MITSUBISHI 1990 SEMICONDUCTORS

MICROPROCESSORS AND PERIPHERAL CIRCUITS

All values shown in this catalogue are subject to change for product improvement.

The information, diagrams and all other data included herein are believed to be correct and reliable. However, no responsibility is assumed by Mitsubishi Electric Corporation for their use, nor for any infringements of patents or other rights belonging to third parties which may result from their use.

•

GMICRO M32 Family MICROPROCESSORS

.

M33210GS-20/FP-20	CMOS 32-bit Parallel Microprocessor (M32/100) ······7-3
M33220GS-20	CMOS 32-bit Parallel Microprocessor (M32/200) ······7-5
M33230GS-20	CMOS 32-bit Parallel Microprocessor (M32/300) ······7-7

8 G_{MICRO} M32 Family PERIPHERAL CIRCUITS

M33241GS	CMOS DMA Controller (M32/DMAC) ······8-3
M33242SP/J	CMOS Interupt Controller (M32/IRC) ······8-5
M33243GS-25, -30	CMOS TAG Memory (M32/TAGM)
M33244T-16, -20	Clock Pulse Generator for M32/200 (CPG/200) ······8-9
M33245GS	CMOS Cache Controller/Memory (M32/CCM) ······ 8-10
M33281GS-20	CMOS Floating-Point Processing Unit (M32/FPU) ······ 8-12

Contact Addresses for Further Information

,

MITSUBISHI LSIS

				Electrical characteristics				
Туре	Circuit function and organization	Structure	Supply voltage (V)	Typ pwr dissipation (mW)	Max access time (ns)	time	Max fre- quency (MHz)	Page

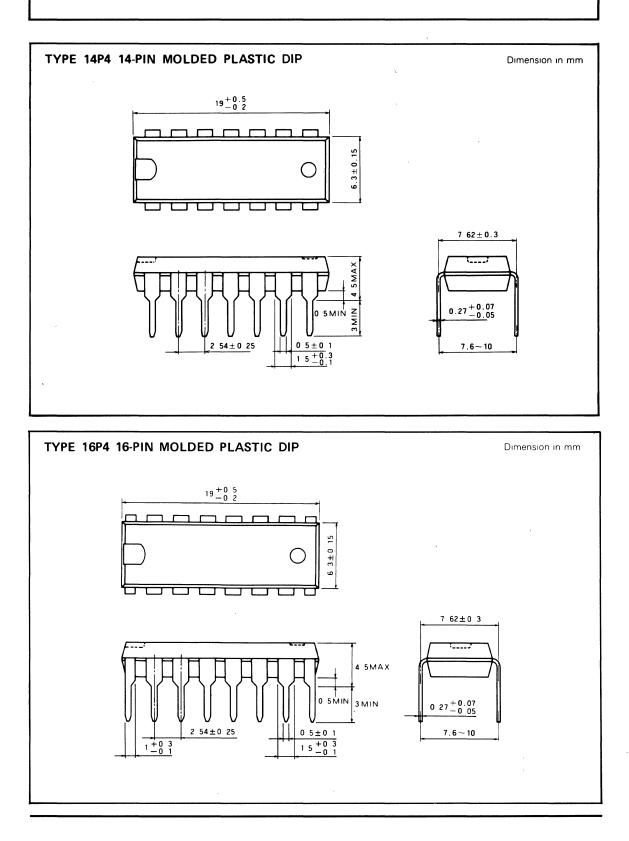
CMOS PERIPHERAL CIRCUITS

M5M81C55P-2	CMOS 2048-bit Static RAM with I/O	C,Sł	5±10%	35	120	200	5	40P4	4—3
M5M81C55FP-2	Ports and Timer (CE="L" active)	C,Si	5±10%	35	120	200	5	40P2R	4-3
M5M81C55J-2	Ports and Timer (CE- L active)	C,Sı	5±10%	35	120	200	5	44P0	4-3
M5M81C56P-2	CMOS 2048-bit Static RAM with I/O	C,Si	5±10%	35	120	200	5	40P4	4-13
M5M81C56FP-2	Ports and Timer (CE="H" active)	C,Sı	5±10%	35	120	200	5	40P2R	4-13
M5M81C56J-2	Ports and Timer (CE— H active)	C,Si	5±10%	35	120	200	5	44P0	4-13
M5M82C37AP-5		C,Sı	5±10%	22.5	140	200	5	40P4	4-23
M5M82C37AFP-5	CMOS Programmable DMA	C,SI	5±10%	22 E	140	200	5	40P2R `	4-23
M5M82C37AJ-5	Controller	0,31	5110%	22.5			5	44P0	4-23
M5M82C51AP		C,Sı	5±10%	6	170	320	3	28P4	4-43
M5M82C51AFP	CMOS Programmable	C,Sı	5±10%	6	170	320	3	28P2W	4-43
M5M82C51AJ	Communication Interface	C,SI	5±10%	6	170	320	3	28P0	4-43
M5M82C54P		C,SI	5±10%	35	120	125	8	24P4	4-61
M5M82C54FP	CMOS Programmable	0.0	5 ± 100/	25	120	105	-	24P2W	4—61
M5M82C54J	Interval Timer	C,Si	5±10%	35		125	8	28P0	
M5M82C55AP-2		C,Sı	5±10%		120	320		40P4	4-72
M5M82C55AFP-2	CMOS Programmable	0.0	F±100/		100	200		40P2R	4 70
M5M82C55AJ-2	Peripheral Interface	C,Si	5±10%	_	120	320	-	44P0	4—72
M5M82C59AP-2		C,Si	5±10%		120	310	-	28P4	4-88
M5M82C59AFP-2	CMOS Programmable	0.0	E+100/		100	210		28P2W	4 00
M5M82C59AJ-2	Interrupt Controller	C,Si	5±10%	-	120	310	-	28P0	4
M5M82C255ASP	CMOS Programmable Peripheral Interface	C,Sı	5±10%	-	120	320	_	64P4B	4—105

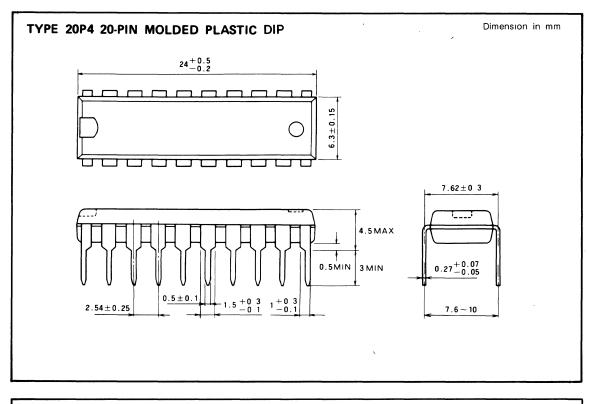
■ 32-BIT MICROPROCESSORS GMICROTM · M32 FAMILY

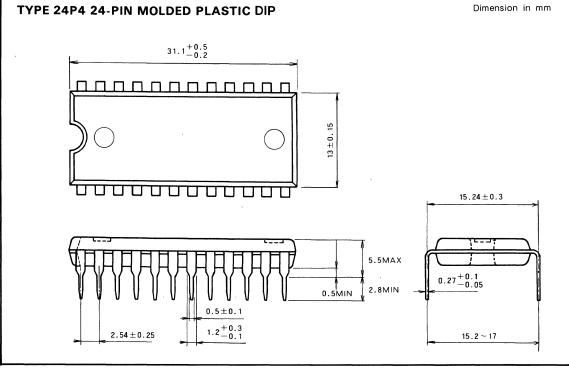
					Electrical ch	aracteristics			
Туре No		Circuit function	Structure	Supply voltage (V)	Typ. power dissipation (mW)	Max frequency (MHz)	Package	Page	
M33210GS/FP-20	**	32-Bit Microprocessor(M32/100)	C,Sı	5±5%	_	20	135S8/160P6	7-3	
M33220GS-20	**	32-Bit Microprocessor(M32/200)	C,Sı	5±5%		20	135S8X-A	7-5	
M33230GS-20	**	32-Bit Microprocessor(M32/300)	C,Sı	5±5%		20	179S8X-B	7-7	
M33241GS	**	DMA Controller(M32/DMAC)	C,Sı	5±5%	1200	20	179S8X-A	8-3	
M33242SP/J	**	Interrupt Request Controller(M32/IRC)	C,Sı	5±5%	200	20	64P4X-A/ 68P0X-A	8-5	
M33243GS-25,-30	**	TAG Memory(M32/TAGM)	C,Si	5±10%	1250		64S8X-A	8-7	
M33244T-16,-20	**	Clock Pulse Generator for M32/200(CPG/200)	-	5±5%	—	16/20	14T4X-A	8-9	
M33245GS	**	Cache Controller/Memory(M32/CCM)	C,Sı	5±5%		-	13558	8-10	
M33281GS-20 ** Floating Point Processing Unit(M32/FPU)		Floating Point Processing Unit(M32/FPU)	C,Sı	5±5%		20	135S8X-A	8-12	

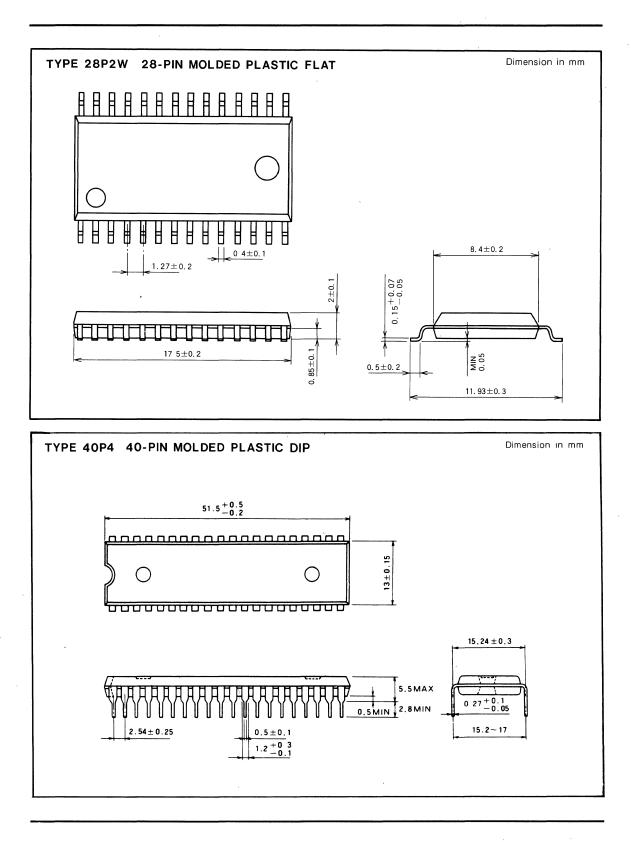
The $\mathbf{G}_{\text{MICRO}}{}^{\text{TM}}$ trade mark indicates a G-MICRO group thoron type micro processor


★★: Under development

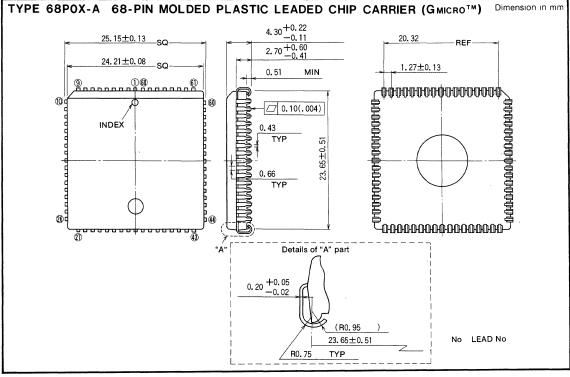
C = CMOS. SI = Silicon gate

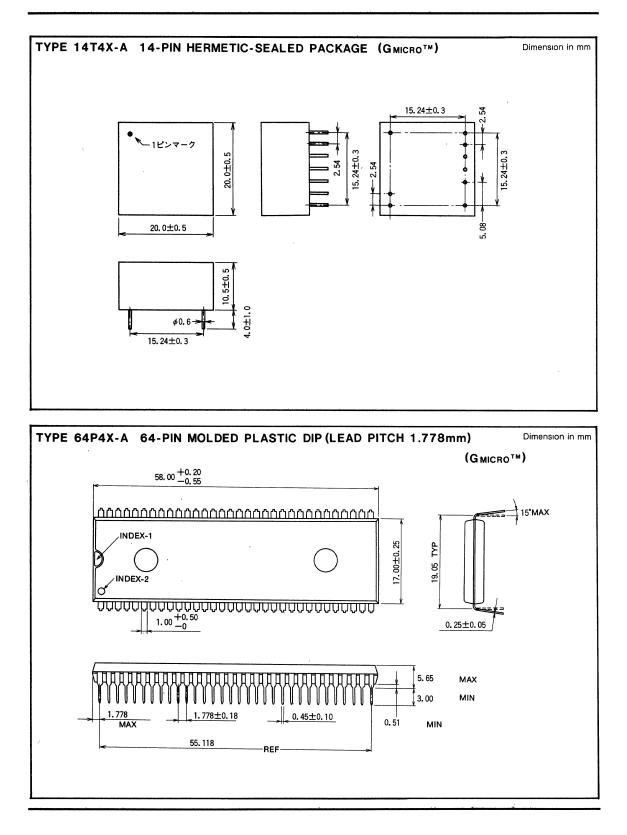

MITSUBISHI LSIs


PACKAGE OUTLINES


MITSUBISHI LSIS




MITSUBISHI LSIS


MITSUBISHI LSIS PACKAGE OUTLINES

MITSUBISHI LSIS PACKAGE OUTLINES

ч Х.

MITSUBISHI LSIS

1. INTRODUCTION

A system of letter symbols to be used to represent the dynamic parameters of intergrated circuit memories and other sequential circuits especially for single-chip microcomputers, microprocessors and LSIs for peripheral circuits has been discussed internationally in the TC47 of the International Electrotechnical Committee (IEC). Finally the IEC has decided on the meeting of TC47 in February 1980 that this system of letter symbols will be a Central Office document and circulated to all countries to vote which means this system of letter symbols will be a international standard.

The system is applied in this LSI data book for the new products only. Future editions of this data book will be applied this system. The IEC document which describes "Letter symbols for dynamic parameters of sequential integrated circuits, including memories" is introduced below. In this data book, the dynamic parameters in the IEC document are applied to timing requirements and switching characteristics.

2. LETTER SYMBOLS

The system of letter symbols outlined in this document enables symbols to be generated for the dynamic parameters of complex sequential circuits, including memories, and also allows these symbols to be abbreviated to simple mnemonic symbols when no ambiguity is likely to arise.

2.1. General Form

The dynamic parameters are represented by a general symbol of the form:

t_{A(BC-DC)}F (1)

where :

- Subscript A indicates the type of dynamic parameter being represented, for example; cycle time, setup time, enable time, etc.
- Subscript B indicates the name of the signal or terminal for which a change of state or level (or establishment of a state or level) constitutes a signal event assumed to occur first, that is, at the beginning of the time interval. If this event actually occurs last, that is, at the end of the time interval, the value of the time interval is negative.
- Subscript C indicates the direction of the transition and/or the final state or level of the signal represented by B. When two letters are used, the initial state or level is also indicated.

- Subscript D indicates the name of the signal or terminal for which a change of state or level (or establishment of a state or level) constitutes a signal event assumed to occur last, that is, at the end of the time interval. If this event actually occurs first, that is, at the beginning of the time interval, the value of the time interval is negative.
- Subscript E indicates the direction of the transition and/or the final state or level of the signal represented by D. When two letters are used, the initial state or level is also indicated.

Subscript F indicates additional information such as mode of operation, test conditions, etc.

- Note 1 Subscripts A to F may each consists of one or moreNetters
 - 2 Subscripts D and E are not used for transition times
 - 3 The "-" in the symbol (1) above is used to indicate "to", hence the symbol represents the time interval from signal event B occuring to signal event D occuring, and it is important to note that this convention is used for all dynamic parameters including hold times. Where no misunder-standing can occur the hyphen may be omitted.

2.2. Abbreviated Form

The general symbol given above may be abbreviated when no misunderstanding is likely to arise. For example to :

- t_{A(B-D})
- or t_{A(B)}
- or $t_{A(D)}$ often used for hold times
- or t_{AF} no brackets are used in this case
- or t_A
- or t_{BC-DE} often used for unclassified time intervals

2.3. Allocation of Subscripts

In allocating letter symbols for the subscripts, the most commonly used subscripts are given single letters where practicable and those less commonly used are designated by up to three letters. As far as possible, some form of mnemonic representation is used. Longer letter symbols may be used for specialised signals or terminals if this aids understanding.

3. SUBSCRIPT A (For Type of Dynamic Parameter)

The subscript A represents the type of dynamic parameter to be designated by the symbol and, for memories, the parameters may be divided into two classes :

a) those that are timing requirements for the memory and

6. SUBSCRIPT F. (For Additional Information)

If necessary, subscript F is used to represent any additional qualification of the parameter such as mode of operation, test conditions, etc. The letter symbols for subscript F are given below.

Subscript F should be in upper-case.

Modes of operation	Subscript
Power-down	PD
Page-mode read	PGR
Page-mode write	PGW
Read	R
Refresh	RF
Read-modify-write	RMW
Read-write	RW
Write	W

New symbol	Former symbol	Parameter-definition
td		Delay time-the time between the specified reference points on two pulses
td(ø)		Delay time between clock pulses-e g , symbology, delay time, clock 1 to clock 2 or clock 2 to clock 1
td(ø)		Delay time, column address strobe to row address strobe
	t d (o t o t u o)	Delay time, column address strobe to write
td (CAS-W)	td(cas wr)	Delay time, row address strobe to column address strobe
td (RAS-CAS)	talan	Delay time, row address strobe to write
td(RAS-W)	td(RAS-WR)	Output disable time after read
tdis(R-Q)	tdis(R-DA)	Output disable time after chip select
tdis(s)	t _{PXZ} (CS)	Output disable time after write
t _{dis(w)}	tpxz(wr)	
t _{DHL}		High-level to low-level delay time
t _{DLH}	t	Dutput enable time after address
ten(A-Q)	tpzv(A-DQ)	Output enable time after read
len(R-Q)	tpzv(R-DQ)	Output enable time after chip select
ten(s-q)	(CS-DQ)	
t _f		Fall time
th th	t	Hold time-the interval time during which a signal at a specified input terminal after an active transition occurs at another specified input terminal
th(A)	th(AD)	Address hold time
th(A-E)	th(AD-CE)	Chip enable hold time after address Program hold time after address
th(A-PR)	th(AD-PRO)	Column address hold time after column address strobe
th(CAS-CA)	+.	
th(CAS-D)	^t h(cas-da)	Data-in hold time after column address strobe
th(CAS-Q)	th(CAS-OUT)	Data-out hold time after column address strobe Row address strobe hold time after column address strobe
th (CAS-RAS)	t	Now address strobe note time after column address strobe
th(CAS-W)	th(CAS-WR)	Data-in hold time
th(D)	th(DA)	Program hold time after data-in
th(D-PR)	th(DA-PRO)	Chip enable hold time
th(E)	th(CE)	Data-in hold time after chip enable
th(E-D) th(E-G)	th(CE-DA)	Output enable hold time after chip enable
th(E-G)	th(CE-OE)	Read hold time
th(RAS-CA)	t _{h(RD)}	Column address hold time after row address strobe
th(RAS-CAS)		Column address strobe hold time after row address strobe
th(RAS-D)	t _{h(RAS-DA)}	Data-in hold time after row address strobe
th(RAS-W)	th(RAS-DA)	Write hold time after row address strobe
t _{h(s)}	th(CS)	Chip select hold time
t _{h(w)}	t _{h(WR)}	Write hold time
th(w-cas)	th(wR)	Column address strobe hold time after write
th(w-D)	th(wR-CAS)	Data-in hold time after write
	.	Row address hold time after write
t _{PHL}	^เ ท(WR-RAS)	High-level to low-level propagation time) the time interval between specified reference points on the input and on the output pulses when the
tPLH		Low-level to high-level propagation time of stated type
tr		Rise time
t _{rec(w)}	t _{wr}	Write recovery time-the time interval between the termination of a write pulse and the initiation of a new cycle
trec(w)	t _{R(PD)}	Power-down recovery time
t _{su}		Setup time-the time interval between the application of a signal which is maintained at a specified input terminal and a consecutive active
		tarnsition at another specified input terminal
t _{su(A)}	t _{su(AD)}	Address setup time
t _{su(A-E)}	t _{su(AD-CE)}	Chip enable setup time before address
t _{su(A-W)}	t _{su(AD-WR)}	Write setup time before address
t _{su(CA-RAS)}	20 (AD- WH)	Row address strobe setup time before column address
00 (0A 11A3)		

.

MITSUBISHI MICROPROCESSOR AND PERIPHERAL CIRCUITS ICS QUALITY ASSURANCE AND RELIABILITY TESTING

1 INTRODUCTION

IC & LSI have made rapid technical progress in electrical performances of high integration, high speed, and sophisticated functionality. And now they have got boundless wider applications in electronic systems and electrical appliances.

To meet the above trend of expanding utilization of IC & LSI, Mitsubishi considers that it is extremely important to supply stable quality and high reliable products to customers.

Mitsubishi Electric places great emphasis on quality as a basic policy "Quality First", and has striven always to improve quality and reliability.

Mitsubishi has already developed the Quality Assurance System covering design, manufacturing, inventory and delivery for IC & LSI, and has supplied highly reliable products to customers for many years. The following articles describe the Quality Assurance System and examples of reliability control for Mitsubishi Microprocessor and Peripheral Circuits ICs.

2. QUALITY ASSURANCE SYSTEM

The Quality Assurance System places emphasis on built-in reliability in designing and built-in quality in manufacturing. The System from development to delivery is summarized in Figure 1.

2.1 Quality Assurance in Designing

The following steps are applied in the designing stage for a new product.

- (1). Setting of perfomance, quality and reliability target for new product.
- (2) Discussion of performance and quality for circuit design, device structure, process, material and package.
- (3) Verification of design by CAD system to meet standardized design rule.
- (4) Functional evaluation for bread-board device to confirm electrical performance.
- (5) Reliability evaluation for TEG (Test Element Group) chip to detect basic failure mode and investigate failure machanism.
- (6) Reliability test (In-house qualification) for new product to confirm quality and reliability target.
- (7) Decision of pre-production from the standpoint of performance, reliability, production flow/conditions, production capability, delivery and etc.

2.2 Quality Assurance in Manufacturing

Quality assurance in manufacturing is performed as follows

- (1) Environment control such as temperature, humidity and dust as well as deionized water and utility gases.
- (2) Maintenance and calibration control for automatized manufacturing equipment, automatic testing equipment, and measuring instruments.

- (3) Material control such as silicon wafer, lead frame, packaging material, mask and chemicals.
- (4) In-process inspections in wafer-fabrication, assembly and testing.
- (5) 100% final inspection of electrical characteristics, visual inspection and burn-in, if necessary.
- (6) Quality assurance test
 -Electrical characteristics and visual inspection, lot by lot sampling

-Environment and endurance test, periodical sampling.

(7) Inventory and shipping control, such as storage environment, date code identification, handling and ESD (Electro Static Discharge) preventive procedure.

2.3 Reliability Test

To verify the reliability of a product as described in the Mitsubishi Quality Assurance System, reliability tests are performed at three different stages : new product development, pre-production, and mass-production.

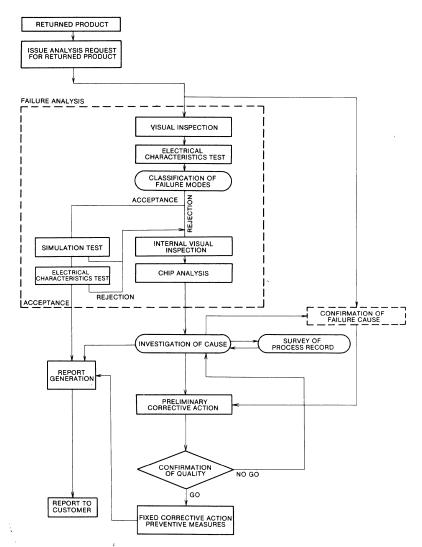
At the development of a new product the reliability test plan is fixed corresponding to the quality and reliability target of each product, respectively. The test plan includes in-house qualification test, and TEG evaluation, if necessary. TEG chips are designed and prepared for new device structure, new process and new material.

After the proto-type product has passed the in-house qualification test, the product advances to the pre-production. In the pre-production stage, the specific reliability tests are programmed and performed again to verify the quality of pre-production product.

In the mass production, the reliability tests are performed periodically to confirm the quality of the mass production product according to the quality assurance test program.

Group	Test	Test condition				
1	Solderability	230℃, 5sec Rosin flux				
	Soldering heat	260°C, 10sec				
2	Thermal shock	-55°C, 125°C, 15cycles				
	Temperature cycling	-65°C, 150°C, 100cycles				
3	Lead fatigue	250gr, 90°, 2arcs				
	Shock	1500G, 0. 5msec				
		20G, 100~2000Hz				
4	Vibration	X, Y, Z direction				
		4min /cycle, 4cycles/direction				
	Constant acceleration	20000G, Y direction, 1min				
5	Dynamic operation life	Ta=Toprmax, Vccmax				
5	Dynamic operation me	1000hours				
6	High temperature storage life	T _a =150℃, 1000hours				
	High temperature and	05%0 05%(1000)				
7	high humidity	85℃, 85%, 1000hours				
	Pressure cooker	121℃, 100%, 100hours				

Table 1 TYPICAL RELIABILITY TEST PROGRAM FOR PLASTIC ENCAPSULATED IC & LSI



MITSUBISHI MICROPROCESSOR AND PERIPHERAL CIRCUITS ICS QUALITY ASSURANCE AND RELIABILITY TESTING

Table 1 shows an example of reliability test program for plastic encapsulated IC & LSI.

2.4 Returned Product Control

When failure analysis is requested by a customer, the failed devices are returned to Mitsubishi Electric via the sales office of Mitsubishi using the form of "Analysis Request of Returned Product" Mitsubishi provides various failure analysis equipment to analyze the returned product. A failure analysis report is generated to the customer upon completion of the analysis. The failure analysis result enforces taking corrective action for the design, fabrication, assembly or testing of the product to improve reliability and realize lower failure rate. Figure 2 shows the procedure of returned product control from customer.

Table 4 MECHANICAL TEST RESULTS

	Test	Solder	ability	` Lead F	fatigue	Shock Vibration Constant Acceleration				
	Test Condition	See T	able 1	See T	able 1	See Table 1				
Package Pin Count	Type Number	Number of Samples	Number of Failures	Number of Samples	Number of Failures	Number of Samples	Number of Failures			
24P4	M5L8253P-5	60	0	30	0	22	0			
28P4	M5L8251AP-5	30	0	30	0	22	0			
2014	M5L8259AP	30	0	15	0	22	0			
40P4	M5L8085AP	30	0	30	0	22	0			
40P4	M5L8255AP-5	30	0	30	0	22	0 ,			
28P2W	M5M8259AFP	15	0	15	0	22	0			
40P2W	M5M82C55AFP-5	15	0	15	0	22	0			

4 FAILURE ANALYSIS

Accelerated reliability tests are applied to observe failures casued by temperature, voltage, humidity, current, mechanical stress and those combined stresses on chips and packages

Examples of typical failure modes are shown below.

(1) Wire Bonding Failure by Thermal Stress

Figure 3, Figure 4 and Figure 5 are examples of a failure which occurs by high temperature storage test of 225°C, 1000hours.

Au-Al intermetallic formation, so-called "Purple plague", by thermal overstress makes Au wire lift off from aluminum metallization. The activation energy of this failure mode is estimated at approximately 1.0eV and no failure has been observed so far in practical uses.

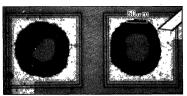


Fig.3 Micrograph of lifted Au ball trace on Al bonding pad



Fig.4 Au-Al plague formation on bonding pad

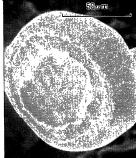
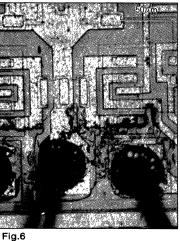



Fig.5 Lifted Au wire ball base

(2) Aluminum Corrosion Failure by Temperature/Humidity Stress.

Figure 6, Figure 7 and Figure 8 are examples of corroded failure of aluminum metallization of plastic encapsulated IC after accelerated temperature/humidity storage test (pressure cooker test) of 121° C, 100% RH, 1000hours duration.

Aluminum bonding pad is dissolved by penetrated water from plastic package, and chlorine concentration is observed on corroded aluminum bonding pad as shown in Figure 8.

Micrograph of corroded Aluminum metallization

(3) Destructive Failure by Electrical Overstress

Surge voltage marginal tests have been performed to reproduce the electrical overstress failure in field uses. Figure 9 and Figure 10 are examples of failure observed by surge voltage test. The trace of destruction is verified as the aluminum bridge by X ray micro analysis.

MITSUBISHI LSIS PRECAUTIONS IN HANDLING MOS ICS

A MOS transistor has a very thin oxide insulator under the gate electrode on the silicon substrate. It is operated by altering the conductance (g_m) between source and drain to control mobile charges in the channel formed by the applied gate voltage.

If a high voltage were applied to a gate terminal, the insulator-film under the gate electrode could be destroyed, and all Mitsubishi MOS IC/LSIs contain internal protection circuits at each input terminal to prevent this. It is inherently necessary to apply reverse bias to the P-N junctions of a MOS IC/LSI.

Under certain conditions, however, it may be impossible to completely avoid destruction of the thin insulator-film due to the application of unexpectedly high voltage or thermal destruction due to excessive current from a forward biased P-N junction. The following recommendations should be followed in handling MOS devices.

1. KEEPING VOLTAGE AND CURRENT TO EACH TERMINAL BELOW MAXIMUM RATINGS

- 1. The recommended ranges of operating conditions provide adequate safety margins. Operating within these limits will assure maximum equipment performance and quality.
- 2. Forward bias should not be applied to any terminal since excessive current may cause thermal destruction.
- Output terminals should not be connected directly to the power supply. Short-circuiting of a terminal to a power supply having low impedance may cause burn-out of the internal leads or thermal destruction due to excessive current.

2. KEEPING ALL TERMINALS AT THE SAME POTENTIAL DURING TRANSPORT AND STORAGE

When MOS IC/LSIs are not in use, both input and output terminals can be in a very high impedance state so that they are easily subjected to electrostatic induction from AC fields of the surrounding space or from charged objects in their vicinity. For this reason, MOS IC/LSIs should be protected from electrostatic charges while being transported and stored by conductive rubber foam, aluminum foil, shielded boxes or other protective precautions.

3. KEEPING ELECTRICAL EQUIPMENT, WORK TABLES AND OPERATING PERSONNEL AT THE SAME POTENTIAL

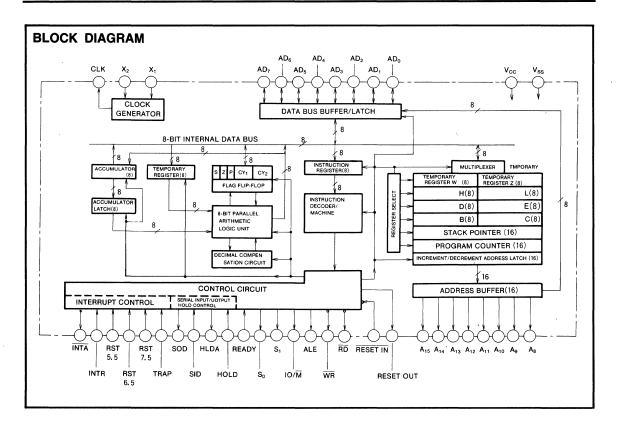
1. All electric equipment, work table surfaces and operat-

ing personnel should be grounded. Work tables should be covered with copper or aluminum plates of good conductivity, and grounded. One method of grounding personnel, after making sure that there is no potential difference with electrical equipment, is by the use of a wristwatch metallic ring, etc. attached around the wrist and grounded in series with a 1M Ω resistor. Be sure that the grounding meets national regulations on personnel safety.

 Current leakage from electric equipment must be prevented not only for personnel safety, but also to avert the destruction of MOS IC/LSIs, as described above. Items such as testers, curve-tracers and synchroscopes must be checked for current leakage before being grounded.

4. PRECAUTIONS FOR MOUNTING OF MOS IC/LSIs

- The printed wiring lines to input and output terminals of MOS IC/LSIs should not be close to or parallel to high-voltage or high-power signal lines. Turning power on while the device is short-circuited, either by a solder bridge made during assembly or by a probe during adjusting and testing, may cause maximum ratings to be exceeded, which may result in the destruction of the device.
- 2. When input/output, or input and/or output, terminals of MOS IC/LSIs (now open-circuits) are connected, we must consider the possibility of current leakage and take precautions similar to §2 above. To reduce such undesirable trouble, it is recommended that an interface circuit be inserted at the input or output terminal, or a resistor with a resistance that does not exceed the output driving capability of the MOS IC/LSI be inserted between the power supply and the ground.
- 3. A filter circuit should be inserted in the AC power supply line to absorb surges which can frequently be strong enough to destroy a MOS IC/LSI.
- 4. Terminal connections should be made as described in the catalog while being careful to meet specifications.
- 5. Ungrounded metal plates should not be placed near input or output terminals of any MOS IC/LSIs, since destruction of the insulation may result if they become electrostatically charged.
- 6. Equipment cases should provide shielding from electrostatic charges for more reliable operation. When a plastic case is used, it is desirable to coat the inside of the case with conductive paint and to ground it. This is considered necessary even for battery-operated equipment.



•

r

MITSUBISHI LSIs M5M80C85AP-2/FP-2/J-2

CMOS 8-BIT PARALLEL MICROPROCESSOR

MITSUBISHI LSIS M5M80C85AP-2/FP-2/J-2

CMOS 8-BIT PARALLEL MICROPROCESSOR

PIN DESCRIPTIONS

Pin	Name	Input or output	Functions
X ₁ , X ₂	Clock input	In	These pins are used to connect an external crystal to the internal clock generator An external clock pulse can also be input through X ₁
RESET OUT	Reset output	Out	This signal indicates that the CPU is in the reset mode. It can be used as a system RESET. The sig- nal is synchronised to the processor clock.
SOD	Serial output data	Out	This is an output data line for selial data. The output SOD may be set or reset by means of the SIM instruction. It returns to high-level after the RESET.
SID	Serial input data	In	This is an input data line for serial data, and the data on this line is moved to the 7th bit of the accu- mulator whenever a RIM instruction is executed
TRAP	Trap interrupt	In	A non-maskable restart which is recognized at the same time as an INTR it is not affected by an mask or another interrupt. It has the highest interrupt priority
RST5.5 RST6.5 RST7.5	Restart interrupt request	In	Input timing is the same as for INTR for these three signals They all cause an automatic insertion o an internal RESTART RST 7.5 has the highest priority while RST 5.5 has the lowest All three sig- nals have a higher priority than INTR
INTR	Interrupt request signal	In	This signal is for a general purpose interrupt and is sampled only during the last clock cycle of the instruction. When an interrupt is acknowledged, the program counter (PC) is held and an INTA signal is generated. During this cycle, a RESTART or CALL can be inserted to jump to an interrupt service routine. The interrupt request may be enable and disable by means of software. But it is disable by the RESET and immeadiately after an accepted interrupt.
ĪNTA	Interrupt acknowledge control signal	Out	This signal is used instead of \overline{RD} during the instruction cycle after an INTR is accepted
$AD_0 \sim AD_7$	Bidirectional address and data bus	in/out	The low-order (I/O address) appears during the first clock cycle' During the second and third clock cycles, it becomes the data bus It remains in the bus hold state during the HOLD and HALT modes.
A ₈ ~A ₁₅	Address bus	Out	Output the high-order 8 bits of the memory address or the 8 bits of the I/O address It remains in the bus hold state during the HOLD and HALT modes.
S ₀ , S ₁	Status	Out	Indicates the status of the bus $S_1 S_0$ HALT 0 0 WRITE 0 1 READ, DAD 1 0 FETCH 1 1 The S_1 signal can be used as an advanced R/W status
ALE	Address latch enable	Out	This signal is generated during the first clock cycle, to enable the address to be latched into the latches or peripherals. The falling edge of ALE is guaranteed to latch the address information. The ALE can also be used to strobe the status information, but it is kept in the low-level state during bus idle machine cycles.
WR	Write control	Out	Indicates that the data on the data bus is to be written into the selected memory at the falling edge of the signal \overline{WR} It remains the bus hold state during the HOLD and HALT modes
RD	Read control	Out	Indicates that the selected memory or I/O address is to be read and that the data bus is active for data transfer It remains in the bus hold state during the HOLD and HALT modes.
IO/M	Data transfer control output	Out	This signal indicates whether the read/write is to memory or to I/O_s It remains in the bus hold state during the HOLD and HALT modes
READY	Ready input	In	When it is at high-level during a read or write cycle, the READY indicates that the memory of peripheral is ready to send or receive date. When the signal is at low-level, the CPU will wait for the signal to turn high-level before completing the read or write cycle
RESET IN	Reset input	In	This signal (at least three clock cycles are necessary) sets the program counter to zero and resets the interrupt enable and HLDA flip-flops None of the other flags or registers (except the instruction register) are affected. The CPU is held in the reset mode as long as the signal is applied.
CLK	Clock output	Out	Clock pulses are available from this pin when a crystal is used as an input to the CPU
HLDA	Hold acknowledge signal	Out	By this signal the processor acknowledges the HOLD request signal and indicates that it will relin quish the buses in the next clock cycle. The signal is returned to the low-level state after the HOLD request is completed. The processor resumes the use of the buses one half clock cycle after the signal HLDA gose low-level.
HOLD	Hold request signal	In	When the CPU receives a HOLD request it relinquishes the use of the buses as soon as the curren machine cycle is completed. The CPU can regain the use of buses only after the HOLD state is removed. Upon acknowledging the HOLD signal, the address bus, the data bus, RD, WR and IO/N lines are put in the bus hold state.

Note : HOLD, READY and all interrupt signals are synchronous with clock signal

MITSUBISHI LSIs M5M80C85AP-2/FP-2/J-2

CMOS 8-BIT PARALLEL MICROPROCESSOR

MACHINE INSTRUCTIONS

lte				Instr	uctio	0.00	de			δ.	1 2 2 2			Flag	15	Addres	bus	Dat	a hi	JS
ltem	Mne	monic		Ds D4				i6ma	٦,	ð	o	Functions				Contents	Mach			Mad
ass					_	-		notatr	-	ĝ	ĝ		_			Contents	cycle*	Contents	1/0	cycl
	MOV MOV MOV MVI	r1. r2 M,r r,M r,n	0 1 0 1 0 1 0 0	D D 1 1 D D D D	0 D	8 8 8 8 1 1 1 1	5 S 1 O		4 7 7 7 7	1 1 1 2	1 2 2 2	$\begin{array}{ll} (r_1) \leftarrow (r_2) \\ (M) \leftarrow (r) \\ (r) \leftarrow (M) \end{array} \qquad $	x x	хх	× × × × × ×	м	M4 M4	(r) (M) (B2>	0	M
	MVI	M, n	0 0	<b2 1 1 <b2< td=""><td>`</td><td>1 1</td><td></td><td>3 6</td><td>1</td><td>2</td><td>3</td><td>(M) ← n Where, M=(H)(L)</td><td></td><td></td><td>x x</td><td>м</td><td>M5</td><td><b2></b2></td><td>1</td><td>м</td></b2<></b2 	`	1 1		3 6	1	2	3	(M) ← n Where, M=(H)(L)			x x	м	M5	<b2></b2>	1	м
	LXI	8 , m	00	00 (B2 (B3	0 >	0 0	0 1	0 1	10	3	3	(C) ← ⟨B₂⟩ (B) ← ⟨B₃⟩ Where. m = ⟨B₃⟩ ⟨B₂⟩	x	x x	хх			<b2> <b3></b3></b2>		M
	LXI	D,m	00	(82 (82 (83	°	0 0	0 1	11	10	3	3	(E) ← ⟨B₂⟩ (D) ← ⟨B₃⟩ Where, m = ⟨B₃⟩ ⟨B₂⟩	x	хх	хх			(B2) (B3)	1	N
	LXI	H , m	0 0	10 (82 (83	°	0 0	5 1	2 1	10	3	3	(L) ← <b2> (H) ← <b3> Where. m = <b3> <b2></b2></b3></b3></b2>	x	x x	хх			(B2) (B3)	1	N
transfer	LXI	SP , m	0 0	1 1 <82 <83	•	0 0	5 1	3 1	10	3	3	(SP)←m	x	хх	хх			(B2) (B3)	1	N
ta tr	SPHL STAX	B	11	1 1			0 1	F 9 0 2		1	1 2	(B) (C)) ← (A)			X X X X	(B)(C)	M4	(A)	0	N
Data	STAX LDAX		00	0 1			8	1 2 0 A		1	2	$\frac{((D)(E))\leftarrow(A)}{(A)\leftarrow((B)(C))}$		X X X X	<u>x x</u> x x	(D)(E) (B)(C)	M4 M4	(A) ((B)(C))	0	N
	STA		00	0 1 1 1 <82	1 0		1 0	1 A 3 2	7	1 3	4	$(A) \leftarrow ((D) (E))$ (m) \leftarrow (A)	х	хх	x x x x		M4 M4	((D)(E)) (A)	0	N
	LDA	m	0.0	<b3 1 1 <b2< td=""><td>1</td><td>0 1</td><td>0</td><td>3 A</td><td>13</td><td>3</td><td>4</td><td>$(A) \leftarrow (m)$</td><td>x</td><td>x x</td><td>хх</td><td>m</td><td>M4</td><td>(m)</td><td>1</td><td>N</td></b2<></b3 	1	0 1	0	3 A	13	3	4	$(A) \leftarrow (m)$	x	x x	хх	m	M4	(m)	1	N
	SHLD	m	00	(83 1 0 (82 (83	0	0 1	0	2 2	16	3	5	(m) ← (L) (m + 1) ← (H)	x	хх	хх	m m + 1	M4 M5	(L) (H)	0 0	N
	LHLD	m	00	1 0 (B) (B)	1	0 1	10	2 A	16	3	5	$(L) \leftarrow (m)$ (H) $\leftarrow (m+1)$	x	хх	хх	m m + 1	M4 M5	(m) (m+1)	l F	N
	XCHG XTHL		$\frac{1}{1}$	10	0	0 1	1 1	E B E 3		1		(H) (L) ↔ (D) (E) (H) (L) ↔ ((SP) + 1) ((SP))		X X X \ X	x x x x	(SP) (SP)+1	M2 M3	((SP)) ((SP)+1)	1	N
	ADD ADD AD1	r M n	10 10 11	00000	0	S S 1 1 1 1	iŏ	8 6 C 6		1 1 2	1 2 2	$(A) \leftarrow (A) + (r)$ $(A) \leftarrow (A) + (M)$ $(A) \leftarrow (A) + n$ Where, M = (H) (L)	0	O C			M4	(M) <b2></b2>	1	N N
	ADC ADC ACI	, M n	10 10 11	<pre></pre>	1	S S 1 1	1 0	8 E C E		1 1 2	1 2 2	$(A) \leftarrow (A) + (r) + (CY_2)$ $(A) \leftarrow (A) + (M) + (CY_2)$ Where $M = (H) (L)$ $(A) \leftarrow (A) + n + (CY_2)$	0	O C		м	M₄	(M) (B2)	1	N
	DAD DAD	BD	00	(B) 00 01	1	00		09		1	3	$(H) (L) \leftarrow (H) (L) + (B) (C) (H) (L) \leftarrow (H) (L) + (D) (E)$	x	x x					-	
	DAD	H Sp	00	10	1	0 0		29 39	10	1	3 3	$\begin{array}{c} (H) (L) \leftarrow (H) (L) + (H) (L) \\ (H) (L) \leftarrow (H) (L) + (SP) \end{array}$	х		οх					
compare	SUB SUB SUI	r M n	10 10 11	0101	0		S S 1 O	9 6 D 6	4	1 1 2	1 2 2	$ \begin{array}{l} \textbf{(A)} \leftarrow \textbf{(A)} - (r) \\ \textbf{(A)} \leftarrow \textbf{(A)} - (M) \\ \textbf{(A)} \leftarrow \textbf{(A)} - n \end{array} \qquad \qquad$	0	0 0		M	M₄	(M) <b2></b2>	1	N
logical o	588 588 581	M	10 10 11	<pre></pre>	1	S : 1 : 1 :	10	9 E D E		1 1 2	1 2 2	$(A) \leftarrow (A) - (r) - (CY_2)$ $(A) \leftarrow (A) - (M) - (CY_2)$ Where, M = (H) (L) $(A) \leftarrow (A) - n - (CY_2)$	0	0 0		м	Ma	(M) • B2>	1	N
	ANA ANA	, M	10	<180 10 10	0 0	S :	S S 1 O	A 6	4	1	1 2	$(A) \leftarrow (A) \land (r)$ $(A) \leftarrow (A) \land (M)$ Where, $M = (H) (L)$	00	0 0	0 0 1	м	M4	(M)	1	
Arithmetic	ANI XRA XRA	n , M	1 1 1 0 1 0	10 (B); 10	1		SS	EG	4	2	2	$(A) \rightarrow (A) \rightarrow (A)$	0		0 1			<b2></b2>	1	,
	XRI		1.1	10	1	1	10 10 55	A E E E		1 2	2 2 1	$(A) \leftarrow (A) \forall (M) \qquad \text{Where, } M = (H) (L)$ $(A) \leftarrow (A) \forall n$ $(A) \leftarrow (A) \lor (r)$	0	0 C		м	M4	(M) (B2>	1	1
	ORA	M n	10	11 11 <b< td=""><td>00</td><td>1</td><td>10</td><td>B C F C</td><td>7</td><td>1 2</td><td>2</td><td>$(A) \leftarrow (A) \lor (M) \qquad \text{Where. } M = (H) (L)$$(A) \leftarrow (A) \lor n$</td><td>0</td><td>0 0</td><td></td><td>м</td><td>M4</td><td>(M) <b2></b2></td><td>1 1</td><td>;</td></b<>	00	1	10	B C F C	7	1 2	2	$(A) \leftarrow (A) \lor (M) \qquad \text{Where. } M = (H) (L)$ $(A) \leftarrow (A) \lor n$	0	0 0		м	M4	(M) <b2></b2>	1 1	;
	CMP CMP CP I	M n	10 10 11	1 1 1 1 1 1	1	1	SS 10 10	8 E F E	4 7 7	1 1 2	1 2 2	(A) – (r) (A) – (M) (A) – п Сотраге, Where, м = (H) (L)	0	0 0		м	M4	(M) <b2></b2>		
 2	INR	Ń	00		D		0 0	3 4	4	1	1 3	$(r) \leftarrow (r) + 1$ (M) $\leftarrow (M) + 1$ Where, M (H) (L)			x o			(11)		
ment	DCR	r M	00	00	D	1	01	3 5	4	1	1	(r) ← (r) – 1	0	0 C			M4	(M)		
tere	INX	8 D	00	0 0	0	0	1 1	0 3	6	1	1	$(B)(C) \leftarrow (B)(C) + 1$	X	X·X	x x x		M4	(M)	+	
Register increment/deci	INX	H	0 0	0 1	0	0	11	1 3	6	1	1	$(D) (E) \leftarrow (D) (E) + 1$ $(H) (L) \leftarrow (H) (L) + 1$	×	хх	x x x x	1				
eme	DCX	SP B		0 0) 1	0	11	33	6	1	1	$(SP) \leftarrow (SP) + 1$ (B) (C) \leftarrow (B) (C) - 1	х	хх	X X X X					
incr	DCX DCX	D H	000	0 1	1	0	1 1	1 E 2 E	6	1 T	1	(D) (E) ← (D) (E) - 1 (H) (L) ← (H) (L) - 1	X X	x x x x	. x x . x x	-				
	DCX RLC	SP	00	- 1 1			$\frac{11}{11}$	3 8		++	1	(SP) ← (SP) - 1	X	хх						
وفع	RRC			0 0			_			1	1.									
nts - iulat								OF		1	<u> '</u>	Right shift CY2 A7A6 · A1A0			O X					
contents of accumulator	RAL	,	0 0		0			17		1	1	Left shift CY2 A7A6 A1A0			О×					
208	RAR		0 0	01	1	1	1 1	1 F	4	1	1	Right shift CY2	×	x x	O X					
cumu	CMA DAA		00				11	2 F		1	1	(A) +- (A) Results of binary addition are adjusted to BCD			XX					-
arry se	STC		00				$\frac{1}{1}$ $\frac{1}{1}$	27	4	1	1	(CY2) ← 1			000 1 X					
.,	CMC		0 0	1.1	1	1	1 1	3 8	: 4	11	11	$(CY_2) \leftarrow (\overline{CY_2})$	1 .	~ ~	OX				1	1

MITSUBISHI LSIS M5M80C85AP-2/FP-2/J-2

CMOS 8-BIT PARALLEL MICROPROCESSOR

MACHINE INSTRUCTIONS SYMBOL MEANING

Symbol	Meaning	Symbol	Ν	Aeaning		Symbol	Meaning
r	Register			r		+	Data is transferred in direction shown
m	Two-byte data		Bit pattern	Register		()	Contents of register or memoy location
n	One-byte data		designating	memory	or	V	Inclusive OR
<b2></b2>	Second byte of instruction		register or	-	0 0 0	*	Exclusive OR
<b3></b3>	Third byte of instruction	SSS	memory	č	001		Logical AND
AAA	Binary representation for RST instruction n	or		D	0 1 0	<u> </u>	1 s complement
F	8-bit data from the most to the least significant	DDD		H H	0 1 1 1 0 0	x	Content of flag is not changed after execution
•	bit S, Z, X, CY1, 0, P, X, CY2 (X is indefinite)				101	0	Content offlag is set or reset after execution
PC	Program counter		Where M = (H) (L)	M	1 1 0	1	Input mode
SP	Stack pointer		W = (H)(L)	I		0	Output mode

MITSUBISHI LSIs M5M80C85AP-2/FP-2/J-2

CMOS 8-BIT PARALLEL MICROPROCESSOR

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit	
Vcc	Supply voltage		-0.3~7	v	
Vi	Input voltage	With respect to V _{SS}	$-0.3 \sim V_{cc} + 0.3$	v	
Vo	Output voltage		$-0.3 \sim V_{cc} + 0.3$	V	
	MAX "H"	All output and I/O pins output	-500		
онмах	Output current	"H" level and force same current.	500	μA	
	MAX "L"	All output and I/O pins output	2.5	mA	
OLMAX	Output current	"L" level and force same current.	2.5	mA	
Topr	Operating free-air temperature range		-20~75	°C	
Tstg	Storge temperature range		-65~150	°C	

RECOMMENDED OPERATING CONDITIONS (Ta=-20~75°C unless otherwise noted)

Symbol		Parameter		Limits		Unit
	(Parameter		Nom	Мах	Onic
Vcc	Supply voltage		4.5	5	5.5	V
Vss	Supply voltage (GN	ID)		0		V

ELECTRICAL CHARACTERISTICS (Ta=-20~75°C, Vcc=5V±10%, Vss=0V, unless otherwise noted)

Symbol	Parameter	Test conditions			Limits		Unit		
Symbol	Parameter	/ Test conditions		Min	Тур	Мах	Unit		
Viн	High-level input voltage			2.0		V _{cc} +0.3	v		
VIL	Low-level input voltage			-0.3		0.8	v		
VIHX	X ₁ , X ₂ High-level voltage			4.0		Vcc+0.3	v		
VIH(RESIN)	High-level reset input voltage			2.4		V _{cc} +0.3	v		
VIL(RESIN)	Low-level reset input voltage			-0.3		0.8	v		
		I _{OH} =-400μA		2.4					
Voн	High-level output voltage	I _{OH} =-20µА		4.4			v		
Vol	Low-level output voltage	I _{OL} =2mA				0.45	v		
	Supply current from (Operation)				15	20	mA		
lcc	Supply current from V _{CC} (HALT)				7	10	mA		
lccs	Supply current from V _{CC} (Stand by)		(Note 1)		20	30	μA		
li –	Input leak current	V _I =0V, V _{CC}		-10		10	μA		
loz	Off-state output current	Vo=0V~Vcc		-10		10	μA		
Івнн	Input current bus hold high	V1=3.0V	(Note 2)	-50		-400	μA		
IBHL	Input current bus hold low	V1=0.8V	(Note 3)	50		400	μA		
<u>_</u>		$V_{CC} = V_{SS}$, f= 1MHz	(1)			10	F		
Ci	Input terminal capacitance	25mVrms, Ta=25°C	(Note 4)			10	pF		
~		V _{CC} =V _{SS} , f= 1MHz	(Note 4)			15			
Co	Output terminal capacitance	25mVrms, Ta=25℃	(Note 4)			15	pF		
<u>^</u>		V _{CC} =V _{SS} , f= 1MHz	(Ninte 4)			20			
C _{I/O}	Input/Output terminal capacitance	25mVrms, Ta=25°C	(Note 4)			20	pF		

 Note 1 : I_{CCS} should be measured after execution HALT instruction and then fixing clock on V_{CC} or V_{SS}

 V_I=V_{CC} or V_{SS}, V_{CC}=5.5V, outputs unloaded.

 Note 2 : I_{BHH} should be measured after rasing V_{IN} in bushold status to V_{CC} and setting it for 3.0V.

 Measurable pins ; AD₀~AD₇, A₈~A₁₅, RD, WR, IO/M

Note 3 : I_{BHL} should be measured after lowering V_{IN} in bushold status to V_{SS} and setting it for 0.8V. Measurable pins ; AD₀~AD₇, A₈~A₁₅, RD, WR, IO/M Note 4 : Unmeasured pins should be connected to V_{SS}.

,

Parameters described in the timing requirements and switching characteristics take relevant values in accord-

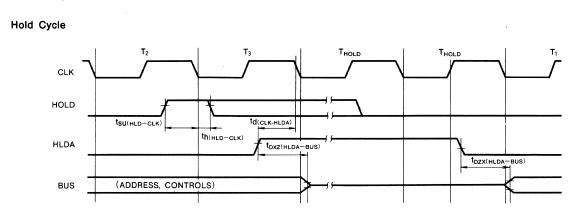
ance with the relational expression shown in the following tables when the frequency is varied.

Relational expression with the frequency T ($t_{C(CLK)}$) in the M5M80C85AP-2 TIMMING REQUIREMENTS ($T_a=-20\sim75^{\circ}C$, $V_{cc}=5V\pm10\%$, $V_{ss}=0V$, unless otherwise noted)

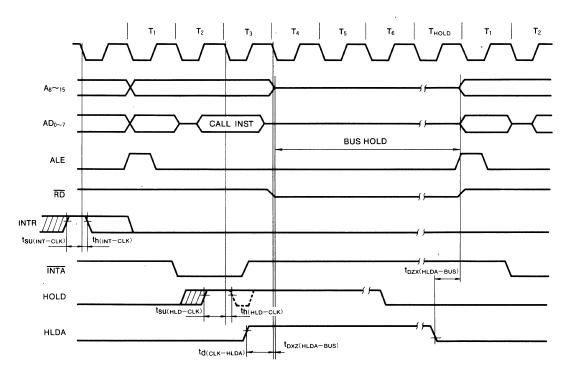
Symbol	Parameter	Test conditions	Relational expression (Note 6)	Limit
t _{su(da-ad)}	DA input setup time		170-(5/2+N)T	Min
t _{SU(DA-RD)}	DA input setup time	0 150 5	150-(3/2+N)T	Min
tsu(RDY-AD)	READY input setup time	C _L = 150pF	200-(3/2)T	Min
t _{SU(DA-ALE)}	DA input setup time		150-(2+N)T	Min

SWITCHING CHARACTERISTICS (Ta=-20~75°C, Vcc=5V±10%, Vss=0V, unless otherwise noted)

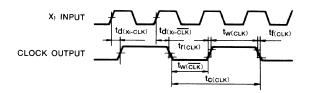
Symbol	Palameter		Test conditions	Relational expression (Note 6)	Limit
tw(CLK)	CLK output low-level pulse width			(1/2) T —60	Min
tw(CLK)	CLK output high-level pulse width			(1/2)T-30	Min
. .	Delay time, address subsit to ALE signal	AD ₀ ~AD ₇		(1/2)T—50	N
td(ad-ale)	Delay time, address output to ALE signal	A ₈ ~A ₁₅		(1/2) T —50	Min
td(ALE-AD)	Delay time, ALE signal to address output			(1/2)T-50	Min
t _{W(ALE)}	ALE pulse width			(1/2)T-20	Min
td(ALE-CLK)	Delay time, ALE to CLK			(1/2)T-50	Min
td(ALE-CONT)	Delay time, ALE to control signal	м.	(1/2) T —40	Min	
t _{DZX} (RD-AD)	Address enable time from read		(1/2) T -10	Min	
td(CONT-AD)	Address valid time after control signal	C -150pF	(1/2)T-40	Min	
td(DA-WR)	Delay time, data output to WR signal		C _L =150pF	(3/2+N)T-70	Min
td(wR-DA)	Delay time WR signal to data output			(1/2)T—40	Min
tw(CONT)	Control signal pulse width			(3/2+N)T-70	Min
td(cont-ale)	Delay time, CONT to ALE signal			(1/2) T —75	Min
td(CLK-HLDA)	Delay time, CLK to HLDA signal			(1/2) T —60	Min
t _{DXZ(HLDA-BUS)}	Bus disable time from HLDA			(1/2) T +50	Max
t _{DZX(HLDA-BUS)}	Bus enable time from HLDA			(1/2)T+50	Max
td(CONT-CONT)	Control signal disable time			(3/2)T-80	Min
•	Delay time, address output to control	AD ₀ ~AD ₇		т—85	N.C.
td(ad-cont)	signal	A ₈ ~A ₁₅		T85	Min


Note 6 N indicates the total number of wait cycles

 $T = t_{C(CLK)}$



MITSUBISHI LSIS M5M80C85AP-2/FP-2/J-2


CMOS 8-BIT PARALLEL MICROPROCESSOR

Interrupt and Hold Cycle

DRIVING CIRCUIT OF X1 AND X2 INPUTS

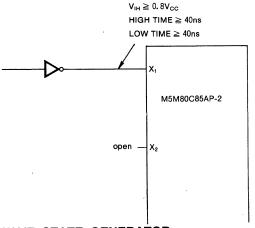

Input terminals, X_1 and X_2 of the M5M80C85AP-2 can be driven by either a crystal or external clock. Since the driver clock frequency is divided to 1/2 internally, the input frequency required is twice the actual execution frequency (10MHz for the M5M80C85AP-2 which is operated at 5MHz)

Fig. 5 Connections when crystal is used for X_1 and X_2 inputs

Fig. 5 is a typical connection diagrams for a crystal respectively.

External Clock Driver Circuit

WAIT STATE GENERATOR

Fig. 6 shows a typical 1-wait state generator for low speed RAM and ROM applications.

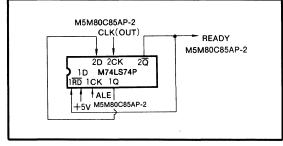
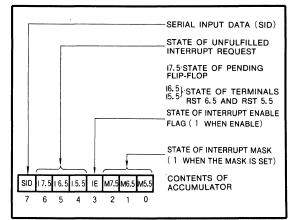
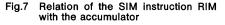
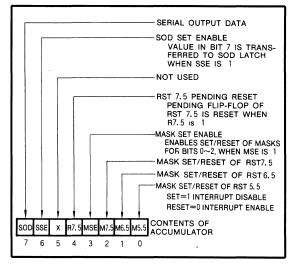
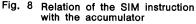




Fig. 6 1-wait state generator


RELATION OF RIM AND SIM INSTRUCTIONS WITH THE ACCUMULATOR (SUPPLEMENTARY DESCRIPTION).


The contents of the accumulator after the execution of a RIM instruction is shown in Fig. 7.

The contents of the accumulator after the execution of a SIM instruction is shown in Fig. 8 .

PIN DESCRIPTIONS

Pin	Name	Input or output	Functions
X ₁ , X ₂	Clock input	In	These pins are used to connect an external crystal or RC circuit to the internal clock generator An external clock pulse can also be input through X_1
RESET OUT	Reset output	Out	This signal indicates that the CPU is in the reset mode. It can be used as a system RESET. The sig- nal is synchronised to the processor clock
SOD	Serial output data	Out	This is an output data line for serial data The output SOD may be set or reset by means of the SIM instruction. It returns to high-level after the RESET
SID	Serial input data	In	This is an input data line for serial data, and the data on this line is moved to the 7th bit of the accu- mulator whenever a RIM instruction is executed.
TRAP	Trap interrupt	In	A non-maskable restart which is recognized at the same time as an INTR it is not affected by any mask or another interrupt. It has the highest interrupt priority
RST5. 5 RST6. 5 RST7. 5	Restart interrupt request	In	Input timing is the same as for INTR for these three signals. They all cause an automatic insertion or an internal RESTART_RST 7.5 has the highest priority while RST 5.5 has the lowest. All three sig- nals have a higher priority than INTR
INTR	Interrupt request signal	In	This signal is for a general purpose interrupt and is sampled only during the last clock cycle of the instruction. When an interrupt is acknowledged, the program counter (PC) is held and an INTA sig- nal is generated. During this cycle, a RESTART or CALL can be inserted to jump to an interrupt ser- vice routine. The interrupt request may be enable and disable by means of software. But it is dis- able by the RESET and immeadiately after an accepted interrupt.
INTA	Interrupt acknowledge control signal	Out	This signal is used instead of $\overline{\text{RD}}$ during the instruction cycle after an INTR is accepted
AD ₀ ~AD ₇	Bidirectional address and data bus	In/out	The low-order (I/O address) appears during the first clock cycle During the second and third clock cycles, it becomes the data bus it remains in the high-impedance state during the HOLD and HALT modes
A ₈ ~A ₁₅	Address bus	Out	Output the high-order 8 bits of the memory address or the 8 bits of the I/O address It remains in the high-impedance state during the HOLD and HALT modes
S ₀ , S ₁	Status	Out	Indicates the status of the bus Si So SI So HALT 0 0 WRITE 0 1 READ, DAD 1 0 FETCH 1 1 1 1 The Si signal can be used as an advanced R/W status
ALE	Address latch enable	Out	This signal is generated during the first clock cycle, to enable the address to be latched into the latches of peripherals. The falling edge of ALE is guaranteed to latch the address information. The ALE can also be used to strobe the status information, but it is kept in the low-level state during bus idle machine cycles.
WR	Write control	Out	Indicates that the data on the data bus is to be written into the selected memory at the falling edge of the signal \overline{WR} It remains the high-impedance state during the HOLD and HALT modes
RD	Read control	Out	Indicates that the selected memory or I/O address is to be read and that the data bus is active fo data transfer It remains in the high-impedance state during the HOLD and HALT modes
10/ M	Data transfer control output	Out	This signal indicates whether the read/write is to memory or to I/Os It remains in the high-ipedance state during the HOLD and HALT modes
READY	Ready input	In	When it is at high-level during a read or write cycle, the READY indicates that the memory o peripheral is ready to send or receive date. When the signal is at low-level, the CPU will wait for the signal to turn high-level before completing the read or write cycle.
RESET IN	Reset input	In	This signal (at least three clock cycles are necessary) sets the program counter to zero and resets the interrupt enable and HLDA flip-flops. None of the other flags or registers (except the instruction register) are affected. The CPU is held in the reset mode as long as the signal is applied.
CLK	Clock output	Out	Clock pulses are available from this pin when a crystal or RC circuit is used as an input to the CPU
HLDA	Hold acknowledge signal	Out	By this signal the processor acknowledges the HOLD request signal and indicates that it will relin quish the buses in the next clock cycle. The signal is returned to the low-level state after the HOLI request is completed. The processor resumes the use of the buses one half clock cycle after the signal HLDA gose low-level.
HOLD	Hold request signal	In	When the CPU receives a HOLD request it relinquishes the use of the buses as soon as the currer machine cycle is completed. The CPU can regain the use of buses only after the HOLD state is removed. Upon acknowledging the HOLD signal, the address bus, the data bus, RD, WR and IO/N lines are put in the high-impedance state.

Note HOLD, READY and all interrupt signals are synchronous with clock signal

MACHINE INSTRUCTIONS

٠.

Item				Instru	iction	n co	de				ک		Flags Address bus			Data bus		
str	Mner	monic	DTDs	D5 D4				6mal	No of	0 oN	No of	Functions	S Z P CY2CY	1 Contents	Mach	Contents	1/0	Ma
iss 🔪	MOV	F1, F2	0 1	DD	_	S S	_	otatn	Z 4	Z 1	2 1	$(r_1) \leftarrow (r_2)$	x x x x x		cycle*		_	сус
	MOV	M,r	0 1	1 1	0	SS	S		7	1	2	$(r_1) \leftarrow (r_2)$ $(M) \leftarrow (r)$ Where $M = (H) (L)$	x x x x x	м	M4	(r)	0	N
	MOV	r, M r, n	01	D D D D		11			777	1 2	2	$(r) \leftarrow (M)$ Where $M = (H) (L)$ $(r) \leftarrow n$			M4	(M) <b2></b2>	;	
	MVI	M, n	00	< 821 1 1		1 1	0	36	10	2	3	$(M) \leftarrow n$ Where $M = (H) (L)$	x	м	M5	<b2></b2>	1	l N
	LXI	B.m	0 0	< B2	>	0 0		`	10	3	3	(C) ← ⟨B₂⟩	x			<b2></b2>	-	N
		8,m	00	00 (B2)	>	00	'	0 1	10	3	3	(B) ← <b3> Where, m = <b3> <b2></b2></b3></b3>				<b<sub>3></b<sub>	1	Ň
	LXI	D,m	0 0	<b3: 01</b3: 		0 0	1	1 1	10	3	3	(E) ← <b2></b2>	× × × × ×			(B2)		ĸ
				< 82 < 83								(D) ← ⟨B3⟩ Where m = ⟨B3⟩ ⟨B2⟩				<b3></b3>	'	N N
	LXI	H,m	00	10	0	0 0	1	21	10	3	3	$(L) \leftarrow \langle B_2 \rangle$ $(H) \leftarrow \langle B_3 \rangle$ Where $m = \langle B_3 \rangle \langle B_2 \rangle$	× × × × ×			(B2)	-	N
				< B2 < B3	>											<b3></b3>		N
sfer	LXI	SP , m	00	1 1 <b2< td=""><td></td><td>0 0</td><td>1</td><td>31</td><td>10</td><td>3</td><td>3</td><td>(SP) ← m</td><td> × × × × ×</td><td></td><td></td><td><b2> <b3></b3></b2></td><td>-</td><td>N</td></b2<>		0 0	1	31	10	3	3	(SP) ← m	× × × × ×			<b2> <b3></b3></b2>	-	N
transfer	SPHL		1 1	<b3< td=""><td></td><td>0 0</td><td>1</td><td>F 9</td><td>6</td><td>1</td><td>1</td><td>(SP) ← (H) (L)</td><td>x</td><td></td><td></td><td></td><td></td><td></td></b3<>		0 0	1	F 9	6	1	1	(SP) ← (H) (L)	x					
Data	STAX		0 0	0 0	0	0 1	0	0 2	7	1	2	((B)(C)) ← (A)	x		M4	(A)	0	N
Ő	STAX	B	00	0 1	1	01	0	1 2 0 A	7	1	2	$\frac{((D)(E)) \leftarrow (A)}{(A) \leftarrow ((B)(C))}$	X X X X X X X X X X	(B)(C)	M4 M4	(A) ((B)(C))	0	N
	L DAX		00	0 1		01		1 A 3 2	7	1	2	$(A) \leftarrow ((D) (E))$ (m) \leftarrow (A)	X X X X X X X X X X		M4 M4	((D)(E)) (A)	0	N
				< 82 < 83														
	LDA	m	00	1 1	1	0 1	0	3 A	13	3	4	$(A) \leftarrow (M)$	× × × × ×	m	M4	(m)	Т	N
				< 82 < 83	>													
	SHLD	m	0 0.	10		0 1	0	22	16	3	5	$(m) \leftarrow (L)$ $(m+1) \leftarrow (H)$	× × × × ×	m m + 1	M4 M5	(L) (H)	0 0	N
	LHLD		0 0	< B3		0 1	0	2 A	16	3	5	(∟) ← (m)	x x x x x		M4	(m)	F	N
				<b2< td=""><td>></td><td>• ·</td><td>Ĩ</td><td>•</td><td>1.0</td><td>Ĵ</td><td>Ĵ</td><td>$(H) \leftarrow (m+1)$</td><td></td><td>m + 1</td><td>M5</td><td>(m + 1)</td><td>i</td><td>Ň</td></b2<>	>	• ·	Ĩ	•	1.0	Ĵ	Ĵ	$(H) \leftarrow (m+1)$		m + 1	M5	(m + 1)	i	Ň
	ХСНС		11	(B3) 1 0	1			ЕB		1	1	(H) (L) ↔ (D) (E)	x x x x x					
	XTHL		1 1	10	0	0 1	1	E 3	16	1	5	(H)(L)↔((SP)+1)((SP))	× × × × ×	(SP) (SP)+1	M2 M3	((SP)) ((SP)+1)	-	N
	ADD ADD	M	10	00		S S		86	4	1	1 2	(A) ← (A) + (r) (A) ← (A) + (M) Where M - (H) (L)	00000		M4		÷	N
	ADI	'n	11	0 0	ō	i i		C 6	1	2	2	$(A) \leftarrow (A) + n$		M	MA	(M) <b2></b2>	i	Ň
	ADC	r	1 0	<b2 0 0</b2 	1	SS	S		4	1	1	$(A) \leftarrow (A) + (r) + (CY_2)$	00000					
	ADC	M	10	00		11		8 E C E	17	1 2	2	$(A) \leftarrow (A) + (M) + (CY_2)$ Where M (H)(L) $(A) \leftarrow (A) + n + (CY_2)$	00000	м	M4	(M) (Bz>	1	N N
	DAD	в	0.0	(B2	>					-								
	DAD	D	0 0	01	1	00	1	09 19	10 10	i.	3 3	$\begin{array}{l} (H) (L) \leftarrow (H) (L) + (B) (C) \\ (H) (L) \leftarrow (H) (L) + (D) (E) \end{array}$						
_	DAD	H Sp	00	10		00		2939	10	1	3	(H) (L) + (H) (L) + (H) (L) (H) (L) ← (H) (L) + (SP)						
compare	SUB SUB	M	10	01		S S		96	4	1	1 2	$(A) \leftarrow (A)$ (r) $(A) \leftarrow (A)$ (M) Where, M (H) (L)	00000		M4	(M)		٨
luo.	SUI	n	11	0 1	0	i i		D 6	7	2	2	$(A) \leftarrow (A)$ n	000000		1/14	(B2)	i	Ň
cal c	SBB	r	10	<b2 0 1</b2 	1	S S			4	1	1	$(A) \leftarrow (A) - (r) - (CY_2)$	00000					
logic	SBB SBI	M	10	01		1 1		9 E D E	7	1 2	2	$(A) \leftarrow (A)$ (M) (CY ₂) Where M (H)(L) $(A) \leftarrow (A) - n$ (CY ₂)	00000	м	M4	(M) - B2>		N N
	ANA	r	1 0	<b2 1 0</b2 	>	SS			4	1	1	$(A) + (A) \wedge (r)$						
Arithmetic	ANA	M	1 0	1 0	ō	1 1	0	A 6	7	1	2	$(A) \leftarrow (A) \land (M)$ Where M $(H) (L)$		м	Ma	(M)	1	N
Ith	ANI	n	11	10 (B2	>	1 1	0	E 6	7	2	2	(A)+ (A)Λ n	00001			<b2></b2>	1	2
۷	XRA XRA	M	10	10		S S		AE	4 7'	1	1 2	$(A) \leftarrow (A) \forall (r) (A) \leftarrow (A) \forall (M) \qquad \text{Where } M (H) (L)$		м	Ma	(M)	,	
	XRI	n	11	1 O (B2	1	1 1		EE	7	2	2	(A) + (A) ★ n	000000		(14	(B2)	i	Ň
			10	1 1	0	s s		_	4	1	1	$(A) \leftarrow (A) \lor (r)$	00000					
	OR A OR I	M n	10	11		1 1		B 6 F 6	7	1 2	2	$(A) \leftarrow (A) \lor (M)$ Where, M = (H) (L) $(A) \leftarrow (A) \lor n$			Ma	(M) <b2></b2>		N N
	CMP	r	10	<b2 1 1</b2 		SS	s		4	1	1	(A) - (r)	00000					
	CMP	M	10	11	1	11	0	8 E	7	1	2	(A) - (M) Compare, Where M (H) (L)	00000	м	Ma	(M)	1	N
				<b2< td=""><td>></td><td></td><td></td><td>FE</td><td>7</td><td>2</td><td>2</td><td>(A) n)</td><td>00000</td><td>_</td><td></td><td><bz></bz></td><td>1</td><td>N</td></b2<>	>			FE	7	2	2	(A) n)	00000	_		<bz></bz>	1	N
ť	I NR I NR	м́.	00	D D 1 1	ō	10	0	34	4	1	3	$(r) \leftarrow (r) + 1$ (M) $\leftarrow (M) + 1$ Where M (H) (L)			Ma	(M)		N
ment	DCR	Ň	00	D D 1 1	D	1 0) 1	3 5	4	11	1	(r) ← (r) – 1	000×0)				
ecrer	INX	B,	00	0 0	0	0 1	1	03	6	1	1	(B)(C) · (B)(C) · 1			M4	(M)	- 1	N
egisi ht/de	I N X I N X	D H	00	01	0	01	1	1323		1	1	(D) (E) +- (D) (E) + 1 (H) (L) + (H) (L) + 1						1
ne B	I NX DCX	SP B	00	.1 1		0 1		33 0 B	6	1	1	$(SP) \cdot (SP) + 1$ (B) (C) \leftarrow (B) (C) 1	x x x x x x x x x x x	1				ļ
Register increment/decr	DC X DC X	D H	0 0	0 1	1	0 1	1	1 B	6	1	1	(D)(E) + (D)(E) 1	XXXXX					1
=	DCX	SP		10	1	0 1	1	2 B 3 B	6	1	1	(H) (L) ← (H) (L) 1 (SP) ← (SP) 1			<u> </u>			Ĺ
≝ -	RLC		00	0 0	0	1 1	1	07	4	1	^T	Left shift CY2 A7A6 A1A0	XXXOX					
s of latoi	RRC		0 0	0 0	1	1 1	1	0 F	4	1	1	Right shift CY2 A7A6 A1A0	× × × O ×					
tent	RAL		0 0	0 1	0	1 1	1	17	4	1	1		× × × O ×				\mid	
contents of accumulator	RAR		0 0															
			50	Q 1	'	1 1	1	1 F	4	1	1		× × × O ×					
ccumu	CMA DAA		00			1 1		2 F 2 7		1		(A) • (A) Results of binary addition are adjusted to BCD	X X X X X 00000					
arry se	STC		00	1 1	0	1 1	1	37	4	1	1	(CY2) + 1	XXX1X	1				
	CMC		00	.1.1	1	1 1	1	3 F	4	11	1	(CY2) + (CY2)	XXXOX	1	1		۱ I	6

MACHINE INSTRUCTIONS SYMBOL MEANING

Symbol	Meaning	Symbol Meaning		Symbol	Meaning		
r	Register		B			* ***	Data is transferred in direction shown
m	Two-byte data		Bit pattern	Register		()	Contents of register or memoy location
n	One-byte data		designating	or memory	or DDD	v	Inclusive OR
<b2></b2>	Second byte of instruction		register or	B	000	*	Exclusive OR
<b3></b3>	Third byte of instruction	SSS	memory	č	001	٨	Logical AND
AAA	Binary representation for RST instruction n	or		P	010		1 s complement
-	8-bit data from the most to the least significant	DDD		h l	100	x	Content of flag is not changed after execution
F	bit S, Z, X, CY1, 0, P, X, CY2 (X is indefinite)			L	101	0	Content of flag is set or reset after execution
PC	Program counter		Where M = (H) (L)	M	1 1 1	1	Input mode
SP	Stack pointer		WI = (H)(L)	I		0	Output mode

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Supply voltage		-0.5~7	v
V ₁	Input voltage	With respect to V _{SS}	-0.5~7	v
Pd	Power dissipation	T _a =25°C	1.5	w
Topr	Operating free-air temperature range		-20~75	°C
Tstg	Storge temperature range		-65~150	°C

RECOMMENDED OPERATING CONDITIONS (Ta=-20~75°C, unless otherwise noted)

Symbol	Parameter		Limits					
	Falameter	Min	Nom	Max	Unit			
V _{cc}	Supply voltage	4.75	5	5.25	v			
V _{ss}	Supply voltage (GND)		0		v			

$\label{eq:transformation} \textbf{ELECTRICAL CHARACTERISTICS} \quad (\textbf{T}_a = -20 \sim 75 \, \text{C}, \ \textbf{V}_{cc} = 5V \pm 5\%, \ \textbf{V}_{ss} = 0V, \ \text{unless otherwise noted})$

		T		Limits		Unit
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
VIH	High-level input voltage (Except for X1, X2)		2.2		V_{cc} +0.5	v
VIL	Low-level input voltage		-0.5		0.6	v
VIH(RESIN)	High-level reset input voltage		2.4		V_{cc} +0.5	v
VIL(RESIN)	Low-level reset input voltage		-0.5		0.8	v
V _{IHX}	X ₁ , X ₂ High-level voltage		4.0		V _{cc} +0.5	v
V _{он}	High-level output voltage	I _{ОН} =-400 µА	2.4			v
Vol	Low-level output voltage	I _{OL} =2mA			0.45	v
Icc	Supply current from V _{CC}	(Note 2)			200	mA
l,	Input leak current, except RESET IN (Note 1)	VI=VCC	-10		10	μA
lozL	Output floating leak current	V ₀ =0.45V~V _{CC}	-10		10	μA
VIH-VIL	Hysterisis RESET IN input		0.25			v

The input $\overline{\text{RESET IN}}$ is pulled up to V_{CC} with the resistor $3k\,\Omega~(typ)$ when $V_I{\geq}V_{IH(\overline{\text{RESIN}})}$ Maximum I_{CC} is 170mA at $T_a=0{\sim}70^\circ C$ Note 1 2

TIMING REQUIREMENTS ($\tau_a = -20 \sim 75^{\circ}$ C, $v_{cc} = 5V \pm 5\%$, $v_{ss} = 0V$, unless otherwise noted)

		Testerada	ļ		Unit	
Symbol	Paramater	Test conditions	Min	Тур	Max	Unit
t _{C(CLK)}	Clock cycle time		320		2000	ns
t _{SU(DA-AD)}	DA input setup time		-575			ns
	DA input setup time		-300			ns
th(DA-RD)	DA input hold time		0			ns
t _{SU(RDY-AD)}	READY input setup time	1	-220			ns
	READY input setup time	t _{C(CLK)} ≧320ns			-110	ns
th(RDY-CLK)	READY input hold time	C _L =150pF	0			ns
t _{SU(DA-ALE)}	DA input setup time		-460			ns
tsu(HLD-CLK)	HOLD input setup time		170			ns
th(HLD-CLK)	HLD input hold time		0			ns
tsu(INT-CLK)	Interrupt setup time		160			ns
th(INT-CLK)	Interrupt hold time]	0			ns
t _{SU(RDY-ALE)}	READY input setup time		-110			ns

Parameters described in the timing requirements and switching characteristics take relevant values in accordance

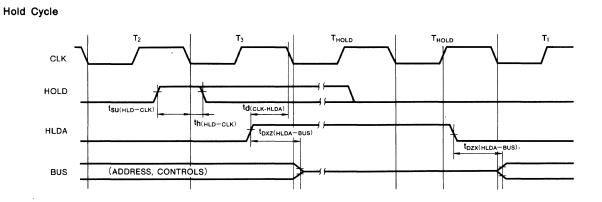
with the relational expression shown in the following tables when the frequency is varied.

Relational Expression with the frequency T ($t_{C(CLK)}$) in the M5L8085AP

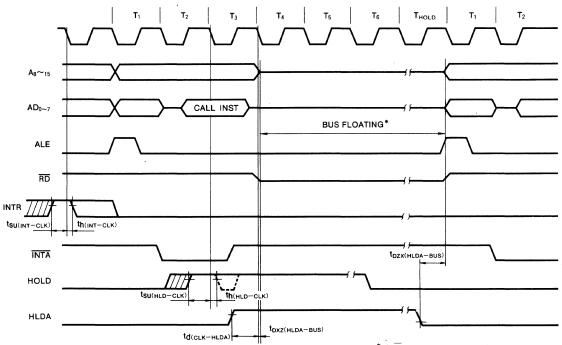
TIMMING REQUIREMENTS (τ_a =-20~75°C, ν_{cc} =5V±5%, ν_{ss} =0V, unless otherwise noted)

Symbol	Parameter	Test conditions	Relational expression (Note 6)	Limit	
t _{su(da-ad)}	DA input setup time		225-(5/2+N)T	Min	
tsu(DA-RD)	DA input setup time		180-(3/2+N)T	Min	
t _{SU(RDY-AD)}	READY input setup time	C _L =150pF	260-(3/2)T	Min	
t _{su(da-ale)}	DA input setup time		180—2T	Min	

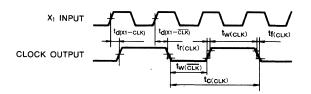
$\label{eq:switching} \textbf{CHARACTERISTICS} \quad (\texttt{T}_a = -20 \sim 75 \degree\texttt{C}, \texttt{V}_{cc} = 5 \texttt{V} \pm 5\%, \texttt{V}_{ss} = 0\texttt{V}, \texttt{ unless otherwise notes})$


Symbol	Palameter		Test conditions	Relational expression (Note 6)	Limit	
	CLK output low-level pulse width			(1/2)T-80	Min	
tw(CLK)	CLK output high-level pulse width			(1/2)T-40	Min	
td(ad-ale)	Delay time, address output to ALE signal	AD ₀ ~AD ₇		(1/2)T-70	Min	
		A ₈ ~A ₁₅		(1/2)T—45		
td(ALE-AD)	Delay time, ALE signal to address output			(1/2)T-60	Min	
	ALE pulse width			(1/2)T-20	Min	
td(ALE-CLK)	Delay time, ALE to CLK			(1/2)T-60	Min	
td(ALE-CONT)	Delay time, ALE to control signal			(1/2)T-30	Min	
t _{DZX} (RD-AD)	Address enable time from read			(1/2) T —10	Min	
td(CONT-AD)	Address valid time after control signal		0 -150-5	(1/2)T-40	Min	
	Delay time, data output to WR signal		C _L =150pF	(3/2+N)T-60	Min	
td(WR-DA)	Delay time WR signal to data output			(1/2) T —60	Min	
tw(CONT)	Control signal pulse width			(3/2+N)T-80	Min	
td(CONT-ALE)	Delay time, CONT to ALE signal			(1/2) T -110	Min	
td(CLK-HLDA)	Delay time, CLK to HLDA signal			(1/2) T —50	Min	
t _{DXZ(HLDA-BUS)}	Bus disable time from HLDA			(1/2) T +50	Max	
t _{DZX(HLDA-BUS)}	Bus enable time from HLDA			(1/2) T +50	Max	
td(cont-cont)	Control signal disable time			(3/2)T-80	Min	
td(ad-cont)	Delay time, address output to control	, address output to control $AD_0 \sim AD_7$ $A_8 \sim A_{15}$		т—80		
	signal			т—50	Min	

Note 6 N indicates the total number of wait cycles $T{=}t_{C(CLK)}$

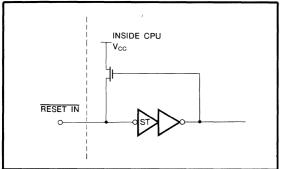


MITSUBISHI LSIS M5L8085AP


8-BIT PARALLEL MICROPROCESSOR

Interrupt and Hold Cycle

Clock Output Timing Waveform



 $^*IO/\overline{M}$ is floating during this time

PULL-UP OF THE RESET IN INPUT

In order to increase the noise margin, the RESET IN input terminal is pulled up by about $3k\Omega$ (typ) when the condition $V_{I} \ge V_{IH}$ (RESIN) is satisfied. Fig. 5 is a connection diagram of the RESET IN input, and Fig. 6 shows the relation between input voltage and input current.

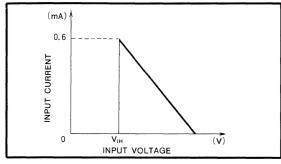


Fig. 6 RESET IN input current vs input voltage

DRIVING CIRCUIT OF X1 AND X2 INPUTS

Input terminals, X_1 and X_2 of the M5L8085AP can be driven by either a crystal, RC network, or external clock. Since the driver clock frequency is divided to 1/2 internally, the input frequency required is twice the actual execution frequency (6MHz for the M5L8085AP which is operated at 3MHz). Fig. 7 are typical connection diagram for a crystal circuit respectively.

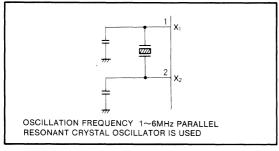
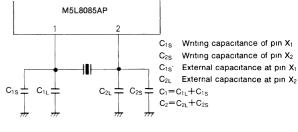
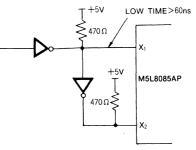



Fig. 7 Connections when crystal is used for X_1 and X_2 inputs

Conditions for Using a Quartz Crystal Element


- 1. Quartz Crystal Specifications
- Parallel resonance
- The frequency is 2 times the operation frequency (2 \sim 6.25MHz)
- Internal load capacitance: Approx. 16pF
- Parallel capacitance: Below 7pF
- Equivalent resistance: Below 75 Ω (for operation above 4MHz)
- For operation in the range 2 ~ 4MHz, the resistance showld be made as small as possible.
- Drive capability: Above 5mW (the power at which the crystal will be destoryed)

2. External Circuitry

- For operation above 4MHz: C₁=C₂=10pF
- For operation below 4MHz: C₁=C₂=15pF

External Clock Driver Circuit

Pullup resistors are required to assure that the high level voltage of the input is at least 4V

MITSUBISHI LSIs

8-BIT INPUT/OUTPUT PORT WITH 3-STATE OUTPUT

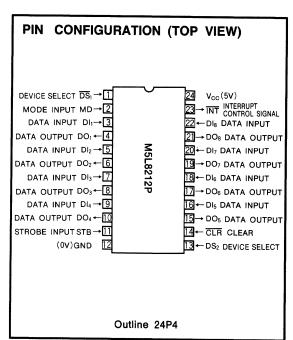
DESCRIPTION

The M5L8212P is an input/output port consisting of an 8-bit latch with 3-state output buffers along with control and device selection logic. Also a service request flip-flop for the generation and control of interrupts to a microprocessor is included.

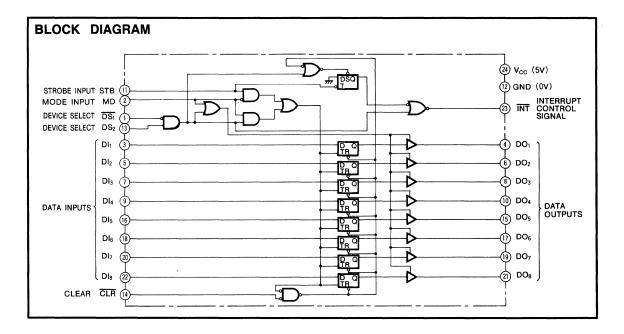
FEATURES

- Parallel 8-bit data register and buffer
- Service request flip-flop for interrupt generation
- Three-state outputs
- Low input load current: I_{IL}=-250µA(max.)
- High output sink current: I_{OL}=16mA(max.)
- High-level output voltage for direct interface to a M5L8085AP, CPU: V_{OH}=3.65V(min.)

APPLICATION


Input/output port for a M5L8085AP

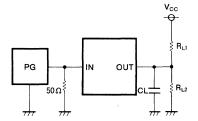
Latches, gate buffers or multiplexers


Peripheral and input/output functions for microcomputer systems

FUNCTION

Device select 1 $(\overline{DS_1})$ and device select 2 (DS_2) are used for chip selection when the mode input MD is low. When $\overline{DS_1}$ is low and DS_2 is high, the data in the latches is transferred to the data outputs $DO_1 \sim DO_8$, and the service request flip-flop SR is set. Also, the strobed input STB is active, the data inputs $DI_1 \sim DI_8$ are latched in the data latches, and the service request flip-flop SR is reset.

When MD is high, the data in the data latches is transferred to the data outputs. When $\overline{\text{DS}_1}$ is low and DS_2 is high, the data inputs are latched in the data latches. The low-level clear input $\overline{\text{CLR}}$ resets the data latches and sets the service request flip-flop SR, but the state of the output buffers is not changed.


M5L8212P

8-BIT INPUT/OUTPUT PORT WITH 3-STATE OUTPUT

SWITCHING CHARACTERISTICS (T_a=0~75°C, V_{CC}=5V \pm 5%, unless otherwise noted)

Symbol	Parameter	(Limits			
		Test conditions (Note 4)	Min	Тур	Мах	Unit
t _{PHL(DI-DO)}	High-to-low-level and low-to-high-level output propagation				30	ns
t _{PLH(D1-D0)}	time, from input DI to output DO	0 - 30- F R - 300 0 R - 600 0				
t _{PHL(DS2-DO)}	High-to-low-level and low-to-high-level output propagation	$C_L=30pF, R_{L1}=300\Omega, R_{L2}=600\Omega$			40	ns
t _{PLH(DS2-DO)}	time. from input $\overline{\text{DS1}}$, DS2 and STB to output DO				40	
tPHL(STB-INT)	High-to-low-level output propagation time, from input STB to output INT				40	ns
t _{PZL(MD-DO)}	Z-to-low-level and Z-to-high-level output propagation	$C_L=30pF, R_{L1}=300\Omega, R_{L2}=600\Omega$			45	ns
t _{PZH(MD-DO)}	time, from inputs MD, $\overline{\text{DS1}}$ and DS2 to output DO	$C_L=30pF, R_{L1}=10k\Omega, R_{L2}=1k\Omega$				
t _{PHZ(MD-DO)}	High-to-Z-level and low-to-Z-level output propagation	$C_L=5pF, R_{L1}=10k\Omega, R_{L2}=1k\Omega$			45	ns
t _{PLZ(MD-DO)}	time, from inputs MD, $\overline{\text{DS1}}$ and DS2 to output DO	C _L =5pF, R _{L1} =300Ω, R _{L2} =600Ω			45	
t _{PHL} (CLR-DO)	High-to-low-level output propagation time, from input				55	ns
	CLR to output DO	$C_L = 30 pF, R_{L1} = 300 \Omega, R_{L2} = 600 \Omega$				

Note 4 : Test circuit

MITSUBISHI LSIs

M5L8216P / M5L8226P

4-BIT PARALLEL BIDIRECTIONAL BUS DRIVERS

DESCRIPTION

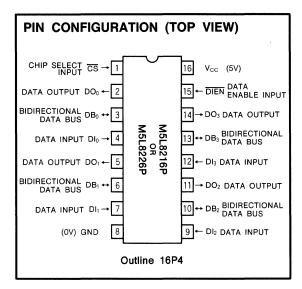
The M5L8216P and M5L8226P are 4-bit bidirectional bus drivers and suitable for the 8-bit parallel CPU M5L8085AP.

FEATURES

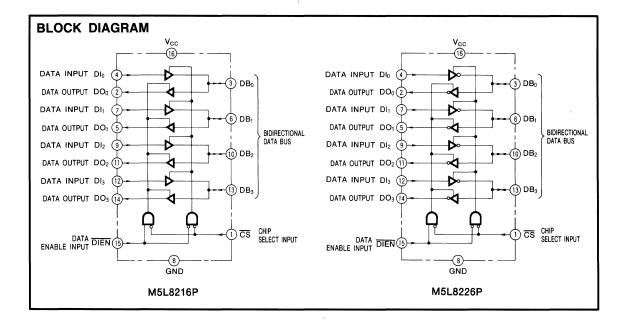
- Parallel 8-bit data bus buffer driver
- Low input current DIEN. CS: $I_{\mu} = -500 \,\mu A(\text{max.})$ $I_{\rm IL} = -250 \mu A({\rm max.})$ DI, DB: High output current M5L8216P DB: $I_{OI} = 55 \text{mA}(\text{max.})$ I_{OH}=-10mA(max.) $I_{OH} = -1 mA(max.)$ DO: M5L8226P DB: $I_{OI} = 50 \text{ mA}(\text{max.})$ $I_{OH} = -10 mA(max.)$ $I_{OH} = -1 mA(max.)$ DO:
- Outputs can be connected with

the CPU M5L8085AP: V_{OH}=3.65V(min.)

Three-state output


APPLICATION

Bidirectional bus driver/receiver for various types of microcomputer systems.


FUNCTION

The M5L8216P is a non-inverting and the M5L8226P is an inverting 4-bit bidirectional bus driver.

When the terminal \overline{CS} is high-level, all outputs are in high-impedance state, and when low-level, the direction of the bidirectional bus can be controlled by the terminal \overline{DIEN} .

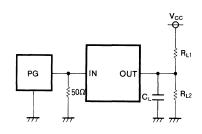
The terminal DIEN controls the data flow. The data flow control is performed by placing one of a pair of buffers in high-impedance state and allowing the other to transfer the data.

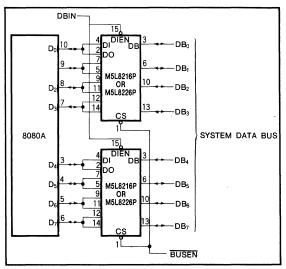
M5L8216P / M5L8226P

4-BIT PARALLEL BIDIRECTIONAL BUS DRIVERS

SWITCHING CHARACTERISTICS ($v_{cc}=5v\pm5\%$, $T_a=25\%$, unless otherwise noted)

O	Bassada				Limits		
Symbol	Parameter		Test conditions (Note 3)	Min	Тур	Max	Unit
t _{PHL(DB-DO)}	High-to-low and low-to-high output p	ropagation time.	C			25	
t _{PLH(DB-DO)}	from input DB to output DO		$C_L=30pF, R_{L1}=300\Omega, R_{L2}=600\Omega$			25	ns
t _{PHL(DI-DB)}	High-to-low and low-to-high output	M5L8216P	0 - 200-F B - 000 B - 1000			30	
t _{PLH(DI-DB})	propagation time. from input DI to output DB	M5L8226P	$C_L = 300 \text{pF}, R_{L1} = 90 \Omega, R_{L2} = 180 \Omega$			25	ns
t _{PHZ} (CS-DO)	High-to-Z and low-to-Z output propa	gation time.	$C_L=5pF, R_{L1}=10k\Omega, R_{L2}=1k\Omega$			35	
t _{PLZ} (CS-DO)	from inputs $\overline{\text{DIEN}}$ $\overline{\text{CS}}$. to output DO	1	$C_L=5pF, R_{L1}=300\Omega, R_{L2}=600\Omega$]		35	ns
•		M5L8216P	$C_1 = 30 \text{ pF}, R_{11} = 10 \text{ k}\Omega, R_{12} = 1 \text{ k}\Omega$			65	ns
PZH(CS-DO)		M5L8226P	$C_{L}=30 \text{ pr}, R_{L1}=10 \text{ k} tt, R_{L2}=1 \text{ k} tt$			54	
•	from inputs DIEN CS to output DO	M5L8216P	0			65	ns
t _{PZL} (CS-DO)		M5L8226P	$C_L = 30 \text{pF}, R_{L1} = 300 \Omega, R_{L2} = 600 \Omega$			54	
t _{PHZ} (CS-DB)	Output disable time. from inputs DIE	N. CS to	$C_L=5pF, R_{L1}=10k\Omega, R_{L2}=1k\Omega$			25	
t _{PLZ} (CS-DB)	output DB		$C_L=5pF, R_{L1}=90\Omega, R_{L2}=180\Omega$	35			ns
•		M5L8216P				65	
t _{PZH} (CS-DB)	Output enable time from inputs	M5L8226P	$C_{L}=300 \text{pF}, R_{L1}=10 \text{k}\Omega, R_{L2}=1 \text{k}\Omega$			54	ns
	DIEN. CS. to output DB M5L8216P		0			65	
t _{PZL} (CS-DB)	ZI (CS-DB)	M5L8226P	$C_{L}=300 \text{pF}, R_{L1}=90 \Omega, R_{L2}=180 \Omega$			54	ns


TIMING DIAGRAM (Reference level=1.5V)



APPLICATION EXAMPLES

Fig. 1 shows a pair of M5L8216Ps or M5L8226Ps which are directly connected with the 8080A CPU data bus, and their control signal. Fig. 2 shows an example circuit in which the M5L8216P or M5L8226P is used as an interface for memory and I/O to a bidirectional bus.

•

.

M5L8282P/M5L8283P

OCTAL LATCH

ABSOLUTE MAXIMUM RATINGS ($T_a=0\sim75^{\circ}C$, unless otherwise noted)

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Supply voltage		-0.5~+7	V
V,	Input voltage		-0.5~+5.5	v
Vo	Output voltage		-0.5~V _{cc}	V
Topr	Operating free-air temperature range		0~+75	ĉ
Tstg	Storage temperature range		-65~+150	Ĉ

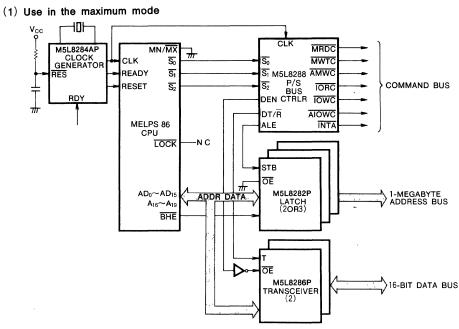
Symbol	Borr	Parameter			Limits			
Symbol	Fair				Max	Unit		
Vcc	Supply voltage		4.5	5	5.5	v		
Іон	High-level output current	V _{OH} ≧2.4V	0		-5	mA		
IOL	Low-level output current	V _{OL} ≦0.45V	0		32	mA		

ELECTRICAL CHARACTERISTICS $(T_a=0~75$ °C, unless otherwise noted)

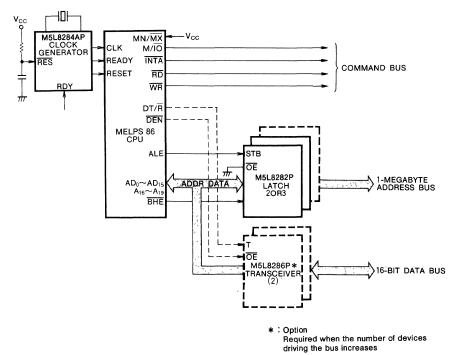
Symbol	Parameter	Toot and divers		Limits			
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit	
VIH	High-level input voltage		2			v	
VIL	Low-level input voltage				0.8	v	
VIC	Input clamp voltage	$V_{CC}=4.5V, I_{IC}=-5mA$			-1	v	
V _{OH}	High-level output voltage	V _{CC} =4.5V, I _{OH} =-5mA	2.4			v	
Vol	Low-level output voltage	V _{CC} =4.5V, I _{OL} =32mA			0.45	v	
I _{ozh}	Off-state output current, high-level applied to the output	V _{cc} =5.5V, V ₁ =2V, V ₀ =5.25V			50	μA	
loz∟	Off-state output current, low-level applied to the output	$V_{cc}=5.5V, V_{l}=2V, V_{o}=0.4V$			50	μA	
Iн	High-level input current	V _{cc} =5.5V, V _i =5.25V			50	μA	
I _{IL}	Low-level input current	V _{CC} =5.5V, V ₁ =0.45V			-0.2	mA	
Icc	Supply current	V _{cc} =5.5V			80	mA	
C _{IN}	Input capacitance	F=1MHz, V_{BIAS} =2.5V V_{CC} =5V, T_{a} =25°C			12,	pF	

$\label{eq:switching characteristics} SWITCHING CHARACTERISTICS ~ (v_{cc} = 5V \pm 10\%, ~ T_a = 0 \sim 75^\circ C, ~ unless ~ otherwise ~ noted)$

Symbol	Parameter	Alternate symbol	Test	M5L8282P Limits			M5L8283P Limits			Unit
			conditions	Min	Тур	Мах	Min	Тур	Max	
t _{PLH} t _{PHL}	Propagation time from DI input to DO or DO for low-to-high or high-to-low change	T _{IVOV}		5		30	5		22	nş
t _{PLH} t _{PHL}	Propagation time from STB input to DO or $\overline{\text{DO}}$ for low-to-high and high-to-low change	Т _{зноv}		10		45	10		40	ns
t _{PZH} t _{PZL}	Propagation time from \overline{OE} input to DO or \overline{DO} output when output is enabled	T _{ELOV}	(Note 1)	10		30	10		30	ns
t _{PHZ} t _{PLZ}	Propagation time from \overline{OE} input to DO or DO output when the output is dis- abled	T _{EHOV}		5		18	5		18	ns



MITSUBISHI LSIs


M5L8282P/M5L8283P

OCTAL LATCH

APPLICATION EXAMPLES

(2) Use in the minimum mode

A STATE OF A STATE

CLOCK GENERATOR AND DRIVER

PIN DESCRIPTIONS

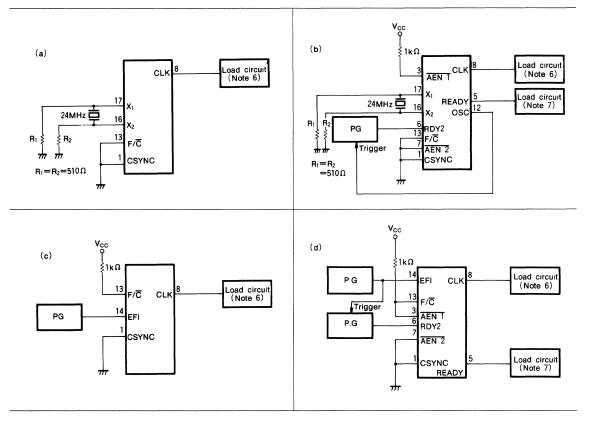
Pin	Name	Input or output	Function
AEN1, AEN2	Address enable input	Input	When AENI and AEN2 are set low, RDY1 and RDY2 are enabled, respectively. By using these two inputs separately, the CPU can be used to access two Multibusses. When not used as a multimaster, AEN should be set to low. These inputs are active low.
RDY1, RDY2	Bus ready input	Input	These inputs are connected to the output signal indicating the completion of data reception from a system bus device or, indicating that data is valid RDY1 and RDY2 are enabled when AEN1 and AEN2 are low, respectively. These inputs are active high.
ASYNC	Active low input	Input	This signal is used to select the synchronization mode of the READY signal generation circuit. When the $\overline{\text{ASYNC}}$ signal is set low, the READY signal is generated in two synchronization steps. When the $\overline{\text{ASYNC}}$ signal is set high, the READY signal is generated in one step
READY	Ready output	Output	The state of RDY appears at this output in synchronization with the CLK output This is done to synchronize the READY output to the M5L8284AP internal clock because the RDY input generation is unrelated to the CLK signal. This pin is normally connected to the CPU ready input and cleared after the required hold CPU time has elapsed.
X ₁ , X ₂	Crystal element terminals	Input	These pins are used to connect the crystal. The crystal frequency is 3 times of CPU clock frequency The crystal should be in the 12-25MHz range with the series resistance as possible as small. Care should be taken that these pins are not shorted to ground
F/C	Clock selection input	Input	When F/\overline{C} is set low, CLK and PCLK outputs are driven from the crystal oscillator circuit. When it is set high, they are driven from the EFI input.
EFI	External clock input	Input	When F/\overline{C} is set high, CLK and PCLK output signals are driven from this pin. A TTL level rectangular signal and three times of the CPU frequency should be used.
CLK	Clock output	Output	This output is connected to the clock inputs of the CPU and the peripheral devices on the local bus. The output waveform is 1/3 the frequency of the crystal oscillator connected at X_1 and X_2 or the signal applied to the FEI input, and has a duty cycle of 1/3. Since for $V_{CC}=5V$, $V_{OH}=4.5V$, this output can be directly drive the CPU clock input.
PCLK	Peripheral clock output	Output	This output provides a clock signal for use with peripheral devices. The output waveform is 50% duty cycle TTL level rectangular waveform with a frequency 1/2 that of the clock output.
osc	Oscillator output	Output	This output is a TTL level crystal oscillator output. The frequency is the same as that of the crystal connected at X_1 and X_2 , but care should be taken as the frequency will be unstable if these pins are left open.
RES	Reset input	Input	This active low input is used to generate the reset output signal for the CPU. The input is a schmitt trigger input so that by connecting a capacitor and a resistor, the CPU reset signal can be generated at power on.
RESET	Reset output	Output	This pin is connected to the CPU reset input. The signal at this pin is synchronized the $\overline{\text{RES}}$ input with the CLK signal. This output is active high.
CSYNC	Clock synchronization input	Input	When using multiple M5L8284AP devices, this input is used as a clock synchronization input When CSYNC is high, the internal counter of the M5L8284AP is reset and when CSYNL is low, it begins operation. CSYNC must be synchronized with EFI. See application notes.

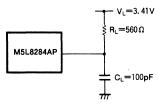
M5L8284AP

CLOCK GENERATOR AND DRIVER

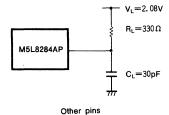
<u> </u>		Alternate			Limits			
Symbol	Parameter	symbol	Test conditions	Min	Тур	Max	Unit	
т _с	CLK repetition period	t _{CLCL}		100			ns	
-			(Note 5 a, b) CLKF _{req} ≦8MHz	(1/3t _{CLC}	L)+2			
T _{W(CLKH)}	CLK high pulse width	t _{CHCL}	CLKF _{req} =10MHz	39	39		ns	
-			(Note 5 a, b) CLKF _{req} ≦8MHz	(² / ₃ t _{CLC}	L)_15			
Tw(CLKL)	CLK low pulse width	t _{CLCH}	CLKF _{req} =10MHz	53	53		ns	
t _{TLH}	CLK low-high transition time	t _{CH1CH2}	1~3.5V			10	ns	
t _{THL}	CLK high-low transition time	t _{CL2CL1}	3.5~1V			10	ns	
Tw(PCLKH)	PCLK high pulse width	t _{PHPL}		t _{CLCL} -20			ns	
TW(PCLKL)	PCLK low pulse width	t _{PLPH}		t _{CLCL} -20			ns	
^t dıv	READY inhibit time with respect to CLK (Note 1)	t _{RYLCL}	(Note 5 c, d)	-8			ns	
•	READY enable time with (Note 2)		(Note 5 c, d) CLKF _{req} ≦8MHz	52				
td∨	respect to CLK (Note 2)	t _{RYHCH}	CLKFreq=10MHz	53			ns	
TDHL(CLK-RESET)	High-low delay time from CLK to RESET	tolil				40	ns	
TDLH(CLK-PCLK)	Low-high delay time from CLK to PCLK	t _{CLPH}				22	ns	
TDHL(CLK-PCLK)	High-low delay time from CLK to PCLK	t _{CLPL}				22	ns	
T _{DLH(OSC-CLK)}	Low-high delay time from OSC to CLK	t _{olch}		-5		22	ns	
TDHL(OSC-CLK)	High-low delay time from OSC to CLK	tolcl		2		35	ns	
Τr	Output rise time	t _{oloh}	0.8~2V (except CLK)			20	ns	
tf	Output fall time	t _{OHOL}	2~0.8V (except CLK)			12	ns	

SWITCHING CHARACTERISTICS ($v_{cc}=5v\pm10\%$, $T_a=0\sim75^{\circ}$, unless otherwise noted) .

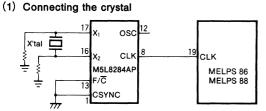

Note 1 : Applies to T2 state time 2 : Applies to T3 and TW state times


M5L8284AP

CLOCK GENERATOR AND DRIVER


Note 6 : Load Circuit

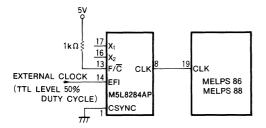
CLK pins


ţ

CLOCK GENERATOR AND DRIVER

APPLICATION NOTES

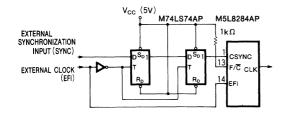
The crystal frequency should be three times the cycle time of the 8086, 8088 or 8089, and the crystal should be located as close to the M5L8284AP as possible.

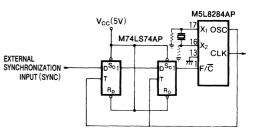

PRECAUTIONS FOR USE

(1) The oscillator circuit of the M5L8284AP is designed for use with the fundamental mode crystal.

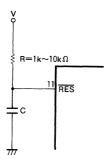
If noise is allowed to enter the XTAL1, XTAL2 or V_{CC} pins, the oscillator frequency will be pulled of the parallel resident frequency and the stray capacitance between XTAL1 and XTAL2 may cause the circuit to go into relaxation oscillation. To prevent this, care should be given to the following points.

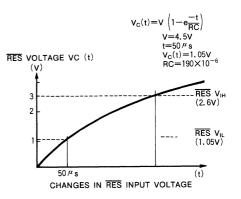
- (1) The should be one with a small parallel capacitance.
- (2) A 0.01 0.1 μ F capacitor should be connected between V_{CC} and ground. This capacitor should be located as close as possible to the IC.


(2) External clock connections


The frequency should be three times the CPU cycle frequency

(3) Synchronizing using the CSYNC input


• When the EFI input is used


When the EFI input is not used

(4) Power-on reset circuit

Since the MELPS 86, 88 require a reset pulse over 50μ s after V_{CC} reaches 4.5V upon power on, the capacitor value should be determined by the graph shown below. Note that the time for V_{CC} to reach 4.5V has not been considered, so that it is necessary to choose the characteristics value of capacitance under consideration of the power supply.

MITSUBISHI LSIS M5L8286P/M5L8287P

OCTAL BUS TRANSCEIVER

DESCRIPTION

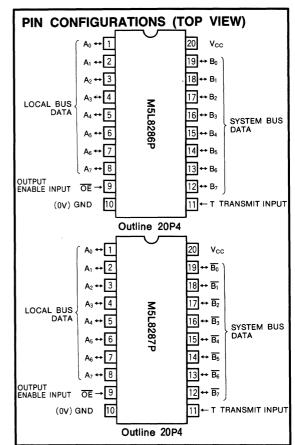
The M5L8286P and M5L8287P are semiconductor integrated circuits consisting of a set of eight 3-state output bus transceivers for use with a variety of microprocessor systems.

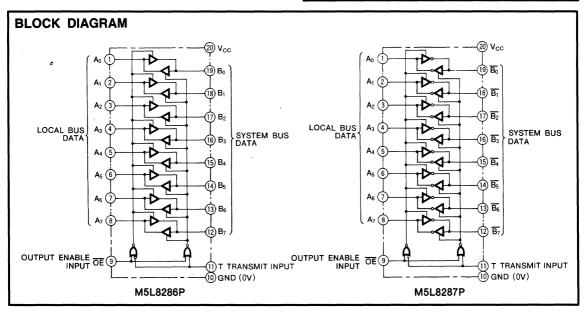
FEATURES

- 3-state, high-fanout outputs ($I_{OL} = 16mA$, $I_{OH} = -1mA$ for the A outputs and $I_{OL} = 32mA$, $I_{OH} = -5mA$ for the B outputs)
- Low power dissipation

APPLICATION

Two-way bus transceivers for microcomputer systems


FUNCTION


The M5L8286P and M5L8287P are two-way bus transceivers with non-inverted and inverted outputs respectively.

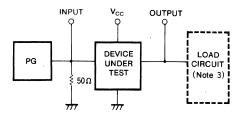
When the output enable input \overline{OE} is high, the local bus data pins $A_0 \sim A_7$ and system data pins $B_0 \sim B_7$ are both placed in the high-impedance state.

When the output enable input \overline{OE} is low, the input and output states are controlled by the transmit input T.

When T is high, $A_0 \sim A_7$ are input pins and $B_0 \sim B_7$ are output pins. When T is low, $B_0 \sim B_7$ are input pins and $A_0 \sim A_7$ are output pins.

OCTAL BUS TRANSCEIVER

w.


SWITCHING CHARACTERISTICS ($v_{cc}=5v\pm10\%$, $T_a=0\sim75\%$, unless otherwise noted)

		Alternate	Test conditions	M5L8286P			M5L8287P			Unit
Symbol	Parameter	symbol		Limits		Limits				
		symbol		Min	Тур	Мах	Min	Тур	Max	
t _{PLH} t _{PHL}	Low-level to high-level and high-level and low-level transition time from input A B to outputs B, A	τινον	(Note 2)	5		30	5		22	ns
t _{PZH} t _{PZL}	Output enable time from OE input to A or B output	TELOV		10		30	10		30	ns
t _{PHZ} t _{PLZ}	Output disable time from OE input to A or B output	TEHOZ		5		18	5		18	ns

TIMING REQUIREMENTS ($v_{cc}=5V\pm10\%$, $T_a=0\sim75^{\circ}C$, unless otherwise noted)

Symbol Parameter	Deservation	Alternate	Test conditions		11		
	Symbol	Test conditions	Min	Тур	Мах	Unit	
t _{su}	T setup time with respect to OE			10			ns
th	T hold time with respect to OE	T _{EHTV}		5			ns

Note 2 : Test Circuit

Note 3

Test Item	t _{PLH} , t _{PHL}	t _{PLZ} , t _{PZL}	t _{PHZ} , t _{PZH}
A OUTPUT LOAD CIRCUIT	2. 28V \$ 114Ω A OUTPUT	1.5V 66Ω A OUTPUT - 100pF 777	1.5V 900Ω A OUTPUT 100pF 777
B OUTPUT LOAD CIRCUIT	2.14V \$ 52.7Ω B OUTPUT	1.5V	1.5V § 180Ω B OUTPUT - 300pF

BUS CONTROLLER

DESCRIPTION

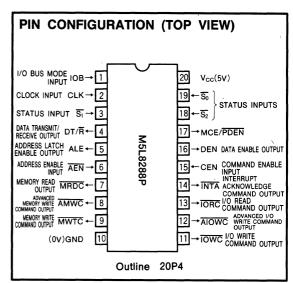
The M5L8288P is a semiconductor integrated circuit consisting of a bus controller and bus driver for the MELPS 86, 88, 16-bit microprocessors. By using the status signals from the CPU a Multibus (Intel trademark) control signal is generated.

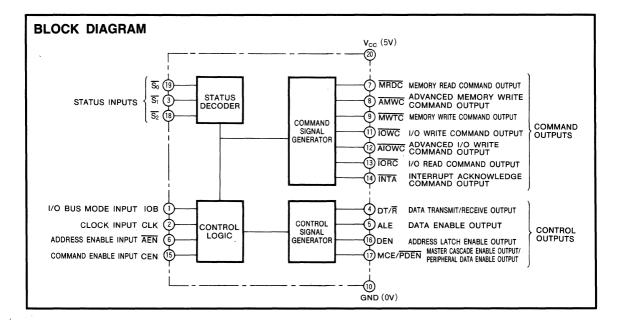
FEATURES

- High-fanout outputs Command output I_{OL}=32mA, I_{OH}=-5mA
 Control output I_{OL}=16mA, I_{OH}=-1mA
- Advanced command outputs (AIOWC and AMWC outputs)
- Low power dissipation

APPLICATION

Bus controller and bus driver for maximum mode operation of the MELPS $86,\,88$


FUNCTION


The M5L8288P is a bus controller and driver for maximum mode operation of theMELPS 86, 88 processors.

The command signals and control signals are decoded by means of the $\overline{S_0} \sim \overline{S_2}$ outputs from the CPU and the control signals for I/O devices and memory are output.

The device can be used in the Multimaster mode in which several CPUs acting as masters are connected to one data bus. An input pin for the control signal $\overline{\text{AEN}}$ from an 8289 bus arbiter is provided.

By using the M5L8288P as a bus controller, a highperformance 16-bit microcomputer system can be configured.

M5L8288P

BUS CONTROLLER

FUNCTIONAL DESCRIPTION

The state of the command outputs and control outputs are determined by the CPU status outputs $\overline{S_0} \sim \overline{S_2}$. The table summarizes the states of the outputs $\overline{S_0} \sim \overline{S_2}$ and their cor-

responding valid command output names.

Depending upon whether the M5L8288S is in the I/O bus mode or system bus mode, the command output sequence will vary.

STATUS INPUTS AND COMMAND OUTPUTS RELATIONSHIPS

S ₂	S ₁	S ₀	8086, 8088 status	Valid command output name
L	L	L	Interrupt acknowledge	INTA
L	L	н	Data read from an I/O port	IORC
L	н	L	Data write to an I/O port	IOWC, AIOWC
L	н	н	Hait	_
н	L	L	Instruction fetch	MRDC
н	L	н	Read data from memory	MRDC
н	н	L	Write data to memory	MWTC, AMWC
н	н	н	Passive state	_

1. I/O bus mode operation

When IOB is high, the M5L8288S function in the I/O bus mode.

In the I/O Bus mode all I/O command lines (\overline{IORC} , \overline{IOWC} , AIOWC, \overline{INTA}) are always enabled (i.e., not dependent on AEN). When an I/O command is initiated by the processor, the 8288 immediately activates the command lines using PDEN and DT/R to control the I/O bus transceiver. The I/O command lines should not be used to control the system bus in this configuration because no arbitration is present. This mode allows one 8288 Bus Controller to handle two external busses. No waiting is involved when the CPU wants to gain access to the I/O bus. Normal memory access requires a "Bus Ready" signal (AEN LOW) before it will proceed. It is advantageous to use the IOB mode if I/O or peripherals dedicated to one processor exist in a multi-processor system.

2. System bus mode operation

When IOB is set to low, the M5L8288S enters the system bus mode. In this mode no command is issued until 115 ns after the \overline{AEN} Line is activated (LOW). This mode assumes bus arbitration logic will inform the bus controller (on the \overline{AEN} line) when the bus is free for use. Both memory and I/O commands wait for bus arbitration. This mode is used when only one bus exists. Here, both I/O and memory are shared by more than one processor.

3. AMWC and AIOWC outputs

With respect to the normal write control signals $\overline{\text{MWTC}}$ and $\overline{\text{IOWC}}$, the advanced-write command signals $\overline{\text{AMWC}}$ and $\overline{\text{AIOWC}}$ transit low one clock cycle earlier and remain low for two clock cycles.

These signals are used with peripheral devices or static RAM devices which require a long write pulse, so that the CPU does not go into an unnecessarily wait cycle.

M5L8288P

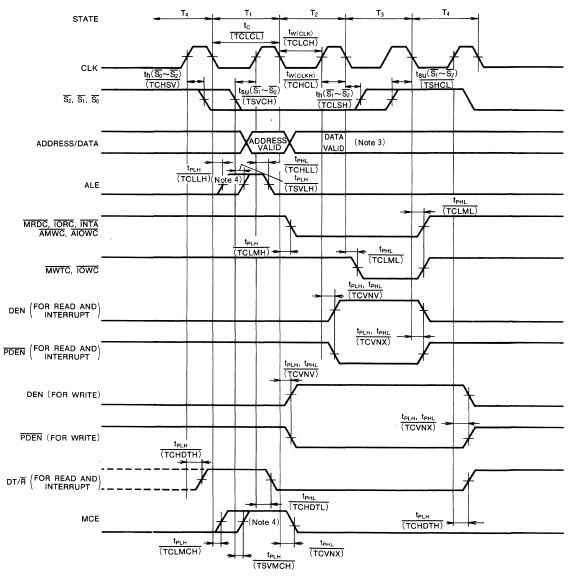
BUS CONTROLLER

0	Describer	Alternate	T	Limits			Unit
Symbol	Parameter	symbol	Test conditions	Min	Тур	Max	Unit
t _{PLH}	Output low-level to high-level propagation time From CLK input to DEN output	TCVNV		5		45	ns
t _{PHL}	Output high-level to low-level propagation time From CLK input to PDEN output	TCVNV		5		40	115
t _{PLH}	Output low-level to high-level propagation time From CLK input to DEN output	TCVNX	_	10		45	ns
t _{PHL}	Output high-level to low-level propagation time From CLK input to PDEN output	TOVIX		10		40	115
t _{PLH}	Output low-level to high-level propagation time From CLK input to ALE output	TCLLH				20	ns
t _{PLH}	Output low-level to high-level propagaion time From CLK input to MCE output	TCLMCH				20	ns
t _{PLH}	Output low-level to high-level propagation time From $\overline{S_0} \sim \overline{S_1}$ inputs to ALE output	TSVLH				20	ns
t _{PLH}	Output low-level to high-level propagation time From $\overline{S_0} \sim \overline{S_1}$ inputs to MCE output	TSVMCH				20	ns
t _{PHL}	Output high-level to low-level propagation time From CLK input to ALE output	TCHLL		4		15	ns
t _{PHL}	Output high-level to low-level propagation time From CLK input to MRDC, IORC, INTA, AMWC, MWTC, AIOWC, and IOWC outputs	TCLML		10		35	ns
t _{PLH}	Output low-level to high-level propagation time From CLK input to MRDC, IORC, INTA, AMWC, MWTC, AIOWC, and IOWC outputs	TCLMH		10		35	ns
t _{PHL}	Output high-level to low-level propagation time From CLK input to $\text{DT}/\overline{\text{R}}$ output	TCHDTL	(Note 1)			50	ns
t _{PLH}	Output low-level to high-level propagation time From CLK input to DT/\overline{R} output	тснотн				30	ns
t _{PZH}	High-level output enable time From AEN input to MRDC, IORC, INTA, AMWC, MWTC, AIOWC, and IOWC outputs	TAELCH				40	ns
t _{PHZ}	High-level output disable time From AEN input to MRDC, IORC, INTA, AMWC, MWTC, AIOWC, and IOWC outputs	TAEHCZ				40	ns
t _{PHL}	Output high-level to low-level propagation time From AEN input to MRDC, IORC, INTA, AMWC, MWTC, AIOWC, and IOWC outputs	TAELCV		115		200	ns
t _{PLH} t _{PHL}	Output low-level to high-level and high-level to low-level propagation time From AEN input to DEN output	TAEVNV				20	ns
t _{PLH} t _{PHL}	Output low-level to high-level and high-level to low-level propagation time From CEN input to DEN and PDEN outputs	TCEVNV				25	ns
t _{PLH} t _{PHL}	Output low-level to high-level and high-level to low-level propagation time. From CEN input to MRDC, IORC, INTA, AMWC, MWTC, AIOWC and IOWC outputs	TCELRH				35	ns

SWITCHING CHARACTERISTICS ($V_{cc}=5V\pm10\%$, $T_a=0\sim75$ °C, unless otherwise noted)

TIMING REQUIREMENTS (V_cc=5V \pm 10%, T_a=0~75°C, unless otherwise noted)

Symbol	Parameter	Alternate	Test conditions		Limits		Unit
Symbol	Falameter	symbol	Test conditions	Min	Тур	Мах	Unit
t _c	Clock CLK cycle time	TCLCL		100			ns
tw(CLKL)	Clock CLK low pulse width	TCLCH		50			ns
tw(clkh)	Clock CLK high pulse width	TCHCL		30			ns
+	$\overline{S_0} \sim \overline{S_2}$ setup time with respect to	тѕусн		35			ns
'SU(S0~S2)	T for the T ₁ state	13001		- 35			115
th (= = =)	$\overline{S_0} \sim \overline{S_2}$ hold time with respect to	TCHSV		10			ns
th(s₀~s₂)	T for the T ₄ state	101130		10			115
t	$\overline{S_0} \sim \overline{S_2}$ setup time with respect to	TSHCL		35			ns
t _{su} (s ₀ ~s₂)	T for the T ₃ state	TSHOL		- 55			115
th/= = >	$\overline{S_0} \sim \overline{S_2}$ hold time with respect to	TCLSH		10			ns
th(s₀~s₂)	T for the T ₃ state	TOEGH		10			113



M5L8288P

BUS CONTROLLER

TIMING DIAGRAM

1. Command output timing

Note 3 . The address/data bus signals are shown only for reference

4 : 5 · The ALE and MCE leading edge occurs in synchronization with the falling edge of CLK or $\overline{S_0} \sim \overline{S_2}$, whichever is later

Unless otherwise noted, the timing of all signals is respect to 1.5V

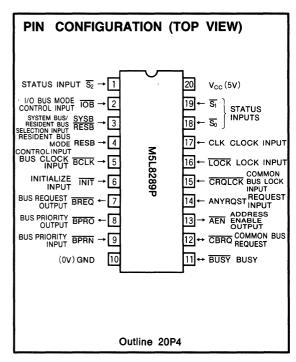
BUS ARBITER

DESCRIPTION

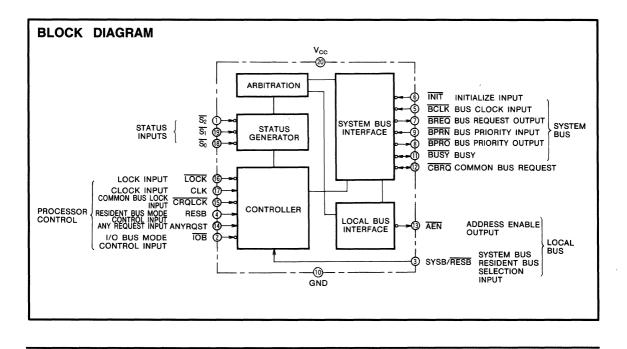
The M5L8289P is a system bus (^(B)MULTIBUS) arbiter for the MELPS 86, 88 16-bit microprocessors. When a request for access to the system bus is made by any of these microprocessors, the M5L8289P prevents simultaneous access by two or more processors by allowing only the first processor which requests access to access the system, preventing all others from accessing the system bus. It generates the required signals for bus access. (^(B)MULTIBUS is a registered trademark of Intel Corporation.)

FEATURES

- [®]MULTIBUS compatible
- Usable in multiprocessing systems using the MELPS 86, 88 microprocessors
- Four modes of request and bus surrender are possible
- Low power dissipation


APPLICATION

Bus arbitration for MULTIBUS boards using the MELPS 86, 88 or 8089


FUNCTION

The M5L8289P is a bus arbiter for [®]MULTIBUS boards using the MELPS 86, 88 microprocessors. When several processors are connected to the system bus ([®]MULTIBUS), it is necessary to prevent two or more processors from attempting to access the system bus simultaneously.

This function is performed by the M5L8289P, which decodes the processor status, and if access to the system bus

is required, prevents other processors from attempting system bus access by generating the required control signals.

M5L8289P

BUS ARBITER

Status	Status			I/O Bus mode only	Resident bu	s mode only	I/O Bus mode re	sident bus mode	Single bus mode
				IOB=L	IOB	=н	IOB	i=L	IOB=H
				RESB=L	RESI	в=н	RESI	RESB=L	
Command	S ₂	S ₁	S ₀		SYSB/RESB=H	SYSB/RESB=H	SYSB/RESB=H	SYSB/RESB=L	
Interrupt acknowledge	0	0	0	×	0	×	×	0	
I/O Port read	0	0	1	×	0	×	×	×	0
I/O Write	0	1	0	×	0	×	×	×	0
Halt	0	1	1	×	×	×	×	×	×
Instruction fetch	1	0	0	0	0	×	0	×	0
Memory read	1	0	1	0	0	0 ×		×	0
Memory write	1	1	0	0	0	×	0	×	0
Passive cycle	1	1	1	×	×	×	×	×	×

Table 1 M5M8289P Modes and Bus Request and surrender Conditions

 $\begin{array}{ccc} & \cdots & \text{A request signal is output by the system bus.} \\ & \times & \cdots & \text{The system bus privileges are surrendered} \end{array}$

Mode	Ing	out	Bus request condition	Bus surrender condition (Note 1)
Mode	IOB	RESB	(excluding halt and passive cycles)	Bus surrender condition (Note 1)
Single bus mode	н	L	All bus access states	HLT+(TI-CBRQ)+HPBRQ
Resident bus				((SYSB/RESB=L+T1)·CBRQ)
mode only	нн		(SYSB/RESB=high) · (Bus access state)	+HLT+HPBRQ
				(I/O Access state+T1)·CBRQ)+HLT
I/O Bus mode only	L	LLL	All memory access states	+HPERQ
I/O Bus mode				((I/O Access state +(SYSB/RESB=Iow)).
resident bus mode			(SYSB/RESB=high) · (Memory access states)	CBRQ + HPBRQ HLT + HPBRQ

Note 1 : When LOCK=low, the bus is not released under any circumstances.

When CRQLCK=low, the bus is not released even when low-priority arbiters request it

2 : HLT Halt state

TI.....Idle (passive) state CBRQ......CBRQ=low

HPBRQ ······Indicates that a high-priority arbiter is requesting the bus (BPRN=high)

.

M5L8289P

BUS ARBITER FOR

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Parameter Conditions			
Vcc	Supply voltage		-0.5~7	v	
Vi	Input voltage		-1~5.5	v	
Vo	Output voltage		-0.5~7	v	
Topr	Operating temperature		0~75	°C	
T _{stg}	Storage temperature	,	-65~150	°C	

RECOMMENDED OPERATING CONDITIONS ($T_a=0\sim75$ °C, unless otherwise noted)

Sumbol		Parameter			Limits		Unit		
Symbol		Parameter		Min	Nom	Max	Unit V µA		
V _{cc}	Supply voltage		4.5	5	5.5	v			
	High-level output	BUSY, CBRQ,	V _{OH} ≧2.4V	O	pen collect	or	μA		
ЮН	current	Other output,	V _{OH} ≧2.4V	0		400	μA		
		BUSY, CBRQ,	V _{OL} ≦0.45V	0		20			
IOL	Low-level output	AEN	V _{OL} ≦0.45V	0		16	mA		
	current	BPRO, BREQ,	V _{OL} ≦0.45V	0		10	mA		

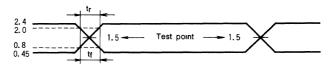
ELECTRICAL CHARACTERISTICS (Ta=0~75°C, V_{CC}=5V \pm 10%, unless otherwise noted)

Ourse had		Devenueter	Test sendstere		Limits	11	
Symbol		Parameter	Test conditions	Min	Тур	Max	Unit V V V V V mA µA
VIL	Low-level input vol	age				0.8	v
VIH	High-level input vo	tage		2.0			v
	Low-level	BUSY, CBRQ	I _{OL} =20mA			0.45	
Vol		AEN	I _{OL} =16mA			0.45	v
	output voltage	BPRO, BREQ	I _{OL} =10mA			0.45	
V	High-level BUSY, CBRQ			0	Open collector		
V _{он}	output voltage	t voltage AEN, BPRO, BREQ I _{OH} =400µA		2.4			v
VIC	Input clamp voltage	;	$V_{\rm CC}$ =4.50V, I _C =-5mA			-1	v
h∟.	Low-level input cur	rent	V _{CC} =5.50V, V _F =0.45V			-0.5	mA
hн	High-level input current		V _{CC} =5.50V, V _R =5.50V			60	μA
Icc	Supply current					120	mA
0		Status				25	
CIN	Input capcitance	Others	f=1MHz, V_{B2AS} =2.5V			12	V V V MA µA

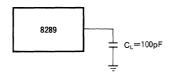
M5L8289P

BUS ARBITER

Quert et	D	Alternate	T		Limits		11-14
Symbol	Parameter	symbol	Test conditions	Min	Тур	Max	Unit
	BCLK→BREQ↑, ↓ Delay time	t _{BLBRL}				35	ns
t _{PLH} (BPRO)	BCLK→BPRO†,↓ Delay time (See note 2)	t _{BLPOH}				40	ns
t _{PHL} (BPRO)	BPRN ↑, ↓ → BPRO ↑ ↓ Delay time (See note 2)	t _{pnpo}				25	ns
	BCLK→BUSY ↓ Delay time	tBLBYL				60	ns
	BCLK→BUSY Float time (See note 3)	t _{BLBYH}				35	ns
	CLK→ĀEN, † Delay time	t _{CLAEH}				65	ns
t _{PHL} (AEN)	BCLK→AEN, ↓ Delay time	tBLAEL				40	ns
	BCLK→CBRQ, ↓ Delay time	t _{BLCBL}				60	ns
	BCLK→CBRQ Delay time (See note 3)	t _{BLCBH}				35	ns
t _r	Output rise time	t _{OLOH}	0.8V~2.0V			20	ns
tf	Output fall time (See note 4, 5)	tohol	2.0V~0.8V			12	ns

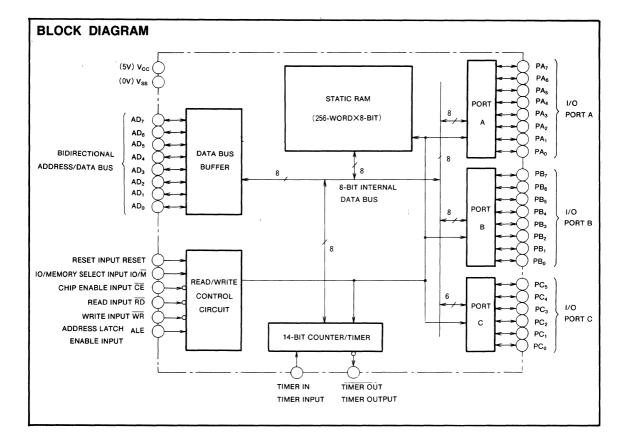

SWITCHING CHARACTERISTICS ($T_a=0~75^{\circ}$, $V_{cc}\pm5V\pm5\%$, unless otherwise noted)

 Note 1:
 Symbol ↑, ↓ means rise signal and fall signal.


 2:
 BCLK generate the first BPRO and then BPRO changes lower in the chain are generated through BPRN.

 3:
 Measured at 0.5V above GND

A.C. test wave form. Note 4


Note 5 · Load circuit

(

MITSUBISHI LSIS M5M81C55P-2/FP-2/J-2

CMOS 2048-BIT STATIC RAM WITH I/O PORTS AND TIMER

CMOS 2048-BIT STATIC RAM WITH I/O PORTS AND TIMER

Status Register (7-bit)

The status register is a 7-bit latched register. The low-order 6 bits (bits $0 \sim 5$) are used as status flags for the I/O ports. Bit 6 is used as a status flag for the counter/timer. The con-

tents of the status register are transferred into the CPU by reading (INPUT instruction, I/O address XXXXX000). Details of the functions of the individual bits of the status register are shown in Table 3.

Table 3	Bit	functions	of	the	status	register
---------	-----	-----------	----	-----	--------	----------

Bit	Symbol		Function
0	INTR A	PORT A INTERRUPT REQUEST	
1	A BF	PORT A BUFFER FULL FLAG	
2	INTE A	PORT A INTERRUPT ENABLE	4
3	INTR B	PORT B INTERRUPT REQUEST	
4	B BF	PORT B BUFFER FULL FLAG	
5	INTE B	PORT B INTERRUPT ENABLE	
6	TIMER	COUNTER/TIMER INTERRUPT	This flag is set to 1 when the final limit of the counter/timer is reached and is reset to 0 when the status is read
7	-	This bit is not used	

I/O PORTS

Command/status registers (8-bit/7-bit)

These registers are assigned address XXXXX000. When an OUTPUT command is executed, the contents of the command register are rewritten. When an INPUT command is executed, the contents of the status register are read.

Port A Register (8-bit)

Port A Register is assigned address XXXXX001. This register can be programmed as an input or output by setting the appropriate bits of the command register as shown in Table 2.

Port A can be operated in basic or strobe mode and is assigned I/O terminal $PA_0 \sim PA_7$.

Port B Register (8-bit)

Port B register is assigned address XXXXX010. As with Port A register, this register can be programmed as an input or output by setting the appropriate bits of the command register as shown in Table 2. Port B can be operated in basic or strobe mode and is assigned I/O terminals PB₀~PB₇.

Port C Register (6-bit)

Port C register is assigned address XXXXX011. This port is used not only for input or output but also for controlling input/output operations of ports A and B by selectively setting bits 2 and 3 of the command register as shown in Table 2. Details of the functions of the various setting of bits 2 and 3 are shown in Table 4. Port C is assigned I/O terminals $PC_0 \sim PC_5$. When used as port control signals, the 3 low-order bits are assigned for port A while the 3 high-order bits are assigned for port B.

Table 4 Functions of port C

State Terminal	ALT 1	ALT 2 ·	ALT 3	ALT 4
PC ₅	Input	Output	Output	B STB (port B strobe)
PC ₄	Input	Output	Output	B BF (port B buffer full)
PC ₃	Input	Output	Output	B INTR (port B interrupt)
PC ₂	Input	Output	A STB (port A strobe)	A STB (port A strobe)
PC1	Input	Output	A BF (port A buffer full)	A BF (port A buffer full)
PC ₀	Input	Output	A INTR (port A interrupt)	A INTR (port A interrupt)

CMOS 2048-BIT STATIC RAM WITH I/O PORTS AND TIMER

Address			в	t N	umb	er			Function		
Address	7	6	5	4	3	2	1	0	Function		
XXXXX100	T 7	Т6	T 5	T₄	T₃	T2	Тı	τo	The low-order 8 bits of the counter register		
XXXXX101	M2	Мı	T13	T12	T 11	T10	T9	т,	M2,M1: Timer mode $T_{13} \sim T_8$ The high-order 6 bits of the counter register		

Table 7 Format of counter/timer

Table 8 Timer mode

M ₂	M 1	Timer operation	
0	0	Outputs high-level signal during the former half of the cc Outputs low-level signal during the latter half of the court	
0	1	Outputs square wave signals in mode 0	(mode 1)
1	0	Outputs a low-level pulse during the final c	ount down (mode 2)
1	1	Outputs a low-level pulse during each final	count down (mode 3)

- Mode 1: Outputs square wave signals as in mode 0
- Mode 2: Outputs a low-level pulse during the final count down
- Mode 3: Outputs a low-level pulse during each final count down

Starting and stopping the counter/timer is controlled by bits 6 and 7 of the command register (see Table 2 for details). The format and timer modes of the counter/timer register are shown in Table 7 and Table 8.

The contents of counter/timer is not affected by a reset, but counting is discontinued. To resume counting, a start command must be written into the command register as shown in Table 2. While operating 2n+1 count down in mode 0 and mode 1, a high-level signal is output during the former n+1 counting and a low-level signal is output during the later n counting.

RAM Hold Mode at Low Voltage (Power Down Mode)

Power down mode starts when the ALE input is fixed at low-level and other inputs at high or low-level after high-level of \overline{CE} input in M5M81C55P-2 is latched by the falling edge of the ALE input.

The contents of RAM are not affected, even if V_{CC} falls into 2 V in power down mode.

RESET

The M5M81C55P-2 is reset by 400ns(min) pulse input on RESET pin.

By reset, all 3 ports are set to input mode. And counter/timer stops but contents of counter/timer is not reset. Therefore it is necessary to input start command again.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Supply voltage		-0.3~7	V
Vi	Input voltage	With respect to Vss	$-0.3 \sim V_{cc} + 0.3$	V
Vo	Output voltage		$-0.3 \sim V_{cc} + 0.3$	V
t	MAX "H"	All output and I/O pins output	-500	
онмах	Output current	"H" level and force same current	-500	μA
	MAX "L"	All output and I/O pins output	2.5	mA
OLMAX	Output current	"L" level and force same current	2.5	mA
т _{орг}	Operating free-air temperature range		-20~75	°C
Tstg	Storage temperature range	-	-65~150	°C

RECOMMENDED OPERATING CONDITIONS (Ta=-20~75°C unless otherwise noted)

Symbol	Parameter		Limits		11.3
	i alameter	Min	Nom	Max	Unit
V _{cc}	Supply voltage	4.5	5	5.5	v
V _{ss}	Supply voltage (GND)	1	0		v

MITSUBISHI LSIs M5M81C55P-2/FP-2/J-2

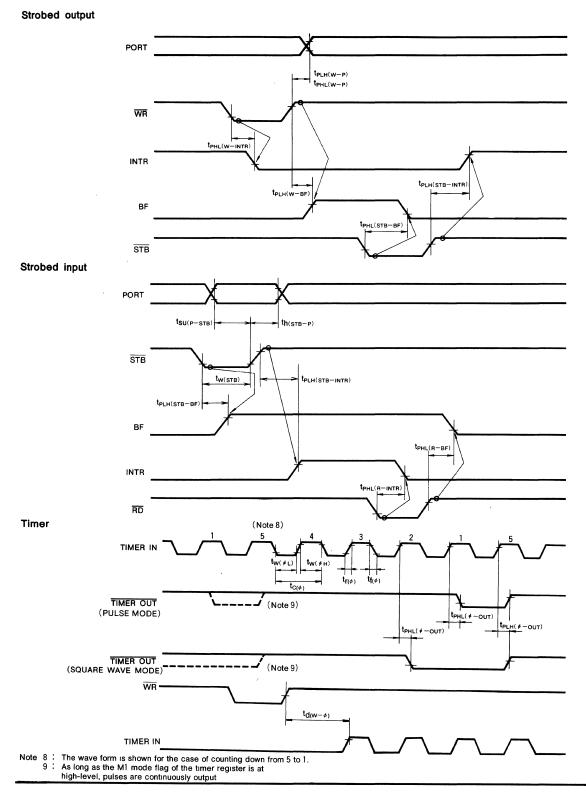
CMOS 2048-BIT STATIC RAM WITH I/O PORTS AND TIMER

SWITCHING CHARACTERISTICS ($T_a=-20\sim75$ °C, $V_{cc}=5V\pm10\%$, $V_{ss}=0V$ unless otherwise noted)

0 m h al	Deservation	Task and distant			Linit		
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit	
t _{PZV(R-DQ)}	Propagation time from read to data output				120	ns	
t _{PZV(A-DQ)}	Propagation time from address to data output				330	ns	
t _{PVZ(R-DQ)}	Propagation time from read to data floating (Note 6)		0		80	ns	
t _{PHL(W-P)}	Propagation time from write to data output				300	ns	
t _{PLH(W-P)}					300	115	
t _{PLH(STB-BF)}	Propagation time from strobe to BF flag				300	ns	
t _{PHL(R-BF)}	Propagation time from read to BF flag	$C_1 = 150 pF$			300	ns	
t _{PLH} (STB-INTR)	Propagation time from strobe to interrupt	CL - 150PP			300	ns	
t _{PHL(R-INTR)}	Propagation time from read to interrupt				300	ns	
t _{PHL(STB-BF)}	Propagation time from strobe to BF flag				300	ns	
t _{PLH(W-BF)}	Propagation time from write to BF flag				300	ns	
t _{PHL(W-INTR)}	Propagation time from write to interrupt]			300	ns	
t _{PHL} (# -OUT)	Propagation time from timer input to timer output				300	ns	
tPLH(#-OUT)	ropagation time nom timer input to timer output				300	ns	

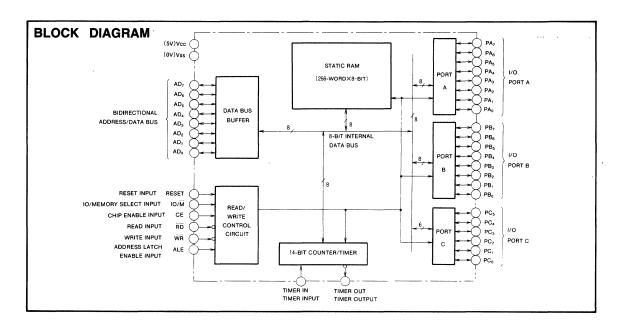
Note 6 : Test conditions are not applied. 7 : A.C Testing waveform Input pulse level Input pulse rise time Input pulse fall time Reference level input output

0.45~2.4V 10**ns** 10**ns** V_{IH}=2V, V_{IL}=0.8V V_{OH}=2V, V_{OL}=0.8V


2.4 **ζ**².8 0.87 0.45

.

MITSUBISHI LSIS M5M81C55P-2/FP-2/J-2


CMOS 2048-BIT STATIC RAM WITH I/O PORTS AND TIMER

MITSUBISHI LSIs M5M81C56P-2/FP-2/J-2

CMOS 2048-BIT STATIC RAM WITH I/O PORTS AND TIMER

CMOS 2048-BIT STATIC RAM WITH I/O PORTS AND TIMER

Status Register (7-bit)

The status register is a 7-bit latched register. The low-order 6 bits (bits $0\sim5$) are used as status flags for the I/O ports. Bit 6 is used as a status flag for the counter/timer. The con-

tents of the status register are transferred into the CPU by reading (INPUT instruction, I/O address XXXXX000). Details of the functions of the individual bits of the status register are shown in Table 3.

Table 3	Bit	functions	of	the	status	register
---------	-----	-----------	----	-----	--------	----------

Bit	Symbol	Function	
0	INTR A	PORT A INTERRUPT REQUEST	
1	A BF	PORT A BUFFER FULL FLAG	
2	INTE A	PORT A INTERRUPT ENABLE	
3	INTR B	PORT B INTERRUPT REQUEST	
4	B BF	PORT B BUFFER FULL FLAG	
5	INTE B	PORT B INTERRUPT ENABLE	
6	TIMER	COUNTER/TIMER INTERBUPT	et to 1 when the final punter/timer is is reset to 0 when the
7	—	This bit is not used	

I/O PORTS

Command/status registers (8-bit/7-bit)

These registers are assigned address XXXXX000. When an OUTPUT command is executed, the contents of the command register are rewritten. When an INPUT command is executed, the contents of the status register are read

Port A Register (8-bit)

Port A Register is assigned address XXXXX001. This register can be programmed as an input or output by setting the appropriate bits of the command register as shown in Table 2.

Port A can be operated in basic or strobe mode and is assigned I/O terminal $PA_0 \sim PA_7$.

Port B Register (8-bit)

Port B register is assigned address XXXXX010. As with Port A register, this register can be programmed as an input or output by setting the appropriate bits of the command register as shown in Table 2. Port B can be operated in basic or strobe mode and is assigned I/O terminals $PB_0 \sim PB_7$.

Port C Register (6-bit)

Port C register is assigned address XXXXX011. This port is used not only for input or output but also for controlling input/output operations of ports A and B by selectively setting bits 2 and 3 of the command register as shown in Table 2. Details of the functions of the various setting of bits 2 and 3 are shown in Table 4. Port C is assigned I/O terminals $PC_0 \sim PC_5$. When used as port control signals, the 3 low-order bits are assigned for port A while the 3 high-order bits are assigned for port B.

Table 4 Functions of port C

State Terminal	ALT 1	ALT 2	ALT 3	ALT 4
PC ₅	Input	Output	Output	B STB (port B strobe)
PC₄	Input	Output	Output	B BF (port B buffer full)
PC ₃	Input	Output	Output	B INTR (port B interrupt)
PC ₂	Input	Output	A STB (port A strobe)	A STB (port A strobe)
PC ₁	Input	Output	A BF (port A buffer full)	A BF (port A buffer full)
PC ₀	Input	Output	A INTR (port A interrupt)	A INTR (port A interrupt)

CMOS 2048-BIT STATIC RAM WITH I/O PORTS AND TIMER

	Bit Number							Function			
Address	7	6	5	4	3	2	1	0	Function		
XXXXX100	T7	т ₆	T 5	T₄	Тз	T2	T1	T ₀	The low-order 8 bits of the counter register		
XXXXX 101	M2	Μı	T ₁₃	T ₁₂	T 11	T ₁₀	T9	Т8	M2,M1 Timer mode		

Table 7 Format of counter/timer

Table 8 Timer mode

M ₂	M ₁	Timer operation	
0	0	Outputs high-level signal during the former half of the co Outputs low-level signal during the latter half of the court	ounter operation inter operation (mode 0)
0	1	Outputs square wave signals in mode 0	(mode 1)
1	0	Outputs a low-level pulse during the final c	ount down (mode 2)
1	1	Outputs a low-level pulse during each final	count down (mode 3)

- Mode 1: Outputs square wave signals as in mode 0
- Mode 2: Outputs a low-level pulse during the final count down
- Mode 3: Outputs a low-level pulse during each final count down

Starting and stopping the counter/timer is controlled by bits 6 and 7 of the command register (see Table 2 for details). The format and timer modes of the counter/timer register are shown in Table 7 and Table 8.

The contents of counter/timer is not affected by a reset, but counting is discontinued. To resume counting, a start command must be written into the command register as shown in Table 2. While operating 2n+1 count down in mode 0 and mode 1, a high-level signal is output during the former n+1 counting and a low-level signal is output during the later n counting.

RAM Hold Mode at Low Voltage (Power Down Mode)

Power down mode starts when the ALE input is fixed at low-level and other inputs at high or low-level after lowlevel of CE input in M5M81C56P-2 is latched by the falling edge of the ALE input.

The contents of RAM are not affected, even if V_{CC} falls into 2 V in power down mode.

RESET

The M5M81C56P-2 is reset by 400ns(min) pulse input on RESET pin.

By reset, all 3 ports are set to input mode. And counter/timer stops but contents of counter/timer is not reset. Therefore it is necessary to input start command again.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit	
Vcc	Supply voltage		-0.3~7	v	
Vi	Input voltage	With respect to V _{SS}	$-0.3 \sim V_{cc} + 0.3$	v	
Vo	Output voltage		$-0.3 \sim V_{cc} + 0.3$	v	
	MAX "H"	All output and I/O pins output	-500		
онмах	Output current	"H" level and force same current	-500	μΑ	
1	MAX "L"	All output and I/O pins output	2.5	mA	
OLMAX	Output current	"L" level and force same current.	2.5	IIIA	
Topr	Operating free-air temperature		-20~75	Ĵ	
Tsta	Storage temperature range		-65~150	Ĵ	

RECOMMENDED OPERATING CONDITIONS ($T_a = -20 \sim 75^{\circ} C$ unless otherwise noted)

Cumbel	Parameter		Limits		Unit
Symbol	Parameter	Min	Nom	Max	Offic
Vcc	Supply voltage	4.5	5	5.5	v
V _{ss}	Supply voltage (GND)		0		V

MITSUBISHI LSIs M5M81C56P-2/FP-2/J-2

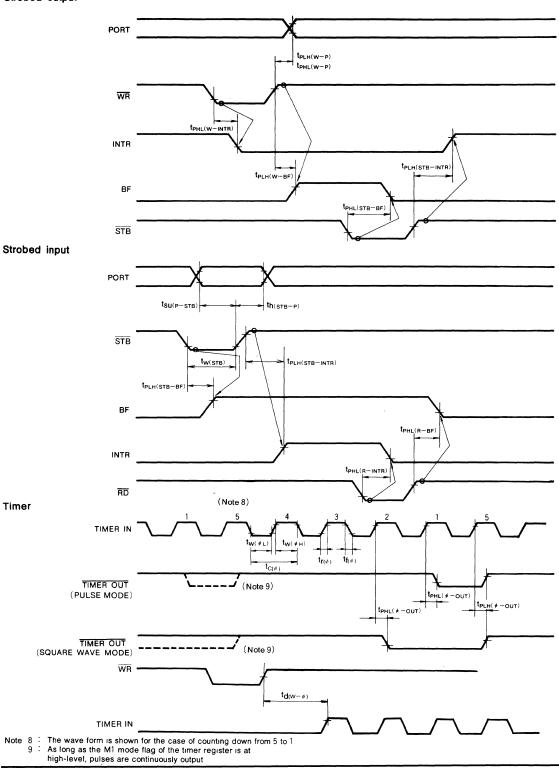
CMOS 2048-BIT STATIC RAM WITH I/O PORTS AND TIMER

SWITCHING CHARACTERISTICS (Ta= $-20 \sim 75$ °C, V_{cc}= 5 V±10%, V_{ss}=0V unless otherwise noted)

Sumbal	Parameter	Test conditions		Linit		
Symbol	Falanleter	lest conditions	Min	Тур	Max	Unit
t _{PZV(R-DQ)}	Propagation time from read to data output				120	ns
t _{PZV(A-DQ)}	Propagation time from address to data output				330	ns
t _{PVZ(R-DQ)}	Propagation time from read to data floating (Note 6)		0		80	ns
t _{PHL(W-P)}	Propagation time from write to date autput				300	
t _{PLH(W-P)}	Propagation time from write to data output				300	ns
t _{PLH(STB-BF)}	Propagation time from strobe to BF flag				300	ns
t _{PHL(R-BF)}	Propagation time from read to BF flag	$C_{1} = 150 pF$			300	ns
tplh(STB-INTR)	Propagation time from strobe to interrupt				300	ns
t _{PHL(R-INTR)}	Propagation time from read to interrupt				300	ns
t _{PHL(STB-BF)}	Propagation time from strobe to BF flag				300	ns
t _{PLH(W-BF)}	Propagation time from write to BF flag				300	ns
t _{PHL(W-INTR)}	Propagation time from write to interrupt				300	ns
t _{PHL} (∮-OUT) t _{PLH} (∮-OUT)	Propagation time from timer input to timer output				300	ns

Note 6 : Test conditions are not applied 7 : A C Testing waveform Input pulse level

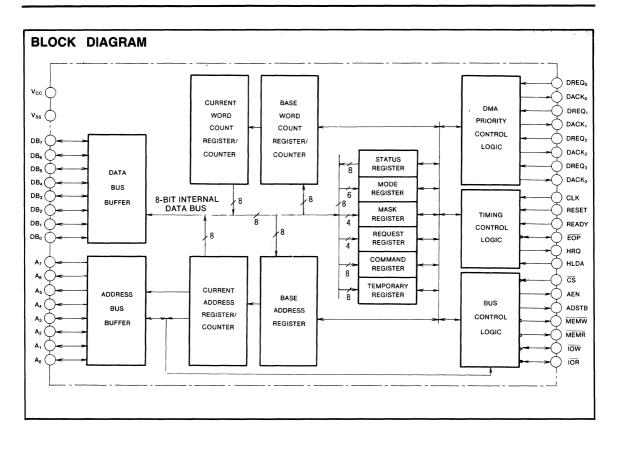
, '


Input pulse rise time Input pulse fall time Reference level input output 0.45~2.4V 10ns 10ns $V_{IH}=2V, V_{IL}=0.8V$ $V_{OH}=2V, V_{OL}=0.8V$

2.4 0.87 <u>Å.8</u> 0.45

MITSUBISHI LSIS M5M81C56P-2/FP-2/J-2

CMOS 2048-BIT STATIC RAM WITH I/O PORTS AND TIMER



MITSUBISHI LSIS M5M82C37AP-5/FP-5/J-5

CMOS PROGRAMMABLE DMA CONTROLLER

CMOS PROGRAMMABLE DMA CONTROLLER

ADSTB output (address strobe output)

This pin outputs a high-level pulse when the higher 8 bits of the transfer address is output through data bus at the DMA operation. This pulse is used as the strobe pulse for the external address latch circuit.

In non-DMA mode or in cascade mode DMA this output remains low-level.

AEN output (address enable output)

AEN is an output which denotes that the bus control signal address output etc. from the M5M82C37AP-5 are valid. When AEN output is high-level, they are valid output, so AEN is used as a control input for an external three-state bus buffer.

HRQ output (hold request output)

This output denotes that the M5M82C37AP-5 requests the use of the bus to the CPU. The M5M82C37AP-5 sets HRQ high in response to the DMA request.

CS input (chip select input)

This input is a chip select signal which is set to low-level when the CPU reads or writes data to the M5M82C37AP-5. When HLDA is high-level, this input is masked and the M5M82C37AP-5 is not selected.

CLK input (clock input)

The master clock for the M5M82C37AP-5 is input.

RESET input (reset input)

When a high-level pulse is input from RESET, the M5M82C37AP-5 is set to the initial state.

DACK0, DACK1, DACK2, DACK3 output (DMA acknowledge output)

DMA acknowledge is the signals which shows a peripheral device whether DMA operaiton for its channel is under execution.

By resetting, they become active low outputs, but they can be mode into active high outputs by altering the contents of the command register.

DREQ0, DREQ1, DREQ2, DREQ3 input (DMA request input)

DREQ is an input which shows that a peripheral device requests DMA service. By resetting, they become active high inputs but they can be made into active low inputs by altering the contents of the command register. DREQ should keep in active until the DACK output returns.

Vss

V_{SS} is connected to system ground.

$DB_7 \sim DB_0$ inputs/outputs (data bus inputs/outputs)

In non-DMA mode, the contents of the registers of the M5M82C37AP-5 are read out or written through DB₇ \sim DB₀. In DMA mode, the higher 8 bits of the transfer address are output through DB₇ \sim DB₀ in the S₁ state. In the memory to memory DMA mode, data to be transferred between memories via the temporary register are read and written by the M5M82C37AP-5 through DB₇ \sim DB₀.

V_{cc}

The 5V power supply is connected through V_{cc}.

$A_7 \sim A_4$ output, $A_3 \sim A_0$ input/output (address output, address input/output)

In the DMA mode, the lower 8 bits of the transfer address are output through $A_7 \sim A_0$.

In cascade mode DMA, they become high-impedance. In the non-DMA mode, $A_3 \sim A_0$ become register select address inputs, while $A_7 \sim A_4$ become high-impedance.

EOP input/output (end of process input/output)

 \overline{EOP} is an N-channel open drain input/output. When the word count register reaches count-up, a low-level pulse is output from \overline{EOP} . (This is called internal \overline{EOP} .) \overline{EOP} may be pulled down to low-level. If \overline{EOP} is pulled down during DMA operation, the DMA operation is forcibly terminated. (This is called external \overline{EOP} .)

Note : In cascade mode DMA, the EOP pulse is not output, and external EOP cannot terminate cascade mode DMA operation

CMOS PROGRAMMABLE DMA CONTROLLER

Notes for memory-to-memory transfer

Observe the following points when programming memoryto-memory DMA.

- The contents of the word count register of channel 0 and 1 must be programmed identically.
- The transfer mode of channel 0 and 1 must be set to the block transfer mode.
- All the mask bits must be set to inhibit external DMA request input. (Memory-to-memory DMA is started by software DMA request to channel 0.)
- In memory-to-memory DMA operation, all the DACK outputs are inactive. (but AEN is set during transfer.)

PRIORITY

Two kinds of DMA priority can be programmed for the M5M82C37AP-5. (Command register bit 4) If plural channels request DMA at the same time, DMA is acknowledged for the channel which has the highest priority. (Table 1)

(1) Fixed Priority (bit 4=0)

The DMA channel which has the highest priority is channel 0. Channel 1 has the second, channel 2 has the third and channel 3 has the lowest priority.

(2) Rotating Priority (bit 4=1)

This priority mode is that the channel which has serviced the DMA request, has the lowest priority at the next DMA operation. (Just after reset the lowest priority channel is channel 3)

For example, just after channel 1 DMA is executed, channel 2 has the highest priority, channel 3 has the second highest, channel 0 has the third and channel 1 has the lowest priority.

Table 1 DMA priority for the M5M82C37AP-5

Drugarda dura a	DMA channel serviced	DMA priority for next transfer					
Priority type	DMA channel serviced	Highest	2nd	3rd	Lowest		
Fixed priority		ch0	ch1	ch2	ch3		
	ch0	ch1	ch2	ch3	ch0		
Deteting priority	ch1	ch2	ch3	ch0	ch1		
Rotating priority	ch2	ch3	ch0	ch1	ch2		
	ch3	ch0	ch1	ch2	ch3		

MITSUBISHI LSIS M5M82C37AP-5/FP-5/J-5

CMOS PROGRAMMABLE DMA CONTROLLER

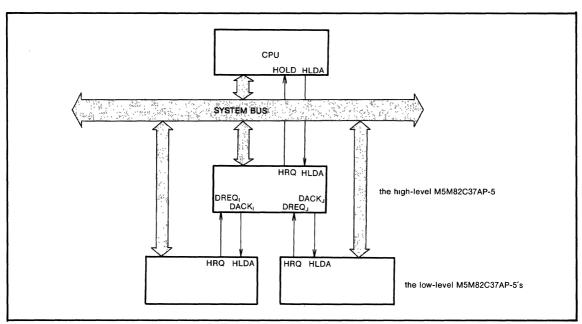


Fig.1 Example of a DMA system using a cascade connection

- (5) Auto initialization feature (mode register bit 4=1) When bit 4 of the mode register is set to 1, the programmed channel enters the auto initialization mode. Auto initialization is performed when TC occurs and the contents of the base address/word count registers are loaded in the current address/word count registers. (The contents of the base address/word count registers are programmed to the same value as the current registers, at the same time.)
- Note : If a channel is programmed for auto initialization the mask register bit for that channel is not set after TC. If it is not programmed for auto initialization, the mask register bit is set after TC, so the mask register bit must be reset to set this channel to DMA-enable
- (6) Extended write feafure (command register bit 5=1) In normal DMA operation, the write pulse $\overline{\text{MEMW}}$ (or $\overline{\text{IOW}}$) falls down to low-level in the S₃ state. But, if extended write is programmed, the write pulse falls at the S₂ state and the width can be extended for one clock period.
- (7) Compressed timing DMA feafure (command regsiter bit 3=1)

In normal DMA, the transfer for one word consists of three or four states.

If the compressed timing DMA is programmed, the S_3 state is not executed and the one word transfer consists of two or three states. In this mode, the write output ($\overline{IOW}, \overline{MEMW}$) falls to Iow-level in the S_2 state as well as the read output ($\overline{IOR}, \overline{MEMR}$). In memory-tomemory DMA operation, the compressed timing assignment is ignored.

REGISTERS

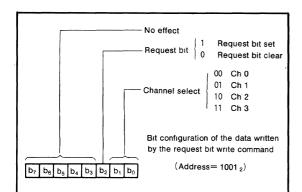
The following is a description of the registers of M5M82C37AP-5.

(1) Address registers

The M5M82C37AP-5 has two 16-bit address registers for each DMA channel.

One is called the current address register. It holds the contents of the memory address at which DMA operation is performed and the contents are incremented (or decremented) at every word transfer. This register is read/write enabled when in the inactive state. The other is the base address register. This register is a write-only register and is written at the same time the current address register is programmed. The contents of the base address register are loaded into the current address register when the channel has reached TC if the channel is programmed in the auto initialize mode.

The registers of the M5M82C37AP-5 are read or written through an 8-bit data bus so the address register must be accessed twice, first the lower 8 bits, second the higher 8 bits. The M5M82C37AP-5 has a first/last flip-flop which is toggled when the 16-bit regsiter is accessed. It selects the lower or higher byte.


(2) Word count registers

The M5M82C37AP-5 has two 16-bit word count registers for each DMA channel.

One is called the current word count register. It holds the number of DMA transfer words, and the contents are decremented at the end of every word transfer. TC

CMOS PROGRAMMABLE DMA CONTROLLER

Fig.6 Request register

Note : All the request bits are reset after the DMA operation of one channel So, when the DMA is started by software request, other external DMA requests must be masked by setting all the mask register bits (Software requests are not masked by the mask register) All the request bits are set to 0 after reset.

(7) Status register

This register is an 8-bit read only register. The 4 MSBs show the status of the four DREQs. 1 means that the DREQ input is active.

The other 4 bits are the TC bits which are set to 1 when TC occurs. The lower 4 bits are reset after the status registers are read or after reset.

The relation between these bits and the channels is shown in fig. 7.

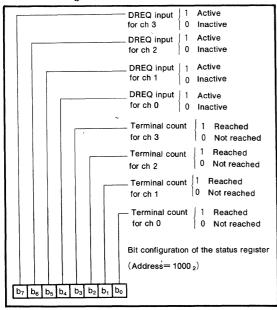


Fig.7 Status register

(8) Temporary Register

This register is an 8-bit read only register.

It is used to store temporary data read during the first part of the memory-to-memory DMA operation.

When the CPU reads this register, the register contents are the data which were transfered in memory-tomemory transfer DMA immediately prior to the CPU read.

PROGRAMMING

The registers in the M5M82C37AP-5 can be read or written when $\overline{\text{CS}}$ and HLDA inputs are low-level.

The address assignment is shown in Tables 2 and 3 Some of the write operations in these figures do not, in fact, write in any registers. They are called software commands. The following is a description of the software commands.

Clear first/last F/F

In reading or writing a 16-bit register, the higher and lower 8 bits are accessed separately. Selection is done by a first/ last flip-flop which toggles when ever one of the 16-bit registers is accessed. This command clears the first/last flipflop, so after this command is executed, the next access of the 16-bit register is begins at the lower 8 bits.

Master clear

This command executes a software reset.

- Note : The following are the effects of the software reset for the M5M82C37AP-5
 - Mask bits are set for all the DMA channels
 - \bullet The command register is cleared to $00_{16}\,$ (Note that bit 2 is 0)
 - The temporary register is cleared.
 - The 4 TC bits of the status register are cleared
 - The first/last flip-flop is reset.
 - Software DMA request bits are cleared.

(When the hardware reset is performed, together with the above effects, DMA operation is terminated and the M5M82C37AP-5 returns to the S_1 state.)

Clear mask register

This command clears all the mask bits and enable DMA for all the channels.

CMOS PROGRAMMABLE DMA CONTROLLER

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Supply voltage		-0.3~7	V
Vi	Input voltage	With respect to V _{SS}	$-0.3 \sim V_{cc} + 0.3$	V
Vo	Output voltage		$-0.3 \sim V_{cc} + 0.3$	V
	MAX "H"	All output and I/O pins output	500	
онмах	Output current	"H" level and force same current.	-500	μA
1	MAX "L"	All output and I/O pins output	0.5	
IOLMAX	Output current	"L" level and force same current	2.5	mA
Topr	Operating free-air temperature range		-20~75	°C
Tstg	Storage temperature		-65~150	Ĉ

RECOMMENDED OPERATING CONDITIONS $(T_a = -20 \sim 75^{\circ}C \text{ unless otherwise noted})$

Symbol	Parameter		Linut		
	Farameter		Nom	Max	Unit
v_{cc}	Supply voltage	4.5	5	5.5	v
V _{SS}	Supply voltage(GND)		0		v

ELECTRICAL CHARCTERISTICS ($T_a = -20 \sim 75^{\circ}C$, $V_{cc} = 5V \pm 10\%$, $V_{ss} = 0V$ unless otherwise noted)

Ourse had	Parameter	Test see diling		11-4		
Symbol		Test conditions	Min	Тур	Max	Unit
ViH	High-level input voltage		2.0		V _{cc} +0.3	v
VIL	Low-level input voltage		-0.3		0.8	v
		I _{OH} =-200µА	2.4			
V _{он}	High-level output voltage	I _{0H} =-20µА	4.4			v
		$I_{OH} = -100 \mu A(HRQ \text{ only})$	3.3			
		I _{OL} =2.0mA(data bus)			0.45	
Vol	Low-level output voltage	I _{OL} =3. 2mA(other outputs)			0.45	v
l,	Input current	$V_1 = 0V, V_{CC}$	-10		+10	μA
loz	Off-state output current	V _o =0V~V _{cc}	-10		+10	μA
lcc	Supply current from V _{CC} (operating)	$V_{I}=0V, V_{CC}, f_{CLK}=1/t_{C}(\phi)min.$			15	mA
lccs	Supply current from V _{CC} (stand by)	$V_1 = 0V, V_{CC}$			10	μA
Ci	Input terminal capacitance	$V_{IL}=V_{SS}$, f=1MHz, 25mVrms, Ta=25°C			10	pF
Ci/o	Input/output terminal capacitance	$V_{I/OL} = V_{SS}$, f=1MHz, 25mVrms, Ta=25°C			20	pF

CMOS PROGRAMMABLE DMA CONTROLLER

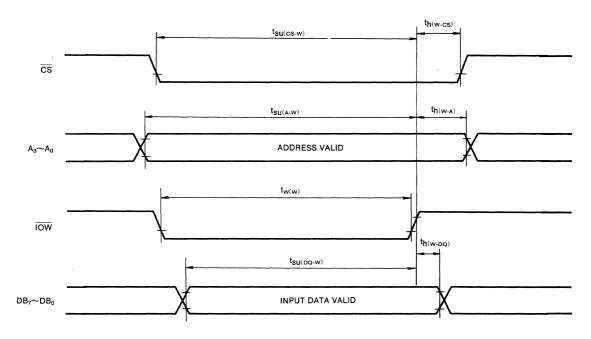
SWITCHING CHARACTERISTIC (Ta= $-20 \sim 75$ °C, V_{cc}= $5V\pm10\%$, V_{ss}=0V unless otherwise noted) 1. SLAVE MODE

Symbol	Parameter	Test conditions	Limits			11-14
			Min	Тур	Max	Unit
tpzv(R-DQ)	Data enable time after read				140	ns
tevz(R-DQ)	Data disable time after read	C _L =150pF	0		70	ns
tpzv(A-DQ)	Address access time]			250	ns

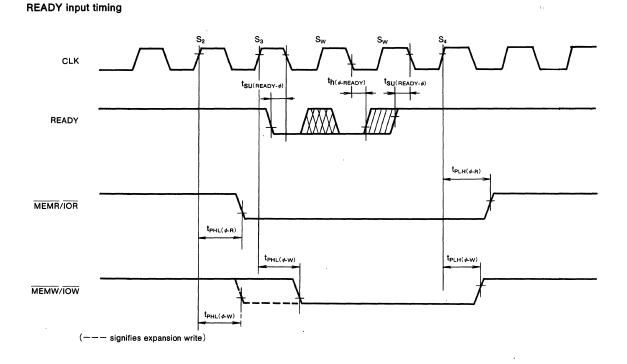
2. DMA MODE

Ormhal	Parameter	Test see distant	L	Limits		
Symbol	Parameter	Test conditions	Min	Тур Мах	Unit	
tPLH(# -AEN)	Propagation time from clock to AEN			200	ns	
t _{PHL(∲-AEN)}	Propagation time from clock to AEN			130	ns	
t _{PZV(∮-A)}	Propagation time from clock to address active			170	ns	
t _{PHL} (∮-A)	Propagation time from clock to address stable			170	ns	
tpvz(+-A)	Propagation time from clock to address floating			90	ns	
tpzv(+-DQ)	Propagation time from clock to data bus			200	ns	
tpvz(+-DQ)	Propagation time from clock to data bus			170	ns	
t _{PLH} (∮-ADSTB)	Propagation time from clock to ADSTB			130	ns	
t _{PHL} (≠ -ADSTB)	Propagation time from clock to ADSTB			90	ns	
tsu(DQ-ADSTB)	Data output setup time before ADSTB		100		ns	
th(ADSTB-DQ)	Data output hold time before ADSTB		30		ns	
t _{PZV} (∮-R) t _{PZV} (∮-W)	Propagation time from clock to read or write active	C _L =150pF		150	ns	
t _{PHL(¢ -R)} t _{PHL(¢ -W)}	Propagation time from clock to read or write			190	ns	
tPLH(#-R)	Propagation time from clock to read			190	ns	
tPLH(#-W)	Propagation time from clock to write			130	ns	
t _{PVZ} (# -R) t _{PVZ} (# -W)	Propagation time from clock to read or write floating			120	ns	
th(R-A)	Address output hold time after read		$t_{C(\phi)} - 100$		ns	
th(w-A)	Address output hold time after write		t _{c(#)} -50		ns	
tsu(DQ-MEMW)	Data output setup time before MEMW		125		ns	
th(MEMW-DQ)	Data output hold time after MEMW		10		ns	
tphl(#-DACK) tplh(#-DACK)	Propagation time from clock to DACK			170	ns	
tPHL(#-EOP)	Propagation time from clock to EOP			170	ns	
tPLH(#-EOP)	Propagation time from clook to EOP			170	ns	
t _{PLH} (∮-HRQ) t _{PHL} (∮-HRQ)	Propagation time from clock to HRQ			,120	ns	

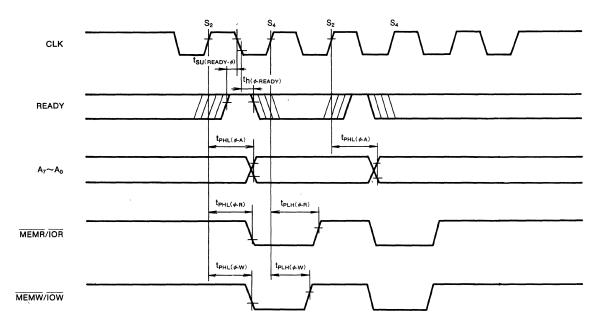
Note : A.C Testing waveform Input pulse level Input pulse rise time Input pulse fall time Reference level input output


0. 45~2. 4V 10ns 10ns V_{IH}=2V, V_{IL}=0. 8V V_{OH}=2V, V_{OL}=0. 8V

2.4 -0.8 $\mathbf{X}_{0.8}^2$ 0.45


CMOS PROGRAMMABLE DMA CONTROLLER

Slave mode timing (WRITE)



CMOS PROGRAMMABLE DMA CONTROLLER

Compressed timing

CMOS PROGRAMMABLE COMMUNICATION INTERFACE

DESCRIPTION

The M5M82C51AP is a universal synchronous/asynchronous receiver/transmitter (USART) IC chip designed for data communications use. It is produced using the silicon-gate CMOS process and is mainly used in combination with 8-bit microprocessors. It is housed in a 28-pin plastic molded DIP.

And preparatory for surface equipment M5M82C51AFP (SOP) and M5M82C51AJ(PLCC).

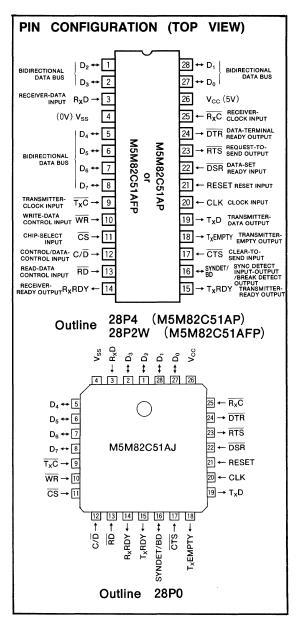
FEATURES

- Single 5V supply voltage
- TTL compatible
- Synchronous and asynchronous operation
 - Synchronous:
 - 5~8-bit characters

Internal or external synchronization Automatic SYNC character insertion

- Asynchronous system:
 - 5~8-bit characters
 - Clock rate-1, 16 or 64 times the baud rate
 - 1, $1\frac{1}{2}$, or 2 stop bits
 - False-start-bit detection
 - Automatic break-state detection
- Baud rate: DC~64K-baud
- Full duplex, double-buffered transmitter/receiver
- Error detection: parity, overrun, and framing

APPLICATION


Modem control of data communications using microcomputers

Control of CRT, TTY and other terminal equipment

FUNCTION

The M5M82C51AP is used in the peripheral circuits of a CPU. It permits assignments, by means of software, of operations in all the currently used serial-data transfer systems.

The M5M82C51AP receives parallel-format data from the CPU, converts it into a serial format, and then transmits via the T_xD pin. It also receives data sent in via the R_xD pin from the external circuit, and converts it into a parallel format for sending to the CPU. On receipt of parallel-format data for transmission from the CPU or serial data for the CPU from external devices, the M5M82C51AP informs the CPU using the T_xRDY or R_xRDY pin. In addition, the CPU can read the M5M82C51AP status at any time. The M5M82C51AP can detect the data received for errors and inform the CPU of the presence of errors as status information. Errors include parity, overrun and frame errors.

CMOS PROGRAMMABLE COMMUNICATION INTERFACE

OPERATION

The M5M82C51AP interfaces with the system bus as shown in Fig.1, positioned between the CPU and the modem or terminal equipment, and offers all the functions required for data communication.

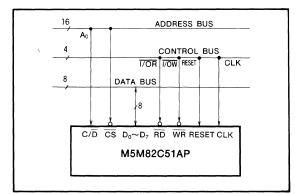


Fig. 1 M5M82C51AP interface to CPU system bus

When using the M5M82C51AP, it is necessary to program, as the initial setting, assignments for synchronous/asynchronous mode selection, baud rate, character length, parity check, and even/odd parity selection in accordance with the communication system used. Once programming is completed, functions appropriate to the communication system can be carried out continuously.

When initial setting of the USART is completed, data communication becomes possible. Though the receiver is always in the enable state, the transmitter is placed in the transmitter-enable state (T_xEN) by a command instruction, and the application of a low-level signal to the \overline{CTS} pin prompts data-transfer start-up. Until this condition is satisfied, transmission is not executed. On receiving data, the receiver informs the CPU that reading for the receiver data in the USART by the CPU has become possible (the R_xRDY terminal has turned to high-level). Since data reception and the entry of the CPU into the data-readable state are output as status information, the CPU can access USART status without accessing the R_xRDY terminal.

During receiving operation, the USART checks errors and gives out status information. There are three types of errors: parity, overrun, and frame. Even though an error occurs, the USART continues its operations, and the error state is retained until error reset (ER) is effected by a command instruction. The M5M82C51AP access methods are listed in Table 1.

Table 1 M5M82C51AP Access Methods

C/D	RD	WR	CS	Function
L	L	н	L	Data bus ← Data in USART
L	н	L	L	USART ← Data bus
н	L	н	L	Data bus ← Status
н	н	L	L	Control ← Data bus
х	н	н	L	3-State ← Data bus
х	x	X	н	3-State ← Data bus

Read/Write Control Logic

This logic consists of a control word register and command word register. It receives signals from the CPU control bus and generates internal-control signals for the elements.

Modem Control Circuit

This is a general-purpose control-signal circuit designed to simplify the interface to the modem. Four types of control signal are available: output signals $\overline{\text{DTR}}$ and $\overline{\text{RTS}}$ are controlled by command instructions, input signal $\overline{\text{DSR}}$ is given to the CPU as status information and input signal $\overline{\text{CTS}}$ controls direct transmission.

Data-Bus Buffer

This is an 8-bit 3-state bidirectional bus through which control words, command words, status information, and transfer data are transferred. Fig. 2 shows the structure of the databus buffer.

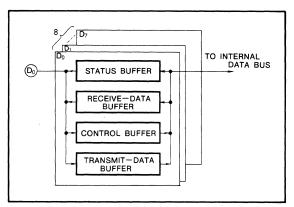


Fig. 2 Data-bus buffer structure

Transmit Buffer

This buffer converts parallel-format data given to the databus buffer in to serial data with addition of a start bit, stop bits and a parity bit, and sends out the converted data through the T_xD pin based on the control signal.

Transmit-Control Circuit

This circuit carries out all the controls required for serial data transmission. It controls transmitter data and outputs the signals required by external devices in accordance with the instructions of the read/write control logic.

CMOS PROGRAMMABLE COMMUNICATION INTERFACE

Clear-To-Send Input (CTS)

When the $T_{X}EN$ bit (D_{0}) of the command instruction has been set to 1 and the \overline{CTS} input is low-level serial data is sent out from the $T_{X}D$ pin. Usually this is used as a clear-to-send signal for the modem

Note: CTS indicates the modem status as follows:

ON means data transmission is possible;

OFF means data transmission is impossible.

Transmitter-Empty Output (T_xEMPTY)

When no transmisison characters are left in the transmit buffer, this pin enters the high-level state. In the asynchronous mode, the following transmission character is shifted to the transmit buffer when it is loaded from the CPU. Thus, it is automatically reset. In the synchronous mode, a SYNC character is loaded automatically on the transmit buffer when no transfer-data characters are left. In this case, however, the T_xEMPTY does not enter the low-level state when a SYNC character has been sent out, since T_xEMPTY = "H" denotes the state in which there is no transfer character and one or two SYNC characters are being transferred or the state in which a SYNC character is being transferred as a filler. T_xEMPTY is unrelated to the T_xEN bit of the command instruction.

Transmission-Data Output (T_xD)

Parallel-format transmission characters loaded on the M5M82C51AP by the CPU are assembled into the format designated by the mode instruction and sent in serial-data form via the T_xD pin. Data is output, however, only in cases where the D_0 bit (T_xEN) of the command instruction is 1 and the \overline{CTS} terminal is in the low-level state. Once reset, this pin is kept at the mark status (high-level) until the first character is sent.

Clock Input (CLK)

This system-clock input is required for internal-timing generation and is usually connected to the clock-output (CLK) pin of the M5L8085AP. Although there is no direct relation with the data-transfer baud rate, the clock-input (CLK) frequency is more than 30 times the $\overline{T_xC}$ or $\overline{R_xC}$ input frequency in the case of the synchronous system and more than 4.5 times in the case of the asynchronous system.

Reset Input (RESET)

Once the USART is shifted to the idle mode by a high-level input, this state continues until a new control word is set Since this is a master reset, it is always necessary to load a control word following the reset process. The reset input requires a minimum 6-clock pulse width.

Data-Set Ready Input (DSR)

This is a general-purpose input signal, but is usually used as a data-set ready signal to test modem status. Its status can be known from the status reading process. The D_7 bit of the status information equals 1 when the $\overline{\text{DSR}}$ pin is in the low-level state, and 0 when in the high-level state.

 $\overline{\text{DSR}}$ ="L" \rightarrow D₇ bit of status information=1

 $\overline{\text{DSR}}$ ="H" \rightarrow D₇ bit of status information=0

Note. DSR indicates modem status as follows:

ON means the modem can transmit and receive; OFF means it cannot.

Request-To-Send Output (RTS)

This is a general-purpose output signal but is used as a request-to-send signal for the modem. The $\overline{\text{RTS}}$ terminal is controlled by the D₅ bit of the command instruction. When D₅ is equal to 1, $\overline{\text{RTS}}$ ="L", and when D₅ is 0, $\overline{\text{RTS}}$ ="H".

Command register $D_5=1 \rightarrow \overline{RTS}="L"$

Command register $D_5=0 \rightarrow \overline{RTS}="H"$

Note: RTS controls the modem transmission carrier as follows:

ON means carrier dispatch;

OFF means carrier stop.

Data-Terminal Ready Output (DTR)

This is a general-purpose output signal, but is usually used as a data-terminal ready or rate-select signal to the modem. The $\overline{\text{DTR}}$ pin is controlled by the D₁ bit of the command instruction; if D₁=1, $\overline{\text{DTR}}$ ="L", and if D₁=0, $\overline{\text{DTR}}$ = "H".

 D_1 of the command register=1 \rightarrow \overline{DTR} ="L"

 D_1 of the command register=0 \rightarrow \overline{DTR} ="H"

Receiver-Clock Input (R_xC)

This clock signal controls the baud rate for the sending in of characters via the $\overline{R_x D}$ pin. The data is shifted in by the rising edge of the $\overline{R_x C}$ signal. In the synchronous mode, the $\overline{R_x C}$ frequency is equal to the actual baud rate. In the asynchronous mode, the frequency is specified as 1, 16, or 64 times the baud rate by mode setting. This relationship is parallel to that of $\overline{T_x C}$, and in usual communication-line systems the transmission and reception baud rates are equal. The $\overline{T_x C}$ and $\overline{R_x C}$ terminals are, therefore, used connected to the same baud-rate generator.

PROGRAMMING

It is necessary for the M5M82C51AP to have the control word loaded by the CPU prior to data transfer. This must always be done following any resetting operation (by external RESET pin or command instruction IR). There are two types of control words: mode instructions specifying general operations required for communications and command instructions to control the M5M82C51AP actual operations.

Following the resetting operation, a mode instruction must be set first. This instruction sets the synchronous or asynchronous system to be used. In the sysnchronous system, a SYNC character is loaded from the CPU. In the case of the bi-sync system, however, a second SYNC character must be loaded in succession.

Loading a command instruction makes data transfer possible. This operation after resetting must be carried out for initializing the M5M82C51AP. The USART command instruction contains an internal-reset IR instruction (D_6bit) that makes it possible to return the M5M82C51AP to its reset state. The initialization flowchart is shown in Fig. 3 and the mode-instruction and command-instruction formats are shown in Figs. 4 and 5.

CMOS PROGRAMMABLE COMMUNICATION INTERFACE

Asynchronous Transmission Mode

When data characters are loaded on the M5M82C51AP after initial setting, the USART automatically adds a start bit (0), an odd or even parity bit specified by the mode instruction during initialization, and a specified number of stop bits (1). After that, the assembled data characters are transferred as serial data via the T_xD pin, if transfer is enabled (T_xEN=1. $\overline{\text{CTS}}$ ="L"). In this case, the transfer data (baud rate) is shifted by the mode instruction at a rate of 1X, 1/16X, or 1/64X the $\overline{\text{T}_x\text{C}}$ period.

If the data characters are not loaded on the M5M82C51AP, the T_xD pin enters a mark state ("H"). When SBRK is programmed by the command instruction, break characters (0) are output continuously through the T_xD pin

Asynchronous Reception Mode

The R_xD line usually starts operations in a mark state ("H"), triggered by the falling edge of a low-level pulse when it comes to this line. This signal is again strobe at the middle of the bit to confirm that it is a perfect start bit. The detection of a second low-level indicates the validity of the start bit (again strobe is carried out only in the case of 16X and 64X). After that, the bit counter inside the M5M82C51AP starts operating; each bit of the serial information on the R_xD line is shifted in by the rising edge of $\overline{R_xC}$, and the data bit, parity bit (when necessary), and stop bit are sampled at the middle position.

The occurrence of a parity error causes the setting of a parity-error flag. If the stop bit is 0, a frame error flag is set. Attention should be paid to the fact that the receiver requires only one stop bit even though the program has designated 1.5 or 2 stop bits.

Reception up to the stop bit means reception of a complete character. This character is then transferred to the receiverer-data buffer shown in Fig.2, and the R_XRDY becomes active. In cases where this character is not read by the CPU and where the next character is transferred to the receiverdata buffer, the preceding character is destroyed and an overrun-error flag is set.

These error flags can be read as the M5M82C51AP status information. The occurrence of an error does not stop USART operations. The error flags are cleared by the ER (D_4 bit) of the command instruction.

The asynchronous-system transfer formats are shown in Figs. 6 and 7.

Synchronous Transmission Mode

In this mode the T_xD pin remains in the high-level state until initial setting by the CPU is completed. After initialization, the state of \overline{CTS} ="L" and T_xEN =1 enables serial transmission of characters through the T_xD pin. Then, data characters are sent out and shifted by the falling edge of the $\overline{T_xC}$ signal. The transmission rate equals the $\overline{T_xC}$ rate.

Thus, once data-character transfer starts, it must continue through the T_xD pin at the same rate as that of $\overline{T_xC}$. Unless data characters are provided from the CPU before the transmitter buffer becomes empty, one or two SYNC characters are automatically output from the T_xD pin. In this case, it should be noted that the T_xEMPTY pin enters the high-level state when there are no data characters left in the M5M82C51AP to be transferred, and that the low-level state is not entered until the USART is provided with the next data character from the CPU. Care should also be taken over the fact that merely setting a command instruction does not effect SYNC character insertion, because the SYNC character insertion is enabled after sending out the first data character.

In this mode, too, break characters are sent out in succession from the T_xD pin when SBRK is designated ($D_3=1$) by a command instruction.

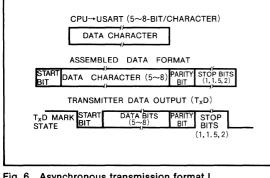


Fig. 6 Asynchronous transmission format I (transmission)

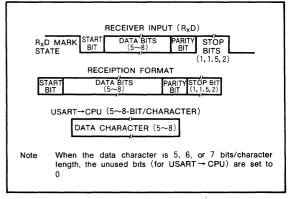


Fig. 7 Asynchronous transmission format II (reception)

CMOS PROGRAMMABLE COMMUNICATION INTERFACE

Status Information

The CPU can always read USART status by setting the C/ \overleftarrow{D} to high-level and \overrightarrow{RD} to low-level.

The status information format is shown in Fig. 10. In this format R_xRDY , T_xEMPTY and SYNDET have the same definitions as those of the pins. This means that these three pieces of status information become high-level when each pin is 1. The other status information is defined as follows: DSR: When the \overline{DSR} pin is in the low-level state status

When the DSR pin is in the low-level state, status information DSR becomes 1.

- FE: The occurrence of a frame error in the receiver section makes the status information FE=1.
- OE: The occurrence of an overrun error in the receiver section makes the status information OE=1.
- PE: The occurrence of a parity error in the receiver section makes this status information PE=1.
- T_xRDY: This information becomes 1 when the transmit data buffer is empty. Be careful because this has a different meaning from the T_xRDY pin that enters the high-level state only when the transmitter buffer is empty, when the $\overline{\text{CTS}}$ pin is in the low-level state, and when T_xEN is 1.

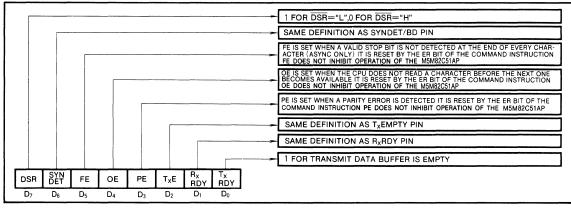


Fig. 10 Status information $C/\overline{D} = "H"$, $\overline{RD} = "L"$)

APPLICATION EXAMPLES

Fig. 11 shows an application example for the M5M82C51AP in the asynchronous mode. When the port addresses of the M5M82C51AP are assumed to be $00 \ \#$ and $01 \ \#$ in this figure, initial setting in the asynchronous mode is carried out in the following manner:

in the following	manner.	
MVI	A, B6 #	Mode setting
OUT	01 #	
MVI	A, 27 #	Command instruction
OUT	01 #	
In this case, the	following are	e set by mode setting:

Asynchronous mode 6-bit/character Parity enable (even) 1.5 stop bits Baud rate: 16X Command instructions set the following RTS= $1 \rightarrow \overline{RTS}$ pin="L" R_xE=1 DTR= $1 \rightarrow \overline{DTR}$ pin="L" T_xEN=1

When the initial setting is complete, transfer operations are allowed. The $\overline{\text{RTS}}$ pin is initially set to the low-level by setting RTS to 1, and this serves as a $\overline{\text{CTS}}$ input with T_xEN

being equal to 1. For this reason the same definition applies to the status and pin of T_xRDY , and 1 is assigned when the transmit-data buffer is empty. Actual transfer of data is carried out in the following way:

IN 01 # Status read

The IN instruction prompts the CPU to read the USART's status. The result is; if the T_xRDY equals 1 transmitter data is sent from the CPU and written on the M5M82C51AP. Transmitter data is written in the M5M82C51AP in the following manner:

MVI	A, 2D#	2D ₁₆ is an example of trans-
		mitter data.
OUT	00 #	USART←(A)
Receiver	data is read	in the following manner:
IN	00 #	(A)←USART
41		

In the above example, the status information is read and as a result, the transmitter data is written and read. Interruption processing by using the T_xRDY and R_xRDY pins is also possible.

Fig. 12 shows the status of the T_xD pin when data written in the USART is transferred from the CPU. When the data shown in Fig.12 enters the R_xD pin, data sent from the M5M82C51AP to the CPU becomes $2D_{16}$ and bits D_6 and D_7 are treated as 0.

CMOS PROGRAMMABLE COMMUNICATION INTERFACE

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Power-supply voltage		-0.3~7	v
V	Input voltage	With respect to V _{SS}	$-0.3 \sim V_{cc} + 0.3$	v
Vo	Output voltage		$-0.3 \sim V_{cc} + 0.3$	V
	MAX "H"	All output and I/O pins output	500	μA
онмах	Output current	"H" level and force same current		μη
	MAX "L"	All output and I/O pins output	2.5	mA
OLMAX	Output current	"L" level and force same current	2.5	
Topr	Operating free-air temperature range		-20~75	Ĉ
Tstg	Storage temperature range		-65~150	Ĵ

RECOMMENDED OPERATING CONDITIONS ($T_a = -20 \sim 75^{\circ}C$ unless otherwise noted)

	Parameter		Limits			
Symbol		Min	Nom	Max	Unit	
Vcc	Supply voltage	4.5	5	5.5	V	
Vss	Power-supply voltage (GND)		0		V	

$\label{eq:constraint} \textbf{ELECTRICAL CHARACTERISTICS} ~ (\texttt{Ta}{=}-20 \sim 75^\circ\texttt{C}, \texttt{V}_{\texttt{cc}}{=}5\texttt{V}{\pm}10\%, \texttt{V}_{\texttt{ss}}{=}0\texttt{V} ~ \texttt{unless otherwise noted})$

Ourse have	Parameter	Test conditions		11-14		
Symbol		lest conditions	Min	Тур	Max	Unit
VIH	High-level input voltage		2.0		V _{cc} +0.3	V
VIL	Low-level input voltage		-0.3		0.8	V
V		I _{OH} =-400µА	2.4			v
V _{OH} High-level output voltage	High-level output voltage	I _{OH} =-20µА	4.4			v
Vol	Low-level output voltage	I _{OL} =2.2mA			0.45	v
lcc	Supply current from V _{CC}	All outputs are high-level			5	mA
Iн	High-level input current	V _I =V _{CC}	-10		10	μA
lı_	Low-level input current	V1=0V	-10		10	μA
loz	Off-state input current	Vo=0V~Vcc	-10		10	μA
C,	Input terminal capacitance	V _{CC} =V _{SS} , f=1MHz, 25mV _{rms} , T _a =25°C			10	pF
CI/O	Input/output terminal capacitance	$V_{cc}=V_{ss}$, f=1MHz, 25m V_{rms} , Ta=25°C			20	pF

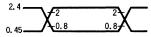
CMOS PROGRAMMABLE COMMUNICATION INTERFACE

SWITCHING CHARACTERISTICS ($T_a = -20 \sim 75^{\circ}C$, $V_{cc} = 5V \pm 10\%$, $V_{ss} = 0V$ unless otherwise noted)

Sumbol	Description	Test and ities		Limits			
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit	
t _{PZV(R} -DQ)	Output data enable time after read (Note8)	C _L =150pF			200(170)	ns	
t _{PVZ(R} -DQ)	Output data disable time after read		10		100	ns	
tpzv(txc-txd)	T_{XD} enable time after falling edge of $\overline{T_XC}$				1	μs	
tPLH(CLB-TxR)	Propagation time from center of last bit to T _X RDY (Note9)				8	t _{C(∳)}	
t _{PHL(W-TxR)}	Propagation time from write data to T _x RDY clear (Note9)				400	ns	
tPLH(CLB-RxR)	Propagation time from center of last bit to R _X RDY (Note9)				26	t _{C(∮)}	
t _{PHL(R-RxR)}	Propagation time from read data to R _x RDY clear (Note9)				400	ns	
tPLH(RxC-SYD)	Propagation time from rising edge of $\overline{R_X C}$ to internal SYNDET (Note9)				26	t _C (∳)	
tPLH(CLB-TXE)	Propagation time from center of last bit to T_XEMPTY (Note9)	· · · · · · · · · · · · · · · · · · ·			20	t _C (≠)	
t _{PHL} (w-c)	Propagation time from rising edge of WR to control (Note9)				8	t _{C(∲)}	

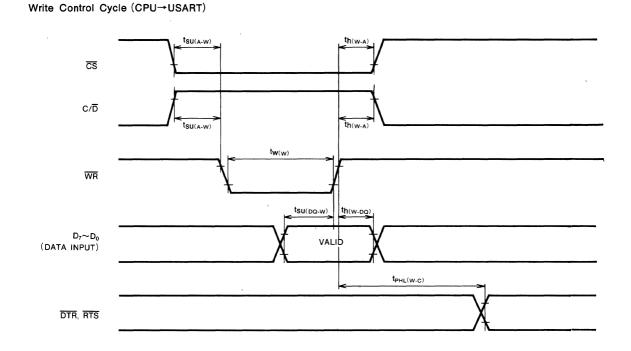
 tpHL(W-C)
 Propagation time from insing edge of rest.

 Note 8 : Assumes that address is vaild before falling edge of RD.

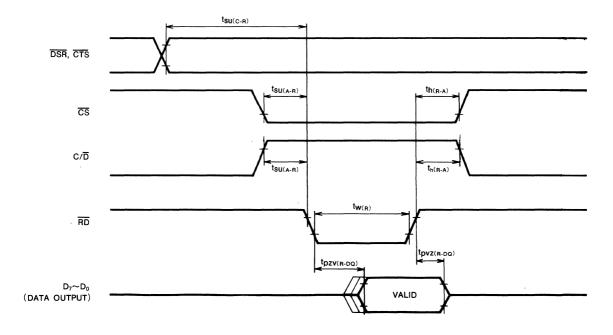

 9 : Status-up data can have a maximum delay of 28 clock periods from the event affecting the status.

 10 : Input pulse level
 0.45~2.4V

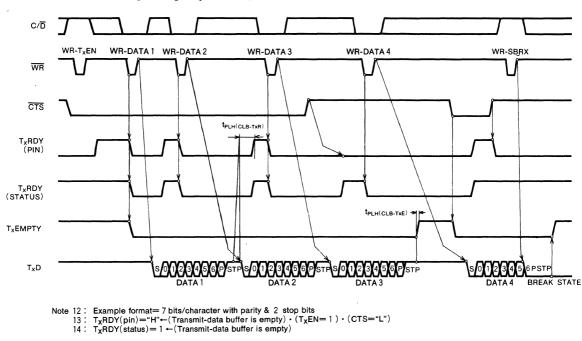
 Reference level
 Input V_H=2V, V_L=0.8V


 Voltent outse rise time
 10ns

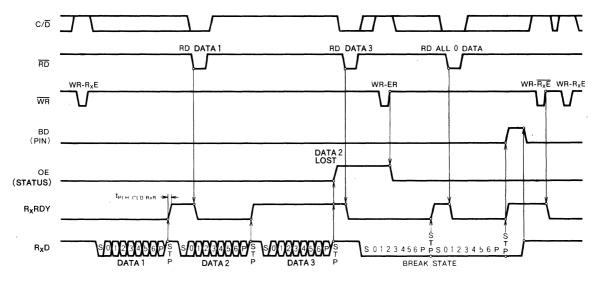
 Input pulse rise time 10ns Input pulse rise time 10ns 11 : M5M82C51AP is also invested with the extended specification showed in the brackets.



CMOS PROGRAMMABLE COMMUNICATION INTERFACE



Read Control Cycle (USART→CPU)



CMOS PROGRAMMABLE COMMUNICATION INTERFACE

Transmitter Control & Flag Timing (Async Mode)

Receiver Control & Flag Timing (Async Mode)

Note 15: Example format= 7 bits/character with parity & 2 stop bits

CMOS PROGRAMMABLE INTERVAL TIMER

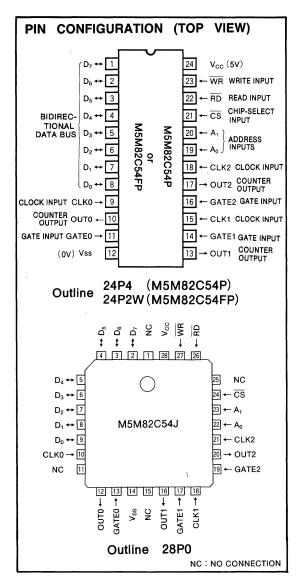
DESCRIPTION

The M5M82C54P is a programmable general-purpose timer device developed by using the silicon-gate CMOS process. It offers counter and timer functions in systems using an 8bit parallel-processing CPU. The use of the M5M82C54P frees the CPU from the execution of looped programs, count-operation programs and other simple processing involving many repetitive operations, thus contributing to improved system throughputs. It is housed in a 24-pin plastic molded DIP.

And preparatory for surface equipment M5M82C54FP (SOP) and M5M82C54J(PLCC).

FEATURES

- Single 5V supply voltage
- TTL compatible
- Pin connection compatible with M5L8253P-5 (except M5M82C54J)
- Clock period : DC~8MHz
- 3 independent built-in 16-bit down counters
- 6 counter modes freely assignable for each counter
- Binary or decimal counts
- Read-back command for monitoring the count and status


APPLICATION

Delayed-time setting, pulse counting and rate generation in microcomputers.

FUNCTION

Three independent 16-bit counters allow free programming based on mode-control instructions from the CPU. When roughly classified, there are 6 modes ($0 \sim 5$). Mode 0 is mainly used as an interruption timer and event counter, mode 1 as a digital one-shot, modes 2 and 3 as a rate generator, mode 4 for a software triggered strobe, and mode 5 for a hardware triggered strobe.

The count can be monitored and set at any time. Besides the count, the status of the counter can be monitored by Read-back command. The counter operates with either the binary or BCD system.

CMOS PROGRAMMABLE INTERVAL TIMER

DESCRIPTION OF FUNCTIONS

Data-Bus Buffer

This 3-state, bidirectional, 8-bit buffer is used to interface the M5M82C54P to the system-side data bus. Transmission and reception of all the data including control words for mode designation and values written in, and read from, the counters are carried out through this buffer.

Read/Write Logic

The read/write logic accepts control signals (\overline{RD} , \overline{WR}) from the system and generates control signals for each counter. It is enabled or disabled by the chip-select signal (\overline{CS}); if \overline{CS} is at the high-level the data-bus buffer enters a floating (high-impedance) state.

Read Input (RD)

The count of the counter designated by address inputs A_0 and A_1 on the low-level is output to the data bus.

Write Input (WR)

Data on the data bus is written in the counter or control-word register designated by address inputs A_0 and A_1 on the low-level.

Address Inputs (A₀, A₁)

These are used for selecting one of the 3 internal counters and either of the control-word registers.

Chip-Select Input (CS)

A low-level on this input enables the M5M82C54P. Changes in the level of the $\overline{\text{CS}}$ input have no effect on the operation of the counters.

Control-Word Register

This register stores information required to give instructions about operational modes and to select binary or BCD counting. It allows reading, using Read back command.

Counters 0,1 and 2

These counters are identical in operation and independent of each other. Each is a 16-bit, presettable, down counter, and has clock-input, gate-input and output pins. The counter can operate in either binary or BCD using the falling edge of each clock. The mode of counter operation and the initial value from which to start counting can be designated by software. The count can be read by input instruction at any time, and there is a "read-on-the-fly" function which enables stable reading by latching each instantaneous count to the registers by a special counter-latch instruction.

CONTROL-WORD AND INITIAL-VALUE LOADING

The function of the M5M82C54P depends on the system software. The operational mode of the counters can be specified by writing control words (A_0 , $A_1 = 1$, 1) into the control-word registers.

The programmer must write out to the M5M82C54P the programmed number of count register bytes (1 or 2) prior to actually using the selected counter.

Fig. 1 shows control-word format, which consists of 4 fields. Only the counter selected by the D_7 and D_6 bits of the control-word is set for operation. Bits D_5 and D_4 are used for specifying operations to read values in the counter and to initialize. Bits $D_3 \sim D_1$ are used for mode designation, and D_0 for specifying binary or BCD counting. When $D_0=0$, binary counting is employed, and any number from 0000_{16} to FFFF₁₆ can be loaded into the count register. The counter is counted down for each clock. The counting of 0000_{16} causes the transmission of a time-out signal from the countoutput pin.

The maximum number of counts is obtained when 0000_{16} is set as the initial value. When $D_0 = 1$, BCD counting is employed, and any number from 0000_{10} to 9999_{10} can be loaded on the counter.

Neither system resetting nor connecting to the power supply sets the control word to any specific value. Thus to bring the counters into operation, the above-mentioned control words for mode designation must be given to each counter, and then $1 \sim 2$ byte initial counter values must be set. The following is an example of this programming step.

To designate mode 0 for counter 1 ,with initial value 8254_{16} set by binary count, the following program is used:

MVI	A, 70 ₁₆	Control word 70 ₁₆
OUT	n ₁	n ₁ is control-word-register address
MVI	A, 54 ₁₆	Low-order 8 bits
OUT	n ₂	n ₂ is counter 1 address
MVI	A, 82 ₁₆	High-order 8 bits
OUT	n ₂	n ₂ is counter 1 address

Thus, the program generally has the following sequence:

- (1) Control-word output to counter i (i=0, 1, 2).
- (2) Initialization of low-order 8 counter bits

(3) Initialization of high-order 8 counter bits

The three counters can be executed in any sequence. It is possible, for instance, to designate the mode of each counter and then load initial values in a different order. Initialization of the counters designated by RL 1 and RL 0 must be executed in the order of the low-order 8 bits and then the high-order 8 bits for the counter in question.

CMOS PROGRAMMABLE INTERVAL TIMER

MODE DEFINITION

Mode 0 (Interrupt on Terminal Count)

Mode set and initialization cause the counter output to go low-level (see Fig. 2). When the counter is loaded with an initial value, it will start counting the clock input. When the terminal count is reached, the output will go high-level and remain high-level until the selected count register is reloaded with the mode. This mode can be used when the CPU is to be interrupted after a certain period or at the time of counting up.

Fig. 2 shows a setting of 4 as the initial value. If gate input goes low-level, counting is inhibited for the duration of the low-level period.

Reloading of the initial value during count operation will stop counting by the loading of the first byte and start the new count by the loading of the second byte.

Mode 1 (Programmable One-Shot)

The gate input functions as a trigger input. A gate-input rising edge causes the generation of low-level one-shot output with a predetermined clock length starting from the next clock. Fig. 3 shows an initial setting of 4. While the counter output is at the low-level (during one-shot), loading of a new value does not change the one-shot pulse width, which has already been output. The current count can be read at any time without affecting the width of the one-shot pulse being output. This mode permits retriggering.

Mode 2 (Rate Generator)

Low-level pulses during one clock operation are generated from the counter output at a rate of one per n clock inputs (where n is the value initially set for the counter). When a new value is loaded during the counter operation, it is reflected on the output after the pulses by the current count have been output. In the example shown in Fig. 4, n is given as 4 at the outset and is then changed to 3.

In this mode, the gate input provides a reset function. While it is on the low-level, the output is maintained high-level; the counter restarts from the initial value, triggered by a rising gate-input edge. This gate input, therefore, makes possible external synchronization of the counter by hardware.

After the mode is set, the counter does not start counting until the rate n is loaded into the count register, with the counter output remaining at the high-level.

Mode 3 (Square Rate Generator)

This is similar to Mode 2 except that it outputs a square wave with the half count of the set rate. When the set value n is odd, the square-wave output will be high-level for (n+1)/2 clock-input counts and low for (n-1)/2 counts. When a new rate is reloaded into the count register during its operation, it is immediately reflected on the count directly following the output transition (high-to-low or low-to-high) of the current count. Gate-input operations are exactly the same as in Mode 2. Fig. 5 shows an example of Mode 3 operation.

Mode 4 (Software Triggered Strobe)

After the mode is set, the output will be high-level. By loading a number on the counter, however, clock-input counts can be started and on the terminal count, the output will go low-level for one input-clock period and then will go highlevel again. Mode 4 differs from Mode 2 in that pulses are not output repeatedly with the same set count. The pulse output is delayed one clock period in Mode 2, as shown in Fig. 6. When a new value is loaded into the count register during its count operation, it is reflected on the next pulse output without affecting the current count. The count will be inhibited while the gate input is low-level.

Mode 5 (Hardware Triggered Strobe)

This is a variation of Mode 1. The gate input provides a trigger function, and the count is started by its rising edge. On the terminal count, the counter output goes low for on one clock period and then goes high-level. As in Mode 1, retriggering by the gate input is possible. An example of timing in Mode 5 is shown in Fig. 7.

As mentioned above, the gate input plays different roles according to the mode. The functions are summarized in Table 3.

Gate Mode	Low-level or going low-level	Rising	Hıgh-levei
0	Disables counting		Enables counting
1		 (1) Initiates counting (2) Resets output after next clock 	
2	 (1) Disables counting (2) Sets output high immediately 	(1) Reloads counter (2) Initiates counting	Enables counting
3	 Disables counting Sets output high immediately 	(1) Reloads counter (2) Initiates counting	Enables counting
4	Disables counting		Enables counting
5		Initiates counting	

Table 2 Gate Operations

READ BACK COMMAND

M5M82C54P has a function of reading not only the count but also status (Read Back Command). The read back command enables the next four functions.

- (1) read the current count "on the fly"
- (2) monitor the current state of the OUT pin
- (3) monitor the current state of the counter element (whether the count is loaded into the counter element or not)
- (4) read the control-word

Read back operation can be specified by writing read back command into the control word registers (A_0 , $A_1 = 1, 1$). Fig. 8 shows the format of read back command.

Bits D_7 and D_6 are used for specifying read back command and fixed 1 ($D_7 = 1$, $D_6 = 1$). Respectively bits D_5 (count) and D_4 (status) are used for reading the count and the status of the counter selected by the $D_3 \sim D_1$ bits. Bit D_0 must be fixed 0.

Only the count can be read "on the fly" by setting $D_5 = 0$ and $D_4 = 1$ as well as counter latch command above mentioned. If $D_3 \sim D_1$ are set 1 all, the counts of three counters are simultaneously latched by one read back command. (By counter-latch command, it must be latched for each counter.) Next, by read operation, the latched count is read out.

Only the status can be latched by setting $D_5 = 1$ and $D_4 = 0$. By read operation, the status shown in Fig. 9 can be read.

Lit D_7 gives the current state of OUT pin. When $D_7 = 1$, OUT = "H", and when $D_7 = 0$, OUT = "L". Bit D_6 indicates the current state of counter element. When $D_6 = 1$, the initial counter value has not been loaded to counter element. This state is following.

- (1) The control word is written, but the initial counter value is not loaded
- (2) The initial counter value is written to count register, and the CLK inputs are not.

When $D_6 = 0$, the initial counter value has already been loaded. It is the state when the CLK falls following the rising edge after the initial value is written. Bits $D_5 \sim D_0$ show the current state of the control-word regsiter.

It is possible to read both the count and the status. By setting $D_5 = 0$ and $D_4 = 0$, the status can be read first, and the count next.

The count and/or the status are unlatched when read, so by the next read operation the current counting value can be read. And they are unlatched too when the control-word is set, so the read back command must be set on all such occasions.

If multiple read back commands are written before the read operation, only the first one is valid.

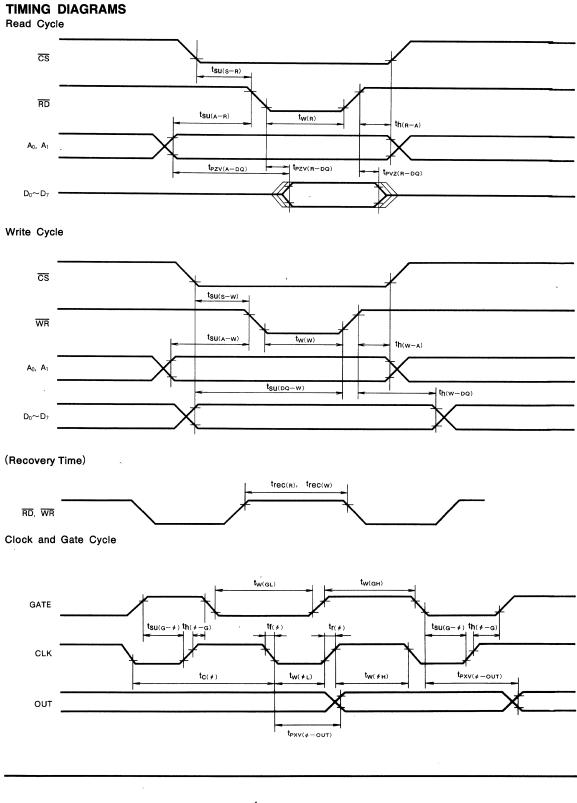
Thus, the read of the status is effective when the state of output and the timing of count reading can be monitored by software.

CMOS PROGRAMMABLE INTERVAL TIMER

ABSOLUTE MAXIMUM RATINGS

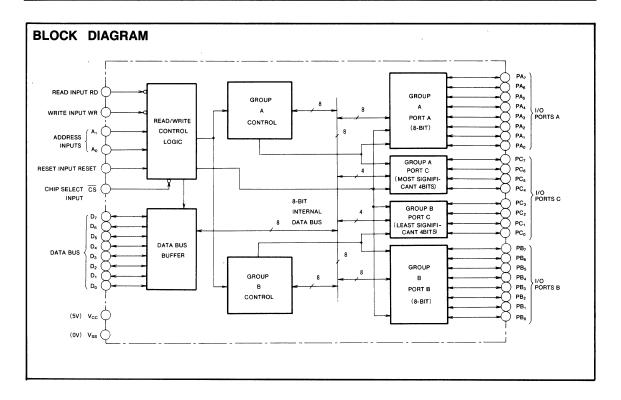
Symbol	Parameter	Conditions	Ratings	Unit	
Vcc	Power supply voltage		-0.3~7	V	
V	Input voltage	With respect to V _{SS}	$-0.3 \sim V_{cc} + 0.3$	V	
Vo	Output voltage		$-0.3 \sim V_{cc} + 0.3$	V	
	MAX "H"	All output and I/O pins output			
онмах	Output current	"H" level and force same current	500	μA	
	MAX "L"	All output and I/O pins output	2.5		
OLMAX	Output current	"L" level and force same current	2.5	mA	
Topr	Operating free-air temperature range		-20~75	°C	
Tstg	Storage temperature range		-65~150	°C	

RECOMMENDED OPERATING CONDITIONS ($T_a=-20\sim75$ °C, unless otherwise noted)


			Unit		
Symbol	Parameter	Min	Nom	Max	Unit
Vcc	Power supply voltage	4.5	5	5.5	v
Vss	Supply voltage (GND)		0		v

$\label{eq:constraint} \textbf{ELECTRICAL CHARACTERISTICS} \quad (\texttt{T}_a = -20 \sim 75 \texttt{°C}, \texttt{V}_{cc} = 5 \texttt{V} \pm 10\%, \texttt{V}_{ss} = \texttt{0V}, \texttt{unless otherwise noted})$

Symbol	Parameter	Test conditions		Limits		Unit
Symbol	Faianieter	Test conditions	Min	Тур	Max	
ViH	High-level input voltage		2.0		V_{cc} +0.3	v
VIL	Low-level input voltage		-0.3		0.8	V
V		I _{OH} =-400µA	2.4			v
V _{он}	High-level output voltage	I _{OH} =-20µА	4.4			v
Vol	Low-level output voltage	I _{OL} =2.0mA			0.45	v
կո	High-level input current	V _I =V _{CC}			±10	μA
կլ	Low-level input current	V ₁ =0V			±10	μA
loz	Off-state output current	Vo=0V~Vcc			±10	μA
lcc	Supply current from V _{CC} (operating)	f=8MHz			10	mA
Iccs	Supply current from V _{CC} (stand by)	$V_1=0V, V_{CC}$			10	μA
Ci	Input termiral capacitance	V _{IL} =V _{SS} , f=1MHz, 25mVrms, T _a =25°C			10	pF
Ci/o	Input/output termiral capacitance	$V_{I/OL} = V_{SS}$, f=1MHz,25mVrms, T _a =25°C			20	pF


CMOS PROGRAMMABLE INTERVAL TIMER

MITSUBISHI LSIS M5M82C55AP-2/FP-2/J-2

CMOS PROGRAMMABLE PERIPHERAL INTERFACE

MITSUBISHI LSI₅ M5M82C55AP-2/FP-2/J-2

CMOS PROGRAMMABLE PERIPHERAL INTERFACE

BASIC OPERATING MODES

The PPI can operate in any one of three selected basic modes.

Mode 0: Basic input/output Mode 1: Strobed input/output

Mode 2: Bidirectional bus

(group A, group B)

(group A only)

(group A, group B)

The mode of both group A and group B can be selected independently. The control word format for mode set is shown in Fig. 2.

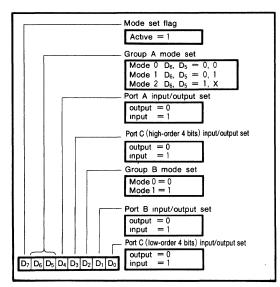
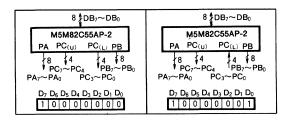



Fig. 2 Control word format for mode set.

1. Mode 0 (Basic Input/Output)

This functional configuration provides simple input and output operations for each of the 3 ports. No "handshaking" is required; data is simply written in, or read from, the specified port. Output data from the CPU to the port can be held, but input data from the port to the CPU cannot be held. Any one of the 8-bit ports and 4-bit ports can be used as an input port or an output port. The diagrams following show the basic input/output operating modes.

8 2DB ₇ ∼DB ₀	8 ≵DB 7∼DB₀
M5M82C55AP-2 PA_PC(u) PC(L) PB	M5M82C55AP-2 PA PC(U) PC(L) PB
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & &$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
8 ≵DB ₇ ~DB₀	8 ≵DB ₇ ~DB₀
M5M82C55AP-2 PA PC(u) PC(L) PB	M5M82C55AP-2 PA PC _(U) PC _(L) PB
8 4 4 8	8 4 4 8
$\begin{array}{c} & \downarrow \mathbf{PC}_{7} \sim \mathbf{PC}_{4} \forall \mathbf{PB}_{7} \sim \mathbf{PB}_{0} \\ \mathbf{PA}_{7} \sim \mathbf{PA}_{0} \mathbf{PC}_{3} \sim \mathbf{PC}_{0} \end{array}$	[†] PC ₂ → PC ₄ ¹ PB ₇ → PB ₀ PA ₇ → PA ₀ PC ₃ → PC ₀
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
8 ≵DB ₇ ~DB₀	8 ≵DB ₇ ~DB₀
M5M82C55AP-2 PA PC(u) PC(L) PB	M5M82C55AP-2 PA PC(U) PC(L) PB
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	↓8 ↓4 ↓8 ↓PC7~PC4 ↓PB7~PB0 ₽A7~PA0 PC3~PC0
D7 D6 D5 D4 D3 D2 D1 D0 1 0 0 0 1 0 1 0 1 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
8 2 DB7~DB0	8 ≵DB ₇ ∼DB₀
M5M82C55AP-2 PA PC(U) PC(L) PB	M5M82C55AP-2 PA PC(U) PC(L) PB
$\begin{array}{c} \begin{array}{c} & & & \\ & & \\ & & \\ & \\ & \\ & \\ & \\ & $	$\begin{array}{c c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
8 2 DB7~DB0	8 ∲DB ₇ ~DB₀
M5M82C55AP-2 PA PC(U) PC(L) PB	M5M82C55AP-2
8 4 4 8 PC7~PC4 PB7~PB0	PA PC _(U) PC _(L) PB +8 +4 +4 +8 PC ₇ ~PC ₄ PB ₇ ~PB ₀
$PC_7 \sim PC_4$ $PB_7 \sim PB_0$ $PA_7 \sim PA_0$ $PC_3 \sim PC_0$	PC ₇ ~PC ₄ PB ₇ ~PB ₀ PA ₇ ~PA ₀ PC ₃ ~PC ₀
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
8 ≵DB7~DB₀	8 ≵DB ₇ ~DB₀
M5M82C55AP-2 PA PC(u) PC(L) PB	M5M82C55AP-2 PA PC(U) PC(L) PB
18 14 14 18 PC7~PC4 PB7~PB0 PA7~PA0 PC3~PC0	18 14 14 18 1000000000000000000000000000000000000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
8 ¢DB ₇ ∼DB ₀	8 ¢DB ₇ ∼DB ₀
M5M82C55AP-2 PA PC(u) PC(L) PB	M5M82C55AP-2 PA PC(u) PC(L) PB
18 14 14 18 ↓ PC7~PC4 ₽B7~PB0 ₽A7~PA0 PC3~PC0	18 14 14 18 PC7~PC4 PB7~PB0 PA7~PA0 PC3~PC0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

MITSUBISHI LSIS M5M82C55AP-2/FP-2/J-2

CMOS PROGRAMMABLE PERIPHERAL INTERFACE

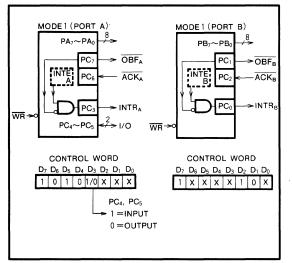
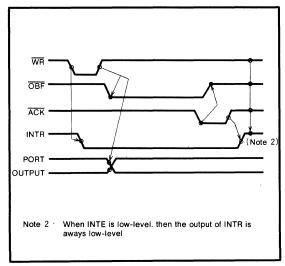



Fig. 5 An example of mode 1 output state

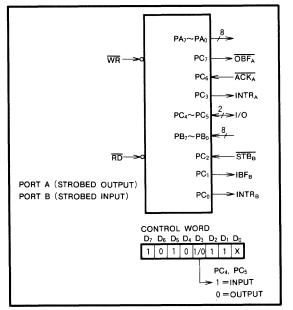


Fig. 7 Mode 1 port A and port B I/O example

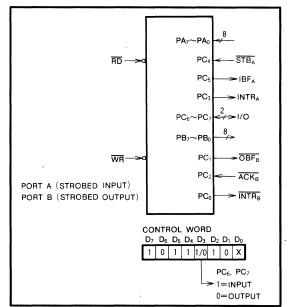


Fig. 8 Mode 1 port A and port B I/O example

CMOS PROGRAMMABLE PERIPHERAL INTERFACE

4. Control Signal Read

In mode 1 or mode 2 when using port C as a control port, by CPU execution of an IN instruction, each control signal and bus status from port C can be read.

5. Control Word Tables

Control word formats and operation details for mode 0, mode 1, mode 2 and set/reset control of port C are given in Tables 3, 4, 5 and 6, respectively.

Table 2 Read-out control signals

Data Mode	D7	D ₆	D ₅	D₄	D ₃	D ₂	Dı	Do
Mode 1, input	1/0	1/0	IBF _A	INTEA	INTRA	INTEB	IBF _B	INTRB
Mode 1, output	OBFA	INTE _A	1/0	1/0	INTRA	INTEB	OBFB	
Mode 2	OBFA	INTE ₁	IBF _A	INTE ₂	INTRA	By g	roup B r	node

Table 3 Mode 0 control words

		-		Cont	rol w	ords				Group A	Group B	
D 7	D ₆	D ₅	D4	D ₃	D ₂	D ₁	D ₀	Hexadecimal	Port A	Port C (high-order 4 bits)	Port C (low-order 4 bits)	Port B
1	0	0	0	0	0	0	0	80	OUT	OUT	OUT	OUT
1	0	0	0	0	0	0	1	81	OUT	OUT	IN	OUT
1	0	0	0	0	0	1	0	82	OUT	OUT	OUT	IN
1	0	0	0	0	0	1	1	83	OUT	OUT	IN	IN
1	0	0	0	1	0	0	0	88	OUT	IN	OUT	OUT
1	0	0	0	1	0	0	1	89	OUT	IN	IN	OUT
1	0	0	0	1	0	1	0	8A	OUT	IN	OUT	IN
1	0	0	0	1	0	1	1	8B	OUT	IN	IN	IN
1	0	0	1	0	0	0	0	90	IN	OUT	OUT	OUT
1	0	0	1	0	0	0	1	91	IN	OUT	IN	OUT
1	0	0	1	0	0	1	0	92	IN	OUT	OUT	IN
1	0	0	1	0	0	1	1	93 .	IN	OUT	IN	IN
1	0	0	1	1	0	0	0	98	IN	IN	OUT	OUT
1	0	0	1	1	0	0	1	99	IN	IN	IN	OUT
1	0	0	1	1	0	1	0	9A	IN	IN	Ουτ	IN
1	0	0	1	1	0	1	1	9B	IN	IN	IN	IN

Note 4 OUT indicates output port, and IN indicates input port

Table 4 Mode 1 control words

			С	ontr	ol wa	ords					Gro	up A				Gro	up B	
D7	D ₆	D ₅	D₄	D3	Π.	D .	D ₀	Hexa-	Port A			Port C			Port C			Dent D
	06	05	04	03	02	Di	D0	decimal	FULA	PC ₇	PC ₆	PC ₅	PC₄	PC ₃	PC ₂	PC ₁	PC ₀	Port B
1	0	1	0	0	1	0	x	A4 A5	OUT		ACKA	0	UT		ACKB			ουτ
1	0	1	0	0	1	1	х	A6 A7	OUT		ACKA	0	UT		STB _B	1BF _B		IN
1	0	1	0	1	1	0	x	AC AD	OUT		ACKA	I	N	INTRA	ACKB		INTR _B	ουτ
1	0	1	0	1	1	1	х	AE AF	OUT		ACKA	I	N	INTRA	STBB	IBF _B		IN
1	0	1	1	0	1	0	x	B4 B5	IN	0	UT	IBFA	STBA	INTRA	ACKB		INTRB	ουτ
1	0	1	1	0	1	1	х	B6 B7	IN	0	UT	IBF _A	STBA		STB _B	IBF _B		IN
1	0	1	1	1	1	0	x	BC BD	IN	1	N	IBFA	STBA		ACKB			оит
1	0	1	1	1	1	1	х	BE BF	IN	1	N	IBFA	STBA		STB _B	IBF _B		IN

Note 5 Mode of group A and group B can be programmed mapping 6 It is not necessary for both group A and group B to be in mode 1 Mode of group A and group B can be programmed independently.

CMOS PROGRAMMABLE PERIPHERAL INTERFACE

ABSOLUTE MAXIMUM RATINGS

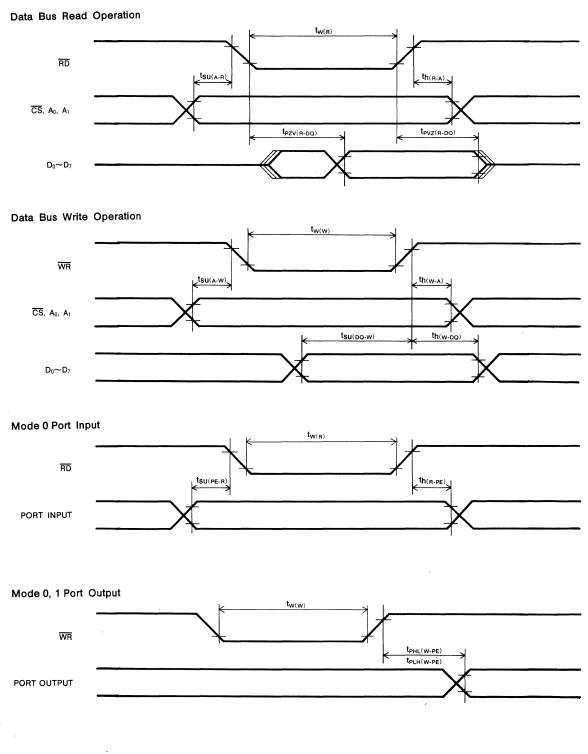
Symbol	Parameter	Conditions	Rati	ings	Unit			
V _{cc}	Supply voltage		-0.	-0.3~7				
Vi	Input voltage	With respect to V _{SS}	-0.3~\	$-0.3 \sim V_{CC} + 0.3$				
Vo	Output voltage		-0.3~\	$-0.3 \sim V_{cc} + 0.3$				
	MAX "H"	All output and I/O pins output	Port	-4	mA			
онмах	Output current	"H" level and force same current	Data bus	-500	μA			
1	MAX "L"	All output and I/O pins output	Port	4				
OLMAX	Output current	"L" level and force same current 2	Data bus	2.5	mA			
Topr	Operating free-air temperature renge		-20	-20~75				
Tstg	Storage temperature range		-65	-65~150				

RECOMMENDED OPERATING CONDITIONS (Ta=-20~75°C, unless otherwise noted)

Symbol	Berometer		Unit		
Symbol	Parameter	Min	Nom	Мах	Unit
Vcc	Supply voltage	4.5	5	5.5	v
Vss	Supply voltage (GND)		0		v

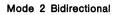
ELECTRICAL CHARACTERISTICS (Ta=-20~75°C, Voc=5V±10%, Vss=0V, unless otherwise noted)

Oumbal	Desemator	Test souditions	Υ	Limits		11-34
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
ViH	High-level input voltage		2.0		V _{cc} +0.3	v
VIL	Low-level input voltage		-0.3		0.8	v
		I _{OH} =-400µА	2.4			v
V _{он} 0	Output high voltage (Note10)	I _{OH} =-20µА	4.4			v
Vol	Output low voltage (Note10)	I _{OL} =2.5mA			0.4	v
lcc	Supply current from V _{CC}	All input mode RESET=0V. Other pins=V _{CC} .			10	μA
հե	Input leak current	VI=0V, Vcc			±10	μA
loz	Off-state output current	Vo=0V~Vcc			±10	μA
Ci	Input terminal capacitance	f=1MHz			10	рF
Ci/o	Input/output terminal capacitance	Unmeasured pins=0V			20	pF


Note 9 : Current flowing into an IC is positive, out is negative. 10 : Output current must be less than ±4mA for each Port pin

MITSUBISHI LSIS M5M82C55AP-2/FP-2/J-2

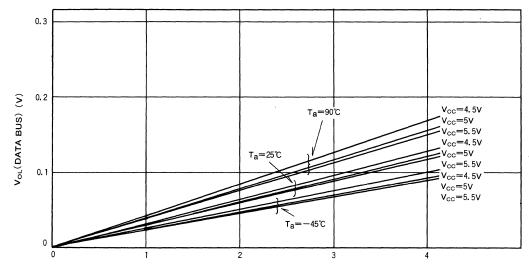
CMOS PROGRAMMABLE PERIPHERAL INTERFACE


TIMING DIAGRAM



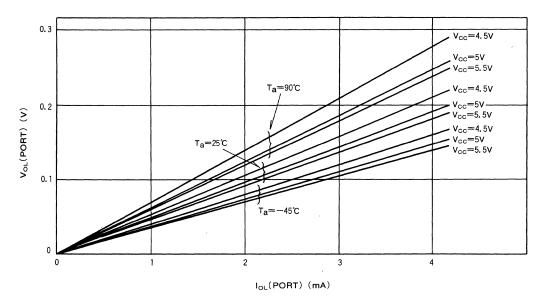
MITSUBISHI LSIs M5M82C55AP-2/FP-2/J-2

CMOS PROGRAMMABLE PERIPHERAL INTERFACE

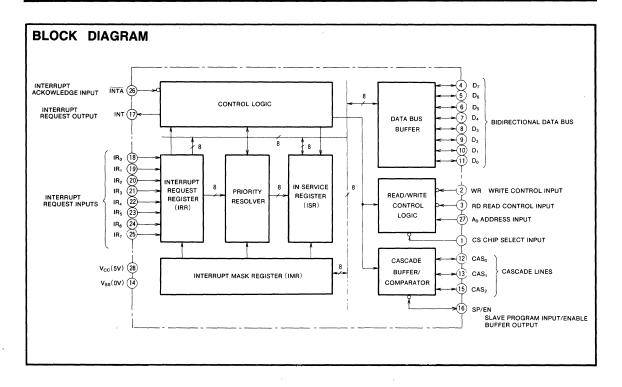


Note 13: INTR=IBF · MASK · STB · RD+OBF · MASK · ACK · WR

MITSUBISHI LSIS M5M82C55AP-2/FP-2/J-2

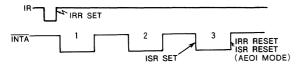

CMOS PROGRAMMABLE PERIPHERAL INTERFACE

 $I_{OL}(DATA BUS) (mA)$


 $v_{\text{ol}}{-}i_{\text{ol}}$ characteristics (data bus)

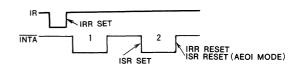
MITSUBISHI LSIS M5M82C59AP-2/FP-2/J-2

CMOS PROGRAMMABLE INTERRUPT CONTROLLER


MITSUBISHI LSI₅ M5M82C59AP-2/FP-2/J-2

CMOS PROGRAMMABLE INTERRUPT CONTROLLER

Interrupt Sequence


1. When the CPU is a MELPS85

- When one or more of the interrupt request inputs are raised high, the corresponding IRR bit(s) for the high-level inputs will be set.
- (2) Mask state and priority levels are considered and, if appropriate, the M5M82C59AP-2 sends an INT signal to the CPU.
- (3) The acknowledgement of the CPU to the INT signal, the CPU issues an INTA pulse to the M5M82C59AP-2.
- (4) Upon receiving the first INTA pulse from the CPU, a CALL instruction is released onto the data bus.
- (5) A CALL is a 3-byte instruction, so additional two INTA pulses are issued to the M5M82C59AP-2 from the CPU.
- (6) These two INTA pulses allow the M5M82C59AP-2 to release the program address onto the data bus. The low-order 8 bits vectored address is released at the second INTA pulse and the high-order 8 bits vectored address is released at the third INTA pulse. The ISR bit corresponding to the interrupt request input is set upon receiving the third INTA pulse from the CPU, and the corresponding IRR bit is reset.
- (7) This completes the 3-byte CALL instruction and the interrupt routine will be serviced. The ISR bit is reset at the trailing edge of the third INTA pulse in the AEOI mode. In the other modes the ISR bit is not reset until an EOI command is issued.

2. When the CPU is a MELPS86 or MELPS88

- When one or more of the interrupt request inputs are raised high, the corresponding IRR bit(s) for the high-level inputs will be set.
- (2) Mask state and priority levels are considered and if appropriated, the M5M82C59AP-2 sends an INT signal to the CPU.
- (3) As an acknowledgement to the INT signal, the CPU issues an INTA pulse to the M5M82C59AP-2.
- (4) Upon receiving the first INTA pulse from the CPU, the M5M82C59AP-2 does not drive the data bus, and the data bus keeps high-impedance state.
- (5) When the second INTA pulse is issued from the CPU, an 8-bit pointer is released onto the data bus.
- (6) This completes the interrupt cycle and the interrupt routine will be serviced. The ISR bit is reset at the trailing edge of the second INTA pulse in the AEOI mode. In the other modes the ISR bit is not reset until an EOI command is issued from the CPU.

The interrupt request input must be held at high-level until the first \overline{INTA} pulse is issued. If it is allowed to return to low-level before the first \overline{INTA} pulse is issued, an interrupt request in IR₇ is executed However, in this case the ISR bit is not set.

This is a function for a noise countermeasure of interrupt request inputs. In the interrupt routine of IR₇, if ISR is checked by software either the interrupt by noise or real interrupt can be acknowledged. In the state of edge trigger mode normally the interrupt request inputs hold high-level and its input low-level pulse in the case of interrupt.

Interrupt sequence outputs

1. When the CPU is a MELPS85

A CALL instruction is released onto the data bus when the first $\overline{\text{INTA}}$ pulse is issued. The low-order 8 bits of the vectored address are released when the second $\overline{\text{INTA}}$ pulse is issued, and the high-order 8 bits are released when the third $\overline{\text{INTA}}$ pulse is issued. The format of these three outputs is shown in Table 2.

Table 2 Formats of interrupt CALL instruction and vectored address

First INTA pulse (CALL instruction)

D7	D_6	D ₅	D4	D ₃	D ₂	D1	D ₀
1	1	0	0	1	1	0	1

Second INTA pulse (low-order 8 bits of vectored address)

IR	Interval= 4							
	D 7	D ₆	D ₅	D4	D ₃	D ₂	D1	D ₀
IR ₀	A 7	A ₆	A ₅	0	0	0	0	0
IR ₁	A 7	A ₆	A ₅	0	0	1	0	0
IR ₂	A 7	A ₆	A ₅	0	1	0	0	0
IR ₃	A 7	A ₆	A ₅	0	1	1	0	0
IR₄	A 7	A ₆	A ₅	1	0	0	0	0
IR ₅	A 7	A ₆	A ₅	1	0	1	0	0
IR ₆	A 7	A ₆	A ₅	1	1	0	0	0
IR ₇	A 7	A ₆	A 5	1	1	1	0	0

MITSUBISHI LSIS M5M82C59AP-2/FP-2/J-2

CMOS PROGRAMMABLE INTERRUPT CONTROLLER

Write Control Input (WR)

When $\overline{\rm WR}$ goes to low-level the M5M82C59AP-2 can be written.

Read Control Input (RD)

When $\overline{\text{RD}}$ goes low-level status information in the internal register of the M5M82C59AP-2 can be read through the data bus.

Address Input (A₀)

The address input is normally connected with one of the address lines and is used along with \overline{WR} and \overline{RD} to control write commands and reading status information.

Cascade Buffer/Comparator

The cascade buffer/comparator stores or compares identification codes. The three cascade lines are output when the M5M82C59AP-2 is a master or input when it is a slave. The identification code on the cascade lines select it as master or slave.

PROGRAMMING THE M5M82C59AP-2

The M5M82C59AP-2 is programmed through the Initialization Command Word (ICW) and the Operation Command Word (OCW). The following explains the functions of these two commands.

Initialization Command Words (ICWs)

The initialization command word is used for the initial setting of the M5M82C59AP-2. There are four commands in this group and the following explains the details of these four commands. The command flow of ICWs is shown Fig. 2

ICW1

The meaning of the bits of ICW1 is explained in Fig. 3

along with the functions. ICW1 contains vectored address bits $A_7 \sim A_5$, a flag indicating whether interrupt input is edge triggered or level triggered, CALL address interval, whether a single M5M82C59AP-2 or the cascade mode is used, and whether ICW4 is required or not.

Whenever a command is issued with $A_0=0$ and $D_4=1$, this is interpreted as ICW1 and the following will automatically occur.

- (a) The interrupt mask register (IMR) is cleared.
- (b) The interrupt request input IR₇ is assigned the lowest priority.
- (c) The special mask mode is cleared and the status read is set to the interrupt request register (IRR).
- (d) When IC4=0 all bits in ICW4 are set to 0.

ICW2

ICW2 contains vectored address bits $A_{15} \sim A_8$ or interrupt type $T_7 \sim T_3$, and the format is shown in Fig. 3.

ICW3

When SNGL = 1 it indicates that only a single M5M82C59AP-2 is used in the system, in which case ICW3 is not valid. When SNGL=0, ICW3 is valid and indicates cascade connections with other M5M82C59AP-2 devices. In the master mode, a 1 is set for each slave.

When the CPU is a MELPS85 the CALL instruction is released from the master at the first INTA pulse and the vectored address is released onto the data bus from the slave at the second and third INTA pulses.

When the CPU is a MELPS86 the master and slave are in high-impedance at the first $\overline{\text{INTA}}$ pulse and the pointer is

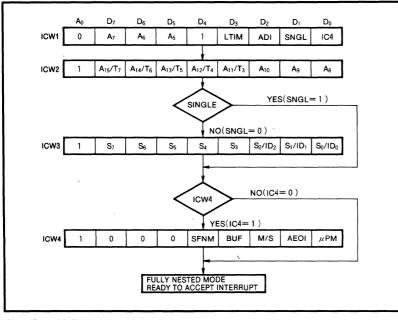


Fig. 2 Initialization sequence

MITSUBISHI LSIs M5M82C59AP-2/FP-2/J-2

CMOS PROGRAMMABLE INTERRUPT CONTROLLER

released onto the data bus from the slave at the second INTA pulse.

The master mode is specified when SP/EN pin is highlevel or BUF=1 and M/S=1 in ICW4, and slave mode is specified when $\overline{SP}/\overline{EN}$ pin is low-level or BUF=1 and M/S =0 in ICW4. In the slave mode, 3-bit $ID_2 \sim ID_0$ identify the slave. And then when the slave code released on the cascade lines from the master, matches the assigned ID code, the vectored address is released by it onto the data bus at the next INTA pulse

ICW4

Only when IC4=1 in ICW1 is ICW4 valid. Otherwise all bits are set to 0. When ICW4 is valid it specifies special fully

nested mode, buffer mode master/slave, automatic EOI and microprocessor mode. The format of ICW4 is shown in Fig. 3.

Operation Command Words (OCW_S)

The operation command words are used to change the contents of IMR, the priority of interrupt request inputs and the special mask. After the ICW are programmed into the M5M82C59AP-2, the device is ready to accept interrupt requests. There are three types of OCWs; explanation of each follows, and the format of OCWs is shown in Fig 4 OCW1

The meaning of the bits of OCW1 are explained in Fig. 4 along with their functions. Each bit of IMR can be indepen-INTERBURT MASK SET 1. INTERRUPT MASK RESET M₇ M M M₄ M₃ M_2 M M_0 An D₂ De D₅ D₄ D_3 D_2 D D₀ OCW1 NON-SPECIFIC EOI 0 0 EOI SPECIFIC EOI (RESETS ISR BITS L2~L0) 0 1 0 1 ROTATE ON NON-SPECIFIC EOI 1 0 0 SETS AUTOMATIC ROTATION FLIP-FLOP AUTOMATIC ROTATION 0 0 0 RESET AUTOMATIC ROTATION FLIP-FLOP 1 1 .1 ROTATE ON SPECIFIC EOI (RESETS ISR BIT L2~L0) SPECIFIC ROTATION SETS PRIORITY COMMAND (SET LOWEST PRIORITY BIT L₂~L₀) 1 1 0 1 0 0 NO OPERATION ID LEVEL TO BE ACTED UPON 0 1 2 3 4 5 6 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 0 1 1 0 R SL EOI 0 0 L_2 L₀ L D7 A₀ D₆ Ds D₄ D_3 D_2 D D₀ OCW2 0 х NO OPERATION 0 RESET SPECIAL MASK MODE SETS SPECIAL MASK MODE POLL COMMAND 0 NO POLL COMMAND 0 х NO OPERATION 0 SETS STATUS READ REGISTER IN IRR SETS STATUS READ REGISTER IN ISR

Operation command word format Fia. 4

ESMM

De

OCW3

SMM

0

D

1

Da

Р

D₂

RR

D

RIS

D₀

0

0

D

CMOS PROGRAMMABLE INTERRUPT CONTROLLER

of those that are set. Other ISR bits are reset by a specific EOI and the bit to be reset is specified in the EOI by the program. The SEOI is useful in modes other than fully nested mode. When the M5M82C59AP-2 is in special mask mode ISR bits masked in IMR are not reset by EOI. EOI and SEOI are selected when OCW2 is executed.

Automatic EOI (AEOI)

In the AEOI mode the M5M82C59AP-2 executes nonspecific EOI command automatically at the trailing edge of the last $\overline{\text{INTA}}$ pulse. When AEOI = 1 in ICW4, the M5M82C59AP-2 is put in AEOI mode continuously until reprogrammed in ICW4.

Automatic rotation

The automatic rotation mode is used in applications where many interrupt requests of the same level are expected such as multichannel communication systems In this mode when an interrupt request is serviced, that request is assigned the lowest priority so that if there are other interrupt requests they will have higher priorities. This means that the next request on the interrupt request being serviced must wait until the other interrupt requests are serviced (worst case is waiting for all 7 of the other controllers to be serviced). The priority and serving status are rotated as shown in Fig. 5.

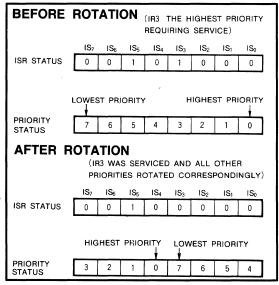


Fig. 5 An example of priority rotation

In the non-specific EOI command automatic rotation mode is selected when R=1, EOI=1, SL=0 in OCW2. The internal priority status is changed by EOI or AEOI commands. The rotation priority A flip-flop is set by R=1, EOI=0 and SL=0 which is useful when the M5M82C59AP-2 is used in the AEOI mode.

Specific rotation

Specific rotation gives the user versatile capabilities in interrupt controlled operations. It serves in those applications in which a specific device's interrupt priority must be altered. As opposed to automatic rotation which automatically sets priorities, specific rotation is completely user controlled. That is, the user selects the interrupt level that is to receive lowest or highest priority. Priority changes can be executed during an EOI command.

Level triggered mode/Edge triggered mode

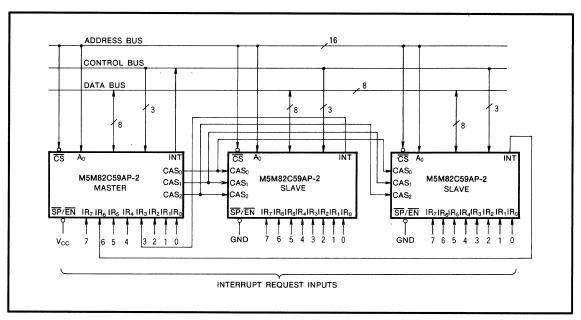
Selection of level or edge triggered mode of the M5M82C59AP-2 is made by ICW1, When using edge triggered mode not only is a transition from low-level to high-level required, but the high-level must be held until the first \overline{INTA} . If the high-level is not held until the first \overline{INTA} , the interrupt request will be treated as if it were input on IR₇, except that the ISR bit is not set. When level triggered mode is used the functions are the same as edge triggered mode except that the transition from low-level to high-level is not required to trigger the interrupt request.

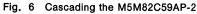
In the level triggered mode and using AEOI mode together, if the high-level is held too long the interrupt will occur immediately. To avoid this situation interrupts should be kept disabled until the end of the service routine or until the IR input returns low-level. In the edge triggered mode this type of mistake is not possible because the interrupt request is edge triggered.

Reading the M5M82C59AP-2 internal status

The contents of IRR and ISR can be read by the CPU with status read. When an OCW3 is issued to the M5M82C59AP-2 and an $\overline{\text{RD}}$ pulse issued the contents of IRR or ISR can be released onto the data bus. A special command is not required to read the contents of IMR. The contents of IMR can be released onto the data bus by issuing an $\overline{\text{RD}}$ pulse when A₀=1. There is no need to issue a read register command every time the IRR or ISR is to be read. Once a read register command is received by the M5M82C59AP-2, it remains valid until it is changed. Remember that the programmer must issue a poll command every time to check whether there is an interrupt request and read the priority level. Polling overrides status read when P=1, RR=1 in OCW3.

CASCADING


The M5M82C59AP-2 can be interconnected in a system of one master with up to 8 slaves to handle up to 64 priority levels. A system of 3 units that can be used with the MELPS85 is shown in Fig. 6.


The master can select a slave by outputting its identification code through the 3 cascade lines. The INT output of each slave is connected to the master interrupt request inputs. When an interrupt request of one of the slaves is to be serviced the master outputs the identification code of the slave through the cascade lines, so the slave will release the vectored address on the next INTA pulse.

MITSUBISHI LSIS M5M82C59AP-2/FP-2/J-2

CMOS PROGRAMMABLE INTERRUPT CONTROLLER

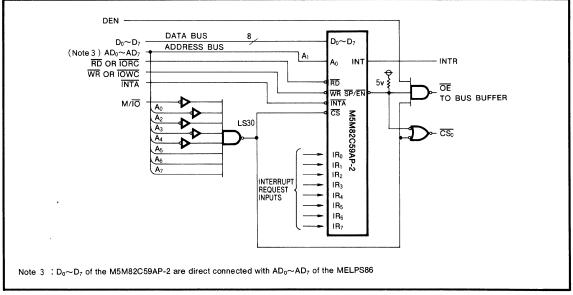


Fig. 7 Example of interface with the MELPS86

MITSUBISHI LSIS M5M82C59AP-2/FP-2/J-2

CMOS PROGRAMMABLE INTERRUPT CONTROLLER

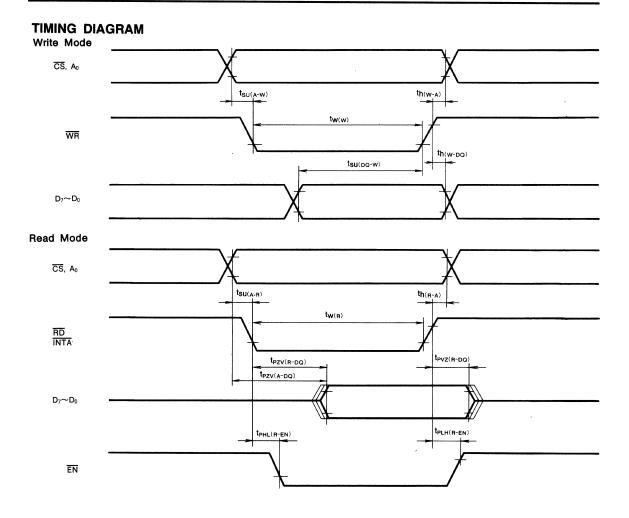
ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit	
Vcc /	Supply voltage		-0.3~7	v	
Vı	Input voltage	With respect to Vss	$-0.3 \sim V_{cc} + 0.3$	v	
Vo Output voltage		-	$-0.3 \sim V_{cc} + 0.3$	v	
I _{онмах}	MAX "H" Output current	All output and I/O pins output "H" level and force same current	500	μA	
Iolmax	MAX "L" Output current	All output and I/O pins output "L" level and force same current	2.5	mA	
Topr	Operating free-air temperature range		-20~75	°C	
Tstg	Storage temperature range		-65~150	ĉ	

RECOMMENDED OPERATING CONDITIONS $(T_a=-20\sim75^{\circ}C, unless otherwise noted)$

Symbol	Parameter		Unit		
	Farameter	Min	Nom	Мах	Onit
Vcc	Supply voltage	4.5	5	5.5	v
Vss	Supply voltage (GND)		0		v

$\label{eq:constraint} \textbf{ELECTRICAL CHARACTERISTICS} ~ (\texttt{T}_a = -20 \sim 75 \degree \texttt{C} \text{, } \texttt{V}_{cc} = 5 \texttt{V} \pm 10 \%, \texttt{V}_{ss} = \texttt{0V}, \texttt{unless otherwise noted})$


Symbol	Brownstern	T	Limits				
	Parameter	Test conditions	Min	Тур	Мах	Unit	
ViH	High-level input voltage		2.0	I	V _{cc} +0.3	v	
VIL	Low-level input voltage		-0.3		0.8	v	
V _{OH}		I _{OH} =-400µA	2.4			v	
	High-level output voltage	I _{OH} =-20µА	4.4				
V _{OH(INT)}		I _{OH} =-400µA	2.4				
	High-level output voltage, interrupt request output	I _{OH} =-100µA	3.5			v	
		I _{OH} =-20µА	4.4	,			
Vol	Low-level output voltage	I _{OL} =2.2mA			0.45	v	
lcc	Standby supply current from V _{CC}	V _I =0V, V _{CC} output open			10	μA	
lн	High-level input current	VI=VCC	-10		10	μA	
liL	Low-level input current	V _i =0V	-10		10	μA	
loz	Off-state output current	Vo=0V~Vcc	-10		10	μA	
	IR pin input current	VI=0V	-300			μA	
I _{LIR2}	IR pin input current	VI=VCC			10	μA	
Ci	Input capacitance	V _{CC} =V _{SS} , f=1MH _Z , 25mVrms, T _a =25℃			10	pF	
Ci/o	Input/output capacitance	V _{CC} =V _{SS} , f=1MH _z , 25mVrms, T _a =25°C			20	pF	

MITSUBISHI LSIs

M5M82C59AP-2/FP-2/J-2

CMOS PROGRAMMABLE INTERRUPT CONTROLLER

CMOS PROGRAMMABLE PERIPHERAL INTERFACE

DESCRIPTION

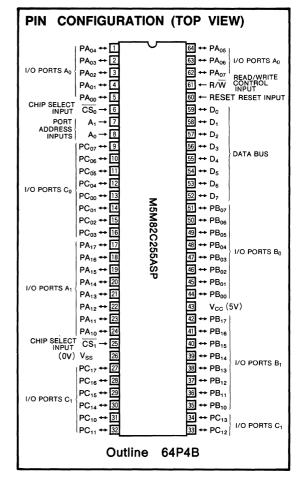
The M5M82C255ASP is a LSI equivalent to two M5M82C55AP-2. It is housed in a single 64-pin shrink DIP. The M5M82C255ASP is fabricated using silicon-gate CMOS technology for a single supply voltage. This LSI is a simple input and output interface for TTL circuits, having 48 input/output pins which correspond to six 8-bit input/output ports.

FEATURES

- Single 5V supply voltage
- Input : TTL compatible (I_{OL}=2.5mA)
 Output : CMOS/TTL compatible
- Each I/O pin has ±4mA driving capability
- Read access time : 120ns
- Timing specification enable easy design of system bus timing
- Noise limiter is built-in to provide high noise margin (RESET, ACK, STB)
- 48 programmable I/O pins
- Direct bit set/reset capability
- 64-pin shrink DIL package (lead pitch 0.07 inch) is used for easy mounting

APPLLICATION

Input/output ports for microprocessor


FUNCTION

A Block diagram of the M5M82C255ASP is shown in the following page. The M5M82C255ASP consists of block 0 and block 1 each of which is functionally equivalent to the M5M82C55AP-2. Block 0 and block 1 have independent chip select inputs \overline{CS}_0 and \overline{CS}_1 , and independent ports PA₀, PB₀, PC₀, PA₁, PB₁ and PC₁. The 8-bit data bus, address inputs A₀ and A₁, and the RESET input are shared by block 0 and block 1. The CPU's \overline{RD} signal and \overline{WR} signal must be multiplexed to generate the R/W signal.

The 48 I/O pins consist of two blocks each with two 12-bit sub blocks A and B. All four blocks can be programmed independently by three mode control commands from the CPU.

In mode 0, four 8-bit I/O ports and four 4-bit I/O ports are available for use as output ports. In mode 1, the 24 I/O pins of each block are divided into groups A and B. In each group, 8 bits are used for input or output data ports. And 4 bits are used for control data ports. In mode 2, 8 bits of group A are used as a bidirectional bus with a 5-bit control signal.

Any of the 8 data bits at port C of each block can set or reset. When reset input (RESET) is high, all ports are set to the input mode (high-impedance state).

CMOS PROGRAMMABLE PERIPHERAL INTERFACE

FUNCTIONAL DESCRIPTION

Block 0 has the same function as block 1. Therefore, block 0 is explained in the following.

R/W (Read/Write) Input

Read function operates when the R/\overline{W} is high-level, and data input at the port is transferred to the CPU. Write function operates when the R/\overline{W} is low-level, and data or control from the CPU are written.

A₀, A₁ (Port address) Input

These input signals are used to select one of the three ports: port A, port B, and port C, or the control register. They are normally connected to the least significant two bits of the address bus.

RESET (Reset) Input

At high-level, the control register is cleared. Then all ports are set to the input mode (high-impedance state).

CS₀, CS₁ (Chip-Select) Input

At low-level, the communication between M5M82C255ASP and the CPU is enabled. When $\overline{CS_0}$ is low-level block 0 is selected, and when $\overline{CS_1}$ is low-level, block 1 is selected. When $\overline{CS_0}$ and $\overline{CS_1}$ are both high-level, the data bus maintains high impedance state and control from the CPU is ignored. In modes 0 or 1, the previous data is stored.

Read/Write Control Logic

The function of this block is to control transfers of both data and control words. It accepts the address signals $(A_0, A_1, \overline{CS_0}, \overline{CS_1})$, I/O control signals (R/\overline{W}) and RESET signal, and then issues commands to both of the control groups.

Data Bus Buffer

This three-state, bidirectional, 8-bit buffer is used to transfer the data when an input or output instruction is executed by the CPU. Control words and status information are also transferred through the data bus buffer.

Group A and Group B Control

Accepting commands from the read/write control logic, the control blocks (Group A, Group B) receive 8 bit control words from the internal data bus and issue the proper commands for the associated ports. Control group A is associated with port A and the 4 high-order bits of port C. Control group B is associated with port B and the 4 low-order bits of port C. The control register, which stores control words, can only be written into.

Port A, Port B and Port C

M5M82C255ASP contains six 8-bit ports whose modes and input/output settings are programmed by the system software.

Port A has an output latch/buffer and an input latch/buffer. Port B has an input-output latch/buffer. Port C has an output latch/buffer and an input buffer. Port C can be divided into two 4-bit ports which can be used as ports for control signals for port A and port B.

The basic operations are shown in Table 1.

Table 1 Basic Operations

A ₁	A ₀	$\overline{C}\overline{S}_0$	\overline{CS}_1	R/W	Operation	
0	0	L	н	н	Data bus ← Port A₀	
0	0	н	L	н	Data bus ← Port A ₁	
0	1	L	н	н	Data bus ← Port B₀	
0	1	н	L	н	Data bus ← Port B ₁	
1	0	L	н	н	Data bus ← Port C₀	
1	0	н	L	н	Data bus ← Port C ₁	
0	0	L	н	L	Port A₀ ← Data bus	
0	0	н	L	L	Port A ₁ ← Data bus	
0	1	L	н	L	Port B₀ ← Data bus	
0	1	н	L	L	Port B ₁ ← Data bus	
1	0	L	н	L	Port C₀ ← Data bus	
1	0	н	L	L	Port C ₁ ← Data bus	
1	1	L	н	L	Control register 0 ← Data bus	
1	1	н	L	L	Control register 1 ← Data bus	
×	х	н	н	x	Data bus is high-impedance state	
1	1	L	н	н	illegal condition	
1	1	н	L	н		

MITSUBISHI LSI₅ M5M82C255ASP

CMOS PROGRAMMABLE PERIPHERAL INTERFACE

CPU INTERFACE

Fig. 1 shows an application with the M5L8085AP as the CPU. In this figure, the M5M82C255ASP is mapped in the I/O space, but it could also be mapped in the memory space. The following description applies to the circuit in the Fig. 1. Characteristics are shown in Figs. 2, 3 and 4.

Chip select signal

The M5M82C255ASP chip select signal $(\overline{CS}_0, \overline{CS}_1)$ is the logical product of the IO \cdot RD (IO \cdot WR) signal derived from the read (write) signal and IO/M signal from the CPU, and the address decoder output generated by decoding the address. Therefore, the timing of chip select signal ($\overline{CS}_0, \overline{CS}_1$) is delayed from that of IO \cdot RD (IO \cdot WR) signal. The chip select signals \overline{CS}_0 and \overline{CS}_1 must not be active simultaneously.

Read operation

The read operation of M5M82C255ASP starts when RD . $\overline{CS} = 1$, just as with the M5M82C55AP-2. When the M5L8085AP CPU enters into I/O read operation, the M5M-82C255ASP R/W signal, obtained by inverting the IO · WR signal, is kept at high-level. The actual read operation starts when the chip select signal is activated by the IO · RD signal and address decoder output. The access time of the M5M82C255ASP is specified by the falling edge of the chip select signal, and is defined as $t_{\text{PZV}(\text{CS-DQ})}$. Fig. 3 shows the read timing. The delay time (marked by *) extends from the time when the RD signal of CPU becomes active until the chip select signal becomes active. It is obtained by adding the delay time of LS02 and LS51 in Fig. 1. Table 2 shows the gate delay time of LS02, LS51, LS04 and LS00 used in the circuit of Fig. 1. The sum of the gate delay times of LS02 and LS51 is 35ns, after which the actual read operation starts. The access time of the M5M82C255ASP is 120ns maximum, so the total access time is 155ns maximum. As the access time of the M5M82C255ASP is specified by the falling edge of the

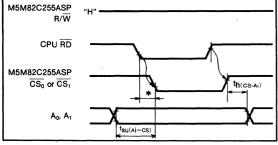


Fig. 3 Read operation of the M5M82C255ASP

Table 2 Gate delay time

chip select signal, care must be taken when connecting the
M5M82C255ASP to a high-speed microprocessor.

The address setup time and hold time of the M5M82C-55AP-2 read signal are defined as $t_{SU(A-R)}$ and $t_{h(R-A)}$ but, in the M5M82C255ASP, they are defined as $t_{SU(AI-CS)}$ and t_{h} (_{CS-AI}) due to above reason, where A_i means address inpus of A₀ or A₁. The time is specified to be 0ns minimum for each.

Note The term "address" used in describing the address setup time and address hold time of M5M82C55AP-2 means the address inputs A_0, A_1 and \overline{CS}

Write operation

Fig. 4 shows the write timing. The phase relationship of the R/ \overline{W} and chip select signals is marked by an \bigstar . For the M5M82C55AP-2, the phase relationship is defined as the address setup time $t_{SU(A-W)}$ (or t_{AW}) before \overline{WR} , and is specified to be 0ns minimum. In the M5M82C255ASP, however, the phase relationship is reversed by the circuit which generates the control signal (See Fig. 1), when the chip select signal becomes active after the R/ \overline{W} signal goes low-level. Therefore, we have discarded the previous definition. The phase difference of write signal and chip select signal is defined as $t_{SU(CS-W)}$ and specified as 0ns maximum and - 30ns minimum. The phase difference of the write signal and address inputs of A₀ and A₁ is defined as $t_{SU(AI-W)}$ and the minimum value is - 30ns.

This means that the address inputs of A₀ and A₁ and the chip select signal must become stable within 30ns after the R/ \overline{W} signal goes low-level. The signals A₀ and A₁ can become stable before R/ \overline{W} goes low-level, but the chip select signal must be activated after the R/ \overline{W} signal goes low-level. This is required because, if the chip select signal is active before R/ \overline{W} signal, the R/ \overline{W} signal will be highlevel, causing the M5M82C255ASP to enter the read operation. The address inputs of A₀ and A₁ will write properly as long as the minimum value is -30ns.

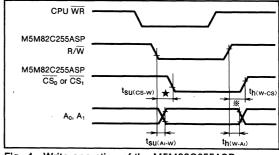


Fig. 4 Write operation of the M5M82C255ASP

Tune	LS	02	LS	51	LS	504	LS	500	Unit
Туре	Тур	Max	Тур	Мах	Тур	Max	Тур	Max	Unit
t _{PLH}	6	15	6	20	6	15	6	15	nsec
t _{PHL}	6	15	8	20	6	15	6	15	nsec

CMOS PROGRAMMABLE PERIPHERAL INTERFACE

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Rat	Ratings		
Vcc	Supply voltage		-0.	$-0.3 \sim 7$ -0.3 \sim V_{cc}+0.3		
Vi	Input voltage	With respect to V _{SS}	-0.3~			
Vo	Output voltage		-0.3~	Vcc+0.3	V	
1	MAX "H"	All output and I/O pins output	Port	-4	mA	
юнмах	Output current	"H" level and force same current.	Data bus	500	μA	
1	MAX "L"	All output and I/O pins output	Port	4	mA	
OLMAX	Output current	"L" level and force same current.	Data bus	2.5	mA	
Topr	Operating temperature range		-20	0~75	°C	
⊤stg	Storage temperature		-65	°C		

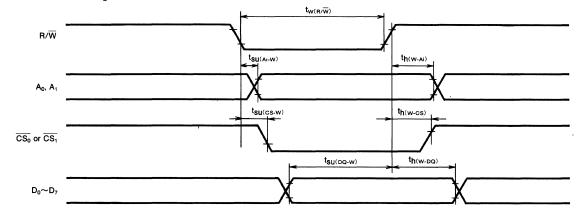
RECOMMENDED OPERATING CONDITIONS ($T_a = -20 \sim 75^{\circ}C$, unless otherwise noted)

Oumbol	Basamatar		11		
Symbol	Parameter	Min	Nom	Max	Unit
Vcc	Supply voltage	4.5	5	5.5	v
Vss	Supply voltage (GND)	T	0		v

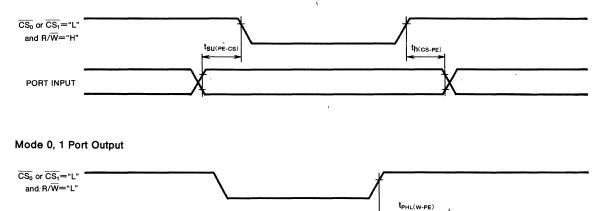
ELECTRICAL CHARACTERISTICS ($T_a = -20 \sim 75^{\circ}C$, $V_{cc} = 5V \pm 10\%$, $V_{ss} = 0V$, unless otherwise noted)

Symbol	Parameter	Test conditions		Limits		
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
ViH	High-level input voltage		2.0		V _{cc} +0.3	v
VIL	Low-level input voltage		-0.3		0.8	V
Voн	High-level output voltage (Note 2	, I _{OH} =-400μA	2.4			v
∙он	High-level output voltage (Note 2) I _{OH} =-20µА	4.4			v
Vol	Low-level output voltage (Note 2) I _{OL} =2.5mA			0.4	V
	Supply support	All Input Mode			10	
lcc	Supply current	RESET=0V, Other Pins=V _{CC}			10	μA
l _{IL}	Input leak current	$V_{i}=0V, V_{CC}$			±10	μA
loz	Off-state output current	V _o =0V~V _{cc}			±10	μA
Ci	Input capacitance	$f=1MHz$, 25mVrms, $T_a=25^{\circ}C$			10	pF
C _{i/o}	I/O capacitance	0V except test pins			30	pF

Note 1 : Current flowing into an IC is positive (no sign). 2 : The maximum value of the output current should be held within ±4mA at each port pin.



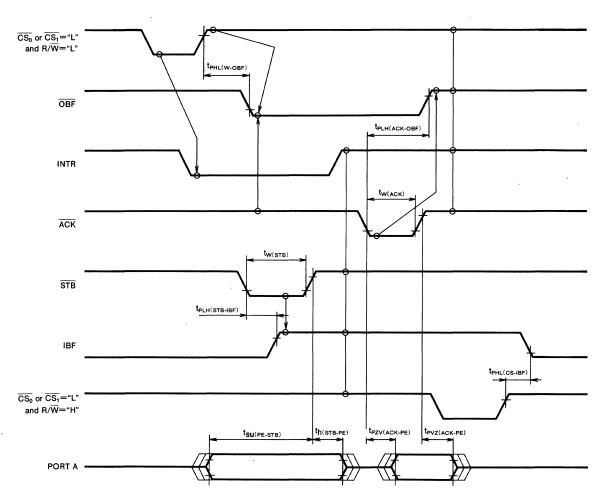
MITSUBISHI LSIS M5M82C255ASP

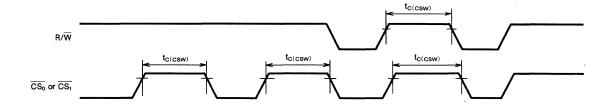

CMOS PROGRAMMABLE PERIPHERAL INTERFACE

TIMING DIAGRAM Data Bus Read Timing R/\overline{W} $\overline{CS_0 \text{ or } \overline{CS_1}}$ A_0, A_1 $D_0 \sim D_7$

Data Bus Write Timing

Mode 0 Port Input


PORT OUTPUT


t_{PLH(W-PE)}

MITSUBISHI LSIS M5M82C255ASP

CMOS PROGRAMMABLE PERIPHERAL INTERFACE

Note 5 : $INTR = IBF \cdot \overline{MASK} \cdot \overline{STB} \cdot \overline{CS_0}$ or $\overline{CS_1} + \overline{OBF} \cdot \overline{MASK} \cdot \overline{ACK} \cdot R/\overline{W}$

Mode 2 Bidirectional

.

OPERATION

Data Bus Buffer

This 3-state bidirectional 8-bit buffer is used to transfer the data while input or output instructions are being executed by the CPU. Command and address information is also transferred through the data bus buffer.

Read/Write Control Logic

The read/write control logic controls the transfer of data and commands by interpreting the signals (\overline{CE} , \overline{RD} , \overline{WR} , IO/ \overline{M} , ALE and RESET) from CPU.

Bidirectional Address/Data Bus (AD₀~AD₇)

The bidirectional address/data bus is a 3-state 8-bit bus. The 8-bit address is latched in the internal latch by the falling edge of ALE. Then if IO/\overline{M} input signal is at high-level, the address of I/O port, counter/timer, or command register is selected. If it is at low-level, address of RAM is selected.

The 8-bit data is transferred by read input (RD) or write input (\overline{WR}) .

Chip Enable Input (CE)

When $\overline{\text{CE}}$ is at low-level, the address information on address/data bus is stored in the M5L8155P.

Read Input (RD)

When $\overline{\text{RD}}$ is at low-level, the data bus buffer is active. If IO/ $\overline{\text{M}}$ input signal is at low-level, the contents of RAM are read through the address/data bus. If IO/ $\overline{\text{M}}$ input is at high-level, the contents of selected I/O port or counter/timer are read through the address/data bus.

Write Input (WR)

When \overline{WR} is at low-level, the data on the address/data bus are written into RAM if IO/\overline{M} is at low-level, or they are written into I/O port, counter/timer or command register if IO/\overline{M} is at high-level.

Address Latch Enable Input (ALE)

An address on the address/data bus is latched in the M5L8155P on the falling edge of ALE along with the levels of \overline{CE} and IO/\overline{M} .

IO/Memory Input (IO/M)

When IO/\overline{M} is at low-level, the RAM is selected, while at high-level the I/O port, counter/timer or command register are selected.

I/O Port A (PA₀~PA₇)

Port A is an 8-bit general-purpose I/O port. Input/output setting is controlled by the system software.

I/O Port B (PB₀~PB₇)

Port B is an 8-bit general-purpose I/O port. Input/output setting is controlled by the system software.

I/O Port C (PC₀~PC₅)

Port C is a 6-bit I/O port that can also be used to output control signals of port A (PA) or port B (PB). The functions of port C are controlled by the system software. When port C is used to output control signals of ports A or B, the assignment of the signals to the pins is as shown in Table 1.

Table 1 Pin assignment of control signals of port C

Pin		Function	
PC ₅	B STB	(port B strobe)	
PC ₄	B BF	(port B buffer full)	
PC₃	B INTR	(port B interrupt)	
PC ₂	A STB	(port A strobe)	
PC ₁	A BF	(port A buffer full)	
PC ₀	A INTR	(port A interrupt)	•

Timer Input (TIMER IN)

The signal on this input terminal is used by the counter/timer for counting events or time. (3MHz max.)

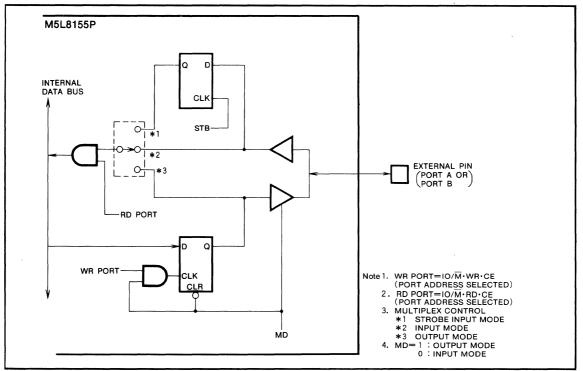
Timer Output (TIMER OUT)

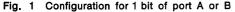
A square wave signal or pulse from the counter/timer is output through this pin when in the operation mode.

Command Register (8 bits)

The command register is an 8-bit latched register. The loworder 4 bits (bits $0 \sim 3$) are used for controlling and determination of mode of the ports. Bits 4 and 5 are used as interrupt enable flags for ports A and B when port C is used as a control port. Bits 6 and 7 are used for controlling the counter/timer. The contents of the command register are rewritten by output instructions (I/O address XXXX000).

Details of the functions of the individual bits of the command register are shown in Table 2.


Table 2 Bit functions of the command register


Bit	Symbol	Fun	ction		
0	PA	PORT A I/O SET	1 [.] Output port A 0: Input port A		
1	РВ	PORT B I/O SET	1 [.] Output port B 0 [.] Input port B		
2	PC ₁	PORT C SET	00 [.] ALT1 11. ALT2		
3	PC ₂		01 ALT3 10 [.] ALT4		
4	IEA	PORT A INTERRUPT ENABLE FLAG	 Enable interrupt Disable interrupt 		
5	IEB	PORT B INTERRUPT ENABLE FLAG	 Enable interrupt Disable interrupt 		
6	TM1				
7	TM2 stopped) 10 [.] Counter/timer operation discontinued after the curr counter/timer operation is completed 11: Counter/timer operation started				

CONFIGURATION OF PORTS

A block diagram of 1 bit of ports A and B is shown in Fig. 1. While port A or B is programmed as an output port, if the port is addressed by an input instruction, the contents of the selected port can be read. When a port is put in input mode, the output latch is cleared and writing into the output latch is disabled. Therefore when a port is changed to output mode from input mode, low-level signals are output through the port. When a reset signal is applied, all 3 ports (PA, PB, and PC) will be input ports and their output latches are cleared. Port C has the same configuration as ports A and B in modes ALT1 and ALT2.

Address	RD	WR	Function
XXXXX000	L	н	AD bus ← Status register
~~~~~000	н	L	Command register ← AD bus
XXXXX001	L	н	AD bus ← Port A
*********	н	L	Port A ← AD bus
XXXXX010	L	н	AD bus ← Port B
********	н	L	Port B ← AD bus
XXXXX011	L	н	AD bus ← Port C
******	н	L	Port C ← AD bus

#### Table 6 Port control signal levels at ALT3 and ALT4

Control Signal	Output mode	Input mode
STB	Input	Input
BF	"L"	"L"
INTR	"H"	"∟"

The basic functions of the I/O ports are shown in Table 5. The control signal levels to ports A and B, when port C is programmed as a control port, are shown in Table 6.

#### **COUNTER/TIMER**

The counter/timer is composed of a 14-bit counting register and 2 mode flags. The register has two sections: I/O address XXXXX100 is assigned to the low-order 8 bits and I/ O address XXXXX101 is assigned to the high-order 6 bits and timer mode flag 2 bits. The low-order bits  $0 \sim 13$  are used for counting or timing. The counter is initialized by the program and then counted down to 0. The initial value can be ranged from 2₁₆ to 3FFF₁₆. Bits 14 and 15 are used as mode flags.

The mode flags select 1 of 4 modes with functions as follows:

Mode 0: Outputs high-level signal during the former half of the counter operation

Outputs low-level signal during the latter half of the counter operation



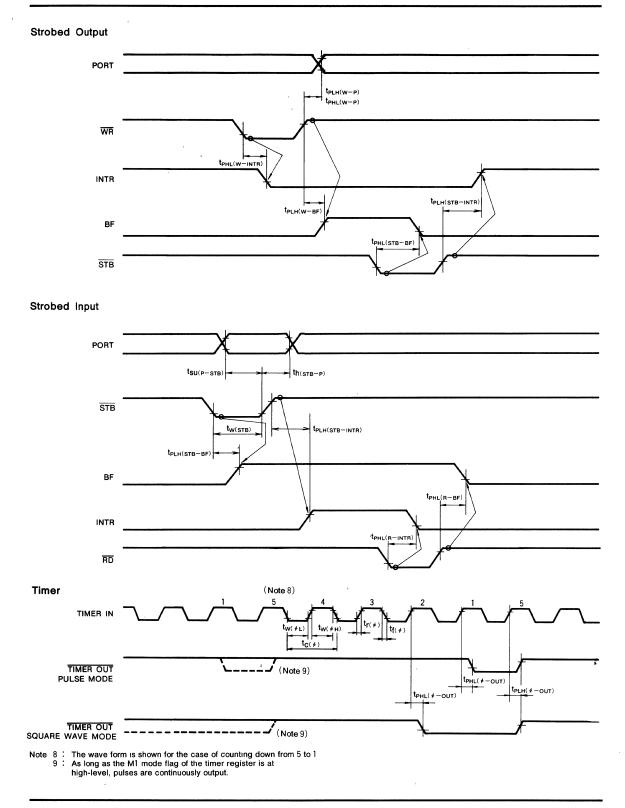
Symbol	Parameter	Test conditions		Unit		
Gymbol		rest conditions	Min	Тур	Мах	Unit
t _{su(A-L)}	Address setup time before latch		50			ns
th(L-A)	Address hold time after latch		80			ns
td(L-RW)	Delay time, latch to read/write		100			ns
t _{W(L)}	Latch pulse width		100			ns
td(RW-L)	Delay time, read/write to latch		20			ns
t _{w(RW)}	Read/write pulse width		250			ns
tsu(DQ-W)	Data setup time before write		150			ns
th(w-DQ)	Data hold time after write		0			ns
t _{C(RW)}	Read/write cycle time		300			ns
t _{SU(P-R)}	Port setup time before read		70			ns
th(R-P)	Port hold time after read		50			ns
t _{w(sтв)}	Strobe pulse width		200			ns
tsu(P-STB)	Port setup time before strobe		50			ns
t _{h(sтв-р)}	Port hold time after strobe		120			ns
tw(≠H)	Timer input high-level pulse width		120			ns
tw(≠L)	Timer input low-level pulse width		80			ns
t _{C(∮)}	Timer input cycle time		320		DC	ns
t _{r(∳)}	Timer input rise time				30	ns
tf(≠)	Timer input fall time				30	ns

### TIMING REQUIREMENTS ( $T_a = -20 \sim 75^{\circ}$ C, $V_{cc} = 5 V \pm 5 \%$ , $V_{ss} = 0V$ , unless otherwise noted)

### SWITCHING CHARACTERISTICS ( $T_a = -20 \sim 75$ °C, $V_{cc} = 5$ V± 5%, $V_{ss} = 0$ V, unless otherwise noted.)

Oursels of	Baramatar	Test and ditions	Limits			
Symbol	Parameter	Test conditions	Min	Тур	Мах	Unit
t _{PZV(R-DQ)}	Propagation time from read to data output				170	ns
t _{PZV(A-DQ)}	Propagation time from address to data output				400	ns
t _{PVZ(R-DQ)}	Propagation time from read to data floating (Note 6)	7	0		100	ns
t _{PHL(W-P)}	Drenegation time from write to date output	1			400	
t _{PLH(W-P)}	Propagation time from write to data output				400	ns
t _{PLH(STB-BF)}	Propagation time from strobe to BF flag				400	ns
t _{PHL(R-BF)}	Propagation time from read to BF flag	0 - 150-5			400	ns
tplh(stb-intr)	Propagation time from strobe to interrupt	$-C_L = 150 \text{pF}$			400	ns
t _{PHL(R-INTR)}	Propagation time from read to interrupt	7			400	ns
t _{PHL(STB-BF)}	Propagation time from strobe to BF flag	7			400	ns
t _{PLH(W-BF)}	Propagation time from write to BF flag	1			400	ns
t _{PHL(W-INTR)}	Propagation time from write to interrupt	1			400	ns
t _{PHL} (∮-OUT)	Drans and in a firm of the or in a day to dim on a stand	7			400	
t _{PLH} ( #-OUT)	Propagation time from timer input to timer output				400	ns

Note 6 : Test conditions are not applied. 7 : A.C Testing waveform Input pulse level Input pulse rise time Input pulse fall time Reference level input output


0.45~2.4V 20ns 20ns V_{IH}=2V, V_{IL}=0.8V V_{OH}=2V, V_{OL}=0.8V

2.4 **X**².8 0.8 0.45 -



## MITSUBISHI LSIS M5L8155P

## 2048-BIT STATIC RAM WITH I/O PORTS AND TIMER





## OPERATION

## Data Bus Buffer

This 3-state bidirectional 8-bit buffer is used to transfer the data while input or output instructions are being executed by the CPU. Command and address information is also transferred through the data bus buffer.

#### **Read/Write Control Logic**

The read/write control logic controls the transfer of data and commands by interpreting the signals (CE,  $\overline{RD}$ ,  $\overline{WR}$ , IO/ $\overline{M}$ , ALE and RESET) from CPU.

#### Bidirectional Address/Data Bus (AD₀~AD₇)

The bidirectional address/data bus is a 3-state 8-bit bus. The 8-bit address is latched in the internal latch by the falling edge of ALE. Then if  $IO/\overline{M}$  input signal is at high-level, the address of I/O port, counter/timer, or command register is selected. If it is at low-level, address of RAM is selected.

The 8-bit data is transferred by read input (RD) or write input  $(\overline{WR})$ .

#### Chip Enable Input (CE)

When CE is at high-level, the address information on address/data bus is stored in the M5L8156P.

#### Read Input (RD)

When  $\overline{RD}$  is at low-level, the data bus buffer is active. If  $\overline{IO}/\overline{M}$  input signal is at low-level, the contents of RAM are read through the address/data bus. If  $\overline{IO}/\overline{M}$  input is at high-level, the contents of selected I/O port or counter/timer are read through the address/data bus.

#### Write Input (WR)

When  $\overline{WR}$  is at low-level, the data on the address/data bus are written into RAM if  $IO/\overline{M}$  is at low-level, or they are written into I/O port, counter/timer or command register if  $IO/\overline{M}$  is at high-level.

#### Address Latch Enable Input (ALE)

An address on the address/data bus is latched in the M5L8156P on the falling edge of ALE along with the levels of CE and  $IO/\overline{M}$ .

#### IO/Memory Input (IO/M)

When IO/M is at low-level, the RAM is selected, while at high-level the I/O port, counter/timer or command register are selected.

#### I/O Port A (PA₀~PA₇)

Port A is an 8-bit general-purpose I/O port. Input/output setting is controlled by the system software.

#### I/O Port B (PB₀~PB₇)

Port B is an 8-bit general-purpose I/O port. Input/output setting is controlled by the system software.

#### I/O Port C (PC₀~PC₅)

Port C is a 6-bit I/O port that can also be used to output control signals of port A (PA) or port B (PB). The functions of port C are controlled by the system software. When port C is used to output control signals of ports A or B, the assignment of the signals to the pins is as shown in Table 1.

#### Table 1 Pin assignment of control signals of port C

Pin		Function
PC ₅	B STB	(port B strobe)
PC₄	BBF	(port B buffer full)
PC ₃	B INTR	(port B interrupt)
PC ₂	A STB	(port A strobe)
PC1	A BF	(port A buffer full)
PC ₀	A INTR	(port A interrupt)

#### Timer Input (TIMER IN)

The signal on this input terminal is used by the counter/timer for counting events or time. (3MHz max.)

#### Timer Output (TIMER OUT)

A square wave signal or pulse from the counter/timer is output through this pin when in the operation mode.

#### **Command Register (8 bits)**

The command register is an 8-bit latched register. The loworder 4 bits (bits  $0 \sim 3$ ) are used for controlling and determination of the mode of the ports. Bits 4 and 5 are used as interrupt enable flags for ports A and B when port C is used as a control port. Bits 6 and 7 are used for controlling the counter/timer. The contents of the command register are rewritten by output instructions (I/O address XXXXX000).

Details of the functions of the individual bits of the command register are shown in Table 2.

#### Table 2 Bit functions of the command register

Bit	Symbol	Fun	ction	
0	PA	PORT A I/O SET	1: Output port A 0: Input port A	
1	РВ	PORT B I/O SET	1. Output port B 0 [.] Input port B	
2	PC ₁	PORT C SET	00. ALT1 11. ALT2	
3	PC ₂		01. ALT3 10 [.] ALT4	
4	IEA	PORT A INTERRUPT ENABLE FLAG	<ol> <li>Enable interrupt</li> <li>Disable interrupt</li> </ol>	
5	IEB	PORT B INTERRUPT ENABLE FLAG	<ol> <li>1[.] Enable interrupt</li> <li>0: Disable interrupt</li> </ol>	
6	тм1	COUNTER/TIMER CONTROL 00. No influence on counter/timer operation 01. Counter/timer operation discontinued (If not already		
7	тм2	stopped) 10: Counter/timer operation counter/timer operation : 11: Counter/timer operation :	•	



## **CONFIGURATION OF PORTS**

A block diagram of 1 bit of ports A and B is shown in Fig. 1. While port A or B is programmed as an output port, if the port is addressed by an input instruction, the contents of the selected port can be read. When a port is put in input mode, the output latch is cleared and writing into the output latch is disabled. Therefore when a port is changed to output mode from input mode, low-level signals are output through the port. When a reset signal is applied, all 3 ports (PA, PB, and PC) will be input ports and their output latches are cleared. Port C has the same configuration as ports A and B in modes ALT1 and ALT2.

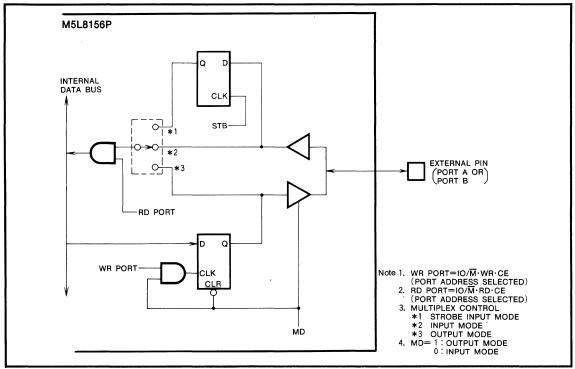



Fig. 1 Configuration for 1 bit of port A or B

Table	5	Basic	functions	of	1/0	ports
-------	---	-------	-----------	----	-----	-------

Address	RD	WR	Function
XXXXX000	L	н	AD bus ← Status register
*******	н	L	Command register ← AD bus
	L	н	AD bus ← Port A
XXXXX001	н	L	Port A ← AD bus
XXXXX010	L	н	AD bus ← Port B
	н	L	Port B ← AD bus
XXXXX011	L	н	AD bus ← Port C
	н	L	Port C ← AD bus

Table 6 Port control signal levels at ALT3 and ALT4

Control Signal	Output mode	Input mode
STB	Input	Input
BF	"L"	"L"
INTR	"H"	"L"

The basic functions of the I/O ports are shown in Table 5. The control signal levels to ports A and B, when port C is programmed as a control port, are shown in Table 6.

#### **COUNTER/TIMER**

The counter/timer is composed of a 14-bit counting register and 2 mode flags. The register has two sections: I/O address XXXXX100 is assigned to the low-order 8 bits and I/ O address XXXXX101 is assigned to the high-order 6 bits and timer mode flag 2 bits. The low-order bits  $0 \sim 13$  are used for counting or timing. The counter is initialized by the program and then counted down to 0. The initial value can be ranged from  $2_{16}$  to  $3FF_{16}$ . Bits 14 and 15 are used as mode flags.

The mode flags select 1 of 4 modes with functions as follows:

Mode 0: Outputs high-level signal during the former half of the counter operation Outputs low-level signal during the latter half of the counter operation



## M5L8156P

## 2048-BIT STATIC RAM WITH I/O PORTS AND TIMER

Symbol	Parameter	Test conditions		Limits		
Symbol	Parameter	rest conditions	Min	Тур	Мах	Unit
t _{SU(A-L)}	Address setup time before latch		50			ns
t _{h(L-A)}	Address hold time after latch		80			ns
td(L-RW)	Delay time, latch to read/write		100			ns
t _{W(L)}	Latch pulse width	1	100			ns
td(RW-L)	Delay time, read/write to latch		20			ns
t _{w(RW)}	Read/write pulse width	]	250			ns
tsu(DQ-W)	Data setup time before write		150			ns
th(w-DQ)	Data hold time after write '		0			ns
t _{C(RW)}	Read/write cycle time		300			ns
t _{su(P-R)}	Port setup time before read		70			ns
th(R-P)	Port hold time after read		50			ns
t _{w(STB)}	Strobe pulse width		200			ns
t _{SU(P-STB)}	Port setup time before strobe		50			ns
th(STB-P)	Port hold time after strobe		120			ns
t _{w(∳H)}	Timer input high-level pulse width		120			ns
tw(≱L)	Timer input low-level pulse width	]	80			ns
<b>t</b> _{C(∲)}	Timer input cycle time	]	320		DC	ns
t _{r(∳)}	Timer input rise time	]			30	ns
tf(≠)	Timer input fall time	]			30	ns

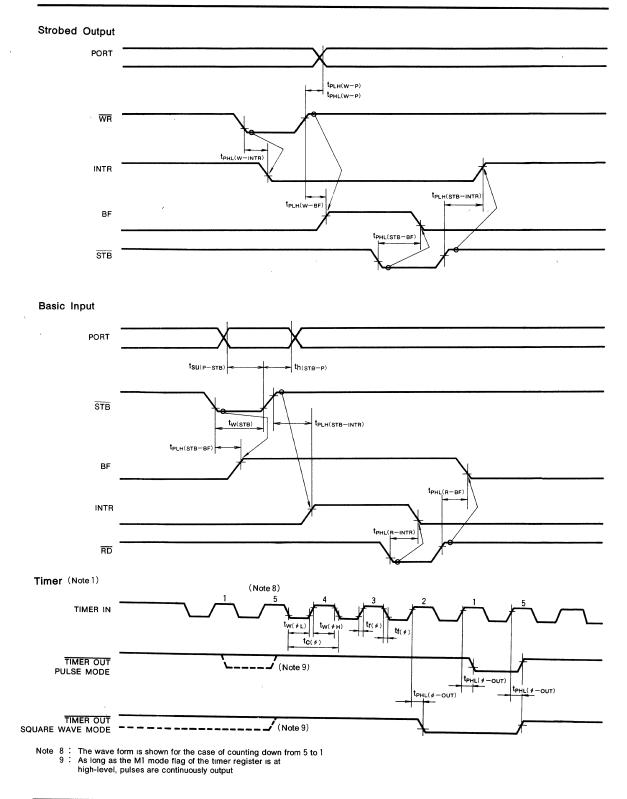
#### TIMING REQUIREMENTS ( $T_a = -20 \sim 75^{\circ}$ , $V_{cc} = 5 V \pm 5 \%$ , $V_{ss} = 0V$ , unless otherwise noted)

## SWITCHING CHARACTERISTICS ( $T_a = -20 \sim 75^{\circ}C$ , $V_{cc} = 5 V \pm 5 \%$ , $V_{ss} = 0V$ , unless otherwise noted.)

Symbol	Parameter	Test conditions		Limits		
	Parameter	lest conditions	Min	Тур	Мах	Unit
t _{PZV(R-DQ)}	Propagation time from read to data output				170	ns
t _{PZV(A-DQ)}	Propagation time from address to data output				400	ns
t _{PVZ(R-DQ)}	Propagation time from read to data floating (Note 6)		0		100	ns
t _{PHL(W-P)}	PHL(W-P)				400	
t _{PLH(W-P)}	Propagation time from write to data output				400	ns
t _{PLH(STB-BF)}	Propagation time from strobe to BF flag				400	ns
t _{PHL(R-BF)}	Propagation time from read to BF flag	0 150 5			400	ns
tPLH(STB-INTR)	Propagation time from strobe to interrupt	$C_L = 150 pF$			400	ns
t _{PHL(R-INTR)}	Propagation time from read to interrupt				400	ns
t _{PHL(STB-BF)}	Propagation time from strobe to BF flag				400	ns
t _{PLH(W-BF)}	Propagation time from write to BF flag				400	ns
t _{PHL(W-INTR)}	Propagation time from write to interrupt				400	ns
t _{PHL} (∮-OUT)					400	
t _{PLH} (∮-OUT)	Propagation time from timer input to timer output				400	ns

7 : A.C Testing waveform Input pulse level 0.45~2.4V Input pulse rise time Input pulse fall time Reference level input output

20ns 20**ns**  $V_{IH} = 2V, V_{IL} = 0.8V$  $V_{OH} = 2V, V_{OL} = 0.8V$ 


2.4-**1**2 2 <u> 10.8</u> 0.87 0.45



## **MITSUBISHI LSIs**

## M5L8156P

## 2048-BIT STATIC RAM WITH I/O PORTS AND TIMER





#### **OPERATION**

The M5L8251AP-5 interfaces with the system bus as shown in Fig.1, positioned between the CPU and the modem or terminal equipment, and offers all the functions required for data communication.

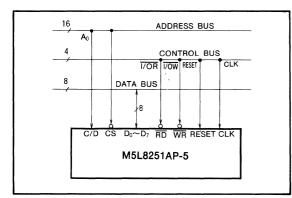



Fig. 1 M5L8251AP-5 interface to CPU system bus

When using the M5L8251AP-5, it is necessary to program, as the initial setting, assignments for synchronous/asynchronous mode selection, baud rate, character length, parity check, and even/odd parity selection in accordance with the communication system used. Once programming is completed, functions appropriate to the communication system can be carried out continuously.

When initial setting of the USART is completed, data communication becomes possible. Though the receiver is always in the enable state, the transmitter is placed in the transmitter-enable state ( $T_xEN$ ) by a command instruction, and the application of a low-level signal to the  $\overline{CTS}$  pin prompts data-transfer start-up. Until this condition is satisfied, transmission is not executed. On receiving data, the receiver informs the CPU that reading for the receiver data in the USART by the CPU has become possible (the  $R_xRDY$  terminal has turned to high-level). Since data reception and the entry of the CPU into the data-readable state are output as status information, the CPU can access USART status without accessing the  $R_xRDY$  terminal.

During receiving operation, the USART checks errors and gives out status information. There are three types of errors: parity, overrun, and frame. Even though an error occurs, the USART continues its operations, and the error state is retained until error reset (ER) is effected by a command instruction. The M5L8251AP-5 access methods are listed in Table 1.

#### Table 1 M5L8251AP-5 Access Methods

C/D	RD	WR	CS	Function
L	L	н	L	Data bus ← Data in USART
L	н	L	L	USART ← Data bus
н	L	н	L	Data bus ← Status
н	н	L	L	Control ← Data bus
х	н	н	L	3-State ← Data bus
х	х	х	н	3-State ← Data bus

#### **Read/Write Control Logic**

This logic consists of a control word register and command word register. It receives signals from the CPU control bus and generates internal-control signals for the elements.

#### **Modem Control Circuit**

This is a general-purpose control-signal circuit designed to simplify the interface to the modem. Four types of control signal are available: output signals  $\overline{\text{DTR}}$  and  $\overline{\text{RTS}}$  are controlled by command instructions, input signal  $\overline{\text{DSR}}$  is given to the CPU as status information and input signal  $\overline{\text{CTS}}$  controls direct transmission.

#### **Data-Bus Buffer**

This is an 8-bit 3-state bidirectional bus through which control words, command words, status information, and transfer data are transferred. Fig. 2 shows the structure of the databus buffer.

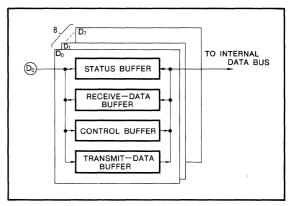



Fig. 2 Data-bus-buffer structure

#### **Transmit Buffer**

This buffer converts parallel-format data given to the databus buffer in to serial data with addition of a start bit, stop bits and a parity bit, and sends out the converted data through the  $T_xD$  pin based on the control signal.

#### **Transmit-Control Circuit**

This circuit carries out all the controls required for serial data transmission. It controls transmitter data and outputs the signals required by external devices in accordance with the instructions of the read/write control logic.



#### Clear-To-Send Input (CTS)

When the  $T_x EN$  bit  $(D_0)$  of the command instruction has been set to 1 and the  $\overline{CTS}$  input is low-level serial data is sent out from the  $T_x D$  pin. Usually this is used as a clear-to-send signal for the modem

Note: CTS indicates the modem status as follows:

ON means data transmission is possible;

OFF means data transmission is impossible.

#### Transmitter-Empty Output (T_xEMPTY)

When no transmisison characters are left in the transmit buffer, this pin enters the high-level state. In the asynchronous mode, the following transmission character is shifted to the transmit buffer when it is loaded from the CPU. Thus, it is automatically reset. In the synchronous mode, a SYNC character is loaded automatically on the transmit buffer when no transfer-data characters are left. In this case, howeyer, the T_xEMPTY does not enter the low-level state when a SYNC character has been sent out, since T_xEMPTY="H" denotes the state in which there is no transfer character and one or two SYNC characters are being transferred or the state in which a SYNC character is being transferred as a filler. T_xEMPTY is unrelated to the T_xEN bit of the command instruction.

#### Transmission-Data Output (T_xD)

Parallel-format transmission characters loaded on the M5L8251AP-5 by the CPU are assembled into the format designated by the mode instruction and sent in serial-data form via the  $T_xD$  pin. Data is output, however, only in cases where the  $D_0$  bit ( $T_xEN$ ) of the command instruction is 1 and the  $\overline{CTS}$  terminal is in the low-level state. Once reset, this pin is kept at the mark status (high level) until the first character is sent.

#### **Clock Input (CLK)**

This system-clock input is required for internal-timing generation and is usually connected to the clock-output (CLK) pin of the M5L8085AP. Although there is no direct relation with the data-transfer baud rate, the clock-input (CLK) frequency is more than 30 times the  $\overline{T_xC}$  or  $\overline{R_xC}$  input frequency in the case of the synchronous system and more than 4.5 times in the case of the asynchronous system.

#### Reset Input (RESET)

Once the USART is shifted to the idle mode by a high-level input, this state continues until a new control word is set Since this is a master reset, it is always necessary to load a control word following the reset process. The reset input requires a minimum 6-clock pulse width.

#### Data-Set Ready Input (DSR)

This is a general-purpose input signal, but is usually used as a data-set ready signal to test modem status. Its status can be known from the status reading process. The  $D_7$  bit of the status information equals 1 when the  $\overline{\text{DSR}}$  pin is in the low-level state, and 0 when in the high-level state.

 $\overline{\text{DSR}}$ ="L"→D7 bit of status information=1

DSR="H"→D7 bit of status information=0

Note: DSR indicates modem status as follows:

ON means the modem can transmit and receive; OFF means it cannot.

#### Request-To-Send Output (RTS)

This is a general-purpose output signal but is used as a request-to-send signal for the modem. The  $\overline{\text{RTS}}$  terminal is controlled by the D₅ bit of the command instruction. When D₅ is equal to 1,  $\overline{\text{RTS}}$ ="L", and when D₅ is 0,  $\overline{\text{RTS}}$ ="H".

Command register  $D_5=1 \rightarrow \overline{RTS}=$  "L"

Command register  $D_5 = 0 \rightarrow \overline{RTS} = "H"$ 

Note: RTS controls the modem transmission carrier as follows:

ON means carrier dispatch;

OFF means carrier stop.

## Data-Terminal Ready Output (DTR)

This is a general-purpose output signal, but is usually used as a data-terminal ready or rate-select signal to the modem. The  $\overline{DTR}$  pin is controlled by the D₁ bit of the command instruction; if D₁=1,  $\overline{DTR}$ ="L", and if D₁=0,  $\overline{DTR}$ ="H".

 $D_1$  of the command register=1 $\rightarrow$ DTR="L"

 $D_1$  of the command register= $0 \rightarrow \overline{DTR} = "H"$ 

#### Receiver-Clock Input (R_xC)

This clock signal controls the baud rate for the sending in of characters via the  $\overline{R_x D}$  pin. The data is shifted in by the rising edge of the  $\overline{R_x C}$  signal. In the synchronous mode, the  $\overline{R_x C}$  frequency is equal to the actual baud rate. In the asynchronous mode, the frequency is specified as 1, 16, or 64 times the baud rate by mode setting. This relationship is parallel to that of  $\overline{T_x C}$ , and in usual communication-line systems the transmission and reception baud rates are equal. The  $\overline{T_x C}$  and  $\overline{R_x C}$  terminals are, therefore, used connected to the same baud-rate generator.

#### PROGRAMMING

It is necessary for the M5L8251AP-5 to have the control word loaded by the CPU prior to data transfer. This must always be done following any resetting operation (by external RE-SET pin or command instruction IR). There are two types of control words: mode instructions specifying general operations required for communications and command instructions to control the M5L8251AP-5 actual operations.

Following the resetting operation, a mode instruction must be set first. This instruction sets the synchronous or asynchronous system to be used. In the sysnchronous system, a SYNC character is loaded from the CPU. In the case of the bi-sync system, however, a second SYNC character must be loaded in succession.

Loading a command instruction makes data transfer possible. This operation after resetting must be carried out for initializing the M5L8251AP-5. The USART command instruction contains an internal-reset IR instruction ( $D_6$ bit) that makes it possible to return the M5L8251AP-5 to its reset state. The initialization flowchart is shown in Fig. 3 and the mode-instruction and command-instruction formats are shown in Figs. 4 and 5.



#### **Asynchronous Transmission Mode**

When data characters are loaded on the M5L8251AP-5 after initial setting, the USART automatically adds a start bit (0), an odd or even parity bit specified by the mode instruction during initialization, and a specified number of stop bits (1). After that, the assembled data characters are transferred as serial data via the T_xD pin, if transfer is enabled (T_xEN =  $1 \cdot \overline{\text{CTS}} = \text{``LT`}$ ). In this case, the transfer data (baud rate) is shifted by the mode instruction at a rate of 1X, 1/16X, or 1/ 64X the T_xC period.

If the data characters are not loaded on the M5L8251AP-5, the  $T_xD$  pin enters a mark state ("H"). When SBRK is programmed by the command instruction, break characters (0) are output continuously through the  $T_xD$  pin.

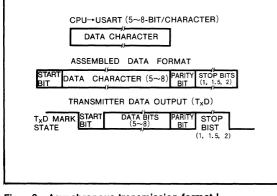
#### Asynchronous Reception Mode

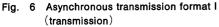
The R_xD line usually starts operations in a mark state ("H"), triggered by the falling edge of a low-level pulse when it comes to this line. This signal is again strobe at the middle of the bit to confirm that it is a perfect start bit. The detection of a second low-level indicates the validity of the start bit (again strobe is carried out only in the case of 16X and 64X). After that, the bit counter inside the M5L8251AP-5 starts operating; each bit of the serial information on the R_xD line is shifted in by the rising edge of  $\overline{R_xC}$ , and the data bit, parity bit (when necessary), and stop bit are sampled at the middle position.

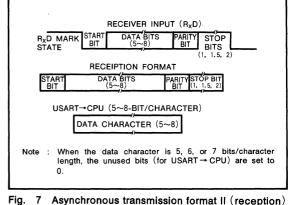
The occurrence of a parity error causes the setting of a parity-error flag. If the stop bit is 0, a frame error flag is set. Attention should be paid to the fact that the receiver requires only one stop bit even though the program has designated 1/1.5 or 2 stop bits.

Reception up to the stop bit means reception of a complete character. This character is then transferred to the receiverdata buffer shown in Fig.2, and the  $R_xRDY$  becomes active. In cases where this character is not read by the CPU and where the next character is transferred to the receiver-data buffer, the preceding character is destroyed and an overrunerror flag is set.

These error flags can be read as the M5L8251AP-5 status information. The occurrence of an error does not stop USART operations. The error flags are cleared by the  $ER(D_4 \text{ bit})$  of the command instruction.


The asynchronous-system transfer formats are shown in Figs. 6 and 7.


#### Synchronous Transmission Mode


In this mode the T_xD pin remains in the high-level state until initial setting by the CPU is completed. After initialization, the state of  $\overline{CTS}$ ="L" and T_xEN =1 enables serial transmission of characters through the T_xD pin. Then, data characters are sent out and shifted by the falling edge of the  $\overline{T_xC}$ signal. The transmission rate equals the  $\overline{T_xC}$  rate.

Thus, once data-character transfer starts, it must continue through the  $T_xD$  pin at the same rate as that of  $\overline{T_xC}$ . Unless data characters are provided from the CPU before the transmitter buffer becomes empty, one or two SYNC characters are automatically output from the  $T_xD$  pin In this case, it should be noted that the  $T_xEMPTY$  pin enters the high-level state when there are no data characters left in the M5L8251AP-5 to be transferred, and that the low-level state is not entered until the USART is provided with the next data character from the CPU. Care should also be taken over the fact that merely setting a command instruction does not effect SYNC-character insertion, because the SYNC character insertion is enabled after sending out the first data character.

In this mode, too, break characters are sent out in succession from the  $T_xD$  pin when SBRK is designated (D_3=1) by a command instruction.











### STATUS INFORMATION

The CPU can always read USART status by setting the  $C/\overline{D}$  to high-level and  $\overline{RD}$  to low-level.

The status information format is shown in Fig. 10. In this format R_xRDY, T_xEMPTY and SYNDET have the same definitions as those of the pins. This means that these three pieces of status information become high-level when each pin is 1. The other status information is defined as follows:

DSR: When the DSR pin is in the low-level state, status information DSR becomes 1.

FE: The occurrence of a frame error in the receiver section makes the status information FE=1.

OE: The occurrence of an overrun error in the receiver section makes the status information OE=1.

PE: The occurrence of a parity error in the receiver section makes this status information PE=1.

T_xRDY: This information becomes 1 when the transmit data buffer is empty. Be careful because this has a different meaning from the T_xRDY pin that enters the high-level state only when the transmitter buffer is empty, when the  $\overline{\text{CTS}}$  pin is in the low-level state, and when T_xEN is 1.

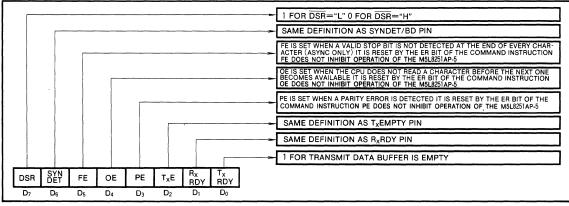



Fig. 10 Status information (C/D="H", WR="L")

#### **APPLICATION EXAMPLES**

Fig. 11 shows an application example for the M5L8251AP-5 in the asynchronous mode. When the port addresses of the M5L8251AP-5 are assumed to be 00# and 01# in this figure, initial setting in the asynchronous mode is carried out in the following manner:

MVI	A, B6#	Mode setting
OUT	01 #	
MVI	A, 27 #	Command instruction
OUT	01 #	

In this case, the following are set by mode setting:

Asynchronous mode 6 bits/character Parity enable (even) 1.5 stop bits Baud rate: 16X Command instructions set the following RTS= $1 \rightarrow \overline{RTS}$  pin="L" R_xE=1 DTR= $1 \rightarrow \overline{DTR}$  pin="L" T_xEN=1

When the initial setting is complete, transfer operations are allowed. The  $\overline{\text{RTS}}$  pin is initially set to the low-level by setting RTS to 1, and this serves as a  $\overline{\text{CTS}}$  input with T_xEN

being equal to 1. For this reason the same definition applies to the status and pin of  $T_x$ RDY, and 1 is assigned when the transmit-data buffer is empty. Actual transfer of data is carried out in the following way:

IN 01 # Status read The IN instruction prompts the CPU to read the USART's status. The result is; if the T_xRDY equals 1 transmitter data is sent from the CPU and written on the M5L8251AP-5. Transmitter data is written in the M5L8251AP-5 in the following manner:

MVI	A, 2D#	2D ₁₆ is an example of transmit-
		ter data.
OUT	00 #	USART⊷(A)
Receiver	data is read	in the following manner:
IN	00 #	(A)←USART

In the above example, the status information is read and as a result, the transmitter data is written and read. Interruption processing by using the  $T_xRDY$  and  $R_xRDY$  pins is also possible.

Fig. 12 shows the status of the  $T_xD$  pin when data written in the USART is transferred from the CPU. When the data shown in Fig.12 enters the  $R_xD$  pin, data sent from the M5L8251AP-5 to the CPU becomes  $2D_{16}$  and bits  $D_6$  and  $D_7$  are treated as 0.



## M5L8251AP-5

## PROGRAMMABLE COMMUNICATION INTERFACE

## **ABSOLUTE MAXIMUM RATINGS**

Symbol	Parameter	Conditions	Ratings	Unit
V _{cc}	Power-supply voltage		-0.5~7	v
Vi	Input voltage	With respect to V _{SS}	-0.5~7	v
Vo	Output voltage		-0.5~7	v
Pd	Power dissipation	Ta=25°C	1000	mW
т _{орг}	Operating free-air temperature range		-20~75	°
Tstg	Storage temperature range		-65~150	°C

## **RECOMMENDED OPERATING CONDITIONS** $(T_a = -20 \sim 75^{\circ}C)$ , unless otherwise noted)

Symbol	Symbol Parameter		Limits				
Symbol Parameter	Min	Nom	Max	Unit			
V _{cc}	Supply voltage	4.75	5	5.25	v		
Vss	Power-supply voltage (GND)		0		v		

### **ELECTRICAL CHARACTERISTICS** ( $T_a = -20 \sim 75^{\circ}C$ , $V_{cc} = 5V \pm 5\%$ , $V_{ss} = 0V$ , unless otherwise noted)

Symbol	Symbol Parameter	Test and distant	Limits			
	Test conditions	Min	Тур	Мах	Unit	
VIH	High-level input voltage		2.0		V _{cc}	v
VIL	Low-level input voltage		-0.5		0.8	v
V _{он}	High-level output voltage	I _{OH} =-400µА	2.4			v
V _{OL}	Low-level output voltage	I _{OL} =2.2mA			0.45	v
I _{cc}	Supply current from V _{CC}	All outputs are high-level			100	mA
hн	High-level input current	V _I =V _{CC}	-10		10	μA
IIL.	Low-level input current	V ₁ =0. 45V	-10		10	μA
loz	Öff-state input current	V ₀ =0.45V~V _{CC}	-10		10	μA
Cı	Input terminal capacitance	$V_{CC} = V_{SS}$ , f=1MHz, 25mV _{rms} , T _a =25°C			10	pF
CI/O	Input/output terminal capacitance	$V_{CC}=V_{SS}$ , f=1MHz, 25mV _{rms} , T _a =25°C			20	pF



## $\label{eq:switching characteristics} (T_a = -20 \sim 75 \mbox{`C} \ , \ V_{cc} = 5V \pm 5\% \ , \ V_{ss} = 0V \ , \ unless \ otherwise \ noted)$

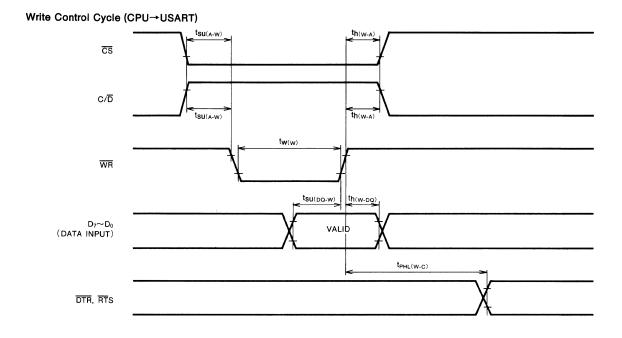
Symbol	<b>•</b> .	To all and distance				
	Parameter	Test conditions	Min	Тур	Max	Unit
t _{PZV(R-DQ)}	Output data enable time after read (Note8)	C _L =150pF	,		200	ns
t _{PVZ(R-DQ)}	Output data disable time after read		10		100	ns
tPZV(TxC-TxD)	$T_X D$ enable time after falling edge of $\overline{T_X C}$				1	μs
tPLH(CLB-TxR)	Propagation time from center of last bit to T _x RDY (Note9)				8	t _{C(∳)}
t _{PHL(W-TxR)}	Propagation time from write data to T _X RDY clear (Note9)				400	ns
tPLH(CLB-RXR)	Propagation time from center of last bit to $R_XRDY$ (Note9)				26	t _{C(∳)}
t _{PHL(R-RxR} )	Propagation time from read data to R _X RDY clear (Note9)	1			400	ns
tPLH(RxC-SYD)	Propagation time from rising edge of $\overline{R_X C}$ to internal SYNDET (Note9)				26	t _{C(∳)}
tPLH(CLB-TxE)	Propagation time from center of last bit to T _x EMPTY (Note9)				20	t _C (∳)
t _{PHL(W-C)}	Propagation time from rising edge of WR to control (Note9)				8	t _{C(∳)}

 Note 8 : Assumes that address is valid before falling edge of RD

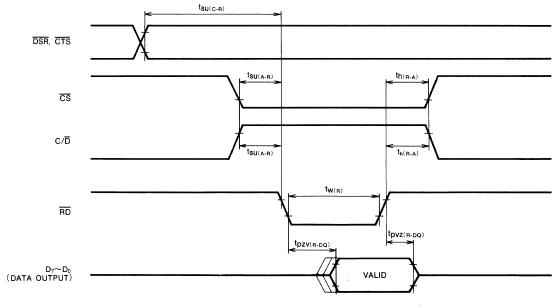
 9 : Status-up date can have a maximum delay of 28 clock periods from the event affecting the status.

 10 : Input pulse level
 0.45~2.4V Reference level
 Input V_{IH}=2V, V_{IL}=0.8V

 Input pulse rise time
 20ns
 Output V_{OH}=2V, V_{OL}=0.8V


2.4 -F2 2 0.8 0.8 0.45 -

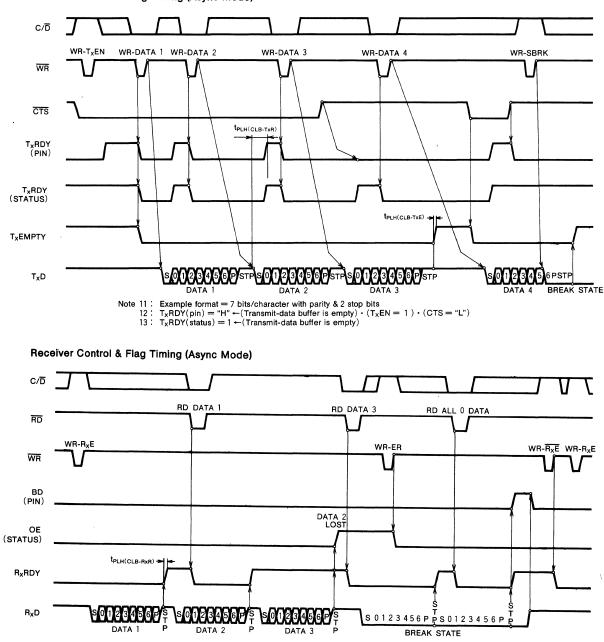



### **MITSUBISHI LSIs**

## M5L8251AP-5

## **PROGRAMMABLE COMMUNICATION INTERFACE**




## Read Control Cycle (USART→CPU)





## M5L8251AP-5

## **PROGRAMMABLE COMMUNICATION INTERFACE**



Transmitter Control & Flag Timing (Async Mode)



Note 14: Example format = 7 bits/character with parity & 2 stop bits

## MITSUBISHI LSIS M5L8253P-5

## **PROGRAMMABLE INTERVAL TIMER**

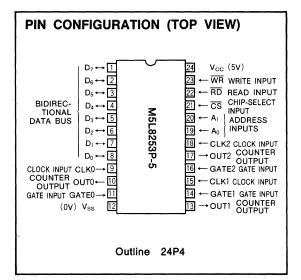
### DESCRIPTION

The M5L8253P-5 is a programmable general-purpose timer device developed by using the N-channel silicon-gate ED-MOS process. It offers counter and timer functions in systems using an 8-bit parallel-processing CPU.

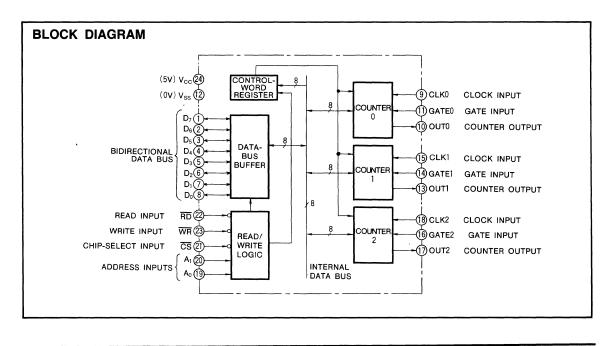
The use of the M5L8253P-5 frees the CPU from the execution of looped programs, count-operation programs and other simple processing involving many repetitive operations, thus contributing to improved system throughputs.

The M5L8253P-5 works on a single power supply, and both its input and output can be connected to a TTL circuit.

### FEATURES


- Single 5V supply voltage
- TTL compatible
- Clock period: DC~2.6MHz
- 3 independent built-in 16-bit down counters
- 6 counter modes freely assignable for each counter
- Binary or decimal counts

## APPLICATION


Delayed-time setting, pulse counting and rate generation in microcomputers.

### **FUNCTION**

Three independent 16-bit counters allow free programming based on mode-control instructions from the CPU. When roughly classified, there are 6 modes  $(0 \sim 5)$ . Mode 0 is mainly used as an interruption timer and event counter, mode 1 as a digital one-shot, modes 2 and 3 as a rate generator, mode 4 for a software triggered strobe, and mode 5 for a



hardware triggered strobe. The count can be monitored and set at any time. The counter operates with either the binary or BCD system.





## M5L8253P-5

### **PROGRAMMABLE INTERVAL TIMER**

					·
CS	RD	WR	A1	Ao	Function
L	н	L	0	0	Data bus→Counter 0
L	н	L	0	1	Data bus→Counter 1
L	н	L	1	0	Data bus→Counter 2
Į L	н	,L	1	1	Data bus→Control-word register
L	L	н	0	0	Data bus←Counter 0
L	L	н	0	1	Data bus←Counter 1
L	L	н	1	0	Data bus←Counter 2
L	L	н	1	1	3-state
н	×	×	×	×	3-state
L	н	н	×	×	3-state



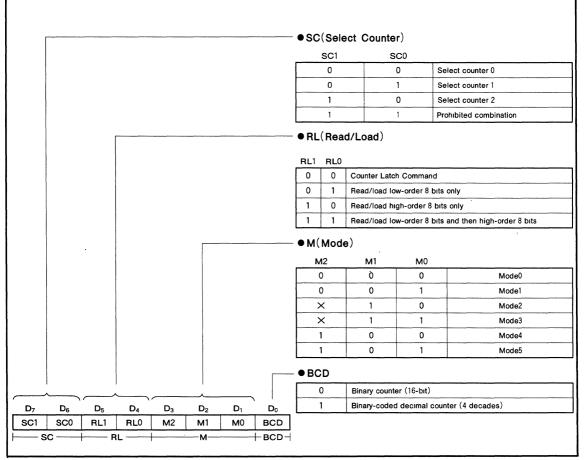



Fig. 1 Control-Word Format



## M5L8253P-5

## **PROGRAMMABLE INTERVAL TIMER**

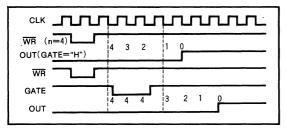



Fig. 2 Mode 0

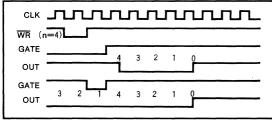
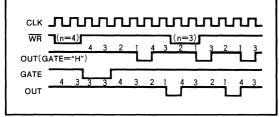
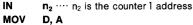



Fig. 3 Mode 1





Fig. 4 Mode 2

## **COUNTER MONITORING**

Sometimes the counter must be monitored by reading its count or using it as an event counter. The M5L8253P-5 offers the following two methods for count reading:

#### **Read Operation**

The count can be read by designating the address of the counter to be monitored and executing a simple I/O read operation. In order to ensure correct reading of the count, it is necessary to cause the clock input to pause by external logic or prevent a change in the count by gate input. An example of a program to read the counter 1 count is shown below. If RL1, RL0=1, 1 has been specified in the control word, the first IN instruction enables the low-order 8 bits to be read and the second IN instruction enables the high-order 8 bits.



- IN n₂
- MOV E, A

The IN instruction should be executed once or twice by the RL1 and RL0 designations in the control-word register.

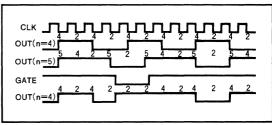



Fig. 5 Mode 3

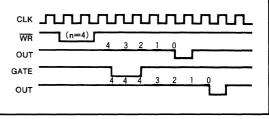



Fig. 6 Mode 4

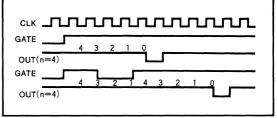



Fig. 7 Mode 5

### Read-on-the-Fly Operation

This method makes it possible to read the current count without affecting the count operation at all. A special counter-latch command is first written in the control-word register. This causes latching of all the instantaneous counts to the register, allowing retention of stable counts. An example of a program to execute this operation for counter 2 is given below.

MVI	A, 1000XXXX $\cdots$ D ₅ = D ₄ = 0 designates counter
	latching
OUT	<b>n₁</b> ···· n ₁ is the control-word-register address
IN	<b>n₃</b> ···· n ₃ is the counter 2 address
MOV	D, A
IN	n ₃
MOV	E, A

In this example, the IN instruction is executed twice. Due to the internal logic of the M5L8253P-5 it is absolutely essential to complete the entire reading procedure. If 2 bytes are programmed to be read, then two bytes must be read before any OUT instruction can be executed to the same counter.



## M5L8253P-5

## PROGRAMMABLE INTERVAL TIMER

## TIMING REQUIREMENTS ( $T_a = -20 \sim 75$ °C, $V_{cc} = 5 V \pm 10\%$ , $V_{ss} = 0 V$ , unless otherwise noted)

### Read cycle

Symbol Parameter	Devemeter	Test conditions				
	Farameter		Min	Тур	Max	Unit
t _{W(R)}	Read pulse width		300			ns
t _{SU(A-R)}	Address setup time before read		30			ns
th(R-A)	Address hold time after read		5			ns
trec(R)	Read recovery time		1000			ns

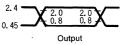
#### Write cycle

Symbol	Deservator	Test conditions		1.1-14		
	Parameter		Min	Тур	Max	Unit
t _{w(w)}	Write pulse width		300			ns
t _{su(A-W)}	Address setup time before write		30			ns
t _{h(w-A)}	Address hold time after write		30			ns
t _{su(DQ-W)}	Data setup time before write		250			ns
th(w-DQ)	Data hold time after write	]	30			ns
t _{rec(w)}	Write recovery time	]	1000			ns

### Clock and gate timing

		Test conditions		1.1 14		
Symbol	Parameter		Min	Тур	Max	Unit
t _{w(¢н)}	Clock high pulse width		230			ns
tw(≠L)	Clock low pulse width		150			ns
t _{C(∳)}	Clock cycle time		380		DC	ns
t _{w(GH)}	Gate high pulse width		150			sn
tw(GL)	Gate low pulse width		100			ns
t _{su(G-∮)}	Gate setup time before clock	]	100			ns
th(∳-G)	Gate hold time after clock		50			ns

## $\label{eq:switching characteristics} \textbf{(} \textbf{T}_a = -20 \sim 75 \ensuremath{^{\circ}\text{C}}, \ensuremath{ V_{cc}} = 5 \ensuremath{ v \pm 10\%}, \ensuremath{ v_{ss}} = 0 \ensuremath{ V}, \ensuremath{ unless otherwise noted} \textbf{)}$


Symbol	Parameter	Test conditions		Unit		
Symbol		rest conditions	Min	Тур	Max	Onit
t _{PZV(R-DQ)}	Propagation time from read to output				200	ns
t _{PVZ(R-DQ)}	Propagation time from read to output floating (Note 2)	C ₁ =150pF	25		100	ns
t _{PXV(G-OUT)}	Propagation time from gate to output				300	ns
t _{PXV} ( ≠ -OUT)	Propagation time from clock to output				400	ns

Note 1: A C Testing waveform

Input pulse level	0.45~2.4V
Input pulse rise time	20 <b>ns</b>
Input pulse fall time	20ns
Reference level input	V _{IH} =2.2V, V _{IL} =0.8V
output	V _{OH} =2.0V, V _{OL} =0.8V
2 : Test condition is not applied	

$$\begin{array}{c} 2.4 \\ 0.45 \end{array} \xrightarrow{\begin{array}{c} 2.2 \\ 0.8 \end{array}} \begin{array}{c} 2.2 \\ 0.8 \end{array} \xrightarrow{\begin{array}{c} 2.2 \\ 0.8 \end{array}} \begin{array}{c} 2.2 \\ 0.8 \end{array}$$

Input



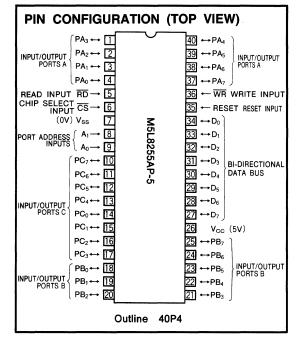


## PROGRAMMABLE PERIPHERAL INTERFACE

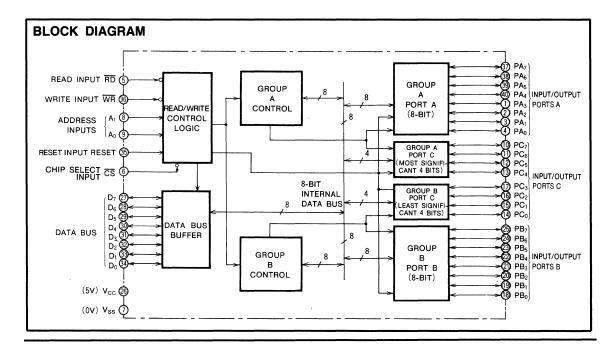
## DESCRIPTION

The M5L8255AP-5 is a family of general-purpose programmable input/ output devices designed for use with an 8-bit/16bit parallel CPU as input/output ports. Device is fabricated using N-channel silicon-gate ED-MOS technology for a single supply voltage. They are simple input and output interfaces for TTL circuits, having 24 input/output pins which correspond to three 8-bit input/output ports.

## FEATURES


- Single 5V supply voltage
- TTL compatible
- Darlington drive capability
- 24 programmable I/O pins
- Direct bit set/reset capability

## **APPLICATION**


Input/output ports for microprocessor

## **FUNCTION**

These PPIs have 24 input/output pins which may be individually programmed in two 12-bit groups A and B with mode control commands from a CPU. They are used in three major modes of operation, mode 0, mode 1 and mode 2. Operating in mode 0, each group of 12 pins may be programmed in sets of 4 to be inputs or outputs. In mode 1, the 24 I/O terminals may be programmed in two 12-bit groups, group A and group B. Each group contains one 8-bit data port, which may be programmed to serve as input or output, and one 4-bit control port used for handshaking and interrupt control signals. Mode 2 is used with group A only, as one 8-



bit bidirectional bus port and one 5-bit control port. Bit set/ reset is controlled by CPU. A high-level reset input (RESET) clears the control register, and all ports are set to the input mode (high-impedance state).





## **PROGRAMMABLE PERIPHERAL INTERFACE**

## **BASIC OPERATING MODES**

The PPI can operate in any one of three selected basic modes.

- Mode 0: Basic input/output
- (group A, group B) (group A, group B)
- Mode 1: Strobed input/output Mode 2: Bidirectional bus
- (group A only)

The mode of both group A and group B can be selected independently. The control word format for mode set is shown in Fig. 2.

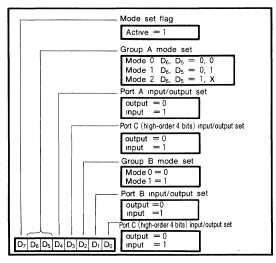
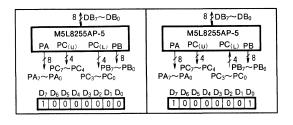




Fig. 2 Control word format for mode set.

## 1. Mode 0 (Basic Input/Output)

This functional configuration provides simple input and output operations for each of the 3 ports. No "handshaking" is required; data is simply written in, or read from, the specified port. Output data from the CPU to the port can be held, but input data from the port to the CPU cannot be held. Any one of the 8-bit ports and 4-bit ports can be used as an input port or an output port. The diagrams following show the basic input/output operating modes.



8 ‡DB7~DB0 M5L8255AP-5 PA PC(u) PC(L) PB ↓8 ↓4 ↓4 ±8 PC7~PC4 PB7~PB0 PA7~PA0 PC3~PC0	$\begin{array}{c c} & & & & \\ & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ PA & PC_{(u)} & PC_{(L)} & PB \\ & & & \\ \hline & & & \\ PC_{7} \sim PC_{4} & PB_{7} \sim PB_{0} \\ PA_{7} \sim PA_{0} & PC_{3} \sim PC_{0} \end{array}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
8 ‡DB7~DB₀ M5L8255AP-5 PA PC(∪) PC(L) PB ↓8 ↓4 ↓8 ↓ PC7~PC4 PB7~PB₀ PA7~PA₀ PC3~PC₀ D7 D₅ D₅ D₄ D₃ D₂ D₁ D₀	$\begin{array}{c c} 8 & DB_7 \sim DB_0 \\ \hline M5L8255AP-5 \\ PA & PC_{(U)} & PC_{(L)} & PB \\ \hline 4 & 4 & 4 & 8 \\ PC_7 \sim PC_4 & PB_7 \sim PB_0 \\ PA_7 \sim PA_0 & PC_3 \sim PC_0 \\ \hline D_7 & D_6 & D_5 & D_4 & D_3 & D_2 & D_1 & D_0 \end{array}$
$\begin{array}{c c} 8 $ $ DB_7 \sim DB_0 \\ \hline M5L8255AP-5 \\ \hline PA & PC(u) & PC(L) & PB \\ \hline 18 $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $	$\begin{array}{c c} & & & & \\ & & & & \\ \hline & & & & \\ \hline & & & &$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
8 ¢DB;~DB₀ M5L8255AP-5 PA PC(∪) PC(∟) PB ↓8 ↓4 ↓8 ↓PC;~PC4 PB;~PB₀ PA;~PA₀ PC3~PC₀ D; D6 D5 D4 D3 D2 D1 D₀	8 DB7~DB0 M5L8255AP-5 PA PC(u) PC(L) PB 18 14 4 18 PC7~PC4 PB7~PB0 PA7~PA0 PC3~PC0 D7 D6 D5 D4 D3 D2 D1 D0
1 0 0 1 0 0 0 0 8 ⊉DB ₇ ~DB₀	1 0 0 1 0 0 0 1 8 ≵DB ₇ ~DB₀
M5L8255AP-5           PA         PC(u)         PC(u)           18         14         14         18           PC/√PC4         PB/√PB0         PA/~PB0         PC/~PC4         PB/√PB0	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8 ‡DB ₇ ~DB ₀ M5L8255AP-5 PA PC(∪) PC(L) PB ↓8 ↓4 ↓8 ↓PC7~PC4 ↓4 ↓8 PC7~PC4 PB7~PB0 PA7~PA0 PC3~PC0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	D ₇ D ₆ D ₅ D ₄ D ₃ D ₂ D ₁ D ₀ 1 0 0 1 1 0 0 1
8 DB7~DB0 M5L8255AP-5 PA PC(u) PC(L) PB ↓8 ↓4 ↓8 ↓PC7~PC4 PB7~PB0 PA7~PA0 PC3~PC0 D7 D6 D5 D4 D3 D2 D1 D0 1 0 0 1 1 1 0 1 0	8 DB7~DB0 M5L8255AP-5 PA PC(u) PC(L) PB 18 14 4 4 PC7~PC4 PB7~PB0 PA7~PA0 PC3~PC0 D7 D6 D5 D4 D3 D2 D1 D0 1 0 0 1 1 1 0 1 1 1



#### **PROGRAMMABLE PERIPHERAL INTERFACE**

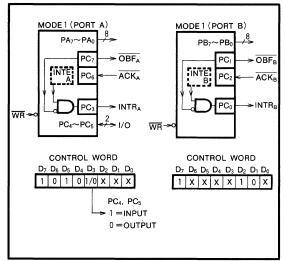
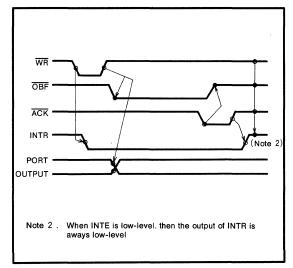




Fig. 5 An example of mode 1 output state





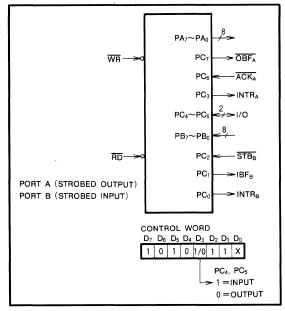



Fig. 7 Mode 1 port A and port B I/O example

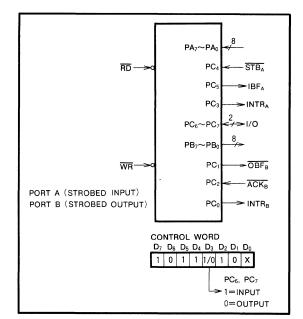



Fig. 8 Mode 1 port A and port B I/O example



#### **PROGRAMMABLE PERIPHERAL INTERFACE**

#### 4. Control Signal Read

In mode 1 or mode 2 when using port C as a control port, by CPU execution of an IN instruction, each control signal and bus status from port C can be read.

## 5. Control Word Tables

Control word formats and operation details for mode 0, mode 1, mode 2 and set/reset control of port C are given in Tables 3, 4, 5 and 6, respectively.

Table 3 Mode 0 control words

#### Table 2 Read-out control signals

Data Mode	D7	D ₆	D ₅	D₄	D ₃	D2	D1	Do
Mode 1, input	1/0	1/0	IBF _A	INTEA	INTRA	INTEB	IBF _B	
Mode 1, output	OBFA	INTEA	1/0	1/0	INTRA		OBFB	
Mode 2	OBFA	INTE ₁	IBF _A	INTE ₂	INTRA	By group B mod		node

	Control words							·		Group A	Group B	
D7	D ₆	D ₅	D4	D ₃	D ₂	D1	D ₀	Hexadecimal	Port A	Port C (high-order 4 bits)	Port C (low-order 4 bits)	Port B
1	0	0	0	0	0	0	0	80	OUT	OUT	OUT	OUT
1	0	0	0	0	0	0	1	81	OUT	OUT	IN	OUT
1	0	0	0	0	0	1	0	82	OUT	OUT	OUT	iN
1	0	0	0	0	0	1	1	83	OUT	OUT	IN	IN
1	0	0	0	1	0	0	0	88	OUT	IN	OUT	OUT
1	0	0	0	1	0	0	1	89	OUT	IN	IN	OUT
1	0	0	0	1	0	1	0	8A	OUT	IN	OUT	IN
1	0	0	0	1	0	1	1	8B	OUT	IN	IN	IN
1	0	0	1	0	0	0	0	90	IN	OUT	OUT	OUT
1	0	0	1	0	0	0	1	91	IN	OUT	IN	Ουτ
1	0	0	1	0	0	1	0	92	IN	OUT	OUT	IN
1	0	0	1	0	0	1	1	93	IN	OUT	IN	IN
1	0	0	1	1	0	0	0	98	IN	IN	OUT	OUT
1	0	0	1	1	0	0	1	99	IN	· IN	IN	OUT
1	0	0	1	1	0	1	0	9A	IN	IN	OUT	IN
1	0	0	1	1	0	1	1	9B	IN	IN	IN	IN

Note 4 · OUT indicates output port, and IN indicates input port

#### Table 4 Mode 1 control words

	Control words						Group A					Group B						
D	De	; D5	ο.	<b>D</b> .	D ₂	Π.	_	Hexa-	Port A			Port C			Port C			Port B
	- De	. 05		03	02		0	decimal	FULL	PC ₇	PC ₆	PC ₅	PC₄	PC ₃	PC ₂	PC ₁	PC ₀	FOILD
1	0	1	0	0	1	0	x	A4 A5	оит	OBFA	ACKA	01	JT	INTRA	ACKB	OBFB	INTR _B	OUT
1	0	1	0	0	1	1	x	A6 A7	ОИТ	OBFA	ACKA	01	UT	INTRA	STB _B	IBF _B	INTR _B	IN
1	0	1	0	1	1	0	x	AC AD	оит	OBFA	ACKA	11	N	INTRA	ACKB			OUT
1	0	1	0	1	1	1	x	AE AF	оит	OBFA	ACKA	I	N	INTRA	STB _B	IBF _B		IN
1	0	1	1	0	1	0	х	В4 В5	IN	O	UT	IBF _A	STBA	INTRA	ACKB	OBFB	INTR _B	ουτ
1	0	1	1	0	1	1	х	В6 В7	IN	0	UT	IBF₄	STBA	INTRA	STB _B	IBF _B	INTR _B	IN
1	0	1	1	1	1	0	x	BC BD	IN	1	N	IBF₄	STBA	INTRA	ACKB	OBFB	INTR _B	оит
1	0	1	1	1	1	1	x	BE BF	IN	1	N	IBFA	STBA	INTRA	STBB	IBFB		IN

Note 5 : Mode of group A and group B can be programmed independently 6 : It is not necessary for both group A and group B to be in mode 1.



## **PROGRAMMABLE PERIPHERAL INTERFACE**

## **ABSOLUTE MAXIMUM RATINGS**

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Supply voltage		-0.5~7	v
Vi	Input voltage	With respect to V _{SS}	-0.5~7	v
Vo	Output voltage		-0.5~7	v
Pd	Power dissipation	T _a =25℃	1000	mW
Topr	Operating free-air temperature range		-20~75	°C
⊤stg	Storage temperature range		-65~150	ъ

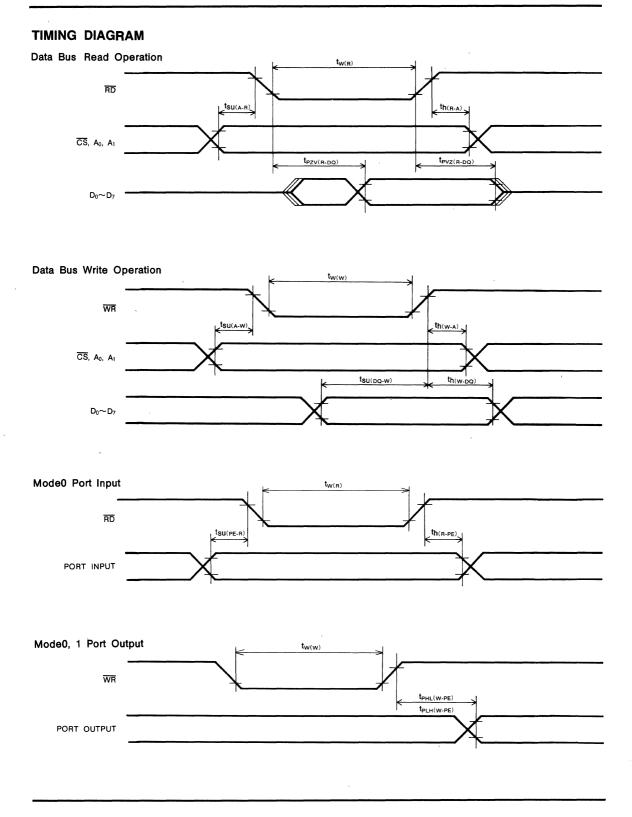
## **RECOMMENDED OPERATING CONDITIONS** (Ta=-20~75°C, unless otherwise noted)

Symbol	Parameter		Linut		
Symbol	Farameter	Min	Nom	Max	Unit
Vcc	Supply voltage	4.75	5	5.25	v
Vss	Supply voltage (GND)		0		v

## **ELECTRICAL CHARACTERISTICS** (T_a=-20~75°C, V_{cc}= 5 V± 5 %, V_{ss}= 0 V, unless otherwise noted)

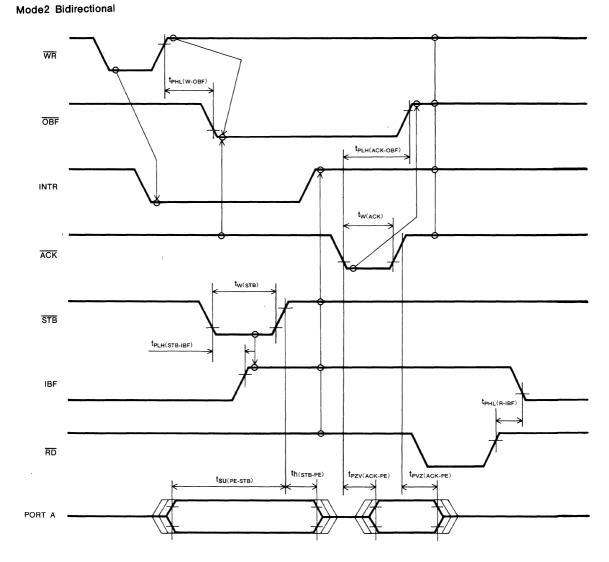
Sumbol	Deremeter	Parameter Test conditions			Limits	11	
Symbol	Parameter		Test conditions	Min	Тур	Max	Unit
VIH	High-level input voltage			2.0		Vcc	v
VIL	Low-level input voltage			-0.5		0.8	v
V		Data bus	I _{0H} =-400µА	2.4			v
V _{он}	High-level output voltage	Port	I _{0H} =-200µА	2.4			v
Vol	Low-level output voltage	Data bus	I _{OL} =2.5mA			0.45	v
		Port	I _{OL} =1.7mA				v
loн	High-level output current (Note10		V _{OH} =1.5V, R _{EXT} =750Ω	-1		-4	mA
lcc	Supply current from V _{CC}					120	mA
l _{ін}	High-level input current		V ₁ =V _{CC}			±10	μA
հլ	Low-level input current		V _i =0V			±10	μA
loz	Off-state output current		Vo=0V~Vcc			±10	μA
Ci	Input terminal capacitance		V _{IL} =V _{SS} , f=1MHz, 25mVrms T _a =25°C			10	pF
Ci/o	Input/output terminal capacitance	1	$V_{I/OL} = V_{SS}$ , f=1MHz, 25mVrms T _a =25°C			20	pF

 Note
 9
 Current flowing into an IC is positive, out is negative


 10
 It is valid only for any 8 input/output pins of PB and PC.

### TIMING REQUIREMENTS ( $T_a = -20 \sim 75^{\circ}$ C, $V_{cc} = 5 V \pm 5 \%$ , $V_{ss} = 0 V$ , unless otherwise noted)

Symbol	Prameter	Test conditions		11		
Symbol	Prameter	Test conditions	Min	Тур	Max	Unit
t _{W(R)}	Read pulse width		300			ns
t _{SU(PE-R)}	Peripheral setup time before read		0			ns
th(R-PE)	Peripheral hold time after read		0			ns
t _{su(A-R)}	Address setup time before read		0			ns
th(R-A)	Address hold time after read		0			ns
t _{w(w)}	Write pulse width		300			ns
tsu(DQ-W)	Data setup time before write		100			ns
th(w-DQ)	Data hold time after write		30			ns
t _{su(A-w)}	Address setup time before write		0			ns
t _{h(w-A)}	Address hold time after write		20			ns
tw(ACK)	Acknowledge pulse width		300			ns
tw(STB)	Strobe pulse width		500			ns
t _{su(pe-stb)}	Peripheral setup time before strobe	]	0			ns
th(STB-PE)	Peripheral hold time after strobe	]	180			ns
t _{C(RW)}	Read/write cycle time	]	850			ns




## PROGRAMMABLE PERIPHERAL INTERFACE





## PROGRAMMABLE PERIPHERAL INTERFACE



Note 13 INTR=IBF  $\cdot \overline{MASK} \cdot \overline{STB} \cdot \overline{RD} + \overline{OBF} \cdot \overline{MASK} \cdot \overline{ACK} \cdot \overline{WR}$ 



## PROGRAMMABLE PERIPHERAL INTERFACE

#### 2. Mode 1

An example of a circuit for an application using mode 1 is shown in Fig. 12.

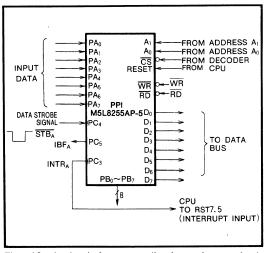



Fig. 12 A circuit for an application using mode 1

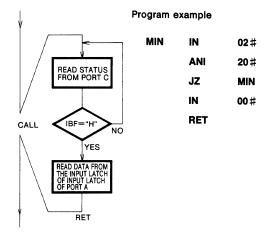
Transferring data from a terminal unit to port A and sending a strobe signal to  $PC_4$  will hold the data in the internal latch of the PPI, and  $PC_5$  (IBF input buffer full flag) is set to highlevel. If a bit-set of  $PC_4$  has been executed in advance, the CPU can be interrupted by the INTR signal of  $PC_3$  when the input data is latched in the PPI. In this way, port A becomes an interrupting port; and at the same time, port B can select its mode independently. The actual program for the circuit of Fig. 12 is as follows:

MVI	A, B0♯	Control word is 10110000, port A is the mode 1 input and the others are output
OUT MVI OUT EI HLT	03 # A, 09 # 03 #	Outputting to the control address PC₄bit-set 00001001 Outputting to the control address Interrupt enable Halt

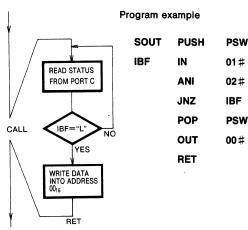
If the data has been set in a terminal unit, and the strobe signal has been input, then the data will be latched in port A and the CPU RST7.5 goes high-level. In the case of Fig. 11, a jump to  $003C_{16}$  is executed to continue the program as follows:

003C₁₆ IN 00 # CPU register A ← Port A

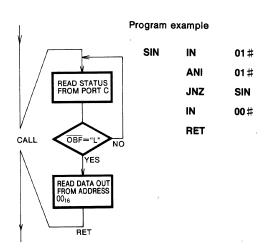
EI


RET

PC₃ interrupt signal becomes low-level




## PROGRAMMABLE PERIPHERAL INTERFACE


- Program example MOUT PUSH PSW OBF IN 02# READ STATUS ANI 80 # JΖ OBF POP PSW CALL OBF="H NO OUT 00 # YES RET WRITE DATA INTO THE OUTPUT LATCH OF PORT A RET
- 1. Master CPU subroutine for transmitting data to the slave CPU.
- 2. Subroutine for receiving data from the slave CPU.



3. Slave CPU subroutine for transmitting data to the master CPU.



4. Subroutine for receiving data from the master CPU.





MITSUBISHI LSIS M5L8257P-5

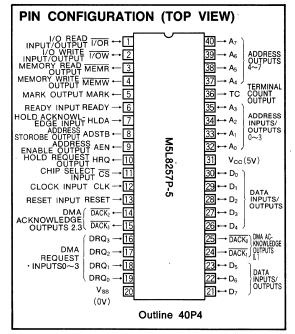
## PROGRAMMABLE DMA CONTROLLER

## DESCRIPTION

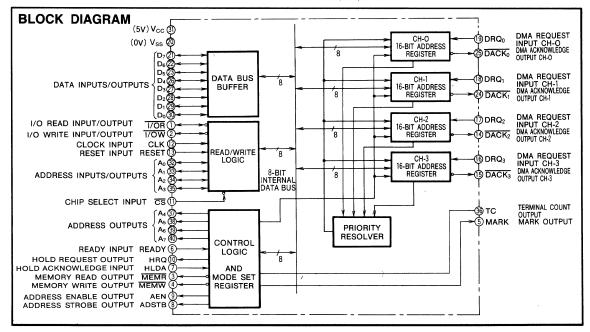
The M5L8257P-5 is a programmable 4-channel direct memory access (DMA) controller. It is produced using the Nchannel silicon-gate ED-MOS process and is specifically designed to simplify data transfer at high speeds for microcomputer systems

The LSI operates on a single 5V power supply.

## FEATURES


- Single 5V supply voltage
- TTL compatible interface
- Priority DMA request logic
- Channel-masking function
- Terminal count and Modulo 128 outputs
- 4-channel DMA controller
- Compatible with MELPS85 devices

## APPLICATION


DMA control of peripheral equipment such as floppy disks and CRT terminals that require high-speed data transfer.

#### FUNCTION

The M5L8257P-5 controller is used in combination with the M5L8212P 8-bit input/output port in 8-bit microcomputer systems. It consists of a channel section to acknowledge DMA requests, control logic to exchange commands and data with the CPU, read/write logic, and registers to hold transfer addresses and count the number of bytes to be transferred. When a DMA request is made to an unmasked channel from the peripherals after setting of the transfer mode, transferstart address and the number of transferred bytes for the registers, the M5L8257P-5 issues a priority request for the use of the bus to the CPU. On receiving an HLDA signal



from the CPU, it sends a DMA acknowledge signal to the channel with the highest priority, starting DMA operation. During DMA operation, the contents of the high-order 8 bits of the transfer memory address are transmitted to the M5L8212P address-latch device through pins  $D_0 \sim D_7$ . The contents of the low-order 8 bits are transmitted through pins  $A_0 \sim A_7$ . After address transmission, DMA transfer can be started by dispatching read and write signals to the memories and peripherals.





## PROGRAMMABLE DMA CONTROLLER

Register	Initialization
----------	----------------

Two 16-bit registers are provided for each of the 4 channels. **DMA Address register** 

15															0
A ₁₅	A ₁₄	A ₁₃	A ₁₂	A ₁₁	<b>A</b> 10	A ₉	A ₈	<b>A</b> 7	A ₆	A ₅	A ₄	A ₃	A ₂	<b>A</b> 1	A ₀
			D	MA	TRAN	ISFE	RS	TAR	ГING	AD	DRE	SS			
Ter	mir	al	cou	nt	regi	ste	r								

15	14	13			-										0
Rd	Wr	C ₁₃	C ₁₂	C ₁₁	<b>C</b> ₁₀	C9	C ₈	<b>C</b> ₇	C ₆	C5	C4	C ₃	C ₂	C1.	C ₀
DMA	MC	DE	I	NL	ливі	ERC	DF T	RAN	SFER	RREC	) BY	TES	-1		

The DMA transfer starting address, number of transferred bytes, and DMA mode are written for each channel in 2 steps using the 8-bit data bus. The lower-order and upperorder bytes are automatically indicated by the first-last flipflop for the writing and reading in 2 continuous steps.

The DMA mode (read, write, or verify) is indicated by the upper 2 bits of the terminal count register. The read mode refers to the operation of peripheral devices reading data out of memory. The write mode refers to data from peripheral devices being written into memory. The verify mode sends neither the read nor the write signals and performs a date check at the peripheral device.

In addition to the above-mentioned registers, there is a mode set register and a status register.

#### Mode set register (write only)

7			-				0
AL	TCS	EW	RP	EN3	EN2	EN1	EN0

ADDED FUNCTION SETTING BITS CHANNEL ENABLE BITS

#### Status Register (read only)

7							0
0	0	0	UP	тС3	TC2	TC1	TC0

The upper-order 4 bits of the mode set register are used to select the added function, as described in 5-66. The lowerorder 4 bits are mask bits for each channel. When set to 1, DMA requests are allowed. When the reset signal is input, all bits of the mode set and status registers are reset and DMA is inhibited for all channels. Therefore, to execute DMA operations, registers must first be initialized. An example of such an initialization is shown below.

MODESET:

MVI	A, ADDL	-
OUT	00 # :	Channel 0 lower-order address
MVI	A, ADDH	•
OUT	00 # :	Channel 0 upper-order address
MVI	A, TCL	
OUT	01 # :	Channel 0 terminal count lower-order
MVI	A, TCH	
OUT	01 # :	Channel 0 terminal count upper-order
MVI	A, XX	
OUT	<b>08</b> # :	Mode set resister

As can be seen from the above example, until the contents of the address register and terminal count register become valid, the enable bit of the mode set register must not be set. This prevents memory contents from being destroyed by improper DRQ signals from peripheral devices.

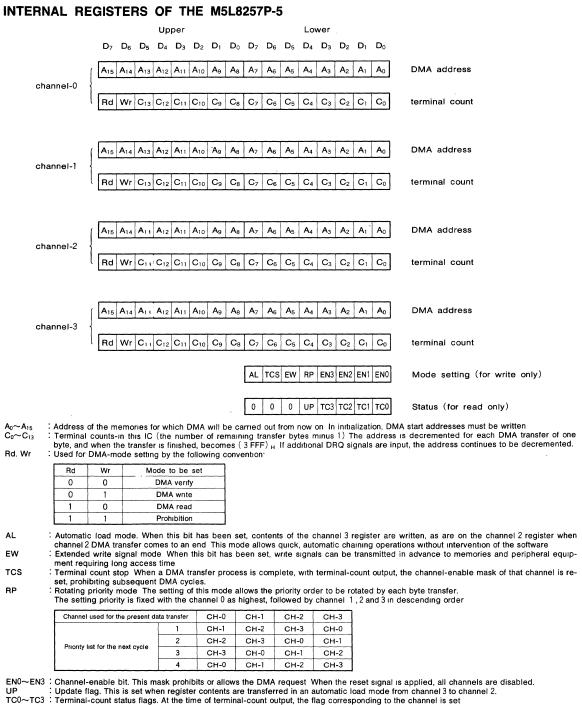
## DMA OPERATION DESCRIPTION

When a DMA request signal is received at the DRQ pin from a peripheral device after register initialization for a channel that is not masked, the M5L8257P-5 outputs a hold request signal to the CPU to begin DMA operation  $(S_1)$ .

The CPU, upon receipt of the HRQ signal, outputs the HLDA signal which reserves capture of the bus after it has executed the present instruction to place this system in the hold state

When the M5L8257P-5 receives the HLDA signal, an internal priority determining circuit selects the channel with the highest priority for the beginning of data transfer  $(S_0)$ .

Upon the next S1 state, the address signal is sent. The lower-order 8 bits and upper-order 8 bits are sent by means of the  $A_0 \sim A_7$  and  $D_0 \sim D_7$  pins respectively, latched into the M5L8212P and output at pins  $A_8 \sim A_{15}$ . Simultaneous with this, the AEN signal is output to prohibit the selection of a device not capable of DMA.


In the S₂ state, the read, extended write, and DACK signals are output and data transferred from memory or a peripheral device appears on the data bus.

In the S₃ state, the write signal required to write data from the bus is output. At this time if the remaining number of bytes to be transferred from the presently selected channel has reached 0, the terminal count (TC) signal is output. Simultaneously with this, after each 128-byte data transfer a mark signal is output as required. In addition, in this state the READY pin is sampled and, if low-level, the wait state  $(S_w)$  is entered. This is used to perform DMA with slow access memory devices. In the verify mode, READY input is ignored.



## M5L8257P-5

## PROGRAMMABLE DMA CONTROLLER



The flag is, set by reading the status register, and is unaffected by the TCS bits



## M5L8257P-5

## PROGRAMMABLE DMA CONTROLLER

## **ELECTRICAL CHARACTERISTICS** ( $T_a = -20 \sim 75^{\circ}C$ , $V_{cc} = 5 V \pm 5 \%$ , unless otherwise noted)

Oursels at	Barranatar	Tast seeditors		Limits		Unit	
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit	
VIH	High-level input voltage		2.0		Vcc	v	
VIL	Low-level input voltage		-0.5		0.8	v	
Vol	Low-level output voltage	I _{OL} =1.6mA			0.45	V	
V _{OH1}	High-level output voltage for AB, DB and AEN	I _{OH} =-150µА	2.4			V	
V _{OH2}	High-level output voltage for HRQ	00 A	3.3			V	
V _{OH3}	High-level output voltage for others	—— I _{OH} =-80µА	2.4			V	
lcc	Supply current from V _{CC}				120	mA	
l _l	Input current	$V_{I}=0V, V_{CC}$	-10		10	μA	
loz	Off-state output current	Vo=0V~Vcc	-10		10	μA	
Cı	Input terminal capacitance	$T_a=25^{\circ}C$ , $V_{CC}=V_{SS}$			10	pF	
C _{I/O}	Input/output terminal capacitance	Pins other than that under measurement are set to 0V, f _C =1MHz			20	pF	

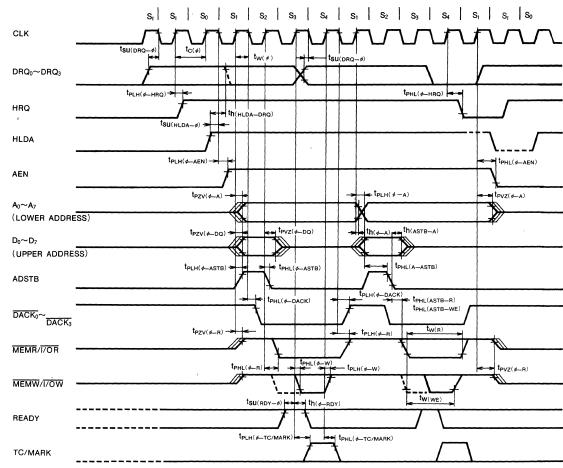
#### TIMING REQUIREMENTS ( $\tau_a = -20 \sim 75^{\circ}$ C, $V_{cc} = 5 V \pm 5 \%$ , $V_{ss} = 0 V$ , unless otherwise noted)

Symbol	Parameter	Test conditions		Limits		Unit
Symbol		Test conditions	Min	Тур	Max	Unit
t _{w(R)}	Read pulse width		250			ns
t _{su(A-R)} t _{su(CS-R)}	Address or CS setup time before read		0			ns
t _h (R-A) t _h (R-CS)	Address or CS hold time after read		0			ns
t _{w(w)}	White pulse width		200			ns
t _{su(A} -w)	Address setup time before write		20			ns
th(w-A)	Address hold time after write		0			ns
tsu(DQ-w)	Data setup time before write		200			ns
th(w-DQ)	Data hold time after write		0			ns
tw(RST)	Reset pulse width		300			ns
tsu(vcc-RST)	Supply voltage setup time before reset		500			ns
tr	Input signal rise time				20	ns
tf	Input signal fall time				20	ns
t _{su(RST-w)}	Reset setup time before write		2			t _{C(#)}
t _{C(∳)}	Clock cycle time		0.32		4	μs
t _{w(\$)}	Clock pulse width high-level		80		0.8t _{C(≠)}	ns
t _{su(DRQ} -∳)	DRQ setup time before clock		70			ns
th(HLDA-DRQ)	DRQ hold time after HLDA		0			ns
tsu(HLDA−¢)	HLDA setup time before clock		100			ns
tsu(RDY-∳)	Ready setup time before clock		30			ns
th(≠RDY)	Ready hold time after clock		20			ns

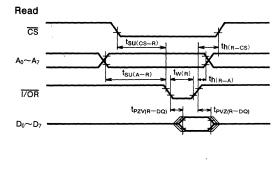
## SLAVE MODE SWITCHING CHARACTERISTICS ( $T_a = -20 \sim 75 \degree$ , $V_{cc} = 5 V \pm 5 \%$ , $V_{ss} = 0 V$ , unless otherwise noted)

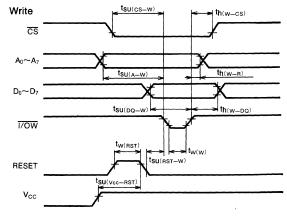
Symbol	Parameter	Test conditions		Unit		
		rest continuits	Min	Тур	Max	Unit
t _{PZV(R-DQ)}	Output data enable time after read	0 150 5	0		200	ns
t _{PVZ(R-DQ)}	Output data disable time after read	C _L =150pF	20		100	ns




**MITSUBISHI LSIs** 

# M5L8257P-5


**PROGRAMMABLE DMA CONTROLLER** 


## TIMING DIAGRAMS





#### Slave Mode







MITSUBISHI LSIS

## PROGRAMMABLE INTERRUPT CONTROLLER

## DESCRIPTION

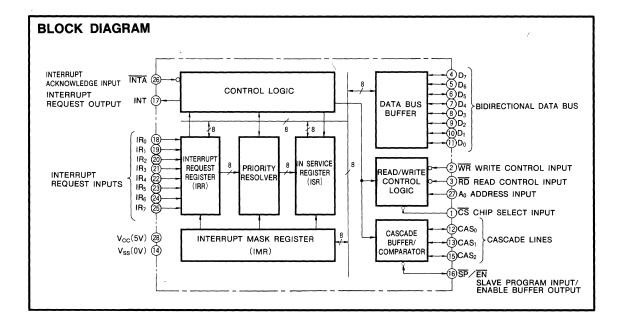
The M5L8259AP is a programmable LSI for interrupt control. It is fabricated using N-channel silicon-gate ED-MOS technology and is designed to be used easily in connection with an MELPS85, MELPS86 or MELPS88.

## FEATURES

- Single 5V supply voltage
- TTL compatible
- CALL instruction to the CPU is generated automatically
- Priority, interrupt mask and vectored address for each interrupt request input are programmable
- Up to 64 levels of interrupt requests can be controlled by cascading with M5L8259AP
- Polling functions

## **APPLICATION**

The M5L8259AP can be used as an interrupt controller for MELPS85, MELPS86 and MELPS88.


#### FUNCTION

The M5L8259AP is a device specifically designed for use in real time, interrupt driven microcomputer systems. It manages eight level requests and has built-in features for expandability to other M5L8259APs. The priority and interrupt mask can be changed or reconfigured at any time by the main program

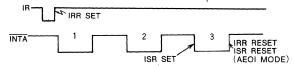
When an interrupt is generated because of an interrupt request at 1 of the pins, the M5L8259AP based on the mask



and priority will output an INT to the CPU. After that, when an INTA signal is received from the CPU or the system controller, a CALL instruction and a programmed vector address is released onto the data bus.

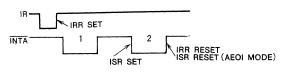





## M5L8259AP

## PROGRAMMABLE INTERRUPT CONTROLLER

#### Interrupt Sequence


### 1. When the CPU is a MELPS85

- When one or more of the interrupt request inputs are raised high-level, the corresponding IRR bit(s) for the high-level inputs will be set
- (2) Mask state and priority levels are considered and, if appropriate, the M5L8259AP sends an INT signal to the CPU.
- (3) The acknowledgement of the CPU to the INT signal, the CPU issues an INTA pulse to the M5L8259AP.
- (4) Upon receiving the first INTA pulse from the CPU, a CALL instruction is released onto the data bus.
- (5) A CALL is a 3-byte instruction, so additional two INTA pulses are issued to the M5L8259AP from the CPU.
- (6) These two INTA pulses allow the M5L8259AP to release the program address onto the data bus. The low-order 8 bits vectored address is released at the second INTA pulse and the high-order 8 bits vectored address is released at the third INTA pulse. The ISR bit corresponding to the interrupt request input is set upon receiving the third INTA pulse from the CPU, and the corresponding IRR bit is reset.
- (7) This completes the 3-byte CALL instruction and the interrupt routine will be serviced. The ISR bit is reset at the trailing edge of the third INTA pulse in the AEOI mode In the other modes the ISR bit is not reset until an EOI command is issued.



#### 2. When the CPU is a MELPS86 or MELPS88

- (1) When one or more of the interrupt request inputs are raised high-level, the corresponding IRR bit(s) for the high-level inputs will be set.
- (2) Mask state and priority levels are considered and if appropriated, the M5L8259AP sends an INT signal to the CPU.
- (3) As an acknowledgement to the INT signal, the CPU issues an INTA pulse to the M5L8259AP.
- (4) Upon receiving the first INTA pulse from the CPU, the M5L8259AP does not drive the data bus, and the data bus keeps high-impedance state.
- (5) When the second INTA pulse is issued from the CPU, an 8-bit pointer is released onto the data bus.
- (6) This completes the interrupt cycle and the interrupt routine will be serviced. The ISR bit is reset at the trailing edge of the second INTA pulse in the AEOI mode. In the other modes the ISR bit is not reset until an EOI command is issued from the CPU.



The interrupt request input must be held at high-level until the first  $\overline{INTA}$  pulse is issued. If it is allowed to return to low-level before the first  $\overline{INTA}$  pulse is issued, an interrupt request in IR₇ is executed. However, in this case the ISR bit is not set.

This is a function for a noise countermeasure of interrupt request inputs. In the interrupt routine of IR₇, if ISR is checked by software either the interrupt by noise or real interrupt can be acknowledged. In the state of edge trigger mode normallý the interrupt request inputs hold high-level and its input low-level pulse in the case of interrupt

#### Interrupt sequence outputs

#### 1. When the CPU is a MELPS85

A CALL instruction is released onto the data bus when the first  $\overline{INTA}$  pulse is issued. The low-order 8 bits of the vectored address are released when the second  $\overline{INTA}$ pulse is issued, and the high-order 8 bits are released when the third  $\overline{INTA}$  pulse is issued. The format of these three outputs is shown in Table 2.

#### Table 2 Formats of interrupt CALL instruction and vectored address

First INTA pulse (CALL instruction)

D7	D ₆	D ₅	D₄	D ₃	D ₂	D1	Do
1	1	0	0	1	1	0	1

Second INTA pulse (low-order 8 bits of vectored address)

IR				Interv	a = 4			
	D7	D ₆	<b>D</b> 5	D4	D ₃	D ₂	D ₁	D ₀
IR ₀	A ₇	A ₆	A ₅	0	0	0	0	0
IR ₁	A7	A ₆	A ₅	0	0	1	0	0
IR ₂	A7	A ₆	A ₅	0	1	0	0	0
IR ₃	A7	A ₆	A ₅	0	1	1	0	0
IR4	A7	A ₆	A ₅	1	0	0	0	0
IR ₅	<b>A</b> 7	A ₆	A ₅	1	0	1 `	· 0	0
IR ₆	<b>A</b> 7	A ₆	A ₅	1	1	0	0	0
IR ₇	A7	A ₆	A ₅	1	1	1	0	0



## PROGRAMMABLE INTERRUPT CONTROLLER

#### Read Control Input (RD)

When  $\overline{RD}$  goes low-level status information in the internal register of the M5L8259AP can be read through the data bus. Address Input (A_n)

The address input is normally connected with one of the address lines and is used along with  $\overline{WR}$  and  $\overline{RD}$  to control write commands and reading status information.

#### **Cascade Buffer/Comparator**

The cascade buffer/comparator stores or compares identification codes. The three cascade lines are output when the M5L8259AP is a master or input when it is a slave. The identification code on the cascade lines select it as master or slave.

#### **PROGRAMMING THE M5L8259AP**

The M5L8259AP is programmed through the Initialization Command Word (ICW) and the operation command word (OCW). The following explains the functions of these two commands.

#### Initialization Command Words (ICWs)

The initialization command word is used for the initial setting of the M5L8259AP. There are four commands in this group and the following explains the details of these four commands. The command flow of ICWs is shown Fig. 2.

#### ICW1

The meaning of the bits of ICW1 is explained in Fig. 3 along with the functions. ICW1 contains vectored address bits  $A_7 \sim A_5$ , a flag indicating whether interrupt input is edge triggered or level triggered, CALL address interval, whether a

single M5L8259AP or the cascade mode is used, and whether ICW4 is required or not.

Whenever a command is issued with  $A_0=0$  and  $D_4=1$ , this is interpreted as ICW1 and the following will automatically occur.

- (a) The interrupt mask register (IMR) is cleared.
- (b) The interrupt request input  $IR_7$  is assigned the lowest priority.
- (c) The special mask mode is cleared and the status read is set to the interrupt request register (IRR).
- (d) When IC4=0 all bits in ICW4 are set to 0.

#### ICW2

ICW2 contains vectored address bits  $A_{15} \sim A_8$  or interrupt type  $T_7 \sim T_3$ , and the format is shown in Fig. 3.

#### ICW3

When SNGL=1 it indicates that only a single M5L8259AP is used in the system, in which case ICW3 is not valid. When SNGL=0, ICW3 is valid and indicates cascade connections with other M5L8259AP devices. In the master mode, a 1 is set for each slave.

When the CPU is a MELPS85 the CALL instruction is released from the master at the first  $\overline{\text{INTA}}$  pulse and the vectored address is released onto the data bus from the slave at the second and third  $\overline{\text{INTA}}$  pulses.

When the CPU is a MELPS86 the master and slave are in high-impedance at the first  $\overline{\text{INTA}}$  pulse and the pointer is released onto the data bus from the slave at the second  $\overline{\text{INTA}}$  pulse.

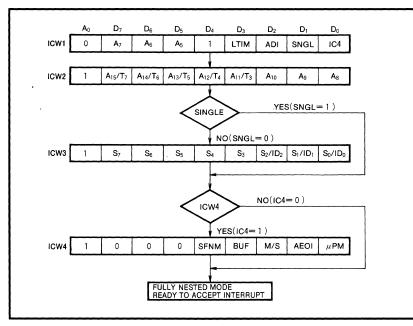



Fig. 2 Initialization sequence



M5L8259AP

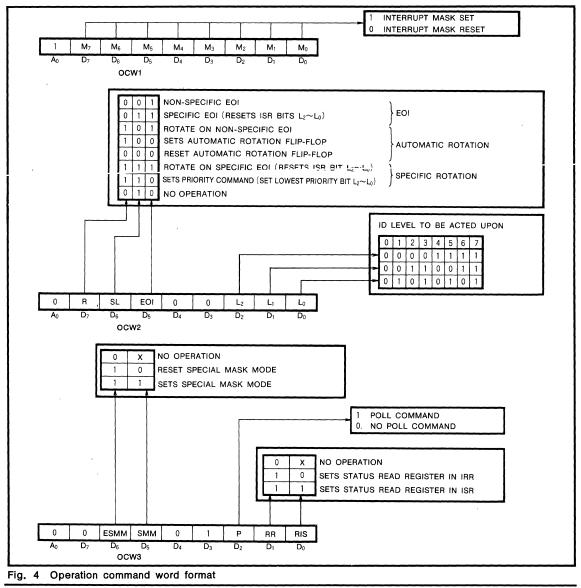
## PROGRAMMABLE INTERRUPT CONTROLLER

The master mode is specified when  $\overline{SP/EN}$  pin is high-level or BUF=1 and M/S=1 in ICW4, and slave mode is specified when  $\overline{SP/EN}$  pin is low-level or BUF = 1 and M/S = 0 in ICW4. In the slave mode, three bits ID₂ ~ ID₀ identify the slave. And then when the slave code released on the cascade lines from the master, matches the assigned ID code, the vectored address is released by it onto the data bus at the next INTA pulse.

#### ICW4

Only when IC4=1 in ICW1 is ICW4 valid. Otherwise all bits are set to 0. When ICW4 is valid it specifies special fully nested mode, buffer mode, master/slave, automatic EOI and microprocessor mode The format of ICW4 is shown in Fig. 3.

#### Operation Command Words (OCW_S)


The operation command words are used to change the contents of IMR, the priority of interrupt request inputs and the special mask. After the ICW are programmed into the M5L8259AP, the device is ready to accept interrupt requests. There are three types of  $OCW_S$ ; explanation of each follows, and the format of  $OCW_S$  is shown in Fig. 4.

#### OCW1

The meaning of the bits of OCW1 are explained in Fig. 4 along with their functions. Each bit of IMR can be independently changed (set or reset) by OCW1.

#### OCW2

The OCW2 is used for issuing EOI commands to the M5L8259AP and for changing the priority of the interrupt re-





MITSUBISHI LSIS

## PROGRAMMABLE INTERRUPT CONTROLLER

mode. When the M5L8259AP is in special mask mode ISR bits masked in IMR are not reset by EOI. EOI and SEOI are selected when OCW2 is executed.

#### Automatic EOI (AEOI)

In the AEOI mode the M5L8259AP executes non-specific EOI command automatically at the trailing edge of the last INTA pulse. When AEOI=1 in ICW4, the M5L8259AP is put in AEOI mode continuously until reprogrammed in ICW4.

The AEOI mode can only be used in a master M5L8259AP and not a slave.

#### Automatic rotation

The automatic rotation mode is used in applications where many interrupt requests of the same level are expected such as multichannel communication systems. In this mode when an interrupt request is serviced, that request is assigned the lowest priority so that if there are other interrupt requests they will have higher priorities. This means that the next request on the interrupt request being serviced must wait until the other interrupt requests are serviced (worst case is waiting for all 7 of the other controllers to be serviced). The priority and serving status are rotated as shown in Fig. 5.

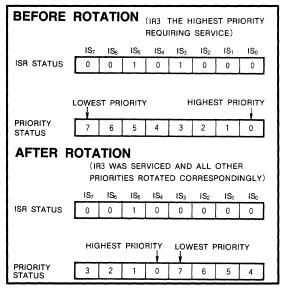



Fig. 5 An example of priority rotation

In the non-specific EOI command automatic rotation mode is selected when R=1, EOI=1, SL=0 in OCW2. The internal priority status is changed by EOI or AEOI commands. The rotation priority A flip-flop is set by R=1, EOI=0 and SL=0 which is useful when the M5L8259AP is used in the AEOI mode.

#### Specific rotation

Specific rotation gives the user versatile capabilities in interrupt controlled operations. It serves in those applications in which a specific device's interrupt priority must be altered. As opposed to automatic rotation which automatically sets priorities, specific rotation is completely user controlled. That is, the user selects the interrupt level that is to receive lowest or highest priority. Priority changes can be executed during an EOI command.

#### Level triggered mode/Edge triggered mode

Selection of level or edge triggered mode of the M5L8259AP is made by ICW1, When using edge triggered mode not only is a transition from low-level to high-level required, but the high-level must be held until the first  $\overline{INTA}$ . If the high-level is not held until the first  $\overline{INTA}$ , the interrupt request will be treated as if it were input on IR₇, except that the ISR bit is not set. When level triggered mode is used the functions are the same as edge triggered mode except that the transition from low-level to high-level is not required to trigger the interrupt request.

In the level triggered mode and using AEOI mode together, if the high-level is held too long the interrupt will occur immediately. To avoid this situation interrupts should be kept disabled until the end of the service routine or until the IR input returns low-level. In the edge triggered mode this type of mistake is not possible because the interrupt request is edge triggered.

#### Reading the M5L8259AP internal status

The contents of IRR and ISR can be read by the CPU with status read. When an OCW3 is issued to the M5L8259AP and an  $\overline{\text{RD}}$  pulse issued the contents of IRR or ISR can be released onto the data bus. A special command is not required to read the contents of IMR. The contents of IMR can be released onto the data bus by issuing an  $\overline{\text{RD}}$  pulse when A₀=1. There is no need to issue a read register command every time the IRR or ISR is to be read. Once a read register command is received by the M5L8259AP, it remains valid until it is changed. Remember that the programmer must issue a poll command every time to check whether there is an interrupt request and read the priority level. Polling overrides status read when P=1, RR=1 in OCW3.

#### CASCADING

The M5L8259AP can be interconnected in a system of one master with up to 8 slaves to handle up to 64 priority levels. A system of 3 units that can be used with the MELPS85 is shown in Fig. 6.

The master can select a slave by outputting its identification code through the 3 cascade lines. The INT output of each slave is connected to the master interrupt request inputs. When an interrupt request of one of the slaves is to be serviced the master outputs the identification code of the slave through the cascade lines, so the slave will release the vectored address on the next INTA pulse.

The cascade lines of the master are nomally low-level, and will contain the slave identification code from the leading edge of the first INTA pulse to the trailing edge of the last



# M5L8259AP

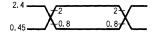
## PROGRAMMABLE INTERRUPT CONTROLLER

## **INSTRUCTION SET**

Item					Inst	ruction d	code				×	Fund	ction		
Number	Mnemonic	Ao	D7	D ₆	D ₅	D4	D ₃	D ₂	D ₁	D ₀	ICW4 required?	Intervel	Single	Trigger	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	ICW1 A ICW1 B ICW1 C ICW1 C ICW1 E ICW1 F ICW1 G ICW1 H ICW1 I ICW1 I ICW1 K ICW1 K ICW1 L ICW1 M ICW1 O		A7           A7	A6           A6	A ₅ A ₅ A ₅ A ₅ A ₅ O O O O A ₅ A ₅ A ₅ A ₅ O O O O O O O O O O O O O O O O O O O	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	1 1 1 0 0 0 0 1 1 1 1 1 0 0 0	1 1 0 1 1 0 0 1 1 0 0 1 1 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N N N N N N N Y Y Y Y Y	4 4 8 8 8 8 8 4 4 4 4 8 8 8 8 8	Y Y N N Y Y N N Y Y N N Y Y N		
16 17 18 19	ICW1 P ICW2 ICW3 M ICW3 S	0 1 1 1	A ₇ A ₁₅ S ₇ 0	A ₆ A ₁₄ S ₆ 0	0 A ₁₃ S ₅ 0	1 A ₁₂ S ₄ 0	1 A ₁₁ S ₃ 0	0 A ₁₀ S ₂ ID ₂	0 A ₉ S ₁ ID ₁	1 A ₈ S ₀ ID ₀	Y		N ddress ns (master mod non code (slave		
						,					SFNM	BUF	AEOI	MELPS86	
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 9 50 51	ICW4 A ICW4 B ICW4 C ICW4 D ICW4 C ICW4 F ICW4 G ICW4 G ICW4 G ICW4 H ICW4 J ICW4 J ICW4 J ICW4 A ICW4 N ICW4 N ICW4 N ICW4 N ICW4 NC ICW4 NC ICW4 NE ICW4 NE ICW4 NE ICW4 NE ICW4 NH ICW4 NL ICW4 NL ICW4 NL ICW4 NN ICW4 NN ICW4 NN ICW4 NN ICW4 NN									0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1	N N N N N N N N N N N N N N N N N N N	ZZZZZZZ >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	N Z Y Y Z Z Y Y Z Z Y Y Z Z Y Y Z Z Y Y Z Z Y Y Z Z Y Y Z Z Y Y	Z Y Z Y Z Y Z Y Z Y Z Y Z Y Z Y Z Y Z Y	
52 53 55 55 57 58 59 60 61 62 63 64	OCW1 OCW2 E OCW2 SE OCW2 RE OCW2 RS OCW2 RS OCW2 RS OCW2 RS OCW3 P OCW3 RIS OCW3 RN OCW3 RSM	1 0 0 0 0 0 0 0 0 0 0 0 0 0	M7 0 1 1 0 0 0 0 0	M ₆ 0 1 0 1 0 0 1 0 0 1	M5 1 1 0 0 0 0 0 1 0	M₄ 0 0 0 0 0 0 0 0 0 0 0 0 0 0	M₃ 0 0 0 0 0 1 1 1 1	M ₂ 0 L ₂ 0 0 L ₂ 1 0 0 0 0 0	M ¹ 0 L ₁ 0 L 0 L 0 1 1 0 0	M ₀ 0 0 0 0 0 0 0 0 0 0 0 0 0 0	EOI SEOI Rotate on Non-Specific EOI command (Automatic rotation) Rotate on Specific EOI command (Specific rotation) Rotate in AEOI Mode (SET) Rotate in AEOI Mode (CLEAR)				

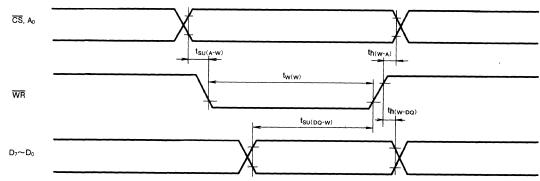
Note 4 ' Y. yes, N no, E edge, L. level, M: master, S' slave

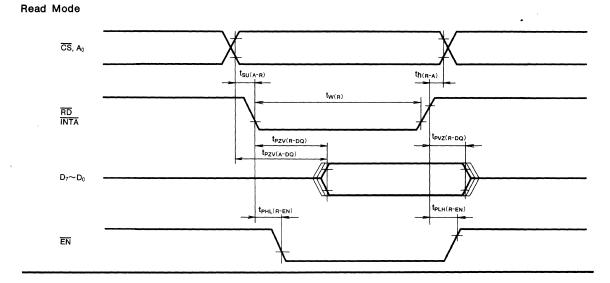



## **PROGRAMMABLE INTERRUPT CONTROLLER**

### $\label{eq:switching} \textbf{CHARACTERISTICS} \quad (\textbf{T}_a = -20 \sim 75^\circ \textbf{C} \text{, } \textbf{V}_{cc} = 5V \pm 10\%, \ \textbf{V}_{ss} = 0 \textbf{V}, \ \textbf{unless otherwise noted})$

Symbol	Parameter	Test conditions			Unit	
Symbol	Parameter	rest conditions	Min	Тур	Max	onic
t _{PZV(R-DQ)}	Data output enable time after read				200	ns
t _{PVZ(R-DQ)}	Data output disable time after read		10		100	ns
t _{PZV(A-DQ)}	Data output enable time after address	0 -100-5			200	ns
t _{PHL(R-EN)}	Propagation time from read to enable signal output	CL=100pF Where SP/EN			125	ns
t _{PLH(R-EN)}	Propagation time from read to disable signal output				150	ns
t _{PLH(IR-INT)}	Propagation time from interrupt request input to interrupt request output	pin is 15pF			350	ns
tplv(INTA-CAS)	Propagation time from INTA to cascade output (master)				565	ns
t _{PZV(CAS-DQ)}	Data output enable time after cascade output (slave)				300	ns


Note 5 : INTA signal is considered read signal CS signal is considered address signal Input pulse level 0.45~2.4V Input pulse rise time 20ns


Input pulse fall time 20ns Reference level input  $V_{IH}=2V$ ,  $V_{IL}=0.8V$ output  $V_{OH}=2V$ ,  $V_{OL}=0.8V$ 



## TIMING DIAGRAM

## Write Mode







MITSUBISHI LSIS M5L8279P-5

## PROGRAMMABLE KEYBOARD/DISPLAY INTERFACE

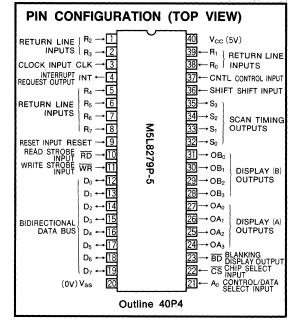
### DESCRIPTION

The M5L8279P-5 is a programmable keyboard and display interface device that is designed to be used in combination with an 8-bit/16-bit microprocessor. This device is fabricated with N-channel silicon-gate ED-MOS process technology and is packed in a 40-pin DIL package. It needs only single 5V power supply.

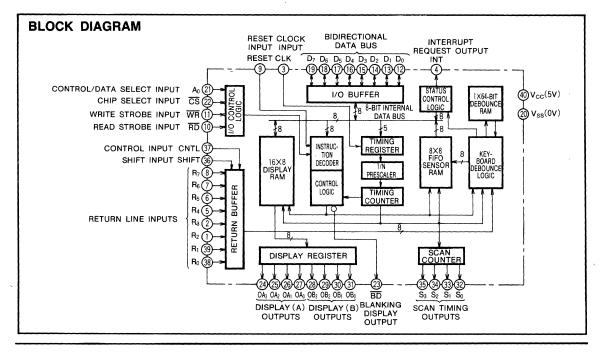
## FEATURES

- Single 5V supply voltage
- TTL compatible
- Keyboard mode
- Sensor matrix mode
- Strobed mode
- Internally provided key bounce protection circuit
- Programmable debounce time
- 2-key lockout/N-key rollover
- 8-character keyboard FIFO
- Internally contained 16 × 8-bit display RAM
- Programmable right and left entry

## APPLICATION


Microcomputer I/O device

64 contact key input device for such items as electronic cash registers


Dual 8- or single 16-alphanumeric display

## FUNCTION

The total chip, consisting of a keyboard interface and a display interface, can be programmed by eight 8-bit commands. The keyboard portion is provided with a 64-bit key



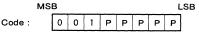
debounce buffer and an  $8 \times 8$ -bit FIFO/SENSOR RAM. It operates in any one of the scanned keyboard mode, scanned sensor matrix mode or strobed entry mode. The display portion is provided with a 16  $\times$  8-bit display RAM that can be organized into a dual 16 $\times$  4 configuration. Also, an 8-digit display configuration is possible by means of programming.





## M5L8279P-5

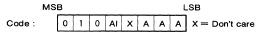
#### PROGRAMMABLE KEYBOARD/DISPLAY INTERFACE


#### COMMAND DESCRIPTION

There are eight commands provided for programming the operating modes of the M5L8279P-5. These commands are sent on the data bus with the signal  $\overline{CS}$  in low-level and the signal A₀ in 1 and are stored in the M5L8279P-5 at the rising edge of the signal  $\overline{WR}$ . The order of the command execution is arbitrary.

#### 1. Mode Set Command

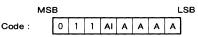



- <u>DD</u> (Display mode set command)
- 0 0 8-8-bit character display-left entry
- 0 1 16-8-bit character display-left entry (Note1)
- 1 0 8-8-bit character display-right entry
- 1 1 16-8-bit character display-right entry
- KKK (Keyboard mode set command)
- 0 0 0 Encoded display keyboard mode 2-key lockout (Note1)
- 0 0 1 Decoded display keyboard mode 2-key lockout
- 0 1 0 Encoded display keyboard mode N-key rollover
- 0 1 1 Decoded display keyboard mode N-key rollover
- 1 0 0 Encoded display, sensor mode
- 1 0 1 Decoded display, sensor mode
- 1 1 0 Encoded display, strobed entry mode
- 1 1 1 Decoded display, strobed entry mode
- Note 1 : Default after reset.
- 2. Program Clock Command



The external clock is divided by the prescaler value PPPPP designated by this command to obtain the basic internal frequency.

When the internal clock is set to 100kHz, it will give a 5.1ms keyboard scan time and a 10.3ms debounce time. The prescale value that can be specified by PPPPP is from 2 to 31. In case PPPPP is 00000 or 00001, the prescale is set to 2. Default after a reset pulse is 31, but the prescale value is not cleared by the clear command.

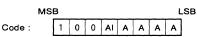

#### 3. Read FIFO Command



This command is used to specify that the following data readout (CS· $\overline{A}_0$ ·RD) is from the FIFO. As long as data is to be read from the FIFO, no additional commands are necessary.

Al and AAA are used only in the sensor mode. AAA designates the address of the FIFO to be read, and AI is the autoincrement flag. Turning AI to 1 makes the address automatically incremented after the second read operation. This auto-increment bit does not affect the auto-increment of the display RAM.

#### 4. Read Display RAM Command




This command is used to specify that the following data readout (CS· $\overline{A}_0$ ·RD) is from the display RAM. As long as data is to be read from the display RAM, no additional commands are necessary.

The data AAAA is the value with which the display RAM read/write counter is set, and it specifies the address of the display RAM to be read or written next.

Al is the auto-increment flag. Turning Al to 1 makes the address automatically incremented after the second read/ write operation. This auto-increment bit does not affect the auto-increment of FIFO readout in the sensor mode.

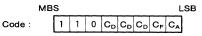
5. Write Display RAM Command



With this command, following display RAM read/write addressing is achieved without changing the data readout source (FIFO or display RAM). Meaning of AI and AAAA are identical with read display RAM command.

6. Display Write inhibit/Blanking Command

MSB ode: 1 0 1						LSB								
ode :		1	0	1	х	IW	IW	BL	BL	X = Don't care				
						Α	В	A	В					


The IW is a write inhibit bit to the display RAM that corresponds with the output A or B. Inhibit is activated by turning the IW 1.

The BL is used in blanking the out A or B. Blanking is activated by turning the BL 1. Setting both BL flags makes the signal  $\overline{\text{BD}}$  low-level so that it can be used in 8-bit display mode.

Resetting the flags makes all IW and BL turn 0.

#### 7. Clear Command

C



C_D: Clears the display RAM.

 $C_D C_D C_D$ 

0

1

1

1

- X X No specific performance
- 0 X Entire contents of the display RAM are turned 0.
- 1 0 The contents of the display RAM are turned 20H (00100000 =  $0A_30A_20A_10A_0$  $0B_30B_20B_10B_0$ ).
- 1 1 Entire contents of the display RAM are turned 1.



### PROGRAMMABLE KEYBOARD/DISPLAY INTERFACE

### CPU INTERFACE

#### 1. Command Write

A command is written on the rising edge of the signal WR with  $\overline{\text{CS}}$  low-level and A_0 1.

#### 2. Data Write

Data is written to the display RAM on the rising edge of the signal  $\overline{WR}$  with  $\overline{CS}$  low-level and A_0 0.

The address of the display RAM is also incremented on the rising edge of the signal  $\overline{WR}$  if AI is set for the display RAM.

#### 3. Status Read

The status word is read when  $\overline{CS}$  and  $\overline{RD}$  are low-level and  $A_0$  is 1. The status word appears on the data bus as long as the signal  $\overline{RD}$  is low-level.

#### 4. Data Read

Data is read from either the FIFO or the display RAM with  $\overline{CS}$  and  $\overline{RD}$  are low-level and  $A_0$  is 0. The source of the data (FIFO or display RAM) is decided by the latest command (read display or read FIFO). The data read appears on the data bus as long as the signal  $\overline{RD}$  is low-level.

The trailing edge of the signal RD increments the address of the FIFO or the display RAM when AI is set. After the reset, data will be read from the FIFO, however.

Ao	CS	RD	WR	Operation
1	L	н	L	Command write
0	L	н	L	Data write
1	L	L	н	Status read
0	L	L	н	Data read
×	н	х	×	No operation

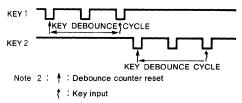
## **KEYBOARD INTERFACE**

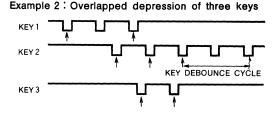
Keyboard interface is done by the scan timing signals ( $S_0 \sim S_3$ ), the return line inputs ( $R_0 \sim R_7$ ), the SHIFT and the CNTRL inputs.

In the decoded mode, the low-order of 2 bits of the internal scan counter are decoded and come out on the timing pins  $(S_0 \sim S_3)$ . In the encoded mode, the four binary bits of the scan counter are directly output on the timing pins, thus a 3-to-8 decoder must be employed to generate keyboard scan timing.

The return line inputs ( $R_0 \sim R_7$ ), the SHIFT and the CNTL inputs are pulled up high-level by internal pullup transistors until a switch closure pulls one low.

The internal key debounce logic works for a 64-key matrix that is obtained by combining the return line inputs with the scan timing.


For the keyboard interface, M5L8279P-5 has four distinctive modes that allow various kinds of applications. In the following explanation, a "key scan cycle" is the time needed to scan a 64-key matrix, and a "key debounce cycle" needs a duration of two "key scan" cycles. (In the decoded mode 32 keys, unlike 64 keys in the encoded mode, can be employed for a maximum key matrix due to the limit of timing signals


However, both the key scan cycle and the key debounce cycle are the same as in the encoded mode.)

#### 1. 2-Key Lockout (Scanned Keyboard Mode)

The detection of a new key closure resets the internal debounce counter and starts counting. At the end of a key debounce cycle, the key is checked and entered into the FIFO if it is still down. An entry in the FIFO sets the INT output high. If any other keys are depressed in a key debounce cycle, the internal key debounce counter is reset each time it encounters a new key. Thus only a single-key depression within a key debounce duration is accepted, but all keys are ignored when more than two keys are depressed at the same time.

#### Example 1 : Accepting two successive key depressions





Note 3 : Only key 2 is acceptable

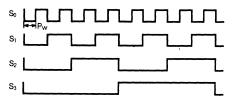


## PROGRAMMABLE KEYBOARD/DISPLAY INTERFACE

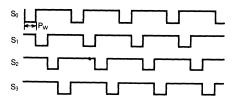
## DISPLAY INTERFACE

The display interface is done by 8 display outputs (OA₀ ~ OA₃, OB₀ ~ OB₃), a blanking signal ( $\overline{BD}$ ), and scan timing outputs (S₀~S₃).

The relation between the data bus and the display outputs is as shown below:

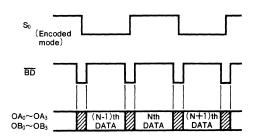

D7	$D_6$	$D_5$	D4	D3	$D_2$	D ₁	D ₀	
Ļ	Ļ	1	Ļ	Ļ	ļ	ţ	ļ	
OA ₃	OA ₂	OA ₁		OB ₃	OB ₂	OB ₁	OB ₀	

Clearing the display RAM is not achieved by the reset signal (9-pin) but requires the execution of the clear command.


The timing diagrams for both the encoded and decoded modes are shown below.

For the encoded mode, a 3-to-8 or 4-to-16 decoder is required, according to whether eight or sixteen digit display used.

(1) Encoded mode




(2) Decoded mode



Note 4 : Here  $P_W$  is  $640 \mu s$  if the internal clock frequency is set to 100 k Hz.

Timing relations of S₀,  $\overline{BD}$ , and display outputs (OA₀ ~ OA₃, OB₀~OB₃) are shown below.



Note 5 : Values of the output data shown in the slanted line areas are decided upon the clear command executed last to become the value of the display RAM after the reset. The values in the slanted areas after reset will go low-level. In the same manner, the values OA₀~OA₃, OB₀~OB₃ are dependent on the clear command executed last. When the both A and B are blanked, the signal BD will be in low-level.

## M5L8279P-5

## PROGRAMMABLE KEYBOARD/DISPLAY INTERFACE

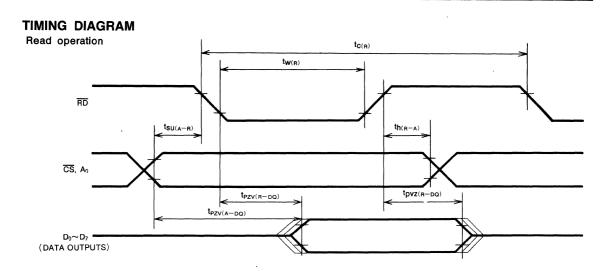
## ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
V _{cc}	Supply voltage		-0.5~7	v
V ₁	Input voltage	With respect to V _{SS}	-0.5~7	v
Vo	Output voltage		-0.5~7	v
Pd	Maximum power dissipation	T _a =25℃	1000	mW
Topr	Operating free-air temperature range		-20~75	Ĉ
T _{stg}	Storage temperature range		-60~150	°C

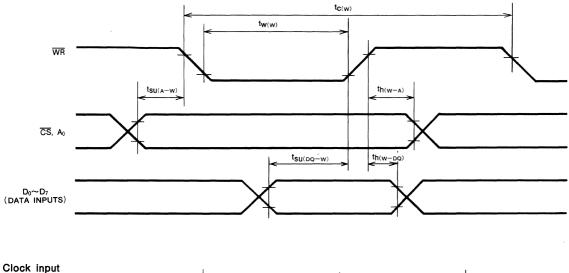
## RECOMMENDED OPERATING CONDITIONS (Ta=-20~75°C, unless otherwise noted.)

Symbol	Description		Unit		
	Parameter	Min	Nom	Max	Onit
V _{cc}	Supply voltage	4.5	5	5.5	v
Vss	Supply voltage (GND)		0		v

## $\label{eq:constraint} \textbf{ELECTRICAL CHARACTERISTICS} \quad (\textbf{T}_a = -20 \sim 75^\circ \text{C} \text{ , } \textbf{V}_{cc} = 5V \pm 10\% \text{ , } \textbf{V}_{ss} = 0V \text{ , unless otherwise noted.})$


Querra ha a l	Devenuenten	Test see ditions		Unit		
Symbol	Parameter	Test conditions	Min	Тур	Мах	Unit
VIH(RL)	High-level input voltage, for return line inputs		2.2			v
VIH	High-level input voltage, all others		2.0			v
VIL(RL)	Low-level input voltage, for return line inputs		V _{ss} -0.5		1.4	v
VIL	Low-level input voltage, all others		Vss-0.5		0.8	v
V _{он}	High-level output voltage	I _{OH} =-400µА	2.4			v
VOH(INT)	High-level output voltage, interrupt request output	I _{OH} =-400µА	3.5			v
Vol	Low-level output voltage	I _{OL} =2. 2mA			0.45	v
lcc	Supply current from $V_{CC}$				120	mA
	Input current, return line inputs, shift input and control	V _I =V _{CC}			10	
II(RL)	input	V,=0V	-100			μA
h	Input current, all others	$V_{i}=0V, V_{CC}$	-10		10	μA
loz	Off-state output current	V _o =0V~V _{cc}	-10		10	μA
Cı	Input terminal capacitance	V _I =V _{CC}	5		10	pF
Co	Output terminal capacitance	V _o =V _{cc}	10		20	pF




## **MITSUBISHI LSIs**

## M5L8279P-5

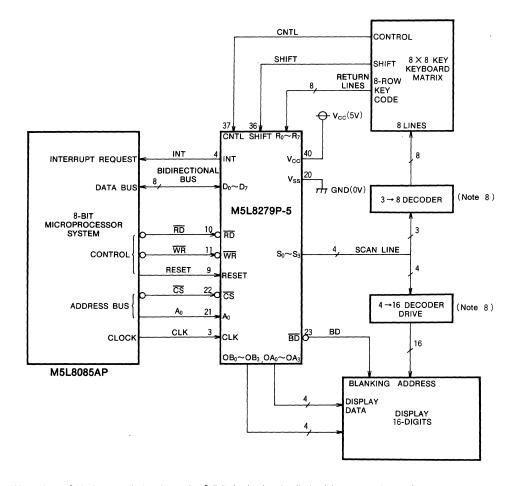
## PROGRAMMABLE KEYBOARD/DISPLAY INTERFACE



Write operation



t_{C(\$)} tw(¢) CLK




MITSUBISHI LSIs

## M5L8279P-5

## PROGRAMMABLE KEYBOARD/DISPLAY INTERFACE

## **APPLICATION EXAMPLE**



Note 8 : When using an 8-bit character display of more than 9 digits for the decoder display, it is necessary to provide two decoders for example 4 →10 decoder, 4 →16 decoder and key scan 3 → 8 decoder. Only S₀, S₁ and S₂ may be used as inputs to the key scan 3 → 8 decoder. (Don't drive the keyboard decoder with the MSB of the scan line )



## 4. TRANSFER CHARACTERISTICS AND POWER DISSIPATION

For COMS devices, the circuit threshold voltage is approximately one-half of  $V_{CC}$ . Contrasted with NMOS logic, where threshold voltage is a fixed level not related to supply voltage, ideal transfer characteristics can be achieved.

In order to maintain compatibility with the conventional NMOS devices, transfer characteristics of CMOS peripherals I/O circuits have been established at TTL level.

Fig. 4 illustrates input voltage  $V_{\rm IN}$  versus supply current  $I_{\rm CC}$  for M5M82C55AP-2. Here, when  $V_{\rm IN}$  reaches 1.3 to 1.5V, the resulting switch in internal circuits causes a sharp increase in  $I_{\rm CC}$  flow.

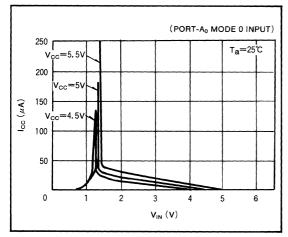



Fig. 4 Input voltage vs. dissipation current M5M82C55AP-2

In a CMOS curcuit, since p-channel and n-channel transistors are connected in series between the V_{CC} and V_{SS}, as long as gate voltage is at the V_{CC} or V_{SS} level, one of the two transistors will be in an off state. Consequently, fixing the input pin at the V_{CC} or V_{SS} level causes the static dissipation current (I_{CC}) flow from the V_{CC} to V_{SS} pin to consist only of p-n junction leakage current. As a consequence, the per-gate static dissipation current remains at about 50pA at T_a=25°C, and will not go over more than a few nanoamperes even at T_a=85°C. This is the primary reason behind CMOS devices low power dissipation.

Note however that power dissipation does increase when CMOS circuits are used in the switching mode. As was mentioned in the transfer characteristic description, transients in the input voltage cause current to flow from the  $V_{CC}$  to  $V_{SS}$ . The amount of current flow increases relative to higher  $V_{CC}$  values and operating frequency. Additionally, when capacitive loads (load capacitance also varies depending on the number of fanouts) are connected to the device, charging currents will be requied, which also in-

creases power dissipation.

The M5M82C55AP-2 illustrated in Fig. 4 has parallelconnected I/O ports, and is relatively limited in switching operations. However, devices such as the programmable timer M5M82C54P are subjected to constant clock operations, and the current flow for each CMOS circuit must be added to get the total for the device. As shown in Fing. 5, currnet dissipation increases along with increases in operating frequency.

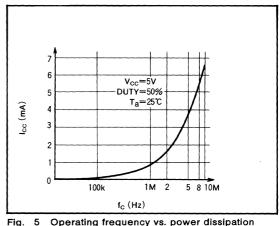



Fig. 5 Operating frequency vs. power dissipation M5M82C54P

The power dissipation characteristics of DMA controller M5M82C37AP-5 are illustrated in Fig.6.

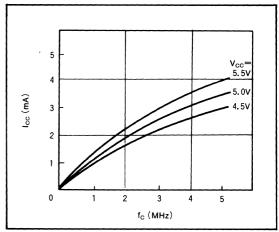



Fig. 6 Operating frequency vs. power dissipation M5M82C37AP-5



be driven, so signal switching response is slower. In this case, the load (s) to be driven must be divided (or allocated to several devices) as with previous devices.

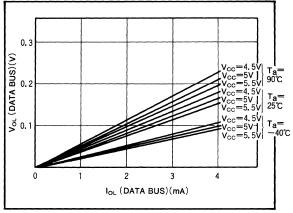



Fig. 9 IoL-VoL characteristics M5M82C55AP-2

## 7. INPUT CIRCUIT

Fig. 10 shows an equivalent circuit diagram of the input circuit for CMOS peripheral devices. The gate oxide layer of the transistors is extremely thin, and high voltages applied directly to the gates are likely to rupture their insulation, causing permanent demage to the device. To prevent gate damage, the diodes and input resistor shown in the diagram form a protection circuit.

Since threshold voltage for the input transistor is set at approximately 1.5V, as noted in section 4, if the input voltage is held at this level, a through current starts to flow from  $V_{CC}$  to  $V_{SS}$ . In systems where low dissipation current is required, this characteristic can cause problems in the design of the power supply.

Where a data bus is left floating, through current is likely to become a particular problem, so bus lines should be fixed at a certain level with a pull-up (or pull-down) circuit having high resistance values.

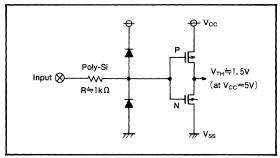



Fig. 10 CMOS peripheral device input circuit (equivalent diagram)

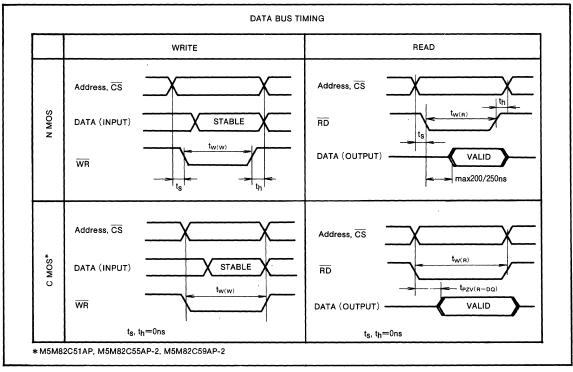



Fig. 11 Bus timing characteristics



## MITSUBISHI LSIS NOTICE FOR CMOS PERIPHERALS

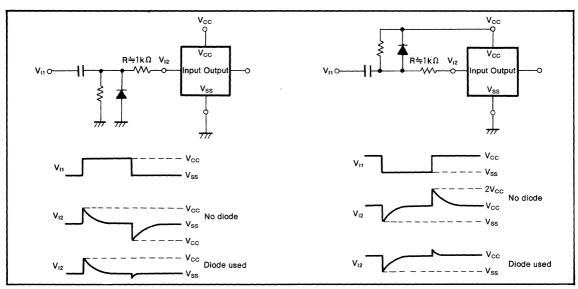



Fig. 13 Preventing latchup when using differential circuits

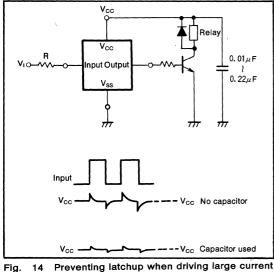



Fig. 14 Preventing latchup when driving large curren circuits

#### Conditions (b) or (d)

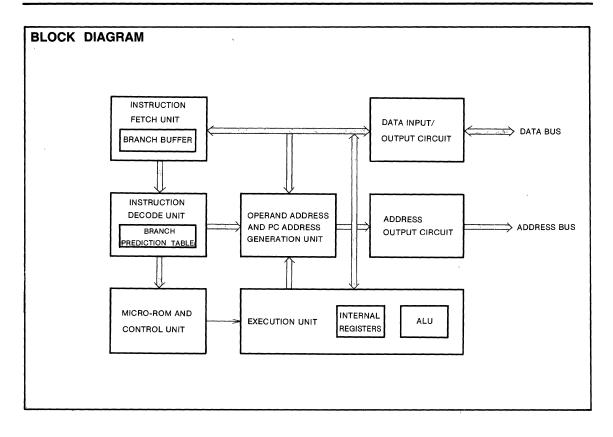
Applying a constant voltage to an output pin is not one of the normal usage configurations of a CMOS device, but a capacitor connected between output and  $V_{CC}$  (or  $V_{SS}$ ) would be a cause for latchup. This is due to the high impedance created in the power supply line, combined with the fact that switching the power supply on and off produces fluctuations in the power supply line which causes the capacitor to discharge a trigger current.

#### Condition (e)

Condition (e) can be created by exceeding the absolute maximum voltage ratings at the  $V_{CC}$  pin. Also, even though  $V_{CC}$  is within the recommended operating conditions, device latchup can be caused by the surge voltage superimposing at power ON, or crosstalk between lines. The voltage at  $V_{CC}$  should never exceed absolute maximum rating values under any circumstances.

Provisions should be made to reduce power ON surge voltage to a minimum, and as described in section 6, a capacitor should be connected beteen  $V_{CC}$  and  $V_{SS}$  to reduce impedance in the power line.



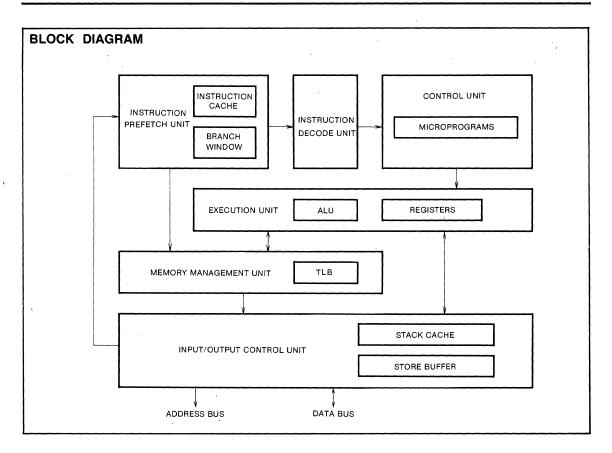

^

I pringer a for some configure

.

· ·

## MITSUBISHI LSIS M33210GS-20/FP-20




## CMOS 32-BIT PARALLEL MICROPROCESSOR (M32/100)



## MITSUBISHI LSIS M33220GS-20

## CMOS 32-BIT PARALLEL MICROPROCESSOR (M32/200)



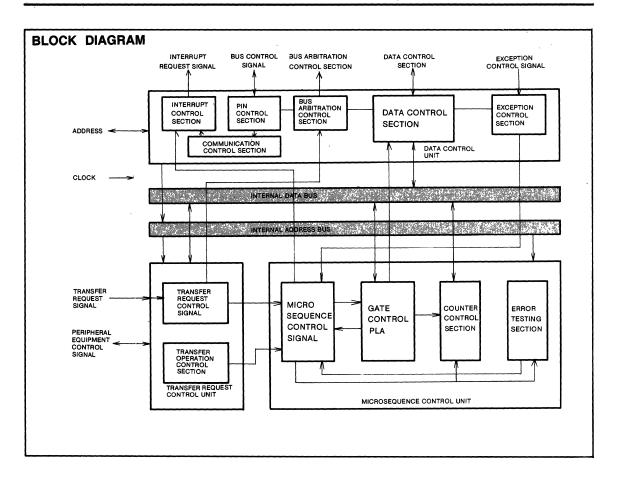


1

## CMOS 32-BIT PARALLEL MICROPROCESSOR (M32/300)

## **PIN ASSIGNMENT**

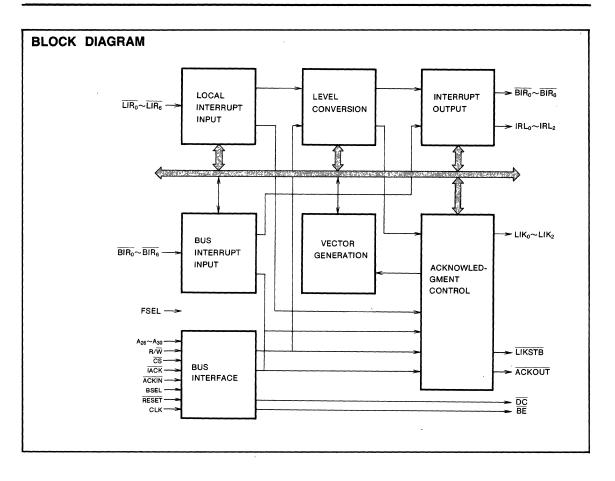
•


PIN CODE	NAME	PIN CODE	NAME	PIN CODE	NAME	PIN CODE	NAME	PIN CODE	NAME
A2	*2	C3	Vss	G2	FLOAT	N2	A ₁₃	T18	Vcc
A3	OCCPRG	C4	GBR	G3	*2	N3	A ₁₅	U1	A ₂₂
A4	*1	C5	WAY	G16	Vcc	N16	V _{ss}	U2	Vss
A5	Vss	C6	Vcc	G17	CPST₀	N17	A ₂₉	U3	Vcc
A6	*2	C7	*2	G1 <u>8</u>	CPST ₁	N18	A ₃₀	U4	D ₃₀
A7,	HACK	C8	RNG₁	H1	A ₁	P1	A ₁₄	U5	D ₂₈
A8	Vss	C9	BAT ₂	H2	Ao	P2	A ₁₆	U6 -	Vss
A9	BAT ₀	C10	Vss	H3	Vcc	P3	A ₁₈	U7	D ₂₃
A10	HALT	C11	CLKf	H16	CPST ₂	P16	A ₂₄	U8	D ₂₀
A11	HREQ	C12	CLKf	H17	NCA	P17	A ₂₇	U9	Vcc
A12	RESET	C13	Vss	H18	BLACKF	P18	A ₂₈	U10	Vcc
A13	V _{cc}	C14	Vcc	J1	A ₄	R1	A ₁₇	U11	D ₁₈
A14	BCLK ₁	C15	Vss	J2	A ₃	R2	Vss	U12	D ₁₅
A15	BCLK ₂	C16	L/C	J3 [′]	A ₂	R3	A ₂₁	U13	D ₁₃
A16	A ₁₉ V _{SS}	C17	BLOCK	J16	BLACKS	R4	Vcc	U14	D ₁₀
A17	A ₂₂ AS	C18	Vss	J17	Vss	R15	Vss	U15	D ₈
B1	*2	D1	IRL₀	J18	Vcc	R16	D ₁	U16	D ₇
B2	*2	D2	IRL ₁	K1	A ₅	R17	A ₂₅	U17	D ₃
B3	ICCPRG	D3	*2	K2	Vss	R18	A ₂₆	U18	D ₂
B4	TCS	D15	Vss	К3	A ₆	T1	A ₁₉	V2	Vcc
B5	*1	D16	DS	K16	BC ₁	T2	A ₂₀	V3	Vss
B6	Vcc	D17	RETRY	K17	BC ₂	Т3	A ₂₃	V4	D ₂₉
B7	DAT	D18	BERR	K18	BC ₃	T4	Vss	V5	D ₂₆
B8	RNG₀	E1	*1	L1	A7	T5	D ₃₁	V6	D ₂₅
В9	BAT ₁	E2	*1	L2	A ₈	Т6	D ₂₇	V7	D ₂₂
B10	Vcc	E3	IRL ₂	L3	A ₉	T7	D ₂₄	V8	Vcc
B11	Vcc	E16	Vcc	· L16	NCAO	Т8	CPST ₂ D ₂₁	V9 ¹	Vss
B12	Vss	E17	ASDC	L17	V _{SS}	Т9	Vss	V10	Vss
B13	V _{SS}	E18	SDC	L18	BC ₀	T10	Vcc	V11	D ₁₉
B14	*2	F1	*1	M1	A ₁₀	T1.1	D ₁₇	V12	D ₁₆
B15	V _{cc}	F2	*1	M2	A ₁₁	T12	D ₁₄	V13	Vss
B16	Vcc	F3	*1	M3	Vcc	T13	D ₁₁	V14	D ₁₂
B17	V _{SS} BS	F16	CPDC	M16	A ₃₁	T14	Vss	V15	D ₉
B18	V _{cc} R/W	F17	Vcc	M17	MVIN	T15	D ₆	V16	Vcc
C1	Vcc	F18	Vss	M18	LOC	T16	D₄	V17	D ₅
C2	Vss	G1	Vss	N1	A ₁₂	T17	Do		

* 1 : Connect to V_{cc}. * 2 : No connect



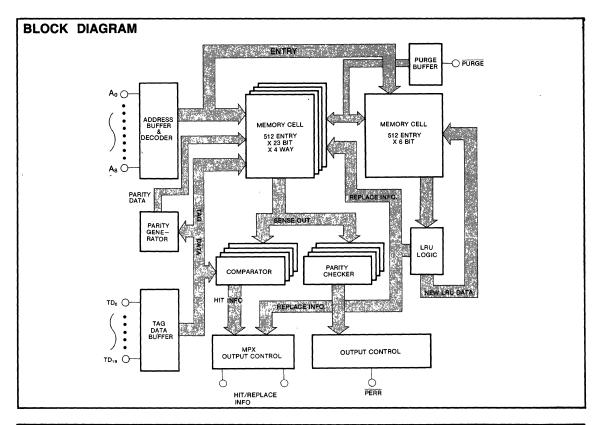
, .

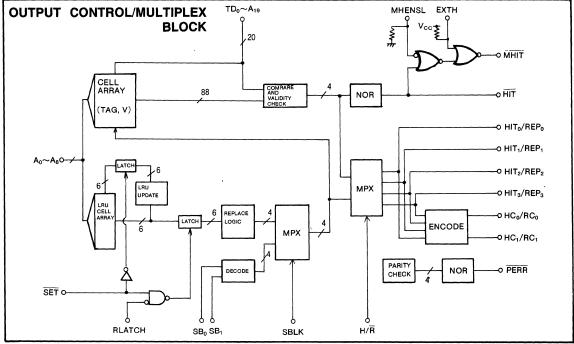

## CMOS DMA CONTROLLER (M32/DMAC)





## MITSUBISHI LSIS M33242SP/J


## CMOS INTERRUPT CONTROLLER (M32/IRC)






## MITSUBISHI LSI₅ M33243GS-25,-30

## CMOS TAG MEMORY (M32/TAGM)









# MITSUBISHI LSIS M33245GS

## CMOS CACHE CONTROLLER/MEMORY (M32/CCM)

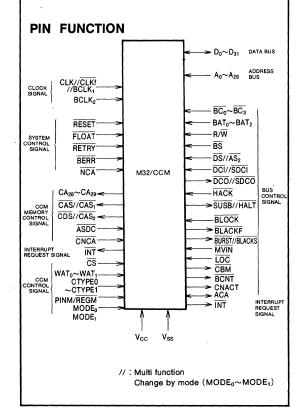
#### DESCRIPTION

M33245GS (M32/CCM) is a cache controller/memory for M32 family microprocessors (M33210GS-20, M33220GS-20, M33230GS-20).

It improves the MPU's average memory access time.

## **FEATURES**

- 16kB real address external cache
- No wait reads possible when the cache is hit
- Fast 4 words burst read when the cache is missed
- Fully synchronous operation with M32 family processors
- Internal address comparator allows multiple usage
- Division into data cache and instruction cache
- Coherency maintained by address monitor
- Purge and freeze functions in way units
- Write-through main memory replace
- 4-way set associative cache
- LRU (Least Recently Used) replace control
- Each line consists of 4 words (16 bytes) and a validity bit
- Package : 135 pin PGA


## APPLICATION

High performance cache memory system

## PIN CONFIGURATION (BOTTOM VIEW)

N M 0 0 41 42	_		L 0 43	<u>к</u> 0 44	J 0 45	H 0 46	G 0 47	F 0 48	E 0 49	D 0 50	<u>с</u> 51	B 0 52	A © 1	1
<b>0</b> 40303030303030303030303020202020202	40 80	040870140130120120190180170160	43 080	4089 89	45 90 90	) 40091 0	04709029	48 93 130	) 40 94⊖	080502	0506070808020202020202050606	030304050605080808060608060405	<b>◎</b> 1○2○3○4○5○6○7○8○9○10○11○12○13 <b>◎</b>	2
38	080808080808070707070707075		125 () 135	0 126	127	0 128	129	130	0 131	132	97 08	54 055	3 0	4
) 36	0 83	0 122	133								0 99	0 56	្វ័	5
35	0 82	0									0	0 57	0	6
34	81	120			мз	32	450	зs			000	58 0	70	8
33	80	119									102	59 0	0	9
0 31	) () 78										0	0 61	ँ 10	10
30	27	0	0 134 0	$\sim$	0	$\sim$	$\sim$	$\sim$	~	) 133	05	0 62	011	11
29	<b>76</b>		114	0113	112	UII O	0≌0	02080	0108 108 67	107	106	<b>63</b> 0	12	12
28 ©	75 〇 26	115 74 25	114 73 24	113 072 023	112 71 22	11070021	110 09 0 20	68 () 19	67 () 18	01301706017	65 0	64 0	13 © 14	14
27	20	20	24	23	44	21	20	19	10	17	10	10	14	1





Note. GMICROTM is a trademark of the G-MICRO group for the TRON specification microprocessors





# MITSUBISHI LSIs M33281GS-20

CMOS FLOATING-POINT PROCESSING UNIT (M32/FPU)

#### DESCRIPTION

M33281GS-20 is a high-speed floating-point arithmetic LSI unit, and support the extended precision data format of IEEE standard.

The M33281GS-20 is designed to give maximum performance as a coprocessor for M32 family microprocessors (M33220GS-20, M33230GS-20). In addition to arithmetic operations and square roots, it has elementary function instructions, inner product instructions for fast matrix and vector calculations, area discrimination instructions for clipping discrimination, graphics oriented instructions and many more.

#### **FEATURES**

• Performance (20MHz operation with M33220GS-20)

Addition or subtraction	0.5µs
Multipulication	0.45µs
Division	1.5 <i>u</i> s

- Elementary function calculation
- Graphics support

Division

- Conforms to IEEE754
- Fast coprocessor interface
- Comprehensive system functions
- Softwave and system support
- Variety of instruction types 31 arithmetic related 21 control related
- 16 floating point operation registers (80-bit)

_							_	-	_	-	-	-		
	<u>N</u>	M	<u>_</u>	ĸ	<u> </u>	H	G	F	E	<u>D</u>	<u>c</u>	B	<u> </u>	٦.
<b>©</b> 40	41	042 87	0430	044 89	045 90	46	0 47	0 48	49	50	51	52	© 1	1
$^{\circ}$	0	087	0 88	0	00		្ល	O G	្ឋ	05	0	្អ	$\hat{\boldsymbol{\rho}}$	2
್ಷ	õ	0 124	0	0	0	04090128	47 92 129	48 93 130	040403	080502	õ	្ត័	्रे	3
38	0	0 123	125 O	126	127	128	129	130	131	132	ő	04	Õ	4
<b>@</b> 4\)3\)8\)7\)6\)5\)4\)3\)3\)3\)3\)2\)8\)2\)2\ <b>@</b> 27	0408050403020508	123	135								0506070809020102020405	02030405050503080906060208	©10203040506070809010	5
36	83	0120									99	56	5	6
35	82	121									100	57	ĕ	7
34	81	120					81	00			101	58	7	1
033	80	) 119			IVI.	<b>3</b> 3∠	.01	GS			0	0 59	8	8
õ	Ö	0 118									0	Ö	ò	9
Ő	Ő	Ö									Ö	õ	ŏ	10
31	079078077076	0 117 116	0							0	0	ଁ	Ö	11
30	77		134 O	0	0	0	0	0	0	133	105	62	0 11 0 12	12
29	76	0115	114	113	012071022	)11 070	110	) 19 68	108	0107	0	63	12	13
28	0 75	0 74	073 024	113 072 23	71	70	69	68	0 67	0 66	0 65	0 64	0 13	
9 27	0 26	0 25	24	23	22	0 21	) 20	0 19	) 18	0	0 16	0 15	© 14	14
														-
			(	Эu	tlir	ne	13	355	S82	X-/	4			

**PIN CONFIGURATION (BOTTOM VIEW)** 

- . Peripheral device mode specifiable (for use when MPU lacks coprocessor interface)
- Package 135 pin PGA

## **APPLICATION**

Scientific and technical calculations, engineering diagram processing

## PIN ASSIGN

PIN CODE	PIN	NAME	PIN CODE	PIN	NAME	PIN CODE	PIN	NAME	PIN CODE	PIN	NAME	PIN CODE	PIN	NAME	PIN CODE	PIN	NAME
A1	1	Vss	B10	61	CPDC	D12	107	D ₁₆	H3	128	D ₁₀	L14	24	Vcc	N9	79	V _{SS}
A2	2	A ₂₉	B11	62	BERR	D13	66	D ₁₉	H12	111	Vcc	M1	42	Vss	N10	78	Vcc
A3	3	HACK	B12	63	CPST ₂	D14	17	Vcc	H13	70	Vss	M2	87	FCPST ₁	N11	77	Vcc
A4	4	BC ₂	B13	64	Vss	E1	49	Vcc	H14	21	Vcc	М3	124	LD	N12	76	Vcc
A5	5	R/₩	B14	15	Vcc	E2	94	D ₃	J1	45	D9	M4	123	CPID ₁	N13	75	V _{SS}
A6	6	BAT₀	C1	51	Vcc	E3	131	Do	J2	90	D ₁₁	M5	122	IRL	N14	26	Vss
A7	7	$V_{SS}$	C2	96	Vcc	E12	108	D ₁₈	J3	127	D ₁₃	M6	121	Vss	P1	40	Vcc
A8	8	NC	C3	97	A ₂₈	E13	67	D ₂₁	J12	112	D ₂₉	M7	120	Vss	P2	39	RESET
A9	9	V _{SS}	C4	98	BC ₀	E14	18	D ₂₃	J13	71	D ₂₇	M8	119	Vcc	P3	38	CPID₀
A10	10	V _{SS}	C5	99	BC ₃	F1	48	D ₆	J14	22	D ₂₆	M9	118	Vcc	P4	37	Vss
A11	11	Vcc	C6	100	Vss	F2	93	D4	K1	44	Vss	M10	117	Vcc	P5	36	SIZ16
A12	12	Vss	C7	101	BAT ₂	F3	130	D ₂	K2	[.] 89	D ₁₂	M11	116	Vcc	P6	35	NC
A13	13	CPST ₀	C8	102	Vcc	F12	109	D ₂₀	КЗ	126	D ₁₅	M12	115	Vcc	P7	34	Vcc
A14	14	Vcc	C9	103	Vcc	F13	68	Vcc	K12	113	D ₃₀	M13	74	Vcc	P8	33	CLKf
B1	52	Vss	C10	104	RETRY	F14	19	Vss	K13	72	D ₂₈	M14	25	D ₃₁	P9	32	Vss
B2	53	Vcc	C11	105	DC	G1	47	Vss	K14	23	Vss	N1	41	FCPST ₂	P10	31	FCPDC
B3	54	A ₂₇	C12	106	CPST ₁	G2	92	D7	L1	43	Vcc	N2	86	Vss	P11	30	V _{cc} ,
B4	55	BC ₁	C13	65	D ₁₇	G3	129	D ₅	L2	88	D ₁₄	N3	85	UD	P12	29	Vcc
B5	56	BS	C14	16	Vss	G12	110	D ₂₂	L3	125	Vss	N4	84	CPID ₂	P13	28	NC
B6	57	Vcc	D1	50	Vss	G13	69	D ₂₄	L4	135	Vcc	N5	83	Vcc	P14	27	Vcc
B7	58	BAT ₁	D2	95	D ₁	G14	20	D ₂₅	L11	134	<b>FCPST</b> ₀	N6	82	Vcc			
B8	59	V _{SS}	D3	132	V _{SS}	H1	46	D ₈	L12	114	V _{SS}	N7	81	Vss			
B9	60	CDE	D11	133	V _{SS}	H2	91	D ₁₀	L13	73	V _{ss}	N8	80	CLKf			

Note. G_{MICRO}TM is a trademark of the G-MICRO group for the TRON specification microprocessors

#### MITSUBISHI DATA BOOK MICROPROCESSORS AND PERIPHERAL CIRCUITS

February, First Edition 1990

Editioned by Committee of editing of Mitsubishi Semiconductor Data Book

Published by Mitsubishi Electric Corp., Semiconductor Division

This book, or parts thereof, may not be reproduced in any form without permission of Mitsubishi Electric Corporation. ©1991 MITSUBISHI ELECTRIC CORPORATION Printed in Japan

# MITSUBISHI SEMICONDUCTORS MICROPROCESSORS AND PERIPHERAL CIRCUITS 1990



These products or technologies are subject to Japanese and/or COCOM strategic restrictions, and diversion contrary thereto is prohibited.

H-D0187-A KI-9107 Printed in Japan (ROD) © 1991 MITSUBISHI ELECTRIC CORPORATION New publication, effective Feb. 1990. Specifications subject to change without notice.