}$ and $\mathrm{I}_{\mathrm{OH}(\mathrm{avg})}$ are the average current in 100 ms
3 : The total of lol of Port P0, P1 and P2 should be 40 mA (max.)
The total of I_{OL} of Port P3, P5, P6, R/W SYNC, RESET ${ }_{\text {OUt }}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}$ and ϕ should be 40 mA (max)
The total of I_{OH} of Port P0, P1, and P2 should be 40 mA (max)
The total of $\mathrm{I}_{\text {OH }}$ of Port P3, P5, P6, R/W, SYNC, RESET $\overline{\mathrm{OUT}}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}$, and ϕ should be 40 mA (max).

MITSUBISHI MICROCOMPUTERS

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V} \pm 10 \%, \mathrm{v}_{\mathrm{Ss}}=0 \mathrm{v}, \mathrm{T}_{\mathrm{a}}=-10\right.$ to $\left.70^{\circ} \mathrm{C}, \mathrm{f}\left(\mathrm{X}_{\mathrm{IN}}\right)=10 \mathrm{MHz}\right)$

Symbol	Parameter	Test conditions	Limits			Unit
			Min	Typ	Max	
V_{OH}	"H" output voltage $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \mathrm{R} / \overline{\mathrm{W}}, \mathrm{SYNC}, \mathrm{RESET} \mathrm{OUT}$, ϕ	$\mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}-1$			V
$\mathrm{V}_{\text {OH }}$	"H" output voltage $\mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P1}_{0}-\mathrm{P} 1_{7}, \mathrm{P}_{0}-\mathrm{P} 2_{7}$, $\mathrm{P3}_{0}-\mathrm{P3}_{7}, \mathrm{P5}_{0}-\mathrm{P5}_{7}, \mathrm{P6}_{0}-\mathrm{P}_{7}$	$\mathrm{IOH}_{\mathrm{OH}}=-5 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{Cc}}-1$			V
V_{OL}	"L" output voltage $\mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P1}_{0}-\mathrm{P} 1_{7}, \mathrm{P}_{0}-\mathrm{P}_{7}$, $P 3_{0}-\mathrm{P3}_{7}, \mathrm{P5}_{0}-\mathrm{P} 5_{7}, \mathrm{P} 6_{0}-\mathrm{P} 6_{7}$, $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \mathrm{R} / \overline{\mathrm{W}}$, SYNC, RESETOUT,	$\mathrm{IOL}=2 \mathrm{~mA}$			0.45	V
V_{OL}		$\mathrm{loL}_{\text {O }}=5 \mathrm{~mA}$			1	V
$\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\text {T- }}$	```Hysteresis INT I- INT (}\mp@subsup{\textrm{P6}}{0}{0}-\mp@subsup{\textrm{P3}}{2}{}),\mp@subsup{\textrm{EV}}{1}{}-\mp@subsup{\textrm{EV}}{3}{}(\mp@subsup{\textrm{P3}}{0}{}-\textrm{P3}\mp@subsup{3}{2}{}) RxD(P34), SCLK```	Function input level	0.3		1	V
$\mathrm{V}_{T+}-\mathrm{V}_{T-}$	Hysteresis RESET				0.7	V
$\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\mathrm{T}-}$	Hysteresis XIN		0.1		0.5	V
IIL		$\mathrm{V}_{1}=\mathrm{v}_{\text {ss }}$	-5		5	$\mu \mathrm{A}$
I_{H}		$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{cc}}$	-5		5	$\mu \mathrm{A}$
$V_{\text {RAM }}$	RAM retention voltage	At stop mode	2			V
Icc	Supply current	$f\left(X_{\text {IN }}\right)=10 \mathrm{MHz}$ At system operation		6	10	mA
		At stop mode (Note 1)		1	10	$\mu \mathrm{A}$

Note 1 : The termınals $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \mathrm{SYNC}, \mathrm{R} / \overline{\mathrm{W}}$, RESET $_{\text {OUt }}, \phi, \mathrm{D}-\mathrm{A}_{1}$ and $\mathrm{D}-\mathrm{A}_{2}$ are all open The other ports, which are in the input mode, are connected to $\mathrm{V}_{\mathrm{SS}} \mathrm{A}-\mathrm{D}$ converter is in the $\mathrm{A}-\mathrm{D}$ completion state The current through $\mathrm{ADV}_{\text {REF }}$ and $\mathrm{DAV}_{\text {REF }}$ is not included. (Fig 41)

A-D CONVERTER CHARACTERISTICS

$\left(V_{C C}=A V_{C C}=5 \mathrm{~V}, V_{S S}=A V_{S S}=0 V, T_{a}=25^{\circ} \mathrm{C}, f\left(X_{\text {IN }}\right)=10 \mathrm{MHz}\right.$ unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Unit
			Min	Typ	Max	
-	Resolution				8	Bits
-	Absolute accuracy	$\mathrm{V}_{\mathrm{CC}}=\mathrm{AV}_{\mathrm{CC}}=A D V_{\mathrm{REF}}=5.12 \mathrm{~V}$		± 1.5	± 3	LSB
$\mathrm{t}_{\text {CONV }}$	Conversion time				49	$\mathrm{t}_{\mathrm{c}(\phi)}$
$V_{\text {IA }}$	Analog input voltage		$\mathrm{AV}_{\text {SS }}$		$\mathrm{AV}_{\mathrm{CC}}$	V
$\mathrm{V}_{\text {ADVREF }}$	Reference input voltage		2		V_{CC}	V
R ${ }_{\text {LADDER }}$	Ladder resistance value	$\mathrm{ADV}_{\text {REF }}=5 \mathrm{~V}$	2	7.5	10	$\mathrm{k} \Omega$
liadvref	Reference input current	$\mathrm{ADV}_{\mathrm{REF}}=5 \mathrm{~V}$	0.5	0.7	2.5	mA
$\mathrm{V}_{\text {AVCC }}$	Analog power supply input voltage			V_{cc}		V
$\mathrm{V}_{\text {AVSS }}$	Analog power supply input voltage			0		V

D-A CONVERTER CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{cc}}=5 \mathrm{v}, \mathrm{V}_{\mathrm{ss}}=\mathrm{A} \mathrm{V}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Unit
			Min	Typ	Max	
-	Resolution				8	Bits
-	Full scale deviation	$\mathrm{V}_{\mathrm{CC}}=\mathrm{DAV}_{\text {REF }}=5 \mathrm{~V}$			1.0	\%
$\mathrm{t}_{\text {su }}$	Set time				3	μs
R_{O}	Output resistance		1	2	4	$\mathrm{k} \Omega$
$\mathrm{V}_{\text {AVSS }}$	Analog power supply input voltage			0		V
$\mathrm{V}_{\text {davref }}$	Reference input voltage		4		V_{CC}	V
I Davref	Reference power input current (Each pın)		0	2.5	5	mA

TIMING REQUIREMENTS

Port/single-chip mode ($\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-10$ to 70°, unless otherwise noted)

Symbol	Parameter	Test condition	Limits			Unit
			Mın.	Typ	Max	
$t_{\text {SU }}\left(\right.$ POD- ${ }^{\text {d }}$)	Port P0 input setup time	Fig 38	200			ns
$t_{\text {su }}(p+D-\phi)$	Port P1 input setup time		200			ns
$t_{\text {SU }}$ (P2D- ${ }^{\text {d }}$)	Port P2 input setup time		200			ns
$t_{\text {SU }}(\mathrm{P} 3 \mathrm{D}-\phi$)	Port P3 input setup time		200			ns
$t_{\text {Su }}(\mathrm{P} 4 \mathrm{D}-\phi$)	Port P4 input setup time		200			ns
$t_{\text {SU }}$ (P5D- ${ }^{\text {d }}$)	Port P5 input setup tıme		200			ns
$t_{\text {SU }}(P 6 D-\phi)$	Port P6 input setup time		200			ns
	Port P0 input hold time		40			ns
th(ϕ-P1D)	Port P1 input hold time		40			ns
th(ϕ-P2D)	Port P2 input hold time		40			ns
$\mathrm{th}^{(\phi-P 3 D}$)	Port P3 input hold time		40			ns
th(ϕ-P4D)	Port P4 input hold time		40			ns
th(ϕ-P5D $)$	Port P5 input hold time		40			ns
	Port P6 input hold time		40			ns
$t_{C}\left(X_{\text {IN }}\right)$	External clock input cycle tıme		100		1000	ns
$t_{w}\left(X_{\text {IN }} L\right.$)	External clock input "L" pulse width		30			ns
$t_{w}\left(X^{\text {IN }} \mathrm{H}\right)$	External clock input "H" pulse width		30			ns
$\operatorname{tr}_{\mathbf{r}}\left(X_{\text {IN }}\right)$	External clock risıng edge time				20	ns
$t_{f}\left(X_{\text {IN }}\right)$	External clock falling edge tıme				20	ns

Master CPU bus interface timing ($\overline{\mathbf{R}}$ and $\overline{\mathbf{W}}$ separation type mode)
($\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-10$ to $70^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test condition	Limits			Unit
			Min	Typ	Max	
$t_{\text {su }}$ (cs-R $)$	$\overline{\mathrm{CS}}$ setup time	Fig 39	0			ns
$t_{\text {su }}$ (cs-w)	$\overline{\overline{C S}}$ setup tume		0			ns
th($\mathrm{R}-\mathrm{CS}$)	$\overline{C S}$ hold time		0			ns
th(w-cs)	$\overline{C S}$ hold time		0			ns
$\mathrm{t}_{\text {su }}(\mathbf{A}-\mathrm{R})$	A0 setup time		40			ns
tsu($A-w)$	A0 setup time		40			ns
$\operatorname{th}(R-A)$	AO hold time		10			ns
$\operatorname{th}(W-A)$	AO hold time		10			ns
$t_{W}(\mathrm{R})$	Read pulse width		160			ns
$t_{w}(\mathrm{w})$	Write pulse width		160			ns
$\mathrm{tsu}_{\text {su }}(\mathrm{D}-\mathrm{w})$	Date input setup time before write		100			ns
th(w-D)	Date input hold time after write		10			ns

Master CPU bus interface timing (R/W type mode)

$\left(\mathrm{V}_{\mathrm{Cc}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{Ss}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-10\right.$ to $70^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test condition	Limits			Unit
			Min	Typ.	Max.	
$\mathrm{t}_{\text {Su }}(\mathrm{CS}-\mathrm{E}$)	$\overline{C S}$ setup time	Fig 39	0			ns
th(E-CS)	$\overline{C S}$ hold time		0			ns
$t_{\text {Su }}(A-E)$	AO setup time		40			ns
th($\mathrm{E}-\mathrm{A})$	AO hold time		10			ns
$t_{\text {SU }}$ (RW-E)	R/ \bar{W} setup time		40			ns
th(E-RW)	$\mathrm{R} / \overline{\mathrm{W}}$ hold time		10	,		ns
$\mathrm{t}_{\mathrm{W} \text { (EL) }}$	Enable clock "L" pulse width		160			ns
$t_{\text {W (EH) }}$	Enable clock "H" pulse width		160			ns
tr (E)	Enable clock rising edge time				25	ns
$\mathrm{t}_{\mathrm{f}}(\mathrm{E})$	Enable clock falling edge time				25	ns
$t_{\text {Su }}(\mathrm{D}-\mathrm{E})$	Data input setup time before write		100			ns
$t h n(E-D)^{\text {a }}$	Data input hold time after write		10			ns

Local bus/memory expansion mode, microprocessor mode
($\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-10$ to $70^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test condition	Limits			Unit
			Min	Typ	Max	
$\mathrm{t}_{\text {su }}(0-\phi)$	Data input setup time	Fig 40	130			ns
$t_{\text {h }}(\phi-D)$	Data input hold time		0			ns
	Data input setup time		130			ns
	Data input hold tıme		0			ns

SWITCHING CHARACTERISTICS
Port/single-chip mode ($\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=\mathrm{VV}, \mathrm{T}_{\mathrm{a}}=-10$ to $70^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test condition	Limits			Unit
			Min.	Typ	Max	
$t_{\text {d }}(\phi-P O Q)$	Port P0 data output delay time	Fig 38			200	ns
$t_{\text {d }}\left(\phi-P_{1} Q\right)$	Port P1 data output delay time				200	ns
$t_{\text {d }}(\phi-P 2 Q)$	Port P2 data output delay time				200	ns
$t_{\text {d }}\left(\phi-P^{\prime} \mathrm{Q}\right)$	Port P3 data output delay time				200	ns
$\mathrm{t}_{\mathrm{d}(\phi-\mathrm{P} 5 \mathrm{Q}}$)	Port P5 data output delay time				200	ns
$t_{\text {d }}(\phi-P 6 Q)$	Port P6 data output delay time				200	ns
$t_{C(\phi)}$	Cycle time		400		4000	ns
$\mathrm{t}_{\mathbf{W}(\phi \mathrm{H})}$	ϕ clock pulse width ("H" level)		190			ns
$t_{\text {W (} \text { LL }^{\prime}}$	ϕ clock pulse width ("L" level)		170			ns
$\operatorname{tr}_{(}(\phi)$	ϕ clock rising edge time				20	ns
$\mathrm{t}_{\mathrm{f}(\phi)}$	ϕ clock falling edge tıme				20	ns

Master CPU bus interface ($\overline{\mathbf{R}}$ and $\overline{\mathbf{W}}$ separation type mode)

($\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-10$ to $70^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test condition	Limits			Unit
			Mın	Typ	Max	
ta(R-D)	Data output enable time after read	Fig 39			120	ns
$t_{V(R-D)}$	Data output disable time after read		10		85	ns
$t_{\text {PLH }}(R-P R)$	$\overline{\mathrm{P}_{\text {RDY }}}$ output transmission time after read				150	ns
$t_{\text {PLH }}(W-P R)$	$\overline{\mathrm{P}_{\text {ROY }}}$ output transmission time after write				150	ns

Master CPU bus interface ($\mathbf{R} / \overline{\mathbf{W}}$ type mode) $\left(\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-10\right.$ to $70^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test condition	Limits			Unit
			Mın	Typ	Max	
$\mathrm{ta}_{\mathrm{a}}(\mathrm{E}-\mathrm{D})$	Data output enable time after read	Fig 39			120	ns
$\mathrm{t}_{\mathrm{V}(\mathrm{E}-\mathrm{D})}$	Data output disable time after read		10		85	ns
$\mathrm{t}_{\text {PLH }}$	Proy output transmission time after E clock				150	ns

Local bus/memory expansion mode, microprocessor mode

($\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-10$ to $70^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test condition	Limits			Unit
			Mın.	Typ.	Max	
$t_{d}(\phi-A)$	Address delay time after ϕ	Fig 40			150	ns
$t_{V(\phi-A)}$	Address effective time after ϕ		10			ns
$t_{V(R D-A)}$	Address effective time after $\overline{\mathrm{RD}}$		10			ns
$t_{V}(W R-A)$	Address effective time after $\overline{W R}$		10			ns
$t_{\text {d }}(\phi-\mathrm{D})$	Data output delay time after ϕ				160	ns
$t_{\text {d }}\left(W W^{\prime}-\mathrm{D}\right)$	Data output delay time after $\overline{\mathrm{WR}}$				160	ns
$\mathrm{t}_{\mathrm{V}(\phi-\mathrm{D})}$	Data output effective time after ϕ		20			ns
$t_{V}(\mathbf{W R}-\mathrm{D})$	Data output effective time after $\overline{\mathrm{WR}}$		20			ns
$t_{\text {d }}(\phi-R W)$	R/W delay tıme after ϕ				150	ns
$t_{\text {d }}(\phi-$ SYNC $)$	SYNC delay time after ϕ				150	ns
$t_{W(R D)}$	$\overline{\mathrm{RD}}$ pulse width		170			ns
$t_{W}(\underline{W R})$	$\overline{\text { WR pulse width }}$		170			ns

TEST CONDITION

Input voltage level: $\mathrm{V}_{\mathrm{HH}} \quad 2.4 \mathrm{~V}$
$\mathrm{V}_{\mathrm{IL}} 0.45 \mathrm{~V}$
Output test level : $\mathrm{V}_{\mathrm{OH}} \quad 2.0 \mathrm{~V}$
$\mathrm{V}_{\mathrm{OL}} 0.8 \mathrm{~V}$

Fig. 38 Test circuit in single-chip mode

Fig. 41 loc (at stop mode) test condition

TIMING DIAGRAM

Port/single-chip mode timing diagram

Note : $\mathrm{V}_{\mathrm{IH}}=0.8 \mathrm{~V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{IL}}=0.16 \mathrm{~V}_{\mathrm{CC}}$ of X_{IN}

Master CPU bus interface/ $\overline{\mathbf{R}}$ and $\overline{\mathbf{W}}$ separation type timing diagram
Read

Write

Master CPU interface/ R/W type timing diagram

Local bus timing diagram

$\mathrm{A}_{0}-\mathrm{A}_{15}$
$\overline{\mathrm{RD}}$
$\mathrm{D}_{0}-\mathrm{D}_{7}$
CPU read
$\overline{W R}$

DESCRIPTION

The M37450S1SP/FP is a single-chip microcomputer designed with CMOS silicon gate technology. It is housed in a 64 -pin shrink plastic molded DIP or an 80 -pin plastic molded QFP. In addition to its simple instruction sets, the ROM, RAM and I/O addresses are placed on the same memory map to enable easy programming. It is suited for office automation equipment and control devices. The low power consumption made possible by the use of a CMOS process makes it especially suitable for battery powered devices requiring low power consumption. It also has a unique feature that enables it to be used as a slave microcomputer.
M37450S1SP/FP, M37450S2SP/FP and M37450S4SP/FP have basically the same functions as M37450M2-XXXSP/FP except the RAM size and the fact that these three need external ROM area. The differences among M37450S1SP/FP, M37450S2SP/FP and M37450S4SP/FP are as shown below.

Type	RAM size
M37450S1SP/FP	128 bytes
M37450S2SP/FP	256 bytes
M37450S4SP/FP	448 bytes

Also M37450S1SP has the same function as M37450M2XXXSP/FP in microprocessor mode and M37450S2SP/FP has the same function as M37450M4-XXXSP/FP in microprocessor mode.

FEATURES

- Number of basic instructions 71
69 MELPS 740 basic instructions +2 multiply/divide instructions
- Memory size ROM .. RAM $\cdots \cdots \cdots \cdot 128$ bytes (M37450S1SP/FP) 256 bytes (M37450S2SP/FP) 448 bytes (M37450S4SP/FP)
- Instruction execution time
(minimum instructions at 10 MHz frequency) $\cdots \cdots 0.8 \mu \mathrm{~s}$
- Single power supply...................................... $5 \mathrm{~V} \pm 10 \%$
- Power dissipation normal operation mode
(at 10 MHz frequency)
30 mW
- Subroutine nesting $\cdots 64$ levels max. (M37450S1SP/FP)

- Master CPU bus interface 1 byte
- 16-bit timer .. 3
- 8-bit timer (Serial I/O use) .. 1
- Serial I/O (UART or clock synchronous) 1
- A-D converter (8 bit resolution) 3 channels (DIP) 8 channels (QFP)
- D-A converter (8 -bit resolution) $\cdots \cdots \ldots \ldots \ldots2$ channels
- PWM output (8-bit or 16 -bit)
$\cdots 1$
- Programmable I/O
(Ports P0, P1, P2, P3, P5, P6)
- Input (Port P4) ….......................... 3 (DIP), 8 (QFP)
- Output (Port D-A ${ }_{1}$ D-A ${ }_{2}$)

M37450S1SP BLOCK DIAGRAM

Note 1: 256 bytes for M37450S2SP and 448 bytes for M37450S4SP

yヨ1ndwoગ0yวIW SOW0 118-8

Note 1: 256 bytes for M37450S2FP and 448 bytes for M37450S4FP

FUNCTIONS OF M37450S1SP/FP, M37450S2SP/FP, M37450S4SP/FP

Parameter			Function
Number of basic instructions			71 (69 MELPS 740 basic instructions+2)
Instruction execution tıme			$0.8 \mu \mathrm{~s}$ (minımum instructions, at 10 MHz of frequency)
Clock frequency			10 MHz (max)
RAM size	M37450S1SP/FP		128 bytes
	M37450S2SP/FP		256 bytes
	M37450S4SP/FP		448 bytes
Input/Output port	P3, P5, P6	1/0	8 -bit $\times 3$
	P4	Input	3 -bit $\times 1$ (8-bit $\times 1$ for $80-\mathrm{pin}$ model)
	D-A	Output	2-bit $\times 1$
Serial I/O			UART or clock synchronous
Timers			16-bit timer $\times 3$, 8 -bit timer(serial I/O baud rate generator) $\times 1$
A-D converter			8 -bit $\times 3$ channels(8 channels for 80 -pin model)
D-A converter			8 -bit $\times 2$ channels
Pulse width modulator			8 -bit or 16 -bit $\times 1$
Data bus buffer			1-byte input and output each
Subroutine nesting			64-levels(max for M37450S1SP/FP)
			96-levels(max for M37450S2SP/FP, M37450S4SP/FP)
Interrupt			6 external interrupts, 8 internal interrupts one software interrupt
Clock generating circuit			Built-in(ceramic or quarts crystal oscillator)
Supply voltage			$5 \mathrm{~V} \pm 10 \%$
Power dissipation			30 mW (at 10 MHz frequency)
Input/Output characters	Input/Output voltage		5 V
	Output current		$\pm 5 \mathrm{~mA}($ max $)$
Operating temperature range			$-10 \sim 70^{\circ} \mathrm{C}$
Device structure			CMOS silicon gate
Package	M37450S1SP, M37450S2SP, M37450S4SP		64-pin shrink plastic molded DIP
	M37450S1FP, M 37450 S2FP, M37450S4FP		80-pin plastic molded QFP

PIN DESCRIPTION

Pin	Name	Input/ Output	Functions
V_{cc}, $V_{s s}$	Supply voltage		Power supply inputs $5 \mathrm{~V} \pm 10 \%$ to V_{CC}, and OV to $\mathrm{V}_{\text {SS }}$
$\mathrm{CNV}_{\text {ss }}$	CNV ${ }_{\text {SS }}$	Input	This is connected to V_{Cc}
RESET	Reset input	Input	To enter the reset state, the reset input pin must be kept at a "L" for more than 8 clock cycles(under normal $V_{C C}$ conditions) If more time is needed for the crystal oscillator to stabilize, this " L " condition should be maintained for the required time
$\mathrm{XIN}_{\text {IN }}$	Clock input	Input	This chip has an internal clock generating circuit To control generating frequency, an external ceramic or a
X ${ }_{\text {Out }}$	Clock output	Output	source should be connected to the $\mathrm{X}_{\text {IN }}$ pIn and the $\mathrm{X}_{\text {Out }}$ pin should be left open
ϕ	Timing output	Output	Outputs signal consistıng of oscillating frequency divided by four
SYNC	Synchronous signal output	Output	This signal is output " H " during operation code fetch and is used to control single stepping of programs
R/ \bar{W}	Read/Write status output	Output	This signal determines the direction of the data bus It is "H" during read and " L " during write
$\mathrm{A}_{0} \sim \mathrm{~A}_{15}$	Address bus	Output	This is 16-bit address bus
$\mathrm{D}_{0} \sim \mathrm{D}_{7}$	Data bus	$1 / 0$	This is 8-bit data bus
$P 3_{0} \sim P 3_{7}$	Input/Output port P3	$1 / 0$	Port P 3 is an 8 -bit I / O port with directional registers allowing each $1 / \mathrm{O}$ bit to be individually programed as input or output The output structure is CMOS output Serial I/O, PWM output, or even I/O function can be selected with a program
$\begin{aligned} & P 4_{0} \sim P 4_{2} \\ & \left(P 4_{0} \sim P 4_{7}\right) \end{aligned}$	Input port P4	Input	Analog input pin for the A-D converter The 64-pin model has three pins and the 80 -pin model has eight pins They may also be used as digital input pins
$\mathrm{P5}_{0} \sim \mathrm{P} 5_{7}$	Input/Output port P5	1/0	An 8-bit input/output port with the same function as P3 This port functions as an 8-bit data bus for the master CPU when slave mode is selected with a program.
$\mathrm{P} 6_{0} \sim P 6_{7}$	Input/Output port P6	1/0	An 8-bit input/output port with the same function as P 3 Pins $\mathrm{P6}_{3} \sim \mathrm{P} 6_{7}$ change to a control bus for the master CPU when slave mode is selected with a program $\mathrm{Pins} \mathrm{P6}_{0} \sim \mathrm{PG}_{2}$ may be programmed as external interrupt input pins
D-A ${ }_{1}$, D-A ${ }_{2}$	D-A output	Output	Analog signal from D-A converter is output
$\mathrm{V}_{\text {REF }}$	Reference voltage input	Input	Reference voltage input pin for A-D and D-A converter This pin is for 64-pın model only
ADV REF	A-D reference voltage input	Input	Reference voltage input pin for A-D converter This pin is for 80-pin model only
DAV REF	D-A reference voltage input	Input	Reference voltage input pin for D-A converter This pin is for 80-pin model only
$\mathrm{AV}_{\text {SS }}$	Analog power supply -		Ground level input pin for A-D and D-A converter Same voltage as $\mathrm{V}_{\text {SS }}$ is applied
$\mathrm{AV}_{\mathrm{CC}}$	Analog power supply		Power supply input pin for A-D converter This pin is for 80 -pin model only Same voltage as $V_{\text {CCI }}$ Is applied In the case of the 64 -pin model $\mathrm{AV}_{\mathrm{CC}}$ is connected to V_{CC} internally
$\overline{\mathrm{RD}}$	Read signal output	Output	Control signal output as active "L" when valid data is read from data bus This pin is for 80-pin model only
$\overline{W R}$	Write signal output	Output	Control signal output as active "L" when writing data from data bus to external component This pin is for 80-pin model only
RESETout	Reset output	Output	Control signal output as active " H " during reset it is used as a reset output signal for peripheral components This pin is for 80-pin model only

MITSUBISHI MICROCOMPUTERS M37450S1 SP/FP,M37450S2SP/FP M37450S4SP/FP

8-BIT CMOS MICROCOMPUTER

BASIC FUNCTION BLOCKS

The differences between M37450M2-XXXSP/FP and M37450S1SP/FP are noted below. Other functions are the same as M37450M2-XXXSP/FP in microprocessor mode.

MEMORY

- Special Function Register (SFR) Area

The special function register (SFR) area contains the registers relating to functions such as I/O ports and timers.

- RAM

RAM is used for data storage as well as a stack area.

- Interrupt Vector Area

The interrupt vector area is for storing jump destination addresses used at reset or when an interrupt is generated. This area must be located in ROM area.

- Zero Page

Zero page addressing mode is useful because it enables access to this area with only 2 bytes.

- Special Page

Special page addressing mode is useful because it enables access to this area with only 2 bytes

Fig. 1 Memory map

00D6 ${ }_{16}$	P3 register
00D7 ${ }_{16}$	P3 directional register
00D8 ${ }_{16}$	P4 register
00D9 ${ }_{16}$	Reserved
00DA ${ }_{16}$	P5 register
$00 \mathrm{DB}_{16}$	P5 directional register
$00 \mathrm{DC}{ }_{16}$	P6 register
$00 \mathrm{DD}_{16}$	P6 directional register
$00 \mathrm{DE} \mathrm{E}_{16}$	MISRG1
00DF ${ }_{16}$	MISRG2
$0_{00 E 0}^{16}$	D-A1 register
00E1 1_{16}	D-A2 register
00E2 ${ }_{16}$	A-D register
00E3 ${ }_{16}$	A-D control register
00E4 ${ }_{16}$	Data bus buffer register
O0E5 ${ }_{16}$	Data bus buffer status register
00E6 ${ }_{16}$	Receive/transmit buffer register
$00 E 7_{16}$	Serial I/O status register
00E8 ${ }_{16}$	Serial I/O control register
$00 \mathrm{E9}{ }_{16}$	UART control register
$00 E_{16}$	Baud rate generator

00EB ${ }_{16}$	PWM register (low-order)
$00 \mathrm{EC}_{16}$	PWM register (high-order)
OOED ${ }_{16}$	Timer 1 control register
$00 \mathrm{EE}_{16}$	Tımer 2 control register
O0EF ${ }_{16}$	Timer 3 control register
$00 \mathrm{FO}_{16}$	Timer 1 register (low-order)
$00 \mathrm{~F} 1_{16}$	Tımer 1 register (hıgh-order)
$00 \mathrm{~F} 2_{16}$	Timer 1 latch (low-order)
$00 \mathrm{F3}{ }_{16}$	Timer 1 latch (high-order)
$00 \mathrm{~F} 4_{16}$	Tımer 2 register (low-order)
$\mathrm{OOF5}_{16}$	Timer 2 regıster (high-order)
0_{0-6616}	Timer 2 latch (low-order)
00F7 ${ }_{16}$	Tımer 2 latch (high-order)
$00 \mathrm{F8}{ }_{16}$	Timer 3 register (low-order)
0_{0079}^{16}	Tımer 3 register (high-order)
$00 \mathrm{FA}_{16}$	Timer 3 latch (low-order)
$00 \mathrm{FB}_{16}$	Timer 3 latch (high-order)
$00 \mathrm{FC}_{16}$	Interrupt request register 1
$00 \mathrm{FD}_{16}$	Interrupt request register 2
$00 \mathrm{FE}_{16}$	Interrupt control register 1
$00 \mathrm{FF}_{16}$	Interrupt control register 2

Fig. 2 SFR (Special Function Register) memory map

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditons	Ratıngs	Unit
V_{Cc}	Supply voltage	With respect to V_{Ss} Output transistors are at "OFF" state	$-0.3 \sim 7$	V
V_{1}	Input voltage RESET, $\mathrm{X}_{\text {IN }}$		$-0.3 \sim 7$	V
V_{1}	$\begin{aligned} \text { Input voltage } & \mathrm{D}_{0} \sim \mathrm{D}_{7}, P 3_{0} \sim P 3_{7}, P 4_{0} \sim P 4_{7}, \\ & P 5_{0} \sim P 5_{7}, P 6_{0} \sim P 6_{7}, A D V_{R E F}, \\ & D A V_{R E F}, V_{R E F}, A V_{C C} \end{aligned}$		$-0.3 \sim \mathrm{v}_{\mathrm{cc}}+0.3$	V
V_{1}	Input voltage $\mathrm{CNV}_{\text {SS }}$		$-0.3 \sim 13$	V
V_{0}	$\begin{aligned} & \text { Output voltage } A_{0} \sim A_{15}, D_{0} \sim D_{7}, P 3_{0} \sim P 3_{7}, \\ & P 5_{0} \sim P 5_{7}, P 6_{0} \sim P 6_{7}, X_{\text {OUT }}, \\ & \phi, \overline{R D}, \overline{W R}, R / \bar{W}, \text { RESET OUT }, \text { SYNC } \\ & \hline \end{aligned}$		$-0.3 \sim \mathrm{~V}_{\mathrm{Cc}}+0.3$	V
$\mathrm{Pd}_{\text {d }}$	Power dissipation	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$	1000 (Note 1)	mW
Topr	Operating temperature		$-10 \sim 70$	${ }^{\circ} \mathrm{C}$
Tstg	Storage temperature		$-40 \sim 125$	${ }^{\circ} \mathrm{C}$

Note 1: 500mW for QFP type

RECOMMENDED OPERATING CONDITIONS

$\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{Ta}=-10 \sim 70^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Symbol	Parameter	Lımits			Unit
		Min	Nom	Max	
V_{cc}	Supply voltage	4.5	5	5.5	V
$\mathrm{V}_{\text {ss }}$	Supply voltage		0		V
V_{IH}	"H" Input voitage $\overline{\text { RESET }}, \mathrm{X}_{\text {IN }}, \mathrm{CNV}_{\text {SS }}$ (Note 1)	$0.8 \mathrm{~V}_{\mathrm{Cc}}$		V_{Cc}	V
$\mathrm{V}_{\text {IH }}$	" H " Input voltage $\mathrm{D}_{0} \sim \mathrm{D}_{7}, \mathrm{P}_{0} \sim \mathrm{P}_{7}, \mathrm{P} 4_{0} \sim \mathrm{P} 4_{7}$, $P 5_{0} \sim P 5_{7}, P 6_{0} \sim P 6_{7} \quad$ (except Note 1)	2.0		V_{cc}	V
$\mathrm{V}_{1 \mathrm{~L}}$	"L" Input voltage $\mathrm{CNV}_{\text {SS }}$ (Note 1)	0		$0.2 V_{\text {cc }}$	V
$V_{\text {IL }}$	" L " Input voltage $\mathrm{D}_{0} \sim \mathrm{D}_{7}, \mathrm{P3}_{0} \sim \mathrm{P3}_{7}, \mathrm{P} 4_{0} \sim P 4_{7}$, $P 5_{0} \sim \mathrm{P5}_{7}, \mathrm{~Pb}_{0} \sim \mathrm{~Pb}_{7} \quad$ (except Note 1)	0		0.8	V
$\mathrm{V}_{\text {IL }}$	"L" Input voltage $\overline{\mathrm{RESET}}$	0		$0.12 \mathrm{~V}_{\mathrm{cc}}$	V
$\mathrm{V}_{\text {IL }}$	"L" Input voltage $\mathrm{X}_{\text {IN }}$	0		$0.16 \mathrm{~V}_{\mathrm{Cc}}$	V
lol(peak)	$\begin{array}{ll} \text { "L" peak output current } & A_{0} \sim A_{15}, \quad D_{0} \sim D_{7}, \\ & P 3_{0} \sim P 3_{7}, \quad P 5_{0} \sim P 5_{7}, \\ & P 6_{0} \sim P 6_{7}, \\ \hline \end{array}$			10	mA
lol(avg)	$\begin{aligned} & \hline \text { "L" average output current } A_{0} \sim A_{15}, D_{0} \sim D_{7}, \\ & P 3_{0} \sim P 3_{7}, \\ & P 5_{0} \sim P 5_{7}, \\ & 6_{0} \sim P 6_{7} \quad(\text { Note 2) } \\ & \hline \end{aligned}$			5	mA
Іон(peak)	$\begin{aligned} & \text { "H" peak output current } A_{0} \sim A_{15}, D_{0} \sim D_{7}, \\ & \\ & \\ & P 3_{0} \sim P 3_{7}, P 5_{0} \sim P 5_{7}, \\ & \\ & \hline 6_{0} \sim P 6_{7} \\ & \hline \end{aligned}$			-10	mA
$\mathrm{I}_{\mathrm{OH}(\mathrm{avg})}$	$\begin{array}{ll} \hline \text { "H" average output current } & A_{0} \sim A_{15}, \quad D_{0} \sim D_{7}, \\ & P 3_{0} \sim P 3_{7}, \\ & P 5_{0} \sim P 5_{7}, \\ & \mathrm{PG}_{0} \sim \mathrm{PG}_{7} \quad(\text { Note 2) } \\ \hline \end{array}$			-5	mA
$f\left(X_{\text {IN }}\right)$	Clock oscillating frequency	1		10	MHz

Note 1: Ports operate as $\mathrm{INT}_{1} \sim \mathrm{NT}_{3}\left(\mathrm{P6}_{0} \sim \mathrm{PG}_{2}\right), \mathrm{EV}_{1} \sim \mathrm{EV}_{3}\left(\mathrm{P3}_{0} \sim \mathrm{~PB}_{2}\right), \mathrm{R}_{\mathrm{X}} \mathrm{D}\left(\mathrm{P3}_{4}\right)$ and $\mathrm{S}_{\mathrm{CLK}}\left(\mathrm{P3}_{6}\right)$
2 : The average output current $\mathrm{I}_{\mathrm{OH}(\mathrm{avg})}$ and $\mathrm{I}_{\mathrm{OL}(\mathrm{avg})}$ are the average value during a 100 ms
3 : The total of "L" output current loL(peak) of port P3, P5, P6, R/W, SYNC, RESET ${ }_{\text {out }}, \overline{R D}, \overline{W R}$ and ϕ is less than 40 mA
 ϕ is less than 40 mA

ELECTRICAL CHARACTERISTICS ($\mathrm{v}_{\mathrm{CC}}=5 \mathrm{v} \pm 10 \%, \mathrm{v}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathbf{a}}=-10 \sim 70^{\circ} \mathrm{C}, \mathrm{f}\left(\mathrm{X}_{\mathrm{IN}}\right)=10 \mathrm{MHz}$, unless otherwise noted)

Symbol	Parameter	Test conditions	Lımits			Unit
			Min	Typ	Max	
V_{OH}	" H " output voltage $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \mathrm{R} / \overline{\mathrm{W}}$, SYNC, RESET ${ }_{\text {OUT }}, \phi$	$\mathrm{IOH}_{\mathrm{O}}=-2 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{cc}}-1$			V
V OH	$\begin{aligned} \text { "H" output voltage } & A_{0} \sim A_{15}, D_{0} \sim D_{7}, P 3_{0} \sim P 3_{7}, \\ & P 5_{0} \sim P 5_{7}, P 6_{0} \sim P 6_{7} \end{aligned}$	$\mathrm{l}_{\mathrm{OH}}=-5 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{Cc}}-1$			V
$\mathrm{V}_{\text {OL }}$	$\begin{aligned} & \hline \text { "L" output voltage } A_{0} \sim A_{15}, D_{0} \sim D_{7}, P 3_{0} \sim P 3_{7}, \\ & P 5_{0} \sim P 5_{7}, P 6_{0} \sim P 6_{7}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \\ & R / \bar{W}, S Y N C, R E S E T_{\text {out }}, \phi \\ & \hline \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=2 \mathrm{~mA}$			0.45	V
V_{OL}	$\begin{array}{cc} \hline \text { "L" output voltage } A_{0} \sim A_{15}, D_{0} \sim D_{7}, P 3_{0} \sim P 3_{7}, \\ & P 5_{0} \sim P 5_{7}, P 6_{0} \sim P 6_{7} \\ \hline \end{array}$	$\mathrm{IOL}=5 \mathrm{~mA}$			1	V
$\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\mathrm{T}-}$	$\begin{aligned} & \text { Hysterisis } \mathrm{INT}_{1} \sim \mathrm{NT}_{3}\left(\mathrm{PG}_{0} \sim \mathrm{PG}_{2}\right), \mathrm{EV}_{1} \sim \mathrm{EV}_{3}\left(\mathrm{P3}_{0} \sim \mathrm{~PB}_{2}\right), \\ & \mathrm{RXX}_{\mathrm{X}} \mathrm{D}\left(\mathrm{P3}_{4}\right), \mathrm{S}_{\mathrm{CLK}}\left(\mathrm{~PB}_{6}\right) \end{aligned}$	Function input level	0.3		1	V
$\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\mathrm{T}-}$	Hysterısı $\overline{\text { RESET }}$				0.7	V
$\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\mathrm{T}-}$	Hysterisis XIN		0.1		0.5	V
IIL	"L" input current $\mathrm{D}_{0} \sim \mathrm{D}_{7}, \mathrm{P3}_{0} \sim \mathrm{P3}_{7}, \mathrm{P} 4_{0} \sim \mathrm{P} 4_{7}$, $P 5_{0} \sim \mathrm{P5}_{7}, \mathrm{P} 6_{0} \sim P 6_{7}, \overline{\mathrm{RESET}}, \mathrm{X}_{1 \mathrm{~N}}$	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{ss}}$	-5		5	$\mu \mathrm{A}$
I_{H}	$\begin{aligned} \text { " } H \text { " input current } & \mathrm{D}_{0} \sim \mathrm{D}_{7}, \mathrm{P3}_{0} \sim \mathrm{P3}_{7}, \mathrm{P4} 4_{0} \sim \mathrm{P}_{7}, \\ & \mathrm{P5} 5_{0} \sim \mathrm{P} 5_{7}, \mathrm{P6}_{0} \sim \mathrm{P}_{7}, \overline{R E S E T}, \mathrm{X}_{\text {IN }}\end{aligned}$	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{cc}}$	-5		5	$\mu \mathrm{A}$
$\mathrm{V}_{\text {RAM }}$	RAM retention voltage	At stop mode	2			\checkmark
I_{cc}	Supply current	At system operation $f\left(X_{\mathrm{IN}}\right)=10 \mathrm{MHz}$		6	10	mA
		At stop mode (Note 1)		1	10	$\mu \mathrm{A}$

Note 1 : The terminals $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \mathrm{R} / \overline{\mathrm{W}}, \mathrm{SYNC}$, RESET $_{\text {OUT }}, \phi, \mathrm{D}-\mathrm{A}_{1}$ and $\mathrm{D}-\mathrm{A}_{2}$ are all open The other ports, which are in the input mode, are connected to $\mathrm{V}_{\text {SS }} \mathrm{A}-\mathrm{D}$ converter is in the $\mathrm{A}-\mathrm{D}$ completion state. The current through $\mathrm{ADV}_{\text {REF }}$ and $\mathrm{DAV}_{\text {REF }}$ is not included(Fig 6)

A-D CONVERTER CHARACTERISTICS

$$
\left(V_{C C}=A V_{C C}=5 V, V_{S S}=A V_{S S}=0 V, T_{a}=25^{\circ} \mathrm{C}, f\left(X_{I N}\right)=10 \mathrm{MHz}\right. \text {, unless otherwise noted) }
$$

Symbol	Parameter	Test conditions	Lımits			Unit
			Min	Typ	Max	
-	Resolution				8	Bits
-	Absolute accuracy	$\mathrm{V}_{\mathrm{CC}}=\mathrm{AV}_{\mathrm{CC}}=\mathrm{ADV}_{\text {REF }}=5.12 \mathrm{~V}$		± 1.5	± 3	LSB
$\mathrm{t}_{\text {CONV }}$	Conversion time				49	$t_{C}(\phi)$
$\mathrm{V}_{\text {IA }}$	Analog input voltage		$\mathrm{AV}_{\text {SS }}$		$\mathrm{AV}_{\mathrm{CC}}$	V
$\mathrm{V}_{\text {AdVREF }}$	Reference input voltage		2		V_{Cc}	V
R Ladder	Ladder resistance value	$\mathrm{ADV}_{\text {REF }}=5 \mathrm{~V}$	2	7.5	10	$\mathrm{k} \Omega$
I ${ }_{\text {advat }}$	Reference input current	$\mathrm{ADV}_{\text {REF }}=5 \mathrm{~V}$	0.5	0.7	2.5	mA
$\mathrm{V}_{\text {AVCC }}$	Analog power supply input voltage			V_{CC}		V
$\mathrm{V}_{\text {AVSS }}$	Analog power supply input voltage			0		V

D-A CONVERTER CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=\mathrm{Av}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=25^{\circ}\right.$, unless otherwise noted)

Symbol	Parameter	Test condition	Limits			Unit
			Min	Typ	Max	
-	Resolution				8	Bits
-	Absolute accuracy	$\mathrm{V}_{\text {CC }}=\mathrm{DAV}_{\text {REF }}=5.12 \mathrm{~V}$			1.0	\%
$\mathrm{t}_{\text {su }}$	Setup time				3	$\mu \mathrm{s}$
R_{0}	Output resistance		1	2	4	$\mathrm{k} \Omega$
$V_{\text {AVSS }}$	Analog power supply input voltage			0		V
$V_{\text {davref }}$	Reference input voitage		4		V_{Cc}	V
I Davref	Reference power input current (Each pın)		0	2.5	5	mA

TIMING REQUIREMENTS
Port/Single-chip mode ($\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V} \pm 10 \%, \mathrm{v}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-10 \sim 70^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test condition	Limits			Unit
			Min	Typ	Max	
$\mathrm{t}_{\text {Su(P3D- }}{ }^{\text {d }}$)	Port P3 input setup time	Fig 3	200			ns
$\mathrm{t}_{\text {SU }}$ (P4D- ${ }^{\text {d }}$)	Port P4 input setup time		200			ns
$t_{\text {Su }}$ (P5D- ${ }^{\text {d }}$	Port P5 input setup time		200			ns
$t_{\text {SU }}(\mathbf{P 6 D - \phi})$	Port P6 input setup time		200			ns
th(ϕ-P3D)	Port P3 input hold time		40			ns
th(ϕ - P4D $)$	Port P4 input hold time		40			ns
th($\phi-$ P $^{\text {P }}$)	Port P5 input hold time		40			ns
th(ϕ-P6D)	Port P6 input hold time		40			ns
$\mathrm{t}_{\mathrm{c}}\left(\mathrm{X}_{\text {IN }}\right)$	External clock input cycle time		100		1000	ns
$t_{W}\left(X_{\text {IN }} L\right)$	External clock input "L" pulse width		30			ns
$t_{w}\left(X_{\text {in }} H\right)$	External clock input "H" pulse width		30			ns
$\operatorname{tr}_{r}\left(X_{\text {IN }}\right)$	External clock rising edge time				20	ns
$t_{f}\left(X_{\text {IN }}\right)$	External clock falling edge tıme				20	ns

Master CPU bus interface timing ($\overline{\mathrm{R}}$ and $\overline{\mathbf{W}}$ separation type mode)

$\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-10 \sim 70^{\circ} \mathrm{C}\right.$, unless otherwise noted)

Symbol	Parameter	Test condition	Limits			Unit
			Mın	Typ	Max	
tsu(cs-R)	$\overline{\text { CS }}$ setup time	Fig. 3	0			ns
tsu(cs-w)	$\overline{\mathrm{CS}}$ setup time		0			ns
th($\mathrm{R}-\mathrm{CS}$)	$\overline{\mathrm{CS}}$ hold time		0			ns
th(w-cs)	$\overline{C S}$ hold time		0			ns
$t_{\text {su }}(\mathbf{A}-\mathrm{R})$	A0 setup time		40			ns
$t_{\text {su }}(\mathbf{A}-\mathrm{W})$	A0 setup time		40			ns
$\operatorname{th}(\mathrm{R}-\mathrm{A})$	AO hold time		10			ns
th($w-A)$	AO hold time		10			ns
$t_{w(R)}$	Read pulse width		160			ns
$t_{w}(\underline{w})$	Write pulse width		160			ns
$t_{\text {su }}(\mathrm{D}-\mathrm{w})$	Date input setup time before write		100			ns
th(w-D)	Date input hold time after write		10			ns

Master CPU bus interface timing ($\mathrm{R} / \overline{\mathrm{W}}$ type mode)

$\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-10 \sim 70^{\circ} \mathrm{C}\right.$, unless otherwise noted)

Symbol	Parameter	Test condition	Limits			Unit
			Min	Typ	Max	
$\mathrm{t}_{\text {su }}$ (Cs-E)	$\overline{\mathrm{CS}}$ setup time	Fig 4	0			ns
th(E-CS)	$\overline{\mathrm{CS}}$ hold time		0			ns
$\mathrm{t}_{\text {SU }}(\mathrm{A}-E)$	AO setup time		40			ns
th(E-A)	AO hold time		10			ns
$t_{\text {Su }}$ (RW-E)	R/ $/ \bar{W}$ setup time		40			ns
th(E-RW)	R/W hold time		10			ns
$t_{\text {W (EL) }}$	Enable clock "L" pulse width		160			ns
$t_{\text {W (EH) }}$	Enable clock "H" pulse width		160			ns
$\operatorname{tr}_{(E)}$	Enable clock rising edge time				25	ns
$\mathrm{tf}_{(\mathrm{E})}$	Enable clock falling edge time				25	ns
$t_{\text {Su }}(\mathrm{D}-\mathrm{E})$	Data input setup time before write		100			ns
$t h_{\text {h }}(E-D)$	Data input hold time after write		10			ns

Local bus/Memory expansion mode, Microprocessor mode
($\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-10 \sim 70^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test condition	Limits			Unit
			Mın	Typ.	Max.	
$\mathrm{t}_{\text {su }}(0-\phi)$	Data input setup time	Fig 5	100			ns
th($\phi-\mathrm{D}$)	Data input hold time		0			ns
$t_{\text {su }}(\mathrm{D}-\mathrm{RD}$)	Data input setup time		100			ns
$\operatorname{th}(\mathrm{RD}-\mathrm{D})$	Data input hold time		0			ns

MITSUBISHI MICROCOMPUTERS
M37450S1SP/FP,M37450S2SP/FP M37450S4SP/FP

8-BIT CMOS MICROCOMPUTER

SWITCHING CHARACTERISTICS
Port/Single-chip mode ($\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-10 \sim 70^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test condition	Limits			Unit
			Mın	Typ	Max	
	Port P3 data output delay time	Fig 3			200	ns
$\mathrm{t}_{\mathrm{d}(\phi-\mathrm{P} 5 \mathrm{Q}}$)	Port P5 data output delay time				200	ns
$\mathrm{t}_{\mathrm{d}(\phi-\mathrm{P}}(\underline{\mathrm{C}})$	Port P6 data output delay time				200	ns
$\mathrm{t}_{\mathrm{C}(\phi)}$	Cycle time		400		4000	ns
$t_{W}(\underline{\phi H})$	ϕ clock pulse width ("H" level)		190			ns
$t_{w(\phi L)}$	ϕ clock pulse width ("L" level)		170			ns
$\operatorname{tr}(\phi)$	ϕ clock rising edge time				20	ns
$\mathrm{tf}_{\mathrm{f}}(\phi)$	ϕ clock falling edge time				20	ns

Master CPU bus interface ($\overline{\mathbf{R}}$ and $\overline{\mathbf{W}}$ separation type mode)

($\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-10 \sim 70^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test condition	Limits			Unit
			Mın	Typ	Max	
$t a(r-D)$	Data output enable time after read	Fig 4			120	ns
$\mathrm{t}_{\mathrm{V}(\mathrm{R}-\mathrm{D})}$	Data output disable time after read		10		85	ns
$t_{\text {PLH }}(R-P R)$	$\overline{P_{\text {RDY }}}$ output transmission time after read				150	ns
$\left.\mathrm{t}_{\mathrm{PLH}(\mathrm{W}} \mathbf{- P R}\right)$	$\overline{P_{\text {RDY }}}$ output transmission time after write				150	ns

Master CPU bus interface (R/W type mode) $\left(\mathrm{v}_{\mathrm{cc}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-10 \sim 70^{\circ} \mathrm{C}\right.$, unless otherwise noted)

Symbol	Parameter	Test condition	Limits			Unit
			Mın	Typ	Max	
$t_{\text {a }}(\mathrm{E}-\mathrm{D})$	Data output enable time after read	Fig 4			120	ns
$\mathrm{t}_{\mathrm{V}(\mathrm{E}-\mathrm{D})}$	Data output disable time after read		10		85	ns
$\mathrm{t}_{\text {PLH }}$	$\overline{P_{\text {RDY }}}$ output transmission time after E clock				150	ns

Local bus/Memory expansion mode, microprocessor mode
($\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{Ss}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-10 \sim 70^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test condition	Limits			Unit
			Mın	Typ	Max	
$t_{d}(\phi-A)$	address delay time after ϕ	Fig 5			120	ns
$t_{V}(\phi-A)$	address effective time after ϕ		10			ns
$t_{V}(R D-A)$	address effective time after $\overline{\mathrm{RD}}$		10			ns
$t_{V}(\mathbf{W} R-A)$	address effective time after $\overline{\mathrm{WR}}$		10			ns
$t_{\text {d }}(\phi-\mathrm{D})$	data output delay time after ϕ				140	ns
$t_{d}(W R-D)$	data output delay time after $\overline{\mathrm{WR}}$				140	ns
$t_{V}(\phi-D)$	data output effective time after ϕ		20			ns
$t_{V}(W R-D)$	data output effective time after $\overline{\mathrm{WR}}$		20			ns
$\mathrm{t}_{\mathrm{d}(\phi-\mathrm{RW})}$	R/W delay time after ϕ				120	ns
$t_{\text {d }}(\phi-$ SYNC $)$	SYNC delay time after ϕ				120	ns
$t_{W(R D)}$	$\overline{\mathrm{RD}}$ pulse width		170			ns
$t_{W}(\underline{W}$)	$\overline{\text { WR pulse width }}$		170			ns

MITSUBISHI MICROCOMPUTERS
 M37450S1 SP/FP,M37450S2SP/FP M37450S4SP/FP

TEST CONDITION

Input voltage level : $\mathrm{V}_{\mathrm{IH}} \quad 2.4 \mathrm{~V}$
$V_{\text {IL }} 0.45 \mathrm{~V}$
Output test level: $\mathrm{V}_{\mathrm{OH}} 2.0 \mathrm{~V}$
$\mathrm{V}_{\mathrm{OL}} \quad 0.8 \mathrm{~V}$

Fig. 3 Test circuit in single-chip mode

Fig. 4 Master CPU bus interface test circuit

Fig. 5 Local bus test circuit

Fig. $6 \quad \mathrm{I}_{\mathrm{Cc}}$ (at stop mode) test condition

TIMING DIAGRAM

Port/single-chip mode timing diagram

Note : $\mathrm{V}_{\mathrm{IH}}=0.8 \mathrm{~V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{IL}}=0.16 \mathrm{~V}_{\mathrm{CC}}$ of X_{IN}

Master CPU bus interface/ $\overline{\mathbf{R}}$ and \bar{W} separation type timing diagram
Read

Write

Master CPU interface/ R/W type timing diagram

Local bus timing diagram

$A_{0} \sim A_{15}$
$\mathrm{D}_{0} \sim \mathrm{D}_{7}$
CPU read
$\overline{W R}$
$\mathrm{D}_{0} \sim \mathrm{D}_{7}$
CPU write

DESCRIPTION

The M37451M4-XXXSP/FP/GP is a single-chip microcomputer designed with CMOS silicon gate technology. It is housed in a 64-pin shrink plastic molded DIP or a 0.8 mm -pitch or 0.65 mm -pitch 80 -pin plastic molded QFP.

In addition to its simple instruction sets, the ROM, RAM, and I/O addresses are placed on the same memory map to enable easy programming.
It is suited for office automation equipment and control devices The low power consumption made by the use of a CMOS process makes it especially suitable for battery powered devices requiring low power consumption. It also has a unique feature that enables it to be used as a slave microcomputer.
The differences among M37451M4-XXXSP/FP/GP, M37451 M8-XXXSP/FP/GP and M37451MC-XXXSP/FP/GP are as shown below. The descriptions that follow describe the M37451M4-XXXSP/FP/GP (abbreviated as M37451) unless otherwise noted.

Type name	ROM size	RAM size
M37451M4-XXXSP/FP/GP	8192 bytes	256 bytes
M37451M8-XXXSP/FP/GP	16384 bytes	384 bytes
M37451MC-XXXSP/FP/GP	24576 bytes	512 bytes

The number of analog input pins for the 80 -pin model (FP, GP version) is different from the 64-pin model (SP version). In addition, the 80-pin model has special pins for $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$, RESET ${ }_{\text {OUT }}$, DAV $_{\text {REF }}, A D V_{\text {REF }}, A V_{\text {CC }}$ and the 64-pin model has a special $\mathrm{V}_{\text {REF }}$ pin.

FEATURES

- Number of basic instructions

69 MELPS 740 basic instructions +2 multiply/divide instructions

- Instruction execution time
(minimum instructions at 12.5 MHz frequency) $\cdots 0.64 \mu \mathrm{~s}$
- Single power supply... $5 \mathrm{~V} \pm 10 \%$
- Power dissipation normal operation mode
(at 12.5 MHz frequency) 40 mW
- Subroutine nesting 96 levels max. (M37451M4) 96 levels max. (M37451M8) 128 levels max. (M37451MC)
- Interrupt - 15 events

- 8-bit timer (Serial I/O use) ...
- Serial I/O (UART or clock synchronous) 1
- A-D converter (8 -bit resolution) $\cdots \cdots \cdots .3$ channels (DIP) 8 channels (QFP)
- D-A converter (8 -bit resolution) $\cdots \cdots \cdots \cdots \cdots \cdots .2$ channels
- PWM output with 8-bit prescaler
(Either resolution 8 bit or 16 bit is software selectable) $\cdots 1$

- Programmable I/O ports
(Ports P0, P1, P2, P3, P5, P6) 48
- Input port (Port P4)…......................3(DIP), 8(QFP)
- Output ports (Ports D-A, D-A)

[^3]
APPLICATION

Slave controller for PPCs, facsimiles, and page p printers.
HDD, optical disk, inverter, and industrial motor controllers. Industrial robots and machines.

PIN CONFIGURATION (TOP VIEW)

Outline 80P6S

Mヨ1ndWOJO\&OIW SOWO $118-8$ dIHO-37DNIS

M37451M4-XXXGP BLOCK DIAGRAM

Note 1: 384 bytes for M37451M8-XXXGP and 512 bytes for M37451MC-XXXGP
2 : 16384 bytes for M37451M8-XXXGP and 24576 bytes for M37451MC-XXXGP

FUNCTIONS OF M37451M4-XXXSP/FP/GP, M37451M8-XXXSP/FP/GP, M37451MC-XXXSP/FP/GP

Parameter			Functions
Number of basic instructions			71(69 MELPS 740 basic instructions+2)
Instruction execution time			$0.64 \mu \mathrm{~s}$ (minımum instructions, at 125 MHz frequency)
Clock frequency			125 MHz (max)
Memory size	M37451M4-XXXSP/FP/GP	ROM	8192 bytes
		RAM	256 bytes
	M37451M8-XXXSP/FP/GP	ROM	16384 bytes
		RAM	384 bytes
	M37451MC-XXXSP/FP/GP	ROM	24576 bytes
		RAM	512 bytes
Input/Output ports	P0-P3, P5, P6	I/O	8 -bit $\times 6$
	P4	Input	3 -bit $\times 1$ (8-bit $\times 1$ for 80 -pin model)
	D-A	Output	2 -bit $\times 1$
Serial I/O			UART or clock synchronous
Timers			16-bit timer $\times 3$, 8 -bit tımer (serial I/O baud rate generator) $\times 1$
A-D converter			8 -bit $\times 3$ channels (8 channels for 80 -pin model)
D-A converter			8 -bit $\times 2$ channels
Pulse width modulator with 8-bit prescaler			8 -bit or 16-bit $\times 1$
Data bus buffer			1-byte input and output each
Subroutine nesting			96-levels (max for M37451M4, M37451M8)
			128-levels (max for M37451MC)
Interrupt			6 external interrupts, 8 internal interrupts 1 software interrupt
Clock generating circuit			Built-in (ceramic or quarts crystal oscillator)
Supply voltage			$5 \mathrm{~V} \pm 10 \%$
Power dissipation			40 mW (at 125 MHz frequency)
Input/Output characters	Input/Output voltage		5 V
	Output current		$\pm 5 \mathrm{~mA}$ (max)
Memory expansion			Possible (64K bytes max)
Operating temperature range			-20 to $85^{\circ} \mathrm{C}$
Device structure			CMOS silicon gate
Package	M37451M4-XXXSP		64-pın shrink plastic molded DIP
	M37451 M8-XXXSP		
	M37451MC-XXXSP		
	M37451M4-XXXFP		
	M37451M8-XXXFP		80-pin plastıc molded QFP
	M37451MC-XXXFP		
	M37451M4-XXXGP		
	M37451M8-XXXGP		80-pin plastic molded QFP
	M37451MC-XXXGP		(065mm-pitch)

MITSUBISHI MICROCOMPUTERS M37451 M4-XXXSP/FP/GP,M37451 M8-XXXSP/FP/GP M37451 MC-XXXSP/FP/GP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

PIN DESCRIPTION

Pin	Name	Input/ Output	Functions
$\begin{aligned} & \mathrm{V}_{\mathrm{cc}} \\ & \mathrm{~V}_{\mathrm{ss}} \end{aligned}$	Supply voltage		Power supply inputs $5 \mathrm{~V} \pm 10 \%$ to V_{CC}, and 0 V to V_{SS}
$\mathrm{CNV}_{\text {Ss }}$	$\mathrm{CNV}_{\text {SS }}$	Input	Controls the processor mode of the chip Normally connected to $\mathrm{V}_{\text {SS }}$ or $\mathrm{V}_{\text {CC }}$
RESET	Reset input	Input	To enter the reset state, the reset input pin must be kept at a " L " for more than 8 clock cycles (under normal $V_{\text {CC }}$ conditions) If more time is needed for the crystal oscillator to stabilize, this "L" condition should be maintained for the required time
$\mathrm{XIN}_{\text {IN }}$	Clock input	Input	This chip has an internal clock generating curcuit To control generating frequency, an external ceramic or a
$\mathrm{X}_{\text {OUt }}$	Clock output	Output	source should be connected to the $\mathrm{X}_{\text {IN }}$ PIn and the $\mathrm{X}_{\text {Out }}$ pin should be left open
ϕ	Timing output	Output	Normally outputs sıgnal consisting of oscillating frequency divided by four
SYNC	Synchronous signal output	Output	This signal is output " H " during operation code fetch and is used to control single stepping of programs
R/ \bar{W}	Read/Write status output	Output	This signal determines the direction of the data bus It is "H" during read and "L" during write
$\mathrm{PO}_{0}-\mathrm{PO}_{7}$	I/O port PO	1/0	Port PO is an 8-bit I/O port with directional registers allowing each I/O bit to be individually programmed as input or output The output structure is CMOS output The low-order bits of the address are output except in single-chip mode
$\mathrm{P} 1_{0}-\mathrm{P} 1_{7}$	I/O port P1	1/0	Port P1 is an 8-bit I/O port and has basically the same functions as port PO The high-order bits of the address are output except in single-chip mode
$\mathrm{P} 2_{0}-\mathrm{P} 2_{7}$	1/O port P2	1/0	Port P2 is an 8-bit I/O port and has basically the same functions as port PO Used as data bus except in single-chip mode
$\mathrm{P} 3_{0}-\mathrm{P} 3_{7}$	1/O port P3	1/0	Port P3 is an 8-bit I/O port and has basically the same functions as port PO Serial I/O, PWM output, or event I/O function can be selected with a program
$\begin{aligned} & P 4_{0}-P 4_{2} \\ & \left(P 4_{0}-P 4_{7}\right) \end{aligned}$	Input port P4	Input	Analog input pin for the A-D converter The $64-\mathrm{pin}$ model has three pins and the 80 -pin model has eight pins They may also be used as digital input pins
$P 5_{0}-\mathrm{P} 57$	1/O port P5	1/0	Port P5 is an 8-bit I/O port and has basically the same functions as port P0 This port functions as an 8-bit data bus for the master CPU when slave mode is selected with a program
$\mathrm{Pb}_{0}-\mathrm{P} 67$	1/O port P6	1/0	Port P6 is an 8-bit I/O port and has basically the same function as port P0 Pins $\mathrm{P6}_{3}-\mathrm{P6}_{7}$ change to a control bus for the master CPU when slave mode is selected with a program Pins $P 6_{0}-P 6_{2}$ may be programmed as external interrupt input pins
D-A, D-A ${ }_{2}$	D-A output	Output	Analog signal from D-A converter is output
$\mathrm{V}_{\text {REF }}$	Reference voltage input	Input	Reference voltage input pin for A-D and D-A converter This pin is for 64-pin model only
$\mathrm{ADV}_{\text {ref }}$	A-D reference voltage input	Input	Reference voltage input pin for A-D converter This pin is for 80-pin model only
DAV $\mathrm{V}_{\text {ref }}$	D-A reference voltage input	Input	Reference voltage input pin for D-A converter This pin is for 80-pin model only
$\mathrm{AV}_{\text {SS }}$	Analog power supply		Ground level input pin for A-D and D-A converter Same voltage as $\mathrm{V}_{\text {ss }}$ is applied
$\mathrm{AV}_{\mathrm{cc}}$	Analog power supply		Power supply input pin for A-D converter This pin is for 80 -pin model only Same voltage as V_{CC} is applied. In the case of the 64-pin model, $\mathrm{AV}_{\mathrm{CC}}$ is connected to V_{CC} internally
$\overline{\mathrm{RD}}$	Read signal output	Output	Control signal output as active "L" when valid data is read from data bus This pin is for 80-pin model only.
$\overline{W R}$	Write signal output	Output	Control signal output as active " L " when writing data from data bus to external component This pin is for 80-pin model only
RESET ${ }_{\text {out }}$	Reset output	Output	Control signal output as active " H " during reset it is used as a reset output signal for peripheral components This pin is for 80-pin model only

FUNCTIONAL DESCRIPTION

Central Processing Unit (CPU)
The M37451 microcomputers use the standard MELPS 740 instruction set. For details of instructions, refer to the MELPS 740 CPU core basic functions, or the MELPS 740 Software Manual.
Machine-resident instructions are as follows:
The FST and SLW instructions are not provided.
The MUL and DIV instructions can be used.
The WIT instruction can be used.
The STP instruction can be used.

MISRG2 Register

The MISRG2 register is allocated to address 00DF ${ }_{16}$. Bits 0 and 1 of this register are processor mode bits. This register also has a stack page selection bit.

Fig. 1 Structure of MISRG 2

MEMORY

- Special Function Register (SFR) Area

The special function register (SFR) area contains the registers relating to functions such as I/O ports and timers

- RAM

RAM is used for data storage as well as a stack area

- ROM

ROM is used for storing user programs as well as the interrupt vector area.

- Interrupt Vector Area

The interrupt vector area is for storing jump destination addresses used at reset or when an interrupt is generated.

- Zero Page

Zero page addressing mode is useful because it enables access to this area with only 2 bytes.

- Special Page

Special page addressing mode is useful because it enables access to this area with only 2 bytes.

RAM (320 bytes) for M37451MC ROM (24K bytes) for M37451MC	RAM (192 bytes) for M37451M8 ROM (16K bytes) for M37451M8	RAM (192 bytes) RAM (64 bytes) for M37451M4 ROM (8 K bytes) for M37451M4	$\begin{aligned} & 0000_{16} \\ & 00 \mathrm{BF}_{16} \\ & 00 \mathrm{DO}_{16} \\ & 00 \mathrm{FF}_{16} \\ & 0100_{16} \\ & 013 \mathrm{~F}_{16} \\ & 01 \mathrm{BF}_{16} \\ & 023 \mathrm{~F}_{16} \\ & \mathrm{AOOO}_{16} \\ & \mathrm{COOO}_{16} \\ & \mathrm{FF} 00_{16} \\ & \mathrm{E} 000_{16} \\ & \mathrm{FFFF}_{16} \end{aligned}$	Not used SFR area Not used Interrupt vector area		Zero page Special page

Fig. 2 Memory map

00D0 ${ }_{16}$	P0 register	${ }^{00 E B_{16}}$	PWM register (low-order)
000116	Po directional register	$0^{00 E} \mathrm{C}_{16}$	PWM register (high-order)
0	P1 register	00ED ${ }_{16}$	Timer 1 control register
0^{000316}	P1 directional register	OOEE ${ }_{16}$	Timer 2 control register
000	P2 register	O0EF ${ }_{16}$	Timer 3 control register
0005 ${ }_{16}$	directional register	00FO ${ }_{16}$	Timer 1 register (low-order)
000616	P3 register	$0^{00 F 16}$	Timer 1 register (high-order)
00	P3 directional register	OOF2, ${ }^{6}$	Timer 1 latch (low-order)
$0008{ }_{16}$	P4 register/PWM prescaler latch	007316	Timer 1 latch (high-order)
$0^{0009}{ }_{16}$	Additional function register	005416	Timer 2 register (low-order)
00DA ${ }_{18}$	P5 register	$0^{00 F 55}$	Timer 2 register (high-order)
$0^{00 B_{16}}$	P5 directional register	00F66	Timer 2 latch (low-order)
$00 \mathrm{DC} \mathrm{C}_{18}$	P6 register	$0^{00 F 7} 7_{16}$	Timer 2 latch (high-order)
$0^{000 D_{16}}$	P6 directional register	${ }^{00 F 888}$	Timer 3 register (low-order)
${ }_{0} 00 \mathrm{DF} \mathrm{F}_{16}$	MISRG2	${ }^{00 F 9} 9_{16}$	Timer 3 register (high-order)
00E016	D-A1 register	$00 \mathrm{FB}, 6$	Timer 3 latch (high-order)
00 E	D-A2 register	$00 \mathrm{FC} \mathrm{C}_{16}$	Interrupt request register 1
00 E	A-D register	$00 \mathrm{FD}_{16}$	Interrupt request register 2
OOE3, ${ }_{6}$	A-D control register	$0^{00 F E} E_{16}$	Interrupt control register 1
OOE4,	Data bus buffer register	$0^{00 F F} F_{16}$	Interrupt control register 2
00E5 ${ }_{16}$	Data bus buffer status register		
00E6 ${ }_{16}$	Receive/Transmit buffer register		
$0^{00 E 7}{ }_{16}$	Serial I/O status register		
${ }^{00 E 8} 8_{16}$	Serial I/O control register		
${ }^{00 E 9} 9$	UART control register		
$00 E A_{18}$	Baud rate generator		

Fig. 3 SFR (Special Function Register) memory map

INTERRUPTS

Interrupts can be caused by 15 different events consisting of six external, eight internal, and one software events. Interrupts are vectored interrupts with priorities shown in Table 1. Reset is also included in the table because its operation is similar to an interrupt.
When an interrupt is accepted, the registers are pushed, interrupt disable flag I is set, and the program jumps to the address specified in the vector table. The interrupt request bit is cleared automatically. The reset and BRK instruction interrupt can never be disabled. Other interrupts are disabled when the interrupt disable flag is set.

All interrupts except the BRK instruction interrupt have an interrupt request bit and an interrupt enable bit. The interrupt request bits are in interrupt request registers 1 and 2 and the interrupt enable bits are in interrupt control registers 1 and 2 . Figure 4 shows the structure of the interrupt request registers 1 and 2 and interrupt control registers 1 and 2.
Interrupts other than the BRK instruction interrupt and reset are accepted when the interrupt enable bit is " 1 ", interrupt request bit is " 1 ", and the interrupt disable flag is " 0 ". The interrupt request bit can be reset with a program, but not set. The interrupt enable bit can be set and reset with a program.
Reset is treated as a non-maskable interrupt with the highest priority. Figure 5 shows interrupts control.

Table 1. Interrupt vector address and priority.

Event	Prority	Vector addresses		Remarks
RESET	1	FFFF_{16},	FFFE_{16}	Non-maskable
Input buffer full interrupt	2	FFFD_{16},	FFFC_{16}	Valid only in slave mode
Output buffer empty interrupt	3	FFFB_{16},	FFFA_{16}	Valid only in slave mode
INT_{1} interrupt	4	FFF9 ${ }_{16}$,	FFF_{16}	External interrupt (phase programmable)
INT ${ }_{2}$ interrupt	5	$\mathrm{FFF}_{16}{ }_{6}$,	FFF6 $_{16}$	External interrupt (phase programmable)
INT_{3} interrupt	6	FFF5 ${ }_{16}$,	$\mathrm{FFF}_{16}{ }_{16}$	External interrupt (phase programmable)
Timer 1 interrupt	7	FFF_{16},	FFF_{16}	
Timer 2 interrupt	8	FFF1 ${ }_{16}$,	FFFO_{16}	
Tımer 3 interrupt	9	FFEF_{16},	FFEE_{16}	
$E V_{1}$ interrupt	10	FFED_{16},	FFEC_{16}	External event interrupt (phase programmable)
$E V_{2}$ interrupt	11	FFEB $_{16}$,	FFEA $_{16}$	External event interrupt (phase programmable)
EV_{3} interrupt	12	FFE9 $_{16}$,	FFE_{16}	External event interrupt (phase programmable)
Serial I/O receive interrupt	13	$\mathrm{FFE}_{16}{ }_{6}$,	$\mathrm{FFE6}_{16}$	Valid only when serial I/O is selected
Serıal I/O transmit interrupt	14	FFE5 ${ }_{16}$,	FFE_{16}	Valıd only when serial I/O is selected
A-D conversion completion flag	15	FFE_{16},	FFE_{16}	
BRK instruction interrupt	16	FFE1 ${ }_{16}$,	FFEO_{16}	Non-maskable software interrupt

Fig. 4 Structure of registers related to interrupt

Fig. 5 Interrupt control

TIMER

The M37451 has three independent 16-bit internal timers as shown in Figure 6.
The timers are controlled by the timer i control register ($i=$ 1, 2, 3) and MISRG1 shown in Figure 7 and 8.
The timer and the timer latch are independent of each other and a value must be written in both when setting a timer.
A write to a timer is performed in the order of T_{L} to T_{H} after setting the count enable bit to count inhibit " 0 ".
A read from a timer is performed in the order of T_{H} to T_{L}. The value of T_{L} is latched in the read timer latch at the timing when T_{H} is read. All timers are decrement counters and are started by setting the timer i count enable bit to " 1 ". When the value of the timer reaches 0000_{16}, and overflow occurs and the timer i interrupt request bit is set to " 1 " at the next count pulse.
During a reset or an STP instruction execution, the loworder byte of the timer 1 register is set to FF_{16} and the high-order byte is set to 03_{16}. Also, when an STP instruction is executed, a frequency obtained by dividing the oscillating frequency by four becomes the timer 1 input regardless of the timer 1 count source selection bit. This condition is canceled and the original count source is resumed when the timer i interrupt request bit is set to " 1 " or when a reset occurs. Refer to the section on the clock generator for details concerning the operation of the STP instruction.
The M37451 provides seven timer modes selectable with the timer mode selection bit in the timer i control register.

Fig. 7 Structure of timer i control register

Fig. 8 Structure of MISRG1

Fig. 6 Timer block diagram

(1) 16-bit Timer Mode [000]

In this mode, an interrupt request occurs and the value of the timer latch is loaded in the timer each time the timer overflows.
The timer count source is set to $f\left(X_{I N}\right)$ divided by four regardless of the count sorce selection bit. Assuming that the timer latch is n, the frequency dividing ratio is $1 /(n+1)$.
Figure 9 shows the timer operation during 16-bit timer mode.

Fig. 9 16-bit timer mode operation

(2) Event Count Mode [001]

In this mode, the EVi pin input signal are counted in the direction selected by the event input polarity selection bit. The input signal from the EVi pin is used as the count source regardless of the count source selection bit. The operation is the same as with the 16 -bit timer mode except for the difference in the count source.
Both the " H " and "L" pulse width of the EVi pin input signal must be not less than $\left(4 / f\left(X_{\text {IN }}\right)\right)+100$ ns.
Figure 10 shows the timer operation during event count mode.

Fig. 10 Event counter mode operation

(3) Pulse Output Mode [010]

In this mode, a 50% duty pulse is output from the EVi pin.
The count source selected with the count source selection bit is counted. When it overflows, the phase of the EVi pin output level is reversed and the value of the timer latch is loaded in the timer.
When this mode is selected, the EVi pin output level is initialized to "L".
Figure 11 shows the timer operation during pulse output mode.

Fig. 11 Pulse output mode

(4) Pulse Period Measurement Mode [011]

This mode is used to measure the pulse period of the EVi pin input signal.
The timer counts the count source selected by the count source selection bit between the rise-to-rise or fall-to-fall interval (selected with the event input polarity selection bit in the timer i control register) of the EVi pin input signal.
At a valid edge on the EVi pin input, the 1's complement of the timer value is stored in the timer latch and the timer value is set to FFFF_{16}.
Figure 12 shows the timer operation during pulse frequency measurement mode.

Fig. 12 Pulse period measurement mode

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

(5) Pulse Width Measurement Mode [100]

This mode measures the pulse width while the EVi pin input signal is " H " or " L ".
Whether to measure the " H " or " L " interval is determined by the event input polarity selection bit. If this bit is " 0 ", the count source selected with the count source selection bit is counted while the input pulse is " H ". If it is " 1 ", the count source is counted while the input pulse is "L". A 1 's complement of the timer value is stored in the timer latch for a valid edge on the EVi pin input. In addition, the timer value is set to FFFF_{16} for an edge (both rise and fall) on the EVi pin input. Figure 13 shows the timer operation during pulse width measurement mode.

Fig. 13 Pulse width measurement mode

In pulse period measurement mode [011] and pulse width measurement mode [100], an EVi interrupt request is issued at the valid edge selected by the event phase selection bit. That is, an interrupt occurs at the end of the pulse period measurement or pulse width measurement. Also, when a timer overflow occurs, the count continues from FFFF $_{16}$ without the value of the timer latch being loaded in the timer.
Write to timer latch is inhibited in these modes. Furthermore, EVi interrupt is disabled during STP instruction execution.

(6) Programmable Waveform Generation Mode [101]

In this mode, the level set in the output level latch of the timer i control register is output to the EVi pin every time the timer overflows.
The timer counts the source selected by the count source selection bit and when it overflows, the value in the timer latch is loaded in the timer.
After it overflows, the value of the output level latch and the timer latch can be modified to generate any waveform from the EVi pin.
Figure 14 shows the timer operation during programmable waveform generation mode.

Fig. 14 Programmable waveform generation mode

(7) Programmable One-shot Generation Mode [110]

This mode uses the INTi pin input signal as a trigger and counts by writing the value of the timer latch in the timer.
The output level of the EVi pin goes " H " when the trigger is issued and goes " L " when the timer overflows.
The EVi pin level is initialized to " L ". when this mode is selected.
The timer count souce is set to $f\left(X_{\text {IN }}\right)$ divided by four regardless of the count source selection bit.
A valid edge of the INTi pin input trigger signal is determined by the INTi phase selection bit of MISRG1 ($00 D E_{16}$). Figure 15 shows the timer operation during programmable one-shot generation mode.

Fig. 15 Programmable one-shot generation mode

When the INTi pin input signal is selected as the count source for pulse output mode [010], pulse period measurement mode [011], pulse width measurement mode [100], and programmable waveform generation mode [101], the " H " and " L " pulse width of the input signal must not be less than $\left(6 / f\left(X_{\text {IN }}\right)\right)+100$ ns.

SERIAL I/O

Serial I/O can operate in either clock synchronous or clock asynchronous (UART) mode. An exclusive baud rate gen-
eration timer (baud rate generator) is provided for serial I/O operation. Figure 16 shows the structure of the registers used for serial I/O.

Fig. 16 Structure of registers related to serial I/O

(1) Clock Synchronous Serial I/O

Clock synchronous serial $1 / O$ is selected by setting the mode selection bit of the serial I/O control register to "1". Figure 17 shows a block diagram of clock synchronous serial I/O and Figure 18 shows its operation.

With clock synchronous serial I/O, the same clock is used as the operating clock between the transmitting and receiving microcomputers. If an internal clock is used for operating clock, transmit/receive is started by writing a signal in the transmit/receive buffer register.

Fig. 17 Clock synchronous serial I/O block diagram

Fig. 18 Clock synchronous serial I/O operation

MITSUBISHI MICROCOMPUTERS M37451 M4-XXXSP/FP/GP,M37451M8-XXXSP/FP/GP M37451MC-XXXSP/FP/GP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

(2) Clock Asynchronous Serial I/O (UART)

UART is selected by setting the mode selection bit of the serial I/O control register to " 0 ". Figure 19 shows a block diagram of UART and Figure 20 shows its operation.
With the M37451, one of eight serial data transmission formats can be selected with the UART control register as shown in Figure 16. The transmission format must be agreed upon between the transmit side and the receive side.

The transmit shift register and the receive shift register has its buffer register respectively to perform serial data transfer (same memory addresses).
Data cannot be written or read directly to/from the shift registers. Therefore, the data to be transmitted is written to a buffer register and the received data is read from a buffer register. The buffer registers can also be used to store data to be transmitted next or to receive 2-byte data consecutively.

Fig. 19 UART serial I/O block diagram

Fig. 20 UART serial I/O operation

MITSUBISHI MICROCOMPUTERS M37451 M4－XXXSP／FP／GP，M37451M8－XXXSP／FP／GP M37451 MC－XXXSP／FP／GP

［Serial I／O control register】 SIOCON

The serial I／O control register is an 8－bit register consisting of selection bits for controlling the serial I／O function．

－Serial I／O enable bit SIOE

When this bit is set to＂ 1 ＂，serial I／O is enabled and pins $\mathrm{P}_{4}-\mathrm{P} 3_{7}$ can be used as serial I／O function pins．

－Serial I／O mode selection bit SIOM

This bit is used to select the serial I／O operation mode． When this bit is＂ 0 ＂，asynchronous serial I／O（UART），which transfers data using start and stop bits，is selected．When it is＂ 1 ＂，clock synchronous serial I／O which performs trans－ mission and receive using the same clock is selected．

－Receive enable bit RE

Receive operation is enabled when this bit is set to＂ 1 ＂and pin P_{4} becomes a serial data input pin．

－Transmission enable bit TE

Transmission operation is enabled when this bit is set to ＂1＂．Pin P_{5} becomes a serial data output pin and shift data is output．
－Transmission interrupt source selection bit TIC
This bit is used to selelct events that can cause a transmis－ sion interrupt．

－$\overline{\mathbf{S}_{\text {RDY }}}$ output enable bit SRDY

If this bit is set to＂ 1 ＂when clock synchronous serial I／O is selected，pin P_{7} becomes an $\overline{\mathrm{S}_{\text {RDY }}}$ signal output pin and $\overline{S_{\text {ROY }}}$ signal is output．
When an external clock is used during clock synchronous serial I / O ，the $\overline{S_{R D Y}}$ signal is used to notify the clock sender that it can send the serial clock signal．It goes＂L＂when data is written in the transmit／receive buffer register and goes＂ H ＂at the first fall of the receive clock．When using the $\overline{\mathrm{S}_{\mathrm{RDY}}}$ signal，the transmission enable bit must be set to ＂ 1 ＂even when performing receive only．

－Serial I／O synchronous clock selection bit SCS

When this bit is＂ 1 ＂，pin $\mathrm{P} 3_{6}$ becomes an input pin and the external clock input from the $\mathrm{S}_{\mathrm{CLK}}$ pin is selected as the serial I／O synchronous clock．When this bit is＂ 0 ＂，the baud rate generator（BRG）overflow signal is selected as the se－ rial I／O synchronous clock．Also，when this bit is＂ 0 ＂during clock synchronous serial I／O，pin P_{6} becomes an output pin and the shift clock is output from the $\mathrm{S}_{\mathrm{CLK}}$ pin．
When clock synchronous serial I／O is selected，the baud rate generator（BRG）output signal divided by four or an external clock input is used．When UART is selected，the BRG output signal divided by sixteen or an external clock input signal divided by sixteen is used．

－BRG count source selection bit CSS

The baud rate generator is an 8－bit counter with a reload register．By setting a value n in the BRG register（address $00 E A_{16}$ ），the count source selected by the BRG count source selection bit is divided by $(n+1)$ ．

［UART control register】 UARTCON

The UART control regsiter is a 4－bit register consisting of control bits that are valid when UART is selected．The con－ tent of this register is used to set the data format for serial data transmission／receiving．

－Character length selection bit CHAS

This bit is used to select the transmission／receiving charac－ ter length．
－Parity enable bit PARE
When this bit is set to＂ 1 ＂，a parity bit is added next to the most significant bit（MSB）of the transmission data and parity is checked during receive．

－Parity selection bit PARS

This bit is used to specify the type of parity to be gener－ ated during transmission and checked when data is re－ ceived．The number of 1 ＇s in the data is set to even or odd according to this bit．

－Stop bit length selection STPS

This bit is used to determine the number of stop bits to be used during transmission．

［Serial I／O status register】 SIOSTS

The serial I／O status register is a 7－bit read only register consisting of serial I／O operation status flags and error flags．Bits 4 to 6 are valid only during UART mode．
All bits of this register are initialized to＂ 0 ＂at reset，and when the transmit enable bit in the serial $1 / 0$ control regis－ ter is set to＂ 1 ＂，bits＂ 0 ＂and＂ 2 ＂change to＂ 1 ＂．

－Transmission buffer empty flag TBE

This bit is cleared to＂ 0 ＂when transmission data is written in the transmission buffer register and set to＂ 1 ＂when that data is transferred to the transmit shift register．It is also cleared when $T E=0$ ．

－Receive buffer full flag RBF

When receiving serial data，data is transferred to the re－ ceive buffer register and this bit is set to＂ 1 ＂when the re－ ceive shift register completes receiving a data byte．This bit is cleared when the data is read．This bit is also cleared when $R E=0$ ．

－Transmit shift register shift completion flag TSC

This bit is cleared to＂ 0 ＂when the data in the transmission buffer register is transferred to the transmit shift register and set to＂ 1 ＂when data shift completes．It is also set to ＂ 1 ＂when $T E=0$ ．

－Overrun error flag OE

When continuously receiving serial data，this bit is set when the next data fill the receive shift register before the data in the receive buffer register has been read
－Parity error flag PE
When receiving serial data with parity，this bit is set to＂ 1 ＂ if the parity of the received data differs from the specified parity．

- Framing error flag FE

This bit is set to " 1 " when there is no stop bit when transferring data from the receive shift register to the receive buffer.

- Summing error flag SE

This bit is set when either overrun, a parity, or a framing error occurs.
Tests for these errors are performed as soon as the data is transferred from the receive shift register to the receive buffer register and at the same time the receive buffer full flag is set. The error flags ($O E, P E, F E$, and $S E$) are cleared when any data is written in the serial I/O status register. Also, all status flags including error flags are cleared when $\mathrm{SIOE}=0$.

Usage cautions

(1) To reset the serial I/O control register

Reset the serial I/O control register after disabling the transmit and receive enable bits that were enabled at that point and resetting the transmit and receive circuits. If the serial I/O control register is reset without resetting the other items, the settings will not operate correctly.
(2) Transmit and receive interrupt requests when transmit and receive enable bits are set.
Setting the transmit and receive enable bits to " 1 " sets the receive buffer empty flag and the transmit shift register shift completion flag to " 1 ". Therefore, an interrupt request is generated and the transmit interrupt request bit is set, regardless of which timing is selected for the generation of transmit interrupts.
If interrupts of this timing are not used, first clear the transmit interrupt enable bit to " 0 " (disabled status), set the transmit enable bit, then clear the transmit interrupt request bit again after executing one instruction (e. g., the NOP instruction). Finally, set the transmit interrupt enable bit to " 1 " (enabled status).
(3) To disable transmission after one byte of data has been transmitted.
The method used in the M37451 to post the completion of data transmission is to reference the transmit shift register shift completion flag (TSC flag). The TSC flag is cleared to " 0 " while data is being transmitted, and it is set to " 1 " when the data transmission is completed. Therefore, if transmission is disabled after it has been confirmed that the TSC flag has been set, transmission can be forced to end after one byte of data is transmitted.
However, the TSC flag can also be set by enabling serial I/O, but it is not cleared by shift clock generation and transmission start (after data has been transferred from the transmit buffer to the transmit shift register, af-
ter 0.5 to 1.5 cycles of the shift clock), so if the TSC flag is referenced and transmission is disabled at this point, data will not be transmitted. Make sure that the TSC flag is referenced after transmission has started.

BUS INTERFACE

The M37451 is equipped with a bus interface that is functionally similar to the MELPS 8-41 series. Its operation can be controlled with control signals from the host CPU (slave mode).
The M37451 bus interface can be connected directly to either a R/W type CPU or separate $\overline{R D}, \overline{W R}$ type CPU. Figure 21 shows a block diagram of the bus interface function.
Slave mode is selected with MISRG2 (address 00DF ${ }_{16}$) bit 2 and 3 as shown in Figure 22.

An input buffer full interrpt occurs when data is received from the host CPU and an output buffer empty interrupt occurs when data is read by the host CPU.
In slave mode, ports $\mathrm{P5}_{0}-\mathrm{P} 5_{7}$ become a tri-state data bus used to transfer data, commands, and status to and from the host CPU.
Furthermore, ports $\mathrm{P6}_{4}-\mathrm{P6}_{7}$ become host CPU control signal input pins and Pb_{3} becomes a slave status output pin.

Fig. 21 Bus interface circuit diagram

Fig. 22 Structure of bus interface relation registers

MITSUBISHI MICROCOMPUTERS M37451M4－XXXSP／FP／GP，M37451 M8－XXXSP／FP／GP M37451 MC－XXXSP／FP／GP

SINGLE－CHIP 8－BIT CMOS MICROCOMPUTER

［Data bus buffer status register】 DBBSTS

This is an 8 －bit register．Bits 0,1 ，and 3 are read－only bits indicating the status of the data bus buffer．Bits $2,4,5,6$ ， and 7 are read／write enabled user－definable flags that can be set with a program．The host CPU can only read these flags by setting the A0 pin to＂ H ＂．

－Output buffer full flag OBF

This flag is set when data is written in the output data bus buffer and cleared when the host CPU reads the data in the output data bus buffer．When the $\overline{P_{\text {RDY }}}$ output mode selection bit is＂ 0 ＂，OBF is initialized to＂ 1 ＂only at reset and is cleared to＂ 0 ＂by setting the bus interface enable bit to＂ 1 ＂．In this case，OBF is set to＂ 1 ＂when the bus interface enable bit changes from＂ 1 ＂（enable）to＂ 0 ＂（disable）．But when the bus interface enable bit is set to＂ 1 ＂again，it is set to the value directly before clearing the bus interface enable bit．When the $\overline{P_{\text {RDY }}}$ output mode selection bit is＂ 1 ＂， OBF is initialized to＂ 1 ＂when the bus interface enable bit is cleared to＂ 0 ＂or reset．
In this case，OBF is set to＂ 1 ＂by clearing the bus interface enable bit and it is cleared to＂ 0 ＂by setting the bus inter－ face enable bit．

－Input buffer full flag IBF

This flag is set when the host CPU writes data in the input
data bus buffer and cleared when the slave CPU reads the data in the input data bus buffer．When the $\overline{P_{\text {RDY }}}$ output mode selection bit is＂ 0 ＂，IBF is initialized to＂ 0 ＂only at reset．
When the $\overline{P_{\text {ROY }}}$ output mode selection bit is＂ 1 ＂，IBF is in－ itialized to＂ 0 ＂when the bus interface enable bit is cleared to＂ 0 ＂or reset．

AO Flag

The level of the AO pin is latched when the host CPU writes data in the input data bus buffer．

【Input data bus buffer】 DBBIN

Data on the data bus is latched in DBBIN when there is a write request from the host CPU．The data in DBBIN can be read from the data bus buffer register（SFR address $00 \mathrm{E} 4_{16}$ ）．

【Output data bus buffer】 DBBOUT

Data is written in DBBOUT by writing data in data bus buf－ fer register（SFR address $00 E 4_{16}$ ）．The data in DBBOUT is output to the data bus（P5）when the host CPU issues a read request with setting the $A 0$ pin to＂L＂．

Table 2．Control I／O pin functions when bus interface function is selected

Pın	Name	Bus interface mode bit	$\overline{P_{\text {RDY }}}$ output mode slection bt	$\begin{array}{c\|} \hline \mathrm{P} 6_{3} / \overline{\mathrm{P}_{\text {RDY }}} \text { pin } \\ \text { unction selection bit } \end{array}$	Input／ Output	Function
$\mathrm{P6}_{3}$	$\overline{\mathrm{P}_{\text {RDV }}}$	－	0	0	Output	Status output The NOR of OBF and $\overline{\mathrm{IBF}}$ is output
				1	1／0	Port P6 6_{3} function
			1	0	Output	Status output Normally output＂ 0 ＂ One shot pulse whose length is half of a period of internal system clock ϕ is output， when OBF or $\overline{\mathrm{IBF}}$ changes from＂ 0 ＂to＂ 1 ＂ （See Fig 23）
				1	1／0	Port P_{6} function
$\mathrm{P6}_{4}$	ÁO	－	－	－	Input	Address input Used to select between DBBSTS and DBBOUT during host CPU read Also used to identify commands and data during write
P65	$\overline{\text { CS }}$	－	－	－	Input	Chip select input Used to select the data bus buffer Select when＂L＂
P66	$\overline{\mathrm{R}}$	0	－	－	Input	Timing signal used by the host CPU to read data from the data bus buffer
	E	1	－	－	Input	Inputs a tımıng signal E or inverse of ϕ
P67	$\overline{\text { w }}$	0	－	－	Input	Timing signal used by the host CPU to write data to the data bus buffer
	R／ \bar{W}	1	－	－	Input	Input $\mathrm{R} / \overline{\mathrm{W}}$ signal used to control the data transfer direction When this signal is＂ L ＂， data bus buffer write is synchronized with the E signal When it is＂ H ＂，data bus buffer read is synchronized with the E signal

Fig. 23 Output status of $\overline{\mathrm{P}_{\mathrm{ROY}}}$ pin

M37451 M4-XXXSP/FP/GP,M37451 M8-XXXSP/FP/GP M37451 MC-XXXSP/FP/GP

PWM

The PWM generator has two program-selectable modes; the high-speed mode (8 -bit resolution) and the highprecision mode (16 -bit resolution).
Also two clocks listed below can be selected as the count clock of each PWM mode.

- Oscillation frequency $f\left(\mathrm{X}_{\mathrm{IN}}\right)$ divided by 2
- 8-bit prescaler output (The count source of prescaler is oscillation frequency $f\left(\mathrm{X}_{\mathrm{IN}}\right)$ divided by 2)
Figure 26 shows a block diagram of PWM.
The count clock of PWM can be selected by the PWM clock source selection bit of additional function register (address 0009_{16}). And the register MISRG2 (address $00 D F_{16}$) is used to enable/disable the PWM and change its mode. When the PWM enable bit is set, the PWM generator starts from its initial state.
When PWM clock source selection bit is " 0 ", as shown in Figure 24, the output period is fixed.
In high-speed mode
$(2 \times 255) / \mathrm{f}\left(\mathrm{X}_{\mathrm{IN}}\right) \quad 40.8 \mu \mathrm{~s}$ at $\mathrm{f}\left(\mathrm{X}_{\mathrm{IN}}\right)=12.5 \mathrm{MHz}$
In high-precision mode
$(2 \times 65535) / f\left(X_{\text {IN }}\right) \quad 10.4856 \mathrm{~ms}$ at $\mathrm{f}\left(\mathrm{X}_{\mathrm{IN}}\right)=12.5 \mathrm{MHz}$
When PWM clock source selection bit is " 1 ", as shown in Figure 25 , the output period can be changed by setting the value to prescaler latch (address $00 \mathrm{D} 8_{16}$). (Note)
In high-speed mode
$\{2(n+1) \times 255\} / f\left(X_{\text {IN }}\right) \quad 40.8(n+1) \mu s$ at $f\left(X_{\text {IN }}\right)=$ 12.5 MHz

In high-precision mode

$$
\begin{aligned}
& \{2(n+1) \times 65535\} / f\left(X_{\text {IN }}\right) \quad 10.4856(n+1) \mathrm{ms} \text { at } f\left(X_{\text {IN }}\right) \\
& =12.5 \mathrm{MHz} \\
& n: \text { Set value to prescaler latch }
\end{aligned}
$$

The " H " width of the output pulse is determined by setting a value only in the $P W M_{L}$ register for high-speed mode and in both the $\mathrm{PWM}_{\mathrm{H}}$ and $\mathrm{PWM}_{\mathrm{L}}$ in this order for highprecision mode.
If the value set in the PWM register is m , the " H " width of the output pulse is
(PWM period $\times m$)/255 for high-speed mode and (PWM period $\times m$)/65535 for high-precision mode.
Note : Address $00 \mathrm{D} 8_{16}$ functions as port P4 register (read only) when read, and functions as PWM prescaler latch (write only) when write. So the value of PWM prescaler can not be read out.

Fig. 24 PWM output (when PWM clock source selection bit is " 0 ")

Fig. 25 PWM output (when PWM clock source selection bit is " 1 ")

Notes on PWM start

(1) Notes on PWM start

PWM starts after the PWM enable bit is set to enable and "L" level is output from the $\mathrm{PWM}_{\text {out }}$ pin. The length of this " \llcorner "-level output is as follows:
If the PWM prescaler is not used (PWM clock source selection bit=0): $1 / 2$ clock cycle
If the PWM prescaler is used (PWM clock source selection bit=1): $(1+n) / 2$ clock cycle (where n is the value set in the prescaler)
(2) Notes on PWM restart (only when PWM clock source selection bit is " 1 ")
If the PWM enable bit is set to enabled, then to disabled, then back to enabled, temporarily clear the PWM clock source selection bit to " 0 " then reset it to " 1 " to re-enable PWM.

Fig. 26 PWM generator block diagram

A-D CONVERTER

An A-D converter is an 8-bit successive approximation method. Figure 28 shows a block diagram of the A-D converter.
The 64-pin model has three analog voltage input pins; the 80-pin model has eight.
A-D conversion is started by a write operation to the analog input pin selection bit of the A-D control register shown in Figure 27 and by selecting the analog voltage input pin. The A-D interrupt request bit in the interrupt request register 2 is set when A-D conversion completes. The result of A-D conversion is stored in the A-D register.
The contents of the A-D register must not be read during A-D conversion and $f\left(X_{I N}\right)$ must be no less than 1 MHz during A-D conversion.

Fig. 27 Structure of A-D control register

Fig. 28 A-D converter block diagram

D-A CONVERTER

Two 8-bit resolution D-A converter channels are provided. Figure 29 shows a block diagram of the D-A converter.
D-A conversion is performed by setting a value in the D-Ai register (addresses $00 E 0_{16}$ and $00 E 1_{16}$). The result of $D-A$ conversion is output from the D-Ai output pin.
The output analog voltage $V_{D A}$ is determined by the value n (decimal) set in the D-Ai register as follows:
$\mathrm{V}_{\mathrm{DA}}=\mathrm{DAV}_{\mathrm{REF}} * \times \mathrm{n} / 256$

$$
* V_{\text {REF }} \text { for 64-pin model. }
$$

Fig. 29 D-A converter block diagram

MITSUBISHI MICROCOMPUTERS M37451 M4-XXXSP/FP/GP,M37451 M8-XXXSP/FP/GP M37451 MC-XXXSP/FP/GP

RESET CIRCUIT

The M37451 is reset according to the sequence shown in Figure 30. It starts the program from the address formed by using the content of address FFFF_{16} as the high order address and the content of the address FFFE_{16} as the low order address, when the RESET pin is held at "L" level for no less than 8 clock cycles while the power voltage is $5 \mathrm{~V} \pm$
10% and the crystal oscillator oscillation is stable and then returned to " H " level. The internal initializations following reset are shown in Figure 30.
An example of the reset circuit is shown in Figure 31. The reset input voltage must be kept below 0.6 V until the supply voltage surpasses 4.5 V .

Fig. 31 Example of reset circuit

Fig. 30 Internal state of microcomputer at reset

Fig. 32 Timing diagram at reset

I/O PORTS

(1) Port P0

Port PO is an 8-bit I/O port with CMOS output. As shown in the memory map (Figure 3), port P0 can be accessed at zero page memory address 00D0 ${ }_{16}$. Port PO has a directional register (address 00D1 ${ }_{16}$) which can be used to program each individual bit as input (" 0 ") or as output (" 1 "). If the pins are programmed as output, the output data is latched to the port register and then output. When data is read from the output port the output pin level is not read, only the latched data in the port register is read. This allows a previously ouptut value to be read correctly even though the output voltage level is shifted up or down. Pins set as input are in the floating state and the signal levels can thus be read When data is written into the input port, the data is latched only to the port latch and the pin still remains in the floating state.
Depending on the contents of the processor status register (bit 0 and bit 1 at address 00DF ${ }_{16}$), three different modes can be selected; single-chip mode, memory expansion mode and microprocessor mode.
In these modes it functions as address $\left(A_{7}-A_{0}\right)$ output port (excluding single-chip mode). For more details, see the processor mode information
(2) Port P1

In single-chip mode, port P1 has the same function as port PO. In other modes, it functions as address $\left(\mathrm{A}_{15^{-}}\right.$ A_{8}) output port.
Refer to the section on processor modes for details.
(3) Port P2

In single-chip mode, port P2 has the same function as port PO. In other modes, it functions as data ($D_{0}-D_{7}$) input/output port. Refer to the section on processor modes for details.
(4) Port P3

Port P3 is an 8-bit I/O port with function similar to port PO. All pins have program selectable dual functions. When a serial I/O function is selected, the input and output from pins $\mathrm{P}_{4}-\mathrm{P} 3_{7}$ are determined by the contents of the serial I/O registers.
This port is unaffected by the processor mode.
(5) Port P4

This is an input-only port and may be used as an analog voltage input port. The number of ports is different for the 64-pin model and $80-$ pin model The 64-pin model has three ports and the $80-$ pin model has eight ports.
(6) Port P5

This is an 8-bit I/O port with function similar to port P0. When slave mode is selected with a program, all ports change to the data bus for the master CPU. In this case, port input/output is unaffected by the directional register

This port is unaffected by the processor mode register.
(7) Port P6

This is an 8-bit input/output port with function similar to port P0.
When slave mode is selected with a program, ports $\mathrm{P}_{3}-\mathrm{P} 6_{7}$ change to the control bus for the bus interface function. In this case, port input/output is unaffected by the directional register.
Ports $\mathrm{P} 6_{0}-\mathrm{P} 6_{2}$ are shared with the external interrupt input pins $\left(\mathrm{INT}_{1}-\mid \mathrm{NT}_{3}\right)$. The INT interrupt constantly monitors the status of this port and generates an interrupt at a valide edge. Therefore, if the INT interrupt is not used, it must be disabled and if it is used, this port must be set to input.
(8) Port D-A

Port D-A consists of two analog voltage output pins. Any analog voltage can be generated by setting a value in the D-A register.

(9) ϕ pin

The ϕ pin normally outputs the internal system clock (the oscillation frequency of the resonator connected between the $X_{\text {IN }}$ and $X_{\text {Out }}$ pins, divided by four).
The timing clock output from the ϕ pin is in output mode if the timing output stop bit (bit 0 of address $00 D 9_{16}$) is set to " 0 ", and in stop mode if that bit is set to " 1 " and the timing clock output is " H ".
If the timing output clock selection bit (bit 1 of address $00 D 9_{16}$) is set to " 0 " when the timing output stop bit is " 0 " (timing output is being output), the internal system clock that is output from the ϕ pin is the oscillation frequency divided by four if the bus cycle control bit is " 0 ", or the oscillation frequency divided by eight if that bit is " 1 ". If the timing output clock selection bit is " 1 ", the bus cycle control bit is ignored-the clock that is output is the oscillation frequency divided by four. (See Fig. 33)
(10) SYNC pin

This pin outputs a signal that is " H " during one cycle of the ϕ during operation code fetch.
(11) R / \bar{W} pin

This is a control signal output pin that indicates the local bus direction in memory expansion and microprocessor modes.
(12) $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$ pins

These are local bus write and read timing signal output pins for memory expansion and microprocessor modes. A signal equivalent to the signal otuput from the R / \bar{W} separated by the ϕ signal is output.
These pins are used exclusively by the 80 -pin model.
(13) RESET ${ }_{\text {Out }}$ pin

This pin goes " H " while the microprocessor is being reset. It can be used as a reset signal output pin for peripheral devices.
This pin is used exclusively by the 80 -pin model.

Fig. 33 Output from ϕ pin

Port P0, P1, P2

$P 3_{0}-P 3_{2}$

P_{3}

$P 3_{4}$

P36

Fig. 34 Ports P0-P6 block diagram (single-chip mode) and output only pin output format (1)
P_{7}

Port P4

$$
-4
$$

$\mathrm{P5}_{0}-\mathrm{P5}_{7}$

(1) $\mathrm{P} 5_{0}$ does not have a status register and OBF flag is set (2) $\mathrm{P} 5_{1}$ does not have a status register and IBF flag is set (3) $\mathrm{P5}_{3}$ does not have a status register and A0 flag is set

P6 $0_{0}-\mathrm{Pb}_{2}$

R/W, SYNC, $\overline{R D}, \overline{W R}$, RESET ${ }_{\text {out }}$

Tıming output stop bit

$\mathrm{P6}_{4}-\mathrm{P} 6_{7}$

DBB control input $\mathrm{P6}_{4} \cdots \cdots$ A0 input
$\mathrm{P}_{5} \cdots \cdot \overline{\mathrm{CS}}$ input
$\mathrm{PG}_{6} \cdots \cdots \bar{R} / E$ input
$\mathrm{P}_{7} \cdots \cdots \cdot \bar{W} / \mathrm{R} / \overline{\mathrm{W}}$ input

Fig. 35 Ports P0-P6 block diagram (single-chip mode) and output only pin output format (2)

PROCESSOR MODE

By changing the contents of the processor mode bits (bits 0 and 1 at address $00 \mathrm{DF}_{16}$), three different operation modes can be selected; single-chip mode, memory expansion mode, and microprocessor mode.
In the memory expansion mode and the microprocessor mode, ports P0-P2 can be used as address, and data input/output pins.
Figure 37 shows the functions of ports $\mathrm{P} 0-\mathrm{P} 2$
The memory map for the single-chip mode is shown in Figure 2 and for other modes, in Figure 36.
By connecting $\mathrm{CNV}_{\mathrm{Ss}}$ to V_{Ss}, all three modes can be selected through software by changing the processor mode bits. Connecting $\mathrm{CNV}_{\mathrm{SS}}$ to V_{CC} automatically forces the microcomputer into microprocessor mode.
The three different modes are explained as follows

Fig. 36 External memory map in processor mode
(M37451M4)
(1) Single-chip mode [00]

The microcomputer will automatically be in the singlechip mode when started from reset, if $\mathrm{CNV}_{\text {ss }}$ is connected to $\mathrm{V}_{\text {ss }}$. Ports P0-P2 will work as original I/O ports.
(2) Memory expansion mode [01]

The microcomputer will be placed in the memory expansion mode when $\mathrm{CNV}_{\text {Ss }}$ is connected to V_{SS} and the processor mode bits are set to "01" This mode is used to add external memory when the internal memory is not sufficient.
In this mode, port P0 and port P1 are as a system address bus and the original I/O pin function is lost.
Port P2 becomes the data bus of $\mathrm{D}_{7}-\mathrm{D}_{0}$ (including instruction code) and loses its normal I/O functions.
(3) Microprocessor mode [10]

After connecting $C N V_{S S}$ to $V_{C C}$ and initiating a reset or connecting $\mathrm{CNV}_{\text {Ss }}$ to $\mathrm{V}_{\text {Ss }}$ and the processor mode bits are set to " 10 ", the microcomputer will automatically default to this mode. In this mode, the internal ROM is disabled so the external memory is required. Other functions are same as the memory expansion mode. The relationship between the input level of $C N V_{\text {sS }}$ and the processor mode is shown in Table 3.

Fig. 37 Processor mode and function of ports P0-P2

Table 3. Relationship between $\mathrm{CNV}_{\text {ss }}$ pin input level and processor mode

$\mathrm{CNV}_{\mathrm{SS}}$	Mode	Explanation
V_{SS}	- Single-chip mode - Memory expansion mode - Microprocessor mode	The single-chip mode is set by the reset All modes can be selected by changing the processor mode bit with the program
V_{CC}	- Microprocessor mode	The microprocessor mode is set by the reset

CLOCK GENERATING CIRCUIT

The built-in clock generating circuits are shown in Figure 40.

When an STP instruction is executed, the internal clock ϕ stops oscillating at "H" level. At the same time, FF_{16} is set in the low-order byte of timer $1,03_{16}$ is set in the high-order byte, and timer 1 count source is forced to $f\left(X_{\text {IN }}\right)$ divided by four. This connection is cleared when timer 1 overflows or the reset is in, as discussed in the timer section.

The oscillator is restarted when an interrupt is accepted. However, the clock ϕ keeps its " H " level until timer 1 overflows.
This is because the oscillator needs a set-up period if a ceramic or a quartz crystal oscillator is used
When the WIT instruction is executed, the clock ϕ stops in the " H " level but the oscillator continues running. This wait state is cleared when an interrupt is accepted. Since the oscillation does not stop, the next instructions are executed at once.
To return from the stop or the wait status, the interrupt enable bit must be set to " 1 " before executing STP or WIT instruction. Especially, to return from the stop status, the timer 1 count enable bit must be set to " 1 " and the timer 1 interrupt enable bit must be set to " 0 " before executing STP instruction.
With the M37451, the MISRG2 bit 6 shown in Figure 22 can be used to double the bus cycle. However, the timer, UART, and PWM operations are unaffected. This facilitates
accessing of slow peripheral LSIs when external memory and I/O are extended in memory expansion mode or microprocessor mode. Note that this bit also affects the bus cycle in single-chip mode.
The circuit example using a ceramıc oscillator (or a quartz crystal oscillator) is shown in Figure 38.
The constant capacitance will differ depending on which oscillator is used, and should be set to the manufactures suggested value.
The example of external clock usage is shown in Figure 39.
$X_{\text {IN }}$ is the input, and $X_{\text {OUt }}$ is open.

Fig. 38 External ceramic resonator circuit

Fig. 39 External clock input circuit

Fig. 40 Block diagram of clock generating circuit

MITSUBISHI MICROCOMPUTERS
 M37451 M4-XXXSP/FP/GP,M37451 M8-XXXSP/FP/GP M37451 MC-XXXSP/FP/GP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

PROGRAMMING NOTES

(1) Processor status register

1. Except for the interrupt disable flag. (I) being set to " 1 ", the content of the processor status register (PS) is unpredictable after a reset. Therefore, flags affecting program execution must be initialized.
The T flag and D flag which affect arithmetic operations, must always be initialized.
2. An NOP instruction must be used after the execution of a PLP instruction.
(2) Interrupts

Even though the BBC and BBS instructions are executed just after the interrupt request bits are modified (by the program), those instructions are only valid for the contents before the modification. Also, at least one instruction cycle must be used (such as an NOP) between the modification of the interrupt request bits and the execution of the BBC and BBS instructions.
(3) Decimal operations

1. Decimal operations are performed by setting the decimal mode flag (D) and executing the ADC or SBC instruction In this case, there must be at least one instruction following the ADC or SBC instruction before executing the SEC, CLC, or CLD instruction.
2. The N (Negative), V (Overflow), and Z (Zero) flags are ignored during decimal mode.
(4) Timers
3. The frequency dividing ratio when n (0 to 65535) is written in the timer latch is $1 /(n+1)$.
4. When directly writing a value in the timer, set the count enable bit to count disable (0) and write in the low-order byte first and then in the high-order byte.
5. The timer value must be read from the high-order byte first.
(5) Serial I/O

In clock synchronous serial I/O mode, if the receiver is to output an $\overline{S_{R D Y}}$ using an external clock, the receive enable bit, $\mathrm{S}_{\mathrm{RDY}}$ output enable bit, and transmission enable bit must be set to " 1 "
(6) A-D conversion

The comparator consists of coupling capacitors that lose their charge when the clock frequency is low. Therefore, $f\left(X_{I N}\right)$ must be no less than 1 MHz during A-D conversion. (If the bus cycle control bit is " 1 ", the bus cycle is doubled and the A-D conversion time is also doubled, therefore, $f\left(X_{I N}\right)$ must not be less than 2 MHz .) Also, the STP and WIT instructions must not be executed during A-D conversion
(7) STP instruciton

The STP instruction must be executed after setting the timer 1 count enable bit (bit 4 at address $00 D E_{16}$) to enable ("1").
(8) Multiply/Divide instructions

1. The MUL and DIV instructions are not affected by the T and D flags.
2. The contents of the processor status register are unaffected by multiply or divide instructions.

DATA REQUIRED FOR MASK ORDERING

Please send the following data for mask orders.

- mask ROM order confirmation form
- mark specification form
- ROM data….EPROM 3 sets

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratıngs	Unit
V_{CC}	Supply voltage	With respect to V_{SS} Output transistors are at "off" state	-0.3 to 7	V
V_{1}	Input voltage $\mathrm{X}_{\text {IN }}, \overline{\mathrm{RESET}}$		-0.3 to 7	V
V_{1}	$\begin{aligned} & \text { Input voltage } \mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P1}_{0}-\mathrm{P} 1_{7}, \mathrm{P}_{2}-\mathrm{P}_{7}, \\ & \mathrm{P}_{3}-\mathrm{P3}_{7}, \mathrm{P}_{0}-\mathrm{P} 4_{7}, \mathrm{P5}_{0}-\mathrm{P} 5_{7}, \\ & \mathrm{P}_{0}-\mathrm{P6}_{7}, \mathrm{ADV}_{\mathrm{REF}}, \mathrm{DAV}_{\mathrm{REF}}, \\ & \mathrm{~V}_{\mathrm{REF}}, \mathrm{AV} \mathrm{~V}_{\mathrm{CC}} \\ & \hline \end{aligned}$		-0.3 to $\mathrm{V}_{\mathrm{cc}}+0.3$	V
V_{1}	Input voltage $\mathrm{CNV}_{\text {SS }}$		-0.3 to 13	V
V_{0}			-0.3 to $\mathrm{V}_{\mathrm{cc}}+0.3$	V
$\mathrm{Pd}_{\text {d }}$	Power dissipation	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$	1000(Note 1)	mW
Topr	Operating temperature		-20 to 85	${ }^{\circ} \mathrm{C}$
Tstg	Storage temperature		-40 to 125	${ }^{\circ} \mathrm{C}$

Note 1: 500 mW in case of the flat package

RECOMMENDED OPERATING CONDITIONS

($\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{Ta}_{\mathrm{a}}=-20$ to $85^{\circ} \mathrm{C}$ unless otherwise noted)

Symbol	Parameter	Limits			Unit
		Mın	Typ	Max	
V_{cc}	Supply voltage	4.5	5	5.5	V
V_{ss}	Supply voltage		0		V
$\mathrm{V}_{\text {IH }}$	"H" input voltage $\overline{\mathrm{RESET}}, \mathrm{X}_{\text {IN }}, \mathrm{CNV}_{\text {SS }}$ (Note 1)	0.8 Vcc		V_{CC}	V
$\mathrm{V}_{\text {IH }}$	$\begin{aligned} \text { "H" input voltage } & \mathrm{PO}_{0}-\mathrm{P} 0_{7}, \mathrm{P1}_{0}-\mathrm{P} 1_{7}, \mathrm{P} 2_{0}-\mathrm{P} 2_{7}, \\ & \mathrm{P}_{0}-\mathrm{P} 3_{7}, \mathrm{P} 4_{0}-\mathrm{P} 4_{7}, \mathrm{P} 5_{0}-\mathrm{P} 5_{7}, \\ & \mathrm{P} 6_{0}-\mathrm{P} 6_{7} \\ & \text { (expect Note 1) } \end{aligned}$	2.0		V_{CC}	V
$\mathrm{V}_{\text {IL }}$	"L" input voltage $\mathrm{CNV}_{\text {SS }}$ (Note 1)	0		$0.2 \mathrm{~V}_{\mathrm{cc}}$	V
$V_{\text {IL }}$	$\begin{aligned} & \text { "L" input voltage } \mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P1}_{0}-\mathrm{P} 1_{7}, \mathrm{P} 2_{0}-\mathrm{P} 2_{7}, \\ & \mathrm{P}_{0}-\mathrm{P} 3_{7}, \mathrm{P}_{0}-\mathrm{P} 4_{7}, \mathrm{P} 5_{0}-\mathrm{P} 5_{7} \\ & \mathrm{P} 6_{0}-\mathrm{P} 6_{7} \\ & \text { (expect Note 1) } \\ & \hline \end{aligned}$	0	,	0.8	V
$V_{\text {IL }}$	"L" input voltage RESET	0		$0.12 \mathrm{~V}_{\mathrm{CC}}$	V
$V_{\text {IL }}$	"L" input voltage $X^{\text {IN }}$	0		$0.16 \mathrm{~V}_{\mathrm{cc}}$	V
$\mathrm{I}_{\mathrm{OL} \text { (peak) }}$	$\begin{aligned} & \text { "L" peak output current } \begin{aligned} & \mathrm{P}_{0}-\mathrm{P} 0_{7}, \\ & \mathrm{P} 2_{0}-\mathrm{P} 1_{0}-\mathrm{P} 1_{7}, \\ & \mathrm{P} 3_{0}-\mathrm{P} 3_{7} \\ & \mathrm{P} 0_{0}-\mathrm{P} 5_{7}, \mathrm{P} 6_{0}-\mathrm{P} 6_{7} \end{aligned} \end{aligned}$			10	mA
$\mathrm{l} \mathrm{OL}_{(a v g)}$	```"L" average output current P0 P2 }\mp@subsup{0}{0}{-P2 P5```			5	mA
$\mathrm{I}_{\mathrm{OH} \text { (peak) }}$	$\begin{aligned} \text { "H" peak output current } & \mathrm{P} 0_{0}-\mathrm{P} 0_{7}, \\ & \mathrm{P} 1_{0}-\mathrm{P} 1_{7}, \\ & \mathrm{P} 2_{0}-\mathrm{P} 2_{7}, \\ \mathrm{P} 5_{0}-\mathrm{P} 5_{7}-\mathrm{P}, & \mathrm{P} 6_{0}-\mathrm{P} 6_{7} \end{aligned}$			-10	mA
$\mathrm{IOH}(\mathrm{avg})$	```"H" average output current PO P2}\mp@subsup{0}{0}{}-\textrm{P}\mp@subsup{2}{7}{},\mp@subsup{\textrm{P3}}{0}{}-\textrm{P}\mp@subsup{3}{7}{} P5```			-5	mA
$f\left(X_{\text {IN }}\right)$	Internal clock oscıllatıng frequency	1		12.5	MHz

Note 1 : Ports operating as special function pins $\mathrm{INT}_{1}-\mathrm{INT}_{3}\left(\mathrm{PG}_{0}-\mathrm{PG}_{2}\right), \mathrm{EV}_{1}-\mathrm{EV}_{3}\left(\mathrm{P}_{0}-\mathrm{P} 3_{2}\right), \mathrm{R}_{\mathrm{X}} \mathrm{D}\left(\mathrm{P3} 3_{4}\right)$,
$\mathrm{S}_{\mathrm{CLK}}\left(\mathrm{P}_{6}\right)$
$2: \mathrm{I}_{\mathrm{OL}(\text { avg })}$ and $\mathrm{I}_{\mathrm{OH}(\text { avg })}$ are the average current in 100 ms
3 : The total of I_{OL} of Port $\mathrm{P} 0, \mathrm{P} 1$, and P 2 should be 40 mA (max)
The total of I_{OL} of Port P3, P5, P6, R/W, SYNC, RESET ${ }_{\text {OUT }}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}$ and ϕ should be 40 mA (max)
The total of I_{OH} of Port P0, P1, and P2 should be 40 mA (max)
The total of I_{OH} of Port P3, P5, P6, R/W, SYNC, RESET ${ }_{\text {OUT }}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}$, and ϕ should be 40 mA (max)

ELECTRICAL CHARACTERISTICS $\left(\mathrm{v}_{\mathrm{cc}}=5 \mathrm{~V} \pm 10 \%, \mathrm{v}_{\mathrm{ss}}=0 \mathrm{v}, \mathrm{T}_{\mathrm{a}}=-20\right.$ to $\left.85^{\circ} \mathrm{C}, \mathrm{f}\left(\mathrm{X}_{\mathrm{N}}\right)=12.5 \mathrm{MHz}\right)$

Symbol	Parameter	Test conditions	Lımits			Unit
			Min	Typ	Max	
V_{OH}	" H " output voltage $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \mathrm{R} / \overline{\mathrm{W}}, \mathrm{SYNC}, \mathrm{RESET}$ Out, ϕ	$\mathrm{l}_{\mathrm{OH}}=-2 \mathrm{~mA}$	$\mathrm{V}_{c c}-1$			V
V_{OH}		$\mathrm{I}_{\mathrm{OH}}=-5 \mathrm{~mA}$	$\mathrm{v}_{\mathrm{CC}}-1$			V
$\mathrm{V}_{\text {OL }}$		$\mathrm{I}_{\mathrm{oL}}=2 \mathrm{~mA}$			0.45	V
$\mathrm{V}_{\text {OL }}$		$\mathrm{IOL}=5 \mathrm{~mA}$			1	V
$\mathrm{V}_{\text {T+ }}-\mathrm{V}_{\text {T- }}$	Hysteresis INT1-INT3 $\left(\mathrm{P}_{6}-\mathrm{Pb}_{2}\right)$, $\mathrm{EV}_{1}-\mathrm{EV}_{3}\left(\mathrm{P}_{3}-\mathrm{P3}_{2}\right)$, $\mathrm{R}_{\mathrm{X}} \mathrm{D}\left(\mathrm{P3}_{4}\right), \mathrm{S}_{\mathrm{CLK}}\left(\mathrm{P}_{6}\right)$	Function input level	0.3		1	V
$\mathrm{V}_{\mathrm{T}_{+}-\mathrm{V}_{\text {T- }}}$	Hysteresis $\overline{\mathrm{RESET}}$				0.7	V
$\mathrm{V}_{T+}-\mathrm{V}_{T_{-}}$	Hysteresis $\mathrm{X}_{\text {IN }}$		0.1		0.5	V
IIL		$\mathrm{v}_{1}=\mathrm{v}_{\mathrm{ss}}$	-5		5	$\mu \mathrm{A}$
$I_{1 H}$		$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{cc}}$	-5		5	$\mu \mathrm{A}$
$\mathrm{V}_{\text {RAM }}$	RAM retention voltage	At stop mode	2			V
I_{cc}	Supply current	$f\left(X_{\mathrm{IN}}\right)=125 \mathrm{MHz}$ At system operation		8	15	mA
		At stop mode (Note 1)		1	10	$\mu \mathrm{A}$

Note 1 : The termınals $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \mathrm{SYNC}, \mathrm{R} / \overline{\mathrm{W}}$, RESET $_{\text {Out }}, \phi, \mathrm{D}-\mathrm{A}_{1}$ and $\mathrm{D}-\mathrm{A}_{2}$ are all open The other ports, which are in the input mode, are connected to $V_{S S}$ A-D converter is in the A-D completion state The current through ADV REF and DAV REF is not included. (Fig 45)

A-D CONVERTER CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{CC}}=\mathrm{AV} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=\mathrm{AV}\right.$ SS $=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-20$ to $85^{\circ} \mathrm{C}, \mathrm{f}\left(\mathrm{X}_{\mathrm{IN}}\right)=12.5 \mathrm{MHz}$ unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Unit
			Mın	Typ	Max	
-	Resolution				8	Bits
-	Absolute accuracy	$\mathrm{V}_{\mathrm{CC}}=A V_{C C}=A D V_{\text {REF }}=5 \mathrm{~V} \pm 10 \%$		± 1.5	± 3	LSB
$\mathrm{t}_{\text {CONV }}$	Conversion time				49	$\mathrm{t}_{\mathrm{c}(\phi)}$
$V_{\text {IA }}$	Analog input voltage		$\mathrm{AV}_{\text {SS }}$		$\mathrm{AV}_{\mathrm{CC}}$	V
$\mathrm{V}_{\text {ADVREF }}$	Reference input voltage		2		V_{Cc}	V
R LADDER	Ladder resistance value	$\mathrm{ADV}_{\text {REF }}=5 \mathrm{~V}$	20	35	50	$\mathrm{k} \Omega$
$\mathrm{l}_{\text {IADVREF }}$	Reference input current	$\mathrm{ADV}_{\text {REF }}=5 \mathrm{~V}$	0.1	0.14	0.25	mA
$V_{\text {AVCC }}$	Analog power supply input voltage			V_{CC}		V
$\mathrm{V}_{\text {AVSS }}$	Analog power supply input voltage			0		V

D-A CONVERTER CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=\mathrm{A} \mathrm{V}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-20\right.$ to $85^{\circ} \mathrm{C}$ unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Unit
			Mın	Typ	Max	
-	Resolution				8	Bits
-	Full scale deviation	$\mathrm{V}_{\mathrm{CC}}=\mathrm{DAV}_{\text {REF }}=5 \mathrm{~V} \pm 10 \%$			1.0	\%
$\mathrm{t}_{\text {su }}$	Set time				3	$\mu \mathrm{s}$
R_{O}	Output resistance		1	2	4	$k \Omega$
$\mathrm{V}_{\text {AVSS }}$	Analog power supply input voltage			0		V
$V_{\text {davRef }}$	Reference input voltage		4		V_{Cc}	V
I DavaEf	Reference power input current		0	5	10	mA

TIMING REQUIREMENTS
Port/single-chip mode ($\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-20$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Unit
			Mın	Typ	Max	
	Port P0 input setup time	Fig 41	160			ns
	Port P1 input setup time		160			ns
	Port P2 input setup time		160			ns
$t_{\text {SU }}(\mathrm{P} 3 \mathrm{D}-\phi$)	Port P3 input setup time		160			ns
	Port P4 input setup time		160			ns
$t_{\text {SU }}$ (PSD- ${ }^{\text {d }}$)	Port P5 input setup time		160			ns
	Port P6 input setup time		160			ns
$t_{\text {h }}(\phi-P O D)$	Port P0 input hold time		40			ns
$\mathrm{th}_{\mathrm{h}}(\phi-\mathrm{P} 1 \mathrm{D})$	Port P1 input hold time		40			ns
$t_{\text {h }}(\phi-P 2 D)$	Port P2 input hold time		40			ns
	Port P3 input hold tıme		40			ns
th(ϕ - P4D $)$	Port P4 input hold time		40			ns
$t_{\text {h }}(\phi-P 5 D)$	Port P5 input hold time		40			ns
	Port P6 input hold time		40			ns
$t_{C}\left(X_{\text {IN }}\right)$	External clock input cycle time		80		1000	ns
$t_{W}\left(X_{\text {IN }} L\right)$	External clock input "L" pulse width		20			ns
$t_{w}\left(X^{\text {IN }} \mathrm{H}\right)$	External clock input "H" pulse width		20			ns
$\operatorname{tr}^{(}\left(X_{\text {IN }}\right)$	External clock risıng edge tıme				20	ns
$\mathrm{tf}_{\mathrm{f}}\left(\mathrm{X}_{\mathrm{IN}}\right)$	External clock falling edge tıme				20	ns

Master CPU bus interface timing ($\overline{\mathbf{R}}$ and $\overline{\mathbf{W}}$ separation type mode)

$\left(\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-20\right.$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Unit
			Min	Typ	Max	
$t_{\text {su }}$ (cs-R)	$\overline{\mathrm{CS}}$ setup time	Fig 42	0			ns
$t_{\text {su }}$ (cs-w)	$\overline{\text { CS }}$ setup time		0			ns
th($\mathrm{R}-\mathrm{CS}$)	$\overline{C S}$ hold tıme		0			ns
th(w-cs)	$\overline{C S}$ hold time		0			ns
$t_{\text {su }}(\mathrm{A}-\mathrm{R})$	A0 setup time		10			ns
$\operatorname{tsu}_{\text {su }}(A-w)$	A0 setup time		10			ns
$\operatorname{th}(R-A)$	A0 hold time		0			ns
$t h(w-A)$	AO hold time		0			ns
$t_{W(R)}$	Read pulse width		120			ns
$t_{w}(\mathrm{w})$	Write pulse width		120			ns
$t_{\text {su }}(\mathrm{D}-\mathrm{w}$)	Date input setup time before write		50			ns
th(w-D)	Date input hold time after write		0			ns

Master CPU bus interface timing (R/W type mode)

$\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-20\right.$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test conditions	Lımıts			Unit
			Min	Typ	Max	
$t_{\text {su }}$ (cs-E)	$\overline{\text { CS }}$ setup time	FIg 42	0			ns
th(E-CS)	$\overline{\text { CS }}$ hold time		0		.	ns
$t_{\text {su }}\left(\frac{A-E)}{}\right.$	AO setup time		10			ns
$\operatorname{th}(E-A)$	A0 hold time		0			ns
$t_{\text {Su }}($ RW $-E)$	$\mathrm{R} / \overline{\mathrm{W}}$ setup time		0			ns
$\mathrm{th}_{\text {(}} \mathrm{E}-\mathrm{RW}$)	R/W hold time		0			ns
$\mathrm{t}_{\mathrm{W} \text { (EL) }}$	Enable clock "L" pulse width		120			ns
$t_{\text {W (EH) }}$	Enable clock "H" pulse width		120			ns
$\operatorname{tr}_{(1 E)}$	Enable clock rising edge time				25	ns
$t_{f(E)}$	Enable clock falling edge time				25	ns
$\mathrm{t}_{\text {Su }}(\mathrm{D}-\mathrm{E})$	Data input setup time before write		50			ns
$t_{\text {h }}(E-D)$	Data input hold time after write		0			ns

Local bus/memory expansion mode, microprocessor mode
$\left(\mathrm{V}_{\mathrm{cC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-20\right.$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Unit
			Min	Typ	Max	
$t_{\text {Su }}(\mathrm{D}-\phi)$	Data input setup time	Fig 43	60			ns
th($\phi-D$)	Data input hold time		0			ns
$t_{\text {Su }}(\mathrm{D}-\mathrm{RD}$)	Data input setup time		60			ns
$\operatorname{th}(R D-D)$	Data input hold time		0			ns

Clock synchronous serial I/O $\cdot\left(\mathrm{v}_{\mathrm{cc}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{VV}, \mathrm{T}_{\mathrm{a}}=-20\right.$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Unit
			Min	Typ	Max	
$\mathrm{t}_{\text {SU }}(\mathrm{RXD}-\mathrm{SCLK}$)	Serial input setup time	Fig. 44	160			ns
th(SCLK-RXD)	Serial input hold time		80			ns
$\operatorname{tr}_{(R \times D)}$	Serial input rising edge time				30	ns
$\mathrm{tf}_{(} \mathbf{R \times D}$)	Serial input falling edge tıme				30	ns
$\operatorname{tr}_{\text {(SCLK }}$)	Serial input clock risıng edge time				30	ns
$t_{\text {f }}\left(S_{\text {cLK }}\right)$	Serial input clock falling edge time				30	ns
	Serial input clock period		640			ns
$\mathrm{t}_{\mathbf{W} \text { (SCLKL) }}$	Serial input clock "L" pulse width		290			ns
$\mathrm{t}_{\mathrm{W}}\left(\mathrm{SCLKH}^{\text {che }}\right.$	Serial input clock "H" pulse width		290			ns

SWITCHING CHARACTERISTICS

Port/single-chip mode ($\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-20$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Unit
			Min	Typ	Max	
$t_{\text {d }}(\underline{\text { P P POQ }}$)	Port P0 data output delay time	Fig 41			200	ns
$\mathrm{t}_{\mathrm{d}(\phi-\mathrm{P} 1 \mathrm{Q}}$)	Port P1 data output delay time				200	ns
$t_{\text {d }}\left(\phi-\mathrm{P}_{2} \mathrm{Q}\right)$	Port P2 data output delay time				200	ns
$t_{\text {d }}(\phi-P 3 Q)$	Port P3 data output delay time				200	ns
$t_{\text {d }}(\phi-\mathrm{P} 5 \mathrm{O})$	Port P5 data output delay time				200	ns
$t_{\text {d }}(\phi-P 6 \mathrm{Q})$	Port P6 data output delay time				200	ns
$t_{\text {c }}(\boldsymbol{\phi})$	Cycle time		320		4000	ns
$t_{W(\phi H)}$	ϕ clock pulse width ("H" level)		150			ns
$t_{w(\phi L)}$	ϕ clock pulse width ("L" level)		130			ns
$\operatorname{tr}_{(}(\phi)$	ϕ clock rising edge time				20	ns
$\mathrm{t}_{\mathrm{f}}(\phi)$	ϕ clock falling edge tume				20	ns

Master CPU bus interface (\bar{R} and \bar{W} separation type mode)
$\left(\mathrm{V}_{\mathrm{cC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-20\right.$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test condition	Limits			Unit
			Mın	Typ	Max	
$\mathrm{ta}_{\mathrm{a}}(\mathrm{R}-\mathrm{D})$	Data output enable time after read	Fig 42			80	ns
$t_{V(R-D)}$	Data output disable time after read		0		30	ns
$\mathrm{t}_{\text {PLH }}(\mathrm{R}-\mathrm{PR})$	$\overline{P_{\text {RDY }}}$ output transmission time after read				150	ns
$\left.\mathrm{t}_{\text {PLH }} \mathbf{W}-\mathrm{PR}\right)$	$\overline{P_{\text {RDY }}}$ output transmission time after write				150	ns

Master CPU bus interface ($\mathbf{R} / \overline{\mathbf{W}}$ type mode) $\left(\mathrm{V}_{\mathrm{cC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-20\right.$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test condition	Limits			Unit
			Min	Typ	Max	
$\mathrm{ta}_{\mathrm{a}}(\mathrm{E}-\mathrm{D})$	Data output enable time after read	Fig. 42			80	ns
$\mathrm{t}_{\mathrm{V}(\mathrm{E}-\mathrm{D})}$	Data output disable tıme after read		0		30	ns
$\mathrm{t}_{\text {PLH }}(\mathrm{E}-\mathrm{PR})$	$\overline{P_{\text {Roy }}}$ output transmission time after E clock				150	ns

Local bus/memory expansion mode, microprocessor mode
$\left(\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-20\right.$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test condition	Limits			Unit
			Mın	Typ	Max	
$t_{\text {d }}(\phi-A)$	Address delay time after ϕ	Fig 43			80	ns
$\mathrm{t}_{\mathrm{V}(\phi-A)}$	Address effective time after ϕ		10			ns
$\mathrm{t}_{V}(\mathrm{RD}-\mathrm{A})$	Address effective time after $\overline{\mathrm{RD}}$		10			ns
$t v(W R-A)$	Address effective time after WR		10			ns
$t_{\text {d }}(\phi-D)$	Data output delay time after ϕ				80	ns
$t_{\text {d }}(\mathrm{WR}-\mathrm{D})$	Data output delay time after $\overline{\text { WR }}$				80	ns
$t_{V}(\phi-D)$	Data output effective time after ϕ		20			ns
$t_{V}(W R-D)$	Data output effective time after \bar{W}		20			ns
$t_{\text {d }}(\phi-R W)$	$\mathrm{R} / \overline{\mathrm{W}}$ delay time after ϕ				80	ns
$\mathrm{t}_{\mathrm{d}(\phi-\mathrm{SYNC}}$)	SYNC delay time after ϕ				80	ns
$t_{W(R D)}$	$\overline{\mathrm{RD}}$ pulse width		130			ns
$t_{W}(\mathrm{WR})$	$\overline{\text { WR pulse width }}$		130			ns

Clock synchronous serial I/O $\left(v_{c c}=5 \mathrm{v} \pm 10 \%, \mathrm{v}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-20\right.$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test conditıons	Lımits			Unit
			Min	Typ.	Max.	
$\mathrm{t}_{\mathrm{d}\left(\mathrm{scLK}-\mathrm{T}_{\mathrm{X}} \mathrm{D}\right)}$	Serial output delay time	Fig 44			100	ns
$\operatorname{tr}_{\text {(}}^{\text {cluk }}$)	Serial output clock rising edge tıme				30	ns
$\mathrm{t}_{\mathrm{f}}\left(\mathrm{S}_{\text {cLK }}\right)$	Serial output clock falling edge time				30	ns
$\mathrm{t}_{\mathbf{C} \text { (} \mathrm{SCLK}^{\text {c }} \text {) }}$	Serial output clock period		640			ns
$t_{\text {w }}\left(\mathrm{s}_{\text {cLKL }}\right)$	Serial output clock "L" pulse width		290			ns
$\mathrm{t}_{\mathrm{w}}\left(\mathrm{SCLKH}^{\text {c }}\right.$)	Serial output clock "H" pulse width		290			ns

TEST CONDITION

Input voltage level: $\mathrm{V}_{\mathrm{IH}} \quad 2.4 \mathrm{~V}$
$\mathrm{V}_{\mathrm{IL}} \quad 0.45 \mathrm{~V}$
Output test level: $\mathrm{V}_{\mathrm{OH}} 2.0 \mathrm{~V}$
$\mathrm{V}_{\mathrm{OL}} 0.8 \mathrm{~V}$

Fig. 41 Test circuit in single-chip mode

Fig. 44 Serial I/O test circuit

Fig. 42 Master CPU bus interface test circuit

Fig. 43 Local bus test circuit

Fig. $45 \mathrm{I}_{\mathrm{CC}}$ (at stop mode) test condition

TIMING DIAGRAM

Port/single-chip mode timing diagram

Note : $\mathrm{V}_{\mathrm{IH}}=0.8 \mathrm{~V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{IL}}=0.16 \mathrm{~V}_{\mathrm{CC}}$ of X_{IN}

Master CPU bus interface/ $\overline{\mathrm{R}}$ and $\overline{\mathrm{W}}$ separation type timing diagram
Read

Write

Master CPU interface/ R/W type timing diagram

E

$\overline{P_{\text {RDY }}}$

Local bus timing diagram

$A_{0}-A_{15}$
$\overline{R D}$
$\mathrm{D}_{0}-\mathrm{D}_{7}$
CPU read
$\overline{W R}$
$\mathrm{D}_{0}-\mathrm{D}_{7}$
CPU write

Serial I/O timing diagram

DESCRIPTION

The M37451SSP/FP/GP is a single-chip microcomputer designed with CMOS silicon gate technology. It is housed in a 64-pin shrink plastic molded DIP or a 0.8 mm pitch or 0.65 mm pitch 80 -pin plastıc molded QFP. In addition to its simple instruction sets, the ROM, RAM and I/O addresses are placed on the same memory map to enable easy programming. It is suited for office automation equipment and control devices. The low power consumption made possible by the use of a CMOS process makes it especially suitable for battery powered devices requiring low power consumption. It also has a unique feature that enables it to be used as a slave microcomputer.
M37451SSP/FP/GP has basically the same functions as M37451M4-XXXSP/FP/GP except the RAM size and the fact that these three need external ROM area.

FEATURES

- Number of basic instructions 71
69 MELPS 740 basic instructions +2 multiply/divide instructions

- Instruction execution time
(minimum instructions at 12.5 MHz frequency) $0.64 \mu \mathrm{~s}$
- Single power supply... $5 \mathrm{~V} \pm 10 \%$
- Power dissipation normal operation mode (at 12.5 MHz frequency)

40 mW

- Interrupt.. 15 events
- Master CPU bus interface $\ldots \ldots \ldots$
- 16-bit timer 3
- 8-bit timer (Serial I/O use) $\cdots \cdots \cdots \ldots \ldots$
- Serial I/O (UART or clock synchronous) 1
- A-D converter (8 -bit resolution) $\cdots \cdots \cdots 3$ channels (DIP) 8 channels (QFP)
- D-A converter (8-bit resolution) $\cdots \ldots \ldots \ldots \ldots \ldots .2$ channels
- PWM output with 8-bit prescaler
(Either resolution 8 -bit or 16 -bit is software selectable) 1
- Programmable I/O
(Ports P3, P5, P6)
- Input (Port P4) $\cdots \cdots 3$ (DIP), 8 (QFP)
- Output (Port D-A, D-A ${ }_{2}$)

APPLICATION

Slave controller for PPCs, facsimiles and page printers HDD, optical disk, inverter and industrial motor controllers Industrial robots and machines

PIN CONFIGURATION (TOP VIEW)

Outline 80P6S

8-BIT CMOS MICROCOMPUTER

M37451SGP BLOCK DIAGRAM

d⿹／dJ／dSSIStLEW

Syヨindwosoysiw Ihsignsliw

FUNCTIONS OF M37451SSP/FP/GP

Parameter			Functions
Number of basic instructions			71(69 MELPS 740 basic instructions+2)
Instruction execution time			$064 \mu \mathrm{~s}$ (minımum instructions, at 125 MHz frequency)
Clock frequency			125 MHz (max)
RAM size	M37451SSP/FP/GP		1024 bytes
Input/Output port	P3, P5, P6	1/0	8 -bit $\times 3$
	P4	Input	3 -bit $\times 1$ (8-bit $\times 1$ for $80-$ pin model)
	D-A	Output	2-bit $\times 1$
Serial I/O			UART or clock synchronous
Timers			16 -bit tımer $\times 3$, 8 -bit timer(serial I/O baud rate generator) $\times 1$
A-D converter			8 -bit $\times 3$ channels (8 channels for 80 -pin model)
D-A converter			8 -bit $\times 2$ channels
Pulse width modulator(with 8-bit prescaler)			8 -bit or 16 -bit $\times 1$
Data bus buffer			1-byte input and output each
Subroutine nesting			128-levels (max)
Interrupt			6 external interrupts, 8 internal interrupts, 1 software interrupt
Clock generating cırcuit			Built-in(ceramic or quarts crystal oscillator)
Supply voltage			$5 \mathrm{~V} \pm 10 \%$
Power dissipation			40 mW (at 125 MHz frequency)
Input/Output characters	Input/Output voltage		5 V
	Output current		$\pm 5 \mathrm{~mA}$ (max)
Operating temperature range			-20 to $85^{\circ} \mathrm{C}$
Device structure			CMOS silicon gate
Package	M37451SSP		64-pin shrink plastic molded DIP
	M37451SFP		80-pin plastic molded QFP(08 mm pitch)
	M37451SGP		80 -pin plastic molded QFP(065 mm pitch)

8-BIT CMOS MICROCOMPUTER

PIN DESCRIPTION

Pın	Name	Input/ Output	Functions
$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}, \\ & \mathrm{v}_{\mathrm{ss}} \end{aligned}$	Supply voltage		Power supply inputs $5 \mathrm{~V} \pm 10 \%$ to $\mathrm{V}_{\text {CC }}$, and V to $\mathrm{V}_{\text {SS }}$
$\mathrm{CNV}_{\text {ss }}$	$\mathrm{CNV}_{\text {SS }}$	Input	This is connected to $\mathrm{V}_{\text {cc }}$
RESET	Reset input	Input	To enter the reset state, the reset input pin must be kept at a " L " for more than 8 clock cycles(under normal V_{CC} conditions) If more time is needed for the crystal oscillator to stabilize, this "L" condition should be maintained for the required time
$\mathrm{XIN}_{\text {IN }}$	Clock input	Input	This chip has an internal clock generating circuit To control generating frequency, an external ceramic or a
X ${ }_{\text {OUt }}$	Clock output	Output	source should be connected to the $\mathrm{X}_{\text {IN }}$ pin and the $\mathrm{X}_{\text {Out }}$ pin should be left open
ϕ	Tıming output	Output	Normally outputs signal consisting of oscillating frequency divided by four
SYNC	Synchronous signal output	Output	This signal is output " H " during operation code fetch and is used to control single stepping of programs
R/ \bar{W}	Read/Write status output	Output	This signal determines the direction of the data bus It is "H" during read and " L " during write
$\mathrm{A}_{0}-\mathrm{A}_{15}$	Address bus	Output	This is 16 -bit address bus
$\mathrm{D}_{0}-\mathrm{D}_{7}$	Data bus	1/0	This is 8 -bit data bus
$\mathrm{P}_{3}-\mathrm{P} 3_{7}$	Input/Output port P3	I/O	Port P 3 is an 8 -bit I/O port with directional registers allowing each I/O bit to be individually programed as input or output The output structure is CMOS output Serial I/O, PWM output, or even I/O function can be selected with a program
$\begin{aligned} & \mathrm{P} 4_{0}-\mathrm{P} 4_{2} \\ & \left(\mathrm{P} 4_{0}-\mathrm{P} 4_{7}\right) \end{aligned}$	Input port P4	Input	Analog input pin for the A-D converter The 64-pın model has three pins and the 80 -pın model has eight pins They may also be used as digital input pins
$\mathrm{P5} 0-\mathrm{P} 5_{7}$	Input/Output port P5	1/O	An 8-bit input/output port with the same function as P3 This port functions as an 8-bit data bus for the master CPU when slave mode is selected with a program
$\mathrm{Pb}_{0}-\mathrm{P} 6_{7}$	Input/Output port P6	1/O	An 8-bit input/output port with the same function as P3 Pins $\mathrm{P}_{3}-\mathrm{P} 6_{7}$ change to a control bus for the master CPU when slave mode is selected with a program Pins $\mathrm{Pb}_{0}-\mathrm{PG}_{2}$ may be programmed as external interrupt input pins
D-A ${ }_{1}$, D-A ${ }_{2}$	D-A output	Output	Analog signal from D-A converter is output
$V_{\text {REF }}$	Reference voltage input	Input	Reference voltage input pin for A-D and D-A converter This pin is for 64-pin model only
$\mathrm{ADV}_{\text {REF }}$	A-D reference voltage input	Input	Reference voltage input pin for A-D converter This pin is for 80-pın model only
DAV REF	D-A reference voltage input	Input	Reference voltage input pin for D-A converter This pin is for 80-pın model' only
$\mathrm{AV}_{\text {ss }}$	Analog power supply		Ground level input pin for A-D and D-A converter Same voltage as $\mathrm{V}_{\text {SS }}$ is applied
$\mathrm{AV}_{\mathrm{cc}}$	Analog power supply		Power supply input pin for A-D converter This pin is for 80 -pin model only Same voltage as $\mathrm{V}_{\mathrm{CC}} \mathrm{Is}$ applied In the case of the 64-pın model $A V_{C C}$ is connected to V_{CC} internally
$\overline{\mathrm{RD}}$	Read signal output	Output	Control signal output as active " L " when valid data is read from data bus This pin is for 80 -pin model only
$\overline{W R}$	Write signal output	Output	Control signal output as active "L" when writing data from data bus to external component This pin is for 80 -pin model only
RESET ${ }_{\text {OUt }}$	Reset output	Output	Control signal output as active "H" during reset It is used as a reset output signal for peripheral components This pin is for 80 -pin model only

MITSUBISHI MICROCOMPUTERS M37451SSP/FP/GP

8-BIT CMOS MICROCOMPUTER

BASIC FUNCTION BLOCKS

The differences between M37451M4-XXXSP/FP/GP and M37451SSP/FP/GP are noted below. Other functions are the same as M37451M4-XXXSP/FP/GP in microprocessor mode.

MEMORY

- Special Function Register (SFR) Area

The special function register (SFR) area contains the registers relating to functions such as I/O ports and timers.

- RAM

RAM is used for data storage as well as a stack area.

- Interrupt Vector Area

The interrupt vector area is for storing jump destination addresses used at reset or when an interrupt is generated.
(This area must be located in ROM area)

- Zero Page

Zero page addressing mode is useful because it enables access to this area with only 2 bytes,

- Special Page

Special page addressing mode is useful because it enables access to this area with only 2 bytes.

Fig. 1 Memory map

00D6 ${ }_{16}$	P3 register
00D7 ${ }_{16}$	P3 directional register
00D8 ${ }_{16}$	P4 register/PWM prescaler latch
00D9 ${ }_{16}$	Additional function register
00DA ${ }_{16}$	P5 register
$00 \mathrm{DB}_{16}$	P5 directional register
00DC ${ }_{16}$	P6 register
$00 \mathrm{DD}{ }_{16}$	P6 directional register
$00 \mathrm{EF}_{16}$	MISRG1
00DF ${ }_{16}$	MISRG2
OOEO_{16}	D-A1 register
O0E1 ${ }_{16}$	D-A2 register
O0E2 ${ }_{16}$	A-D register
$00 \mathrm{ES}_{16}$	A-D control register
O0E4 ${ }_{16}$	Data bus buffer register
$\mathrm{OOE5}_{16}$	Data bus buffer status register
00E6 ${ }_{16}$	Receive/transmıt buffer regıster
00E7 ${ }_{16}$	Serial I/O status register
00E8 ${ }_{16}$	Serial I/O control register
$0_{0-E 9}^{16}$	UART control register
$0_{00 E A}^{16}$	Baud rate generator

$0_{00 E 8}{ }_{16}$	PWM register (low-order)
$00 \mathrm{EC}_{16}$	PWM register (high-order)
00ED ${ }_{16}$	Timer 1 control register
O0EE ${ }_{16}$	Timer 2 control regıster
$00 \mathrm{EF}_{16}$	Tımer 3 control register
$00 \mathrm{FO}_{16}$	Timer 1 register (low-order)
$00 \mathrm{~F} 1_{16}$	Timer 1 register (high-order)
$00 \mathrm{~F} 2_{16}$	Timer 1 latch (low-order)
$00 \mathrm{F3}{ }_{16}$	Tımer 1 lătch (high-order)
OOF4 4_{16}	Timer 2 register (low-order)
$00 \mathrm{F5}{ }_{16}$	Timer 2 register (high-order)
00F6 ${ }_{16}$	Timer 2 latch (low-order)
0_{0-57}^{16}	Timer 2 latch (hıgh-order)
$00 \mathrm{F8} 1_{16}$	Timer 3 regıster (low-order)
$00 \mathrm{F9} 1_{16}$	Timer 3 register (high-order)
$00 \mathrm{FA} \mathrm{i}_{6}$	Timer 3 latch (low-order)
$00 \mathrm{FB}_{16}$	Tımer 3 latch (high-order)
$00 \mathrm{FC}_{16}$	Interrupt request register 1
$00 \mathrm{FD}_{16}$	Interrupt request register 2
$00 \mathrm{FE}_{16}$	Interrupt control register 1
$00 \mathrm{FF} \mathrm{F}_{16}$	Interrupt control register 2

Fig. 2 SFR (Special Function Register) memory map

MITSUBISHI MICROCOMPUTERS
 M37451 SSP/FP/GP

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditons	Ratıngs	Unit
V_{cc}	Supply voltage	With respect to V_{Ss} Output transistors are at "OFF" state	-0.3 to 7	V
V_{1}	Input voltage $\overline{\mathrm{RESET}}$, $\mathrm{X}_{\text {IN }}$		-0.3 to 7	V
V_{1}	$\begin{aligned} & \text { Input voltage } \mathrm{D}_{0}-\mathrm{D}_{7}, \mathrm{P}_{0}-\mathrm{P} 3_{7}, \mathrm{P} 4_{0}-\mathrm{P} 4_{7}, \\ & \mathrm{P}_{0}-\mathrm{P} 5_{7}, \mathrm{P} 6_{0}-\mathrm{P} 6_{7}, \mathrm{ADV} V_{\mathrm{REF}}, \\ & \mathrm{DAV}_{\mathrm{REF}}, \mathrm{~V}_{\mathrm{REF}}, \mathrm{AV} \\ & \mathrm{CC} \\ & \hline \end{aligned}$		-0.3 to $\mathrm{V}_{\mathrm{cc}}+0.3$	V
V	Input voltage $\mathrm{CNV}_{\text {SS }}$		-0.3 to 13	V
V_{0}	$\begin{aligned} & \hline \text { Output voltage } \mathrm{A}_{0}-\mathrm{A}_{15}, \mathrm{D}_{0}-\mathrm{D}_{7}, \mathrm{P3}_{0}-\mathrm{P3}_{7}, \\ & \mathrm{P} 5_{0}-\mathrm{P} 5_{7}, \mathrm{P} 6_{0}-\mathrm{P} 6_{7}, \mathrm{X}_{\text {our }}, \\ & \phi, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \mathrm{R} / \overline{\mathrm{W}}, \mathrm{RESET} \\ & \text { Out, }, \mathrm{SYNC} \\ & \hline \end{aligned}$		-0.3 to $\mathrm{V}_{\mathrm{cc}}+0.3$	V
P_{d}	Power dissipation	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$	1000 (Note 1)	mW
Topr	Operating temperature		-20 to 85	${ }^{\circ} \mathrm{C}$
Tstg	Storage temperature		-40 to 125	${ }^{\circ} \mathrm{C}$

Note 1: 500mW for QFP type

RECOMMENDED OPERATING CONDITIONS

($\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{Ta}_{\mathrm{a}}=-20$ to $85^{\circ} \mathrm{C}$ unless otherwise noted)

Symbol	Parameter	Limits			Unit
		Mın	Typ	Max	
V_{Cc}	Supply voltage	4.5	5	5.5	V
$\mathrm{V}_{\text {SS }}$	Supply voltage		0		V
$\mathrm{V}_{\text {IH }}$	"H" input voltage $\overline{\mathrm{RESET}}, \mathrm{X}_{\text {IN }}, \mathrm{CNV}_{\text {SS }}$ (Note 1)	$0.8 \mathrm{~V}_{\mathrm{cc}}$		V_{CC}	V
$\mathrm{V}_{\text {IH }}$	$\begin{aligned} & \text { "H" input voltage } \mathrm{D}_{0}-\mathrm{D}_{7}, \mathrm{P}_{0}-\mathrm{P} 3_{7}, \mathrm{P} 4_{0}-\mathrm{P} 4_{7}, \\ & \\ & \mathrm{P5}_{0}-\mathrm{P} 5_{7}, \mathrm{P}_{0}-\mathrm{P} 6_{7} \quad \text { (except Note 1) } \end{aligned}$	2.0		V_{cc}	V
$V_{\text {IL }}$	"L" input voltage $\mathrm{CNV}_{\text {SS }}$ (Note 1)	0		$0.2 V_{C C}$	V
$V_{\text {IL }}$	$\begin{aligned} \text { "L" input voltage } & \mathrm{D}_{0}-\mathrm{D}_{7}, \mathrm{P} 3_{0}-\mathrm{P} 3_{7}, \mathrm{P} 4_{0}-\mathrm{P} 4_{7}, \\ & \mathrm{P5}_{0}-\mathrm{P} 5_{7}, \mathrm{P} 6_{0}-\mathrm{P} 6_{7} \quad \text { (except Note 1) } \end{aligned}$	0 .		0.8	V
$V_{\text {IL }}$	"L" input voltage $\overline{\text { RESET }}$	0		$0.12 V_{c c}$	V
$\mathrm{V}_{\text {IL }}$	"L" input voltage X_{IN}	0		$0.16 \mathrm{~V}_{\mathrm{CC}}$	V
lol(peak)	$\begin{aligned} & \text { "L" peak output current } \begin{array}{l} \mathrm{A}_{0}-\mathrm{A}_{15}, \mathrm{D}_{0}-\mathrm{D}_{7}, \\ \\ \mathrm{P} 3_{0}-\mathrm{P} 3_{7}, \mathrm{P} 5_{0}-\mathrm{P} 5_{7}, \\ \mathrm{P} 6_{0}-\mathrm{P} 6_{7} \end{array} \end{aligned}$			10	mA
IoL(avg)				5	mA
IOH(peak)	$\text { "H" peak output current } \begin{aligned} & \mathrm{A}_{0}-\mathrm{A}_{15}, \mathrm{D}_{0}-\mathrm{D}_{7}, \\ & \\ & \mathrm{P} 3_{0}-\mathrm{P} 3_{7}, \mathrm{P} 5_{0}-\mathrm{P} 5_{7}, \\ & \\ & \mathrm{P} 6_{0}-\mathrm{P} 6_{7} \end{aligned}$			-10	mA
$\mathrm{IOH}(a v g)$	$\begin{aligned} & \text { "H" average output current } \\ & \qquad \begin{array}{ll} \mathrm{A}_{0}-\mathrm{A}_{15}, & \mathrm{D}_{0}-\mathrm{D}_{7}, \\ & \mathrm{P}_{0}-\mathrm{P} 3_{7}, \\ \mathrm{P} 5_{0}-P 5_{7}, \\ & \mathrm{P}_{0} \end{array}(\text { Note } 2) \end{aligned}$			-5	mA
$f\left(X_{i N}\right)$	Clock oscillatıng frequency	1		12.5	MHz

Note 1 : Ports operate as $I N T_{1}-\mathrm{INT}_{3}\left(\mathrm{P6}_{0}-\mathrm{PG}_{2}\right), \mathrm{EV}_{1}-\mathrm{EV}_{3}\left(\mathrm{P}_{0}-\mathrm{P} 3_{2}\right), \mathrm{R}_{\mathrm{X}} \mathrm{D}\left(\mathrm{P} 3_{4}\right)$ and $\mathrm{S}_{\mathrm{cLK}}\left(\mathrm{P3}_{6}\right)$
2 : The average output current $\mathrm{I}_{\mathrm{OH}(\mathrm{avg})}$ and $\mathrm{I}_{\mathrm{OL}(\mathrm{avg})}$ are the average value during a 100 ms
3 : The total of "L" output current loL(peak) of port P3, P5, P6, R/W, SYNC, RESET out, $\overline{R D}, \overline{W R}$ and ϕ is less than 40 mA
The total of " H " output current $\mathrm{I}_{\mathrm{OH} \text { (peak) of port P3, P5, P6, R/W, SYNC, RESET }}^{\text {OUT }}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}$ and ϕ is less than 40 mA

ELECTRICAL CHARACTERISTICS $\left(\mathrm{v}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{v}_{\mathrm{ss}}=0 \mathrm{v}, \mathrm{T}_{\mathrm{a}}=-20\right.$ to $85^{\circ} \mathrm{C}, f\left(\mathrm{X}_{\mathrm{N}}\right)=12.5 \mathrm{MHz}$, unless otherwise noted)

Symbol	Parameter	Test conditions	Lımits			Unit
			Min	Typ.	Max	
V_{OH}	"H" output voltage $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \mathrm{R} / \overline{\mathrm{W}}$, SYNC, RESET ${ }_{\text {Out }}, \phi$	$\mathrm{l}_{\mathrm{OH}}=-2 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{cc}}-1$			V
V_{OH}	$\begin{gathered} \text { "H" output voltage } \mathrm{A}_{0}-\mathrm{A}_{15}, \mathrm{D}_{0}-\mathrm{D}_{7}, \mathrm{P} 3_{0}-\mathrm{P3} \mathrm{P}_{7}, \\ \mathrm{P5}-\mathrm{P} 5_{7}, \mathrm{P6}_{0}-\mathrm{P} 6_{7} \\ \hline \end{gathered}$	$\mathrm{l}_{\mathrm{OH}}=-5 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}-1$			V
$\mathrm{V}_{\text {OL }}$	$\begin{aligned} \text { "L" output voltage } & \mathrm{A}_{0}-\mathrm{A}_{15}, \mathrm{D}_{0}-\mathrm{D}_{7}, \mathrm{P} 3_{0}-\mathrm{P} 3_{7}, \\ & \mathrm{P} 5_{0}-\mathrm{P} 5_{7}, \mathrm{P} 6_{0}-\mathrm{P} 6_{7}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \\ \mathrm{R} / \overline{\mathrm{W}}, \mathrm{SYNC}, & \mathrm{RESET} \end{aligned}$	$\mathrm{l}_{\mathrm{OL}}=2 \mathrm{~mA}$			0.45	V
Vol	$\begin{gathered} \text { "L" output voltage } \mathrm{A}_{0}-\mathrm{A}_{15}, \mathrm{D}_{0}-\mathrm{D}_{7}, \mathrm{P3}_{0}-\mathrm{P} 3_{7}, \\ \mathrm{P5}_{0}-\mathrm{P5}, \mathrm{~Pb}_{7}-\mathrm{P6}_{7} \end{gathered}$	$\mathrm{IOL}=5 \mathrm{~mA}$			1	V
$\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\mathrm{T}-}$	$\begin{gathered} \text { Hysterısis } \mathrm{NT}_{1}-\mathrm{NT}_{3}\left(\mathrm{P6}_{0}-\mathrm{PG}_{2}\right), \mathrm{EV}_{1}-\mathrm{EV}_{3}\left(\mathrm{P3}_{0}-\mathrm{P3}_{2}\right), \\ \mathrm{R}_{\mathrm{X}} \mathrm{D}\left(\mathrm{P}_{4}\right), \mathrm{S}_{\mathrm{CLK}}\left(\mathrm{P}_{6}\right) \end{gathered}$	Function input level	0.3		1	V
$\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\mathrm{T}^{-}}$	Hysterisis $\overline{\text { RESET }}$				0.7	V
$\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\text {T- }}$	Hysterisis $\mathrm{X}_{\text {IN }}$		0.1		0.5	V
IIL	"L" input current $\mathrm{D}_{0}-\mathrm{D}_{7}, \mathrm{P3}_{0}-\mathrm{P3}_{7}, \mathrm{P}_{0}-\mathrm{P} 4_{7}$, $\mathrm{P5}_{0}-\mathrm{P5}_{7}, \mathrm{P6}_{0}-\mathrm{P6}_{7}, \overline{\mathrm{RESET}, \mathrm{X}_{\mathrm{IN}}}$	$\mathrm{v}_{\mathrm{l}}=\mathrm{v}_{\mathrm{ss}}$	-5		5	$\mu \mathrm{A}$
$\mathrm{I}_{\mathbf{H}}$	$\begin{aligned} & \text { "H" input current } \mathrm{D}_{0}-\mathrm{D}_{7}, \mathrm{P}_{0}-\mathrm{P} 3_{7}, \mathrm{P} 4_{0}-\mathrm{P} 4_{7}, \\ & \\ & \mathrm{P} 5_{0}-\mathrm{P} 5_{7}, \mathrm{P6}_{0}-\mathrm{P} 6_{7}, \overline{\mathrm{RESET}}, \mathrm{X}_{\mathrm{IN}} \end{aligned}$	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{cc}}$	-5		5	$\mu \mathrm{A}$
$\mathrm{V}_{\text {RAM }}$	RAM retention voltage	At stop mode	2			V
Icc	Supply current	At system operation $f\left(X_{\mathrm{IN}}\right)=12.5 \mathrm{MHz}$		8	15	mA
		At stop mode (Note 1)		1	10	$\mu \mathrm{A}$

Note 1 : The terminals $\overline{R D}, \overline{W R}, R / \bar{W}, S Y N C$, RESET ${ }_{\text {OUT }}, \phi, D-A_{1}$ and $D-A_{2}$ are all open The other ports, which are in the input mode, are connected to $\mathrm{V}_{\text {SS }} \mathrm{A}-\mathrm{D}$ converter is in the $\mathrm{A}-\mathrm{D}$ completion state The current through $\mathrm{ADV}_{\text {REF }}$ and $\mathrm{DAV}_{\text {REF }}$ is not included(Fig.7)

A-D CONVERTER CHARACTERISTICS

$\left(V_{C C}=A V_{C C}=5 V \pm 10 \%, V_{S S}=A V_{S S}=0 V, T_{a}=-20\right.$ to $85^{\circ} \mathrm{C}, f\left(X_{I N}\right)=12.5 \mathrm{MHz}$, unless otherwise noted)

Symbol	Parameter	Test conditions	Lımits			Unit
			Min	Typ	Max	
-	Resolution				8	Bits
-	Absolute accuracy	$\mathrm{V}_{\mathrm{CC}}=\mathrm{AV}_{\mathrm{CC}}=\mathrm{ADV}_{\mathrm{REF}}=5 \mathrm{~V} \pm 10 \%$		± 1.5	± 3	LSB
$\mathrm{t}_{\text {Conv }}$	Conversion time				49	$t_{C}(\phi)$
$V_{\text {IA }}$	Analog input voltage		$\mathrm{AV}_{\text {SS }}$		$\mathrm{AV}_{C C}$	V
$V_{\text {AdVref }}$	Reference input voitage		2		V_{CC}	V
$\mathrm{R}_{\text {LADDER }}$	Ladder resistance value	$A D V_{\text {REF }}=5 \mathrm{~V}$	20	35	50	$\mathrm{k} \Omega$
I iadvref	Reference input current	$A_{\text {d }} \mathrm{ADEF}=5 \mathrm{~V}$	0.1	0.14	0.25	mA
$\mathrm{V}_{\text {AVCC }}$	Analog power supply input voltage			V_{cc}		V
$\mathrm{V}_{\text {Avss }}$	Analog power supply input voltage			0		V

D-A CONVERTER CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=\mathrm{AV}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-20\right.$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test condition	Lımits			Unit
			Min.	Typ	Max	
-	Resolution				8	Bits
-	Absolute accuracy	$\mathrm{V}_{\mathrm{CC}}=\mathrm{DAV}_{\text {REF }}=5 \mathrm{~V} \pm 10 \%$			1.0	\%
$\mathrm{t}_{\text {su }}$	Setup time				3	$\mu \mathrm{s}$
R_{O}	Output resistance		1	2	4	$\mathrm{k} \Omega$
$\mathrm{V}_{\text {AVSS }}$	Analog power supply input voltage			0		V
$V_{\text {davRef }}$	Reference input voltage		4		V_{cc}	V
I Davaref	Reference power input current		0	5	10	mA

MITSUBISHI MICROCOMPUTERS M37451SSP/FP/GP

8-BIT CMOS MICROCOMPUTER

TIMING REQUIREMENTS
Port ($\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-20$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test condition	Limits			Unit
			Mın	Typ	Max	
$\mathrm{t}_{\text {Su }}$ (${ }_{\text {P3D }}$ - ϕ)	Port P3 input setup time	Fig 3	160			ns
$\mathrm{t}_{\text {Su }}(\mathrm{P} 4 \mathrm{D}-\phi$)	Port P4 input setup time		160			ns
$\mathrm{t}_{\text {Su }}($ P5D- $-\phi$)	Port P5 input setup time		160			ns
$t_{\text {Su }}(\mathrm{PGD}-\phi$)	Port P6 input setup time		160			ns
th(ϕ-P3D)	Port P3 input hold time		40			ns
th(ϕ-P4D)	Port P4 input hold time		40			ns
th(ϕ-P5D $)$	Port P5 input hold time		40			ns
th(ϕ-P6D)	Port P6 input hold time		40			ns
$t_{C}\left(X_{\text {IN }}\right)$	External clock input cycle time		80		1000	ns
$t_{W}\left(X^{\prime N} L\right.$)	External clock input "L" pulse width		20			ns
$t_{W}\left(X^{\text {IN }} \mathrm{H}\right)$	External clock input " H " puise width		20			ns
$\mathrm{tr}_{\mathrm{r}}\left(\mathrm{X}_{\text {IN }}\right)$	External clock rising edge time				20	ns
$t_{f}\left(X_{\text {IN }}\right)$	External clock falling edge time				20	ns

Master CPU bus interface timing (\bar{R} and \bar{W} separation type mode)

$\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-20\right.$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test condition	Limits			Unit
			Min	Typ	Max	
$t_{\text {su }}$ (cs-R)	$\overline{\mathrm{CS}}$ setup time	Fig 4	0			ns
$\mathrm{t}_{\text {su }}$ (cs-w)	$\overline{\text { CS }}$ setup time		0			ns
$\operatorname{th}(\mathrm{R}-\mathrm{cs})$	$\overline{\mathrm{CS}}$ hold time		0			ns
$t h_{\text {f }}(\mathrm{w}-\mathrm{cs})$	$\overline{C S}$ hold time		0			ns
$t_{\text {su }}(A-R)$	A0 setup time		10			ns
$t_{\text {su }}(A-W)$	A0 setup time		10			ns
$\operatorname{th}(\mathrm{R}-\mathrm{A})$	AO hold time		0			ns
th $(W-A)$	A0 hold time		0			ns
$t_{w(R)}$	Read pulse width		120			ns
$t_{w}(w)$	Write pulse width		120			ns
tsu($D-w$)	Date input setup time before write		50			ns
th(w-D)	Date input hold time after write		0			ns

Master CPU bus interface timing (R/W type mode)

$\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-20\right.$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test condition	Limits			Unit
			Mın	Typ	Max	
$t_{\text {Su }}$ (cs-E)	$\overline{C S}$ setup time	Fig 4	0			ns
th(E-Cs)	$\overline{C S}$ hold time		0			ns
$t_{\text {su }}(\mathbf{A}-\mathrm{E})$	A0 setup time		10			ns
th(E-A)	A0 hold time		0			ns
$\mathbf{t}_{\text {SU }}($ RW-E)	$\mathrm{R} / \overline{\mathrm{W}}$ setup time		0			ns
th(E-RW)	R/W hold time		0			ns
$\mathrm{t}_{\mathbf{W} \text { (EL) }}$	Enable clock "L" pulse width		120			ns
$\mathrm{t}_{\mathrm{W} \text { (EH) }}$	Enable clock "H" pulse width		120			ns
$\operatorname{tr}_{\text {(}}(\mathrm{E})$	Enable clock rising edge time				25	ns
$\left.\mathrm{tf}_{(\mathrm{E}} \mathrm{f}\right)$	Enable clock fallıng edge tıme				25	ns
$t_{\text {su }}(\mathrm{D}-\mathrm{E})$	Data input setup time before write		50			ns
th(E-D)	Data input nold time after write		0			ns

MITSUBISHI MICROCOMPUTERS
 M37451 SSP/FP/GP

8-BIT CMOS MICROCOMPUTER

Local bus/Memory expansion mode, Microprocessor mode

($\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-20$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test condition	Limits			Unit
			Min	Typ	Max	
$\mathrm{t}_{\text {su }}(\mathrm{D}-\phi$)	Data input setup time	Fig 5	60			ns
$\mathrm{th}^{(\phi-D)}$	Data input hold time		0			ns
$t_{\text {Su }}(\mathrm{D}-\mathrm{RD})$	Data input setup time		60			ns
th(RD-D)	Data input hold time		0			ns

Clock synchronous serial I/O $\left(\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-20\right.$ to $85^{\circ} \mathrm{C}$, unless otherwise noted $)$

Symbol	Parameter	Test conditions	Lımits			Unit
			Min	Typ	Max	
$t_{\text {Su }}\left(\mathrm{RXX}^{\mathrm{D}}\right.$ - $\left.\mathrm{S}_{\text {CLK }}\right)$	Serial input setup time	Fig 6	160			ns
$t_{\text {h }}\left(S_{\text {CLK }}-\mathrm{R}_{\mathrm{X}} \mathrm{D}\right)$	Serial input hold time		80			ns
$\left.\operatorname{tr}_{\left(R_{X}\right.} D^{\prime}\right)$	Serial input risıng edge tume				30	ns
$t_{f\left(R_{X} D\right)}$	Serial input falling edge time				30	ns
$\operatorname{tr}_{\text {(}}^{\text {c CLK }}$)	Serial input clock risıng edge time				30	ns
$\mathrm{t}_{\mathbf{f}\left(\mathrm{S}_{\text {CLK }}\right)}$	Serial input clock falling edge tıme				30	ns
$\mathrm{t}_{\mathrm{C}}\left(\mathrm{s}_{\text {CLK }}\right)$	Serial input clock period		640			ns
$t_{w}\left(S_{\text {cLK }}{ }^{\text {L }}\right.$)	Serral input clock "L" pulse width		290			ns
$t_{\text {w }}\left(S_{\text {cLKH }}\right.$)	Serıal input clock "H" pulse width		290			ns

SWITCHING CHARACTERISTICS

Port ($\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{Ss}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-20$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test condition	Limits			Unit
			Min	Typ	Max	
$\mathrm{t}_{\mathrm{d}}(\phi-\mathrm{P} 3 \mathrm{Q})$	Port P3 data output delay time	Fig 3			200	ns
$t_{\text {d }}\left(\phi-\right.$ P $^{\text {PQ }}$)	Port P5 data output delay time				200	ns
$t_{\text {d }}(\phi-P 6 Q)$	Port P6 data output delay time				200	ns
$t_{C(\phi)}$	Cycle time		320		4000	ns
$\mathrm{t}_{\mathrm{W}(\boldsymbol{\phi} \boldsymbol{H})}$	ϕ clock pulse width ("H" level)		150			ns
$\mathrm{t}_{\mathrm{w}}(\phi \mathrm{L})$	ϕ clock pulse width ("L" level)		130			ns
$\operatorname{tr}(\phi)$	ϕ clock rising edge tıme				20	ns
$t_{f}(\phi)$	ϕ clock falling edge time				20	ns

MITSUBISHI MICROCOMPUTERS M37451 SSP/FP/GP

8-BIT CMOS MICROCOMPUTER

Master CPU bus interface ($\overline{\mathrm{R}}$ and $\overline{\mathrm{W}}$ separation type mode)

($\mathrm{V}_{\mathrm{cC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-20$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test condition	Limits			Unit
			Min	Typ	Max	
$t a(R-D)$	Data output enable time after read	Fig 4			80	ns
$\mathrm{t}_{\mathrm{V}(\mathrm{R}-\mathrm{D})}$	Data output disable time after read		0		30	ns
$t_{\text {PLH }}(\mathrm{R}-\mathrm{PR})$	$\overline{P_{\text {RDY }}}$ output transmission time after read				150	ns
$\mathrm{t}_{\mathrm{PLH}}(\mathrm{W}-\mathrm{PR})$	$\overline{\mathrm{P}_{\text {ROY }}}$ output transmission time after write				150	ns

Master CPU bus interface (R/W type mode) ($\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-20$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test condition	Limits			Unit
			Mın	Typ	Max	
$t a(E-D)$	Data output enable time after read	Fig 4			80	ns
$\mathrm{t}_{\mathrm{V}(\mathrm{E}-\mathrm{D})}$	Data output disable time after read		0		30	ns
$\mathrm{t}_{\text {PLH }}(\mathrm{E}-\mathrm{PR})$	$\overline{P_{\text {Ror }}}$ output transmission time after E clock				150	ns

Local bus/Memory expansion mode, microprocessor mode
($\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-20$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test condition	Limits			Unit
			Mın	Typ	Max	
$t_{d}(\phi-A)$	Address delay tıme after ϕ	Fig 5			80	ns
$\mathrm{t}_{\mathrm{V}(\phi-A)}$	Address effective time after ϕ		10			ns
$\mathrm{t}_{\mathrm{V}(\mathrm{RD}-\mathrm{A})}$	Address effective time after $\overline{\mathrm{RD}}$		10			ns
$\mathrm{t}_{\mathrm{V}(\mathrm{W} \cdot \mathrm{R}-\mathrm{A})}$	Address effective time after \bar{W}		10			ns
$t_{\text {d }}(\phi-D)$	Data output delay time after ϕ				80	ns
$t_{\text {d }}(\mathbf{W R}-\mathrm{D})$	Data output delay time after $\overline{\mathrm{WR}}$				80	ns
$\mathrm{t}_{\mathrm{V}(\phi-\mathrm{D})}$	Data output effective time after ϕ		20			ns
$t_{V}\left(W_{R}-\mathrm{D}\right)$	Data output effective time after $\overline{\mathrm{WR}}$		20			ns
$t_{\text {d }}(\phi-\mathrm{RW})$	$\mathrm{R} / \overline{\mathrm{W}}$ delay time after ϕ				80	ns
$t_{d}(\phi-S Y N C)$	SYNC delay time after ϕ				80	ns
$\mathrm{t}_{\mathrm{W} \text { (RD) }}$	$\overline{\mathrm{RD}}$ pulse width		130			ns
$t_{W}(W R)$	$\overline{\text { WR pulse width }}$		130			ns

Clock synchronous serial I/O $\left(\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-20\right.$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Unit
			Mın	Typ	Max	
$t_{\text {d }}\left(s_{C L K}-T_{X} \mathrm{D}\right)$	Serial output delay time	Fig 6			100	ns
$\operatorname{tr}_{\text {(}}^{\text {cLLK }}$)	Serial output clock rising edge tıme				30	ns
$\mathrm{t}_{\mathrm{f}}\left(\mathrm{S}_{\text {CLK }}\right)$	Serial output clock falling edge tıme				30	ns
$\mathrm{t}_{\mathrm{C}}\left(\mathrm{s}_{\text {CLK }}\right)$	Serial output clock period		640			ns
$t_{\text {w }}\left(\mathrm{S}_{\text {CLKL }}\right)$	Serial output clock "L" pulse width		290			ns
$\mathrm{t}_{\mathbf{W} \text { (} \mathrm{SCLK}^{\text {ch }} \text {) }}$	Serial output clock "H" pulse width		290			ns

TEST CONDITION

Input voltage level : $\mathrm{V}_{\mathrm{IH}} \quad 2.4 \mathrm{~V}$

$\mathrm{V}_{\mathrm{IL}} 0.45 \mathrm{~V}$
Output test level: $\mathrm{V}_{\mathrm{OH}} \quad 2.0 \mathrm{~V}$

$$
\mathrm{V}_{\mathrm{OL}} \quad 0.8 \mathrm{~V}
$$

Fig. 3 Port test circuit

Fig. 6 Serial I/O test circuit

Fig. 4 Master CPU bus interface test circuit

Fig. 5 Local bus test circuit

Fig. 7 Icc (at stop mode) test condition

MITSUBISHI MICROCOMPUTERS
 M37451 SSP/FP/GP

TIMING DIAGRAM

Port/single-chip mode timing diagram

Note : $\mathrm{V}_{\mathrm{IH}}=0.8 \mathrm{~V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{IL}}=0.16 \mathrm{~V}_{\mathrm{CC}}$ of X_{IN}

Master CPU bus interface/ $\overline{\mathrm{R}}$ and $\overline{\mathbf{W}}$ separation type timing diagram

Read

MITSUBISHI MICROCOMPUTERS M37451 SSP/FP/GP

8-BIT CMOS MICROCOMPUTER

Write

Master CPU interface/ R/W type timing diagram

Local bus timing diagram

Clock synchronous serial I/O timing diagram

MITSUBISHI MICROCOMPUTERS M37450M4TXXXSP/J

DESCRIPTION

The M37450M4TXXXSP/J is a single-chip microcomputer designed with CMOS sillicon gate technology. It is housed in a 64-pin shrink plastic molded DIP or an 84-pin plastic molded QFJ (PLCC).
In addition to its simple instruction sets, the ROM, RAM, and I/O addresses are placed on the same memory map to enable easy programming.
It is suited for office automation equipment and control devices The low power consumption made by the use of a CMOS process makes it especially suitable for battery powered devices requiring low power consumption. It also has a unique feature that enables it to be used as a slave microcomputer.
The differences between the M37450M4TXXXSP/J and the M37450M4-XXXSP/FP are some electrical characteristics, the expansion of operating temperature range, and the package.
The number of analog input pins for the 84-pin PLCC (J version) is different from the 64 -pin model (SP version). In addition, the 84-pin model has special pins for $\overline{R D}, \overline{W R}$, RESET ${ }_{\text {OUT }}$, DAV $_{\text {REF }}, A D V_{\text {REF }}, A V_{\text {CC }}$ and the 64 -pin model has a special $\mathrm{V}_{\text {REF }}$ pin.

FEATURES

- Number of basic instructions.. 71 69 MELPS 740 basic instructions+2 multiply/divide instructions
- Memory size
\qquad RAM.. 256 bytes
- Instruction execution time (minimum instructions at 10 MHz frequency) $\cdots \cdots \cdots \cdot 0.8 \mu \mathrm{~s}$
- Single power supply.................................... $5 \mathrm{~V} \pm 10 \%$
- Power dissipation normal operation mode (at 10 MHz frequency) 30 mW
- Subroutine nesting 96 levels max

- Master CPU interface .. 1 byte
- 16-bit timer ... 3
- 8-bit timer (Serial I/O use) 1
- Serial I/O (UART or clock synchronous) 1
- A-D converter (8 -bit resolution) 3 channels (DIP) 8 channels (QFJ)
- D-A converter (8-bit resolution) 2 channels
- PWM output (8 bit or 16 bit).
- Programmable I/O ports (Ports P0, P1, P2, P3, P5, P6) 48
- Input port (Port P4) $\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots$............... 3(DIP), 8 (QFJ)
- Output ports (Ports D-A, D-A)

$$
\cdots 2
$$

APPLICATION

Slave controller for PPCs, facsimiles, and page printers. HDD, optical disk, inverter, and industrial motor controllers. Industrial robots and machines.

M37450M4TXXXJ BLOCK DIAGRAM

FUNCTIONS OF M37450M4TXXXSP/J

Parameter			Functions
Number of basic instructions			71(69 MELPS 740 basic instructions+2)
Instruction execution time			$08 \mu \mathrm{~s}$ (minımum instructions, at 10 MHz of frequency)
Clock frequency			10 MHz (max)
Memory size	ROM		8192 bytes
	RAM		256 bytes
Input/Output ports	P0-P3, P5, P6	1/O	8 -bit $\times 6$
	P4	Input	3-bit $\times 1$ (8-bit $\times 1$ for 84 -pin model)
	D-A	Output	2-bit $\times 1$
Serial I/O			UART or clock synchronous
Timers			16-bit timer $\times 3$, 8 -bit timer (serial I/O baud rate generator) $\times 1$
A-D converter			8 -bit $\times 3$ channels (8 channels for 84 -pin model)
D-A converter			8 -bit $\times 2$ channels
Pulse width modulator			8 -bit or 16-bit $\times 1$
Data bus buffer			1-byte input and output each
Subroutine nesting			96-levels (max)
Interrupt			6 external interrupts, 8 internal interrupts 1 software interrupt
Clock generating circuit			Built-in (ceramıc or quarts crystal oscıllator)
Supply voltage			$5 \mathrm{~V} \pm 10 \%$
Power dissipation			30 mW (at 10MHz frequency)
Input/Output characters	Input/Output voltage		5 V
	Output current		$\pm 5 \mathrm{~mA}$ (max.)
Memory expansion			Possible
Operating temperature range			-40 to $85^{\circ} \mathrm{C}$
Device structure			CMOS silicon gate
Package	M37450M4TX		64-pin shrink plastic molded DIP
	M37450M4TX		84-pın plastic molded QFJ (PLCC)

EXTENDED OPERATING TEMPERATURE VERSION of M37450M4-XXXSP

PIN DESCRIPTION

Pin	Name	Input/ Output	Functions
$\begin{aligned} & \mathrm{v}_{\mathrm{cc}} \\ & \mathrm{v}_{\mathrm{ss}} \end{aligned}$	Supply voltage		Power supply inputs $5 \mathrm{~V} \pm 10 \%$ to V_{CC}, and 0 V to V_{SS}
CNV ${ }_{\text {ss }}$	$\mathrm{CNV}_{\text {ss }}$		Controls the processor mode of the chip Normally connected to V_{SS} or V_{CC}
RESET	Reset input	Input	To enter the reset state, the reset input pin must be kept at a "L" for more than 8 clock cycles (under normal $V_{C C}$ conditions) If more time is needed for the crystal oscillator to stabilize, this " L " condition should be maintained for the required time
$\mathrm{XIN}_{\text {IN }}$	Clock input	Input	This chip has an internal clock generating circuit To control generating frequency, an external ceramic or a
$\mathrm{X}_{\text {OUT }}$	Clock output	Output	source should be connected to the X_{IN} pin and the $\mathrm{X}_{\text {Out }}$ pin should be left open.
ϕ	Timing output	Output	Outputs signal consisting of oscillating frequency divided by four
SYNC	Synchronous sıgnal output	Output	This signal is output " H " during operation code fetch and is used to control single stepping of programs
R/ \bar{W}	Read/Write status output	Output	This signal determines the direction of the data bus it is "H"during read and "L" during write
$\mathrm{PO}_{0}-\mathrm{PO} \mathrm{O}_{7}$	I/O port P0	1/0	Port P0 is an 8-bit I/O port with directional registers allowing each I/O bit to be individually programmed as input or output The output structure is CMOS output The low-order bits of the address are output except in single-chip mode
$\mathrm{P}_{1}-\mathrm{P} 1_{7}$	I/O port P1	1/0	Port P1 is an 8-bit I/O port and has basically the same functions as port P0 The high-order bits of the address are output except in single-chip mode
$\mathrm{P} 2_{0}-\mathrm{P} 2_{7}$	I/O port P2	1/0	Port P2 is an 8-bit I/O port and has basically the same functions as port P0 Used as data bus except in single-chip mode
$\mathrm{P} 3_{0}-\mathrm{P} 3_{7}$	I/O port P3	1/O	Port P3 is an 8-bit I/O port and has basically the same functions as port P0 Serial I/O, PWM output, or event I/O function can be selected with a program
$\begin{aligned} & P 4_{0}-P 4_{2} \\ & \left(P 4_{0}-P 4_{7}\right) \end{aligned}$	Input port P4	Input	Analog input pin for the A-D converter The $64-\mathrm{pin}$ model has three pins and the 84 -pin model has eight pins They may also be used as digital input pins
$\mathrm{P} 50-\mathrm{P} 57$	1/O port P5	I/O	Port P5 is an 8-bit I/O port and has basically the same functions as port PO This port functions as an 8-bit data bus for the master CPU when slave mode is selected with a program
$\mathrm{P} 6_{0}-\mathrm{P} 6_{7}$	I/O port P6	1/0	Port $\mathrm{P6}$ is an 8 -bit I / O port and has basically the same function as port $\mathrm{P} 0 \mathrm{Pins}^{\mathrm{P}} 6_{3}$ to $\mathrm{P} 6_{7}$ change to a control bus for the master CPU when slave mode is selected with a program P ins $P 6_{0}$ to P_{2} may be programmed as external interrupt input pins
D-A, D-A ${ }_{2}$	D-A output	Output	Analog signal from D-A converter is output
$\mathrm{V}_{\text {REF }}$	Reference voltage input	Input	Reference voltage input pin for A-D and D-A converter This pin is for 64-pin model only
$\mathrm{ADV}_{\text {REF }}$	A-D reference voltage input	Input	Reference voltage input pin for A-D converter This pin is for 84-pin model only
DAV $\mathrm{V}_{\text {REF }}$	D-A reference voltage input	Input	Reference voltage input pin for D-A converter This pin is for 84-pin model only
$\mathrm{AV}_{\text {SS }}$	Analog power supply		Ground level input pin for A-D and D-A converter Same voltage as $\mathrm{V}_{\text {ss }}$ is applied
$\mathrm{AV}_{\mathrm{CC}}$	Analog power supply		Power supply input pin for A-D converter This pin is for 84-pin model only Same voltage as V_{CC} is applied In the case of the 64 -pin model, $\mathrm{AV}_{\mathrm{CC}}$ is connected to V_{Cc} internally
$\overline{\mathrm{RD}}$	Read signal output	Output	Control signal output as active "L" when valid data is read from data bus This pin is for 84-pin model only
$\overline{W R}$	Write signal output	Output	Control signal output as active " L " when writing data from data bus to external component This pin is for 84-pin model only
RESETout	Reset output	Output	Control signal output as active "H" during reset it is used as a reset output signal for peripheral components This pin is for 84-pin model only

ABSOLUTE MAXIMUM RATINGS

RECOMMENDED OPERATING CONDITIONS

($\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{Ta}=-40$ to $85^{\circ} \mathrm{C}$ unless otherwise noted)

Symbol	Parameter	Limits			Unit
		Mın	Typ	Max	
$V_{C C}$	Supply voltage	4.5	5	5.5	V
$\mathrm{V}_{\text {SS }}$	Supply voltage		0		V
V_{IH}	"H" input voltage $\overline{\text { RESET }}$, $\mathrm{X}_{\mathrm{IN}}, \mathrm{CNV}_{\text {SS }}$ (Note 1)	$0.8 \mathrm{~V}_{\mathrm{cc}}$		V_{cc}	V
$\mathrm{V}_{1 \mathrm{H}}$	$\begin{gathered} \text { "H" input voltage } \mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P1}_{0}-\mathrm{P} 1_{7}, \mathrm{P}_{2}-\mathrm{P} 2_{7}, \\ \\ \mathrm{P}_{0}-\mathrm{P3}_{7}, \mathrm{P4}_{0}-\mathrm{P} 4_{7}, \mathrm{P5}_{0}-\mathrm{P5} 5_{7}, \\ \\ \\ \\ \\ \\ \text { (expect Note 1) } \end{gathered}$	2.0		V_{cc}	V
V_{IL}	"L" input voltage $\mathrm{CNV}_{\text {Ss }}$ (Note 1)	0		0.2V V_{CC}	V
$V_{\text {IL }}$	$\begin{aligned} \text { "L" input voltage } & \mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P1}_{0}-\mathrm{P} 1_{7}, \mathrm{P}_{0}-\mathrm{P} 2_{7}, \\ & \mathrm{P}_{0}-\mathrm{P3}_{7}, \mathrm{P4}_{0}-\mathrm{P} 4_{7}, \mathrm{P5}_{0}-\mathrm{P} 5_{7}, \\ & \mathrm{P}_{0}-\mathrm{P} 6_{7} \\ & \text { (expect Note 1) } \end{aligned}$	0		0.8	V
$\mathrm{V}_{\text {IL }}$	"L" input voltage $\overline{\text { RESET }}$	0		0.12V V_{cc}	V
$\mathrm{V}_{\text {IL }}$	"L" input voltage $\mathrm{X}_{\text {IN }}$	0		$0.16 \mathrm{~V}_{\mathrm{cc}}$	V
Iol(peak)	$\begin{aligned} & \hline \mathrm{L} \text { " peak output current } \mathrm{PO}_{0}-\mathrm{PO}_{7}, \\ & \mathrm{P1}_{0}-\mathrm{P} 1_{7}, \\ & \mathrm{P}_{0}-\mathrm{P} 2_{7}, \\ & \mathrm{P} 5_{0}-\mathrm{P} 5_{7}-\mathrm{P} \mathrm{P6}_{7}-\mathrm{P} 6_{7} \\ & \hline \end{aligned}$			10	mA
lot(avg)				5	mA
$\mathrm{I}_{\mathrm{OH} \text { (peak) }}$	" H " peak output current $\mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P1}_{0}-\mathrm{P} 1_{7}$, $\mathrm{P}_{2}-\mathrm{P}_{7}, \mathrm{P}_{3}-\mathrm{P}_{7}$, $\mathrm{P5}_{0}-\mathrm{P} 5_{7}, \mathrm{~Pb}_{0}-\mathrm{P6}_{7}$			-10	mA
$\mathrm{I}_{\mathrm{OH}}(\mathrm{avg}$)	$\begin{aligned} & \text { "H" average output current } \begin{aligned} & \mathrm{PO}_{0}-\mathrm{PO}_{7}, \\ & \mathrm{P1}_{0}-\mathrm{P} 1_{7}, \\ & \mathrm{P}_{0}-\mathrm{P} 2_{7}, \\ & \mathrm{P3}_{0}-\mathrm{P} 3_{7}, \\ & 5_{0}-\mathrm{P5}_{7}, \end{aligned} \mathrm{P6}_{0}-\mathrm{P} 6_{7} \text { (Note 2) } \\ & \hline \end{aligned}$			-5	mA
$f\left(X_{\text {IN }}\right)$	Internal clock oscıllating frequency	1		10	MHz

Note 1 : Ports operating as special function pins $I N T_{1}-I N T_{3}\left(P 6_{0}-P 6_{2}\right), E V_{1}-E V_{3}\left(P 3_{0}-P 3_{2}\right), R_{X} D\left(P 3_{4}\right)$, $\mathrm{S}_{\mathrm{CLK}}\left(\mathrm{P}_{6}\right)$
$2: \mathrm{I}_{\mathrm{OL}(\mathrm{avg})}$ and $\mathrm{I}_{\mathrm{OH}(\mathrm{avg})}$ are the average current in 100 ms .
3 : The total of I_{OL} of Port P0, P1 and P2 should be 40 mA (max)
The total of I_{OL} of Port P3, P5, P6, R/W, SYNC, RESET ${ }_{\text {OUt }}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}$ and ϕ should be 40 mA (max)
The total of I_{OH} of Port P0, P1, and P2 should be 40 mA (max)
The total of I_{OH} of Port P3, P5, P6, R/ $\overline{\mathrm{W}}, \mathrm{SYNC}, \mathrm{RESET}_{\mathrm{Out}}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}$, and ϕ should be 40 mA (max)

EXTENDED OPERATING TEMPERATURE VERSION of M37450M4-XXXSP

ELECTRIC CHARACTERISTICS ($\mathrm{v}_{\mathrm{CC}}=5 \mathrm{v} \pm 10 \%, \mathrm{v}_{\mathrm{ss}}=0 \mathrm{v}, \mathrm{T}_{\mathrm{a}}=-40$ to $\left.85^{\circ} \mathrm{C}, \mathrm{f}\left(\mathrm{X}_{\mathrm{IN}}\right)=10 \mathrm{MHz}\right)$

Symbol	Parameter	Test conditions	Lımits			Unit
			Mın	Typ.	Max.	
V_{OH}	" H " output voltage $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \mathrm{R} / \overline{\mathrm{W}}$, SYNC, RESET OUT, ϕ	$\mathrm{IOH}_{\mathrm{O}}=-2 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}-1$			V
V_{OH}	"H" output voltage $\mathrm{PO}_{0}-\mathrm{PO}_{7}$, $\mathrm{P1}_{0}-\mathrm{P1}_{7}$, $\mathrm{P}_{0}-\mathrm{P}_{7}$, $\mathrm{P}_{0}-\mathrm{P}_{0}-\mathrm{P}_{7}$, , $\mathrm{P}_{0}-\mathrm{Pb}_{7}$	$\mathrm{l}_{\mathrm{OH}}=-5 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{cc}}-1$			V
VoL	"L" output voltage $\mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P1}_{0}-\mathrm{P1}_{7}, \mathrm{P}_{0}-\mathrm{P}_{7}$, $\mathrm{P}_{0}-\mathrm{P3}_{7}, \mathrm{P5}_{0}-\mathrm{P5}_{7}, \mathrm{P}_{0}-\mathrm{Pb}_{7}$, RD, $\overline{\mathrm{WR}}, \mathrm{R} / \overline{\mathrm{W}}$, SYNC, RESET ${ }_{\text {OUT }}, \phi$	$\mathrm{l}_{\mathrm{oL}}=2 \mathrm{~mA}$			0.45	V
$V_{\text {OL }}$	$\begin{aligned} & \hline \text { "L" output voltage } \mathrm{PO}_{0}-\mathrm{PO}_{7}, \\ & \mathrm{P}_{0}-\mathrm{P}_{1}, \\ & \mathrm{P}_{0}-\mathrm{P}_{3} 2_{0}-\mathrm{P}_{7}, \mathrm{P}_{0}-\mathrm{P5}_{7}, \\ & \hline \end{aligned} \mathrm{P6}_{0}-\mathrm{P6}_{7},$	$\mathrm{l}_{\mathrm{OL}}=5 \mathrm{~mA}$			1	V
$\mathrm{V}_{\text {T }+}-\mathrm{V}_{\text {T- }}$	Hysteresis $\mathrm{INT}_{1}-\mathrm{INT}_{3}\left(\mathrm{PG}_{0}-\mathrm{P} 3_{2}\right), E \mathrm{EV}_{1}-\mathrm{EV}_{3}\left(\mathrm{P}_{3}-\mathrm{P3}_{2}\right)$, $\mathrm{R}_{\mathrm{x}} \mathrm{D}\left(\mathrm{P3}_{4}\right), \mathrm{S}_{\mathrm{CLK}}\left(\mathrm{P}_{6}\right)$	Function input level	0.3		1	V
$\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\mathrm{T}^{-}}$	Hysteresis RESET				0.7	V
$\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\text {T- }}$	Hysteresis XIN		0.1		0.5	V
IIL		$\mathrm{v}_{\mathrm{l}}=\mathrm{v}_{\mathrm{ss}}$	-5		5	$\mu \mathrm{A}$
I_{H}		$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{cc}}$	-5		5	$\mu \mathrm{A}$
$\mathrm{V}_{\text {RAM }}$	RAM retention voltage	At stop mode	2			V
Icc	Supply current	$f\left(X_{\text {IN }}\right)=10 \mathrm{MHz}$ At system operation		6	15	mA
		At stop mode (Note 1)		1	10	$\mu \mathrm{A}$

Note 1 : The terminals $\overline{R D}, \overline{W R}$, SYNC, R/W, RESET ${ }_{\text {out }}, \phi, D-A_{1}$ and $D-A_{2}$ are all open The other ports, which are in the input mode, are connected to $V_{\text {SS }} A-D$ converter is in the A-D completion state The current through $A D V_{\text {REF }}$ and $\mathrm{DAV}_{\text {REF }}$ is not included (Fig 4)

A-D CONVERTER CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{CC}}=\mathrm{AV} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=\mathrm{AV} \mathrm{VS}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40\right.$ to $85^{\circ} \mathrm{C}, \mathrm{f}\left(\mathrm{X}_{\mathrm{IN}}\right)=10 \mathrm{MHz}$ unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Unit
			Min	Typ	Max	
-	Resolution				8	Bits
-	Absolute accuracy	$\mathrm{V}_{\mathrm{CC}}=\mathrm{AV}_{\mathrm{CC}}=\mathrm{ADV}_{\text {REF }}=5 \mathrm{~V} \pm 10 \%$		± 1.5	± 3	LSB
$\mathrm{t}_{\text {CONV }}$	Conversion time				49	$\mathrm{t}_{\mathrm{c}(\phi)}$
$\mathrm{V}_{\text {IA }}$	Analog input voltage		$\mathrm{AV}_{\text {SS }}$		$\mathrm{AV}_{\text {cC }}$	V
$V_{\text {AdVref }}$	Reference input voltage		2		V_{cc}	V
R Ladder	Ladder resistance value	$\mathrm{ADV}_{\text {REF }}=5 \mathrm{~V}$	2	7.5	10	$\mathrm{k} \Omega$
liadvref	Reference input current	$\mathrm{ADV}_{\text {REF }}=5 \mathrm{~V}$	0.5	0.7	2.5	mA
$V_{\text {AVcc }}$	Analog power supply input voltage			v_{cc}		V
$V_{\text {AVSS }}$	Analog power supply input voltage			0		V

D-A CONVERTER CHARACTERISTICS $\left(\mathrm{v}_{\mathrm{cc}}=5 \mathrm{v} \pm 10 \%, \mathrm{v}_{\mathrm{ss}}=\mathrm{Av} \mathrm{v}_{\mathrm{ss}}=0 \mathrm{v}, \mathrm{T}_{\mathrm{a}}=-40\right.$ to $85^{\circ} \mathrm{C}$ unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Unit
			Mın	Typ	Max	
-	Resolution				8	Bits
-	Full scale deviation	$\mathrm{V}_{\mathrm{CC}}=\mathrm{DAV}_{\text {REF }}=5 \mathrm{~V}$			1.0	\%
$\mathrm{t}_{\text {su }}$	Set time				3	$\mu \mathrm{s}$
R_{O}	Output resistance		1	2	4	$\mathrm{k} \Omega$
$V_{\text {AVSS }}$	Analog power supply input voltage			0		V
$V_{\text {daver }}$	Reference input voltage		4		V_{cc}	V
I Davref	Reference power input current (Each pın)		0	2.5	5	mA

TIMING REQUIREMENTS
Port/single-chip mode ($\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test condition	Limits			Unit
			Min.	Typ	Max.	
$t_{\text {SU }}(\mathbf{P O D - \phi})$	Port P0 input setup time	Fig. 1	200			ns
	Port P1 input setup time		200			ns
$t_{\text {Su }}$ (P2D- ${ }^{\text {d }}$)	Port P2 input setup time		200			ns
$t_{\text {Su }}$ (P3D- ${ }^{\text {d }}$)	Port P3 input setup time		200			ns
$t_{\text {su }}$ (P4D- ${ }^{\text {d }}$)	Port P4 input setup time		200			ns
$\mathrm{t}_{\text {SU }}$ (P5D- ${ }^{\text {d }}$)	Port P5 input setup time		200			ns
	Port P6 input setup time		200			ns
th(ϕ-POD)	Port P0 input hold time		40			ns
$\mathrm{th}_{\text {(}}^{(\phi-P 1 D}$)	Port P1 input hold time		40			ns
th(ϕ-P2D)	Port P2 input hold time		40			ns
th(ϕ-P3D)	Port P3 input hold time		40			ns
th(ϕ-P4D)	Port P4 input hold time		40			ns
th(ϕ-P5D)	Port P5 input hold time		40			ns
th(ϕ-P6D)	Port P6 input hold time		40			ns
$t_{C}\left(X_{\text {IN }}\right)$	External clock input cycle time		100		1000	ns
$t_{W}\left(X_{1 N} L\right.$)	External clock input "L" pulse width		30			ns
$t_{w}\left(X_{1 N} H\right)$	External clock input "H" pulse width		30			ns
$t_{r}\left(X_{\text {IN }}\right)$	External clock risıng edge time				20	ns
$t_{f}\left(X_{\text {IN }}\right)$	External clock falling edge time				20	ns

Master CPU bus interface timing ($\overline{\mathbf{R}}$ and $\overline{\mathbf{W}}$ separation type mode)

$\left(\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40\right.$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test condition	Limits			Unit
			Min.	Typ	Max	
$t_{\text {su }}$ (cs-R $)$	$\overline{C S}$ setup time	Fig 2	0			ns
$t_{\text {su }}$ (cs-w -w	$\overline{\mathrm{CS}}$ setup time		0			ns
th($\mathrm{R}-\mathrm{CS}$)	$\overline{\mathrm{CS}}$ hold time		0			ns
th(w-cs)	$\overline{C S}$ hold time		0			ns
$t_{\text {su }}(A-R)$	A0 setup time		40			ns
$\mathrm{t}_{\text {su }}(\mathrm{A}-\mathrm{w})$	A0 setup time		40			ns
$\operatorname{th}(\mathrm{R}-\mathrm{A})$	AO hold time		10			ns
th $(W-A)$	AO hold time		10			ns
$t_{w}(\mathrm{R})$	Read pulse width		160			ns
$t_{w}(w)$	Write pulse width		160			ns
$\mathrm{t}_{\mathbf{S u}}(\mathrm{D}-\mathrm{w})$	Date input setup time before write		100			ns
th(w-D)	Date input hold time after write		10			ns

Master CPU bus interface timing (R/W type mode)

$\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40\right.$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test condition	Limits			Unit
			Mın	Typ	Max	
tsu(cs-E)	$\overline{\text { CS }}$ setup time	Fig 2	0			ns
th(E-CS)	$\overline{\mathrm{CS}}$ hold time		0			ns
$\mathrm{t}_{\text {su }}(\mathrm{A}-\mathrm{E})$	A0 setup time		40			ns
$\operatorname{th}(E-A)$	AO hold time		10			ns
$t_{\text {Su }}$ (RW-E)	R/W		40			ns
th(E-RW)	R/产 hoid tıme		10			ns
$\mathrm{t}_{\mathrm{W} \text { (EL) }}$	Enable clock "L" pulse width		160			ns
$t_{W(E H)}$	Enable clock "H" pulse width		160			ns
$\operatorname{tr}(E)$	Enable clock rising edge time				25	ns
$\mathrm{tf}_{\mathrm{f}}(\mathrm{E})$	Enable clock falling edge time				25	ns
$\mathrm{t}_{\text {Su }}(\mathrm{D}-\mathrm{E})$	Data input setup time before write		100			ns
th(E-D)	Data input hold time after write		10			ns

Local bus/memory expansion mode, microprocessor mode
$\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40\right.$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test condition	Limits			Unit
			Min	Typ.	Max	
$t_{\text {su }}(\mathrm{D}-\phi$)	Data input setup time	Fig 3	130			ns
$\mathrm{th}_{(}(\underline{D}-\mathrm{D})$	Data input hold time		0			ns
$t_{\text {Su }}(\mathrm{D}-\mathrm{RD})$	Data input setup time		130			ns
th(RD-D)	Data input hold time		0			ns

SWITCHING CHARACTERISTICS
Port/single-chip mode ($\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test condition	Lımits			Unit
			Min	Typ	Max	
$t_{\text {d }(\phi-P O Q)}$	Port P0 data output delay time	Fig. 3			200	ns
$t_{\text {d }}(\phi-P 1 Q)$	Port P1 data output delay time				200	ns
$t_{\text {d }}(\phi-P 2 Q)$	Port P2 data output delay time				200	ns
$t_{\text {d }(\phi-P 3 Q)}$	Port P3 data output delay time				200	ns
$t_{\text {d }}(\phi-P 5 Q)$	Port P5 data output delay time				200	ns
$\mathrm{t}_{\mathrm{d}(\phi-\mathrm{P} 6 \mathrm{Q}}$	Port P6 data output delay tıme				200	ns
$\mathrm{t}_{\mathrm{C}(\phi)}$	Cycle time		400		4000	ns
$\mathrm{t}_{\mathbf{W}(\boldsymbol{\phi} \boldsymbol{H})}$	ϕ clock pulse width ("H" level)		190			ns
$t_{\text {w }}(\phi)$	ϕ clock pulse width ("L" level)		170			ns
$\operatorname{tr}_{(}(\phi)$	ϕ clock rising edge time				20	ns
$\mathrm{t}_{\mathrm{f}(\phi)}$	ϕ clock fallıng edge time				20	ns

Master CPU bus interface ($\overline{\mathbf{R}}$ and $\overline{\mathbf{W}}$ separation type mode)

($\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test condition	Limits			Unit
			Min	Typ	Max	
$t_{\text {a }}(\mathrm{R}-\mathrm{D})$	Data output enable tıme after read	Fig. 4			120	ns
$t_{V(R-D)}$	Data output disable time after read		10		85	ns
$t_{\text {PLH(R-PR) }}$	$\overline{P_{\text {RDY }}}$ output transmission time after read				150	ns
$t_{\text {PLH }}(W-P R)$	$\overline{\mathrm{P}_{\text {RDY }}}$ output transmission time after write				150	ns

Master CPU bus interface ($\mathbf{R} / \overline{\mathrm{W}}$ type mode) ($\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test condition	Limits			Unit
			Mın	Typ	Max	
$t_{\text {a }}(\mathrm{E}-\mathrm{D})$	Data output enable time after read	Fig 4			120.	ns
$\mathrm{t}_{\mathrm{V}(\mathrm{E}-\mathrm{D})}$	Data output disable time after read		10		85	ns
$\mathrm{t}_{\text {PLH }}(\mathrm{E}-\mathrm{PR}$)	$\overline{\text { Pror }}$ output transmission time after E clock				150	ns

Local bus/memory expansion mode, microprocessor mode

($\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{Ss}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test condition	Limits			Unit
			Mın	Typ.	Max	
$t_{\text {d }}(\phi-A)$	Address delay time after ϕ	Fig. 40			150	ns
$t_{v}(\phi-A)$	Address effective time after ϕ		10			ns
$t_{V}(\mathrm{RD}-\mathrm{A})$	Address effective time after $\overline{\mathrm{RD}}$		10			ns
	Address effective time after $\overline{\text { WR }}$		10			ns
$t_{d}(\phi-D)$	Data output delay time after ϕ				160	ns
$t_{\text {d }}(\underline{W R-D)}$	Data output delay time after $\overline{\mathrm{WR}}$				160	ns
$t_{V}(\phi-D)$	Data output effective time after ϕ		20			ns
$t_{V}(\mathbf{W R}-\mathrm{D})$	Data output effective time after $\overline{\mathrm{WR}}$		20			ns
$t_{\text {d }}(\boldsymbol{\phi}-\mathrm{RW})$	R/W delay time after ϕ				150	ns
$\mathrm{t}_{\mathrm{d}(\phi-\mathrm{SYNC})}$	SYNC delay time after ϕ				150	ns
$t_{W}($ RD $)$	$\overline{\mathrm{RD}}$ pulse width		170			ns
t_{W} (WR)	WR pulse width		170			ns

EXTENDED OPERATING TEMPERATURE VERSION of M37450M4-XXXSP

TEST CONDITION

Input voltage level: $\mathrm{V}_{\mathrm{IH}} \quad 2.4 \mathrm{~V}$
$V_{\text {IL }} \quad 0.45 \mathrm{~V}$
Output test level: $\mathrm{V}_{\mathrm{OH}} 2.0 \mathrm{~V}$
$\mathrm{V}_{\mathrm{OL}} \quad 0.8 \mathrm{~V}$

Fig. 1 Test circuit in single-chip mode

Fig. 2 Master CPU bus interface test circuit

Fig. 3 Local bus test circuit

Fig. $4 \quad \mathrm{I}_{\mathrm{CC}}$ (at stop mode) test condition

TIMING DIAGRAM

Port/single-chip mode timing diagram

Note : $V_{I H}=0.8 V_{C C}, V_{I L}=0.16 V_{C C}$ of $X_{I N}$

Master CPU bus interface/ $\overline{\mathrm{R}}$ and $\overline{\mathrm{W}}$ separation type timing diagram
Read

Write

Master CPU interface/ R/W type timing diagram

Local bus timing diagram

DESCRIPTION

The M37451M4DXXXSP/FP is a single-chip microcomputer designed with CMOS sillicon gate technology. It is housed in a 64-pin shrink plastic molded DIP or an 80-pin plastic molded QFP (0.8 mm -pitch).
In addition to its simple instruction sets, the ROM, RAM, and I/O addresses are placed on the same memory map to enable easy programming.
It is suited for office automation equipment and control devices. The low power consumption made by the use of a CMOS process makes it especially suitable for battery powered devices requiring low power consumption. It also has a unique feature that enables it to be used as a slave microcomputer.
Apart from the expansion in operating temperature range and consequent differences in electrical characteristics (Note), functions are the same as those of the M37451M4XXXSP/FP.
The differences between the M37451M4DXXXSP/FP and M37451M8DXXXSP/FP are as shown below.

Type name	ROM size	RAM size
M37451M4DXXXSP/FP	8192 bytes	256 bytes
M37451M8DXXXSP/FP	16384 bytes	384 bytes

The number of analog input pins for the 80-pin model (FP version) is different from the 64 -pin model (SP version) In addition, the 80 -pin model has special pins for $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$, RESET ${ }_{\text {OUT }}$, DAV $_{\text {REF }}, A D V_{\text {REF }}, A V_{C C}$ and the 64-pin model has a special $\mathrm{V}_{\text {REF }}$ pin.
Note : The maximum value of supply current is 20 mA .
All other values are the same as that of M37451M4XXXSP/FP.

FEATURES

- Number of basic instructions

69 MELPS 740 basic instructions +2 multiply/divide instructions

- Instruction execution time
(minimum instructions at 12.5 MHz frequency) $\cdots \cdots 0.64 \mu \mathrm{~s}$
- Single power supply
$5 \mathrm{~V} \pm 10 \%$
- Power dissipation normal operation mode
(at 12.5 MHz frequency).
40 mW
- Subroutine nesting 96 levels max.
- Interrupt $\cdot 15$ events
- Master CPU interface 1 byte
- 16-bit timer ... 3
- 8-bit timer (Serial I/O use) 1
- Serial I/O (UART or clock synchronous) 1
- A-D converter (8-bit resolution) $\cdots \cdots \cdots 3$ channels (DIP) 8 channels (QFP)
- D-A converter (8-bit resolution). \qquad
- PWM output with 8-bit prescaler
(Either resolution 8 bit or 16 bit is software selectable) $\cdots 1$

- Programmable I/O ports

(Ports P0, P1, P2, P3, P5, P6) 48

- Input port (Port P4) $\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots 3$ (DIP), 8 (QFP)
- Output ports (Ports D-A, D-A $)^{\text {) }}$.............................. 2
- Operating temperature $\cdots \cdots . ~-~ 40 ~ t o ~ 850^{\circ} \mathrm{C}$

APPLICATION

Industrial machinery

DESCRIPTION

The M37450PSS is an EPROM mounted-type microcomputer employing a silicon gate CMOS process and was designed for developing programs for single-chip, 8 -bit microcomputers M37450M2-XXXSP, M37450M4-XXXSP and M37450M8-XXXSP. The M37450PSS, being housed in a piggyback-type 64-pin shrink DIP, is compatible with the M37450M2-XXXSP, M37450M4-XXXSP and M37450M8XXXSP.
There is a 28-pin socket on the upper surface so that the M5M27C256K-12 or the M5M27C256K-15 EPROM may be used.
The M37450PSS simplifies the development of programs for the M37450M2-XXXSP, M37450M4-XXXSP and M37450 M8-XXXSP and is excellent for making prototypes.

FEATURES

- Differences with the M37450M2-XXXSP, M37450M4XXXSP and M37450M8-XXXSP are:
(1) ROMless, EPROM is attached externally.
(2) Suitable EPROM is M5M27C256K-12, M5M27C256K -15.

APPLICATION

Development of programs for the following systems;

- Slave controller for PPCs, facsimiles, and page printers
- HDD, optical disk, inverter, and industrial motor controllers
- Industrial robots and machines

PIN CONFIGURATION (TOP VIEW)

The symbol " \bigcirc " indicates sockets for EPROM

PIN DESCRIPTION

Pın	Name	Input/ Output	Functions
V_{CC}, V_{ss}	Supply voltage		Power supply inputs $5 \mathrm{~V} \pm 10 \%$ to V_{CC} and OV to $\mathrm{V}_{\text {S }}$
$\mathrm{CNV}_{\text {ss }}$	CNV ${ }_{\text {Ss }}$		Controls the processor mode of the chip Normally connected to $\mathrm{V}_{\text {SS }}$ or $\mathrm{V}_{\text {cC }}$
RESET	Reset input	Input	To enter the reset state, the reset input pin must be kept at a "L" for more than 8 clock cycles (under normal V_{CC} conditions) If more time is needed for the crystal oscillator to stabilize, this " L " condition should be maintained for the required tıme
$\mathrm{XIN}_{\text {IN }}$	Clock input	Input	These are I/O pins of internal clock generating circuit for main clock To control generating frequency, an
$\mathrm{X}_{\text {OUt }}$	Clock output	Output	clock is used, the clock source should be connected to the $\mathrm{X}_{\text {IN }}$ pin and the $\mathrm{X}_{\text {OUt }}$ pin should be left open
ϕ	Timing output	Output	Outputs signal consisting of oscillating frequency divided by four
SYNC	Synchronous signal output	Output	This signal is output " H " during operation code fetch and is used to control single stepping of programs
R/ \bar{W}	Read/Write status output	Output	This signal determines the direction of the data bus it is " H " during read and " L " during write
$\mathrm{PO}_{0}-\mathrm{PO}_{7}$	I/O port P0	1/0	Port P 0 is an 8 -bit I / O port with directional registers allowing each I / O bit to be individually programed as input or output The output structure is CMOS output The low-order bits of the address are output except in single-chip mode
$\mathrm{P} 1_{0}-\mathrm{P} 1_{7}$	I/O port P1	1/0	Port P1 is an 8-bit I/O port and has basically the same function as port P0 The high-order bits of the address are output except in single-chip mode
$\mathrm{P} 2_{0}-\mathrm{P} 2_{7}$	I/O port P2	1/0	Port P2 is an 8-bit I/O port and has basically the same function as PO Used as data bus except in singlechip mode
$P 3_{0}-\mathrm{P} 3_{7}$	I/O port P3	1/0	Port P3 is an 8-bit I/O port and has basically the same function as PO Serial I/O, PWM output, or even I/O function can be selected with a program
$\mathrm{P} 40-\mathrm{P} 4_{2}$	Input port P4	Input	Analog input pin for the A-D converter They may also be used as digital input pins
$\mathrm{P} 50-\mathrm{P} 5_{7}$	I/O port P5	1/0	Port P5 is an 8-bit I/O port and has basically the same function as P0 This port functions as an 8-bit data bus for the master CPU when slave mode is selected with a program
$\mathrm{P} 6_{0}-\mathrm{P} 6_{7}$	I/O port P6	1/0	Port P 6 is an 8 -bit I/O port and has basically the same function as $\mathrm{P} 0, \mathrm{P}_{\mathrm{Ins}} \mathrm{P}_{3}$ to $\mathrm{P} 6_{7}$ change to control bus for the master CPU when slave mode is selected with a program Pins $P 6_{0}$ to $P 6_{2}$ may be programed as external interrupt input pins
D-A ${ }_{1}$, D-A ${ }_{2}$	D-A output	Output	Analog signal from D-A converter is output
$\mathrm{V}_{\text {REF }}$	Refference voltage input	Input	Reference voltage input pin for A-D and D-A converter
$\mathrm{AV}_{\text {S }}$	Analog power supply		Ground level input pin for A-D and D-A converter
$\mathrm{A}_{0}-\mathrm{A}_{14}$	Output port A	Output	Port A outputs the adresses to the EPROM mounted on the top of the package
$\mathrm{D}_{0}-\mathrm{D}_{7}$	Input port D	Input	Port D takes the input data from the EPROM mounted on the top of the package

EXPLANATION OF FUNCTION BLOCK OPERATION

The differences between the M37450PSS and the M37450M2 -XXXSP, M37450M4-XXXSP and M37450M8-XXXSP are explained below. As all other points are the same, only the differences are explained.

MEMORY

Instead of an internal ROM, an EPROM is mounted. The addresses of EPROM are 8000_{16} to FFFF_{16}, having 32 K bytes. Internal RAMs are provided from 0000_{16} to $00 B F_{16}$ (192 bytes) and from 0100_{16} to $01 \mathrm{FF}_{16}$ (256 bytes) for a total of 448 bytes. However, the 64-byte area from $01 \mathrm{CO}_{16}$ to $01 \mathrm{FF}_{16}$ cannot be used when creating masked ROM. The rest of the functions are equivalent to the M37450M2XXXSP, M37450M4-XXXSP and M37450M8-XXXSP

Fig. 1 Memory map

MITSUBISHI MICROCOMPUTERS M37450PSS

00D0 ${ }_{16}$	Port P0 register	00E8 ${ }_{16}$	Serial I/O control register
00D1 ${ }_{16}$	Port P0 directional register	$00 \mathrm{E} 9_{16}$	UART control register
$00 \mathrm{D} 1_{16}$	Port P1 register	O0EA ${ }_{16}$	Baud rate generator
$00 \mathrm{D} 3_{16}$	Port P1 directional register	O0EB ${ }_{16}$	PWM register (lower-byte)
00D4 ${ }_{16}$	Port P2 register	00EC ${ }_{16}$	PWM register (higher-byte)
00D5 ${ }_{16}$	Port P2 directional register	O0ED ${ }_{16}$	Timer 1 control register
00D6 1_{16}	Port P3 register	O0EE ${ }_{16}$	Timer 2 control register
00D7 ${ }_{16}$	Port P3 directional register	O0EF ${ }_{16}$	Timer 3 control register
00D8 ${ }_{16}$	Port P4	$00 \mathrm{FO}{ }_{16}$	Tımer 1 regıster (lower-byte)
$00 \mathrm{D} 9_{16}$	Reserved	$00 \mathrm{~F} 1_{16}$	Timer 1 register (higher-byte)
$00 \mathrm{DA}_{16}$	Port P5 register	-00F2 ${ }_{16}$	Timer 1 latch (lower-byte)
$00 \mathrm{DB}{ }_{16}$	Port P5 directional register	$00 \mathrm{F3}{ }_{16}$	Timer 1 latch (higher-byte)
$0^{00 D C} 16$	Port P6 register	O0F4 ${ }_{16}$	Timer 2 register (lower-byte)
00DD ${ }_{16}$	Port P6 directional register	$\mathrm{OOF5}_{16}$	Tımer 2 register (higher-byte)
$00 D E_{16}$	MISRG1	$00 \mathrm{F6}{ }_{16}$	Timer 2 latch (lower-byte)
00DF ${ }_{16}$	MISRG2	$00 F 7{ }_{16}$	Timer 2 latch (higher-byte)
$00 \mathrm{EO}{ }_{16}$	D-A1 register	$00 \mathrm{F8}{ }_{16}$	Timer 3 register (lower-byte)
$00 \mathrm{E} 1_{16}$	D-A2 register	$00 \mathrm{F9}{ }_{16}$	Timer 3 register (higher-byte)
O0E2 ${ }_{16}$	A-D register	$00 \mathrm{FA} \mathrm{i}_{16}$	Timer 3 latch (lower-byte)
$00 \mathrm{E} 3_{16}$	A-D control register	$00 \mathrm{FB}_{16}$	Timer 3 latch (higher-byte)
O0E4 ${ }_{16}$	Data bus buffer register	$00 \mathrm{FC}_{16}$	Interrupt request register 1
$0_{0-5}{ }_{16}$	Data bus buffer status regıster	$00 \mathrm{FD}_{16}$	Interrupt request regıster 2
00E6 ${ }_{16}$	Receive/transfer buffer register	$00 \mathrm{FE} \mathrm{E}_{16}$	Interrupt control register 1
$00 E 7{ }_{16}$	Serial I/O status regıster	$00 \mathrm{FF}_{16}$	Interrupt control register 2

Fig. 2 SFR (Special Function Register) memory map

MITSUBISHI MICROCOMPUTERS M37450P SS

PROCESSOR MODE

External memory area differs from the M37450M2-XXXSP, M37450M4-XXXSP and M37450M8-XXXSP.
Figure 3 shows the external memory area when the M37450PSS is in the memory expanding mode and Fig. 4 shows the external memory area when the M37450PSS is in the microprocessor mode.

Fig. 3 Memory map in memory expanding mode

Fig. 4 Memory map in memory expanding mode

PRECAUTION FOR USE

(1) Program area

When developing programs on the M37450PSS, the ROM and RAM sizes of the M37450M2-XXXSP, M37450M4-XXXSP, and M37450M8-XXXSP must be considered.
For the M37450M2-XXXSP, use the M37450PSS ROM program area from FOOO_{16} to FFFF_{16}. (Write the program from 7000_{16} to $7 \mathrm{FFF}_{16}$ on the EPROM.)
Also, when creating masked ROMs, note that the RAM area for the M37450M2-XXXSP is 128 bytes from 0000_{16} to $007 \mathrm{~F}_{16}$.
For the M37450M4-XXXSP, use the M37450PSS ROM program area from $E 000_{16}$ to FFFF_{16}. (Write the program from 6000_{16} to $7 \mathrm{FFF}_{16}$ on the EPROM.)
Also, when creating masked ROMs, note that the RAM area for the M37450M4-XXXSP is 192 bytes from 0000_{16} to $00 \mathrm{BF}_{16}$ and 64 bytes from 0100_{16} to $013 \mathrm{~F}_{16}$ for a total of 256 bytes.
For the M37450M8-XXXSP, use the M37450PSS ROM program area from COOO_{16} to FFFF_{16}. (Write the program from 4000_{16} to $7 \mathrm{FFF}_{16}$ on the EPROM.)
Also, when creating masked ROMs, note that the RAM area for the M37450M8-XXXSP is 192 bytes from 0000_{16} to $00 \mathrm{BF}_{16}$ and 192 bytes from 0100_{16} to $01 \mathrm{BF}_{16}$ for a total of 384 bytes.
The 64 byte area from $01 \mathrm{CO}_{16}$ to $01 \mathrm{FF}_{16}$ can also be used as internal RAM. However, it cannot be used when creating masked ROMs because there is no corresponding device
(2) External memory

When developing programs, note that the external memory area of the M37450PSS is as described in the previous section.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratıngs	Unit
V_{CC}	Supply voltage	With respect to $V_{\text {Ss }}$ Output transistors are at "OFF" state	-0.3 to 7	V
V_{1}	Input voltage $\overline{\text { RESET, }} \mathrm{X}_{\text {IN }}$		-0.3 to 7	\checkmark
V_{1}	$\begin{aligned} \text { Input voltage, } & \mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P} 1_{0}-\mathrm{P} 1_{7}, \\ & \mathrm{P}_{2}-\mathrm{P} 2_{7}, \\ \mathrm{P}_{0}-\mathrm{P3}_{7}, \mathrm{P}_{4}-\mathrm{P} 4_{7}, & \mathrm{P} 5_{0}-\mathrm{P} 5_{7}, \\ & \mathrm{P}_{0}-\mathrm{P} 6_{7}, \mathrm{~V}_{\mathrm{RFF}} \end{aligned}$		-0.3 to $\mathrm{V}_{\mathrm{cc}}+0.3$	V
V_{1}	Input voltage $\mathrm{CNV}_{\text {SS }}$		-0.3 to 13	V
V_{0}	$\begin{aligned} & \hline \text { Output voltage, } \mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P}_{0}-\mathrm{P1}_{7}, \mathrm{P}_{0}-\mathrm{P} 2_{7}, \\ & \mathrm{P}_{0}-\mathrm{P} 3_{7}, \mathrm{P5}_{0}-\mathrm{P} 5_{7}, \mathrm{P6}_{0}-\mathrm{P} 6_{7}, \\ & \mathrm{X}_{\text {OUT }}, \phi, \mathrm{R} / \overline{\mathrm{W}}, \mathrm{SYNC} \\ & \hline \end{aligned}$		-0.3 to $\mathrm{V}_{\mathrm{cc}}+0.3$	V
Pd	Power dissipation	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$	1000	mW
Topr	Operatıng temperature		-10 to 70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage temperature		-40 to 125	C

RECOMMENDED OPERATING CONDITIONS ($\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathbf{a}}=-10$ to $70^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Limits			Unit
		Mın	Typ	Max	
V_{CC}	Supply voltage	4.5	5	5.5	V
$\mathrm{V}_{\text {ss }}$	Supply voltage		0		V
V_{IH}	" H " input voltage $\overline{\text { RESET, }} \mathrm{X}_{\text {IN }}, \mathrm{CNV}_{\text {SS }}$ (Note1)	0.8V V_{CC}		V_{CC}	V
V_{1+}	$\begin{aligned} \text { "H" input voltage } & \mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P1}_{0}-\mathrm{P} 1_{7}, \mathrm{P}_{0}-\mathrm{P} 2_{7}, \\ & \mathrm{P}_{0}-\mathrm{P3}_{7}, \mathrm{P4}_{0}-\mathrm{P} 4_{7}, \mathrm{P} 5_{0}-\mathrm{P} 5_{7}, \\ & \mathrm{P} 6_{0}-\mathrm{P} 6_{7} \quad \text { (except Note1) } \end{aligned}$	2.0		V_{cc}	V
V_{IL}	"L" input voltage $\mathrm{CNV}_{\text {SS }}$ (Note1)	0		0.2V $\mathrm{V}_{C C}$	V
$\mathrm{V}_{\text {IL }}$	$\begin{aligned} \text { "L" input voltage } & \mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P1}_{0}-\mathrm{P} 1_{7}, \\ & \mathrm{P}_{0}-\mathrm{P} 2_{7}, \\ & \mathrm{P}_{0}-\mathrm{P} 3_{7}, \mathrm{P}_{0}-\mathrm{P} 4_{7}, \mathrm{P5}_{0}-\mathrm{P} 5_{7}, \\ & \mathrm{P}_{0}-\mathrm{P} 6_{7} \quad \text { (except Note1) } \end{aligned}$	0		0.8	V
$\mathrm{V}_{\text {IL }}$	"L" input voltage $\overline{\text { RESET }}$	0		$0.12 \mathrm{~V}_{\mathrm{Cc}}$	V
$\mathrm{V}_{\text {IL }}$	"L" input voltage $\mathrm{X}_{\text {IN }}$	0		$0.16 \mathrm{~V}_{\mathrm{CC}}$	V
lol(peak)	"L" peak output current $\mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P1}_{0}-\mathrm{P} 1_{7}, \mathrm{P2}_{0}-\mathrm{P} 2_{7}$, $\mathrm{P3}_{0}-\mathrm{P} 3_{7}, \mathrm{P5}_{0}-\mathrm{P5}_{7}, \mathrm{P6}_{0}-\mathrm{P6}_{7}$			10	mA
lol(avg)	$\begin{aligned} \text { " } \mathrm{L} \text { " average output current } & \mathrm{PO}_{0}-\mathrm{P0}_{7}, \mathrm{P1}_{0}-\mathrm{P} 1_{7}, \\ & \mathrm{P}_{2}-\mathrm{P}_{7}, \mathrm{P}_{0}-\mathrm{P} 3_{7}, \\ & \left.\mathrm{P5}_{0}-\mathrm{P5}_{7}, \mathrm{P6}_{0}-\mathrm{P}_{7} \text { (Note } 2\right) \end{aligned}$			5	mA
ІОн(peak)	" H " peak output current $\mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P1}_{0}-\mathrm{P1} 1_{7}, \mathrm{P2}_{0}-\mathrm{P}_{7}$, $\mathrm{P} 3_{0}-\mathrm{P} 3_{7}, \mathrm{P5}_{0}-\mathrm{P5}_{7}, \mathrm{P6}_{0}-\mathrm{P6}_{7}$			-10	mA
$\mathrm{IOH}(\mathrm{avg})$	$\begin{aligned} & \hline \text { " } \mathrm{H} \text { " average output current } \mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P1}_{0}-\mathrm{P} 1_{7}, \\ & \mathrm{P}_{0}-\mathrm{P}_{7}, \mathrm{P}_{0}-\mathrm{P}_{7}, \\ & \mathrm{P}_{0}-\mathrm{P5}_{7}, \mathrm{P6}_{0}-\mathrm{P6}_{7} \text { (Note2) } \\ & \hline \end{aligned}$			-5	mA
$f\left(X_{\text {IN }}\right)$	Clock oscillating frequency	1		10	MHz

Note 1: Ports operate as $\mathrm{INT}_{1}-\mathrm{INT}_{3}\left(\mathrm{P6}_{0}-\mathrm{Pb}_{2}\right), \mathrm{EV}_{1}-\mathrm{EV}_{3}\left(\mathrm{P}_{3}-\mathrm{P} 3_{2}\right), \mathrm{R}_{\mathrm{X}} \mathrm{D}\left(\mathrm{P}_{4}\right)$ and $\mathrm{S}_{\mathrm{CLK}}\left(\mathrm{P3}_{6}\right)$
2 : The average output current $\mathrm{I}_{\mathrm{OH}(\mathrm{avg})}$ and $\mathrm{I}_{\mathrm{OL}(\mathrm{avg})}$ are the average value during a 100 ms
3 : The total of " L " output $\mathrm{l}_{\mathrm{OL} \text { (peak) }}$ of port $\mathrm{P} 0, \mathrm{P} 1$ and P 2 is 40 mA max
The total of "H" output $\mathrm{I}_{\mathrm{OH} \text { (peak) }}$ of port $\mathrm{P} 0, \mathrm{P} 1$ and P 2 is 40 mA max
The total of "L" output $\mathrm{I}_{\mathrm{OL} \text { (peak) }}$ of port P3, P5, P6, R/W, SYNC and ϕ is 40 mA max The total of "H" output $\mathrm{I}_{\mathrm{OH} \text { (peak) }}$ of port $\mathrm{P} 3, \mathrm{P} 5, \mathrm{P} 6, \mathrm{R} / \mathrm{W}, \mathrm{SYNC}$ and ϕ is 40 mA max

MITSUBISHI MICROCOMPUTERS M37450PSS

PIGGYBACK for M37450M2-XXXSP,M37450M4-XXXSP,M37450M8-XXXSP

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-10\right.$ to $70^{\circ} \mathrm{C}, \mathrm{f}\left(\mathrm{X}_{\mathrm{IN}}\right)=10 \mathrm{MHz}$, unless otherwise noted)

Symbol	Parameter	Test conditions	Limıts			Unit
			Min	Typ	Max	
V_{OH}	"H" output R/ $\overline{\mathrm{W}}$, SYNC, ϕ	$\mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{cc}}-1$			V
V_{OH}	$\begin{array}{r} \text { "H" output voltage } \mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P1}_{0}-\mathrm{P} 1_{7}, \mathrm{P}_{0}-\mathrm{P} 2_{7}, \\ \mathrm{P}_{0}-\mathrm{P}_{7}, \mathrm{P5}_{0}-\mathrm{P5}_{7}, \mathrm{P}_{0}-\mathrm{P6}_{7} \end{array}$	$\mathrm{I}_{\mathrm{OH}}=-5 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{cc}}-1$			V
$\mathrm{V}_{\text {OL }}$	$\begin{aligned} & \hline \text { "L" output voltage } \mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P1}_{0}-\mathrm{P} 1_{7}, \mathrm{P2}_{0}-\mathrm{P}_{7}, \\ & \mathrm{P}_{0}-\mathrm{P3}_{7}, \mathrm{P5}_{0}-\mathrm{P5}_{7}, \mathrm{P6}_{0}-\mathrm{P6}_{7}, \\ & \mathrm{R} / \overline{\mathrm{W}}, \mathrm{SYNC}, \phi \\ & \hline \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=2 \mathrm{~mA}$			0.45	V
$\mathrm{V}_{\text {OL }}$	$\begin{array}{r} \text { "L" output voltage } \mathrm{PO}_{0}-\mathrm{P} 0_{7}, \mathrm{P} 1_{0}-\mathrm{P} 1_{7}, \mathrm{P} 2_{0}-\mathrm{P} 2_{7}, \\ \\ \mathrm{P} 3_{0}-P 3_{7}, \mathrm{P5}_{0}-\mathrm{P} 5_{7}, \mathrm{P6}_{0}-\mathrm{P} 6_{7} \\ \hline \end{array}$	$\mathrm{l}_{\mathrm{OL}}=5 \mathrm{~mA}$			1	V
$\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\text {T- }}$	$\begin{gathered} \text { Hysterisıs } \mathrm{INT}_{1}-\mathrm{NT}_{3}\left(\mathrm{P6}_{0}-\mathrm{PG}_{2}\right), \mathrm{EV}_{1}-\mathrm{EV}_{3}\left(\mathrm{P}_{3}-\mathrm{P} 3_{2}\right), \\ \mathrm{R}_{\mathrm{X}} \mathrm{D}\left(\mathrm{P}_{4}\right), \mathrm{S}_{\mathrm{CLK}}\left(\mathrm{P}_{6}\right) \\ \hline \end{gathered}$	Function input level	0.3		1	V
$\mathrm{V}_{\text {T+ }}-\mathrm{V}_{\text {T- }}$	Hysterisis RESET				0.7	V
$\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\text {T- }}$	Hysterisis $\mathrm{X}_{\text {IN }}$		0.1		0.5	V
$I_{\text {IL }}$	$\begin{array}{\|c} \text { "L" Input current } \\ \mathrm{P0}_{0}-\mathrm{P0}_{7}, \mathrm{P1}_{0}-\mathrm{P} 1_{7}, \mathrm{P}_{0}-\mathrm{P} 2_{7}, \\ \\ \mathrm{P} 3_{0}-\mathrm{P} 3_{7}, \mathrm{P4}_{0}-\mathrm{P} 4_{7}, \mathrm{P5}_{0}-\mathrm{P} 5_{7}, \\ \\ \mathrm{P} 6_{0}-\mathrm{P} 6_{7}, \overline{\mathrm{RESET}}, \mathrm{X}_{1 \mathrm{~N}} \\ \hline \end{array}$	$\mathrm{v}_{1}=\mathrm{v}_{\mathrm{ss}}$	-5		5	$\mu \mathrm{A}$
$\mathrm{I}_{\mathbf{H}}$	$\begin{aligned} \text { "H" Input current } & \mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P1}_{0}-\mathrm{P} 1_{7}, \mathrm{P}_{0}-\mathrm{P} 2_{7}, \\ & \mathrm{P}_{0}-\mathrm{P3}_{7}, \mathrm{P}_{0}-\mathrm{P} 4_{7}, \mathrm{P5}_{0}-\mathrm{P} 5_{7}, \\ & \mathrm{P}_{0}-\mathrm{P6}_{7}, \overline{\mathrm{RESET}}, \mathrm{X}_{1 \mathrm{~N}} \end{aligned}$	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{cc}}$	-5		5	$\mu \mathrm{A}$
$\mathrm{V}_{\text {RAM }}$	RAM retention voltage	At stop mode	2			V
I_{cc}	Supply current	At system operation $f\left(X_{\text {IN }}\right)=10 \mathrm{MHz}($ Note 1$)$		6	10	mA

Note 1 : Only for M37450PSS (not contact in EPROM dissıpation current)

A-D CONVERTER CHARACTERISTICS ($\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=\mathrm{AV} \mathrm{Vs}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{f}\left(\mathrm{X}_{\mathrm{IN}}\right)=10 \mathrm{MHz}$, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Unit
			Min	Typ	Max.	
-.	Resolution				8	Bits
-	Absolute accuracy	$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\text {REF }}=5.12 \mathrm{~V}$		± 1.5	± 3	LSB
t ${ }_{\text {CONV }}$	Conversion time				49	$t_{C}(\phi)$
$\mathrm{V}_{\text {IA }}$	Analog input voltage		$\mathrm{AV}_{\text {SS }}$		$\mathrm{AV}_{\mathrm{CC}}$	V
$\mathrm{V}_{\text {VREF }}$	Reference analog input voltage		2		V_{cc}	V
$\mathrm{R}_{\text {Ladder }}$	Ladder resistance value	$\mathrm{V}_{\text {REF }}=5 \mathrm{~V}$	2	7.5	10	k Ω
$\mathrm{I}_{\text {IVREF }}$	Reference analog input current	$\mathrm{V}_{\text {REF }}=5 \mathrm{~V}$	0.5	0.7	2.5	mA
$\mathrm{V}_{\text {AVSS }}$	Analog power input			0	-	V

D-A CONVERTER CHARACTERISTICS ($\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{Ss}}=\mathrm{AV}$ Ss $=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{f}\left(\mathrm{X}_{\mathrm{IN}}\right)=10 \mathrm{MHz}$, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Unit
			Min	Typ	Max	
-	Resolution				8	Bits
-	Absolute accuracy	$\mathrm{V}_{\text {CC }}=\mathrm{V}_{\text {REF }}=5.12 \mathrm{~V}$			1.0	\%
$\mathrm{t}_{\text {su }}$	Setup time				3	$\mu \mathrm{s}$
R_{0}	Output resistance		1	2	4	$\mathrm{k} \Omega$
$\mathrm{V}_{\text {AVSS }}$	Analog power input			0		V
$V_{\text {VREF }}$	Analog power input		4		V_{Cc}	V
IVREF	Reference power input current (Each pın)		0	2.5	5	mA

MITSUBISHI MICROCOMPUTERS
 M37450PFS

PIGGYBACK for M37450M2-XXXFP,M37450M4-XXXFP,M37450M8-XXXFP

DESCRIPTION

The M37450PFS is an EPROM mounted-type microcomputer employing a silicon gate CMOS process and was designed for developing programs for single-chip, 8-bit microcomputers M37450M2-XXXFP, M37450M4-XXXFP and M37450M8-XXXFP. The M37450PFS, being housed in a piggyback-type 80 -pin plastic QFP is compatible with the M37450M2-XXXFP, M37450M4-XXXFP and M37450M8XXXFP.
There is a 32-pin socket on the upper surface so that the outline is LCC-32C-A01 and 27C256 EPROM may be used. The M37450PSS simplifies the development of programs for the M37450M2-XXXFP, M37450M4-XXXFP and M37450 M8-XXXFP and is excellent for making prototypes.

FEATURES

- Difference with the M37450M2-XXXFP, M37450M4XXXFP and M37450M8-XXXFP is:
(1) ROMless, EPROM is attached externally.
(2) Suitable EPROM is that the outline is LCC-32C-A01 and 27 C 256

APPLICATION

Development of programs for the following systems:

- Slave controller for PPCs, facsimiles, and page printers
- HDD, optical disk, inverter, and industrial motor controllers
- Industrial robots and machines

PIN DESCRIPTION

Pin	Name	Input/ Output	Functions
$V_{c c}$, V_{ss}	Supply voltage		Power supply inputs $5 \mathrm{~V} \pm 10 \%$ to V_{CC} and OV to $\mathrm{V}_{\text {SS }}$
$\mathrm{CNV}_{\text {ss }}$	CNV ${ }_{\text {ss }}$		Controls the processor mode of the chip Normally connected to V_{SS} or V_{CC}
RESET	Reset input	Input	To enter the reset state, the reset input pin must be kept at a " L " for more than 8 clock cycles (under normal V_{cc} conditions) If more time is needed for the crystal oscillator to stabilize, this " L " condition should be maintained for the required time
$\mathrm{XIN}_{\text {IN }}$	Clock input	Input	These are I/O pins of internal clock generatıng circuit for main clock To control generatıng frequency, an
Xout	Clock output	Output	clock is used, the clock source should be connected to the $\mathrm{XIV}_{\text {IN }}$ PIn and the $\mathrm{X}_{\text {out }}$ pin should be left open
ϕ	Timing output	Output	Outputs signal consisting of oscillating frequency divided by four
SYNC	Synchronous signal output	Output	This signal is output " H " during operation code fetch and is used to control single stepping of programs
R/W	Read/Write status output	Output	This signal determines the direction of the data bus It is "H" during read and "L" during write
$\mathrm{PO}_{0}-\mathrm{PO}_{7}$	I/O port P0	1/0	Port PO is an 8-bit I/O port with directional registers allowing each I/O bit to be individually programed as input or output The output structure is CMOS output The low-order bits of the address are output except in single-chip mode
$\mathrm{P} 1_{0}-\mathrm{P} 1_{7}$	I/O port P1	1/0	Port P1 is an 8-bit I/O port and has basically the same function as port P0 The high-order bits of the address are output except in single-chip mode
$\mathrm{P} 2_{0}-\mathrm{P} 2_{7}$	I/O port P2	1/0	Port P2 is an 8-bit I/O port and has basically the same function as PO Used as data bus except in singlechip mode
$P 3_{0}-P 3_{7}$	1/O port P3	1/0	Port P3 is an 8-bit 1/O port and has basically the same function as PO Serial I/O, PWM output, or even I/O function can be selected with a program
$\mathrm{P} 40-\mathrm{P} 47$	Input port P4	Input	Analog input pin for the A-D converter They may also be used as digital input pins
$\mathrm{P5} 0-\mathrm{P} 5_{7}$	I/O port P5	1/0	Port P5 is an 8-bit I/O port and has basically the same function as PO This port functions as an 8-bit data bus for the master CPU when slave mode is selected with a program
$\mathrm{P} 6_{0}-\mathrm{P} 6_{7}$	1/O port P6	1/0	Port P6 is an 8-bit I/O port and has basically the same function as P0 Pins Pb_{3} to P_{7} change to control bus for the master CPU when slave mode is selected with a program Pins $P 6_{0}$ to $P 6_{2}$ may be programed as external interrupt input pins
D-A ${ }_{1}$, D-A ${ }_{2}$	D-A output	Output	Analog signal from D-A converter is output
ADV REF	A-D refference voltage input	Input	Reference voltage input pin for A-D converter
DAV ref	D-A refference voltage input	Input	Reference voltage input pin for D-A converter
$\mathrm{AV}_{\text {Ss }}$	Analog power supply		Ground level input pin for A-D and D-A converter
$\mathrm{AV}_{\mathrm{cc}}$	Analog power supply		Power supply input pin for A-D converter
$\overline{\mathrm{RD}}$	Read signal output	Output	Control signal output as active "L" when vailed data is read from data bus
$\overline{W R}$	Write signal output	Output	Control signal output as active "L" when writing data from data bus to external component
RESET ${ }_{\text {out }}$	Reset output	Output	Control signal output as active " H " during reset it is used as a reset output signal for perpheral components
$\mathrm{A}_{0}-\mathrm{A}_{14}$	Output port A	Output	Port A outputs the adresses to the EPROM mounted on the top of the package
$\mathrm{D}_{0}-\mathrm{D}_{7}$	Input port D	Input	Port D takes the input data from the EPROM mounted on the top of the package

MITSUBISHI MICROCOMPUTERS
 M37450PFS

EXPLANATION OF FUNCTION BLOCK OPERATION

The differences between the M37450PFS and the M37450M2XXXFP, M37450M4-XXXFP and M37450M8-XXXFP are explained below. As all other points are the same, only the differences are explained.

MEMORY

Instead of an internal ROM, an EPROM is mounted. The addresses of EPROM are 8000_{16} to FFFF $_{16}$, having 32 K bytes. Internal RAMs are provided from 0000_{16} to $00 \mathrm{BF}_{16}$ (192 bytes) and from 0100_{16} to $01 \mathrm{FF}_{16}$ (256 bytes) for a total of 448 bytes. However, the 64 -byte area from $01 \mathrm{CO}_{16}$ to $01 \mathrm{FF}_{16}$ cannot be used when creating masked ROM. The rest of the functions are equivalent to the M37450M2-XXXFP, M37450M4-XXXFP and M37450M8-XXXFP.

Fig. 1 Memory map

00D0 ${ }_{16}$	Port P0 register	O0E8 ${ }_{16}$	Serial I/O control register
00D1 ${ }_{16}$	Port P0 directional regıster	O0E9 ${ }_{16}$	UART control register
$00 \mathrm{D} 1_{16}$	Port P1 register	O0EA ${ }_{16}$	Baud rate generator
$00 \mathrm{D} 3_{16}$	Port P1 directional register	O0EB ${ }_{16}$	PWM register (lower-byte)
00D4 ${ }_{16}$	Port P2 register	O0EC ${ }_{16}$	PWM register (higher-byte)
00D5 ${ }_{16}$	Port P2 directional register	O0ED ${ }_{16}$	Tımer 1 control register
00D6 ${ }_{16}$	Port P3 register	$00 \mathrm{EE}_{16}$	Timer 2 control register ${ }^{\text { }}$
$00 \mathrm{D} 7_{16}$	Port P3 directional register	O0EF ${ }_{16}$	Timer 3 control register
00D8 ${ }_{16}$	Port P4 register	00FO ${ }_{16}$	Tımer 1 register (lower-byte)
$00 \mathrm{D9}{ }_{16}$	Reserved	O0F1 1_{16}	Timer 1 register (higher-byte)
00DA ${ }_{16}$	Port P5 register	00F2 ${ }_{16}$	Timer 1 latch (lower-byte)
$00 \mathrm{DB}_{16}$	Port P5 directional register	$00 \mathrm{F3}{ }_{16}$	Timer 1 latch (higher-byte)
$00 \mathrm{Cb}_{16}$	Port P6 register	$00 \mathrm{F4}{ }_{16}$	Timer 2 register (lower-byte)
$00 D_{16}$	Port P6 directional regıster	$\mathrm{OOF5}_{16}$	Timer 2 regıster (hıgher-byte)
$00 \mathrm{DE} \mathrm{E}_{16}$	MISRG1	$\mathrm{OOF6}_{16}$	Timer 2 latch (lower-byte)
00DF ${ }_{16}$	MISRG2	00F7 ${ }_{16}$	Timer 2 latch (higher-byte)
O0E0 ${ }_{16}$	D-A1 register	00F8 ${ }_{16}$	Tımer 3 register (lower-byte)
O0E1 ${ }_{16}$	D-A2 register	$0_{0} \mathrm{F9}_{16}$	Tımer 3 register (hıgher-byte)
$00 \mathrm{E} 2_{16}$	A-D register	$00 \mathrm{FA}_{16}$	Timer 3 latch (lower-byte)
$00 E 3_{16}$	A-D control register	$00 \mathrm{FB}_{16}$	Timer 3 latch (higher-byte)
O0E4 ${ }_{16}$	Data bus buffer register	$00 \mathrm{FC}_{16}$	Interrupt request register 1
$00 E 5{ }_{16}$	Data bus buffer status register	$00 \mathrm{FD}_{16}$	Interrupt request register 2
00E6 ${ }_{16}$	Receive/transfer buffer register	$00 \mathrm{FE}_{16}$	Interrupt control register 1
$00 E 7{ }_{16}$	Serial I/O status regıster	$00 \mathrm{FF}_{16}$	Interrupt control regıster 2

Fig. 2 SFR (Special Function Register) memory map

PROCESSOR MODE

External memory area differs from the M37450M2-XXXFP, M37450M4-XXXFP and M37450M8-XXXFP.
Figure 3 shows the external memory area when the M37450PFS is in the memory expanding mode and Figure 4 shows the external memory area when the M37450PFS is in the microprocessor mode.

Fig. 3 Memory map in memory expanding area

Fig. 4 Memory map in microprocessor mode

PRECAUTION FOR USE

(1) Program area

When developing programs on the M37450PFS, the ROM and sizes of the M37450M2-XXXFP, M37450M4-XXXFP, and M37450M8-XXXFP must be considered.
For the M37450M2-XXXFP, use the M37450PFS ROM program area from FOOO_{16} to FFFF_{16}. (Write the program from 7000_{16} to $7 \mathrm{FFF}_{16}$ on the EPROM.)
Also, when creating masked ROMs, note that the RAM area for the M37450M2-XXXFP is 128 bytes from 0000_{16} to $0007 \mathrm{~F}_{16}$.
For the M37450M4-XXXFP, use the M37450PFS ROM program area from $E 000_{16}$ to FFFF_{16}. (Write the program from 6000_{16} to $7 \mathrm{FFF}_{16}$ on the EPROM.)
Also, when creating masked ROMs, note that the RAM area for the M37450M4-XXXFP is 192 bytes from 0000_{16} to $00 \mathrm{BF}_{16}$ and 64 bytes from 0100_{16} to $013 \mathrm{~F}_{16}$ for a total of 256 bytes.
For the M37450M8-XXXFP, use the M37450PFS ROM program area from $\mathrm{C} 000_{16}$ to FFFF_{16}. (Write the program from 4000_{16} to $7 \mathrm{FFF}_{16}$ on the EPROM.)
Also, when creating masked ROMs, note that the RAM area for the M37450M8-XXXFP is 192 bytes from 0000_{16} to $00 \mathrm{BF}_{16}$ and 192 bytes from 0100_{16} to $01 \mathrm{BF}_{16}$ for a total of 384 bytes.
The 64 byte area from $01 \mathrm{CO}_{16}$ to $01 \mathrm{FF}_{16}$ can also be used as internal RAM. However, it cannot be used when creating masked ROMs because there is no corresponding device.
(2) External memory

When developing programs, note that the external memory area of the M37450PFS is as described in the previous section.
(3) EPROM orientation

Figure 5 shows the orientation when mountting the. LCC type EPROM on the M37450PFS. Insert the EPROM firmily until it hits bottom.

Fig. 5 EPROM orientation

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditons	Ratıngs	Unit
$\mathrm{V}_{\text {c }}$	Supply voltage	With respect to V_{Ss} Output transistors are at "OFF" state	-0.3 to 7	V
V_{1}	Input voltage $\overline{\text { RESET, }}$, $\mathrm{X}_{\text {IN }}$		-0.3 to 7	V
V_{1}	Input voltage, $\begin{aligned} & \mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P1}_{0}-\mathrm{P1}_{7}, \mathrm{P}_{0}-\mathrm{P} 2_{7}, \\ & \mathrm{P}_{0}-\mathrm{P3}_{7}, \mathrm{P}_{0}-\mathrm{P4}_{7}, \mathrm{P5}_{0}-\mathrm{P5}_{7}, \\ & \mathrm{PG}_{0}-\mathrm{P6}_{7}, \mathrm{ADV}_{\mathrm{RFF}}, \mathrm{DAV}_{\mathrm{RFF}} \mathrm{AV}_{\mathrm{CC}} \\ & \hline \end{aligned}$		-0.3 to $\mathrm{V}_{\mathrm{cc}}+0.3$	V
V_{1}	Input voltage $\mathrm{CNV}_{\text {Ss }}$		-0.3 to 13	V
V_{0}	Output voltage, $\mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P1}_{0}-\mathrm{P1}_{7}, \mathrm{P2}_{0}-\mathrm{P}_{7}$, $\mathrm{P} 3_{0}-\mathrm{P} 3_{7}, \mathrm{P}_{0}-\mathrm{P} 5_{7}, \mathrm{P} 6_{0}-\mathrm{P} 6_{7},$ $X_{\text {OUt }}, \phi, \overline{\text { RD }}, \overline{W R}$, RESET ${ }_{\text {OUT }}$, SYNC		-0.3 to $\mathrm{V}_{\mathrm{CC}}+0.3$	V
Pd	Power dıssipatıon	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$	500	mW
Topr	Operatıng temperature		-10 to 70	${ }^{\circ} \mathrm{C}$
T ${ }_{\text {stg }}$	Storage temperature		-40 to 125	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS ($\mathrm{v}_{\mathrm{cc}}=5 \mathrm{v} \pm 10 \%, \mathrm{~T}_{\mathrm{a}}=-10$ to $70^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Limits			Unit
		Min	Typ	Max	
V_{CC}	Supply voltage	4.5	5	5.5	V
$\mathrm{V}_{\text {SS }}$	Supply voltage		0		V
V_{IH}	"H" input voltage $\overline{\mathrm{RESET}}, \mathrm{X}_{\text {IN }}, \mathrm{CNV}_{\text {SS }}$ (Note 1)	$0.8 \mathrm{~V}_{\mathrm{CC}}$		V_{cc}	V
$\mathrm{V}_{1 \mathrm{H}}$	$\begin{aligned} & \text { "H" input voltage } \mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P1}_{0}-\mathrm{P} 1_{7}, \mathrm{P}_{0}-\mathrm{P} 2_{7}, \\ & \mathrm{P}_{0}-\mathrm{P} 3_{7}, \\ & \mathrm{P} 4_{0}-\mathrm{P} 4_{7}, \mathrm{P5}_{0}-\mathrm{P} 5_{7}, \\ & \mathrm{P}_{0}-\mathrm{P} 6_{7} \quad \text { (except Note } 1 \text {) } \\ & \hline \end{aligned}$	2.0		V_{cc}	V
V_{12}	"L" input voltage $\mathrm{CNV}^{\text {SS }}$ (Note1)	0		$0.2 V_{c c}$	V
$V_{\text {IL }}$		0		0.8	V
$\mathrm{V}_{\text {IL }}$	"L" input voltage $\overline{\mathrm{RESET}}$	0		$0.12 \mathrm{~V}_{\mathrm{cc}}$	V
$\mathrm{V}_{\text {IL }}$	"L" input voltage $\mathrm{X}_{\text {IN }}$	0		$0.16 \mathrm{~V}_{\mathrm{cc}}$	V
lol(peak)	"L" peak output current $\mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P1}_{0}-\mathrm{P} 1_{7}, \mathrm{P2}_{0}-\mathrm{P} 2_{7}$, $\mathrm{P}_{0}-\mathrm{P} 3_{7}, \mathrm{P5}_{0}-\mathrm{P} 5_{7}, \mathrm{P6}_{0}-\mathrm{P} 6_{7}$			10	mA
Iol(avg)	$\begin{aligned} & \text { "L" average output current } \mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P1}_{0}-\mathrm{P1}_{7}, \\ & \\ & \qquad \mathrm{P}_{0}-\mathrm{P}_{7}, \mathrm{P3}_{0}-\mathrm{P3}_{7}, \\ & \\ & \mathrm{P}_{0}-\mathrm{P5}_{7}, \mathrm{P}_{0}-\mathrm{P6}_{7} \text { (Note2) } \\ & \hline \end{aligned}$			5	mA
Іон(peak)	$\begin{array}{r} \text { "H" peak output current } \begin{aligned} & \mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P1}_{0}-\mathrm{P} 1_{7}, \mathrm{P}_{0}-\mathrm{P} 2_{7}, \\ & \mathrm{P3}_{0}-\mathrm{P} 3_{7}, \mathrm{P5}_{0}-\mathrm{P5} \end{aligned}, \mathrm{P6}_{0}-\mathrm{P6}_{7} \end{array}$			-10	mA
$\mathrm{l}_{\text {OH(avg }}$	$\begin{aligned} & \hline \text { " } \mathrm{H} \text { " average output current } \mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P1}_{0}-\mathrm{P} 1_{7}, \\ & \mathrm{P}_{0}-\mathrm{P}_{7}, \mathrm{P}_{0}-\mathrm{P} 3_{7}, \\ & \mathrm{P5}_{0}-\mathrm{P5}_{7}, \mathrm{P6}_{0}-\mathrm{P6}_{7} \text { (Note2) } \\ & \hline \end{aligned}$			-5	mA
$f\left(X_{\text {IN }}\right)$	Clock oscillating frequency	1		10	MHz

Note 1 : Ports operate as $\mathrm{INT}_{1}-\mathrm{INT}_{3}\left(\mathrm{P6}_{0}-\mathrm{PG}_{2}\right), \mathrm{EV}_{1}-\mathrm{EV}_{3}\left(\mathrm{P3}_{0}-\mathrm{P} 3_{2}\right), \mathrm{R}_{\mathrm{X}} \mathrm{D}\left(\mathrm{P3}_{4}\right)$ and $\mathrm{S}_{\mathrm{CLK}}\left(\mathrm{P3}_{6}\right)$
2 : The average output current $\mathrm{I}_{\mathrm{OH}(\mathrm{avg})}$ and $\mathrm{I}_{\mathrm{OL}(\mathrm{avg})}$ are the average value during a 100 ms
: The total of " L " output lol(peak) of port P0, P1 and P2 is 40 mA max
The total of " H " output $\mathrm{I}_{\mathrm{OH}(\text { peak })}$ of port $\mathrm{P} 0, \mathrm{P} 1$ and P 2 is 40 mA max.
The total of "L" output lol(peak) of port P3, P5, P6, R/ \bar{W}, SYNC, RESETout, $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$ and ϕ is 40 mA max.
The total of "H" output $\mathrm{I}_{\text {OH(peak) }}$ of port P3, P5, P6, R/W, SYNC, RESET ${ }_{\text {OUT }}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}$ and ϕ is 40mA max

M37450PFS

PIGGYBACK for M37450M2-XXXFP,M37450M4-XXXFP,M37450M8-XXXFP

ELECTRICAL CHARACTERISTICS ($\mathrm{v}_{\mathrm{CC}}=5 \mathrm{v} \pm 10 \%, \mathrm{v}_{\mathrm{SS}}=0 \mathrm{v}, \mathrm{T}_{\mathrm{a}}=-10$ to $70^{\circ} \mathrm{C}, \mathrm{f}\left(\mathrm{X}_{\mathrm{IN}}\right)=10 \mathrm{MHz}$, unless otherwise noted $)$

Symbol	Parameter	Test conditions	Limits			Unit
			Min	Typ	Max	
V_{OH}	"H" output $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \mathrm{SYNC}, \mathrm{RESET} \mathrm{T}_{\text {OUT }}, \phi$	$\mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}-1$			V
V_{OH}	$\begin{array}{r} \text { " } \mathrm{H} \text { " output voltage } \mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P1}_{0}-\mathrm{P1}_{7}, \mathrm{P}_{0}-\mathrm{P} 2_{7}, \\ \\ \mathrm{P}_{0}-\mathrm{P3}_{7}, \mathrm{P5}_{0}-\mathrm{P5}_{7}, \mathrm{P6}_{0}-\mathrm{PG}_{7} \\ \hline \end{array}$	$\mathrm{l}_{\mathrm{OH}}=-5 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{cc}}-1$			V
$\mathrm{V}_{\text {OL }}$	$\begin{aligned} \hline \text { "L" output voltage } & \mathrm{PO}_{0}-\mathrm{P} 0_{7}, \mathrm{P1}_{0}-\mathrm{P} 1_{7}, \mathrm{P}_{0}-\mathrm{P} 2_{7}, \\ & \mathrm{P} 3_{0}-\mathrm{P} 3_{7}, \mathrm{P} 5_{0}-\mathrm{P} 5_{7}, \mathrm{P} 6_{0}-\mathrm{P} 6_{7}, \\ & \mathrm{R} / \overline{\mathrm{W}}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \mathrm{SYNC}, \mathrm{RESET} \end{aligned}$	$\mathrm{l}_{\mathrm{OL}}=2 \mathrm{~mA}$			0.45	V
V_{OL}	$\begin{array}{r} \text { "L" output voltage } \mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P1}_{0}-\mathrm{P} 1_{7}, \mathrm{P}_{0}-\mathrm{P} 2_{7}, \\ \mathrm{P}_{3}-\mathrm{P} 3_{7}, \mathrm{P5}_{0}-\mathrm{P5}_{7}, \mathrm{P6}_{0}-\mathrm{P6}_{7} \end{array}$	$\mathrm{l}_{\mathrm{OL}}=5 \mathrm{~mA}$			1	V
$\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\text {T- }}$	$\begin{aligned} & \text { Hysterisis } \mathrm{INT}_{1}-\mathrm{INT}_{3}\left(\mathrm{P6}_{0}-\mathrm{PG}_{2}\right), \mathrm{EV}_{1}-\mathrm{EV}_{3}\left(\mathrm{P3}_{0}-\mathrm{P3}_{2}\right), \\ & \mathrm{RXX}_{\mathrm{X}} \mathrm{D}\left(\mathrm{PS}_{4}\right), \mathrm{S}_{\mathrm{CLK}}\left(\mathrm{P3}_{6}\right) \end{aligned}$	Function input level	0.3		1	V
$\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\mathrm{T}-}$	Hysterisis $\overline{\text { RESET }}$				0.7	V
$\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\text {T- }}$	Hysterisis X ${ }_{\text {IN }}$		0.1		0.5	V
$I_{\text {IL }}$	$\begin{aligned} & \hline \text { "L" Input current } \mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P1}_{0}-\mathrm{P} 1_{7}, \mathrm{P}_{0}-\mathrm{P} 2_{7}, \\ & \mathrm{P3}_{0}-\mathrm{P3}_{7}, \mathrm{P}_{0}-\mathrm{P} 4_{7}, \mathrm{P5}_{0}-\mathrm{P} 5_{7}, \\ & \mathrm{P6}_{0}-\mathrm{P6}_{7}, \overline{\text { RESET }}, \mathrm{X}_{\mathrm{IN}} \\ & \hline \end{aligned}$	$\mathrm{v}_{1}=\mathrm{v}_{\mathrm{ss}}$	-5		5	$\mu \mathrm{A}$
I_{H}	$\begin{aligned} \text { "H" Input current } & \mathrm{PO}_{0}-\mathrm{P} 0_{7}, \mathrm{P1}_{0}-\mathrm{P} 1_{7}, \\ & \mathrm{P}_{2}-\mathrm{P} 2_{7}, \\ \mathrm{P}_{0}-\mathrm{P} 3_{7}, & \mathrm{P}_{0}-\mathrm{P} 4_{7}, \mathrm{P} 5_{0}-\mathrm{P} 5_{7}, \\ & \mathrm{P6}_{0}-\mathrm{P} 6_{7}, \mathrm{RESET}, \mathrm{XIN} \end{aligned}$	$\mathrm{V}_{\mathrm{l}}=\mathrm{V}_{\mathrm{cc}}$	-5		5	$\mu \mathrm{A}$
$\mathrm{V}_{\text {RAM }}$	RAM retention voltage	At stop mode	2			V
Icc	Supply current	At system operation $f\left(X_{\text {IN }}\right)=10 \mathrm{MHz}(\text { Note } 1)$		6	10	mA

Note 1: Only for M37450PFS (not contact in EPROM dissipation current)

A-D CONVERTER CHARACTERISTICS $\left(V_{C C}=A V_{C C}=5 V, V_{S S}=A V_{S S}=0 V, T_{a}=25^{\circ} C, f\left(X_{I N}\right)=10 M H z\right.$, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Unit
			Min	Typ	Max	
-	Resolution				8	Bits
-	Absolute accuracy	$V_{C C}=A V_{C C}=A D V_{\text {REF }}=5.12 \mathrm{~V}$		± 1.5	± 3	LSB
tconv	Conversion time				49	$t_{C}(\phi)$
$V_{\text {IA }}$	Analog input voltage		$\mathrm{AV}_{\text {SS }}$		$\mathrm{AV}_{\mathrm{CC}}$	V
$V_{\text {ADVREF }}$	Reference analog input voltage		2		V_{Cc}	V
R LADDER	Ladder resistance value	$\mathrm{ADV}_{\text {REF }}=5 \mathrm{~V}$	2	7.5	10	$k \Omega$
l iadvref	Reference analog input current	$\mathrm{ADV}_{\text {REF }}=5 \mathrm{~V}$	0.5	0.7	2.5	mA
$V_{\text {avcc }}$	Analog power input			V_{cc}		V
$V_{\text {AVSS }}$	Analog power input			0		V

D-A CONVERTER CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{AV} \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Unit
			Min	Typ	Max	
-	Resolution				8	Bits
-	Absolute accuracy	$\mathrm{V}_{\text {CC }}=\mathrm{DAV}_{\text {REF }}=5.12 \mathrm{~V}$			1.0	\%
$t_{\text {su }}$	Setup time				3	$\mu \mathrm{s}$
R_{O}	Output resistance		1	2	4	$\mathrm{k} \Omega$
$\mathrm{V}_{\text {AVSS }}$	Analog power input			0		V
$V_{\text {davReF }}$	Analog power input		4		V_{cc}	V
$\mathrm{I}_{\text {DAVREF }}$	Reference power input current (Each pın)		0	2.5	5	mA

MITSUBISHI MICROCOMPUTERS

DESCRIPITION

The M37450E4-XXXSP is a single-chip microcomputer designed with CMOS silicon gate technology. It is housed in a 64-pin shrink plastic molded DIP. The features of this chip are similar to those of the M37450M4-XXXSP except that this chip has a 8192 -byte PROM built-in. This single-chip microcomputer is useful for office automation appliances and consumer appliance controllers.
In addition to its simple instruction sets, the PROM, RAM and I/O addresses are placed on the same memory map to enable easy programming. Since general purpose PROM writes can be used for small quantity production runs. It also has a unique feature that enables it to be used as a slave microcomputer.
The M37450E4SS and the M37450E4FS are the window type. The differences between the M37450E4-XXXSP and the M37450E4-XXXFP, and between the M37450E4SS and the M37450E4FS are the package outline and the power dissipation ability (absolute maximum ratings).

FEATURES

- Number of basic instructions

71 69 MELPS 740 basic instructions +2 multiply/divide instructions

- Memory size PROM 8192 bytes

- Instruction execution time (minimum instructions at 10 MHz frequency) $\cdots \cdots 0.8 \mu \mathrm{~s}$
- Single power supply...................................... $5 \mathrm{~V} \pm 5 \%$
- Power dissipation normal operation mode (at 10 MHz frequency) 30 mW
- Subroutine nesting 96 levels max.
- Interrupt.. 15 events
- Master CPU bus interface ... 1 byte

- 8-bit timer (Serial I/O use) ... 1
- Serial I/O (UART or clock synchronous) 1
- A-D converter (8 -bit resolution) $\cdots \cdots \cdots 3$ channels (DIP) 8 channels (QFP)
- D-A converter (8-bit resolution) $\cdots \cdots \cdots \cdots \cdots \cdots, 2$ channels
- PWM output (8-bit or 16-bit)
- 1
- Programmable I/O ports

- Input port (Port P4) $\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots$ (DIP), 8 (QFP)
- Output ports (Ports D-A,$D-A_{2}$)
- PROM (equivalent to the M5L2764) program voltage

APPLICATION

Slave controller for PPCs, facsimiles, and page printers HDD, optical disk, inverter, and industrial motor controllers Industrial robots and machines

M37450E4－XXXSP，M37450E4SS BLOCK DIAGRAM

M37450E4-XXXFP, M37450E4FS BLOCK DIAGRAM

FUNCTIONS OF M37450E4-XXXSP/FP, M37450E4SS/FS

Parameter			Functions
Number of basic instructions			71(69 MELPS 740 basic instructions+2)
Instruction execution time			$0.8 \mu \mathrm{~s}$ (minimum instructions, at 10 MHz frequency)
Clock frequency			10 MHz (max)
Memory size	PROM		8192 bytes
	RAM		256 bytes
Input/Output port	P0-P3, P5, P6	1/0	8 -bit $\times 6$
	P4	Input	3 -bit $\times 1$ (8-bit $\times 1$ for $80-$ pin model)
	D-A	Output	2 -bit $\times 1$
Serial I/O			UART or clock synchronous
Timers			16-bit tımer $\times 3$, 8 -bit timer (Serial I/O baud rate generator) $\times 1$
A-D converter			8 -bit $\times 3$ channels (8 channels for 80 -pin model)
D-A converter			8 -bit $\times 2$ channels
Puise width modulator			8 -bit or 16 -bit $\times 1$
Data bus buffer			1-byte input and output each
Subroutine nesting			96-levels
Interrupt			6 external interrupts, 8 internal interrupts One software interrupt
Clock generating circuit			Built-in (ceramic or quarts crystal oscillator)
Supply voltage			$5 \mathrm{~V} \pm 5 \%$
Power dissipation			30 mW (at 10 MHz frequency)
Input/Output characters	Input/Output voltage		5 V
	Output current		$\pm 5 \mathrm{~mA}$ (max.)
Memory expansion			Possible
Operating temperature range			-10 to $70^{\circ} \mathrm{C}$
Device structure			CMOS silicon gate
Package	M37450E4-XXXSP		64-pin shrink plastic molded DIP
	M37450E4-XXXFP		80-pin plastic molded QFP
	M37450E4SS		64-pın shrınk ceramic DIP
	M37450E4FS		80-pIn ceramic QFP

MITSUBISHI MICROCOMPUTERS

PIN DESCRIPTION (normal mode)

Pın	Name	Input/ Output	Functions
$\begin{aligned} & \mathrm{v}_{\mathrm{cc}}, \\ & \mathrm{v}_{\mathrm{ss}} \end{aligned}$	Supply voltage		Power supply inputs $5 \mathrm{~V} \pm 5 \%$ to V_{cc}, and 0 V to $\mathrm{V}_{\text {SS }}$
$\mathrm{CNV}_{\text {SS }} / \mathrm{V}_{\text {PP }}$	$\mathrm{CNV}_{\text {Ss }}$		Controls the processor mode of the chip Normally connected to $\mathrm{V}_{S S}$ or $\mathrm{V}_{C C}$
RESET	Reset input	Input	To enter the reset state, the reset input pin must be kept at a "L" for more than 8 clock cycles (under normal $V_{C C}$ conditions) If more time is needed for the crystal oscillator to stabilize, this " L " condition should be maintained for the required time
$\mathrm{X}_{\text {IN }}$	Clock input	Input	This chip has an internal clock generating circuit To control generating frequency, an external ceramic or a
$\mathrm{X}_{\text {OUt }}$	Clock output	Output	source should be connected to the $\mathrm{X}_{\text {IN }}$ pin and the $\mathrm{X}_{\text {Out }}$ pin should be left open
ϕ	Timing output	Output	Outputs signal consısting of oscillating frequency divided by four
SYNC	Synchronous signal output	Output	This signal is output "H" during operation code fetch and is used to control single stepping of programs
R / \bar{W}	Read/Write status output	Output	This signal determines the direction of the data bus it is " H " during read and "L" during write
$\mathrm{PO}_{0}-\mathrm{PO}_{7}$	I/O port PO	1/0	Port PO is an 8-bit I/O port with directional registers allowing each I/O bit to be individually programmed as input or output The output structure is CMOS output The low-order bits of the address are output except in single-chip mode
$\mathrm{P} 1_{0}-\mathrm{P} 1_{7}$	I/O port P1	1/0	Port P1 is an 8-bit I/O port and has basically the same functions as port P0 The high-order bits of the address are output except in single-chip mode
$\mathrm{P} 2_{0}-\mathrm{P} 2_{7}$	I/O port P2	1/O	Port P2 is an 8-bit I/O port and has basically the same functions as port P0 Used as data bus except in single-chip mode
$P 3_{0}-\mathrm{P} 3_{7}$	1/O port P3	$1 / 0$	Port P3 is an 8-bit I/O port and has basically the same functions as port PO Serial I/O, PWM output, or event I/O function can be selected with a program
$\begin{aligned} & P 4_{0}-P 4_{2} \\ & \left(P 4_{0}-P 4_{7}\right) \end{aligned}$	Input port P4	Input	Analog input pın for the A-D converter The 64-pın model has three pıns and the 80 -pın model has eight pins They may also be used as digital input pins
$\mathrm{P} 50-\mathrm{P} 5_{7}$	1/O port P5	1/0	Port P5 is an 8-bit I/O port and has basically the same functions as port P0 This port functions as an 8-bit data bus for the master CPU when slave mode is selected with a program
$\mathrm{P} 60-\mathrm{P} 6_{7}$	I/O port P6	I/O	Port P6 is an 8-bit I/O port and has basically the same function as port P0 Pins P_{3} to $\mathrm{P6}_{7}$ change to a control bus for the master CPU when slave mode is selected with a program Pins $P 6_{0}$ to $P 6_{2}$ may be programmed as external interrupt input pins
D-A ${ }_{1}$, D-A ${ }_{2}$	D-A output	Output	Analog signal from D-A converter is output
$\mathrm{V}_{\text {REF }}$	Reference voltage input	Input	Reference voltage input pin for A-D and D-A converter This pin is for 64-pin model only
$\mathrm{ADV}_{\text {REF }}$	A-D reference voltage input	Input	Reference voltage input pin for A-D converter This pin is for 80-pin model only
DAV VEFF	D-A reference voltage input	Input	Reference voltage input pin for D-A converter This pin is for 80 -pin model only
$\mathrm{AV}_{\text {SS }}$	Analog power supply		Ground level input pin for A-D and D-A converter Same voltage as $\mathrm{V}_{\text {ss }}$ is applied
$\mathrm{AV}_{\mathrm{Cc}}$	Analog power supply		Power supply input pin for A-D converter This pin is for 80-pin model only Same voltage as V_{CC} is applied In the case of the 64-pin model, $\mathrm{AV}_{\mathrm{CC}}$ is connected to V_{CC} internally
$\overline{\mathrm{RD}}$	Read signal output	Output	Control signal output as active "L" when valid data is read from data bus This pin is for 80-pin model only
$\overline{W R}$	Write signal output	Output	Control signal output as active " L " when writing data from data bus to external component This pin is for 80-pin model only
RESETout	Reset output	Output	Control sigral output as active " H " during reset It is used as a reset output signal for peripheral components. This pin is for 80 -pin model only

MITSUBISHI MICROCOMPUTERS
M37450E4-XXXSP/FP M37450E4SS/FS

PROM VERSION of M37450M4-XXXSP/FP

PIN DESCRIPTION (EPROM mode)

Pin	Name	Input/ Output	Functions
$\mathrm{V}_{\mathrm{cc}}, \mathrm{V}_{\mathrm{ss}}$	Supply voltage		Power supply inputs $5 \mathrm{~V} \pm 5 \%$ to V_{cc}, and 0 V to V_{ss}
$\mathrm{CNV}_{\text {SS }} / \mathrm{V}_{\text {PP }}$	V_{pp}	Input	Connect to V_{PP} when programming or verifing.
RESET	Reset input	Input	Connect to $\mathrm{V}_{\text {ss }}$
$\mathrm{X}_{\text {IN }}$	Clock input	Input	Connect a ceramic or a quartz crystal oscillator between $\mathrm{X}_{\text {IN }}$ and $\mathrm{X}_{\text {OUT }}$ for clock oscillation.
X ${ }_{\text {OUT }}$	Clock output	Output	
ϕ	Timing output	Output	For timing output
SYNC	Synchronous signal output	Output	Kept to open ("L" signal is output)
R/ \bar{W}	Read/Write status output	Output	Kept to open (" H " signal is output)
$\mathrm{PO}_{0}-\mathrm{PO} 0_{7}$	I/O port P0	Input	P0 works as the lower 8-bit address input
$\mathrm{P} 1_{0}-\mathrm{P} 1_{7}$	I/O port P1	Input	P1 works as the higher 8-bit address input
$\mathrm{P} 2_{0}-\mathrm{P} 2_{7}$	I/O port P2	1/0	P2 works as an 8-bit data bus
$\mathrm{P3}_{0}-\mathrm{P} 3_{7}$	I/O port P3	Input	Connect to $\mathrm{V}_{\text {ss }}$
$\begin{aligned} & \mathrm{P}_{4}-\mathrm{P} 4_{2} \\ & \left(\mathrm{P}_{0}-\mathrm{P} 4_{7}\right) \end{aligned}$	Input port P4	Input	Connect to $\mathrm{V}_{\text {ss }}$ (The 80-pın model has eight pins $\mathrm{P} 40^{\text {a }}$ to P_{7})
$\mathrm{P} 50-\mathrm{P} 5_{7}$	I/O port P5	Input	$\mathrm{P5} 5_{0}, \mathrm{P5}, \mathrm{P5}$ 2 works as $\overline{\mathrm{PGM}}, \overline{\mathrm{OE}}$, and $\overline{\mathrm{CE}}$ inputs respectively Connect $\mathrm{P5} 5_{3}$ and $\mathrm{P5} 5_{4}$ to V_{CC} and $\mathrm{P} 5_{5}$ to $\mathrm{P} 5_{7}$ to V_{ss}
$\mathrm{Pb}_{0}-\mathrm{P} 6_{7}$	1/O port P6	Input	Connect to $\mathrm{V}_{\text {ss }}$
D-A ${ }_{1}, \mathrm{D}-\mathrm{A}_{2}$	D-A output	Output	Kept to open
$\mathrm{V}_{\text {REF }}$	Reference voltage input	Input	Comect to $\mathrm{V}_{\text {ss }}$
ADV feF	A-D reference voltage input	Input	Connect to $\mathrm{V}_{\text {ss }}$.
DAV $\mathrm{ref}^{\text {r }}$	D-A reference voltage input	Input	Connect to $\mathrm{V}_{\text {ss }}$.
$\mathrm{AV}_{\text {Ss }}$	Analog power	Input	Connect to $\mathrm{V}_{\text {Ss }}$
$\mathrm{AV}_{\mathrm{cc}}$	Analog power	Input	Connect to V_{cc} or $\mathrm{V}_{\text {Ss }}$.
$\overline{\mathrm{RD}}$	Read signal output	Output	Kept to open (" H " signal is output)
$\overline{W R}$	Write signal output	Output	Kept to open (" H " signal is output).
RESET ${ }_{\text {OUt }}$	Reset output	Output	Kept to open (" H " signal is output)

EPROM MODE

The M37450E4-XXXSP/FP, M37450E4SS/FS features an EPROM mode in addition to its normal modes. When the
 is high (" H "), the chip automatically enters the EPROM mode. Table 1 list the correspondence between pins and Figure 1 and Figure 2 give the pin connections in the EPROM mode. When in the EPROM mode, ports P0, P1, $\mathrm{P} 2, \mathrm{P} 5_{0}$ to $\mathrm{P} 5_{2}$ and CNV Ss are used for the PROM (equivalent to the M5L2764). When in this mode, the builtin PROM can be written to or read from using these pins in the same way as with the M5L2764. The oscillator should be connected to the $X_{I N}$ and $X_{\text {OUT }}$ pins, or external clock should be connected to the $X_{\text {IN }}$ pin.

Table 1. Pin function in EPROM mode

	M37450E4-XXXSP/FP, M37450E4SS/FS	M5L2764
V_{CC}	V_{CC}	V_{CC}
V_{PP}	$\mathrm{CNV}_{\mathrm{SS}} / \mathrm{V}_{\mathrm{PP}}$	V_{PP}
V_{SS}	V_{SS}	V_{SS}
Address input	Ports $\mathrm{PO}, \mathrm{P} 1_{0}-\mathrm{P1}_{4}$	$\mathrm{~A}_{0}-\mathrm{A}_{12}$
Data I/O	$\mathrm{Port} \mathrm{P2}$	$\mathrm{D}_{0}-\mathrm{D}_{7}$
$\overline{\mathrm{CE}}$	$\mathrm{P5}_{2} / \mathrm{DB}_{2} / \overline{\mathrm{CE}}$	$\overline{\mathrm{CE}}$
$\overline{\mathrm{OE}}$	$\mathrm{P5}_{1} / \mathrm{DB}_{1} / \overline{\mathrm{OE}}$	$\overline{\mathrm{OE}}$
$\overline{\mathrm{PGM}}$	$\mathrm{P5}_{0} / \mathrm{DB}_{0} / \overline{\mathrm{PGM}}$	$\overline{\mathrm{PGM}}$

Fig. 1 Pin connection in EPROM mode (64-pin model)

Fig. 2 Pin connection in EPROM mode (80-pin model)

MITSUBISHI MICROCOMPUTERS

PROM READING, WRITING AND ERASING Reading

To read the PROM, set the $\overline{C E}$ and $\overline{O E}$ pins to a " L " level,
 $C N V_{S S}\left(V_{P P}\right)$ pins. Input the address of the data (A_{0} to A_{12}) to be read and the data will be output to the I/O pins D_{0} to D_{7}. The data I/O pins will be floating when either the $\overline{C E}$ or $\overline{\mathrm{OE}}$ pins are in the " H " state.

Writing

To write to the PROM, set the $\overline{C E}$ pin to a " L " level and the $\overline{\mathrm{OE}}$ pin to a " H " level, and supply OV to the $\overline{\operatorname{RESET}} \mathrm{pin}, 6 \mathrm{~V}$ to the $V_{C C}$ pin and 21 V to the V_{PP} pin. The CPU will enter the program mode when $V_{P p}$ is applied to the $V_{P P}$ pin. The address to be written to is selected with pins A_{0} to A_{12}, and the data to be written is input to pins D_{0} to D_{7}. Set the $\overline{\text { PGM }}$ pin to a " L " level to begin writing.

Erasing

Data can only erased on the M37450E4SS/FS ceramic package, which includes a window. To erase data on this chip, use an ultraviolet light source with a 2537 Angstrom wave length. The minimum radiation power necessary for erasing is $15 \mathrm{~W} \cdot \mathrm{~s} / \mathrm{cm}^{2}$.

NOTES ON HANDLING

(1) Sunlight and fluorescent light contain wave lengths capable of erasing data. For ceramic package types, cover the transparent window with a seal (provided) when this chip is in use. However, this seal must not contact the lead pins.
(2) Before erasing, the glass should be cleaned and stains such as finger prints should be removed thoroughly. If these stains are not removed, complete erasure of the data could be prevented.
(3) Since a high voltage (21V) is used to write data, care should be taken when turning on the PROM writer's power.
(4) For the programmable microcomputer (shipped in blank or OTP type), Mitsubishi does not perform PROM write test and screening in the assembly process and following process. To improve reliability after write, performing write and test according to the flow below before use is recommended.

Note : Since the screening temperature is higher than storage temperature, never expose to $150^{\circ} \mathrm{C}$ exceeding 100 hours.

Table 2. I/O signal in each mode

Mode	$\overline{\mathrm{CE}}$	$\overline{\mathrm{OE}}$	$\overline{\mathrm{PGM}}$	V_{PP}	V_{CC}	Port P2
Read-out	V_{IL}	V_{IL}	$\mathrm{V}_{I H}$	5 V	5 V	Output
Programming	V_{IL}	V_{IH}	V_{IL}	21 V	6 V	Input
Programming verify	V_{IL}	V	V	21 V	6 V	Output
Program disable	V_{IH}	X	X	21 V	6 V	Floating

Note 1: $V_{I L}$ and $V_{I H}$ indicate a " L " and " H " input voltage, respectively
2 : An $X_{\text {indicates either }} \mathrm{V}_{\mathrm{IL}}$ or V_{IH}.

ELECTRIC

MITSUBISHI MICROCOMPUTERS
M37450E4-XXXSP/FP M37450E4SS/FS

PROM VERSION of M37450M4-XXXSP/FP

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Condıtions	Ratıngs	Unit
V_{CC}	Supply voltage	With respect to $\mathrm{V}_{\text {SS }}$ Output transistors are at "OFF", state	-0.3 to 7	V
V_{1}	Input voitage $\overline{\text { RESET }}, \mathrm{X}_{\text {IN }}$		-0.3 to 7	V
V_{1}	Input voltage $\mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P1}_{0}-\mathrm{P} 1_{7}, \mathrm{P}_{0}-\mathrm{P} 2_{7}$, $\mathrm{P}_{0}-\mathrm{P3}_{7}, \mathrm{P4}_{0}-\mathrm{P} 4_{7}, \mathrm{P5}_{0}-\mathrm{P5}_{7}$, $\mathrm{P}_{0}-\mathrm{P} 6_{7}, \mathrm{ADV}_{\text {REF }}, \mathrm{DAV}_{\text {REF }}$, $\mathrm{V}_{\mathrm{REF}}, \mathrm{AV}_{\mathrm{CC}}$		-0.3 to $\mathrm{V}_{\mathrm{cc}}+0.3$	V
V_{1}	Input voltage $\mathrm{CNV}_{\text {SS }}$		-0.3 to 13 (Note 1)	V
Vo	Output voltage $\mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P1}_{0}-\mathrm{P} 1_{7}, \mathrm{P}_{2}-\mathrm{P} 2_{7}$, $\mathrm{P}_{0}-\mathrm{P} 3_{7}, \mathrm{P5}_{0}-\mathrm{P} 5_{7}, \mathrm{P6}_{0}-\mathrm{P} 6_{7}$, $\mathrm{X}_{\text {OUt }}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \mathrm{R} / \overline{\mathrm{W}}$, RESET ${ }_{\text {OUT }}$, SYNC		-0.3 to $\mathrm{V}_{\mathrm{Cc}}+0.3$	V
$\mathrm{P}_{\text {d }}$	Power dissipation	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$	1000 (Note 2)	mW
Topr	Operating temperature		-10 to 70	${ }^{\circ} \mathrm{C}$
Tstg	Storage temperature		-40 to 125	${ }^{\circ} \mathrm{C}$

Note 1: In PROM programming mode, $\mathrm{CNV}_{\mathrm{ss}}$ is 22.0 V
$2: 500 \mathrm{~mW}$ for QFP type

RECOMMENDED OPERATING CONDITIONS

($\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{Ta}=-10$ to $70^{\circ} \mathrm{C}$ unless otherwise noted)

Symbol	Parameter	Limits			Unit
		Min	Typ	Max.	
V_{cc}	Supply voltage	4. 75	5	5.25	V
$\mathrm{V}_{\text {ss }}$	Supply voltage		0		V
V_{1}	" H " Input voltage $\overline{\mathrm{RESET}}, \mathrm{X}_{\text {IN }}, \mathrm{CNV}_{\text {SS }}$ (Note 1)	$0.8 \mathrm{~V}_{\mathrm{Cc}}$		V_{CC}	V
$\mathrm{V}_{\text {IH }}$	$\begin{aligned} \text { "H" Input voltage } & \mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P}_{1}-\mathrm{P} 1_{7}, \mathrm{P}_{0}-\mathrm{P} 2_{7}, \\ & \mathrm{P}_{0}-\mathrm{P} 3_{7}, \mathrm{P}_{0}-\mathrm{P} 4_{7}, \mathrm{P} 5_{0}-\mathrm{P} 5_{7}, \\ & \mathrm{P}_{0}-\mathrm{P} 6_{7} \quad \text { (except Note 1) } \end{aligned}$	2.0		$V_{C C}$	V
$\mathrm{V}_{\text {IL }}$	"L" Input voltage $\mathrm{CNV}_{\text {SS }}$ (Note 1)	0		$0.2 \mathrm{~V}_{\mathrm{CC}}$	V
$V_{\text {IL }}$	$\begin{array}{r} \text { "L" Input voltage } \mathrm{P0}_{0}-\mathrm{P}_{7}, \mathrm{P1}_{0}-\mathrm{P} 1_{7}, \mathrm{P} 2_{0}-\mathrm{P} 2_{7}, \\ \\ \mathrm{P} 3_{0}-\mathrm{P} 3_{7}, \mathrm{P} 4_{0}-\mathrm{P} 4_{7}, \mathrm{P} 5_{0}-\mathrm{P} 5_{7}, \\ \\ \mathrm{P} 6_{0}-\mathrm{P} 6_{7} \quad \text { (except Note 1) } \end{array}$	0		0.8	V
$V_{\text {IL }}$	"L" Input voltage $\overline{\mathrm{RESET}}$	0		$0.12 V_{c c}$	V
V_{12}	"L" Input voltage $\mathrm{X}_{\text {IN }}$	0		$0.16 \mathrm{~V}_{\mathrm{CC}}$	V
$I_{\text {OL(peak) }}$	$\begin{aligned} & \text { "L" peak output current } \mathrm{PO}_{0}-\mathrm{P} 0_{7}, \\ & \mathrm{P} 2_{0}-\mathrm{P} 1_{0}-\mathrm{P} 1_{7}, \mathrm{P} 3_{0}-\mathrm{P} 3_{7} \\ & \mathrm{P} 5_{0}-\mathrm{P} 5_{7}, \\ & \hline \end{aligned} 6_{0}-\mathrm{P} 6_{7}, 9 .$			10	mA
$\mathrm{lol}(\mathrm{avg})$				5	mA
$\mathrm{I}_{\mathrm{OH} \text { (peak) }}$	$\begin{aligned} & \text { "H" peak output current } \mathrm{PO}_{0}-\mathrm{P} 0_{7}, \\ & \mathrm{P} 1_{0}-\mathrm{P} 1_{7}, \\ & \mathrm{P}_{0}-\mathrm{P} 2_{7}, \\ & \mathrm{P} 5_{0}-\mathrm{P} 5_{7}-\mathrm{P}, \mathrm{P} 6_{0}-\mathrm{P} 6_{7} \\ & \hline \end{aligned}$			-10	mA
$\mathrm{IOH}(\mathrm{avg})$	$\begin{aligned} & \text { "H" average output current } \begin{array}{lll} & \mathrm{PO}_{0}-\mathrm{P} 0_{7}, & \mathrm{P} 1_{\mathrm{j}}-\mathrm{P} 1_{7}, \\ & \mathrm{P} 2_{0}-\mathrm{P} 2_{7}, & \mathrm{P} 5_{0}-\mathrm{P} 3_{7}, \\ & \mathrm{P}_{0}-\mathrm{P} 5_{7}, & \mathrm{P6}_{0}-\mathrm{P} 6_{7} \quad \text { (Note 2) } \\ \hline \end{array} \end{aligned}$			-5	mA
$f\left(X_{1 N}\right)$	Clock oscillatıng frequency	1		10	MHz

Note 1 : Ports operate as $\mathrm{INT}_{1}-\mathrm{INT}_{3}\left(\mathrm{PG}_{0}-\mathrm{PG}_{2}\right), \mathrm{EV}_{1}-\mathrm{EV}_{3}\left(\mathrm{P3}_{0}-\mathrm{P} 3_{2}\right), \mathrm{R}_{\mathrm{x}} \mathrm{D}\left(\mathrm{P}_{4}\right)$ and $\mathrm{S}_{\mathrm{CLK}}\left(\mathrm{P} 3_{6}\right)$
2 : The average output current $\mathrm{I}_{\mathrm{OH}(\mathrm{avg})}$ and $\mathrm{l}_{\mathrm{OL}(\mathrm{avg})}$ are the average value during a 100 ms
3 : The total of " L " output current IoL(peak) of port PO, P1 and P2 is less than 40 mA
The total of " H " output current $\mathrm{I}_{\mathrm{OH}(\text { peak) }}$ of port $\mathrm{P} 0, \mathrm{P} 1$ and P 2 is less than 40 mA
The total of "L" output current lol(peak) of port P3, P5, P6, R/W, SYNC, RESET ${ }_{\text {out }}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}$ and ϕ is less than 40 mA
The total of "H" output current $\mathrm{I}_{\text {OH(peak) }}$ of port P3, P5, P6, R/W, SYNC, RESET ${ }_{\text {Out }}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}$ and ϕ is less than 40 mA

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-10\right.$ to $70^{\circ} \mathrm{C}, \mathrm{f}\left(\mathrm{X}_{\mathrm{IN}}\right)=10 \mathrm{MHz}$, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Unit
			Min.	Typ	Max	
V_{OH}	" H " output voltage $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \mathrm{R} / \overline{\mathrm{W}}$, SYNC, RESET ${ }_{\text {Out }}, \phi$	$\mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}-1$			V
V OH	$\begin{aligned} & \text { "H" output voltage } \mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P1}_{0}-\mathrm{P} 1_{7}, \mathrm{P}_{0}-\mathrm{P} 2_{7}, \\ & \mathrm{P}_{0}-\mathrm{P}_{7}, \\ & \hline \end{aligned} \mathrm{P5}_{0}-\mathrm{P5}_{7}, \mathrm{P}_{0}-\mathrm{Pb}_{7},$	$\mathrm{I}_{\mathrm{OH}}=-5 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{Cc}}-1$			V
$\mathrm{V}_{\text {OL }}$	$\begin{aligned} & \text { "L" output voltage } \mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P}_{1}-\mathrm{P} 1_{7}, \mathrm{P} 2_{0}-\mathrm{P} 2_{7}, \\ & \mathrm{P}_{0}-\mathrm{P} 3_{7}, \mathrm{P} 5_{0}-\mathrm{P} 5_{7}, \mathrm{P} 6_{0}-\mathrm{P} 6_{7}, \\ & \overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \mathrm{R} / \overline{\mathrm{W}}, \mathrm{SYNC}, \mathrm{RESET} \\ & \text { OUT }, \phi \end{aligned}$	$\mathrm{IOL}=2 \mathrm{~mA}$			0.45	V
V_{OL}	$\begin{array}{r} \text { "L" output voltage } \mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P1}_{0}-\mathrm{P1}_{7}, \mathrm{P2}_{0}-\mathrm{P} 2_{7}, \\ \\ \mathrm{P}_{3}-\mathrm{P3}_{7}, \mathrm{P5}_{0}-\mathrm{P5}_{7}, \mathrm{P6}_{0}-\mathrm{P} 6_{7} \\ \hline \end{array}$	$\mathrm{IOL}=5 \mathrm{~mA}$			1	V
$\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\mathrm{T}-}$	$\begin{gathered} \text { Hysterısıs } \mathrm{NT}_{1}-\mathrm{INT}_{3}\left(\mathrm{PG}_{0}-\mathrm{PG}_{2}\right), \mathrm{EV}_{1}-\mathrm{EV}_{3}\left(\mathrm{P3}_{0}-\mathrm{PS}_{2}\right), \\ \mathrm{RXD}_{\mathrm{X}} \mathrm{D}\left(\mathrm{~PB}_{4}\right), \mathrm{S}_{\mathrm{CLK}}\left(\mathrm{PS}_{6}\right) \end{gathered}$	Function input level	0.3		1	V
	Hysterisis RESET				0.7	V
$\mathrm{V}_{T+}-\mathrm{V}_{T-}$	Hysterisis $\mathrm{X}_{\text {IN }}$		0.1		0.5	V
$I_{1 L}$	$\begin{aligned} \text { "L" input current } & \mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P1}_{0}-\mathrm{P} 1_{7}, \mathrm{P}_{0}-\mathrm{P} 2_{7}, \\ & \mathrm{P}_{0}-\mathrm{P} 3_{7}, \mathrm{P}_{0}-\mathrm{P} 4_{7}, \mathrm{P5}_{0}-\mathrm{P} 5_{7}, \\ & \mathrm{P}_{0}-\mathrm{P} 6_{7}, \overline{\mathrm{RESET}}, \mathrm{X}_{\mathrm{IN}} \end{aligned}$	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{ss}}$	-5		5	$\mu \mathrm{A}$
$I_{1 H}$	$\begin{array}{r} \text { "H" input current } \mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P1}_{0}-\mathrm{P} 1_{7}, \mathrm{P2}_{0}-\mathrm{P}_{7}, \\ \\ \mathrm{P}_{0}-\mathrm{P3}_{7}, \mathrm{P4}_{0}-\mathrm{P} 4_{7}, \mathrm{P5}_{0}-\mathrm{P5}_{7}, \\ \\ \mathrm{P}_{0}-\mathrm{P6}_{7}, \overline{\mathrm{RESET}}, \mathrm{X}_{1 \mathrm{~N}} \\ \hline \end{array}$	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{cc}}$	-5		5	$\mu \mathrm{A}$
$\mathrm{V}_{\text {RAM }}$	RAM retention voltage	At stop mode	2			V
I_{cc}	Supply current	At system operation $f\left(X_{\mathrm{IN}}\right)=10 \mathrm{MHz}$		6	10	mA
		At stop mode (Note 1)		1	10	$\mu \mathrm{A}$

Note 1 : The terminals $\overline{R D}, \overline{W R}, R / \bar{W}, S Y N C, R_{S E T}{ }_{O U T}, \phi, D-A_{1}$ and $D-A_{2}$ are all open The other ports, which are in the input mode, are connected to $V_{S S} A-D$ converter is in the A-D completion state The current through $A D V_{\text {REF }}$ and $D A V_{\text {REF }}$ is not included (Fig 6)

A-D CONVERTER CHARACTERISTICS

$$
\left(V_{C C}=A V_{C C}=5 V, V_{S S}=A V_{S S}=0 V, T_{a}=25^{\circ} \mathrm{C}, f\left(X_{I N}\right)=10 \mathrm{MHz}\right. \text {, unless otherwise noted) }
$$

Symbol	Parameter	Test conditions	Limits			Unit
			Mın	Typ	Max	
-	Resolution				8	Bits
-	Absolute accuracy	$\mathrm{V}_{C C}=A V_{C C}=A D V_{\text {REF }}=5.12 \mathrm{~V}$		± 1.5	± 3	LSB
$\mathrm{t}_{\text {Conv }}$	Conversion time				49	$t_{C}(\phi)$
V_{1} A	Analog input voltage		$A V_{\text {SS }}$		$\mathrm{AV}_{\mathrm{CC}}$	V
$\mathrm{V}_{\text {ADVREF }}$	Reference input voltage		2		$\mathrm{V}_{C C}$	V
$\mathrm{R}_{\text {LADDER }}$	Ladder resistance value	$A D V_{\text {REF }}=5 \mathrm{~V}$	2	7.5	10	$k \Omega$
liadvref	Reference input current	$A D V_{\text {REF }}=5 \mathrm{~V}$	0.5	0.7	2.5	mA
$\mathrm{V}_{\text {AVCC }}$	Analog power supply input voltage			V_{cc}		V
$V_{\text {AVSS }}$	Analog power supply input voltage			0		V

D-A CONVERTER CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{Ss}}=A \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}_{,} \mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Unit
			Min	Typ	Max	
-	Resolution				8	Bits
-	Abusolute accuracy	$\mathrm{V}_{\mathrm{CC}}=\mathrm{DAV}_{\text {REF }}=5.12 \mathrm{~V}$			1.0	\%
$t_{\text {su }}$	Setup time				3	$\mu \mathrm{s}$
$\mathrm{R}_{\mathbf{\prime}}$	Output resistance		1	2	4	$\mathrm{k} \Omega$
$V_{\text {AVSS }}$	Analog power supply input voltage			0		V
$V_{\text {davref }}$	Reference input voltage		4		V_{Cc}	V
I davref	Reference power input current (Each pin)		0	2.5	5	mA

MITSUBISHI MICROCOMPUTERS
 M37450E4-XXXSP/FP
 M37450E4SS/FS

PROM VERSION of M37450M4-XXXSP/FP

TIMING REQUIREMENTS
Port/single-chip mode ($\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-10$ to $70^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test condition	Lımits			Unit
			Min	Typ.	Max	
$t_{\text {SU }}$ (POD- ${ }^{\text {d }}$)	Port P0 input setup time	Fig 3	200			ns
$t_{\text {su }}$ (P1D- ${ }^{\text {d }}$)	Port P1 input setup time		200			ns
$t_{\text {Su }}$ (P2D- ${ }^{\text {d }}$)	Port P2 input setup time		200			ns
	Port P3 input setup time		200			ns
	Port P4 input setup time		200			ns
$t_{\text {Su }}$ (PSD- ${ }^{\text {d }}$)	Port P5 input setup time		200			ns
$t_{\text {Su }}$ (P6D- $^{\text {d }}$)	Port P6 input setup time		200			ns
$t_{\text {h }}(\phi-P O D)$	Port P0 input hold time		40			ns
th(ϕ-P1D)	Port P1 input hold time		40			ns
th(ϕ-P2D)	Port P2 input hold time		40			ns
th(ϕ - P3D $)$	Port P3 input hold time		40			ns
$\mathrm{th}_{\text {(}}^{\boldsymbol{\phi}-\mathrm{P} 4 \mathrm{D})}$	Port P4 input hold time		40			ns
th(ϕ-P5D $)$	Port P5 input hold time		40			ns
th(ϕ - P6D $)$	Port P6 input hold time		40			ns
$\mathrm{t}_{\mathrm{C}}\left(\mathrm{X}_{\text {IN }}\right)$	External clock input cycle tıme		100		1000	ns
$t_{w}\left(X^{\text {IN }} \mathrm{L}\right.$)	External clock input "L" pulse width		30			ns
$t_{w}\left(X_{\text {IN }} H\right)$	External clock input " H " pulse width		30			ns
$t_{r}\left(X_{\text {IN }}\right)$	External clock risıng edge tıme				20	ns
$t_{f}\left(X_{\text {IN }}\right)$	External clock falling edge time				20	ns

Master CPU bus interface timing ($\overline{\mathbf{R}}$ and $\overline{\mathbf{W}}$ separation type mode)

$\left(\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-10\right.$ to $70^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test condition	Limits			Unit
			Min	Typ	Max	
$t_{\text {su }}$ (cs-R)	$\overline{\mathrm{CS}}$ setup time	Fig 3	0			ns
tsu(cs-w)	$\overline{\mathrm{CS}}$ setup time		0			ns
th($\mathrm{R}-\mathrm{CS}$)	$\overline{C S}$ hold time		0			ns
th(w-cs)	$\overline{\mathrm{CS}}$ hold time		0			ns
$t_{\text {Su }}(\mathrm{A}-\mathrm{R})$	A0 setup time		40			ns
tsu($A-w$)	A0 setup time		40			ns
$t_{\text {f }}(R-A)$	A0 hold time		10			ns
$t_{h}(\underline{W}-A)$	A0 hold time		10			ns
$t_{W(R)}$	Read pulse width		160			ns
$t_{w(W)}$	Write pulse width		160			ns
$t_{\text {su }}(\mathrm{D}-\mathrm{w})$	Date input setup time before write		100			ns
th(w-D)	Date input hold time after write		10			ns

Master CPU bus interface timing (R/W type mode)

$\left(\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-10\right.$ to $70^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test condition	Limits			Unit
			Mın	Typ	Max	
$\mathrm{t}_{\text {Su }}(\mathrm{CS}-\mathrm{E}$)	$\overline{C S}$ setup time	Fig 4	0			ns
th(E-CS)	$\overline{\mathrm{CS}}$ hold time		0			ns
$\mathrm{t}_{\text {Su }}(\mathrm{A}-\mathrm{E})$	AO setup time		40			ns
$t_{\text {L }}(E-A)$	A0 hold time		10			ns
$t_{\text {Su }}$ (RW-E)	R/W setup time		40			ns
$t_{\text {l }}(E-R W)$	R/W hold time		10			ns
$t_{W(E L)}$	Enable clock "L" pulse width		160			ns
$t_{\text {W(EH) }}$	Enable clock "H" pulse width		160			ns
$\operatorname{tr}(E)$.	Enable clock rising edge tıme				25	ns
$t_{f(E)}$	Enable clock falling edge time				25	ns
$t_{\text {Su }}(\mathrm{D}-\mathrm{E})$	Data input setup time before write		100			ns
$t_{\text {h }}(E-D)$	Data input hold time after write		10			ns

Local bus/memory expansion mode, microprocessor mode
$\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-10\right.$ to $70^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test condition	Limits			Unit
			Min	Typ	Max	
$\mathrm{t}_{\text {su }}(\mathrm{D}-\phi)$	Data input setup time	Fig 5	130			ns
	Data input hold tıme		0			ns
$t_{\text {Su }}(\mathrm{D}-\mathrm{RD}$)	Data input setup time		130			ns
$t h(R D-D)$	Data input hold time		0			ns

SWITCHING CHARACTERISTICS
Port/single-chip mode ($\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-10$ to $70^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test condition	Limits			Unit
			Mın	Typ	Max	
$t_{\text {d }(\phi-P O Q)}$	Port P0 data output delay tıme	Fig 3			200	ns
$\mathrm{t}_{\mathrm{d}\left(\phi-\mathrm{P}_{1} \mathrm{Q}\right.}$)	Port P1 data output delay time				200	ns
$t_{\text {d }}(\phi-P 2 Q)$	Port P2 data output delay time				200	ns
$t_{\text {d }}(\phi-P 3 Q)$	Port P3 data output delay time				200	ns
$\mathrm{t}_{\mathrm{d}(\phi-\mathrm{P} 5 \mathrm{Q}}$)	Port P5 data output delay time				200	ns
$\mathrm{t}_{\mathrm{d}(\phi-\mathrm{PGQ})}$	Port P6 data output delay time				200	ns
$t_{\text {c }}(\boldsymbol{\phi})$	Cycle time		400		4000	ns
$\mathrm{t}_{\mathbf{W}(\boldsymbol{\phi} \mathrm{H})}$	ϕ clock pulse width (" H " level)		190			ns
$t_{w(\phi L)}$	ϕ clock pulse width ("L" level)		170			ns
$\operatorname{tr}_{\mathbf{r}}(\phi)$	ϕ clock rising edge time				20	ns
$\mathbf{t f}_{(}(\phi)$	ϕ clock falling edge tıme				20	ns

Master CPU bus interface ($\overline{\mathrm{R}}$ and $\overline{\mathbf{W}}$ separation type mode)

$\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-10\right.$ to $70^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test condition	Limits			Unit
			Mın	Typ	Max	
$t a(R-D)$	Data output enable time after read	Fig 4			120	ns
$t_{V(R-D)}$	Data output disable time after read		10		85	ns
$t_{\text {PLH }}(R-P R)$	$\overline{\mathrm{P}_{\mathrm{RDY}}}$ output transmission tıme after read				150	ns
$t_{\text {PLH }} \mathbf{W}$-PR)	$\overline{\mathrm{P}_{\text {RDY }}}$ output transmıssion time after write				150	ns

Master CPU bus interface (R $\overline{\mathbf{W}}$ type mode) ($\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-10$ to $70^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test condition	Limits			Unit
			Min	Typ	Max	
ta(E-D)	Data output enable time after read	Fig 4			120	ns
$\mathrm{t}_{\mathrm{V}(\mathrm{E}-\mathrm{D})}$	Data output disable time after read		10		85	ns
$\mathrm{t}_{\text {PLH(E-PR) }}$	$\overline{P_{\text {RDY }}}$ output transmıssıon time after E clock				150	ns

Local bus/memory expansion mode, microprocessor mode
$\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-10\right.$ to $70^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test condition	Limits			Unit
			Min	Typ	Max	
$t_{\text {d }}(\phi-A)$	address delay time after ϕ	Fig 5			150	ns
$t_{V}(\phi-A)$	address effective time after ϕ		10			ns
$t_{V}(\mathbf{R D}-\mathrm{A})$	address effective time after $\overline{\mathrm{RD}}$		10			ns
$t_{V}(\underline{W R}-A)$	address effective time after $\overline{\mathrm{WR}}$		10			ns
$t_{\text {d }}(\phi-\mathrm{D})$	data output delay time after ϕ				160	ns
$t_{d}\left(W_{R}-D\right)$	data output delay time after $\overline{\mathrm{WR}}$				160	ns
$\mathrm{t}_{\mathrm{V}(\phi-\mathrm{D})}$	data output effective time after ϕ		20			ns
$t_{V(W R-D)}$	data output effective time after $\overline{\mathrm{WR}}$		20			ns
$\mathrm{t}_{\mathrm{d}(\phi-\mathrm{RW}}$)	R/W delay time after ϕ				150	ns
$t_{\text {d }}(\phi-$ SYNC $)$	SYNC delay time after ϕ				150	ns
$t_{W}(\mathrm{RD})$	$\overline{\mathrm{RD}}$ pulse width		170			ns
$t_{w(W R)}$	$\overline{\text { WR }}$ pulse width		170			ns

TEST CONDITION

Input voltage level: $\mathrm{V}_{\mathrm{IH}} \quad 2.4 \mathrm{~V}$
$\mathrm{V}_{\mathrm{IL}} \quad 0.45 \mathrm{~V}$
Output test level: $\mathrm{V}_{\mathrm{OH}} 2.0 \mathrm{~V}$
$\mathrm{V}_{\mathrm{OL}} \quad 0.8 \mathrm{~V}$

Fig. 3 Test circuit in single-chip mode

Fig. 4 Master CPU bus interface test circuit

Fig. 5 Local bus test circuit

Fig. $6 \quad \mathrm{l}$ Cc (at STOP mode) test condition

TIMING DIAGRAM

Port/single-chip mode timing diagram

Master CPU bus interface/ \bar{R} and \bar{W} separation type timing diagram

Read

Write

Master CPU interface/ R/W type timing diagram

Local bus timing diagram

$\mathrm{A}_{0}-\mathrm{A}_{15}$
$D_{0}-D_{7}$ CPU read
$\overline{\mathrm{WR}}$
$\mathrm{D}_{0}-\mathrm{D}_{7}$
CPU write

DESCRIPITION

The M37450E8-XXXSP is a single-chip microcomputer designed with CMOS silicon gate technology. It is housed in a 64-pin shrink plastic molded DIP. The features of this chip are similar to those of the M37450M8-XXXSP except that this chip has a 16384-byte PROM built-in. This single-chip microcomputer is useful for office automation appliances and consumer appliance controllers.
In addition to its simple instruction sets, the PROM, RAM and I/O addresses are placed on the same memory map to enable easy programming. Since general purpose PROM writes can be used for small quantity production runs. It also has a unique feature that enables it to be used as a slave microcomputer.
The M37450E8SS and the M37450E8FS are the window type (M37450E8FS is housed in a 80 -pin ceramic QFN package). The differences between the M37450E8-XXXSP and the M37450E8-XXXFP, and between the M37450E8SS and the M37450E8FS are the package outline and the power dissipation ability (absolute maximum ratings).

FEATURES

- Number of basic instructions 69 MELPS 740 basic instructions +2 multiply/divide instructions
- Memory size EPROM 16384 bytes

- Instruction execution time
(minimum instructions at 10 MHz frequency) $\cdots \cdots 0.8 \mu \mathrm{~s}$
- Single power supply...................................... $5 \mathrm{~V} \pm 5 \%$
- Power dissipation normal operation mode (at 10 MHz frequency) 30 mW
- Subroutine nesting 96 levels max.

- Master CPU bus interface 1 byte
- 16-bit timer ... 3
- 8-bit timer (Serial I/O use) 1
- Serial I/O (UART or clock synchronous) 1
- A-D converter (8 -bit resolution) 3 channels (DIP) 8 channels (QFP)
- D-A converter (8 -bit resolution) 2 channels
- PWM output (8-bit or 16 -bit)
- Programmable I/O ports (Ports P0, P1, P2, P3, P5, P6) 48
- Input port (Port P4) …..................... 3 (DIP), 8 (QFP)
- Output ports (Ports D-A, D-A)
- EPROM (equivalent to the M5L27256) program voltage

APPLICATION

Slave controller for PPCs, facsimiles, and page printers HDD, optical disk, inverter, and industrial motor controllers Industrial robots and machines

M37450E8-XXXSP, M37450E8SS BLOCK DIAGRAM

M37450E8-XXXFP, M37450E8FS BLOCK DIAGRAM

dJ/dSXXX-8WOStLEW 4° NOISyヨA WOZd
 Sヨ/dSXXX-830StLEW
 MITSUBISHI MICROCOMPUTERS

FUNCTIONS OF M37450E8-XXXSP/FP, M37450E8SS/FS

Parameter			Functions
Number of basic instructions			71(69 MELPS 740 basic instructions+2)
Instruction execution time			$0.8 \mu \mathrm{~s}$ (minimum instructions, at 10 MHz frequency)
Clock frequency			10 MHz (max)
Memory size	PROM		16384 bytes
	RAM		384 bytes
Input/Output port	P0-P3, P5, P6	1/0	8 -bit $\times 6$
	P4	Input	3 -bit $\times 1$ (8-bit $\times 1$ for $80-$ pin model)
	D-A	Output	2-bit $\times 1$
Serial 1/O			UART or clock synchronous
Timers			16-bit timer $\times 3$, 8 -bit timer (Serial I/O baud rate generator) $\times 1$
A-D converter			8 -bit $\times 3$ channels (8 channels for 80 -pin model)
D-A converter			8 -bit $\times 2$ channels
Pulse width modulator			8 -bit or 16-bit $\times 1$
Data bus buffer			1-byte input and output each
Subroutine nesting			96 -levels
Interrupt			6 external interrupts, 8 internal interrupts One software interrupt
Clock generating circuit			Built-in (ceramic or quarts crystal oscillator)
Supply voltage			$5 \mathrm{~V} \pm 5 \%$
Power dissipation			30 mW (at 10MHz frequency)
Input/Output characters	Input/Output voltage		5 V
	Output current		$\pm 5 \mathrm{~mA}$ (max.)
Memory expansion			Possible
Operating temperature range			-10 to $70^{\circ} \mathrm{C}$
Device structure			CMOS silicon gate
Package	M37450E8-XXXSP		64-pin shrink plastic molded DIP
	M37450E8-XXXFP		80-pın plastic molded QFP
	M37450E8SS		64-pın shrink ceramic DIP
	M37450E8FS		80-pin ceramic QFN

PIN DESCRIPTION (normal mode)

Pın	Name	Input/ Output	Functions
$\begin{aligned} & \mathrm{v}_{\mathrm{cc}} \\ & \mathrm{v}_{\mathrm{ss}} \end{aligned}$	Supply voltage		Power supply inputs $5 \mathrm{~V} \pm 5 \%$ to V_{cc}, and 0 V to V_{ss}
$\mathrm{CNV}_{\text {SS }} / \mathrm{V}_{\text {PP }}$	CNV Ss		Controls the processor mode of the chip Normally connected to V_{SS} or V_{cc}.
RESET	Reset input	Input	To enter the reset state, the reset input pin must be kept at a "L" for more than 8 clock cycles (under normal V_{CC} conditions) If more time is needed for the crystal oscillator to stabilize, this " L " condition should be mantained for the required time
$\mathrm{XIN}^{\text {N }}$	Clock input	Input	This chip has an internal clock generating circuit To control generating frequency, an external ceramic or a
Xout	Clock output	Output	source should be connected to the $\mathrm{X}_{\text {IN }}$ pin and the $\mathrm{X}_{\text {OUT }}$ pin should be left open.
ϕ	Timing output	Output	Outputs signal consisting of oscillating frequency divided by four
SYNC	Synchronous signal output	Output	This signal is output " H " during operation code fetch and is used to control single stepping of programs.
R / \bar{W}	Read/Write status output	Output	This signal determines the direction of the data bus It is " H " during read and " L " during write
$\mathrm{PO}_{0}-\mathrm{PO}_{7}$	I/O port P0	1/0	Port PO is an 8-bit I/O port with directional registers allowing each I/O bit to be individually programmed as input or output. The output structure is CMOS output. The low-order bits of the address are output except in single-chip mode.
$\mathrm{P} 1_{0}-\mathrm{P} 1_{7}$	I/O port P1	1/0	Port P1 is an 8-bit I/O port and has basically the same functions as port PO The high-order bits of the address are output except in single-chip mode
$\mathrm{P} 2_{0}-\mathrm{P} 2_{7}$	1/O port P2	I/O	Port P2 is an 8-bit I/O port and has basıcally the same functions as port P0 Used as data bus except in single-chip mode.
$\mathrm{P} 3_{0}-\mathrm{P} 3_{7}$	I/O port P3	I/O	Port P3 is an 8-bit I/O port and has basically the same functions as port PO Serial I/O, PWM output, or event I/O function can be selected with a program.
$\begin{aligned} & \mathrm{P}_{0}-\mathrm{P} 4_{2} \\ & \left(\mathrm{P}_{0}-\mathrm{P} 4_{7}\right) \end{aligned}$	Input port P4	- Input	Analog input pin for the A-D converter 'The 64 -pin model has three pins and the 80 -pin model has eight pins. They may also be used as digital input pins
$\mathrm{P} 50-\mathrm{P} 5_{7}$	I/O port P5	$1 / 0$	Port P5 is an 8-bit I/O port and has basically the same functions as port PO This port functions as an 8-bit data bus for the master CPU when slave mode is selected with a program.
$\mathrm{P} 6_{0}-\mathrm{P} 6_{7}$	1/O port P6	1/0	Port P6 is an 8-bit I/O port and has basically the same function as port P 0 Pins P_{3} to $\mathrm{P} 6_{7}$ change to a control bus for the master CPU when slave mode is selected with a program Pins $P 6_{0}$ to $P 6_{2}$ may be programmed as external interrupt input pins
D-A ${ }_{1}, \mathrm{D}-\mathrm{A}_{2}$	D-A output	Output	Analog signal from D-A converter is output
$\mathrm{V}_{\text {REF }}$	Reference voltage input	Input	Reference voltage input pin for A-D and D-A converter This pin is for 64-pin model only
$\mathrm{ADV}_{\text {ref }}$	A-D reference voltage input	Input	Reference voltage input pin for A-D converter This pin is for 80-pin model only
DAV VEFF	D-A reference voltage input	Input	Reference voltage input pin for D-A converter This pin is for 80-pin model only
$\mathrm{AV}_{\text {Ss }}$	Analog power supply		Ground level input pin for A-D and D-A converter Same voltage as $\mathrm{V}_{\text {SS }}$ is applied.
$\mathrm{AV}_{\mathrm{Cc}}$	Analog power supply		Power supply input pin for A-D converter. This pin is for 80 -pin model only Same voltage as V_{CC} is applied. In the case of the 64 -pin model, $\mathrm{AV}_{\mathrm{CC}}$ is connected to V_{CC} internally.
$\overline{\mathrm{RD}}$	Read signal output	Output	Control signal output as active "L" when valid data is read from data bus This pın is for 80-pın model only.
$\overline{W R}$	Write signal output	Output	Control signal output as active " L " when writing data from data bus to external component This pin is for 80-pin model only
RESETout	Reset output	Output	Control signal output as active "H" during reset it is used as a reset output signal for peripheral components This pin is for 80-pin model only

PROM VERSION of M37450M8-XXXSP/FP

PIN DESCRIPTION (EPROM mode)

Pin	Name	Input/ Output	Functions
$\mathbf{V}_{\mathrm{cc}}, \mathbf{V}_{\mathbf{s s}}$	Supply voltage		Power supply inputs 5 V or 6 V to V_{cc}, and 0 V to $\mathrm{V}_{\text {Ss }}$
$\mathrm{CNV}_{\text {SS }} / \mathrm{V}_{\text {PP }}$	$\mathrm{V}_{\text {pp }}$	Input	Connect to $\mathrm{V}_{\text {PP }}$ when programming or verifing
RESET	Reset input	Input	Connect to $\mathrm{V}_{\text {ss }}$.
$\mathrm{X}_{\text {IN }}$	Clock input	Input	Connect a ceramic or a quartz crystal oscillator between $\mathrm{X}_{\text {IN }}$ and $\mathrm{X}_{\text {OUT }}$ for clock oscillation
$\mathrm{X}_{\text {Out }}$	Clock output	Output	
ϕ	Timing output	Output	For timing output
SYNC	Synchronous signal output	Output	Kept to open ("L" signal is output)
R/W	Read/Write status output	Output	Kept to open (" H " signal is output).
$\mathrm{PO}_{0}-\mathrm{PO}_{7}$	I/O port P0	Input	P0 works as the lower 8-bit address input
$\mathrm{P1}_{0}-\mathrm{P} 1_{7}$	I/O port P1	Input	$\mathrm{P} 1_{0}$ to $\mathrm{P} 1_{5}$ works as the higher 6-bit address input. $\mathrm{P} 1_{6}$ and $\mathrm{P} 1_{7}$ connect to V_{CC} or $\mathrm{V}_{S S}$
P2 $\mathbf{0}_{-}-\mathrm{P} 2_{7}$	(/O port P2	1/0	P2 works as an 8-bit data bus.
$\mathrm{P} 3_{0}-\mathrm{P} 3_{7}$	I/O port P3	Input	Connect to $\mathrm{V}_{\text {ss }}$.
$\begin{aligned} & P 4_{0}-P 4_{2} \\ & \left(P 4_{0}-P 4_{7}\right) \end{aligned}$	Input port P4	Input	Connect to $\mathrm{V}_{\text {ss }}$ (The 80-pin model has eight pins $\mathrm{P4}_{0}$ to $\mathrm{P} 47^{\text {) }}$).
P50-P57	I/O port P5	Input	$P 5_{0}, P 5_{1}$ and $P 5_{2}$ work as $A_{14}, \overline{\mathrm{OE}}$, and $\overline{\mathrm{CE}}$ inputs respectively. Connect $\mathrm{P} 5_{3}$ and $P 5_{4}$ to V_{CC} and $\mathrm{P} 5_{5}$ to $\mathrm{P} 5_{7}$ to V_{ss}.
P60-P67	I/O port P6	Input	Connect to $\mathrm{V}_{\text {ss }}$
D-A ${ }_{1}, \mathrm{D}-\mathrm{A}_{2}$	D-A output	Output	Kept to open.
$V_{\text {REF }}$	Reference voltage input	Input	Connect to $\mathrm{V}_{\text {ss }}$
$\mathrm{ADV}_{\text {ref }}$	A-D reference voltage input	Input	Connect to $\mathrm{V}_{\text {ss }}$
DAV $\mathrm{feF}^{\text {f }}$	D-A reference voltage input	Input	Connect to $\mathrm{V}_{\text {ss }}$.
AV $\mathbf{s s}^{\text {s }}$	Analog power	Input	Connect to $\mathrm{V}_{\text {ss }}$.
$\mathrm{AV}_{\text {cc }}$	Analog power	Input	Connect to $\mathrm{V}_{\text {cc }}$ or $\mathrm{V}_{\text {ss }}$
$\overline{\mathrm{RD}}$	Read signal output	Output	Kept to open (" H " signal is output)
$\overline{\text { WR }}$	Write signal output	Output	Kept to open (" H " signal is output)
RESET ${ }_{\text {OUt }}$	Reset output	Output	Kept to open (" H " signal is output)

EPROM MODE

The M37450E8-XXXSP/FP, M37450E8SS/FS features an EPROM mode in addition to its normal modes. When the $\overline{R E S E T}$ signal level is low ("L") and $C N V_{S S} / V_{P P}$ signal level is high (" H "), the chip automatically enters the EPROM mode. Table 1 list the correspondence between pins and Figure 1 and Figure 2 give the pin connections in the EPROM mode. When in the EPROM mode, ports P0, P1, $P 2, P 5_{0}$ to $P 5_{2}$ and $C N V_{S s}$ are used for the PROM (equivalent to the M5L27256). When in this mode, the built-in PROM can be written to or read from using these pins in the same way as with the M5L27256. The oscillator should be connected to the $X_{I N}$ and $X_{\text {CUT }}$ pins, or external clock should be connected to the $X_{I N}$ pin.

Table 1. Pin function in EPROM mode

	M37450E8-XXXSP/FP, M37450E8SS/FS	M5L27256
V_{cc}	$V_{\text {cc }}$	V_{cc}
V_{PP}	$\mathrm{CNV}_{\text {SS }} / \mathrm{V}_{\mathrm{PP}}$	$V_{P P}$
$\mathrm{V}_{\text {SS }}$	$\mathrm{V}_{\text {SS }}$	$\mathrm{V}_{S S}$
Address input	Ports P0, $\mathrm{P} 1_{0}-\mathrm{P} 1_{5}, \mathrm{P5}_{0}$	$\mathrm{A}_{0}-\mathrm{A}_{14}$
Data 1/O	Port P2	$\mathrm{D}_{0}-\mathrm{D}_{7}$
$\overline{\mathrm{CE}}$	$\mathrm{P5}_{2} / \mathrm{DB}_{2} / \overline{\mathrm{CE}}$	$\overline{\mathrm{CE}}$
$\overline{\mathrm{OE}}$	$\mathrm{P5}_{1} / \mathrm{DB}_{1} / \overline{\mathrm{OE}}$	$\overline{\mathrm{OE}}$

Fig. 1 Pin connection in EPROM mode (64-pin model)

Fig. 2 Pin connection in EPROM mode (80-pin model)

MITSUBISHI MICROCOMPUTERS

PROM READING, WRITING AND ERASING Reading

To read the PROM, set the $\overline{C E}$ and $\overline{O E}$ pins to a "L" level, and supply 0 V to the $\overline{\text { RESET }} \mathrm{pin}, 5 \mathrm{~V}$ to the V_{Cc} pin and the $\mathrm{CNV}_{\mathrm{Ss}}\left(\mathrm{V}_{\mathrm{PP}}\right.$) pin. Input the address of the data (A_{0} to A_{14}) to be read and the data will be output to the I/O pins D_{0} to D_{7}. The data I/O pins will be floating when the $\overline{O E}$ pin is in the " H " state.

Writing

To write to the PROM, set the $\overline{O E}$ pin to a " H " level, and supply 0 V to the $\overline{\text { RESET }}$ pin, 6 V to the V_{Cc} pin and 12.5 V to the V_{PP} pin. The CPU will enter the program mode when $V_{P P}$ is applied to the $V_{P P} p i n$. The address to be written to is selected with pins A_{0} to A_{14}, and the data to be written is input to pins D_{0} to D_{7}. Set the $\overline{C E}$ pin to a " L " level to begin writing.

Erasing

Data can only erased on the M37450E8SS/FS ceramic package, which includes a window. To erase data on this chip, use an ultraviolet light source with a 2537 Angstrom wave length. The minimum radiation power necessary for erasing is $15 \mathrm{~W} \cdot \mathrm{~s} / \mathrm{cm}^{2}$.

NOTES ON HANDLING

(1) Sunlight and fluorescent light contain wave lengths capable of erasing data. For ceramic package types, cover the transparent window with a seal (provided) when this chip is in use. However, this seal must not contact the lead pins.
(2) Before erasing, the glass should be cleaned and stains such as finger prints should be removed thoroughly. If these stains are not removed, complete erasure of the data could be prevented.
(3) Since a high voltage is used to write data, care should be taken when turning on the PROM writer's power.
(4) For the programmable microcomputer (shipped in blank or OTP type), Mitsubishi does not perform PROM write test and screening in the assembly process and following process. To improve reliability after write, performing write and test according to the flow below before use is recommended.
(5) In EPROM mode, address A_{15} is set to " H " automatically.

Note : Since the screening temperature is higher than storage temperature, never expose to $150^{\circ} \mathrm{C}$ exceeding 100 hours.

Table 2. I/O signal in each mode

Mode	$\overline{\mathrm{CE}}$	$\overline{\mathrm{OE}}$	V_{PP}	V_{CC}	Port P 2
Read-out	V_{IL}	5 V	5 V	Output	
Output disable	V_{IL}	V_{IL}	5 V	5 V	Floating
Programming	V_{IL}	V_{IH}	12.5 V	6 V	Input
Programming verify	V_{IH}	V_{IL}	12.5 V	6 V	Output
Program disable	V_{IH}	V_{IH}	12.5 V	6 V	Floating

[^4]2 : An X indicates either V_{IL} or V_{IH}.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
V_{cc}	Supply voltage	With respect to $V_{S S}$ Output transistors are at "OFF" state	-0.3 to 7	V
V_{1}	Input voltage $\overline{\mathrm{RESET}}, \mathrm{X}_{\mathrm{IN}}$		-0.3 to 7	V
V_{1}	$\begin{aligned} & \text { Input voltage } \mathrm{PO}_{0}-\mathrm{P} 0_{7}, \mathrm{P} 1_{0}-\mathrm{P} 1_{7}, \mathrm{P}_{0}-\mathrm{P} 2_{7} \\ & \mathrm{P} 3_{0}-\mathrm{P} 3_{7}, \mathrm{P}_{0}-\mathrm{P} 4_{7}, \mathrm{P5}_{0}-\mathrm{P} 5_{7} \\ & \mathrm{P}_{0}-\mathrm{P} 6_{7}, \mathrm{ADV}_{\mathrm{REF}}, \mathrm{DAV}_{\mathrm{REF}} \\ & \mathrm{~V}_{\mathrm{REF}}, \mathrm{AV} \\ & \mathrm{CC} \end{aligned}$		-0.3 to $\mathrm{V}_{\mathrm{cc}}+0.3$	V
V_{1}	Input voltage $\mathrm{CNV}_{\text {SS }}$		-0.3 to 13 (Note 1)	V
V_{0}	Output voltage $\mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P1}_{0}-\mathrm{P} 1_{7}, \mathrm{P}_{2}-\mathrm{P} 2_{7}$, $\mathrm{P} 3_{0}-\mathrm{P} 3_{7}, \mathrm{P5}_{0}-\mathrm{P} 5_{7}, \mathrm{P6}_{0}-\mathrm{P} 6_{7}$, $X_{\text {OUt }}, \overline{R D}, \overline{W R}, R / \bar{W}$, RESET ${ }_{\text {OUT }}$, SYNC		-0.3 to $\mathrm{V}_{\mathrm{cc}}+0.3$	V
$\mathrm{P}_{\text {d }}$	Power dissıpation	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$	1000 (Note 2)	mW
Topr	Operating temperature		-10 to 70	${ }^{\circ} \mathrm{C}$
Tstg	Storage temperature		-40 to 125	${ }^{\circ} \mathrm{C}$

Note 1: In EPROM programming mode, $\mathrm{CNV}_{\text {ss }}$ is 13.5 V .
$2: 500 \mathrm{~mW}$ for QFP type

RECOMMENDED OPERATING CONDITIONS

($\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V} \pm 5 \%, \mathrm{Ta}=-10$ to $70^{\circ} \mathrm{C}$ unless otherwise noted)

Symbol	Parameter	Limits			Unit
		Min	Typ	Max	
$V_{\text {cc }}$	Supply voltage	4. 75	5	5.25	V
$V_{\text {ss }}$	Supply voltage		0		V
$V_{\text {IH }}$	" H^{*} Input voltage $\overline{\mathrm{RESET}}, \mathrm{XIN}_{\text {IN }}, \mathrm{CNV}_{\text {SS }}$ (Note 1)	$0.8 \mathrm{~V}_{\mathrm{CC}}$		V_{Cc}	V
$\mathrm{V}_{\mathbf{I H}}$	$\begin{aligned} & \text { "H" Input voltage } \mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P}_{0}-\mathrm{P} 1_{7}, \mathrm{P}_{0}-\mathrm{P} 2_{7}, \\ & \mathrm{P}_{0}-\mathrm{P} 3_{7}, \mathrm{P}_{0}-\mathrm{P} 4_{7}, \mathrm{P5}_{0}-\mathrm{P} 5_{7}, \\ & \mathrm{P}_{0}-\mathrm{P} 6_{7} \quad \text { (except Note 1) } \\ & \hline \end{aligned}$	2.0		$V_{c c}$	V
$V_{\text {IL }}$	"L." Input voltage $\mathrm{CNV}_{\text {SS }}$ (Note 1)	0		$0.2 V_{c c}$	V
VIL	$\begin{aligned} & \hline \text { "L" Input voltage } \mathrm{PO}_{0}-\mathrm{P} 0_{7}, \mathrm{P} 1_{0}-\mathrm{P} 1_{7}, P 2_{0}-\mathrm{P} 2_{7}, \\ & \mathrm{P}_{0}-\mathrm{P} 3_{7}, \\ & \mathrm{P} 4_{0}-\mathrm{P} 4_{7}, \mathrm{P5}_{0}-\mathrm{P} 5_{7}, \\ & \mathrm{P}_{0}-\mathrm{P} 6_{7} \quad \text { (except Note 1) } \\ & \hline \end{aligned}$	0		0.8	V
$V_{\text {IL }}$	"L" Input voltage RESET	0		$0.12 V_{\mathrm{cc}}$	V
$V_{\text {IL }}$	"L" Input voltage $\mathrm{XIN}_{\text {IN }}$	0		$0.16 \mathrm{~V}_{\mathrm{cc}}$	V
l OL(peak)	$\begin{aligned} & \text { "L" peak output current } \mathrm{PO}_{0}-\mathrm{P} 0_{7}, \\ & \mathrm{P} 2_{0}-\mathrm{P} 1_{0}-\mathrm{P} 1_{7}, \mathrm{P} 3_{0}-\mathrm{P} 3_{7} \\ & \mathrm{P} 5_{0}-\mathrm{P} 5_{7}, \\ & \hline \end{aligned} \mathrm{P6}_{0}-\mathrm{P} 6_{7},$			10	mA
IoL(avg)	$\begin{aligned} & \text { "L" average output current } \begin{array}{ll} & \mathrm{PO}_{0}-\mathrm{P} 0_{7}, \\ & \mathrm{P} 1_{0}-\mathrm{P} 1_{7}, \\ & \mathrm{P}_{0}-\mathrm{P} 2_{7}, \\ & \mathrm{P}_{0}-\mathrm{P} 3_{7}, \\ \mathrm{P}_{0}-\mathrm{P} 5_{7}, & \mathrm{P6}_{0}-\mathrm{P} 6_{7} \quad \text { (Note 2) } \\ \hline \end{array} \end{aligned}$			5	mA
$\mathrm{I}_{\mathrm{OH}(\text { peak) }}$	$\begin{aligned} & \text { "H" peak output current } \begin{aligned} & \mathrm{PO}_{0}-\mathrm{PO}_{7}, \\ & \mathrm{P} 1_{0}-\mathrm{P} 1_{7}, \\ & \mathrm{P}_{0}-\mathrm{P}_{7}, \\ & \mathrm{P} 5_{0}-\mathrm{P} 5_{7}, \mathrm{P} 6_{0}-\mathrm{P} 6_{7} \\ & \hline \end{aligned} \end{aligned}$			-10	mA
$\mathrm{IOH}_{\text {(avg }}$				-5	mA
$f\left(X_{\text {IN }}\right)$	Clock oscillating frequency	1		10	MHz

Note 1 : Ports operate as $\mathrm{INT}_{1}-\mathrm{INT}_{3}\left(\mathrm{P6}_{0}-\mathrm{PG}_{2}\right), \mathrm{EV}_{1}-\mathrm{EV}_{3}\left(\mathrm{P3}_{0}-\mathrm{PB}_{2}\right), \mathrm{R}_{\mathrm{X}} \mathrm{D}\left(\mathrm{PB}_{4}\right)$ and $\mathrm{S}_{\mathrm{CLK}}\left(\mathrm{P3}_{6}\right)$
2 : The average output current $\mathrm{l}_{\mathrm{OH}(\mathrm{avg})}$ and $\mathrm{l}_{\mathrm{OL}(\mathrm{avg})}$ are the average value during a 100 ms
3 : The total of " L " output current loL(peak) of port P0, P1 and P2 is less than 40 mA
The total of "H" output current $\mathrm{I}_{\mathrm{OH}(\text { peak) of port } \mathrm{P} 0, \mathrm{P} 1}$ and P 2 is less than 40 mA .
The total of "L" output current $\mathrm{l}_{\mathrm{oL}(\mathrm{peak})}$ of port P3, P5, P6, R/W, SYNC, RESET $\overline{\mathrm{O}} \mathrm{T}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}$ and ϕ is less than 40 mA
The total of "H" output current $\mathrm{I}_{\mathrm{OH} \text { (peak) of port P3, P5 P }}$, R $/ \overline{\mathrm{W}}, \mathrm{SYNC}$, RESET $_{\text {Out }}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}$ and ϕ is less than 40 mA

ELECTRICAL CHARACTERISTICS ($\mathrm{v}_{\mathrm{cc}}=5 \mathrm{v} \pm 5 \%, \mathrm{v}_{\mathrm{ss}}=0 \mathrm{v}, \mathrm{T}_{\mathbf{a}}=-10$ to $70^{\circ} \mathrm{C}, \mathrm{f}\left(\mathrm{X}_{\mathrm{IN}}\right)=10 \mathrm{MHz}$, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Unit
			Mın.	Typ.	Max.	
V_{OH}	"H" output voltage $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \mathrm{R} / \overline{\mathrm{W}}$, SYNC, RESET ${ }_{\text {OUt }}, \phi$	$\mathrm{IOH}^{\mathrm{H}}=-2 \mathrm{~mA}$	$\mathrm{v}_{\mathrm{cc}}-1$			V
V_{OH}	$\begin{array}{r} \text { "H" output voltage } \mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P1}_{0}-\mathrm{P} 1_{7}, \mathrm{P}_{0}-\mathrm{P} 2_{7}, \\ \mathrm{P}_{0}-\mathrm{P3}_{7}, \mathrm{P5}_{0}-\mathrm{P} 5_{7}, \mathrm{P6}_{0}-\mathrm{P6}_{7} \\ \hline \end{array}$	$\mathrm{I}_{\mathrm{OH}}=-5 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{cc}}-1$			V
V_{OL}		$\mathrm{IoL}=2 \mathrm{~mA}$			0.45	V
$\mathrm{V}_{\text {OL }}$	$\begin{array}{r} \text { "L" output voltage } \mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P1}_{0}-\mathrm{P} 1_{7}, \mathrm{P}_{2}-\mathrm{P} 2_{7}, \\ \mathrm{P}_{0}-\mathrm{P3}_{7}, \mathrm{P5}_{0}-\mathrm{P5}_{7}, \mathrm{P6}_{0}-\mathrm{P} 6_{7} \\ \hline \end{array}$	$\mathrm{loL}=5 \mathrm{~mA}$			1	V
$\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\mathrm{T}-}$	$\begin{gathered} \text { Hysterisis } \mathrm{INT}_{1}-\mathrm{INT}_{3}\left(\mathrm{PG}_{0}-\mathrm{Pb}_{2}\right), \mathrm{EV}_{1}-\mathrm{EV}_{3}\left(\mathrm{P3}_{0}-\mathrm{P}_{2}\right), \\ \mathrm{RXX}_{\mathrm{X}}\left(\mathrm{P3}_{4}\right), \mathrm{S}_{\mathrm{CLK}}\left(\mathrm{P3}_{6}\right) \end{gathered}$	Function input level	0.3		1	V
$\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\text {T- }}$	Hysterisis $\overline{\text { RESET }}$				0.7	V
$\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\text {T- }}$	Hysterisis XIN		0.1		0.5	V
IIL	$\begin{array}{\|c} \hline \text { "L" input current } \mathrm{P0}_{0}-\mathrm{PO}_{7}, \mathrm{P1}_{0}-\mathrm{P} 1_{7}, \mathrm{P}_{0}-\mathrm{P} 2_{7}, \\ \\ \mathrm{P}_{3}-\mathrm{P3}_{7}, \mathrm{P4}_{0}-\mathrm{P} 4_{7}, \mathrm{P5}_{0}-\mathrm{P5}_{7}, \\ \\ \mathrm{P} 6_{0}-\mathrm{P6}_{7}, \overline{\mathrm{RESET}}, \mathrm{X}_{1 \mathrm{~N}} \\ \hline \end{array}$	$\mathrm{V}_{1}=\mathrm{v}_{\mathrm{ss}}$	-5		5	$\mu \mathrm{A}$
$\mathrm{I}_{\mathbf{H}}$	```"H" input current P0}\mp@subsup{0}{0}{}-\mp@subsup{\textrm{PO}}{7}{},\mp@subsup{\textrm{P1}}{0}{}-\mp@subsup{\textrm{P1}}{7}{},\mp@subsup{\textrm{P2}}{0}{}-\mp@subsup{\textrm{P}}{7}{}\mathrm{ , P3}\mp@subsup{0}{0}{}-\mp@subsup{\textrm{P3}}{7}{},\mp@subsup{\textrm{P4}}{0}{}-\mp@subsup{\textrm{P4}}{7}{},\mp@subsup{\textrm{P5}}{0}{}-\mp@subsup{\textrm{P5}}{7}{} P6}-\textrm{P}\mp@subsup{6}{7}{},\overline{\mathrm{ RESET, XIN}```	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{cc}}$	-5		5	$\mu \mathrm{A}$
$\mathrm{V}_{\text {RAM }}$	RAM retention voltage	At stop mode	2			V
Icc	Supply current	At system operation $f\left(X_{\mathrm{IN}}\right)=10 \mathrm{MHz}$		6	10	mA
		At stop mode (Note 1)		1	10	$\mu \mathrm{A}$

Note 1 : The terminals $\overline{R D}, \overline{W R}, R / \bar{W}, S Y N C$, RESET $_{O U T}, \phi, D-A_{1}$ and $D-A_{2}$ are all open The other ports, which are in the input mode, are connected to $V_{\text {SS }} A-D$ converter is in the A-D completion state. The current through $A D V_{\text {REF }}$ and $D A V_{\text {REF }}$ is not included(Fig 6)

A-D CONVERTER CHARACTERISTICS

$\left(V_{C C}=A V_{C C}=5 V, V_{S S}=A V_{S S}=0 V, T_{a}=25^{\circ} \mathrm{C}, f\left(X_{I N}\right)=10 \mathrm{MHz}\right.$, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Unit
			Min	Typ	Max	
-	Resolution				8	Bits
-	Absolute accuracy	$\mathrm{V}_{C C}=A V_{C C}=A D V_{\text {REF }}=5.12 \mathrm{~V}$		± 1.5	± 3	LSB
$\mathrm{t}_{\text {CONV }}$	Conversion time				49	$t_{C}(\phi)$
$\mathrm{V}_{\text {IA }}$	Analog input voltage		$\mathrm{AV}_{\text {SS }}$		$\mathrm{AV}_{\mathrm{Cc}}$	V
$\mathrm{V}_{\text {AdVREF }}$	Reference input voltage		2		V_{cc}	V
R Ladder	Ladder resistance value	$A D V_{\text {REF }}=5 \mathrm{~V}$	20	35	50	$\mathrm{k} \Omega$
$\mathrm{I}_{\text {IADVREF }}$	Reference input current	$\mathrm{ADV}_{\text {REF }}=5 \mathrm{~V}$	0.1	0.14	0.25	mA
$\mathrm{V}_{\text {AVCC }}$	Analog power supply input voltage			V_{cc}		V
$\mathrm{V}_{\text {AVSS }}$	Analog power supply input voltage			0		V

D-A CONVERTER CHARACTERISTICS $\left(\mathrm{v}_{\mathrm{cc}}=5 \mathrm{v}, \mathrm{V}_{\mathrm{ss}}=\mathrm{Av} \mathrm{V}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

Symbol	Parameter	Test conditions	Lımits			Unit
			Min	Typ	Max	
-	Resolution				8	Bits
-	Absolute accuracy	$\mathrm{V}_{\text {CC }}=\mathrm{DAV}_{\text {REF }}=5.12 \mathrm{~V}$			1.0	\%
$t_{\text {su }}$	Setup time				3	$\mu \mathrm{s}$
R_{O}	Output resistance		1	2	4	$\mathrm{k} \Omega$
$\mathrm{V}_{\text {AVSS }}$	Analog power supply input voltage			0		V
V davref	Reference input voltage		4		V_{Cc}	V
I Davref	Reference power input current (Each pın)		0	2.5	5	mA

PROM VERSION of M37450M8-XXXSP/FP

TIMING REQUIREMENTS
Port/single-chip mode ($\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-10$ to $70^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test condition	Limits			Unit
			Min.	Typ	Max	
$t_{\text {Su }}$ POD- ${ }^{\text {d }}$)	Port P0 input setup time	Fig 3	200			ns
$t_{\text {su }}$ (P1D- ${ }^{\text {d }}$)	Port P1 input setup time		200			ns
	Port P2 input setup time		200			ns
$t_{\text {SU }}$ (P3D- ${ }^{\text {d }}$)	Port P3 input setup time		200			ns
$t_{\text {SU }}\left(\right.$ P4D- ${ }^{\text {d }}$)	Port P4 input setup time		200			ns
$\mathrm{t}_{\text {SU }}$ (P5D- ${ }^{\text {d }}$)	Port P5 input setup time		200			ns
$\mathrm{t}_{\text {SU }}(\mathrm{PGD}-\phi$)	Port P6 input setup time		200			ns
th(ϕ-POD)	Port P0 input hold time		40			ns
th(ϕ-P1D)	Port P1 input hold time		40			ns
th(ϕ-P2D)	Port P2 input hold time		40			ns
th(ϕ-P3D)	Pori P3 input hold time		40			ns
th(ϕ - P4D $)$	Port P4 input hold time		40			ns
th(ϕ-P5D)	Port P5 input hold time		40			ns
th(ϕ - P6D $)$	Port P6 input hold time		40			ns
$\mathrm{t}_{\mathrm{C}}\left(\mathrm{X}_{\text {IN }}\right)$	External clock input cycle time		100		1000	ns
$t_{w}\left(X^{\text {IN }} \mathrm{L}\right.$)	External clock input "L" pulse width		30			ns
$t_{w}\left(X^{\text {IN }}{ }^{\prime} H\right)$	External clock input "H" pulse width		30			ns
$t_{r}\left(X_{\text {IN }}\right)$	External clock rising edge time				20	ns
$t_{f}\left(X_{\text {IN }}\right)$	External clock falling edge time				20	ns

Master CPU bus interface timing ($\overline{\mathbf{R}}$ and $\overline{\mathbf{W}}$ separation type mode)

$\left(\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-10\right.$ to $70^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test condition	Lımits			Unit
			Min.	Typ	Max	
$\mathrm{t}_{\text {Su }}$ (cs-R $)$	$\overline{\overline{C S}}$ setup time	Fig 3	0			ns
tsu(cs-w)	$\overline{\mathrm{CS}}$ setup tume		0			ns
$\operatorname{th}(\mathrm{R}-\mathrm{cs})$	$\overline{\mathrm{CS}}$ hold time		0			ns
th(w-cs)	$\overline{C S}$ hold tume		0			ns
$t_{\text {su }}(\mathrm{A}-\mathrm{R})$	A0 setup time		40			ns
$t_{\text {su }}(A-W)$	A0 setup time		40			ns
$\operatorname{th}(\mathrm{R}-\mathrm{A})$	AO hold time		10			ns
th $(W-A)$	A0 hold time		10			ns
$t_{W}(\mathbf{R})$	Read pulse width		160			ns
$t_{w}(\mathbf{w})$	Write pulse width		160			ns
$\mathrm{t}_{\text {su }}(\mathrm{D}-\mathrm{w})$	Date input setup time before write		100			ns
th(w-D)	Date input hold time after write		10			ns

Master CPU bus interface timing (R/W type mode)

$\left(\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-10\right.$ to $70^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test condition	Limits			Unit
			Min	Typ	Max	
$t_{\text {su }}$ (cs-E)	$\overline{\mathrm{CS}}$ setup time	Fig. 4	0			ns
th(E-CS)	$\overline{\mathrm{CS}}$ hold time		0			ns
$t_{\text {su }}(A-E)$	AO setup time		40			ns
$\operatorname{th}(E-A)$	A0 hold time		10			ns
$t_{\text {Su }}$ (RW-E)	R/W		40			ns
th(E-RW)	$\mathrm{R} / \overline{\mathrm{W}}$ hold time		10			ns
$\mathrm{t}_{\mathbf{W} \text { (EL) }}$	Enable clock "L" pulse width		160			ns
$t_{\text {W (EH) }}$	Enable clock "H" pulse width		160			ns
$\operatorname{tr}_{\mathbf{\prime}}(\mathrm{E})$	Enable clock rising edge time				25	ns
$t_{f(E)}$	Enable clock falling edge tıme				25	ns
$\mathrm{t}_{\text {su }}(\mathrm{D}-\mathrm{E})$	Data input setup time before write		100			ns
th(E-D)	Data input hold time after write		10			ns

Local bus/memory expansion mode, microprocessor mode
$\left(\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{Ss}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-10\right.$ to $70^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test condition	Limits			Unit
			Min.	Typ.	Max.	
$t_{\text {su }}(\mathrm{D}-\phi$)	Data input setup time	Fig. 5	130			ns.
$\mathrm{th}_{\mathrm{h}}(\boldsymbol{D}-\mathrm{D})$	Data input hold time		0			ns
$t_{\text {Su }}(\mathrm{D}-\mathrm{RD})$	Data input setup time		130			ns
th(RD-D)	Data input hold time		0			ns

SWITCHING CHARACTERISTICS

Port/single-chip mode ($\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-10$ to $70^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Paramater	Test condition	Limits			Unit
			Min	Typ.	Max.	
$\mathrm{t}_{\mathrm{d}(\phi-\mathrm{POQ})}$	Port PO data output delay time	Fig 3			200	ns
$t_{\text {d }(\phi-P 1 Q)}$	Port P1 data output delay time				200	ns
$t_{\text {d }}\left(\phi-P_{2} Q\right)$	Port P2 data output delay time				200	ns
$t_{\text {d }(\phi-P 3 Q)}$	Port P3 data output delay time				200	ns
$\mathrm{t}_{\mathrm{d}(\phi-\mathrm{P} 5 \mathrm{Q}}$	Port P5 data output delay time				200	ns
$\mathrm{t}_{\mathrm{d}(\phi-\mathrm{P} 6 \mathrm{Q}}$)	Port P6 data output delay time				200	ns
$t_{C(\phi)}$	Cycle time		400		4000	ns
$t_{W(\phi H)}$	ϕ clock pulse width ("H" level)		190			ns
$\mathbf{t w}_{\mathbf{W}(\phi)}$	ϕ clock pulse width ("L" level)		170			ns
$\operatorname{tr}_{\mathbf{r}}(\phi)$	ϕ clock rising edge time				20	ns
$\mathrm{t}_{\mathrm{f}}(\phi)$	ϕ clock falling edge tıme				20	ns

Master CPU bus interface ($\overline{\mathbf{R}}$ and $\overline{\mathbf{W}}$ separation type mode)

($\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-10$ to $70^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test condition	Limits			Unit
			Min	Typ	Max	
$\mathrm{ta}_{\mathrm{a}}(\mathrm{R}-\mathrm{D})$	Data output enable time after read	Fig 4			120	ns
$\mathrm{t}_{\mathrm{V}(\mathrm{R}-\mathrm{D})}$	Data output disable time after read		10		85	ns
$\mathrm{t}_{\text {PLH }}$ (R-PR)	$\overline{P_{\text {ROY }}}$ output transmission time after read				150	ns
$t_{\text {PLH }} \mathbf{W}$-PR)	$\overline{P_{\text {Roy }}}$ output transmission tume after write				150	ns

Master CPU bus interface ($\mathbf{R} / \overline{\mathbf{W}}$ type mode) $\left(\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V} \pm 5 \%, \mathrm{v}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-10\right.$ to $70^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test condition	Lımits			Unit
			Mın.	Typ.	Max.	
$\mathbf{t a}_{\mathbf{a}(\mathrm{E}-\mathrm{D})}$	Data output enable time after read	Fig 4			120	ns
$\mathrm{t}_{\mathrm{V}(\mathrm{E}-\mathrm{D})}$	Data output disable time after read		10		85	ns
$\mathrm{t}_{\text {PLH }}(\mathrm{E}-\mathrm{PR})$	Proy output transmission tıme after E clock				150	ns

Local bus/memory expansion mode, microprocessor mode
$\left(\mathrm{V}_{\mathrm{cC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{Ss}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-10\right.$ to $70^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test condition	Lımits			Unit
			Mın	Typ	Max	
$t_{\text {d }}(\phi-A)$	address delay time after ϕ	Fig 5			150	ns
$t_{v(\phi-A)}$	address effective time after ϕ		10			ns
$t_{V(R D-A)}$	address effective time after $\overline{\mathrm{RD}}$		10			ns
$t_{V}(\underline{W R-A)}$	address effective time after $\overline{\mathrm{WR}}$		10			ns
$t_{d}(\phi-D)$	data output delay time after ϕ				160	ns
$t_{\text {d }}(\mathrm{WR}-\mathrm{D})$	data output delay time after $\overline{\mathrm{WR}}$				160	ns
$t_{V(\phi-D)}$	data output effective time after ϕ		20			ns
$\mathrm{t}_{\mathrm{V}}(\mathrm{WR}-\mathrm{D})$	data output effective time after $\overline{\mathrm{WR}}$		20			ns
$t_{\text {d }}(\phi-\mathrm{RW})$	R/W delay time after ϕ				150	ns
$\mathrm{t}_{\mathrm{d}(\phi-\mathrm{SYNC})}$	SYNC delay time after ϕ				150	ns
$t_{W}(\mathrm{RD})$	$\overline{\mathrm{RD}}$ pulse width		170			ns
$t_{w}\left(W_{\text {P }}\right)$	WR pulse width		170			ns

TEST CONDITION

| Input voltage level :V_{IH} 2.4 V
 $\mathrm{~V}_{\mathrm{IL}}$
 0.45 V | |
| ---: | :--- | :--- |
| Output test level : V_{OH} | 2.0 V |
| $\mathrm{~V}_{\mathrm{OL}}$ | 0.8 V |

Fig. 3 Test circuit in single-chip mode

Fig. 4 Master CPU bus interface test circuit

Fig. 5 Local bus test circuit

Fig. 6 ICC (at STOP mode) test condition

MITSUBISHI MICROCOMPUTERS
 M37450E8-XXXSP/FP M37450E8SS/FS

TIMING DIAGRAM

Port/single-chip mode timing diagram

Master CPU bus interface/ $\overline{\mathrm{R}}$ and $\overline{\mathbf{W}}$ separation type timing diagram

Read

Write

Master CPU interface/ R/W type timing diagram

Local bus timing diagram

$\mathrm{A}_{0}-\mathrm{A}_{15}$
$\overline{\mathrm{RD}}$
$D_{0}-D_{7}$
CPU read
$\overline{W R}$
$D_{0}-D_{7}$
CPU write

DESCRIPITION

The M37450E4TXXXSP/J is a single-chip microcomputer designed with CMOS silicon gate technology. It is housed in a 64-pin shrink plastic molded DIP or 84-pin plastic molded QFJ (PLCC). The features of this chip are similar to those of the M37450M4-XXXSP except that this chip has a 8192 bytes PROM built-in. This single-chip microcomputer is useful for office automation appliances and consumer appliance controllers.
In addition to its simple instruction sets, the PROM, RAM and I/O addresses are placed on the same memory map to enable easy programming. It also has a unique feature that enables it to be used as a slave microcomputer.
The difference between the M37450E4TXXXSP and the M37450E4TXXXJ is the package outline.

FEATURES

- Number of basic instructions. 71 69 MELPS 740 basic instructions +2 multiply/divide instructions
- Memory size PROM 8192 bytes

- Instruction execution time
(minimum instructions at 10 MHz frequency) $\cdots \cdots 0.8 \mu \mathrm{~s}$
- Single power supply.. $5 \mathrm{~V} \pm 5 \%$
- Power dissipation normal operation mode
(at 10 MHz frequency) .. 30 mW
- Subroutine nesting 96 levels max.

- 16-bit timer ... 3
- 8-bit timer (Serial I/O use)
- Serial I/O (UART or clock synchronous)
- A-D converter (8-bit resolution) - 3 channels (DIP) 8 channels (QFJ)
- D-A converter (8 -bit resolution) $\cdots \cdots \cdots \cdots \cdots \cdots .2$ channels
- PWM output (8-bit or 16-bit)
$\cdot 1$
- Programmable I/O ports (Ports P0, P1, P2, P3, P5, P6) 48
- Input port (Port P4) $\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots 3$ (DIP), 8 (QFJ)
- Output ports (Ports D-A, D-A) $\cdot 2$
- PROM (equivalent to the M5L2764) program voltage

APPLICATION

Slave controller for PPCs, facsimiles, and page printers HDD, optical disk, inverter, and industrial motor controllers Industrial robots and machines

ELECTRIC

MITSUBISHI MICROCOMPUTERS M37450E4TXXXSP/J

PROM VERSION of M37450M4TXXXSP/J

FUNCTIONS OF M37450E4TXXXSP/J

Parameter			Functions
Number of basic instructions			71(69 MELPS 740 basic instructions+2)
Instruction execution time			$0.8 \mu \mathrm{~s}$ (minimum instructions, at 10 MHz frequency)
Clock frequency			10 MHz (max.)
Memory size	PROM		8192 bytes
	RAM		256 bytes
Input/Output port	P0-P3, P5, P6	1/0	8 -bit $\times 6$
	P4	Input	3 -bit $\times 1$ (8-bit $\times 1$ for 84 -pin model)
	D-A	Output	2-bit $\times 1$
Serial I/O			UART or clock synchronous
Timers			16 -bit timer $\times 3$, 8 -bit timer (Serial I/O baud rate generator) $\times 1$
A-D converter			8 -bit $\times 3$ channels (8 channels for 84 -pin model)
D-A converter			8 -bit $\times 2$ channels
Pulse width modulator			8 -bit or 16-bit $\times 1$
Data bus buffer			1-byte input and output each
Subroutine nesting			96-levels
Interrupt			6 external interrupts, 8 internal interrupts One software interrupt
Clock generating circuit			Built-in (ceramıc or quarts crystal oscillator)
Supply voltage			$5 \mathrm{~V} \pm 5 \%$
Power dissipation			30 mW (at 10MHz frequency)
Input/Output characters	Input/Output v		5 V
	Output current		$\pm 5 \mathrm{~mA}$ (max.)
Memory expansion			Possible
Operating temperature range			-40 to $85^{\circ} \mathrm{C}$
Device structure			CMOS silicon gate
Package	M37450E4TXX		64-pin shrink plastic molded DIP
	M37450E4TXX		84-pin plastic molded QFJ (PLCC)

MITSUBISHI MICROCOMPUTERS M37450E4TXXXSP/J

PROM VERSION of M37450M4TXXXSP/J

PIN DESCRIPTION (normal mode)

Pin	Name	Input/ Output	Functions
v_{cc} $v_{s s}$	Supply voltage		Power supply inputs $5 \mathrm{~V} \pm 5 \%$ to V_{CC}, and 0 V to $\mathrm{V}_{\text {S }}$
CNV ${ }_{\text {SS }} / \mathrm{V}_{\mathrm{PP}}$	$\mathrm{CNV}_{\text {ss }}$		Controls the processor mode of the chip. Normally connected to V_{ss} or V_{cc}.
RESET	Reset input	Input	To enter the reset state, the reset input pin must be kept at a "L" for more than 8 clock cycles (under normal V_{CC} conditions) If more time is needed for the crystal oscillator to stabilize, this "L" condition should be maintained for the required time
$\mathrm{XIN}_{\text {IN }}$	Clock input	Input	This chip has an internal clock generating circuit. To control generating frequency, an external ceramic or a
$\mathrm{X}_{\text {OUt }}$	Clock output	Output	source should be connected to the $\mathrm{X}_{\text {IN }}$ pin and the $\mathrm{X}_{\text {Out }}$ pin should be left open.
ϕ	Timing output	Output	Outputs signal consisting of oscillating frequency divided by four
SYNC	Synchronous signal output	Output	This signal is output "H" during operation code fetch and is used to control single stepping of programs.
R / \bar{W}	Read/Write status output	Output	This signal determines the direction of the data bus. It is " H " during read and " L " during write
$\mathrm{PO}_{0}-\mathrm{PO} 7$	I/O port P0	1/0	Port PO is an 8-bit I/O port with directional registers allowing each I/O bit to be individually programmed as input or output The output structure is CMOS output. The low-order bits of the address are output except in single-chip mode.
$\mathrm{P}_{10}-\mathrm{P} 1_{7}$	I/O port P1	1/0	Port P1 is an 8-bit I/O port and has basically the same functions as port P0 The high-order bits of the address are output except in single-chip mode
$\mathrm{P}_{2}-\mathrm{P} 2_{7}$	1/O port P2	1/0	Port P2 is an 8-bit I/O port and has basically the same functions as port P0. Used as data bus except in single-chip mode.
$\mathrm{P}_{3}-\mathrm{P} 3_{7}$	I/O port P3	1/0	Port P3 is an 8-bit I/O port and has basically the same functions as port PO Serial I/O, PWM output, or event I/O function can be selected with a program.
$\begin{aligned} & P 4_{0}-P 4_{2} \\ & \left(P 4_{0}-P 4_{7}\right) \end{aligned}$	Input port P4	Input	Analog input pin for the A-D converter The 64-pin model has three pins and the 84-pin model has eight pins. They may also be used as digital input pins
$\mathrm{P5}_{0}-\mathrm{P} 57$	I/O port P5	I/O	Port P5 is an 8-bit I/O port and has basically the same functions as port P0. This port functions as an 8-bit data bus for the master CPU when slave mode is selected with a program.
$\mathrm{P} 60-\mathrm{P} 6_{7}$	I/O port P6	1/0	Port P6 is an 8-bit I/O port and has basically the same function as port P0 Pins P_{3} to P_{6} change to a control bus for the master CPU when slave mode is selected with a program. Pins Pb_{0} to Pb_{2} may be programmed as external interrupt input pins
D-A ${ }_{1}$, D-A ${ }_{2}$	D-A output	Output	Analog signal from D-A converter is output.
$V_{\text {REF }}$	Reference voltage input	Input	Reference voltage input pin for A-D and D-A converter This pin is for 64-pin model only
ADV ${ }_{\text {ref }}$	A-D reference voltage input	Input	Reference voltage input pin for A-D converter This pin is for 84-pin model only
DAV $\mathrm{feF}^{\text {r }}$	D-A reference voltage input	Input	Reference voltage input pin for D-A converter This pin is for 84-pin model only.
$\mathrm{AV}_{\text {ss }}$	Analog power supply		Ground level input pin for A-D and D-A converter. Same voltage as $\mathrm{V}_{\text {SS }}$ is applied.
$\mathrm{AV}_{\mathrm{cc}}$	Analog power supply		Power supply input pin for $\mathrm{A}-\mathrm{D}$ converter. This pin is for 84 -pin model only. Same voltage as V_{CC} is applied. In the case of the 64-pin model, $\mathrm{AV}_{\mathrm{cc}}$ is connected to V_{cc} internally
$\overline{\mathbf{R D}}$	Read signal output	Output	Control signal output as active "L" when valid data is read from data bus This pin is for 84-pin model only.
$\overline{W R}$	Write signal output	Output	Control signal output as active " L " when writing data from data bus to external component This pin is for 84 -pin model only.
RESETout	Reset output	Output	Control signal output as active " H " during reset It is used as a reset output signal for peripheral components. This pin is for 84 -pin model only.

PIN DESCRIPTION (EPROM mode)

Pın	Name	Input/ Output	Functions
$\mathrm{V}_{\mathrm{cc}}, \mathrm{V}_{\mathrm{ss}}$	Supply voltage		Power supply inputs $5 \mathrm{~V} \pm 5 \%$ to V_{cc}, and 0 V to $\mathrm{V}_{\text {S }}$
$\mathrm{CNV}_{\text {Ss }} / \mathrm{V}_{\text {PP }}$	$V_{\text {PP }}$	Input	Connect to $\mathrm{V}_{\text {Pp }}$ when programming or verifing.
RESET	Reset input	Input	Connect to $\mathrm{V}_{\text {ss }}$
$\mathrm{XIN}_{\text {IN }}$	Clock input	Input	Connect a ceramic or a quartz crystal oscillator between $\mathrm{X}_{\text {IN }}$ and $\mathrm{X}_{\text {OUT }}$ for clock oscillation
$\mathrm{X}_{\text {Out }}$	Clock output	Output	
ϕ	Timing output	Output	For timing output
SYNC	Synchronous signal output	Output	Kept to open ("L" signal is output)
R/W	Read/Write status output	Output	Kept to open (" H " signal is output).
$\mathrm{PO}_{0}-\mathrm{PO}_{7}$	I/O port PO	Input	P0 works as the lower 8-bit address input
$\mathrm{P} 1_{0}-\mathrm{P} 1_{7}$	I/O port P1	Input	P1 works as the higher 8-bit address input.
P2 $\mathbf{o}^{-} \mathbf{P} 2_{7}$	1/O port P2	1/0	P2 works as an 8-bit data bus
$\mathrm{P} 3_{0}-\mathrm{P} 3_{7}$	I/O port P3	Input	Connect to $\mathrm{V}_{\text {ss }}$
$\begin{aligned} & \mathrm{P4}_{0}-\mathrm{P} 4_{2} \\ & \left(\mathrm{P4}_{0}-\mathrm{P4}_{7}\right) \end{aligned}$	Input port P4	Input	Connect to $\mathrm{V}_{\text {SS }}$ (The 80 -pin model has eight pins $\mathrm{P4}_{0}$ to $\mathrm{P} 47^{\text {\% }}$).
P50-P57	1/O port P5	Input	$P 5_{0}, P 5_{1}, P 5_{2}$ works as $\overline{\mathrm{PGM}}, \overline{\mathrm{OE}}$, and $\overline{\mathrm{CE}}$ inputs respectively Connect $\mathrm{P} 5_{3}$ and $\mathrm{P} 5_{4}$ to V_{CC} and $\mathrm{P} 5_{5}$ to $\mathrm{P} 5_{7}$ to V_{ss}
P60-P67	I/O port P6	Input	Connect to $\mathrm{V}_{\text {ss }}$.
D-A ${ }_{1}, \mathrm{D}-\mathrm{A}_{2}$	D-A output	Output	Kept to open
$\mathrm{V}_{\text {REF }}$	Reference voltage input	Input	Connect to $\mathrm{V}_{\text {ss }}$.
ADV $\mathrm{VEF}^{\text {r }}$	A-D reference voltage input	Input	Connect to $\mathrm{V}_{\text {ss }}$
DAV $\mathrm{VEF}^{\text {r }}$	D-A reference voltage input	Input	Connect to $\mathrm{V}_{\text {ss }}$.
$A V_{\text {ss }}$	Analog power	Input	Connect to $\mathrm{V}_{\text {ss }}$
$\mathrm{AV}_{\mathrm{cc}}$	Analog power	Input	Connect to $\mathrm{V}_{\text {ss }}$
$\overline{\mathrm{RD}}$	Read signal output	Output	Kept to open (" H " signal is output)
$\overline{W R}$	Write signal output	Output	Kept to open (" H " signal is output).
RESET ${ }_{\text {out }}$	Reset output	Output	Kept to open (" H " signal is output)

EPROM MODE

The M37450E4TXXXSP/J features an EPROM mode in addition to its normal modes. When the $\overline{\text { RESET }}$ signal level is low (" L ") and $\mathrm{CNV}_{\mathrm{SS}} / \mathrm{V}_{\mathrm{PP}}$ signal level is high (" H "), the chip automatically enters the EPROM mode. Table 1 list the correspondence between pins and Figure 1 and Figure 2 give the pin connections in the EPROM mode. When in the EPROM mode, ports P0, P1, P2, $\mathrm{P5}_{0}$ to $\mathrm{P5}_{2}$ and $\mathrm{CNV}_{\text {ss }}$ are used for the PROM (equivalent to the M5L2764). When in this mode, the built-in PROM can be written to or read from using these pins in the same way as with the M5L2764. The oscillator should be connected to the $X_{I N}$ and $X_{\text {Out }}$ pins, or external clock should be connected to the $X_{\text {IN }}$ pin.

Table 1. Pin function in EPROM mode

	M37450E4TXXXSP/J	M5L2764
V_{CC}	V_{CC}	V_{CC}
V_{PP}	$\mathrm{CNV} \mathrm{V}_{\mathrm{SS}} / \mathrm{V}_{\mathrm{PP}}$	V_{PP}
V_{SS}	V_{SS}	V_{SS}
Address input	Ports $\mathrm{P} 0, \mathrm{P1}_{0}-\mathrm{P1}_{4}$	$\mathrm{~A}_{0}-\mathrm{A}_{12}$
Data I/O	$\mathrm{Port} \mathrm{P2}$	$\mathrm{D}_{0}-\mathrm{D}_{7}$
$\overline{\mathrm{CE}}$	$\mathrm{P5}_{2} / \mathrm{DB}_{2} / \overline{\mathrm{CE}}$	$\overline{\mathrm{CE}}$
$\overline{\mathrm{OE}}$	$\mathrm{P5}_{1} / \mathrm{DB}_{1} / \overline{\mathrm{OE}}$	$\overline{\mathrm{OE}}$
$\overline{\mathrm{PGM}}$	$\mathrm{P5}_{0} / \mathrm{DB}_{0} / \overline{\mathrm{PGM}}$	$\overline{\mathrm{PGM}}$

Fig. 1 Pin connection in EPROM mode (64-pin model)

MITSUBISHI MICROCOMPUTERS M37450E4TXXXSP/J

Fig. 2 Pin connection in EPROM mode (84-pin model)

PROM READING AND WRITING
 Reading

To read the PROM, set the $\overline{C E}$ and $\overline{O E}$ pins to a " L " level, and the $\overline{\mathrm{PGM}}$ pin to a "H" level. Input the address (A_{0} to A_{12}) to be read and the data will be output to the I/O pins D_{0} to D_{7}. The data I/O pins will be floating when either the $\overline{\mathrm{CE}}$ or $\overline{\mathrm{OE}}$ pins are in the " H " state.

NOTES ON HANDLING

(1) Since a high voltage (21V) is used to write data, care
should be taken when turning on the PROM writer's power.

Writing

The PROM is programmed at the factory already and do not use the writing mode.

Table 2. I/O signal in each mode

Mode	$\overline{\mathrm{CE}}$	$\overline{\mathrm{OE}}$	$\overline{\text { PGM }}$	V_{PP}	V_{cc}	Port P2
Read-out	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{1 \mathrm{H}}$	V_{CC}	V_{CC}	Output
Programming	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {IH }}$	Pulse ($\mathrm{V}_{\text {IH }} \rightarrow \mathrm{V}_{\text {IL }}$)	$V_{P P}$	V_{Cc}	Input
Programming verify	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {IL }}$	$V_{\text {IH }}$	$V_{P P}$	V_{cc}	Output
Program disable	$\mathrm{V}_{\text {IH }}$	X	X	$V_{P P}$	V_{cc}	Floating

[^5]
ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
V_{cc}	Supply voltage	With respect to V_{ss} Output transistors are at "OFF" state.	-0.3 to 7	V
V_{1}	Input voltage $\overline{\text { RESET, }} \mathrm{X}_{\text {IN }}$		-0.3 to 7	V
V_{1}	$\begin{aligned} & \text { Input voltage } \mathrm{PO}_{0}-\mathrm{P0}_{7}, \mathrm{P}_{0}-\mathrm{P1}_{7}, \mathrm{P2}_{0}-\mathrm{P}_{7}, \\ & \mathrm{P}_{0}-\mathrm{P3}_{7}, \mathrm{P}_{0}-\mathrm{P}_{7}, \mathrm{P5}_{0}-\mathrm{P} 5_{7}, \\ & \mathrm{P}_{0}-\mathrm{P}_{7}, \mathrm{ADV}_{\mathrm{REF}}, \mathrm{DAV}_{\mathrm{REF}}, \\ & \mathrm{~V}_{\mathrm{REF}}, \mathrm{AV}_{\mathrm{CC}} \\ & \hline \end{aligned}$		-0.3 to $\mathrm{V}_{\mathrm{cc}}+0.3$	V
V_{1}	Input voltage $\mathrm{CNV}_{\text {ss }}$		-0.3 to 13(Note 1)	V
V_{0}	$\begin{aligned} & \hline \text { Output voltage } \mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P1}_{0}-\mathrm{P} 1_{7}, \mathrm{P}_{0}-\mathrm{P} 2_{7}, \\ & \mathrm{P}_{0}-\mathrm{P3}_{7}, \mathrm{P5}_{0}-\mathrm{P} 5_{7}, \mathrm{P}_{0}-\mathrm{P} 6_{7}, \\ & \mathrm{X}_{\text {out }, \phi}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \mathrm{R} / \overline{\mathrm{W}}, \\ & \mathrm{RESET}_{\text {OUT }}, \mathrm{SYNC} \\ & \hline \end{aligned}$		-0.3 to $\mathrm{V}_{\mathrm{cc}}+0.3$	V
$\mathrm{Pd}_{\text {d }}$	Power dissipation	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$	1000	mW
Topr	Operating temperature		-40 to 85	${ }^{\circ} \mathrm{C}$
Tstg	Storage temperature		-65 to 150	${ }^{\circ} \mathrm{C}$

Note 1 : In PROM programming mode, $\mathrm{CNV}_{\mathrm{ss}}$ is 22.0 V .

RECOMMENDED OPERATING CONDITIONS

$\left(\mathrm{V}_{\mathrm{GC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{Ta}_{\mathrm{a}}=-40\right.$ to $85^{\circ} \mathrm{C}$ unless otherwise noted)

Symbol	Parameter	Lımits			Unit
		Min	Typ	Max.	
V_{cc}	Supply voltage	4.75	5	5.25	V
$\mathrm{V}_{\text {ss }}$	Supply voltage		0		V
$\mathrm{V}_{\text {IH }}$	" H " Input voltage $\overline{\text { RESET, }}$, $\mathrm{X}_{\text {IN }}, \mathrm{CNV}_{\text {SS }}$ (Note 1)	$0.8 \mathrm{~V}_{\mathrm{cc}}$		V_{cc}	V
$\mathrm{V}_{\mathbf{I H}}$	$\begin{aligned} & \text { "H" Input voltage } \mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P}_{10}-\mathrm{P} 1_{7}, \mathrm{P}_{0}-\mathrm{P} 2_{7}, \\ & \mathrm{P}_{0}-\mathrm{P} 3_{7}, \mathrm{P}_{0}-\mathrm{P} 4_{7}, \mathrm{P5}_{0}-\mathrm{P} 5_{7}, \\ & \mathrm{P6}_{0}-\mathrm{P} 6_{7} \\ & \text { (except Note 1) } \end{aligned}$	2.0		V_{cc}	V
$\mathrm{V}_{\text {IL }}$	"L" Input voltage $\mathrm{CNV}_{\text {Ss }}$ (Note 1)	0		$0.2 V_{c c}$	V
$V_{\text {IL }}$	$\begin{aligned} \hline \text { "L" Input voltage } & \mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P1}_{0}-\mathrm{P1}_{7}, \mathrm{P}_{0}-\mathrm{P} 2_{7}, \\ & \mathrm{P}_{0}-\mathrm{P3}_{7}, \mathrm{P4}_{0}-\mathrm{P} 4_{7}, \mathrm{P5}_{0}-\mathrm{P} 5_{7}, \\ & \mathrm{~Pb}_{0}-\mathrm{P6}_{7} \quad \text { (except Note 1) } \end{aligned}$	0		0.8	V
$\mathrm{V}_{\text {IL }}$	"L" Input voltage $\overline{\text { RESET }}$	0		$0.12 V_{c c}$	V
$V_{\text {IL }}$	"L" Input voltage $\mathrm{X}_{\text {IN }}$	0		0.16V ${ }^{\text {cc }}$	V
Iol(peak)	$\begin{aligned} \text { "L" peak output current } & \mathrm{PO}_{0}-\mathrm{PO}_{7}, \\ & \mathrm{P1}_{0}-\mathrm{P} 1_{7}, \\ & \mathrm{P}_{0}-\mathrm{P2}_{7}, \\ \mathrm{P5}_{0}-\mathrm{P5}_{7}-\mathrm{P3}_{7}, & \mathrm{P6}_{0}-\mathrm{P6}_{7} \end{aligned}$			10	mA
lol(avg)	$\begin{array}{ll} \text { "L" average output current } & \mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P1}_{0}-\mathrm{P1} 1_{7}, \\ & \mathrm{P2}_{0}-\mathrm{P2}_{7}, \mathrm{~PB}_{0}-\mathrm{P} 3_{7}, \\ & \mathrm{P5}_{0}-\mathrm{P5}_{7}, \end{array} \mathrm{P6}_{0}-\mathrm{P} 6_{7} \quad \text { (Note 2) }$			5	mA
Іон(peak)	$\begin{aligned} \text { "H" peak output current } & \mathrm{PO}_{0}-\mathrm{PO}_{7}, \\ & \mathrm{P1}_{0}-\mathrm{P1} 1_{7}, \\ & \mathrm{P}_{0}-\mathrm{P} 2_{7}, \\ \mathrm{P} 5_{0}-\mathrm{P} 5_{7}- & \mathrm{P6}_{0}-\mathrm{P6}_{7}, \end{aligned}$			-10	mA
ІОн(avg)	$\begin{array}{ll} \hline \text { "H" average output current } & \mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P}_{0}-\mathrm{P1}_{7}, \\ & \mathrm{P}_{0}-\mathrm{P2}_{7}, \mathrm{P3}_{0}-\mathrm{P3}_{7}, \\ & \mathrm{P5}_{0}-\mathrm{P5}_{7}, \mathrm{PG}_{0}-\mathrm{PG}_{7} \text { (Note 2) } \\ \hline \end{array}$			-5	mA
$f\left(X_{\text {IN }}\right)$	Clock oscillating frequency	1		10	MHz

Note 1 : Ports operate as $\mathrm{INT}_{1}-\mathrm{INT}_{3}\left(\mathrm{P6}_{0}-\mathrm{Pb}_{2}\right), \mathrm{EV}_{1}-\mathrm{EV}_{3}\left(\mathrm{P3}_{0}-\mathrm{P} 3_{2}\right), \mathrm{R}_{\mathrm{X}} \mathrm{D}\left(\mathrm{P3}_{4}\right)$ and $\mathrm{S}_{\mathrm{CLK}}\left(\mathrm{PB}_{6}\right)$
2 : The average output current $\mathrm{l}_{\mathrm{OH}(\mathrm{avg})}$ and $\mathrm{l}_{\mathrm{OL}(\mathrm{avg})}$ are the average value during a 100 ms
3 : The total of " L " output current I_{oL} (peak) of port P0, P1 and P2 is less than 40 mA .
The total of " H " output current I_{OH} (peak) of port $\mathrm{P} 0, \mathrm{P} 1$ and P 2 is less than 40 mA .
The total of "L" output current IoL(peak) of port P3, P5, P6, R/W, SYNC, RESET OUT, $\overline{\operatorname{RD}}, \overline{W R}$ and ϕ is less than 40 mA
 ϕ is less than 40 mA .

ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $85^{\circ} \mathrm{C}, \mathrm{f}\left(\mathrm{X}_{\mathrm{IN}}\right)=10 \mathrm{MHz}$, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Unit
			Min	Typ.	Max.	
V_{OH}	"H" output voltage $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \mathrm{R} / \overline{\mathrm{W}}$, SYNC, RESET ${ }_{\text {Out }}, \phi$	$\mathrm{IOH}_{\mathrm{OH}}=-2 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{cc}}-1$			V
$\mathrm{V}_{\text {OH }}$	$\begin{array}{r} \text { "H" output voltage } \mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P1}_{0}-\mathrm{P1}_{7}, \mathrm{P2}_{0}-\mathrm{P} 2_{7}, \\ \\ \mathrm{P3}_{0}-\mathrm{P3}_{7}, \mathrm{P5}_{0}-\mathrm{P5}_{7}, \mathrm{P6}_{0}-\mathrm{P6}_{7} \\ \hline \end{array}$	$\mathrm{I}_{\mathrm{OH}}=-5 \mathrm{~mA}$	$\mathrm{V}_{c c}-1$			V
$\mathrm{V}_{\text {OL }}$	$\begin{aligned} \hline \text { "L" output voltage } & \mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P}_{1}-\mathrm{P} 1_{7}, \mathrm{P}_{0}-\mathrm{P} 2_{7}, \\ & \mathrm{P3}_{0}-\mathrm{P3}_{7}, \mathrm{P5}_{0}-\mathrm{P} 5_{7}, \mathrm{P6}_{0}-\mathrm{P} 6_{7}, \\ & \overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \mathrm{R} / \overline{\mathrm{W}}, \text { SYNC, RESET } \end{aligned}$	$\mathrm{loL}^{2}=2 \mathrm{~mA}$			0.45	V
$\mathrm{V}_{\text {OL }}$	$\begin{array}{r} \text { "L" output voltage } \mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P1}_{0}-\mathrm{P1}_{7}, \mathrm{P2}_{0}-\mathrm{P}_{7}, \\ \mathrm{P}_{3}-\mathrm{P3}_{7}, \mathrm{P5}_{0}-\mathrm{P5}_{7}, \mathrm{P6}_{0}-\mathrm{P6}_{7} \\ \hline \end{array}$	$\mathrm{I}_{\mathrm{OL}}=5 \mathrm{~mA}$			1	V
$\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\mathrm{T}-}$	$\begin{gathered} \text { Hysterisis } \mathrm{INT}_{1}-\mathrm{INT}_{3}\left(\mathrm{P6}_{0}-\mathrm{PG}_{2}\right), \mathrm{EV}_{1}-\mathrm{EV}_{3}\left(\mathrm{P3}_{0}-\mathrm{P3}_{2}\right), \\ \mathrm{R}_{\mathrm{X}} \mathrm{D}\left(\mathrm{P}_{4}\right), \mathrm{S}_{\mathrm{CLK}}\left(\mathrm{P}_{6}\right) \\ \hline \end{gathered}$	Function input level	0.3		1	V
$\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\mathrm{T}-}$	Hysterısis RESET				0.7	V
$\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\mathrm{T}-}$	Hysterisis $\mathrm{XIN}_{\text {IN }}$		0.1		0.5	V
IIL	$\begin{array}{\|l} \hline \text { "L" input current } \mathrm{P0}_{0}-\mathrm{PO}_{7}, \mathrm{P1}_{0}-\mathrm{P} 1_{7}, \mathrm{P}_{0}-\mathrm{P} 2_{7}, \\ \\ \mathrm{P} 3_{0}-\mathrm{P}_{7}, \mathrm{P4}_{0}-\mathrm{P} 4_{7}, \mathrm{P5}_{0}-\mathrm{P} 5_{7}, \\ \\ \mathrm{P} 6_{0}-\mathrm{P} 6_{7}, \overline{\mathrm{RESET}}, \mathrm{X}_{\mathrm{IN}} \\ \hline \end{array}$	$\mathrm{V}_{1}=\mathrm{v}_{\mathrm{ss}}$	-5		5	$\mu \mathrm{A}$
$\mathrm{I}_{\mathbf{H}}$		$\mathrm{V}_{\mathrm{l}}=\mathrm{V}_{\mathrm{cc}}$	-5		5	$\mu \mathrm{A}$
$\mathrm{V}_{\text {RAM }}$	RAM retention voltage	At stop mode	2			V
Icc	Supply current	At system operation $f\left(X_{I N}\right)=10 \mathrm{MHz}$		6	15	mA
		At stop mode (Note 1)		1	10	$\mu \mathrm{A}$

Note 1 : The terminals $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \mathrm{R} / \overline{\mathrm{W}}$, SYNC, RESET ${ }_{\text {OUT }}, \phi, \mathrm{D}-\mathrm{A}_{1}$ and $\mathrm{D}-\mathrm{A}_{2}$ are all open. The other ports, which are in the input mode, are connected to $V_{S S} A-D$ converter is in the A-D completion state. The current through $A D V_{\text {REF }}$ and DAV $V_{\text {REF }}$ is not included(Fig.6)

A-D CONVERTER CHARACTERISTICS

$\left(V_{C C}=A V_{C C}=5 V \pm 5 \%, V_{S S}=A V_{S S}=0 V, T_{a}=-40\right.$ to $85^{\circ} \mathrm{C}, f\left(X_{I N}\right)=10 \mathrm{MHz}$, unless otherwise noted $)$

Symbol	Parameter	Test conditions	Limits			Unit
			Min.	Typ.	Max	
-	Resolution				8	Bits
-	Absolute accuracy	$\mathrm{V}_{\mathrm{CC}}=\mathrm{AV}_{\mathrm{CC}}=A D V_{\mathrm{REF}}=5 \mathrm{~V} \pm 5 \%$		± 1.5	± 3	LSB
$\mathrm{t}_{\text {CONV }}$	Conversion time				49	$t_{C}(\phi)$
$\mathrm{V}_{\text {IA }}$	Analog input voltage		$\mathrm{AV}_{\text {SS }}$		$\mathrm{AV}_{\mathrm{CC}}$	V
$\mathrm{V}_{\text {AdVREF }}$	Reference input voltage		2		V_{cc}	V
R LADDER	Ladder resistance value	$A D V_{\text {REF }}=5 \mathrm{~V}$	2	7.5	10	$\mathrm{k} \Omega$
$\mathrm{I}_{\text {IADVREF }}$	Reference input current	$\mathrm{ADV}_{\mathrm{REF}}=5 \mathrm{~V}$	0.5	0.7	2.5	mA
$V_{\text {AVCC }}$	Analog power supply input voltage			V_{cc}		V
$V_{\text {AVss }}$	Analog power supply input voltage			0		V

D-A CONVERTER CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{ss}}=\mathrm{AV} \mathrm{Ss}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40\right.$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Unit
			Min.	Typ.	Max	
-	Resolution				8	Bits
-	Absolute accuracy	$\mathrm{V}_{\text {CC }}=\mathrm{DAV}_{\text {REF }}=5.12 \mathrm{~V}$			1.0	\%
$\mathrm{t}_{\text {su }}$	Setup time				3	$\mu \mathrm{s}$
R_{O}	Output resistance		1	2	4	$\mathrm{k} \Omega$
$\mathrm{V}_{\text {AVSS }}$	Analog power supply input voltage			0		V
$\mathrm{V}_{\text {davref }}$	Reference input voltage		4		V_{cc}	V
Idavref	Reference power input current (Each pin)		0	2.5	5	mA

TIMING REQUIREMENTS
Port/single-chip mode ($\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test condition	Limits			Unit
			Min	Typ	Max.	
$\mathrm{t}_{\text {SU }}$ (POD- ${ }^{\text {d }}$	Port PO input setup time	Fig 3	200			ns
$\mathrm{t}_{\text {Su }}$ (P1D-ф)	Port P1 input setup time		200			ns
$\mathrm{t}_{\text {SU }}(\mathrm{P} 2 \mathrm{D}-\phi$)	Port P2 input setup time		200			ns
$\mathrm{t}_{\text {Su }}$ (P3D- ${ }^{\text {d }}$)	Port P3 input setup time		200			ns
$t_{\text {SU }}$ (P4D- ${ }^{\text {d }}$)	Port P4 input setup time		200			ns
$\mathrm{t}_{\text {SU }}$ (P5D- ${ }^{\text {d }}$)	Port P5 input setup time		200			ns
	Port P6 input setup time		200			ns
$t h(h)-P O D)^{\text {(}}$	Port P0 input hold time		40			ns
th(ϕ-P1D)	Port P1 input hold time		40			ns
th(ϕ-P2D)	Port P2 input hold time		40			ns
	Port P3 input hold time		40			ns
th(ϕ - P 4 D)	Port P4 input hold time		40			ns
th(ϕ-P5D)	Port P5 input hold time		40			ns
th(ϕ - P6D $)$	Port P6 input hold time		40			ns
$t_{c}\left(X_{\text {IN }}\right)$	External clock input cycle time		100		1000	ns
$t_{w}\left(X^{\text {IN }} \mathrm{L}\right.$)	External clock input "L" pulse width		30			ns
$t_{w}\left(X^{\text {IN }} \mathrm{H}\right)$	External clock input " H " pulse width		30			ns
$t_{r}\left(X_{\text {IN }}\right)$	External clock rising edge tıme				20	ns
$\mathrm{tf}_{\mathrm{f}}\left(\mathrm{XIN}_{\text {IN }}\right)$	External clock falling edge time				20	ns

Master CPU bus interface timing ($\overline{\mathbf{R}}$ and $\overline{\mathbf{W}}$ separation type mode)

$\left(\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40\right.$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test condition	Limits			Unit
			Min	Typ	Max	
$t_{\text {su }}$ (cs-R $)$	$\overline{\mathrm{CS}}$ setup time	Fig 3	0			ns
$\mathrm{t}_{\text {Su }}(\mathrm{cs}-\mathrm{w})$	$\overline{\mathrm{CS}}$ setup time		0			ns
$t_{\text {h }}(\mathrm{R}-\mathrm{CS}$)	$\overline{C S}$ hold time		0			ns
th(w-cs)	$\overline{\mathrm{CS}}$ hold time		0			ns
$\left.t_{\text {Su }} \mathbf{A}-\mathrm{R}\right)$	A0 setup time		40			ns
$t_{\text {su }}(\mathbf{A}-\mathrm{w})$	A0 setup time		40			ns
$\operatorname{th}(R-A)$	A0 hold time		10			ns
$t h(w-A)$	A0 hold time		10			ns
$t_{W}(\mathrm{R})$	Read pulse width		160			ns
$t_{w}(\mathrm{~W})$	Write pulse width		160			ns
$t_{\text {su }}(\mathrm{D}-\mathrm{w}$)	Date input setup time before write		100			ns
th(w-D)	Date input hold time after write		10			ns

Master CPU bus interface timing (R/W type mode)

$\left(\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40\right.$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test condition	Limits			Unit
			Mın.	Typ.	Max	
tsu(Cs-E)	$\overline{\mathrm{CS}}$ setup time	Fig 4	0			ns
th(E-Cs)	$\overline{\mathrm{CS}}$ hold time		0			ns
$t_{\text {Su }}(A-E)$	AO setup time		40			ns
th(E-A)	A0 hold time		10			ns
$t_{\text {SU }}$ (RW-E)	R/W setup tıme		40			ns
th(E-RW)	$\mathrm{R} / \overline{\mathrm{W}}$ hold time		10			ns
$t_{W}(E L)$	Enable clock "L" pulse width		160			ns
$t_{W}(E H)$	Enable clock "H" pulse width		160			ns
$t_{r}(E)$	Enable clock rising edge tıme				25	ns
$\mathrm{t}_{\mathrm{f}}(\mathrm{E})$	Enable clock falling edge time				25	ns
$t_{\text {Su(}}$ ($\left.-E\right)$	Data input setup time before write		100			ns
th(E-D)	Data input hold time after write		10			ns

Local bus/memory expansion mode, microprocessor mode
($\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test condition	Limits			Unit
			Min.	Typ	Max	
$\mathrm{t}_{\text {su }}(\mathrm{D}-\phi$)	Data input setup time	Fig 5	130			ns
th($\phi-\mathrm{D}$)	Data input hold time		0			ns
$t_{\text {Su }}(\mathrm{D}-\mathrm{RD}$)	Data input setup time		130			ns
th(RD-D)	Data input hold time		0			ns

SWITCHING CHARACTERISTICS

Port/single-chip mode ($\mathrm{V}_{\mathrm{Cc}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test condition	Limits			Unit
			Min.	Typ	Max.	
$\mathrm{t}_{\mathrm{d}(\phi-\mathrm{POQ})}$	Port P0 data output delay time	Fig 3			200	ns
$t_{\text {d }}\left(\phi-P_{1 Q}\right)$	Port P1 data output delay time				200	ns
$\mathrm{t}_{\mathrm{d}(\phi-\mathrm{P} 2 \mathrm{Q})}$	Port P2 data output delay time				200	ns
$\mathrm{t}_{\mathrm{d}(\phi-\mathrm{P} 3 \mathrm{Q}}$)	Port P3 data output delay time				200	ns
$t_{\text {d }}(\underline{\phi-P 5 Q}$)	Port P5 data output delay time				200	ns
$t_{\text {d }}(\phi-\mathrm{PGQ})$	Port P6 data output delay time				200	ns
$\mathrm{t}_{\mathbf{C}(\phi)}$	Cycle time		400		4000	ns
$\mathbf{t w}_{\mathbf{W}(\phi)}$	ϕ clock pulse width ("H" level)		190			ns
$t_{\text {w }}(\phi)$	ϕ clock pulse width ("L" level)		170			ns
$\operatorname{tr}_{(\phi)}$	ϕ clock rising edge tıme				20	ns
$\mathrm{t}_{\mathbf{f}(\phi)}$	ϕ clock falling edge tıme				20	ns

Master CPU bus interface ($\overline{\mathrm{R}}$ and $\overline{\mathrm{W}}$ separation type mode)

($\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test condition	Lımits			Unit
			Min	Typ	Max	
$\mathrm{ta}_{\mathrm{a}}(\mathrm{R}-\mathrm{D})$	Data output enable time after read	Fig 4			120	ns
$\mathrm{t}_{\mathrm{V}(\mathrm{R}-\mathrm{D})}$	Data output disable tıme after read		10		85	ns
$\mathrm{t}_{\text {PLH }}(\mathrm{R}-\mathrm{PR})$	$\overline{P_{\text {RDY }}}$ output transmission time after read				150	ns
$\left.\mathrm{t}_{\text {PLH }} \mathbf{W}-\mathrm{PR}\right)$	$\overline{\mathrm{P}_{\text {RDY }}}$ output transmıssion time after write				150	ns

Master CPU bus interface ($\mathbf{R} / \overline{\mathbf{W}}$ type mode) $\left(\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{VV}, \mathrm{T}_{\mathrm{a}}=-40\right.$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test condition	Limits			Unit
			Min	Typ.	Max.	
$\mathrm{ta}_{\mathrm{a}}(\mathrm{E}-\mathrm{D})$	Data output enable time after read	Fig 4			120	ns
$\mathrm{t}_{\mathrm{V}(\mathrm{E}-\mathrm{D})}$	Data output disable time after read		10		85	ns
$\mathrm{t}_{\text {PLH(E-PR) }}$	$\overline{\mathrm{P}_{\text {ROY }}}$ output transmission time after E clock				150	ns

Local bus/memory expansion mode, microprocessor mode

$\left(\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40\right.$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test condition	Limits			Unit
			Min	Typ	Max	
$t_{d}(\phi-A)$	address delay time after ϕ	Fig 5			150	ns
$t_{V}(\phi-A)$	address effective time after ϕ		10			ns
$\mathrm{t}_{\mathrm{V} \text { (RD-A) }}$	address effective time after $\overline{\mathrm{RD}}$		10			ns
$t_{V}(\mathbf{W R}-A)$	address effective time after $\overline{\mathrm{WR}}$		10			ns
$t_{\text {d }}(\phi-\mathrm{D})$	data output delay time after ϕ				160	ns
$t_{\text {d }}(\mathbf{W R}-\mathrm{D})$	data output delay time after $\overline{\mathrm{WR}}$				160	ns
$t_{V}(\phi-D)$	data output effective time after ϕ		20			ns
$t_{V}(\underline{W R}-\mathrm{D})$	data output effective time after $\overline{\mathrm{WR}}$		20			ns
$\mathrm{t}_{\mathrm{d}(\phi-\mathrm{RW})}$	R/W delay time after ϕ				150	ns
$\mathrm{t}_{\mathrm{d}(\phi-\mathrm{SYNC})}$	SYNC delay time after ϕ				150	ns
$t_{\text {W (RD) }}$	$\overline{\mathrm{RD}}$ pulse width		170			ns
$t_{w}(\mathrm{WR})$	$\overline{\text { WR pulse width }}$		170			ns

TEST CONDITION

Input voltage level: $\mathrm{V}_{\mathrm{IH}} \quad 2.4 \mathrm{~V}$
$\mathrm{V}_{\mathrm{IL}} \quad 0.45 \mathrm{~V}$
Output test level: $\mathrm{V}_{\mathrm{OH}} 2.0 \mathrm{~V}$
$\mathrm{V}_{\mathrm{OL}} 0.8 \mathrm{~V}$

Fig. 3 Test circuit in single-chip mode

Fig. 4 Master CPU bus interface test circuit

Fig. 5 Local bus test circuit

Fig. $6 \mathrm{I}_{\mathrm{cc}}$ (at STOP mode) test condition

TIMING DIAGRAM

Port/single-chip mode timing diagram

$$
\text { Note : } \mathrm{V}_{\mathrm{IH}}=0.8 \mathrm{~V}_{\mathrm{CC}}, \mathrm{~V}_{\mathrm{IL}}=0.16 \mathrm{~V}_{\mathrm{CC}} \text { of } \mathrm{X}_{\mathrm{IN}}
$$

Master CPU bus interface/ $\overline{\mathrm{R}}$ and $\overline{\mathrm{W}}$ separation type timing diagram

Read

Write

Master CPU interface/ R/W type timing diagram

Local bus timing diagram

$\mathrm{A}_{0}-\mathrm{A}_{15}$
$\overline{R D}$
$\mathrm{D}_{0}-\mathrm{D}_{7}$
CPU read
$\bar{W} \bar{R}$
$D_{0}-D_{7}$ CPU write


```
ME,
M37451E4-XXXSP/FP/GP,M37451E4SS/FS
M37451E8-XXXSP/FP/GP,M37451E8SS/FS
M37451EC-XXXSP/FP/GP,M37451ECSS/FS
PROM Version of M37451 Group
```


DESCRIPTION

The M37451E4-XXXSP/FP/GP is a single-chip microcomputer designed with CMOS silicon gate technology. It is housed in a 64-pin shrink plastic molded DIP or a 0.8 mm -pitch or 0.65 mm -pitch 80 -pin plastic molded QFP.

The features of this chip are similar to those of the M37451M4-XXXSP/FP/GP except that this chip has a 8192 bytes PROM built in.
In addition to its simple instruction sets, the PROM, RAM, and I/O addresses are placed on the same memory map to enable easy programming.
It is suited for office automation equipment and control devices. The low power consumption made by the use of a CMOS process makes it especially suitable for battery powered devices requiring low power consumption. It also has a unique feature that enables it to be used as a slave microcomputer.
Since general purpose PROM writers can be used for the built-in PROM, this chip is suitable for small quantity production runs.
The differences among M37451E4-XXXSP/FP/GP, M37451 E8-XXXSP/FP/GP and M37451EC-XXXSP/FP/GP are as shown below. The M37451E4SS/FS, M37451E8SS/FS and M37451ECSS/FS are the window type. The descriptions that follow describe the M37451E4-XXXSP/FP/GP unless otherwise noted.

Type name	ROM size	RAM size	Built-in PROM
M37451E4SS/FS	8192 bytes	256 bytes	EPROM (Window type)
M37451E4-XXXSP/FP/GP			One-time programmable
M37451E8SS/FS	16384 bytes	384 bytes	EPROM (Window type)
M37451E8-XXXSP/FP/GP			One-time programmable
M37451ECSS/FS	24576 bytes	512 bytes	EPROM (Window type)
M37451EC-XXXSP/FP/GP			One-time programmable

The number of analog input pins for the $80-\mathrm{pin}$ model (FP, GP version) is different from the 64-pin model (SP version). In addition, the $80-\mathrm{pin}$ model has special pins for $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$, RESET ${ }_{\text {out }}, \mathrm{DAV}_{\text {REF }}, \mathrm{ADV}_{\text {REF }}, A V_{\mathrm{CC}}$ and the 64-pin model has a special $V_{\text {ref }}$ pin.

FEATURES

- Number of basic instructions.. 71 69 MELPS 740 basic instructions+2 multiply/divide instructions
- Instruction execution time
(minimum instructions at 12.5 MHz frequency) $\cdots 0.64 \mu \mathrm{~s}$
- Single power supply...................................... $5 \mathrm{~V} \pm 10 \%$
- Power dissipation normal operation mode
(at 12.5 MHz frequency).
.40 mW
- Subroutine nesting 96 levels max.(M37451E4) 96 levels max. (M37451E8)
128 levels max. (M37451EC)
- Interrupt

15 events

- Master CPU bus interface 1 byte
- 16-bit timer .. 3
- 8-bit timer (Serial I/O use) 1
- Serial I/O (UART or clock synchronous) 1
- A-D converter (8 -bit resolution) $\cdots \cdots \cdots 3$ channels (DIP) 8 channels (QFP, QFN)
- D-A converter (8 -bit resolution) …............. 2 channels
- PWM output with 8-bit prescaler
(Either resolution 8 bit or 16 bit is software selectable) $\cdots 1$
- Programmable I/O ports
(Ports P0, P1, P2, P3, P5, P6) 48
- Input port (Port P4) $\cdots \cdots \cdots \cdots \cdots \cdots \cdots 3$ (DIP), 8 (QFP, QFN)
- Output ports (Ports D-A, D-A ${ }_{2}$)................................ 2
- PROM (equivalent to the M5L27256)

Program voltage..12.5V

APPLICATION

Slave controller for PPCs, facsimiles, and page printers. HDD, optical disk, inverter, and industrial motor controllers. Industrial robots and machines.

Note 1: 384 bytes for M37451E8-XXXSP/M37451E8SS and 512 bytes for M37451EC-XXXSP/M37451ECSS
2 : 16384 bytes for M37451E8-XXXSP/M37451E8SS and 24576 bytes for M37451EC-XXXSP/M37451ECSS

M37451E4-XXXFP/M37451E4FS BLOCK DIAGRAM

Note 1: 384 bytes for M37451E8-XXXFP/M37451E8FS and 512 bytes for M37451EC-XXXFP/M37451ECFS
$2: 16384$ bytes for M37451E8-XXXFP/M37451E8FS and 24576 bytes for M37451EC-XXXFP/M37451ECFS

M37451E4-XXXGP BLOCK DIAGRAM

Note 1: 384 bytes for M37451E8-XXXGP and 512 bytes for M37451EC-XXXGP
2 : 16384 bytes for M37451E8-XXXGP and 24576 bytes for M37451EC-XXXGP

FUNCTIONS OF M37451E4-XXXSP/FP/GP, M37451E8-XXXSP/FP/GP, M37451EC-XXXSP/FP/GP, M37451E4SS/FS, M37451E8SS/FS, M37451ECSS/FS

Parameter			Functions
Number of basic instructions			71 (69 MELPS 740 basic instructions+2)
Instruction execution time			$0.64 \mu \mathrm{~s}$ (minımum instructions, at 125 MHz frequency)
Clock frequency			125 MHz (max)
Memory size	M37451E4-XXXSP/FP/GP M37451E4SS/FS	PROM	8192 bytes
		RAM	256 bytes
	M37451E8-XXXSP/FP/GP M37451E8SS/FS	PROM	16384 bytes
		RAM	384 bytes
	M37451EC-XXXSP/FP/GP M37451ECSS/FS	PROM	24576 bytes
		RAM	512 bytes
Input/Output port	P0 to P3, P5, P6	I/O	8 -bit $\times 6$
	P4	Input	3 -bit $\times 1$ (8-bit $\times 1$ for $80-\mathrm{pin}$ model)
	D-A	Output	2 -bit $\times 1$
Serial 1/O			UART or clock synchronous
Timers			16-bit timer $\times 3$, 8 -bit timer (Serial I/O baud rate generator) $\times 1$
A-D converter			8 -bit $\times 3$ channels (8 channels for 80 -pın model)
D-A converter			8 -bit $\times 2$ channels
Pulse width modulator			8 -bit or 16-bit $\times 1$
Data bus buffer			1-byte input and output each
Subroutine nesting			96-levels max (M37451E4, M37451E8)
			128-levels max (M37451EC)
Interrupt			6 external interrupts, 8 internal interrupts 1 software interrupt
Clock generating circuit			Built-in (ceramic or quarts crystal oscillator)
Supply voltage			$5 \mathrm{~V} \pm 10 \%$
Power dissipation			40 mW (at 125 MHz frequency)
Input/Output characters	Input/Output voltage		5 V
	Output current		$\pm 5 \mathrm{~mA}$ (max)
Memory expansion			Possible (64 K bytes max)
Operating temperature range			-20 to $85^{\circ} \mathrm{C}$
Device structure			CMOS silicon gate
M37451E4-XXXSP			64-pın shrink plastic molded DIP
Package	M37451E8-XXXSP		
	M37451EC-XXXSP		
	M37451E4-XXXFP		80-pın plastic molded QFP (08 mm -pitch)
	M37451EC-XXXFP		
	M37451E4-XXXGP		80-pin plastic molded QFP (0.65 mm -pitch)
	M37451E8-XXXGP		
	M37451EC-XXXGP		
	M37451E4SS		64-pın shrınk ceramic DIP
	M37451E8SS		
	M37451ECSS		
	M37451E4FS		80-pin ceramic QFN (LCC)
	M37451E8FS		
	M37451ECFS		

PIN DESCRIPTION (normal mode)

Pin	Name	Input/ Output	Functions
$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}, \\ & \mathrm{~V}_{\mathrm{ss}} \end{aligned}$	Supply voltage		Power supply inputs $5 \mathrm{~V} \pm 10 \%$ to V_{cc}, and 0 V to V_{ss}
$\mathrm{CNV}_{\text {SS }} / \mathrm{V}_{\text {PP }}$	$\mathrm{CNV}_{\text {ss }}$	Input	Controls the processor mode of the chip Normally connected to V_{SS} or V_{cc}.
RESET	Reset input	Input	To enter the reset state, the reset input pin must be kept at a " L " for more than 8 clock cycles (under normal $V_{\text {CC }}$ conditions) If more time is needed for the crystal oscillator to stabilize, this "L" condition should be maintained for the required time
$\mathrm{XIN}_{\text {IN }}$	Clock input	Input	This chip has an internal clock generating circuit To control generatıng frequency, an external ceramic or a
$\mathrm{X}_{\text {Out }}$	Clock output	Output	source should be connected to the $X_{I N}$ pin and the $X_{\text {OUT }}$ pin should be left open
ϕ	Timing output	Output	Normally outputs signal consisting of oscillating frequency divided by four
SYNC	Synchronous signal output	Output	This signal is output " H " during operation code fetch and is used to control single stepping of programs
R/ \bar{W}	Read/Write status output	Output	This signal determines the direction of the data bus It is " H " during read and " L " during write
$\mathrm{PO}_{0}-\mathrm{PO}_{7}$	I/O port P0	I/O	Port PO is an 8-bit I/O port with directional registers allowing each I/O bit to be individually programmed as input or output The output structure is CMOS output The low-order bits of the address are output except in single-chip mode
$\mathrm{P} 1_{0}-\mathrm{P} 1_{7}$	I/O port P1	1/0	Port P1 is an 8-bit I/O port and has basically the same functions as port P0 The high-order bits of the address are output except in single-chip mode
$\mathrm{P} 2_{0}-\mathrm{P} 2_{7}$	I/O port P2	1/0	Port P2 is an 8-bit I/O port and has basically the same functions as port P0 Used as data bus except in single-chip mode
$P 3_{0}-P 3_{7}$	I/O port P3	1/O	Port P3 is an 8-bit I/O port and has basically the same functions as port PO. Serial I/O, PWM output, or event I/O function can be selected with a program
$\begin{aligned} & P 4_{0}-P 4_{2} \\ & \left(P 4_{0}-P 4_{7}\right) \end{aligned}$	Input port P4	Input	Analog input pin for the A-D converter The 64-pin model has three pins and the 80-pin model has eight pins They may also be used as digital input pins
$P 5_{0}-P 5_{7}$	I/O port P5	1/O	Port P5 is an 8-bit I/O port and has basically the same functions as port PO. This port functions as an 8-bit data bus for the master CPU when slave mode is selected with a program.
$\mathrm{P} 6_{0}-\mathrm{P} 6_{7}$	I/O port P6	1/0	Port P6 is an 8-bit I/O port and has basically the same function as port P0 Pins $\mathrm{Pb}_{3}-\mathrm{P}_{7}$ change to a control bus for the master CPU when slave mode is selected with a program Pins $\mathrm{Pb}_{0}-\mathrm{P}_{2}$ may be programmed as external interrupt input pins
D-A ${ }_{1}$, D-A ${ }_{2}$	D-A output	Output	Analog signal from D-A converter is output
$\mathrm{V}_{\text {REF }}$	Reference voltage input	Input	Reference voltage input pin for A-D and D-A converter This pin is for 64-pin model only
ADV $\mathrm{V}_{\text {REF }}$	A-D reference voltage input	Input	Reference voltage input pin for A-D converter This pin is for 80-pin model only
DAV $\mathrm{V}_{\text {REF }}$	D-A reference voltage input	Input	Reference voltage input pin for D-A converter This pin is for 80-pin model only
$\mathrm{AV}_{\text {ss }}$	Analog power supply		Ground level input pin for A-D and D-A converter Same voltage as $\mathrm{V}_{\text {ss }}$ is applied
$\mathrm{AV}_{\mathrm{CC}}$	Analog power supply		Power supply input pin for $A-D$ converter This pin is for 80 -pin model only. Same voltage as V_{CC} is applied In the case of the 64-pin model, $\mathrm{AV}_{\mathrm{CC}}$ is connected to V_{CC} internally
$\overline{\mathrm{RD}}$	Read signal output	Output	Control signal output as active "L" when valıd data is read from data bus This pin is for 80 -pın model only
$\overline{W R}$	Write signal output	Output	Control signal output as active " L " when writing data from data bus to external component. This pin is for 80-pin model only
RESET ${ }_{\text {out }}$	Reset output	Output	Control signal output as active " H " during reset it is used as a reset output signal for peripheral components. This pin is for 80 -pin model only

PIN DESCRIPTION (EPROM mode)

Pın	Name	Input/ Output	Functions
$\mathrm{V}_{\mathrm{cc}}, \mathrm{V}_{\mathrm{ss}}$	Supply voltage		Power supply inputs $5 \mathrm{~V} \pm 10 \%$ to V_{cc}, and 0 V to V_{ss}
$\mathrm{CNV}_{\text {SS }} / \mathrm{V}_{\mathrm{PP}}$	$\mathrm{V}_{\text {pp }}$	Input	Connect to $\mathrm{V}_{\text {PP }}$ when programming or verifing
RESET	Reset input	Input	Connect to $\mathrm{V}_{\text {ss }}$
$\mathrm{X}_{\text {IN }}$	Clock input	Input	Connect a ceramic or a quartz crystal oscillator between X_{IN} and $\mathrm{X}_{\text {OUT }}$ for clock oscillation
$\mathrm{X}_{\text {OUT }}$	Clock output	Output	
ϕ	Timıng output	Output	For tıming output
SYNC	Synchronous sıgnal output	Output	Kept to open ("L" signal is output)
R/ \bar{W}	Read/Write status output	Output	Kept to open (" H " signal is output).
$\mathrm{PO}_{0}-\mathrm{PO}_{7}$	I/O port P0	Input	P0 works as the lower 8-bit address input
$\mathrm{P} 1_{0}-\mathrm{P} 1_{7}$	1/O port P1	Input	$\mathrm{P1}_{0}-\mathrm{P} 1_{5}$ work as the higher 6-bit address input $\mathrm{P1}_{6}$ and $\mathrm{P} 1_{7}$ connect to V_{CC}
$\mathrm{P} 2_{0}-\mathrm{P} 2_{7}$	I/O port P2	$1 / 0$	P2 works as an 8-bit data bus
$P 3_{0}-\mathrm{P} 3_{7}$	I/O port P3	Input	Connect to $\mathrm{V}_{\text {Ss }}$
$\begin{aligned} & \mathrm{P} 4_{0}-\mathrm{P} 4_{7} \\ & \left(\mathrm{P} 4_{0}-\mathrm{P} 4_{2}\right) \end{aligned}$	Input port P4	Input	Connect to $\mathrm{V}_{\text {Ss }}$ The 64-pin model has only three pins $\mathrm{P4}_{0}-\mathrm{P4}_{2}$
$P 5_{0}-P 5_{7}$	I/O port P5	Input	$P 5_{0}, P 5_{1}, P 5_{2}$ works as $A_{14}, \overline{\mathrm{OE}}$, and $\overline{\mathrm{CE}}$ inputs respectively Connect $\mathrm{P5} 3$ and $\mathrm{P5} 5_{4}$ to V_{CC} and $\mathrm{P5} 5-\mathrm{P} 5_{7}$ to V_{ss}
$\mathrm{Pb}_{0}-\mathrm{Pb}_{7}$	I/O port P6	Input	Connect to $\mathrm{V}_{\text {ss }}$
D-A ${ }_{1}$, - $_{2}$	D-A output	Output	Kept to open
$V_{\text {REF }}$	Reference voltage input	Input	Connect to $\mathrm{V}_{\text {SS }}$. This pin is for 64-pin model only
$\mathrm{ADV}_{\text {REF }}$	A-D reference voltage input	Input	Connect to $\mathrm{V}_{\text {SS }}$ This pin is for 80 -pin model only
DAV $\mathrm{V}_{\text {REF }}$	D-A reference voltage input	Input	Connect to $\mathrm{V}_{\text {ss }}$ This pin is for 80 -pin model only
$\mathrm{AV}_{\text {Ss }}$	Analog power	Input	Connect to $\mathrm{V}_{\text {ss }}$
$\mathrm{AV}_{\mathrm{cc}}$	Analog power	Input	Connect to V_{cc} or $\mathrm{V}_{\text {ss }}$ This pin is for 80-pin model only
$\overline{\mathrm{RD}}$	Read signal output	Output	Kept to open (" H " signal is output) This pin is for 80-pin model only
$\overline{W R}$	Write signal output	Output	Kept to open (" H " sıgnal is output) This pin is for 80-pın model only
RESET ${ }_{\text {out }}$	Reset output	Output	Kept to open (" H " signal is output) This pin is for 80-pin model only

EPROM MODE

The M37451E4-XXXSP/FP/GP, M37451E4SS/FS features an EPROM mode in addition to its normal modes. When the RESET signal level is low ("L") and $C N V_{S S} / V_{P P}$ signal level is high (" H "), the chip automatically enters the EPROM mode. Table 1 list the correspondence between pins and Figure 1, 2 and 3 give the pin connections in the EPROM mode. When in the EPROM mode, ports $\mathrm{P} 0, \mathrm{P1}_{0}-\mathrm{P1}_{5}, \mathrm{P} 2$, $P 5_{0}-P 5_{2}$ and $C N V_{\text {Ss }}$ are used for the PROM (equivalent to the M5L27256). When in this mode, the built-in PROM can be written to or read from using these pins in the same way as with the M5L27256. The oscillator should be connected to the $X_{\text {IN }}$ and $X_{\text {Out }}$ pins, or external clock should be connected to the $X_{I N}$ pin.

Table 1. Pin function in EPROM mode

	M37451E4-XXXSP/FP/GP, M37451E4SS/FS	M5L27256
V_{CC}	V_{CC}	V_{CC}
V_{PP}	$\mathrm{CNV}_{\mathrm{SS}} / \mathrm{V}_{\mathrm{PP}}$	V_{PP}
V_{SS}	V_{SS}	V_{SS}
Address input	Ports $\mathrm{P} 0, \mathrm{P1}_{0}-\mathrm{P1}_{5}, \mathrm{P5}_{0}$	$\mathrm{~A}_{0}-\mathrm{A}_{14}$
Data I/O	$\mathrm{Port}_{\mathrm{P} 2}$	$\mathrm{D}_{0}-\mathrm{D}_{7}$
$\overline{\mathrm{CE}}$	$\mathrm{P5}_{2} / \mathrm{DB}_{2} / \overline{\mathrm{CE}}$	$\overline{\mathrm{CE}}$
$\overline{\mathrm{OE}}$	$\mathrm{P5} / \mathrm{DB}_{1} / \overline{\mathrm{OE}}$	$\overline{\mathrm{OE}}$

Fig. 1 Pin connection in EPROM mode (64-pin model)

Fig. 2 Pin connection in EPROM mode (0.8 mm pitch 80-pin model)

Fig. 3 Pin connection in EPROM mode (0.65 mm pitch 80 -pin model)

PROM READING, WRITING AND ERASING

 ReadingTo read the PROM, set the $\overline{C E}$ and $\overline{O E}$ pins to a "L" level, and supply 0 V to the $\overline{\operatorname{RESET}} \mathrm{pin}, 5 \mathrm{~V}$ to the V_{Cc} pin and the $\mathrm{CNV}_{\mathrm{SS}}\left(\mathrm{V}_{\mathrm{PP}}\right)$ pin. Input the address of the data $\left(\mathrm{A}_{0}-\mathrm{A}_{14}\right)$ to be read and the data will be output to the I / O pins $D_{0}-D_{7}$. The data I/O pins will be floating when either the $\overline{\mathrm{CE}}$ or $\overline{\mathrm{OE}}$ pins are in the " H " state.

Writing

To write to the PROM, set the $\overline{\mathrm{OE}}$ pin to an " H " level, and supply 0 V to the $\overline{\text { RESET }} \mathrm{pin}, 6 \mathrm{~V}$ to the V_{CC} pin and 12.5 V to the V_{PP} pin. The CPU will enter the program mode when $V_{P P}$ is applied to the $V_{P P} p i n$. The address to be written to is selected with pins $A_{0}-A_{14}$, and the data to be written is input to pins $D_{0}-D_{7}$. Set the $\overline{C E}$ pin to a " L " level to begin writing.

Erasing

Data can only erased on the M37451E4SS/FS, M37451E8SS/FS and M37451ECSS/FS ceramic package, which includes a window. To erase data on this chip, use an ultraviolet light source with a 2537 Angstrom wave length. The minimum radiation power necessary for erasing is $15 \mathrm{~W} \cdot \mathrm{~s} / \mathrm{cm}^{2}$.

NOTES ON HANDLING

(1) Sunlight and fluorescent light contain wave lengths capable of erasing data. For ceramic package types, cover the transparent window with a seal (provided) when this chip is in use. However, this seal must not contact the lead pins.
(2) Before erasing, the glass should be cleaned and stains such as finger prints should be removed thoroughly. If these stains are not removed, complete erasure of the data could be prevented.
(3) Since a high voltage is used to write data, care should be taken when turning on the PROM writer's power.
(4) For the programmable microcomputer (shipped in blank or OTP type), Mitsubishi does not perform PROM write test and screening in the assembly process and following process. To improve reliability after write, performing write and test according to the flow below before use is recommended.
(5) In EPROM mode, address A_{15} is set to " H " automatically.

Note : Since the screening temperature is higher than storage temperature, never expose to $150^{\circ} \mathrm{C}$ exceeding 100 hours.

Table 2. I/O signal in each mode

Mode	$\overline{C E}$	$\overline{\mathrm{OE}}$	V_{PP}	V_{CC}	Port P2
Read-out	V_{IL}	V_{IL}	5 V	5 V	Output
Programming	V_{IL}	V_{IH}	12.5 V	6 V	Input
Programmıng verify	V_{IH}	V_{IL}	12.5 V	6 V	Output
Program disable	V_{IH}	V_{IH}	12.5 V	6 V	Floating

[^6]
MITSUBISHI MICROCOMPUTERS

 M37451 E4DXXXSP/FP M37451 E8DXXXSP/FP PROM VERSION of M37451 M4DXXXSP/FP,M37451 M8DXXXSP/FP
DESCRIPITION

The M37451E4DXXXSP/FP is a single-chip microcomputer designed with CMOS silicon gate technology. It is housed in a 64 -pin shrink plastic molded DIP or an 80 -pin plastic molded QFP (0.8 mm pitch). The features of this chip are similar to those of the M37451M4DXXXSP/FP except that this chip has a 8192 bytes PROM built-in. This single-chip microcomputer is useful for office automation appliances and consumer appliance controllers.
In addition to its simple instruction sets, the PROM, RAM and I/O addresses are placed on the same memory map to enable easy programming. It also has a unique feature that enables it to be used as a slave microcomputer.
Apart from the expansion in operating temperature range and consequent differences in electrical characteristics (Note), functions are the same as those of the M37451E4XXXSP/FP.
The differences between the M37451E4DXXXSP/FP and M37451E8DXXXSP/FP are as shown below.

Type name	ROM sıze	RAM sıze
M37451E4DXXXSP/FP	8192 bytes	256 bytes
M37451E8DXXXSP/FP	16384 bytes	384 bytes

The number of analog input pins for the 80 -pin model (FP version) is different from the 64-pin model (SP version). In addition, the $80-\mathrm{pin}$ model has special pins for $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$, RESET ${ }_{\text {out, }}$ DAV $_{\text {reF, }}, A D V_{\text {REF }}, A V_{\text {CC }}$, and the 64-pin model has a special $\mathrm{V}_{\text {REF }}$ pin.
Note : The maximum value of supply current is 20 mA . All other values are the same as that of M37451E4XXXSP/FP.

FEATURES

- Number of basic instructions.. 71 69 MELPS 740 basic instructions +2 multiply/divide instructions
- Instruction execution time (minimum instructions at 12.5 MHz frequency) $\cdots 0.64 \mu \mathrm{~s}$

- Power dissipation normal operation mode (at 12.5 MHz frequency) 40 mW
- Subroutine nesting 96 levels max.

- Master CPU bus interface 1 byte
- 16-bit timer ... 3
- 8-bit timer (Serial I/O use) 1
- Serial I/O (UART or clock synchronous) 1
- A-D converter (8 -bit resolution) $\cdots \cdots \cdots 3$ channels (DIP) 8 channels (QFP)
- D-A converter (8-bit resolution) 2 channels
- PWM output with 8 -bit prescaler
(Either resolution 8 -bit or 16 -bit is software selectable) $\cdots 1$
- Programmable I/O ports (Ports P0, P1, P2, P3, P5, P6) 48

APPLICATION

Industrial machinery

PIN CONFIGURATION (TOP VIEW)

DESCRIPTION

The M37470M2-XXXSP is a single-chip microcomputer designed with CMOS silicon gate technology. It is housed in a 32-pin shrink plastic molded DIP. This single-chip microcomputer is useful for business equipment and other consumer applications.
In addition to its simple instruction set, the ROM, RAM, and I/O addresses are placed on the same memory map to enable easy programming.
The differences among M37470M2-XXXSP, M37470M4XXXSP and M37470M8-XXXSP are noted below. The following explanations apply to the M37470M2-XXXSP. Specificaiton variations for other chips are noted accordingly.

Type name	ROM size	RAM size
M37470M2-XXXSP	4096 bytes	128 bytes
M37470M4-XXXSP	8192 bytes	192 bytes
M37470M8-XXXSP	16384 bytes	384 bytes

FEATURES

- Number of basic instructions.
- Memory size

- Instruction execution time
$\cdots \cdots \cdots \cdot 1 \mu \mathrm{~s}$ (minimum instructions at 4 MHz frequency)
- Single power supply..................................... $27 \sim 5.5 \mathrm{~V}$
- Power dissipation normal operation mode
$\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . .17 .5 \mathrm{~mW}$ (at 4 MHz frequency)
- Subroutine nesting 64 levels max. (M37470M2)

- 8-bit timer .4
- Programmable I/O ports

- Serial I/O (8-bit) .. 1
- A-D converter-

8-bit, 4channel

APPLICATION

Audio-visual equipment, VCR, Tuner
Office automation equipment

PIN CONFIGURATION (TOP VIEW)

Outline 32P4B

M37470M2-XXXSP BLOCK DIAGRAM

yヨindwoગ0yOIN SOWO $118-8$ dIHO-ヨ70NIS

MITSUBISHI MICROCOMPUTERS

FUNCTIONS OF M37470M2-XXXSP, M37470M4-XXXSP, M37470M8-XXXSP

Parameter			Functions
Number of basic instructions			69
Instruction execution tume			$1 \mu \mathrm{~s}$ (minımum instructions, at 4 MHz frequency)
Clock frequency			4MHz (max.)
Memory size	M37470M2-XXXSP	ROM	4096 bytes
		RAM	128 bytes
	M37470M4-XXXSP	ROM	8192 bytes
		RAM	192 bytes
	M37470M8-XXXSP	ROM	16384 bytes
		RAM	384 bytes
Input/Output port	P0, P1	I/O	8 -bit $\times 2$
	P2	I/O	4 -bit $\times 1$
	P3	Input	4-bit $\times 1$
	P4	1/O	2-bit $\times 1$
Serial I/O			8 -bit $\times 1$
Timers			8 -bit timer $\times 4$
A-D converter			8 -bit $\times 1$ (4 channels)
Subroutıne nestıng	M37470M2-XXXSP		64 levels (max)
	M37470M4-XXXSP		96 levels (max)
	M37470M8-XXXSP		192 levels (max)
Interrupt			5 external interrupts, 6 internal interrupts 1 software interrupt
Clock generating circuit			Built-in with internal feedback resistor (ceramic or quarts crystal oscillator)
Supply voltage			$27 \sim 55 \mathrm{~V}$
Power dissipation			175 mW (at 4MHz frequency)
Input/Output characters	Input/Output voltage		5 V
	Output current		$-5 \sim 10 \mathrm{~mA}(\mathrm{P}, \mathrm{P} 1, \mathrm{P} 2, \mathrm{P} 4$: CMOS tri-states)
Operating temperature range			$-20 \sim 85^{\circ} \mathrm{C}$
Device structure			CMOS silicon gate
Package			32-pin shrink plastic molded DIP

PIN DESCRIPTION

Pin	Name	Input/ Output	Functions
$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}, \\ & \mathrm{~V}_{\mathrm{ss}} \end{aligned}$	Supply voltage		Power supply inputs $2.7 \sim 5.5 \mathrm{~V}$ to V_{cc}, and 0 V to $\mathrm{V}_{\text {ss }}$.
RESET	Reset input	Input	To enter the reset state, the reset input pin must be kept at a " L " for more than $2 \mu \mathrm{~s}$ (under normal V_{CC} conditions).
X_{IN}	Clock input	Input	These are I/O pins of internal clock generating circuit for main clock To control generating frequency, an
Xout	Clock output	Output	clock is used, the clock source should be connected the $X_{I N}$ pin and the $X_{\text {out }}$ pin should be left open. Feedback resistor is connected between $\mathrm{X}_{\text {IN }}$ and $\mathrm{X}_{\text {OUT }}$.
$V_{\text {REF }}$	Reference voltage input	Input	This is reference voltage input pin for the A-D converters.
$\mathrm{PO}_{0} \sim \mathrm{PO}_{7}$	I/O port P0	I/O	Port P0 is an 8-bit I/O port The output structure is CMOS output When this port is selected for input, pull-up transistor can be connected in units of 1-bit and a key on wake up function is provided
$\mathrm{P} 1_{0} \sim P 1_{7}$	I/O port P1	1/0	Port P1 is an 8-bit I/O port The output structure is CMOS output. When this port is selected for input, pull-up transistor can be connected in units of 4-bit. $\mathrm{P1}_{2}, \mathrm{P1}_{3}$ are in common with timer output pins $\mathrm{T}_{0}, \mathrm{~T}_{1}, \mathrm{P1}_{4}, \mathrm{P1}_{5}, \mathrm{P1}_{6}, \mathrm{P} 1_{7}$ are in common with serial I / O pins $\mathrm{S}_{\mathrm{IN}}, \mathrm{S}_{\mathrm{OUT}}, \mathrm{CLK}$, $\overline{\mathrm{S}_{\text {RDY }}}$, respectively. The output structure of $\mathrm{S}_{\mathrm{OUT}}$ and $\overline{\mathrm{S}_{\text {RDY }}}$ can be changed to N -channel open drain output
$\mathrm{P} 2_{0} \sim P 2_{3}$	1/O port P2	1/0	Port P2 is an 4-bit I/O port The output structure is CMOS output When this port is selected for input, pull-up transistor can be connected in units of 4-bit. This port is in common with analog input pins $\mathrm{IN}_{0} \sim \mathrm{IN}_{3}$.
$P 3_{0} \sim P 3_{3}$	Input port P3	Input	Port P 3 is $\sim \mathrm{n}$ 4-bit input port. $\mathrm{P}_{3}, \mathrm{P3}_{1}$ are in common with external interrupt input pins $\mathrm{INT} \mathrm{N}_{0}, \mathrm{INT}_{1}$ and $\mathrm{P} 3_{2}$, P_{3} are in common with timer input pins CNTR ${ }_{0}$, CNTR $_{1}$.
P4, P4,	I/O port P4	1/O	Port P4 is an 2-bit I/O port The output structure is CMOS output When this port is selected for input, pull-up transistor can be connected in units of 2-bit

FUNCTIONAL DESCRIPTION

Central Processing Unit (CPU)

The M37470 microcomputers use the standard MELPS 740 instruction set. For details of instructions, refer to the MELPS 740 CPU core basic functions, or the MELPS 740 Software Manual.
Machine-resident instructions are as follows:
The FST and SLW instructions are not provided.
The MUL and DIV instructions are not provided.
The WIT instruction can be used.
The STP instruction can be used.

CPU Mode Register

The CPU mode register is allocated to address $00 \mathrm{FB}_{16}$. This register has a stack page selection bit.

Fig. 1 Structure of CPU mode register

MEMORY

- Special Function Register (SFR) Area

The special function register (SFR) area contains the registers relating to functions such as I/O ports and timers.

- RAM

RAM is used for data storage as well as a stack area.

- ROM

ROM is used for storing user programs as well as the interrupt vector area.

- Interrupt Vector Area

The interrupt vector area is for storing jump destination addresses used at reset or when an interrupt is generated.

Zero Page

Zero page addressing mode is useful because it enables access to this area with fewer instruction cycles.

- Special Page

Special page addressing mode is useful because it enables access to this area with fewer instruction cycles.

Fig. 2 Memory map

$00 \mathrm{CO}_{16}$	Port P0	
$00 \mathrm{C1} 1_{16}$	Port P0 directional register	
$00 \mathrm{C} 1_{16}$	Port P1	
$00 \mathrm{Cl}_{16}$	Port P1 directional register	
$00 \mathrm{C} 4_{16}$	Port P2	
$0^{00 C 516}$	Port P2 directional register	
00C6 ${ }_{16}$	Port P3	
$0^{00 C 7}{ }_{16}$		
$00 \mathrm{C8}{ }_{16}$	Port P4	
$0_{00 C 9}^{16}$	Port P4 directional register	
$00 \mathrm{CA}_{16}$		
$00 \mathrm{CB}_{16}$		
$0^{00} \mathrm{C}_{16}$		
$00 \mathrm{CD}_{16}$		
$00 \mathrm{CE}_{16}$		
$0^{00 C F} 16$		
00D0 ${ }_{16}$	P0 pull-up control register	
00D1 ${ }_{16}$	P1~P4 pull-up control register	
00D2 ${ }_{16}$		
$00 \mathrm{D} 3_{16}$		
00D4 ${ }_{16}$	Edge polarity selection register	
00D5 ${ }_{16}$		
00D616	Input latch register	
00D7 ${ }_{16}$		
00D8 ${ }_{16}$		
00D9 ${ }_{16}$	A-D control register	
$00 \mathrm{DA}_{16}$	A-D conversion register	
$0^{00 D B_{16}}$		
$00 \mathrm{DC} \mathrm{C}_{16}$	Serial I/O mode register	
O0DD ${ }_{16}$	Serial I/O register	
$0^{00 D E} E_{16}$	Serial.I/O counter	Byte counter
O0DF ${ }_{16}$		

Fig. 3 SFR (Special Function Register) memory map

MITSUBISHI MICROCOMPUTERS
 M37470M2-XXXSP,M37470M4-XXXSP M37470M8-XXXSP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

INTERRUPTS

Interrupts can be caused by 12 different events consisting of five external, six internal, and one software events.
Interrupts are vectored interrupts with priorities shown in Table 1. Reset is also included in the table because its operation is similar to an interrupt.
When an interrupt is accepted, the registers are pushed, interrupt disable flag I is set, and the program jumps to the address specified in the vector table. The interrupt request flag is cleared automatically. The reset and BRK instruction interrupt can never be inhibited. Other interrupts are disabled when the interrupt inhibit flag is set.
All interrupts except the BRK instruction interrupt have an interrupt request bit and an interrupt enable bit. The interrupt request bits are in interrupt request registers 1 and 2 and the interrupt enable bits are in interrupt control registers 1 and 2. External interrupts $\mathbb{N N T}_{0}$ and $\mathbb{I N T}_{1}$ can be asserted on either the falling or rising edge as set in the edge polarity selection register. When " 0 " is set to this register, the interrupt is activated on the falling edge; when " 1 " is set to the register, the interrupt is activated on the rising edge.

When the device is put into power-down state by the STP instruction or the WIT instruction, if bit 5 in the edge polarity selection register is " 1 ", the INT_{1} interrupt becomes a key on wake up interrupt. When a key on wake up interrupt is valid, an interrupt request is generated by applying the "L" level to any pin in port P0. In this case, the port used for interrupt must have been set for the input mode.
If bit 5 in the edge polarity selection register is " 0 " when the device is in power-down state, the INT_{1} interrupt is selected. Also, if bit 5 in the edge polarity selection register is set to " 1 " when the device is not in a power-down state, neither key on wake up interrupt request nor INT_{1} interrupt request are generated.
The CNTR ${ }_{0} /$ CNTR $_{1}$ interrupts function in the same as INT $_{0}$ and $\operatorname{INT} T_{1}$. The interrupt input pin can be specified for either CNTR_{0} or CNTR $_{1}$ pin by setting bit 4 in the edge polarity selection register.
Figure 4 shows the structure of the edge polarity selection register, interrupt request registers 1 and 2 , and interrupt control registers 1 and 2.
Interrupts other than the BRK instruction interrupt and reset are accepted when the interrupt enable bit is " 1 ", interrupt request bit is " 1 ", and the interrupt disable flag is " 0 ". The interrupt request bit can be reset with a program, but not set. The interrupt enable bit can be set and reset with a program.
Reset is treated as a non-maskable interrupt with the highest priority. Figure 5 shows interrupts control.

Table 1. Interrupt vector address and priority

Event	Proority	Vector addresses		Remarks
RESET	1	FFFF_{16},	FFFE $_{16}$	Non-maskable
INT ${ }_{0}$ interrupt	2	FFFD_{16},	FFFC_{16}	External interrupt (phase programmable)
INT ${ }_{1}$ interrupt or key on wake up interrupt	3	FFFB_{16},	FFFA_{16}	External interrupt (INT ${ }_{1}$ is phase programmable)
CNTR $_{0}$ interrupt or CNTR ${ }_{1}$ interrupt	4	FFF9 ${ }_{16}$,	$\mathrm{FFF8}_{16}$	External interrupt (phase programmable)
Timer 1 interrupt	5	$\mathrm{FFF7}_{16}{ }_{16}$,	$\mathrm{FFF6}_{16}$	
Timer 2 interrupt	6	FFF5 ${ }_{16}$,	FFF4 ${ }_{16}$	
Timer 3 interrupt	7	$\mathrm{FFF3}_{16}$,	FFF2 ${ }_{16}$	
Timer 4 interrupt	8	$\mathrm{FFF}_{1}{ }_{16}$,	FFFO_{16}	
Serial I/O interrupt	9	FFEF $_{16}$,	FFEE_{16}	
A-D conversion completion interrupt	10	FFED_{16},	FFEC_{16}	
BRK instruction interrupt	11	FFEB_{16},	FFEA $_{16}$	Non-maskable software interrupt


```
(Address 00D4 \({ }_{16}\) )
\(\mathrm{INT}_{0}\) edge selection bit
INT, edge selection bit
CNTR \({ }_{0}\) edge selection bit
CNTR 1 edge selection bit
0 : Falling edge
1 : Rısing edge
CNTR \({ }_{0} /\) CNTR \(_{1}\) interrupt selection bit
\(0:\) CNTR \(_{0}\)
1 : CNTR \(_{1}\)
INT \(_{1}\) source selection bit (at power-down state)
\(0: \mathrm{P3}_{1} / \mathrm{NT}_{1}\)
\(1: \mathrm{PO}_{0} \sim \mathrm{PO}_{7}\) " L " level (for key on wake up)
```


Interrupt request register 2
(Address 00FD ${ }_{16}$)
INT_{0} interrupt request bit
INT T_{1} interrupt request bit
CNTR $_{0}$ or CNTR $_{1}$ interrupt request bit
0 : No interrupt request
1 : Interrupt requested
Serial I/O interrupt request bit
pletion
interrupt request bit

0 : Interrupt disable
1 : Interrupt enabled

Fig. 4 Structure of registers related to interrupt

Fig. 5 Interrupt control

TIMER

The M37470M2-XXXSP has four timers; timer 1, timer 2, timer 3 and timer 4.
A block diagram of timer 1 through 4 is shown in Figure 6.
Timer 1 can be operated in the timer mode, event count mode, or pulse output mode. Timer 1 starts counting when bit 0 in the timer 12 mode register (address $00 \mathrm{F8}_{16}$) is set to " 0 ".
The count source can be selected from the $f\left(X_{I N}\right)$ divided by 16 or event input from $\mathrm{PB}_{2} /$ CNTR R_{0} pin. When bit 1 in the timer 12 mode register is " 0 ", $f\left(X_{I N}\right)$ divided by 16 is selected. When bit 1 in the timer 12 mode register is " 1 ", an event input from the CNTR $_{0}$ pin is selected. Event inputs are selected depending on bit 2 in the edge polarity selection register (address 00D4 ${ }_{16}$). When this bit is " 0 ", the inverted value of CNTR O $_{0}$ input is selected; when the bit is " 1 ", CNTR R_{0} input is selected.
When bit 3 in the timer 12 mode register is set to " 1 ", the $\mathrm{P1}_{2}$ pin becomes timer output T_{0}. When the direction register of $\mathrm{P1}_{2}$ is set for the output mode at this time, the timer 1 overflow divided by 2 is output from T_{0}. The initial output value can be set by writing the value to bit 0 in the timer FF register (address 00F7 ${ }_{16}$) after setting " 1 " to bit 0 in timer mode register 2.
Timer 2 can only be operated in the timer mode. Timer 2 starts counting when bit 4 in the timer 12 mode register is set to " 0 ".
The count source can be selected from the divide by 16 , divide by 64 , divide by 128 , or divide by 256 frequency of $f\left(X_{\text {IN }}\right)$, and timer 1 overflow. When bit 5 in the timer 12 mode register is " 0 ", any of the divide by 16 , divide by 64 , divide by 128 , or divide by 256 frequency of $f\left(X_{I N}\right)$ is selected. The divide ratio is selected according to bit 6 and bit 7 in the timer 12 mode register. When bit 5 in the timer 12 mode register is " 1 ", timer 1 overflow is selected as the count source.

Timer 3 can be operated in the timer mode, event count mode, or PWM mode. Timer 3 starts counting when bit 0 in the timer 34 mode register (address $00 F 9_{16}$) is set to " 0 ".
The count source can be selected from the $f\left(X_{I N}\right)$ divided by 16, timer 1 or timer 2 overflow, or an event input from $\mathrm{P}_{3} /$ CNTR $_{1}$ pins according to the statuses of bit 1 and bit 2 in the timer 34 mode register, bit 6 in the timer mode register 2 (address $00 \mathrm{FA}_{16}$). Note, however, that if timer 1 overflow or timer 2 overflow is selected for the count source of timer 3 when timer 1 overflow is selected for the count source of timer 2, timer 1 overflow is always selected regardless of the status of bit 6 in the timer mode register 2. Event inputs are selected depending on bit 3 in the edge polarity selection register. When this bit is " 0 ", the inverted value of CNTR $_{1}$ input is selected; when the bit is " 1 ", CNTR $_{1}$ input is selected.
Timer 4 can be operated in the timer mode, event count
mode, pulse output mode, pulse width measuring mode, or PWM mode. Timer 4 starts counting when bit 3 in the timer 34 mode register is set to " 0 " when bit 6 in this register is " 0 ". When bit 6 is " 1 ", the pulse width measuring mode is selected. The count source can be selected from timer 3 overflow, the $f\left(X_{I N}\right)$ divided by 16, timer 1 or timer 2 overflow, or an event input from $\mathrm{P3}_{3} /$ CNTR $_{1}$ pins according to the statuses of bit 4 and bit 5 in the timer 34 mode register, bit 6 in the timer mode register 2. Note, however, that if timer 1 overflow or timer 2 overflow is selected for the count source of timer 4 when timer 1 overflow is selected for the count source of timer 2, timer 1 overflow is always selected regardless of the status of bit 6 in the timer mode register 2. Event inputs are selected depending on bit 3 in the edge polarity selection register. When this bit is " 0 ", the inverted value of CNTR_{1} input is selected; when the bit is " 1 ", CNTR $_{1}$ input is selected.
When bit 7 in the timer 34 mode register is set to " 1 ", the P_{3} pin becomes timer output T_{1}. When the direction register of $\mathrm{P1}_{3}$ is set for the output mode at this time, the timer 4 overflow divided by 2 is output from T_{1} when bit 7 in the timer mode register 2 is " 0 ". The initial output value can be set by writing the value to bit 1 in the timer FF register after setting " 1 " to bit 1 in timer mode register 2.
(1) Timer mode

Timer perform down count operations with the dividing ratio being $1 /(n+1)$. Writing a value to the timer latch sets a value to the timer. When the value to be set to the timer latch is $n n_{16}$, the value to be set to a timer is $n n_{16}$, which is down counted at the falling edge of the count source from $\mathrm{nn} n_{16}$ to $\left(\mathrm{nn}_{16}-1\right)$ to $\left(\mathrm{nn}_{16}-2\right)$ to... 01_{16} to 00_{16} to FF_{16}. At the falling edge of the count source immediately after timer value has reached $F F_{16}$, value $\left(\mathrm{nn}_{16}-1\right.$) obtained by subtracting one from the timer latch value is set (reloaded) to the timer to continue counting. At the rising edge of the count source immediately after the timer value has reached FF_{16}, an overflow occurs, an interrupt request.
(2) Event count mode

Timer operates in the same way as in the timer mode except that it counts input from the CNTR ${ }_{0}$ or CNTR $_{1}$ pin.
(3) Pulse output mode

In this mode, duty 50% pulses are output from the T_{0} or T_{1} pin. When the timer overflows, the polarity of the T_{0} or T_{1} pin output pin level is inverted.
(4) Pulse width measuring mode

The M37470 can measure the "H" or "L" width of the CNTR $_{0}$ or CNTR $_{1}$ input waveform by using the pulse width measuring mode of timer 4. The pulse width measuring mode is selected by writing " 1 " to bit 6 in the timer 34 mode register. In the pulse width measuring mode, the timer counts the count source while the CNTR $_{0}$ or CNTR ${ }_{1}$ input is " H " or " L ". Whether the CNTR $_{0}$ input or CNTR $_{1}$ input be measured can be specified by the status of bit 4 in the
edge polarity selection register; whether the " H " width or " L " width be measured can be specified by the status of bit $2\left(\mathrm{CNTR}_{0}\right)$ and bit $3\left(\mathrm{CNTR}_{1}\right)$ in the edge polarity selection register.
(5) PWM mode

The PWM mode can be entered for timer 3 and timer 4 by setting bit 7 in the timer mode register 2 to " 1 ". In the PWM mode, the P_{3} pin is set for timer output T_{1} to output PWM waveforms by setting bit 7 in the timer 34 mode register to " 1 ". The directional register of P_{3} must be set for the output mode before this can be done.
In the PWM mode, timer 3 is counting and timer 4 is idle while the PWM waveform is " L ". When timer 3 overflows, the PWM waveform goes "H". At this time, timer 3 stops counting simultaneously and timer 4 starts counting. When timer 4 overflows, the PWM waveform goes " L ", and timer 4 stops and timer 3 starts counting again. Consequently, the " L " duration of the PWM waveform is determined by the value of timer 3; the "H" duration of the PWM waveform is determined by the value of timer 4.
When a value is written to the timer in operation during the PWM mode, the value is only written to the timer latch, and not written to the timer. In this case, if the timer overflows, a value one less the value in the timer latch is written to the timer. When any value is written to an idle timer, the value is written to both the timer latch and the timer.
In this mode, do not select timer 3 overflow as the count source for timer 4.

INPUT LATCH FUNCTION

The M37470 can latch the $\mathrm{P}_{3} / \mathrm{INT}_{0}, \mathrm{P}_{1} / \mathrm{INT}_{1}, \mathrm{P}_{2} / \mathrm{CNTR}_{0}$, and $\mathrm{P}_{3} / \mathrm{CNTR}_{1}$ pin level into the input latch register (address $00 D 6_{16}$) when timer 4 overflows. The polarity of each pin latched to the input latch register can be selected by using the edge polarity selection register. When bit 0 in the edge polarity selection register is " 0 ", the inverted value of the $\mathrm{P}_{0} / \mathrm{INT}_{0}$ pin level is latched; when the bit is " 1 ", the $\mathrm{P} 3_{0} / \mathrm{INT}_{0}$ pin level is latched as is. When bit 1 in the edge polarity selection register is " 0 ", the inverted value of the $\mathrm{P}_{1} / \mathrm{INT}_{1}$ pin level is latched; when the bit is " 1 ", the $P 3_{1} / I N T_{1}$ pin level is latched as is. When bit 2 in the edge polarity selection register is " 0 ", the inverted value of the $\mathrm{P}_{2} /$ CNTR ${ }_{0}$ pin level is latched; when the bit is " 1 ", the $P 3_{2} /$ CNTR R_{0} pin level is latched as is. When bit 3 in the edge polarity selection register is " 0 ", the inverted value of the $\mathrm{P}_{3} /$ CNTR 1 pin level is latched; when the bit is " 1 ", the $\mathrm{P3}_{3} /$ CNTR 1 pin level is latched as is.

Fig. 6 Block diagram of timer 1 through 4

Fig. 7 Structure of timer mode registers

SERIAL I/O

The block diagram of serial I/O is shown in Figure 8. In the serial I/O mode, the receive ready signal ($\overline{\mathrm{S}_{\mathrm{RDr}}}$) synchronous input/output clock (CLK), and the serial I/O (Sout, S_{IN}) pins are used as $\mathrm{P} 1_{7}, \mathrm{P} 1_{6}, \mathrm{P} 1_{5}$, and $\mathrm{P} 1_{4}$, respectively. The serial I/O mode register (address $00 \mathrm{DC}_{16}$) is an 8 -bit register. Bit 2 of this register is used to select a synchronous clock source. When this bit is " 0 ", an external clock from $\mathrm{P} 1_{6}$ is selected. When this bit is " 1 " an internal clock is selected.
The internal clock can be selected from among the divide by 8 , divide by 16 , divide by 32 , divide by 512 frequency of
the oscillator frequency $f\left(X_{\text {IN }}\right)$. The divide ratio is selected according to bit 0 and bit 1 in the serial I/O mode register. Bits 3 and 4 decide whether parts of P1 will be used as a serial I/O or not. When bit 3 is " 1 ", $\mathrm{P} 1_{6}$ becomes an I / O pin of the synchronous clock. When an internal synchronous clock is selected, the clock is output from $\mathrm{P1}_{6}$. If the external synchronous clock is selected, the clock is input to $\mathrm{P1}_{6}$. And $\mathrm{P} 1_{5}$ will be a serial output. To use $\mathrm{P} 1_{4}$ as a serial input, set the directional register bit which corresponds to P_{4}, to " 0 ". For more information on the directional register, refer to the I/O pin section.

Select gate : At reset, shaded side is connected

Fig. 8 Block diagram of serial I/O

MITSUBISHI MICROCOMPUTERS
 M37470M2-XXXSP,M37470M4-XXXSP M37470M8-XXXSP

Bit 4 determines if $\mathrm{P1}_{7}$ is used as an output pin for the receive ready signal (bit $4=" 1 ", \overline{S_{R D Y}}$) or used as a normal I/O pin (bit 4="0").
When the P_{7} pin is used as the $\overline{\mathrm{S}_{\mathrm{RDY}}}$ output pin, output signal can be selected between $\overline{S_{R D Y}}$ signal and $S A_{R D Y}$ signal by using bit 5 in the serial I/O mode register. The $\overline{S_{R D Y}}$ signal is driven " L " by a signal written into the serial I/O register to inform that the device is ready to receive. Then, the $\overline{\mathrm{S}_{\mathrm{RDY}}}$ signal is driven " H " on the first falling edge of the transfer clock.
The SA $_{\text {RDY }}$ signal is driven " H " by a signal written into the serial I/O register, and driven " L " on the last rising edge of the transfer clock.
The function of serial $1 / O$ differs depending on the clock source; external clock or internal clock.
Internal Clock-The serial I/O counter is set to 7 when data
is stored in the serial I/O register. At each falling edge of the transfer clock, serial data is output to $\mathrm{P} 1_{5}$. During the rising edge of this clock, data can be input from $\mathrm{P1}_{4}$ and the data in the serial 1/O register will be shifted 1 bit. Data is output starting with the LSB. After the transfer clock has counted 8 times, the serial I/O register will be empty and - the transfer clock will remain at a high level. At this time the interrupt request bit will be set.
External Clock-If an external clock is used, the interrupt request bit will be set after the transfer clock has counted 8 times but the transfer clock will not stop. Due to this reason, the external clock must be controlled from the outside.
Timing diagrams are shown in Figure 9.

Fig. 9 Serial I/O timing

Fig. 10 Structure of serial I/O mode register

BYTE SPECIFY MODE

The serial I/O has a byte specify mode that allows one specific byte data to be selected tor transmission or reception when serial I/O circuits of two or more microcomputers are connected to send or receive data through one bus. The data to be sent or received can be specified by writing a value into the byte counter. The value written in the byte counter is decremented by one each time eight cycles of transfer clock are input. When the value in the byte counter becomes " 0 ", serial transmission/reception is done by the next eight cycles of transfer clock. When the value in the byte counter is not " 0 ", the output on the $\mathrm{S}_{\text {оut }}$ pin is driven "H" by the falling edge of the first transfer clock pulse to inhibit transmission/reception.
Serial I/O interrupt requests are generated only when serial transmission/reception is done after the value in the byte counter is decremented to " 0 ". When the $\mathrm{SA}_{\text {RDY }}$ signal output is selected, the $S A_{R D Y}$ signal is driven " L " by the last rising edge of the transfer clock after the value in the byte counter is decremented to " 0 ".
Note that in the byte mode, an external clock must be used as the sync. clock for the purpose of the mode.

MITSUBISHI MICROCOMPUTERS M37470M2-XXXSP,M37470M4-XXXSP M37470M8-XXXSP

A-D CONVERTER

The A-D conversion uses an 8-bit successive comparison method. Figure 11 shows a block diagram of the A-D conversion circuit. Conversion is automatically carried out once started by the program.
There are four analog input pins which are shared with $\mathrm{P} 2_{0}$ to P_{3} of port P 2 . Which analog inputs are to be A-D converted is specified by using bit 2 to bit 0 in the A-D control register (address $00 \mathrm{D} 9_{16}$). Pins for inputs to be A-D converted must be set for input by setting the directional register bit to " 0 ". Bit 3 in the A-D control register is a A-D conversion end bit. This is " 0 " during A-D conversion; it is set to " 1 " when the conversion is terminated. Therefore, it is possible to know whether A-D conversion is terminated by checking this bit. Bit 4 in the $A-D$ control register is a $V_{\text {REF }}$ connection selection bit. During A-D conversion, this bit must be set " 1 " for the ladder resistor and $V_{\text {REF }}$ pin to be connected; after the A-D conversion is terminated, this bit can be reset to " 0 " to separate the ladder resistor from the $\mathrm{V}_{\mathrm{REF}} \mathrm{pin}$. In this way, power consumption in the ladder resistor can be suppressed while no A-D conversion is performed. Figure 13 shows the relationship between the contents of A-D control register and the selected input pins.
The A-D conversion register (address 00DA ${ }_{16}$) contains information on the results of conversion, so that it is possible to know the results of conversion by reading the contents of this register.
The following explains the procedure to execute A-D conversion. First, set values to bit 2 to bit 0 in the A-D control
register to select the pins that you want to execute A-D conversion. Next, clear the A-D conversion terminate bit to " 0 ". When the above is done, A-D conversion is initiated. The A-D conversion is completed after an elapse of 50 machine cycles (25μ s when $f\left(X_{\text {IN }}\right)=4 M H z$), the A-D conversion end bit is set to " 1 ", and the interrupt request bit is set to " 1 ". The results of conversion are contained in the A-D conversion register.

Fig. 12 Structure of A-D control register

Fig. 11 A-D converter circuit

KEY ON WAKE UP

"Key on wake up" is one way of returning from a power down state caused by the STP or WIT instruction. If any terminal of port PO has a "L" level applied, after bit 5 of the edge polarity selection register $\left(E G_{5}\right)$ is set to " 1 ", an interrupt is generated and the microcomputer is returned to the normal operating state. A key matrix can be connected to port P0 and the microcomputer can be returned to a normal state by pushing any key.

The key on wake up interrupt is common with the $\overline{\mathrm{INT}}{ }_{1}$ interrupt. When EG_{5} is set to " 1 ", the key on wake up function is selected. However, key on wake up cannot be used in the normal operating state. When the microcomputer is in the normal operating state, both key on wake up and $\overline{\mathrm{INT}}$ are invalid.

Fig. 13 Block diagram of interrupt input and key on wake up circuit

RESET CIRCUIT

The M37470M2-XXXSP is reset according to the sequence shown in Figure 15. It starts the program from the address formed by using the content of address FFFF $_{16}$ as the high order address and the content of the address FFFE_{16} as the low order address, when the RESET pin is held at " L " level for no less than 2μ s while the power voltage is in the recommended operating condition and then returned to " H " level.
The internal initializations following reset are shown in Figure 14.
Immediately after reset, timer 3 and timer 4 are connected, and $f\left(X_{I N}\right)$ divided by 16 are counted. At this time, $F F_{16}$ is set to timer 3 , and 07_{16} is set to timer 4. The reset is cleared when timer 4 overflows.

(1)Port PO directional register (2)Port P1 directional register	Address$\begin{aligned} & \left(\mathrm{C1}_{16}\right) \cdots \\ & \left(\mathrm{CB}_{16}\right) \cdots \end{aligned}$							
		00_{16}						
		$00{ }_{16}$						
(3)Port P2 directional register	$\left(\mathrm{C5}_{16}\right) \ldots$				0	0	0	0
(4)Port P4 directional register	($\mathrm{C9}_{16}$) \ldots						0	0
(5)P0 pull-up control register (6) P1~P4 pull-up control register $\left(D 1_{16}\right) \cdots$		$00{ }_{16}$						
						0	0	0
(7)Edge selection register (EG)	(D4 ${ }_{16}$) \ldots			0	0	0	0	0
(8) A-D control register	($\mathrm{D9}_{16}$) \ldots	0			1	0	0	0
(9)Serial I/O mode register (SM)	(DC_{16})	0016						
(10) Timer 12 mode register (T12M)	$\left(\mathrm{F8}_{16}\right)$	$00{ }_{16}$						
(11) Timer 34 mode regıster (T34M) ($\mathrm{F9}_{16}$) \cdots		$00{ }_{16}$						
		0	0				0	0
(13) CPU mode register (CM)	$\left(\mathrm{FB}_{16}\right) \cdots$	0	0	0		0	0	0
(14) Interrupt request register 1	(FC_{16}) \ldots	0	0		0	0	0	0
(15) Interrupt request register 2	(FD_{16}) \ldots					0	0	0
(16) Interrupt control register 1	(FE_{16}) \ldots	0	0		0	0	0	0
(17) Interrupt control register 2	(FF_{16}) \ldots					0	0	0
(18) Program counter	$\left(\mathrm{PC}_{H}\right) .$	Contents of address FFFF 16						
	($\left.P C C L_{L}\right) \cdots$	Contents of addressFFFE $_{16}$						
(19) Processor status register	(PS) \cdots					1		
Note: Since the contents of both registers other than those listed above (including timers and the serial I/O register) are undefined at reset, it is necessary to set initial values								

Fig. 14 Internal state of microcomputer at reset

Fig. 15 Timing diagram at reset

I/O PORTS

(1) Port P0

Port PO is an 8 -bit $1 / \mathrm{O}$ port with CMOS outputs. As shown in Figure 2, PO can be accessed as memory through zero page address $00 \mathrm{CO}_{16}$. Port PO's directional register allows each bit to be programmed individually as input or output. The directional register (zero page address $00 \mathrm{C}_{16}$) can be programmed as input with " 0 ", or as output with " 1 ". When in the output mode, the data to be output is latched to the port latch and output. When data is read from the output port, the output pin level is not read, only the latched data of the port latch is read. Therefore, a previously output value can be read correctly even though the output voltage level has been shifted up or down. Port pins set as input are in the high impedance state so the signal level can be read. When data is written into the input port, the data is latched only to the output latch and the pin still remains in the high impedance state. Following the execution of STP or WIT instruction, key matrix with port PO can be used to generate the interrupt to bring the microcomputer back in its normal ștate. When this port is selected for input, pull-up transistor can be connected in units of 1 -bit.
(2) Port P1

Port P1 has the same function as port $\mathrm{P} 0 . \mathrm{P1}_{2} \sim \mathrm{P} 1_{7}$ serve dual functions, and the desired function can be selected by the program. When this port is selected for input, pull-up transistor can be connected in units of 4 bit.
(3) Port P2

Port P2 is an 4-bit I/O port and has basically the same functions as port PO. This port can also be used as an analog voltage input pin. When this port is selected for input, pull-up transistor can be connected in units of 4bit.
(4) Port P3

Port P3 is an 4-bit input port.
(5) Port P4

Port P4 is an 2-bit I/O port and has basically the same functions as port P0. When this port is selected for input, pull-up transistor can be connected in units of 2bit.
(6) INT_{0} pin $\left(\mathrm{P}_{3} / \mathrm{INT}_{0}\right.$ pin)

This is an interrupt input pin, and is shared with port $P 3_{0}$. When a " H " to " L " or a " L " to " H " transition input is applied to this pin, the $\operatorname{IN} T_{0}$ interrupt request bit (bit 0 of address $00 \mathrm{FD}_{16}$) is set to " 1 ".
(7) INT_{1} pin ($\mathrm{P3}_{1} / \mathrm{INT}_{1}$ pin)

This is an interrupt input pin, and is shared with port $P 3_{1}$. When a " H " to " L " or a " L " to " H " transition input is applied to this pin, the INT_{1} interrupt request bit (bit 1 of address $00 \mathrm{FD}_{16}$) is set to " 1 ".
(8) Counter input CNTR_{0} pin ($\mathrm{P3}_{2} / \mathrm{CNTR} \mathrm{R}_{0}$ pin)

This is a timer input pin, and is shared with port P_{2}. When this pin is selected to CNTR_{0} or CNTR $_{1}$ interrupt input pin and a " H " to " L " or a " L " to " H " transition input is applied to this pin, the CNTR ${ }_{0}$ or CNTR $_{1}$ interrupt request bit (bit 2 of address $00 \mathrm{FD}_{16}$) is set to " 1 ".
(9) Counter input CNTR 1 pin ($\mathrm{P}_{3} / \mathrm{CNTR}_{1}$ pin)

This is a timer input pin, and is shared with port P_{3}. When this pin is selected to CNTR $_{0}$ or CNTR $_{1}$ interrupt input pin and a " H " to " L " or a " L " to " H " transition input is applied to this pin, the CNTR 0 or CNTR $_{1}$ interrupt request bit (bit 2 of address $00 F D_{16}$) is set to " 1 ".

Port P0

Port P1

$T_{r} 1 \sim T_{r} 5$ are pull-up transistors

Fig. 16 Block diagram of ports P0~P1

$\operatorname{Tr} 6 \sim \operatorname{Tr}_{r} 9$ are pull-up transistors

Fig. 17 Block diagram of port P1

Fig. 18 Block diagram of ports P2~P4

CLOCK GENERATING CIRCUIT

The built-in clock generating circuits are shown in Figure 21.

When an STP instruction is executed, the internal clock ϕ stops oscillating at "H" level. At the same time, FF_{16} is set in the timer $3,07_{16}$ is set in the timer 4.
The oscillator is restarted when an interrupt is accepted. However, the clock ϕ keeps its " H " level until timer 4 overflows.
This is because the oscillator needs a set-up period if a ceramic or a quartz crystal oscillator is used.
When the WIT instruction is executed, the clock ϕ stops in the "H" level but the oscillator continues running. This wait state is cleared when an interrupt is accepted. Since the oscillation does not stop, the next instructions are executed at once.
To return from the stop or the wait status, the interrupt enable bit must be set to " 1 " before executing STP or WIT instruction. Especially, to return from the stop status, the timer 3 , timer 4 count stop bit must be set to " 0 " before executing STP instruction.
The circuit example using a ceramic oscillator (or a quartz crystal oscillator) is shown in Figure 19.
The constant capacitance will differ depending on which oscillator is used, and should be set to the manufactures suggested value.
The example of external clock usage is shown in Figure 20 $X_{I N}$ is the input, and $X_{\text {OUT }}$ is open.

Fig. 19 Example of ceramic resonator circuit

Fig. 20 External clock input circuit

Fig. 21 Block diagram of clock generating circuit

M37470M2-XXXSP,M37470M4-XXXSP M37470M8-XXXSP

PROGRAMMING NOTES

(1) The frequency ratio of the timer is $1 /(n+1)$.
(2) Even though the BBC and BBS instructions are executed after the interrupt request bits are modified (by the program), those instructions are only valid for the contents before the modification. Also, at least one instruction cycle must be used (such as a NOP) between the modification of the interrupt request bits and the execution of the BBC and BBS instructions.
(3) After the ADC and SBC instructions are executed (in decimal mode), one instruction cycle (such as a NOP) is needed before the SEC, CLC, or CLD instructions are executed.
(4) A NOP instruction must be used after the execution of a PLP instruction.
(5) During A-D conversion, don't use STP instruction.

DATA REQUIRED FOR MASK ORDERING

*Please send the following data for mask orders.
(1) mask ROM confirmation form
(2) mask specification form

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratıngs	Unit
V_{Cc}	Supply voltage	With respect to $V_{\text {Ss }}$ Output transistors are at "OFF" state	-0.3~7	V
V_{1}	Input voltage $\mathrm{X}_{\text {IN }}$		$-0.3 \sim \mathrm{~V}_{\mathrm{cc}}+0.3$	V
V_{1}			$-0.3 \sim v_{c c}+0.3$	V
V_{0}	Output voltage $\mathrm{PO}_{0} \sim \mathrm{PO}_{7}, \mathrm{P1}_{0} \sim \mathrm{P1}_{7}, \mathrm{P2}_{0} \sim \mathrm{P}_{3}, \mathrm{P4}_{0} \sim \mathrm{P} 4_{1}$, $X_{\text {OUT }}$		$-0.3 \sim v_{c c}+0.3$	V
Pd	Power dissipation	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$	1000	mW
Topr	Operatıng temperature		$-20 \sim 85$	${ }^{\circ} \mathrm{C}$
Tstg	Storage temperature		$-40 \sim 150$	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

($\mathrm{V}_{\mathrm{cc}}=2.7 \sim 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-20 \sim 85^{\circ} \mathrm{C}$ unjess otherwise noted)

Symbol '	Parameter	Limits			Unit
		Min	Typ	Max	
V_{CC}	Supply voltage	2.7	5	5.5	V
$\mathrm{V}_{\text {ss }}$	Supply voltage		0		V
V_{1+}	" H " Input voltage $\begin{aligned} & \mathrm{PO}_{0} \sim \mathrm{PO}_{7}, \mathrm{P1}_{0} \sim \mathrm{P1}_{7}, \mathrm{P}_{3} \sim \mathrm{P3}_{3}, \\ & \frac{\text { RESET, }}{} \mathrm{X}_{\mathrm{IN}}\end{aligned}$	0. $8 \mathrm{~V}_{\mathrm{cc}}$		V_{Cc}	V
$\mathrm{V}_{1 \mathrm{H}}$	" H " Input voltage $\mathrm{P2}_{0} \sim \mathrm{P2}_{3}, \mathrm{P} 4_{0} \sim \mathrm{P4} 4_{1}$	$0.7 \mathrm{~V}_{\mathrm{CC}}$		V_{CC}	V
$V_{\text {IL }}$	"L." Input voltage $\mathrm{PO}_{0} \sim \mathrm{PO}_{7}, \mathrm{P1}_{0} \sim \mathrm{P1}_{7}, \mathrm{P3}_{0} \sim \mathrm{P3}_{3}$	0		$0.2 \mathrm{~V}_{\mathrm{cc}}$	V
$\mathrm{V}_{\text {IL }}$	"L" Input voltage $\mathrm{P}_{2} \sim \mathrm{P}_{2} 3_{3} \mathrm{P} 4_{0} \sim P 4_{1}$	0		$0.25 \mathrm{~V}_{\mathrm{cc}}$	V
$\mathrm{V}_{\text {IL }}$	"L" Input voltage RESET	0		$0.12 \mathrm{~V}_{\mathrm{cc}}$	V
$\mathrm{V}_{\text {IL }}$	"L" Input voltage $\mathrm{XIN}_{\text {IN }}$	0		0.16V ${ }_{\text {cc }}$	V
l OH (sum)	" H " sum output current $\mathrm{PO}_{0} \sim \mathrm{PO}_{7}, \mathrm{P4}_{0} \sim \mathrm{P4}_{1}$			-30	mA
I_{OH} (sum)	" H " sum output current $\mathrm{P1}_{0} \sim \mathrm{P1}_{7}, \mathrm{P2}_{0} \sim \mathrm{P2}_{3}$			-30	mA
lolsum)	" L " sum output current $\mathrm{PO}_{0} \sim \mathrm{PO} 0_{7}, \mathrm{P} 4_{0} \sim P 4_{1}$			60	mA
lol (sum)	"L" sum output current $\mathrm{P1}_{1} \sim \mathrm{P1} 7_{7}, \mathrm{P} 2_{0} \sim \mathrm{P}_{2}$			60	mA
lol(peak)	$\begin{array}{r} \text { "L" peak output current } \mathrm{PO}_{0} \sim \mathrm{PO}_{7}, \\ \mathrm{P}_{2} \sim \mathrm{P}_{0} \sim \mathrm{P}_{3}, \mathrm{P}_{3} \sim \\ \hline \end{array}$			20	mA
lol(avg)	" L " average output current $\mathrm{PO}_{0} \sim \mathrm{PO}_{7}, \mathrm{P}_{1} \sim \mathrm{P1}_{7}$, $\mathrm{P}_{2} \sim \mathrm{P}_{2}, \mathrm{P} 4_{0} \sim \mathrm{P}_{4} \quad$ (Note 2)			10	mA
loh(peak)				-10	mA
ІОh(avg)	" H " average output current $\mathrm{PO}_{0} \sim \mathrm{PO}_{7}, \mathrm{P1}_{0} \sim \mathrm{P1}_{7}$, $\mathrm{P}_{2} \sim \mathrm{P}_{2}, \mathrm{P4}_{0} \sim \mathrm{P4}_{1} \quad$ (Note 2)			-5	mA
$\mathrm{f}_{\text {(CNTR })}$	Timer input frequency $\mathrm{CNTR}_{0}\left(\mathrm{P3}_{2}\right), \mathrm{CNTR}{ }_{1}\left(\mathrm{P3}_{3}\right)$ (Note 1)			1	MHz
$\mathrm{f}_{(\mathrm{CLK}}$)	Serial I/O clock input frequency CLK ($\mathrm{P1}_{6}$) (Note 1)			1	MHz
$f\left(X_{\text {IN }}\right)$	Clock oscillating frequency (Note 1)			4	MHz

Note 1: Oscillation frequency is at 50% duty cycle.
2 : The average output current $\mathrm{I}_{\mathrm{OH} \text { (avg) }}$ and l_{OL} (avg) are the average value during a 100 ms .

MITSUBISHI MICROCOMPUTERS
 M37470M2-XXXSP,M37470M4-XXXSP
 M37470M8-XXXSP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

ELECTRICAL CHARACTERISTICS ($\mathrm{v}_{\mathrm{cc}}=2.7 \sim 5.5 \mathrm{v}, \mathrm{v}_{\mathrm{ss}}=0 \mathrm{v}, \mathrm{T}_{\mathrm{a}}=-20 \sim 85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test Conditions		Lımits			Unit
				Min	Typ.	Max.	
V_{OH}	$\begin{array}{r} \text { " } \mathrm{H} \text { " output voltage } \mathrm{PO}_{0} \sim \mathrm{PO}_{7}, \mathrm{P1}_{0} \sim \mathrm{P1}_{7}, \\ \mathrm{P}_{2} \sim \mathrm{P}_{3}, \mathrm{P4}_{0}, \mathrm{P}_{1} \\ \hline \end{array}$	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, $\mathrm{l}_{\mathrm{OH}}=-5 \mathrm{~mA}$		3			V
		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, \mathrm{l}_{\mathrm{OH}}=-1.5 \mathrm{~mA}$		2			
V_{OL}	$\begin{array}{r} \text { "L" output voltage } \mathrm{PO}_{0} \sim \mathrm{PO}_{7}, \mathrm{P}_{1} \sim \mathrm{P1}_{7}, \\ \\ \mathrm{P} 2_{0} \sim \mathrm{P}_{3}, \mathrm{P4}_{0}, \mathrm{P4}_{1} \\ \hline \end{array}$	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=10 \mathrm{~mA}$				2	V
		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, \mathrm{l}_{\mathrm{OL}}=3 \mathrm{~mA}$				1	
$\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\mathrm{T}-}$	Hysteresis $\mathrm{PO}_{0} \sim \mathrm{PO}_{7}, \mathrm{P3}_{0} \sim \mathrm{P3}_{3}$	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$			0.5		V
		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$			0.3		
$\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\mathrm{T}-}$	Hysteresis $\overline{\text { RESET }}$	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$			0.5		V
		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$			0.3		
$\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\mathrm{T}-}$	Hysteresis $\mathrm{P1}_{6} /$ CLK	use as CLK input	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$		0.5		V
			$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$		0.3		
IIL	" L " input current $\mathrm{PO}_{0} \sim \mathrm{PO}_{7}, \mathrm{P1}_{0} \sim \mathrm{P1}_{7}, \mathrm{P3}_{0} \sim \mathrm{P3}_{2}$,$P 4_{0}, P 4_{1}$	$\mathrm{V}_{1}=0 \mathrm{~V} \text {, }$ not use pull-up transistor	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$			-5	$\mu \mathrm{A}$
			$\mathrm{V}_{C C}=3 \mathrm{~V}$			-3	
		$\mathrm{v}_{1}=0 \mathrm{v},$ use pull-up transistor	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	-0.25	-0.5	-1.0	mA
			$\mathrm{V}_{\mathrm{cc}}=3 \mathrm{~V}$	-0.08	-0.18	-0.35	
$I_{\text {IL }}$	"L" input current P3 ${ }_{3}$	$\mathrm{V}_{1}=0 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$			-5	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$			-3	
IIL	"L" input current $\mathrm{P}_{2} \sim \sim \mathrm{P}_{2}$	$\mathrm{V}_{1}=0 \mathrm{~V}$, not use as analog input, not use pull-up transistor	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$			-5	$\mu \mathrm{A}$
			$\mathrm{V}_{C C}=3 \mathrm{~V}$			-3	
		$\mathrm{V}_{1}=0 \mathrm{~V}$, not use as analog input, use pull-up transistor	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	-0.25	-0.5	-1.0	mA
			$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$	-0.08	-0.18	-0.35	
IIL	"L" input current $\overline{\text { RESET }}$, $\mathrm{X}_{\text {IN }}$	$\begin{aligned} & V_{1}=0 \mathrm{~V} \\ & \left(\mathrm{X}_{\text {IN }} \text { is at stop mode }\right) \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$			-5	$\mu \mathrm{A}$
			$\mathrm{V}_{\text {cc }}=3 \mathrm{~V}$			-3	
$\mathrm{I}_{\mathbf{H}}$	" H " input current $\mathrm{PO}_{0} \sim \mathrm{PO}_{7}, \mathrm{P1}_{0} \sim \mathrm{P1}_{7}, \mathrm{P}_{0} \sim \mathrm{P3}_{2}$, $\mathrm{P} 4_{0}, \mathrm{P}_{1}$	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{cc}},$ not use pull-up transistor	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$			5	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$			3	
I_{IH}	" H " input current $\mathrm{P3}_{3}$	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{cc}}$	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$			5	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{cc}}=3 \mathrm{~V}$			3	
I_{IH}	"H" input current $\mathrm{P}^{0} \sim \sim \mathrm{P}_{3}$	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{cc}}$, not use as analog input, not use pull-up transistor	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$			5	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{cc}}=3 \mathrm{~V}$			3	
I_{H}	" H " input current RESET, $\mathrm{X}_{\text {IN }}$	$\begin{aligned} & V_{1}=V_{c c}, \\ & \left(X_{I N} \text { is at stop mode }\right) \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$			5	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$			3	
Icc	Supply current	At normal operation, A-D conversion is not executed $\mathrm{X}_{\mathrm{IN}}=4 \mathrm{MHz}$	$\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}$		3.5	7	mA
			$\mathrm{V}_{\mathrm{cc}}=3 \mathrm{~V}$		1.8	3.6	
		At normal operation, A-D conversion is executed $X_{I N}=4 M H z$	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$		4	8	
			$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$		2	4	
		At walt mode,$\mathrm{X}_{\mathrm{IN}}=4 \mathrm{MHz}$	$\mathrm{V}_{\text {cc }}=5 \mathrm{~V}$		1	2	
			$\mathrm{V}_{\mathrm{cc}}=3 \mathrm{~V}$		0.5	1	
		Stop all oscillation$v_{\mathrm{cC}}=5 \mathrm{~V}$	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$		0.1	1	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{a}}=85^{\circ} \mathrm{C}$		1	10	
$\mathrm{V}_{\text {RAM }}$	RAM retention voltage \quad Stop all oscillation $\quad 2$						V

A-D CONVERTER CHARACTERISTICS ($\mathrm{V}_{\mathrm{CC}}=2.7 \sim 5.5 \mathrm{~V}, \mathrm{v}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-20 \sim 85^{\circ} \mathrm{C}, \mathrm{f}\left(\mathrm{X}_{\mathrm{IN}}\right)=4 \mathrm{MHz}$, unless otherwise noted)

Symbol	Parameter	Test Conditions	Limits			Unit
			Min.	Typ	Max.	
-	Resolution				8	bits
-	Non-linearity error				± 2	LSB
-	Differential non-linearity error				± 0.9	LSB
$V_{\text {Ot }}$	Zero transition error	$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{REF}}=5.12 \mathrm{~V}, \mathrm{l}_{\text {OL(}}$ (sum) $)=0 \mathrm{~mA}$			2	LSB
		$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\text {REF }}=3.072 \mathrm{~V}$, l LL(sum) $=0 \mathrm{~mA}$			3	
$\mathrm{V}_{\text {FSt }}$	Full-scale transition error	$\mathrm{V}_{\text {CC }}=\mathrm{V}_{\text {REF }}=5.12 \mathrm{~V}$			4	LSB
		$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\text {REF }}=3.072 \mathrm{~V}$			7	
$\mathrm{t}_{\text {CONV }}$	Conversion time				25	$\mu \mathrm{s}$
$\mathrm{V}_{\text {VREF }}$	Reference input voltage		$0.5 \mathrm{~V}_{\mathrm{cc}}$		V_{cc}	V
R LADDER	Ladder resistance value		2	5	10	$\mathrm{k} \Omega$
$\mathrm{V}_{\text {IA }}$	Analog input voltage		0		$\mathrm{V}_{\text {REF }}$	V

DISCRIPTION

The M37471M2－XXXSP／FP is a single－chip microcomputer designed with CMOS silicon gate technology．It is housed in a 42－pin shrink plastic molded DIP or a 56 －pin plastic molded QFP．This single－chip microcomputer is useful for business equipment and other consumer applications．
In addition to its simple instruction set，the ROM，RAM，and I／O addresses are placed on the same memory map to en－ able easy programming．
The differences among M37471M2－XXXSP／FP，M37471M4－ XXXSP／FP and M37471M8－XXXSP／FP are noted below． The following explanations apply to the M37471M2－ XXXSP／FP．Specificaiton variations for other chips are noted accordingly．

Type name	ROM size	RAM size
M37471M2－XXXSP／FP	4096 bytes	128 bytes
M37471M4－XXXSP／FP	8192 bytes	192 bytes
M37471M8－XXXSP／FP	16384 bytes	384 bytes

The differences between the M37471M2－XXXSP and the M37471M2－XXXFP are the package outline and the power dissipation ability（absolute maximum ratings）．

FEATURES

－Number of basic instructions
－Memory size

－Instruction execution time
$\cdots \cdots \cdots .1 \mu \mathrm{~s}$（minimum instructions at 4 MHz frequency）
－Single power supply．．7～5．5V
－Power dissipation normal operation mode
17.5 mW （at 4 MHz frequency）
－Subroutine nesting ．．．．．．．．．．．． 64 levels max．（M37471M2）
－Interrupt．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．12types，10vectors
－8－bit timer4
－Programmable I／O ports
（Ports P0，P1，P2，P4）
－Input ports（Ports P3，P5）．． 8
－Serial I／O（8－bit）．．． 1

APPLICATION

Audio－visual equipment，VCR，Tuner Office automation equipment

PIN CONFIGURATION（TOP VIEW）

Outline 42P4B

気合皆

$\ddagger \ddagger \ddagger \downarrow \downarrow \downarrow \ddagger \ddagger$

Outline 56P6N
NC：No connection

M37471M2-XXXSP BLOCK DIAGRAM

yコ1ndWODOYJIW SOWO $18-8$ dIHO-37DNIS
SaE1ndwoDOyDIW IHSIENSLIW

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

FUNCTIONS OF M37471M2-XXXSP/FP, M37471M4-XXXSP/FP, M37471M8-XXXSP/FP

Parameter			Functions
Number of basic instructions			69
Instruction execution time			$1 \mu \mathrm{~S}$ (minımum instructions, at 4 MHz frequency)
Clock frequency			4 MHz (max)
Memory size	M37471M2-XXXSP/FP	ROM	4096 bytes
		RAM	128 bytes
	M37471M4-XXXSP/FP	ROM	8192 bytes
		RAM	192 bytes
	M37471M8-XXXSP/FP	ROM	16384 bytes
		RAM	384 bytes
Input/Output port	P0, P1, P2	I/O	8 -bit $\times 3$
	P3, P5	Input	4-bit $\times 2$
	P4	I/O	4 -bit $\times 1$
Serial I/O			8 -bit $\times 1$
Tımers			8 -bit timer $\times 4$
A-D converter			8 -bit $\times 1$ (8 channels)
Subroutine nesting	M37471M2-XXXSP/FP		64 (max)
	M37471M4-XXXSP/FP		96 (max)
	M37471M8-XXXSP/FP		192 (max)
Interrupt			5 external interrupts, 6 internal interrupts, 1 software interrupt
Clock generating circuit			Two built-in crrcuit with internal feedback resistor (ceramic or quartz crystal oscillator)
Supply voltage			$2.7 \sim 5.5 \mathrm{~V}$
Power dissipation			17.5 mW (at 4MHz frequency)
Input/Output characters	Input/Output voltage		5 V
	Output current		$-5 \sim 10 \mathrm{~mA}$ (P0, P1, P2, P4: CMOS tri-states)
Operating temperature range			$-20 \sim 80^{\circ} \mathrm{C}$
Device structure			CMOS silicon gate
Package	M37471M2/M4/M8-XXXSP		42-pin shrink plastic moided DIP
	M37471M2/M4/M8-XXXFP		56-pin plastic molded QFP

PIN DESCRIPTION

Pin	Name	Input/ Output	Functions
V_{cc}, V_{ss}	Supply voltage		Power supply inputs $2.7 \sim 5.5 \mathrm{~V}$ to V_{cc}, and 0 V to $\mathrm{V}_{\text {ss }}$
$\mathrm{AV}_{\text {ss }}$	Analog power supply		Ground level input pin for A-D converter Same voltage as $\mathrm{V}_{\text {ss }}$ is applied. This pin is for 56 -pin type only.
RESET	Reset input	Input	To enter the reset state, the reset input pin must be kept at a "L" for more than 2μ s (under normal V_{CC} conditions).
$\mathrm{XIN}_{\text {IN }}$	Clock input	Input	These are I/O pins of internal clock generating circuit for main clock. To control generating frequency, an external ceramic or a quartz crystal oscillator is connected between the $X_{I N}$ and $X_{\text {OUt }}$ pins. If an external
Xout	Clock output	Output	clock is used, the clock source should be connected the $X_{\text {IN }}$ pin and the $X_{\text {out }}$ pin should be left open Feedback resistor is connected between $X_{\text {IN }}$ and $X_{\text {OUT }}$
$V_{\text {REF }}$	Reference voltage input	Input	This is reference voltage input pin for the A-D converters
$\mathrm{PO}_{0} \sim \mathrm{PO}_{7}$	I/O port P0	1/0	Port PO is an 8 -bit I/O port The output structure is CMOS output When this port is selected for input, pull-up transistor can be connected in units of 1-bit and a key on wake up function is provided
$\mathrm{P} 1_{0} \sim \mathrm{P} 1_{7}$	I/O port P1	1/0	Port P1 is an 8-bit I/O port The output structure is CMOS output When this port is selected for input, pull-up transistor can be connected in units of 4-bit $\mathrm{P1}_{2}, \mathrm{P1}_{3}$ are in common with timer output pins $\mathrm{T}_{0}, \mathrm{~T}_{1} \mathrm{P1}_{4}, \mathrm{P1}_{5}, \mathrm{P}_{6}, \mathrm{P1}_{7}$ are in common with serial I/O pins $\mathrm{S}_{\mathrm{IN}}, \mathrm{S}_{\mathrm{out}}, \mathrm{CLK}$, $\overline{\mathrm{S}_{\text {RDY }}}$, respectively The output structure of Sout and $\overline{\mathrm{S}_{\text {RDY }}}$ can be changed to N -channel open drain output
$\mathrm{P} 2_{0} \sim P 2_{7}$	I/O port P2	1/0	Port P2 is an 8 -bit I/O port The output structure is CMOS output When this port is selected for input, pull-up transistor can be connected in units of 4-bit This port is in common with analog input pins $\mathrm{IN}_{0} \sim / \mathrm{N}_{7}$
$P 3_{0} \sim P 3_{3}$	Input port P3	Input	Port P 3 is an 4-bit input port $\mathrm{P}_{0}, \mathrm{P}_{3}$ are in common with external interrupt input pins $\mathrm{INT} \mathrm{T}_{0}, \mathrm{INT} \mathrm{T}_{1}$ and $\mathrm{P} 3_{2}$, P_{3} are in common with timer input pins CNTR $_{0}$, CNTR $_{1}$
$\mathrm{P4}_{0} \sim \mathrm{P4}_{3}$	I/O port P4	1/0	Port P4 is an 4-bit I/O port The output structure is CMOS output When this port is selected for input, pull-up transistor can be connected in units of 4-bit.
$P 5_{0} \sim P 5_{3}$	Input port P5	Input	Port P5 is an 4-bit input port and pull-up transistor can be connected in units of 4-bit $\mathrm{P5}_{0}, \mathrm{P5}_{1}$ are in common with input/output pins of clock for clock function $\mathrm{X}_{\mathrm{CIN}}, \mathrm{X}_{\text {COUT }}$. When $\mathrm{P}_{0}, \mathrm{P}_{1}$ are used as $\mathrm{X}_{\text {CIN }}, \mathrm{X}_{\text {COUT }}$, connect a ceramic or a quartz crystal oscillator between $X_{\text {CIN }}$ and $X_{\text {COUT }}$ If an external clock input is used, connect the clock input to the $X_{\text {CIN }}$ pin and open the $X_{\text {cout }}$ pin Feedback resistor is connected between $X_{\text {CIN }}$ and $X_{\text {COUT }}$ pins

FUNCTIONAL DESCRIPTION
 Central Processing Unit (CPU)

The M37471 microcomputers use the standard MELPS 740 instruction set. For details of instruction operations, refer to the MELPS 740 CPU core basic functions, or the MELPS 740 Programming Manual.
Machine-resident instructions are as follows:
The FST and SLW instructions are not provided.
The MUL and DIV instructions are not provided.
The WIT instruction can be used.
The STP instruction can be used.

CPU Mode Register

The CPU mode register is allocated to address $00 \mathrm{FB}_{16}$. This register has a stack page selection bit.

Fig. 1 Structure of CPU mode register

MEMORY

- Special Function Register (SFR) Area

The special function register (SFR) area contains the registers relating to functions such as I/O ports and timers.

- RAM

RAM is used for data storage as well as a stack area.

- ROM

ROM is used for storing user programs as well as the interrupt vector area.

- Interrupt Vector Area

The interrupt vector area is for storing jump destination addresses used at reset or when an interrupt is generated.

- Zero Page

Zero page addressing mode is useful because it enables access to this area with fewer instruction cycles.

- Special Page

Special page addressing mode is useful because it enables access to this area with fewer instruction cycles.

Fig. 2 Memory map

$00 \mathrm{C0} 0_{16}$	Port P0	
$00 \mathrm{C1} 1{ }_{16}$	Port P0 directional register	
$00 \mathrm{C} 2_{16}$	Port P1	
$00 \mathrm{C} 3_{16}$	Port P1 directional register	
00C4 ${ }_{16}$	Port P2	
$00 \mathrm{C5}{ }_{16}$	Port P2 directional register	
00C6 ${ }_{16}$	Port P3	
00C7 ${ }_{16}$		
$00 \mathrm{C8}{ }_{16}$	Port P4	
00C9 ${ }_{16}$	Port P4 directional register	
$00 \mathrm{CA}_{16}$	Port P5	
$00 \mathrm{CB}_{16}$		
$00 \mathrm{CC}{ }_{16}$		
$00 \mathrm{CD}_{16}$		
$00 \mathrm{CE}_{16}$		
$00 \mathrm{CF}_{16}$		
00D0 ${ }_{16}$	P0 pull-up control register	
00D1 ${ }_{16}$	P1~P5 pull-up control register	
00D2 ${ }_{16}$		
$00 \mathrm{D} 3_{16}$		
00D4 ${ }_{16}$	Edge polarity selection register	
00D5 ${ }_{16}$		
00D6 ${ }_{16}$	Input latch register	
00D7 ${ }_{16}$		
00D8 ${ }_{16}$		
00D9 ${ }_{16}$	A-D control register	
$00 \mathrm{DA} \mathrm{I}_{6}$	A-D conversion register	
$00 \mathrm{DB}_{16}$		
$00 \mathrm{DC}_{16}$	Serial I/O mode regıster	
$00 \mathrm{DD}_{16}$	Serial I/O register	
$00 \mathrm{DE} \mathrm{E}_{16}$	Serial I/O counter	Byte counter
$00 \mathrm{DF}_{16}$		

Fig. 3 SFR (Special Function Register) memory map

MITSUBISHI MICROCOMPUTERS M37471M2-XXXSP/FP,M37471M4-XXXSP/FP M37471 M8-XXXSP/FP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

INTERRUPTS

Interrupts can be caused by 12 different events consisting of five external, six internal, and one software events.
Interrupts are vectored interrupts with priorities shown in Table 1. Reset is also included in the table because its operation is similar to an interrupt.
When an interrupt is accepted, the registers are pushed, interrupt disable flag I is set, and the program jumps to the address specified in the vector table. The interrupt request flag is cleared automatically. The reset and BRK instruction interrupt can never be inhibited. Other interrupts are disabled when the interrupt inhibit flag is set.
All interrupts except the BRK instruction interrupt have an interrupt request bit and an interrupt enable bit. The interrupt request bits are in interrupt request registers 1 and 2 and the interrupt enable bits are in interrupt control registers 1 and 2. External interrupts INT_{0} and $\mathrm{INT} \mathrm{I}_{1}$ can be asserted on either the falling or rising edge as set in the edge polarity selection register. When " 0 " is set to this register, the interrupt is activated on the falling edge; when " 1 " is set to the register, the interrupt is activated on the rising edge.

When the device is put into power-down state by the STP instruction or the WIT instruction, if bit 5 in the edge polarity selection register is " 1 ", the INT $_{1}$ interrupt becomes a key on wake up interrupt. When a key on wake up interrupt is valide, an interrupt request is generated by applying the "L" level to any pin in port PO. In this case, the port used for interrupt must have been set for the input mode.
If bit 5 in the edge polarity selection register is " 0 " when the device is in power-down state, the INT_{1} interrupt is selected. Also, if bit 5 in the edge polarity selection register is set to " 1 " when the device is not in a power-down state, neither key on wake up interrupt request nor INT_{1} interrupt request are generated.
The CNTR ${ }_{0} /$ CNTR $_{1}$ interrupts function in the same as INT_{0} and INT_{1}. The interrupt input pin can be specified for either CNTR_{0} or CNTR_{1} pin by setting bit 4 in the edge polarity selection register.
Figure 4 shows the structure of the edge polarity selection register, interrupt request registers 1 and 2 , and interrupt control registers 1 and 2.
Interrupts other than the BRK instruction interrupt and reset are accepted when the interrupt enable bit is " 1 ", interrupt request bit is " 1 ", and the interrupt disable flag is " 0 ". The interrupt request bit can be reset with a program, but not set. The interrupt enable bit can be set and reset with a program.
Reset is treated as a non-maskable interrupt with the highest priority. Figure 5 shows interrupts control.

Table 1. Interrupt vector address and priority.

Event	Priority	Vector addresses		Remarks
RESET	1	FFFF ${ }_{16}$,	FFFE $_{16}$	Non-maskable
INT ${ }_{0}$ interrupt	2	FFFD_{16},	FFFC_{16}	External interrupt (phase programmable)
INT ${ }_{1}$ interrupt or key on wake up interrupt	3	FFFB_{16},	FFFA_{16}	External interrupt (NNT_{1} is phase programmable)
CNTR $_{0}$ interrupt or CNTR $_{1}$ interrupt	4	$\mathrm{FFF9}_{16}$,	$\mathrm{FFF8}_{16}$	External interrupt (phase programmable)
Timer 1 interrupt	5	$\mathrm{FFF}_{16}{ }_{6}$,	$\mathrm{FFF6}_{16}$	
Timer 2 interrupt	6	$\mathrm{FFF}_{16}{ }_{16}$,	FFF4 ${ }_{16}$	
Timer 3 interrupt	7	$\mathrm{FFF3}_{16}$,	$\mathrm{FFF2}_{16}$	
Timer 4 interrupt	8	FFF1 ${ }_{16}$,	FFFO_{16}	
Serial I/O interrupt	9	FFEF $_{16}$,	FFEE_{16}	
A-D conversion completion interrupt	10	FFED $_{16}$,	FFEC_{16}	Nontmander
BRK instruction interrupt	11	FFEB_{16},	FFEA $_{16}$	Non-maskable software interrupt

Fig. 4 Structure of registers related to interrupt

Fig. 5 Interrupt control

MITSUBISHI MICROCOMPUTERS

TIMER

The M37471M2-XXXSP/FP has four timers; timer 1, timer 2, timer 3 and timer 4.
A block diagram of timer 1 through 4 is shown in Figure 6.
Timer 1 can be operated in the timer mode, event count mode, or pulse output mode. Timer 1 starts counting when bit 0 in the timer 12 mode register (address $00 \mathrm{Fl}_{16}$) is set to " 0 ".
The count source can be selected from the $f\left(X_{\text {IN }}\right)$ divided by $16, f\left(X_{\text {CIN }}\right)$ divided by $16, f\left(X_{\text {CIN }}\right)$, or event input from $\mathrm{P}_{2} /$ CNTR $_{0}$ pin. When bit 1 and bit 2 in the timer 12 mode register are " 0 ", $f\left(X_{\text {IN }}\right)$ divided by 16 or $f\left(X_{\text {CIN }}\right)$ divided by 16 is selected. Selection between $f\left(X_{I N}\right)$ and $f\left(X_{\text {CIN }}\right)$ is done by bit 7 in the CPU mode register (address $00 \mathrm{FB}_{16}$). When bit 1 in the timer 12 mode register is " 0 " and bit 2 is " 1 ", $f\left(X_{\text {CIN }}\right)$ is selected. And, when bit 1 in the timer 12 mode register is " 1 ", an event input from the CNTR ${ }_{0}$ pin is selected. Event inputs are selected depending on bit 2 in the edge polarity selection register (address 00D4 ${ }_{16}$). When this bit is " 0 ", the inverted value of CNTR ${ }_{0}$ input is selected; when the bit is " 1 ", CNTR ${ }_{0}$ input is selected.
When bit 3 in the timer 12 mode register is set to " 1 ", the $\mathrm{P1}_{2}$ pin becomes timer output T_{0}. When the direction register of P_{2} is set for the output mode at this time, the timer 1 overflow divided by 2 is output from T_{0}. The initial output value can be set by writing the value to bit 0 in the timer FF register (address $00 F 7_{16}$) after setting " 1 " to bit 0 in timer mode register 2.
Timer 2 can only be operated in the timer mode. Timer 2 starts counting when bit 4 in the timer 12 mode register is set to " 0 ".
The count source can be selected from the divide by 16, divide by 64 , divide by 128 , or divide by 256 frequency of $f\left(X_{\text {IN }}\right)$ or $f\left(X_{\text {CIN }}\right)$, and timer 1 overflow. When bit 5 in the timer 12 mode register is " 0 ", any of the divide by 16 , divide by 64 , divide by 128 , or divide by 256 frequency of $f\left(X_{\text {IN }}\right)$ or ($X_{\text {CIN }}$) is selected. The divide ratio is selected according to bit 6 and bit 7 in the timer 12 mode register, and selection between $f\left(X_{\text {IN }}\right)$ and $f\left(X_{\text {CIN }}\right)$ is made according to bit 7 in the CPU made register. When bit 5 in the timer 12 mode register is " 1 ", timer 1 overflow is selected as the count source.
Timer 3 can be operated in the timer mode, event count mode, or PWM mode. Timer 3 starts counting when bit 0 in the timer 34 mode register (address $00 \mathrm{F9}_{16}$) is set to " 0 ".
The count source can be selected from the $f\left(X_{\text {IN }}\right)$ divided by $16, f\left(X_{\text {CIN }}\right)$ divided by $16, f\left(X_{\text {CIN }}\right)$, timer 1 or timer 2 overflow, or an event input from $\mathrm{P}_{3} /$ CNTR $_{1}$ pins according to the statuses of bit 1 and bit 2 in the timer 34 mode register, bit 6 in the timer mode register 2 (address $00 \mathrm{FA}_{16}$) and bit 7 in the CPU mode register. Note, however, that if timer 1 overflow or timer 2 overflow is selected for the count source of timer 3 when timer 1 overflow is selected for the count source of timer 2, timer 1 overflow is always selected.
regardless of the status of bit 6 in the timer mode register 2. Event inputs are selected depending on bit 3 in the edge polarity selection register. When this bit is " 0 ", the inverted value of CNTR $_{1}$ input is selected; when the bit is " 1 ", CNTR ${ }_{1}$ input is selected.
Timer 4 can be operated in the timer mode, event count mode, pulse output mode, pulse width measuring mode, or PWM mode. Timer 4 starts counting when bit 3 in the timer 34 mode register is set to " 0 " when bit 6 in this register is " 0 ". When bit 6 is " 1 ", the pulse width measuring mode is selected. The count source can be selected from timer 3 overflow, $f\left(X_{I N}\right)$ divided by $16, f\left(X_{\text {CIN }}\right)$ divided by 16 , $f\left(X_{\text {CIN }}\right)$, timer 1 or timer 2 overflow, or an event input from $\mathrm{P}_{3} / \mathrm{CNTR}_{1}$ pins according to the statuses of bit 4 and bit 5 in the timer 34 mode register, bit 6 in the timer mode register 2 , and bit 7 in the CPU mode register. Note, however, that if timer 1 overflow or timer 2 overflow is selected for the count source of timer 4 when timer 1 overflow is selected for the count source of timer 2, timer 1 overflow is always selected regardless of the status of bit 6 in the timer mode register 2. Event inputs are selected depending on bit 3 in the edge polarity selection register. When this bit is " 0 "; the inverted value of CNTR $_{1}$ input is selected; when the bit is " 1 ", CNTR R_{1} input is selected.
When bit 7 in the timer 34 mode register is set to " 1 ", the $\mathrm{P1}_{3}$ pin becomes timer output T_{1}. When the direction register of P_{3} is set for the output mode at this time, the timer 4 overflow divided by 2 is output from T_{1} when bit 7 in the timer mode register 2 is " 0 ". The initial output value can be set by writing the value to bit 1 in the timer FF register after setting " 1 " to bit 1 in timer mode register 2.
(1) Timer mode

Timer perform down count operations with the dividing ratio being $1 /(n+1)$. Writing a value to the timer latch sets a value to the timer. When the value to be set to the timer latch is nn_{16}, the value to be set to a timer is $\mathrm{n} n_{16}$, which is down counted at the falling edge of the count source from nn_{16} to $\left(\mathrm{nn}_{16}-1\right)$ to $\left(\mathrm{nn}_{16}-2\right)$ to... 01_{16} to 00_{16} to FF_{16}. At the falling edge of the count source immediately after timer value has reached FF_{16}, value ($\mathrm{nn}_{16}-1$) obtained by subtracting one from the timer latch value is set (reloaded) to the timer to continue counting. At the rising edge of the count source immediately after the timer value has reached FF_{16}, an overflow occurs, an interrupt request.
(2) Event count mode

Timer operates in the same way as in the timer mode except that it counts input from the CNTR ${ }_{0}$ or CNTR $_{1}$ pin.
(3) Pulse output mode

In this mode, duty 50% pulses are output from the T_{0} or T_{1} pin: When the timer overflows, the polarity of the T_{0} or T_{1} pin output level is inverted.
(4) Pulse width measuring mode

The M37471 can measure the " H " or " L " width of the CNTR $_{0}$ or CNTR $_{1}$ input waveform by using the pulse width
measuring mode of timer 4. The pulse width measuring mode is selected by writing " 1 " to bit 6 in the timer 34 mode register. In the pulse width measuring mode, the timer counts the count source while the CNTR ${ }_{0}$ or CNTR $_{1}$ input is " H " or " L ". Whether the CNTR ${ }_{0}$ input or CNTR ${ }_{1}$ input be measured can be specified by the status of bit 4 in the edge polarity selection register; whether the " H " width or " L " width be measured can be specified by the status of bit $2\left(\mathrm{CNTR}_{0}\right)$ and bit $3\left(\mathrm{CNTR}_{1}\right)$ in the edge polarity selection register.
(5) PWM mode

The PWM mode can be entered for timer 3 and timer 4 by setting bit 7 in the timer mode register 2 to " 1 ". In the PWM mode, the P_{3} pin is set for timer output T_{1} to output PWM waveforms by setting bit 7 in the timer 34 mode register to " 1 ". The directional register of P_{3} must be set for the output mode before this can be done.
In the PWM mode, timer 3 is counting and timer 4 is idle while the PWM waveform is " L ". When timer 3 overflows, the PWM waveform goes "H". At this time, timer 3 stops counting simultaneously and timer 4 starts counting. When timer 4 overflows, the PWM waveform goes "L", and timer 4 stops and timer 3 starts counting again. Consequently, the " L " duration of the PWM waveform is determined by the value of timer 3 ; the " H " duration of the PWM waveform is determined by the value of timer 4.
When a value is written to the timer in operation during the PWM mode, the value is only written to the timer latch, and not written to the timer. In this case, if the timer overflows, a value one less the value in the timer latch is written to the timer. When any value is written to an idle timer, the value is written to both the timer latch and the timer.
In this mode, do not select timer 3 overflow as the count source for timer 4.

INPUT LATCH FUNCTION

The M37471 can latch the $\mathrm{P}_{0} / \mathrm{INT}_{0}, \mathrm{P}_{1} / \mathrm{INT}_{1}, \mathrm{P}_{2} / \mathrm{CNTR}_{0}$, and $\mathrm{P}_{3} / \mathrm{CNTR}_{1}$ pin level into the input latch register (address $00 D 6_{16}$) when timer 4 overflows. The polarity of each pin latched to the input latch regiser can be selected by using the edge polarity selection register. When bit 0 in the edge polarity selection register is " 0 ", the inverted value of the $\mathrm{P3}_{0} / \mathrm{INT} T_{0}$ pin level is latched; when the bit is " 1 ", the $P 3_{0} / I N T_{0}$ pin level is latched as is. When bit 1 in the edge polarity selection register is " 0 ", the inverted value of the $P 3_{1} / I N T_{1}$ pin level is latched; when the bit is " 1 ", the $\mathrm{P3}_{1} / \mathrm{INT}_{1}$ pin level is latched as is. When bit 2 in the edge polarity selection register is " 0 ", the inverted value of the $\mathrm{P3}_{2} /$ CNTR R_{0} pin level is latched; when the bit is " 1 ", the $\mathrm{P3}_{2} /$ CNTR ${ }_{0}$ pin level is latched as is. When bit 3 in the edge polarity selection register is " 0 ", the inverted value of the $\mathrm{P3}_{3} /$ CNTR 1 pin level is latched; when the bit is " 1 ", the $\mathrm{P}_{3} /$ CNTR 1 pin level is latched as is.

MITSUBISHI MICROCOMPUTERS M37471 M2-XXXSP/FP,M37471 M4-XXXSP/FP M37471 M8-XXXSP/FP

Fig. 6 Block diagram of timer 1 through 4

Fig. 7 Structure of timer mode registers

SERIAL I/O
The block diagram of serial I/O is shown in Figure 8. In the serial I/O mode, the receive ready signal ($\overline{\mathrm{S}_{\mathrm{RDY}}}$), synchronous input/output clock (CLK), and the serial I/O (Sout, S_{IN}) pins are used as $\mathrm{P} 1_{7}, \mathrm{P} 1_{6}, \mathrm{P} 1_{5}$, and $\mathrm{P} 1_{4}$, respectively. The serial I/O mode register (address $00 \mathrm{DC}_{16}$) is an 8 -bit register. Bit 2 of this register is used to select a synchronous clock source. When this bit is " 0 ", an external clock from $\mathrm{P} 1_{6}$ is selected. When this bit is " 1 ", an internal clock is selected.
The internal clock can be selected from among the divide by 8 , divide by 16 , divide by 32 , divide by 512 frequency of the oscillator frequency $f\left(X_{\text {IN }}\right)$ or $f\left(X_{\text {CIN }}\right)$. The divide ratio is
selected according to bit 0 and bit 1 in the serial I/O mode register, and selection between $f\left(X_{\text {IN }}\right)$ and $f\left(X_{\text {CIN }}\right)$ is mode according to bit 7 in the CPU mode register.
Bits 3 and 4 decide whether parts of P1 will be used as a serial I/O or not. When bit 3 is "1", $\mathrm{P} 1_{6}$ becomes an I/O pin of the synchronous clock. When an internal synchronous clock is selected, the clock is output from $\mathrm{P1}_{6}$. If the external synchronous clock is selected, the clock is input to $\mathrm{P} 1_{6}$. And $\mathrm{P} 1_{5}$ will be a serial output. To use P_{4} as a serial input, set the directional register bit which corresponds to $\mathrm{P1}_{4}$, to " 0 ". For more information on the directional register, refer to the I/O pin section.

Fig. 8 Block diagram of serial I/O

MITSUBISHI MICROCOMPUTERS M37471 M2-XXXSP/FP,M37471 M4-XXXSP/FP M37471 M8-XXXSP/FP

Bit 4 determines if P_{7} is used as an output pin for the receive ready signal (bit $4=$ " 1 ", $\overline{\mathrm{S}_{\mathrm{ROF}}}$) or used as a normal 1/O pin (bit 4="0").
When the P_{7} pin is used as the $\overline{\mathrm{S}_{\text {RDY }}}$ output pin, output signal can be selected between $\overline{S_{R D Y}}$ signal and $\mathrm{SA}_{\text {RDY }}$ signal by using bit 5 in the serial I/O mode register. The $\overline{\mathrm{S}_{\mathrm{ROY}}}$ signal is driven " L " by a signal written into the serial I/O register to inform that the device is ready to receive. Then, the $\overline{\mathrm{S}_{\mathrm{RDY}}}$ signal is driven " H " on the first falling edge of the transfer clock.
The SA $_{\text {RDY }}$ signal is driven " H " by a signal written into the serial I/O register, and driven " L " on the last rising edge of the transfer clock.
The function of serial I/O differs depending on the clock source; external clock or internal clock.

Internal Clock - The serial I/O counter is set to 7 when data is stored in the serial $1 / O$ register. At each falling edge of the transfer clock, serial data is output to $\mathrm{P} 1_{5}$. During the rising edge of this clock, data can be input from P_{4} and the data in the serial I/O register will be shifted 1 bit. Data is output starting with the LSB. After the transfer clock has counted 8 times, the serial I/O register will be empty and the transfer clock will remain at a high level. At this time the interrupt request bit will be set.
External Clock - If an external clock is used, the interrupt request bit will be set after the transfer clock has counted 8 times but the transfer clock will not stop. Due to this reason, the external clock must be controlled from the outside.
Timing diagrams are shown in Figure 9.

Fig. 9 Serial I/O timing

MITSUBISHI MICROCOMPUTERS

M37471 M2-XXXSP/FP,M37471M4-XXXSP/FP M37471 M8-XXXSP/FP

Fig. 10 Structure of serial I/O mode register

BYTE SPECIFY MODE

The serial $1 / O$ has a byte specify mode that allows one specific byte data to be selected for transmission or reception when serial I/O circuits of two or more microcomputers are connected to send or receive data through one bus. The data to be sent or received can be specified by writing a value into the byte counter. The value written in the byte counter is decremented by one each time eight cycles of transfer clock are input. When the value in the byte counter becomes " 0 ", serial transmission/reception is done by the next eight cycles of transfer clock. When the value in the byte counter is not " 0 ", the output on the $S_{\text {OUt }}$ pin is driven "H" by the falling edge of the first transfer clock pulse to inhibit transmission/reception.
Serial I/O interrupt requests are generated only when serial transmission/reception is done after the value in the byte counter is decremented to " 0 ". When the SA $_{\text {RDY }}$ signal output is selected, the ${S A_{\text {RDY }}}^{\text {signal is driven " } L \text { " by the last }}$ rising edge of the transfer clock after the value in the byte counter is decremented to " 0 ".
Note that in the byte mode, an external clock must be used as the sync. clock for the purpose of the mode.

A-D CONVERTER

The A-D conversion uses an 8-bit successive comparison method. Figure 11 shows a block diagram of the A-D conversion circuit. Conversion is automatically carried out once started by the program.
There are eight analog input pins which are shared with $\mathrm{P} 2_{0}$ to P_{2} of port P 2 . Which analog inputs are to be $\mathrm{A}-\mathrm{D}$ converted is specified by using bit 2 to bit 0 in the A-D control register (address $00 \mathrm{D} 9_{16}$). Pins for inputs to be A-D converted must be set for input by setting the directional register bit to " 0 ". Bit 3 in the A-D control register is a A-D conversion end bit. This is " 0 " during A-D conversion; it is set to " 1 " when the conversion is terminated. Therefore, it is possible to know whether A-D conversion is terminated by checking this bit. Bit 4 in the A-D control register is a $\mathrm{V}_{\text {REF }}$ connection selection bit.
During A-D conversion, this bit must be set " 1 " for the ladder resistor and $\mathrm{V}_{\text {REF }}$ pin to be connected; after the A-D conversion is terminated, this bit can be reset to " 0 " to separate the ladder resistor from the $\mathrm{V}_{\text {REF }}$ pin. In this way, power consumption in the ladder resistor can be suppressed while no A-D conversion is performed. Figure 13 shows the relationship between the contents of A-D control register and the selected input pins.
The A-D conversion register (address 00DA A_{16}) contains information on the results of conversion, so that it is possible to know the results of conversion by reading the contents of this register.
The following explains the procedure to execute A-D conversion. First, set values to bit 2 to bit 0 in the A-D control register to select the pins that you want to execute A-D
conversion. Next, clear the A-D conversion terminate bit to " 0 ". When the above is done, A-D conversion is initiated. The A-D conversion is completed after an elapse of 50 machine cycles ($25 \mu \mathrm{~s}$ when $f\left(X_{\text {IN }}\right)=4 \mathrm{MHz}$), the A-D conversion end bit is set to " 1 ", and the interrupt request bit is set to " 1 ". The results of conversion are contained in the A-D conversion register.

Fig. 12 Structure of A-D control register

Fig. 11 A-D converter circuit

KEY ON WAKE UP

"Key on wake up" is one way of returning from a power down state caused by the STP or WIT instruction. If any terminal of port PO has a "L" level applied, after bit 5 of the edge polarity selection register ($E G_{5}$) is set to "1", an interrupt is generated and the microcomputer is returned to the normal operating state. A key matrix can be connected to port PO and the microcomputer can be returned to a nor-
mal state by pushing any key.
The key on wake up interrupt is common with the $\overline{\mathbb{N} T_{1}}$ interrupt. When EG_{5} is set to " 1 ", the key on wake up function is selected. However, key on wake up cannot be used in the normal operating state. When the microcomputer is in the normal operating state, both key on wake up and $\overline{\mathrm{INT}}$ are invalid.

Fig. 13 Block diagram of interrupt input and key on wake up circuit

RESET CIRCUIT

The M37471M2-XXXSP/FP is reset according to the sequence shown in Figure 15. It starts the program from the address formed by using the content of address FFFF $_{16}$ as the high order address and the content of the address FFFE $_{16}$ as the low order address, when the RESET pin is held at "L" level for no less than 2μ s while the power voltage is in the recommended operating condition and then returned to " H " level.
The internal initializations following reset are shown in Figure 14.
Immediately after reset, timer 3 and timer 4 are connected, and the $f\left(X_{\text {IN }}\right)$ divided by 16 are counted. At this time, FF_{16} is set to timer 3, and 07_{16} is set to timer 4. The reset is cleared when timer 4 overflows.

Fig. 14 Internal state of microcomputer at reset

Fig. 15 Timing diagram at reset

I/O PORTS

(1) Port P0

Port PO is an 8-bit 1/O port with CMOS outputs. As shown in Figure 2, PO can be accessed as memory through zero page address $00 \mathrm{CO}_{16}$. Port PO's directional register allows each bit to be programmed individually as input or output. The directional register (zero page address $00 \mathrm{C} 1_{16}$) can be programmed as input with " 0 ", or as output with " 1 ". When in the output mode, the data to be output is latched to the port latch and output. When data is read from the output port, the output pin level is not read, only the latched data of the port latch is read. Therefore, a previously output value can be read correctly even though the output voltage level has been shifted up or down. Port pins set as input are in the high impedance state so the signal level can be read. When data is written into the input port, the data is latched only to the output latch and the pin still remains in the high impedance state. Following the execution of STP or WIT instruction, key matrix with port PO can be used to generate the interrupt to bring the microcomputer back in its normal state. When this port is selected for input, pull-up transistor can be connected in units of 1-bit.
(2) Port P1

Port P1 has the same function as port P0. $\mathrm{P} 1_{2} \sim \mathrm{P} 1_{7}$ serve dual functions, and the desired function can be selected by the program. When this port is selected for input, pull-up transistor can be connected in units of 4bit.
(3) Port P2

Port P2 has the same function as port P0. This port can also be used as an analog voltage input pin. When this port is selected for input, pull-up transistor can be connected in units of 4-bit.
(4) Port P3

Port P3 is an 4-bit input port.
(5) Port P4

Port P4 is an 4-bit I/O port and has basically the same functions as port PO. When this port is selected for input, pull-up transistor can be connected in units of 4bit.
(6) Port P5

Port P5 is an 4-bit input port and pull-up transistor can be connected in units of 4-bit. $\mathrm{P} 5_{0}$ and $\mathrm{P} 5_{1}$ are shared with clock generating circuit input/output pins.
(7) $I N T_{0}$ pin ($\mathrm{PB}_{0} / \mathrm{INT}_{0}$ pin)

This is an interrupt input pin, and is shared with port $P 3_{0}$. When a " H " to " L " or a " L " to " H " transition input is applied to this pin, the $I N T_{0}$ interrupt request bit (bit 0 of address $00 F D_{16}$) is set to " 1 ".
(8) INT_{1} pin ($\mathrm{P3}_{1} / \mathrm{INT}_{1} \mathrm{pin}$)

This is an interrupt input pin, and is shared with port $P 3_{1}$. When a " H " to " L " or a " L " to " H " transition input is applied to this pin, the INT_{1} interrupt request bit (bit 1 of address $00 \mathrm{FD}_{16}$) is set to " 1 ".
(9) Counter input CNTR 0 pin $\left(\mathrm{P}_{2} / \mathrm{CNTR}_{0}\right.$ pin) This is a timer input pin, and is shared with port P_{2}. When this pin is selected to CNTR $_{0}$ or CNTR $_{1}$ interrupt input pin and a "H" to "L" or a "L" to "H" transition input is applied to this pin, the CNTR ${ }_{0}$ or CNTR $_{1}$ interrupt request bit (bit 2 of address $00 \mathrm{FD}_{16}$) is set to " 1 ".
(10) Counter input CNTR 1 pin ($\mathrm{P}_{3} / \mathrm{CNTR}_{1}$ pin)

This is a timer input pin, and is shared with port P_{3}. When this pin is selected to CNTR ${ }_{0}$ or CNTR $_{1}$ interrupt input pin and a "H" to " L " or a " L " to " H " transition input is applied to this pin, the CNTR ${ }_{0}$ or CNTR $_{1}$ interrupt request bit (bit 2 of address $00 \mathrm{FD}_{16}$) is set to " 1 ".

Fig. 16 Block diagram of ports P0~P1

Fig. 17 Block diagram of port P1

Fig. 18 Block diagram of ports P2~P4

Fig. 19 Block diagram of port P5

CLOCK GENERATING CIRCUIT

The M37471M2-XXXSP/FP has two internal clock generating circuits. Figure 22 shows a block diagram of the clock generating circuits. Normally, the frequency applied to the clock input pin $X_{I N}$ divided by two is used as the internal clock ϕ. Bit 7 of CPU mode register can be used to switch the internal clock ϕ to $1 / 2$ the frequency applied to the clock input pin $\mathrm{X}_{\mathrm{CIN}}$.
Figure 20 shows a circuit example using a ceramic (or crystal) oscillator. Use the manufacturer's recommended values for constants such as capacitance which will differ depending on each oscillator. When using an external clock signal, input from the $X_{\text {IN }}\left(X_{\text {CIN }}\right)$ pin and leave the $X_{\text {OUT }}$ ($\mathrm{X}_{\text {cout }}$) pin open. A circuit example is shown in Figure 21.
The M37471M2-XXXSP/FP has two low power dissipation modes; stop and wait. The microcomputer enters a stop mode when the STP instruction is executed. The oscillator (both $X_{\text {IN }}$ clock and $X_{\text {CIN }}$ clock) stops with the internal clock ϕ held at " H " level. In this case timer 3 and timer 4 are forcibly connected and FF_{16} is automatically set in timer 3 and 07_{16} in timer 4.
Although oscillation is restarted when an external interrupt is accepted, the internal clock ϕ remains in the " H " state until timer 4 overflows. In other words, the internal clock ϕ is not supplied until timer 4 overflows. This is because when a ceramic or similar other oscillator is used, a finite time is required until stable oscillation is obtained after restart.
The microcomputer enters a wait mode when the WIT instruction is executed. The internal clock ϕ stops at " H " level, but the oscillator does not stop. ϕ is re-supplied (wait mode release) when the microcomputer recieves an interrupt.
Instructions can be executed immediately because the oscillator is not stopped. The interrupt enable bit of the interrupt used to reset the wait mode or the stop mode must be set to "1" before executing the WIT or the STP instruction.
Low power dissipation operation is also achieved when the X_{IN} clock is stopped and the internal clock ϕ is generated from the $X_{\text {CIN }}$ clock $\left(30 \mu \mathrm{~A}\right.$ typ. at $\left.\mathrm{f}\left(\mathrm{X}_{\mathrm{CIN}}\right)=32 \mathrm{kHz}\right) . \mathrm{X}_{\text {IN }}$ clock oscillation is stopped when the bit 6 of CPU mode register is set and restarted when it is cleared. However, the wait time until the oscillation stabilizes must be generated with a program when restarting. Figure 24 shows the transition of states for the system clock.

Fig. 20 Example of ceramic resonator circuit

Fig. 21 External clock input circuit

Fig. 22 Block diagram of clock generating circuit

Fig. 23 Structure of CPU mode register

Fig. 24 Transition of states for the system clock.
<An example of flow for system>

```
            Power on reset
    Clock \(X\) oscillation
    internal system clock start \((X \rightarrow 1 / 2 \rightarrow \phi)\)
    Program start from \(\stackrel{\downarrow}{\text { RESET vector }}\)
        Normal program
        \(\leftarrow\) Operating at \(f\left(X_{\text {IN }}\right)\)
            \(s\)
            Clock for clock function \(\mathrm{X}_{\mathrm{C}}\) oscillation start \(\left(\mathrm{CM}_{4}=1, \mathrm{CM}_{5}=1\right)\)
            \(\downarrow\)
            Oscillation rise time routine (software) \(\leftarrow\) Operating at \(f\left(X_{\text {IN }}\right)\)
            \(X_{\text {C }}\) clock power down \(\left(\mathrm{CM}_{5}: 1 \rightarrow 0\right)\)
            Internal clock \(\phi\) source switching \(X \rightarrow X_{C}\left(\mathrm{CM}_{7}: 0 \rightarrow 1\right)\)
            Clock \(X\) halt ( \(X_{C}\) in operation) ( \(\mathrm{CM}_{6}=1\) )
            Internal clock halt(WIT instruction)
            \(\longrightarrow\) Tımer 4 (clock count) overflow
            Internal clock operation start (WIT instruction released)
            Clock processing routine
                                    \(\leftarrow\) Operating at \(f\left(X_{\text {CIN }}\right)\)
            Internal clock halt (WIT instruction)
            Interrupts from \(I N T_{\downarrow}, I N T_{1}\), CNTR \(_{0} /\) CNTR \(_{1}\), timer 1, tımer 2, timer 3, timer 4, serial I/O, key on wake up
            Internal clock operation start (WIT instruction released)
            Program start from interrupt vector
            Program start from interrupt vector
            Clock \(X\) oscillation start ( \(\mathrm{CM}_{6}=0\) )
            Oscillation rise time routine (software) \(\leftarrow\) Operatıng at \(f\left(X_{\text {CIN }}\right)\)
                    \(\downarrow\)
    Internal clock \(\phi\) source switching \(\left(X_{C} \rightarrow X\right)\left(C M_{7}: 1 \rightarrow 0\right)\)
                            Normal program
                                    \(\rightarrow\) Operating at \(f\left(X_{I N}\right)\)
```

 ио!̣วun! צэоэ шод unłəบ

STP instruction preparation (pushing registers)

Timer 3, timer 4 interrupt disable
$\mathrm{X} / 16$ or $\mathrm{X}_{\mathrm{c}} / 16$ selected for timer 3 count source; timer 3 overflow selected for timer 4 count source
Timer 3, timer 4 start counting
Values set to timer 3, timer 4 that do not cause timer 4 to overflow until STP instruction is executed
Interrupt for return from STP enabled
Timer 4 interrupt request bit cleared
Clock X and clock $\stackrel{\downarrow}{ }$ for clock function X_{C} halt (STP instruction)
RAM backup status

Interrupts from $\mathrm{INT}_{0}, \mathrm{INT}_{1}, \mathrm{CNTR}_{0} /$ CNTR $_{1}$, timer 1, timer 2, serial I/O, key on wake up
Clock X and clock for clock function X_{C} oscillation start
Timer 4 overflow $\left(\underset{\downarrow}{\downarrow} / 16\right.$ or $X_{c} / 16 \rightarrow$ timer $3 \rightarrow$ tımer 4)
Internal system clock start
Program start from interrupt vector

Normal program
s

PROGRAMMING NOTES

(1) The frequency ratio of the timer is $1 /(n+1)$
(2) Even though the BBC and BBS instructions are executed after the interrupt request bits are modified (by the program), those instructions are only valid for the contents before the modification. Also, at least one instruction cycle must be used (such as a NOP) between the modification of the interrupt request bits and the execution of the BBC and BBS instructions.
(3) After the ADC and SBC instructions are executed (in decimal mode), one instruction cycle (such as a NOP) is needed before the SEC, CLC, or CLD instructions are executed.
(4) A NOP instruction must be used after the execution of a PLP instruction.
(5) During A-D conversion, don't use STP instruction.

DATA REQUIRED FOR MASK ORDERING

Please send the following data for mask orders.
(1) mask ROM confirmation form
(2) mask specification form

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditıons	Ratıngs	Unit
V_{Cc}	Supply voltage	With respect to $V_{S S}$ Output transistors are at "OFF" state	$-0.3 \sim 7$	V
V_{1}	Input voltage $\mathrm{X}_{\text {IN }}$		$-0.3 \sim \mathrm{~V}_{\mathrm{Cc}}+0.3$	V
V_{1}	$\begin{aligned} & \text { Input voltage } \mathrm{PO}_{0} \sim \mathrm{PO}_{7}, \mathrm{P} 1_{0} \sim \mathrm{P} 1_{7}, \mathrm{P} 2_{0} \sim \mathrm{P} 2_{7}, \\ & \\ & \mathrm{P} 3_{0} \sim \mathrm{~PB}_{3}, \mathrm{P} 4_{0} \sim \mathrm{P4}_{3}, \mathrm{P} 5_{0} \sim \mathrm{P5} 5_{3}, \\ & V_{\text {REF }}, \overline{\mathrm{RESET}} \\ & \hline \end{aligned}$		$-0.3 \sim \mathrm{~V}_{\mathrm{Cc}}+0.3$	V
V_{0}	Output voltage $\mathrm{PO}_{0} \sim \mathrm{PO}_{7}, \mathrm{P1}_{0} \sim \mathrm{P} 1_{7}, \mathrm{P} 2_{0} \sim \mathrm{P} 2_{7}, \mathrm{P} 4_{0} \sim \mathrm{P}_{3}$, $\mathrm{X}_{\text {OUt }}$		$-0.3 \sim \mathrm{~V}_{\mathrm{cc}}+0.3$	V
$\mathrm{P}_{\text {d }}$	Power dissipation	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$	1000(Note 1)	mW
Topr	Operating temperature		$-20 \sim 85$	${ }^{\circ} \mathrm{C}$
Tstg	Storage temperature		$-40 \sim 150$	${ }^{\circ} \mathrm{C}$

Note 1:500mW for QFP type

RECOMMENDED OPERATING CONDITIONS

$\left(\mathrm{V}_{\mathrm{CC}}=2.7 \sim 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{AV} \mathrm{VS}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{Ta}=-20 \sim 85^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Symbol	Parameter	Limits			Unit
		Min	Typ	Max	
V_{cc}	Supply voltage	2.7	5	5.5	V
$\mathrm{V}_{\text {SS }}$	Supply voltage		0		V
$\mathrm{AV}_{\text {SS }}$	Analog supply voltage		0		V
$\mathrm{V}_{1 \mathrm{H}}$	" H " Input voltage $\frac{\mathrm{PO}_{0} \sim \mathrm{PO}_{7}, \mathrm{P1}_{0} \sim \mathrm{P1}_{7}, \mathrm{P3}_{0} \sim \mathrm{PO}_{3} \text {, }}{\frac{\mathrm{RESET}}{}, \mathrm{X}_{\mathrm{IN}}}$	$0.8 \mathrm{~V}_{\mathrm{cc}}$		V_{cc}	V
$\mathrm{V}_{1 \mathrm{H}}$	"H" Input voltage $\mathrm{P}_{2} \sim \sim \mathrm{P}_{7}, \mathrm{P4}_{0} \sim \mathrm{P4}_{3}, \mathrm{P5}_{0} \sim \mathrm{P5}_{3}$ (Note 1)	$0.7 \mathrm{~V}_{\mathrm{CC}}$		V_{CC}	V
$\mathrm{V}_{\text {IL }}$	"L" Input voltage $\mathrm{PO}_{0} \sim \mathrm{PO}_{7}, \mathrm{P} 1_{0} \sim \mathrm{P} 1_{7}, \mathrm{P} 3_{0} \sim \mathrm{P3}_{3}$	0		$0.2 \mathrm{~V}_{\mathrm{cc}}$	V
V_{IL}	"L" Input voltage $\mathrm{P} 2_{0} \sim P 2_{7}, \mathrm{P} 4_{0} \sim \mathrm{P4}_{3}, \mathrm{P5} 5_{0} \sim \mathrm{P5} 3$ (Note 1)	0		0.25V V_{cc}	V
$\mathrm{V}_{\text {IL }}$	"L" Input voltage $\overline{\text { RESET }}$	0		0.12V VCC	V
$\mathrm{V}_{\text {IL }}$	"L" Input voltage $\mathrm{X}_{\text {IN }}$	0		$0.16 \mathrm{~V}_{\mathrm{cc}}$	V
$\mathrm{I}_{\mathrm{OH} \text { (sum) }}$	" H " sum output current $\mathrm{PO}_{0} \sim \mathrm{PO}_{7}, \mathrm{P4}_{0} \sim \mathrm{P4}_{3}$			-30	mA
$\mathrm{I}_{\mathrm{OH} \text { (sum) }}$	" H " sum output current $\mathrm{P1}_{0} \sim \mathrm{P1}_{7}, \mathrm{P}_{0} \sim \mathrm{P}_{7}$			-30	mA
$\mathrm{I}_{\text {OL(sum) }}$	"L" sum output current $\mathrm{PO}_{0} \sim \mathrm{PO}_{7}, \mathrm{P4}_{0} \sim \mathrm{P4}_{3}$			60	mA
l OL(sum)	"L" sum output current $\mathrm{P} 1_{0} \sim \mathrm{P1}_{7}, \mathrm{P2}_{0} \sim \mathrm{P} 2_{7}$			60	mA
lol(peak)	$\begin{aligned} & \text { "L" peak output current } \mathrm{PO}_{0} \sim \mathrm{PO}_{7}, \\ & \mathrm{P} 1_{0} \sim \mathrm{P1}_{7}, \\ & \mathrm{P} 2_{0} \sim \mathrm{P}_{7}, \\ & \hline \end{aligned}$			20	mA
lol(avg)	" L " average output current $\mathrm{PO}_{0} \sim \mathrm{PO}_{7}, \mathrm{P1}_{0} \sim \mathrm{P} 1_{7}$, $\mathrm{P}_{2} \sim \mathrm{P}_{7}, \mathrm{P4}_{0} \sim \mathrm{P4}_{3}$ (Note 4)			10	mA
$\mathrm{I}_{\text {OH(peak) }}$	" H " peak output current $\mathrm{PO}_{0} \sim \mathrm{PO}_{7}, \mathrm{P1}_{0} \sim \mathrm{P1}_{7}$, $\mathrm{P}_{0} \sim \mathrm{P}_{7}, \mathrm{P}_{4} \sim \mathrm{P}_{4}$			-10	mA
$\mathrm{I}_{\text {OH(avg) }}$	" H " average output current $\mathrm{PO}_{0} \sim \mathrm{PO}_{7}, \mathrm{P1}_{0} \sim \mathrm{P1}_{7}$, $\mathrm{P}_{2} \sim \mathrm{P}_{2}, \mathrm{P}_{0} \sim \mathrm{P}_{3} \quad$ (Note 4)			-5	mA
$\mathrm{f}_{\text {(CNTR })}$	Timer input frequency $\mathrm{CNTR}_{0}\left(\mathrm{P3}_{2}\right), \mathrm{CNTR}{ }_{1}\left(\mathrm{P3}_{3}\right)$ (Note 2)			1	MHz
$\mathrm{f}_{(\text {CLK })}$	Serial I/O clock input frequency CLK ($\mathrm{P1}_{6}$) (Note 2)			1	MHz
$f\left(X_{\text {IN }}\right)$	Clock oscillating frequency (Note 2)			4	MHz
$f\left(X_{\text {CIN }}\right)$	Clock oscillating frequency for clock function (Note 2, 3)		32	50	kHz

Note 1 : It is except to use P_{0} as $\mathrm{X}_{\mathrm{CIN}}$
2 : Oscillation frequency is at 50% duty cycle
3 : When used in the low-speed mode, the clock oscillating frequency for clock function should be $f\left(X_{\text {CIN }}\right)<f\left(X_{\text {IN }}\right) / 3$
4 : The average output current $\mathrm{I}_{\mathrm{OH}(\mathrm{avg})}$ and I_{OL} (avg) are the average value during a 100 ms

MITSUBISHI MICROCOMPUTERS M37471 M2-XXXSP/FP,M37471 M4-XXXSP/FP M37471 M8-XXXSP/FP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

ELECTRICAL CHARACTERISTICS ($\mathrm{v}_{\mathrm{cc}}=2.7 \sim 5.5 \mathrm{~V}, \mathrm{v}_{\mathrm{ss}}=\mathrm{Av} \mathrm{v}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-20 \sim 85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test Conditions		Limits			Unit
				Min	Typ	Max	
$\mathrm{V}_{\text {OH }}$	$\begin{array}{r} \text { " } \mathrm{H} " \text { output voltage } \mathrm{PO}_{0} \sim \mathrm{PO}_{7}, \mathrm{P1}_{0} \sim \mathrm{P1}_{7}, \\ \mathrm{P}_{0} \sim \mathrm{P}_{7}, \mathrm{P}_{0} \sim \mathrm{P4}_{3} \end{array}$	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-5 \mathrm{~mA}$		3			V
		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-1.5 \mathrm{~mA}$		2			
V_{OL}	$\begin{array}{r} \text { "L" output voltage } \mathrm{PO}_{0} \sim \mathrm{PO}_{7}, \mathrm{P} 1_{0} \sim \mathrm{P} 1_{7}, \\ \mathrm{P}_{0} \sim \mathrm{P}_{7}, \mathrm{P}_{0} \sim \mathrm{P}_{3} \\ \hline \end{array}$	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{l}_{\mathrm{OL}}=10 \mathrm{~mA}$				2	V
		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=3 \mathrm{~mA}$				1	
$\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\mathrm{T}-}$	Hysteresis $\mathrm{PO}_{0} \sim \mathrm{PO}_{7}, \mathrm{P3}_{0} \sim \mathrm{P3}_{3}$	$\mathrm{V}_{\mathrm{Cc}}=5 \mathrm{~V}$			0.5		V
		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$			0.3		
$\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\mathrm{T}-}$	Hysteresis $\overline{\text { RESET }}$	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$			0.5		V
		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$			0.3		
$\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\mathrm{T}-}$	Hysteresıs $\mathrm{P}_{16} / \mathrm{CLK}$	use as CLK input	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$		0.5		V
			$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$		0.3		
$I_{\text {IL }}$	$\begin{gathered} \text { "L" input current } \mathrm{PO}_{0} \sim \mathrm{PO}_{7}, \mathrm{P1}_{0} \sim P \mathrm{P1}_{7}, \mathrm{P} 3_{0} \sim \mathrm{P} 3_{2}, \\ P 4_{0} \sim P 4_{3}, \mathrm{P5}_{0} \sim \mathrm{P5} 5_{3} \end{gathered}$	$\mathrm{V}_{1}=0 \mathrm{~V} \text {, }$ not use pull-up transistor	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$			-5	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$			-3	
		$\mathrm{V}_{1}=0 \mathrm{~V},$ use pull-up transistor	$\mathrm{V}_{C C}=5 \mathrm{~V}$	-0.2.5	-0.5	-1.0	mA
			$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$	-0.08	-0.18	-0.35	
$I_{\text {IL }}$	"L" input current $\mathrm{P}_{3}{ }_{3}$	$\mathrm{V}_{1}=0 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$			-5	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{cc}}=3 \mathrm{~V}$			-3	
$I_{\text {IL }}$	"L" input current ${ }^{\text {P }}{ }_{0} \sim P{ }^{\text {P }}{ }_{7}$	$\mathrm{V}_{1}=0 \mathrm{~V}$, not use as analog input, not use pull-up transistor	$\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}$			-5	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$			-3	
		$\mathrm{V}_{1}=0 \mathrm{~V}$, not use as analog input, use pull-up transistor	$\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}$	-0.25	-0.5	-1.0	mA
			$\mathrm{V}_{\mathrm{cc}}=3 \mathrm{~V}$	-0.08	-0.18	-0.35	
IIL	"L" input current $\overline{\text { RESET, }}$, IIN	$\begin{aligned} & \mathrm{V}_{1}=0 \mathrm{~V} \\ & \left(\mathrm{X}_{\text {IN }} \text { is at stop mode }\right) \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$			-5	$\mu \mathrm{A}$
			$\mathrm{V}_{C C}=3 \mathrm{~V}$			-3	
I_{H}	" H " input current $\mathrm{PO}_{0} \sim \mathrm{PO}_{7}, \mathrm{P1}_{0} \sim \mathrm{P1}_{7}, \mathrm{P3}_{0} \sim \mathrm{P3}_{2}$, $\mathrm{P} 4_{0} \sim \mathrm{P4}_{3}, \mathrm{P5}_{0} \sim \mathrm{P} 5_{3}$	$\mathrm{V}_{1}=\mathrm{v}_{\mathrm{cc}},$ not use pull-up transistor	$V_{C C}=5 \mathrm{~V}$			5	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$			3	
I_{H}	" H " input current P_{3}	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{cc}}$	$V_{C C}=5 \mathrm{~V}$			5	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$			3	
I_{H}	" H " input current $\mathrm{P}^{2} \sim \sim \mathrm{P}_{7}$	$V_{1}=V_{c c}$, not use as analog input, not use pull-up transistor	$V_{C C}=5 \mathrm{~V}$			5	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$			3	
$\mathrm{I}_{\mathbf{H}}$	" H " input current $\overline{\text { RESET }}$, $\mathrm{X}_{\text {IN }}$	$\begin{aligned} & \mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}, \\ & \left(\mathrm{X}_{\text {IN }} \text { is at stop mode }\right) \end{aligned}$	$\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}$			5	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{cc}}=3 \mathrm{~V}$			3	
I_{Cc}	Supply current	At normal operation, A-D conversion is not executed $\mathrm{X}_{\mathrm{IN}}=4 \mathrm{MHz}$	$\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}$		3.5	7	mA
			$V_{C C}=3 \mathrm{~V}$		1.8	3.6	
		At normal operation, A-D conversion is executed $\mathrm{X}_{\text {IN }}=4 \mathrm{MHz}$	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$		4	8	
			$V_{C C}=3 \mathrm{~V}$		2	4	
		At low-speed mode, $X_{\text {cout }}$ is low-power mode, A-D conversion is not executed $X_{\mathrm{IN}}=0 \mathrm{~Hz}, X_{\mathrm{CIN}}=32 \mathrm{kHz}, \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$		30	80	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$		15	40	
		At walt mode,$\mathrm{X}_{\mathrm{IN}}=4 \mathrm{MHz}$	$\mathrm{V}_{C C}=5 \mathrm{~V}$		1	2	mA
			$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$		0.5	1	
		At watt mode, $\mathrm{X}_{1 \mathrm{~N}}=\mathrm{OHz}, \mathrm{X}_{\mathrm{CIN}}=32 \mathrm{kHz}$, $X_{\text {Cout Is }}$ low-power mode, $T_{a}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$		3	12	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{cC}}=3 \mathrm{~V}$		2	8	
		Stop all oscillation$V_{C C}=5 \mathrm{~V}$	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$		0.1	1	
			$\mathrm{T}_{\mathrm{a}}=85^{\circ} \mathrm{C}$		1	10	
$\mathrm{V}_{\text {RAM }}$	RAM retention voltage	Stop all oscillation		2			V

A-D CONVERTER CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=2.7 \sim 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{AV} \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-20 \sim 85^{\circ} \mathrm{C}, \mathrm{f}\left(\mathrm{X}_{\mathrm{IN}}\right)=4 \mathrm{MHz}\right.$, unless otherwise noted)

Symbol	Parameter	Test Conditions	Limits			Unit
			Mın.	Typ	Max	
-	Resolution				8	bits
-	Non-linearity error				± 2	LSB
-	Differential non-linearity error				± 0.9	LSB
$V_{\text {Ot }}$	Zero transition error	$\mathrm{V}_{\text {CC }}=\mathrm{V}_{\text {REF }}=5.12 \mathrm{~V}, \mathrm{loL}_{\text {(sum }}=0 \mathrm{~mA}$			2	LSB
		$\mathrm{V}_{\text {CC }}=\mathrm{V}_{\text {REF }}=3.072 \mathrm{~V}, \mathrm{IOL}^{\text {(sum) }}$) $=0 \mathrm{~mA}$			3	
$V_{\text {FST }}$	Full-scale transition error	$\mathrm{V}_{C C}=\mathrm{V}_{\text {REF }}=5.12 \mathrm{~V}$			4	LSB
		$\mathrm{V}_{\text {CC }}=\mathrm{V}_{\text {REF }}=3.072 \mathrm{~V}$			7	
$\mathrm{t}_{\text {CONV }}$	Conversion time				25	$\mu \mathrm{s}$
$V_{\text {VREF }}$	Reference input voitage		$0.5 \mathrm{~V}_{c c}$		V_{cc}	V
R LADDER	Ladder resistance value		2	5	10	k Ω
$V_{\text {IA }}$	Analog input voltage		0		$\mathrm{V}_{\text {REF }}$	V

DESCRIPTION

The M37470E4-XXXSP is a single-chip microcomputer designed with CMOS silicon gate technology. It is housed in a 32-pin shrink plastic molded DIP. The features of this chip are similar to those of the M37470M4-XXXSP except that this chip has a 8192 bytes PROM built-in. This single-chip microcomputer is useful for home electrical appliances and consumer appliance controllers.
In addition to its simple instruction sets, the PROM, RAM, and I/O addresses are placed on the same memory map to enable easy programming. Since general purpose PROM writers can be used for the built-in PROM, this chip is suitable for small quantity production runs.
The differences between the M37470E4-XXXSP and the M37470E8-XXXSP are noted below. The following explanations apply to the M37470E4-XXXSP.
Specification variations for other chips are noted accordingly.

Type name	ROM size	RAM size
M37470E4-XXXSP	8192 bytes	192 bytes
M37470E8-XXXSP	16384 bytes	384 bytes

FEATURES

- Number of basic instructions...................................... 69
- Memory size PROM ….......... 8192 bytes (M37470E4) 16384 bytes (M37470E8)
RAM \cdot................ 192 bytes (M37470E4) 384 bytes (M37470E8)
- Instruction execution time
$\ldots . . .1 \mu \mathrm{~s}$ (minimum instructions at 4 MHz frequency)
- Single power supply
$2.7 \sim 5.5 \mathrm{~V}$
- Power dissipation
normal operation mode (at 4 MHz frequency) 17.5 mW
- Subroutine nesting 96 levels max. (M37470E4)

- 8-bit timer .4
- Serial I/O... ${ }^{-1}$
- Programmable I/O ports (Ports P0, P1, P2, P4) $\cdots \cdots \cdots 22$
- Input port (Port P3) ... 4
- A-D converter.....................................8-bit, 4-channel
- PROM (equivalent to the M5L27256)
program voltage
12.5 V

APPLICATION

Office automation equipment, VCR, Tuner, Audio-visual equipment

PIN CONFIGURATION (TOP VIEW)

Outline 32P4B

MITSUBISHI MICROCOMPUTERS
M37470E4-XXXSP
M37470E8-XXXSP
PROM VERSION of M37470M4-XXXSP,M37470M8-XXXSP

FUNCTIONS OF M37470E4-XXXSP, M37470E8-XXXSP

Parameter			Functions
Number of basic instructons			69
Instruction execution time			$1 \mu \mathrm{~S}$ (minımum instructions, at 4 MHz frequency)
Clock frequency			4 MHz (max.)
Memory size	M37470E4-XXXSP	PROM	8192 bytes (Note 1)
		RAM	192 bytes
	M37470E8-XXXSP	PROM	16384 bytes (Note 1)
		RAM	384 bytes
Input/Output port	P0, P1	I/O	8 -bit $\times 2$
	P2	1/O	4-bit $\times 1$
	P3	Input	4 -bit $\times 1$
	P4	I/O	2 -bit $\times 1$
Serial I/O			8 -bit $\times 1$
Timers			8 -bit timer $\times 4$
A-D converter			8 -bit $\times 1$ (4channel)
Subroutine nesting	M37470E4-XXXSP		96 levels (max)
	M37470E8-XXXSP		192 levels (max)
Interrupt			Five external interrupts, six internal interrupts, one software interrupt
Clock generating circuit			Built-in with internal feedback resistor (ceramic or quartz crystal oscillator)
Supply voltage			27~55V
Power dissipation			$175 \mathrm{~mW}\left(\right.$ at $\left.\mathrm{f}\left(\mathrm{X}_{\text {IN }}\right)=4 \mathrm{MHz}\right)$
Input/Output characteristics	Input/Output voltage		5 V
	Output current		$-5 \sim 10 \mathrm{~mA}$ (ports P0, P1, P2, P4 CMOS tri-state output)
Operating temperature range			$-20 \sim 85^{\circ} \mathrm{C}$
Device structure			CMOS Silicon gate
Package			32-pin shrink plastic molded DIP

Note 1 : The PROM programming voltage is 12.5 V (equivalent to the M5L27256).

PIN DESCRIPTION

Pin	Mode	Name	Input/ Output	Functions
$\begin{aligned} & \mathrm{v}_{\mathrm{cc}}, \\ & \mathrm{v}_{\mathrm{ss}} \end{aligned}$	Single-chip /EPROM	Supply voltage		Power supply inputs $27 \sim 5.5 \mathrm{~V}$ to V_{CC} and OV to V_{SS}
RESET	Single-chip	RESET input	Input	To reset, keep this input terminal low for more than $2 \mu \mathrm{~s}(\mathrm{~min})$ under normal V_{CC} conditions.
	EPROM	RESET input		Connect to $\mathrm{V}_{\text {ss }}$
$\mathrm{XIN}_{\text {IN }}$	Single-chip /EPROM	Clock input	Input	Connect a ceramic or a quartz crystal oscillator between $X_{\text {IN }}$ and $X_{\text {OUt }}$ for clock oscillation If an external clock input is used, connect the clock input to the $X_{\text {IN }}$ pin and open the $X_{\text {out }}$ pin Feedback resistor is connected between the $X_{i N}$ and $X_{\text {out }}$ pins
$\mathrm{X}_{\text {Out }}$		Clock output	Output	
$\mathrm{PO}_{0} \sim \mathrm{PO}_{7}$	Single-chip	I/O port P0	1/0	Port PO is an 8-bit I/O port The output structure is CMOS output When this port is selected for input, pull-up transistor can be connected in units of 1-bit and a key on wake up function is provided
	EPROM	Data input/output $\mathrm{D}_{0} \sim \mathrm{D}_{7}$	$1 / 0$	Port P0 works as an 8-bit data bus ($\mathrm{D}_{0} \sim \mathrm{D}_{7}$)
$\mathrm{P} 1_{0} \sim \mathrm{P} 1_{7}$	Single-chip	I/O port P1	I/O	Port P1 is an 8-bit I/O port The output structure is CMOS output When this port is selected for input, pull-up transistor can be connected in units of 4-bit $\mathrm{P1}_{2}, \mathrm{P1}_{3}$ are in common with timer output pins $\mathrm{T}_{0}, \mathrm{~T}_{1} \mathrm{P1}_{4}, \mathrm{P1}_{5}, \mathrm{P} 1_{6}, \mathrm{P} 1_{7}$ are in common with serial I/O pins $\mathrm{S}_{\mathrm{IN}}, \mathrm{S}_{\mathrm{Out}}$, CLK, $\mathrm{S}_{\text {RDY }}$, respectively The output structure of $\mathrm{S}_{\text {OUt }}$ and $\mathrm{S}_{\text {RDY }}$ can be changed to N -channel open drain output
	EPROM	Address input $\mathrm{A}_{4} \sim \mathrm{~A}_{10}$	Input	$\mathrm{P} 1_{1} \sim \mathrm{P} 1_{7}$ works as the 7-bit address input ($\mathrm{A}_{4} \sim \mathrm{~A}_{10}$) P1 1_{0} must be opened.
$P 2_{0} \sim P 2_{3}$	Single-chip	I/O port P2	I/O	Port P2 is an 4-bit 1/O port. The output structure is CMOS output When this port is selected for input, pull-up transistor can be connected in units of 4-bit This port is in common with analog input pins $\mathbb{N}_{0} \sim \mathbb{N}_{3}$.
	EPROM	Address input $\mathrm{A}_{0} \sim \mathrm{~A}_{3}$	Input	Port P2 works as the lower 4-bit address input ($A_{0} \sim A_{3}$)
$P 3_{0} \sim P 3_{3}$	Single-chip	Input port P3	Input	Port P 3 is an 4-bit input port $\mathrm{P}_{3}, \mathrm{P}_{3}$ are in common with external interrupt input pins $\mathrm{INT}_{0}, \mathrm{INT}_{1}$ and $\mathrm{P3}_{2}, \mathrm{P3}_{3}$ are in common with timer input pins CNTR $_{0}$, CNTR $_{1}$
	EPROM	Address input A_{11}, A_{12} Select mode $V_{\text {Pp }}$ input	Input	$\mathrm{P}_{3}, \mathrm{P}_{3}$ works as the 2-bit address input ($\mathrm{A}_{11}, \mathrm{~A}_{12}$) P_{2} works as $\overline{\mathrm{OE}}$ input Connect to $\mathrm{P3}_{3}$ to V_{PP} when programming or verifing
P40, P4,	Single-chip	I/O port P4	1/0	Port P4 is an 2-bit 1/O port The output structure is CMOS output When this port is selected for input, pull-up transistor can be connected in units of 2-bit
	EPROM	Address input $\mathrm{A}_{13}, \mathrm{~A}_{14}$	Input	Port P4 works as the higher 2-bit address input ($\mathrm{A}_{13}, \mathrm{~A}_{14}$)
$\mathrm{V}_{\text {REF }}$	Single-chip	Reference voltage input	Input	This is the reference voltage input pin for the A-D converter
	EPROM	Select mode	Input	V ${ }_{\text {REF }}$ works as $\overline{\mathrm{CE}}$ input

EPROM MODE

The M37470E4-XXXSP, M37470E8-XXXSP feature an EPROM mode in addition to its normal modes. When the $\overline{R E S E T}$ signal level is low (" L "), the chip automatically enters the EPROM mode. Table 1 list the correspondence between pins and Figure 1 gives the pin connection in the EPROM mode. When in the EPROM mode, ports P0, $\mathrm{P1}_{1}$ ~ $\mathrm{P}_{7}, \mathrm{P} 2, \mathrm{P} 3, \mathrm{P} 4, \mathrm{~V}_{\text {REF }}$ are used for the PROM (equivalent to the M5L27256). When in this mode, the built-in PROM can be written to or read from using these pins in the same way as with the M5L27256. The oscillator should be connected to the $X_{I N}$ and $X_{\text {OUt }}$ pins, or external clock should be connected to the $X_{\text {IN }}$ pin.

Table 1. Pin function in EPROM mode

	M37470E4-XXXSP, M37470E8-XXXSP	M5L27256
V_{CC}	V_{CC}	V_{CC}
V_{PP}	P_{3}	$\mathrm{~V}_{\mathrm{PP}}$
V_{SS}	V_{SS}	V_{SS}
Address input	Ports $\mathrm{P1}_{1} \sim \mathrm{P1}_{7}, \mathrm{P2}_{\mathbf{0}} \sim \mathrm{P2}_{3}$ $\mathrm{P3}_{0}, \mathrm{P3}_{1}, \mathrm{P} 4_{0}, \mathrm{P} 4_{1}$	$\mathrm{~A}_{0} \sim \mathrm{~A}_{14}$
Data I/O	$\mathrm{Port}_{\mathrm{PO}}$	$\mathrm{D} \sim \mathrm{D}_{7}$
$\overline{\mathrm{CE}}$	$\mathrm{V}_{\mathrm{REF}}$	$\overline{\mathrm{CE}}$
$\overline{\mathrm{OE}}$	$\mathrm{P3}_{2}$	$\overline{\mathrm{OE}}$

Fig. 1 Pin connection in EPROM mode

PROM READING AND WRITING Reading

To read the PROM, set the $\overline{C E}$ and $\overline{O E}$ pins to a " L " level. Input the address of the data ($A_{0} \sim A_{14}$) to be read and the data will be output to the I/O pins $D_{0} \sim D_{7}$. The data $1 / O$ pins will be floating when either the $\overline{\mathrm{CE}}$ or $\overline{\mathrm{OE}}$ pin is in the " H " state.

Writing

To write to the PROM, set the $\overline{\mathrm{OE}}$ pin to a " H " level. The CPU will enter the program mode when $V_{P P}$ is applied to the V_{PP} pin. The address to be written to is selected with pins $A_{0} \sim A_{14}$, and the data to be written is input to pins D_{0} $\sim D_{7}$. Set the $\overline{C E}$ pin to a " L " level to begin writing.

Notes on Writing

- M37470E4-XXXSP

When using a PROM writer, the address range should be between 6000_{16} and $7 \mathrm{FFF}_{16}$. Read/write operations on addresses 0000_{16} to $5 \mathrm{FFF}_{16}$ cannot be performed correctly.

- M37470E8-XXXSP

When using a PROM writer, the address range should be between 4000_{16} and $7 \mathrm{FFF}_{16}$. When data is written between addresses 0000_{16} and $7 \mathrm{FFF}_{16}$, fill addresses 0000_{16} to $3 \mathrm{FFF}_{16}$ with FF_{16}.

NOTES ON HANDLING

(1) Since a high voltage (12.5 V) is used to write data, care should be taken when turning on the PROM writer's power.
(2) For the programmable microcomputer (shipped in blank or OTP type), Mitsubishi does not perform PROM write test and screening in the assembly process and following processes. To improve reliability after write, performing write and test according to the flow below before use is recommended.

Note : Since the screening temperature is higher than storage temperature, never expose to $150^{\circ} \mathrm{C}$ exceeding 100 hours.

Table 2. I/O signal in each mode

Pin	$\overline{\mathrm{CE}}(13)$	$\overline{\mathrm{OE}}(21)$	$\mathrm{V}_{\mathrm{PP}}(22)$	$\mathrm{V}_{\mathrm{CC}}(17)$	Data $1 / \mathrm{O}$ $(25 \sim 32)$
Mode	V_{IL}	V_{IL}	V_{CC}	V_{CC}	Output
Read-out	V_{IL}	V_{IH}	V_{PP}	V_{CC}	Floating
Output disable	V_{IL}	V_{IH}	V_{CC}	Input	
Programming	V_{IH}	V_{IL}	V_{CP}	Output	
Programming verify	V_{IH}	V_{IH}	V_{CC}	Floating	
Program disable					

Note 1 : V_{IL} and V_{IH} indicate a " L " and " H " input voltage, respectively

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
$\mathrm{V}_{\text {cc }}$	Supply voltage	With respect to $V_{\text {ss }}$ Output transistors are at "OFF" state	-0.3~7	V
V_{1}	Input voltage $\mathrm{X}_{\text {IN }}$		$-0.3 \sim \mathrm{~V}_{\mathrm{cc}}+0.3$	V
V_{1}	Input voltage $\mathrm{PO}_{0} \sim \mathrm{PO}_{7}, \mathrm{P1}_{0} \sim \mathrm{P1}_{7}, \mathrm{P}_{0} \sim \mathrm{P}_{3}$, $\mathrm{P3}_{0} \sim \mathrm{P3}_{3}, \mathrm{P4}_{0}, \mathrm{P4}_{1}, \mathrm{~V}_{\text {REF }}$, $\overline{\text { RESET }}$		$\begin{gathered} -0.3 \sim \mathrm{v}_{c c}+0.3 \\ (\text { Note } 1) \end{gathered}$	V
V_{0}	Output voltage $\mathrm{PO}_{0} \sim \mathrm{PO}_{7}, \mathrm{P1}_{0} \sim \mathrm{P1}_{7}, \mathrm{P2}_{0} \sim \mathrm{P}_{3}$, $\mathrm{P} 4{ }_{0}, \mathrm{P4}_{1}, \mathrm{X}_{\text {OUT }}$		$-0.3 \sim V_{c c}+0.3$	V
$\mathrm{Pd}_{\text {d }}$	Power dissipation	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$	1000	mW
Topr	Operatıng temperature		$-20 \sim 85$	${ }^{\circ} \mathrm{C}$
Tstg	Storage temperature		$-40 \sim 150$	${ }^{\circ} \mathrm{C}$

Note 1 : In EPROM programming mode, P_{3} is 13 V

RECOMMENDED OPERATING CONDITIONS

($\mathrm{V}_{\mathrm{cc}}=2.7 \sim 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{Ta}=-20 \sim 85^{\circ} \mathrm{C}$ unless otherwise noted)

Symbol	Parameter		Limits			Unit
			Min	Typ	Max.	
V_{CC}	Supply voltage		2.7	5	5.5	V
$\mathrm{V}_{\text {ss }}$	Supply voltage			0		V
V_{1+}	$\begin{aligned} \text { " } \mathrm{H} \text { " Input voltage } & \mathrm{P0}_{0} \sim \mathrm{PO}_{7}, \mathrm{P} 1_{0} \sim \mathrm{P1}_{7}, \mathrm{P3}_{0} \sim \mathrm{P3}_{3}, \\ & \overline{\mathrm{RESET}}, \mathrm{X}_{\mathrm{IN}}\end{aligned}$		0.8 V cc		V_{cc}	V
V_{1+}	" H " input voltage $\mathrm{P}_{2} \sim \mathrm{P}_{3}, \mathrm{P4}_{4}, \mathrm{P4}_{1}$		$0.7 \mathrm{~V}_{\mathrm{CC}}$		V_{cc}	V
$\mathrm{V}_{\text {IL }}$	"L" Input voltage $\mathrm{PO}_{0} \sim \mathrm{PO}_{7}, \mathrm{P} 1_{0} \sim \mathrm{P1}_{7}, \mathrm{P3}_{0} \sim \mathrm{P3}_{3}$		0		$0.2 \mathrm{~V}_{\mathrm{cc}}$	V
$V_{\text {IL }}$	"L" Input voltage $\mathrm{P} 20^{\sim} \sim \mathrm{P2}_{3}, \mathrm{P4}_{0}, \mathrm{P4} 4_{1}$		0		$0.25 \mathrm{~V}_{\mathrm{cc}}$	V
$V_{\text {IL }}$	"L" Input voltage RESET		0		0.12V V_{cc}	V
$\mathrm{V}_{\text {IL }}$	"L" Input voltage X_{IN}		0		0.16V V_{cc}	V
$\mathrm{IOH}_{\text {(sum) }}$	"H" sum output current $\mathrm{PO}_{0} \sim \mathrm{PO}_{7}, \mathrm{P4}_{4}, \mathrm{P4}_{1}$				-30	mA
I_{OH} (sum)	"H" sum output current $\mathrm{P1}_{10} \sim \mathrm{P1}_{7}, \mathrm{P} 2 \sim \mathrm{P2}_{3}$				-30	mA
lolsum)	"L" sum output current $\mathrm{PO}_{0} \sim \mathrm{PO}_{7}, \mathrm{P4}_{0}, \mathrm{P4}_{1}$				60	mA
$\mathrm{I}_{\text {OL(sum) }}$	"L" sum output current $\mathrm{P1}_{0} \sim \mathrm{P1}_{7}, \mathrm{P2}_{0} \sim \mathrm{P}_{3}$				60	mA
Iol(peak)	$\begin{array}{r} \text { "L" peak output current } \begin{aligned} & \mathrm{PO}_{0} \sim \mathrm{PO}_{7}, \mathrm{P1}_{0} \sim \mathrm{P1}_{7}, \\ & \mathrm{P}_{0} \sim \mathrm{P}_{3}, \end{aligned}, \mathrm{P}_{0}, \mathrm{P} 4_{1} \\ \hline \end{array}$				20	mA
Iol(avg)	" L " average output current $\mathrm{PO}_{0} \sim \mathrm{PO}_{7}, \mathrm{P1}_{0} \sim \mathrm{P1}_{7}$, $\mathrm{P} 2_{0} \sim \mathrm{P}_{2}, \mathrm{P}_{0}, \mathrm{P}_{4}$	(Note 2)			10	mA
$\mathrm{I}_{\mathrm{OH} \text { (peak) }}$	$\begin{array}{r} \text { "H" peak output current } \begin{aligned} & \mathrm{PO}_{0} \sim \mathrm{PO}_{7}, \mathrm{P} 1_{0} \sim \mathrm{P1}_{7}, \\ & \mathrm{P}_{0} \sim \mathrm{P}_{3}, \mathrm{P4}_{0}, \mathrm{P} 4_{1} \\ & \hline \end{aligned} \\ \hline \end{array}$				-10	mA
$\mathrm{l}_{\mathrm{OH}(\mathrm{avg})}$	$\begin{array}{r} \text { " } \mathrm{H} \text { " average output current } \mathrm{PO}_{0} \sim \mathrm{PO}_{7}, \mathrm{P1}_{0} \sim \mathrm{P1}_{7}, \\ \\ \mathrm{P}_{2} \sim \mathrm{P}_{3}, \mathrm{P}_{0}, \mathrm{P} 4_{1} \\ \hline \end{array}$	(Note 2)			-5	mA
$\mathrm{f}_{\text {(CNTR })}$	Timer input frequency $\mathrm{CNTR}_{0}\left(\mathrm{P}_{2}\right), \mathrm{CNTR}{ }_{1}\left(\mathrm{P}_{3}\right)$	(Note 1)			1	MHz
$\mathrm{f}_{\text {(CLK })}$	Serial I/O clock input frequency CLK (P_{6})	(Note 1)			1	MHz
$f\left(X_{\text {IN }}\right)$	Clock oscillating frequency	(Note 1)			4	MHz

Note 1: Oscillation frequency is at 50% duty cycle.
2 : The average output current $\mathrm{I}_{\mathrm{OH}(\mathrm{avg})}$ and $\mathrm{I}_{\mathrm{OL}(\mathrm{avg})}$ are the average value during a 100 ms

MITSUBISHI MICROCOMPUTERS M37470E4-XXXSP M37470E8-XXXSP

ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{cc}}=2.7 \sim 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{v}, \mathrm{T}_{\mathrm{a}}=-20 \sim 85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test Conditions		Limits			Unit
				Min	Typ	Max	
V_{OH}	" H " output voltage $\mathrm{PO}_{0} \sim \mathrm{PO}_{7}, \mathrm{P1}_{0} \sim \mathrm{P1}_{7}, \mathrm{P2}_{0} \sim \mathrm{P2}_{3}, \mathrm{P4}_{0}, \mathrm{P4}_{1}$	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-5 \mathrm{~mA}$		3			V
		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-1.5 \mathrm{~mA}$		2			
V_{OL}	"L" output voltage $\mathrm{PO}_{0} \sim \mathrm{PO}_{7}, \mathrm{P1}_{0} \sim \mathrm{P1}_{7}, \mathrm{P}_{2} \sim \mathrm{P2}_{3}, \mathrm{P} 4_{0}, \mathrm{P4}_{4}$	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{l}_{\mathrm{OL}}=10 \mathrm{~mA}$				2	V
		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, \mathrm{l}_{\mathrm{OL}}=3 \mathrm{~mA}$				1	
$\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\mathrm{T}-}$	Hysteresis $\mathrm{PO}_{0} \sim \mathrm{PO}_{7}, \mathrm{P3}_{0} \sim \mathrm{P3}_{3}$	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$			0.5		V
		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$			0.3		
$\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\mathrm{T}-}$	Hysteresis RESET	$\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}$			0.5		V
		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$			0.3		
$\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\mathrm{T}-}$	Hysteresis $\mathrm{P}_{16} / \mathrm{CLK}$	use as CLK input	$\mathrm{v}_{\mathrm{cc}}=5 \mathrm{~V}$		0.5		V
			$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$		0.3		
I/L	"L" input current $\mathrm{PO}_{0} \sim \mathrm{PO}_{7}, \mathrm{P1}_{0} \sim \mathrm{P} 1_{7}, \mathrm{P3}_{0} \sim \mathrm{P3}_{2}, \mathrm{P} 4_{0}, \mathrm{P} 4_{1}$	$\mathrm{V}_{\mathrm{l}}=0 \mathrm{~V},$ not use pull-up transistor	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$			-5	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$			-3	
		$\mathrm{v}_{1}=0 \mathrm{~V},$ use pull-up transistor	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	-0.25	-0.5	-1.0	mA
			$\mathrm{V}_{\mathrm{Cc}}=3 \mathrm{~V}$	-0.08	-0.18	-0.35	
IIL	"L" input current $\mathrm{P3}_{3}$	$\mathrm{v}_{1}=0 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$			-5	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{cc}}=3 \mathrm{~V}$			-3	
IIL	"L" input current $\mathrm{P}_{2} \sim \sim \mathrm{P}_{3}$	$\mathrm{V}_{1}=0 \mathrm{~V}$, not use as analog input, not use pull-up transistor	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$			-5	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$			-3	
		$\mathrm{V}_{1}=0 \mathrm{~V}$, not use as analog input, use pull-up transistor	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	-0.25	-0.5	-1.0	mA
			$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$	-0.08	-0.18	-0.35	
I/L	"L" input current $\overline{\text { RESET }}$, $\mathrm{X}_{\text {IN }}$	$\begin{aligned} & V_{1}=0 \mathrm{~V} \\ & \left(X_{\text {IN }} \text { is at stop mode }\right) \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$			-5	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$			-3	
$\mathrm{I}_{\mathbf{H}}$	" ${ }^{\prime \prime}$ " input current $\mathrm{PO}_{0} \sim \mathrm{PO}_{7}, \mathrm{P1}_{0} \sim \mathrm{P1}_{7}, \mathrm{P3}_{0} \sim \mathrm{P3}_{2}, \mathrm{P} 4_{0}, \mathrm{P} 4_{1}$	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{cc}},$ not use pull-up transistor	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$			5	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$			3	
I_{H}	" H " input current P_{3}	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{cc}}$	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$			5	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$			3	
$\mathrm{I}_{\mathbf{H}}$	" H " input current $\mathrm{P}_{0} \sim \mathrm{P}^{3}$	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{cc}}$, not use as analog input, not use pull-up transistor	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$			5	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$			3	
$\mathrm{I}_{\mathbf{H}}$	" H " input current RESET, $\mathrm{X}_{\text {IN }}$	$\begin{aligned} & \mathrm{V}_{1}=\mathrm{V}_{\mathrm{cc}}, \\ & \left(\mathrm{X}_{\text {IN }} \text { is at stop mode }\right) \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$			5	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$			3	
Icc	Supply current	At normal operation, A-D conversion is not executed $\mathrm{X}_{\mathrm{IN}}=4 \mathrm{MHz}$	$\mathrm{V}_{C C}=5 \mathrm{~V}$		3.5	7	mA
			$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$		1.8	3.6	
		At normal operation, A-D conversion is executed $X_{\mathrm{IN}}=4 \mathrm{MHz}$	$\mathrm{v}_{\mathrm{CC}}=5 \mathrm{~V}$		4	8	
			$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$		2	4	
		At walt mode,$\mathrm{X}_{\mathrm{IN}}=4 \mathrm{MHz}$	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$		1	2	
			$\mathrm{V}_{\mathrm{cc}}=3 \mathrm{~V}$		0.5	1	
		Stop all oscillation$v_{c \mathrm{C}}=5 \mathrm{~V}$	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$		0.1	1	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{a}}=85^{\circ} \mathrm{C}$		1	10	
$\mathrm{V}_{\text {RAM }}$	RAM retention voitage	Stop all oscillation		2			V

A-D CONVERTER CHARACTERISTICS ($\mathrm{V}_{\mathrm{CC}}=2.7 \sim 5.5 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-20 \sim 85^{\circ} \mathrm{C}, \mathrm{f}\left(\mathrm{X}_{\mathrm{IN}}\right)=4 \mathrm{MHz}$, unless otherwise noted)

Symbol	Parameter	Test Conditions	Limits			Unit
			Mın	Typ	Max	
-	Resolution				8	bits
-	Non-linearity error				± 2	LSB
-	Differential non-linearity error				± 0.9	LSB
$V_{\text {Ot }}$	Zero transition error	$\mathrm{V}_{\text {CC }}=\mathrm{V}_{\text {REF }}=5.12 \mathrm{~V}, \mathrm{I}_{\text {OL(}}$ sum) $=0 \mathrm{~mA}$			2	LSB
		$\mathrm{V}_{\text {CC }}=\mathrm{V}_{\text {REF }}=3.072 \mathrm{~V}$, $\mathrm{l}_{\text {OL(}}$ (sum) $)=0 \mathrm{~mA}$			3	
$V_{\text {FSt }}$	Full-scale transition error	$\mathrm{V}_{\text {CC }}=\mathrm{V}_{\text {REF }}=5.12 \mathrm{~V}$			4	LSB
		$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\text {REF }}=3.072 \mathrm{~V}$			7	
$\mathrm{t}_{\text {CONV }}$	Conversion tıme				25	$\mu \mathrm{s}$
$\mathrm{V}_{\text {VREF }}$	Reference input voltage		$0.5 \mathrm{~V}_{C C}$		V_{cc}	V
R LADDER	Ladder resistance value		2	5	10	$\mathrm{k} \Omega$
$\mathrm{V}_{\text {IA }}$	Analog input voltage		0		$\mathrm{V}_{\text {REF }}$	V

DESCRIPTION

The M37471E4-XXXSP/FP is a single-chip microcomputer designed with CMOS silicon gate technology. It is housed in a 42-pin shrink plastic molded DIP or a 56 -pin plastic molded QFP. The features of this chip are similar to those of the M37471M4-XXXSP/FP except that this chip has a 8192 bytes PROM built-in. This single-chip microcomputer is useful for home electrical appliances and consumer appliance controllers.
In addition to its simple instruction sets, the PROM, RAM, and I/O addresses are placed on the same memory map to enable easy programming. Since general purpose PROM writers can be used for the built-in PROM, this chip is suitable for small quantity production runs.
The differences between the M37471E4-XXXSP/FP and the M37471E8-XXXSP/FP are noted below. The M37471E8SS are the window type. The following explanations apply to the M37471E4-XXXSP/FP.
Specification variations for other chips are noted accordingly.

Type name	ROM sıze	RAM size
M37471E4-XXXSP/FP	8192 bytes	192 bytes
M37471E8-XXXSP/FP M37471E8SS	16384 bytes	384 bytes

The differences between the M37471E4-XXXSP and the M37471E4-XXXFP are the package outline and the power dissipation ability (absolute maximum ratings).

FEATURES

- Number of basic instructions69
- Memory size PROM 8192 bytes (M37471E4) 16384 bytes (M37471E8)
RAM $\cdots \cdots \cdots \cdots \cdots \cdots 192$ bytes (M37471E4) 384 bytes (M37471E8)
- Instruction execution time
$\cdots \cdots .1 \mu s$ (minimum instructions at 4 MHz frequency)
- Single power supply.. 2.5 V
- Power dissipation
normal operation mode (at 4 MHz frequency) 17.5 mW
- Subroutine nesting 96 levels max. (M37471E4)

- 8-bit timer.. 4
- Serial I/O.. 1
- Programmable I/O ports (Ports P0, P1, P2, P4) 28
- Input ports (Port P3, P5) ... 8

- Two clock generator circuits
(One is for main clock, the other is for clock function)
- PROM (equivalent to the M5L27256) program voltage.

[^7]PIN CONFIGURATION (TOP VIEW)

Outline 42P4B (OTP) 42S1B (Window)

$\ddagger \ddagger \ddagger \downarrow \downarrow \downarrow \ddagger \ddagger$

Outline 56P6N
NC: No connection
M37471E4-XXXSP BLOCK DIAGRAM

M37471E4-XXXFP BLOCK DIAGRAM

FUNCTIONS OF M37471E4-XXXSP/FP, M37471E8-XXXSP/FP, M37471E8SS

Parameter			Functions
Number of basic instructions			69
Instruction execution time			$1 \mu \mathrm{~S}$ (minımum instructions, at 4 MHz frequency)
Clock frequency			4 MHz (main clock input), 32 kHz (for clock function).
Memory size	M37471E4-XXXSP/FP	PROM	8192 bytes (Note 1)
		RAM	192 bytes
	M37471E8-XXXSP/FP M37471E8SS	PROM	16384 bytes (Note 1)
		RAM	384 bytes
Input/Output port	P0, P1, P2	I/O	8 -bit $\times 3$
	P3, P5	Input	4-bit $\times 2$
	P4	I/O	4 -bit $\times 1$
Serial I/O			8 -bit $\times 1$
Timers			8-bit timer $\times 4$
A-D converter			8 -bit $\times 1$ (8channel)
Subroutine nesting	M37471E4-XXXSP/FP		96 levels (max)
	M37471E8-XXXSP/FP, M37471E8SS		192 levels (max)
Interrupt			Five external interrupts, six internal interrupts, one sóftware interrupt
Clock generating circuit			Two built-in cırcuits with internal feedback resistor (ceramic or quartz crystal oscillator)
Supply voltage			27~55V
Power dissıpatıon	At high-speed operation		175 mW (at $\left.\mathrm{f}\left(\mathrm{X}_{\text {IN }}\right)=4 \mathrm{MHz}\right)$
	At low-speed operation		$015 \mathrm{~mW}\left(\right.$ at $\left.\mathrm{f}\left(\mathrm{X}_{\text {CIN }}\right)=32 \mathrm{kHz}\right)$
	At stop mode		$05 \mu \mathrm{~W}$ (at clock stop)
Input/Output characteristics	Input/Output voltage		5 V
	Output current		$-5 \sim 10 \mathrm{~mA}$ (ports P0, P1, P2, P4 CMOS tri-state output)
Operating temperature range			$-20 \sim 85^{\circ} \mathrm{C}$
Device structure			CMOS Silicon gate
Package	M37471E4-XXXSP		42-pIn shrink plastic molded DIP
	M37471E8-XXXSP		
	M37471E4-XXXFP		56-pin plastic molded QFP
	M37471E8-XXXFP		
	M37471E8SS		42-pın shrınk ceramic DIP

Note 1 : The PROM programming voltage is 12.5 V (equivalent to the M5L27256)

PROM VERSION of M37471M4-XXXSP/FP,M37471M8-XXXSP/FP

PIN DESCRIPTION

Pin	Mode	Name	Input/ Output	Functions
$\begin{aligned} & \mathrm{V}_{\mathrm{cc}} \\ & \mathrm{~V}_{\mathrm{ss}} \end{aligned}$	Single-chip /EPROM	Supply voltage		Power supply inputs $27 \sim 55 \mathrm{~V}$ to V_{CC} and 0 V to $\mathrm{V}_{\text {SS }}$
$A V_{\text {ss }}$	Single-chip /EPROM	Analog power supply		Ground level input pin for A-D converter Same voltage as $\mathrm{V}_{\text {SS }}$ is applied This pin is for 56 -pin model only
RESET	Single-chip	RESET input	Input	To reset, keep this input terminal low for more than $2 \mu \mathrm{~s}$ (min) under normal V_{CC} conditions
	EPROM	RESET input		Connect to $\mathrm{V}_{\text {SS }}$
$\mathrm{X}_{\text {IN }}$	Single-chıp /EPROM	Clock input	Input	Connect a ceramic or a quartz crystal oscillator between $X_{\text {IN }}$ and $X_{\text {OUt }}$ for clock oscillation If an external clock input is used, connect the clock input to the $X_{\text {IN }}$ pin and open the $\mathrm{X}_{\text {our }}$ pin Feedback resistor is connected between the X_{IN} and $\mathrm{X}_{\text {Out }}$ pins
$\mathrm{X}_{\text {Out }}$		Clock output	Output	
$\mathrm{PO}_{0} \sim \mathrm{PO}_{7}$	Single-chip	1/O port P0	1/0	Port PO is an 8-bit I/O port The output structure is CMOS output When this port is selected for input, pull-up transistor can be connected in units of 1-bit and a key on wake up function is provided
	EPROM	Data ınput/output $\mathrm{D}_{0} \sim \mathrm{D}_{7}$	1/0	Port P0 works as an 8-bit data bus ($\mathrm{D}_{0} \sim \mathrm{D}_{7}$)
$\mathrm{P} 1_{0} \sim \mathrm{P} 1_{7}$	Single-chip	I/O port P1	1/0	Port P1 is an 8-bit I/O port The output structure is CMOS output When this port is selected for input, pull-up transistor can be connected in units of 4-bit $\mathrm{P1}_{2}, \mathrm{P1}_{3}$ are in common with timer output pins $\mathrm{T}_{0}, \mathrm{~T}_{1} \mathrm{P1}_{4}, \mathrm{P1}_{5}, \mathrm{P1}_{6}, \mathrm{P} 1_{7}$ are in common with serial I/O pins $\mathrm{S}_{\text {IN }}, \mathrm{S}_{\text {out }}$ CLK, $\mathrm{S}_{\text {RDY }}$, respectively The output structure of $\mathrm{S}_{\text {Out }}$ and $\mathrm{S}_{\text {RDY }}$ can be changed to N -channel open drain output
	EPROM	Address input $\mathrm{A}_{4} \sim \mathrm{~A}_{10}$	Input	$\mathrm{P} 1_{1} \sim \mathrm{P} 1_{7}$ works as the 7 -bit address input ($\mathrm{A}_{4} \sim \mathrm{~A}_{10}$) $\mathrm{P} 1_{0}$ must be opened
$\mathrm{P} 2_{0} \sim P 2_{7}$	Single-chip	I/O port P2	1/O	Port P2 is an 8-bit I/O port The output structure is CMOS output When this port is selected for input, pull-up transistor can be connected in units of 4 -bit This port is in common with analog input pins $\mathrm{IN}_{0} \sim \mathrm{IN}_{7}$.
	EPROM	Address input $A_{0} \sim A_{3}$	Input	$\mathrm{P} 2_{0} \sim \mathrm{P}_{3}$ works as the lower 4 -bit address input ($\mathrm{A}_{0} \sim \mathrm{~A}_{3}$) $P 2_{4} \sim P 2_{7}$ must be opened.
$P 3_{0} \sim P 3_{3}$	Single-chip	Input port P3	Input	Port P3 is an 4-bit input port $\mathrm{P}_{3}, \mathrm{P}_{1}$ are in common with external interrupt input pins $\mathrm{INT}_{0}, \mathrm{INT}_{1}$ and $\mathrm{P}_{2}, \mathrm{P}_{3}$ are in common with timer input pins CNTR ${ }_{0}, \mathrm{CNTR}_{1}$
	EPROM	Address input $\mathrm{A}_{11}, \mathrm{~A}_{12}$ Select mode $V_{\text {PP }}$ input	Input	$\mathrm{P}_{3}, \mathrm{P}_{1}$ works as the 2-bit address input ($\mathrm{A}_{11}, \mathrm{~A}_{12}$) P_{2} works as $\overline{\mathrm{OE}}$ input Connect to P_{3} to V_{PP} when programming or verifing
$\mathbf{P 4} \mathbf{O}^{\sim} \sim \mathbf{P 4}_{3}$	Single-chıp	I/O port P4	1/0	Port P4 is an 4-bit I/O port The output structure is CMOS output When this port is selected for input, pull-up transistor can be connected in units of 4-bit
	EPROM	Address input $\mathrm{A}_{13}, \mathrm{~A}_{14}$	Input	$\mathrm{P} 40, \mathrm{P} 4$, works as the higher 2-bit address input ($\mathrm{A}_{13}, \mathrm{~A}_{14}$) $\mathrm{P4}_{2}, \mathrm{P4}_{3}$ must be opened
$P 5_{0} \sim P 5_{3}$	Single-chip	Input port P5	Input	Port P5 is an 4-bit input port and pull-up transistor can be connected in units of 4bit $\mathrm{P} 5_{0}, \mathrm{P} 5_{1}$ are in common with input/output pins of clock for clock function $\mathrm{X}_{\mathrm{CIN}}$, $\mathrm{X}_{\text {COUT }}$. When $\mathrm{P5}_{0}, \mathrm{P5}_{1}$ are used as $\mathrm{X}_{\text {CIN }}, \mathrm{X}_{\text {Cout }}$, connect a ceramic or a quartz crystal oscillator between $\mathrm{X}_{\mathrm{CIN}}$ and $\mathrm{X}_{\text {cout }}$ if an external clock input is used, connect the clock input to the $X_{\text {CIN }}$ pin and open the $X_{\text {COUT }}$ pin Feedback resistor is connected between $\mathrm{X}_{\mathrm{CIN}}$ and $\mathrm{X}_{\text {COUT }}$ pins
	EPROM			Open
$\mathrm{V}_{\text {REF }}$	Single-chip	Reference voltage input	Input	This is the reference voltage input pin for the A-D converter
	EPROM	Select mode	Input	V ${ }_{\text {ref }}$ works as $\overline{C E}$ input

MITSUBISHI MICROCOMPUTERS M37471E4-XXXSP/FP M37471E8-XXXSP/FP,M37471E8SS

EPROM MODE

The M37471E4-XXXSP/FP, M37471E8-XXXSP/FP, M37471E8SS feature an EPROM mode in addition to its normal modes. When the RESET signal level is low (" L "), the chip automatically enters the EPROM mode. Table 1 list the correspondence between pins and Figure 1, 2 gives the pin connection in the EPROM mode. When in the EPROM mode, ports $\mathrm{P} 0, \mathrm{P} 1_{1} \sim \mathrm{P} 1_{7}, \mathrm{P}_{0} \sim \mathrm{P} 2_{3}, \mathrm{P} 3, \mathrm{P} 4_{0}, \mathrm{P} 4_{1}, \mathrm{~V}_{\text {REF }}$ are used for the PROM (equivalent to the M5L27256). When in this mode, the built-in PROM can be written to or read from using these pins in the same way as with the M5L27256. The oscillator should be connected to the $X_{I N}$ and $X_{\text {OUT }}$ pins, or external clock should be connected to the $X_{\text {IN }}$ pin.

Table 1. Pin function in EPROM mode

	M37471E4-XXXSP/FP, M37471E8-XXXSP/FP, M37471E8SS	M5L27256

Fig. 1 Pin connection in EPROM mode (42-pin model)

Fig. 2 Pin connection in EPROM mode (56-pin model)

MITSUBISHI MICROCOMPUTERS
 M37471E4-XXXSP/FP M37471E8-XXXSP/FP,M37471E8SS

PROM READING AND WRITING Reading

To read the PROM, set the $\overline{C E}$ and $\overline{O E}$ pins to a " L " level. Input the address of the data $\left(A_{0} \sim A_{14}\right)$ to be read and the data will be output to the $1 / O$ pins $D_{0} \sim D_{7}$. The data I/O pins will be floating when either the $\overline{\mathrm{CE}}$ or $\overline{\mathrm{OE}}$ pin is in the "H" state.

Writing

To write to the PROM, set the $\overline{\mathrm{OE}}$ pin to a " H " level. The CPU will enter the program mode when $V_{P P}$ is applied to the V_{PP} pin. The address to be written to is selected with pins $A_{0} \sim A_{14}$, and the data to be written is input to pins D_{0} $\sim D_{7}$. Set the $\overline{C E}$ pin to a " L " level to begin writing.

Notes on Writing

- M37471E4-XXXSP/FP

When using a PROM writer, the address range should be between $6000{ }_{16}$ and $7 \mathrm{FFF}_{16}$. Read/write operations on addresses 0000_{16} to $5 \mathrm{FFF}_{16}$ cannot be performed correctly.

- M37471E8-XXXSP/FP, M37471E8SS

When using a PROM writer, the address range should be between 4000_{16} and $7 \mathrm{FFF}_{16}$. When data is written between addresses 0000_{16} and $7 \mathrm{FFF}_{16}$, fill addresses 0000_{16} to $3 \mathrm{FFF}_{16}$ with FF_{16}.

Erasing

Data can only erased on the M37471E8SS ceramic package, which includes a window. To erase data on this chip, use an ultraviolet light source with a 2537 Angstrom wave length. The minimum radiation power necessary for erasing is $15 \mathrm{~W} \cdot \mathrm{~s} / \mathrm{cm}^{2}$.

NOTES ON HANDLING

(1) Sunlight and fluorescent light contain wave lengths capable of erasing data. For ceramic package types, cover the transparent window with a seal (provided) when this chip is in use. However, this seal must not contact the lead pins.
(2) Before erasing, the glass should be cleaned and stains such as finger prints should be removed thoroughly. If these stains are not removed, complete erasure of the data could be prevented.
(3) Since a high voltage (12.5 V) is used to write data, care should be taken when turning on the PROM writer's power.
(4) For the programmable microcomputer (shipped in blank or OTP type), Mitsubishi does not perform PROM write test and screening in the assembly process and following processes. To improve reliability after write, performing write and test according to the flow below before use is recommended.

Note : Since the screening temperature is higher than storage temperature, never expose to $150^{\circ} \mathrm{C}$ exceeding 100 hours.

Table 2. I/O signal in each mode

PIn Mode	$\overline{C E}$	$\overline{\mathrm{OE}}$	$V_{P P}$	V_{Cc}	Data I/O
Read-out	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {IL }}$	$V_{C C}$	$V_{C C}$	Output
Output disable	$\mathrm{V}_{\text {IL }}$	V_{IH}	$V_{C C}$	V_{CC}	Floatıng
Programmıng	$V_{\text {IL }}$	V_{IH}	$V_{P P}$	V_{CC}	Input
Programming verify	V_{1}	$\mathrm{V}_{\text {IL }}$	$V_{P P}$	$V_{C C}$	Output
Program disable	$\mathrm{V}_{1 \mathrm{H}}$	V_{IH}	$V_{P P}$	$\mathrm{V}_{C C}$	Floatıng

Note $1: V_{I L}$ and $V_{I H}$ indicate a " L " and " H " input voltage, respectively

MITSUBISHI MICROCOMPUTERS
 M37471E4-XXXSP/FP M37471E8-XXXSP/FP,M37471E8SS

PROM VERSION of M37471M4-XXXSP/FP,M37471M8-XXXSP/FP

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratıngs	Unit
$\mathrm{V}_{\text {cc }}$	Supply voltage	With respect to $V_{\text {ss }}$ Output transistors are at "OFF" state	$-0.3 \sim 7$	V
V_{1}	Input voltage $\mathrm{X}_{\text {IN }}$		$-0.3 \sim \mathrm{~V}_{\mathrm{cc}}+0.3$	V
V_{1}	$\begin{aligned} & \text { Input voltage } \mathrm{PO}_{0} \sim \mathrm{PO}_{7}, \mathrm{P} 1_{0} \sim \mathrm{P} 1_{7}, \mathrm{P} 2_{0} \sim \mathrm{P} 2_{7}, \\ & \mathrm{P} 3_{0} \sim \mathrm{P3}_{3}, \mathrm{P} 4_{0} \sim \mathrm{P} 4_{3}, P 5_{0} \sim P 5_{3}, \\ & V_{\text {REF }}, \overline{\mathrm{RESET}} \\ & \hline \end{aligned}$		$\begin{gathered} -0.3 \sim v_{\mathrm{cc}}+0.3 \\ (\text { Note } 1) \end{gathered}$	V
V_{0}	$\begin{gathered} \text { Output voltage } \mathrm{PO}_{0} \sim \mathrm{PO}_{7}, \mathrm{P1}_{0} \sim \mathrm{P1}_{7}, \mathrm{P}_{2} \sim \mathrm{P}_{7}, \\ \\ \mathrm{P} 4_{0} \sim \mathrm{P4}_{3}, \mathrm{X}_{\text {Out }} \\ \hline \end{gathered}$		$-0.3 \sim \mathrm{~V}_{\mathrm{Cc}}+0.3$	V
$\mathrm{Pd}_{\text {d }}$	Power dissıpation	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$	1000 (Note 2)	mW
Topr	Operating temperature		$-20 \sim 85$	${ }^{\circ} \mathrm{C}$
Tstg	Storage temperature		$-40 \sim 150$	${ }^{\circ} \mathrm{C}$

Note $1:$ In EPROM programming mode, P_{3} is 13 V
2 : 500 mW for QFP type

RECOMMENDED OPERATING CONDITIONS

$\left(\mathrm{V}_{\mathrm{CC}}=2.7 \sim 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{AV} \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{Ta}=-20 \sim 85^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Symbol	Parameter		Limits			Unit
			Min	Typ ${ }^{\text {' }}$	Max	
V_{CC}	Supply voltage		2.7	5	5.5	V
$\mathrm{V}_{\text {Ss }}$	Supply voltage			0		V
$\mathrm{AV}_{\text {SS }}$	Analog supply voltage			0		V
V_{IH}	" H " Input voltage $\begin{aligned} & \mathrm{P} 0_{0} \sim \mathrm{PO}_{7}, \mathrm{P1}_{0} \sim \mathrm{P1}_{7}, \mathrm{P3}_{0} \sim \mathrm{P3}_{3}, \\ & \overline{\mathrm{RESET}}, \mathrm{XIN}_{\mathrm{IN}}\end{aligned}$		$0.8 \mathrm{~V}_{\mathrm{cc}}$		V_{cc}	V
$\mathrm{V}_{\text {IH }}$	" H " Input voltage $\mathrm{P}_{2} \sim \mathrm{P}_{7}, \mathrm{P4}_{0} \sim \mathrm{P4}_{3}, \mathrm{P5}_{0} \sim \mathrm{P5}_{3}$	(Note 1)	$0.7 \mathrm{~V}_{\mathrm{CC}}$		V_{CC}	V
$\mathrm{V}_{\text {IL }}$	"L" Input voltage $\mathrm{PO}_{0} \sim \mathrm{PO}_{7}, \mathrm{P1}_{0} \sim \mathrm{P1}_{7}, \mathrm{P3}_{0} \sim \mathrm{P3}_{3}$		0		$0.2 \mathrm{~V}_{\mathrm{cc}}$	V
$V_{\text {IL }}$	"L" Input voltage $\mathrm{P} 2_{0} \sim \mathrm{P} 2_{7}, \mathrm{P} 4_{0} \sim P 4_{3}, \mathrm{P5} 5_{0} \sim \mathrm{P5}_{3}$	(Note 1)	0		$0.25 \mathrm{~V}_{\mathrm{Cc}}$	V
$V_{\text {IL }}$	"L" Input voltage RESET		0		0.12V VC	V
V_{1}	"L" Input voltage $\mathrm{X}_{\text {IN }}$		0		$0.16 \mathrm{~V}_{\mathrm{cc}}$	V
$\mathrm{IOH}_{\text {(sum) }}$	" H " sum output current $\mathrm{PO}_{0} \sim \mathrm{PO}_{7}, \mathrm{P4}_{0} \sim \mathrm{P4}_{3}$				-30	mA
$\mathrm{I}_{\mathrm{OH} \text { (sum) }}$	" H " sum output current $\mathrm{P1}_{10} \sim \mathrm{P1}_{7}, \mathrm{P}_{2} \sim \mathrm{P}_{2}$				-30	mA
l OL(sum)	"L" sum output current $\mathrm{PO}_{0} \sim \mathrm{PO}_{7}, \mathrm{P} 4_{0} \sim \mathrm{P}_{3}$				60	mA
l OL(sum)	" L " sum output current $\mathrm{P} 1_{0} \sim \mathrm{P} 1_{7}, \mathrm{P} 2_{0} \sim P{ }^{2}{ }_{7}$				60	mA
lol(peak)	$\begin{aligned} \text { "L" peak output current } & \mathrm{PO}_{0} \sim \mathrm{PO}_{7}, \mathrm{P1}_{0} \sim \mathrm{P} 1_{7}, \\ & \mathrm{P}_{2} \sim \mathrm{P}_{7}, \mathrm{P}_{0} \sim \mathrm{P} 4_{3} \end{aligned}$				20	mA
lol(avg)	$\begin{array}{r} \text { "L" average output current } \begin{aligned} & \mathrm{P}_{0} \sim \mathrm{PO}_{7}, \mathrm{P} 1_{0} \sim \mathrm{P} 1_{7}, \\ & \mathrm{P}_{2} \sim \mathrm{P}_{2}, \mathrm{P} 4_{0} \sim \mathrm{P} 4_{3} \\ & \hline \end{aligned} \end{array}$	(Note 4)			10	mA
$\mathrm{I}_{\mathrm{OH} \text { (peak) }}$	$\begin{array}{r} \text { "H" peak output current }{\mathrm{P} 0_{0} \sim \mathrm{PO}_{7}, \mathrm{P} 1_{0} \sim \mathrm{P} 1_{7},}^{\mathrm{P}_{0} \sim \mathrm{P}_{7}, \mathrm{P}_{0} \sim \mathrm{P4}_{3}} \\ \hline \end{array}$				-10	mA
ІОн(avg)	" H " average output current $\mathrm{PO}_{0} \sim \mathrm{PO}_{7}, \mathrm{P}_{0} \sim \mathrm{P1}_{7}$, $P 2_{0} \sim P 2_{7}, P 4_{0} \sim P 4_{3}$	(Note 4)			-5	mA
f (CNTR)	Timer input frequency $\mathrm{CNTR}_{0}\left(\mathrm{P3}_{2}\right), \mathrm{CNTR} \mathrm{l}_{1}\left(\mathrm{P3}_{3}\right)$	(Note 2)			1	MHz
$\mathrm{f}_{\text {(CLK })}$	Serial I/O clock input frequency CLK (P_{16})	(Note 2)			1	MHz
$f\left(X_{\text {IN }}\right)$	Clock oscillating frequency	(Note 2)			4	MHz
$f\left(X_{\text {CIN }}\right)$	Clock oscillating frequency for clock function ((Note 2, 3)		32	50	kHz

Note 1 : It is except to use P_{0} as $\mathrm{X}_{\mathrm{CIN}}$
2 : Oscillation frequency is at 50% duty cycle
3 : When used in the low-speed mode, the clock oscillating frequency for clock function should be $f\left(X_{\text {CIN }}\right)<f\left(X_{\text {IN }}\right) / 3$
4 : The average output current $\mathrm{I}_{\mathrm{OH}(\mathrm{avg})}$ and $\mathrm{I}_{\mathrm{OL}(\mathrm{avg})}$ are the average value during a 100 ms

ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{CC}}=2.7 \sim 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-20 \sim 85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test Conditions		Limits			Unit
				Mın	Typ	Max	
V_{OH}	"H" output voltage $\mathrm{PO}_{0} \sim \mathrm{PO}_{7}, \mathrm{P1}_{0} \sim \mathrm{P}_{1}, \mathrm{P}_{2} \sim \mathrm{P}_{3}, \mathrm{P4}_{0} \sim \mathrm{P4}_{3}$	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-5 \mathrm{~mA}$		3			V
		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-1.5 \mathrm{~mA}$		2			
V_{OL}	"L" output voltage $\mathrm{PO}_{0} \sim \mathrm{PO}_{7}, \mathrm{P} 1_{0} \sim \mathrm{P} 1_{7}, \mathrm{P}_{2} \sim \mathrm{P}_{3}, \mathrm{P4}_{0} \sim \mathrm{P4}_{3}$	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{l}_{\mathrm{OL}}=10 \mathrm{~mA}$				2	V
		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=3 \mathrm{~mA}$				1	
$\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\mathrm{T}-}$	Hysteresis $\mathrm{PO}_{0} \sim \mathrm{PO}_{7}, \mathrm{P}_{3} \sim \mathrm{P3}_{3}$	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$			0.5		V
		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$			0.3		
$\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\mathrm{T}-}$	Hysteresis $\overline{\text { RESET }}$	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$			0.5		V
		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$			0.3		
$\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\mathrm{T}-}$	Hysteresis $\mathrm{P}_{16} /$ CLK	use as CLK input	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$		0.5		V
			$\mathrm{V}_{\mathrm{cc}}=3 \mathrm{~V}$		0.3		
IIL	" L " input current $\mathrm{PO}_{0} \sim \mathrm{PO}_{7}, \mathrm{P1}_{0} \sim \mathrm{P1}_{7}, \mathrm{P3}_{0} \sim \mathrm{P}_{2}, \mathrm{P4}_{0} \sim \mathrm{P4}_{3}$, $P 5_{0} \sim \mathrm{P5}_{3}$	$\mathrm{v}_{\mathrm{I}}=0 \mathrm{v},$ not use pull-up transistor	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$			-5	$\mu \mathrm{A}$
			$\mathrm{V}_{C C}=3 \mathrm{~V}$			-3	
		$\mathrm{v}_{1}=0 \mathrm{v},$ use pull-up transistor	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	-0.25	-0.5	-1.0	mA
			$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$	-0.08	-0.18	-0.35	
$I_{\text {IL }}$	"L" input current P3 ${ }_{3}$	$\mathrm{V}_{1}=0 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$			-5	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$			-3	
IIL	"L" input current ${ }^{\text {P2 }} 0 \sim \mathrm{P} 2_{7}$	$\mathrm{V}_{1}=0 \mathrm{~V}$, not use as analog input, not use pull-up transistor	$\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}$			-5	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$			-3	
		$\mathrm{V}_{1}=0 \mathrm{~V}$, not use as analog input, use pull-up transistor	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	-0.25	-0.5	-1.0	mA
			$\mathrm{V}_{\mathrm{cc}}=3 \mathrm{~V}$	-0.08	-0.18	-0.35	
IIL	"L" input current $\overline{\text { RESET }}$, $\mathrm{X}_{\text {IN }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=0 \mathrm{~V} \\ & \left(\mathrm{X}_{\text {IN }} \text { is at stop mode }\right) \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$			-5	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$			-3	
I_{H}	"H" input current $\mathrm{PO}_{0} \sim \mathrm{PO}_{7}, \mathrm{P1}_{0} \sim \mathrm{P1}_{7}, \mathrm{P3}_{0} \sim \mathrm{P} 3_{2}, \mathrm{P4}_{0} \sim \mathrm{P4}_{3}$, $\mathrm{P5}_{0} \sim \mathrm{P5}_{3}$	$\mathrm{v}_{\mathrm{l}}=\mathrm{v}_{\mathrm{cc}},$ not use pull-up transistor	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$			5	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$			3	
$I_{\text {IH }}$	" H " input current P_{3}	$\mathrm{V}_{\mathrm{l}}=\mathrm{V}_{\mathrm{cc}}$	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$			5	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$			3	
I_{H}	" H " input current $\mathrm{P}^{0} \sim \sim \mathrm{P} 2_{7}$	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{cc}}$, not use as analog input, not use pull-up transistor	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,		5	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$			3	
$I_{1 H}$	"H" input current $\overline{\text { RESET }}$, $\mathrm{X}_{\text {IN }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}, \\ & \left(\mathrm{X}_{\mathrm{IN}} \text { Is at stop mode }\right) \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$			5	$\mu \mathrm{A}$
			$V_{C C}=3 \mathrm{~V}$			3	
I_{CC}	Supply current	At normal operation, A-D conversion is not executed $\mathrm{X}_{\mathrm{IN}}=4 \mathrm{MHz}$	$\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}$		3.5	7	mA
			$\mathrm{V}_{\mathrm{cc}}=3 \mathrm{~V}$		1.8	3.6	
		At normal operation, A-D conversion is not executed $\mathrm{X}_{\mathrm{IN}}=4 \mathrm{MHz}$	$\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}$		4	8	
			$\mathrm{v}_{\mathrm{cc}}=3 \mathrm{~V}$		2	4	
		At low-speed mode, $X_{\text {Cout }}$ is low-power mode, A-D conversion is not executed $\mathrm{X}_{\mathrm{IN}}=0 \mathrm{~Hz}, \mathrm{X}_{\mathrm{CIN}}=32 \mathrm{kHz}, \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$		30	80	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{cc}}=3 \mathrm{~V}$		15	40	
		At wart mode,$\mathrm{X}_{\mathrm{IN}}=4 \mathrm{MHz}$	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$		1	2	mA
			$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$		0.5	1	
		At wait mode, $X_{1 N}=0 \mathrm{~Hz}$, $X_{\text {CIN }}=32 \mathrm{kHz}, X_{\text {Cout }}$ is low-power mode, $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$		3	12	$\mu \mathrm{A}$
			$\mathrm{v}_{\mathrm{cc}}=3 \mathrm{~V}$		2	8	
		Stop all oscillation$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$		0.1	1	
			$\mathrm{Ta}_{\mathrm{a}}=85^{\circ} \mathrm{C}$		1	10	
$V_{\text {RAM }}$	RAM retention voltage	Stop all oscillation		2			V

A-D CONVERTER CHARACTERISTICS $\left(\mathrm{v}_{\mathrm{cc}}=2.7 \sim 5.5 \mathrm{v}, \mathrm{v}_{\mathrm{ss}}=0 \mathrm{v}, \mathrm{T}_{\mathrm{a}}=-20 \sim 85^{\circ} \mathrm{C}, \mathrm{f}\left(\mathrm{X}_{\mathrm{N}}\right)=4 \mathrm{MHz}\right.$, unless otherwise noted)

Symbol	Parameter	Test Conditions	Lımits			Unit
			Min	Typ.	Max	
-	Resolution				8	bits
-	Non-linearity error				± 2	LSB
-	Differential non-lınearity error				± 0.9	LSB
$V_{\text {OT }}$	Zero transtion error	$\mathrm{V}_{\text {CC }}=\mathrm{V}_{\text {REF }}=5.12 \mathrm{~V}, \mathrm{IOL}_{\text {(sum }}=0 \mathrm{~mA}$			2	LSB
		$\mathrm{V}_{\text {CC }}=\mathrm{V}_{\text {REF }}=3.072 \mathrm{~V}, \mathrm{l}_{\text {OL(sum }}=0 \mathrm{~mA}$			3	
$V_{\text {FST }}$	Full-scale transition error	$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\text {REF }}=5.12 \mathrm{~V}$			4	LSB
		$\mathrm{V}_{\text {CC }}=\mathrm{V}_{\text {REF }}=3.072 \mathrm{~V}$			7	
$\mathrm{t}_{\text {conv }}$	Conversion time				25	$\mu \mathrm{s}$
$V_{\text {VREF }}$	Reference input voltage		$0.5 \mathrm{~V}_{\mathrm{cc}}$		V_{Cc}	V
$\mathrm{R}_{\text {LADDER }}$	Ladder resistance value		2	5	10	k Ω
$\mathrm{V}_{\text {IA }}$	Analog input voltage		0		$\mathrm{V}_{\text {REF }}$	V

MELPS 740 CPU CORE BASIC FUNCTIONS

MELPS 740 CPU CORE BASIC FUNCTIONS

Each series of the MELPS 740 Family uses the standard MELPS 740 instruction set. The functions of the MELPS 740 CPU core are explained below. The multiply and divide instructions are not available in every microcomputer, and the clock control instructions differ in each microcomputer. For details, refer to the table of machine instruction or the functional explanation of each microcomputer.

CENTRAL PROCESSING UNTT (CPU) INTERNAL REGISTERS

The central processing unit (CPU) has the six registers.

Accumulator (A)

The accumulator is an 8-bit register. Data operations such as data transfer, etc., are executed mainly through the accumulator.
Index register $\mathbf{X}(\mathbf{X})$, Index register $\mathbf{Y}(\mathbf{Y})$
Both index register X and index register Y are 8-bit registers. In the index addressing modes, the value of the OPERAND is added to the contents of register X or register Y and specifies the real address.
These index registers also have increment, decrement, comparison, and data transfer functions to allow these registers to take some of the functions of the accumulator.
When the T flag in the processor status register is set to
" 1 ", the value contained in index register X becomes the address for the second OPERAND.

Stack pointer (S)

The stack pointer is an 8-bit register used during subroutine calls and interrupts. The stack is used to store the current address data and processor status when branching to subroutines or interrupt routines.
The lower eight bits of the stack address are determined by the contents of the stack pointer. The upper eight bits of the stack address are determined by the Stack Page Selection Bit. If the Stack Page Selection Bit is " 0 ", then the RAM in the zero page is used as the stack area. If the Stack Page Selection Bit is " 1 ", then RAM in page 1 is used as the stack area.
The Stack Page Selection Bit is located in the SFR area in the zero page. Note that the initial value of the Stack Page Selection Bit varies with each microcomputer type. Also some microcomputer types have no Stack Page Selection Bit and the upper eight bits of the stack address are fixed.
The operations of pushing register contents onto the stack and popping them from the stack are shown in Fig. 2

Program counter (PC)

The program counter is a 16 -bit counter consisting of two 8 -bit registers $P C_{H}$ and $P C_{L}$. It is used to indicate the address of the next instruction to be executed.

Fig. 1 MELPS 740 CPU register structure

Fig. 2 Register push and pop at interrupt generation and subroutine call

Table 1. Push and pop instructions of accumulator or processor status register

	Push instruction to stack	Pop instruction from stack
Accumulator	PHA	PLA
Processor status register	PHP	PLP

Processor status register (PS)

The processor status register is an 8-bit register consisting of flags which indicate the status of the processor after an arithmetic operation. Branch operations can be performed by testing the Carry (C) flag, Zero (Z) flag, Overflow (V) flag, or the Negative (N) flag. In decimal mode, the $\mathrm{Z}, \mathrm{V}, \mathrm{N}$ flags are not valid.
After reset, the Interrupt disable (I) flag is set to " 1 ", but all other flags are undefined. Since the Index X mode (T) and Decimal mode (D) flags directly affect arithmetic operations, they should be initialized in the beginning of a program.
(1) Carry flag (C)

The C flag contains a carry or borrow generated by the arithmetic logic unit (ALU) immediately after an arithmetic operation. It can also be changed by a shift or rotate instruction.
(2) Zero flag (Z)

The Z flag is set if the result of an immediate arithmetic operation or a data transfer is " 0 ", and cleared if the result is anything other than " 0 ".
(3) Interrupt disable flag (1)

The I flag disables all interrupts except for the interrupt generated by the BRK instruction.
Interrupts are disabled when the I flag is " 1 ".
When an interrupt occurs, this flag is automatically set to " 1 " to prevent other interrupts from interfering until the current interrupt is serviced.
(4) Decimal mode flag (D)

The D flag determines whether additions and subtractions are executed in binary or decimal. Binary arithmetic is executed when this flag is " 0 "; decimal arithmetic is executed when it is " 1 ". Decimal correction is automatic in decimal mode. Only the ADC and SBC instructions can be used for decimal arithmetic.
(5) Break flag (B)

The B flag is used to indicate that the current interrupt was generated by the BRK instruction. The BRK flag in the processor status register is always " 0 ". When the BRK instruction is used to generate an interrupt, the processor status register is pushed onto the stack with the break flag set to " 1 ". The saved processor status is the only place where the break flag is ever set.
(6) Index X mode flag (T)

When the T flag is " 0 ", arithmetic operations are performed between accumulator and memory, e.g. the results of an operation between two memory locations is stored in the accumulator. When the T flag is " 1 ", direct arithmetic operations and direct data transfers are enabled between memory locations, i.e. between memory and memory, memory and I/O, and I/O and I/O. In this case, the result of an arithmetic operation performed on data in memory location 1 and memory location 2 is stored in memory location 1. The address of memory location 1 is specified by index register X, and the address of memory location 2 is specified by normal addressing modes.
(7) Overflow flag (V)

The V flag is used during the addition or subtraction of one byte of signed data. It is set if the result exceeds +127 to -128 . When the BIT instruction is executed, bit 6 of the memory location operated on by the BIT instruction is stored in the overflow flag.
(8) Negative flag (N)

The N flag is set if the result of an arithmetic operation or data transfer is negative. When the BIT instruction is executed, bit 7 of the memory location operated on by the BIT instruction is stored in the negative flag

Table 2. Set and clear instructions of each bit of processor status register

	C flag	Z flag	I flag	D flag	B flag	T flag	V flag	N flag
Set instruction	SEC	-	SEI	SED	-	SET	-	-
Clear instruction	CLC	-	CLI	CLD	-	CLT	CLV	-

ADDRESSING MODE

The MELPS 740 Family has 17 addressing modes and a powerful memory access capability.
When extracting data required for arithmetic and logic operations from memory or when storing the results of such operations in memory, a memory address must be specified. The specification of the memory address is called addressing. The MELPS 740 Family instructions can be classified as 1-byte, 2-byte, and 3-byte instructions. In each case, the first byte is known as the OPCODE which forms the basis of the instruction. A second or third byte is
called an OPERAND which affects the addressing. The contents of index registers X and Y can also effect the addressing.
Although there are many addressing modes, there is always a particular memory location specified. What differs is whether the operand, the index register contents, or a combination of both should be used to specify the memory or jump destination. Based on these 3 types of instructions, the range of variation is increased and operation is enhanced by combinations of the bit operation instructions, jump instruction, and arithmetic instructions.

Fig. 3 Instruction byte configuration

Name : Accumulator addressing mode
Function : The operation is performed on the accumulator.
Instructions : ASL, DEC, INC, LSR, ROL, ROR
Example : Mnemonic ROL A

Machine code $2 A_{16}$

Name	: Zero page addressing mode Function $:$
	The operation is performed in
zero page memory $\left(00_{16}\right.$ to	
	FF $\left.{ }_{16}\right)$

Name : Zero page X addressing mode

Function : The operation is performed on the zero page memory location whose address is specified by adding the OPERAND to the contents of index register X.
Instructions : ADC, AND, ASL, CMP, DEC, DIV, EOR, INC, LDA, LDY, LSR, MUL, ORA, ROL, ROR, SBC, STA, STY
Example

Mnemonic	Machine code
ADC \$1E,X	$\mathbf{7 5}_{\mathbf{1 6}} \mathbf{1 E}_{\mathbf{1 6}}$

Name : Absolute addressing mode
Function : The operation is performed on the memory whose address is specified by first and second OPERAND.
Instructions : ADC, AND, ASL, BIT, CMP, CPX, CPY, DEC, EOR, INC, JMP, JSR, LDA, LDX, LDY, LSR, ORA, ROL, ROR, SBC, STA, STX, STY
Example : Mnemonic Machine code ADC \$AD12 $\quad 6 \mathrm{D}_{16} \mathbf{1 2}_{16}$ AD $_{16}$

Name
: Absolute X addressing mode
Function : The operation is performed on the memory location whose address is specified by adding the contents of index register X to the value indicated by the first and second OPERAND.
Instructions : ADC, AND, ASL, CMP, DEC, EOR, INC, LDA, LDY, LSR, ORA, ROL, ROR, SBC, STA
Example

Name : Absolute Y addressing mode

Function
: The operation is performed on the memory location whose address is specified by adding the contents of index register Y to the value indicated by the first and second OPERAND.
Instructions : ADC, AND, CMP, EOR, LDA, LDX, ORA, SBC, STA
Example

Name : Implied addressing mode
Function : Implied addressing mode operations need no OPERAND.
Instructions : BRK, CLC, CLD, CLI, CLT, CLV, DEX, DEY, FST, INX, INY, NOP, PHA, PHP, PLA, PLP, RTI, RTS, SEC, SED, SEI, SET, SLW, STP, TAX, TAY, TSX, TXA, TXS, TYA, WIT
Example Mnemonic Machine code CLC $\quad \mathbf{1 8}_{16}$

Name
Function
Relative addressing mode
: Conditionally jumps to the address produced by adding the Program Counter to the OPERAND.
Instructions: BCC, BCS, BEQ, BMI, BNE, BPL, BRA, BVC, BVS
Example

Jumps to $*-12$ address when carry flag(C) is cleared.

Proceed to next address when carry flag(C) is set.

Name : Indirect X addressing mode
Function : The operation is performed on the memory location indicated by the contents of two consecutive bytes in zero page memory whose first address is specified by adding the OPERAND and the contents of index register X.
Instructions : ADC, AND, CMP, EOR, LDA, ORA, SBC, STA
Example : Mnemonic Machine code ADC (\$1E,X) $\quad \mathbf{6 1} \mathbf{1 6}_{16} \mathbf{1 E}_{\mathbf{1 6}}$

Name : Indirect Y addressing mode
Function : The operation is performed on the memory location indicated by adding the contents of index register Y to the contents of two consecutive bytes in zero page memory whose first address is specified by the OPERAND.
Instructions : ADC, AND, CMP, EOR, LDA, ORA, SBC, STA
Example : Mnemonic Machine code ADC (\$1E), $\mathbf{Y} \quad \mathbf{7 1} 1_{16} \quad \mathbf{1 E}_{16}$

In this example, data I $\left(00_{16}\right)$ and data II $\left(14_{16}\right)$ have been stored beforehand.

In this example, data I $\left(01_{16}\right)$ and Data II $\left(12_{16}\right)$ have been stored beforehand

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

Name | : Indirect absolute addressing |
| :---: |
| mode |

Function : Jumps to the location specified by the contents of two consecutive bytes whose first address is specified by the first and second OPERAND.
Instructions: JMP
Example : Mnemonic Machine code JMP (\$1400) $\quad \mathbf{6 C} \mathbf{1 6}_{\mathbf{1 6}} \mathbf{0 0}_{\mathbf{1 6}} \mathbf{1 4}_{\mathbf{1 6}}$

Name | $:$ |
| :--- |
| |
| |
| |
| addressing mode |

Function : Jumps to the location specified by the contents of two consecutive bytes in zero page memory whose first address is specified by the OPERAND.
Instructions: JMP, JSR
Example : Mnemonic JMP (\$05) $\quad \mathbf{B 2} \mathbf{1 6}^{\mathbf{0}} \mathbf{0 5}_{16}$

In this example, FF_{16} as data I and EE_{16} as data II have been stored beforehand.

In this example, FF_{16} as data I and $1 \mathrm{E}_{16}$ as data I have been stored beforehand.

Name | : Zero page bit addressing |
| :--- |
| mode |

Function | : The operation is performed on |
| :--- |
| the bit (specified by the three |

high order bits of the OPCODE),
on the zero page memory loca-
tion specified by the OPERAND.

Name
Function : Conditionally jumps to the address specified by adding the second OPERAND to the program counter, depending on the bit (specified by the three higher order bits of the OPCODE) in the zero page memory location specified by the first OPERAND.

Instructions: BBC, BBS
Example : Mnemonic Machine code BBC 5,504,*-12 $\quad \mathbf{B 7} \mathbf{1 6}^{\mathbf{0 4}} \mathbf{0 4}_{16} \mathbf{F 1}_{16}$

Advance to $*+3$ address when 04_{16} address bit 5 is set.

Name : Accumulator bit addressing

Function : The operation is performed on the bit in the accumulator which is specified by the three high order bits of the OPCODE. There is no OPERAND.
Instructions: CLB, SEB

Example	Mnemonic		
CLB 5,A		\quad	Machine code
:---			
BB $_{16}$	CLB 5,A BB ${ }_{16}$		

Name : Accumulator bit relative addressing mode
Function : Conditionally jumps to the address produced by adding the OPERAND to the program counter, depending on the bit in accumulator (specified by the high order three bits of the OPCODE).
Instructions : BBC, BBS
Example : Mnemonic BBC 5,A,*-12

Machine code B3 ${ }_{16}$ F2 ${ }_{16}$

When accumulator bit 5 is cleared

Jump to $*-12$ address
Jump to $*+2$ address

When accumulator bit 5 is set

Name
Function : Jumps to the specified address in the special page area. The lower eight bits are specified by the OPERAND and the upper eight bits are defined by the special page (see Note 1).
Instructions: JSR
Example : Mnemonic Machine code JSR
\$FFEO $\quad \mathbf{2 2}_{16} \mathbf{E O}_{16}$

Note 1 : Note that the special page is defined as the highest addressable 256 bytes of any given microcomputer and may be " $\mathrm{FF}_{16}{ }^{\prime}$, " $1 \mathrm{~F}_{16}{ }^{\prime}$ ", " $2 \mathrm{~F}_{16}$ ", etc .

LIST OF INSTRUCTION CODES

		0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
		0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
0000	0	BRK	$\begin{array}{\|c\|} \hline \text { ORA } \\ \text { IND, } x \\ \hline \end{array}$	$\begin{gathered} \hline \mathrm{JSR} \\ \mathrm{ZP}, \mathrm{IND} \end{gathered}$	$\begin{aligned} & \text { BBS } \\ & 0, A \end{aligned}$	-	$\begin{gathered} \text { ORA } \\ \text { ZP } \end{gathered}$	$\begin{gathered} \text { ASL } \\ \mathrm{ZP} \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { BBS } \\ 0 \mathrm{PP} \end{array}$	PHP	ORA IMM	ASL A	$\begin{aligned} & \text { SEB } \\ & 0, \mathrm{~A} \end{aligned}$	-	$\begin{aligned} & O R A \\ & A B S \end{aligned}$	ABLL	$\begin{gathered} \text { SEB } \\ 0, \mathrm{ZP} \end{gathered}$
0001	1	BPL	$\begin{array}{c\|} \hline \text { ORA } \\ \text { IND, } \mathrm{Y} \end{array}$	CLT	$\begin{aligned} & \mathrm{BBC} \\ & 0, \mathrm{~A} \end{aligned}$	-	$\begin{aligned} & \text { ORA } \\ & \mathrm{ZP}, \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{ASL} \\ & \mathrm{ZP}, \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{BBC} \\ & 0.2 \mathrm{P} \end{aligned}$	CLC	$\begin{aligned} & \text { ORA } \\ & \text { ABs y } \end{aligned}$	$\begin{gathered} \mathrm{DEC} \\ \mathrm{~A} \\ \hline \end{gathered}$	$\begin{aligned} & \text { CLB } \\ & 0, A \end{aligned}$	-	$\begin{aligned} & \text { ORA } \\ & \text { ABS } \end{aligned}$	$\begin{aligned} \text { ASS } \\ \text { ABS: } x \end{aligned}$	$\begin{aligned} & \text { CLB } \\ & 0, \mathrm{ZP} \end{aligned}$
0010	2	$\begin{aligned} & \text { SSR } \\ & \text { ABS } \end{aligned}$	$\begin{aligned} & \text { AND } \\ & \text { IND, } x \end{aligned}$	$\begin{gathered} \mathrm{JSR} \\ \mathrm{SP} \end{gathered}$	BBS 1, A	$\begin{aligned} & \mathrm{BIT} \\ & \mathrm{ZP} \end{aligned}$	AND ZP	ROL	$\begin{gathered} \text { BRS } \\ 1.2 P \end{gathered}$	PLP	AND IMM	ROL A	$\begin{aligned} & \text { SEB } \\ & 1, \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{BIT} \\ & \mathrm{ABS} \end{aligned}$	ANDV	$\begin{aligned} & \mathrm{ROL} \\ & \mathrm{ABS} \end{aligned}$	$\begin{aligned} & \text { SEB } \\ & 1, \mathrm{ZP} \end{aligned}$
0011	3	BMI	$\begin{array}{\|c\|} \hline \text { AND } \\ \text { IND, } Y \\ \hline \end{array}$	SET	BBC 1, A	-	AND ZP, X	$\begin{aligned} & \mathrm{ROL} \\ & \mathrm{ZP}, \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{BBC} \\ & 2 \mathrm{CNP} \end{aligned}$	SEC	$\begin{aligned} & \text { AND } \\ & \text { ABS, } \& \end{aligned}$	$\begin{gathered} \text { INC } \\ \mathrm{A} \\ \hline \end{gathered}$	$\begin{aligned} & \text { CLB } \\ & 1, \mathrm{~A} \end{aligned}$	$\begin{aligned} & \angle B M \\ & 2 \% \end{aligned}$	$\begin{aligned} & \text { AnD } \\ & \text { ABS } x \end{aligned}$	$\begin{aligned} & \text { ROL } \\ & \text { ABS, } \end{aligned}$	$\begin{aligned} & \text { CLB } \\ & 1, \mathrm{ZP} \end{aligned}$
0100	4	RTI	$\begin{array}{\|c\|} \hline \text { EOR } \\ \text { IND, } x \\ \hline \end{array}$	$\begin{gathered} \text { STP } \\ \text { (Note) } \\ \hline \end{gathered}$	$\begin{aligned} & \text { BBS } \\ & 2, A \end{aligned}$	$\begin{gathered} \mathrm{COM} \\ \mathrm{ZP} \end{gathered}$	$\begin{aligned} & \mathrm{EOR} \\ & \mathrm{ZP} \end{aligned}$	$\begin{aligned} & \mathrm{LSR} \\ & \mathrm{ZP} \end{aligned}$	$\begin{array}{r} \mathrm{BES} \\ \mathrm{~B} \\ 2 . \mathrm{ZP} \end{array}$	PHA	EOR IMM	$\begin{gathered} \text { LSR } \\ \mathrm{A} \\ \hline \end{gathered}$	$\begin{aligned} & \text { SEB } \\ & 2, A \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \mathrm{ABS} \end{aligned}$	$\begin{gathered} \text { EOD } \\ \text { ABS } \end{gathered}$	$\begin{aligned} & \operatorname{LSQ} \\ & \text { ABS } \\ & \text { ABS } \end{aligned}$	$\begin{aligned} & \text { SEB } \\ & 2, Z P \end{aligned}$
0101	5	BVC	$\begin{gathered} \text { EOR } \\ \text { IND, } Y \\ \hline \end{gathered}$	-	$\begin{aligned} & \mathrm{BBC} \\ & 2, \mathrm{~A} \end{aligned}$	-	$\begin{aligned} & \text { EOR } \\ & \text { ZP, } \end{aligned}$	$\begin{aligned} & \text { LSR } \\ & \text { ZP, X } \end{aligned}$	$\begin{aligned} & B B C \\ & 2 \\ & 2 P \end{aligned}$	CLI	$\begin{aligned} & \text { EOR } \\ & \text { ABS; } \end{aligned}$	-	$\begin{aligned} & \text { CLB } \\ & 2, A \end{aligned}$	-	$\begin{aligned} & E O R \\ & A B S, X \\ & \text { AB } \end{aligned}$	LSR ABS: X	$\begin{aligned} & \text { CLB } \\ & 2, \mathrm{ZP} \end{aligned}$
0110	6	RTS	$\begin{array}{\|c\|} \hline \text { ADC } \\ \text { IND, } X \\ \hline \end{array}$	MUL (Note)	$\begin{aligned} & \text { BBS } \\ & 3, \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{TST} \\ & \mathrm{ZP} \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{ADC} \\ \mathrm{ZP} \end{gathered}$	ROR ZP	$\begin{array}{r} 8 B S \\ 3 \\ 3,2 p \end{array}$	PLA	$A D C$ IMM	ROR A	$\begin{aligned} & \text { SEB } \\ & 3, \mathrm{~A} \\ & \hline \end{aligned}$	IMP No	$\begin{gathered} \mathrm{ADC} \\ \mathrm{ABS} \end{gathered}$	$\begin{aligned} & \text { ROR } \\ & \text { ABS } \end{aligned}$	$\begin{gathered} \text { SEB } \\ 3, \mathrm{ZP} \\ \hline \end{gathered}$
0111	7	BVS	$\begin{array}{\|c\|} \hline \text { ADC } \\ \text { IND, } Y \\ \hline \end{array}$	-	$\begin{aligned} & \mathrm{BBC} \\ & 3, \mathrm{~A} \end{aligned}$	-	$\begin{aligned} & \mathrm{ADC} \\ & \mathrm{ZP}, \mathrm{X} \end{aligned}$	$\begin{aligned} & \text { ROR } \\ & \mathrm{ZP}, \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{BBO} \\ & 3,2 \mathrm{P} \end{aligned}$	SEI	$\begin{aligned} & A D C \\ & \text { ABS, Y } \end{aligned}$	-	$\begin{aligned} & \text { CLB } \\ & 3, \mathrm{~A} \end{aligned}$	-	$\begin{aligned} & \text { ADC } \\ & A B S, X \end{aligned}$	$\begin{aligned} & R O R \\ & A B S \text {. } \times \end{aligned}$	$\begin{aligned} & \text { CLB } \\ & 3, Z P \end{aligned}$
1000	8	BRA	$\begin{array}{\|c\|} \hline \text { STA } \\ \text { IND, } X \\ \hline \end{array}$	$\begin{gathered} \text { RRF } \\ \mathrm{ZP} \end{gathered}$	$\begin{aligned} & \text { BBS } \\ & 4, \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { STY } \\ & \text { ZP } \end{aligned}$	$\begin{aligned} & \text { STA } \\ & \text { ZP } \end{aligned}$	$\begin{aligned} & \text { STX } \\ & \text { ZP } \end{aligned}$	$\begin{gathered} B B S \\ 4,2 \mathrm{P} \end{gathered}$	DEY	-	TXA	$\begin{aligned} & \text { SEB } \\ & 4, \mathrm{~A} \end{aligned}$	STY ABS	$A B S$	$\begin{aligned} & \text { STX } \\ & \text { ABS } \end{aligned}$	$\begin{aligned} & \text { SEB } \\ & 4, \mathrm{ZP} \end{aligned}$
1001	9	BCC	$\begin{array}{\|c\|} \hline \text { STA } \\ \text { IND, } Y \\ \hline \end{array}$	-	BBC 4, A	$\begin{gathered} \text { STY } \\ \mathrm{ZP}, \mathrm{X} \end{gathered}$	$\begin{aligned} & \text { STA } \\ & \text { ZP, } \mathrm{X} \end{aligned}$	$\begin{gathered} \mathrm{STX} \\ \mathrm{ZP}, \mathrm{Y} \end{gathered}$	$\begin{aligned} & \mathrm{BBC} \\ & 4.2 \mathrm{Z} \end{aligned}$	TYA	$\begin{array}{\|c} \text { STA } \\ \mathrm{ABS}, \mathrm{Y} \end{array}$	TXS	CLB 4, A	-	$\begin{aligned} & \text { STA } \\ & \text { ABS. } \mathrm{X} \end{aligned}$		$\begin{aligned} & \text { CLB } \\ & 4, \mathrm{ZP} \end{aligned}$
1010	A	LDY IMM	$\begin{array}{\|c\|} \hline \text { LDA } \\ \hline \text { IND, } \mathrm{X} \\ \hline \end{array}$	LDX IMM	BBS 5, A	$\begin{aligned} & \text { LDY } \\ & \text { ZP } \end{aligned}$	$\begin{gathered} \mathrm{LDA} \\ \mathrm{ZP} \end{gathered}$	$\begin{aligned} & \text { LDX } \\ & \mathrm{ZP} \end{aligned}$	$\begin{gathered} \mathrm{BES} \\ 5,2 \mathrm{p} \\ \hline \end{gathered}$	TAY	LDA IMM	TAX	$\begin{aligned} & \text { SEB } \\ & 5, \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LDY } \\ & \text { ABS } \end{aligned}$	LDA ABS:	$\begin{aligned} & L D X^{2} \\ & \text { ABS } \end{aligned}$	$\begin{gathered} \text { SEB } \\ 5, \mathrm{ZP} \end{gathered}$
1011	B	BCS	$\begin{array}{\|l\|} \hline \text { LDA } \\ \hline \text { IND, } \mathrm{Y} \\ \hline \end{array}$	JMP ZP, IND	$\begin{aligned} & \mathrm{BBC} \\ & 5, \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { LDY } \\ & \mathrm{ZP}, \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{LDA} \\ & \mathrm{ZP}, \mathrm{x} \end{aligned}$	$\begin{aligned} & \text { LDX } \\ & \mathrm{ZP}, \mathrm{Y} \end{aligned}$	$\left\|\begin{array}{c} \mathrm{BEC} \\ 5, \mathrm{ZP} \end{array}\right\|$	CLV	$\begin{aligned} & \mathrm{EDA} \\ & \mathrm{ABS}, ~ \end{aligned}$	TSX	$\begin{aligned} & \text { CLB } \\ & 5, \mathrm{~A} \end{aligned}$	$\begin{aligned} & \operatorname{LD}= \\ & \operatorname{ABS}, X \end{aligned}$	$\begin{aligned} & \angle D A \\ & \text { ABS, } X \end{aligned}$	$\begin{gathered} \text { HOX } \\ \text { ABS, } \end{gathered}$	$\begin{aligned} & \text { CLB } \\ & 5, \mathrm{ZP} \end{aligned}$
1100	C	$\begin{aligned} & \text { CPY } \\ & \text { IMM } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { CMP } \\ \text { IND, } X \\ \hline \end{array}$	\square	$\begin{aligned} & \text { BBS } \\ & 6, A \end{aligned}$	$\begin{aligned} & \mathrm{CPY} \\ & \mathrm{ZP} \end{aligned}$	$\begin{gathered} \text { CMP } \\ \mathrm{ZP} \end{gathered}$	$\begin{gathered} \mathrm{DEC} \\ \mathrm{ZP} \end{gathered}$	$\begin{array}{r} \mathrm{BES} \\ 6 \mathrm{ZP} \end{array}$	INY	CMP IMM	DEX	$\begin{aligned} & \text { SEB } \\ & 6, A \end{aligned}$	6 CP ABS	$\begin{aligned} & \text { CMD } \\ & \text { ABS } \end{aligned}$	$\begin{aligned} & \text { DEC } \\ & \text { ABS } \end{aligned}$	$\begin{aligned} & \text { SEB } \\ & 6, \mathrm{ZP} \end{aligned}$
1101	D	BNE	CMP IND, Y	-	$\begin{aligned} & \mathrm{BBC} \\ & 6, A \\ & \hline \end{aligned}$	-	$\begin{aligned} & \text { CMP } \\ & \text { ZP, } X \end{aligned}$	$\begin{aligned} & \mathrm{DEC} \\ & \mathrm{ZP}, \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{BBCD} \\ & 6,2 \mathrm{p} \end{aligned}$	CLD	$\begin{aligned} & \text { CMP } \\ & \text { ABS } \end{aligned}$	-	$\begin{aligned} & \text { CLB } \\ & 6, A \end{aligned}$	-	$\begin{aligned} & \text { CMR } \\ & \text { ABS } \end{aligned}$	$\begin{aligned} & \text { DEG } \\ & \text { ABS } \end{aligned}$	$\begin{aligned} & \text { CLB } \\ & 6, \mathrm{ZP} \end{aligned}$
1110	E	$\begin{aligned} & \text { CPX } \\ & \text { IMM } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { SBC } \\ \text { IND, } x \end{array}$		BBS 7, A	$\begin{gathered} \mathrm{CPX} \\ \mathrm{ZP} \end{gathered}$	$\begin{gathered} \mathrm{SBC} \\ \mathrm{ZP} \end{gathered}$	$\begin{aligned} & \mathrm{INC} \\ & \mathrm{ZP} \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{BES} \\ \% \mathrm{ge} \end{gathered}$	INX	SBC IMM	NOP	$\begin{aligned} & \text { SEB } \\ & 7, \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { CPX } \\ & \text { ABS } \end{aligned}$	SBC ABS	$\begin{aligned} & \mathrm{MCG} \\ & \mathrm{ABS} \end{aligned}$	$\begin{gathered} \text { SEB } \\ 7, \mathrm{ZP} \end{gathered}$
1111	F	BEQ	$\begin{array}{\|c\|} \hline \text { SBC } \\ \text { IND, } Y \\ \hline \end{array}$	-	$\begin{aligned} & \mathrm{BBC} \\ & 7, \mathrm{~A} \\ & \hline \end{aligned}$	-	$\begin{aligned} & \mathrm{SBC} \\ & \mathrm{ZP}, \mathrm{X} \end{aligned}$	INC ZP, X	$\begin{aligned} & \mathrm{BBC} \\ & 7: 2 \mathrm{ze} \end{aligned}$	SED	$\begin{array}{\|c\|} \hline \text { sec } \\ \text { ABS. } \mathrm{y} \end{array}$	-	$\begin{aligned} & \text { CLB } \\ & 7, \mathrm{~A} \\ & \hline \end{aligned}$	-	$\begin{aligned} & \text { SBC } \\ & \mathrm{ABS} ; \times 1 \end{aligned}$		$\begin{aligned} & \text { CLB } \\ & 7, \mathrm{ZP} \end{aligned}$

Note Support of these instructions depends on the microcomputer type

Instruction	Supported in the following microcomputer types
FST	M50740A-XXXSP, M50740ASP,
SLW	M50741-XXXSP, M50752-XXXSP,
	M50757-XXXSP, M50758-XXXSP
MUL	Series 7450, Series 38000, DIV
	M37424M8-XXXSP,
	M37524M4-XXXSP

Instruction	Not supported in the following microcomputer types
WIT	M50740A-XXXSP, M50740ASP, M50741-XXXSP, M50752-XXXSP, M50757-XXXSP, M50758-XXXSP
STP	M50752-XXXSP, M50757-XXXSP, M50758-XXXSP, M37424M8-XXXSP, M37524M4-XXXSP

3-byte instruction
2-byte instruction
1-byte instruction

MITSUBISHI MICROCOMPUTERS MELPS 740

MACHINE INSTRUCTIONS

Symbol	Function	Details	Addressing mode																	
			IMP			IMM			A			BIT, A			ZP			BIT,ZP		
			OP	n	\#	OP	n	\#												
ADC (Note 1) (Note 6)	When $\mathrm{T}=0$ $A \leftarrow A+M+C$ When $T=1$ $M(X) \leftarrow M(X)+M+C$	Adds the carry, accumulator and memory contents The results are entered into the accumulator. Adds the contents of the memory in the address indicated by index register X, the contents of the memory specified by the addressing mode and the carry The results are entered into the memory at the address indicated by index register X				69	2	2							65	3	2			
AND (Note 1)	When $T=0$ $A \leftarrow A \wedge M$ When $T=1$ $M(X) \leftarrow M(X) \wedge M$	"AND's" the accumulator and memory contents. The results are entered into the accumulator "AND's" the contents of the memory of the address indicated by index register X and the contents of the memory specified by the addressing mode. The results are entered into the memory at the address indicated by index register X				29	2	2							25	3	2			
ASL	$\begin{array}{cc} 7 \quad 0 \\ c \leftarrow \square \end{array}$	Shifts the contents of accumulator or contents of memory one bit to the left The low order bit of the accumulator or memory is cleared and the high order bit is shifted into the carry flag							OA	2	1				06	5	2			
$\begin{gathered} \text { BBC } \\ \text { (Note 4) } \end{gathered}$	A_{b} or $M_{b}=0$?	Branches when the contents of the bit specified in the accumulator or memory is " 0 "										$\left\|\begin{array}{l} 13 \\ 1 \\ 1 \\ 2 i \end{array}\right\|$	4	2				$\left\|\begin{array}{c} 17 \\ 1 \\ 21 \end{array}\right\|$	5	3
BBS (Note 4)	A_{b} or $M_{b}=1$?	Branches when the contents of the bit specified in the accumulator or memory is " 1 "										$\begin{array}{\|c\|} \hline 03 \\ 1 \\ 21 \end{array}$	4	2				$\begin{aligned} & 07 \\ & + \\ & 2 i \end{aligned}$	5	3
$\begin{gathered} \text { BCC } \\ \text { (Note 4) } \end{gathered}$	$C=0 ?$	Branches when the contents of carry flag is " 0 "																		
$\begin{aligned} & \text { BCS } \\ & \text { (Note 4) } \\ & \hline \end{aligned}$	$\mathrm{C}=1 ?$	Branches when the contents of carry flag is "1"																		
BEQ (Note 4)	$Z=1 ?$	Branches when the contents of zero flag is " 1 "																		
BIT	$\mathbf{A} \wedge \mathbf{M}$	"AND's" the contents of accumulator and memory The results are not entered anywhere	,												24	3	2			
BMI (Note 4)	$N=1 ?$	Branches when the contents of negative flag is " 1 "																		
BNE (Note 4)	$z=0$?	Branches when the contents of zero flag is " 0 "																		
BPL (Note 4)	$N=0$?	Branches when the contents of negative flag is "0"																		
BRA	$P C \leftarrow P C \pm$ offset	Jumps to address specified by adding offset to the program counter																		
BRK	$\begin{aligned} & B \leftarrow 1 \\ & M(S) \leftarrow P C_{H} \\ & S \leftarrow S-1 \\ & M(S) \leftarrow P C_{L} \\ & S \leftarrow S-1 \\ & M(S) \leftarrow P S \\ & S \leftarrow S-1 \\ & P C_{L} \leftarrow A D_{L} \\ & P C_{H} \leftarrow A D_{H} \end{aligned}$	Executes a software interrupt	00	7	1															

Symbol	Function	Details	Addressing mode																	
			IMP			IMM			A			BIT,A			ZP			BIT,ZP		
			OP	n	\#															
$\begin{gathered} \text { BVC } \\ \text { (Note 4) } \end{gathered}$	$V=0 ?$	Branches when the contents of overflow flag is " 0 "																		
$\begin{aligned} & \text { BVS } \\ & \text { (Note 4) } \end{aligned}$	$V=1 ?$	Branches when the contents of overflow flag is "1"																		
CLB	A_{b} or $\mathrm{Mb}_{\mathrm{b}} \leftarrow 0$	Clears the contents of the bit specified in the accumulator or memory to " 0 "										$\begin{array}{\|c\|} \hline 1 B \\ 18 \\ \hline 2 i \\ \hline \end{array}$	2	1				$\left\lvert\, \begin{aligned} & 1 F \\ & + \\ & 21 \end{aligned}\right.$	5	2
CLC	C↔0	Clears the contents of the carry flag to "0"	18	2	1															
CLD	$D \leftarrow 0$	Clears the contents of decimal mode flag to " 0 "	D8	2	1															
CLI	$1 \leftarrow 0$	Clears the contents of interrupt disable flag to "0"	58	2	1															
CLT	$T \leftarrow 0$	Clears the contents of index \times mode flag to " 0 "	12	2	1															
CLV	$V \leftarrow 0$	Clears the contents overflow flag to "0"	B8	2	1															
$\begin{gathered} \text { CMP } \\ (\text { Note 3) } \end{gathered}$	$\begin{aligned} & \text { When } T=0 \\ & A-M \\ & \text { When } T=1 \\ & M(X)-M \end{aligned}$	Compares the contents of accumulator and memory Compares the contents of the memory specified by the addressing mode with the contents of the address indicated by index register X				C9	2	2							C5	3	2			
COM	$\mathrm{M} \leftarrow \overline{\mathrm{M}}$	Forms a one's complement of the contents of memory, and stores it into memory													44	5	2			
CPX	X-M	Compares the contents of index register X and memory				EO	2	2							E4	3	2			
CPY	Y-M	Compares the contents of index register Y and memory				C0	2	2							C4	3	2			
DEC	$\begin{aligned} & A \leftarrow A-1 \text { or } \\ & M \leftarrow M-1 \end{aligned}$	Decrements the contents of the accumulator or memory by 1							1A	2	1				C6	5	2			
DEX	$X \leftarrow X-1$	Decrements the contents of index register X by 1	CA	2	1															
DEY	$\mathrm{Y} \leftarrow \mathrm{Y}-1$	Decrements the contents of index register Y by 1	88	2	1															
DIV (Note 5)	$\begin{aligned} & \mathrm{A} \leftarrow(M(z z+x+1), \\ & M(z z+X)) / A \end{aligned}$ $M(S) \leftarrow 1$'s comple- ment of Remainder $s \leftarrow s-1$	Divides the 16 -bit data that is the contents of $\mathrm{M}(z z+x+1)$ for high byte and the contents of $\mathrm{M}(\mathrm{zz}+\mathrm{x})$ for low byte by the accumulator Stores the quotient in the accumulator and the 1 's complement of the remainder on the stack																		
EOR (Note 1)	When $T=0$ $A \leftarrow A \forall M$ When $T=1$ $M(X) \leftarrow M(X) \forall M$	"Exclusive-ORs" the contents of accumulator and memory The results are stored in the accumulator "Exclusive-ORs" the contents of the memory specified by the addressing mode and the contents of the memory at the address indicated by index register X The results are stored into the memory at the address indicated by index regIster X				49	2	2							45	3	2			
$\begin{aligned} & \text { FST } \\ & \text { (Note 5) } \end{aligned}$		Connects oscillator output to the $\mathrm{X}_{\text {OUTF }}$ pin	E2	2	1						-									
INC	$\begin{aligned} & A \leftarrow A+1 \text { or } \\ & M \leftarrow M+1 \end{aligned}$	Increments the contents of accumulator or memory by 1							3A	2	1				E6	5	2			
INX	$\mathbf{X}-\mathrm{X}+1$	Increments the contents of index register X by 1	E8	2	1															
INY	$Y \leftarrow Y+1$	Increments the contents of index register Y by 1	C8	2	1															

Symbol	Function	Details	Addressing mode																		
			IMP			IMM				A			BIT,A			ZP			BIT, ZP		
			OP	n	\#	OP	n	\#	\# 0	OP	n	\#									
JMP	If addressing mode is ABS $\begin{aligned} & P C_{L} \leftarrow A D_{L} \\ & P C_{H} \leftarrow A D_{H} \end{aligned}$ If addressing mode is IND $\begin{aligned} & P C_{L} \leftarrow M\left(A D_{H}, A D_{L}\right) \\ & P C_{H} \leftarrow M\left(A D_{H}, A D_{L}+1\right) \end{aligned}$ If addressing mode is ZP , IND $\begin{aligned} & P C_{L} \leftarrow M\left(00, A D_{L}\right) \\ & P C_{H} \leftarrow M\left(00, A D_{L}+1\right) \end{aligned}$	Jumps to the specified address																			
JSR	$\begin{aligned} & M(S) \leftarrow P C_{H} \\ & S \leftarrow S-1 \\ & M(S) \leftarrow P C_{L} \\ & S \leftarrow S-1 \end{aligned}$ After executing the above, if addressing mode is ABS, $\begin{aligned} & P C_{L} \leftarrow A D_{L} \\ & P C_{H} \leftarrow A D_{H} \end{aligned}$ If addressing mode is SP , $\begin{aligned} & P C_{L} \leftarrow A D_{L} \\ & P C_{H} \leftarrow F F \end{aligned}$ If addressing mode is ZP , IND, $\begin{aligned} & P C_{L} \leftarrow M\left(00, A D_{L}\right) \\ & P C_{H} \leftarrow M\left(00, A D_{L}+1\right) \end{aligned}$	After storing contents of program counter in stack, and jumps to the specified address																			
LDA (Note 2)	$\begin{aligned} & \text { When } T=0 \\ & A \leftarrow M \\ & \text { When } T=1 \\ & M(X) \leftarrow M \end{aligned}$	Load accumulator with contents of memory Load memory indicated by index register X with contents of memory specified by the addressing mode				A9	2	2	2							A5	3	2			
LDM	$\mathbf{M} \leftarrow \mathrm{nn}$	Load memory with immediate value														3 C	4	3			
LDX	$\mathbf{X} \leftarrow \mathrm{M}$	Load index register X with contents of memory				A2	2	2	2							A6	3	2			
LDY	$\mathrm{Y} \leftarrow \mathrm{M}$	Load index register Y with contents of memory				AO	2	2	2							A4	3	2			
LSR	$\underset{0 \rightarrow \square}{7} \rightarrow c$	Shift the contents of accumulator or memory to the right by one bit The low order bit of accumulator or memory is stored in carry, 7th bit is cleared								4A	2	1				46	5	2			
MUL (Note 5)	$\begin{aligned} & M(S) \cdot A \leftarrow A \times M(Z Z+X) \\ & S \leftarrow S-1 \end{aligned}$	Multiplies the accumulator with the contents of memory specified by the zero page X addressing mode and stores the high byte of the result on the stack and the low byte in the accumulator																			
NOP	$\mathrm{PC}-\mathrm{PC}+1$	No operatıon	EA	2	1																
ORA (Note 1)	When $T=0$ $A \leftarrow A V M$ When $T=1$ $M(X) \leftarrow M(X) V M$	"Logical OR's" the contents of memory and accumulator The result is stored in the accúmulator "Logical OR's" the contents of memory indicated by index register X and contents of memory specified by the addressing mode The result is stored in the memory specified by index register X				09	2		2							05	3	2			

MITSUBISHI MICROCOMPUTERS MELPS 740

Symbol	Function	Details	Addressing mode																	
			IMP			IMM			A			BIT,A			ZP			BIT,ZP		
			OP	n	\#	OP	n	\#	OP	n	\#	OP	n	\#	OP	n	\#	OP	n	\#
PHA	$\begin{aligned} & M(S) \leftarrow A \\ & S \leftarrow S-1 \end{aligned}$	Saves the contents of the accumulator in memory at the address indicated by the stack pointer and decrements the contents of stack pointer by 1	48	3	1															
PHP	$\begin{aligned} & M(S) \leftarrow P S \\ & S \leftarrow S-1 \end{aligned}$	Saves the contents of the processor status register in memory at the address indicated by the stack pointer and decrements the contents of the stack pointer by 1	08	3	1															
PLA	$\begin{aligned} & S \leftarrow S+1 \\ & A \leftarrow M(S) \end{aligned}$	Increments the contents of the stack pointer by 1 and restores the accumulator from the memory at the address indicated by the stack pointer	68	4	1															
PLP	$\begin{aligned} & S \leftarrow S+1 \\ & P S \leftarrow M(S) \end{aligned}$	Increments the contents of stack ponter by 1 and restores the processor status register from the memory at the address indicated by the stack ponter	28	4	1															
ROL	$\begin{array}{cc} 7 & 0 \\ \square & \square \end{array}$	Shifts the contents of the memory or accumulator to the left by one bit The high order bit is shifted into the carry flag and the carry flag is shifted into the low order bit							2A	2	1				26	5	2			
ROR	$\stackrel{70}{7} \rightarrow$	Shifts the contents of the memory or accumulator to the right by one bit The low order bit is shifted into the carry flag and the carry flag is shifted into the high order bit							6A	2	1				66	5	2			
RRF		Rotates the contents of memory to the right by 4 bits													82	8	2			
RTI	$\begin{aligned} & S \leftarrow S+1 \\ & P S \leftarrow M(S) \\ & S \leftarrow S+1 \\ & P C_{L} \leftarrow M(S) \\ & S \leftarrow S+1 \\ & P C_{H} \leftarrow M(S) \end{aligned}$	Returns from an interrupt routine to the main routine	40	6	1												.			
RTS	$\begin{aligned} & \mathrm{S} \leftarrow \mathrm{~S}+1 \\ & \mathrm{PC} \leftarrow \mathrm{M}(\mathrm{~S}) \\ & \mathrm{S} \leftarrow \mathrm{~S}+1 \\ & \mathrm{PC} \mathrm{C}_{\mathrm{H}} \leftarrow \mathrm{M}(\mathrm{~S}) \\ & \hline \end{aligned}$	Returns from a subroutine to the main routine	60	6	1															
SBC (Note 1) (Note 6)	When $T=0$ $A \leftarrow A-M-\bar{C}$ When $T=1$ $M(X) \leftarrow M(X)-M-\bar{C}$	Subtracts the contents of memory and complement of carry flag from the contents of accumulator The results are stored into the accumulator Subtracts contents of complement of carry flag and contents of the memory indicated by the addressing mode from the memory at the address indicated by index register X The results are stored into the memory of the address indicated by index register X				E9	2	2							E5	3	2			
SEB	A_{b} or $M_{b} \leftarrow 1$	Sets the specified bit in the accumulator or memory to " 1 "						,				$\begin{array}{\|l\|l\|} \hline 0 B \\ 21 \\ 2 \\ \hline \end{array}$	2	1				$\begin{aligned} & \mathrm{OF} \\ & \mathbf{Y} \\ & 21 \end{aligned}$	5	2
SEC	$C \leftarrow 1$	Sets the contents of the carry flag to "1"	38	2	1															
SED	$D \leftarrow 1$	Sets the contents of the decimal mode flag to " 1 "	F8	2	1															
SEI	$1 \leftarrow 1$	Sets the contents of the interrupt disable flag to " 1 "	78	2	1															
SET	$T \leftarrow 1$	Sets the contents of the index X mode flag to " 1 "	32	2	1															
$\begin{gathered} \hline \text { SLW } \\ \text { (Note 5) } \\ \hline \end{gathered}$		Disconnects the oscillator output from the Xoutr pin	C2	2	1															

Symbol	Function	Details	Addressing mode																		
			IMP			IMM				A			BIT, A			ZP			BIT,ZP		
			OP	n	\#		OP	n	\#												
STA	$M \leftarrow A$	Stores the contents of accumulator in memory														85	4	2		,	
STP (Note5)		Stops the oscillator	42	2	1																
STX	$M \leftarrow X$	Stores the contents of index register X in memory														86	4	2			
STY	$\mathbf{M} \leftarrow \mathrm{Y}$	Stores the contents of index register Y in memory														84	4	2			
TAX	$X \leftarrow A$	Transfers the contents of the accumulator to index register X	AA	2	1																
TAY	$\mathrm{Y} \leftarrow \mathrm{A}$	Transfers the contents of the accumulator to index register Y	A8	2	1																
TST	$\mathrm{M}=0$?	Tests whether the contents of memory are " 0 " or not														64	3	2			
TSX	$\mathrm{X} \leftarrow \mathrm{S}$	Transfers the contents of the stack pointer to index register X	BA	2	1																
TXA	$A \leftarrow X$	Transfers the contents of index register X to the accumulator	8A	2	1																
TXS	$S \leftarrow X$	Transfers the contents of index register X to the stack pointer	9 A	2	1																
TYA	$A \leftarrow Y$	Transfers the contents of index register Y to the accumulator	98	2	1																
WIT (Note 5)		Stops the internal clock	C2	2	1																

Note 1 : The number of cycles " n " is increased by 3 when T is 1
: The number of cycles " n " is increased by 2 when T is 1
The number of cycles " n " is increased by 1 when T is 1
The number of cycles " n " is increased by 2 when branching has occurred
Support of these instructions depends on the microcomputer type

Instruction	Supported in the following microcomputer types
FST SLW	M50740A-XXXSP, M50740ASP,
	M50741-XXXSP, M50752-XXXSP,
MUL	Series 7450, Series 38000,
DIV	M37424M8-XXXSP,
	M37524M4-XXXSP

Instruction	Not supported in the following microcomputer types		
WIT	M50740A-XXXSP, M50740ASP, M50741-XXXSP, M50752-XXXSP, 		M50752-XXXSP, M50757-XXXSP,
:---			
M50758-XXXSP, M37424M8-XXXSP,			
M37524M4-XXXSP	,		

6 : N, V, and Z flags are invalid in decimal operation mode

Addressing mode																																	Processor status register							
ZP, X			ZP, Y			ABS			ABS, X			ABS, Y			IND			ZP,IND			IND, X			IND, Y			REL			SP			7	6	5	4	3	2	1	0
OP	n	\#	OP	n	\#	OP	n	\#	OP	n	\#	OP	n	\#	N	V	T	B	D	1	Z	C																		
95	5	2				8D	5	3	9D	6	3	99	6	3							81	7	2	91	7	2							-	-	-	-	-	-	-	-
																																	-	-	-	-	-	-	-	-
			96	5	2	8 E	5	3																									-	-	-	-	-	-	-	\bullet
94	5	2				8 C	5	3																									-	-	-	-	-	-	-	-
																																	N	-	-	-	-	-	Z	-
																																	N	-	-	-	-	-	z	-
																																	N	-	-	-	-	-	z	-
																																	N	-	-	-	-	-	z	-
																																	N	-	-	-	-	-	Z	-
																																	-	-	-	-	-	-	-	-
																																	N	-	-	-	-	-	Z	-
																																	-	-	-	-	-	-	-	-

Symbol	Contents	Symbol	Contents
IMP	Implied addressing mode	$+$	Addition
IMM	Immediate addressing mode	-	Subtraction
A	Accumulator or Accumulator addressing mode	\wedge	Logical OR
		\checkmark	Logical AND
BIT, A	Accumulator bit relative addressing mode	\forall	Logıcal exclusive OR
		-	Negation
ZP	Zero page addressing mode	\leftarrow	Shows direction of data flow
BIT, ZP	Zero page bit relative addressing mode	X	Index register X
		Y	Index register Y
ZP, X	Zero page X addressing mode	S	Stack pointer
ZP, Y	Zero page Y addressing mode	PC	Program counter
ABS	Absolute addressing mode	PS	Processor status register
ABS, X	Absolute X addressing mode	PC_{H}	8 high-order bits of program counter
ABS, Y	Absolute Y addressing mode	PC_{L}	8 low-order bits of program counter
IND	Indirect absolute addressing mode	AD_{H}	8 high -order bits of address
		AD_{L}	8 low-order bits of address
ZP, IND	Zero page indirect absolute addressing mode	FF	FF in Hexadecımal notation
		nn	Immedıate value
IND, X	Indırect X addressing mode	M	Memory specified by address designation of any
IND, Y	Indirect Y addressing mode		addressing mode
REL	Relative addressing mode	M (X)	Memory of address indicated by contents of index
SP	Special page addressing mode		register X
C	Carry flag	M (S)	Memory of address indicated by contents of stack
Z	Zero flag		pointer
1	Interrupt dısable flag	$M\left(A D_{H}, A D_{L}\right)$	Contents of memory at address indicated by $A D_{H}$ and
D	Decımal mode flag		$A D_{\mathrm{L}}$, in $A D_{\mathrm{H}}$ is 8 high-order bits and $A D_{\mathrm{L}}$ is 8 low-
B	Break flag		order bits
T	X-modified arithmetic mode flag	$\mathrm{M}\left(00, A D_{L}\right)$	Contents of address indicated by zero page $A D_{L}$
V	Overflow flag	A_{b}	1 bit of accumulator
N	Negative flag	Mb_{b}	1 bit of memory
		OP	Opcode
		n	Number of cycles
		\#	Number of bytes

NOTES on USE

Keep the following points in mind while programming.

Processor status register

(1) Initialization of processor status register

After a reset, the contents of the processor status register (PS) are undefined except for the I flag which is " 1 ". Therefore, flags which affect program execution must be initialized after a reset.
In particular, it is essential to initialize the T and D flags because they have an important effect on calculations.
(2) How to reference the processor status register

To reference the contents of the processor status register (PS), execute the PHP instruction once then read the contents of $(S+1)$. If necessary, execute the PLP instruction to return the PS to its original status.
A NOP instruction should be executed after every PLP instruction. (The NOP in unnecessary when using a series 38000 microcomputer).

Interrupts

The contents of the interrupt request bits can be changed by software, but the values will not change immediately after being overwritten. Therefore, note the following points:
(1) After changing the value of the interrupt request bits, execute at least one instruction before executing a BBC, BBS, or any other read instruction.
(2) When clearing an interrupt request bit to " 0 " and setting an interrupt enable bit to " 1 " ($=$ setting in an interrupt enable state), it needs to be cleared or set these bits in a separate instruction. The interrupt is accepted because it becomes in the interrupt enable state before clearing the interrupt request bit, if clearing the interrupt request bit and setting the interrupt enable bit are performed in an instruction.

BRK instruction

(1) It can be detected that the BRK instruction interrupt event or the least priority interrupt event by referring the stored B flag state. Refer the stored B flag state in the interrupt routine, in this case.
However, the microcomputer that has an independent BRK instruction interrupt vector (cf. the 7450 series, the 7470 series, and the 38000 series) are not necessary this detection.
(2) The CPU of all 8-bit microcomputers except the 38000 series have the following bug about the BRK instruction execution.
At the following status,
(1) the interrupt request bit has set to " 1 ".
(2) the interrupt enable bit has set to " 1 ".
(3) the interrupt disable flag (I) has set to " 1 ".
if the BRK instruction is executed, the interrupt disable state is cancelled and it becomes in the interrupt enable state. So that the requested interrupts (the interrupts that corresponding to their request bits have set to " 1 ") are accepted.

Decimal calculations

(1) Execution of decimal calculations

The ADC and SBC are the only instructions which will yield proper decimal results in decimal mode. To calculate in decimal notation, set the decimal mode flag (D) to " 1 " with the SED instruction. After executing the ADC or SBC instruction, execute another instruction before executing the SEC, CLC, or CLD instruction.
(2) Note on flags in decimal mode

When decimal mode is selected, the values of three of the flags in the status register (the N, V, and Z flags) are invalid after a ADC or SBC instruction is executed. The Carry flag (C) is set to " 1 " if a carry is generated as a result of the calculation, or is cleared to " 0 " if a borrow is generated. To determine whether a calculation has generated a carry, the C flag must be initialized to " 0 " before each calculation. To check for a borrow, the C flag must be initialized to " 1 " before each calculation.

JMP instruction

When using the JMP instruction in indirect addressing mode, do not specify the last address on a page as an indirect address.

SERIES MELPS 740 MASK ROM ORDERING METHOD

Mitsubishi Electric corp. accepts order to transfer EPROM supplied program data into the mask ROM in single-chip 8bit microcomputers.
When placing such order, please submit the information described below.
(1) Mask ROM confirmation form- \qquad (There is a specific form to be used for each model.)
(2) Data to be written into mask ROM $\cdot \ldots \ldots \ldots \ldots . .$. EPROM (Please provide three sets containing the identical data.)
(3) Mark specification form................................... 1 set

NOTES

(1) Acceptable EPROM type

Any EPROM made by Mitsubishi that is listed in the mask ROM confirmation form may be used.
(2) EPROM window labeling

Please write the model name and the identification code (A, B, C) on the label for each of the three sets of data EPROMs provided.

(3) Calculation and indication of checksum, code Please calculate the total number of data in words in the EPROM, and write the number in 4-digit hexadecimal form in the checksum code field of the mask ROM confirmation form.
(4) Options

Refer to the appropriate data book entry and write the desired optıons on the mask ROM confirmation form
(5) Mark specification method

The permissible mark specifications differ depending on the shape of package. Please fill out the mark specification form and attach it to the mask ROM confirmation form.

OUTLINE OF ORDER PROCESSING

Mitsubishı will produce the mask ROM if at least two of the three EPROM sets submitted contain identical data.
If we find error when the submitted EPROMs are compared, we will contact your representative
Thus, we assume responsibility only when we produce the mask ROM that contain data other than the data correctly provided by the customer.
Mitsubishi uses an automatic mask ROM design program to generated the following:

1. Drafting data for mask ROM production,
2. ROM code listıng or EPROM for mask ROM production error check work,
3. Mask ROM test program.

The chart below shows the flow of mask ROM production

SERIES MELPS 740 MASK ROM DEVELOPMENT CAD SYSTEM

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37450M2-XXXSP/FP MITSUBISHI ELECTRIC

Mask ROM number

※ 1 . Confirmation
Specify the name of the product being ordered and the type of EPROMs submitted.
Three sets of EPROMs are required for each pattern (Check @ in the appropriate box).
If at least two of the three sets of EPROMs submitted contain identical data, we will produce masks based in this data. We shall assume the responsibility for errors only if the mask ROM data on the products we produce differ from this data. Thus, the customer must be especially careful in verifying the data contained in the EPROMs submitted.

Microcomputer name: \square M37450M2-XXXSP \square M37450M2-XXXFP

Checksum code for entire EPROM \square (hexadecimal notation)
EPROM type

$\square 2764$	$\square 27128$	$\square 27256$

Set " FF_{16} " in the shaded area
※2. Mark specification
Mark specification must be submitted using the correct form for the type package being ordered fill out the appropriate mark specification form (64P4B for M37450M2-XXXSP ; 80P6 for M37450M2-XXXFP) and attach to the mask ROM confirmation form.
※ 3. Comments

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37450M4-XXXSP/FP MITSUBISHI ELECTRIC

Mask ROM number

※ 1 . Confirmation
Specify the name of the product being ordered and the type of EPROMs submitted.
Three sets of EPROMs are required for each pattern (Check @ in the appropriate box).
If at least two of the three sets of EPROMs submitted contain identical data, we will produce masks based in this data. We shall assume the responsibility for errors only if the mask ROM data on the products we produce differ from this data. Thus, the customer must be especially careful in verifying the data contained in the EPROMs submitted.

Microcomputer name: \square M37450M4-XXXSP \square M37450M4-XXXFP

Checksum code for entire EPROM | | | | |
| :--- | :--- | :--- | :--- |

EPROM type

$\square 2764$	$\square \quad 27128$	$\square 27256$

Set " FF_{16} " in the shaded area.
※ 2. Mark specification
Mark specification must be submitted using the correct form for the type package being ordered fill out the appropriate mark specification form (64P4B for M37450M4-XXXSP ; 80P6 for M37450M4-XXXFP) and attach to the mask ROM confirmation form.
※3. Comments

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37450M4TXXXSP/J MITSUBISHI ELECTRIC

※ 1 . Confirmation
Specify the name of the product being ordered and the type of EPROMs submitted.
Three sets of EPROMs are required for each pattern (Check @ in the appropriate box).
If at least two of the three sets of EPROMs submitted contain identical data, we will produce masks based in this data. We shall assume the responsibility for errors only if the mask ROM data on the products we produce differ from this data. Thus, the customer must be especially careful in verifying the data contained in the EPROMs submitted.

Microcomputer name: \square M37450M4TXXXSP \square M37450M4TXXXJ

Checksum code for entire EPROM

(hexadecimal notation)
EPROM type

| $\square 2764$ | $\square 27128$ | $\square 27256$ |
| :---: | :---: | :---: | :---: |
| data $\underbrace{}_{\text {dFFF }} 0000$ | | |

Set " FF_{16} " in the shaded area.
※ 2. Mark specification
Mark specification must be submitted using the correct form for the type package being ordered fill out the appropriate mark specification form (64P4B for M37450M4TXXXSP ; 84P0 for M37450M4TXXXJ) and attach to the mask ROM confirmation form.
※3. Comments

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37450M8-XXXSP/FP MITSUBISHI ELECTRIC

Mask ROM number

※ 1. Confirmation
Specify the name of the product being ordered and the type of EPROMs submitted.
Three sets of EPROMs are required for each pattern (Check @ in the appropriate box).
If at least two of the three sets of EPROMs submitted contain identical data, we will produce masks based in this data. We shall assume the responsibility for errors only if the mask ROM data on the products we produce differ from this data. Thus, the customer must be especially careful in verifying the data contained in the EPROMs submitted.

Microcomputer name: \square M37450M8-XXXSP \square M37450M8-XXXFP

Checksum code for entire EPROM | | | | |
| :--- | :--- | :--- | :--- |

EPROM type

$\square 27128$	$\square 27256$

Set " FF_{16} " in the shaded area
※ 2. Mark specification
Mark specification must be submitted using the correct form for the type package being ordered fill out the appropriate mark specification form (64P4B for M37450M8-XXXSP ; 80P6 for M37450M8-XXXFP) and attach to the mask ROM confirmation form.
※3. Comments

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37451M4-XXXSP/FP/GP MITSUBISHI ELECTRIC

Mask ROM number

	Date :	
	Section head signature	Supervisor signature

※ 1 . Confirmation
Specify the name of the product being ordered and the type of EPROMs submitted.
Three sets of EPROMs are required for each pattern (Check @ in the appropriate box).
If at least two of the three sets of EPROMs submitted contain identical data, we will produce masks based in this data. We shall assume the responsibility for errors only if the mask ROM data on the products we produce differ from this data. Thus, the customer must be especially careful in verifying the data contained in the EPROMs submitted.

Microcomputer name : M37451M4-XXXSP

M37451M4-XXXFP
M37451M4-XXXGP

(1) Set " $F F_{16}$ " in the shaded area
(2) Write the ASCII codes that indicates the name of the product ' M 37451 M 4 -' to addresses 0000_{16} to $000 \mathrm{~F}_{16}$. ASCII codes 'M37451M4 -' are listed on the right. The addresses and data are in hexadecimal notation.

Address		Address	
0000_{16}	'M' $=4 \mathrm{D}_{16}$	$0008{ }_{16}$	$\mathrm{l}^{\prime}=2 \mathrm{D}_{16}$
$0001{ }_{16}$	${ }^{\prime} 3^{\prime}=33_{16}$	$0^{0009}{ }_{16}$	FF ${ }_{16}$
$0002{ }_{16}$	${ }^{\prime} 7$ ' $=37_{16}$	$000 \mathrm{~A}_{16}$	F F 16
$0003{ }_{16}$	${ }^{\prime} 4^{\prime}=34_{16}$	$000 \mathrm{~B}_{16}$	FF F_{16}
0004_{16}	${ }^{\prime} 5^{\prime}=35_{16}$	$000 \mathrm{C}_{16}$	F F 16
0005_{16}	$\cdot 1^{\prime}=31_{16}$	$000 \mathrm{D}_{16}$	F F 16
0_{000616}	' $\mathrm{M}^{\prime}=4 \mathrm{D}_{16}$	$000 \mathrm{E}_{16}$	F F ${ }_{16}$
$0007{ }_{16}$	${ }^{\prime} 4^{\prime}=34_{16}$	$000 \mathrm{~F}_{16}$	FF ${ }_{16}$

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37451M4-XXXSP/FP/GP MITSUBISHI ELECTRIC

Recommend to writing the following pseudo-command to the assembler source file :

EPROM type	27128	27256	27512
The pseudo-command	$*=\triangle \$ C 000$	$*=\triangle \$ 8000$	$*=\triangle \$ 0000$
	$\triangle . B Y T E \triangle$ 'M37451M4-'	$\triangle . B Y T E \triangle$ 'M37451M4-'	$\triangle . B Y T E \triangle$ 'M37451M4-',

Note : If the name of the product written to the EPROMs does not match the name of the mask confirmation, the ROM processing is disabled Write the data correctly.
※ 2. Mark specification
Mark specification must be submitted using the correct form for the type package being ordered fill out the appropriate mark specification form (64P4B for M37451M4-XXXSP ; 80P6N for M37451M4-XXXFP ; 80P6S for M37451M4-XXXGP) and attach to the mask ROM confirmation form.
※3. Comments

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37451M4DXXXSP/FP MITSUBISHI ELECTRIC

Mask ROM number

※ 1. Confirmation
Specify the name of the product being ordered and the type of EPROMs submitted.
Three sets of EPROMs are required for each pattern (Check @ in the appropriate box).
If at least two of the three sets of EPROMs submitted contain identical data, we will produce masks based in this data. We shall assume the responsibility for errors only if the mask ROM data on the products we produce differ from this data. Thus, the customer must be especially careful in verifying the data contained in the EPROMs submitted.

Microcomputer name: \square M37451M4DXXXSP \square M37451M4DXXXFP

EPROM type Checksum code for entire EPROM | | | | |
| :--- | :--- | :--- | :--- |

(1) Set " FF_{16} " in the shaded area.
(2) Write the ASCII codes that indicates the name of the product 'M37451M4D' to addresses 0000_{16} to $000 \mathrm{~F}_{16}$. ASCII codes 'M37451M4D' are listed on the right. The addresses and data are in hexadecimal notation.

Address		Address	
$0000{ }_{16}$	'M' = 4 D_{16}	$0008{ }_{16}$	${ }^{\prime} \mathrm{D}^{\prime}=44_{16}$
$0001{ }_{16}$	${ }^{\prime} 3^{\prime}=33_{16}$	$0009{ }_{16}$	F F ${ }_{16}$
$0002{ }_{16}$	$\cdot^{\prime} 7^{\prime}=37_{16}$	000A ${ }_{16}$	FF ${ }_{16}$
$0_{0003}{ }_{16}$	${ }^{\prime} 4^{\prime}=3{ }^{\prime}{ }^{\prime}{ }_{16}$	$0^{000 B_{16}}$	FFi6
0004_{16}	$\cdot 5^{\prime}=35_{16}$	$000 \mathrm{C}_{16}$	F F 16
0_{0005}^{16}	$\cdot^{\prime}{ }^{\prime}=31_{16}$	$000 \mathrm{D}_{16}$	F F ${ }_{16}$
$0006{ }_{16}$	' $\mathrm{M}^{\prime}=4 \mathrm{D}_{16}$	$000 \mathrm{E}_{16}$	F F ${ }_{16}$
0_{0007}^{16}	${ }^{\prime} 4^{\prime}=34_{16}$	$000 \mathrm{~F}_{16}$	F F ${ }_{16}$

GZZ-SH03-95A〈OYAO〉

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37451M4DXXXSP/FP MITSUBISHI ELECTRIC

Mask ROM number

Recommend to writing the following pseudo-command to the assembler source file :

EPROM type	27128	27256	27512
The pseudo-command	$*=\triangle \$ C 000$	$*=\triangle \$ 8000$	$*=\triangle \$ 0000$
	$\triangle . B Y T E \triangle$ 'M37451M4D'	$\triangle . B Y T E \triangle$ 'M37451M4D'	$\triangle . B Y T E \triangle$ 'M37451M4D'

Note : If the name of the product written to the EPROMs does not match the name of the mask confirmation, the ROM processing is disabled. Write the data correctly.
※ 2. Mark specification
Mark specification must be submitted using the correct form for the type package being ordered fill out the appropriate mark specification form (64P4B for M37451M4DXXXSP; 80P6N for M37451M4DXXXFP) and attach to the mask ROM confirmation form.
※3. Comments

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37451M8-XXXSP/FP/GP MITSUBISHI ELECTRIC

| Mask ROM number |
| :--- | :--- |

※ 1 . Confirmation
Specify the name of the product being ordered and the type of EPROMs submitted.
Three sets of EPROMs are required for each pattern (Check @ in the appropriate box).
If at least two of the three sets of EPROMs submitted contain identical data, we will produce masks based in this data. We shall assume the responsibility for errors only if the mask ROM data on the products we produce differ from this data. Thus, the customer must be especially careful in verifying the data contained in the EPROMs submitted.

Microcomputer name: $\quad \square$ M37451M8-XXXSP $\quad \square$ M37451M8-XXXFP \square M37451M8-XXXGP

(1) Set " $F F_{16}$ " in the shaded area.
(2) Write the ASCII codes that indicates the name of the product 'M37451M8-' to addresses 0000_{16} to $000 \mathrm{~F}_{16}$. ASCII codes 'M37451M8 -' are listed on the right. The addresses and data are in hexadecimal notation.

Address	,	Address	
0001_{16}	' $\mathrm{M}^{\prime}=4 \mathrm{D}_{16}$	0008_{16}	${ }^{\prime}$-' $=2 \mathrm{D}_{16}$
0001_{16}	'3' $=33_{16}$	000916	FF_{16}
$0002{ }_{16}$	${ }^{\prime} 7^{\prime}=37_{16}$	$000 \mathrm{~A}_{16}$	F F ${ }_{16}$
0003_{16}	${ }^{\prime} 4^{\prime}=34_{16}$	$000 B_{16}$	F F 16
0004_{16}	${ }^{\prime} 5$ ' $=35_{16}$	$0^{000} \mathrm{C}_{16}$	F F ${ }_{16}$
0005_{16}	${ }^{\prime} 1^{\prime}=31_{16}$	$000 \mathrm{D}_{16}$	F F 16
$0006{ }_{16}$	'M' $=4 \mathrm{D}_{16}$	$000 \mathrm{E}_{16}$	F F 16
0007_{16}	' 8 ' $=38_{16}$	$000 \mathrm{~F}_{16}$	F F 16

```
GZZ-SH03-57A<06A0>
```


SERIES MELPS 740 MASK ROM CONFIRMATION FORM

SINGLE-CHIP MICROCOMPUTER M37451M8-XXXSP/FP/GP MITSUBISHI ELECTRIC

Recommend to writing the following pseudo-command to the assembler source file :

EPROM type	27256	27512
The pseudo-command	$*=\triangle \$ 8000$	$*=\triangle \$ 0000$
	\triangle. BYTE \triangle 'M37451M8-'	\triangle. BYTE \triangle 'M37451M8-'

Note : If the name of the product written to the EPROMs does not match the name of the mask confirmation, the ROM processing is disabled. Write the data correctly.
※2. Mark specification
Mark specification must be submitted using the correct form for the type package being ordered fill out the appropriate mark specification form (64P4B for M37451M8-XXXSP ; 80P6N for M37451M8-XXXFP ; 80P6S for M37451M8-XXXGP) and attach to the mask ROM confirmation form.
※3. Comments

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37451M8DXXXSP/FP MITSUBISHI ELECTRIC

※1. Confirmation
Specify the name of the product being ordered and the type of EPROMs submitted.
Three sets of EPROMs are required for each pattern (Check @ in the appropriate box).
If at least two of the three sets of EPROMs submitted contain identical data, we will produce masks based in this data. We shall assume the responsibility for errors only if the mask ROM data on the products we produce differ from this data. Thus, the customer must be especially careful in verifying the data contained in the EPROMs submitted.

Microcomputer name: \square M37451M8DXXXSP \square M37451M8DXXXFP

(1) Set " FF_{15} " in the shaded area.
(2) Write the ASCII codes that indicates the name of the product 'M37451M8D' to addresses 0000_{16} to $000 \mathrm{~F}_{16}$. ASCII codes 'M37451M8D' are listed on the right. The addresses and data are in hexadecimal notation.

Address		Address	
$0000{ }_{16}$	' $M^{\prime}=4 D_{16}$	$0008{ }_{16}$	${ }^{\prime} \mathrm{D}^{\prime}=4^{4} \mathrm{H}_{16}$
$0001{ }_{16}$	${ }^{\prime} 3^{\prime}=33_{16}$	0009_{16}	F F ${ }_{16}$
$0002{ }_{16}$	$\cdot 7^{\prime}=37_{16}$	$000 \mathrm{~A}_{16}$	F F ${ }_{16}$
000316	${ }^{\prime} 4^{\prime}=34_{16}$	$000 \mathrm{~B}_{16}$	F F ${ }_{16}$
0004_{16}	${ }^{\prime} 5$ ' $=35_{16}$	$000 \mathrm{C}_{16}$	F F ${ }_{16}$
0005_{16}	$\cdot^{\prime}{ }^{\prime}=31_{16}$	$000 \mathrm{D}_{16}$	F F ${ }_{16}$
$0006{ }_{16}$	' $\mathrm{M}^{\prime}=4 \mathrm{D}_{16}$	$000 \mathrm{E}_{16}$	F F ${ }_{16}$
$0007{ }_{16}$	'8' $=3816$	$000 \mathrm{~F}_{16}$	F F ${ }_{16}$

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37451M8DXXXSP/FP MITSUBISHI ELECTRIC

Recommend to writing the following pseudo-command to the assembler source file :

EPROM type	27256	27512
The pseudo-command	$*=\triangle \$ 8000$	$*=\triangle \$ 0000$
	$\triangle . B Y T E \triangle$ 'M37451M8D'	$\triangle . B Y T E \triangle$ 'M37451M8D'

Note : If the name of the product written to the EPROMs does not match the name of the mask confirmation, the ROM processing is disabled. Write the data correctly.
※2. Mark specification
Mark specification must be submitted using the correct form for the type package being ordered fill out the appropriate mark specification form (64P4B for M37451M8DXXXSP ; 80P6N for M37451M8DXXXFP) and attach to the mask ROM confirmation form.
※3. Comments

Mask ROM number

	Date :	
	Section head signature	Supervisor signature

※ 1. Confirmation
Specify the name of the product being ordered and the type of EPROMs submitted.
Three sets of EPROMs are required for each pattern (Check @ in the appropriate box).
If at least two of the three sets of EPROMs submitted contain identical data, we will produce masks based in this data. We shall assume the responsibility for errors only if the mask ROM data on the products we produce differ from this data. Thus, the customer must be especially careful in verifying the data contained in the EPROMs submitted.

Microcomputer name :
M37451MC-XXXSP
\square M37451MC-XXXFP
M37451MC-XXXGP

EPROM type \quad Checksum code for entire EPROM | | | | |
| :--- | :--- | :--- | :--- |

(1) Set " FF_{16} " in the shaded area.
(2) Write the ASCII codes that indicates the name of the product ' M 37451 MC -' to addresses 0000_{16} to $000 \mathrm{~F}_{16}$. ASCII codes 'M37451MC-' are listed on the right. The addresses and data are in hexadecimal notation.

Address		Address	
0001_{16}	' $\mathrm{M}^{\prime}=4 \mathrm{D}_{16}$	000816	${ }^{\prime}$-' $=2 \mathrm{D}_{16}$
$0001{ }_{16}$	${ }^{\prime} 3^{\prime}=33_{16}$	$0_{0009}{ }_{16}$	F F 16
000216	$!7^{\prime}=37_{16}$	$000 A_{16}$	F F 16
0003_{16}	'4' $\mathbf{4}^{\prime} \mathbf{3 1 6}^{\prime}$	$000 B_{16}$	F F 16
$0004{ }_{16}$	${ }^{\prime} 5$ ' $=35_{16}$	$0^{000} \mathrm{C}_{16}$	F F ${ }_{16}$
000516	${ }^{\prime} \mathrm{I}^{\prime}=31_{16}$	$000 \mathrm{D}_{16}$	FF_{16}
000616	' $\mathrm{M}^{\prime}=4 \mathrm{D}_{16}$	$000 \mathrm{E}_{16}$	F F ${ }_{16}$
000716	${ }^{\prime} \mathrm{C}^{\prime}=43_{16}$	$000 \mathrm{~F}_{16}$	F F ${ }_{16}$

GZZ-SH03-91A〈OYAO〉

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37451MC-XXXSP/FP/GP MITSUBISHI ELECTRIC

Recommend to writing the following pseudo-command to the assembler source file :

EPROM type	27256	27512
The pseudo-command	$*=\triangle \$ 8000$	$*=\triangle \$ 0000$
	$\triangle . B Y T E \triangle$ 'M37451MC-'	\triangle. BYTE \triangle 'M37451MC-'

Note : If the name of the product written to the EPROMs does not match the name of the mask confirmation, the ROM processing is disabled. Write the data correctly.
※ 2. Mark specification
Mark specification must be submitted using the correct form for the type package being ordered fill out the appropriate mark specification form (64P4B for M37451MC-XXXSP ; 80P6N for M37451MC-XXXFP ; 80P6S for M37451MC-XXXGP) and attach to the mask ROM confirmation form.
※3. Comments

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37470M2-XXXSP MITSUBISHI ELECTRIC

Mask ROM number

$※$

Customer	Company name		TEL		Submitted by	Supervisor
	Date issued	Date:				

※ 1. Confirmation
Specify the name of the product being ordered and the type of EPROMs submitted.
Three sets of EPROMs are required for each pattern (Check @ in the appropriate box).
If at least two of the three sets of EPROMs submitted contain identical data, we will produce masks based in this data. We shall assume the responsibility for errors only if the mask ROM data on the products we produce differ from this data. Thus, the customer must be especially careful in verifying the data contained in the EPROMs submitted.

Checksum code for entire EPROM \square (hexadecimal notation)

EPROM type

(1) Set " FF_{16} " in the shaded area.
(2) Write the ASCII codes that indicates the name of the product 'M37470M2-' to addresses 0000_{16} to $000 \mathrm{~F}_{16}$. ASCII codes 'M37470M2 -' are listed on the right. The addresses and data are in hexadecimal notation.

Address		Address	
$0000{ }_{16}$	' $\mathrm{M}^{\prime}=4 \mathrm{D}_{16}$	$0008{ }_{16}$	$-^{\prime}=2 \mathrm{D}_{16}$
$0001{ }_{16}$	${ }^{\prime} 3^{\prime}=33_{16}$	0009_{16}	F F ${ }_{16}$
$0002{ }_{16}$	${ }^{\prime} 7^{\prime}=37_{16}$	$000 \mathrm{~A}_{16}$	F F 16
$0003{ }_{16}$	${ }^{\prime} 4^{\prime}=3{ }^{\prime}{ }^{\prime}{ }_{16}$	$000 \mathrm{~B}_{16}$	FF ${ }_{16}$
0004_{16}	${ }^{\prime} 7^{\prime}=37_{16}$	$000 \mathrm{C}_{16}$	F F 16
$0005{ }_{16}$	${ }^{\prime} 0^{\prime}=30_{16}$	$000 \mathrm{D}_{16}$	FFi6
$0006{ }_{16}$	' $\mathrm{M}^{\prime}=4 \mathrm{D}_{16}$	$000 \mathrm{E}_{16}$	FFi6
$0007{ }_{16}$	${ }^{\prime} 2^{\prime}=32_{16}$	$000 \mathrm{~F}_{16}$	F F ${ }_{16}$

GZZ-SH02-91A〈9YA0〉

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37470M2-XXXSP MITSUBISHI ELECTRIC

Recommend to writing the following pseudo-command to the start address of the assembler source program.

EPROM type	27128	27256	27512
The pseudo-command	$*=\triangle \$ C 000$	$*=\triangle \$ 8000$	$*=\triangle \$ 0000$
	$\triangle . B Y T E \triangle$ 'M37470M2-'	$\triangle . B Y T E \triangle$ 'M37470M2-'	$\triangle . B Y T E \triangle$ 'M37470M2-'

Note : If the name of the product written to the EPROMs does not match the name of the mask confirmation, the ROM processing is disabled. Write the data correctly.
※2. Mark specification
Mark specification must be submitted using the correct form for the type package being ordered fill out the appropriate mark specification form (32P4B for M37470M2-XXXSP) and attach to the mask ROM confirmation form.
※ 3. Comments

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37470M4-XXXSP MITSUBISHI ELECTRIC

Mask ROM number $\quad \square$

※ 1 . Confirmation
Specify the name of the product being ordered and the type of EPROMs submitted.
Three sets of EPROMs are required for each pattern (Check @ in the appropriate box).
If at least two of the three sets of EPROMs submitted contain identical data, we will produce masks based in this data. We shall assume the responsibility for errors only if the mask ROM data on the products we produce differ from this data. Thus, the customer must be especially careful in verifying the data contained in the EPROMs submitted.

Checksum code for entire EPROM

(hexadecimal notation)

EPROM type

(1) Set " FF_{16} " in the shaded area.
(2) Write the ASCII codes that indicates the name of the product 'M37470M4-' to addresses 0000_{16} to $000 \mathrm{~F}_{16}$. ASCII codes 'M37470M4 -' are listed on the right. The addresses and data are in hexadecimal notation.

Address

$$
0000_{16}
$$

$$
0001_{16}
$$

$$
0002_{16}
$$

0003_{16}
0004_{16} 0_{0005}^{16} 0_{0006}^{16} 0_{0007}^{16}

' $\mathrm{M}^{\prime}=4 \mathrm{D}_{16}$
${ }^{\prime} 3^{\prime}=33_{16}$
${ }^{\prime} 7^{\prime}=37_{16}$
${ }^{\prime} 4^{\prime}=3{ }^{\prime}{ }_{16}$
$\cdot 7^{\prime}=37_{16}$
${ }^{\prime} 0 \cdot=30_{16}$
${ }^{\prime} \mathrm{M}^{\prime}=4 \mathrm{D}_{16}$
${ }^{\prime} 4^{\prime}=3{ }^{\prime}{ }_{16}$

Address

0008_{16} $0^{0009}{ }_{16}$ $000 \mathrm{~A}_{16}$ $000 \mathrm{~B}_{16}$ $000 \mathrm{C}_{16}$ $000 \mathrm{D}_{16}$ $000 \mathrm{E}_{16}$ $000 \mathrm{~F}_{16}$

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37470M4-XXXSP MITSUBISHI ELECTRIC

Recommend to writing the following pseudo-command to the start address of the assembler source program.

EPROM type	27128	27256	27512
The pseudo-command	$*=\triangle \$ C 000$	$*=\triangle \$ 8000$	$*=\triangle \$ 0000$
	$\triangle . B Y T E \triangle$ 'M37470M4-'	$\triangle . B Y T E \triangle$ 'M37470M4-'	$\triangle . B Y T E \triangle$ 'M37470M4-'

Note : If the name of the product written to the EPROMs does not match the name of the mask confirmation, the ROM processing is disabled. Write the data correctly.
※ 2. Mark specification
Mark specification must be submitted using the correct form for the type package being ordered fill out the appropriate mark specification form (32P4B for M37470M4-XXXSP) and attach to the mask ROM confirmation form.
※ 3. Comments

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37470M8-XXXSP MITSUBISHI ELECTRIC

Mask ROM number

※ 1 . Confirmation
Specify the name of the product being ordered and the type of EPROMs submitted.
Three sets of EPROMs are required for each pattern (Check @ in the appropriate box).
If at least two of the three sets of EPROMs submitted contain identical data, we will produce masks based in this data. We shall assume the responsibility for errors only if the mask ROM data on the products we produce differ from this data. Thus, the customer must be especially careful in verifying the data contained in the' EPROMs submitted.

Checksum code for entire EPROM \square (hexadecimal notation)

EPROM type

(1) Set " FF_{16} " in the shaded area.
(2) Write the ASCII codes that indicates the name of the product 'M37470M8-' to addresses 0000_{16} to $000 \mathrm{~F}_{16}$. ASCII codes 'M37470M8-' are listed on the right. The addresses and data are in hexadecimal notation.

SERIES MELPS 740 MASK ROM CONFIRMATION FORM
 SINGLE-CHIP MICROCOMPUTER M37470M8-XXXSP MITSUBISHI ELECTRIC

 Mask ROM numberRecommend to writing the following pseudo-command to the start address of the assembler source program.

EPROM type	27256	27512
The pseudo-command	$*=\triangle \$ 8000$	$*=\triangle \$ 0000$
	\triangle. BYTE \triangle 'M37470M8-'	\triangle. BYTE \triangle 'M37470M8-'

Note : If the name of the product written to the EPROMs does not match the name of the mask confirmation, the ROM processing is disabled. Write the data correctly.
※ 2. Mark specification
Mark specification must be submitted using the correct form for the type package being ordered fill out the appropriate mark specification form (32P4B for M37470M8-XXXSP) and attach to the mask ROM confirmation form.

※3. Comments

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37471M2-XXXSP/FP MITSUBISHI ELECTRIC

※ 1 . Confirmation
Specify the name of the product being ordered and the type of EPROMs submitted.
Three sets of EPROMs are required for each pattern (Check @ in the appropriate box).
If at least two of the three sets of EPROMs submitted contain identical data, we will produce masks based in this data. We shall assume the responsibility for errors only if the mask ROM data on the products we produce differ from this data. Thus, the customer must be especially careful in verifying the data contained in the EPROMs submitted.

Microcomputer name :
M37471M2-XXXSPM37471M2-XXXFP

$\square 27128$	$\square 27256$	$\square 27512$

(1) Set " FF_{16} " in the shaded area.
(2) Write the ASCII codes that indicates the name of the product 'M37471M2-' to addresses 0000_{16} to $000 \mathrm{~F}_{16}$. ASCII codes 'M37471M2-' are listed on the right. The addresses and data are in hexadecimal notation.

Address		Address	
$0000{ }_{16}$	' $\mathrm{M}^{\prime}=4 \mathrm{D}_{16}$	$0008{ }_{16}$	$\square^{\prime}=2 \mathrm{D}_{16}$
0001_{16}	$\cdot^{\prime} 3^{\prime}=33_{16}$	$0^{0009}{ }_{16}$	F F ${ }_{16}$
$0002{ }_{16}$	$\cdot{ }^{\prime}{ }^{\prime}=37_{16}$	000A ${ }_{16}$	F F 16
$0003{ }_{16}$	$\cdot^{\prime} 4^{\prime}=34_{16}$	$000 \mathrm{~B}_{16}$	F F ${ }_{16}$
0004_{16}	$\cdot^{\prime} 7^{\prime}=37_{16}$	$000 \mathrm{C}_{16}$	F F 16
0005_{16}	$\cdot^{\prime} 1^{\prime}=31_{16}$	$000 \mathrm{D}_{16}$	F F ${ }_{16}$
0_{00616}^{16}	' $\mathrm{M}^{\prime}=4 \mathrm{D}_{16}$	$000 \mathrm{E}_{16}$	F F 16
$0^{0007}{ }_{16}$	${ }^{\prime} 2^{\prime}=3{ }^{16}$	$000 \mathrm{~F}_{16}$	F F ${ }_{16}$

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37471M2-XXXSP/FP MITSUBISHI ELECTRIC

Mask ROM number

Recommend to writing the following pseudo-command to the start address of the assembler source program.

EPROM type	27128	27256	27512
The pseudo-command	$*=\triangle \$ C 000$	$*=\triangle \$ 8000$	$*=\triangle \$ 0000$
	$\triangle . B Y T E \triangle$ 'M37471M2-'	$\triangle . B Y T E \triangle$ 'M37471M2-'	$\triangle . B Y T E \triangle$ 'M37471M2-'

Note : If the name of the product written to the EPROMs does not match the name of the mask confirmation, the ROM processing is disabled. Write the data correctly.
※ 2. Mark specification
Mark specification must be submitted using the correct form for the type package being ordered fill out the appropriate mark specification form (42P4B for M37471M2-XXXSP ; 56P6N for M37471M2-XXXFP) and attach to the mask ROM confirmation form.
※3. Comments

SERIES MELPS 740 MASK ROM ORDERING METHOD

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37471M4-XXXSP/FP MITSUBISHI ELECTRIC

```
Mask ROM number
```


※ 1. Confirmation
Specify the name of the product being ordered and the type of EPROMs submitted.
Three sets of EPROMs are required for each pattern (Check @ in the appropriate box).
If at least two of the three sets of EPROMs submitted contain identical data, we will produce masks based in this data. We shall assume the responsibility for errors only if the mask ROM data on the products we produce differ from this data. Thus, the customer must be especially careful in verifying the data contained in the EPROMs submitted.

Microcomputer name :
M37471M4-XXXSPM37471M4-XXXFP

$\square \quad 27128$	$\square 27256$	$\square 27512$
Address	Address$0000_{16}$$\begin{aligned} & \text { Area for ASCII } \\ & \text { codes of the nan } \\ & \text { of the product } \\ & \text { O37471 } 4-\end{aligned}$	Address 0000_{16}
${ }^{0000}{ }_{16}$ Area for ASCII		
codes of the name of the troduct		Aodes of the name
$000 \mathrm{~F}_{16}$ 'M37471M4-'		$0^{0005} \mathrm{~F}_{16}$ 'M37471M4-'
001016 71717	010 0_{16} /	0010 16 $^{\text {/ }}$
F	F 1 1	111
$\begin{aligned} & \text { 1FFF }_{16} 000_{6} \\ & \hline 1 / 1 / 1 / 111 \end{aligned}$		$\mathrm{EFFF}_{16} \mathrm{EFOO}_{16}$
ROM (8 K)	ROM (8 K)	ROM (8 K)
$3 \mathrm{FFF}_{16}$	7FFF ${ }_{16}$	FFFF $_{16}$

(1) Set " FF_{16} " in the shaded area.
(2) Write the ASCII codes that indicates the name of the product 'M37471M4-' to addresses 0000_{16} to $000 \mathrm{~F}_{16}$. ASCII codes 'M37471M4 -' are listed on the right. The addresses and data are in hexadecimal notation.

Address		Address	
$0000{ }_{16}$	'M' $=4 \mathrm{D}_{16}$	$0008{ }_{16}$	${ }^{\prime}-{ }^{\prime}=2 \mathrm{D}_{16}$
$0001{ }_{16}$	${ }^{\prime} 3^{\prime}=33_{16}$	$0009{ }_{16}$	F F ${ }_{16}$
$0002{ }_{16}$	$\cdot 7^{\prime}=37_{16}$	$000 \mathrm{~A}_{16}$	F F 16
0003_{16}	${ }^{\prime} 4$ ' $=34_{16}$	$000 \mathrm{~B}_{16}$	FF ${ }_{16}$
0004 ${ }_{16}$	$\cdot 7^{\prime}=37_{16}$	$000 \mathrm{C}_{16}$	F F ${ }_{16}$
0005_{16}	${ }^{\prime} 1^{\prime}=31_{16}$	$000 \mathrm{D}_{16}$	F F ${ }_{16}$
$0006{ }_{16}$	'M' = 4 D ${ }_{16}$	$000 \mathrm{E}_{16}$	F F 16
$0007{ }_{16}$	'4' $=34_{16}$	$000 \mathrm{~F}_{16}$	FFi6

SERIES MELPS 740 MASK ROM CONFIRMATION FORM
Mask ROM number
SINGLE-CHIP MICROCOMPUTER M37471M4-XXXSP/FP MITSUBISHI ELECTRIC

Recommend to writing the following pseudo-command to the start address of the assembler source program.

EPROM type	27128	27256	27512
The pseudo-command	$*=\triangle \$ C 000$	$*=\triangle \$ 8000$	$*=\triangle \$ 0000$
	$\triangle . B Y T E \triangle$ 'M37471M4-'	$\triangle . B Y T E \triangle$ 'M37471M4-'	$\triangle . B Y T E \triangle$ 'M37471M4-'

Note : If the name of the product written to the EPROMs does not match the name of the mask confirmation, the ROM processing is disabled. Write the data correctly.
※ 2. Mark specification
Mark specification must be submitted using the correct form for the type package being ordered fill out the appropriate mark specification form (42P4B for M37471M4-XXXSP ; 56P6N for M37471M4-XXXFP) and attach to the mask ROM confirmation form.
※ 3. Comments

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37471M8-XXXSP/FP MITSUBISHI ELECTRIC

※ 1 . Confirmation
Specify the name of the product being ordered and the type of EPROMs submitted.
Three sets of EPROMs are required for each pattern (Check @ in the appropriate box).
If at least two of the three sets of EPROMs submitted contain identical data, we will produce masks based in this data. We shall assume the responsibility for errors only if the mask ROM data on the products we produce differ from this data. Thus, the customer must be especially careful in verifying the data contained in the EPROMs submitted.

Microcomputer name: \square M37471M8-XXXSP \square M37471M8-XXXFP

Checksum code for entire EPROM	
$\square 27256$	$\square 27512$

(1) Set " FF_{16} " in the shaded area.
(2) Write the ASCII codes that indicates the name of the product 'M37471M8-' to addresses 0000_{16} to $000 \mathrm{~F}_{16}$. ASCII codes 'M37471M8-' are listed on the right. The addresses and data are in hexadecimal notation.

Address		Address	
0000 16	'M' $=4 \mathrm{D}_{16}$	0008 ${ }_{16}$	'一' $=2 \mathrm{D}_{16}$
$0001{ }_{16}$	'3' $=33_{16}$	$0009{ }_{16}$	F F 16
0001_{16}	${ }^{\prime} 7^{\prime}=37_{16}$	$000 A_{16}$	FF_{16}
000316	${ }^{\prime} 4^{\prime}=34_{16}$	$000 \mathrm{~B}_{16}$	FF_{16}
0004 ${ }_{16}$	${ }^{\prime} 7^{\prime}=37_{16}$	$000 \mathrm{C}_{16}$	F F ${ }_{16}$
0005_{16}	${ }^{\prime} 1^{\prime}=31_{16}$	$000 \mathrm{D}_{16}$	F F 16
000616	'M' $=4 \mathrm{D}_{16}$	$000 \mathrm{E}_{16}$	F F ${ }_{16}$
000716	' 8 ' $=38_{16}$	$000 \mathrm{~F}_{16}$	F F ${ }_{16}$

SERIES MELPS 740 MASK ROM CONFIRMATION FORM
 SINGLE-CHIP MICROCOMPUTER M37471M8-XXXSP/FP MITSUBISHI ELECTRIC

 Mask ROM numberRecommend to writing the following pseudo-command to the start address of the assembler source program.

EPROM type	27256	27512
The pseudo-command	$*=\triangle \$ 8000$	$*=\triangle \$ 0000$
	\triangle. BYTE \triangle 'M37471M8-'	\triangle. BYTE \triangle 'M37471M8-'

Note: If the name of the product written to the EPROMs does not match the name of the mask confirmation, the ROM processing is disabled. Write the data correctly.
※2. Mark specification
Mark specification must be submitted using the correct form for the type package being ordered fill out the appropriate mark specification form (42P4B for M37471M8-XXXSP ; 56P6N for M37471M8-XXXFP) and attach to the mask ROM confirmation form.
※3. Comments

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M38002M2-XXXSP/FP MITSUBISHI ELECTRIC

Mask ROM number

※ 1. Confirmation
Specify the name of the product being ordered and the type of EPROMs submitted.
Three EPROMs are required for each pattern.
If at least two of the three sets of EPROMs submitted contain identical data, we will produce masks based on this data. We shall assume the responsibility for errors only if the mask ROM data on the products we produce differs from this data. Thus, extreme care must be taken to verify the data in the submitted EPROMs.

Microcomputer name: \square M38002M2-XXXSP \square M38002M2-XXXFP

Checksum code for entire EPROM

(hexadecimal notation)
EPROM type (indicate the type used)

$\square 27256$	$\square 27512$
EPROM address	EPROM address
$0000_{16} \quad$ Product name	$\mathbf{0 0 0 0}_{16}$ Product name
$0^{000 F_{16}}$ 'M38002M2-'	$0^{0005} \mathrm{~F}_{16}$ 'M38002 ${ }^{\text {¢ }}$
$6_{6075}{ }_{16}$	EOTF_{16}
$68080_{16} \quad \begin{gathered}\text { data } \\ \text { ROM } 8062 \text { bytes }\end{gathered}$	E080 ${ }_{16} \quad \begin{gathered}\text { data } \\ \text { ROM } \\ 8062 \text { bytes }\end{gathered}$
$7 \mathrm{FFD}_{16} \quad$ ROM 8062 bytes	$\mathrm{FFFD}_{16} \quad$ ROM 8062 bytes
${ }^{7} \mathrm{FFE}_{16}$	FFFE_{16}
7FFF ${ }_{16}$	FFFF $_{16}$

(1) Set the data in the unused area (the shaded area of the diagram) to " FF_{16} ".
(2) The ASCII codes of the product name "M38002M2-" must be entered in addresses 0000_{16} to 0008_{16}. The ASCII codes and addresses are listed to the right in hexadecimal notation.

Address
0000_{16}
0001_{16}
$0002{ }_{16}$
0003_{16}
0004_{16}
0005_{16}
0006_{16}
0007_{16}

In the address space of the microcomputer, the internal ROM area is from address $E 080_{16}$ to FFFD_{16}. The reset vector is stored in addresses FFFC_{16} and FFFD_{16}.

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M38002M2-XXXSP/FP MITSUBISHI ELECTRIC

Mask ROM number

We recommend the use of the following pseudo-command to set the start address of the assembler source program.

EPROM type	27256	27512
The pseudo-command	$*=\triangle \$ 8000$	$*=\triangle \$ 0000$
	.$B Y T E \triangle$ 'M38002M2-'	. BYTE \triangle 'M38002M2-'

Note : If the name of the product written to the EPROMs does not match the name of the mask confirmation form, the ROM will not be processed.
※ 2. Mark specification
Mark specification must be submitted using the correct form for the package being ordered. Fill out the appropriate mark specification form (64P4B for M38002M2-XXXSP, 64P6N for M38002M2-XXXFP) and attach it to the mask ROM confirmation form.
※ 3. Delivery standard
Choose the format of the specifications for the product to be delivered.
(1) Specifications for each ROM
\square ROM code list unnecessary (standard).
\square ROM code list necessary.
Note that each format has the same scope of guarantee. Therefore, the standard format is recommended.
※4. Usage conditions
Please answer the following questions about usage for use in our product inspection:
(1) How will you use the $X_{I_{N}}-X_{\text {out }}$ oscillator?
\square - Ceramic resonatorQuartz crystal
\square External clock inputOther ()
At what frequency?
$\mathrm{f}\left(\mathrm{XI}_{\mathrm{IN}}\right)=\square \mathrm{MHz}$
(2) In which operation mode will you use your microcomputer?Single-chip modeMemory expansion modeMicroprocessor mode
※5. Comments

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M38002M4-XXXSP/FP MITSUBISHI ELECTRIC

Mask ROM number

※ 1. Confirmation
Specify the name of the product being ordered and the type of EPROMs submitted.
Three EPROMs are required for each pattern.
If at least two of the three sets of EPROMs submitted contain identical data, we will produce masks based on this data. We shall assume the responsibility for errors only if the mask ROM data on the products we produce differs from this data. Thus, extreme care must be taken to verify the data in the submitted EPROMs.

Microcomputer name: \square M38002M4-XXXSP \square M38002M4-XXXFP

Checksum code for entire EPROM \square (hexadecimal notation)

(1) Set the data in the unused area (the shaded area of the diagram) to " FF_{16} ".
(2) The ASCII codes of the product name "M38002M4-" must be entered in addresses 0000_{16} to 0008_{16}. The ASCII codes and addresses are listed to the right in hexadecimal notation.

In the address space of the microcomputer, the internal ROM area is from address $\mathrm{C} 080_{16}$ to FFFD_{16}. The reset vector is stored in addresses FFFC ${ }_{16}$ and FFFD_{16}.

Address		Address	
$0000{ }_{16}$	' $\mathrm{M}^{\prime}=4 \mathrm{D}_{16}$	$0008{ }_{16}$	$\rightarrow^{\prime}=2 \mathrm{D}_{16}$
0001_{16}	${ }^{\prime} 3^{\prime}=33_{16}$	000916	F F ${ }_{16}$
$0002{ }_{16}$	${ }^{\prime} 8$ ' $=38_{16}$	$000 \mathrm{~A}_{16}$	F F ${ }_{16}$
0003_{16}	${ }^{\prime} 0 \cdot=30_{16}$	$000 \mathrm{~B}_{16}$	F F ${ }_{16}$
0004_{16}	${ }^{\prime} 0$ ' $=30_{16}$	$000 \mathrm{C}_{16}$	F F ${ }_{16}$
$0005{ }_{16}$	${ }^{\prime} 2^{\prime}=3{ }^{16}$	$000 \mathrm{D}_{16}$	F F ${ }_{16}$
0_{000616}	'M' $=4 \mathrm{D}_{16}$	$000 \mathrm{E}_{16}$	F F ${ }_{16}$
0_{0007}^{16}	${ }^{\prime} 4^{\prime}=34_{16}$	$000 \mathrm{~F}_{16}$	F F ${ }_{16}$

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M38002M4-XXXSP/FP MITSUBISHI ELECTRIC

 Mask ROM numberWe recommend the use of the following pseudo-command to set the start address of the assembler source program.

EPROM type	27256	27512
The pseudo-command	$*=\triangle \$ 8000$	$*=\triangle \$ 0000$
	.$B Y T E \triangle$ 'M38002M4-'	.$B Y T E \triangle$ 'M38002M4-'

Note: If the name of the product written to the EPROMs does not match the name of the mask confirmation form, the ROM will not be processed.
※ 2. Mark specification
Mark specification must be submitted using the correct form for the package being ordered. Fill out the appropriate mark specification form (64P4B for M38002M4-XXXSP, 64 P 6 N for M38002M4-XXXFP) and attach it to the mask ROM confirmation form.
※3. Delivery standard
Choose the format of the specifications for the product to be delivered.
(1) Specifications for each ROM
$\square \quad$ ROM code list unnecessary (standard).ROM code list necessary.
Note that each format has the same scope of guarantee. Therefore, the standard format is recommended.
※4. Usage conditions
Please answer the following questions about usage for use in our product inspection :
(1) How will you use the $X_{\mathrm{IN}^{-}}-\mathrm{X}_{\text {Out }}$ oscillator?Ceramic resonatorQuartz crystalExternal clock inputOther ()
At what frequency? \square MHz
(2) In which operation mode will you use your microcomputer?Single-chip modeMemory expansion modeMicroprocessor mode
※5. Comments

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M38004M8-XXXSP/FP MITSUBISHI ELECTRIC

※ 1. Confirmation
Specify the name of the product being ordered and the type of EPROMs submitted.
Three EPROMs are required for each pattern.
If at least two of the three sets of EPROMs submitted contain identical data, we will produce masks based on this data. We shall assume the responsibility for errors only if the mask ROM data on the products we produce differs from this data. Thus, extreme care must be taken to verify the data in the submitted EPROMs.

Microcomputer name: \square M38004M8-XXXSP \square M38004M8-XXXFP

Checksum code for entire EPROM

(hexadecimal notation)

EPROM type (indicate the type used)

(1) Set the data in the unused area (the shaded area of the diagram) to " FF_{16} ".
(2) The ASCII codes of the product name "M38004M8-" must be entered in addresses 0000_{16} to 0008_{16}. The ASCII codes and addresses are listed to the right in hexadecimal notation.

In the address space of the microcomputer, the internal ROM area is from address 8080_{16} to FFFD_{16}. The reset vector is stored in addresses FFFC_{16} and FFFD_{16}.

Address		Address	
$0000{ }_{16}$	${ }^{\prime} \mathrm{M}^{\prime}=4 \mathrm{D}_{16}$	$0008{ }_{16}$	${ }^{\prime}-{ }^{\prime}=2 \mathrm{D}_{16}$
$0001{ }_{16}$	${ }^{\prime} 3^{\prime}=33_{16}$	$0^{0009}{ }_{16}$	F F ${ }_{16}$
$0002{ }_{16}$	${ }^{\prime} 8$ ' $=38_{16}$	$000 \mathrm{~A}_{16}$	F F ${ }_{16}$
0003_{16}	${ }^{\prime} 0$ ' $=30_{16}$	$000 \mathrm{~B}_{16}$	F F ${ }_{16}$
0004_{16}	${ }^{\prime} 0 \cdot=30_{16}$	$000 \mathrm{C}_{16}$	F F ${ }_{16}$
0005_{16}	${ }^{\prime} 4^{\prime}=3{ }^{\prime}{ }_{16}$	$000 \mathrm{D}_{16}$	F F ${ }_{16}$
$0006{ }_{16}$	'M' = 4 D_{16}	$000 \mathrm{E}_{16}$	F F ${ }_{16}$
$0007{ }_{16}$	${ }^{\prime} 8$ ' $=3816$	$000 \mathrm{~F}_{16}$	F F ${ }_{16}$

SERIES MELPS 740 MASK ROM CONFIRMATION FORM
 SINGLE-CHIP MICROCOMPUTER M38004M8-XXXSP/FP MITSUBISHI ELECTRIC

We recommend the use of the following pseudo-command to set the start address of the assembler source program.

EPROM type	27256	27512
The pseudo-command	${ }^{*}=\triangle \$ 8000$	$*=\triangle \$ 0000$
	.BYTE \triangle 'M38004M8-'	.BYTE \triangle 'M38004M8-'

Note : If the name of the product written to the EPROMs does not match the name of the mask confirmation form, the ROM will not be processed.
※2. Mark specification
Mark specification must be submitted using the correct form for the package being ordered. Fill out the appropriate mark specification form (64P4B for M38004M8-XXXSP, 64P6N for M38004M8-XXXFP) and attach it to the mask ROM confirmation form.
※3. Delivery standard
Choose the format of the specifications for the product to be delivered.
(1) Specifications for each ROM
\square ROM code list unnecessary (standard).
$\square \quad$ ROM code list necessary.
Note that each format has the same scope of guarantee. Therefore, the standard format is recommended.
※ 4. Usage conditions
Please answer the following questions about usage for use in our product inspection:
(1) How will you use the $X_{\mathrm{IN}^{-}}-\mathrm{X}_{\text {OUt }}$ oscillator?Ceramic resonatorQuartz crystal
External clock inputOther ()
At what frequency?

(2) In which operation mode will you use your microcomputer?
Memory expansion modeMicroprocessor mode
※5. Comments

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M38007M4-XXXSP/FP MITSUBISHI ELECTRIC

※ 1 . Confirmation
Specify the name of the product being ordered and the type of EPROMs submitted.
Three EPROMs are required for each pattern.
If at least two of the three sets of EPROMs submitted contain identical data, we will produce masks based on this data. We shall assume the responsibility for errors only if the mask ROM data on the products we produce differs from this data. Thus, extreme care must be taken to verify the data in the submitted EPROMs.
Microcomputer name: \square M38007M4-XXXSP \square M38007M4-XXXFP

Checksum code for entire EPROM

(hexadecimal notation)

EPROM type (indicate the type used)

(1) Set the data in the unused area (the shaded area of the diagram) to " FF_{16} ".
(2) The ASCII codes of the product name "M38007M4-" must be entered in addresses 0000_{16} to 0008_{16}. The ASCII codes and addresses are listed to the right in hexadecimal notation.

Address		Address	
$0000{ }_{16}$	'M' = 4 D_{16}	$0008{ }_{16}$	$\square^{\prime}=2 \mathrm{D}_{16}$
$0001{ }_{16}$	${ }^{\prime} 3^{\prime}=33_{16}$	0009_{16}	F F ${ }_{16}$
$0002{ }_{16}$	${ }^{\prime} 8^{\prime}=3{ }^{\prime}{ }_{16}$	$000 \mathrm{~A}_{16}$	F F 16
$0003{ }_{16}$	${ }^{\prime} 0^{\prime}=30_{16}$	$000 \mathrm{~B}_{16}$	F F ${ }_{16}$
0004_{16}	${ }^{\prime} 0 \cdot=30_{16}$	$000 \mathrm{C}_{16}$	F F ${ }_{16}$
$0005{ }_{16}$	${ }^{\prime} 7{ }^{\prime}=37_{16}$	$000 \mathrm{D}_{16}$	F F ${ }_{16}$
000616	' $\mathrm{M}^{\prime}=4 \mathrm{D}_{16}$	$000 \mathrm{E}_{16}$	F F ${ }_{16}$
$0007{ }_{16}$	${ }^{\prime} 4^{\prime}=3{ }^{\prime}{ }_{16}$	$000 \mathrm{~F}_{16}$	F F ${ }_{16}$

GZZ-SH04-28A〈13AO 〉

SERIES MELPS 740 MASK ROM CONFIRMATION FORM

We recommend the use of the following pseudo-command to set the start address of the assembler source program.

EPROM type	27256	27512
The pseudo-command	$*=\triangle \$ 8000$	$*=\triangle \$ 0000$
	.BYTE \triangle 'M38007M4-'	.BYTE \triangle 'M38007M4-'

Note : If the name of the product written to the EPROMs does not match the name of the mask confirmation form, the ROM will not be processed.
※ 2. Mark specification
Mark specification must be submitted using the correct form for the package being ordered. Fill out the appropriate mark specification form (64P4B for M38007M4-XXXSP, 64P6N for M38007M4-XXXFP) and attach it to the mask ROM confirmation form.
※ 3. Delivery standard
Choose the format of the specifications for the product to be delivered.
(1) Specifications for each ROM
\square ROM code list unnecessary (standard).
$\square \quad$ ROM code list necessary.
Note that each format has the same scope of guarantee. Therefore, the standard format is recommended.
※4. Usage conditions
Please answer the following questions about usage for use in our product inspection:
(1) How will you use the $\mathrm{X}_{\mathrm{IN}}-\mathrm{X}_{\text {OUt }}$ oscillator?Ceramic resonatorQuartz crystalExternal clock inputOther ()

At what frequency? \square MHz
(2) In which operation mode will you use your microcomputer?Single-chip modeMemory expansion modeMicroprocessor mode
※ 5. Comments

GZZ-SH03-63A〈07A0〉

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M38062M3-XXXFP/GP MITSUBISHI ELECTRIC

※ 1 . Confirmation
Specify the name of the product being ordered and the type of EPROMs submitted.
Three EPROMs are required for each pattern.
If at least two of the three sets of EPROMs submitted contain identical data, we will produce masks based on this data. We shall assume the responsibility for errors only if the mask ROM data on the products we produce differs from this data. Thus, extreme care must be taken to verify the data in the submitted EPROMs.

Microcomputer name: \square M38062M3-XXXFP \square M38062M3-XXXGP

Checksum code for entire EPROM \square (hexadecimal notation)

EPROM type (indicate the type used)

In the address space of the microcomputer, the internal ROM area is from address $\mathrm{D}_{0} \mathrm{OO}_{16}$ to FFFD_{16}. The reset vector is stored in addresses FFFC_{16} and FFFD_{16}.
(1) Set the data in the unused area (the shaded area of the diagram) to " FF_{16} ".
(2) The ASCII codes of the product name "M38062M3-" must be entered in addresses 0000_{16} to 0008_{16}. The ASCII codes and addresses are listed to the right in hexadecimal notation.

Address		Address	
$0000{ }_{16}$	' $\mathrm{M}^{\prime}=4 \mathrm{D}_{16}$	0_{0008}^{16}	${ }^{\prime}-{ }^{\prime}=2 \mathrm{D}_{16}$
$0001{ }_{16}$	$'^{\prime}{ }^{\prime}=33_{16}$	0_{0009}^{16}	F F 16
$0002{ }_{16}$	${ }^{\prime} 8$ ' $=38_{16}$	$000 \mathrm{~A}_{16}$	F F ${ }_{16}$
0003_{16}	${ }^{\prime} 0 \cdot=30_{16}$	$000 \mathrm{~B}_{16}$	F F ${ }_{16}$
0004_{16}	${ }^{6} 6$ ' $=36_{16}$	$000 \mathrm{C}_{16}$	F F 16
$0005{ }_{16}$	$'^{\prime} 2^{\prime}=3{ }^{16}$	$0_{000 D_{16}}$	FF ${ }_{16}$
$0006{ }_{16}$	'M' $=4 \mathrm{D}_{16}$	$000 \mathrm{E}_{16}$	FF ${ }_{16}$
0007_{16}	${ }^{\prime} 3^{\prime}=33_{16}$	$000 \mathrm{~F}_{16}$	F F ${ }_{16}$

SERIES MELPS 740 MASK ROM CONFIRMATION FORM

 Mask ROM numberWe recommend the use of the following pseudo-command to set the start address of the assembler source program.

EPROM type	27256	27512
The pseudo-command	${ }^{*}=\triangle \$ 8000$	$*=\triangle \$ 0000$
	.$B Y T E \triangle$ 'M38062M3-'	.$B Y T E \Delta$ 'M38062M3-'

Note: If the name of the product written to the EPROMs does not match the name of the mask confirmation form, the ROM will not be processed.
※ 2. Mark specification
Mark specification must be submitted using the correct form for the package being ordered. Fill out the appropriate mark specification form (80P6N for M38062M3-XXXFP, 80P6S for M38062M3-XXXGP) and attach it to the mask ROM confirmation form.
※3. Delivery standard
Choose the format of the specifications for the product to be delivered.
(1) Specifications for each ROM
\square ROM code list unnecessary (standard).ROM code list necessary.
Note that each format has the same scope of guarantee. Therefore, the standard format is recommended.
※4. Usage conditions
Please answer the following questions about usage for use in our product inspection:
(1) How will you use the $X_{\mathrm{IN}^{\prime}}-\mathrm{X}_{\text {Out }}$ oscillator?
\square Ceramic resonatorQuartz crystal
\square External clock inputOther ()

At what frequency? \square MHz
(2) In which operation mode will you use your microcomputer?Single-chip modeMemory expansion modeMicroprocessor mode
5. Comments

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE－CHIP MICROCOMPUTER M38063M6－XXXFP／GP MITSUBISHI ELECTRIC

※ 1 ．Confirmation
Specify the name of the product being ordered and the type of EPROMs submitted．
Three EPROMs are required for each pattern．
If at least two of the three sets of EPROMs submitted contain identical data，we will produce masks based on this data．We shall assume the responsibility for errors only if the mask ROM data on the products we produce differs from this data．Thus，extreme care must be taken to verify the data in the submitted EPROMs．
Microcomputer name ：
\square M38063M6－XXXFPM38063M6－XXXGP

Checksum code for entire EPROM

（hexadecimal notation）

EPROM type（indicate the type used）

$\square 27256$	$\square 27512$	
EPROM address	EPROM address	
0000_{16}Product name ASClI code	0_{000}^{16}	Product name ASCll
$0^{000 F_{16}}{ }^{\text {c }}$＇M38063M6－＇	$0^{000 F_{16}}$	＇M38063M6－＇
$207 \mathrm{~F}_{16} / / / / / /$	$\mathrm{A}^{\text {07F }} \mathrm{F}_{16}$	／ $1 / \sqrt{ }$
	$\mathrm{A}^{\text {A } 080}{ }_{16} \mathrm{FFFD}_{16}$	
${ }_{7 \mathrm{FFE}}^{16} \mathrm{~T}$	FFFE_{16}	771710
$\mathrm{7FFF}_{16}$ 成	FFFF $_{16}$	

In the address space of the microcomputer，the internal ROM area is from address $\mathrm{A} 080_{16}$ to FFFD_{16} ．The reset vector is stored in addresses FFFC ${ }_{16}$ and FFFD_{16} ．
（1）Set the data in the unused area（the shaded area of the diagram）to＂ FF_{16}＂．
（2）The ASCII codes of the product name＂M38063M6－＂ must be entered in addresses 0000_{16} to 0008_{16} ． The ASCII codes and addresses are listed to the right in hexadecimal notation．

Address		Address	
$0000{ }_{16}$	＇ $\mathrm{M}^{\prime}=4 \mathrm{D}_{16}$	$0008{ }_{16}$	${ }^{\prime}-{ }^{\prime}=2 \mathrm{D}_{16}$
$0001{ }_{16}$	${ }^{\prime} 3^{\prime}=33_{16}$	0009_{16}	FF_{16}
$0002{ }_{16}$	${ }^{\prime} 8^{\prime}=38_{16}$	$000 \mathrm{~A}_{16}$	F F 16
000316	${ }^{\prime} 0 \cdot=30_{16}$	$000 \mathrm{~B}_{16}$	F F ${ }_{16}$
$0004{ }_{16}$	${ }^{\prime} 6^{\prime}=36_{16}$	$000 \mathrm{C}_{16}$	FFi6
0005_{16}	$\cdot^{\prime}{ }^{\prime}=33_{16}$	$000 \mathrm{D}_{16}$	F F 16
$0006{ }_{16}$	＇M＇＝4 D ${ }_{16}$	$000 \mathrm{E}_{16}$	FFi6
$0007{ }_{16}$	${ }^{\prime} 6^{\prime}=36_{16}$	$000 \mathrm{~F}_{16}$	F F ${ }_{16}$

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M38063M6-XXXFP/GP MITSUBISHI ELECTRIC

We recommend the use of the following pseudo-command to set the start address of the assembler source program.

EPROM type	27256	27512
The pseudo-command	$*=\triangle \$ 8000$	$*=\triangle \$ 0000$
	.BYTE \triangle 'M38063M6-'	.BYTE \triangle 'M38063M6-'

Note : If the name of the product written to the EPROMs does not match the name of the mask confirmation form, the ROM will not be processed.
※ 2. Mark specification
Mark specification must be submitted using the correct form for the package being ordered. Fill out the appropriate mark specification form (80P6N for M38063M6-XXXFP, 80P6S for M38063M6-XXXGP) and attach it to the mask ROM confirmation form.
※3. Delivery standard
Choose the format of the specifications for the product to be delivered.
(1) Specifications for each ROM
\square ROM code list unnecessary (standard).ROM code list necessary.
Note that each format has the same scope of guarantee. Therefore, the standard format is recommended.
※ 4. Usage conditions
Please answer the following questions about usage for use in our product inspection :
(1) How will you use the $\mathrm{X}_{\text {IN }}-\mathrm{X}_{\text {out }}$ oscillator?
\square Ceramic resonator
\square Quartz crystal
\square External clock input
\square Other ()
At what frequency?
$f\left(X_{\text {IN }}\right)=\square$ MHz
(2) In which operation mode will you use your microcomputer?
\square Single-chip modeMemory expansion modeMicroprocessor mode
※5. Comments

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M38102M5-XXXSP/FP MITSUBISHI ELECTRIC

Mask ROM number

※ 1. Confirmation
Specify the name of the product being ordered and the type of EPROMs submitted.
Three EPROMs are required for each pattern.
If at least two of the three sets of EPROMs submitted contain identical data, we will produce masks based on this data. We shall assume the responsibility for errors only if the mask ROM data on the products we produce differs from this data. Thus, extreme care must be taken to verify the data in the submitted EPROMs.

Microcomputer name :
\square M38102M5-XXXSPM38102M5-XXXFP

Checksum code for entire EPROM

(hexadecimal notation)

EPROM type (indicate the type used)

(1) Set the data in the unused area (the shaded area of the diagram) to "FF F_{16} ".
(2) The ASCII codes of the product name "M38102M5-" must be entered in addresses 0000_{16} to 0008_{16}. The ASCII codes and addresses are listed to the right in hexadecimal notation.

In the address space of the microcomputer, the internal ROM area is from address $\mathrm{B} 080_{16}$ to FFFD_{16}. The reset vector is stored in addresses FFFC_{16} and FFFD_{16}

Address		Address	
$0000{ }_{16}$	'M' $=4 \mathrm{D}_{16}$	$0008{ }_{16}$	$\square^{\prime}=2 \mathrm{D}_{16}$
$0001{ }_{16}$	${ }^{\prime} 3^{\prime}=33_{16}$	0009_{16}	F F ${ }_{16}$
$0002{ }_{16}$	${ }^{\prime} 8{ }^{\prime}=38_{16}$	$000 \mathrm{~A}_{16}$	F F ${ }_{16}$
$0003{ }_{16}$	${ }^{\prime} 1^{\prime}=3{ }^{\prime} 1_{16}$	$000 \mathrm{~B}_{16}$	F F ${ }_{16}$
0004_{16}	${ }^{\prime} 0$ ' $=30_{16}$	$000 \mathrm{C}_{16}$	F F ${ }_{16}$
0005_{16}	${ }^{\prime} 2^{\prime}=32_{16}$	$000 \mathrm{D}_{16}$	F F ${ }_{16}$
$0006{ }_{16}$	'M' $=4 \mathrm{D}_{16}$	$000 \mathrm{E}_{16}$	F F ${ }_{16}$
$0007{ }_{16}$	${ }^{\prime} 5$ ' $=35_{16}$	$000 \mathrm{~F}_{16}$	F F ${ }_{16}$

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M38102M5-XXXSP/FP MITSUBISHI ELECTRIC

We recommend the use of the following pseudo-command to set the start address of the assembler source program.

EPROM type	27256	27512
The pseudo-command	$*=\triangle \$ 8000$	$*=\triangle \$ 0000$
	.$B Y T E \triangle$ 'M38102M5-'	.BYTE \triangle 'M38102M5-'

Note: If the name of the product written to the EPROMs does not match the name of the mask confirmation form, the
ROM will not be processed.
※2. Option specification (write the option data also to the specified address of the EPROM)
Reset mode switching option
Mask ROM number
Low-speed operation start mode \qquad 00_{16}
Address 0010_{16}

We recommend the use of the following pseudo-command to set the start address of the assembler source program.

EPROM type	27256	27512
Reset mode option	$*=\triangle \$ 8010$	$*=\Delta \$ 0010$
	$. B Y T E \triangle \$ \times \times$.BYTE $\triangle \$ \times \times$

Note: If the name of the product written to the EPROMs does not match the name of the mask confirmation form, the ROM will not be processed. Write the data correctly. As for the option, if the contents of the confirmation and conflict with those of the EPROM, the contents of the EPROM are preferred.
※ 3. Mark specification
Mark specification must be submitted using the correct form for the package being ordered. Fill out the appropriate mark specification form (64P4B for M38102M5-XXXSP, 64P6N for M38102M5-XXXFP) and attach it to the mask ROM confirmation form.
※ 4. Delivery standard
Choose the format of the specifications for the product to be delivered.
(1) Specifications for each ROM
$\square \quad$ ROM code list unnecessary (standard).
$\square \quad$ ROM code list necessary.
Note that each format has the same scope of guarantee. Therefore, the standard format is recommended.

GZZ-SH03-27A〈9ZA1 〉

SERIES MELPS 740 MASK ROM CONFIRMATION FORM
Mask ROM number

SINGLE-CHIP MICROCOMPUTER M38102M5-XXXSP/FP MITSUBISHI ELECTRIC

$※ 5$. Usage conditions
Please answer the following questions about usage for use in our product inspection:
(1) How will you use the $X_{I_{N}}-X_{\text {OUT }}$ oscillator?
\square Ceramic resonatorQuartz crystal
\square External clock input
\square Other (
At what frequency?
$f\left(X_{\text {IN }}\right)=$ \square MHz
(2) How will you use the $\mathrm{X}_{\mathrm{CIN}}-\mathrm{X}_{\text {COUT }}$ oscillator?Ceramic resonatorQuartz crystalExternal clock input
At what frequency?Other ()

$$
\mathrm{f}\left(\mathrm{X}_{\mathrm{CIN}}\right)=\square \mathrm{kHz}
$$

※6. Comments

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M38103M6-XXXSP/FP MITSUBISHI ELECTRIC

Mask ROM number

$\begin{aligned} & \stackrel{\rightharpoonup}{\mathbb{Z}} \\ & \text { O} \\ & \text { O} \\ & \ddot{\sim} \end{aligned}$	Date :	
	Section head signature	Supervisor signature

※ 1. Confirmation
Specify the name of the product being ordered and the type of EPROMs submitted.
Three EPROMs are required for each pattern.
If at least two of the three sets of EPROMs submitted contain identical data, we will produce masks based on this data. We shall assume the responsibility for errors only if the mask ROM data on the products we produce differs from this data. Thus, extreme care must be taken to verify the data in the submitted EPROMs.

Microcomputer name: \square M38103M6-XXXSP \square M38103M6-XXXFP

Checksum code for entire EPROM \square (hexadecimal notation)

EPROM type (indicate the type used)

(1) Set the data in the unused area (the shaded area of the diagram) to " FF_{16} ".
(2) The ASCII codes of the product name "M38103M6-" must be entered in addresses 0000_{16} to 0008_{16}. The ASCII codes and addresses are listed to the right in hexadecimal notation.

In the address space of the microcomputer, the internal ROM area is from address $\mathrm{A} 080_{16}$ to FFFD_{16}. The reset vector is stored in addresses FFFC_{16} and FFFD_{16}.

Address		Addres's	
0000_{16}	'M' $=4 \mathrm{D}_{16}$	$0008{ }_{16}$	$\square^{\prime}=2 \mathrm{D}_{16}$
$0001{ }_{16}$	${ }^{\prime} 3^{\prime}=33_{16}$	0_{0009}^{16}	FF ${ }_{16}$
$0002{ }_{16}$	${ }^{\prime} 8^{\prime}=38_{16}$	000 ${ }_{16}$	FF ${ }_{16}$
$0003{ }_{16}$	$\cdot^{\prime} 1^{\prime}=31_{16}$	$000 \mathrm{~B}_{16}$	F F ${ }_{16}$
0004 ${ }_{16}$	${ }^{\prime} 0$ ' $=30_{16}$	$000 \mathrm{C}_{16}$	FF ${ }_{16}$
$0005{ }_{16}$	${ }^{\prime} 3^{\prime}=33_{16}$	$000 \mathrm{D}_{16}$	F F 16
000616	${ }^{\prime} \mathrm{M}^{\prime}=4 \mathrm{D}_{16}$	$000 \mathrm{E}_{16}$	F F ${ }_{16}$
0_{0007}^{16}	${ }^{\prime} 6^{\prime}=36_{16}$	$000 \mathrm{~F}_{16}$	F F ${ }_{16}$

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M38103M6-XXXSP/FP MITSUBISHI ELECTRIC

We recommend the use of the following pseudo-command to set the start address of the assembler source program.

EPROM type	27256	27512
The pseudo-command	$*=\triangle \$ 8000$	$*=\triangle \$ 0000$
	.BYTE \triangle 'M38103M6-'	.BYTE \triangle 'M38103M6-'

Note: If the name of the product written to the EPROMs does not match the name of the mask confirmation form, the ROM will not be processed.
※ 2. Option specification (write the option data also to the specified address of the EPROM)
Reset mode switching optionNormal operation start mode

Address 0010_{16}Low-speed operation start mode \qquad

Mask ROM number

SERIES MELPS 740 MASK ROM CONFIRMATION FORM
※5. Usage conditions
Please answer the following questions about usage for use in our product inspection :
(1) How will you use the $X_{I_{N}}-X_{\text {OUt }}$ oscillator?Ceramic resonatorQuartz crystalExternal clock inputOther ()
At what frequency? \square MHz
(2) How will you use the $X_{\text {CIN }}{ }^{-} X_{\text {COUT }}$ oscillator?Ceramic resonatorQuartz crystalExternal clock inputOther ()
At what frequency? \square
$f\left(X_{\text {CIN }}\right)=$ kHz
※6. Comments

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M38112M4-XXXSP/FP MITSUBISHI ELECTRIC

Mask ROM number

	Date :	
	Section head signature	Supervisor signature

※ 1. Confirmation
Specify the name of the product being ordered and the type of EPROMs submitted.
Three EPROMs are required for each pattern.
If at least two of the three sets of EPROMs submitted contain identical data, we will produce masks based on this data. We shall assume the responsibility for errors only if the mask ROM data on the products we produce differs from this data. Thus, extreme care must be taken to verify the data in the submitted EPROMs.

Microcomputer name: \square M38112M4-XXXSP \square M38112M4-XXXFP

Checksum code for entire EPROM \square (hexadecimal notation)

EPROM type (indicate the type used)

(1) Set the data in the unused area (the shaded area of the diagram) to " FF_{16} ".
(2) The ASCII codes of the product name "M38112M4-" must be entered in addresses 0000_{16} to 0008_{16}. The ASCII codes and addresses are listed to the right in hexadecimal notation.

In the address space of the microcomputer, the internal ROM area is from address $\mathrm{C} 08 \mathrm{O}_{16}$ to FFFD_{16}. The reset vector is stored in addresses FFFC_{16} and FFFD_{16}.

Address		Address	
$000{ }_{16}$	'M' ${ }^{\prime}=4 \mathrm{D}_{16}$	0_{0008}^{16}	${ }^{\prime}-{ }^{\prime}=2 \mathrm{D}_{16}$
$0001{ }_{16}$	$\cdot^{\prime}{ }^{\prime}=33_{16}$	$0^{0009}{ }_{16}$	F F 16
$0002{ }_{16}$	${ }^{\prime} 8^{\prime}=38_{16}$	$000 \mathrm{~A}_{16}$	FF ${ }_{16}$
$0003{ }_{16}$	$\cdot{ }^{\prime}{ }^{\prime}=31_{16}$	$0^{000} \mathrm{~B}_{16}$	F F ${ }_{16}$
0004_{16}	$\cdot^{\prime} 1^{\prime}=31_{16}$	$000 \mathrm{C}_{16}$	F F ${ }_{16}$
000516	${ }^{\prime} 2^{\prime}=3{ }^{\prime}{ }_{16}$	$000 \mathrm{D}_{16}$	F F ${ }_{16}$
$0006{ }_{16}$	'M' $=4 \mathrm{D}_{16}$	$000 \mathrm{E}_{16}$	FF ${ }_{16}$
0007_{16}	${ }^{\prime} 4^{\prime}=34_{16}$	000F ${ }_{16}$	F F ${ }_{16}$

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M38112M4-XXXSP/FP MITSUBISHI ELECTRIC

Mask ROM number

We recommend the use of the following pseudo-command to set the start address of the assembler source program.

EPROM type	27256	27512
The pseudo-command	$*=\triangle \$ 8000$	$*=\triangle \$ 0000$
.BYTE \triangle 'M38112M4-'	.BYTE \triangle 'M38112M4-'	

Note : If the name of the product written to the EPROMs does not match the name of the mask confirmation form, the ROM will not be processed.
※2. Option specification (write the option data also to the specified address of the EPROM)
Reset mode switching option
\square Normal operation start mode
Low-speed operation start mode
...............

Address 0010_{16}

We recommend the use of the following pseudo-command to set the start address of the assembler source program.

EPROM type	27256	27512
Reset mode option	$*=\triangle \$ 8010$	$*=\Delta \$ 0010$
	$. B Y T E \triangle \$ \times \times$. BYTE $\triangle \$ \times \times$

Note: If the name of the product written to the EPROMs does not match the name of the mask confirmation form, the ROM will not be processed. Write the data correctly. As for the option, if the contents of the confirmation and conflict with those of the EPROM, the contents of the EPROM are preferred.
※ 3. Mark specification
Mark specification must be submitted using the correct form for the package being ordered. Fill out the appropriate mark specification form (64P4B for M38112M4-XXXSP, 64P6N for M38112M4-XXXFP) and attach it to the mask ROM confirmation form.
※ 4. Delivery standard
Choose the format of the specifications for the product to be delivered.
(1) Specifications for each ROM
\square ROM code list unnecessary (standard).
\square ROM code list necessary.
Note that each format has the same scope of guarantee. Therefore, the standard format is recommended.

SERIES MELPS 740 MASK ROM CONFIRMATION FORM

SINGLE-CHIP MICROCOMPUTER M38112M4-XXXSP/FP

 MITSUBISHI ELECTRIC※5. Usage conditions
Please answer the following questions about usage for use in our product inspection:
(1) How will you use the $X_{I_{N}}-X_{\text {OUT }}$ oscillator?
\square Ceramic resonatorQuartz crystal
\square External clock inputOther ()
At what frequency? \square
(2) How will you use the $X_{\mathrm{CIN}^{-}} \mathrm{X}_{\text {Cout }}$ oscillator?Ceramic resonatorQuartz crystal
\square External clock inputOther ()
At what frequency? \square kHz
※6. Comments

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M38173M6-XXXFP MITSUBISHI ELECTRIC

※ 1. Confirmation
Specify the name of the product being ordered and the type of EPROMs submitted.
Three EPROMs are required for each pattern.
If at least two of the three sets of EPROMs submitted contain identical data, we will produce masks based on this data. We shall assume the responsibility for errors only if the mask ROM data on the products we produce differs from this data. Thus, extreme care must be taken to verify the data in the submitted EPROMs.

Checksum code for entire EPROM

(hexadecimal notation)

EPROM type (indicate the type used)

(1) Set the data in the unused area (the shaded area of the diagram) to " FF_{16} ".
(2) The ASCII codes of the product name "M38173M6-" must be entered in addresses 0000_{16} to 0008_{16}. The ASCII codes and addresses are listed to the right in hexadecimal notation.

Address		Address	
$0000{ }_{16}$	$M^{\prime}=4 \mathrm{D}_{16}$	$0008{ }_{16}$	$\mathrm{l}^{\prime}=2 \mathrm{D}_{16}$
$0001{ }_{16}$	${ }^{\prime} 3^{\prime}=33_{16}$	0009_{16}	F F 16
$0002{ }_{16}$	${ }^{\prime} 8$ ' $=38_{16}$	$000 \mathrm{~A}_{16}$	F F ${ }_{16}$
$0003{ }_{16}$	${ }^{\prime} 1^{\prime}=3{ }^{\prime} 1_{16}$	$000 \mathrm{~B}_{16}$	F F ${ }_{16}$
0004_{16}	${ }^{\prime} 7$ ' $=37_{16}$	$000 \mathrm{C}_{16}$	F F ${ }_{16}$
0005_{16}	${ }^{\prime} 3^{\prime}=33_{16}$	$000 \mathrm{D}_{16}$	F F ${ }_{16}$
$0006{ }_{16}$	' $\mathrm{M}^{\prime}=4 \mathrm{D}_{16}$	$000 \mathrm{E}_{16}$	F F ${ }_{16}$
$0007{ }_{16}$	${ }^{\prime} 6$ ' $=3 \mathrm{~S}_{16}$	$000 \mathrm{~F}_{16}$	F F ${ }_{16}$

GZZ-SH03-74A〈09A1〉

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M38173M6-XXXFP MITSUBISHI ELECTRIC

We recommend the use of the following pseudo-command to set the start address of the assembler source program.

EPROM type	27256	27512
The pseudo-command	$*=\triangle \$ 8000$	$*=\triangle \$ 0000$
	.BYTE \triangle 'M38173M6-'	.BYTE \triangle 'M38173M6-'

Note : If the name of the product written to the EPROMs does not match the name of the mask confirmation form, the ROM will not be processed.
※2. Option specification (write the option data also to the specified address of the EPROM)
Reset mode switching optionNormal operation start mode

$\cdots \cdots \cdots \cdots \cdots \cdot$| 01_{16} |
| :---: |
| $\cdots \cdots \cdots \cdots \cdots$ |
| 00_{16} |

Address 0010_{16}
\square Low-speed operation start mode
00_{16}

We recommend the use of the following pseudo-command to set the start address of the assembler source program.

EPROM type	27256	27512
Reset mode option	$*=\triangle \$ 8010$	$*=\triangle \$ 0010$
	$. B Y T E \triangle \$ \times \times$	$. B Y T E \triangle \$ \times \times$

Note: If the name of the product written to the EPROMs does not match the name of the mask confirmation form, the ROM will not be processed. Write the data correctly. As for the option, if the contents of the confirmation and conflict with those of the EPROM, the contents of the EPROM are preferred.
※3. Mark specification
Mark specification must be submitted using the correct form for the package being ordered. Fill out the appropriate mark specification form (80P6N for M38173M6-XXXFP) and attach it to the mask ROM confirmation form.
※ 4. Delivery standard
Choose the format of the specifications for the product to be delivered.
(1) Specifications for each ROM
\square ROM code list unnecessary (standard)
\square ROM code list necessary.
Note that each format has the same scope of guarantee. Therefore, the standard format is recommended.

SERIES MELPS 740 MASK ROM CONFIRMATION FORM
 SINGLE-CHIP MICROCOMPUTER M38173M6-XXXFP MITSUBISHI ELECTRIC

※5. Usage conditions
Please answer the following questions about usage for use in our product inspection:
(1) How will you use the $X_{\mathrm{IN}^{-}} \mathrm{X}_{\text {OUT }}$ oscillator?Ceramic resonatorQuartz crystalExternal clock inputOther ()

At what frequency? \square MHz
(2) How will you use the $\mathrm{X}_{\mathrm{CIN}}{ }^{-} \mathrm{X}_{\text {COUt }}$ oscillator?Ceramic resonatorQuartz crystalExternal clock input
At what frequency?Other (
\square kHz
※ 6. Comments

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M38174M8-XXXFP MITSUBISHI ELECTRIC

```
Mask ROM number
```

$\begin{aligned} & \stackrel{\rightharpoonup}{\ddot{O}} \\ & \underset{\sim}{0} \\ & \ddot{\sim} \end{aligned}$	Date:	
	Section head signature	Supervisor signature

※ 1. Confirmation
Specify the name of the product being ordered and the type of EPROMs submitted.
Three EPROMs are required for each pattern.
If at least two of the three sets of EPROMs submitted contain identical data, we will produce masks based on this data. We shall assume the responsibility for errors only if the mask ROM data on the products we produce differs from this data. Thus, extreme care must be taken to verify the data in the submitted EPROMs.

Checksum code for entire EPROM

(hexadecimal notation)

EPROM type (indicate the type used)

In the address space of the microcomputer, the internal ROM area is from address 8080_{16} to FFFD ${ }_{16}$. The reset vector is stored in addresses FFFC_{16} and FFFD_{16}.
(1) Set the data in the unused area (the shaded area of the diagram) to " FF_{16} ".
(2) The ASCII codes of the product name "M38174M8-" must be entered in addresses 0000_{16} to 0008_{16}. The ASCII codes and addresses are listed to the right in hexadecimal notation.

Address		Address	
0001_{16}	'M' $=4 \mathrm{D}_{16}$	$0008{ }_{16}$	$\square^{\prime}=2 \mathrm{D}_{16}$
$0001{ }_{16}$	${ }^{\prime} 3^{\prime}=33_{16}$	$0^{0009}{ }_{16}$	FF_{16}
$0002{ }_{16}$	${ }^{\prime} 8$ ' $=38_{16}$	$000 \mathrm{~A}_{16}$	FF F_{16}
$0003{ }_{16}$	${ }^{\prime} 1^{\prime}=3{ }^{\prime} 1_{16}$	$000 \mathrm{~B}_{16}$	F F 16
0004_{16}	${ }^{\prime} 7$ ' $=37_{16}$	$000 \mathrm{C}_{16}$	F F ${ }_{16}$
0005_{16}	${ }^{\prime} 4^{\prime}=34_{16}$	$000 \mathrm{D}_{16}$	F F 16
000616	' $\mathrm{M}^{\prime}=4 \mathrm{D}_{16}$	$000 \mathrm{E}_{16}$	FF16
0_{0007}^{16}	${ }^{\prime} 8^{\prime}=38_{16}$	$000 \mathrm{~F}_{16}$	F F 16

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M38174M8-XXXFP MITSUBISHI ELECTRIC

Mask ROM number

We recommend the use of the following pseudo-command to set the start address of the assembler source program.

EPROM type	27256	27512
The pseudo-command	$*=\triangle \$ 8000$	$*=\triangle \$ 0000$
	.BYTE \triangle 'M38174M8-'	.BYTE \triangle 'M38174M8-'

Note: If the name of the product written to the EPROMs does not match the name of the mask confirmation form, the ROM will not be processed.
※ 2. Option specification (write the option data also to the specified address of the EPROM)
Reset mode switching optionNormal operation start mode \square Address 0010_{16}Low-speed operation start mode

We recommend the use of the following pseudo-command to set the start address of the assembler source program.

EPROM type	27256	27512
Reset mode option	$*=\triangle \$ 8010$	$*=\triangle \$ 0010$
	$. B Y T E \triangle \$ \times \times$	BYTE $\triangle \$ \times \times$

Note: If the name of the product written to the EPROMs does not match the name of the mask confirmation form, the ROM will not be processed. Write the data correctly. As for the option, if the contents of the confirmation and conflict with those of the EPROM, the contents of the EPROM are preferred.
※ 3. Mark specification
Mark specification must be submitted using the correct form for the package being ordered. Fill out the appropriate mark specification form (80 P 6 N for M38174M8-XXXFP) and attach it to the mask ROM confirmation form.
※ 4. Delivery standard
Choose the format of the specifications for the product to be delivered.
(1) Specifications for each ROM
\square ROM code list unnecessary (standard).
\square ROM code list necessary.
Note that each format has the same scope of guarantee. Therefore, the standard format is recommended.

SINGLE-CHIP MICROCOMPUTER M38174M8-XXXFP

MITSUBISHI ELECTRIC

※5. Usage conditions
Please answer the following questions about usage for use in our product inspection :
(1) How will you use the $X_{I_{N}}-X_{\text {Out }}$ oscillator?
\square Ceramic resonatorQuartz crystalExternal clock inputOther ()
At what frequency? \square MHz
(2) How will you use the $X_{\text {CIN }}-X_{\text {COUT }}$ oscillator?Ceramic resonatorQuartz crystalExternal clock inputOther ()
At what frequency? \square
$f\left(X_{\text {CIN }}\right)=$ kHz
※6. Comments

MARK SPECIFICATION FORM

The mark specification form varies depending on the package type. Fill out the mark specification form for the package being ordered, and submit the form with the mask ROM confirmation form.

32P4B (32-PIN SHRINK DIP) MARK SPECIFICATION FORM

Mitsubishi IC catalog name

\square
Please choose one of the marking types below (A, B, C), and enter the Mitsubishi IC catalog name and the special mark (if needed).
A. Standard Mitsubishi Mark

-Mitsubishi IC catalog name
B. Customer's Parts Number + Mitsubishi Catalog Name

Customer's parts number Note: The fonts and size of characters are standard Mitsubishi type.

Mitsubishi IC catalog name

Note1: The mark field should be written right aligned.
2: The fonts and size of characters are standard Mitsubishi type.
3 : Customer's parts number can be up to 16 characters: Only 0~9, A~Z, +, -, /, (,), \&, © , . (period), and , (comma) are usable.
4 : If the Mitsubishi logo \pm is not required, check the box on the right.
\therefore Mitsubishi logo is not required
C. Special Mark Required

Note1: If the special mark is to be printed, indicate the desired layout of the mark in the upper figure. The layout will be duplicated as close as possible. Mitsubishi lot number (6-digit) and mask ROM number (3-digit) are always marked.
2 : If the customer's trade mark logo must be used in the special mark, check the box below. Please submit a clean original of the logo.
For the new special character fonts a clean font original (ideally logo drawing) must be submitted.
Special logo required

The standard Mitsubishi font is used for all characters except for a logo.

42P4B (42-PIN SHRINK DIP) MARK SPECIFICATION FORM

Mitsubishi IC catalog name \square
Please choose one of the marking types below (A, B, C), and enter the Mitsubishi IC catalog name and the special mark (if needed).
A. Standard Mitsubishi Mark
*ช

B. Customer's Parts Number + Mitsubishi Catalog Name (8)

- $^{--}$Customer's parts number

Note: The fonts and size of characters are standard Mitsubishi type.
Mitsubishi IC catalog name

Note1 : The mark field should be written right aligned.
2 : The fonts and size of characters are standard Mitsubishi type.
3 : Customer's parts number can be up to 15 characters:
Only $0 \sim 9, A \sim Z,+,-, /,(), \&,,(C)$ (period), and , (comma) are usable.
4 : If the Mitsubishi logo $\&$ is not required, check the box on the right.
$\$$ Mitsubishi logo is not required
C. Special Mark Required

Note1 : If the special mark is to be printed, indicate the desired layout of the mark in the upper figure. The layout will be duplicated as close as possible. Mitsubishi lot number (6 -digit) and mask ROM number (3-digit) are always marked.
2 : If the customer's trade mark logo must be used in the special mark, check the box below. Please submit a clean original of the logo.
For the new special character fonts a clean font original (ideally logo drawing) must be submitted.
Special logo required
The standard Mitsubishi font is used for all characters except for a logo.

44P6N (44-PIN QFP) MARK SPECIFICATION FORM

Mitsubishi IC catalog name \square
Piease choose one of the marking types below (A, B, C), and enter the Mitsubishi IC catalog name and the special mark (if needed).
A. Standard Mitsubishi Mark

B. Customer's Parts Number + Mitsubishi Catalog Name

Note1 : The mark field should be written right aligned.
2 : The fonts and size of characters are standard Mitsubishi type.
3 : Customer's parts number can be up to 7 characters:
Only $0 \sim 9, A \sim Z,+,-, /,(), \&,,(C),($ period), and, (comma) are usable.
C. Special Mark Required

Note1: If the special mark is to be printed, indicate the desired layout of the mark in the left figure. The layout will be duplicated as close as possible. Mitsubishi lot number (6-digit) and mask ROM number (3-digit) are always marked.
2 : If the customer's trade mark logo must be used in the special mark, check the box below. Please submit a clean original of the logo.
For the new special character fonts a clean font original (ideally logo drawing) must be submitted.

Special logo required

The standard Mitsubishi font is used for all characters except for a logo.

$50 P 6$ (50-PIN QFP) MARK SPECIFICATION FORM

Mitsubishi IC catalog name

\square
Please choose one of the marking types below (A, B, C), and enter the Mitsubishi IC catalog name and the special mark (if needed).
A. Standard Mitsubishi Mark

B. Customer's Parts Number + Mitsubishi Catalog Name

C. Special Mark Required

Customer's parts number
Note: The fonts and size of characters are standard Mitsubishi type.
--- Mitsubishi IC catalog name

Note1 : The mark field should be written right aligned.
2 :The fonts and size of characters are standard Mitsubishi type.
3 : Customer's parts number can be up to 9 characters:
Only $0 \sim 9, A \sim Z,+,-, /,(), \&,,(C),($ period), and, (comma) are usable.
4 : If the Mitsubishi logo is not required, check the box below.
\ldots Mitsubishi logo is not required

Note1: If the special mark is to be printed, indicate the desired layout of the mark in the left figure. The layout will be duplicated as close as possible. Mitsubishi lot number (6-digit) and mask ROM number (3-digit) are always marked.
2 : If the customer's trade mark logo must be used in the special mark, check the box below. Please submit a clean original of the logo.
For the new special character fonts a clean font original (ideally logo drawing) must be submitted.

Special logo required

The standard Mitsubishi font is used for all characters except for a logo.

52P4B (52-PIN SHRINK DIP) MARK SPECIFICATION FORM

Mitsubishi IC catalog name \square
Please choose one of the marking types below (A, B, C), and enter the Mitsubishi IC catalog name and the special mark (if needed).
A. Standard Mitsubishi Mark

B. Customer's Parts Number + Mitsubishi Catalog Name

Note1 : The mark field should be written right aligned.
2 : The fonts and size of characters are standard Mitsubishi type.
3 : Customer's parts number can be up to 18 characters:
Only $0 \sim 9, A \sim Z,+,-, /,(), \&,,(C)$. (period), and, (comma) are usable.
4 : If the Mitsubishi logo $\&$ is not required, check the box on the right.
\& Mitsubishi logo is not required

C. Special Mark Required

Note1 : If the special mark is to be printed, indicate the desired layout of the mark in the upper figure The layout will be duplicated as close as possible. Mitsubishi lot number (6-digit) and mask ROM number (3-digit) are always marked.
2: If the customer's trade mark logo must be used in the special mark, check the box below. Please submit a clean original of the logo.
For the new special character fonts a clean font original (ideally logo drawing) must be submitted.
Special logo required

The standard Mitsubishi font is used for all characters except for a logo.

56P6N (56-PIN QFP) MARK SPECIFICATION FORM

Mitsubishi IC catalog name \square

Please choose one of the marking types below (A, B, C), and enter the Mitsubishi IC catalog name and the special mark (if needed).
A. Standard Mitsubishi Mark

B. Customer's Parts Number + Mitsubishı Catalog Name

60P6 (60-PIN QFP) MARK SPECIFICATION FORM

Mitsubishi IC catalog name

\square
Please choose one of the marking types below (A, B, C), and enter the Mitsubishi IC catalog name and the special mark (if needed).
A. Standard Mitsubishi Mark

B. Customer's Parts Number + Mitsubishi Catalog Name

Customer's Parts Number
Note: The fonts and size of characters are standard Mitsubishi type.
---Mitsubishi IC catalog name

Note1 : The mark field should be written right aligned.
2 : The fonts and size of characters are standard Mitsubishi type.
3 : Customer's parts number can be up to 12 characters:
Only $0 \sim 9, A \sim Z,+,-, /,(), \&,,(C)$ (period), and, (comma) are usable.
4 : If the Mitsubishi logo $\&$ is not required, check the box below.
$\&$ Mitsubishi logo is not required

C. Special Mark Required

Note1: If the Special Mark is to be printed, indicate the desired layout of the mark in the left figure. The layout will be duplicated as close as possible. Mitsubishi lot number (6-digit) and mask ROM number (3-digit) are always marked.
2 : If the customer's trade mark logo must be used in the special mark, check the box below. Please submit a clean original of the logo.
For the new special character fonts a clean font original (ideally logo drawing) must be submitted.

Special logo required

The standard Mitsubishi font is used for all characters except for a logo.

64P4B (64-PIN SHRINK DIP) MARK SPECIFICATION FORM

Mitsubishi IC catalog name \square
Please choose one of the marking types below (A, B, C), and enter the Mitsubishi IC catalog name and the special mark (if needed).
A. Standard Mitsubishi Mark

Mitsubishi IC catalog name

B. Customer's Parts Number + Mitsubishi Catalog Name

Ne: The fonts and size
Note: The fonts and size of characters are standard Mitsubishi type.
Mitsubishi IC catalog name
(1)

64P6N (64-PIN QFP) MARK SPECIFICATION FORM

Mitsubishi IC catalog name

\square
Please choose one of the marking types below (A, B, C), and enter the Mitsubishi IC catalog name and the special mark (if needed).
A. Standard Mitsubishi Mark

B. Customer's Parts Number + Mitsubishi Catalog Name

Note1 : The mark field should be written right aligned.
2 : The fonts and size of characters are standard Mitsubishi type. (The character size became smaller than A (standard Mitsubishi mark) type)
C. Special Mark Required

--' Customer's parts number
Note • The fonts and size of characters are standard Mitsubishi type.
Γ^{-}Mitsubishi IC catalog name
Note3 : Customer's parts number can be up to 10 characters:
Only $0 \sim 9, A \sim Z,+,-, /,(), \&,,(C)$, (period), and, (comma) are usable.
4 : If the Mitsubishi logo $\&$ is not required, check the box below.
\& Mitsubishi logo is not required

5 : Arrangement of Mitsubishi IC catalog name and Mitsubishi lot number is dependent on number of Mitsubishi IC catalog name and that Mitsubishi logo \dot{L} is required or not.

Note1: If the special mark is to be printed, indicate the desired layout of the mark in the left figure. The layout will be duplicated as close as possible. Mitsubishi lot number (6-digit) and mask ROM number (3-digit) are always marked
2 : If the customer's trade mark logo must be used in the special mark, check the box below. Please submit a clean original of the logo.
For the new special character fonts a clean font original (ideally logo drawing) must be submitted.

Special logo required

The standard Mitsubishi font is used for all characters except for a logo.

64P6S (64-PIN QFP) MARK SPECIFICATION FORM

Mitsubishi IC catalog name

\square
Please choose one of the marking types below (A, B, C), and enter the Mitsubishi IC catalog name and the special mark (if needed).
A. Standard Mitsubishi Mark

B. Customer's Parts Number + Mitsubishi

Catalog Name

Note1: The mark field should be written right aligned.
2: The fonts and size of characters are standard Mitsubishi type. (The character size become smaller than A (standard Mitsubishi mark) type)
C. Special Mark Required

Note: The fonts and size of characters are standard Mitsubishi type.
Customer's Parts Number

Mitsubishi IC catalog name and Mitsubishi lot number
Note3 : Customer's parts number can be up to 11 characters:
Only $0 \sim 9, A \sim Z,+,-, /,(), \&,,(C)$ (period), and, (comma) are usable.
4: If the Mitsubishi logo $\&$ is not required, check the box below.
$\&$ Mitsubishi logo is not required

5 : Arrangement of Mitsubishi IC catalog name and Mitsubishi lot number is dependent on number of Mitsubishi IC catalog name and that Mitsubishi logo $\&$ is required or not.

Note1 : If the special mark is to be printed, indicate the desired layout of the mark in the left figure. The layout will be duplicated as close as possible. Mitsubishi lot number (6-digit) and mask ROM number (3-digit) are always marked.
2 : If the customer's trade mark logo must be used in the special mark, check the box below. Please submit a clean original of the logo.
For the new special character fonts a clean font original (ideally logo drawing) must be submitted.

Special logo required

The standard Mitsubishi font is used for all characters except for a logo.

64P6W (64-PIN QFP) MARK SPECIFICATION FORM

Please choose one of the marking types below (A, B, C), and enter the Mitsubishi IC catalog name and the special mark (if needed).
A. Standard Mitsubishi Mark

B. Customer's Parts Number + Mitsubishi Catalog Name

Note1: The mark field should be written right aligned.
2: The fonts and size of characters are standard Mitsubishi type.

- Customer's parts number

Note: The fonts and size of characters are standard Mitsubishi type.

- Mitsubishi IC catalog name

Note3 : Customer's parts number can be up to 12 characters:
Only 0~9, A~Z, +, $-, /,(), \&,$, © , (period), and, (comma) are usable.
4 : If the Mitsubishi logo $\mathcal{\&}$ is not required, check the box below.
$\&$ Mitsubishi logo is not required

Note1: If the special mark is to be printed, indicate the desired layout of the mark in the left figure. The layout will be duplicated as close as possible. Mitsubishi lot number (6-digit) and mask ROM number (3-digit) are always marked.
2 : If the customer's trade mark logo must be used in the special mark, check the box below. Please submit a clean original of the logo.
For the new special character fonts a clean font original (ideally logo drawing) must be submitted.

Special logo required

The standard Mitsubishi font is used for all characters except for a logo.

72P6 (72-PIN QFP) MARK SPECIFICATION FORM

Mitsubishi IC catalog name

Please choose one of the marking types below (A, B, C), and enter the Mitsubishi IC catalog name and the special mark (if needed).
A. Standard Mitsubishi Mark

B. Customer's Parts Number + Mitsubishi Catalog Name

Customer's parts number
Note: The fonts and size of characters are standard Mitsubishi type.
Mitsubishi IC catalog name
Note1 : The mark field should be written right aligned.
2:The fonts and size of characters are standard Mitsubishi type.
3 : Customer's Parts Number can be up to 12 characters:
Only $0 \sim 9, A \sim Z,+,-, /,(), \&,,(C)$ (period), and , (comma) are usable.
4 : If the Mitsubishi logo $\&$ is not required, check the box below.
$\&$ Mitsubishi logo is not required

C. Special Mark Required

Note1: If the special mark is to be printed, indicate the desired layout of the mark in the left figure. The layout will be duplicated as close as possible. Mitsubishi lot number (6-digit) and mask ROM number (3-digit) are always marked.
2 : If the customer's trade mark logo must be used in the special mark, check the box below. Please submit a clean original of the logo.
For the new special character fonts a clean font original (ideally logo drawing) must be submitted.

Special logo required

The standard Mitsubishi font is used for all characters except for a logo.

MITSUBISHI MICROCOMPUTERS MARK SPECIFICATION FORM

80P6 (80-PIN QFP) MARK SPECIFICATION FORM

> Mitsubishi IC catalog name
\square
Please choose one of the marking types below (A, B, C), and enter the Mitsubishi IC catalog name and the special mark (if needed).
A. Standard Mitsubishi Mark

B. Customer's Parts Number + Mitsubishi Catalog Name

Note1 : The mark field should be written right aligned.
2. The fonts and size of characters are standard Mitsubishi type.
C. Special Mark Required

Note1: If the special mark is to be printed, indicate the desired layout of the mark in the left figure. The layout will be duplicated as close as possible. Mitsubishi lot number (6-digit) and mask ROM number (3-digit) are always marked.
2 : If the customer's trade mark logo must be used in the special mark, check the box below. Please submit a clean original of the logo.
For the new special character fonts a clean font original (ideally logo drawing) must be submitted.

Special logo required

The standard Mitsubishi font is used for all characters except for a logo.

80P6N (80-PIN QFP) MARK SPECIFICATION FORM

Mitsubishi IC catalog name

\square
Please choose one of the marking types below (A, B, C), and enter the Mitsubishi IC catalog name and the special mark (if needed).
A. Standard Mitsubishi Mark

B. Customer's Parts Number + Mitsubishi Catalog Name

Note1 : The mark field should be written right aligned
2 : The fonts and size of characters are standard Mitsubishi type.
C. Special Mark Required

Customer's parts number
Note: The fonts and size of characters are standard Mitsubishi type.

- - Mitsubishi IC catalog name

Note3: Customer's parts number can be up to 14 characters:
Only 0~9, A~Z, +, -, /, (,), \&, © , (period), and, (comma) are usable.
4 : If the Mitsubishi logo $\dot{\&}$ is not required, check the box below.
£Mitsubishi logo is not required

Note1: If the special mark is to be printed, indicate the desired layout of the mark in the left figure. The layout will be duplicated as close as possible. Mitsubishi lot number (6-digit) and mask ROM number (3-digit) are always marked.
2 : If the customer's trade mark logo must be used in the special mark, check the box below. Please submit a clean original of the logo.
For the new special character fonts a clean font original (ideally logo drawing) must be submitted.

Special logo required

The standard Mitsubishi font is used for all characters except for a logo.

80P6S (80-PIN QFP) MARK SPECIFICATION FORM

Mitsubishi IC catalog name \square
Please choose one of the marking types below (A, B, C), and enter the Mitsubishi IC catalog name and the special mark (if needed).
A. Standard Mitsubishi Mark

B. Customer's Parts Number + Mitsubishi Catalog Name

Note1: The mark field should be written right aligned.
2 : The fonts and size of characters are standard Mitsubishi type. (The character size become smaller than A (standard Mitsubishi mark) type)
C. Special Mark Required

Customer's parts number
Note: The fonts and size of characters are standard Mitsubishi type.

Note3: Customer's parts number can be up to 10 characters:
Only $0 \sim 9, A \sim Z,+,-, /,(), \&,,(C)$ (period), and, (comma) are usable.
4: If the Mitsubishi logo \& is not required, check the box below.
\& Mitsubishi logo is not required

5 : Arrangement of Mitsubishi IC catalog name and Mitsubishi lot number is dependent on number of Mitsubishi IC catalog name and that Mitsubishi logo \& is required or not.

Note1: If the special mark is to be printed, indicate the desired layout of the mark in the left figure. The layout will be duplicated as close as possible. Mitsubishi lot number (6-digit) and mask ROM number (3-digit) are always marked.
2 : If the customer's trade mark logo must be used in the special mark, check the box below. Please submit a clean original of the logo.
For the new special character fonts a clean font original (ideally logo drawing) must be submitted.

Special logo required

The standard Mitsubishi font is used for all characters except for a logo.

84P0 (84-PIN PLCC) MARK SPECIFICATION FORM

Mitsubishi IC catalog name

\square
Please choose one of the marking types below (A, B, C), and enter the Mitsubishi IC catalog name and the special mark (if needed).
A. Standard Mitsubishi Mark

B. Customer's Parts Number + Mitsubishi Catalog Name

Note1: The mark field should be written right aligned.
2:The fonts and size of characters are standard Mitsubishi type. (The character size become smaller than A (standard Mitsubishi mark) type)
C. Special Mark Required

Note: The fonts and size of characters are standard Mitsubishi type.
-Mitsubishi IC catalog name
Note3: Customer's parts number can be up to 16 characters:
Only $0 \sim 9, \mathrm{~A} \sim \mathrm{Z},+,-, /,(), \&, \mathrm{C},, .($ period), and, (comma) are usable.
4 : If the Mitsubishi logo \downarrow is not required, check the box below.
$\$$ Mitsubishi logo is not required

5 : Arrangement of Mitsubishi IC catalog name and Mitsubishi lot number is dependent on number of Mitsubishi IC catalog name and that Mitsubishi logo $\&$ is required or not.

Note1: If the special mark is to be printed, indicate the desired layout of the mark in the left figure. The layout will be duplicated as close as possible. Mitsubishi lot number (6-digit) and mask ROM number (3-digit) are always marked.
2 : If the customer's trade mark logo must be used in the special mark, check the box below. Please submit a clean original of the logo.
For the new special character fonts a clean font original (ideally logo drawing) must be submitted.

Special logo required

The standard Mitsubishi font is used for all characters except for a logo.

100P6S (100-PIN QFP) MARK SPECIFICATION FORM

Mitsubishi IC catalog name \square
Please choose one of the marking types below (A, B, C), and enter the Mitsubishi IC catalog name and the special mark (if needed).
A. Standard Mitsubishi Mark

B. Customer's Parts Number + Mitsubishi Catalog Name

Note1: The mark field should be written right aligned.
2:The fonts and size of characters are standard Mitsubishi type.
C. Special Mark Required

Customer's parts number
Note: The fonts and size of characters are standard Mitsubishi type.
Mitsubishi IC catalog name
Note3 : Customer's parts number can be up to 14 characters:
Only $0 \sim 9, \mathrm{~A} \sim \mathrm{Z},+,-, /,(), \&,$, ©, (period), and, (comma) are usable.
4: If the Mitsubishi logo \& is not required, check the box below.
\&Mitsubishi logo is not required

Note1: If the special mark is to be printed, indicate the desired layout of the mark in the left figure. The layout will be duplicated as close as possible. Mitsubishi lot number (6-digit) and mask ROM number (3-digit) are always marked.
2 : If the customer's trade mark logo must be used in the special mark, check the box below. Please submit a clean original of the logo.
For the new special character fonts a clean font original (ideally logo drawing) must be submitted.

Special logo required

The standard Mitsubishi font is used for all characters except for a logo.

CONTACT ADDRESSES FOR FURTHER INFORMATION

JAPAN

Semiconductor Marketıng Division
Mitsubishı Electric Corporatıon
2-3, Marunouchı 2-chome
Chiyoda-ku, Tokyo 100, Japan
Telex 24532 MELCO J
Telephone (03) 3218-3473
(03) 3218-3499

Facsimile (03) 3214-5570
Overseas Marketıng Manager
Kıta-Itamı Works
4-1, Mızuhara, Itamı-shı,
Hyogo-ken 664, Japan
Telex 526408 KMELCO J
Telephone (0727) 82-5131
Facsimıle (0727) 72-2329
HONG KONG
Mitsubıshı Electrıc (H K) Ltd
41st fI, Manulife Tower, 169,
Electric Road, North Point, Hong Kong
Telex 60800 MELCO HX
Telephone 510-0555
Facsımile 510-9830,510-9822, 510-9803

SINGAPORE
MELCO SALES SINGAPORE PTE,
LTD
307 Alexandra Road \#05-01/02
Mitsubishı Electric Buildıng
Singapore 0315
Telex RS 20845 MELCO
Telephone 4732308
Facsimile 4738944

TAIWAN

MELCO-TAIWAN CO , Ltd
1 st fI , Chung-Ling Bidg,
363, Sec 2, Fu-Hsing S Road,
Taipeı R O C
Telephone. (02) 735-3030
Facsimile (02) 735-6771
Telex 25433 CHURYO "MELCOTAIWAN"

U.S.A. NORTHWEST

Mitsubishı Electronics America, Inc
1050 East Arques Avenue
Sunnyvale, CA 94086
Telephone (408) 730-5900
Facsimile (408) 730-4972

SAN DIEGO

Mitsubishı Electronics Amerıca, Inc 16980 Via Tazon, Suite 220
San Diego, CA 92128
Telephone (619) 451-9618
Facsımile (619) 592-0242

DENVER

Mitsubishı Electronıcs Amerıca, Inc 4600 South Ulster Street
Metropoint Building, 7th Floor
Denver, CO 80237
Telephone (303) 740-6775
Facsımile (303) 694-0613

SOUTHWEST

Mitsubishı Electronics America, Inc
991 Knox Street
Torrance, CA 90502
Telephone (213) 515-3993
Facsimıle (213) 217-5781
SOUTH CENTRAL
Mitsubishi Electronics America, Inc
1501 Luna Road, Suite 124
Carrollton, TX 75006
Telephone (214) 484-1919
Facsimile (214) 243-0207

NORTHERN

Mitsubishı Electronics America, Inc
15612 Highway 7 \# 243
Minnetonka, MN 55345
Telephone (612) 938-7779
Facsımile (612) 938-5125
NORTH CENTRAL
Mitsubishi Electronics America, Inc
800 N Bierman Circle
Mt Prospect, IL 60056
Telephone (312) 298-9223
Facsimıle (312) 298-0567

NORTHEAST

Mitsubishi Electronics America, Inc
200 Unicorn Park Drive
Woburn, MA 01801
Telephone (617) 932-5700
Facsımıle (617) 938-1075

MID-ATLANTIC

Mitsubishı Electronics America, Inc 800 Cottontail Lane
Somerset, NJ 08873
Telephone (201) 469-8833
Facsimıle (201) 469-1909

SOUTH ATLANTIC

Mitsubishi Electronics America, Inc
2500 Gateway Center BIvd, Suite 300
Morrisville NC 27560
Telephone (404) 368-4850
Facsimile: (404) 662-5208

SOUTHEAST

Mitsubishi Electronıcs America, Inc
Town Executive Center
6100 Glades Road \# 210
Boca Raton, FL 33433
Telephone (407) 487-7747
Facsimıle (407) 487-2046

CANADA

Mitsubishı Electronics America, Inc
6185 Ordan Drive, Unit \#110
Mississauga, Ontarıo, Canada L5T 2E1
Telephone. (416) 670-8711
Facsimıle (416) 670-8715
Mitsubishı Electronics America, Inc
300 March Road, Suite 302
Kanata, Ontario, Canada K2K 2E2
Telephone (416) 670-8711
Facsımıle (416) 670-8715

GERMANY

Mitsubıshı Electric Europe GmbH
Headquarters
Gothear Str 8
4030 Ratıngen 1, Germany
Telex 8585070 MED D
Telephone (02102) 4860
Facsimile (02102) 486-115

Munich Office

Arabellastraße 31
8000 Munchen 81, Germany
Telex 5214820
Telephone (089) 919006-09
Facsımıle (089) 9101399
FRANCE
Mitsubishı Electric Europe GmbH
55, Avenue de Colmar
92563 Ruell Malmaison Cedex
Telex 632326
Telephone 47087871
Facsimile 47513622

ITALY
Mitsubishi Electric Europe GmbH
Centro Direzionale Colleonı
Palazzo Cassıopea 1
20041 Agrate Brıanza I-Mılano
Telephone (039) 636011
Facsimule (039) 6360120
SWEDEN
Mitsubishı Electric Europe GmbH
Mitsubishi Electrı
5-19149 Sollentuna, Sweden
Telex 10877 (meab S
Telephone (08) 960468
Facsımıle (08) 966877

Mitsubıshı Electric (U K) Ltd
Travellers Lane
Hatfield
Herts AL10 8×B, England, UK
Telephone (0044) 707276100
Facsımıle (0044) 707278692

AUSTRALIA

Mitsubishı Electric Australıa Pty Ltd
348 Victoria Road
Rydalmere Nsw 2116, Australıa
Private Bag No 2 Rydalmere Nsw 2116
Telex MESYDAA 126614
Telephone (02) 684-7200
Facsımıle (02) 638-7072

MITSUBISHI DATA BOOK SINGLE-CHIP 8-BIT MICROCOMPUTERS Vol. 2

May. First Edition 1992

Editioned by

Committee of editing of Mitsubishi Semiconductor Data Book

Published by
Mitsubishi Electric Corp., Semiconductor Division
This book, or parts thereof, may not be reproduced in any form without permission of Mitsubishi Electric Corporation.
© 1992 MITSUBISHI ELECTRIC CORPORATION Printed in Japan

MITSUBISHI SEMICONDUCTORS SINGLE-CHIP 8-BIT MICROCOMPUTERS Vol.

[^0]: SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

[^1]: Note. Make sure that the input level at each pin is either $O V$ or $V_{C c}$ during execution of the STP instruction
 If an input level is at an intermediate potential, a current will flow in the input-stage gate

[^2]: 0 : Falling edge active
 1 : Risıng edge actıve
 $0: \mathrm{INT}_{4}$ interrup
 1 : A-D interrupt
 0 : Count at rising edge
 1 : Count at falling edge

[^3]: 2

[^4]: Note 1 : V_{IL} and V_{IH} indicate a " L " and " H " input voltage, respectively.

[^5]: Note $1: \mathrm{V}_{\mathrm{IL}}$ and V_{IH} indicate a "L" and " H " input voltage, respectively
 2 : An X indicates either V_{IL} or V_{IH}.

[^6]: Note 1 : V_{IL} and V_{HH} indicate a " L " and " H " input voltage, respectively
 2 : An X indicates either $V_{I L}$ or $V_{I H}$

[^7]: APPLICATION
 Office automation equipment, VCR, Tuner, Audio-visual equipment

