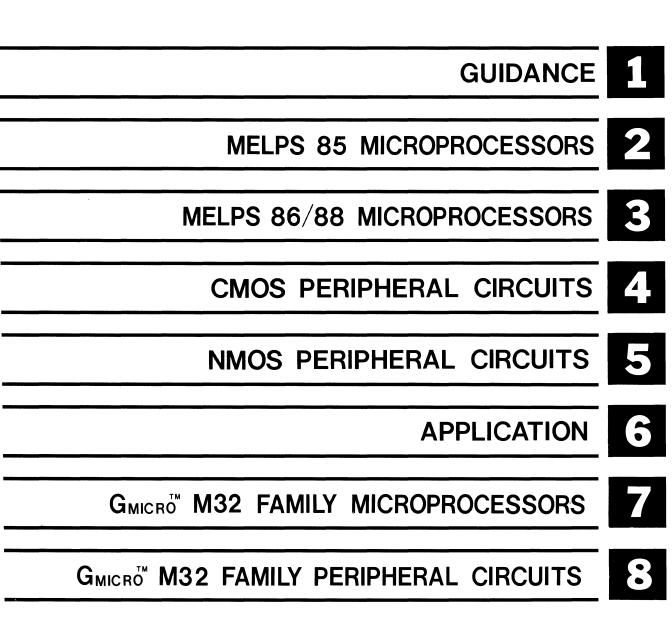
MITSUBISHI 1990 SEMICONDUCTORS


MICROPROCESSORS AND PERIPHERAL CIRCUITS

All values shown in this catalogue are subject to change for product improvement.

The information, diagrams and all other data included herein are believed to be correct and reliable. However, no responsibility is assumed by Mitsubishi Electric Corporation for their use, nor for any infringements of patents or other rights belonging to third parties which may result from their use.

1

G	UID	AN	CE

GUIDANCE	Page
Index by Function 1	1-2
Ordering Information 1	1-4
Package Outlines 1	
Letter Symbols for the Dynamic Parameters	1—15
Symbology ······	1—18
Quality Assurance and Reliability Testing	1—21
Precautions in Handling MOS ICs	1—27

2 MELPS 85 MICROPROCESSORS

M5M80C85AP-2/FP-2/J-2	CMOS 8-Bit Parallel Microprocessor	2—3
	8-Bit Parallel Microprocessor	
M5L8212P	8-Bit Input/Output port with 3-State Output	2—34
M5L8216P/M5L8226P	4-Bit Parallel Bidirectional Bus Drivers	2—38

3_{MELPS 86/88} MICROPROCESSORS

M5L8282P/M5L8283P	Octal Latch
M5L8284AP	Clock Generator and Driver
M5L8286P/M5L8287P	Octal Bus Transceiver
M5L8288P	Bus Controller ······ 3-20
M5L8289P	Bus Arbiter

4 CMOS PERIPHERAL CIRCUITS

_		
	M5M81C55P-2/FP-2/J-2	CMOS 2048-Bit static RAM with I/O Ports and Timer
	M5M81C56P-2/FP-2/J-2	CMOS 2048-Bit static RAM with I/O Ports and Timer4-13
	M5M82C37AP-5/FP-5/J-5	CMOS Programmable DMA Controller
	M5M82C51AP/FP/J	CMOS Programmable Communication Interface
	M5M82C54P/FP/J	CMOS Programmable Interval Timer
	M5M82C55AP-2/FP-2/J-2	CMOS Programmable Peripheral Interface
	M5M82C59AP-2/FP-2/J-2	CMOS Programmable Interrupt Controller
	M5M82C255ASP	CMOS Programmable Peripheral Interface

5 NMOS PERIPHERAL CIRCUITS

M5L8155P	2048-Bit Static RAM with I/O Ports and Timer
M5L8156P	2048-Bit Static RAM with I/O Ports and Timer
M5L8251AP-5	Programmable Communication Interface
M5L8253P-5	Programmable Interval Timer
M5L8255AP-5	Programmable Peripheral Interface
M5L8257P-5	Programmable DMA Controller
M5L8259AP	Programmable Interrupt Controller
M5L8279P-5	Programmable Keyboard/Display Interface

6 APPLICATION

Notice for CMOS Peripherals	 .3

•

GMICRO M32 Family MICROPROCESSORS

.

M33210GS-20/FP-20	CMOS 32-bit Parallel Microprocessor (M32/100) ······7-3
M33220GS-20	CMOS 32-bit Parallel Microprocessor (M32/200) ······7-5
M33230GS-20	CMOS 32-bit Parallel Microprocessor (M32/300) ······7-7

8 G_{MICRO} M32 Family PERIPHERAL CIRCUITS

M33241GS	CMOS DMA Controller (M32/DMAC) ······8-3
M33242SP/J	CMOS Interupt Controller (M32/IRC) ······8-5
M33243GS-25, -30	CMOS TAG Memory (M32/TAGM)
M33244T-16, -20	Clock Pulse Generator for M32/200 (CPG/200) ······8-9
M33245GS	CMOS Cache Controller/Memory (M32/CCM) ······ 8-10
M33281GS-20	CMOS Floating-Point Processing Unit (M32/FPU) ······ 8-12

Contact Addresses for Further Information

GUIDANCE

,

				Elec	trical ch	aracter	istics			٦
Туре	Circuit function and organization	Structure	Supply voltage (V)	Typ. pwr dissipation (mW)	Max. access time (ns)	time	Max fre- quency (MHz)	Package	Page	

MELPS 85 NMOS MICROPROCESSORS

M5L8085AP	8-Bit Parallel Microprocessor	N,Si,ED	5±5%	600	300	320	3	40P4	2-19
M5L8212P	8-Bit Input/Output Port with 3-State Output	B,LS	5±5%	450	30☆	-	_	24P4	2-34
M5L8216P	4-Bit Parallel Bidirectional Bus Driver (Non Inverting)	B,LS	5±5%	475	25☆	_	_	16P4	2-38
M5L8226P	4-Bit Parallel Bidirectional Bus Driver (Inverting)	B,LS	5±5%	425	25☆	_	_	16P4	2-38

MELPS 85 CMOS MICROPROCESSORS

M5M80C85AP-2		C,Si	5±10%	100	150	200	5	40P4	2-3
M5M80C85AFP-2	CMOS 8-bit Parallel Microprocessor	C,Si	5±10%	100	150	200	5	40P2R	2-3
M5M80C85AJ-2	!	C,Si	5±10%	100	150	200	5	44P0	2-3

MELPS 86/88 MICROPROCESSORS

M5L8282P	Octal Latch (Non Inverting)	B,LS	5±10%	250	-	-	-	20P4	3-3
M5L8283P	Octal Latch (Inverting)	B,LS	5±10%	250	—		-	20P4	3-3
M5L8284AP	Clock Generator and Driver for 8086/8088/8089 Processors	B,LS	5±10%	490	_	-	-	18P4	3—7
M5L8286P	Octal Bus Transceiver (Non Inverting)	B,LS	5±10%	400				20P4	3-16
M5L8287P	Octal Bus Transceiver (Inverting)	B,LS	5±10%	400			-	20P4	3-16
M5L8288P	Bus Controller	B,LS	5±10%	500		-	-	20P4	3-20
M5L8289P	Bus Arbiter	B,LS	5±10%	350			-	20P4	3-28

INMOS PERIPHERAL CIRCUITS

M5L8155P	2048-Bit Static RAM with I/O	N.Si,ED	5±5%	500	170	320	3	40P4	5-3
	Ports and Timer (CE="L" active)	N,SI,ED	51570	500	170,	320	3		5-5
	2048-Bit Static RAM with I/O		5±5%	F00	170	320	3	40P4	5-11
M5L8156P	Ports and Timer (CE="H" active)	N,Si,ED	515%	500	170		3		
M5L8251AP-5	Programmable Communication Interface	N,SI,ED	5±5%	300	250	320	3	28P4	5-19
M5L8253P-5	Programmable Interval Timer	N,Si,ED	5±10%	300	200	380	2.6	24P4	5-36
M5L8255AP-5	Programmable Peripheral Interface	N,Si,ED	5±5%	250	200	1150	-	40P4	5-44
M5L8257P-5	Programmable DMA Controller	N,SI,ED	5±5%	300	200	320	3	40P4	5-62
M5L8259AP	Programmable Interrupt Controller	N,Si,ED	5±10%	275	200	395	-	28P4	5-72
M5L8279P-5	Programmable Keyboard/Display Interface	N,Si,ED	5±10%	250	150	320	3	40P4	5-86

B = Bipolar. N = N-channel.

C = CMOS.

Si = Silicon gate

ED = Enhancement depletion mode.

LS = Low power Schottkey.

Indicates propagation time.

			Electrical characteristics				istics	
Туре	Circuit function and organization	Structure	Supply voltage (V)	Typ pwr dissipation (mW)	Max access time (ns)	time	Max fre- quency (MHz)	Page

CMOS PERIPHERAL CIRCUITS

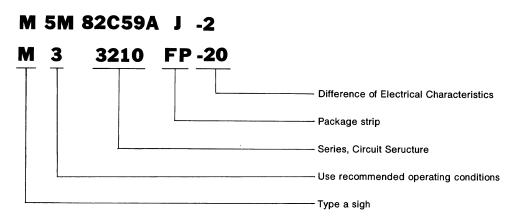
M5M81C55P-2	CMOS 2048-bit Static RAM with I/O	C,Sł	5±10%	35	120	200	5	40P4	4—3
M5M81C55FP-2	Ports and Timer (CE="L" active)	C,Si	5±10%	35	120	200	5	40P2R	4-3
M5M81C55J-2	Ports and Timer (CE- L active)	C,Sı	5±10%	35	120	200	5	44P0	4-3
M5M81C56P-2	CMOS 2048-bit Static RAM with I/O	C,Si	5±10%	35	120	200	5	40P4	4-13
M5M81C56FP-2	Ports and Timer (CE="H" active)	C,Sı	5±10%	35	120	200	5	40P2R	4-13
M5M81C56J-2	Ports and Timer (CE— H active)	C,Si	5±10%	35	120	200	5	44P0	4-13
M5M82C37AP-5		C,Sı	5±10%	22.5	140	200	5	40P4	4-23
M5M82C37AFP-5	CMOS Programmable DMA	0.0	5±10%	22.5	140	200	5	40P2R `	4-23
M5M82C37AJ-5	Controller	C,Sı	5±10%	22.5	140	200	5	44P0	4-23
M5M82C51AP		C,Sı	5±10%	6	170	320	3	28P4	4-43
M5M82C51AFP	CMOS Programmable	C,Sı	5±10%	6	170	320	3	28P2W	4-43
M5M82C51AJ	Communication Interface	C,SI	5±10%	6	170	320	3	28P0	4-43
M5M82C54P		C,Si	5±10%	35	120	125	8	24P4	4-61
M5M82C54FP	CMOS Programmable	0.0	5±10%	35	100	105	-	24P2W	4 61
M5M82C54J	Interval Timer	C,SI	5±10%	35	120	125	8	28P0	4—61
M5M82C55AP-2		C,Sı	5±10%		120	320		40P4	4-72
M5M82C55AFP-2	CMOS Programmable	0.0	F±100/		100	200		40P2R	4 70
M5M82C55AJ-2	Peripheral Interface	C,Si	5±10%	_	120	320	-	44P0	4—72
M5M82C59AP-2		C,Si	5±10%		120	310	-	28P4	4-88
M5M82C59AFP-2	CMOS Programmable	0.0	E+100/		100	210		28P2W	4 00
M5M82C59AJ-2	Interrupt Controller	C,Si	5±10%	-	120	310	-	28P0	4
M5M82C255ASP	CMOS Programmable Peripheral Interface	C,Sı	5±10%	-	120	320	_	64P4B	4—105

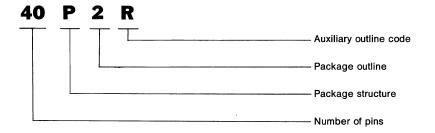
■ 32-BIT MICROPROCESSORS GMICROTM · M32 FAMILY

					Electrical ch	aracteristics		[
Туре No		Circuit function	Structure	Supply voltage (V)	Typ. power dissipation (mW)	Max frequency (MHz)	Package	Page
M33210GS/FP-20	**	32-Bit Microprocessor(M32/100)	C,Sı	5±5%	_	20	135S8/160P6	7-3
M33220GS-20	**	32-Bit Microprocessor(M32/200)	C,Sı	5±5%		20	135S8X-A	7-5
M33230GS-20	**	32-Bit Microprocessor(M32/300)	C,Sı	5±5%		20	179S8X-B	7-7
M33241GS	**	DMA Controller(M32/DMAC)	C,Sı	5±5%	1200	20	179S8X-A	8-3
M33242SP/J	**	Interrupt Request Controller(M32/IRC)	C,Sı	5±5%	200	20	64P4X-A/ 68P0X-A	8-5
M33243GS-25,-30	**	TAG Memory(M32/TAGM)	C,Si	5±10%	1250		64S8X-A	8-7
M33244T-16,-20	**	Clock Pulse Generator for M32/200(CPG/200)	-	5±5%	—	16/20	14T4X-A	8-9
M33245GS	**	Cache Controller/Memory(M32/CCM)	C,Sı	5±5%		-	13558	8-10
M33281GS-20	**	Floating Point Processing Unit(M32/FPU)	C,Sı	5±5%		20	135S8X-A	8-12

The $\mathbf{G}_{\text{MICRO}}{}^{\text{TM}}$ trade mark indicates a G-MICRO group thoron type micro processor

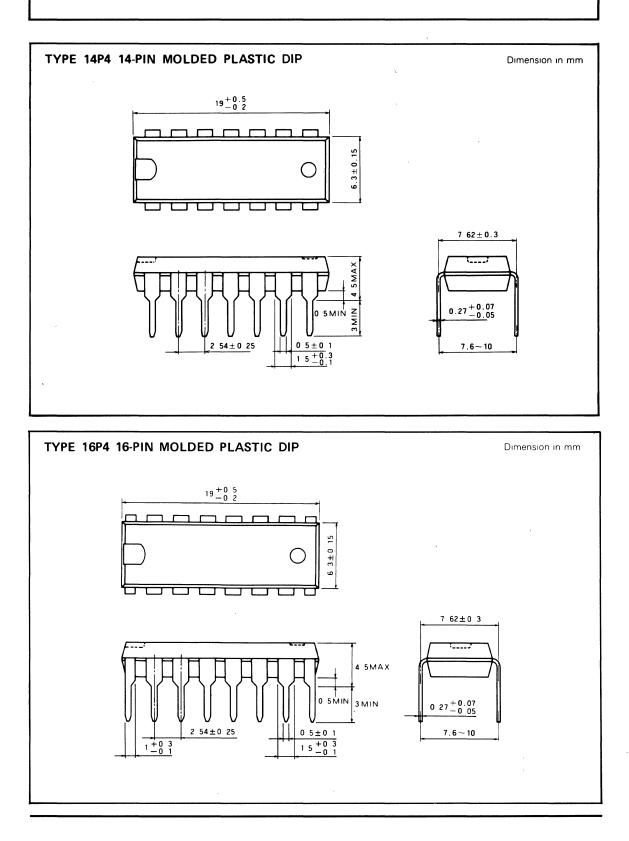
★★: Under development


C = CMOS. SI = Silicon gate

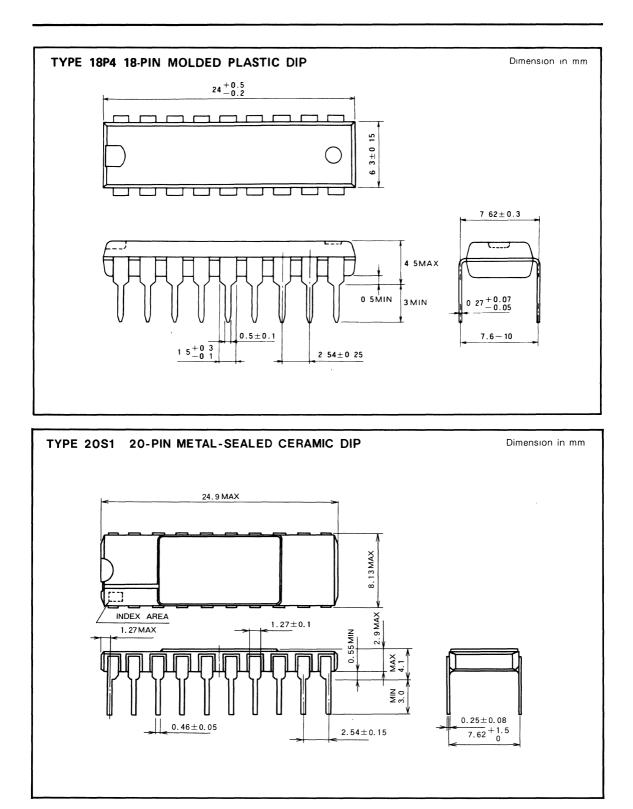

Understanding the Type-Designation Code

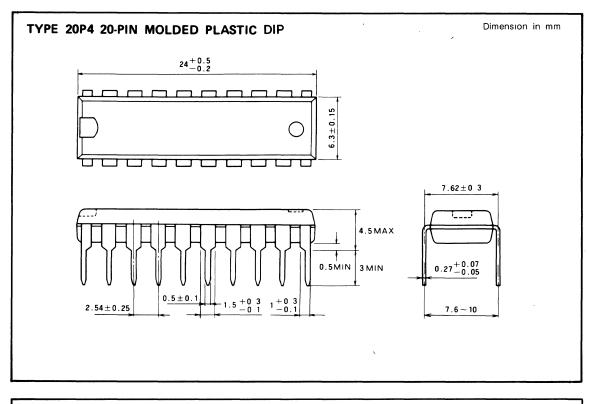
Type-designation examples are provided below to provide information about the products and their packages. These type designations are comprised of code elements. The blanks in some of the examples indicate that a code element is not necessary. When writing the type designation, the blank spaces are closed.

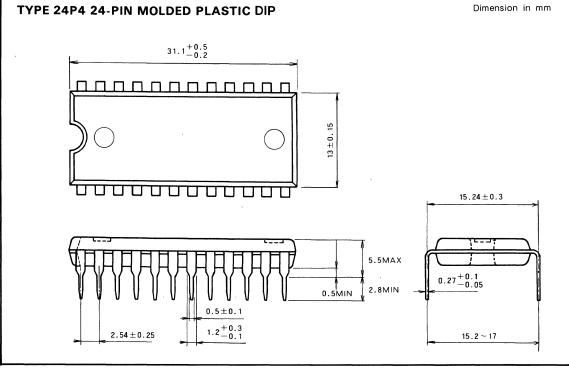
Example 1. (Device)

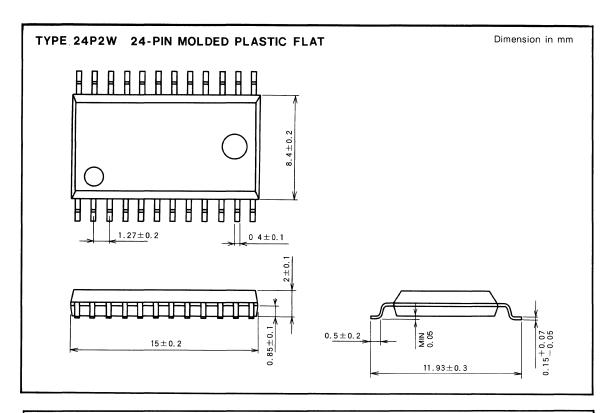


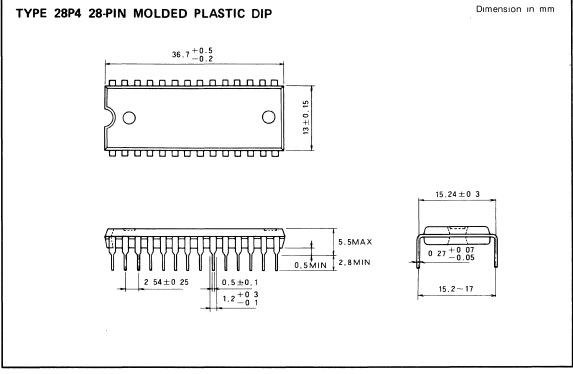
Example 2. (Package)

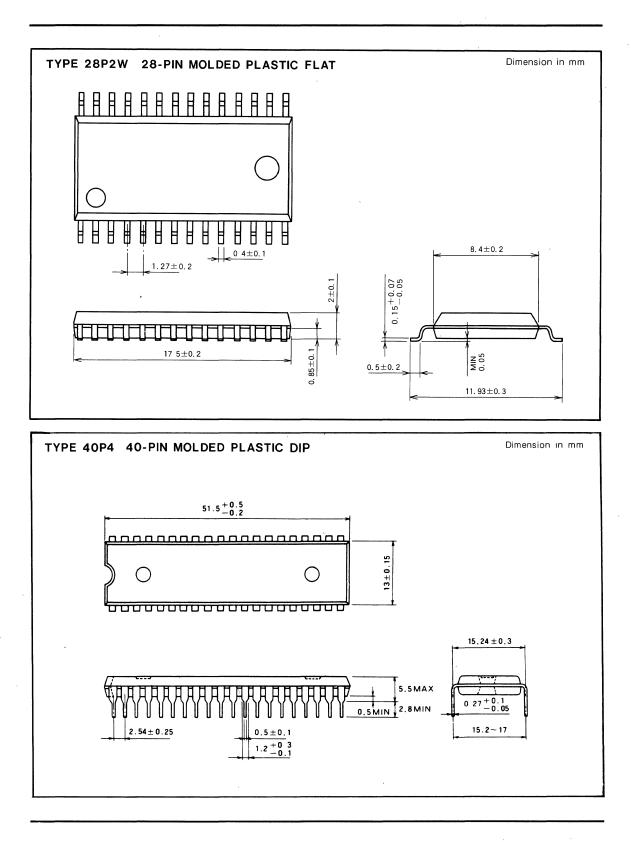


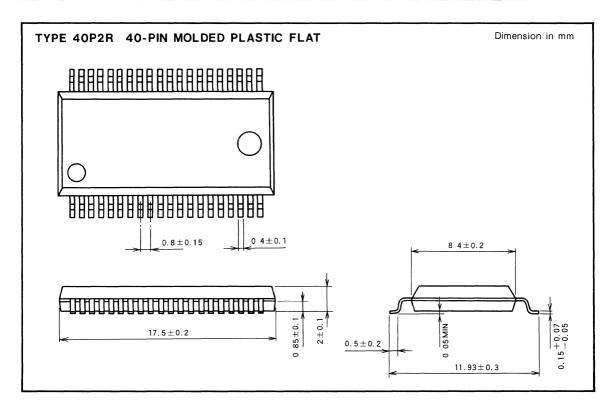

PACKAGE OUTLINES

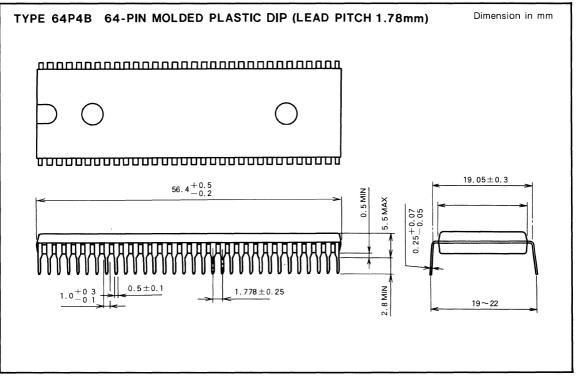




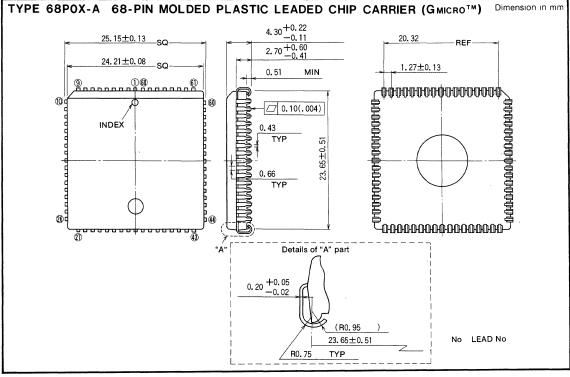


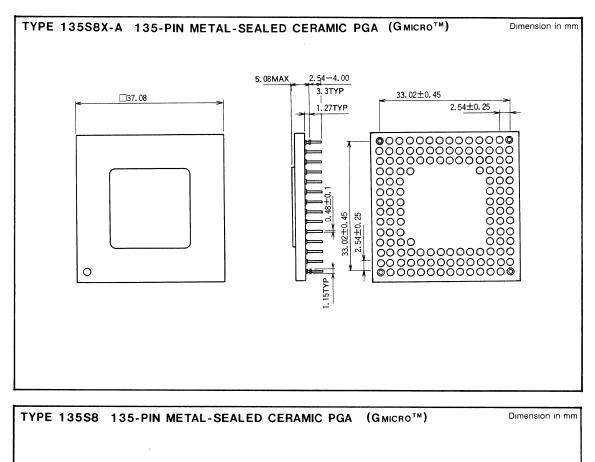


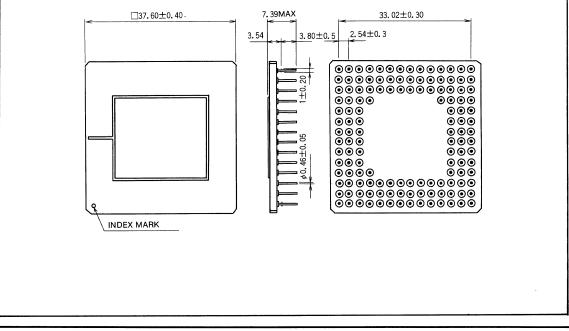


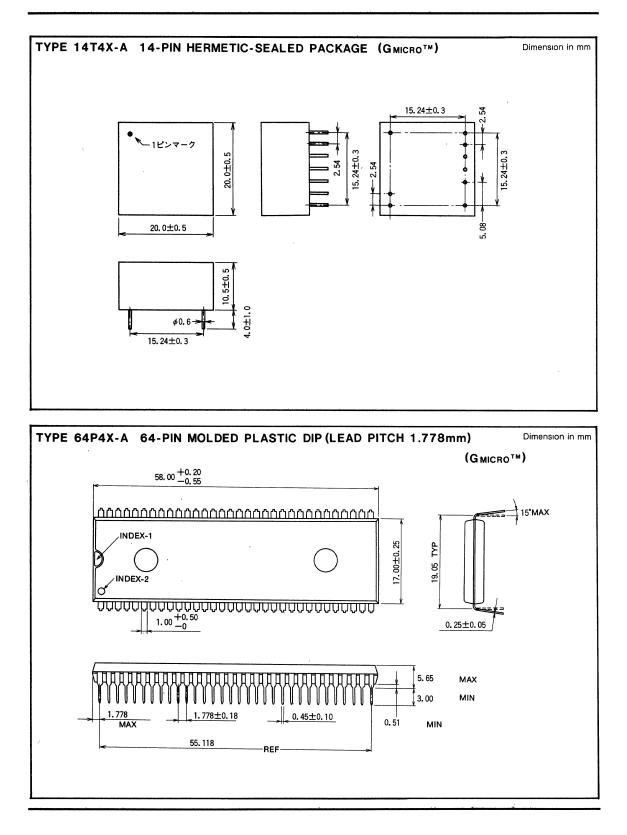


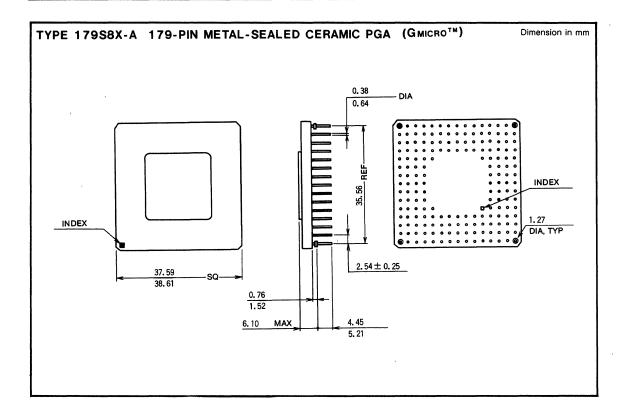












ч Х.

1. INTRODUCTION

A system of letter symbols to be used to represent the dynamic parameters of intergrated circuit memories and other sequential circuits especially for single-chip microcomputers, microprocessors and LSIs for peripheral circuits has been discussed internationally in the TC47 of the International Electrotechnical Committee (IEC). Finally the IEC has decided on the meeting of TC47 in February 1980 that this system of letter symbols will be a Central Office document and circulated to all countries to vote which means this system of letter symbols will be a international standard.

The system is applied in this LSI data book for the new products only. Future editions of this data book will be applied this system. The IEC document which describes "Letter symbols for dynamic parameters of sequential integrated circuits, including memories" is introduced below. In this data book, the dynamic parameters in the IEC document are applied to timing requirements and switching characteristics.

2. LETTER SYMBOLS

The system of letter symbols outlined in this document enables symbols to be generated for the dynamic parameters of complex sequential circuits, including memories, and also allows these symbols to be abbreviated to simple mnemonic symbols when no ambiguity is likely to arise.

2.1. General Form

The dynamic parameters are represented by a general symbol of the form:

t_{A(BC-DC)}F (1)

where :

- Subscript A indicates the type of dynamic parameter being represented, for example; cycle time, setup time, enable time, etc.
- Subscript B indicates the name of the signal or terminal for which a change of state or level (or establishment of a state or level) constitutes a signal event assumed to occur first, that is, at the beginning of the time interval. If this event actually occurs last, that is, at the end of the time interval, the value of the time interval is negative.
- Subscript C indicates the direction of the transition and/or the final state or level of the signal represented by B. When two letters are used, the initial state or level is also indicated.

- Subscript D indicates the name of the signal or terminal for which a change of state or level (or establishment of a state or level) constitutes a signal event assumed to occur last, that is, at the end of the time interval. If this event actually occurs first, that is, at the beginning of the time interval, the value of the time interval is negative.
- Subscript E indicates the direction of the transition and/or the final state or level of the signal represented by D. When two letters are used, the initial state or level is also indicated.

Subscript F indicates additional information such as mode of operation, test conditions, etc.

- Note 1 Subscripts A to F may each consists of one or moreNetters
 - 2 Subscripts D and E are not used for transition times
 - 3 The "-" in the symbol (1) above is used to indicate "to", hence the symbol represents the time interval from signal event B occuring to signal event D occuring, and it is important to note that this convention is used for all dynamic parameters including hold times. Where no misunder-standing can occur the hyphen may be omitted.

2.2. Abbreviated Form

The general symbol given above may be abbreviated when no misunderstanding is likely to arise. For example to :

- t_{A(B-D})
- or t_{A(B)}
- or $t_{A(D)}$ often used for hold times
- or t_{AF} no brackets are used in this case
- or t_A
- or t_{BC-DE} often used for unclassified time intervals

2.3. Allocation of Subscripts

In allocating letter symbols for the subscripts, the most commonly used subscripts are given single letters where practicable and those less commonly used are designated by up to three letters. As far as possible, some form of mnemonic representation is used. Longer letter symbols may be used for specialised signals or terminals if this aids understanding.

3. SUBSCRIPT A (For Type of Dynamic Parameter)

The subscript A represents the type of dynamic parameter to be designated by the symbol and, for memories, the parameters may be divided into two classes :

a) those that are timing requirements for the memory and

LETTER SYMBOLS FOR THE DYNAMIC PARAMETERS

b) those that are characteristics of the memory. The letter symbols so far proposed for memory circuits are listed in sub-clauses 3.1 and 3.2 below. All subscripts A should be in lower-case.

3.1. Timing Requirements

The letter symbols for the timing requirements of semiconductor memories are as follows :

Term	Subscript
Cycle time	с
Time interval between two signal events	d
Fall time	f
Hold time	h
Precharging time	рс
Rise time	r
Recovery time	rec
Refresh time interval	• rf
Setup time	su
Transition time	t
Pulse duration (width)	w

3.2. Characteristics

The letter symbols for the dynamic characteristics of semiconductor memories are as follows :

Characteristic	Subscript
Access time	а
Disable time	dis
Enable time	en
Propagation time	р
Recovery time	rec
Transition time	t
Valid time	v
	. I se mail market an an an an an an

Note Recovery time for use as a characteristic is limited to sense recovery time

4. SUBSCRIPTS B AND D (For Signal Name or Terminal Name)

The letter symbols for the signal name or the name of the terminal are as given below.

All subscripts B and D should be in upper-case.

Signal or terminal	Subscript
Address	А
Clock	С
Column address	CA
Column address strobe	CAS
Data input	D
Data input/output	DQ
Chip enable	E

Erasure	ER
Output enable	G
Program	PR
Data output	Q
Read	R
Row address	RA
Row address strobe	RAS
Refresh	RF
Read/Write	RW
Chip select	S
Write (write enable)	w
New Alley Alexandres and the second	

Note 1 In the letter symbols for time intervals, bars over the subscripts, for example CAS, should not be used

2 It should be noted, when further letter symbols are chosen, that the subscript should not end with H, K, V, X, or Z (See clause 5)

3 If the same terminal, or signal, can be used for two functions (for example Data input/output, ReadWrite) the waveform should be labelled with the dual function, if appropriate, but the symbols for the dynamic parameters should include only that part of the subscript relevant to the parameter

5. SUBSCRIPTS C AND E (For Transition of Signal)

The following symbols are used to represent the level or state of a signal :

Transition of signal	Subscript
High logic level	н
Low logic level	L
Valid steady-state level (either low or high)	V
Unknown, changing, or 'don't care' level	х
High-impedance state of three-state output	Z

The direction of transition is expressed by two letters, the direction being from the state represented by the first letter to that represented by the second letter, with the letters being as given above.

When no misunderstanding can occur, the first letter may be omitted to give an abbreviated symbol for subscripts C and E as indicated below.

All subscripts C and E should be in upper-case.

	Subscript						
Examples	Full	Abbreviated					
Transition from high level to low level	HL	L					
Transition from low level to high level	ĽΗ	н					
Transition from unknown or changing state to valid state	xv	v					
Transition from valid state to unknown or changing state	vx	x					
Transition from high-impedance state to valid state	ZV	V					
low level Transition from low level to high level Transition from unknown or changing state to valid state Transition from valid state to unknown or changing state Transition from high-impedance	LH XV VX	V					

Note Since subscripts C and E may be abbreviated, and since subscripts B and D may contain an indeterminate number of letters, it is necessary to put the restriction on the subscripts B and D that they should not end with H, L, V, X, or Z, so as to avoid possible confusion

6. SUBSCRIPT F. (For Additional Information)

If necessary, subscript F is used to represent any additional qualification of the parameter such as mode of operation, test conditions, etc. The letter symbols for subscript F are given below.

Subscript F should be in upper-case.

Modes of operation	Subscript
Power-down	PD
Page-mode read	PGR
Page-mode write	PGW
Read	R
Refresh	RF
Read-modify-write	RMW
Read-write	RW
Write	W

FOR DIGITAL INTEGRATED CIRCUITS

New symbol	Foriner symbol	Parameter-definition						
C,		Input capacitance						
C _o		Output capacitance						
C₀ C₁∕₀		Input/output terminal capacitance						
C _{1/0} C _{1(¢)}		Input capacitance of clock input						
C _i (φ) f								
		Frequency						
f _(¢)								
		Current-the current into an integrated circuit terminal is defined as a positive value and the current out of a terminal is defined as a negative value						
BB		Supply current from V _{BB}						
BB(AV)		Average supply current from V _{BB}						
lcc		Supply current from Vcc						
ICC(AV)		Avarage supply current from Vcc						
CC(PD)		Power-down supply current from Vcc						
DD		Supply current from V _{DD}						
DD(AV)		Average supply current from V _{DD}						
I _{GG}		Supply current from V _{GG}						
GG(AV)		Average supply current from V _{GG}						
ц.		Input current						
Гін		High-level input current-the value of the input current when V _{OH} is applied to the input considered						
ЧL		Low-level input current—the value of the input current when VoL is applied to the input considered						
I _{ОН}		High-level output current-the value of the output current when V _{OH} is applied to the output considered						
IOL		Low-level output current—the value of the output current when VOL is applied to the output considered						
loz		Off-state (high-impedance state) output current-the current into an output having a three-state capability with input condition so applied that						
		it will establish according to the product specification, the off (high-impedance) state at the output						
Гогн		Off-state (high-impedance state) output current, with high-level voltage applied to the output						
IOZL		Off-state (high-impedance state) output current, with low-level voltage applied to the output						
los		Short-circuit output current						
ISS		Supply current from V _{SS}						
Pd		Power dissipation						
NEW		Number of erase/write cycles						
N _{RA}		Number of read access unrefreshed						
R,		Input resistance						
RL		External load resistance						
ROFF		Off-state output resistance						
R _{ON}		On-state output resistance						
ta		Access time-the time interval between the application of a specified input pulse during a read cycle and the availability of valid data signal at an output						
t _{a(A)}	t _{a(AD)}	Address access time-the time interval between the application of an address input pulse and the availability of valid data signals at an output						
ta(CAS)		Column address strobe access time						
t _{a(E)}	t _{a(CE)}	Chip enable access time						
t _{a(G)}	t _{a(OE)}	Output enable access time						
t _{a (PR)}		Data access time after program						
t _{a (RAS)}		Row address strobe access time						
t _{a(S)}	ta(cs)	Chip select access time						
t _c		Cycle time						
t _{cR}	t _{c(RD)}	Read cycle time-the time interval between the start of a read cylce and the start of the next cycle						
t _{CRF}	t _{c(REF)}	Refresh cycle time-the time interval between successive signals that are intended to restore the level in a dynamic memory cell to its original level						
tcpg	t _{c(PG)}	Page-mode cycle time						
t _{crmw}	t _{c(RMR)}	Read-modify-write cycle time-the time interval between teh start of a cycle in which the memory is read and new data is entered, and the start of the next cycle						
tcw	t _{c(WR)}	Write cycle time-the time interval between the start of a write cycle and the start of the next cycle						
-017	U(WR)							

New symbol	Former symbol	Parameter-definition								
td		Delay time-the time between the specified reference points on two pulses								
td(ø)		Delay time between clock pulses-e g , symbology, delay time, clock 1 to clock 2 or clock 2 to clock 1								
td(ø)		Delay time, column address strobe to row address strobe								
	t d (o t o t u o)	Delay time, column address strobe to write								
td (CAS-W)	td(cas wr)	Delay time, row address strobe to column address strobe								
td (RAS-CAS)	+	Delay time, row address strobe to colorin address strobe								
td(RAS-W)	td(RAS-WR)	Output disable time after read								
t _{dis(R-Q)}	t _{dis(R-DA)}									
t _{dis(s)}	t _{PXZ} (CS)	Dutput disable time after chip select Dutput disable time after write								
tdis(w)	tpxz(wr)									
t _{DHL}										
t _{DLH}	t	Low-level to high-level delay time output is going to the low (high) level and when the device is driven and loaded by specified networks.								
ten(A-Q)	tpzv(A-DQ)									
ten(R-Q)	tpzv(R-DQ)	Output enable time after read								
ten(s-q)	(CS-DQ)	Output enable time after chip select								
t _f		Fall time								
t _h	+.	Hold time-the interval time during which a signal at a specified input terminal after an active transition occurs at another specified input terminal								
th(A)	th(AD)	Address hold time								
th(A-E)	th(AD-CE)	Chip enable hold time after address Program hold time after address								
th(A-PR)	th(AD-PRO)	Column address hold time after column address strobe								
th(CAS-CA)	+.									
th(CAS-D)	^t h(cas-da)	Data-in hold time after column address strobe								
th(CAS-Q)	th(CAS-OUT)	Data-out hold time after column address strobe Row address strobe hold time after column address strobe								
th (CAS-RAS)	t	Now address strobe note time after column address strobe								
th(CAS-W)	th(CAS-WR)	Data-in hold time								
th(D)	th(DA)	Program hold time after data-in								
th(D-PR)	th(DA-PRO)	Chip enable hold time								
th(E)	th(CE)	Data-in hold time after chip enable								
th(E-D) th(E-G)	th(CE-DA)	Output enable hold time after chip enable								
th(E-G)	th(CE-OE)	Read hold time								
th(RAS-CA)	t _{h(RD)}	Column address hold time after row address strobe								
th(RAS-CAS)		Column address strobe hold time after row address strobe								
th(RAS-D)	t _{h(RAS-DA)}	Data-in hold time after row address strobe								
th(RAS-W)	th(RAS-DA)	Write hold time after row address strobe								
t _{h(s)}	th(CS)	Chip select hold time								
t _{h(w)}	t _{h(WR)}	Write hold time								
th(w-cas)	th(wR)	Column address strobe hold time after write								
th(w-D)	th(wR-CAS)	Data-in hold time after write								
	th(wR-DA)	Row address hold time after write								
t _{PHL}	M(WH-HAS)	High-level to low-level propagation time) the time interval between specified reference points on the input and on the output pulses when the								
tPLH		Low-level to high-level propagation time of stated type								
tr		Rise time								
t _{rec(w)}	t _{wr}	Write recovery time-the time interval between the termination of a write pulse and the initiation of a new cycle								
trec(w)	t _{R(PD)}	Power-down recovery time								
t _{su}		Setup time-the time interval between the application of a signal which is maintained at a specified input terminal and a consecutive active								
		tarnsition at another specified input terminal								
t _{su(A)}	t _{su(AD)}	Address setup time								
t _{su(A-E)}	t _{su(AD-CE)}	Chip enable setup time before address								
t _{su(A-W)}	t _{su(AD-WR)}	Write setup time before address								
t _{su(CA-RAS)}	20 (AD- WH)	Row address strobe setup time before column address								
00 (0A 11A3)										

.

New symbol	Former symbol	Parameter-definition									
t _{su(D)}	t _{su(DA)}	Data-in setup time									
t _{su(D-E)}	t _{su(DA-CE)}	Chip enable setup time before data-in									
t _{su(D-W)}	t _{su(da-wr)}	Write setup time before data in									
t _{su(E)}	t _{su(CE)}	Chip enable setup time									
t _{su(E-P)}	t _{su(CE-P)}	Precharge setup time before chip enable									
t _{su(G-E)}	t _{su(OE-CE)}	Chip enable setup time before output enable									
t _{su(P-E)}	t _{su(P-CE)}	Chip enable setup time before precharge									
t _{su(PD)}		Power-down setup time									
t _{su(R)}											
tsu (R-CAS) tsu (RA-CAS) Column address strobe setup time before read											
tsu (RA-CAS) Column address strobe setup time before row address											
t _{su(s)}	t _{su(CS)}	Chip select setup time									
t _{su(s-w)}	t _{su(CS-WR)}	Write setup time before chip select									
t _{su(w)}	t _{su(wR)}	Write setup time									
t⊤н∟		High-level to low-level transition time the time interval between specified reference points on the edge of the output pulse when the output is									
tтшн		Low-level- to high-level transition time Source of the low (high) level and when a specified input signal is applied through a specified network and the output is loaded by another specified network									
t _{v(A)}	t _{dv(AD)}	Data valid time after address									
t _{v(E)}	t _{dv(CE)}	Data valid time after chip enable									
t _{v(E)PR}	t _{v(CE)PR}	Data valid time after chip enable in program mode									
t _{v(G)}	t _{v(OE)}	Data valid time after output enable									
t _{v(PR)}		Data valid time after program									
t _{v(S)}	t _{v(CS)}	Data valid time after chip select									
tw	1(00)	Pulse width (pulse duration) the time interval between specified reference points on the leading and training edges of the waveforms									
t _{w(E)}	tw(CE)	Chip enable pulse width									
t _{w(EH)}	t _{w(CEH)}	Chip enable high pulse width									
t _{w(EL)}	t _{w(EL)}	Chip enable low pulse width									
t _{w(PR)}	"(22)	Program pulse width									
t _{w(R)}	tw(RD)	Read pulse width									
t _{w(s)}	t _{w(CS)}	Chip select pulse width									
t _{w(w)}	t _{w(wR)}	Wrtie pulse width									
$t_{w(\phi)}$		Clock pulse width									
Та		Ambient temperature									
Topr		Operating temperature									
Tstg		Storage temperature									
VBB		VBB supply voltage									
V _{CC}		V _{CC} supply voltage									
V _{DD}		V _{DD} supply voltage									
V _{GG}		VGG supply voltage									
V ₁		Input voltage									
VIH		High-level input voltage-the value of the permitted high-state voltage at the input									
VIL		Low-level input voltage-the value of the permitted low-state voltage at the input									
Vo		Output voltage									
V _{OH}		High-level output voltage-the value of the guaranteed high-state voltage range at the output									
VOL		Low-level output voltage-the value of the guaranteed low-state voltage range at the output									
Vss		V _{SS} supply voltage									

MITSUBISHI MICROPROCESSOR AND PERIPHERAL CIRCUITS ICS QUALITY ASSURANCE AND RELIABILITY TESTING

1 INTRODUCTION

IC & LSI have made rapid technical progress in electrical performances of high integration, high speed, and sophisticated functionality. And now they have got boundless wider applications in electronic systems and electrical appliances.

To meet the above trend of expanding utilization of IC & LSI, Mitsubishi considers that it is extremely important to supply stable quality and high reliable products to customers.

Mitsubishi Electric places great emphasis on quality as a basic policy "Quality First", and has striven always to improve quality and reliability.

Mitsubishi has already developed the Quality Assurance System covering design, manufacturing, inventory and delivery for IC & LSI, and has supplied highly reliable products to customers for many years. The following articles describe the Quality Assurance System and examples of reliability control for Mitsubishi Microprocessor and Peripheral Circuits ICs.

2. QUALITY ASSURANCE SYSTEM

The Quality Assurance System places emphasis on built-in reliability in designing and built-in quality in manufacturing. The System from development to delivery is summarized in Figure 1.

2.1 Quality Assurance in Designing

The following steps are applied in the designing stage for a new product.

- (1). Setting of perfomance, quality and reliability target for new product.
- (2) Discussion of performance and quality for circuit design, device structure, process, material and package.
- (3) Verification of design by CAD system to meet standardized design rule.
- (4) Functional evaluation for bread-board device to confirm electrical performance.
- (5) Reliability evaluation for TEG (Test Element Group) chip to detect basic failure mode and investigate failure machanism.
- (6) Reliability test (In-house qualification) for new product to confirm quality and reliability target.
- (7) Decision of pre-production from the standpoint of performance, reliability, production flow/conditions, production capability, delivery and etc.

2.2 Quality Assurance in Manufacturing

Quality assurance in manufacturing is performed as follows

- (1) Environment control such as temperature, humidity and dust as well as deionized water and utility gases.
- (2) Maintenance and calibration control for automatized manufacturing equipment, automatic testing equipment, and measuring instruments.

- (3) Material control such as silicon wafer, lead frame, packaging material, mask and chemicals.
- (4) In-process inspections in wafer-fabrication, assembly and testing.
- (5) 100% final inspection of electrical characteristics, visual inspection and burn-in, if necessary.
- (6) Quality assurance test
 -Electrical characteristics and visual inspection, lot by lot sampling

-Environment and endurance test, periodical sampling.

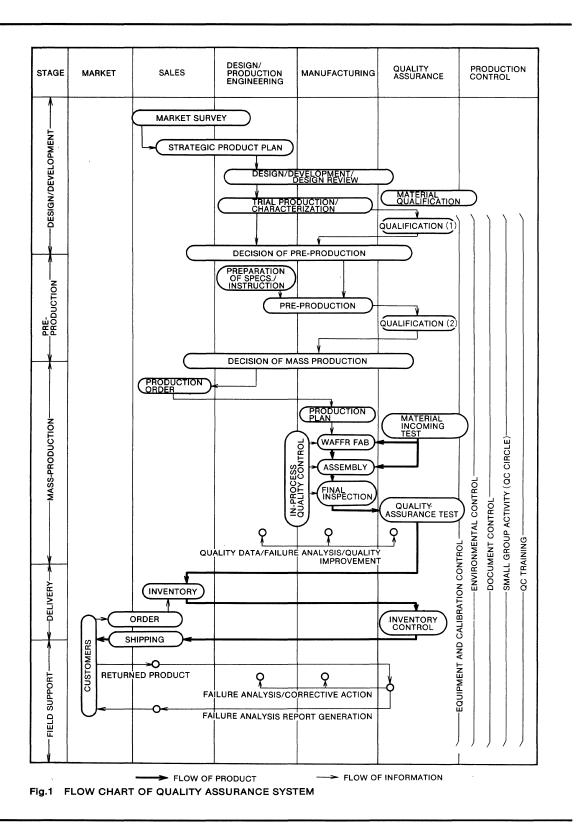
(7) Inventory and shipping control, such as storage environment, date code identification, handling and ESD (Electro Static Discharge) preventive procedure.

2.3 Reliability Test

To verify the reliability of a product as described in the Mitsubishi Quality Assurance System, reliability tests are performed at three different stages : new product development, pre-production, and mass-production.

At the development of a new product the reliability test plan is fixed corresponding to the quality and reliability target of each product, respectively. The test plan includes in-house qualification test, and TEG evaluation, if necessary. TEG chips are designed and prepared for new device structure, new process and new material.

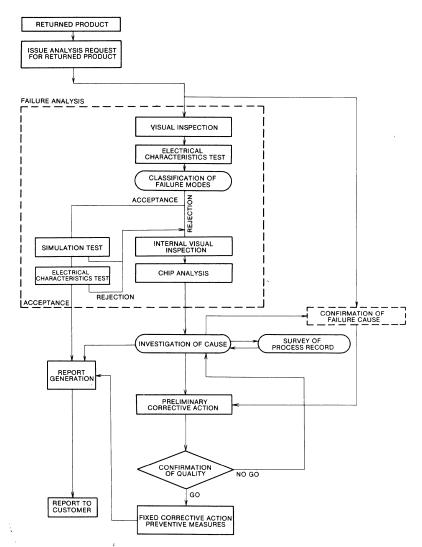
After the proto-type product has passed the in-house qualification test, the product advances to the pre-production. In the pre-production stage, the specific reliability tests are programmed and performed again to verify the quality of pre-production product.


In the mass production, the reliability tests are performed periodically to confirm the quality of the mass production product according to the quality assurance test program.

Group	Test	Test condition				
1	Solderability	230°C, 5sec Rosin flux				
	Soldering heat	260°C, 10sec				
2	Thermal shock	-55°C, 125°C, 15cycles				
	Temperature cycling	-65°C, 150°C, 100cycles				
3	Lead fatigue	250gr, 90°, 2arcs				
	Shock	1500G, 0. 5msec				
		20G, 100~2000Hz				
4	Vibration	X, Y, Z direction				
		4min /cycle, 4cycles/direction				
	Constant acceleration	20000G, Y direction, 1min				
5	Dynamic operation life	T _a =Toprmax, Vccmax				
5	Dynamic operation me	1000hours				
6	High temperature storage life	T _a =150℃, 1000hours				
	High temperature and	05%0 05%(1000)				
7	high humidity	85°C, 85%, 1000hours				
	Pressure cooker	121℃, 100%, 100hours				

Table 1 TYPICAL RELIABILITY TEST PROGRAM FOR PLASTIC ENCAPSULATED IC & LSI

MITSUBISHI MICROPROCESSOR AND PERIPHERAL CIRCUITS ICs QUALITY ASSURANCE AND RELIABILITY TESTING



MITSUBISHI MICROPROCESSOR AND PERIPHERAL CIRCUITS ICS QUALITY ASSURANCE AND RELIABILITY TESTING

Table 1 shows an example of reliability test program for plastic encapsulated IC & LSI.

2.4 Returned Product Control

When failure analysis is requested by a customer, the failed devices are returned to Mitsubishi Electric via the sales office of Mitsubishi using the form of "Analysis Request of Returned Product" Mitsubishi provides various failure analysis equipment to analyze the returned product. A failure analysis report is generated to the customer upon completion of the analysis. The failure analysis result enforces taking corrective action for the design, fabrication, assembly or testing of the product to improve reliability and realize lower failure rate. Figure 2 shows the procedure of returned product control from customer.

MITSUBISHI MICROPROCESSOR AND PERIPHERAL CIRCUITS ICS QUALITY ASSURANCE AND RELIABILITY TESTING

3 RELIABILITY TEST RESULTS

The reliability test results for Mitsubishi General Purpose ICs are shown in Table 2, Table 3 and Table 4.

Table 2 shows the result of endurance tests of dynamic operation life and high temperature storage life test for representative types of General Purpose ICs, Operational Amplifier, Voltage Comparator, Timer, Motor Driver, Voltage Regulator and Transistor Array. From Table 2, the combined failure rate of Mitsubishi Microprocessor and Peripheral Circuits ICs is calculated 0.15% /1000hours (60% confidence level) at maximum rating of operating condition.

Table 3 shows the results of the environment tests of thermal stress, high temperature/high humidity and pressure cooker test for the same type of products in regards to endurance tests.

Table 4 shows the results of mechanical tests for representative products of various package types

	Test		Operating Life Test			High Temperature Storage Life			
Test Condition		T _a =125℃ V _{cc} ≦V _{ccmax}			T _a =150°C				
Application	Type Number	Number of Samples	Device Hours	Number of Failures	Number of Samples	Device Hours	Number of Failures		
MELPS 85	M5L8085AP	22	22,000	0	22	22,000	0		
MPU	M5L8212P	38	38,000	0	22	44,000	0		
MELPS 86/88	M5L8284AP	38	38,000	0	22	44,000	0		
MELPS 86/88 MPU	M5L8288S	38	38,000	0	22	44,000	0		
NIPU	M5L8289P	38	38,000	0	22	44,000	0		
NMOS	M5L8251AP-5	22	22,000	0	22	22,000	0		
	M5L8253P-5	88	88,000	0	22	22,000	0		
Peripheral Circuit	M5L8255AP-5	88	88,000	0	44	22,000	0		
Circuit	M5L8259AP	22	22,000	0	22	22,000	0		
	M5M82C37AP-4	22	22,000	0	22	22,000	0		
	M5M82C37AFP-4	22	22,000	0	22	22,000	0		
	M5M82C54P-6	22	22,000	0	22	22,000	0		
смоѕ	M5M82C54FP-6	22	22,000	0	22	22,000	0		
Peripheral	M5M82C55AP-5	22	22,000	0	22	22,000	0		
Circuit	M5M82C55AFP-5	22	22,000	0	22	22,000	0		
Circuit	M5M81C55P-2	22	22,000	0	22	22,000	0		
	M5M81C55FP-2	22	22,000	0	22	22,000	0		
	M5M82C59AP-2	22	22,000	0	22	22,000	0		
	M5M82C55AFP-2	22	22,000	0	22	22,000	0		

Table 2 ENDURANCE TEST RESULTS

Table 3 ENVIRONMENTAL TEST RESULTS

	Test		Soldering Heat Thermal Shock Temperature Cycling		High Temperature/High Humidity		Pressure Cooker	
Test Condition		260°C, 10sec —55°C, 125°C, 15cycles —65°C, 150°C, 100cycles		85°C, 85% 1000hours V _{CC} =5V~5.5V		121°C, 100%RH 240hours		
Application	Type Number	Number of Samples	Number of Failures	Number of Samples	Number of Failures	Number of Samples	Number of Failures	
MELPS 85	M5L8085AP	22	0	44	0	88	0	
MPU	M5L8212P	38	0	22	0	22	0	
MELPS 86/88	M5L8284AP	38	0	22	0	22	0	
	M5L8288S	38	0	22	0	22	0	
Microprocssors	M5L8289P	38	0	22	0	22	0	
NMOS	M5L8251AP-5	22	0	22	0	44	0	
Peripheral	M5L8253P-5	22	0	88	· 0	220	0	
Circuit	M5L8255AP-5	22	0	88	0	176	0	
Circuit	M5L8259AP	22	0	22	0	22	0	
	M5M82C37AP-4	22	0	22	0	22	0	
	M5M82C37AFP-4	22	0	22	0	22	0	
	M5M82C54P-6	22	0	22	0	22	0	
смоз	M5M82C54FP-6	22	0	22	0	22	0	
Peripheral	M5M82C55AP-5	22	0	22	0	22	0	
Circuit	M5M82C55AFP-5	22	0	22	0	22	0	
Circuit	M5M81C55P-2	22	0	22	0	22	0	
	M5M81C55FP-2	22	0	22	0	22	0	
	M5M82C59AP-2	22	0	22 ,	0	22	0	
	M5M82C59AFP-2	22	0	22	0	22	0	

Table 4 MECHANICAL TEST RESULTS

Test		Solderability		Lead Fatigue		Shock Vibration Constant Acceleration		
	Test Condition		See Table 1		See Table 1		See Table 1	
Package Pin Count	Type Number	Number of Samples	Number of Failures	Number of Samples	Number of Failures	Number of Samples	Number of Failures	
24P4	M5L8253P-5	60	0	30	0	22	0	
28P4	M5L8251AP-5	30	0	30	0	22	0	
2014	M5L8259AP	30	0	15	0	22	0	
40P4	M5L8085AP	30	0	30	0	22	0	
40P4	M5L8255AP-5	30	0	30	0	22	0 ,	
28P2W	M5M8259AFP	15	0	15	0	22	0	
40P2W	M5M82C55AFP-5	15	0	15	0	22	0	

4 FAILURE ANALYSIS

Accelerated reliability tests are applied to observe failures casued by temperature, voltage, humidity, current, mechanical stress and those combined stresses on chips and packages

Examples of typical failure modes are shown below.

(1) Wire Bonding Failure by Thermal Stress

Figure 3, Figure 4 and Figure 5 are examples of a failure which occurs by high temperature storage test of 225°C, 1000hours.

Au-Al intermetallic formation, so-called "Purple plague", by thermal overstress makes Au wire lift off from aluminum metallization. The activation energy of this failure mode is estimated at approximately 1.0eV and no failure has been observed so far in practical uses.

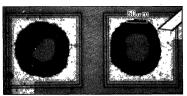


Fig.3 Micrograph of lifted Au ball trace on Al bonding pad



Fig.4 Au-Al plague formation on bonding pad

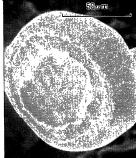
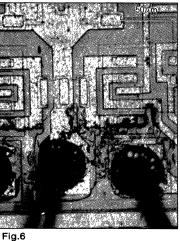



Fig.5 Lifted Au wire ball base

(2) Aluminum Corrosion Failure by Temperature/Humidity Stress.

Figure 6, Figure 7 and Figure 8 are examples of corroded failure of aluminum metallization of plastic encapsulated IC after accelerated temperature/humidity storage test (pressure cooker test) of 121° C, 100% RH, 1000hours duration.

Aluminum bonding pad is dissolved by penetrated water from plastic package, and chlorine concentration is observed on corroded aluminum bonding pad as shown in Figure 8.

Micrograph of corroded Aluminum metallization

(3) Destructive Failure by Electrical Overstress

Surge voltage marginal tests have been performed to reproduce the electrical overstress failure in field uses. Figure 9 and Figure 10 are examples of failure observed by surge voltage test. The trace of destruction is verified as the aluminum bridge by X ray micro analysis.

MITSUBISHI MICROPROCESSOR AND PERIPHERAL CIRCUITS ICS QUALITY ASSURANCE AND RELIABILITY TESTING

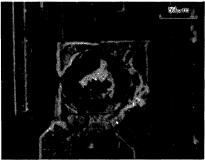


Fig.7 Enlarged micrograph of corroded Aluminum bonding pad

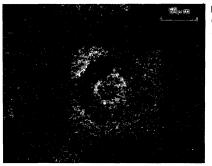


Fig.8 Cl distribution on corroded Aluminum bonding pad

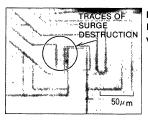


Fig.9 Micrograph of surge voltage destruction

Fig.10 Aluminum trace of destructive spot

(4) Aluminum Electromigration

Figure 11 shows an open circuit of aluminum metallization in high current density region caused by accelerated operation life test. This failure is due to aluminum electromigration. Voids and hillock have been formed in aluminum metallization by high current density operation.

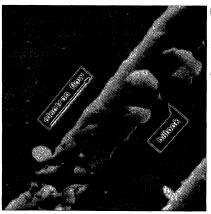


Fig.11 Voids and hillocks formation by Aluminum electromigration

5 SUMMARY

The Mitsubishi quality assurance system and examples of reliability control have been discussed. The customer's interests and requirements for high reliability IC & LSI are increasing significantly. To satisfy the customer's expectancy, Mitsubishi as an IC vendor, would like to make perpetual efforts in the following areas.

- Emphasis on built-in reliability at design stage and reliability evaluation to investigate latent failure modes and acceleration factors.
- (2) Execution of periodical endurance, environment and mechanical test to verify reliability target and realize higher reliability.
- (3) Focus on development of advanced failure analysis techniques. Detail failure analysis, intensive corrective action, and quick response to customer's analysis request.
- (4) Collection of customer's quality data in qualification, incoming inspection, production and field use to improve PPM, fraction defective and FIT, failure rate.

Mitsubishi would highly appreciate it if the customer would provide quality and reliability data of incoming inspection or field failure rate essential to verify and improve the quality/ reliability of IC & LSI.

MITSUBISHI LSIS PRECAUTIONS IN HANDLING MOS ICS

A MOS transistor has a very thin oxide insulator under the gate electrode on the silicon substrate. It is operated by altering the conductance (g_m) between source and drain to control mobile charges in the channel formed by the applied gate voltage.

If a high voltage were applied to a gate terminal, the insulator-film under the gate electrode could be destroyed, and all Mitsubishi MOS IC/LSIs contain internal protection circuits at each input terminal to prevent this. It is inherently necessary to apply reverse bias to the P-N junctions of a MOS IC/LSI.

Under certain conditions, however, it may be impossible to completely avoid destruction of the thin insulator-film due to the application of unexpectedly high voltage or thermal destruction due to excessive current from a forward biased P-N junction. The following recommendations should be followed in handling MOS devices.

1. KEEPING VOLTAGE AND CURRENT TO EACH TERMINAL BELOW MAXIMUM RATINGS

- 1. The recommended ranges of operating conditions provide adequate safety margins. Operating within these limits will assure maximum equipment performance and quality.
- 2. Forward bias should not be applied to any terminal since excessive current may cause thermal destruction.
- Output terminals should not be connected directly to the power supply. Short-circuiting of a terminal to a power supply having low impedance may cause burn-out of the internal leads or thermal destruction due to excessive current.

2. KEEPING ALL TERMINALS AT THE SAME POTENTIAL DURING TRANSPORT AND STORAGE

When MOS IC/LSIs are not in use, both input and output terminals can be in a very high impedance state so that they are easily subjected to electrostatic induction from AC fields of the surrounding space or from charged objects in their vicinity. For this reason, MOS IC/LSIs should be protected from electrostatic charges while being transported and stored by conductive rubber foam, aluminum foil, shielded boxes or other protective precautions.

3. KEEPING ELECTRICAL EQUIPMENT, WORK TABLES AND OPERATING PERSONNEL AT THE SAME POTENTIAL

1. All electric equipment, work table surfaces and operat-

ing personnel should be grounded. Work tables should be covered with copper or aluminum plates of good conductivity, and grounded. One method of grounding personnel, after making sure that there is no potential difference with electrical equipment, is by the use of a wristwatch metallic ring, etc. attached around the wrist and grounded in series with a 1M Ω resistor. Be sure that the grounding meets national regulations on personnel safety.

 Current leakage from electric equipment must be prevented not only for personnel safety, but also to avert the destruction of MOS IC/LSIs, as described above. Items such as testers, curve-tracers and synchroscopes must be checked for current leakage before being grounded.

4. PRECAUTIONS FOR MOUNTING OF MOS IC/LSIs

- The printed wiring lines to input and output terminals of MOS IC/LSIs should not be close to or parallel to high-voltage or high-power signal lines. Turning power on while the device is short-circuited, either by a solder bridge made during assembly or by a probe during adjusting and testing, may cause maximum ratings to be exceeded, which may result in the destruction of the device.
- 2. When input/output, or input and/or output, terminals of MOS IC/LSIs (now open-circuits) are connected, we must consider the possibility of current leakage and take precautions similar to §2 above. To reduce such undesirable trouble, it is recommended that an interface circuit be inserted at the input or output terminal, or a resistor with a resistance that does not exceed the output driving capability of the MOS IC/LSI be inserted between the power supply and the ground.
- 3. A filter circuit should be inserted in the AC power supply line to absorb surges which can frequently be strong enough to destroy a MOS IC/LSI.
- 4. Terminal connections should be made as described in the catalog while being careful to meet specifications.
- 5. Ungrounded metal plates should not be placed near input or output terminals of any MOS IC/LSIs, since destruction of the insulation may result if they become electrostatically charged.
- 6. Equipment cases should provide shielding from electrostatic charges for more reliable operation. When a plastic case is used, it is desirable to coat the inside of the case with conductive paint and to ground it. This is considered necessary even for battery-operated equipment.

MELPS 85 MICROPROCESSORS

2

•

r

CMOS 8-BIT PARALLEL MICROPROCESSOR

DESCRIPTION

The M5M80C85AP-2 is a family of single-chip 8-bit parallel central processing units (CPUs) developed using the silicon gate CMOS process. It has a basic clock rate of 5MHz. It is housed in a 40-pin plastic molded DIP.

And preparatory for surface equipment M5M80C85AFP-2 (SOP) and M5M80C85AJ-2 (PLCC).

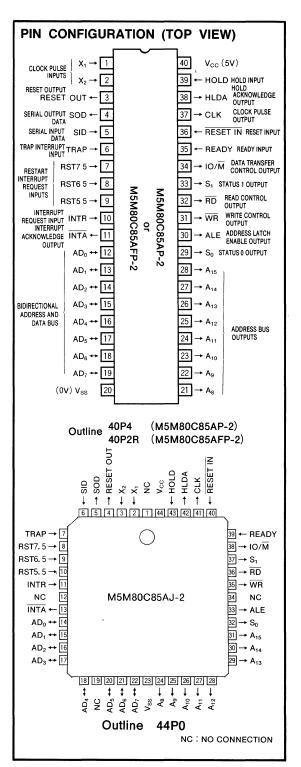
FEATURES

- Single 5V supply voltage
- Clock period DC~5MHz
- Instruction cycle 0.8 µs (min.)
- Software compatible with the M5L8085AP
 Pin connection conpatible with the
- M5L8085AP (except M5M80C85AJ-2)
- Clock generator (with an external crystal)
- Built-in system controller
- Four vectored interrupts (one of which is nonmaskable).
- Serial I/O port 1 each
- Decimal, binary, and double precision arithmetic operations
- Low power dissipation

Operation $I_{cc}=15mA (TYP)(V_{cc}=5V, Ta=25 \degree C, tc (CLK)=200ns)$

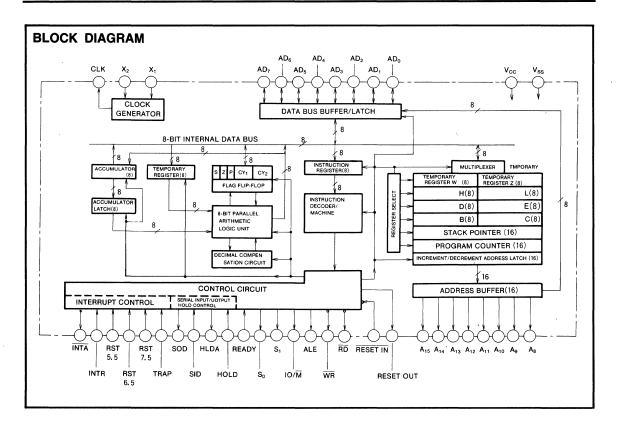
HALT instruction I_{cc} =7mA (TYP)(V_{cc} =5V, Ta=25 °C, tc (CLK)=200ns)

Power down $I_{CC} = 20 \ \mu \ A \ (TYP)(V_{CC} = 5V, \ Ta = 25 \ C, X_1 = tixing \ on \ V_{CC})$


- Having bus hold circuit on $AD_0 \sim AD_7$, $A_8 \sim A_{15}$, \overline{RD} , \overline{WR} , IO/\overline{M}
- Power down in HALT

APPLICATION

Central processing unit for a microcomputer


FUNCTION

Under the multiplexed data bus concept adopted, the highorder 8-bit of the address are used only as an adress bus and the low-order 8-bit are used as an address/data bus. During the first clock cycle of an instruction cycle, the address is transferred. The low-order 8-bit of the address are stored in the external latch by the address latch enable (ALE) signal. During the second and third clock cycles, the address/data bus functions as the data bus, transferring the data to memory or to the I/O. For bus control, the device provides \overline{RD} , \overline{WR} , and $\overline{IO/M}$ signals and an interrupt acknowledge signal (INTA). The HOLD, READY and all interrupt signals are synchronized with the clock pulse. For simple serial data transfer it provides both a serial input data (SID) line and a serial output data (SOD) line. It also has three maskable restart interrupts and one non-maskable trap interrupt.

CMOS 8-BIT PARALLEL MICROPROCESSOR

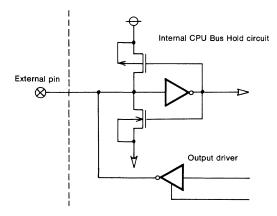
ADDITIONAL FUNCTIONS OF M5M80C85AP-2

 $M5M80C85AP\mbox{-}2$ has the following additional functions to the ones of M5L8085AP (NMOS).

(1) POWER DOWN IN HALTING

After the execution of the HALT instruction, the CPU enters in the power down mode. In the power down mode, the internal clock is stopped. And the internal power dissipation is minimized. All internal status (registers, latches,) is reserved, and the clock output is not stopped in this mode. To exit the power down mode, RESET input or interrupt signal input is needed. These signals activate the internal clock signal and the power down mode is released.

(2) BUS HOLD CIRCUIT


M5M80C85AP-2 has the bus hold circuit. It holds the output pins H-level or L-level when the output buffer goes to the tri-state. If the input voltage is equal to the threthold voltage of the CMOS device, the large current flows through the P-channel transistor and N-channel transistor.

The addition of this circuit prevents the pass through current of the input circuit of M5M80C85AP-2 and the CMOS device which is connected with this pin.

This circuit realize the low power system configuration. Following diagram shows the bus hold circuit.

The I/O or output pins which contain the bus hold circuit are

······ $AD_0 \sim AD_7$, $A_8 \sim A_{15}$, \overline{RD} , \overline{WR} , IO/\overline{M}

THE CLOCK INPUT FREQUENCY

M5M80C85AP-2 can operate at DC \sim 5MHz clock rate (input clock is DC \sim 10MHz). As the internal circuits are designed with the static circuit, the clock input can be stopped. So the single step function by the clock input is possible.

CMOS 8-BIT PARALLEL MICROPROCESSOR

PIN DESCRIPTIONS

Pin	Name	input or output	Functions
X ₁ , X ₂	Clock input	In	These pins are used to connect an external crystal to the internal clock generator An external clock pulse can also be input through X ₁
RESET OUT	Reset output	Out	This signal indicates that the CPU is in the reset mode. It can be used as a system RESET. The sig- nal is synchronised to the processor clock.
SOD	Serial output data	Out	This is an output data line for selial data. The output SOD may be set or reset by means of the SIM instruction. It returns to high-level after the RESET.
SID	Serial input data	In	This is an input data line for serial data, and the data on this line is moved to the 7th bit of the accu- mulator whenever a RIM instruction is executed
TRAP	Trap interrupt	In	A non-maskable restart which is recognized at the same time as an INTR it is not affected by an mask or another interrupt. It has the highest interrupt priority
RST5.5 RST6.5 RST7.5	Restart interrupt request	In	Input timing is the same as for INTR for these three signals They all cause an automatic insertion o an internal RESTART RST 7.5 has the highest priority while RST 5.5 has the lowest All three sig- nals have a higher priority than INTR
INTR	Interrupt request signal	In	This signal is for a general purpose interrupt and is sampled only during the last clock cycle of the instruction. When an interrupt is acknowledged, the program counter (PC) is held and an INTA signal is generated. During this cycle, a RESTART or CALL can be inserted to jump to an interrupt service routine. The interrupt request may be enable and disable by means of software. But it is disable by the RESET and immeadiately after an accepted interrupt.
ĪNTA	Interrupt acknowledge control signal	Out	This signal is used instead of \overline{RD} during the instruction cycle after an INTR is accepted
$AD_0 \sim AD_7$	Bidirectional address and data bus	in/out	The low-order (I/O address) appears during the first clock cycle' During the second and third clock cycles, it becomes the data bus It remains in the bus hold state during the HOLD and HALT modes.
A ₈ ~A ₁₅	Address bus	Out	Output the high-order 8 bits of the memory address or the 8 bits of the I/O address It remains in the bus hold state during the HOLD and HALT modes.
S ₀ , S ₁	Status	Out	Indicates the status of the bus $S_1 S_0$ HALT 0 0 WRITE 0 1 READ, DAD 1 0 FETCH 1 1 The S_1 signal can be used as an advanced R/W status
ALE	Address latch enable	Out	This signal is generated during the first clock cycle, to enable the address to be latched into the latches or peripherals. The falling edge of ALE is guaranteed to latch the address information. The ALE can also be used to strobe the status information, but it is kept in the low-level state during bus idle machine cycles.
WR	Write control	Out	Indicates that the data on the data bus is to be written into the selected memory at the falling edge of the signal \overline{WR} It remains the bus hold state during the HOLD and HALT modes
RD	Read control	Out	Indicates that the selected memory or I/O address is to be read and that the data bus is active for data transfer It remains in the bus hold state during the HOLD and HALT modes.
IO/M	Data transfer control output	Out	This signal indicates whether the read/write is to memory or to I/O_s It remains in the bus hold state during the HOLD and HALT modes
READY	Ready input	In	When it is at high-level during a read or write cycle, the READY indicates that the memory of peripheral is ready to send or receive date. When the signal is at low-level, the CPU will wait for the signal to turn high-level before completing the read or write cycle
RESET IN	Reset input	In	This signal (at least three clock cycles are necessary) sets the program counter to zero and resets the interrupt enable and HLDA flip-flops None of the other flags or registers (except the instruction register) are affected. The CPU is held in the reset mode as long as the signal is applied.
CLK	Clock output	Out	Clock pulses are available from this pin when a crystal is used as an input to the CPU
HLDA	Hold acknowledge signal	Out	By this signal the processor acknowledges the HOLD request signal and indicates that it will relin quish the buses in the next clock cycle. The signal is returned to the low-level state after the HOLD request is completed. The processor resumes the use of the buses one half clock cycle after the signal HLDA gose low-level.
HOLD	Hold request signal	In	When the CPU receives a HOLD request it relinquishes the use of the buses as soon as the curren machine cycle is completed. The CPU can regain the use of buses only after the HOLD state is removed. Upon acknowledging the HOLD signal, the address bus, the data bus, RD, WR and IO/N lines are put in the bus hold state.

Note : HOLD, READY and all interrupt signals are synchronous with clock signal

STATUS INFORMATION

Status information can be obtained directly from the M5M80C85AP-2. ALE is used as a status strobe. As the status is partially encoded, it informs the user in advance what type of bus transfer is being performed. The IO/\overline{M} cycle status signal is also obtained directly. Decoded S₀ and S₁ signals carry: S₁ S₀

	51	S ₀
HALT	0	0
WRITE	0	1
READ	1	0 (except for second and third machine cycles of DAD instruction
FETCH	1	1 DAD instruction

 S_1 can be used in determining the R/\overline{W} status of all bus transfers.

In the M5M80C85AP-2 the low-order 8 bits of the address are multiplexed with date. When entering the low-order of the address into memory or peripheral latch circuits, the ALE is used as a strobe.

INTERRUPT AND SERIAL I/O

The M5M80C85AP-2 has five interrupt inputs—INTR, RST 5.5, RST 6.5, RST 7.5, and TRAP. The three RST inputs, 5.5, 6.5, 7.5, are provided with programmable masks. TRAP has the same function as the restart interrupt, except that it is non-maskable.

When an interrupt is enabled and the corresponding interrupt mask is not set, the three RST interrupts will cause the internal execution of the RST. When non-maskable TRAP is applied, it causes the internal execution of an RST regardless of the state of the interrupt enable or masks. The restart addresses (hexadecimal) of the interrupts are:

Interrupt	Adress
TRAP	24 ₁₆
RST 5.5	2C ₁₆
RST 6.5	34 ₁₆
RST 7.5	3C ₁₆

Two different types of signal are used for restart interrupts. Both RST 5.5 and RST 6.5 are sensitive to high-level, and are acknowledged in the same timing as INTR. RST 7.5 is sensitive to rising-edge, and existence of a pulse sets the RST 7.5 interrupt request. This condition will be maintained until the request is fulfilled or reset by a SIM or RESET instruction. Each of the restart interrupts may be masked independently to avoid interrupting the CPU. An interrupt requested by an RST 7.5 will be stored even when its mask is set and the interrupt is disabled. Masks can be changed in a SIM instruction or the RESET. When two enabled interrupts are requested at the same time, the interrupt with the highest priority will be accepted. The TRAP has the highest priority followed in order by RST 7.5, RST 6.5, RST 5.5 and INTR. This priority system dose not take into consideration the priority of an interrupt routine that is already started. In other words, when an RST 5.5 interrupt is reenabled before the termination of the RST 7.5.

The TRAP interrupt is very useful in preventing disastrous errors and bus errors resulting from power failures. The TRAP input is recognized in the same manner as any other interrupt, but it has the highest priority, and is not affected by any flags or masks. The TRAP input can be sensed by both edge and level. TRAP should be maintained high-level until it is acknowledged. But, it will not be acknowledged again unless it turns low-level and high-level again. In this manner, faulty operation due to noise or logic glitches is prevented.

The selial I/O system is also considered to be an interrupt as it is controlled by instructions RIM and SIM. The SID is read by instruction RIM and the SOD data is set by instruction SIM.

BASIC TIMING

The M5M80C85AP-2 is provided with a multiplexed data bus. The ALE is utilized as a strobe with which the loworder 8 bits of the address on the data bus are sampled. Fig.1 shows the basic cycle in which an out instruction is fetched, and memory is read and written to the I/O port. The I/O port address is stored in both the address bus and the address/data bus during the I/O write and read cycle. To enable the M5M80C85AP-2 to be used with a slow memory, the READY line is used for extending the read and write pulse width.

_					M ₂			M3	
T 1	T ₂	T ₃	T ₄	T ₁	T2	T ₃	Τ1	T ₂	T ₃
			\square						
	С _н HIGH-OR	DER ADDRE	SS		HIGH-OR	PER ADDRES	sX	n (PORT NO	5)
Y PCL	Y	\downarrow		(PC+1)		PORT NO (n)			OUTPUT
	INSTLU	CTION FETC	ж Ц	$ \ \ \ \ \ \ \ \ \ \ \ \ \ $		SECOND WO			
	`				∼				
1									
χ	S ₁ =1, S	6₀=1 (FETCI	H)		1,0 (RE	AD)		0,1 (WRITE)
	 ХР			PC _L HIGH-ORDER ADDRESS	PC _H HIGH-ORDER ADDRESS X(PC _L +1) Y PC _L (PC+1) INSTLUCTION FETCH (PC+1)	PC _H HIGH-ORDER ADDRESS (PC _L +1) _H HIGH-ORD PC _L (PC+1) _L) INSTLUCTION FETCH (PC+1) _L)	PC _H HIGH-ORDER ADDRESS (PC _L +1) _H HIGH-ORDER ADDRESS PC _L (PC+1) _L INSTLUCTION FETCH (PC+1) _L SECOND WC	PC _H HIGH-ORDER ADDRESS (PC _L +1) _H HIGH-ORDER ADDRESS PC _L (PC+1) _L) INSTLUCTION FETCH SECOND WORD	X PC _H HIGH-ORDER ADDRESS X(PC _L +1) _H HIGH-ORDER ADDRESS n (PORT NC X PC _L (PC+1) _L) YPORT NO (n) n X NSTLUCTION FETCH (PC+1) _L) YPORT NO (n) n

CMOS 8-BIT PARALLEL MICROPROCESSOR

MACHINE INSTRUCTIONS

lte				Instr	uctio	0.00	de			δ.	1 2 2 2			Flag	15	Addres	bus	Dat	a hi	JS
ltem	Mne	monic		Ds D4				i6ma	٦,	ð	o	Functions				Contents	Mach			Mad
ass					_	-		notatr	-	ĝ	ĝ		_			Contents	cycle*	Contents	1/0	cycl
	MOV MOV MOV MVI	r1. r2 M,r r,M r,n	0 1 0 1 0 1 0 0	D D 1 1 D D D D	0 D	8 8 8 8 1 1 1 1	5 S 1 O		4 7 7 7 7	1 1 1 2	1 2 2 2	$\begin{array}{ll} (r_1) \leftarrow (r_2) \\ (M) \leftarrow (r) \\ (r) \leftarrow (M) \end{array} \qquad $	x x	хх	× × × × × ×	м	M4 M4	(r) (M) (B2>	0	M
	MVI	M, n	0 0	<b2 1 1 <b2< td=""><td>`</td><td>1 1</td><td></td><td>3 6</td><td>1</td><td>2</td><td>3</td><td>(M) ← n Where, M=(H)(L)</td><td></td><td></td><td>x x</td><td>м</td><td>M5</td><td><b2></b2></td><td>1</td><td>м</td></b2<></b2 	`	1 1		3 6	1	2	3	(M) ← n Where, M=(H)(L)			x x	м	M5	<b2></b2>	1	м
	LXI	8 , m	00	00 (B2 (B3	0 >	0 0	0 1	0 1	10	3	3	(C) ← ⟨B₂⟩ (B) ← ⟨B₃⟩ Where. m = ⟨B₃⟩ ⟨B₂⟩	x	x x	хх			<b2> <b3></b3></b2>		M
	LXI	D,m	00	(82 (82 (83	°	0 0	0 1	11	10	3	3	(E) ← ⟨B₂⟩ (D) ← ⟨B₃⟩ Where, m = ⟨B₃⟩ ⟨B₂⟩	x	хх	хх			(B2) (B3)	1	N
	LXI	H , m	0 0	10 (82 (83	°	0 0	5 1	2 1	10	3	3	(L) ← <b2> (H) ← <b3> Where. m = <b3> <b2></b2></b3></b3></b2>	x	x x	хх			(B2) (B3)	1	N
transfer	LXI	SP , m	0 0	1 1 <82 <83	•	0 0	5 1	3 1	10	3	3	(SP)←m	x	хх	хх			(B2) (B3)	1	N
ta tr	SPHL STAX	B	11	1 1			0 1	F 9 0 2		1	1 2	(B) (C)) ← (A)			X X X X	(B)(C)	M4	(A)	0	N
Data	STAX LDAX		00	0 1			8	1 2 0 A		1	2	$\frac{((D)(E))\leftarrow(A)}{(A)\leftarrow((B)(C))}$		X X X X	<u>x x</u> x x	(D)(E) (B)(C)	M4 M4	(A) ((B)(C))	0	N
	STA		00	0 1 1 1 <82	1 0		1 0	1 A 3 2	7	1 3	4	$(A) \leftarrow ((D) (E))$ (m) \leftarrow (A)	х	хх	x x x x		M4 M4	((D)(E)) (A)	0	N
	LDA	m	0.0	<b3 1 1 <b2< td=""><td>1</td><td>0 1</td><td>0</td><td>3 A</td><td>13</td><td>3</td><td>4</td><td>$(A) \leftarrow (m)$</td><td>x</td><td>x x</td><td>хх</td><td>m</td><td>M4</td><td>(m)</td><td>1</td><td>N</td></b2<></b3 	1	0 1	0	3 A	13	3	4	$(A) \leftarrow (m)$	x	x x	хх	m	M4	(m)	1	N
	SHLD	m	00	(83 1 0 (82 (83	0	0 1	0	2 2	16	3	5	(m) ← (L) (m + 1) ← (H)	x	хх	хх	m m + 1	M4 M5	(L) (H)	0 0	N
	LHLD	m	00	1 0 (B) (B)	1	0 1	10	2 A	16	3	5	$(L) \leftarrow (m)$ (H) $\leftarrow (m+1)$	x	хх	хх	m m + 1	M4 M5	(m) (m+1)	l F	N
	XCHG XTHL		$\frac{1}{1}$	10	0	0 1	1 1	E B E 3		1		(H) (L) ↔ (D) (E) (H) (L) ↔ ((SP) + 1) ((SP))		X X X \ X	x x x x	(SP) (SP)+1	M2 M3	((SP)) ((SP)+1)	1	N
	ADD ADD AD1	r M n	10 10 11	00000	0	S S 1 1 1 1	iŏ	8 6 C 6		1 1 2	1 2 2	$(A) \leftarrow (A) + (r)$ $(A) \leftarrow (A) + (M)$ $(A) \leftarrow (A) + n$ Where, M = (H) (L)	0	O C			M4	(M) <b2></b2>	1	N N
	ADC ADC ACI	, M n	10 10 11	<pre></pre>	1	S S 1 1	1 0	8 E C E		1 1 2	1 2 2	$(A) \leftarrow (A) + (r) + (CY_2)$ $(A) \leftarrow (A) + (M) + (CY_2)$ Where $M = (H) (L)$ $(A) \leftarrow (A) + n + (CY_2)$	0	O C		м	M₄	(M) (B2)	1	N
	DAD DAD	BD	00	(B) 00 01	1	00		09		1	3	$(H) (L) \leftarrow (H) (L) + (B) (C) (H) (L) \leftarrow (H) (L) + (D) (E)$	x	x x					-	
	DAD	H Sp	00	10	1	0 0		29 39	10	1	3 3	$\begin{array}{c} (H) (L) \leftarrow (H) (L) + (H) (L) \\ (H) (L) \leftarrow (H) (L) + (SP) \end{array}$	х		οх					
compare	SUB SUB SUI	r M n	10 10 11	0101	0		S S 1 O	9 6 D 6	4	1 1 2	1 2 2	$ \begin{array}{l} \textbf{(A)} \leftarrow \textbf{(A)} - (r) \\ \textbf{(A)} \leftarrow \textbf{(A)} - (M) \\ \textbf{(A)} \leftarrow \textbf{(A)} - n \end{array} \qquad \qquad$	0	0 0		M	M₄	(M) <b2></b2>	1	N
logical o	588 588 581	M	10 10 11	<pre></pre>	1	S : 1 : 1 :	10	9 E D E		1 1 2	1 2 2	$(A) \leftarrow (A) - (r) - (CY_2)$ $(A) \leftarrow (A) - (M) - (CY_2)$ Where, M = (H) (L) $(A) \leftarrow (A) - n - (CY_2)$	0	0 0		м	Ma	(M) • B2>	1	N
	ANA ANA	, M	10	<180 10 10	0 0	S :	S S 1 O	A 6	4	1	1 2	$(A) \leftarrow (A) \land (r)$ $(A) \leftarrow (A) \land (M)$ Where, $M = (H) (L)$	00	0 0	0 0 1	м	M4	(M)	1	
Arithmetic	ANI XRA XRA	n , M	11	10 (B); 10	1		SS	EG	4	2	2	$(A) \rightarrow (A) \rightarrow (A)$	0		0 1			<b2></b2>	1	,
	XRI		1.1	10	1	1	10 10 55	A E E E		1 2	2 2 1	$(A) \leftarrow (A) \forall (M) \qquad \text{Where, } M = (H) (L)$ $(A) \leftarrow (A) \forall n$ $(A) \leftarrow (A) \lor (r)$	0	0 C		м	M4	(M) (B2>	1	1
	OR A OR I	M n	10	11 11 <b< td=""><td>00</td><td>1</td><td>10</td><td>B C F C</td><td>7</td><td>1 2</td><td>2</td><td>$(A) \leftarrow (A) \lor (M) \qquad \text{Where. } M = (H) (L)$$(A) \leftarrow (A) \lor n$</td><td>0</td><td>0 0</td><td></td><td>м</td><td>M4</td><td>(M) <b2></b2></td><td>1 1</td><td>;</td></b<>	00	1	10	B C F C	7	1 2	2	$(A) \leftarrow (A) \lor (M) \qquad \text{Where. } M = (H) (L)$ $(A) \leftarrow (A) \lor n$	0	0 0		м	M4	(M) <b2></b2>	1 1	;
	CMP CMP CP I	M n	10 10 11	1 1 1 1 1 1	1	1	SS 10 10	8 E F E	4 7 7	1 1 2	1 2 2	(A) – (r) (A) – (M) (A) – п Сотраге, Where, м = (H) (L)	0	0 0		м	M4	(M) <b2></b2>		
 2	INR	Ń	00		D		0 0	3 4	4	1	1 3	$(r) \leftarrow (r) + 1$ (M) $\leftarrow (M) + 1$ Where, M (H) (L)			X O			(11)		
ment	DCR	r M	00	00	D	1	01	3 5	4	1	1	(r) ← (r) – 1	0	0 C			M4	(M)		
tere	INX	8 D	00	0 0	0	0	1 1	0 3	6	1	1	$(B)(C) \leftarrow (B)(C) + 1$	X	X·X	x x x		M4	(M)	+	
Register increment/deci	INX	H	0 0	0 1	0	0	11	1 3	6	1	1	$(D) (E) \leftarrow (D) (E) + 1$ $(H) (L) \leftarrow (H) (L) + 1$	×	хх	x x x x	1				
eme	DCX	SP B		0 0) 1	0	11	33	6	1	1	$(SP) \leftarrow (SP) + 1$ (B) (C) \leftarrow (B) (C) - 1	х	хх	X X X X					
incr	DCX DCX	D H	000	0 1	1	0	1 1	1 E 2 E	6	1 T	1	(D) (E) ← (D) (E) - 1 (H) (L) ← (H) (L) - 1	X X	x x x x	. x x . x x	-				
	DCX RLC	SP	00	-11			$\frac{11}{11}$	3 8		++	1	(SP) ← (SP) - 1	X	хх						
وفع	RRC			0 0			_			1	1.									
nts - iulat								OF		1	<u> '</u>	Right shift CY2 A7A6 · A1A0			O X					
contents of accumulator	RAL	,	0 0		0			17		1	1	Left shift CY2 A7A6 A1A0			О×					
208	RAR		0 0	01	1	1	1 1	1 F	4	1	1	Right shift CY2	×	x x	O X					
cumu	CMA DAA		00				11	2 F		1	1	(A) +- (A) Results of binary addition are adjusted to BCD			XX					-
arry se	STC		00				$\frac{1}{1}$ $\frac{1}{1}$	27	4	1	1	(CY2) ← 1			000 1 X					
.,	CMC		0 0	1.1	1	1	1 1	3 8	: 4	11	11	$(CY_2) \leftarrow (\overline{CY_2})$	1 .	~ ~	OX				1	1

CMOS 8-BIT PARALLEL MICROPROCESSOR

ltem	T	1	Instructi	on cod	e		f sta	f bytes	f cycles			F	lags		Addres	s bus	Data	a bu	IS
nstr	Mnemonic	D7 D6	D5 D4 D3			Smal	o	o of	o of	Functions	s	_		Y2 CY	1	Mach		1/0	Ma
lass	JMP m	11	000			otatn C 3	0 <u>N</u>	2 3	23	(PC)+-m				x x		cycle*	(B2)	1	CYC
			<82> <83>														<b3></b3>	i	N
	PCHL	11	101	0 0		E 9	6			(PC)+-(H)(L)			x			L			-
	JC m	1 1	0 1 1 <b2></b2>	0 1		DA	10/1	3	3/2	(CY2) = 1	^	Ŷ	`	хх					
	JNC m	1 1	<b3> 0 1 0</b3>	0 1	0	D 2	10/7	3	3/2	(CY2) = 0 If condition is true	×	x	x	x ×	If condi	l tion is ti	ue		
			<82> <83>							(PC)⊷m							1		
	JZ m	11	001 (B2)	0 1	•	CA	10/7	3	3/2	(Z) = 1	×	×	x	××		}	(B2) (B3)		
Q	JNZ m	1 1	<b3></b3>	0 1		C 2	10/7	1	3/2	(Z) 0	×	×	¥	x ×					
dmnf	, , , , , , , , , , , , , , , , , , , 	1	<b2></b2>	•••	•	~ 1	10/1	1	3/2		l^	Ŷ	Ŷ	<u> </u>					
	JP m	1 1	<b3> 1 1 0</b3>	01	•	F 2	10/7	3	3/2	(S) = 0 If condition is false	×	x	x	x x	}				
			<82> <83>							(PC)+ (PC)+ 3									
	JM m	1 1	1 1 1 〈B2〉	0 1 1	•	FA	10/7	3	3/2	(S) = 1	×	×	x	××					
	JPE m	1	<b3> 101</b3>	0 1 0		EA	10/7	3	3/2	(P)= 1	×	×	×	x x					
			(B2) (B3)	•••		- "	, .		0,2				~						
	JPO m	1 1	100	0 1	0	E 2	10/7	3	3/2	(P) = 0	×	x	x	××					
			<b2> (B3></b2>												J.				
	CALL m	1 1	001 (B2>	10	1	CD	18	3	5	$((SP) = 1)((SP) - 2) \leftarrow (PC) + 3(PC) \leftarrow m$ $(SP) \leftarrow (SP) - 2$	×	x	x	х×			<b2> <b3></b3></b2>		
	RST n	1 1	< 83> A A A	11	,										(SP) - 1 (SP) - 2	M4 M5	(PC)+3 (PC)+3	0	1
							12	1	3	((SP)-1)((SP)-2)←(PC)+1 (PC)+n×8, (SP)← (SP)-2 Where 0≤n≤7	×	х	×	X X	(SP) - 1 (SP) - 2	M4	(PC) +1 (PC) +1	0	
	CC m	11	0 1 1 (B ₂)	10	D	DC	18/9	3	5/2	(CY2) = 1	×	x	x	××					
	CNC m	1 1 1	(83)	1 0 1		D 4	10 /0		E / ~	$(CY_2) = 0$	L.	J	v	x ×					
	CNC III	1	<b<sub>2></b<sub>	101			10/3	3	5/2	If condition is true	Â	Ŷ	^	^ ^	If condi	tion is ti	rue		
call	CZ m	1 1	<b3> 001</b3>	1 0	0	сс	18/9	3	5/2	(Z)=1 ((SP) 1)((SP) 2)+-(PC)+3	x	x	x	x x			<b2></b2>	i.	,
			<b2> <b3></b3></b2>							(PC)+ m					(SP) - 1	Ma	<b3> (PC)+3</b3>	1 0	
rout	CNZ m	1 1	000 (B2)	101	•	C 4	18/9	3	5/2	(Z) = 0 (SP) (SP) 2	×	×	х	××		M5	(PC) + 3	0	,
Subroutine	CP m	1 1 1	<b3> 1 1 0</b3>	100		F 4	19/0	,	5/2	(S) = 0	Ļ	v	v	x x	}			Ĩ	
		• •	<b2></b2>				10/ 5		5/2		Î	Ŷ	^	^ ^					
	CM m	1 1	<b3> 1 1 1</b3>	10	0	FC	18/9	3	5/2	(S)=1 If condition is false	x	x	x	x x	j.				
			<b2> <b3></b3></b2>							(PC)+ (PC)+ 3									
	CPE m	1 1	101 <b2></b2>	100	0	EC	18/9	3	5/2	(P)=1	x	х	х	хх					
	CPO m	11	<183> 100	100		E 4	19/0	2	5/2	(P)=0		v	v	x x					
		• •	<b2></b2>				10/ 5	5	5/2		Î	Ŷ	^	^ ^					
	RET	11	<u>⟨B3</u> ⟩ 001	00	1	C 9	10	1	3	(PC) ←-((SP)+1)((SP))(SP)←(SP)+2	x	х	х	x x		M4	((SP))	ī	N
	RC	11	011	00			12/6		3/1	(CY2) = 1 If condition is true	x		x	x x			((SP)+1) ue	-	- N
E S	RNC	1 1	010 001	000			12/6 12/6		3/1 3/1	$(CY_2) = 0$ $(Z) = 1$ (PC) \leftarrow ((SP) + 1) ((SP))	X			x x x x	11	M4	((SP))	ī	,
Return	RNZ	11	000	000			12/6 12/6		3 1 3/1	(Z) = 0 (SP) ← (SP) + 2	×	×	x	x x x x	(SP) + 1	M5	((SP)+1)	Т	N
	RM RPE	11	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	000	5	F 8	12/6 12/6	1	3/1		×	х	х	x x x x					
	RPO	11	100	000	D I	EO	12/6	1	3/1	(P)=0	x	X	х	x x					
Input/ output	IN n	1 1	011 (B2)	01		DB	10	2	3	(A) ← (Input buffer) ← (Input device of number n) (Input data)	×			хх	<b2> B2></b2>	Ms	<b2> (Input data)</b2>	0 1	N
control	OUT n	1 1	010 <b2></b2>	01		D3	10	2	3	(Output device of number n) ← (A)	X	×	x	× ×	<b2> <b2></b2></b2>	Ms	<b2> (A)</b2>	0 0	N
nterrupt control	EI	11	111	01		FB F3	4	1	1	(INTE) ← 1 (INTE) ← 0	X			X X X X					
	PUSH PSW	11	110	10		F 5	12	1	3	$ \begin{array}{c} ((SP)-1) \leftarrow (A) \ ((SP)-2) \leftarrow (F) \\ (SP) \leftarrow (SP)-2 \end{array} $	×	x	х	x x	(SP) 1 (SP) - 2	M4 M5	(A) (F)	0	N
	PUSH B	11	000	10	• •	C 5	12	1	3	$((SP) - 1) \cdot (B) ((SP) - 2) \leftarrow (C)$ $(SP) \leftarrow (SP) - 2$	×	×	x	x x		M4 M5	(B) (C)	0	
-	PUSH D	11	010	10	• I	D 5	12	1	3	$((SP)-1) \leftarrow (D) ((SP)-2) \leftarrow (E)$	×	x	x	x x	(SP) 1	M4	(D)	0	N
control	PUSH H	1 1	100	10	, ,	E 5	12	1	3	(SP) ← (SP)-2 ((SP)-1) ← (H).((SP)-2) ← (L)	×	×	x	x x	(SP) - 2 (SP) - 1	Ms M4	(E) (H)	0 0	
c k	POP PSW	11	110	00		F 1	10	1	3	$(SP) \leftarrow (SP) - 2$ (F) $\leftarrow ((SP)) (A) \leftarrow ((SP) + 1)$				00	(SP) - 2) (SP)	M5 M4	(L) (SP))	0	
Stack	POP B	11	0 0 0	00		C 1	10	1	3	$(SP) \leftarrow (SP) + 2$ (C) $\leftarrow ((SP)) (B) \cdot ((SP) + 1)$				x x	(SP)+1	M5 M4	((SP)+1) ((SP))	i	
0)	POP D						1		((SP) ← (SP) + 2					(SP)+1	M5	((SP)+1)	1	1
			0 1 0	00		D 1	10	1	3	$ \begin{array}{l} (E) & \leftarrow ((SP)) (D) \leftarrow ((SP)+1) \\ (SP) & \leftarrow (SP)+2 \\ (SP) & \leftarrow$				x x	(SP)+1	M4 M5	((SP)) ((SP)+1)		
	РОР Н	11	100	00		E 1	10	1	3	$(L) \leftarrow ((SP)) (H) \leftarrow ((SP)+1)$ (SP) $\leftarrow (SP)+2$				x x	(SP)+1	M4 M5	((SP)) ((SP)+1)	1	1
Others	HL T NOP	01	110	110		7600	5 4	1	1	$(PC) \leftarrow (PC) + 1$ (PC) + (PC) + 1	××	×	×	x x x x					
		1								All RST interrupt masks, any pending RST interrupt	Ê			<u>.</u>					
ons	RIM	0 0	100	000) :	20	4	1	1	requests and the serial input data from the SID pin are read into the accumilator	x	x	x	хх					
Mask set instructions		1								Mask is enabled (or disabled) to the RST interrupt									
Mas	SIM	0 0	1 1 0	000	, ;	3	4	1	1	corresponding to the contents (bit pattern) of the accumulator. The serial output is enabled and the	x	x	x	хx			[
		1			1					serial output bit is loaded into the SOD latch					1	1			i i

CMOS 8-BIT PARALLEL MICROPROCESSOR

MACHINE INSTRUCTIONS SYMBOL MEANING

Symbol	Meaning	Symbol	Ν	Aeaning		Symbol	Meaning
r	Register			r		+	Data is transferred in direction shown
m	Two-byte data		Bit pattern	Register		()	Contents of register or memoy location
n	One-byte data		designating	memory	or	V	Inclusive OR
<b2></b2>	Second byte of instruction		register or	-	0 0 0	*	Exclusive OR
<b3></b3>	Third byte of instruction	SSS	memory	č	001		Logical AND
AAA	Binary representation for RST instruction n	or		D	0 1 0	<u> </u>	1 s complement
F	8-bit data from the most to the least significant	DDD		H H	0 1 1 1 0 0	x	Content of flag is not changed after execution
•	bit S, Z, X, CY1, 0, P, X, CY2 (X is indefinite)				101	0	Content offlag is set or reset after execution
PC	Program counter		Where M = (H) (L)	M	1 1 0	1	Input mode
SP	Stack pointer		W = (H)(L)	I		0	Output mode

CMOS 8-BIT PARALLEL MICROPROCESSOR

INSTRUCTION CODE LIST

	$D_7 \sim D_4$	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
D ₃ ~D ₀	Hex- adecimal notation	0	1	2	3	4	5	6	7	8	9	А	в	с	D	E	F
0000	0	NOP	(-)	RIM	SIM	MOV B, B	MOV D, B	MOV H, B	MOV M, B	ADD B	SUB B	ANA B	ORA B	RNZ	RNC	RPO	RP
0001	1	LXI B	LXI D	LXI . H	LXI SP-	MOV B, C	MOV D, C	моv н, с	MOV M, C	ADD C	SUB C	ANA C	ORA C	POP B	POP D	POP H	POP PSW
0010	2	STAX B	STAX D	SHLD	STA	MOV B, D	MOV D, D	MOV H, D	MOV M, D	ADD D	SUB D	ANA D	ORA D	JNZ	JNC	JPO	JP
0011	3	INX B	INX D	INX H	INX SP	MOV B, E	MOV D, E	MOV H, E	MOV M, E	ADD E	SUB E	ANA E	ORA E	JMP	ουτ	XTHL	DI
0100	4	INR B	INR D	INR H	INR M	MOV B, H	MOV D, H	моv н, н	моv м, н	ADD H	SUB H	ANA H	ORA H	GNZ	CNC	CPO	CP
0101	5	DCR B	DCR D	DCR H	DCR M	MOV B, L	MOV D, L	MOV H, L	MOV M, L	ADD L	SUB L	ANA L	ORA L	PUSH B	PUSH D	PUSH H	PUSH PSW
0110	6	MVI B	MVI D	MVI H	MVI M	МОV В, М	MOV D, M	МОV Н, М	HLT	ADD M	SUB M	ANA M	ORA M	ADI	SUL	ANI	ORI
0111	7	RLC	RAL	DAA	STC	MOV B, A	MOV D, A	MOV H, A	MOV M, A	ADD A	SUB A	ANA A	ORA A	RST 0	RST 2	RST 4	RST 6
1000	8	(—)	(-)	(-)	(-)	MOV C, B	MOV E, B	MOV L, B	MOV A, B	ADC B	SBB B	XRA B	СМР В	RZ	RC	RPE	RM
1001	9	DAD B	DAD D	DAD H	DAD SP	MOV C, C	MOV E, C	MOV L, C	MOV A, C	ADC C	SBB C	XRA C	CMP C	RET	(-)	PCHL	SPHL
1010	A	LDAX B	LDAX D	LHLD	LDA	MOV C, D	MOV E, D	MOV L, D	MOV A, D	ADC D	SBB D	XRA D	CMP D	JZ	JC	JPE	JM
1011	в	DCX B	DCX D	DCX H	DCX SP	MOV C, E	MOV E, E	MOV L, E	MOV A, E	ADC E	SBB E	XRA E	CMP E	(-)	IN	хсна	EI
1100	с	INR C	INR E	INR L	INR A	моv С, Н	MOV E, H	MOV L, H	моv А, Н	ADC H	SBB H	XRA H	СМР Н	cz	сс	CPE	СМ
1101	D	DCR C	DCR E	DCR L	DCR A	MOV C, L	MOV E, L	MOV L, L	MOV A, L	ADC L	SBB L	XRA L	CMP L	CALL	(-)	(-)	(-)
1110	E	MVI C	MVI E	MVI L	MVI A	моv С, м	MOV E, M	MOV L, M	MOV A, M	ADC M	SBB M	XRA M	СМР М	ACI	SBI	XBI	CPI
1111	F	RRC	RAR	СМА	смс	MOV C, A	MOV E, A	MOV L, A	MOV A, A	ADC A	SBB A	XRA A	CMP A	RST 1	RST 3	RST 5	RST 7

This list shows the machine codes and corresponding machine instruction. $D_3 \sim D_0$ indicate the low-order 4 bits of the machine code and $D_7 \sim D_4$ indicate the high-order 4 bits. Hexadecimal numbers are also used to indicate this

code. The instruction may consists of 1, 2, or 3-byte, but only the first byte is listed.

indicates a 3-byte instruction.

indicates a 2-byte instruction.

CMOS 8-BIT PARALLEL MICROPROCESSOR

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Supply voltage		-0.3~7	v
Vi	Input voltage	With respect to V _{SS}	$-0.3 \sim V_{cc} + 0.3$	v
Vo	Output voltage		$-0.3 \sim V_{cc} + 0.3$	V
	MAX "H"	All output and I/O pins output	-500	
онмах	Output current	"H" level and force same current.	500	μA
	MAX "L"	All output and I/O pins output	2.5	mA
OLMAX	Output current	"L" level and force same current.	2.5	mA
Topr	Operating free-air temperature range		-20~75	°C
Tstg	Storge temperature range		-65~150	°C

RECOMMENDED OPERATING CONDITIONS (Ta=-20~75°C unless otherwise noted)

				Unit		
Symbol	(Parameter	Min	Nom	Мах	Onic
Vcc	Supply voltage		4.5	5	5.5	V
Vss	Supply voltage (GN	ID)		0		V

ELECTRICAL CHARACTERISTICS (Ta=-20~75°C, Vcc=5V±10%, Vss=0V, unless otherwise noted)

Symbol	Parameter	Test conditions			Limits		Unit
Symbol	Parameter	/ Test conditions		Min	Тур	Мах	Unit
Viн	High-level input voltage			2.0		V _{cc} +0.3	v
VIL	Low-level input voltage			-0.3		0.8	v
VIHX	X ₁ , X ₂ High-level voltage			4.0		Vcc+0.3	v
VIH(RESIN)	High-level reset input voltage			2.4		V _{cc} +0.3	v
VIL(RESIN)	Low-level reset input voltage			-0.3		0.8	v
		I _{OH} =-400μA		2.4			v
Voн	High-level output voltage	I _{OH} =-20µА		4.4			v
Vol	Low-level output voltage	I _{OL} =2mA				0.45	v
	Supply current from (Operation)				15	20	mA
lcc	Supply current from V _{CC} (HALT)				7	10	mA
lccs	Supply current from V _{CC} (Stand by)		(Note 1)		20	30	μA
li –	Input leak current	V _I =0V, V _{CC}		-10		10	μA
loz	Off-state output current	Vo=0V~Vcc		-10		10	μA
Івнн	Input current bus hold high	V1=3.0V	(Note 2)	-50		-400	μA
IBHL	Input current bus hold low	V1=0.8V	(Note 3)	50		400	μA
<u>_</u>		$V_{CC} = V_{SS}$, f= 1MHz	(1)			10	F
Ci	Input terminal capacitance	25mVrms, Ta=25°C	(Note 4)			10	pF
~		V _{CC} =V _{SS} , f= 1MHz	(Note 4)			15	- 5
Co	Output terminal capacitance	25mVrms, Ta=25℃	(Note 4)			15	pF
<u>^</u>		V _{CC} =V _{SS} , f= 1MHz	(Ninte 4)			20	
C _{I/O}	Input/Output terminal capacitance	25mVrms, Ta=25°C	(Note 4)			20	pF

 Note 1 : I_{CCS} should be measured after execution HALT instruction and then fixing clock on V_{CC} or V_{SS}

 V_I=V_{CC} or V_{SS}, V_{CC}=5.5V, outputs unloaded.

 Note 2 : I_{BHH} should be measured after rasing V_{IN} in bushold status to V_{CC} and setting it for 3.0V.

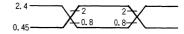
 Measurable pins ; AD₀~AD₇, A₈~A₁₅, RD, WR, IO/M

Note 3 : I_{BHL} should be measured after lowering V_{IN} in bushold status to V_{SS} and setting it for 0.8V. Measurable pins ; AD₀~AD₇, A₈~A₁₅, RD, WR, IO/M Note 4 : Unmeasured pins should be connected to V_{SS}.

,

CMOS 8-BIT PARALLEL MICROPROCESSOR

TIMING REQUIREMENTS (Ta=-20~75°C, V_{cc}=5V \pm 10%, V_{ss}=0V, unless otherwise noted)


Symbol	Paramater	Test condtions		Limits		11
Symbol	Falamater	rest conduions	Min	Тур	Max	Unit
t _{C(CLK)}	Clock cycle time		200		DC	ns
t _{SU(DA-AD)}	DA input setup time		-350			ns
tsu(DA-RD)	DA input setup time		-150			ns
th(DA-RD)	DA input hold time		0			ns
tsu(RDY-AD)	READY input setup time		-100			ns
tsu(RDY-CLK)	READY input setup time	> 200			100	ns
th(RDY-CLK)	READY input hold time	— t _{C(CLK)} ≧200ns — C _L =150р F	0			ns
t _{su(da-ale)}	DA input setup time	CL-150pF	-270			ns
t _{su(hld-clk)}	HOLD input setup time		120			ns
th(HLD-CLK)	HLD input hold time		0			ns
tsu(INT-CLK)	Interrupt setup time]	150			ns
th(INT-CLK)	Interrupt hold time		0			ns
tSU(RDY-ALE)	READY input setup time		-30			ns

$\label{eq:switching characteristics} SWITCHING CHARACTERISTICS ~ (T_a=-20 \sim 75 °C, V_{cc}=5V \pm 10\%, V_{ss}=0V, unless otherwise noted) \\$

Symbol	Parameter	,	Test conditions		Limits		Unit
Symbol	Faialletei		rest conditions	Min	Тур	Мах	Unit
tw(CLK)	CLK output low-level pulse width			40			ns
tw(CLK)	CLK output high-level pulse width			70			ns
tr(CLK)	CLK output rise time					30	ns
tf(CLK)	CLK output fall time					30	ns
td(x1-CLK)	Delay time, X ₁ to CLK			20		100	ns
td(x1-CLK)	Delay time, X ₁ to CLK			25		110	ns
. .		AD ₀ ~AD ₇		50			
td(ad-ale)	Delay time, address output to ALE signal	A ₈ ~A ₁₅		50			ns
td(ALE-AD)	Delay time, ALE signal to address output			50			ns
tw(ALE)	ALE pulse width			80			ns
td(ALE-CLK)	Delay time, ALE to CLK			50			ns
td(ALE-CONT)	Delay time, ALE to control signal			60			ns
t _{DXZ(RD-AD)}	Address disable time from read		_			0	ns
t _{DZX(RD-AD)}	Address enable time from read			90			ns
td(cont-ad)	Address valid time after control signal		− t _{C(CLK)} ≧200ns	60			ns
td(DA-WR)	Delay time, date output to WR signal		C∟=150pF	230			ns
td(wr-DA)	Delay time, WR signal to data output			60			ns
tw(CONT)	Control signal pulse width			230			ns
td(cont-ALE)	Delay time, CLK to ALE signal			25			ns
td(clk-hlda)	Delay time, CLK to HLDA signal			40			ns
t _{DXZ(HLDA} -BUS)	Bus disable time from HLDA					150	ns
t _{dzx(hlda-bus)}	Control signal disable time					150	ns
td(CONT-CONT)	Control signal disable time			220			ns
•	Delay time, address output to control signal	AD ₀ ~AD ₇		115			
td(ad-cont)	Delay time, address output to control signal	A ₈ ~A ₁₅		115			ns
td(ALE-DA)	Delay time, ALE to data output					140	ns
td(WRHL-DA)	Delay time, WR signal to data output					20	ns

Note 5 : A. C Testing waveform Input pulse level Input pulse rise time Input pulse fail time Reference level input output

0.45~2.4V 10ns 10ns V_{IH}=2V, V_{IL}=0.8V V_{OH}=2V, V_{OL}=0.8V

Parameters described in the timing requirements and switching characteristics take relevant values in accord-

ance with the relational expression shown in the following tables when the frequency is varied.

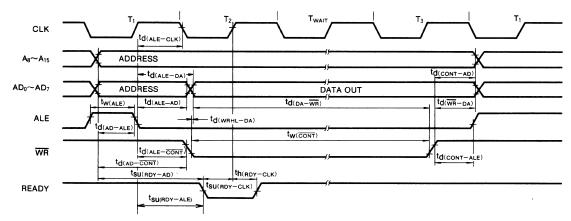
Relational expression with the frequency T ($t_{C(CLK)}$) in the M5M80C85AP-2 TIMMING REQUIREMENTS ($T_a=-20\sim75^{\circ}C$, $V_{cc}=5V\pm10\%$, $V_{ss}=0V$, unless otherwise noted)

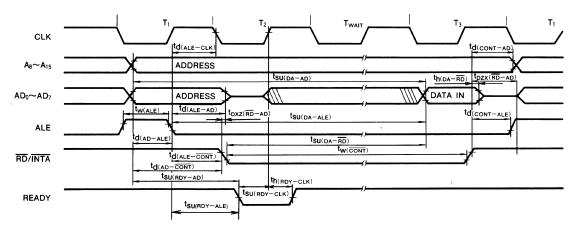
Symbol	Parameter	Test conditions	Relational expression (Note 6)	Limit
t _{su(da-ad)}	DA input setup time		170-(5/2+N)T	Min
t _{SU(DA-RD)}	DA input setup time	0 150 5	150-(3/2+N)T	Min
tsu(RDY-AD)	READY input setup time	C _L = 150pF	200-(3/2)T	Min
t _{SU(DA-ALE)}	DA input setup time		150-(2+N)T	Min

SWITCHING CHARACTERISTICS (Ta=-20~75°C, Vcc=5V±10%, Vss=0V, unless otherwise noted)

Symbol	Palameter		Test conditions	Relational expression (Note 6)	Limit
tw(CLK)	CLK output low-level pulse width			(1/2) T —60	Min
tw(CLK)	CLK output high-level pulse width			(1/2)T-30	Min
. .	Delay time, address subsit to ALE signal	AD ₀ ~AD ₇		(1/2)T—50	N
td(ad-ale)	Delay time, address output to ALE signal	A ₈ ~A ₁₅		(1/2) T —50	Min
td(ALE-AD)	Delay time, ALE signal to address output			(1/2)T-50	Min
t _{W(ALE)}	ALE pulse width			(1/2)T-20	Min
td(ALE-CLK)	Delay time, ALE to CLK			(1/2)T-50	Min
td(ALE-CONT)	Delay time, ALE to control signal		м.	(1/2) T —40	Min
t _{DZX} (RD-AD)	Address enable time from read			(1/2) T -10	Min
td(cont-ad)	Address valid time after control signal		C -150pF	(1/2)T-40	Min
td(DA-WR)	Delay time, data output to WR signal		C _L =150pF	(3/2+N)T-70	Min
td(wR-DA)	Delay time WR signal to data output			(1/2)T—40	Min
tw(CONT)	Control signal pulse width			(3/2+N)T-70	Min
td(cont-ale)	Delay time, CONT to ALE signal			(1/2) T —75	Min
td(CLK-HLDA)	Delay time, CLK to HLDA signal			(1/2) T —60	Min
t _{DXZ(HLDA-BUS)}	Bus disable time from HLDA			(1/2) T +50	Max
t _{DZX(HLDA-BUS)}	Bus enable time from HLDA			(1/2)T+50	Max
td(CONT-CONT)	Control signal disable time			(3/2)T-80	Min
•	Delay time, address output to control	AD ₀ ~AD ₇		т—85	N.C.
td(ad-cont)	signal	A ₈ ~A ₁₅		T85	Min

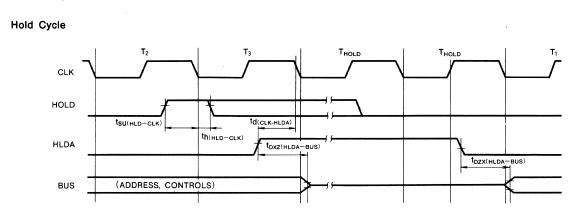
Note 6 N indicates the total number of wait cycles


 $T = t_{C(CLK)}$

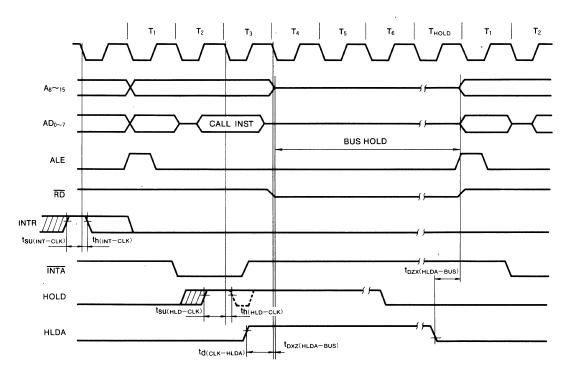

CMOS 8-BIT PARALLEL MICROPROCESSOR

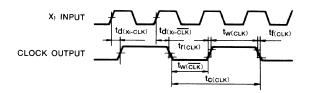
TIMING DIAGRAM

Write Cycle



Read Cycle




CMOS 8-BIT PARALLEL MICROPROCESSOR

Interrupt and Hold Cycle

TRAP INTERRUPT AND RIM INSTRUCTIONS

TRAP generates interrupts regardless of the interrupt enable filp-flop (INTE FF). The current state of the INTE FF is stored in flip flop A (A FF) of the CPU and then the INTE FF is reset. The first RIM instruction after the generation of a TRAP interrupt differs in function from the ordinary RIM instruction. That is, the bit 3 (INTE FF information) in the accumulator ((A)₃) after the execution of the RIM instruction contains the contents of the A FF, regardless of the state of the INTE FF at the time the RIM instruction is executed. These details are shown in Figs.2 and 3, Table 1.

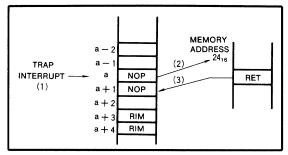


Fig. 2 TRAP interrupt processing

Below are the explanations of Fig. 2.

- 1. The TRAP interrupt request is issued while the instruction in address a is being executed.
- The TRAP interrupt causes the same action as an RST instruction and then jumps to address 24₁₆.
- 3. It returns to address a+1 after executing the RET instruction.

Table 1 shows the information in the INTE FF at address a + 3 and a + 4 when the instructions EI and/or DI are executed at addresses a - 1 and a + 2.

Fig. 4 is a flow chart of the TRAP interrupt processing routine.

Table 1 TRAP interrupt and RIM instructions

Condition	1	2	3	4	5	6
instruction in address a-1	EI	EI	EI	DI	DI	DI
Instruction in address a+2	EI	NOP	DI	EI	NOP	DI
Contents of $(A)_3$ after the execution of the RIM instruction in address a+3	1	1	1	0	0	0
State of INTE FF after the ex- ecution of the RIM instruction in address a+3	1	0	0	1	0	0
Contents of $(A)_3$ after the execution of the RIM instruction in address a+4	1	0	0	1	o	0
State of INTE FF after the ex- ecution of the RIM instruction in address a+4	1	0	0	1	0	0

Note 7 The contents of (A)₃ after the excution of the RIM instruction is an information of the INTE FF The INTE FF assumes state 1 when it is in the EI state, and 0 when it is in the DI state

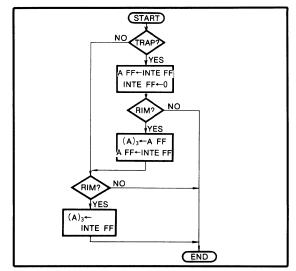


Fig.3 TRAP interrupt and INTE FF processing

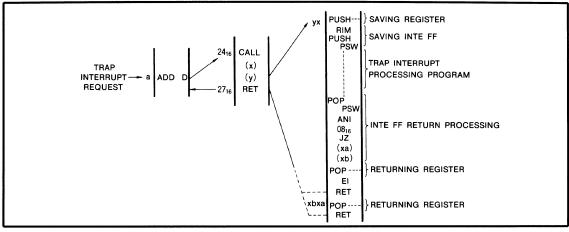


Fig. 4 TRAP interrupt processing routine

DRIVING CIRCUIT OF X1 AND X2 INPUTS

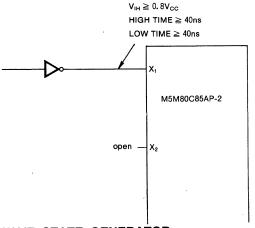

Input terminals, X_1 and X_2 of the M5M80C85AP-2 can be driven by either a crystal or external clock. Since the driver clock frequency is divided to 1/2 internally, the input frequency required is twice the actual execution frequency (10MHz for the M5M80C85AP-2 which is operated at 5MHz)

Fig. 5 Connections when crystal is used for X_1 and X_2 inputs

Fig. 5 is a typical connection diagrams for a crystal respectively.

External Clock Driver Circuit

WAIT STATE GENERATOR

Fig. 6 shows a typical 1-wait state generator for low speed RAM and ROM applications.

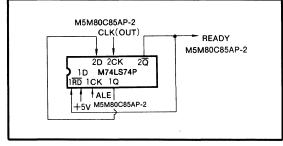
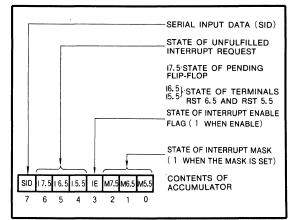
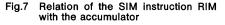
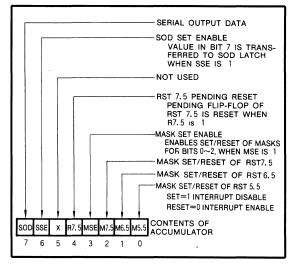
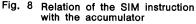




Fig. 6 1-wait state generator


RELATION OF RIM AND SIM INSTRUCTIONS WITH THE ACCUMULATOR (SUPPLEMENTARY DESCRIPTION).


The contents of the accumulator after the execution of a RIM instruction is shown in Fig. 7.

The contents of the accumulator after the execution of a SIM instruction is shown in Fig. 8 .

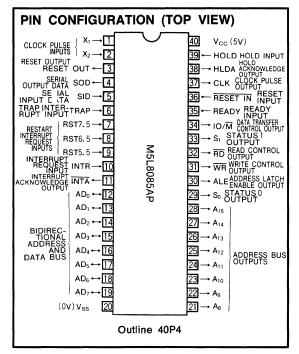
MITSUBISHI LSIS M5L8085AP

8-BIT PARALLEL MICROPROCESSOR

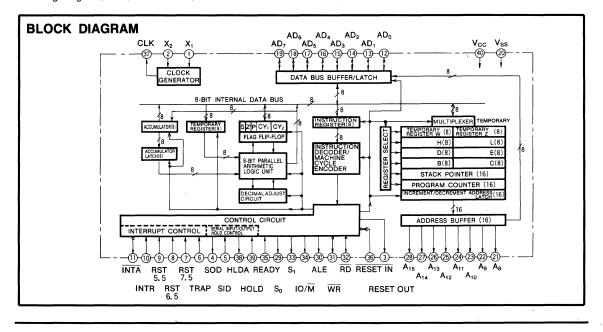
DESCRIPTION

The M5L8085AP is a family of single-chip 8-bit parallel central processing units (CPUs) developed using the N-channel silicon-gate ED-MOS process. It requires a single 5V power supply and has a basic clock rate of 3MHz.

FEATURES


- Single 5V supply voltage
- TTL compatible
- Instruction cycle 1.3 µs (min.)
- Clock generator (with an external crystal or RC circuit)
- Built-in system controller
- Four vectored interrupts (one of which is non-maskable)
- Decimal, binary, and double precision arithmetic operations
- Direct Addressing capability to 64K bytes of memory

APPLICATION


Central processing unit for a microcomputer

FUNCTION

Under the multiplexed data bus concept adopted, the highorder 8 bits of the address are used only as an adress bus and the low-order 8 bits are used as an address/data bus. During the first clock cycle of an instruction cycle, the address is transferred. The low-order 8 bits of the address are stored in the external latch by the address latch enable (ALE) signal. During the second and third clock cycles, the address/data bus functions as the data bus, transferring the data to memory or to the I/O. For bus control, the device provides \overline{RD} , \overline{WR} , and $\overline{IO/M}$ signals and an interrupt acknowledge signal (\overline{INTA}). The HOLD, READY and all inter-

rupt signals are synchronized with the clock pulse. For simple serial data transfer it provides both a serial input data (SID) line and a serial output data (SOD) line. It also has three maskable restart interrupts and one non-maskable trap interrupt.

PIN DESCRIPTIONS

Pin	Name	Input or output	Functions
X ₁ , X ₂	Clock input	In	These pins are used to connect an external crystal or RC circuit to the internal clock generator An external clock pulse can also be input through X_1
RESET OUT	Reset output	Out	This signal indicates that the CPU is in the reset mode. It can be used as a system RESET. The sig- nal is synchronised to the processor clock
SOD	Serial output data	Out	This is an output data line for serial data The output SOD may be set or reset by means of the SIM instruction. It returns to high-level after the RESET
SID	Serial input data	In	This is an input data line for serial data, and the data on this line is moved to the 7th bit of the accu- mulator whenever a RIM instruction is executed.
TRAP	Trap interrupt	In	A non-maskable restart which is recognized at the same time as an INTR it is not affected by any mask or another interrupt. It has the highest interrupt priority
RST5. 5 RST6. 5 RST7. 5	Restart interrupt request	In	Input timing is the same as for INTR for these three signals. They all cause an automatic insertion or an internal RESTART_RST 7.5 has the highest priority while RST 5.5 has the lowest. All three sig- nals have a higher priority than INTR
INTR	Interrupt request signal	In	This signal is for a general purpose interrupt and is sampled only during the last clock cycle of the instruction. When an interrupt is acknowledged, the program counter (PC) is held and an INTA sig- nal is generated. During this cycle, a RESTART or CALL can be inserted to jump to an interrupt ser- vice routine. The interrupt request may be enable and disable by means of software. But it is dis- able by the RESET and immeadiately after an accepted interrupt.
INTA	Interrupt acknowledge control signal	Out	This signal is used instead of $\overline{\text{RD}}$ during the instruction cycle after an INTR is accepted
AD ₀ ~AD ₇	Bidirectional address and data bus	In/out	The low-order (I/O address) appears during the first clock cycle During the second and third clock cycles, it becomes the data bus it remains in the high-impedance state during the HOLD and HALT modes
A ₈ ~A ₁₅	Address bus	Out	Output the high-order 8 bits of the memory address or the 8 bits of the I/O address It remains in the high-impedance state during the HOLD and HALT modes
S ₀ , S ₁	Status	Out	Indicates the status of the bus Si So SI So HALT 0 0 WRITE 0 1 READ, DAD 1 0 FETCH 1 1 1 1 The Si signal can be used as an advanced R/W status
ALE	Address latch enable	Out	This signal is generated during the first clock cycle, to enable the address to be latched into the latches of peripherals. The falling edge of ALE is guaranteed to latch the address information. The ALE can also be used to strobe the status information, but it is kept in the low-level state during bus idle machine cycles.
WR	Write control	Out	Indicates that the data on the data bus is to be written into the selected memory at the falling edge of the signal \overline{WR} It remains the high-impedance state during the HOLD and HALT modes
RD	Read control	Out	Indicates that the selected memory or I/O address is to be read and that the data bus is active fo data transfer It remains in the high-impedance state during the HOLD and HALT modes
10/ M	Data transfer control output	Out	This signal indicates whether the read/write is to memory or to I/Os It remains in the high-ipedance state during the HOLD and HALT modes
READY	Ready input	In	When it is at high-level during a read or write cycle, the READY indicates that the memory o peripheral is ready to send or receive date. When the signal is at low-level, the CPU will wait for the signal to turn high-level before completing the read or write cycle.
RESET IN	Reset input	In	This signal (at least three clock cycles are necessary) sets the program counter to zero and resets the interrupt enable and HLDA flip-flops. None of the other flags or registers (except the instruction register) are affected. The CPU is held in the reset mode as long as the signal is applied.
CLK	Clock output	Out	Clock pulses are available from this pin when a crystal or RC circuit is used as an input to the CPU
HLDA	Hold acknowledge signal	Out	By this signal the processor acknowledges the HOLD request signal and indicates that it will relin quish the buses in the next clock cycle. The signal is returned to the low-level state after the HOLI request is completed. The processor resumes the use of the buses one half clock cycle after the signal HLDA gose low-level.
HOLD	Hold request signal	In	When the CPU receives a HOLD request it relinquishes the use of the buses as soon as the currer machine cycle is completed. The CPU can regain the use of buses only after the HOLD state is removed. Upon acknowledging the HOLD signal, the address bus, the data bus, RD, WR and IO/N lines are put in the high-impedance state.

Note HOLD, READY and all interrupt signals are synchronous with clock signal

STATUS INFORMATION

Status information can be obtained directly from the M5L8085AP. ALE is used as a status strobe. As the status is partially encoded, it informs the user in advance what type of bus transfer is being performed. The IO/ \overline{M} cycle status signal is also obtained directly. Decoded S₀ and S₁ signals carry: S₁ S₀

	31	S 0
HALT	0	0
WRITE	0	1
READ	1	0 (except for second and third machine cycles of DAD instruction
FETCH	1	1 DAD instruction

 $S_{\rm I}$ can be used in determining the R/\overline{W} status of all bus transfers.

In the M5L8085AP the low-order 8 bits of the address are multiplexed with data. When entering the low-order of the address into memory or peripheral latch circuits, the ALE is used as a strobe.

INTERRUPT AND SERIAL I/O

The M5L8085AP has five interrupt inputs—INTR, RST 5.5, RST 6.5, RST 7.5, and TRAP. The three RST inputs, 5.5, 6.5, 7.5, are provided with programmable masks. TRAP has the same function as the restart interrupt, except that it is non-maskable.

When an interrupt is enabled and the corresponding interrupt mask is not set, the three RST interrupts will cause the internal execution of the RST. When non-maskable TRAP is applied, it causes the internal execution of an RST regardless of the state of the interrupt enable or masks. The restart addresses (hexadecimal) of the interrupts are:

Adress
24 ₁₆
2C ₁₆
34 ₁₆
3C ₁₆

Two different types of signal are used for restart interrupts. Both RST 5.5 and RST 6.5 are sensitive to high-level as in INTR, and are acknowledged in the same timing as INTR. RST 7.5 is sensitive to rising-edge, and existence of a pulse sets the RST 7.5 interrupt request. This condition will be maintained until the request is fulfilled or reset by a SIM or **RESET** instruction.

Each of the restart interrupts may be masked independently to avoid interrupting the CPU. An interrupt requested by an RST 7.5 will be stored even when its mask is set and the interrupt is disabled. Masks can be changed in a SIM instruction or the RESET. When two enabled interrupts are requested at the same time, the interrupt with the highest priority will be accepted. The TRAP has the highest priority followed in order by RST 7.5, RST 6.5, RST 5.5 and INTR. This priority system dose not take into consideration the priority of an interrupt routine that is already started. In other words, when an RST 5.5 interrupt is reenabled before the termination of the RST 7.5 interrupt routine, it will interrupt the RST 7.5.

The TRAP interrupt is very useful in preventing disastrous errors and bus errors resulting from power failures. The TRAP input is recognized in the same manner as any other interrupt, but it has the highest priority, and is not affected by any flags or masks. The TRAP input can be sensed by both edge and level. TRAP should be maintained high-level until it is acknowledged. But, it will not be acknowledged again unless it turns low-level and high-level again. In this manner, faulty operation due to noise or logic glitches is prevented.

The selial I/O system is also considered to be an interrupt as it is controlled by instructions RIM and SIM. The SID is read by instruction RIM and the SOD data is set by instruction SIM.

BASIC TIMING

The M5L8085AP is provided with a multiplexed data bus. The ALE is utilized as a strobe with which the low-order 8 bits of the address on the data bus are sampled. Fig.1 shows the basic cycle in which an out instruction is fetched, and memory is read and written to the I/O port. The I/O port address is stored in both the address bus and the address/ data bus during the I/O write and read cycle. To enable the M5L8085AP to be used with a slow memory, the READY line is used for extending the read and write pulse width.

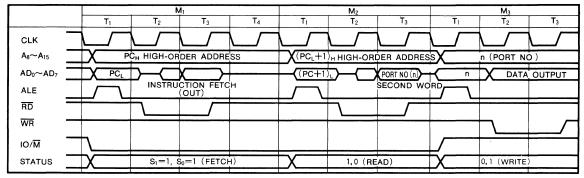


Fig. 1 Basic cycle

MACHINE INSTRUCTIONS

٠.

Item				Instru	iction	n co	de		f states	Å.	ک		Flags	Address	s bus	Dat	a bu	JS
str	Mner	monic	DTDs	D5 D4				6mal	No of	No of	No of	Functions	S Z P CY2CY	1 Contents	Mach	Contents	1/0	Ma
iss 🔪	MOV	F1, F2	0 1	DD	_	S S	_	otatn	Z 4	Z 1	2 1	$(r_1) \leftarrow (r_2)$	x x x x x		cycle*		_	сус
	MOV	M,r	0 1	1 1	0	SS	S		7	1	2	$(r_1) \leftarrow (r_2)$ $(M) \leftarrow (r)$ Where $M = (H) (L)$	x x x x x	м	M4	(r)	0	N
	MOV	r, M r, n	01	D D D D		11			777	1 2	2	$(r) \leftarrow (M)$ Where $M = (H) (L)$ $(r) \leftarrow n$			M4	(M) <b2></b2>	;	
	MVI	M, n	00	< 821 1 1		1 1	0	36	10	2	3	$(M) \leftarrow n$ Where $M = (H) (L)$	x	м	M5	<b2></b2>	1	l N
	LXI	B.m	0 0	< B2	>	0 0		`	10	3	3	(C) ← ⟨B₂⟩	x			<b2></b2>	-	N
		8,m	00	00 (B2)	>	00	'	0 1	10	3	3	(B) ← <b3> Where, m = <b3> <b2></b2></b3></b3>				<b<sub>3></b<sub>	1	Ň
	LXI	D,m	0 0	<b3: 01</b3: 		0 0	1	1 1	10	3	3	(E) ← <b2></b2>	× × × × ×			(B2)		ĸ
				< 82 < 83								(D) ← ⟨B3⟩ Where m = ⟨B3⟩ ⟨B2⟩				<b3></b3>	'	N N
	LXI	H,m	00	10	0	0 0	1	21	10	3	3	$(L) \leftarrow \langle B_2 \rangle$ $(H) \leftarrow \langle B_3 \rangle$ Where $m = \langle B_3 \rangle \langle B_2 \rangle$	× × × × ×			(B2)	-	N
				< B2 < B3	>											<b3></b3>		N
sfer	LXI	SP , m	00	1 1 <b2< td=""><td></td><td>0 0</td><td>1</td><td>31</td><td>10</td><td>3</td><td>3</td><td>(SP) ← m</td><td> × × × × ×</td><td></td><td></td><td><b2> <b3></b3></b2></td><td>-</td><td>N</td></b2<>		0 0	1	31	10	3	3	(SP) ← m	× × × × ×			<b2> <b3></b3></b2>	-	N
transfer	SPHL		1 1	<b3< td=""><td></td><td>0 0</td><td>1</td><td>F 9</td><td>6</td><td>1</td><td>1</td><td>(SP) ← (H) (L)</td><td>x</td><td></td><td></td><td></td><td></td><td></td></b3<>		0 0	1	F 9	6	1	1	(SP) ← (H) (L)	x					
Data	STAX		0 0	0 0	0	0 1	0	0 2	7	1	2	((B)(C)) ← (A)	x		M4	(A)	0	N
Ő	STAX	B	00	0 1	1	01	0	1 2 0 A	7	1	2	$\frac{((D)(E)) \leftarrow (A)}{(A) \leftarrow ((B)(C))}$	X X X X X X X X X X	(B)(C)	M4 M4	(A) ((B)(C))	0	N
	L DAX		00	0 1		01		1 A 3 2	7	1	2	$(A) \leftarrow ((D) (E))$ (m) \leftarrow (A)	X X X X X X X X X X		M4 M4	((D)(E)) (A)	0	N
				< 82 < 83														
	LDA	m	00	1 1	1	0 1	0	3 A	13	3	4	$(A) \leftarrow (M)$	× × × × ×	m	M4	(m)	Т	N
				< 82 < 83	>													
	SHLD	m	0 0.	10		0 1	0	22	16	3	5	$(m) \leftarrow (L)$ $(m+1) \leftarrow (H)$	× × × × ×	m m + 1	M4 M5	(L) (H)	0 0	N
	LHLD		0 0	< B3		0 1	0	2 A	16	3	5	(∟) ← (m)	x x x x x		M4	(m)	F	N
				<b2< td=""><td>></td><td>• ·</td><td>Ĩ</td><td>•</td><td>1.0</td><td>Ĵ</td><td>Ĵ</td><td>$(H) \leftarrow (m+1)$</td><td></td><td>m + 1</td><td>M5</td><td>(m + 1)</td><td>i</td><td>Ň</td></b2<>	>	• ·	Ĩ	•	1.0	Ĵ	Ĵ	$(H) \leftarrow (m+1)$		m + 1	M5	(m + 1)	i	Ň
	ХСНС		11	(B3) 1 0	1			ЕB		1	1	(H) (L) ↔ (D) (E)	x x x x x					
	XTHL		1 1	10	0	0 1	1	E 3	16	1	5	(H)(L)↔((SP)+1)((SP))	× × × × ×	(SP) (SP)+1	M2 M3	((SP)) ((SP)+1)	-	N
	ADD ADD	M	10	00		S S		86	4	1	1 2	(A) ← (A) + (r) (A) ← (A) + (M) Where M - (H) (L)	00000		M4		÷	N
	ADI	'n	11	0 0	ō	i i		C 6	1	2	2	$(A) \leftarrow (A) + n$		M	MA	(M) <b2></b2>	i	Ň
	ADC	r	1 0	<b2 0 0</b2 	1	SS	S		4	1	1	$(A) \leftarrow (A) + (r) + (CY_2)$	00000					
	ADC	M n	10	00		11		8 E C E	17	1 2	2	$(A) \leftarrow (A) + (M) + (CY_2)$ Where M (H)(L) $(A) \leftarrow (A) + n + (CY_2)$	00000	м	M4	(M) (Bz>	1	N N
	DAD	в	0.0	(B2	>					-								
	DAD	D	0 0	01	1	00	1	09 19	10 10	i.	3 3	$\begin{array}{l} (H) (L) \leftarrow (H) (L) + (B) (C) \\ (H) (L) \leftarrow (H) (L) + (D) (E) \end{array}$						
_	DAD	H Sp	00	10		00		2939	10	1	3	(H) (L) + (H) (L) + (H) (L) (H) (L) ← (H) (L) + (SP)						
compare	SUB SUB	M	10	01		S S		96	4	1	1 2	$(A) \leftarrow (A)$ (r) $(A) \leftarrow (A)$ (M) Where, M (H) (L)	00000		M4	(M)		٨
luo.	SUI	n	11	0 1	0	i i		D 6	7	2	2	$(A) \leftarrow (A)$ n	000000		1/14	(B2)	i	Ň
cal c	SBB	r	10	<b2 0 1</b2 	1	S S			4	1	1	$(A) \leftarrow (A) - (r) - (CY_2)$	00000					
logic	SBB SBI	M	10	01		1 1		9 E D E	7	1 2	2	$(A) \leftarrow (A)$ (M) (CY ₂) Where M (H)(L) $(A) \leftarrow (A) - n$ (CY ₂)	00000	м	M4	(M) - B2>		N N
	ANA	r	1 0	<b2 1 0</b2 	>	SS			4	1	1	$(A) + (A) \wedge (r)$						
Arithmetic	ANA	M	1 0	1 0	ō	1 1	0	A 6	7	1	2	$(A) \leftarrow (A) \land (M)$ Where M $(H) (L)$		м	Ma	(M)	1	N
Ith	ANI	n	11	10 (B2	>	1 1	0	E 6	7	2	2	(A)+ (A)Λ n	00001			<b2></b2>	1	2
۷	XRA XRA	M	10	10		S S		AE	4 7'	1	1 2	$(A) \leftarrow (A) \forall (r) (A) \leftarrow (A) \forall (M) \qquad \text{Where } M (H) (L)$		м	Ma	(M)	,	
	XRI	n	11	1 O (B2	1	1 1		EE	7	2	2	(A) + (A) ★ n	000000		(14	(B2)	i	Ň
			10	1 1	0	s s		_	4	1	1	$(A) \leftarrow (A) \lor (r)$	00000					
	OR A OR I	M n	10	11		1 1		B 6 F 6	7	1 2	2	$(A) \leftarrow (A) \lor (M)$ Where, M = (H) (L) (A) \leftarrow (A) \lor n			Ma	(M) <b2></b2>		N N
	CMP	r	10	<b2 1 1</b2 		SS	s		4	1	1	(A) - (r)	00000					
	CMP	M	10	11	1	11	0	8 E	7	1	2	(A) - (M) Compare, Where M (H) (L)	00000	м	Ma	(M)	1	N
				<b2< td=""><td>></td><td></td><td></td><td>FE</td><td>7</td><td>2</td><td>2</td><td>(A) n)</td><td>00000</td><td>_</td><td></td><td><bz></bz></td><td>1</td><td>N</td></b2<>	>			FE	7	2	2	(A) n)	00000	_		<bz></bz>	1	N
ť	I NR I NR	м́.	00	D D 1 1	ō	10	0	34	4	1	3	$(r) \leftarrow (r) + 1$ (M) $\leftarrow (M) + 1$ Where M (H) (L)			Ma	(M)		N
ment	DCR	Ň	00	D D 1 1	D	1 0) 1	3 5	4	11	1	(r) ← (r) – 1	000×0)				
ecrer	INX	B,	00	0 0	0	0 1	1	03	6	1	1	(B)(C) · (B)(C) · 1			M4	(M)	- 1	N
egisi ht/de	I N X I N X	D H	00	01	0	01	1	1323		1	1	(D) (E) +- (D) (E) + 1 (H) (L) + (H) (L) + 1						1
ne B	I NX DCX	SP B	00	.1 1		0 1		33 0B	6	1	1	$(SP) \cdot (SP) + 1$ (B) (C) \leftarrow (B) (C) 1	x x x x x x x x x x x	1				ļ
Register increment/decr	DC X DC X	D H	0 0	0 1	1	0 1	1	1 B	6	1	1	(D)(E) + (D)(E) 1	XXXXX					1
=	DCX	SP		10	1	0 1	1	2 B 3 B	6	1	1	(H) (L) ← (H) (L) 1 (SP) ← (SP) 1			<u> </u>			Ĺ
≝ -	RLC		00	0 0	0	1 1	1	07	4	1	^T	Left shift CY2 A7A6 A1A0	XXXOX					
s of latoi	RRC		0 0	0 0	1	1 1	1	0 F	4	1	1	Right shift CY2 A7A6 A1A0	× × × O ×					
tent	RAL		0 0	0 1	0	1 1	1	17	4	1	1		× × × O ×				\mid	
contents of accumulator	RAR		0 0															
_			50	Q 1	'	1 1	1	1 F	4	1	1		× × × O ×					
ccumu	CMA DAA		00			1 1		2 F 2 7		1		(A) • (A) Results of binary addition are adjusted to BCD	X X X X X 00000					
arry se	STC		00	1 1	0	1 1	1	37	4	1	1	(CY2) + 1	XXX1X	1				
	CMC		00	.1.1	1	1 1	1	3 F	4	11	1	(CY2) + (CY2)	XXXOX	1	1		۱ I	6

MITSUBISHI LSIS M5L8085AP

8-BIT PARALLEL MICROPROCESSOR

								ates	bytes	cycles									
Item				Instruct				12	of D	o o	European and		Fla	gs	Addres	T	Data	a bu	
instr class	Mnen	nonic	D1 D6	D5 D4 D3	D20	D1 D0	16ma notatr	°Z Z	Ŷ	Ŷ	Functions	s z	P	CY2CY	Contents	Mach cycle*	Contents	1/0	Mach cycle*
	JMP	m	1 1	000 (B2)	0	1 1	C 3	10	3	3	(PC)m	×	x x	xx			<b2> <b3></b3></b2>		M2 M3
	PCHL		11	<b3> 101</b3>	0	0 1	E 9	6	1	1	(PC)←(H)(L)	x	х)	xx					
		m	11	0 1 1 (B2)	0	10	DA	10/7	3	3/2	(CY2) = 1	x	x >	: x x	h				
	JNC	m	11	<883> 0 1 0	0	1 0	D 2	10/7	3	3/2	(CY2) = 0 If condition is true	x	х >	. x ×	If condit	l tion is tr	ue		
				<82> <83>							(PC)←m						1		
	JZ	m	11	001 (B2)	0	10	CA	10/7	3	3/2	(Z)-1	×	x >	x x			<b2> <b3></b3></b2>	ł	M2 M3
ę	JNZ	m	1 1	< 83> 000	0	1 0	C 2	10/7	3	3/2	(Z) 0	x	х ,	: x x					
dmnf				<b2> <b3></b3></b2>							· · · · · · · · · · · · · · · · · · ·								
	JP	m	11	110 <b2></b2>	0	10	F 2	10/7	3	3/2	(S) = 0 If condition is false (PC)+ (PC)+ 3	×	х)	x x					
	JM	m	11	<b3> 1111</b3>	o	1 0	FA	10/7	3	3/2	(S)=1	x	х >	: x x					
				<b2> <b3></b3></b2>															
	JPE	m	1 1	101 <b2></b2>	0	10	EA	10/7	3	3/2	(P)= 1	x	x >	: × ×					
	JPO	m	11	(B3) 100	0	1 0	E 2	10/7	3	3/2	(P)=0	x	х)	: x x					
				<b2> (B3></b2>	-										J				
	CALL	m	11	001 (B2)	1	0 1	СР	18	3	5	$((SP) - 1)((SP) - 2) \leftarrow (PC) + 3 (PC) \leftarrow m$ (SP) $\leftarrow (SP) - 2$	х	x >	X X			<b2> <b3></b3></b2>	;	M2 M3
	RST	n	11	(B3) A A A	1	1 1									(SP)-1 (SP)-2		(PC)+3 (PC)+3	0 0	M4 M5
								12	1	3	$((SP)-1)((SP)-2)\leftarrow(PC)+1(PC)\leftarrow n\times 8,$ (SP) \leftarrow (SP)-2 Where $0\leq n\leq 7$	x	x >	: x ×	(SP) - 1 (SP) - 2	M4	(PC) + 1 (PC) + 1	0	M4 M5
	cc	m	11	0 1 1 <b2></b2>	1	0 0	DC	18/9	3	5/2	(CY ₂) = 1	x	x >	x x					
	CNC	m	11	<883> 0 1 0	1		D 4	18/9	3	5/2	(CY2) = 0	x	х >	(x ×					
_				<82> <83>							- If condition is true				If condi	tion is ti 	rue		
e call	cz	m	11	001 <b2></b2>	1	0 0	сc	18/9	3	5/2	$(Z) = 1$ $((SP) 1) ((SP) - 2) \leftarrow (PC) + 3$	×	x >	(x)			<b2> <b3></b3></b2>	ł	M2 M3
Subroutine	CNZ	m	11	<18₃> 000	1	0 0	C 4	18/9	3	5/2	(Z) = 0 (PC) ← m	x	x >	(x >	(SP)-1	M4	(PC)+3	0	M4
nbro				<b2> <b3></b3></b2>							(SP)+ (SP) 2				(SP) - 2	M5	(PC)+3	0	M5
s	CP	m	11	1 1 0 <b2></b2>	1	0 0	F4	18/9	3	5/2	(S) = 0	x	x >	(x ×					
	см	m	11	< 183> 1 1 1	1	0 0	FC	18/9	3	5/2	(S)=1 If condition is false	x	х)	(x)					
				<b2> <b3></b3></b2>							(PC)+-(PC) + 3								
	CPE	m	11	101 (B2)	1	0 0	EC	18/9	3	5/2	(P)= 1	×	x)	(x >		ĺ			
	CPO	m	1 1	<883> 100	1	0 0	E 4	18/9	3	5/2	(P)=0	×	x >	(x)					
				<b2> (B3></b2>											J				
	RET		11	001		0 1	C 9	10	1	3	(PC) ←((SP)+1)((SP))(SP)←(SP)+2			(x)	(SP)+1	M4 M5	((SP)) ((SP)+1)	1	M4 M5
c l	RC RNC		11	011 010	0	00	D 8 D 0	12/6	1	3/1 3/1	$(CY_2) = 1$ $(CY_2) = 0$ If condition is true	х		(x)		1	1		
Return	RZ RNZ		11	001		00	C 8 C 0	12/6	1	3/1 3/1	$ \begin{pmatrix} (Z) = 1 \\ (Z) = 0 \end{pmatrix} \begin{pmatrix} (PC) \leftarrow ((SP) + 1) \\ (SP) \leftarrow (SP) + 2 \end{pmatrix} $	х	x >	(x)	(SP)+1	M4 M5	((SP)) ((SP)+1)	1	M4 M5
æ	RP RM		11	110		00	F 0 F 8	12/6		3/1	(S)=0 (S)=1 If condition is false	х	x >	(: }				
	RPE		11	101	0	00.	E 8 E 0	12/6	1	3/1	(P) = 1 (PC) ← (PC) + 1	х	x >	(x ×	: [[{		
Input/		n	++	100		00	DB	10	1	3/1	(A) ← (Input buffer) ← (Input device of number n)		$\frac{x}{x}$	(x)			<b2></b2>	0	M4
output control	ουτ	n	11	<b2> 0 1 0</b2>	0	11	D 3	10	2	3	(Input data) (Output device of number n) ← (A)	×	x >	(x)		M5	(Input data) <b2></b2>	0	M5 M4
Interrupt	EI		11	<u>(B2)</u> 1 1 1 1 1 0		11	FB	4	1	1	(INTE) ← 1			<u> </u>	<b2><b2></b2></b2>	Ms	(A)	0	M5
control	PUSH	PSW	$\frac{11}{11}$	110		<u>1 1</u> 0 1	F 3 F 5	4	1	3	$(INTE) \leftarrow 0$ $((SP)-1) \leftarrow (A) ((SP)-2) \leftarrow (F)$			(x)	(SP) 1	M4	(A)	0	M4
	PUSH	в .	1 1	000	1.	0 1	C 5	12	1	3	$(SP) \leftarrow (SP)-2$ $((SP)-1) \leftarrow (B) ((SP)-2) \leftarrow (C)$	x	x >	(x)		M5 M4	(F) (B)	0	M5 M4
	PUSH	D	1 1	010	1.	0 1	D 5	12	1	3	(SP) ←(SP)-2 ((SP)-1) ← (D).((SP)-2) ← (E)	x	x >	(x)		M5 M4	(C) (D)	0	M5 M4
control	PUSH	н	11	100	1.	0 1	E 5	12	1	3	$(SP) \leftarrow (SP)-2$ $((SP)-1) \leftarrow (H) ((SP)-2) \leftarrow (L)$	x	x	(x)	(SP) - 2 (SP) - 1	M5 M4	(E) (H)	0	M5 M4
8	POP	PSW	11	110	0	0 1	F 1	10	1	3	$ (SP) \leftarrow (SP) - 2 (F) \leftarrow ((SP)), (A) \leftarrow ((SP) + 1) $	0	0 0	000	(SP) - 2) (SP)	M5 M4	(L) (SP))	0	M5 M4
Stack	POP	B	11		0	0 1	C 1	10	1	3	$(SP) \leftarrow (SP)+2$ (C) $\leftarrow ((SP)), (B) \leftarrow ((SP)+1)$	x	x >	(x)	(SP)+1 (SP)	M5 M4	((SP)+1) ((SP))	1	M5 M4
	POP	D	1 1	010	0	0 1	D 1	10	1	3	$(SP) \leftarrow (SP)+2$ (E) $\leftarrow ((SP)) (D) \leftarrow ((SP)+1)$			(x)	(SP)+1 (SP)	M5 M4	((SP)+1) ((SP))	ł	M5 M4
	POP	н	1 1	100	0	0 1	E 1	10	1	3	$(SP) \leftarrow (SP) + 2$ (L) $\leftarrow ((SP)) (H) \leftarrow ((SP) + 1)$	x	x	(x)	(SP)+1 (SP)	M5 M4	((SP)+1) ((SP))	ł	M5 M4
Others	HLT		0 1	110	1	1 0	76	5	1	1	(SP) ← (SP)+2 (PC) ← (PC)+1	X	x	(x)	(SP)+1	M5	((SP)+1)	$\left \cdot \right $	M5
Unlers	NOP		00	000	0	0 0	00	4	1	1	(PC) + (PC) + 1 All RST interrupt masks, any pending RST interrupt			(X)				\vdash	
, sc	RIM		0 0	100	0 0	0 0	2 0	4	1	1	requests, and the serial input data from the SID pin	x	x >	(x x			1		
k set uctio								ļ			are read into the accumiator Mask is enabled (or disabled) to the RST interrupt								
Mask set instructions	SIM		0 0	110	0	0 0	30	4	1	1	corresponding to the contents (bit pattern) of the accumulator. The serial output is enabled and the	x	х >	x x					
							1	1			serial output bit is loaded into the SOD latch								

* State is T1, ** State is T2.

MACHINE INSTRUCTIONS SYMBOL MEANING

Symbol	Meaning	Symbol	N	Meaning		Symbol	Meaning
r	Register		B			* ***	Data is transferred in direction shown
m	Two-byte data		Bit pattern	Register		()	Contents of register or memoy location
n	One-byte data		designating	or memory	or DDD	v	Inclusive OR
<b2></b2>	Second byte of instruction		register or	B	000	*	Exclusive OR
<b3></b3>	Third byte of instruction	SSS	memory	č	001	٨	Logical AND
AAA	Binary representation for RST instruction n	or		P	010		1 s complement
-	8-bit data from the most to the least significant	DDD		h l	100	x	Content of flag is not changed after execution
F	bit S, Z, X, CY1, 0, P, X, CY2 (X is indefinite)			L	101	0	Content of flag is set or reset after execution
PC	Program counter		Where M = (H) (L)	M	1 1 1	1	Input mode
SP	Stack pointer		WI = (H)(L)	I		0	Output mode

INSTRUCTION CODE LIST

\mathbb{N}	D7~D4	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
D ₃ ~D ₀	Hex- adecimal notation	0	1	2	3	4	5	6	7	8	9	A	в	с	D	E	F
0000	0	NOP	(-)	RIM	SIM	MOV B, B	MOV D, B	MOV H, B	MOV M, B	ADD B	SUB B	ANA B	ORA B	RNZ	RNC	RPO	RP
0001	1	LXI B	LXI D	LXI H	LXI. SP	MOV B, C	MOV D, C	MOV H, C	MOV M, C	ADD C	SUB C	ANA C	ORA C	POP B	POP D	POP H	POP PSW
0010	2	STAX B	STAX D	SHLD	STA	MOV B, D	MOV D, D	MOV H, D	MOV M, D	ADD D	SUB D	ANA D	ORA D	JNZ	JNC	JPÓ	JР
0011	3	INX B	INX D	INX H	INX SP	MOV B, E	MOV D, E	MOV H, E	MOV M, E	ADD E	SUB E	ANA E	ORA E	JMP	OUT	XTHL	DI
0100	4	INR B	INR D	INR H	INR M	MOV B, H	MOV D, H	моv н, н	моv м, н	ADD H	SUB H	ANA H	ORA H	CNZ	CNC	CPO	CP
0101	5	DCR B	DCR D	DCR H	DCR M	MOV B, L	MOV D, L	MOV H, L	MOV M, L	ADD L	SUB L	ANA L	ORA L	PUSH B	PUSH D	PUSH H	PUSH PSW
0110	6	MVI B	MVI D	MVI H	MVI M	MOV B, M	MOV D, M	моv н, м	HLT	ADD M	SUB M	ANA M	ORA M	ADI	SUI	ANI	ORI
0111	7	RLC	RAL	DAA	STC	MOV B, A	MOV D, A	MOV H, A	MOV M, A	ADD A	SUB A	ANA A	ORA A	RST 0	RST 2	RST 4	RST 6
1000	8	(-)	(-)	(-)	(-)	MOV C, B	MOV E, B	MOV L, B	MOV A, B	ADC B	SBB B	XRA B	СМР В	RZ	RC	RPE	RM
1001	9	DAD B	DAD D	DAD H	DAD SP	MOV C, C	MOV E, C	MOV L, C	MOV A, <u>C</u>	ADC C	SBB C	XRA C	СМР С	RET	(-)	PCHL	SPHL
1010	A	LDAX B	LDAX D	LHLD	LDA	MOV C, D	MOV E, D	MOV L, D	MOV A, D	ADC D	SBB D	XRA D	CMP D	JZ	JC	JPE	JM
1011	В	DCX B	DCX D	DCX Н	DCX SP	MOV C, E	MOV E, E	MOV L, E	MOV A, E	ADC E	SBB E	XRA E	CMP E	(-)	IN	хсна	EI
1100	с	INR C	INR E	INR L	INR A	моv с, н	MOV E, H	MOV L, H	MOV A, H	ADC H	SBB H	XRA H	СМР Н	cz	CC -	CPE	CM [°]
1101	D	DCR C	DCR E	DCR L	DCR A	MOV C, L	MOV E, L	MOV L, L	MOV A, L	ADC L	SBB L	XRA L	CMP L	CALL	(-)	(-)	(-)
1110	E	MVI C	MVI E	MVI L	MVI A	моv с, м	MOV E, M	MOV L, M	MOV A, M	ADC M	SBB M	XRA M	СМР М	ACI	SBI	XRI	OPI
1111	F	RRC	RAR	СМА	смс	MOV C, A	MOV E, A	MOV L, A	MOV A, A	ADC A	SBB A	XRA A	СМР А	RST 1	RST 3	RST 5	RST 7

This list shows the machine codes and corresponding machine instruction. $D_3 \sim D_0$ indicate the low-order 4 bits of the machine code and $D_7 \sim D_4$ indicate the high-order 4 bits. Hexadecimal numbers are also used to indicate this code.

The instruction may consists of 1 , 2 , or 3 bytes, but only $\hfill \cdot$ the first byte is listed.

indicates a 3-byte instruction.

indicates a 2-byte instruction.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Supply voltage		-0.5~7	v
V,	Input voltage	With respect to V _{SS}	-0.5~7	v
Pd	Power dissipation	T _a =25°C	1.5	w
Topr	Operating free-air temperature range		-20~75	°C
Tstg	Storge temperature range		-65~150	°C

RECOMMENDED OPERATING CONDITIONS (Ta=-20~75°C, unless otherwise noted)

Symbol	Parameter		Limits			
	Falameter	Min	Nom	Max	Unit	
V _{cc}	Supply voltage	4.75	5	5.25	v	
V _{ss}	Supply voltage (GND)		0		v	

$\label{eq:transformation} \textbf{ELECTRICAL CHARACTERISTICS} \quad (\textbf{T}_a = -20 \sim 75 \, \text{C}, \ \textbf{V}_{cc} = 5V \pm 5\%, \ \textbf{V}_{ss} = 0V, \ \text{unless otherwise noted})$

		T		Limits		Unit
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
VIH	High-level input voltage (Except for X1, X2)		2.2		V _{cc} +0.5	v
VIL	Low-level input voltage		-0.5		0.6	v
VIH(RESIN)	High-level reset input voltage		2.4		V_{cc} +0.5	v
VIL(RESIN)	Low-level reset input voltage		-0.5		0.8	v
V _{IHX}	X ₁ , X ₂ High-level voltage		4.0		V _{cc} +0.5	v
V _{он}	High-level output voltage	I _{ОН} =-400 µА	2.4			v
Vol	Low-level output voltage	I _{OL} =2mA			0.45	v
Icc	Supply current from V _{CC}	(Note 2)			200	mA
l,	Input leak current, except RESET IN (Note 1)	VI=VCC	-10		10	μA
lozL	Output floating leak current	V ₀ =0.45V~V _{CC}	-10		10	μA
VIH-VIL	Hysterisis RESET IN input		0.25			v

The input $\overline{\text{RESET IN}}$ is pulled up to V_{CC} with the resistor $3k\,\Omega~(typ)$ when $V_I{\geq}V_{IH(\overline{\text{RESIN}})}$ Maximum I_{CC} is 170mA at $T_a=0{\sim}70^\circ C$ Note 1 2

TIMING REQUIREMENTS ($\tau_a = -20 \sim 75^{\circ}$ C, $v_{cc} = 5V \pm 5\%$, $v_{ss} = 0V$, unless otherwise noted)

		Testerada	ļ	Limits		Unit
Symbol	Paramater	Test conditions	Min	Тур	Max	Unit
t _{C(CLK)}	Clock cycle time		320		2000	ns
t _{SU(DA-AD)}	DA input setup time		-575			ns
	DA input setup time		-300			ns
th(DA-RD)	DA input hold time		0			ns
t _{SU(RDY-AD)}	READY input setup time	1	-220			ns
	READY input setup time	t _{C(CLK)} ≧320ns			-110	ns
th(RDY-CLK)	READY input hold time	C _L =150pF	0			ns
t _{SU(DA-ALE)}	DA input setup time		-460			ns
tsu(HLD-CLK)	HOLD input setup time		170			ns
th(HLD-CLK)	HLD input hold time		0			ns
tsu(INT-CLK)	Interrupt setup time		160			ns
th(INT-CLK)	Interrupt hold time]	0			ns
t _{SU(RDY-ALE)}	READY input setup time		-110			ns

Symbol	Parameter		Test conditions		Limits		Unit
Symbol	Parameter		lest conditions	Min	Тур	Max	Unit
	CLK output low-level pulse width			80			ns
tw(CLK)	CLK output high-level puls width			120			ns
t _{r(CLK)}	CLK output rise time					30	ns
tf(CLK)	CLK output fall time					30	ns
td(x1-CLK)	Delay time, X1 to CLK			30		120	ns
td(x1-CLK)	Delay time, X ₁ to CLK			30		150	ns
		AD ₀ ~AD ₇		90			
td(ad-ale)	Delay time, address output to ALE signal	A ₈ ~A ₁₅		115			'ns
	Delay time, ALE signal to address output			100			ns
	ALE pulse width			140			ns
	Delay time, ALE to CLK			100			ns
td(ALE-CONT)	Delay time, ALE to control signal			130			ns
t _{DXZ} (RD-AD)	Address disable time from read		t _{C(CLK)} ≧320ns			0	ns
	Address enable time from read		C _L =150pF	150			ns
	Address valid time after control signal			120			ns
	Delay time, data output to WR signal			420			ns
	Delay time, WR signal to data output			100			ns
tw(cont)	Control signal pulse width			400			ns
	Delay time, CLK to ALE signal			50			ns
td(clk-hlda)	Delay time, CLK to HLDA signal			110			ns
t _{DXZ(HLDA-BUS)}	Bus disable time from HLDA					210	ns
t _{DZX} (HLDA-BUS)	Control signal disable time		1			210	ns
td(cont-cont)	Control signal disable time		1	400			ns
.		AD ₀ ~AD ₇		240			
td(ad-cont)	Delay time, address output to control signal	A ₈ ~A ₁₅		270			ns
td(ALE-DA)	Delay time, ALE to data output					200	ns
	Delay time, WR signal to data output					40	ns

SWITCHING CHARACTERISTICS ($T_a=-20\sim75$ °C, $V_{cc}=5V\pm5\%$, $V_{ss}=0V$, unless otherwise noted)


Note 3 : at $A_8 \sim A_{15}$, and $IO/\overline{M} t_{d(AD-\overline{CONT})}$ after the release of the high-impedance state is 200ns 4 $t_{W(CLK)}$, $t_{W(CLK)}$ are 100ns(Min), 150ns(Min) respectively when 50pF+1TTL loaded 5 : A. C Testing waveform Input pulse level 0.45~2.4V (nput pulse rise time 20ns 2.4 (nput pulse of time 20ns 2.4

.

Input pulse fall time Reference level input output

20ns 20ns V_{IH} =2.2V, V_{IL} =0.8V V_{OH} =2.0V, V_{OL} =0.8V

X 2.2 0.8 2.2 0.45 Input

MITSUBISHI ELECTRIC

Parameters described in the timing requirements and switching characteristics take relevant values in accordance

with the relational expression shown in the following tables when the frequency is varied.

Relational Expression with the frequency T ($t_{C(CLK)}$) in the M5L8085AP

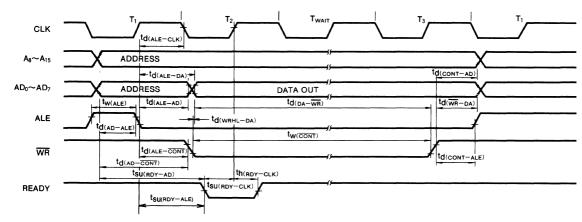
TIMMING REQUIREMENTS (τ_a =-20~75°C, ν_{cc} =5V±5%, ν_{ss} =0V, unless otherwise noted)

Symbol	Parameter	Test conditions	Relational expression (Note 6)	Limit
t _{su(da-ad)}	DA input setup time		225-(5/2+N)T	Min
tsu(DA-RD)	DA input setup time		180-(3/2+N)T	Min
t _{SU(RDY-AD)}	READY input setup time	- C _L =150pF	260-(3/2)T	Min
t _{su(da-ale)}	DA input setup time		180—2T	Min

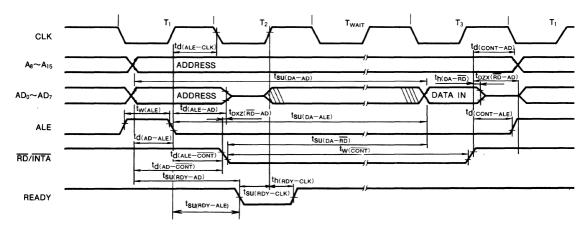
$\label{eq:switching} \textbf{CHARACTERISTICS} \quad (\texttt{T}_a = -20 \sim 75 \degree\texttt{C}, \texttt{V}_{cc} = 5 \texttt{V} \pm 5\%, \texttt{V}_{ss} = 0\texttt{V}, \texttt{ unless otherwise notes})$

Symbol	Palameter		Test conditions	Relational expression (Note 6)	Limit
	CLK output low-level pulse width			(1/2)T-80	Min
tw(CLK)	CLK output high-level pulse width			(1/2)T-40	Min
		AD ₀ ~AD ₇		(1/2)T-70	
td(ad-ale)	Delay time, address output to ALE signal	A ₈ ~A ₁₅		(1/2)T—45	Min
td(ALE-AD)	Delay time, ALE signal to address output			(1/2)T-60	Min
	ALE pulse width			(1/2)T-20	Min
td(ALE-CLK)	Delay time, ALE to CLK			(1/2)T-60	Min
td(ALE-CONT)	Delay time, ALE to control signal			(1/2)T-30	Min
	Address enable time from read			(1/2) T —10	Min
td(CONT-AD)	Address valid time after control signal		0 -150-5	(1/2)T-40	Min
	Delay time, data output to WR signal		C _L =150pF	(3/2+N)T-60	Min
td(WR-DA)	Delay time WR signal to data output			(1/2) T —60	Min
	Control signal pulse width			(3/2+N)T-80	Min
td(cont-ale)	Delay time, CONT to ALE signal	•		(1/2) T -110	Min
td(CLK-HLDA)	Delay time, CLK to HLDA signal			(1/2) T —50	Min
t _{DXZ(HLDA-BUS)}	Bus disable time from HLDA			(1/2) T +50	Max
t _{DZX(HLDA-BUS)}	Bus enable time from HLDA			(1/2) T +50	Max
td(cont-cont)	Control signal disable time	1		(3/2)T-80	Min
•	Delay time, address output to control	AD ₀ ~AD ₇		т—80	
td(ad-cont)	signal	A ₈ ~A ₁₅		т—50	Min

Note 6 N indicates the total number of wait cycles $T{=}t_{C(CLK)}$



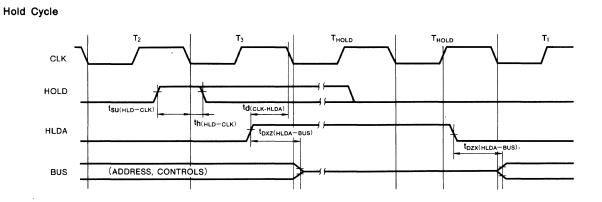
MITSUBISHI LSIS M5L8085AP


8-BIT PARALLEL MICROPROCESSOR

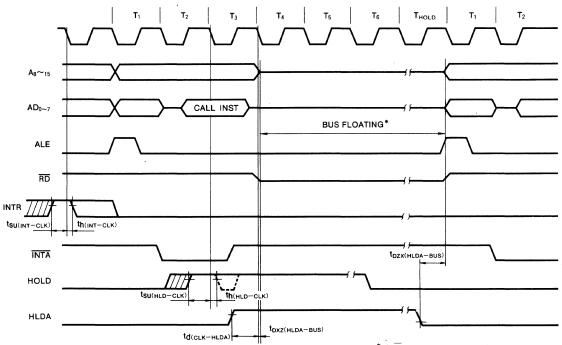
TIMING DIAGRAM

Write Cycle

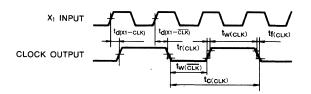
Read Cycle



Note : READY must remain stable during setup and hold times



MITSUBISHI LSIS M5L8085AP


8-BIT PARALLEL MICROPROCESSOR

Interrupt and Hold Cycle

Clock Output Timing Waveform

 $^*IO/\overline{M}$ is floating during this time

TRAP INTERRUPT AND RIM INSTRUCTIONS

TRAP generates interrupts regardless of the interrupt enable filp-flop (INTE FF). The current state of the INTE FF is stored in flip flop A (A FF) of the CPU and then the INTE FF is reset. The first RIM instruction after the generation of a TRAP interrupt differs in function from the ordinary RIM instruction. That is, the bit 3 (INTE FF information) in the accumulator ((A)₃) after the execution of the RIM instruction contains the contents of the A FF, regardless of the state of the INTE FF at the time the RIM instruction is executed. These details are shown in Figs.2 and 3, Table 1.

Below are the explanations of Fig. 2.

- 1. The TRAP interrupt request is issued while the instruction in address a is being executed.
- The TRAP interrupt causes the same action as an RST instruction and then jumps to address 24₁₆.
- 3. It returns to address a+1 after executing the RET instruction.

Table 1 shows the information in the INTE FF at address a + 3 and a + 4 when the instructions EI and/or DI are executed at addresses a - 1 and a + 2.

Fig. 4 is a flow chart of the TRAP interrupt processing routine.

Table 1 TRAP interrupt and RIM instructions

Condition	1	2	3	4	5	6
instruction in address a-1	É EI	EI	EI	DI	DI	DI
Instruction in address a+2	EI	NOP	DI	EI	NOP	DI
Contents of $(A)_3$ after the ex- ecution of the RIM instruction in address a+3	1	1	1	0	0	0
State of INTE FF after the ex- ecution of the RIM instruction in address a+3	1	0	0	1	0	0
Contents of (A) ₃ after the ex- ecution of the RIM instruction in address a+4	1	0	0	1	0	0
State of INTE FF after the ex- ecution of the RIM instruction in address a+4	1	0	0	1	0	0

Note 7 • The contents of (A)₃ after the excution of the RIM instruction is an information of the INTE FF The INTE FF assumes state 1 when it is in the EI state, and 0 when it is in the DI state

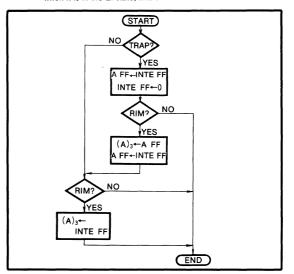


Fig.3 TRAP interrupt and INTE FF processing

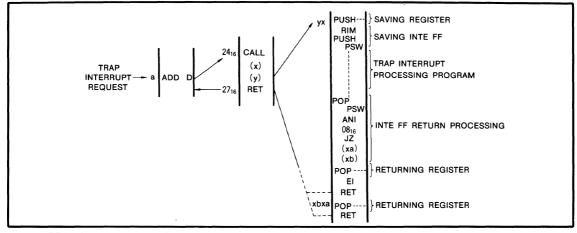
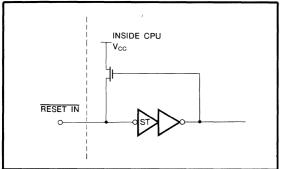



Fig. 4 TRAP interrupt processing routine

PULL-UP OF THE RESET IN INPUT

In order to increase the noise margin, the RESET IN input terminal is pulled up by about $3k\Omega$ (typ) when the condition $V_{I} \ge V_{IH}$ (RESIN) is satisfied. Fig. 5 is a connection diagram of the RESET IN input, and Fig. 6 shows the relation between input voltage and input current.

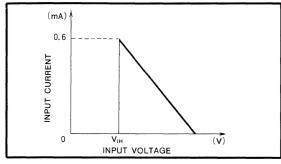


Fig. 6 RESET IN input current vs input voltage

DRIVING CIRCUIT OF X1 AND X2 INPUTS

Input terminals, X_1 and X_2 of the M5L8085AP can be driven by either a crystal, RC network, or external clock. Since the driver clock frequency is divided to 1/2 internally, the input frequency required is twice the actual execution frequency (6MHz for the M5L8085AP which is operated at 3MHz). Fig. 7 are typical connection diagram for a crystal circuit respectively.

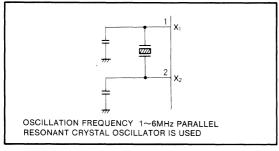
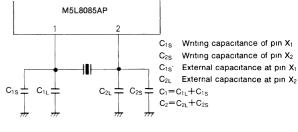
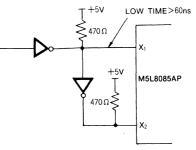



Fig. 7 Connections when crystal is used for X_1 and X_2 inputs

Conditions for Using a Quartz Crystal Element


- 1. Quartz Crystal Specifications
- Parallel resonance
- The frequency is 2 times the operation frequency (2 \sim 6.25MHz)
- Internal load capacitance: Approx. 16pF
- Parallel capacitance: Below 7pF
- Equivalent resistance: Below 75 Ω (for operation above 4MHz)
- For operation in the range 2 ~ 4MHz, the resistance showld be made as small as possible.
- Drive capability: Above 5mW (the power at which the crystal will be destoryed)

2. External Circuitry

- For operation above 4MHz: C₁=C₂=10pF
- For operation below 4MHz: C₁=C₂=15pF

External Clock Driver Circuit

Pullup resistors are required to assure that the high level voltage of the input is at least 4V

MITSUBISHI LSIS M5L8085AP

8-BIT PARALLEL MICROPROCESSOR

WAIT STATE GENERATOR

Fig. 8 shows a typical 1-wait state generator for low speed RAM and ROM applications.

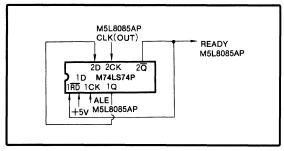


Fig. 8 1-wait state generator

Relation of Rim and Sim Instructions With The Accumulator

(Supplementary Description).

The contents of the accumulator after the execution of a RIM instruction is shown in Fig. 9.

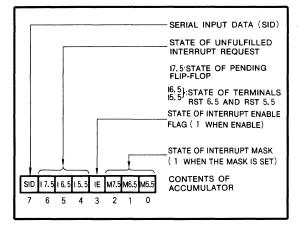


Fig. 9 Relation of the instruction RIM with the accumulator

The contents of the accumulator after the execution of a SIM instruction is shown in Fig.10.

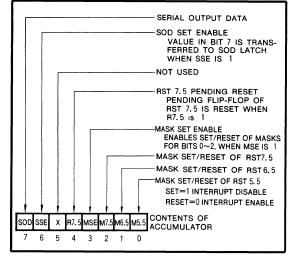


Fig. 10 Relation of the SIM instruction with the accumulator

MITSUBISHI LSIs

8-BIT INPUT/OUTPUT PORT WITH 3-STATE OUTPUT

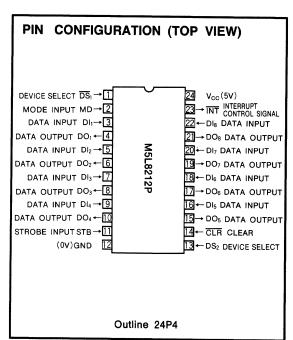
DESCRIPTION

The M5L8212P is an input/output port consisting of an 8-bit latch with 3-state output buffers along with control and device selection logic. Also a service request flip-flop for the generation and control of interrupts to a microprocessor is included.

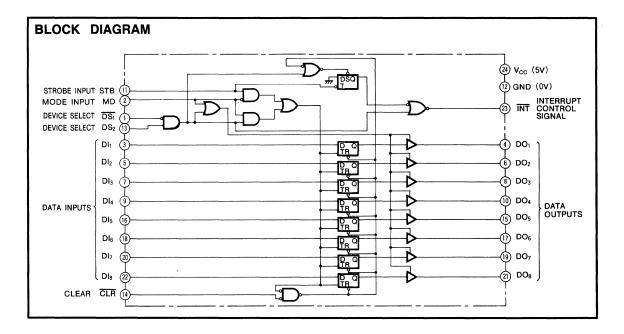
FEATURES

- Parallel 8-bit data register and buffer
- Service request flip-flop for interrupt generation
- Three-state outputs
- Low input load current: I_{IL}=-250µA(max.)
- High output sink current: I_{OL}=16mA(max.)
- High-level output voltage for direct interface to a M5L8085AP, CPU: V_{OH}=3.65V(min.)

APPLICATION


Input/output port for a M5L8085AP

Latches, gate buffers or multiplexers


Peripheral and input/output functions for microcomputer systems

FUNCTION

Device select 1 $(\overline{DS_1})$ and device select 2 (DS_2) are used for chip selection when the mode input MD is low. When $\overline{DS_1}$ is low and DS_2 is high, the data in the latches is transferred to the data outputs $DO_1 \sim DO_8$, and the service request flip-flop SR is set. Also, the strobed input STB is active, the data inputs $DI_1 \sim DI_8$ are latched in the data latches, and the service request flip-flop SR is reset.

When MD is high, the data in the data latches is transferred to the data outputs. When $\overline{\text{DS}_1}$ is low and DS_2 is high, the data inputs are latched in the data latches. The low-level clear input $\overline{\text{CLR}}$ resets the data latches and sets the service request flip-flop SR, but the state of the output buffers is not changed.

M5L8212P

8-BIT INPUT/OUTPUT PORT WITH 3-STATE OUTPUT

ABSOLUTE MAXIMUM RATINGS ($T_a=0\sim75$ °C, unless otherwise noted)

Symbol	Parameter	Conditions	Ratings	Unit
V _{cc}	Supply voltage		7.0	V
Vi	Input voltage DSI, MD inputs		Vcc	v
V,	Input voltage all other inputs except DSI, MD		5.5	v
Vo	Output voltage		Vcc	v
Pd	Power dissipation		800	mW
Topr	Operating free-air temperature range		0~75	°C
Tstg	Storage temperature range		-55~125	°C

RECOMMENDED OPERATING CONDITIONS $(T_a=0~75$ °C, unless otherwise noted)

0	Parameter		Limits			
Symbol	Farameter	Min	Nom	Мах	Unit	
V _{cc}	Supply voltage	4.75	5.0	5.25	V	
I _{он}	High-level output current			-1	mA	
I _{OL}	Low-level output current			16	mA	

ELECTRICAL CHARACTERISTICS (Ta=0~75°C, unless otherwise noted)

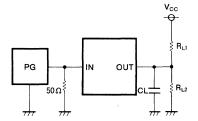
Symbol	Parameter	Test see ditions		Limits		Unit
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
ViH	High-level input voltage		2			v
VIL	Low-level input voltage				0.85	v
VIC	Input clamp voltage	$V_{CC}=4.75V, I_{IC}=-5mA$			-1	v
V _{он}	High-level output voltage	V_{CC} =4.75V, V_{IH} =2V V_{IL} =0.85V, I_{OH} =-1mA	3.65			v
V _{oL}	Low-level output voltage	$V_{CC}=4.75V, V_{1H}=2V,$ $V_{1L}=0.85V, I_{0L}=15mA$			0.45	v
l _{oz}	Three-state output current	V_{CC} =5.25V, V_{IH} =2V, V_{IL} =0.85V, V_{C} =5.25V			20	μA
l _{oz}	Three-state output current	$V_{CC}=5.25V, V_{IH}=2V,$ $V_{IL}=0.85V, V_{O}=0.45V$			-20	μA
l _{iH}	High-level input current, STB DS2, $\overline{\text{CLR}}$, DI ₁ \sim DI ₈ inputs	V _{cc} =5.25V, V ₁ =5.25V			10	μA
Iн	High-level input current. MD input	V _{CC} =5.25V, V _I =5.25V			30	μA
l _{iH}	High-level input current, DS1 input	V _{CC} =5.25V, V ₁ =5.25V			40	μA
l _{iL}	Low-level input current. STB, DS2, $\overline{\text{CLR}}$, DI ₁ \sim DI ₈ inputs	$V_{cc}=5.25V, V_{l}=0.5V$			-0.25	mA
l _{iL}	Low-level input current. MD input	V _{cc} =5.25V, V _I =0.5V			-0.75	mΑ
IIL .	Low-level input current. DS1 input	V _{cc} =5.25V, V ₁ =0.5V			-1	mA
los	Short-circuit output current (Note 3)	V _{cc} =5.0V	-15		-75	mA
Icc	Supply current from V _{CC}	V _{cc} =5.25V			130	mA

Note 1 · All voltage are with respect to GND terminal Reference voltage (pin 12) is considered as 0V and all maximum and minimum values are defined in absolute values.

Current flowing into an IC is positive, out is negative. The maximum and minimum values are defined in absolute values
 All measurements should be done quickly, and two outputs should not be measured at the same time

TIMING REQUIREMENTS ($\tau_a=0\sim75$ °C , $v_{cc}=5V\pm5\%$, unless otherwise noted)

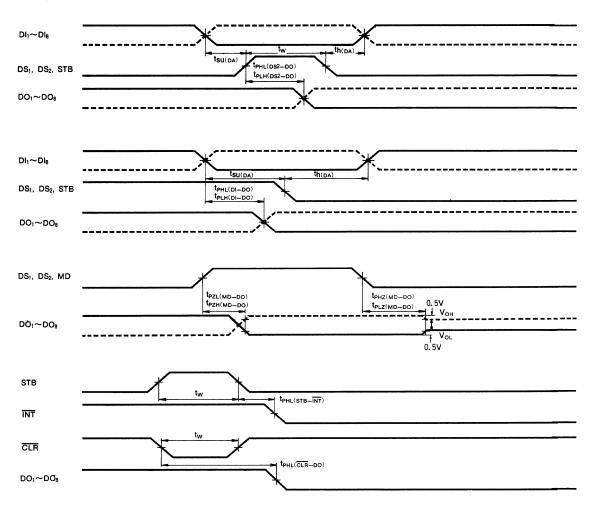
Cumb al	Desementes	Test conditions	Limits			Unit
Symbol	Parameter	Test conditions	Min	Тур	Max	
t _{w(DS2)}	Input pulse width, $\overline{\text{DS}_1}$, DS_2 and STB		30			ns
t _{su(da)}	Data setup time with respect to $\overline{\text{DS}_1}$, DS_2 and STB		15			ns
th(DA)	Data hold time with respect to $\overline{\text{DS}_1},\text{DS}_2$ and STB		20			ns


M5L8212P

8-BIT INPUT/OUTPUT PORT WITH 3-STATE OUTPUT

SWITCHING CHARACTERISTICS (T_a=0~75°C, V_{CC}=5V \pm 5%, unless otherwise noted)

0hal	Damastan			Limits		11-14
Symbol	Parameter	Test conditions (Note 4)	Min	Тур	Мах	Unit
t _{PHL(DI-DO)}	High-to-low-level and low-to-high-level output propagation				30	
t _{PLH(D1-D0)}	time, from input DI to output DO	0 - 30- F D - 2000 D - 6000			- 30	ns
t _{PHL(DS2-DO)}	High-to-low-level and low-to-high-level output propagation	$C_L=30pF, R_{L1}=300\Omega, R_{L2}=600\Omega$			40	
t _{PLH(DS2-DO)}	time. from input $\overline{\text{DS1}}$, DS2 and STB to output DO				40	ns
tPHL(STB-INT)	High-to-low-level output propagation time, from input STB to output INT				40	ns
t _{PZL(MD-DO)}	Z-to-low-level and Z-to-high-level output propagation	$C_L=30pF, R_{L1}=300\Omega, R_{L2}=600\Omega$			45	
t _{PZH(MD-DO)}	time, from inputs MD, $\overline{\text{DS1}}$ and DS2 to output DO	$C_L=30pF, R_{L1}=10k\Omega, R_{L2}=1k\Omega$			45	ns
t _{PHZ(MD-DO)}	High-to-Z-level and low-to-Z-level output propagation	$C_L=5pF, R_{L1}=10k\Omega, R_{L2}=1k\Omega$			45	
t _{PLZ(MD-DO)}	time, from inputs MD, $\overline{\text{DS1}}$ and DS2 to output DO	C _L =5pF, R _{L1} =300Ω, R _{L2} =600Ω			45	ns
	High-to-low-level output propagation time, from input				55	
tPHL(CLR-DO)	CLR to output DO	$C_L = 30 pF, R_{L1} = 300 \Omega, R_{L2} = 600 \Omega$			55	ns


Note 4 : Test circuit

M5L8212P

8-BIT INPUT/OUTPUT PORT WITH 3-STATE OUTPUT

TIMING DIAGRAMS REFERENCE LEVEL=1.5V

MITSUBISHI LSIs

M5L8216P / M5L8226P

4-BIT PARALLEL BIDIRECTIONAL BUS DRIVERS

DESCRIPTION

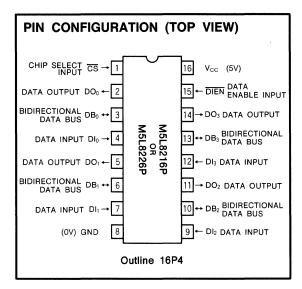
The M5L8216P and M5L8226P are 4-bit bidirectional bus drivers and suitable for the 8-bit parallel CPU M5L8085AP.

FEATURES

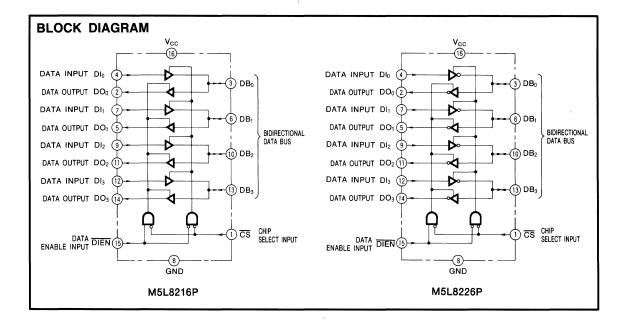
- Parallel 8-bit data bus buffer driver
- Low input current DIEN. CS: $I_{\mu} = -500 \,\mu A(\text{max.})$ $I_{\rm IL} = -250 \mu A({\rm max.})$ DI, DB: High output current M5L8216P DB: $I_{OI} = 55 \text{mA}(\text{max.})$ I_{OH}=-10mA(max.) $I_{OH} = -1 mA(max.)$ DO: M5L8226P DB: $I_{OI} = 50 \text{ mA}(\text{max.})$ $I_{OH} = -10 \text{mA}(\text{max.})$ $I_{OH} = -1 mA(max.)$ DO:
- Outputs can be connected with

the CPU M5L8085AP: V_{OH}=3.65V(min.)

Three-state output


APPLICATION

Bidirectional bus driver/receiver for various types of microcomputer systems.


FUNCTION

The M5L8216P is a non-inverting and the M5L8226P is an inverting 4-bit bidirectional bus driver.

When the terminal \overline{CS} is high-level, all outputs are in high-impedance state, and when low-level, the direction of the bidirectional bus can be controlled by the terminal \overline{DIEN} .

The terminal DIEN controls the data flow. The data flow control is performed by placing one of a pair of buffers in high-impedance state and allowing the other to transfer the data.

M5L8216P/M5L8226P

4-BIT PARALLEL BIDIRECTIONAL BUS DRIVERS

ABSOLUTE MAXIMUM RATINGS ($T_a=0\sim75^{\circ}C$, unless otherwise noted)

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Supply voltage		7	v
Vi	Input voltage, CS DIEN. DI inputs		5.5	v
V	Input voltage. DB input	With respect to GND	V _{cc}	v
Vo	High-level output voltage		V _{cc}	v
Pd	Power dissipation	T _a =25°C	700	mW
Topr	Operating free-air temperature range		0~75	ĉ
Tstg	Storage temperature range		-65~+150	ĉ

RECOMMENDED OPERATING CONDITONS (Ta=0~75°C, unless otherwise noted)

	. .		Limits		Unit
Symbol	Parameter	Min	Nom	Max	Unit
V _{CC} Supply voltage		4.75	5	5.25	v
I _{OH}	High-level output current. DO output			-1	mA
Гон	High-level output current. DB output			-10	mA
IOL	Low-level output current. DO output			15	mA
IOL	Low-level output current. DB output			25	mA

ELECTRICAL CHARACTERISTICS $(T_a=0~75^{\circ}C, unless otherwise noted)$

Symbol	Parameter		Cond	tion o		Limits		Unit V V V V V V V V V (MA (MA
Symbol	Parameter		Cond	Itions	Min	Тур	Max	Unit
VIH	High-level input voltage				2			v
VIL	Low-level input voltage						0.95	v
VIC	Input clamp voltage		V _{cc} =4.75V, I _{ic} =-5m	nA			-1	v
V _{он}	High-level output voltage DO output			I _{OH} =-1mA	3.65			v
V _{он}	High-level output voltage DB output			I _{OH} =-10mA	2.4			v
V _{OL1}	Low-level output voltage DO output		$V_{cc}=4.75V$ $V_{H}=2V$	I _{OL} =15mA			0.45	v
V _{OL1}	Low-level output voltage. DB output		$V_{IH} = 2V$ $V_{IL} = 0.95V$	I _{OL} =25mA			0.45	
VOL2	Low-level output voltage DB output	M5L8216P		I _{OL} =55mA			0.6	
VOL2	Low-level output voltage DB output	M5L8226P		I _{OL} =50mA			0.6	
I _{OZH}	Off-state output current. DO output			Vo=5.25V			20	μA
I _{оzн}	Off-state output current. DB output			V ₀ =5, 25V	-		100	μA
lozL	Off-state output current. DO output		V _{CC} -5.25V	Vo=0.45V			-20	μA
lozl	Off-state output current DB output			v ₀ -0.45 v			-100	μA
I _{IH}	High-level input current DIEN CS in	puts	- V _{CC} =5. 25V, V _H =4. 5V	,			20	μA
l _{iH}	High-level input current. DI, DB input	ts	V _{CC} -5.25V, V _{IH} -4.5	v			10	μA
I _{IL}	Low-level input current. DIEN CS in	outs	V _{CC} =5. 25V, V _H =4. 5 ^v				500	μA
l _{IL}	Low-level input current. DI, DB input		V _{CC} =5.25V, V _{IH} =4.5	v			-250	μA
los	Short-circuit output DO output (Note	2)	$V_{cc} = 5,25V, V_{c} = 0V$		-15		-65	mA
los	Short-circuit output DB output (Note 2)		V _{CC} =5.25V, V ₀ =0V		-30		-120	mA
	Surah annat	M5L8216P					100	A
Icc	Supply current	M5L8226P	N			100		mA
	Suash, sumast a	M5L8216P	V _{cc} =5.25V				120	
I _{CCZ}	Supply current z	M5L8226P					100	mA

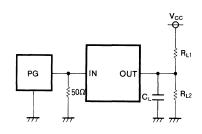
Note 1 · Current flowing into an IC is postive, out is negative 2 · All measurements should be done quickly, and not more than one output should be shorted at a time

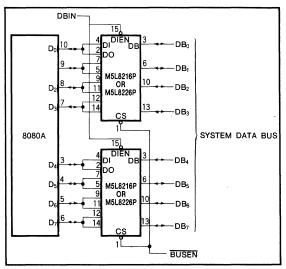
M5L8216P / M5L8226P

4-BIT PARALLEL BIDIRECTIONAL BUS DRIVERS

SWITCHING CHARACTERISTICS ($v_{cc}=5v\pm5\%$, $T_a=25\%$, unless otherwise noted)

O	Bassada				Limits		
Symbol	Parameter		Test conditions (Note 3)	Min	Тур	Max	Unit
t _{PHL(DB-DO)}	High-to-low and low-to-high output p	ropagation time.	C			25	
t _{PLH(DB-DO)}	from input DB to output DO		$C_L=30pF, R_{L1}=300\Omega, R_{L2}=600\Omega$			25	ns
t _{PHL(DI-DB)}	High-to-low and low-to-high output	M5L8216P				30	
t _{PLH(DI-DB})	propagation time. from input DI to output DB	M5L8226P	$C_L = 300 \text{pF}, R_{L1} = 90 \Omega, R_{L2} = 180 \Omega$			25	ns
t _{PHZ} (CS-DO)	High-to-Z and low-to-Z output propa	gation time.	$C_L=5pF, R_{L1}=10k\Omega, R_{L2}=1k\Omega$			35	
t _{PLZ} (CS-DO)	from inputs $\overline{\text{DIEN}}$ $\overline{\text{CS}}$. to output DO	1	$C_L=5pF, R_{L1}=300\Omega, R_{L2}=600\Omega$]		35	ns
•	M5L8216P		$C_1 = 30 p F$, $R_{11} = 10 k \Omega$, $R_{12} = 1 k \Omega$			65	
t _{PZH} (CS-DO)	Output enable time.	M5L8226P	$C_{L} = 30 \text{ pr}, R_{L1} = 10 \text{ km}, R_{L2} = 1 \text{ km}$		54	54	ns
•	from inputs DIEN CS to output DO	M5L8216P	0			65	
t _{PZL} (CS-DO)		M5L8226P	$C_L = 30 \text{pF}, R_{L1} = 300 \Omega, R_{L2} = 600 \Omega$			54	ns
t _{PHZ} (CS-DB)	Output disable time. from inputs DIE	N. CS to	$C_L=5pF, R_{L1}=10k\Omega, R_{L2}=1k\Omega$			25	
t _{PLZ} (CS-DB)	output DB		$C_L=5pF, R_{L1}=90\Omega, R_{L2}=180\Omega$		35		ns
•		M5L8216P				65	
t _{PZH} (CS-DB)	Output enable time from inputs M5L8226P	M5L8226P	$C_{L}=300 \text{pF}, R_{L1}=10 \text{k}\Omega, R_{L2}=1 \text{k}\Omega$			54	ns
	DIEN. CS. to output DB	M5L8216P	0			65	
t _{PZL} (CS-DB)		M5L8226P	$C_{L}=300 \text{pF}, R_{L1}=90 \Omega, R_{L2}=180 \Omega$			54	ns


TIMING DIAGRAM (Reference level=1.5V)



APPLICATION EXAMPLES

Fig. 1 shows a pair of M5L8216Ps or M5L8226Ps which are directly connected with the 8080A CPU data bus, and their control signal. Fig. 2 shows an example circuit in which the M5L8216P or M5L8226P is used as an interface for memory and I/O to a bidirectional bus.

M5L8216P / M5L8226P

4-BIT PARALLEL BIDIRECTIONAL BUS DRIVERS

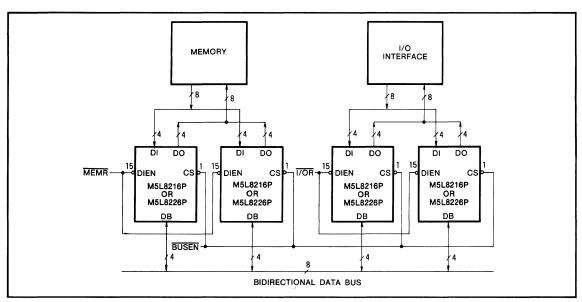


Fig. 2 Memory and I/O interface to bidirectional data bus

PRECAUTIONS FOR USE

When the M5L8216P data input or two-way data bus is set to high to disable-output from the two-way bus or data output, care is required as a low glitch of approximate width 10ns will be generated.

•

MELPS 86/88 MICROPROCESSORS

.

MITSUBISHI LSIS M5L8282P/M5L8283P

OCTAL LATCH

DESCRIPTION

The M5L8282P and M5L8283P are semiconductor integrated circuits consisting of sets of eight 3-state latches for use with various types of microprocessors.

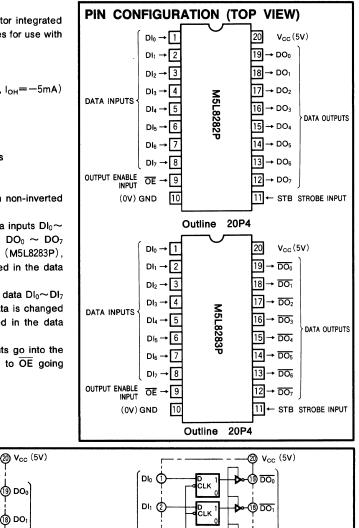
FEATURES

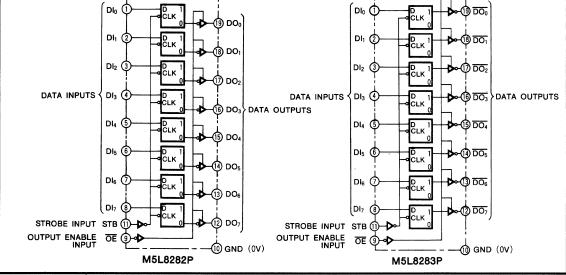
- 3-state, high-fanout output (I_{OL}=32mA, I_{OH}=-5mA)
- Low power dissipation

BLOCK DIAGRAM

APPLICATION

Data latches for various microcomputer systems


FUNCTION


The M5L8282P and M5L8283P are latches with non-inverted and inverted outputs, respectively.

When the strobe input STB is high, the data inputs $DI_0 \sim DI_7$ are passed through the data outputs $DO_0 \sim DO_7$ (M5L8282P) or to the data outputs $\overline{DO_0} \sim \overline{DO_7}$ (M5L8283P), changes in the $DI_0 \sim DI_7$ signals being reflected in the data outputs.

If the STB is changed from high to low, the data $DI_0 \sim DI_7$ just before the change is latched. If the DI data is changed while STB is low, this change is not reflected in the data outputs.

When \overline{OE} is made high, all the data outputs go into the high-impedance state, the data latched prior to \overline{OE} going high being held.

M5L8282P/M5L8283P

OCTAL LATCH

ABSOLUTE MAXIMUM RATINGS ($T_a=0\sim75^{\circ}C$, unless otherwise noted)

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Supply voltage		-0.5~+7	V
V,	Input voltage		-0.5~+5.5	v
Vo	Output voltage		-0.5~V _{cc}	V
Topr	Operating free-air temperature range		0~+75	ĉ
Tstg	Storage temperature range		-65~+150	Ĉ

Symbol	Borr	meter		Limits		114
Symbol	Faia	meter	Min	Nom	Max	Unit
Vcc	Supply voltage	Supply voltage		5	5.5	v
Іон	High-level output current	High-level output current V _{OH} ≥2.4V			-5	mA
IOL	Low-level output current	V _{OL} ≦0.45V	0		32	mA

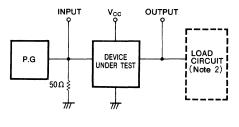
ELECTRICAL CHARACTERISTICS $(T_a=0~75$ °C, unless otherwise noted)

Symbol	Parameter	Toot and divers		Limits		
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
VIH	High-level input voltage		2			v
VIL	Low-level input voltage				0.8	v
VIC	Input clamp voltage	$V_{CC}=4.5V, I_{IC}=-5mA$			-1	v
V _{OH}	High-level output voltage	V _{CC} =4.5V, I _{OH} =-5mA	2.4			v
Vol	Low-level output voltage	V _{CC} =4.5V, I _{OL} =32mA			0.45	v
I _{ozh}	Off-state output current, high-level applied to the output	V _{cc} =5.5V, V ₁ =2V, V ₀ =5.25V			50	μA
loz∟	Off-state output current, low-level applied to the output	$V_{cc}=5.5V, V_{l}=2V, V_{o}=0.4V$			50	μA
Iн	High-level input current	V _{cc} =5.5V, V _i =5.25V			50	μA
I _{IL}	Low-level input current	V _{CC} =5.5V, V ₁ =0.45V			-0.2	mA
Icc	Supply current	V _{cc} =5.5V			80	mA
C _{IN}	Input capacitance	F=1MHz, V_{BIAS} =2.5V V_{CC} =5V, T_{a} =25°C			12,	pF

$\label{eq:switching characteristics} SWITCHING CHARACTERISTICS ~ (v_{cc} = 5V \pm 10\%, ~ T_a = 0 \sim 75^\circ C, ~ unless ~ otherwise ~ noted)$

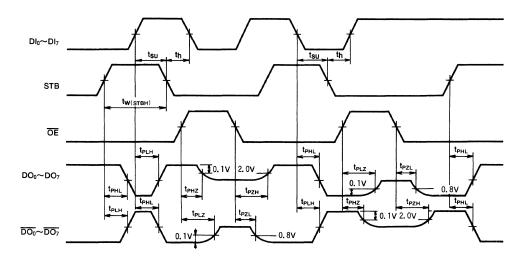
Symbol	Parameter	Alternate	Test		M5L8282P Limits		M5L8283P Limits			Unit
		symbol	conditions	Min	Тур	Мах	Min	Тур	Max	
t _{PLH} t _{PHL}	Propagation time from DI input to DO or DO for low-to-high or high-to-low change	T _{IVOV}		5		30	5		22	nş
t _{PLH} t _{PHL}	Propagation time from STB input to DO or $\overline{\text{DO}}$ for low-to-high and high-to-low change	Т _{зноv}	(Note 1)	10		45	10		40	ns
t _{PZH} t _{PZL}	Propagation time from \overline{OE} input to DO or \overline{DO} output when output is enabled	T _{ELOV}		10		30	10		30	ns
t _{PHZ} t _{PLZ}	Propagation time from \overline{OE} input to DO or DO output when the output is dis- abled	T _{EHOV}		5		18	5		18	ns

M5L8282P/M5L8283P


OCTAL LATCH

TIMING REQUIREMENTS ($v_{cc}=5V\pm10\%$, $T_a=0\sim75\%$, unless otherwise noted)

Symbol	Baramatar	Alternate	Test conditions		Limits		Unit
	Parameter	symbol	Test conditions	Min	Тур	Max	Unit
t _{w(sтвн})	Strobe STB high pulse width	T _{SHSL}		15			ns
t _{su}	Strobe STB setup time for DI ₀ ~DI ₇	TIVSL		0			ns
th	STB hold time for DI ₀ ~DI ₇	T _{SLIX}		25			ns


Note 2 :

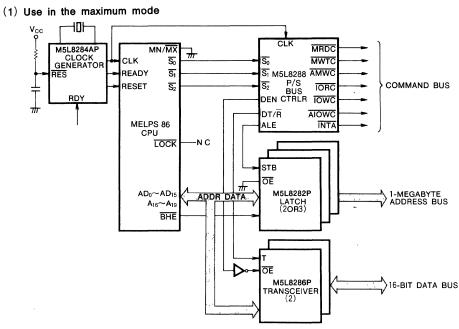
Note 1 : Test Circuit

TEST ITEM	t _{PLH} , t _{PHL}	t _{PLZ} , t _{PZL}	t _{PHZ} , t _{PZH}
LOAD CIRCUIT	2. 14V 52. 7Ω 52. 7Ω 300pF	1.5V \$33Ω 	1.5V \$ 180 Ω 300pF 777

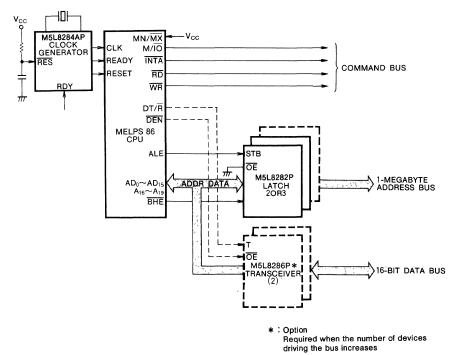
TIMING DIAGRAM (Reference voltage=1.5V)

PRECAUTIONS FOR USE

Care should be taken to accommodate the glitch that is generated when STB goes from low to high with the output low for the M5L8283P.



MITSUBISHI LSIs


M5L8282P/M5L8283P

OCTAL LATCH

APPLICATION EXAMPLES

(2) Use in the minimum mode

CLOCK GENERATOR AND DRIVER

DESCRIPTION

The M5L8284AP is a clock generator and driver for use with the MELPS 86, 88 processors.

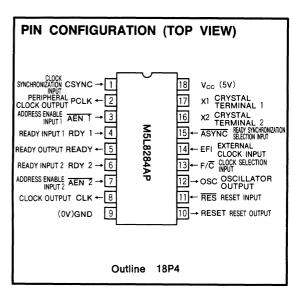
It has a synchronous delay circuit and synchronous control circuit capable of controlling two Multibus (Intel trademark) circuits.

FEATURES

- Crystal controlled stable output frequency
- Capable of synchronous operation with other M5L8284APs
- External frequency input
- A power-on reset by means of an external capacitor and resistor

APPLICATION

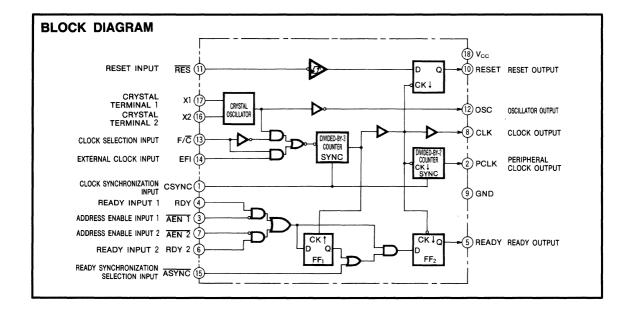
Clock driver and generators and driver for MELPS 86, 88


FUNCTION

The M5L8284AP is a clock generator/driver for the MELPS 86, 88 microprocessors.

The chip contains a crystal controlled oscillator, a divided-by-3 counter, a peripheral clock output provided divided-by-2 counter, a reset circuit and ready circuit to ensure synchronization to the CLK signal.

The reset input RES is used to generate the reset output RESET as the CPU reset synched to the CLK signal. A Schmitt trigger is used at the input side.


Thus, a reset signal can be output at power on by connecting a capacitor and resistor to the $\overline{\text{RES}}$ input.

The frequency/crystal selection input F/\overline{C} can be used to select the crystal oscillator circuit output or an external clock input as the input for the divide-by-three counter.

By using these pins, the M5L8284AP output can be used to drive multiple M5L8284AP devices.

The clock synchronization input CSYNC is used to operate multiple M5L8284APs in sync.

A STATE OF A STATE

CLOCK GENERATOR AND DRIVER

PIN DESCRIPTIONS

Pin	Name	Input or output	Function
AEN1, AEN2	Address enable input	Input	When AENI and AEN2 are set low, RDY1 and RDY2 are enabled, respectively. By using these two inputs separately, the CPU can be used to access two Multibusses. When not used as a multimaster, AEN should be set to low. These inputs are active low.
RDY1, RDY2	Bus ready input	Input	These inputs are connected to the output signal indicating the completion of data reception from a system bus device or, indicating that data is valid RDY1 and RDY2 are enabled when AEN1 and AEN2 are low, respectively. These inputs are active high.
ASYNC	Active low input	Input	This signal is used to select the synchronization mode of the READY signal generation circuit. When the $\overline{\text{ASYNC}}$ signal is set low, the READY signal is generated in two synchronization steps. When the $\overline{\text{ASYNC}}$ signal is set high, the READY signal is generated in one step
READY	Ready output	Output	The state of RDY appears at this output in synchronization with the CLK output This is done to synchronize the READY output to the M5L8284AP internal clock because the RDY input generation is unrelated to the CLK signal. This pin is normally connected to the CPU ready input and cleared after the required hold CPU time has elapsed.
X ₁ , X ₂	Crystal element terminals	Input	These pins are used to connect the crystal. The crystal frequency is 3 times of CPU clock frequency The crystal should be in the 12-25MHz range with the series resistance as possible as small. Care should be taken that these pins are not shorted to ground
F/C	Clock selection input	Input	When F/\overline{C} is set low, CLK and PCLK outputs are driven from the crystal oscillator circuit. When it is set high, they are driven from the EFI input.
EFI	External clock input	Input	When F/\overline{C} is set high, CLK and PCLK output signals are driven from this pin. A TTL level rectangular signal and three times of the CPU frequency should be used.
CLK	Clock output	Output	This output is connected to the clock inputs of the CPU and the peripheral devices on the local bus. The output waveform is 1/3 the frequency of the crystal oscillator connected at X_1 and X_2 or the signal applied to the FEI input, and has a duty cycle of 1/3. Since for $V_{CC}=5V$, $V_{OH}=4.5V$, this output can be directly drive the CPU clock input.
PCLK	Peripheral clock output	Output	This output provides a clock signal for use with peripheral devices. The output waveform is 50% duty cycle TTL level rectangular waveform with a frequency 1/2 that of the clock output.
osc	Oscillator output	Output	This output is a TTL level crystal oscillator output. The frequency is the same as that of the crystal connected at X_1 and X_2 , but care should be taken as the frequency will be unstable if these pins are left open.
RES	Reset input	Input	This active low input is used to generate the reset output signal for the CPU. The input is a schmitt trigger input so that by connecting a capacitor and a resistor, the CPU reset signal can be generated at power on.
RESET	Reset output	Output	This pin is connected to the CPU reset input. The signal at this pin is synchronized the $\overline{\text{RES}}$ input with the CLK signal. This output is active high.
CSYNC	Clock synchronization input	Input	When using multiple M5L8284AP devices, this input is used as a clock synchronization input When CSYNC is high, the internal counter of the M5L8284AP is reset and when CSYNL is low, it begins operation. CSYNC must be synchronized with EFI. See application notes.

CLOCK GENERATOR AND DRIVER

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
V _{cc}	Supply voltage		-0.5~7	v
Vi	Input voltage		-0.5~5.5	v
Vo	Output voltage		-0.5~V _{cc}	v
Topr	Operating free-air temperature range		0~75	Ĉ
T _{stg}	Storage temperature range		-65~150	Ĉ

RECOMMENDED OPERATING CONDITIONS ($T_a=0~75$ °C, unless otherwise noted)

Ormetral	Dam	Parameter			Limits			
Symbol			Min	Nom	Max	Unit		
Vcc	Supply voltage	4.5	5	5.5	v			
		CLK V _{OH} =4V	0		1	mA		
юн	High-level output current	Other outputs V _{OH} =2.4V				mA		
I _{OL}	Low-level output current	V _{oL} ≦0. 45V	0		5	mA		

ELECTRIC CHARACTERISTICS ($T_a=0\sim75^{\circ}C$, unless otherwise noted)

۰. .

Quere hard	Dese				Limits			
Symbol	Para	meter	Test conditions	Min	Тур	Max	Unit	
		RES		2.6			v	
VIH	High-level input voltage	Other inputs RES		2			v	
VIL	Low-level input voltage					0.8	v	
$v_{\tau+} - v_{\tau-}$	Hysteresis width	RES	V _{cc} =5V	0.25			v	
VIC	Input clamp voltage		$V_{cc}=4.5V, I_{lc}=-5mA$			-1	v	
		CLK	V _{CC} =4.5V, I _{OH} =-1mA	4			v	
V _{он}	High-level output voltage	Other outputs CLK		2.4			v	
Vol	Low-level output voltage		V _{CC} =4.5V, I _{OL} =5mA			0.45	v	
Iн	High-level input current		V _{CC} =5.5V, V _I =5.25V			50	μA	
		ASYNC				-1.3		
l _{iL}	Low-level input current	Other inputs ASYNC				-0.5	mA	
Icc	Supply current		V _{cc} =5.5V			162	mA	

CLOCK GENERATOR AND DRIVER

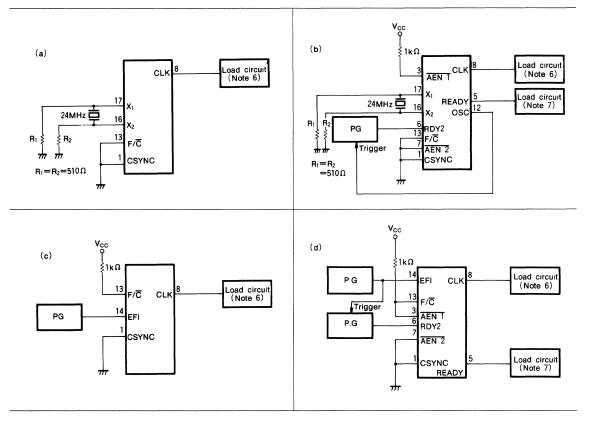
		Alternate			Limits		Unit	
Symbol	Parameter	symbol	Test conditions	Min	Тур	Max	Offic	
т _с	CLK repetition period	t _{CLCL}		100			ns	
-			(Note 5 a, b) CLKF _{req} ≦8MHz	(1/3t _{CLC}	L)+2			
T _{W(CLKH)}	CLK high pulse width	t _{CHCL}	CLKF _{req} =10MHz	39	39		ns	
-			(Note 5 a, b) CLKF _{req} ≦8MHz	(² / ₃ t _{CLC}	L)_15		ns	
Tw(CLKL)	CLK low pulse width	t _{CLCH}	CLKF _{req} =10MHz	53				
t _{TLH}	CLK low-high transition time	t _{CH1CH2}	1~3.5V			10	ns	
t _{THL}	CLK high-low transition time	t _{CL2CL1}	3.5~1V			10	ns	
Tw(PCLKH)	PCLK high pulse width	t _{PHPL}		t _{CLCL} -20			ns	
TW(PCLKL)	PCLK low pulse width	t _{PLPH}		t _{CLCL} -20			ns	
^t dıv	READY inhibit time with respect to CLK (Note 1)	t _{RYLCL}	(Note 5 c, d)	-8			ns	
•	READY enable time with (Note 2)		(Note 5 c, d) CLKF _{req} ≦8MHz	52				
td∨	respect to CLK (Note 2)	t _{RYHCH}	CLKFreq=10MHz	53			ns	
TDHL(CLK-RESET)	High-low delay time from CLK to RESET	tolil				40	ns	
TDLH(CLK-PCLK)	Low-high delay time from CLK to PCLK	t _{CLPH}				22	ns	
TDHL(CLK-PCLK)	High-low delay time from CLK to PCLK	t _{CLPL}				22	ns	
T _{DLH(OSC-CLK)}	Low-high delay time from OSC to CLK	t _{olch}		-5		22	ns	
TDHL(OSC-CLK)	High-low delay time from OSC to CLK	tolcl		2		35	ns	
Τr	Output rise time	t _{oloh}	0.8~2V (except CLK)			20	ns	
tf	Output fall time	t _{OHOL}	2~0.8V (except CLK)			12	ns	

SWITCHING CHARACTERISTICS ($v_{cc}=5v\pm10\%$, $T_a=0\sim75^{\circ}$, unless otherwise noted) .

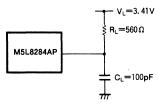
Note 1 : Applies to T2 state time 2 : Applies to T3 and TW state times

CLOCK GENERATOR AND DRIVER

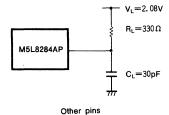
		Alternate			Limits		
Symbol	Parameter	symbol	Test conditions	Min	Тур	Max	Unit
f(xtal)max	Crystal frequency			12		25	MHz
t _{w(EFIH)}	EFI high pulse width	t _{EHEL}	90%-90%V _{IN}	13			ns
	EFI low pulse width	t _{ELEH}	10%-10%V _{IN}	13			ns
T _{C(EFI)}	EFI repetition period (Note 3)	telel		t _{ehel} + t _{eleh} +δ			ns
	RDY1 and RDY2 active setup time with respect to CLK	t _{RIVCL}	ASYNC=HIGH	35			ns
	RDY1 and RDY2 active hold time with respect to CLK	t _{RIVCH}	ASYNC=LOW	35			ns
t _{SU(RDY)}	RDY1 and RDY2 inactive setup time with respect to CLK	tRIVCL		35			ns
th(RDY)	RDY1 and RDY2 hold time with respect to CLK	t _{olrix}		0			ns
	ASYNC setup time with respect to CLK	tayvol		50			ns
th(ASYNC)	ASYNC hold time with respect to CLK	t _{olayx}		0			ns
t _{su(aen)}	AEN1 and AEN2 setup time with respect to RDY1 and RDY2	tAIVRIV		15			ns
t _{h(AEN)}	AEN1 and AEN2 hold time with respect to CLK	tolaix		0			ns
tsu(CSYNC)	CSYNC setup time with respect to EFI	t _{үнен}		20			ns
th(csync)	CSYNC hold time with respect to EFI	t _{enyl}		20			ns
tw(CSYNC)	CSYNC pulse width	t _{YHYL}		2t _{ELEL}			ns
	RES setup time with respect to CLK (Note 4)	t _{ITHOL}		65			ns
	RES hold time with respect to CLK (Note 4)	t _{oliih}		20			ns
tr	Input rise time	t _{iLIH}	0.8~2V			20	ns
tf	Input fail time	t _{iHIL}	2~0.8V			12	ns


TIMING REQUIREMENTS ($V_{cc}=5V \pm 10\%$, $T_a=0\sim75$ °C, unless otherwise noted)

Note 3 : δ =t_f(5ns max)+EFI + t_f(5ns max)+EFI 4 : t_{su(RES)} and t_{h(RES)} are theoretically only to guarantee logic in the next clock period

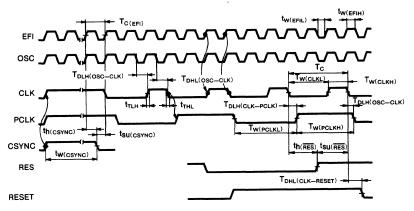


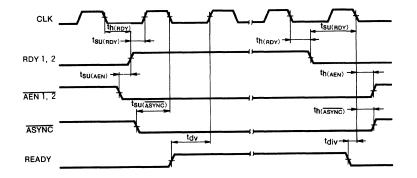
CLOCK GENERATOR AND DRIVER


Note 6 : Load Circuit

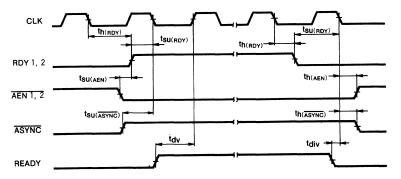
CLK pins

ţ

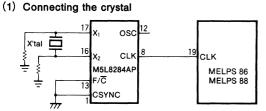



CLOCK GENERATOR AND DRIVER

TIMING DIAGRAM (Reference level=1.5V)


CLK, RESET Signals

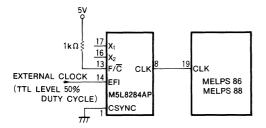
READY Signal (with asynchronous device)


READY Signal (with synchronous device)

CLOCK GENERATOR AND DRIVER

APPLICATION NOTES

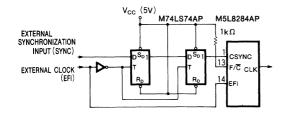
The crystal frequency should be three times the cycle time of the 8086, 8088 or 8089, and the crystal should be located as close to the M5L8284AP as possible.

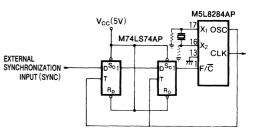

PRECAUTIONS FOR USE

(1) The oscillator circuit of the M5L8284AP is designed for use with the fundamental mode crystal.

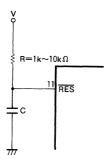
If noise is allowed to enter the XTAL1, XTAL2 or V_{CC} pins, the oscillator frequency will be pulled of the parallel resident frequency and the stray capacitance between XTAL1 and XTAL2 may cause the circuit to go into relaxation oscillation. To prevent this, care should be given to the following points.

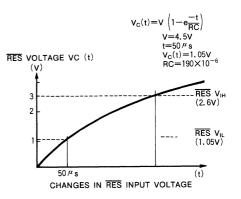
- (1) The should be one with a small parallel capacitance.
- (2) A 0.01 0.1 μ F capacitor should be connected between V_{CC} and ground. This capacitor should be located as close as possible to the IC.


(2) External clock connections

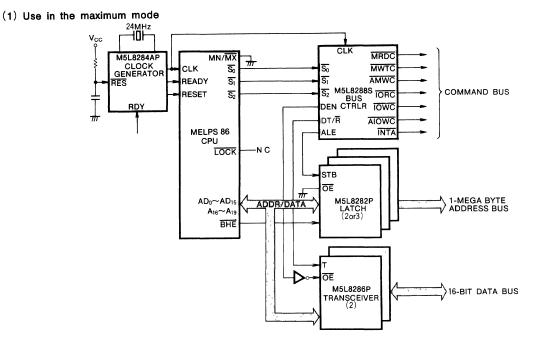

The frequency should be three times the CPU cycle frequency

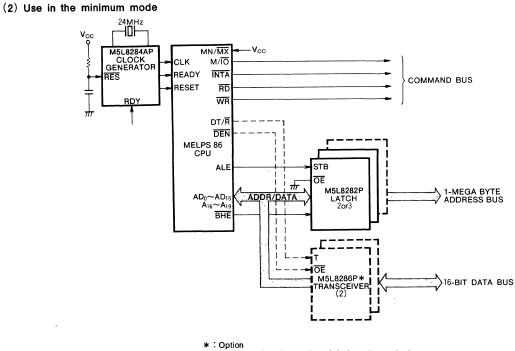
(3) Synchronizing using the CSYNC input


• When the EFI input is used


When the EFI input is not used

(4) Power-on reset circuit


Since the MELPS 86, 88 require a reset pulse over 50μ s after V_{CC} reaches 4.5V upon power on, the capacitor value should be determined by the graph shown below. Note that the time for V_{CC} to reach 4.5V has not been considered, so that it is necessary to choose the characteristics value of capacitance under consideration of the power supply.



CLOCK GENERATOR AND DRIVER

APPLICATION EXAMPLES

Required when the number of devices driving the bus increases

MITSUBISHI LSIS M5L8286P/M5L8287P

OCTAL BUS TRANSCEIVER

DESCRIPTION

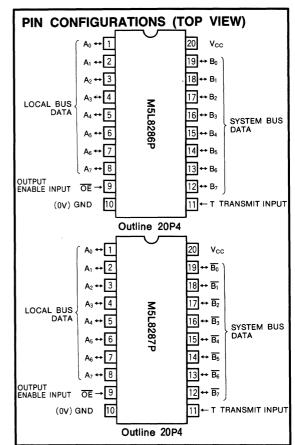
The M5L8286P and M5L8287P are semiconductor integrated circuits consisting of a set of eight 3-state output bus transceivers for use with a variety of microprocessor systems.

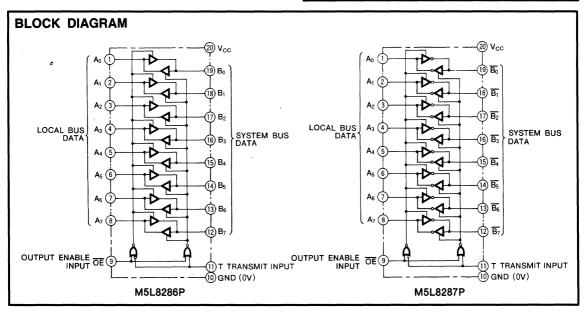
FEATURES

- 3-state, high-fanout outputs ($I_{OL} = 16mA$, $I_{OH} = -1mA$ for the A outputs and $I_{OL} = 32mA$, $I_{OH} = -5mA$ for the B outputs)
- Low power dissipation

APPLICATION

Two-way bus transceivers for microcomputer systems


FUNCTION


The M5L8286P and M5L8287P are two-way bus transceivers with non-inverted and inverted outputs respectively.

When the output enable input \overline{OE} is high, the local bus data pins $A_0 \sim A_7$ and system data pins $B_0 \sim B_7$ are both placed in the high-impedance state.

When the output enable input \overline{OE} is low, the input and output states are controlled by the transmit input T.

When T is high, $A_0 \sim A_7$ are input pins and $B_0 \sim B_7$ are output pins. When T is low, $B_0 \sim B_7$ are input pins and $A_0 \sim A_7$ are output pins.

M5L8286P/M5L8287P

OCTAL BUS TRANSCEIVER

FUNCTION TABLES (Note 1)

M5L8286	c
---------	---

M5L8287P

OE	Т	A	в	OE	Т	A	В
L	L	0	I	L	L	ō	I
 L	н	I	0	L	н	I	ō
н	х	z	Z	н	х	z	z

Note 1 : I: Input pin O, O : Output pin (non-inverted for the M5L8286P and inverted for the M5L8287P)

Z : Indicated the high-impedance state (A and B are

separated) X : Either high or low

ABSOLUTE MAXIMUM RATINGS $(T_a=0~75$ °C, unless otherwise noted)

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Supply voltage		-0.5~+7	v
Vi	Input voltage		-0.5~+5.5	v
Vc	Output voltage		-0.5~V _{cc}	V
Topr	Operating free-air temperature range		0~+75	ĉ
Tstg	Storage temperature range		-65~+150	°C

RECOMMENDED OPERATING CONDITIONS ($T_a=0\sim75^{\circ}C$, unless otherwise noted)

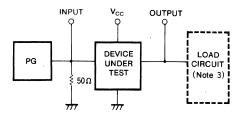
Symbol		Parameter			Limits			
Symbol	Faiailleter			Min	Nom	Мах	Unit	
Vcc	Supply voltage	Supply voltage				5.5	v	
	High-level output		A output	0		-1		
юн	current	V _{OH} ≧2.4V	B output	0		-5	mA	
	Low-level output	14 - CO 4514	A output	0		16		
lol	current	V _{OL} ≦0. 45V	B output	0		32	mA	

ELECTRICAL CHARACTERISTICS $(T_a=0~75^{\circ}C, unless otherwise noted)$

Cumbo al	Devenuelar		Test send	Al		Limits		Unit
Symbol	Parameter		Test condi	Min	Тур	Max	Unit	
VIH	High-level input voltage				2			v
		A input	-				0.8	v
VIL	Low-level input voltage	B input				0.9	v	
VIC	Input clamp voltage		V _{cc} =4.5V, I _{Ic} =-5mA	$V_{CC}=4.5V, I_{IC}=-5mA$			-1	v
		A output	V _{CC} =4.5V, I _{OH} =-1mA		2.4			v
V _{CH}	High-level output voltage	B output	V _{CC} =4.5V, I _{OH} =-5mA		2.4			v
		A output	V _{CC} =4.5V, I _{OL} =16mA				0.45	v
Vol	Low-level output voltage	B output	V _{CC} =4.5V, I _{OL} =32mA				0.45	v
	Off-state output current with high-level	A output	V _{cc} =5.5V, V ₁ =2V	V1=0.8V			50	μA
I _{OZH}	applied at the output	B output	V ₀ =5.25V	V1=0.9V	1		50	
•	Off-state output current with low-level	A output	V _{CC} =5.5V, V _I =2V	V1=0.8V			0.0	
IOZL	applied the output	B output	V ₀ =0.45V	V1=0.9V	-		-0.2	mA
Цн	High-level input current		V _{CC} =5.5V, V _I =5.25V				50	μA
I _{IL}	Low-level input current		V _{cc} =5.5V, V ₁ =0.45V				-0.2	mA
		M5L8286P					110	mA
Icc	Supply current	M5L8287P	$-V_{1C}=5.5V$				110	
~	1		F=1MHz, V _{BIAS} =2.5V				10	- 5
CIN	Input capacitance		$V_{cc}=5V, T_a=25^{\circ}C$			12		pF

OCTAL BUS TRANSCEIVER

w.

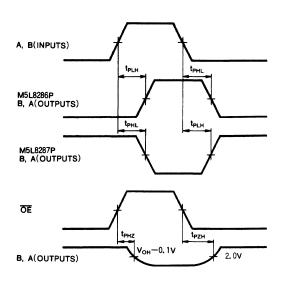

SWITCHING CHARACTERISTICS ($v_{cc}=5v\pm10\%$, $T_a=0\sim75\%$, unless otherwise noted)

	Parameter	Alternate	Test conditions	M5L8286P			M5L8287P			Unit
Symbol		symbol		Limits			Limits			
		symbol		Min	Тур	Мах	Min	Тур	Max	
t _{PLH} t _{PHL}	Low-level to high-level and high-level and low-level transition time from input A B to outputs B, A	τινον	(Note 2)	5		30	5		22	ns
t _{PZH} t _{PZL}	Output enable time from OE input to A or B output	TELOV		10		30	10		30	ns
t _{PHZ} t _{PLZ}	Output disable time from OE input to A or B output	TEHOZ		5		18	5		18	ns

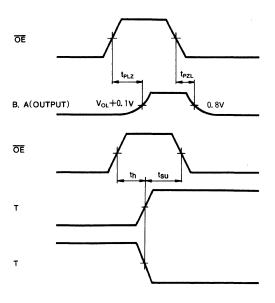
TIMING REQUIREMENTS ($v_{cc}=5V\pm10\%$, $T_a=0\sim75^{\circ}C$, unless otherwise noted)

Symbol	Parameter	Alternate	Test conditions		11		
		Symbol	Test conditions	Min	Тур	Мах	Unit
t _{su}	T setup time with respect to OE			10			ns
th	T hold time with respect to OE	T _{EHTV}		5			ns

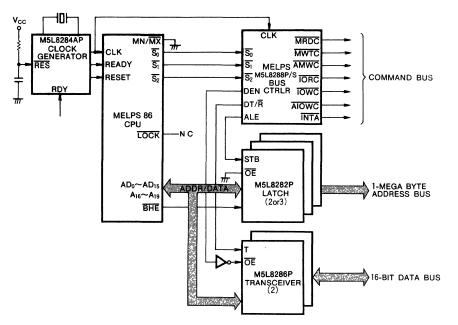
Note 2 : Test Circuit


Note 3

Test Item	t _{PLH} , t _{PHL}	t _{PLZ} , t _{PZL}	t _{PHZ} , t _{PZH}
A OUTPUT LOAD CIRCUIT	2. 28V \$ 114Ω A OUTPUT	1.5V 66Ω A OUTPUT - 100pF 777	1.5V 900Ω A OUTPUT - 100pF 777
B OUTPUT LOAD CIRCUIT	2.14V \$ 52.7Ω B OUTPUT	1.5V	1.5V § 180Ω B OUTPUT - 300pF



M5L8286P/M5L8287P


OCTAL BUS TRANSCEIVER

TIMING DIAGRAM (Reference voltage=1.5V)

APPLICATION EXAMPLE

BUS CONTROLLER

DESCRIPTION

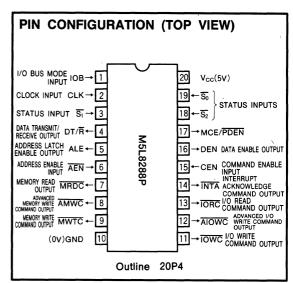
The M5L8288P is a semiconductor integrated circuit consisting of a bus controller and bus driver for the MELPS 86, 88, 16-bit microprocessors. By using the status signals from the CPU a Multibus (Intel trademark) control signal is generated.

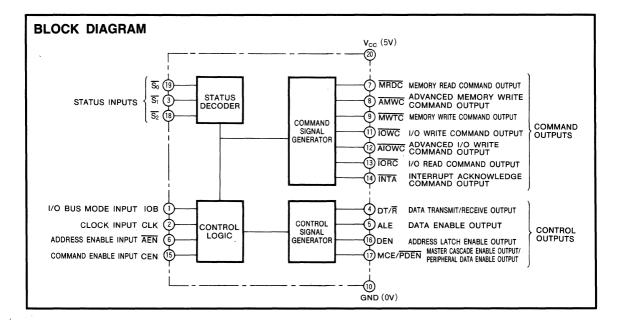
FEATURES

- High-fanout outputs Command output I_{OL}=32mA, I_{OH}=-5mA
 Control output I_{OL}=16mA, I_{OH}=-1mA
- Advanced command outputs (AIOWC and AMWC outputs)
- Low power dissipation

APPLICATION

Bus controller and bus driver for maximum mode operation of the MELPS $86,\,88$


FUNCTION


The M5L8288P is a bus controller and driver for maximum mode operation of theMELPS 86, 88 processors.

The command signals and control signals are decoded by means of the $\overline{S_0} \sim \overline{S_2}$ outputs from the CPU and the control signals for I/O devices and memory are output.

The device can be used in the Multimaster mode in which several CPUs acting as masters are connected to one data bus. An input pin for the control signal $\overline{\text{AEN}}$ from an 8289 bus arbiter is provided.

By using the M5L8288P as a bus controller, a highperformance 16-bit microcomputer system can be configured.

BUS CONTROLLER

PIN DESCRIPTIONS

Υ.

` Pin	Name	Input of output	Functions
$\overline{S_0}, \overline{S_1}, \overline{S_2}$	Status input	Input	These are connected to the CPU status output $\overline{s_0} \sim \overline{s_2}$ The M5L8288P uses these signals to generate the proper timing command signals and control signals All pins are provided with internal pull-up resistors.
CLK	Clock input	Input	Used to connect the clock generator M5L8284AP clock output CLK All outputs of the M5L8288S change in synchronization with the clock input.
ALE	Address latch enable output	Output	 Provides the strobe signal output for the address latches. This pin is connected to the STB pin of the M5L8282P or M5L8283P and used to latch the address from the CPU When using any other address latch, the following conditions must be satisfied The enable input must be active high. Data reading is always performed while the enable input is high The latching operation is performed as the enable input goes from high to low
DEN	Data enable	Output	Provides the data enable signal for the local bus or a data transceiver on the system bus. Operates in active high mode
DT/R	Data transmit/receive control output	Output	Controls the flow of data between CPU and memory or peripheral I/O devices When this pin is high, the CPU can write data to the peripheral devices When it is low, it can read data from the peripheral devices It is connected to the transmit input T of the M5L8286P or M5L8287P bus transceivers
AEN	Address enable input	Input	When the IOB input is low and the $\overline{\text{AEN}}$ input is set to high, all command outputs are put in the high-impedance state. When the IOB input is high, there is no effect on the $\overline{\text{IORC}}$, $\overline{\text{IOWC}}$, $\overline{\text{AIOWC}}$, and $\overline{\text{INTA}}$ outputs, the command output other than these four going into the high-impedance state. None of the command outputs will go low until at least 115ns after $\overline{\text{AEN}}$ transits from high to low.
CEN	Command enable input	Input	When this pin is set to low, all command outputs and DEN are prohibited by the $\overrightarrow{\text{PDEN}}$ control output (not high-impedance state) When set to high, the above outputs are enabled
ЮВ	Input/output bus mode input	Input	When this pin is set to high, the M5L8288P functions in the I/O bus mode, and when set to low it functions in the system bus mode. (The I/O bus mode and system bus mode are described in the functional description)
AIOWC	Advanced I/O write command output	Output	The $\overline{\text{AIOWC}}$ issues an I/O Write Command earlier in the machine cycle to give I/O devices an early indica- tion of a write instruction its timing is the same as a read command signal Active low
IOWC	I/O write command output	Output	Instructs an I/O device to read the data on the data bus Active low.
IORC	I/O read command output	Output	Instructs an I/O device to drive its data onto the data bus Active low
AMWC	Advanced write command output	Output	The AMWC issues a memory write command earlier in the machine cycle to give memory devices an early indication of a write instruction. Its timing is the same as a read command signal Active low
MWTC	Memory write command output	Output	Provides a write instruction to memory for the current data on the bus Active low
MRDC	Memory read command output	Output	Provides an output instruction to memory for the present data on the bus Active low
INTA	Interrupt acknowledge command output	Output	This output informs an interrupting device that it has accepted the interrupt, outputting a vector address out- put instruction to the data bus IORC operates in the same manner for interrupt cycles. Active low
MCE/ PDEN	Master cascade Enable output/ Peripheral data Enable output	Output	 This output pin has two functions When the IOB input is set to low The MCE function is enabled. The signal acts as the enable signal which allows a slave PIC (MSL8259AP) to read the cascade address output to the bus by the master PIC during an interrupt sequence. Active high When the IOB input is set to high. The PDEN function is enabled. This output provides the enable signal to the data bus transceiver connected to the I/O interface bus when an instruction occurs (IORC, IOWC, AIOWC, INTA). Operates the same way as DEN with respect to the system bus

BUS CONTROLLER

FUNCTIONAL DESCRIPTION

The state of the command outputs and control outputs are determined by the CPU status outputs $\overline{S_0} \sim \overline{S_2}$. The table summarizes the states of the outputs $\overline{S_0} \sim \overline{S_2}$ and their cor-

responding valid command output names.

Depending upon whether the M5L8288S is in the I/O bus mode or system bus mode, the command output sequence will vary.

STATUS INPUTS AND COMMAND OUTPUTS RELATIONSHIPS

S ₂	S ₁	S ₀	8086, 8088 status	Valid command output name
L	L	L	Interrupt acknowledge	INTA
L	L	н	Data read from an I/O port	IORC
L	н	L	Data write to an I/O port	IOWC, AIOWC
L	н	н	Hait	_
н	L	L	Instruction fetch	MRDC
н	L	н	Read data from memory	MRDC
н	н	L	Write data to memory	MWTC, AMWC
н	н	н	Passive state	_

1. I/O bus mode operation

When IOB is high, the M5L8288S function in the I/O bus mode.

In the I/O Bus mode all I/O command lines (\overline{IORC} , \overline{IOWC} , AIOWC, \overline{INTA}) are always enabled (i.e., not dependent on AEN). When an I/O command is initiated by the processor, the 8288 immediately activates the command lines using PDEN and DT/R to control the I/O bus transceiver. The I/O command lines should not be used to control the system bus in this configuration because no arbitration is present. This mode allows one 8288 Bus Controller to handle two external busses. No waiting is involved when the CPU wants to gain access to the I/O bus. Normal memory access requires a "Bus Ready" signal (AEN LOW) before it will proceed. It is advantageous to use the IOB mode if I/O or peripherals dedicated to one processor exist in a multi-processor system.

2. System bus mode operation

When IOB is set to low, the M5L8288S enters the system bus mode. In this mode no command is issued until 115 ns after the \overline{AEN} Line is activated (LOW). This mode assumes bus arbitration logic will inform the bus controller (on the \overline{AEN} line) when the bus is free for use. Both memory and I/O commands wait for bus arbitration. This mode is used when only one bus exists. Here, both I/O and memory are shared by more than one processor.

3. AMWC and AIOWC outputs

With respect to the normal write control signals $\overline{\text{MWTC}}$ and $\overline{\text{IOWC}}$, the advanced-write command signals $\overline{\text{AMWC}}$ and $\overline{\text{AIOWC}}$ transit low one clock cycle earlier and remain low for two clock cycles.

These signals are used with peripheral devices or static RAM devices which require a long write pulse, so that the CPU does not go into an unnecessarily wait cycle.

BUS CONTROLLER

ABSOLUTE MAXIMUM RATINGS $(T_a=0~75^{\circ}C)$, unless otherwise noted)

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Supply voltage		-0.5~+7	v
Vi	Input voltage		-0.5~+5.5	v
Vo	Output voltage		-0.5~V _{cc}	v
Pd	Power dissipation		1.5	w
Topr	Operating free-air temperature range		0~75	Ĉ
T _{stg}	Storage temperature range		-65~+150	Ĉ

RECOMMENDED OPERATING CONDITIONS (Ta=0~75°C, unless otherwise noted)

Cumula al		Peromotor	Limits			Unit	
Symbol		Parameter	Min	Min Nom M		Onit	
Vcc	Supply voltage		4.5	5	5.5	v	
	High-level output	Command outputs			-5		
Юн	current	Control outputs			-1	mA	
	Low-level output	Command outputs			32		
l _{OL}	current	Control outputs			16	mA	

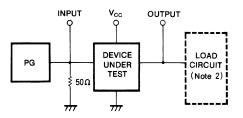
ELECTRICAL CHARACTERISTICS ($T_a=0\sim75$ °C, unless otherwise noted)

Cumbal	Dava		Tester			Limits			
Symbol	Symbol Parameter		Test co	nations	Min	Тур	Max	Unit	
VIH	High-level input voltage				2			v	
VIL	Low-level input voltage						0.8	· v	
Vic	input clamp voltage						-1	v	
	VOH High-level output voltage	Command outputs	V _{CC} =4.5V, V _I =2V	I _{OH} =-5mA	2.4				
Vон		Control outputs	V1=0.8V	I _{OH} =-1mA	2.4		v		
	1 1 4 14	Command outputs		I _{OL} =32mA			0.5	.,	
Vol	Low-level output voltage	Control outputs	V1=0.8V	I _{OL} =16mA			0.5	v	
Iн	High-level input voltage		V _{cc} =5.5V, V ₁ =5.5V				50	μA	
I _{IL}	Low-level input voltage		V _{cc} =5.5V, V _i =0.45V				-0.7	mA	
I _{OZH}	Off-state output current wit	h high-level applied to output	V _{cc} =5.5V, V _o =5.25V				100	μA	
lozL	Off-state output current wit	h low-level applied to output	V _{cc} =5.5V, V _o =0.4V				-100	μA	
lcc	Supply current	, , , , , , , , , , , , , , , , , , ,	V _{cc} =5.5V				160	mA	

BUS CONTROLLER

0	Describer	Alternate			Limits			
Symbol	Parameter	symbol Test conditions		Min	Тур	Max	Unit	
t _{PLH}	Output low-level to high-level propagation time From CLK input to DEN output	TCVNV		5		45	ns	
t _{PHL}	Output high-level to low-level propagation time From CLK input to PDEN output	TCVNV		5		40	115	
t _{PLH}	Output low-level to high-level propagation time From CLK input to DEN output	TCVNX	_	10		45	ns	
t _{PHL}	Output high-level to low-level propagation time From CLK input to PDEN output	TOVIX		10		40	115	
t _{PLH}	Output low-level to high-level propagation time From CLK input to ALE output	TCLLH				20	ns	
t _{PLH}	Output low-level to high-level propagaion time From CLK input to MCE output	TCLMCH				20	ns	
t _{PLH}	Output low-level to high-level propagation time From $\overline{S_0} \sim \overline{S_1}$ inputs to ALE output	TSVLH				20	ns	
t _{PLH}	Output low-level to high-level propagation time From $\overline{S_0} \sim \overline{S_1}$ inputs to MCE output	TSVMCH				20	ns	
t _{PHL}	Output high-level to low-level propagation time From CLK input to ALE output	TCHLL		4		15	ns	
t _{PHL}	Output high-level to low-level propagation time From CLK input to MRDC, IORC, INTA, AMWC, MWTC, AIOWC, and IOWC outputs	Ā, TCLML 10				35	ns	
t _{PLH}	Output low-level to high-level propagation time From CLK input to MRDC, IORC, INTA, AMWC, MWTC, AIOWC, and IOWC outputs	TCLMH		10		35	ns	
t _{PHL}	Output high-level to low-level propagation time From CLK input to $\text{DT}/\overline{\text{R}}$ output	TCHDTL	(Note 1)			50	ns	
t _{PLH}	Output low-level to high-level propagation time From CLK input to DT/\overline{R} output	тснотн				30	ns	
t _{PZH}	High-level output enable time From AEN input to MRDC, IORC, INTA, AMWC, MWTC, AIOWC, and IOWC outputs	TAELCH				40	ns	
t _{PHZ}	High-level output disable time From AEN input to MRDC, IORC, INTA, AMWC, MWTC, AIOWC, and IOWC outputs	TAEHCZ				40	ns	
t _{PHL}	Output high-level to low-level propagation time From AEN input to MRDC, IORC, INTA, AMWC, MWTC, AIOWC, and IOWC outputs	TAELCV		115		200	ns	
t _{PLH} t _{PHL}	Output low-level to high-level and high-level to low-level propagation time From AEN input to DEN output	TAEVNV				20	ns	
t _{PLH} t _{PHL}	Output low-level to high-level and high-level to low-level propagation time From CEN input to DEN and PDEN outputs	TCEVNV				25	ns	
t _{PLH} t _{PHL}	Output low-level to high-level and high-level to low-level propagation time. From CEN input to MRDC, IORC, INTA, AMWC, MWTC, AIOWC and IOWC outputs	TCELRH				35	ns	

SWITCHING CHARACTERISTICS ($V_{cc}=5V\pm10\%$, $T_a=0\sim75$ °C, unless otherwise noted)


TIMING REQUIREMENTS (V_cc=5V \pm 10%, T_a=0~75°C, unless otherwise noted)

Symbol	Parameter	Alternate	Test conditions			Unit	
Symbol	Falameter	symbol		Min	Тур	Мах	Unit
t _c	Clock CLK cycle time	TCLCL		100			ns
tw(CLKL)	Clock CLK low pulse width	TCLCH		50			ns
tw(clkh)	Clock CLK high pulse width	TCHCL		30			ns
+	$\overline{S_0} \sim \overline{S_2}$ setup time with respect to	тѕусн		35			ns
'SU(S0~S2)	T for the T ₁ state	13001		- 35			115
th (= = =)	$\overline{S_0} \sim \overline{S_2}$ hold time with respect to	TCHSV		10			ns
th(s₀~s₂)	T for the T ₄ state	101130		10			115
t	$\overline{S_0} \sim \overline{S_2}$ setup time with respect to	TSHCL		35			ns
t _{su} (s ₀ ~s₂)	T for the T ₃ state	ISHOL		- 55			115
th/= = >	$\overline{S_0} \sim \overline{S_2}$ hold time with respect to	TCLSH		10			ns
th(s₀~s₂)	T for the T ₃ state	TOEGH		10			113

BUS CONTROLLER

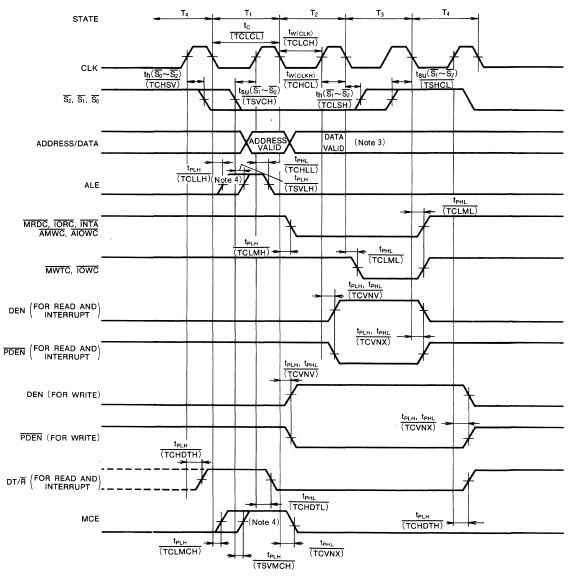
Note 1 : Test Circuit

Note 2

Load circuit	t _{plh} , t _{phl}	t _{PLZ} , t _{PZL}	^t рнz, ^t рzн
Command output load circuit	2. 14V 53Ω 	1.5V 33Ω 	1.5V § 180Ω
Control output load circuit	2.28V \$ 114Ω 114Ω 80pF		

Note 3 : AC TEST WAVE FORM

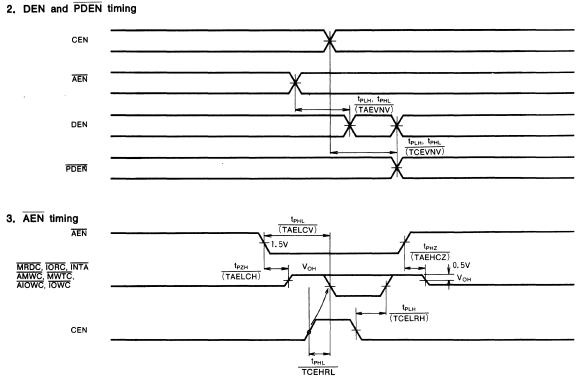
INPUT PULSE LEVEL : 0. 45~2. 4V


TIMING MEASUREMENT POINT : 1.5V

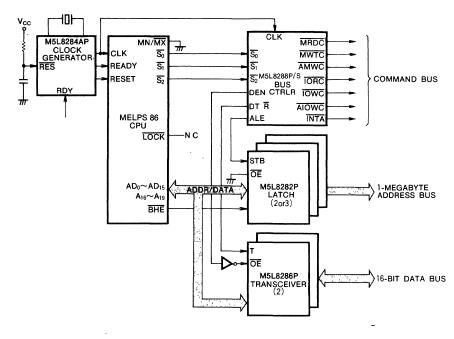
BUS CONTROLLER

TIMING DIAGRAM

1. Command output timing


Note 3 . The address/data bus signals are shown only for reference

4 : 5 · The ALE and MCE leading edge occurs in synchronization with the falling edge of CLK or $\overline{S_0} \sim \overline{S_2}$, whichever is later


Unless otherwise noted, the timing of all signals is respect to 1.5V

BUS CONTROLLER

Note 6 : CEN must be low or valid prior to T_2 to prevent the command from being generated.

APPLICATION EXAMPLE

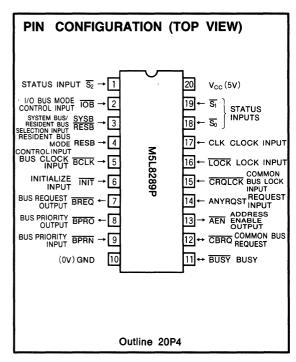
BUS ARBITER

DESCRIPTION

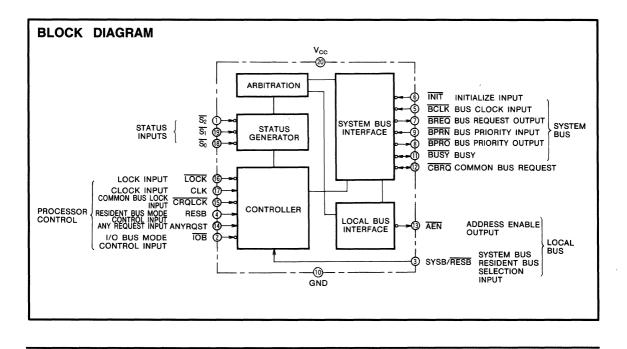
The M5L8289P is a system bus (^(B)MULTIBUS) arbiter for the MELPS 86, 88 16-bit microprocessors. When a request for access to the system bus is made by any of these microprocessors, the M5L8289P prevents simultaneous access by two or more processors by allowing only the first processor which requests access to access the system, preventing all others from accessing the system bus. It generates the required signals for bus access. (^(B)MULTIBUS is a registered trademark of Intel Corporation.)

FEATURES

- [®]MULTIBUS compatible
- Usable in multiprocessing systems using the MELPS 86, 88 microprocessors
- Four modes of request and bus surrender are possible
- Low power dissipation


APPLICATION

Bus arbitration for MULTIBUS boards using the MELPS 86, 88 or 8089


FUNCTION

The M5L8289P is a bus arbiter for [®]MULTIBUS boards using the MELPS 86, 88 microprocessors. When several processors are connected to the system bus ([®]MULTIBUS), it is necessary to prevent two or more processors from attempting to access the system bus simultaneously.

This function is performed by the M5L8289P, which decodes the processor status, and if access to the system bus

is required, prevents other processors from attempting system bus access by generating the required control signals.

BUS ARBITER

FUNCTIONAL DESCRIPTION

The M5L8289P decodes the status signals $\overline{S_0} \sim \overline{S_2}$ from the processor, and requests system bus privileges or surrenders them. The conditions for such operation are shown in Table 1. As shown in the Table 1, the following four modes are possible for use with boards of various types.

(1) Single Bus Mode

In this mode there is neither memory nor I/O ports on the board, and the processor accesses only the system bus.

(2) I/O Bus Mode

In this mode I/O ports exist on the board, and the processor accesses only these. For this mode the M5L8289P outputs a system bus request signal only for memory access.

(3) Resident Bus Mode

In this mode both memory and/or I/O port(s) exist on the board and the processor can access both on the system bus. In this mode the chip select signal (active low) for I/O ports and memory on the system bus is input to SYSB/ RESB. By doing this, when the I/O port(s) and memory on the board are accessed, the M5L8289P does not output a request signal to the system bus.

(4) I/O Bus Mode Resident Bus Mode

In this mode both I/O ports and memory are existent on the board, and only the I/O port on the board is accessed.

In this mode the chip select signal (active low) for memory on the board is input to SYSB/RESB. By doing this, the M5L8289P outputs a request signal to the system bus when system memory is accessed.

In addition, the M5L8289P has the following control inputs.

LOCK

This signal locks the bus arbitrate function when it is low, the M5L8289P continues to output a request signal to the system bus, and once acquired, setting \overline{LOCK} to a high level retains bus privileges until the conditions listed in Table 1 are satisfied. Normally, this input is connected to th \overline{LOCK} output of the processor.

CRQLCK

This signal locks the arbitrate function by CBRQ. When set to low, the bus privilege surrender conditions listed in Table 1 in which CBRQ are input, are ignored. This input is set to low level when it is desired to prevent lowpriority arbiters from acquiring bus privileges.

ANYRQST

Even after one bus access has been completed, the M5L8289P does not surrender bus privileges until the surrender conditions listed in Table 1 are satisfied. However, by setting the ANYRQST input to high, the bus can be freed after each single access, thereby facilitating the acquisition of bus privileges by low-priority arbiters.

BUS ARBITER

Status				I/O Bus mode only	Resident bu	s mode only	I/O Bus mode re	Single bus mode	
				IOB=L	IOB	=н	IOB	i=L	IOB=H
				RESB=L	RESI	в=н	RESI	в=н	RESB=L
Command	S ₂	S ₁	S ₀		SYSB/RESB=H	SYSB/RESB=H	SYSB/RESB=H	SYSB/RESB=L	
Interrupt acknowledge	0	0	0	×	0	×	×	×	0
I/O Port read	0	0	1	×	0	×	×	×	0
I/O Write	0	1	0	×	0	×	×	×	0
Halt	0	1	1	×	×	×	×	×	×
Instruction fetch	1	0	0	0	0	×	0	×	0
Memory read	1	0	1	0	0	×	0	×	0
Memory write	1	1	0	0	0	×	0	×	0
Passive cycle	1	1	1	×	×	×	×	×	×

Table 1 M5M8289P Modes and Bus Request and surrender Conditions

 $\begin{array}{ccc} & \cdots & \text{A request signal is output by the system bus.} \\ & \times & \cdots & \text{The system bus privileges are surrendered} \end{array}$

Mode	Ing	out	Bus request condition	Bus surrender condition (Note 1)
Mode	IOB	RESB	(excluding halt and passive cycles)	Bus surrender condition (Note 1)
Single bus mode	н	L	All bus access states	HLT+(TI-CBRQ)+HPBRQ
Resident bus				((SYSB/RESB=L+T1)·CBRQ)
mode only	н	н	(SYSB/RESB=high) · (Bus access state)	+HLT+HPBRQ
				(I/O Access state+T1)·CBRQ)+HLT
I/O Bus mode only	L	L	All memory access states	+HPERQ
I/O Bus mode				((I/O Access state +(SYSB/RESB=Iow)).
resident bus mode	L	н	(SYSB/RESB=high) · (Memory access states)	CBRQ + HPBRQ HLT + HPBRQ

Note 1 : When LOCK=low, the bus is not released under any circumstances.

When CRQLCK=low, the bus is not released even when low-priority arbiters request it

2 : HLT Halt state

TI.....Idle (passive) state CBRQ......CBRQ=low

HPBRQ ······Indicates that a high-priority arbiter is requesting the bus (BPRN=high)

.

BUS ARBITER

PIN DESCRIPTION

Pin	Name	Input or output	Function
$\overline{S_0}, \overline{S_1}, \overline{S_2}$	Status input	In	Status input from the processor. The M5L8289P decodes this signal and based on it, requests or surren- ders bus privileges.
CLK	Clock input	In	This is the same clock input as used on the processor, and used for decoding of the status. It receives the clock from the M5L8284AP
LOCK	Lock input	In	This is the lock input signal from the processor When LOCK=low, the M5L8289P will, in no circumstances, surrender bus privileges.
CRQLCK	Common bus request lock input	In	This is the lock signal for arbitration from a common bus request When $\overrightarrow{CRQLCK} = low$, the M5L8289P ignores bus surrendering conditions by signal CBRQ
RESB	Resident bus mode control input	In	This is the M5L8289P mode setting input When RESB=high, the M5L8289P is in the resident bus mode
IOB	I/O Bus mode control input	In	This is an M5L8289P mode setting input. When $\overline{108}$ =low, the M5L8289P is in the I/O bus mode.
ANYRQST	Any request input	In	This controls the bus surrendering conditions for the M5L8289P When ANYRQST=low, the M5L8289P re- leases the bus under the conditions listed in Table 1 When ANYRQST=high, as soon as \overline{CBRQ} goes low, the bus is released. Therefore, by setting ANYRQST to high and \overline{CBRQ} to low, the M5L8289P can be made to release the bus after a single access
SYSB/ RESB	System bus/resident bus selection input	In	This input is valid when the M5L8289P is in the resident bus mode. When SYSB/RESB = low, this means that the processor is accessing the bus on the board, and the M5L8289P does not output a request to the system bus. When SYSB/RESB = high, this indicates that the processor is accessing the system bus, and the M5L8289P outputs the request signal to the system bus
BCLK	Bus lock input	In	This is the clock for arbitration of other boards. The M5L8289P performs arbitration in synchronous with this clock. It is fed from the system bus BCLK signal.
	Initialize input	In	This line resets the arbitration circuit, immediately after resetting, none of the arbiters have system bus privileges. This input is fed from the system bus $\overline{\text{INIT}}$ signal
BREQ	Bus request output	Out	This signal requests system bus privileges It is used as the system bus BREQ signal
BPRN	Bus priority input	In	This signal indicates whether a high-priority arbiter has requested privileges or not When BPRN=low, a high-priority arbiter has not requested privileges and when BPRN=high, this indicates that a high-priority arbiter has requested privileges. This input is fed from the system bus BPRN signal.
BPRO	Bus priority output	Out	This signal indicates whether the M5L8289P or high-order arbiter has requested the bus When $\overline{\text{BPRO}}$ = low, there was a bus request and when $\overline{\text{BPRO}}$ = high, there was no bus request This signal is used as the system bus $\overline{\text{BPRO}}$ signal
BUSY	Busy	In/Out	This signal indicates that the system bus has been acquired When $\overline{\text{BUSY}}$ =low, the bus is busy and when $\overline{\text{BUSY}}$ =high, it indicates that no arbiter has acquired the bus privileges. When the M5L8289P has acquired bus privileges, a low-level output (open collector) is made. This signal is used as the system bus $\overline{\text{BUSY}}$ signal.
CBRQ	Common bus request	in/Out	This signal indicates when any arbiter has requested the system bus. When $\overline{\text{OBRQ}}$ =low, the M5L8289P releases the bus according to the conditions listed in Table1. When making a request of the system bus, $\overline{\text{OBRQ}}$ is output as low (open collector) This signal is used as the system bus $\overline{\text{OBRQ}}$ signal.
AEN	Address enable input	Out	This signal informs the bus buffer on the board that the system bus has been acquired. It is connected to the address and data buffer outputs, and the output enable line on the board as well as the M5L8288P AEN line.

BUS ARBITER FOR

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Supply voltage		-0.5~7	v
V,	Input voltage		-1~5.5	v
Vo	Output voltage		-0.5~7	v
⊤ _{opr}	Operating temperature		0~75	°C
T _{stg}	Storage temperature	,	-65~150	°C

RECOMMENDED OPERATING CONDITIONS ($T_a=0\sim75$ °C, unless otherwise noted)

Sumbol	Parameter		Limits			Unit	
Symbol			Min	Nom	Max	Unit	
V _{cc}	Supply voltage			4.5	5	5.5	v
	High-level output	BUSY, CBRQ,	V _{OH} ≧2.4V	Open collector			
ЮН	current	Other output,	V _{OH} ≧2.4V	0		400	μA
	Low-level output	BUSY, CBRQ,	V _{OL} ≦0.45V	0		20	
IOL		AEN	V _{OL} ≦0.45V	0		16	mA
		BPRO, BREQ,	V _{OL} ≦0.45V	0		10	

ELECTRICAL CHARACTERISTICS (Ta=0~75°C, V_{CC}=5V \pm 10%, unless otherwise noted)

Symbol		-		Limits			
	Parameter		Test conditions	Min	Тур	Max	Unit
VIL	Low-level input voltage					0.8	v
VIH	High-level input voltage			2.0			v
VoL	Low-level output voltage	BUSY, CBRQ	I _{OL} =20mA			0.45	v
		AEN	I _{OL} =16mA			0.45	
		BPRO, BREQ	I _{OL} =10mA			0.45	
V _{он}	High-level	BUSY, CBRQ		0	Open collector		
	output voltage	AEN, BPRO, BREQ	I _{OH} =400μA	2.4			v
VIC	Input clamp voltage		$V_{\rm CC}$ =4.50V, I _C =-5mA			-1	v
h∟.	Low-level input current		V _{CC} =5.50V, V _F =0.45V			-0.5	mA
hн	High-level input current		V _{CC} =5.50V, V _R =5.50V			60	μA
Icc	Supply current					120	mA
C _{IN}	Input capcitance	Status	f=1MHz, V _{B2AS} =2.5V			25	
		Others				12	pF

M5L8289P

BUS ARBITER

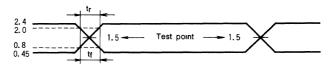
0		Alternate			Limits		Unit
Symbol	Parameter	symbol	Test conditions	Min	Тур	Max	Unit
t _{C(CLK)}	CLK cycle period	tolo		125			ns
	CLK"L" pulse width	t _{CLCH}		65			ns
tw(CLKH)	CLK"H" pulse width	t _{CHCL}		35			ns
tsu(so~sz)	Status active setup time	t _{svch}		65		t _{CLCL-} 10	ns
th(30~32)	Status active hold time	t _{CHSV}		10		t _{CLCL-} 10	ns
tsu(30~32)	Status inactive setup time	t _{SHCL}		50			ns
th(30~32)	Status inactive hold time	t _{CLSH}		10			ns
th(LOCK)	LOCK inactive hold time	tolll1		10			ns
tsu(LOCK)	LOCK active setup time	t _{CLLL2}		40			ns
t _{SU(SYSB/RESB})	SYSB/RESB setup time	t _{CLSR1}		0			ns
th(SYSB/RESB)	SYSB/RESB hold time	t _{CLSR2}		20			ns
	BCLK cycle time	t _{BLBL}		100			ns
	BCLK"H" pulse width	t _{BHBL}		30			ns
	BPRN ↑ ↓ to BCLK setup time	t _{PNSBL}		15			ns
tsu(BUSY)	BUSY ↑ ↓ to BCLK ↓ setup time	t _{BYSBL}		20			ns
	CBRQ † ↓ to BCLK ↓ setup time	t _{CBSBL}		20			ns
tw(INIT)	INIT pulse width	t _{ivin}		3t _{BLBL}	+3t _{CLCL}		ns
tr	Input rise time	tiliH	0.8~2V			20	ns
tf	Input fall time	time	2~0.8V			12	ns

TIMING REQUIREMENT (T_a=0~75°C , V_{cc}=5V \pm 10% , unless otherwise noted)

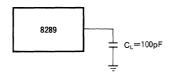
M5L8289P

BUS ARBITER

Quert et	D	Alternate	T			Unit		
Symbol	Parameter	symbol	Test conditions	Min Typ		Max		
	BCLK→BREQ↑, ↓ Delay time	t _{BLBRL}				35	ns	
t _{PLH} (BPRO)	BCLK→BPRO†,↓ Delay time (See note 2)	t _{вlрон}				40	ns	
t _{PHL} (BPRO)	BPRN ↑, ↓ → BPRO ↑ ↓ Delay time (See note 2)	t _{pnpo}				25	ns	
	BCLK→BUSY ↓ Delay time	tBLBYL				60	ns	
	BCLK→BUSY Float time (See note 3)	t _{BLBYH}				35	ns	
	CLK→ĀEN, † Delay time	t _{CLAEH}				65	ns	
	BCLK→AEN, ↓ Delay time	tBLAEL				40	ns	
	BCLK→CBRQ, ↓ Delay time	t _{BLCBL}				60	ns	
	BCLK→CBRQ Delay time (See note 3)	t _{BLCBH}				35	ns	
t _r	Output rise time	t _{OLOH}	0.8V~2.0V			20	ns	
tf	Output fall time (See note 4, 5)	tohol	2.0V~0.8V			12	ns	


SWITCHING CHARACTERISTICS ($T_a=0~75^{\circ}$, $V_{cc}\pm5V\pm5\%$, unless otherwise noted)

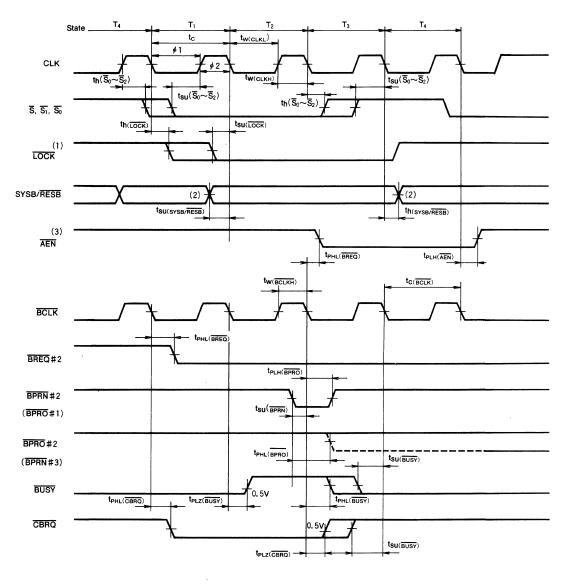
 Note 1:
 Symbol ↑, ↓ means rise signal and fall signal.


 2:
 BCLK generate the first BPRO and then BPRO changes lower in the chain are generated through BPRN.

 3:
 Measured at 0.5V above GND

A.C. test wave form. Note 4

Note 5 · Load circuit



(

M5L8289P

BUS ARBITER

TIMING DIAGRAM

Note 1 : LOCK can be active during any state as long as the relation ships shown above with the respect to CLK are maintained.

- CRQLCK is an asynchronously CRQLCK is an asynchronous input signal. Noise is permitted during this time After ϕ 2 of T1 and before ϕ 1 of T4 should be stable AEN negative-edge is related to CLK, positive-edge to CLK.
- 2: 3:
 - ANE positive-edge is generated after as ricrity is lost

CMOS PERIPHERAL CIRCUITS

MITSUBISHI LSIS M5M81C55P-2/FP-2/J-2

CMOS 2048-BIT STATIC RAM WITH I/O PORTS AND TIMER

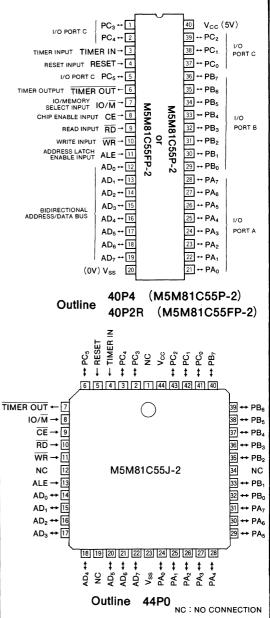
DESCRIPTION

The M5M81C55P-2 is the 2K-bit RAM (256-word by 8-bit) fabricated by the silicon gate CMOS technology. This LSI has 3 I/O ports and a 14-bit counter/timer which make it a good extension of the functions of an 8-bit microcomputer. It is housed in a 40-pin plastic molded DIP.

And preparatory for surface equipment M5M81C55FP-2 (SOP)and M5M81C55J-2 (PLCC).

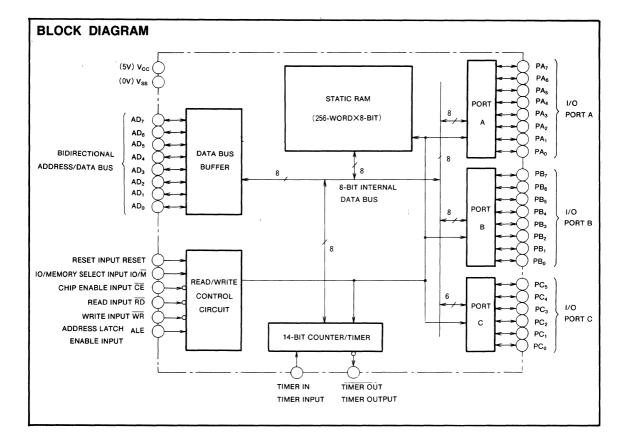
FEATURES

- Having internal anti-circuit on RESET and ALE
- Single 5V supply voltage
- TTL compatible
- Power down mode
- Timer input : 5MHz (max)
- Read access time : 120ns (max)
- Static RAM: 256-word by 8-bit
- Programmable 8-bit I/O port: 2
- Programmable 6-bit I/O port: 1
- Programmable counter/timer: 14-bit
- Multiplexed address/data bus


APPLICATION

Extension of I/O ports and timer function for microprocesser

FUNCTION


The M5M81C55P-2 is composed of RAM, I/O ports and counter/timer. The RAM is a 2K-bit static RAM organized as 256-word by 8-bit. The I/O ports consist of 2 programmable 8-bit ports and 1 programmable 6-bit port. The terminals of the 6-bit port can be programmed as control terminals for the 8-bit ports, so that the 8-bit ports can be operated in a handshake mode. The counter/timer is composed of 14-bit down counter (events or time) and it can generate square wave pulses that can be used for counting and timing.

PIN CONFIGURATION (TOP VIEW)

MITSUBISHI LSIS M5M81C55P-2/FP-2/J-2

CMOS 2048-BIT STATIC RAM WITH I/O PORTS AND TIMER

CMOS 2048-BIT STATIC RAM WITH I/O PORTS AND TIMER

OPERATION

Data Bus Buffer

This 3-state bidirectional 8-bit buffer is used to transfer the data while input or output instructions are being executed by the CPU. Command and address information is also transferred through the data bus buffer.

Read/Write Control Logic

The read/write control logic controls the transfer of data and commands by interpreting the signals (\overline{CE} , \overline{RD} , \overline{WR} , IO/ \overline{M} , ALE, RESET) from CPU.

Bidirectional Address/Data Bus (AD₀~AD₇)

The bidirectional address/data bus is a 3-state 8-bit bus. The 8-bit address is latched in the internal latch by the falling edge of ALE. Then if IO/\overline{M} input signal is at high-level, the address of I/O port, counter/timer, or command register is selected. If it is at low-level, address of RAM is selected. The 8-bit data is transferred by read input (\overline{RD}) or write input (\overline{WR}).

Chip Enable Input (CE)

When \overline{CE} is at low-level, the address information on address/data bus is stored in the M5M81C55P-2.

Read Input (RD)

When $\overline{\text{RD}}$ is at low-level, the data bus buffer is active. If IO/\overline{M} input signal is at low-level, the contents of RAM are read through the address/data bus. If IO/\overline{M} input is at high-level, the contents of selected I/O port or counter/timer are read through the address/data bus.

Write Input (WR)

When \overline{WR} is at low-level, the data on the address/data bus are written into RAM if IO/ \overline{M} is at low-level, or they are written into I/O port, counter/timer or command register if IO/ \overline{M} is at high-level.

Address Latch Enable Input (ALE)

An address on the address/data bus is latched in the M5M81C55P-2 on the falling edge of ALE along with the levels of $\overline{\text{CE}}$ and $\text{IO}/\overline{\text{M}}$.

IO/Memory Input (IO/M)

When IO/\overline{M} is at low-level, the RAM is selected, while at high-level the I/O port, counter/timer or command register are selected.

I/O Port A (PA₀~PA₇)

Port A is an 8-bit general-purpose I/O port. Input/output setting is controlled by the system software.

I/O Port B (PB₀~PB₇)

Port B is an 8-bit general-purpose I/O port. Input/output setting is controlled by the system software.

I/O Port C (PC₀~PC₅)

Port C is a 6-bit I/O port that can also be used to output control signals of port A (PA) or port B (PB). The functions of port C are controlled by the system software. When port C is used to output control signals of ports A or B, the assignment of the signals to the pins is as shown in Table 1.

Table 1 Pin assignment of control signals of port C

Pın		Function
PC ₅	B STB	(port B strobe)
PC₄	BBF	(port B buffer full)
PC ₃	BINTR	(port B interrupt)
PC ₂	A STB	(port A strobe)
PC ₁	A BF	(port A buffer full)
PC ₀	A INTR	(port A interrupt)

Timer Input (TIMER IN)

The signal on this input terminal is used by the counter/timer for counting events or time. (5MHz max.)

Timer Output (TIMER OUT)

A square wave signal or pulse from the counter/timer is output through this pin when in the operation mode.

Command Register (8-bit)

The command register is an 8-bit latched register. The loworder 4 bits (bits $0 \sim 3$) are used for controlling and determination of mode of the ports. Bits 4 and 5 are used as interrupt enable flags for ports A and B when port C is used as a control port. Bits 6 and 7 are used for controlling the counter/timer. The contents of the command register are rewritten by output instructions (I/O address XXXXX000).

Details of the functions of the individual bits of the command register are shown in Table 2.

Table	2	Bit	functions	of	the	command	register
-------	---	-----	-----------	----	-----	---------	----------

Bit	Symbol	Fun	ction				
0	PA	PORT A I/O SET	1. Output port A 0: Input port A				
1	РВ	PORT B I/O SET	1 [.] Output port B 0. Input port B				
2	PC ₁	PORT C SET	00 ALT1 11. ALT2				
3	PC ₂		01. ALT3 10 ALT4				
4	IEA	PORT A INTERRUPT ENABLE FLAG	 Enable interrupt Disable interrupt 				
5	IEB	PORT B INTERRUPT ENABLE FLAG	 Enable interrupt Disable interrupt 				
6	тм1	COUNTER/TIMER CONTROL 00 [.] No influence on counter/timer operation 01 [.] Counter/timer operation discontinued (If not already					
7	TM2	stopped) 10 Counter/timer operation counter/timer operation is 11. Counter/timer operation s					

CMOS 2048-BIT STATIC RAM WITH I/O PORTS AND TIMER

Status Register (7-bit)

The status register is a 7-bit latched register. The low-order 6 bits (bits $0 \sim 5$) are used as status flags for the I/O ports. Bit 6 is used as a status flag for the counter/timer. The con-

tents of the status register are transferred into the CPU by reading (INPUT instruction, I/O address XXXXX000). Details of the functions of the individual bits of the status register are shown in Table 3.

Table 3	Bit	functions	of	the	status	register
---------	-----	-----------	----	-----	--------	----------

Bit	Symbol		Function
0	INTR A	PORT A INTERRUPT REQUEST	
1	A BF	PORT A BUFFER FULL FLAG	
2	INTE A	PORT A INTERRUPT ENABLE	4
3	INTR B	PORT B INTERRUPT REQUEST	
4	B BF	PORT B BUFFER FULL FLAG	
5	INTE B	PORT B INTERRUPT ENABLE	
6	TIMER	COUNTER/TIMER INTERRUPT	This flag is set to 1 when the final limit of the counter/timer is reached and is reset to 0 when the status is read
7	-	This bit is not used	

I/O PORTS

Command/status registers (8-bit/7-bit)

These registers are assigned address XXXXX000. When an OUTPUT command is executed, the contents of the command register are rewritten. When an INPUT command is executed, the contents of the status register are read.

Port A Register (8-bit)

Port A Register is assigned address XXXXX001. This register can be programmed as an input or output by setting the appropriate bits of the command register as shown in Table 2.

Port A can be operated in basic or strobe mode and is assigned I/O terminal $PA_0 \sim PA_7$.

Port B Register (8-bit)

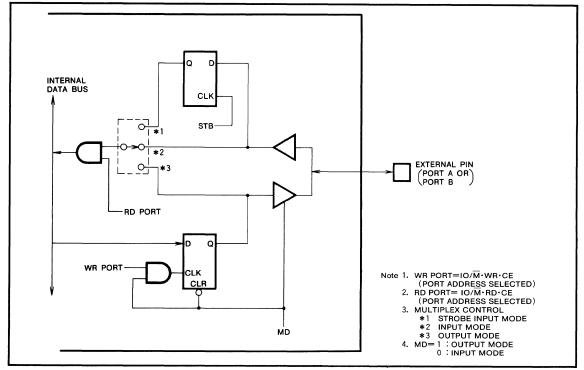
Port B register is assigned address XXXXX010. As with Port A register, this register can be programmed as an input or output by setting the appropriate bits of the command register as shown in Table 2. Port B can be operated in basic or strobe mode and is assigned I/O terminals PB₀~PB₇.

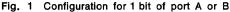
Port C Register (6-bit)

Port C register is assigned address XXXXX011. This port is used not only for input or output but also for controlling input/output operations of ports A and B by selectively setting bits 2 and 3 of the command register as shown in Table 2. Details of the functions of the various setting of bits 2 and 3 are shown in Table 4. Port C is assigned I/O terminals $PC_0 \sim PC_5$. When used as port control signals, the 3 low-order bits are assigned for port A while the 3 high-order bits are assigned for port B.

Table 4 Functions of port C

State Terminal	ALT 1	ALT 2 ·	ALT 3	ALT 4
PC ₅	Input	Output	Output	B STB (port B strobe)
PC ₄	Input	Output	Output	B BF (port B buffer full)
PC ₃	Input	Output	Output	B INTR (port B interrupt)
PC ₂	Input	Output	A STB (port A strobe)	A STB (port A strobe)
PC1	Input	Output	A BF (port A buffer full)	A BF (port A buffer full)
PC ₀	Input	Output	A INTR (port A interrupt)	A INTR (port A interrupt)




MITSUBISHI LSIS M5M81C55P-2/FP-2/J-2

CMOS 2048-BIT STATIC RAM WITH I/O PORTS AND TIMER

CONFIGURATION OF PORTS

A block diagram of 1 bit of ports A or B is shown in Fig. 1. While port A or B is programmed as an output port, if the port is addressed by an input instruction, the contents of the selected port can be read. When a port is put in input mode, the output latch is cleared and writing into the output latch is disabled. Therefore when a port is changed to output mode from input mode, low-level signals are output through the port. When a reset signal is applied, all 3 ports (PA, PB, and PC) will be input ports and their output latches are cleared. Port C has the same configuration as ports A and B in modes ALT1 and ALT2.

Table	5	Basic	functions	of	1/0	ports	
-------	---	-------	-----------	----	-----	-------	--

Address	RD	WR	Function
XXXXXX000	L	н	AD bus ← Status register
XXXXX000	н	L	Command register ← AD bus
XXXXX001	L	н	AD bus ← Port A
	н	L	Port A ← AD bus
	L	н	AD bus ← Port B
XXXXX010	н	L	Port B ← AD bus
	L	н	AD bus ← Port C
XXXXX011	н	L	Port C ← AD bus

Table 6 Port control signal levels at ALT3 and ALT4

Control Signal	Output mode	Input mode
STB	Input	Input
BF	"L"	"L"
INTR	"H"	"L"

The basic functions of the I/O ports are shown in Table 5. The control signal levels to ports A and B, when port C is programmed as a control port, are shown in Table 6.

COUNTER/TIMER

The counter/timer is composed of a 14-bit counting register and 2 mode flags. The register has two sections: I/O address XXXXX100 is assigned to the low-order 8 bits and I/O address XXXXX101 is assigned to the high-order 6 bits and timer mode flag 2 bits. The low-order bits $0 \sim 13$ are used for counting or timing. The counter is initialized by the program and then counted down to 0. The initial value can be ranged from 2_{16} to $3FFF_{16}$. Bits 14 and 15 are used as mode flags.

The mode flags select 1 of 4 modes with functions as follows:

Mode 0: Outputs high-level signal during the former half of the counter operation

Outputs low-level signal during the latter half of the counter operation

CMOS 2048-BIT STATIC RAM WITH I/O PORTS AND TIMER

A			в	t N	umb	er		Fundam		
Address	7	6	5	4	3	2	1	0	Function	
XXXXX100	T 7	Т6	T 5	T₄	T3	T2	Тı	τo	The low-order 8 bits of the counter register	
XXXXX101	M2	Мı	T13	T12	T 11	T10	T9	т,	M2,M1: Timer mode $T_{13} \sim T_8$ The high-order 6 bits of the counter register	

Table 7 Format of counter/timer

Table 8 Timer mode

M ₂	M 1	Timer operation	
0	0	Outputs high-level signal during the former half of the cc Outputs low-level signal during the latter half of the court	
0	1	Outputs square wave signals in mode 0	(mode 1)
1	0	Outputs a low-level pulse during the final c	ount down (mode 2)
1	1	Outputs a low-level pulse during each final	count down (mode 3)

- Mode 1: Outputs square wave signals as in mode 0
- Mode 2: Outputs a low-level pulse during the final count down
- Mode 3: Outputs a low-level pulse during each final count down

Starting and stopping the counter/timer is controlled by bits 6 and 7 of the command register (see Table 2 for details). The format and timer modes of the counter/timer register are shown in Table 7 and Table 8.

The contents of counter/timer is not affected by a reset, but counting is discontinued. To resume counting, a start command must be written into the command register as shown in Table 2. While operating 2n+1 count down in mode 0 and mode 1, a high-level signal is output during the former n+1 counting and a low-level signal is output during the later n counting.

RAM Hold Mode at Low Voltage (Power Down Mode)

Power down mode starts when the ALE input is fixed at low-level and other inputs at high or low-level after high-level of \overline{CE} input in M5M81C55P-2 is latched by the falling edge of the ALE input.

The contents of RAM are not affected, even if V_{CC} falls into 2 V in power down mode.

RESET

The M5M81C55P-2 is reset by 400ns(min) pulse input on RESET pin.

By reset, all 3 ports are set to input mode. And counter/timer stops but contents of counter/timer is not reset. Therefore it is necessary to input start command again.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter Conditions		Ratings	Unit
Vcc	Supply voltage		-0.3~7	V
Vi	Input voltage	With respect to Vss	$-0.3 \sim V_{cc} + 0.3$	V
Vo	Vo Output voltage		$-0.3 \sim V_{cc} + 0.3$	V
r	MAX "H"	All output and I/O pins output	-500	
онмах	Output current	"H" level and force same current	-500	μA
	MAX "L"	All output and I/O pins output	2.5	mA
OLMAX	Output current	"L" level and force same current	2.5	mA
т _{орг}	Operating free-air temperature range		-20~75	°C
Tstg	Storage temperature range	-	-65~150	°C

RECOMMENDED OPERATING CONDITIONS (Ta=-20~75°C unless otherwise noted)

Symbol	Parameter	Limits			11-14	
	i alameter	Min	Nom	Max	Unit	
V _{cc}	Supply voltage	4.5	5	5.5	v	
V _{ss}	Supply voltage (GND)	1	0		v	

CMOS 2048-BIT STATIC RAM WITH I/O PORTS AND TIMER

ELECTRICAL CHARACTERISTICS ($T_a=-20\sim75$ °C, $V_{cc}=5V\pm10\%$, $V_{ss}=0V$ unless otherwise noted)

Cumber 1	Desemator	To sh son ditions		Limits			
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit	
ViH	High-level input voltage		2.0		V _{cc} +0.3	v	
VIL	Low-level input voltage		-0.3		0.8	v	
v	I _{OH} =-400μA		2.4			v	
V _{OH} High-le	High-level output voltage	I _{он} =-20µА	4.4			v	
Vol	Low-level output voltage	I _{OL} =2mA			0.45	v	
կ	Input leak current	$v_i=0v, v_{cc}$	-10		10	μA	
loz	Output floating leak current	Vo=0V~Vcc	-10		10	μA	
Ci	Input terminal capacitance	V _{IL} =0V, f=1MHz, 25mVrms, T _a =25°C			10	pF	
Ci/o	Input/output terminal capacitance	V _{I/OL} =0V, f=1MHz, 25mVrms, T _a =25℃			20	pF	
lcc	Supply current from V _{CC} (operating)	f=5MHz			10	mA	
lccs	Supply current from V _{CC} (stand by)	$V_i = 0V, V_{CC}$			10	μA	

Note 5 : Current flowing into an IC is positive, out is negative.

POWER DOWN ELECTRICAL CHARACTERISTICS ($T_a=-20\sim75$ °C, $V_{ss}=0V$ unless otherwise noted)

		T - 4		Unit			
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit	
V _{CC(PD)}	Power down supply voltage		2.0			v	
I _{CC(PD)}	Power down supply current from V _{CC}	V _{cc} =2V, other inputs=0V			10	μA	

TIMING REQUIREMENTS ($T_a=-20\sim75$ °C, $V_{cc}=5V\pm10\%$, $V_{ss}=0V$ unless otherwise noted)

0 milest	P	Test conditions	Limits			Unit	
Symbol Parameter	Parameter	Test conditions		Тур	Max	Jint	
t _{SU(A-L)}	Address setup time before latch		30			ns	
th(L-A)	Address hold time after latch		30			ns	
td(L-RW)	Delay time, latch to read/write		40			ns	
tw(L)	Latch pulse width		70			ns	
td(RW-L)	Delay time, read/write to latch		10			ns	
tw(RW)	Read/write pulse width		200			ns	
tsu(DQ-W)	Data setup time before write		100			ns	
th(w-DQ)	Data hold time after write		0			ns	
t _{C(RW)}	Read/write cycle time]	200			ns	
t _{su(P-R)}	Port setup time before read		50			ns	
th(R-P)	Port hold time after read		10			ns	
t _{w(sтв)}	Strobe pulse width		150			ns	
tsu(P-STB)	Port setup time before strobe		0			ns	
th(STB-P)	Port hold time after strobe		100			ns	
t _{w(∮H)}	Timer input high-level pulse width		70			ns	
t _{w(∳L)}	Timer input low-level pulse width]	40			ns	
td(w-≠)	Delay time, write to timer input		200			ns	
t _{C(∳)}	Timer input cycle time]	200		DC	ns	
t _{r(\$)}	Timer input rise time]			100	ns	
tf(≠)	Timer input fall time]			100	ns	

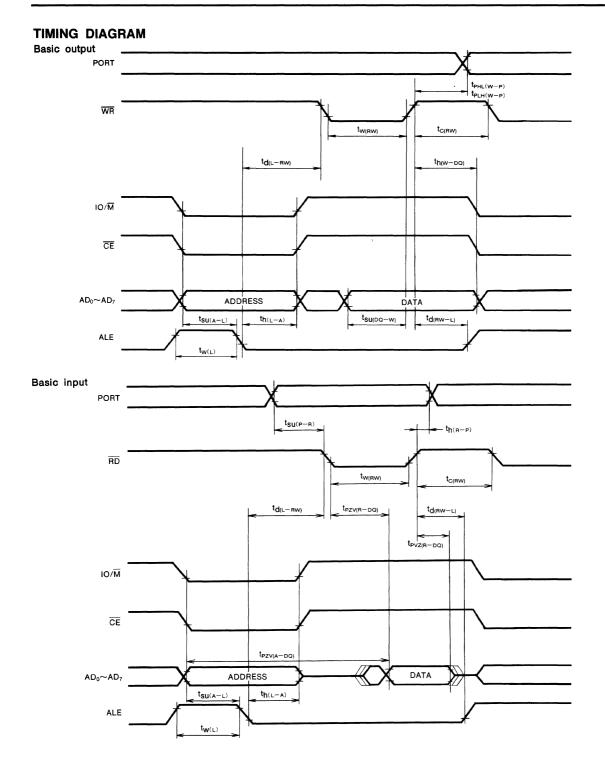
MITSUBISHI LSIs M5M81C55P-2/FP-2/J-2

CMOS 2048-BIT STATIC RAM WITH I/O PORTS AND TIMER

SWITCHING CHARACTERISTICS ($T_a=-20\sim75$ °C, $V_{cc}=5V\pm10\%$, $V_{ss}=0V$ unless otherwise noted)

Symbol	Devementer	Task and distant	Limits			11-14
	Parameter	Test conditions	Min	Тур	Max	Unit
t _{PZV(R-DQ)}	Propagation time from read to data output				120	ns
t _{PZV(A-DQ)}	Propagation time from address to data output				330	ns
t _{PVZ(R-DQ)}	Propagation time from read to data floating (Note 6)		0		80	ns
t _{PHL(W-P)}	Propagation time from write to data output				300	ns
t _{PLH(W-P)}					300	115
t _{PLH(STB-BF)}	Propagation time from strobe to BF flag				300	ns
t _{PHL(R-BF)}	Propagation time from read to BF flag	$C_1 = 150 pF$			300	ns
t _{PLH} (STB-INTR)	Propagation time from strobe to interrupt	CL - 150PP			300	ns
t _{PHL(R-INTR)}	Propagation time from read to interrupt				300	ns
t _{PHL(STB-BF)}	Propagation time from strobe to BF flag				300	ns
t _{PLH(W-BF)}	Propagation time from write to BF flag				300	ns
t _{PHL(W-INTR)}	Propagation time from write to interrupt]			300	ns
t _{PHL} (# -OUT)	Propagation time from timer input to timer output				300	ns
tPLH(#-OUT)	ropagation time nom timer input to timer output				300	ns

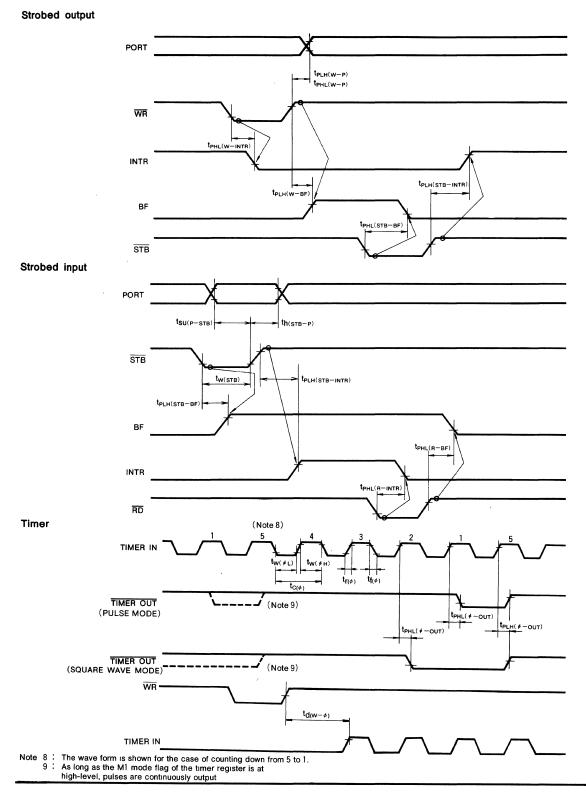
Note 6 : Test conditions are not applied. 7 : A.C Testing waveform Input pulse level Input pulse rise time Input pulse fall time Reference level input output


0.45~2.4V 10**ns** 10**ns** V_{IH}=2V, V_{IL}=0.8V V_{OH}=2V, V_{OL}=0.8V

2.4 **ζ**².8 0.87 0.45

.

MITSUBISHI LSIS M5M81C55P-2/FP-2/J-2



CMOS 2048-BIT STATIC RAM WITH I/O PORTS AND TIMER

MITSUBISHI LSIS M5M81C55P-2/FP-2/J-2

CMOS 2048-BIT STATIC RAM WITH I/O PORTS AND TIMER

MITSUBISHI LSIS M5M81C56P-2/FP-2/J-2

CMOS 2048-BIT STATIC RAM WITH I/O PORTS AND TIMER

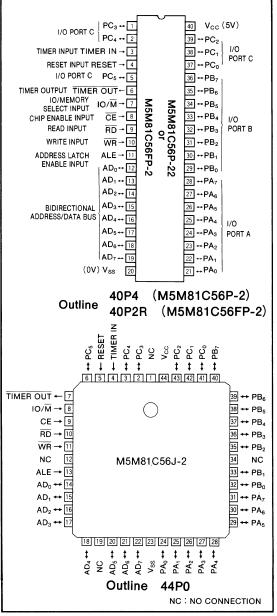
DESCRIPTION

The M5M81C56P-2 is the 2K-bit RAM (256-word by 8-bit) fabricated by the silicon gate CMOS technology. This LSI has 3 I/O ports and a 14-bit counter/timer which make it a good extension of the functions of an 8-bit microcomputer. It is housed in 40-pin plastic molded DIP.

And preparatory for surface equipment M5M81C56FP-2 (SOP) and M5M81C56J-2 (PLCC).

FEATURES

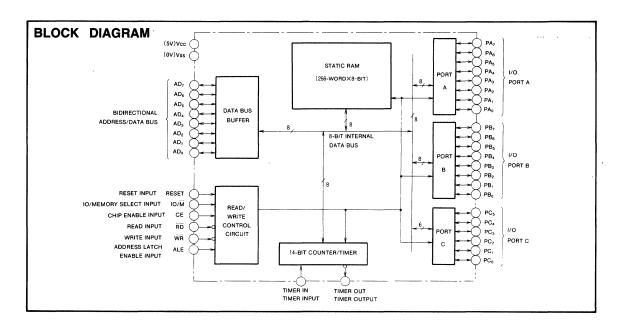
- Having internal anti-circuit on RESET and ALE
- Single 5V supply voltage
- TTL compatible
- Power down mode
- Timer input : 5MHz (max)
- Read access time : 120ns (max)
- Static RAM: 256-word by 8-bit
- Programmable 8-bit I/O port: 2
- Programmable 6-bit I/O port: 1
- Programmable counter/timer 14-bit
- Multiplexed address/data bus


APPLICATION

Extension of I/O ports and timer function for microprocesser

FUNCTION

The M5M81C56P-2 is composed of RAM, I/O ports and counter/timer. The RAM is a 2K-bit static RAM organized as 256-word by 8-bit. The I/O ports consist of 2 programmable 8-bit ports and 1 programmable 6-bit port. The terminals of the 6-bit port can be programmed as control terminals for the 8-bit ports, so that the 8-bit ports can be operated in a handshake mode. The counter/timer is composed of 14-bit down counter (events or time) and it can generate square wave pulses that can be used for counting and timing.


PIN CONFIGURATION (TOP VIEW)

MITSUBISHI LSIs M5M81C56P-2/FP-2/J-2

CMOS 2048-BIT STATIC RAM WITH I/O PORTS AND TIMER

CMOS 2048-BIT STATIC RAM WITH I/O PORTS AND TIMER

OPERATION Data Bus Buffer

This 3-state bidirectional 8-bit buffer is used to transfer the data while input or output instructions are being executed by the CPU. Command and address information is also transferred through the data bus buffer.

Read/Write Control Logic

The read/write control logic controls the transfer of data and commands by interpreting the signals (CE, \overline{RD} , \overline{WR} , IO/ \overline{M} , ALE, RESET) from CPU.

Bidirectional Address/Data Bus (AD₀~AD₇)

The bidirectional address/data bus is a 3-state 8-bit bus. The 8-bit address is latched in the internal latch by the falling edge of ALE. Then if IO/\overline{M} input signal is at high-level, the address of I/O port, counter/timer, or command register is selected. If it is at low-level, address of RAM is selected. The 8-bit data is transferred by read input (\overline{RD}) or write input (\overline{WR}).

Chip Enable Input (CE)

When CE is at high-level, the address information on address/data bus is stored in the M5M81C56P-2.

Read Input (RD)

When \overline{RD} is at low-level, the data bus buffer is active. If IO/\overline{M} input signal is at low-level, the contents of RAM are read through the address/data bus. If IO/\overline{M} input is at high-level, the contents of selected I/O port or counter/timer are read through the address/data bus.

Write Input (WR)

When \overline{WR} is at low-level, the data on the address/data bus are written into RAM if IO/ \overline{M} is at low-level, or they are written into I/O port, counter/timer or command register if IO/ \overline{M} is at high-level.

Address Latch Enable Input (ALE)

An address on the address/data bus is latched in the M5M81C56P-2 on the falling edge of ALE along with the levels of CE and IO/\overline{M} .

IO/Memory Input (IO/M)

When IO/M is at low-level, the RAM is selected, while at high-level the I/O port, counter/timer or command register are selected.

I/O Port A (PA₀~PA₇)

Port A is an 8-bit general-purpose I/O port. Input/output setting is controlled by the system software.

I/O Port B (PB₀~PB₇)

Port B is an 8-bit general-purpose I/O port. Input/output setting is controlled by the system software.

I/O Port C (PC₀~PC₅)

Port C is a 6-bit I/O port that can also be used to output control signals of port A (PA) or port B (PB). The functions of port C are controlled by the system software. When port C is used to output control signals of ports A or B, the assignment of the signals to the pins is as shown in Table 1.

Table 1 Pin assignment of control signals of port C

Pin		Function
PC ₅	B STB	(port B strobe)
PC₄	BBF	(port B buffer full)
PC ₃	B INTR	(port B interrupt)
PC ₂	A STB	(port A strobe)
PC1	A BF	(port A buffer full)
PC ₀	A INTR	(port A interrupt)

Timer Input (TIMER IN)

The signal on this input terminal is used by the counter/timer for counting events or time. (5MHz max.)

Timer Output (TIMER OUT)

A square wave signal or pulse from the counter/timer is output through this pin when in the operation mode.

Command Register (8-bit)

The command register is an 8-bit latched register. The loworder 4 bits (bits $0 \sim 3$) are used for controlling and determination of mode of the ports. Bits 4 and 5 are used as interrupt enable flags for ports A and B when port C is used as a control port. Bits 6 and 7 are used for controlling the counter/timer. The contents of the command register are rewritten by output instructions (I/O address XXXXX000).

Details of the functions of the individual bits of the command register are shown in Table 2.

Table	2	Bit	functions	of	the	command	register
-------	---	-----	-----------	----	-----	---------	----------

Bit	Symbol	Fur	nction		
0	PA	PORT A I/O SET	1 Output port A 0 Input port A		
1	РВ	PORT B I/O SET	1 Output port B 0 Input port B		
2	PC ₁	PORT C SET	00 ALT1 11 ALT2		
3	PC ₂		01 ALT3 10 ALT4		
4	IEA	PORT A INTERRUPT ENABLE FLAG	1 Enable interrupt 0 Disable interrupt		
5	IEB	PORT B INTERRUPT ENABLE FLAG	1 Enable interrupt 0 Disable interrupt		
6	TM1	COUNTER/TIMER CONTROL 00 No influence on counter/timer operation 01. Counter/timer operation discontinued (if not already			
7	TM2	stopped) 10 Counter/timer operation discontinued after the current counter/timer operation is completed 11. Counter/timer operation started			

CMOS 2048-BIT STATIC RAM WITH I/O PORTS AND TIMER

Status Register (7-bit)

The status register is a 7-bit latched register. The low-order 6 bits (bits $0\sim5$) are used as status flags for the I/O ports. Bit 6 is used as a status flag for the counter/timer. The con-

tents of the status register are transferred into the CPU by reading (INPUT instruction, I/O address XXXXX000). Details of the functions of the individual bits of the status register are shown in Table 3.

Table 3	Bit	functions	of	the	status	register
---------	-----	-----------	----	-----	--------	----------

Bit	Symbol	Function	
0	INTR A	PORT A INTERRUPT REQUEST	
1	A BF	PORT A BUFFER FULL FLAG	
2	INTE A	PORT A INTERRUPT ENABLE	
3	INTR B	PORT B INTERRUPT REQUEST	
4	B BF	PORT B BUFFER FULL FLAG	
5	INTE B	PORT B INTERRUPT ENABLE	
6	TIMER	COUNTER/TIMER INTERBUPT	et to 1 when the final punter/timer is is reset to 0 when the
7	—	This bit is not used	

I/O PORTS

Command/status registers (8-bit/7-bit)

These registers are assigned address XXXXX000. When an OUTPUT command is executed, the contents of the command register are rewritten. When an INPUT command is executed, the contents of the status register are read

Port A Register (8-bit)

Port A Register is assigned address XXXXX001. This register can be programmed as an input or output by setting the appropriate bits of the command register as shown in Table 2.

Port A can be operated in basic or strobe mode and is assigned I/O terminal $PA_0 \sim PA_7$.

Port B Register (8-bit)

Port B register is assigned address XXXXX010. As with Port A register, this register can be programmed as an input or output by setting the appropriate bits of the command register as shown in Table 2. Port B can be operated in basic or strobe mode and is assigned I/O terminals $PB_0 \sim PB_7$.

Port C Register (6-bit)

Port C register is assigned address XXXXX011. This port is used not only for input or output but also for controlling input/output operations of ports A and B by selectively setting bits 2 and 3 of the command register as shown in Table 2. Details of the functions of the various setting of bits 2 and 3 are shown in Table 4. Port C is assigned I/O terminals $PC_0 \sim PC_5$. When used as port control signals, the 3 low-order bits are assigned for port A while the 3 high-order bits are assigned for port B.

Table 4 Functions of port C

State Terminal	ALT 1	ALT 2	ALT 3	ALT 4
PC ₅	Input	Output	Output	B STB (port B strobe)
PC₄	Input	Output	Output	B BF (port B buffer full)
PC ₃	Input	Output	Output	B INTR (port B interrupt)
PC ₂	Input	Output	A STB (port A strobe)	A STB (port A strobe)
PC ₁	Input	Output	A BF (port A buffer full)	A BF (port A buffer full)
PC ₀	Input	Output	A INTR (port A interrupt)	A INTR (port A interrupt)

MITSUBISHI LSIS M5M81C56P-2/FP-2/J-2

CMOS 2048-BIT STATIC RAM WITH I/O PORTS AND TIMER

CONFIGURATION OF PORTS

A block diagram of 1 bit of ports A or B is shown in Fig. 1. While port A or B is programmed as an output port, if the port is addressed by an input instruction, the contents of the selected port can be read. When a port is put in input mode, the output latch is cleared and writing into the output latch is disabled. Therefore when a port is changed to output mode from input mode, low-level signals are output through the port. When a reset signal is applied, all 3 ports (PA, PB, and PC) will be input ports and their output latches are cleared. Port C has the same configuration as ports A and B in modes ALT1 and ALT2.

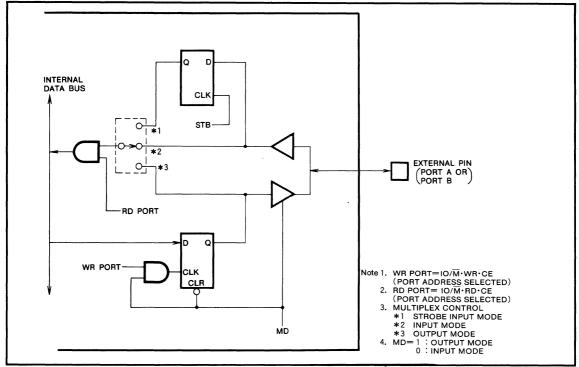


Fig. 1 Configuration for 1 bit of port A or B

Table 5 Basic functions of I/0	O ports
--------------------------------	---------

Address	RD	WR	Function
XXXXX000	L	н	AD bus ← Status register
	н	L	Command register ← AD bus
XXXXX001	L	н	AD bus ← Port A
******	н	L	Port A ← AD bus
XXXXX010	L	н	AD bus ← Port B
*****	н	L	Port B ← AD bus
XXXXX011	L	н	AD bus ← Port C
*****	н	L	Port C ← AD bus

Table	6	Port control signal levels at ALT3 and ALT4	
-------	---	---	--

Control Signal	Output mode	Input mode
STB	Input	Input
BF	"L"	"L"
INTR	"H"	"L"

The basic functions of the I/O ports are shown in Table 5. The control signal levels to ports A and B, when port C is programmed as a control port, are shown in Table 6.

COUNTER/TIMER

The counter/timer is composed of a 14-bit counting register and 2 mode flags. The register has two sections: I/O address XXXXX100 is assigned to the low-order 8 bits and I/O address XXXXX101 is assigned to the high-order 6 bits and timer mode flag 2 bits. The low-order bits $0 \sim 13$ are used for counting or timing. The counter is initialized by the program and then counted down to zero. The initial value can be ranged from 2_{16} to $3FFF_{16}$. Bits 14 and 15 are used as mode flags.

The mode flags select 1 of 4 modes with functions as follows:

Mode 0: Outputs high-level signal during the former half of the counter operation

Outputs low-level signal during the latter half of the counter operation

CMOS 2048-BIT STATIC RAM WITH I/O PORTS AND TIMER

	Bit Number							Function			
Address	7	6	5	4	3	2	1	0	Function		
XXXXX100	T7	т ₆	T 5	T₄	Тз	T2	T1	T ₀	The low-order 8 bits of the counter register		
XXXXX 101	M2	Μı	T ₁₃	T ₁₂	T 11	T ₁₀	T9	Т8	$\begin{array}{c} \text{M2,M1} \text{Timer mode} \\ \text{T}_{13} \sim \text{T}_8 \end{array} \begin{array}{c} \text{The high-order 6 bits} \\ \text{of the counter register} \end{array}$		

Table 7 Format of counter/timer

Table 8 Timer mode

M ₂	M ₁	Timer operation	
0	0	Outputs high-level signal during the former half of the co Outputs low-level signal during the latter half of the court	ounter operation inter operation (mode 0)
0	1	Outputs square wave signals in mode 0	(mode 1)
1	0	Outputs a low-level pulse during the final c	ount down (mode 2)
1	1	Outputs a low-level pulse during each final	count down (mode 3)

- Mode 1: Outputs square wave signals as in mode 0
- Mode 2: Outputs a low-level pulse during the final count down
- Mode 3: Outputs a low-level pulse during each final count down

Starting and stopping the counter/timer is controlled by bits 6 and 7 of the command register (see Table 2 for details). The format and timer modes of the counter/timer register are shown in Table 7 and Table 8.

The contents of counter/timer is not affected by a reset, but counting is discontinued. To resume counting, a start command must be written into the command register as shown in Table 2. While operating 2n+1 count down in mode 0 and mode 1, a high-level signal is output during the former n+1 counting and a low-level signal is output during the later n counting.

RAM Hold Mode at Low Voltage (Power Down Mode)

Power down mode starts when the ALE input is fixed at low-level and other inputs at high or low-level after lowlevel of CE input in M5M81C56P-2 is latched by the falling edge of the ALE input.

The contents of RAM are not affected, even if V_{CC} falls into 2 V in power down mode.

RESET

The M5M81C56P-2 is reset by 400ns(min) pulse input on RESET pin.

By reset, all 3 ports are set to input mode. And counter/timer stops but contents of counter/timer is not reset. Therefore it is necessary to input start command again.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Supply voltage		-0.3~7	v
Vi	Input voltage	With respect to V _{SS}	$-0.3 \sim V_{cc} + 0.3$	v
Vo	Output voltage		$-0.3 \sim V_{cc} + 0.3$	v
	MAX "H"	All output and I/O pins output	-500	
онмах	Output current	"H" level and force same current	-500	μΑ
1	MAX "L"	All output and I/O pins output	2.5	mA
OLMAX	Output current	"L" level and force same current.	2.5	IIIA
Topr	Operating free-air temperature		-20~75	Ĵ
Tsta	Storage temperature range		-65~150	Ĵ

RECOMMENDED OPERATING CONDITIONS ($T_a = -20 \sim 75^{\circ} C$ unless otherwise noted)

Cumbel	Parameter		Unit		
Symbol	Parameter	Min	Nom	Max	Onit
Vcc	Supply voltage	4.5	5	5.5	v
V _{ss}	Supply voltage (GND)		0		V

MITSUBISHI LSIS M5M81C56P-2/FP-2/J-2

CMOS 2048-BIT STATIC RAM WITH I/O PORTS AND TIMER

ELECTRICAL CHARACTERISTICS ($\tau_a = -20 \sim 75$ °C, $v_{cc} = 5 V \pm 10\%$, $v_{ss} = 0V$ unless otherwise noted)

	D	T		Limits		Unit
Symbol	Parameter	Test conditions	Min	Тур	Max V _{cc} +0.3 0.8 0.45 10 10 10 20 10	
VIH	High-level input voltage		2.0		V _{cc} +0.3	V
VIL	Low-level input voltage		-0.3		0.8	v
		1 _{0H} =-400µА	2.4		V _{cc} +0.3 0.8 0.45 10 10 10 20	v
V _{он}	High-level output voltage	I _{0H} =-20µА	4.4			v
Vol	Low-level output voltage	I _{OL} =2mA			0.45	V
l _l	Input leak current	V1=0V, VCC	-10		10	μA
loz	Output floating leak current	Vo=0V~Vcc	-10		10	μA
Ci	Input terminal capacitance	V _{IL} =0V, f=1MHz, 25mVrms, T _a =25℃			10	pF
Ci/o	Input/output terminal capacitance	V _{I/OL} =0V, f=1MHz, 25mVrms, T _a =25°C			20	pF
lcc	Supply current from V _{CC} (operating)	f=5MHz			10	mA
lccs	Supply current from V _{CC} (stand by)	$V_1 = 0V_1 V_{CC}$			10	μA

Note 5 : Current flowing into an IC is positive, out is negative.

POWER DOWN ELECTRICAL CHARACTERISTICS (Ta=-20~75°C, Vss=0Vunless otherwise noted)

Question	Descent star	Test conditions		Limits	Max 10	Unit	
Symbol	Parameter	lest conditions	Min	Тур	Max	Unit	
V _{CC(PD)}	Power down supply voltage		2.0			V	
I _{CC(PD)}	Power down supply current from V _{CC}	V _{cc} =2V, other inputs=0V				μA	

TIMING REQUIREMENTS (Ta=-20~75°C, Vcc=5V±10%,Vss=0V unless otherwise noted)

Sumbol	Parameter	Test conditions		Limits		Unit
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
t _{SU(A-L)}	Address setup time before latch		30			ns
th(L-A)	Address hold time after latch		30			ns
td(L-RW)	Delay time, latch to read/write		40			ns
t _{W(L)}	Latch pulse width		70			ns
td(RW-L)	Delay time, read/write to latch		10			ns
t _{W(RW)}	Read/write pulse width		200			ns
tsu(DQ-W)	Data setup time before write		100			ns
th(w-DQ)	Data hold time after write		0			ns
t _{C(RW)}	Read/write cycle time		200			ns
t _{SU(P-R)}	Port setup time before read		50			ns
th(R-P)	Port hold time after read		10			ns
t _{w(STB)}	Strobe pulse width		150			ns
tsu(P-STB)	Port setup time before strobe		0			ns
t _{h(sтв-p)}	Port hold time after strobe		100			ns
t _{w(∮н)}	Timer input high-level pulse width		70			ns
t _{w(∳L)}	Timer input low-level pulse width		40			ns
td(w-\$)	Delay time, write to timer input		200			ns
t _{C(¢)}	Timer input cycle time		200		DC	ns
tr(ø)	Timer input rise time				100	ns
t _{f(∲)}	Timer input fall time				100	ns

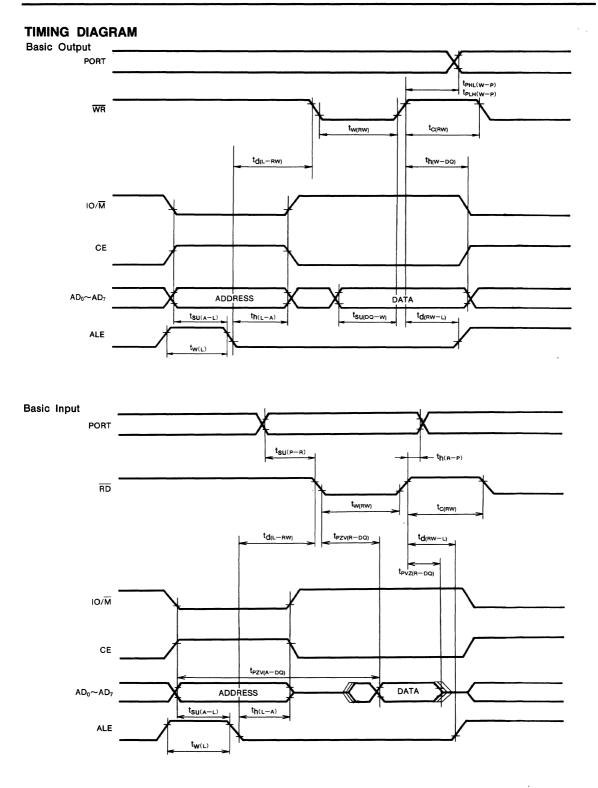
MITSUBISHI LSIs M5M81C56P-2/FP-2/J-2

CMOS 2048-BIT STATIC RAM WITH I/O PORTS AND TIMER

SWITCHING CHARACTERISTICS (Ta= $-20 \sim 75$ °C, V_{cc}= 5 V±10%, V_{ss}=0V unless otherwise noted)

Symbol	Parameter		Limits			
		Test conditions	Min	Тур	Max	Unit
t _{PZV(R-DQ)}	Propagation time from read to data output				120	ns
t _{PZV(A-DQ)}	Propagation time from address to data output				330	ns
t _{PVZ(R-DQ)}	Propagation time from read to data floating (Note 6)		0		80	ns
t _{PHL(W-P)}	Propagation time from write to date autput				300	ns
t _{PLH(W-P)}	Propagation time from write to data output					
t _{PLH(STB-BF)}	Propagation time from strobe to BF flag				300	ns
t _{PHL(R-BF)}	Propagation time from read to BF flag	$C_L = 150 pF$			300	ns
tplh(STB-INTR)	Propagation time from strobe to interrupt				300	ns
t _{PHL(R-INTR)}	Propagation time from read to interrupt				300	ns
t _{PHL(STB-BF)}	Propagation time from strobe to BF flag				300	ns
t _{PLH(W-BF)}	Propagation time from write to BF flag				300	ns
t _{PHL(W-INTR)}	Propagation time from write to interrupt				300	ns
t _{PHL} (∮-OUT) t _{PLH} (∮-OUT)	Propagation time from timer input to timer output				300	ns

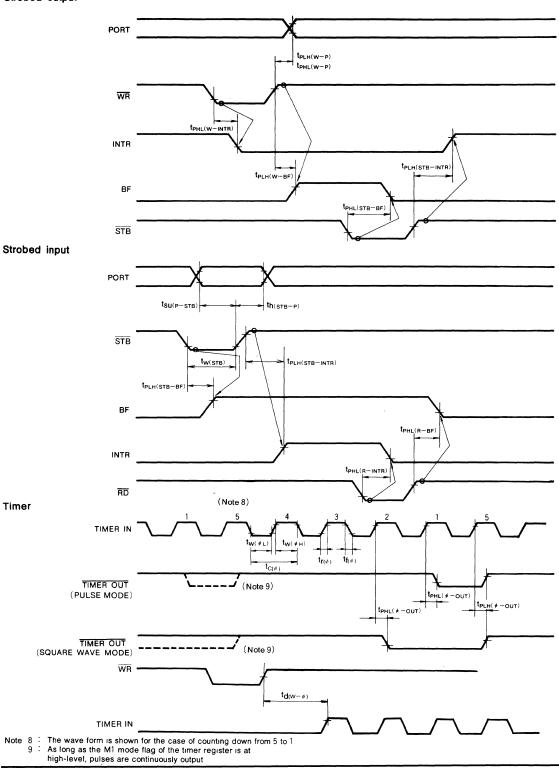
Note 6 : Test conditions are not applied 7 : A C Testing waveform Input pulse level


, '

Input pulse rise time Input pulse fall time Reference level input output 0.45~2.4V 10ns 10ns $V_{IH}=2V, V_{IL}=0.8V$ $V_{OH}=2V, V_{OL}=0.8V$

2.4 0.87 <u>Å.8</u> 0.45

MITSUBISHI LSIS M5M81C56P-2/FP-2/J-2



CMOS 2048-BIT STATIC RAM WITH I/O PORTS AND TIMER

MITSUBISHI LSIS M5M81C56P-2/FP-2/J-2

CMOS 2048-BIT STATIC RAM WITH I/O PORTS AND TIMER

MITSUBISHI LSIS M5M82C37AP-5/FP-5/J-5

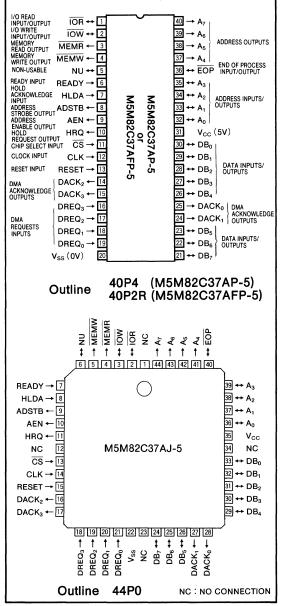
CMOS PROGRAMMABLE DMA CONTROLLER

DESCRIPTION

The M5M82C37AP-5 is a programmable 4-channel DMA (Direct Memory Access) controller. This device is specially designed to simplify data transfer at high transfer rate for microcomputer systems.

Fabricated using the silicon-gate CMOS technology. It is housed in a 40-pin plastic molded DIP.

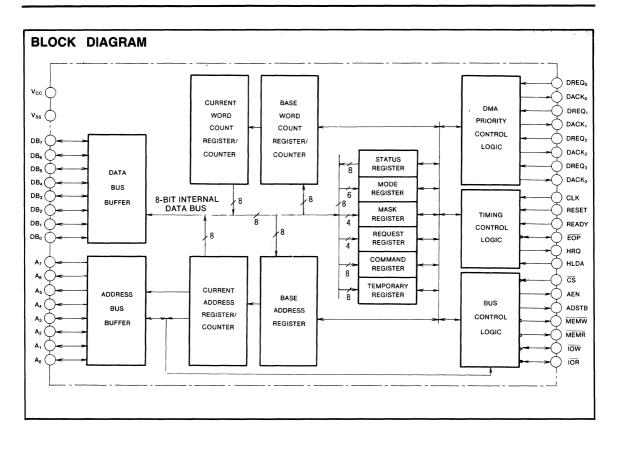
And preparatory for surface equipment M5M82C37AFP-5 (SOP) and M5M82C37AJ-5(PLCC).


FEATURES

- Single 5V supply voltage
- TTL compatible
- Having internal anti-noise circuit on RESET and IOW pins
- Four channel DMA controls with priority DMA request acknowledge functions
- DMA enable/disable, automatic initialization enable/disable, address increment/decrement programmability for each channel
- Programmable DREQ input and DACK output logic polarity
- Direct connecting permits easy DMA channel expansion.
- Memory to memory data transfer
- EOP input/output permits DMA operation completion check as well as forcibly completing DMA operation.

APPLICATION

DMA control of peripheral equipment such as floppy diskettes and CRT terminals that require high-speed data transfer.


PIN CONFIGURATION (TOP VIEW)

MITSUBISHI LSIS M5M82C37AP-5/FP-5/J-5

CMOS PROGRAMMABLE DMA CONTROLLER

FUNCTION

M5M82C37AP-5 is a programmable DMA controller LSI used in microprocessor systems.

This device basically consists of a DMA request control block for acknowledging DMA requests, a CPU interface for exchanging data and commands with the CPU, a timing control circuit for controlling each of the various types of timing, and a register for holding and counting DMA addresses and number of transfer words.

After setting the transfer mode, starting address, and byte number in each of the registers and when a DMA request is made to an unmasked channel, the M5M82C37AP-5 requires use of the bus to the CPU. When the HLDA signal is received from the CPU, the DMA acknowledge signal is sent to DMA requesting channel with the highest priority and begins DMA operation.

During DMA operation, the contents of the low-byte of the transfer memory address are output through $A_7 \sim A_0$. Every time a change in the high-order 8 bits values is necessitated immediately after DMA operation has begun or due to borrowing or decrement during DMA operation, the change is output via pins $DB_7 \sim DB_0$ to the externally mounted latch circuit. After the address is transmitted, read and write signals are sent to the memories and peripherals activating DMA transfer.

PIN DESCRIPTION

IOR input/output (I/O read input/output)

The function of this pin differs depending on the state of the M5M82C37AP-5.

In DMA operation, the IOR outputs low-level pulses providing read timing to the peripheral devices.

In cascade mode DMA, this pin becomes high impedance. In non-DMA mode, IOR is an input to read the contents of the registers in the M5M82C37AP-5.

IOW input/output (I/O write input/output)

The function of this pin differs depending on the state of the M5M82C37AP-5.

In DMA operation, \overline{IOW} outputs a low-level pulse to denote the write timing to peripheral devices.

In cascade mode DMA, this pin becomes high impedance. In non-DMA mode, IOW is input to write data to the registers of the M5M82C37AP-5.

MEMR output (memory read output)

In DMA mode, this pin outputs a low-level pulse to denote the memory read timing.

In cascade mode DMA or in non-DMA operation this pin becomes high-impedance.

MEMW output (memory write output)

In DMA mode, this pin outputs a low-level pulse to denote the memory write timing.

In cascade mode DMA or in non-DMA operation this pin becomes high-impedance.

NU pin (non-usable)

Pin 5 (M5M82C37AJ-5 : Pin 6) is a non-usable pin. This pin should be tied to $V_{CC},$ or it should be left open.

READY input (ready input)

This input is used to extend the read or write pulse in the DMA operation. As long as low-level is input, the DMA transfer period is extended. If no timing extension is needed, this input should be tied to $V_{\rm CC}$.

Note : The ready input level must be stable near the falling edge of the clock input. If the minimum READY setup time from clock or the minimum READY hold time after clock is violated, M5M82C37AP-5 might go into illegal DMA operations

HLDA input (hold acknowledge input)

This input means that the CPU acknowledges the use of the bus. If M5M82C37AP-5 sets the HRQ output high-level and the HLDA input goes to high-level the M5M82C37AP-5 begins DMA operation.

- Note : (1)When HLDA is high-level, CS input is disabled and unexpected read or write operation to M5M82C37AP-5 is prevented.
 - (II)At least 1 clock period is required from HRQ rising edge to HLDA rising edge

ADSTB output (address strobe output)

This pin outputs a high-level pulse when the higher 8 bits of the transfer address is output through data bus at the DMA operation. This pulse is used as the strobe pulse for the external address latch circuit.

In non-DMA mode or in cascade mode DMA this output remains low-level.

AEN output (address enable output)

AEN is an output which denotes that the bus control signal address output etc. from the M5M82C37AP-5 are valid. When AEN output is high-level, they are valid output, so AEN is used as a control input for an external three-state bus buffer.

HRQ output (hold request output)

This output denotes that the M5M82C37AP-5 requests the use of the bus to the CPU. The M5M82C37AP-5 sets HRQ high in response to the DMA request.

CS input (chip select input)

This input is a chip select signal which is set to low-level when the CPU reads or writes data to the M5M82C37AP-5. When HLDA is high-level, this input is masked and the M5M82C37AP-5 is not selected.

CLK input (clock input)

The master clock for the M5M82C37AP-5 is input.

RESET input (reset input)

When a high-level pulse is input from RESET, the M5M82C37AP-5 is set to the initial state.

DACK0, DACK1, DACK2, DACK3 output (DMA acknowledge output)

DMA acknowledge is the signals which shows a peripheral device whether DMA operation for its channel is under execution.

By resetting, they become active low outputs, but they can be mode into active high outputs by altering the contents of the command register.

DREQ0, DREQ1, DREQ2, DREQ3 input (DMA request input)

DREQ is an input which shows that a peripheral device requests DMA service. By resetting, they become active high inputs but they can be made into active low inputs by altering the contents of the command register. DREQ should keep in active until the DACK output returns.

Vss

V_{SS} is connected to system ground.

$DB_7 \sim DB_0$ inputs/outputs (data bus inputs/outputs)

In non-DMA mode, the contents of the registers of the M5M82C37AP-5 are read out or written through DB₇ \sim DB₀. In DMA mode, the higher 8 bits of the transfer address are output through DB₇ \sim DB₀ in the S₁ state. In the memory to memory DMA mode, data to be transferred between memories via the temporary register are read and written by the M5M82C37AP-5 through DB₇ \sim DB₀.

V_{cc}

The 5V power supply is connected through V_{cc}.

$A_7 \sim A_4$ output, $A_3 \sim A_0$ input/output (address output, address input/output)

In the DMA mode, the lower 8 bits of the transfer address are output through $A_7 \sim A_0$.

In cascade mode DMA, they become high-impedance. In the non-DMA mode, $A_3 \sim A_0$ become register select address inputs, while $A_7 \sim A_4$ become high-impedance.

EOP input/output (end of process input/output)

 \overline{EOP} is an N-channel open drain input/output. When the word count register reaches count-up, a low-level pulse is output from \overline{EOP} . (This is called internal \overline{EOP} .) \overline{EOP} may be pulled down to low-level. If \overline{EOP} is pulled down during DMA operation, the DMA operation is forcibly terminated. (This is called external \overline{EOP} .)

Note : In cascade mode DMA, the EOP pulse is not output, and external EOP cannot terminate cascade mode DMA operation

OPERATION

The unit of operation of the M5M82C37AP-5 is one clock period long and is called a 'state'. The M5M82C37AP-5 has seven kinds of states.

The following is the description of the basic DMA operation. When the M5M82C37AP-5 is DMA disabled or no DMA request comes for unmasked DMA channel, the M5M82C37AP-5 is in stand-by condition. At this time the M5M82C37AP-5 repeats S_1 (Inactive state) until a valid DMA request comes. When the M5M82C37AP-5 is enabled and a valid DMA request arrives, the M5M82C37AP-5 is enabled and a valid DMA request arrives, the M5M82C37AP-5 sets HRQ output high-level and waits until the use of the bus is acknowledged. This state is called S_0 state. The M5M82C37AP-5 repeats S_0 state as long as the HLDA input is low-level. When HLDA goes to high, the M5M82C37AP-5 begins DMA operation.

Care must be taken became the M5M82C37AP-5 requires at least 1 clock period from the HRQ rising edge to the HLDA rising edge. (i.e. S_0 state must be repeated at least twice.)

In DMA operation, the M5M82C37AP-5 normally executes four (or three) states per one word transfer.

These four states are called $S_1,\,S_2,\,S_3$ and S_4 state in sequence.

In S₁ state, AEN is set to high-level (if AEN is low-level), the lower 8 bits of data of the transfer address are output through A₇ ~ A₀ and the higher 8 bits of address data are output through DB₇~DB₀. The higher address data are output only in the S₁ state, so the strobe pulse for the external address latch circuit is output from ADSTB. The S₁ state is not executed if the higher 8 bits of address data are not changed in demand mode DMA or block mode DMA.

In the S₂ state, $\overline{\text{MEMR}}$ or IOR output is set to low-level. If the S₁ state is not executed, address outputs A₇ ~ A₀ are changed at the S₂ state also.

In the S₃ state, $\overline{\text{MEMW}}$ or $\overline{\text{IOW}}$ output goes down to lowlevel. The S₄ state is the last state of a word transfer. $\overline{\text{MEMR}}$ (or $\overline{\text{IOR}}$) and $\overline{\text{IOR}}$ (or $\overline{\text{MEMW}}$) outputs rise up to high-level. And the contents of the current address register and the current word counter are updated.

If DMA continues in demand mode or block mode, the S_1 or S_2 state follows after the S_4 state.

If not the S_I state follows after $S_4.\,(In \mbox{ single mode DMA, }S_I$ always follows after $S_4.)$

When the M5M82C37AP-5 returns to the S₁ state, the HRQ and AEN outputs are reset, $A_7 \sim A_4$, $DB_7 \sim DB_0$, \overline{MEMR} , \overline{MEMW} are set to high-impedance and $A_3 \sim A_0$, \overline{IOR} , \overline{IOW} are set to inputs.

If the read or write pulse width is not sufficient for the memories or the peripherals, the transfer time can be extended by setting the READY input to low-level. Until READY goes up to high-level, wait states (S_W) are inserted before S_4 and read, write, and address outputs are hold. The M5M82C37AP-5 has four type of DMA transfers.

READ TRANSFER

This is the transfer operation from memories to peripheral. Low-level pulses are output from $\overline{\text{MEMR}}$ and $\overline{\text{IOW}}$, while $\overline{\text{MEMW}}$, $\overline{\text{IOR}}$ remain high-level.

WRITE TRANSFER

This is the transfer operation from peripheral to memories. Low-level pulses are output from $\overline{\text{MEMW}}$ and $\overline{\text{IOR}}$, while $\overline{\text{MEMR}}$ and $\overline{\text{IOW}}$ remain high-level.

VERIFY TRANSFER

This is the dummy transfer, MEMR, MEMW, IOR and IOW all remain high-level. (not high-impedance). Low-level input to READY is ignored. AEN, ADSTB, DACK and address information are normally output.

MEMORY-TO-MEMORY TRANSFER

This is the transfer from the memory address designated by channel 0 to the memory address designated by channel 1. In this transfer, the channel 0 address and channel 1 address are alternately output. when the channel 0 address is active, the MEMR pulse is output at the same time and the memory data are read and written to the temporary register when the channel 1 address is active, the MEMW pulse is output and the contents of the temporary register are output from the data bus.

Accordingly, ϕ 1 byte memory transfer is executed by two operations a read operation which consists of S₁₁, S₁₂, S₁₃ and S₁₄ states and write operation which consists of S₂₁, S₂₂, S₂₃ and S₂₄ states.

In memory to memory DMA, The transfer type assignment of ch 0, ch 1 mode register (read, write or verify) is ignored.

Notes for memory-to-memory transfer

Observe the following points when programming memoryto-memory DMA.

- The contents of the word count register of channel 0 and 1 must be programmed identically.
- The transfer mode of channel 0 and 1 must be set to the block transfer mode.
- All the mask bits must be set to inhibit external DMA request input. (Memory-to-memory DMA is started by software DMA request to channel 0.)
- In memory-to-memory DMA operation, all the DACK outputs are inactive. (but AEN is set during transfer.)

PRIORITY

Two kinds of DMA priority can be programmed for the M5M82C37AP-5. (Command register bit 4) If plural channels request DMA at the same time, DMA is acknowledged for the channel which has the highest priority. (Table 1)

(1) Fixed Priority (bit 4=0)

The DMA channel which has the highest priority is channel 0. Channel 1 has the second, channel 2 has the third and channel 3 has the lowest priority.

(2) Rotating Priority (bit 4=1)

This priority mode is that the channel which has serviced the DMA request, has the lowest priority at the next DMA operation. (Just after reset the lowest priority channel is channel 3)

For example, just after channel 1 DMA is executed, channel 2 has the highest priority, channel 3 has the second highest, channel 0 has the third and channel 1 has the lowest priority.

Table 1 DMA priority for the M5M82C37AP-5

Drugarda dura a	DMA channel serviced	DMA priority for next transfer				
Priority type		Highest	2nd	3rd	Lowest	
Fixed priority		ch0	ch1	ch2	ch3	
	ch0	ch1	ch2	ch3	ch0	
Deteting priority	ch1	ch2	ch3	ch0	ch1	
Rotating priority	ch2	ch3	ch0	ch1	ch2	
	ch3	ch0	ch1	ch2	ch3	

DESCRIPTION OF THE TRANSFER MODE

The following is the description of the transfer mode of the M5M82C37AP-5 $\,$

(1) Single mode DMA transfer

In single mode DMA, the M5M82C37AP-5 executes only one word transfer when the bus control is acknowledged by the CPU, and when the S_4 state is ended, the M5M82C37AP-5 reset HRQ output and releases the bus.

If the DMA request input continues at active level, at least one S_I state is executed since the HLDA input falls down to low-level, and HRQ is kept low-level. Accordingly, M5L8085AP CPU etc. can execute at least one instruction between DMA transfer.

(2) Block mode DMA transfer

In the block mode, once the DMA request is acknowledged, the DMA is executed continuously until the terminal count (TC) occurs.

TC means that

(1)The contents of the current word count register are about to be counted down from 0000_{16} to FFFF₁₆ or that

(II)an external $\overline{\text{EOP}}$ pulse is input before the S₂ state.

The DREQ input should be kept active until the DACK output is made active, but once DMA is acknowledged, DMA transfer continues until TC occurs even when DMA request becomes inactive.

When DMA is executed continuously, the S_1 or S_2 state follows directly after S_4 . If the contents of the higher 8 bits of the address are not changed at the following word transfer, the S_1 state is skipped and the S_2 state is executed just after S_4 .

(3) Demand mode DMA transfer

In the demand mode, DMA is executed continuously while the DMA request is active.

Once the DMA is acknowledged to the channel which is programmed for the demand mode, DMA operation is executed continuously until TC occurs or the DMA request becomes inactive.

If DMA stops due to an inactive DREQ before TC, the rest of the DMA will be resumed when DREQ becomes active and the DMA is acknowledged again.

The operation during DMA is almost the same as in the block mode DMA.

(4) Cascade mode DMA transfer

This mode is used for DMA channel expansion by cascade connection when more than 4 channels are required. (See fig. 1)

If the DMA request for the channel which is programmed in the cascade mode occurs and the request is acknowledged, only the DACK output becomes active. ($\overline{IOR}, \overline{IOW}, \overline{MEMR}, \overline{MEMW}, DB_7 \sim DB_0, A_7 \sim A_0$ become floating. AEN, ADSTB outputs stay at low-level. \overline{CS} and READY inputs are ignored.)

Accordingly the cascade mode DMA operation of the M5M82C37AP-5 is only that it requests a bus hold request for the CPU instead of the low-level M5M82C37AP-5 and transmits the bus acknowledgement signal by setting DACK active.

Note :

- The contents of the base and current address/word count registers of channels programmed in the cascade mode are invalid and change unpredictably.
- A software DMA request for the channel which is programmed in cascade mode may cause the system of hang up
- When cascaded M5M82C37AP-5's are connected as shown in fig. 1, the high-level M5M82C37AP-5 should be initialized first and the DACK output set high-active in order to initialize the low-level M5M82C37AP-5's because the registers of the M5M82C37AP-5 cannot be read or written when HLDA input is high-level

• An external EOP cannot terminate cascade mode DMA operation.

MITSUBISHI LSIS M5M82C37AP-5/FP-5/J-5

CMOS PROGRAMMABLE DMA CONTROLLER

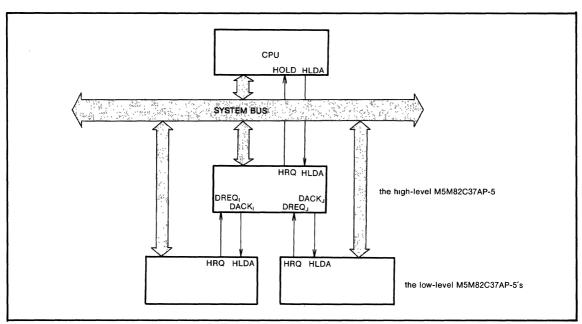


Fig.1 Example of a DMA system using a cascade connection

- (5) Auto initialization feature (mode register bit 4=1) When bit 4 of the mode register is set to 1, the programmed channel enters the auto initialization mode. Auto initialization is performed when TC occurs and the contents of the base address/word count registers are loaded in the current address/word count registers. (The contents of the base address/word count registers are programmed to the same value as the current registers, at the same time.)
- Note : If a channel is programmed for auto initialization the mask register bit for that channel is not set after TC. If it is not programmed for auto initialization, the mask register bit is set after TC, so the mask register bit must be reset to set this channel to DMA-enable
- (6) Extended write feafure (command register bit 5=1) In normal DMA operation, the write pulse $\overline{\text{MEMW}}$ (or $\overline{\text{IOW}}$) falls down to low-level in the S₃ state. But, if extended write is programmed, the write pulse falls at the S₂ state and the width can be extended for one clock period.
- (7) Compressed timing DMA feafure (command regsiter bit 3=1)

In normal DMA, the transfer for one word consists of three or four states.

If the compressed timing DMA is programmed, the S_3 state is not executed and the one word transfer consists of two or three states. In this mode, the write output ($\overline{IOW}, \overline{MEMW}$) falls to Iow-level in the S_2 state as well as the read output ($\overline{IOR}, \overline{MEMR}$). In memory-tomemory DMA operation, the compressed timing assignment is ignored.

REGISTERS

The following is a description of the registers of M5M82C37AP-5.

(1) Address registers

The M5M82C37AP-5 has two 16-bit address registers for each DMA channel.

One is called the current address register. It holds the contents of the memory address at which DMA operation is performed and the contents are incremented (or decremented) at every word transfer. This register is read/write enabled when in the inactive state. The other is the base address register. This register is a write-only register and is written at the same time the current address register is programmed. The contents of the base address register are loaded into the current address register when the channel has reached TC if the channel is programmed in the auto initialize mode.

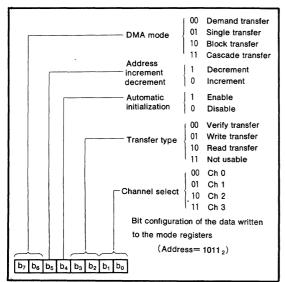
The registers of the M5M82C37AP-5 are read or written through an 8-bit data bus so the address register must be accessed twice, first the lower 8 bits, second the higher 8 bits. The M5M82C37AP-5 has a first/last flip-flop which is toggled when the 16-bit regsiter is accessed. It selects the lower or higher byte.

(2) Word count registers

The M5M82C37AP-5 has two 16-bit word count registers for each DMA channel.

One is called the current word count register. It holds the number of DMA transfer words, and the contents are decremented at the end of every word transfer. TC

occurs when the contents of the word counter about to decrement from 0000_{16} to $\mathsf{FFFF}_{16}.$


The other is the base word counter, a write only register that is used for auto initialization like the base address register.

The read/write operation for the word count register is the same as for the address registers.

(3) Mode registers

The M5M82C37AP-5 has four 6-bit length registers to select the DMA modes and types for the 4 DMA channels. They are write only registers.

To program one of these registers, the channel selection is done by the 2 LSBs of the written data allowing all four registers to assigned at the same address. The other 6 bits are written to one of the four registers. The bit assignment is shown in fig. 2.

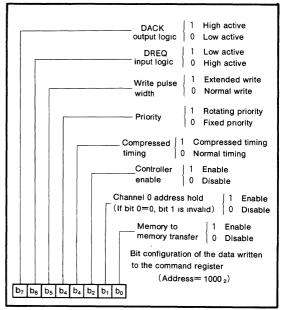
(4) Command register

This register is an 8-bit write only register used to define common operations for the four DMA channels. The bit assignment is shown in fig. 3.

Command regsiter is set 00₁₆ by reset.

(5) Mask register

This register is a 4-bit register with one mask bit for each DMA channel.


The four bits of this regsiter can be programmed simultaneously (fig. 4) or can be set or reset 1-bit at a time (fig. 5). All bits can be cleared by the clear mask register command. (Address= 1110_2)

After reset, the 4 mask bits are all set to 1.

(6) Request register

This register is 4-bit register with one software request bit for each DMA channel.

One request bit can be set or reset at a time. (fig. 6)

Fig.3 Command register

Fig.4 Mask register (write all bit)

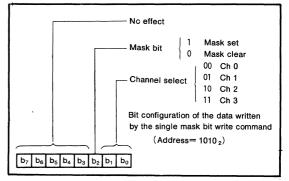
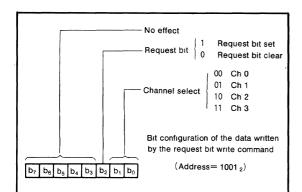



Fig.5 Mask register (write single bit)

MITSUBISHI LSIS M5M82C37AP-5/FP-5/J-5

CMOS PROGRAMMABLE DMA CONTROLLER

Fig.6 Request register

Note : All the request bits are reset after the DMA operation of one channel So, when the DMA is started by software request, other external DMA requests must be masked by setting all the mask register bits (Software requests are not masked by the mask register) All the request bits are set to 0 after reset.

(7) Status register

This register is an 8-bit read only register. The 4 MSBs show the status of the four DREQs. 1 means that the DREQ input is active.

The other 4 bits are the TC bits which are set to 1 when TC occurs. The lower 4 bits are reset after the status registers are read or after reset.

The relation between these bits and the channels is shown in fig. 7.

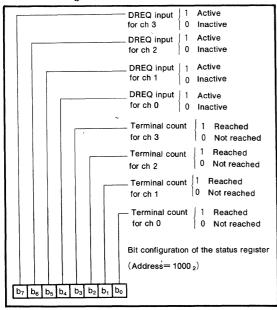


Fig.7 Status register

(8) Temporary Register

This register is an 8-bit read only register.

It is used to store temporary data read during the first part of the memory-to-memory DMA operation.

When the CPU reads this register, the register contents are the data which were transfered in memory-tomemory transfer DMA immediately prior to the CPU read.

PROGRAMMING

The registers in the M5M82C37AP-5 can be read or written when $\overline{\text{CS}}$ and HLDA inputs are low-level.

The address assignment is shown in Tables 2 and 3 Some of the write operations in these figures do not, in fact, write in any registers. They are called software commands. The following is a description of the software commands.

Clear first/last F/F

In reading or writing a 16-bit register, the higher and lower 8 bits are accessed separately. Selection is done by a first/ last flip-flop which toggles when ever one of the 16-bit registers is accessed. This command clears the first/last flipflop, so after this command is executed, the next access of the 16-bit register is begins at the lower 8 bits.

Master clear

This command executes a software reset.

- Note : The following are the effects of the software reset for the M5M82C37AP-5
 - Mask bits are set for all the DMA channels
 - \bullet The command register is cleared to $00_{16}\,$ (Note that bit 2 is 0)
 - The temporary register is cleared.
 - The 4 TC bits of the status register are cleared
 - The first/last flip-flop is reset.
 - Software DMA request bits are cleared.

(When the hardware reset is performed, together with the above effects, DMA operation is terminated and the M5M82C37AP-5 returns to the S_1 state.)

Clear mask register

This command clears all the mask bits and enable DMA for all the channels.

CMOS PROGRAMMABLE DMA CONTROLLER

A ₃ A	.	1						
A3 A							First	
	A2	A1	A ₀	cs	HLDA	RD	Last	REGISTER READ
							F/F	
0 0	0	0	0	L	L	L	0	CH0 Current address register bit7~bit0
0 0	0	0	0	L	L	L	1	CH0 Current address register bit15~bit8
0 0	0	0	1	L	L	L	0	CH0 Current word count register bit7~bit0
0 0	0	0	1	L	L	L	1	CH0 Current word count register bit15~bit8
0 0	0	1	0	L	L	L	0	CH1 Current address register bit7~bit0
0 0	0	1	0	L	L	L	1	CH1 Current address register bit15~bit8
0 0	0	1	1	L	L	L	0	CH1 Current word count register bit7~bit0
0 0	0	1	1	L	L	L	1	CH1 Current word count register bit15~bit8
0 1	1	0	0	L	L	L	0	CH2 Current address register bit7~bit0
0 1	1	0	0	L	L	L	1	CH2 Current address register bit15~bit8
0 1	1	0	1	L	L	L	0	CH2 Current word count register bit7~bit0
0 1	1	0	1	L	L	L	1	CH2 Current word count register bit15~bit8
0 1	1	1	0	L	L	L	0	CH3 Current address register bit7~bit0
0 1	1	1	0	L	L	L	1	CH3 Current address register bit15~bit8
0 1	1	1	1	L	L	L	0	CH3 Current word count register bit7~bit0
0 1	1	1	1	L	L	L	1	CH3 Current word count register bit15~bit8
1 0	0	0	0	L	L	L	х	Status register
1 0	0	0	1	L	L	L	x	Invalid
1 0	0	1	0	L	L	L	x	Invalid
1 0	0	1	1	L	L	L	x	Invalid
1 1	1	0	0	L	L	L	x	Invalid
1 1	1	0	1	L	L	L	x	Temporary register
1 1	1	1	0	L	L	L	x	Invalid
1 1	1	1	1	L	L	L	x	Invalid
X X	x	Х	Х	н	X	х	х	Read operation is not executed.
x x	×	x	х	х	н	x	x	Read operation is not executed

Table 2 Read operation with the M5M82C37AP-5

Table 3 Write operation with the M5M82C37AP-5

A3	A2	A1	Ao	CS	HLDA	WR	First Last F/F	REGISTER WRITTEN
0	0	0	0	L	L	L	0	CH0 base and current address register bit7~bit0
0	0	0	0	L	L	L	1	CH0 base and current address register bit15~bit8
0	0	0	1	L	L	L	0	CH0 base and current word count register bit7~bit0
0	0	0	1	L	L	L	1	CH0 base and current word count register bit15~bit8
0	0	1	0	L	L	L	0	CH1 base and current address register bit7~bit0
Ó	0	1	0	L	L	L	1	CH1 base and current address register bit15~bit8
0	0	1	1	L	L	L	0	CH1 base and current word count register bit7~bit0
0	0	1	1	L	L	L	1	CH1 base and current word count register bit15~bit8
0	1	0	0	L	L	L	0	CH2 base and current address register bit7~bit0
0	1	0	0	L	L	L	1	CH2 base and current address register bit15~bit8
0	1	0	1	L	L	L	0	CH2 base and current word count register bit7~bit0
0	1	0	1	L	L	L	1	CH2 base and current word count register bit15~bit8
0	1	1	0	L	L	L	0	CH3 base and current address register bit7~bit0
0	1	1	0	L	L	L	1	CH3 base and current address register bit15~bit8
0	1	1	1	L	L	L	0	CH3 base and current word count register bit7~bit0
0	1	1	1	L	L	L	1	CH3 base and current word count register bit15~bit8
1	0	0	0	L	L	L	х	Command register
1	0	0	1	L	L	L	x	Request register
1	0	1	0	L	L	L	x	Single mask bit write
1	0	1	1	L	L	L	х	Mode register
1	1	0	0	L	L	L	х	Clear first/last flip-flop software commands
1	1	0	1	L	L	L	х	Master clear software commands
1	1	1	0	L	L	L	x	Clear all mask register bits software commands
1	1	1	1	L	L	L	x	Write all mask bits software commands
Х	Х	х	х	н	X	х	х	Write is not executed.
X	х	х	х	х	н	х	х	Write is not executed.

CMOS PROGRAMMABLE DMA CONTROLLER

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Supply voltage		-0.3~7	V
Vi	Input voltage	With respect to V _{SS}	$-0.3 \sim V_{cc} + 0.3$	V
Vo	Output voltage		$-0.3 \sim V_{cc} + 0.3$	V
1	MAX "H"	All output and I/O pins output	500	
онмах	Output current	"H" level and force same current.	-500	μA
1	MAX "L"	All output and I/O pins output	0.5	
IOLMAX	Output current	"L" level and force same current	2.5	mA
Topr	Operating free-air temperature range		-20~75	°C
Tstg	Storage temperature		-65~150	Ĉ

RECOMMENDED OPERATING CONDITIONS $(T_a = -20 \sim 75^{\circ}C \text{ unless otherwise noted})$

Symbol	Parameter		Limits				
Symbol	Farameter	Min	Nom	Max	Unit		
v_{cc}	Supply voltage	4.5	5	5.5	v		
V _{SS}	Supply voltage(GND)		0		v		

ELECTRICAL CHARCTERISTICS ($T_a = -20 \sim 75^{\circ}C$, $V_{cc} = 5V \pm 10\%$, $V_{ss} = 0V$ unless otherwise noted)

Symbol	Parameter	Test and diana		Unit			
Symbol	Parameter	Test conditions		Тур	Max	Unit	
ViH	High-level input voltage		2.0		V _{cc} +0.3	v	
VIL	Low-level input voltage		-0.3		0.8	v	
		I _{OH} =-200µА	2.4				
V _{он}	High-level output voltage	$I_{OH} = -20 \mu A$ 4.				v	
		$I_{OH} = -100 \mu A(HRQ \text{ only})$	3.3				
		I _{OL} =2.0mA(data bus) I _{OL} =3.2mA(other outputs)			0.45	v	
Vol	Low-level output voltage			0.45		v	
l,	Input current	$V_1 = 0V, V_{CC}$	-10		+10	μA	
loz	Off-state output current	V _o =0V~V _{cc}	-10		+10	μA	
lcc	Supply current from V _{CC} (operating)	$V_{I}=0V, V_{CC}, f_{CLK}=1/t_{C}(\phi)min.$			15	mA	
lccs	Supply current from V _{CC} (stand by)	$V_1 = 0V, V_{CC}$			10	μA	
Ci	Input terminal capacitance	$V_{IL}=V_{SS}$, f=1MHz, 25mVrms, Ta=25°C			10	pF	
Ci/o	Input/output terminal capacitance	$V_{I/OL} = V_{SS}$, f=1MHz, 25mVrms, Ta=25°C			20	pF	

CMOS PROGRAMMABLE DMA CONTROLLER

TIMING REQUIREMENTS (Ta=-20~75°C, Vcc=5V \pm 10%, Vss=0V unless otherwise noted) 1. SLAVE MODE

	•	T t dision -	Limits			Unit
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
t _{su(cs-r)} t _{su(A-r)}	Address setup time before read		50			ns
t _{su(cs-w)}	CS setup time before write		130			ns
t _{su(A-W)}	Address setup time before write]	130			ns
tsu(DQ-W)	Data setup time before write		100			ns
t _{h(R-CS)} t _{h(R-A)}	Address hold time after read		0			ns
th(w-cs)	CS hold time after write		20			ns
th(w-A)	Address hold after write		20			ns.
th(w-DQ)	Data hold after write		30			ns
t _{W(R)}	Read pulse width		200			ns
tw(w)	Write pulse width		160			ns
tw(RESET)	Reset pulse width		300			ns
tSU(VCC-RESET)	V _{CC} setup time before to reset]	500			ns
tsu(RESET-R)	Reset setup time before read		2t _{C(\$)}			ns
tsu(RESET-W)	Reset setup time before Write					

2. DMA MODE

Oursels at	B	T		Unit		
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
t _{w(∳)}	Clock high-level pulse width		80			ns
t _{w(≠)}	Clock low-level pulse width		68			ns
t _{C(∳)}	Clock period		200		DC	ns
t _{su(EOP-∳)}	External EOP setup time before clock		40			ns
tw(EOP)	External EOP pulse width		220			ns
tsu(DREQ-#)	DREQ setup time before clock		0			ns
tsu(READY- #)	READY setup time before clock		60			ns
th(≠ -READY)	READY hold time before clock		20			ns
t _{su(hlda-∳)}	HLDA setup time before clock		75			ns
tsu(dq-memr)	Data setup time before MEMR		170			ns
th(MEMR-DQ)	Data hold time after MEMR		0			ns

CMOS PROGRAMMABLE DMA CONTROLLER

SWITCHING CHARACTERISTIC (Ta= $-20 \sim 75$ °C, V_{cc}= $5V\pm10\%$, V_{ss}=0V unless otherwise noted) 1. SLAVE MODE

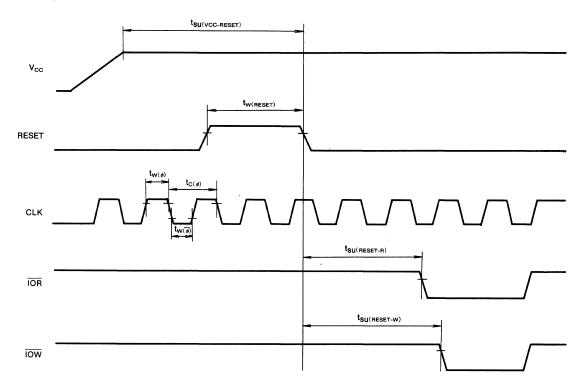
<u> </u>		Test conditions		Limits			
Symbol	Parameter	l est conditions	Min	Тур	Max	Unit	
tpzv(R-DQ)	Data enable time after read				140	ns	
tevz(R-DQ)	Data disable time after read	C _L =150pF	0		70	ns	
tpzv(A-DQ)	Address access time]			250	ns	

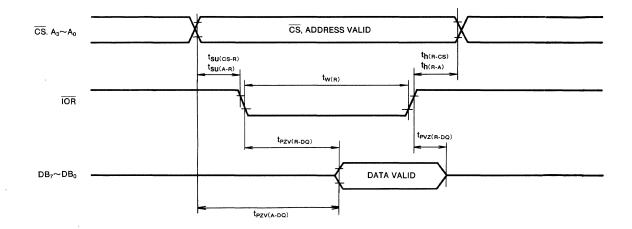
2. DMA MODE

Ormhal	B	Test conditions	L	imits	Unit
Symbol	Parameter	Parameter Test conditions		Тур Мах	Unit
tPLH(# -AEN)	Propagation time from clock to AEN			200	ns
t _{PHL(∲-AEN)}	Propagation time from clock to AEN			130	ns
t _{PZV(∮-A)}	Propagation time from clock to address active			170	ns
t _{PHL} (∮-A)	Propagation time from clock to address stable			170	ns
tpvz(+-A)	Propagation time from clock to address floating			90	ns
tpzv(+-DQ)	Propagation time from clock to data bus			200	ns
tpvz(+-DQ)	Propagation time from clock to data bus			170	ns
t _{PLH} (∮-ADSTB)	Propagation time from clock to ADSTB			130	ns
t _{PHL} (≠ -ADSTB)	Propagation time from clock to ADSTB			90	ns
tsu(DQ-ADSTB)	Data output setup time before ADSTB		100		ns
th(ADSTB-DQ)	Data output hold time before ADSTB		30		ns
t _{PZV} (∮-R) t _{PZV} (∮-W)	Propagation time from clock to read or write active	C _L =150pF		150	ns
t _{PHL(¢ -R)} t _{PHL(¢ -W)}	Propagation time from clock to read or write			190	ns
tPLH(#-R)	Propagation time from clock to read			190	ns
tPLH(#-W)	Propagation time from clock to write			130	ns
t _{PVZ} (# -R) t _{PVZ} (# -W)	Propagation time from clock to read or write floating			120	ns
th(R-A)	Address output hold time after read		$t_{C(\phi)} - 100$		ns
th(w-A)	Address output hold time after write		t _{c(#)} -50		ns
tsu(DQ-MEMW)	Data output setup time before MEMW		125		ns
th(MEMW-DQ)	Data output hold time after MEMW		10		ns
tphl(#-DACK) tplh(#-DACK)	Propagation time from clock to DACK			170	ns
tPHL(#-EOP)	Propagation time from clock to EOP			170	ns
tPLH(#-EOP)	Propagation time from clook to EOP			170	ns
t _{PLH} (∮-HRQ) t _{PHL} (∮-HRQ)	Propagation time from clock to HRQ			,120	ns

Note : A.C Testing waveform Input pulse level Input pulse rise time Input pulse fall time Reference level input output

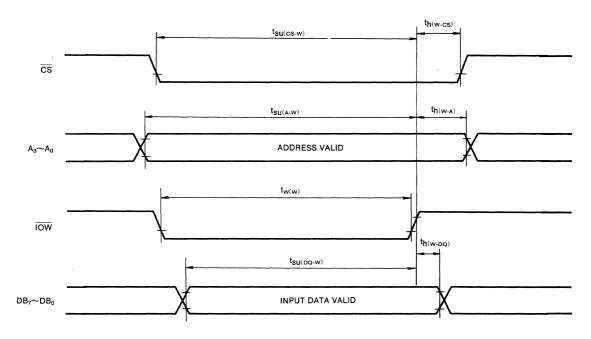
0. 45~2. 4V 10ns 10ns V_{IH}=2V, V_{IL}=0. 8V V_{OH}=2V, V_{OL}=0. 8V

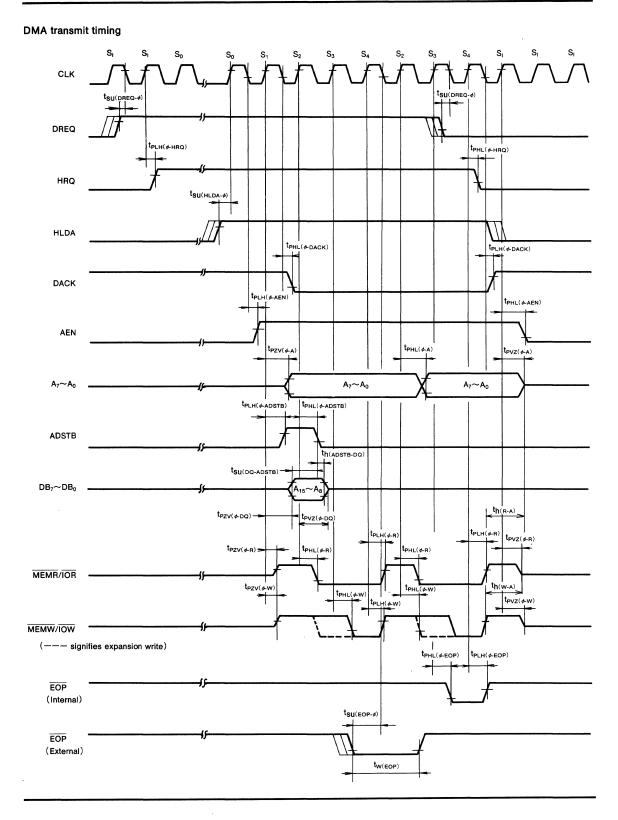

2.4 -0.8 $\mathbf{X}_{0.8}^2$ 0.45


CMOS PROGRAMMABLE DMA CONTROLLER

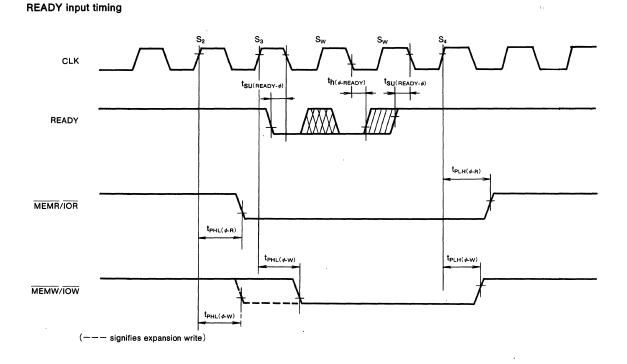
TIMING DIAGRAMS

Reset timing

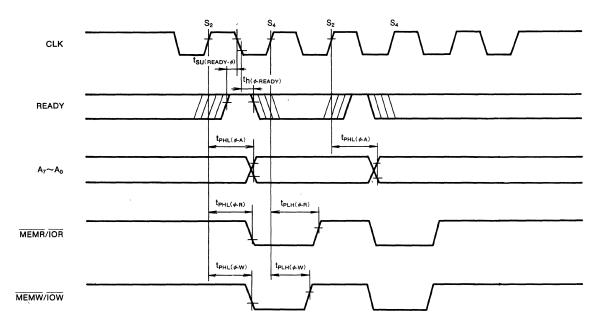

Slave mode timing (READ)


CMOS PROGRAMMABLE DMA CONTROLLER

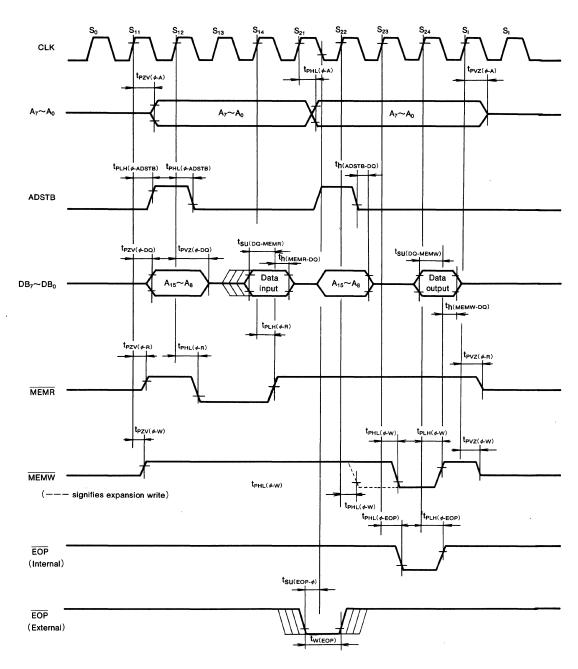
Slave mode timing (WRITE)



CMOS PROGRAMMABLE DMA CONTROLLER



CMOS PROGRAMMABLE DMA CONTROLLER


Compressed timing

CMOS PROGRAMMABLE DMA CONTROLLER

Inter-memory transmission

CMOS PROGRAMMABLE COMMUNICATION INTERFACE

DESCRIPTION

The M5M82C51AP is a universal synchronous/asynchronous receiver/transmitter (USART) IC chip designed for data communications use. It is produced using the silicon-gate CMOS process and is mainly used in combination with 8-bit microprocessors. It is housed in a 28-pin plastic molded DIP.

And preparatory for surface equipment M5M82C51AFP (SOP) and M5M82C51AJ(PLCC).

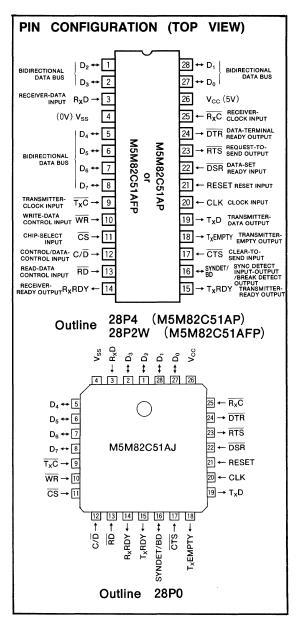
FEATURES

- Single 5V supply voltage
- TTL compatible
- Synchronous and asynchronous operation
 - Synchronous:
 - 5~8-bit characters

Internal or external synchronization Automatic SYNC character insertion

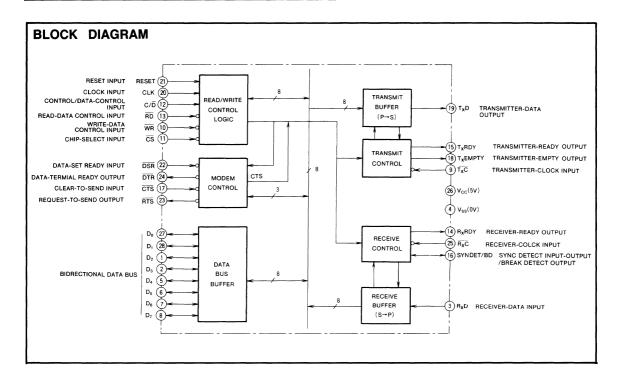
- Asynchronous system:
 - 5~8-bit characters
 - Clock rate-1, 16 or 64 times the baud rate
 - 1, $1\frac{1}{2}$, or 2 stop bits
 - False-start-bit detection
 - Automatic break-state detection
- Baud rate: DC~64K-baud
- Full duplex, double-buffered transmitter/receiver
- Error detection: parity, overrun, and framing

APPLICATION


Modem control of data communications using microcomputers

Control of CRT, TTY and other terminal equipment

FUNCTION


The M5M82C51AP is used in the peripheral circuits of a CPU. It permits assignments, by means of software, of operations in all the currently used serial-data transfer systems.

The M5M82C51AP receives parallel-format data from the CPU, converts it into a serial format, and then transmits via the T_xD pin. It also receives data sent in via the R_xD pin from the external circuit, and converts it into a parallel format for sending to the CPU. On receipt of parallel-format data for transmission from the CPU or serial data for the CPU from external devices, the M5M82C51AP informs the CPU using the T_xRDY or R_xRDY pin. In addition, the CPU can read the M5M82C51AP status at any time. The M5M82C51AP can detect the data received for errors and inform the CPU of the presence of errors as status information. Errors include parity, overrun and frame errors.

CMOS PROGRAMMABLE COMMUNICATION INTERFACE

CMOS PROGRAMMABLE COMMUNICATION INTERFACE

OPERATION

The M5M82C51AP interfaces with the system bus as shown in Fig.1, positioned between the CPU and the modem or terminal equipment, and offers all the functions required for data communication.

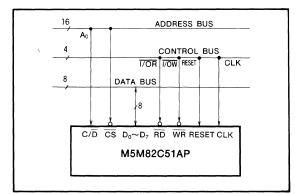


Fig. 1 M5M82C51AP interface to CPU system bus

When using the M5M82C51AP, it is necessary to program, as the initial setting, assignments for synchronous/asynchronous mode selection, baud rate, character length, parity check, and even/odd parity selection in accordance with the communication system used. Once programming is completed, functions appropriate to the communication system can be carried out continuously.

When initial setting of the USART is completed, data communication becomes possible. Though the receiver is always in the enable state, the transmitter is placed in the transmitter-enable state (T_xEN) by a command instruction, and the application of a low-level signal to the \overline{CTS} pin prompts data-transfer start-up. Until this condition is satisfied, transmission is not executed. On receiving data, the receiver informs the CPU that reading for the receiver data in the USART by the CPU has become possible (the R_xRDY terminal has turned to high-level). Since data reception and the entry of the CPU into the data-readable state are output as status information, the CPU can access USART status without accessing the R_xRDY terminal.

During receiving operation, the USART checks errors and gives out status information. There are three types of errors: parity, overrun, and frame. Even though an error occurs, the USART continues its operations, and the error state is retained until error reset (ER) is effected by a command instruction. The M5M82C51AP access methods are listed in Table 1.

Table 1 M5M82C51AP Access Methods

C/D	RD	WR	CS	Function
L	L	н	L	Data bus ← Data in USART
L	н	L	L	USART ← Data bus
н	L	н	L	Data bus ← Status
н	н	L	L	Control ← Data bus
х	н	н	L	3-State ← Data bus
х	x	X	н	3-State ← Data bus

Read/Write Control Logic

This logic consists of a control word register and command word register. It receives signals from the CPU control bus and generates internal-control signals for the elements.

Modem Control Circuit

This is a general-purpose control-signal circuit designed to simplify the interface to the modem. Four types of control signal are available: output signals $\overline{\text{DTR}}$ and $\overline{\text{RTS}}$ are controlled by command instructions, input signal $\overline{\text{DSR}}$ is given to the CPU as status information and input signal $\overline{\text{CTS}}$ controls direct transmission.

Data-Bus Buffer

This is an 8-bit 3-state bidirectional bus through which control words, command words, status information, and transfer data are transferred. Fig. 2 shows the structure of the databus buffer.

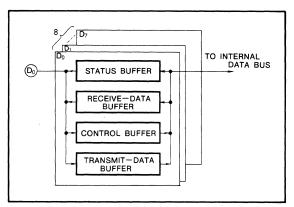


Fig. 2 Data-bus buffer structure

Transmit Buffer

This buffer converts parallel-format data given to the databus buffer in to serial data with addition of a start bit, stop bits and a parity bit, and sends out the converted data through the T_xD pin based on the control signal.

Transmit-Control Circuit

This circuit carries out all the controls required for serial data transmission. It controls transmitter data and outputs the signals required by external devices in accordance with the instructions of the read/write control logic.

CMOS PROGRAMMABLE COMMUNICATION INTERFACE

Receive Control Circuit

This circuit offers all the controls required for normal reception of the input serial data. It controls receiver data and outputs signals for the external devices in accordace with the instructions of the read/write control logic.

Receive Buffer

This buffer converts serial data given via the R_xD pin into a parallel format, checks the bits and characters in accordance with the communication format designated by mode setting, and transfers the assembled characters to the CPU via the data-bus buffer.

Receiver-Data Input (R_xD)

Serial characters sent from another device are input to this pin and converted to a parallel-character format to serve as data for the CPU. Unless the high-level state is detected after a chip-master reset procedure (this resetting is carried out to prevent spurious operation such as that due to faulty connection of the R_xD to the line in a break state), the serial characters are not received. This applies to only the asynchronous mode. When the R_xD line enters the low-level state instantaneously because of noise, etc, the misstart prevention function starts working. That is, the start bit is detected by its falling edge but in order to make sure that it is the correct start bit, the R_xD line is strobed at the middle of the start bit to reconfirm the low-level state. If it is found to be high-level a faulty-start judgment is made.

Transmitter-Clock Input (T_xC)

This clock controls the baud rate for character transmission from the T_xD pin. Serial data is shifted by the falling edge of the $\overline{T_xC}$ signal. In the synchronous mode, the $\overline{T_xC}$ frequency is equal to the actual baud rate. In the asynchronous mode, the frequency is specified as 1, 16, or 64 times the baud rate by the mode setting.

Example When the baud rate is 110 bauds:

 $\overline{T_xC} = 110Hz(1X)$ $\overline{T_xC} = 1.76kHz(16X)$

 $T_xC = 7.04 \text{ kHz}(64X)$

Write-Data Control Input (WR)

Data and control words output from the CPU by the low-level input are written in the M5M82C51AP. This terminal is usually used in a form connected with the control bus $\overline{I/OW}$ of the CPU.

Chip-Select Input (CS)

This is a device-select signal that enables the USART by a low-level input. Usually, it is connected to the address bus directly or via the decoder. When this signal is in the high-level state, the M5M82C51AP is disabled.

Control/Data Control Input (C/D)

This signal shows whether the information on the USART data bus is in the form of data characters or control words, or in the form of status information, in accordance with the $\overline{\text{RD}}$ and $\overline{\text{WR}}$ inputs while the CPU is accessing the M5M82C51AP. The high-level identifies control words or status information, and the low-level, data characters.

Read-Data Control Input (RD)

Receiver data and status information are output from the CPU by a low-level input for the CPU data bus.

Receiver-Ready Output (R_xRDY)

This signal indicates that the received characters have entered the receiver buffer, and further, the receiver-data buffer in the data-bus buffer shown in Fig. 2. It is possible to confirm the R_xRDY status by using this signal as an interruption signal for the CPU or by allowing the CPU to read the D₁ bit of the status information by polling. The R_xRDY is automatically reset when a character is read by the CPU. Even in the break state in which the R_xD line is held at low-level, the R_xRDY remains active. It can be masked by making the R_xE(D₂) of the command instruction 0.

Transmitter-Ready Output (T_xRDY)

This signal shows that the data is ready for transmission. It is possible to confirm the status of serial-data transmission by using it as an interruption signal for the CPU or by allowing the CPU to read the D_0 bit of the status information by polling. Since the T_xRDY signal shows that the data buffer is empty, it is automatically reset when a transmission character is loaded by the CPU. The T_xRDY bit of the status information means that the transmit-data buffer shown in Fig. 2 has become empty, while the T_xRDY pin enters the highlevel state only when the transmit-data buffer is empty, T_xEN equals 1, and a low-level input has been applied to the CTS pin.

Status (D_0) : When transmit-data buffer (TDB) is empty, it becomes 1.

Sync Detect Input-Output/Break Detect Output (SYNDET/BD)

In the synchronous mode this pin is used for input and output operations. When it is specified for the internal synchronous mode by mode setting, this pin works as an output terminal. It enters the high-level state when a SYNC character is received through the R_xD pin. If the M5M82C51AP has been programmed for double SYNC characters (bisync), a high-level is entered in the middle of the last bit of the second SYNC character. This signal is automatically reset by reading the status information.

On designation of the M5M82C51AP to the external synchronous mode, this pin begins to serve for input operations. Applying a high-level signal to this pin prompts the M5M82C51AP to begin assembling data characters at the next rising edge of the $\overline{R_xC}$. For the width of a high-level signal to be input, a minimum $\overline{R_xC}$ period is required.

Designation of the asynchronous mode causes this pin to function as a BD (output) pin. When the start, data, and parity bits and stop bits are all 0 for two characters period, a high-level is entered. The BD (break detect) signal can also be read as the D₆ bit of the status information. This signal is reset by resetting the chip master or by the R_xD line's recovering the high-level state.

CMOS PROGRAMMABLE COMMUNICATION INTERFACE

Clear-To-Send Input (CTS)

When the $T_{X}EN$ bit (D_{0}) of the command instruction has been set to 1 and the \overline{CTS} input is low-level serial data is sent out from the $T_{X}D$ pin. Usually this is used as a clear-to-send signal for the modem

Note: CTS indicates the modem status as follows:

ON means data transmission is possible;

OFF means data transmission is impossible.

Transmitter-Empty Output (T_xEMPTY)

When no transmisison characters are left in the transmit buffer, this pin enters the high-level state. In the asynchronous mode, the following transmission character is shifted to the transmit buffer when it is loaded from the CPU. Thus, it is automatically reset. In the synchronous mode, a SYNC character is loaded automatically on the transmit buffer when no transfer-data characters are left. In this case, however, the T_xEMPTY does not enter the low-level state when a SYNC character has been sent out, since T_xEMPTY = "H" denotes the state in which there is no transfer character and one or two SYNC characters are being transferred or the state in which a SYNC character is being transferred as a filler. T_xEMPTY is unrelated to the T_xEN bit of the command instruction.

Transmission-Data Output (T_xD)

Parallel-format transmission characters loaded on the M5M82C51AP by the CPU are assembled into the format designated by the mode instruction and sent in serial-data form via the T_xD pin. Data is output, however, only in cases where the D_0 bit (T_xEN) of the command instruction is 1 and the \overline{CTS} terminal is in the low-level state. Once reset, this pin is kept at the mark status (high-level) until the first character is sent.

Clock Input (CLK)

This system-clock input is required for internal-timing generation and is usually connected to the clock-output (CLK) pin of the M5L8085AP. Although there is no direct relation with the data-transfer baud rate, the clock-input (CLK) frequency is more than 30 times the $\overline{T_xC}$ or $\overline{R_xC}$ input frequency in the case of the synchronous system and more than 4.5 times in the case of the asynchronous system.

Reset Input (RESET)

Once the USART is shifted to the idle mode by a high-level input, this state continues until a new control word is set Since this is a master reset, it is always necessary to load a control word following the reset process. The reset input requires a minimum 6-clock pulse width.

Data-Set Ready Input (DSR)

This is a general-purpose input signal, but is usually used as a data-set ready signal to test modem status. Its status can be known from the status reading process. The D_7 bit of the status information equals 1 when the $\overline{\text{DSR}}$ pin is in the low-level state, and 0 when in the high-level state.

 $\overline{\text{DSR}}$ ="L" \rightarrow D₇ bit of status information=1

 $\overline{\text{DSR}}$ ="H" \rightarrow D₇ bit of status information=0

Note. DSR indicates modem status as follows:

ON means the modem can transmit and receive; OFF means it cannot.

Request-To-Send Output (RTS)

This is a general-purpose output signal but is used as a request-to-send signal for the modem. The $\overline{\text{RTS}}$ terminal is controlled by the D₅ bit of the command instruction. When D₅ is equal to 1, $\overline{\text{RTS}}$ ="L", and when D₅ is 0, $\overline{\text{RTS}}$ ="H".

Command register $D_5=1 \rightarrow \overline{RTS}="L"$

Command register $D_5=0 \rightarrow \overline{RTS}="H"$

Note: RTS controls the modem transmission carrier as follows:

ON means carrier dispatch;

OFF means carrier stop.

Data-Terminal Ready Output (DTR)

This is a general-purpose output signal, but is usually used as a data-terminal ready or rate-select signal to the modem. The $\overline{\text{DTR}}$ pin is controlled by the D₁ bit of the command instruction; if D₁=1, $\overline{\text{DTR}}$ ="L", and if D₁=0, $\overline{\text{DTR}}$ = "H".

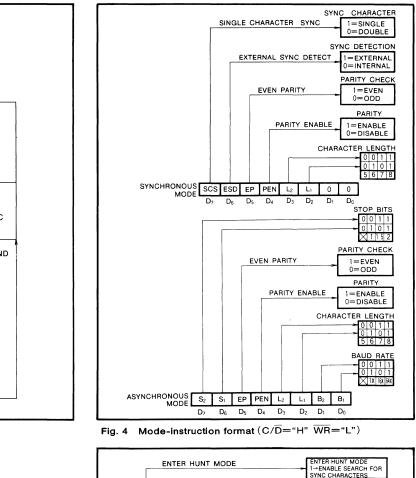
 D_1 of the command register=1 \rightarrow \overline{DTR} ="L"

 D_1 of the command register=0 \rightarrow \overline{DTR} ="H"

Receiver-Clock Input (R_xC)

This clock signal controls the baud rate for the sending in of characters via the $\overline{R_x D}$ pin. The data is shifted in by the rising edge of the $\overline{R_x C}$ signal. In the synchronous mode, the $\overline{R_x C}$ frequency is equal to the actual baud rate. In the asynchronous mode, the frequency is specified as 1, 16, or 64 times the baud rate by mode setting. This relationship is parallel to that of $\overline{T_x C}$, and in usual communication-line systems the transmission and reception baud rates are equal. The $\overline{T_x C}$ and $\overline{R_x C}$ terminals are, therefore, used connected to the same baud-rate generator.

PROGRAMMING


It is necessary for the M5M82C51AP to have the control word loaded by the CPU prior to data transfer. This must always be done following any resetting operation (by external RESET pin or command instruction IR). There are two types of control words: mode instructions specifying general operations required for communications and command instructions to control the M5M82C51AP actual operations.

Following the resetting operation, a mode instruction must be set first. This instruction sets the synchronous or asynchronous system to be used. In the sysnchronous system, a SYNC character is loaded from the CPU. In the case of the bi-sync system, however, a second SYNC character must be loaded in succession.

Loading a command instruction makes data transfer possible. This operation after resetting must be carried out for initializing the M5M82C51AP. The USART command instruction contains an internal-reset IR instruction (D_6bit) that makes it possible to return the M5M82C51AP to its reset state. The initialization flowchart is shown in Fig. 3 and the mode-instruction and command-instruction formats are shown in Figs. 4 and 5.

CMOS PROGRAMMABLE COMMUNICATION INTERFACE

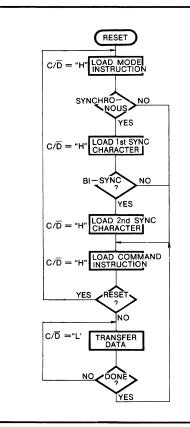


Fig. 3 Initialization flow chart

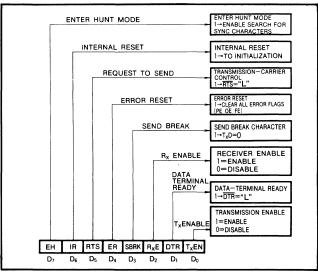


Fig. 5 Command-instruction format $(C/\overline{D} = "H" \quad \overline{WR} = "L")$

CMOS PROGRAMMABLE COMMUNICATION INTERFACE

Asynchronous Transmission Mode

When data characters are loaded on the M5M82C51AP after initial setting, the USART automatically adds a start bit (0), an odd or even parity bit specified by the mode instruction during initialization, and a specified number of stop bits (1). After that, the assembled data characters are transferred as serial data via the T_xD pin, if transfer is enabled (T_xEN=1. $\overline{\text{CTS}}$ ="L"). In this case, the transfer data (baud rate) is shifted by the mode instruction at a rate of 1X, 1/16X, or 1/64X the $\overline{\text{T}_x\text{C}}$ period.

If the data characters are not loaded on the M5M82C51AP, the T_xD pin enters a mark state ("H"). When SBRK is programmed by the command instruction, break characters (0) are output continuously through the T_xD pin

Asynchronous Reception Mode

The R_xD line usually starts operations in a mark state ("H"), triggered by the falling edge of a low-level pulse when it comes to this line. This signal is again strobe at the middle of the bit to confirm that it is a perfect start bit. The detection of a second low-level indicates the validity of the start bit (again strobe is carried out only in the case of 16X and 64X). After that, the bit counter inside the M5M82C51AP starts operating; each bit of the serial information on the R_xD line is shifted in by the rising edge of $\overline{R_xC}$, and the data bit, parity bit (when necessary), and stop bit are sampled at the middle position.

The occurrence of a parity error causes the setting of a parity-error flag. If the stop bit is 0, a frame error flag is set. Attention should be paid to the fact that the receiver requires only one stop bit even though the program has designated 1.5 or 2 stop bits.

Reception up to the stop bit means reception of a complete character. This character is then transferred to the receiverer-data buffer shown in Fig.2, and the R_XRDY becomes active. In cases where this character is not read by the CPU and where the next character is transferred to the receiverdata buffer, the preceding character is destroyed and an overrun-error flag is set.

These error flags can be read as the M5M82C51AP status information. The occurrence of an error does not stop USART operations. The error flags are cleared by the ER (D_4 bit) of the command instruction.

The asynchronous-system transfer formats are shown in Figs. 6 and 7.

Synchronous Transmission Mode

In this mode the T_xD pin remains in the high-level state until initial setting by the CPU is completed. After initialization, the state of \overline{CTS} ="L" and T_xEN =1 enables serial transmission of characters through the T_xD pin. Then, data characters are sent out and shifted by the falling edge of the $\overline{T_xC}$ signal. The transmission rate equals the $\overline{T_xC}$ rate.

Thus, once data-character transfer starts, it must continue through the T_xD pin at the same rate as that of $\overline{T_xC}$. Unless data characters are provided from the CPU before the transmitter buffer becomes empty, one or two SYNC characters are automatically output from the T_xD pin. In this case, it should be noted that the T_xEMPTY pin enters the high-level state when there are no data characters left in the M5M82C51AP to be transferred, and that the low-level state is not entered until the USART is provided with the next data character from the CPU. Care should also be taken over the fact that merely setting a command instruction does not effect SYNC character insertion, because the SYNC character insertion is enabled after sending out the first data character.

In this mode, too, break characters are sent out in succession from the T_xD pin when SBRK is designated ($D_3=1$) by a command instruction.

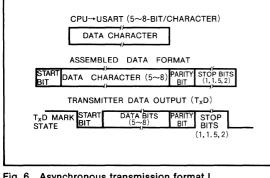


Fig. 6 Asynchronous transmission format I (transmission)

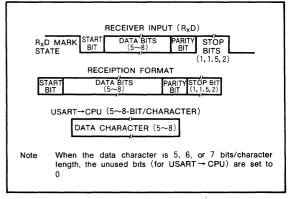


Fig. 7 Asynchronous transmission format II (reception)

CMOS PROGRAMMABLE COMMUNICATION INTERFACE

Synchronous Reception Mode

Character synchronization in this mode is carried out internally or externally by initial-setting designation.

Programming in the internal synchronous mode requires that an EH instruction $(D_7=1, enter hunt mode)$ is included in the first command instruction. Data on the RxD pin is sampled by the rising $\overline{R_xC}$ signal, and the receiver-buffer contents are compared with the SYNC character each time a bit is input. Comparison continues until an agreement is reached. When the M5M82C51AP has been programmed in the bi-sync mode, data received in further succession is compared. The detection of two SYNC characters in succession makes the USART end the hunt mode, setting the SYNDET pin to the high-level state. This reset operation is prompted by the reading of the status information. When the parity has been programmed, SYNDET is not set in the middle of the last data bit but in the middle of the parity bit. In the external synchronous mode, the M5M82C51AP gets out of the hunt mode when a high-level synchronization signal is given to the SYNDET pin. The high-level signal requires a minimum duration of one $\overline{R_xC}$ cycle. In the asynchronous mode, however, the EH signal does not affect the operation at all.

Parity and overrun errors are checked in the same way as in the asynchronous system. During hunt-mode operations the parity bit is not checked, but parity checking is carried out even when the receiver is disabled.

The CPU can command the receiver to enter the hunt mode, if synchronization is lost. This prevents the SYNC character from erroneously becoming equal to the received data when all the data in the receiver buffer is set to 1 Attention should be paid to the fact that the SYNDET F/F is reset each time status information is read irrespective of the synchronous mode's being internal or external. This,

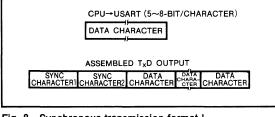


Fig. 8 Synchronous transmission format I (transmission)

however, does not return the M5M82C51AP to the hunt mode. Synchronism detection is carried out even though it is not the hunt mode. The synchronous transfer formats are shown in Figs. 8 and 9.

Command Instruction

This instruction defines actual operations in the communication mode designated by mode setting. Command instructions include transmitter/receiver enable error-reset, internal-reset, modem-control, enter-hunt and break transmission instructions.

The mode is set following the reset operation. A SYNC character is set as required, and the writing of high-level signals on the control/data pin (C/\overline{D}) that follows it is regarded as a command instruction. When the mode is set all over again from the beginning, the M5M82C51AP can be reset by using inputting via the reset terminal or by internal resetting based on the command instruction.

- Note 1: The command error reset (ER), internal reset (IR) and enter-hunt-mode (EH) operations are only effective when the command instruction is loaded, so that these bits need not be returned to 0.
 - 2: When a break character is sent out by a command, the T_xD set to 0 immediately irrespective of whether or not the USART has sent out data.
 - 3: Operations of the USART's receiver section which is always in the enable state cannot be inhibited. The command instruction $R_x E = 0$ does not mean that data reception via the $R_x D$ pin is inhibited; it means that the $R_x RDY$ is masked and error flags are inhibited.



Fig. 9 Synchronous transmission format II (reception)

CMOS PROGRAMMABLE COMMUNICATION INTERFACE

Status Information

The CPU can always read USART status by setting the C/ \overleftarrow{D} to high-level and \overrightarrow{RD} to low-level.

The status information format is shown in Fig. 10. In this format R_xRDY , T_xEMPTY and SYNDET have the same definitions as those of the pins. This means that these three pieces of status information become high-level when each pin is 1. The other status information is defined as follows: DSR: When the \overline{DSR} pin is in the low-level state status

When the DSR pin is in the low-level state, status information DSR becomes 1.

- FE: The occurrence of a frame error in the receiver section makes the status information FE=1.
- OE: The occurrence of an overrun error in the receiver section makes the status information OE=1.
- PE: The occurrence of a parity error in the receiver section makes this status information PE=1.
- T_xRDY: This information becomes 1 when the transmit data buffer is empty. Be careful because this has a different meaning from the T_xRDY pin that enters the high-level state only when the transmitter buffer is empty, when the $\overline{\text{CTS}}$ pin is in the low-level state, and when T_xEN is 1.

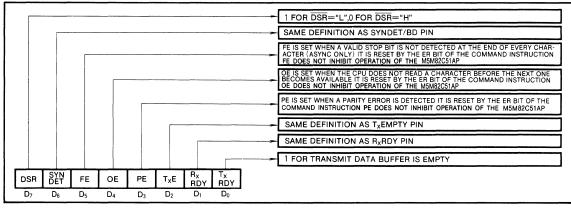


Fig. 10 Status information $C/\overline{D} = "H"$, $\overline{RD} = "L"$)

APPLICATION EXAMPLES

Fig. 11 shows an application example for the M5M82C51AP in the asynchronous mode. When the port addresses of the M5M82C51AP are assumed to be $00 \ \#$ and $01 \ \#$ in this figure, initial setting in the asynchronous mode is carried out in the following manner:

in the following	manner.	
MVI	A, B6 #	Mode setting
OUT	01 #	
MVI	A, 27 #	Command instruction
OUT	01 #	
In this case, the	following are	e set by mode setting:

Asynchronous mode 6-bit/character Parity enable (even) 1.5 stop bits Baud rate: 16X Command instructions set the following RTS= $1 \rightarrow \overline{RTS}$ pin="L" R_xE=1 DTR= $1 \rightarrow \overline{DTR}$ pin="L" T_xEN=1

When the initial setting is complete, transfer operations are allowed. The $\overline{\text{RTS}}$ pin is initially set to the low-level by setting RTS to 1, and this serves as a $\overline{\text{CTS}}$ input with T_xEN

being equal to 1. For this reason the same definition applies to the status and pin of T_xRDY , and 1 is assigned when the transmit-data buffer is empty. Actual transfer of data is carried out in the following way:

IN 01 # Status read

The IN instruction prompts the CPU to read the USART's status. The result is; if the T_xRDY equals 1 transmitter data is sent from the CPU and written on the M5M82C51AP. Transmitter data is written in the M5M82C51AP in the following manner:

MVI	A, 2D#	2D ₁₆ is an example of trans-
		mitter data.
OUT	00 #	USART←(A)
Receiver	data is read	in the following manner:
IN	00 #	(A)←USART
41		

In the above example, the status information is read and as a result, the transmitter data is written and read. Interruption processing by using the T_xRDY and R_xRDY pins is also possible.

Fig. 12 shows the status of the T_xD pin when data written in the USART is transferred from the CPU. When the data shown in Fig.12 enters the R_xD pin, data sent from the M5M82C51AP to the CPU becomes $2D_{16}$ and bits D_6 and D_7 are treated as 0.

CMOS PROGRAMMABLE COMMUNICATION INTERFACE

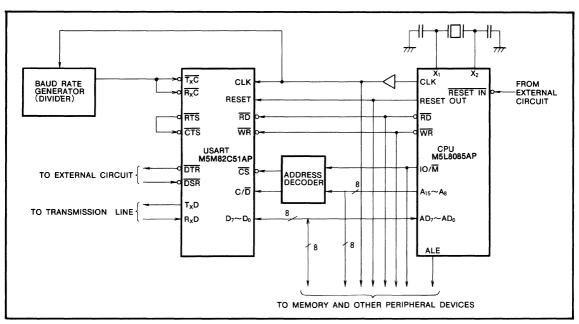


Fig. 11 Example of circuit using the asynchronous mode

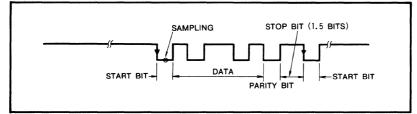


Fig. 12 Example of data transmission

CMOS PROGRAMMABLE COMMUNICATION INTERFACE

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Power-supply voltage		-0.3~7	V
V	Input voltage	With respect to V _{SS}	$-0.3 \sim V_{cc} + 0.3$	v
Vo	Output voltage		$-0.3 \sim V_{cc} + 0.3$	V
	MAX "H"	All output and I/O pins output	500	μA
онмах	Output current	"H" level and force same current		μη
	MAX "L"	All output and I/O pins output	2.5	mA
OLMAX	Output current	"L" level and force same current	2.5	
Topr	Operating free-air temperature range		-20~75	Ĉ
Tstg	Storage temperature range		-65~150	Ĵ

RECOMMENDED OPERATING CONDITIONS ($T_a = -20 \sim 75^{\circ}C$ unless otherwise noted)

Symbol	Parameter		Limits			
		Min	Nom	Max	Unit	
Vcc	Supply voltage	4.5	5	5.5	V	
Vss	Power-supply voltage (GND)		0		V	

$\label{eq:constraint} \textbf{ELECTRICAL CHARACTERISTICS} ~ (\texttt{Ta}{=}-20 \sim 75^\circ\texttt{C}, \texttt{V}_{\texttt{cc}}{=}5\texttt{V}{\pm}10\%, \texttt{V}_{\texttt{ss}}{=}0\texttt{V} ~ \texttt{unless otherwise noted})$

Ourse had	Parameter	Test conditions		Limits			
Symbol	Parameter	lest conditions	Min	Тур	Max	Unit	
VIH	High-level input voltage		2.0		V _{cc} +0.3	V	
VIL	Low-level input voltage		-0.3		0.8	V	
V		I _{OH} =-400µА	2.4			v	
V _{он}	High-level output voltage	I _{OH} =-20µА	4.4			v	
Vol	Low-level output voltage	I _{OL} =2.2mA			0.45	v	
lcc	Supply current from V _{CC}	All outputs are high-level			5	mA	
Iн	High-level input current	V _I =V _{CC}	-10		10	μA	
lı_	Low-level input current	V1=0V	-10		10	μA	
loz	Off-state input current	Vo=0V~Vcc	-10		10	μA	
C,	Input terminal capacitance	V _{CC} =V _{SS} , f=1MHz, 25mV _{rms} , T _a =25°C			10	pF	
CI/O	Input/output terminal capacitance	V _{cc} =V _{ss} , f=1MHz, 25mV _{rms} , T _a =25°C			20	pF	

CMOS PROGRAMMABLE COMMUNICATION INTERFACE

Question 1	Parame	•	Test conditions		Limits		Un
Symbol	Parame	ler	rest conditions	Min	Тур	Max	UI
t _{C(∳)}	Clock cycle time (Notes4, 5)			320		1350	n
t _{w(∲)}	Clock high pulse width			120		t _{C(#)} —90	n
t _W ()	Clock low pulse width			90			n
tr	Clock rise time					20	n
tf	Clock fall time					20	n
	Terrer itter innut staats	1X baud rate		DC		64	
f _{TX}	Transmitter input clock	16X baud rate		DC		310	kł
	frequency	64X baud rate		DC		615	
	Transmitter input clock low	1X baud rate		12			tco
	pulse width	16X, 64X baud rate		1			tco
•	Transmitter input clock high	1X baud rate		15			tc
tw(TPWH)	pulse width	16X, 64X baud rate		3			tc
	Basalina landa dada	1X baud rate		DC		64	
f _{RX}	Receiver input clock	16X baud rate		DC		310	kl
	frequency	64X baud rate		DC		615	315
	Receiver input clock low	1X baud rate		12			
	pulse width	16X, 64X baud rate		1			tc
	Receiver input clock high	1X baud rate		15			
tw(RPWH)	pulse width	16X, 64X baud rate		3			tc
tsu(A-R)	Address setup time before rea	d (CS, C/D) (Note6)		0			r
th(R-A)	Address hold time after read (CS, C/D) (Note6)		0	ns		
t _{W(R)}	Read pulse width			250 (200)			r
t _{su(A-w)}	Address setup time before wri	te		0			r
th(w-A)	Address hold time after write			0			n
tw(w)	Write pulse width			250 (200)			r
tsu(DQ-W)	Data setup time before write			150 (100)			r
th(w-DQ)	Data hold time after write			20[0]			r
tsu(ESD-RxC)	E-SYNDET setup time before	R _x C		18			tc
tsu(C-R)	Control setup time before read			20			tco
t _{RV}	Write recovery time between v	vrites (Note7)		6			tc
t _{SU(RxD-IS)}	R _x D setup time before internal	sampling pulse		2			μ
th(IS-RxD)	RxD hold time after internal sa	mpling pulse		2			μ

TIMING REQUIREMENTS (Ta=-20~75°C, Vcc=5V±10%, Vss=0V unless otherwise noted)

Note 4: The T_xC and R_xC frequencies have the following limitations with respect to CLK. For 1X baud rate f_{Tx}, f_{Rx}≤1/(30t_{C(φ)}). For 16X, 64X baud rate f_{Tx}, f_{Rx}≤1/(4.5t_{C(φ}))
 5: Reset pulse width=6t_{C(φ)} minimum. System clock must be running during reset.
 6: CS, C/D are considered as address.
 7: This recovery time is for mode initialization only. Write data is allowed only when T_xRDY=1 Recovery time between writes for asynchronous mode is 8t_{C(φ)}, and that for synchronous mode is 16t_{C(φ)}.

÷

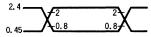
CMOS PROGRAMMABLE COMMUNICATION INTERFACE

SWITCHING CHARACTERISTICS ($T_a = -20 \sim 75^{\circ}C$, $V_{cc} = 5V \pm 10\%$, $V_{ss} = 0V$ unless otherwise noted)

Symbol	Parameter	Test and different		Limits		
Symbol		Test conditions	Min	Тур	Max	Unit
t _{PZV(R} -DQ)	Output data enable time after read (Note8)	C _L =150pF			200(170)	ns
t _{PVZ(R} -DQ)	Output data disable time after read		10		100	ns
tpzv(txc-txd)	T_{XD} enable time after falling edge of $\overline{T_XC}$				1	μs
tPLH(CLB-TxR)	Propagation time from center of last bit to T _X RDY (Note9)				8	t _{C(∳)}
t _{PHL(W-TxR)}	Propagation time from write data to T _x RDY clear (Note9)				400	ns
tPLH(CLB-RxR)	Propagation time from center of last bit to R _X RDY (Note9)				26	t _{C(∮)}
t _{PHL(R-RxR)}	Propagation time from read data to R _x RDY clear (Note9)				400	ns
tPLH(RxC-SYD)	Propagation time from rising edge of $\overline{R_X C}$ to internal SYNDET (Note9)				26	t _C (∳)
tPLH(CLB-TXE)	Propagation time from center of last bit to T_XEMPTY (Note9)	· · · · · · · · · · · · · · · · · · ·			20	t _C (≠)
t _{PHL} (w-c)	Propagation time from rising edge of WR to control (Note9)				8	t _{C(∲)}

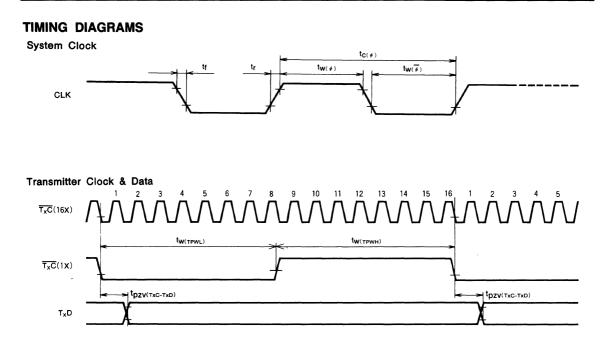
 tpHL(W-C)
 Propagation time from insing edge of rest.

 Note 8 : Assumes that address is vaild before falling edge of RD.

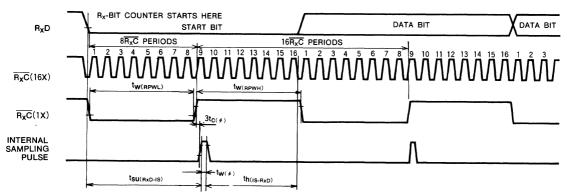

 9 : Status-up data can have a maximum delay of 28 clock periods from the event affecting the status.

 10 : Input pulse level
 0.45~2.4V

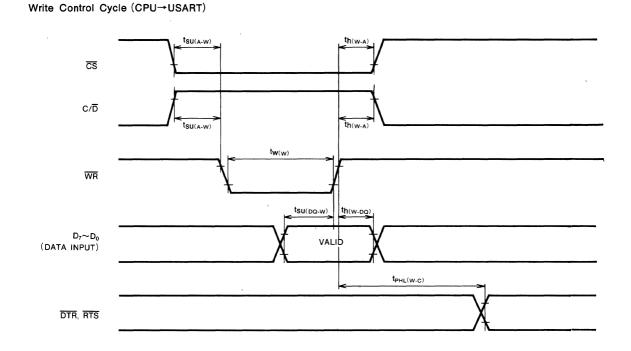
 Reference level
 Input V_H=2V, V_L=0.8V


 Voltent outse rise time
 10ns

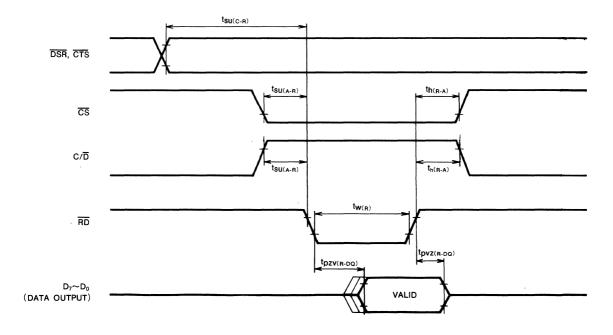
 Input pulse rise time 10ns Input pulse rise time 10ns 11 : M5M82C51AP is also invested with the extended specification showed in the brackets.



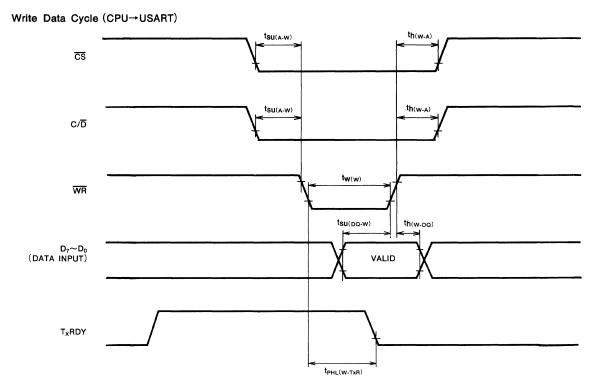
CMOS PROGRAMMABLE COMMUNICATION INTERFACE



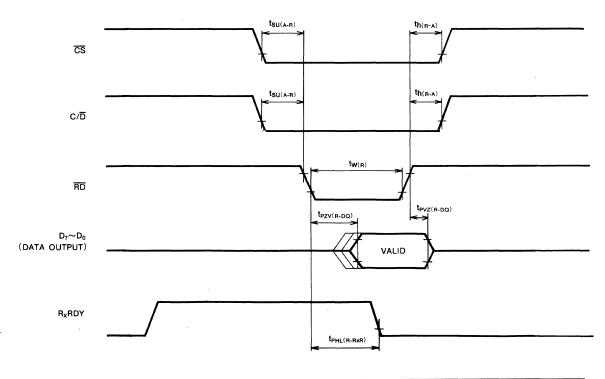
Receiver Clock & Data



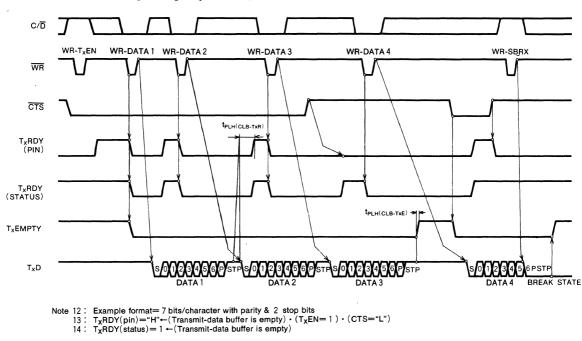
CMOS PROGRAMMABLE COMMUNICATION INTERFACE

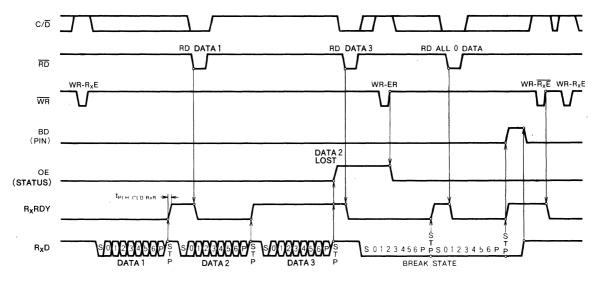


Read Control Cycle (USART→CPU)



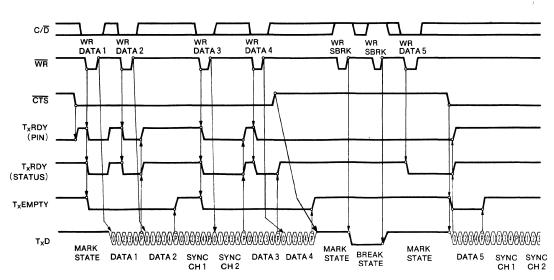
CMOS PROGRAMMABLE COMMUNICATION INTERFACE





CMOS PROGRAMMABLE COMMUNICATION INTERFACE

Transmitter Control & Flag Timing (Async Mode)


Receiver Control & Flag Timing (Async Mode)

Note 15: Example format= 7 bits/character with parity & 2 stop bits

CMOS PROGRAMMABLE COMMUNICATION INTERFACE

Transmitter Control & Flag Timing (Sync mode)

Note 16: Example format= 5 bits/character with parity, bi-sync characters.

Receiver Control & Flag Timing (Sync Mode)

Note 17: Example format= 5 bits/character with parity, bi-sync characters.

CMOS PROGRAMMABLE INTERVAL TIMER

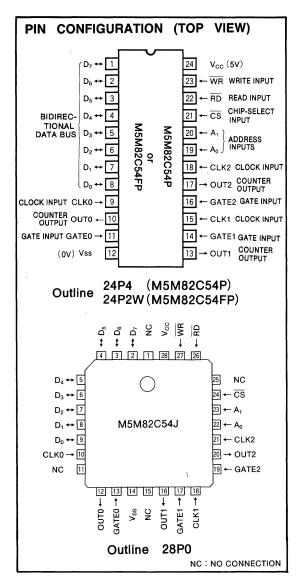
DESCRIPTION

The M5M82C54P is a programmable general-purpose timer device developed by using the silicon-gate CMOS process. It offers counter and timer functions in systems using an 8bit parallel-processing CPU. The use of the M5M82C54P frees the CPU from the execution of looped programs, count-operation programs and other simple processing involving many repetitive operations, thus contributing to improved system throughputs. It is housed in a 24-pin plastic molded DIP.

And preparatory for surface equipment M5M82C54FP (SOP) and M5M82C54J(PLCC).

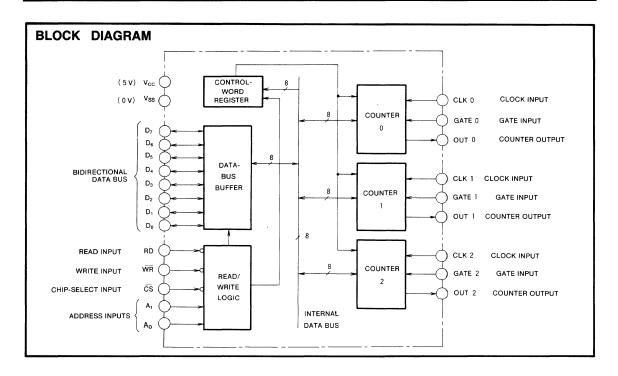
FEATURES

- Single 5V supply voltage
- TTL compatible
- Pin connection compatible with M5L8253P-5 (except M5M82C54J)
- Clock period : DC~8MHz
- 3 independent built-in 16-bit down counters
- 6 counter modes freely assignable for each counter
- Binary or decimal counts
- Read-back command for monitoring the count and status


APPLICATION

Delayed-time setting, pulse counting and rate generation in microcomputers.

FUNCTION


Three independent 16-bit counters allow free programming based on mode-control instructions from the CPU. When roughly classified, there are 6 modes ($0 \sim 5$). Mode 0 is mainly used as an interruption timer and event counter, mode 1 as a digital one-shot, modes 2 and 3 as a rate generator, mode 4 for a software triggered strobe, and mode 5 for a hardware triggered strobe.

The count can be monitored and set at any time. Besides the count, the status of the counter can be monitored by Read-back command. The counter operates with either the binary or BCD system.

CMOS PROGRAMMABLE INTERVAL TIMER

CMOS PROGRAMMABLE INTERVAL TIMER

DESCRIPTION OF FUNCTIONS

Data-Bus Buffer

This 3-state, bidirectional, 8-bit buffer is used to interface the M5M82C54P to the system-side data bus. Transmission and reception of all the data including control words for mode designation and values written in, and read from, the counters are carried out through this buffer.

Read/Write Logic

The read/write logic accepts control signals (\overline{RD} , \overline{WR}) from the system and generates control signals for each counter. It is enabled or disabled by the chip-select signal (\overline{CS}); if \overline{CS} is at the high-level the data-bus buffer enters a floating (high-impedance) state.

Read Input (RD)

The count of the counter designated by address inputs A_0 and A_1 on the low-level is output to the data bus.

Write Input (WR)

Data on the data bus is written in the counter or control-word register designated by address inputs A_0 and A_1 on the low-level.

Address Inputs (A₀, A₁)

These are used for selecting one of the 3 internal counters and either of the control-word registers.

Chip-Select Input (CS)

A low-level on this input enables the M5M82C54P. Changes in the level of the $\overline{\text{CS}}$ input have no effect on the operation of the counters.

Control-Word Register

This register stores information required to give instructions about operational modes and to select binary or BCD counting. It allows reading, using Read back command.

Counters 0,1 and 2

These counters are identical in operation and independent of each other. Each is a 16-bit, presettable, down counter, and has clock-input, gate-input and output pins. The counter can operate in either binary or BCD using the falling edge of each clock. The mode of counter operation and the initial value from which to start counting can be designated by software. The count can be read by input instruction at any time, and there is a "read-on-the-fly" function which enables stable reading by latching each instantaneous count to the registers by a special counter-latch instruction.

CONTROL-WORD AND INITIAL-VALUE LOADING

The function of the M5M82C54P depends on the system software. The operational mode of the counters can be specified by writing control words (A_0 , $A_1 = 1$, 1) into the control-word registers.

The programmer must write out to the M5M82C54P the programmed number of count register bytes (1 or 2) prior to actually using the selected counter.

Fig. 1 shows control-word format, which consists of 4 fields. Only the counter selected by the D_7 and D_6 bits of the control-word is set for operation. Bits D_5 and D_4 are used for specifying operations to read values in the counter and to initialize. Bits $D_3 \sim D_1$ are used for mode designation, and D_0 for specifying binary or BCD counting. When $D_0=0$, binary counting is employed, and any number from 0000_{16} to FFFF₁₆ can be loaded into the count register. The counter is counted down for each clock. The counting of 0000_{16} causes the transmission of a time-out signal from the countoutput pin.

The maximum number of counts is obtained when 0000_{16} is set as the initial value. When $D_0 = 1$, BCD counting is employed, and any number from 0000_{10} to 9999_{10} can be loaded on the counter.

Neither system resetting nor connecting to the power supply sets the control word to any specific value. Thus to bring the counters into operation, the above-mentioned control words for mode designation must be given to each counter, and then $1 \sim 2$ byte initial counter values must be set. The following is an example of this programming step.

To designate mode 0 for counter 1 ,with initial value 8254_{16} set by binary count, the following program is used:

MVI	A, 70 ₁₆	Control word 70 ₁₆
OUT	n ₁	n ₁ is control-word-register address
MVI	A, 54 ₁₆	Low-order 8 bits
OUT	n ₂	n ₂ is counter 1 address
MVI	A, 82 ₁₆	High-order 8 bits
OUT	n ₂	n ₂ is counter 1 address

Thus, the program generally has the following sequence:

- (1) Control-word output to counter i (i=0, 1, 2).
- (2) Initialization of low-order 8 counter bits

(3) Initialization of high-order 8 counter bits

The three counters can be executed in any sequence. It is possible, for instance, to designate the mode of each counter and then load initial values in a different order. Initialization of the counters designated by RL 1 and RL 0 must be executed in the order of the low-order 8 bits and then the high-order 8 bits for the counter in question.

CMOS PROGRAMMABLE INTERVAL TIMER

CS	RD	WR	A1	A ₀	Function
L	н	L	0	0	Data bus→Counter 0
L	н	L	o	1	Data bus→Counter 1
L	н	L	1	0	Data bus→Counter 2
L	н	L	1	1	Data bus→Control-word register
L	L	н	0	0	Data bus←Counter 0
L	L	н	0	1	Data bus←Counter 1
L	L	н	1	0	Data bus←Counter 2
L	L L	н	1	1	3-state
н	×	×	×	×	3-state
L	н	н	×	×	3-state

Table 1 Basic Functions

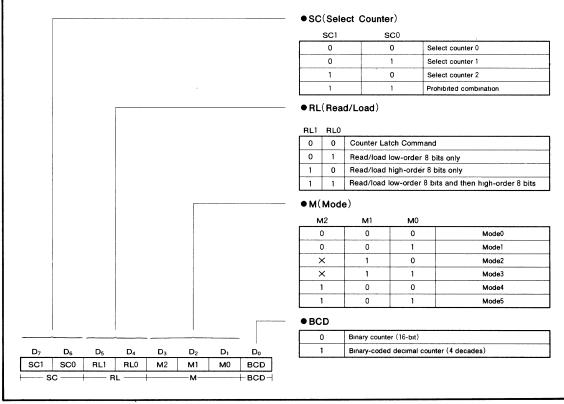


Fig. 1 Control-Word Format

CMOS PROGRAMMABLE INTERVAL TIMER

MODE DEFINITION

Mode 0 (Interrupt on Terminal Count)

Mode set and initialization cause the counter output to go low-level (see Fig. 2). When the counter is loaded with an initial value, it will start counting the clock input. When the terminal count is reached, the output will go high-level and remain high-level until the selected count register is reloaded with the mode. This mode can be used when the CPU is to be interrupted after a certain period or at the time of counting up.

Fig. 2 shows a setting of 4 as the initial value. If gate input goes low-level, counting is inhibited for the duration of the low-level period.

Reloading of the initial value during count operation will stop counting by the loading of the first byte and start the new count by the loading of the second byte.

Mode 1 (Programmable One-Shot)

The gate input functions as a trigger input. A gate-input rising edge causes the generation of low-level one-shot output with a predetermined clock length starting from the next clock. Fig. 3 shows an initial setting of 4. While the counter output is at the low-level (during one-shot), loading of a new value does not change the one-shot pulse width, which has already been output. The current count can be read at any time without affecting the width of the one-shot pulse being output. This mode permits retriggering.

Mode 2 (Rate Generator)

Low-level pulses during one clock operation are generated from the counter output at a rate of one per n clock inputs (where n is the value initially set for the counter). When a new value is loaded during the counter operation, it is reflected on the output after the pulses by the current count have been output. In the example shown in Fig. 4, n is given as 4 at the outset and is then changed to 3.

In this mode, the gate input provides a reset function. While it is on the low-level, the output is maintained high-level; the counter restarts from the initial value, triggered by a rising gate-input edge. This gate input, therefore, makes possible external synchronization of the counter by hardware.

After the mode is set, the counter does not start counting until the rate n is loaded into the count register, with the counter output remaining at the high-level.

Mode 3 (Square Rate Generator)

This is similar to Mode 2 except that it outputs a square wave with the half count of the set rate. When the set value n is odd, the square-wave output will be high-level for (n+1)/2 clock-input counts and low for (n-1)/2 counts. When a new rate is reloaded into the count register during its operation, it is immediately reflected on the count directly following the output transition (high-to-low or low-to-high) of the current count. Gate-input operations are exactly the same as in Mode 2. Fig. 5 shows an example of Mode 3 operation.

Mode 4 (Software Triggered Strobe)

After the mode is set, the output will be high-level. By loading a number on the counter, however, clock-input counts can be started and on the terminal count, the output will go low-level for one input-clock period and then will go highlevel again. Mode 4 differs from Mode 2 in that pulses are not output repeatedly with the same set count. The pulse output is delayed one clock period in Mode 2, as shown in Fig. 6. When a new value is loaded into the count register during its count operation, it is reflected on the next pulse output without affecting the current count. The count will be inhibited while the gate input is low-level.

Mode 5 (Hardware Triggered Strobe)

This is a variation of Mode 1. The gate input provides a trigger function, and the count is started by its rising edge. On the terminal count, the counter output goes low for on one clock period and then goes high-level. As in Mode 1, retriggering by the gate input is possible. An example of timing in Mode 5 is shown in Fig. 7.

As mentioned above, the gate input plays different roles according to the mode. The functions are summarized in Table 3.

Gate Mode	Low-level or going low-level	Rising	Hıgh-levei
0	Disables counting		Enables counting
1		 (1) Initiates counting (2) Resets output after next clock 	
2	 (1) Disables counting (2) Sets output high immediately 	(1) Reloads counter (2) Initiates counting	Enables counting
3	 Disables counting Sets output high immediately 	(1) Reloads counter (2) Initiates counting	Enables counting
4	Disables counting		Enables counting
5		Initiates counting	

Table 2 Gate Operations

CMOS PROGRAMMABLE INTERVAL TIMER

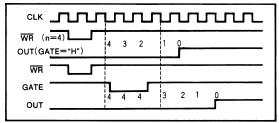


Fig. 2 Mode 0

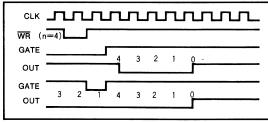


Fig. 3 Mode 1

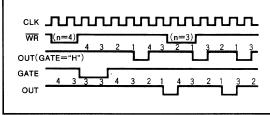


Fig. 4 Mode 2

COUNTER MONITORING

Sometimes the counter must be monitored by reading its count or using it as an event counter. The M5M82C54P offers the following two methods for count reading:

Read Operation

The count can be read by designating the address of the counter to be monitored and executing a simple I/O read operation. In order to ensure correct reading of the count, it is necessary to cause the clock input to pause by external logic or prevent a change in the count by gate input. An example of a program to read the counter 1 count is shown below. If RL1, RL0=1, 1 has been specified in the control word, the first IN instruction enables the low-order 8 bits to be read and the second IN instruction enables the high-order 8 bits.

IN	n ₂ ···· n ₂ is the counter 1 address
MOV	D, A

IN n₂ MOV E, A

The IN instruction should be executed once or twice by the RL1 and RL0 designations in the control-word register.

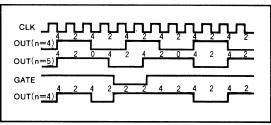


Fig. 5 Mode 3

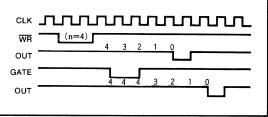


Fig. 6 Mode 4

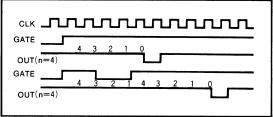


Fig. 7 Mode 5

Read-on-the-Fly Operation

This method makes it possible to read the current count without affecting the count operation at all. A special counter-latch command is first written in the control-word register. This causes latching of all the instantaneous counts to the register, allowing retention of stable counts. An example of a program to execute this operation for counter 2 is given below.

MVI	A, 1000XXXX ···· $D_5 = D_4 = 0$ designates counter
	latching
OUT	n ₁ ···· n ₁ is the control-word-register address
IN	n₃ … n ₃ is the counter 2 address
MOV	D, A
IN	n ₃
MOV	Е, А
In this ex	ample, the IN instruction is executed twice. Due to
he inter	nal logic of the MEM92CEAD it is checketable accord

In this example, the IN instruction is executed twice. Due to the internal logic of the M5M82C54P it is absolutely essential to complete the entire reading procedure. If 2 bytes are programmed to be read, then 2 bytes must be read before any OUT instruction can be executed to the same counter.

READ BACK COMMAND

M5M82C54P has a function of reading not only the count but also status (Read Back Command). The read back command enables the next four functions.

- (1) read the current count "on the fly"
- (2) monitor the current state of the OUT pin
- (3) monitor the current state of the counter element (whether the count is loaded into the counter element or not)
- (4) read the control-word

Read back operation can be specified by writing read back command into the control word registers (A_0 , $A_1 = 1, 1$). Fig. 8 shows the format of read back command.

Bits D_7 and D_6 are used for specifying read back command and fixed 1 ($D_7 = 1$, $D_6 = 1$). Respectively bits D_5 (count) and D_4 (status) are used for reading the count and the status of the counter selected by the $D_3 \sim D_1$ bits. Bit D_0 must be fixed 0.

Only the count can be read "on the fly" by setting $D_5 = 0$ and $D_4 = 1$ as well as counter latch command above mentioned. If $D_3 \sim D_1$ are set 1 all, the counts of three counters are simultaneously latched by one read back command. (By counter-latch command, it must be latched for each counter.) Next, by read operation, the latched count is read out.

Only the status can be latched by setting $D_5 = 1$ and $D_4 = 0$. By read operation, the status shown in Fig. 9 can be read.

Lit D_7 gives the current state of OUT pin. When $D_7 = 1$, OUT = "H", and when $D_7 = 0$, OUT = "L". Bit D_6 indicates the current state of counter element. When $D_6 = 1$, the initial counter value has not been loaded to counter element. This state is following.

- (1) The control word is written, but the initial counter value is not loaded
- (2) The initial counter value is written to count register, and the CLK inputs are not.

When $D_6 = 0$, the initial counter value has already been loaded. It is the state when the CLK falls following the rising edge after the initial value is written. Bits $D_5 \sim D_0$ show the current state of the control-word regsiter.

It is possible to read both the count and the status. By setting $D_5 = 0$ and $D_4 = 0$, the status can be read first, and the count next.

The count and/or the status are unlatched when read, so by the next read operation the current counting value can be read. And they are unlatched too when the control-word is set, so the read back command must be set on all such occasions.

If multiple read back commands are written before the read operation, only the first one is valid.

Thus, the read of the status is effective when the state of output and the timing of count reading can be monitored by software.

CMOS PROGRAMMABLE INTERVAL TIMER

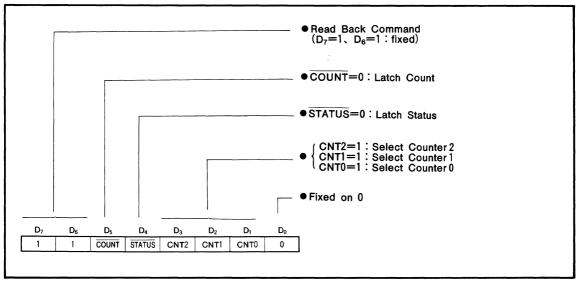


Fig. 8 Read Back Command Format

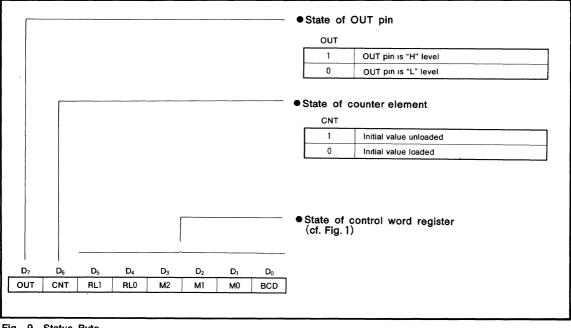


Fig. 9 Status Byte

CMOS PROGRAMMABLE INTERVAL TIMER

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Power supply voltage		-0.3~7	V
V	Input voltage	With respect to V _{SS}	$-0.3 \sim V_{cc} + 0.3$	V
Vo	Output voltage		$-0.3 \sim V_{cc} + 0.3$	V
I _{онмах}	MAX "H"	All output and I/O pins output		
	Output current	"H" level and force same current	500	μA
	MAX "L"	All output and I/O pins output	2.5	
OLMAX	Output current	"L" level and force same current	2.5	mA
Topr	Operating free-air temperature range		-20~75	°C
Tstg	Storage temperature range		-65~150	°C

RECOMMENDED OPERATING CONDITIONS ($T_a=-20\sim75$ °C, unless otherwise noted)

Symbol	Parameter		Unit		
		Min	Nom	Max	Unit
Vcc	Power supply voltage	4.5	5	5.5	v
Vss	Supply voltage (GND)		0		v

$\label{eq:constraint} \textbf{ELECTRICAL CHARACTERISTICS} \quad (\texttt{T}_a = -20 \sim 75 \texttt{°C}, \texttt{V}_{cc} = 5 \texttt{V} \pm 10\%, \texttt{V}_{ss} = \texttt{0V}, \texttt{unless otherwise noted})$

Symbol	Parameter	Test conditions	Limits			Unit
			Min	Тур	Max	Unit
ViH	High-level input voltage		2.0		V _{cc} +0.3	v
VIL	Low-level input voltage		-0.3		0.8	V
V _{он}	High-level output voltage	I _{OH} =-400µA	2.4			v
		I _{OH} =-20µА	4.4			
Vol	Low-level output voltage	I _{OL} =2.0mA			0.45	v
կո	High-level input current	V _I =V _{CC}			±10	μA
կլ	Low-level input current	V ₁ =0V			±10	μA
loz	Off-state output current	Vo=0V~Vcc			±10	μA
lcc	Supply current from V _{CC} (operating)	f=8MHz			10	mA
Iccs	Supply current from V _{CC} (stand by)	$V_1=0V, V_{CC}$			10	μA
Ci	Input termiral capacitance	V _{IL} =V _{SS} , f=1MHz, 25mVrms, T _a =25°C			10	pF
Ci/o	Input/output termiral capacitance	$V_{I/OL} = V_{SS}$, f=1MHz,25mVrms, T _a =25°C			20	pF

MITSUBISHI LSIS M5M82C54P/FP/J

CMOS PROGRAMMABLE INTERVAL TIMER

TIMING REQUIREMENTS (Ta= $-20\sim75$ °C, V_{cc}= $5V\pm10\%$, V_{ss}=0V, unless otherwise noted) Read cycle

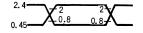
		Test enditions			Unit	
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
t _{w(R)}	Read pulse width		150			ns
tsu(s-R)	CS setup time before read		0			ns
t _{SU(A-R)}	Address setup time before read		45			ns
th(R-A)	Address hold time after read		0			ns
trec(R)	Read recovery time		200			ns

Write cycle

0	Parameter	Test conditions			Unit	
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
tw(w)	Write pulse width		150			ns
t _{su(s-w)}	CS setup time before write		0			ns
t _{su(A-w)}	Address setup time before write		0			ns
th(w-A)	Address hold time after write		0		,	ns
tsu(DQ-W)	Data setup time before write]	120(100)	(Note 1)		ns
th(w-DQ)	Data hold time after write]	0			ns
trec(w)	Write recovery time		200			ns

Note 1: M5M82C54P is also invested with the extended specification showed in the bracket.

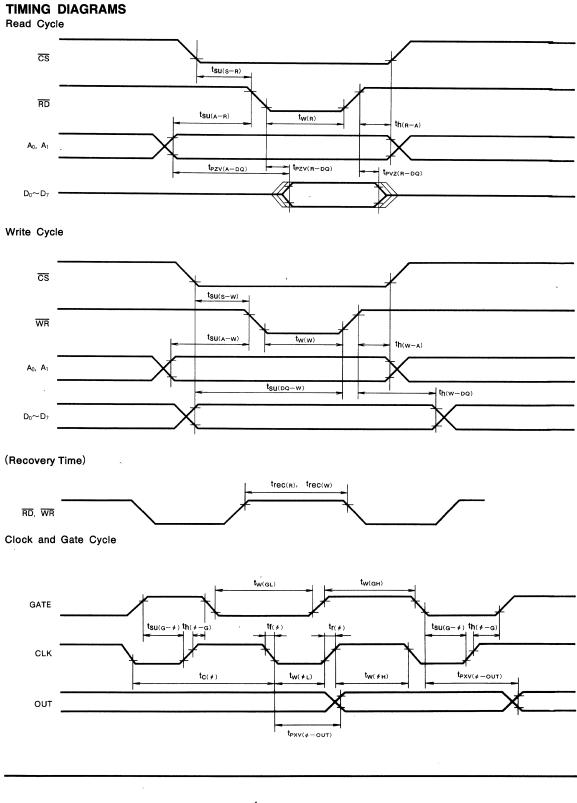
Clock and gate timing


Symbol	Parameter	Test conditions		Unit		
Symbol	Parameter	rest conditions	Min	Тур	Мах	Unit
tw(≠н)	Clock high pulse width		55			ns
tw(øL)	Clock low pulse width		60			ns
t _{C(∳)}	Clock cycle time		125		DC	ns
t _{r(#)}	Clock rise time				100	ns
tf(≠)	Clock fall time				100	ns
t _{w(ан)}	Gate high pulse width		50			ns
tw(GL)	Gate low pulse width		50			ns
tsu(g-∮)	Gate setup time before clock		50			ns
th(# -G)	Gate hold time after clock]	50			ns

SWITCHING CHARACTERISTICS ($T_a = -20 \sim 75^{\circ}C$, $V_{cc} = 5V \pm 10\%$, $V_{ss} = 0V$, unless otherwise noted)

0	D	Test est ditions		Unit		
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
t _{PZV(A-DQ)}	Propagation time from address to output				220	ns
t _{PZV(R-DQ)}	Propagation time from read to output				120	ns
t _{PVZ(R-DQ)}	Propagation time from read to output floating (Note 3)	C _L =150pF	5		90	ns
tPXV(G-OUT)	Propagation time from gate to output				120	ns
t _{PXV} (# -OUT)	Propagation time from clock to output				150	ns

Note 2 : A.C Testing waveform


ne	2	٠	A.C. resung wavelonn	
			Input pulse level	0.45~2.4V
			Input pulse rise time	10ns
			Input pulse fall time	10ns
			Reference level input	V _{IH} =2V, V _{IL} =0.8V
			output	V _{OH} =2V, V _{OL} =0.8V
	3	:	Test condition is not applied	

MITSUBISHI LSIS M5M82C54P/FP/J

CMOS PROGRAMMABLE INTERVAL TIMER

CMOS PROGRAMMABLE PERIPHERAL INTERFACE

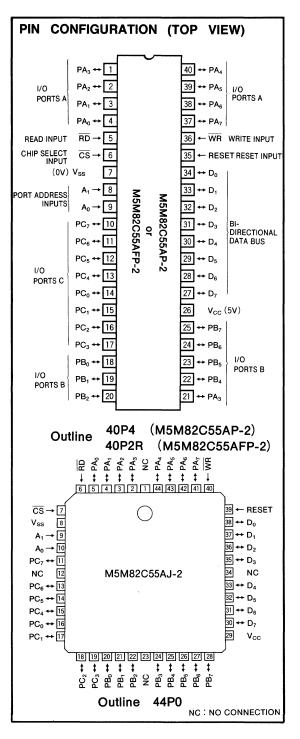
DESCRIPTION

The M5M82C55AP-2 is a family of general-purpose programmable input/ output devices designed for use with the 8/16-bit parallel CPU as input/output ports.

This device is fabricated using silicon-gate CMOS technology for a single supply voltage. This LSI is having 24 input/ output pins which correspond to three 8-bit input/output ports. It is housed in a 40-pin plastic molded DIP.

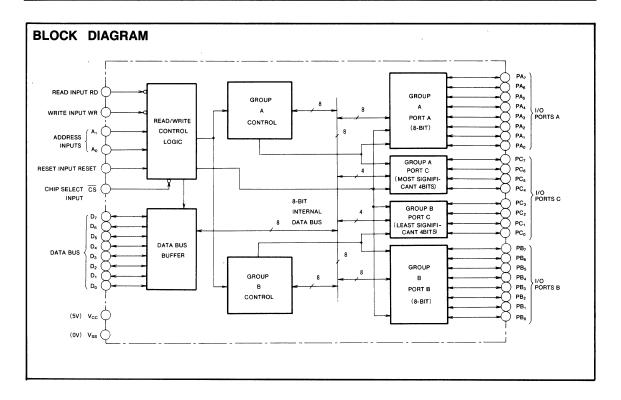
And preparatory for surface equipment M5M82C55AP-2 (SOP) and M5M82C55AJ-2 (PLCC).

FEATURES


- 120nsec access time
- Having internal anti-noise circuit on RESET, ACK and STB pins
- Single 5 V supply voltage
- TTL compatible
- Improved DC driving capability
- Improved timing characteristics
- 24 programmable I/O pins
- Direct bit set/reset capability

APPLICATION

Input/output ports for microprocessor


FUNCTION

These PPIs have 24 input/output pins which may be individually programmed in two 12-bit groups A and B with mode control commands from a CPU. They are used in three major modes of operation, mode 0, mode 1 and mode 2. Operating in mode 0, each group of 12 pins may be programmed in sets of 4 to be inputs or outputs. In mode 1, the 24 I/O terminals may be programmed in two 12-bit groups, group A and group B. Each group contains one 8bit data port, which may be programmed to serve as input or output, and one 4-bit control port used for handshaking and interrupt control signals. Mode 2 is used with group A only, as one 8-bit bidirectional bus port and one 5-bit control port. Bit set/reset is controlled by CPU. A high-level reset input (RESET) clears control register, and all ports are set to the input mode (high-impedance state).

CMOS PROGRAMMABLE PERIPHERAL INTERFACE

CMOS PROGRAMMABLE PERIPHERAL INTERFACE

FUNCTIONAL DESCRIPTION

RD (Read) Input

At low-level, the status or the data at the port is transferred to the CPU from the PPI. In essence, it allows the CPU to read data from the PPI.

WR (Write) Input

At low-level, the data or control words are transferred from the CPU and written in the PPI.

A₀, A₁ (Port address) Input

These input signals are used to select one of the three ports: port A, port B, and port C, or the control register. They are normally connected to the least significant 2 bits of the address bus.

RESET (Reset) Input

At high-level, the control register is cleared. Then all ports are set to the input mode (high-impedance state).

CS (Chip-Select) Input

At low-level, the communication between the PPI and the CPU is enabled. While at high-level, the data bus is kept in the high-impedance state, so that commands from the CPU are ignored. Then the previous data is kept at the output port.

Read/Write Control Logic

The function of this block is to control transfers of both data and control words. It accepts the address signals (A_0 , A_1 , \overline{CS}), I/O control signals (\overline{RD} , \overline{WR}) and RESET signal, and then issues commands to both of the control groups in the PPI.

Data Bus Buffer

This three-state, bidirectional, 8-bit buffer is used to transfer the data when an input or output instruction is executed by the CPU. Control words and status information are also transferred through the data bus buffer.

Group A and Group B Control

Accepting commands from the read/write control logic, the control blocks (Group A, Group B) receive 8-bit control words from the internal data bus and issue the proper commands for the associated ports. Control group A is associated with port A and the 4 high-order bits of port C. Control group B is associated with port B and the 4 low-order bits of port C. The control register, which stores control words, can only be written into.

Port A, Port B and Port C

The PPI contains three 8-bit ports whose modes and input/ output settings are programmed by the system software.

Port A has an output latch/buffer and an input latch/buffer. Port B has an input-output latch/buffer. Port C has an output latch/buffér and an input buffer. Port C can be divided into two 4-bit ports which can be used as ports for control signals for port A and port B.

The basic operations are shown in Table 1.

Table 1 Basic Operations

A ₁	A ₀	CS	RD	WR	Operation
0	0	L	L	н	Data bus ← Port A
0	1	L	L	н	Data bus ← Port B
1	0	L	L	н	Data bus ← Port C
0	0	L	н	L	Port A ← Data bus
0	1	L	н	L	Port B ← Data bus
1	0	L	н	L	Port C ← Data bus
1	1	L	н	L	Control register ← Data bus
Х	х	н	х	х	Data bus is in high-impedance state
1	1	L	L	н	Illegal condition

Bit Set/Reset

When port C is used as an output port, any 1bit of the 8-bit can be set (high) or reset (low) by a control word from the CPU. This bit set/reset can be operated in the same way as the mode set, but the control word format is different. This operation is also used for INTE(interrupt enable flag) set/reset in mode 1 and mode 2.

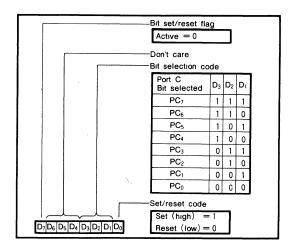


Fig. 1 Control word format for port C set/reset

CMOS PROGRAMMABLE PERIPHERAL INTERFACE

BASIC OPERATING MODES

The PPI can operate in any one of three selected basic modes.

Mode 0: Basic input/output Mode 1: Strobed input/output

Mode 2: Bidirectional bus

(group A, group B)

(group A only)

(group A, group B)

The mode of both group A and group B can be selected independently. The control word format for mode set is shown in Fig. 2.

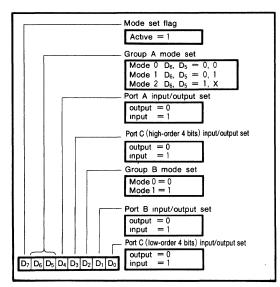
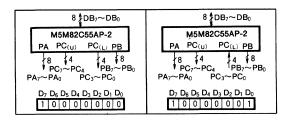



Fig. 2 Control word format for mode set.

1. Mode 0 (Basic Input/Output)

This functional configuration provides simple input and output operations for each of the 3 ports. No "handshaking" is required; data is simply written in, or read from, the specified port. Output data from the CPU to the port can be held, but input data from the port to the CPU cannot be held. Any one of the 8-bit ports and 4-bit ports can be used as an input port or an output port. The diagrams following show the basic input/output operating modes.

8 2DB ₇ ∼DB ₀	8 ≵DB 7∼DB₀
M5M82C55AP-2 PA_PC(u) PC(L) PB	M5M82C55AP-2 PA PC(U) PC(L) PB
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
8 ≵DB ₇ ~DB₀	8 ≵DB ₇ ~DB₀
M5M82C55AP-2 PA PC(u) PC(L) PB	M5M82C55AP-2 PA PC _(U) PC _(L) PB
8 4 4 8	8 4 4 8
$ \begin{array}{c} & \dagger \mathbf{P} \mathbf{C}_7 \sim \mathbf{P} \mathbf{C}_4 \mathbf{P} \mathbf{B}_7 \sim \mathbf{P} \mathbf{B}_0 \\ \mathbf{P} \mathbf{A}_7 \sim \mathbf{P} \mathbf{A}_0 \mathbf{P} \mathbf{C}_3 \sim \mathbf{P} \mathbf{C}_0 \end{array} $	$\begin{array}{c} \dagger \mathbf{P} \mathbf{C}_{1} \sim \mathbf{P} \mathbf{C}_{4} \frac{1}{\mathbf{P}} \mathbf{B}_{7} \sim \mathbf{P} \mathbf{B}_{0} \\ \mathbf{P} \mathbf{A}_{7} \sim \mathbf{P} \mathbf{A}_{0} \mathbf{P} \mathbf{C}_{3} \sim \mathbf{P} \mathbf{C}_{0} \end{array}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
8 ≵DB ₇ ~DB₀	8 ≵DB ₇ ~DB₀
M5M82C55AP-2 PA PC(u) PC(L) PB	M5M82C55AP-2 PA PC(U) PC(L) PB
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	↓8 ↓4 ↓8 ↓PC7~PC4 ↓PB7~PB0 ₽A7~PA0 PC3~PC0
D7 D6 D5 D4 D3 D2 D1 D0 1 0 0 0 1 0 1 0 1 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
8 2 DB7~DB0	8 ≵DB ₇ ∼DB₀
M5M82C55AP-2 PA PC(U) PC(L) PB	M5M82C55AP-2 PA PC(U) PC(L) PB
$\begin{array}{c} \begin{array}{c} & & & \\ & & \\ & & \\ & \\ & \\ & \\ & \\ & $	$\begin{array}{c c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
8 2 DB7~DB0	8 ∲DB ₇ ~DB₀
M5M82C55AP-2 PA PC(U) PC(L) PB	M5M82C55AP-2
8 4 4 8 PC7~PC4 PB7~PB0	PA PC _(U) PC _(L) PB +8 +4 +4 +8 PC ₇ ~PC ₄ PB ₇ ~PB ₀
$PC_7 \sim PC_4$ $PB_7 \sim PB_0$ $PA_7 \sim PA_0$ $PC_3 \sim PC_0$	PC ₇ ~PC ₄ PB ₇ ~PB ₀ PA ₇ ~PA ₀ PC ₃ ~PC ₀
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
8 ≵DB7~DB₀	8 ≵DB ₇ ~DB₀
M5M82C55AP-2 PA PC(u) PC(L) PB	M5M82C55AP-2 PA PC(U) PC(L) PB
18 14 14 18 PC7~PC4 PB7~PB0 PA7~PA0 PC3~PC0	18 14 14 18 1000000000000000000000000000000000000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
8 ¢DB ₇ ∼DB ₀	8 ¢DB ₇ ∼DB ₀
M5M82C55AP-2 PA PC(u) PC(L) PB	M5M82C55AP-2 PA PC(u) PC(L) PB
18 14 14 18 ↓ PC7~PC4 ₽B7~PB0 ₽A7~PA0 PC3~PC0	18 14 14 18 PC7~PC4 PB7~PB0 PA7~PA0 PC3~PC0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

CMOS PROGRAMMABLE PERIPHERAL INTERFACE

2. Mode 1 (Strobed Input/Output)

This function can be set in both group A and B. Both groups are composed of one 8-bit data port and one 4-bit control data port. The 8-bit port can be used as an input port or an output port. The 4-bit port is used for control and status signals affecting the 8-bit data port. The following shows operations in mode 1 for using input ports.

STB (Strobe Input)

A low-level on this input latches the output data from the terminal units into the input register of the port. In short, this is a clock for data latching. The data from the terminal units can be latched by the PPI independent of the control signal from the CPU. This data is not sent to the data bus until the instruction IN is executed.

IBF (Input Buffer Full Flag Output)

A high-level on this output indicates that the data from the terminal units has been latched into the input register. IBF is set to high-level by the falling edge of the $\overline{\text{STB}}$ input, and is reset to low-level by the rising edge of the $\overline{\text{RD}}$ input.

INTR (Interrupt Request Output)

This can be used to interrupt the CPU when an input device is requesting service. When INTE (interrupt enable flag) of the PPI is high-level, INTR is set to high-level by the rising edge of the $\overline{\text{STB}}$ input and is reset to low-level by the falling edge of $\overline{\text{RD}}$ input.

 $INTE_A$ of group A is controlled by bit setting of PC₄. $INTE_B$ of group B is controlled by bit setting of PC₂.

Mode 1 input state is shown in Fig. 3, and the timing diagram is shown in Fig. 4.

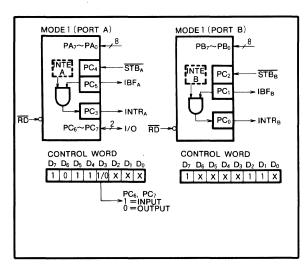


Fig. 3 An example of mode 1 input state

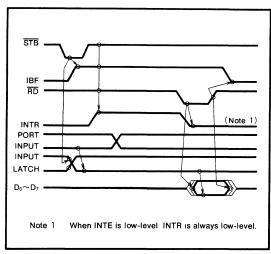


Fig. 4 Timing diagram

The following shows operations using mode 1 for output ports.

OBF (Output Buffer Full Flag Output)

This is reset to low-level by the rising edge of the \overline{WR} signal and is set to high-level by the falling edge of the \overline{ACK} (acknowledge input). In essence, the PPI indicates to the terminal units by the \overline{OBF} signal that the CPU has sent data to the port.

ACK (Acknowledge Input)

Receiving this signal from a terminal unit can indicate to the PPI that the terminal unit has accepted data from a port. **INTR (Interrupt Request)**

When a peripheral unit is accepting data from the CPU, seting INTR to high-level can be used to interrupt the CPU. When INTE (interrupt enable flag) is high-level and \overline{OBF} is set to high-level by the rising edge of an \overline{ACK} signal, then INTR will also be set to high-level by the rising edge of the \overline{ACK} signal. Also, INTR is reset to low-level by the falling edge of the \overline{WR} signal when the PPI has been receiving data from the CPU.

 $INTE_A$ of group A is controlled by bit setting of PC₆. $INTE_B$ of group B is controlled by bit setting of PC₂.

Mode 1 output state is shown in Fig. 5, and the timing diagram is shown in Fig. 6.

Combinations for using port A and port B as input or output in mode 1 are shown in Fig. 7 and Fig. 8.

CMOS PROGRAMMABLE PERIPHERAL INTERFACE

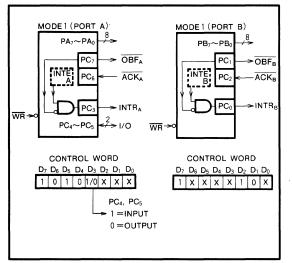
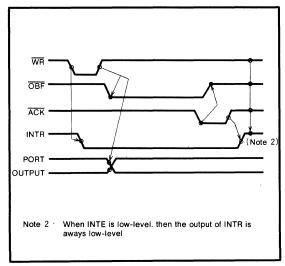



Fig. 5 An example of mode 1 output state

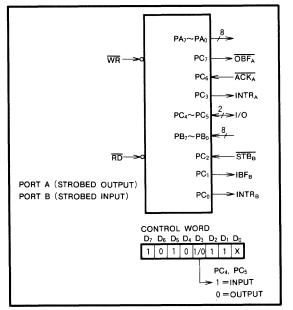


Fig. 7 Mode 1 port A and port B I/O example

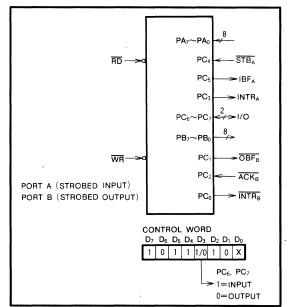


Fig. 8 Mode 1 port A and port B I/O example

3. Mode 2 (Strobed Bidirectional Bus Input/ Output)

Mode 2 can provide bidirectional operations, using one 8-bit bus for communicating with terminal units. Mode 2 is only valid with group A and uses one 8-bit bidirectional bus port (port A) and a 5-bit control port (high-order 5 bits of port C). The bus port (port A) has two internal registers, one for input and the other for output. On the other hand, the control port (port C) is used for communicating control signals and bus-status signals. These control signals are similar to mode 1 and can also be used to control interruption of the CPU. When group A is programmed as mode 2, group B can be programmed independently as mode 0 or mode 1. When group A is in mode 2, the following 5 control signals can be used.

OBF (Output Buffer Full Flag Output)

The OBF output will go low-level to indicate that the CPU has sent data to the internal register of port A. This signal lets the terminal units know that the data is ready for transfer from the CPU. When this occurs, port A remains in the floating (high-impedance) state.

ACK (Acknowledge Input)

A low-level $\overline{\text{ACK}}$ input will cause the data of the internal register to be transferred to port A. For a high-level ACK input, the output buffer will be in the floating (high-impedance) state.

STB (Strobe Input)

When the \overline{STB} input is low-level, the data from terminal units will be held in the internal register, and the data will be sent to the system data bus with an \overline{RD} signal to the PPI.

IBF (Input Buffer Full Flag Output)

When data from terminal units is held on the internal register, IBF will be high-level.

INTR (Interrupt Request Output)

This output is used to interrupt the CPU and its operations the same as in mode 1. There are two interrupt enable flags that correspond to $INTE_A$ for mode 1 output and mode 1 input.

- INTE₂ is used in generating INTR signals in combination with IBF and STB. INTE₂ is controlled by bit setting of PC₄.

Fig. 9 shows the timing diagram of mode 2, and Fig. 10 is an example of mode 2 operation.



Fig. 9 Mode 2 timing diagram

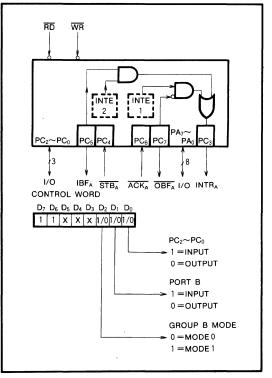


Fig. 10 An example of mode 2 operation

CMOS PROGRAMMABLE PERIPHERAL INTERFACE

4. Control Signal Read

In mode 1 or mode 2 when using port C as a control port, by CPU execution of an IN instruction, each control signal and bus status from port C can be read.

5. Control Word Tables

Control word formats and operation details for mode 0, mode 1, mode 2 and set/reset control of port C are given in Tables 3, 4, 5 and 6, respectively.

Table 2 Read-out control signals

Data Mode	D7	D ₆	D ₅	D₄	D ₃	D ₂	Dı	Do
Mode 1, input	1/0	1/0	IBF _A	INTEA	INTRA	INTEB	IBF _B	INTRB
Mode 1, output	OBFA	INTE _A	1/0	1/0	INTRA	INTEB	OBFB	
Mode 2	OBFA	INTE ₁	IBF _A	INTE ₂	INTRA	By g	roup B r	node

Table 3 Mode 0 control words

		-		Cont	rol w	ords				Group A	Group B	
D 7	D ₆	D ₅	D4	D ₃	D ₂	D ₁	D ₀	Hexadecimal	Port A	Port C (high-order 4 bits)	Port C (low-order 4 bits)	Port B
1	0	0	0	0	0	0	0	80	OUT	OUT	OUT	OUT
1	0	0	0	0	0	0	1	81	OUT	OUT	IN	OUT
1	0	0	0	0	0	1	0	82	OUT	OUT	OUT	IN
1	0	0	0	0	0	1	1	83	OUT	OUT	IN	IN
1	0	0	0	1	0	0	0	88	OUT	IN	OUT	OUT
1	0	0	0	1	0	0	1	89	OUT	IN	IN	OUT
1	0	0	0	1	0	1	0	8A	OUT	IN	OUT	IN
1	0	0	0	1	0	1	1	8B	OUT	IN	IN	IN
1	0	0	1	0	0	0	0	90	IN	OUT	OUT	OUT
1	0	0	1	0	0	0	1	91	IN	OUT	IN	OUT
1	0	0	1	0	0	1	0	92	IN	OUT	OUT	IN
1	0	0	1	0	0	1	1	93 .	IN	OUT	IN	IN
1	0	0	1	1	0	0	0	98	IN	IN	OUT	OUT
1	0	0	1	1	0	0	1	99	IN	IN	IN	OUT
1	0	0	1	1	0	1	0	9A	IN	IN	Ουτ	IN
1	0	0	1	1	0	1	1	9B	IN	IN	IN	IN

Note 4 OUT indicates output port, and IN indicates input port

Table 4 Mode 1 control words

			С	ontr	ol wa	ords					Gro	up A				Gro	up B	
D7	D ₆	D ₅	D₄	D3	Π.	D .	D ₀	Hexa-	Port A			Port C				Port C		Dent D
	06	05	04	03	02	Di	D0	decimal	FULA	PC ₇	PC ₆	PC ₅	PC₄	PC ₃	PC ₂	PC ₁	PC ₀	Port B
1	0	1	0	0	1	0	x	A4 A5	OUT		ACKA	0	UT		ACKB			ουτ
1	0	1	0	0	1	1	x	A6 A7	OUT		ACKA	0	UT		STBB	1BF _B		IN
1	0	1	0	1	1	0	x	AC AD	OUT		ACKA	I	N		ACKB		INTR _B	ουτ
1	0	1	0	1	1	1	х	AE AF	OUT		ACKA	I	N	INTRA	STBB	IBF _B		IN
1	0	1	1	0	1	0	x	B4 B5	IN	0	UT	IBFA	STBA	INTRA	ACKB		INTRB	ουτ
1	0	1	1	0	1	1	х	B6 B7	IN	0	UT	IBF _A	STBA		STB _B	IBF _B		IN
1	0	1	1	1	1	0	x	BC BD	IN	1	N	IBFA	STBA		ACKB			оит
1	0	1	1	1	1	1	х	BE BF	IN	1	N	IBFA	STBA	INTRA	STB _B	IBF _B		IN

Note 5 Mode of group A and group B can be programmed mapping 6 It is not necessary for both group A and group B to be in mode 1 Mode of group A and group B can be programmed independently.

CMOS PROGRAMMABLE PERIPHERAL INTERFACE

Table 5 Mode 2 control words

			Co	ontro	ol w	ord	5					Group /	4				Grou	лр В	
	_	_	_	_	_	_		_	Hexa-				Port C					Port B	
D7	D ₆	D5	D₄	D ₃	D2	D	1	D ₀	decimal (Ex)	Port A	PC7	PC ₆	PC ₅	PC₄	PC ₃	PC ₂	PC ₁	PC₀	FUILE
1	1	х	х	х	0	()	0	C 0	Bidirectional bus	OBFA	ACKA	IBF₄	STBA	INTRA		OUT		OUT
1	1	х	х	х	0	()	1	C1	Bidirectional	OBFA	ACKA	IBF _A	STBA	INTRA		IN		OUT
1	1	х	х	х	0	1		0	C2	Bidirectional	OBFA	ACKA	IBF _A	STBA	INTRA		OUT		IN
1	1	х	х	х	0	1		1	C3	Bidirectional	OBFA	ACKA	IBF _A	STBA	INTRA		IN		IN
1	1	х	х	х	1	()	x	C4	Bidirectional	OBFA	ACKA	IBF _A	STBA	INTRA	ACKB	OBFB		OUT
1	1	х	х	х	1	1		х	C 6	Bidirectional	OBFA	ACKA	IBF₄	STB _A	INTRA	STBB	IBF _B	INTRB	IN

Table 6 Port C bit set/reset control words

	_		Co	ontro	l wo	rds						Po	t C				Remarks
D7	D ₆	D5	D₄	D3	D ₂	D1	D ₀	Hexa- decimal	PC ₇	PC ₆	PC ₅	PC₄	PC ₃	PC ₂	PC ₁	PC ₀	
0	х	х	х	0	0	0	0	00								0	
0	х	х	х	0	0	0	1	01								1	
0	х	х	х	0	0	1	0	02							0		
0	Х	х	х	0	0	1	1	03							1		
0	х	х	х	0	1	0	0	04						0			INTE _B set/reset for mode 1 input
0	х	х	х	0	1	0	1	05						1			INTE _B set/reset for mode 1 output
0	х	х	х	0	1	1	0	06					0				
0	х	х	х	0	1	1	1	07					1				
0	х	х	х	1	0	0	0	08				0					INTE _A set/reset for mode 1 input
0	х	х	х	1	0	0	1	09				1					INTE ₂ set/reset for mode 2
0	х	х	х	1	0	1	0	0A			0						
0	х	х	х	1	0	1	1	0B			1						
0	х	х	х	1	1	0	0	0C		0							INTE _A set/reset for mode 1 output
0	х	х	х	1	1	0	1	0D		1							INTE ₁ set/reset for mode 2
0	х	х	х	1	1	1	0	0E	0								
0	х	X	х	1	1	1	1	0F	1								

Note 7 : The terminais of port C should be programmed for the output mode, before the bit set/reset operation is executed. 8 · Also used for controlling the interrupt enable flag(INTE).

CMOS PROGRAMMABLE PERIPHERAL INTERFACE

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Rati	Ratings		
V _{cc}	Supply voltage		-0.	$ \begin{array}{r} -0.3 \sim 7 \\ -0.3 \sim V_{\rm cc} + 0.3 \\ -0.3 \sim V_{\rm cc} + 0.3 \end{array} $		
Vi	Input voltage	With respect to V _{SS}	-0.3~\			
Vo	Output voltage		-0.3~\			
MAX "H"	All output and I/O pins output	Port	-4	mA		
онмах	Output current	"H" level and force same current	Data bus	-500	μA	
1	MAX "L"	All output and I/O pins output	Port	4		
OLMAX	Output current	"L" level and force same current 2	Data bus	2.5	mA	
Topr	Operating free-air temperature renge		-20	-20~75		
Tstg	Storage temperature range		-65	~150	ാ	

RECOMMENDED OPERATING CONDITIONS (Ta=-20~75°C, unless otherwise noted)

Symbol	Berometer		Unit		
	Parameter	Min	Nom	Мах	Unit
Vcc	Supply voltage	4.5	5	5.5	v
Vss	Supply voltage (GND)		0		v

ELECTRICAL CHARACTERISTICS (Ta=-20~75°C, Voc=5V±10%, Vss=0V, unless otherwise noted)

Oumbal	Desemator	Test souditions	Υ	Limits		Unit
Symbol	Parameter	Test conditions	Min	Тур	Max	
ViH	High-level input voltage		2.0		V _{cc} +0.3	v
VIL	Low-level input voltage		-0.3		0.8	v
V _{OH} Output high volta		I _{OH} =-400µА	2.4			v
		I _{OH} =-20µА	4.4			v
Vol	Output low voltage (Note10)	I _{OL} =2.5mA			0.4	v
lcc	Supply current from V _{CC}	All input mode RESET=0V. Other pins=V _{CC} .			10	μA
հե	Input leak current	VI=0V, Vcc			±10	μA
loz	Off-state output current	Vo=0V~Vcc			±10	μA
Ci	Input terminal capacitance	f=1MHz			10	рF
Ci/o	Input/output terminal capacitance	Unmeasured pins=0V			20	pF

Note 9 : Current flowing into an IC is positive, out is negative. 10 : Output current must be less than ±4mA for each Port pin

CMOS PROGRAMMABLE PERIPHERAL INTERFACE

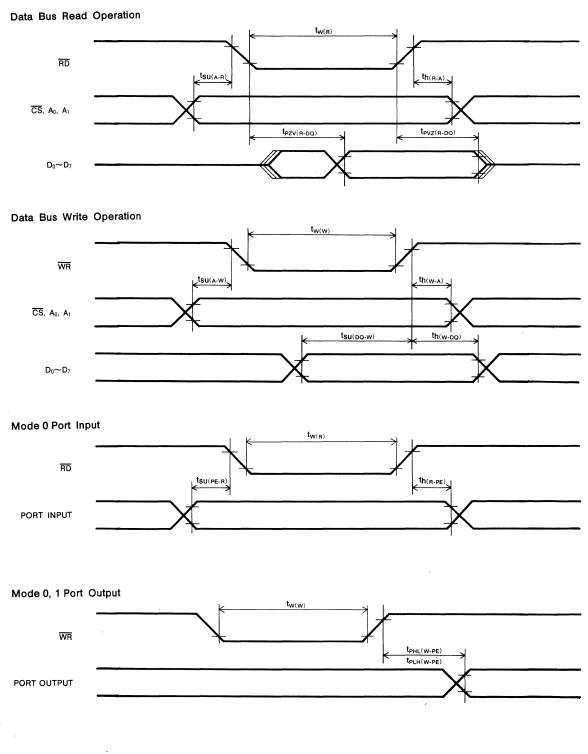
Querra have	Descenter	Test conditions		Unit		
Symbol	Parameter	lest conditions	Min	Тур	Мах	x Onic
t _{w(R)}	Read pulse width		160			ns
t _{SU(PE-R)}	Peripheral setup time before read		0			ns
th(R-PE)	Peripheral hold time after read		0			ns
t _{SU(A-R)}	Address setup time before read		0			ns
th(R-A)	Address hold time after read		0			ns
t _{w(w)}	Write pulse width		120			ns
tsu(DQ-W)	Data setup time before write		100			ns
th(w-DQ)	Data hold time after write		0			ns
t _{SU(A-W)}	Address setup time before write		0			ns
th(w-A)	Address hold time after write		0			ns
tw(ACK)	Acknowledge pulse width		300			ns
tw(STB)	Strobe pulse width		350			ns
tsu(PE-STB)	Peripheral setup time before strobe		0			ns
th(STB-PE)	Peripheral hold time after strobe		150			ns
t _{C(RW)}	Read/write cycle time		200			ns

TIMING REQUIREMENTS (Ta=-20~75°C, Vcc=5V±10%, Vss=0V, unless otherwise noted)

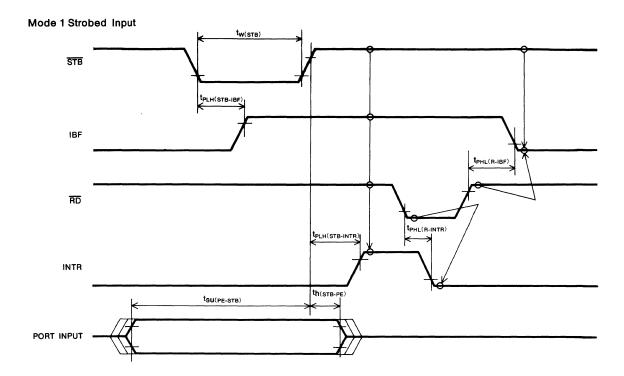
SWITCHING CHARACTERISTICS ($T_a=-20\sim75$ °C, $V_{cc}=5V\pm10$ %, $V_{ss}=0$ V, unless otherwise noted)

	Deserveden	Test conditions		Limits			
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit	
t _{PVZ(R-DQ)}	Propagation time from read to data output				120	ns	
t _{PZV(R-DQ)}	Propagation time from read to data floating (Note11)		10		85	ns	
t _{PHL(W-PE)} t _{PLH(W-PE)}	Propagation time from write to output				350	ns	
t _{PLH(STB-IBF)}	Propagation time from strobe to IBF flag				300	ns	
tPLH(STB-INTR)	Propagation time from strobe to interrupt				300	ns	
t _{PHL(R-INTR)}	Propagation time from read to interrupt	C_=150pF			400	ns	
t _{PHL(R-IBF)}	Propagation time from read to IBF flag	CL-150PF			300	ns	
t _{PHL(W-INTR)}	Propagation time from write to interrupt				450	ns	
t _{PHL(W-OBF)}	Propagation time from write to OBF flag				300	ns	
tplh(ack-obf)	Propagation time from acknowledge to OBF flag				350	ns	
tplh(ack-intr)	Propagation time from acknowledge to interrupt				350	ns	
t _{PVZ(ACK-PE)}	Propagation time from acknowledge to data output		· .		300	ns	
tPZV(ACK-PE)	Propagation time from acknowledge to data floating (Note11)		20		250	ns	

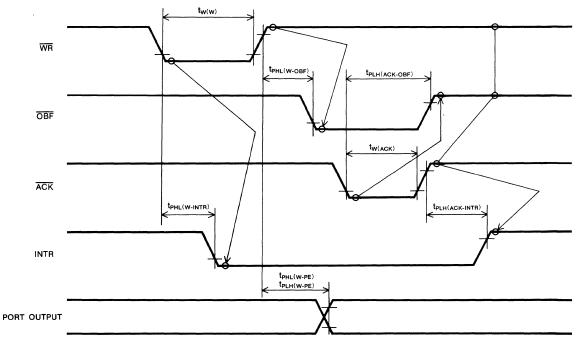
Note 11: Test conditions are not applied. 12: A.C Testing waveform Input pulse level 0 Input pulse rise time Input pulse fall time Reference level input output


0. 45~2. 4V 10ns 10ns V_{IH}=2V, V_{IL}=0.8V V_{OH}=2V, V_{OL}=0.8V

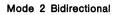
2.4 2 2-0.8-0.45


CMOS PROGRAMMABLE PERIPHERAL INTERFACE

TIMING DIAGRAM

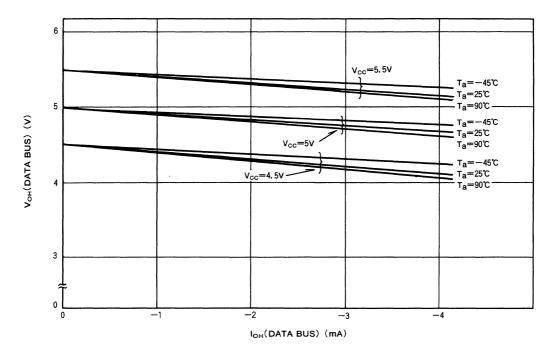


CMOS PROGRAMMABLE PERIPHERAL INTERFACE

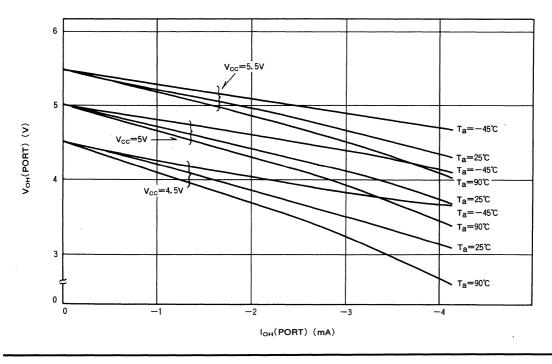



Mode 1 Strobed Output

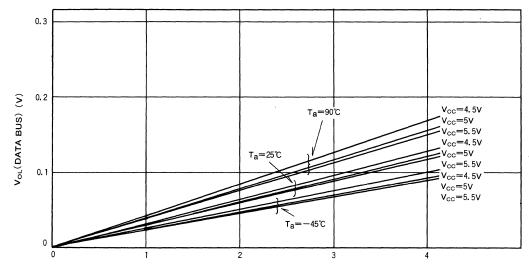
CMOS PROGRAMMABLE PERIPHERAL INTERFACE



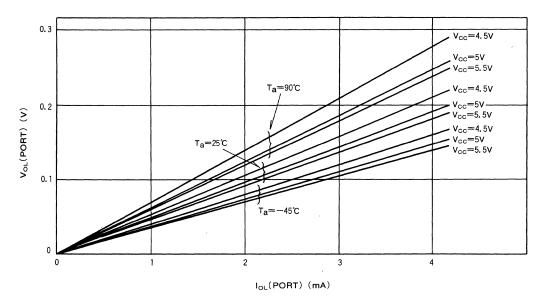
Note 13: INTR=IBF · MASK · STB · RD+OBF · MASK · ACK · WR



CMOS PROGRAMMABLE PERIPHERAL INTERFACE



 $V_{OH} - I_{OH}$ CHARACTERISTICS (PORT)


CMOS PROGRAMMABLE PERIPHERAL INTERFACE

 $I_{OL}(DATA BUS) (mA)$

 $v_{\text{ol}}{-}i_{\text{ol}}$ characteristics (data bus)

CMOS PROGRAMMABLE INTERRUPT CONTROLLER

DESCRIPTION

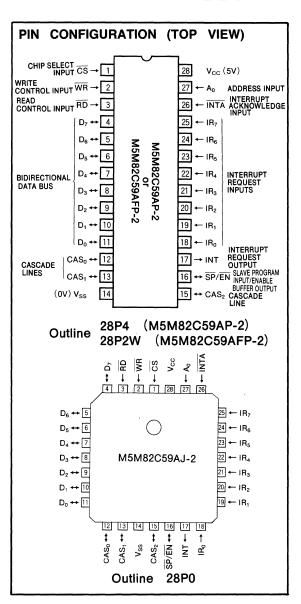
The M5M82C59AP-2 is a programmable LSI for interrupt control. It is fabricated using silicon-gate CMOS technology.

It is housed in a 28-pin plastic molded DIP.

And preparatory for surface equipment M5M82C59AFP-2 (SOP) and M5M82C59AJ-2 (PLCC).

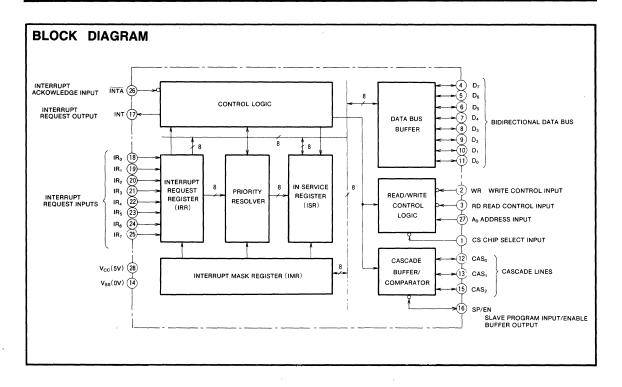
FEATURES

- Single 5V supply voltage
- TTL compatible
- Pin connection compatible with the M5L8259AP
- CALL instruction to the CPU is generated automatically
 Priority, interrupt mask and vectored address for each interrupt request input are programmable
- Up to 64 levels of interrupt requests can be controlled by cascading with M5M82C59AP-2
- Polling functions


APPLICATION

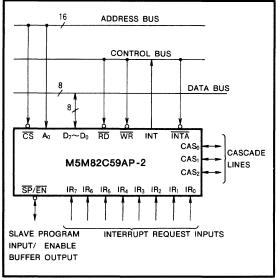
The M5M82C59AP-2 can be used as an interrupt controller for MELPS85, MELPS86 and MELPS88

FUNCTION


The M5M82C59AP-2 is a device specifically designed for use in real time, interrupt driven microcomputer systems. It manages eight level requests and has built-in features for expandability to other M5M82C59AP-2's. The priority and interrupt mask can be changed or reconfigured at any time by the main program.

When an interrupt is generated because of an interrupt request at 1 of the pins, the M5M82C59AP-2 based on the mask and priority will output an INT to the CPU. After that, when an \overline{INTA} signal is received from the CPU or the system controller, a CALL instruction and a programmed vector address is released onto the data bus.

CMOS PROGRAMMABLE INTERRUPT CONTROLLER


CMOS PROGRAMMABLE INTERRUPT CONTROLLER

PIN DESCRIPTION

Symbol	Pin name	Input or output	Functional significance
CS	Chip select input	Input	This input is active at low-level, but may be at high-level during interrupt request input and interrupt processing.
WR	Write control input	Input	Command write control input from the CPU
RD	Read control input	Input	Data read control input for the CPU
D ₇ ~D ₀	Bidirectional data bus	Input/ output	Data and commands are transmitted through this bidirectional data bus to and from the CPU
CAS ₂ ~ CAS ₀	Cascade lines	Input/ output	These pins are outputs for a master and inputs for a slave. And these pins of the master will be able to address each individual slave. The master will enable the corresponding slave to release the device routine address during bytes 2 and 3 of INTA.
SP/EN	Slave program input/ Enable buffer output	Input/ output	SP: In normal mode, a master is designated when $\overline{SP/EN}$ =" H " and a slave is designated when $\overline{SP/EN}$ =" L ". EN: In the buffered mode, whenever the M5M82C59AP-2's data bus output is enabled, its $\overline{SP/EN}$ pin will go low-level.
INT	Interrupt request output	Output	This pin goes high-level whenever a valid interrupt is asserted.
IR ₇ ∼IR₀	Interrupt request input	Input	The asynchronous interrupt inputs are active at high-level. The interrupt mask and priority of each interrupt input can be changed at any time. When using edge triggered mode, the rising edge (low-level to high-level) of the interrupt request and the high-level must be held until the first INTA. For level triggered mode, the high-level must be held until the first INTA
INTA	Interrupt acknowledge input	Input	When an interrupt acknowledge ($iNTA$) from the CPU is received, the M5M82C59AP-2 releases a CALL instruction or vectored address onto the data bus.
Ao	A ₀ address input	Input	This pin is normally connected to one of the address lines and acts in conjunction with the \overline{CS} , \overline{WR} and \overline{RD} when writing commands or reading status registers.

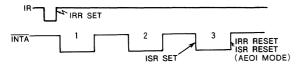
OPERATION

The M5M82C59AP-2 is interfaced with a standard system bus as shown in Fig. 1 and operates as an interrupt controller.

Fig. 1 The M5M82C59AP-2 interfaces to standard system bus.

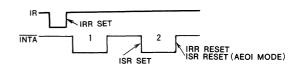
Table 1 M5M82C59AP-2 basic operation

A ₀	D4	D ₃	RD	WR	CS	Input operation (read)
0	1		L	н	L	IRR, ISR or interrupting level→data bus
1			L	н	L	IMR→Data bus
						Output operation (write)
0	0	0	н	L	L	Data bus→OCW2
0	0	1	н	L	L	Data bus→OCW3
0	1	x	н	L	L	Data bus→ICW1
1	x	x	н	L	L	Data bus→OCW1, ICW2, ICW3, ICW4
						Disable function
х	х	х	н	н	L	Data bus→High-impedance
х	x	x	x	x	н	Data bus→High-impedance



CMOS PROGRAMMABLE INTERRUPT CONTROLLER

Interrupt Sequence


1. When the CPU is a MELPS85

- When one or more of the interrupt request inputs are raised high, the corresponding IRR bit(s) for the high-level inputs will be set.
- (2) Mask state and priority levels are considered and, if appropriate, the M5M82C59AP-2 sends an INT signal to the CPU.
- (3) The acknowledgement of the CPU to the INT signal, the CPU issues an INTA pulse to the M5M82C59AP-2.
- (4) Upon receiving the first INTA pulse from the CPU, a CALL instruction is released onto the data bus.
- (5) A CALL is a 3-byte instruction, so additional two INTA pulses are issued to the M5M82C59AP-2 from the CPU.
- (6) These two INTA pulses allow the M5M82C59AP-2 to release the program address onto the data bus. The low-order 8 bits vectored address is released at the second INTA pulse and the high-order 8 bits vectored address is released at the third INTA pulse. The ISR bit corresponding to the interrupt request input is set upon receiving the third INTA pulse from the CPU, and the corresponding IRR bit is reset.
- (7) This completes the 3-byte CALL instruction and the interrupt routine will be serviced. The ISR bit is reset at the trailing edge of the third INTA pulse in the AEOI mode. In the other modes the ISR bit is not reset until an EOI command is issued.

2. When the CPU is a MELPS86 or MELPS88

- When one or more of the interrupt request inputs are raised high, the corresponding IRR bit(s) for the high-level inputs will be set.
- (2) Mask state and priority levels are considered and if appropriated, the M5M82C59AP-2 sends an INT signal to the CPU.
- (3) As an acknowledgement to the INT signal, the CPU issues an INTA pulse to the M5M82C59AP-2.
- (4) Upon receiving the first INTA pulse from the CPU, the M5M82C59AP-2 does not drive the data bus, and the data bus keeps high-impedance state.
- (5) When the second INTA pulse is issued from the CPU, an 8-bit pointer is released onto the data bus.
- (6) This completes the interrupt cycle and the interrupt routine will be serviced. The ISR bit is reset at the trailing edge of the second INTA pulse in the AEOI mode. In the other modes the ISR bit is not reset until an EOI command is issued from the CPU.

The interrupt request input must be held at high-level until the first \overline{INTA} pulse is issued. If it is allowed to return to low-level before the first \overline{INTA} pulse is issued, an interrupt request in IR₇ is executed However, in this case the ISR bit is not set.

This is a function for a noise countermeasure of interrupt request inputs. In the interrupt routine of IR₇, if ISR is checked by software either the interrupt by noise or real interrupt can be acknowledged. In the state of edge trigger mode normally the interrupt request inputs hold high-level and its input low-level pulse in the case of interrupt.

Interrupt sequence outputs

1. When the CPU is a MELPS85

A CALL instruction is released onto the data bus when the first $\overline{\text{INTA}}$ pulse is issued. The low-order 8 bits of the vectored address are released when the second $\overline{\text{INTA}}$ pulse is issued, and the high-order 8 bits are released when the third $\overline{\text{INTA}}$ pulse is issued. The format of these three outputs is shown in Table 2.

Table 2 Formats of interrupt CALL instruction and vectored address

First INTA pulse (CALL instruction)

D7	D_6	D ₅	D4	D ₃	D ₂	D1	D ₀
1	1	0	0	1	1	0	1

Second INTA pulse (low-order 8 bits of vectored address)

IR		Interval= 4									
	D 7	D ₆	D ₅	D4	D ₃	D ₂	D1	D ₀			
IR ₀	A 7	A ₆	A ₅	0	0	0	0	0			
IR ₁	A 7	A ₆	A ₅	0	0	1	0	0			
IR ₂	A 7	A ₆	A ₅	0	1	0	0	0			
IR ₃	A 7	A ₆	A ₅	0	1	1	0	0			
IR₄	A 7	A ₆	A ₅	1	0	0	0	0			
IR ₅	A 7	A ₆	A ₅	1	0	1	0	0			
IR ₆	A 7	A ₆	A ₅	1	1	0	0	0			
IR ₇	A 7	A ₆	A 5	1	1	1	0	0			

CMOS PROGRAMMABLE INTERRUPT CONTROLLER

IR	Interval=8									
	D7	D ₆	D ₅	D4	D ₃	D ₂	D ₁	D ₀		
IR ₀	A7	A ₆	0	0	0	0	0	0		
IR ₁	A 7	A ₆	0	0	1	0	0	0		
IR ₂	A 7	A ₆	0	1	0	0	0	0		
IR ₃	A 7	A ₆	0	1	1	0	0	0		
IR4	A 7	A ₆	1	0	0	0	0	0		
IR ₅	A 7	A ₆	1	0	1	0	0	0		
IR ₆	A7	A ₆	1	1	0	0	0	0		
IR ₇	A 7	A ₆	1	1	1	0	0	0		

Third INTA pulse	(high-order 8 bits	of vectored address)
------------------	--------------------	----------------------

D7	D ₆	D ₅	D₄	D ₃	D ₂	Dı	\mathbf{D}_0
A ₁₅	A ₁₄	A ₁₃	A ₁₂	A ₁₁	A ₁₀	A ₉	A ₈

2. When the CPU is a MELPS86 or MELPS88

The data bus keeps a high-impedance state when the first INTA pulse is issued. Then the pointer $T_7 \sim T_0$ is released when the next INTA pulse is issued. The content of the pointer $T_7 \sim T_0$ is shown in Table 3. The $T_2 \sim T_0$ are a binary code corresponding to the interrupt request level, $A_{10} \sim A_5$ are unused and ADI mode control is ignored.

	D 7	D ₆	D ₅	D4	D ₃	D ₂	D ₁	D ₀
IR ₀	T 7	T ₆	T ₅	T ₄	T ₃	0	0	0
IR ₁	T 7	T ₆	T 5	T ₄	T ₃	0	0	1
IR ₂	T 7	T ₆	T ₅	T ₄	T ₃	0	1	0
IR ₃	T 7	T ₆	T ₅	T4	T ₃	0	1	1
IR4	T 7	T ₆	T ₅	T ₄	T ₃	1	0	0
IR ₅	T 7	T ₆	T ₅	T ₄	T ₃	1	0	1
IR ₆	T 7	T ₆	T ₅	T ₄	T ₃	1	1	0
IR ₇	T 7	T ₆	T ₅	T₄	T ₃	1	1	1

Table 3 Contents of interrupt pointer Second INTA pulse (8-bit pointer)

Interrupt Request Register (IRR), In-service Register (ISR)

As interrupt requests are received at inputs $IR_7 \sim IR_0$, the corresponding bits of IRR are set and as an interrupt request is serviced the corresponding bit of ISR is set. The IRR is used to store all the interrupt levels which are requesting service, and the ISR is used to store all the interrupt levels which are being serviced. The status of these two registers can be read. These two registers are connected through the priority resolver.

An interrupt requst received by IR_n is acknowledged on the leading edge when in the edge triggered mode or it is acknowledged on the level when in the level triggered mode. After that an INT signal is released and the interrupt re-

quest signal is latched in the corresponding IRR bit if the high-level is held until the first $\overline{\text{INTA}}$ pulse is issued. It is important to remember that the interrupt request signal must be held at high-level until the first $\overline{\text{INTA}}$ pulse is issued.

The interrupt request latching in the IRR causes a signal to be sent to the priority resolver unless it is masked out. When the priority resolver receives the signals it selects the highest priority interrupt request latched in IRR. The ISR is set when the last INTA pulse is issued while the corresponding bit of IRR is reset and the other bits of IRR are unaffected.

The bit of ISR that was set is not reset during the interrupt routine, but is reset at the end of the routine by the EOI command (end of interrupt) or by the trailing edge of the last $\overline{\text{INTA}}$ pulse in AEOI mode.

Priority Resolver

The priority resolver examines all of the interrupt requests set in IRR to determine and selects the highest priority. The ISR bit corresponding to the selected (highest priority) request is set by the last INTA pulse.

Interrupt Mask Register (IMR)

The contents of the interrupt mask register are used to mask out (disable) interrupt requests of selected interrupt request pins. Each terminal is independently masked so that masking a high priority interrupt does not influence the lower or higher priority interrupts. Therefore the contents of IMR selectively enable reading.

Interrupt Request Output (INT)

The interrupt request output connects directly to the interrupt input of the CPU. The output level is compatible with the input level required for the CPUs.

The INT output is set to low-level after the interrupt sequence ends, irrespective of the current mode. When the power is turned on, the INT output (high-level output) may appear but is reset to low-level by executing ICW1.

Interrupt Acknowledge Input (INTA)

The CALL instruction and vectored address are released onto the data bus by the \overline{INTA} pulse.

Data Bus Buffer

The data bus buffer is a 3-state bidirectional data bus buffer that is used to interface with the system bus. Write commands to the M5M82C59AP-2, CALL instructions, vectored addresses, status information, etc. are transferred through the data bus buffer.

Read/Write Control Logic

The read/write control logic is used to control functions such as receiving commands from the CPU and supplying status information to the data bus.

Chip Select Input (CS)

The M5M82C59AP-2 is selected (enabled) when \overline{CS} is at low-level, but during interrupt request input or interrupt processing it may be high-level.

CMOS PROGRAMMABLE INTERRUPT CONTROLLER

Write Control Input (WR)

When $\overline{\rm WR}$ goes to low-level the M5M82C59AP-2 can be written.

Read Control Input (RD)

When $\overline{\text{RD}}$ goes low-level status information in the internal register of the M5M82C59AP-2 can be read through the data bus.

Address Input (A₀)

The address input is normally connected with one of the address lines and is used along with \overline{WR} and \overline{RD} to control write commands and reading status information.

Cascade Buffer/Comparator

The cascade buffer/comparator stores or compares identification codes. The three cascade lines are output when the M5M82C59AP-2 is a master or input when it is a slave. The identification code on the cascade lines select it as master or slave.

PROGRAMMING THE M5M82C59AP-2

The M5M82C59AP-2 is programmed through the Initialization Command Word (ICW) and the Operation Command Word (OCW). The following explains the functions of these two commands.

Initialization Command Words (ICW_S)

The initialization command word is used for the initial setting of the M5M82C59AP-2. There are four commands in this group and the following explains the details of these four commands. The command flow of ICWs is shown Fig. 2

ICW1

The meaning of the bits of ICW1 is explained in Fig. 3

along with the functions. ICW1 contains vectored address bits $A_7 \sim A_5$, a flag indicating whether interrupt input is edge triggered or level triggered, CALL address interval, whether a single M5M82C59AP-2 or the cascade mode is used, and whether ICW4 is required or not.

Whenever a command is issued with $A_0=0$ and $D_4=1$, this is interpreted as ICW1 and the following will automatically occur.

- (a) The interrupt mask register (IMR) is cleared.
- (b) The interrupt request input IR₇ is assigned the lowest priority.
- (c) The special mask mode is cleared and the status read is set to the interrupt request register (IRR).
- (d) When IC4=0 all bits in ICW4 are set to 0.

ICW2

ICW2 contains vectored address bits $A_{15} \sim A_8$ or interrupt type $T_7 \sim T_3$, and the format is shown in Fig. 3.

ICW3

When SNGL = 1 it indicates that only a single M5M82C59AP-2 is used in the system, in which case ICW3 is not valid. When SNGL=0, ICW3 is valid and indicates cascade connections with other M5M82C59AP-2 devices. In the master mode, a 1 is set for each slave.

When the CPU is a MELPS85 the CALL instruction is released from the master at the first INTA pulse and the vectored address is released onto the data bus from the slave at the second and third INTA pulses.

When the CPU is a MELPS86 the master and slave are in high-impedance at the first $\overline{\text{INTA}}$ pulse and the pointer is

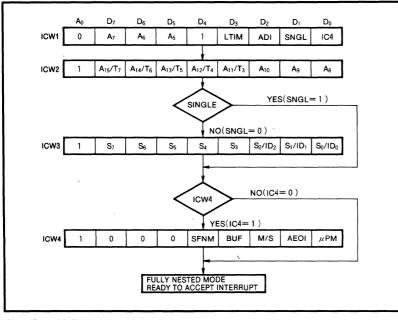


Fig. 2 Initialization sequence

CMOS PROGRAMMABLE INTERRUPT CONTROLLER

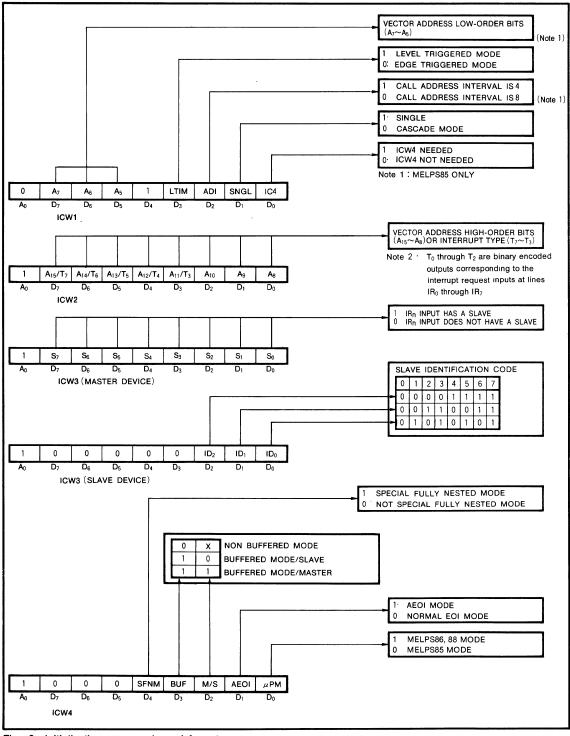


Fig. 3 Initialization command word format

CMOS PROGRAMMABLE INTERRUPT CONTROLLER

released onto the data bus from the slave at the second INTA pulse.

The master mode is specified when SP/EN pin is highlevel or BUF=1 and M/S=1 in ICW4, and slave mode is specified when $\overline{SP}/\overline{EN}$ pin is low-level or BUF=1 and M/S =0 in ICW4. In the slave mode, 3-bit $ID_2 \sim ID_0$ identify the slave. And then when the slave code released on the cascade lines from the master, matches the assigned ID code, the vectored address is released by it onto the data bus at the next INTA pulse

ICW4

Only when IC4=1 in ICW1 is ICW4 valid. Otherwise all bits are set to 0. When ICW4 is valid it specifies special fully

nested mode, buffer mode master/slave, automatic EOI and microprocessor mode. The format of ICW4 is shown in Fig. 3.

Operation Command Words (OCW_S)

The operation command words are used to change the contents of IMR, the priority of interrupt request inputs and the special mask. After the ICW are programmed into the M5M82C59AP-2, the device is ready to accept interrupt requests. There are three types of OCWs; explanation of each follows, and the format of OCWs is shown in Fig 4 OCW1

The meaning of the bits of OCW1 are explained in Fig. 4 along with their functions. Each bit of IMR can be indepen-INTERBURT MASK SET 1. INTERRUPT MASK RESET M₇ M M M₄ M₃ M_2 M M_0 An D₂ De D₅ D₄ D_3 D_2 D D₀ OCW1 NON-SPECIFIC EOI 0 0 EOI SPECIFIC EOI (RESETS ISR BITS L2~L0) 0 1 0 1 ROTATE ON NON-SPECIFIC EOI 1 0 0 SETS AUTOMATIC ROTATION FLIP-FLOP AUTOMATIC ROTATION 0 0 0 RESET AUTOMATIC ROTATION FLIP-FLOP 1 1 .1 ROTATE ON SPECIFIC EOI (RESETS ISR BIT L2~L0) SPECIFIC ROTATION SETS PRIORITY COMMAND (SET LOWEST PRIORITY BIT L₂~L₀) 1 1 0 1 0 0 NO OPERATION ID LEVEL TO BE ACTED UPON 0 1 2 3 4 5 6 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 0 1 1 0 R SL EOI 0 0 L_2 L₀ L D7 A₀ D₆ Ds D₄ D_3 D_2 D D₀ OCW2 0 х NO OPERATION 0 RESET SPECIAL MASK MODE SETS SPECIAL MASK MODE POLL COMMAND 0 NO POLL COMMAND 0 х NO OPERATION 0 SETS STATUS READ REGISTER IN IRR SETS STATUS READ REGISTER IN ISR

Operation command word format Fia. 4

ESMM

De

OCW3

SMM

0

D

1

Da

Р

D₂

RR

D

RIS

D₀

0

0

D

CMOS PROGRAMMABLE INTERRUPT CONTROLLER

dently changed (set or reset) by OCW1.

OCW2

The OCW2 is used for issuing EOI commands to the M5M82C59AP-2 and for changing the priority of the interrupt request inputs.

OCW3

The OCW3 is used for specifying special mask mode, poll mode and status register read.

FUNCTION OF COMMAND

Interrupt masks

The mask register contains a mask for each individual interrupt request. These interrupt masks can be changed by programming using OCW1.

Special mask mode

When an interrupt request is acknowledged and the ISR bit corresponding to the interrupt request is not reset by EOI command (which means an interrupt service routine is executing) lower priority interrupt requests are ignored.

In special mask mode interrupt requests received at interrupt request inputs which are masked by OCW1 are disabled, but interrupts at all levels that are not masked are possible. This means that in the mask mode all level of interrupts are possible or individual inputs can be selectively programmed so all interrupts at the selected inputs are disabled. The masks are stored in IMR and special mask is set/reset by executing OCW3.

Buffered mode

The buffered mode will structure the M5M82C59AP-2 to send an enable signal on $\overline{SP/EN}$ to enable the data bus buffer, when the data bus requires the data bus buffer or when cascading mode is used. In this mode, when data bus output of the M5M82C59AP-2 is enabled, the $\overline{SP/EN}$ output becomes low-level. This allows the M5M82C59AP-2 to be programmed whether it is a master or a slave by software. The buffered mode is set/reset by executing ICW4.

Fully nested mode

The fully nested mode is the mode when no mode is specified and is the usual operational mode. In this mode, the priority of interrupt request terminals is fixed from the lowest IR₇ to the highest IR₀. When an interrupt request is acknowledged the CALL instruction and vectored address are released onto the data bus. At the same time the ISR bit corresponding to the accepted interrupt request is set. This ISR bit remains set until it is reset by the input of an EOI command or until the trailing edge of last INTA pulse in AEOI mode. While an interrupt service routine is being executed, interrupt requests of same or lower priority are disabled while the bit of ISR remains set. The priorities can be changed by OCW2.

Special fully nested mode

The special fully nested mode will be used when cascading is used and this mode will be programmed to the master by ICW4. The special fully nested mode is the same as the fully nested mode with the following two exceptions.

- When an interrupt from a certain slave is being serviced, this slave is not locked out from the master priority logic. Higher priority interrupts within the slave will be recognized by the master and the master will initiate an interrupt request to the CPU. In general in the normal fully nested mode, a serviced slave is locked out from the master's priority, and so higher priority interrupts from the same slave are not serviced.
- 2. When an interrupt from a certain slave is being serviced the software must check ISR to determine if there are additional interrupts requests to be serviced. If the ISR bit is 0 the EOI command may be sent to the master too. But if it is not 0 the EOI command should not be sent to the master.

Poll mode

The poll mode is useful when the internal enable flip-flop of the microprocessor is reset, and interrupt input is disabled. Service to the device is achieved by a programmer initiative using a poll command. In the poll mode the M5M82C59AP-2 at the next $\overline{\text{RD}}$ pulse puts 8-bit on the data bus which indicates whether there is an interrupt request and reads the priority level. The format of the information on the data bus is as shown below.

1 0	there there	is an interr is no interr	upt reque upt reque	st	Binary co level req		•	st priority
Γ	I	-		_	-	W ₂	W ₁	W ₀
	D7	D ₆	D ₅	D4	D ₃	D ₂	D ₁	D ₀

When I=0 (no interrupt request), $W_2 \sim W_0$ is 111. The poll is valid from \overline{WR} to \overline{RD} and interrupt is frozen. This mode can be used for processing common service routines for interrupts from more than one line and does not require any INTA sequence. Poll command is issued by setting P=1 in OCW3.

End Of Interrupt (EOI) and Specific EOI (SEOI)

An EOI command is required by the M5M82C59AP-2 to reset the ISR bit. So an EOI command must be issued to the M5M82C59AP-2 before returning from an interrupt service routine.

When AEOI is selected in ICW4, the ISR bit can be reset at the trailing edge of the last \overline{INTA} pulse. When AEOI is not selected the ISR bit is reset by the EOI command issued to the M5M82C59AP-2 before returning from an interrupt service routine. When programmed in the cascade mode the EOI command must be issued to the master once and to corresponding slave once.

There are two forms of EOI command, specific EOI and non-specific EOI. When the M5M82C59AP-2 is used in the fully nested mode, the ISR bit being serviced is reset by the EOI command. When the non-specific EOI is issued the M5M82C59AP-2 will automatically reset the highest ISR bit

CMOS PROGRAMMABLE INTERRUPT CONTROLLER

of those that are set. Other ISR bits are reset by a specific EOI and the bit to be reset is specified in the EOI by the program. The SEOI is useful in modes other than fully nested mode. When the M5M82C59AP-2 is in special mask mode ISR bits masked in IMR are not reset by EOI. EOI and SEOI are selected when OCW2 is executed.

Automatic EOI (AEOI)

In the AEOI mode the M5M82C59AP-2 executes nonspecific EOI command automatically at the trailing edge of the last $\overline{\text{INTA}}$ pulse. When AEOI = 1 in ICW4, the M5M82C59AP-2 is put in AEOI mode continuously until reprogrammed in ICW4.

Automatic rotation

The automatic rotation mode is used in applications where many interrupt requests of the same level are expected such as multichannel communication systems In this mode when an interrupt request is serviced, that request is assigned the lowest priority so that if there are other interrupt requests they will have higher priorities. This means that the next request on the interrupt request being serviced must wait until the other interrupt requests are serviced (worst case is waiting for all 7 of the other controllers to be serviced). The priority and serving status are rotated as shown in Fig. 5.

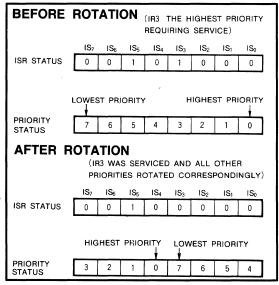


Fig. 5 An example of priority rotation

In the non-specific EOI command automatic rotation mode is selected when R=1, EOI=1, SL=0 in OCW2. The internal priority status is changed by EOI or AEOI commands. The rotation priority A flip-flop is set by R=1, EOI=0 and SL=0 which is useful when the M5M82C59AP-2 is used in the AEOI mode.

Specific rotation

Specific rotation gives the user versatile capabilities in interrupt controlled operations. It serves in those applications in which a specific device's interrupt priority must be altered. As opposed to automatic rotation which automatically sets priorities, specific rotation is completely user controlled. That is, the user selects the interrupt level that is to receive lowest or highest priority. Priority changes can be executed during an EOI command.

Level triggered mode/Edge triggered mode

Selection of level or edge triggered mode of the M5M82C59AP-2 is made by ICW1, When using edge triggered mode not only is a transition from low-level to high-level required, but the high-level must be held until the first \overline{INTA} . If the high-level is not held until the first \overline{INTA} , the interrupt request will be treated as if it were input on IR₇, except that the ISR bit is not set. When level triggered mode is used the functions are the same as edge triggered mode except that the transition from low-level to high-level is not required to trigger the interrupt request.

In the level triggered mode and using AEOI mode together, if the high-level is held too long the interrupt will occur immediately. To avoid this situation interrupts should be kept disabled until the end of the service routine or until the IR input returns low-level. In the edge triggered mode this type of mistake is not possible because the interrupt request is edge triggered.

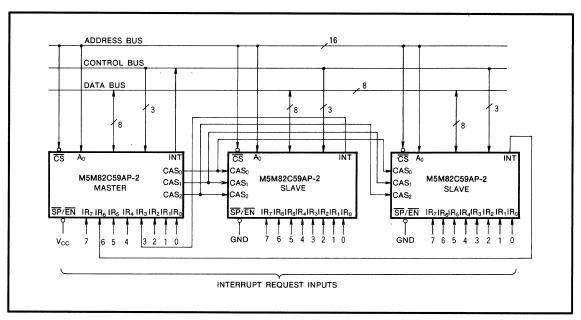
Reading the M5M82C59AP-2 internal status

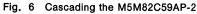
The contents of IRR and ISR can be read by the CPU with status read. When an OCW3 is issued to the M5M82C59AP-2 and an $\overline{\text{RD}}$ pulse issued the contents of IRR or ISR can be released onto the data bus. A special command is not required to read the contents of IMR. The contents of IMR can be released onto the data bus by issuing an $\overline{\text{RD}}$ pulse when A₀=1. There is no need to issue a read register command every time the IRR or ISR is to be read. Once a read register command is received by the M5M82C59AP-2, it remains valid until it is changed. Remember that the programmer must issue a poll command every time to check whether there is an interrupt request and read the priority level. Polling overrides status read when P=1, RR=1 in OCW3.

CASCADING

The M5M82C59AP-2 can be interconnected in a system of one master with up to 8 slaves to handle up to 64 priority levels. A system of 3 units that can be used with the MELPS85 is shown in Fig. 6.

The master can select a slave by outputting its identification code through the 3 cascade lines. The INT output of each slave is connected to the master interrupt request inputs. When an interrupt request of one of the slaves is to be serviced the master outputs the identification code of the slave through the cascade lines, so the slave will release the vectored address on the next INTA pulse.




CMOS PROGRAMMABLE INTERRUPT CONTROLLER

The cascade lines of the master are nomally low-level, and will contain the slave identification code from the leading edge of the first $\overline{\text{INTA}}$ pulse to the trailing edge of the last $\overline{\text{INTA}}$ pulse. The master and slave can be programmed to work in different modes. ICWs must be issued for each device, and EOI commands must be issued twice: once for the master and once for the corresponding slave. Each $\overline{\text{CS}}$ of the M5M82C59AP-2 requires an address decoder.

CMOS PROGRAMMABLE INTERRUPT CONTROLLER

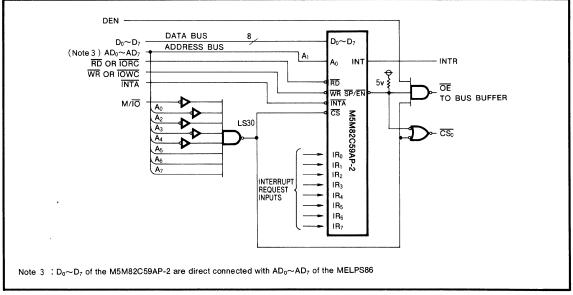


Fig. 7 Example of interface with the MELPS86

CMOS PROGRAMMABLE INTERRUPT CONTROLLER

INSTRUCTION SET

ltem					Inst	ruction of	code					Fun	ction	
Number	Mnemonic	A ₀	D ₇	D ₆	D ₅	D4	D ₃	D ₂	D ₁	D ₀	ICW4 required	Intervel	Single	Trigger
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	ICW1 A ICW1 B ICW1 C ICW1 D ICW1 E ICW1 F ICW1 F ICW1 H ICW1 J ICW1 K ICW1 K ICW1 K ICW1 N ICW1 N ICW1 O ICW1 P		A7 A7 A7 A7 A7 A7 A7 A7 A7 A7 A7 A7 A7 A	A6 A6 A6 A6 A6 A6 A6 A6 A6 A6 A6 A6 A6 A	As As As As As As 0 0 0 0 As As As As 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	1 1 1 0 0 0 1 1 1 1 0 0 0 0	1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N N N N N N N N N N N N N N N N N N N	4 4 4 8 8 8 8 8 8 8 4 4 4 4 4 4 8 8 8 8	Y Y N Y Y N Y Y N Y Y N Y Y N N Y Y N N Y Y N N Y Y N N Y Y N N Y Y N N Y Y N N Y N N Y N N Y N N N Y N N N Y N	
17 18 19	ICW1 F ICW2 ICW3 M ICW3 S	1 1 1	A ₇ A ₁₅ S ₇ 0	A ₆ A ₁₄ S ₆ 0	A ₁₃ S ₅ 0	A ₁₂ S ₄ 0	A ₁₁ S ₃ 0	A ₁₀ S ₂ ID ₂	0 A9 S1 ID1	I A8 S₀ ID₀	-	8-bit vectored a Slave connection Slave identifica	address ons (master mod tion code (slave	e) mode)
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51	ICW4 A ICW4 B ICW4 C ICW4 C ICW4 C ICW4 F ICW4 F ICW4 F ICW4 J ICW4 I ICW4 I ICW4 L ICW4 K ICW4 N ICW4 N ICW4 N ICW4 NA ICW4 NA ICW4 NB ICW4 NC ICW4 NB ICW4 NF ICW4 NF ICW4 NF ICW4 NL ICW4 NL ICW4 NL ICW4 NN ICW4 NN ICW4 NN ICW4 NN ICW4 NN	$\frac{1}{1}$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0	0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	SFNM N N N N N N N N N N N N N N N N N N	BUF N N N N N N N N N N N N N N N N N N N	AEOI N N Y Y N N Y Y N N Y Y N N Y Y N N Y Y N N Y Y N N Y Y N N Y Y Y N N Y Y Y N N Y Y Y N N Y Y Y N N Y Y Y N N Y Y Y N N Y Y Y N N Y Y Y N N Y Y Y N N Y Y Y N N Y Y N N Y Y N N Y Y Y N N Y Y N N Y Y N N Y Y N N N Y Y N N N Y Y N N Y Y N N N Y Y N N N Y Y N N N Y N N Y N N N Y N N N Y N N N Y N N N Y N N N Y N N N Y N N N Y N	MELPS86 N Y N Y N Y N Y N Y N Y N Y N Y N Y N
52 53 54 55 57 58 59 60 61 62 63 64	OCW1 OCW2 E OCW2 SE OCW2 RE OCW2 RSE OCW2 RS OCW2 CR OCW2 CR OCW3 RS OCW3 RIS OCW3 RS OCW3 RSM	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	M7 0 1 1 0 0 0 0 0 0	M ₆ 0 1 0 0 1 0 0 1 1	M₅ 1 1 0 0 0 0 0 1 0	M₄ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	M ₃ 0 0 0 0 1 1 1 1	$\begin{array}{c} M_2 \\ 0 \\ L_2 \\ 0 \\ L_2 \\ 0 \\ 0 \\ L_2 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array}$	M1 0 L1 0 0 L1 0 1 1 0 0	M ⁰ 0 L ⁰ 0 L ⁰ 0 L ⁰ 0 L ⁰ 0 1 0 0 0	Interrupt mask EOI SEOI Rotate on Non-Specific EOI command (Automatic rotation Rotate on Specific EOI command (Specific rotation) Rotate in AEOI Mode (SET) Rotate in AEOI Mode (CLEAR) Set priority without EOI Poll Mode Sets Status Read Register in ISR Sets Status Read Register in IRR Sets Special Mask Mode Reset Special Mask Mode			

Note 4 · Y: yes, N: no, E. edge, L. level, M: master, S: slave

CMOS PROGRAMMABLE INTERRUPT CONTROLLER

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit	
Vcc /	Supply voltage		-0.3~7	v	
Vı	Input voltage	With respect to Vss	$-0.3 \sim V_{cc} + 0.3$	v	
Vo	Output voltage	-	$-0.3 \sim V_{cc} + 0.3$	V	
I _{онмах}	MAX "H" Output current	All output and I/O pins output "H" level and force same current	500	μA	
Iolmax	MAX "L" Output current	All output and I/O pins output "L" level and force same current	2.5	mA	
Topr	Operating free-air temperature range		-20~75	°C	
Tstg	Storage temperature range		-65~150	ĉ	

RECOMMENDED OPERATING CONDITIONS $(T_a=-20\sim75^{\circ}C, unless otherwise noted)$

Sumbol	Parameter		Unit		
Symbol	Farameter	Min	Nom	Мах	Onit
Vcc	Supply voltage	4.5	5	5.5	v
Vss	Supply voltage (GND)		0		v

$\label{eq:constraint} \textbf{ELECTRICAL CHARACTERISTICS} ~ (\texttt{T}_a = -20 \sim 75 \degree \texttt{C} \text{, } \texttt{V}_{cc} = 5 \texttt{V} \pm 10 \%, \texttt{V}_{ss} = \texttt{0V}, \texttt{unless otherwise noted})$

0	Breamatan	Test conditions		Limits		Unit	
Symbol	Parameter	lest conditions	Min Typ Max		onit		
ViH	High-level input voltage		2.0	I	V _{cc} +0.3	v	
VIL	Low-level input voltage		-0.3		0.8	v	
VOH High-level output voltage		I _{OH} =-400µA	2.4			v	
	nign-level output voltage	I _{OH} =-20µА	4.4			v	
		I _{OH} =-400µA	2.4				
V _{OH(INT)} High-	High-level output voltage, interrupt request output	I _{OH} =-100µA 3.5				v	
		I _{OH} =-20µА	4.4	,			
Vol	Low-level output voltage	I _{OL} =2.2mA			0.45	v	
lcc	Standby supply current from V _{CC}	V _I =0V, V _{CC} output open			10	μA	
lн	High-level input current	VI=VCC	-10		10	μA	
liL	Low-level input current	V _i =0V	-10		10	μA	
loz	Off-state output current	Vo=0V~Vcc	-10		10	μA	
	IR pin input current	VI=0V	-300			μA	
I _{LIR2}	IR pin input current	VI=VCC			10	μA	
Ci	Input capacitance	V _{CC} =V _{SS} , f=1MH _Z , 25mVrms, T _a =25°C			10	pF	
Ci/o	Input/output capacitance	V _{CC} =V _{SS} , f=1MH _z , 25mVrms, T _a =25°C			20	pF	

CMOS PROGRAMMABLE INTERRUPT CONTROLLER

Limits Symbol Parameter Unit Test conditions Тур Мах Min t_{W(W)} Write pulse width 190(120) ns 0 Address setup time before write t_{su(A-W)} ns Address hold time after write 0 ns th(W-A) 160(100) tsu(DQ-W) Data setup time before write ns Data hold time after write 0 th(w-DQ) ns Read pulse width 160 t_{W(R)} ns . 0 t_{su(A-R)} Address setup time before read ns 0 Address hold time after read th(R-A) ns Interrupt request input width, low-level time, edge triggered mode 100 t_{W(IR)} ns Cascade setup time after INTA (slave) tSU(CAS-INTA) 40 ns 190 trec(w) Write recovery time ns trec(R) Read recovery time 160 ns End of Command to next Command (Not same Command type) 400 td(RW) ns End of INTA sequence to next INTA sequence.

TIMING REQUIREMENTS ($T_a = -20 \sim 75$ °C, $V_{cc} = 5V \pm 10\%$, $V_{ss} = 0V$, unless otherwise noted)

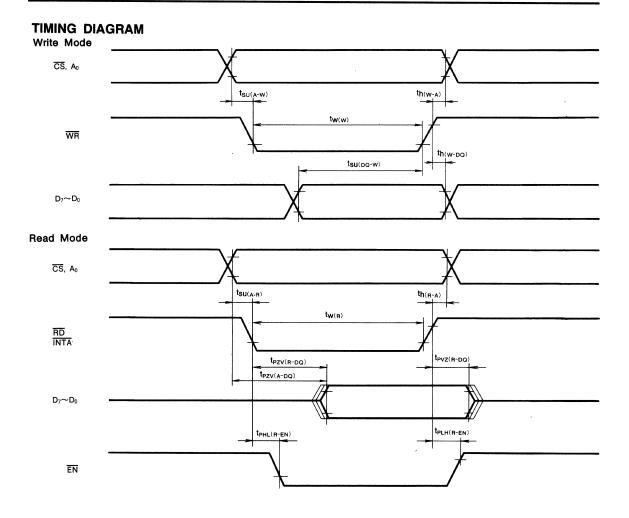
SWITCHING CHARACTERISTICS (Ta=-20~75°C, Vcc=5V±10%, Vss=0V, unless otherwise noted)

Or work at	Descenter	T		Limits		
Symbol	Parameter	Test coditions	Min	Тур	Max	Unit
t _{PZV(R-DQ)}	Data output enable time after read				120	ns
t _{PVZ(R-DQ)}	Data output disable time after read		10		85	ns
t _{PZV(A-DQ)}	Data output enable time after address	C _L =100pF,			200 (170)	ns
t _{PHL(R-EN)}	Propagation time from read to enable signal output	Where SP/EN			100	ns
t _{PLH(R-EN)}	Propagation time from read to disable signal output	Pin is 15 pF			150	ns
telh(IR-INT)	Propagation time from interrupt request input to interrupt request output				300	ns
t _{plv(inta-cas)}	Propagation time from INTA to cascade output (master)				360	ns
tpzv(cas-dq)	Data output enable time after cascade output (slave)				200	ns

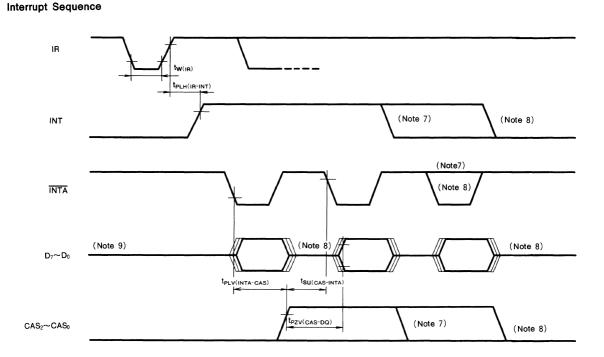
Note M5M82C59AP-2 is also invested with the extended specification showed in the brackets 5 5.

INTA signal is considered read signal

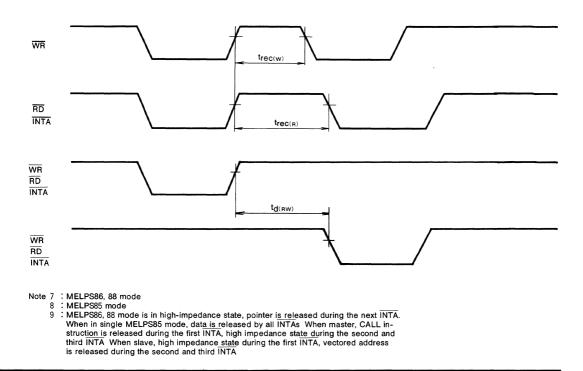
CS signal is considered address signal Input pulse level Input pulse rise time 0.45~2.4V 10ns Input pulse fall time 10ns I Input $V_{IH}=2V, V_{IL}=0.8V$ Output $V_{OH}=2V, V_{OL}=0.8V$ Reference level Input


2.4 -2 -0.8 0.8 0.45

MITSUBISHI LSIs


M5M82C59AP-2/FP-2/J-2

CMOS PROGRAMMABLE INTERRUPT CONTROLLER



CMOS PROGRAMMABLE INTERRUPT CONTROLLER

Other Timing

CMOS PROGRAMMABLE PERIPHERAL INTERFACE

DESCRIPTION

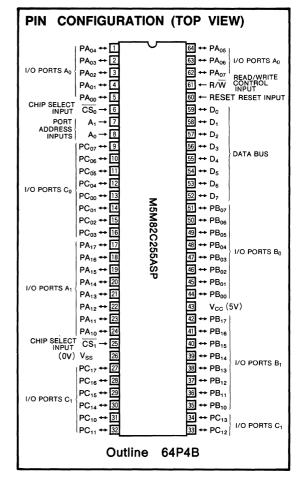
The M5M82C255ASP is a LSI equivalent to two M5M82C55AP-2. It is housed in a single 64-pin shrink DIP. The M5M82C255ASP is fabricated using silicon-gate CMOS technology for a single supply voltage. This LSI is a simple input and output interface for TTL circuits, having 48 input/output pins which correspond to six 8-bit input/output ports.

FEATURES

- Single 5V supply voltage
- Input : TTL compatible (I_{OL}=2.5mA)
 Output : CMOS/TTL compatible
- Each I/O pin has ±4mA driving capability
- Read access time : 120ns
- Timing specification enable easy design of system bus timing
- Noise limiter is built-in to provide high noise margin (RESET, ACK, STB)
- 48 programmable I/O pins
- Direct bit set/reset capability
- 64-pin shrink DIL package (lead pitch 0.07 inch) is used for easy mounting

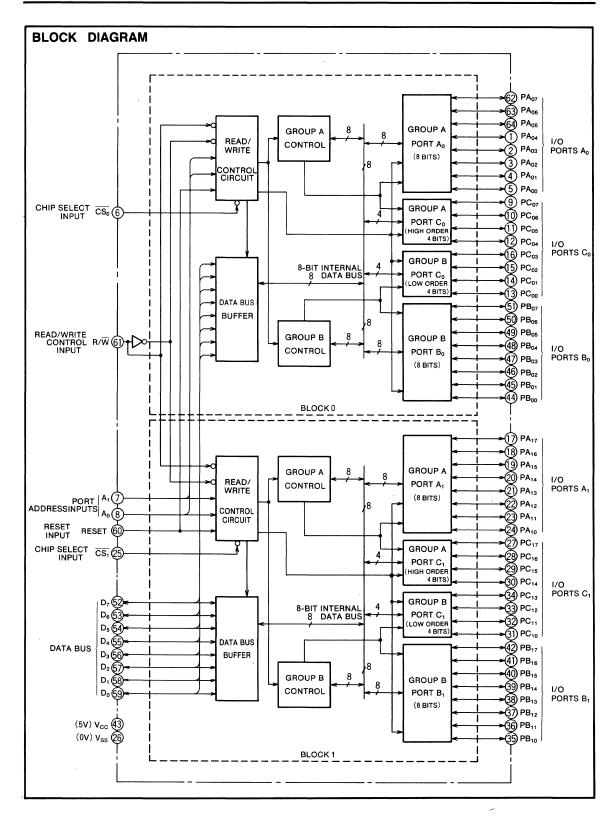
APPLLICATION

Input/output ports for microprocessor


FUNCTION

A Block diagram of the M5M82C255ASP is shown in the following page. The M5M82C255ASP consists of block 0 and block 1 each of which is functionally equivalent to the M5M82C55AP-2. Block 0 and block 1 have independent chip select inputs \overline{CS}_0 and \overline{CS}_1 , and independent ports PA₀, PB₀, PC₀, PA₁, PB₁ and PC₁. The 8-bit data bus, address inputs A₀ and A₁, and the RESET input are shared by block 0 and block 1. The CPU's \overline{RD} signal and \overline{WR} signal must be multiplexed to generate the R/W signal.

The 48 I/O pins consist of two blocks each with two 12-bit sub blocks A and B. All four blocks can be programmed independently by three mode control commands from the CPU.


In mode 0, four 8-bit I/O ports and four 4-bit I/O ports are available for use as output ports. In mode 1, the 24 I/O pins of each block are divided into groups A and B. In each group, 8 bits are used for input or output data ports. And 4 bits are used for control data ports. In mode 2, 8 bits of group A are used as a bidirectional bus with a 5-bit control signal.

Any of the 8 data bits at port C of each block can set or reset. When reset input (RESET) is high, all ports are set to the input mode (high-impedance state).

CMOS PROGRAMMABLE PERIPHERAL INTERFACE

FUNCTIONAL DESCRIPTION

Block 0 has the same function as block 1. Therefore, block 0 is explained in the following.

R/W (Read/Write) Input

Read function operates when the R/\overline{W} is high-level, and data input at the port is transferred to the CPU. Write function operates when the R/\overline{W} is low-level, and data or control from the CPU are written.

A₀, A₁ (Port address) Input

These input signals are used to select one of the three ports: port A, port B, and port C, or the control register. They are normally connected to the least significant two bits of the address bus.

RESET (Reset) Input

At high-level, the control register is cleared. Then all ports are set to the input mode (high-impedance state).

CS₀, CS₁ (Chip-Select) Input

At low-level, the communication between M5M82C255ASP and the CPU is enabled. When $\overline{CS_0}$ is low-level block 0 is selected, and when $\overline{CS_1}$ is low-level, block 1 is selected. When $\overline{CS_0}$ and $\overline{CS_1}$ are both high-level, the data bus maintains high impedance state and control from the CPU is ignored. In modes 0 or 1, the previous data is stored.

Read/Write Control Logic

The function of this block is to control transfers of both data and control words. It accepts the address signals $(A_0, A_1, \overline{CS_0}, \overline{CS_1})$, I/O control signals (R/\overline{W}) and RESET signal, and then issues commands to both of the control groups.

Data Bus Buffer

This three-state, bidirectional, 8-bit buffer is used to transfer the data when an input or output instruction is executed by the CPU. Control words and status information are also transferred through the data bus buffer.

Group A and Group B Control

Accepting commands from the read/write control logic, the control blocks (Group A, Group B) receive 8 bit control words from the internal data bus and issue the proper commands for the associated ports. Control group A is associated with port A and the 4 high-order bits of port C. Control group B is associated with port B and the 4 low-order bits of port C. The control register, which stores control words, can only be written into.

Port A, Port B and Port C

M5M82C255ASP contains six 8-bit ports whose modes and input/output settings are programmed by the system software.

Port A has an output latch/buffer and an input latch/buffer. Port B has an input-output latch/buffer. Port C has an output latch/buffer and an input buffer. Port C can be divided into two 4-bit ports which can be used as ports for control signals for port A and port B.

The basic operations are shown in Table 1.

Table 1 Basic Operations

A ₁	A ₀	$\overline{C}\overline{S}_0$	\overline{CS}_1	R/W	Operation	
0	0	L	н	н	Data bus ← Port A₀	
0	0	н	L	н	Data bus ← Port A ₁	
0	1	L	н	н	Data bus ← Port B₀	
0	1	н	L	н	Data bus ← Port B ₁	
1	0	L	н	н	Data bus ← Port C₀	
1	0	н	L	н	Data bus ← Port C ₁	
0	0	L	н	L	Port A₀ ← Data bus	
0	0	н	L	L	Port A ₁ ← Data bus	
0	1	L	н	L	Port B₀ ← Data bus	
0	1	н	L	L	Port B ₁ ← Data bus	
1	0	L	н	L	Port C₀ ← Data bus	
1	0	н	L	L	Port C ₁ ← Data bus	
1	1	L	н	L	Control register 0 ← Data bus	
1	1	н	L	L	Control register 1 ← Data bus	
×	х	н	н	x	Data bus is high-impedance state	
1	1	L	н	н	Wegel condition	
1	1	н	L	н	illegal condition	

CMOS PROGRAMMABLE PERIPHERAL INTERFACE

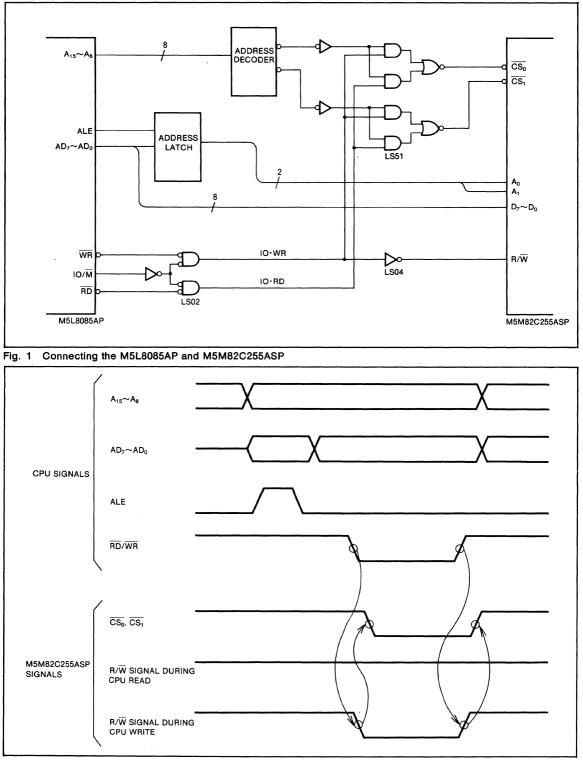


Fig. 2 Timing Diagram

CMOS PROGRAMMABLE PERIPHERAL INTERFACE

CPU INTERFACE

Fig. 1 shows an application with the M5L8085AP as the CPU. In this figure, the M5M82C255ASP is mapped in the I/O space, but it could also be mapped in the memory space. The following description applies to the circuit in the Fig. 1. Characteristics are shown in Figs. 2, 3 and 4.

Chip select signal

The M5M82C255ASP chip select signal $(\overline{CS}_0, \overline{CS}_1)$ is the logical product of the IO \cdot RD (IO \cdot WR) signal derived from the read (write) signal and IO/M signal from the CPU, and the address decoder output generated by decoding the address. Therefore, the timing of chip select signal ($\overline{CS}_0, \overline{CS}_1$) is delayed from that of IO \cdot RD (IO \cdot WR) signal. The chip select signals \overline{CS}_0 and \overline{CS}_1 must not be active simultaneously.

Read operation

The read operation of M5M82C255ASP starts when RD . $\overline{CS} = 1$, just as with the M5M82C55AP-2. When the M5L8085AP CPU enters into I/O read operation, the M5M-82C255ASP R/W signal, obtained by inverting the IO · WR signal, is kept at high-level. The actual read operation starts when the chip select signal is activated by the IO · RD signal and address decoder output. The access time of the M5M82C255ASP is specified by the falling edge of the chip select signal, and is defined as $t_{\text{PZV}(\text{CS-DQ})}$. Fig. 3 shows the read timing. The delay time (marked by *) extends from the time when the RD signal of CPU becomes active until the chip select signal becomes active. It is obtained by adding the delay time of LS02 and LS51 in Fig. 1. Table 2 shows the gate delay time of LS02, LS51, LS04 and LS00 used in the circuit of Fig. 1. The sum of the gate delay times of LS02 and LS51 is 35ns, after which the actual read operation starts. The access time of the M5M82C255ASP is 120ns maximum, so the total access time is 155ns maximum. As the access time of the M5M82C255ASP is specified by the falling edge of the

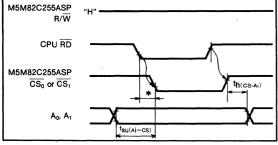


Fig. 3 Read operation of the M5M82C255ASP

Table 2 Gate delay time

chip select signal, care must be taken when connecting the
M5M82C255ASP to a high-speed microprocessor.

The address setup time and hold time of the M5M82C-55AP-2 read signal are defined as $t_{SU(A-R)}$ and $t_{h(R-A)}$ but, in the M5M82C255ASP, they are defined as $t_{SU(AI-CS)}$ and t_{h} (_{CS-AI}) due to above reason, where A_i means address inpus of A₀ or A₁. The time is specified to be 0ns minimum for each.

Note The term "address" used in describing the address setup time and address hold time of M5M82C55AP-2 means the address inputs A_0, A_1 and \overline{CS}

Write operation

Fig. 4 shows the write timing. The phase relationship of the R/ \overline{W} and chip select signals is marked by an \bigstar . For the M5M82C55AP-2, the phase relationship is defined as the address setup time $t_{SU(A-W)}$ (or t_{AW}) before \overline{WR} , and is specified to be 0ns minimum. In the M5M82C255ASP, however, the phase relationship is reversed by the circuit which generates the control signal (See Fig. 1), when the chip select signal becomes active after the R/ \overline{W} signal goes low-level. Therefore, we have discarded the previous definition. The phase difference of write signal and chip select signal is defined as $t_{SU(CS-W)}$ and specified as 0ns maximum and - 30ns minimum. The phase difference of the write signal and address inputs of A₀ and A₁ is defined as $t_{SU(AI-W)}$ and the minimum value is - 30ns.

This means that the address inputs of A₀ and A₁ and the chip select signal must become stable within 30ns after the R/ \overline{W} signal goes low-level. The signals A₀ and A₁ can become stable before R/ \overline{W} goes low-level, but the chip select signal must be activated after the R/ \overline{W} signal goes low-level. This is required because, if the chip select signal is active before R/ \overline{W} signal, the R/ \overline{W} signal will be highlevel, causing the M5M82C255ASP to enter the read operation. The address inputs of A₀ and A₁ will write properly as long as the minimum value is -30ns.

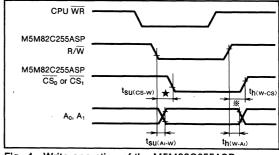


Fig. 4 Write operation of the M5M82C255ASP

Tune	LS02		LS51		LS04		LS	500	Unit
Туре	Тур	Max	Тур	Мах	Тур	Max	Тур	Max	Unit
t _{PLH}	6	15	6	20	6	15	6	15	nsec
t _{PHL}	6	15	8	20	6	15	6	15	nsec

Now we will explain the phase relationship between the chip select signal and the time marked by % in Fig. 4, the rising, edge of R/\overline{W} signal. In the M5M82C55AP-2, the address hold time after write is defined as $t_{h(w-A)}$ (or t_{wA}) and the specified minimum is Ons. In the M5M82C255ASP, however, the chip select signal is kept active after the rise of the R/W signal, so under these condition, the M5M82C255ASP enters into read operation. This would cause a bus collision or misoperation of the control signal output at port C in mode 1 or mode 2. Therefore, in the M5M82C255ASP, a built-in circuit prohibits the start of read operation after the rise of R/W signal from low-level to high-level, even if the chip select signal is held active. The previous definition of $t_{h(W-A)}$ is replaced by $t_{h(W-CS)}$, which is specified as Ons minimum and 50ns maximum For address inputs A_0 and $A_1,\,t_{h(\text{W-AI})}$ is newly defined and specified as 0ns minimum. This means that A_0 and A_1 can be used freely to select any device after the R/\overline{W} signal rises again to high-level. The data setup time tsu(DQ-W) (or tDW) for the rise of R/\overline{W} and data hold time $t_{h\,(w\text{-}DQ)}(\,\text{or}\,\,t_{wD})$ for the fall of R/\overline{W} signal in write operation of the M5M82C255ASP are defined identically as in the M5M82C55AP-2.

Note ' The term "address" in the address setup time and address hold time of the M5M82C55AP-2 means the address inputs A₀ A₁ and $\overline{CS}.$

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Rat	Ratings		
Vcc	Supply voltage		-0.	$ \begin{array}{r} -0.3 \sim 7 \\ -0.3 \sim V_{cc} + 0.3 \\ -0.3 \sim V_{cc} + 0.3 \end{array} $		
Vi	Input voltage	With respect to V _{SS}	-0.3~			
Vo	Output voltage		-0.3~			
1	MAX "H"	All output and I/O pins output	Port	-4	mA	
юнмах	Output current	"H" level and force same current.	Data bus	500	μA	
1	MAX "L"	All output and I/O pins output	Port	4	mA	
OLMAX	Output current	"L" level and force same current.	Data bus	2.5	mA	
Topr	Operating temperature range		-20~75		°C	
⊤stg	Storage temperature		-65	~150	°C	

RECOMMENDED OPERATING CONDITIONS ($T_a = -20 \sim 75^{\circ}C$, unless otherwise noted)

Oumbol	Basamatar	Limits				
Symbol	Parameter	Min	Nom	Max	Unit	
Vcc	Supply voltage	4.5	5	5.5	v	
Vss	Supply voltage (GND)	T	0		v	

ELECTRICAL CHARACTERISTICS ($T_a = -20 \sim 75^{\circ}C$, $V_{cc} = 5V \pm 10\%$, $V_{ss} = 0V$, unless otherwise noted)

Symbol	Parameter	Test conditions				
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
ViH	High-level input voltage		2.0		V _{cc} +0.3	v
VIL	Low-level input voltage		-0.3		0.8	V
Voн	High-level output voltage (Note 2	, I _{OH} =-400μA	2.4			v
∙он	High-level output voltage (Note 2) I _{OH} =-20µА	4.4			v
Vol	Low-level output voltage (Note 2) I _{OL} =2.5mA			0.4	V
	Supply support	All Input Mode			10	
lcc	Supply current	RESET=0V, Other Pins=V _{CC}			10	μA
l _{IL}	Input leak current	$V_{i}=0V, V_{CC}$			±10	μA
loz	Off-state output current	V _o =0V~V _{cc}			±10	μA
Ci	Input capacitance	$f=1MHz$, 25mVrms, $T_a=25^{\circ}C$			10	pF
C _{i/o}	I/O capacitance	0V except test pins			30	pF

Note 1 : Current flowing into an IC is positive (no sign). 2 : The maximum value of the output current should be held within ±4mA at each port pin.

Symbol	Parameter	Test conditions		Unit		
Symbol	Parameter	lest conditions	Min	Тур	Мах	Unit
tw(cs)	Chip select pulse width		160			ns
tsu(PE-CS)	Peripheral setup time before read		0			ns
th(CS-PE)	Peripheral hold time after read		0			ns
tsu(Ai-CS)	Address setup time before read		0			ns
th(cs-Ai)	Address hold time after read		0			ns
tw(R/W)	R/W pulse width		120			ns
tsu(DQ-W)	Data setup time before write		100			ns
th(w-DQ)	Data hold time after write		0			ns
tsu(Ai-W)	Address setup time before write		-30			ns
th(w-Ai)	Address hold time after write		0			ns
tsu(cs-w)	Chip select setup time before write		-30		0	ns
th(w-cs)	Chip select hold time after write		0		50	ns
tw(ACK)	Acknowledge pulse width		300			ns
tw(STB)	Strobe pulse width		350			ns
tsu(PE-STB)	Peripheral setup time before strobe		0			ns
th(STB-PE)	Peripheral hold time after strobe		150			ns
t _{c(csw)}	Read/write cycle time		200			ns

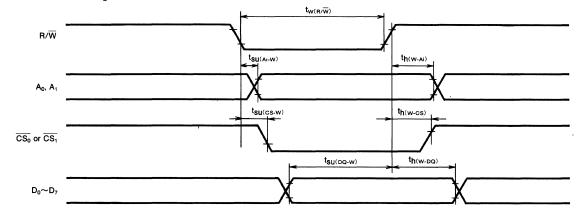
TIMING REQUIREMENTS ($T_a = -20 \sim 75^{\circ}C$, $V_{cc} = 5V \pm 10\%$, $V_{ss} = 0V$, unless otherwise noted)

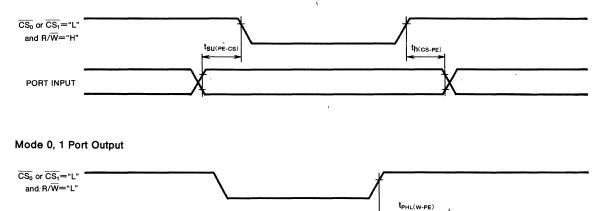
SWITCHING CHARACTERISTICS ($T_a = -20 \sim 75$ °C, $V_{cc} = 5V \pm 10\%$, $V_{ss} = 0V$, unless otherwise noted)

Currents and	Parameter		Testeseditions				
Symbol	Parameter		Test conditions	Min	Тур	Max	Unit
t _{PZV(CS-DQ)}	Propagation time from read to data output					120	ns
t _{PVZ(CS-DQ)}	Propagation time from read to data floating	(Note 3)		10		85	ns
t _{PHL(W-PE)}	Dress excellent time from units to autout					350	
t _{PLH(W-PE)}	Propagation time from write to output					550	ns
t _{PLH(STB-IBF)}	Propagation time from strobe to IBF flag					300	ns
tPLH(STB-INTR)	Propagation time from strobe to interrupt					300	ns
t _{PHL(CS-INTR)}	Propagation time from read to interrupt		0 -150-5			400	ns
t _{PHL(CS-IBF)}	Propagation time from read to IBF flag		C _L =150pF			300	ns
t _{PHL(W-INTR)}	Propagation time from write to interrupt					450	ns
t _{PHL(W-OBF)}	Propagation time from write to OBF flag					300	ns
t _{PLH(ACK-OBF)}	Propagation time from acknowledge to OBF flag					350	ns
tPLH(ACK-INTR) Propagation time from acknowledge to interrupt						350	ns
t _{PZV(ACK-PE)}	Propagation time from acknowledge to output					300	ns
t _{PVZ(ACK-PE)}	Propagation time from acknowledge to output floating	(Note 3)		20		250	ns

Note 3: The above test conditions are not applied

4: Input pulse level 0, 45~2.4V Reference level Input V_{IH}=2V, V_{IL}=0.8V Input pulse rise time 10ns Output V_{OH}=2V, V_{OL}=0.8V Input pulse fall time 10ns

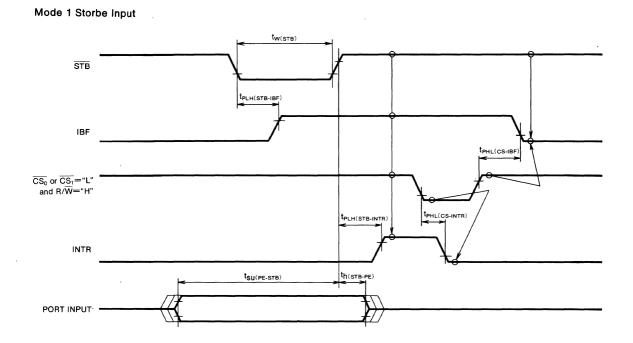

2.4 F2 2 0.8 0.8 0.45


CMOS PROGRAMMABLE PERIPHERAL INTERFACE

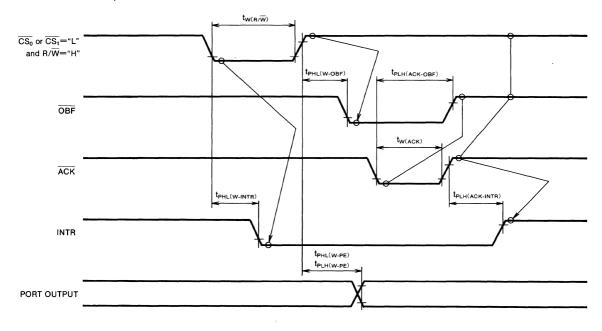
TIMING DIAGRAM Data Bus Read Timing R/\overline{W} $\overline{CS_0 \text{ or } \overline{CS_1}}$ A_0, A_1 $D_0 \sim D_7$

Data Bus Write Timing

Mode 0 Port Input

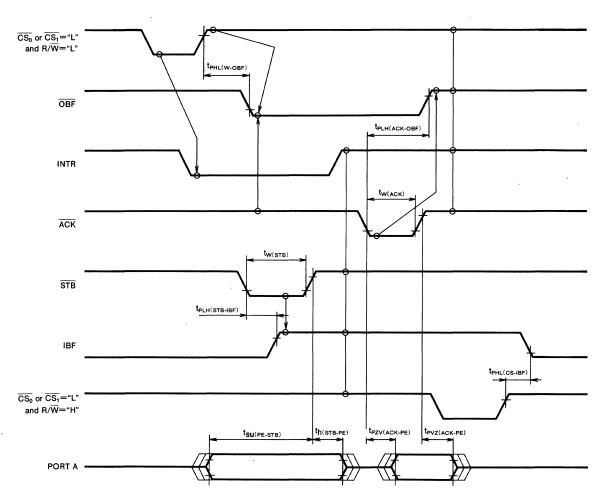


PORT OUTPUT

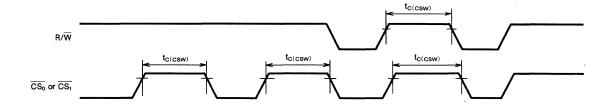


t_{PLH(W-PE)}

CMOS PROGRAMMABLE PERIPHERAL INTERFACE



Mode 1 Storbe Output



CMOS PROGRAMMABLE PERIPHERAL INTERFACE

Note 5 : $INTR = IBF \cdot \overline{MASK} \cdot \overline{STB} \cdot \overline{CS_0}$ or $\overline{CS_1} + \overline{OBF} \cdot \overline{MASK} \cdot \overline{ACK} \cdot R/\overline{W}$

Mode 2 Bidirectional

NMOS PERIPHERAL CIRCUITS

5

.

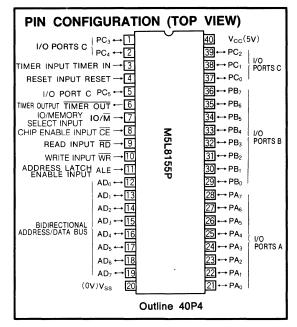
MITSUBISHI LSIS M5L8155P

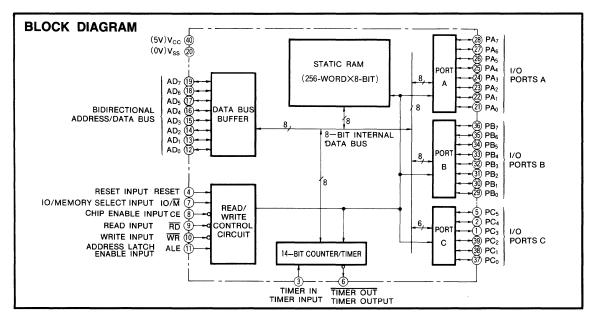
2048-BIT STATIC RAM WITH I/O PORTS AND TIMER

DESCRIPTION

The M5L8155P is a 2K-bit RAM (256-word by 8-bit) fabricated by the N-channel silicon-gate ED-MOS technology. This LSI has 3 I/O ports and a 14-bit counter/timer which make it a good extention of the functions of an 8-bit microcomputer. It is packaged in a 40-pin plastic DIL package and operates with a single 5V power supply.

FEATURES


- Single 5V supply voltage
- TTL compatible
- Static RAM: 256-word by 8-bit
- Programmable 8-bit I/O port⁻ 2
- Programmable 6-bit I/O port: 1
- Programmable counter/timer: 14-bit
- Multiplexed address/data bus


APPLICATION

Extension of I/O ports and timer function for MELPS 85 and MELPS 8-48 devices

FUNCTION

The M5L8155P is composed of RAM, I/O ports and counter/ timer. The RAM is a 2K-bit static RAM organized as 256 words by 8 bits. The I/O ports consist of 2 programmable 8bit ports and 1 programmable 6-bit port. The terminals of the 6-bit port can be programmed as control terminals for the 8bit ports, so that the 8-bit ports can be operated in a handshake mode. The counter/timer is composed of 14-bit down counter (events or time) and it can generate square wave pulses that can be used for counting and timing.

OPERATION

Data Bus Buffer

This 3-state bidirectional 8-bit buffer is used to transfer the data while input or output instructions are being executed by the CPU. Command and address information is also transferred through the data bus buffer.

Read/Write Control Logic

The read/write control logic controls the transfer of data and commands by interpreting the signals (\overline{CE} , \overline{RD} , \overline{WR} , IO/ \overline{M} , ALE and RESET) from CPU.

Bidirectional Address/Data Bus (AD₀~AD₇)

The bidirectional address/data bus is a 3-state 8-bit bus. The 8-bit address is latched in the internal latch by the falling edge of ALE. Then if IO/\overline{M} input signal is at high-level, the address of I/O port, counter/timer, or command register is selected. If it is at low-level, address of RAM is selected.

The 8-bit data is transferred by read input (RD) or write input (\overline{WR}) .

Chip Enable Input (CE)

When $\overline{\text{CE}}$ is at low-level, the address information on address/data bus is stored in the M5L8155P.

Read Input (RD)

When $\overline{\text{RD}}$ is at low-level, the data bus buffer is active. If IO/ $\overline{\text{M}}$ input signal is at low-level, the contents of RAM are read through the address/data bus. If IO/ $\overline{\text{M}}$ input is at high-level, the contents of selected I/O port or counter/timer are read through the address/data bus.

Write Input (WR)

When \overline{WR} is at low-level, the data on the address/data bus are written into RAM if IO/\overline{M} is at low-level, or they are written into I/O port, counter/timer or command register if IO/\overline{M} is at high-level.

Address Latch Enable Input (ALE)

An address on the address/data bus is latched in the M5L8155P on the falling edge of ALE along with the levels of \overline{CE} and IO/\overline{M} .

IO/Memory Input (IO/M)

When IO/\overline{M} is at low-level, the RAM is selected, while at high-level the I/O port, counter/timer or command register are selected.

I/O Port A (PA₀~PA₇)

Port A is an 8-bit general-purpose I/O port. Input/output setting is controlled by the system software.

I/O Port B (PB₀~PB₇)

Port B is an 8-bit general-purpose I/O port. Input/output setting is controlled by the system software.

I/O Port C (PC₀~PC₅)

Port C is a 6-bit I/O port that can also be used to output control signals of port A (PA) or port B (PB). The functions of port C are controlled by the system software. When port C is used to output control signals of ports A or B, the assignment of the signals to the pins is as shown in Table 1.

Table 1 Pin assignment of control signals of port C

Pin		Function			
PC ₅	B STB	(port B strobe)			
PC ₄	B BF	(port B buffer full)			
PC₃	B INTR	(port B interrupt)			
PC ₂	A STB	(port A strobe)			
PC ₁	A BF	(port A buffer full)			
PC ₀	A INTR	(port A interrupt)	•		

Timer Input (TIMER IN)

The signal on this input terminal is used by the counter/timer for counting events or time. (3MHz max.)

Timer Output (TIMER OUT)

A square wave signal or pulse from the counter/timer is output through this pin when in the operation mode.

Command Register (8 bits)

The command register is an 8-bit latched register. The loworder 4 bits (bits $0 \sim 3$) are used for controlling and determination of mode of the ports. Bits 4 and 5 are used as interrupt enable flags for ports A and B when port C is used as a control port. Bits 6 and 7 are used for controlling the counter/timer. The contents of the command register are rewritten by output instructions (I/O address XXXX000).

Details of the functions of the individual bits of the command register are shown in Table 2.

Table 2 Bit functions of the command register

Bit	Symbol	Fun	ction	
0	PA	PORT A I/O SET	1 [.] Output port A 0: Input port A	
1	РВ	PORT B I/O SET	1 [.] Output port B 0 [.] Input port B	
2	PC ₁	PORT C SET	00 [.] ALT1 11. ALT2	
3	PC ₂		01 ALT3 10 [.] ALT4	
4	IEA	PORT A INTERRUPT ENABLE FLAG	 Enable interrupt Disable interrupt 	
5	IEB	PORT B INTERRUPT ENABLE FLAG	 Enable interrupt Disable interrupt 	
6	TM1			
7	TM2 stopped) 10 [.] Counter/timer operation discontinued after the curr counter/timer operation is completed 11: Counter/timer operation started			

Status Register (7-bit)

The status register is a 7-bit latched register. The low-order 6 bits (bits $0 \sim 5$) are used as status flags for the I/O ports. Bit 6 is used as a status flag for the counter/timer. The con-

tents of the status register are transferred into the CPU by reading (INPUT instruction, I/O address XXXXX000). Details of the functions of the individual bits of the status register are shown in Table 3.

Bit	Symbol		Function
0	INTR A	PORT A INTERRUPT REQUEST	
1	A BF	PORT A BUFFER FULL FLAG	
2	INTE A	PORT A INTERRUPT ENABLE	
3	INTR B	PORT B INTERRUPT REQUEST	
4	B BF	PORT B BUFFER FULL FLAG	
5	INTE B	PORT B INTERRUPT ENABLE	
6	TIMER	COUNTER/TIMER INTERRUPT	(This flag is set to 1 when the final limit of the counter/timer is reached and is reset to 0 when the status is read
7		This bit is not used	

I/O PORTS

Command/status registers (8-bit/7-bit)

These registers are assigned address XXXXX000. When an OUTPUT command is executed, the contents of the command register are rewritten. When an INPUT command is executed, the contents of the status register are read.

Port A Register (8-bit)

Port A Register is assigned address XXXXX001. This register can be programmed as an input or output by setting the appropriate bits of the command register as shown in Table 2.

Port A can be operated in basic or strobe mode and is assigned I/O terminal $PA_0 \sim PA_7$.

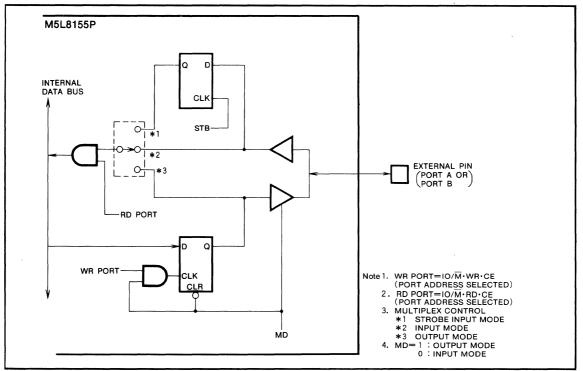
Port B Register (8-bit)

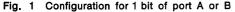
Port B register is assigned address XXXXX010. As with Port

A register, this register can be programmed as an input or output by setting the appropriate bits of the command register as shown in Table 2. Port B can be operated in basic or strobe mode and is assigned I/O terminals $PB_0 \sim PB_7$.

Port C Register (6-bit)

Port C register is assigned address XXXXX011. This port is used not only for input or output but also for controlling input/output operations of ports A and B by selectively setting bits 2 and 3 of the command register as shown in Table 2. Details of the functions of the various setting of bits 2 and 3 are shown in Table 4. Port C is assigned I/O terminals $PC_0 \sim PC_5$. When used as port control signals, the 3 low-order bits are assigned for port A while the 3 high-order bits are assigned for port B.


Table	4	Functions	of	port	С
-------	---	-----------	----	------	---


State Terminal	ALT 1	ALT 2	ALT 3	ALT 4
PC ₅	Input	Output	Output	B STB (port B strobe)
PC₄	Input	Output	Output	B BF (port B buffer full)
PC ₃	Input	Output	Output	B INTR (port B interrupt)
PC ₂	Input	Output	A STB (port A strobe)	A STB (port A strobe)
PC1	Input	Output	A BF (port A buffer full)	A BF (port A buffer full)
PC ₀	Input	Output	A INTR (port A interrupt)	A INTR (port A interrupt)

CONFIGURATION OF PORTS

A block diagram of 1 bit of ports A and B is shown in Fig. 1. While port A or B is programmed as an output port, if the port is addressed by an input instruction, the contents of the selected port can be read. When a port is put in input mode, the output latch is cleared and writing into the output latch is disabled. Therefore when a port is changed to output mode from input mode, low-level signals are output through the port. When a reset signal is applied, all 3 ports (PA, PB, and PC) will be input ports and their output latches are cleared. Port C has the same configuration as ports A and B in modes ALT1 and ALT2.

Address	RD	WR	Function
XXXXX000	L	н	AD bus ← Status register
*********	н	L	Command register ← AD bus
XXXXX001	L	н	AD bus ← Port A
********	н	L	Port A ← AD bus
XXXXX010	L	н	AD bus ← Port B
********	н	L	Port B ← AD bus
XXXXX011	L	н	AD bus ← Port C
	н	L	Port C ← AD bus

Table 6 Port control signal levels at ALT3 and ALT4

Control Signal	Output mode	Input mode
STB	Input	Input
BF	"L"	"L"
INTR	"H"	"∟"

The basic functions of the I/O ports are shown in Table 5. The control signal levels to ports A and B, when port C is programmed as a control port, are shown in Table 6.

COUNTER/TIMER

The counter/timer is composed of a 14-bit counting register and 2 mode flags. The register has two sections: I/O address XXXXX100 is assigned to the low-order 8 bits and I/ O address XXXXX101 is assigned to the high-order 6 bits and timer mode flag 2 bits. The low-order bits $0 \sim 13$ are used for counting or timing. The counter is initialized by the program and then counted down to 0. The initial value can be ranged from 2₁₆ to 3FFF₁₆. Bits 14 and 15 are used as mode flags.

The mode flags select 1 of 4 modes with functions as follows:

Mode 0: Outputs high-level signal during the former half of the counter operation

Outputs low-level signal during the latter half of the counter operation

Table 7 Format of counter/timer

Address	Bit Number								Function		
Address	7	6	5	4	3	2	1	0	Function		
XXXXX100	T7	т ₆	Т5	Т₄	Т₃	T2	T1	т₀	The low-order 8 bits of the counter register		
XXXXX101	M2	Μı	T 13	T12	T 11	T 10	T9	т ₈	M2,M1 Timer mode T ₁₃ ~T ₈ . The high-order 6 bits of the counter register		

Table 8 Timer mode

M ₂	M1	Timer operation
0	0	Outputs high-level signal during the former half of the counter operation Outputs low-level signal during the latter half of the counter operation (mode 0)
0	1	Outputs square wave signals in mode 0 (mode 1)
1	0	Outputs a low-level pulse during the final count dowm (mode 2)
1	1	Outputs a low-level pulse during each final count down (mode 3)

- Mode 1: Outputs square wave signals as in mode 0
- Mode 2: Outputs a low-level pulse during the final count down
- Mode 3: Outputs a low-level pulse during each final count down

Starting and stopping the counter/timer is controlled by bits 6 and 7 of the command register (see Table 2 for details). The format and timer modes of the counter/timer register are shown in Table 7 and Table 8.

The contents of counter/timer is not affected by a reset, but counting is discontinued. To resume counting, a start command must be written into the command register as shown in Table 2. While operating 2n+1 count down in modes 0 and 1, a high-level signal is output during the former n+1 counting and a low-level signal is output during the later n counting.

RESET

The M5L8155P is reset by $600 \text{ns} \ (\text{min})$ pulse input on RESET pin.

By reset, all 3 ports are set to input mode. And counter/timer stops, but contents of counter/timer is not reset. Therefore it is necessary to input start command again.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit	
V _{cc}	Supply voltage		-0.5~7	v	
V ₁	Ihput voltage	With respect to V _{SS}	-0.5~7	v	
Vo	Output voltage		-0.5~7	V	
Pd	Maximum power dissipation	T _a =25℃	1.5	w	
Topr	Operating free-air temperature range		-20~75	°C	
Tstg	Storage temperature range	······	-65~150	°C	

RECOMMENDED OPERATING CONDITIONS ($T_a = -20 \sim 75^{\circ}C$, unless otherwise noted)

Symbol	Danasatas		Limits				
	Parameter	Min	Nom	Мах	Unit		
Vcc	Supply voltage	4.75	5	5.25	V		
Vss	Power-supply voltage (GND)		0		v		

ELECTRICAL CHARACTERISTICS ($T_a = -20 \sim 75^{\circ}C$, $V_{cc} = 5 V \pm 5 \%$, $V_{ss} = 0V$, unless otherwise noted)

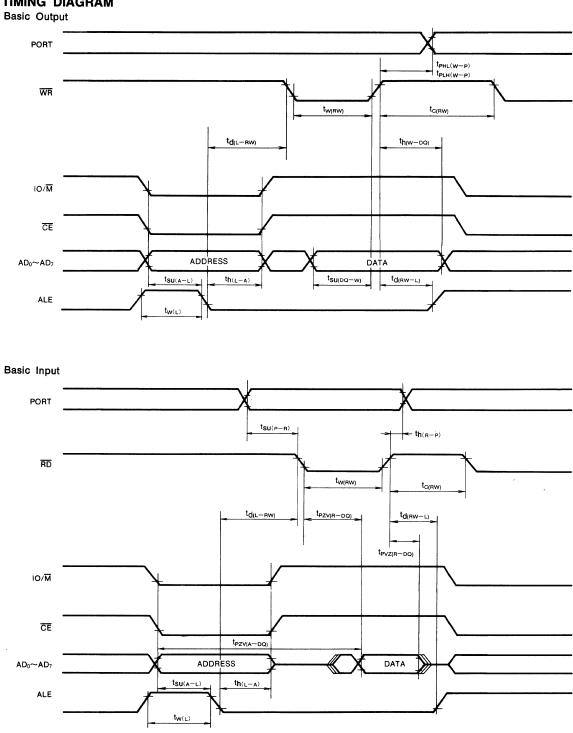
Symbol	Bernmetter					
	Parameter	Test conditions	Min	Тур	Мах	Unit
VIH	High-level input voltage		2.0	-	V _{cc} +0.5	v
VIL	Low-level input voltage		-0.5		0.8	v
V _{он}	High-level output voltage	I _{OH} =-400µА	2.4			v
Vol	Low-level output voltage	I _{OL} =2mA			0.45	v
4	Input leak current	V _I =0V, V _{CC}	-10		10	μA
II(CE)	Input leak current, CE pin	$V_1=0V, V_{CC}$	-100		100	μA
loz	Output floating leak current	V ₀ =0V~V _{CC}	-10		10	μA
Ci	Input terminal capacitance	V _{IL} =0V, f=1MHz, 25mVrms, T _a =25℃			10	pF
Ci/o	Input/output terminal capacitance	V _{I/OL} =0V, f=1MHz, 25mVrms, T _a =25°C			20	pF
lcc	Supply current from V _{CC}				180	mA

Note 5 : Current flowing into an IC is positive, out is negative.

Symbol	Parameter	Test conditions		Unit		
Gymbol			Min	Тур	Мах	Unit
t _{su(A-L})	Address setup time before latch		50			ns
th(L-A)	Address hold time after latch		80			ns
td(L-RW)	Delay time, latch to read/write		100			ns
t _{W(L)}	Latch pulse width		100			ns
td(RW-L)	Delay time, read/write to latch		20			ns
t _{w(RW)}	Read/write pulse width		250			ns
tsu(DQ-W)	Data setup time before write		150			ns
th(w-DQ)	Data hold time after write		0			ns
t _{C(RW)}	Read/write cycle time		300			ns
t _{SU(P-R)}	Port setup time before read		70			ns
th(R-P)	Port hold time after read		50			ns
t _{w(sтв)}	Strobe pulse width		200			ns
tsu(P-STB)	Port setup time before strobe		50			ns
t _{h(sтв-р)}	Port hold time after strobe		120			ns
tw(≠H)	Timer input high-level pulse width		120			ns
tw(≠L)	Timer input low-level pulse width		80			ns
t _{C(∮)}	Timer input cycle time		320		DC	ns
t _{r(∳)}	Timer input rise time				30	ns
tf(≠)	Timer input fall time				30	ns

TIMING REQUIREMENTS ($T_a = -20 \sim 75^{\circ}$ C, $V_{cc} = 5 V \pm 5 \%$, $V_{ss} = 0V$, unless otherwise noted)

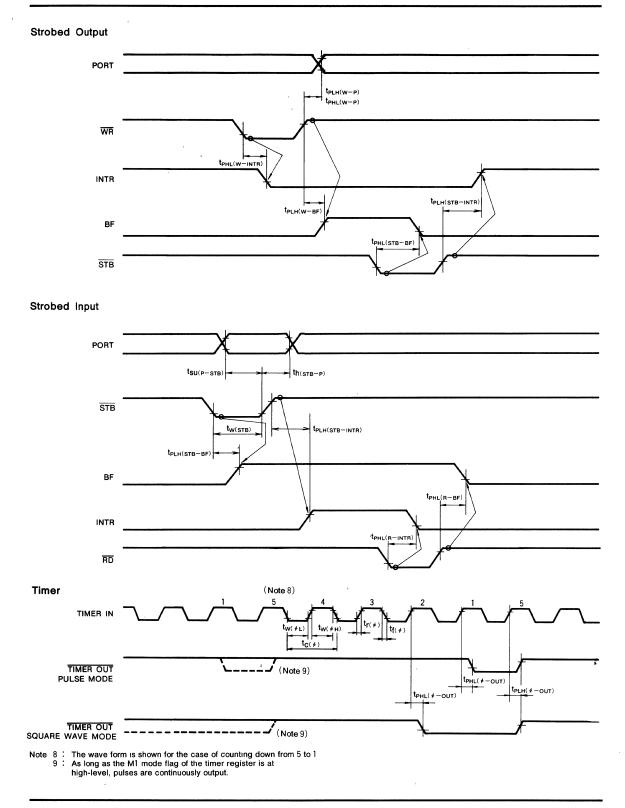
SWITCHING CHARACTERISTICS ($T_a = -20 \sim 75$ °C, $V_{cc} = 5$ V± 5%, $V_{ss} = 0$ V, unless otherwise noted.)


Oursels of	Parameter	Test and ditions				
Symbol	Parameter	Test conditions	Min	Тур	Мах	Unit
t _{PZV(R-DQ)}	Propagation time from read to data output				170	ns
t _{PZV(A-DQ)}	Propagation time from address to data output				400	ns
t _{PVZ(R-DQ)}	Propagation time from read to data floating (Note 6)	7	0		100	ns
t _{PHL(W-P)}	Drenegation time from write to date output	1			400	ns
t _{PLH(W-P)}	Propagation time from write to data output				400	115
t _{PLH(STB-BF)}	Propagation time from strobe to BF flag	C _L = 150pF			400	ns
t _{PHL(R-BF)}	Propagation time from read to BF flag				400	ns
tplh(stb-intr)	Propagation time from strobe to interrupt				400	ns
t _{PHL(R-INTR)}	Propagation time from read to interrupt	7			400	ns
t _{PHL(STB-BF)}	Propagation time from strobe to BF flag	7			400	ns
t _{PLH(W-BF)}	Propagation time from write to BF flag	1			400	ns
t _{PHL(W-INTR)}	Propagation time from write to interrupt	1			400	ns
t _{PHL} (∮-OUT)	Drans and in a firm of the or in a day to dim on a start	7			400	
t _{PLH} (ø-OUT)	Propagation time from timer input to timer output				400	ns

Note 6 : Test conditions are not applied. 7 : A.C Testing waveform Input pulse level Input pulse rise time Input pulse fall time Reference level input output

0.45~2.4V 20ns 20ns V_{IH}=2V, V_{IL}=0.8V V_{OH}=2V, V_{OL}=0.8V

2.4 **X**².8 0.8 0.45 -



MITSUBISHI LSIS M5L8155P

2048-BIT STATIC RAM WITH I/O PORTS AND TIMER

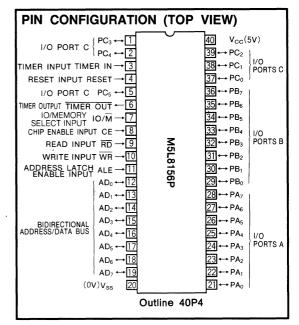
MITSUBISHI LSIS M5L8156P

2048-BIT STATIC RAM WITH I/O PORTS AND TIMER

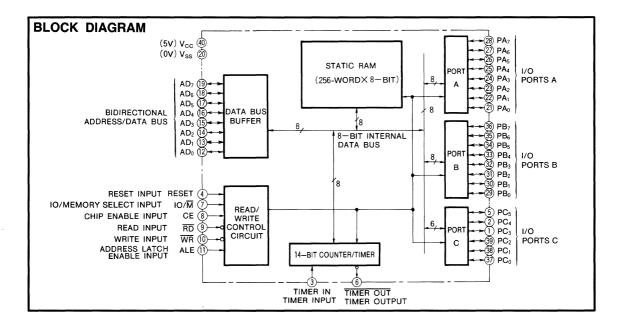
DESCRIPTION

The M5L8156P is a 2K-bit RAM (256-word by 8-bit) fabricated by the N-channel silicon-gate ED-MOS technology. This LSI has 3 I/O ports and a 14-bit counter/timer which make it a good extention of the functions of an 8-bit microcomputer It is packaged in a 40-pin plastic DIL package and operates with a single 5V power supply.

FEATURES


- Single 5V supply voltage
- TTL compatible
- Static RAM. 256-word by 8-bit
- Programmable 8-bit I/O port: 2
- Programmable 6-bit I/O port: 1
- Programmable counter/timer: 14-bit
- Multiplexed address/data bus

APPLICATION


Extension of I/O ports and timer function for MELPS 85 and MELPS 8-48 devices

FUNCTION

The M5L8156P is composed of RAM, I/O ports and counter/ timer. The RAM is a 2K-bit static RAM organized as 256 words by 8 bits. The I/O ports consist of 2 programmable 8bit ports and 1 programmable 6-bit port. The terminals of the 6-bit port can be programmed as control terminals for the 8bit ports, so that the 8-bit ports can be operated in a hand-

shake mode. The counter/timer is composed of 14-bit down counter (events or time) and it can generate square wave pulses that can be used for counting and timing.

OPERATION

Data Bus Buffer

This 3-state bidirectional 8-bit buffer is used to transfer the data while input or output instructions are being executed by the CPU. Command and address information is also transferred through the data bus buffer.

Read/Write Control Logic

The read/write control logic controls the transfer of data and commands by interpreting the signals (CE, \overline{RD} , \overline{WR} , IO/ \overline{M} , ALE and RESET) from CPU.

Bidirectional Address/Data Bus (AD₀~AD₇)

The bidirectional address/data bus is a 3-state 8-bit bus. The 8-bit address is latched in the internal latch by the falling edge of ALE. Then if IO/\overline{M} input signal is at high-level, the address of I/O port, counter/timer, or command register is selected. If it is at low-level, address of RAM is selected.

The 8-bit data is transferred by read input (RD) or write input (\overline{WR}) .

Chip Enable Input (CE)

When CE is at high-level, the address information on address/data bus is stored in the M5L8156P.

Read Input (RD)

When \overline{RD} is at low-level, the data bus buffer is active. If $\overline{IO}/\overline{M}$ input signal is at low-level, the contents of RAM are read through the address/data bus. If $\overline{IO}/\overline{M}$ input is at high-level, the contents of selected I/O port or counter/timer are read through the address/data bus.

Write Input (WR)

When \overline{WR} is at low-level, the data on the address/data bus are written into RAM if IO/\overline{M} is at low-level, or they are written into I/O port, counter/timer or command register if IO/\overline{M} is at high-level.

Address Latch Enable Input (ALE)

An address on the address/data bus is latched in the M5L8156P on the falling edge of ALE along with the levels of CE and IO/\overline{M} .

IO/Memory Input (IO/M)

When IO/M is at low-level, the RAM is selected, while at high-level the I/O port, counter/timer or command register are selected.

I/O Port A (PA₀~PA₇)

Port A is an 8-bit general-purpose I/O port. Input/output setting is controlled by the system software.

I/O Port B (PB₀~PB₇)

Port B is an 8-bit general-purpose I/O port. Input/output setting is controlled by the system software.

I/O Port C (PC₀~PC₅)

Port C is a 6-bit I/O port that can also be used to output control signals of port A (PA) or port B (PB). The functions of port C are controlled by the system software. When port C is used to output control signals of ports A or B, the assignment of the signals to the pins is as shown in Table 1.

Table 1 Pin assignment of control signals of port C

Pin		Function
PC ₅	B STB	(port B strobe)
PC₄	BBF	(port B buffer full)
PC ₃	B INTR	(port B interrupt)
PC ₂	A STB	(port A strobe)
PC1	A BF	(port A buffer full)
PC ₀	A INTR	(port A interrupt)

Timer Input (TIMER IN)

The signal on this input terminal is used by the counter/timer for counting events or time. (3MHz max.)

Timer Output (TIMER OUT)

A square wave signal or pulse from the counter/timer is output through this pin when in the operation mode.

Command Register (8 bits)

The command register is an 8-bit latched register. The loworder 4 bits (bits $0 \sim 3$) are used for controlling and determination of the mode of the ports. Bits 4 and 5 are used as interrupt enable flags for ports A and B when port C is used as a control port. Bits 6 and 7 are used for controlling the counter/timer. The contents of the command register are rewritten by output instructions (I/O address XXXXX000).

Details of the functions of the individual bits of the command register are shown in Table 2.

Table 2 Bit functions of the command register

Bit	Symbol	Fun	ction
0	PA	PORT A I/O SET	1: Output port A 0: Input port A
1	РВ	PORT B I/O SET	1. Output port B 0 [.] Input port B
2	PC ₁	PORT C SET	00. ALT1 11. ALT2
3	PC ₂		01. ALT3 10 [.] ALT4
4	IEA	PORT A INTERRUPT ENABLE FLAG	 Enable interrupt Disable interrupt
5	IEB	PORT B INTERRUPT ENABLE FLAG	 1[.] Enable interrupt 0: Disable interrupt
6	тм1		
7	тм2	stopped) 10: Counter/timer operation counter/timer operation : 11: Counter/timer operation :	•

Status Register (7-bit)

The status register is a 7-bit latched register. The low-order 6 bits (bits $0 \sim 5$) are used as status flags for the I/O ports. Bit 6 is used as a status flag for the counter/timer. The con-

tents of the status register are transferred into the CPU by reading (INPUT instruction, I/O address XXXXX000). Details of the functions of the individual bits of the status register are shown in Table 3.

Table 3 Bit functions of the status register

Bit	Symbol		Function
0	INTR A	PORT A INTERRUPT REQUEST	
1	A BF	PORT A BUFFER FULL FLAG	
2	INTE A	PORT A INTERRUPT ENABLE	
3	INTR B	PORT B INTERRUPT REQUEST	
4	B BF	PORT B BUFFER FULL FLAG	
5	INTE B	PORT B INTERRUPT ENABLE	
6	TIMER	COUNTER/TIMER INTERRUPT	(This flag is set to 1 when the final limit of the counter/timer is reached and is reset to 0 when the status is read
7	_	This bit is not used	

I/O PORTS

Command/status registers (8-bit/7-bit)

These registers are assigned address XXXXX000. When an OUTPUT command is executed, the contents of the command register are rewritten. When an INPUT command is executed, the contents of the status register are read.

Port A Register (8-bit)

Port A Register is assigned address XXXXX001. This register can be programmed as an input or output by setting the appropriate bits of the command register as shown in Table 2.

Port A can be operated in basic or strobe mode and is assigned I/O terminal $\mathsf{PA}_0{\sim}\mathsf{PA}_{7.}$

Port B Register (8-bit)

Port B register is assigned address XXXXX010. As with Port A register, this register can be programmed as an input or output by setting the appropriate bits of the command register as shown in Table 2. Port B can be operated in basic or strobe mode and is assigned I/O terminals $PB_0 \sim PB_7$.

Port C Register (6-bit)

Port C register is assigned address XXXXX011. This port is used not only for input or output but also for controlling input/output operations of ports A and B by selectively setting bits 2 and 3 of the command register as shown in Table 2. Details of the functions of the various setting of bits 2 and 3 are shown in Table 4. Port C is assigned I/O terminals $PC_0 \sim PC_5$. When used as port control signals, the 3 low-order bits are assigned for port A while the 3 high-order bits are assigned for port B.

Table 4 Functions of port C

State Terminal	ALT 1	ALT 2	ALT 3	ALT 4
PC ₅	Input	Output	Output	B STB (port B strobe)
PC ₄	Input	Output	Output	B BF (port B buffer full)
PC ₃	Input	Output	Output	B INTR (port B interrupt)
PC ₂	Input	Output	A STB (port A strobe)	A STB (port A strobe)
PC ₁	Input	Output	A BF (port A buffer full)	A BF (port A buffer full)
PC ₀	Input	Output	A INTR (port A interrupt)	A INTR (port A interrupt)

CONFIGURATION OF PORTS

A block diagram of 1 bit of ports A and B is shown in Fig. 1. While port A or B is programmed as an output port, if the port is addressed by an input instruction, the contents of the selected port can be read. When a port is put in input mode, the output latch is cleared and writing into the output latch is disabled. Therefore when a port is changed to output mode from input mode, low-level signals are output through the port. When a reset signal is applied, all 3 ports (PA, PB, and PC) will be input ports and their output latches are cleared. Port C has the same configuration as ports A and B in modes ALT1 and ALT2.

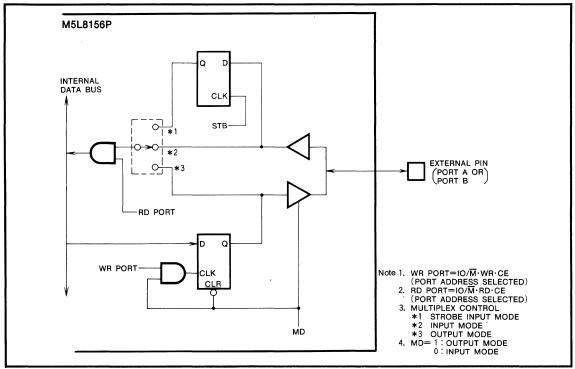


Fig. 1 Configuration for 1 bit of port A or B

Table	5	Basic	functions	of	1/0	ports
-------	---	-------	-----------	----	-----	-------

Address	RD	WR	Function
XXXXXX000	L	н	AD bus ← Status register
XXXXX000	н	L	Command register ← AD bus
	L	н	AD bus ← Port A
XXXXX001	н	L	Port A ← AD bus
	L	н	AD bus ← Port B
XXXXX010	н	L	Port B ← AD bus
	L	н	AD bus ← Port C
XXXXX011	н	L	Port C ← AD bus

Table 6 Port control signal levels at ALT3 and ALT4

Control Signal	Output mode	Input mode
STB	Input	Input
BF	"L"	"L"
INTR	"H"	"L"

The basic functions of the I/O ports are shown in Table 5. The control signal levels to ports A and B, when port C is programmed as a control port, are shown in Table 6.

COUNTER/TIMER

The counter/timer is composed of a 14-bit counting register and 2 mode flags. The register has two sections: I/O address XXXXX100 is assigned to the low-order 8 bits and I/ O address XXXXX101 is assigned to the high-order 6 bits and timer mode flag 2 bits. The low-order bits $0 \sim 13$ are used for counting or timing. The counter is initialized by the program and then counted down to 0. The initial value can be ranged from 2_{16} to $3FF_{16}$. Bits 14 and 15 are used as mode flags.

The mode flags select 1 of 4 modes with functions as follows:

Mode 0: Outputs high-level signal during the former half of the counter operation Outputs low-level signal during the latter half of the counter operation

Table 7 Format of counter/timer

Address	Bit Number								E
Address	7	6	5	4	3	2	1	0	Function
XXXXX100	T 7	T ₆	T 5	T₄	Тз	T2	Τ1	то	The low-order 8 bits of the counter register
XXXXX 101	M2	Mı	T ₁₃	T12	тл	T 10	T9	Т8	M2,M1 Timer mode $T_{13} \sim T_8$. The high-order 6 bits of the counter register

Table 8 Timer mode

M ₂	M 1	Timer operation
0	0	Outputs high-level signal during the former half of the counter operation Outputs low-level signal during the latter half of the counter operation (mode 0)
0	1	Outputs square wave signals as in mode 0 (mode 1)
1	0	Outputs a low-level pulse during the final count down (mode 2)
1	1	Outputs a low-level pulse during each final count down (mode 3)

ABSOLUTE MAXIMUM RATINGS

- Mode 1: Outputs square wave signals as in mode 0
- Mode 2: Outputs a low-level pulse during the final count down
- Mode 3: Outputs a low-level pulse during each final count down

Starting and stopping the counter/timer is controlled by bits 6 and 7 of the command register (see Table 2 for details). The format and timer modes of the counter/timer register are shown in Table 7 and Table 8.

The contents of counter/timer is not affected by a reset, but counting is discontinued. To resume counting, a start command must be written into the command register as shown in Table 2. While operating 2n+1 count down in mode 0 and 1, a high-level signal is output during the former n+1 counting and a low-level signal is output during the later n counting.

RESET

The M5L8156P is reset by $600 \text{ns} \ (\text{min})$ pulse input on RESET pin.

By reset, all 3 ports are set to input mode. And counter/timer stops, but contents of counter/timer is not reset. Therefore it is necessary to input start command again.

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Supply voltage		-0.5~7	v
Vi	Input voltage	With respect to V _{SS}	-0.5~7	v
Vo	Output voltage	· · · · ·	-0.5~7	v
Pd	Maximum power dissipation	T _a =25℃	1.5	w
Topr	Operating free-air temperature range		-20~75	° °
Tstg	Storage temperature range		-65~150	°

RECOMMENDED OPERATING CONDITIONS (Ta=-20~75°C, unless otherwise noted)

Symbol	Parameter		Limits		11
-,	i a aneter	Min	Nom	Мах	Unit
v_{cc}	Supply voltage	4.75	5	5.25	v
V _{ss}	Power-supply voltage (GND)		0		v

ELECTRICAL CHARACTERISTICS (T_a= $-20 \sim 75$ °C, V_{cc}= $5 V \pm 5 %$, V_{ss}=0V, unless otherwise noted)

0	Parameter	Test and West				
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
ViH	High-level input voltage		2.0		V_{cc} +0.5	v
VIL	Low-level input voltage		-0.5		0.8	v
Voн	High-level output voltage	I _{OH} =-400µА	2.4			v
Vol	Low-level output voltage	I _{OL} =2mA			0.45	v
4	Input leak current	V ₁ =0V, V _{CC}	-10		10	μA
II(CE)	Input leak current, CE pin	V ₁ =0V, V _{CC}	-100		100	μA
loz	Output floating leak current	Vo=0V~Vcc	-10		10	μA
Ci	Input terminal capacitance	$V_{IL}=0V$, f=1MHz, 25mVrms, Ta=25°C			10	pF
Ci/o	Input/output terminal capacitance	V _{I/OL} =0V, f=1MHz, 25mVrms, T _a =25℃			20	pF
lcc	Supply current from V _{CC}				180	mA

M5L8156P

2048-BIT STATIC RAM WITH I/O PORTS AND TIMER

Symbol	Parameter	Test conditions	Limits			Unit
	Parameter	rest conditions	Min	Тур	Мах	Unit
t _{SU(A-L)}	Address setup time before latch		50			ns
t _{h(L-A)}	Address hold time after latch		80			ns
td(L-RW)	Delay time, latch to read/write		100			ns
t _{W(L)}	Latch pulse width	1	100			ns
td(RW-L)	Delay time, read/write to latch		20			ns
t _{w(RW)}	Read/write pulse width]	250			ns
tsu(DQ-W)	Data setup time before write		150			ns
th(w-DQ)	Data hold time after write '		0			ns
t _{C(RW)}	Read/write cycle time		300			ns
t _{su(P-R)}	Port setup time before read		70			ns
th(R-P)	Port hold time after read		50			ns
t _{w(STB)}	Strobe pulse width		200			ns
t _{SU(P-STB)}	Port setup time before strobe		50			ns
th(STB-P)	Port hold time after strobe		120			ns
t _{w(∳H)}	Timer input high-level pulse width		120			ns
tw(≱L)	Timer input low-level pulse width]	80			ns
t _{C(∲)}	Timer input cycle time]	320		DC	ns
t _{r(∳)}	Timer input rise time]			30	ns
tf(≠)	Timer input fall time]			30	ns

TIMING REQUIREMENTS ($T_a = -20 \sim 75^{\circ}$, $V_{cc} = 5 V \pm 5 \%$, $V_{ss} = 0V$, unless otherwise noted)

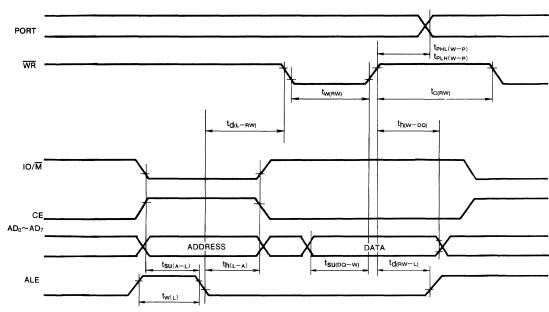
SWITCHING CHARACTERISTICS ($T_a = -20 \sim 75^{\circ}C$, $V_{cc} = 5 V \pm 5 \%$, $V_{ss} = 0V$, unless otherwise noted.)

Symbol	Berryster	Test conditions	Limits			
	Parameter	lest conditions	Min	Тур	Мах	Unit
t _{PZV(R-DQ)}	Propagation time from read to data output				170	ns
t _{PZV(A-DQ)}	Propagation time from address to data output				400	ns
t _{PVZ(R-DQ)}	Propagation time from read to data floating (Note 6)		0		100	ns
t _{PHL(W-P)}				100	400	ns
t _{PLH(W-P)}	Propagation time from write to data output				400	
t _{PLH(STB-BF)}	Propagation time from strobe to BF flag				400	ns
t _{PHL(R-BF)}	Propagation time from read to BF flag				400	ns
tPLH(STB-INTR)	Propagation time from strobe to interrupt	$C_L = 150 pF$			400	ns
t _{PHL(R-INTR)}	Propagation time from read to interrupt	1			400	ns
t _{PHL(STB-BF)}	Propagation time from strobe to BF flag				400	ns
t _{PLH(W-BF)}	Propagation time from write to BF flag				400	ns
t _{PHL(W-INTR)}	Propagation time from write to interrupt				400	ns
t _{PHL} (# -OUT)					400	ns
t _{PLH} (∮-OUT)	Propagation time from timer input to timer output					

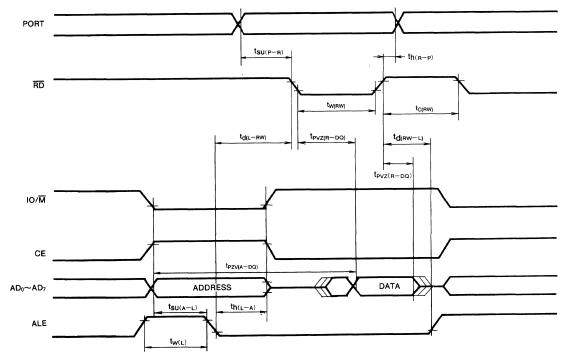
7 : A.C Testing waveform Input pulse level 0.45~2.4V Input pulse rise time Input pulse fall time Reference level input output

20ns 20**ns** $V_{IH} = 2V, V_{IL} = 0.8V$ $V_{OH} = 2V, V_{OL} = 0.8V$

2.4-**1**2 2 <u> 10.8</u> 0.87 0.45

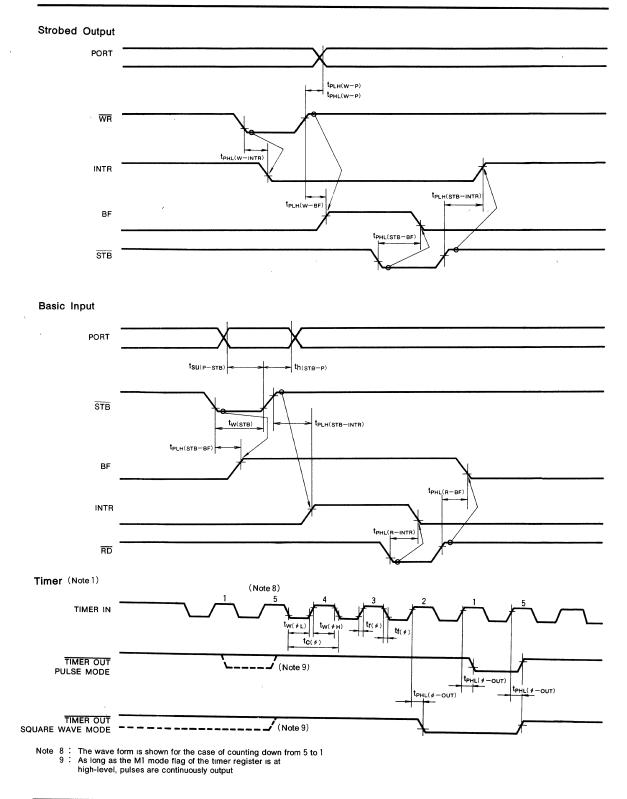


M5L8156P


2048-BIT STATIC RAM WITH I/O PORTS AND TIMER

TIMING DIAGRAM

Basic Input



MITSUBISHI LSIs

M5L8156P

2048-BIT STATIC RAM WITH I/O PORTS AND TIMER

DESCRIPTION

The M5L8251AP-5 is a universal synchronous/asynchronous receiver/transmitter (USART) IC chip designed for data communications use. It is produced using the N-channel silicon-gate ED-MOS process and is mainly used in combination with 8-bit microprocessors.

FEATURES

- Single 5V supply voltage
- TTL compatible
- Synchronous and asynchronous operation Synchronous:

5~8-bit characters

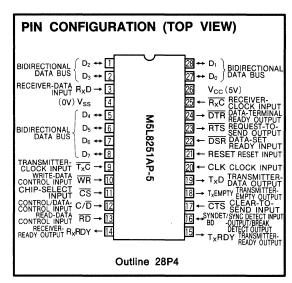
Internal or external synchronization Automatic SYNC character insertion

Asynchronous system:

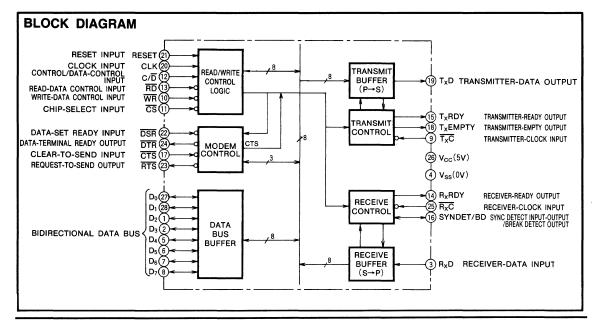
5~8-bit characters

Clock rate-1, 16or 64 times the baud rate 1, $1^{1}/_{2}$, or 2 stop bits False-start-bit detection

Automatic break-state detection


- Baud rate: DC~64k-baud
- Full duplex, double-buffered transmitter/receiver
- Error detection: parity, overrun, and framing

APPLICATION


Modem control of data communications using microcomputers. Control of CRT, TTY and other terminal equipment

FUNCTION

The M5L8251AP-5 is used in the peripheral circuits of a CPU. It permits assignments, by means of software, of operations in all the currently used serial-data transfer sys-

tems. The M5L8251AP-5 receives parallel-format data from the CPU, converts it into a serial format, and then transmits via the T_xD pin. It also receives data sent in via the R_xD pin from the external circuit, and converts it into a parallel format for sending to the CPU. On receipt of parallel-format data for transmission from the CPU or serial data for the CPU from external devices, the M5L8251AP-5 informs the CPU using the T_xRDY or R_xRDY pin. In addition, the CPU can read the M5L8251AP-5 status at any time. The M5L8251AP-5 can detect the data received for errors and inform the CPU of the presence of errors as status information. Errors include parity, overrun and frame errors.

OPERATION

The M5L8251AP-5 interfaces with the system bus as shown in Fig.1, positioned between the CPU and the modem or terminal equipment, and offers all the functions required for data communication.

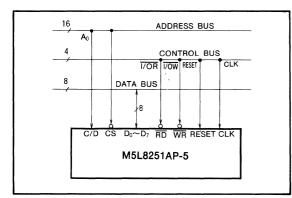


Fig. 1 M5L8251AP-5 interface to CPU system bus

When using the M5L8251AP-5, it is necessary to program, as the initial setting, assignments for synchronous/asynchronous mode selection, baud rate, character length, parity check, and even/odd parity selection in accordance with the communication system used. Once programming is completed, functions appropriate to the communication system can be carried out continuously.

When initial setting of the USART is completed, data communication becomes possible. Though the receiver is always in the enable state, the transmitter is placed in the transmitter-enable state (T_xEN) by a command instruction, and the application of a low-level signal to the \overline{CTS} pin prompts data-transfer start-up. Until this condition is satisfied, transmission is not executed. On receiving data, the receiver informs the CPU that reading for the receiver data in the USART by the CPU has become possible (the R_xRDY terminal has turned to high-level). Since data reception and the entry of the CPU into the data-readable state are output as status information, the CPU can access USART status without accessing the R_xRDY terminal.

During receiving operation, the USART checks errors and gives out status information. There are three types of errors: parity, overrun, and frame. Even though an error occurs, the USART continues its operations, and the error state is retained until error reset (ER) is effected by a command instruction. The M5L8251AP-5 access methods are listed in Table 1.

Table 1 M5L8251AP-5 Access Methods

C/D	RD	WR	CS	Function
L	L	н	L	Data bus ← Data in USART
L	н	L	L	USART ← Data bus
н	L	н	L	Data bus ← Status
н	н	L	L	Control ← Data bus
х	н	н	L	3-State ← Data bus
х	х	х	н	3-State ← Data bus

Read/Write Control Logic

This logic consists of a control word register and command word register. It receives signals from the CPU control bus and generates internal-control signals for the elements.

Modem Control Circuit

This is a general-purpose control-signal circuit designed to simplify the interface to the modem. Four types of control signal are available: output signals $\overline{\text{DTR}}$ and $\overline{\text{RTS}}$ are controlled by command instructions, input signal $\overline{\text{DSR}}$ is given to the CPU as status information and input signal $\overline{\text{CTS}}$ controls direct transmission.

Data-Bus Buffer

This is an 8-bit 3-state bidirectional bus through which control words, command words, status information, and transfer data are transferred. Fig. 2 shows the structure of the databus buffer.

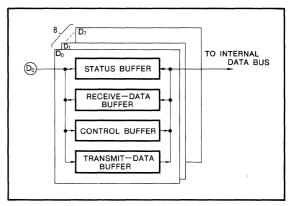


Fig. 2 Data-bus-buffer structure

Transmit Buffer

This buffer converts parallel-format data given to the databus buffer in to serial data with addition of a start bit, stop bits and a parity bit, and sends out the converted data through the T_xD pin based on the control signal.

Transmit-Control Circuit

This circuit carries out all the controls required for serial data transmission. It controls transmitter data and outputs the signals required by external devices in accordance with the instructions of the read/write control logic.

Receive Control Circuit

This circuit offers all the controls required for normal reception of the input serial data. It controls receiver data and outputs signals for the external devices in accordace with the instructions of the read/write control logic.

Receive Buffer

This buffer converts serial data given via the R_xD pin into a parallel format, checks the bits and characters in accordance with the communication format designated by mode setting, and transfers the assembled characters to the CPU via the data-bus buffer.

Receiver-Data Input (R_xD)

Serial characters sent from another device are input to this pin and converted to a parallel-character format to serve as data for the CPU. Unless the high-level state is detected after a chip-master reset procedure (this resetting is carried out to prevent spurious operation such as that due to faulty connection of the R_xD to the line in a break state), the serial characters are not received. This applies to only the asynchronous mode. When the R_xD line enters the low-level state instantaneously because of noise, etc, the mis-start prevention function starts working. That is, the start bit is detected by its falling edge but in order to make sure that it is the correct start bit, the R_xD line is strobed at the middle of the start bit to reconfirm the low-level state. If it is found to be high-level a faulty-start judgment is made.

Transmitter-Clock Input (T_xC)

This clock controls the baud rate for character transmission from the T_xD pin. Serial data is shifted by the falling edge of the T_xC signal. In the synchronous mode, the $\overline{T_xC}$ frequency is equal to the actual baud rate. In the asynchronous mode, the frequency is specified as 1, 16, or 64 times the baud rate by the mode setting.

Example When the baud rate is 110 bauds:

 T_xC =110Hz(1X) T_xC =1.76kHz(16X)

 $\overline{T_xC}=7.04$ kHz(64X)

Write-Data Control Input (WR)

Data and control words output from the CPU by the low-level input are written in the M5L8251AP-5. This terminal is usually used in a form connected with the control bus $\overline{I/OW}$ of the CPU.

Chip-Select Input (CS)

This is a device-select signal that enables the USART by a low-level input. Usually, it is connected to the address bus directly or via the decoder. When this signal is in the high-level state, the M5L8251AP-5 is disabled.

Control/Data Control Input (C/D)

This signal shows whether the information on the USART data bus is in the form of data characters or control words, or in the form of status information, in accordance with the $\overline{\text{RD}}$ and $\overline{\text{WR}}$ inputs while the CPU is accessing the M5L8251AP-5. The high-level identifies control words or status information, and the low-level, data characters.

Read-Data Control Input (RD)

Receiver data and status information are output from the CPU by a low-level input for the CPU data bus.

Receiver-Ready Output (R_xRDY)

This signal indicates that the received characters have entered the receiver buffer, and further, the receiver-data buffer in the data-bus buffer shown in Fig. 2. It is possible to confirm the R_xRDY status by using this signal as an interruption signal for the CPU or by allowing the CPU to read the D₁ bit of the status information by polling. The R_xRDY is automatically reset when a character is read by the CPU. Even in the break state in which the R_xD line is held at lowlevel, the R_xRDY remains active. It can be masked by making the R_xE(D₂) of the command instruction 0.

Transmitter-Ready Output (T_xRDY)

This signal shows that the data is ready for transmission. It is possible to confirm the status of serial-data transmission by using it as an interruption signal for the CPU or by allowing the CPU to read the D_0 bit of the status information by polling. Since the T_xRDY signal shows that the data buffer is empty, it is automatically reset when a transmission character is loaded by the CPU. The T_xRDY bit of the status information means that the transmit-data buffer shown in Fig. 2 has become empty, while the T_xRDY pin enters the highlevel state only when the transmit-data buffer is empty, T_xEN equals 1, and a low-level input has been applied to the CTS pin.

Status (D_0) : When transmit-data buffer (TDB) is empty, it becomes 1.

$$T_x$$
RDY terminal: When (TDB is empty)·(T_x EN=1)·(CTS
= "L") = "H" or resetting, it becomes
active.

Sync Detect/Break Detect Output-Input (SYNDET/BD)

In the synchronous mode this pin is used for input and output operations. When it is specified for the internal synchronous mode by mode setting, this pin works as an output terminal. It enters the high-level state when a SYNC character is received through the R_xD pin. If the M5L8251AP-5 has been programmed for double SYNC characters (bi-sync), a high-level is entered in the middle of the last bit of the second SYNC character. This signal is automatically reset by reading the status information.

On designation of the M5L8251AP-5 to the external synchronous mode, this pin begins to serve for input operations. Applying a high-level signal to this pin prompts the M5L8251AP-5 to begin assembling data characters at the next rising edge of the $\overline{R_xC}$. For the width of a high-level signal to be input, a minimum $\overline{R_xC}$ period is required.

Designation of the asynchronous mode causes this pin to function as a BD (output) pin. When the start, data, and parity bits and stop bits are all 0 for two characters period, a high-level is entered. The BD (break detect) signal can also be read as the D₆ bit of the status information. This signal is reset by resetting the chip master or by the R_xD line's recovering the high-level state.

Clear-To-Send Input (CTS)

When the $T_x EN$ bit (D_0) of the command instruction has been set to 1 and the \overline{CTS} input is low-level serial data is sent out from the $T_x D$ pin. Usually this is used as a clear-to-send signal for the modem

Note: CTS indicates the modem status as follows:

ON means data transmission is possible;

OFF means data transmission is impossible.

Transmitter-Empty Output (T_xEMPTY)

When no transmisison characters are left in the transmit buffer, this pin enters the high-level state. In the asynchronous mode, the following transmission character is shifted to the transmit buffer when it is loaded from the CPU. Thus, it is automatically reset. In the synchronous mode, a SYNC character is loaded automatically on the transmit buffer when no transfer-data characters are left. In this case, howeyer, the T_xEMPTY does not enter the low-level state when a SYNC character has been sent out, since T_xEMPTY="H" denotes the state in which there is no transfer character and one or two SYNC characters are being transferred or the state in which a SYNC character is being transferred as a filler. T_xEMPTY is unrelated to the T_xEN bit of the command instruction.

Transmission-Data Output (T_xD)

Parallel-format transmission characters loaded on the M5L8251AP-5 by the CPU are assembled into the format designated by the mode instruction and sent in serial-data form via the T_xD pin. Data is output, however, only in cases where the D_0 bit (T_xEN) of the command instruction is 1 and the \overline{CTS} terminal is in the low-level state. Once reset, this pin is kept at the mark status (high level) until the first character is sent.

Clock Input (CLK)

This system-clock input is required for internal-timing generation and is usually connected to the clock-output (CLK) pin of the M5L8085AP. Although there is no direct relation with the data-transfer baud rate, the clock-input (CLK) frequency is more than 30 times the $\overline{T_xC}$ or $\overline{R_xC}$ input frequency in the case of the synchronous system and more than 4.5 times in the case of the asynchronous system.

Reset Input (RESET)

Once the USART is shifted to the idle mode by a high-level input, this state continues until a new control word is set Since this is a master reset, it is always necessary to load a control word following the reset process. The reset input requires a minimum 6-clock pulse width.

Data-Set Ready Input (DSR)

This is a general-purpose input signal, but is usually used as a data-set ready signal to test modem status. Its status can be known from the status reading process. The D_7 bit of the status information equals 1 when the $\overline{\text{DSR}}$ pin is in the low-level state, and 0 when in the high-level state.

 $\overline{\text{DSR}}$ ="L"→D7 bit of status information=1

DSR="H"→D7 bit of status information=0

Note: DSR indicates modem status as follows:

ON means the modem can transmit and receive; OFF means it cannot.

Request-To-Send Output (RTS)

This is a general-purpose output signal but is used as a request-to-send signal for the modem. The $\overline{\text{RTS}}$ terminal is controlled by the D₅ bit of the command instruction. When D₅ is equal to 1, $\overline{\text{RTS}}$ ="L", and when D₅ is 0, $\overline{\text{RTS}}$ ="H".

Command register $D_5=1 \rightarrow \overline{RTS}=$ "L"

Command register $D_5 = 0 \rightarrow \overline{RTS} = "H"$

Note: RTS controls the modem transmission carrier as follows:

ON means carrier dispatch;

OFF means carrier stop.

Data-Terminal Ready Output (DTR)

This is a general-purpose output signal, but is usually used as a data-terminal ready or rate-select signal to the modem. The \overline{DTR} pin is controlled by the D₁ bit of the command instruction; if D₁=1, \overline{DTR} ="L", and if D₁=0, \overline{DTR} ="H".

 D_1 of the command register=1 \rightarrow DTR="L"

 D_1 of the command register= $0 \rightarrow \overline{DTR} = "H"$

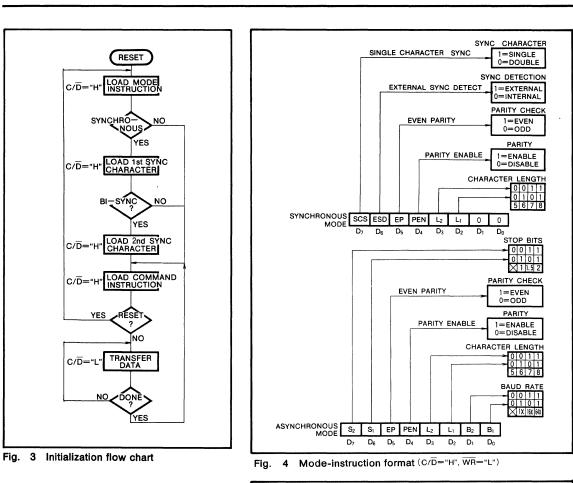
Receiver-Clock Input (R_xC)

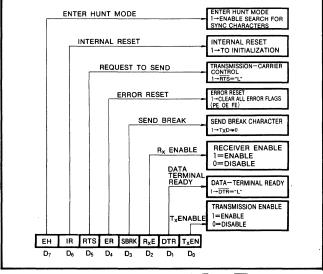
This clock signal controls the baud rate for the sending in of characters via the $\overline{R_x D}$ pin. The data is shifted in by the rising edge of the $\overline{R_x C}$ signal. In the synchronous mode, the $\overline{R_x C}$ frequency is equal to the actual baud rate. In the asynchronous mode, the frequency is specified as 1, 16, or 64 times the baud rate by mode setting. This relationship is parallel to that of $\overline{T_x C}$, and in usual communication-line systems the transmission and reception baud rates are equal. The $\overline{T_x C}$ and $\overline{R_x C}$ terminals are, therefore, used connected to the same baud-rate generator.

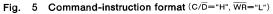
PROGRAMMING

It is necessary for the M5L8251AP-5 to have the control word loaded by the CPU prior to data transfer. This must always be done following any resetting operation (by external RE-SET pin or command instruction IR). There are two types of control words: mode instructions specifying general operations required for communications and command instructions to control the M5L8251AP-5 actual operations.

Following the resetting operation, a mode instruction must be set first. This instruction sets the synchronous or asynchronous system to be used. In the sysnchronous system, a SYNC character is loaded from the CPU. In the case of the bi-sync system, however, a second SYNC character must be loaded in succession.


Loading a command instruction makes data transfer possible. This operation after resetting must be carried out for initializing the M5L8251AP-5. The USART command instruction contains an internal-reset IR instruction (D_6 bit) that makes it possible to return the M5L8251AP-5 to its reset state. The initialization flowchart is shown in Fig. 3 and the mode-instruction and command-instruction formats are shown in Figs. 4 and 5.




MITSUBISHI LSIs

M5L8251AP-5

PROGRAMMABLE COMMUNICATION INTERFACE

Asynchronous Transmission Mode

When data characters are loaded on the M5L8251AP-5 after initial setting, the USART automatically adds a start bit (0), an odd or even parity bit specified by the mode instruction during initialization, and a specified number of stop bits (1). After that, the assembled data characters are transferred as serial data via the T_xD pin, if transfer is enabled (T_xEN = $1 \cdot \overline{\text{CTS}} = \text{``LT`}$). In this case, the transfer data (baud rate) is shifted by the mode instruction at a rate of 1X, 1/16X, or 1/ 64X the T_xC period.

If the data characters are not loaded on the M5L8251AP-5, the T_xD pin enters a mark state ("H"). When SBRK is programmed by the command instruction, break characters (0) are output continuously through the T_xD pin.

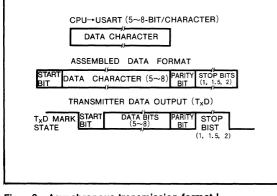
Asynchronous Reception Mode

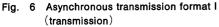
The R_xD line usually starts operations in a mark state ("H"), triggered by the falling edge of a low-level pulse when it comes to this line. This signal is again strobe at the middle of the bit to confirm that it is a perfect start bit. The detection of a second low-level indicates the validity of the start bit (again strobe is carried out only in the case of 16X and 64X). After that, the bit counter inside the M5L8251AP-5 starts operating; each bit of the serial information on the R_xD line is shifted in by the rising edge of $\overline{R_xC}$, and the data bit, parity bit (when necessary), and stop bit are sampled at the middle position.

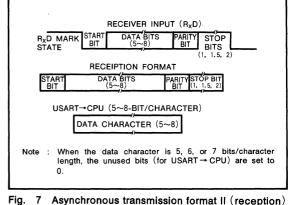
The occurrence of a parity error causes the setting of a parity-error flag. If the stop bit is 0, a frame error flag is set. Attention should be paid to the fact that the receiver requires only one stop bit even though the program has designated 1/1.5 or 2 stop bits.

Reception up to the stop bit means reception of a complete character. This character is then transferred to the receiverdata buffer shown in Fig.2, and the R_xRDY becomes active. In cases where this character is not read by the CPU and where the next character is transferred to the receiver-data buffer, the preceding character is destroyed and an overrunerror flag is set.

These error flags can be read as the M5L8251AP-5 status information. The occurrence of an error does not stop USART operations. The error flags are cleared by the $ER(D_4 \text{ bit})$ of the command instruction.


The asynchronous-system transfer formats are shown in Figs. 6 and 7.


Synchronous Transmission Mode


In this mode the T_xD pin remains in the high-level state until initial setting by the CPU is completed. After initialization, the state of \overline{CTS} ="L" and T_xEN =1 enables serial transmission of characters through the T_xD pin. Then, data characters are sent out and shifted by the falling edge of the $\overline{T_xC}$ signal. The transmission rate equals the $\overline{T_xC}$ rate.

Thus, once data-character transfer starts, it must continue through the T_xD pin at the same rate as that of $\overline{T_xC}$. Unless data characters are provided from the CPU before the transmitter buffer becomes empty, one or two SYNC characters are automatically output from the T_xD pin In this case, it should be noted that the T_xEMPTY pin enters the high-level state when there are no data characters left in the M5L8251AP-5 to be transferred, and that the low-level state is not entered until the USART is provided with the next data character from the CPU. Care should also be taken over the fact that merely setting a command instruction does not effect SYNC-character insertion, because the SYNC character insertion is enabled after sending out the first data character.

In this mode, too, break characters are sent out in succession from the T_xD pin when SBRK is designated (D_3=1) by a command instruction.

Synchronous Reception Mode

Character synchronization in this mode is carried out internally or externally by initial-setting designation.

Programming in the internal synchronous mode requires that an EH instruction ($D_7 = 1$, enter hunt mode) is included in the first command instruction. Data on the R_xD pin is sampled by the rising $\overline{R_xC}$ signal, and the receiver-buffer contents are compared with the SYNC character each time a bit is input. Comparison continues until an agreement is reached. When the M5L8251AP-5 has been programmed in the bi-sync mode, data received in further succession is compared. The detection of two SYNC characters in succession makes the USART end the hunt mode, setting the SYN-DET pin to the high-level state. This reset operation is prompted by the reading of the status information. When the parity has been programmed, SYNDET is not set in the middle of the last data bit but in the middle of the parity bit.

In the external synchronous mode, the M5L8251AP-5 gets out of the hunt mode when a high-level synchronization signal is given to the SYNDET pin. The high-level signal requires a minimum duration of one $\overline{R_X C}$ cycle. In the asynchronous mode, however, the EH signal does not affect the operation at all.

Parity and overrun errors are checked in the same way as in the asynchronous system. During hunt-mode operations the parity bit is not checked, but parity checking is carried out even when the receiver is disabled.

The CPU can command the receiver to enter the hunt mode, if synchronization is lost. This prevents the SYNC character from erroneously becoming equal to the received data when all the data in the receiver buffer is set to 1 Attention should be paid to the fact that the SYNDET F/F is reset each time status information is read irrespective of the synchronous

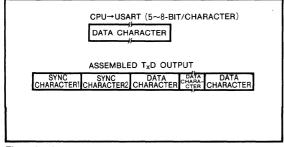


Fig. 8 Synchronous transmission format I (transmission)

mode's being internal or external. This, however, does not return the M5L8251AP-5 to the hunt mode. Synchronism detection is carried out even though it is not the hunt mode. The synchronous transfer formats are shown in Figs. 8 and 9. **Command Instruction**

This instruction defines actual operations in the communication mode designated by mode setting. Command instructions include transmitter/receiver enable error-reset, internal-reset, modem-control, enter-hunt and break transmission instructions.

The mode is set following the reset operation. A SYNC character is set as required, and the writing of high-level signals on the control/data pin (C/\overline{D}) that follows it is regarded as a command instruction. When the mode is set all over again from the beginning, the M5L8251AP-5 can be reset by using inputting via the reset terminal or by internal resetting based on the command instruction.

- Note 1: The command error reset (ER), internal reset (IR) and enter-hunt-mode (EH) operations are only effective when the command instruction is loaded, so that these bits need not be returned to 0.
 - 2: When a break character is sent out by a command, the $T_{\rm X}D$ set to 0 immediately irrespective of whether or not the USART has sent out data.
 - 3: Operations of the USART's receiver section which is always in the enable state cannot be inhibited. The command instruction $R_x E = 0$ does not mean that data reception via the $R_x D$ pin is inhibited; it means that the $R_x RDY$ is masked and error flags are inhibited.

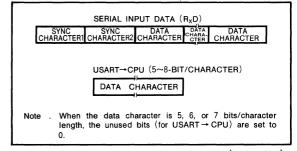


Fig. 9 Synchronous transmission format II (reception)

STATUS INFORMATION

The CPU can always read USART status by setting the C/\overline{D} to high-level and \overline{RD} to low-level.

The status information format is shown in Fig. 10. In this format R_xRDY, T_xEMPTY and SYNDET have the same definitions as those of the pins. This means that these three pieces of status information become high-level when each pin is 1. The other status information is defined as follows:

DSR: When the DSR pin is in the low-level state, status information DSR becomes 1.

FE: The occurrence of a frame error in the receiver section makes the status information FE=1.

OE: The occurrence of an overrun error in the receiver section makes the status information OE=1.

PE: The occurrence of a parity error in the receiver section makes this status information PE=1.

T_xRDY: This information becomes 1 when the transmit data buffer is empty. Be careful because this has a different meaning from the T_xRDY pin that enters the high-level state only when the transmitter buffer is empty, when the $\overline{\text{CTS}}$ pin is in the low-level state, and when T_xEN is 1.

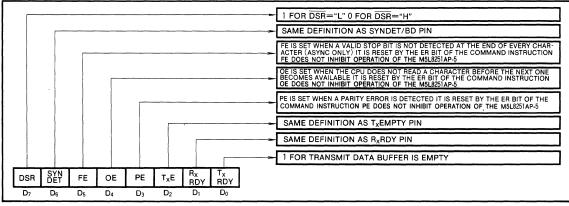


Fig. 10 Status information (C/D="H", WR="L")

APPLICATION EXAMPLES

Fig. 11 shows an application example for the M5L8251AP-5 in the asynchronous mode. When the port addresses of the M5L8251AP-5 are assumed to be 00# and 01# in this figure, initial setting in the asynchronous mode is carried out in the following manner:

MVI	A, B6#	Mode setting
OUT	01 #	
MVI	A, 27 #	Command instruction
OUT	01 #	

In this case, the following are set by mode setting:

Asynchronous mode 6 bits/character Parity enable (even) 1.5 stop bits Baud rate: 16X Command instructions set the following RTS= $1 \rightarrow \overline{RTS}$ pin="L" R_xE=1 DTR= $1 \rightarrow \overline{DTR}$ pin="L" T_xEN=1

When the initial setting is complete, transfer operations are allowed. The $\overline{\text{RTS}}$ pin is initially set to the low-level by setting RTS to 1, and this serves as a $\overline{\text{CTS}}$ input with T_xEN

being equal to 1. For this reason the same definition applies to the status and pin of T_x RDY, and 1 is assigned when the transmit-data buffer is empty. Actual transfer of data is carried out in the following way:

IN 01 # Status read The IN instruction prompts the CPU to read the USART's status. The result is; if the T_xRDY equals 1 transmitter data is sent from the CPU and written on the M5L8251AP-5. Transmitter data is written in the M5L8251AP-5 in the following manner:

MVI	A, 2D#	2D ₁₆ is an example of transmit-			
		ter data.			
OUT	00 #	USART⊷(A)			
Receiver data is read in the following manner:					
IN	00 #	(A)←USART			

In the above example, the status information is read and as a result, the transmitter data is written and read. Interruption processing by using the T_xRDY and R_xRDY pins is also possible.

Fig. 12 shows the status of the T_xD pin when data written in the USART is transferred from the CPU. When the data shown in Fig.12 enters the R_xD pin, data sent from the M5L8251AP-5 to the CPU becomes $2D_{16}$ and bits D_6 and D_7 are treated as 0.

PROGRAMMABLE COMMUNICATION INTERFACE

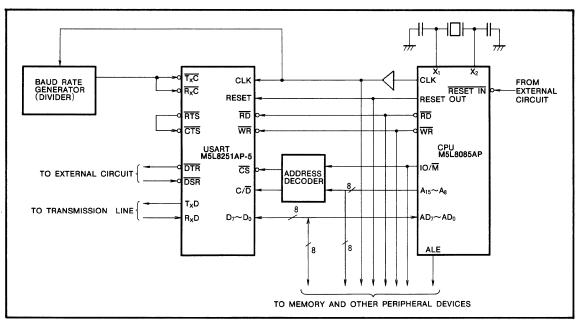


Fig. 11 Example of circuit using the asynchronous mode

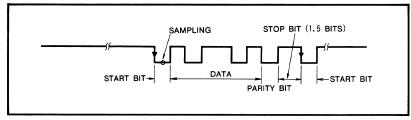


Fig. 12 Example of data transmission

PROGRAMMABLE COMMUNICATION INTERFACE

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
V _{cc}	Power-supply voltage		-0.5~7	v
Vi	Input voltage	With respect to V _{SS}	-0.5~7	v
Vo	Output voltage		-0.5~7	v
Pd	Power dissipation	Ta=25°C	1000	mW
т _{орг}	Operating free-air temperature range		-20~75	°
Tstg	Storage temperature range		-65~150	°C

RECOMMENDED OPERATING CONDITIONS $(T_a = -20 \sim 75^{\circ}C)$, unless otherwise noted)

Symbol	Parameter		Unit		
	Farameter	Min	Nom	Max	Onit
V _{cc}	Supply voltage	4.75	5	5.25	v
Vss	Power-supply voltage (GND)		0		v

ELECTRICAL CHARACTERISTICS ($T_a = -20 \sim 75^{\circ}C$, $V_{cc} = 5V \pm 5\%$, $V_{ss} = 0V$, unless otherwise noted)

Symbol	Deservator		Limits			
	Parameter	Test conditions	Min	Тур	Мах	Unit
VIH	High-level input voltage		2.0		V _{cc}	v
VIL	Low-level input voltage		-0.5		0.8	v
V _{он}	High-level output voltage	I _{OH} =-400µА	2.4			v
V _{OL}	Low-level output voltage	I _{OL} =2.2mA			0.45	v
I _{cc}	Supply current from V _{CC}	All outputs are high-level			100	mA
hн	High-level input current	V _I =V _{CC}	-10		10	μA
IIL.	Low-level input current	V ₁ =0. 45V	-10		10	μA
loz	Öff-state input current	V ₀ =0.45V~V _{CC}	-10		10	μA
Cı	Input terminal capacitance	$V_{CC} = V_{SS}$, f=1MHz, 25mV _{rms} , T _a =25°C			10	pF
CI/O	Input/output terminal capacitance	$V_{CC}=V_{SS}$, f=1MHz, 25mV _{rms} , T _a =25°C			20	pF

PROGRAMMABLE COMMUNICATION INTERFACE

Symbol	Parameter	Test conditions		Unit			
Symbol		i alamotoi		Min	Тур	Max	Onit
t _{C(∲)}	Clock cycle time (Notes4, 5)		320		1350	ns	
tw(\$)	Clock high pulse width			120		t _{C(∲)} —90	ns
tw())	Clock low pulse width	· · · · · · · · · · · · · · · · · · ·		90			ns
t _r	Clock rise time					20	ns
tf	Clock fall time					20	ns
	Transmitter innut slask	1X baud rate		DC		64	
fтx	Transmitter input clock	16X baud rate		DC		310	kHz
	frequency	64X baud rate		DC		615	
	Transmitter input clock low	1X baud rate		12			
tw(tpwl)	pulse width	16X, 64X baud rate		1			t _C (∳)
	Transmitter input clock high	1X baud rate		15			
tw(TPWH)	pulse width	16X, 64X baud rate		3			t_C(∳)
		1X baud rate		DC		64	4
f _{RX}	Receiver input clock	16X baud rate		DC		310	kHz
	frequency	64X baud rate		DC		615	7
	Receiver input clock low	1X baud rate		12			
tw(RPWL)	pulse width	16X, 64X baud rate		1			t_{C(∲)}
	Receiver input clock high	1X baud rate		15			
tw(RPWH)	pulse width	16X, 64X baud rate		3			t c(∳)
tsu(A-R)	Address setup time before rea	d (CS, C/D) (Note6)		0			ns
th(R-A)	Address hold time after read (CS, C/D) (Note6)		0			ns
tw(R)	Read pulse width			250			ns
tsu(A-W)	Address setup time before write	te		0			ns
th(w-A)	Address hold time after write			0			ns
tw(w)	Write pulse width			250			ns
t _{su(DQ} -w)	Data setup time before write			150			ns
th(w-DQ)	Data hold time after write			20			ns
tsu(esd-rxc)	E•SYNDET setup time before RxC			18			t _C (≠)
tsu(c-R)	Control setup time before read		-	20			t _C (∳)
t _{RV}	Write recovery time between v	vrites (Note7)	-	6			t _{C(∳)}
t _{su(RxD-IS)}	R _x D setup time before internal	sampling pulse	-	2			μs
th(IS-RxD)	R _x D hold time after internal sa	mpling pulse		2			μs

`

TIMING REQUIREMENTS ($T_a = -20 \sim 75^{\circ}$, $V_{cc} = 5V \pm 5\%$, $V_{ss} = 0V$, unless otherwise noted)

Note 4: The T_xC and R_xC frequencies have the following limitations with respect to CLK. For 1X baud rate 1_{Tx}, f_{Rx}≤1/(30t_{C(#})). For 16X 64X baud rate 1_{Tx}, f_{Rx}≤1/(4.5t_{C(#}))
5: Reset pulse width=6t_{C(#)} minimum. System clock must be running during reset.
6: CS, C/D are considered as address.
7: This recovery time is for mode initialization only. Write data is allowed only when T_xRDY=1. Recovery time between writes for asynchronous mode is 8t_{C(#)}, and that for synchronous mode is 16t_{C(#)}.

PROGRAMMABLE COMMUNICATION INTERFACE

$\label{eq:switching characteristics} (T_a = -20 \sim 75 \mbox{`C} \ , \ V_{cc} = 5V \pm 5\% \ , \ V_{ss} = 0V \ , \ unless \ otherwise \ noted)$

Symbol	Descuration	To all and distance				
	Parameter	Test conditions	Min	Тур	Max	Unit
t _{PZV(R-DQ)}	Output data enable time after read (Note8)	C _L =150pF	,		200	ns
t _{PVZ(R-DQ)}	Output data disable time after read		10		100	ns
tPZV(TxC-TxD)	$T_X D$ enable time after falling edge of $\overline{T_X C}$				1	μs
tPLH(CLB-TxR)	Propagation time from center of last bit to T _x RDY (Note9)				8	t _{C(∳)}
t _{PHL(W-TxR)}	Propagation time from write data to T _X RDY clear (Note9)				400	ns
tPLH(CLB-RxR)	Propagation time from center of last bit to R_XRDY (Note9)				26	t _{C(∳)}
t _{PHL(R-RxR})	Propagation time from read data to R _X RDY clear (Note9)	1			400	ns
tPLH(RxC-SYD)	Propagation time from rising edge of R _x C to internal SYNDET (Note9)				26	t _{C(∳)}
tPLH(CLB-TxE)	Propagation time from center of last bit to T _x EMPTY (Note9)				20	t _C (∳)
t _{PHL(W-C)}	Propagation time from rising edge of WR to control (Note9)				8	t _{C(∳)}

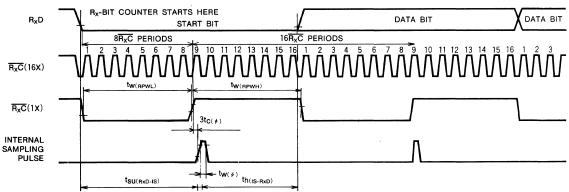
 Note 8 : Assumes that address is valid before falling edge of RD

 9 : Status-up date can have a maximum delay of 28 clock periods from the event affecting the status.

 10 : Input pulse level
 0.45~2.4V Reference level
 Input V_{IH}=2V, V_{IL}=0.8V

 Input pulse rise time
 20ns
 Output V_{OH}=2V, V_{OL}=0.8V

2.4 -F2 2 0.8 0.8 0.45 -

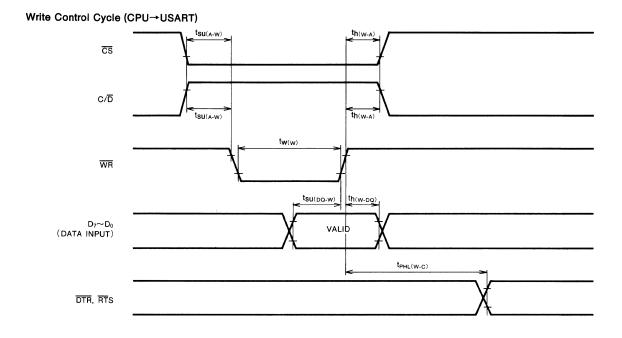


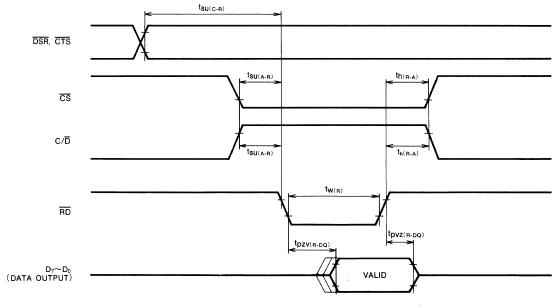
PROGRAMMABLE COMMUNICATION INTERFACE

TIMING DIAGRAMS System Clock tc(≠) tw()) tf tr $t_{W}(\not \circ)$ CLK Transmitter Clock & Data 10 11 12 13 14 15 16 2 6 7 8 9 1 2 3 $\Lambda \Lambda I$ $\overline{T_xC}(16x)$ tw(TPWL) tw(TPWH) $\overline{T_xC}(1x)$ t_{PZV(TxC-TxD)} tpzv(TxC-TxD) T_xD

Receiver Clock & Data

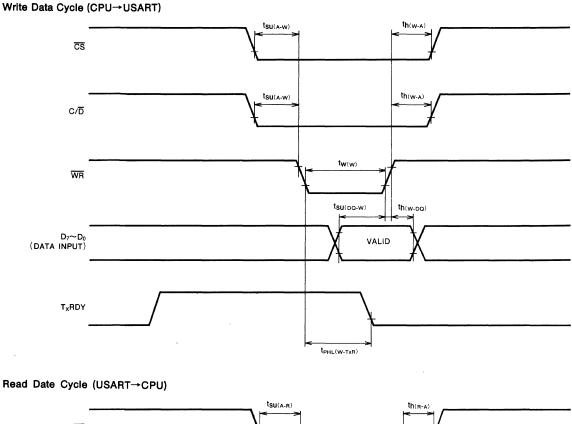
1

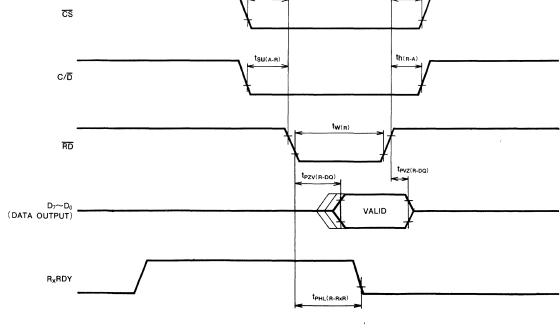


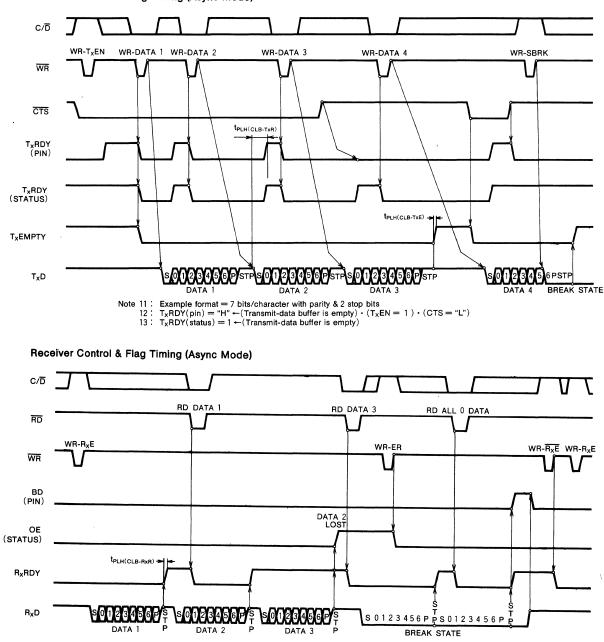

MITSUBISHI LSIs

M5L8251AP-5

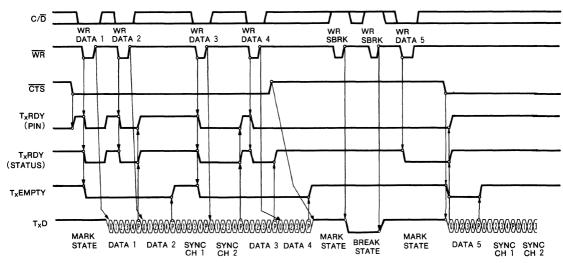
PROGRAMMABLE COMMUNICATION INTERFACE



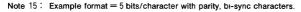

Read Control Cycle (USART→CPU)


PROGRAMMABLE COMMUNICATION INTERFACE

PROGRAMMABLE COMMUNICATION INTERFACE



Transmitter Control & Flag Timing (Async Mode)



Note 14: Example format = 7 bits/character with parity & 2 stop bits

PROGRAMMABLE COMMUNICATION INTERFACE

Transmitter Control & Flag Timing (Sync Mode)

EXTERNAL SYNC MODE INTERNAL SYNC MODE C/⊡ RD RD RD RD RD RD DATA 1 STATUS DATA 3 SYNC CH 1 STATUS RD STATUS RD DATA RD WR-EH-R_xE WR-ER WR-EH-R_xE WR EXTERNAL tsu(ESD-RxC) INTERNAL SYNC SYNC SYNDET tPLH(RxC-SYD) (INPUT) (OUTPUT) (PIN) SYNDET (STATUS) DATA DATA 2 LOST OE I DST (STATUS) R_xRDY R_{XD} SYNC DATA 1 DATA 2 DATA 3 SYNC CH 2 CH 1 SYNC CH 1 SYNC CH 2 DATA 1 DATA 2 R_xC M и'nЛ ມພັນມ EXITS HUNT MODE SYNDET SET CHARACTER SYNDET SET EXITS HUNT MODE ASSEMBLY (STATUS) ASSEMBLY BEGINS SYNDET SET (STATUS) BEGINS

Receiver Control & Flag Timing (Sync Mode)

Note 16: Example format = 5 bits/character with parity, bi-sync characters.

MITSUBISHI LSIS M5L8253P-5

PROGRAMMABLE INTERVAL TIMER

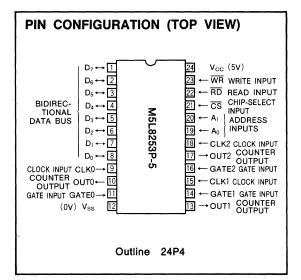
DESCRIPTION

The M5L8253P-5 is a programmable general-purpose timer device developed by using the N-channel silicon-gate ED-MOS process. It offers counter and timer functions in systems using an 8-bit parallel-processing CPU.

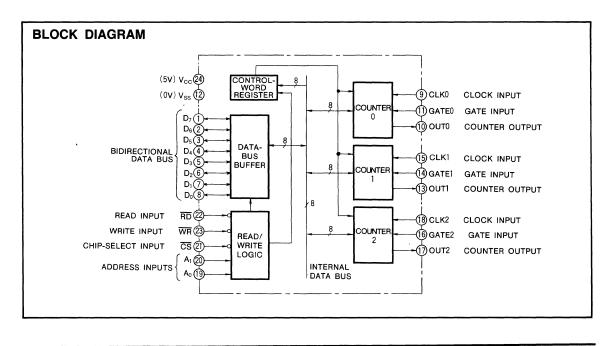
The use of the M5L8253P-5 frees the CPU from the execution of looped programs, count-operation programs and other simple processing involving many repetitive operations, thus contributing to improved system throughputs.

The M5L8253P-5 works on a single power supply, and both its input and output can be connected to a TTL circuit.

FEATURES


- Single 5V supply voltage
- TTL compatible
- Clock period: DC~2.6MHz
- 3 independent built-in 16-bit down counters
- 6 counter modes freely assignable for each counter
- Binary or decimal counts

APPLICATION


Delayed-time setting, pulse counting and rate generation in microcomputers.

FUNCTION

Three independent 16-bit counters allow free programming based on mode-control instructions from the CPU. When roughly classified, there are 6 modes $(0 \sim 5)$. Mode 0 is mainly used as an interruption timer and event counter, mode 1 as a digital one-shot, modes 2 and 3 as a rate generator, mode 4 for a software triggered strobe, and mode 5 for a

hardware triggered strobe. The count can be monitored and set at any time. The counter operates with either the binary or BCD system.

PROGRAMMABLE INTERVAL TIMER

DESCRIPTION OF FUNCTIONS

Data-Bus Buffer

This 3-state, bidirectional, 8-bit buffer is used to interface the M5L8253P-5 to the system-side data bus. Transmission and reception of all the data including control words for mode designation and values written in, and read from, the counters are carried out through this buffer.

Read/Write Logic

The read/write logic accepts control signals $(\overline{RD}, \overline{WR})$ from the system and generates control signals for each counter. It is enabled or disabled by the chip-select signal (\overline{CS}) ; if \overline{CS} is at the high-level the data-bus buffer enters a floating (high-impedance) state.

Read Input (RD)

The count of the counter designated by address inputs A_0 and A_1 on the low-level is output to the data bus.

Write Input (WR)

Data on the data bus is written in the counter or control-word register designated by address inputs A_0 and A_1 on the low-level.

Address Inputs (A₀, A₁)

These are used for selecting one of the 3 internal counters and either of the control-word registers.

Chip-Select Input (CS)

A low-level on this input enables the M5L8253P-5. Changes in the level of the \overline{CS} input have no effect on the operation of the counters.

Control-Word Register

This register stores information required to give instructions about operational modes and to select binary or BCD counting. Unlike the counters, it allows no reading, only writing.

Counters 0,1 and 2

These counters are identical in operation and independent of each other. Each is a 16-bit, presettable, down counter, and has clock-input, gate-input and output pins. The counter can operate in either binary or BCD using the falling edge of each clock. The mode of counter operation and the initial value from which to start counting can be designated by software. The count can be read by input instruction at any time, and there is a "read-on-the-fly" function which enables stable reading by latching each instantaneous count to the registers by a special counter-latch instruction.

CONTROL WORD AND INITIAL-VALUE LOADING

The function of the M5L8253P-5 depends on the system software. The operational mode of the counters can be specified by writing control words (A_0 , A_1 =1, 1) into the control-word registers.

The programmer must write out to the M5L8253P-5 the programmed number of count register bytes (1 or 2) prior to actually using the selected counter.

Fig. 1 shows control-word format, which consists of 4 fields. Only the counter selected by the D_7 and D_6 bits of the control word is set for operation. Bits D_5 and D_4 are used for specifying operations to read values in the counter and to initialize. Bits $D_3 \sim D_1$ are used for mode designation, and D_0 for specifying binary or BCD counting. When $D_0 = 0$, binary counting is employed, and any number from 0000_{16} to FFFF₁₆ can be loaded into the count register. The counter is counted down for each clock. The counting of 0000_{16} causes the transmission of a time-out signal from the count-output pin.

The maximum number of counts is obtained when 0000_{16} is set as the initial value. When $D_0 = 1$, BCD counting is employed, and any number from 0000_{10} to 9999_{10} can be loaded on the counter.

Neither system resetting nor connecting to the power supply sets the control word to any specific value. Thus to bring the counters into operation, the above-mentioned control words for mode designation must be given to each counter, and then $1\sim2$ byte initial counter values must be set. The following is an example of this programming step.

To designate mode 0 for counter 1 ,with initial value 8253_{16} set by binary count, the following program is used:

MVI	A, 70 ₁₆	Control word 70 ₁₆
OUT	n ₁	n1 is control-word-register address
MVI	A, 53 ₁₆	Low-order 8 bits
OUT	n ₂	n ₂ is counter 1 address
MVI	A, 82 ₁₆	High-order 8 bits
OUT	n ₂	n ₂ is counter 1 address

Thus, the program generally has the following sequence:

(1) Control-word output to counter i (i=0, 1, 2).

(2) Initialization of low-order 8 counter bits

(3) Initialization of high-order 8 counter bits

The three counters can be executed in any sequence It is possible, for instance, to designate the mode of each counter and then load initial values in a different order. Initialization of the counters designated by RL 1 and RL 0 must be executed in the order of the low-order 8 bits and then the high-order 8 bits for the counter in question.

PROGRAMMABLE INTERVAL TIMER

					·
CS	RD	WR	A1	Ao	Function
L	н	L	0	0	Data bus→Counter 0
L	н	L	0	1	Data bus→Counter 1
L	н	L	1	0	Data bus→Counter 2
Į L	н	,L	1	1	Data bus→Control-word register
L	L	н	0	0	Data bus←Counter 0
L	L	н	0	1	Data bus←Counter 1
L	L	н	1	0	Data bus←Counter 2
L	L	н	1	1	3-state
н	×	×	×	×	3-state
L	н	н	×	×	3-state

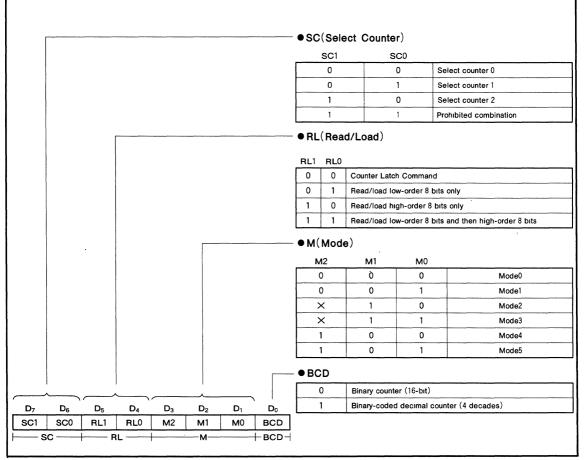


Fig. 1 Control-Word Format

PROGRAMMABLE INTERVAL TIMER

MODE DEFINITION

Mode 0 (Interrupt on Terminal Count)

Mode set and initialization cause the counter output to go low-level (see Fig. 2). When the counter is loaded with an initial value, it will start counting the clock input. When the terminal count is reached, the output will go high-level and remain high-level until the selected count register is reloaded with the mode. This mode can be used when the CPU is to be interrupted after a certain period or at the time of counting up.

Fig. 2 shows a setting of 4 as the initial value. If gate input goes low-level, counting is inhibited for the duration of the low-level period.

Reloading of the initial value during count operation will stop counting by the loading of the first byte and start the new count by the loading of the second byte.

Mode 1 (Programmable One-Shot)

The gate input functions as a trigger input. A gate-input rising edge causes the generation of low-level one-shot output with a predetermined clock length starting from the next clock. Fig. 3 shows an initial setting of 4. While the counter output is at the low-level (during one-shot), loading of a new value does not change the one-shot pulse width, which has already been output. The current count can be read at any time without affecting the width of the one-shot pulse being output. This mode permits retriggering.

Mode 2 (Rate Generator)

Low-level pulses during one clock operation are generated from the counter output at a rate of one per n clock inputs (where n is the value initially set for the counter). When a new value is loaded during the counter operation, it is reflected on the output after the pulses by the current count have been output. In the example shown in Fig. 4, n is given as 4 at the outset and is then changed to 3.

In this mode, the gate input provides a reset function. While it is on the low-level, the output is maintained high-level; the counter restarts from the initial value, triggered by a rising gate-input edge. This gate input, therefore, makes possible external synchronization of the counter by hardware.

After the mode is set, the counter does not start counting until the rate n is loaded into the count register, with the counter output remaining at the high-level.

Mode 3 (Square Rate Generator)

This is similar to Mode 2 except that it outputs a square wave with the half count of the set rate. When the set value n is odd, the square-wave output will be high for (n+1)/2 clock-input counts and low-level for (n-1)/2 counts. When a new rate is reloaded into the count register during its operation, it is immediately reflected on the count directly following the output transition (high-to-low or low-to-high) of the current count. Gate-input operations are exactly the same as in Mode 2. Fig. 5 shows an example of Mode 3 operation.

Mode 4 (Software Triggered Strobe)

After the mode is set, the output will be high-level. By loading a number on the counter, however, clock-input counts can be started and on the terminal count, the output will go low for one input-clock period and then will go high again. Mode 4 differs from Mode 2 in that pulses are not output repeatedly with the same set count. The pulse output is delayed one clock period in Mode 2, as shown in Fig. 6. When a new value is loaded into the count register during its count operation, it is reflected on the next pulse output without affecting the current count. The count will be inhibited while the gate input is low-level.

Mode 5 (Hardware Triggered Strobe)

This is a variation of Mode 1. The gate input provides a trigger function, and the count is started by its rising edge. On the terminal count, the counter output goes low for on one clock period and then goes high-level. As in Mode 1, retriggering by the gate input is possible. An example of timing in Mode 5 is shown in Fig. 7.

As mentioned above, the gate input plays different roles according to the mode. The functions are summarized in Table 2.

Gate Mode	Low-level or going low-level	Rising	High-level
0	Disables counting		Enables counting
1		 (1) Initiates counting (2) Resets output after next clock 	
2	(1) Disables counting(2) Sets output high immediately	(1) Reloads counter (2) Initiates counting	Enables counting
3	(1) Disables counting(2) Sets output high immediately	(1) Reloads counter (2) Initiates counting	Enables counting
4	Disables counting		Enables counting
5		Initiates counting	

Table 2 Gate Operations

PROGRAMMABLE INTERVAL TIMER

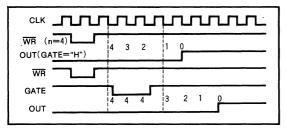


Fig. 2 Mode 0

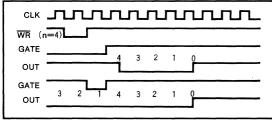
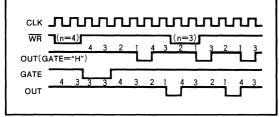
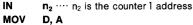


Fig. 3 Mode 1




Fig. 4 Mode 2

COUNTER MONITORING

Sometimes the counter must be monitored by reading its count or using it as an event counter. The M5L8253P-5 offers the following two methods for count reading:

Read Operation

The count can be read by designating the address of the counter to be monitored and executing a simple I/O read operation. In order to ensure correct reading of the count, it is necessary to cause the clock input to pause by external logic or prevent a change in the count by gate input. An example of a program to read the counter 1 count is shown below. If RL1, RL0=1, 1 has been specified in the control word, the first IN instruction enables the low-order 8 bits to be read and the second IN instruction enables the high-order 8 bits.

- IN n₂
- MOV E, A

The IN instruction should be executed once or twice by the RL1 and RL0 designations in the control-word register.

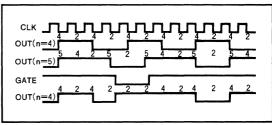


Fig. 5 Mode 3

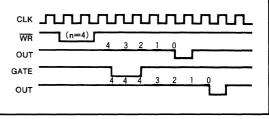


Fig. 6 Mode 4

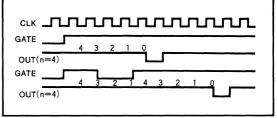


Fig. 7 Mode 5

Read-on-the-Fly Operation

This method makes it possible to read the current count without affecting the count operation at all. A special counter-latch command is first written in the control-word register. This causes latching of all the instantaneous counts to the register, allowing retention of stable counts. An example of a program to execute this operation for counter 2 is given below.

MVI	A, 1000XXXX \cdots D ₅ = D ₄ = 0 designates counter
	latching
OUT	n₁ ···· n ₁ is the control-word-register address
IN	n₃ ···· n ₃ is the counter 2 address
MOV	D, A
IN	n ₃
MOV	E, A

In this example, the IN instruction is executed twice. Due to the internal logic of the M5L8253P-5 it is absolutely essential to complete the entire reading procedure. If 2 bytes are programmed to be read, then two bytes must be read before any OUT instruction can be executed to the same counter.

PROGRAMMABLE INTERVAL TIMER

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Power supply voltage		-0.5~7	v
Vi	Input voltage	With respect to V _{SS}	-0.5~7	v
Vo	Output voltage		-0.5~7	v
Pd	Maximum power dissipation	T _a =25℃	1000	mW
Topr	Operating free-air temperature range		-20~75	°C
⊺ _{stg}	Storage temperature range		-65~150	ĉ

RECOMMENDED OPERATING CONDITIONS ($\tau_a = -20 \sim 75^{\circ}$ C, unless otherwise noted)

Symbol	Parameter		Unit		
		Min	Nom	Max	Unit
V _{cc}	Power supply voltage	4.5	5	5.5	v
Vss	Supply voltage (GND)		0		v

ELECTRICAL CHARACTERISTICS ($T_a = -20 \sim 75^{\circ}C$, $V_{cc} = 5 V \pm 10\%$, $V_{ss} = 0V$, unless otherwise noted)

Symbol	Parameter	Test on diller		Limits		1.1
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
VIH	High-level input voitage		2.2		V_{cc} +0.5	v
VIL	Low-level input voltage		-0.5		0.8	v
V _{он}	High-level output voltage	I _{он} =-400µА	2.4			v
Vol	Low-level output voltage	I _{OL} =2. 2mA			0.45	v
lін	High-level input current	V _I =V _{CC}			±10	μA
h.	Low-level input current	V _I =0V			±10	μA
loz	Off-state output current	V _o =0V~V _{cc}			±10	μA
lcc	Supply current from V _{CC}	V _{ss} =0V			140	mA
Cı	Input terminal capacitance	$V_{IL}=V_{SS}$, f=1MHz, 25mVrms, T _a =25°C			10	рF
C _{I/O}	Input/output terminal capacitance	$V_{I/OL} = V_{SS}$, f=1MHz,25mVrms, Ta=25°C			20	pF

PROGRAMMABLE INTERVAL TIMER

TIMING REQUIREMENTS ($T_a = -20 \sim 75$ °C, $V_{cc} = 5 V \pm 10\%$, $V_{ss} = 0 V$, unless otherwise noted)

Read cycle

Symbol	Parameter	Test conditions		Limits		1.1
Symbol	Farameter	rest conditions	Min	Тур	Max	Unit
t _{W(R)}	Read pulse width		300			ns
t _{SU(A-R)}	Address setup time before read		30			ns
th(R-A)	Address hold time after read		5			ns
trec(R)	Read recovery time		1000			ns

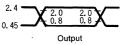
Write cycle

Queente a l	D	Testessities		Unit		
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
t _{w(w)}	Write pulse width		300			ns
t _{su(A-W)}	Address setup time before write		30			ns
t _{h(w-A)}	Address hold time after write		30			ns
t _{su(DQ-W)}	Data setup time before write		250			ns
th(w-DQ)	Data hold time after write]	30			ns
t _{rec(w)}	Write recovery time]	1000			ns

Clock and gate timing

		Test seedstone		Unit		
Symbol	Parameter	Test conditions	Min	Тур	Max	Onit
t _{w(¢н)}	Clock high pulse width		230			ns
tw(≠L)	Clock low pulse width		150			ns
t _{C(∳)}	Clock cycle time		380		DC	ns
t _{w(GH)}	Gate high pulse width		150			sn
tw(GL)	Gate low pulse width		100			ns
t _{su(G-∮)}	Gate setup time before clock]	100			ns
th(∳-G)	Gate hold time after clock		50			ns

$\label{eq:switching characteristics} \textbf{(} \textbf{T}_a = -20 \sim 75 \ensuremath{^{\circ}\text{C}}, \ensuremath{ V_{cc}} = 5 \ensuremath{ v \pm 10\%}, \ensuremath{ v_{ss}} = 0 \ensuremath{ V}, \ensuremath{ unless otherwise noted} \textbf{)}$

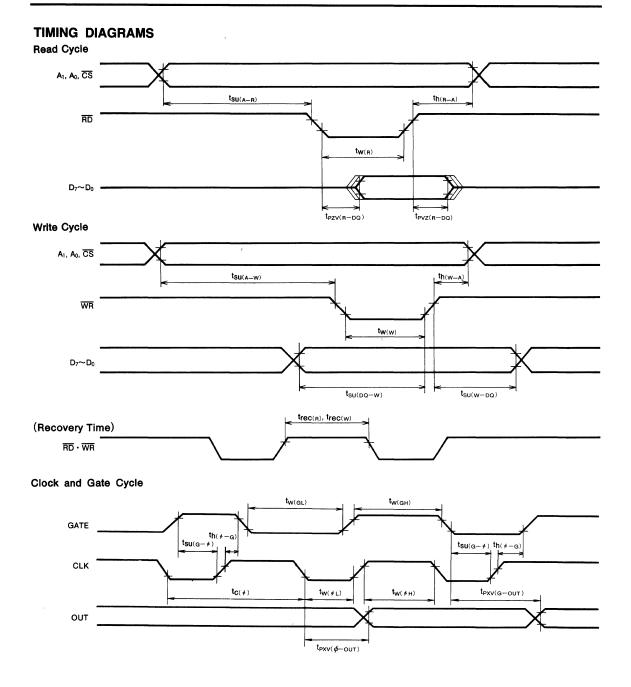

Symbol	Parameter	Test conditions		Unit		
Symbol	Parameter	rest conditions	Min	Тур	Max	Unit
t _{PZV(R-DQ)}	Propagation time from read to output				200	ns
t _{PVZ(R-DQ)}	Propagation time from read to output floating (Note 2)	C ₁ =150pF	25		100	ns
t _{PXV(G-OUT)}	Propagation time from gate to output				300	ns
t _{PXV} (≠ -OUT)	Propagation time from clock to output]			400	ns

Note 1: A C Testing waveform

Input pulse level	0.45~2.4V
Input pulse rise time	20 ns
Input pulse fall time	20ns
Reference level input	V _{IH} =2.2V, V _{IL} =0.8V
output	V _{OH} =2.0V, V _{OL} =0.8V
2 : Test condition is not applied	

$$\begin{array}{c} 2.4 \\ 0.45 \end{array} \xrightarrow{\begin{array}{c} 2.2 \\ 0.8 \end{array}} \begin{array}{c} 2.2 \\ 0.8 \end{array} \xrightarrow{\begin{array}{c} 2.2 \\ 0.8 \end{array}} \begin{array}{c} 2.2 \\ 0.8 \end{array}$$

Input



MITSUBISHI LSIs

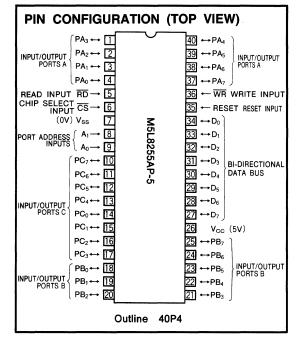
M5L8253P-5

PROGRAMMABLE INTERVAL TIMER

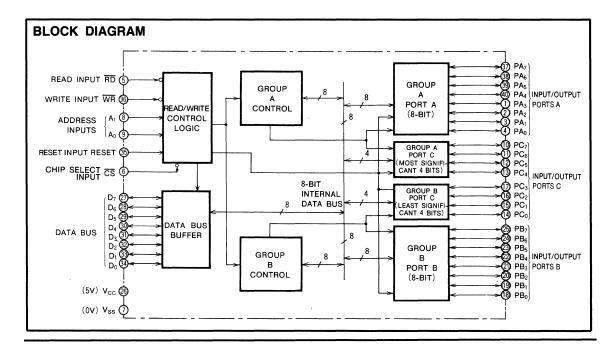
DESCRIPTION

The M5L8255AP-5 is a family of general-purpose programmable input/ output devices designed for use with an 8-bit/16bit parallel CPU as input/output ports. Device is fabricated using N-channel silicon-gate ED-MOS technology for a single supply voltage. They are simple input and output interfaces for TTL circuits, having 24 input/output pins which correspond to three 8-bit input/output ports.

FEATURES


- Single 5V supply voltage
- TTL compatible
- Darlington drive capability
- 24 programmable I/O pins
- Direct bit set/reset capability

APPLICATION


Input/output ports for microprocessor

FUNCTION

These PPIs have 24 input/output pins which may be individually programmed in two 12-bit groups A and B with mode control commands from a CPU. They are used in three major modes of operation, mode 0, mode 1 and mode 2. Operating in mode 0, each group of 12 pins may be programmed in sets of 4 to be inputs or outputs. In mode 1, the 24 I/O terminals may be programmed in two 12-bit groups, group A and group B. Each group contains one 8-bit data port, which may be programmed to serve as input or output, and one 4-bit control port used for handshaking and interrupt control signals. Mode 2 is used with group A only, as one 8-

bit bidirectional bus port and one 5-bit control port. Bit set/ reset is controlled by CPU. A high-level reset input (RESET) clears the control register, and all ports are set to the input mode (high-impedance state).

PROGRAMMABLE PERIPHERAL INTERFACE

FUNCTIONAL DESCRIPTION

RD (Read) Input

At low-level, the status or the data at the port is transferred to the CPU from the PPI. In essence, it allows the CPU to read data from the PPI.

WR (Write) Input

At low-level, the data or control words are transferred from the CPU and written in the PPI.

A₀, A₁ (Port address) Input

These input signals are used to select one of the three ports: port A, port B, and port C, or the control register. They are normally connected to the least significant 2 bits of the address bus.

RESET (Reset) Input

At high-level, the control register is cleared. Then all ports are set to the input mode (high-impedance state).

CS (Chip-Select) Input

At low-level, the communication between the PPI and the CPU is enabled. While at high-level, the data bus is kept in the high-impedance state, so that commands from the CPU are ignored. Then the previous data is kept at the output port.

Read/Write Control Logic

The function of this block is to control transfers of both data and control words. It accepts the address signals (A_0 , A_1 , \overline{CS}), I/O control signals (\overline{RD} , \overline{WR}) and RESET signal, and then issues commands to both of the control groups in the PPI.

Data Bus Buffer

This three-state, bidirectional, 8-bit buffer is used to transfer the data when an input or output instruction is executed by the CPU. Control words and status information are also transferred through the data bus buffer.

Group A and Group B Control

Accepting commands from the read/write control logic, the control blocks (Group A, Group B) receive 8-bit control words from the internal data bus and issue the proper commands for the associated ports. Control group A is associated with port A and the 4 high-order bits of port C. Control group B is associated with port B and the 4 low-order bits of port C. The control register, which stores control words, can only be written into.

Port A, Port B and Port C

The PPI contains three 8-bit ports whose modes and input/ output settings are programmed by the system software.

Port A has an output latch/buffer and an input latch/buffer. Port B has an input-output latch/buffer. Port C has an output latch/buffer and an input buffer. Port C can be divided into two 4-bit ports which can be used as ports for control signals for port A and port B.

The basic operations are shown in Table 1.

Table 1 Basic Operations

A1	A ₀	<u>cs</u>	RD	WR	Operation
0	0	L	L	н	Data bus ← Port A
0	1	L	L	н	Data bus ← Port B
1	0	L	L	н	Data bus ← Port C
0	0	L	н	L	Port A ← Data bus
0	1	L	н	L	Port B ← Data bus
1	0	L	н	L	Port C ← Data bus
1	1	L	н	L	Control register ← Data bus
х	х	н	х	х	Data bus is in high-impedance state
1	1	L	L	н	Illegal condition

Bit Set/Reset

When port C is used as an output port, any 1 bit of the 8 bits can be set (high) or reset (low) by a control word from the CPU. This bit set/reset can be operated in the same way as the mode set, but the control word format is different. This operation is also used for INTE (interrupt enable flag) set/reset in mode 1 and mode 2.

different. This operation is also used for INTE set/reset in mode 1 and mode 2.

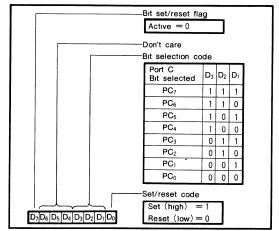


Fig. 1 Control word format for port C set/reset

BASIC OPERATING MODES

The PPI can operate in any one of three selected basic modes.

- Mode 0: Basic input/output
- (group A, group B) (group A, group B)
- Mode 1: Strobed input/output Mode 2: Bidirectional bus
- (group A only)

The mode of both group A and group B can be selected independently. The control word format for mode set is shown in Fig. 2.

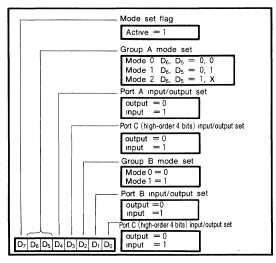
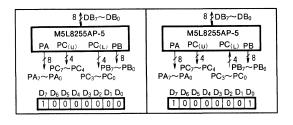



Fig. 2 Control word format for mode set.

1. Mode 0 (Basic Input/Output)

This functional configuration provides simple input and output operations for each of the 3 ports. No "handshaking" is required; data is simply written in, or read from, the specified port. Output data from the CPU to the port can be held, but input data from the port to the CPU cannot be held. Any one of the 8-bit ports and 4-bit ports can be used as an input port or an output port. The diagrams following show the basic input/output operating modes.

8 ‡DB7~DB0 M5L8255AP-5 PA PC(u) PC(L) PB ↓8 ↓4 ↓4 ±8 PC7~PC4 PB7~PB0 PA7~PA0 PC3~PC0	$\begin{array}{c c} & & & & \\ & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ PA & PC_{(u)} & PC_{(L)} & PB \\ & & & \\ \hline & & & \\ PC_{7} \sim PC_{4} & PB_{7} \sim PB_{0} \\ PA_{7} \sim PA_{0} & PC_{3} \sim PC_{0} \end{array}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
8 ‡DB7~DB₀ M5L8255AP-5 PA PC(∪) PC(L) PB ↓8 ↓4 ↓8 ↓ PC7~PC4 PB7~PB₀ PA7~PA₀ PC3~PC₀ D7 D₅ D₅ D₄ D₃ D₂ D₁ D₀	$\begin{array}{c c} 8 & DB_7 \sim DB_0 \\ \hline M5L8255AP-5 \\ PA & PC_{(U)} & PC_{(L)} & PB \\ \hline 4 & 4 & 4 & 8 \\ PC_7 \sim PC_4 & PB_7 \sim PB_0 \\ PA_7 \sim PA_0 & PC_3 \sim PC_0 \\ \hline D_7 & D_6 & D_5 & D_4 & D_3 & D_2 & D_1 & D_0 \end{array}$
$\begin{array}{c c} 8 $ $ DB_7 \sim DB_0 \\ \hline M5L8255AP-5 \\ \hline PA & PC(u) & PC(L) & PB \\ \hline 18 $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $	$\begin{array}{c c} & & & & \\ & & & & \\ \hline & & & & \\ \hline & & & &$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
8 ¢DB;~DB₀ M5L8255AP-5 PA PC(∪) PC(∟) PB ↓8 ↓4 ↓8 ↓PC;~PC4 PB;~PB₀ PA;~PA₀ PC3~PC₀ D; D6 D5 D4 D3 D2 D1 D₀	8 DB7~DB0 M5L8255AP-5 PA PC(u) PC(L) PB 18 14 4 18 PC7~PC4 PB7~PB0 PA7~PA0 PC3~PC0 D7 D6 D5 D4 D3 D2 D1 D0
1 0 0 1 0 0 0 0 8 ⊉DB ₇ ~DB₀	1 0 0 1 0 0 0 1 8 ≵DB ₇ ~DB₀
M5L8255AP-5 PA PC(u) PC(u) 18 14 14 18 PC/√PC4 PB/√PB0 PA/~PB0 PC/~PC4 PB/√PB0	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8 ‡DB ₇ ~DB ₀ M5L8255AP-5 PA PC(∪) PC(L) PB ↓8 ↓4 ↓8 ↓PC7~PC4 ↓4 ↓8 PC7~PC4 PB7~PB0 PA7~PA0 PC3~PC0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	D ₇ D ₆ D ₅ D ₄ D ₃ D ₂ D ₁ D ₀ 1 0 0 1 1 0 0 1
8 DB7~DB0 M5L8255AP-5 PA PC(u) PC(L) PB ↓8 ↓4 ↓8 ↓PC7~PC4 PB7~PB0 PA7~PA0 PC3~PC0 D7 D6 D5 D4 D3 D2 D1 D0 1 0 0 1 1 1 0 1 0	8 DB7~DB0 M5L8255AP-5 PA PC(u) PC(L) PB 18 14 4 4 PC7~PC4 PB7~PB0 PA7~PA0 PC3~PC0 D7 D6 D5 D4 D3 D2 D1 D0 1 0 0 1 1 1 0 1 1 1

PROGRAMMABLE PERIPHERAL INTERFACE

2. Mode 1 (Strobed Input/Output)

This function can be set in both group A and B. Both groups are composed of one 8-bit data port and one 4-bit control data port. The 8-bit port can be used as an input port or an output port. The 4-bit port is used for control and status signals affecting the 8-bit data port. The following shows operations in mode 1 for using input ports.

STB (Strobe Input)

A low-level on this input latches the output data from the terminal units into the input register of the port. In short, this is a clock for data latching. The data from the terminal units can be latched by the PPI independent of the control signal from the CPU. This data is not sent to the data bus until the instruction IN is executed.

IBF (Input Buffer Full Flag Output)

A high-level on this output indicates that the data from the terminal units has been latched into the input register. IBF is set to high-level by the falling edge of the \overline{STB} input, and is reset to low-level by the rising edge of the \overline{RD} input.

INTR (Interrupt Request Output)

This can be used to interrupt the CPU when an input device is requesting service. When INTE (interrupt enable flag) of the PPI is high-level, INTR is set to high-level by the rising edge of the $\overline{\text{STB}}$ input and is reset to low-level by the falling edge of $\overline{\text{RD}}$ input.

 $INTE_A$ of group A is controlled by bit setting of PC₄. INTE_B of group B is controlled by bit setting of PC₂.

Mode 1 input state is shown in Fig. 3, and the timing diagram is shown in Fig. 4.

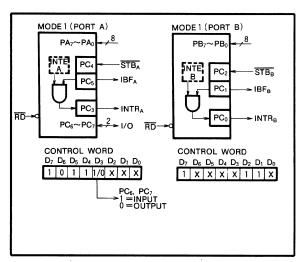
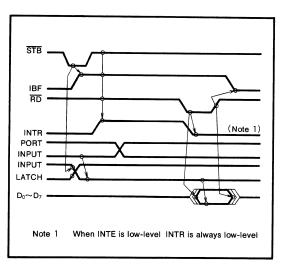



Fig. 3 An example of mode 1 input state

Fig. 4 Timing diagram

The following shows operations using mode 1 for output ports.

OBF (Output Buffer Full Flag Output)

This is reset to low-level by the rising edge of the $\overline{\text{WR}}$ signal and is set to high-level by the falling edge of the $\overline{\text{ACK}}$ (acknowledge input). In essence, the PPI indicates to the terminal units by the $\overline{\text{OBF}}$ signal that the CPU has sent data to the port.

ACK (Acknowledge Input)

Receiving this signal from a terminal unit can indicate to the PPI that the terminal unit has accepted data from a port.

INTR (Interrupt Request)

When a peripheral unit is accepting data from the CPU, seting INTR to high-level can be used to interrupt the CPU. When INTE (interrupt enable flag) is high-level and \overrightarrow{OBF} is set to high-level by the rising edge of an \overrightarrow{ACK} signal, then INTR will also be set to high-level by the rising edge of the \overrightarrow{ACK} signal. Also, INTR is reset to low-level by the falling edge of the \overrightarrow{WR} signal when the PPI has been receiving data from the CPU.

 $INTE_A$ of group A is controlled by bit setting of PC₆. INTE_B of group B is controlled by bit setting of PC₂.

Mode 1 output state is shown in Fig. 5, and the timing diagram is shown in Fig. 6.

Combinations for using port A and port B as input or output in mode 1 are shown in Fig. 7 and Fig. 8.

PROGRAMMABLE PERIPHERAL INTERFACE

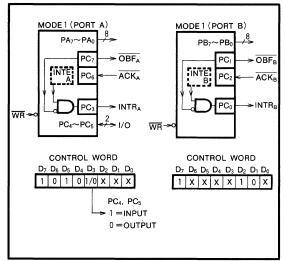
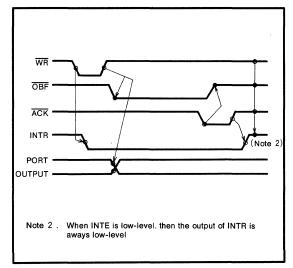



Fig. 5 An example of mode 1 output state

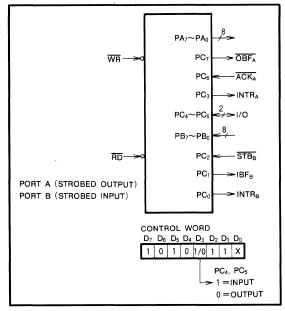


Fig. 7 Mode 1 port A and port B I/O example

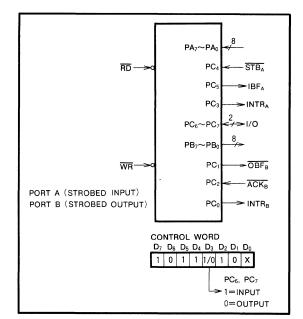


Fig. 8 Mode 1 port A and port B I/O example

PROGRAMMABLE PERIPHERAL INTERFACE

3. Mode 2 (Strobed Bidirectional Bus Input/ Output)

Mode 2 can provide bidirectional operations, using one 8-bit bus for communicating with terminal units. Mode 2 is only valid with group A and uses one 8-bit bidirectional bus port (port A) and a 5-bit control port (high-order 5 bits of port C). The bus port (port A) has two internal registers, one for input and the other for output. On the other hand, the control port (port C) is used for communicating control signals and bus-status signals. These control signals are similar to mode 1 and can also be used to control interruption of the CPU. When group A is programmed as mode 2, group B can be programmed independently as mode 0 or mode 1. When group A is in mode 2, the following 5 control signals can be used.

OBF (Output Buffer Full Flag Output)

The OBF output will go low-level to indicate that the CPU has sent data to the internal register of port A. This signal lets the terminal units know that the data is ready for transfer from the CPU. When this occurs, port A remains in the float-ing (high-impedance) state.

ACK (Acknowledge Input)

A low-level $\overline{\text{ACK}}$ input will cause the data of the internal register to be transferred to port A. For a high-level ACK input, the output buffer will be in the floating (high-impedance) state.

STB (Strobe Input)

When the \overline{STB} input is low-level, the data from terminal units will be held in the internal register, and the data will be sent to the system data bus with an \overline{RD} signal to the PPI.

IBF (Input Buffer Full Flag Output)

When data from terminal units is held on the internal register, IBF will be high-level.

INTR (Interrupt Request Output)

This output is used to interrupt the CPU and its operations the same as in mode 1. There are two interrupt enable flags that correspond to $INTE_A$ for mode 1 output and mode 1 input.

- $INTE_1$ is used in generating INTR signals in combination with \overrightarrow{OBF} and \overrightarrow{ACK} . $INTE_1$ is controlled by bit setting of PC₆.
- $INTE_2$ is used in generating INTR signals in combination with \overline{IBF} and \overline{STB} . $INTE_2$ is controlled by bit setting of PC₄.

Fig. 9 shows the timing diagram of mode 2, and Fig. 10 is an example of mode 2 operation.

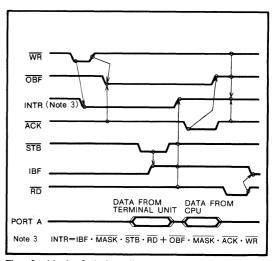


Fig. 9 Mode 2 timing diagram

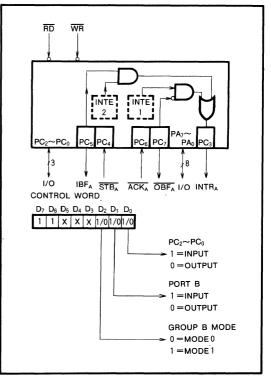


Fig. 10 An example of mode 2 operation

PROGRAMMABLE PERIPHERAL INTERFACE

4. Control Signal Read

In mode 1 or mode 2 when using port C as a control port, by CPU execution of an IN instruction, each control signal and bus status from port C can be read.

5. Control Word Tables

Control word formats and operation details for mode 0, mode 1, mode 2 and set/reset control of port C are given in Tables 3, 4, 5 and 6, respectively.

Table 3 Mode 0 control words

Table 2 Read-out control signals

Data Mode	D7	D ₆	D ₅	D₄	D ₃	D2	D1	Do
Mode 1, input	1/0	1/0	IBF _A	INTEA	INTRA	INTEB	IBF _B	
Mode 1, output	OBFA	INTEA	1/0	1/0	INTRA		OBFB	
Mode 2	OBFA	INTE ₁	IBF _A	INTE ₂	INTRA	By g	roup B r	node

				Cont	rol w	ords		·		Group A	Group B	
D7	D ₆	D ₅	D4	D ₃	D ₂	D1	D ₀	Hexadecimal	Port A	Port C (high-order 4 bits)	Port C (low-order 4 bits)	Port B
1	0	0	0	0	0	0	0	80	OUT	OUT	OUT	OUT
1	0	0	0	0	0	0	1	81	OUT	OUT	IN	OUT
1	0	0	0	0	0	1	0	82	OUT	OUT	OUT	iN
1	0	0	0	0	0	1	1	83	OUT	OUT	IN	IN
1	0	0	0	1	0	0	0	88	OUT	IN	OUT	OUT
1	0	0	0	1	0	0	1	89	OUT	IN	IN	OUT
1	0	0	0	1	0	1	0	8A	OUT	IN	OUT	IN
1	0	0	0	1	0	1	1	8B	OUT	IN	IN	IN
1	0	0	1	0	0	0	0	90	IN	OUT	OUT	OUT
1	0	0	1	0	0	0	1	91	IN	OUT	IN	OUT
1	0	0	1	0	0	1	0	92	IN	OUT	OUT	IN
1	0	0	1	0	0	1	1	93	IN	OUT	IN	IN
1	0	0	1	1	0	0	0	98	IN	IN	OUT	OUT
1	0	0	1	1	0	0	1	99	IN	· IN	IN	OUT
1	0	0	1	1	0	1	0	9A	IN	IN	OUT	IN
1	0	0	1	1	0	1	1	9B	IN	IN	IN	IN

Note 4 · OUT indicates output port, and IN indicates input port

Table 4 Mode 1 control words

				Co	ntro	l wo	rds					Grou	A dr				Gro	up B	
D	, D	. г) ₅	<u>л</u> .	D.	D .	Π.	D ₀	Hexa-	Port A			Port C				Port C		Port B
		~6 L	' 5		03	02		0	decimal	FULT	PC ₇	PC ₆	PC ₅	PC₄	PC ₃	PC ₂	PC ₁	PC ₀	FOILD
1	c) .	I	0	0	1	0	x	A4 A5	OUT	OBFA	ACKA	о	JT	INTRA	ACKB	OBFB	INTR _B	OUT
1	C) .	I	0	0	1	1	x	A6 A7	OUT	OBFA	ACKA	01	UT	INTRA	STB _B	IBF _B	INTR _B	IN
1	C) .	1	0	1	1	0	x	AC AD	OUT	OBFA	ACKA	11	N	INTRA	ACKB			ουτ
1	C) .	1	0	1	1	1	x	AE AF	OUT	OBFA	ACKA	I	N	INTRA	STB _B	IBF _B		IN
1	(о [.]	1	1	0	1	0	х	В4 В5	IN	0	UT	IBF _A	STBA	INTRA	ACKB	OBFB	INTR _B	ουτ
1	C)	1	1	0	1	1	х	В6 В7	IN	0	UT	IBF₄	STBA	INTRA	STB _B	IBF _B	INTR _B	IN
1	(כ	1	1	1	1	0	x	BC BD	IN	1	N	IBF₄	STBA	INTRA	ACKB	OBFB	INTR _B	оит
1	(0	1	1	1	1	1	x	BE BF	IN	1	N	IBFA	STBA	INTRA	STBB	IBFB		IN

Note 5 : Mode of group A and group B can be programmed independently 6 : It is not necessary for both group A and group B to be in mode 1.

Port B OUT OUT IN IN OUT IN

M5L8255AP-5

PROGRAMMABLE PERIPHERAL INTERFACE

			С	ontro	l wo	ords					Group	A	,			Gro	up B	
~	D		_		-	-	<u> </u>	Hexa- decimal	Dart A			Port C				PortC		Γ
D 7	D ₆	D ₅	U4	D ₃	U2	Dı	D ₀	(Ex)	Port A	PC7	PC ₆	PC ₅	PC₄	PC ₃	PC ₂	PC ₁	PC ₀	
1	1	х	х	х	0	0	0	C0	Bidirectional bus	OBFA	ACKA	IBFA	STBA	INTRA		OUT		
1	1	х	х	х	0	0	1	C1	Bidirectional bus	OBFA	ACKA	IBFA	STBA	INTRA		IN		Γ
1	1	х	Х	х	0	1	0	C2	Bidirectional bus	OBFA	ACKA	IBFA	STBA	INTRA		OUT		Γ
1	1	х	х	х	0	1	1	C3	Bidirectional bus	OBFA	ACKA	IBFA	STBA	INTR _A		IN		
1	1	х	х	х	1	0	x	C4	Bidirectional bus	OBFA	ACKA	IBFA	STBA	INTRA	ACKB	OBFB		
1	1	х	X	х	1	1	х	C6	Bidirectional bus	OBFA	ACKA	IBF _A	STBA	INTRA	STBB	IBF _B		Γ

Table 5 Mode 2 control words

Table 6 Port C bit set/reset control words

			Co	ontro	ol wo	ords						Po	rt C				Remarks
D7	D ₆	D ₅	D4	D3	D ₂	D1	D ₀	Hexa- decimal	PC7	PC ₆	PC ₅	PC₄	PC ₃	PC ₂	PC ₁	PC ₀	
0	х	х	х	0	0	0	9	00								0	
0	х	х	х	0	0	0	1	01								1	
0	х	х	х	0	0	1	0	02							0		
0	х	х	х	0	0	1	1	03							1		
0	х	х	х	0	1	0	0	04						0			INTE _B set/reset for mode 1 input
0	х	х	х	0	1	0	1	05						1			INTE _B set/reset for mode 1 output
0	х	х	х	0	1	1	0	06					0				
0	х	х	х	0	1	1	1	07					1				
0	х	х	х	1	0	0	0	08				0					INTE _A set/reset for mode 1 input
0	х	х	х	1	0	0	1	09				1					INTE ₂ set/reset for mode 2
0	х	х	х	1	0	1	0	0A			0						
0	х	х	х	1	0	1	1	0B			1						
0	х	х	х	1	1	0	0	0C		0							INTE _A set/reset for mode 1 output
0	х	х	х	1	1	0	1	0D		1							INTE ₁ set/reset for mode 2
0	х	х	х	1	1	1	0	0E	0								
0	х	х	х	1	1	1	1	0F	1								

Note 7 : The terminais of port C should be programmed for the output mode, before the bit set/reset operation is executed. 8 : Also used for controlling the interrupt enable flag(INTE).

PROGRAMMABLE PERIPHERAL INTERFACE

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Supply voltage		-0.5~7	v
Vi	Input voltage	With respect to V _{SS}	-0.5~7	v
Vo	Output voltage		-0.5~7	v
Pd	Power dissipation	T _a =25℃	1000	mW
Topr	Operating free-air temperature range		-20~75	°C
⊤stg	Storage temperature range		-65~150	ъ

RECOMMENDED OPERATING CONDITIONS (Ta=-20~75°C, unless otherwise noted)

Symbol	Parameter				
	Farameter	Min	Nom	Max	Unit
Vcc	Supply voltage	4.75	5	5.25	v
Vss	Supply voltage (GND)		0		v

ELECTRICAL CHARACTERISTICS (T_a=-20~75°C, V_{cc}= 5 V± 5 %, V_{ss}= 0 V, unless otherwise noted)

Sumbol	Parameter		Test seedities	Limits			11-14
Symbol			Test conditions	Min	Тур	Max	Unit
VIH	High-level input voltage			2.0		Vcc	v
VIL	Low-level input voltage			-0.5		0.8	v
V	High-level output voltage	Data bus	I _{0H} =-400µА	2.4			v
V _{он}		Port	I _{0H} =-200µА	2.4		1	
V	Low-level output voltage	Data bus	I _{OL} =2.5mA			0, 45	v
Vol		Port	I _{OL} =1.7mA	1		0.45	
loн	High-level output current (Note10)		V _{OH} =1.5V, R _{EXT} =750Ω	-1		-4	mA
lcc	Supply current from V _{CC}					120	mA
l _{ін}	High-level input current		V ₁ =V _{CC}			±10	μA
հլ	Low-level input current		V _i =0V			±10	μA
loz	Off-state output current		Vo=0V~Vcc			±10	μA
Ci	Input terminal capacitance		V _{IL} =V _{SS} , f=1MHz, 25mVrms T _a =25°C			10	pF
Ci/o	Input/output terminal capacitance		$V_{I/OL} = V_{SS}$, f=1MHz, 25mVrms T _a =25°C			20	pF

 Note
 9
 Current flowing into an IC is positive, out is negative

 10
 It is valid only for any 8 input/output pins of PB and PC.

TIMING REQUIREMENTS ($T_a = -20 \sim 75^{\circ}$ C, $V_{cc} = 5 V \pm 5 \%$, $V_{ss} = 0 V$, unless otherwise noted)

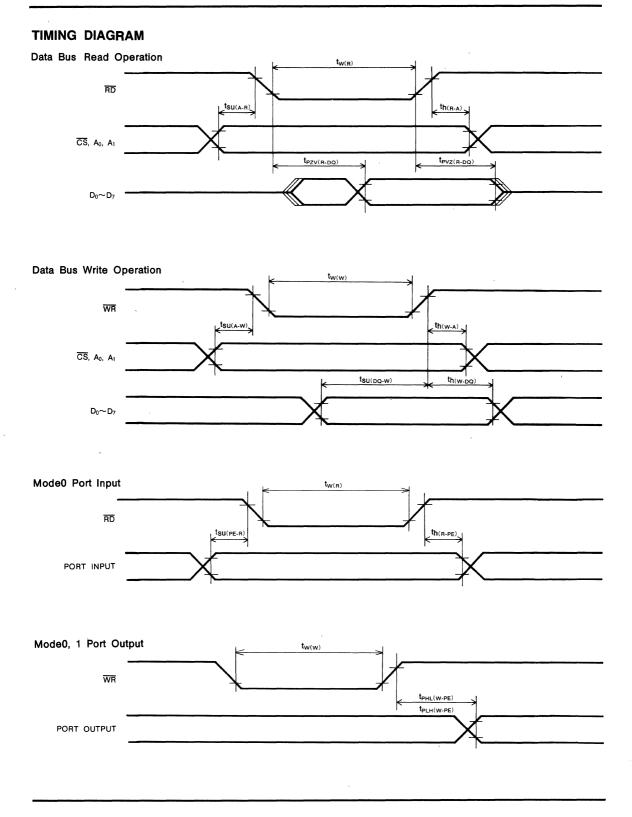
Symbol	Prameter	Tool and diana	Limits			11-1
		Test conditions	Min	Тур	Max	Unit
t _{W(R)}	Read pulse width		300			ns
t _{SU(PE-R)}	Peripheral setup time before read		0			ns
th(R-PE)	Peripheral hold time after read		0			ns
t _{su(A-R)}	Address setup time before read		0			ns
th(R-A)	Address hold time after read		0			ns
t _{w(w)}	Write pulse width		300			ns
tsu(DQ-W)	Data setup time before write		100			ns
th(w-DQ)	Data hold time after write		30			ns
t _{su(A-w)}	Address setup time before write		0			ns
t _{h(w-A)}	Address hold time after write		20			ns
tw(ACK)	Acknowledge pulse width		300			ns
tw(STB)	Strobe pulse width		500			ns
t _{su(pe-stb)}	Peripheral setup time before strobe]	0			ns
th(STB-PE)	Peripheral hold time after strobe]	180			ns
t _{C(RW)}	Read/write cycle time]	850			ns

PROGRAMMABLE PERIPHERAL INTERFACE

Limits Symbol Parameter Test conditions Unit Min Тур Мах 200 t_{PZV(R-DQ)} Propagation time from read to data output ns Propagation time from read to data floating (Note11) 10 100 t_{PVZ(R-DQ)} ns tPHL(W-PE) 350 Propagation time from write to output ns t_{PLH(W-PE)} Propagation time from strobe to IBF flag 300 ns tPLH(STB-IBF) PLH(STB-INTR) Propagation time from strobe to interrupt 300 ns Propagation time from read to interrupt C_L=150pF 400 tPHL(R-INTR) ns t_{PHL(R-IBF)} Propagation time from read to IBF flag 300 ns t_{PHL(W-INTR)} Propagation time from write to interrupt 850 ns t_{PHL(W-OBF)} Propagation time from write to OBF flag 650 ns tPLH(ACK-OBF) Propagation time from acknowledge to OBF flag 350 ns Propagation time from acknowledge to interrupt 350 tplh(ack-intr) ns 300 tpzv(ACK-PE) Propagation time from acknowledge to data output ns tpvz(ACK-PE) Propagation time from acknowledge to data floating (Note11) 20 250 ns

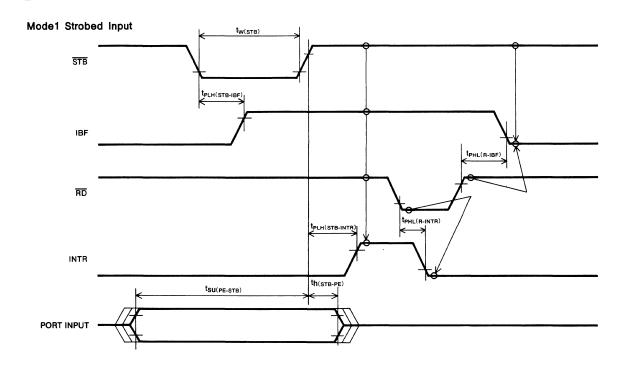
SWITCHING CHARACTERISTICS ($T_a = -20 \sim 75^{\circ}$ C, $V_{cc} = 5 V \pm 5 \%$, $V_{ss} = 0V$, unless otherwise noted)

Test conditions are not applied

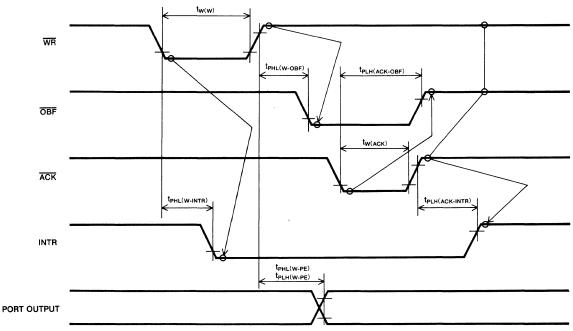

Note 11 : Test conditions are ... 12 : A.C Testing waveform input pulse level Input pulse rise time Input pulse fall time Reference level input output

0.45~2.4V 20ns 20ns V_{IH}=2V, V_{IL}=0.8V V_{OH}=2V, V_{OL}=0.8V

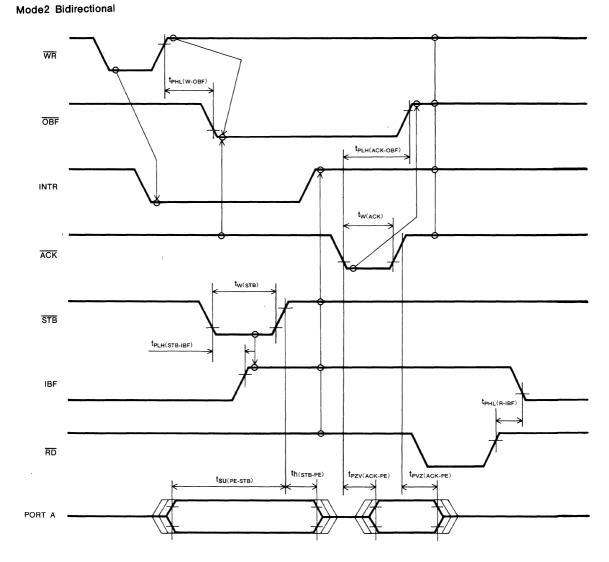
2.4 $X^{2}_{0.8}$ 2 0.8 0.45



PROGRAMMABLE PERIPHERAL INTERFACE



PROGRAMMABLE PERIPHERAL INTERFACE



Mode1 Strobed Output

PROGRAMMABLE PERIPHERAL INTERFACE

Note 13 INTR=IBF $\cdot \overline{MASK} \cdot \overline{STB} \cdot \overline{RD} + \overline{OBF} \cdot \overline{MASK} \cdot \overline{ACK} \cdot \overline{WR}$

PROGRAMMABLE PERIPHERAL INTERFACE

CIRCUIT EXAMPLES FOR APPLICATIONS

1. Mode 0

An example of a circuit for an application using mode 0 is shown in Fig. 11.

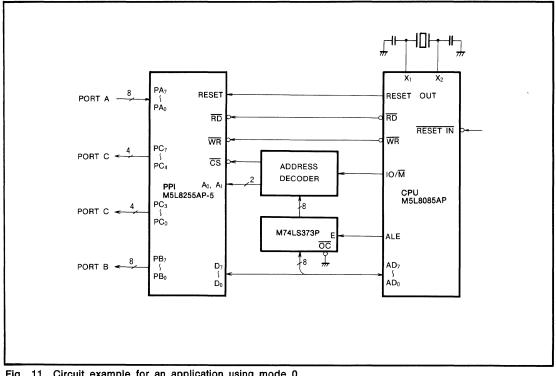


Fig. 11 Circuit example for an application using mode 0.

In this example, the PPI is in mode 0, and the control word should be 10010000 (9016)

A, 90 # MVI

OUT 03#

The PPI will be initialized by executing the above two instructions.

Then, for example, to read data from port A and to output data to port B and C, the following three instructions can be used.

> IN 00 # CPU A register ← Port A

OUT 01 # Port B ← A register

OUT 02 # Port C ← A register

After setting the mode, each port operates as a normal port. After setting the mode, as shown in Fig. 11, to read data from port A, to output to port B, and to set the first bit of port C=1, the following four instructions can be used.

IN	00#	CPU A register 🔶 Port A
OUT	01 #	Port B ← A register
MVI	A, 01 #	Bit-setting control word for PC0
OUT	03#	Outputting to control address
		$(\overline{\mathrm{CS}} = \mathrm{``L"}, \mathrm{A}_1 = \mathrm{A}_0 = 1)$

The other bits of port C, in this case, are not affected.

2. Mode 1

An example of a circuit for an application using mode 1 is shown in Fig. 12.

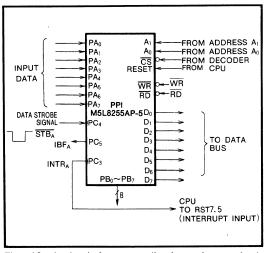


Fig. 12 A circuit for an application using mode 1

Transferring data from a terminal unit to port A and sending a strobe signal to PC_4 will hold the data in the internal latch of the PPI, and PC_5 (IBF input buffer full flag) is set to highlevel. If a bit-set of PC_4 has been executed in advance, the CPU can be interrupted by the INTR signal of PC_3 when the input data is latched in the PPI. In this way, port A becomes an interrupting port; and at the same time, port B can select its mode independently. The actual program for the circuit of Fig. 12 is as follows:

MVI	A, B0♯	Control word is 10110000, port A is the mode 1 input and the others are output
OUT MVI OUT EI HLT	03 # A, 09 # 03 #	Outputting to the control address PC₄bit-set 00001001 Outputting to the control address Interrupt enable Halt

If the data has been set in a terminal unit, and the strobe signal has been input, then the data will be latched in port A and the CPU RST7.5 goes high-level. In the case of Fig. 11, a jump to $003C_{16}$ is executed to continue the program as follows:

003C₁₆ IN 00 # CPU register A ← Port A

EI

RET

PC₃ interrupt signal becomes low-level

3. Mode 2

An example of a circuit for an application using mode 2 is shown in Fig. 13.

In Fig. 13, the data bus of the slave system is connected with the corresponding PPI A bit of the master station. The input port consists of a three-state buffer and gate B which allow the slave CPU to read flag outputs (IBF, \overline{OBF}) of the PPI as data.

When the following instruction is executed in this example, the action is as described:

IN 01 # (reading in from 01₁₆ input port)

The data which is made up of the least significant bit (D_0) , the \overline{OBF} (output buffer full flag output) and the next least significant bit (D_1) , the IBF (input buffer full flag output)will be read into the slave CPU.

When the following instruction is executed, the action is as described:

IN 00# (reading in from 00₁₆ input port)

 $\overline{\text{ACK}}$ (PC₆) of the PPI becomes low-level by gate C, and the contents of the port A output latch will be read into the slave CPU.

When the following instruction is executed, the action is as described:

OUT 00 # (writing out to 00₁₆ output port)

STB (PC₄) of the PPI becomes low-level by gate D, then the contents of the slave CPU register A will be written into the port A input latch of the PPI.

Actual operations are as follows:

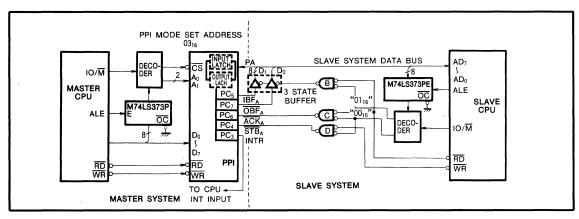
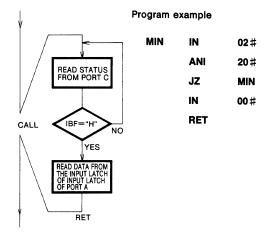
1. PPI is set in mode 2 by the master CPU (03 address).

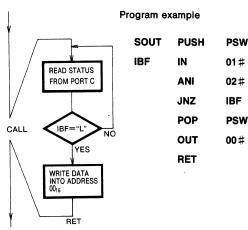
- 2. The master CPU writes the data, which is transferred to the slave CPU, into port A of the PPI (in turn, OBF becomes low-level).
- The slave CPU continues to read the state of flags (OBF and IBF) as data while OBF is high-level (i.e. no data from the master CPU).

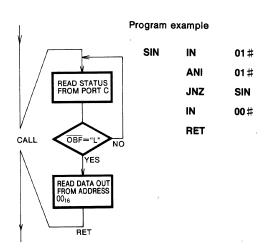
- 4. When the slave CPU senses that OBF has become low-level, the slave CPU starts to read the data from 00₁₆ (Which is the input address for the preceding data) which is in the output latch of port A (in turn, OBF returns to high-level).
- 5. During this period, the master CPU reads the status flags (reading in from 02 of port C) and checks the states of both the bit 7 (OBF) and bit 5 (IBF). If OBF is low-level, it indicates that the slave CPU has not yet received the data; so the master does not write new data. If OBF is high-level, the master CPU writes the next data.
- 6. When data is to be transferred to the master CPU, the contents of the slave CPU A register will be transmited to the port input latch of the PPI The slave CPU transfers the data to address 00₁₆ (in turn, the IBF becomes high-level).
- 7. The master CPU transfers data to port C and then checks the status flag. If the input latch contains data from the slave CPU, which is indicated by IBF having a high-level output, the data is read from port (00_{16}) (in turn, the IBF returns to low-level).
- The slave CPU reads the status flag from 01₁₆ to determine if IBF has returned to low-level If it has not, new data will not be written as long as IBF is high-level.
- In this way, data can be exchanged. Since there are two sets of independent registers, input latch and output latch, used by port A of the PPI, it is not necessary to alternate input/output transfers.

A program which has operating functions as described above, is explained as follows.

The operation, in mode 2, for group A of the PPI is considered here.


Fig. 13 A circuit for an application using mode 2


- Program example MOUT PUSH PSW OBF IN 02# READ STATUS ANI 80 # JΖ OBF POP PSW CALL OBF="H NO OUT 00# YES RET WRITE DATA INTO THE OUTPUT LATCH OF PORT A RET
- 1. Master CPU subroutine for transmitting data to the slave CPU.
- 2. Subroutine for receiving data from the slave CPU.

3. Slave CPU subroutine for transmitting data to the master CPU.

4. Subroutine for receiving data from the master CPU.

4. Address Decoding

Address decoding with multiple PPI units is shown in Figs. 14 and 15. These are functionally equal.

The same address data is output to both the upper and lower 8 bits address bus with the execution of IN or OUT instruction by the CPU.

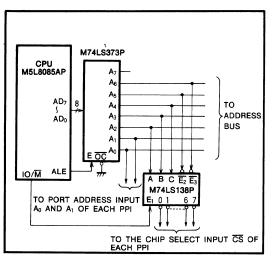


Fig. 14 PPI address decoding (case 1)

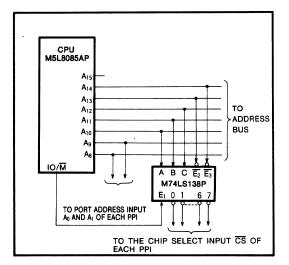


Fig. 15 PPI address decoding (case 2)

5. PPI Initialization

It is advisable to rest the PPI with a system initial reset and to select the mode at the beginning of a system program. The initial state of the PPI used as an output port is shown in Fig. 16.

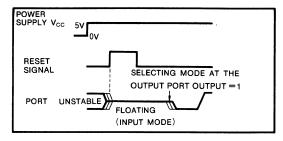


Fig. 16 PPI initialization

Note 14 Period of reset pulse must be at least $50\mu s$ during or after power on. Subsequent reset pulse can be 500ns minimum.

MITSUBISHI LSIS M5L8257P-5

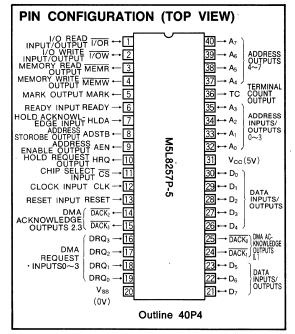
PROGRAMMABLE DMA CONTROLLER

DESCRIPTION

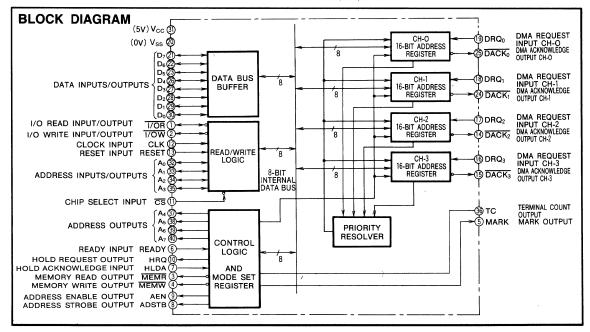
The M5L8257P-5 is a programmable 4-channel direct memory access (DMA) controller. It is produced using the Nchannel silicon-gate ED-MOS process and is specifically designed to simplify data transfer at high speeds for microcomputer systems

The LSI operates on a single 5V power supply.

FEATURES


- Single 5V supply voltage
- TTL compatible interface
- Priority DMA request logic
- Channel-masking function
- Terminal count and Modulo 128 outputs
- 4-channel DMA controller
- Compatible with MELPS85 devices

APPLICATION


DMA control of peripheral equipment such as floppy disks and CRT terminals that require high-speed data transfer.

FUNCTION

The M5L8257P-5 controller is used in combination with the M5L8212P 8-bit input/output port in 8-bit microcomputer systems. It consists of a channel section to acknowledge DMA requests, control logic to exchange commands and data with the CPU, read/write logic, and registers to hold transfer addresses and count the number of bytes to be transferred. When a DMA request is made to an unmasked channel from the peripherals after setting of the transfer mode, transferstart address and the number of transferred bytes for the registers, the M5L8257P-5 issues a priority request for the use of the bus to the CPU. On receiving an HLDA signal

from the CPU, it sends a DMA acknowledge signal to the channel with the highest priority, starting DMA operation. During DMA operation, the contents of the high-order 8 bits of the transfer memory address are transmitted to the M5L8212P address-latch device through pins $D_0 \sim D_7$. The contents of the low-order 8 bits are transmitted through pins $A_0 \sim A_7$. After address transmission, DMA transfer can be started by dispatching read and write signals to the memories and peripherals.

OPERATION

I/O Read Input/Output (I/OR)

When the M5L8257P-5 is in slave-mode operation, this threestate, bidirectional pin serves for inputting and reads the upper/lower bytes of the 8-bit status register or 16-bit DMA address register and the high/low order bytes of the terminal counter.

In the master mode, the pin gives control output and is used to obtain data from a peripheral equipment during the DMA write cycle.

I/O Write Input/Output (I/OW)

This pin is also of the three-state bidirectional type. When the M5L8257P-5 is in slave-mode operation, it serves for inputting and loads the contents of the data bus on the 8-bit status register and the upper/lower bytes of the 16-bit terminal counter or 16-bit DMA address register.

Memory Read Output (MEMR)

This active-low three-state output is used to read data from the addressed memory location during DMA read cycles.

Memory Write Output (MEMW)

This active-low three-state output is used to write data into the addressed memory location during DMA write cycles.

Mark Output (MARK)

This signal notifies that the DMA transfer cycle for each channel is the 128th cycle since the previous MARK output.

Ready Input (READY)

This asynchronous input is used to extend the memory read and write cycles in the M5L8257P-5 with wait states if the selected memory requires longer access time.

Hold Acknowledge Input (HLDA)

This input from the CPU indicates that the system bus is controlled by the M5L8257P-5.

Address Strobe Output (ADSTB)

This output strobes the most significant byte of the memory address into the M5L8212P (8-bit input/output port) through the data bus.

Address Enable Output (AEN)

This signal is used to disable the system data bus and system control bus by means of the bus enable pin on the system controller. It may also be used to inhibit non-DMA devices from responding during DMA cycles.

Hold Request Output (HRQ)

This output requests control of the system bus. HRQ will normally be applied to the HOLD input on the CPU.

Chip-Select Input (CS)

This pin is active on a low-level. It enable the $\overline{I/OR}$ and $\overline{I'}$ \overline{OW} signals output from the CPU, when the M5L8257P-5 is in slave-mode operation.

In the master mode, it is disabled to prevent the chip from selecting itself while performing the DMA function.

Clock Input (CLK)

This pin generates internal timing for the M5L8257P-5 and is connected to the ϕ (TTL) output of the system clock.

Reset Input (RESET)

This asynchronous input clears some registers and control lines inside the M5L8257P-5.

DMA Acknowledge Outputs (DACK0~DACK3)

These active-low outputs indicate that the peripheral equipment connected to the channel in question can execute the DMA cycle.

DMA Request Inputs (DRQ0~DRQ3)

These independent, asynchronous channel-request inputs are used to secure use of the DMA cycle for the peripherals. **Data-Bus Buffer**

This three-state, bidirectional, 8-bit buffer interfaces the M5L8257P-5 to the CPU for data transfer. During a DMA cycle the upper 8 bits of the DMA address are output to the M5L8212P latch device through this buffer.

Address Inputs/Outputs (A₀~A₃)

The four bits of these input/output pins are bidirectional. When the M5L8257P-5 is in slave-mode operation, serve to input and address the internal registers. In the case of master operation, they output the low-order 4 bits of the 16-bit memory address.

Terminal Count Output (TC)

When the terminal count registers became (3FFF)H, terminal count signal is out. And this signal notifies that the present DMA cycle is the last cycle for this data block.

Address Inputs/Outputs (A₄~A₇)

These four address lines are three-state outputs which constitute bits 4 through 7 of the memory address generated by the M5L8257P-5 during all DMA cycles.

Register	Initialization
----------	----------------

Two 16-bit registers are provided for each of the 4 channels. **DMA Address register**

15															0
A ₁₅	A ₁₄	A ₁₃	A ₁₂	A ₁₁	A 10	A ₉	A ₈	A 7	A ₆	A ₅	A ₄	A ₃	A ₂	A 1	A ₀
			D	MA	TRAN	ISFE	RS	TAR	ГING	AD	DRE	SS			
Ter	mir	al	cou	nt	regi	ste	r								

15	14	13			-										0
Rd	Wr	C ₁₃	C ₁₂	C ₁₁	C ₁₀	C9	C ₈	C ₇	C ₆	C5	C4	C ₃	C ₂	C1.	C ₀
DMA	MC	DE	I	NL	ливі	ERC	DF T	RAN	SFER	RREC) BY	TES	-1		

The DMA transfer starting address, number of transferred bytes, and DMA mode are written for each channel in 2 steps using the 8-bit data bus. The lower-order and upperorder bytes are automatically indicated by the first-last flipflop for the writing and reading in 2 continuous steps.

The DMA mode (read, write, or verify) is indicated by the upper 2 bits of the terminal count register. The read mode refers to the operation of peripheral devices reading data out of memory. The write mode refers to data from peripheral devices being written into memory. The verify mode sends neither the read nor the write signals and performs a date check at the peripheral device.

In addition to the above-mentioned registers, there is a mode set register and a status register.

Mode set register (write only)

7			-				0
AL	TCS	EW	RP	EN3	EN2	EN1	EN0

ADDED FUNCTION SETTING BITS CHANNEL ENABLE BITS

Status Register (read only)

7							0
0	0	0	UP	тС3	TC2	TC1	TC0

The upper-order 4 bits of the mode set register are used to select the added function, as described in 5-66. The lowerorder 4 bits are mask bits for each channel. When set to 1, DMA requests are allowed. When the reset signal is input, all bits of the mode set and status registers are reset and DMA is inhibited for all channels. Therefore, to execute DMA operations, registers must first be initialized. An example of such an initialization is shown below.

MODESET:

MVI	A, ADDL	-
OUT	00 # :	Channel 0 lower-order address
MVI	A, ADDH	•
OUT	00 # :	Channel 0 upper-order address
MVI	A, TCL	
OUT	01 # :	Channel 0 terminal count lower-order
MVI	A, TCH	
OUT	01 # :	Channel 0 terminal count upper-order
MVI	A, XX	
OUT	08 # :	Mode set resister

As can be seen from the above example, until the contents of the address register and terminal count register become valid, the enable bit of the mode set register must not be set. This prevents memory contents from being destroyed by improper DRQ signals from peripheral devices.

DMA OPERATION DESCRIPTION

When a DMA request signal is received at the DRQ pin from a peripheral device after register initialization for a channel that is not masked, the M5L8257P-5 outputs a hold request signal to the CPU to begin DMA operation (S_1) .

The CPU, upon receipt of the HRQ signal, outputs the HLDA signal which reserves capture of the bus after it has executed the present instruction to place this system in the hold state

When the M5L8257P-5 receives the HLDA signal, an internal priority determining circuit selects the channel with the highest priority for the beginning of data transfer (S_0) .

Upon the next S1 state, the address signal is sent. The lower-order 8 bits and upper-order 8 bits are sent by means of the $A_0 \sim A_7$ and $D_0 \sim D_7$ pins respectively, latched into the M5L8212P and output at pins $A_8 \sim A_{15}$. Simultaneous with this, the AEN signal is output to prohibit the selection of a device not capable of DMA.

In the S₂ state, the read, extended write, and DACK signals are output and data transferred from memory or a peripheral device appears on the data bus.

In the S₃ state, the write signal required to write data from the bus is output. At this time if the remaining number of bytes to be transferred from the presently selected channel has reached 0, the terminal count (TC) signal is output. Simultaneously with this, after each 128-byte data transfer a mark signal is output as required. In addition, in this state the READY pin is sampled and, if low-level, the wait state (S_w) is entered. This is used to perform DMA with slow access memory devices. In the verify mode, READY input is ignored.

In the S₄ state, the DRQ and HLDA pins are sampled at the end of a transferred byte as the address signal, control signals, and \overrightarrow{DACK} signal are held to determine if transfer will continue.

As described above, transfer of 1 byte requires a minimum of 4 states for execution. For example, if a 2MHz clock input is used, the maximum transfer rate is 500k byte/s.

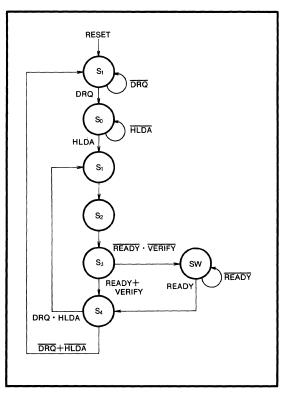


Fig. 1 DMA Operation state transition diagram

MEMORY MAPPED I/O

When using memory mapped I/O, it is neccessary to change the connections for the control signals.

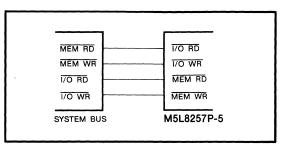
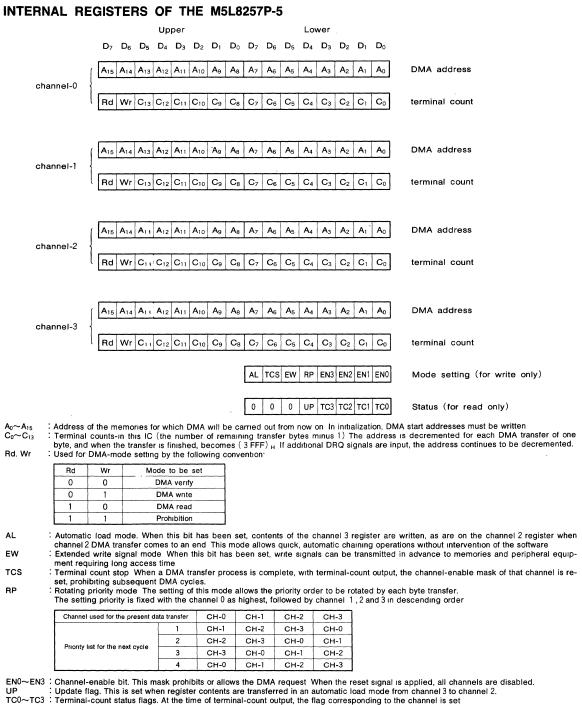


Fig. 2 Memory mapped I/O


Also, the read mode and write mode specifications for setting the mode of the terminal count are reversed.

.

M5L8257P-5

PROGRAMMABLE DMA CONTROLLER

The flag is, set by reading the status register, and is unaffected by the TCS bits

ī

M5L8257P-5

PROGRAMMABLE DMA CONTROLLER

	Addres	s input		F/L	Desertes
A3	A 2	A 1	A ₀	F/L	Register
0	0	0	0	0	channel 0 DMA address Low-order
0	0	0	0	1	channel 0 DMA address High-order
0	0	0	1	0	channel 0 terminal count Low-order
0	0	0	1	1	channel 0 terminal count High-order
0	0	1	0	0	channel 1 DMA address Low-order
0	0	1	0	1	channel 1 DMA address High-order
0	0	1	1	0	channel 1 terminal count Low-order
0	0	1	1	1	channel 1 terminal count High-order
0	1	0	0	0	channel 2 DMA address Low-order
0	1	0	0	1	channel 2 DMA address High-order
0	1	0	1	0	channel 2 terminal count Low-order
0	1	0	1	1	channel 2 terminal count High-order
0	1	1	0	0	channel 3 DMA address Low-order
0	1	1	0	1	channel 3 DMA address High-order
0	1	1	1	0	channel 3 terminal count Low-order
0	1	1	1	1	channel 3 terminal count High-order
1	0	0	0	_	Mode Setting (for Write Only)
1	0	0	0		Status (for Read Only)

REGISTER ADDRESS

F/L : First/last flip-flop This is toggled when register-write or read operations for each channel are finished, and specifies whether the next write or read operaton is to be for the upper bytes or the lower bytes. This means that write and read operations for each register must be carried out for a set of lower and higher bytes.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Power-supply voltage		-0.5~7	V
Vi	Input voltage	With respect to V _{SS}	-0.5~7	V
Vo	Output voltage		-0.5~7	v
Pd	Power dissipation (max)	T _a =25℃	1000	mW
Topr	Operating free-air temperature range		-20~75	°C
Tstg	Storage temperature range		-65~150	°

RECOMMENDED OPERATING CONDITIONS ($\tau_a = -20 \sim 75^{\circ}C$, unless otherwise noted)

Symbol	Parameter		Limits				
	Parameter	Min	Nom	Max	Unit		
V _{cc}	Power-supply voltage	4.75	5	5.25	v		
Vss	Power-supply voltage (GND)		0		V		

M5L8257P-5

PROGRAMMABLE DMA CONTROLLER

ELECTRICAL CHARACTERISTICS ($T_a = -20 \sim 75^{\circ}C$, $V_{cc} = 5 V \pm 5 \%$, unless otherwise noted)

Oursels at	Barranatar	Tast seeditors		Limits		11-14
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
VIH	High-level input voltage		2.0		Vcc	v
VIL	Low-level input voltage		-0.5		0.8	v
Vol	Low-level output voltage	I _{OL} =1.6mA			0.45	V
V _{OH1}	High-level output voltage for AB, DB and AEN	I _{OH} =-150µА	2.4			V
V _{OH2}	High-level output voltage for HRQ	00 A	3.3			V
V _{OH3}	High-level output voltage for others	—— I _{OH} =-80µА	2.4			V
lcc	Supply current from V _{CC}				120	mA
l _l	Input current	$V_{I}=0V, V_{CC}$	-10		10	μA
loz	Off-state output current	Vo=0V~Vcc	-10		10	μA
Cı	Input terminal capacitance	$T_a=25^{\circ}C$, $V_{CC}=V_{SS}$			10	pF
C _{I/O}	Input/output terminal capacitance	Pins other than that under measurement are set to 0V, f _C =1MHz			20	pF

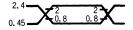
TIMING REQUIREMENTS ($\tau_a = -20 \sim 75^{\circ}$ C, $V_{cc} = 5 V \pm 5 \%$, $V_{ss} = 0 V$, unless otherwise noted)

Symbol	Parameter	Test conditions		Limits		Unit
Symbol		Test conditions	Min	Тур	Max	Unit
t _{w(R)}	Read pulse width		250			ns
t _{su(A-R)} t _{su(CS-R)}	Address or CS setup time before read		0			ns
t _h (R-A) t _h (R-CS)	Address or CS hold time after read		0			ns
t _{w(w)}	White pulse width		200			ns
t _{su(A} -w)	Address setup time before write		20			ns
th(w-A)	Address hold time after write		0			ns
tsu(DQ-w)	Data setup time before write		200			ns
th(w-DQ)	Data hold time after write		0			ns
tw(RST)	Reset pulse width		300			ns
tsu(vcc-RST)	Supply voltage setup time before reset		500			ns
tr	Input signal rise time				20	ns
tf	Input signal fall time				20	ns
t _{su(RST-w)}	Reset setup time before write		2			t _{C(#)}
t _{C(∳)}	Clock cycle time		0.32		4	μs
t _{w(\$)}	Clock pulse width high-level		80		0.8t _{C(≠)}	ns
t _{su(DRQ} -∳)	DRQ setup time before clock		70			ns
th(HLDA-DRQ)	DRQ hold time after HLDA		0			ns
tsu(HLDA−¢)	HLDA setup time before clock		100			ns
tsu(RDY-∳)	Ready setup time before clock		30			ns
th(≠RDY)	Ready hold time after clock		20			ns

SLAVE MODE SWITCHING CHARACTERISTICS ($T_a = -20 \sim 75 \degree$, $V_{cc} = 5 V \pm 5 \%$, $V_{ss} = 0 V$, unless otherwise noted)

Symbol	Parameter	Test conditions		Unit		
		rest continuits	Min	Тур	Max	Unit
t _{PZV(R-DQ)}	Output data enable time after read	0 150 5	0		200	ns
t _{PVZ(R-DQ)}	Output data disable time after read	C _L =150pF	20		100	ns

DMA MODE SWITCHING CHARACTERISTICS ($T_a = -20 \sim 75^{\circ}$ C, $V_{cc} = 5V \pm 5\%$, $V_{ss} = 0V$, unless otherwise noted)

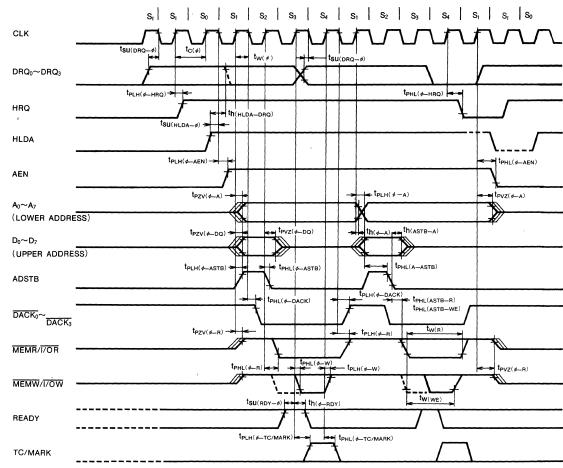

Symbol	Parameter	Test conditions		Limits		Unit
			Min	Тур	Мах	
t _{PLH(\$} —HRQ) t _{PHL(\$} —HRQ)	Propagation time from clock to HRQ (Note1)				160	ns
tр∟н(∮—нва) tpн∟(∮—нва)	Propagation time from clock to HRQ (Note3)				250	ns
t _{PLH(Ø-AEN)}	Propagation time from clock to AEN (Note1)				300	ns
PHL(#-AEN)	Propagation time from clock to AEN (Note1)				200	ns
PZV(AEN-A)	Propagation time from AEN to address active (Note4)		20			ns
PZV(# -A)	Propagation time from clock to address active (Note2)				250	ns
PVZ(Ø -A)	Propagation time from clock to address floating (Note2)				150	ns
PLH(# -A)	Address setup time after clock (Note2)				250	ns
^l h(∳—A)	Address hold time after clock (Note2)		t _{PLH(∲} - _{A)} -50			ns
h(R-A)	Address hold time after read (Note4)		60			ns
h(w-A)	Address hold time after write (Note4)		300			ns
PZV(# - DQ)	Propagation time from clock to data active				300	ns
t _{PVZ(#-DQ)}	Propagation time from clock to data floating (Note2)		t _{PHL(∲} _{ASTB)} +20		170	ns
PHL(A-ASTB)	Propagation time from address to address strobe (Note2)		100			ns
h(ASTB-A)	Propagation time from address strobe to address hold (Note4)		50			ns
PLH(# -ASTB)	Propagation time from clock to address strobe (Note1)				200	ns
PHL(# ASTB)	Propagation time from clock to address strobe (Note1)				140	ns
tw(ASTB)	Address strobe pulse width (Note4)		t _{c(≠)} —100			ns
t _{PHL(AS-R)} t _{PHL(AS-WE)}	Propagation time from address strobe to read or extended write (Note4)		70			ns
th(dq—r) th(dq—we)	Read or extended write hold time after data (Note4)		20			ns
tplh(∮—dack) Phl(∮—tc/mark) Plh(∮—tc/mark)	Propagation time from clock to DACK or TC/MARK (Note1, 5)				250	ns
РнL(∮—R) РнL(∮—W) РнL(∮—WE)	Propagation time from clock to read, write or extended write (Note2, 6)				200	ns
PLH(∮−R) PLH(∮−W)	Propagation time from clock to read or write (Note2, 7)				200	ns
PZV(∮−R) PZV(∮−W)	Propagation time from clock to read active or write active (Note2)				300	ns
PVZ(Ø - R) PVZ(Ø - W)	Propagation time from clock to read floating or write floating (Note2)				150	ns
W(R)	Read pulse width (Note4)		$2t_{C($^{\phi}$)}+t_{W($^{\phi}$)}-50$			ns
w(w)	Write pulse width (Note4)		t _{c(∮)} —50			ns
W(WE)	Extended write pulse width (Note4)		2t _{c(≠)} 50			ns

Note

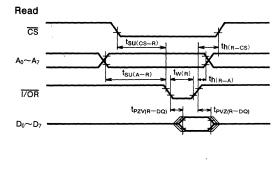
Note 5: $\Delta t_{PLH(\#-DACK)} < 50ns$, $\Delta t_{PHL(\#-TC/MARK)} < 50ns$, $\Delta t_{PLH(\#-TC/MARK)} < 50ns$, $\Delta t_{PLH(\#-TC/MARK)} < 50ns$ 6: $\Delta t_{PHL(\#-R)} < 50ns$, $\Delta t_{PHL(\#-W)} < 50ns$, $\Delta t_{PLH(\#-WE)} < 50ns$ 7: $\Delta t_{PLH(\#-R)} < 50ns$, $\Delta t_{PLH(\#-W)} < 50ns$ 8: A. C Testing waveform Input pulse level 0.45~2.4V Input pulse rise time 20ns Long 1 time 20ns

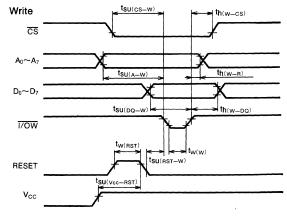
output

- - Input pulse fall time Reference level input
- 20ns $V_{IH}=2V, V_{IL}=0.8V$ $V_{OH}=2V, V_{OL}=0.8V$

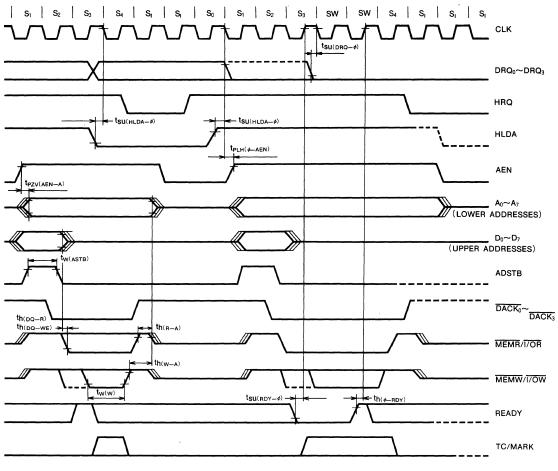

MITSUBISHI LSIs

M5L8257P-5


PROGRAMMABLE DMA CONTROLLER


TIMING DIAGRAMS

Slave Mode



MITSUBISHI LSIs

M5L8257P-5

PROGRAMMABLE DMA CONTROLLER

Note 9:

The center line indicates a floating (high-impedance) state.

MITSUBISHI LSIS

PROGRAMMABLE INTERRUPT CONTROLLER

DESCRIPTION

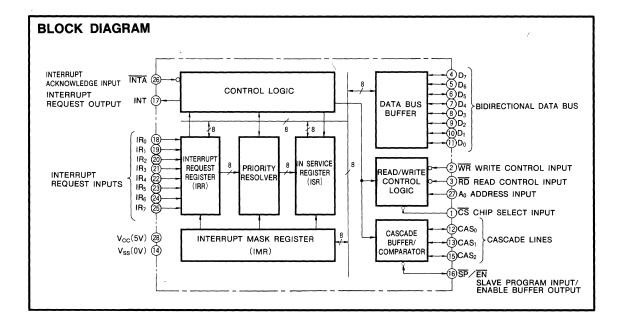
The M5L8259AP is a programmable LSI for interrupt control. It is fabricated using N-channel silicon-gate ED-MOS technology and is designed to be used easily in connection with an MELPS85, MELPS86 or MELPS88.

FEATURES

- Single 5V supply voltage
- TTL compatible
- CALL instruction to the CPU is generated automatically
- Priority, interrupt mask and vectored address for each interrupt request input are programmable
- Up to 64 levels of interrupt requests can be controlled by cascading with M5L8259AP
- Polling functions

APPLICATION

The M5L8259AP can be used as an interrupt controller for MELPS85, MELPS86 and MELPS88.

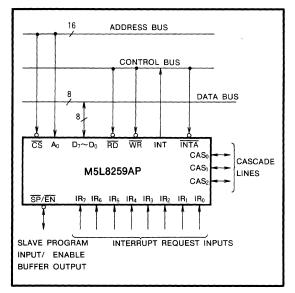

FUNCTION

The M5L8259AP is a device specifically designed for use in real time, interrupt driven microcomputer systems. It manages eight level requests and has built-in features for expandability to other M5L8259APs. The priority and interrupt mask can be changed or reconfigured at any time by the main program

When an interrupt is generated because of an interrupt request at 1 of the pins, the M5L8259AP based on the mask

and priority will output an INT to the CPU. After that, when an INTA signal is received from the CPU or the system controller, a CALL instruction and a programmed vector address is released onto the data bus.

M5L8259AP


PROGRAMMABLE INTERRUPT CONTROLLER

PIN DESCRIPTION

Symbol	Pin name	Input or output	Functional significance
CS	Chip select input	Input	This input is active at low-level, but may be at high-level during interrupt request input and interrupt processing
WR	Write control input	Input	Command write control input from the CPU
RD	Read control input	Input	Data read control input for the CPU
D ₇ ~D ₀	Bidirectional data bus	Input/ output	Data and commands are transmitted through this bidirectional data bus to and from the CPU
CAS ₂ ~ CAS ₀	Cascade lines	Input/ output	These pins are outputs for a master and inputs for a slave And these pins of the master will be able to address each individual slave. The master will enable the corresponding slave to release the device routine address during bytes 2 and 3 of INTA
SP/EN	Slave program input/ Enable buffer output	Input/ output	SP in normal mode, a master is designated when $\overline{SP/EN}$ ="H" and a slave is designated when $\overline{SP/EN}$ ="L" EN in the buffered mode, whenever the M5L8259AP's data bus output is enabled, its $\overline{SP/EN}$ pin will go low-level
INT	Interrupt request output	Output	This pin goes high-level whenever a valid interrupt is asserted
IR ₇ ∼IR₀	Interrupt request input	Input	The asynchronous interrupt inputs are active at high-level. The interrupt mask and priority of each interrupt input can be changed at any time. When using edge triggered mode, the rising edge (low-level to high-level) of the interrupt request and the high-level must be held until the first INTA. For level triggered mode, the high-level must be held until the first INTA.
INTA	Interrupt acknowledge input	Input	When an interrupt acknowledge (\overline{INTA}) from the CPU is received, the M5L8259AP releases a CALL instruction or vectored address onto the data bus
Ao	A ₀ address input	Input	This pin is normally connected to one of the address lines and acts in conjunction with the \overline{CS} , \overline{WR} and \overline{RD} when writing commands or reading status registers

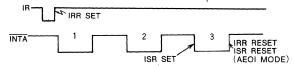
OPERATION

The M5L8259AP is interfaced with a standard system bus as shown in Fig. 1 and operates as an interrupt controller.

Fig. 1 The M5L8259AP interfaces to standard system bus.

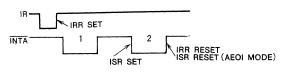
Table 1 M5L8259AP basic operation

A ₀	D4	D ₃	RD	WR	cs	Input operation (read)
0			L	н	L	IRR, ISR or interrupting level→data bus
1			L	н	L	IMR→Data bus
						Output operation (write)
0	0	0	н	L	L	Data bus→OCW2
0	0	1	н	L	L	Data bus→OCW3
0	1	х	н	L	L	Data bus→ICW1
1	х	х	н	L	L	Data bus→OCW1, ICW2, ICW3, ICW4
						Disable function
х	х	х	н	H	L	Data bus→High-impedance
х	х	х	х	х	н	Data bus→High-impedance


M5L8259AP

PROGRAMMABLE INTERRUPT CONTROLLER

Interrupt Sequence


1. When the CPU is a MELPS85

- When one or more of the interrupt request inputs are raised high-level, the corresponding IRR bit(s) for the high-level inputs will be set
- (2) Mask state and priority levels are considered and, if appropriate, the M5L8259AP sends an INT signal to the CPU.
- (3) The acknowledgement of the CPU to the INT signal, the CPU issues an INTA pulse to the M5L8259AP.
- (4) Upon receiving the first INTA pulse from the CPU, a CALL instruction is released onto the data bus.
- (5) A CALL is a 3-byte instruction, so additional two INTA pulses are issued to the M5L8259AP from the CPU.
- (6) These two INTA pulses allow the M5L8259AP to release the program address onto the data bus. The low-order 8 bits vectored address is released at the second INTA pulse and the high-order 8 bits vectored address is released at the third INTA pulse. The ISR bit corresponding to the interrupt request input is set upon receiving the third INTA pulse from the CPU, and the corresponding IRR bit is reset.
- (7) This completes the 3-byte CALL instruction and the interrupt routine will be serviced. The ISR bit is reset at the trailing edge of the third INTA pulse in the AEOI mode In the other modes the ISR bit is not reset until an EOI command is issued.

2. When the CPU is a MELPS86 or MELPS88

- (1) When one or more of the interrupt request inputs are raised high-level, the corresponding IRR bit(s) for the high-level inputs will be set.
- (2) Mask state and priority levels are considered and if appropriated, the M5L8259AP sends an INT signal to the CPU.
- (3) As an acknowledgement to the INT signal, the CPU issues an INTA pulse to the M5L8259AP.
- (4) Upon receiving the first INTA pulse from the CPU, the M5L8259AP does not drive the data bus, and the data bus keeps high-impedance state.
- (5) When the second INTA pulse is issued from the CPU, an 8-bit pointer is released onto the data bus.
- (6) This completes the interrupt cycle and the interrupt routine will be serviced. The ISR bit is reset at the trailing edge of the second INTA pulse in the AEOI mode. In the other modes the ISR bit is not reset until an EOI command is issued from the CPU.

The interrupt request input must be held at high-level until the first \overline{INTA} pulse is issued. If it is allowed to return to low-level before the first \overline{INTA} pulse is issued, an interrupt request in IR₇ is executed. However, in this case the ISR bit is not set.

This is a function for a noise countermeasure of interrupt request inputs. In the interrupt routine of IR₇, if ISR is checked by software either the interrupt by noise or real interrupt can be acknowledged. In the state of edge trigger mode normallý the interrupt request inputs hold high-level and its input low-level pulse in the case of interrupt

Interrupt sequence outputs

1. When the CPU is a MELPS85

A CALL instruction is released onto the data bus when the first \overline{INTA} pulse is issued. The low-order 8 bits of the vectored address are released when the second \overline{INTA} pulse is issued, and the high-order 8 bits are released when the third \overline{INTA} pulse is issued. The format of these three outputs is shown in Table 2.

Table 2 Formats of interrupt CALL instruction and vectored address

First INTA pulse (CALL instruction)

D7	D ₆	D ₅	D₄	D ₃	D ₂	D1	Do
1	1	0	0	1	1	0	1

Second INTA pulse (low-order 8 bits of vectored address)

IR				Interv	a = 4			
	D7	D ₆	D 5	D4	D ₃	D ₂	D ₁	D ₀
IR ₀	A ₇	A ₆	A ₅	0	0	0	0	0
IR ₁	A7	A ₆	A ₅	0	0	1	0	0
IR ₂	A7	A ₆	A ₅	0	1	0	0	0
IR ₃	A7	A ₆	A ₅	0	1	1	0	0
IR4	A7	A ₆	A ₅	1	0	0	0	0
IR ₅	A 7	A ₆	A ₅	1	0	1 `	· 0	0
IR ₆	A 7	A ₆	A ₅	1	1	0	0	0
IR ₇	A7	A ₆	A ₅	1	1	1	0	0

IR				Interv	val=8			
	D 7	D ₆	D ₅	D4	D ₃	D ₂	D ₁	D ₀
IR ₀	A7	A ₆	0	0	0	0	0	0
IR ₁	A 7	A ₆	0	0	1	0	0	0
IR ₂	A7	A ₆	0	1	0	0	0	0
IR ₃	A7	A ₆	0	1	1	0	0	0
IR4	A 7	A ₆	1	0	0	0	0	0
IR ₅	A 7	A ₆	1	0	1	0	0	0
IR ₆	A 7	A ₆	1	1	0	0	0	0
IR ₇	A 7	A ₆	1	1	1	0	0	0

Third INTA pulse (high-order 8 bits of vectored address)

D ₇	D ₆	D ₅	D₄	D ₃	D ₂	D ₁	D ₀
A ₁₅	A ₁₄	A ₁₃	A ₁₂	A11	A 10	A ₉	A ₈

2. When the CPU is a MELPS86 or MELPS88

The data bus keeps a high-impedance state when the first \overline{INTA} pulse is issued. Then the pointer $T_7 \sim T_0$ is released when the next \overline{INTA} pulse is issued. The content of the pointer $T_7 \sim T_0$ is shown in Table 3. The $T_2 \sim T_0$ are a binary code corresponding to the interrupt request level, $A_{10} \sim A_5$ are unused and ADI mode control is ignored.

Table 3 Contents of interrupt pointer Second INTA pulse (8-bit pointer)

	D ₇	D ₆	D ₅	D4	D ₃	D ₂	D ₁	D ₀
IR ₀	T 7	T ₆	T ₅	T4	T ₃	0	0	0
IR ₁	T 7	T ₆	T ₅	T₄	T ₃	0	0	1
IR ₂	T 7	T ₆	T ₅	T ₄	T ₃	0	1	0
IR ₃	T7	T ₆	T 5	T4	T ₃	0	1	1
IR ₄	T ₇	T ₆	T ₅	T4	T ₃	1	0	0
IR ₅	T7	T ₆	T ₅	T4	T ₃	1	0	1
IR ₆	T 7	T ₆	T ₅	T₄	T ₃	1	1	0
IR ₇	T7	T ₆	T ₅	T₄	T ₃	1	1	1

Interrupt Request Register (IRR), In-service Register (ISR)

As interrpt requests are received at inputs $IR_7 \sim IR_0$, the corresponding bits of IRR are set and as an interrupt request is serviced the corresponding bit of ISR is set. The IRR is used to store all the interrupt levels which are requesting service, and the ISR is used to store all the interrupt levels which are being serviced. The status of these two registers can be read. These two registers are connected through the priority resolver.

An interrupt requist received by IR_n is acknowledged on the leading edge when in the edge triggered mode or it is acknowledged on the level when in the level triggered mode.

PROGRAMMABLE INTERRUPT CONTROLLER

After that an INT signal is released and the interrupt request signal is latched in the corresponding IRR bit if the high-level is held until the first $\overline{\text{INTA}}$ pulse is issued. It is important to remember that the interrupt request signal must be held at high-level until the first $\overline{\text{INTA}}$ pulse is issued.

The interrupt request latching in the IRR causes a signal to be sent to the priority resolver unless it is masked out. When the priority resolver receives the signals it selects the highest priority interrupt request latched in IRR. The ISR is set when the last INTA pulse is issued while the corresponding bit of IRR is reset and the other bits of IRR are unaffected.

The bit of ISR that was set is not reset during the interrupt routine, but is reset at the end of the routine by the EOI command (end of interrupt) or by the trailing edge of the last \overline{INTA} pulse in AEOI mode.

Priority Resolver

The priority resolver examines all of the interrupt requests set in IRR to determine and selects the highest priority. The ISR bit corresponding to the selected (highest priority) request is set by the last $\overline{\text{INTA}}$ pulse.

Interrupt Mask Register (IMR)

The contents of the interrupt mask register are used to mask out (disable) interrupt requests of selected interrupt request pins Each terminal is independently masked so that masking a high priority interrupt does not influence the lower or higher priority interrupts. Therefore the contents of IMR selectively enable reading.

Interrupt Request Output (INT)

The interrupt request output connects directly to the interrupt input of the CPU.The output level is compatible with the input level required for the CPUs.

The INT output is set to low-level after the interrupt sequence ends, irrespective of the current mode. When the power is turned on, the INT output (high-level output) may appear but is reset to low-level by executing ICW 1.

Interrupt Acknowledge Input (INTA)

The CALL instruction and vectored address are released onto the data bus by the INTA pulse.

Data Bus Buffer

The data bus buffer is a 3-state bidirectional data bus buffer that is used to interface with the system bus. Write commands to the M5L8259AP, CALL instructions, vectored addresses, status information, etc. are transferred through the data bus buffer.

Read/Write Control Logic

The read/write control logic is used to control functions such as receiving commands from the CPU and supplying status information to the data bus.

Chip Select Input (CS)

The M5L8259AP is selected (enabled) when \overline{CS} is at lowlevel, but during interrupt request input or interrupt processing it may be high-level.

Write Control Input (WR)

When WR goes to low-level the M5L8259AP can be written.

PROGRAMMABLE INTERRUPT CONTROLLER

Read Control Input (RD)

When \overline{RD} goes low-level status information in the internal register of the M5L8259AP can be read through the data bus. Address Input (A_n)

The address input is normally connected with one of the address lines and is used along with \overline{WR} and \overline{RD} to control write commands and reading status information.

Cascade Buffer/Comparator

The cascade buffer/comparator stores or compares identification codes. The three cascade lines are output when the M5L8259AP is a master or input when it is a slave. The identification code on the cascade lines select it as master or slave.

PROGRAMMING THE M5L8259AP

The M5L8259AP is programmed through the Initialization Command Word (ICW) and the operation command word (OCW). The following explains the functions of these two commands.

Initialization Command Words (ICWs)

The initialization command word is used for the initial setting of the M5L8259AP. There are four commands in this group and the following explains the details of these four commands. The command flow of ICWs is shown Fig. 2.

ICW1

The meaning of the bits of ICW1 is explained in Fig. 3 along with the functions. ICW1 contains vectored address bits $A_7 \sim A_5$, a flag indicating whether interrupt input is edge triggered or level triggered, CALL address interval, whether a

single M5L8259AP or the cascade mode is used, and whether ICW4 is required or not.

Whenever a command is issued with $A_0=0$ and $D_4=1$, this is interpreted as ICW1 and the following will automatically occur.

- (a) The interrupt mask register (IMR) is cleared.
- (b) The interrupt request input IR_7 is assigned the lowest priority.
- (c) The special mask mode is cleared and the status read is set to the interrupt request register (IRR).
- (d) When IC4=0 all bits in ICW4 are set to 0.

ICW2

ICW2 contains vectored address bits $A_{15} \sim A_8$ or interrupt type $T_7 \sim T_3$, and the format is shown in Fig. 3.

ICW3

When SNGL=1 it indicates that only a single M5L8259AP is used in the system, in which case ICW3 is not valid. When SNGL=0, ICW3 is valid and indicates cascade connections with other M5L8259AP devices. In the master mode, a 1 is set for each slave.

When the CPU is a MELPS85 the CALL instruction is released from the master at the first $\overline{\text{INTA}}$ pulse and the vectored address is released onto the data bus from the slave at the second and third $\overline{\text{INTA}}$ pulses.

When the CPU is a MELPS86 the master and slave are in high-impedance at the first $\overline{\text{INTA}}$ pulse and the pointer is released onto the data bus from the slave at the second $\overline{\text{INTA}}$ pulse.

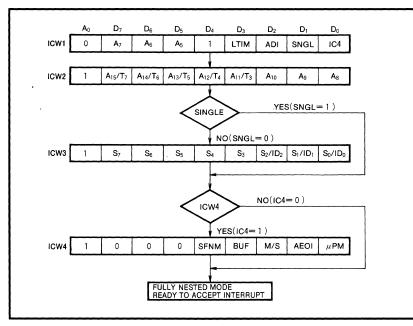


Fig. 2 Initialization sequence

M5L8259AP

PROGRAMMABLE INTERRUPT CONTROLLER

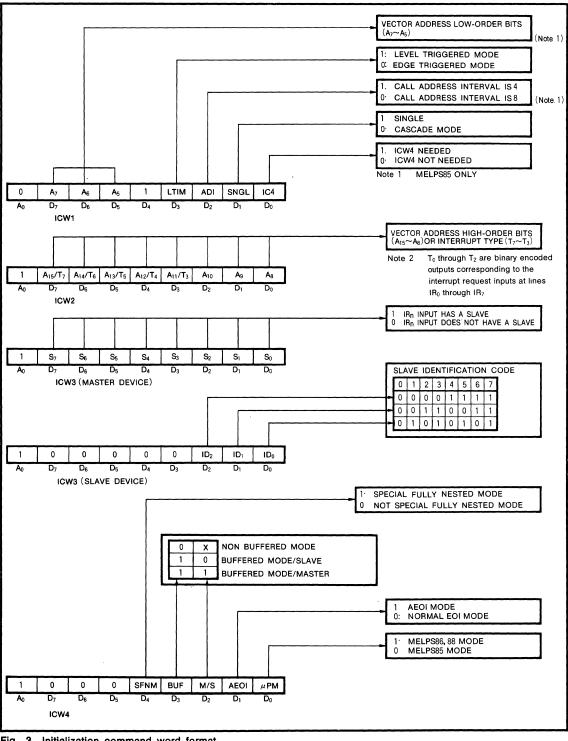


Fig. 3 Initialization command word format

M5L8259AP

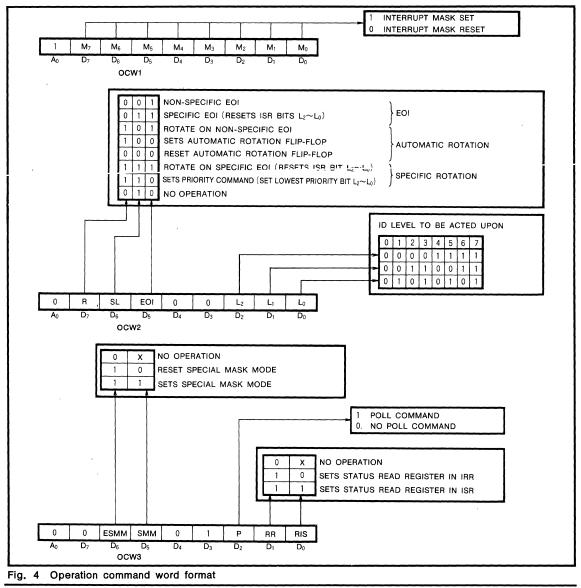
PROGRAMMABLE INTERRUPT CONTROLLER

The master mode is specified when $\overline{SP/EN}$ pin is high-level or BUF=1 and M/S=1 in ICW4, and slave mode is specified when $\overline{SP/EN}$ pin is low-level or BUF = 1 and M/S = 0 in ICW4. In the slave mode, three bits ID₂ ~ ID₀ identify the slave. And then when the slave code released on the cascade lines from the master, matches the assigned ID code, the vectored address is released by it onto the data bus at the next INTA pulse.

ICW4

Only when IC4=1 in ICW1 is ICW4 valid. Otherwise all bits are set to 0. When ICW4 is valid it specifies special fully nested mode, buffer mode, master/slave, automatic EOI and microprocessor mode The format of ICW4 is shown in Fig. 3.

Operation Command Words (OCW_S)


The operation command words are used to change the contents of IMR, the priority of interrupt request inputs and the special mask. After the ICW are programmed into the M5L8259AP, the device is ready to accept interrupt requests. There are three types of OCW_S ; explanation of each follows, and the format of OCW_S is shown in Fig. 4.

OCW1

The meaning of the bits of OCW1 are explained in Fig. 4 along with their functions. Each bit of IMR can be independently changed (set or reset) by OCW1.

OCW2

The OCW2 is used for issuing EOI commands to the M5L8259AP and for changing the priority of the interrupt re-

PROGRAMMABLE INTERRUPT CONTROLLER

quest inputs.

OCW3

The OCW3 is used for specifying special mask mode, poll mode and status register read.

FUNCTION OF COMMAND

Interrupt masks

The mask register contains a mask for each individual interrupt request. These interrupt masks can be changed by programming using OCW1.

Special mask mode

When an interrupt request is acknowledged and the ISR bit corresponding to the interrupt request is not reset by EOI command (which means an interrupt service routine is executing) lower priority interrupt requests are ignored.

In special mask mode interrupt requests received at interrupt request inputs which are masked by OCW1 are disabled, but interrupts at all levels that are not masked are possible. This means that in the mask mode all level of interrupts are possible or individual inputs can be selectively programmed so all interrupts at the selected inputs are disabled. The masks are stored in IMR and special mask is set/reset by executing OCW3.

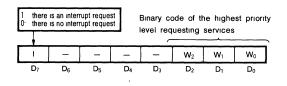
Buffered mode

The buffered mode will structure the M5L8259AP to send an enable signal on $\overline{SP}/\overline{EN}$ to enable the data bus buffer, when the data bus requires the data bus buffer or when cascading mode is used. In this mode, when data bus output of the M5L8259AP is enabled, the SP/EN output becomes lowlevel. This allows the M5L8259AP to be programmed whether it is a master or a slave by software. The buffered mode is set/reset by executing ICW4.

Fully nested mode

The fully nested mode is the mode when no mode is specified and is the usual operational mode. In this mode, the priority of interrupt request terminals is fixed from the lowest IR7 to the highest IR0. When an interrupt request is acknowledged the CALL instruction and vectored address are released onto the data bus. At the same time the ISR bit corresponding to the accepted interrupt request is set. This ISR bit remains set until it is reset by the input of an EOI command or until the trailing edge of last INTA pulse in AEOI mode. While an interrupt service routine is being executed, interrupt requests of same or lower priority are disabled while the bit of ISR remains set. The priorities can be changed by OCW2.

Special fully nested mode


The special fully nested mode will be used when cascading is used and this mode will be programmed to the master by ICW4. The special fully nested mode is the same as the fully nested mode with the following two exceptions.

1. When an interrupt from a certain slave is being serviced, this slave is not locked out from the master priority logic. Higher priority interrupts within the slave will be recognized by the master and the master will initiate an interrupt request to the CPU. In general in the normal fully nested mode, a serviced slave is locked out from the master's priority, and so higher priority interrupts from the same slave are not serviced.

2. When an interrupt from a certain slave is being serviced the software must check ISR to determine if there are additional interrupts requests to be serviced. If the ISR bit is 0 the EOI command may be sent to the master too. But if it is not 0 the EOI command should not be sent to the master.

Poll mode

The poll mode is useful when the internal enable flip-flop of the microprocessor is reset, and interrupt input is disabled. Service to the device is achieved by a programmer initiative using a poll command. In the poll mode the M5L8259AP at the next RD pulse puts 8-bit on the data bus which indicates whether there is an interrupt request and reads the priority level. The format of the information on the data bus is as shown below.

When I=0 (no interrupt request), $W_2 \sim W_0$ is 111. The poll is valid from WR to RD and interrupt is frozen. This mode can be used for processing common service routines for interrupts from more than one line and does not require any INTA sequence. Poll command is issued by setting P=1 in OCW3. End Of Interrupt (EOI) and Specific EOI (SEOI)

An EOI command is required by the M5L8259AP to reset the ISR bit. So an EOI command must be issued to the M5L8259AP before returning from an interrupt service routine.

When AEOI is selected in ICW4, the ISR bit can be reset at the trailing edge of the last INTA pulse. When AEOI is not selected the ISR bit is reset by the EOI command issued to the M5L8259AP before returning from an interrupt service routine. When programmed in the cascade mode the EOI command must be issued to the master once and to corresponding slave once.

There are two forms of EOI command, specific EOI and nonspecific EOI. When the M5L8259AP is used in the fully nested mode, the ISR bit being serviced is reset by the EOI command. When the non-specific EOI is issued the M5L8259AP will automatically reset the highest ISR bit of those that are set. Other ISR bits are reset by a specific EOI and the bit to be reset is specified in the EOI by the program. The SEOI is useful in modes other than fully nested

MITSUBISHI LSIS

PROGRAMMABLE INTERRUPT CONTROLLER

mode. When the M5L8259AP is in special mask mode ISR bits masked in IMR are not reset by EOI. EOI and SEOI are selected when OCW2 is executed.

Automatic EOI (AEOI)

In the AEOI mode the M5L8259AP executes non-specific EOI command automatically at the trailing edge of the last INTA pulse. When AEOI=1 in ICW4, the M5L8259AP is put in AEOI mode continuously until reprogrammed in ICW4.

The AEOI mode can only be used in a master M5L8259AP and not a slave.

Automatic rotation

The automatic rotation mode is used in applications where many interrupt requests of the same level are expected such as multichannel communication systems. In this mode when an interrupt request is serviced, that request is assigned the lowest priority so that if there are other interrupt requests they will have higher priorities. This means that the next request on the interrupt request being serviced must wait until the other interrupt requests are serviced (worst case is waiting for all 7 of the other controllers to be serviced). The priority and serving status are rotated as shown in Fig. 5.

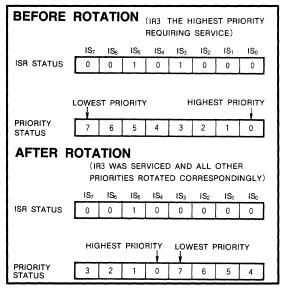


Fig. 5 An example of priority rotation

In the non-specific EOI command automatic rotation mode is selected when R=1, EOI=1, SL=0 in OCW2. The internal priority status is changed by EOI or AEOI commands. The rotation priority A flip-flop is set by R=1, EOI=0 and SL=0 which is useful when the M5L8259AP is used in the AEOI mode.

Specific rotation

Specific rotation gives the user versatile capabilities in interrupt controlled operations. It serves in those applications in which a specific device's interrupt priority must be altered. As opposed to automatic rotation which automatically sets priorities, specific rotation is completely user controlled. That is, the user selects the interrupt level that is to receive lowest or highest priority. Priority changes can be executed during an EOI command.

Level triggered mode/Edge triggered mode

Selection of level or edge triggered mode of the M5L8259AP is made by ICW1, When using edge triggered mode not only is a transition from low-level to high-level required, but the high-level must be held until the first \overline{INTA} . If the high-level is not held until the first \overline{INTA} , the interrupt request will be treated as if it were input on IR₇, except that the ISR bit is not set. When level triggered mode is used the functions are the same as edge triggered mode except that the transition from low-level to high-level is not required to trigger the interrupt request.

In the level triggered mode and using AEOI mode together, if the high-level is held too long the interrupt will occur immediately. To avoid this situation interrupts should be kept disabled until the end of the service routine or until the IR input returns low-level. In the edge triggered mode this type of mistake is not possible because the interrupt request is edge triggered.

Reading the M5L8259AP internal status

The contents of IRR and ISR can be read by the CPU with status read. When an OCW3 is issued to the M5L8259AP and an $\overline{\text{RD}}$ pulse issued the contents of IRR or ISR can be released onto the data bus. A special command is not required to read the contents of IMR. The contents of IMR can be released onto the data bus by issuing an $\overline{\text{RD}}$ pulse when A₀=1. There is no need to issue a read register command every time the IRR or ISR is to be read. Once a read register command is received by the M5L8259AP, it remains valid until it is changed. Remember that the programmer must issue a poll command every time to check whether there is an interrupt request and read the priority level. Polling overrides status read when P=1, RR=1 in OCW3.

CASCADING

The M5L8259AP can be interconnected in a system of one master with up to 8 slaves to handle up to 64 priority levels. A system of 3 units that can be used with the MELPS85 is shown in Fig. 6.

The master can select a slave by outputting its identification code through the 3 cascade lines. The INT output of each slave is connected to the master interrupt request inputs. When an interrupt request of one of the slaves is to be serviced the master outputs the identification code of the slave through the cascade lines, so the slave will release the vectored address on the next INTA pulse.

The cascade lines of the master are nomally low-level, and will contain the slave identification code from the leading edge of the first INTA pulse to the trailing edge of the last

PROGRAMMABLE INTERRUPT CONTROLLER

work in different modes. ICWs must be issued for each device, and EOI commands must be issued twice: once for the

INTA pulse. The master and slave can be programmed to master and once for the corresponding slave. Each CS of the M5L8259AP requires an address decoder.

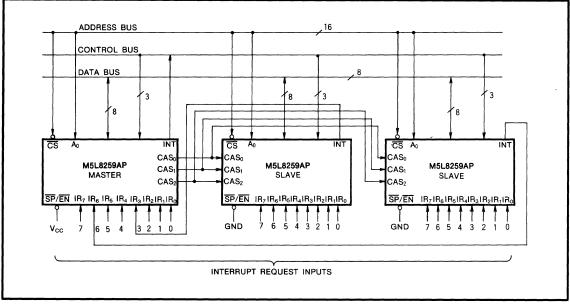
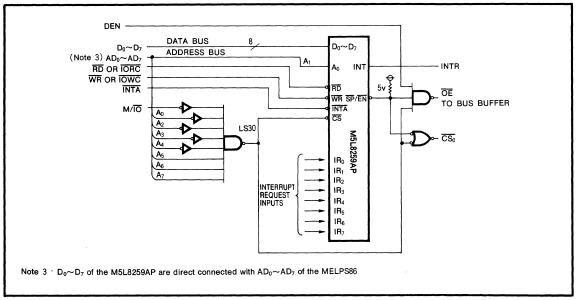



Fig. 6 Cascading the M5L8259AP

M5L8259AP

PROGRAMMABLE INTERRUPT CONTROLLER

INSTRUCTION SET

Item					Inst	ruction d	code				×	Fund	ction		
Number	Mnemonic	Ao	D7	D ₆	D ₅	D4	D ₃	D ₂	D ₁	D ₀	ICW4 required?	Intervel	Single	Trigger	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	ICW1 A ICW1 B ICW1 C ICW1 C ICW1 E ICW1 F ICW1 F ICW1 H ICW1 H ICW1 I ICW1 K ICW1 K ICW1 L ICW1 M ICW1 O		A7 A7	A6 A6	A ₅ A ₅ A ₅ A ₅ A ₅ O O O O A ₅ A ₅ A ₅ A ₅ O O O O O O O O O O O O O O O O O O O	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	1 1 1 0 0 0 0 1 1 1 1 1 0 0 0	1 1 0 1 1 0 0 1 1 0 0 1 1 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N N N N N N N Y Y Y Y Y	4 4 8 8 8 8 8 4 4 4 4 8 8 8 8 8	Y Y N N Y Y N N Y Y N N Y Y N		
16 17 18 19	ICW1 P ICW2 ICW3 M ICW3 S	0 1 1 1	A ₇ A ₁₅ S ₇ 0	A ₆ A ₁₄ S ₆ 0	0 A ₁₃ S ₅ 0	1 A ₁₂ S ₄ 0	1 A ₁₁ S ₃ 0	0 A ₁₀ S ₂ ID ₂	0 A ₉ S ₁ ID ₁	1 A ₈ S ₀ ID ₀	Y		N ddress ns (master mod non code (slave		
						,					SFNM	BUF	AEOI	MELPS86	
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 9 50 51	ICW4 A ICW4 B ICW4 C ICW4 D ICW4 C ICW4 F ICW4 G ICW4 G ICW4 G ICW4 H ICW4 J ICW4 J ICW4 J ICW4 A ICW4 N ICW4 N ICW4 N ICW4 N ICW4 NC ICW4 NC ICW4 NE ICW4 NE ICW4 NE ICW4 NE ICW4 NH ICW4 NL ICW4 NL ICW4 NL ICW4 NN ICW4 NN ICW4 NN ICW4 NN ICW4 NN									0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1	N N N N N N N N N N N N N N N N N N N	ZZZZZZZ >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	N Z Y Y Z Z Y Y Z Z Y Y Z Z Y Y Z Z Y Y Z Z Y Y Z Z Y Y Z Z Y Y	Z Y Z Y Z Y Z Y Z Y Z Y Z Y Z Y Z Y Z Y	
52 53 55 55 57 58 59 60 61 62 63 64	OCW1 OCW2 E OCW2 SE OCW2 RE OCW2 RS OCW2 RS OCW2 RS OCW2 RS OCW3 P OCW3 RIS OCW3 RN OCW3 RSM	1 0 0 0 0 0 0 0 0 0 0 0 0 0	M7 0 1 1 0 0 0 0 0	M ₆ 0 1 0 1 0 0 1 0 0 1	M5 1 1 0 0 0 0 0 1 0	M₄ 0 0 0 0 0 0 0 0 0 0 0 0 0 0	M₃ 0 0 0 0 0 1 1 1 1	M ₂ 0 L ₂ 0 0 L ₂ 1 0 0 0 0 0	M ¹ 0 L ₁ 0 L 0 L 0 1 1 0 0	M ₀ 0 0 0 0 0 0 0 0 0 0 0 0 0 0	EOI SEOI Rotate o Rotate i Rotate i Set prio Poll mo Sets Sta Sets Sta Sets Sta				

Note 4 ' Y. yes, N no, E edge, L. level, M: master, S' slave

M5L8259AP

PROGRAMMABLE INTERRUPT CONTROLLER

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Supply voltage		-0.5~7	v
V ₁	Input voltage	With respect to Vss	-0.5~7	v
Vo	Output voltage		-0.5~7	v
Pd	Power dissipation	T _a =25℃	1000	mW
τ _{opr}	Operating free-air temperature range		-20~75	Ĉ
T _{stg}	Storage temper ature range		-65~150	°C

RECOMMENDED OPERATING CONDITIONS $(T_a = -20 \sim 75^{\circ}C)$, unless otherwise noted)

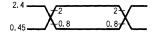
Symbol	Davanatar		Unit		
	Parameter	Min	Nom	Max	Om
Vcc	Supply voltage	4.5	5	5.5	V
Vss	Supply voltage (GND)		0		V

$\label{eq:constraint} \textbf{ELECTRICAL CHARACTERISTICS} \quad (\texttt{T}_a = -20 \sim 75 \texttt{`C} \text{ , } \texttt{V}_{cc} = 5 \texttt{V} \pm 10 \texttt{\%} \text{, } \texttt{V}_{ss} = \texttt{0V} \text{, unless otherwise noted})$

0	Provide the	To be and being		Limits		Unit
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
VIH	High-level input voltage		2.0		V _{cc} +0.5	v
VIL	Low-level input voltage		-0.5		0.8	v
V _{OH}	High-level output voltage	I _{ОН} =-400µА	2.4			V
VOH(INT)	High-level output voltage, interrupt requset output	I _{ОН} =-100µА	3.5			v
Vol	Low-level output voltage	I _{OL} =2.2mA			0.45	v
lcc	Supply current from V _{CC}				85	mA
l _{ін}	High-level input current	Vi=Vcc	-10		10	μA
կլ	Low-level input current	v _i =0v	-10		10	μA
loz	Off-state output current	V ₀ =0.45V~V _{CC}	-10		10	μA
ILIRI	IR pin input current	VI=0V	-300			μA
LIR2	IR pin input current	Vi=Vcc			10	μA
Ci	Input capacitance	V _{CC} =V _{SS} , f=1MH _z , 25mVrms, T _a =25℃			10	pF
Ci _{/O}	Input/output capacitance	V _{cc} =V _{ss} , f=1MH _z , 25mVrms, T _a =25℃			20	pF

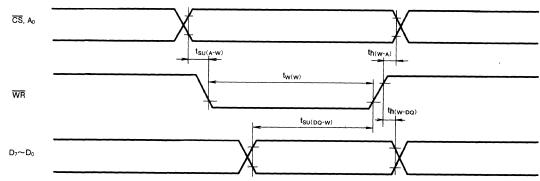
TIMING REQUIREMENTS ($T_a = -20 \sim 75$ °C, $V_{cc} = 5V \pm 10\%$, $V_{ss} = 0V$, unless otherwise noted)

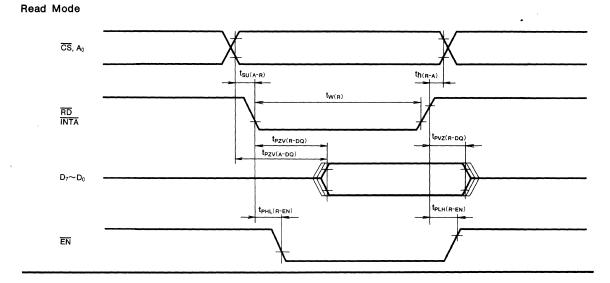
		-		Limits		- Unit
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
tw(w)	Write pulse width		290			ns
t _{su(A-W)}	Address setup time before write		0			ns
t _{h(w-A)}	Address hold time after write		0			ns
tsu(DQ-W)	Data setup time before write		240			ns
th(w-DQ)	Data hold time after write		0			ns
t _{W(R)}	Read pulse width		235			ns
t _{SU(A-R)}	Address setup time before read		0			ns
th(R-A)	Address hold time after read		0			ns
t _{W(IR)}	Interrupt request input width, low-level time, edge triggered mode		100			ns
t _{SU(CAS-INTA)}	Cascade setup time after INTA (slave)		55			ns
t _{rec(w)}	Write recovery time		190			ns
trec(R)	Read recovery time		160			ns
	End of command to next command (Not same command type)		500			ns
td(RW)	End of INTA sequence to next INTA sequence		625			ns


PROGRAMMABLE INTERRUPT CONTROLLER

$\label{eq:switching} \textbf{CHARACTERISTICS} \quad (\textbf{T}_a = -20 \sim 75^\circ \textbf{C} \text{, } \textbf{V}_{cc} = 5V \pm 10\%, \ \textbf{V}_{ss} = 0 \textbf{V}, \ \textbf{unless otherwise noted})$

Symbol	Parameter	Test conditions			Unit	
Symbol	Parameter	rest conditions	Min	Тур	Max	Unit
t _{PZV(R-DQ)}	Data output enable time after read				200	ns
t _{PVZ(R-DQ)}	Data output disable time after read		10		100	ns
t _{PZV(A-DQ)}	Data output enable time after address	0 -100-5			200	ns
t _{PHL(R-EN)}	Propagation time from read to enable signal output	CL=100pF Where SP/EN			125	ns
t _{PLH(R-EN)}	Propagation time from read to disable signal output				150	ns
t _{PLH(IR-INT)}	Propagation time from interrupt request input to interrupt request output	pin is 15pF			350	ns
tplv(INTA-CAS)	Propagation time from INTA to cascade output (master)				565	ns
t _{PZV(CAS-DQ)}	Data output enable time after cascade output (slave)				300	ns

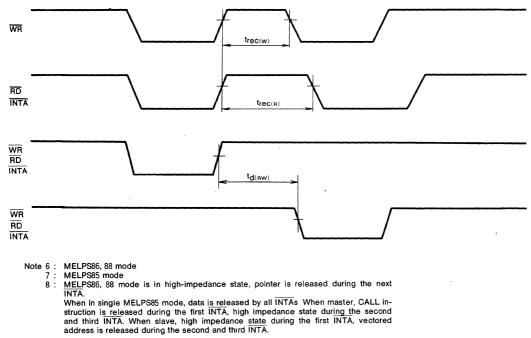

Note 5 : INTA signal is considered read signal CS signal is considered address signal Input pulse level 0.45~2.4V Input pulse rise time 20ns


Input pulse fall time 20ns Reference level input $V_{IH}=2V$, $V_{IL}=0.8V$ output $V_{OH}=2V$, $V_{OL}=0.8V$

TIMING DIAGRAM

Write Mode





M5L8259AP

PROGRAMMABLE INTERRUPT CONTROLLER

Other Timing

.

MITSUBISHI LSIS M5L8279P-5

PROGRAMMABLE KEYBOARD/DISPLAY INTERFACE

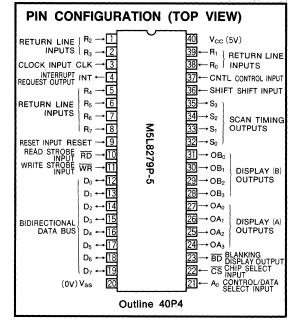
DESCRIPTION

The M5L8279P-5 is a programmable keyboard and display interface device that is designed to be used in combination with an 8-bit/16-bit microprocessor. This device is fabricated with N-channel silicon-gate ED-MOS process technology and is packed in a 40-pin DIL package. It needs only single 5V power supply.

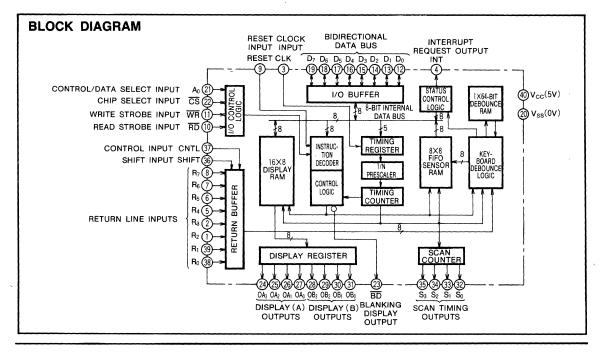
FEATURES

- Single 5V supply voltage
- TTL compatible
- Keyboard mode
- Sensor matrix mode
- Strobed mode
- Internally provided key bounce protection circuit
- Programmable debounce time
- 2-key lockout/N-key rollover
- 8-character keyboard FIFO
- Internally contained 16 × 8-bit display RAM
- Programmable right and left entry

APPLICATION


Microcomputer I/O device

64 contact key input device for such items as electronic cash registers


Dual 8- or single 16-alphanumeric display

FUNCTION

The total chip, consisting of a keyboard interface and a display interface, can be programmed by eight 8-bit commands. The keyboard portion is provided with a 64-bit key

debounce buffer and an 8×8 -bit FIFO/SENSOR RAM. It operates in any one of the scanned keyboard mode, scanned sensor matrix mode or strobed entry mode. The display portion is provided with a 16 \times 8-bit display RAM that can be organized into a dual 16 \times 4 configuration. Also, an 8-digit display configuration is possible by means of programming.

PIN DISCRIPTION

pin	Name	Input or output	Functions
$R_0 \sim R_7$	Return line inputs	In	These are the return lines which are connected with the scan lines through the keys or sensor switches, and are used for 8-bit input in the strobed entry mode They are provided with internal pullups to maintain them high-level until a switch closure pulls one low-level. They become active at low-level
CLK	Clock input	in	Clock signal from the system which is used to generate internal timing.
INT	Interrupt request output	Out	When there is any data in the FIFO during the keyboard mode or the strobed mode, this signal turns high-level so as to request interrupt to the CPU. It turns low-level each time data is read, but if any data remains in the FIFO it will turn high-level again and request interrupt to the CPU. End Interrupt command resets INT signal.
RESET	Reset input	In	Resets the chip when this signal is high-level. After the reset it assumes 16-digit, left-entry, encode display and 2-key lockout mode, and the prescale value of the clock becomes 31 The display RAM, however, is not cleared.
RD	Read strobe input	In	Functions to control data transfer to the data bus
WR	Write strobe input	In	Functions to control command/data transfer from the data bus.
$D_0 \sim D_7$	Bidirectional data bus	In/out	All data and commands between the CPU and the chip are transferred through these lines.
Ao	Control/data select input	In	When this signal is high-level, it indicates that the signals in and out are either command (in) or status (out). When low-level, it indicates they are data (in/out)
CS	Chip select input	in	Chip select is enabled when this signal is low-level
BD	Blanking display output	Out	This signal is used in preventing overlapped display during digit swiching. It also may be brought to low- level by display blanking command.
OA₀~OA₃ OB₀~OB₃	Display (A) and (B) outputs	Out	These output ports can be used either as a dual 4-bit port or a single 8-bit port depending on an applica- tion, and the contents of the display RAM are output synchronizing with the scan timing signals. These two 4-bit ports may be blanked independently Blanking may be activated with either high- or low-level signal by means of clear command.
S₀∼S₃	Scan timing outputs	Out	These signals are used to scan the key switch, the sensor matrix or the display digit. They can be either decoded or encoded, but it requires an external decoder in the encode mode. Signals $S_0 \sim S_3$ are all turned to low-level when RESET is high-level.
SHIFT	Shift input	In	In the keyboard mode, the shift input becomes the second highest bit of the key input information and is stored in the FIFO. This input is ignored in the other modes. It is constantly kept at high-level by an internal pull resistor. The signal is active at high-level.
CNTL	Control input	In	In the keyboard mode, the control input becomes the most significant bit of the key input information and is stored in the FIFO. The signal is active at high-level. In the strobed entry mode, it becomes the strobe sig- nal and stores the return input data in the FIFO at the rising edge of the input. It affects nothing internal in the sensor mode. It is constantly kept at high-level by an internal pullup resistor.

OPERATION

One of the three operating modes, the keyboard mode is the most common, and allows programmed 2-key lockout and N-key rollover. Encoded timing signals corresponding with key input are stored in the FIFO through the keydebounce logic, and the debouncing time of the key is also programmable. In the sensor mode, the contents of the 8 \times 8 key contacts are constantly stored in the FIFO/sensor RAM, generating an interrupt signal to the CPU each time there is a change in the contents. In the strobed entry mode, the CNTL input signal is used as a strobe for storing the 8 return line inputs to the FIFO/sensor RAM.

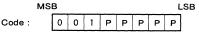
The display portion is provided with a 16 \times 8-bit display RAM that can be organized into a dual 16 \times 4-bit configura-

tion. Also, an 8-digit display configuration is possible by means of programming. Input to the register can be performed by either left or right entry modes. In the auto increment mode, read and write can be carried out after designating the starting address only.

Both the keyboard and display sections are scanned by common scan timing signals that are derived from the basic clock pulse. This frequency-dividing ratio is changeable by means of programming. There are decode and encode modes for the scanning mode; timing signals that are decoded from the lower 2 bits of the scan counter are output in the decode mode, while the 4-bit binary output from the scan counter is decoded externally in the encode mode.

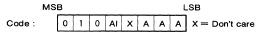
M5L8279P-5

PROGRAMMABLE KEYBOARD/DISPLAY INTERFACE


COMMAND DESCRIPTION

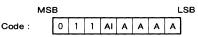
There are eight commands provided for programming the operating modes of the M5L8279P-5. These commands are sent on the data bus with the signal \overline{CS} in low-level and the signal A₀ in 1 and are stored in the M5L8279P-5 at the rising edge of the signal \overline{WR} . The order of the command execution is arbitrary.

1. Mode Set Command


- DD (Display mode set command)
- 0 0 8-8-bit character display-left entry
- 0 1 16-8-bit character display-left entry (Note1)
- 1 0 8-8-bit character display-right entry
- 1 1 16-8-bit character display-right entry
- KKK (Keyboard mode set command)
- 0 0 0 Encoded display keyboard mode 2-key lockout (Note1)
- 0 0 1 Decoded display keyboard mode 2-key lockout
- 0 1 0 Encoded display keyboard mode N-key rollover
- 0 1 1 Decoded display keyboard mode N-key rollover
- 1 0 0 Encoded display, sensor mode
- 1 0 1 Decoded display, sensor mode
- 1 1 0 Encoded display, strobed entry mode
- 1 1 1 Decoded display, strobed entry mode
- Note 1 : Default after reset.
- 2. Program Clock Command

The external clock is divided by the prescaler value PPPPP designated by this command to obtain the basic internal frequency.

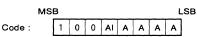
When the internal clock is set to 100kHz, it will give a 5.1ms keyboard scan time and a 10.3ms debounce time. The prescale value that can be specified by PPPPP is from 2 to 31. In case PPPPP is 00000 or 00001, the prescale is set to 2. Default after a reset pulse is 31, but the prescale value is not cleared by the clear command.


3. Read FIFO Command

This command is used to specify that the following data readout (CS· \overline{A}_0 ·RD) is from the FIFO. As long as data is to be read from the FIFO, no additional commands are necessary.

Al and AAA are used only in the sensor mode. AAA designates the address of the FIFO to be read, and AI is the autoincrement flag. Turning AI to 1 makes the address automatically incremented after the second read operation. This auto-increment bit does not affect the auto-increment of the display RAM.

4. Read Display RAM Command



This command is used to specify that the following data readout (CS· \overline{A}_0 ·RD) is from the display RAM. As long as data is to be read from the display RAM, no additional commands are necessary.

The data AAAA is the value with which the display RAM read/write counter is set, and it specifies the address of the display RAM to be read or written next.

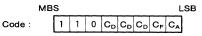
Al is the auto-increment flag. Turning Al to 1 makes the address automatically incremented after the second read/ write operation. This auto-increment bit does not affect the auto-increment of FIFO readout in the sensor mode.

5. Write Display RAM Command

With this command, following display RAM read/write addressing is achieved without changing the data readout source (FIFO or display RAM). Meaning of AI and AAAA are identical with read display RAM command.

6. Display Write inhibit/Blanking Command

	MS	В				LSB						
ode :		1	0	1	x	IW	IW	BL	BL	X = Don't care		
						Α	В	A	В			


The IW is a write inhibit bit to the display RAM that corresponds with the output A or B. Inhibit is activated by turning the IW 1.

The BL is used in blanking the out A or B. Blanking is activated by turning the BL 1. Setting both BL flags makes the signal $\overline{\text{BD}}$ low-level so that it can be used in 8-bit display mode.

Resetting the flags makes all IW and BL turn 0.

7. Clear Command

C

C_D: Clears the display RAM.

 $C_D C_D C_D$

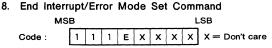
0

1

1

1

- X X No specific performance
- 0 X Entire contents of the display RAM are turned 0.
- 1 0 The contents of the display RAM are turned 20H (00100000 = $0A_30A_20A_10A_0$ $0B_30B_20B_10B_0$).
- 1 1 Entire contents of the display RAM are turned 1.

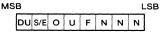

- C_F : Clears the status word and resets the interrupt signal (INT).
- C_A: Clears the display RAM and the status word and resets the interrupt signal (INT).

Clearing condition of the display RAM is determined by the lower 2 bits of the $C_{\rm D}.$

Clearing the display RAM needs some time (~ 160 μ second) and causes the display-unavailable status (DU) in the status word to be 1. The display RAM is not accessible for the duration of this time, even if the display mode was in 8-digit display mode or a decoded mode.

As both C_F and C_A function to reset the internal keydebounce counter, the key input under counting is ignored, and the internal FIFO counter is reset to make the interrupt signal low-level.

 C_A resets the internal timing counter, forcing $S_0\!\sim\!S_3$ to start from $S_3S_2S_1S_0=0000$ after the execution of the command.



In the sensor matrix mode, an interrupt signal is generated at the beginning of the next key scan time to inhibit further writing to the FIFO when there is a change in the sensor switch. The interrupt request output INT is reset when the sensor RAM is read with the Auto-increment flag 0, or the execution of this command.

When E is kept in 0, depression of any sensor makes the second highest bit of the status word 1. When E is kept in 1, the status is kept 0 all the time.

When E is programmed to 1 in the N-key rollover mode, the execution of this command makes the chip operate in special error mode, during which time depression of more than two keys in a key debounce time causes an error and sets the second highest bit of the status word 1.

STATUS WORD

- NNN: Indicates the number of characters in the FIFO during the keyboard and strobed entry modes.
- F: Indicates that the FIFO is filled up with 8 characters. The number of characters existing in the FIFO ($0 \sim 8$ characters) can be known by means of the bits NNN and F (FNNN = 0000~FNNN = 1000).
- U: Underrun error flag This flag is set when a master CPU tries to read an empty FIFO.
- O: Overrun error flag

This flag is set when another character is strobed into a full FIFO.

The bits U and O cannot be cleared by status read. They will be cleared by the clear command.

S/E: Sensor closure/multiple error flag When 111EXXXX is executed by turning E = 0, the bit S/E in the status word is set when there is at least

one sensor closure. When 111EXXXX is executed by turning E = 1 (special error mode), the bit S/E is set when there are more than two key depressions made in a key scan time.

DU: Display unavailable

This flag is set when a clear display command is executed, and announces that the display RAM is not accessible.

CPU INTERFACE

1. Command Write

A command is written on the rising edge of the signal WR with $\overline{\text{CS}}$ low-level and A_0 1.

2. Data Write

Data is written to the display RAM on the rising edge of the signal \overline{WR} with \overline{CS} low-level and A_0 0.

The address of the display RAM is also incremented on the rising edge of the signal \overline{WR} if AI is set for the display RAM.

3. Status Read

The status word is read when \overline{CS} and \overline{RD} are low-level and A_0 is 1. The status word appears on the data bus as long as the signal \overline{RD} is low-level.

4. Data Read

Data is read from either the FIFO or the display RAM with \overline{CS} and \overline{RD} are low-level and A_0 is 0. The source of the data (FIFO or display RAM) is decided by the latest command (read display or read FIFO). The data read appears on the data bus as long as the signal \overline{RD} is low-level.

The trailing edge of the signal RD increments the address of the FIFO or the display RAM when AI is set. After the reset, data will be read from the FIFO, however.

Ao	CS	RD	WR	Operation
1	L	н	L	Command write
0	L	н	L	Data write
1	L	L	н	Status read
0	L	L	н	Data read
×	н	х	×	No operation

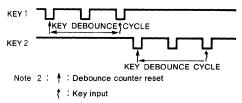
KEYBOARD INTERFACE

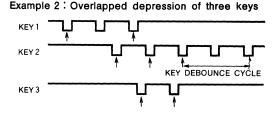
Keyboard interface is done by the scan timing signals ($S_0 \sim S_3$), the return line inputs ($R_0 \sim R_7$), the SHIFT and the CNTRL inputs.

In the decoded mode, the low-order of 2 bits of the internal scan counter are decoded and come out on the timing pins $(S_0 \sim S_3)$. In the encoded mode, the four binary bits of the scan counter are directly output on the timing pins, thus a 3-to-8 decoder must be employed to generate keyboard scan timing.

The return line inputs ($R_0 \sim R_7$), the SHIFT and the CNTL inputs are pulled up high-level by internal pullup transistors until a switch closure pulls one low.

The internal key debounce logic works for a 64-key matrix that is obtained by combining the return line inputs with the scan timing.

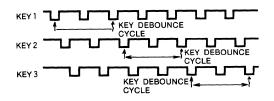

For the keyboard interface, M5L8279P-5 has four distinctive modes that allow various kinds of applications. In the following explanation, a "key scan cycle" is the time needed to scan a 64-key matrix, and a "key debounce cycle" needs a duration of two "key scan" cycles. (In the decoded mode 32 keys, unlike 64 keys in the encoded mode, can be employed for a maximum key matrix due to the limit of timing signals


However, both the key scan cycle and the key debounce cycle are the same as in the encoded mode.)

1. 2-Key Lockout (Scanned Keyboard Mode)

The detection of a new key closure resets the internal debounce counter and starts counting. At the end of a key debounce cycle, the key is checked and entered into the FIFO if it is still down. An entry in the FIFO sets the INT output high. If any other keys are depressed in a key debounce cycle, the internal key debounce counter is reset each time it encounters a new key. Thus only a single-key depression within a key debounce duration is accepted, but all keys are ignored when more than two keys are depressed at the same time.

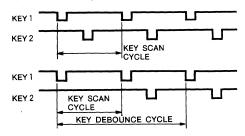
Example 1 : Accepting two successive key depressions



Note 3 : Only key 2 is acceptable

2. N-Key Rollover (Scanned Keyboard Mode)

Each key depression is treated independently from all others so as to allow overlapped key depression. Detection of a new key depression makes the internal key debounce counter reset and start to count in a same manner as in the case of 2-key lockout. But, in N-key rollover, other key closures are entirely ignored within a key debounce cycle so that depression of any other keys would not reset the key debounce counter. In this way, overlapped key depression is allowed so as to enable the following key input:



The scanned key input signal does not always reflect the actual key depressing action, as the key matrix is scanned by the timing signal.

With N-key rollover, there is a mode provided with which error is caused when there are more than 2 key inputs in a key debounce cycle, which can be programmed by using the end interrupt/error mode set command. In this mode (special error mode), recognition of the above error sets the INT signal to high-level and sets the bit S/E in the status word.

In case 2 key entries are made separately in more than a debounce cycle, there would be no problem, as key depression is clearly identified. And no problem exists for 2-key lockout, as the both keys are recognized invalid.

3. Sensor Matrix Mode

The key debounce logic is disabled in this mode. As the image of the sensor switch is kept in the FIFO, any change in this status is reported to the CPU by means of the interrupt signal INT. Although a debounce circuit is not used in this mode, it has an advantage in that the CPU is able to know how long and when the sensor was depressed.

In the sensor matrix mode with the bit E = 0 of the end interrupt/error mode set command, the second most significant bit of the status word (S/E bit) is set to 1 when any sensor switch is depressed.

Any sensor change detected by the M5L8279P-5 in one key scan cycle causes only once INT generation at the first timing of the next scan cycle.

4. Strobe Mode

The data is entered into the FIFO from the return lines ($R_0 \sim R_7$) at the rising edge of a CNTL pulse. The INT goes high while any data exists in the FIFO, in the same manner as in the keyboard mode. The key debounce circuit will not operate.

Formats of data entered into the FIFO in each of the above modes are described in the following:

Keyboard matrix

Sensor matrix mode

M	SB							LS	в
	R ₇	R_6	R ₅	R4	R ₃	\mathbf{R}_2	R ₁	R ₀	

CNTL AND SHIFT INPUTS ARE IGNORED

Storobe mode

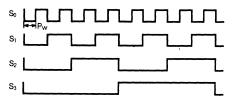
M	SB							LS	в
	R ₇	R ₆	R ₅	R4	R ₃	R_2	Rı	\mathbf{R}_0	

CNTL AND SHIFT INPUTS ARE IGNORED

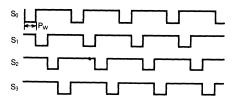
DISPLAY INTERFACE

The display interface is done by 8 display outputs (OA₀ ~ OA₃, OB₀ ~ OB₃), a blanking signal (\overline{BD}), and scan timing outputs (S₀~S₃).

The relation between the data bus and the display outputs is as shown below:

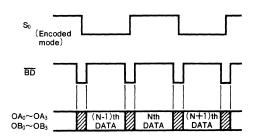

D7	D_6	D_5	D4	D3	D_2	D ₁	D ₀	
Ļ	ţ	1	Ļ	Ļ	ļ	ţ	ļ	
OA ₃	OA ₂	OA ₁		OB ₃	OB ₂	OB ₁	OB ₀	

Clearing the display RAM is not achieved by the reset signal (9-pin) but requires the execution of the clear command.


The timing diagrams for both the encoded and decoded modes are shown below.

For the encoded mode, a 3-to-8 or 4-to-16 decoder is required, according to whether eight or sixteen digit display used.

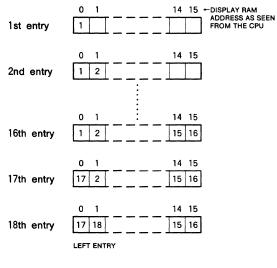
(1) Encoded mode



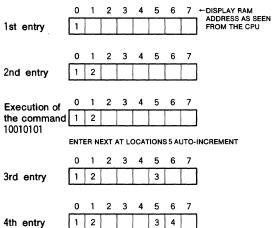
(2) Decoded mode

Note 4 : Here P_W is $640 \mu s$ if the internal clock frequency is set to 100 k Hz.

Timing relations of S₀, \overline{BD} , and display outputs (OA₀ ~ OA₃, OB₀~OB₃) are shown below.

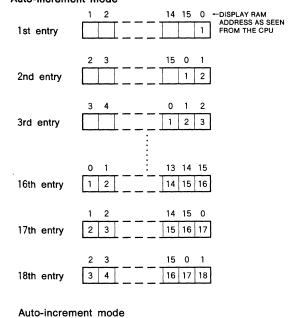

Note 5 : Values of the output data shown in the slanted line areas are decided upon the clear command executed last to become the value of the display RAM after the reset. The values in the slanted areas after reset will go low-level. In the same manner, the values OA₀~OA₃, OB₀~OB₃ are dependent on the clear command executed last. When the both A and B are blanked, the signal BD will be in low-level.

KEY ENTRY METHODS


1. Left Entry

Address 0 in the display RAM corresponds to the leftmost position $(S_3S_2S_1S_0 = 0000)$ of a display and address 15 (or address 7 in 8-character display) to the rightmost position $(S_3S_2S_1S_0 = 1111 \text{ or } S_2S_1S_0 = 111)$. The 17th (9th) character is entered back into the leftmost position.

Auto-increment mode



Auto-increment mode

2. Right Entry

The first data is entered in the rightmost position of a display. From the next entry, the display is shifted left one character and the new data is placed in the rightmost position. A display position and a register address as viewed from the CPU change each time and do not correspond. Auto-increment mode

1st entry		2	3	4	5	6	7	0	DISPLAY RAM ADDRESS AS SEEN FROM THE CPU
	2	3	4	5	6	7	0	1	
2nd entry	L						1	2	
Execution of	2	3	4	5	6	7	0	1	
the command							1	2	
10010101	ENT	ER N	EXT	AT LO			5 5 A I	JTO-II	NCREMENT
	3	4	5	6	7	0	1	2	
3rd entry			3			1	2		
	4	5	6	7	0	1	2	3	
4th entry		3	4		1	2			

M5L8279P-5

PROGRAMMABLE KEYBOARD/DISPLAY INTERFACE

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
V _{cc}	Supply voltage		-0.5~7	v
V ₁	Input voltage	With respect to V _{SS}	-0.5~7	v
Vo	Output voltage		-0.5~7	v
Pd	Maximum power dissipation	T _a =25℃	1000	mW
Topr	Operating free-air temperature range		-20~75	Ĉ
T _{stg}	Storage temperature range		-60~150	°C

RECOMMENDED OPERATING CONDITIONS (Ta=-20~75°C, unless otherwise noted.)

Symbol	Parameter		Unit		
	Parameter	Min	Nom	Max	Unit
V _{cc}	Supply voltage	4.5	5	5.5	v
Vss	Supply voltage (GND)		0		v

$\label{eq:constraint} \textbf{ELECTRICAL CHARACTERISTICS} \quad (\textbf{T}_a = -20 \sim 75^\circ \text{C} \text{ , } \textbf{V}_{cc} = 5V \pm 10\% \text{ , } \textbf{V}_{ss} = 0V \text{ , unless otherwise noted.})$

Querra ha e l	Baromator	Tool conditions			Unit	
Symbol	Parameter	Test conditions	Min	Тур	Мах	Unit
VIH(RL)	High-level input voltage, for return line inputs		2.2			v
VIH	High-level input voltage, all others		2.0			v
VIL(RL)	Low-level input voltage, for return line inputs		V _{ss} -0.5		1.4	v
VIL	Low-level input voltage, all others		Vss-0.5		0.8	v
V _{он}	High-level output voltage	I _{OH} =-400µА	2.4			v
VOH(INT)	High-level output voltage, interrupt request output	I _{OH} =-400µА	3.5			v
Vol	Low-level output voltage	I _{OL} =2. 2mA			0.45	v
lcc	Supply current from V_{CC}				120	mA
	Input current, return line inputs, shift input and control	V _I =V _{CC}			10	
II(RL)	input	V,=0V	-100			μA
h	Input current, all others	$V_{i}=0V, V_{CC}$	-10		10	μA
loz	Off-state output current	V _o =0V~V _{cc}	-10		10	μA
Cı	Input terminal capacitance	V _I =V _{CC}	5		10	pF
Co	Output terminal capacitance	V _o =V _{cc}	10		20	pF

TIMING REQUIREMENTS (Ta=-20~75°C, V_{cc} =5V \pm 10%, V_{ss} =0V, unless otherwise noted.)

Read Cycle

Symbol	Parameter	Test conditions	Limits			11-4
			Min	Тур	Мах	Unit
t _{C(R)}	Read cycle time		1000			ns
t _{w(R)}	Read pulse width		250			ns
t _{SU(A-R)}	Address setup time befor RD		0			ns
th(R-A)	Address setup time after RD		0			ns

Write Cycle

Symbol	Parameter	Test conditions	Limits			11-14
			Min	Тур	Мах	Unit
t _{c(w)}	Write cycle time		1000			ns
tw(w)	Write pulse width		250			ns
t _{SU(A-W)}	Address setup time before WR		0			ns
th(w-A)	Address hold time after WR		0			ns
t _{su(DQ-W)}	Data input setup time before WR		150			ns
th(w-DQ)	Data input hold time after WR		0			ns

Other Timing

Symbol	Parameter	Test conditions	Limits			Unit
		rest conditions	Min	Тур	Мах	Omit
t _C (≠)	Clock cycle time	1	320		DC	ns
t w(≠)	Clock pulse width		120			ns

For an internal clock frequency of 100kHz

- Key scan cycle time: ~ 5.1ms • Key debounce cycle time: ~10.3ms • Single-key scan time: 80µs
- Display scan time: ~10.3ms
- Single digit display time: 490µs 150µs
- Blanking time: •

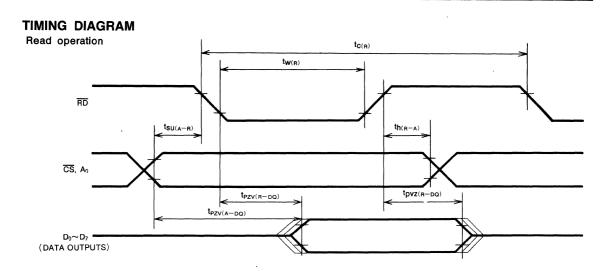
• Internal clock cycle: 10µs

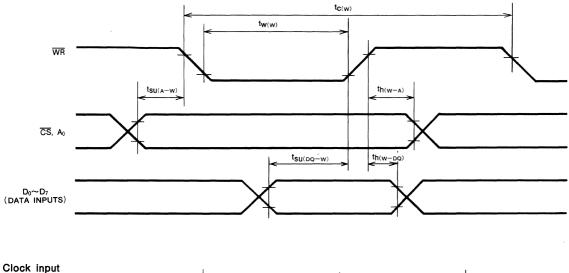
SWITCHING CHARACTERISTICS (Ta=-20~75°C, Vcc=5V±10%, Vss=0V, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Link
			Min	Тур	Мах	Unit
t _{PZV(R-DQ)}	Output enable time after read	CL=150pF			150	ns
t _{PZV(A-DQ)}	Output enabl time after address				250	ns
t _{PVZ(R-DQ)}	Output disable time after read		10		100	ns

Note 6 : A. C Testing waveform Input pulse level Input pulse rise time Input pulse fail time Referens level input output

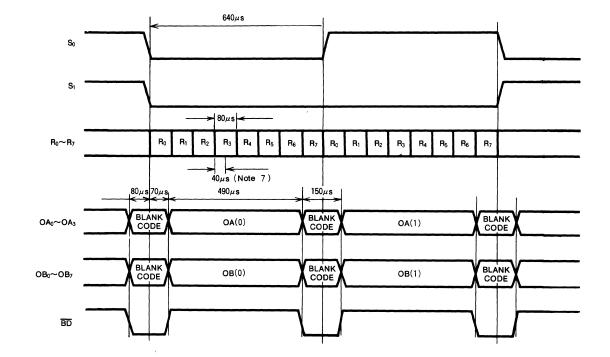
0.45~2.4V 20ns 20ns V_{IH}=2V, V_{IL}=0.8V V_{OH}=2V, V_{OL}=0.8V


2.4 r 0.8 0.8 0,45


MITSUBISHI LSIs

M5L8279P-5

PROGRAMMABLE KEYBOARD/DISPLAY INTERFACE

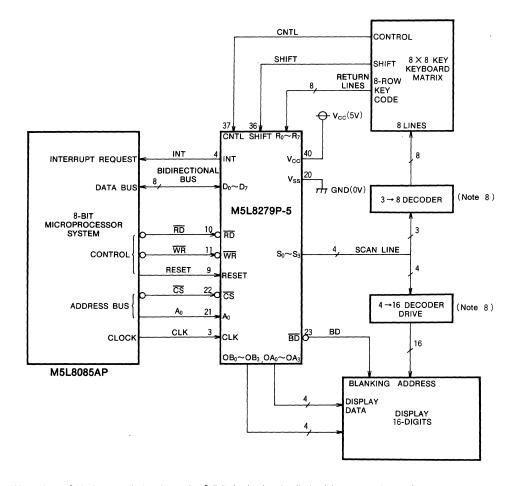


Write operation

t_{C(\$)} tw(¢) CLK

DISPLAY (This example is encoded display, left entry mode with internal clock cycle 10µ sec. Scan timing output S₂, S₃ are not shown.)

Note 7: The scanned data on the return line is sampled serialy from R0 to R7. Each data is latched in the middle of the each sampling period.



MITSUBISHI LSIs

M5L8279P-5

PROGRAMMABLE KEYBOARD/DISPLAY INTERFACE

APPLICATION EXAMPLE

Note 8 : When using an 8-bit character display of more than 9 digits for the decoder display, it is necessary to provide two decoders for example 4 →10 decoder, 4 →16 decoder and key scan 3 → 8 decoder. Only S₀, S₁ and S₂ may be used as inputs to the key scan 3 → 8 decoder. (Don't drive the keyboard decoder with the MSB of the scan line)

APPLICATION

6

MITSUBISHI LSIs

NOTICE FOR CMOS PERIPHERALS

1. INTRODUCTION

Mitsubishi Electric's microprocessor-support CMOS peripheral LSI devices are compatible with current NMOS peripheral devices, and feature the additional advantages listed below.

- Low power dissipation
- Wide supply voltage range, V_{CC}=5V±10%
- Wide operating temperature range, T_a=−20~75[°]C
- Improved timing conditions

Due to these advantageous features, CMOS peripheral devices can be used to replace conventional NMOS devices in their typical applications, and can additionally be used in applications requiring low power dissipation.

The following sections describe the basic characteristics of Mitsubishi Electric's CMOS peripheral LSI devices for microprocessor support, and explain precautions and methods of use.

2. BASIC CIRCUITS AND CONSTRUCTION

The internal circuitry of CMOS devices consist of both pchannel and n-channel transistors.

There are two types of NMOS transistors. In the depletiontype, drain-to-source remains on even when gate-to-source voltage is 0V, and with the enhancement-type device, dropping gate-to-source voltage below the threshold voltage level turns the transistor off. CMOS devices employ the enhancement type, regardless of whether they are p-channel or n-channel devices.

Fig. 1 shows the typical inverter construction, which is the basis of CMOS peripherals and Fig. 2 illustrates its equivalent circuit diagram.

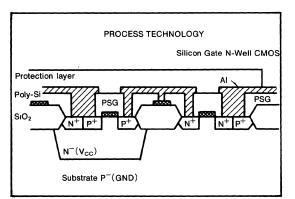
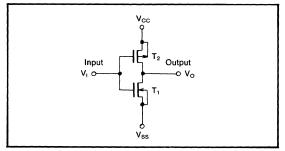


Fig. 1 Single-stage inverter construction

3. OPERATIONAL DESCRIPTION

Fig. 3 illustrates what happens when supply voltage (V_{CC}) is applied to the circuit shown in Fig. 2, varying input voltage from V_{SS} to V_{CC}. The V_O curve indicates the change in output voltage and supply current (I_{CC}).

As illustrated, these characteristics depend on input voltage, so can be better understood by dividing V₁ into three regions, $I \sim I\!\!I$.


- $I \ : \mbox{ In this region, only the p-channel transistor T_2 is on, so that the V_0 output voltage becomes V_{CC}. In this condition, practically no current I_{CC} flows.}$
- II : In this region, V_o varies in accordance with V_I. When V_I is increased from region I, the n-channel transistor T₁ begins to turn on, so that V_o gradually decreases and at some point begins to decrease rapidly. The value of V_I at this point of rapid V_o decrease is known as the circuit threshold voltage.

When this voltage is exceeded, as $V_{\rm I}$ is increased, $V_{\rm O}$ approaches $V_{SS}.$

In the region $\rm I\!I$, V_O is determined by the ratio of the on resistances of T_1 and T_2.

 I_{CC} is always flowing in this region, and becomes maximum when $V_{\rm I}$ is at the circuit threshold voltage.

 ${\rm I\!I}$: In this region, since only T_1 is on, V_O becomes the voltage $V_{SS}.$ In this region, as was the case for region I, virtually no I_{CC} current flows.

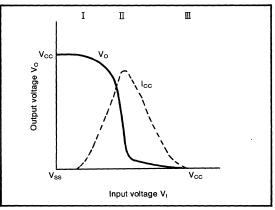


Fig. 3 Single-stage inverter voltage transfer and supply current vs. input voltage characteristics

4. TRANSFER CHARACTERISTICS AND POWER DISSIPATION

For COMS devices, the circuit threshold voltage is approximately one-half of V_{CC} . Contrasted with NMOS logic, where threshold voltage is a fixed level not related to supply voltage, ideal transfer characteristics can be achieved.

In order to maintain compatibility with the conventional NMOS devices, transfer characteristics of CMOS peripherals I/O circuits have been established at TTL level.

Fig. 4 illustrates input voltage $V_{\rm IN}$ versus supply current $I_{\rm CC}$ for M5M82C55AP-2. Here, when $V_{\rm IN}$ reaches 1.3 to 1.5V, the resulting switch in internal circuits causes a sharp increase in $I_{\rm CC}$ flow.

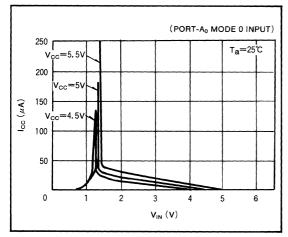


Fig. 4 Input voltage vs. dissipation current M5M82C55AP-2

In a CMOS curcuit, since p-channel and n-channel transistors are connected in series between the V_{CC} and V_{SS}, as long as gate voltage is at the V_{CC} or V_{SS} level, one of the two transistors will be in an off state. Consequently, fixing the input pin at the V_{CC} or V_{SS} level causes the static dissipation current (I_{CC}) flow from the V_{CC} to V_{SS} pin to consist only of p-n junction leakage current. As a consequence, the per-gate static dissipation current remains at about 50pA at T_a=25°C, and will not go over more than a few nanoamperes even at T_a=85°C. This is the primary reason behind CMOS devices low power dissipation.

Note however that power dissipation does increase when CMOS circuits are used in the switching mode. As was mentioned in the transfer characteristic description, transients in the input voltage cause current to flow from the V_{CC} to V_{SS} . The amount of current flow increases relative to higher V_{CC} values and operating frequency. Additionally, when capacitive loads (load capacitance also varies depending on the number of fanouts) are connected to the device, charging currents will be requied, which also in-

creases power dissipation.

The M5M82C55AP-2 illustrated in Fig. 4 has parallelconnected I/O ports, and is relatively limited in switching operations. However, devices such as the programmable timer M5M82C54P are subjected to constant clock operations, and the current flow for each CMOS circuit must be added to get the total for the device. As shown in Fing. 5, currnet dissipation increases along with increases in operating frequency.

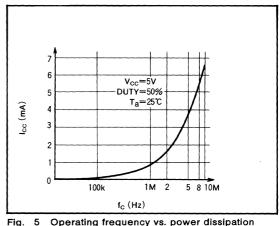


Fig. 5 Operating frequency vs. power dissipation M5M82C54P

The power dissipation characteristics of DMA controller M5M82C37AP-5 are illustrated in Fig.6.

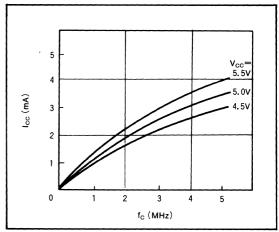


Fig. 6 Operating frequency vs. power dissipation M5M82C37AP-5

5. NOISE MARGIN

As was noted in section 4, I/O levels for CMOS peripheral LSI devices have been established for TTL interface compatibility. Fig. 7 shows a comparison of DC noise margins when CMOS peripheral devices are interfaced with other logic devices. As seen here, with CMOS-to-CMOS interfaces, $V_{IH}(min)$ remains very tolerable. However, since the CMOS peripheral device standard provides for TTL interface, $V_{OH}(min)$ is defined for states where I_{OH} flow is substantial ($I_{OH} = -400\mu A$). When actually connected to a CMOS logic gate, the required value for I_{OH} is only the small current required to drive the gate-to-gate capaci-

tance. So $V_{IH (MIN)}$ for a CMOS gate satisfies this requirement with room to spare. Fig. 8 shows the V_{OH} characteristics for the M5M82C55AP-2 data bus. As seem here, the margin between the standard and actual performance is substantial.

Low-speed CMOS gates have high internal propagation delay times, which further increases their noise margin. However, the CMOS gates used in peripheral devices still hold delay time to less than 1ns per stage. They are therefore capable of responding to pulses which transient at extermely high speeds, and noise margins are as good as similar type NMOS devices.

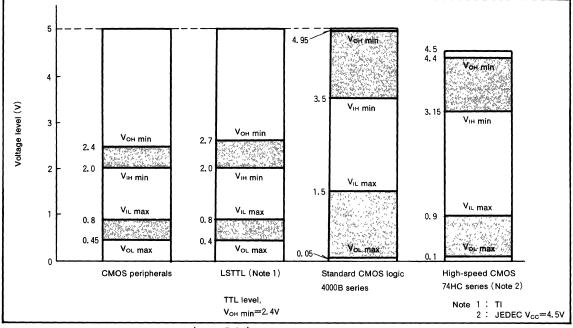
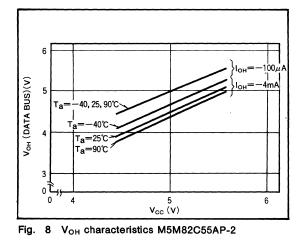



Fig. 7 DC noise margin comparison (V_{CC} =5.0V)

6. FANOUT

The drive capability of CMOS peripheral devices generally exceeds that of NMOS logic devices. Drive capability at "H" level is noticeably better than NMOS. This defference between logic types provides a slight difference when actually applied to driving a load such as a transistor, and the value of the load resistance can affect fanout capability. This point will be covered in more detail later.

For reference purposes, $V_{\rm OH}$ characteristics of M5M82C55AP-2 is illustarted in Fig. 8, and the "L" level drive capability of M5M82C55AP-2 is illustrated in Fig. 9.

When driving a MOS-IC with a peripheral LSI, since it is only necessary to drive the input leakage current of the DC-connected IC, fanout capability is quite good. However, where devices having many components (e.g., data bus, etc.) are connected, the stray capacitance of the wiring and device input capacitance (generally about 5pF) must also

be driven, so signal switching response is slower. In this case, the load (s) to be driven must be divided (or allocated to several devices) as with previous devices.

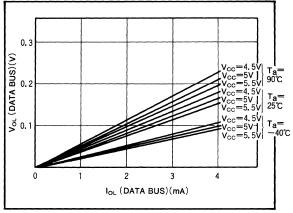


Fig. 9 IoL-VoL characteristics M5M82C55AP-2

7. INPUT CIRCUIT

Fig. 10 shows an equivalent circuit diagram of the input circuit for CMOS peripheral devices. The gate oxide layer of the transistors is extremely thin, and high voltages applied directly to the gates are likely to rupture their insulation, causing permanent demage to the device. To prevent gate damage, the diodes and input resistor shown in the diagram form a protection circuit.

Since threshold voltage for the input transistor is set at approximately 1.5V, as noted in section 4, if the input voltage is held at this level, a through current starts to flow from V_{CC} to V_{SS} . In systems where low dissipation current is required, this characteristic can cause problems in the design of the power supply.

Where a data bus is left floating, through current is likely to become a particular problem, so bus lines should be fixed at a certain level with a pull-up (or pull-down) circuit having high resistance values.

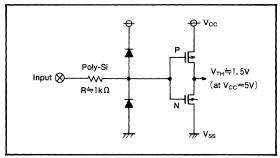


Fig. 10 CMOS peripheral device input circuit (equivalent diagram)

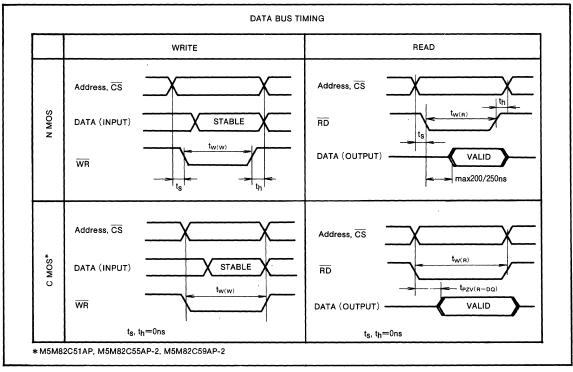


Fig. 11 Bus timing characteristics

8. TIMING CHARACTERISTICS

The timing conditions between the system and CMOS peripheral LSI devices have been improved over their NMOS type counterparts. Improvements include better setup and hold times, and microprocessor interfacing is easier. Fig. 11 summarizes there differences in comparison form. Whereas NMOS devices required t_s and t_h time, these have been eliminated with CMOS peripherals by setting t_s and t_h Ons.

9. USAGE PRECAUTIONS

(1) Dealing with NC input pins

Leaving unused input pins open results in instability input voltage, which in turn can produce errors in output logic levels and increase current dissipation. Unused input pins should therefore be tied to V_{CC} or V_{SS} .

(2) Voltage supply lines

Power dissipation of CMOS peripherals whose internal changes are small such as M5M82C55AP-2 and M5M82C59AP-2 is extremely low. However, the through current spikes that occur during switching are dealt with using the traditional method applied to older ICs; by reducing power line impedance to filter the spikes. Penetrating currents flow in the form of spikes during switching. In the M5M82C37AP-5, large spike currents flow when a clock pulse caused the state of many output pins to change simultaneously. Therefore, as with previous CMOS LSIs, it is necessary to lower the impedance of the power supply circuit to absorb the spike current in the supply current. To accomplich this, each device should be fitted with a ceramic capacitor (having good high frequency characteristics and a capacitance of approx. 0.1μ F) wired close between V_{CC} and V_{SS}.

Also, when devices such as M5M82C55AP-2 are used with a high current drive circuit connected to output, power lines should be run independently from the logic system and driver circuit to reduce adverse affect on the logic system.

(3) Latchup

CMOS LSIs are subject to a phenomenon known as latchup. All CMOS circuits have parasitic bipolar transistors with a thyristor- like structure. If one of the parasitic thyristors is triggered by an external surge, it turns on and excessive current continues to flow even after the surge is removed.

Latch-up currents are large and may destroy the LSI unless they are reset by lowering the supply voltage to a certain level, (the holding voltage of the parasitic thyristors) or by turning off the power supply.

Latchup occurs under the five conditions listed below.

- (a) $V_I > V_{CC} + V_F$
- (b) $V_0 > V_{CC} + V_F$
- (c) $V_I < V_{SS} V_F$
- (d) $V_0 < V_{SS} V_F$
- (e) Excessive V_{CC}

V_F:Forward voltage of the clamping diode used at input.

Conditions (a) or (c)

When using a dual power supply

When dual power supplies serve CMOS logic devices, differences in the rising edge of the power line signal tend to cause latchup. This can be eliminated by using a series

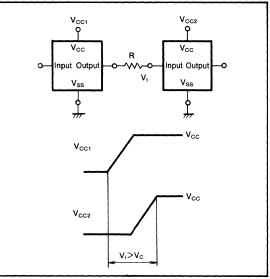


Fig. 12 Preventing latchup when dual power supplies are used

connected resistor (R) to limit current flow to a maximum of 10mA. (Refer to Fig. 12)

• When using differential circuits

When differential circuits are used, it is possible for input voltage to exceed V_{CC} or V_{SS} , which could result in latchup. In this case, use a diode for voltage clamping, combined with a resistor (R) to limit current flow. (Refer to Fig. 13)

When driving large current circuits

When connecting transistors to CMOS output and operating large current circuits (e.g., relays, motors, etc.) of the same power supply as the CMOS device, coil reactance will produce voltage spikes at switching time. This causes fluctuations in the power supply voltage, which can cause the condition $V_I > V_{CC}$. Where possible, separate power supplies should be used. If a common power supply must be used, power supply impedance must be lowered by connecting a capacitor ($0.01 \sim 0.22 \mu F$) having good frequency characteristics between V_{CC} and V_{SS} .

Current should also be limited by connecting a resistor (R) to input. (Refer to Fig. 14)

MITSUBISHI LSIS NOTICE FOR CMOS PERIPHERALS

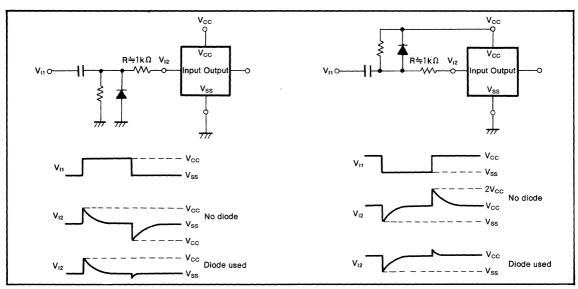


Fig. 13 Preventing latchup when using differential circuits

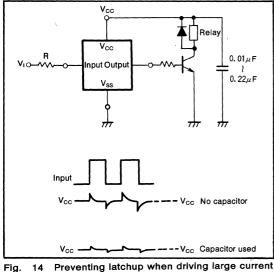


Fig. 14 Preventing latchup when driving large curren circuits

Conditions (b) or (d)

Applying a constant voltage to an output pin is not one of the normal usage configurations of a CMOS device, but a capacitor connected between output and V_{CC} (or V_{SS}) would be a cause for latchup. This is due to the high impedance created in the power supply line, combined with the fact that switching the power supply on and off produces fluctuations in the power supply line which causes the capacitor to discharge a trigger current.

Condition (e)

Condition (e) can be created by exceeding the absolute maximum voltage ratings at the V_{CC} pin. Also, even though V_{CC} is within the recommended operating conditions, device latchup can be caused by the surge voltage superimposing at power ON, or crosstalk between lines. The voltage at V_{CC} should never exceed absolute maximum rating values under any circumstances.

Provisions should be made to reduce power ON surge voltage to a minimum, and as described in section 6, a capacitor should be connected beteen $V_{\rm CC}$ and $V_{\rm SS}$ to reduce impedance in the power line.

(4) The differences in CMOS and NMOS peripheral LSIs

The basic characteristics of CMOS devices allow them to be used as replacements for NMOS logic devices without significant modifications. But the fact that improvements have been mode in the characteristics of CMOS devices can cause problems when these devices are used in circuits designed for NMOS. The example below shows such

a case.

Transistor drive using a parallel port

Fig. 15 (a) shows an example of an NPN transistor connected in series and being driven by parallel port 8255A. The load R_L and base resistor R_B establishes the operating point as illustrated in Fig. 15 (b).

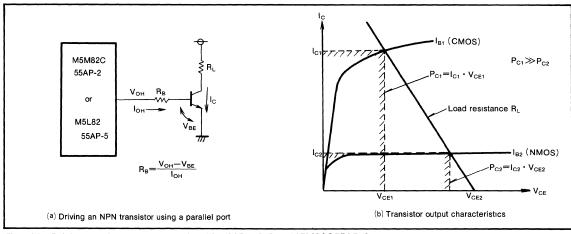


Fig. 16 illustrates the difference in output characteristics for CMOS and NMOS 8255A devices. As noted, the CMOS 8255A has better drive capability, and provides a higher base current to the transistor. Consequently, dependig on R_B and R_L, power dissipation ratings P_C of the transistor can be exceeded, or drive current may simply be higher than

its limit.

The same problem may occur when driving PNP transistors. Fig. 17 shows a comparison in V_{OL} characteristics. But here, the difference between NMOS and CMOS is smaller than for V_{OH}, so the problem should not be as great

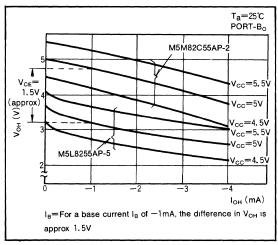


Fig. 16 M5L8255AP-5/M5M82C55AP-2 V_{OH} output characteristics comparison

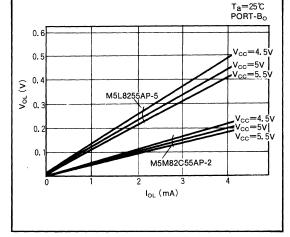


Fig. 17 M5L8255AP-5/M5M82C55AP-2 V_{OL} output characteristics comparison

^

I pringer a for some configure

GMICRO^M M32 FAMILY MICROPROCESSORS

.

· ·

MITSUBISHI LSIS M33210GS-20/FP-20

CMOS 32-BIT PARALLEL MICROPROCESSOR (M32/100)

DESCRIPTION

M33210GS-20/FP-20(M32/100) is a 32-bit microprocessor designed to be cost effective for real memory support. It uses high-level pipeline processing and exception processing (EIT) to achieve a superior processing speed and a high degree of reliability.

The use of bit map instructions and string instructions allow multi-windowing, while a full range of OS-related instructions and improved addressing modes allow the creation of the optimum operating systems and support for high-level languages.

The ASSP core is being designed to enable the addition of peripheral functions.

FEATURES

- Performance : 7MIPS(20MHz operation)
 - Dhrystone: 13k instructions/second
- Number of basic instruction : 92
- Optimized for operating system based on TRON specifications
- 2-level memory access protection
- Bit map processing functions for multi-window displays
- Branch Buffer (small instruction cache capable of selective caching) 256B
- Package : M33210GS-20 135pin PGA M33210FP-20 160pin QFP (planning)

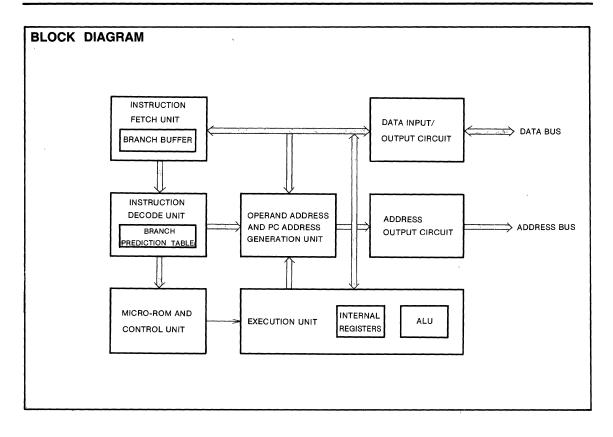
PIN ASSIGNMENT

PIN **CONFIGURATION (BOTTOM VIEW)** Ρ NML JHGFEDCB κ ○ ○ 44 45 46 ○ 89 90 91 ○ 126 127 · · · · 47 48 49 50 · · · · 92 93 94 95 · · · · 129 130 131 132 0 40 0 43 0 48 0 0 41 42 080804050605080806060808080 10203040506070809010 108024 708015 030303030303030303030202020202 **○8**○85○80020100707070707020 2 3 4 123 135 5 012012012019 6 7 M33210GS-20 8 9 118 10 011011011074025 11 014014073024 01301206017 011012013014 12 013072023 0120702 01107002 018067018 08080 13 0 64 0 15 14 Outline 135S8

APPLICATION

I/O controller, Bit map controller.

PIN CODE	PIN	NAME	PIN CODE	PIN	NAME	PIN CODE	PIN	NAME	PIN CODE	PIN	NAME	PIN CODE	PIN	NAME
A1	1	BC ₂	C1	51	BAT ₁	F1	48	RNG ₁	K12	113	D ₁₅	N1	41	BERR
A2	2	A ₁	C2	96	BC ₃	F ₂	93	R/W	K13	72	D ₁₂	N2	86	SUSB
A3	3	A4	C3	97	A ₂	F3	130	Vcc	K14	23	D ₁₁	N3	85	Vcc
A4	4	A ₆	C4	98	Vcc	F12	109	Vss	L1	43	Vcc	N4	84	IRL ₁
A5	5	A ₉	C5	99	A ₇	F13	68	D ₆	L2	88	DS	N5	83	GBR
A6	6	A ₁₁	C6	100	A ₁₀	F14	19	V _{SS}	L3	125	HALT	N6	82	*2
A7	7	A ₁₂	C7	101	A ₁₄	G1	47	Vcc	L4	135	Vss	N7	81	FLOAT
A8	8	Vcc	C8	102	*1	G2	92	RNG₀	L11	134	D ₁₉	N8	80	Vss
A9	9	A ₁₆	C9	103	A ₁₈	G3	129	LOC	L12	114	D ₁₈	N9	79	D ₃₀
A10	10	A ₁₉	C10	104	A ₂₀	G12	110	D7	L13	73	D ₁₄	N10	78	D ₂₈
A11	11	A ₂₁	C11	105	A ₂₃	G13	69	D ₉	L14	24	Vcc	N11	77	D ₂₆
A12	12	A ₂₄	C12	106	A ₂₅	G14	20	D ₁₀	M1	42	RETRY	N12	76	Vcc
A13	13	A ₂₆	C13	65	Do	H1	46	Vss	M2	87	HACK	N13	75	D ₂₁
A14	14	A ₂₈	C14	16	D ₃	H2	91	Vss	M3	124	*2	N14	26	Vcc
B1	52	BC ₁	D1	50	NCA0	H3	128	Vss	M4	123	IRL ₀	P1	40	HREQ
B2	53	Ao	D2	95	BAT ₂	H12	111	Vss	M5	122	IRL ₂	P2	39	*1
B3	54	A ₃	D3	132	Vss	H13	70	Vss	M6	121	*2	P3	38	*2
B4	55	A ₅	D11	133	A ₂₉	H14	21	Vcc	M7	120	Vss	P4	37	Vcc
B5	56	A ₈	D12	107	Vss	J1	45	Vss	M8	119	Vcc	P5	36	Vss
B6	57	Vss	D13	66	Vcc	J2	90	Vcc	М9	118	Vss	P6	35	*2
B7	58	A ₁₃	D14	17	D ₅	J3	127	IACK	M10	117	D ₂₇	P7	34	RESET
B8	59	A ₁₅	E1	49	Vss	J12	112	D ₁₃	M11	116	D ₂₅	P8	33	CLK
B9	60	A ₁₇	E2	94	Vcc	J13	71	V _{ss}	M12	115	D ₂₃	P9	32	D ₃₁
B10	61	Vss	E3	131	BC ₀	J14	22	Vcc	M13	74	D ₁₇	· P10	31	D ₂₉
B11	62	A ₂₂	E12	108	D ₂	K1	44	BS	M14	25	D ₁₆	P11	30	Vcc
B12	63	Vcc	E13	67	D₄	K2	89	DC	1			P12	29	D ₂₄
B13	64	A ₂₇	E14	18	D ₈	К3	126	AS				P13	28	D ₂₂
B14	15	D ₁										P14	27	D ₂₀


*1 : Connect to V_{cc}.

* 2 : No connect.

Note. G_{MICRO}TM is a trademark of the G-MICRO group for the TRON specification microprocessors.

MITSUBISHI LSIS M33210GS-20/FP-20

CMOS 32-BIT PARALLEL MICROPROCESSOR (M32/100)

CMOS 32-BIT PARALLEL MICROPROCESSOR (M32/200)

DESCRIPTION

M33220GS-20 (M32/200) is a 32-bit microprocessor with performance in the middle range of the M32 Family.

It has on-chip memory management unit and distributed on-chip caches, and it can high speed operation by advanced pipeline processing.

Rigorous exception-handling facilities provide for error recovery and other system reliability needs. It's instruction set includes bit-map and string-manipulation instructions for fast text and graphics processing.

FEATURES

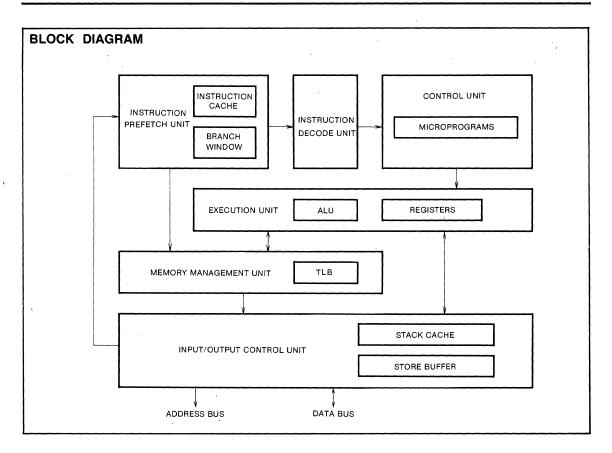
- Performance : 7MIPS (20MHz operation) Dhrystone : 13K instructions/second
- Number of basic instruction : 120
- On-chip cache Instruction cache : 1K byte Stack cache : 128 bytes
- Co-processor I/F
- On-chip MMU (TLB 32 entries)
- Optimized for operating system based on TRON specifications
- Supports the industry standard UNIX^(Note) operating system
 Virtual memory support
- Memory protection for each page achieved through 2level paging
- Bit map processing functions for multi-window displays
- Package : 135 pin PGA

PIN ASSIGNMENT

PIN CONFIGURATION (BOTTOM VIEW) KJIHGFEDCBA NML **@** 40 0 41 0 44 42 43 0 0 45 46 47 48 49 50 51 52 08080 2 ○3○3○3○3○3○3○3○3○3○3○3○3○2○202020 53 3 0 54 4 040302 55 0120120 5 56 050607080 0900 6 057058 7 0108080 120 01010102 M33220GS-20 8 119 59 9 0707070702020 03 0 C 9 118 10 Шĭ 61 10 11) 116 034014073024 08080 11 01301706017 0 113 0 112 72 71 23 22 12) 115 01107001 0100002 01808019 0180 67 18 12 13 074 25 64 13 © 14 15 Outline 135S8X-A

Note : UNIX operating system was developed by Bell Research Laboratories of AT&T Inc. and is licensed by AT&T.

PIN CODE	PIN	NAME	PIN CODE	PIN	NAME	PIN CODE	PIN	NAME	PIN CODE	PIN	NAME	PIN CODE	PIN	NAME
A1	1	Vss	C1	51	A ₈	F1	48	A ₁₄	K12	113	D ₂₂	N1	41	A ₂₆
A2	2	A ₂	C2	96	A ₅	F2	93	Vcc	K13	72	D ₁₈	N2	86	Vss
A3	3	Vcc	C3	97	A1	F3	130	A ₉	K14	23	Vcc	N3	85	IRL ₁
A4	4	BC ₂	C4	98	BC ₀	F12	109	D ₆	L1	43	A ₂₃	N4	84	HACK
A5	5	R/W	C5	99	BC ₃	F13	68	D ₉	L2	88	Vcc	N5	83	Vcc
A6	6	BAT ₂	C6	100	LOC	F14	19	Vss	L3	125	A ₂₈	N6	82	*3
A7	7	BAT ₁	C7	101	Vss	G1	47	A ₁₆	L4	135	A ₂₉	N7	81	*2
A8	8	Vss	C8	102	Vcc	G2	92	A ₁₅	L11	134	D ₂₅	N8	80	CLKf
A9	9	*2	C9	103	CDE	G3	129	A ₁₂	L12	114	D ₂₄	N9	79	Vss
A10	10	AS ₂	C10	104	CPDC	G12	110	D ₁₀	L13	73	D ₂₁	N10	78	*3
A11	11	Vcc	C11	105	BERR	G13	69	Vss	L14	24	D ₂₀	N11	77	*1
A12	12	AS ₁	C12	106	CPST ₁	G14	20	D ₁₂	M1	42	A ₂₅	N12	76	Vcc
A13	13	CPST ₀	C13	65	D ₂	H1	46	A ₁₇	M2	87	RESET	N13	75	D ₂₇
A14	14	Vss	C14	16	Vcc	H2	91	Vss	M3	124	IRL ₀	N14	26	Vss
B1	52	Vss	D1	50	A ₁₁	H3	128	A ₁₈	M4	123	PURGE	P1	40	Vss
B2	53	A ₃	D2	95	A ₇	H12	111	D ₁₆	M5	122	GBR	P2	39	A ₂₇
B3	54	A ₀	D3	132	A ₄	H13	70	D ₁₅	M6	121	*3	P3	38	IRL ₂
B4	55	BC ₁	D11	133	Do	H14	21	D ₁₃	M7	120	Vss	P4	37	HREQ
B5	56	BS	D12	107	D ₁	J1	45	Vss	M8	119	Vcc	P5	36	*3
B6	57	NCA0	D13	66	D ₅	J2	90	A ₁₉	M9	118	*2	P6	35	*3
B7	58	BAT ₀	D14	17	D ₈	J3	127	A ₂₂	M10	117	RNG	P7	34	*2
B8	59	Vss	E1	49	A ₁₃	J12	112	D ₁₉	M11	116	D ₃₁	P8	33	CLKf
B9	60	HALT	E2	94	A ₁₀	J13	71	D ₁₇	M12	115	D ₂₉	P9	32	Vss
B10	61	RETRY	E3	131	A ₆	J14	22	D ₁₄	M13	74	Vss	P10	31	*1
B11	62	DC	E12	108	D₄	K1	44	A ₂₀	M14	25	D ₂₃	P11	30	FLOAT
B12	63	CPST ₂	E13	67	D ₇	K2	89	A ₂₁				P12	29	D ₃₀
B13	64	Vss	E14	18	D ₁₁	К3	126	A ₂₄				P13	28	D ₂₈
B14	15	D ₃						,				P14	27	D ₂₆


*1 : Connect to V_{ss}. *2 : Connect to V_{cc} *3 : No connect.

Note G_{MICRO}TM is a trademark of the G-MICRO group for the TRON specification microprocessors.

MITSUBISHI LSIS M33220GS-20

CMOS 32-BIT PARALLEL MICROPROCESSOR (M32/200)

MITSUBISHI LSIS M33230GS-20

CMOS 32-BIT PARALLEL MICROPROCESSOR (M32/300)

DESCRIPTION

M33230GS-20 (M32/300) is the high-end processor of the three microprocessors. It is a 32-bit microprocessor that not only boasts approximately double the performance of the M33220GS-20 (M32/200), but also includes such additional features as an on-chip cache, MMU functions, and decimal arithmetic instructions.

FEATURES

- Performance : 14MIPS (20MHz operation)
 - Whetstone : 5MWIPS (20MHz operation with FPU)

Dhrystone: 27K instructions/second

- Number of basic instruction : about 110
- On-chip cachee Instruction cache : 2K bytes
 Data cache : 2K bytes
- Co-processor I/F
- On-chip MMU (TLB 128 entries)
- Optimized for operating system based on TRON specifications
- Supports the industry standard UNIX (Note) operating system
- Multiple virtual memory support
- Package: 179 pin PGA
- TTL compatible

Note : UNIX operating system was developed by Bell Research Laboratories of AT & T Inc. and is licensed by AT & T.

APPLICATION

Engineering workstation, office workstation and Superminicomputer

PIN CONFIGURATION (BOTTOM VIEW)

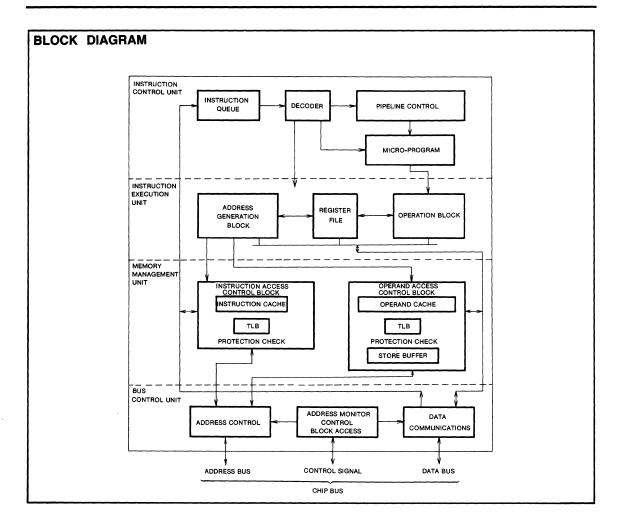
V U T R P N M L K J H G F E D C B 000000000000000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 3 0 0 0 0 0 0 0 4 000 5 0 0 0 000 0 0 0 6 000 000 7 0 0 0 000 8 000 000 9 M33230GS-20 000 000 10 000 11 0 0 0 0 0 0 12 0 0 0 0 0 0 13 0 0 0 0 0 0 000 14 0000 0 0 0 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17 18

Outline 179S8X-B

Note G_{MICRO}TM is a trademark of the G-MICRO group for the TRON specification microprocessors

CMOS 32-BIT PARALLEL MICROPROCESSOR (M32/300)

PIN ASSIGNMENT


•

PIN CODE	NAME	PIN CODE	NAME	PIN CODE	NAME	PIN CODE	NAME	PIN CODE	NAME
A2	*2	C3	Vss	G2	FLOAT	N2	A ₁₃	T18	Vcc
A3	OCCPRG	C4	GBR	G3	*2	N3	A ₁₅	U1	A ₂₂
A4	*1	C5	WAY	G16	Vcc	N16	V _{SS}	U2	Vss
A5	Vss	C6	Vcc	G17	CPST₀	N17	A ₂₉	U3	Vcc
A6	*2	C7	*2	G1 <u>8</u>	CPST ₁	N18	A ₃₀	U4	D ₃₀
A7/	HACK	C8	RNG₁	H1	A ₁	P1	A ₁₄	U5	D ₂₈
A8	Vss	C9	BAT ₂	H2	Ao	P2	A ₁₆	U6 -	Vss
A9	BAT ₀	C10	Vss	H3	Vcc	P3	A ₁₈	U7	D ₂₃
A10	HALT	C11	CLKf	H16	CPST ₂	P16	A ₂₄	U8	D ₂₀
A11	HREQ	C12	CLKf	H17	NCA	P17	A ₂₇	U9	Vcc
A12	RESET	C13	V _{SS}	H18	BLACKF	P18	A ₂₈	U10	Vcc
A13	V _{cc}	C14	Vcc	J1	A ₄	R1	A ₁₇	U11	D ₁₈
A14	BCLK ₁	C15	Vss	J2	A ₃	R2	V _{SS}	U12	D ₁₅
A15	BCLK ₂	C16	L/C	J3 [′]	A ₂	R3	A ₂₁	U13	D ₁₃
A16	A ₁₉ V _{SS}	C17	BLOCK	J16	BLACKS	R4	Vcc	U14	D ₁₀
A17	A ₂₂ AS	C18	Vss	J17	Vss	R15	Vss	U15	D ₈
B1	*2	D1	IRL ₀	J18	Vcc	R16	D ₁	U16	D7
B2	*2	D2	IRL ₁	K1	A ₅	R17	A ₂₅	U17	D ₃
B3	ICCPRG	D3	*2	K2	Vss	R18	A ₂₆	U18	D ₂
B4	TCS	D15	Vss	К3	A ₆	T1	A ₁₉	V2	Vcc
B5	*1	D16	DS	K16	BC ₁	T2	A ₂₀	V3	Vss
B6	Vcc	D17	RETRY	K17	BC ₂	тз	A ₂₃	V4	D ₂₉
B7	DAT	D18	BERR	K18	BC ₃	T4	Vss	V5	D ₂₆
B8	RNG₀	E1	*1	L1	A7	T5	D ₃₁	V6	D ₂₅
В9	BAT ₁	E2	*1	L2	A ₈	Т6	D ₂₇	V7	D ₂₂
B10	Vcc	E3	IRL ₂	L3	A ₉	Τ7	D ₂₄	V8	Vcc
B11	Vcc	E16	Vcc	· L16	NCAO	Т8	CPST ₂ D ₂₁	V9 ¹	Vss
B12	V _{ss}	E17	ASDC	L17	V _{SS}	Т9	Vss	V10	Vss
B13	Vss	E18	SDC	L18	BC ₀	T10	Vcc	V11	D ₁₉
B14	*2	F1	*1	M1	A ₁₀	T1,1	D ₁₇	V12	D ₁₆
B15	Vcc	F2	*1	M2	A ₁₁	T12	D ₁₄	V13	Vss
B16	Vcc	F3	*1	M3	Vcc	T13	D ₁₁	V14	D ₁₂
B17	V _{SS} BS	F16	CPDC	M16	A ₃₁	T14	Vss	V15	D ₉
B18	V _{cc} R/W	F17	Vcc	M17	MVIN	T15	D ₆	V16	Vcc
C1	Vcc	F18	Vss	M18	LOC	T16	D ₄	V17	D ₅
C2	Vss	G1	Vss	N1	A ₁₂	T17	D ₀		

* 1 : Connect to V_{cc}. * 2 : No connect

MITSUBISHI LSIS M33230GS-20

CMOS 32-BIT PARALLEL MICROPROCESSOR (M32/300)

GMICRO^M M32 FAMILY PERIPHERAL CIRCUITS

.

, .

MITSUBISHI LSI₅ M33241GS

CMOS DMA CONTROLLER (M32/DMAC)

DESCRIPTION

M33241GS (M32/DMAC) is an advanced and high performance DMA controller capable of accessing a 32-bit address space. It has four DMA channels, each of which can be set independently to single or dual address mode, cycle steal or burst mode. Continuous transfer of several blocks by descripter chain is also possible. Data transfer can be performed in units of byte, halfword, or longword. The DMAC can also handle transfer from any bus boundary and transfer between buses of different sizes.

FEATURES

- 4-Channel DMA
- Data transfer is possible between two independent buses
- Communication support function among MPUs on the bus
- The plural block transfer function by sequencial or link descripter chain
- Possible to set the system bus usage
- Transfer by means of auto trigger and external trigger
- Four priority mode
- Maximum transfer speed 27MB/s at 20MHz operation
- Package : 179 pin PGA

PIN ASSIGNMENT

PIN CONFIGURATION (BOTTOM VIEW)

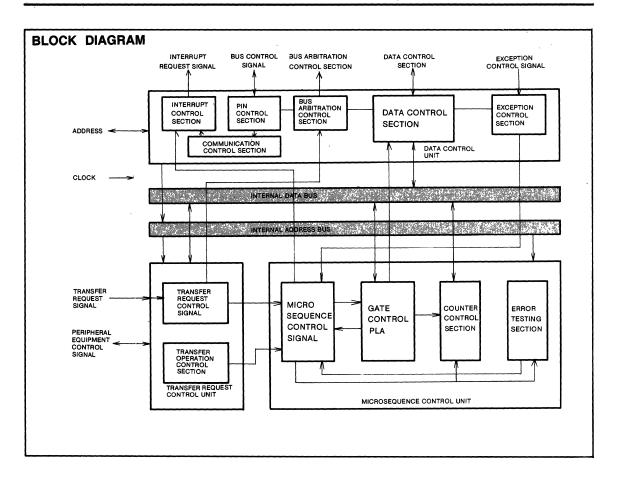
Q	Р	N	м	L	к	J	н	G	F	E	D	С	в	Α	_
© 43	0 44	0 45	0 46	0 47	0 48	0	0	0	្ល	0	0	0	0	0	1
0 42	0 93	Ö 94	04050202	040903012	048097013011	04080202	0\$0 \$ 08080	05080302	02020202	03020202	0	Õ	្ត្ត័	ò	2
0 41	0 92	0	Ö 136	0 137	Ö	Õ	Ŭ 140	Ŭ 141	Ö	Ö 143	Ĩ	0	ő	্ব	3
0 40	0 91	0	0	0	Ö	Ö	0	0	0	0	0	0	õ	Ŏ	4
Ö 39	Ö 90	0	0 168	0 179							0 146	0	õ	ç	5
@ 404040808080808080808080808080808080808	4030201000808080808080808080808080808080808	0404030303030303030202020202020202020202	0								04013014014014014014019015015012013016011018	050405050505080808010110120130401507017	0\$05080808060608080808080808080808080808	9 1020304050607080901001012013014 9 15	6
0 37	0 88	0	0 166								Ö 148	0	0 62	Ŏ,	7
0 36	0 87) 130	0 165		N	/33	324	1G	s		0	0	Ö 63	Ó 8	8
0 35	0 86	0 129	014012012011014079026								0	0	0 64	Ŏ 9	9
0 34	0 85	0 128	់ នេ								0	0	0 65	Ŏ 10	10
33	0 84	0	0 162	0178						0	0 152	0	0 66	0	11
0 32	0 83	0 126	0 161	018013078025	0 159	015012076023	្ឆ	0 156) 155	017015017072019	0 153	0 114	0 67	0 12	12
31	82	0 125	0	0 123	01301207024	0	050200000000000000000000000000000000000	01501904021	015018073020	0	0 116	0 115	0 68	0 13	13
30	0 81	80	0 79	0 78	8	0 76	0 75	0 74	0 73	0 72	21	0 70	0 69	0 14	14
© 29	0 28	0 27	0 26	0 25	0 24	0 23	0 22	0 21	0 20	0 19	0 18	0 17) 16	© 15	15
				<u> </u>	+11.		17	700	2.0	X-	•				
				Ju	ull	16	- 14	3	30.	~-	~				

APPLICATION

DMA control of peripheral equipment that require highspeed data transfer

PIN CODE	PIN	NAME	PIN CODE	PIN	NAME	PIN CODE	PIN	NAME	PIN CODE	PIN		PIN CODE	PIN	NAME	PIN CODE	PIN	NAME
A1	1	A ₂₁	C1	55	Vss	E1	53	A ₁₁	H13	120	XABEN	M2	95	Vss	P2	93	NC
A2	2	A ₂₂	C2	104	A ₁₆	E2	102	A ₁₂	H14	75	NC	М3	136	Vss	P3	92	Vcc
A3	3	A ₂₅	C3	105	NC	E3	143	Vcc	H15	22	ABEN	M4	169	D ₆	P4	91	D ₁₁
A4	4	A ₂₉	C4	106	A ₁₉	E4	176	A ₁₄	J1	49	A ₂	M5	168	D ₉	P5	90	D14
A5	5	BAT ₂	C5	107	A ₂₃	E11	177	Vcc	J2	98	A ₁	M6	167	D ₁₃	P6	89	Vcc
A6	6	Vss	C6	108	A ₂₆	E12	154	XIACK	J3	139	Ao	M7	166	D ₁₇	P7	88	D ₁₈
A7	7	DC	C7	109	BAT ₀	E13	1 17	REQ ₁	J4	172	Vcc	M8	165	D ₂₁	P8	87	D22
A8	8	RERUN	C8	110	BERR	E14	72	Vcc	J12	158	XHACK	M9	164	D ₂₆	P9	86	D ₂₄
A9	9 -	CSTR	C9	111	XR/W	E15	19	NC	J13	121	HACK	M10	163	D ₃₁	P10	85	D ₂₈
A10	10	Vcc	C10	112	XAS	F1	52	A9	J14	76	Vss	M11	162	*1	P11	84	D ₂₉
A11	11	Vss	C11	113	ACK ₀	F2	101	Vss	J15	23	DHREQ	M12	161	*1	P12	83	Vss
A12	12	ACK1	C12	114	DBEN	F3	142	A ₁₀	K1	48	NC	M13	124	*3	P13	82	*1
A13	13	ACK ₃	C13	115	Vss	F4	175	A ₁₃	K2	97	BC ₃	M14	79	PCL ₂	P14	81	XWIDTH
A14	14	DIN	C14	70,	XCS	F12	155	CLK	К3	138	Vss	M15	26	PCL ₁	P15	28	WIDTH
A15	15	IACK	C15	17	REQ ₃	F13	118	Vss	K4	171	BC ₁	N1	45	BC ₀	Q1	43	D ₂
B1 /	56	A ₁₇	D1	54	Vss	F14	73	Vcc	K12	159	Vcc	N2	94	D ₃	Q2	42	D ₇
B2	57	Vss	D2	103	Vcc	F15	20	Vss	K13	122	XHREQ	N3	135	D₄	Q3	41	D10
B3	58	A ₂₀	D3	144	A ₁₅	G1	51	A ₆	K14	77	HREQ	N4	134	D ₈	Q4	40	Vss
B4	59	A ₂₄	D4	145	A ₁₈	G2	100	Vcc	K15	24	DHACK	N5	133	D ₁₂	Q5	39	D15
B5	60	A ₂₇	D5	146	Vcc	G3	141	A7	L1	47	Vss	N6	132	Vss	Q6	38	D ₁₆
B6	61	A ₂₈	D6	147	Vss	G4	174	A ₈	L2	96	BC ₂	N7	131	NC	Q7	37	D ₁₉
B7	62	BLOCK	D7	148	BAT ₁	G12	156	Vcc	L3	137	Vcc	N8	130	D ₂₀	Q8	36	Vss
B8	63	XDC	D8	149	IORDY	G13	119	Vss	L4	170	D ₁	N9	129	D ₂₅	Q9	35	D ₂₃
B9	64	R/W	D9	150	DONE	G14	74	Vcc	L5	179	D ₅	N10	128	D ₃₀	Q10	34	Vcc
B10	65	ĀS	D10	151	XDS	G15	21	XAIN	L11	178	*1	N11	127	RESET	Q11	33	D ₂₇
B11	66	DS	D11	152	Vss	H1	50	A ₅	L12	160	Vss	N12	126	*1	Q12	32	V _{ss}
B12	67	ACK ₂	D12	153	XDIN	H2	99	Vss	L13	123	PCL ₀	N13	125	NC	Q13	31	Vcc
B13	68	XDBEN	D13	116	CS	H3	140	A ₄	L14	78	XIRQ	N14	80	*2	Q14	30	*3
B14	69	NC	D14	71	REQ ₂	H4	173	A ₃	L15	25	IRQ	N15	27	PCL ₃	Q15	29	*1
B15	16	REQ ₀	D15	18	Vss	H12	157	AIN	M1	46	Vcc	P1	44	Do			

*1 : Connect to Vss


*2: Connect to V_{cc}

*3: No connect

Note. G_{MICRO}TM is a trademark of the G-MICRO group for the TRON specification microprocessors.

CMOS DMA CONTROLLER (M32/DMAC)

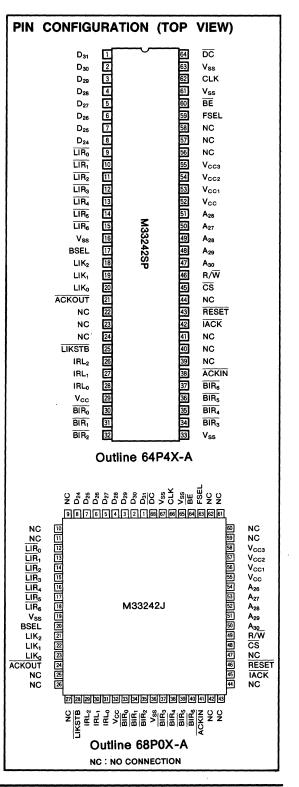
mitsubishi lsi₅ M33242SP/J

CMOS INTERRUPT CONTROLLER (M32/IRC)

DESCRIPTION

M33242SP/J (M32/IRC) is an interrupt request controller (IRC). It controls local and bus interrupts and interrupt vectors in a system based on the G_{MICRO} family MPU (M33210GS-20/FP-20, M33220GS-20, M33230GS-20).

It comprises both the IRG (Interrupt Request Generator) that processes external interrupt requests, and the IRH (Interrupt Request Handler) that processes interrupts from several IRGs.

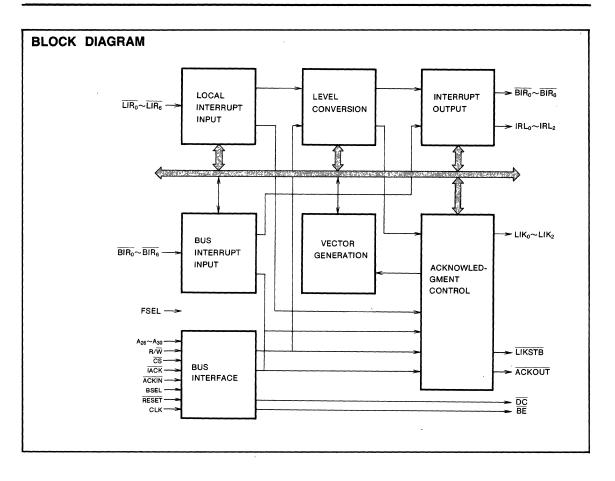

It can also be used with a VME bus.

FEATURES

- Seven local interrupts and seven bus interrupts (only IRH)
- Cause of interrupt can be expanded
- Fast interrupt acknowledge daisychain
- Interrupt Generator (IRG) function and Interrupt Handler (IRH) function
- M32/IRC can be used with M32 family bus or VME bus
- Interrupt conditions can be set with each interrupt input
- Interrupt polling is possible
- No initialization required after a reset, immediate recovery to interrupt handling ready condition
- Irregular interrupts can be handled
- Maximum operation frequency : 20MHz
 - Package : M33242SP 64pin shrink DIP M33242J 68pin PLCC

APPLICATION

Interrupt controller for M32 family



Note. G_{MICRO}TM is a trademark of the G-MICRO group for the TRON specification microprocessors.

MITSUBISHI LSIS M33242SP/J

CMOS INTERRUPT CONTROLLER (M32/IRC)

MITSUBISHI LSIS M33243GS-25,-30

CMOS TAG MEMORY (M32/TAGM)

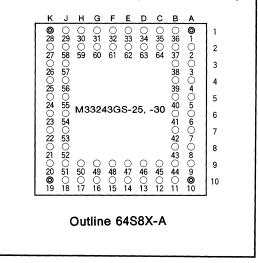
DESCRIPTION

M33243GS-25, -30 (M32/TAGM) is 512 entry \times 4 way /1024 entry \times 2 way TAG Memory fabricated with a CMOS technology.

It has been developed aiming to be used in an easily handled cache system with the other DATA RAMs. Especially this device offers the advantages on designing compact and high performance cache system which will be used in a system adopting M32 family microprocessors.

FEATURES

Parameter	Туре	M33243GS-25	M33243GS-30
Maximum access	from address	25	30
time(ns)	from TAG data	18	18


FEATURES

- 512 entry × 4 way or 1024 entry × 2 way by external pin selection
- Internal RAM configured as 512 words × 98 bits
- LRU (Least Recently Used) replace control
- Partial purge and full purge functions
- Internal parity generation and check circuit
- Tag data comparison control function
- Coded hit/replace output pin
- Package: 64pin PGA

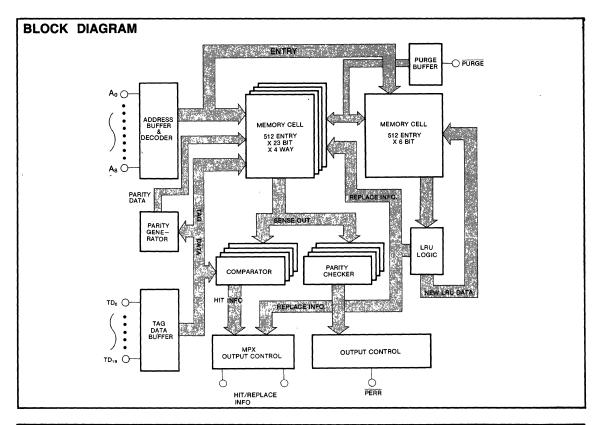
APPLICATION

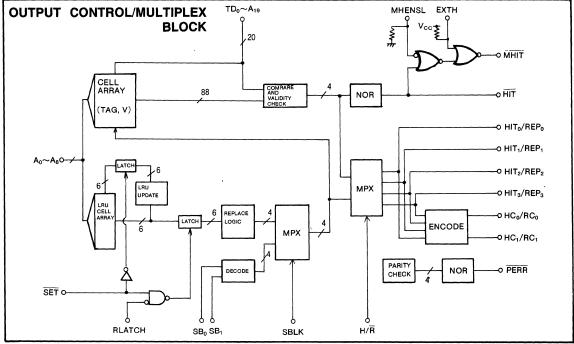
High performance cache memory system

PIN CONFIGURATION (BOTTOM VIEW)

PIN ASSIGNMENT

PIN CODE	PIN	NAME	PIN CODE	PIN	NAME	PIN CODE	PIN	NAME
A1	1	NC	C9	45	TD ₆	J1	29	PINV
A2	2	MHIT	C10	12	TD ₈	J2	58	MODE
A3	3	HIT ₀ /REP ₀	D1	34	SET	J3	57	PURGE
A4	4	HIT_2/REP_2	D2	63	RLATCH	J4	56	A ₈
A5	5	HIT ₃ /REP ₃	D9	46	TD ₉	J5	55	A ₆
A6	6	TD₀	D10	13	TD ₁₀	J6	54	Vss
A7	7	TD ₂	E1	33	INVL	J7	53	A ₂
A8	8	EXTH	E2	62	WRITE	J8	52	A ₀
A9	9	MHENBL	E9	47	Vcc	J9	51	TD ₁₉
A10	10	NC	E10	14	TD ₁₁	J10	18	TD ₁₈
B1	36	HIT	F1	32	INH	K1	28	NC
B2	37	HC ₀ /RC ₀	F2	61	Vcc	K2	27	NC
B3	38	HC ₁ /RC ₁	F9	48	TD ₁₃	К3	26	A9
B4	39	HIT ₁ /REP ₁	F10	15	TD ₁₂	K4	25	A7
B5	40	V _{SS}	G1	31	SB1	K5	24	A5
B6	41	TD ₁	G2	60	SB ₀	K6	23	A4
B7	42	TD_3	G9	49	TD ₁₅	K7	22	A3
B8	43	TD₄	G10	16	TD ₁₄	K8	21	A1
B9	44	TD₅	H1	30	SBLK	К9	20	NC
B10	11	TD ₇	H2	59	VINV	K10	19	NC
C1	35	H/R	Н9	50	TD ₁₇			
C2	64	PERR	H10	17	TD ₁₆			


* 1 : Connect to V_{cc}


* 2 : No connect

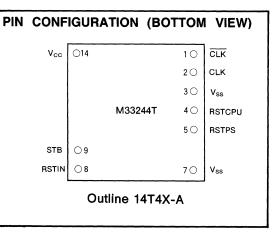
MITSUBISHI LSI₅ M33243GS-25,-30

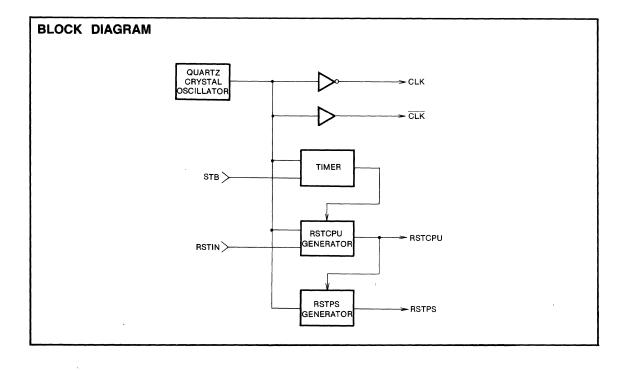
CMOS TAG MEMORY (M32/TAGM)

MITSUBISHI LSIS M33244T-16,-20

CLOCK PULSE GENERATOR FOR M32/200 (CPG/200)

DESCRIPTION


M33244T-16, -20 (CPG/200) is a Clock Pulse Generator for supporting M33220GS-20 (M32/200) systems. With its reset control function, it adjusts MPU and FPU internal clock phases.


FEATURES

- Clock pulse generator for M32/200 systems
- Maximum system clock frequency is 20MHz
- Reset signal output with ability to adjusts MPU and FPU internal clock phases
- Reset timing generator for power-on reset
- Monitor output to system shows MPU and FPU internal clock phases
- Package: 14pin can type

APPLICATION

Clock pulse generator for M32/200

Note. G_{MICRO}TM is a trademark of the G-MICRO group for the TRON specification microprocessors.

MITSUBISHI LSIS M33245GS

CMOS CACHE CONTROLLER/MEMORY (M32/CCM)

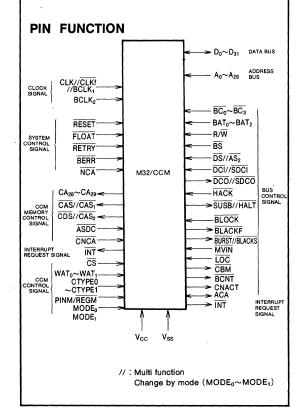
DESCRIPTION

M33245GS (M32/CCM) is a cache controller/memory for M32 family microprocessors (M33210GS-20, M33220GS-20, M33230GS-20).

It improves the MPU's average memory access time.

FEATURES

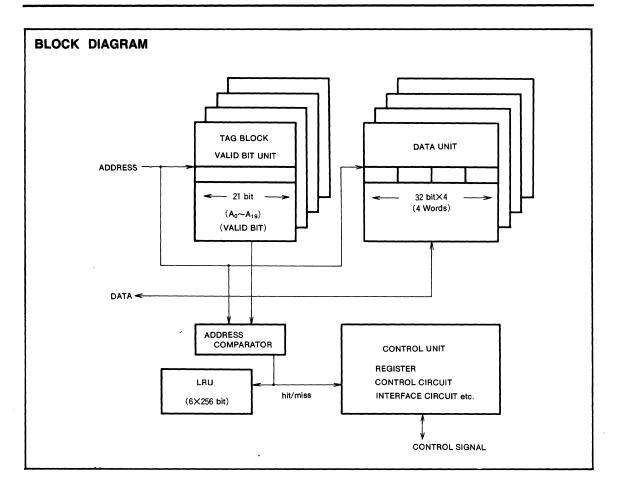
- 16kB real address external cache
- No wait reads possible when the cache is hit
- Fast 4 words burst read when the cache is missed
- Fully synchronous operation with M32 family processors
- Internal address comparator allows multiple usage
- Division into data cache and instruction cache
- Coherency maintained by address monitor
- Purge and freeze functions in way units
- Write-through main memory replace
- 4-way set associative cache
- LRU (Least Recently Used) replace control
- Each line consists of 4 words (16 bytes) and a validity bit
- Package : 135 pin PGA


APPLICATION

High performance cache memory system

PIN CONFIGURATION (BOTTOM VIEW)

	M 42		L 0 43	<u>к</u> 0 44	J 0 45	H 0 46	G 0 47	F 0 48	E 0 49	D 0 50	<u>с</u> 51	B 0 52	A © 1	1
0 403030303030303030303030202020202	40 80	040870140130120120190180170160	43 080	4089 89	45 90 90) 40091 0	047090129	48 93 130) 40 94⊖	080502	0506070808020202020202050606	030304050605080808060608060405	◎ 1○2○3○4○5○6○7○8○9○10○11○12○13 ◎	2
38	080808080808070707070707075		125 () 135	0 126	127	0 128	129	130	0 131	132	97 08	54 055	3 0	4
о 36	0 83	0 122	133								0 99	0 56	្វ័	5
35	0 82	0									0	0 57	0	6
34	81	120			мз	32	450	зs			000	58 0	70	8
33	80	0									102	59 0	0	9
0 31) () 78										0	0 61	ँ 10	10
30	077	0	0 134 0	~	~	~	\sim	~	_) 133	0	0 62	011	11
29	76	115	114	0113	112	Ŭ₩ O	0100	02080	0108 108 67	107	106	63	12	12 13
28 ©	75 〇 26	115 74 25	114 73 24	113 72 23	112 0 71 0 22	11070021	110 09 0 20	68 () 19	67 () 18	01301706017	65 01	64 015	13 ©	14
2/	26	25	24	23	22	21	20	19	18	17	10	15	14	



Note. GMICROTM is a trademark of the G-MICRO group for the TRON specification microprocessors

MITSUBISHI LSIS M33245GS

CMOS CACHE CONTROLLER/MEMORY (M32/CCM)

MITSUBISHI LSIs M33281GS-20

CMOS FLOATING-POINT PROCESSING UNIT (M32/FPU)

DESCRIPTION

M33281GS-20 is a high-speed floating-point arithmetic LSI unit, and support the extended precision data format of IEEE standard.

The M33281GS-20 is designed to give maximum performance as a coprocessor for M32 family microprocessors (M33220GS-20, M33230GS-20). In addition to arithmetic operations and square roots, it has elementary function instructions, inner product instructions for fast matrix and vector calculations, area discrimination instructions for clipping discrimination, graphics oriented instructions and many more.

FEATURES

• Performance (20MHz operation with M33220GS-20)

Addition or subtraction	0.5µs
Multipulication	0.45µs
Division	1.5 <i>u</i> s

- Elementary function calculation
- Graphics support

Division

- Conforms to IEEE754
- Fast coprocessor interface
- Comprehensive system functions
- Softwave and system support
- Variety of instruction types 31 arithmetic related 21 control related
- 16 floating point operation registers (80-bit)

									_					
P	N	<u>M</u>	<u>_</u>	ĸ	<u> </u>	H	G	F	E	<u>D</u>	<u>c</u>	B	<u>A</u>	٦.
© 40	41	042 87	0430	044 89	045 90	46	0 47	0 48	49	50	51	52	0 1	1
\mathbf{O}_{20}	0	0	0 88	0	00		្ល	O G	្ឋ	05	0	0	$\hat{\mathbf{o}}$	2
õ	õ	0 124	0	0 126	0 127	04090128	47 92 129	48 93 130	040403	080502	õ	õ	õ	3
38	0	124 0 123	125 O	126	127	128	129	130	[3]	132	ő	0	õ	4
0403080306050503030303030802020202	040808040308080808	123	135								0506070809020102020405	02030405050507080908060208	©10203040506070809010	5
36	83	0120									99	56	5	6
35	82	121									100	57	é	7
34	81	120				200	81	66			M	58	ž	1
33	80) 119			IVI.	552	.01	GG			102	0 59	8	8
Ö	Ö	0 118									0	0	្ត	9
Ő	õ	Ö									Ö	õ	ŏ	10
3	079078077076	017016	0							0	0	Ö	Ö	111
30	77	116	134 O	0	0	0	0	0	0	133	105 () 106	62	0 11 0 12	12
29	76	0115	114	113 072 23	012071022)11 070	110) 19 68	108	0107	106	63	12	13
28	0 75	0 74	073 024	72	71	70	69	68	0 67	0 66	0 65	64) 13	14
27	0 26	0 25	24	23	22	0 21) 20	0 19) 18	0 17	() 16	0 15	© 14	14
									-					-
			(Эu	tlir	ne	13	55	S82	X-/	4			

PIN CONFIGURATION (BOTTOM VIEW)

- . Peripheral device mode specifiable (for use when MPU lacks coprocessor interface)
- Package 135 pin PGA

APPLICATION

Scientific and technical calculations, engineering diagram processing

PIN ASSIGN

PIN CODE	PIN	NAME	PIN CODE	PIN	NAME	PIN CODE	PIN	NAME	PIN CODE	PIN	NAME	PIN CODE	PIN	NAME	PIN CODE	PIN	NAME
A1	1	Vss	B10	61	CPDC	D12	107	D ₁₆	H3	128	D ₁₀	L14	24	Vcc	N9	79	V _{SS}
A2	2	A ₂₉	B11	62	BERR	D13	66	D ₁₉	H12	111	Vcc	M1	42	Vss	N10	78	Vcc
A3	3	HACK	B12	63	CPST ₂	D14	17	Vcc	H13	70	Vss	M2	87	FCPST ₁	N11	77	Vcc
A4	4	BC ₂	B13	64	Vss	E1	49	Vcc	H14	21	Vcc	М3	124	LD	N12	76	Vcc
A5	5	R/W	B14	15	Vcc	E2	94	D ₃	J1	45	D ₉	M4	123	CPID ₁	N13	75	Vss
A6	6	BAT ₀	C1	51	Vcc	E3	131	Do	J2	90	D ₁₁	M5	122	IRL	N14	26	Vss
A7	7	V_{SS}	C2	96	Vcc	E12	108	D ₁₈	J3	127	D ₁₃	M6	121	Vss	P1	40	Vcc
A8	8	NC	C3	97	A ₂₈	E13	67	D ₂₁	J12	112	D ₂₉	M7	120	Vss	P2	39	RESET
A9	9	V _{SS}	C4	98	BC ₀	E14	18	D ₂₃	J13	71	D ₂₇	M8	119	Vcc	P3	38	CPID₀
A10	10	V _{SS}	C5	99	BC ₃	F1	48	D ₆	J14	22	D ₂₆	M9	118	Vcc	P4	37	Vss
A11	11	Vcc	C6	100	Vss	F2	93	D4	K1	44	Vss	M10	117	Vcc	P5	36	SIZ16
A12	12	Vss	C7	101	BAT ₂	F3	130	D ₂	K2	[.] 89	D ₁₂	M11	116	Vcc	P6	35	NC
A13	13	CPST ₀	C8	102	Vcc	F12	109	D ₂₀	КЗ	126	D ₁₅	M12	115	Vcc	P7	34	Vcc
A14	14	Vcc	C9	103	Vcc	F13	68	Vcc	K12	113	D ₃₀	M13	74	Vcc	P8	33	CLKf
B1	52	Vss	C10	104	RETRY	F14	19	Vss	K13	72	D ₂₈	M14	25	D ₃₁	P9	32	Vss
B2	53	Vcc	C11	105	DC	G1	47	Vss	K14	23	Vss	N1	41	FCPST ₂	P10	31	FCPDC
B3	54	A ₂₇	C12	106	CPST ₁	G2	92	D7	L1	43	Vcc	N2	86	Vss	P11	30	V _{cc} .
B4	55	BC ₁	C13	65	D ₁₇	G3	129	D ₅	L2	88	D ₁₄	N3	85	UD	P12	29	Vcc
B5	56	BS	C14	16	Vss	G12	110	D ₂₂	L3	125	Vss	N4	84	CPID ₂	P13	28	NC
B6	57	Vcc	D1	50	Vss	G13	69	D ₂₄	L4	135	Vcc	N5	83	Vcc	P14	27	Vcc
B7	58	BAT ₁	D2	95	D ₁	G14	20	D ₂₅	L11	134	FCPST ₀	N6	82	Vcc			
B8	59	V _{SS}	D3	132	V _{SS}	H1	46	D ₈	L12	114	V _{SS}	N7	81	Vss			
B9	60	CDE	D11	133	V _{SS}	H2	91	D ₁₀	L13	73	V _{ss}	N8	80	CLKf			

Note. G_{MICRO}TM is a trademark of the G-MICRO group for the TRON specification microprocessors

MITSUBISHI LSIS M33281GS-20

CMOS FLOATING-POINT PROCESSING UNIT (M32/FPU)

CONTACT ADDRESSES FOR FURTHER INFORMATION

JAPAN :

Semiconductor Marketing Division Mitsubishi Electric Corporation 2-3, Marunouchi 2-chome Chiyoda-ku, Tokyo 100, Japan Telex 24532 MELCO J Telephone (03) 3218-3473 (03) 3218-3499 Facsimile: (03) 3214-5570

Overseas Marketing Manager Kita-Itami Works 4-1, Mizuhara, Itami-shi, Hyogo-ken 664, Japan Telex 526408 KMELCO J Telephone (0727) 82-5131 Facsimile: (0727) 72-2329

HONG KONG =

 Mitsubishi Electric (H.K.) Ltd

 41st fl., Manulife Tower, 169,

 Electric Road, North Point, Hong Kong

 Telex
 60800 MELCO HX

 Telephone.
 510-9555

 Facsimile
 510-9803, 510-9822,

SINGAPORE -

MELCO SALES SINGAPORE PTE LTD 230 Upper Bukit Timah Road # 03-01/15 Hock Soon Industrial Complex Singapore 2158 Telex RS 20845 MELCO Telephone 4695255 Facsimile 46952347

TAIWAN =

MELCO-TAIWAN CO, Ltd 1st fl, Chung-Ling Bldg., 363, Sec 2, Fu-Hsıng S Road, Taper R.O.C Telephone (02) 735-3030 Facsimile (02) 735-6771 Telex 25433 CHURYO "MELCO-TAIWAN"

U.S.A.

Mitsubishi Electronics America, Inc 1050 East Arques Avenue Sunnyvale, CA 94086 Telephone: (408) 730-5900 Facsimile (408) 730-4972

SAN DIEGO

Mitsubishi Electronics America, Inc 16980 Via Tazon, Suite 220 San Diego, CA 92128 Telephone: (619) 451-9618 Facsimile (619) 592-0242

DENVER

Mitsubishi Electronics America, Inc 4600 South Ulster Street Metropoint Building, 7th Floor Denver, CO 80237 Telephone (303) 740-6775 Facsimile (303) 694-0613

SOUTHWEST

Mitsubishi Electronics America, Inc 991 Knox Street Torrance, CA 90502 Telephone. (213) 515-3993 Facsimile (213) 217-5781

SOUTH CENTRAL

Mitsubishi Electronics America, Inc 1501 Luna Road, Suite 124 Carrollton, TX 75006 Telephone (214) 484-1919 Facsimile (214) 243-0207

NORTHERN

Mitsubishi Electronics America, Inc 15612 Highway 7 # 243 Minnetonka, MN 55345 Telephone (612) 938-7779 Facsimile (612) 938-5125

NORTH CENTRAL

Mitsubishi Electronics America, Inc 800 N Bierman Circle Mt Prospect, IL 60056 Telephone (312) 298-9223 Facsimile. (312) 298-0567

NORTHEAST

Mitsubishi Electronics America, Inc 200 Unicorn Park Drive Woburn, MA 01801 Telephone. (617) 932-5700 Facsimile: (617) 938-1075

MID-ATLANTIC

Mitsubishi Electronics America, Inc 800 Cottontail Lane Somerset, NJ 08873 Telephone (201) 469-8833 Facsimile (201) 469-1909

SOUTH ATLANTIC

Mitsubishi Electronics America, Inc 2500 Gateway Center Blvd , Suite 300 Morrisville. NC 27560 Telephone (404) 368-4850 Facsimile (404) 662-5208

SOUTHEAST

Mitsubishi Electronics America, Inc. Town Executive Center 6100 Glades Road #210 Boca Raton, FL 33433 Telephone (407) 487-7747 Facsimile (407) 487-2046

CANADA

Mitsubishi Electronics America, Inc. 6185 Ordan Drive, Unit #110 Mississauga, Ontario, Canada L5T 2E1 Telephone (416) 670-8711 Facsimile: (416) 670-8715

Mitsubishi Electronics America, Inc 300 March Road, Suite 302 Kanata, Ontario, Canada K2K 2E2 Telephone: (416) 670-8711 Facsimile (416) 670-8715

WEST GERMANY =

Mitsubishi Electric Europe GmbH Headquarters Gothear Str. 8 4030 Ratingen 1, West Germany Telex 8585070 MED D Telephone (02102) 4860 Facsimile: (02102) 486-115

Munich Office: Arabellastraße 31 8000 Munchen 81, West Germany Telex 5214820 Telephone (089) 919006-09 Facsimile: (089) 9101399

FRANCE =

Mitsubishi Electric Europe GmbH 55, Avenue de Colmar 92563 Rueil Malmaison Cedex Telex: 632326 Telephone 47067871 Facsimile 47513622

ITALY :

Mitsubishi Electric Europe GmbH Centro Direzionale Colleoni Palazzo Cassiopea 1 20041 Agrate Brianza I-Milano Telephone (039) 636011 Facsimile (039) 6360120

SWEDEN =

Mitsubishi Electric Europe GmbH Lastbilsvagen 6B 5-19149 Sollentuna, Sweden Telex 10877 (meab S) Telephone (08) 960468 Facsimile. (08) 966877

U.K. =

Mitsubishi Electric (U K.) Ltd Travellers Lane Hattield Herts AL10 8×B, England, U K. Telephone: (0044) 7072 78692 Facsimile (0044) 7072 78692

AUSTRALIA =

Mitsubishi Electric Australia Pty Ltd 348 Victoria Road Rydalmere Nsw 2116, Australia Private Bag No 2 Rydalmere Nsw 2116 Telex MESYDAA 126614 Telephone: (02) 684-7200 Facsimile (02) 638-7072

MITSUBISHI DATA BOOK MICROPROCESSORS AND PERIPHERAL CIRCUITS

February, First Edition 1990

Editioned by Committee of editing of Mitsubishi Semiconductor Data Book

Published by Mitsubishi Electric Corp., Semiconductor Division

This book, or parts thereof, may not be reproduced in any form without permission of Mitsubishi Electric Corporation. ©1991 MITSUBISHI ELECTRIC CORPORATION Printed in Japan

MITSUBISHI SEMICONDUCTORS MICROPROCESSORS AND PERIPHERAL CIRCUITS 1990

These products or technologies are subject to Japanese and/or COCOM strategic restrictions, and diversion contrary thereto is prohibited.

H-D0187-A KI-9107 Printed in Japan (ROD) © 1991 MITSUBISHI ELECTRIC CORPORATION New publication, effective Feb. 1990. Specifications subject to change without notice.