MITSUBISHI SEMICONDUCTORS

MELPS 7700

MITSUBISHI
ELECTRIC

Foreword

Foreword

This manual has been prepared to enable the users of the
Series MELPS 7700 CMOS 16-bit microcomputers to better
understand the instruction set and the features so that they can
utilize the capabilities of the microcomputers to the fullest. This
manual presents detailed descriptions of the instructions and ad-
dressing modes available for the Series MELPS 7700 micro-
computers.

For the hardware descriptions of the Series MELPS 7700 micro-
computers and descriptions of various development support
tools (e.g., assembler, debugger), please refer to the user's
manuals and operating guidebooks for the respective hardware
and software products.

Contents

Contents

1. Introduction of Series MELPS 7700 Software

Page

2. Register Configuration in CPU

2.1 Accumulator

2.2 Index Register X

2.3 Index Register Y

2.4 Stack Pointer

2.5 Program Counter

2.6 Program Bank Register
2.7 Data Bank Register

2.8 Direct Page Register

2.9 Processor Status Register

3. Addressing Modes
3.1 Addressing Mode
3.2 Explanation of Addressing Modes

4. Instructions

52

4.1 |Instruction Set
4.2 Description of Instructions

5. Notes for Programming

165

6. Instruction Execution Sequence

167

6.1 Bus Interface Unit
6.2 Change of the CPU Basic Clock ¢cru
6.3 Instruction Execution Sequence .

Appendixes

188

A. CPU Instruction Execution Sequence for each Addressing Mode 188

" B. Series MELPS 7700 Machine Instructions
C. Series MELPS 7700 Instruction Code Table

252
266

Introduction of Series MELPS 7700 Software

1. Introduction of Series MELPS 7700 Software

The software for the Series MELPS 7700 16-bit CMOS microcomputers was developed by
making is numerous enhancements on the software for the Series MELPS 740 8-bit microcom-
puter which are based on Mitsubishi Electric Corporation’s proprietary designs. The enhance-
ments include support of word (16-bit) operations and linear accessing of up to 16M bytes of
memory space.

The new software’s compact and easy to use instruction set and the support of powerful address-
ing modes will significantly increase

‘The Series MELPS 7700 microcomputers offer the following features

Upward compatibility for the Series MELPS 740.

Powerful addressing modes and fast and compact instruction set.

Direct page mapping function and memory oriented software system by direct paging.
Byte and word operations can be selected at will by the m flag.

The usual 64K bytes program memory boundary can be ignored for the practical
purposes,and programs can be written to utilize the full 16M bytes of memory space. For
data memory, linear as well as bank memory accessing are supported.

Bit manipulation instructions and bit test and branch instructions can be used for memory
and I/0 accessing of the entire 16M bytes space.

Block transfer instruction capable of handling blocks of up to 64K bytes each.
Improved stack accessing capability.

Decimal arithmetic instruction execution requiring no software compensation.

The performance of the systems based on the Series MELPS 7700 microcomputers, whether
used as advanced 8-bit microcomputer or next-generation 16-bit one.

Register Configuration

2. Register Configuration

The central processing unit (CPU) of each Series MELPS 7700 microcomputer has 10 internal
registers (See Fig.2.1). Each of these registers is described below

2.1 Accumulator (Acc)
(1) Accumulator A (A)

The accumulator A is the main register of the microcomputer, and data processing such as arith-
metic calculations, data transfer and input/output operations are executed via this accumulator.
It consists of 16-bit register, but it can be used as an 8-bit register by setting the data length se-
lection flag m in the processor status register PS. The flag m is described in detail in a later sec-
tion. The flag m value of “0” specifies 16-bit data length, and “1” specifies 8-bit data length.
When operating under 8-bit data length setting, only the lower 8 bits of the accumulator A are
used and the upper 8 bits do not change.

(2) Accumulator B (B)

The accumulator B is a 16-bit register whose function is equivalent to that of the accumulator A.
The Series MELPS 7700 instructions can use the accumulator B instead of the accumulator A.
Note, however, that use of the accumulator B requires more instruction bytes and execution
cycles than when using the accumulator A.

2.2 Index Register X (X)

The index register X is a 16-bit register, but it can be used as an 8-bit register by setting the index
register length selection flag x in the processor status register PS. The flag x is described in
detail in a later section. The flag x value of “0” specifies 16-bit index register length, and “1”
specifies 8-bit index register length. When operating under 8-bit index register length setting, only
the lower 8 bits of the index register X are used and the upper 8 bits do not change.

In an adadressing mode in which the index register X is used as the index register, the address
obtained by adding the contents of this register is accessed. For the block transfer instructions,
MVP and MVN, the contents of the index register X become the lower 16 bits of the transfer-from
address and the byte-3 of the instruction becomes the upper 8 bits.

2.3 Index Register Y (Y)

The index register Y is a 16-bit register whose function is equivalent to that of the index register
X. As in the case of the index register X, the index register length selection flag x can be used
to use only the lower 8 bits of the index register Y. 'For the block transfer instructions, MVP and
MVN, the contents of the index register Y become the lower 16 bits of the transfer-to address and
the byte-2 of the instruction become the upper 8 bits.

Register Configuration

b15 b8 b7 bo

Au AL Accumulator A (A)
bi5 '~ b8 b7 b0

Bu BL Accumulator B (B)
b15 b8 b7 b0

XH X Index Register X (X)
b15 b8 b7 bo

Y Yo Index Register Y (Y)
b15 b8 b7 b0

, SH S Stack Pointer (S)
b7 b0
DT Data Bank Register (DT)
b15 b8 b7 " b0
PG PCHx PCL Program Counter (PC)
b7 b0
Program Bank Register (PG)
b15 b8 b7 b0
DPRH DPRL Direct Page Register (DPR)
b15 b8 b7 b0
PSH PSL Processor Status Register (PS)
Mots b10 o8 b7 bo |
oj0o(0oj0 |0 IPL NIV!m x|D|I |Z]|C

Processor Interrupt Priority Level

Negative Flag

Carry Flag

Zero Flag

Interrupt Disable Flag

— Decimal Operation mode Flag

— Index Register Length Selection
Flag

Data Length Selection Flag
Overflow Flag

Fig. 2.1 CPU Register Model

Register Configuration

2.4 Stack Pointer (S)

The stack pointer (S) is a 16-bit register, and it is used when calling a subroutine, at the time of
interrupt processing and when using one of the stack addressing modes. The contents of the
stack pointer specifies the address (stack area) where the memory (RAM) registers that must be
saved are to be stored.

When an interrupt is received, the contents of the program bank register are saved at the address
specified by the stack pointer's value, and the stack pointer's value is decremented by 1.
Similarly, the contents of the program counter and the processor status register are saved in the
order of lower bytes first (PC,, PC, PS,, PS|). Thus, the value of the stack pointer after an
interrupt has been accepted will be 5 less than the value before the interrupt acceptance. When
the interrupt processing is completed and the control is returned to the original routine, the
registers that had been saved to the stack area are restored in the reverse order of the saving
operation, and the stack pointer's value is restored to that before the interrupt was accepted.
Similar operations are executed when a subroutine is called, except that the processor status
register (and the program bank register for some addressing modes) is not saved.

The registers other than those indicated above are not saved when an interrupt is invoked or
when a subroutine is called, so that provisions must be made in the application programs to save
the registers if necessary. Also note that the stack pointer must be initialized after the microcom-
puter is reset, because its content is indeterminable after reset operation. Normally, the highest
address of the internal RAM is set in the stack pointer. The contents of the stack area will change
by nesting of subroutines and acceptance of multiple interrupts, so that the subroutine nesting
levels must be chosen carefully so as not to destroy the integrity of RAM data.

2.5 Program Counter (PC)

The program counter (PC) is a 16-bit register that contains the lower 16-bit values of the 24-bit
program memory address of the instruction to be executed next.

2.6 Program Bank Register (PG)

The program bank register (PG) is an 8-bit register that contains the upper 8-bit (bank) value of
the 24-bit program memory address of the instruction to be executed next. When a carry is gen-
erated by incrementing of the program counter’s content or when a carry or borrow is generated
by addition or subtraction of an offset value to the program counter's content by execution of a
branching instruction, for example, the program bank register’'s content is automatically incre-
mented or decremented by 1 so that the bank boundary needs not be considered for application
programming.

b23 b15 b7 b0
| pa | pecH PCL
b7 b0 b15 b8 b7 b0

Register Configuration

2.7 Data Bank Register (DT)

The data bank register (DT) is an 8-bit register. Its contents are interpreted as the upper 8 bits
(bank) of a 24-bit memory address under certain addressing modes.

2.8 Direct Page Register (DPR)

The direct page register (DPR) is a 16-bit register, which allows specification of a 256 byte space
called a direct page in bank-0. This area can be accessed by 2 bytes in the direct page
addressing mode. The contents of the direct page register specify the least-significant (base)
address of the direct page area. A value in the range of 016-FFFF1s may be set in the direct page
register. When a value of or higher than FF0116 is set in the direct page register, the direct page
area will cross over the bank-0 and bank-1 boundary. Normally, the lower 8-bit value of the direct

page register is set to 0016 since that reduces the number of cycles required for address genera-
tion.

[0000001 000000t |
When DPR=00001s
_______ 0000FFw 1
_______ 00012316 |
| When DPR=01231s (Note 1)
Bank-0 L __] 00022216 __|
Direct page area
_______ 00FFD616
| O0FFFFie When DPR=FFD61s (Note 2)
01000016
_______ 010FD516
Bank-1
(Note 1) Cycles-count is incremented by 1 when the lower 8-bit of DPR is not 001s.
(Note 2) Direct page is specified across bank-0 and bank-1 when DPR value is FFO11s or higher.

Fig. 2.2 Setting Direct Page by Direct Page Register

Register Configuration

2.9 Processor Status Register (PS)

The processor status register (PS) is an 11-bit register, and it consists of flags that specify the
status immediately after operation and bits that set the processor interrupt priority level. The C,
Z, V and N flags enable execution of branching instructions depending on the flag values. Each
bit of the processor status register is explained below.

bit 15 14 13 12 11 10 O 2 1 0

olofolofo] IPL [NIV] m[ﬂ I[z]c| Processor Status Register (PS)

(Note) Bits 11-15 are fixed at 0.

[Bit-0] Carry Flag (C)

This bit is the carry flag which holds the carry or borrow from the arithmetic logic unit (ALU) after
arithmetic operation. It is also affected by the shift and rotate instructions. This flag can be
directly set by the SECand SEP, and cleared by CLC and CLP instructions.

[Bit-1] Zero Flag (2)

This bit is set 1 when the arithmetic operation or data transfer result is 0, and it is set 0 when
such result is not “0”. This flag is invalid for ition (ADC) instruction in th imal-
mode. This flag can be directly set by SEP and cleared by CLP instructions.

[Bit-2] Interrupt Disable Flag (1)

This is the flag that is used to disable all interrupts (except the interrupts by the watchdog timer,
BRK instruction and division by zero). When this flag is “1”, interrupts are disabled. This flag is
set to “1” automatically when an interrupt is accepted, inhibiting multiple interrupt acceptance.
This flag can be set using the SEI and SEP, and cleared using the CLI and CLP instructions.

\

[Bit-3] Decimal Operation Mode Flag (D)

This flag is used to determine whether to execute addition and subtraction in the binary-mode
or in the decimal-mode. “0” specifies the ordinary binary mode. When this flag is set to “1”, ad-
dition/subtraction is executed with 1 word as a 2- or 4-digit decimal value (2- or 4-digit selection
is made by the data length selection flag m). Decimal alignment is performed’ automatically.

N h imal-m n nl he AD nd SBC instructions.

This flag can be set by the SEP and cleared by the CLP instructions.

[Bit-4] Index Register Length Selection Flag (x)

This flag specifies whether to use the index register X or Y in the 16-bit index register length or
in the 8-bit index register length. “0” specifies the 16-bit length mode, and “1” specifies the 8-
bit length mode. This flag can be set by the SEP, and cleared by the CLP instructions.

Register Configuration

[Bit-5] Data Length Selection Flag (m)

This flag specifies whether to use the 16-bit data length or the 8-bit data length. "0" specifies
16-bit, and "1" specifies 8-bit data length. This flag can be set by the SEM and SEP, and cleared
by the CLM and CLP instructions.

[Bit-6] Overflow Flag (V)

The overflow flag has a meaning when adding or subtracting 1 word as a signed binary number.
This flag is set 1 when the flag m is set to "0" and the result of addition or subtraction is outside
the range -32768~+32767, and it is set 0 otherwise. When the flag m is set to "1", this flag is
set 1 if the result of addition or subtraction is outside the range -128~+127 and set Ootherwise.
This flag can be directly set by the SEP, and cleared by the CLV and CLP instructions. This flag
is meaningl in th imal ration mode.

[Bit-7] Negative flag (N)

The negative flag (N) is set 1 when the result of data transfer is negative (bit-15 of data is “1”
when the flag m is “0”, or bit-7 of data is “1” when the flag m is “1”), and it is set 0 otherwise.
This flag can be directly set by the SEP, and cleared by the CLP instructions. This flag is
meaningl in th imal ration mode.

[Bit-8~Bit-10] Processor interrupt priority level (IPLo~IPL2)

The processor interrupt priority level (IPL) consists of 3 bits, and these 3 bits enable determination
of 8 processor interrupt priority levels (level-0 ~ level-7). An interrupt is allowed only when its
interrupt priority level is higher than the IPL value. When an interrupt is generated, IPL is saved
to the stack area, and the priority level of the allowed interrupt is set in IPL.

There is no instruction that can directly set or clear IPLo~IPL2. Therefore, in order to alter the
IPL contents, the desired value must be first stored in the stack and then the processor status
register contents altered using the PUL or PLP instruction.

Addressing Modes

3. Addressing Modes
3.1 Addressing Mode

When executing an instruction, the address of the memory location from which the data required
for arithmetic operation is to be retrieved or to which the result of arithmetic operation is to be
stored must be specified in advance. Address specification is also necessary when the control
is to jump to a certain memory address during program execution. Addressing refers to the
method of specifying the memory address.

The Series MELPS 7700 microcomputers support 28 different addressing modes, offering ex-
tremely versatile and powerful memory accessing capability.

3.2 Explanation of Addressing Modes

Each of the 28 addressing modes is explained on the pages indicated below:

Implied addressing mode 9

Immediate addressing mode 10
Accumulator addressing mode 11
Direct addressing mode 12
Direct bit addressing mode 13
Direct indexed X addressing mode 14
Direct indexed Y addressing mode 16
Direct indirect addressing mode 17
Direct indexed X indirect addressing mode 18
Direct indirect indexed Y addressing mode 21
Direct indirect long addressing mode 24
Direct indirect long indexed Y addressing mode 25
Absolute addressing mode 28
Absolute bit addressing mode 30
Absolute indexed X addressing mode 31
Absolute indexed Y addressing mode 33
Absolute long addressing mode 35
Absolute long indexed X addressing mode 36
Absolute indirect addressing mode 37
Absolute indirect long addressing mode 38
Absolute indexed X indirect addressing mode 39
Stack addressing mode 40
Relative addressing mode 42
Direct bit relative addressing mode 43
Absolute bit relative addressing mode 45
Stack pointer relative addressing mode 47
Stack pointer relative indirect indexed Y addressing mode 48
Block transfer addressing mode 50

Implied

Mode ¢ Implied addressing mode

Function : The single-instruction inherently address an internal register.

Instruction: BRK, CLC, CLI, CLM, CLV, DEX, DEY, INX, INY, NOP,
RTI, RTL, RTS, SEC, SEIl, SEM, STP, TAD, TAS, TAX,

TAY, 'TBD, TBS, TBX, TBY, TDA, TDB, TSA, TSB, TSX,
TXA, TXB, TXS, TXY, TYA, TYB, TYX, WIT, XAB

ex. . Mnemonic Machine Code,
CLC 1846

[T T ITTTTT]
l
|

s [T T T T T T T ITLTTT (o
ex. . Mnemonic Machine Code ex. . Mnemonic Machine Code
TXA 8A¢ TXA 8Ass
(m=1,x=0) (m=0,x=1)

| | | [| |
The upper-byte
1s not transferred

AI L 1 Alooooooool I

(Note) When the data length differ between the transfer-from and trans-
fer-to locations, data I1s transferred at the data length for the

transfer-to location If, however, the index register 1s specified as
the transfer-to location and the x flag Is set to 1, 0016 I1s sent as

the upper byte value

Immediate

Mode

Function :

: Immediate addressing mode

the bank boundary.

A portion of the instruction is the actual data. Such instruction code may cross over

Instruction: ADC, AND, CLP, CMP, CPX, CPY, DIV, EOR, LDA, LDT,
LDX, LDY, MPY, ORA, RLA, SBC, SEP
ex. : Mnemonic Machine Code ex. . Mnemonic Machine Code
ADC A, #0A5H 69;5 A5qq ADC A,#0A5B7H 69,6 B745 A5
(m=1) (m=0)
Memory Memory
(_/ T ——
—————— 0000, A —— 0000,
Program Program
8-bit width bank-PG Op Code (69,5) bank-PG
A—A+C+ Op Code (69,5) Program 16-bit width Operand (B7¢) Program
|A5‘6| — Operand (A5,¢) Bank Register A'—A+C+|A5,5i B76 I‘— | Operand (ASy) Bank Register
_______ FFFFq - FFFFy
L ~——
/__—
ex. : Mnemonic Machine Code ex. * Mnemonic Machine Code
LDX #0A5H A2, A5 LDX #0A5B7H A2, B7,5 A5
(x=1) (x=0)
Memory Memory
/\/
T T T oe00e e —] 0000,
Program
bank-PG Program
PR _bi Op Code (A2,g) bank-PG
8-bit width Op Code (A2y5) Pro 16-bit width
gram Operand (B7,¢) Pro
<~ - i X< |AS.41 B7,6 [« gram
X A5, Operand (A5,5) Bank Register { Operand (A5;¢) Bank Register
A U FFFF,q
L ~—— L
10

Accumulator

Mode ¢ Accumulator addressing mode
Function : The contents of accumulator are the actual data.

Instruction: ASL, DEC, INC, LSR, ROL, ROR

ex. . Mnemonic Machine Code
ROL A 2A6
(m=1)

b0

T

Carry flag Accumulator A
ex. : Mnemonic Machine Code
ROL A 2Aq6
(m=0)

O T

Carry flag Accumulator A

Direct

: The contents of the bank-0 memory location specified by the result of adding the sec-
ond byte of the instruction to the contents of the direct page register become the ac-
tual data. If, however, addition of the instruction’s second byte to the direct page
register’s contents result in a value that exceeds the bank-0 range, the specified lo-

LSR,

CPX, CPY, DEC,

MPY, ORA,

ex. .
A—A+C+

[oamn L own - |

ex. :

DIV, EOR, INC,

ROL, ROR, SBC,
Mnemonic Machine Code
ADC A,02H 65,5 02,
(m=0)

Memory
0000,
DATA, 12366
DATA4
_______ { FFFFyg
T K Direct Page
Op Code (65;¢) Register

Operand (02,6)

+ | 1234, |= 1236,

/—_/

Mnemonic
LDX 02H
(x=0)

Memory

Mode : Direct addressing mode
Function
cation will be in bank-1.
Instruction: ADC, AND, ASL, CMP,
LDA, LDM, LDX, LDY,
STA, STX, STY
ex. . Mnemonic Machine Code
ADC A,02H 65,6 02,
(m=1)
Memory
0000,
A—A+C+ Bank-0
- DATA 1236,
FFFFyq
T L
T Direct Page
Op Code (65;¢) Register
Operand (02;6) + [1234, |=1236,
ex. . Mnemonic Machine Code
LDX 02H A6,s 02,6
(x=1)
Memory
0000,
Bank-0
x<—| DATA |<— DATA 12366
] FFFF,g
N |
1 Direct Page
Op Code (AByg) Register
Operand (0246) + | 1234, | =1236,¢
— ~———

DATA_

x«—l DATA, | DATA, |<—[

DATA,

Op Code (A6yg)

Machine Code
A6y 0246

0000,

Bank-0
1236,¢

FFFFy

Direct Page
Register

Operand (024)

\/'_\/

+ [1234, | = 1236,

Direct Bit

Mode : Direct bit addressing mode

Function : Specifies the bank-0 memory location by the value obtained by adding the instruc-
tion’s second byte to the direct page register’s contents, and specifies the positions
of multiple bits in the memory location by the bit pattern in the third and fourth bytes
of the instruction (third byte only when the m flag is set to 1). If, however, addition
of the instruction’s second byte to the direct page register’'s contents result in a value
that exceeds the bank-0 range, the specified location will be in bank-1.

Instruction : CLB, SEB

ex. . Mnemonic Machine Code ex. : Mnemonic Machine Code
CLB #5AH, 04H 14,6 04,5 5A¢ CLB #5AAS5H, 04H 14,5 0445 A5, 5A;¢
(m=1) (m=0)
Memory Memory
RPI PP [7| 001238, <— }Bank-0 2171°1°]212 (2| 001238,
alolol2l2|2 2|2 e\Bank-O
R —
L 4 J
Direct Page - - — — _:
Op Code (14,) Register Direct Page
Operand (045) | + [1284, |= 1238, Op Code (14;6) Register
Operand (5A5) Operand (04¢) + | 12344 [=12384¢
/\/ Operand (A5,g)
\L Operand (5A;¢)
| ~—~———

?[o[>[o]o] 2[0]]| 001238,

001238,

N [IRIVIRIEIIRS

CAN-}

13

Direct Indexed X

Mode

Function

Direct indexed X addressing mode

The contents of the bank-0 memory location specified by the result of adding the

second byte of the instruction, the contents of the direct page register and the con-

tents of the index register X become the actual data.

If, however, addition of the

instruction’s second byte, the direct page register’s contents and the index register
X’s contents results in a value that exceeds the bank-0 or bank-1 range, the specified
location will be in bank-1 or bank-2.

Instruction: ADC, AND, ASL, CMP, DEC, DI, EOR, INC, LDA, LDM,
LDY, LSR, MPY, ORA, ROL, ROR, SBC, STA, STy
ex. . Mnemonic Machine Code ex. : Mnemonic Machine Code
ADC A,1EH,X 756 1Es¢ ADC A,1EH,X 7516 1Eq6
(m=1,x=1) (m=0,x=1)
Memory Memory
0000,¢ 000046
A—~A+C+ Bank-0
A—A
l DATA | - DATA 1338, + .c + DATA_ 1338,
I DATAy | DATALI<_ DATAL
F ______ FFFF) |] FFFFye
£ = - +
7 Direct Page Index T Direct Page Index
Op Code (75,5) Register Register X Op Code (755) Register Register X
Operand (1Eyg) | +[123445 | +[| E6yq| = 13384 Operand (1E,,) | (123416 |+ [1E6ys] = 1338,
— L
ex. . Mnemonic Machine Code ex. . Mnemonic Machine Code
ADC A,1EH,X 7546 1Eq ADC A,1EH,X 75:6 1Eq6
(m=1,x=0) (m=0,x=0)
Memory Memory
0000+ 0000,
A—A+C+
[oATa] DATA 4338, A-A+C+ SATA 4338,
[[orn] - {5
H
_______ FFFF
* J ——————— FFFFy
[T Drrect Page Index T T Direct Page Index
Op Code (754¢) Register Register X Op Code (75,¢) Register Register X

Operand (1E,¢)
— ~——

+[1234,5] + [30E6,5 | = 4338,¢

Operand (1E,g)

+[123446 |+ [30E6, | = 4338,

L ~——

14

Direct Indexed X

ex. . Mnemonic Machine Code
LDY 1EH,X B4,s 1E¢¢
(x=1)
Memory
0000,5
Bank-0
v<|DatA | < DATA 1338,
I i i
:"; -
Direct Page Index
Op Code (B4,¢) Register Register X
Operand (1Es) | + [123446 |+ 1E6,6] = 1338,
/—__/
ex. . Mnemonic Machine Code
LDY 1EH,X B4,s 1Eq¢
(x=0)
Memory
0000,
Bank-0
Y< [DATA, | DATA, | < DATA, 33816 <
FFFFy
______]
Direct Page Index
Op Code (Bd,g) Register Register X
Operand (1E,q) + 1234,6_|+ 30E6,, | = 43385
/—-\/

Direct Indexed Y

Mode : Direct indexed Y addressing mode

Function : The contents of the bank-0 memory location specified by the result of adding the sec-
ond byte of the instruction, the contents of the direct page register and the contents ‘
of the index register Y become the actual data. If, however, addition of the instruc-
tion’s second byte, the direct page register’s contents and the index register Y's
contents results in a value that exceeds the bank-0 or bank-1 range, the specified’
location will be in bank-1 or bank-2.

Instruction: LDX, STX

ex. . Mnemonic Machine Code
LDX 02H,Y B6,s 02,6
(x=1) .
M
oy 0000,

X< l DATA I‘— DATA 131C,¢

J _______ FFFF,q
T B
Direct Page Index
Op Code (B6,s) Register Register Y
Operand (02i6) |+[123445 |+ [EBys | = 131C,¢
/\/
ex. . Mnemonic Machine Code
LDX 02H,Y B6:c 0246
(x=0)
Memory
0000,

Bank-0

X<| DATA, | DATA DATA. 131Ce
-
BATA,

I —— FFFFs

Direct Page Index

Op Code (B64g) Register RegisterY
Operand (02,) | + [123445 | -+ [00E6ys]=131C,
| ~———

16

Direct Indirect

Mode

Function

Instruction :

Direct indirect addressing mode

The value obtained by adding the instruction’s second byte to the contents of the
direct page register specifies 2 adjacent bytes in memory bank-0, and the contents
of these bytes in memory bank-DT (DT is contents of data bank register) become the
actual data. If, however, the value obtained by adding the instruction’s second byte
and the direct page register's contents exceeds the bank-0 range, the specified
location will be in bank-1.

ex. . Mnemonic
ADC A,(1EH)
(m=1)

Memory

ADC, AND, CMP, DIV,

Machine Code
7246 1E¢g

EOR,

————> 1252, DATAT (0146)
1253,¢ DATAL (124¢)
: 3
Direct Page
Register Op Code (72,6)
— | 1234, + Operand (1E,g)
; T
_______ Data Bank
A—A+C+ Register
DATA | «— DATA 120146
N

A—A+C+

DATAL | DATAL (—{

LDA, MPY, ORA, SBC, STA
ex. . Mnemonic Machine Code
ADC A,(1EH) 7246 1Eqg
(m=0)
Memory
> 1252, [DATAT (01y9) L Bank-0
1253, DATATL (126)
A\
=]
Direct Page
Register Op Code (72,¢)
L | 1234,5—l + Operand (1E;g)

-

Data Bank
Register

1201,

17

Direct Indexed X Indirect

Mode

. Direct indexed X indirect addressing mode

Function : The value obtained by adding the instruction’s second byte, the contents of the direct

page register and the contents of the index register X specifies 2 adjacent bytes in
memory bank-0, and the contents of these bytes in memory bank-0, and the contents
of these bytes in memory bank-DT (DT is contents of data bank register) become the
actual data. If, however, the value obtained by adding the instruction’s second byte,
the direct page register's contents and the index register X’s contents exceeds the
bank-0 or bank-1 range, the specified location will be in bank-1 or bank-2.

Instruction: ADC, AND, CMP, DIV, EOR, LDA, MPY, ORA, SBC, STA

ex.

. Mnemonic Machine Code
ADC A, (1EH, X) 6146 1E46
(m=1,x=1)

Memory

0000,
L Bank-0

DATAT (00,) 1338,
DATAI (14¢)
_______ FFFFyg N
R :E
] Direct Page Index
Op Code (614¢) Register Register X Program
Operand (1Eyg) +[1234, |+ [| E6ys | =1338; bank-PG

Data Bank
Register

A~—A+c+| DATA |<- DATA [DT] 1400,

18

Direct Indexed X Indirect

ex. . Mnemonic
ADC A, (1EH, X)
(m=0,x=1)

Machine Code
6146 1E4g

Memory

DATAT (0046)

DATAIL (144)

)
2

Op Code (614¢)

000046
Bank-0
133846
FFFFyg
Direct Page Index

Register Register X

Operand (1E,g)

+ L1234,,—| +| 16y |=1338,

N\

DATA.
/—\/
ex. : Mnemonic Machine Code
ADC A, (1EH, X) 6146 1E46
(m=1,x=0)
Memory

DATAT (0046)

DATAIL (1446)

Op Code (614¢)

b}
i

Data Bank
Register

1400,

10000,¢

l Bank-1
10338,¢

1FFFF,q

Direct Page Index
Register Register X

Operand (1Eq¢)

+[12345 |+ [FOE6,; | =10338,6

A'—A+C+| DATA |<—

Data Bank
Register

1400,

Program
bank-PG

Program
bank-PG

19

Direct Indexed X Indirect

ex. . Mnemonic
ADC A, (1EH, X)
(m=0,x=0)

Machine Code

61,6 1E¢

——

10000,
E Bank-1
DATAI (00,5) 10338,
DATALL (144¢)
] 1FFFF,q
L 1
Direct Page Index
Op Code (61,6) Register Register X Program
Operand (1E,q) + | 1284, | + [FOE6,s | =10338,; [bank-PG

DATAL

A« A+ C+| DATA, | DATAL 4—{

DATAn

Data Bank
Register

1400,

20

Direct Indirect Indexed Y

Mode : Direct indirect indexed Y addressing mode

Function : The value obtained by adding the instruction’s second byte and the contents of the
direct page register specifies 2 adjacent bytes in memory bank-0.
The value obtained by adding the contents of these bytes and the contents of the
index register Y specifies address of the actual data in memory bank-DT (DT is
contents of data bank register). If, however, the value obtained by adding the con-
tents of the instruction’s second byte and the direct page register exceeds the bank-
0 range, the specified location will be in bank-1. Also, if addition of the contents of
memory and index register Y generate a carry, the bank number will be 1 larger than
the contents of the data bank register.

Instruction: ADC, AND, CMP, DIV, EOR, LDA, MPY, ORA, SBC, STA

ex. : Mnemonic - Machine Code
ADC A, (1EH),Y 716 1Es6
(m=1,x=1)
Memory
Bank-0
Index
1252 DATAT (0146) fegiter ¥
—_> 16 18 + =12E7
= J:
Direct Page
Register Op Code (71,6)
—L1234,5 l + Operand (1E,)
______ -
= £
Data Bank
Register
A—A+C+/[DATA | — DATA 12E7,4 -
/—_\./

21

Direct Indirect Indexed Y

ex. . Mnemonic Machine Code
ADC A, (1EH), Y 7146 1E4¢
(m=0,x=1)
Memory
Bank-0
Index
Register Y
> 12525 DATAT (01,)
+ =12E7
12534 DATAIl (126) 1
R
DirectPage | - |
Register Op Code (714¢)
——| 1234, | + Operand (1Eqg)
= L
______ —
Data Bank
Register
S T B oer, <~
DATA,
/\/
ex. - Mnemonic Machine Code
ADC A, (1EH), Y 7146 1E¢g
(m=1,x=0)
Memory
Bank-0
Index
1252 DATAT (0146) Register ¥
r———— 16 16
+| FOE6;s | =102E7,¢
1253, DATAL (1246) }
Direct Page
Register Op Code (7146)
1234, | + Operand (1E;g)
— — ——— —]
L L
},_ ______
Data Bank
Register
A—A+c+| para | DATA (o7 J+1, 0267, <—
/‘_/

22

Direct Indirect Indexed Y

ex. : Mnemonic Machine Code
ADC A, (1EH), Y 7146 1Eqg
(m=0,x=0)
Memory
Bank-0
Index
Register Y
— > 12524 DATAT (014)
1253,,] DATAL (12,5) + =102E7,
Direct Page
Register Op Code (714¢)
L1234.5 I + Operand (1E,q)
4 J. Data Bank
Register
DATA, DT [+1, 02E7,; <—
A—A+cC+| paTA, | DATA, ‘-[DATAL °
H

23

Direct Indirect Long

Mode Direct indirect long addressing mode
Function The value obtained by adding the instruction’s second byte and the contents of the
direct page register specifies 3 adjacent bytes in memory bank-0, and the contents
of these bytes specify the address of the memory location that contains the actual
data. If, however, the value obtained by adding the contents of the instruction’s
second byte and the direct page register exceeds the bank-0 range, the specified
location will be in bank-1. The 3 adjacent bytes memory location may be spread over
two different banks.
Instruction: ADC, AND, CMP, DIV, EOR, LDA, MPY, ORA, SBC, STA
ex. . Mnemonic Machine Code ex. . Mnemonic Machine Code
ADCL A, (1EH) 6746 1Eqg ADCL A, (1EH) 6746 1E46
(m=1) (m=0)
Memory Memory
Bank-0 -
——————> 1252,¢ DATA 1 (EF,) o —————— 12524 DATA (EF,) pankco
12536 DATA Tl (0146) 1253,¢ DATAII (014¢)
12546 DATA Il (12,5) 1254:6[DATAM (1245)
SN 3 ~ +
______ -
Direct Page S P
Register Op Code (674¢) Dg:;t';:?e Op Codel(67,9)
— 184 | + [_Operand (1E.) L[1238, |+ [Operand(iEs)
%t | 7
~ h 5 4
______ - T h
-— D. 1201EFyy <—
A—A+C+| DATA ATA © DATA, 1201EF,; <—o
A"“+°+‘_{ DATA
L H
P

24

Direct Indirect Long Indexed Y

Mode : Direct indirect long indexed Y addressing mode

Function : The value obtained by adding the instruction’s second byte and the contents of the
direct page register specifies 3 adjacent bytes in memory bank-Q, and the value
obtained by adding the contents of these bytes and the contents of the index register
Y specifies the address of the memory location where the actual data is stored. If,
however, the value obtained by adding the contents of the instruction’s second byte
and the direct page register exceeds the bank-0 range, the specified location will be
in bank-1. The 3 adjacent bytes memory location may be spread over two differ-
ent banks.

Instruction: ADC, AND, CMP, DIV, EOR, LDA, MPY, ORA, SBC, STA

ex. . Mnemonic Machine Code
ADCL A,(1EH), Y 776 1E¢6
(m=1, x=1)

Memory

Bank-0
Index
1252, DATA I (EFys) Register Y

1253, DATA TI (01,6) +| 12146 | =120210,

1254, DATA Il (12,6)
]
L NS
Direct Page
Register Op Code(77:¢)
L | 1234, | + Operand(1E,g)
/
A—A+C+| DATA | < DATA 120210, <

25

Direct Indirect Long Indexed Y

ex. . Mnemonic Machine Code
ADCL A,(1EH), Y 7746 1Eq6
(m=0, x=1)
Memory
Bank-0
Index
—————>1252,¢ DATAT (EFy6) Register Y

125346 DATATIL(01,) + =120210,¢

1254, DATAII (12,5)

Direct Page
Register Op Code(774)
l 1234|e—| + Operand(1E,)

, Lo
DATA, 120210, <————
TAu! DATA, | = DATA

ex. . Mnemonic Machine Code
ADCL A,(1EH), Y 7716 1E46
(m=1, x=0)

Memory

Bank-0
Index

———> 1252 DATAI (EF6) Register Y

12536 DATAT (01,5) + =12E710,6

1254, DATAII (126)

Direct Page
Register Op Code(774¢)

L[1234 | + Operand(1Eyg)

o

A+—A+C++| DATA | < DATA 12E710;y <——]

26

Direct Indirect Long Indexed Y

ex. . Mnemonic Machine Code
ADCL A,(1EH), Y 7746 1Eqg
(m=0, x=0)
Memory

Bank-0
Index

—————— 1252, DATAI (EFy5)
12534 DATATI(01,¢)
1254, DATAI (12,4)
______ —
Direct Page
Register Op Code(7746)
L—[T1234,, | + Operand(1E,s)
—————— 7]
DATA_
A+ 4o o]| g
/—_/

Register Y
+| ES52145 | =12E710,4

12E7104¢ -~

27

Absolute

Mode Absolute addressing mode
Function The contents of the memory locations specified by the instruction’s second and third
bytes and the contents of the data bank register are the actual data. Note that, in
the cases of the JMP and JSR instructions, the instructions’ second and third byte
contents are transferred to the program counter.
Instruction: ADC, AND, ASL, CMP, CPX, CPY, DEC, DIV, EOR, INC,
JMP, JSR, LDA, LDM, LDX, LDY, LSR, MPY, ORA, ROL,
ROR, SBC, STA, 8§TX, STY
ex. . Mnemonic Machine Code ex. . Mnemonic Machine Code
ADC A, 0AD12H 6Dy 1246 AD;4 ADC A, 0AD12H 6D16 1245 ADyg
(m=1) (m=0)
Memory Memory
F—\/ T ~—
Op Code (6Dyg) Op Code (6Dy¢)
Operand (1245) Operand (12,5)
Operand (AD,g) Operand (ADyg)
| l ‘
S N SUNp S ———— Data Bank
Register
_______ Data Bank A—-A+C+
A—A+C+ Register - { DATA, AD12,,
- DATA [T AD12, DATAy
ex. . Mnemonic Machine Code ex. . Mnemonic Machine Code
LDX 0AC14H AE5 14,5 ACy LDX 0AC14H AEs 14,5 ACyg
(x=1) (x=0)
Memory Memory
/—\/ /—\/
Op Code (AE,g) Op Code (AE,s)

Operand (144¢)

Operand (AC,s)

)

L
T

X<—| DATA I<—

j Data Bank
Register

AC14,,

X | DATA, | DATAL <_{

L !

Operand (14,¢)

}

Operand (ACyg)

] Data Bank
Register
DATA, AC14,
DATAx
—————— —
/\/

28

Absolute

ex. : Mnemonic Machine Code
JMP 0AC14H 4C 14,5 ACyg
Memory
T ———]

——————— 0000,

Op Code (4C,q)
Operand (14,¢) }

Opérand (ACyq)

Program
bank-PG
Program
Bank Register
Address to be
executed next AC14,¢
______ i FFFF,q

Program bank register contents are not affected

Absolute Bit

Mode 1 Absolute bit addressing mode

Function : The contents of the instruction’s second and third bytes and the contents of the data
bank register specify the memory locations, and data for multiple bit positions in the
memory locations are specified by a bit pattern specified in the instruction's fourth and
fitth bytes (the fourth byte only if the m flag is set to 1).

Instruction: CLB, SEB

ex. . Mnemonic) Machine Code €X. . Mnemonic Machine Code
CLB #5AH, 1234H 1C46 3445 1246 5A+¢ CLB #5AA5H, 1234H 1Cy6 3446 124 A5, 5A+6
(m=1) (m=0)
Memory Memory
T ~———] T ——]

Op Code (1Cy6)
Operand (34,¢)

} Op Code (1C,6)

Operand (12,6) gperang E?:‘s; }
Operand (5A5) Operand (AS‘G)
peran 16
{_ ______ Operand (5A;¢)
T r b
Data Bank T T
Register (_J ______] Data Bank
? L)I ')l ')l '?l ?l b)l i 1234,6 Register
L i "PPPRPRE| [O7] 1288 <
e HERIBEEERE
——————— Data Bank
Register

Tl o[o7 [o7] r2oe

_______ }-— Data Bank
T ~———) Register

o[>]o]>[*[o]?]0o] [DT]1234,6

30

Absolute Indexed X

Mode Absolute indexed X addressing mode

Function The contents of the memory locations specified by a value resulting from addition of
a 16-bit numeric value expressed by the instruction’s second and third bytes with the
contents of the index register X and the contents of the data bank register are the
actual data. If, however, addition of the numeric value expressed by the instruction’s
second and third bytes with the contents of the index register X generates a carry,
the bank number will be 1 larger than the contents of the data bank register.

7

Instruction: ADC, AND, ASL, CMP, DEC, DIV, EOR, INC, LDA, LDM,
LDY, LSR, MPY, ORA, ROL, ROR, SBC, STA

ex. . Mnemonic Machine Code ex. . Mnemonic Machine Code
ADC A, 0AD12H, X 7D46 1246 ADyg ADC A,0AD12H, X 7D46 124 ADyg
(m=1, x=1) (m=0, x=1)

Memory Memory
/“—_/ T ——]
——————— | Index
ndex Op Code (7Dyg)

Op Code (7D,¢)

Operand (12,¢)

Operand (AD,q)
[R N S
r - X =
_______ Data Bank | 7 7 77| pataBank
an
A-A+CH+ Register A—A+C+ Register
l DATA] - DATA DT |AE00,, < | DATA, I DATA. | DATA, DT | AE0O,, <

| DATAy
/\I/ /-_/

} +[TEE]=AE00,

Register X

Operand (12,¢)
Operand (AD;g)

Register X

+ 1 EEyg | =AE00, 1

31

Absolute Indexed X

: Mnemonic
ADC A, 0AD12H, X
(m=1, x=0)

ex.

Op Code (7Dy6)

Operand (1246)

Operand (AD;g)

A—A+C+

DATA l -

. Mnemonic
LDY O0BC12H, X
(x=1)

ex.

Op Code (BCy)
Operand (126)
Operand (BCyg)

Y <[DATA | <

Machine Code
7Dy 12,6 ADyg

ex. .

Index
Register X

Data Bank
Register

[DoT] BEOO,

<

A<+ A+C+| DATA, 1 DATA_ ‘—{

Machine Code ex. :

BCys 1245 BCyg

Index
Rgister X

} + 1 EE4 | =BD00,¢

Data Bank
Register

BD0O,

Y <— | DATA, | DATAL <—{

Mnemonic Machine Code
ADC A, 0AD12H, X 7Dy 1246 ADyg
(m=0, x=0)

Memory
T —~—

Index
Register X

} + ok,] =800

Op Code (7D46)
Operand (1246)
Operand (ADyg)

-
Data Bank
Register
DATA, [DT] BEOD,, <
DATAx
/\/
Mnemonic Machine Code
LDY 0BC12H, X BCys 12,6 BCyg
(x=0)
Memory
== 1
Index
Op Code (BCy¢) Register X

Operand (12,6)
Operand (BCyg)

] + =CD00,s

Data Bank
Register
DATA, CD00;; <
DATA4

32

Absolute Indexed Y

Mode Absolute indexed Y addressing mode
Function The contents of the memory locations specified by a value resulting from addition of
a 16-bit numeric value expressed by the instruction’s second and third bytes with the
contents of the index register Y and the contents of the data bank register are the
actual data. If, however, addition of the numeric value expressed by the instruction’s
second and third bytes with the contents of the index register Y generates a carry,
the bank number will be 1 larger than the contents of the data bank register.
Instruction: ADC, AND, CMP, DIV, EOR, LDA, LDX, MPY, ORA, SBC,
STA
ex. . Mnemonic Machine Code ex. . Mnemonic Machine Code
ADC A,0AD12H,Y 7916 1245 AD4q ADC A,0AD12H,Y 7916 1245 AD;6
(m=1, x=1) (m=1, x=0)
Memory Memory
T ~———] T ~——
Op Code (79,5) mdox L] Index
oo (1216) 1 Register Y Op Code (79,6) Register Y
an 16 =
+ =AE00 o d (12
Operand (AD:y) || e perand (12,) } +[10EE,; | =BE00,
- Operand (ADy)
T 3 Data Bank
DataBank | . ., ., = — — — —
A—-A+C+ [— — —— —1 Register A—A+C+ Register
[Dama] - DATA AE00,, | pata]— DATA [oT | BE0O,,
_______ /_\/
L ~—
ex. . Mnemonic Machine Code ex. * Mnemonic Machine Code
ADC A,0AD12H, Y 7945 1246 ADyg ADC A,0AD12H,Y 7916 1246 AD+¢
(m=0, x=1) (m=0, x=0)
Memory .
/_\—/ Memory
______ — /"_’,‘
Index |\
gp Code ((1729‘5)) Register Y Index
perand (12 - Op Code (79
| Operand (12,) || e T
Operand (AD,g) f + I—E =BE00:
- —————
4 i F=————A
= x
_______ Data Bank c -
A—A4C+ , Register Data Bank
DATAL AE00,¢ A—-A+C+ | T T T T Register
DATA | DATA, | <
DATA4
/\—/
L ~—————

33

Absolute Indexed Y

ex.

: Mnemonic

LDX 0BC12H, Y
(x=1)

Op Code (BEg)

Operand (1244)
Operand (BCyg)

x=| DATA |~

Machine Code
BE;g 12,5 BCy6

Index
Register Y

ex.

Data Bank
Register

BDO0O;,

-

X < DATA, | DATA_ | < {

. Mnemonic

LDX 0BC12H, Y
(x=0)

Op Code (BEyg)
Operand (12,¢)

Machine Code
BE;s 12,6 BCys

Index
Register Y

Operand (BCyg)

Data Bank
Register

DATA_

CD00,g

DATAy

| + (o,] ~coon

-

34

Absolute Long

Mode Absolute long addressing mode
Function The contents of the memory locations specified by the instruction’s second, third and
fourth bytes become the actual data. Note that, in the cases of the JMP and JSR
instructions, the instructions’ second and third byte contents are transferred to the
program counter and the fourth byte contents are transferred to the program bank
register.
Instruction: ADC, AND, CMP, DIV, EOR, JMP, JSR, LDA, MPY, ORA,
SBC, STA
ex. . Mnemonic Machine Code ex. . Mnemonic Machine Code
ADC A, 123456H 6F 16 5616 3416 1246 ADC A, 123456H 6F 5 5646 3415 1246
(m=1) (m=0)
Memory Memory
T ~—— T —
Op Code (6F¢) Op Code (6F,)
Operand (56,¢) Operand (5646)
Operand (34,¢) _— Operand (34,¢)
Operand (12,¢) Operand (124¢)
~ E e ~
______ _4 e e —_————]
A—A+C+
| DATA |<— DATA 123456, T DATAL 123456, <
\/\/ A~—A+c+| DATA,, 1 DATA, |<— DATA,
/__/
ex. + Mnemonic Machine Code
JMP 123456H 5C16 5616 3415 1246
Memory
/\/
Op Code (5Cy¢)

Address to be
executed next

Operand (5646)
Operand (34,5)
Operand (12,¢)

Program
Bank Register

[1246 |3456,6 <!

s

Program bank register contents are replaced by
the third operand

35

Absolute Long Indexed X

Mode

Function

Absolute long indexed X addressing mode

The contents of the memory location specified by adding the numeric value ex-

pressed by the instruction’s second, third and fourth bytes with the contents of the
index register X are the actual data.

STA

Machine Code
7F16 5646 3446 1246

Index
Register X

[i rr,

123537,

Machine Code
7F 16 5646 3446 1246

Index
Register X

+ | EEE1,, | =132337,

Instruction: ADC, AND, CMP, DIV, EOR, LDA, MPY, ORA, SBC,
ex. Mnemonic Machine Code ex. . Mnemonic
ADC A, 123456H, X 7F 16 5646 34,5 124 ADC A, 123456H, X
(m=1, x=1) (m=0, x=1)
Memory Memory
T ~— T ~—
Op Code (7Fq) Index Op Code (7Fyg)
Operand (565) Register X Operand (564¢)
Operand (3446) +L T Ely5 |=123537,4 Operand (34;6)
Operand (124) * Operand (12,¢)
] -1
A-A+C+ A—A+C+
[omm] B B 1 77 O | Y
DATA 123537, DATA
/‘\—/ \/—\)
ex. - Mnemonic Machine Code ex. . Mnemonic
ADC A, 123456H, X 7F 16 5646 3446 1246 ADC A, 123456H, X
(m=0, x=1) (m=0, x=0)
Memory Memory
/\4 /‘_\/
______ . ———— —
Op Code (7Fys) Index Op Code (7F,¢)
Operand (565) Register X Operand (56,6)
Operand (3445) + [EEE1ys | =132337, Operand (3445)
Operand (12,5) Operand (12,¢)
_______]
L 4 L RS
A—A+cCH+
[oaa] - DATA 132337, < - { DATAL
A-AfC+ DATAY
/_\/
L~

132337y =——

36

Absolute Indirect

Mode ¢ Absolute indirect addressing mode

Function : The instruction’s second and third bytes specify 2 adjacent bytes in memory, and
the contents of these bytes specify the address within the same program bank to

which a jump is to be made.

Instruction: JMP

ex. : Mnemonic
JMP(1400H)

Memory

Op Code (6Cy6)

Operand (00,5)
Operand (14,)

DATA I (FFyg)
DATA I (1E6)

Address to be

executed next 0

Machine Code
6Cy6 0046 144¢

1400, }

Program
Bank Register

[PG] 1EFF,

Program
bank-PG

37

Absolute Indirect Long

Mode 1 Absolute indirect long addressing mode

Function : The instruction’s second and third bytes specify 3 adjacent bytes in memory, and the
contents of these bytes specify the address to which a jump is to be made.

Instruction: JMP

ex. . Mnemonic Machine Code
JMPL(1234H) DCi6 3445 1246
Memory
/—\-/

Op Code (DCy¢)
Operand (344¢)
Operand (1246)

Program
Bank Register

DATA I (12,) }123416

DATA 1T (Bdg)

DATA I (A1) ||

Program
Bank Register

Address to be
B412
executed next 1

o~

DATA Il 1s loaded in the program bank register

38

Absolute Indexed X Indirect

Mode Absolute indexed X indirect addressing mode
Function The value obtained by adding the instruction's second and third bytes and the con-
tents of the index register X specifies 2 adjacent bytes in memory, and the contents
of these bytes specify the address to which a jump is to be made.
Instruction: JMP, JSR
ex. . Mnemonic Machine Code
JMP(1234H, X) 7C16 3446 1245
(x=1)
Memory
Index
Register X Op Code (7Cy6)

Operand (34,¢)
Operand (12¢)

Address to be
executed next

DATA T (12) 1246, Program
DATA T (BCyq) bank-PG
Program
Bank Register
[pclBCt2,e <
T~

39

Stack

Register contents are saved to or restored from the memory location specified by the

stack pointer. The stack pointer is set in bank-0.

Mode Stack addressing mode
Function
Instruction: PEA, PEl, PER, PHA,
PHY, PLA, PLB, PLD,
ex. * Mnemonic Machine Code
PHA 48,6
(m=1)
Memory
Stack Pointer
S-1 0046 SH: S,
S AL
Bank-0
/—\/
ex. . Mnemonic Machine Code
PHD 0Bys
Memory
Stack Pointer
S-1 DPR,
S DPRy
Bank-0
T ~———

PHB, PHD, PHG, PHP, PHT, PHX,
PLP, PLT, PLX, PLY, PSH, PUL
ex. : Mnemonic Machine Code
PHA 48,¢
(m=0)
Memory
Stack Pointer
s-2 00i6[S!S, |
s-1 A
S Ay
Bank-0
S —
L ~——
ex. . Mnemonic Machine Code
PEA # 1234H F4,g 3446 124
Memory

Stack Pointer

00,6 | Sy S

Bank-0

Op Code (F4,)
Operand (34,6)
Operand (124¢)

40

Stack

Machine Code

ex. : Mnemonic
PEI # 12H Ddyg 1246
Memory
DATA I 341244

DATA I

Stack Pointer

S-2 005 | Sn :S,_
S-1 DATA 1
S DATA I

Direct Page

Op Code (D4,¢)

Register

Operand (12,4)

Bank-0

+ [340055 |= 3412,

S-2
S-1

ex. . Mnemonic
PER # 1234H

Memory

ACy

6816

Op Code (624)

Operand (34,¢)

Operand (124¢)

Stack Pointer

Program
Bank Register

5676,

~N ~
=/ /
|+ [T

Program Counter

Machine Code
6246 341 12,5

Bank-0

Program
bank-PG

41

Relative

Mode Relative addressing mode
Function : Branching occurs to the address specified by the value resulting from addition of the
contents of the program counter and the instruction’s second byte. In the case of a
long branch by the BRA instruction, a 15-bit signed numeric value formed by the con-
tents of the instruction’s second and third bytes is added to the program counter con-
tents. If the addition generates a carry or borrow, 1 is added to or subtracted from’
the program bank register.
Instruction: BCC, BCS, BEQ, BMI, BNE, BPL, BRA, BVC, BVS
ex. . Mnemonic Machine Code
BCC *—12 90,6 Fdy¢
Branches to the address * —12 if the carry flag (C) Advances to the address * If the carry flag (C)
has been cleared has been set
Memory Memory
/—\/ /—\1
Address to be
executed next *=12
Op Code (90,6) Op Code (90,¢)
Operand (F4,¢) Jump Operand (F4,5)
* Address to be *
executed next
/___—‘ /—\/
ex. : Mnemonic Machine Code
BRA 1234H 82,5 34,6 1244
Memory
/_\—’
Op Code (82,6) Program
Operand (34,¢) bank-PG
(2,0 Program
Operand (1245 Bank Register
FF12,4

Address to be
executed next

114646 Program

bank-PG+1

42

Direct Bit Relative

Mode : Direct bit relative addressing mode

Function : Specifies the bank-0 memory location by the value obtained by adding the instruc-
tion’s second byte to the direct page register’s contents, and specifies the positions
of multiple bits in the memory location by the bit pattern in the third and fourth bytes
(the third byte only if the m flag is set to 1). Then, if the specified bits all satisfy the
branching conditions, the instruction’s fifth byte (or the fourth byte if the m flag is set
to 1) is added to the program counter as a signed value, generating the branching
destination address. If, however, addition of the instruction’s second byte to the direct
page register's contents result in a value that exceeds the bank-0 range, the specified

location will be in bank-1.

Instruction: BBC, BBS

ex. . Mnemonic Machine Code
BBS #5AH, 04H, OF6H 24, 04,5 5Ac F6,6
(m=1)
Memory

o[1[1]1[1]o1] 1| 001238, <——

T T Program

Bank Register
Address to be 9

executed next 1146 FFFDyg

Direct Page

Jump Op Code (24,5) Register

Operand (04,5) + (123446 | = 1238,¢

Operand (5A;¢) Program
Operand (F646) Bank Register

000745

- o~
(Branch)

Bank-0

Address to be
executed next

Memory

ofo[1]1]1]o]1[1

{(

001238,; < (Bank-0

’\/

(Not branch)

Direct Page
Op Code (2446) Register
Operand (04;) | -+ [1234,5|=1238,
Operand (5A5) Program
Operand (F6,) Bank Regtster
0007,

43

Direct Bit Relative

ex. : Mnemonic
BBS #5AA5H, 04H, OF6H

(m=0)

Address to be
executed next

Jump

Machine
24, 04,6

Memory

P

Op Code (244¢)

Bank Register
114¢| FFFE;g

Direct Page

Code
A5,6 5A¢ F6¢

001238,, <—

Program

Register

Operand (04,5) +[1234,5|=1238,;

Operand (AS,5)

Operand (5A¢)

Operand (F6,¢)

0008,
/—-\/

(Branch)

Bank Register

Program
Address to be
executed next

Memory

001238,

Direct Pag,e

Op Code (24,4)

Register

Operand (04,¢)

+ [1234,5|= 12386

Operand (A5,¢)

Operand (5Aq¢)

Program

Operand (F6yg)

Bank Register

12,5 0008,

(Not branch)

——

44

j Bank-0

Absolute Bit Relative

Mode Absolute bit relative addressing mode
Function The instruction’s second and third bytes and the contents of the data bank register
specify the memory location, and data for the memory location’s multiple bits is
specified by a bit pattern in the instruction’s fourth and fifth bytes (the fourth byte only
if the m flag is set to 1). Then, if the specified bits all satisfy the branching conditions,
the instruction’s sixth byte (or the fifth byte if the m flag is set to 1) is added to the
program counter as a signed value, generating the branching destination address.
Instruction: BBC, BBS
ex. . Mnemonic Machine Code
BBS #5AH, 1234H, OF6H 2Cyg 3446 1245 5A5 F64¢
(m=1)
Memory Memory
/—\/ T~
_______ Program
Address to be Bank Register
executed next [1,g] FFFDys
, Op Code (2Cy) Op Code (2C1s)
ume Operand (344¢) } Operand (34,) }
Operand (12,¢) J Operand (12y6)
Operand (5A6) Program Operand (5A;6) . PLogram t
Operand (F6s¢) Bank Register Address to be Operend e o 00(39'5 i
0007,¢ executed next @] 716
““““ I L
_______ - — — — — 7
Data Bank Data Bank
Register Register
o[i[1[1[1[o[1[0 | [DT]1234,y ofo[1[1]1]o[1[o | [oT]1234: .
L ~— L ~—__
(Branch) (Not branch)

45

Absolute Bit Relative

ex. . Mnemonic
BBS z5AASH, 1234H, OF6H

Address to be
executed next

Jump

Machine Code
2C46 34,6 12,5 A5, 5A5 F64¢

Memory
T ~~——]
Program

Bank Register
FFFD,q

Op Code (2Cy6)

Operand (34,5)

Operand (12,¢)

Operand (A5yg)

Operand (5As6) Program

Operand (F64¢)

Bank Register

000745

Data Bank
Register

1 1234,
1

1/1/0(1]|1(1 0
L ~——
(Branch)

Address to be
executed next

Memory

Op Code (2Cy)
Operand (344¢)

Operand (12,¢)
Operand (AS5y¢)
Operand (5A:¢)

Operand (F6,¢)

(Not branch)

Program
Bank Register

0007,¢

Data Bank
Register

[DT 1234,

46

Stack Pointer Relative

Mode Stack pointer relative addressing mode
Function The contents of a bank-0 memory location specified by the value resulting from ad-
dition of the instruction’s second byte and the contents of the stack pointer become
the actual data. If, however, the value obtained by adding the contents of the instruc-
tion's second byte and the stack pointer's contents exceeds the bank-0 range, the
specified location will be in bank-1.
Instruction: ADC, AND, CMP, DIV, EOR, LDA, MPY, ORA, SBC, STA
ex. . Mnemonic Machine Code ex. . Mnemonic Machine Code
ADC A, 02H, S 63,6 02,5 - ADC A, 02H, S 63,6 02
(m=1) (m=0)
Memory Memory
Bank-0
ot Bank-0
A—A
A-A+C+H DATA | < DATA 1236, _mm - { DATA, 1236,
DATA,
______ — I
~ :’\ T R
Op Code (63,¢) Stack Pointer Op Code (63,5) Stack Pointer
Operand (02,¢) + 1234|e_l=1236|5 Operand (02,5) | + l 1234, (=1236,6
— P

47

Stack Pointer Relative Indirect Indexed Y

Mode : Stack pointer relative indirect indexed Y addressing mode

Function : The value obtained by adding the instruction’s second byte and the contents of the
stack pointer specifies 2 adjacent bytes in memory. The value obtained by adding the
contents of these bytes and the contents of the index register Y specifies address of
the actual data in memory bank-DT (DT is contents of data bank register). If addition
of the 2 bytes in memory with the contents of the index register Y generate a carry,
the bank number will be 1 larger than the contents of the data bank register.

Instruction: ADC, AND, CMP, DIV, EOR, LDA, MPY, ORA, SBC, STA

ex. . Mnemonic Machine Code ex. . Mnemonic Machine Code
ADC A,(1EH, S), Y 7346 1E46 ADC A,(1EH, S), Y 7346 1E4¢
(m=1, x=1) (m=0, x=1)
Memory Memory
Bank-0
nd Bank-0
ndex Register Y Index Register Y
12526 DATA I (01,) _ 12525 DATA I (014¢)
1253, DATA T (12,0) +[16| =12E7, 1253:c [DATA 1(126) +[_EBu]= 12675

a2
—
77
{
"
7

r Stack Pointer
Op Code (734¢)
Stack Pointer Op Code (734¢) 16
P 1 + Operand (1Eg)
1234,5 | + Operand (1E,g)
_______ EN 1
L = I Data Bank
_______ Data Bank A—A+C+ Register
A—A+C+ Register [DATA, [DATA, | < { DATA, 12E7,6
DATA | < DATA 1267,y <— DATA
L~ __— T ~———

48

Stack Pointer Relative Indirect Indexed Y

ex. . Mnemonic Machine Code
ADC A, (1EH, S), Y 7346 1Es6
(m=1,x=0)
Memory
Bank-0
Index Register Y
12526 DATA 1 (01,)
(FOEGyq] = 102E7
12536 DATA 11 (12,6) + *
L L
Stack Pointer Op Code (7346)
1234, | + Operand (1E,g)
_____ —
T T paaBank
"1 Reaster
A—A-+C+ |DATA| - DATA (DT]+1, 02E7,g<~——
ex. * Mnemonic Machine Code
ADC A, (1EH, S), Y 7346 1E46
(m=0, x=0)
Memory
Bank-0
. Index Register Y
12525 | OATA L(01,6) + [FOE6,5 | =102E7;6
125346 DATA 11(126)
% T
[
______]
Stack Pointer Op Code (7346)
1234,5 | + Operand (1Eqg)
— — — — — —
—
_______ Data Bank
Register
2E7 -
A—atct [DATAL TDATAL] { CE::::L [DT]+1, 02E746
H
L ~——

Block Transfer

ex.

Mode Block transfer addressing mode
Function The instruction’s second byte specifies the transfer-to data bank, and the contents of
the index register Y specify the transfer-to address within the data bank. The instruc-
tion's third byte specifies the transfer-from data bank, and the contents of the index
register X specify the address in the data bank where the data to be transferred is
stored. The contents of the accumulator A constitute the number of bytes to be trans-
ferred. Upon termination of transfer, the contents of the data bank register will
specify the transfer-to data bank. The MVN instruction is used for transfer to lower
address location. In this case, the contents of the index registers X and Y are incre-
mented each time data is transferred. The MVP instruction is used for transfer to
higher address location. In this case, the contents of the index registers X and Y are
decremented each time data is transferred. The block of data to be transferred may
cross over the bank boundary.
Instruction : MVN, MVP
. Mnemonic Machine Code
MVN 0E2H, 0E5H 54,6 E2,6 E5,¢
Before transfer After transfer
Memory Memory
,\/
DATA | E25678,¢
Bank-E2,g DATA I
DATA Il
N X I 1
______ — —
Op Code(54,,) | A | Op Code(54s) | A[FFFFo
Operand (E2;6) | X[1234, | Operand (E216) | x[1237,
Operand (E5,) Y[5678,5 | Operand (E5,¢) v[5678,
DT[E2,
] or(”]] ‘j 216
L A o
DATA 1 1E51234,s DATA I
DATA I | DATALl |
DATA I JBa"k-Eﬁ's DATA I
L— — ~———

50

Block Transfer

. Mnemonic
MVP OES5H, OE2H

Before transfer

DATA I
DATA I
DATA [

Op Code(4446)
Operand (E5,¢)
Operand (E2,g)

Machine Code
44, E5.5 E24¢

Bank-E2,
E2567A,,

A[00035 |
X (567 |
v (72562]
DT

Bank-ES5q6

After transfer

Memory

DATA 1
DATA I
DATA I

A[FFFFs

Op Code(44,5)

X| 567746

Operand (E5,¢)

Y [1233,,

Operand (E2,¢)

DT [ESue]

E51236,¢

51

Instructions

4. Instructions
4.1 Instruction Set

The Series MELPS 7700 microcomputers support a set of 103 instructions which are de-
scribed in this chapter. This section presents overviews of these instructions, and Sec. 4.2
presents the detailed description for each instruction.

4.1.1 Data Transfer Instructions

The data transfer instructions move data between data and registers, between a register and
the memory, between registers or between memory devices.

The following table summarizes the various data transfer instructions supported by the Series

MELPS 7700 :
Category Instruction Description
Load LDA Loads the contents of memory into the accumulat;)r.
v LDM Loads an immediate value into the memory.
LDT Loads an immediate value into the data bank register.
LDX Loads the contents of memory into the index register X.
LDY Loads the contents of memory into the index register Y.
Store STA Stores the contents of the accumulator in the memory.
STX Stores the contents of the index register X in the memory.
STY Stores the contents of the index register Y in the memory.
Transfer TAX Transfers the contents of the accumulator A to the index register X.
TXA Transfers the contents of the index register X to the accumulator A.
TAY Transfers the contents of the accumulator A to the index register Y.
TYA Transfers the contents of the index register Y to the accumulator A.
TSX Transfers the contents of the stack pointer to the index register X.
TXS Transfers the contents of the index register X to the stack pointer.
TAD Transfers the contents of the accumulator A to the direct page
register.
TDA Transfers the contents of the direct page register to the accumula-
tor A.
TAS Transfers the contents of the accumulator A to the stack pointer.
TSA Transfers the contents of the stack pointer to the accumulator A.
TBD Transfers the contents of the accumulator B to the direct page reg-
ister.
TDB Transfers the contents of the direct page register to the accumulator
B.
TBS Transfers the contents of the accumulator B to the stack pointer.

52

Instructions

Category Instruction Description
Transfer TSB Transfers the contents of the stack pointer to the accumulator B.
TBX Transfers the contents of the accumulator B to the index register X.
TXB Transfers the contents of the index register X to the accumulator B.
TBY Transfers the contents of the accumulator B to the index register Y.
TYB Transfers the contents of the index register Y to the accumulator B.
XY Transfers the contents of the index register X to the index register
Y.
TYX Transfers the contents of the index register Y to the index register
X.
MVN Transfers a block of data from the lower addresses.
MVP Transfers a block of data from the higher addresses.
Stack operation PSH Saves the contents of the specified register to the stack.
PUL Restores the contents of stack to the specified register.
PHA Saves the contents of the accumulator A to the stack.
PLA Restores the contents of stack to the accumulator A.
PHP Saves the contents of the program status register to the stack.
PLP Restores the contents of stack to the program status register.
PHB Saves the contents of the accumulator B to the stack.
PLB Restores the contents' of stack to the accumulator B.
PHD Saves the contents of the direct page register to the stack.
PLD Restores the contents of stack to the direct page register.
PHT Saves the contents of the data bank register to the stack. B
PLT Restores the contents of stack to the data bank register.
PHX Saves the contents of the index register X to the stack.
PLX Restores the contents of stack to the index register X.
PHY Saves the contents of the index register Y to the stack.
PLY Restores the contents of stack to the index register Y.
Stack PHG Saves the contents of the program bank register to the stack.
PEA Saves a the numeric of 2 bytes to the stack.
PEI Saves the contents of 2 consecutive bytes in the direct page area
to the stack.
PER Saves the result of adding a 16-bit numeric value to the program
counter contents to the stack.
Exchange XAB Swaps the contents of the accumulator A with the contents of the

accumulator B.

53

Instructions

4.1.2 Arithmetic Instructions

The arithmetic instructions perform addition, subtraction, multiplication, division, logical operation,
comparison, rotation and shifting of register and memory contents.

The following table summarizes the arithmetic instructions supported:

Category Instruction Description
Addition ADC Adds the contents of the accumulator,the contents of memory and
. the contents of the carry flag.
Subtraction v Tee
o SBC Subtracts the complements of the contents of memory and carry
Multiplication
flag from the contents of the accumulator.
Division INC Increments the accumulator or memory contents by 1.
DEC Decrements the accumulator or memory contents by 1.
INX Increments the contents of the index register X by 1.
DEX Decrements the contents of the index register X by 1.
INY Increments the contents of the index register Y by 1.
DEY Decrements the contents of the index register Y by 1.
MPY Multiples the contents of the accumulator A and the contents of
memory.
DIV Divides the numeric value whose lower byte is the contents of the
accumulator A and upper byte is the contents of the accumulator B
by the contents of memory.
Logical operation AND Performs logical AND between the contents of the accumu-
lator and the contents of memory.
ORA Performs logical OR between the contents of the accumulator and
the contents of memory.
EOR Performs logical exclusive-OR between the contents of the accumu-
lator and the contents of memory.
Comparison CMP Compares the contents of the accumulator with the contents of
memory.
CPX Compatres the contents of the index register X and the contents of
memory.
CPY Compares the contents of the index register Y and the contents of
memory.
Shifting, Lotation ASL Shifts the contents of the accumulator or memory to the left by 1 bit.
LSR Shifts the contents of the accumulator or memory to the right by 1
bit.
ROL Links the contents of accumulator or memory with the carry flag,
and rotates the result to the left by 1 bit.
ROR Links the contents of accumulator or memory with the carry flag,
and rotates the result to the right by 1 bit.
RLA Rotates the contents of the accumulator A to the left by the speci-

fied number of bits.

54

Instructions

4.1.3 Bit Manipulation Instructions

The bit manipulation instructions set the specified bits of the processor status register or
memory to “1” or “0”".

The following table summarizes the bit manipulation instructions supported:

Category Instruction Description
Bit manipulation CLB Clears the specified memory bit to "0”.
SEB Sets the specified'-memory bit to “1".
CLP Clears the specified bit of the processor status register's lower

byte (PSL) to “0”.

SEP Sets the specified bit of the processor status register’s lower
byte (PSt) to “1”.

4.1.4 Flag Manipulation Instructions
The flag manipulation instructions set to “1” or clear to “0” the C, |, m and V flags.

The following table summarizes the flag manipulation instructions supported:

Category Instruction Description

Flag setting CLC Clears the contents of carry flag to “0".
SEC Sets the contents of carry flag to “1”.
CLM Clears the contents of data length selection flag to “0”.
SEM Sets the contents of data length selection flag to “1”.
CLI Clears the contents of interrupt disable flag to “0".
SEl Sets the contents of interrupt disable flag to “1”.
CLvV Clears the contents of overflow flag to “0”.

4.1.5 Branching and Return Instructions
The branching and return instructions enable changing the program execution sequence.

The following table summarizes the branching and return instructions:

Category Instruction Description
Jump JMP Sets a new address in the program counter and jumps to the new
address.
BRA Jumps to the address obtained by adding an offset value to the

contents of the program counter.

JSR Saves the contents of the program counter to the stack and then
jumps to the new address.

55

Instructions

Category Instruction Description
Branch BBC Causes a branch if the specified memory bits are all “0”.
BBS Causes a branch if the specified memory bits are all 1.
BCC Causes a branch if the carry flag is set to "0”.
BCS Causes a branch if the carry flag is set to “1”.
BNE Causes a branch if the zero flag is set to “0”.
BEQ Causes a branch if the zero flag is set to “1".
BPL Causes a branch if the negative flag is set to “0”".
BMI Causes a branch if the negative flag is set to “1”.
BVC Causes a branch if the overflow flag is set to “0".
BVS Causes a branch if the overflow flag is set to “1".
Return RTI Returns from the interrupt routine to the original routine.
RTS Returns from a subroutine to the original routine. The program
bank register contents are not restored.
RTL Returns from a subroutine to the original routine. The program
bank register contents are restored.

4.1.6 Interrupt Instruction (Break Instruction)

The interrupt instruction executes software interrupt.

Category Instruction

Description

Break BRK Executes a software interrupt.

4.1.7 Special Instructions

The special instructions listed below control the clock generator circuit.

Category Instruction Description
Special WIT Stops the internal clock.
STP Stops the oscillator.
4.1.8 Other Instruction
Category Instruction Description
Other NOP Only advances the program counter.

56

Instructions

4.2 Description of Instructions

This section describes the Series MELPS 7700 instructions individually. To the extent possible,
each instruction is described using one page per instruction. Each instruction description page
is headed by the instruction mnemonic, and the pages are arranged in alphabetical order of the
mnemonics. For each instruction, operation and description of the instruction, status flag changes
and a listing sorted by addressing modes of the assembler coding format (Note 1), machine code,
bytes-count and cycles-count (Note 2) are presented.

Note1. The assembler coding formats shown are general examples, and they may differ from the
actual formats for the assembler used. Please be sure to refer to the mnemonic coding
description in the manual for the assembler actually used for programming.

Note2. The cycles-counts shown are the minimum possible, and they vary depending on the fol-
lowing conditions:

® Value of direct page register's lower byte

The cycles-count shown are for when the direct page register’s lower byte (DPRL) is
0016. When using an addressing mode that uses the direct page register with
DPRw#“0016", the cycles-count will be 1 more than the value shown.

® Number of bytes that have been loaded in the instruction queue buffer

® Whether the first address of the memory read/write is even- or odd-numbered in
accessing the 16-bit data length.

@ Accessing of an external memory are with BYTE=1(using 8-bit external bus)

57

Instructions

The table below lists the symbols that are used in this section:

Symbol Description Symbol Description
C Carry flag DPR Direct page register
YA Zero flag DPRH1 | Direct page register’s upper 8 bits
I Interrupt disable flag DPRL Direct page register’s lower 8 bits
D Decimal operation mode flag PS Processor status register
X Index register length selection flag PSH Processor status register's upper 8 bits
m Data length selection flag PSL Processor status register's lower 8 bits
\Y Overflow flag PSn Processor status register's n-th bit
N Negative flag M Memory contents
IPL Processor interrupt priority level M(n) Contents of memory location specified by
+ Addition operand
- Subtraction M(S) Contents of memory at address indicated
% Multiplication by stack pointer
/ Division Mn n-th memory location
A Logical AND ADc Value of 24-bit address’ upper 8-bit
\Y Logical OR (Aea~Are))))
. ADH Value of 24-bit address’ middle 8-bit
_f Exclusive OR (Ars~As)
Negation AD. | Value of 24-bit address’ lower 8-bit (Ar~Ad)
— Movement to the arrow direction bn n-th bit of data
- Movement to the arrow direction dd 8-bit offset value
« Movement to the arrow direction i Number of transfer bytes or rotation
Ace Accumulator i1, i2 Number of registers pushed or pulled
AccH Accumulator’s upper 8 bits imm 8-bit immediate value
Acc Accumulator's lower 8 bits imm1, immz2| 16-bitimmediate value (imms1 specifies the
A Accumulator A upper 8-bit,and immz specifies the lower 8-
An Accumulator A’s upper 8 bits bit)
AL Accumulator A’s lower 8 bits I 8-bit address value
B Accumulator B mmil 16-bit address value (mm specifies the
Bu Accumulator B's upper 8 bits upper 8-bit and Il specifies the lower 8-bit)
BL Accumulator B's lower 8 bits hhmmil | 24-bit address value (hh specifies the up-
. per 8-bit, mm specifies the middle 8-bitand
X Index register X Il specifies the lower 8-bit)
XH Index register X's upper 8 bits nn 8-bit data value
Xt Index register X's lower 8 bits ni, N2 8-bit data value (Used when coding two 8-
Y Index register Y bit data side by side)
Yu Index register Y’s upper 8 bits rr Signed 8-bit data value
Yu Index register Y's lower 8 bits Irire Signed 16-bit data value (ir1 is the upper 8-
S Stack pointer bit value, and rrz is the lower 8-bit value)
PC Program counter
PCwx Program counter’s upper 8 bits
PCL Program counter’s lower 8 bits
REL Relative address
PG Program bank register
DT Data bank register

58

ADC

Add with Carry ADC

Operation

Description

Status flags

Acc, C « Acc+ M + C

Adds the contents of the accumulator, memory and carry flag, and places the
result in the accumulator.

Executed as binary addition if the decimal operation mode flag D is set to 0.
Executed as decimal addition if the decimal operation mode flag D is set to 1.

IPL: Not affected.

N Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of
the operation result is 1. Otherwise, cleared to 0. Meaningless for decimal
addition.

\Y Set to 1 when binary addition of signed data result in a value outside the range
of -32768 to +32767 (-128 to +127 if the data length selection flag m is set to 1).
Otherwise, cleared to 0. Meaningless :or decimal addition.

m : Not affected.

x : Not affected.

D : Not affected.

I Not affected.

Z : Setto 1 when the result of operation is 0. Otherwise, cleared to 0. Meaningless
for decimal addition.

C When the data length selection flag m is set to 0, set to 1 if binary addition.
exceeds +65535 or if decimal addition exceeds +9999. Otherwise, cleared to 0.
When the data length selection flag m is set to 1, set to 1 if binary addition
exceeds +255 or if decimal addition exceeds +99. Otherwise, cleared to 0.

Addressing mode Syntax Machine code Bytes | Cycles
Immediate ADC A, #imm 6916, imm 2 2
Direct ADC A, dd 6516, dd 2 4
Direct indexed X ADC A, dd, X 7516, dd 2 5
Direct indirect ADC A, (dd) 7216, dd 2 6
Direct indexed X indirect ADC A, (dd, X) 6116, dd 2 7
Direct indirect indexed Y ADC A, (dd), Y 7116, dd 2 8
Direct indirect long ADCL A, (dd) 6716, dd 2 10
Direct indirect long indexed Y ADCL A, (dd), Y 7716, dd 2 11
Absolute ADC A, mmll 6D1s, II, mm 3 4
Absolute indexed X ADC A, mmll, X 7D1s, Il, mm 3 6
Absolute indexed Y ADC A, mmll, Y 7916, Il, mm 3 6
Absolute long *ADC A, hhmmll 6F1e, Il, mm, hh 4 6
Absolute long indexed X ADC A, hhmmll, X 7F1s, Il, mm, hh 4 7
Stack pointer relative ADC A, nn,S 6316, NN 2 5
Stack pointer relative ADC A, (nn, S), Y 7316, NN 2 8
indirect indexed Y

(Note1) This table applies when using the accumulator A. If using the accumulator B, replace “A” with “B”.
In this case, "4216” is added at the beginning of the machine code, the bytes-count increases by
1 and the cycles-count increases by 2.

(Note2) When operating on 16-bit data in the immediate addressing mode with the data length selection flag
m set to 0, the bytes-count increases by 1.

59

AND

Logical AND

AND

Operation : Acc e Acc A M

Description : Performs logical AND between the contents of the accumulator and the contents
of memory, and places the result in the accumulator.

Status flags
IPL : Not affected.

N : Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of
the operation result is 1. Otherwise, cleared to 0.

Vv Not affected.

m Not affected.

X Not affected.

D Not affected.

| Not affected.

4 Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C Not affected.
Addressing mode Syntax Machine code Bytes | Cycles|
Immediate AND A, #imm 2916, imm 2 2.
Direct AND A, dd 2516, dd 2 4
Direct indexed X AND A, dd, X 3516, dd 2 5
Direct indirect AND A, (dd) 3216, dd 2 6
Direct indexed X indirect AND A, (dd, X) 2116, dd 2 7
Direct indirect indexed Y AND A, (dd), Y 3116, dd 2 8
Direct indirect long ANDL A, (dd) 2716, dd 2 10
Direct indirect long indexed Y ANDL A, (dd), Y 3716, dd 2 11
Absolute AND A, mmil 2Dss, Il, mm 3 4
Absolute indexed X AND A, mmll, X 3D1s, I, mm 3 6
Absolute indexed Y AND A mmll, Y 3916, II, mm 3 6
Absolute long AND A, hhmmll 2F1s, I, mm, hh 4 6
Absolute long indexed X AND A, hhmmll, X 3F1e, I, mm, hh 4 7
Stack pointer relative AND A, nn, S 2316, Nn 2 5
Stack pointer relative AND A, (nn, S), Y 3316, NN 2 8

indirect indexed Y

(Note1) This table applies when using the accumulator A. If using the accumulator B, replace “A” with "B".
In this case, “4216” is added at the beginning of the machine code, the bytes-count increases by
1 and the cycles-count increases by 2.

(Note2) When operating on 16-bit data in the immediate addressing mode with the data length selection flag
m set to 0, the bytes-count increases by 1.

60

ASL

Arithmetic Shift Left AS L

Operation

Description

Status flags

When m=0
bis bo

ClL [TTTTTTITTTTTITT}eo0

When m=1

bo

Clel T[T T[]0

Shifts all bits of the accumulator or memory one place to the left. Bit 0 is loaded
with 0. The carry flag C is loaded from bit 15 (or bit 7 when the data length
selection flag m is set to 1) of the data before the shift.

IPL: Not affected.
N Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of
the operation result is 1. Otherwise, cleared to 0.
\ Not affected.
m Not affected.
X Not affected.
D Not affected.
| Not affected.
Z Set to 1 when the result of operation is 0. Otherwise, cleared to 0.
C Set to 1 when bit 15 (or bit 7 when the data length selection flag m is set to1)
before the operation is 1. Otherwise, cleared to 0.
Addressing mode Syntax Machine code ‘ Bytes i Cycles
Accumulator ASL A 0A16 | 1 [2
Direct ASL dd 0616, dd { 2 (7
Direct indexed X ASL dd, X 1616, dd 1 2 |7
Absolute ASL mmll OEss, I, mm i3] 7
Absolute indexed X ASL mmll, X 1Ess, Il, mm } 3 ‘ 8

(Note1) The accumulator addressing mode's specification in this table applies when using the accumulator
A. If using the accumulator B, replace “A” with “B”. In this case, “4216” is added at the beginning
of the machine code, the bytes-count increases by 1 and the cycles-count increases by 2.

61

BBC

Branch on.Bit Clear B BC

Operation

Description

Status flags

When MA IMM=0

PC « PC + n + REL (REL is instruction’s second byte)
PG « PG + 1 (if carry on PC), PG « PG - 1 (if borrow on PC)

When M A IMM=z0
PC « PC +n
PG « PG + 1 (if carry on PC)

IMM is the bit pattern that specifies the bit positions to be tested.
The value of n is determined as follows:

If the data length selection flag m is set to 1, n=4 if direct bit relative
addressing mode, and n=5 if absolute bit relative addressing mode.

If the data length selection flag m is set to 0, n=5 if direct bit relative
addressing mode, and n=6 if absolute bit relative addressing mode.

The BBC instruction tests the specified bits (which may be specified simultane-
ously) of memory. The instruction causes a branch to the specified address
when the specified bits are all 0. The branch address is specified by a relative
address.

Not affected.

Addressing mode Syntax Machine code Bytes | Cycles
Direct bit relative BBC #imm, dd, rr 3416, dd, imm, rr 4 7
Absolute bit relative BBC #imm, mmlil, rr 3Cis, Il, mm, imm, rr 5 - 8

(Note1) The bytes-count increases by 1 when operating on 16-bit data with the data length selection flag
m set to 0.

(Note2) The cycles-count increases by 2 when a branch occurs.

62

BBS

Branch on Bit Set

BBS

Operation : When M A IMM=0

PC « PC + n + REL (REL is instruction’s second byte)

PG « PG + 1 (if carry on PC), PG « PG - 1 (if borrow on PC)

When M A IMM=0
PC « PC +n

PG « PG + 1 (if carry on PC)

IMM is the bit pattern that specifies the bit positions to be tested. The value of
n is determined as follows:

If the data length selection flag m is set to 1, n=4 if direct bit relative
addressing mode, and n=5 if absolute bit relative addressing mode.

If the data length selection flag m is set to 0, n=5 if direct bit relative
addressing mode, and n=6 if absolute bit relative addressing mode.

Description : The BBS instruction tests the specified bits (which may be specified simultane-
ously) of memory. The instruction causes a branch to the specified address
when the specified bits are all 1. The branch address is specified by a relative

address.

Status flags : Not affected.

Addressing mode Syntax Machine code Bytes | Cycles
Direct bit relative BBS #imm, dd, rr 2416, dd, imm, rr 4 7
Absolute bit relative BBS #imm, mmll, rr 2C1e, Il, mm, imm, rr 5 8

(Note1) The bytes-count increases by 1 when operating on 16-bit data with the data length selection

flag m set to 0.

(Note2) The cycles-count increases by 2 when a branch occurs.

63

BCC

Branch on Carry Clear BCC

Operation

Description

Status flags

When C=0,

PC « PC + 2 + REL (REL is instruction’'s second byte)
PG « PG + 1 (if carry on PC), PG « PG - 1 (if borrow on PC)

When C=1,
PC « PC +2
PG « PG + 1 (if carry on PC)

When the carry flag C is clear (0), the BCC instruction causes a branch to the
specified address. The branch address is specified by a relative address.

When the carry flag C is set (1), the program advances to next step without any
action.

Not affected.

Addressing mode Syntax - Machine code Bytes |Cycles

Relative

BCC mr ' 901s, IT 2 4

(Note1) The cycles-count increases by 2 when a branch occurs.

64

BCS

Branch on Carry Set BCS

Operation

Description

Status flags

When C=1,

PC « PC + 2 £ REL (REL is instruction’s second byte)
PG « PG + 1 (if carry on PC), PG « PG - 1 (if borrow on PC)

When C=0,
PC « PC +2
PG « PG + 1 (if carry on PC)

When the carry flag C is set (1), the<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>