MITSUBISHI SEMICONDUCTORS

MELPS 7700 SOFTMARE MANUAL

Foreword

This manual has been prepared to enable the users of the **Series MELPS 7700** CMOS 16-bit microcomputers to better understand the instruction set and the features so that they can utilize the capabilities of the microcomputers to the fullest. This manual presents detailed descriptions of the instructions and addressing modes available for the **Series MELPS 7700** microcomputers.

For the hardware descriptions of the **Series MELPS 7700** microcomputers and descriptions of various development support tools (e.g., assembler, debugger), please refer to the user's manuals and operating guidebooks for the respective hardware and software products.

Contents

1. Introduc	tion of Series MELPS 7700 Software	Page 1						
2. Register	Configuration in CPU	2						
2.1	Accumulator							
2.2	Index Register X							
2.3 I	Index Register Y							
2.4	Stack Pointer							
2.5	Program Counter							
2.6 I	Program Bank Register							
2.7 1	Data Bank Register							
2.8 I	Direct Page Register							
2.9 I	Processor Status Register							
3. Address	sing Modes	8						
3.1	Addressing Mode							
3.2	Explanation of Addressing Modes							
4. Instructi	ions	52						
4.1	Instruction Set							
4.2	Description of Instructions							
5. Notes fo	or Programming	165						
C. In chrysel		167						
		167						
	Bus Interface Unit							
	Change of the CPU Basic Clock dcpu							
6.3	Instruction Execution Sequence							
Appendixe	S	188						
A. CPU II	nstruction Execution Sequence for each Addressing Mode	188						
⁶ B. Series	MELPS 7700 Machine Instructions	252						
C. Series MELPS 7700 Instruction Code Table								

1. Introduction of Series MELPS 7700 Software

The software for the **Series MELPS 7700** 16-bit CMOS microcomputers was developed by making is numerous enhancements on the software for the **Series MELPS 740** 8-bit microcomputer which are based on Mitsubishi Electric Corporation's proprietary designs. The enhancements include support of word (16-bit) operations and linear accessing of up to 16M bytes of memory space.

The new software's compact and easy to use instruction set and the support of powerful addressing modes will significantly increase

:The Series MELPS 7700 microcomputers offer the following features

- Upward compatibility for the Series MELPS 740.
- Powerful addressing modes and fast and compact instruction set.
- Direct page mapping function and memory oriented software system by direct paging.
- Byte and word operations can be selected at will by the m flag.
- The usual 64K bytes program memory boundary can be ignored for the practical purposes, and programs can be written to utilize the full 16M bytes of memory space. For data memory, linear as well as bank memory accessing are supported.
- Bit manipulation instructions and bit test and branch instructions can be used for memory and I/O accessing of the entire 16M bytes space.
- Block transfer instruction capable of handling blocks of up to 64K bytes each.
- Improved stack accessing capability.
- Decimal arithmetic instruction execution requiring no software compensation.

The performance of the systems based on the **Series MELPS 7700** microcomputers, whether used as advanced 8-bit microcomputer or next-generation 16-bit one.

1

2. Register Configuration

The central processing unit (CPU) of each **Series MELPS 7700** microcomputer has 10 internal registers (See Fig.2.1). Each of these registers is described below

2.1 Accumulator (Acc)

(1) Accumulator A (A)

The accumulator A is the main register of the microcomputer, and data processing such as arithmetic calculations, data transfer and input/output operations are executed via this accumulator. It consists of 16-bit register, but it can be used as an 8-bit register by setting the data length selection flag m in the processor status register PS. The flag m is described in detail in a later section. The flag m value of "0" specifies 16-bit data length, and "1" specifies 8-bit data length. When operating under 8-bit data length setting, only the lower 8 bits of the accumulator A are used and the upper 8 bits do not change.

(2) Accumulator B (B)

The accumulator B is a 16-bit register whose function is equivalent to that of the accumulator A. The **Series MELPS 7700** instructions can use the accumulator B instead of the accumulator A. Note, however, that use of the accumulator B requires more instruction bytes and execution cycles than when using the accumulator A.

2.2 Index Register X (X)

The index register X is a 16-bit register, but it can be used as an 8-bit register by setting the index register length selection flag x in the processor status register PS. The flag x is described in detail in a later section. The flag x value of "0" specifies 16-bit index register length, and "1" specifies 8-bit index register length. When operating under 8-bit index register length setting, only the lower 8 bits of the index register X are used and the upper 8 bits do not change.

In an addressing mode in which the index register X is used as the index register, the address obtained by adding the contents of this register is accessed. For the block transfer instructions, MVP and MVN, the contents of the index register X become the lower 16 bits of the transfer-from address and the byte-3 of the instruction becomes the upper 8 bits.

2.3 Index Register Y (Y)

The index register Y is a 16-bit register whose function is equivalent to that of the index register X. As in the case of the index register X, the index register length selection flag x can be used to use only the lower 8 bits of the index register Y. For the block transfer instructions, MVP and MVN, the contents of the index register Y become the lower 16 bits of the transfer-to address and the byte-2 of the instruction become the upper 8 bits.

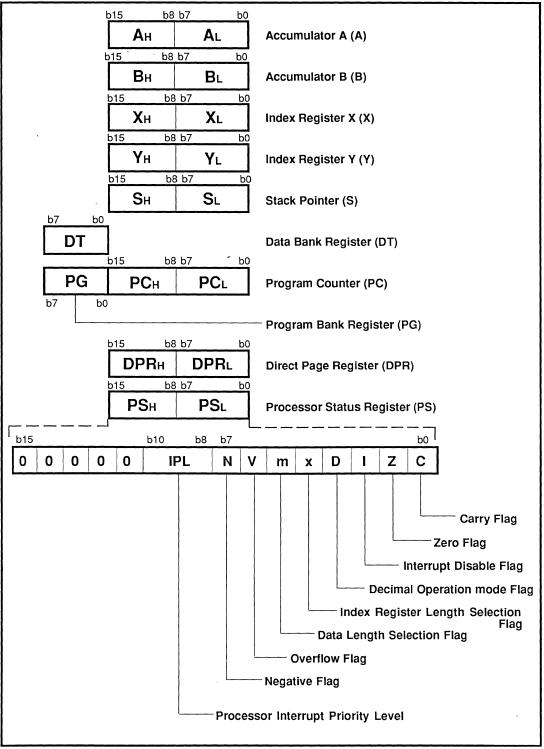


Fig. 2.1 CPU Register Model

2.4 Stack Pointer (S)

The stack pointer (S) is a 16-bit register, and it is used when calling a subroutine, at the time of interrupt processing and when using one of the stack addressing modes. The contents of the stack pointer specifies the address (stack area) where the memory (RAM) registers that must be saved are to be stored.

When an interrupt is received, the contents of the program bank register are saved at the address specified by the stack pointer's value, and the stack pointer's value is decremented by 1. Similarly, the contents of the program counter and the processor status register are saved in the order of lower bytes first (PC_{H} , PC_{L} , PS_{H} , PS_{L}). Thus, the value of the stack pointer after an interrupt has been accepted will be 5 less than the value before the interrupt acceptance. When the interrupt processing is completed and the control is returned to the original routine, the registers that had been saved to the stack area are restored in the reverse order of the saving operation, and the stack pointer's value is restored to that before the interrupt was accepted. Similar operations are executed when a subroutine is called, except that the processor status register (and the program bank register for some addressing modes) is not saved.

The registers other than those indicated above are not saved when an interrupt is invoked or when a subroutine is called, so that provisions must be made in the application programs to save the registers if necessary. Also note that the stack pointer must be initialized after the microcomputer is reset, because its content is indeterminable after reset operation. Normally, the highest address of the internal RAM is set in the stack pointer. The contents of the stack area will change by nesting of subroutines and acceptance of multiple interrupts, so that the subroutine nesting levels must be chosen carefully so as not to destroy the integrity of RAM data.

2.5 Program Counter (PC)

The program counter (PC) is a 16-bit register that contains the lower 16-bit values of the 24-bit program memory address of the instruction to be executed next.

2.6 Program Bank Register (PG)

The program bank register (PG) is an 8-bit register that contains the upper 8-bit (bank) value of the 24-bit program memory address of the instruction to be executed next. When a carry is generated by incrementing of the program counter's content or when a carry or borrow is generated by addition or subtraction of an offset value to the program counter's content by execution of a branching instruction, for example, the program bank register's content is automatically incremented or decremented by 1 so that the bank boundary needs not be considered for application programming.

b23		b15		b	7	b0
	PG		РСн		PCL	
b7		b0 b15		b8	b7	b0

2.7 Data Bank Register (DT)

The data bank register (DT) is an 8-bit register. Its contents are interpreted as the upper 8 bits (bank) of a 24-bit memory address under certain addressing modes.

2.8 Direct Page Register (DPR)

The direct page register (DPR) is a 16-bit register, which allows specification of a 256 byte space called a direct page in bank-0. This area can be accessed by 2 bytes in the direct page addressing mode. The contents of the direct page register specify the least-significant (base) address of the direct page area. A value in the range of 0_{16} -FFFF₁₆ may be set in the direct page register. When a value of or higher than FF01₁₆ is set in the direct page register, the direct page area will cross over the bank-0 and bank-1 boundary. Normally, the lower 8-bit value of the direct page register is set to 00_{16} since that reduces the number of cycles required for address generation.

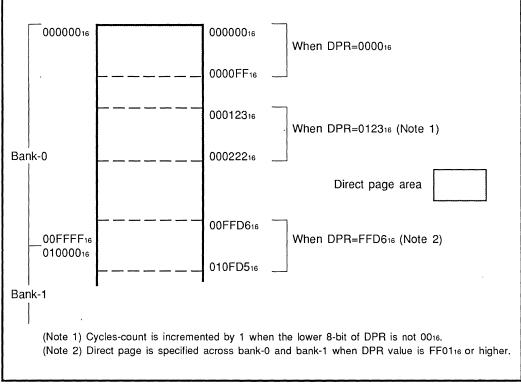


Fig. 2.2 Setting Direct Page by Direct Page Register

2.9 Processor Status Register (PS)

The processor status register (PS) is an 11-bit register, and it consists of flags that specify the status immediately after operation and bits that set the processor interrupt priority level. The C, Z, V and N flags enable execution of branching instructions depending on the flag values. Each bit of the processor status register is explained below.

bit	. 15	14	13	12	11	10 9 8	7	6	_5_	4	3	2	_1_	0	
	0	0	0	0	0	IPL	Ν	V	m	x	D	ſ	Ζ	С	Processor Status Register (PS)

(Note) Bits 11-15 are fixed at 0.

[Bit-0] Carry Flag (C)

This bit is the carry flag which holds the carry or borrow from the arithmetic logic unit (ALU) after arithmetic operation. It is also affected by the shift and rotate instructions. This flag can be directly set by the SECand SEP, and cleared by CLC and CLP instructions.

[Bit-1] Zero Flag (Z)

This bit is set 1 when the arithmetic operation or data transfer result is 0, and it is set 0 when such result is not "0". <u>This flag is invalid for addition (ADC) instruction in the decimal-operation mode</u>. This flag can be directly set by SEP and cleared by CLP instructions.

[Bit-2] Interrupt Disable Flag (I)

This is the flag that is used to disable all interrupts (except the interrupts by the watchdog timer, BRK instruction and division by zero). When this flag is "1", interrupts are disabled. This flag is set to "1" automatically when an interrupt is accepted, inhibiting multiple interrupt acceptance. This flag can be set using the SEI and SEP, and cleared using the CLI and CLP instructions.

[Bit-3] Decimal Operation Mode Flag (D)

This flag is used to determine whether to execute addition and subtraction in the binary-mode or in the decimal-mode. "0" specifies the ordinary binary mode. When this flag is set to "1", addition/subtraction is executed with 1 word as a 2- or 4-digit decimal value (2- or 4-digit selection is made by the data length selection flag m). Decimal alignment is performed automatically.

Note that decimal-mode can be used only by the ADC and SBC instructions.

This flag can be set by the SEP and cleared by the CLP instructions.

Because this flag directly affects arithmetic operation, it must be initialized whenever the microcomputer is reset.

[Bit-4] Index Register Length Selection Flag (x)

This flag specifies whether to use the index register X or Y in the 16-bit index register length or in the 8-bit index register length. "0" specifies the 16-bit length mode, and "1" specifies the 8-bit length mode. This flag can be set by the SEP, and cleared by the CLP instructions.

[Bit-5] Data Length Selection Flag (m)

This flag specifies whether to use the 16-bit data length or the 8-bit data length. "0" specifies 16-bit, and "1" specifies 8-bit data length. This flag can be set by the SEM and SEP, and cleared by the CLM and CLP instructions.

[Bit-6] Overflow Flag (V)

The overflow flag has a meaning when adding or subtracting 1 word as a signed binary number. This flag is set 1 when the flag m is set to "0" and the result of addition or subtraction is outside the range -32768~+32767, and it is set 0 otherwise. When the flag m is set to "1", this flag is set 1 if the result of addition or subtraction is outside the range -128~+127 and set 0 otherwise. This flag can be directly set by the SEP, and cleared by the CLV and CLP instructions. This flag is meaningless in the decimal operation mode.

[Bit-7] Negative flag (N)

The negative flag (N) is set 1 when the result of data transfer is negative (bit-15 of data is "1" when the flag m is "0", or bit-7 of data is "1" when the flag m is "1"), and it is set 0 otherwise. This flag can be directly set by the SEP, and cleared by the CLP instructions. <u>This flag is meaningless in the decimal operation mode.</u>

[Bit-8~Bit-10] Processor interrupt priority level (IPLo~IPL2)

The processor interrupt priority level (IPL) consists of 3 bits, and these 3 bits enable determination of 8 processor interrupt priority levels (level-0 ~ level-7). An interrupt is allowed only when its interrupt priority level is higher than the IPL value. When an interrupt is generated, IPL is saved to the stack area, and the priority level of the allowed interrupt is set in IPL.

There is no instruction that can directly set or clear IPL₀~IPL₂. Therefore, in order to alter the IPL contents, the desired value must be first stored in the stack and then the processor status register contents altered using the PUL or PLP instruction.

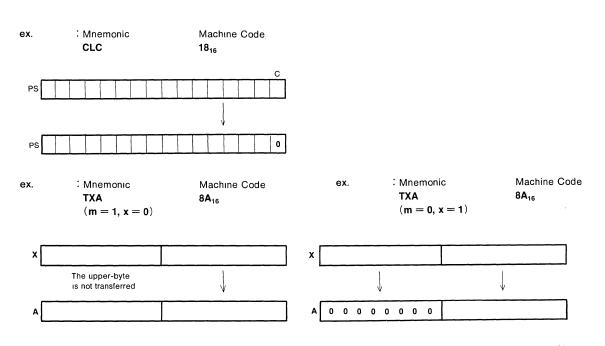
3. Addressing Modes

3.1 Addressing Mode

When executing an instruction, the address of the memory location from which the data required for arithmetic operation is to be retrieved or to which the result of arithmetic operation is to be stored must be specified in advance. Address specification is also necessary when the control is to jump to a certain memory address during program execution. Addressing refers to the method of specifying the memory address.

The **Series MELPS 7700** microcomputers support 28 different addressing modes, offering extremely versatile and powerful memory accessing capability.

3.2 Explanation of Addressing Modes


Each of the 28 addressing modes is explained on the pages indicated below:

Implied addressing mode	9
Immediate addressing mode	10
Accumulator addressing mode	11
Direct addressing mode	12
Direct bit addressing mode	13
Direct indexed X addressing mode	14
Direct indexed Y addressing mode	16
Direct indirect addressing mode	17
Direct indexed X indirect addressing mode	18
Direct indirect indexed Y addressing mode	21
Direct indirect long addressing mode	24
Direct indirect long indexed Y addressing mode	25
Absolute addressing mode	28
Absolute bit addressing mode	30
Absolute indexed X addressing mode	31
Absolute indexed Y addressing mode	33
Absolute long addressing mode	35
Absolute long indexed X addressing mode	36
Absolute indirect addressing mode	37
Absolute indirect long addressing mode	38
Absolute indexed X indirect addressing mode	39
Stack addressing mode	40
Relative addressing mode	42
Direct bit relative addressing mode	43
Absolute bit relative addressing mode	45
Stack pointer relative addressing mode	47
Stack pointer relative indirect indexed Y addressing mode	48
Block transfer addressing mode	50

Mode : Implied addressing mode

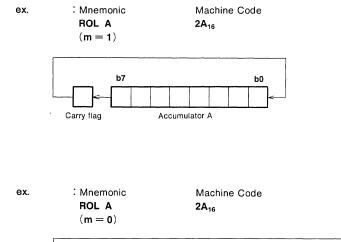
Function : The single-instruction inherently address an internal register.

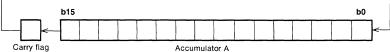
Instruction :	BRK,	CLC,	CLI,	CLM,	CLV,	DEX,	DEY,	INX,	INY,	NOP,
	RTI,	RTL,	RTS,	SEC,	SEI,	SEM,	STP,	TAD,	TAS,	TAX,
	TAY,	΄ΤBD,	TBS,	TBX,	TBY,	TDA,	TDB,	TSA,	TSB,	TSX,
	TXA,	TXB,	TXS,	TXY,	TYA,	TYB,	TYX,	WIT,	XAB	

(Note) When the data length differ between the transfer-from and transfer-to locations, data is transferred at the data length for the transfer-to location If, however, the index register is specified as the transfer-to location and the x flag is set to 1, 0016 is sent as the upper byte value

٠,

Immediate

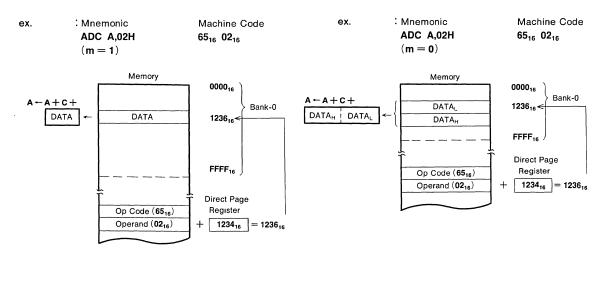

/

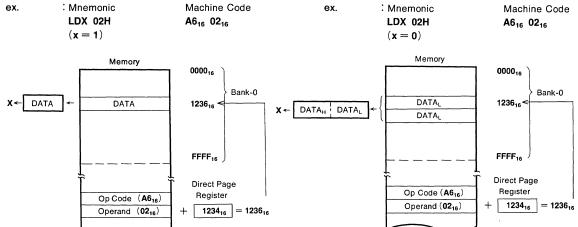

Accumulator

Mode : Accumulator addressing mode

Function : The contents of accumulator are the actual data.

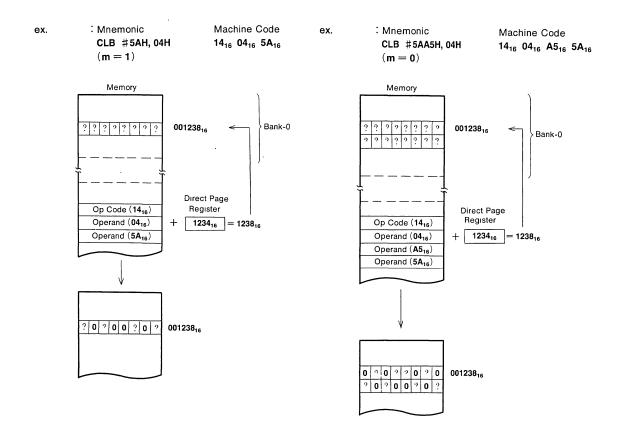
Instruction: ASL, DEC, INC, LSR, ROL, ROR

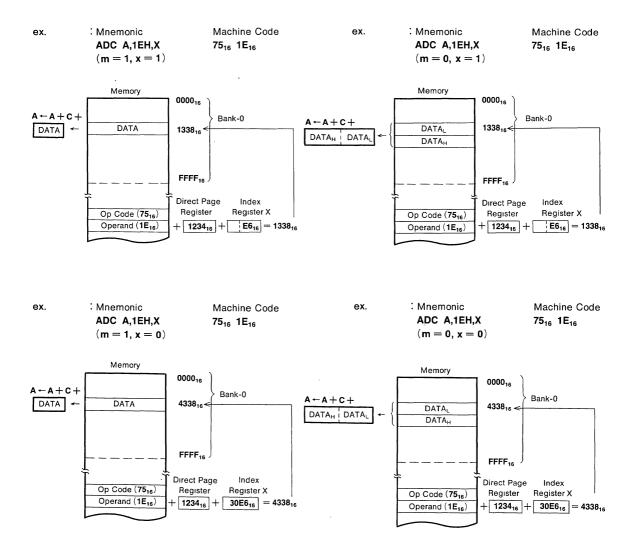




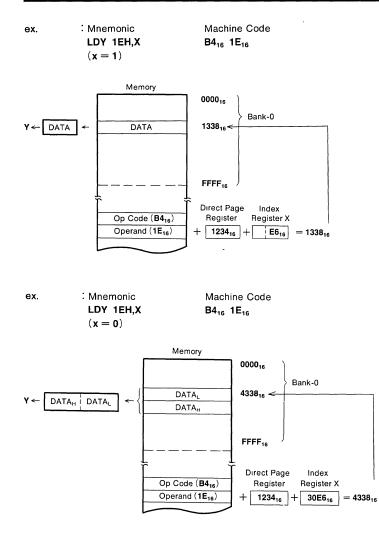
Mode : Direct addressing mode

Function : The contents of the bank-0 memory location specified by the result of adding the second byte of the instruction to the contents of the direct page register become the actual data. If, however, addition of the instruction's second byte to the direct page register's contents result in a value that exceeds the bank-0 range, the specified location will be in bank-1.

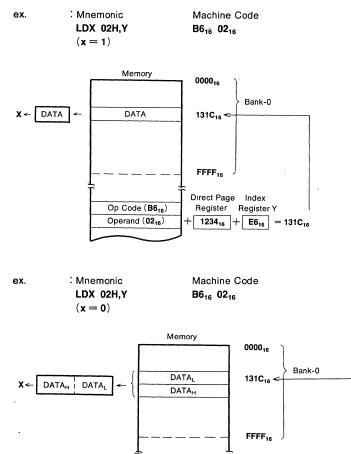

Instruction : CPX, CPY. DEC. DIV, EOR. INC. ADC, AND, ASL, CMP. LDA. LDM. LDX. LDY. LSR. MPY. ORA. ROL. ROR. SBC. STA. STX. STY

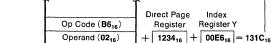


- Mode : Direct bit addressing mode
- Function : Specifies the bank-0 memory location by the value obtained by adding the instruction's second byte to the direct page register's contents, and specifies the positions of multiple bits in the memory location by the bit pattern in the third and fourth bytes of the instruction (third byte only when the m flag is set to 1). If, however, addition of the instruction's second byte to the direct page register's contents result in a value that exceeds the bank-0 range, the specified location will be in bank-1.


Instruction : CLB, SEB

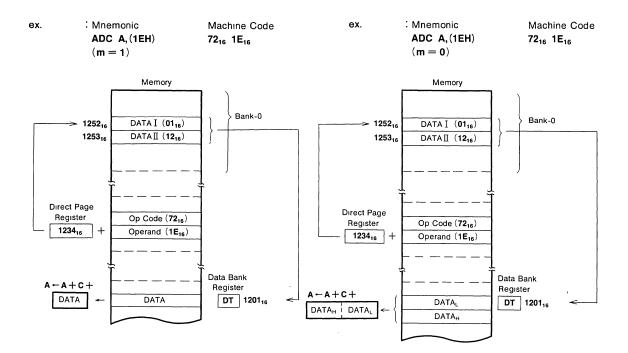
- Mode : Direct indexed X addressing mode
- Function : The contents of the bank-0 memory location specified by the result of adding the second byte of the instruction, the contents of the direct page register and the contents of the index register X become the actual data. If, however, addition of the instruction's second byte, the direct page register's contents and the index register X's contents results in a value that exceeds the bank-0 or bank-1 range, the specified location will be in bank-1 or bank-2.
- Instruction : ADC. AND, ASL. CMP. DEC. DIV. EOR. INC. LDA. LDM. ROL, LDY, LSR, MPY, ORA, ROR. SBC. STA. STY


Direct Indexed X



Mode : Direct indexed Y addressing mode

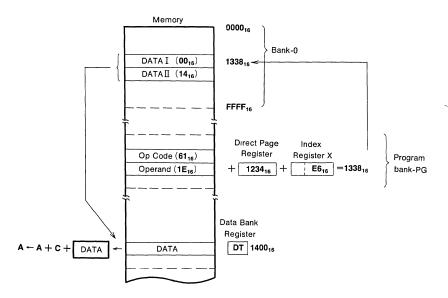
Function : The contents of the bank-0 memory location specified by the result of adding the second byte of the instruction, the contents of the direct page register and the contents of the index register Y become the actual data. If, however, addition of the instruction's second byte, the direct page register's contents and the index register Y's contents results in a value that exceeds the bank-0 or bank-1 range, the specified location will be in bank-1 or bank-2.

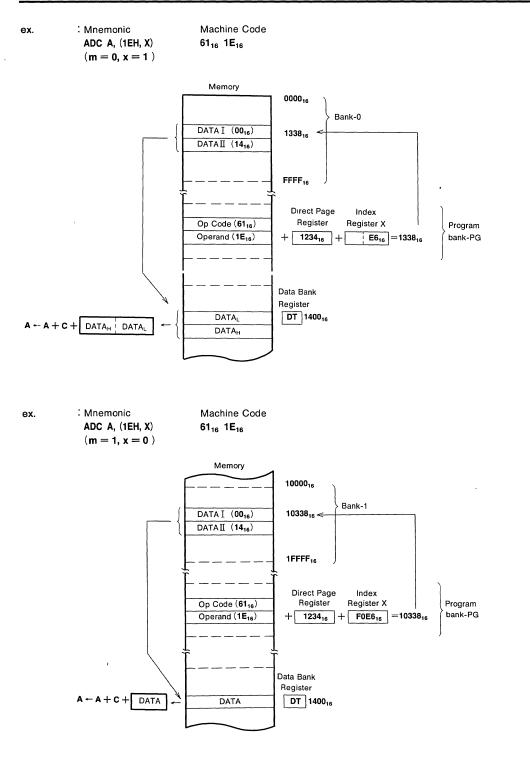


- Mode : Direct indirect addressing mode
- Function : The value obtained by adding the instruction's second byte to the contents of the direct page register specifies 2 adjacent bytes in memory bank-0, and the contents of these bytes in memory bank-DT (DT is contents of data bank register) become the actual data. If, however, the value obtained by adding the instruction's second byte and the direct page register's contents exceeds the bank-0 range, the specified location will be in bank-1.

Instruction: ADC, AND, CMP, DIV, EOR, LDA, MPY, ORA, SBC, STA

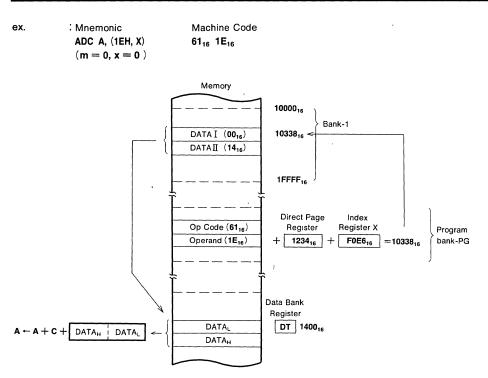
Direct Indexed X Indirect


Mode : . Direct indexed X indirect addressing mode


Function : The value obtained by adding the instruction's second byte, the contents of the direct page register and the contents of the index register X specifies 2 adjacent bytes in memory bank-0, and the contents of these bytes in memory bank-0, and the contents of these bytes in memory bank-0, and the contents of these bytes in memory bank-0, and the contents of data bank register) become the actual data. If, however, the value obtained by adding the instruction's second byte, the direct page register's contents and the index register X's contents exceeds the bank-0 or bank-1 range, the specified location will be in bank-1 or bank-2.

Instruction: ADC, AND, CMP, DIV, EOR, LDA, MPY, ORA, SBC, STA

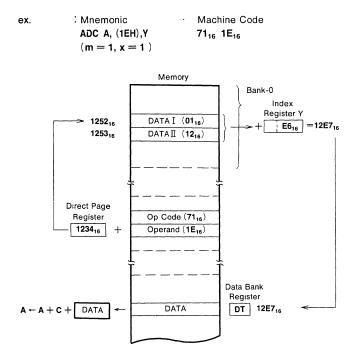
ex.

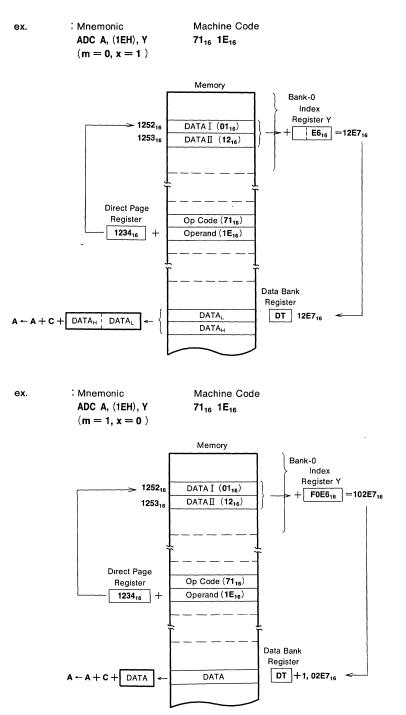

. : Mnemonic Machine Code ADC A, (1EH, X) 61_{16} 1E₁₆ (m = 1, x = 1)

.

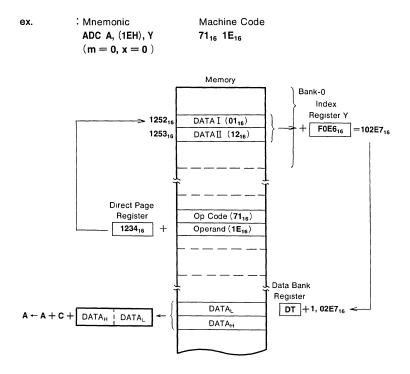
Direct Indexed X Indirect

Direct Indexed X Indirect

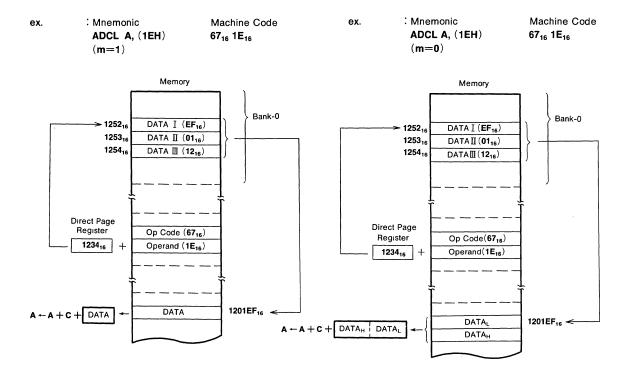

.


Direct Indirect Indexed Y

Mode : Direct indirect indexed Y addressing mode


Function : The value obtained by adding the instruction's second byte and the contents of the direct page register specifies 2 adjacent bytes in memory bank-0. The value obtained by adding the contents of these bytes and the contents of the index register Y specifies address of the actual data in memory bank-DT (DT is contents of data bank register). If, however, the value obtained by adding the contents of the instruction's second byte and the direct page register exceeds the bank-0 range, the specified location will be in bank-1. Also, if addition of the contents of memory and index register Y generate a carry, the bank number will be 1 larger than the contents of the data bank register.

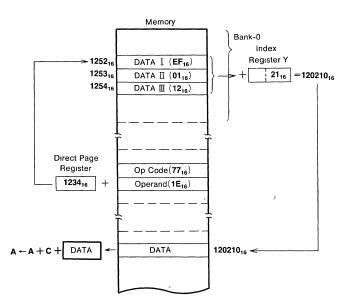
Instruction: ADC, AND, CMP, DIV, EOR, LDA, MPY, ORA, SBC, STA

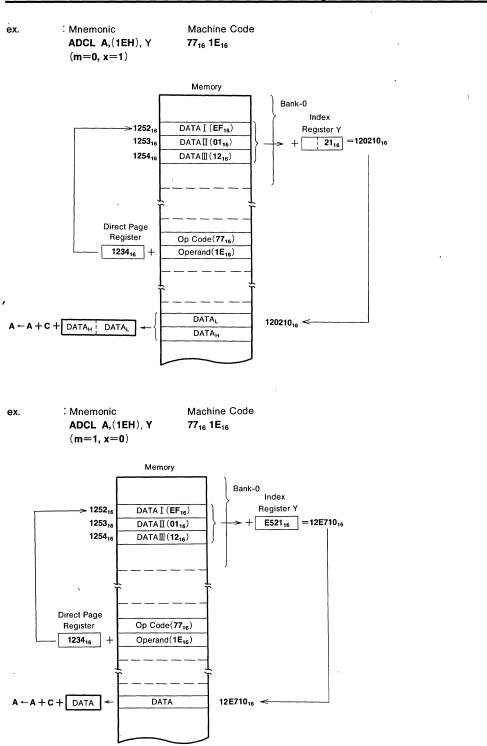

Direct Indirect Indexed Y

Direct Indirect Indexed Y

Direct Indirect Long

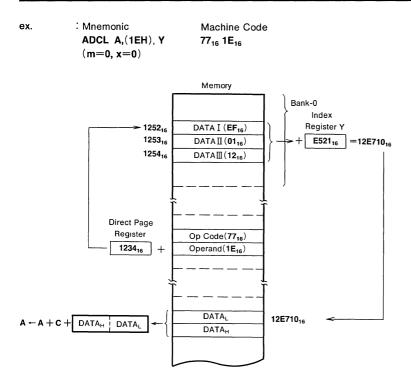
- Mode : Direct indirect long addressing mode
- Function : The value obtained by adding the instruction's second byte and the contents of the direct page register specifies 3 adjacent bytes in memory bank-0, and the contents of these bytes specify the address of the memory location that contains the actual data. If, however, the value obtained by adding the contents of the instruction's second byte and the direct page register exceeds the bank-0 range, the specified location will be in bank-1. The 3 adjacent bytes memory location may be spread over two different banks.
- Instruction: ADC, AND, CMP, DIV, EOR, LDA, MPY, ORA, SBC, STA


Direct Indirect Long Indexed Y

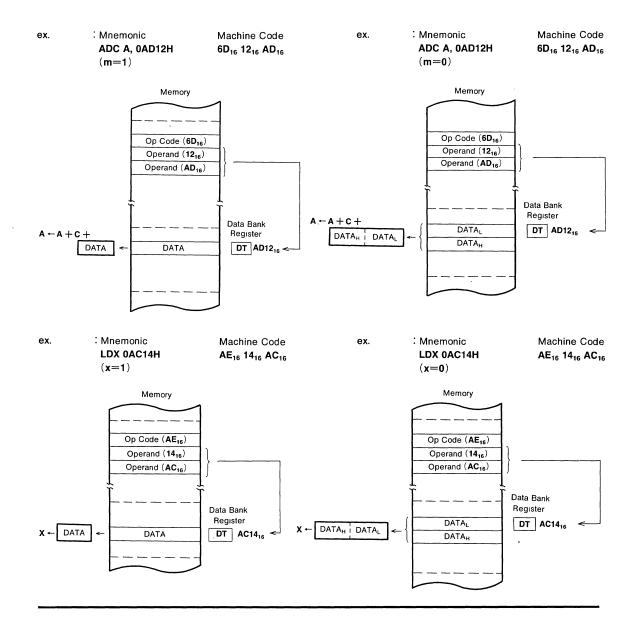

Mode : Direct indirect long indexed Y addressing mode

Function : The value obtained by adding the instruction's second byte and the contents of the direct page register specifies 3 adjacent bytes in memory bank-0, and the value obtained by adding the contents of these bytes and the contents of the index register Y specifies the address of the memory location where the actual data is stored. If, however, the value obtained by adding the contents of the instruction's second byte and the direct page register exceeds the bank-0 range, the specified location will be in bank-1. The 3 adjacent bytes memory location may be spread over two different banks.

Instruction: ADC, AND, CMP, DIV, EOR, LDA, MPY, ORA, SBC, STA


ex. : Mnemonic Machine Code ADCL A,(1EH), Y 77₁₆ 1E₁₆ (m=1, x=1)

Direct Indirect Long Indexed Y

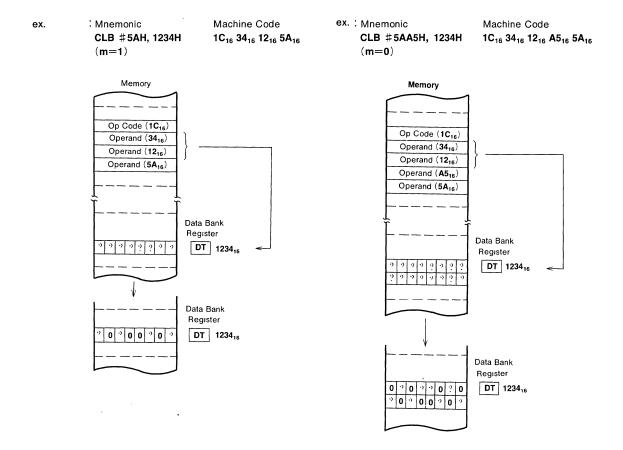

Direct Indirect Long Indexed Y

Mode : Absolute addressing mode

Function : The contents of the memory locations specified by the instruction's second and third bytes and the contents of the data bank register are the actual data. Note that, in the cases of the JMP and JSR instructions, the instructions' second and third byte contents are transferred to the program counter.

Instruction :	ADC,	AND,	ASL,	CMP,	CPX,	CPY,	DEC,	DIV,	EOR,	INC,
	JMP,	JSR,	LDA,	LDM,	LDX,	LDY,	LSR,	MPY,	ORA,	ROL,
	ROR,	SBC,	STA,	SΤΧ,	STY					

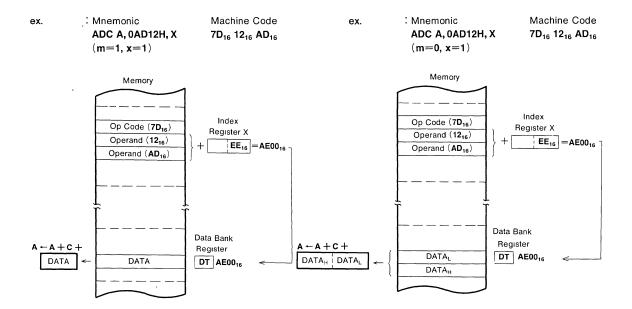
Absolute

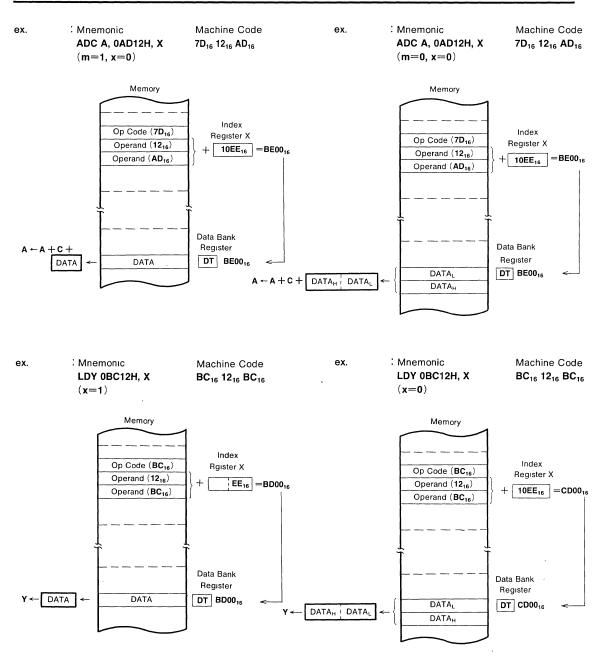

.

Program bank register contents are not affected

- Mode : Absolute bit addressing mode
- **Function** : The contents of the instruction's second and third bytes and the contents of the data bank register specify the memory locations, and data for multiple bit positions in the memory locations are specified by a bit pattern specified in the instruction's fourth and fifth bytes (the fourth byte only if the m flag is set to 1).

Instruction : CLB, SEB

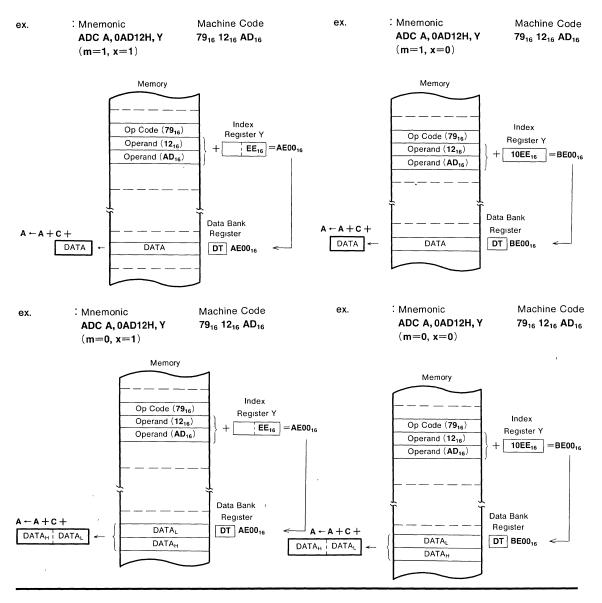


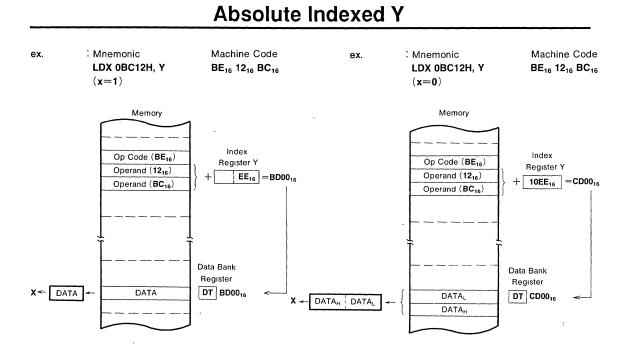

Absolute Indexed X

Mode : Absolute indexed X addressing mode

Function : The contents of the memory locations specified by a value resulting from addition of a 16-bit numeric value expressed by the instruction's second and third bytes with the contents of the index register X and the contents of the data bank register are the actual data. If, however, addition of the numeric value expressed by the instruction's second and third bytes with the contents of the index register X generates a carry, the bank number will be 1 larger than the contents of the data bank register.

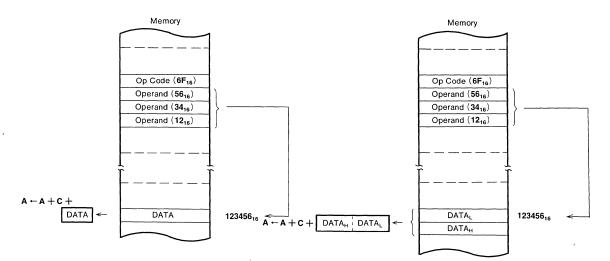
Instruction : ADC, AND, ASL, CMP, DEC. DIV, EOR, INC, LDA, LDM. LDY, LSR, ROL, ROR, SBC, STA MPY, ORA,

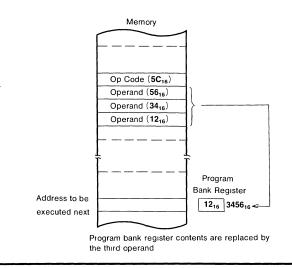

Absolute Indexed X


Absolute Indexed Y

Mode : Absolute indexed Y addressing mode

Function : The contents of the memory locations specified by a value resulting from addition of a 16-bit numeric value expressed by the instruction's second and third bytes with the contents of the index register Y and the contents of the data bank register are the actual data. If, however, addition of the numeric value expressed by the instruction's second and third bytes with the contents of the index register Y generates a carry, the bank number will be 1 larger than the contents of the data bank register.


Instruction : ADC, AND, CMP, DIV, EOR, LDA, LDX, MPY, ORA, SBC, STA



- Mode : Absolute long addressing mode
- **Function** : The contents of the memory locations specified by the instruction's second, third and fourth bytes become the actual data. Note that, in the cases of the JMP and JSR instructions, the instructions' second and third byte contents are transferred to the program counter and the fourth byte contents are transferred to the program bank register.
- Instruction : ADC, AND, CMP, DIV, EOR, JMP, JSR, LDA, MPY, ORA, SBC, STA
- ex. : Mnemonic ADC A, 123456H (m=1)

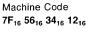
Machine Code 6H 6F₁₆ 56₁₆ 34₁₆ 12₁₆ ex. : Mnemonic ADC A, 123456H (m=0) Machine Code 6F₁₆ 56₁₆ 34₁₆ 12₁₆

ex. : Mnemonic Machine Code JMP 123456H 5C₁₆ 56₁₆ 34₁₆ 12₁₆

Absolute Long Indexed X

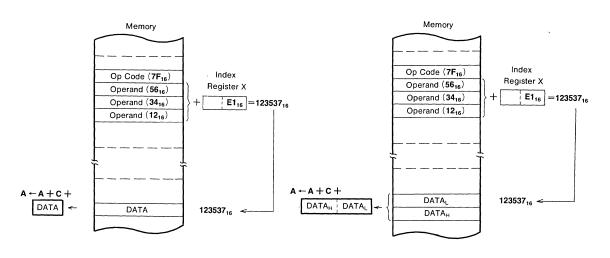
Mode : Absolute long indexed X addressing mode

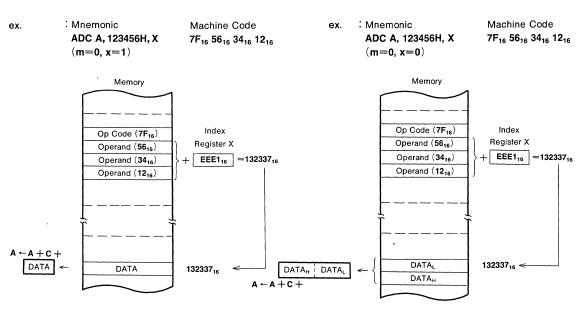
Function : The contents of the memory location specified by adding the numeric value expressed by the instruction's second, third and fourth bytes with the contents of the index register X are the actual data.


ex.

Instruction : ADC, AND, CMP, DIV, EOR, LDA, MPY, ORA, SBC, STA

ex.

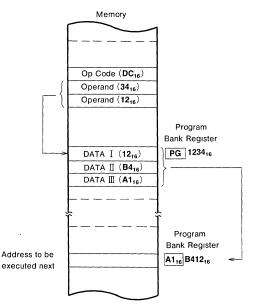

ADC A, 123456H, X (m=1, x=1)


: Mnemonic

: Mnemonic ADC A, 123456H, X (m=0, x=1)

Absolute Indirect

- Mode : Absolute indirect addressing mode
- **Function** : The instruction's second and third bytes specify 2 adjacent bytes in memory, and the contents of these bytes specify the address within the same program bank to which a jump is to be made.
- Instruction : JMP

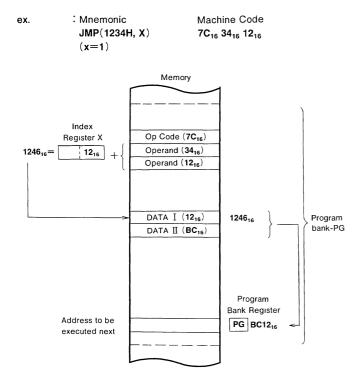

Absolute Indirect Long

Mode : Absolute indirect long addressing mode

Function : The instruction's second and third bytes specify 3 adjacent bytes in memory, and the contents of these bytes specify the address to which a jump is to be made.

Instruction : JMP

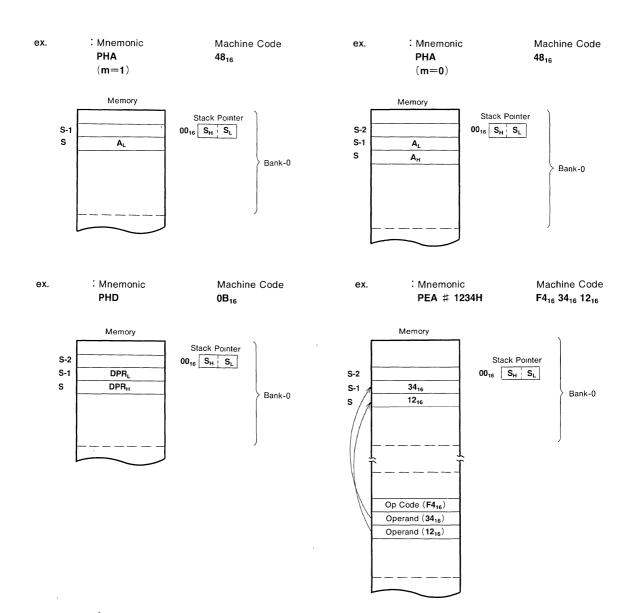
ex. : Mnemonic Machine Code JMPL(1234H) DC16 3416 1216

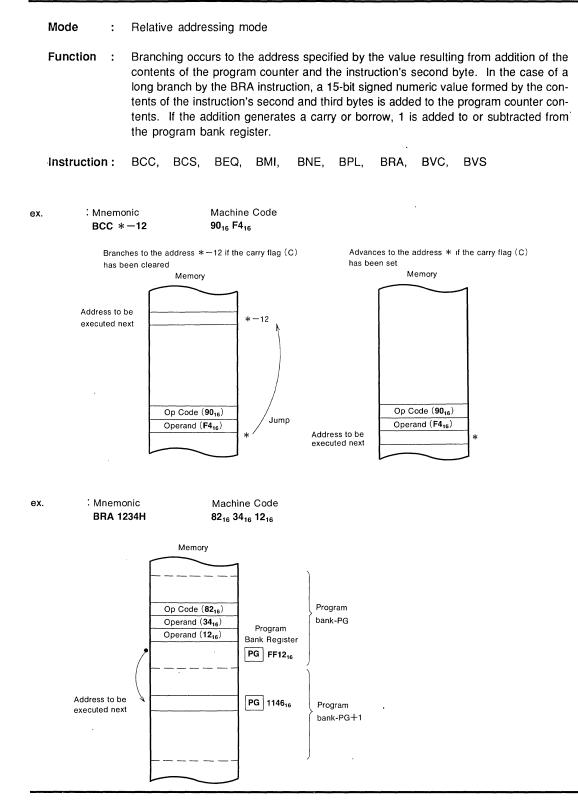

DATA ${\rm I\!I}$ is loaded in the program bank register

Absolute Indexed X Indirect

Mode : Absolute indexed X indirect addressing mode

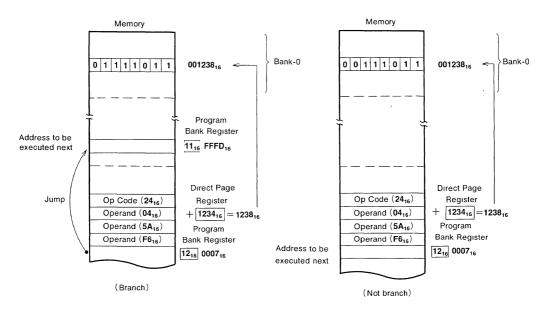
Function : The value obtained by adding the instruction's second and third bytes and the contents of the index register X specifies 2 adjacent bytes in memory, and the contents of these bytes specify the address to which a jump is to be made.


Instruction : JMP, JSR

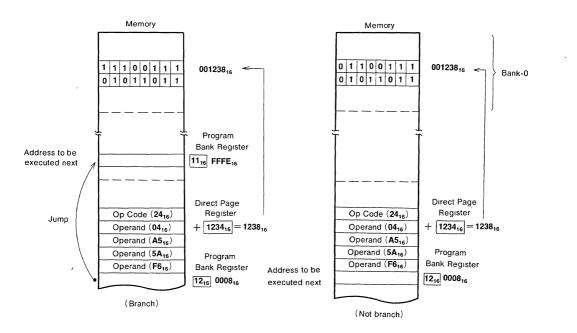

Mode : Stack addressing mode

Function : Register contents are saved to or restored from the memory location specified by the stack pointer. The stack pointer is set in bank-0.

Instruction :	PEA,	PEI,	PER,	PHA,	PHB,	PHD,	PHG,	PHP,	PHT,	PHX,
	PHY,	PLA,	PLB,	PLD,	PLP,	PLT,	PLX,	PLY,	PSH,	PUL



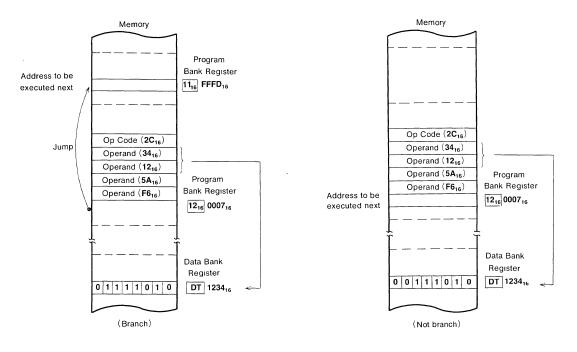
Stack : Mnemonic Machine Code Machine Code : Mnemonic ex. ex. PEI # 12H D416 1216 PER # 1234H 62₁₆ 34₁₆ 12₁₆ Memory Memory Stack Pointer S-2 0016 SH SL 3412₁₆ ~ DATA I S-1 AC₁₆ 68₁₆ s **DATA** [] Bank-0 Bank-0 Stack Pointer 00₁₆ S_H S_L S-2 Program S-1 DATA I Bank Register **DATA** [] s Op Code (6216) PG 567616 Program Operand (34₁₆) bank-PG Operand (12₁₆) Program Counter Direct Page Op Code (D4₁₆) Register Operand (12₁₆) + 3400₁₆ = 3412₁₆


Direct Bit Relative

- Mode : Direct bit relative addressing mode
- Function : Specifies the bank-0 memory location by the value obtained by adding the instruction's second byte to the direct page register's contents, and specifies the positions of multiple bits in the memory location by the bit pattern in the third and fourth bytes (the third byte only if the m flag is set to 1). Then, if the specified bits all satisfy the branching conditions, the instruction's fifth byte (or the fourth byte if the m flag is set to 1) is added to the program counter as a signed value, generating the branching destination address. If, however, addition of the instruction's second byte to the direct page register's contents result in a value that exceeds the bank-0 range, the specified location will be in bank-1.
- Instruction: BBC, BBS
- ex. : Mnemonic Machine Code BBS #5AH, 04H, 0F6H 24₁₆ 04₁₆ 5A₁₆ F6₁₆ (m=1)

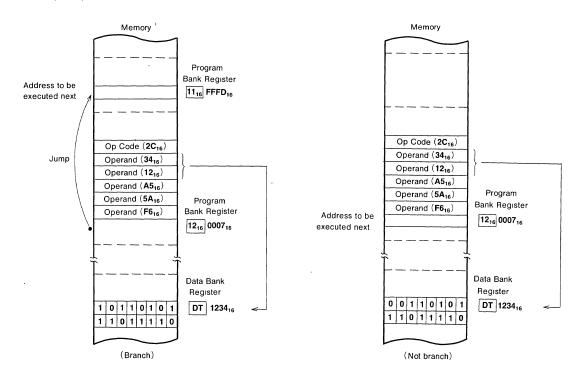
Direct Bit Relative

ex. : Mnemonic Machine Code BBS #5AA5H, 04H, 0F6H 24₁₆ 04₁₆ A5₁₆ 5A₁₆ F6₁₆ (m=0)



1

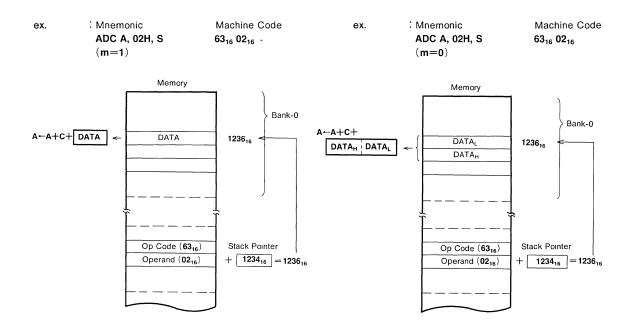
- Mode : Absolute bit relative addressing mode
- **Function :** The instruction's second and third bytes and the contents of the data bank register specify the memory location, and data for the memory location's multiple bits is specified by a bit pattern in the instruction's fourth and fifth bytes (the fourth byte only if the m flag is set to 1). Then, if the specified bits all satisfy the branching conditions, the instruction's sixth byte (or the fifth byte if the m flag is set to 1) is added to the program counter as a signed value, generating the branching destination address.


Instruction: BBC, BBS

ex. : Mnemonic Machine Code BBS #5AH, 1234H, 0F6H 2C₁₆ 34₁₆ 12₁₆ 5A₁₆ F6₁₆ (m=1)

Absolute Bit Relative

ex. : Mnemonic BBS ±5AA5H, 1234H, 0F6H (m=0) Machine Code 2C₁₆ 34₁₆ 12₁₆ A5₁₆ 5A₁₆ F6₁₆

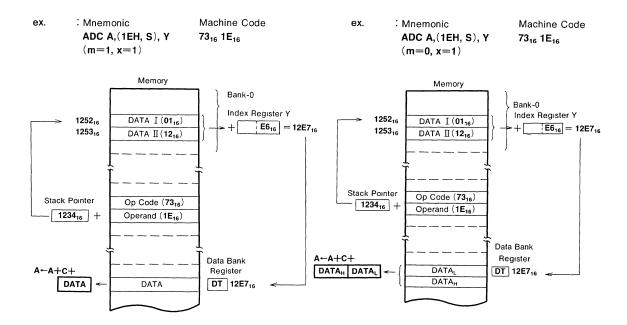


Stack Pointer Relative

Mode : Stack pointer relative addressing mode

Function : The contents of a bank-0 memory location specified by the value resulting from addition of the instruction's second byte and the contents of the stack pointer become the actual data. If, however, the value obtained by adding the contents of the instruction's second byte and the stack pointer's contents exceeds the bank-0 range, the specified location will be in bank-1.

Instruction: ADC, AND, CMP, DIV, EOR, LDA, MPY, ORA, SBC, STA

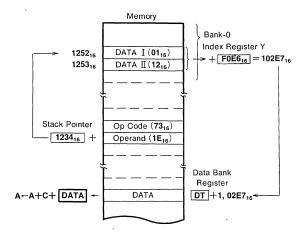


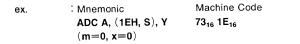
Stack Pointer Relative Indirect Indexed Y

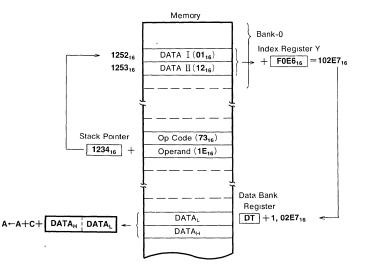
Mode : Stack pointer relative indirect indexed Y addressing mode

Function : The value obtained by adding the instruction's second byte and the contents of the stack pointer specifies 2 adjacent bytes in memory. The value obtained by adding the contents of these bytes and the contents of the index register Y specifies address of the actual data in memory bank-DT (DT is contents of data bank register). If addition of the 2 bytes in memory with the contents of the index register Y generate a carry, the bank number will be 1 larger than the contents of the data bank register.

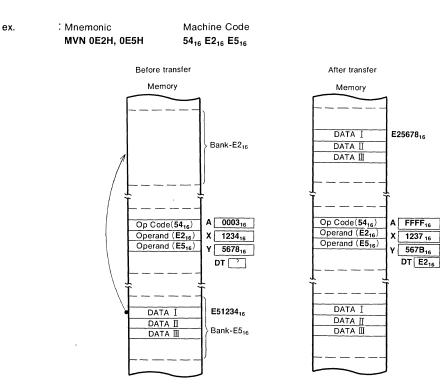
Instruction: ADC, AND, CMP, DIV, EOR, LDA, MPY, ORA, SBC, STA




Stack Pointer Relative Indirect Indexed Y


ex.

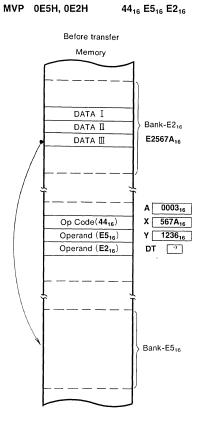
: Mnemonic ADC A, (1EH, S), Y (m=1,x=0)

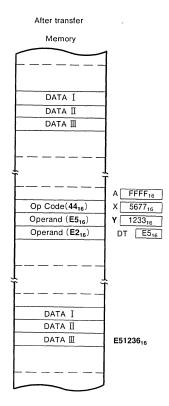


49

Mode : Block transfer addressing mode

Function : The instruction's second byte specifies the transfer-to data bank, and the contents of the index register Y specify the transfer-to address within the data bank. The instruction's third byte specifies the transfer-from data bank, and the contents of the index register X specify the address in the data bank where the data to be transferred is stored. The contents of the accumulator A constitute the number of bytes to be transferred. Upon termination of transfer, the contents of the data bank register will specify the transfer-to data bank. The MVN instruction is used for transfer to lower address location. In this case, the contents of the index registers X and Y are incremented each time data is transferred. The MVP instruction is used for transfer to higher address location. In this case, the contents of the index registers X and Y are decremented each time data is transferred. The block of data to be transferred may cross over the bank boundary.


Instruction : MVN, MVP



Block Transfer

ex. : Mnemonic

Machine Code

4. Instructions

4.1 Instruction Set

The **Series MELPS 7700** microcomputers support a set of 103 instructions which are described in this chapter. This section presents overviews of these instructions, and Sec. 4.2 presents the detailed description for each instruction.

4.1.1 Data Transfer Instructions

The data transfer instructions move data between data and registers, between a register and the memory, between registers or between memory devices.

The following table summarizes the various data transfer instructions supported by the Series MELPS 7700 :

Category	Instruction	Description			
Load	LDA	Loads the contents of memory into the accumulator.			
	LDM	Loads an immediate value into the memory.			
	LDT	Loads an immediate value into the data bank register.			
	LDX	Loads the contents of memory into the index register X.			
	LDY	Loads the contents of memory into the index register Y.			
Store	STA	Stores the contents of the accumulator in the memory.			
	STX	Stores the contents of the index register X in the memory.			
	STY	Stores the contents of the index register Y in the memory.			
Transfer	ТАХ	Transfers the contents of the accumulator A to the index register X.			
	ТХА	Transfers the contents of the index register X to the accumulator A.			
	TAY	Transfers the contents of the accumulator A to the index register Y.			
	TYA	Transfers the contents of the index register Y to the accumulator A.			
	TSX	Transfers the contents of the stack pointer to the index register			
	TXS	Transfers the contents of the index register X to the stack pointe			
	TAD Transfers the contents of the accumulator A to the register.				
	TDA	Transfers the contents of the direct page register to the accumula- tor A.			
	TAS	Transfers the contents of the accumulator A to the stack pointer.			
	TSA	Transfers the contents of the stack pointer to the accumulator A.			
	TBD	Transfers the contents of the accumulator B to the direct page reg- ister.			
	TDB	Transfers the contents of the direct page register to the accumulator B.			
	TBS	Transfers the contents of the accumulator B to the stack pointer.			

Instructions

Category	Instruction	Description			
Transfer	TSB	Transfers the contents of the stack pointer to the accumulator B.			
	твх	Transfers the contents of the accumulator B to the index register X.			
	ТХВ	Transfers the contents of the index register X to the accumulator B.			
	ТВҮ	Transfers the contents of the accumulator B to the index register Y.			
	ТҮВ	Transfers the contents of the index register Y to the accumulator B.			
	ТХҮ	Transfers the contents of the index register X to the index register Y.			
	TYX	Transfers the contents of the index register Y to the index register X.			
	MVN	Transfers a block of data from the lower addresses.			
	MVP	Transfers a block of data from the higher addresses.			
Stack operation	PSH	Saves the contents of the specified register to the stack.			
	PUL	Restores the contents of stack to the specified register.			
	PHA	Saves the contents of the accumulator A to the stack.			
	PLA	Restores the contents of stack to the accumulator A.			
	PHP	Saves the contents of the program status register to the stack.			
	PLP	Restores the contents of stack to the program status register.			
	РНВ	Saves the contents of the accumulator B to the stack.			
	PLB	Restores the contents of stack to the accumulator B.			
	PHD	Saves the contents of the direct page register to the stack.			
	PLD	Restores the contents of stack to the direct page register.			
	PHT	Saves the contents of the data bank register to the stack.			
	PLT	Restores the contents of stack to the data bank register.			
	РНХ	Saves the contents of the index register X to the stack.			
	PLX	Restores the contents of stack to the index register X.			
	PHY	Saves the contents of the index register Y to the stack.			
	PLY	Restores the contents of stack to the index register Y.			
Stack	PHG	Saves the contents of the program bank register to the stack.			
	PEA	Saves a the numeric of 2 bytes to the stack.			
	PEI	Saves the contents of 2 consecutive bytes in the direct page area to the stack.			
	PER	Saves the result of adding a 16-bit numeric value to the program counter contents to the stack.			
Exchange	ХАВ	Swaps the contents of the accumulator A with the contents of the accumulator B.			

4.1.2 Arithmetic Instructions

The arithmetic instructions perform addition, subtraction, multiplication, division, logical operation, comparison, rotation and shifting of register and memory contents.

The following table summarizes the arithmetic instructions supported:

Category	Instruction	Description
Addition Subtraction	ADC	Adds the contents of the accumulator, the contents of memory and the contents of the carry flag.
Multiplication	SBC	Subtracts the complements of the contents of memory and carry flag from the contents of the accumulator.
Division	INC	Increments the accumulator or memory contents by 1.
	DEC	Decrements the accumulator or memory contents by 1.
	INX	Increments the contents of the index register X by 1.
	DEX	Decrements the contents of the index register X by 1.
	INY	Increments the contents of the index register Y by 1.
	DEY	Decrements the contents of the index register Y by 1.
	MPY	Multiples the contents of the accumulator A and the contents of memory.
	DIV	Divides the numeric value whose lower byte is the contents of the accumulator A and upper byte is the contents of the accumulator B by the contents of memory.
Logical operation	AND	Performs logical AND between the contents of the accumu- lator and the contents of memory.
	ORA	Performs logical OR between the contents of the accumulator and the contents of memory.
	EOR	Performs logical exclusive-OR between the contents of the accumu- lator and the contents of memory.
Comparison	СМР	Compares the contents of the accumulator with the contents of memory.
	СРХ	Compares the contents of the index register X and the contents of memory.
	CPY	Compares the contents of the index register Y and the contents of memory.
Shifting, Lotation	ASL	Shifts the contents of the accumulator or memory to the left by 1 bit.
	LSR	Shifts the contents of the accumulator or memory to the right by 1 bit.
	ROL	Links the contents of accumulator or memory with the carry flag, and rotates the result to the left by 1 bit.
	ROR	Links the contents of accumulator or memory with the carry flag, and rotates the result to the right by 1 bit.
	RLA	Rotates the contents of the accumulator A to the left by the speci- fied number of bits.

4.1.3 Bit Manipulation Instructions

The bit manipulation instructions set the specified bits of the processor status register or memory to "1" or "0".

The following table summarizes the bit manipulation instructions supported:

Category	Instruction	Description		
Bit manipulation	CLB	Clears the specified memory bit to "0".		
	SEB	Sets the specified memory bit to "1".		
	CLP	Clears the specified bit of the processor status register's lower byte (PSL) to "0".		
	SEP	Sets the specified bit of the processor status register's lower byte (PSL) to "1".		

4.1.4 Flag Manipulation Instructions

The flag manipulation instructions set to "1" or clear to "0" the C, I, m and V flags.

The following table summarizes the flag manipulation instructions supported:

Category	Instruction	Description
Flag setting	CLC	Clears the contents of carry flag to "0".
	SEC	Sets the contents of carry flag to "1".
	CLM	Clears the contents of data length selection flag to "0".
	SEM	Sets the contents of data length selection flag to "1".
	CLI	Clears the contents of interrupt disable flag to "0".
	SEI Sets the contents of interrupt disable flag to "1".	
	CLV	Clears the contents of overflow flag to "0".

4.1.5 Branching and Return Instructions

The branching and return instructions enable changing the program execution sequence. The following table summarizes the branching and return instructions:

Category	Instruction	Description
Jump	JMP	Sets a new address in the program counter and jumps to the new address.
	BRA	Jumps to the address obtained by adding an offset value to the contents of the program counter.
	JSR	Saves the contents of the program counter to the stack and then jumps to the new address.

Category	Instruction	Description		
Branch	BBC	Causes a branch if the specified memory bits are all "0".		
	BBS	Causes a branch if the specified memory bits are all "1".		
-	BCC	Causes a branch if the carry flag is set to "0".		
	BCS	Causes a branch if the carry flag is set to "1".		
	BNE	Causes a branch if the zero flag is set to "0".		
	BEQ	Causes a branch if the zero flag is set to "1".		
	BPL	Causes a branch if the negative flag is set to "0".		
	BMICauses a branch if the negative flag is set to "1".BVCCauses a branch if the overflow flag is set to "0".			
	BVS	Causes a branch if the overflow flag is set to "1".		
Return	RTI	Returns from the interrupt routine to the original routine.		
	RTS	Returns from a subroutine to the original routine. The program bank register contents are not restored.		
	RTL	Returns from a subroutine to the original routine. The program bank register contents are restored.		

4.1.6 Interrupt Instruction (Break Instruction)

The interrupt instruction executes software interrupt.

Category	Instruction	Description
Break BRK		Executes a software interrupt.

4.1.7 Special Instructions

The special instructions listed below control the clock generator circuit.

Category	Instruction	Description
Special	WIT	Stops the internal clock.
	STP	Stops the oscillator.

4.1.8 Other Instruction

Category	Instruction	Description
Other	NOP	Only advances the program counter.

4.2 Description of Instructions

This section describes the **Series MELPS 7700** instructions individually. To the extent possible, each instruction is described using one page per instruction. Each instruction description page is headed by the instruction mnemonic, and the pages are arranged in alphabetical order of the mnemonics. For each instruction, operation and description of the instruction, status flag changes and a listing sorted by addressing modes of the assembler coding format (Note 1), machine code, bytes-count and cycles-count (Note 2) are presented.

- Note1. The assembler coding formats shown are general examples, and they may differ from the actual formats for the assembler used. Please be sure to refer to the mnemonic coding description in the manual for the assembler actually used for programming.
- Note2. The cycles-counts shown are the minimum possible, and they vary depending on the following conditions:
 - Value of direct page register's lower byte

The cycles-count shown are for when the direct page register's lower byte (DPRL) is 00_{16} . When using an addressing mode that uses the direct page register with DPRL \neq "0016", the cycles-count will be 1 more than the value shown.

- Number of bytes that have been loaded in the instruction queue buffer
- Whether the first address of the memory read/write is even- or odd-numbered in accessing the 16-bit data length.
- Accessing of an external memory are with BYTE=1(using 8-bit external bus)

	Description	1	
Symbol	Description	Symbol	Description
С	Carry flag	DPR	Direct page register
Z	Zero flag	DPRH	Direct page register's upper 8 bits
	Interrupt disable flag	DPR∟	Direct page register's lower 8 bits
D	Decimal operation mode flag	PS	Processor status register
х	Index register length selection flag	PSн	Processor status register's upper 8 bits
m	Data length selection flag	PS∟	Processor status register's lower 8 bits
V	Overflow flag	PSn	Processor status register's n-th bit
N	Negative flag	М	Memory contents
IPL	Processor interrupt priority level	M(n)	Contents of memory location specified by
+	Addition		operand
-	Subtraction	M(S)	Contents of memory at address indicated by stack pointer
× /	Multiplication Division	Mn	n-th memory location
\wedge	Logical AND	ADg	Value of 24-bit address' upper 8-bit
v	Logical OR		(A23~A16)
v	Exclusive OR	ADн	Value of 24-bit address' middle 8-bit
-	Negation		(A15~A8)
4	Movement to the arrow direction	ADL	Value of 24-bit address' lower 8-bit (A ₇ ~A ₀)
$\stackrel{\leftarrow}{\rightarrow}$	Movement to the arrow direction	bn	n-th bit of data
\leftrightarrow	Movement to the arrow direction	dd	8-bit offset value
Acc	Accumulator	i	Number of transfer bytes or rotation
Ассн	Accumulator's upper 8 bits	İ1, İ2	Number of registers pushed or pulled
ACCL	Accumulator's lower 8 bits	imm	8-bit immediate value
A	Accumulator A	imm1, imm2	16-bit immediate value (imm specifies the
Ан	Accumulator A's upper 8 bits		upper 8-bit,and imm2 specifies the lower 8- bit)
AL	Accumulator A's lower 8 bits	1	8-bit address value
B	Accumulator B	mmll	16-bit address value (mm specifies the
Вн	Accumulator B's upper 8 bits		upper 8-bit and II specifies the lower 8-bit)
BL	Accumulator B's lower 8 bits	hhmmll	24-bit address value (hh specifies the up-
X	Index register X		per 8-bit, mm specifies the middle 8-bit and
х Хн	Index register X's upper 8 bits		Il specifies the lower 8-bit)
лн Xl	Index register X's lower 8 bits	nn	8-bit data value
Y	Index register X s lower 8 bits	N1, N2	8-bit data value (Used when coding two 8-
т Үн	Index register Y's upper 8 bits		bit data side by side)
YL	Index register Y's lower 8 bits	rr	Signed 8-bit data value
S	Stack pointer	rr 1 rr 2	Signed 16-bit data value (rr1 is the upper 8- bit value, and rr2 is the lower 8-bit value)
PC	Program counter		on value, and the is the lower o-bit value)
РСн	Program counter's upper 8 bits		
PCL	Program counter's lower 8 bits		
REL	Relative address		
PG	Program bank register		
DT	Data bank register		
	Data Datik register	1	1

The table below lists the symbols that are used in this section:

<u>ADC</u>

Operation : Acc, $C \leftarrow Acc + M + C$

Description : Adds the contents of the accumulator, memory and carry flag, and places the result in the accumulator. Executed as binary addition if the decimal operation mode flag D is set to 0.

Executed as decimal addition if the decimal operation mode flag D is set to 1.

Status flags

IPL: Not affected.

- N : Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of the operation result is 1. Otherwise, cleared to 0. Meaningless for decimal addition.
- V : Set to 1 when binary addition of signed data result in a value outside the range of -32768 to +32767 (-128 to +127 if the data length selection flag m is set to 1). Otherwise, cleared to 0. Meaningless for decimal addition.
- m : Not affected.
- x : Not affected.
- D : Not affected.
- I : Not affected.
- Z : Set to 1 when the result of operation is 0. Otherwise, cleared to 0. Meaningless for decimal addition.
- C : When the data length selection flag m is set to 0, set to 1 if binary addition. exceeds +65535 or if decimal addition exceeds +9999. Otherwise, cleared to 0. When the data length selection flag m is set to 1, set to 1 if binary addition exceeds +255 or if decimal addition exceeds +99. Otherwise, cleared to 0.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Immediate	ADC A, #imm	6916, imm	2	2
Direct	ADC A, dd	6516, dd	2	4
Direct indexed X	ADC A, dd, X	7516, dd	2	5
Direct indirect	ADC A, (dd)	7216, dd	2	6
Direct indexed X indirect	ADC A, (dd, X)	6116, dd	2	7
Direct indirect indexed Y	ADC A, (dd), Y	7116, dd	2	8
Direct indirect long	ADCL A, (dd)	6716, dd	2	10
Direct indirect long indexed Y	ADCL A, (dd), Y	7716, dd	2	11
Absolute	ADC A, mmll	6D16, II, mm	3	4
Absolute indexed X	ADC A, mmll, X	7D16, II, mm	3	6
Absolute indexed Y	ADC A; mmll, Y	7916, II, mm	3	6
Absolute long	`ADC A, hhmmll	6F16, II, mm, hh	4	6
Absolute long indexed X	ADC A, hhmmll, X	7F16, II, mm, hh	4	7
Stack pointer relative	ADC A, nn,S	6316, nn	2	5
Stack pointer relative	ADC A, (nn, S), Y	7316, nn	2	8
indirect indexed Y				

(Note1) This table applies when using the accumulator A. If using the accumulator B, replace "A" with "B". In this case, "4216" is added at the beginning of the machine code, the bytes-count increases by 1 and the cycles-count increases by 2.

(Note2) When operating on 16-bit data in the immediate addressing mode with the data length selection flag m set to 0, the bytes-count increases by 1.

AND

Operation : Acc \leftarrow Acc \land M

Description : Performs logical AND between the contents of the accumulator and the contents of memory, and places the result in the accumulator.

Status flags

- IPL: Not affected.
- N : Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of the operation result is 1. Otherwise, cleared to 0.
- V : Not affected.
- m : Not affected.
- x : Not affected.
- D : Not affected.
- I : Not affected.
- Z : Set to 1 when the result of operation is 0. Otherwise, cleared to 0.
- C : Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Immediate	AND A, #imm	2916, imm	2	2
Direct	AND A, dd	2516, dd	2	4
Direct indexed X	AND A, dd, X	3516, dd	2	5
Direct indirect	AND A, (dd)	3216, dd	2	6
Direct indexed X indirect	AND A, (dd, X)	2116, dd	2	7
Direct indirect indexed Y	AND A, (dd), Y	3116, dd	2	8
Direct indirect long	ANDL A, (dd)	2716, dd	2	10
Direct indirect long indexed Y	ANDL A, (dd), Y	3716, dd	2	11
Absolute	AND A, mmll	2D16, II, mm	3	4
Absolute indexed X	AND A, mmll, X	3D16, II, mm	3	6
Absolute indexed Y	AND A, mmll, Y	3916, II, mm	3	6
Absolute long	AND A, hhmmll	2F16, II, mm, hh	4	6
Absolute long indexed X	AND A, hhmmll, X	3F16, II, mm, hh	4	7
Stack pointer relative	AND A, nn, S	2316, nn	2	5
Stack pointer relative	AND A, (nn, S), Y	3316, nn	2	8
indirect indexed Y				

(Note1) This table applies when using the accumulator A. If using the accumulator B, replace "A" with "B". In this case, "4216" is added at the beginning of the machine code, the bytes-count increases by 1 and the cycles-count increases by 2.

(Note2) When operating on 16-bit data in the immediate addressing mode with the data length selection flag m set to 0, the bytes-count increases by 1.

÷

.

Description : Shifts all bits of the accumulator or memory one place to the left. Bit 0 is loaded with 0. The carry flag C is loaded from bit 15 (or bit 7 when the data length selection flag m is set to 1) of the data before the shift.

Status flags

- IPL : Not affected.
- N : Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of the operation result is 1. Otherwise, cleared to 0.
- V : Not affected.
- m : Not affected.
- x : Not affected.
- D : Not affected.
- I : Not affected.
- Z : Set to 1 when the result of operation is 0. Otherwise, cleared to 0.
- C : Set to 1 when bit 15 (or bit 7 when the data length selection flag m is set to1) before the operation is 1. Otherwise, cleared to 0.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Accumulator	ASL A	0A16	1	2
Direct	ASL dd	0616, dd	2	7
Direct indexed X	ASL dd, X	1616, dd	2	7
Absolute	ASL mmll	0E16, II, mm	3	7
Absolute indexed X	ASL mmll, X	1E16, II, mm	3	8

(Note1) The accumulator addressing mode's specification in this table applies when using the accumulator A. If using the accumulator B, replace "A" with "B". In this case, "4216" is added at the beginning of the machine code, the bytes-count increases by 1 and the cycles-count increases by 2.

BBC

BB

When M A IMM=0 Operation $PC \leftarrow PC + n \pm REL$ (REL is instruction's second byte) $PG \leftarrow PG + 1$ (if carry on PC), $PG \leftarrow PG - 1$ (if borrow on PC) When M ∧ IMM≠0 $PC \leftarrow PC + n$ $PG \leftarrow PG + 1$ (if carry on PC) IMM is the bit pattern that specifies the bit positions to be tested. The value of n is determined as follows: If the data length selection flag m is set to 1, n=4 if direct bit relative addressing mode, and n=5 if absolute bit relative addressing mode. If the data length selection flag m is set to 0, n=5 if direct bit relative addressing mode, and n=6 if absolute bit relative addressing mode. Description The BBC instruction tests the specified bits (which may be specified simultane-: ously) of memory. The instruction causes a branch to the specified address when the specified bits are all 0. The branch address is specified by a relative

Status flags : Not affected.

address.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Direct bit relative	BBC #imm, dd, rr	3416, dd, imm, rr	4	7
Absolute bit relative	BBC #imm, mmll, rr	3C16, II, mm, imm, rr	5 ·	8

(Note1) The bytes-count increases by 1 when operating on 16-bit data with the data length selection flag m set to 0.

(Note2) The cycles-count increases by 2 when a branch occurs.

BBS	Branch on Bit Set BBS
Operation	: When $\overline{M} \land IMM=0$ PC \leftarrow PC + n ± REL (REL is instruction's second byte) PG \leftarrow PG + 1 (if carry on PC), PG \leftarrow PG - 1 (if borrow on PC)
	When $\overline{M} \land IMM \neq 0$ PC \leftarrow PC + n PG \leftarrow PG + 1 (if carry on PC)
	IMM is the bit pattern that specifies the bit positions to be tested. The value of n is determined as follows:
	If the data length selection flag m is set to 1, n=4 if direct bit relative addressing mode, and n=5 if absolute bit relative addressing mode.
	If the data length selection flag m is set to 0, $n=5$ if direct bit relative addressing mode, and $n=6$ if absolute bit relative addressing mode.

Description : The BBS instruction tests the specified bits (which may be specified simultaneously) of memory. The instruction causes a branch to the specified address when the specified bits are all 1. The branch address is specified by a relative address.

Status flags : Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Direct bit relative	BBS #imm, dd, rr	2416, dd, imm, rr	4	7
Absolute bit relative	BBS #imm, mmll, rr	2C16, II, mm, imm, rr	5	8

(Note1) The bytes-count increases by 1 when operating on 16-bit data with the data length selection flag m set to 0.

(Note2) The cycles-count increases by 2 when a branch occurs.

BCC

 Operation : When C=0, PC ← PC + 2 ± REL (REL is instruction's second byte) PG ← PG + 1 (if carry on PC), PG ← PG - 1 (if borrow on PC)
 When C=1, PC ← PC + 2 PG ← PG + 1 (if carry on PC)
 .

 Description : When the carry flag C is clear (0), the BCC instruction causes a branch to the specified address. The branch address is specified by a relative address. When the carry flag C is set (1), the program advances to next step without any action.

Status flags : Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Relative	BCC rr	9016, rr	2	4

(Note1) The cycles-count increases by 2 when a branch occurs.

BCS

 Operation : When C=1, PC ← PC + 2 ± REL (REL is instruction's second byte) PG ← PG + 1 (if carry on PC), PG ← PG - 1 (if borrow on PC)
 When C=0, PC ← PC + 2 PG ← PG + 1 (if carry on PC)

 Description : When the carry flag C is set (1), the BCS instruction causes a branch to the specified address. The branch address is specified by a relative address. When the carry flag C is clear (0), the program advances to next step without any action.

Status flags : Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Relative	BCS rr	B016, rr	2	4

(Note1) The cycles-count increases by 2 when a branch occurs.

BEQ

BEQ

 Operation : When Z=1, PC ← PC + 2 ± REL (REL is instruction's second byte) PG ← PG + 1 (if carry on PC), PG ← PG - 1 (if borrow on PC)
 When Z=0, PC ← PC + 2 PG ← PG + 1 (if carry on PC)

 Description : When the zero flag Z is set (1), the BEQ instruction causes a branch to the specified address. The branch address is specified by a relative address. When the zero flag Z is clear (0), the program advances to next step without any action.

Status flags : Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Relative	BEQ rr	F016, rr	2	4

(Note1) The cycles-count increases by 2 when a branch occurs.

3

BMI

 Operation : When N=1, PC ← PC + 2 ± REL (REL is instruction's second byte) PG ← PG + 1 (if carry on PC), PG ← PG - 1 (if borrow on PC)
 When N=0, PC ← PC + 2 PG ← PG + 1 (if carry on PC)

 Description : When the negative flag N is set (1), the BMI instruction causes a branch to the specified address. The branch address is specified by a relative address. When the negative flag N is clear (0), the program advances to next step without any action.

Status flags : Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Relative	BMI rr	3016, rr	2	4

(Note1) The cycles-count increases by 2 when a branch occurs.

BNE

 Operation
 : When Z=0,

 PC ← PC + 2 ± REL (REL is instruction's second byte)

 PG ← PG + 1 (if carry on PC), PG ← PG - 1 (if borrow on PC)

 When Z=1,

 PC ← PC + 2

 PG ← PG + 1 (if carry on PC)

 Description
 : When the zero flag Z is clear (0), the BNE instruction causes a branch to the specified address. The branch address is specified by a relative address. When the zero flag Z is set (1), the program advances to next step without any

Status flags : Not affected.

action.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Relative	BNE rr	D016, rr	2	4

(Note1) The cycles-count increases by 2 when a branch occurs.

BPL

Operation : When N=0, PC ← PC + 2 ± REL (REL is instruction's second byte) PG ← PG + 1 (if carry on PC), PG ← PG - 1 (if borrow on PC)
When N=1, PC ← PC + 2 PG ← PG + 1 (if carry on PC)
Description : When the negative flag N is clear (0), the BPL instruction causes a branch to the specified address. The branch address is specified by a relative address. When the negative flag N is set (1), the program advances to next step without

Status flags : Not affected.

any action.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Relative	BPL rr	1016, rr	2	4

(Note1) The cycles-count increases by 2 when a branch occurs.

BPL

BRA

.

Operation	:	
		For short relative branch,
		$PC \leftarrow PC + 2 \pm REL$ (REL is instruction's second byte)
		$PG \leftarrow PG + 1$ (if carry on PC), $PG \leftarrow PG - 1$ (if borrow on PC)
		For long relative branch,
		$PC \leftarrow PC + 3 \pm REL$ (REL is a numeric value represented by the instruction's second and third bytes)
Description	:	The BRA instruction causes a branch to the specified address. The branch address is specified by a relative address.

Status flags : Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Relative	BRA rr	8016, rr	2	4
	BRAL rr1rr2	8216, rr2, rr1	3	4

BRK

Operation

:

Description : When the BRK instruction is executed, the CPU first saves the address where the next instruction is stored, and then saves the contents of the processor status register on the stack. Then, the CPU executes a branch to the address in bank-0 the lower portion of which is specified by the contents of FFFA₁₆ in bank-0 and the upper portion specified by the contents of FFFB₁₆ in bank-0.

Status flags

IPL	.:	Not affected.
Ν	:	Not affected.
V	:	Not affected.
m	:	Not affected.
х	:	Not affected.
D	:	Not affected.
1	:	Set to 1.
Ζ	:	Not affected.
С	:	Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Implied	BRK #nn	0016,EA16	2	15

(Note1) The instruction's second byte is ignored, so any value impossible.

BVC

 Operation
 :
 When V=0, PC ← PC + 2 ± REL (REL is instruction's second byte) PG ← PG + 1 (if carry on PC), PG ← PG - 1 (if borrow on PC)

 When V=1, PC ← PC + 2 PG ← PG + 1 (if carry on PC)

 Description
 :

 When the overflow flag V is clear (0), the BVC instruction causes a branch to the specified address. The branch address is specified by a relative address. When the overflow flag V is set (1), the program advances to next step without

Status flags : Not affected.

any action.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Relative	BVC rr	5016, rr	2	4

(Note 1) The cycles-count increases by 2 when a branch occurs.

BVS

 Operation : When V=1, PC ← PC + 2 ± REL (REL is instruction's second byte) PG ← PG + 1 (if carry on PC), PG ← PG - 1 (if borrow on PC)
 When V=0, PC ← PC + 2 PG ← PG + 1 (if carry on PC)

 Description : When the overflow flag V is set (1), the BVS instruction causes a branch to the specified address. The branch address is specified by a relative address. When the overflow flag V is clear (0), the program advances to next step without any action.

Status flags : Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Relative	BVS rr	7016, rr	2	4

(Note1)The cycles-count increases by 2 when a branch occurs.

Operation : $M \leftarrow M \land \overline{IMM}$

IMM is the bit pattern that specifies the bit positions that are to be cleared to 0. The bit positions that are to be cleared are indicated by 1 in IMM, and the bit positions that are not to be cleared are indicated by 0 in IMM.

When the data length selection flag m is set to 1, IMM is placed in the third byte (direct bit addressing mode) or the fourth byte (absolute bit addressing mode) of the instruction.

When the data length selection flag m is set to 0, IMM is placed in the third and fourth bytes (direct bit addressing mode) or the fourth and fifth bytes (absolute bit addressing mode) of the instruction.

Description : The CLB instruction clears the specified memory bits to 0. Multiple bits to be cleared can be specified at one time.

Status flags : Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Direct bit	CLB #imm, dd	1416, dd, imm	3	8
Absolute bit	CLB #imm, mmll	1C16, II, mm, imm	4	9

(Note1) The bytes-count increases by 1 when operating on 16-bit data with the data length selection flag m set to 0.

CLC

Operation : C ← 0

Description : Clears the contents of carry flag C to 0.

Status flags

IPL : Not affected. Ν Not affected. : ٧ : Not affected. Not affected. m : Not affected. х : D : Not affected. I Not affected. : Ζ : Not affected.

C :

Cleared to 0.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Implied	CLC	1816	1	2

Operation : $I \leftarrow 0$

Description : Clears the interrupt disable flag I to 0.

Status flags

IPL	:	Not affected.
Ν	:	Not affected.

- V : Not affected.
- m : Not affected.
- x : Not affected.
- D : Not affected.
- I : Cleared to 0.
- Z : Not affected.
- C : Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Implied	CLI	5816	1	2

CLM

Description : Clears the data length selection flag m to 0.

Status flags

IPL	. :	Not affected.
Ν	:	Not affected.
V	:	Not affected.
m	:	Cleared to 0.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Not affected.

C : Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Implied	CLM	D816	1	2

CLP

.

Operation	:	$PS_L \leftarrow PS_L \wedge \overline{IMM}$ (IMM is the immediate value. Its specified in the second byte of the instruction.)
Description	:	Clears the processor status flags specified by the bit pattern in the second byte of the instruction to 0.
Status flags	:	The specifed flags are cleared. IPL is not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Immediate	CLP #imm	C216, imm	2	4

CLV

Operation : $V \leftarrow 0$

Description : Clears the overflow flag V to 0.

Status flags

- IPL : Not affected.
- N : Not affected.
- V : Cleared to 0.
- m : Not affected.
- x : Not affected.
- D : Not affected.
- I : Not affected.
- Z : Not affected.
- C : Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Implied	CLV	B816	1	2

CMP

Operation : Acc - M

Description : Subtracts the contents of memory from the contents of the accumulator. The accumulator and memory contents are not changed.

Status flags

- IPL: Not affected.
- N : Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of the operation result is 1. Otherwise, cleared to 0.
- V : Not affected.
- m : Not affected.
- x : Not affected.
- D : Not affected.
- I : Not affected.
- Z : Set to 1 when the result of operation is 0. Otherwise, cleared to 0.
- C : Set to 1 if the result of operation is 0 or larger. Otherwise, cleared to 0.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Immediate	CMP A, #imm	C916, imm	2	2
Direct	CMP A, dd	C516, dd	2	4
Direct indexed X	CMP A, dd, X	D516, dd	2	5
Direct indirect	CMP A, (dd)	D216, dd	2	6
Direct indexed X indirect	CMP A, (dd, X)	C116, dd	2	7
Direct indirect indexed Y	CMP A, (dd), Y	D116, dd	2	8
Direct indirect long	CMPL A, (dd)	C716, dd	2	10
Direct indirect long indexed Y	CMPL A, (dd), Y	D716, dd	2	11
Absolute	CMP A, mmll	CD16, II, mm	3	4
Absolute indexed X	CMP A, mmll, X	DD16, II, mm	3	6
Absolute indexed Y	CMP A, mmll, Y	D916, II, mm	3	6
Absolute long	CMP A, hhmmll	CF16, II, mm, hh	4	6
Absolute long indexed X	CMP A, hhmmll, X	DF16, II, mm, hh	4	7
Stack pointer relative	CMP A, nn, S	C316, nn	2	5
Stack pointer relative	CMP A, (nn, S), Y	D316, nn	2	8
indirect indexed Y				

(Note1) This table applies when using the accumulator A. If using the accumulator B, replace "A" with "B". In this case, "4216" is added at the beginning of the machine code, the bytes-count increases by 1 and the cycles-count increases by 2.

(Note2) When operating on 16-bit data in the immediate addressing mode with the data length selection flag m set to 0, the bytes-count increases by 1.

CPX

Operation : X - M

Description : Subtracts the contents of memory from the contents of the index register X. The index register X and memory contents are not changed.

Status flags

IPL	.:	Not affected.
Ν	:	Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set to 1) of the operation result is 1. Otherwise, cleared to 0.
۷	:	Not affected.
m	:	Not affected.
x	:	Not affected.
D	:	Not affected.
1	:	Not affected.

- $Z_{}$: Set to 1 when the result of operation is 0. Otherwise, cleared to 0.
- C : Set to 1 if the result of operation is 0 or larger. Otherwise, cleared to 0.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Immediate	CPX #imm	E016, imm	2	2
Direct	CPX dd	E416, dd	2	4
Absolute	CPX mmll	EC16, II, mm	3	4

(Note1) When operating on 16-bit data in the immediate addressing mode with the index register length selection flag x set to 0, the bytes-count increases by 1.

CPY

Operation : Y - M

Description : Subtracts the contents of memory from the contents of the index register Y. The index register Y and memory contents are not changed.

Status flags

- IPL: Not affected.
- N : Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set to 1) of the operation result is 1. Otherwise, cleared to 0.
- V : Not affected.
- m : Not affected.
- x : Not affected.
- D : Not affected.
- I : Not affected.
- Z : Set to 1 when the result of operation is 0. Otherwise, cleared to 0.
- C : Set to 1 if the result of operation is 0 or larger. Otherwise, cleared to 0.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Immediate	CPY #imm	C016, imm	2	2
Direct	CPY dd	C416,dd	2	4
Absolute	CPY mmll	CC16, II, mm	3	4

(Note1) When operating on 16-bit data in the immediate addressing mode with the index register length selection flag x set to 0, the bytes-count increases by 1.

DEC

Operation : Acc \leftarrow Acc - 1 or M \leftarrow M -1

Description : Subtracts 1 from the contents of the accumulator or memory.

Status flags

- IPL : Not affected.
- N : Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of the operation result is 1. Otherwise, cleared to 0.
- V : Not affected.
- m : Not affected.
- x : Not affected.
- D : Not affected.
- I : Not affected.
- Z : Set to 1 when the result of operation is 0. Otherwise, cleared to 0.
- C : Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Accumulator	DEC A	1A16	1	2
Direct	DEC dd	C616, dd	2	7
Direct indexed X	DEC dd, X	D616, dd	2	7
Absolute	DEC mmll	CE16, II, mm	3	7
Absolute indexed X	DEC mmll, X	DE16, II, mm	3	8

(Note1) The accumulator addressing mode's specification in this table applies when using the accumulator A. If using the accumulator B, replace "A" with "B". In this case, "4216" is added at the beginning of the machine code, the bytes-count increases by 1 and the cycles-count increases by 2.

DEX

ł

Operation : $X \leftarrow X - 1$

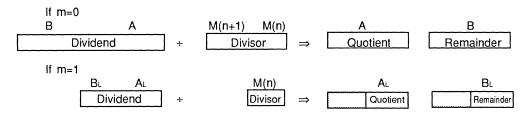
Description : Subtracts 1 from the contents of the index register X.

Status flags

- IPL : Not affected.
- N : Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set to 1) of the operation result is 1. Otherwise, cleared to 0.
- V : Not affected.
- m : Not affected.
- x : Not affected.
- D : Not affected.
- I : Not affected.
- Z : Set to 1 when the result of operation is 0. Otherwise, cleared to 0.
- C : Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Implied	DEX	CA16	1	2

Operation : $Y \leftarrow Y - 1$


Description : Subtracts 1 from the contents of the index register Y.

Status flags

IPL : Not affected. Ν : Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set to 1) of the operation result is 1. Otherwise, cleared to 0. ۷ : Not affected. : Not affected. m Not affected. х : D : Not affected. I Not affected. : Ζ : Set to 1 when the result of operation is 0. Otherwise, cleared to 0. С : Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Implied	DEY	8816	1	2

Operation : B(remainder), A(quotient) \leftarrow (B, A) / M

Description

When the data length selection flag m is set to 0, a 32-bit data stored in the accumulators B (upper 16 bits) and A (lower 16 bits) are divided by a 16-bit data in memory. The quotient is placed in the accumulator A, and the remainder is placed in the accumulator B.

When the data length selection flag m is set to 1, a 16-bit data stored in the lower 8 bits of the accumulators B (upper 8 bits) and A (lower 8 bits) are divided by an 8 bit data in memory. The quotient is placed in the lower 8 bits of the accumulator A, and the remainder is placed in the lower 8 bits of the accumulator B.

When an overflow results from this operation negrect removed out, the V flag is set.

When divisor is 0, the zero division interrupt is generated, in which case the contents of the processor status register are saved on the stack and a branch occurs to the address in bank-0 as specified by the zero division interrupt vector. Accumulator contents are not changed.

Status flags

I

- IPL : Not affected.
- N : Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of quotient from the operation is 1. Otherwise, cleared to 0.
- V : Set to 1 when the quotient from the operation exceeds 16 bits (or 8 bits if the data length selection flag m is set to 1) (i.e., an overflow has occurred). Otherwise, cleared to 0. No changes occur when divisor is 0.
- m : Not affected.
- x : Not affected.
- D : Not affected.
 - : Not affected.
- Z : Set to 1 when the quotient from the operation is 0. Otherwise, cleared to 0. No changes occur when divisor is 0.
- C : Set to 1 when the quotient from the operation exceeds 16 bits (or 8 bits if the data length selection flag m is set to 1) (i.e., an overflow has occurred). Otherwise, cleared to 0. No changes occur when divisor is 0.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Immediate	DIV #imm	8916, 2916, imm	3	27
Direct	DIV dd	8916, 2516, dd	3	29
Direct indexed X	DIV dd, X	8916, 3516, dd	3	30
Direct indirect	DIV (dd)	8916, 3216, dd	3	31
Direct indexed X indirect	DIV (dd, X)	8916, 2116, dd	3	32
Direct indirect indexed Y	DIV (dd), Y	8916, 3116, dd	3	33
Direct indirect long	DIVL (dd)	8916, 2716, dd	3	35
Direct indirect long indexed Y	DIVL (dd), Y	8916, 3716, dd	3	36
Absolute	DIV mmll	8916, 2D16, II, mm	4	29
Absolute indexed X	DIV mmll, X	8916, 3D16, ll ,mm	4	31
Absolute indexed Y	DIV mmll, Y	8916, 3916, ll ,mm	4	31
Absolute long	DIV hhmmll	8916, 2F16, II, mm, hh	5	31
Absolute long indexed X	DIV hhmmll, X	8916, 3F16, II, mm, hh	5	32
Stack pointer relative	DIV nn, S	8916, 2316, nn	3	30
Stack pointer relative	DIV (nn, S), Y	8916, 3316, nn	3	33
indirect indexed Y				

(Note1) When operating on 16-bit data in the immediate addressing mode with the data length selection flag m set to 0, the bytes-count increases by 1.

(Note2) The cycles-count in this table are for 16-bit + 8-bit operations. For 32-bit + 16-bit operations, the cycles-count increases by 16.

Operation : Acc \leftarrow Acc \forall M

Description : Performs the logical EXCLUSIVE OR between the contents of the accumulator and the contents of memory, and places the result in the accumulator.

Status flags

- IPL : Not affected.
- N : Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of the operation result is 1. Otherwise, cleared to 0.
- V : Not affected.
- m : Not affected.
- x : Not affected.
- D : Not affected.
- I : Not affected.
- Z : Set to 1 when the result of operation is 0. Otherwise, cleared to 0.
- C : Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Immediate	EOR A, #imm	4916, imm	2	2
Direct	EOR A, dd	4516, dd	2	4
Direct indexed X	EOR A, dd, X	5516, dd	2	5
Direct indirect	EOR A, (dd)	5216, dd	2	6
Direct indexed X indirect	EOR A, (dd, X)	4116, dd	2	7
Direct indirect indexed Y	EOR A, (dd), Y	5116, dd	2	8
Direct indirect long	EORL A, (dd)	4716, dd	2	10
Direct indirect long indexed Y	EORL A, (dd), Y	5716, dd	2	11
Absolute	EOR A, mmll	4D16, II, mm	3	4
Absolute indexed X	EOR A, mmll, X	5D16, II, mm	3	6
Absolute indexed Y	EOR A, mmll, Y	5916, II, mm	3	6
Absolute long	EOR A, hhmmll	4F16, II, mm, hh	4	6
Absolute long indexed X	EOR A, hhmmll, X	5F16, II, mm, hh	4	7
Stack pointer relative	EOR A, nn, S	4316, nn	2	5
Stack pointer relative	EOR A, (nn, S), Y	5316, nn	2	8
indirect indexed Y				

(Note1) This table applies when using the accumulator A. If using the accumulator B, replace "A" with "B". In this case, "4216" is added at the beginning of the machine code, the bytes-count increases by 1 and the cycles-count increases by 2.

(Note2) When operating on 16-bit data in the immediate addressing mode with the data length selection flag m set to 0, the bytes-count increases by 1.

INC

Operation : $Acc \leftarrow Acc + 1$ or $M \leftarrow M + 1$

Description : Adds 1 to the contents of the accumulator or memory.

Status flags

- IPL : Not affcted.
- N : Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of the operation result is 1. Otherwise, cleared to 0.
- V : Not affected.
- m : Not affected.
- x : Not affected.
- D : Not affected.
- I : Not affected.
- Z : Set to 1 when the result of operation is 0. Otherwise, cleared to 0.
- C : Not affected.

INC A	3A16	1	2
INC dd	E616, dd	2	7
INC dd, X	F616, dd	2	7
INC mmll	EE16, II, mm	3	7
INC mmll, X	FE16, II, mm	3	8
	INC dd INC dd, X INC mmll	INC dd E616, dd INC dd, X F616, dd INC mmll EE16, ll, mm	INC dd E616, dd 2 INC dd, X F616, dd 2 INC mmll EE16, II, mm 3

(Note1) The accumulator addressing mode's specification in this table applies when using the accumulator A. If using the accumulator B, replace "A" with "B". In this case, "4216" is added at the beginning of the machine code, the bytes-count increases by 1 and the cycles-count increases by 2. **Operation** : $X \leftarrow X + 1$

Description : Adds 1 to the contents of the index register X.

Status flags

- IPL : Not affected.
- N : Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set to 1) of the operation result is 1. Otherwise, cleared to 0.
- V : Not affected.
- m : Not affected.
- x : Not affected.
- D : Not affected.
- I : Not affected.
- Z : Set to 1 when the result of operation is 0. Otherwise, cleared to 0.
- C : Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Implied.	INX	E816	1	2

Operation : $Y \leftarrow Y + 1$

Description : Adds 1 to the contents of the index register Y.

Status flags

- IPL : Not affected. N : Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set to 1) of the operation result is 1. Otherwise, cleared to 0. ٧ : Not affected. : Not affected. m Not affected. х : : D Not affected.
- I : Not affected.
- Z : Set to 1 when the result of operation is 0. Otherwise, cleared to 0.
- C : Not affected.

-	· ·			
Addressing mode	Syntax	Machine code	Bytes	Cycles
Implied	INY	C816	1	2

JMP

Jump

Operation If absolute addressing mode, : $PCL \leftarrow ADL$ PC_H ← AD_H If absolute long addressing mode, $PC_{L} \leftarrow AD_{L}$ PC_H ← AD_H $PG \leftarrow AD_G$ If absolute indirect addressing mode, $PC_L \leftarrow (AD_H, AD_L)$ $PCH \leftarrow (ADH, ADL + 1)$ If absolute indirect long addressing mode, $PCL \leftarrow (ADH, ADL)$ $PCH \leftarrow (ADH, ADL + 1)$ $PG \leftarrow (ADH, ADL + 2)$ If absolute indexed X indirect addressing mode, $PC_{L} \leftarrow (AD_{H}, AD_{L} + X)$ $PC_{H} \leftarrow (AD_{H}, AD_{L} + X + 1)$ (ADL, ADH and ADG specify the instruction's second, third and fourth bytes, respectively.) The JMP instruction causes a jump to the address specified for the addressing Description : mode in use.

Status flags : Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Absolute	JMP mmll	4C16, II, mm	3	2
Absolute long	JMPL hhmmli	5C16, II, mm, hh	4	4
Absolute indirect	JMP (mmll)	6C16, II, mm	3	4
Absolute indirect long	JMPL (mmll)	DC16, II, mm	3	8
Absolute indexed X indirect	JMP (mmll, X)	7C16, II, mm	3	6

Operation

: If absolute addressing mode,

 $\begin{array}{l} \mathsf{M}(\mathsf{S}) \leftarrow \mathsf{PCH} \\ \mathsf{S} \leftarrow \mathsf{S} - \mathsf{1} \\ \mathsf{M}(\mathsf{S}) \leftarrow \mathsf{PCL} \\ \mathsf{S} \leftarrow \mathsf{S} - \mathsf{1} \\ \mathsf{PCL} \leftarrow \mathsf{ADL} \\ \mathsf{PCH} \leftarrow \mathsf{ADH} \end{array}$

If absolute long addressing mode,

 $\begin{array}{l} \mathsf{M}(\mathsf{S}) \leftarrow \mathsf{PG} \\ \mathsf{S} \leftarrow \mathsf{S} - 1 \\ \mathsf{M}(\mathsf{S}) \leftarrow \mathsf{PCH} \\ \mathsf{S} \leftarrow \mathsf{S} - 1 \\ \mathsf{M}(\mathsf{S}) \leftarrow \mathsf{PCL} \\ \mathsf{S} \leftarrow \mathsf{S} - 1 \\ \mathsf{PCL} \leftarrow \mathsf{ADL} \\ \mathsf{PCH} \leftarrow \mathsf{ADH} \\ \mathsf{PG} \leftarrow \mathsf{ADG} \end{array}$

If absolute indexed X indirect addressing mode,

 $\begin{array}{l} \mathsf{M}(\mathsf{S}) \leftarrow \mathsf{PC}_{\mathsf{H}} \\ \mathsf{S} \leftarrow \mathsf{S} - 1 \\ \mathsf{M}(\mathsf{S}) \leftarrow \mathsf{PC}_{\mathsf{L}} \\ \mathsf{S} \leftarrow \mathsf{S} - 1 \\ \mathsf{PC}_{\mathsf{L}} \leftarrow (\mathsf{AD}_{\mathsf{H}}, \mathsf{AD}_{\mathsf{L}} + \mathsf{X}) \\ \mathsf{PC}_{\mathsf{H}} \leftarrow (\mathsf{AD}_{\mathsf{H}}, \mathsf{AD}_{\mathsf{L}} + \mathsf{X} + 1) \end{array}$

(ADL, ADH and ADg specify the instruction's second, third and fourth bytes, respectively.)

Description : The contents of the program counter PC (or the program bank register PG and the program counter PC if absolute long addressing mode) are first saved on the stack, then a jump occurs to the address shown for each addressing mode.

Status flags : Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Absolute	JSR mmll	2016, II, mm	3	6
Absolute long	JSRL hhmmll	2216, II, mm, hh	4	8
Absolute indexed X indirect	JSR (mmll, X)	FC16, II, mm	3	8

LDA

Operation : Acc \leftarrow M

Description : Loads the contents of memory into the accumulator.

Status flags

- IPL: Not affected.
- N : Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of the operation result is 1. Otherwise, cleared to 0.
- V : Not affected.
- m : Not affected.
- x : Not affected.
- D : Not affected.
- I : Not affected.
- Z : Set to 1 when the result of operation is 0. Otherwise, cleared to 0.
- C : Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Immediate	LDA A, #imm	A916, imm	2	2
Direct	LDA A, dd	A516, dd	2	4
Direct indexed X	LDA A, dd, X	B516, dd	2	5
Direct indirect	LDA A, (dd)	B216, dd	2	6
Direct indexed X indirect	LDA A, (dd, X)	A116, dd	2	7
Direct indirect indexed Y	LDA A, (dd), Y	B116, dd	2	8
Direct indirect long	LDAL A, (dd)	A716, dd	2	10
Direct indirect long indexed Y	LDAL A, (dd), Y	B716, dd	2	11
Absolute	LDA A, mmll	AD16, II, mm	3	4
Absolute indexed X	LDA A, mmll, X	BD16, II, mm	3	6
Absolute indexed Y	LDA A, mmll, Y	B916, II, mm	3	6
Absolute long	LDA A, hhmmli	AF16, II, mm, hh	4	6
Absolute long indexed X	LDA A, hhmmli, X	BF16, II, mm, hh	4	7
Stack pointer relative	LDA A, nn, S	A316, nn	2	5
Stack pointer relative	LDA A, (nn, S), Y	B316, nn	2	8
indirect indexed Y				

(Note1) This table applies when using the accumulator A. If using the accumulator B, replace "A" with "B". In this case, "4216" is added at the beginning of the machine code, the bytes-count increases by 1 and the cycles-count increases by 2.

(Note2) When operating on 16-bit data in the immediate addressing mode with the data length selection flag m set to 0, the bytes-count increases by 1.

LDM

Operation : $M \leftarrow IMM$ (IMM is an immediate value)

Description : Loads an immediate value into memory.

Status flags : Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Direct	LDM #imm, dd	6416, dd, imm	3	4
Direct indexed X	LDM #imm, dd, X	7416, dd, imm	3	5
Absolute	LDM #imm, mmll	9C16, II, mm, imm	4	5
Absolute indexed X	LDM #imm, mmll, X	9E16, II, mm, imm	4	6

(Note1) When operating on 16-bit data with the data length selection flag m set to 0, the bytes-count increases by 1.

LDT

Operation : DT

IMM (IMM is an immediate value)

Description : Loads an immediate value into the data bank register DT.

Status flags : Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Immediate	LDT #imm	8916, C216, imm	3	5

LDX

Operation : $X \leftarrow M$

Description : Loads the contents of memory into the index register X.

Status flags

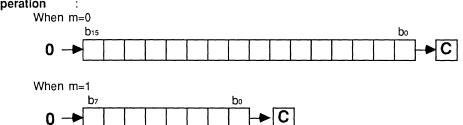
-		
IPL	:	Not affected.
Ν	:	Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set to 1) of the operation result is 1. Otherwise, cleared to 0.
۷	:	Not affected.
m	:	Not affected.
x	:	Not affected.
D	:	Not affected.
I	:	Not affected.
Ζ	:	Set to 1 when the result of operation is 0. Otherwise, cleared to 0.
С	:	Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Immediate	LDX #imm	A216, imm	2	2
Direct	LDX dd	A616, dd	2	4
Direct indexed Y	LDX dd, Y	B616, dd	2	5
Absolute	LDX mmll	AE16, II, mm	3	4
Absolute indexed Y	LDX mmll, Y	BE16, II, mm	3	6

(Note1) When operating on 16-bit data in the immediate addressing mode with the index register length selection flag x set to 0, the bytes-count increases by 1.

LDY

Operation : $Y \leftarrow M$


Description : Loads the contents of memory into the index register Y.

Status flags

- IPL : Not affected.
- N : Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set to 1) of the operation result is 1. Otherwise, cleared to 0.
- V : Not affected.
- m : Not affected.
- x : Not affected.
- D : Not affected.
- I : Not affected.
- Z : Set to 1 when the result of operation is 0. Otherwise, cleared to 0.
- C : Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Immediate	LDY #imm	A016, imm	2	2
Direct	LDY dd	A416, dd	2	4
Direct indexed X	LDY dd, X	B416, dd	2	5
Absolute	LDY mmll	AC16, II, mm	3	4
Absolute indexed X	LDY mmll, X	BC16, II, mm	3	6
			1	

(Note1) When operating on 16-bit data in the immediate addressing mode with the index register length selection flag x set to 0, the bytes-count increases by 1.

Description : Shifts all bits of the accumulator or memory one place to the right. Bit 15 (or bit 7 if the data length selection flag m is set to 1) of the accumulator or memory is loaded with 0.

The carry flag C is loaded from bit 0 of the data before the shift.

Status flags

- IPL: Not affected.
- N : Cleared to "0".
- V : Not affected.
- m : Not affected.
- x : Not affected.
- D : Not affected.
- I : Not affected.
- Z : Set to 1 when the result of operation is 0. Otherwise, cleared to 0.
- C : Set to 1 when bit 0 before the operation is 1. Otherwise, cleared to 0.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Accumulator	LSR A	4A16	1	2
Direct	LSR dd	4616, dd	2	7
Direct indexed X	LSR dd, X	5616, dd	2	7
Absolute	LSR mmll	4E16, II, mm	3	7
Absolute indexed X	LSR mmll, X	5E16, II, mm	3	8

(Note1) The accumulator addressing mode's specification in this table applies when using the accumulator A. If using the accumulator B, replace "A" with "B". In this case, "4216" is added at the beginning of the machine code, the bytes-count increases by 1 and the cycles-count increases by 2. **Operation** : B, A \leftarrow A \times M

Description : When the data length selection flag m is set to 0, The contents of the accumulator A and the contents of memory are multiplied. Multiplication is performed as 16-bit × 16-bit, and the result is a 32-bit data which is placed in the accumulators B (upper 16 bits of the result) and A (lower 16 bits of the result).

When the data length selection flag m is set to 1, the lower 8-bit contents of the accumulator A and the contents of memory are multiplied. Multiplication is performed as 8-bit \times 8-bit, and the result is a 16-bit data which is placed in the lower 8 bits of the accumulators B (upper 8 bits of the result) and A (lower 8 bits of the result).

Status flags

- IPL : Not affected.
- N : Set to 1 when bit 31 (or bit 15 if the data length selection flag m is set to 1) of the operation result is 1. Otherwise, cleared to 0.
- V : Not affected.
- m : Not affected.
- x : Not affected.
- D : Not affected.
- I : Not affected.
- Z : Set to 1 when the result of operation is 0. Otherwise, cleared to 0.
- C : Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Immediate	MPY #imm	8916, 0916, imm	3	16
Direct	MPY dd	8916, 0516, dd	3	18
Direct indexed X	MPY dd, X	8916, 1516, dd	3	19
Direct indirect	MPY (dd)	8916, 1216, dd	3	20
Direct indexed X indirect	MPY (dd, X)	8916, 0116, dd	3	21
Direct indirect indexed Y	MPY (dd), Y	8916, 1116, dd	3	22
Direct indirect long	MPYL (dd)	8916, 0716, dd	3	24
Direct indirect long indexed Y	MPYL (dd), Y	8916, 1716, dd	3	25
Absolute	MPY mmll	8916, 0D16, II, mm	4	18
Absolute indexed X	MPY mmll, X	8916, 1D16, II, mm	4	20
Absolute indexed Y	MPY mmll, Y	8916, 1916, II, mm	4	20
Absolute long	MPY hhmmli	8916, 0F16, II, mm, hh	5	20
Absolute long indexed X	MPY hhmmll, X	8916, 1F16, II, mm, hh	5	21
Stack pointer relative	MPY nn, S	8916, 0316, nn	3	19
Stack pointer relative	MPY (nn, S), Y	8916, 1316, nn	3	22
indirect indexed Y				

(Note1) When operating on 16-bit data in the immediate addressing mode with the data length selection flag m set to 0, the bytes-count increases by 1.

(Note2) The cycles-count in this table are for 8-bit x 8-bit multiplications. For 16-bit x 16-bit multiplications, the cycles-count increases by 8.

Operation : $M_n \sim M_{n+k} \leftarrow M_m \sim M_{m+k}$

Description : Normally, a block of data is transferred from upper addresses to lower addresses. The transfer is performed in the ascending address order of the block being transferred. The target bank is specified by the instruction's second byte, and the address within the target bank is specified by the contents of the index register Y. The source bank is specified by the instruction's third byte, and the address within the source bank is specified by the contents of the index register X. The accumulator A is loaded with the bytes-count of the data to be transferred. As each byte of data is transferred, the index registers X and Y are incremented by 1, so that the index register X will become a value equal to 1 larger than the source address of the last byte transferred and the index register Y will become a value equal to 1 larger than the target address of the last byte received. The data bank register DT will become the terget bank number, and the accumulator A will become FFFT16.

The accumulator A is affected by flag m. The index register X and Y are affected by flag x.

When the contents of the accumulator A is " 00_{16} ", the data are not transferred.

Status flags : Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Block transfer	MVN n1, n2	5416, N1, N2	3	7+(i/2)×7

(Note1) The cycles-count shown above is for when the number of bytes transferred, i, is an even number. If i is an odd number, the cycles-count is obtained as follows: 7 + (i ÷ 2) x 7 + 4.

Note that $(i \div 2)$ denotes the integer part of the result of dividing i by 2.

MVP

Operation : $M_{n-k} \sim M_n \leftarrow M_{m-k} \sim M_m$

Description : Normally, a block of data is transferred from lower addresses to upper addresses. The transfer is performed in the descending address order of the block being transferred. The target bank is specified by the instruction's second byte, and the address within the target bank is specified by the contents of the index register Y. The source bank is specified by the instruction's third byte, and the address within the source bank is specified by the contents of the index register X. The accumulator A is loaded with the bytes-count of the data to be transferred. As each byte of data is transferred, the index registers X and Y are decremented by 1, so that the index register X will become a value equal to 1 less than the source address of the last byte transferred and the index register Y will become a value equal to 1 smaller than the target address of the last byte received. The data bank register DT will become the target bank number, and the accumulator A will become FFFF16.

The accumulator A is affected by flag m. The index register X and Y are affected by flag x.

When the contents of the accumulator A is "0016", the data are not transferred.

Status flags : Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles	
Block transfer	MVP n1, n2	4416, n1, n2	3	9+(i/2)×7	

(Note1) The cycles-count shown above is for when the number of bytes transferred, i, is an even number. If i is an odd number, the cycles-count is obtained as follows:

Note that (i + 2) denotes the integer part of the result of dividing i by 2.

^{9 + (}i ÷ 2) x 7 + 5.

NOP

Operation	:	$PC \leftarrow PC + 1$ $PG \leftarrow PG + 1$ (if carry on PC)
Description	:	This instruction only causes the program counter to be incremented by 1 and nothing else.
Status flags	:	Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles	
Implied	NOP	EA16	1	2	

ORA

Operation : Acc \leftarrow Acc V M

Description : Performs the logical OR between the contents of the accumulator and the contents of memory, and places the result in the accumulator.

Status flags

- IPL : Not affected.
- N : Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of the operation result is 1. Otherwise, cleared to 0.

,

- V : Not affected.
- m : Not affected.
- x : Not affected.
- D : Not affected.
- I : Not affected.
- Z : Set to 1 when the result of operation is 0. Otherwise, cleared to 0.
- C : Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Immediate	ORA A, #imm	0916, imm	2	2
Direct	ORA A, dd	0516, dd	2	4
Direct indexed X	ORA A, dd, X	1516, dd	2	5
Direct indirect	ORA A, (dd)	1216, dd	2	6
Direct indexed X indirect	ORA A, (dd, X)	0116, dd	2	7
Direct indirect indexed Y	ORA A, (dd), Y	1116, dd	2	8
Direct indirect long	ORAL A, (dd)	0716, dd	2	10
Direct indirect long indexed Y	ORAL A, (dd), Y	1716, dd	2	11
Absolute	ORA A, mmll	0D16, II, mm	3	4
Absolute indexed X	ORA A, mmll, X	1D16, II, mm	3	6
Absolute indexed Y	ORA A, mmll, Y	1916, II, mm	3	6
Absolute long	ORA A, hhmmll	0F16, II, mm, hh	4	6
Absolute long indexed X	ORA A, hhmmll, X	1F16, II, mm, hh	4	7
Stack pointer relative	ORA A, nn, S	0316, nn	2	5
Stack pointer relative	ORA A, (nn, S), Y	1316, nn	2	8
indirect indexed Y				

(Note1) This table applies when using the accumulator A. If using the accumulator B, replace "A" with "B". In this case, "4216" is added at the beginning of the machine code, the bytes-count increases by 1 and the cycles-count increases by 2.

(Note2) When operating on 16-bit data in the immediate addressing mode with the data length selection flag m set to 0, the bytes-count increases by 1.

PEA			Push Effective Address	PEA
Operation	:	M(S) ← IMM₂ S ← S - 1	(IMM ₂ is the immediate value specified by the instruction	n's third byte)
		$\begin{array}{l} M(S) \ \leftarrow \ IMM_1 \\ S \ \leftarrow \ S \ - \ 1 \end{array}$	(IMM1 is the immediate value specified by the instruction's	s second byte)
Description	:	The instruction'	s third and second bytes are saved on the stack	in this order.
Status flags	:	Not affected.		

Addressing mode	Syntax	Machine code	Bytes	Cycles
Stack	PEA #imm1imm2	F416, imm2, imm1	3	5

Description : Saves the contents of the consecutive 2 bytes in the direct page as specified by the sum of the contents of the direct page register DPR and the instruction's second byte on the stack in the order of upper address first and lower address second.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Stack	PEI #imm	D416, imm	2	5

Description : Saves the result of adding a 16-bit data consisting of an upper byte specified by the instruction's third byte and a lower byte specified by the instruction's second byte with the contents of the program counter on the stack in the order of the result's upper byte first and lower byte second.

Status flags : Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Stack	PER #imm1imm2	6216, imm2, imm1	3	5

PER

PHA	Push Accum	PHA	
Operation :	If m=0, $M(S) \leftarrow A_H$ $S \leftarrow S - 1$ $M(S) \leftarrow A_L$ $S \leftarrow S - 1$	if m=1, M(S) ← A∟ S ← S - 1	
Description :	pointer S. When the data leau upper byte is saved on the	ccumulator A to the address spength selection flag m is set to 0, the stack first and then the lower byte to 1, only the accumulator A's lo	ne accumulator A's e. When the data

Addressing mode	Syntax	Machine code	Bytes	Cycles
Stack	РНА	4816	1	4

Ρ	Η	B
	_	

Description : Saves the contents of the accumulator B to the address indicated by the stack pointer S. When the data length selection flag m is set to 0, the accumulator B's upper byte is saved on the stack first and then the lower byte. When the data length selection flag m is set to 1, only the accumulator B's lower byte is saved on the stack.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Stack	РНВ	4216, 4816	2	6

PHD		Push Direct Page Register on Stack PHD
Operation	:	$\begin{array}{l} M(S) \leftarrow DPR_{H} \\ S \leftarrow S - 1 \\ M(S) \leftarrow DPR_{L} \\ S \leftarrow S - 1 \end{array}$
Description	:	Saves the contents of the direct page register DPR to the address indicated by the stack pointer S in the order of upper byte first and then lower byte.
Status flags	:	Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Stack	PHD	0B16	1	4

PHG		Push Program Bank Register on Stack PHG
Operation	:	$\begin{array}{l} M(S) \ \leftarrow \ PG \\ S \ \leftarrow \ S \ - \ 1 \end{array}$
Description	:	Saves the contents of the program bank register to the address indicated by the stack pointer S.
Status flags	:	Not affected.
		

Addressing mode	Syntax	Machine code	Bytes	Cycles
Stack	PHG	4B16	1	3

PHP		Push Processor Status on Stack PHP
Operation	:	$\begin{array}{l} M(S) \leftarrow PS_{H} \\ S \leftarrow S - 1 \\ M(S) \leftarrow PS_{L} \\ S \leftarrow S - 1 \end{array}$
Description	:	Saves the contents of the processor status register PS to the address indicated by the stack pointer S in the order of upper byte and then lower byte.
Status flags	:	Not affected.

.

ſ	Addressing mode	Syntax	Machine code	Bytes	Cycles
	Stack	PHP	0816	1	4

PHT		Push Data Bank Register on Stack	PHT
Operation	:	$M(S) \leftarrow DT$ $S \leftarrow S - 1$	
Description	:	Saves the contents of the data bank register DT to the address stack pointer S.	ss indicated by the
Status flags	:	Not affected.	

Addressing mode	Syntax	Machine code	Bytes	Cycles
Stack	PHT	8B16	1	3

PHX		Push Index	Register X on Stack	PHX
Operation	:	If x=0, $M(S) \leftarrow X_H$ $S \leftarrow S - 1$ $M(S) \leftarrow X_L$ $S \leftarrow S - 1$	lf x=1, M(S) ← X∟ S ← S - 1	
Description	:	pointer S. When the index are saved in the order of up	index register X to the address indicat register length selection flag x is set to oper byte and then lower byte. When the set to 1, only the lower byte is saved	0, the contents ne index register

Addressing mode	Syntax	Machine code	Bytes	Cycles
Stack	РНХ	DA16	1	4

Operation	: If x=0,	lf x=1,
	М(S) ← Үн	$M(S) \leftarrow Y_L$
	S ← S - 1	S ← S - 1
	M(S) ← Y∟	
	S ← S - 1	

Description : Saves the contents of the index register Y to the address indicated by the stack pointer S. When the index register length selection flag x is set to 0, the contents are saved in the order of upper byte and then lower byte. When the index register length selection flag x is set to 1, only the lower byte is saved on the stack.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Stack	РНҮ	5A16	1	4

Operation	:	lf m=0,	lf m=1,
		S ← S + 1	S ← S + 1
		$A_L \leftarrow M(S)$	$A_{L} \leftarrow M(S)$
	4	$S \leftarrow S + 1$	
		$A_{H} \leftarrow M(S)$	

Description : The stack pointer S is incremented, and then restores the lower byte of the accumulator A with the data at the address indicated by the stack pointer S. Again, increments the stack pointer S and then restores the upper byte of the accumulator A with the data at the address indicated by the stack pointer S. When the data length selection flag m is set to 0, 2 bytes data are restored. When the data length selection flag m is set to 1, only 1 byte data is restored (to the lower byte of the accumulator A).

- IPL : Not affected.
- N : Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of the operation result is 1. Otherwise, cleared to 0.
- V : Not affected.
- m : Not affected.
- x : Not affected.
- D : Not affected.
- I : Not affected.
- Z : Set to 1 when the result of operation is 0. Otherwise, cleared to 0.
- C : Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Stack	PLA	6816	1	5

Operation : If m=0,

 $\begin{array}{l} S \leftarrow S + 1 \\ B_{L} \leftarrow M(S) \\ S \leftarrow S + 1 \\ B_{H} \leftarrow M(S) \end{array}$

If m=1, $S \leftarrow S + 1$ $B \llcorner \leftarrow M(S)$

Description : The stack pointer S is incremented, and then restores the lower byte of the accumulator B with the data at the address indicated by the stack pointer S. Again, increments the stack pointer S and then restores the upper byte of the accumulator B with the data at the address indicated by the stack pointer S. When the data length selection flag m is set to 0, 2 bytes data are restored. When the data length selection flag m is set to 1, only 1 byte data is restored (to the lower byte of the accumulator B).

- IPL : Not affected.
- N : Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1)of the operation result is 1. Otherwise, cleared to 0.
- V : Not affected.
- m : Not affected.
- x : Not affected.
- D : Not affected.
- i : Not affected.
- Z : Set to 1 when the result of operation is 0. Otherwise, cleared to 0.
- C : Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Stack	PLB	4216, 6816	2	7

Operation	:	$S \leftarrow S + 1$ DPRL ← M(S)	
		S ← S + 1	
		$DPR_{H} \leftarrow M(S)$	

Description : The stack pointer S is incremented, and then restores the lower byte of the direct page register DPR with the data at the address indicated by the stack pointer S. Again, increments the stack pointer S and then restores the upper byte of the direct page register DPR with the data at the address indicated by the stack pointer S.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Stack	PLD	2B16	1	5

PLP	Pull Processor Status from Stack	PLP
Operation	$\begin{array}{ll} : & S \leftarrow S + 1 \\ & PS_{L} \leftarrow M(S) \\ & S \leftarrow S + 1 \\ & PS_{H} \leftarrow M(S) \end{array}$	
Description	The stack pointer S is incremented and then restores the low processor status register PS with the data at the address indicate pointer S. Again, increments the stack pointer S and then restores of the processor status register PS with the data at the address in stack pointer S.	ed by the stack the upper byte
Status flags	: Changes to the values restored from the stack.	

Addressing mode	Syntax	Machine code	Bytes	Cycles
Stack	PLP	2816	1	6

Operation : $S \leftarrow S + 1$

 $\mathsf{DT} \leftarrow \mathsf{M}(\mathsf{S})$

Description : The stack pointer S is incremented, and then the data bank register DT is restored with the data at the address indicated by the stack pointer S.

IPL :	Not affected.
-------	---------------

- N : Set to 1 when bit 7 of the operation result is 1. Otherwise, cleared to 0.
- V : Not affected.
- m : Not affected.
- x : Not affected.
- D : Not affected.
- I : Not affected.
- Z : Set to 1 when the result of operation is 0. Otherwise, cleared to 0.
- C : Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Stack	PLT	AB16	1	6

Operation :

 $\begin{array}{l} S \leftarrow S + 1 \\ X_{L} \leftarrow M(S) \\ S \leftarrow S + 1 \\ X_{H} \leftarrow M(S) \end{array}$

If x=0,

 $\begin{array}{rl} \text{If $x=1$,} \\ S \leftarrow S + 1 \\ X_L \leftarrow M(S) \end{array}$

Description : The stack pointer S is incremented, and then restores the lower byte of the index register X with the data at the address indicated by the stack pointer S. Again, increments the stack pointer S and then restores the upper byte of the index register X with the data at the address indicated by the stack pointer S. When the index register length selection flag x is set to 0, 2 bytes are restored. When the index register length selection flag x is set to 1, only 1 byte is restored (to the lower byte of the index register X).

- IPL : Not affected.
- N : Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set to 1) of the operation result is 1. Otherwise, cleared to 0.
- V : Not affected.
- m : Not affected.
- x : Not affected.
- D : Not affected.
- I : Not affected.
- Z : Set to 1 when the result of operation is 0. Otherwise, cleared to 0.
- C : Not affected.

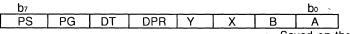
Addressing mode	Syntax	Machine code	Bytes	Cycles
Stack	PLX	FA ₁₆	1	5

Operation : If x=0, S \leftarrow S + 1

 $S \leftarrow S + 1$ $Y_L \leftarrow M(S)$ $S \leftarrow S + 1$ $Y_H \leftarrow M(S)$ $S \leftarrow S + 1$ $Y_L \leftarrow M(S)$

If x=1,

Description : The stack pointer S is incremented, and then restores the lower byte of the index register Y with the data at the address indicated by the stack pointer S. Again, increments the stack pointer S and then restores the upper byte of the index register Y with the data at the address indicated by the stack pointer S. When the index register length selection flag x is set to 0, 2 bytes are restored. When the index register length selection flag x is set to 1, only 1 byte is restored (to the lower byte of the index register Y).

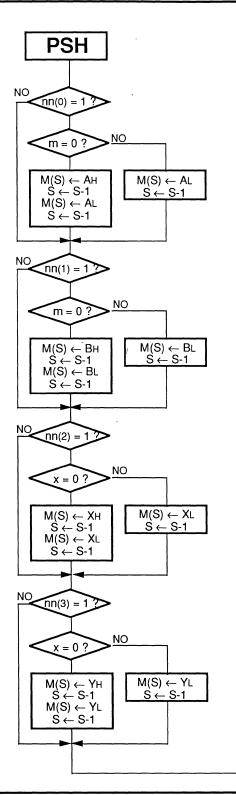

- IPL : Not affected.
- N : Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set to 1) of the operation result is 1. Otherwise, cleared to 0.
- V : Not affected.
- m : Not affected.
- x : Not affected.
- D : Not affected.
- I : Not affected.
- Z : Set to 1 when the result of operation is 0. Otherwise, cleared to 0.
- C : Not affected.

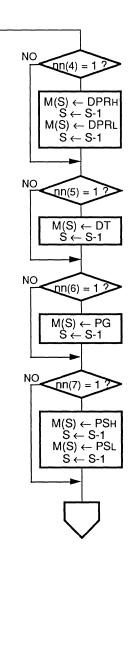
Addressing mode	Syntax	Machine code	Bytes	Cycles
Stack	PLY	7A16	1	5

PSH

Operation : $M(S) \leftarrow A, B, X, Y, DPR, DT, PG or PS$

Description : This instruction's second byte specifies the registers to be saved. The registers corresponding to the bits in the second byte that are 1 are saved on the stack. The bit and register correspondence is as shown below:




← Saved on the stack in this order.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Stack	PSH #nn	EB16, nn	2	12+2xi1+i2

⁽Note1) To the cycles-count shown above, the values shown below are added depending on the registers being saved. The count is 12 cycles when no registers are saved. in in above table represents the number of registers (chosen from A, B, X, Y, DPR and PS) to be saved, and iz represents the number of registers (chosen from DT and PG) to be saved.

Register type	PS	PG	DT	DPR	Y	Х	В	А
Cycles-count	2	1	1	2	2	2	2	2

PUL

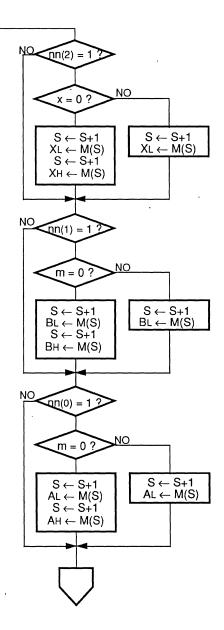
Operation : $M(S) \rightarrow A, B, X, Y, DPR, DT or PS$

Description : This instruction's second byte specifies the registers to be restored. The registers corresponding to the bits in the second byte that are 1 are restored from the stack. The bit and register correspondence is as shown below:

b7						bo	
PS	DT	DPR	Y	X	В	Α	

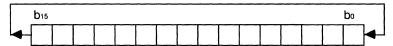
Restored from the stack in this order. \rightarrow

(Note) The contents of accumulator B's higher 8-bit will be changed, when PUL instruction is executed with m=0 and the restored registor including PS whose m=1.

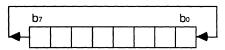

Status flags : When bit 7 of the instruction's second byte is 1, specifying that the program status register PS is to be restored, the status flags are restored to the values that had been restored from the stack. Otherwise, the status flags are not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Stack	PUL #nn	FB16, nn	2	14+3xi1+4xi2

(Note1) To the cycles-count shown above, the values shown below are added depending on the registers being restored. The count is 14 cycles when no registers are restored. i1 in above table represents the number of registers (chosen from A, B, X, Y, PS and DT) to be saved. i2=1 if DPR is to be restored, and i2=0 if DPR is not to be restored.


Register type	PS	DT	DPR	Y	X	В	Α
Cycles-count	3	3	4	3	3	3	3

PUL NO $\sqrt{nn(7)} = 1^{2}$ $S \leftarrow S+1$ $\begin{array}{c} \mathsf{PSL} \leftarrow \mathsf{M}(\mathsf{S}) \\ \mathsf{S} \leftarrow \mathsf{S+1} \end{array}$ $PSH \leftarrow M(S)$ NO nn(5) = 1? $\begin{array}{c} S \leftarrow S{+1} \\ \text{DT} \leftarrow M(S) \end{array}$ NO nn(4) = 1 $S \gets S{\texttt{+}1}$ $DPRL \leftarrow M(S)$ S ← S+1 DPRH \leftarrow M(S) NO nn(3) = 1 NO x = 0 ? $S \leftarrow S+1$ $S \leftarrow S+1$ $YL \leftarrow M(S)$ $YL \leftarrow M(S)$ $S \leftarrow S+1$ $YH \leftarrow M(S)$

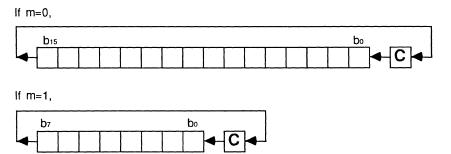


Operation :

If m=0, rotate n bits to left (n=0-65535)

If m=1, rotate n bits to left (n=0-255)

Description : The contents of the accumulator A are rotated to the left by n bits. The value of n is specified by the instruction's third byte (or third and fourth bytes when m=0).


Status flags : Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Immediate	RLA #imm	8916, 4916, imm	3	6+i

i: Number of rotation

(Note1) When the data length selection flag m is 0, the bytes-count increases by 1.

Operation

Description : The carry flag C is linked to the accumulator or memory, and the combined contents are rotated by 1 bit to the left.

Bit 0 of the accumulator or memory is loaded with the content of the carry flag C before execution of this instruction, and the carry flag C is loaded with the content of bit 15 (or bit 7 if the data length selection flag m is set to 1) of the accumulator or memory before execution of this instruction.

Status flags

- IPL : Not affected.
- N : Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of the operation result is 1. Otherwise, cleared to 0.
- V : Not affected.
- m : Not affected.
- x : Not affected.
- D : Not affected.
- I : Not affected.
- Z : Set to 1 when the result of operation is 0. Otherwise, cleared to 0.
- C : Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) before execution of the instruction is 1. Otherwise, cleared to 0


Addressing mode	Syntax	Machine code	Bytes	Cycles
Accumulator	ROL A	2A16	1	2
Direct	ROL dd	2616, dd	2	7
Direct indexed X	ROL dd, X	3616, dd	2	7
Absolute	ROL mmli	2E16, II, mm	3	7
Absolute indexed x	ROL mmll, X	3E16, II, mm	3	8
			· · · ·	

(Note1) The accumulator addressing mode's specification in this table applies when using the accumulator A. If using the accumulator B, replace "A" with "B". In this case, "4216" is added at the beginning of the machine code, the bytes-count increases by 1 and the cycles-count increases by 2.

1

Operation :

lf m=0,

Description : The carry flag C is linked to the accumulator or memory, and the combined contents are shifted by 1 bit to the right.

Bit 15 (or bit 7 if the data length selection flag m is set to 1) of the accumulator or memory is loaded with the content of the carry flag C, and the carry flag C is loaded with the content of bit 0 of the accumulator or memory before execution of this instruction.

Status flags

- IPL : Not affected.
- N : Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of the operation result is 1. Otherwise, cleared to 0.
- V : Not affected.
- m : Not affected.
- x : Not affected.
- D : Not affected.
- I : Not affected.
- Z : Set to 1 when the result of operation is 0. Otherwise, cleared to 0.
- C : Set to 1 when bit 0 before execution of the instruction is 1. Otherwise, cleared to 0.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Accumulator	ROR A	6A16	1	2
Direct	ROR dd	6616, dd	2	7
Direct indexed X	ROR dd, X	7616, dd	2	7
Absolute	ROR mmll	6E16, II, mm	3	7
Absolute indexed X	ROR mmll, X	7E16, II, mm	3	8

(Note1) The accumulator addressing mode's specification in this table applies when using the accumulator A. If using the accumulator B, replace "A" with "B". In this case, "4216" is added at the beginning of the machine code, the bytes-count increases by 1 and the cycles-count increases by 2.

RTI	Return from Interrupt RT	
Operation	: S ← S + 1	
-	$PS_{L} \leftarrow M(S)$	
	S ← S + 1	
	$PS_{H} \leftarrow M(S)$	
x	S ← S + 1	
	$PC_{L} \leftarrow M(S)$	
•	S ← S + 1	
	$PCH \leftarrow M(S)$	
	S ← S + 1	
	$PG \leftarrow M(S)$	
Description	: The contents of the processor status register PS, program counter PC, ar program bank register PG, which are saved on the stack when the last interru was accepted, are restored these registers.	

Status flags : Restored according to the values that had been on the stack.

	Addressing mode	Syntax	Machine code	Bytes	Cycles
Γ	Implied	RTI	4016	1	11

RTL

Operation	:	S ← S + 1
		$PC_{L} \leftarrow M(S)$
		$S \leftarrow S + 1$
		$PCH \leftarrow M(S)$
		$S \leftarrow S + 1$
		$PG \leftarrow M(S)$
Description	:	The program counter PC and program bank register PG are restored according to the state previously saved on the stack.

Status flags : Not affected.

~

Addressing mode	Syntax	Machine code	Bytes	Cycles
Implied	RTL	6B16	1	8

RTS	Return from Subroutine RTS)
Operation	$S \leftarrow S + 1$ $PC_{L} \leftarrow M(S)$ $S \leftarrow S + 1$ $PC_{H} \leftarrow M(S)$	
Description	: The program counter PC is restored according to the state previously saved of the stack.	n
Status flags	: Not affected.	

Addressing mode	Syntax	Machine code	Bytes	Cycles
Implied	RTS	6016	1	5

SBC

Operation : Acc, $C \leftarrow Acc - M - \overline{C}$

Description : Subtracts the contents of memory and the 1's complements of carry flag from the contents of the accumulator, and places the result in the accumulator. Executed as a binary subtraction if the decimal operation mode flag D is set to 0. Executed as a decimal subtraction if the decimal operation mode flag D is set to 1.

Status flags

IPL : Not affected.

- N : Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of the operation result is 1. Otherwise, cleared to 0. Meaningless for decimal subtraction.
- V : Set to 1 when binary subtraction of signed data results in a value outside the range of -32768 to +32767 (-128 to +127 if the data length selection flag m is set to 1). Otherwise, cleared to 0. Meaningless for decimal subtraction.
- m : Not affected.
- x : Not affected.
- D : Not affected.
- I : Not affected.
- Z : Set to 1 when the result of operation is 0. Otherwise, cleared to 0.
- C : Set to 1 when the result of operation is equal to or larger than 0. Otherwise, cleared to 0, and a borrow is indicated.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Immediate	SBC A, #imm	E916, imm	2	2
Direct	SBC A, dd	E516, dd	2	4
Direct indexed X	SBC A,dd, X	F516, dd	2	5
Direct indirect	SBC A, (dd)	F216, dd	2	6
Direct indexed X indirect	SBC A,(dd, X)	E116, dd	2	7
Direct indirect indexed Y	SBC A,(dd), Y	F116, dd	2	8
Direct indirect long	SBCL A, (dd)	E716, dd	2	10
Direct indirect long indexed Y	SBCL A, (dd), Y	F716, dd	2	11
Absolute	SBC A,mmll	ED16,II,mm	3	4
Absolute indexed X	SBC A, mmll, X	FD16, II, mm	3	6
Absolute indexed Y	SBC A, mmll, Y	F916, II, mm	3	6
Absolute long	SBC A, hhmmll	EF16, II, mm, hh	4	6
Absolute long indexed X	SBC A, hhmmll, X	FF16, II, mm, hh	4	7
Stack pointer relative	SBC A, nn, S	E316, nn	2	5
Stack pointer relative	SBC A, (nn, S), Y	F316, nn	2	8
indirect indexed Y				

(Note1) This table applies when using the accumulator A. If using the accumulator B, replace "A" with "B". In this case, "4216" is added at the beginning of the machine code, the bytes-count increases by 1 and the cycles-count increases by 2.

(Note 2)When operating on 16-bit data in the immediate addressing mode with the data length selection flag m set to 0, the bytes-count increases by 1.

Operation	:	$M \leftarrow M \vee IMM$ IMM is the bit pattern that specifies the bit positions that are to be set to 1. When the data length selection flag m is set to 1, IMM is placed in the third byte (direct bit addressing mode) or the fourth byte (absolute bit addressing mode) of the instruction.
		When the data length selection flag m is set to 0, IMM is placed in the third and fourth bytes (direct bit addressing mode) or the fourth and fifth bytes (absolute bit addressing mode) of the instruction.
Description	:	The SEB instruction sets the specified memory bits to 1. Multiple bits to be set can be specified at one time.

Status flags : Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Direct bit	SEB #imm, dd	0416, dd, imm	3	8
Absolute bit	SEB #imm, mmll	0C16, II, mm, imm	4	9

(Note1) When operating on 16-bit data with the data length selection flag m set to 0, the bytes-count increases by 1.

.

SEC

Operation : $C \leftarrow 1$

Description : Sets the carry flag C to 1.

Status flags

IPL : Not affected. Not affected. Ν : v : Not affected. Not affected. m : Not affected. х : D : Not affected. Ł : Not affected. Ζ : Not affected. **C** : Set to 1.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Implied	SEC	3816	1	2

SEI

•

Operation : $I \leftarrow 1$

Description : Sets the interrupt disable flag I to 1.

IPL	:	Not affected.
Ν	:	Not affected.
۷	:	Not affected.
m	:	Not affected.
x	:	Not affected.
D	:	Not affected.
1	:	Set to 1.
Ζ	:	Not affected.
С	:	Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Implied	SEI	7816	1	2

SEM

Operation : $m \leftarrow 1$

Description : Sets the data length selection flag m to 1.

- IPL : Not affected. N : Not affected.
- V : Not affected.
- m : Set to 1.
- x : Not affected.
- D : Not affected.
- I : Not affected.
- Z : Not affected.
- C : Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Implied	SEM	F816	1	2

SEP

.

.

Operation	:	$PS_{L} \leftarrow PS_{L} \vee IMM$ (IMM is the immediate value specified in the second byte of the instruction.)
Description	:	Sets the processor status flags specified by the bit pattern in the second byte of the instruction to 1.
Status flags	:	The specified flags are set. IPL is not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Immediate	SEP #imm	E216, imm	2	3

ï

 STA
 Store Accumulator in Memory

 Operation
 :
 When m=0, $M(n) \leftarrow AccL$ $M(n+1) \leftarrow AccH$ When m=1 $M(n) \leftarrow AccL$ $M(n+1) \leftarrow AccH$

 Description
 :
 Stores the contents of the accumulator in memory. The contents of the accumulator are not changed.

Status flags : Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Direct	STA A, dd	8516, dd	2	4
Direct indexed X	STA A, dd, X	9516, dd	2	5
Direct indirect	STA A, (dd)	9216 dd	2	7
Direct indexed X indirect	STA A, (dd, X)	8116, dd	2	7
Direct indirect indexed Y	STA A, (dd), Y	9116, dd	2	7
Direct indirect long	STAL A, (dd)	8716, dd	2	10
Direct indirect long indexed Y	STAL A, (dd), Y	9716, dd	2	11
Absolute	STA A, mmll	8D16, II, mm	3	5
Absolute indexed X	STA A, mmll, X	9D16, II, mm	3	5
Absolute indexed Y	STA A, mmll, Y	9916, II, mm	3	5
Absolute long	STA A, hhmmll	8F16, II, mm, hh	4	6
Absolute long indexed X	STA A, hhmmll, X	9F16, 11, mm, hh	4	7
Stack pointer relative	STA A, nn, S	8316, nn	2	5
Stack pointer relative indirect indexed Y	STA A, (nn, S), Y	9316, nn	2	8

(Note1) This table applies when using the accumulator A. If using the accumulator B, replace "A" with "B". In this case, "4216" is added at the beginning of the machine code, the bytes-count increases by 1 and the cycles-count increases by 2.

STA

STP

Operation : Stop the oscillator.

Description : Resets the oscillator controlling flip-flop circuit to inhibit the oscillator. To restart the oscillator, either an interrupt or reset must be executed.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Implied	STP .	DB16	1	3

STX

Operation	:	When x=0,	When x=1
		M(n) ← X∟	M(n) ← X∟
		M(n+1) ← Хн	

Description : Stores the contents of the index register X in memory. The contents of the index register X remain the same.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Direct	STX dd	8616, dd	2	4
Direct indexed Y	STX dd, Y	9616, dd	2	5
Absolute	STX mmll	8E16, II, mm	3	5

STY		Store Index R	egister Y in Memory	STY
Operation	:	When x=0,	When x=1	
		M(n) ← Y∟ M(n+1) ← Y⊦	M(n) ← Y∟	
Description	:	Stores the contents of the i register Y remain the sam	index register Y in memory. The c e.	contents of the index

,

Addressing mode	Syntax	Machine code	Bytes	Cycles
Direct	STY dd	8416, dd	2	4
Direct indexed X	STY dd, X	9416, dd	2	5
Absolute	STY mmll	8C16, II, mm	3	5

Operation : DPR \leftarrow A

Description : Loads the direct page register DPR with the contents of the accumulator A. Data is transferred as 16-bit data regardless of the status of the data length selection flag m. The contents of the accumulator A are not changed.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Implied	TAD	5B16	1	2

Operation : $S \leftarrow A$

Description : Loads the stack pointer S with the contents of the accumulator A. Data is transferred as 16-bit data regardless of the status of the data length selection flag m. The contents of the accumulator A are not changed.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Implied	TAS	1B16	1	2

ΤΑΧ	Transfer Accumulator A to Index Register X TAX
Operation :	If x=0,
	$X_L \leftarrow A_L$ $X_L \leftarrow A_L$
	Хн — Ан
Description :	Loads the index register X with the contents of the accumulator A. The contents of the accumulator A are not changed.
Status flags	
IPL :	Not affected.
N :	Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set to 1) of the operation result is 1. Otherwise, cleared to 0.
V :	Not affected.
m :	Not affected.
x :	Not affected.
D :	Not affected.
i :	Not affected.
Ζ:	Set to 1 when the result of operation is 0. Otherwise, cleared to 0.
C :	Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Implied	ТАХ	AA16	1	2

ΤΑΥ	Transfer Accum	ulator A to Index Register Y	TAY
Operation :	lf x=0,	lf x=1,	
	Yı ← Aı	YL ← AL	
	Үн — Ан		
Description :	Loads the index register of the accumulator A are	Y with the contents of the accumulator e not changed.	A. The contents
Status flags			
IPL :	Not affected.		
N :	,	bit 7 if the index register length selec sult is 1. Otherwise, cleared to 0.	tion flag x is set
V :	Not affected.		
m :	Not affected.		
x :	Not affected.		
D :	Not affected.		
1 :	Not affected.		
Ζ:	Set to 1 when the result	of operation is 0. Otherwise, cleared	to 0.
C :	Not affected.		

Addressing mode	Syntax	Machine code	Bytes	Cycles
Implied	ТАҮ	A816	1	2

Operation : $DPR \leftarrow B$

- **Description** : Loads the direct page register DPR with the contents of the accumulator B. Data is transferred as 16-bit data regardless of the status of the data length selection flag m. The contents of the accumulator B are not changed.
- Status flags : Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Implied	TBD	4216, 5B16	2	4

Operation : $S \leftarrow B$

Description : Loads the stack pointer S with the contents of the accumulator B. Data is transferred as 16-bit data regardless of the status of the data length selection flag m. The contents of the accumulator B are not changed.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Implied	TBS	4216, 1B16	2	4

Operation	:	If x=0,
		$X_L \leftarrow B_L$ $X_L \leftarrow B_L$
		Хн — Вн
Description	ı :	Loads the index register X with the contents of the accumulator B. The contents of the accumulator B are not changed.
Status flag	S	
	IPL :	Not affected.
	N :	Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set to 1) of the operation result is 1. Otherwise, cleared to 0.
	V :	Not affected.
	m :	Not affected.
	x :	Not affected.
	D :	Not affected.
	1 :	Not affected.
	Ζ:	Set to 1 when the result of operation is 0. Otherwise, cleared to 0.
	C :	Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Implied	ТВХ	4216, AA16	2	4

Operation	:	If x=0, If x=1,
		$Y_L \leftarrow B_L$ $Y_L \leftarrow B_L$
		Үн — Вн
Description	:	Loads the index register Y with the contents of the accumulator B. The contents of the accumulator B are not changed.
Status flags		
IPI	L:	Not affected.
Ν	:	Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set to 1) of the operation result is 1. Otherwise, cleared to 0.
V	:	Not affected.
m	:	Not affected.
x	:	Not affected.
D	:	Not affected.
1	:	Not affected.
Z	:	Set to 1 when the result of operation is 0. Otherwise, cleared to 0.
С	:	Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Implied	ТВҮ	4216, A816	2	4

r

.

TDA	Transfer Direct Page Register to Accumulator A TDA	
Operation :	If m=0, If m=1, $A_{L} \leftarrow DPR_{L}$ $A_{L} \leftarrow DPR_{L}$ $A_{H} \leftarrow DPR_{H}$	
Description :	Loads the accumulator A with the contents of the direct page register DPR. The contents of the direct page register DPR are not changed.	
Status flags		
IPL :	Not affected.	
N :	Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of the operation result is 1. Otherwise, cleared to 0.	
V :	Not affected.	
m :	Not affected.	
x :	Not affected.	
D :	Not affected.	
1 :	Not affected.	
Ζ:	Set to 1 when the result of operation is 0. Otherwise, cleared to 0.	
C :	Not affected.	

Addressing mode	Syntax	Machine code	Bytes	Cycles
Implied	TDA	7B16	1	2

TDB	Transfer Direct Page Regis	ter to Accumulator B	TDB
Operation :		lf m=1,	
	Bι ← DPRι Вн ← DPRн	Bι ← DPRι	
Description :	Loads the accumulator B with the contents of the direct page regist		ister DPR. The
Status flags			
IPL :	Not affected.		
N :	Set to 1 when bit 15 (or bit 7 if the operation result is 1. Otherw	U	n is set to 1) of
V :	Not affected.	•	
. m :	Not affected.		
x :	Not affected.		
D :	Not affected.		
1 :	Not affected.		
Ζ:	Set to 1 when the result of operative	ation is 0. Otherwise, cleared	to 0.
C :	Not affected.		

•

Addressing mode	Syntax	Machine code	Bytes	Cycles
Implied	TDB	4216, 7B16	2	4

TSA	Transfer Stack Pointer to Accumulator A TSA
Operation :	If m=0, If m=1, $A_{L} \leftarrow S_{L}$ $A_{L} \leftarrow S_{L}$ $A_{H} \leftarrow S_{H}$
Description :	Loads the accumulator A with the contents of the stack pointer S. The contents of the stack pointer S are not changed.
Status flags	
IPL :	Not affected.
N :	Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of the operation result is 1. Otherwise, cleared to 0.
V :	Not affected.
m :	Not affected.
x :	Not affected.
D :	Not affected.
Ι:	Not affected.
Ζ:	Set to 1 when the result of operation is 0. Otherwise, cleared to 0.
C :	Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Implied	TSA	3B16	1	2

TSB	Transfer Stack Point	er to Accumulator B	TSB
Operation :	If m=0,	lf m=1,	
	BL ← SL	BL ← SL	
	Вн ← Ѕн		
Description :	Loads the accumulator B with of the stack pointer S are not	the contents of the stack pointer S. changed.	The contents
Status flags			
IPL :	Not affected.		
N :	Set to 1 when bit 15 (or bit 7 the operation result is 1. Other	if the data length selection flag m erwise, cleared to 0.	is set to 1) of
V :	Not affected.		
m :	Not affected.		
x :	Not affected.		
D :	Not affected.		
1 :	Not affected.		
Ζ:	Set to 1 when the result of o	peration is 0. Otherwise, cleared to	0.
<u> </u>	Net offended		

C : Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Implied	TSB	4216, 3B16	2	4

-

TSX	Transfer Stack Pointer to Index Register X TSX	r
Operation :	If x=0, If x=1,	
	$X_L \leftarrow S_L$ $X_L \leftarrow S_L$ $X_H \leftarrow S_H$	
Description :	Loads the index register X with the contents of the stack pointer S. The contents of the stack pointer S are not changed.	S
Status flags		
IPL :	Not affected.	
N :	Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is se to 1) of the operation result is 1. Otherwise, cleared to 0.	et
V :	Not affected.	
m :	Not affected.	
x :	Not affected.	
D :	Not affected.	
1 :	Not affected.	
Z. :	Set to 1 when the result of operation is 0. Otherwise, cleared to 0.	
C :	Not affected.	

Addressing mode	Syntax	Machine code	Bytes	Cycles
Implied	TSX	BA16	1	2

ТХА	Transfer Inde	x Register X to Accumulato	TXA
Operation :	If m=0 and x=0,	If m=0 and x=1,	lf m=1,
•	AL ← XL	AL ← XL	Aı ← Xı
	Ан — Хн	Ан ← 0016	
Description :	Loads the accumulate of the index register		ndex register X. The contents
Status flags			
IPL :	Not affected.		
N :		(or bit 7 if the data length s s 1. Otherwise, cleared to 0	election flag m is set to 1) of
V :	Not affected.		
m :	Not affected.		
x :	Not affected.		
D :	Not affected.		
1 :	Not affected.		
Ζ:	Set to 1 when the re	sult of operation is 0. Other	wise, cleared to 0.
C :	Not affected.		
	· · · · · · · · · · · · · · · · · · ·		

Addressing mode	Syntax	Machine code	Bytes	Cycles
Implied	ТХА	8A16	1	2

.

ТХВ	Transfer Index	Register X to Accumulator	TXB
Operation :		If m=0 and x=1,	lf m=1,
	В∟ ← Х∟ Вн ← Хн	Βι ← Χι Βη ← 0016	Bı← Xı
Description :	Loads the accumulato of the index register 3	r B with the contents of the inc K are not changed.	dex register X. The contents
Status flags			н. С
IPL :	Not affected.		
N :		(or bit 7 if the data length se 1. Otherwise, cleared to 0.	lection flag m is set to 1) of
V :	Not affected.		
m :	Not affected.		
x :	Not affected.		
D :	Not affected.		
1 :	Not affected.		
Ζ:	Set to 1 when the rea	sult of operation is 0. Otherw	rise, cleared to 0.
C :	Not affected.		

Addressing mode	Syntax	Machine code	Bytes	Cycles
Implied	ТХВ	4216, 8A16	2	4

TXS	Transfer Index	Register X to Stack Pointer	TXS
Operation	: If x=0, Sι ← Х∟ Sн ← Хн	If x=1, SL \leftarrow XL SH \leftarrow 0016	
Description	: Loads the stack pointe of the index register X	ers with the contents of the index register (are not changed.	X. The contents
Status flags	: Not affected.		

Addressing mode	Syntax	Machine code	Bytes	Cycles
Implied	TXS	9A16	1	2

ΤΧΥ	Transfer Index Register X to Y TXY
Operation :	$\begin{array}{llllllllllllllllllllllllllllllllllll$
Description :	Loads the index register Y with the contents of the index register X. The con- tents of the index register X are not changed.
Status flags	
IPL :	Not affected.
N :	Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set to 1) cf the operation result is 1. Otherwise, cleared to 0.
V :	Not affected.
m :	Not affected.
x :	Not affected.
D :	Not affected.
۱ :	Not affected.
Ζ:	Set to 1 when the result of operation is 0. Otherwise, cleared to 0.
C :	Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Implied	ТХҮ	9B16	1	2

ΤΥΑ	Transfer Index Register Y to Accumulator A TYA	
Operation :	$\begin{array}{llllllllllllllllllllllllllllllllllll$	
Description :	Loads the accumulator A with the contents of the index register Y. The contents of the index register Y are not changed.	
Status flags		
IPL :	Not affected.	
N :	Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of the operation result is 1. Otherwise, cleared to 0.	
V :	Not affected.	
m :	Not affected.	
x :	Not affected.	
D :	Not affected.	
Г :,	Not affected.	
Ζ:	Set to 1 when the result of operation is 0. Otherwise, cleared to 0.	
C :	Not affected.	

Addressing mode	Syntax	Machine code	Bytes	Cycles
Implied	ТҮА	9816	1	2

ТҮВ	Transfer Index	Register Y to Accumulat	ог в ТҮВ
Operation :	lf m=0 and x=0, B∟ ← Y∟ Вн ← Yн	lf m=0 and x=1, Bι ← Yι Βι ← 00ιε	lf m=1, Bι ← Yι
Description :	Loads the accumulator of the index register N		index register Y. The contents
Status flags			
IPL :	Not affected.		
N :		(or bit 7 if the data length 1. Otherwise, cleared to	selection flag m is set to 1) of 0.
V :	Not affected.		
m :	Not affected.		
x :	Not affected.		
D :	Not affected.		
1 :	Not affected.		
Ζ:	Set to 1 when the res	sult of operation is 0. Oth	erwise, cleared to 0.
C :	Not affected.		

Addressing mode	Syntax	Machine code	Bytes	Cycles
Implied	ТҮВ	4216, 9816	2	4

ТҮХ	Transfer Index Register Y to X TYX	
Operation :	$ \begin{array}{cccc} \text{If $x=0$,} & \text{If $x=1$,} \\ X_L \leftarrow Y_L & X_L \leftarrow Y_L \\ X_H \leftarrow Y_H \end{array} $	
Description :	Loads the index register X with the contents of the index register Y. The con- tents of the index register Y are not changed.	
Status flags		
IPL :	Not affected.	
N :	Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set to 1) of the operation result is 1. Otherwise, cleared to 0.	
V :	Not affected.	
m :	Not affected.	
x :	Not affected.	
D :	Not affected.	
1 :	Not affected.	
Ζ:	Set to 1 when the result of operation is 0. Otherwise, cleared to 0.	
C :	Not affected.	

Addressing mode	Syntax	Machine code	Bytes	Cycles
Implied	ТҮХ	BB16	1	2

V	VI	T

Operation : Stop the internal clock.

Description : The WIT instruction stops the internal clock but not the external clock is not stopped. To restart the internal clock, either an interrupt or reset must be executed.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Implied	WIT	CB16	1	3

XAB

.

,

Operation	:	$\begin{array}{llllllllllllllllllllllllllllllllllll$
Description	:	Swaps the contents of the accumulators A and B.
Status flags	;	
I	PL :	Not affected.
٢	N :	Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of the accumulator A after the operation is 1. Otherwise, cleared to 0.
١	v :	Not affected.
r	m :	Not affected.
×	、 :	Not affected.
Ε	D :	Not affected.
1	:	Not affected.
Z	Ζ:	Set to 1 when the contents of the accumulator A is cleared to 0 by the operation. Otherwise, cleared to 0.
C	: 0	Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Implied	ХАВ	8916, 2816	2	6

5. Notes for Programming

Take care of the following when programming with the MELPS 7700 series.

(1) The stack pointer S is undefined immediately after the reset is commanded. Always set the initial value.

Example) LDX #27FH TXS

- (2) The program bank register PG and the data bank register DT are disabled under the single chip mode. Do not set value other than "0016" here.
- (3) When "1" is set in the D-flag for decimal operation:

The C-flag alone is effective in the ADC instruction, while the Z, N, and V flags are disabled. The C and Z flags alone are effective in the SBC instruction, while the N and V flags are disabled. (Decimal operation can be done in the ADC and the SBC instructions alone.)

- (4) Using the 16-bit immediate data with "1" (data length : 8 bits) in the data length selection flag m, or using the 8- bit immediate data with "0" (data length : 16 bits) in flag m, will cause the program run-away. The same rule is applied to the index register length selection flag x. Take care of the condition of these flags when coding the program.
- (5) The MELPS 7700 can prefetch the instructions using the 3-byte instruction queue buffer. Keep in mind when creating the timer with the software, that the number of cycles shown in the list of machine language instructions is the minimum value. (Also see Chapter 6.)
- (6) When value other than "0016" is set in the lower order 8 bits of the direct page register DPR (DPRL), the processing time will become 1 machine cycle longer than when "0016" is set.
- (7) The processing speed will deteriorate if a 16- bit data will be accessed from an odd address. Place the 16-bit data from an even address if the processing speed is important.
- (8) The N and Z flags will change by execution of the PLA instruction, but the contents of the processor status register will not change if the accumulator A alone is recovered by the PUL instruction.
- (9) The program bank register PG can be saved into the stack by setting "1" in bit 6 of the operation by the PSH instruction. However, the PG cannot be recovered by the PUL instruction.
- (10) When the PUL or the PSH instruction is executed, the flag m and the flag x are affected in addition.

- (11) The code in the second byte of the BRK instruction will not affect the CPU.
- (12) When the block transfer instruction (MVN or MVP) is executed with x=1, the contents of middle order 8-bit in source and destination address (There are consists of 24-bit.) will be fixed "0016".

6. Instruction Execution Sequence

The basic clock of the MELPS 7700 central processing unit (CPU) is clock ϕ (1/2 the oscillation frequency $f(X_{IN})$). The basic clock of the bus is an \overline{E} derived from clock ϕ , so data exchange between the CPU and the internal bus is done via the bus interface unit. The frequency of \overline{E} is normally 1/2 that of clock ϕ , but it becomes 1/4 that of ϕ , when accessing external memory while the wait is enabled by the wait bit.

6.1 Bus Interface Unit

The bus interface unit is a unit that helps data exchange between the CPU and the internal bus. The unit is structured by registers and buffers as shown in Figure 6.1.1. The functions of these registers and buffers are shown in Table 6.1.1. The CPU reads the instruction code from the instruction queue buffer, and the data from the data buffer of the bus interface unit. Then, data is written in the data buffer of the bus interface unit. The bus interface unit reads or writes data from the memory or I/O via the bus, instead of the CPU.

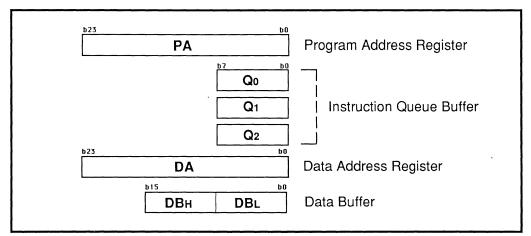


Fig. 6.1.1 Bus Interface Unit Register Model

Table 6.1.1 Functions of the Registers and Buffers

Name	Function
Program address register	This register indicates the address where the program is stored.
Instruction queue buffer	The 3-byte buffer for temporal storage of the instruction pre- fetched from the memory.
Data address register	The register that indicates the address for data read or data write.
Data buffer	The buffer where the bus interface unit temporarily stores data read from the memory or I/O or where the CPU temporarily stores data to be written into the memory or I/O.

6.2 Change of the CPU Basic Clock ϕ_{CPU}

When the bus interface unit is not ready, the CPU extends the basic clock to synchronize with the bus, and waits till it is ready. As the CPU basic clock waits owing to some conditions, this clock will be called ϕ_{CPU} to be distinguished from the clock. The following are the cases in which the ϕ_{CPU} waits.

Causes for the ϕ_{CPU} to wait

<Cause 1>

When the CPU requests operation codes and operands, but the operation codes and operands in the instruction queue buffer did not reach the necessary number.

<Cause 2>

When the CPU tried to access data, but the bus interface unit was using the bus for fetching some data into the instruction queue buffer or writing data.

<Cause 3>

When the bus interface unit was reading data from the internal/external memory or I/O, according to the request of the CPU.

In addition to the above, the following are also causes for the ϕ_{CPU} to be extended.

- When 16-bit data is accessed from odd address.
- When external memory 16-bit data is accessed while the BYTE terminal level is "H".
- When external memory is accessed with wait commanded by the wait bit.

The above conditions causes the execution time to differ each time, even with the same instruction and same addressing mode. Two example instructions are given in the next section to see the variation of the number of cycles according to the above conditions.

The " CPU execution sequence per addressing mode" of Appendix-A is the CPU instruction execution sequences based on the ϕ_{CPU} . The number of cycles shown in " 4.2 Instructions" and " Appendix-B List of machine language instructions " are the count for the shortest case, and cannot always be applied when calculating the actual cycles or the execution time of instructions.

6.3 Instruction Execution Sequence

The instruction execution sequence of the CPU based on the ϕ_{CPU} , and the variation of the actual instruction execution cycle when various conditions are applied are shown here.

- Example 1. ASL instruction Direct addressing mode
- Example 2. LDA instruction Direct indirect long addressing mode

Before observing the pcpu based CPU instruction execution sequence

The following table describes the ϕ_{CPU} based CPU instruction execution sequence symbols. The signals indicated in this execution sequence are all CPU internal signals, that show data exchange between the bus interface unit and the CPU. Accordingly, these signals cannot be observed from outside.

Symbol	Description
фсри	CPU basic clock
AP(CPU)	Higher order 8 bits of the address (24 bits) of the program that the CPU is actually execution
AHAL(CPU)	Lower order 16 bits of the address (24 bits) of the program that the CPU is actually execution
DATA(CPU)	Data information the CPU is processing
R/W(CPU)	Data read/write request to the data buffer in the bus interface
PG,PC	Contents of the program bank register (PG) and the program counter (PC)
ADP	Data indicating the address (higher order 8 bits)
AD⊦,AD∟	Data indicating the address (middle order 8 bits, lower order 8 bits)
DPRH	Contents of the higher order 8 bits of the direct page register
DPR∟	Contents of the lower order 8 bits of the direct page register (DPRL = 0 in the examples)
Dн	Data to be fetched or written from the data buffer by the CPU (higher order 8 bits)
DL	Data to be fetched or written from the data buffer by the CPU (lower order 8 bits)
dd	Contents of the operand (DPRL = 0 in examples 1 and 2, so dd represents the lower order 8 bits of the address)

OCPU Based CPU Instruction Execution Sequence Symbols

Before observing the ϕ based instruction execution sequence

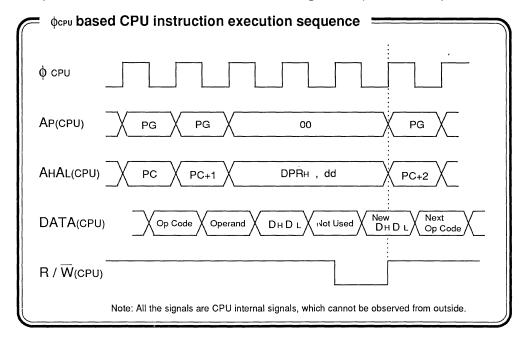
The ϕ based execution sequence symbols are shown in the following table. The signals in this execution sequence indicates data exchange of the bus interface unit with the memory and I/O. The internal instruction execution sequence of the CPU can be guessed from these signals. However, the ϕ_{CPU} and the number of data in the instruction queue buffer shown here cannot be observed from the outside.

\phi Based Execution Sequence Symbols

Symbol	Description	
φ	Basic operation clock of the microcomputer $f(Xin) / 2$	
Ē	Basic operation clock of the bus $\phi/2$	
hh	Higher order 8 bits of the address where the bus interface unit is to access to (bank)	
mm	Middle order 8 bits of the address where the bus interface unit is to access to	
H	Lower order 8 bits of the address where the bus interface unit is to access to	
DPR DPR⊦ DPR∟	Contents of the direct page Contents of the higher order 8 bits of the direct page register Contents of the lower order 8 bits of the direct page register	
OP1 OP2 OP3 :	Data to be fetched into the instruction queue buffer by the bus interface (Operation code or operand) The subscript represents the fetch sequence.	
DL Dн	Data to be fetched into the data buffer or data to be written into the memory by the bus interface unit	
dd	Data obtained as the operand (The lower order 8 bits of the address are given in examples 1 and 2, because $\text{DPR}_{L} = 0$.)	
ADP	Higher order 8 bits of data that indicates the address (contents of the data address register)	
ADн	Middle order 8 bits of data that indicates the address (contents of the data address register)	
ADL	Lower order 8 bits of data that indicates the address (contents of the data address register)	

The following are the cause of the " ϕ_{CPU} to queue" in the ϕ based execution sequence.

Cause 1


When the CPU required operation codes and operands, but the number of operation codes and operands did not reach the requested number.

Cause 2

When the CPU tried to access data, but the bus interface was using the bus for fetching data into the instruction queue buffer or for writing data.

Cause 3

When the bus interface unit is reading data from the internal/external memory or I/O, etc., according to the request of the CPU.

Example 1. ASL instruction / direct addressing mode (DPRL = 0016)

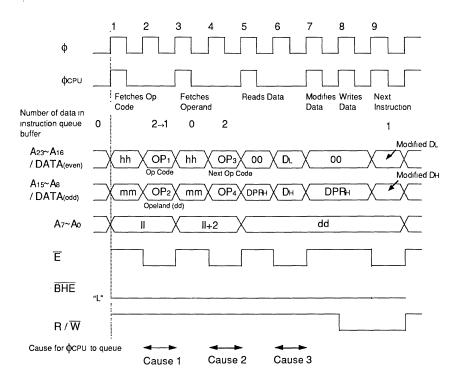
The following examples 1-1 to 1-6 are examples of the ϕ_{CPU} based instruction execution sequences under various conditions.

- Example 1-1 When the instruction queue buffer is vacant
- Example 1-2 When two data are in the instruction queue buffer
- Example 1-3 When three data are in the instruction queue buffer
- Example 1-4 When 16-bit data is accessed from odd address
- Example 1-5 When external memory is accessed from the BYTE terminal using 8-bit external bus width
- Example 1-6 When external memory is accessed with wait by the wait bit

"0" (16-bit length)

External memory is used (Note)

"L" (External bus width is 16 bits)


0

(Example 1-1) When the instruction queue buffer is vacant

Conditions

- Number of data in the instruction queue buffer
- ROM, RAM
- Data length selection flag m
- BYTE terminal level
- Contents of lower order bytes (PCL) of the program counter Even
- Contents of the operand (dd)
 Even

$\boldsymbol{\phi}$ based execution sequence

Note. The operation when internal ROM and internal RAM are used, will be as shown above, regardless of the level of the BYTE terminal. However, the address/data bus, BHE, R/W signal cannot be observed from outside, when the mode is single-chip mode.

172

φ No .	CPU	Bus interface unit
1	(No fetching can be done, because there are no operation codes in the instruction queue buffer.)	Fetches the instruction, because instruction queue buffer is vacant and the CPU is not using the bus.
2	Fetches the operation code.	Fetches 2-byte worth of data into the instruc- tion queue buffer when E becomes "L".
3	Fetches the operand.	Prefetches the instruction, because the in- struction queue buffer is vacant and the CPU is not using the bus.
4	(Waits till the bus used by the bus interface unit becomes vacant.)	Fetches 2 bytes worth of data into the instruc- tion queue buffer when E becomes "L".
5	Waits for \overline{E} to become "L", to read data.	
6	Reads data when E becomes "L".	
7	Modifies data.	
8	Writes data into the data buffer.	
9	Fetches the next operation code.	Writes the contents of the data buffer into the original address, when E becomes "L".

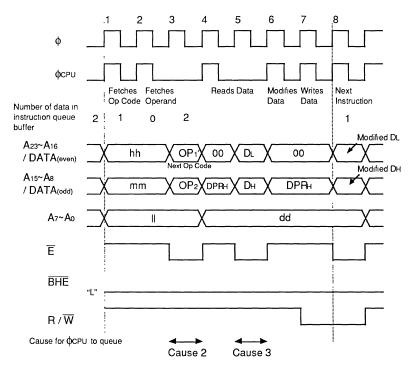
Operation of the CPU and bus interface unit under various cycles

External memory is used (Note)

(Example 1-2) When two data are in the instruction queue buffer

Conditions

- Number of data in the instruction queue buffer
- ROM, RAM
- Data length selection flag m
- BYTE terminal level
- Contents of lower order bytes (PCL) of the program counter Even
- Contents of the operand (dd)


"L" (External bus width is 16 bits)

Even

"0" (16-bit length)

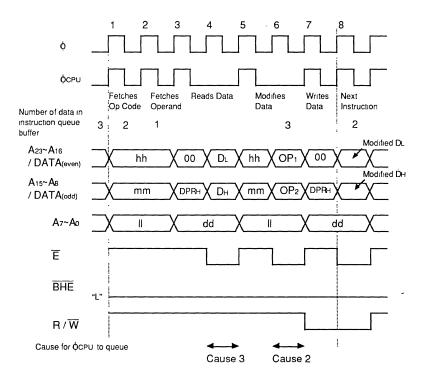
2

$\boldsymbol{\varphi}$ based execution sequence

Note. The operation when internal ROM and internal RAM are used, will be as shown above, regardless of the level of the BYTE terminal. However, the address/data bus, BHE, R/W signal cannot be observed from outside, when the mode is single chip mode.

φ Νο.	CPU	Bus interface unit	
1	Fetches operation code.		
2	Fetches operand (dd).	Prefetches the instruction, because the instruct queue buffer is vacant and the CPU is not using the bus.	
3	(Waits till the bus used by the bus interface unit becomes vacant.)	Fetches 2-byte worth of data into the instruction queue buffer when \overline{E} becomes "L".	
4	Waits for E to become "L", to read data.		
5	Reads data when E becomes "L".		
6	Modifies data.		
7	Writes data into the data buffer.		
8	Fetches the next operation code.	Writes the contents of the data buffer into the original address, when \overline{E} becomes "L".	

Operation of the CPU and bus interface unit under various cycles


(Example 1-3) When three data are in the instruction queue buffer

Conditions

- Number of data in the instruction queue buffer
- ROM, RAM
- Data length selection flag m
- BYTE terminal level
- Contents of lower order bytes (PCL) of the program counter
- Contents of the operand (dd)

3 External memory is used (Note) "0" (16-bit length) "L" (External bus width is 16 bits) Even Even

Note. The operation when internal ROM and internal RAM are used, will be as shown above, regardless of the level of the BYTE terminal. However, the address/data bus, BHE, R/W signal cannot be observed from outside, when the mode is single chip mode.

φ No.	CPU	Bus interface unit
1	Fetches operation code .	
2	Fetches operand (dd).	
3	Waits for \overline{E} to become "L", to read data.	
4	Reads data when E becomes "L".	
5	Modifies data.	Prefetches the instruction, because there are two vacant instruction queue buffers and the CPU is not using the bus.
6	(Waits till the bus used by the bus interface unit becomes vacant.)	Fetches 2-byte worth of data into the instruction queue buffer when E becomes "L".
7	Writes data into the data buffer.	
8	Fetches the next operation code.	Writes the contents of the data buffer into the original address, as \overline{E} becomes "L".

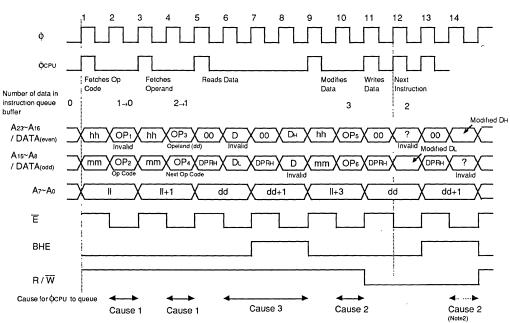
Operation of the CPU and bus interface unit under various cycles

"0" (16-bit length)

External memory is used (Note1)

"L" (External bus width is 16 bits)

0


Odd

Odd

(Example 1-4) When 16-bit data is accessed from odd address

Conditions

- Number of data in the instruction queue buffer
- ROM, RAM
- Data length selection flag m
- BYTE terminal level
- Contents of lower order bytes (PCL) of the program counter
- Contents of the operand (dd)

Note1. The operation when internal ROM and internal RAM are used, will be as shown above, regardless of the level of the BYTE terminal. However, the address/data bus, BHE, R/W signal cannot be observed from outside, when the mode is single chip mode.

Note 2. At the <- - -> part

* When the CPU does not use the bus, ϕ_{CPU} corresponds with ϕ .

* When the CPU uses the bus, the φ_{CPU} queues till the writing in the bus interface unit completes. (the φ_{14} cycle)

φ Νο .	CPU	Bus interface unit
1	(No fetching can be done, because there are no operation codes in the instruction queue buffer.)	Fetches the instruction, because instruction queue buffer is vacant and the CPU is not using the bus.
2	Fetches operation code.	Fetches 1 odd address byte worth of data into the instruction queue buffer, when \overline{E} becomes-"L".
3	(No fetching can be done, because there are no operands in the instruction queue buffer.)	Fetches the instruction, because instruction queue buffer is vacant and the CPU is not using the bus.
4	Fetches operand (dd).	Fetches 2-byte worth of data into the instruction queue buffer when \overline{E} becomes "L".
5	Waits for \overline{E} to become "L", to read data.	
6	Reads data in the odd addresses (DL) alone into the data buffer when \overline{E} becomes "L".	
7	Waits for \overline{E} to become "L", to read data.	
8	Reads data in the even addresses (DH) alone into the data buffer when \overline{E} becomes "L".	
9	Modifies data.	Prefetches the instruction, because there are two vacant positions in the instruction queue buffer, and the CPU is not using the bus.
10	(Waits till the bus used by the bus interface unit becomes vacant.)	Fetches 2 bytes worth of data into the instruction queue buffer, when \overline{E} becomes "L".
11	Writes data into the data buffer.	Waits till \overline{E} becomes "L" to write data.
12	Fetches the next operation code.	Writes the contents of the data buffer (DL) into the original address (odd address), when \overline{E} becomes "L".
13	?	Waits till \overline{E} becomes "L" to write data.
14	?	Writes the contents of the data buffer (DH) into the original address (even address), when $\overline{\rm E}$ becomes "L".

Operation of the CPU and bus interface unit under various cycles

When internal ROM or BYTE terminal level "L" external memory is used as the program memory, the instruction is fetched into the instruction queue buffer normally in 2-byte (word) unit of sequential even and odd addresses in this order. However, when the instruction must be fetched from odd address like after execution of the JMP instruction, the 1-byte of the first odd address alone is fetched into the instruction queue buffer (ϕ_2 cycle), and the later instructions are fetched into the instruction queue buffer in 2-byte units (ϕ_4 , ϕ_{10} cycle).

The bus interface unit automatically selects whether to fetch one word or to fetch the 1 byte of odd address alone. The operation status can be observed from outside, according to the output of the BHE terminal and the address bus signal A₀, as long as the mode is not single chip mode.

• When one word is fetched

The output from both the \overline{BHE} terminal and the address bus A₀ are at the "L" level.

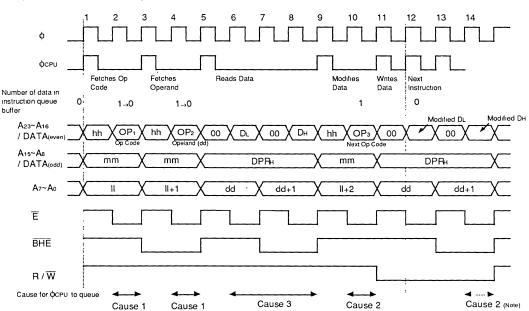
• When 1 byte of odd address alone is fetched The output from the BHE terminal is "L", while the output from address bus A₀ is "H". When internal RAM and external memory at BYTE terminal level "L" are used as the data memory, with data length selection flag m = 0, both data read and write are normally done in 2-byte units of even and odd addresses, in this sequence. However, access can also be done when the word data is defined from an odd address. In other words, "H" is output first from address bus Ao and then "L" from the BHE terminal to access to odd address alone. Next, "L" is output from Ao, and "H" from the BHE terminal to access to the even address. (ϕ_5 to ϕ_8 , ϕ_{11} to ϕ_{14} cycle)

External memory is used

"H" (External bus width is 8 bits)

"0" (16-bit length)

0


Even

Even

(Example 1-5) When external memory is accessed from the BYTE terminal using 8-bit external bus width

Conditions

- Number of data in the instruction queue buffer
- ROM, RAM
- Data length selection flag m
- BYTE terminal level
- Contents of lower order bytes (PCL) of the program counter
- Contents of the operand (dd)

Note. At the <- - -> part

* When the CPU does not use the bus, φ_{CPU} corresponds with φ_{\cdot}

* When the CPU uses the bus, the ϕ_{CPU} queues till the writing in the bus interface unit completes. (the ϕ_{13} to ϕ_{14} cycle)

φ No .	CPU	Bus interface unit
1		Fetches the instruction, because the instruction queue buffer is vacant and the CPU is not using the bus.
2	Fetches operation code.	Fetches 1 odd address byte worth of data into the in- struction queue buffer when E becomes "L".
3		Fetches the instruction, because instruction queue buffer is vacant and the CPU is not using the bus.
4	Fetches operand (dd).	Fetches 1-byte worth of data into the instruction queue buffer when E becomes "L".
5	Waits for \overline{E} to become "L", to read data.	
6	Reads data (DL) into the data buffer when \overline{E} becomes "L".	
7	Waits for \overline{E} to become "L", to read data.	
8	Reads data (D _H) alone into the data buffer when \overline{E} becomes "L".	
9	Modifies data.	Prefetches the instruction, because there are two vacant positions in the instruction queue buffer, and the CPU is not using the bus.
10	(Waits till the bus used by the bus interface unit is vacant.)	Fetches 1 byte worth of data into the instruction queue buffer when E becomes "L".
11	Writes data into the data buffer.	Waits till \overline{E} becomes "L" to write data.
12	Fetches the next operation code.	Writes the contents of the data buffer (DL) into the original address (odd address), when \overline{E} becomes "L"
13	?	Waits till \overline{E} becomes "L" to write data.
14	?	Writes the contents of the data buffer (D _H) into the original address (even address), when \overline{E} becomes "L".

Operation of the CPU and bus interface unit under various cycles

The external bus width becomes 8 bits when the "H" level is applied to the BYTE terminal. (The width of the internal bus is 16 bits, regardless of the level of the BYTE terminal.) When external ROM is used under this mode, the instruction can only be fetched byte by byte. (ϕ_2 , ϕ_4 , ϕ_{10} cycle) When external RAM is used, the data can likewise only be handled byte by byte. Accordingly, when data length selection flag m = 0 is selected, it takes time worth 2 cycles of the enable output \overline{E} for data read and write. (ϕ_5 to ϕ_8 , ϕ_{11} to ϕ_{14} cycle)

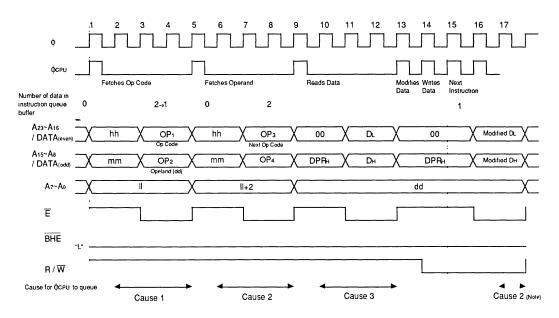
Instruction Execution Sequence

External memory is used

"L" (External bus width is 16 bits)

"0" (16-bit length)

0


Even

Even

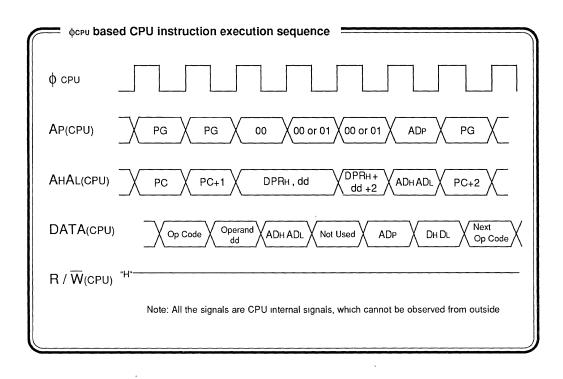
(Example 1-6) When external memory is accessed with wait by the wait bit

Conditions

- Number of data in the instruction queue buffer
- ROM, RAM
- Data length selection flag m
- BYTE terminal level
- Contents of lower order bytes (PCL) of the program counter
- · Contents of the operand (dd)
- based execution sequence

	Operation of the CPO and bus interface unit under various cycles		
φ No .	CPU	Bus interface unit	
1 2	(No fetching can be done, because there are no operation codes in the instruction queue buffer.)	Fetches the instruction, because instruction queue buffer is vacant and the CPU is not using the bus.	
3 4	Fetches the operation code .	Fetches 2 bytes worth of data into the instruction queue buffer when E becomes "L".	
5 6	Fetches operand (dd).	Prefetches the instruction because the instruction queue buffer is vacant and the CPU is not using the bus.	
7 8	(Waits till the bus used by the bus interface unit becomes vacant.)	Fetches 2 bytes worth of data into the instruction queue buffer when becomes "L".	
9 10	Waits till Ē becomes "L" to write data.	,	
11 12	Reads data when Ē becomes "L".		
13	Modifies data.	-	
14	Writes data into the data buffer.		
15	Fetches the next operation code.		
16	?	Writes the contents of the data buffer into the original address (odd address), when \overline{E} becomes "L".	

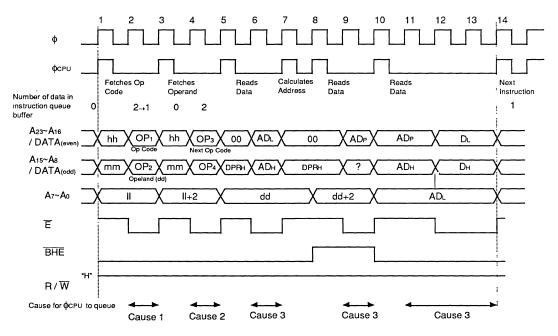
Operation of the CPU and bus interface unit under various cycles


Note. At the <- - -> part

* When the CPU does not use the bus, ϕ_{CPU} corresponds with ϕ .

* When the CPU uses the bus, the φcPU extends till the writing in the bus interface unit completes. (the φ16 to φ17 cycle)

The conditions are the same, except when wait is commanded by the wait bit (example 1-1). When accessing to the external memory, the cycle of enable output \overline{E} becomes twice that for no-wait, and thus the ϕ_{CPU} wait time also becomes twice the cycle. (ϕ_3 to ϕ_4 , ϕ_7 to ϕ_8 , ϕ_{11} to ϕ_{12} , ϕ_{16} to ϕ_{17} cycle)



(Example 2-1) When the internal as well as the external memories are used together while wait is commanded by the wait bit.

Conditions

 Number of data in the instruction queue buffer 		0
• Bank 0		Internal ROM, RAM are used
Bank 1 and after		External memory is used
 Data length selection flag m 		"0" (16-bit length)
BYTE terminal level		"L" (External bus width is 16 bits)
Contents of lower order bytes	(PCL) of the program counter	Even
Contents of the operand (dd)		Even
 Data indicated by the address 	S ADL	Even
	ADP	1 or more (bank 1 and after)

φ No .	CPU	Bus interface unit
1	(No fetching can be done, because there are no operation codes in the instruction queue buffer.)	Fetches the instruction, because instruction queue buffer is vacant and the CPU is not using the bus.
2	Fetches the operation code .	Fetches 2 bytes worth of data into the instruction queue buffer when \overline{E} becomes "L".
3	Fetches operand (dd).	Prefetches the instruction because the instruction queue buffer is vacant and the CPU is not using the bus.
4	(Waits till the bus used by the bus interface unit becomes vacant.)	Fetches 2 bytes worth of data into the instruction queue buffer when \overline{E} becomes "L".
5	Waits for \overline{E} to becomes "L", to read data (AD _H AD _L) indicated by the address obtained by adding the contents of the operand (dd) and the DPR _L .	
6	Reads data when E becomes "L".	
7	Calculated address.	
8	Waits for Ē to become "L", to read data (ADP).	
9	Reads data when Ē becomes "L".	
10 11	Waits for \overline{E} to become "L", to read the data (DH DL) at the address specified by ADP ADH ADL.	
12 13	Reads data when \overline{E} becomes "L".	

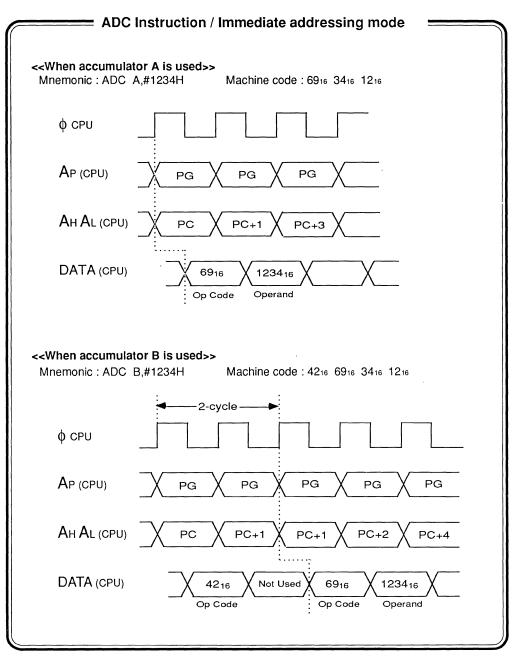
Operation of the CPU and bus interface unit under various cycles

The above is the case when bank 1 and after are used by the external memory under the memory expansion mode. The currently executed program is in bank 0. The contents of the lower order bytes of the direct page register DPRL is "0016", so the direct pages are all in bank 0. The access to the outside (ϕ_{10} to ϕ_{13} cycle) alone is affected by the wait bit, and access to the internal memory is not affected by the bit.

APPENDIX A. CPU Instruction Execution Sequence for each Addressing Mode

The following are the CPU instruction execution sequences for each addressing mode. The execution sequences shown here describe the internal operation of the CPU. Therefore, the signals are all CPU internal signals, and cannot be observed from outside. The CPU internal operation, the actual execution time, and the relation between signals that can be externally checked are described in Chapter 6 "Instruction Execution Sequence".

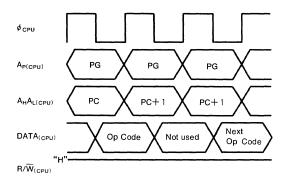
The following are the signals and the symbols indicating the contents.


Symbol	Description
фсри	CPU basic cycle
AP _(CPU) AHAL(CPU) PG PC	Higher order 8 bits of the CPU internal address bus. Lower order 16 bits of the CPU internal address bus. Contents of the program bank register. Contents of the program counter. Others are data that indicates the address obtained as result of address calculation.
DATA(CPU)	The CPU internal data bus. The signal is output with a half-cycle delay from the CPU internal address bus. The operation codes and the operands are fetched from the instruction buffer. They are not directly fetched from the memory indicated by the PG and PC of this cycle.
R/W(CPU)	Becomes "L" when the CPU writes data into the data buffer of the bus interface unit.

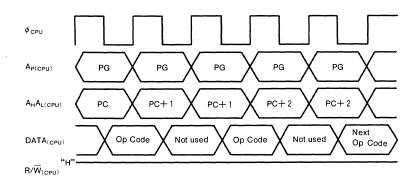
The accumulator used in the above instructions in the CPU instruction execution sequence is accumulator A. When accumulator B is used, the execution cycle will have the two cycles of a "4216" that indicates accumulator B, and an internal processing cycle added at the front. (See the figure in the next page.)

The number of ϕ_{CPU} cycles differs in the addressing mode that uses the direct page register, according to whether the lower order 8 bits (DPRL) are "0016". The number of cycles when DPRL = 0016 is 1 cycle (address calculation cycle) less than when DPRL \neq 0016.

The number of cycles differs in the PSH and PUL instructions according to the number and type of registers placed in (taken out of) the stack.

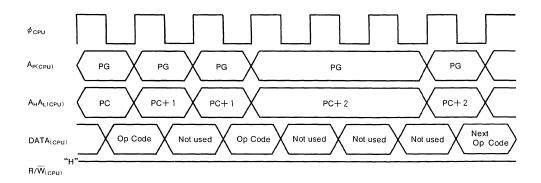

The number of cycles differs in the block transmission instruction (MVN, MVP), according to the number of the data transmitted.

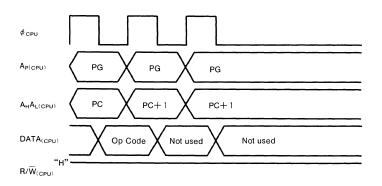
Variation of the execution cycles according to the accumulator used


Instruction : CLC, CLI, CLM, CLV, DEX, DEY, INX, INY, NOP, SEC, SEI, SEM, TAD, TAS, TAX, TAY, TDA, TSA, TSX, TXA, TXS, TXY, TYA, TYX

Timing :

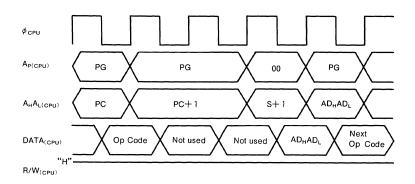
Instruction : TBD, TBS, TBX, TBY, TDB, TSD, TXB, TYB


Timing :

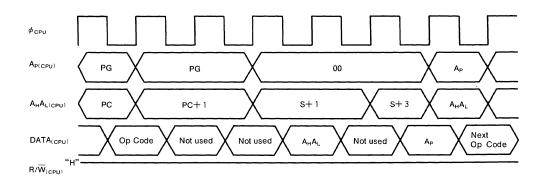

190

Instruction XAB

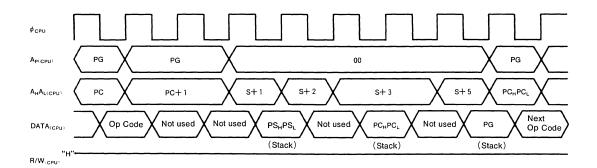
Timing :



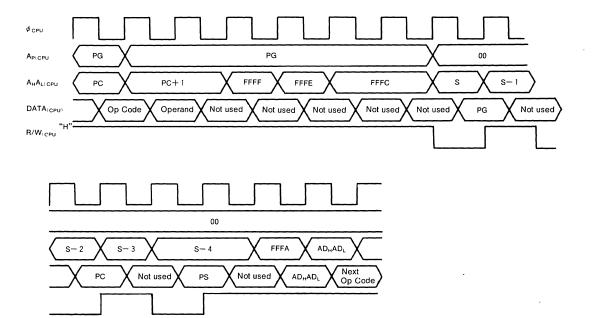
Instruction : STP, WIT


Instruction : R T S

Timing :

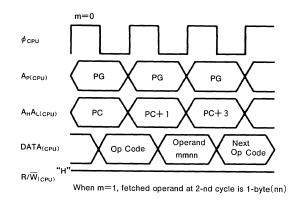

Instruction : R T L

Timing :

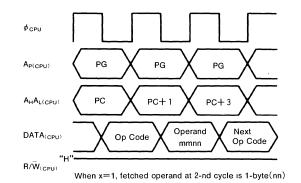


•

Instruction : R T I



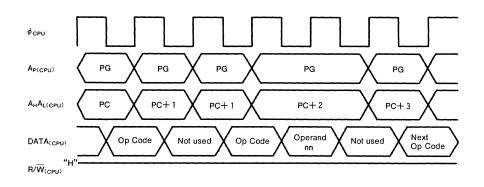
Instruction : B R K


Instruction : ADC, AND, CMP, EOR, LDA, ORA, SBC

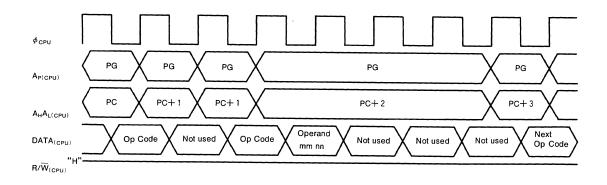
Timing :

Instruction : LDX, LDY, CPX, CPY

Timing :

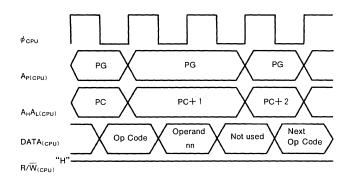


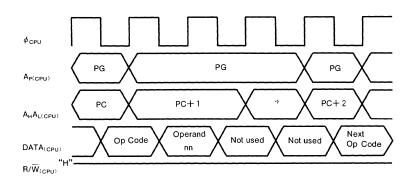
.


Immediate

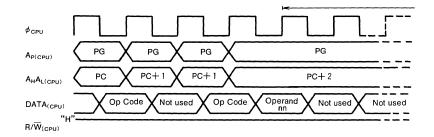
Instruction : LDT

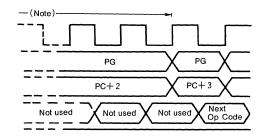
Timing :


Instruction : R L A

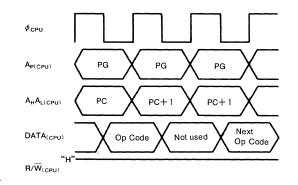

Immediate

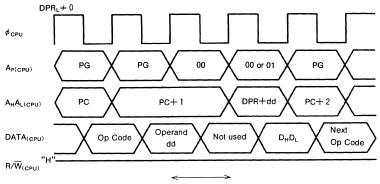
Instruction : S E P


Timing :

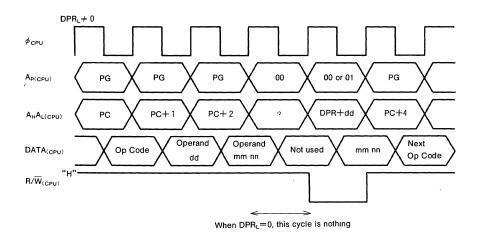


Instruction : CLP


Instruction : D I V, M P Y

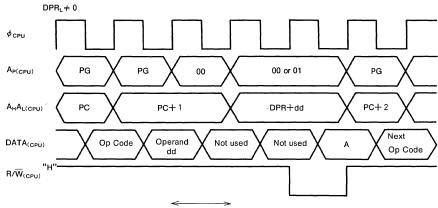

(Note) MPY instruction is 12-cycle, and DIV instruction is 23-cycle.

Instruction : ASL, DEC, INC, LSR, ROL, ROR


Instruction : ADC, AND, CMP, CPX, CPY, EOR, LDA, LDX, LDY, ORA, SBC

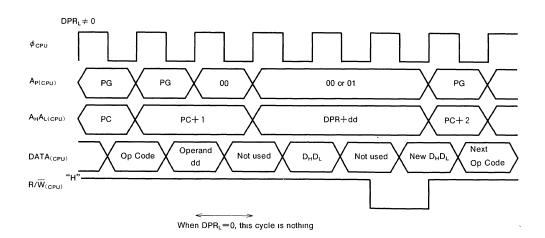
Timing :

When $DPR_L=0$, this cycle is nothing


Instruction : LDM

Direct

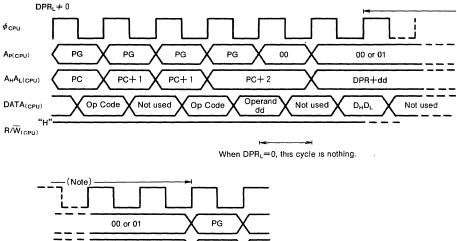
Instruction : STA, STX, STY

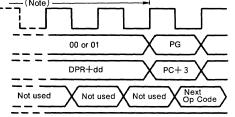

Timing :

When $DPR_L=0$, this cycle is nothing

Instruction : ASL, DEC, INC, LSR, ROL, ROR

Timing :

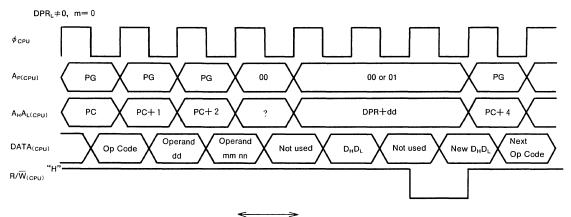



.

Direct

Instruction : DIV, MPY

Timing :

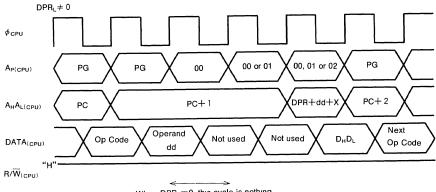


MPY instruction is 12-cycle, and DIV instruction is 23-cycle.

Direct Bit

Instruction : C L B, S E B

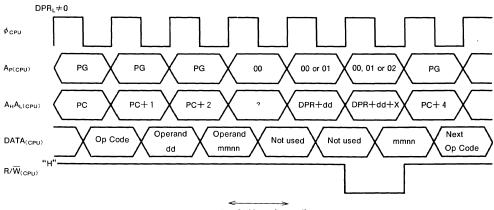
Timing :



When DPR_L=0, this cycle is nothing. When m=1, fetched operand at 3-rd cycle is 1-byte(nn).

Instruction : ADC, AND, CMP, EOR, LDA, LDY, ORA, SBC

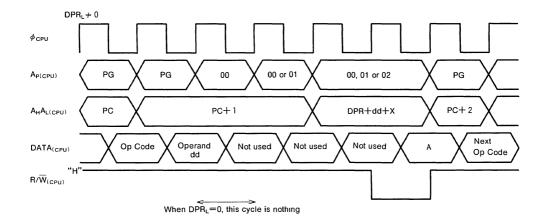
1


Timing :

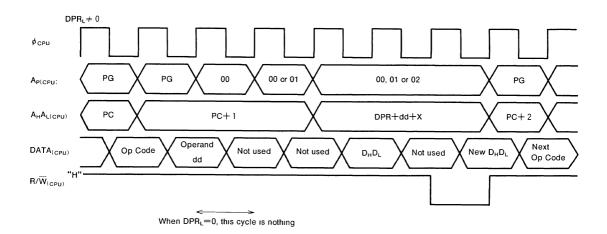
When $DPR_L=0$, this cycle is nothing

Instruction : LDM

Timing :

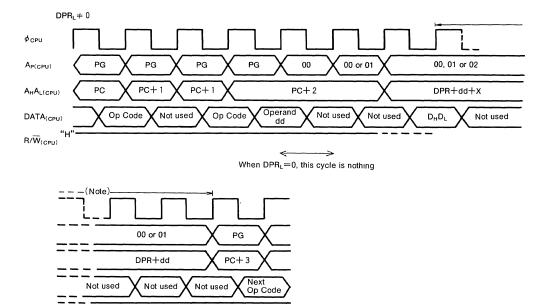


When $DPR_L=0$, this cycle is nothing


Direct Indexed X

Instruction : STA, STY

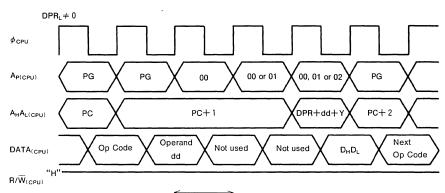
Timing :



Instruction : ASL, DEC, INC, LSR, ROL, ROR

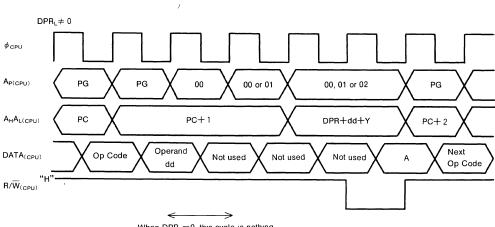
Instruction : DIV, MPY

Timing :



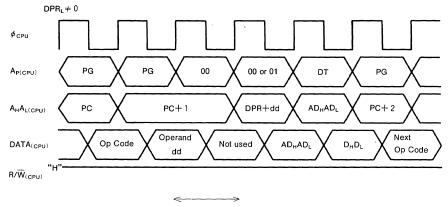
(Note) MPY instruction is 12-cycle, and DIV instruction is 23-cycle

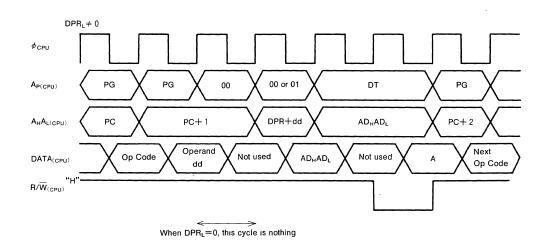
- .


Instruction : LDX

Timing :

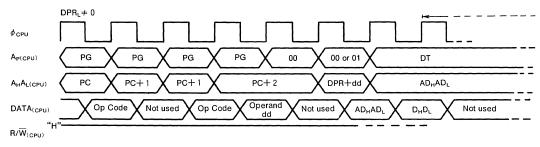
When $DPR_L=0$, this cycle is nothing

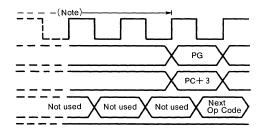

Instruction : STX


Instruction : ADC, AND, CMP, EOR, LDA, ORA, SBC

Timing :

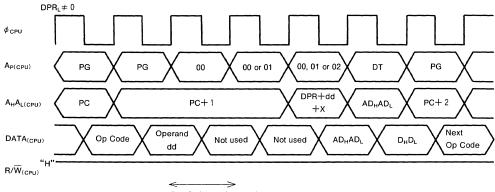
When $DPR_L=0$, this cycle is nothing


Instruction : STA


Direct Indirect

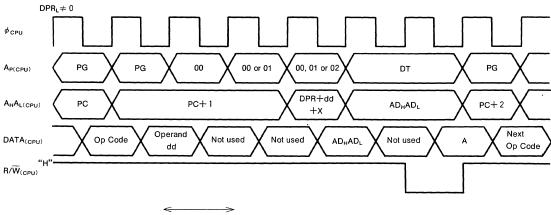
Instruction : DIV, MPY

Timing :

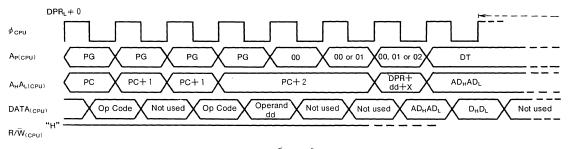

 $\underbrace{ \longleftrightarrow } \\ \text{When } \mathsf{DPR}_L = 0, \text{ this cycle is nothing} \\$

(Note) MPY instruction is 12-cycle, and DIV instruction is 23-cycle

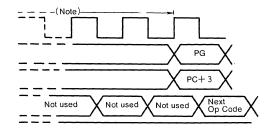
Instruction : ADC, AND, CMP, EOR, LDA, ORA, SBC


Timing :

When DPRL=0, this cycle is nothing

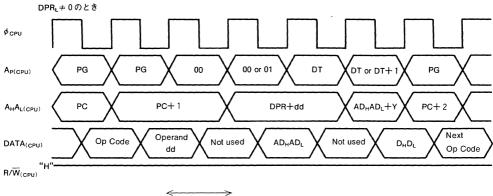

Instruction : STA

Timing :



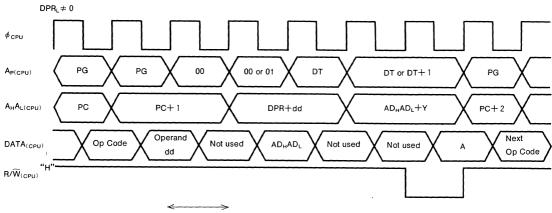
When $DPR_L=0$, this cycle is nothing

Instruction : DIV, MPY

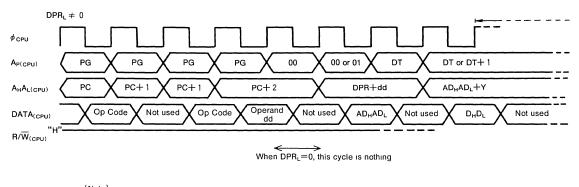

When DPRL=0, this cycle is nothing

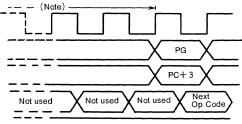
(Note) MPY instruction is 12-cycle, and DIV instruction is 23-cycle

Instruction : ADC, AND, CMP, EOR, LDA, ORA, SBC


Timing :

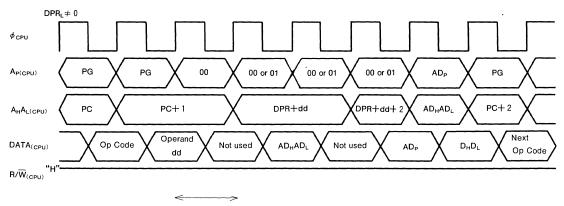
When $DPR_L=0$, this cycle is nothing


Instruction : STA


Timing :

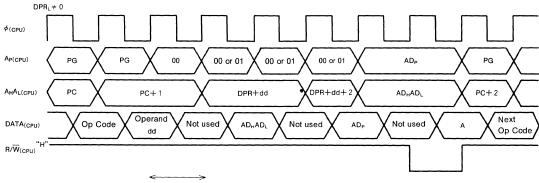
When $DPR_L=0$, this cycle is nothing

Instruction : DIV, MPY

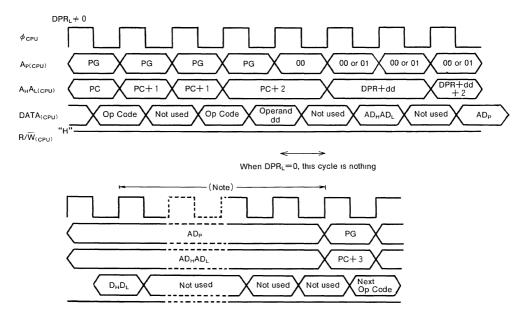


(Note) MPY instruction is 12-cycle, and DIV instruction is 23-cycle

Instruction : ADC, AND, CMP, EOR, LDA, ORA, SBC


Timing :

When $DPR_L=0$, this cycle is nothing.

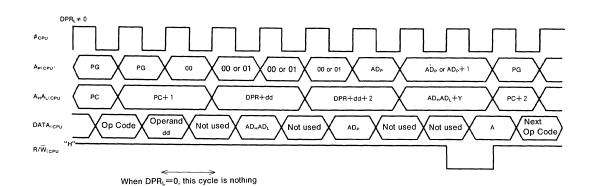

Instruction : STA

Timing :

When DPR₁=0, this cycle is nothing

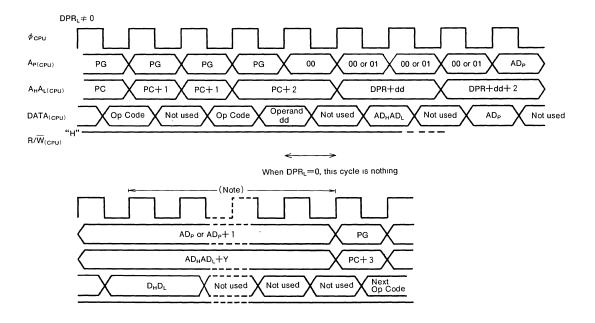
Instruction : DIV, MPY

(Note) MPY instruction is 12-cycle, and DIV instruction is 23-cycle


Instruction : ADC, AND, CMP, EOR, LDA, ORA, SBC

Timing :

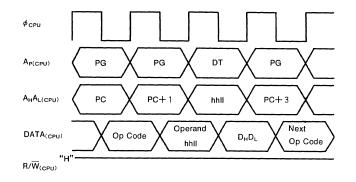
Instruction : STA


Timing :

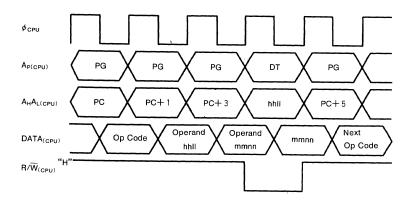
•

Instruction : DIV, MPY

Timing :

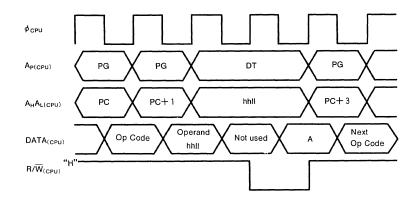

(Note) MPY instruction is 12-cycle, and DIV instruction is 23-cycle

Absolute

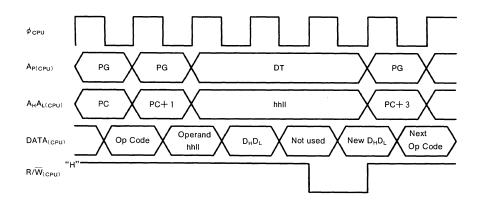

Instruction : ADC, AND, CMP, CPX, CPY, EOR, LDA, LDX, LDY, ORA, SBC

Timing :

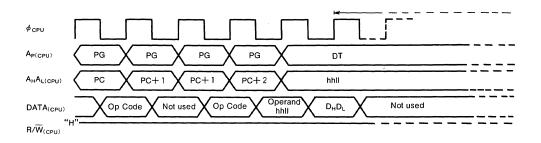
ŧ.

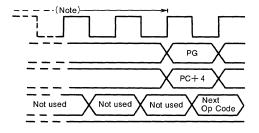


Instruction : LDM



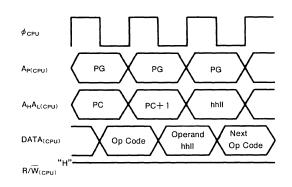
Instruction : STA, STX, STY


Timing :

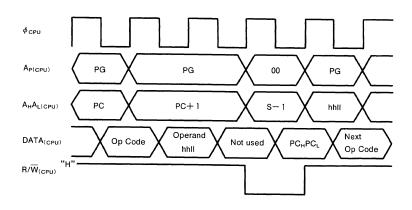


Instruction : ASL, DEC, INC, LSR, ROL, ROR

Instruction : D I V, M P \dot{Y}

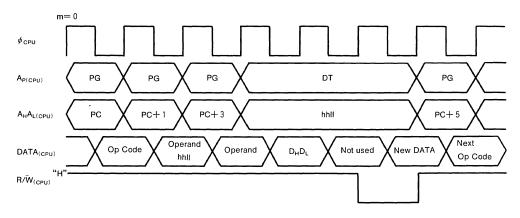


(Note) MPY instruction is 12-cycle, and DIV instruction is 23-cycle.


Absolute

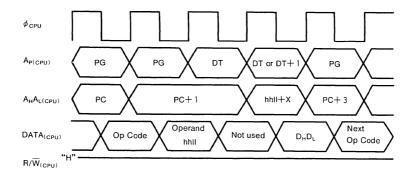
Instruction : J M P

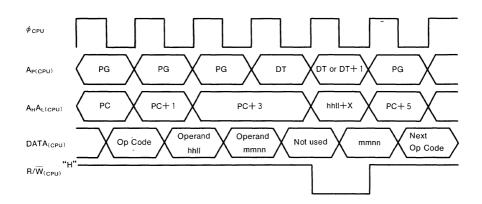
Timing :


Instruction : J S R

Absolute Bit

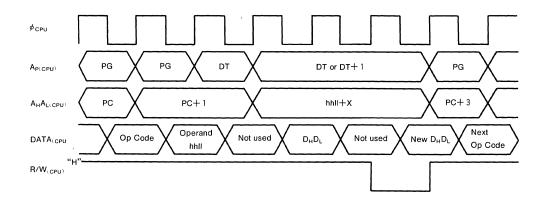
Instruction : C L B, S E B


Timing :


When m=1, fetched operand at 3-rd cycle is 1-byte(nn)

Instruction : ADC, AND, CMP, EOR, LDA, LDY, ORA, SBC

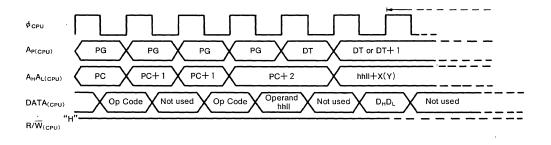
Timing :

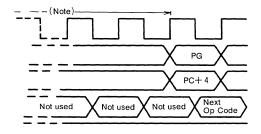


Instruction : LDM

Instruction : ASL, DEC, INC, LSR, ROL, ROR

Timing :

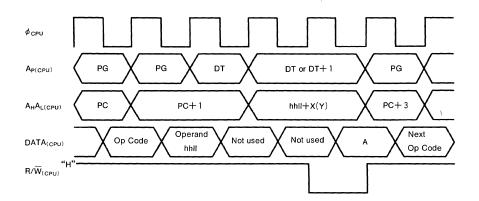


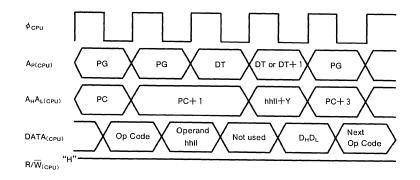

;

•

Absolute Indexed X Absolute Indexed Y

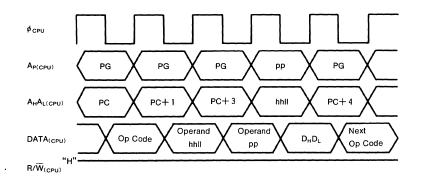
Instruction : DIV, MPY



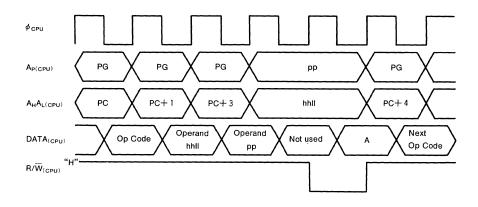

(Note) MPY instruction is 12-cycle, and DIV instruction is 23-cycle.

Absolute Indexed X Absolute Indexed Y

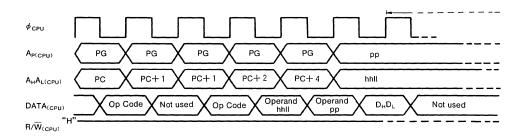
Instruction : STA

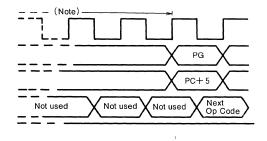

Instruction : ADC, AND, CMP, EOR, LDA, LDX, ORA, SBC

Instruction : ADC, AND, CMP, EOR, LDA, ORA, SBC


.

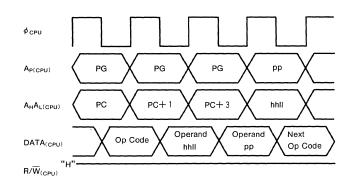
Timing :



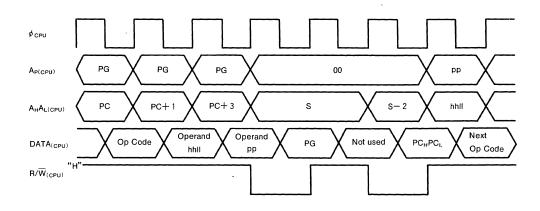

.

Instruction : STA

Instruction : DIV, MPY

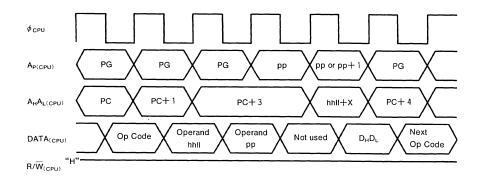


(Note) MPY instruction is 12-cycle, and DIV instruction is 23-cycle

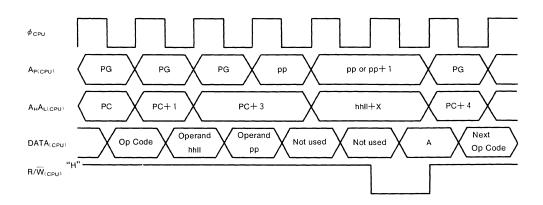

.

Instruction : J M P

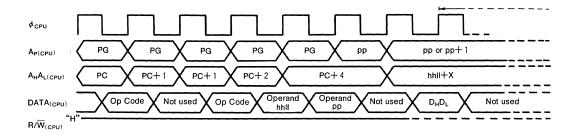
Timing :

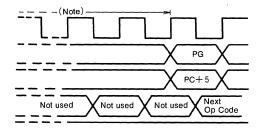


Instruction : J S R

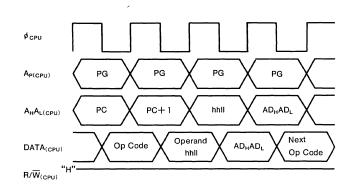


Instruction : ADC, AND, CMP, EOR, LDA, ORA, SBC

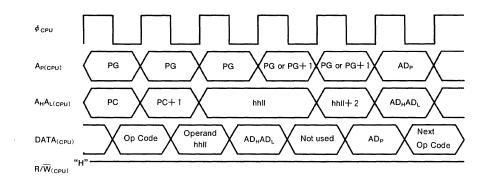

Timing :



Instruction : STA

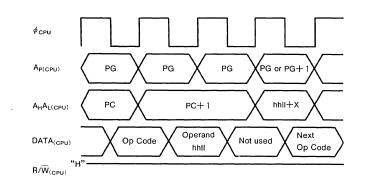

Instruction : DIV, MPY

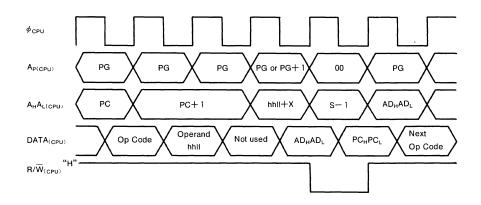
(Note) MPY instruction is 12-cycle, and DIV instruction is 23-cycle.


Instruction : J M P

Instruction : J M P

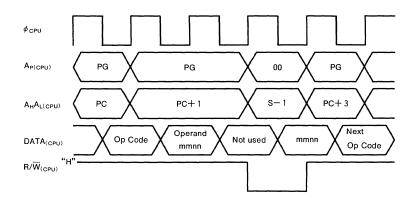
Timing :


/

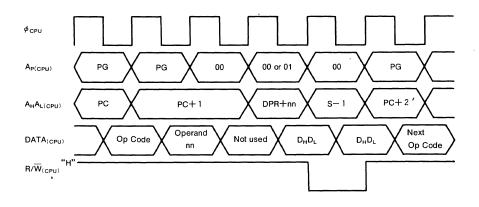

i

Instruction : J M P

Timing :

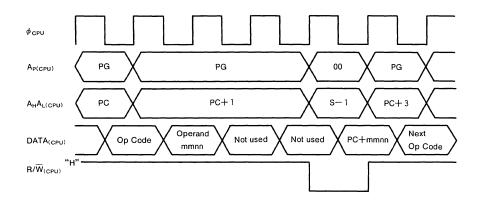


Instruction : J S R

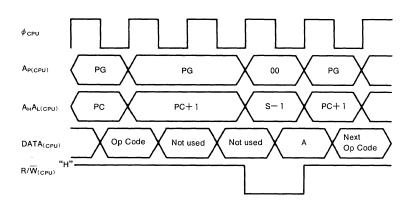

Instruction : PEA

• Timing :

Instruction : PEI


Timing :

t

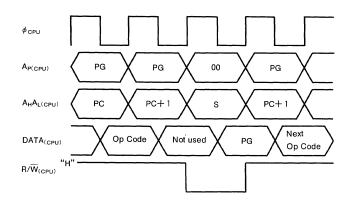

Instruction : PER

Timing :

Instruction : PHA, PHD, PHP, PHX, PHY

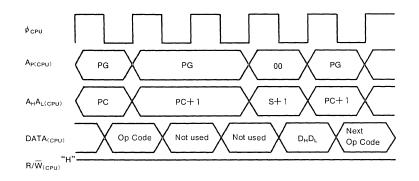
Timing :

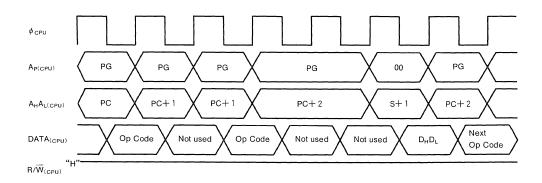
,


Instruction : PHB

Timing :

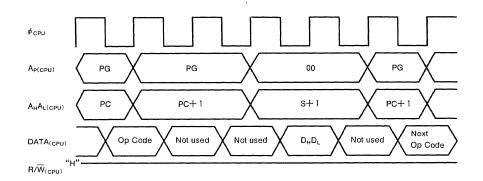
Instruction : PHG, PHT


Timing :

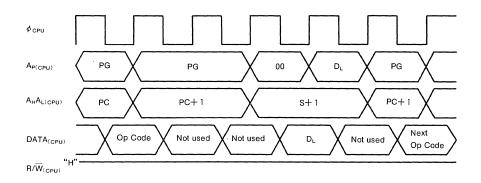

•

Instruction : PLA, PLD, PLX, PLY

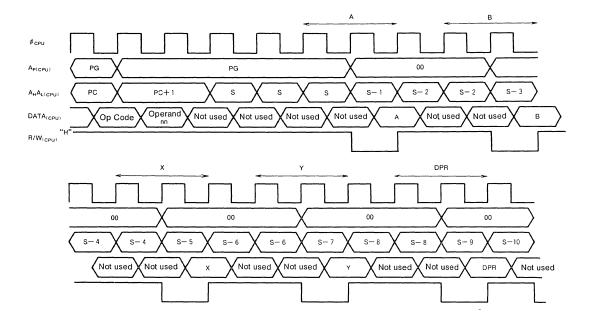
Timing :

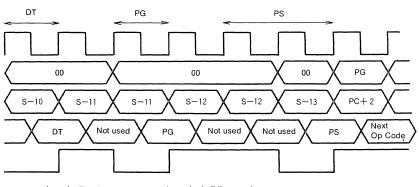


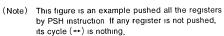
Instruction : PLB

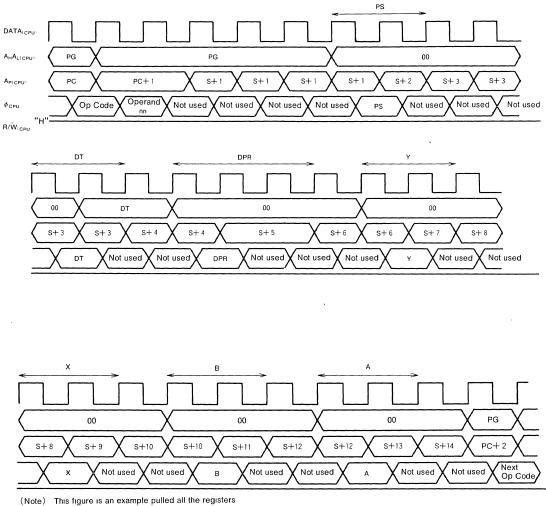


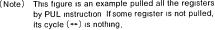
Instruction : PLP


Timing :

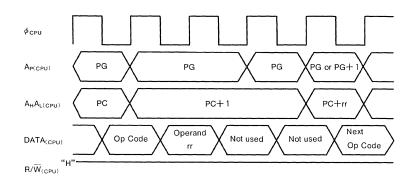



Instruction : PLT


Instruction : P S H

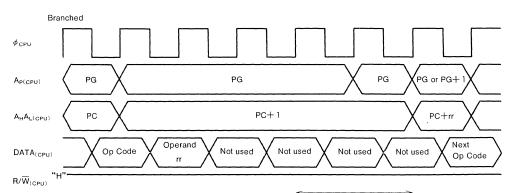


Instruction : PUL



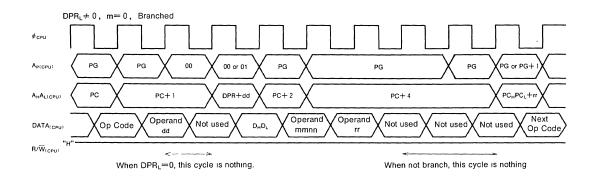
Relative

Instruction : B R A


Timing :

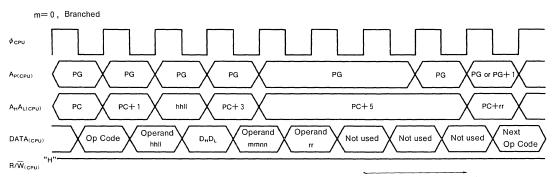
Instruction : BCC, BCS, BEQ, BMI, BNE, BPL, BVC, BVS

Timing :


,

When not branch, this cycle is nothing

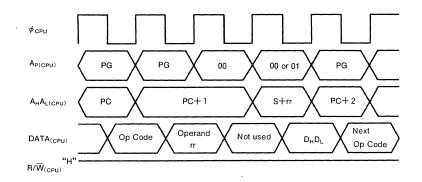
Instruction : BBC, BBS


Timing :

When m=1, fetched operand at 5-th cycle is 1-byte(nn).

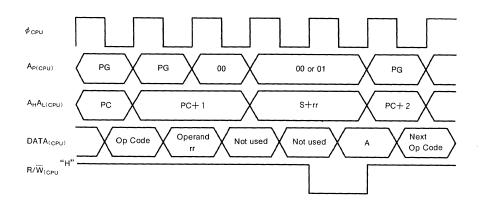
Instruction : BBC, BBS

Timing :



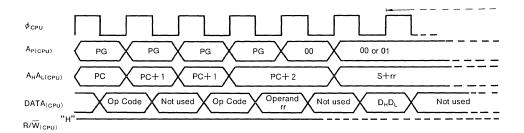
When not branch, this cycle is nothing

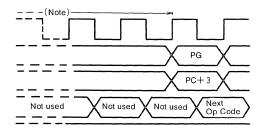
When m=1, fetched operand at 4-th cycle is 1-byte(nn)


Instruction : ADC, AND, CMP, EOR, LDA, ORA, SBC

Timing :

Instruction : S T A

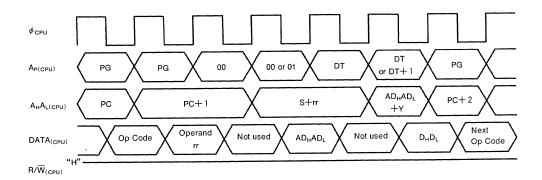

Timing :



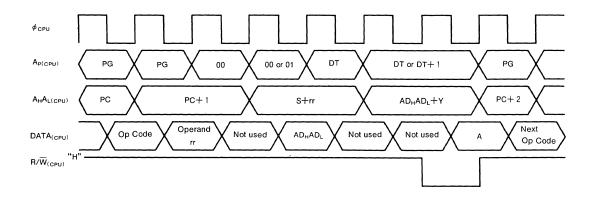
٠

Instruction : D I V, M P Y

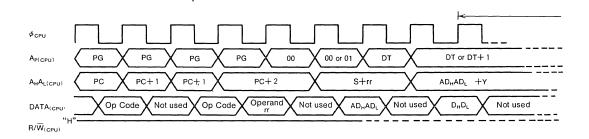
Timing :

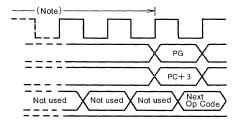


(Note) MPY instruction is 12-cycle, and DIV instruction is 23-cycle


Instruction : ADC, AND, CMP, EOR, LDA, ORA, SBC

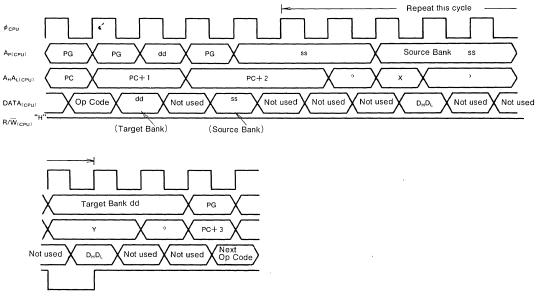
Timing :


Instruction : STA


Timing :

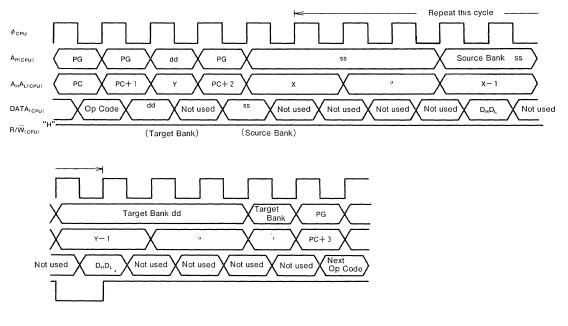
Instruction : DIV, MPY

Timing :



(Note) MPY instruction is 12-cycle, and DIV instruction is 23-cycle

Instruction : MVN


Timing :

(Note) This figure is shown that transfered the 2-bytes data started from even address If transfered more than 3-bytes data, the cycle (↔) is repeated each 2-bytes

Instruction : MVP

Timing :

(Note) This figure is shown that transfered the 2-bytes data started from even address If transfered more than 3-bytes data, the cycle (↔) is repeated each 2-bytes

Series MELPS 7700 Machine Instructions

MACHINE INSTRUCTIONS

0	E t	Detector	<u> </u>	MP	Т	M		r		Т	DI		r	res		-	100 7,X	T			10		10			(
Symbol	Function	Details	-	n ‡	-	_	-	I	A n‡			-		n ‡	-	-	-	-	DIR,		-	-		-	-	(DII op r	
ADC (Note 1,2)	$A_{CC}, C \leftarrow A_{CC} + M + C$	Adds the carry, the accumulator and the memory contents The result is entered into the accumulator When the D flag is "0", binary additions is done, and when the D flag is "1", decimal addition is done			69	2 4	+ 2 3	φ	11 +	65	5 4 2 6	# 2 3	φ		7	5 5	5 2 7 3				op 72 42 72	6	2 61	7	2	71 8	3 2
AND (Note 1,2)	$A_{CC} \leftarrow A_{CC} \wedge M$	Obtains the logical product of the contents of the accumu- lator and the contents of the memory The result is en- tered into the accumulator					2					2				2 7	5 2 7 3				32 42 32			9	34	1	
ASL (Note 1)	$m=0$ $C \leftarrow b_{15} b_0 \leftarrow 0$ $m=1$ $C \leftarrow b_7 b_0 \leftarrow 0$	Shifts the accumulator or the memory contents one bit to the left "0" is entered into bit 0 of the accumulator or the memory The contents of bit 15 (bit 7 when the m flag is "1") of the accumulator or memory before shift is entered into the C flag						0A 42 0A		2	57	2			10	6 7	2										
BBC (Note 3,5)	Mb=0 '	Tests the specified bit of the memory Branches when all the contents of the specified bit is "0"								T																	T
BBS (Note 3,5)	Mb=1 °	Tests the specified bit of the memory Branches when all the contents of the specified bit is "1"																									
BCC (Note 3)	C=0 '	Branches when the contents of the C flag is "0"																									
BCS (Note 3)	C=1 °	Branches when the contents of the C flag is "1"																									
BEQ (Note 3)	Z=1 °	Branches when the contents of the Z flag is "1"																									
BMI (Note 3)	N=1 °	Branches when the contents of the N flag is "1"																									
BNE (Note 3)	Z=0 °	Branches when the contents of the Z flag is "0"																									
BPL (Note 3)	N=0 °	Branches when the contents of the N flag is "0"																									
BRA (Note 4)	PC←PC±offset PG←PG+1 (carry occured) PG←PG-1 (borrow occured)	Jumps to the address indicated by the program counter plus the offset value																									
BRK	$\begin{array}{l} PC\!$	Executes software interruption	00	15 2	2																						
BVC (Note 3)	V=0 ?	Branches when the contents of the V flag is "0"																									
BVS (Note 3)	V=1 °	Branches when the contents of the V flag is "1"			T																Ī					T	T
CLB (Note 5)	МЬ⊷0	Makes the contents of the specified bit in the memory "0"			T					T			14	8	3			T			T		T			1	T
CLC	C←0	Makes the contents of the C flag "0"		2 1	-					T					T			T									T
CLI	1←0	Makes the contents of the I flag "0"		2 1						T								Γ		Π	\square						I
CLM	m⊷0	Makes the contents of the m flag "0"		2 1		\downarrow		Ц		1				_	1	1	1			Ľ	Ц		1		\square	\downarrow	\perp
CLP	PSb←0	Specifies the bit position in the processor status register by the bit pattern of the second byte in the instruction, and sets "0" in that bit				2 4	2																				
CLV	V+-0	Makes the contents of the V flag "0"		2 1	_		-	Ц		1	1	1	Ц		1	1		1		μ	Ц	_	\bot			_	\perp
CMP (Note 1,2)	A _{CC} -M	Compares the contents of the accumulator with the contents of the memory			L	2 4	2					2	11			2 7	5 2 7 3				D2 42 D2			2 9	3		

							-				-										-		-	-	Ad	dre	ess	sin	g i	mo	od∉		-	-						-	_			_							-					<u> </u>	 P	ror	es	sor	sta	itus	s re	gist	ter	
L(D	DIR) 1	(DI	R).Y	T	AE	s	T	AF	BS,	b	A	BS	X	A	BS	5. Y	T	AE	3L	Т	AF	3L		-			-	÷	_	_	(A)	BS	X)	ę	T	<	6	REI	L	To	IR,I	b.R	1	ABS	5,b,F	RT	ç	SR	T	(51	R),1	7	BL	к	10		-	-					2	-	Το
opr		_		_	_			_			_	_	_		-	-	-	_			_		_			-				_			-	-		_	-	_		_	-	<u> </u>	-	-		-		_		-	-	-	-	-	-	-	IPI		-	+		+	-	1	+	+
									14	-																1	+	10	ψ	"	#	υρ	1	++	υр	n	++	φ	n	#	op	n	+	+ 0	p	1								p n	#	-	—	T	+~	+	+	+	-	+	+	-
67 1	0 2	2 7	711	1 2	6	7	13	1				7D	6	3	79	6	3	6	۴ļe	s	4	/F	7	4																							ſ	53	5	2	/3	8 2	4	1		·	•		N	V		•	ŀ	•	Z	c
42 1	2 3	3 4	213	3 3	4	2 6	4	ī.				42	8	4	42	2 8	4	4	2 8	3	5	42	9	5													i I			Į							Z	12	7	3	421	10 3	3				1			1			1			
67		7	7	ł.	60						i	7D			79			6	F			7F																			1						e	53		į.	73			ł			1									
27 1	0 2	2 3	7 11	1 2	20	0 4	3	3	T			3D	6	3	39	6	3	2	FE	5	4	3F	7	4		Γ	T	T	T	T										Γ			Τ	1		1	12	23	5	2	33	8 2	2		Π				N						z	
												1			1	1	1		1	1	- 1	- 1	- 1	(1																ł.								- 1		1						ł	ł	ł		1				ł	
42 1 27	2	3 4	2 13	3 3	4:	2 6	4	1				42 3D	8	4	42	8	4	4	2 8	3 !	5	42 3F	9	5	[1												ĺ									1	12	7	3	42 1	10 3	3				1	1	ł				ł		Ł	1
21		-13	4	+			+	+	+			-	_	<u> </u>	-	<u>'</u>	+	ť		+	-	36		-	┝	\vdash	+	+	-	-				_		_	_			-	₽-	1	-	+-	+	+		23	+	-	53	+	-	-	$\left \right $	-	-		+-	-	+-	+	╀	┢	+	+
			ł		101	17	3	3				1E	8	3							}	1																										ļ					ļ	1		ŀ	·	1.	N		1.	1.			Z	C
				1			1								ł	Ł						- {						ł													Ł							1									1									1
				{	1			1										L							1		ł						i	ì						ł	ł		1																							
_	1	_		-			Ļ		4	4	_					1	L	Ļ	-	1	4				1_	L	1	1	4	4	_	_				_		_		L		L					_					_		_							-			L	L	1
		ł					1																																		34	7	4	1 30	c 8	B	5			ł				ł.		•	•		•	•	•	•		ŀ	ŀ	
-	-	+	-	-	\downarrow										L		-	+	1	+	_	_	_	L	1	1		+	-	1	_		_	_				-			1_	L		1		4	_	_	_	_	4	_	1											1.	1_	1
						1	1																																		24	7	4	1 20	c 8	8	5	1		1		1	1			•	•	·	•	ŀ	•	•	1.	·	•	
	-	-	-	-	+	-	+	+	-	_	_			-	_	1	-	-	1	-	_			-	-	\vdash	-	+	+	+				_				-		1	L	-	1	+	+	+	-	4	+	+	+	-	1	+	$\left - \right $	-	L	1	1	1-	-	1	+	-	1	+
		1			1	ĺ.		1							{	ł	ł								ł	ł												90	4	2																ŀ	ŀ		•	1.	1.		1.		ŀ	
-	+	+	+	+	+	+	+	+	-	-	-	$\left \right $		-	-	+	+-	+	+	+	+	_	_	-	-	\vdash	+	+	+	+	_			-	_	_	-		-	\vdash	L	╞	+	+	+	+	+	+	-	+	+	+	+	+	+	-	⊢	-	+	-	-	+	+	+	-	+
		1				ł									1			1							1		1						j	İ				B0	4	2				1										1		ŀ	·	•		ŀ	1.	•	·		·	
	+	+	-	+-	+	+	+	+	+	+				┝		+	+	╀	+	+	+	-	_	-	-	+	+	+	+	+	_	Η	-		-	_	H	-	-	1	+	+	+	+	+	+	+	-	+	+	+	+	+	+	-	-	+	+-	+-	-	+-	+	+	+	+-	+
		1													ŀ										1									ļ				F0	4	2				1												•	•	•	•	•		•		·	ŀ	
	+	╉	+-	+-	+-	┝	+	┼	+	-		-		-	-	+	┢	╋	+	+	+		-	-	┝	┝	+	╈	+	+	-		-		-	_	-			-	┝	-	+	╋	+	+	+	+	+	+	+	+	+	+-	+	⊢	╞─	┢	+	+-	+-	+	+	+	\vdash	+-
		1						ł						1		ł													i									30	4	2																ŀ	·	ŀ	1.	·	•	•	1.	·	ŀ	1.
	+	+	+	+-	+	+	+	╉	+	+	-				┝	┝	+-	┢	+	+	+	-+	-	-	1	+	+	+	+	+	-		-	-				-	4	1	+	┢	┢	+	+	+	+	-+	+	+	+	+	+	+			⊢		┝		-	+	+	+-	┝	+-
							ļ		1					1						1					ł													DU	4	2	Ł	ł	1	ł				ł								•	1.			1.					1.	
	+	+		+	+	+	+	╉	+	+	-		-	\vdash	┝	+-	┝	╀	+	+	+	-	-	-	1-	ŀ	+	ł	+	+	-	-	-	-	-		-	10	4	1	+-	+	+	╉	+	+	-+	-+-	+	+	+	+	+	+-	$\left - \right $		┝		+		+	+-	+		+	+
		ł				Į										ļ	Į.		Į.																			10	4	2	{	L			1			1					1			·	1.	1.	1.	1.	1.		1.	1.	1.	1.
	+	+	+	+	┢	ł	+	╉	╉	+	-			-	⊢	+	+	+	+	+	+		-	-	┢	ŀ	+	╀	+	-	-	-	-	-	-	-	-	00	4	2	╞	┢	t	╉	+	+	+	+	+	+	+	+	╉	+	+	-		1.		1.	1.	1.	†.	1.	1.	+
		ł															1	ł						ł	ł													00	4	12													1			1	Ľ	1	1	1	1.	1	1	ľ	1	1
					Ł	ł											1		1							{																																		1				í.	1	1
									1			ł									ł					{		Ł										82	4	3	1																Į.									
	1	1	_	1	1	1	L	1	4	_				_	L	-	1	1	1	1	1			_			1	1	_	_	_	_	_	_				_		L		L	1	1	_	1	1		_		_	1	1	\downarrow												
															Ĺ		1				1						1	L																					1							•	ŀ				•			•	ŀ	
]				j				1	1			1	1	1			1							Ì.		İ.														1		ł						1	
																										Į															Ĺ						1	Ì						ł.			1		ł	ł	Ł			1	1	
						ł											1																								1		1		1		1	1			1														1	
					ł	Ł														1																				ļ				1	ſ					1															1	
						Ł		ł							ł	}										ł	ł		ł	ł											1									ļ									1		Ŀ				1	ĺ.
		1		1		1		ł		ł							1		1	1								ł													ł																			1				1		
		1				Ì.				1						1	L	1	Ł		ł					ł	ł	ł		1											ł																							j.	ļ.,	
						1		1	Î													1			1		l.	ł													ł				1												}		Ł							
									1						ĺ.	1	1								Ĺ	ĺ					1										Ł				ł		ł										1		1					J	Į	
							1	1										1				ļ			1	[ł									1							1						}
								1	1						l							-								1														1			1							1												ł
+	+	+	1	+	t	t	t	$^{+}$	+	+	-			-	┢	1	t	+	+	╉	+	+			t	t	+-	+	+	+	-		-	-		-		50	4	2	1	\vdash	+	+	+	+	+	+	+	+	+	+	t	+	+				1.			1.	1.			+.
				1		1		1							1			ł										ł										10	1	ſ		1					1								1		[ľ	ľ	ľ	ľ			ľ	ľ	1
+	+	+	1	+	t	1	t	t	+	+	-				┢	t	1-	$^{+}$	+	$^{+}$	+	+		-	t	t	+	t	╉	+			-		Η	-		70	4	2	+	t	+	+	+	+	+	+	+	+	+	+	$^{+}$	+	\uparrow		1.	1.	1.	1.		1.	1.		1.	1.
			1					1							1			ł										1								į		1	'	ľ			1		1								1		1				Ľ				Ľ			
+	1	t	1	1	t	t	t	1,	c	9	4	Η		-	t	t	t	t	\dagger	t	+	1	-	-	t	t	t	t	+	+	-	-	-			-		-		t	t	t	t	t	t	+	+	+	+	+	+	+	1	+						1.			1.	1.	1.	+.
		Į						ſ	1	-	1				1			1								[1	1	1						1																	1		1								1			
+	+	\dagger	\dagger	t	t	+	t	t	+	+	-	\vdash		-	1	1	+	t	+	$^{+}$	+	+		-	\uparrow	f	t	t	t	+	-					_		-	-	t	t	t	t	t	\dagger	+	+	+	+	T	+	+	t	+	1-1		1.	1.	1.	1.		1.	1.	•		10
+	+	+	+	+-	+	+	+	+	+	+		\vdash			\vdash	┝	+	+	+	+	+	+	-	-	-	-	+	+	+	+	-	-	-1		Η	-	$\left \right $	-	-	\vdash	-	┢	+	+	+	+	+	+	+	╉	+	+	╉	+	\vdash		-	+	-		-	1.	-	0	+	+
	+	+	+-	+	+	-	+	+	+	-	-			-	-	·	+	+	+	+	-	-		-	1-	-	-	╀	-		_	-	-	_		_		-	_	-	\vdash	F	-	+	+	+	+	+	+	+	+	+	+	+	+	-										
-	4	+	+	1	1	L	1	1	_	-	_				L		1	1	1	1		-			L	1	1	1	-	1	_											-		1	-	4	1	_	_	-	+	-	+	\perp		·		+	+		-	-		•		_
				1														1										1																			1									ŀ	•	•		pe	cifi	ed	f	ag	t)e-
_	+	1	+	1	1	1	Ļ	1		4					1	1	1	+	1	+	_	4	_	_	L	L	1	1	1	+		_						_		L		1	1	1	1	+	-	4	_	_	_	+	+	+		-	1	-	-	om		-	-		-	т-
		1			L									L	L	L		1							L	L																														·	-	•	-	0	-	ŀ	-	-	-	•
C7 1	0 2	20	711	12	c	4	3	Т	T	T		DD	6	3	D9	6	3	c	FE	5	4 1	DF	7	4	Γ	Γ	Γ	T	T	T	Τ	1						-		Γ			Γ	Τ	T	T	0	23	5	2	D3	8 2	2		\square	•	•	•	N	•	•		•	•	z	c
			1																											1						ĺ				ĺ		1	1		1	ł						1			1											
42 1: C7	43	3 4: D	2 13 7	5 3	42 CI	6	4					42 DD	8	4	42	8	4	4	2 8 F	5		72 75	9	5						1												ļ					4	12	4	3 4	121 1	03	1				1		1	1					L	
<u> </u>		1	1	1	1	1	⊥	1			_	20		L.,	100	1	L	Ľ	1	1					1			1				1			- 1						1	1	1	1	1	1	- 14	~1		- P	~1	1	1	1	1		1	1	1	1	L	L	E	1	1	1

.

								_				A	١dd	res	sing	m	ode	Э								
Symbol	Function	Details	h	ИP	-	M	-		A	_	DI			R,b		DIR.			R,Y				DIR,		(DI	
			ор	n #	ор	n	#	ор	n ‡	‡ or	n	#	ор	n ‡	‡ op	n	#	ор	n #	op	n	# o	p n	#	opı	1
CPX (Note 1, 2)	Х-М	Compares the contents of the index register X with the contents of the memory			E0	2	2			E4	4	2										T				
CPY (Note 1, 2)	Ү-М	Compares the contents of the index register Y with the contents of the memory			C0	2	2			C4	4	2														
DEC (Note 1)	$A_{CC} \leftarrow A_{CC} - 1$ or $M \leftarrow M - 1$	Decrements the contents of the accumiator or memory by 1							2 1		5 7	2			D6	7	2									
DEX	x+-x-1	Decrements the contents of the index register X by 1	CA	2 1	1	T				T	t			+	t		H		+			t	1		+	1
DEY	Y←Y-1	Decrements the contents of the index register Y by 1	88	2 1	1				1	1	T	Π			T			1		1		1	1		+	1
DIV (Note 2,10)	A(quotient)←B,A/M B(remainder)	The numeral that places the contents of accumulator B to the higher order and the contents of accumulator A to the lower order is divided by the contents of the memory The quotient is entered into accumulator A and the remander into accumulator B			89 29	27	3			89	29	3			89 35	30	3			89 32		3 8 2	9 32 1		89 3 31	3
EOR (Note 1,2)	A _{CC} ←A _{CC} ₩M	Logical exclusive sum is obtained of the contents of the accumulator and the contents of the memory The result is placed into the accumulator					2 3			42	6 4				42	5 7				42	8	3 4	17 29	3	42 1	
INC (Note 1)	A _{CC} ←A _{CC} +1 or M ←M+1	Increments the contents of the accumulator or memory by 1			49			- [2 1		+	2			55 F6	7	2			52		4			51	-
		· · · · · · · · · · · · · · · · · · ·		+-	1	_		3A	_	1	1		_	-	1				_			+			+	4
INX	x⊷x+1	Increments the contents of the index register X by 1	E8 :		-	-		-	-	+	1		+	-	+			_					1	_	+	4
	Y←Y+1	Increments the contents of the index register Y by 1	C8 :	2 1	-	-		_		-	+		-		-			-	_			+	+	-	+	4
JMP	$\begin{array}{l} ABS \\ PC_L \leftarrow AD_L \\ PC_H \leftarrow AD_H \\ ABL \\ PC_H \leftarrow AD_H \\ PC_H \leftarrow AD_H \\ PG \leftarrow AD_H \\ PG \leftarrow AD_H \\ PG \leftarrow AD_H \\ PC_L \leftarrow (AD_H, AD_L) \\ PC_H \leftarrow (AD_H, AD_L + 1) \\ L(ABS) \\ PC_L \leftarrow (AD_H, AD_L + 1) \\ PG \leftarrow (AD_H, AD_L + 1) \\ PG \leftarrow (AD_H, AD_L + 1) \\ PG \leftarrow (AD_H, AD_L + 1) \\ PG \leftarrow (AD_H, AD_L + 2) \\ (ABS, X) \\ PC_L \leftarrow (AD_H, AD_L + X) \\ PC \leftarrow (AD_H, AD_L + X) \end{array}$	Places a new address into the program counter and jumps to that new address																								
JSR	$\begin{array}{l} PC_{H} \leftarrow (AD_{H},AD_{L}+X\\ +1) \\ \\ ABS \\ M(S) \leftarrow PC_{H} \\ S^{+} = S^{-1} \\ M(S)^{+} = PC_{L} \\ S^{+} = S^{-1} \\ PC_{L} \leftarrow AD_{L} \\ PC_{H} \leftarrow AD_{H} \\ \\ ABL \\ M(S)^{+} = PG_{H} \\ S^{+} = S^{-1} \\ M(S)^{+} = PC_{H} \\ S^{+} = S^{-1} \\ PC_{L} \leftarrow AD_{H} \\ PG_{H} = AD_{G} \\ C(ABS,X) \\ M(S)^{+} = PC_{H} \\ \\ S^{+} = S^{-1} \\ M(S)^{+} = PC_{H} \\ \\ S^{+} = S^{-1} \\ M(S)^{+} = PC_{H} \\ \\ S^{+} = S^{-1} \\ M(S)^{+} = PC_{H} \\ \\ S^{+} = S^{-1} \\ PC_{H} \leftarrow (AD_{H},AD_{L} + X) \\ PC_{H} \leftarrow (AD_{H},AD_{L} + X) \\ PC_{H} + (AD_{H},AD_{L} + X) \\ H(S)^{+} \\ PC_{H} \\ M(S)^{+} \\ \mathsf$	Saves the contents of the program counter (also the con- tents of the program bank register for ABL) into the stack, and jumps to the new address																								

									-			-		-	-	-		-		-			-		Ad	ldr	es	sır	ıg	m	bd	е											-	-									-				-	Γ		Pr	ос	es	so	rs	tat	us	re	gıs	ste	r	7
L(D	IR)	L(DIF	I),Y		AB	s	1	B	S,t	1	AE	SS,	х	A	B	5, Y	T	A	BL	.]	A	BL	,х	(A	3S)	.()	٨B	S)	(/	B	S,X	T	SI	ſĸ	T	R	EL	-	D	IR,I	b,R	T	ABS	S,b,	R	5	SR	T	(S	R)	Y	E	BLH	<	10		Ð	8	7	6	5T	5	4	3	2	2	1	0
op n	1	100	1	1#	100	_ _	1++	1	T	Ţ.	ŧ	2		ŧ	1	1	l t	t	n	_	#	on	n	tt	1	J.		ŧ	20		±		T	1±	1	T	T	ŧ,		n	±	0	n	T#	±	1		±1,			#	00		#	~	n	#		IF	۶L		1 _N	1	7	m	×	D			7	С
	+	14	1	1	+	+	+		1	+	4	-	-	-	14	Ŧ	+	+	14	4	~	op	-	-	٣	+	+	-	-	-	-	100	+	Ŧ	ť	+	+	-	4	-		P	-	F	+	4		-	4		-	~		-	~	-	-	╞	Т	~	~	┢─	+-	+		-	1-	+	+		_
						4	L											1							L		1				_			1		1	-			_		_			1		-				_			_	_	_			Ļ		•	N	1		•	•					С
					cc	4	3																																																			•		•	•	N		•	•	•	•			z	с _
					CE	7	3				ſ	DE	8	3												Ī											ļ											ł										•	1	•	•	N	•	•	•	•	ŀ	•	• :	z	•
							L		-	1	4	4	_					-	_	_	_							-		_															1			_	_		_		-	_	_		_	_	-	-				-	_	_	-				
+	┝	╀	+		┝	-	-	-	+	+	+	+	-		$\left \right $	$\left \right $	+	+	+	-	-	-	-	$\left \right $	╞	+	+	+	-	-		╞	ł	+	╀	+	+	+	-	-		╞	$\left \right $	╀	+	+	+	+	+	-	-	+	-	-	-	_	-	•	1.	•	•	N	+-	•	•	•	•		+	z z	•
89 3 27	5 3	89 37		3	89 2D		4					39 ID	31	4	89 39		1		39 3 2F	31		89 3F		5																					T				39 : 23	30	3	89 33	33	3				•	1	•	•	N	1	V	•	•	•	•	•	z	С
47 1) 2	57	711	2	40	4	3	╞	+	+		D	6	3	59	9 6	1	3 4	ŧF	6	4	5F	7	4	┞	+	+	+		_	-	$\left \right $	+	+	+	+	-	+	-	-	_	-	-	┝	╀	+	+	+	43	5	2	53	8	2	_	_	-	•	+		•	N	1	•	•	•	•		-	z	•
42 1	2 3	42	213	3			4						8	4			1		12	8				5																							ł		42 43	7	3	42 53	10	3														ļ			
47	╀	57	1	-	4D EE	7	3	ł	+	\dagger	-+-	E E	8	3	59	-	t		¥F	1	-	5F	-		ł	1	+	+	-	-		ŀ	ł	T	1	1	+	+		-	-	-	F	\uparrow	╉	\dagger	+	-	+3	-	-	55		_	-	_		ŀ	t	•	•	N	1	•	•	•	•	•	•	z	•
	T		L							1	1	1		_		Ļ		+	1	_					Ļ	ļ	ļ	1							1		Ţ	1						-	Ţ	1	-	1	-	_	_		_	_				•	ŀ	•	•	N	+-	+	•	•	•			z z	•
-	+	1	+	1	1	1	1	1	+	+	4	4	_	_	1	+	+	4	4	_	-	_	-	-	╀	+	+	4	_	_	-	┢	+-	+	+	+	+	+	-	-	-	L	⊢	╀	+	+	4	4	4		-	-+	-	\rightarrow	-		-	Ľ	+	-+	~		+-	-+-	-	-	+	1	+	4	-
						6													22									3		8	3																													•	•			•	•	•			•	•	•

			-					-			—		-	_	res			iou	е т—									
Symbol	Function	Details	11	MP		IM	1M		A	·		DIR		DI	R,b	-		-	+	NR,	_	(DI	R)	(DI	R,X) ((DI	۲), (
			ор	n	# o	p r	n ‡	‡ 0	ρn	#	ор	n	# 0	2P	n ‡	‡ 01	n	#	ор	n	# c	op n	#	ор	n ‡	# 0	n qc	1
LDA (Note 1,2)	A _{CC} ← M	Enters the contents of the memory into the accumulator			4		2 2					4 6					2 7	3			4	32 6 12 8 32	3			3 4		
LDM (Note 5)	M ← IMM	Enters the immediate value into the memory							T		64	4	3			7.	4 5	3	T		1	T				+	t	t
LDT	DT ← IMM	Enters the immediate value into the data bank register				89 5 22	5 3	3	T	T					1	T		T					Π			T	T	Ť
LDX (Note 1, 2)	X ← M	Enters the contents of the memory into index register X			. A	12 2	2 2	2			A6	4	2						86	5	2						T	T
LDY (Note 1, 2)	Y ← M	Enters the contents of the memory into index register Y			A	10 2	2 2	2			A4	4	2			B	4 5	2								T		T
LSR (Note 1)	$m=0$ $0 \rightarrow b_{15} b_{0} \rightarrow C$ $m=1$ $0 \rightarrow b_{7} b_{0} \rightarrow C$	Shifts the contents of the accumulator or the contents of the memory one bit to the right. The bit 0 of the accumulator or the memory is entered into the C flag "0" is entered into bit 15 (bit 7 when the m flag is "1").							2 4	2		7	2			51	5 7	2										
MPY (Note 2,11)	B, A⊷A * M	Multiplies the contents of accumulator A and the contents of the mem- ory The higher order of the result of operation are entered into accu- mulator B, and the lower order into accumulator A				19 19 19	63	3			89 05	18	3			89		93				89 20 2		89 2 01	21 3	3 8		2 3
MVN (Note 8)	Mn+ı⊷Mm+ı	Transmits the data block The transmission is done from the lower order address of the block											T			T	T				T				T	T		T
MVP (Note 9)	Mn—ı•Mm—ı	Transmits the data block Transmission is done form the higher order address of the data block					T											T			T				T	T		T
NOP	PC←PC+1	Advances the program counter, but performs nothing else	EA	2	1	t		1	1	t			1	1	╈	t	t	1	F	H	+	+	\square		+	t	+	+
ORA (Note 1,2)	A _{CC} ←A _{CC} VM	Logical sum per bit of the contents of the accumulator and the contents of the memory is obtained. The result is en- tered into the accumulator				12 4	2 2				05 42 05	4 6	2				2 7	2			4	26 28 2	3				121	
PEA	M(S)←IMM ₂ S←S−1 M(S)←IMM ₁ S←S−1	The 3rd and the 2nd bytes of the instruction are saved into the stack, in this order																								Ť	Ì	T
PEI	$\begin{array}{c} M(S) \leftarrow M((DPR) + IMM \\ +1) \\ S \leftarrow S - 1 \\ M(S) \leftarrow M((DPR) + IMM) \\ S \leftarrow S - 1 \end{array}$	Specifies 2 sequential bytes in the direct page in the 2nd byte of the instruction, and saves the contents into the stack																										
PER	$\begin{array}{l} EAR{\leftarrow}PC{+}IMM_2,IMM_1\\ M(S){\leftarrow}EAR_H\\ S{\leftarrow}S{-}1\\ M(S){\leftarrow}EAR_L\\ S{\leftarrow}S{-}1 \end{array}$	Regards the 2nd and 3rd bytes of the instruction as 16-bit numerals, adds them to the program counter, and saves the result into the stack																								T		
РНА		Saves the contents of accumulator A into the stack																										
РНВ	m=0 M(S)+-B _H S+-S-1 M(S)+-B _L S+-S-1 m=1 M(S)+-B _L	Saves the contents of accumulator B into the stack																										

			-					_	-			-		_					_			_		-		_	٩d	dre	es	sır	ng	m	od	le					-													-							-	7		F	Pro		ss	or	sta	itu	s re	egi	ste	er	-
L(I	DIR)lı	.(C	DIR).Y	Ţ	A	3S	Т	A	35	.b	A	BS	5.X	d	AE	35	Y.	Г	AE	3L	T	AE	BL.		-		-		_	_		- T-	AB	S.X	5	s	T۲	<		RE	L	Г	DIR	1.b.	R	AE	BS,t	o.R	Γ	SI	R	1	SF	٦),	γĺ	в	LK	;	10									3			C
ор																																																														IP	4	-	-	_		+	1	-	1		
A7										7	-		BD															f	Ŧ	-	-	-	f	f	+	+	-	+	-	-	F	f	ſ	f	+	-+	-	op	-				2					+	-	-	•	1	-	-t-		•		-	-+-	-	-	z	ł
42		3 4	12	13		4	2 6	1					42	8		4	42			4:	2 8		5 4	42																											42	2 7	3	3 4	21						•					Ī						2	
A7	+	E	37		-	AI 90	-	5	1	-	-	_	BD 9E	+	1	-+	B9			A	F	+		BF	-			$\frac{1}{2}$	+	╎	-		$\left \right $	╞	+		-	-	-		╞	-	+		+	-	-	-			A3	3	-	B	13	-	-	+		-	•	•	+	•	•	•	•	•	•	•	•	•	•
	+	╎					+	+			-	-	╞		╎		-		$\left \right $		+	1	+						ł		-			+	ł			+			╞	-		+	+	-	-	-				t		+	+	-	+	+		-	•	•	+	•	•	•	.	1.	+	•	•	•	•
1		t				A	•	1	3		-		-		T		BE	6	3	ſ	t	T				-		ſ				~		t	ļ						╞						-					ľ			Ţ	-	-	1		-	•	•	1	•	N	•	•	•	+	•	•	z	-
		Ť				A		4	3				вс	6	1	3				ſ	T	T	1							1				t	T	1					-				1							ľ	Ì	t	T		1	1		-	•	•		•	N	•	•	•	1	1	•	Z	
		T		-		41		7	3				5E	8	1	3					T	T						ſ	T					T	Į						ſ				T			-					T	Ť	T	1	1	1			•	•	1	•	0	•	•		·	•	•	z	C
89 07	24	8 8	39 7	25	3	8 01	91	8	4				89 1D			4	89 19	20	4	8 01	92	0	5 8	89 1F	21	5																									89 03	9 19 3	9 3	8 8		22	3				•	•		• [N	•	•		·	•	•	z	0
		T				ſ	Ì		T						T				ſ	T			T											T					1														T					54	7 +	3	•	•		·	•	•	•	•	·	•	•	•	
1		t							1	-							-				1	t	+						+					t	t	+	1		_				t	1	+	+			-			t	t	t		1		44	9	3	•	•	1.	•	•	•	•		•	•	•	•	
+	-	+	+		-		-	+	+	-	_			$\left \right $	-	+	-		-		+	+	+	-			-		-		-	-			+	+		+	-				-	+	+	-	-		-			+	+	+	+	+	-	2	×	7	•	.		•	•	•	•			•		•	ŀ
- {	0	1			L								1D		Ł						1		1				ļ																										2								•	•		•	N	•	•		•	•	•	z	
42 07	2	1	7	13	3	01		-	+	_	_		42 1D				42 19		4	01		5		42 1F	9	5				+	_			\downarrow	+		-	F4	-	2			Ļ	+	+	_			-		42	3	3	1	3	0	3	4	_		•		+	•	•	•			+		•	•	
																																						F4	5	5																																	
											1																											D4	5	2																					•	•		•	•	•	•		•	•	•	•	
																																					1	52	5	3																					•	•		•	•	•	•	•	•	•	•	•	
			1																																			48	4	1																					•	•		•	•	•	•		•	•	•	•	
																																						42 48	6	2																					•	•		•	•	•	•		•	•	•	•	

.

4

													Add	dres	sin	ıg n	od	e								
Symbol	Function	Details	<u> </u>	ЛР	_	IM	-		A			IR	-	IR,I	-	DIF		<u> </u>	IR,Y	-	DIF		-	R,X)		DIR),
PHD	M(S)←DPR _H S←S−1 M(S)←DPR _L S←S−1	Saves the contents of the direct page register into the stack	op	n ‡	# 0j	ρr	1 #	ор	n	#	ор	n #	ор	n	# (xp n	#	op	n‡	‡ 0)	n	#	op	1#	op	n
PHG	M(S)←PG S←S−1	Saves the contents of the program bank register into the stack		T	t	1		T									T		1	t	T			+-		
РНР	$M(S) \leftarrow PS_{H}$ $S \leftarrow S - 1$ $M(S) \leftarrow PS_{L}$ $S \leftarrow S - 1$	Saves the contents of the program status register into the stack																								
РНТ	M(S)←DT S←S−1	Saves the contents of the data bank register into the stack																		T						
РНХ		Saves the contents of the index register X into the stack																								
РНҮ		Saves the contents of the index register Y into the stack																								
PLA	$\begin{array}{l} m=0\\ S \leftarrow S+1\\ A_{L} \leftarrow M(S)\\ S \leftarrow S+1\\ A_{H} \leftarrow M(S)\\ m=1\\ S \leftarrow S+1\\ A_{L} \leftarrow M(S) \end{array}$	Restores the contents of the stack on the accumulator A																								
PLB	$ \begin{array}{l} m=0\\ s \leftarrow s+1\\ B_{L} \leftarrow M(s)\\ s \leftarrow s+1\\ B_{H} \leftarrow M(s)\\ m=1\\ s \leftarrow s+1\\ B_{L} \leftarrow M(s) \end{array} $	Restores the contents of the stack on the accumulator B																								
PLD	S←S+1 DPRL←M(S) S←S+1 DPRH←M(S)	Restores the contents of the stack on the direct page reg- ister																		T						
PLP	S←S+1 PS _L ←M(S) S←S+1 PS _H ←M(S)	Restores the contents of the stack on the processor status register																		T						
PLT	S+S+1 DT+M(S)	Restores the contents of the stack on the data bank reg- ister			T	+		t			1	T			1	T	1		+	t		Π		+	T I	Ħ
PLX		Restores the contents of the stack on the index register X																								
	x=1 S←S+1 X _L ←M(S)																									

Γ								-	-	-			-		-					-			-			-		A	dd	re	ss	ine		nc	d	Э					_	-																					_		Pre	000	es	or	sta	atu	s r	ea	ust	er	
L	חח	B)	h	(DI	R)	۲Ì	-	B	s	T	AF	35	b		B	ŝ	x	A	BS	5.Y	T	A	ві		A	B	_,X										BS	(X)	Γ	SI	гк		F	٩E	1	Т	DIF	۱.	R	AF	ast	n R	T	s	R	T	SE	R),	vT	F		-	10								4			1	Tr
op																																																															-	1F	-									z	
op	n	+	op	+	+	+	op	n	++	10	P	n 	++	lot	1	+	++	op	n	+		19	<u>n</u>	++	op		+	-	φ.	-	++	19	1	4	++	ор	n	+#	10	3 4	+	# •	op	n	+	- 10	P		+	ор	n	++	0		+	+ 10	- q	n -	+	p	-	+	-	r		+	_	<u>+</u>				-+			
																											1												OE	3	4	1																					•	1	•	•	•	•	•		•	•	•	•	•
-	-		╞		+	-	-				+	-			+	+	-	-	-	+	+	+		-	$\left \right $		$\frac{1}{1}$	+		_				+	-	_		-	48	3 3	3	1					+	+	-		-		$\left \right $	+	+	╉	-	+	+	-	-	-	•	•	•	•	•	•			•	•	•	•	
-	-		-						$\left \right $	ł	+	-			+	+	-		-		t	+		-	╞	1	ł	+	+	-		+	+	+	-	_		-	08	3	4	1			-	+			-		-		╎		+	+	+	+	+			-	•		·	•	•	•	•	+	•	•	•	•	•
						_						_						-	-					_																											_																								
				-				_								-	_	-	-	ļ		-		_									-		_			-		3 3									_					-	+	-		-		_		_	•	ľ		•	•						•	•	
																																							D		4																						•	•		•	•	•	•		-	•	•	•	•
																																							5/		4	1																					•		•	•	•	•	•		•	•	•	•	
																																							68	3	ō	1																					•		•	•	N	•	•		•	•	•	Z	
																																							42	2	7	2																					•		•	•	N	•	•		•	•	•	z	
																																							28	3 5	5	1																					•	•	·	•	•	•	•		•	•	•	•	
	_																																						28																									T	T				-	-1	ck	~			- -
																																1							AE		1	1																					•	•		•	N	•		1	•	•	•	z	ŀ
																																							F	4 5	5	1																					•	•	•	•	N	•	•	•	•	•	•	z	•

APPENDIX B Series MELPS 7700 Machine Instructions

			L										4	dd	res	sin	g n	nod	е					_				
Symbol	Function	Details	-	IM	-		им	1	_/	-1	+	DI	r		R,b		-	R, X	-	DIR,		(D		+		-	(DI	-
PLY		Restores the contents of the stack on the index register Y	op	n	#	cp	n ‡	‡ 0	p r	1 #	ot) n	#	op	n 4	# c	p n	#	op	n	#	op r	n #	or	n	#	n qc	+
PSH (Note 6)	M(S)←A, B, X ··	Saves the registers among accumulator, index register, direct page register, data bank register, program bank register, or processor status register, specified by the bit pattern of the second byte of the instruction into the stack																										
PUL (Note 7)	A, B, X…←M(S)	Restores the contents of the stack to the registers among accumulator, index register, direct page register, data bank register, or processor status register, specified by the bit pattern of the second byte of the instruction																										
RLA (Note 13)	m=0 n bit rotate left $f(1) = 1$ $m=1$ n bit rotate left $f(2) = 1$ $f(2) = 1$	Rotates the contents of the accumulator A, n bits to the left				49	6 3	3																				
ROL (Note 1)	$m=0$ $(b_{15} b_{0} + C)$ $m=1$ $(b_{7} b_{0} + C)$	Links the accumulator or the memory to C flag, and rotates result to the left by 1 bit						1	2 4	2 1	1	5 7	2			3	6 7	2										
ROR (Note 1)	m=0 $f(x) = 0$ $m=1$ $f(x) = 0$ $f(x) = 0$	Links the accumulator or the memory to C flag, and rotates result to the right by 1 bit							2 4	2		5 7	2			7	67	2										
RTI	$\begin{array}{c} S \!$	Returns from the interruption routine	40	11	1																	-						
RTL	$\begin{array}{l} S \leftarrow S+1 \\ PC_L \leftarrow M(S) \\ S \leftarrow S+1 \\ PC_H \leftarrow M(S) \\ S \leftarrow S+1 \\ PG \leftarrow M(S) \end{array}$	Returns from the subroutine The contents of the program bank register are also restored	6E		1																							
RTS	S←S+1 PC _L ←M(S) S←S+1 PC _H ←M(S)	Returns from the subroutine The contents of the program bank register are not restored	60	5	1																						T	T
SBC (Note 1,2)	A _{CC} , C←A _{CC} −M−C	Subtracts the contents of the memory and the borrow from the contents of the accumulator					2 2					2 6	2			4		5 2 7 3	1				6 2 3 3		1			

г

<u> </u>		-							_	-				-			_	_			_					Ad	ldr	es	SI	ng	1 ח	no	de	,			_				_		_		_		_	_			_						_				Т			roo	ces	sso	or :	sta	tus		equ	ste	 er	7
L(DIF			DIR)	Y	F	B	s	Ľ	AB	S.	b	A	B	5.>	2	A	BS	S.Y	Ţ	A	BL		A	BL	_	-	~	-	_		_				BS	(X)	Г	S	тκ			RE	L	Т	DI	7,b,	8	A	BS,	.b.F	1	5	SR		(S	R)	I,Y	1	BL	ĸ	1	0	_	8		7		5	T	-		-T	1	0
op n	-			_		_		-	-	-	_	1	-		-+	_		-				_		_	-	-	_		_	_			_		_	-	+			_	-			-+-							-+-			-	_	_	·	-	-			_	PL	_	╈			_	+	+-		+	z	-
	-	-		-	~	-	-	f	+	+	-	-	H	Ŧ	-	-	-	F	Ŧ	+	+	-	-	-	1	ť	+	+	-	-	ŀ	+	-	-	<u> </u>	1			5		-		F	+	+	-	-	1	+	+	Ŧ	-	-	-	-		[-	Ŧ	+	-+-		•	<u> </u>	+			•			+-	-+-	z	
																																							5	-																							•					•					2	
+	_	-	_	_	_	_	_		_	-		L	L						+	+	_	_	_		L	Ļ	+	_	_	_	1	4	_		L	L	-	4	4	_		L	-	+	_	_		_	-	-	+	_	_				_	_	+	+	+	4			1	4	_			1	4	4	_	
																								1													E	211	2+	2																						•	•	•		•	•	•	•		•	•	•	
																																						- h	4 +4		1																					ıt	be	cc	m	es	ıt	s v	alı		А	nd	f P Ith	
																																																														•	•	•		•	•	•	•		•	•	•	•
					2E	7	3					3E	8		3																																															•	•	•	1	N	•	•	•		•	•	z	c
					6E	7	3					7E	8		3																																															•	•	•	1	N	•	•	•		•	•	z	c
																																																														Va	alu	es	av	vec	n t	1 5	tac	zk				
																																																														•	•	•		•	•	•	•	•	•	•	•	•
											_																																																			•											•	
E7 10 42 12 E7		- 1	- 1	- {								1	1	1	1		1					J	FF 42 FF																															2				í				•	•	•	ľ	V	v	•	•		•	•	z	с

1

					_						_		Ac	idr	ess	sing	m	ode	e								
Symbol	Function	Details	IN	1P	Τ	IM	м		A		C	DIR	1	DII	R,b	1	DIR	,х	D	IR,	1	DI	R)	(D	IR,X) (DIR)
			op I	n ‡	# 0	pr	#	ор	n	#	ор	n	# 0	p	n #	t or	n	#	op	n	# 0	2 n	#	ор	n ‡	‡ or	p n
SEB (Note 5)	Mb←1	Makes the contents of the specified bit in the memory "1"											0	4 8	3 3												
SEC	C←1	Makes the contents of the C flag "1"	38	2 1	1												L										
SEI	(⊷1	Makes the contents of the I flag "1"	78	2 1	1											L											
SEM	m⊷1	Makes the contents of the m flag "1"	F8 :	2 1	1																					\perp	\square
SEP	PSb←1	Set the specified bit of the processor status register's lower byte ($\ensuremath{PS}\xspace_L$) to "1"			E	23	2																				
STA (Note 1)	M←A _{CC}	Stores the contents of the accumulator into the memory									1	6				L	27					2 9	3				17 29 1
STP		Stops the oscillation of the oscillator	DB 3	3 1	1	T	T	T			1	1	T	1		T					T	T	T		T	1	T
STX	M⊷X	Stores the contents of the index register X into the memory		T	T	T	T	Γ			86	4	2	1			Γ		96	5	2	T	T		T	T	
STY	M←Y	Stores the contents of the index register Y into the memory				T	T				84	4	2	1	T	94	5	2									
TAD	DPR←A	Transmits the contents of the accumulator A to the direct page register	5B	2 1	1	T							T		T	T											
TAS	S←A	Transmits the contents of the accumulator A to the stack pointer.	1B :	2 1	1	T		T	T				T	T	T	T	1				T						
ТАХ	X←A	Transmits the contents of the accumulator A to the index register X	AA :	2 1	1																			Π		T	
TAY	Y←A	Transmits the contents of the accumulator A to the index register Y.	A8 :	2 1	1	T	T																				
TBD	DPR←B	Transmits the contents of the accumulator B to the direct page register	42 5B	4	2		T																			T	
TBS	S←B	Transmits the contents of the accumulator B to the stack pointer.	42 1B	4	2	T										T					T					T	
твх	X⊷B	Transmits the contents of the accumulator B to the index register X	42 AA	4 2	2								T			T											
ТВҮ	Y⊷B	Transmits the contents of the accumulator B to the index register Y	42 A8	4 2	2											T											
TDA	A+-DPR	Transmits the contents of the direct page register to the accumulator A	7B :	2 1	1																						
TDB	B⊷DPR	Transmits the contents of the direct page register to the accumulator B	42 7B	4	2																						
TSA	A⊷S	Transmits the contents of the stack pointer to the accumulator A	3B	2	1																						
TSB	B⊷S	Transmits the contents of the stack pointer to the accumulator B	42 3B	4	2																						
TSX	X⊷S	Transmits the contents of the stack pointer to the index register X.	BA	2	1																						
ТХА	A←X	Transmits the contents of the index register X to the accumulator A	8A	2	1																						
тхв	B⊷X	Transmits the contents of the index register X to the accumulator \ensuremath{B}	42 8A	4	2																						
TXS	S⊷X	Transmits the contents of the index register X to the stack pointer.	9A	2	1																						
ТХҮ	Y⊷X	Transmits the contents of the index register X to the index register Y	9B	2	1																						
ΤΥΑ	A⊷Y	Transmits the contents of the index register Y to the accumulator A	98	2	1		T						T								I				\square		
түв	B←Y	Transmits the contents of the index register Y to the accu- mulator B	42 98	4	2										T						I						
түх	X⊷Y	Transmits the contents of the index register Y to the index register X	BB	2	1			T								I						I					
WIT		Stops the internal clock	СВ	3	1	T	T	Γ					T	J		T						I			LT		
XAB	A≒B	Exchanges the contents of the accumulator A and the con-	89	6	2	T	T	T		Γ		11	T	T	T	1			Γ	[]	T	ſ			ΙT	Γ	

	-						-		-		-			_	-			_	-		_				-			A	do	ire	ess	sin	g	m	od	е																												Γ	_	Pro	000	ess	sor	st	atu	ıs r	eg	ust	er	_
L(C	IR.		(DI	R),	Y	A	B	3	1	١B	S,	b	A	B	IS,	х	T,	AE	s	Y,	Τ	A	BL		A	B	L,)	ĸ	(4	В	S)	L	.()	٩B	S)	()	١B	S,X)	s	Tł	<	Γ	RE	EL	T	DI	R,b	,R	A	BS	,b,	R		SF	7	(SI	R),	Y	E	3L	<	10	2	9	8	7	6	5	; .	4	3	2	1	T
xp r	#	: 0	p r	1	‡ c	p	n	#	0		1	#	ор		n	#	6	p	n	#	0	p	n	#	op	n		#	ор	n	#	=	p	n	#	or	1		‡ c	pp	n	#	lop	n		#	op	n	#	or	o r	1	#	ор	n	#	0	p	n	#	ор	n	#	Г	IF	2		N	v	' n	n :	x	D	I	z	te
Ť	T	ľ	1	T	+	Ì							ŀ	t	1		t	1		-			1		-	T	I		-		T	T						T	T	1				1	T					T	T	T			T	T	T	-	1			-		•		•	•	•	-	-1-	-+-			•		
	1	+		1	1					t				t	1	_	t	+	-		t	1			-		Ì		-		t					L		t	t		_		F	T	1	1		_		T			_			1						-				•	•	•	•			•	•	•	ŀ	
+	1			+	4	+	_	_		+	+	_	-	Ļ	_	_	ļ	\downarrow	_	-	-	+	_		-	-	+	_	_		-	+				-		+	-	-		-			+	-		_	_	-		+	_	_		-	+	_	+	_			-	•	+	+	•	•	-		+		•	1	•	+-
+	t	╎	+	+	+	+	-		$\left \right $	+	+	_	╞	+	+		$\left \right $	+	-	-	+	+	-			╞	+	-		-	╀	╎	+		-	$\left \right $	+	+	╀	+			┝	+	+	┥	-	_	-	┝	t	+	-	-	$\left \right $	┢	╎	+	+	-		-	┝	.	-	-+-	•		1	1	1	•			1	1
37 1	0 2	0	71	1	2 18		5	3	╞	+	+	-	90		5	3	9	a	5	3	8	F	6	4	95	. 7		4	-	_	╞	+	-		-	-	$\left \right $	╀	╀	+		-		+	+	+	-	_	-	╞	+	+	-	83	5	2	0 9	3	8	2		-	-	-	+	-	•	•	om	ies	"1					Т
		1							1				42								Ł																1							Į									- (1		í.	1	- 1	1			ļ											-		ļ
12 1 37		9	7		8	D	4	-			+	-	90			-	9	9	<u>_</u>	-	8	F		_	9F		1	_	_								1	+	-						+		_			Ļ		+	_	83	ľ	3	9	3				-	-	L	\downarrow	+	_		Ļ	-	4	_	_			+
+	+	╀	+	+	-	E	5	3		+	+	-	┝	+	+		+	+	_	-	+	+	+		-	+	+	-			+	+	-		-	╞	$\frac{1}{1}$	+	+	-		-	┝	+	+	┥	-		-	┝	+	+	-		-	+-	+	┦	+	-		-	-	ŀ	-	+	•	•	+	+	+	•	•	•	•	+
1		1		t		С				Ţ	1	-		t			T	1	_		t					t	t	_	-			t		_		t	ł		1		_		ľ	T			-			t	t	1				ľ	T	1						•		•	•		-		~	-+-	•	•		t
																								-				ļ			ľ	ſ		-																														•		•	•	•	•	-	·	•	•	•	•	
1	1	t	Ţ									-					T					1			L		ļ		_		t	ļ		_				1					L		1	1				Ĺ	t						I	1					L		-	_	_	·	4	+-	-	-+-	-	•	-	
																																									_																											N					•	•	z	
																															l																																	ŀ		•	•	N	ŀ		•	·	•	•	z	
		T															T	1			T	T		_								T				Γ			T		_																							•		•	•	•	•		•	•	•	•	•	
1	T	t	T	T	T	1				T	1		t			-	T	1			T	T	1	_	ŀ	T	T				T	T				t	T	T	1	1		T	T	T	T	1			ŀ	T	T	1				ľ	T	1	1					ŀ		•	•	•	ŀ		•	•	•	•	•	
1			1	1	+	1			ŀ	t	1	-		1			ł	1			ł	+		_		T	t				t	t		_		t	+	1	t			╞		T	1					t	t			-		1	t	1	1				ŀ	ŀ	1	•	•	N	ŀ	1	•	•	•	•	z	:
t	T	t	t	t	t	1			ſ	t	T	-		T	1		T				T	T				T	T					T				ſ	T		T					1	1					ſ		1					T	1						•	1	•	•	N	•		•	•	•	•	z	1
	Ī	t	Ì	T	T	1		_		T		-	F	Ì			t				T	Í	1			T	T		-		T	t	1			T	ľ	t	T				F		T			-		T	1						T	1			_			•	ſ	•	•	N	ŀ		•	•	•	•	z	
T	T	ł	T	T	1					T							T	1			t	T				T	T		-							T	t	1							1					t	1				ſ		T							•	ł	•	•	N	ŀ	t	•	•	•	•	z	
	T			T						t	1		t						_		t				F	T	1				-	t				t	t		T		_				1			_		t		1					t	1							_	_	•	N		_	_	•		•	_	
ł																																																		ł														ŀ	1	•	•	N	•		•	•	·	•	z	
		T						_													Ī																																											•	•	•	•	N	•		•	•	•	•	z	
T		t			T	1				T	1		t	T		-	Ī	1	_		T	1	1			1	T					T				T	Ī					ſ	T		T					t						T	T							•	ſ	•	•	N	ŀ	1	•	•	•	•	z	Ì
t	T	t	t	T	T	1	-		ľ	T	1		ľ				T				T											1		_		T	T		T			ſ	T		1					T	ľ	T				Ī	T	T		-				•	1	•	•	N	•	1	•	•	•	•	z	:
t	t	t	t	t	t	1			t	t	1		t	t			t		-		t	1	1	_		T	t				T	T				t	t	+	T			ſ	ſ	1	t	1				T	t	1		-		T	t	1		-			T	•	1	•	•	•	•	1	•	•	•	•	•	t
t	t	t	+	+	+	+			t	t	+		f	t			t	1			t	+			ŀ	t	t				t	t			-	t	t		+			t	t	T	+	1	-				t			-			╞	+	-			-	ŀ	•	•	•	•	N	•	+	•	•	•	•	z	+
+	\dagger	\dagger	+	\dagger	+				╞	+		-	-	+			t	-		-	$\frac{1}{1}$	+			╞	-	+	-		-	t	+			-	+	t	+	+	+		ŀ	1	+	+	+	-		$\left \right $	+	t	+		-	-		\dagger	+	+	-	-		-	1.	·	•	•	N	ŀ	+	•	•	•	•	z	+
+	+	+	+		+	+	_		-	+			$\left \right $	+	-		$\left \right $		_	-	$\left \right $	+			-		+	-		-	-	+	-		-	$\left \right $	ł	+	+			-	$\left \right $	+		-	-	-	$\left \right $	+	+	+	-			+	+	+		-		-			•	•	•	N	•	+	•	•	•	•	z	+
+	+	╞	+	+	+	+	-		+	+	+		╞	+				+		-	+	+	+			-	+	-		-	+	╀	-		-	+	+		+	+		-	$\left \right $	$\left \right $	+	+	_		-	-		+	-	_		-	$\left \right $	+		-	-	$\left \right $	-		•	•	•	N		+	+	•	•	•	z	+
+	-	+	+	+	+	-	_			+	+		╞	+				+				+	+		$\left \right $		+	-			╀	+	-			$\left \right $		+	+	-		-	$\left \right $	-	+	-	_	-		+	+	+			-	+	╀	+	1		_				+		•	-	+	+	.	•	•	•		+
\dagger	+	t	+	╉	╉	+	-		t	t	+	-	t	\dagger		-	t	+		-	t	+	1	_	t	$^{+}$	\dagger	-		-	+	$^{+}$	-	_	1-	t	t	+	+	-	_	t	t	+	+	+	-	-	t	t	t	+	-	ŀ	1	t	+	+	-	-	-	t	\uparrow								•					

.

The number of cycles shown in the table is described in case of the fastest mode for each instruction. The number of cycles shown in the table is calculated for $DPR_{L}=0$. The number of cycles in the addressing mode concerning the DPR when $DPR_{L}=0$ must be incremented by 1. The number of cycles shown in the table differs according to the bytes fetched into the instruction queue buffer, or according to whether the memory read/write address is odd or even It also differs when the external region memory is accessed by BYTE="H"

Note 1. The operation code at the upper row is used for accumulator A, and the operation at the lower row is used for accumulator B

Note 2. When setting flag m=0 to handle the data as 16-bit data in the immediate addressing mode, the number of bytes increments by 1

Note 3. The number of cycles increments by 2 when branching

- Note 4. The operation code on the upper row is used for branching in the range of -128~+127, and the operation code on the lower row is used for branching in the range of -32768~+32767
- Note 5. When handling 16-bit data with flag m=0, the byte in the table is incremented by 1

Note 6.

Type of register	A	В	Х	Y	DPR	DT	PG	PS
Number of cycles	2	2	2	2	2	1	1	2

The number of cycles corresponding to the register to be pushed are added. The number of cycles when no pushing is done is 12 i₁ indicates the number of registers among A, B, X, Y, DPR, and PS to be saved, while i₂ indicates the number of registers among DT and PG to be saved

Note 7.

Type of register	A	В	Х	Y	DPR	DT	PS
Number of cycles	3	3	3	3	4	3	3

The number of cycles corresponding to the register to be pulled are added. The number of cycles when no pulling is done is 14 i, indicates the number of registers among A, B, X, Y, DT, and PS to be restored, while i₂=1 when DPR is to be restored.

Note 8. The number of cycles is the case when the number of bytes to be transfered is even

When the number of bytes to be transfered is odd, the number is calculated as,

 $7 + (1/2) \times 7 + 4$

Note that, (i/2) shows the integer part when i is divided by 2

Note 9. The number of cycles is the case when the number of bytes to be transfered is even

When the number of bytes to be transfered is odd, the number is calculated as,

 $9 + (i/2) \times 7 + 5$

Note that, (1/2) shows the integer part when 1 is divided by 2

Note 10. The number of cycles is the case in the 16-bit+8-bit operation The number of cycles is incremented by 16 for 32-bit+16-bit operation

Note 11. The number of cycles is the case in the 8-bit×8-bit operation. The number of cycles is incremented by 8 for 16-bit ×16-bit operation.

Note 12. When setting flag x=0 to handle the data as 16-bit data in the immediate addressing mode, the number of bytes increments by 1

Note 13. When flag m is 0, the byte in the table is incremented by 1

Symbol	Description	Symbol	Description
IMP	Implied addressing mode	\forall	Exclusive OR
IMM	Immediate addressing mode	_	Negation
Α	Accumulator addressing mode	←	Movement to the arrow direction
DIR	Direct addressing mode	Acc	Accumulator
DIR, b	Direct bit addressing mode	Acch	Accumulator's upper 8 bits
DIR, X	Direct indexed X addressing mode	Accl	Accumulator's lower 8 bits
DIR, Y	Direct indexed Y addressing mode	А	Accumulator A
(DIR)	Direct indirect addressing mode	A _H	Accumulator A's upper 8 bits
(DIR, X)	Direct indexed X indirect addressing mode	AL	Accumulator A's lower 8 bits
(DIR), Y	Direct indirect indexed Y addressing mode	в	Accumulator B
L(DIR)	Direct indirect long addressing mode	Bн	Accumulator B's upper 8 bits
L (DIR), Y	Direct indirect long indexed Y addressing mode	B∟	Accumulator B's lower 8 bits
ABS	Absolute addressing mode	х	Index register X
ABS, b	Absolute bit addressing mode	Х _н	Index register X's upper 8 bits
ABS, X	Absolute indexed X addressing mode	XL	Index register X's lower 8 bits
ABS, Y	Absolute indexed Y addressing mode	Y	Index register Y
ABL	Absolute long addressing mode	Yн	Index register Y's upper 8 bits
ABL, X	Absolute long indexed X addressing mode	YL	Index register Y's lower 8 bits
(ABS)	Absolute indirect addressing mode	S	Stack pointer
L (ABS)	Absolute indirect long addressing mode	PC '	Program counter
(ABS, X)	Absolute indexed X indirect addressing mode	PCH	Program counter's upper 8 bits
STK	Stack addressing mode	PCL	Program counter's lower 8 bits
REL	Relative addressing mode	PG	Program bank register
DIR, b, REL	Direct bit relative addressing mode	DT	Data bank register
ABS, b, REL	Absolute bit relative addressing mode	DPR	Direct page register
SR	Stack pointer relative addressing mode	DPRH	Direct page register's upper 8 bits
(SR), Y	Stack pointer relative indirect indexed Y addressing		Direct page register's lower 8 bits
	mode	PS	Processor status register
BLK	Block transfer addressing mode	PSH	Processor status register's upper 8 bits
С	Carry flag	PSL	Processor status register's lower 8 bits
Z	Zero flag	PSb	Processor status register's b-th bit
1	Interrupt disable flag	M(S)	Contents of memory at address indicated by stack
D	Decimal operation mode flag		pointer
x	Index register length selection flag	Mb	b-th memory location
m	Data length selection flag	AD _G	Value of 24-bit address's upper 8-bit $(A_{23} \sim A_{16})$
V	Overflow flag	AD _H	Value of 24-bit address's middle 8-bit $(A_{15} \sim A_8)$
N	Negative flag	ADL	Value of 24-bit address's lower 8-bit $(A_7 \sim A_0)$
IPL	Processor interrupt priority level	ор	Operation code
+	Addition	n	Number of cycle
_	Subtraction	#	Number of byte
*	Multiplication	L L	Number of transfer byte or rotation
/	Division	I ₁ , I ₂	Number of registers pushed or pulled
\wedge	Logical AND		
\vee	Logical OR		

APPENDIX C

Series MELPS 7700 Instruction Code Table

INSTRUCTION CODE TABLE-1

	D ₃ ~D ₀	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
D ₇ ∼D₄ H€	exadecimal notation	0	1	2	3	4	5	6	7	8	9	A	В	с	D	E	F
0000	0		ORA		ORA	SEB	ORA	ASL	ORA	РНР	ORA	ASL		SEB	ORA	ASL	ORA
0000	U	BRK	A,(DIR,X)		A,SR	DIR,b	A,DIR	DIR	A,L(DIR)	PHP	A,IMM	Α	PHD	ABS,b	A,ABS	ABS	A,ABL
0001	1	BPL	ORA	ORA	ORA	CLB	ORA	ASL	ORA	CLC	ORA	DEC	TAS	CLB	ORA	ASL	ORA
0001	1	DFL	A,(DIR),Y	A,(DIR)	A,(SR),Y	DIR,b	A,DIR,X	DIR,X	A,L(DIR),Y	ULU	A,ABS,Y	Α	145	ABS,b	A,ABS,X	ABS,X	A,ABL,X
0010	2	JSR	AND	JSR	AND	BBS	AND	ROL	AND	PLP	AND	ROL	PLD	BBS	AND	ROL	AND
0010	2	ABS	A,(DIR,X)	ABL	A,SR	DIR,b,R	A,DIR	DIR	A,L(DIR)	r Er	A,IMM	Α	FLD	ABS,b,R	A,ABS	ABS	A,ABL
0011	3	вмі	AND	AND	AND	BBC	AND	ROL	AND	SEC	AND	INC	TSA	BBC	AND	ROL	AND
0011	5		A,(DIR),Y	A,(DIR)	A,(SR),Y	DIR,b,R	A,DIR,X	DIR,X	A,L(DIR),Y	320	A,ABS,Y	Α		ABS,b,R	A,ABS,X	ABS,X	A,ABL,X
0100	4	RTI	EOR	Note 1	EOR	MVP	EOR	LSR	EOR	РНА	EOR	LSR	PHG	JMP	EOR	LSR	EOR
0100			A,(DIR,X)	Note 1	A,SR		A,DIR	DIR	A,L(DIR)		A,IMM	Α	T HG	ABS	A,ABS	ABS	A,ABL
0101	5	BVC	EOR	EOR	EOR	MVN	EOR	LSR	EOR	CLI	EOR	РНҮ	TAD	JMP	EOR	LSR	EOR
0101			A,(DIR),Y	A,(DIR)	A,(SR),Y		A,DIR,X	DIR,X	A,L(DIR),Y		A,ABS,Y			ABL	A,ABS,X	ABS,X	A,ABL,X
0110	6	RTS	ADC	PER	ADC	LDM	ADC	ROR	ADC	PLA	ADC	ROR	RTL	JMP	ADC	ROR	ADC
0110			A,(DIR,X)		A,SR	DIR	A,DIR	DIR	A,L(DIR)	1 27	A,IMM	А		(ABS)	A,ABS	ABS	A,ABL
0111	7	BVS	ADC	ADC	ADC	LDM	ADC	ROR	ADC	SEI	ADC	PLY	TDA	JMP	ADC	ROR	ADC
			A,(DIR),Y	A,(DIR)	A,(SR),Y	DIR,X	A,DIR,X	DIR,X	A,L(DIR),Y	021	A,ABS,Y			(ABS,X)	A,ABS,X	ABS,X	A,ABL,X
1000	8	BRA	STA	BRA	STA	STY	STA	STX	STA	DFY	DEY Note 2	тха	РНТ	STY	STA	STX	STA
1000		REL	A,(DIR,X)	REL	A,SR	DIR	A,DIŔ	DIR	A,L(DIR)					ABS	A,ABS	ABS	A,ABL
1001	9	BCC	STA	STA	STA	STY	STA	STX	STA	TYA	STA	TXS	тхү	LDM	STA	LDM	STA
				A,(DIR)		DIR,X	A,DIR,X	DIR,Y	A,L(DIR),Y		A,ABS,Y			ABS	A,ABS,X	ABS,X	A,ABL,X
1010	A	LDY	LDA	LDX	LDA	LDY	LDA	LDX	LDA	TAY	LDA	ТАХ	PLT	LDY	LDA	LDX	LDA
		IMM	A,(DIR,X)	ІММ	A,SR	DIR	A,DIR	DIR	A,L(DIR)		A,IMM			ABS	A,ABS	ABS	A,ABL
1011	в	BCS	LDA	LDA	LDA	LDY	LDA	LDX	LDA	CLV	LDA	тѕх	түх	LDY	LDA	LDX	LDA
				A,(DIR)		DIR,X	A,DIR,X	DIR,Y	A,L(DIR),Y		A,ABS,Y			ABS,X	A,ABS,X	ABS,Y	A,ABL,X
1100	с	CPY	CMP	CLP	СМР	CPY	СМР	DEC	CMP	INY	CMP	DEX	WIT	CPY	CMP	DEC	CMP
		IMM	A,(DIR,X)	IMM	A,SR	DIR	A,DIR	DIR	A,L(DIR)		A,IMM			ABS	A,ABS	ABS	A,ABL
1101	D	BNE	CMP	СМР	СМР	PEI	СМР	DEC	СМР	CLM	CMP	РНХ	STP	JMP	CMP	DEC	СМР
				A,(DIR)			A,DIR,X	DIR,X	A,L(DIR),Y		A,ABS,Y			L(ABS)		ABS,X	A,ABL,X
1110	E	CPX	SBC	SEP	SBC	СРХ	SBC	INC	SBC	INX	SBC	NOP	PSH	CPX	SBC	INC	SBC
		IMM	A,(DIR,X)	IMM	A,SR	DIR	A,DIR	DIR	A,L(DIR)		A,IMM			ABS	A,ABS	ABS	A,ABL
1111	F	BEQ	SBC	SBC	SBC	PEA	SBC	INC	SBC	SEM	SBC	PLX	PUL	JSR	SBC	INC	SBC
	1111 F		A,(DIR),Y	A,(DIR)	A,(SR),Y		A,DIR,X	DIR,X	A,L(DIR),Y		A,ABS,Y			(ABS,X)	A,ABS,X	ABS,X	A,ABL,X

Note 1 : 42₁₆ specifies the contents of the INSTRUCTION CODE TABLE-2.

About the second word's codes, refer to the INSTRUCTION CODE TABLE-2

Note 2 : 89₁₆ specifies the contents of the INSTRUCTION CODE TABLE-3 About the third word's codes, refer to the INSTRUCTION CODE TABLE-2

Series MELPS 7700 Instruction Code Table

INSTR	UCTIO	N C	ODE	TAE	BLE-2	(The	first	wor	d's c	ode	of ea	ich ir	nstruo	tion	is 42	? ₁₆)	
\bigwedge	$D_3 \sim D_0$	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111

\bigwedge	D ₃ ~D ₀	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
D ₇ ~D₄ He	notation	0	1	2	3	4	5	6	7	8	9	A	В	с	D	Е	F
0000	0		ORA		ORA		ORA		ORA		ORA	ASL			ORA		ORA
0000	U		B,(DIR,X)		B,SR		B,DIR		B,L(DIR)		B,IMM	в			B,ABS		B,ABL
0001	1		ORA	ORA	ORA		ORA		ORA		ORA	DEC	TBS		ORA		ORA
0001			B,(DIR),Y	B,(DIR)	B,(SR),Y		B,DIR,X		B,L(DIR),Y		B,ABS,Y	В	103		B,ABS,X		B,ABL,
0010	2		AND		AND		AND		AND		AND	ROL			AND		AND
0010	2		B,(DIR,X)		B,SR		B,DIR		B,L(DIR)		B,IMM	в			B,ABS		B,ABL
0011	3		AND	AND	AND		AND		AND		AND	INC	TSB	ļ	AND		AND
0011	3		B,(DIR),Y	B,(DIR)	B,(SR),Y		B,DIR,X		B,L(DIR),Y		B,ABS,Y	в	158	ļ	B,ABS,X		B,ABL,
0100			EOR		EOR	•	EOR		EOR	DUD	EOR	LSR			EOR		EOR
0100	4		B,(DIR,X)		B,SR		B,DIR		B,L(DIR)	РНВ	В,ІММ	в			B,ABS		B,ABL
0101	5		EOR	EOR	EOR	1	EOR		EOR		EOR		700		EOR		EOR
0101	5		B,(DIR),Y	B,(DIR)	B,(SR),Y		B,DIR,X		B,L(DIR),Y		B,ABS,Y		TBD	1	B,ABS,X		B,ABL,
			ADC		ADC		ADC		ADC		ADC	ROR			ADC		ADC
0110	6		B,(DIR,X)		B,SR		B,DIR		B,L(DIR)	PLB	в,імм	в			B,ABS		B,ABL
	-		ADC	ADC	ADC		ADC		ADC		ADC				ADC		ADC
0111	7		B,(DIR),Y	B,(DIR)	B,(SR),Y		B,DIR,X		B,L(DIR),Y		B,ABS,Y		TDB		B,ABS,X		B,ABL,
1000			STA		STA		STA		STA						STA		STA
1000	8		B,(DIR,X)		B,SR		B,DIR		B,L(DIR)		1 1	тхв			B,ABS		B,ABL
			STA	STA	STA		STA		STA		STA				STA		STA
1001	9		B,(DIR),Y	B,(DIR)	B,(SR),Y		B,DIR,X		B,L(DIR),Y	түв	B,ABS,Y				B,ABS,X		B,ABL,
			LDA		LDA		LDA		LDA		LDA				LDA		LDA
1010	A		B,(DIR,X)		B,SR		B,DIR		B,L(DIR)	TBY	B,IMM	твх			B,ABS		B,ABL
			LDA	LDA	LDA		LDA		LDA		LDA				LDA		LDA
1011	В		B,(DIR),Y	B,(DIR)	B,(SR),Y		B,DIR,X		B,L(DIR),Y		B,ABS,Y			1	B,ABS,X		B,ABL,
			CMP		СМР		CMP		CMP		CMP				CMP		CMP
1100	С		B,(DIR,X)		B,SR		B,DIR		B,L(DIR)		в,імм			ļ	B,ABS		B,ABL
			CMP	CMP	CMP		CMP		CMP		CMP				CMP		CMP
1101	D		B.(DIR).Y	B.(DIR)	B,(SR),Y		B,DIR,X		B,L(DIR),Y		B,ABS,Y				B,ABS,X		B,ABL,
			SBC		SBC		SBC		SBC		SBC				SBC		SBC
1110	E		B,(DIR,X)		B,SR		B,DIR		B,L(DIR)		в,імм			1	B,ABS		B,ABL
			SBC	SBC	SBC		SBC		SBC		SBC				SBC		SBC
1111	F		B.(DIR).Y	B.(DIR)	B,(SR),Y		B,DIR,X		B,L(DIR),Y		B,ABS,Y				B,ABS,X		B,ABL,

.

...

Series MELPS 7700 Instruction Code Table

INSTR	UCTIO	N C	ODE	TAB	LE-3	(The	first	wor	d's c	ode	of ea	ch ir	nstruc	ction	is 89) ₁₆)	
\square	D ₃ ~D ₀	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
D ₇ ~D ₄	exadecimal notation	0	1	2	3	4	5	6	7	8	9	А	в	с	D	E	F
			MPY		MPY		MPY		MPY		MPY				MPY		MPY
0000	0		(DIR,X)		SR		DIR		L(DIR)		ІММ				ABS		ABL
0001	1		MPY	MPY	MPY		MPY		MPY		MPY				MPY		MPY
0001			(DIR),Y	(DIR)	(SR),Y		DIR,X		L(DIR),Y		ABS,Y				ABS,X		ABL,X
0010	-		DIV		DIV		DIV		DIV		D!V				DIV		DIV
0010	2		(DIR,X)		SR		DIR		L(DIR)	XAB	ІММ				ABS		ABL
0011			DIV	DIV	DIV		DIV		DIV		DIV				DIV		DIV
0011	3		(DIR),Y	(DIR)	(SR),Y		DIR,X		L(DIR),Y		ABS,Y		Į		ABS,X		ABL,X
											RLA						
0100	4										ІММ						
0101	5																
0110	6																
0111	7																1
1000	8																
1001	9																
1010	A																
1011	В																
				LDT													
1100	С			ІММ													
1101	D																
1110	E																
1111	F																

CONTACT ADDRESSES FOR FURTHER INFORMATION

JAPAN =

Semiconductor Marketing Division Mitsubishi Electric Corporation 2-3, Marunouchi 2-chome Chiyoda-ku, Tokyo 100, Japan Telex 24532 MELCO J Telephone (03) 218-3473 (03) 218-3499 Facsimile (03) 214-5570

Overseas Marketing Manager Kita-Itami Works 4-1, Mizuhara, Itami-shi, Hyogo-ken 664, Japan Telex 526408 KMELCO J Telephone (0727) 82-5131 Facsimile (0727) 72-2329

HONG KONG

MITSUBISHI ELECTRIC (H K) LTD 25 Floor, Leighton Centre, 77, Leighton Road Causeway Bay Hong Kong Telex 60800 MELCO HX Telephone (5) 773901-3 Facsimile (5) 895-3104

SINGAPORE =

MELCO SALES SINGAPORE PTE LTD 230 Upper Bukit Timah Road # 03-01/15 Hock Soon Industrial Complex Singapore 2158 Telex RS 20845 MELCO Telephone 4695255 Facsimile 4695347

TAIWAN

MELCO-TAIWAN CO, Ltd 1st fl, Chung-Ling Bldg, 363, Sec 2, Fu-Hsing S Road, Taipei R O C Telephone (02) 735-3030 Facsimile (02) 735-6771 Telex 25433 CHURYO "MELCO-TAIWAN"

U.S.A. ===

NORTHWEST Mitsubishi Electronics America, Inc 1050 East Arques Avenue Sunnyvale, CA 94086 Telephone (408) 730-5900 Facsimile (408) 730-4972

SAN DIEGO

Mitsubishi Electronics America, Inc 11545 West Bernardo Court Suite 100 San Diego, CA 92128 Telephone (619) 592-0242 Facsimile (619) 592-0242

DENVER

Mitsubishi Electronics America, Inc 4600 South Ulster Street Metropoint Building, 7th Floor Denver, CO 80237 Telephone (303) 740-6775 Facsimile (303) 694-0613

SOUTHWEST

Mitsubishi Electronics America, Inc 991 Knox Street Torrance, CA 90502 Telephone (213) 515-3993 Facsimile (213) 217-5781

SOUTH CENTRAL

Mitsubishi Electronics America, Inc 1501 Luna Road, Suite 124 Carrollton, TX 75006 Telephone (214) 484-1919 Facsimile (214) 243-0207

NORTHERN

Mitsubishi Electronics America, Inc 15612 Highway 7 # 243 Minnetonka, MN 55345 Telephone (612) 938-7779 Facsimile (612) 938-5125

NORTH CENTRAL

Mitsubishi Electronics America, Inc 800 N. Bierman Circle Mt. Prospect, IL 60056 Telephone (312) 298-9223 Facsimile (312) 298-0567

NORTHEAST

Mitsubishi Electronics America, Inc 200 Unicorn Park Drive Woburn, MA 01801 Telephone (617) 932-5700 Facsimile (617) 938-1075

MID-ATLANTIC

Mitsubishi Electronics America, Inc 800 Cottontail Lane Somerset, NJ 08873 Telephone (201) 469-8833 Facsimile (201) 469-1909

SOUTH ATLANTIC

Mitsubishi Electronics America, Inc 2500 Gateway Center Blvd , Suite 300 Morrisville NC 27560 Telephone (404) 368-4850 Facsimile (404) 662-5208

SOUTHEAST

Mitsubishi Electronics America, Inc Town Executive Center 6100 Glades Road #210 Boca Raton, FL 33433 Telephone (407) 487-7747 Facsimile (407) 487-2046

CANADA

Mitsubishi Electronics America, Inc 6185 Ordan Drive, Unit #110 Mississauga, Ontario, Canada L5T 2E1 Telephone (416) 670-8711 Facsimile (416) 670-8715

Mitsubishi Electronics America, Inc 300 March Road, Suite 302 Kanata, Ontario, Canada K2K 2E2 Telephone (416) 670-8711 Facsimile (416) 670-8715

WEST GERMANY ==

Mitsubishi Electric Europe GmbH Headquarters Gothear Str 8 4030 Ratingen 1, West Germany Telex 8585070 MED D Telephone (02102) 4860 Facsimile (02102) 486-115

Munich Office Arabellastraße 31 8000 Munchen 81, West Germany Telex 5214820 Telephone (089) 919006-09 Facsimile (089) 9101399

FRANCE ==

Mitsubishi Electric Europe GmbH 55, Avenue de Colmar 92563 Rueil Malmaison Cedex Telex 632326 Telephone 47087871 Facsimile 47513622

ITALY ===

Mitsubishi Electric Europe GmbH Centro Direzionale Colleoni Palazzo Cassiopea i 20041 Agrate Brianza I-Milano Telephone (039) 636011 Facsimile (039) 6360120

SWEDEN :

Mitsubishi Electric Europe GmbH Lastbilsvagen 6B 5-19149 Sollentuna, Sweden Telex 10877 (meab S) Telephone (08) 960468 Facsimile (08) 966877

U.K. =

Mitsubishi Electric (U K) Ltd Travellers Lane Hatfield Herts AL10 8×B, England, U K Telephone (0044) 7072 76100 Facsimile (0044) 7072 78692

AUSTRALIA =

Mitsubishi Electric Australia Pty Ltd 73-75, Epping Road, North Ryde, P O Box 1567, Macquarie Centre, N S W, 2113, Australia Telex MESYD AA 26614 Telephone (02) (888) 5777 Facsimile (02) (887) 3635

MITSUBISHI SEMICONDUCTORS MELPS 7700 (SOFT WARE) USER'S MANUAL

July. First Edition 1989

Editioned by

Committee of editing of Mitsubishi Semiconductor USER'S MANUAL

Published by

Mitsubishi Electric Corp., Semiconductor Marketing Division

This book, or parts thereof, may not be reproduced in any form without permission of Mitsubishi Electric Corporation.

©1989 MITSUBISHI ELECTRIC CORPORATION

MITSUBISHI SEMICONDUCTORS MELPS 7700<SOFT WARE>

These products or technologies are subject to Japanese and/or COCOM strategic restrictions, and diversion contrary thereto is prohibited.

H-E0112-A KI-8907 Printed in Japan (ROD) © 1989 MITSUBISHI ELECTRIC CORPORATION New publication, effective Jul. 1989. Specifications subject to change without notice.