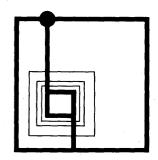
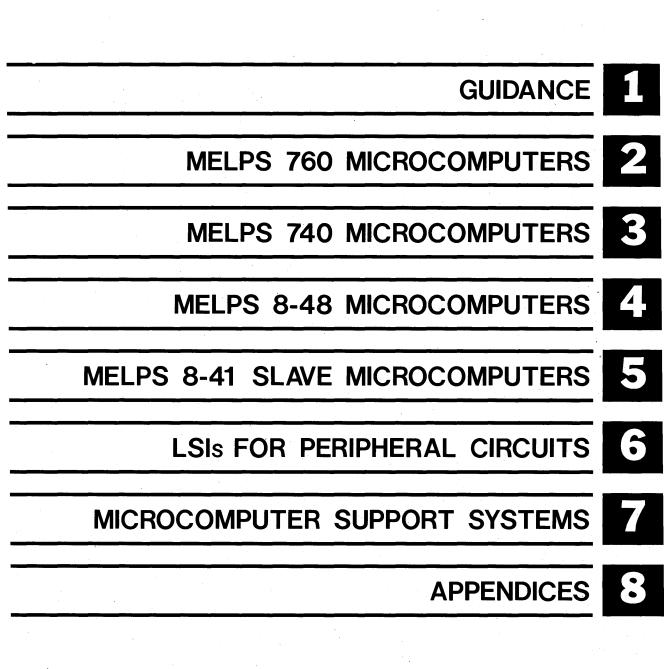
MITSUBISHI DATA BOOK 1984 SINGLE-CHIP MICROCOMPUTERS



1293A Mountain View-Alviso Road Sunnyvale, California 94086

(408) 734-1900 (415) 964-1700


MITSUBISHI DATA BOOK 1984 SINGLE-CHIP MICROCOMPUTERS

All values shown in this catalogue are subject to change for product improvement.

The information, diagrams and all other data included herein are believed to be correct and reliable. However, no responsibility is assumed by Mitsubishi Electric Corporation for their use, nor for any infringements of patents or other rights belonging to third parties which may result from their use.

MITSUBISHI MICROCOMPUTERS CONTENTS

page

GUIDANCE			pag
Index by Function			
Development Support Systems	 	 	1-4
Ordering Information	 	 	1—5
Package Outlines	 	 	1-7
Letter Symbols for The Dynamic Parameters			
Symbology			

Symbology ·····	
Quality Assurance and Reliability Testing	1—16
Precaution in Handling MOS IC/LSIs ·····	1—18

2 MELPS 760 MICROCOMPUTERS

M50760-XXXP/M50761-XXXP	Single-Chip 4-Bit CMOS Microcomputer ······2-3

3 MELPS 740 MICROCOMPUTERS

M50740-XXXSP

Single-Chip 8-Bit CMOS Microcomputer ······3-3

MELPS 8-48 MICROCOMPUTERS

Single-Chip 8-Bit Microcomputer
Single-Chip 8-Bit Microcomputer·····4-25
Single-Chip 8-Bit Microcomputer4-29
Single-Chip 8-Bit Microcomputer·····4-34
Single-Chip 8-Bit Microcomputer·····4-39
Single-Chip 8-Bit CMOS Microcomputer ······4-44

5 MELPS 8-41 SLAVE MICROCOMPUTERS

Functions of MELPS 8-41 Slave Micr	ocomputers ······5-3
M5L8041A-XXXP	Slave microcomputer ·····5-25
M5L8042-XXXP	Slave microcomputer ······5-32

6 LSIS FOR PERIPHERAL CIRCUITS

M50780SP/M507	81SP/M50782SP/M50783SP Ir	put/Output Expander ······	6-3
M50784SP	Input Expander	·····	
M50786SP	Input/Output Expander ·····	•••••••	
M50790SP	Input/Output Expander ·····	••••••	
M5L8243P	Input/Output Expander ·····	••••••	
M5M82C43P	Input/Output Expander		
M5L8155P	2048-Bit Static RAM with I/O Ports an	d Timer	
M5L8156P	2048-Bit Static RAM with I/O Ports ar	d Timer	

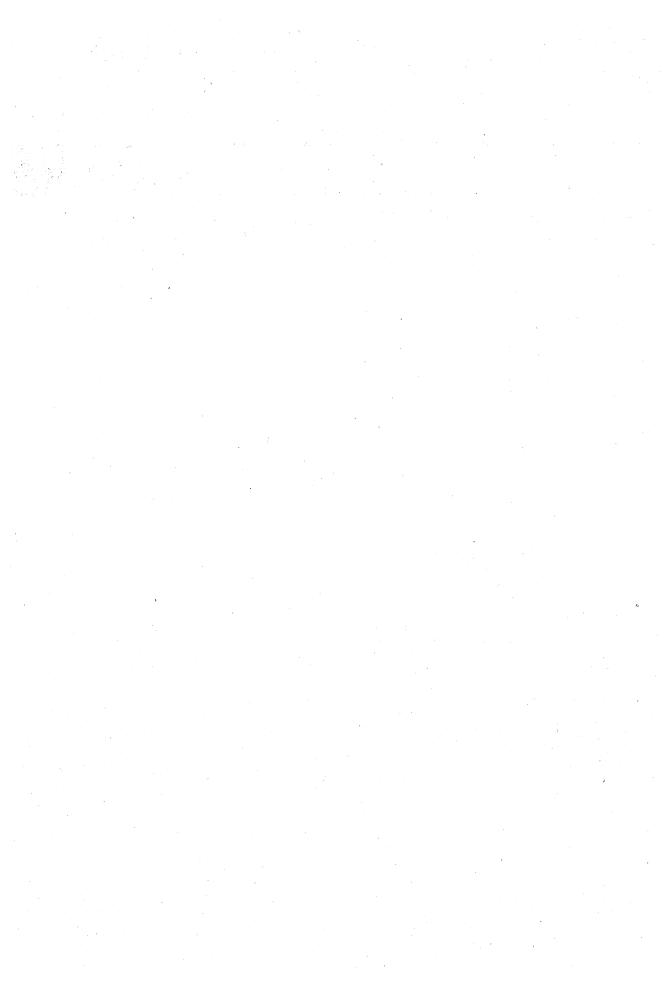
7 MICROCOMPUTER SUPPORT SYSTEMS

PC4000	Debugging Machine ······7-3
PC9000	Cross Assembler Machine 7-7
PC9100	16-Bit CPU Softwear Development System ······7-10
PC9001CPM	CP/M Software for PC9000
PC9004	Interface Cable Between PC9000 and PC40007-16
PC9005	Printer Interface Cable ······7-17
PCA4040	MELPS 740 Dedicated Board (M50740-XXXSP, M50741-XXXSP)··································
PCA4060	MELPS 760 Dedicated Board(M50760-XXXP, M50761-XXXP)7-20
PCA4340	MELPS 740 Evaluation Board (M50740-XXXSP, M50741-XXXSP) ····································
PCA4360	MELPS 760 Evaluation Board(M50760-XXXP, M50761-XXXP)7-23

CONTENTS

PCA8400	MELPS 8-48 Dedicated Board	7-	24
PCA8403	MELPS 8-48 Evaluation Board ·····	7	26

8 APPENDICES


MELPS 760 Mask ROM Ordering Method	
MELPS 740 Mask ROM Ordering Method	
MELPS 8-48 Mask ROM Ordering Method	
MELPS 8-41 Mask ROM Ordering Method	

Contact Address for Further Information

.

GUIDANCE

				Electrical characteristics			istics			
Туре	Circuit function and organization	Structure	Supply voltage (V)	Typ pwr dissipation (mW)	Max. access time (ns)		Max. fre- quency (MHz)	Package	Interchangeable products	Page

MELPS 760 Microcomputers

M50760-XXXP	1K-Byte Mask-Prog. ROM	C,Si	5±10%	2		10µs	0.4	20P4		2-3
M50761-XXXP	0.5K-Byte Mask-Prog. ROM	C,Si	5±10%	2	—	10µs	0.4	20P4	—	2-3

MELPS 740 Microcomputers

					_					
M50740-XXXSP	3K-Byte Mask-Prog. ROM	C,Si	5±10%	20	·	2µs	4	52P4B	· —	3—3

MELPS 8-48 Microcomputers

						0500				
M5L8048-XXXP	1K-Byte Mask-Prog. ROM	N,Si,ED	5±10%	325		2500	6	40P4	i8048	4-21
M5L8035LP	External ROM Type,64-Byte RAM	N,SI,ED	5±10%	325	_	2500	6	40P4	i8035L	4-21
M5L8049-XXXP				500		1360	11		i8049	
M5L8049-XXXP-8	2K-Byte Mask-Prog. ROM	N,Si,ED	5±10%	500		1875	8	40P4	_	4-25
M5L8049-XXXP-6				500	—	2500	6		-	1
M5L8039P-11				500	—	1360	11		i8039	
M5L8039P-8	External ROM Type,128-Byte RAM	N,SI,ED	5±10%	500		1875	8	40P4		4-25
M5L8039P-6				500		2500	6		i8039-6]
M5L8049H-XXXP #	2K-Byte Mask-Prog. ROM	N,Si,ED	5±10%	250		1360	11	40P4	i8049H	4-29
M5L8039HLP #	External ROM Type,128-Byte RAM	N,Śi,ED	5±10%	250	-	1360	11	40P4	18039HL	4-29
M5M80C49-XXXP*	2K-Byte Mask-Prog. ROM	C,Si	5±10%	25	—	2500	6	40P4		4-44
M5M80C39P-6 *	External ROM Type,128-Byte RAM	C,Si	5±10%	25	_	2500	6	40P4		4-44
M5M8050H-XXXP	4K-Byte Mask-Prog. ROM	N,Si,ED	5±10%	350	_	1360	11	40P4		4-34
M5M8040HP *	External ROM Type,256-Byte RAM	N,Si,ED	5±10%	350		1360	11	40P4	—	4-34
M5M8050L-XXXP*	4K-Byte Mask-Prog. ROM	N,SI,ED	5±10%	250		2500	6	40P4	—	4-39
M5M8040LP *	External ROM Type,256-Byte RAM	N,Si,ED	5±10%	250	—	2500	6	40P4		4-39

MELPS 8-41 Slave Microcomputers

M5L8041A-XXXP	1K-Byte Mask-Prog. ROM	N,Si,ED	5±10%	300	·	2500	6	40P4	i8041A	5-25
M5L8042-XXXP *	2K-Byte Mask-Prog. ROM	N,Si,ED	5±10%	300		1250	12	40P4	i8042	5-32

LSIs for Peripheral Circuits

M50780SP	I/O Expander (CE="H" active)	C,AI	3~14		—	_		40P4B	TMS1025C	6-3
M50781SP	I/O Expander (CE="H" active)	C,AI	3~14	_	-		-	28P4B	TMS1024C	6-3
M50782SP	I/O Expander.(CE="L" active)	C,AI	3~14		-	—	-	40P4B	—	6-3
M50783SP	I/O Expander (CE="L" active)	C,AI	3~14	—	—	-	;	28P4B		6-3
M50784SP	Input Expander	C,AI	4~14			. —	-	28P4B		6-9
M50786SP	I/O Expander (CE="L" active)	C,AI	4~14		—	-		40P4B		6-11
M50790SP	I/O Expander	C,AI	4~14	_			—	52P4B	_	6-16
M5L8243P	I/O Expander	N,SI,ED	5V±10%	_		—	—	24P4	i8243	6-26
M5M82C43P	* I/O Expander	C,Si	5∨±10%	—	_	-		24P4		6-32
M5L8155P	2048-Bit Static RAM with I/O Ports and Timer (CE="L" active)	N,SI,ED	5 ±5%	500		_	_	40P4	i8155	6-39
M5L8156P	2048-Bit Static RAM with I/O Ports and Timer (CE="H" active)	N,SI,ED	5 ±5%	500		_	_	40P4	i8156	6-47

Note : AI=Aluminum gate. C=CMOS.

ED=Enhancement depletion mode.

N=N-channel.

P=P-channel. Si=Silicon gate.

* : New product

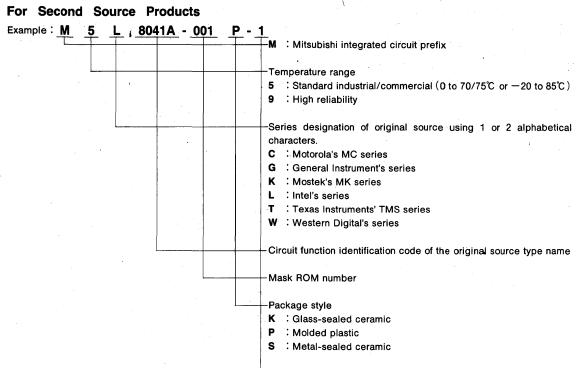
‡: Under development

DEVELOPMENT SUPPORT SYSTEMS

Development Support Systems

	Deve	Development Support unit Cross-assembler unit			Debug	Debugging unit		
be			Hardware	Software	Main unit	Special boards	Evaluation board	
смоз	MELPS	M50760-XXXP		Cross- assembler	and the second s	PCA4060	PCA4360	
4-bit	760	M50761-XXXP	PC9000	software for PC9000		PCA4060	M50760-PGYS	
	MELPS	M50740-XXXSP	PC9100	PC9008		PCA4040	PCA4340	
CMOS	740	M50741-XXXSP	PC9100	ASM		PCA4040	M50740-PGYS	
8-bit		M5M80C49-XXXP					PCA8403	
		M5M80C39P-6				and the second	_	
		M5L8048-XXXP					-	
NMOS		M5L8035LP			PC4000			
		M5L8049-XXXP			PG4000		PCA8403	
		M5L8049-XXXP-8	15L8049-XXXP-6 15L8039P-11 PC9000 software	assembler		PCA8400	PCA8403	
	MELPS 8-48	M5L8049-XXXP-6					PCA8403	
		M5L8039P-11					_	
		M5L8039P-8				· -		
8-bit		M5L8039P-6						
		M5M8050H-XXXP					PCA8403	
		M5M8050L-XXXP					M5M8050H+ PGYS	
	•	M5L8049H-XXXP						
		M5L8039HLP			_	-	_	
	MELPS	M5L8041A-XXXP				-	<u> </u>	
	8-41	M5L8042-XXXP				- · · · ·	-	

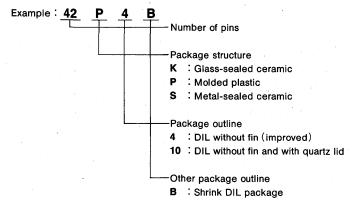
MITSUBISHI MICROCOMPUTERS ORDERING INFORMATION


FUNCTION CODE

Mitsubishi integrated circuits may be ordered using the following simplified alphanumeric typ-codes which define the function of the IC/LSIs and the package style.

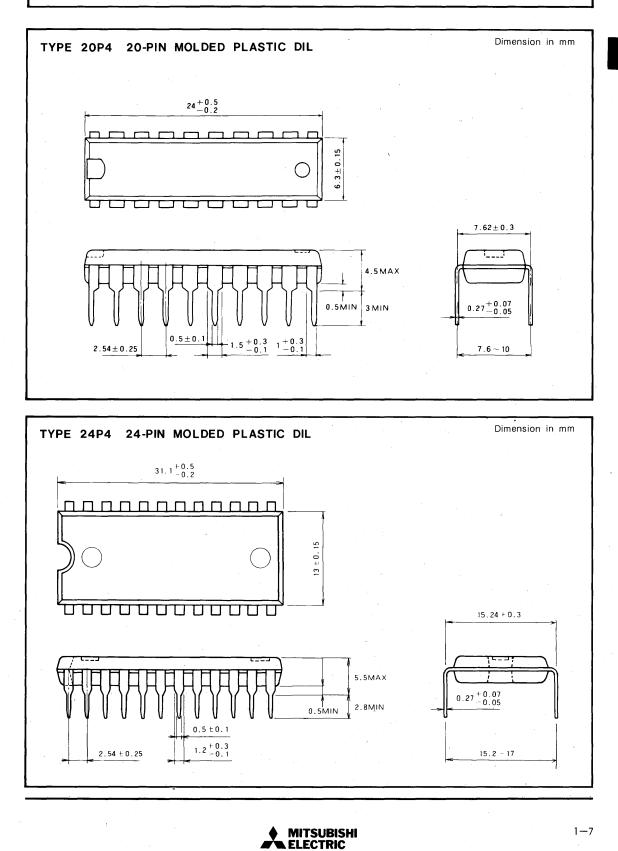
For Mitsubishi Original Products

Example: M 5 07 60 - 001 P - 2 M : Mitsubishi integrated prefix -Temperature range 5 ∶ Standard industrial/commercial (0 to 70/75°C or -20 to 86°C). 9 : High reliability -Series designation using 1 or 2 alphanumeric characters. 01~09 : CMOS 1 : Linear circuit 3 : TTL 10~19 : Linear circuit 32~33 : TTL (equivalent to Texas Instruments' SN74 series) 41~47 : TTL 81 : P-channel aluminum-gate MOS 84 : COMS 85 : P-channel silicon-gate MOS 86 : P-channel aluminum-gate MOS 87 : N-channel silicon-gate MOS 88 : P-channel aluminum gate ED-MOS 89 : COMS 9 : DTL S0~S2 : Schottky TTL (equivalent to Texas Instruments' SN74S series) Circuit function identification code using 2 digits. -Mask ROM number. Package style K : Glass-sealed ceramic P : Molded plastic S : Metal-sealed ceramic Electrical characteristic identification code using 1 or 2 digits.

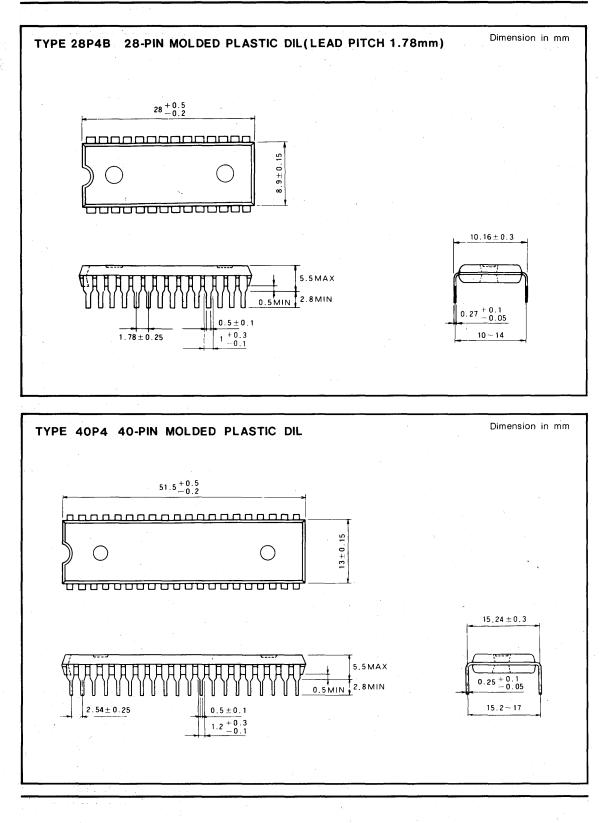


-Electrical characteristic identification code using 1 or 2 digits.

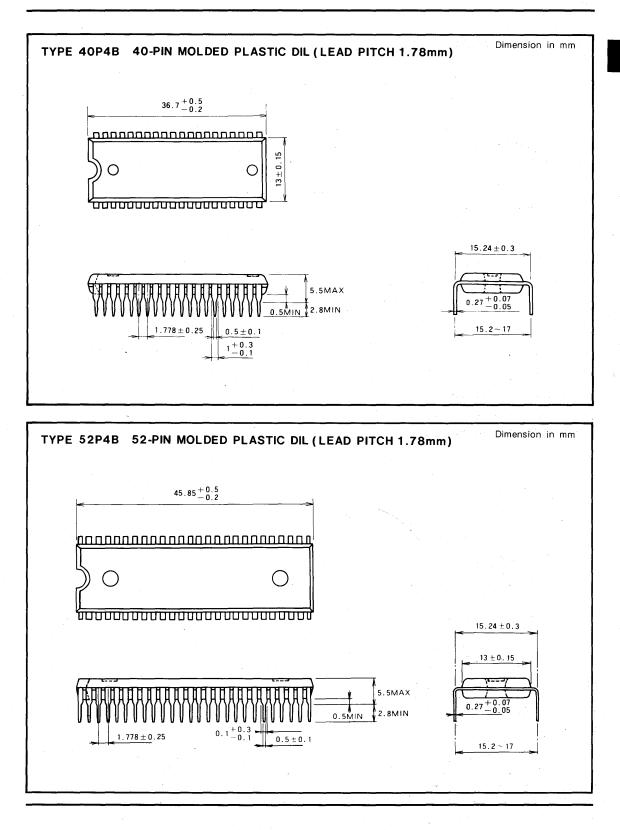
PACKAGE CODE


Package style may be specified by using the following simplified alphanumeric code.

1--6


MITSUBISHI MICROCOMPUTERS **PACKAGE OUTLINES**

1


MITSUBISHI MICROCOMPUTERS PACKAGE OUTLINES

1-8

MITSUBISHI MICROCOMPUTERS PACKAGE OUTLINES

1 - 9

LETTER SYMBOLS FOR THE DYNAMIC PARAMETERS

1. INTRODUCTION

A system of letter symbols to be used to represent the dynamic parameters of intergrated circuit memories and other sequential circuits especially for single-chip microcomputers, microprocessors and LSIs for peripheral circuits has been discussed internationally in the TC47 of the International Electrotechnical Committee (IEC). Finally the IEC has decided on the meeting of TC47 in February 1980 that this system of letter symbols will be a Central Office document and circulated to all countries to vote which means this system of letter symbols will be a international standard.

The system is applied in this LSI data book for the new products only. Future editions of this data book will be applied this system. The IEC document which describes "Letter symbols for dynamic parameters of sequential integrated circuits, including memories" is introduced below. In this data book, the dynamic parameters in the IEC document are applied to timing requirements and switching characteristics.

2. LETTER SYMBOLS

The system of letter symbols outlined in this document enables symbols to be generated for the dynamic parameters of complex sequential circuits, including memories, and also allows these symbols to be abbreviated to simple mnemonic symbols when no ambiguity is likely to arise.

2.1. General Form

The dynamic parameters are represented by a general symbol of the form:-

t_{A(BC-DC)F} (1)

where :

Subscript A indicates the type of dynamic parameter being represented, for example; cycle time, setup time, enable time, etc.

Subscript B indicates the name of the signal or terminal for which a change of state or level (or establishment of a state or level) constitutes a signal event assumed to occur first, that is, at the beginning of the time interval. If this event actually occurs last, that is, at the end of the time interval, the value of the time interval is negative.

Subscript C indicates the direction of the transition and/or the final state or level of the signal represented by B. When two letters are used, the initial state or level is also indicated.

Subscript D indicates the name of the signal or terminal for which a change of state or level (or establishment of a state or level) constitutes a signal event assumed to occur last, that is, at the end of the time interval. If this event actually occurs first, that is, at the beginning of the time interval, the value of the time interval is negative.

Subscript E indicates the direction of the transition and/or the final state or level of the signal represented by D. When two letters are used, the initial state or level is also indicated.

Subscript F indicates additional information such as mode of operation, test conditions, etc.

Note 1: Subscripts A to F may each consists of one or more letters.

- 2: Subscripts D and E are not used for transition times
- 3: The "-" in the symbol (1) above is used to indicate "to"; hence the symbol represents the time interval from signal event B occuring to signal event D occuring, and it is important to note that this convention is used for all dynamic parameters including hold times. Where no misunderstanding can occur the hyphen may be omitted.

2.2. Abbreviated Form

The general symbol given above may be abbreviated when no misunderstanding is likely to arise. For example to:

	t _{A(B-D)}
or	t _{A(B)}
or	$t_{A(D)}$ – often used for hold times
or	t _{AF} – no brackets are used in this case
or	t _A
or	t _{BC-DE} - often used for unclassified time intervals

2.3. Allocation of Subscripts

In allocating letter symbols for the subscripts, the most commonly used subscripts are given single letters where practicable and those less commonly used are designated by up to three letters. As far as possible, some form of mnemonic representation is used. Longer letter symbols may be used for specialised signals or terminals if this aids understanding,

3. SUBSCRIPT A (For Type of Dynamic Parameter)

The subscript A represents the type of dynamic parameter to be designated by the symbol and, for memories, the parameters may be divided into two classes :

a) those that are timing requirements for the memory and

LETTER SYMBOLS FOR THE DYNAMIC PARAMETERS

b) those that are characteristics of the memory. The letter symbols so far proposed for memory circuits are listed in sub-clauses 3.1 and 3.2 below. All subscripts A should be in lower-case.

3.1. Timing Requirements

The letter symbols for the timing requirements of semiconductor memories are as follows :

Term	Subscript
Cycle time	с
Time interval between two signal events	d
Fall time	f
Hold time	h
Precharging time	рс
Rise time	r
Recovery time	rec
Refresh time interval	rf
Setup time	su
Transition time	t
Pulse duration (width)	w

3.2. Characteristics

The letter symbols for the dynamic characteristics of semiconductor memories are as follows :

Characteristic	Subscript
Access time	а
Disable time	dis
Enable time	en
Propagation time .	р
Recovery time	rec
Transition time	t
Valid time	v
Note: Recovery time for use as a characteristic is limited to se	ense recovery time.

4. SUBSCRIPTS B AND D (For Signal Name or Terminal Name)

The letter symbols for the signal name or the name of the terminal are as given below.

All subscripts B and D should be in upper-case.

Signal or terminal	Subscript
Address	Α
Clock	C
Column address	CA
Column address strobe	CAS
Data input	n D
Data input/output	DQ
Chip enable	· E

Erasure	ĒR
Output enable	G
Program	PR
Data output	Q
Read	R
Row address	RA
Row address strobe	RAS
Refresh	RF
Read/Write	RW
Chip select	S
Write (write enable)	W

Note 1: In the letter symbols for time intervals, bars over the subscripts, for example CAS, should not be used.

 It should be noted, when further letter symbols are chosen, that the subscript should not end with H, K, V, X, or Z. (See clause 5)

3: If the same terminal, or signal, can be used for two functions (for example Data input/output, Read/Write) the waveform should be labelled with the dual function, if appropriate, but the symbols for the dynamic parameters should include only that part of the subscript relevant to the parameter.

5. SUBSCRIPTS C AND E (For Transition of Signal)

The following symbols are used to represent the level or state of a signal :

Transition of signal	Subscript
High logic level	н
Low logic level	L
Valid steady-state level (either low or high)	V
Unknown, changing, or 'don't care' level	х
High-impedance state of three-state output	Z

The direction of transition is expressed by two letters, the direction being from the state represented by the first letter to that represented by the second letter, with the letters being as given above.

When no misunderstanding can occur, the first letter may be omitted to give an abbreviated symbol for subscripts C and E as indicated below.

All subscripts C and E should be in upper-case.

	5	Subscript
Examples	Full	Abbreviated
Transition from high level to low level	HL	L
Transition from low level to high level	LH	н
Transition from unknown or changing state to valid state	xv	v
Transition from valid state to unknown or changing state	VX	x
Transition from high-impedance state to valid state	zv	v
Note: Since subscripts C and E may be abbreviated, a	and since	subscripts B and D

te: Since subscripts C and E may be abbreviated, and since subscripts B and D may contain an indeterminate number of letters, it is necessary to put the restriction on the subscripts B and D that they should not end with H, L, V, X, or Z, so as to avoid possible confusion.

LETTER SYMBOLS FOR THE DYNAMIC PARAMETERS

6. SUBSCRIPT F (For Additional Information)

If necessary, subscript F is used to represent any additional qualification of the parameter such as mode of operation, test conditions, etc. The letter symbols for subscript F are given below.

Subscript F should be in upper-case.

Modes of operation	Subscript
Power-down	PD
Page-mode read	PGR
Page-mode write	PGW
Read	R
Refresh	RF
Read-modify-write	RMW
Read-write	RW
Write	w

MITSUBISHI MICROCOMPUTERS SYMBOLOGY

FOR DIGITAL INTEGRATED CIRCUITS

New symbol	Former symbol	Parameterdefinition
Ci		Input capacitance
C _o		Output capacitance
-0 Di∕o		Input/output terminal capacitance
Ο _{i(φ)}		Input capacitance of clock input
:		Frequency
(ø)		Clock frequency
(φ)		Current-the current into an integrated circuit terminal is defined as a positive value and the current out of a terminal is defined as a negative value
BB	1	Supply current from V _{BB}
		Average supply current from V _{BB}
BB(AV)		Supply current from Vcc
CC		
CC(AV)		Avarage supply current from Vcc
CC(PD)		Power-down supply current from Vcc
DD		Supply current from V _{DD}
DD(AV)		Average supply current from VDD
GG		Supply current from V _{GG}
GG(AV)		Average supply current from VGG
1		Input current
н	· ·	High-level input current-the value of the input current when VOH is applied to the input considered
IL		Low-level input current—the value of the input current when VoL is applied to the input considered
он		High-level output current—the value of the output current when V _{OH} is applied to the output considered
OL		Low-level output current-the value of the output current when VoL is applied to the output considered
oz		Off state (high-impedance state) output current-the current into an output having a three-state capability with input condition so applied that
		it will establish according to the product specification, the off (high-impedance) state at the output
OZH		Off-state (high-impedance state) output current, with high-level voltage applied to the output
OZL		Off-state (high-impedance state) output current, with low-level voltage applied to the output
os .		Short-circuit output current
ss		Supply current from V_{SS}
⊃d		Power dissipation
NEW		Number of erase/write cycles
NRA		Number of read access unrefreshed
٦i		Input resistance
٦L		External load resistance
ROFF		Off-state output resistance
RON		On-state output resistance
a		Access time-the time interval between the application of a specified input pulse during a read cycle and the availability of valid data signal at an output
a(A)	ta(AD)	Address access time-the time interval between the application of an address input pulse and the availability of valid data signals at an output
a(CAS)		Column address strobe access time
a(E)	ta(CE)	Chip enable access time
a (G)	t _{a (OE)}	Output enable access time
a(PR)		Data access time after program
a(RAS)	÷	Row address strobe access time
a(S)	ta(cs)	Chip select access time
c (3)		Cycle time
CR	t _{c(RD)}	Read cycle time-the time interval between the start of a read cylce and the start of the next cycle
CRF	t _{c(REF)}	Refresh cycle time-the time interval between successive signals that are intended to restore the level in a dynamic memory cell to its original leve
CPG	t _{c(PG)}	Page-mode cycle time
CRMW	t _{c(RMR)}	Read-modify-write cycle time-the time interval between teh start of a cycle in which the memory is read and new data is entered, and the start of
	-C(MMR)	the next cycle

1

New symbol	Former symbol	Parameter-definition
td		Delay time-the time between the specified reference points on two pulses
td(ø)		Delay time between clock pulses-e.g., symbology, delay time, clock 1 to clock 2 or clock 2 to clock 1
td (CAS-RAS)		Delay time, column address strobe to row address strobe
td(CAS-W)	td (CAS-WR)	Delay time, column address strobe to write
td (RAS-CAS)		Delay time, row address strobe to column address strobe
td(RAS-W)	td (RAS-WR)	Delay time, row address strobe to write
tdis(R-Q)	tdis (R-DA)	Output disable time after read
tdis(s)	tPXZ(CS)	Output disable time after chip select
tdis(y)	t _{PXZ} (wR)	Output disable time after write
	*FA2(WII)	High-level to low-level delay time time interval between specified reference points on the input and on the output pulses, when the
tolh		Low-level to high-level delay time output is going to the low (high) level and when the device is driven and loaded by specified networks.
	toov() oo)	Output enable time after address
ten(A-Q)	TPZV(A-DQ)	Output enable time after read
ten(R-Q)	^I PZV(R-DQ)	Output enable time after chip select
t _{en(S-Q)}	(CS-DQ)	
t _f		Fall time Hold time_the interval time during which a signal at a specified input terminal after an active transition occurs at another specified input terminal
t _h		Hold time-the interval time during which a signal at a specified input terminal after an active transition occurs at another specified input terminal
t _{h(A)}	th(AD)	Address hold time
t _{h(A-E)}	th(AD-CE)	Chip enable hold time after address
th(A-PR) ★.	th(AD-PRO)	Program hold time after address
th(CAS-CA)		Column address hold time after column address strobe
th(CAS-D)	^t h(cas-da)	Data-in hold time after column address strobe
th(cas-q)	th(CAS-OUT)	Data-out hold time after column address strobe
Th (CAS-RAS)		Row address strobe hold time after column address strobe
th(CAS-W)	th(CAS-WR)	Write hold time after column address strobe
t _{h (D)}	th(DA)	Data in hold time
th(D-PR)	th(DA-PRO)	Program hold time after data-in
th(E)	th(CE)	Chip enable hold time
th(E-D)	th(CE-DA)	Data-in hold time after chip enable
t _{h(E-G)}	th(CE-OE)	Output enable hold time after chip enable
t _{h(R)}	t _{h (RD)}	Read hold time
th(RAS-CA)		Column address hold time after row address strobe
th(RAS-CAS)		Column address strobe hold time after row address strobe
th(RAS-D)	th(RAS-DA)	Data-in hold time after row address strobe
th(RAS-W)	th(RAS-WR)	Write hold time after row address strobe
t _{h(s)}	t _{h(CS)}	Chip select hold time
t _{h(w)}	t _{h(wR)}	Write hold time
th(w-CAS)	th(wR-CAS)	Column address strobe hold time after write
th(w-D)	t _{h(WR-DA)}	Data-in hold time after write
th(w-RAS)	th(wR-RAS)	Row address hold time after write
t _{PHL}		High-level to low-level propagation time } the time interval between specified reference points on the input and on the output pulses when the output is going to the low (high) level and when the device is driven and loaded by typical devices
t _{PLH}		Low-level to high-level propagation time of stated type
tr		Rise time
t _{rec(w)}	t _{wr}	Write recovery time-the time interval between the termination of a write pulse and the initiation of a new cycle
t _{rec(PD)}	t _{R(PD)}	Power-down recovery time
t _{su}		Setup time-the time interval between the application of a signal which is maintained at a speciifed input terminal and a consecutive active
		tarnsition at another specified input terminal
t _{su(A)}	t _{su(AD)}	Address setup time
t _{su(A-E)}	t _{su(AD-CE)}	Chip enable setup time before address
t _{su(A-W)}	t _{su(AD-WR)}	Write setup time before address
tsu (CA-RAS)		Row address strobe setup time before column address

MITSUBISHI MICROCOMPUTERS SYMBOLOGY

1	- 1		- 913		84	<u>(</u> 2)	$\{\frac{1}{2},1$	1973	134
	124	8	1 e (3	64.	s.ç.	13			

New symbol	Former symbol	Parameter-definition	/
New symbol	r officer symbol		
t _{su(D)}	t _{su(DA)}	Data-in setup time	
t _{su(D-E)}	t _{su(DA-CE)}	Chip enable setup time before data-in	- :
t _{su(D-W)}	tsu(da-wr)	Write setup time before data-in	. 1
t _{su(E)}	tsu(CE)	Chip enable setup time	
t _{su(E-P)}	t _{su(CE} -P)	Precharge setup time before chip enable	
t _{su(G-E)}	tsu(OE-CE)	Chip enable setup time before output enable	1
tsu(P-E)	t _{su(P-CE)}	Chip enable setup time before precharge	
t _{su(PD)}		Power-down setup time	
t _{su(R)}	t _{su(RD)}	Read setup time	
tsu(R-CAS)	t _{su (ra-cas)}	Column address strobe setup time before read	
t _{su (RA-CAS)}		Column address strobe setup time before row address	
t _{su(s)}	t _{su(CS)}	Chip select setup time	
t _{su(s-w)}	t _{su(CS-WR)}	Write setup time before chip select	
t _{su(w)}	t _{su(wR)}	Write setup time	
t _{THL}		High-level to low-level transition time the time interval between specified reference points on the edge of the output pulse when the output is	
t _{TLH}		Low-level- to high-level transition time by bound the output is loaded by another specified network b	а
t _{v(A)}	t _{dv (AD)}	Data valid time after address	
t _{v(E)}	t _{dv(CE)}	Data valid time after chip enable	
t _{v(E)PR}	t _{v (CE)PR}	Data valid time after chip enable in program mode	
t _{v(G)}	t _{v (OE)}	Data valid time after output enable	1
t _{v(PR)}		Data valid time after program	1
t _{v(S)}	t _{v (CS)}	Data valid time after chip select	
tw		Pulse width (pulse duration) the time interval between specified reference points on the leading and training edges of the waveforms	
t _{w(E)}	tw(CE)	Chip enable pulse width	
t _{w(EH)}	tw(GEH)	Chip enable high pulse width	
t _{w(EL)}	tw(EL)	Chip enable low pulse width	-
tw(PR)		Program pulse width	
t _{w(R)}	t _{w(RD)}	Read pulse width	
t _{w(s)}	tw(cs)	Chip select pulse width	
t _{w(w)}	t _{w(wR)}	Wrtie pulse width	
t _{w(ø)}		Clock pulse width	
Та		Ambient temperature	
Topr	ļ	Operating temperature	
Tstg		Storage temperature	
V _{BB}		VBB supply voltage	2 - 1 4
Vcc		V _{CC} supply voltage	
V _{DD}		V _{DD} supply voltage	94.)
V _{,GG}		V _{GG} supply voltage	- 2
v_{1}		Input voltage	
ĺV _I ન્		High-level input voltage-the value of the permitted high-state voltage at the input	1.1.4
VIL		Low-level input voltagethe value of the permitted low-state voltage at the input	
vo		Output voltage	
V _{OH}	.	High-level output voltage-the value of the guaranteed high-state voltage range at the output	
Vol		Low-level output voltage-the value of the guaranteed low-state voltage range at the output	
V _{SS}		V _{SS} supply voltage	

•

MITSUBISHI MICROCOMPUTERS QUALITY ASSURANCE AND RELIABILITY TESTING

1. PLANNING

In recent years, advances in integrated circuits have been rapid, with increasing density and speed accompanied by decreasing cost. Because of these advances, it is now practical and economically justifiable to use these devices in systems of greater complexity and in which they were previously considered too expensive. All of these advances add up to increased demand.

We at Mitsubishi foresaw this increased demand and organized our production facilities to meet it. We also realized that simply increasing production to meet the demand was not enough and that positive steps would have to be taken to assure the reliability of our products.

This realization resulted in development of our Quality Assurance System. The system has resulted in improved products, and Mitsubishi is able to supply its customers' needs with ICs of high reliability and stable quality. This system is the key to future planning for improved design, production and quality assurance.

2. QUALITY ASSURANCE SYSTEM

The Quality Assurance System imposes quality controls on Mitsubishi products from the initial conception of a new product to the final delivery of the product to the customer. A diagram of the total system is shown in Fig. 1. For ease of understanding, the system is divided into three stages.

2.1 Quality Assurance in the Design Stage

The characteristics of the breadboard devices are carefully checked to assure that all specifications are met. Standard integrated circuits and high-quality discrete components are used. During the design stage, extensive use is made of a sophisticated CAD program, which is updated to always include the latest state-of-the-art techniques.

2.2 Quality Assurance in the Limited-

Manufacturing Stage

Rigid controls are maintained on the environment, incoming material and manufacturing equipment such as tools and test equipment. The products and materials used are subjected to stringent tests and inspections as they are manufactured. Wafer production is closely monitored.

Finally, a tough quality assurance test and inspection is made before the product is released for delivery to a customer. This final test includes a complete visual inspection and electrical characteristics tests. A sampling technique is used to conduct tests under severe operating conditions to assure that the products meet reliability specifications.

2.3 Quality Assurance in the Full Production Stage Full production of a product is not started until it has been confirmed that it can be manufactured to meet quality and reliability specifications. The controls, tests and inspection

procedures developed in $\S2.2$ are continued. The closest monitoring assures that they are complied with.

3. RELIABILITY CONTROL

3.1 Reliability Tests

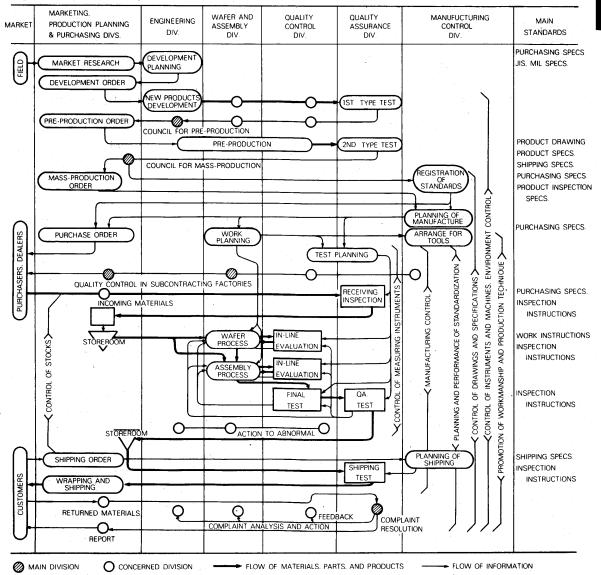
The newly established Reliability Center for Electronic Components of Japan has established a qualification system for electronic components. Reliability test methods and procedures are developed to mainly meet MIL-STD-883 and JIS C 7022 specifications. Details of typical tests used on Mitsubishi ICs are shown in Table 1.

Table 1 Typical reliability test items and co	conditions	nd conditions	
---	------------	---------------	--

Group	Item	Test condition					
	High temperature operating life	Maximum operating ambient temperature 1000h					
1	High temperature storage life	Maximum storage temperature 100)0h				
	Humidity (steady state) life	65°C 95%RH 50	10h				
	Soldering heat	260°C 10s					
2	Thermal shock	0~100°C 15 cycles, 10min/cycle					
	Temperature cycle	Minimum to maximum storage temperature, 10 cycles of 1h/cycle					
	Soldering	230°C. 5s. use rosin flux					
-	Lead integrity	Tension: 340g 30s Bending stress: 225g, ±30°, 3 times					
3	Vibration	20G. X. Y. Z each direction, 4 times 100~2000Hz-4 min/cycle					
	Shock	1500G, 0.5ms in X1. Y1 and Z1 direction, 5 times.					
	Constant acceleration	20000G, Y ₁ direction, 1 min					

3.2 Failure Analysis

Devices that have failed during reliability or acceleration tests are analyzed to determine the cause of failure. This information is fed back to the process engineering section and manufacturing section so that improvements can be made to increase reliability. A summary of failure analysis procedures is shown in Table 2.


Table 2 Summary of failure analysis procedures

Step	Description
, · ·	O Inspection of leads, plating, soldering and welding
	O Inspection of materials, sealing, package and marking
1. External	O Visual inspection of other items of the specifications
examination	O Use of stereo microscopes, metallurgical microscopes, X-ray
	photographic equipment, fine leakage and gross leakage
	testers in the examination
	O Checking for open circuits, short circuits and parametric
	degradation by electrical parameter measurement
2. Electrical tests	O Observation of characteristics by a synchroscope or a curve
Z. Electrical tests	tracer and checking of important physical characteristics
	by electrical characteristics
	O Stress tests such as environmental or life tests, if required
	O Removal of the cover of the device, the optical inspection
	of the internal structure of the device
3. Internal	O Checking of the silicon chip surface
examination	O Measurement of electrical characteristics by probes,
	if applicable
	O Use of SEM, XMA and infrared microscanner if required
	O Use of metallurgical analysis techniques to supplement
	O Sliging for cross-sectional inspection
4. Chip analysis	O Analysis of oxide film defects
	O Analysis of diffusion defects

QUALITY ASSURANCE AND RELIABILITY TESTING

Fig. 1 Quality assurance system

MITSUBISHI MICROCOMPUTERS PRECAUTIONS IN HANDLING MOS IC/LSIS

A MOS transistor has a very thin oxide insulator under the gate electrode on the silicon substrate. It is operated by altering the conductance (g_m) between source and drain to control mobile charges in the channel formed by the applied gate voltage.

If a high voltage were applied to a gate terminal, the insulator-film under the gate electrode could be destroyed, and all Mitsubishi MOS IC/LSIs contain internal protection circuits at each input terminal to prevent this. It is inherently necessary to apply reverse bias to the P-N junctions of a MOS IC/LSI.

Under certain conditions, however, it may be impossible to completely avoid destruction of the thin insulator-film due to the application of unexpectedly high voltage or thermal destruction due to excessive current from a forward biased P-N junction. The following recommendations should be followed in handling MOS devices.

1. KEEPING VOLTAGE AND CURRENT TO EACH TERMINAL BELOW MAXIMUM RATINGS

- 1. The recommended ranges of operating conditions provide adequate safety margins. Operating within these limits will assure maximum equipment performance and quality.
- 2. Forward bias should not be applied to any terminal since excessive current may cause thermal destruction.
- 3. Output terminals should not be connected directly to the power supply. Short-circuiting of a terminal to a power supply having low impedance may cause burn-out of the internal leads or thermal destruction due to excessive current.

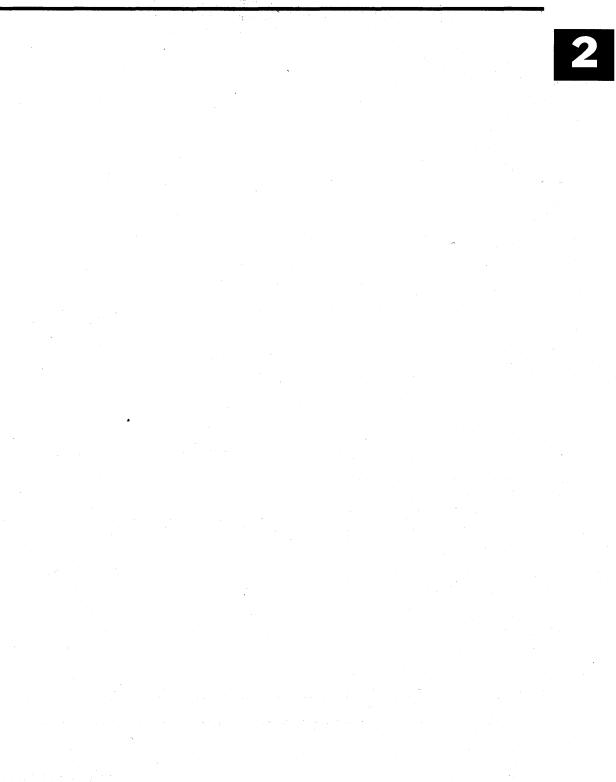
2. KEEPING ALL TERMINALS AT THE SAME POTENTIAL DURING TRANSPORT AND STORAGE

When MOS IC/LSIs are not in use, both input and output terminals can be in a very high impedance state so that they are easily subjected to electrostatic induction from AC fields of the surrounding space or from charged objects in their vicinity. For this reason, MOS IC/LSIs should be protected from electrostatic charges while being transported and stored by conductive rubber foam, aluminum foil, shielded boxes or other protective precautions.

3. KEEPING ELECTRICAL EQUIPMENT, WORK TABLES AND OPERATING PERSONNEL AT THE SAME POTENTIAL

1. All electric equipment, work table surfaces and operat-

ing personnel should be grounded. Work tables should be covered with copper or aluminum plates of good conductivity, and grounded. One method of grounding personnel, after making sure that there is no potential difference with electrical equipment, is by the use of a wristwatch metallic ring, etc. attached around the wrist and grounded in series with a 1M Ω resistor. Be sure that the grounding meets national regulations on personnel safety.


 Current leakage from electric equipment must be prevented not only for personnel safety, but also to avert the destruction of MOS IC/LSIs, as described above. Items such as testers, curve-tracers and synchroscopes must be checked for current leakage before being grounded.

4. PRECAUTIONS FOR MOUNTING OF MOS IC/LSIs

- The printed wiring lines to input and output terminals of MOS IC/LSIs should not be close to or parallel to high-voltage or high-power signal lines. Turning power on while the device is short-circuited, either by a solder bridge made during assembly or by a probe during adjusting and testing, may cause maximum ratings to be exceeded, which may result in the destruction of the device.
- 2. When input/output, or input and/or output, terminals of MOS IC/LSIs (now open-circuits) are connected, we must consider the possibility of current leakage and take precautions similar to §2 above. To reduce such undesirable trouble, it is recommended that an interface circuit be inserted at the input or output terminal, or a resistor with a resistance that does not exceed the output driving capability of the MOS IC/LSI be inserted between the power supply and the ground.
- 3. A filter circuit should be inserted in the AC power supply line to absorb surges which can frequently be strong enough to destroy a MOS IC/LSI.
- 4. Terminal connections should be made as described in the catalog while being careful to meet specifications.
- Ungrounded metal plates should not be placed near input or output terminals of any MOS IC/LSIs, since destruction of the insulation may result if they become electrostatically charged.
- 6. Equipment cases should provide shielding from electrostatic charges for more reliable operation. When a plastic case is used, it is desirable to coat the inside of the case with conductive paint and to ground it. This is considered necessary even for battery-operated equipment.

MELPS 760 MICROCOMPUTERS

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

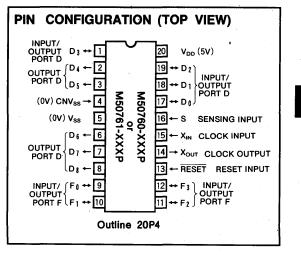
DESCRIPTION

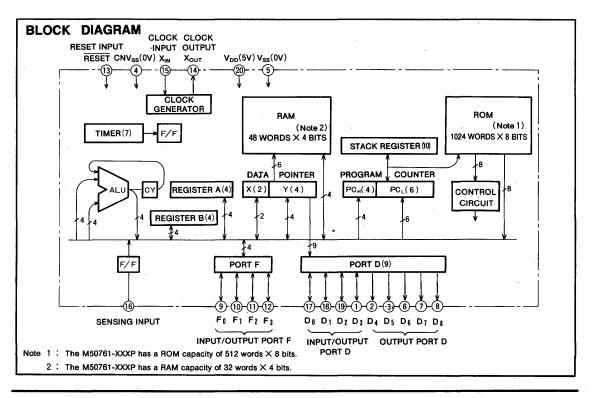
The M50760-XXXP and M50761-XXXP are single-chip 4-bit microcomputers fabricated using CMOS technology. They come in a 20-pin plastic molded DIL package.

Differences between M50760-XXXP and M50761-XXXP.

Na	me	ROM capacity	RAM capacity		
M5076	0-XXXP	1024 word	48 word		
M5076	1-XXXP	512 word	32 word		

The details given below relate to the M50760-XXXP.


FEATURES


- Basic machine instructions ······ 37

- Single 5V power supply
- Timer (7-bit timer)
- Input/output ports (port F)------4
- Output ports (port D) 9 (including 4 I/O ports)
- Sensing input (port S)

APPLICATIONS

- VTRs, audio equipment and TVs
- Air conditioners, refrigerators, rice cookers
- Remote-controlled receivers/transmitters
- Electronic toys
- Input/output circuits as sub-microcomputers

M50760-XXXP/M50761-XXXP

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

			Performance						
Param	eter		M50760-XXXP	M50761-XXXP					
Number of basic instruc	tions		37	37					
Execution time of basic instruction (1-word instruction)			10μs (with 400kHz clock frequency)	10µs (with 400kHz clock frequency)					
Clock frequency			200kHz~400kHz	200kHz~400kHz					
	RO	M	1024 words × 8 bits	512 words × 8 bits					
Memory capacity	RA	м., .	48 words × 4 bits	32 words X 4 bits					
	-	Input	4 bits × 1	4 bits × 1					
Input/output ports		Output	4 bits × 1	4 bits × 1					
(14 pins)	D	Output (input)	1 bit × 9 (input 4 bits × 1)	1 bit \times 9 (input 4 bits \times 1)					
	s	Input	1 bit × 1	1 bit × 1					
Timer			7-bit timer	7-bit timer					
Subroutine nesting			1 level	1 level					
Clock generator		· · · ·	Built-in (Externally connected resistor or ceramic resonator)	Built-in (Externally connected resistor or ceramic resonato					
	Por	t D4~D8	Output current 12mA (n-channel open drain)	Output current 12mA (n-channel open drain)					
Port output characteristics	Por	t D0~D3	Output current 5mA (n-channel open drain)	Output current 5mA (n-channel open drain)					
	Por	t F	Output current 5mA (n-channel open drain)	Output current 5mA (n-channel open drain)					
Supply voltage			5V (typ)	5V (typ)					
Device structure			CMOS silicon gate	CMOS silicon gate					
Package			20-pin plastic molded DIL package	20-pin plastic molded DIL package					
Power dissipation (excl	uding	ports)	2mW (typ)	2mW (typ)					

PERFORMANCE SPECIFICATIONS

PIN DESCRIPTION

Pin	Name	Input or output	Function					
V_{DD}	Supply voltage	In	Positive power supply pin.					
Vss	Ground	In	Ground pin.					
F0~F3	Input/output port F	in/out	Port F is a 4-bit output-latched input/output port. N-channel transistor open-drain circuits are featured for the outputs. When the port F output latch is programmed to(1), the output floats (High-impedance state), thereby enabling use of the port for input.					
D 0 ~ D 3	- Input/output port D	In/out	Port D consists of 9 bits, each of which is individually latched. N-channel transistor open-drain circuits					
D4~D8	Input/output port D	Out	are featured for the outputs. Port D $_0$ –D $_3$ pins have a 4-bit input function and when the output latch programmed to(1), the output floats (high-impedance state) thereby enabling use of the port for input.					
S	Sensing input S	In	This pin has an active rising edge. When the S pin signal changes from low to high, the flag is set (1). Not only in case that the flag is set "(1)", whennever you want to, you can test it. This enables testing and flag clearing using an instruction. You can test and clear it by using an instruction. The pin can be mod- ified to a level active input pin with a mask option.					
X _{IN}	Clock input	In	These are the clock input and output pins to which an external resistor is connected for RC oscillation of					
Xout	Clock output	Out	the clock generator or a ceramic resonator is connected. When an external clock is used, connect the source to $X_{\rm IN}$ and leave $X_{\rm OUT}$ open.					
RESET	Reset input	In	The device is reset when a low-level singnal is applied for 2 or more machine cycles.					
CNVss	CNV _{SS} input	In	This pin is connected to V _{SS} and must have a low-level input applied to it (0V).					

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

BASIC FUNCTION BLOCKS

Program Memory (ROM)

This 1024-word \times 8-bit mark programmable ROM can be programmed with machine instruction codes in accordance with the customer's specifications.

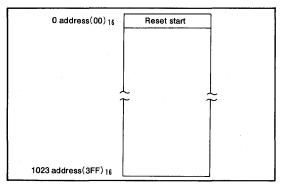
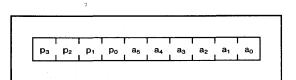



Fig.1 ROM address map

Program Counter (PC)

This counter is to specify ROM addresses and the sequence of read-out of instructions stored in the ROM. It is a 10-bit polynomial counter.

Fig.2 Program counter configuration

Note: 10-bit configuration is also featured for the program counter in the M50761-XXXP.

Stack Register (SK)

This is used to temporarily store the contents of the PC while executing subroutines until the program returns to its main routine.

Data Memory (RAM)

This 48-word \times 4-bit (192-bit) RAM is used to store both processing and control data. One RAM word consists of 4 bits with bit manipulation possible over the entire storage area.

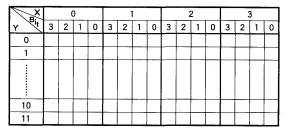


Fig.3 RAM address map

Note : $Y = 0 \sim 7$ for the M50761-XXXP.

Data Pointer (DP)

These registers are used to designate RAM addresses and bit positions for output port D. Register \times (the 2 most significant bits of the DP) designates the RAM file: register Y (the 4 least significant bits) designates the digit position of the RAM file.

4-Bit Arithmetic Logic Unit

This unit executes 4-bit arithmetic and logic operations. It performs subtraction, addition and logical comparisons.

Register A and Carry Flag CY

Register A is a 4-bit accumulator that constitutes the basis for arithmetic operations. The carry flag CY is used to store carry or overflow after execution of arithmetic and logical operations by the arithmetic unit. It may also be used as a 1-bit flag.

Register B

Register B is composed of 4 bits and can be used as a 4bit temporary storage register.

Timer

The timer is implemented using a 7-bit counter which, after release of reset, starts counting and divides the machine cycle by 100. It also sets the flag. Counting starts again after the flag has been set.

The skip instruction (SNZT) can be used to test the flag. Both the timer and the flag can be reset using the system reset and reset instruction (RSTM).

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

Input/Output Ports

(1) Port F

This 4-bit port is controlled for output and input by the OFA and IAF instructions respectively. When using a bit for input, that bit output latch must first be set to (1) to achieve the high-impedance mode.

(2) Port D

This port consists of 9 bits which can be used for both output and input functions by using the SD/RD and IAD instructions respectively. The output section provides individual bit latching and the contents of register Y can be used to designate a single bit of port D for output.

 $D_{0} \sim D_{3}$ pins have a 4-bit input function. When using the port for input, the $D_{0} \sim D_{3}$ output latch must first be set to (1) to achieve the high-impedance mode.

The outputs are n-channel open-drain circuits.

(3) Port S

This is a rising edge active sensing port. The flag is set (1) when the S pin signal changes from low to high. The skip instruction (SNZS) may be used for flag testing, and the flag is reset by the execution of this instruction. The flag is also reset with system resetting.

The port can also be used as a level active input pin with a mask option, in which case the flag (S) is ineffective.

Pin S can be tested using the skip instruction (SNZS) and skipping occurs when the pin is in the high-level mode.

Reset

When the RESET pin is kept low for at least 2 machine cycles, the reset state is enabled. After resetting, when the input is driven high, the program execution will begin at address 0.

When the reset state is enable, the following operations are performed.

- (1) The program counter is set to address 0.
- (2) The two flags (timer flag, sensing input flag) are reset.
- (3) All output latchs of port D are set to (1) (high impedance)
- (4) All output latchs of port F are set to (1) (high impedance)

Fig.4 shows an example of the power-on resetting circuit

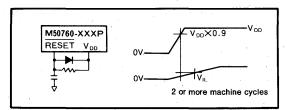
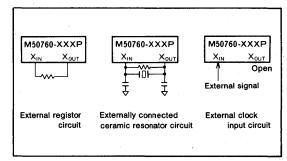



Fig.4 Power-on resetting circuit

Clock Generator Circuit

A clock generator circuit has been built in to allow control of the frequency by means of an externally connected resistor or ceramic resonator. In addition, an external clock signal may be applied at the $X_{\rm IN}$ pin, leaving the $X_{\rm OUT}$ pin open. External connection of the resister or ceramic resonater should be specified as a mask option.

Circuit examples are shown in Fig.5

Documentation Required upon Ordering

The following information should be provided when ordering a custom mask.

- (1) M50760-XXXP mask confirmation sheet
- (2) ROM data EPROM 3 sets

Mask Options

The following mask options are available, specifiable at the time of initial ordering.

- Specify whether a resistor or ceramic resonator is to be used for the clock generator circuit.
- (2) Specify whether edge sensing or level sensing is to be provided for port S.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

INSTRUCTION CODE TABLE

	~D1	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
D3~ D0	umber	0	1	2	3	4	5	6	7	8	9	A	в	с	D	E	F
			RB	LY		LA	A										
0000	0	NOP	0	0	BL	0	0	TAM	IAF								
0001	1		RB	LY	BL	LA	Α	_	OFA								
0001			1	1	BL	1	1	_	UFA								
0010	2	szc	RB	LY	BL	LA	Α										
	2	320	2	2	DL	2	2										
0011	3	SNZS	RB	LY	BL	LA	A										
	3	51125	3	3	DL	3	3										
0100	4	SNZT	SB	LY	BL	LA	A	хамі	INY								
0100			0	4		4	4									i i	
0101	5	RSTM	SB	LY	BL	LA	A	_	тва			С.					
			1	5		5	5										
0110	6	RC	SB	LY	BL	LA	A		TYA	вм	вм	вм	вм	в	в	в	в
	-		2	6		6	6			2				-			
0111	7	sc	SB	LY	*BL		A		RAR								
			3	7		7	7										
1000	8	LX	SZB	LY	BML	LA	A		СМА								
		0	0	8		8	8										
1001	9	LX	SZB	LY	BML	LA	A	÷	IAD								
		1	1	9		9	9								1		
1010	A		SZB	LY	BML	LA	A	_	TAY					· ·			
		2 LX	2 SZB	10 LY		10 LA	10 A										
1011	в				BML		ĺ	-	ТАВ	$\chi_{\rm c}$							
		3	3	11 LY		11 LA	11 A						,				
1100	С	· · · · ·	RD		BML			ХАМ	AMC				l .				-
				12 LY		12 LA	12 A								• • •		
1101	D	-	SD	13	BML	13	13	-	—								
				LY		LA	13 A										
1110	E	—	—	14	BML	14	14	-	SEA								
		·		LY		LA	A										
1111	F	·	RT	15	*BML	15	15	-	SEAM			, A.					- · · · ·
	I			10	1	1.5	1 10	1			1	L		1	1		

Note 1 : An instruction may cosist of one or two word but only the first word is listed. 2 : The BL and BML codes marked with an asterisk are not available with the M50761-XXXP.

2-7

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

MACHINE INSTRUCTIONS

Para- meter Mnemonic		Instruction code		ମୁନ୍ଦି ତୁନ୍ଦି ତୁନ୍ଦି ତୁନ୍ଦି	
Type of inst- ruction	Milemonic	D7 D6 D5 D4 D3 D2 D1 D0	16mal notation	To Functions o o z z	
Register-to- register transfers	TAB TBA TAY TYA	0 1 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0	7 B 7 5 7 A 7 6	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
resses	LY y	0010 УУУУ	2У	1 1 (Y)←y, y=0~15	
RAM addresses	LX x	0 0 0 0 1 0 × ×	0 8 x	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
<u> </u>	INY	0 1 1 1 0 1 0 0	74	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
nulator		0 1 1 0 0 0 0 0	60	$\begin{array}{c c} 1 & 1 & (A) \leftarrow (M(DP)) \\ 1 & 1 & (A) \leftrightarrow (M(DP)) \end{array}$	
RAM-accumulator transfers		01101100	6 C	$ \begin{array}{c c} 1 & 1 & (A) \leftrightarrow (M(DP)) \\ \vdots & \vdots \\ 1 & 1 & (A) \leftrightarrow (M(DP)), (Y) \leftarrow (Y) + 1 \end{array} $	
RAI					
	LA n	0100 nnnn	4 n	1 1 (A)←n, n=0~15	
	An	0101 ппп	5 n	1 1 (A)←(A)+n, n=0~15	
Arithmetic operations	AMC	0111 1100	7 C	$\begin{array}{ c c c c c } 1 & 1 & (A) \leftarrow (A) + (M(DP)) + (CY) \\ & (CY) \leftarrow carry \end{array}$	
c ope	SC	0 0 0 0 0 1 1 1	07	$\begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix} (CY) \leftarrow 1$	
neti	RC SZC	00000110	06	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Arith	CMA	0 1 1 1 1 0 0 0	78	$\begin{vmatrix} 1 \\ 1 \end{vmatrix} \begin{pmatrix} (A) \leftarrow (\overline{A}) \\ (\overline{A}) \leftarrow (\overline{A}) \end{vmatrix}$	
	RAR	0 1 1 1 0 1 1 1	77	$1 1 \rightarrow CY \rightarrow A_3 A_2 A_1 A_0 \rightarrow$	
Ś	SB j	000101j	1 4	1 1 (Mj(DP))←1, j=0~3	
Bit operations	RB j	000100 jj		1 1 (Mj(DP))⊷0, j=0~3	
Bit op	SZB j	000110jj		1 1 (Mj(DP))=0? j=0~3	
suc	SEAM	0 1 1 1 1 1 1 1	7 F	1 1 (A)=(M(DP))?	
Comparisons	SEA n	0 1 1 1 1 1 1 0	7 E	2 2 (A)=n?	
C	н. С. С. С	0100 nnn	+ 4 n		
	Ва	1 1 a ₅ a ₄ a ₃ a ₂ a ₁ a ₀	Ca + a	$1 1 (PC_L) \leftarrow a_{5} \sim a_{0}$	
	BL p,a	00110P2P1P0	a 30 + P	2 2 (PC _H)←p ₃ ~p ₀	
		0 p₃a₅a₄ a₃a₂a₁a₀	p pa + a	(PC _L)←a ₅ ~a ₀	
Jumps	ВМ а	$1 \ 0 \ a_5 \ a_4 \ a_3 \ a_2 \ a_1 \ a_0$	8 a + a	$1 1 (SK) \leftarrow PC, (PC_{H}) \leftarrow 0 \\ (PC_{L}) \leftarrow a_{5} \sim a_{0}$	
	BML p,a	0011 1P2P1P0	3 8 p	2 2 $(SK) \leftarrow PC$,	,
		$0 p_3 a_5 a_4 a_3 a_2 a_1 a_0$	ра + а	$(PC_{H}) \leftarrow p_{3} \sim p_{0}$ $(PC_{L}) \leftarrow a_{5} \sim a_{0}$	-
	RT	0 0 0 1 1 1 1 1	1 F	1 1 (PC)←(SK)	
Timer operations	SNZT RSTM	00000100	04	1 1 (T)=1? After skip (T)←0 1 1 1 Timer reset, (T)←0	
ĒĞ			0.5		

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

Skip conditions	Flag CY	Description of operation
 		Transfers contents of resister B to register A. Transfers contents of register A to register B. Transfers contents of register Y to register A. Transfers contents of register A to resister Y.
Written successively Written successively (Y)= 0		Loads value of "y" into register Y. When LY is written successively the first is executed and successive ones are skipped. Loads value of "x" into register X. When LX is written successively the first is executed and successive ones are skipped. Increments contents of register Y by 1. Skips next instruction when new contents of register Y are "0".
		Transfers the RAM contents addressed by the active DP to register A. Exchanges the contents of the RAM and register A.
(Y)=0		Exchanges the contents of the RAM and register A. The contents of register Y are incremented by 1 and when the result is "0", the next instruction is skipped.
Written successively carry = 0 	0/1	Loads the value n in the instruction into register A. When LA is written successively, the first is executed and successive ones are skipped. Adds value of n to register A. The contents of flag CY remain unchanged. The next instruction is skipped unless any carry is produced. Adds the contents of the RAM and flag CY to register A. The result is stored in register A and the carry in the active flag CY. Sets active flag CY.
	0 A 0	Resets active flag CY. Skips next instruction when the contents of the active flag CY are "0". Stores complement of register A in register A. Rotates contents of register A and flag CY to right.
		Sets the jth bit of the RAM addressed by the active DP.
(Mj(DP))= 0		Resets the jth bit of the RAM addressed by the active DP. Skips next instruction when the contents of the jth bit of the RAM addressed by active DP are "0".
(A)=(M(DP))		Skips next instruction when the contents of register A are equal to the RAM contents addressed by the active DP.
(A)= n		Skips next instruction when the contents of register A are equal to the value n in the instruction.
, — ,		Jumps to the address indicated by $(a_5 - a_0)$, while PC _H remains unchanged.
		Jumps to the address indicated by $(p_3 - p_0, a_5 - a_0)$.
_		Calls subroutine starting from the address indicated by $(0,a_5-a_0)$, replaced by 0 and PC _L has been replaced by (a_5-a_0) .
-		Calls subroutine starting from the address indicated by $(p_3 - p_0, a_5 - a_0)$.
-		Returns from subroutine to main routine.
(T)=1		Skips the next instruction if timer flag (T) is "1". Timer flag is reset when the instruction is skipped. Resets timer and timer flag (T)

2—9

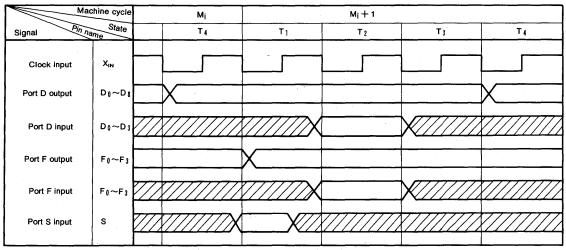
2

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

Para- meter	Mnemonic	Instruction code		SDIDA	cycles	Functions	
Type of inst- ruction	WINGHIGHTC	D7 D6 D5 D4 D3 D2 D1 D0	16mal notation	· ور	No. of	FUNCTIONS	
Input/output operations	SD RD IAF OFA SNZS	0 0 0 1 1 0 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 1 0 1 1 1 0 0 1 1 0 0 0 0 0 0 1 1 0 1 1 1 0 0 1 1	1 D 1 1 C 1 7 0 1 7 1 1 0 3 1 7 9 1		1 1 1 1	$(D(Y)) \leftarrow 1$ $(D(Y)) \leftarrow 0$ $(A) \leftarrow (F)$ $(F) \leftarrow (A)$ (S) = 1 ? After skipping $(S) \leftarrow 0$ $(A) \leftarrow (D)$	
Misc.	NOP	0 0 0 0 0 0 0 0	0 0 1	1	1	(PC)←(PC)+1	

MACHINE INSTRUCTIONS

Symbol	Contents	Symbol	Contents
A	4-bit register (accumulator)	D	9-bit port
в	4-bit register	F	4-bit port
X	2-bit register	←	Shows direction of data flow
Y	4-bit register	()	Indicates contents of register, memory, etc.
DP	6-bit data pointer, combination of register XY	xx	2-bit binary variable
PCH	The high-order 4 bits of the program counter	уууу	4-bit binary variable
PCL	The low-order 6 bits of the program counter	nnnn	4-bit binary constant
PC	10-bit program counter, combination of PC _H , PC _L	jj	2-bit binary constant
SK	10-bit stack register	—	
CY	1-bit carry flag	aaaaaa	Label used to indicate address
т	1-bit timer overflow flag	рррр	Label used to indicate address
S	1-bit port		


Note: When a skip has occurred, the next instruction only is ignored and the program counter is not incremented by 2. Therefore, the number of cycles does not change in accordance with the existence or non-existence of skip.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

Skip conditions		Description of operation
_		Sets the bit of port D that is designated by register Y.
<u> </u>		Resets the bit of port D that is designated by register Y.
_		Transfers port F input to register A.
-		Outputs contents of register A to port F.
(S) = 1		The next instruction is skipped when port S flag (S) is "1". Flag (S) is reset when the Instruction is skipped.
		Transfers port D ₀ ~D ₃ input to register A.
1		
_		No operation.

BASIC TIMING DIAGRAM

Note 1 : The crosshatch area indicates invalid input.

2

MITSUBISHI MICROCOMPUTERS M50760-XXXP/M50761-XXXP

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Limits	Unit
VDD	Supply voltage		-0.3~7	V
V ₁	Input voltage, XIN, RESET		$-0.3 \sim V_{DD} + 0.3$	V
V,	Input voltage, ports F, D 0~D 3, S		-0.3~11	v
Vo	Output voltage, Xout		$-0.3 \sim V_{DD} + 0.3$	V
Vo ·	Output voltage, ports F, D	Output transistors cut-off	-0.3~11	V
Pd	Power dissipation	$T_a = 25^{\circ}C$	400	mW
Topr	Operating temperature		-10~70	ΰ
Tstg	Storage temperature		-40~125	Ċ

RECOMMENDED OPERATING CONDITIONS ($T_a = -10 \sim 70^{\circ}$ C, unless otherwise noted)

0	Parameter			Limits			
Symbol	Parameter	Conditions	M	in	Nom	Max	Unit
V _{DD}	Supply voltage			4		6	v
V _{SS}	Supply voltage				0		V
V _{IH}	High-level input voltage, port F, Da~Da, S		0.7>	VDD		10	V
V _{IH}	High-level input voltage, RESET, XIN	,	0.7>	VDD		V _{DD}	v
VIL	Low-level input voltage			0		0.3×V _{DD}	۷
loL(peak)	Low-level peak output current, port D4~D8					24	mA
loL(peak)	Low-level peak output current, ports F, D 0~3			,		10	mA
loL(avg)	Low-level average output current, ports D4~D8	(Note 1)				12	mA
IOL(avg)	Low-level average output current, ports F, D 0~D 3	(Note 1)				5	mA
f(\$)	Internal clock oscillation frequency		20	00		400	kHz

Note 1 : The low-level average output currents IOL (avg)are average values in 100ms period.

ELECTRICAL CHARACTERISTICS $(T_a = -10 \sim 70^{\circ}C, V_{DD} = 5 \text{ v} \pm 10\%, f = 200 \sim 400 \text{ kHz})$

Symbol	Parameter	Taska	Test conditions		Limits		
Symbol	Parameter	Test c	onditions	Min	Тур	Max	Unit
Vol	Low-level output voltage, port F, D 0~D 3	$I_{OL} = 1.6 mA$				0.4	v
Vol	Low-level output voltage, ports D4~D8	$I_{OL} = 12mA$				2	. V
կլ	High-level input current, ports F, D0~D8, S	$V_1 = 10V$				10	μA
l _{in}	High-level input current, XOUT, RESET	$V_{I} = V_{DD}$				10	μA
$I_{\rm H}(\phi)$	High-level input current, X _{IN}	$V_{I} = V_{DD}$:			10	μA
IIL.	Low-level input current, F, D 0~D3, S, Xour, RESET	V ₁ = 0 V				-10	μA
l _{1L} (φ)	Low-level input current, X _{IN}	V _i = 0 V				-10	μA
Ci	Clock input capacitance	f = 1 MHz			7	10	pF
IDD	Supply current	f == 400kHz			400	900	μA

MELPS 740 MICROCOMPUTERS

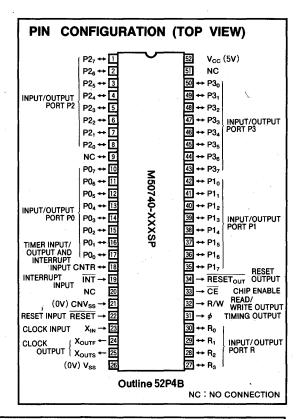
3

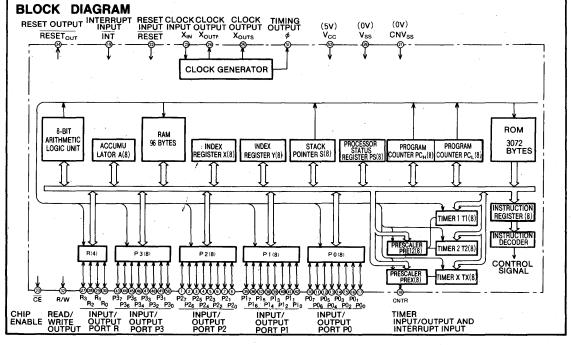
MITSUBISHI MICROCOMPUTERS

M50740-XXXSP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

DESCRIPTION


The M50740-XXXSP is a single-chip 8-bit microcomputer fabricated using CMOS technology and housed in a 52-pin shrink plastic molded DIL package. It is designed to suit for controlling home electrical appliances and consumer equipment with a simple instruction where the ROM and RAM use the same memory area.


FEATURES

- Programmable input/output (ports P0, P1, P2, P3) ·····32

APPLICATION

VTRs, tuners and audio equipment

3

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

PERFORMANCE SPECIFICATIONS

	Parameter		Performance	
Number of basic instructions			70	
Execution time of basic instru	Iction		2μ s (with shortest instructions, 4MHz clock frequency)	
Clock frequency			4MHz	
ROM		· · · · · · · · · · · · · · · · · · ·	3072 bytes	
Memory capacity	RAM		96 bytes	
	INT	Input	1 bit × 1	
	P0, P1, P2, P3	Input/output	8 bits \times 4	
input/output ports	R	Input/output	4 bits \times 1	
	CNTR	Input/output	1 bit × 1	
Timers			8-bit prescalers x 2 + 8-bit timers x 3	
Subroutine nesting	<u> </u>		Max. 48 level	
Interrupts			External interrupts (2), internal timer interrupts (3)	
Clock generator	•		Built-in (externally connected RC circuit, ceramic or quartz resonator)	
Supply voltage	During operation		5V ± 10%	
Devues dissis ati su	High-speed operatio	n	15 mW (at 4MHz clock frequency)	
Power dissipation	Low-speed operation		100 μW (at 20kHz clock frequency)	
	Input/output withstanding voltage		12V (Ports P0, P1, P2, INT, CNTR)	
Input/output characteristics	Output current		10mA (Ports P0, P1, P2, P3)	
Memory expansion			Possible	
Ambient operating temperatu	ire		-10~70°C	
Device structure			CMOS silicon gate process	
Package			52-pin shrink plastic molded DIL	

PIN DESCRIPTION

Pin	Name	Input or output	Function
V _{CC} V _{SS}	Supply voltage	In	5V $\pm 10\%$ supplied to V_{CC}, 0V supplied to V_{SS}
CNV _{ss}	CNV _{SS} input	In	To be connected to V _{SS} .
RESET	Reset input	In	When this input is kept low for at least 2μ s, the reset state is enabled.
X _{IN}	Clock input	In	The clock generator circuit is built-in. For setting the oscillation frequency, either connect the external RC circuit to X_{IN} and X_{OUTS} or X_{OUTF} or connect a ceramic or quartz resonator across X_{IN} and X_{OUTS} . When using an external clock source connect the clock generator source to X_{IN} , leaving X_{OUTF} and X_{OUTF} open. For details, refer to the section on the clock generator circuit.
X _{outs}	Clock output	Out	Internal clock generator output. An RC circuit or ceramic or quartz resonator is connected between this output and $X_{\rm IN}$ to control the oscillation frequency. For details, refer to the section on the clock generator circuit.
X _{OUTF}	Clock output	Out	Internal clock generator output. An RC circuit is connected between this output and X_{IN} to control the oscillation frequency. For details, refer to the section on the clock generator circuit.
ø	Timing output	Out	Timing output
CNTR	Timer input/output and interrupt input	in/out	Timer X input/output pin and interrupt input pin.
INT	Interrupt input	n in	Interrupt input pin.
P00~P07	Input/output port P0	In/out	This 8-bit input/output port has a direction register and for each bit the port is programmed to serve for input or output. The input mode is established during resetting. N-channel open-drain circuits are used for the outputs. For details, refer to the section on the input/output pins.
P10~P17	Input/output port P1	In/out	This is an 8-bit input/output port with virtually the same functions as those of port P0.
P20~P27	Input/output port P2	In/out	This is an 8-bit input/output port with virtually the same functions as those of port P0.
P30~P37	Input/output port P3	in/out	This is an 8-bit input/output port with virtually the same functions as those of port P0, but p-channel open-drain circuits are used for the outputs.
$R_0 \sim R_3$	Input/output port R	In/out	This 4-bit input/output port is used for connection with the I/O expander.
R/W	Read/write output	Out	Read/write signal output for I/O expander.
CE	Chip enable output	Out	Chip enable signal output for I/O expander.
RESETOUT	Reset output	Out	Reset signal output for I/O expander.

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

BASIC FUNCTION BLOCKS

Memory

Fig. 1 shows the memory map. The 3072-byte ROM extends from 1400_{16} to $1FFF_{16}$. The area from $1F00_{16}$ to $1FFF_{16}$ includes special addresses, and when the special page addressing mode is used with the JSR instruction, subroutines on these pages can be called with two bytes. The area from $1FF4_{16}$ to $1FFF_{16}$ includes the reset and interrupt vector addresses. For details, refer to the section on interrupts.

The addresses from 0000_{16} to $00FF_{16}$ are own as the zero page and access to this page can be achieved with two bytes by using the zero page addressing mode, which reduces the number of programming steps. The memories used frequently, such as the RAM, input/output ports and timers, are allocated to the zero page.

From 0000_{16} to $005F_{16}$ is the RAM space and the size is 96 bytes. Apart from storing data, the RAM is also used as a stack for subroutine calls or interrupts.

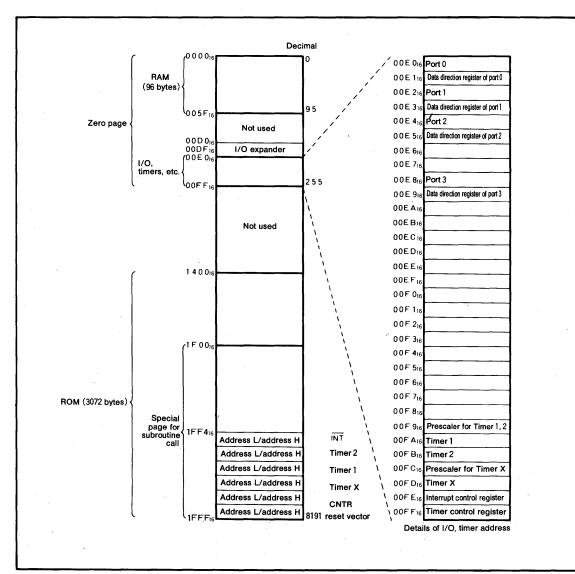


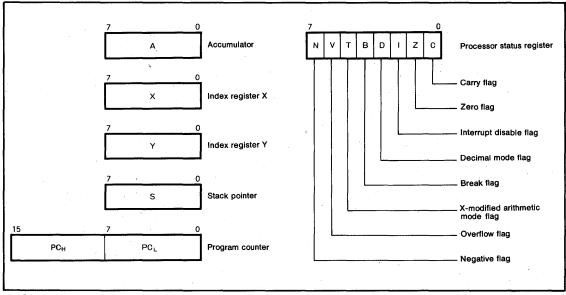
Fig.1 Memory layout

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

CPU

Six registers, as shown in Fig. 2, are contained inside the CPU. Each of these register is now described in turn.

Accumulator A


The accumulator is the 8-bit register and is heart of the microcomputer. Arithmetic and logic operations, transfers and processing of input/output and other data are performed centering on this register.

Index Register X

This is an 8-bit register. In the index addressing mode where this register serves as the index register, the contents of this register and the contents of the program counter is added and the result is actual address. When flag T in the program status register is "1," the contents of index register X become the other operand address.

Index Register Y

This is also an 8-bit register. In the index addressing mode where this register serves as the index register, the contents of this register and the contents of the program counter is added and the result is actual address.

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

Stack Pointer S

The stack pointer is an 8-bit register used for calling subroutines and for interrupts. When an interrupt is acknowledged, the high-order contents of the program counter are saved in the address where the low-order address are the contents of the stack pointer and the high-order address are "0," the contents of the stack pointer are then decremented by 1, the low-order contents of the program counter are saved in the address where the low-order address are the contents of the stack pointer and the highorder address are "0," the contents of the stack pointer are then further decremented by 1, and the contents of the program status register are saved in the address where the low-order address are the contents of the stack pointer and the high-order address are "0."

This operation is performed automatically when an interrupt is acknowledged. The RTI instruction is used to return from the interrupt routine, and when it is executed, the stack pointer is incremented by 1 and returned in the reverse sequence to that described above. Since the contents of accumulator are not saved automatically, the PHA instruction must be used for this purpose. When the PHA instruction is executed, the contents of the accumulator are saved in the address where the low-order address are the contents of the stack pointer and the high-order address are "0," and the contents of the stack pointer are decremented by 1. The accumulator is returned by the PLA instruction. When this instruction is executed, the contents of the stack pointer are incremented by 1 and the contents of the address where the low-order address are the stack pointer contents and the high-order address are "0" enter the accumulator.

Similarly, the contents of the program status register are saved and returned by the PHP and PLP instructions respectively. With a subroutine call, program counter saving only is performed and this necessitates saving on the program for registers which must not be destroyed. The RTS instruction is employed to return from the subroutine.

Program Counter PC

This is a 16-bit counter consisting of PC_H and PC_L , both is 8 bit register. PC_H is 8 bit register, but only 5 bits are actually used. The program counter specifies the address of the program memory which is to be executed next.

Processor Status Register PS

This 8-bit register consists of the flags that hold the status immediately after arithmetic and logic operations. The C, Z, V and N flags can be tested and branched using the branch instructions. Each bit of the register is described in detail below.

1. Carry Flag C

The carry flag C is used to store carry or overflow after execution of arithmetic and logic operations by the arithmetic logic unit. It also undergoes change with the shift and rotate instructions. It can be set or reset directly using the SEC and CLC instructions.

2. Zero Flag Z

This flag is set when the results of data transfer or arithmetic and logic operations are "0" and reset when they are not "0."

3. Interrupt Disable Flag I

This flag disables all interrupts when its contents are "1." When an interrupt is acknowledged, its contents are automatically made "1." The flag can be set or reset by the program using the SEI and CLI instructions.

4. Decimal Mode Flag D

This flag determines whether additions and subtractions are to be undertaken by the binary or decimal mode. The ordinary binary mode is used when its contents are "0", while 1 word is processed as a 2-digit decimal number when its contents are "1." Decimal corrections are performed automatically. The SED and CLD instructions are used for setting and resetting.

5. Break Flag B

Operation is the same for interrupts when the BRK instruction is executed. This instruction is used for debugging programs. The BRK instruction interrupt vector and the interrupt vector of the lowest order of priority are located in the same address. In order to discriminate whether or not an interrupt has occurred with the BRK instruction, the contents of flag B are set to "1" when interrupted by the BRK instruction; at all other times, the contents are set to "0" and saved. It is possible to ascertain whether an interrupt has occurred with BRK by investigating the bit saved in the interrupt routine.

6. X-modified Arithmetic Mode Flag

Arithmetic and logic operations are performed between the accumulator and memory when the flag T contents is "0." When this bit is "1," the accumulator is bypassed and operations are performed directly between the memories. The results of such operations between memory 1 and memory 2 enter memory 1. The memory 1 address is specified by the contents of index register X; the memory 2 address is specified by the ordinary addressing mode. The SET and CLT instructions are used for setting and resetting flag T.

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

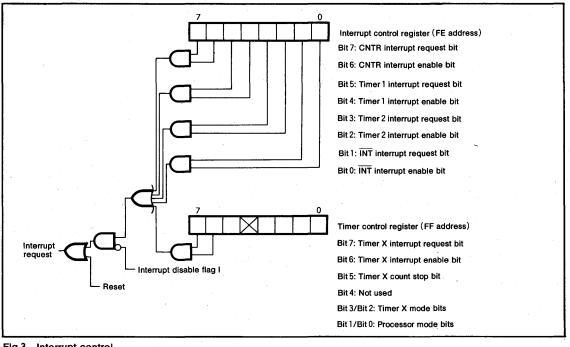
7. Overflow Flag V

This flag is significant when in the addition and subtruction a single word is treated as a signed binary number. It is set when the results of an addition or subtraction exceed +127 or -128. Apart from this, the 6th bit of the memory subject to the execution of the BIT instruction enters the overflow flag when this instruction is executed. The CLV instruction is used to clear the overflow flag. A setting instruction is not provided.

8. Negative Flag N

This flag is set when the results of an arithmetic or logic operation or of data transfer are negative (7th bit is "1"). In addition, the 7th bit of the memory subject to the BIT instruction enters the negative flag when this instruction is executed. Instructions to set and reset this flag are not provided

Table 1 Interrupt vector addresses and priorit	Table 1	Interrupt	vector	addresses	and	priorit
--	---------	-----------	--------	-----------	-----	---------


Interrupt source	Priority	Vector address
RESET	· 1 ·	1FFF, 1FFE
CNTR	2	1FFD, 1FFC
Timer X	3	1FFB, 1FFA
Timer 1	4	1FF9, 1FF8
Timer 2	5	1FF7, 1FF6
INT (BRK)	ç 6 ·	1FF5, 1FF4

INTERRUPTS

Interrupts include the interrupt from pin CNTR, the timer X interrupts, timer 1 interrupt, timer 2 interrupt, the interrupt from pin INT and the interrupt based on the BRK instruction. The interrupts are vector interrupts and Table 1 shows the vector table and priority. Resetting take the same action as interrupt and so it is descried here.

When an interrupt is acknowledged, the registers are saved, as described in the above section on stack pointer S, the interrupt disable flag I is set and a jump is made to the address indicated by the contents of the vector table. The interrupt request bit is automatically cleared. Resetting is not disabled by any condition. Interrupts (exclusive of resetting) are not acknowledged when the interrupt disable flag has been set. The interrupts from pin CNTR, timer X, timer 1, timer 2 and INT can be controlled individually by the interrupt control and timer control registers. This is shown in Fig. 3. When the interrupt enable bit is "1," when the interrupt request bit is "1" and when the interrupt disable flag I is "0," the interrupt is acknowledged. When the level of pins CNTR and INT change from high to low or when the contents of timer X, timer 1 or timer 2 reach to "0," the corresponding interrupt request bits are set.

These bits can be reset by programming but cannot be set. The interrupt enable bit can be set and reset by programming. Whether interrupt is caused by the BRK instruction, can be verified by checking break flag B which has been saved, as mentioned in the section on the break flag B.

Interrupt control Fig.3

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

Timers

There are 3 timers: timer X, timer 1 and timer 2. Timer X has four modes which are selected by the value of the timer X mode bits (bit 2 and bit 3) in the timer control register. When the timer count stop bit (bit 5) is set to "1," all four timer X modes stop. Fig. 4 is a block diagram of timers X, 1 and 2. Timer 1 and timer 2 have a common prescaler composed of 8 bits. The frequency division ratio is determined by the prescaler contents. This ratio is 1/(n+2) when the prescaler latch contents are made n decimally. All the timers have 8-bit timer latches. The countdown system is featured for the timers, and the timer latch contents are reloaded into the timer at the following cycle when the counter contents reach to "0."

When the timer contents reach to "0," the interrupt request bit (on the interrupt control register or on the timer control register located in the FE_{16} or FF_{16} address respectively) corresponding to the timer is set to "1." Any number except "0" should be entered in the prescaler latch and timer latch.

Refer to the section on interrupts for details. The four modes of timer X are now described.

(1) Timer mode (00)

In this mode the frequency produced by dividing the oscillation frequency by 16, is counted. When the timer contents reach to "0," the interrupt request bit is set to "1," the timer latch contents are re-loaded and the count is continued.

- Pulse output mode (01)
 Every time the timer contents reach to "0," the signal on the pin CNTR changes the polarity.
- (3) Event counter mode (10) Operation is the same as in the timer mode except for counting the signal from pin CNTR.

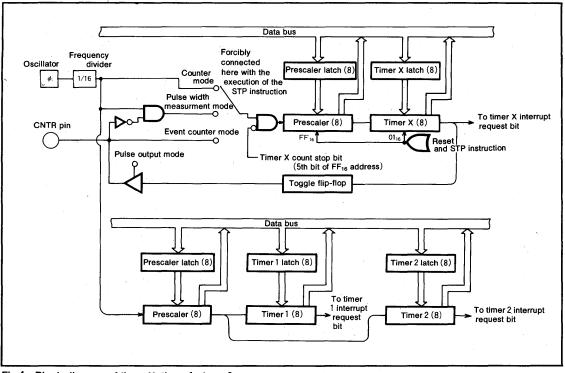


Fig.4 Block diagram of timer X, timer 1, timer 2

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

(4) Pulse width measurment mode (11)

The frequency, produced by dividing the oscillation frequency by 16, is counted only while the pin CNTR level is low. When the counter contents reach to "0," the interrupt request bit is set to "1," the timer latch contents are re-loaded and the count is continued.

Fig. 5 shows the relationship between the timer control register contents and the timer modes.

Also shown are the processor mode and other bits. When reset or the STP instruction is executed, the timer X prescaler is set in FF_{16} and the timer X latch is set in 01_{16} . When the STP instruction is executed, the frequency produced by dividing the oscillation frequency by 16 serves as the timer X prescaler input, regardless of the timer X mode bit. This mode is released either when the timer X interrupt request bit is set to "1" or when resetting is accomplished and resume the mode determined by the timer X mode bit. For details on the operation of the STP instruction, reference should be made to the section on the oscillator circuit.

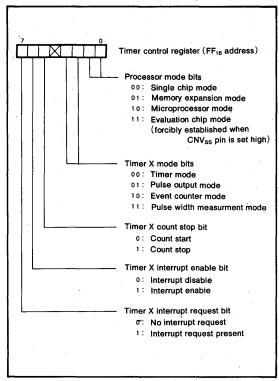


Fig.5 Configuration of timer control register

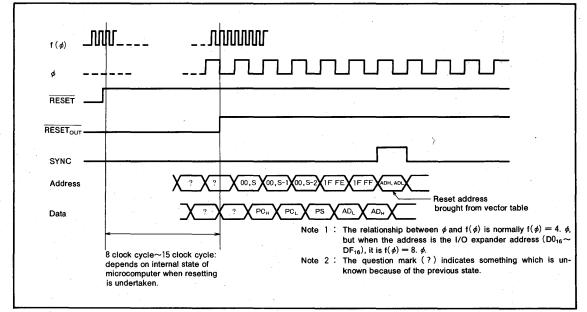
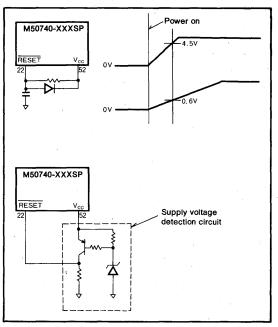
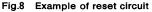


Fig.6 Timing diagram during resetting

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

Reset Circuit


When a supply voltage of $5V \pm 10\%$ is being supplied to the. M50740-XXXSP and the RESET pin is returned to the high level after being kept at the low level for 2μ s or more, the reset is released in accordance with the sequence shown in Fig. 6, and the program starts from the address which is derived from the contents of the address 1FFF₁₆ and 1FFE₁₆ ,high-order address is the contents of address 1FFF₁₆ and low-order address is the contents of address 1FFE₁₆. When resetting is accomplished, the internal state of the microcomputer is as shown in Fig. 7.


Fig. 8 shows an example of the reset circuit.

The reset input voltage should be set to less than 0.6V at that point when the supply voltage is passing through 4.5V.

			Address		
(1)	Data direction register of port 0	(E 1 ₁₆) …	0016
(2)	Data direction register of port 1	(E 3 16) …	0 0 16
(3)	Data direction register of port 2	(E 5 ₁₆) …	0 0 16
(4)	Data direction register of port 3	(E 9 ₁₆)	00 ₁₆
(5)	Prescaler X	(F C 16) …	F F ₁₆
(6)	Timer X	(F D 16) …	01 ₁₆
(7)	Interrupt control register	(FE ₁₆) …	0 0 ₁₆
(8)	Timer control register	(F F ₁₆)	0016
(9) _,	Interrupt disable flag on the processor status register	(PS)	
					and the second sec
(10)	Program counter	(РСн) …	contents of the address 1FFF ₁₆
1		(PCL)	contents of the address 1FFE ₁₆
(11)	The oscillator output is connected to pin X _{OUTF} as with the state established after the FST instruction has been executed.				

Fig.7 Internal state of microcomputer after resetting

Input/Output Pins

(1) Port P 0

This port is an 8-bit input/output port with n-channel open-drain outputs. As shown in the memory map of Fig. 1, port P0 is treated as the memory of address E016 on the zero page. Port P0 has a data direction register (address El₁₆ on zero page) and programming can be undertaken for individual bit to use the port for input or output. The pins where the data direction register is programmed to "1" are for output and those where the register is programmed to "0" are for input. The data written into the pin programmed as an output pin are written into the port latch and supplied direct to the output pin. When reading the data from a pin programmed as an output pin, it is not the output pin contents which are read but the port latch contents. Consequently, since the LED or other similar part is driven directly, the value output previously can be read correctly even if the low-level output voltage rises. The pin programmed as an input pin remains floating, so external signal can be read. When data are written, they are written into the port latch only and the pin remains floating.

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

(2) Port P1

This has the same functions as port P0.

- (3) Port P2
 - This has the same functions as port P0.
- (4) Port P3

Apart from the fact that this port has p-channel opendrain outputs, its functions are the same as those for port P0. Fig. 9 is a block diagram of port P0 \sim P3.

Also indicated are the output structure of port R, CNTR, ϕ , R/W, \overrightarrow{CE} and $\overrightarrow{RESET}_{OUT}$.

(5) Port R

This port is for exchanging data with the I/O expander. When ϕ is high, the port address of the I/O expander is sent; when it is low, data are sent to or received from the expander. The above data and addresses are effective only when pin $\overline{\text{CE}}$ is low. Fig. 10 is a timing diagram.

(6) CE

This pin is set low when the address becomes the I/O expander address ($D0_{16} \sim DF_{16}$). It is used to inform the I/O expander that the port R address or data is effective.

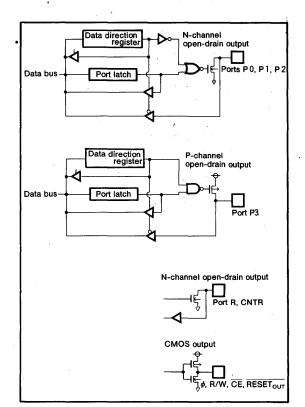
(7) R/W

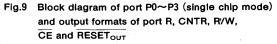
This is set low while writing is being executed, and it is used to inform the I/O expander that either writing or reading is being undertaken.

(8) ø

Normally output to this pin is a signal with a frequency produced by dividing the clock frequency by 4. However, when pin \overline{CE} is low, an output with a frequency which is one-eighth of the clock frequency is output. The pin is used to provide synchronization with the I/O expander.

(9) RESETOUT


When the RESET pin is set low, this pin also goes low. When the RESET pin is set high, the pin also goes high after between 8 and 15 clock cycles (this depends on the internal state of the microcomputer). The RESETout pin itself is used to reset the I/O expander.


(10) INT

When an input which changes the level from high to low is applied to this interrupt input pin, the $\overline{\text{INT}}$ interrupt request bit (bit 1 of address FE₁₆) is set to "1."

(11) CNTR

This pin serves both as the timer X input/output pin and as the interrupt input pin. When an input which changes its level from high to low is applied, the CNTR interrupt request bit (bit 7 of address FE_{16}) is set to "1." The pin serves as the external pulse input pin in the event counter mode. In the pulse output mode a pulse which reverses its polarity is output every time the timer X contents are reach to "0." In the pulse width measument mode, the pulse to be measured is supplied to this pin.

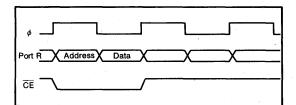


Fig.10 Timing diagram of port R

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

Clock Generator Circuit

The clock generator circuit is built-in, as shown in Fig. 11. When the STP instruction is executed, oscillation is stopped with the internal clock ϕ in the high-level. Furthermore, FF₁₆ is set in prescaler X and 01₁₆ in timer X, and the output, one-sixteenth of the oscillator output, is forcibly connected to the prescaler X input. This connection is released when, as mentioned in the timer section, timer X overflows or when resetting is accomplished. Oscillation re-starts when an interrupt is acknowledged but the internal clock ϕ remains high until timer X overflows. Only when timer X overflows is the internal clock ϕ supplied. This is because time is required for the oscillation to rise when a ceramic resonator or similar part is employed.

When the FST instruction is executed, SW_{OSC} closes and when the SLW instruction is executed, it opens. These instructions are used when RC oscillation is emploied and the oscillation frequency is changed. SW_{OSC} is closed during resetting.

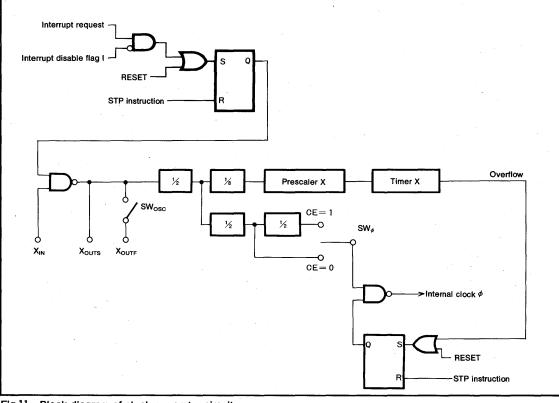


Fig.11 Block diagram of clock generator circuit

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

When the address becomes the I/O expander address $(D0_{16} \sim DF_{16})$, SW ϕ is connected to the output (CE=1) which is one-eighth of the oscillation frequency and at all other times it is connected to the output (CE=0) which is one-fourth of the same frequency. This is because a margin in terms of time is given to the signal exchange with the I/O expander.

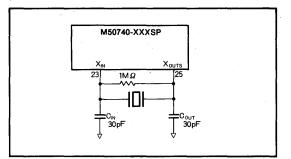


Fig.12 Externally connected ceramic resonator circuit

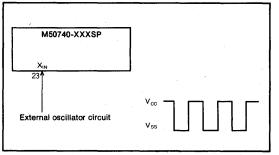


Fig.13 External clock input circuit

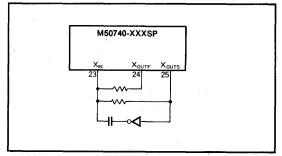


Fig.14 External RC circuit

Figs. $12 \sim 14$ give examples of clock generator circuits. The clock signal is produced if a ceramic resonator (or quartz crystal) is externally connected. X_{OUTF} is left open. The capacitance and other constants depend on the resonator itself and the values recommended by the manufacturer in question should be used.

When the external clock source is used it should be applied to the X_{IN} pin with pins X_{OUTS} and X_{OUTF} left open. An inverter is required externally for RC oscillation.

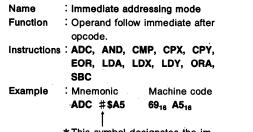
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

Addressing Modes

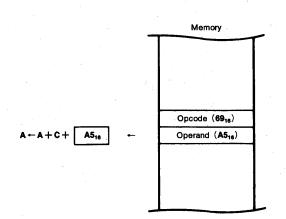
The M50740-XXXSP has 17 addressing modes and an extremely powerful memory access capability.

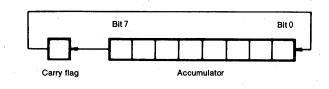
When extracting data required for arithmetic and logic operations from the memory or when storing the results of such operations in a memory using the appropriate instructions for this purpose, the memory address must be specified. Even when jumping to an address during a program, that particular address must be specified. The specification of the memory address is called addressing., The data required for addressing and the registers involved are now described. The M50740-XXXSP's instructions can be classified into three kinds, as shown in Fig. 15, by the byte number in the program memory required for configuring the instruction: 1-byte, 2-byte and 3-byte instructions. In each case, the first byte is known as the "operation code" which forms the basis of the instruction. The second or third byte is called the "operand" which affects the addressing. The contents of index registers X and Y also effect the addressing.

However many the addressing modes, there is no difference in the sense that a particular memory is specified. What differs is whether the operand or the index register contents or a combination of both should be used to specify the memory or jump destination. Based on these 3 methods, the range of variation is increased and the M50740-XXXSP's operation is enhanced by combinations of the bit operation instructions, jump instruction and arithmetic instructions. The accumulator or register is specified with a 1-byte instruction and so there is no operand byte, which is the part specifying the memory.

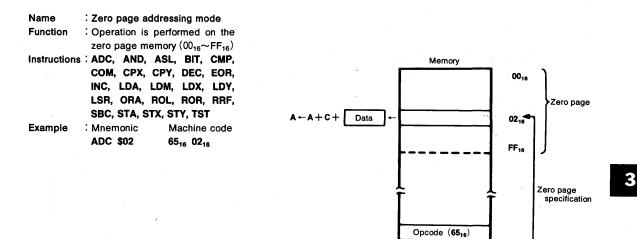

Actual addressing modes are now described by type.

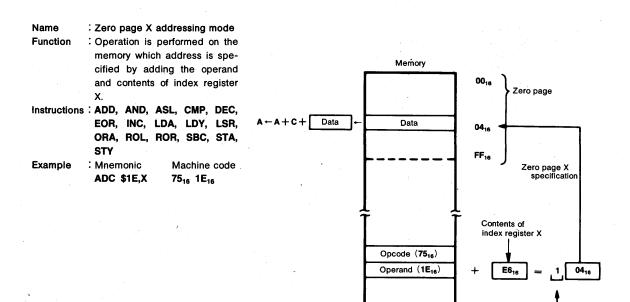
		, ,	
1-byte instruction Opcode	2-byte instruction Opcode Operand I	3-byte instruction Opcode Operand I Operand I	Index register


Fig.15 Instruction byte configuration


SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

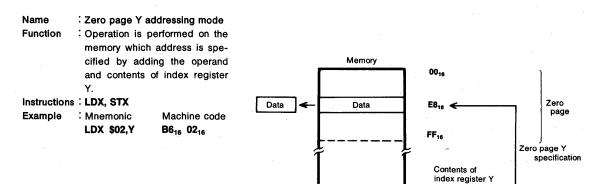
* This symbol designates the immediate addressing mode.


Name	: Accumulator	addressing mode
Function	: Operation is	performed on ac-
	cumulator.	
Instructions	ASL, DEC,	INC, LSR, ROL,
	ROR	
Example	: Mnemonic	Machine code
	ROL A	2A ₁₆



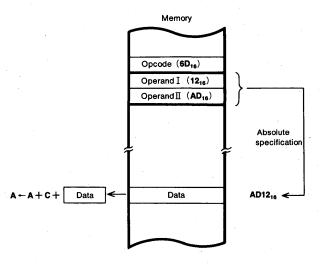
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

Operand (02₁₆)

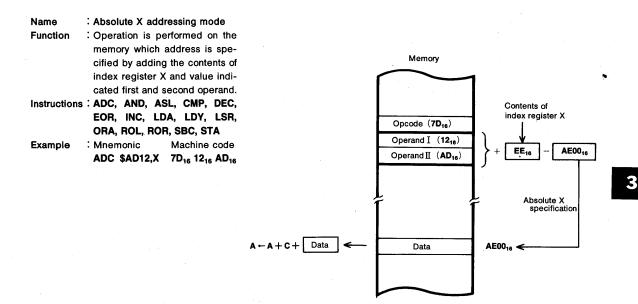


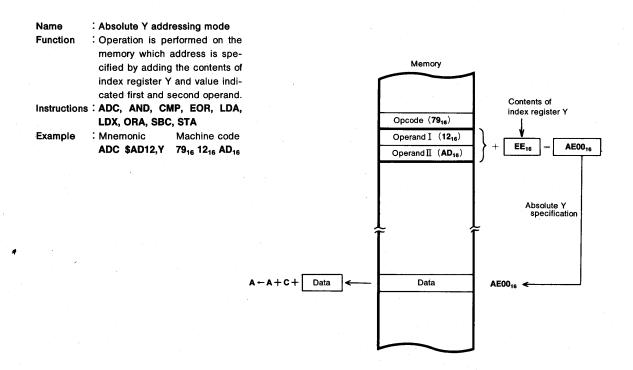
Ignored

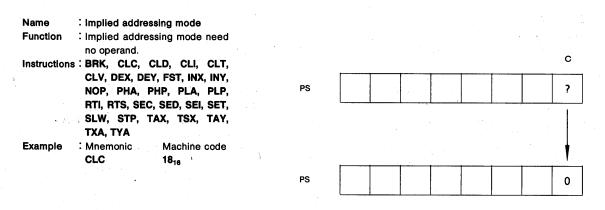
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER


E616

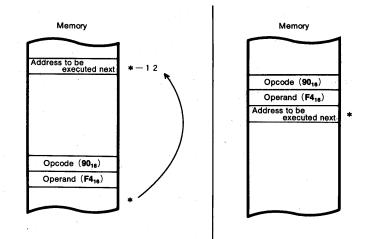
E816


Opcode (8616) Operand (0216)


Name	Absolute addressing mode
Function	Operation is performed on the memory which address is spe- cified by first and second operand.
Instructions	ADC, AND, ASL, BIT, CMP, CPX, CPY, DEC, EOR, INC, JMP, JSR, LDA, LDX, LDY, LSR, ORA, ROL, ROR, SBC, STA, STX, STY
Example	Mnemonic Machine code ADC \$AD12 6D ₁₆ 12 ₁₆ AD ₁₆

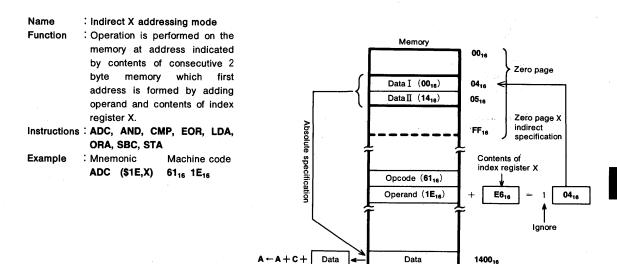

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER



Carry flag reset

Name Function	: Relative addres : Jumps to addre duced by addi	-
	of program contents of ope	ounter and the rand.
Instruction	S: BCC, BCS, B	EQ, BMI, BNE,
	BPL, BRA, BVC	C, BVS
Example	Mnemonic	Machine code
	BCC *-12	90 ₁₆ F4 ₁₆

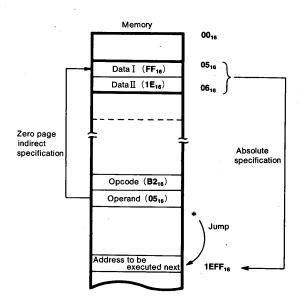

Jumps to -12 address when carry flag(c) is cleared.

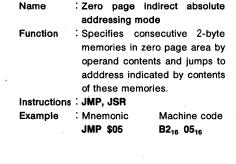
Proceed to next address when carry flag(c) is set.



SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

In this example, $00_{16}~\text{as}$ data $I~\text{and}~~14_{16}~\text{as}$ data II~have been stored beforehand.


In this example, 00₁₆ as data $\,I\,$ and 12₁₆ as Data $\,I\,$ have been stored beforehand.


SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

In this example, FF₁₆ as data $\,I\,$ and $1E_{16}\,$ as data $\,I\,$ have been stored beforehand.

In this example, FF₁₆ as data $\,I\,$ and $1E_{16}\,as$ data $\,I\,$ have been stored beforehand.

Name

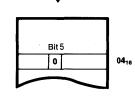
1FE0₁₆

1FFF₁₆

0016

04₁₆

FF16


SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

Name	Special page addressing mode				
Function	Jumps to address in special				
	page area. 8 high-order				
	address and 8 low-order		Memory		
	address of jump distination is		\frown		
	1F ₁₆ and contents of operand				
	respectively.				
Instruction			Opcode (22 ₁₆)		
	Mnemonic Machine code		Operand (E0 ₁₆)	······································	·
Example					
	JSR ¥\$1FE0 22 ₁₆ E0 ₁₆				
				Special parts	-
	*This symbol denotes special		T 1	specini	catio
	page mode.				
		· •			
				1500	
			F	1F00 ₁₆	

3

specification

Name	Zero page mode	bit addressing		
Function		performed on the		Memory
	bit specified	by 3 high-order		
	bits of o	pcode, memory	. •	
	address cont	aining this bit is		Bit 5
	specified by c	perand.	Г	>?
Instructions	CLB, SEB			
Example	Mnemonic	Machine code		
	CLB 5,\$04	BF ₁₆ 04 ₁₆		∼
			Zero page	
			specification	Bit
		•	*	specification Opcode ↓ ↓
				101 10011
			· L	Operand (04 ₁₆)

Address to be executed next

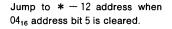
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

Name	: Accumulator mode	bit addressing			
Function	•	in accumulator by		Bit 5	
	3 high-order b	its of opcode.			
	ns : CLB, SEB		Accumulator	?	
Example	: Mnemonic	Machine code		Memory	
	CLB 5,A	BB ₁₆			
				Bit specification Opcode	
				101 11111	
				–	
			,	· • •	
				•	
			·		
			Accumulator	0	
	,				
				·	
				.*	
Name	Zero page mode	bit addressing			
Function		performed on the			
i unotion	•	by 3 high-order	When accumulator bit 5 is	When accumulator bit 5 is s	set
		pcode, memory	cleared		
		aining this bit is	Bit 5	Bit 5 '	
	specified by c	•			
Instruction	ns : CLB, SEB	poruna.	Accumulator 0	Accumulator 1	ا
Example	: Mnemonic	Machine code	Jump to $*-12$ address	Advance to *address	
	CLB 5,\$04	BF ₁₆ 04 ₁₆	Memory	Memory	
		10 10	Monoly .	Melholy	
					$(1-\sqrt{2})^{1/2}$
				Bit specification Opcode	
			Address to be executed next *-1 2		
				101 10111	
				Operand (F4 ₁₆)	
				Address to be executed nest	*
			Bit specification Opcode	executed nest	•
			101 10111		
			Operand (F4 ₁₆)		
				1	<i>.</i>
			* Sump		

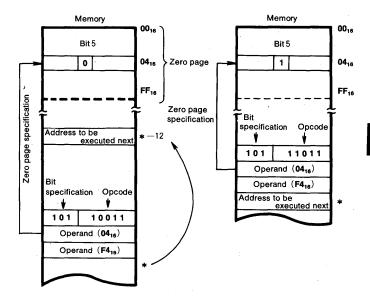
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

Name Zero page bit relative addressing mode

Function


: Operation is performed on the bit specified by 3 high-order bits of opcode, memory address containing this bit is specified by first operand and, depending on the state of this special bit, jumps to the address indicated by the value produced by adding the second operand contents to the contents of the program counter.

Instructions : BBC, BBS


Example : Mnemonic

BBC 5,\$04,-12 B7₁₆ 04₁₆ F4₁₆

Machine code

Advance to * address when 04_{16} address bit 5 is set.

Documentation Required for Ordering a Custom Mask

The following information should be provided when ordering a custom mask:

- (1) M50740-XXXSP mask confirmation sheet
- (2) ROM data EPROM 3 sets

Programming Precautions

- (1) The frequency division ratio of the timers and prescalers is not 1/(n+1) but 1/(n+2).
- (2) Select any numerical value except 0 for the set values of the timers and prescalers.
- (3) Even when the BBC or BBS instruction is executed immediately after the contents of the interrupt request bit has been changed by the program, the execution is still valid for the contents prior to the change. This means that for execution keyed to the contents subsequent to the change, the instruction should be executed after one of more instructions.
- (4) Data should be read from the timers and prescalers while there is no change in the prescaler input.
- (5) The decimal mode flag D is set to "1" and the ADC or SBC instruction is executed with decimal arithmetic and logic operations. In this case, the SEC or CLC instruction should be executed after one or more instructions from the ADC or SBC instruction.

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

MACHINE INSTRUCTIONS

			L							\ddr	0 88i	ing :	nod	e	_					
Symbol	Function	Details		IMI	>		IM	N.		A		E	ЗIT,	A		ΖP		в	IT,Z	Р
			0P	n	#	OP	n	#	0P	n	#	0P	n	#	0P	n	#	0P	n	#
ADC	When T=0	Adds the carry, accumulator and memory con-		-	1	69	2	2	 						65	3	2			
(Note 1)	A←A+M+C	tents. The results are entered into the accumu-			1						ļ					ļ				
		lator.	Į		ļ							1	1.1			Į				
	When T=1	Adds the contents of the memory in the address in-	·		1															
	$M(X) \leftarrow M(X) + M + C$	dicated by index register X, the contents of the				1.														
		memory specified by the addressing modes in the	·				i i								1					
		columns on the right, and the contents of the carry.	1	[ĺ	[Ĺ	Ĺ	[.	ĺ	ĺ	ĺ		İ.	1		1			
		The results are entered into the memory at the																		
4115		address indicated by index register X.				-		-			<u> </u>						-			_
AND (Note 1)	When T=0	"AND-s" the accumulator and memory con-		1	1	29	2	2							25	3	2			
(Note I)	A-AVW	tents. The results are entered into the accumu- lator.																		
	When T==1	"AND-s" the contents of the memory of the address															·			
	M(X) ← M(X) ∧ M	indicated by index register X and the contents of the]						1			!	ļ			ļ				
		memory specified by the addressing modes in the																		
		columns on the right. The results are entered into the														Ì	١.			
		memory at the address indicated by index register X.													l					
ASL	7 0	1-bit shifts the contents of accumulator or con-			⊢	1	+		OA	2	1	<u> </u>			06	5	2			
	C ← ←0	tents of memory to the left. "0" enters 0th bit of								-						-	-			
		memory or accumulator and the contents of the													ļ					
		7th bit enter carry flag.	1				1	1							Į					
]																
BBC	Ab or Mb=0?	Branches when the contents of the bit specified										13		~				17	-	
(Note 4)		in the accumulator or memory are "0".		Í								13 1 2i	4	2				2i	5	3
				[1			[[ĺ	Í	ĺ .	[
BBS	Ab or Mb=1?	Branches when the contents of the bit specified										03 2i	4	2				07 2i	5	3
(Note 4)		in the accumulator or memory are "1".										Ži	1	2				Ži	5	-
	· · · · · · · · · · · · · · · · · · ·																			
BCC	C=0?	Branches when the contents of carry flag are	ŀ]			Ì.	1	1			1		,						
(Note 4)		"0".																		
BCS	C=1?	Branches when the contents of carry flag are			Į.										ļ	ļ				
(Note 4)		"1"					<u> </u>	•						1						
BEQ	Z=1?	Branches when the contents of zero flag are	Ľ								·	ļ								
(Note 4)		"1".		ļ	-	ļ		ļ				1	L							
BIT	AAM · ·	"AND-s" the contents of accumulator and mem-	[[1.	[[1	(Í	ĺ		24	3	2			
		ory. The results are not entered anywhere.													ļ		l			
				<u> </u>		-						ļ							•	_
BMI	N=1?	Branches when the contents of negative flag		ł				ł				ł								
(Note 4)		are "1".			⊢		 		-				-			-				
BNE	Z=0?	Branches when the contents of zero flag are	1																	
(Note 4)		"0".		ļ	1	-	<u> </u>		 			ļ	, .						_	
BPL	N=0?	Branches when the contents of negative flag																		
(Note 4)	PO. PO. +	are "0".	·		-								ļ							
BRA	PC←PC±offset	Jumps to address where offset has been added to the program counter.	ŀ																	
BRK	B←1		0	-	+-	+	<u> </u>	_		-		<u> </u>				-		-	-	
DNŘ	В←1 M(S) ← РС _н	Executes software interrupt.	00	7	1							l I								
	S-S-1																-			
	M(S)←PCL					1						ł								
	S←S−1					1.						1	l							
	M(S)←PS		l						1											
	S←S-1						1.							1						
	PCL←ADL					1	[[ŀ	[[[1	
•	PC _H ←AD _H							1												

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

															A	ldre	ssir	ig n	nod	e													·			Proc	ess	or s	tatus	s reg	jiste	ər
z	ΣP,2	x		ZP,	Y	Γ	AB	s	Τ	A	BS,	X	A	BS		Γ	IN		T	ZP,	IN	D'	11	٧D,	x	1	ND	Y,		REI			SP		7	6	5	4	3	2	1	0
0P	n	#	0P	n	#	OF	'n	#	ŧ 0	P	n	#	0P	n	#	OF	n	#	0	P	1	#	0P	n	#	0P	n	#	0P	n	#	0P	n	#	N	v	т	в	D	1	z	С
75	4	2				60	9 4	3	5 7	D	5	3	79	5	3								61	6	2	71	6	2							N	V	•	•	•	•	z	С
35	4	2				20) 4	3	3	3D	5	3	39	5	3								21	6	2	31	6	2							N	•	•	•	•	•	z	•
16	6	2				OE	6	3	5 1	IE	7	3																							N	•	•	•	•	•	z	С
																																			•	•	•	•	•	•	•	•
																																			•	•	•	•	•	•	•	•
																													90	2	2				•	•	•	•	•	•	•	•
		-					+ .		-					-		-	-				+	_							B0 F0		2			-	• •	•	•	•	•	•	•	
					-	20	2 4	3	5											-										-					M7	M ₆	•	•	•	•	z	•
		-					-	-							-	+	-										-		30	2	2			 	•	•	•	•	•.	•	•	•
	-																												D0	2	2				•	•	•	•	•	•	•	•
																			Ţ										10	2	2				•	•	•	•	•	•	•	•
				-			-	-	-						-		-	-											80	4	2				• •	•	•	•	•	1	•	
																																										•

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

						-			-	Addr	ess	Ing	mod	8					
Symbol	Function	Details	1	IM	5	1	MN	1		A		1	BIT,	A		ZΡ		в	T,Z
			0P	n	#	0P	n	#	0P	n	#	OF	'n	#	0P	n	#.	0P	n
BVC (Note 4)	V=0?	Branches when the contents of overflow flag are "0."																·	
BVS (Note 4)	V=1?	Branches when the contents of overflow flag are "1."																	
CLB	A _b or M _b ←0	Clears the contents of the bit specified in the accumulator or memory to "0."										1E † 2i	3 2	1				1F 2i	5
CLC	C←0	Clears the contents of the carry flag to "0."	18	2	1														
CLD	D ← 0	Clears the contents of decimal mode flag to "0."	D8	2	1														
CLI	1←0	Clears the contents of interrupt disable flag to "0."	58	2	1														
CLT	T←0	Clears the contents of X-modified arithmetic mode flag to "0."	12	2	1														
CLV	V⊷0	Clears the contents overflow flag to "0."	B8	2	1														
CMP (Note 3)	When T=0 A-M When T=1 M(X)-M	Compares the contents of accumulator and memory. Compares the contents of the memory speci- fied by addressing modes in the columns on the right with the contents of the address indi-				C9	2	2							C5	3	2		
сом	M⊷M	cated by index register X. Formes one's complement of contents of mem-	-				•					1			44	5	2		
CPX	х-м	ory, and store it into memory. Compares the contents of index register X and memory.				EO	2	2					1.		E4	3	2		
CPY	Y—M	Compares the contents of index register Y and memory.		-		CO	2	2				T			C4	3	2		
DEC	A←A−1 or M←M−1	Decrements the contents of accumulator or memory by 1.				1			1A	2	1			1	C6	5	2		
DEX	x⊷x−1	Decrements the contents of index register X by 1.	CA	2	1	1												7	
DEY	Y⊷Y-1	Decrements the contents of index register Y by 1.	88	2	1														
EOR (Note 1)	When T=0 A⊷A¥M When T=1 M(X) ←M(X)¥M	"Exclusive-ORs" the contents of accumulator and memory. The results are stored into the accumulator. "Exclusive-ORs" the contents of the memory specified by the addressing modes in the col- umns on the right and the contents of the mem- ory at the address indicated by index register X. The results are stored into the memory at the address indicated by index register X.				49	2	2							45	3	2		
FST		Connects oscillator output to X _{OUTF} .	E2	2	1														
INC	A←A+1 or M←M+1	Increments the contents of accumulator or memory by 1.							3А	2	1				E6	5	2		
INX	x⊷x+i	Increments the contents of index register X by 1.	E8	2	1														
INY	Y←Y+1	Increments the contents of index register Y by 1.	C8	2	1														

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

							_				,			Ad	Idres	sing	m	ode															1	Proc	:055	or st	tatus	i reç	giste	r
z	(P,)	<	2	ZP,	Y		AB	5	A	BS	,х	A	BS	Y,	-	INC)	ZI	P,IN	ID	11	۱D,	x	11	ND,	Y		REL	-		SP		7	6	5	4	3	2	1	0
0P	n	#	0P	n	#	0P	n	#	0P	n	#	0P	n	#	0P	n	#	0P	n	#	0P	n	#	0P	n	#	0P	n	#	0P	n	#	Ν	v	T	в	D	1	z	С
																											50	2	2				•	•	•	•	•	•	•	•
							_																				70	2	2				•	•	•	•	•	•	•	•
											1			-												-							•	•	•	•	•	•	•	•
-	-			-									-					-	-												t		•	•	•	•	•	•	•	0
																																	•	•	•	•	0	•	•	•
																-						•											•	•	•	•	•	0	•	•
													ľ																				•	•	0	•	•	•	•	•
									-				ŀ			-																	•	0	•	•	•	•	•	•
D5	4	2				СD	4	3	DD	5	3	D9	5	3							C1	6	2	D1	6	2							N	•	•	•	•	•	z	С
																				-											-		N	•	•	•	•	•	z	•
				-		EC	4	3														-											N	•	•	•	•	•	z	С
			× .			cc	`4	3						1		-	-								-								N	•	•	•	•	•	z	С
D6	6	2		-		CE	6	3	DE	7	3		[-				-				-	-		-								N	•	•	•	•	•	z	•
									-	-		-						-								-	-			-			N	•	·	•	•	•	z	•
			_									-	-		F																1		N	•	•	•	•	•	z	•
55	4	2				4D	4	3	5D	5	3	59	5	3							41	6	2	51	6	2							N	•	•	•	•	•	z	•
-				-	-		-						-	-	-											-					-			•	•	•	•	•	•	•
F6	6	2				EE	6	3	FE	7	3																						N	•	•	•	•	•	z	•
																																	N	•	•	•	•	•	z	•
-	_		-	<u> </u>	-			-	\vdash	1-	+			\vdash	-		-	-		-						-	-		1.1	-	+		N	•	•	•	•	•	z	•

MITSUBISHI MICROCOMPUTERS

M50740-XXXSP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

[. /	Add	ress	sing) ma	de						
Symbol	Function	Details		IM	Р		IM	4	-	A			BI	T,A		Z	Ρ	E	IТ,	Zſ
			0P	n	#	OP	'n	#	0P	'n	#	0	Pr	n :	# 0	Pr	1 #	OF	'n	:
MP	If addressing mode is ABS	Jumps to new address.				1	Γ					T		T		1	T		T	T
	PCL←ADL		Ľ																	
	PC _H ←AD _H	· · · · ·					· .		1.											1
	If addressing mode is IND							1											[
.	PCL←(AD _H , AD _L)	ļ																		
	PC _H ←(AD _H , AD _L +1)	·		Í	1	1	1		1.		1	Ĺ		Í				1	ľ	Ĺ
j	if addressing mode is ZP, IND				Ľ															
	PC_+(00, AD_L)		1	1		1	1	1				1						1		ł
	PC _H ←(00, AD _L +1)																			
ISR	M(S)←PC _H	After storing contents of program counter in	┢	1-	+	1	+	-	1	1-		+	+	+	+	+	+	+	+	$^{+}$
	S←S−1	stack, and jumps to new address.																		
ł	M(S)←PCL																			
1	S←S−1								ŀ											
	After executing the above,				ļ			1									1			
	if addressing mode is ABS,													•						
	PCL←ADL				1															
	PC _H ←AD _H				1	1		1	1		1					1	1			
	if addressing mode is SP,				1															
	-		1			1	1				1	Ł	1							
		· · ·	1					1												
Í				1	1	1	1	ł	1.	1										
	If addressing mode is ZP, IND,	1		1			1						1							
ł	PC _L ←(00, AD _L)																			
	PC _H ←(00, AD _L +1)		 					-		-	<u> </u>	+-		-	_	-	+		-	╇
.DA	When T=0	Load accumulator with contents of memory.				A	2	2							A	5 3	2	1		
lote 2)	A←M						1.			1										
	When T=1	Load memory indicated by index register X with																	ľ	
	M(X)←M	contents of memory specified by addressing				1	[[Ι.	1		1				1	1	
· ·		mode shown in right column.	ļ									+				-				\perp
.DM	M⊷IMM	Load memory with immediate value.	ŀ	[Ĺ		Í	[ĺ	1				ľ	3		3			
.DX	X←M	Load index register X with contents of memory.				A2	2	2				+	╈	╎	A	6 3	2		1-	+
.DY	Y←M	Load index register Y with contents of memory.	┝			AO	2	2	-	-	-	╀	+	+		4 3		-	$\left \right $	╀
.SR			+			-	<u> </u>					+-		_	\downarrow			1		+
.ən	7 0 $0 \rightarrow \square \rightarrow C$	Shift the contents of accumulator or memory to				1			4A	2	1	1.	Í		4	6 5	2		1 -	.[
		the right by one bit.																		
		Oth bit of accumulator or memory is stored in	1		1.	1	1	1		İ.			1						ł	1
		carry, 7th bit is cleared.							1	1										
IOP	PC←PC+1	No operation.	EA	2	1	+		-		-		╀	+	+	+	+	+	+ -	┢╌	+
DRA	When T=0	Produce the logical OR of the contents of mem-	1			09	2	2	1	1	1	+	+	+	10	5 3	2	1	1-	t
Note 1)	A←AVM	ory and accumulator. The result is stored in				1.0	-	1	[1	[. [Ĩ	- `	1-	1	1	1
		accumulator.			1						1								Ľ	
. [When T=1	produce the logical OR of contents of memory	1		İ.	Ì			1	1		1								
	M(X)←M(X)VM	indicated by index register X and contents of	1		1						ľ									
		memory specified by addressing mode shown	1		ł			1		1	Ł									
	. · ·		1		1				[·											
		in right column. The result is stored in memory	1	1		1			1					ļ					1	1
		of address specified by index register X.																		

3-30

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

														Ad	dres	sing	m	de														_	1	Proc	ess	or st	atus	reç	giste	r
	ZP,)	<	1	ZP,	Y		ABS	S .	A	BS,	х	A	BS,		1	NC		· · · · · -	P, I N	ID	11	٩D,	x	11	۷D,	Y		REI	_	[SP		7	6	5	4	3	2	1	0
							_		·										_		_		_	0P	n	#	0P	n	#	0P	n	#	N	v	т	в	D	I	z	С
	4					4C	3	3							6C	5	3	B2	4	2													•	•	•	•	•	•	•	•
						20	6	3										02	7	2										22	5	2	•		•	•	•	•		*
B5	4	2				AD	4	3	BD	5	3	В9	5	3							A1	6	2	B1	6	2							N	•		•	•	•	z	•
																																	•	•	•	•	•	•	•	•
			B6	4	2	AE	4	3				BE	5	3	ŀ																		Ν	٠	•	•	•	•	z	•
B4	4	2				AC	4	3	вс	5	3																					Ъ.	Ň	•	•	•	•	•	z	•
56	6	2				4E	6	3	5E	7	3			-								-											0	•	•	•	•	•	Z	C
																																;	•	•		•	•	•	•.	•
15	4	2				OD	4	3	1D	5	3	19	5	3							01	6	2	11	6	2							N.	•	•		•	•.	Z.	•

3

5

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

. *									A	ddre	əssi	ng r	nod	e						
Symbol	Function	Details		MF	>	1	мΝ	1		A		E	ЫT,	A		ZΡ		в	T,Z	5
	· · ·		0P	n	#	0P	n	#	0P	n	#	0P	n	#	0P	n	#	0P	n	#
PHA	M(S)←A	Saves the contents of the accumulator in the memory	48	3	1	<u> </u>														
	S⊷S—1	at the address indicated by the stack pointer and																		
		decrements the contents of stack pointer by 1.																		
PHP	M(S)←PS	Saves the contents of processor status register	08	3	1															
1.1	s⊷s—1	in the memory at the address indicated by the																		
		stack pointer and decrements the contents of																		
		stack pointer by 1.				1								ļ						
PLA	s←s+1	Increments the contents of stack pointer by 1 and	68	4	1															
	A⊷M(S)	pulls from the memory at the address indicated by												1.1						
_		the stack pointer, and store it in accumulator.	-		-	.														
PLP	S←S+1		28	4	1															
	PS←M(S)	and pulls from the memory at the address indi-					'													
		cated by the stack pointer, and store it in pro-	ļ		[ļ			1			1								
BOI	7.0	cessor status register.	-		-	-			2.4	2	1	-			26	F	2			
ROL	70 ┍╾ <u></u> ╾©╾	Connects the carry flag and the accumulator or memory and rotates the contents to the left by 1							2A	2	1.				20	э	2			
		bit.	1				ļ													
ROR	7 0	Connects the carry flag and the accumulator or	+	-					6A	2	1	+		<u> </u>	66	5	2		\vdash	
non	┍━╚→⌒¯→	memory and rotates the contents to the right by							ľ	1							~		· .	
		1 bit.																		
RRF	7 0	Rotates the contents of memory to the right by 4			1			-					-		82	8	2			
		bits.													2	ľ	-			
																-				
RTI	S←S+1	Returns from the interrupt routine to the main	40	6	1	<u> </u>	<u> </u>	<u> </u>					1		<u> </u>					
	PS←M(S)	routine.	···	-	·															
	s⊷s+1																		ŀ	· .
	PC _L ←M(S)																			
	s⊷s+1			ļ																
	PC _H ←M(S)	• • • • • • • • • • • • • • • • • • •													•					
RTS	S←S+1	Returns from the subroutine to the main routine.	60	6	1				· ·						1					
	PC _L ←M(S)									×										
	S⊷S+1						l.		ŀ											
	PC _H ←M(S)		_			ļ		ļ			·		-	<u> </u>		.				
SBC	When T=0	Subtracts the contents of memory and carry flag				E9	2	2							E5	3	2			
(Note 1)	A←A−M−C	from the contents of accumulator. The results			ĺ				ĺ			ĺ		[[ĺ	[
		are stored into the accumulator.																		
	When T=1	Subtracts contents of carry flag and contents of			ŀ								Ľ			l l				
	$M(X) \leftarrow M(X) - M - C$	the memory indicated by the addressing modes			ļ				.											
		shown in the columns on the right from the memory at the address indicated by index reg-				.													7	
		ister X. The results are stored into the memory		1				1												
		of the address indicated by index register X.				-		1.				1.						1		
SEB	A _b or M _b ←1	Sets the specified bit contents of accumulator				1.		\vdash				QE	2	1	-		<u> </u>	OF	5	2
		or memory to "1."	1		[•]	1			1			21		1	1	1		2i		
SEC	C+-1	Sets the contents of carry flag to "1."	38	2	1.	\uparrow	1		1		ľ	1	1		1.			Ľ		
SED	D⊷1	Sets the contents of decimal mode flag to "1."	F8	· · · ·	1	1		1					1				[<u> </u>	
				[Ľ		1		1			1			1					
SEI	I←1	Sets the contents of interrupt disable flag to	78	2	1	t	1	1	1	-		1.	1	1		1	-			
		"1."	1		1													Ľ		
SET	T ← 1	Sets the contents of X-modified arithmetic	32	2	1	1	1	-		1		1	1							
		mode flag to "1."						1	1.					1				· .		
SLW		Releases the connection between the oscillator	C2	2	1	1	1		1		<u> </u>	1	1			1				-
	1	output and pin X _{OUTF} .	1	1	1.1	1	1	1	1	1	1	1	1	1	1	1	1		1 1	

MITSUBISHI MICROCOMPUTERS

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

														Ad	dres	sing	, mo	de															1	Proc	ess	or st	atus	s reg	jiste	۶r
Z	P,)	x	:	ZP,۱	ŕ		ABS	S	A	BS	,Х	A	BS	Y		IND)	ZI	9,1N	D	11	۱D,	x	11	٩D,	Y	F	REL	-		SP		7	6	5	4	3	2	1	0
Р	n	#	0P	n	#	0P	n	#	0P	n	#	0P	n	#	0P	n	#	0P	n	#	0P	n	#	0P	n	#	0P	n	#	0P	n	#	Ν	v	Т	в	D	T	z	C
											-																		/				•	•	•	••	•	•	•	•
																																	•	•	•	•	•	•	•	•
																																	N	•	•	•	•	•	z	+
					-						-		•																					(Va	lue	save	əd i	n sta	ck)	,
6	6	2				2E	6	2	25	-	2																						N			•		_	7	
0	0	2				20	0	3	JE	ĺ									;												-						-		2	
6	6	2				6E	6	3	7E	7	3																						Ν	•	•	•	٠	•	z	1
																	,																•	•	•	•	•	•	•	
																																		(Va	lue	save	əd iı	n sta	ick)	1
									-			i	-							-													•	•	•	•	•	•	•	
-								. *																																
5	4	2				ED	4	3	FD	5	3	F9	5	3				-	.		E1	6	2	F1	6	2							N	V	•	•	•	•	z	
																				-					4															
																																	•	••	•	•	•	•	•	
-				-				-			-														•									•		•			•	
																				-														•						
																																		•						
																																	•	•	٠	•	•	•	•	ſ

3—33

MITSUBISHI MICROCOMPUTERS

M50740-XXXSP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

										٨ddr	ess	ing	mod	e					
Symbol	Function	Details		м	>		IMN	Λ		A			ЗІТ,	A		ZΡ		в	IT,ZI
			0P	n	#	0P	n	#	0P	n	#	OP	'n	#	0P	n	#	0P	n
STA	M←A	Stores the contents of accumulator in the memory.												-	85	4	2		
STP		Stops the oscillation of the oscillator.	42	2	1														
STX	M←X	Stores the contents of index register X in the memory.				Γ									86	4	2		
STY	M←Y	Stores the contents of index register Y in the memory.													84	4	2		
ТАХ	X←A	Transfers the contents of accumulator to index register X.	AA	2	1														
TAY	Y←A	Transfers the contents of accumulator to index register Y.	A8	2	.1														
TST	M=0?	Tests whether the contents of memory are "0" or not.													64	3	2		
TSX	X←S	Transfers the contents of stack pointer to index register X.	BA	2	1														
TXA	A←X	Transfers the contents of index register X to the accumulator.	8A	2	1														
TXS	S←X	Transfers the contents of index register X to the stack pointer.	9A	2	1														
ΤΥΑ	A←Y	Transfers the contents of index register Y to the accumulator.	98	2	1	Γ													

Note 1 : The number of cycles "n" is added by 3 when T is 1. 2 : The number of cycles "n" is added by 2 when T is 1.

3 The number of cycles "n" is added by 1 when T is 1.
4 The number of cycles "n" is added by 2 when branching has occurred.

Symbol	Contents	Symbol	Contents
IMP	Implied addressing mode	+	Addition
ІММ	Immediate addressing mode	·	Subtraction
Α	Accumulator or accumulator addressing mode	A .	AND
		V	OR
BIT, A	Accumulator bit relative addressing mode	¥	Exclusive-OR
			Negation
ZP	Zero page addressing mode	-	Shows direction of data flow
BIT, ZP	Zero page bit relative addressing mode	x	Index register X
		Y	Index register Y
ZP, X	Zero page X addressing mode	s	Stack pointer
ZP, Y	Zero page Y addressing mode	PC	Program counter
ABS	Absolute addressing mode	PS	Processor status register
ABS, X	Absolute X addressing mode	PCH	8 high-order bits of program counter
ABS, Y	Absolute Y addressing mode	PCL .	8 low-order bits of program counter
IND	Indirect absolute addressing mode	ADH	8 high-order bits of address
		ADL	8 low-order bits of address
ZP, IND	Zero page indirect absolute addressing mode	(AD _H , AD _L)	Contents of memory at address indicated by AD _H ar
1. Sec. 1. Sec			ADL, in ADH is 8 high-order bits and ADL is low-order bits
IND, X	Indirect X addressing mode	(00, ADL)	Contents of address indicated by zero page ADL
IND, Y	Indirect Y addressing mode	FF	FF in Hexadecimal notation
REL	Relative addressing mode	м	Memory specified by address designation of a
SP	Special page addressing mode		addressing mode
C	Carry flag	м(х)	Memory of address indicated by contents of inde
Z	Zero flag		register X
1	Interrupt disable flag	M (S)	Memory of address indicated by contents of stack pointed
D	Decimal mode flag	Ab	1 bit of accumulator
в	Break flag	Mb	1 bit of memory
T .	X-modified arithmetic mode flag	OP	Opcode
v	Overflow flag	n	Number of cycles
N	Negative flag	#	Number of bytes

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

	Addressing mode																	Processor status register																							
ZP,X		ZF		Y	AB		s	ABS,X			ABS,Y			IND			ZP,IND			IND,X			IND,Y			REL			SP		SP		6	5	4	3	2	1	0		
0P	n	#	0P	n	#	0P	n	#	0P 1	0P	n	#	0P	n	#	0P	n	#	0P	n	#	0P	n	#	0P	n	#	0P	n	#	0P	n	#	N	V	т	в	D	I	z	С
95	5	2				8D	5	3	9D	6	3	99	6	3							81	7	2	91	7	2							•	•	•	•••	/ e	•	•	•	
	-		-																														•	•	•	•	•	•	•	•	
			96	5	2	8E	5	3																									•	•	•	•	•	•	•	•	
94	5	2				80	5	3													-												•	•	•	•	•	•	•	•	
								-	1		†			-								•											N	•	•	•	•	•	z	•	
							~																		-								N	•	•	•	•	•	z	•	
																																	N	•	•	•	•	•	z	•	
			ŀ																														N	•	•	•	•	•	z	•	
-					1								•																				N	•	•	•	•	•	z	•	
	_																																•	•	•	•	•	•	•	•	
-									1	1																							N	•	•	•	•	•	z	•	

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

LIST OF INSTRUCTION CODES

	D₃~D₀	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
Hej ∂7∼D4	adecimai notation	0	1	2	3	4	5	6	7	8	9 -	A	в	C	D	E	F
0000	0	BRK	ORA	JSR	BBS 0, A	· →	ORA	ASL ZP	BBS	PHP	ORA	ASL	SEB	-	ORA ABS	ASL	SEB
0001	1	BPL	ORA	ZP, IND CLT	0, A BBC 0, A	-	ZP ORA ZP, X	ASL ZP, X	BBC 0. ZP	CLC	IMM ORA ABS, Y	A DEC A	0, A CLB 0, A		OFA	ABS ASL ABS X	0, ZP CLB 0, ZP
0010	2	JSA ABS	AND	JSR SP	BBS	BIT	AND	ROL	BBS	PLP	AND	ROL	SEB	BIT	AND	ROL	SEE
0011	3	BMI	AND IND, Y	SET	BBC	-	AND ZP, X	ROL	BBC	SEC	AND ABS, Y	INC A	CLB	LDM	AND APS Y	ROL.	CLB
0100	4	RTI	EOR	STP	BBS	COM	EOR	LSR	.885 2.79	РНА	EOR	LSR A	SEB	JMP ABS	EOR	LSR	SEE
0101	5	BVC	EOR	-	BBC	-	EOR ZP, X	LSR ZP, X	880 2, 2P	CLI	EOR ABS Y	_	CLB 2, A	-	EOR	LSR ABS X	CLE 2, ZI
0110	6	RTS	ADC	_	BBS 3, A	TST ZP	ADC ZP	ROR	885 3. ZP	PLA		ROR A	SEB 3. A	JMP IND	ADC	BOR ABS	SEI
0111	7	BVS	ADC	_	BBC 3, A	_	ADC ZP, X	ROR ZP, X	880 3.2P	SEI	ADC ABS, Y	-	CLB 3, A	<u> </u>	ADO	HOR ABS: X	0LI 3, Z
1000	8	BRA	STA	RRF	BBS	STY ZP	STA ZP	STX ZP	BBS 4 ZP	DEY	-	ТХА	SEB 4, A	STY ABS	STA ABS	STX ABS	SE
1001	9	BCC	STA		BBC 4, A	STY ZP, X	STA ZP, X	STX, ZP, Y	BBC 4.ZP	TYA	STA ABS, Y	тхѕ	CLB 4, A	_	STA	_	CL 4, 2
1010	A	LDY	LDA		BBS 5, A	LDY ZP	LDA ZP	LDX ZP	803 5, ZP	TAY	LDA IMM	ТАХ	SEB 5, A	LDY	LDA ABS	LDX ABS	SE 5, 2
1011	в	BCS	LDA IND, Y	JMP ZP, IND	BBC 5, A	LDY ZP, X	LDA ZP, X	LDX ZP, Y	680 5, 29	CLV	LDA ABS, Y	тѕх	CLB 5, A	LDY ABS X	LDA ABS X	LDX ABS Y	CL 5, 2
1100	с	CPY IMM	CMP IND, X	slw	BBS 6, A	CPY ZP	CMP ZP	DEC ZP	BBS 6. ZP	INY	CMP IMM	DEX	SEB 6, A	GPY ABS	CMP ABS	DEC	SE 6, 2
1101	D	BNE	CMP IND, Y	_	BBC 6, A	· · _	CMP ZP, X	DEC ZP, X	BEC	CLD	CMP ABS Y	_	CLB 6, A	_	CMP ABS. X	DEC ABG. X	CL 6, 1
1110	E	CPX IMM	SBC	FST	BBS 7, A	CPX ZP	SBC ZP	INC ZP	885 7, 29	INX	SBC IMM	NOP	SEB 7, A	CPX ABS	SBC.	UNC ABS	SE 7, 2
1111	F	BEQ	SBC	-	BBC	-	SBC ZP, X	INC ZP, X	BBC	SED	SEC ABS, Y	_	CLB	[_ ·	SEC	INC ABS. X	CL 7, 2

3-byte instruction

2-byte instruction

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

Symbol Parameter Conditions Limits Unit -0.3~7 Supply voltage v V_{cc} -0.3~7 v Input voltage, R0~R3, CNVSS, RESET, XIN \mathbf{v}_{i} v Vi Input voltage, P30~P37 $-3.0 \sim V_{cc} + 0.3$ Input voltage, INT P00~P07, P10~P17, V, -0.3~13 v P20~P27, CNTR With respect to VSS; -0.3~7 ٧o Output voltage, R₀~R₃ v output transistors cut-off Output voltage, P30~P37, XOUTF, XOUTS, Ø, $-0.3 \sim V_{cc} + 0.3$ vo v R/W, CE, RESETOUT Output voltage, P00~P07, P10~P17, P20~P27 -0.3~13 v vo CNTR Pd Power dissipation T_a = 25℃ 1000 mW Topr Operating temperature -10~70 °C. -40~125 ĉ Tstg Storage temperature

ABSOLUTE MAXIMUM RATINGS

RECOMMENDED OPERATING CONDITIONS ($\tau_a = -10 \sim 70^{\circ}$ C, $V_{cc} = 5V \pm 10\%$, unless otherwise noted)

Currents and	Barrenster		Limits							
Symbol	Parameter	Min	Тур	Max	Unit					
Vcc	Supply voltage	4.5	5	5.5	v					
V _{ss}	Supply voltage		0		v					
ViH	High-level input voltage, P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ ~P3 ₇ , R ₀ ~R ₃ , CNV _{SS}	0.8V _{cc}		V _{cc}	v					
ViH	High-level input voltage, CNTR, INT	0.8V _{CC}		V _{CC}	v					
ViH	High-level input voltage, RESET	0.48∨ _{cc}		V _{cc}	v					
VIH	High-level input voltage, XIN	0.8V _{cc}		V _{cc}	v					
VIL	Low-level input voltage, $P0_0 \sim P0_7$, $P1_0 \sim P1_7$ $P2_0 \sim P2_7$, $P3_0 \sim P3_7$, $R_0 \sim R_3$, CNV_{SS}	0		0. 2V _{CC}	v					
VIL	Low-level input voltage, CNTR, INT	0		0.2V _{cc}	.V					
VIL	Low-level input voltage, RESET	0		0.12V _{cc}	v					
VIL	Low-level input voltage, X _{IN}	0		0.2V _{CC}	1, 1 V					
f()	Internal clock oscillation frequency			4	MHz					

Note 1 : A high-level input voltage for ports P0, P1, P2, CNTR and INT of up to +12V may be supplied.

ELECTRICAL CHARACTERISTICS ($v_{cc} = 5V \pm 10\%$, $v_{ss} = 0V$, $f_{(\phi)} = 4MHz$, unless otherwise noted)

0	B	—		Limits		11-14
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
V _{он}	High-level output voltage, P3 ₀ ~P3 ₇	$V_{CC} = 5V, T_a = 25^{\circ}C$ $I_{OH} = -10mA$	3	·		v
V _{он}	High-level output voltage, ø, R/W, CE, RESET _{OUT}	$V_{CC} = 5V, T_a = 25^{\circ}C$ $I_{OH} = -2.5mA$	3	· .		v
Vo∟	Low-level output voltage, $P0_0 \sim P0_7$, $P1_0 \sim P1_7$, $P2_0 \sim P2_7$ $R_0 \sim R_3$, CNTR	$V_{CC} = 5V$, $T_a = 25^{\circ}C$ $I_{OL} = 10mA$			2	v
Vol	Low-level output voltage, ø, R/W, CE, RESETOUT	$V_{CC} = 5V$, $T_a = 25^{\circ}C$ $I_{OL} = 5mA$		-	2	v
$V_{\tau+}-V_{\tau-}$	Hysteresis, CNTR, INT	$V_{CC} = 5V, T_a = 25^{\circ}C$	0.3		1	v
$v_{\tau+} - v_{\tau-}$	Hysteresis, RESET	$V_{CC} = 5V, T_a = 25^{\circ}C$		0.5	0.7	· V
$V_{\tau+}-V_{\tau-}$	Hysteresis, X _{IN}	$V_{cc} = 5V, T_a = 25^{\circ}C$	0.1		0.5	v
l _{iL}	Input leakage current, P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ INT, CNTR	$V_{CC} = 5V, T_a = 25^{\circ}C$ $0 \le V_I \le 12V$	-12	R.	12	μA
կլ	Input leakage current, P3 ₀ ~P3 ₇ , R ₀ ~R ₃ , CNV _{SS} , RESET, X _{IN}	$V_{CC} = 5V, T_a = 25^{\circ}C$ $0 \le V_1 \le 5V$	-5	. *	5	μA
lcc	Supply current	$P3_0 \sim P3_7$: V_{CC} , output pins open V_{SS} for all input $V_{CC} = 5V$ and output pins $T_a = 25^{\circ}C$ except $P3_0 \sim P3_7$		3	6	mA

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

TIMING REQUIREMENTS SINGLE CHIP MODE ($v_{cc} = 5v \pm 10\%$, $v_{ss} = 0v$, $\tau_a = 25^{\circ}$ C, $f_{(\phi)} = 4MHz$, unless otherwise noted)

Country of the	Decementary			Limits			
Symbol	Parameter	Test conditions	Min	Тур	Max	' Unit	
tsu (POD-#)	Port P0 input setup time		270			ns	
tsu (P1D-ø)	Port P1 input setup time		270			ns	
tsu (P2D-ø)	Port P2 input setup time		270			ns	
tsu (P3D-ø)	Port P3 input setup time	-	270	i.		ns	
tsu (RD-ø)	Port R input setup time		330			ns	
th (#-POD)	Port P0 input hold time		0			ns	
th (#-P1D)	Port P1 input hold time		0			ns	
th (#-P2D)	Port P2 input hold time		0			ns	
th (≁P3D)	Port P3 input hold time		0			ns	
th (#-RD)	Port R input hold time		. 0			ns	
t _c	External clock input cycle time		250			ns	
tw	External clock input pulse width		75			ns	
tr	External clock rise time				25	ns	
tf	External clock fall time				25	ns	

Symbol	Desemptor	Test conditions		Limits		Unit	
Symbol	Parameter	lest conditions	Min	Тур	Max	Unit	
td(p-POQ)	Port P0 data output delay time	Fig.16			230	ns	
td(#-P1Q)	Port P1 data output delay time	Fig.16			230	ns	
td(#-P2Q)	Port P2 data output delay time	Fig.16			230	ns	
td(p-P3Q)	Port P3 data output delay time	Fig.17			200	ns	
td(#RA)	Port R address output delay time	Fig.16			200	ns	
td(#-RAF)	Port R address output delay time	Fig.16	0		200	ns	
td(#-RQ)	Port R data output delay time	Fig.16			200	ns	
td(#-RQF)	Port R data output delay time	Fig.16			200	ns	
td(Ø-CE)	CE output delay time	Fig.18			200	ns	
td(#RW)	R/W output delay time	Fig.18			100	ns	

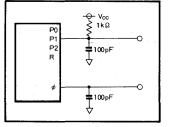
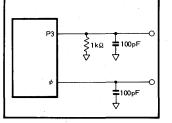
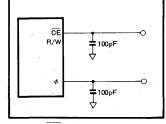
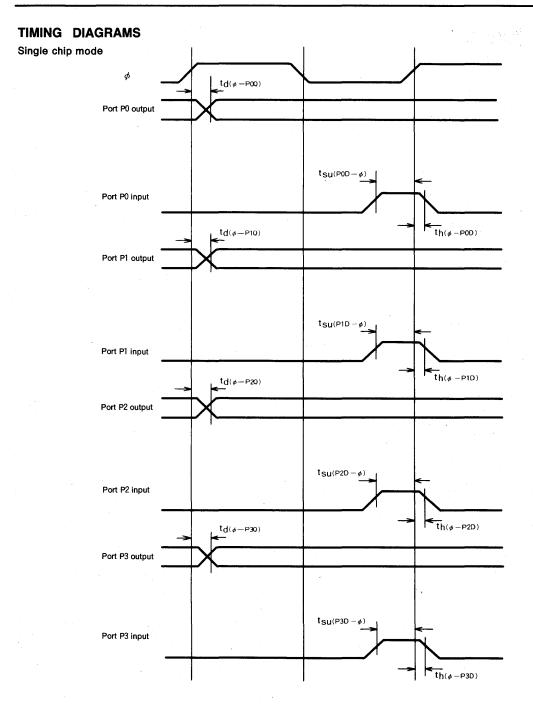
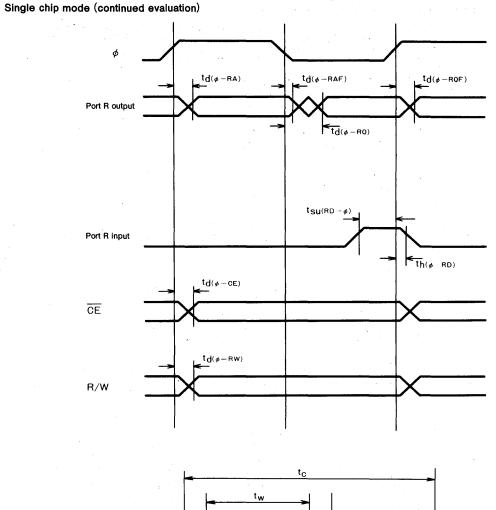




Fig.16 Port P0~P2, R test circuit





SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

MELPS 8-48 MICROCOMPUTERS

.

MITSUBISHI MICROCOMPUTERS

MELPS 8-48 MICROCOMPUTERS

FUNCTION OF MELPS 8-48 MICROCOMPUTERS

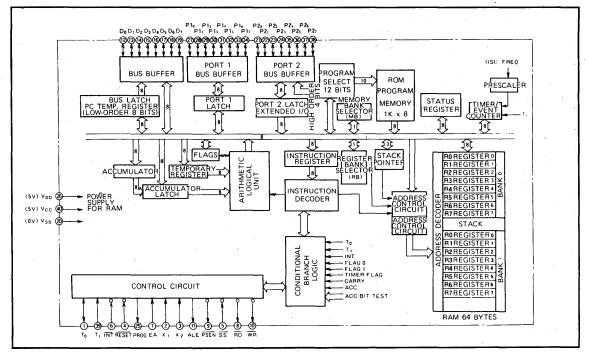
DESCRIPTION

The MELPS8-48 LSI is a family of cost-efficient single-chip microcomputers in which all of such necessary components as the CPU, ROM, RAM, input/output ports, timer etc. are integrated. The MELPS8-48 family consists of the following twelve members of different kinds and ROM/RAM capacities.

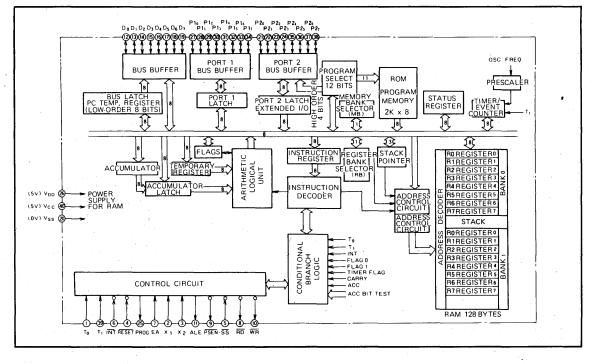
Each chip is provided with a timer and interrupt input and its I/O capabilities are simply expanded by use of I/O expanding chip M5L8243P or M5M82C43P (CMOS version), in addition the program memory can also be expanded to 4K bytes.

Each of M5L8048-XXXP, M5L8049-XXXP, M5L8049H-XXXP, M5M8050H-XXXP, M5M8050L-XXXP and M5M80C49-XXXP (CMOS version) has a built-in masked ROM and is suited for mass produciton. M5L8035LP has functions equivalent to M5L8048-XXXP, M5L8039P to M5L8049-XXXP, M5L8039HLP to M5L8049H-XXXP, M5M8040HP to M5M8050H-XXXP, M5M8040LP to M5M8050L-XXXP and M5M80C39P-6 to M5M80C49-XXXP where the program memory (ROM) is set externally.

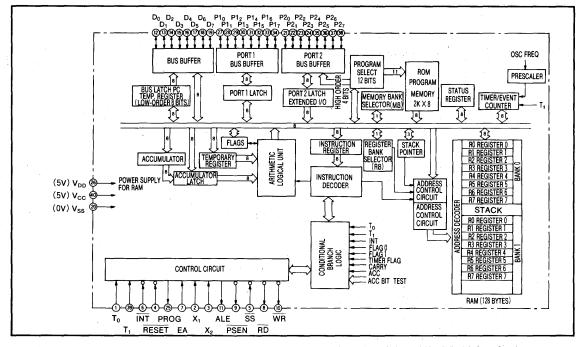
The family is provided with the MELPS8-48 cross assembler as a support for software development.

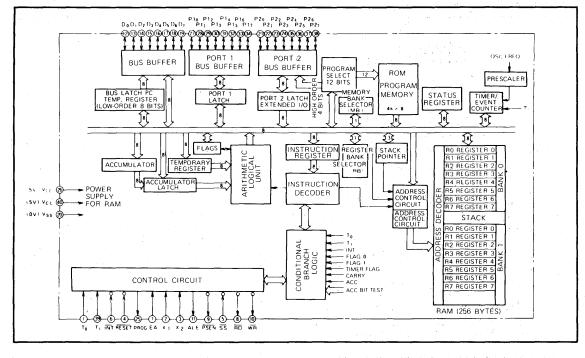

	Input clock	Memory	and input/output	capacity	
Symbol	(MHz)	ROM (Bytes)	RAM (Bytes)	I/O (Port)	Structure
M5L8048-XXXP	6	1K	64	27	ED NMOS
M5L8035LP	6	External	64	27	ED NMOS
M5L8049-XXXP-6	6	2К	128	27	ED NMOS
M5L8049-XXXP-8	8	2K	128	27	ED NMOS
M5L8049-XXXP	8	2К	128	27	ED NMOS
M5L8039P-6	6	External	128	27	ED NMOS
M5L8039P-8	8	External	128	27	ED NMOS
M5L8039P-11	11	External	128	27	ED NMOS
M5L8049H-XXXP	11	2К	128	27	ED NMOS
M5L8039HLP	11	External	128	27	ED NMOS
M5M8050H-XXXP	, 11	4K	256	27	ED NMOS
M5M8040HP	11	External	256	27	ED NMOS
M5M8050L-XXXP	6	4K	256	27	ED NMOS
M5M8040L-XXXP	6	External	256	27	ED NMOS
M5M80C49-XXXP	6	2K	128	27	СМОЗ
M5M80C39P-6	6	External	128	27	CMOS

MELPS 8-48 single-chip microcomputer family



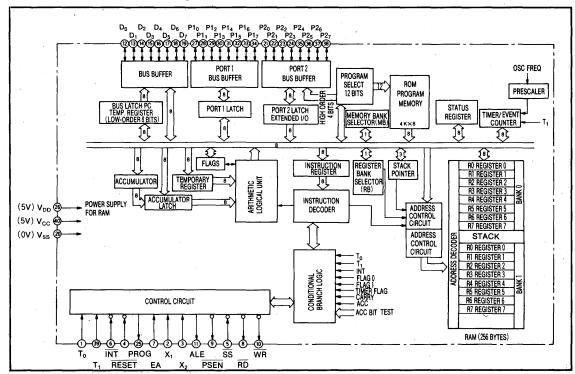
FUNCTION OF MELPS 8-48 MICROCOMPUTERS


M5L8049-XXXP[,] Block Diagram



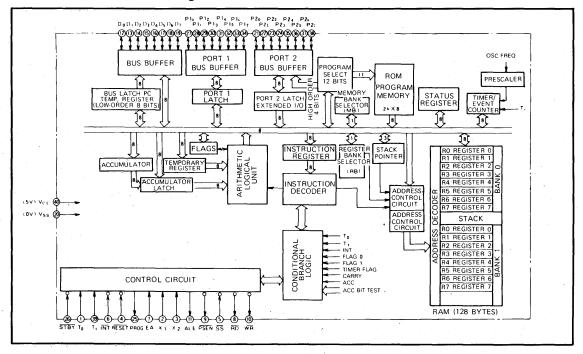
FUNCTION OF MELPS 8-48 MICROCOMPUTERS

M5M8050H-XXXP Block Diagram



4

MITSUBISHI MICROCOMPUTERS


MELPS 8-48 MICROCOMPUTERS

FUNCTION OF MELPS 8-48 MICROCOMPUTERS

M5M8050L-XXXP Block Diagram

M5M80C49-XXXP Block Diagram

FUNCTION OF MELPS 8-48 MICROCOMPUTERS

BASIC FUNCTION BLOCKS Program Memory (ROM)

The M5L8048-XXXP contain 1024 bytes of ROM. The M5L8049-XXXP contains 2048 bytes of ROM. The program for the users application is stored in this ROM. Addresses 0, 3, 7 of the ROM are reserved for special functions. Table 1 shows the meaning and function of these three special addresses.

Table 1 Reserved, defined addresses and their meanings and functions

Address	Meaning and function
0	The first instruction executed after a system reset.
3	The first instruction executed after an external interrupt is accepted.
7	The first instruction executed after a timer interrupt is accepted.

The ROM can be used to store constants and other 8-bit fixed data in addition to the program. Instructions such as MOVP A, @A and MOVP3 A, @A can be used to access the constants and data. The data could be in the form of tables, and can be easily looked up.

Data Memory (RAM)

The M5L8048-XXXP and M5L8748S contain 64 bytes of RAM. The M5L8049-XXXP contains 128 bytes of RAM. The RAM is used for data storage and manipulation and is divided into sections for more efficient processing. Addresses $0\sim7$ and $24\sim31$ form two banks of general purpose registers that can be directly addressed. Addresses $0\sim7$ compose bank 0 and are numbered R $0\sim$ R7. Addresses $24\sim31$ compose bank 1 and are also numbered R $0\sim$ R7. Only one bank is active at a time. The instructions SEL RB0 and SEL RB1 are used to select the working bank. Fig. 1 shows the division of the RAM and its mapping.

Addresses 8~23 compose an 8-level program counter stack. The details for using the stack will be found in the "Program Counter and Stack" section. Please refer to that section for details.

The remaining section, addresses 32 and above, must be accessed indirectly using the general-purpose registers R0 or R1. Of course all addresses can be indirectly addressed using the general-purpose registers R0 and R1.

A good practice to simplify programming is to reserve general-purpose register bank 0 for use of the main program and register bank 1 for interrupt programs. For example if register bank 0 (addressed $0\sim7$) is reserved for processing data by the main program, when an interrupt is accepted the first instruction would be to switch the working registers from bank 0 to bank 1. This would save the data of the main program (addresses $0\sim7$). The interrupt program can then freely use register bank1 (addresses $24\sim31$) without destroying or altering data of the main program. When the interrupt processing is complete and control is returned to the main program by the RETR instruction, register bank 0 (in this example) is automatically restored as the working register bank at the same time the main program counter is restored.

Addresses $0\sim31$ have special functions, but when not all of the registers are required, the ones not needed can be used for general storage. This includes both banks of general-purpose registers and the stack.

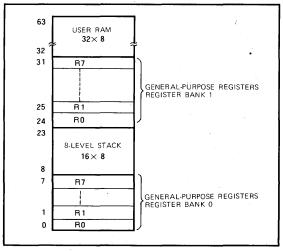


Fig. 4 Data memory (RAM)

PROGRAM COUNTER (PC) AND STACK (SK)

The MELPS 8-48 program counter is composed of a 12-bit binary counter as shown in Fig. 5. The low-order 10 bits can address 1024 bytes of memory. When the high-order 2 bits are zero, the internal, on chip memory is accessed. The high-order 2 bits can have the values $1\sim3$, which allows the user to add up to three banks of 1024 bytes. The program counter can address up to 4096 bytes of memory.

Addresses 8~23 of RAM are used for the stack (program counter stack). The stack provides an easy and automatic means of saving the program counter and other control information when an interrupt is accepted or a subroutine is called. For example, if control is with the main program and an interrupt is accepted, the contents of the 12-bit PC (program counter) is saved in the top of the stack, so it can be restored when control is returned to the main program. In addition to the PC, the high-order 4 bits of the PSW (program status word) are saved in the stack and restored along with the PC. A total of 16 bits are saved, the 12-bit

4

FUNCTION OF MELPS 8-48 MICROCOMPUTERS

PC and 4 bits of the PSW. A 3-bit stack pointer is associated with the stack. This pointer is a part of the PSW and indicates the top of the stack. The stack pointer indicates the next empty location (top of the stack), in case of an empty stack the top of the stack is the bottom of the stack. The data memory addresses associated with the stack pointer along with the data storage sequence are shown in Fig. 6.

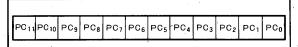


Fig. 5 Program counter

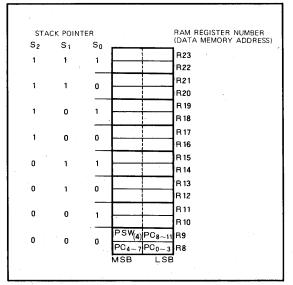


Fig. 6 Relation between the program counter stack and the stack pointer

PROGRAM STATUS WORD (PSW)

The PSW (program status word) is stored in 8 bits of register storage. The configuration of the PSW is shown in Fig. 7. The high-order 4 bits of the PSW are stored in the stack, along with the PC, when an interrupt is accepted or a subroutine call executed. When control is returned to the main program by RETR both the PC and the high-order 4 bits of PSW are restored. When control is returned by RET only the PC is restored, so care must be taken to assure that the contents of the PSW was not unintentionally changed.

The order and meaning of the 8 bits of the PSW are shown below.

Bit $0 \sim 2$: Stack pointer (S_0, S_1, S_2)

- Bit 3: Unused (always 1)
- Bit 4: Working register bank indicator
 - 0 = Bank 0
 - 1 = Bank 1
- Bit 5: Flag 0 (value is set by the user and can be tested)
- Bit 6: Auxiliary carry (AC) (it is set/reset by instructions ADD and ADC and used by instruction DA A).
- Bit 7: Carry bit (C) (indicates an overflow after execution)

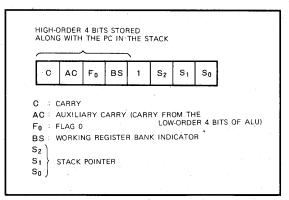


Fig. 7 Program status word

4-8

FUNCTION OF MELPS 8-48 MICROCOMPUTERS

I/O PORTS

The MELPS 8-48 has three 8-bit ports, which are called data bus, port 1 and port 2.

Port 1 and Port 2

Ports 1 and 2 and both 8-bit ports with identical properties. The output data of these ports are retained and do not change until another output is loaded into them. When used as inputs the input data is not retained so the input signals must be maintained until an input instruction is executed and completed.

Ports 1 and 2 so-called quasi-bidirectional ports have a special circuit configuration to accomplish this. The special circuit is shown in Fig. 8. All terminals of ports 1 and 2 can be used for input or output.

Fig. 8 I/O ports 1 and 2 circuit

Internal on chip pull-up resistors are provided for all the ports. Through the use of pull-up resistors, TTL standard high-level or low-level signals can be supplied. Therefore each terminal can be used for both input and output. To shorten switching time from low-level to high-level, when 1s are output, a device of about $5k\Omega$ or lower is inserted for a short time (about 500ns when using a 6MHz crystal oscillator).

A port used for input must output all 1s before it reads the data from the input terminal. After resetting, a port is set to an input port and remains in this state, therefore it is not necessary to output all 1s if it is to be used for input. In short a port being used for output must output 1s before it can be used for input.

The individual terminals of quasi-bidirectional ports can be used for input or output. Therefore some terminals can be in the input mode while the remaining terminals of a port are in the output mode. This capability of ports 1 and 2 is convenient for inputting or outputting 1-bit or data with few bits. The logical instructions ANL and ORL can easily be used to manipulate the input or output of these ports.

Data Bus (Port 0)

The data bus is an 8-bit bidirectional port, which is used with I/O strobed signals. When the data bus is used for output the output data is latched, but if it is used for input the data is not latched. Unlike ports 1 and 2, which can have individual terminals in the input or output mode, all terminals of the data bus are in the input or output mode.

When the data bus is used as a static port the OUTL instruction can be used to output data and the INS instruction to input data. Strobe pulse \overline{RD} is generated while the INS instruction is being executed or \overline{WR} while OUTL is being executed.

The data bus read/write using MOVX instructions, but then the data bus is a bidirectional port. To write into the data bus a \overline{WR} signal is generated and the data is valid when \overline{WR} goes high. When reading from the data bus, an \overline{RD} signal is generated. The input levels must be maintained until \overline{RD} goes high. When the data bus is not reading/writing, it is in the high-impedance state.

CONDITIONAL JUMPS USING TERMINALS T_{0} , T_{1} and \overline{INT}

Conditional jump instructions are used to alter program depending on internal and external conditions (states). Details of the jump instructions for the MELPS 8-48 can be found in the section on machine instructions.

The input signal status of T_0 , T_1 and \overline{INT} can be checked by the conditional jump instructions. These input terminals, through conditional jump instructions such as JTO and JNTO, can be used to control a program. Programs and processing time can be reduced by being able to test data in input terminal rather than reading the data into a register and then testing it in the register.

Terminal T_0 , T_1 and \overline{INT} have other functions and uses that are not related to conditional jump instructions. The details of these other functions and uses can be found in the section on terminal functions.

MELPS 8-48 MICROCOMPUTERS

FUNCTION OF MELPS 8-48 MICROCOMPUTERS

INTERRUPT

The CPU recognizes an external interrupt by a low-level state at the INT terminal. A "Wired-OR" connection can be used for checking multiple interrupts.

The INT terminal is tested for an interrupt request at the ALE signal output of every machine cycle. When an interrupt is recognized and accepted, control is transferred to the interrupt handling program. This is accomplished by an unconditional jump to address 3 of program memory, which is the start of the interrupt handling program, at the same time the program counter and 4 high-order bits of PSW are automatically moved to the top of the stack.

The interrupt level is one, so the next interrupt cannot be accepted until the current interrupt processing has been completed. The RETR instruction terminates the interrupt processing. That is to say, the next interrupt can not be accepted until the RETR instruction is executed. The next interrupt can be accepted at the start of the second cycle of the RETR instruction (2-cycle instruction). Time/event counter overflow which causes an interupt request also will not be accepted.

After the processing for an interrupt is completed control is returned to the main program. This is accomplished by executing RETR which restores the program counter and PSW automatical and checks $\overline{\text{INT}}$ and the time/event counter overflow for an interrupt request. If there is an interrupt request, the control will not be returned to the main program but will be transferred to the interrupt handling program.

An external interrupt has a higher priority than a timer interrupt. This means that, if an external and timer interrupt request are generated at the same time, the external interrupt has the priority and will be accepted first.

When a second level of external interrupt is required, the timer interrupt, if not being used, can provide this. The procedure for this is to first disable the timer interrupt, set the timer/event counter to FF_{16} and put the CPU in the event counter mode. After this has been done, if T_1 input is changed to low-level from high-level, an interrupt is generated in address 7.

Terminal \overline{INT} can also be tested using a conditional jump instruction. For more details on this procedure, check the "Conditional Jumps Using Terminals T_0 , T_1 and \overline{INT} " section.

TIMER/EVENT COUNTER

The timer/event counter for the MELPS 8-48 is an 8-bit counter, that is used to measure time delays or count external events. The same counter is used to measure time delays or count external events by simply changing the input to the counter.

The counter can be initialized by executing an MOV T, A instruction. The value of the counter can be read for checking by executing an MOV A, T instruction. Reset will stop the counting but the counter is not cleared, so counting can be resumed.

The largest number the counter can contain is FF_{16} . If it is incremented by 1 when it contains FF_{16} , the counter will be reset to 0, the overflow flag is set and a timer interrupt request is generated.

The conditional jump instruction JTF can be used to test the overflow flag. Care must be used in executing the JTF instruction because the overflow flag is cleared (reset) when executed. When a timer interrupt is accepted, the control is transferred to address 7 of program memory.

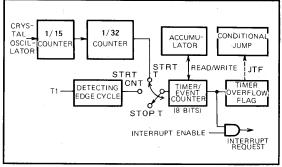
When both a timer and external interrupt request are generated at the same time, the external interrupt is given priority and will be accepted first by automatically jumping to address 3 of program memory. The timer interrupt request is kept and will be processed when the external interrupt has been completed and a PETR is executed. A latched timer interrupt request is cancelled when a timer interrupt request is generated. A timer interrupt request can be disabled by executing a DIS TCNTI instruction.

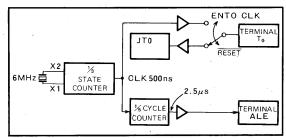
The STRT CNT instruction is used to change the counter to an event counter. Then terminal T_1 signal becomes the input to the event counter and an event is counted each full cycle (low-high-low one event). The maximum rate that can be counted is one time in 3 machine cycles (7.5 μ s when using 6MHz crystal). The high-level at T_1 must be maintained at least 1/5 of the cycle time (500ns when using 6MHz crystal).

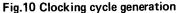
FUNCTION OF MELPS 8-48 MICROCOMPUTERS

The STRT T instruction is used to change the counter to a timer. The internal clock signal becomes the input to the timer. The internal clock is 1/32 of 400kHz (when using 6MHz crystal) or 12.5kHz. The timer is therefore counted up every 80μ s. Fig. 9 shows the timer/event counter.

The counter can be initialized by executing an MOV T, A instruction. The timer can be used to measure $80\mu s^{\sim}$ 20ms in multiples of 80 μ s. When it is necessary to measure over 20ms (maximum count 256x80 μ s) of delay time the number of overflows, one every 20ms, can be counted by the program. To measure times of less than 80 μ s; external clock pulses can be input through T₁ while the counter is in the event counter mode. Every third (or more) ALE signal can be used instead of an external clock.




Fig. 9 Timer/event counter


MELPS 8-48 CYCLE TIMING

The output of the state counter is 1/3 the input frequency from the oscillator. When a 6MHz crystal is used for input, the output would be 2MHz (500ns). A CLK signal is generated every 500ns (one state cycle) which is used for the demarcation of each machine state. The instruction ENTO CLK will output the CLK signal through terminal T_0 . The input of the cycle counter is CLK (state cycle) and the output is an ALE signal which is generated every 5 state cycles.

Fig. 11 Shows the relationship between clock and generated cycles.

One machine cycle contains 5 states with a CLK signal for demarcation of each state. The MELPS 8-48 instructions are executed in one machine cycle or two machine cycles. An instruction cycle can be one or two machine cycles as shown in Fig.12.

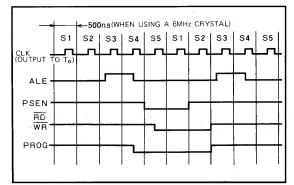
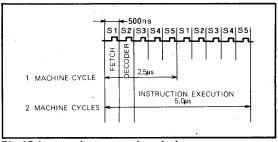
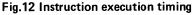




Fig.11 Clock and generated cycle signals

FUNCTION OF MELPS 8-48 MICROCOMPUTERS

RESET

The reset terminal is for resetting the CPU. A Schmitt trigger circuit along with a pull-up register are connected to it on the chip. A reset can easily be generated by attaching a 1μ F as capacitor as shown in Fig. 13. An external reset pulse applied at **RESET** must remain at low-level for at least 50ms after power has been turned on and reached its normal level.

The reset function causes the following initialization within the CPU.

- 1. Program counter is reset to 0.
- 2. Stack pointer is reset to 0.
- 3. Register bank is reset to 0.
- 4. Memory bank is reset to 0.
- 5. Data bus is cleared to high-impedance state.
- 6. Ports 1 and 2 are reset to input mode.
- 7. External and timer interrupts are reset to disable state.
- 8. Timer is stopped.
- 9. Timer overflow flag is cleared.
- 10. Flags F_0 and F_1 are cleared.
- 11. Clock output for terminal T_0 is disabled.
- Note 1: On the M5L8748S the <u>RESET</u> terminal, in addition to being used for the reset function, is also used when reading and writing data in the EPROM on the chip. Details on this will be found in the section on reading and writing data in the M5L8748S.

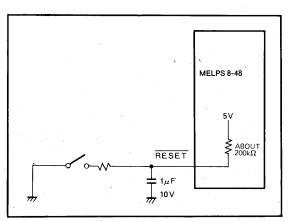
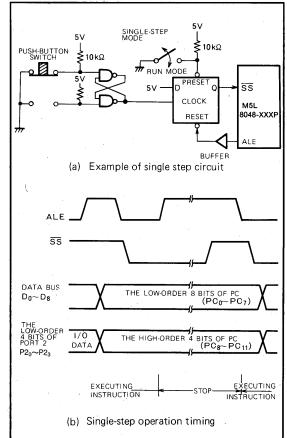



Fig. 13 Example of a reset circuit

SINGLE-STEP OPERATION

The terminal \overline{SS} on the MELPS 8-48 is provided to facilitate single-step operation. In single-step operation, the CPU stops after the execution of each instruction is completed and the memory address (12 bits) of the next instruction to be fetched is output through the data bus (8 bits) plus the low-order 4 bits of port 2 ($P_{20} \sim P_{23}$). The user can use this to trace the flow of this program instruction by instruction and will find this an aid in program debugging. Single-step operation is controlled through \overline{SS} and ALE as shown in Fig. 14.

Fig. 14 Single-step operation circuit and timing

A type D flip-flop with preset and reset terminals, as shown in Fig. 11, is used to generate the signal for \overline{SS} . When the preset terminal goes to low-level, \overline{SS} goes to high-level, which puts the CPU in RUN mode. When the preset terminal is grounded it goes to high-level. Then \overline{SS} goes to lowlevel. When \overline{SS} goes to low-level, the CPU stops. Then when the push-button switch is pushed, a pulse is sent to the clock terminal of the type D flip-flop which turns \overline{SS} to high-level. When \overline{SS} goes to high-level the CPU fetches the

FUNCTION OF MELPS 8-48 MICROCOMPUTERS

next instruction and begins to execute it, but then an ALE signal is sent to the reset terminal of the type D flip-flop which turns \overline{SS} to low-level. The CPU again stops as soon as execution of the current instruction is completed. When the push-button switch is again pushed, the cycle is repeated and the CPU is in single-step operation as shown in Fig. 12. While the CPU is stopped in single-step operation, the data bus and the low-order 4 bits of port 2 are used to output the memory address of the next instruction to be fetched. This interferes with input and output, but essential input/output can be latched by using the rising edge of ALE as clock.

Central Processing Unit (CPU)

Central Processing Unit (CPU) is composed of an 8-bit parallel arithmetic unit, accumulator, flag flip-flop and instruction decoder. The 8-bit parallel arithmetic unit has circuitry to perform the four basic arithmetic operations (plus, minus, multiply and divide) as well as logical operations such as AND and OR. The flag flip-flop is used to indicate status such as carry and zero. The accumulator contains one of the operations and the result is usually retained in the accumulator.

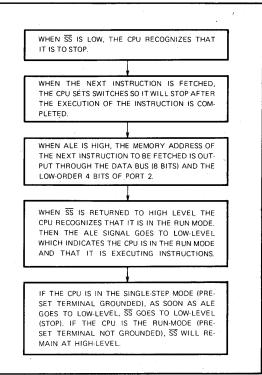


Fig. 15 CPU operation in single-step mode

4

MITSUBISHI MICROCOMPUTERS

MELPS 8-48 MICROCOMPUTERS

FUNCTION OF MELPS 8-48 MICROCOMPUTERS

MACHINE INSTRUCTIONS

Iter	n	Instruction code			<i>"</i>		Effected carry			
	Mnemonic	D ₇ D ₆ D ₅ D ₄ D ₃ D ₂ D ₁ D ₀	Hexa-	Bytes	Cycles	Function		AC	Note	Description
Type	MOV A, #n	0 0 1 0 0 0 1 1 n ₇ n ₆ n ₅ n ₄ n ₃ n ₂ n ₁ n ₀	decimal 2 3 n	2	• 2	(A)+⊸n			z	Transfers data n to register A.
	MOV A, PSW	1 1 0 0 0 1 1 1	C 7	1	1	(A)(PSW)				Transfers the contents of the program status word to register A.
	MOV A, Rr	1 1 1 1 1 1 ¹ ^{2[†]1[†]0}	F 8 + r	1	1	$(A) \leftarrow (Rr)$ r = 0 ~ 7				Transfers the contents of register R_{r} to register A
ŀ	MOV A, @Rr	1111000r ₀	F 0 + r	1	1	$(A) \leftarrow (M(Rr))$ r=0~1				Transfers the contents of memory location, of the current page, whose address is in register $R_{\rm r}$ to register A.
	MOV PSW, A	1 1 0 1 0 1 1 1	D7	1	1	$(PSW) \leftarrow (A)$ $(C) \leftarrow (A_7), (AC) \leftarrow (A_6)$	0	0		Transfers the contents of register A to the program status word.
	MOV Rr, A	1010 1r ₂ r ₁ r ₀	A 8 + r	1	1	$(\mathbf{Rr}) \leftarrow (\mathbf{A}) \\ \mathbf{r} = 0 \sim 7$				Transfers the contents of register A to register R_{r}
	MOV Rr, ♯n	1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	88 + r n	2	2	(Rr) ← n r=0~7				Transfers data n to register R _r .
Transfer	MOV @Rr, A	1010 000r ₀	A 0 + r	1	1	(M(Rr))←(A) r=0~1				Transfers the contents of register A to memory location, of the current page, whose address is in register R_r .
T _a	MOV @Rr, #n	1011000r ₀ n ₇ n ₅ n ₅ n ₄ n ₃ n ₂ n ₁ n ₀	B 0 + r n	2	2	(M(Rr))⊷n r=0∼1				Transfers data n to memory location, of the current page, whose address is in register $R_{\rm r}, \label{eq:rescaled}$
	MOVP A, @A	1010 0011	A 3	1	2	(A)←(M(A))́				Transfers the data of memory location, of the current page, whose address is in register A to register A.
	MOVP3 A, @A	11100011	E 3	1	2	(A)←(M(page 3, A))				Transfers the data of memory location, of page 3, whose address is in register A to register A.
	MOVX @Rr, A	1001000r ₀	90 + r	1	2	(Mx(Rr))←(A) r=0~1				Transfers the contents of register A to memory location, of the current page, whose address is in register ${\sf R}_r.$
	MOVX A, @Rr	1000 000r ₀	80 + r	1	2	(A)←(Mx(Rr)) r=0~1				Transfers the contents of memory location, of the current page, whose address is in register R_r to register A.
	XCH A, Rr	0010 1r ₂ r ₁ r ₀	28 + r	1	1	$ (A) \longleftrightarrow (Rr) r = 0 \sim 7 $				Exchanges the contents of register $R_{\rm r}$ with the contents of register A.
	XCH A, @Rr	0010000r ₀	20 + r	1	1	$(A) \longleftrightarrow (M(Rr))$ r=0~1				Exchanges the contents of memory location, of the current page, whose address is in register R_r with the contents of register A.
	XCHD A, @Rr	0011000r ₀	30 + r	1	1	$(A_0 \sim A_3) \longleftrightarrow (M(Rr_0 \sim Rr_3))$ r=0~1				Exchanges the contents of the low-order four bits of register A with the low-order four bits of memory location, of the current page, whose address is in register R_r .
	ADD A, #n	00000011 n ₇ n ₆ n ₅ n ₄ n ₃ n ₂ n ₁ n ₀	03 n	2	2	(A) ← (A) + n	0	0	1	Adds data n to the contents of register A and sets the carry flags to 1 if there is an overflow otherwise resets the carry flags to 0. The result is stored in register A.
	ADD A, Rr	0 1 1 0 1 r ₂ r ₁ r ₀	68 + r	1	1	$(A) \leftarrow (A) + (Rr)$ r=0~7	0	0	1	Adds the contents of register R _r to the con- tents of register A and sets the carry flags to 1 if there is an overflow otherwise resets, the carry flags to 0. The result is stored in register A. Adds the contents of register A and the con-
hmetic	ADD A, «Rr	0110000r ₀	60 + r	1	1	$(A) \leftarrow (A) + (M(Rr))$ r=0~1	0	0	.1	tents of memory location, of the current page, whose address is in register A and sets the carry flags to 1 if there is an overflow otherwise resets the carry flags to 0. The result is stored in register
Arithme	ADDC A, #n	0001 0011 n ₇ n ₆ n ₅ n ₄ n ₃ n ₂ n ₁ n ₀	13 n	2	2	$(A) \leftarrow (A) + n + (C)$	0	0	1	Adds the carry and data n to the contents of register A and sets the carry flags to 1 if there is an overflow otherwise resets the carry flags to 0. The result is stored in regis- ter A.
	ADDC A, Rr	0111 1 r ₂ r ₁ r ₀	78 + r	1	1	$(A) \leftarrow (A) + (Rr) + (C)$ r=0~7	0	0	1	Adds the carry and the contents of register R_r to the contents of register A and sets the carry flags to 1 if there is an overflow otherwise resets the carry flags to 0. The result is stored in register A.
	ADDC A, @Rr	0111000r ₀	70 + r	1	1	$(A) \leftarrow (A) + (M(R_r)) + (C)$ r = 0 ~ 1	0	0	1	Adds the carry and the contents of memory location, of the current page, whose address is in register R, to the contents of register A and sets the carry flags to 1 if there is an overflow otherwise resets the carry flags to 0. The result is stored in register A.

FUNCTION OF MELPS 8-48 MICROCOMPUTERS

ltem		Instruction code		tes	sa		E	ffect carry	ed	<u>ــــــــــــــــــــــــــــــــــــ</u>
Type	Mnemonic	D ₇ D ₆ D ₅ D ₄ D ₃ D ₂ D ₁ D ₀	Hexa- decimal	Byte	Cycles	Function	c	AC	Note	Description
	ANL A, ≭n	01010011 n ₇ n ₆ n ₅ n ₄ n ₃ n ₂ n ₁ n ₀	53 n	2	2	(A) ← (A) ∧ n				The logical product of the contents of regis- ter A and data n, is stored in register A.
	ANL A, Rr	0101 1r ₂ r ₁ r ₀	58 + r	1	1	$(A) \leftarrow (A) \land (Rr)$ r = 0 ~ 7				The logical product of the contents of regis- ter A and the contents of register R_r , is stored in register A.
	ANL A, @Rr	0101 000r ₀	50 + r	1	1	$(A) \leftarrow (A) \land (M(R_{\Gamma}))$ r = 0~1				The logical product of the contents of register A and the contents of memory location, of the current page, whose address is in register B_r , is stored in register A.
	ORL A, #n	01000011 n ₇ n ₆ n ₅ n ₄ n ₃ n ₂ n ₁ n ₀	4 3 n	2	2	(A) ← (A) Vn				The logical sum of the contents of register A and data n, is stored in register A.
	ORL A, Rr	0 1 0 0 1 r ₂ r ₁ r ₀	4 8 + r	1	1	(A) ← (A) ∨ (Rr) r=0~7				The logical sum of the contents of register A and the contents of register R_r is stored in register A.
	ORL A, @Rr	0100 000r ₀	40 + r	1	1	$(A) \leftarrow (A) \lor (M(Rr))$ r = 0 ~ 1			-	The logical sum of the contents of register A and the contents of memory location, of the current page, whose address is in register R_r , is stored in register A.
	XRL A, ≢n	1 1 0 1 0 0 1 1 n ₇ n ₆ n ₅ n ₄ n ₃ n ₂ n ₁ n ₀	D 3 n	2	2	(A) ← (A) ∀ n				The exclusive OR of the contents of register A and data n, is stored in register A.
Arithmetic	XRL A, Rr	1 1 0 1 1 r ₂ r ₁ r ₀	D 8 + r	1	1	$(A) \leftarrow (A) \forall (Rr)$ r = 1 ~ 7				The exclusive OR of the contents of register A and the contents of register R_r is stored in register A.
Arith	XRL A, @Rr	1101 000 r _o	D 0 + r	1	1	$(A) \leftarrow (A) \forall (M(Rr))$ r=0~1				The exclusive OR of the contents of register A and the contents of memory location, of the current page, whose address is in register $R_{\rm r}$, is stored in register A.
	INC A	00010111	17	1	1	(A) ← (A) + 1				Increments the contents of register A by 1. The result is stored in register A, and the car- ries are unchanged.
	DEC A	00000111	07	1	1	$(A) \leftarrow (A) - 1$				Decrements the contents of register A by 1. The result is stored in register A, and the car- ries are unchanged.
	CLR A	00100111	27	1	1	(A) ← 0				Clears the contents of register A, resets to 0.
	CPL A	00110111	37	1	1	$(\overline{A}) \rightarrow (A)$				Forms 1's complement of register A, and stores it in register A.
	DA A	0101 0111	57	1	- 1	(A) ← (A) 10 Hexadecimal	0	0	1	The contents of register A is converted to binary coded decimal notion, and it is stored in register A. If the contents of register A are more than 95 the carry flags are set to 1 otherwise they are reset to 0.
	SWAP A	01000111	47	1	1	$(A_4 \sim A_7) \longleftrightarrow (A_0 \sim A_3)$				Exchanges the contents of bits 0~3 of regis- ter A with the contents of bits 4~7 of regis- ter A.
	RL A	1 1 1 0 0 1 1 1	E 7	1	1	$(A_{n+1}) \leftarrow (A_n)$ $(A_0) \leftarrow (A_7)$ $n = 0 \sim 6$		·.		Shifts the contents of register A left one bit. A_7 the MSB is rotated to A_0 the LSB.
	RLC A	1 1 1 1 0 1 1 1	F 7	1	1	$\begin{array}{l} (A_{n+1}) \leftarrow (A_{n}) \\ (A_{0}) \leftarrow (C) \\ (C) \leftarrow (A_{7}) n = 0 \sim 6 \end{array}$	0			Shifts the contents of register A left one bit. A ₇ the MSB is shifted to the carry flag and the carry flag is shifted to A_0 the LSB.
	RR A	01110111	77	1	1	$(A_n) \leftarrow (A_{n+1})$ $(A_2) \leftarrow (A_0) n = 0 \sim 6$				Shifts the contents of register A right one bit. A_0 the LSB is rotated to A_7 the MSB.
	RRC A	01100111	67	1	1	$\begin{array}{l} (A_n) \leftarrow (A_{n+1}) \\ (A_2) \leftarrow (C) \\ (C) \leftarrow (A_0) n = 0 \sim 6 \end{array}$	0			Shifts the contents of register A right one bit. A_0 the LSB is shifted to the carry flag and the carry flag is shifted to A_7 the MSB.
metic	INC Rr	0001 1 r ₂ r ₁ r ₀	18 + r	1	1	$(\mathbf{Rr}) \leftarrow (\mathbf{Rr}) + 1$ r=0~7				Increments the contents of register R_r by 1. The result is stored in register R_r and the carries are unchanged.
Register arithmetic	INC @Rr	0001000r ₀	10 + r	1	1	$(M(Rr)) \leftarrow (M(Rr)) + 1$ r = 0 ~ 1			<u>``</u> .	Increments the contents of the memory location, of the current page, whose address is in register R_r by 1. Register R_r uses bit $0 \sim 5$.
Regi	DEC Rr	1 1 0 0 1 r ₂ r ₁ r ₀	C 8 +	1	1	$(\mathbf{Rr}) \leftarrow (\mathbf{Rr}) - 1$ r = 0 ~ 7				Decrements the contents of register R_r by 1. The result is stored in register R_r and the carries are unchanged.

FUNCTION OF MELPS 8-48 MICROCOMPUTERS

		· · · · · · · · · · · · · · · · · · ·								· · · · ·
Item	Mnemonic	Instruction code		Bytes	Cycles	Function		ffect carry		Description
Type	. Whenonic	D ₇ D ₆ D ₅ D ₄ D ₃ D ₂ D ₁ D ₀	Hexa- decimal	Βy	ð	T UNCTON	с	AC	Note	
	JBb m	b ₇ b ₆ b ₅ 1 0 0 1 0 m ₇ m ₆ m ₅ m ₄ m ₃ m ₂ m ₁ m ₀	1 2 + b×2 m	2	2	$(A_b) = 1$ then $(PC_0 - PC_7) \leftarrow m$ $(A_b) = 0$ then $(PC) \leftarrow (PC) + 2$ $b_7b_6b_5 = 0 \sim 7$				Jumps to address m of the current page when bit b of register A is 1. Executes the next instruction when bit b of register A is 0.
	JTF m	00010110 m ₇ m ₈ m ₅ m ₄ m ₃ m ₂ m ₁ m ₀	16 m	2	2	$(TF) = 1$ then $(PC_0 \sim PC_7) \leftarrow m$ $(TF) = 0$ then $(PC) \leftarrow (PC) + 2$			•	Jumps to address m of the current page when the overflow flag of the timer is 1 otherwise the next instruction is executed. Flag is cleared after executing.
	JNI m	1 0 0 0 0 1 1 0 m ₇ m ₆ m ₅ m ₄ m ₃ m ₂ m ₁ m ₀	8 6 m	2	2	$(PC_0 \sim PC_7) \leftarrow m \text{ when (INT)} = 0$ $(PC) \leftarrow (PC) + 2 \text{ when (INT)} = 1$				This instruction causes a jump to the address indicated by the second byte if the external interrupt pin INT is low.
	JMP m	m ₁₀ m ₉ m ₈ 0 0 1 0 0 m ₇ m ₆ m ₅ m ₄ m ₃ m ₂ m ₁ m ₀	04 + (m ₈ ~m ₁₀) ×2 m	2	2	$(PC_8 \sim PC_{10}) \leftarrow m_8 \sim m_{10}$ $(PC_0 \sim PC_7) \leftarrow m_0 \sim m_7$ $(PC_{11}) \leftarrow (MBF)$				Jumps to address m on page $m_{10}\ m_9\ m_8$ in the memory bank indicated by MBF.
	JMPP @A	10110011	В 3	1	2	(PC ₀ ~PC ₇)←(M(A))				Jumps to the memory location, of the cur- rent page, whose address is in register A. But when the instruction executed was in address 255, jumps to next page.
	DJNZ Rr, m	1 1 1 0 1 Γ ₂ Γ ₁ Γ ₀ m ₇ m ₈ m ₅ m ₄ m ₃ m ₂ m ₁ m ₀	E 8 + r m	2	2	$\begin{array}{l} (\mathrm{Rr}) \leftarrow (\mathrm{Rr}) - 1 r = 0 - 7 \\ (\mathrm{Rr}) \neq 0 \text{then} (\mathrm{PC}_0 - \mathrm{PC}_1) \leftarrow m \\ (\mathrm{Rr}) = 0 \text{then} (\mathrm{PC}) \leftarrow (\mathrm{PC}) + 2 \end{array}$				Decrements the contents of register R_r by 1. Jumps to address m of the current page when the result is not 0, otherwise the next instruction is executed.
	JC m	1 1 1 1 0 1 1 0 m ₇ m ₆ m ₅ m ₄ m ₃ m ₂ m ₁ m ₀	F 6 m	2	2	(C)=1 then $(PC_0 \sim PC_7) \leftarrow m$ (C)=0 then $(PC) \leftarrow (PC) + 2$				Jumps to address m of the current page if the carry flag C is 1, otherwise the next instruction is executed.
dmnf	JNC m	1 1 1 0 0 1 1 0 m ₇ m ₆ m ₅ m ₄ m ₃ m ₂ m ₁ m ₀	E 6 m	2	2	(C) = 0 then $(PC_0 \sim PC_1) \leftarrow m$ (C) = 1 then $(PC) \leftarrow (PC) + 2$				Jumps to address m of the current page if the carry flag C is 0, otherwise the next instruction is executed.
Jur	JZ m	1 1 0 0 0 1 1 0 m ₇ m ₆ m ₅ m ₄ m ₃ m ₂ m ₁ m ₀	C 6 m	2	2	(A) = 0 then $(PC_0 \sim PC_7) \leftarrow m$ (A) $\neq 0$ then $(PC) \leftarrow (PC) + 2$				Jumps to address m of the current page when the contents of register A are 0, otherwise the next instruction is executed.
	JNZ m	1 0 0 1 0 1 1 0 m ₇ m ₈ m ₅ m ₄ m ₃ m ₂ m ₁ m ₀	96 m	2	2	(A) $\neq 0$ then $(PC_0 \sim PC_7) \leftarrow m$ (A) $= 0$ then $(PC) \leftarrow (PC) + 2$				Jumps to address m of the current page when the contents of register A are not 0, otherwise the next instruction is executed.
	JTO m	00110110 m ₇ m ₆ m ₅ m ₄ m ₃ m ₂ m ₁ m ₀	36 m	?	2	$(T_0) = 1$ then $(PC_0 \sim PC_7) \leftarrow m$ $(T_0) = 0$ then $(PC) \leftarrow (PC) + 2$				Jumps to address m of the current page when flag T_0 is 1 otherwise the next instruction is executed.
	JNTO m	0 0 1 0 0 1 1 0 m ₇ m ₆ m ₅ m ₄ m ₃ m ₂ m ₁ m ₀	26 m	2	2	$(T_0) = 0$ then $(PC_0 \sim PC_7) \leftarrow m$ $(T_0) = 1$ then $(PC) \leftarrow (PC) + 2$			•	Jumps to address m of the current page when flag T_0 is 0, otherwise the next instruction is executed.
	JT1 m	0 1 0 1 0 1 1 0 m ₇ m ₆ m ₅ m ₄ m ₃ m ₂ m ₁ m ₀	56 m	2	2	$(T_1) = 1$ then $(PC_0 \sim PC_7) \leftarrow m$ $(T_1) = 0$ then $(PC) \leftarrow (PC) + 2$				Jumps to address m of the current page when flag T_1 is 1. otherwise the next instruction is executed.
	JNT1 m	0 1 0 0 0 1 1 0 m ₇ m ₆ m ₅ m ₄ m ₃ m ₂ m ₁ m ₀	46 m	2	2	$(T_1)=0$ then $(PC_0 \sim PC_7) \leftarrow m$ $(T_1)=1$ then $(PC) \leftarrow (PC)+2$				Jumps to address m of the current page when flag T_1 is 0, otherwise the next instruction is executed.
	JFO m	1 0 1 1 0 1 1 0 m ₇ m ₆ m ₅ m ₄ m ₃ m ₂ m ₁ m ₀	86 m	2	2	$(F_0) = 1$ then $(PC_0 \sim PC_7) \leftarrow m$ $(F_0) = 0$ then $(PC) \leftarrow (PC) + 2$				Jumps to address m of the current page when flag F_0 is 1.
	JF1 m	0 1 1 1 0 1 1 0 m ₇ m ₈ m ₅ m ₄ m ₃ m ₂ m ₁ m ₀	76 m	2	2	$(F_1) = 1$ then $(PC_0 \sim PC_7) \leftarrow m$ $(F_1) = 0$ then $(PC) \leftarrow (PC) + 2$				Jumps to address m of the current page when flag ${\sf F}_1$ is 1.
	CLR C	10010111	97	1	1	(C) ← 0	0			Clears the carry flag C, resets it to 0. AC is not affected.
	CPL C	1010 0111	A 7	1	1	(C) ← (O)	ò			Complements the carry flag C. AC is not affected.
Flag control	CLR Fo	1000 0101	85	1	1	(F ₀) ← 0				Clears the flag F_0 ; resets it to 0.
Flag (CPL Fo	10010101	95	1	1	(F ₀) ← (Ē ₀)				Complements the flag F ₀ .
	CLR F1	1010 0101	A 5	1	1	(F1) ← 0	1.1			Clears flag F ₁ resets it to 0.
	CPL F1	1011 0101	B 5	1	1	$(F_1) \leftarrow (\overline{F}_1)$				Complements the flag F_1 .

MITSUBISHI MICROCOMPUTERS

MELPS 8-48 MICROCOMPUTERS

FUNCTION OF MELPS 8-48 MICROCOMPUTERS

ltem	5 Mnemonic	li li		es	les	Function	Effected carry		ed ∕	Description	
Type	, whenome	D7 D6 D5 D4	D ₃ D ₂ D ₁ D ₀	Hexa- decimal	Bytes	Cycles	Function	с	AC	Note	Description
all	CALL m	m ₁₀ m ₉ m ₈ 1 m ₇ m ₆ m ₅ m ₄	0 1 0 0 m ₃ m ₂ m ₁ m ₀	1 4 + (m ₈ ⊡m ₁₀) ×2 m	2	2	$\begin{array}{l} ((SP)) \leftarrow (PC) \ (PSW_4 \sim PSW_7) \\ (SP) \ \leftarrow (SP) + 1 \\ (PC_{0-10}) \leftarrow m \\ \cdot \ (PC_{11}) \leftarrow MBF \end{array}$	5.			Calls subroutine from address m. The program counter and the 4 high-order bits of the PSW are stored in the address indicated by the stack pointer (SP). The SP is incremented by 1 and m is transferred to PC_{10} and the MBF is transferred to PC_{11} .
Subroutine call	RET	1000	0011	83	1	2	(SP) ← (SP) – 1 (PC) ← ((SP))				The SP is decremented by 1. The program counter is restored to the saved setting in the stack indicated by the stack pointer. The PSW is not changed and interrupt dis- abled is maintained.
	RETR	1001	0011	93	1	2	$(SP) \leftarrow (SP) - 1$ $(PC) (PSW_4 \sim PSW_7) \leftarrow ((SP))$				The SP is decremented by 1. The program counter and the 4 high-order bits of the PSW are restored with the saved data in the stack indicated by the stack pointer. The interrupt becomes enabled after the execu- tion is completed.
	IN A, Pp	0000	1 O P1P0	08 + p	1	2	$(A) \leftarrow (Pp)$ $p = 1 \sim 2$			2	Loads the contents of P_p to register A.
	OUTL Pp, A	0011	1 O P1P0	38 + p	1	2	$(Pp) \leftarrow (A)$ $p = 1 \sim 2$				Output latches the contents of register A to P_{p}
-	ANL Pp, ♯n	1 0 0 1 n ₇ n ₆ n₅n₄	1 0 p ₁ p ₀ n ₃ n ₂ n ₁ n ₀	98 p n	2	2	$(Pp) \leftarrow (Pp) \land n$ $p = 1 \sim 2$				Logical ANDs the contents of P_p and data n. Outputs the result to P_p
	ORL Pp, ♯n	1 0 0 0 n ₇ n ₆ n ₅ n ₄	1 0 p ₁ p ₀ n ₃ n ₂ n ₁ n ₀	88 + p n	2	2	$(Pp) \leftarrow (Pp) \vee n$ $p = 1 \sim 2$	2			Logical ORs the contents of P_{p} and data n. Outputs the result to P_{p}
	INS A, BUS	0000	1000	08	1	2	(A) ← (BUS)				Enters the contents of data bus (port 0) to register A
0	OUTL BUS, A	0000	0010	0 2	1	2	(BUS) ← (A)				Output latches the contents of register A data to data bus (port 0)
put contr	ANL BUS, #n	1 0 0 1 n ₇ n ₆ n ₅ n ₄	1000 n ₃ n ₂ n ₁ n ₀	98 n	2	2	(BUS) ← (BUS) ∧ n		-		Logical ANDs, the contents of data bus (port 0) and data n. Outputs the result to data bus (port 0)
nput/Output control	ORL BUS, #n	1 0 0 0 n ₇ n ₆ n ₅ n ₄	1000 n ₃ n ₂ n ₁ n ₀	8 8 n	2	2	(BUS) ← (BUS) V n				Logical ORs the contents of data bus (port 0) and data n. Outputs the result to data bus (port 0)
_	MOVD A, Pp	0000	1 1 P1 P0	O C + P1P0	1	2	$(A_0 \sim A_3) \leftarrow (Pp_0 \sim Pp_3)$ $(A_4 \sim A_7) \leftarrow 0 p = 4 \sim 7$		-		Inputs the contents of P _p to the low-order 4 bits of register A and inputs 0 to the high-order 4 bits of register A.
-	MOVD Pp, A	0011	1 1 P1 P0	3 C + P1P0	1	2	$(Pp_0 \sim Pp_3) \leftarrow (A_0 \sim A_3)$ p=4~7				Outputs the low-order 4 bits of register A to P_p . dence to p_2 ,
	ANLD Pp, A	1001	1 1 P ₁ P ₀	9 C + P1P0	1	2	$(Pp_0 \sim Pp_3) \leftarrow (Pp_0 \sim Pp_3) \land (A_0 \sim A_3)$ p = 4 ~ 7		-		$ \begin{array}{llllllllllllllllllllllllllllllllllll$
	ORLD Pp, A	1000	1 1 p ₁ p ₀	8 C + P1P0	1	2	$(Pp_0 \sim Pp_3) \leftarrow (Pp_0 \sim Pp_3) \lor (A_0 \sim A_3)$ $p = 4 \sim 7$	Logical OBs the 4 lows PI		Logical ORs the 4 low- order bits of register A and the contents of P_p .	

4

FUNCTION OF MELPS 8-48 MICROCOMPUTERS

Item	Mnemonic	Instruction cod	e,	Bytes	Cycles	Function	E	ffect carry	ed	Description
Type		D7 D6 D5 D4 D3 D2 D1 D0	Hexa- decimal	Ъ.	CVC	- Unction	с	AC	Note	Description
	ENI	0 0 0 0 0 1 0 1	0 5	1	1	(INTF) ← 1				Enables outside interrupt.
	DISI	00010101	15	1	1	(INTF) ← 0				Disables outside interrupt.
ontrol	SEL RBo	1 1 0 0 0 1 0 1	C 5	1	1	(BS)←0				Selects working register bank 0.
Inpùt/Output control	SEL RB1	1 1 0 1 0 1 0 1	D 5	1	1	(BS) ← 1				Selects working register bank 1.
Inpùt/(SEL MB ₀	1 1 1 0 0 1 0 1	E 5	1	1	(MBF) ← 0				Selects memory bank 0.
	SEL MB1	1 1 1 1 0 1 0 1	F 5	1	1	(MBF) ← 1				Selects memory bank 1.
	ENTO CLK	0111 0101	75	1	1 . ,					Enables output of clock signal from terminal T_{0}
	MOV A, T	0 1 0 0 0 0 1 0	4 2	1	1	(A) ← (T)				Transfers the contents of timer/event counter to register A.
	MOV T, A	0110 0010	6 2	1	1	(T) → (A)				Transfers the contents of register A to timer/ event counter.
ontrol	ST.RT T	0101010101	5 5	1	1					Starts timer operation of timer/event coun- term, Minimum count cycle is 80µs.
Timer/event counter control	STRT CNT	0100 0101	4 5	1	1					Starts operation as event counter of time/ event counter. Counts up when terminated T_1 changes to input high-level for input low- level. Minimum count cycle is 7.5 μ s.
Timer/eve	STOP TONT	0110 0101	65	1	1				-	Stops operation of timer or event counter.
	EN TCNTI	00100101	2 5	1	1	(TCNTF) ← 1				Enables interrupt of timer/event counter.
	DIS TCNTI	00110101	35	1	1	(TCNTF)← 0				Disables interrupt of timer/event counter. Resets interrupt flip-flop of CPU which is set during the CPU stands-by. Timer over- flow flag isn't affected.
Misc.	NOP	0000 0000	0 0	1	1					No operation. Execution time is 1 cycle.

Note 1: Executing an instruction may produce a carry (overflow or underflow). The carry may be disregarded (lost) or it may be transferred to C/AC (saved). The saving of a carry is not shown in the function equations, but is instead shown in the carry columns C and AC. The detail affection of carries for instructions ADD ADDC and DA is as follows:

(C) $\leftarrow 1$ at overflow of the accumulator is produced.

(C) $\leftarrow 0$ at no overflow of the accumulator is produced.

•

(AC) ← 1 at overflow of the bit 3 of the accumulator.

(AC) ← 0 at no overflow.

FUNCTION OF MELPS 8-48 MICROCOMPUTERS

Symbol	Meaning	Symbol	Meaning
A	8-bit register (accumlator)	PC	Program counter
A ₀ ~A ₃	The low-order 4 bits of the register A	PC0~PC7	The low-order 8 bits of the program counter
A4~A7	The high-order 4 bits of the register A	PC8~PC10	The high-order 3 bits of the program counter
A ₀ ~An, A _{n+1}	The bits of the register A	PSW	Program status word
b	The value of the bits 5 \sim 7 of the first byte machine code		
b7b6b5	The bits 5 \sim 7 of the first byte machine code	Rr	Register designator
BS	Register bank select	r	Register number
BUS	Corresponds to the port 0 (bus I/O port)	ro	The value of bit 0 of the machine code
		$r_2r_1r_0$	The value of bits 0 \sim 2 of the machine code
AC	Auxiliary carry flag	S2S1S0	The value of bits 0 \sim 2 of the stack pointer
с	Carry flag	SP	Stack pointer
DBB	Data bus buffer	ST4~ST7	Bits 4 \sim 7 of the status register
		STS	System status
F ₀	Flag O	т	Timer/event counter
F1	Flag 1	То	Test pin 0
INTF	Interrupt flag	Т1	Test pin 1
IBF	Input buffer full flag	TONTE	Timer/event counter overflow interrupt flag
m	The value of the 11-bit address	TF	Timer flag
m7m6m5m4m3m2m1m0	The second byte (low-order 8 bits) machine code of the 11-bit address		
m ₁₀ m ₉ m ₈	The bits 5~7 of the first byte (high-order 3 bits)machine code ofothe 11-bit address	#	Symbol to indicate the immediate data
(M (A))	The content of the memory location addressed by the register A	@	Symbol to indicate the cuntent of the memory location
(M (Rr))	The content of rhe memory location addressed by the register Rr]]	address by the register
(Mx(Rr))	The content of the external memory location addressed by the register Rr		Shows direction of data flow
MBF	Memory bank flag	<i>←→</i>	Exchanges the contents of data
n	The value of the immediate data	()	Contents of register, memory location or flag
n ₇ n ₆ n ₅ n ₄ n ₃ n ₂ n ₁ n ₀	The immediate data of the second byte machine code	^	Logical AND
OBF	Output buffer full flag	V	Inclusive OR
		+ '	Exclusive OR
р	Port number		Negation
Pp	Port designator	0	Content of flag is set or reset after execution
P1P0	The bits of the machine code corresponding to the port number		

FUNCTION OF MELPS 8-48 MICROCOMPUTERS

Instruction Code List

		r						_			<u> </u>			r			
	D7~D4	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1 100	1101	1110	1111
D₃∼Do	Hexa- decimal	,o	1	2	3	4	5	6	7	8	9	A	В	с	D	E	F
0000	0	NOP	INC @R0	XCH A, @ R0	XCHD A, @ R0	0RL A, @ R0	ANL A, @ R0	ADD A, @ R0	ADDC A, @ R0	MOVX A, @ R0	MOVX @R0, A	MO V @ R0, A	MOV 2 Ro. sm		XRL A, @R0		MOV A, @ R0
0001	1		INC @R1	XCH A, @ R1	XCHD A, @R1	0RL A, @ R1	ANL A, @ R 1	ADD A,@R1	ADDC A, @R1	MOVX A, @R1	Sec.	MOV @R1,A	MOV @R1.sn		XRL A, @ R1		MOV A,@R1
0010	2	ÓUTL BUS,A	080 19		. 18 1 m	MOV A, T	л 82 п	MOV T, A	J83 л		.184 т		JBS m		JB6 m		JB7 m
0011	.3	400 A .80	ADOO A 28	MOV 4 \$1		OBL A. S.	ANL A #n			RET	RETR	MOVP A, @A	JMPP @A		XBL A. #A	MOVP3 A,@A	
0100	4	imp oxx	CAUL. 0%X	JMP 1 X X	CALL 1XX	JMF 2×3	CALL ZXX	JMP 3XX	CALL JXX	JMP 4XX	CALL SXX	JMP 5XX	CALL 53%	JMP BXX	CALL BXX	лмр 7X8	CALL 7XX
0101	5	EN I	DIS 1	EN TCNTI	DIS TCNTI	STRT CNT	STRT	STOP TCNT	ENTO CLK	CLR FO	CPL FO	CLR F1	CPL F1	SEL RBO	SEL RB1	SEL MBO	SEL MB1
0110	6		JTF G	INTO TT	UTO m	JNT1 0	(作) (日		jp1 m	jen B	JNYZ M		JFQ m	j2 R		JNG m	JO B
C111	7	DEC A	INC A	CLR A	CPL A	SWAP	DA A	RRC A	RR A		CLR C	CPL C		MOV A,PSW	MOV PSW, A	RL A	RLC
1000	8	INS A,BUS	INC R0	XCH A, RO		ORL A, R0.	ANL A, RO	ADD A, RO	ADDC A, RO	OAL BUS.¢n	ANL BUS ¢n	MOV Ro, A	MOV R0, ‡n	DEC R0	XRL A, RO	DJNZ RD, m	MOV A, RO
1001	9	IN A, P1	INC R1	ХСН А, П1	OUTL P1, A	0RL A, R1	ANL A, R1	ADD A, R1	ADDC A,R1	0RL F1. #0	Atil P1 # n	MOV R1, A	MOV R1. #n	DEC R1	XRL A, R1	OJNZ R1 m	M0V A, R1
1010	' A	IN A, P2	INC R2	XCH A, R2	OUTL P2, A	ORL A,R₂	ANL A, R2	ADD A, R2	ADDC A, R2	0RL P2, #4	ANL P2, #n	MOV R2, A	MOV RZ, #in	DEC R2	XRL A, R2	D JNZ B2, m	M0 V A, R2
1011	8		INC R3	XCH A, R3		ORL A, R3	ANL A, R3	ADD A, R3	ADDC A, R3	-		MOV R3, A	MOV P3, 4-a	DEC R3	XRL A, R3	DJNZ R3, m	M0 V A, R3
1100	с	MOVD A, P4	INC R4	XCH A, R4	MOVD P4, A	ORL A, R4	ANL A, R4	ADD A, R4	ADDC A, R4	ORLD P4, A	ANLD P4, A	MOV R4, A	MOV PN, ∉a	DEC R4	XRL A, R4	0 INZ Fla m	M0V A, R4
1101	D	MOVD A, P5	INC R5	XCH A, R5	MOVD P5, A	ORL A, R5	ANL A, R5	ADD A, R5	ADDC A, R5	ORLD	ANLD P5, A	MOV R5, A	MOV R5, # n	DEC R5	XRL A, R5	OJNZ Pis. m	MOV A, R5
1110	E	MOVD A, P6	INC R6	ХСН А, R6	MOVD P6, A	ORL A, R6	ANL A, R6	ADD A, R6	ADDC A, R6	ORLD P6, A	ANLD R6, A	MOV P6, A	MOV R6, # n	DEC R6	XRL A, R6	0.MZ R6, m	MOV A, R6
1111	F	MOVD A, P7	INC R7	XCH A, R7	MOVD P7, A	ORL A, R7	ANL A, R7	ADD A, R7	ADDC A,R7	ORLD P7, A	ANLD P7,A	MOV R7, A	МОV R7, #л	DEC R7	XRL A, R7	DJNZ 97. m	MOV A, R7

2-byte, 2-cycle instruction

1-byte, 2-cycle instruction

MITSUBISHI MICROCOMPUTERS

SINGLE-CHIP 8-BIT MICROCOMPUTER

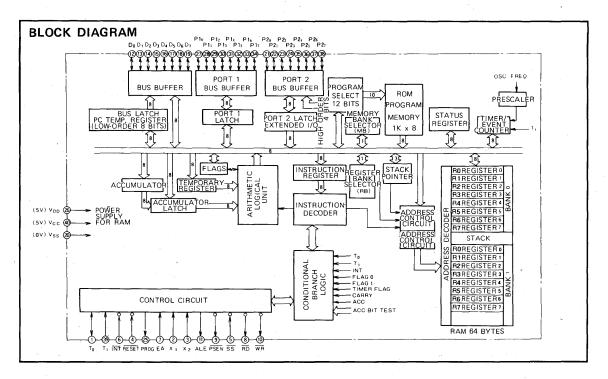
DESCRIPTION

The M5L8048-XXXP and M5L8035LP are 8-bit parallel microcomputer fabricated on a single chip using high-speed N-channel silicon-gate ED-MOS technology.

FEATURES

- Single 5V power supply
- Instruction cycle 2.5µs (min)
- Direct addressing up to 4096 bytes
- Internal RAM 64 bytes

- Easily expandable Memory and I/O
- External and timer/event counter interrupt . 1 level each
- Low power standby mode
- Interchangeable with i8048 and i8035L in pin configuration and electrical characteristics


APPLICATION

 Control processor or CPU for a wide variety of applications

PIN CONFIGURATION (TOP VIEW) TEST PIN 0 To ↔ 1 40 Vcc (5V) 39 ← T1 TEST PIN 1 CLOCK INPUT 1 X1-CLOCK INPUT 2 X2-38 🖶 P 2 7 RESET INPUT RESET -37 + P26 1/O PORT 2 SINGLE-STEP INPUT SS -> 5 36 ↔ P 2 5 REQUEST INPUT INT -> 6 35 **↔** P 2 4 EXTERNAL ACCESS EA -34 ↔ P 1 7 READ RD + 8 33 ↔ P 16 M5L8048-XXXF STORE ENABLE 32 ↔ P15 WRITE WR + 10 31 ↔ P14 1/O PORT 1 30 ↔ P13 Do 🕈 29 + P12 28 💠 P 1 1 D2 27 + P10 D3 🚸 26 VDD (5V) →PROG I/O CONTROL +P23) OUTPUT DATA BUS 25 16 D5 📣 17 24 23 + P22 D6 + 18 1/0 PORT 2 D7 <table-cell-rows> 19 22 + P21 (0V) Vss 20 21 + P20 Outline 40P4

FUNCTION

The M5L8048-XXXP and M5L8035LP are integrated 8-bit CPU, with memory (ROM, RAM) and timer/event counter interrupt all contained on a single chip.

MITSUBISHI MICROCOMPUTERS M5L8048-XXXP/M5L8035LP

SINGLE-CHIP 8-BIT MICROCOMPUTER

PIN DESCRIPTION

Pin	Name	Input or output	Function
V _{SS}	Ground		Normally connected to ground (0V).
Vcc	Main power supply		Connected to 5V power supply.
VDD	Power supply		①Connected to 5V power supply.
•00			②Used for memory hold when V _{CC} is cut.
		Input	OControl signal from an external source for conditional jumping in a program. Jumping is dependent on
То	Test pin 0		external conditions (JT0/JNT0).
		Output	②Used for outputting the internal clock signal (ENT0 CLK).
X ₁ , X ₂	Crystal inputs	Input	External crystal oscillator or RC circuit input for generating internal clock signals.
			An external clock signal can be input through X ₁ or X ₂ .
RESET	Reset	Input	Control used to initialize the CPU.
SS	Single step	Input	Control signal used in conjunction with ALE to stop the CPU through each instruction, in the single-step mode.
·			①Control signal from an external source for conditional jumping in a program. Jumping is dependent on
INT	Interrupt	Input	external conditions (JNI).
			@Used for external interrupt to CPU.
			①Normally maintained at 0V.
EA	External access	Input	When the level is raised to 5V, external memory will be accessed even when the address is less than
	· · · · · · · · · · · · · · · · · · ·		400 ₁₆ (1024). The M5L8035LP is raised to 5V.
	Read control		Read control signal used when the CPU requests data from external data memory or external device to
RD	Head control	Output	be transferred to the data bus. (MOVX A, @R _f , and INS A, BUS)
PSEN	Program store enable	Output	Strobe signal to fetch external program memory.
FOLN	Trogram store enable	Colput	Write control signal used when the CPU sends data through the data bus to external data memory or ex-
WR	Write control	Output	ternal device.
••••		Culput	(MOVX @R _r , A and OUTL BUS, A)
ALE	Address latch enable	Output	A signal used for latching the address on the data bus. An ALE signal occurs once during each cycle.
			OProvides true bidirectional bus transfer of instructions and data between the CPU and external mem-
			ory. Synchronizing is done with signals $\overline{RD}/\overline{WR}$. The output data is latched.
		-	When using external program memory, the output of the low-order 8 bits of the program counter are
	Data bus	Input/output	synchronized with ALE. After that, the transfer of the instruction code or data from the external program
$D_0 \sim D_7$	Data bus	input/output	memory is synchronized with PSEN.
			3The output of addresses for data using the external data memory is synchronized with ALE. After that
			the transfer of data with the external data memory is synchronized with RD/WR.
		1	(MOVX A, @R _r , and MOVX @R _r , A)
		Input/output	$$ Quasi-bidirectional port. When used as an input port, FF_{16} must first be output to this port. After reset
P20~P27	Port 2		when not used as an output port, nothing needs to be output.
120 -127	10112	Output	$@P2_0 \sim P2_3$ output high-order 4 bits of the program counter when using external program memory.
		Input/output	③P2 ₀ ~P2 ₃ serve as a 4-bit I/O expander bus for the M5L8243P.
PROG	Program	Output	Strobe signal for M5L8243P I/O expander.
P10~P17	Port 1	input/output	Quasi-bidirectional port. When used as an input port, FF16 must first be output to this port. After reset
1 17		mput output	when not used as an output port, nothing needs to be output.
			①Control signal from an external source for conditional jumping in a program. Jumping is dependent or
Τ1	Test pin 1	Input	external conditions (JT1/JNT1).
			When enabled, event signals are transferred to the timer/event counter (STRT CNT).

MITSUBISHI MICROCOMPUTERS M5L8048-XXXP/M5L8035LP

SINGLE-CHIP 8-BIT MICROCOMPUTER

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Limits	Unit
Vcc	Supply voltage		-0.5~7	V
VDD	Supply voltage		-0.5-7	V
VI	Input voltage	With respect to V _{SS}	-0.5~7	v
Vo	Output voltage		-0.5~7	V
Pd	Power dissipation	Ta=25°C	1.5	w
Topr	Operating free-air temperature range		-20~75	ĉ
Tstg	Storage temperature range		- 65~ 150	Ĉ

Symbol	Proventer	1		Unit	
Symbol	Parameter	Min	Nom	Max	Unit
Vcc	Supply voltage	4.5	5	5.5	v
VDD	Supply voltage	4.5	5	5.5	v
Vss	Supply voltage		0		V
VIH1	High-level input voltage, except X1, X2 and RESET	2		Vcc	V
ViH2	High-level input voltage, except X1, X2 and RESET	3.8		Vcc	v
VIL	Low-level input voltage	-0.5		0.8	V

		-		Limits			
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit	
Vol	Low-level output voltage, BUS, RD, WR, PSEN, ALE	IOL=2mA			0.45	V	
VoL1	Low-level output voltage, except the above and PROG	1 _{0L} = 1.6mA			0.45	V	
VOL2	Low-level output voltage, PROG	I _{OL} =1mA			0.45	V	
Voh	High-level output voltage, BUS, RD, WR, PSEN, ALE	I _{OH} =-100 µA	2.4			v	
VoH1	High-level output voltage, except the above	$I_{OH} = -50 \mu A$	2.4			v	
LIL .	Input leak current, T1, INT	V _{SS} ≦V _{IN} ≦V _{CC}	- 10		10	μA	
I OL	Output leak current, BUS, T0 high-impedance state	V _{SS} +0.45≦V _{IN} ≦V _{CC}	- 10		10	μA	
LII	Input current during low-level input, port	V _{IL} =0.8V		-0.2		mA	
1112	Input current during low-level input, RESET, SS	V _{1L} =0.8∨		-0.05		mA	
IDD	Supply current from V _{DD}			10	20	mA	
IDD+ICC	Supply current from VDD and VCC			65	135	mA	

TIMING REQUIREMENTS ($Ta = -20 \sim 75 \,^{\circ}\text{C}$, $V_{CC} = V_{DD} = 5 \,^{\circ}\text{V} \pm 10\%$, $V_{SS} = 0 \,^{\circ}\text{V}$, unless otherwise noted)

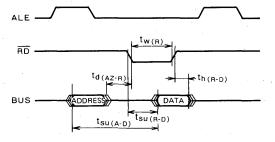
Symbol	Parameter	Alternative		Unit		
Зушьог	Farameter	symbol	Min	Тур	Max	Unit
to	Cycle time	tcy	2.5		15.0	//S
th (PSEN-D)	Data hold time after PSEN	t dr.	0		200	ns
th (R-D)	Data hold time after RD	tor	0		200	ns
tsu (PSEN-D)	Data setup time after PSEN	t RD			500	ns
tsu (R-D)	Data setup time after RD	trd	[500	ns
tsu (A-D)	Data setup time after address	tad			950	ns
tsu (PROG-D)	Data setup time after PROG	t PR			810	ns
th (PROG-D)	Data hold time before PROG	tpf	0		150	ns

Note 1: The input voltage level of the input voltage is V_{IL} =0.45V and V_{IH} =2.4V.

MITSUBISHI MICROCOMPUTERS M5L8048-XXXP/M5L8035LP

SINGLE-CHIP 8-BIT MICROCOMPUTER

$\label{eq:switching} \textbf{SWITCHING CHARACTERISTICS} (\texttt{Ta} = -20 \\ \text{~75} \\ \texttt{C}, \ \texttt{V}_{c\,c} = \texttt{V}_{DD} = 5 \\ \texttt{V} \\ \pm 10 \\ \%, \ \texttt{V}_{SS} = 0 \\ \texttt{V}, \ \texttt{unless otherwise noted}) \\ \end{tabular}$

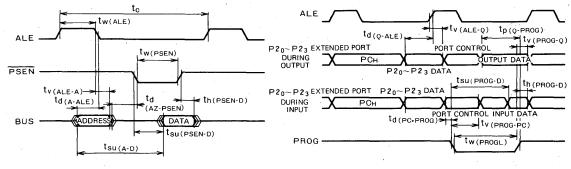

Symbol	Parameter	Alternative		Limits		Unit
Symbol	rarameter	symbol	Min	Тур	Max	Onit
tw(ALE)	ALE pulse width	t LL	400			ns
td(A-ALE)	Delay time, address to ALE signal	tal	120	· ·		ns
tv(ALE-A)	Address valid time after ALE	tLA	80	·		ns
tw (PSEN)	PSEN pulse width	tcc	700			ns
tw (R)	RD pulse width	t _{cc}	700			ns
tw(w)	WR pulse width	t _{cc}	700			ns
td(q-w)	Delay time, data to WA signal	tow	500	1.5		ns
tv(w-q)	Data valid time after WR	two	120			ns
td(A-W)	Delay time, address to WR signal	taw	230			ns
td(AZ-R)	Delay time, address disable to RD signal	t AFC	0			ns
td(az-psen)	Delay time, address disable to PSEN signal	t afc	0			ns
td(PC-PROG)	Delay time, port control to PROG signal	t cp	110			ns
tv(PROG-PC)	Port control valid time after PROG	t pc	100			ns
tp(Q-PROG)	Delay time, data to PROG signal	t _{DP}	250			ns
tv(PROG-Q)	Data valid time after PROG	t PD	65			ns
tw(PROGL)	PROG low pulse width	t pp	1200			ns
td(Q-ALE)	Delay time, data to ALE signal	tpl	350			ns
tv(ALE-Q)	Data valid time after ALE	tlp	150			ns

Note 2: Conditions of measurement: control output CL=80pF


data bus output, port output CL=150pF, tc=2.5µs

3: Reference levels for the input/output voltages are low level=0.8V and high level=2V

TIMING DIAGRAM Read from External Data Memory



Write to External Data Memory

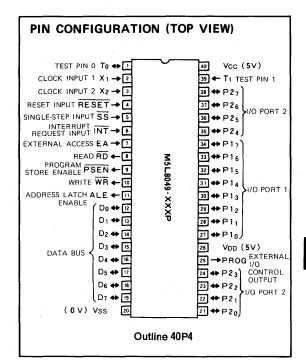
Instruction Fetch from External Program Memory

MITSUBISHI MICROCOMPUTERS **M5L8049-XXXP,P-8,P-6 M5L8039P-11,P-8,P-6** SINGLE-CHIP 8-BIT MICROCOMPUTER

DESCRIPTION

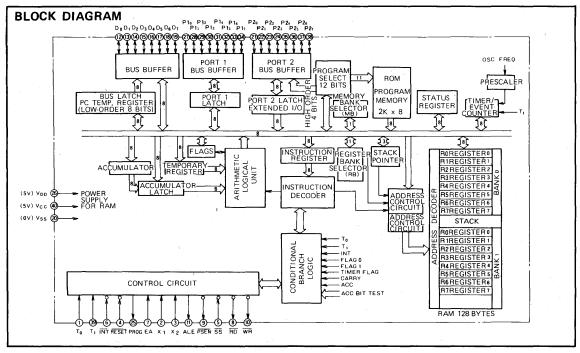
The M5L8049-XXXP, P-8, P-6 and M5L8039P-11, P-8, P-6 are 8-bit parallel microcomputers fabricated on a single chip using high-speed N-channel silicon gate ED-MOS technology.

Speed ROM Type	Internal ROM Type	External ROM Type
11 MHz Type	M5L8049-XXXP	M5L8039P-11
8 MHz Type	M5L8049-XXXP-8	M5L8039P-8
6 MHz Type	M5L8049-XXXP-6	M5L8039P-6


FEATURES

- Single 5V power supply
- Direct addressing up to 4096 bytes

- Easily expandable Memory and I/O:
- External and timer/event counter interrupt . 1 level each
- External RAM 256 bytes
- M5L8049-XXXP/M5L8039P-11, P-6 are interchangeable with i 8049/i 8039, i 8039-6 in pin configuration and electrical characteristics.


APPLICATION

• Control processor or CPU for a wide variety of applications

FUNCTION

The M5L8049-XXXP and M5L8039P are integrated 8-bit CPUs, with memory (ROM, RAM) and timer/event counter interrupt all contained on a single chip.

MITSUBISHI MICROCOMPUTERS M5L8049-XXXP,P-8,P-6 M5L8039P-11,P-8,P-6

SINGLE-CHIP 8-BIT MICROCOMPUTER

PIN DESCRIPTION

(Sie 11)

Pin	Name	Input or output	Function
Vss	Ground		Normally connected to ground (0V).
Vcc	Main power supply		Connected to 5V power supply.
	Bawar augaly		①Connected to 5V power supply.
VDD	Power supply		②Used for memory hold when V _{CC} is cut.
		Input	Control signal from an external source for conditional jumping in a program. Jumping is dependent on
To	Test pin 0	mput	external conditions (JT0/JNT0).
	· · · · · · · · · · · · · · · · · · ·	Output	②Used for outputting the internal clock signal (ENT0 CLK).
X1, X2	Crystal inputs	Input	External crystal oscillator or RC circuit input for generating internal clock signals.
			An external clock signal can be input through X ₁ or X ₂ .
RESET	Reset	Input	Control used to initialize the CPU.
SS	Single step	Input	Control signal used in conjunction with ALE to stop the CPU through each instruction, in the single-step mode.
			①Control signal from an external source for conditional jumping in a program. Jumping is dependent on
INT	Interrupt	Input	external conditions (JNI).
			②Used for external interrupt to CPU.
		1.1.1	①Normally maintained at 0V.
EA	External access	Input	(2) When the level is raised to 5V, external memory will be accessed even when the address is less than
	· ·	·	400 ₁₆ (2048). The M5L8039P is raised to 5V.
			Read control signal used when the CPU requests data from external data memory or external device to
RD	Read control	Output	be transferred to the data bus.
PSEN	Program store enable	Output	(MOVX A, @Rr, and INS A, BUS)
FJEN	Flogram store enable	Output	Strobe signal to fetch external program memory. Write control signal used when the CPU sends data through the data bus to external data memory or ex-
WB	Write control	Output	ternal device.
••••	White control	Calpat	(MOVX @Rr, A and OUTL BUS, A)
ALE	Address latch enable	Output	A signal used for latching the address on the data bus. An ALE signal occurs once during each cycle.
			OProvides true bidirectional bus transfer of instructions and data between the CPU and external mem-
			ory. Synchronizing is done with signals RD/WR. The output data is latched.
			When using external program memory, the output of the low-order 8 bits of the program counter are
D ₀ ~D ₇	Data bus	Input/output	synchronized with ALE. After that, the transfer of the instruction code or data from the external program
00.007	Data Dus	input output	memory is synchronized with PSEN.
			③The output of addresses for data using the external data memory is synchronized with ALE. After that,
			the transfer of data with the external data memory is synchronized with RD/WR.
			(MOVX A, @R _r , and MOVX @R _r , A)
		Input/output	①Quasi-bidirectional port. When used as an input port, FF ₁₆ must first be output to this port. After reset,
P20~P27	Port 2		when not used as an output port, nothing needs to be output.
. =0		Output	②P2₀~P2₃ output high-order 4 bits of the program counter when using external program memory.
		Input/output	③P20~P23 serve as a 4-bit I/O expander bus for the M5L8243P.
PROG	Program	Output	Strobe signal for M5L8243P I/O expander.
P10~P17	Port 1	Input/output	Quasi-bidirectional port. When used as an input port, FF16 must first be output to this port. After reset,
			when not used as an output port, nothing needs to be output.
_			①Control signal from an external source for conditional jumping in a program. Jumping is dependent on
T ₁	Test pin 1	Input	external conditions (JT1/JNT1).
	L	l:	When enabled, event signals are transferred to the timer/event counter (STRT CNT).

MITSUBISHI MICROCOMPUTERS M5L8049-XXXP,P-8,P-6 M5L8039P-11,P-8,P-6

SINGLE-CHIP 8-BIT MICROCOMPUTER

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Limits	Unit
Vcc	Supply voltage		-0.5~7	V
V _{DD}	Supply voltage		-0.5~7	V
VI	Input voltage	With respect to V _{SS}	-0.5~7	V
Vo	Output voltage		-0.5-7	V
Pd	Power dissipation	Ta = 25°C	1.5	w
Topr	Operating free-air temperature range		-20~75	r
Tstg	Storage temperature range		- 65~ 150	Ĵ

RECOMMENDED OPERATING CONDITIONS (Ta=-20~75°C, unless otherwise noted)

Combal	Devenuenter		ļ		
Symbol	Parameter	Min	Nom	Max	Unit
Vcc	Supply voltage	4.5	5	5.5	V
VDD	Supply voltage	4.5	5	5.5	. V
Vss	Supply voltage		0		v
VIH 1	High-level input voltage, except for $X_1, X_2, \overline{RESET}$	2		Vcc	v
VIH2	High-level input voltage, X1, X2, RESET	3.8		V _{CC}	v
VIL	Low-level input voltage	-0.5		0.8	v

ELECTRICAL CHARACTERISTICS ($T_a = -20 \sim 75^{\circ}C$, $V_{CC} = V_{DD} = 5V \pm 10\%$, $V_{SS} = 0V$, unless otherwise noted)

		_		Limits		
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
VOL	Low-level output voltage, BUS, RD, WR, PSEN, ALE	IOL=2mA			0.45	v
VOLI	Low-level output voltage, except for the above and PROG	1 _{0L} =1.6mA			0.45	v
VOL2	Low-level output voltage PROG	I _{OL} =1mA			0.45	V
Vон	High-level output voltage, BUS, RD, WR, PSEN, ALE	$I_{OH} = -100 \mu A$	2.4			V
VoH1	High-level output voltage, except for the above	$I_{OH} = -50 \mu A$	2.4			v
FiL .	Input leak current, T1, INT	V _{SS} ≦V _{IN} ≦V _{CC}	- 10		10	μA
IOL	Output leak current, BUS, TO, high-impedance state	Vss+0.45≦VIN≦Vcc	- 10		10	μA
ГСП	Input current during low-level input, port	VIL=0.8V		-0.2		mA
	Input current during low-level input, RESET, SS	VIL=0.8V		-0.05		mA
1DD	Supply current from VDD	Ta=25℃		25	50	mA
IDD+ICC	Supply current from VDD and VCC	Ta=25℃		100	170	mA

TIMING REQUIREMENTS ($T_a = -20 \sim 75^{\circ}C$, $V_{CC} = V_{DD} = 5V \pm 10\%$. $V_{SS} = 0V$. unless otherwise noted)

				Limits								
Symbol	Parameter	Alternative symbol	M5L8049-XXXP M5L8039P-11 (Note 2)			M5L8049-XXXP-8 M5L8039P-8			M5L8049-XXXP-6 M5L8039P-6			Unit
			Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	1.
to	Cycle time	t _{CY}	1.36		15.0	1.875		15.0	2.5		15.0	μs
th (PSEN-D)	Data hold time after PSEN	t _{DR}	0		100	0		150	0		200	ns
th (R-D)	Data hold time after RD	t _{DR}	0		100	0		150	0		200	ns
tsu (PSEN-D)	Data setup time after PSEN	t _{RD}			250		1	350			500	ns
tsu _{(R-D}	Data setup time after RD	t _{RD}			250			350			500	ns
tsu (A-D)	Data setup time after address	t _{AD}			400			650		-	950	ns
tsu (PROG-D)	Data setup time after PROG	t _{PR}			650			700			810	ns
th (PROG-D)	Data hold time before PROG	t _{PF}	0		150	0		150	0.		150	ns

Note 1 : The input voltage are V_{IL}=0.45V and V_{IH}=2.4V. 2 : $T_a{=}0{\sim}70\,{}^\circ\!C$

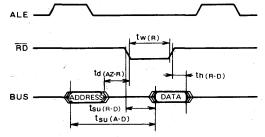
MITSUBISHI MICROCOMPUTERS

M5L8049-XXXP,P-8,P-6 M5L8039P-11,P-8,P-6

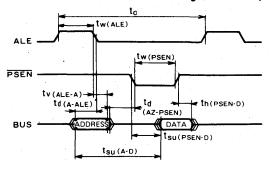
SINGLE-CHIP 8-BIT MICROCOMPUTER

1							Limits			÷		
Symbol	Parameter	Alternative symbol	M5L8049-XXXP M5L8039-11 (Note 2)		M5L8049-XXXP-8 M5L8039P-8			M5L8049-XXXP-6 M5L8039P-6			Unit	
			Min	Тур	Max	Min	• Тур	Max	Min	Тур	Max]
tw (ALE)	ALE pulse width	· t _{LL}	1 50			300			400	1		ns
td (A-ALE)	Delay time, address to ALE signal	t _{AL}	70			120			150			ns
tv (ALE-A)	Address valid time after ALE	tLA	50		·	70			80			ns
tw (PSEN)	PSEN pulse width	t _{cc}	300			500			700		1	ns
tw (R)	RD pulse width	t _{cc}	300			500			700		1	ns
td (w)	WR pulse width	t _{cc}	300			500			700	1		ns
tv _(Q-W)	Delay time, data to WR signal	t _{DW}	250			380		1.1.1	500			ns
td (w-q)	Data valid time after WR	t wD	40			80			120			ns
td (A-W)	Delay time, address to WR signal	t _{AW}	200			220			230			ns
td (AZ-R)	Delay time, address disable to RD signal	tAFC	-10			-5			0		-	ns
td (AZ-PSEN)	Delay time, address disable to PSEN signal	t AFC	-10			-5,			0			ns
td (PC-PROG)	Delay time, port control to PROG signal	t _{CP}	100			105		-	110			ns
tv (PROG-PC)	Port control valid time after PROG	t _{PC}	60			100			130		1	ns
tp (Q-PROG)	Delay time, data to PROG signal	t _{DP}	200			210		1	220		1	ns
tv (PROG-Q)	Data valid time after PROG	t _{PD}	20			45			65	· · ·		ns
tw(PROGL)	PROG low pulse width	t _{PP}	700			1150			1510			ns
td (Q-ALE)	Delay time, data to ALE signal	t _{PL}	150			300			400			ns
tv (ALE-Q)	Data valid time after ALE	tLP	20			100			150		1	ns

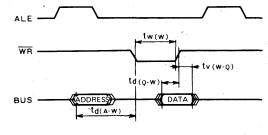
SWITCHING CHARACTERISTICS ($T_a = -20 \sim 75^{\circ}C$, $V_{CC} = V_{DD} = 5V \pm 10\%$, $V_{SS} = 0V$, unless otherwise noted)

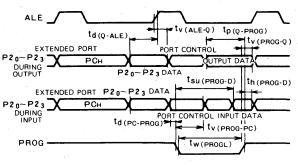

Note 3 : Conditions of measurement: control output C_L =80pF

data bus output, port output CL=150pF


4 : Reference levels for the input/output voltages are low level=0.8V and high level=2V.

TIMING DIAGRAM


Read from External Data Memory


Instruction Fetch from External Program Memory

Write to External Data Memory

Port 2

MITSUBISHI MICROCOMPUTERS

M5L8049H-XXXP/M5L8039HLP

SINGLE-CHIP 8-BIT MICROCOMPUTER

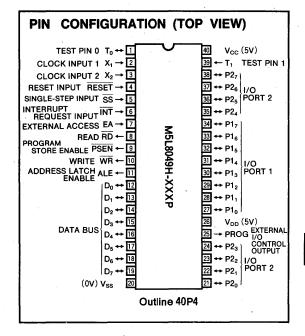
DESCRIPTION

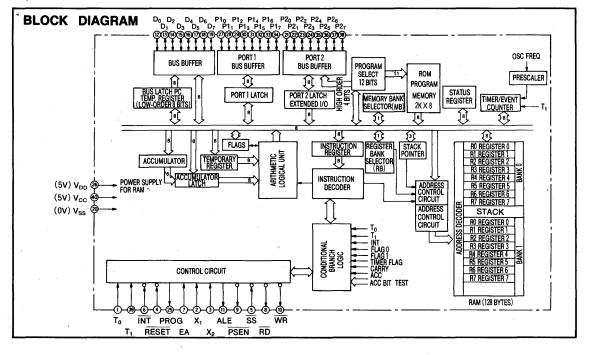
The M5L8049H-XXXP and M5L8039HLP are 8-bit parallel microcomputers fabricated on a single chip using N-channel silicon gate ED-MOS technology.

FEATURES

- Single 5V power supply
- Low power dissipation ······275mW (typ.)
- Instruction cycle1.36µs (min.)
- Basic machine instructions ……96(1-byte instructions: 68)
- 4K-bytes memory addressing possible (direct addressing possible in 2K-bytes memory)

Memory capacity ROM 2K-bytes


- RAM······128 bytes
- I/O ports ······ 27 lines
- Easily expandable memory and I/O
- Subroutine nesting ······8 levels
- External and timer/event counter interrupt, 1 level each
- Low power standby mode
- M5L8049H-XXXP/M5L8039HLP are interchangeable with i 8049H/i 8039HL in pin configuration and electrical characteristics.


APPLICATION

Control processor or CPU for a wide variety of applications

FUNCTION

The M5L8049H-XXXP and M5L8039HLP are integrated 8-bit CPU_s, with memory (ROM (Except M5L8039HLP), RAM) and timer/event counter interrupt all contained on a single chip.

MITSUBISHI MICROCOMPUTERS M5L8049H-XXXP/M5L8039HLP

SINGLE-CHIP 8-BIT MICROCOMPUTER

PIN DESCRIPTION

Pin	Name	Input or output	Function
V _{SS}	Ground		Normally connected to ground (0V).
V _{cc}	Main power supply		Connected to 5V power supply.
	Baura autobi		①Connected to 5V power supply.
VDD	Power supply		@Used for memory hold when V _{CC} is cut.
		Input	①Control signal from an external source for conditional jumping in a program. Jumping is dependent on
то	Test pin 0	. mput	external conditions (JT0/JNT0).
		Output	@Used for outputting the internal clock signal (ENT0 CLK).
X1, X2	Crystal inputs	Input	External crystal oscillator or RC circuit input for generating internal clock signals.
<u></u>		put	An external clock signal can be input through X ₁ or X ₂ .
RESET	Reset	Input	Control used to initialize the CPU.
SS	Single step	Input	Control signal used in conjunction with ALE to stop the CPU through each instruction, in the single-step
		mpar	mode.
			①Control signal from an external source for conditional jumping in a program. Jumping is dependent on
INT	Interrupt	Input	external conditions (JNI).
			@Used for external interrupt to CPU.
	.		①Normally maintained at 0V.
EA	External access	Input	(2049) The NEL 2020LU D is reliard to 5V, external memory will be accessed even when the address is less than
			400 ₁₆ (2048). The M5L8039HLP is raised to 5V.
RD	Read control	Output	Read control signal used when the CPU requests data from external data memory or external device to be transferred to the data bus.
ΝŬ		Output	(MOVX A, @R _r , and INS A, BUS)
PSEN	Program store enable	Output	Strobe signal to fetch external program memory.
1 OEN	Trogram store enable	Culput	Write control signal used when the CPU sends data through the data bus to external data memory or ex-
WB	Write control	Output	ternal device.
		Culput	(MOVX @Rr, A and OUTL BUS, A)
ALE	Address latch enable	Output	A signal used for latching the address on the data bus. An ALE signal occurs once during each cycle.
			OProvides true bidirectional bus transfer of instructions and data between the CPU and external mem-
	-		ory. Synchronizing is done with signals RD/WR. The output data is latched.
			When using external program memory, the output of the low-order 8 bits of the program counter are
D ₀ ~D ₇	Data bus	Input/output	synchronized with ALE. After that, the transfer of the instruction code or data from the external program
D ₀ ~D ₇	Data Dus	input/output	memory is synchronized with PSEN.
			3The output of addresses for data using the external data memory is synchronized with ALE. After that,
			the transfer of data with the external data memory is synchronized with RD/WR.
			(MOVX A, @R _r , and MOVX @R _r , A)
		Input/output	①Quasi-bidirectional port. When used as an input port, FF16 must first be output to this port. After reset,
P2₀~P27	Port 2		when not used as an output port, nothing needs to be output.
0/		Output	②P20~P23 output high-order 4 bits of the program counter when using external program memory.
		Input/output	③P20~P23 serve as a 4-bit I/O expander bus for the M5L8243P.
PROG	Program	Output	Strobe signal for M5L8243P I/O expander.
P10~P17	Port 1	input/output	Quasi-bidirectional port. When used as an input port, FF16 must first be output to this port. After reset,
		inpes output	when not used as an output port, nothing needs to be output.
			①Control signal from an external source for conditional jumping in a program. Jumping is dependent on
Τ1	Test pin 1	Input	external conditions (JT1/JNT1).
	L		When enabled, event signals are transferred to the timer/event counter (STRT CNT).

MITSUBISHI MICROCOMPUTERS M5L8049H-XXXP/M5L8039HLP

SINGLE-CHIP 8-BIT MICROCOMPUTER

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Limits	Unit
Vcc	Supply voltage		-0.5~7	V
VDD	Supply voltage		-0.5~7	V
Vi	Input voltage	With respect to V _{SS}	-0.5~7	V
Vo	Output voltage		-0.5~7	V
Pd	Power dissipation	$T_a = 25^{\circ}C$	1.5	W
Topr	Operating free-air temperature range		0~70	°C
Tstg	Storage temperature range		65~150	τ

RECOMMENDED OPERATING CONDITIONS ($T_a = 0 \sim 70$ °C, unless otherwise noted)

Symbol	Parameter		11-14		
	Parameter	Min	Nom	Max	Unit
V _{cc}	Supply voltage	4.5	5	5.5	v
V _{DD}	Supply voltage	4.5	5	5.5	v
Vss	Supply voltage		0	· · ·	v
V _{IH1}	High-level input voltage, except X1, X2 and RESET	2		V _{cc}	v
VIH2	High-level input voltage, X1, X2 and RESET	3.8		V _{cc}	v
VIL1	Low-level input voltage, except X1, X2 and RESET	-0.5		0.8	v
VIL2	Low-level input voltage, X1, X2 and RESET	-0.5		0.6	v

ELECTRICAL CHARACTERISTICS ($T_a = 0 \sim 70^{\circ}C$, $V_{CC} = V_{DD} = 5V \pm 10\%$, $V_{SS} = 0V$, unless otherwise noted)

Symbol	Parameter	Test conditions		Limits		Unit	
Symbol	Palameter	Test conditions	Min	Тур Мах	Unit		
VOL	Low-level output voltage (BUS)	$I_{OL} = 2mA$			0.45	v	
V _{OL1}	Low-level output voltage (RD, WR, PSEN, ALE)	$I_{OL} = 1.8 \text{ mA}$			0.45	V	
V _{OL2}	Low-level output voltage (PROG)	$I_{OL} = 1 \text{mA}$			0.45	v	
V _{OL3}	Low-level output voltage (for other outputs)	$I_{OL} = 1.6 \text{mA}$			0.45	v	
Voн	High-level output voltage (BUS)	$I_{OH} = -400 \mu A$	2.4			v	
V _{OH1}	High-level output voltage (RD, WR, PSEN, ALE)	$I_{OH} = -100 \mu A$	2.4			V	
V _{OH2}	High-level output voltage (for other outputs)	$I_{OH} = -40 \mu A$	2.4			v	
l ₁ :	Input leak current (T1, INT)	$V_{SS} \leq V_{IN} \leq V_{CC}$	-10		10	μA	
loz	Output leak current (BUS, T ₀), high-impedance state	$V_{SS} + 0.45 \le V_{IN} \le V_{CC}$	-10		10	μA	
lπ	Input leak current (Port)	$V_{SS} + 0.45 \le V_{IN} \le V_{CC}$		-0.2	-0.5	· mA	
I12	Input leak current (RESET, SS)	$V_{SS} + 0.45 \le V_{IN} \le V_{CC}$		-0.05		mÁ	
IDD	Supply current from V _{DD}			5	10	mA	
$I_{DD} + I_{CC}$	Supply current from VDD and VCC			50	100	mA	

SINGLE-CHIP 8-BIT MICROCOMPUTER

TIMING REQUIREMENTS ($T_a = 0 \sim 70^{\circ}C$, $V_{cc} = V_{DD} = 5V \pm 10\%$, $V_{ss} = 0V$, unless otherwise noted)

Symbol	Parameter	Relationship to	Alternative	Limits			
Symbol	Parameter	cycle time (t _c)	symbol	Min	Тур	Max	Unit
t _c	Cycle time	1/ (f _{XTAL} ÷ 15)	toy	1.36	. 4	15	μs
th (PSEN-D)	Data hold time after PSEN	$1/10 \cdot t_{\rm C} - 30$	t _{DR}	0		110	ns
th (R-D)	Data hold time after RD	$1/10 \cdot t_{\rm C} - 30$	ton	0		110	ns
tsu (PSEN-D)	Data setup time after PSEN	3/10 · t _c - 200	t _{RD2}			210	ns
tsu (R-D)	Data setup time after RD	$2/5 \cdot t_{\rm C} - 200$	t _{RD1}			350	ns
t _{su1 (A-D)}	Data setup time after address (external data memory read cycle)	7/10 • t _c − 220	t _{AD1}			730	ns
t _{su2 (A-D)}	Data setup time after address (external program memory read cycle)	$1/2 \cdot t_{\rm c} - 200$	t _{AD2}			460	ns
tsu (PROG-D)	Data setup time after PROG	6/10 • t _c - 120	t _{PR}			700	ns
th (PROG-D)	Data hold time after PROG	1/10 • t _c	tpr	0		140	ns

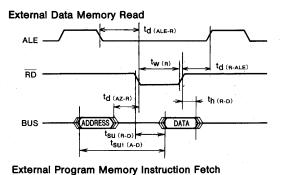
Note 1 : The input voltage level is $V_{IL} = 0.45V$ and $V_{IH} = 2.4V$.

2 : f_{XTAL} is the oscillator frequency entered at the crystal input terminals (X₁, X₂).

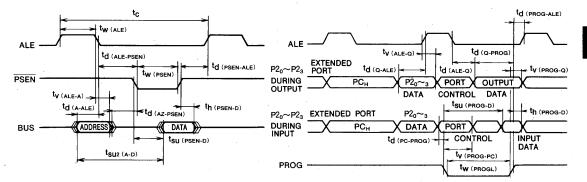
SWITCHING CHARACTERISTICS ($T_a = 0 \sim 70$ °C, $V_{CC} = V_{DD} = 5V \pm 10\%$, $V_{SS} = 0V$, unless otherwise noted)

Symbol	Parameter	Relationship to Altern		Alternative		Limits	
Symbol	Farameter	cycle time (t _C)	symbol	Min	Тур	Max	Unit
tw (ALE)	ALE pulse width	7/30 · t _c — 170	tLL	150			ns
td (A-ALE)	Address to ALE signal delay time	$2/15 \cdot t_{\rm C} - 110$	t _{AL}	70			ns
tv (ALE-A)	Address valid time after ALE	1/15 • t _c — 40	t _{LA}	50			ns
tw (PSEN)	PSEN pulse width	$2/5 \cdot t_{\rm c} - 200$	t _{CC2}	350			ns
t _{w (R)}	RD pulse width	$1/2 \cdot t_{\rm C} - 200$	t _{cc1}	480			ns
tw (w)	WR pulse width	$1/2 \cdot t_{\rm C} - 200$	t _{cc1}	480			ns
td (q-w)	Data to WR signal delay time	13/30 • t _c - 200	tow	390			ns
ty (w-a)	Data valid time after WR	$1/15 \cdot t_{\rm C} - 50$	t _{WD}	40			'ns
td (A-W)	Address to WR signal delay time	1/3 • t _c — 150	t _{AW}	300			ns
td (AZ-R)	Address disable to RD signal delay time	$2/15 \cdot t_{\rm C} - 40$	t _{AFC1}	140			ns
td (AZ-W)	Address disable to WR signal delay time	$2/15 \cdot t_{\rm C} - 40$	t _{AFC1}	140			ns
td (AZ-PSEN)	Address disable to PSEN signal delay time	1/30 • t _c — 40	t _{AFC2}	10			ns
td (ALE-R)	ALE to RD signal delay time	$1/5 \cdot t_{\rm C} - 75$	t _{LAFC1}	200			ns
td (ALE-W)	ALE to WR signal delay time	1/5 • t _c — 75	t _{LAFC1}	200			ns
td (ALE-PSEN)	ALE to PSEN signal delay time	1/10 · t _c — 75	tLAFC2	60			ns
td (R-ALE)	RD to ALE signal delay time	1/15 · t _c — 40	t _{CA1}	50			ns
td (W-ALE)	WR to ALE signal delay time	$1/15 \cdot t_{\rm c} - 40$	t _{CA1}	50			ns
td (PROG-ALE)	PROG to ALE signal delay time	$1/15 \cdot t_{c} - 40$	t _{CA1}	50			ns
td (PSEN-ALE)	PSEN to ALE signal delay time	$4/15 \cdot t_{\rm C} - 40$	t _{CA2}	320			ns
td (PC-PROG)	Port control to PROG signal delay time	$2/15 \cdot t_{\rm C} - 80$	t _{CP}	100			ns
ty (PROG-PC)	Port control valid time after PROG	4/15 · t _c - 200	t _{PC}	160			ns
td (Q-PROG)	Data to PROG signal delay time	2/5 • t _c - 150	t _{DP}	400			ns
ty (PROG-Q)	Data valid time after PROG	$1/10 \cdot t_{\rm C} - 50$	t _{PD}	90			ns
tw (PROGL)	PROG low-level pulse width	7/10 · t _c - 250	t _{PP}	700			ns
td (Q-ALE)	Data to ALE signal delay time	4/15 • t _c - 200	t _{PL}	160			ns
tv (ALE-Q)	Data valid time after ALE	1/10 • t _c - 100	t _{LP}	40			ns
td (ALE-Q)	Delay time after ALE	$3/10 \cdot t_{c} + 100$	t _{PV}			510	ns
tw (To)	T ₀ pulse spacing	3/15 • t _c	toper	270			ns

Note 3 : Conditions of measurement: control output $C_L = 80_PF$ data bus output, port output $C_L = 150_PF$.


4 : Reference levels for input/output voltages are low-level = 0.8V high-level = 2V.

MITSUBISHI MICROCOMPUTERS M5L8049H-XXXP/M5L8039HLP


SINGLE-CHIP 8-BIT MICROCOMPUTER

TIMING DIAGRAM

External Data Memory Write ALE WR td (ALE-W) td (ALE-W) td (W-ALE) td (W-ALE) td (W-ALE) td (W-ALE) td (W-ALE) td (W-ALE) td (W-ALE)

Port 2

4

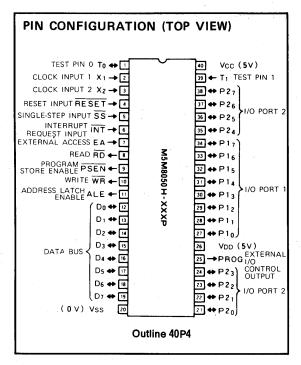
SINGLE-CHIP 8-BIT MICROCOMPUTER

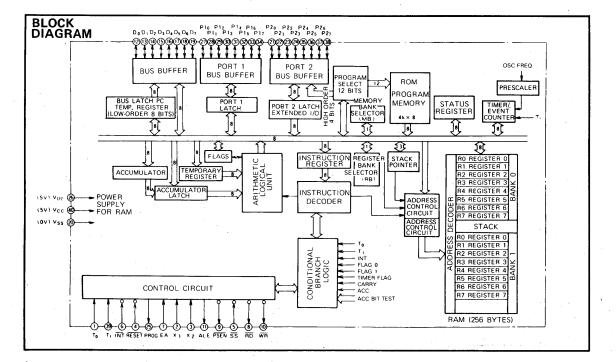
DESCRIPTION

The M5M8050H-XXXP/M5M8040HP is an 8-bit parallel microcomputer fabricated on a single chip using N-channel silicon gate ED-MOS technology.

M5M8050H-XXXP	Internal ROM Type (4K Bytes)
M5M8040HP	External ROM Type

FEATURES


- Single 5V power supply
- Instruction cycle 1.36µs (min)
- Basic machine instructions . . 96 (1-byte instructions: 68)
- 4K-bytes memory addressing possible (direct addressing possible in 2K bytes memory)
- Memory capacity: ROM 4K bytes
 RAM 256 bytes
- 1/0 ports 27 lines
- Easily expandable Memory and I/O
- Subroutine nesting 8 levels
- External and timer/event counter interrupt, 1 level each
- Low power standby mode


APPLICATION

Control processor or CPU for a wide variety of applications

FUNCTION

The M5M8050H-XXXP/M5M8040HP is an 8-bit CPU, with memory (ROM, RAM) and timer/event counter interrupt all contained a single chip.

SINGLE-CHIP 8-BIT MICROCOMPUTER

PIN DESCRIPTION

Pin	Name	Input or output	Function
Vss	Ground		Normally connected to ground (0V).
Vcc	Main power supply		Connected to 5V power supply.
	Power supply		①Connected to 5V power supply.
VDD			②Used for memory hold when V _{CC} is cut.
		Input	Control signal from an external source for conditional jumping in a program. Jumping is dependent on
то	Test pin 0	Input	external conditions (JT0/JNT0).
		Output	②Used for outputting the internal clock signal (ENT0 CLK).
X1, X2	Crystal inputs	Input	External crystal oscillator or RC circuit input for generating internal clock signals.
A1, A2		mpar	An external clock signal can be input through X ₁ or X ₂ .
RESET	Reset	Input	Control used to initialize the CPU.
SS	Single step	Input	Control signal used in conjunction with ALE to stop the CPU through each instruction, in the single-step mode.
INT	Interrupt	Input	①Control signal from an external source for conditional jumping in a program. Jumping is dependent on external conditions (JNI).
- UNI	interrupt	mput	@Used for external interrupt to CPU.
			©Normally maintained at 0V.
EA	External access	Input	When the level is raised to 5V, external memory will be accessed. The M5M8040HP is raised to 5V.
			Read control signal used when the CPU requests data from external data memory or external device to
RD	Read control	Output	be transferred to the data bus.
			(MOVX A, @R _r , and INS A, BUS)
PSEN	Program store enable	Output	Strobe signal to fetch external program memory.
			Write control signal used when the CPU sends data through the data bus to external data memory or ex-
WB	Write control	Output	ternal device.
			(MOVX @R _r , A and OUTL BUS, A)
ALE	Address latch enable	Output	A signal used for latching the address on the data bus. An ALE signal occurs once during each cycle.
			DProvides true bidirectional bus transfer of instructions and data between the CPU and external mem-
		1	ory. Synchronizing is done with signals RD/WR. The output data is latched.
	4		When using external program memory, the output of the low-order 8 bits of the program counter are
D D	Data bus	1	synchronized with ALE. After that, the transfer of the instruction code or data from the external program
$D_0 \sim D_7$	Data bus	Input/output	memory is synchronized with PSEN.
			3The output of addresses for data using the external data memory is synchronized with ALE. After that,
			the transfer of data with the external data memory is synchronized with RD/WR.
			(MOVX A, @R _r , and MOVX @R _r , A)
		Input/output	①Quasi-bidirectional port. When used as an input port, FF16 must first be output to this port. After reset,
	Dent 2	input/output	when not used as an output port, nothing needs to be output.
P20~P27	Port 2	Output	$\text{@P2}_0 \sim \text{P2}_3$ output high-order 4 bits of the program counter when using external program memory.
		Input/output	③P20~P23 serve as a 4-bit I/O expander bus for the M5L8243P.
PROG	Program	Output	Strobe signal for M5L8243P I/O expander.
D1	Port 1	Input/output	Quasi-bidirectional port. When used as an input port, FF16 must first be output to this port. After reset,
P10~P17	Port 1	Input/output	when not used as an output port, nothing needs to be output.
			①Control signal from an external source for conditional jumping in a program. Jumping is dependent on
T ₁	Test pin 1	Input	external conditions (JT1/JNT1).
-			When enabled, event signals are transferred to the timer/event counter (STRT CNT).

SINGLE-CHIP 8-BIT MICROCOMPUTER

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter Conditions		Limits	Unit
Vcc	Supply voltage		-0.5~7	V
VDD	Supply voltage		-0.5~7	V
VI	Input voltage	With respect to VSS.	-0.5~7	V
Vo ·	Output voltage		-0.5~7	V
Pd	Power dissipation	T _a =25°C	1.5	w
Topr	Operating free-air temperature range		0~70	r
Tstg	Storage temperature range		- 65 ~ 150	ĉ

RECOMMENDED OPERATING CONDITIONS (Ta=0~70 °C, unless otherwise noted)

0			Unit		
Symbol	Parameter	Min	Nom	Max	Unit
Vcc	Supply voltage	4.5	5	5.5	V
V DD	Supply voltage	4.5	5	5.5	V
V ss	Supply voltage		0	·	V
Утнт	High-level input voltage, except X $_{1}$, X $_{2}$ and \overline{RESET}	2		Vcc	V
V1H2	High-level input voltage, X1, X2 and RESET	3.8		Vcc	V
VIL1	Low-level input voltage, except X 1, X 2 and RESET	-0.5		0.8	v
• VIL2	Low-level input voltage, X 1, X 2 and RESET	-0.5		0.6	V

ELECTRICAL CHARACTERISTICS ($T_a = 0 \sim 70$ °C, $V_{CC} = V_{DD} = 5V \pm 10\%$, $V_{SS} = 0V$, unless otherwise noted)

	Parameter	Test conditions	Limits			
Symbol		Test conditions	Min	Тур	Max	Unit
VOL	Low-level output voltage (BUS)	IOL = 2 mA			0.45	V
VOL1	Low-level output voltage (RD, WR, PSEN, ALE)	1 _{0L} =1.8mA			0.45	. V
VOL2	Low-level output voltage (PROG)	1 _{0L} = 1 mA		÷	0.45	v
VOL3	Low-level output voltage (for other outputs)	I _{OL} = 1.6mA			0.45	V
Vон	High-level output voltage (BUS)	I _{OH} =400μA	2.4			V
V OH1	High-level output voltage (RD, WR, PSEN, ALE)	$I_{OH} = -100 \mu A$	2.4			V
V OH2	High-level output voltage (for other outputs)	I _{OH} = -40μA	2.4			V
Li	Input leak current (T1, INT)	V _{SS} ≦VIN≦V _{CC} -	- 10		10	μA
loz	Output leak current (BUS, T0) high impedance state	$V_{SS} + 0.45 \leq V_{1N} \leq V_{CC}$	- 10		10	μA
Li i	Input leak current (PORT)	$V_{SS} + 0.45 \leq V_{IN} \leq V_{CC}$		- 0.2	-0.5	mA
1 12	Input leak current (RESET, SS)	$V_{SS}+0.45 \leq V_{IN} \leq V_{CC}$		-0.05		mA
DD	Supply current from V _{DD}			10	20	mA
DD +1 CC	Supply current from V _{DD} and V _{CC}			70	140	mA

SINGLE-CHIP 8-BIT MICROCOMPUTER

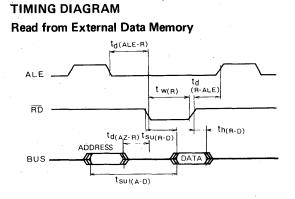
TIMING REQUIREMENTS (Ta=0~70°C, V_{CC}=V_{DD}=5V \pm 10%, V_{SS}=0V, unless otherwise noted)

6	B	Relationship to	Alternative	Limits			Unit
Symbol	Parameter	cycle time (t _C)	symbol	Min	Түр	Max	Unit
tc	Cycle time	1/(f _{XTAL} ÷ 15)	t _{CY}	1.36		15	μs
th(PSEN-D)	Data hold time after PSEN	1/10·t _c -30	t _{DR}	0		110	ns
th(R-D)	Data hold time after RD	$1/10 \cdot t_{\rm C} - 30$	t _{DR}	0		110	ns
tsu(PSEN-D)	Data setup time after PSEN	3/10·t _c -200	t _{RD2}			210	ns
t _{su(R-D)}	Data setup time after RD	2/5·t _c -200	t _{RD1}			350	ns
t _{su1(A-D)}	Data setup time after address (external data memory read cycle)	7/10·t _c -220	t _{AD1}				ńs
tsu2(A-D)	Data setup time after address (external program memory read cycle)	1/2·t _c -200	t _{AD2}			460	ns
tsu(PROG-D)	Data setup time after PROG	6/10·t _c - 120	t _{PR}			700	ns
th(PROG-D)	Data hold time after PROG	1/10-t _c	t _{PF}	0		140	ns

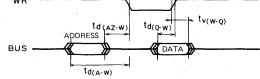
Note 1: The input voltages are V $_{IL}$ =0.45V and V $_{IH}$ =2.4V.

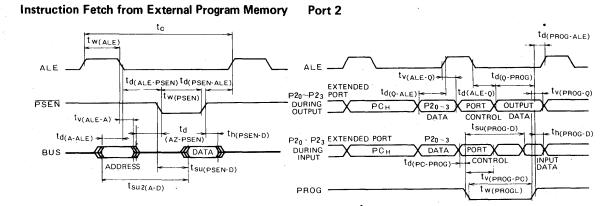
2: f XTAL is the oscillator frequency entered at the crystal input terminals (X1, X2).

$\label{eq:switching characteristics} \text{ (T}_a = 0 \sim 70\, \text{°C}, \ \text{V}_{\text{CC}} = \text{V}_{\text{DD}} = 5 \text{V} \pm 10\%, \ \text{V}_{\text{SS}} = 0 \, \text{V}, \ \text{unless otherwise noted})$


Symbol	Parameter	Relationship to	Alternative	Limits			Unit
Symbol	Farameter	cycle time (t _C)	symbol	Min	Тур	Max	
tw(ALE)	ALE pulse width	7/30·t _c - 170	t _{LL}	150			ns
td (A-ALE)	Delay time, address to ALE signal	2/15·t _C -110	tAL	70			ns
tv (ALE-A)	Address valid time after ALE	$1/15 \cdot t_{\rm C} - 40$	tLA	50			ns
tw(PSEN)	PSEN pulse width	2/5·t _c -200	t _{CC2}	350	-	-	ns
t _{w(R)}	RD pulse width	1/2·t _c -200	t _{CC1}	480			ns
tw(w)	WR pulse width	1/2·t _c -200	t _{CC1}	480			ns
td (Q-w)	Delay time, data to WR signal	13/30·t _c -200	t _{DW}	390			ns
t _v (w-q)	Data valid time after WR	1/15·t _c -50	twD	40			ns
td (A-w)	Delay time, address to WR signal	1/3·t _c -150	t _{AW}	300			ns
td (AZ-R)	Delay time, address disable to RD signal	2/15·t _c -40	t _{AFC1}	140			ns
td (AZ-W)	Delay time, address disable to WR signal	$2/15 \cdot t_{\rm C} - 40$	t _{AFC1}	140			ns
td (AZ-PSEN)	Delay time, address disable to PSEN signal	1/30·t _c -40	t _{AFC2}	10			ns
td (ALE-R)	Delay time, ALE to RD signal	$1/5 \cdot t_{\rm C} - 75$	t _{LAFC1}	200			ns
td (ALE-W)	Delay time, ALE to WR signal	$1/5 \cdot t_{\rm C} - 75$	t _{LAFC1}	200			ns
td (ALE-PSEN)	Delay time, ALE to PSEN signal	$1/10 \cdot t_{C} - 75$	t LAFC2	60			ns
td (R-ALE)	Delay time, RD to ALE signal	1/15·t _c -40	t _{CA1}	50		•	ns
td (W-ALE)	Delay time, WR to ALE signal	1/15·t _c -40	t _{CA1}	50			ns
td (PROG-ALE)	Delay time, PROG to ALE signal	1/15·tc-40	t _{CA1}	50			ns
td (PSEN-ALE)	Delay time, PSEN to ALE signal	4/15·t _c -40	t _{CA2}	320			ns
td (PC-PROG)	Delay time, Port control to PROG signal	2/15 t _C -80	t _{CP}	100			ns
tv (PROG-PC)	Port control valid time after PROG	4/15·t _c -200	t _{PC}	160			ns
td (Q-PROG)	Delay time, Data to PROG signal	2/5·t _c - 150	t _{DP}	400			ns
tv (PROG-Q)	Data valid time after PROG	$1/10 \cdot t_{\rm C} - 50$	t _{PD}	90			ns
tw(PROGL)	PROG low pulse width	$7/10 \cdot t_{\rm C} - 250$	t _{PP}	700			ns
td (Q-ALE)	Delay time, Data to ALE signal	4/15·t _c -200	t _{PL}	160			ns
tv (ALE-Q)	Data valid time after ALE	$1/10 \cdot t_{\rm C} - 100$	t _{LP}	40			ns
td (ALE-Q)	Delay time, ALE to data	3/10·t _c + 100	t _{PV}			510	ns
tw(To)	T ₀ pulse period	3/15·tc	t OPBR	270			ns

Note 3: Conditions of measurement: control output $C_L=80pF$ data bus output, port output $C_L=150pF$.


4: Reference levels for input/output voltages are low-level=0.8V and high-level=2V.



SINGLE-CHIP 8-BIT MICROCOMPUTER

Write to External Data Memory

SINGLE-CHIP 8-BIT MICROCOMPUTER

DESCRIPTION

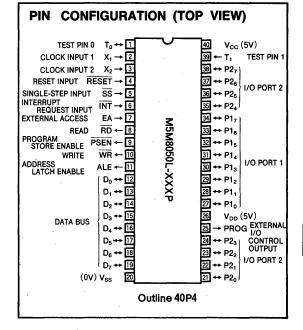
The M5M8050L-XXXP and M5M8040LP are 8-bit parallel microcomputers fabricated on a single chip using N-channel silicon gate ED-MOS technology.

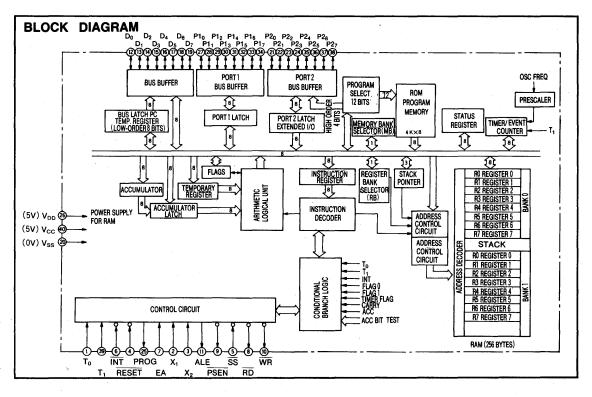
FEATURES

- Single 5V power supply

- Basic machine instructions ·····96(1-byte instructions: 68)
- 4K-bytes memory addressing possible (direct addressing possible in 2K bytes memory)

Memory capacity: ROM 4K bytes


- Built-in uniter/event counter 20 bits
 I/O ports 27 lines
- Easily expandable memory and I/O
- Subroutine nesting8 levels
- External and timer/event counter interrupt, 1 level each
- Low power standby mode


APPLICATION

Control processor or CPU for a wide variety of applications

FUNCTION

The M5M8050L-XXXP and M5M8040LP are integrated 8 bit CPU_s, with memory (ROM (except M5M8040LP), RAM) and timer/event counter interrupt all contained on a single chip.

SINGLE-CHIP 8-BIT MICROCOMPUTER

PIN DESCRIPTION

Pin	Name	Input or output	Function
Vss	Ground		Normally connected to ground (0V).
Vcc	Main power supply		Connected to 5V power supply.
V _{DD}	Power supply	N I	$\textcircledtime{\label{eq:constraint}}$ $\textcircledtime{\linewidth}$ $\textcircledtime{\linewidth}$ $\textcircledtime{\linewidth}$ $time{\linewid$
То	Test pin 0	Input	©Control signal from an external source for conditional jumping in a program. Jumping is dependent on external conditions (JT0/JNT0).
	6 H 62	Output	@Used for outputting the internal clock signal (ENT0 CLK).
X ₁ , X ₂	Crystal inputs	Input	External crystal oscillator or RC circuit input for generating internal clock signals. An external clock signal can be input through X_1 or X_2 .
RESET	Reset	Input	Control used to initialize the CPU.
SS	Single step	Input	Control signal used in conjunction with ALE to stop the CPU through each instruction, in the single-step mode.
INT	Interrupt	Input	 ①Control signal from an external source for conditional jumping in a program. Jumping is dependent on external conditions (JNI). ②Used for external interrupt to CPU.
EA	External access	Input	①Normally maintained at 0V. ②When the level is raised to 5V, external program memory will be accessed.
RD	Read control	Output	Read control signal used when the CPU requests data from external data memory or external device to be transferred to the data bus. (MOVX A, @R _f , and INS A, BUS)
PSEN	Program store enable	Output	Strobe signal to fetch external program memory.
WR	Write control	Output	Write control signal used when the CPU sends data through the data bus to external data memory or external device. (MOVX @R _r , A and OUTL BUS, A)
ALE	Address latch enable	Output	A signal used for latching the address on the data bus. An ALE signal occurs once during each cycle.
			$\textcircled{\tilde{D}}$ Provides true bidirectional bus transfer of instructions and data between the CPU and external memory. Synchronizing is done with signals $\fbox{\tilde{RD}}/\r{WR}$. The output data is latched.
D ₀ ~D ₇	Data bus	Input/output	When using external program memory, the output of the low-order 8 bits of the program counter are synchronized with ALE. After that, the transfer of the instruction code or data from the external program memory is synchronized with PSEN.
			(3)The output of addresses for data using the external data memory is synchronized with ALE. After that, the transfer of data with the external data memory is synchronized with $\overline{\text{RD}}/\overline{\text{WR}}$. (MOVX A, $@R_r$, and MOVX $@R_r$, A)
	D-10	Input/output	\textcircled{O} Quasi-bidirectional port. When used as an input port, FF_{16} must first be output to this port. After reset, when not used as an output port, nothing needs to be output.
P20~P27	Port 2	Output	$\text{@P2}_0 \sim \text{P2}_3$ output high-order 4 bits of the program counter when using external program memory.
		Input/output	$\P2_0 \sim P2_3$ serve as a 4-bit I/O expander bus for the M5L8243P.
PROG	Program	Output	Strobe signal for M5L8243P I/O expander.
P1 ₀ ~P1 ₇	Port 1	Input/output	Quasi-bidirectional port. When used as an input port, FF ₁₆ must first be output to this port. After reset, when not used as an output port, nothing needs to be output.
T ₁	Test pin 1	Input	 ①Control signal from an external source for conditional jumping in a program. Jumping is dependent on external conditions (JT1/JNT1). ②When enabled, event signals are transferred to the timer/event counter (STRT CNT).

SINGLE-CHIP 8-BIT MICROCOMPUTER

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Limits	Unit
Vcc	Supply voltage		-0.5~7	v
VDD	Supply voltage		-0.5~7	v
V,	Input voltage	With respect to V _{SS}	-0.5~7	v
Vo /	Output voltage		-0.5~7	v
Pd	Power dissipation	$T_a = 25^{\circ}C$	1.5	W
Topr	Operating free-air temperature range		0~70	ĉ
Tstg	Storage temperature range		65~150	ĉ

RECOMMENDED OPERATING CONDITIONS ($T_a = 0 \sim 70^{\circ}C$, unless otherwise noted)

Symbol	Parameter		Unit		
Symbol	Farameter	Min	Nom	Max	Unit
V _{cc}	Supply voltage	4.5	5	5.5	v
V _{DD}	Supply voltage	4.5	5	5.5	v
Vss	Supply voltage		0		v
V _{IH1}	High-level input voltage, except X1, X2 and RESET	2		V _{cc}	v
VIH2	High-level input voltage, X1, X2 and RESET	3.8		V _{cc}	v
VIL1	Low-level input voltage, except X1, X2 and RESET	-0.5		0.8	v
VIL2	Low-level input voltage, X1, X2 and RESET	-0.5		0.6	v

ELECTRICAL CHARACTERISTICS ($T_a = 0 \sim 70^{\circ}$ C, $V_{CC} = V_{DD} = 5V \pm 10\%$, $V_{SS} = 0V$, unless otherwise noted)

Symbol		Took and dialogo		Limits		
	Parameter	Test conditions	Min	Тур	Max	Unit
VOL	Low-level output voltage (BUS)	$I_{OL} = 2mA$			0.45	V
V _{OL1}	Low-level output voltage (RD, WR, PSEN, ALE)	$I_{OL} = 1.8 \text{ mA}$			0.45	v
VOL2	Low-level output voltage (PROG)	$I_{OL} = 1 mA$			0.45	v
V _{OL3}	Low-level output voltage (for other outputs)	$I_{OL} = 1.6 \text{mA}$			0.45	v
V _{он}	High-level output voltage (BUS)	$I_{OH} = -400 \mu A$	2.4			v
V _{OH1}	High-level output voltage (RD, WR, PSEN, ALE)	$I_{OH} = -100 \mu A$	2.4			V,
V _{OH2}	High-level output voltage (for other outputs)	$I_{OH} = -40 \ \mu A$	2.4			V
li –	Input leak current (T1, INT)	$V_{SS} \leq V_{IN} \leq V_{CC}$	-10		10	μA
loz	Output leak current (BUS, T ₀), high-impedance state	$V_{SS} + 0.45 \le V_{IN} \le V_{CC}$	-10		10	μA
he .	Input leak current (Port)	$V_{SS} + 0.45 \le V_{IN} \le V_{CC}$		-0.2	-0.5	mA
112	Input leak current (RESET, SS)	$V_{SS} + 0.45 \le V_{IN} \le V_{CC}$		-0.05		mA
I _{DD}	Supply current from V _{DD}			5	10	mA
$I_{DD} + I_{CC}$	Supply current from V _{DD} and V _{CC}				90	mA

4-41

M5M8050L-XXXP/M5M8040LP

SINGLE-CHIP 8-BIT MICROCOMPUTER

50.0

TIMING REQUIREMENTS ($\tau_a = 0 \sim 70^{\circ}$ C, $v_{cc} = v_{DD} = 5V \pm 10\%$, $v_{ss} = 0V$, unless otherwise noted)

Symbol	Deservation	Relationship to	Alternative	Limits			
Symbol	Parameter	cycle time (t _C)	symbol	Min	Тур	Max	Unit
tc	Cycle time	1/ (f _{XTAL} ÷ 15)	toy	2.5		15	μs
th (PSEN-D)	Data hold time after PSEN	1/10 • t _c — 30	t _{DR}	0		220	ns
th (R-D)	Data hold time after RD	1/10 • t _c — 30	t _{DR}	0		220	ns
tsu (PSEN-D)	Data setup time after PSEN	3/10 • t _c - 200	t _{RD2}			550	ns
tsu (R-D)	Data setup time after RD	$2/5 \cdot t_{\rm C} - 200$	t _{RD1}			800	ns
tsu1 (A-D)	Data setup time after address (external data memory read cycle)	7/10 • t _c − 220	t _{AD1}		• .	1530	ns
SU2 (A-D)	Data setup time after address (external program memory read cycle)	$1/2 \cdot t_{\rm c} - 200$	t _{AD2}			1050	ns
tsu (prog-d)	Data setup time after PROG	6/10 · t _c - 120	ten			1380	ns
h (PROG-D)	Data hold time after PROG	1/10 • to	ter	0		250	ns

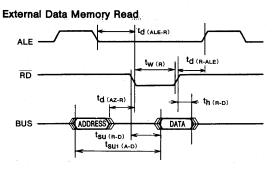
Note 1 : The input voltage level is $V_{IL} = 0.45V$ and $V_{IH} = 2.4V$.

2 : f_{XTAL} is the oscillator frequency entered at the crystal input terminals (X₁, X₂).

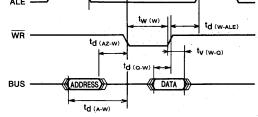
HER SET YEARS MICH.

SWITCHING CHARACTERISTICS ($T_a = 0 \sim 70$ °C, $V_{cc} = V_{DD} = 5V \pm 10\%$, $V_{ss} = 0V$, unless otherwise noted)

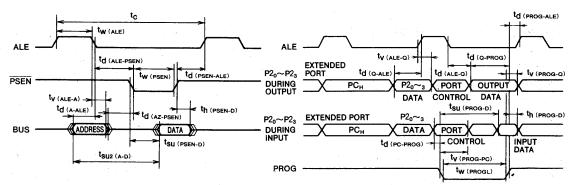
Symbol	Parameter	Relationship to	Alternative	Limits			Unit
Symbol	Parameter	cycle time (t _C)	symbol	Min	Тур	Max	Unit.
tw (ALE)	ALE pulse width	7/30. • t _c − 170	t _{LL}	410			ns
td (A-ALE)	Address to ALE signal delay time	2/15 • t _c - 110	t _{AL}	220			ns
t _{V (ALE-A)}	Address valid time after ALE	$1/15 \cdot t_{c} - 40$	tLA	120			ns
tw (PSEN)	PSEN pulse width	$2/5 \cdot t_{\rm c} - 200$	tccz	800			ns
tw (R)	RD pulse width	$1/2 \cdot t_{\rm C} - 200$	t _{CC1}	1050		5	ns
tw (w)	WR pulse width	$1/2 \cdot t_{\rm c} - 200$	t _{CC1}	1050			ns
td (q-w)	Data to WR signal delay time	$13/30 \cdot t_{\rm C} - 200$	tow	880	$x \in \mathcal{U}$		ns
t _{v (w-q)}	Data valid time after WR	1/15 • t _c 50	twp	120	· .		ns
td (A-W)	Address to WR signal delay time	$1/3 \cdot t_{\rm C} - 150$	t _{AW}	680			ns
td (AZ-R)	Address disable to RD signal delay time	2/15 • t _c - 40	t _{AFC1}	290			ns
td (AZ-W)	Address disable to WR signal delay time	2/15 • t _c - 40	t _{AFC1}	290			ns
td (AZ-PSEN)	Address disable to PSEN signal delay time	1/30 • t _c - 40	t _{AFC2}	40			ns
td (ALE-R)	ALE to RD signal delay time	1/5 • t _c — 75	t _{LAFC1}	420			ns
td (ALE-W)	ALE to WR signal delay time	1/5 • t _c — 75	t _{LAFC1}	420			ns
td (ALE-PSEN)	ALE to PSEN signal delay time	1/10 • t _c - 75	t _{LAFC2}	170			ns
td (R-ALE)	RD to ALE signal delay time	$1/15 \cdot t_{\rm c} - 40$	t _{CA1}	120			ns
td (W-ALE)	WR to ALE signal delay time	$1/15 \cdot t_{c} - 40$	tCA1	120			ns
td (PROG-ALE)	PROG to ALE signal delay time	1/15 • t _c — 40	t _{CA1}	120			ns
td (PSEN-ALE)	PSEN to ALE signal delay time	$4/15 \cdot t_{\rm c} - 40$	t _{CA2}	620			ns
td (PC-PROG)	Port control to PROG signal delay time	$2/15 \cdot t_{c} - 80$	t _{CP}	250			ns
ty (PROG-PC)	Port control valid time after PROG	$4/15 \cdot t_{c} - 200$	t _{PC}	460			ns
td (Q-PROG)	Data to PROG signal delay time	2/5 · t _c — 150	t _{DP}	850			ns
ty (PROG-Q)	Data valid time after PROG	$1/10 \cdot t_{\rm c} - 50$	t _{PD}	200			ns
tw (PROGL)	PROG low-level pulse width	7/10 · t _c - 250	tpp	1500			ns
td (Q-ALE)	Data to ALE signal delay time	$4/15 \cdot t_{\rm c} - 200$	t _{PL}	460			ns
tv (ALE-Q)	Data valid time after ALE	$1/10 \cdot t_{c} - 100$	t _{LP}	150			ns
td (ALE-Q)	Delay time after ALE	$3/10 \cdot t_{c} + 100$	t _{PV}			850	ns
tw (то)	T ₀ pulse spacing	3/15 • t _c	toper	500			ns


Note 3 : Conditions of measurement: control output $C_L = 80_PF$ data bus output, port output $C_L = 150_PF$.

4 : Reference levels for input/output voltages are low-level = 0.8V high-level = 2V.


SINGLE-CHIP 8-BIT MICROCOMPUTER

TIMING DIAGRAM



External Program Memory Instruction Fetch

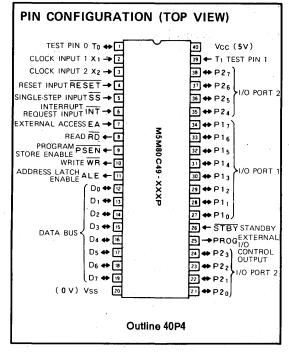
External Data Memory Write

Port 2

M5M80C49-XXXP/M5M80C39P-6

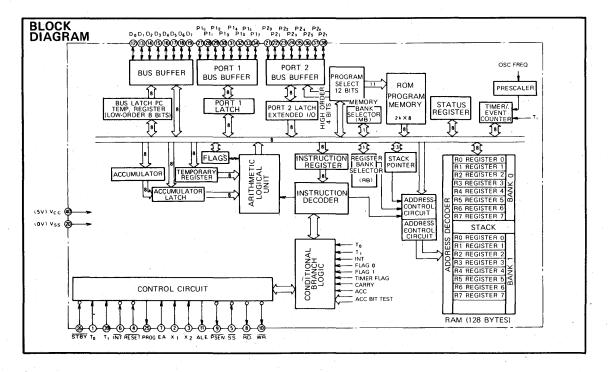
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

DESCRIPTION


The M5M80C49-XXXP and M5M80C39P-6 are 8-bit parallel microcomputer fabricated on a single chip using silicon gate CMOS technology.

FEATURES

Single 5V power supply
• Instruction cycle 2.5µs (min)
Basic machine instructions
1-byte instructions 69
2-byte instructions
• Direct addressing up to 4096 bytes
Internal ROM (except M5M80C39P-6) 2048 bytes
Internal RAM 128 bytes
Built-in timer/event counter
• 1/0 ports 27 lines
 Easily expandable memory and I/O
• Subroutine nesting
• External and time/event counter interrupt, 1 level each
High noise margin
 Low power dissipation modes (Vcc = 5V)
Operating 50mW
HALT mode · · · · · · · · · · · · · · · · · · ·
Stand by $\ldots \ldots 50 \mu W$


APPLICATION

Control processor for a wide variety of applications

FUNCTION

The M5M80C49-XXXP and M5M80C39P-6 are integrated 8-bit CPU, with memory (ROM, RAM) and timer/event counter interrupt all contained on a single chip.

MITSUBISHI MICROCOMPUTERS M5M80C49-XXXP/M5M80C39P-6

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

PIN DESCRIPTION

Pin	Name	Input or output	Function
Vss	Ground		Normally connected to ground (0V).
Vcc	Main power supply		Connected to 5V power supply.
STBY	Standby		①Connected to 5V power supply during normal operation.
SIBI	Standby	Input	O Used when entering the standby mode. Power dissipation is reduced by connecting this to 0V.
То	Test pin 0	Input	①Control signal from an external source for conditional jumping in a program. Jumping is dependent on external conditions (JT0/JNT0).
		Output	②Used for outputting the internal clock signal (ENT0 CLK).
X1, X2	Crystal inputs	Input	External crystal oscillator or RC circuit input for generating internal clock signals.
A1, A2	Crystal Inputs	niput	An external clock signal can be input through X1 or X2.
RESET	Reset	Input	Control used to initialize the CPU.
SS	Single step	Input	Control signal used in conjunction with ALE to stop the CPU through each instruction, in the single-step mode.
INT	Interrupt	Input	①Control signal from an external source for conditional jumping in a program. Jumping is dependent on external conditions (JNI). ②Used for external interrupt to CPU.
	· · · · · · · · · · · · · · · · · · ·		
EA	External access	Input	①Normally maintained at 0V. ②When the level is raised to 5V, external memory will be accessed even when the address is less than
EA	External access	mput	400 ₁₆ (2048). The M5M80C39P is raised to 5V.
· ••••••••••••			Read control signal used when the CPU requests data from external data memory or external device to
RD	Read control	Output	be transferred to the data bus.
			(MOVX A, @R _r , and INS A, BUS)
PSEN	Program store enable	Output	Strobe signal to fetch external program memory.
			Write control signal used when the CPU sends data through the data bus to external data memory or ex-
WR	Write control	Output	ternal device.
			(MOVX @R _r , A and OUTL BUS, A)
ALE	Address latch enable	Output	A signal used for latching the address on the data bus. An ALE signal occurs once during each cycle.
	·		①Provides true bidirectional bus transfer of instructions and data between the CPU and external mem-
			ory. Synchronizing is done with signals RD/WR. The output data is latched.
			When using external program memory, the output of the low-order 8 bits of the program counter are
D ₀ ~D ₇	Data bus	Input/output	synchronized with ALE. After that, the transfer of the instruction code or data from the external program
00 07	Data Duo	input output	memory is synchronized with PSEN.
			$\ensuremath{\mathfrak{I}}$ The output of addresses for data using the external data memory is synchronized with ALE. After that,
			the transfer of data with the external data memory is synchronized with RD/WR.
			(MOVX A, @R _r , and MOVX @R _r , A)
		input/output	①Quasi-bidirectional port. When used as an input port, FF ₁₆ must first be output to this port. After reset,
P20~P27	Port 2		when not used as an output port, nothing needs to be output.
. =0 . =7		Output	②P2 ₀ ~P2 ₃ output high-order 4 bits of the program counter when using external program memory.
		Input/output	③P20~P23 serve as a 4-bit I/O expander bus for the M5M82C43P.
PROG	Program	Output	Strobe signal for M5M82C43P I/O expander.
P10~P17	Port 1	Input/output	Quasi-bidirectional port. When used as an input port, FF16 must first be output to this port. After reset,
			when not used as an output port, nothing needs to be output.
.	Test sin 1	1	(UControl signal from an external source for conditional jumping in a program. Jumping is dependent on
Τ1	Test pin 1	Input	external conditions (JT1/JNT1).
	l	I	When enabled, event signals are transferred to the timer/event counter (STRT CNT).

. .

MITSUBISHI MICROCOMPUTERS M5M80C49-XXXP/M5M80C39P-6

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Condtions	Limits	Unit
Vcc	Supply voltage		V _{SS} -0.3~7	V
· VI	Input voltage		Vss-0.3~Vcc+0.3	V
Vo	Output voltage		V _{SS} -0.3~V _{CC} +0.3	V
Pd	Power dissipation	T _a ≔25°C	1.5	w
Topr	Operating free-air temperature range	· · ·	-40~85	τ
Tstg	Storage temperature range		- 65 ~ 150	r

RECOMMENDED OPERATING CONDITIONS (Ta = -40~85°C, unless otherwise noted)

Symbol	Devenuetar		Unit		
Symbol	Parameter		Тур	Max	Unit
Vcc	Supply voltage	4.5	5	5.5	V
Vss	Supply voltage		0		V
VIH1	High-level input voltage, except EA, \overrightarrow{RESET} , X ₁ , X ₂	0.7×V _{CC}		Vcc	v
Vi H2	High-level input voltage, EA, RESET, X1, X2	0.8×Vcc		Vcc	V
VIL	Low-level input voltage, except EA, RESET, X1, X2	Vss		$0.3 \times V_{CC}$	v
VIL	Low-level input voltage, EA, RESET, X1, X2	Vss		0.2×V _{CC}	V

$\label{eq:expectation} \textbf{ELECTRICAL CHARACTERISTICS} \; (\; \texttt{T}_a = -40 \sim \texttt{85^{\circ}C}, \; \; \texttt{V}_{\text{CC}} = \texttt{5V} \pm 10\%, \; \; \texttt{V}_{\text{SS}} = \texttt{0V}, \; \texttt{unless otherwise noted} \;)$

Querteal	De	Test and distant	Limits			
Symbol Parameter		Test conditions	Min	Тур	Max	Unit
Voć	Low-level output voltage	I _{OL} =2mA			0.45	. V .
VOH1	High-level output voltage, except P10~P17, P20~P27	$I_{OH} = -400 \mu \text{A}$	0.75×Vcc			v
V _{OH2}	High-level output voltage, P10~P17, P20~P27	$I_{OH} = -1 \mu A$	0.75×Vcc			v
11	Input current, T1, INT, SS, EA, STBY	V _{SS} ≦V _{IN} ≦V _{CC}	- 10		10	μA
loz	Output current, BUS, To, high impedance state	V _{SS} ≦V _{IN} ≦V _{CC}	- 10		10	μA
11L1	Input current during low level, Port	V _{IL} =V _{SS}		- 50		μA
112	Input current during low level, RESET	V _{IL} =V _{SS}		- 50		μA
I cc	Supply current	at 6MHz			10	mΑ
1 cc	Supply current during HALT	at 6MHz (Note 1)			3	mA
I CC	Supply current during STAND BY	(Note 1)			10	μA
VCC(STB)	Stand by power supply voltage		2			v

Note 1. BUS, T₀, T₁, EA, \overline{SS} , \overline{STBY} , \overline{RESET} , $\overline{INT} = V_{CC}$ or V_{SS}

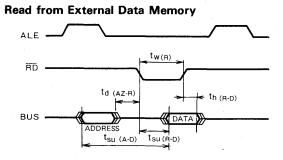
TIMING REQUIREMENT ($T_a = -40 \sim 85^{\circ}$ C, $V_{CC} = 5 V \pm 10\%$, $V_{SS} = 0V$, unless otherwise noted)

Symbol	······································	Alternative				
	Parameter	symbol	Min	Тур	Max	Unit
tc	Cycle time	t _{CY}	2.5		15	μs
th (PSEN-D)	Data hold time after PSEN	t _{DR}	0		200	ns
th(R-D)	Data hold time after RD	t _{DR}	0		200	, ns
t _{su (PSEN-D)}	Data setup time after PSEN	t _{RD}			500	ns
t _{su (R-D)}	Data setup time after RD	t _{RD}			500	ns
t _{su (A-D)}	Data setup time after ADDRESS	t _{AD}			950	ns
tsu (PROG-D)	Data setup time after PROG	t _{PR}			810	ns
th (PROG-D)	Data hold time after PROG	t _{PF}	0		150	ns

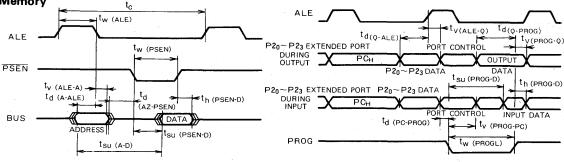
MITSUBISHI MICROCOMPUTERS M5M80C49-XXXP/M5M80C39P-6

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

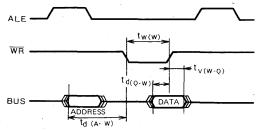
SWITCHING CHARACTERISTICS ($T_a = -40 \sim 85 \, \text{C}$, $V_{CC} = 5 \, \text{V} \pm 10\%$, $V_{SS} = 0 \text{V}$, unless otherwise noted)


• • •	Baramatar	Alternative				
Symbol	Parameter	symbol	Min	Тур	Max	Unit
tw(ALE)	ALE pulse width	tLL	400			ns
td (A-ALE)	Delay time, address to ALE signal	tAL	150			ns
t _v (ALE-A)	Address valid time after ALE	t _{LA}	80			ns
tw(PSEN)	PSEN pulse width	t _{cc}	700			ns
t _{w(R)}	RD pulse width	t _{CC}	700			ns
t _{w(w)}	WR pulse width	too	700			ns
t _d (q-w)	Delay time, data to WR signal	t _{DW}	500			ns
t _{v (w-q)}	Data valid time after WR	t _{wD}	120			ns
t _{d (A-W)}	Delay time, address to WR signal	t _{AW}	230			ns
td (AZ-R)	Delay time address floating to RD signal	tafc	0			ns
td(AZ-PSEN)	Delay time, address floating to PSEN signal	tafc	0			· ns
td(PC-PROG)	Delay time, port control to PROG signal	t _{CP}	110			ns
t _v (prog-pc)	Port control valid time after PROG	t _{PC}	140			ns
td(Q-PROG)	Delay time, data to PROG signal	t _{DP}	220			ns
t _{v(PROG-Q)}	Data valid time after PROG	t _{PD}	65			ins
tw(PROGL)	PROG low pulse width	tpp	1510			ns
td (Q-ALE)	Data time data to ALE	t _{PL}	400			ns
tv (ALE-Q)	Data valid time after ALE	t _{LP}	100			ns

Note: Conditions of measurement: control output $C_L = 80 pF$


data bus output, port output C_L = 150pF tc = 2.5μ s

TIMING DIAGRAM


Instruction Fetch from External Program Memory

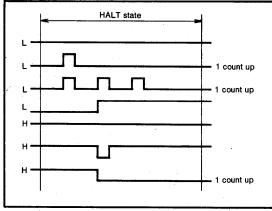
Port 2

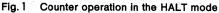
Write to External Data Memory

4

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

Low power dissipation mode


(1) HALT mode


It will be in HALT mode when HALT instruction is executed and program execution is stopped. In HALT mode, only the basic clock operates and the others are all in the halt state. MCU keeps the contents of the registers in the state before the execution of HALT instrucitons.

The pin conditions are shown below.

Table 1

Pin	Conditions
	Output mode : Data output
Data bus	Input mode : High inpedence
	(Input mode for M5M80C39P-6)
Ports 1, 2	Port data output
ALE	L
PSEN, RD	Н
WR, PROG	
Τφ	Provided clock is continued
T1	The first pulse input is effective.
(counter input)	After the reset of Halt mode, the count continues.
(Timer)	Halt

The HALT mode can be cleared by the following 2 methods

(i) By RESET input

When $\overrightarrow{\text{RESET}}$ input goes "L", an internal state is initialized as same as the normal reset operation, and the program starts from address 0.

(ii) By INT input

When $\overline{\text{INT}}$ input gose "L", and if it is in the interupt enable state, the interrupt sequence will start after executing the 2en instruction following HALT instructions.

If is the interrupt disable state, the program exeution starts from the next address to HALT instructions.

(2) Standby mode

It will be in Stnadby mode when STBY input goes "L" after setting RESET input to "L". In standby mode, all operations including clock stop, and only the contents of the buit-in RAM are maintained. For the standby mode reset, let STBY pin "H", Keeping RESET input low, and then let RESET input input "H". After that the internal state is inilialized and program excuition starts from address 0.

Control method of standby mode (Example)

Place the capacitor to RESET pin, as shown in Fig 2, in order to make th standby mode control easier, so that the standby mode can be controlled by only contolling STBY pin.

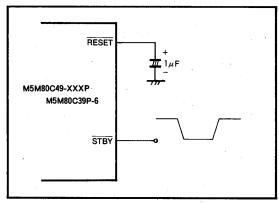


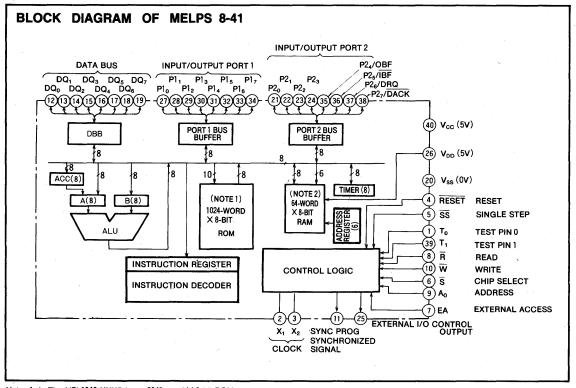
Fig. 2 Control circuit example for standby mode

MELPS 8-41 SLAVE MICROCOMPUTERS

5

. . î.

FUNCTIONS OF MELPS 8-41 SLAVE MICROCOMPUTERS


DESCRIPTION

The MELPS 8-41 family is a general-purpose 8-bit CPU peripheral LSI microcomputer series configured internally with a CPU, RAM, ROM, I/O ports, timer and other functions. These microcomputers function independently of external connections but since they operate based on the instructions from the CPU (master CPU) that employs these LSIs as the peripheral LSIs, they are known as slave microcomputers.

Data is passed to and from the master CPU and slave microcomputers asynchronously through the buffer registers built into the MELPS 8-41 and therefore, when seen from the master CPU side, the LSI can be treated in every way like an ordinary peripheral LSI. Since the MELPS 8-41 has a built-in microcomputer, its functions can be changed easily simply by altering the program of the internal ROM.

MELPS 8-41 SLAVE MICROCOMPUTER FAMILY

	Innut clock		Capacity		
Type name	Input clock (MHz)	ROM	RAM	1/0	Technology used
	(MHZ)	(bytes)	(bytes)	(ports)	
M5L8041A-XXXP	6	1024	64	18	ED NMOS
M5L8042-XXXP	12	2048	128	18	ED NMOS

Note 1 : The M5L8042-XXXP has a 2048-word × 8-bit ROM. 2 : The M5L8042-XXXP has a 128-word × 8-bit RAM.

MELPS 8-41 SLAVE MICROCOMPUTERS

FUNCTIONS OF MELPS 8-41 SLAVE MICROCOMPUTERS

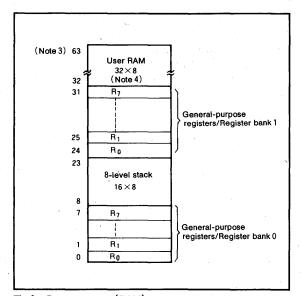
BASIC FUNCTION BLOCKS

Program Memory (ROM)

The M5L8041A-XXXP contains a 1042-byte ROM while the M5L8042-XXXP has a built-in 2048-byte ROM. The program for the user application is stored in this ROM. Addresses 0, 3 and 7 of the ROM are reserved for special functions. Table 1 shows the meaning and functions of these special addresses.

Table 1 Reserved, defined addresses and their meanings and functions

Address	Meaning and function
0	The first instruction executed after a system reset.
3	The first instruction executed after an external interrupt is accepted.
7	The first instruction executed after a timer interrupt, based on the timer/event counter, is accepted.


Data Memory (RAM)

The M5L8041A-XXXP has a built-in 64-byte (128 bytes for M5L8042-XXXP) RAM. The RAM is used for data storage and manipulation and it is divided into sections for more efficient processing. Addresses $0 \sim 7$ and $24 \sim 31$ form two banks of general-purpose registers that can be directly addressed. Addresses $0 \sim 7$ compose bank 0 and are numbered R₀ ~ R₇. Addresses $24 \sim 31$ compose bank 1 and are also numbered R₀ ~ R₇. Only one bank is active at a time. The instructions SEL RB0 and SEL RB1 are used to select the working bank. Fig. 1 shows the division of the RAM and its mapping. The remaining sections, addresses 32 and above, must be accessed indirectly using the general-purpose registers R₀ or R₁. Of course, all addresses can be indirectly accessed using the general-purpose registers R₀ and R₁.

A good practice to simplify programming is to reserve general-purpose register bank 0 for use of the main program and register bank 1 for interrupt programs. For example, if register bank 0 (addresses $0 \sim 7$) is reserved for processing data by the main program, when an interrupt is accepted, the first instruction would be to switch the working registers from bank 0 to bank 1. This saves the data of the main program (addresses $0 \sim 7$). The interrupt program can then freely use register bank 1 (addresses $24 \sim 31$) without destroying or altering data of the main program. When the interrupt processing is complete and control is returned to the main program by the RETR instruction, register bank 0 (in this example) is automatically restored as the working register bank at the same time the main program counter is restored.

Addresses $8 \sim 23$ comprise an 8-level program counter stack. More information on using the stack is found in the section on the program counter and stack and so reference should be made here for further details.

The general-purpose registers and program counter stack sections may be used in exactly the same way as the other RAM sections.

Fig.1 Data memory (RAM)

Note 3 : The corresponding address is 127 for the M5L8042-XXXP. 4 : The corresponding capacity is 96 × 8 for the M5L8042-XXXP.

FUNCTIONS OF MELPS 8-41 SLAVE MICROCOMPUTERS

Program Counter (PC) and Stack (SK)

The M5L8041A-XXXP has a 10-bit (11 bits for the M5L8042-XXXP) program counter which is illustrated in Fig. 2.

When an interrupt or a subroutine call has occurred, the program currently being executed is interrupted and the execution flow transters to the interrupt program or subroutine. When such a condition has been encountered, the value currently stored in the program counter is saved for use when restarting execution of the original program flow. The place where these program counter values are stored is the program counter stack. In addition to the program counter, the high-order 4 bits of the PSW (program status word), which will be described later, are saved in the stack. Addresses 8~23 of the RAM are used for this purpose. 10 bits (or 11 bits for the M5L8042-XXXP) for the PC and 4 bits for the PSW are saved. Therefore, a RAM capacity of 2 bytes (16 bits) is used for each time. This means that it is possible to use the program counter stack with the RAM 8~23 addresses to store both the PSW and program counter on top of each other up to 8 levels. This situation is indicated in Fig. 3.

The 3-bit stack pointer indicates at which level data is being stored in the stack. The stack pointer is also a part of the PSW but it is not stored in the program counter stack. It is automatically incremented by 1 whenever the program counter and PSW are stored in the program counter stack while, conversely, it is decremented by 1 every time stored values are taken out. The stack pointer always shows the positon of the program counter stack which is used as the next storage place. Consequently, when a return is made from a subroutine (using the RET or RETR instruction), the stack pointer is first decremented by 1 and then the contents of the program counter stack indicated by the stack pointer are transferred to the program counter.

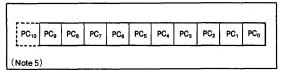


Fig.2 Program counter

Note 5 : PC₁₀ for M5L8042-XXXP

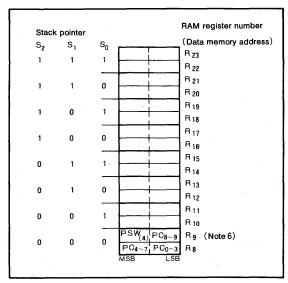


Fig.3 Relationship between program counter stack and stack pointer

Note 6 : PC₈~PC₁₀ for M5L8042-XXXP

MELPS 8-41 SLAVE MICROCOMPUTERS

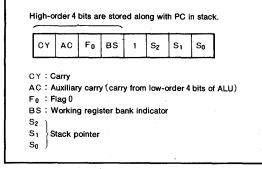
FUNCTIONS OF MELPS 8-41 SLAVE MICROCOMPUTERS

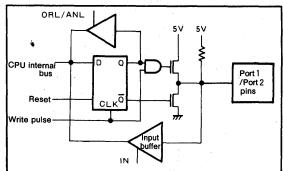
Program Status Word (PSW)

The PSW (program status word) is stored in 8 bits in the register storage. The configuration is shown in Fig. 4. The high-order 4 bits of the PSW are stored in the stack, along with the PC, when an interrupt is accepted or a subroutine call executed. When control is returned to the main program by RETR, both the PC and the high-order 4 bits of PSW are restored. When control is returned by RET, only the PC is restored, so care must be taken to ensure that the contents of the PSW are not unintentionally changed.

The order and meaning of the 8 PSW bits are given below.

Bit 0~Bit 2	: Stack pointer (S ₀ , S ₁ , S ₂)
Bit 3	: Not used
Bit 4	: Working register bank indicator 0 = Bank 0 1 = Bank 1
Bit 5	: Flag 0 (value is set by user and can be tested with JFO conditional jump instruc- tion.)
Bit 6	: Auxiliary carry bit (AC). It is set/reset by the ADD and ADDC instructions and used by the DAA decimal compensation instruction.
Bit 7	: Carry bit (CY). This indicates an overflow af- ter an arithmetic or logic operation.




Fig.4 Program status word


I/O Ports

The MELPS 8-41 has two 8-bit ports, called port 1 and port 2. (1) Port 1 and port 2

Ports 1 and 2 are both 8-bit ports with identical properties. The output data of these ports are retained and do not change until another output is loaded into them. When used as inputs, the input data is not retained so the input signals must be maintained until an input in-

struction is executed and completed. Ports 1 and 2 are so-called quasi-bidirectional ports which have a special circuit configuration to accomplish this purpose. All the pins of the ports can be used for input or for output.

The special circuit is shown in Fig. 5. Internal on-chip pull-up resistors are provided for all the ports for pull-up to 5V. The current required for setting the TTL signal high can be supplied through these pull-up resistors. In addition, the level can be pulled low by the standard TTL output. This means that any pin can be used for both input and output.

To shorten the switching time from a low level to high level, when 1's are output, a device with a relatively low impedance is turned on for a short time (approx. 500ns when a 6MHz crystal oscillator is used).

To use a particular port pin as an input, a logic "1" must first be written to that pin. After resetting, a port is set to an input port and remains in this state.

Therefore, it is not necessary to output all 1's if it is to be used for input. In short, a port being used for output must output 1's before it can be used for input.

MELPS 8-41 SLAVE MICROCOMPUTERS

FUNCTIONS OF MELPS 8-41 SLAVE MICROCOMPUTERS

The individual terminals of the quasi-bidirectional ports can be used for input or output. Some terminals, therefore, can be in the input mode while the remaining terminals of a port are in the output mode. This capability of ports 1 and 2 is convenient for inputting or outputting 1-bit data with few bits. The logical instructions ANL and ORL can easily be used to manipulate the input or output of these ports.

(2) Data bus

The data bus $(DQ_0 \sim DQ_7)$ handles the data, commands and statuses between the master CPU and MELPS 8-4 1. It is controlled by the following 4 control signals. Table 2 shows the relationship between the control signals and the data bus.

- A₀: Address input indicating data/command bus buffer registers and status register
- R : Read input
- W : Write input
- S : Chip select input

Table 2 Control signals and data bus

ŝ	Ř	Ŵ	A ₀	Data bus mode	Data on data bus
0	0	1	0	Read	Data
0	0	1	1	Read	Status
0	1	0	0	Write	Data
0	1	0	1	Write	Command (F ₁ ← 1)
1	×	×	×	High impedance	-

The internal configuration of the data bus is shown in Fig. 7. The functions of the 3 registers indicated (status register, output data bus buffer register and input data/command bus buffer register) are now described in detail.

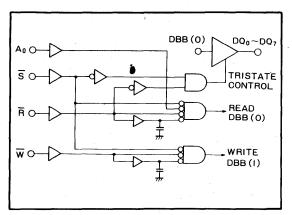


Fig.6 Internal configuration of data bus control

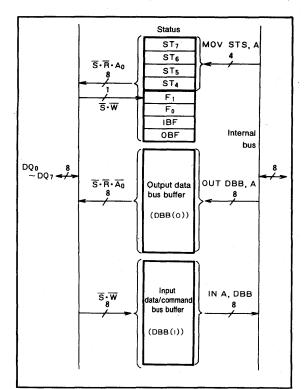


Fig.7 Internal configuration of data bus

• Status register

The status register is configured with 8 bits and the highorder 4 bits ($ST_4 \sim ST_7$) can be set as required with a software (MOV STS, A) instructions. The low-order 4 bits (OBF, IBF, F_0 , F_1) are set as follows:

OBF (output buffer full)

The OBF flag is automatically set to "1" when the output instruction (OUT DBB, A) is executed inside the MELPS 8-41 and it is cleared when the contents of the output data bus buffer are read by the master CPU.

IBF (input buffer full)

The IBF flag is automatically set to "1" when the data or commands are written into the input data/command bus buffer by the master CPU and it is cleared when the input instruction (IN A, DBB) is executed inside the MELPS 8-41. F_0 (flag 0)

The F_0 flag is set by the flag setting instructions (CPL F_0 , CLR F_0) and it is used to inform the master CPU of the internal state of the MELPS 8-41.

FUNCTIONS OF MELPS 8-41 SLAVE MICROCOMPUTERS

F₁ (flag 1)

When the data or command is input into the input data/ command bus buffer by the master CPU, the F_1 flag is set to the condition of the A_0 input.

The F_1 flag is also set by the flag setting instructions (CPL F_1 , CLR F_1).

Output Data Bus Buffer Register

The accumulator (A) contents are transferred to the DBB (0) output data bus buffer register by the OUT DBB, A instruction. Since the OBF flag is set at this time, the master CPU can judge whether the data has been transferred to the register by confirming the state of the OBF flag.

• Input Data/Command Bus Buffer (DBB(1)) Register When the write request ($\overline{W} = 0$) is generated from the master CPU, the data on the data bus is transferred to the DBB (1) input data/command bus buffer register. Since the IBF flag is set at this time, it is possible to judge whether the data or command has been transferred inside the MELPS 8-41 by confirming the state of this flag.

Conditional Jumps Using Pins T_0 , T_1 and Flags IBF, OBF

The conditional jump instructions are used to alter programs, depending on the internal and external conditions (states) of the CPU. Details of the jump instructions can be found in the section on machine instructions.

The input signal status of pins T_0 and T_1 , and the states of the IBF and OBF flags can be checked by the conditional jump instructions. These input pins, through conditional jump instructions such as JTO and JNTO, can be used to control a program. This means that programs and processing time can be reduced by being able to test data in the input pin rather than reading the data into a accumulator and then testing it.

Pin T_1 has other functions and uses which are not related to conditional jump instructions. Details of these other functions and uses can be found on the section dealing with pin functions.

Interrupt

The CPU recognizes an external interrupt by a low-level signal at the S and \overline{W} pins. When such an interrupt is accepted, the external interrupt pending flip-flop and IBF flag are set.

Interrupt requests are sampled between the SYNC signal outputs of every machine cycle. When a request is recognized, then as soon as the instruction being executed is terminated, a subroutine call is made to address 3 of the program memory. As with ordinary subroutine calls, the program counter and program status word (PSW) are saved in the program counter stack. The unconditional jump instructions for enabling a jump to be made to the address where the ordinary interrupt processing program is stored are contained in address 3 of the program memory.

The interrupt level is one so that the next interrupt cannot be accepted until the current interrupt processing has been completed. The RETR instruction terminates the interrupt processing. That is to say, the next interrupt cannot be accepted until the RETR instruction is executed. The next interrupt can be accepted at the start of the second cycle of the RETR instruction (2-cycle instruction). Timer/event counter overflow which causes an interrupt request will also not be accepted.

Priority is given to the external interrupt when both an external interrupt and timer interrupt have been generated at the same time.

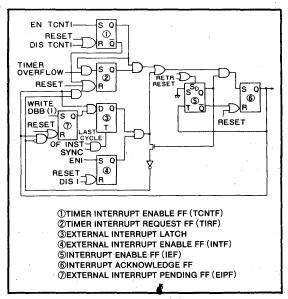


Fig.8 Interrupt control section configuration

FUNCTIONS OF MELPS 8-41 SLAVE MICROCOMPUTERS

item		Execution details		
Internal interrupt	When TCNTEF	No external interrupt	Interrupt is executed and call is mode to address 7.	
	(timer INT enable FF) = 1	During external interrupt execution	Interrupt is held.	
	When TCNTF		Interrupt is not executed or held.	
	(timer INT enable FF) = 0		TF (Timer flag)← 1	
External interrupt	When	No timer interrupt	Interrupt is executed and call is made to address 3.	
	(external INT enable FF) = 1	During timer interrupt execution		
	When (external INT enable FF	Interrupt is not executed but held.		
Timer and external interrupts	0			
generated simultaneously	Combination is same as condit	ions above	External interrupt takes priority and is executed.	

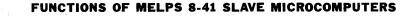
Table 3 Acceptance of interrupts

When a second level of external interrupt is required, the timer interrupt, if not being used, can provide this. This is done by enabling the timer/event counter interrupt and setting the timer/event counter to FF_{16} . The CPU is placed in the event counter mode. The interrupt is then generated in address 7 by setting the T_1 input from the external source from the high to low level.

The IBF flag can be tested using a conditional jump instruction. For further details, check the section on the conditional jump instructions, pins T_0 and T_1 , and the IBF and OBF flags.

Timer / Event Counter

The timer/event counter for the MELPS 8-41 is an 8-bit counter, that is used to measure time delays or count external events but not both. The same counter is used to measure time delays or count external events simply by changing the input to the counter.


The counter can be initialized by executing an MOV T, A instruction. The value of the counter can be read for checking by executing the MOV A, T instruction. Reset will stop the counting but the counter is not cleared, thus enabling counting to be resumed.

The largest number the counter can contain is F_{16} . If it is incremented by 1 when it contains FF_{16} , the counter will be reset to 00_{16} , the overflow flag is set and a timer interrupt request is issued. The timer flag can be checked using the JTF conditional branch instruction, and it is cleared by executing the JTF instruction or by resetting the system. When the timer interrupt is accepted, a subroutine call is made to address 7 of the program memory. When both a timer and external interrupt request are generated at the same time, the external interrupt is given priority and will be accepted first by automatically calling to address 3 of the program memory. The timer interrupt request is kept and will be processed when the external interrupt has been completed and a RETR instruction is executed. A latched timer interrupt request is cancelled when a timer interrupt request is generated. The STRT CNT instruction is used to change the counter to an event counter. Then the pin T₁ signal becomes the input to the event counter and events are counted up at the T₁ fall. The maximum rate that can be counted is one time in 3 machine cycles (7.5 μ s when using a 6MHz crystal). The high-level at T₁ must be maintained at least $\frac{1}{4}$ of the cycle time (500ns with a 6MHz crystal).

The STRT T instruction is used to change the counter to a timer. The internal clock signal becomes the input to the timer. The internal clock is $\frac{1}{32}$ of 400kHz (with a 6MHz crystal) or 12.5kHz (see Fig. 9). The timer is therefore counted up every 80 μ s. The counter can be initialized by executing an MOV T, A instruction. Delay times varying from 80 μ s to 20ms (256 count) can be obtained by detecting the counter overflows. Even times of more than 20ms can be achieved by counting the number of overflows using the program.

A resolution of less than 80μ s can be obtained in the event counter mode by supplying an external clock to pin T₁. It is also possible to supply every third (or more) prescaled ALE signal to pin T₁ instead of an external clock.

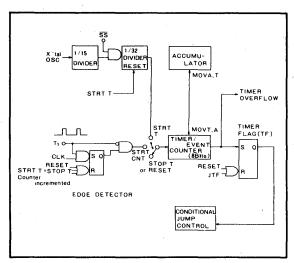


Fig.9 Timer/event counter configuration

Cycle Timing

The output of the state counter is $\frac{1}{8}$ the input frequency from the oscillator, and a CLK signal is produced which determines the times of each machine state (see Fig. 10). During the cycle count the CLK signal is prescaled by $\frac{1}{8}$ and a machine cycle containing 5 states is produced. The MELPS 8-41 instructions are executed in one or two machine cycles. Fig. 12 shows the internal operation with an instruction formed from one machine cycle.

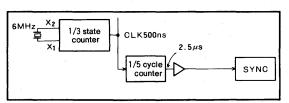


Fig.10 Clock generator circuit

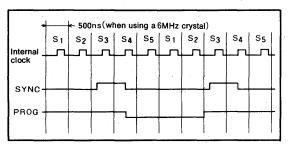


Fig.11 Clock and generated cycle signals

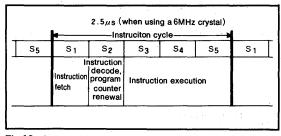


Fig.12 Instruction execution timing

Reset

The RESET pin is for resetting the CPU. A Schmitt trigger circuit along with a pull-up resistor are connected to it on the chip. A sufficiently long pulse can be obtained for resetting by attaching 1μ F capacitor as shown in Fig. 13. An external reset pulse applied at RESET must remain at the low level for at least 10ms after the power has been turned on and after it has reached its normal level.

The reset function causes the following initialization within the CPU.

- (1) The program counter is reset to 0.
- (2) The stack pointer is reset to 0.
- (3) The register bank 0 is selected.
- (4) Ports 1 and 2 are reset to the input mode.
- (5) External and timer interrupts are reset to disable state.
- (6) Timer is stopped.
- (7) Timer flag is cleared.
- (8) Flags F_0 and F_1 are cleared.

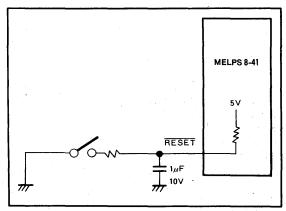


Fig.13 Example of reset circuit

FUNCTIONS OF MELPS 8-41 SLAVE MICROCOMPUTERS

Single-Step Operation

The MELPS 8-41 is provided with an SS pin for facilitating single-step operation where the CPU stops after the execution of each instruction is completed. The user can use this to trace the flow of the program, instruction by instruction, and find this to be an aid in program debugging. SS is used in synchronization with the timing of the SYNC signal output from the CPU. Fig. 14 shows the circuit used for single-step operation and the timing involved.

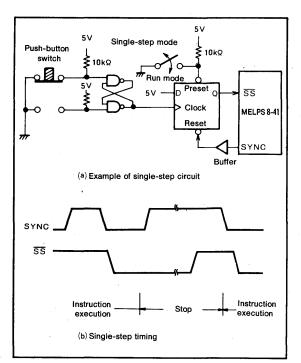


Fig.14 Single-step operation circuit and timing

A type D flip-flop with preset and reset pins is used to generate the signal for \overline{SS} .

When the preset pin is kept low, SS goes to the high level, which puts the CPU in the run mode.

For single-step operation the preset pin is switched to the high level and \overline{SS} to the low level. While \overline{SS} is low, the CPU stops. To restart the CPU, a pulse is supplied to the clock pin on the type D flip-flop. This sets \overline{SS} to the high level, and the CPU fetches the next instruction and begins to execute it. Once the CPU starts the execution, the SYNC signal connected to the reset pin of the type D flip-flop is low and so \overline{SS} also goes low. As soon as the CPU finishes executing the instruction, it is again stopped by \overline{SS} going to the low level.

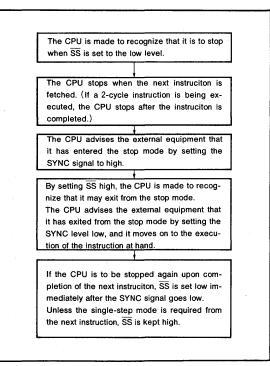


Fig.15 CPU operation in single-step mode

Fig.15 shows the operation of the CPU in the single-step mode.

Central Processing Unit (CPU)

The CPU is composed of an 8-bit parallel arithmetic unit, accumulator, flag flip-flop and instruction decoder. The 8-bit parallel arithmetic unit has circuit to perform the four basic arithmetic operations (addition, subtraction, multiplication and division) as well as logical operations such as AND and OR. The carry, zero and other states generated by these operations are set in the flag flip-flop. The accumulator supplies the operands (HIENZANSUU) to the arithmetic circuit, receives the results from the same circuit and keeps them. The flag flip-flop keeps the carry, zero and other states when various kinds of arithmetic operation instructions are executed.

DMA Control

Ports $P2_6$ and $P2_7$ of the MELPS 8-41 can be used not only as ordinary input/output ports but also for the control signal employed for DMA handshaking. Immediately after resetting, these two ports function as ordinary ports (see Fig. 16).

MELPS 8-41 SLAVE MICROCOMPUTERS

FUNCTIONS OF MELPS 8-41 SLAVE MICROCOMPUTERS

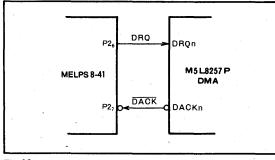


Fig.16 DMA control

When the EN DMA instruction is executed, $P2_6$ becomes the DRQ (DMA request) output. Subsequently, when $P2_6$ is set to "1", DRQ becomes "1" and DMA-based data transfer is requested.

DRQ is cleared when the DACK $\cdot \overline{R}$, DACK $\cdot \overline{W}$ or EN DMA instruction is executed.

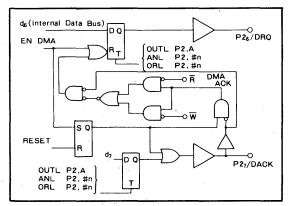


Fig.17 Internal configuration of DMA control

When the EN DMA instruction is executed, P2₇ becomes the DACK (DMA acknowledge) input. The DACK input is used as the chip select input for DMA transfer. There is, therefore, no connection with the state of \overline{S} (chip select) during DMA transfer.

Interrupt Request to Master CPU

Ports P2₄ and P2₅ of MELPS 8-41 can be used not only as ordinary input/output ports but also as the outputs of the IBF (input buffer full) flag and OBF (output buffer full) flag. Immediately after resetting, both ports function as input ports.

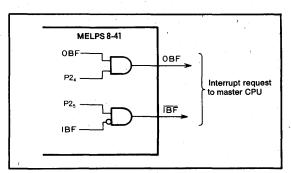


Fig.18 Interrupt request to master CPU

When the EN FLAGS instruction is executed, P2₄ functions as the OBF pin and P2₅ as the IBF pin. "1" must be output to both pins so that the OBF and IBF flag states are output to each pin, respectively. These states are not output while "0" is output to the pins. The OBF flag output indicates that data has been output to the output data bus buffer register; the IBF flag output indicates that the input data/command bus buffer register is in the data accept enable mode.

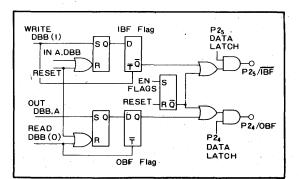


Fig.19 Internal configuration of IBF/OBF

MELPS 8-41 SLAVE MICROCOMPUTERS

FUNCTIONS OF MELPS 8-41 SLAVE MICROCOMPUTERS

INSTRUCTION CODES

Hexade D ₃ ~D ₀	D7~D4	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
$D_3 \sim D_0$	tation	0	1	2	3	4	5	6	7	8	9	A	В	с	D	E	F
0000	0	NOP	INC	хсн	XCHD	ORL	ANL	ADD	ADDC		MOV	моу	MOV		XRL		MOV
0000	0	NOP	@ R0	A, @ R0	A, @ R0	A, @ R0	A, @ R0	A, @ R0	A, @ R0		STS, A	@ R0, A	@R0, #n	¢	a, @ R0		A, @ RC
0001	1		INC	хсн	XCHD	ORL	ANL	ADD	ADDC			NOV	MOV		XRL		MOV
0001			@ R1	A, @ R1	A, @ R1	A, @ R1	A, @ R1	A, @ R1	A, @ R1			@ R1, A	@R1, #n		A, @ R1		A, @ R1
0010	2	OUT	JBO	IN	JB1	MOV	JB2	моу	JB3		JB4		JB5		JB6		JB7
0010	2	DBB, A	m	A, DBB	m	Α, Τ	m	Т, А	m		m		m		m		m
0011	3	ADD	ADDC	MOV		ORL	ANL			RET	RETR	MOVP	JMPP		XRL	MOVP3	
0011	3	A, #n	A, #n	A, #n	х.	A, #n	A, #n			ne i	nein	A, @ A	@ A		A, #n	A, @ A	
0100	4	JMP	CALL	JMP	CALL	JMP	CALL	JMP	CALL	JMP	CALL	JMP	CALL	JMP	CALL	JMP	CALL
0100	4	охх	oxx	1XX	1XX	2XX	2XX	зхх	3XX	4XX	4XX	5XX	5XX	6XX	6XX	7XX	7XX
0101	_	EN	DIS	EN	DIS	STRT	STRT	STOP		CLR	CPL	CLR	CPL	SEL	SEL	EN	EN
0101	5	T	1	TCNTI	TCNTI	CNT	т	TCNT		F0	F0	F1	F1	RBO	RB1	DMA	FLAOS
0110			JTF	JNTO	JT0	JNT1	JT1		JF1	JOBF	JNZ		JF0	JZ	JNIBF	JNC	JC
0110	6		m	m	m	m	m		m	m	m		m	m	m	m	m
	-	DEC	INC	CLR	CPL	SWAP	DA	RRC	RR		CLR	CPL		моу	MOV	RL	RLC
0111	7	A	A	A	A	A	. A	A	À		с	с		A, PSW	PSW, A	A	A
			INC	хсн		ORL	ANL	ADD	ADDC			MOV	MOV	DEC	XRL	DJNZ	моу
1000	8		RO	A, R0		A, R0	A, R0	A, R0	A, R0			R0. A	R0, #n	R0	A, R0	R0, m	A, RO
		IN	INC	хсн	OUTL	ORL	ANL	ADD	ADDC	ORL	ANL	MOV	MOV	DEC	XRL	DJNZ	MOV
1001	9	A, P1	R1	A, R1	P1, A	A, R1	A, R1	A, R1	A, R1	P1, #n	P1, #n	R1, A	R1, #n	R1	A, R1	R1, m	A, R1
		IN	INC	ХСН	OUTL	ORL	ANL	ADD	ADDC	ORL	ANL	MOV	MOV	DEC	XRL	DJNZ	MOV
1010	A	Á, P2	R2	A, R2	P2. A	A. R2	A, R2	A, R2	A, R2	P2, #n	R2, #n	R2, A	R2, #n	R2	A, R2	R2, m	A, R2
		,	INC	хсн		ORL	ANL	ADD	ADDC			MOV	MOV	DEC	XRL	DJNZ	MOV
1011	В		R3	A, R3		A, R3	A, R3	A, R3	A, R3			R3, A	R3, # n	R3	A, R3	R3, m	A, R3
		MOVD	INC	ХСН	MOVD	ORL	ANL	ADD	ADDC	ORLD	ANLD	MOV	MOV	DEC	XRL	DJNZ	MOV
1100	C	A, P4	R4	A, R4	P4, A	A, R4	A, R4	A, R4	A, R4	P4, A	P4, A	R4, A	R4, #n	R4	A, R4	R4, m	A, R4
		MOVD	INC	XCH	MOVD	ORL	ANL	ADD	ADDC	ORLD	ANLD	MOV	MOV	DEC	XRL	DJNZ	MOV
1101	D	A, P5	R5	A. R5	P5. A	A, R5	A, R5	A, R5	A, R5	P5, A	P5. A	R5, A	R5, #n	R5	A, R5	R5, m	A, R5
		MOVD	INC	XCH	MOVD	ORL	ANL	ADD	ADDC	ORLD	ANLD	MOV	MOV	DEC	XRL	DJNZ	MOV
1110	È	A, P6	R6	A, R6	P6, A	A, R6	A, R6	A, R6	A, R6	P6, A	P6, A	R6, A	R6, #n	R6	A, R6	R6, m	A, R6
	1	MOVD	INC	XCH	MOVD	ORL	ANL	ADD	ADDC	ORLD	ANLD	MOV	MOV	DEC	XRL	DJNZ	MOV
1111	F	A, P7	R7	A, R7	P7, A	A, R7	A, R7	R7, A	A, R7	P7, A	P7, A	R7, A	R7, #n	R7	A, R7	87, m	A, R7
		<u>, </u>		<u> </u> ∧, ⊓/	F1, A	<u>, n/</u>	A, N/	L N/, A	_ <u>, n</u> /	F1, A	F1, A	<u>_ n/, A</u>	111, #11		_ Α, Π/	1 61, 10	<u>, n/</u>

2-byte 2-cycle instruction

1-byte 2-cycle instruction

MELPS 8-41 SLAVE MICROCOMPUTERS

FUNCTIONS OF MELPS 8-41 SLAVE MICROCOMPUTERS

MACHINE INSTRUCTIONS

Item			Instruction code		es	les	_
Туре	Mnemonic	D7D6D5D4	D ₃ D ₂ D ₁ D ₀	Hexadecimal	Bytes	Cycles	Function
	MOV A, #n	0 0 1 0 n ₇ n ₆ n ₅ n ₄	0 0 1 1 n ₃ n ₂ n ₁ n ₀	2 3 n	2	2	(A) ← n
	MOV A, Rr	1 1 1 1	1 r ₂ r ₁ r ₀	F 8 + r	1	1	
Transfer	MOV Rr, A	1 0 1 0	1 r ₂ r ₁ r ₀	A 8 + r	1	1	$(\mathbf{Rr}) \leftarrow (\mathbf{A}) \\ \mathbf{r} = 0 \sim 7$
	MOV Rr, #n	1011 n ₇ n ₆ n ₅ n ₄	1 r ₂ r ₁ r ₀ n ₃ n ₂ n ₁ n ₀	B 8 + n	2	2	$(\mathrm{Rr}) \leftarrow \mathrm{n}$ r = 0~7
	XCH A, Rr	0 0 1 0	1 r ₂ r ₁ r ₀	2 8 + r	1	1	
	MOV A, @Rr	1 1 1 1	000r _o	F 0 + r	1	1	$(A) \leftarrow (M (Rr))$ r = 0~1
	MOV @Rr, A	1010	000r _o	A 0 + r	1	1	$(\mathbf{M} (\mathbf{Rr})) \leftarrow (\mathbf{A})$ r = 0~1
Transfer	MOV @Rr, #n	1 0 1 1 n ₇ n ₆ n ₅ n ₄	0 0 0 r ₀ n ₃ n ₂ n ₁ n ₀	В 0 + п	2	2	$(\mathbf{M} (\mathbf{Rr})) \leftarrow \mathbf{n}$ $\mathbf{r} = 0 \sim 1$
Indirect Addressing Transfer	MOVP A, @A	1010	0 0 1 1	A 3	1	2	(A) ← (M (A))
Indirect A	MOVP3 A, @A	1 1 1 0	0 0 1 1	Е 3	1	2	(A) ← (M (_{page} 3, A))
	XCH A, @Rr	0 0 1 0	000r _o	2 0 + r	1	1	$(A) \leftrightarrow (M(Rr))$ r = 0~1
	XCHD A, @Rr	0 0 1 1	0_0 0 r _o	3 0 + r	1	1	$(A_0 \sim A_3) \leftrightarrow (M (Rr_0 \sim Rr_3))$ r = 0~1
	MOV A, PSW	1 1 0 0	0 1 1 1	C 7	1	1	(A) ← (PSW)
	MOV PSW, A	1 1 0 1	0 1 1 1	D 7	1	1	$(PSW) \leftarrow (A) (C) \leftarrow (A_7), (AC) \leftarrow (A_6)$
D.	MOV STS, A	1001	0 0 0 0	90	1	1	$(STS) \leftarrow (A)$ $(ST_4 \sim ST_7) \leftarrow (A_4 \sim A_7)$
Status Control	CLR C	1 0 0 1	0 1 1 1	97	1	1	(C) ← 0
ō	CPL C	1010	0 1 1 1	A 7	1	1	$(C) \leftarrow (\overline{C})$
	CLR Fo	1000	0 1 0 1	8 5	1	1	(F ₀) ← 0
	CPL Fo	1.001	0 1 0 1	95	1	1	$(F_0) \leftarrow (\overline{F}_0)$

MELPS 8-41 SLAVE MICROCOMPUTERS

FUNCTIONS OF MELPS 8-41 SLAVE MICROCOMPUTERS

Aff	Affected carry		
с	AC	Note	Description
			Transfers data n to register A.
			Transfers contents of register Rr to register A.
-			Transfers contents of register A to register Rr.
			Transfers data n to register Rr.
			Exchanges contents of register Rr with contents of register A.
			Transfers contents of memory location of current page, whose address is in register Rr, to register A.
			Transfers contents of register A to memory location of current page whose address is in register Rr.
			Transfers data n to memory location of current page whose address is in register Rr.
		-	Transfers data of memory location of current page whose address is in register A to register A.
			Transfers data of memory location of page 3 whose address is in register A to regsiter A.
			Exchanges contents of memory location of current page whose address is in register Rr with contents of register A.
			Exchanges contents of low-order 4 bits of register with low-order 4 bits of memory location of current page whose address is in register Rr.
			Transfers contents of program status word to register A.
0	0		Transfers contents of register A to program status word.
-		2	Transfers contents of register A to status register.
0		•	Clears carry flag and resets it to 0.
0			Complements contents of carry flag.
			Clears flag F_0 and resets it to 0.
-			Complements contents of flag F_0 .
L	L		hannya panakan kana kana panakan kana kana ka

Ю,

5-15

5

MELPS 8-41 SLAVE MICROCOMPUTERS

FUNCTIONS OF MELPS 8-41 SLAVE MICROCOMPUTERS

ltem Type	Mnemonic		Instruction code		Bytes	Cycles	Function
	Mnemonic	D7D6D5D4	$D_3D_2D_1D_0$	Hexadecimal	- A	Ç	Function
Control	CLR F1	1010	0101	A 5	1	1	(F ₁) ← 0
Status Control	CPL F1	1011	0101	B 5	1	1	(F ₁) ← (F ₁)
	ADD A, #n	0 0 0 0 n ₇ n ₆ n ₅ n ₄	0 0 1 1 n ₃ n ₂ n ₁ n ₀	03 n	2	2	$(A) \leftarrow (A) + n$
	ADD A, Rr	0 1 1 0	1 r ₂ r ₁ r ₀	6 8 + r	1	1	$(A) \leftarrow (A) + (Rr)$ r = 0~7
	ADD A, @Rr	0 1 1 0	000r _o	6 0 + r	1	1	$(A) \leftarrow (A) + (M (Rr))$ r = 0~1
	ADDC A, #n	0 0 0 1 n ₇ n ₆ n ₅ n ₄	0 0 1 1 n ₃ n ₂ n ₁ n ₀	1 3 n	2	2	$(A) \leftarrow (A) + n + (C)$
	ADDC A, Rr	0 1 1 1	1 r ₂ r ₁ r ₀	7 8 r	1	1	$(A) \leftarrow (A) + (Rr) + (C)$ r = 0~7
	ADDC A, @Rr	0 1 1 1	000r _o	7 0 r	1	1	$(A) \leftarrow (A) + (M (Rr)) + (C)$ r = 0~1
4	ANL A, #n	0 1 0 1 n ₇ n ₆ n ₅ n ₄	0 0 1 1 n ₃ n ₂ n ₁ n ₀	53 n	2	2	(A) ← (A) ∧n
	ANL A, Rr	0 1 0 1	1 r ₂ r ₁ r ₀	5 8 + r	1	1	$(A) \leftarrow (A) \land (Rr)$ r = 0~7
Arithmetic	ANL A, @Rr	0 1 0 1	000r _o	5 0 r	1	1	$(A) \leftarrow (A) \land (M (Rr))$ r = 0~1
4	ORL A, # n	0 1 0 0 n ₇ n ₆ n ₅ n ₄	0 0 1 1 n ₃ n ₂ n ₁ n ₀	43 n	2	2 ,	(A) ← (A) V n
	ORL A, Rr	0 1 0 0	1 r ₂ r ₁ r ₀	4 8 r	1	<u>,</u> 1	$(A) \leftarrow (A) \lor (Rr)$ r = 0~7
· · ·	ORL A, @Rr	0 1 0 0	000r _o	4 0 + r	1	1	$(A) \leftarrow (A) \lor (M (Rr))$ r = 0~1
	XRL A, # n	1 1 0 1 n ₇ n ₆ n ₅ n ₄	0 0 1 1 n ₃ n ₂ n ₁ n ₀	D 3 n	2	2	$(A) \leftarrow (A) \forall n$
	XRL A, Rr	1 1 0 1	1 r ₂ r ₁ r ₀	D 8 + r	1	1	$(A) \leftarrow (A) \neq (Rr)$ r = 1~7
	XRL A, @Rr	1 1 0 1	000r _o	D 0 r	1	1	$(A) \leftarrow (A) \neq (M (Rr))$ r = 0~1
	INC A	0 0 0 1	0 1 1 1	17	1	1	$(A) \leftarrow (A) + 1$
	DEC A	0 0 0 0	0 1 1 1	07	1	1	$(A) \leftarrow (A) - 1$

MELPS 8-41 SLAVE MICROCOMPUTERS

FUNCTIONS OF MELPS 8-41 SLAVE MICROCOMPUTERS

Aff	Affected carry		
с	AC	Note	Description
			Clears flag F_1 and resets it to 0.
			Complements contents of flag F1.
0	0	1	Adds data n to contents of register A and sets carry flags to 1 if there is an overflow; otherwise resets carry flags to 0. The result is stored in register A.
0	0	1	Adds contents of register Rr to contents of register A and set carry flags to 1 if there is an overflow; otherwise resets carry flags to 0. The result is stored in register A.
0	0	1	Adds contents of register A and contents of memory location of current page whose address is in register Rr and sets carry flags to 1 if there is an overflow; otherwise resets carry flags to 0. The result is stored in register A.
0	0	1	Adds carry and data n to contents of register A and sets carry flags to 1 if there is an overflow; otherwise resets carry flags to 0. The result is stored in register A.
0	0	1	Adds carry and contents of register Rr to contents of register A and sets carry flags to 1 if there is an overflow; otherwise resets carry flags to 0. The result is stored in register A.
.0	0	1	Adds carry and contents of memory location of current page whose address is in register Rr to contents of register A and sets carry flags to 1 if there is an overflow; otherwise resets carry flags to 0. The result is stored in register A.
			Logical product of contents of register A and data n is stored in register A.
			Logical product of contents of register A and contents of register Rr is stored in register A.
			Logical product of contents of register A and contents of memory location of current page whose address is in register Rr is stored in register A.
			Logical sum of contents of register A and data n is stored in register A.
			Logical sum of contents of register A and contents of register Rr is stored in register A.
			Logical sum of contents of register A and contents of memory location of current page whose address is in register Rr is stored in regis- ter A.
· .			Exclusive OR of contents of register A and data n is stored in register A.
			Exclusive OR of contents of register A and contents of register Rr is stored in register A.
			Exclusive OR of contents of register A and contents of memory location of current page whose address is in register Rr, is stored in reg- ister A.
			Increments contents of register A by 1. The result is stored in register A.
	,		Decrements contents of register A by 1. The result is stored in register A.

5-17

5

MELPS 8-41 SLAVE MICROCOMPUTERS

FUNCTIONS OF MELPS 8-41 SLAVE MICROCOMPUTERS

ltem	· · · · · · · · · · · · · · · · · · ·	-	Instruction code	·	6	6			
Туре	Mnemonic	$D_7 D_6 D_5 D_4$ $D_3 D_2 D_1 D_0$ Hexadecim			Bytes	Cycles	Function		
	CLR A	0 0 1 0	0 1 1 1	2 7	1	1	(A) ← 0		
Arithmetic	CPL A	0 0 1 1	0111	37	1	1	$(A) \leftarrow (\overline{A})$		
	DA A	0 1 0 1	0 1 1 1	57	1	1	(A) decimal conversion		
	SWAP A	0 1 0 0	0111	4 7	1	1	$(A_4 \sim A_7) \longleftrightarrow (A_0 \sim A_3)$		
	RL A	1 1 1 0	0111	E 7	1	1	$(A_{n+1}) \leftarrow (A_n)$ $(A_0) \leftarrow (A_7) n = 0 \sim 6$		
Shift	RLC A	1 1 1 1	0 1 1 1	F.7	1	1	$(A_{n+1}) \leftarrow (A_n)$ $(A_0) \leftarrow (C)$ $(C) \leftarrow (A_7) n = 0 \sim 6$		
	RR A	0 1 1 1	0111	77	1	1	$(A_n) \leftarrow (A_{n+1}) (A_7) \leftarrow (A_0) n = 0 \sim 6$		
	RRC A	0 1 1 0	0 1 1 1	67	1	1	$(A_n) \leftarrow (A_{n+1}) (A_7) \leftarrow (C) (C) \leftarrow (A_0) n = 0 \sim 6$		
letic	INC Rr	0 0 0 1	1 r ₂ r ₁ r ₀	1 8 + r	1	1	$(\mathbf{Rr}) \leftarrow (\mathbf{Rr}) + 1$ r = 0~7		
Register arithmetic	INC @Rr	0 0 0 1	000r _o	1 0 r	1	1	$(M(Rr)) \leftarrow (M(Rr)) + 1$ r = 0~1		
Regi	DEC Rr	1 1 0 0	1 r ₂ r ₁ r ₀	C 8 7 r	1	1	$(\mathbf{Rr}) \leftarrow (\mathbf{Rr}) - 1$ r = 0~7		
dmn	JMP m	m ₁₀ m ₉ m ₈ 0 m ₇ m ₆ m ₅ m ₄	0 1 0 0 m ₃ m ₂ m ₁ m ₀	0 4 + m _{8∼10} m	2	2	$(PC_8 \sim PC_{10}) \leftarrow m_8 \sim m_{10}$ $(PC_0 \sim PC_7) \leftarrow m_0 \sim m_7$		
٦٢	JMPP @A	1011	0 0 1 1	В 3	1	2	$(PC_0 - PC_7) \leftarrow (M(A))$		
	JBb m	b ₇ b ₆ b ₅ 1 m ₇ m ₆ m ₅ m ₄	0 0 1 0 m ₃ m ₂ m ₁ m ₀	1 2 b m	2	2	When $(A_b) = 1$, $(PC_0 \sim PC_7) \leftarrow m$ When $(A_b) = 1$, $(PC) \leftarrow (PC) + 2$ $b_7b_6b_5 = 0 \sim 7$		
	JNIBF m	1 1 0 1 m _{.7} m ₆ m ₅ m ₄	0 1 1 0 m ₃ m ₂ m ₁ m ₀	D 6	2	2	When (IBF) = 0, (PC ₀ -PC ₇) \leftarrow m		
al Jump	JOBF m	1 0 0 0 m ₇ m ₆ m ₅ m ₄	0 1 1 0 m ₃ m ₂ m ₁ m ₀	8 6 m	2	2	When $(OBF) = 1$, $(PC_0 - PC_7) \leftarrow m$		
Conditional Jump	JTF m	0 0 0 1 m ₇ m ₆ m ₅ m ₄	0 1 1 0 m ₃ m ₂ m ₁ m ₀	16 m	2	2	When $(TF) = 1$, $(PC_0 \sim PC_7) \leftarrow m$ When $(TF) = 0$, $(PC) \leftarrow (PC) + 2$		
	DJNZ Rr, m	1 1 1 0 m ₇ m ₆ m ₅ m ₄	1 r 2 r 1 r 0 m 3 m 2 m 1 m 0	E 8 r m	2	2	$(\mathbf{Rr}) \leftarrow (\mathbf{Rr}) - 1 \mathbf{r} = 0 \sim 7$ When $(\mathbf{Rr}) \neq 0$, $(\mathbf{PC}_0 \sim \mathbf{PC}_7) \leftarrow \mathbf{m}$ When $(\mathbf{Rr}) = 0$, $(\mathbf{PC}) \leftarrow (\mathbf{PC}) + 2$		
	JC m	.1 1 1 1 m ₇ m ₆ m ₅ m₄	0 1 1 0 m ₃ m ₂ m ₁ m ₀	F 6 m	2	2	When (C) = 1, $(PC_0 \sim PC_7) \leftarrow m$ When (C) = 0, $(PC) \leftarrow (PC) + 2$		

MELPS 8-41 SLAVE MICROCOMPUTERS

FUNCTIONS OF MELPS 8-41 SLAVE MICROCOMPUTERS

Aff	Affected carry		
с	AC	Note	Description
			Clears contents of register A and resets to 0.
			Forms 1's complement of register A and stores it in register A.
0	0	1	Contents of register A are converted to binary coded decimal notation and stored in register A.
		-	Exchanges contents of bits $0\sim3$ of register A with contents of bits $4\sim7$ of register A.
			Shifts contents of register A left one bit. MSB A7 is rotated to LSB A0.
0			Shifts contents of register A left one bit. MSB A7 is shifted to carry flag and carry flag is shifted to LSB A0.
			Shifts contents of register A right one bit. LSB A ₀ is rotated to MSB A ₇ .
0			Shifts contents of register A right one bit. LSB A ₀ is shifted to carry flag and carry flag is shifted to MSB A ₇ .
			Increments contents of register Rr by 1. The result is stored in register Rr.
			Increments contents of memory location of current page whose address is in register Rr by 1.
			Decrements contents of register Rr by 1. The result is stored in register Rr.
			Jumps unconditionally to address m.
			Jumps to memory location of current page whose address is in register A; but when instruction executed was in address 255, jumps to next page.
			Jumps to address m of current page when bit b of register A is 1. Executes next instruction when bit b of register A is 0.
	1		Jumps to address m of current page when IBF is 0.
			Jumps to address m of current page when OBF is 1.
			Jumps to address m of current page when timer/counter overflow flag is 1; flag is cleared after execution.
			Decrements contents of register Rr by 1; jumps to address m of current page when result is not 0.
			jumps to address m of current page if carry flag is 1.

MELPS 8-41 SLAVE MICROCOMPUTERS

FUNCTIONS OF MELPS 8-41 SLAVE MICROCOMPUTERS

ltem			Instruction code		s	es	
Туре	Mnemonic	D7D6D5D4	$D_3D_2D_1D_0$	Hexadecimal	Bytes	Cycles	Function
	JNC m	1 1 1 0 m ₇ m ₆ m ₅ m ₄	0 1 1 0 m ₃ m ₂ m ₁ m ₀	E 6 m	2	2	When (C) = 0, $(PC_0 \sim PC_7) \leftarrow m$ When (C) = 1, $(PC) \leftarrow (PC) + 2$
	JZ m	1 1 0 0 m ₇ m ₆ m ₅ m ₄	0 1 1 0 m ₃ m ₂ m ₁ m ₀	C 6 m	2	2	When $(A) = 0$, $(PC_0 \sim PC_7) \leftarrow m$ When $(A) \neq 0$, $(PC) \leftarrow (PC) + 2$
,	JNZ m	1 0 0 1 m ₇ m ₆ m ₅ m ₄	0 1 1 0 m ₃ m ₂ m ₁ m ₀	9 6 m	2	2	When (A) $\neq 0$, (PC ₀ ~PC ₇) \leftarrow m When (A) = 0, (PC) \leftarrow (PC)+2
đ	JT0 m	0 0 1 1 m ₇ m ₆ m ₅ m₄	0 1 1 0 m ₃ m ₂ m ₁ m ₀	3 6 m	2	2	When $(T_0) = 1$, $(PC_0 \sim PC_7) \leftarrow m$ When $(T_0) = 0$, $(PC) \leftarrow (PC) + 2$
Conditional Jump	JNTO m	0_0 1 0 m ₇ m ₆ m ₅ m ₄	0 1 1 0 m ₃ m ₂ m ₁ m ₀	2 6 m	2	2	When $(T_0) = 0$, $(PC_0 \sim PC_7) \leftarrow m$ When $(T_0) = 1$, $(PC) \leftarrow (PC) + 2$
Ŭ	JT1 m	0 1 0 1 m ₇ m ₆ m ₅ m ₄	0 1 1 0 m ₃ m ₂ m ₁ m ₀	5 6 m	2	2	When $(T_1) = 1$, $(PC_0 \sim PC_7) \leftarrow m$ When $(T_1) = 0$, $(PC) \leftarrow (PC) + 2$
	JNT1 m	0 1 0 0 m ₇ m ₆ m ₅ m ₄	0 1 1 0 m ₃ m ₂ m ₁ m ₀	4 6 m	2	2	When $(T_1) = 0$, $(PC_0 \sim PC_7) \leftarrow m$ When $(T_1) = 1$, $(PC) \leftarrow (PC) + 2$
	JF0 m	1 0 1 1 m ₇ m ₆ m ₆ m₄	0 1 1 0 m ₃ m ₂ m ₁ m ₀	В 6 m	2	2	When $(F_0) = 1$, $(PC_0 \sim PC_7) \leftarrow m$ When $(F_0) = 0$, $(PC) \leftarrow (PC) + 2$
	JF1 m	0 1 1 1 m ₇ m ₆ m ₅ m ₄	0 1 1 0 m ₃ m ₂ m ₁ m ₀	7 6 m	2	2	When $(F_1) = 1$, $(PC_0 \sim PC_7) \leftarrow m$ When $(F_1) = 0$, $(PC) \leftarrow (PC) + 2$
	CALL m	m ₁₀ m ₉ m ₈ 1 m ₇ m ₆ m ₅ m ₄	0 1 0 0 m ₃ m ₂ m ₁ m ₀	1 4 m ₈ ∼m ₁₀	2	2	$((SP)) \leftarrow (PC)(PSW_4 \sim PSW_7)$ (SP) $\leftarrow (SP) + 1$ (PC ₀ $\sim PC_{10}) \leftarrow m$
Subroutine	RET	1 0 0 0	0011	8 3	1	2	$(SP) \leftarrow (SP) - 1$ $(PC) \leftarrow ((SP))$
	RETR	1 0 0 1.	0011	93	1	2	$(SP) \leftarrow (SP) - 1$ $(PC)(PSW_4 \sim PSW_7) \leftarrow ((SP))$
	IN A, Pp	0 0 0 0	10 P ₁ P ₀	0 8 P	1	2	$(A) - (P_p)$ p = 1~2
	OUTL P _p , A	0 0 1 1	10 P ₁ P ₀	3 8 p	1	2	$(P_p) \leftarrow (A)$ P = 1~2
ut/Output	ANL P _p ,♯n	1 0 0 1 n ₇ n ₆ n ₅ n ₄	1 0 P ₁ P ₀ n ₃ n ₂ n ₁ n ₀	9 8 p n	2	2	$(P_p) \leftarrow (P_p)An$ $p = 1 \sim 2$
Input/o	ORL P _p , #n	1 0 0 0 n ₇ n ₆ n ₅ n ₄	1 0 P ₁ P ₀ n ₃ n ₂ n ₁ n ₀	8 8 p n	2	2	$(P_p) \leftarrow (P_p)V_n$ p = 1~2
	IN A, DBB	0010	0 0 1 0	22	1	1	(A) ← (DBB)
	OUT DBB, A	0 0 0 0	0010	02	1	1	(DBB) ← (A)

MELPS 8-41 SLAVE MICROCOMPUTERS

FUNCTIONS OF MELPS 8-41 SLAVE MICROCOMPUTERS

Aff	ected c	urry	
с	AC	Note	Description
		. 1	Jumps to address m of current page if carry flag is 0.
			Jumps to address m of current page when contents of register A are 0.
			Jumps to address m of current page when contents of register A are not 0.
×.		. • 1	Jumps to address m of current page when flag T ₀ is 1.
	•		Jumps to address m of current page when flag T_0 is 0.
			Jumps to address m of current page when flag T_1 is 1.
		i	Jumps to address m of current page when flag T_1 is 0.
			Jumps to address m of current page when flag F_0 is 1.
			Jumps to address m of current page when flag F1 is 1.
			Calls subroutine from address m. The program counter and the high-order 4 bits of PSW are stored in address indicated by stack pointer (SP). SP is incremented by 1 and m is transferred to PC ₀ ~PC ₁₀ .
			SP is decremented by 1. Program counter is restored to saved setting in stack indicated by stack pointer. PSW ₄ ~PSW ₇ are not changed and interrupt disable is maintained.
			SP is decremented by 1. Program counter and high-order 4 bits of PSW are restored with saved data in stack indicated by stack pointer. Interrupt becomes enabled after execution is completed.
			Loads contents of Pp to register A.
			Output latches contents of register A to Pp.
			Logical product of contents of Pp and data n; outputs result to Pp.
			Logical sum of contents of Pp and data n; outputs result to Pp.
			Enters contents of data bus buffer (DBB) into register A and resets IBF.
			Outputs contents of register A to data bus buffer (DBB) and sets OBF.

5-21

5

MELPS 8-41 SLAVE MICROCOMPUTERS

FUNCTIONS OF MELPS 8-41 SLAVE MICROCOMPUTERS

		·		<u></u>		
Item	Mnemonic	Instruction code		Bytes	Cycles	Function
Туре		$D_7 D_6 D_5 D_4 D_3 D_2 D_1 D_3 D_2 D_3 D_2 D_3 D_3 D_2 D_3 D_3 D_2 D_3 D_3 D_3 D_3 D_3 D_3 D_3 D_3 D_3 D_3$	o Hexadecimal	μ. Δ	σ	
	MOVD A, Pp	0000 11P1	0 Ç P1P0	1	2	$(A_0 \sim A_3) \leftarrow (P_{p0} \sim P_{p3}) (A_4 \sim A_7) \leftarrow 0 p = 4 \sim 7$
er Control	MOVD Pp, A	0011 11P,1	o 3 Ç p1po	1	2	$(P_{p0} \sim P_{p3}) \leftarrow (A_0 \sim A_3)$ P = 4~7
I/O Expander Control	ANLD Pp, A	1001 11P ₁ I	0 9 C P1P0	1	2	$(P_{p0} \sim P_{p3}) \leftarrow (P_{p0} \sim P_{p3}) \land (A_0 \sim A_3)$ p = 4~7
2	ORLD Pp, A	1000 11P ₁ I	₀ 8 C ₽1₽₀	1	2	$(P_{p0} \sim P_{p3}) \leftarrow (P_{p0} \sim P_{p3}) V(A_0 \sim A_3)$ p = 4~7
	ΜΟΥ Α, Τ	0100 001) 4 2	1	1	$(T) \rightarrow (A)$
	ΜΟΥ Τ, Α	0110 001) 62	1	1	$(T) \leftarrow (A)$
ontrol	STRT T	0 1 0 1 0 1 0	1 5 5	1	1	
Timer/Counter Control	STRT CNT	0100010	I 4 5	1	1	
Timer/(STOP TONT	0 1 1 0 0 1 0	1 6 5	1	1	
	EN TCNTI	0 0 1 0 0 1 0	2 5	1	1	(TCNTF) ← 1
	DIS TCNTI	0 0 1 1 0 1 0	1 35	1	1	(TCNTF) ← 0
	EN I	0 0 0 0 0 1 0	1 0 5	1	1	(INTF) ← 1
	DIS I	0 0 0 1 0 1 0	1 1 5	1	1	(INTF) ← 0
tro	SEL RB ₀	1 1 0 . 0 0 1 0	1 C 5	1	1	(BS) ← 0
Control	SEL RB,	1 1 0 1 0 1 0	I D 5	1	1	(BS) ← 1
	EN DMA	1110010	1 E 5	1	1	
	EN FLAGS	1 1 1 1 0 1 0	1 F 5	1	1	(P2₄) ← (OBF) (P2₅) ← (IBF)
Misc	NOP	0 0 0 0 0 0 0	0 0 0	1	. 1	

Note 1 : Executing an instruction may produce a carry (overflow or underflow). The carry may be lost or it may be transferred to C or AC. The (O) mark indicates a carry which affects C or AC. The detail affection of carries for instructions ADD, ADDC and DA is as follows:

(AC)←0 At no overflow

2 : The contents of ST₄-ST₇ are read when host computer reads status of MELPS 8-41.

MITSUBISHI MICROCOMPUTERS MELPS 8-41 SLAVE MICROCOMPUTERS

FUNCTIONS OF MELPS 8-41 SLAVE MICROCOMPUTERS

Affe	ected ca	arry		
ç	AC	Note	Description	
			Inputs contents of Pp to low-order 4 bits of register A and inputs 0 to high-order 4 bits of register A.	Pp's used for multiplying 8243 ports are P4 \sim
			Outputs low-order 4 bits of register A to Pp.	P7. Correspondence to P2, P1 bits is shown below.
			Logical product of the low-order 4 bits of register A and contents of Pp; Pp contains result.	$P4 \cdots P_1 P_2 = 00$ $P5 \cdots P_1 P_2 = 01$ $P6 \cdots P_1 P_2 = 10$
			Logical sum of low-order 4 bits of register A and contents of Pp; Pp contains result.	P 7… P ₁ P ₂ = 11
			Transfers contents of timer/event counter to register A.	<u></u>
			Transfers contents of register A to timer/event counter.	
			Starts timer operation of timer/event counter. Count cycle is 480 times master oscillation.	
			Starts operation as event counter of timer/event counter. Counts up when pin T_1 changes fro	m high to low input level.
			Stops operation of timer or event counter.	
			Enables interrupt of timer/event counter.	
			Disables interrupt of timer/event counter. Resets interrupt flip-flop of CPU which is set durin	g CPU stand-by. Timer flag is not affected.
			Enables external interrupt.	·
			Disables external interrupt.	
			Selects working register bank 0.	
			Selects working register bank 1.	
-			Enables DMA handshaking line.	
			Enables master interrupt.	
			No operation. Execution time is 1 machine cycle.	

5

MELPS 8-41 SLAVE MICROCOMPUTERS

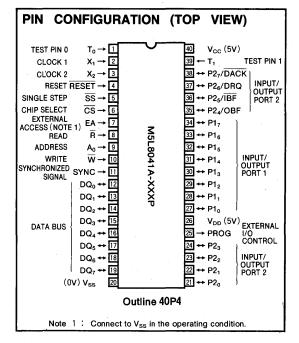
FUNCTIONS OF MELPS 8-41 SLAVE MICROCOMPUTERS

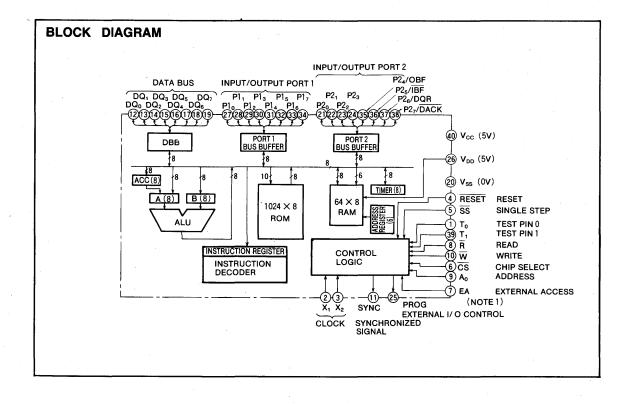
Item	Details of execution	
	TF (Timer Flag) ← 0	
	TIRF (Timer INT Request FF) ← 0	
	TCNTF (Timer INT Enable FF) ← 0	
RESET input low level	INTF (External INT Enable FF) ← 0	
	IEF (INT Enable FF) ← 1	
the second second second second	IBF ← 0	
	EIPF (External Interrupt Pending FF) ← 0	
JTF execution	TF (Timer Flag) + 0	
Timer/event Counter	TF (Timer Flag) ← 1	. V
overflow	TCNTE (Timer INT Enable FF) = 1 When TIRF (Timer INT Request FF) + 1	
EN TNCTI execution	TCNTF (Timer INT Enable FF) ← 1	
DIS TNCTI execution	TCNTF (Timer INT Enable FF) + 0	
EN I execution	INTF (External INT Enable FF) ← 1	
DIS execution	INTF (External INT Enable FF) + 0	-
RETR execution	IEF (INT Enable FF) ← 1	

Symbol	Contents	Symbol	Contents
Α	8-bit register (accumulator)	PC	Program counter
$A_0 \sim A_3$	Low-order 4 bits of register A	PC0~PC7	Low-order 8 bits of program counter
A4~A7	High-order 4 bits of register A	PC ₈ ~PC ₁₀	High-order 3 bits of program counter
A ₀ ~A _n , A _{n+1}	Bits of register A	PSW	Program status word
b	Value of bits 5-7 of first byte machine code	Rr	Register designator
b ₇ b ₆ b ₅	Bits 5-7 of first byte machine code	r	Register number
BS	Register bank select	ro	Value of bit 0 of machine code
AC	Auxiliary carry flag	r ₂ r ₁ r ₀	Value of bits 0-2 of machine code
с	Carry flag	S ₂ S ₁ S ₀	Value of bits 0-2 of stack pointer
DBB	Data bus buffer	SP	Stack pointer
Fo	Flag 0	ST₄ST7	Bits 4-7 of status register
F ₁	Flag 1	STS	System status
INTE	External interrupt enable flip-flop	Т	Timer/event counter
IBF	Input buffer full flag	То	Test pin 0
m	Destination address	T ₁	Test pin 1
m7m6m5m4m3m2m1m0	Second byte (low-order 8 bits) machine code	TCNTF	Timer/event counter interrupt flip-flop
	corresponding to destination address	TF	Timer flag
m ₁₀ m ₉ m ₈	Bits 5-7 of first byte (high-order 3 bits) machine code	#	Symbol to indicate immediate data
(M(A))	Content of memory location addressed by register A	@	Symbol to indicate content of memory location
(M(Rr))	Content of memory location addressed by register Rr		addressed by register
(Mx(Rr))	Content of external memory location addressed by	-	Shows direction of data flow
	register Rr	↔	Exchanges contents of data
n	Value of immediate data	()	Contents of register, memory location or flag
n ₇ n ₆ n ₅ n ₄ n ₃ n ₂ n ₁ n ₀	Immediate data of second byte machine code	Λ	Logical AND
OBF	Output buffer full flag	V	Logical OR
p	Port number	¥	Exclusive OR
P _P	Port designator	-	Negation
P1P0	Bits of machine code corresponding to port number	0	Content of flag is set or reset after execution

SLAVE MICROCOMPUTER

DESCRIPTION


The M5L8041A-XXXP is a general-purpose, programmable interface device deisgned for use with a variety of 8-bit microcomputer systems. This device is fabricated using N-channel sillicon-gate ED-MOS technology.


FEATURES

- Mask ROM······ 1024-word by 8-bit
- Static RAM 64-word by 8-bit
- 18 programmable I/O pins
- Asynchronous data register for interface to master processor
- 8-bit CPU, ROM, RAM, I/O, timer, clock and low power, stand-by mode
- Single 5V supply
- Alternative to custom LSI
- Interchangeable with i 8041A

APPLICATION

Alternative to custom LSI for peripheral interface

SLAVE MICROCOMPUTER

FUNCTION

The M5L8041A-XXXP is designed as an ordinary 8-bit CPU peripheral LSI chip and it contains a small stand-alone microcomputer. Although this microcomputer functions independently, when it is used as a peripheral controller, it is called the slave microcomputer in contrast to the master computer. These two devices can transfer the data alternatively through the buffer register between them. The M5L8041A-XXXP contains the buffer register to use this LSI as a slave microcomputer and it can be accessed in the same way as other standard peripheral devices. Since the M5L8041A-XXXP is a complete microcomputer, it is easy to develop a user-oriented mask-programmed peripheral LSI only by changing the control software.

PIN DESCRIPTION

Pin	Name	Input or output	Function
V _{ss}	Ground	-	Connected to a 0V supply (ground).
Vcc	Main power supply	-	Connected to a 5V supply.
	Power supply		Connected to a 5V supply.
VDD	Power supply	-	Used as a memory hold when V _{CC} is cut off.
To	Test pin 0	Input	Provides external control of conditional program jumps (JTO/JNTO instructions).
X ₁ , X ₂	Crystal inputs	Input	An internal clock circuit is provided so that by connecting an RC circuit or crystal to these input pins the clock frequency can be determined. Pins X ₁ and X ₂ can also be used to input an external clock signal.
RESET	Reset	Input	CPU initialization input.
SS	Single step	input	Used to hait the execution of a command by the CPU. When used in combination with the SYNC signal, the command execution of the CPU can be halted every instruction to enable single step operation.
CS	Chip select input	Input	Chip select input data bus control.
EA	External access	Input	Normally maintained at 0V.
R	Read enable signal	Input	Serves as the read signal when the master CPU is accepting data on the data bus from the M5L8041A- XXXP.
Ao	Address input	Input	An address input used to indicate whether the signal on the data bus is data or a command.
W	Write enable signal	Input	Serves as the write signal when the master CPU is outputting data from the bus to the M5L8041A- XXXP.
SYNC	Sync signal output	Output	Output 1 time for each machine cycle.
DQ ₀ ~DQ ₇	Data bus	Input/output	Three-state, bidirectional data bus. Data bus is used to interface the M5L8041A-XXXP to a master system data bus.
₽2 ₀ ~₽2 ₇	Port 2	input/output	Quaisi-bidirectional port. When used as an input port, FF ₁₆ must first be output to this port. After resetting, however, when not used afterwards as an output port, this is not necessary. $P2_0 \sim P2_3$ are used when the M5L8243P I/O port expander is used.
PROG	Program	Output	Serves as the strobe signal when the M5L8243P I/O expander is used.
P10~P17	Port 1	Input/output	Quaisi-bidirectional port. When used as an input port, FF_{16} must first be output to this port. After resetting, however, when not used afterwards as an output port, this is not necessary.
T ₁	Test pin 1	Input	Provides external control of conditional program jumps (JT1/JNT1 instructions). Can serve as the input pin for the event counter (STRT CNT instructions).

SLAVE MICROCOMPUTER

.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Limits	Unit	
V _{cc}	Supply voltage		-0.5~7	V	
V _{DD}	Supply voltage	with respect to V _{SS}	-0.5~7	V	
V,	Input voltage		-0.5~7	V	
vo	Output voltage		-0.5~7	V	
Pd	Power dissipation	T _a = 25℃	1500	mW	
Topr	Operating temperature range		-20~75	°C	
Tsta	Storage temperature range		-65~150	°C	

RECOMMENDED OPERATING CONDITIONS

Cumhal			11-14		
Symbol	Parameter	Min	Nom	Max	Unit
V_{cc}	Supply voltage	4.5	5	5.5	v
VDD	Supply voltage	4.5	5	5.5	V
Vss	Supply voltage		. 0		v
VIH	High-level input voltage	2			v
VIL	Low-level input voltage			0.8	v
f(<i>\phi</i>)	Operating frequency	1		6	MHz

ELECTRICAL CHARACTERISTICS ($\tau_a = -20 \sim 75^{\circ}C$, $V_{cc} = 5 V \pm 10\%$, unless otherwise noted)

	Parameter	-		Limits			
Symbol		Test conditions	Min	Тур	Мах	Unit	
VIL	Low-level input voltage		-0.5		0.8	v	
Vini	High-level input voltage (all except X1, X2, RESET)		2		V _{cc}	V	
VIH2	High-level input voltage (X1, X2, RESET)		3.8		V _{cc}	V	
V _{OL1}	Low-level output voltage (DQ0~DQ7, SYNC)	$I_{OL} = 2mA$			0.45	v	
VOL2	Low-level output voltage (all except DQ0~DQ7, SYNC, PROG)	$I_{OL} = 1.6 \text{ mA}$			0.45	V	
VOL3	Low-level output voltage (PROG)	$I_{OL} = 1 \text{mA}$			0.45	v	
V _{OH1}	High-level output voltage (DQ ₀ ~DQ ₇)	$I_{OH} = -400 \mu A$	2.4			v	
V _{OH2}	High-level output voltage (all other outputs)	$I_{OH} = -50 \mu A$	2.4		•	V	
I,	Input leakage current (T ₀ , T ₁ , RD, WR, CS, A ₀)	$V_{SS} \leq V_1 \leq V_{CC}$	-10	,	10	μA	
lozL	Off-state output leakage current (DQ ₀ ~DQ ₇)	$V_{SS} + 0.45 \le V_0 \le V_{CC}$	10		10	μA	
 I _{IL1}	Low-level input current (P10~P17, P20~P27)	$V_{IL} = 0.8V$	-0.5			mΑ	
IIL2	Low-level input current (RESET, SS)	$V_{1L} = 0.8V$	-0.2			mA	
	Supply current from V _{DD}			6	15	mA	
	Total supply current			65	125	mA	

5-27

SLAVE MICROCOMPUTER

TIMING REQUIREMENTS ($\tau_a = -20 \sim 75$ °C, $v_{cc} = 5V \pm 10\%$, unless otherwise noted) **DBB Read**

Symbol	Parameter	Alternative	Test conditions		Limits			
Symbol	Farameter	symbol		Min	Тур	Max	Unit	
t _{C (Ø)}	Cycle time	t _{CY}		2,5		15	μs	
tw (R)	Read pulse with	t _{BB}	$t_{C(\phi)} = 2.5 \mu s$	250			ns	
tsu (CS-R)	Chip-select setup time befor read	t _{AR}		0			ns	
th (R-CS)	Chip-select hold time after read	t _{RA}		0			ns	

DBB Write

Symbol	Decementary	Alternative	Test see ditions	Limits			11.24	
Symbol .	Parameter	symbol	Test conditions	Min	Min Typ Max		Unit	
t _{w (w)}	Write pulse width	tww		250			ns	
t _{su (cs-w)} t _{su (A0-w)}	\overline{CS} , A ₀ , setup time before write	t _{AW}	*	0			ns	
t _{h (w-cs)} t _{h (w-ao)}	\overline{CS} , A ₀ , hold time after wirte	twa		0			ns	
tsu (DQ-W)	Data setup time before write	t _{DW}		150			ns	
th (w-DQ)	Data hold time,after write	t _{wp}		0			ns	

Port 2

.		Alternative	T	Limits			Unit
Symbol	Parameter	symbol	Test conditions	Min	Тур	Max	Unit
tw (PR)	PROG pulse width	t _{PP}		1200			ns
tsu (PC-PR)	Port control setup time before PROG	t _{CP}	C _L = 80pF	110			ns
th (PR-PC)	Port control hold time after PROG	t _{PC}	$C_L = 20 pF$	100		a - 1	ns
tsu (Q-PR)	Output data setup time before PROG	t _{DP}	$C_L = 80 pF$	250			ns
tsu (D-PR)	Input data hold timer before PROG	t _{PR}	$C_L = 80 pF$			810	ns
th (PR-D)	Input data hold time after PROG	tpp	$C_L = 20 pF$	0		150	ns

DMA

Oursels al	Parameter	Alternative	Alternative Test conditions	Limits			Unit
Symbol		symbol	rest conditions	Min	Тур	Max	Unit
tsu (DACK-R)	Data acknowledge time before read	t _{ACC}		0			ns
th (R-DACK)	Data hold time after read	t _{CAC}		0		1	ns
tsu (DACK-W)	Data setup time before write	t _{ACC}		0			ns
th (w-dack)	Data hold time after write	tCAC	,	0			ns

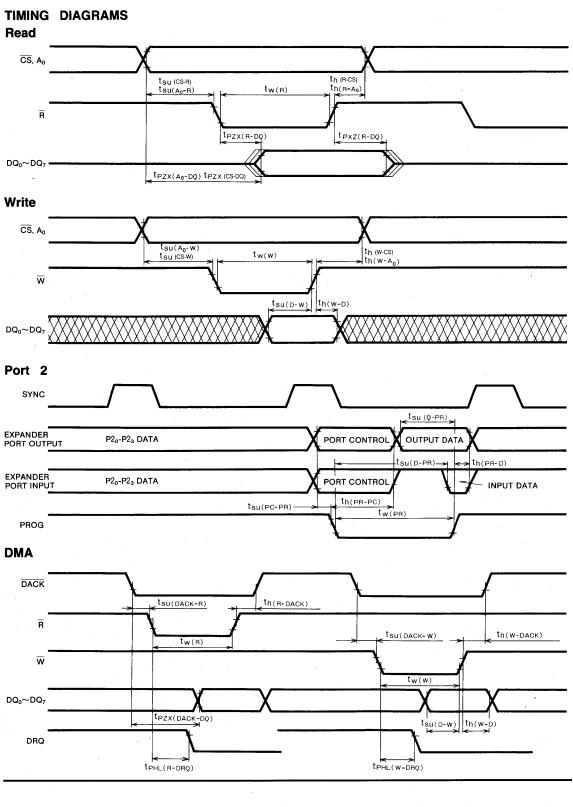
Note 1 : Input voltage level $V_{IL} = 0.45V$, $V_{IH} = 2.4V$.

$\label{eq:switching} \textbf{SWITCHING} \quad \textbf{CHARACTERISTICS} \quad (\textbf{T}_a = -20 \sim 75 \ \text{C}, \ \textbf{V}_{cc} = 5 V \pm 10\%, \ \text{unless otherwise noted})$

١.

DBB Read

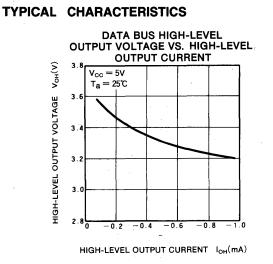
Symbol	Parameter	Alternative	Test conditions		Limits		
Symbol	Faranteter	symbol	rest conditions	Min	Тур	Max	Unit
tPZX (CS-DQ)	Data enable time after CS	t _{AD}	$C_{L} = 150 pF$			225	nş
tPZX (A0-DQ)	Data enable time after address	t _{AD}	C _L = 150 pF			225	ns
t _{PZX} (R-DQ)	Data enable time after read	t _{RD}	$C_{L} = 150 pF$			225	ns
t _{PXZ} (R-DQ)	Data disable time after read	t _{DF}				100	ns


DMA

Currente est	Deventer	Alternative	Test conditions	Limits			Unit	
Symbol	Parameter	symbol	Test conditions	Min	Тур	Max	Unit	
tpzx (DACK-DQ)	Data enable time after DACK	t _{ACD}	150 pF Load			225	ns	
tPHL (R-DRQ)	DRQ disable time after read	t _{CRQ}	150 pF Load			200	ns	
tPHL (W-DRQ)	DRQ disable time after write	t _{CRQ}	150 pF Load			200	ns	

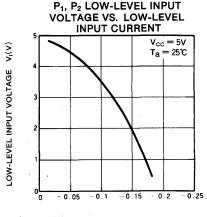
Note 2 : Output voltage discriminating levels, low and high, are 0.8V and 2.0V respectively.

SLAVE MICROCOMPUTER

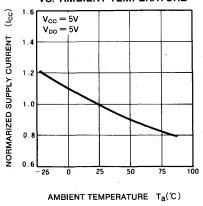


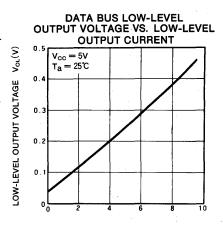
MITSUBISHI

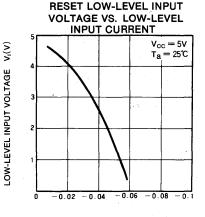
5-29

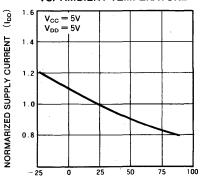

5

SLAVE MICROCOMPUTER


1997年14年**8日**1997年1月1日(日本日本


 $\frac{1}{k^{n}} \sum_{i=1}^{n-1} \frac{1}{k^{n}}$

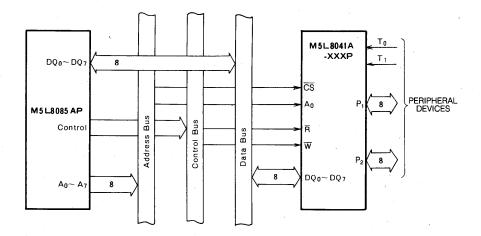

LOW-LEVEL INPUT CURRENT I(mA)

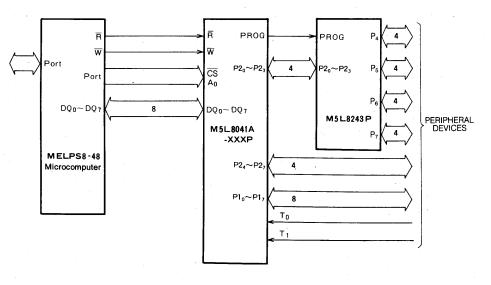


LOW-LEVEL OUTPUT CURRENT IOL(mA)

LOW-LEVEL INPUT CURRENT I(mA)

NORMARIZED SUPPLY CURRENT (I_{DD}) VS. AMBIENT TEMPERATURE


AMBIENT TEMPERATURE $T_a(^{\circ}C)$


SLAVE MICROCOMPUTER

APPLICATION EXAMPLES

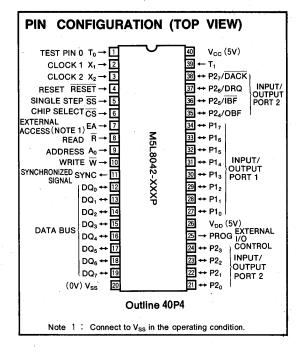
(1) Interface with M5L8085AP

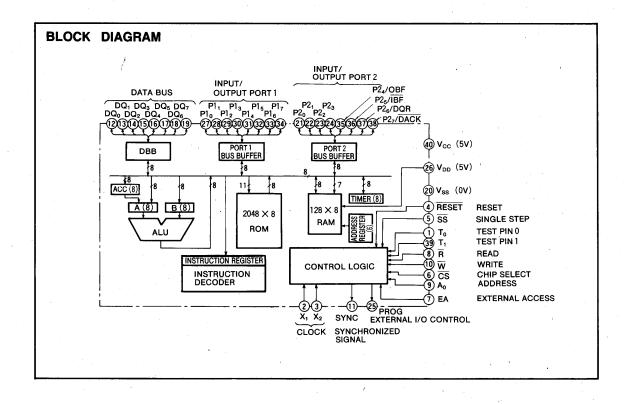
(2) Interface with MELPS 8-48 Microcomputer and M5L8243P

5

SLAVE MICROCOMPUTER

DESCRIPTION


The M5L8042-XXXP is a general-purpose programmable interface device designed for use with a variety of 8-bit microcomputer systems. The device is fabricated using nchannel silicon-gate ED-MOS technology.


FEATURES

- Mask ROM 2048-word by 8-bit
- Static RAM128-word by 8-bit
- 18 programmable I/O pins
- Asynchronous data register for interface to master processor
- 8-bit CPU, ROM, RAM, I/O, timer, clock and low-power stand-by mode
- Single 5V power supply
- Alternative to custom LSI
- Interchangeable with i 8042

APPLICATION

Alternative to custom LSI for peripheral interfaces

SLAVE MICROCOMPUTER

FUNCTION

The M5L8042-XXXP is designed as an ordinary 8-bit CPU peripheral LSI chip and it contains a small stand-alone microcomputer. Although this microcomputer functions independently, when it is used as a peripheral controller, it is called the slave microcomputer in contrast to the master computer. These two devices can transfer the data alternatively through the buffer register between them. The M5L8042-XXXP contains the buffer register to use this LSI as a slave microcomputer and it can be accessed in the same way as other standard peripheral devices. Since the M5L8042-XXXP is a complete microcomputer, it is easy to develop a user-oriented mask-programmed peripheral LSI only by changing the control software.

PIN DESCRIPTION

Pin	Name	Input or output	Function
V _{SS}	Ground	-	Connected to a 0V supply (ground).
Vcc	Main power supply	-	Connected to a 5V supply.
	Power supply		Connected to a 5V supply.
V _{DD}	Power supply	_	Used as a memory hold when V _{CC} is cut off.
To	Test pin 0	Input	Provides external control of conditional program jumps (JTO/JNTO instructions).
X ₁ , X ₂	Crystal inputs	Input	An internal clock circuit is provided so that by connecting an RC circuit or crystal to these input pins, the clock frequency can be determined. X_1 and X_2 can also be used to input an external clock signal.
RESET	Reset	Input	CPU initialization input.
SS	Single step	input	Used to halt the execution of a command by the CPU. When used in combination with the SYNC signal, the command execution of the CPU can be halted every instruction to enable single step operation.
CS	Chip select input	Input	Chip select input for data bus control.
EA	External access	Input	Normally maintained at 0V.
R	Read enable signal	Input	Serves as the read signal when the master CPU is accepting data on the data bus from the M5L8042- XXXP.
Ao	Address input	Input	An address input used to indicate whether the signal on the data bus is data or a command.
w	Write enable signal	Input	Serves as the write signal when the master CPU is outputting data from the bus to the M5L8042-XXXP.
SYNC	Sync signal output	Output	Output 1 time for each machine cycle.
DQ ₀ ~DQ ₇	Data bus	Input/output	Three-state, bidirectional data bus. Data bus is used to interface the M5L8042-XXXP to a master system data bus.
	D 40		Quasi-bidirectional port. When used as an input port, FF ₁₆ must first be output to this port.
P2 ₀ ~P2 ₇	Port 2	Input/output	After resetting, however, when not used afterwards as an output port, this is not necessary.
PROG	Program	Output	P2 ₀ ~P2 ₃ are used when the M5L8243P I/O expander is used. Serves as the strobe signal when the M5L8243P I/O expander is used.
FRUG		Calput	
P1 ₀ ~P1 ₇	Port 1	Input/output	Quasi-bidirectional port. When used as an input port, FF_{16} must first be output to this port. After resetting, however, when not used afterwards as an output port, this is not necessary.
	T 1 - 1		Provides external control of conditional program jumps (JT1/JNT1 instructions).
T ₁	Test pin 1	Input	Can serve as the input pin for the event counter (STRT CNT instruction).

5-33

M5L8042-XXXP

SLAVE MICROCOMPUTER

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Limits	Unit
Vcc	Supply voltage		-0.5~7	V V
VDD	Supply voltage		-0.5~7	v
Vi	Input voltage	With respect to V _{SS}	-0.5~7	v
Vo	Output voltage		-0.5~7	v
Pd	Power dissipation	T _a = 25℃	1500	mW
Topr	Operating temperature range		0~70	°
Tstg	Storage temperature range		-65~150	ĉ

RECOMMENDED OPERATING CONDITIONS

Symbol	Demonster		Limits				
Symbol	Parameter	Min	Nom	Max	Unit		
V _{cc}	Supply voltage	4.5	5	5.5	v		
VDD	Supply voltage	4.5	5	5.5	V		
Vss	Supply voltage		0		v		
VIH	High-level input voltage	2.2			v		
VIL	Low-level input voltage			0.8	V		
f(<i>ø</i>)	Operating frequency	1		12	MHz		

ELECTRICAL CHARACTERISTICS ($\tau_a = 0 \sim 70^{\circ}$ C, $V_{cc} = 5 V \pm 10\%$, unless otherwise noted)

0	Description	T		Limits	· .	Unit	
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit	
VIL	Low-level input voltage		-0.5		0.8	v	
V _{IH1}	High-level input voltage (all except X1, X2, RESET)		2.2		Vcc	V	
VIH2	High-level input voltage (X1, X2, RESET)		3.8		Vcc	v	
VOL1	Low-level output voltage (DQ0~DQ7)	$I_{OL} = 2mA$			0.45	V	
VOL2	Low-level output voltage (P10~P17, P20~P27, SYNC)	$I_{OL} = 1.6 \text{ mA}$			0.45	V	
V _{OL3}	Low-level output voltage (PROG)	$I_{OL} = 1 mA$			0.45	v	
V _{OH1}	High-level output voltage (DQ0~DQ7)	$I_{OH} = -400 \mu A$	2.4			v	
V _{OH2}	High-level output voltage (all other outputs)	$I_{OH} = -50\mu A$	2.4			V	
կ	Input leakage current (T ₀ , T ₁ , R, W, CS, A ₀ , EA)	$V_{SS} \leq V_1 \leq V_{CC}$	-10		10	μA	
lozL	High-impedance state output leakage current (DQ0~DQ7)	$V_{SS} + 0.45 \le V_0 \le V_{CC}$	-10		10	μA	
I _{IL1}	Low-level input load current (P10~P17, P20~P27)	$V_{IL} = 0.8V$	-0.5			mA	
IIL2	Low-level input load current (RESET, SS)	$V_{IL} = 0.8V$	-0.2			mA	
IDD	Supply current from V _{DD}	×			10	mA	
$I_{cc} + I_{pl}$	Total supply current		1		145	mA	

5---34

M5L8042-XXXP

SLAVE MICROCOMPUTER

TIMING REQUIREMENTS ($T_a = 0 \sim 70^{\circ}C$, $V_{cc} = 5V \pm 10\%$, unless otherwise noted) DBB Read

0	Parameter	Alternative	Test seeditions		Limits		Unit
Symbol		symbol	Test conditions	Min	Тур	Мах	Unit
t _{C (Ø)}	Cycle time	t _{CY}		1.25		· 15	μs
tw (R)	Read pulse width	t _{RR}	$t_{C(\phi)} = 1.25 \mu s$	160			ns
tsu (CS-R)	Chip select setup time before read	t _{AR}		0			ns
th (R-CS)	Chip select hold time after read	t _{RA}		0			ns

DBB Write

		Alternative	Testerella			Unit	
Symbol	Parameter	symbol	Test conditions	Min	Тур	Max	Unit
tw (w)	Write pulse width	- t _{ww}		160			ns
t _{su} (cs-w) t _{su} (A0-w)	$\overline{\text{CS}}$, A ₀ , setup time before write	t _{AW}		0			ns
th (w-cs) th (w-ao)	\overline{CS} , A ₀ , hold time after write	t _{WA}		0			ns
tsu (DQ-W)	Data setup time before write	t _{DW}		130			ns
th (w-DQ)	Data hold time after write	t _{wD}		0			ns

Port 2

0	Parameter	Alternative	Testerellar			Unit	
Symbol	Parameter	symbol	Test conditions	Min	Тур	Max	Unit
tw (PR)	PROG pulse width	t _{PP}		700			ns
tsu (PC-PR)	Port control setup time before PROG	t _{CP}	$C_L = 80 pF$	80			ns
th (PR-PC)	Port control hold time after PROG	t _{PC}	$C_L = 20 pF$	60			ns
tsu (Q-PR)	Output data setup time before PROG	t _{DP}	$C_L = 80 pF$	200			ns
tsu (D-PR)	Input data hold time before PROG	t _{PR}	C _L = 80pF			650	ns
th (PR-D)	Input data hold time after PROG	tpF	$C_L = 20 pF$	0		150	ns

DMA

Symbol	Parameter	Alternative	Test seeditiess	Limits			Unit
Symbol	Parameter	symbol	Test conditions	Min	Тур	Max	Unit
tsu (DACK-R)	DACK setup time before read	tACC		0			ns
th (R-DACK)	DACK hold time after read	tCAC		0			ns
tsu (DACK-W)	DACK setup time before write	tACC		0			ns
th (W-DACK)	DACK hold time after write	tCAC		0			ns

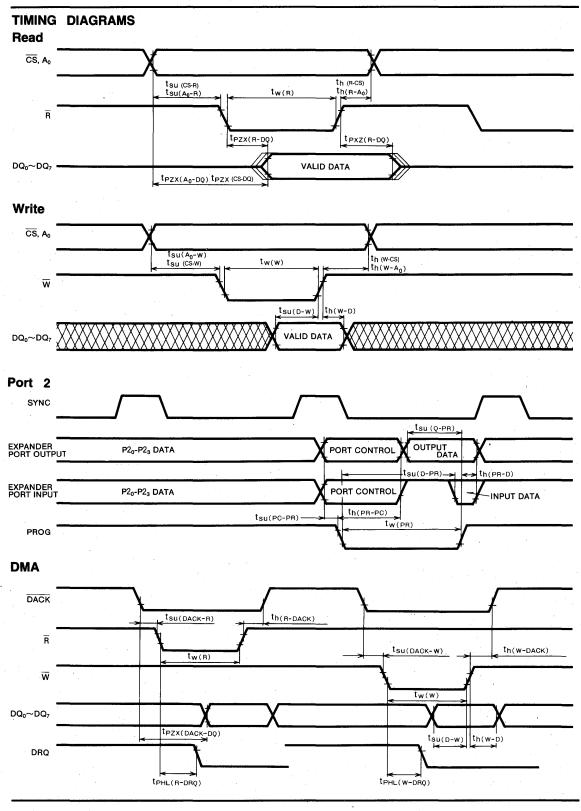
Note 1 : Input voltage level $V_{IL} = 0.45V$, $V_{IH} = 2.4V$.

SWITCHING CHARACTERISTICS ($T_a = 0 \sim 70$ °C, $V_{cc} = 5V \pm 10\%$, unless otherwise noted)

DBB Read

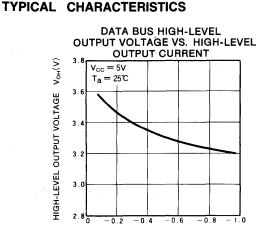
Symbol	Parameter	Alternative	Test conditions		Unit		
Symbol	Parameter	symbol	rest conditions	Min	Тур	Max	Unit
t _{PZX} (CS-DQ)	Data enable time after CS	t _{AD}	C _L = 100 pF			130	ns
tPZX (A0-DQ)	Data enable time after address	t _{AD}	$C_{L} = 100 pF$			130	ns
t _{PZX} (R-DQ)	Data enable time after read	t _{RD}	C _L = 100 pF			130	ns
tpxz (R-DQ)	Data disable time after read	t _{DF}				85	ns

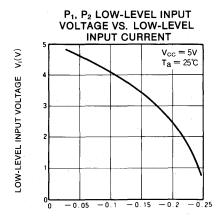
DMA


Symbol	Parameter	Alternative	Test conditions		Unit		
Symbol	Faidneter	symbol	Test conultions	Min	Тур	Max 130 90 90	Unit
tpzx (DACK-DQ)	Data enable time after DACK	t _{ACD}	$C_{L} = 150 \text{ pF}$			130	ns
tPHL (R-DRQ)	DRQ disable time after read	t _{CRQ}				90	ns
tPHL (W-DRQ)	DRQ disable time after write	t _{CRQ}				90	ns

Note 2 : Output voltage discriminating levels, low and high, are 0.8V and 2.0V respectively.

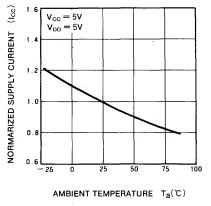
M5L8042-XXXP

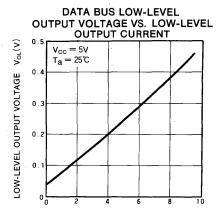

SLAVE MICROCOMPUTER

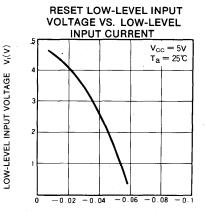


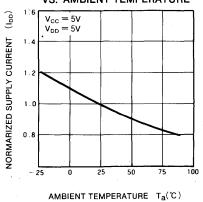
M5L8042-XXXP

SLAVE MICROCOMPUTER




HIGH-LEVEL OUTPUT CURRENT IOH(mA)

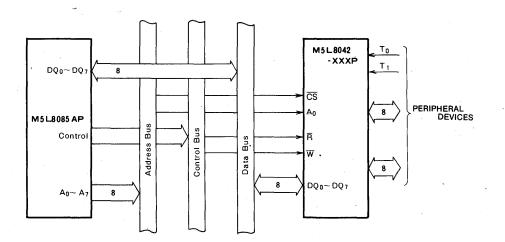

LOW-LEVEL INPUT CURRENT II(mA)



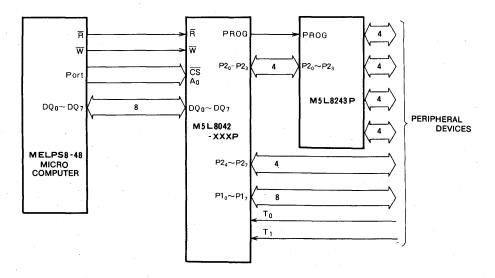
LOW-LEVEL OUTPUT CURRENT IOL(mA)

LOW-LEVEL INPUT CURRENT J.(mA)

NORMARIZED SUPPLY CURRENT (I_{DD}) VS. AMBIENT TEMPERATURE



M5L8042-XXXP


SLAVE MICROCOMPUTER

APPLICATION EXAMPLES

(1) Interface with M5L8085AP

(2) Interface with MELPS 8-48 Microcomputer and M5L8243P

LSIS FOR PERIPHERAL CIRCUITS

INPUT/OUTPUT EXPANDER

DESCRIPTION

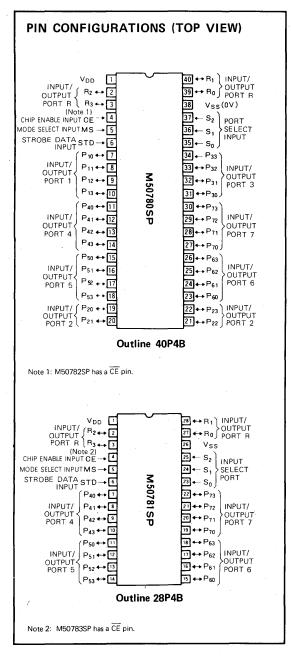
These devices, fabricated using the aluminum gate CMOS process and used for input/output port expansion, are ideal LSIs for connection to the single-chip 4-bit microcomputer series.

The M50780SP and M50782SP are housed in a 40-pin plastic mold DIL package while the M50781SP and M50783SP are housed in a 28-pin plastic mold DIL package.

FEATURES

- Low power dissipation
- Interchangeable with TI's TMS1025C and TMS1024C in terms of pin connections and electrical characteristics (M50780SP and M50781SP)

APPLICATION


I/O expansion for the single-chip microcomputer series

FUNCTION

M50780SP, M50781SP, M50782SP and M50783SP are configured with 4 or 7 groups of input/output ports, 1 group of input/output ports, a port selector circuit and mode control circuit, and operation is possible in the latch or multiplexer mode.

Table 1 Configurations

Expander	Outline	CE pin	Requirements for reset	Compatible expanders
M50780SP M50781SP		CE	$S_0 \sim S_2 = Iow$ STD = (1)	TMS1025C .TMS1024C
M50782SP M50783SP		CE	S₀~S₂≃ Iow STD = high	

6 - 3

INPUT/OUTPUT EXPANDER

Table 2 Pin Description

Symbol	Name	Function
MS	Mode select input	Latch mode at high; multiplexer mode at low.
STD	Strobe input	This input is valid in latch mode and data latched by the fall (↓) are output to output port. Input data are read into latch at high level. At low level latch data are output.
CE (CE)	Chip enable input	This input is valid in multiplexer mode.
R ₀ ~R ₃	Input/output port	4-bit bidirectional input/output ports. Input in latch mode; output in multiplexer mode.
$P_{10} \sim P_{13}$ $P_{20} \sim P_{23}$ $P_{30} \sim P_{33}$ $P_{40} \sim P_{43}$	Input/output ports 1~7	4-bit bidirectional input/output ports. Output in latch mode; input in multiplexer mode.
P ₅₀ ∼P ₅₃ P ₆₀ ∼P ₆₃ P ₇₀ ∼P ₇₃		

M50780SP、M50781SP

Table 3 Latch Modes

		Input			Latch	Output
MS	CE	STD	S ₀ ~S ₂	$R_0 \sim R_3$	Laten	$Q(P_{n0}, P_{n1}, P_{n2}, P_{n3})$
́н	х	Ļ	n	н	н	H (P _{n0} ~P _{n3})
н	х	Ļ	n.	L	L	L (P _{n0} ~P _{n3})
н	х	L	0,n	×	Qo	Q ₀ (All ports)
н	х	н	0,n	×	Q ₀	Q0 (All ports)
н	X	Ļ	0	·X	L	L (All ports)
L	L	х	0,n	×	Q ₀	Z (All ports)

Table 4 Multiplexer Modes

		Output			
MS	СE	STD	$S_0 \sim S_2$	Pn0~Pn3	$Q(R_0, R_1, R_2, R_3)$
L	L	х	0,n	x	. Z
L	н	X	n	н	Н
L	н	х	n	L	Ľ
L	Х	х	0	х	Z

M50782SP、M50783SP

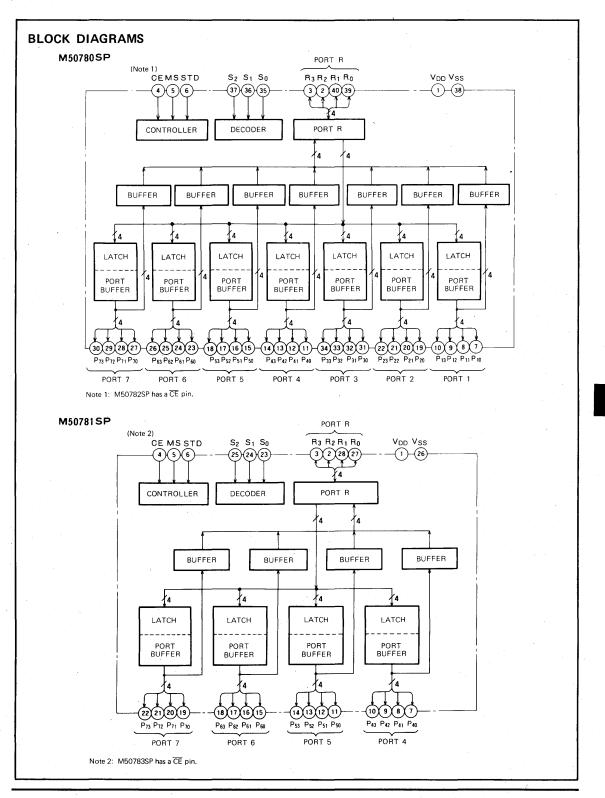
Table 5 Latch Modes

	·· · ·	Input			Latch	Output		
MS	ĈĒ	STD	S0~S2	$R_0 \sim R_3$	Laton	$Q(P_{n0}, P_{n1}, P_{n2}, P_{n3})$		
Н	x	н	n	н	*	H (P _{n0} ~P _{n3})		
н	X	н	n	L	- *.	L (P _{n0} ~P _{n3})		
Ĥ.	X	÷ `↓	n	н	Ъ	H (P _{n0} ~P _{n3})		
н	x	Ļ	n	Ĺ	L	L (P _{n0} ~P _{n3})		
н	х	L	0,n	х	Qo	Q ₀ (All ports)		
н	х	. H	0	X	*	L (All ports)		
L	н	L	n	X	Qo	Z (All ports)		

* Not latched

Table 6 Multiplexer Modes

		Output			
MS	ĈĒ	STD	S ₀ ~S ₂	P _{n0} ~P _{n3}	$Q(R_0, R_1, R_2, R_3)$
L	Н	х	0 ,n	X	Z
L	L	х	n	н	Ĥ
Ľ	Ļ	X	n	L	L
L	х	. X	0	x	Z


X: High or low

Z : High-impedance state

6-4

INPUT/OUTPUT EXPANDER

M50780SP/M50781SP M50782SP/M50783SP

e Service and the service of the ser

INPUT/OUTPUT EXPANDER

Table 7 Function Table

203

\square					N	450780SP, 1	450782SP			
							N	450781SP, 1	450783SP	
n	S ₂	S ₁	S ₀	P10~P13	P ₂₀ ~P ₂₃	P30~P33	P40~P43	P50~P53	P60~P63	P70~P73
1	L	L	н	0						
2	L	н	Ĺ		0	•				
3	L	н	н			0				
4	H.	L	L				0 "			
5	н	L	н				1.1	Ø		
6	н	н	L						0	
7	н	H,	н			· .				0

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Limits	Unit
V _{DD}	Supply voltage	With respect to VSS	-0.3-15	V
VI	Input voltage		V _{SS} -0.3~V _{DD} +0.3	v
Vo	Output voltage		V _{SS} -0.3~V _{DD} +0.3	V
Pd	Maximum power dissipation	Ta=25°C	 600	mW
Topr	Operating free-air temperature range		-10~70	°C
Tstg	Storage temperature range		-40~125	°C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		11-14		
Symbol	Farameter	Min	Max	Unit	
V _{DD}	Supply voltage	3	1	14	V
VI	Input voltage	0		VDD	V
VIH	High-level input voltage	V _{DD} ×0.7		VDD	v
VIL	Low-level input voltage	0		V _{DD} ×0.3	V

ELECTRICAL CHARACTERISTICS ($T_a=25^{\circ}C$, $V_{DD}=9V$, unless otherwise noted)

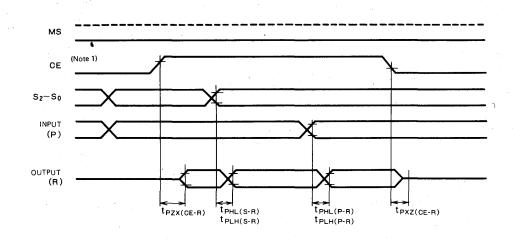
Symbol	0	• •	To a second second	Limits			Unit
Symbol	Parame	ter	Test conditions	Min	Тур	Max	, onit
			$V_{DD} = 5 V$, $I_{OH} = -2mA$	2.5			v
		Port 1 ~ port 7	$V_{DD} = 9V, I_{OH} = -4mA$	6.5			v
			$V_{DD} = 12V, I_{OH} = -5.5 mA$	9.5			V
Vон	High-level output voltage		$V_{DD} = 5 V, I_{OH} = -200 \mu A$	4.6			V
		Port R	$V_{DD} = 9 V, I_{OH} = -350 \mu A$	8.6			v
		1	$V_{DD} = 12V, I_{OH} = -450 \mu A$	11.6			V
			$V_{DD} = 5 V$, $I_{OL} = 1 m A$			0.4	v
		Port 1 ~ port 7	$V_{DD} = 9 V$, $I_{OL} = 1.4 mA$			0.4	v
		· · · ·	$V_{DD}=12V$, $I_{OL}=1.7mA$			0.4	v
VOL 1	Low-level output voltage		$V_{DD} = 5 V, I_{OL} = 250 \mu A$			0.4	v
		Port R	$V_{DD} = 9 V$, $I_{OL} = 450 \mu A$	-		0.4	V
		and the second second	$V_{DD} = 12V, I_{OL} = 550 \mu A$		• •	0.4	v
			$V_{DD}=5V$, $I_{OL}=4mA$			1.8	V
V _{OL2}	Low-level output voltage	Port 1 ~ port 7	$V_{DD}=9V$, $I_{OL}=12mA$			2.5	V
			V _{DD} =12V, I _{OL} =17mA			3.9	v
		Port 1 ~ port 7	V ₁ =0~V _{DD}			10	μA
ц.	Input current	Port R	V ₁ =0~V _{DD}			1	μA
Ipp	Supply current		Output pins open	1		50	μA

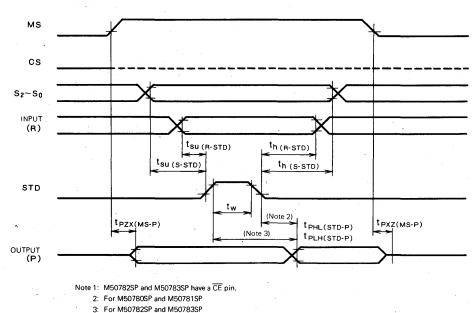
INPUT/OUTPUT EXPANDER

TIMING REQUIREMENTS

				Limits				
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit		
		V _{DD} = 5 V	0.2					
tsu (R-STD)	Data set-up time for STD input, port R input	V _{DD} = 9 V	0.15			μs		
		V _{DD} =12V	0.1	e e]		
		V _{DD} = 5 V	. 1					
tsu (S-STD)	Data set-up time for STD input, $S_0 \sim S_2$ inputs	V _{DD} = 9 V	0.5			μs		
		V _{DD} =12V	0.2			1		
		V _{DD} = 5 V	0.5					
tw	STD input pulse width	V _{DD} = 9 V	0.4			μs		
		V _{DD} =12V	0.3					
		V _{DD} = 5 V	0.4					
th (R-STD)	Data hold time for STD input, port R input	V _{DD} = 9 V	0.3	~	1. A	μs		
		V _{DD} =12V	0.2			1		
th(s-std)		V _{DD} = 5 V	1					
	Data hold time for STD input, $S_0 \sim S_2$ inputs	V _{DD} = 9 V	0.7			μs		
		V _{DD} =12V	0.5			1		

SWITCHING CHARACTERISTICS


Symbol	Parameter	Test condit			Limits		Unit
Symbol	Farameter	rest condit	ions	Min	Тур	Max	Unit
			$V_{DD} = 5 V$			0.6	
t _{PZX(CE-P)}	Valid output delay time for CE input, R output		V _{DD} = 9 V			0.5	μs
			V _{DD} =12V			0.4	
		, ,	V _{DD} = 5 V			0.8	
t _{PZX(MS-P)}	Valid output delay time for MS input, $P_{10} \sim P_{73}$ outputs		V _{DD} = 9 V			0.6	μs
1		$R_L = 10 k\Omega$	V _{DD} =12V			0.5	
		C _L =50pF	V _{DD} = 5 V		•	0.6	
t _{PXZ(CE-R)}	Output floating delay time for CE input, R output		V _{DD} = 9 V			0.5	μs
			V _{DD} =12V			0.4	
			V _{DD} = 5 V			0.8	
t _{PXZ(MS-P)}	Output floating delay time for MS input, $P_{10} \sim P_{73}$ outputs		V _{DD} = 9 V			0.6	μs
			V _{DD} =12V			0.5	
t _{PHL(S-R)}			V _{DD} = 5 V			3	
	Data output high-to-low delay time; S input, R output		V _{DD} = 9 V			1	μs
			V _{DD} =12V			0.7	
	Data output high-to-low delay time; $P_{10} \sim P_{73}$ inputs, R output		V _{DD} = 5 V			1.8	
t _{PHL(P-R)}			V _{DD} = 9 V			0.7	μs
			V _{DD} =12V			0.5	
			V _{DD} = 5 V			1.2	
t _{PHL(SFD-P)}	Data output high-to-low delay time; STD input, P output		V _{DD} = 9 V			0.5	μs
		R∟=200kΩ	V _{DD} =12V			0.4	
		C _L =50pF	$V_{DD} = 5 V$			3	
tplh(s-R)	Data output low-to-high delay time; S input, R output		V _{DD} = 9 V			1	μs
			V _{DD} =12V			0.7	
			V _{DD} = 5 V			1.8	
t _{PLH(P-R)}	Data output low-to-high delay time; $P_{10} \sim P_{73}$ inputs, R output		V _{DD} = 9 V			0.7	μs
			V _{DD} =12V			0.5	
)			$V_{DD} = 5 V$			1.2	
tPLH(STD-P)	Data output low-to-high delay time; STD input, $P_{10} \sim P_{73}$ outputs		V _{DD} = 9 V			0.5	μs
	10 173 00 00 03		V _{DD} =12V			0.4	


6-7

INPUT/OUTPUT EXPANDER

TIMING DIAGRAM Multiplex Mode

Latch Mode

MITSUBISHI MICROCOMPUTERS M50784SP **INPUT EXPANDER**

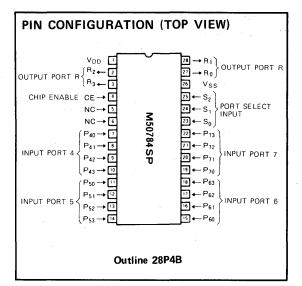
DESCRIPTION

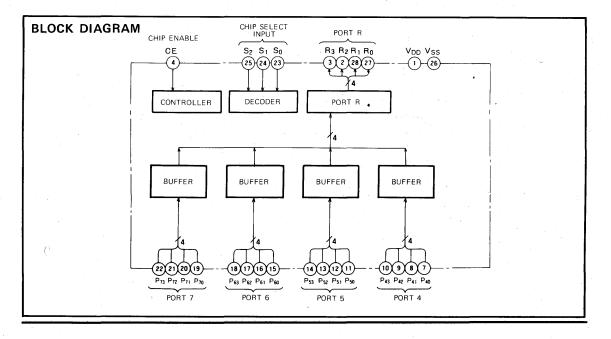
This device, fabricated using the aluminum gate CMOS process and used for input port expansion, is an ideal LSI for connection to the single-chip 4-bit microcomputer series.

It is housed in a 28-pin plastic mold DIL package.

FEATURES

- Low power dissipation


APPLICATION


Input port expansion in the single-chip microcomputer series

FUNCTION

M50784SP comprises 4 groups of input ports, 1 group of output ports and a port selector circuit.

It is particularly attractive for implementing a multiplexer.

6

MITSUBISHI MICROCOMPUTERS M50784SP

INPUT EXPANDER

PIN DESCRIPTION

Symbol	Name	Function
CE	Chip enable input	When low, output transistors will be "off" state.
R ₀ ~R ₃	Output port	4-bit output ports. P-channel open drain outputs.
P40~P43	Input ports 4 ~ 7	4-bit input ports
P50~P53		
P ₅₀ ~P ₅₃ P ₆₀ ~P ₆₃		
P70~P73		

Function table (1)

	Input	Output	
CE	S0~S2	Pn ₀ ~Pn ₃	$Q(R_0, R_1, R_2, R_3)$
L	0, n	×	(L)
н	n	н	н
н	n	L	(L)
x	0	×	(L)

Function table (2)

n.	S ₂ S ₁ S ₀	P40~P43	P ₅₀ ~P ₅₃	P60~P63	P70~P73
4	HLL	0	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -		
5	нсн		0		
6	н н ч			0	n a d'
• 7	ннн			5	0

(L): Transistor "off" state

X : High or low

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Parameter Conditions		Unit
V _{DD}	Supply voltage	voltage With respect to V _{SS}		
VI	Input voltage		V _{SS} -0.3~V _{DD} +0.3	V
Vo	Output voltage		V _{SS} -0.3~V _{DD} +0.3	v
Pd	Maximum power dissipation	Ta=25°C	600	mW
Topr	Operating free-air temperature range	· · · · · · · · · · · · · · · · · · ·	-10~70	°C
Tstg	Storage temperature range		-40~125	°C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Limits			
	Farameter	Min	Nom	Max	Uniț	
V _{DD}	Supply voltage	. 4	1	14	V	
VI	Input voltage	0		VDD	V	
VIH	High-level input voltage	V _{DD} ×0.7		V _{DD}	v	
VIL	Low-level input voltage	0		V _{DD} ×0.3	V	

ELECTRICAL CHARACTERISTICS ($T_a = 25^{\circ}C$, $V_{DD} = 9V$, unless otherwise noted)

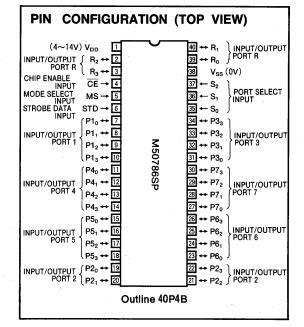
Symbol	Paramet	or	Test condition	Limits			Unit
Symbol	i di al lici			Min	Түр	Max	Unit
			V _{DD} =5V, V _{OH} =3.5V	1.5			mA 🔍
Гон	High-level output current	Port R	V _{DD} =9V, V _{OH} =7.5V	2.5		•	mA
			V _{DD} =12V, V _{OH} =10.5V	3.5			mA
-l _l	Input current	Port 4 ~ Port 7	V ₁ =0~V _{DD}	1.1		1	μA
IDD	Supply current		Output pins open			50	μA

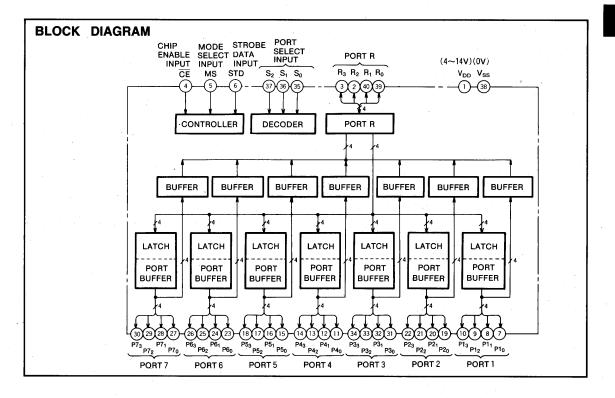
INPUT/OUTPUT EXPANDER

DESCRIPTION

The M50786SP is an input/output expander fabricated using aluminum-gate CMOS technology. It is designed especially for connection with the single-chip 4-bit microcomputer series, and it comes in a 40-pin plastic molded DIL package.

FEATURES


- Wide operating voltage range ------ 4~14V
- Low power dissipation


APPLICATION

 $\ensuremath{\text{I/O}}$ expansion for the single-chip 4-bit microcomputer series

FUNCTION

The M50786SP is composed of seven groups of I/O ports, one I/O port group, a port selector circuit and a mode control circuit. It can be used in the latch or multiplexer mode. P-channel open-drain output buffers are featured.

M50786SP

INPUT/OUTPUT EXPANDER

PIN DESCRIPTION

Symbol	Name	Function
MS	Mode select input	Latch mode when high; multiplexer mode when low.
STD	Strobe input	Valid in latch mode; data latched by fall (1) are supplied to output port.
510	Strobe input	When high, input data are read into latch; when low, latch data are output.
CE	Chip enable input	Input is valid in multiplexer mode.
$R_0 \sim R_3$	Input/output port	4-bit bidirectional input/output port. Functions as input in latch mode and output in multiplexer mode.
P10~P13		
P20~P23		
P30~P33		
P40~P43	Input/output port 1~7	4-bit bidirectional input/output ports that function as output in latch mode and input in multiplexer mode.
P50~P53	1	
P60~P63		
P70~P73	1 · · · · ·	

LATCH MODE

		Input			latek	Output		
MS	CE	STD	S0~S2	R₀~R₃	latch	Q (Pno, Pn1, Pn2, Pn3)		
н	х	н	n	н	-*	$H(Pn_0 \sim Pn_3)$		
н	х	н	n	L	- *	$(L) (Pn_0 \sim Pn_3)$		
н	х	↓ ↓	n	н	н	$H(Pn_0 \sim Pn_3)$		
н	х	Ļ	n	L	L	(L) (Pn ₀ ~Pn ₃)		
н	х	L	0, n	X	Qo	Q ₀ (all ports)		
н	х	н	0	х	-*	(L) (all ports)		
L	н	L	n	х	Qo	(L) (all ports)		

* Not latched

MULTIPLEXER MODE

		In	Output		
MS	CE	STD	S ₀ ~S ₂	$Pn_0 \sim Pn_3$	$Q(R_0, R_1, R_2, R_3)$
L	н	X	0, n	x	Z
L	L	X	n	н	н
L	L	X	n.	L	L
L	Х	X	0	x	Z

X : Irrelevant

Z : High impedance

(L): Output transistor off-state

FUNCTION TABLE

n	S ₂	S ₁	So	P10~P13	P20~P23	P30~P33	P40~P43	P50~P53	P60~P63	P70~P73
1	L	L	н	0						
2	L	н	L		0					
3	L	н	н			0				
4	н	L	L				· 0			
5	н	L	н					0		
6	н	н	L						0	
7	н	н	н							0

INPUT/OUTPUT EXPANDER

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Limits	Unit
VDD	Supply voltage	With respect to V _{SS}	-0.3~15	v
V _I	Input voltage		V _{SS} -0.3~V _{DD} +0.3	v
Vo	Output voltage		$V_{ss} = -0.3 \sim V_{DD} + 0.3$	v
Pd	Power dissipation	$T_a = 25^{\circ}C$	600	mW
Topr	Operating temperature		-10~70	ĉ
Tstg	Storage temperature		-40~125	Ĵ

RECOMMENDED OPERATING CONDITIONS

Symbol	Destamator		11-14		
Symbol	Parameter	Min	Nom	Max	Unit
VDD	Supply voltage	4		14	V
Vi	Input voltage	0		V _{DD}	v
VIH	High-level input voltage	V _{DD} ×0.7		VDD	v
VIL	Low-level input voltage	0		V _{DD} ×0.3	v

ELECTRICAL CHARACTERISTICS ($V_{DD} = 9V$, $T_a = 25$ °C, unless otherwise noted)

Symbol				Limits			
	Parameter		Test conditions	Min	Тур	Max	Unit
	High-level output voltage	Ports 1~7	$V_{DD} = 5V, I_{OH} = -1mA$	2.5			v
			$V_{DD} = 9V, I_{OH} = -3mA$	6.5			V
			$V_{DD} = 12V, I_{OH} = -5.5mA$	9.5			V
V _{он}		Port R	$V_{DD} = 5V, I_{OH} = -100 \mu A$	4.6			v
			$V_{DD} = 9V, I_{OH} = -250 \mu A$	8.6			ν.
			$V_{DD} = 12V, I_{OH} = -450 \mu A$	11.6			v
	Low-level output voltage	age Port R	$V_{DD} = 5V, I_{OL} = 130\mu A$			0.4	V
Vol			$V_{DD} = 9V, I_{OL} = 350 \mu A$			0.4	v
			$V_{DD} = 12V, I_{OL} = 550\mu A$			0.4	v
l,	Input current	Ports 1~7	$V_i = 0 \sim V_{DD}$			10	μA
		Except ports 1~7	$V_i = 0 \sim V_{DD}$			1	μA
IDD	Supply current		Output pins open		1.1	50	μA

MITSUBISHI MICROCOMPUTERS M50786SP

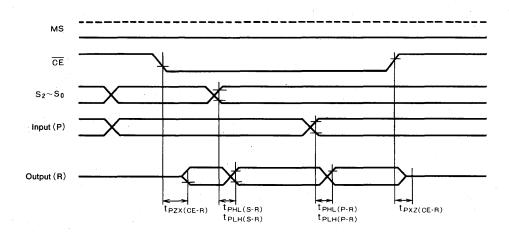
INPUT/OUTPUT EXPANDER

TIMING REQUIREMENTS

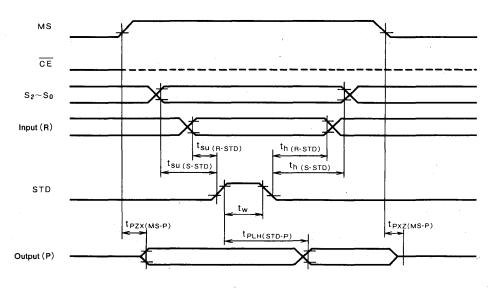
Symbol	Parameter	Test and distance		Limits			
		Test conditions	Min	Тур	Max	Unit	
		$V_{DD} = 5V$	0.4				
tsu (R-STD)	Data setup time for STD input, port R input	$V_{DD} = 9V$	0.4			μs	
		$V_{DD} = 12V$	0.4			1	
	Data and the first for OTO local	$V_{DD} = 5V$	1				
tsu (S-STD)	Data setup time for STD input, inputs $S_0 \sim S_2$	$V_{DD} = 9V$	0.7			μs	
		$V_{DD} = 12V$	0.5			1	
	STD input pulse width	$V_{DD} = 5V$	1.5				
tw		V _{DD} = 9V	0.5			μs	
		$V_{DD} = 12V$	0.3	· ·]	
	Data hold time for STD input, port R input	$V_{DD} = 5V$	0.5				
th (R-STD)		$V_{DD} = 9V$	0.5			μs	
×		$V_{DD} = 12V$	0.5				
	Data hald time for STD input	$V_{DD} = 5V$	1		1.1		
th (s-std)	Data hold time for STD input, port S input	$V_{DD} = 9V$	0.7	· · ·		μs	
		$V_{DD} = 12V$	0.5			1	

SWITCHING CHARACTERISTICS

Symbol	Parameter	Test	Test conditions		Limits			
Symbol	Farameter	lest			Тур	Max	Unit	
t _{PZX} (CE-R)	Valid output delay time for CE input,	D - 100 0	$V_{DD} = 5V$			1.5		
		$R_L = 10k\Omega$	$V_{DD} = 9V$			1	μs	
	R output	$C_L = 50 pF$	$V_{DD} = 12V$			0.8		
	Valid output delay time for MS input,	D = 240	$V_{DD} = 5V$			2.4		
t _{PZX} (MS-P)		$\mathbf{R}_{L} = 2\mathbf{k}\Omega$	$V_{DD} = 9V$		5 - S	1.8	μs	
	P1 ₀ ~P7 ₃ output	$C_L = 50 pF$	$V_{DD} = 12V$			1.2	• •	
		$R_i = 10k\Omega$	$V_{DD} = 5V$			1.5		
t _{PXZ} (CE-R)	Output floating delay time for CE input,	$R_L = 10 k\Omega$ $C_L = 50 pF$	$V_{DD} = 9V$			1	μs	
	R output	CL = SUPP	$V_{DD} = 12V$			0.8		
			$V_{DD} = 5V$			2.4		
t _{PXZ} (MS-P)	Output floating delay time for MS input, $P1_0 \sim P7_3$ output	$R_L = 2k\Omega$	$V_{DD} = 9V$			1.8	μs	
d		$C_L = 50 pF$	$V_{DD} = 12V$			1.2		
	Data output high-to-low delay time, S input, R output		$V_{DD} = 5V$			1.2		
t _{PHL} (S-R)		B - 2001 O	$V_{DD} = 9V$			2.5	μs	
		$R_L = 200 k \Omega$	$V_{DD} = 12V$			2		
	Data output high-to-low delay time, P1₀~P7₃ input, R output		$V_{DD} = 5V$			3.5		
t _{PHL} (P-R)		$C_L = 50 pF$	$V_{DD} = 9V$			1.8	μs	
			$V_{DD} = 12V$			1.2		
	Data output low-to-high delay time, STD input, R output	$R_L = 2k\Omega$	$V_{DD} = 5V$			2.4		
tPHL (STD-P)			$V_{DD} = 9V$			1.8	μs	
		$C_L = 50 pF$	$V_{DD} = 12V$	·		1.2		
			$V_{DD} = 5V$			4.2	-	
t _{PLH} (S-R)	Data output low-to-high delay time, S input, R output	D - 2001-0	$V_{DD} = 9V$			2.5	μs	
		$R_L = 200 k \Omega$	$V_{DD} = 12V$, 2		
	Data output low-to-high delay time, P1₀~P7₃ input, R output	0 - 50-5	$V_{DD} = 5V$			3.5		
t _{PLH} (P-R)		$C_L = 50 pF$	$V_{DD} = 9V$			1.8	μs	
			$V_{DD} = 12V$			1.2		
		P - 210	$V_{DD} = 5V$		1	2.8		
t _{PLH} (STD-P)	Data output low-to-high delay time, STD input, P1 ₀ ~P7 ₃ output	$R_L = 2k\Omega$. V _{DD} = 9V			1.8	μs	
		$C_L = 50 pF$	$V_{DD} = 12V$			1.2		



MITSUBISHI MICROCOMPUTERS M50786SP


INPUT/OUTPUT EXPANDER

TIMING DIAGRAM

Multiplexer Mode

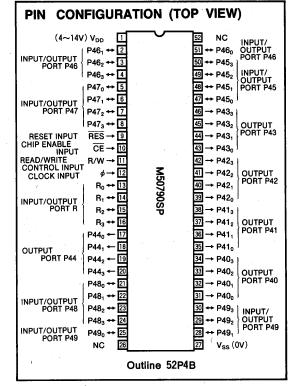
.

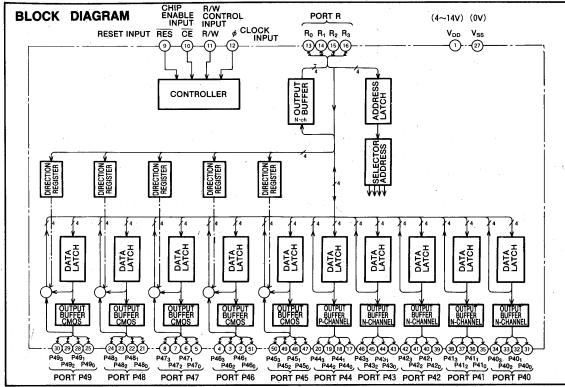
6-15

6

INPUT/OUTPUT EXPANDER

DESCRIPTION


The M50790SP is an input/output expander LSI fabricated using aluminum-gate CMOS technology. It is designed especially for connection with the single-chip 8-bit microcomputer series, and it comes in a 52-pin shrink plastic molded DIL package.


FEATURES

- Wide operating voltage range ------ 4~14V
- Voltage level convertable thanks to n-channel opendrain configuration at I/O port (port R)
- Input/output ports (ports P45~P49) ········· 4 bits × 5⁵
- Output ports (ports P40~P44)······ 4 bits × 5
- High current output
- Output latch data can be read
- Input/output setting possible for each bit individually with 20bits I/O ports

APPLICATION

I/O expansion for single-chip 8-bit microcomputer M50740-XXXSP

INPUT/OUTPUT EXPANDER

FUNCTION

The M50790SP enables expansion from one 4-bit I/O port (port R) group to five 4-bit output port groups and five 4-bit I/O port (port P) groups. The ports are selected as follows: when the clock input ϕ is high, the address is input from port R and when it is low, the data are input (or output) by the same port (port R).

Each I/O port (ports P45 ~ P49) has a direction register (D45 ~ D49) and the input or output can be set for each bit individually.

The contents of all output latches can be read from port R.

PIN DESCRIPTION

Symbol	Name	Input or output	Function
ø	Clock input	In	When the input is high, the address of the port to be accessed from port R is designated. The address is latched at the <i>\u03c6</i> fall. Conversely, when the input is low, the R port data are input or output.
CE	Chip enable input	In	If this input is high when ϕ is high, the internal mode is prevented from being changed by external equipment.
R/W	Read/write control input	In	The port R input/output is controlled by the high/low level of this input when ϕ is falling.
RES	Reset input	In	All the outputs are put into the high-impedance state when this input is low. This means that the open- drain output port latches and direction registers are reset. The CMOS input/output port data latches re- main unchanged (see table below).
R	Port R	in/out	Data is sent and received at this 4-bit bidirectional port by the microcomputer's transfer instructions. When ϕ is high, the address is read through this port, when low, the data are sent or received through this port.
P40 P41 P42 P43 P44	Output ports 40 Output ports 41 Output ports 42 Output ports 43 Output ports 44	Out	These 4-bit output ports have output latches for each individual bit. The output configuration is n-channel open-drains for P40i~P43i and p-channel open-drains for P44i.
P45 P46 P47 P48 P49	Input/output ports 45 Input/output ports 46 Input/output ports 47 Input/output ports 48 Input/output ports 49	in/out	These 4-bit bidirectional input/output ports have an output latch and direction register for each individual bit and input or output can be designated for each bit. The output configuration is a 3-state CMOS struc- ture.

PORT MODES AFTER RESET INPUT

Port	Direction register	Data latch	Output transistor N-channel open-drain OFF P-channel open-drain OFF		
P40~P43	-	ALL "H"			
P44	-	ALL "L"			
P45~P49	ALL low (input)	No change	High-impedance		

INPUT/OUTPUT EXPANDER

OPERATION

Address Designation

The address is designated by port R while the clock ϕ signal is high and the address data are latched to the address latch by the ϕ fall (τ). The relationship between each port or address register and the addresses is shown below.

Address and data signs

A	ddress ($\phi = high$	1)		Data (ø	= low)	
R ₃	R ₂	R ₁	R ₀	R ₃	R ₂	R ₁	R ₀
L	L	L	L		bla	ink	
L	L	L	· H	P403	P402	P401	P400
L	L	н	L	P413	P412	P411	P410
L	L	H	H.	P423	P422	P421	P420
L	н	1, L	L	P433	P43₂	P431	P430
L	н	L	н	P443	P442	P441	P440
L L	н́	н	L ·	P453	P45₂	P451	P450
· L	н	Η.	н	D453	D452	D451	D45 ₀
н	L	L	L	P463	P46 ₂	P46,	P460
н	L	L	н	D46 ₃	D46 ₂	D46₁	D46 ₀
н	L	н	L	P473	P47₂	P471	P470
н	L	н	н	D473	D472	D471	D470
н	н	L	L	P483	P482	P481	P480
н	н	L	н	D48 ₃	D482	D481	D480
н	Π.	н	• L	P493	P492	P491	P490
н	Н	н	н	D49 ₃	D49 ₂	D491	D490

Note: D45~D49 are the direction registers of ports P45~49. When D is low, the output is set to the high-impedance state and when high, the CMOS output ON state is established. Designation for each bit in this way is possible. The contents of the direction registers, however, cannot be read out.

Direction Register Setting

For each bit the input/output ports have corresponding direction registers (see table below). When a register is low, the output is set to the high-impedance state and when high, the CMOS output ON mode is established.

Correspondence between I/O ports and direction registers

. 0	Output por	t/input po	rt		Direction	register	
P40o	P401	P402	P403	р. – с.		5.	
P41o	P411	P412	P413			ne	
P42o	P421	P422	P423				
P43o	P431	P432	P433		Outpu	ts only)	
P44o	P441	P442	P44 ₃				
P450	P45₁	P45 ₂	P45 ₃	D45 ₀	D45₁	D45 ₂	D45 ₃
P46o	P461	P46 ₂	P463	D46 ₀	D461	D46 ₂	D46 ₃
P47o	P471	P472	P473	D470	D471	D472	D473
P48o	P481	P482	P483	D48 ₀	D481	D482	D48 ₃
P49o	P491	P492	P493	D490	D49₁	D49 ₂	D49 ₃

Output Operation

Output Ports (P40~P44)

In order for the data to be output to the P40 ~ P44 output ports, the address must be designated from port R when ϕ is high. When ϕ is low, the output data must be designated in the same way from port R. In this case, the R/W input is set low with the ϕ fall (\mathbb{T}).

Input/Output Ports (P45~P49)

In the case of the I/O ports the direction register corresponding to the bits must be set high beforehand. As long as the level is high, the output operation can be conducted in exactly the same way as for the $P40 \sim P44$ ports.

Input Operation

For input the direction register corresponding to the bits must be set low beforehand. The actual operation consists in designating the input port address from port R when the ϕ input is high and reading the R port data when ϕ is low. In this case, the R/W input is set high with the ϕ fall (τ).

Latch Read Operation

Output Ports (P40~P44)

In order to read the P40~P44 output port latches, the P40~P44 port address is designated when the ϕ input is high and, as soon as R/W is high during the ϕ fall, the data can be read from port R when ϕ is low.

I/O Ports (P45~P49)

In order to read the I/O port latches, the direction register corresponding to the bits must be set high beforehand. (This sets the CMOS outputs ON.) If the direction register is high, then the latch reading operation can be conducted in exactly the same way as with the P40 \sim P44 ports.

Direction Registers (D45~D49)

The contents of the direction registers cannot be read out.

INPUT/OUTPUT EXPANDER

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Limits	Unit
VDD	Supply voltage		-0.3~15	v
V,	Input voltage	With respect to V _{SS}	V _{SS} -0.3~V _{DD} +0.3	v
Vo	Output voltage		V _{ss} -0.3~V _{DD} +0.3	v
Pd	Power dissipation	T _a = 25°C	600	mW
Topr	Operating temperature	×	-10~70·	ĉ
Tstg	Storage temperature		-40~125	ĉ

RECOMMENDED OPERATING CONDITIONS ($v_{DD} = 9V \pm 10\%$, $T_a = -10 \sim 70^{\circ}$ C, unless otherwise noted)

0	Bassastan	To share dialogs		Limits		Unit	
Symbol	Parameter	Test conditions	Min	Nom	Max	onit	
V _{DD}	Supply voltage		4		14	v	
Vi	Input voltage		0		V _{DD}	v	
VIHP	High-level input voltage, P45, P46, P47, P48, P49	$V_{DD} = 7 \sim 14 V$	V _{DD} X0.7		V _{DD}	v	
VILP	Low-level input voltage, P45, P46, P47, P48, P49	$V_{DD} = 7 \sim 14 V$	0		V _{DD} X0.3	v	
VIHR	High-level input voltage, R, Ø, R/W, CE, RES	$V_{DD} = 7 \sim 14V$	V _{DD} ×0.4		VDD	v	
VILR	Low-level input voltage, R, ø, R/W, CE, RES	$V_{DD} = 7 \sim 14 V$	0		V _{DD} X0.1	v	
IOL(avg)	Low-level output average current (R)				5	mA	
IOL(avg)	Low-level output average current, P40, P41, P42, P43				20	mA	
IOH(avg)	High-level output average current, (P44)		—10			mA	
IOH(avg)	High-level output average current, P45, P46, P47, P48, P49		-2			mA	
IOL(avg)	Low-level output average current, P45, P46, P47, P48, P49				2	mA	
f _(\$\phi)	M50740-XXXSP internal clock oscillation frequency	$V_{DD} = 9V$			2.5	MH	

ELECTRICAL CHARACTERISTICS ($v_{DD} = 9V \pm 10\%$, $T_a = -10 \sim 70$ °C, unless otherwise noted)

0	Demonstra			Limits			
Symbol	Parameter	Test conditions	Min	Min Typ		Unit	
1,	Input current, ¢, R/W, CE, RES				1	μA	
I _L	Input current, R	$V_i = 0 \sim V_{DD}$			1	μA	
l,	Input current, P45, P46, P47, P48, P49	-			10	μA	
V _{OH}	High-level output voltage, P44	$i_{OH} = -10 \text{mA}$	V _{DD} -2		V _{DD}	v	
V _{он}	High-level output voltage, P45, P46, P47, P48, P49	$I_{OH} = -2mA$	V _{DD} -2		V _{DD}	v	
VOL	Low-level output voltage, R	$I_{OL} = 5mA$	0		0.4	v	
Vol	Low-level output voltage, P40, P41, P42, P43	$I_{OL} = 20 \text{mA}$	0		2	v	
VOL	Low-level output voltage, P45, P46, P47, P48, P49	$I_{OL} = 2mA$	0		2	v	
IDD	Supply current	Output pins open			50	μA	

6

6-19

INPUT/OUTPUT EXPANDER

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
		$V_{DD} = 9V$	750			ns
tsu(A-ø)	Address input set-up time	$V_{DD} = 12V$	600			ns
•	Data input set-up time	$V_{DD} = 9V$	700		-	ns
tsu(D-ø)	Data input set-up time	$V_{DD} = 12V$	550			ns
+ • .	Address hold time after ¢ fail	$V_{DD} = 9V$	0			ns
th(<i>∳</i> -A)	Address hold time after φ fair	$V_{DD} = 12V$	0			ns
th(∲D)	Data hold time after ϕ rise	$V_{DD} = 9V$	0			ns
	Data tiolo time after φ rise	$V_{DD} = 12V$	0			ns
t _{su(CE-¢)} C	Chip enable set-up time before ϕ fall	$V_{DD} = 9V$	550			ns
		$V_{DD} = 12V$	400			ns
••••	Chip enable hold time after ¢ fall	$V_{DD} = 9V$	400			ns
th(≁-CE)		$V_{DD} = 12V$	300			ns
•	Read/write set-up time before ¢ fall	$V_{DD} = 9V$	650			ns
tsu(R/W-ø)	head, white set-up time before \$ fail	$V_{DD} = 12V$	500			ns
••	Read/write hold time after ∳ fall	$V_{DD} = 9V$	400			ns
th(#R/W)	Read/white hold time after \$ fail	$V_{DD} = 12V$	300			ns
•	P input set-up time before ¢ fall	$V_{DD} = 9V$	750			ns
t _{su(P-Ø)}		$V_{DD} = 12V$	600			ns
••••••	P input data hold time after ¢ rise	$V_{DD} = 9V$	300		-	ns
th(<i>ø</i> -P)		$V_{DD} = 12V$	200	1		ns
•	Reset pulse width	$V_{DD} = 9V$	400		· .	ns
tw(RES)		$V_{DD} = 12V$	300			ns

TIMING REQUIREMENTS ($\tau_a = -10 \sim 70^{\circ}$ C, $V_{DD} \pm 10\%$, unless otherwise noted)

INPUT/OUTPUT EXPANDER

				Limits			11-11
Symbol	1	Parameter	Test conditions	Min	Тур	Max	Unit
(During output)		D	$V_{DD} = 9V$			550	ns
	+ -	Ports P40~P43	$V_{DD} = 12V$			400	ns
	P port output propagation	Port P44	$V_{OD} = 9V$			700	ns
tp(<i>ф</i> -р)	time after ϕ fall (Note 1)	Port P44	$V_{DD} = 2V$			550	ns
		Potrs P45~P49	$V_{DD} = 9V$			900	ns
		Potrs P45~P49	$V_{DD} = 12V$			700	ns
(During input)			$V_{DD} = 9V$			1000	ns
tpxL(p-D)	R port output propagation time	atter ø rise	$V_{DD} = 12V$			800	ns
	D mante data walid timo after dai		$V_{DD} = 9V$	0			ns
t _V (φ-D) F	R port data valid time after ϕ ri						ns
	Output and a still the time from		$V_{DD} = 9V$			900	ns
t _{р(Р-D)}	Output propagation time, from	P Input to R port	$V_{DD} = 12V$			700	ns
(When direction	registers are changed)		$V_{DD} = 9V$	0			ns
t _{V(∲-P)}	P port output data valid time af	$V_{DD} = 12V$	0			ns	
	D a sat bisk issued as a state		$V_{DD} = 9V$	0			ns
t _{VZ(¢-P)}	P port high-impedance state va	and time after <i>p</i> fail	$V_{DD} = 12V$	0			ns
			$V_{DD} = 9V$			1200	ns
tpxz(D-P)	P port high-impedance state p	opagation time after φ fail	$V_{DD} = 12V$			900	ns
•		Non- offer d fell	$V_{DD} = 9V$			1200	ns
tpxv(D-P)	P port valid output propagation	time alter φ fall	$V_{DD} = 12V$			900	ns
(During reset)	P port output high-impedance	exercises time ofter react	$V_{DD} = 9V$	1		800	ns
tpvz(RES-P)	- port output nign-impedance	oropagation time after reset	$V_{DD} = 12V$			600	ns
•	B port output high impodence	propagation time after readt	$V_{DD} = 9V$			700	ns
tpvz(RES-R)	n port output nign-impedance	R port output high-impedance propagation time after reset				500	ns
•	B port output high importance	ulid time after react rise	$V_{DD} = 9V$	0			ns
tvz(RES-R)	P port output high-impedance	$V_{DD} = 12V$	0			ns	

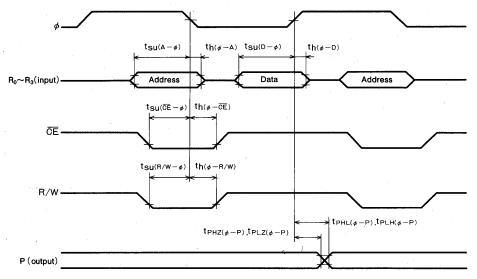
SWITCHING CHARACTERISTICS ($T_a = -10 \sim 70$ °C, $V_{DD} \pm 10\%$, unless otherwise noted)

Note 1 : The P port output high-impedance state propagation time after ϕ rise is indicated for the open-drain output ports. 2 : R₀: Port R pull-up resistor (to V_{cc} = 5V)

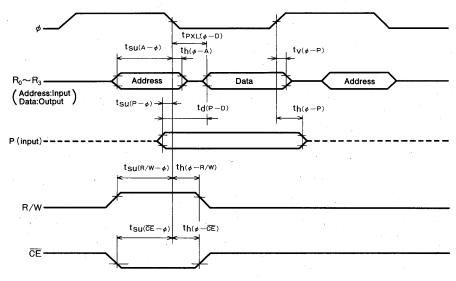
R1: Port P40~P43 pull-up resistor (to VDD)

R₂: Port P44 pull-down resistor (to V_{ss})

R₃: Port p45~P49 load resistor (to V_{DD})

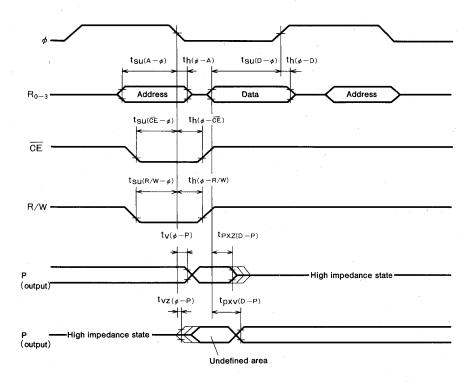


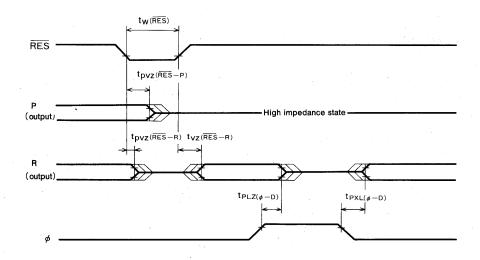
•


INPUT/OUTPUT EXPANDER

TIMING DIAGRAM (With reference voltage of $0.9 \times V_{DD}$ for high level and $0.1 \times V_{DD}$ for low level) For R/W, \overline{CE} , ϕ and \overline{RES} , $R_0 \sim R_3$, high level is $0.9 \times V_{CC}$ and low level is $0.1 \times V_{CC}$.

During output


During input



INPUT/OUTPUT EXPANDER

During direction register changing

During resetting

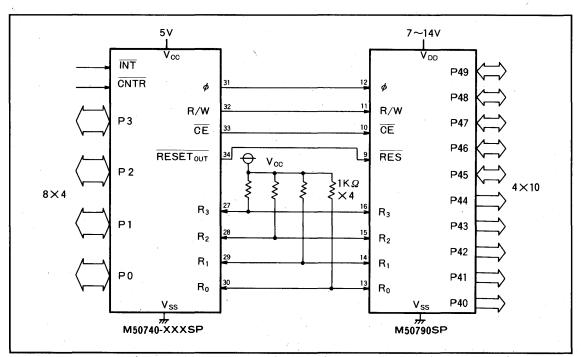
6-23

INPUT/OUTPUT EXPANDER

APPLICATION EXAMPLES

Connection with M50740SP

Fig. 1 shows the connections between the M50790SP I/O expander and the M50740-XXXSP. The addresses listed in Table 1 are reserved for the M50790SP, and data read and write operations are possible in the same way as for the internal ports of the M50740-XXXSP. (Only the low-order 4 bits of the data are valid.) The timing and control signals are generated automatically at the M50740-XXXSP end.


The operation is now described. The output ports are set OFF state and the input/output ports are placed in the high-impedance state by the $\overrightarrow{\text{RESET OUT}}$ signal from the M50740-XXXSP.

Port inputting or outputting is conducted by the same instructions as those to the M50740-XXXSP's other zero page memory. With output port P40 ~ P44 read operations the contents of the respective output latches can be read out. With input/output ports P45~P49 the contents of the direction register can determine whether the read data come from the output latches or input ports. "1's" for each direction register bit signifies output and "0's" signifies input.

The contents of the direction registers cannot be read out. They must be set using the store instruction. Table 2 shows the codes written into the direction registers and the states of the input/output bits of the ports.

Fig. 2 shows the construction of each of the output ports. When an address shown in Table 1 is accessed, double the normal instruction execution time is required and so care must be taken when calculating the processing time.

This precaution must be taken since a margin is provided for interfacing with the I/O expander.

INPUT/OUTPUT EXPANDER

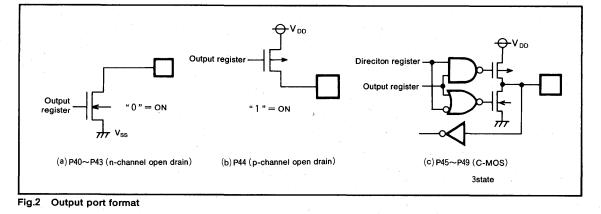

Address (hexadecimal)				Dat	a bit				Remarks
in zero page	D ₇ *	D ₆ *	D ₅ *	D4*	D ₃	D ₂	D1	Do	Hemarks
DF					P49	Dire	ction Re	gister	0: Input, 1: Output
DE		,			P49				CMOS 3state I/O
DD					P48	Dire	ction Re	gister	0: Input, 1: Output
DC				_	P48				CMOS 3state I/O
DB					P47	Dire	ction Re	gister	0: Input, 1: Output
DA		-			P47				CMOS 3state I/O
D9					P46	Dire	ction Re	gister	0: Input; 1: Output
D8	-				P46				CMOS 3state I/O
D7					P45	Dire	ction Re	gister	0: Input, 1: Output
D6					P45				CMOS 3state I/O
D5					P44				Pch Open Drain Output
D4					P43				Nch OPen Drain Output
D3					P42				4
D2					P41				
D1					P40				"
D0					*				· · · · · · · · · · · · · · · · · · ·

Table 1 Addresses reserved for I/O expander

* Bits $D_4 \sim D_7$ are ignored when the M50790SP is accessed.

Table 2 Port setting examples

Dire	ction register	(low-order 4	bits)		Port	P4i bit	
D ₃	D ₂	D ₁	Do	P 4 i ₃	P 4 i ₂	P 4 i1	P4io
0	0	0	0	Input	Input	Input	Input
0	0	0	1	Input	Input	Input	Output
0	0	1	0	Input	Input	Output	Input
0	0	1	1.	Input	Input	Output	Output
0	1	0	0	Input	Output	Input	Input
0	1	0	1	Input	Output	Input	Output
0	1	1	0	Input	Output	Output	Input
0	1	1	1	Input	Output	Output	Output
1	0	0	0	Output	Input	Input	Input
1		0	1	Output	Input	Input	Output
1	0	1	0	Output	Input	Output	Input
1	0	1	1	Output	Input	Output	Output
1	1	0	0	Output	Output	Input	Input
1	. 1	0	1	Output	Output	Input	Output
1	1	1	0	Output	Output	Output	Input
1	1	1	1	Output	Output	Output	Output

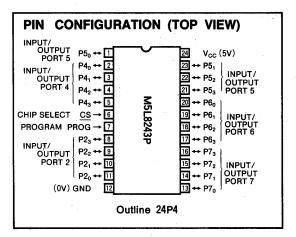
MITSUBISHI MICROCOMPUTERS

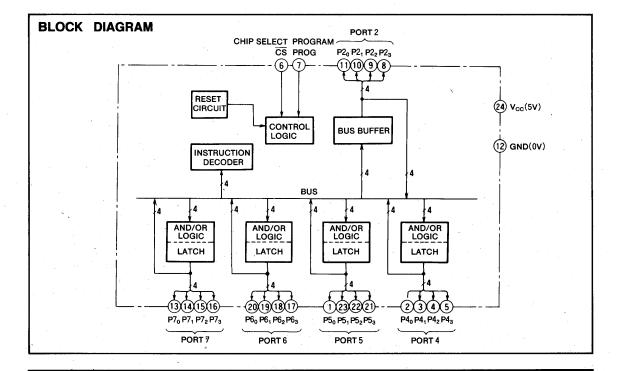
M5L8243P

INPUT/OUTPUT EXPANDER

DESCRIPTION

The M5L8243P is an input/output expander fabricated using N-channel silicon-gate ED-MOS technology. This device is designed specifically to provide a low-cost means of I/O expansion for the MELPS 8-48 single-chip microcomputers and MELPS 8-41 slave microcomputers.


FEATURES


- 16 Input/output pins $(I_{OL} = 5.0 \text{mA}(\text{max.}))$
- Simple interface to MELPS 8-48, MELPS 8-41
- Single 5V power supply
- Interchangeable with i8243 in pin configuration and electrical characteristics
- APPLICATION

I/O expansion for the MELPS 8-48 single-chip microcomputers and MELPS 8-41 slave microcomputers.

FUNCTION

The M5L8243P is designed to provide a low-cost means of I/O expansion for the MELPS 8-41 and the MELPS 8-48. The M5L8243P consists of four 4-bit bidirectional static I/O ports and one 4-bit port which serves as an interface to the MELPS 8-41 and MELPS 8-48. Thus multiple M5L8243Ps can be added to a single master. Using the original instruction set of the master, the M5L8243P serves as the in resident I/O facility. Its I/O ports are accessed by instructions MOVD, ANLD and ORLD.

INPUT/OUTPUT EXPANDER

PIN DESCRIPTION

Symbol	Name	input or output	Function
CS	Chip select	In	Chip select input. A high on \overline{CS} causes PROG input to be regarded high inside the M5L8243P, then this inhibits any change of output or internal status.
PROG	Program	In	A high-to-low transition on PROG signifies that address (PORT 4-7) and control are available on PORT 2, and a low-to-high transition signifies that the designated data is available on the disignated port through PORT 2. The designation is shown in Table 1.
P20~P23	Input/output port 2	in/out	The 4-bit bidirectional port contains the address and control bits shown in Table 1 on a high-to-low tran- sition of PROG. During a low-to-high transition it contains the input (output) data on this port.
$P4_0 \sim P4_3$ $P5_0 \sim P5_3$ $P6_0 \sim P6_3$ $P7_0 \sim P7_3$	Input/output port 4 Input/output port 5 Input/output port 6 Input/output port 7	In/out	The 4-bit bidirectional I/O port. May be programmed to be input, low-impedance latched output or a three-state. This port is automatically set output mode when it is written. ANLed or ORLed then continues its mode until next read operation. After reset on a read operation, this port is in high-impedance and input mode.

OPERATION

The M5L8243P is an input/output expander designed specifically for the MELPS 8-41 and MELPS 8-48. The MELPS 8-41 and MELPS 8-48 already have instructions and PROG pin to communicate with the M5L8243P.

An example of the M5L8243P and the MELPS 8-41 or MELPS 8-48 is shown in Fig. 1. The following description of the M5L8243P basic operation is made according to Fig. 1.

Upon initial application of power supply to the device, and then about 500μ s after, resident bias circuits become stable and each device is ready to operate. And each port of the M5L8243P is set input mode (high-impedance) by means of a resident power-on initialization circuit.

When the microcomputer begins to execute a transfer instruction

which means the value on the port Pi is transferred to the accumulator, then the signals are sent out on the pins PROG and $P2_0 \sim P2_3$ as shown in Timing Diagram.

On the high-to-low transition of the pin PROG, the M5L8243P latches the instructions (ex. 0000) into itself from pins P2₀~P2₃ and transfers them to the instruction register (① in Timing Diagram). During the low-level of PROG, the M5L8243P continuously outputs the contents of the specified input (output) port (in this case port P₄) to pins P2₀~ P2₃ (② in Timing Diagram). The microcomputer, at an appropriate time, latches the level of pins P2₀~P2₃ and resumes high-level of PROG.

The next example is the case in which the microcomputer executes

MOVD Pi, A i = 4, 5, 6, 7

the transfer (output) instruction.

In this case, as in the previous case, on the high-to-low transition of the pin PROG, the M5L8243P latches the instructions (ex. 0110) into itself from pins P2₀~P2₃ and transfers them to the instruction register (① in Timing Diagram). After this, the microcomputer sends out high to the pin PROG, transferring the data to pin P2₀~P2₃ which is an output data to input/output port. Then the M5L8243P transfers the data of pins P2₀~P2₃ to the port latch of the designated input/output port (in this case P₆). In a few seconds after a low-to-high transition on the PROG, the designated port (P₆) becomes in an output mode and the data of the port latch are transferred to the port pins (③ in Timing Diagram).

When instructions

MOVD

ANLD	Pi, A		
ORLD	Pi,A	i = 4, 5, 6,	7

are executed, the microcomputer generally operates as same function as MOVD Pi, A.

It only differs in that the data of port latch after 4 in the Timing Diagram is ANDed or ORed with the data of port latch before 4 and the data of pins P2₀~P2₃. When instructions

Structions		
MOVD	Pi, A	
ANLD	Pi,A	
ORLD	Pi,A	i = 4, 5, 6, 7

are executed toward the port in an output mode, the outputs are generated on the port as soon as low-to-high transition on the PROG occurs.

When the mode of the output port is going to be changed during the execution and the instruction

is executed, it is preferable to execute one dummy instruction. Because it takes a little time to turn the designated port into a high-impedance state after high-to-low transition on the PROG, the result may be that the first instruction is not read correctly.

MITSUBISHI MICROCOMPUTERS

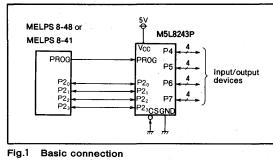
M5L8243P

INPUT/OUTPUT EXPANDER

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Limits	Unit
Vcc	Supply voltage		-0.5~7	V
V,	Input voltage	With respect to V _{SS}	-0.5~7	V
Vo	Output voltage		-0.5~7	V
Pd	Maximum power dissipation	$T_a = 25^{\circ}C$	600	mW
Topr	Operating free-air temperature range		-20~75	C
Tsta	Storage temperature range		-65~150	°C

RECOMMENDED OPERATING CONDITIONS ($T_a = -20 \sim 75$ °C, $V_{cc} = 5V \pm 10\%$, unless otherwise noted)


Cumbal	Baramatar		Limits			
Symbol	Parameter	Min	Nom	Max	Unit	
V _{cc}	Supply voltage	4.5	5	5.5	v	
Vss	Supply voltage		0		v	
ViH	High-level input voltage	2		V_{cc} +0.5	v	
VIL	Low-level input voltage	-0.5		0.8	v	

ELECTRICAL CHARACTERISTICS ($T_a = -20 \sim 75$ °C, $V_{cc} = 5 V \pm 10\%$, unless otherwise noted)

0 million	Brannakar	Test and distant		Limits		
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
V _{OL1}	Low-level output voltage, ports 4~7	$I_{OL} = 5mA$			0.45	V
VOL2	Low-level output voltage, port 7	$I_{OL} = 20 \text{ mA}$			1	v
VOL3	Low-level output voltage, port 2	$I_{OL} = 0.6 \text{mA}$			0.45	V
V _{OH1}	High-level output voltage, ports 4~7	$I_{OH} = -240 \mu A$	2.4			. V
V _{OH2}	High-level output voltage, port 2	$I_{OH} = -100 \mu A$	2.4			v
lu-	Input leakage current, ports 4~7	$0V \le V_{in} \le V_{CC}$	-10		20	μA
112	Input leakage current, port 2, CS, PROG	$0V \le V_{in} \le V_{cc}$	-10		10	μA
lcc	Supply current from V _{CC}			10	20	mA
IOL	Sum of all IoL from 16 outputs	$I_{OL} = 5mA (V_{OL} = 0.45V)$ Each pin			80	mA

Table 1 Instruction and address codes

Instruction code	P23	P22	Address code	P21	P20
Read	0	0	port 4	0	0
Write	0	1	port 5	0	1
ORLD	1	0	port 6	1	0
ANLD	1	1	port 7	1	1

,

Basic connection

INPUT/OUTPUT EXPANDER

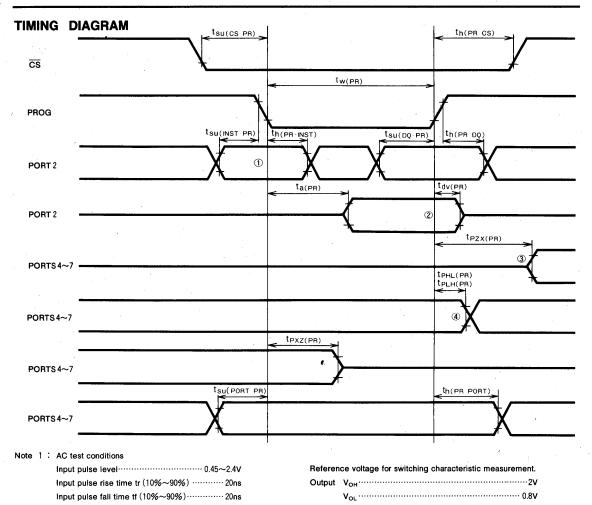
TIMING REQUIREMENTS ($\tau_a = -20 \sim 75$ °C, $v_{cc} = 5V \pm 10\%$, unless otherwise noted)

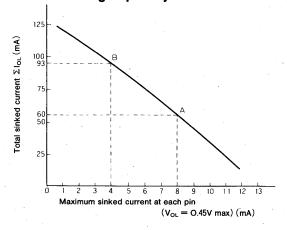
•	-	Alternative	T	Limits			
Symbol	Parameter	symbol	Test conditions	Min	Тур	Max	Unit
tsu(INST-PR)	Instruction code setup time before PROG	tA	80pF Load	100			ns
th(PR-INST)	Instruction code hold time after PROG	t _B	20pF Load	60			ns
tsu(DQ-PR)	Data setup time before PROG	tc	80pF Load	200			ns
th(PR-DQ)	Data hold time after PROG	t _D	20pF Load	20			ns
tw(PR)	PROG pulse width	t _K		700			ns
t _{su(cs-PR)}	Chip-select setup time before PROG	t _{cs}		50			ns
th(PR-CS)	Chip-select hold time after PROG	t _{cs}		50			ns
tsu(PORT-PR)	Port setup time before PROG	t _{IP}		100			ns
th(PR-PORT)	Port hold time after PROG	t _{IP}		100			ns

$\label{eq:switching} \textbf{SWITCHING} \quad \textbf{CHARACTERISTICS} \quad (\texttt{T}_a = -20 \sim 75 \text{°C}, \ \texttt{V}_{cc} = 5 \texttt{V} \pm 10\%, \ \texttt{unless otherwise noted})$

	2	Alternative	Alternative		Limits		
Symbol	Parameter	symbol	Test conditions	Min	Тур	Max	Unit
ta(PR)	Data access time after PROG	tACC	80pF Load	0		650	ns
tdv(PR)	Data valid time after PROG	t _H	20pF Load	0		150	ns
t _{PHL(PR)} t _{PLH(PR)}	Output valid time after PROG	t _{PO}	100pF Load			700	ns
t _{PZX(PR)} t _{PXZ(PR)}	Input/output switching time	_				800	ns

ð.




MITSUBISHI MICROCOMPUTERS

M5L8243P

INPUT/OUTPUT EXPANDER

Current Sinking Capability

Each of the 16 I/O lines of the M5L8243P is capable of sinking 5mA simultaneously ($V_{OL} = 0.45V$ max). However, the drive capacity of each line depends upon whether all lines are sinking current simultaneously and on the degree of loading. This is illustrated in the curve shown. Example

Assuming that the remaining pins are not loaded, how many pins would be able to accommodate 20LSTTL loads (0.4mA)?

 $I_{OL} = 0.4 \text{mA} \times 20 = 8 \text{mA}$ (sink current for each pin)

 $\Sigma I_{OL} = 60 \text{mA}$ from curve (POINT A)

(total sinking current)

Number of pins = $60mA \div 8mA = 7.5 > 7$

For this case, each of the 7 lines could sink 8mA for a total of 56mA. Since 4mA reserve sinking capability exists, 9 of the I/O lines of the M5L8243P can be divided arbitrarily.

INPUT/OUTPUT EXPANDER

Example

To use 20mA sinking capability at port 7, find the effects on the sinking capabilities of the other I/O lines.

Assume the M5L8243P is driving loads as shown below.

3 lines: -20mA ($V_{OL} = 1.0\text{V}$ max, port 7 only)

4 lines: $-4mA (V_{OL} = 0.45V max)$

9 lines: -1.6mA (V_{OL} = 0.45V max)

- Is this within the allowable limit?
- $\Sigma I_{OL} = (20mA \times 3) + (4mA \times 4) + (1.6mA \times 9) = 90.4mA$

From the curve we see that with respect to $I_{OL} = 4mA$, I_{OL} is 93mA (Point B) and that the above load of 90.4mA is within the limit of 93mA.

Note: The sinking current of ports $4\sim7$ must not exceed 30mA regardless of the value of $V_{\text{OL}}.$

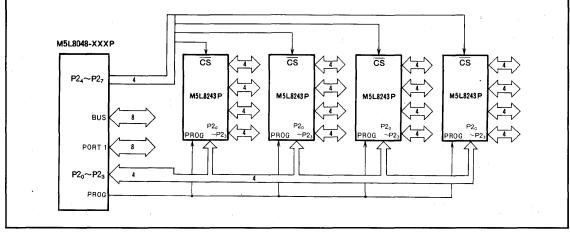


Fig.2 Expansion interface example

6

MITSUBISHI MICROCOMPUTERS

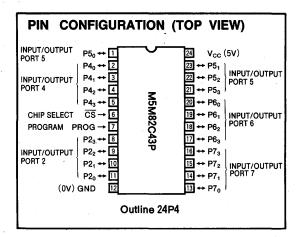
INPUT/OUTPUT EXPANDER

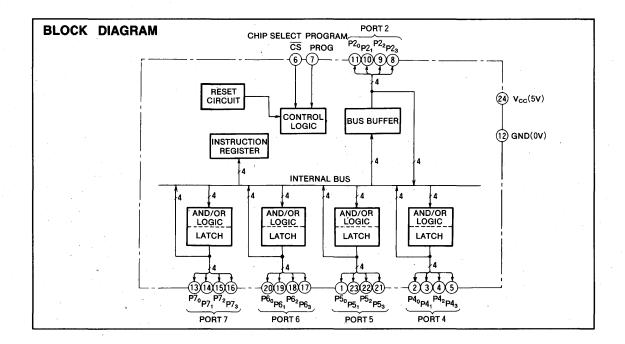
DESCRIPTION

The M5M82C43P is an input/output expander fabricated using CMOS silicon-gate technology. This device is designed specifically to provide a low-cost means of I/O expansion for the MELPS8-48 single-chip 8-bit microcomputers and the MELPS8-41 slave microcomputers.

FEATURES

- 16 input/output pins (I_{OL} = 5.0mA (max.))
- Simple interface to MELPS8-48, MELPS8-41
- Single 5V power supply
- Interchangeable with i8243 in pin configuration


APPLICATION


I/O expansion for the MELPS8-48 single-chip microcomputers and the MELPS8-41 slave microcomputers.

FUNCTION

The M5M82C43P is designed to provide a low-cost means of I/O expansion for the MELPS8-41 slave microcomputers and the MELPS8-48 single-chip microcomputers. The M5M82C43P consists of four 4-bit bidirectional static I/O ports and one 4-bit port which serves as an interface to the MELPS8-41 and MELPS8-48. Thus multiple M5M82C43Ps can be added to a single master.

Using the original instruction set of the master, the M5M82C43P serves as the in-resident I/O facility. Its I/O ports are accessed by instructions MOVD, ANLD and ORLD.

MITSUBISHI MICROCOMPUTERS M5M82C43P

INPUT/OUTPUT EXPANDER

PIN DESCRIPTION

Symbol	Name	input or output	Function
CS	Chip select	In	Chip select input. A high on \overline{CS} causes PROG input to be regarded high inside the M5M82C43P. This then inhibits any change of output or internal status.
PROG	Program	In	A high-to-low transition on PROG signifies that address (ports 4~7) and control are available on port 2, and a low-to-high transition signifies that the designated data is available on the designated port through port 2. The designation is shown in Table 1.
P20~P23	input/output port 2	In/out	This 4-bidirectional port contains the address and control bits shown in Table 1 on a high-to-low transi- tion of PROG. During a low-to-high transition, it contains the input (output) data on this port.
$P4_0 \sim P4_3$ $P5_0 \sim P5_3$ $P6_0 \sim P6_3$ $P7_0 \sim P7_3$	Input/output port 4 Input/output port 5 Input/output port 6 Input/output port 7	In/out	4-bit bidirectional I/O ports. May be programmed to be input, low-impedance latched or 3-state. These ports are automatically set to the output mode when written, ANLed or ORLed and this mode continues until the next read operation. After reset on a read operation, this port is placed in the high impedance and input mode.

OPERATION

The M5M82C43P is an input/output expander designed specifically for the MELPS8-41 and MELPS8-48. The MELPS8-41 and MELPS8-48 already have instructions and PROG pin to communicate with the M5M82C43P.

An example of the M5M82C43P and the M5M80C49-XXXP is shown in Fig. 1. The following description of the M5M82C43P basic operation is made according to Fig. 1.

Upon initial application of the power supply to the device, each port of the M5M82C43P is set to the input mode (highimpedance) by means of the resident power-on initialization circuit.

When the microcomputer begins to execute a transfer instruction

MOVD A, Pi i = 4, 5, 6, 7

which means the value on the port Pi is transferred to the accumulator, then the signals are sent out on the pins PROG and $P2_0 \sim P2_3$, as shown in the timing diagram.

On the high-to-low transition of pin PROG, the M5M82C43P latches the instructions (e.g. 0000) into itself from pins P2₀~ P2₃ and transfers them to the instruction register (① in the timing diagram). During the low-level of PROG, the M5M82C43P continuously outputs the contents of the specified input (output) port (in this case, port P4) to pins P2₀~ P2₃ (② in the timing diagram). The microcomputer, at the appropriate time, latches the level of pins P2₀~ P2₃ and resumes the high level of PROG.

The next example is the case in which the microcomputer executes

MOVD PI, A i = 4, 5, 6, 7

the transfer (output) instruction.

In this case, as in the previous case, on the high-to-low transition of pin PROG, the M5M82C43P latches the instructions (e.g.0110) into itself from pins $P2_0 \sim P2_3$ and transfers them to the instruction register (① in the timing diagram).

After this the microcomputer sends out high to pin PROG, transferring the data to pins $P2_0 \sim P2_3$ which is an output data to the input/output port. Then the M5M82C43P transfers the data of pins $P2_0 \sim P2_3$ to the port latch of the designated input/output port (in this case P6). In a few seconds after a low-to-high transition on the PROG, the designated port (P6) is set to the output mode and the data of the port latch is transferred to the port pins (③ in the timing diagram).

When instructions

ANLD Pi, A i = 4,

ORLD Pi, A i = 4, 5, 6, 7are executed, the microcomputer generally operates as the

same function as MOVD Pi, A.

It only differs in that the data of the port latch after 4 in the timing diagram is ANDed or ORed with the data of the port latch before 4 and the data of pins $P2_0 \sim P2_3$.

When instructions

MOVD

MOVD	Pi, A	
ANLD	Pi, A	
ORLD	Pi, A	i = 4, 5,

are executed toward the port in an output mode, the outputs are generated on the port as soon as low-to-high transition on the PROG occurs.

6,7

When the mode of the output port is going to be changed during the execution and the instruction

A, **Pi** i = 4, 5, 6, 7

is executed, it is preferable to execute one dummy instruction. Because it takes a little time to turn the designated port into a high-impedance state after the high-to-low transition on the PROG, the result may be that the first instruction is not read correctly.

INPUT/OUTPUT EXPANDER

ABSOLUTE MAXIMUM RATINGS

n de la composition de la composition de la composition de la composition de la composition de la composition d

Symbol	Parameter	Conditions	Limits	Unit
Vcc	Supply voltage		V _{ss} -0.3~7	V
V _I	Input voltage		$V_{ss} = -0.3 \sim V_{cc} = +0.3$	V
Vo	Output voltage		$V_{ss} = -0.3 \sim V_{cc} + 0.3$	v
Pd	Maximum power dissipation	T _a = 25℃	1000	mW
Topr	Operating free-air temperature range	- A	-40~85	°C
Tstg	Storage temperature range		-65~150	°C

RECOMMENDED OPERATING CONDITIONS ($T_a = -40 \sim 85$ °C, $V_{cc} = 5V \pm 10\%$, unless otherwise noted)

0hl			Limits			
Symbol	Parameter	Min	Nom	Max	Unit	
Vcc	Supply voltage	4.5	5	5.5	V	
Vss	Supply voltage		0		v	
VIH	High-level input voltage	0.7XV _{cc}		Vcc	V	
VIL	Low-level input voltage	V _{SS}		0.3XV _{cc}	v	

ELECTRICAL CHARACTERISTICS ($\tau_a = -40 \sim 85$ °C, $V_{cc} = 5V \pm 10\%$, unless otherwise noted)

Querra have	Parameter Test co	Test and distance		Limits		
Symbol		Test conditions	Min	Тур	Max	Unit
V _{OL1}	Low-level output voltage, ports 4~7	$I_{OL} = 5mA$			0.45	v
VOL2	Low-level output voltage, port 7	$I_{OL} = 20 \text{mA}$		×	1	v
V _{OL3}	Low-level output voltage, port 2	$I_{OL} = 0.6 mA$			0.45	v
V _{DH1}	High-level output voltage, ports 4~7	$I_{OH} = -240 \mu A$	0.75×V _{CC}			V
V _{OH2}	High-level output voltage, port 2	$I_{OH} = -100 \mu A$	0.75XV _{cc}			V
41	Input leakage current, ports 4~7	$V_{SS} \leq Vin \leq V_{OC}$	-10		20	μA
1 ₁₂	Input leakage current port 2, CS, PROG	$V_{SS} \leq Vin \leq V_{CC}$	-10		10	μA
I _{CC1}	Supply current(1)	$V_{CC} = 5.5V$, $V_{IN} = V_{CC}$ or V_{SS} PROG input pulse period = $5\mu s$			2	mA
I _{CC2}	Supply current(2)	$V_{CC} = 5.5V$, $V_{IN} = V_{CC}$ or V_{SS} PROG = V_{CC}			10	μA
I _{OL}	Sum of all I _{OL} from 16 outputs	$I_{OL} = 5 \text{mA} (V_{OL} = 0.45 \text{V})$ each pin	· · · ·		80	mA

Table 1 Instruction and address codes

Instruction code	P23	P22	Address code	P21	P20
Read	0	0	Port 4	0	0
Write	0	1	Port 5	0	1
ORLD	1	0	Port 6	1	0
ANLD	1	1	Port 7	1	1

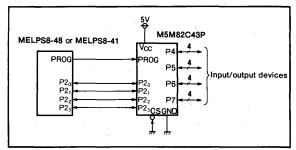
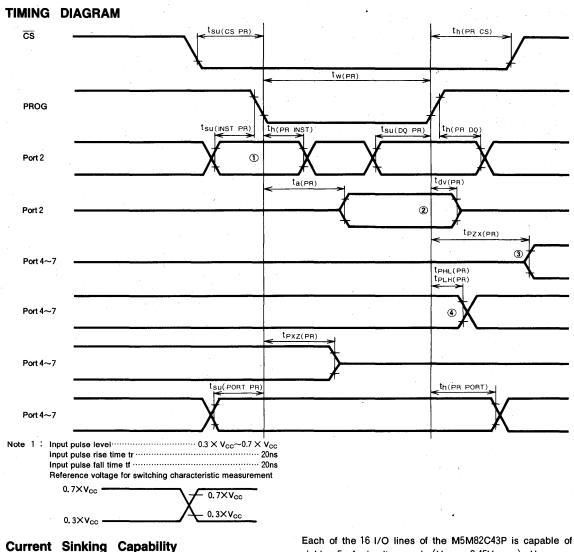


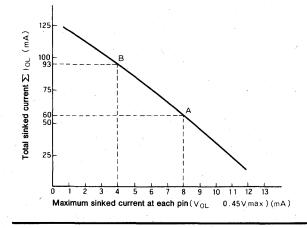
Fig.1 Basic connection

MITSUBISHI MICROCOMPUTERS M5M82C43P

INPUT/OUTPUT EXPANDER

TIMING REQUIREMENTS ($\tau_a = -40 \sim 85^{\circ}$ C, $v_{cc} = 5V \pm 10\%$, $v_{ss} = 0V$, unless otherwise noted)


Symbol	D	Alternative	Test see ditions	1.	11-14		
	Parameter	symbol	Test conditions	Min	Тур	Max	Unit
tsu(INST-PR)	Instruction code setup time befor PROG	t _A	C _L = 80pF	100			ns
th(PR-INST)	Instruction code hold time after PROG	te	$C_L = 20 pF$	60			ns
tsu(DQ-PR)	Data setup time before PROG	t _c	$C_L = 80 pF$	200			ns
th(PR-DQ)	Data hold time after PROG	t _D	$C_L = 20 pF$	20			ns
tw(PR)	PROG pulse with	t _K		700			ns
tsu(CS-PR)	Chip select setup time before PROG	t _{cs}		50			ns
th(PR-CS)	Chip select hold time after PROG	t _{cs}		50			ns
tsu(PORT-PR)	Port setup time before PROG	tip	·	100			ns
th(PR-PORT)	Port hold time after PROG	t _{IP}		100			ns


SWITCHING CHARACTERISTICS ($T_a = -40 \sim 85$ °C, $V_{cc} = 5V \pm 10\%$, $V_{ss} = 0V$, unless otherwise noted)

Crime had	Barrandar	Alternative	Test conditions		Limits	11-14	
Symbol	Parameter	symbol	Test conditions	Min	Тур	Max	Unit
ta(PR)	Data access time after PROG	t _{ACC}	C _L = 80pF	0		650	ns
tdv(PR)	Data valid time after PROG	t _H	$C_L = 20 pF$	0	-	150	ns
t _{PHL(PR)} t _{PLH(PR)}	Output valid time after PROG	t _{PO}	C _L = 100pF			700	ns
t _{PZX(PR)} t _{PXZ(PR)}	Input/output switching time	. –				800	ns

6

INPUT/OUTPUT EXPANDER

Each of the 16 I/O lines of the M5M82C43P is capable of sinking 5mA simultaneously ($V_{OL} = 0.45V$ max). However, the drive capacity of each line depends upon whether all lines are sinking current simultaneously and on the degree of loading. This is illustrated in the curve shown. Example:

Assuming that the remaining pins are not loaded, how many pins would be able to accommodate 20LSTTL loads (0.4mA) ?

 $I_{OL} = 0.4 \text{mA} \times 20 = 8 \text{mA} \text{ (sink current for each pin)}$

 $\Sigma I_{OL} = 60 \text{mA} \text{ from curve (point A)}$

(total sinking current)

Number of pins = $60mA \div 8mA = 7.5 > 7$

For this case, each of the 7 lines could sink 8mA for a total of 56mA. Since a 4mA reserve sinking capability exists, 9 of the I/O lines of the M5M82C43P can be divided arbitrarily.

 c_{i}

MITSUBISHI MICROCOMPUTERS M5M82C43P

INPUT/OUTPUT EXPANDER

Example:

To use the 20mA sinking capability at port 7, find the effects on the sinking capabilities of the other I/O lines. Assume the M5M82C43P is driving loads as shown below:

3 lines: 20mA (V_{OL} = 1.0V max, port 7 only)

4 lines: $4mA (V_{OL} = 0.45V max)$

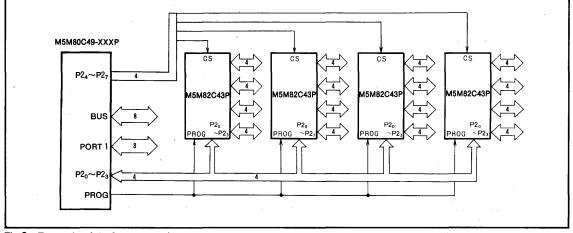
9 lines: $1.6mA (V_{OL} = 0.45V max)$

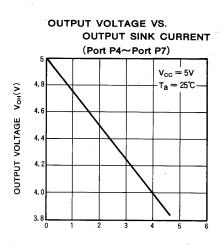
Is this within the allowable limit?

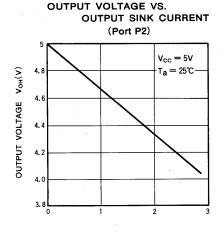
 $\Sigma I_{OL} = (20mA \times 3) + (4mA \times 4) + (1.6mA \times 9) = 90.4mA$

From the curve it is seen that with respect to $I_{OL} = 4mA$, I_{OL} is 93mA (point B) and that the above load of 90.4mA is within the limit of 93mA.

Note: The sinking current of port $4 \sim 7$ must not exceed 30mA regardless of the value of V_{OL} .

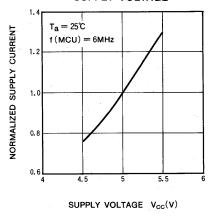


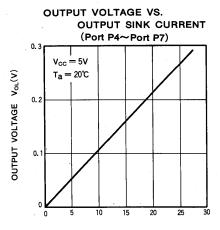

Fig.2 Expansion interface example


MITSUBISHI MICROCOMPUTERS

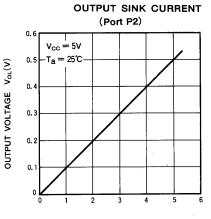
M5M82C43P

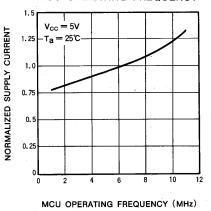
INPUT/OUTPUT EXPANDER




OUTPUT SINK CURRENT IOL(mA)

OUTPUT SINK CURRENT IOH(mA)




OUTPUT SINK CURRENT IOH(mA)

OUTPUT VOLTAGE VS.

OUTPUT SINK CURRENT IoL(mA)

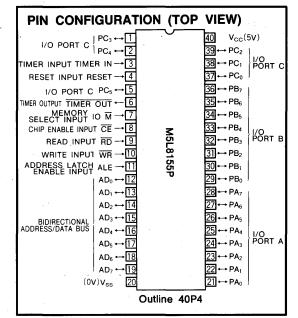
NORMALIZED SUPPLY CURRENT (I_{CC}) VS. MCU OPERATING FREQUENCY

2048-BIT STATIC RAM WITH I/O PORTS AND TIMER

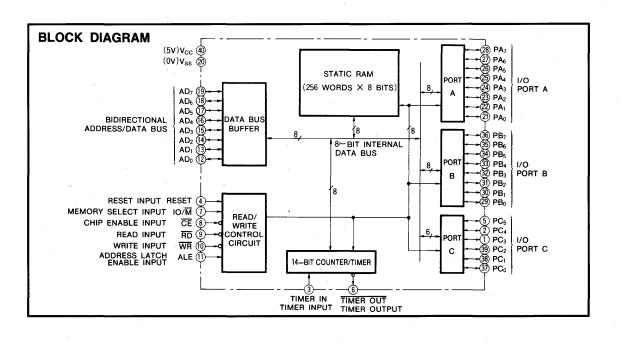
DESCRIPTION

The M5L8155P is a 2K-bit RAM (256-word by 8-bit) fabricated with the Nchannel silicon-gate ED-MOS technology. This IC has 3 I/O ports and a 14-bit counter/timer which make it a good choice to extend the functions of an 8-bit microcomputer. It is incased in a 40-pin plastic DIL package and operates with a single 5V power supply.

FEATURES


- Compatible with MELPS 85 devices
- Static RAM: 256 words by 8 bits
- Programmable 8-bit I/O port: 2
- Programmable 6-bit I/O port: 1
- Programmable counter/timer: 14 bits
- Multiplexed address/data bus
- Single 5V power supply
- Configuration and electrical characteristics

APPLICATION


Extension of I/O ports and timer function for MELPS 85 and MELPS 8-48 devices

FUNCTION

The M5L8155P is composed of RAM, I/O ports and counter/ timer. The RAM is a 2K-bit static RAM organized as 256 words by 8 bits. The I/O ports consist of 2 programmable 8bit ports and 1 programmable 6-bit port. The terminals of the 6-bit port can be programmed to function as control terminals for the 8-bit ports, so that the 8-bit ports can be operated in a handshake mode. The counter/timer is composed of 14

bits that can be used to count down (events or time) and it can generate square wave pulses that can be used for counting and timing.

6

2048-BIT STATIC RAM WITH I/O PORTS AND TIMER

OPERATION

Data Bus Buffer

This 3-state bidirectional 8-bit buffer is used to transfer the data while input or output instructions are being executed by the CPU. Command and address information is also transferred through the data bus buffer.

Read/Write Control Logic

The read/write control logic controls the transfer of data by interpreting I/O control bus output signals (\overline{RD} , \overline{WR} , IO/M and ALE) along with CPU signal (\overline{CE}). RESET signal is also used to control the transfer of data and commands.

Bidirectional Address/Data Bus (AD₀~AD₇)

The bidirectional address/data bus is a 3-state 8-bit bus. The 8-bit address is latched in the internal latch by the falling edge of ALE. Then if IO/\overline{M} input signal is at high-level, the address of I/O port, counter/timer, or command register is selected. If it is at low-level, memory address is selected.

The 8-bit address data is transferred by read input (\overline{RD}) or write input (\overline{WR}) .

Chip Enable Input (CE)

When CE is at low-level, the address information on address/data bus is stored in the M5L8155P

Read Input (RD)

When \overline{RD} is at low-level the data bus buffer is active. If IO/ \overline{M} input signal is at low-level, the contents of RAM are read through the address/data bus. If IO/ \overline{M} input is at high-level, the selected contents of I/O port or counter/timer are read through the address/data bus.

Write Input (WR)

When \overline{WR} is at low-level, the data on the address/data bus are written into RAM if IO/\overline{M} is at low-level, or if IO/\overline{M} is at high-level they are written into I/O port, counter/timer or command register.

Address Latch Enable Input (ALE)

An address on the address/data bus along with the levels of CE and IO/\overline{M} are latched in the M5L8155P on the falling edge of ALE.

IO/Memory Input (IO/M)

When IO/M is at low-level, the RAM is selected, while at high-level the I/O port, counter/timer or command register are selected.

I/O Port A (PA₀~PA₁)

Port A is an 8-bit general-purpose I/O port. Input/output setting is controlled by the system software.

I/O Port B (PB₀~PB₇)

Port B is an 8-bit general-purpose I/O port. Input/output setting is controlled by the system software.

I/O Port C (PC₀~PC₅)

Port C is a 6-bit I/O port that can also be used to output control signals of port A (PA) or port B (PB). The functions of port C are controlled by the system software. When port C is used to output control signals of ports A or B the assignment of the signals to the pins is as shown in Table 1.

Table 1 Pin assignment of control signals of port C

	····			<u> </u>
Pin		Function		
PC ₅	B STB	(port B strobe)		
PC₄	BBF	(port B buffer full)		
PC ₃	BINTR	(port B interrupt)	2	
PC ₂	A STB	(port A strobe)		
PC1	A BF	(port A buffer full)	4	
PC ₀	A INTR	(port A interrupt)		\sim

Timer Input (TIMER IN)

The signal at this input terminal is used by the counter/timer for counting events or time. (3MHz max.)

Timer Output (TIMER OUT)

A square wave signal or pulse from the counter/timer is output through this pin when in the operation mode.

Command Register (8 bits)

The command register is an 8-bit latched register. The loworder 4 bits (bits $0 \sim 3$) are used for controlling and determination of mode of the ports. Bits 4 and 5 are used as interrupt enable flags for ports A and B when port C is used as a control port. Bits 6 and 7 are used for controlling the counter/timer. The contents of the command register are rewritten by output instructions (address I/O XXXX000).

Details of the functions of the individual bits of the command register are shown in Table 2.

Table 2 Bit functions of the command register

Bit	Symbol		Function							
0	РА	PORT A I/O FLAG	1: OUTPUT PORT A 0: INPUT PORT A							
1.	РВ	PORT B I/O FLAG	1: OUTPUT PORT B 0: INPUT PORT B							
2	PC ₁	PORT C FLAG	00: ALT1 11: ALT2							
3	PC ₂	· · · ·	01: ALT3 10: ALT4							
4	IEA	PORT A INTERRUPT ENABLE FLAG	1: ENABLE INTERRUPT 0: DISABLE INTERRUPT							
5	IEB	PORT B INTERRUPT ENABLE FLAG	1: ENABLE INTERRUPT 0: DISABLE INTERRUPT							
6	TM1	COUNTER/TIMER CONTROL 00: NO INFLUENCE ON COUNTER/TIMER OPERATION 01: COUNTER/TIMER OPERATION DISCONTINUED (IF								
7	тм2	10: COUNTER/TIMER O TER THE CURRENT IS COMPLETED	NOT ALREADY STOPPED) 10: COUNTER/TIMER OPERATION DISCONTINUED AF- TER THE CURRENT COUNTER/TIMER OPERATION							

2048-BIT STATIC RAM WITH I/O PORTS AND TIMER

the status register are transferred into the CPU by reading

(INPUT instruction, address I/O XXXXX000). Details of the

functions of the individual bits of the status register are

Status Register (7 bits)

The status register is a 7-bit latched register. The loworder 5 bits (bits $0\sim4$) are used as status flags for the I/O ports. Bit 6 is as a status flag for the counter/timer. The contents of

Table 3 Bit functions of the status register

Bit	Symbol		Function
0	INTR A	PORT A INTERRUPT REQUEST	
1	A BF	PORT A BUFFER FULL FLAG	
2	INTE A	PORT A INTERRUPT ENABLE	
3	INTR B	PORT B INTERRUPT REQUEST	
4	B BF	PORT B BUFFER FULL FLAG	
5	INTE B	PORT B INTERRUPT ENABLE	· · · · · · · · · · · · · · · · · · ·
6	TIMER	COUNTER/TIMER INTERRUPT	(SET TO 1 WHEN THE FINAL LIMIT OF THE COUNTER/TIMER IS REACHED AND IS RESET TO 0 WHEN THE STATUS IS READ)
7		THIS BIT IS NOT USED	

I/O Ports

Command/status registers (8 bits/7 bits)

These registers are assigned address XXXXX000. When executing an OUTPUT instruction, the contents of the command register are rewritten. When executing an INPUT instruction the contents of the status register are read.

Port A Register (8 bits)

Port A Register is assigned address XXXXX001. This register can be programmed as an input or output by setting the appropriate bits of the command register as shown in Table 2.

Port A can be operated in basic or strobe mode and is assigned I/O terminal $PA_0 \sim PA_7$.

Port B Register (8 bits)

shown in Table 3.

Port B register is assigned address XXXXX010. As with Port A register, this register can be programmed as an input or output by setting the appropriate bits of the command register as shown in Table 2. Port B can be operated in basic or strobe mode and is assigned I/O terminals $PB_0 \sim PB_7$.

Port C Register (6 bits)

Port C register is assigned address XXXXX011. This port is used for controlling input/output operations of ports A and B by selectively setting bits 2 and 3 of the command register as shown in Table 2. Details of the functions of the various setting of bits 2 and 3 are shown in Table 4. Port C is assigned I/O terminals $PC_0 \sim PC_5$ and when used as port control signals, the 3 low-order bits are assigned for port A while the 3 high-order bits are assigned for port B.

Table 4 Functions of port C

State Terminal	ALT 1	ALT 2	ALT 3	ALT 4
PC ₅	input	Output	Output	B STB (port B strobe)
PC₄	Input	Output	Output	B BF (port buffer full)
PC₃	Input	Output	Output	B INTR (port B interrupt)
PC ₂	Input	Output	A STB (port A strobe)	A STB (port A strobe)
PC ₁	Input	Output	A BF (port A buffer full)	A BF (port A buffer full)
PC ₀	Input	Output	A INTR (port A interrupt)	A INTR (port A interrupt)

2048-BIT STATIC RAM WITH I/O PORTS AND TIMER

Configuration of ports

A block diagram of 1 bit of ports A and B is shown in Fig. 1. While port A or B is programmed as an output port, if the port is addressed by an input instruction, the contents of the selected port can be read. When a port is put in input mode, the output latch is cleared and writing into the output latch is disabled. Therefore when a port is changed to output mode from input mode, low-level signals are output through the port. When a reset signal is applied, all 3 ports (PA, PB, and PC) will be input ports and their output latches are cleared. Port C has the same configuration as ports A and B in modes ALT1 and ALT2.

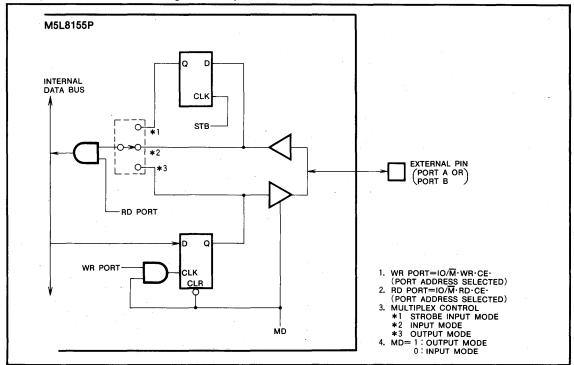


Fig. 1 Configuration for 1 bit of port A or B

Table 5	Basic	functions	of	1/0	ports	
---------	-------	-----------	----	-----	-------	--

Address	RD	WR	Function
XXXXX000	0	1	AD bus - status register
	1	0	Command register - AD bus
XXXXX001	0	1	AD bus ← port A
	. 1	0	Port A - AD bus
	0	1	AD bus ← port B
XXXXX010	1	0	Port B - AD bus
	0	1	AD bus ← port C
XXXXX011	• 1 •	0	Port C ← AD bus

Table 6 Port control signal levels at ALT3 and ALT	Table	6	Port	control	signal	levels	at	ALT3	and	ALT
--	-------	---	------	---------	--------	--------	----	------	-----	-----

Control Signal	Output mode	Input mode
STB	Input	Input
BF	"L"	"L"
INTR	"H"	"L"

The basic functions of the I/O ports are shown in Table 5. The control signal levels to ports A and B, when port C is programmed as a control port, are shown in Table 6.

Counter/Timer

The counter/timer is a 14-bit counting register plus 2 mode flags. The register has two sections: address I/O XXXX100 is assigned to the low-order 8 bits and address I/O XXXXX101 is assigned to the high-order 8 bits. The low-order bits $0\sim13$ are used for counting or timing. The counter is initialized by the program and then counted down to zero. The initial setting can range from 2_{16} to $3FFF_{16}$. Bits 14 and 15 are used as mode flags.

The mode flags select 1 of 4 modes with functions as follow:

Mode 0: Outputs high-level signal during the former half of the counter operation

Outputs low-level signal during the latter half of the counter operation

2048-BIT STATIC RAM WITH I/O PORTS AND TIMER

Table 7 Format of counter/timer

	Bit Number								Function
Address	7	6	5	4	3	2	1	0	Function
XXXXX100	T 7	Т6	т5	T₄	Тз	T2	T1	То	THE LOW-ORDER 8 BITS OF THE COUNTER REGISTER
XXXXX101	M2	M	T13	T ₁₂	T 11	T 10	Тэ	T8	M1,M2: TIMER MODE THE HIGH-ORDER 6 BITS $T_8 \sim T_{13}$: OF THE COUNTER REGISTER

Table 8 Timer mode

M ₂	M1	Timer operation
0	0	Outputs high-level signal during the former half of the counter operation Outputs low-level signal during the latter half of the counter operation (mode 0)
0	1	Outputs square wave signals in mode 0 (mode 1)
1	0	Outputs a low-level pulse during the final count dowm (mode 2)
1	.1	Outputs a low-level pulse during each final count down (mode 3)

ABSOLUTE MAXIMUM RATINGS

Mode 1: Outputs square wave signals as in mode 0

- Mode 2: Outputs a low-level pulse during the final count down
- Mode 3: Outputs a low-level pulse during each final count down

Starting and stopping the counter/timer is controlled by bits 6 and 7 of the command register (see Table 2 for details). The format and timer modes of the counter/timer register are shown in Table 7 and Table 8.

The counter/timer is not influenced by a reset, but counting is discontinued. To resume counting, a start command must be written into the command register as shown in Table 2. While operating 2n+1 count down in mode 0, a high-level signal is output during the n+1 counting and a low-level signal is output during the n counting.

Symbol	Parameter	Conditions	Limits	Unit
V _{cc}	Supply voltage		-0.5~7	v
V,	Input voltage	With respect to V _{SS}	-0.5~7	v
Vo	Output voltage		-0.5~7	v
Pd	Maximum power dissipation	T _a =25℃	1.5	w
Topr	Operating free-air temperature range		0~70	r
T _{stg}	Storage temperature range		-65~150	Ċ

RECOMMENDED OPERATING CONDITIONS ($T_a=0\sim70$ °C, unless otherwise noted)

			Limits		11-14
Symbol	Parameter	Min	Nom	Max	Unit
V _{cc}	Supply voltage	4. 75	5	5.25	v
Vss	Power-supply voltage		0		v
VIL	Low-level input voltage	-0.5		0.8	v
VIH	High-level input voltage	2		V _{cc} +0.5	v

ELECTRICAL CHARACTERISTICS ($T_a=0\sim70$ °C, $V_{cc}=5V\pm5\%$, unless otherwise noted)

Current al.	D	To the second second		Limits	-	Unit
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
V _{он}	High-level output voltage	$V_{SS} = 0V, I_{OH} = -400 \mu A$	2.4			. V
Vol	Low-level output voltage	$V_{SS}=0V, I_{OL}=2mA$			0.45	V
l,	Input leak current	V _{SS} =0V,V _i =0~V _{CC}	-10		10	μA
II(CE)	Input leak current, CE pin	V _{SS} =0V, V _I =0~V _{CC}	-100		100	μA
loz	Output floating leak current	V _{SS} =0V, V _I =0.45~V _{CC}	-10		10	μA
Ci	Input capacitance	$V_{IL}=0V$, f=1MHz, 25mVrms, Ta=25°C			10	pF
Ci/o	Input/output terminal capacitance	$V_{I/OL}=0V$, f=1MHz, 25mVrms, T _a =25°C			20	pF
Icc	Supply current from V _{CC}	V _{SS} =0V			180	mA

Note 1 : Current flowing into an IC is positive, out is negative.

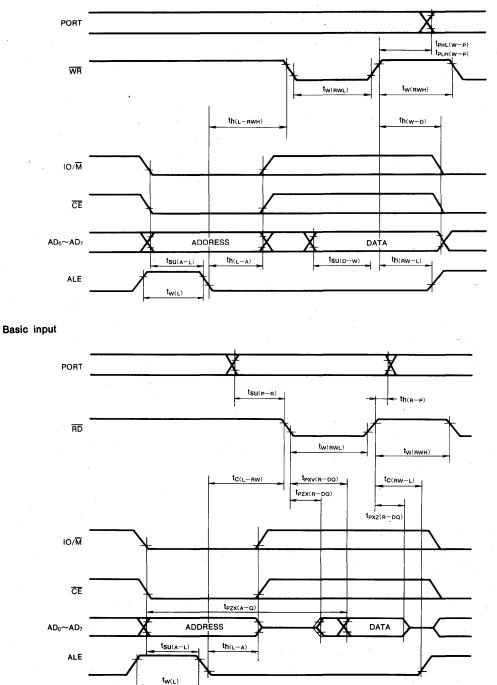
6-43

2048-BIT STATIC RAM WITH I/O PORTS AND TIMER

Cumb al	Parameter	Alternative Te		Limits			·
Symbol	Parameter	symbol	Test conditions	Min	Тур	Max	Unit
t _{SU(A-L)}	Address setup time before latch	t _{AL}		50			ns
t _{h(L-A)}	Address hold time after latch	tLA	:	80			ns
th(L-RWH)	Read/write hold time after latch	t _{LC}		100			ns
t _{w(L)}	Latch pulse width	t _{LL}		100		- N	ns
th(RW-L)	Latch hold time after read/write	t _{CL}		20			ns
tw(RWL)	Read/write low-level pulse width	t _{cc}	· · · · · · · · · · · · · · · · · · ·	250			ns
tsu(D-W)	Data setup time before write	t _{DW}		150			ns
th(w-D)	Data hold time after write	t _{wD}		0			ns
tw(RWH)	Read/write high-level pulse width	t _{RV}	· · ·	300			ns
t _{SU(P-R)}	Port setup time before read	t _{PR}		70			ns
th(R-P)	Port hold time after read	t _{RP}		50			ns
tw(STB)	Strobe pulse width	t _{ss}		200			ns
tsu(P-STB)	Port setup time before strobe	t _{PSS}		50			ns
th(STB-P)	Port hold time after strobe	t _{PHS}		120			ns
t _{w(∮н)}	Timer input high-level pulse width	t ₂		120			ns
t _{w(≠L)}	Timer input low-level pulse width	t ₁		80			ns
t _{C(∮)}	Timer input cycle time	tcyc		320			ns
t _{r(∳)}	Timer input rise time	tr				30	ns
t f(≠)	Timer input fall time	t r	······································	1	· · · · · · · · · · · · · · · · · · ·	30	ns

TIMING REQUIREMENTS ($T_a=0\sim70^{\circ}$, $V_{cc}=5V\pm5\%$, unless otherwise noted)

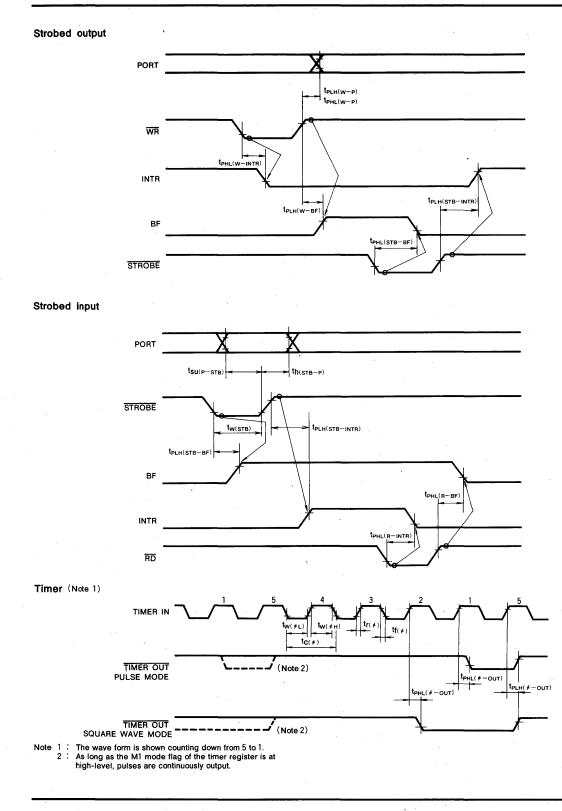
SWITCHING CHARACTERISTICS (Ta=0~70°C, Vcc=5V±5%, unless otherwise noted.)


0		Alternative	Test conditions		Limits		
Symbol	Parameter	symbol	Test conditions	Min	Тур	Max	Unit
t _{PXV(R-DQ)}	Propagation time from read to data output	t _{RD}				170	ns
t _{PZX(A-DQ)}	Propagation time from address to data output	t _{AD}	· · · · · · · · · · · · · · · · · · ·			400	ns
t _{PVZ(R-DQ)}	Propagation time from read to data floating (Note 2)	t _{RDF}				100	ns
t _{PHL(W-P)}		twp				400	-
t _{PLH(W-P)}	Propagation time from write to data output	twp		×		400	ns
t _{PLH(STB-BF)}	Propagation time from strobe to BF flag	t _{SBF}				400	ns
t _{PHL(R-BF)}	Propagation time from read to BF flag	t _{RBE}				400	ns
tPLH(STB-INTR)	Propagation time from strobe to interrupt	t _{SI}				400	ns
t _{PHL(R-INTR)}	Propagation time from read to interrupt	t _{RDI}				400	ns
t _{PHL} (STB-BF)	Propagation time from strobe to BF flag	t _{SBE}	· · · · ·			400	ns
t _{PLH} (w-BF)	Propagation time from write to BF flag	t _{WBF}				400	ns
tPHL(W-INTR)	Propagation time from write to interrupt	t _{wi}				400	ns
t _{PHL} (∮-OUT)		t _{TL}				400	
t _{PLH} (∮-OUT)	Propagation time from timer input to timer output	t _{TH}				400	ns
tPZX(R-DQ)	propagation time from read to data enable	t _{RDE}		10		1.	ns

Note 1 1 : 2 :

Measurement conditions C=150pF Measurement conditions of note 1 are not applied.

2048-BIT STATIC RAM WITH I/O PORTS AND TIMER



TIMING DIAGRAM (reference level, high-level=2V, low-level=0.8V) Basic output

6

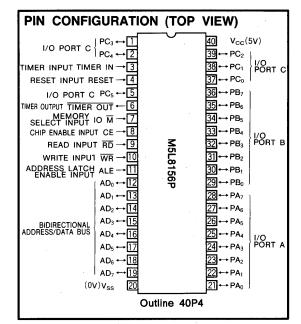
2048-BIT STATIC RAM WITH I/O PORTS AND TIMER

MITSUBISHI MICROCOMPUTERS M5L8156P 2048-BIT STATIC RAM WITH I/O PORTS AND TIMER

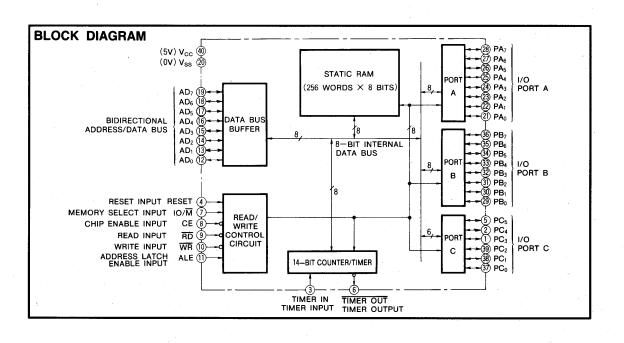
DESCRIPTION

The M5L8156P is a 2K-bit RAM (256-word by 8-bit) fabricated with the N-channel silicon-gate ED-MOS technology. This IC has 3 I/O ports and a 14-bit counter/timer which make it a good choice to extend the functions of an 8-bit microcomputer. It is incased in a 40-pin plastic DIL package and operates with a single 5V power supply.

FEATURES


- Compatible with MELPS 85 devices
- Static RAM: 256 words by 8 bits
- Programmable 8-bit I/O port: 2
- Programmable 6-bit I/O port: 1
- Programmable counter/timer: 14 bits
- Multiplexed address/data bus
- Single 5V power supply
- Configuration and electrical characteristics

APPLICATION


Extension of I/O ports and timer function for MELPS 85 and MELPS 8-48 devices

FUNCTION

The M5L8156P is composed of RAM, I/O ports and counter/ timer. The RAM is a 2K-bit static RAM organized as 256 words by 8 bits. The I/O ports consist of 2 programmable 8bit ports and 1 programmable 6-bit port. The terminals of the 6-bit port can be programmed to function as control terminals for the 8-bit ports, so that the 8-bit ports can be operated in a handshake mode. The counter/timer is composed of 14

bits that can be used to count down (events or time) and it can generate square wave pulses that can be used for counting and timing.

6

OPERATION

Data Bus Buffer

This 3-state bidirectional 8-bit buffer is used to transfer the data while input or output instructions are being executed by the CPU. Command and address information is also transferred through the data bus buffer.

Read/Write Control Logic

The read/write control logic controls the transfer of data by interpreting I/O control bus output signals (\overline{RD} , \overline{WR} , IO/M and ALE) along with CPU signal (\overline{CE}). RESET signal is also used to control the transfer of data and commands.

Bidirectional Address/Data Bus (AD₀~AD₇)

The bidirectional address/data bus is a 3-state 8-bit bus. The 8-bit address is latched in the internal latch by the falling edge of ALE. Then if IO/\overline{M} input signal is at high-level, the address of I/O port, counter/timer, or command register is selected. If it is at low-level, memory address is selected.

The 8-bit address data is transferred by read input (\overline{RD}) or write input (\overline{WR}) .

Chip Enable Input (CE)

When CE is at high-level, the address information on address/data bus is stored in the M5L8156P

Read Input (RD)

When \overline{RD} is at low-level the data bus buffer is active. If IO/ \overline{M} input signal is at low-level, the contents of RAM are read ' through the address/data bus. If IO/ \overline{M} input is at high-level, the selected contents of I/O port or counter/timer are read through the address/data bus.

Write Input (WR)

When \overline{XR} is at low-level, the data on the address/data bus are written into RAM if IO/\overline{M} is at low-level, or if IO/\overline{M} is at high-level they are written into I/O port, counter/timer or command register.

Address Latch Enable Input (ALE)

An address on the address/cata bus along with the levels of CE and IO/\overline{M} are latched in the M5L8156P on the falling edge of ALE.

IO/Memory Input (IO/M)

When IO/\overline{M} is at low-level, the RAM is selected, while at high-level the I/O port, counter/timer or command register are selected.

I/O Port A (PA₀~PA₁)

Port A is an 8-bit general-purpose I/O port. Input/output setting is controlled by the system software.

I/O Port B (PB₀~PB₇)

Port B is an 8-bit general-purpose I/O port. Input/output setting is controlled by the system software.

I/O Port C (PC₀~PC₅)

Port C is a 6-bit I/O port that can also be used to output control signals of port A (PA) or port B (PB). The functions of port C are controlled by the system software. When port C is used to output control signals of ports A or B the assignment of the signals to the pins is as shown in Table 1.

Table 1 Pin assignment of control signals of port C

Pin		Function	
PO ₅	BSTB	(port B strobe)	
PC₄	B BF	(port B buffer full)	
PC ₃	B INTR	(port B interrupt)	
PC ₂	A STB	(port A strobe)	
PC ₁	A BF	(port A buffer full)	
PC ₀	A INTR	(port A interrupt)	

Timer Input (TIMER IN)

The signal at this input terminal is used by the counter/timer for counting events or time. (3MHz max.)

Timer Output (TIMER OUT)

A square wave signal or pulse from the counter/timer is output through this pin when in the operation mode.

Command Register (8 bits)

The command register is an 8-bit latched register. The loworder 4 bits (bits $0 \sim 3$) are used for controlling and determination of the mode of the ports. Bits 4 and 5 are used as interrupt enable flags for ports A and B when port C is used as a control port. Bits 6 and 7 are used for controlling the counter/timer. The contents of the command register are rewritten by output instructions (address I/O XXXX000).

Details of the functions of the individual bits of the command register are shown in Table 2.

Table 2 Bit functions of the command register

Bit	Symbol	Fi	unction
0	PA	PORT A I/O FLAG	1: OUTPUT PORT A 0: INPUT PORT A
1	PB	PORT B I/O FLAG	1: OUTPUT PORT B 0: INPUT PORT B
2	PC ₁	PORT C FLAG	00: ALT1 11: ALT2
3	PC ₂		01: ALT3 10: ALT4
4	IEA	PORT A INTERRUPT ENABLE FLAG	1: ENABLE INTERRUPT 0: DISABLE INTERRUPT
5	IEB	PORT B INTERRUPT ENABLE FLAG	1: ENABLE INTERRUPT 0: DISABLE INTERRUPT
6	тм1		OUNTER/TIMER OPERATION PERATION DISCONTINUED (IF
7	TM2	10: COUNTER/TIMER OP	ERATION DISCONTINUED AF- COUNTER/TIMER OPERATION

2048-BIT STATIC RAM WITH I/O PORTS AND TIMER

Status Register (7 bits)

The status register is a 7-bit latched register. The loworder 5 bits (bits $0\sim4$) are used as status flags for the I/O ports. Bit 6 is as a status flag for the counter/timer. The contents of

the status register are transferred into the CPU by reading (INPUT instruction, address I/O XXXXX000). Details of the functions of the individual bits of the status register are shown in Table 3.

Table 3 Bit functions of the status register

Bit	Symbol		Function
0	INTR A	PORT A INTERRUPT REQUEST	
1	ABF	PORT A BUFFER FULL FLAG	
2	INTE A	PORT A INTERRUPT ENABLE	
3	INTR B	PORT B INTERRUPT REQUEST	
4	B BF	PORT B BUFFER FULL FLAG	
5	INTE B	PORT B INTERRUPT ENABLE	
6	TIMER	COUNTER/TIMER INTERRUPT	(SET TO 1 WHEN THE FINAL LIMIT OF THE COUNTER/TIMER IS REACHED AND IS RESET TO 0 WHEN THE STATUS IS READ)
7		THIS BIT IS NOT USED	· · · · · · · · · · · · · · · · · · ·

I/O Ports

Command/status registers (8 bits/7 bits)

These registers are assigned address XXXXX000. When executing an OUTPUT instruction, the contents of the command register are rewritten. When executing an INPUT instruction the contents of the status register are read.

Port A Register (8 bits)

Port A Register is assigned address XXXXX001. This register can be programmed as an input or output by setting the appropriate bits of the command register as shown in Table 2.

Port A can be operated in basic or strobe made and is assigned I/O terminal $PA_0 \sim PA_7$.

Port B Register (8 bits)

Port B register is assigned address XXXXX010. As with Port A register, this register can be programmed as an input or output by setting the appropriate bits of the command register as shown in Table 2. Port B can be operated in basic or strobe mode and is assigned I/O terminals $PB_0 \sim PB_7$.

Port C Register (6 bits)

Port C register is assigned address XXXXX011. This port is used for controlling input/output operations of ports A and B by selectively setting bits 2 and 3 of the command register as shown in Table 2. Details of the functions of the various setting of bits 2 and 3 are shown in Table 4. Port C is assigned I/O terminals $PC_0 \sim PC_5$ and when used as port control signals, the 3 low-order bits are assigned for port A while the 3 high-order bits are assigned for port B.

Table 4 Functions of port C

State Terminal	ALT 1	ALT 2	ALT 3	ALT 4
PC₅	Input	Output	Output	B STB (port B strobe)
PC₄	Input	Output	Output	B BF (port buffer full)
PC ₃	Input	Output	Output	B INTR (port B interrupt)
PC ₂	Input	Output	A STB (port A strobe)	A STB (port A strobe)
PC ₁	Input	Output	A BF (port A buffer full)	A BF (port A buffer full)
PC ₀	Input	Output	A INTR (port A interrupt)	A INTR (port A interrupt)

2048-BIT STATIC RAM WITH I/O PORTS AND TIMER

Configuration of ports

A block diagram of 1 bit of ports A and B is shown in Fig. 1. While port A or B is programmed as an output port, if the port is addressed by an input instruction, the contents of the selected port can be read. When a port is put in input mode, the output latch is cleared and writing into the output latch is disabled. Therefore when a port is changed to output mode from input mode, low-level signals are output through the port. When a reset signal is applied, all 3 ports (PA, PB, and PC) will be input ports and their output latches are cleared. Port C has the same configuration as ports A and B in modes ALT1 and ALT2.

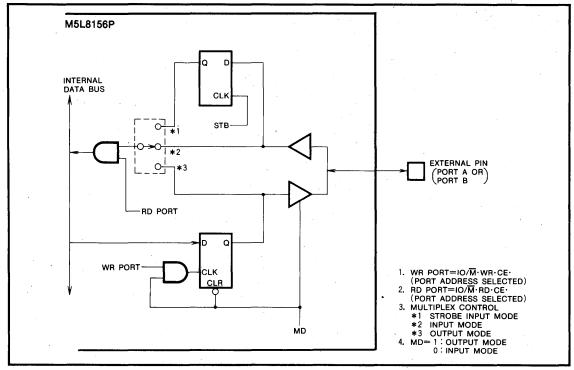


Fig. 1 Configuration for 1 bit of port A or B

Address	RD	WR	Function
~~~~~	· 0	1	AD bus ← status register
XXXXX000	1	0	Command register - AD bus
VVVVV001	0	1	AD bus ← port A
XXXXX001	1	0	Port A - AD bus
	0	1	AD bus - port B
XXXXX010	1	0	Port B ← AD bus
	0	1	AD bus ← port C
XXXXX011	1	0	Port C ← AD bus

-	-					
lable	5	Basic	functions	of I/O	ports	

Table 6 Port control signal levels at ALT3 and ALT4

Control Signal	Output mode	Input mode
STB	Input	Input
BF	"L"	"L"
INTR	"H"	"L"

The basic functions of the I/O ports are shown in Table 5. The control signal levels to ports A and B, when port C is programmed as a control port, are shown in Table 6.

#### Counter/Timer

The counter/timer is a 14-bit counting register plus 2 mode flags. The register has two sections: address I/O XXXXX100 is assigned to the low-order 8 bits and address I/O XXXXX101 is assigned to the high-order 8 bits. The low-order bits  $0\sim13$  are used for counting or timing. The counter is initialized by the program and then counted down to zero. The initial setting can range from  $2_{16}$  to  $3FF_{16}$ . Bits 14 and 15 are used as mode flags.

The mode flags select 1 of 4 modes with functions as follow:

Mode 0: Outputs high-level signal during the former half of the counter operation

Outputs low-level signal during the latter half of the counter operation



### 2048-BIT STATIC RAM WITH I/O PORTS AND TIMER

#### Table 7 Format of counter/timer

	Bit Number					er			Function		
Address	7	6	5	4	3	2	1	0	Function		
<b>XXXXX</b> 100	Т7	<b>T</b> 6	<b>T</b> 5	T₄	Тз	T ₂	T1	то	THE LOW-ORDER 8 BITS OF THE COUNTER REGISTER		
<b>XXXXX</b> 101	M2	Mı	T ₁₃	T12	т,,	T10	T9	Т ₈	$\begin{array}{l} \text{M1,M2: TIMER MODE} \\ \text{T}_{\text{B}} \sim \text{T}_{13}\text{:} \\ \text{OF THE HIGH-ORDER 6 BITS} \\ \text{OF THE COUNTER REGISTER} \end{array}$		

#### Table 8 Timer mode

M ₂	Mı	Timer operation Outputs high-level signal during the former half of the counter operation					
0	0	Outputs high-level signal during the former half of the counter operation Outputs low-level signal during the latter half of the counter operation (mode 0)					
0	1	Outputs square wave signals as in mode 0 (mode 1)					
1	0	Outputs a low-level pulse during the final count dowm (mode 2)					
. 1	1	Outputs a low-level pulse during each final count down (mode 3)					

# **ABSOLUTE MAXIMUM RATINGS**

Mode 1: Outputs square wave signals as in mode 0

Mode 2: Outputs a low-level pulse during the final count down

Mode 3: Outputs a low-level pulse during each final count down

Starting and stopping the counter/timer is controlled by bits 6 and 7 of the command register (see Table 2 for details). The format and timer modes of the counter/timer register are shown in Table 7 and Table 8.

The counter/timer is not influenced by a reset, but counting is discontinued. To resume counting, a start command must be written into the command register as shown in Table 2. While operating 2n+1 count down in mode 0, a high-level signal is output during the n+1 counting and a low-level signal is output during the n counting.

Symbol	Parameter	Conditions	Limits	Unit
V _{cc}	Supply voltage		-0.5~7	v
Vi	Input voltage	With respect to V _{SS}	-0.5~7	v
Vo	Output voltage	With respect to V _{SS} -0.5~7           -0.5~7         -0.5~7           Ta=25°C         1.5		
Pd	Maximum power dissipation	T _a =25°C	1.5	w
Topr	Operating free-air temperature range		0~70	ΰ
Tstg	Storage temperature range		-65~150	°C

# **RECOMMENDED OPERATING CONDITIONS** ( $T_a=0\sim70^{\circ}C$ , unless otherwise noted)

Symbol	Parameter		11-14			
Symbol	Parameter	Min	Nom	Max	Unit	
V _{cc}	Supply voltage	4. 75	5	5.25	. V	
V _{ss}	Power-supply voltage		0	· .	v	
VIL	Low-level input voltage	-0.5		0.8	v	
ViH	High-level input voltage	2		V _{cc} +0.5	v	

### **ELECTRICAL CHARACTERISTICS** ( $T_a=0\sim70^{\circ}C$ , $V_{cc}=5V+5\%$ , unless otherwise noted)

Cumber!	Designation	<b>T</b>		Limits		
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
V _{он}	High-level output voltage	V _{SS} =0V, I _{OH} =-400µA	2.4			v
VOL	Low-level output voltage	$V_{SS}=0V$ , $I_{OL}=2mA$			0.45	v
l _i	Input leak current	V _{SS} =0V,V _I =0~V _{CC}	-10		10	μA
II(CE)	Input leak current, CE pin	V _{SS} =0V, V _I =0~V _{CC}	-100		100	μA
loz	Output floating leak current	V _{SS} =0V, V _I =0. 45~V _{CC}	-10		10	μA
Ci	Input capacitance	$V_{IL}=0V$ , f=1MHz, 25mVrms, Ta=25°C			10	pF
Ci/o	Input/output terminal capacitance	V _{I/OL} =0V, f=1MHz, 25mVrms, T _a =25°C			20	pF
lcc	Supply current from V _{CC}	V _{SS} =0V			180	mA

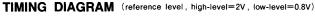
Note 1 : Current flowing into an IC is positive, out is negative.



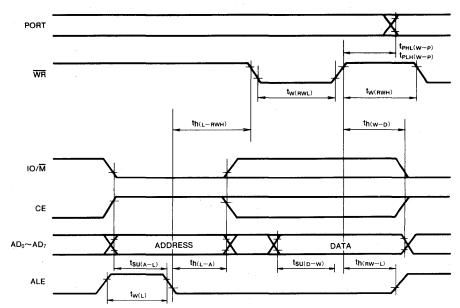
# 2048-BIT STATIC RAM WITH I/O PORTS AND TIMER

0	Parameter	Alternative	Test conditions.	Limits			Unit
Symbol		symbol		Min	Тур	Max	Unit
tsu(A-L)	Address setup time before latch	t _{AL}		50			ns
th(L-A)	Address hold time after latch	t _{LA}		80			ns
th(L-RWH)	Read/write hold time after latch	t _{LC}		100			ns
t _{w(∟)}	Latch pulse width	t _{LL}		100			ns
th(Rw-∟)	Latch hold time after read/write	t _{CL}		20			ns
tw(RWL)	Read/write low-level pulse width	t _{cc}		250			ns
tsu(D-W)	Data setup time before write	t _{DW}		150			ns
th(w-D)	Data hold time after write	t _{wD}		0			ns
tw(RWH)	Read/write high-level pulse width	t _{RV}		300			ns
t _{su(P-R)}	Port setup time before read	t _{PR}		70			ns
th(R-P)	Port hold time after read	t _{RP}		50			ns
tw(STB)	Strobe pulse width	t _{ss}		200			ns
tsu(P-STB)	Port setup time before strobe	t _{PSS}		50			ns
th(STB-P)	Port hold time after strobe	t _{PHS}		120			ns
t _{w(∮н)}	Timer input high-level pulse width	t ₂		120		·	ns
tw(≠L)	Timer input low-level pulse width	t ₁		80			ns
t _{c(≠)}	Timer input cycle time	tcyc		320			ns
t _{r(≠)}	Timer input rise time	tr				30	ns
tf(≠)	Timer input fall time	te				30	ns

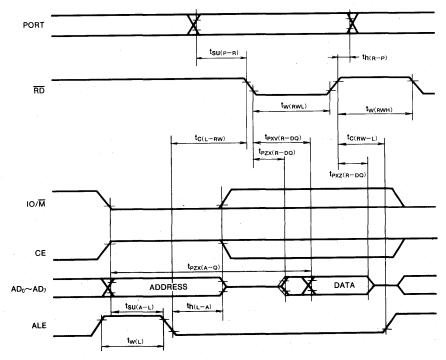
# TIMING REQUIREMENTS ( $T_a=0\sim70$ °C, $V_{cc}=5V\pm5\%$ , unless otherwise noted)


# SWITCHING CHARACTERISTICS (Ta=0~70°C, Vcc=5V±5%, unless otherwise noted.)

Symbol	Parameter	Alternative symbol	Test conditions	Limits			
Symbol				Min	Тур	Max	Unit
t _{PXV(R-DQ)}	Propagation time from read to data output	t _{RD}				170	ns
t _{PZX(A-DQ)}	Propagation time from address to data output	t _{AD}				400	ns
t _{PVZ(R-DQ)}	Propagation time from read to data floating (Note 7)	t _{RDF}				100	ns
t _{PHL(W-P)}	Propagation time from write to data output	twp					
t _{PLH(W-P)}		twp				400	ns
t _{PLH(STB-BF)}	Propagation time from strobe to BF flag	t _{SBF}				400	ns
t _{PHL(R-BF)}	Propagation time from read to BF flag	t _{RBE}				400	ns
tPLH(STB-INTR)	Propagation time from strobe to interrupt	t _{SI}				400	ns
t _{PHL(R-INTR)}	Propagation time from read to interrupt	t _{RDI}				400	ns
t _{PHL(STB-BF)}	Propagation time from strobe to BF flag	t _{SBE}				400	ns
t _{PLH(W-BF)}	Propagation time from write to BF flag	t _{wBF}				400	ns
t _{PHL(W-INTR)}	Propagation time from write to interrupt	twi				400	ns
t _{PHL} ( # -OUT)		t _{TL}					
t _{PLH} ( # -OUT)	Propagation time from timer input to timer output	t _{TH}				400	ns
t _{PZX(R-DQ)}	propagation time from read to data enable	t _{RDE}		10			ns


Note 1 : Measurement conditions C=150pF 2 : Measurement conditions of note 6 are not applied.



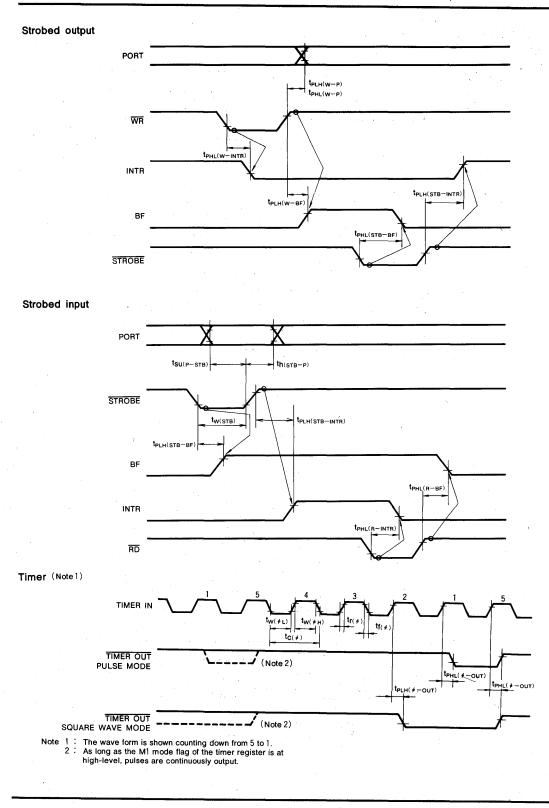

### 2048-BIT STATIC RAM WITH I/O PORTS AND TIMER



#### Basic output



**Basic** input






6

# MITSUBISHI MICROCOMPUTERS M5L8156P

# 2048-BIT STATIC RAM WITH I/O PORTS AND TIMER





# MICROCOMPUTER SUPPORT SYSTEMS

7

### **DEBUGGING MACHINE**

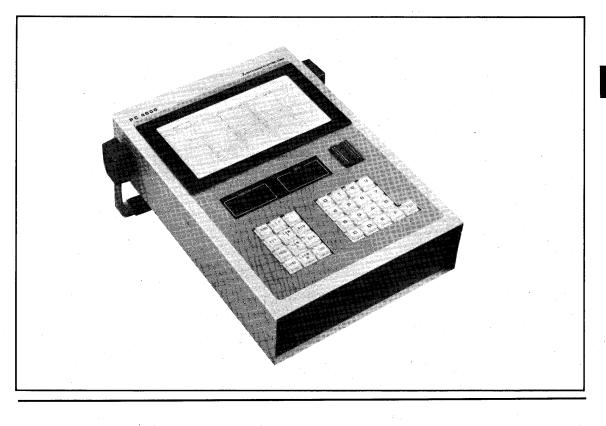
#### DESCRIPTION

The PC4000 is a debugging machine for use with single-chip microcomputers. It is intended for use as a general purpose debugging machine for support of single-chip micro-computer hardware and software.

#### FEATURES

- Usable for RAM-based program debugging
- Connectable to the user system via a DIL socket or connector
- Built-in EPROM (2716, 2732) writer function
- Uses serial data transfer for two-way data transfer with the host machine (e.g. PC9000 cross assembler machine)
- Usable with a variety of single-chip microcomputers by simply replacing a single board
- Print out of internal memory contents is possible by means of an external printer
- Easy-to-carry-about in its compact case, provided with an angle stand

#### APPLICATIONS


Hardware and software development and program debugging for single-chip microcomputer systems.

### CONFIGURATION

The PC4000, as shown in the block diagram, consists of the following hardware elements.

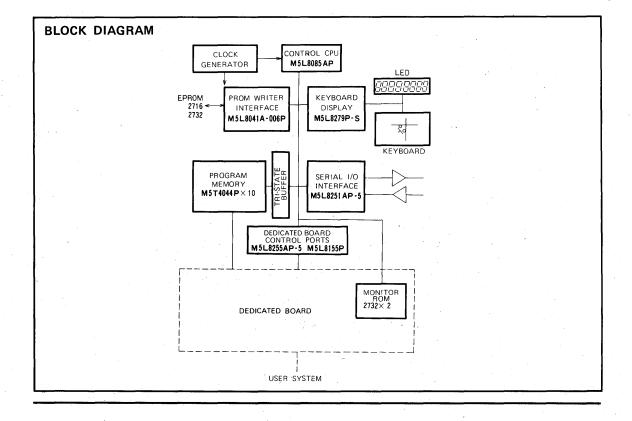
- (1) M5L8085AP monitor CPU
- (2) Serial data input/output interface circuit
- (3) EPROM writer circuit
- (4) Program RAM (10 bits x 4K)
- (5) Keyboard and LED display circuits
- (6) Power supply

The PC4000 is used in conjunction with a dedicated board which allows interface of the PC4000 with the object microcomputer under development. The dedicated board insertion access window is located on the right side of the PC4000. In addition, each dedicated board stores the control program for the monitor CPU. Therefore, when the microcomputer type is changed, the PC4000 can be modified to suit the new type by merely changing the single dedicated board.



MITSUBISHI Electric

#### **DEBUGGING MACHINE**


# FUNCTIONAL DESCRIPTION

Object programs developed on such devices as the PC9000 cross assembler machine are sent to the PC4000 via the serial input/output interface. The serial data transmission rate can be selected from 1200bps to 9600bps and the interface is a 20mA current loop type. The transmission format is Intel-compatible hexadecimal.

The data in the program memory is executed by the evaluation CPU on the dedicated board. In addition, this

memory contents can be written into 2716 or 2732 EPROM devices or data can be read out of such devices via a 24-pin DIL socket.

The keyboard consists of 12 function keys and 16 numerical keys as well as a single entry key. The LED display is an 8-digit display of 7-segment LED elements used to display data for reference while processing is performed.





# **DEBUGGING MACHINE**

## **KEY FUNCTIONS (BASIC FUNCTIONS ONLY)**


Symbol	Name	Function
SEND	Data transmit key	Converts program memory data to serial data and transmits to an external device
RCV	Data receive key	Receives serial data and writes this data into program memory
PROG	(EPROM) Program key	Writes program memory data into the EPROM inserted in the socket
LOAD	(EPROM) Load key	Sends data from the EPROM inserted in the socket to program memory
PRT	Print key	Data transmit to the optional printer
EXM P	Examine program memory key	Verification/correction of program memory contents
EXM R	Examine register key	Verification/correction of register contents
EXM	Examine memory key	Verification/correction of RAM contents
RES	Reset key	Reset of program counter
RUN	Run (execute) key	Re-start of program execution at the specified address (real time)
вяк	Break point set key	Sets the break point address
STEP	Single step key	Excutes the program one step at a time
0~F	Numerical keys	Used for input of address and data
ENT	Entry key	Effectively enters input numerical data

ltem	Specification	
Method The system is used with a dedicated board which includes the evaluation chip to perform in-circuit emulation		
Applicable microcomputers	M58840-XXXP M58494-XXXP M58496-XXXP M5L8049-XXXP M5L8049-XXXP and all other, Mitsubishi single-chip microcomputers	
Program RAM	Built-in, 4K x 10 bits (250ns access time)	
Control CPU	M5L8085AP	
Built-in EPROM writer circuit	Usable with 2716 or 2732 devices	
Display	7-segment LED, 8 digits	
Input	Key switches: Commands: 12 keys Numerical: 16 keys Entry: 1 key	
Interface	<ul> <li>① 20mA current loop serial input/output interface 4800bps, full deplex, one line (Selectable from 1200 to 9600bps)</li> <li>② Centronix-compatible parallel interface, one line</li> </ul>	
Monitor function	Monitor programs for the appropriate object microcomputers are written into the two M5L2732K devices mounted on the dedicated board. Basic Functions • Transfer of RAM data with an external system • Read and write of EPROM data • Verification/correction of the built-in program memory (RAM) contents • Execution and halt at any arbitrary program address • Single-step execution of programs • Verification/correction of internal registers, memory, flags	
User system connection	Input/output connections to the dedicated board by means of a cable	
Dimensions	364  imes 257  imes 85 mm (excluding handle and key switch tops	
Power supply	AC 100V 100VA	
Operating temperature	5~40°C	
Storage temperature	-20~60°C	



# PC4000

**DEBUGGING MACHINE** 





## **CROSS ASSEMBLER MACHINE**

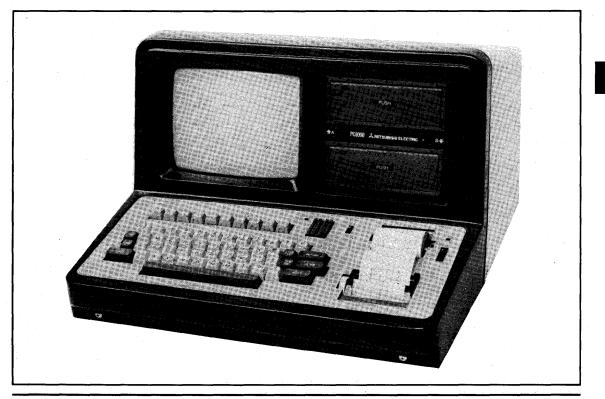
#### DESCRIPTION

The PC9000 is a cross assembler machine. It is capable of converting programs for the Mitsubishi single-chip microcomputers written in assembler language to machine language. In addition, it can perform such debugging functions as disassembly and act as an EPROM writer.

#### FEATURES

- Input of the source program from the keyboard
- An efficient screen editor allows editing of source programs
- Program dump and load to the mini-floppy disk
- Object data write/read for 2708, 2716 and 2732 EPROM devices
- Listing using a Centronix-compatible printer is possible
- Data transmission is possible to the PC4000 debugging machine
- Usable with all types of Mitsubishi single-chip microcomputers
- Compact, desk-top design

#### APPLICATION


Software development support for Mitsubishi single-chip microcomputers.

#### FUNCTION

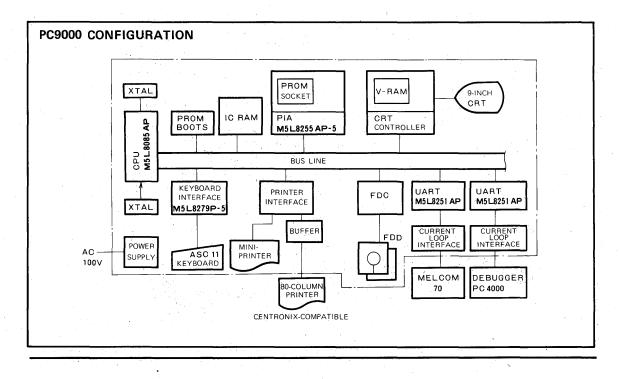
The PC9000 as shown in the configuration diagram consists of the following hardware

- (1) Control CPU and bootstrap ROM
- (2) 48K byte RAM
- (3) 2K byte display screen RAM
- (4) 9-inch CRT display circuit
- (5) EPROM writer circuit
- (6) ASCII keyboard
- (7) Hardcopy output by means of an internal mini-printer circuit or an external printer interface circuit
- (8) Floppy disk controller (two mini floppy disk drives)
- (9) Parallel input/output interface circuit (two lines)(10) Power supply

An M5L8085AP is used as the control CPU. The keyboard, CRT, mini-floppy disk drives, and printer interfaces are connected by means of a bus line. The keyboard is used for input of commands to the monitor and source program data verification. The 9-inch green CRT display screen is capable of displaying 24 lines of 80 characters. As a printer a 20 column mini-printer is built-in to the PC9000 in addition to the ability to use an 80 column printer having Centronix compatibility via an interface which is available. The built-in mini-printer may be used to output






# **CROSS ASSEMBLER MACHINE**

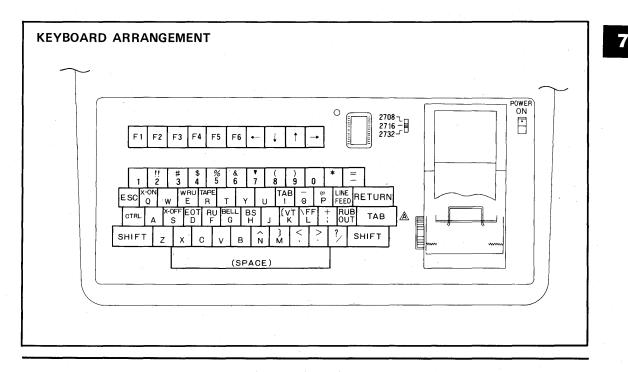
the disassembly results while the external printer may be used to output the assembly listing as well as disassembly listing.

#### FUNCTIONAL DESCRIPTION

The PC9000 contains the assembler, disassembler, source editor, and EPROM writer functions required for software support of microcomputers. These functions are summarized in the Table.

Function	Effect	Applicable devices
Assemble	Source input: keyboard output: printer, EPROM, data transfer (with debugging unit)	All 4-bit single-chip PMOS, and CMOS microcomputers M5L8048, M5L8049 and M5L8041A 8-bit single-chip microcomputers
Disassemble	Disassembly of the specified file Output: 20 column printer, external printer	Same as above
Source editor	Deletion, insertion, modification, character search, and screen editing	Same as above
PROM writer	EPROM erase check, write, verification, read	M5L2708K, M5L2716K, M5L2732K






# PC9000

### **CROSS ASSEMBLER MACHINE**

### SPECIFICATIONS

Item	Specification		
Structure	Desktop-type, single cabinet		
CPU	Mitsubishi M5L8085AP (2.45 MHz clock)		
IC memory	2K byte ROM (bootstrap area), 48K-byte DRAM, 2K-byte VRAM		
Memory device	Mini floppy disk x 2 drives, double-sided, double-density		
Display	9-inch green CRT display, 80 lines x 25 characters		
Keyboard	Modified ASCII specifications, 2-key lockout		
Dedicated printer	5 x 7 dot Matrix thermal printer, 20 columns. 2 lines/s. Paper width: 60mm.		
Printer interface	Centronix, parallel interface Interface connector: 36-pin DDK Amphenol		
Serial input/output interface	20mA current loop (2 lines)		
Data transfer format	MELPS 85 Hexadecimal (equivalent to Intel Hexadecimal)		
Applicable microcomputers	MELPS         8         (M5L8048-XXXP, M5L8049-XXXP and others)           MELPS         4         (M58840-XXXP and others)           MELPS         41         (M58494-XXXP)           MELPS         42         (M58496-XXXP and others)		
Outer dimensions and weight	Desk top-type 470(W) x 290(H) x 490(D), 17kg		
Power supply	AC 100V ± 10% 50/60 Hz		





7—9

### **16-BIT CPU SOFTWARE DEVELOPMENT SYSTEM**

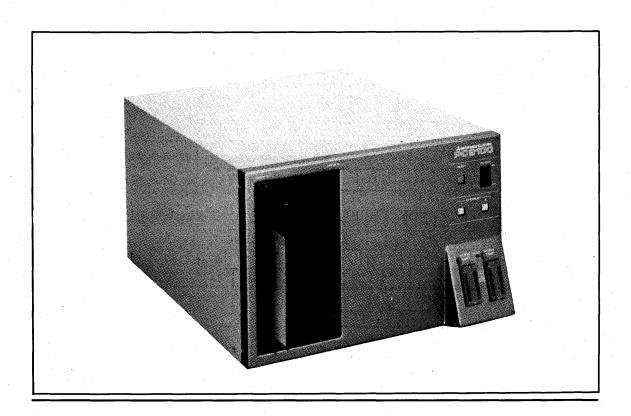
#### DESCRIPTION

The PC9100 is a software development support for the MELPS 86 and PCA8600 series. As this has floppy disk drives and a built-in EPROM programmer, a software development support for the MELPS 86 is performed by only connecting a CRT terminal on the market.

The operation system (OS) adopts the propagated  $^{\textcircled{B}}CP/M\text{-}86^{\text{T.M.}}$  and CP/M-80 $^{\textcircled{B}}$ , therefore many softwares programmed for CP/M are usable.

In addition, with a use of M5L8086S in-circuit emulator PC9110, the operation from a source programming of MELPS 86 to a hardware debugging is executed continuously.

#### **FEATURES**


- Compatible with PCA8601 monitor program
- Adoption of CP/M-86, CP/M-80 for OS. Select any OS by a monitor program.
- Capability of executing a developed software for 8080A/ 8085A and of developing an 8085A software when the CP/M-80 is selected.
- Easy system expansion caused by system bus which adopts IEEE-796 bus and 4 opened card cages.
- Standard 2 drives for double-sided double-density floppy disk (Capacity of 1.2M bytes).

- Applicable drive for double-sided double-density, double-sided single-density, single-sided single-density disks by the switch on the rear panel.
- Capability of programming 2 of 16-bit data at a time by a built-in EPROM programmer (corresponds to M5L2716K, M5L2732K, M5L2764K)
- Usable CRT device, which contains RS232C serial interface, on the market
- Capability of connecting a centronics printer
- Capability of connecting the M5L8086S in-circuit emulator PC9110
- One built-in RS232C serial interface for general purpose
- RAM size ...... 72K bytes
- AC 100V
- Compact, light weight

#### APPLICATION

- Software development support for MELPS 86
- Software development support for MELPS 85
- Personal computer
- Device for data analysis and management
- Base machine for each dedicated system
- Note 1. (B) CP/M is a registered trade-mark of Degital Research Inc.
   2. IEEE-796 bus is a system bus for microcomputers which are the standardized Intel (B) multi bus by IEEE.

B multi bus is a registered trade-mark of Intel.

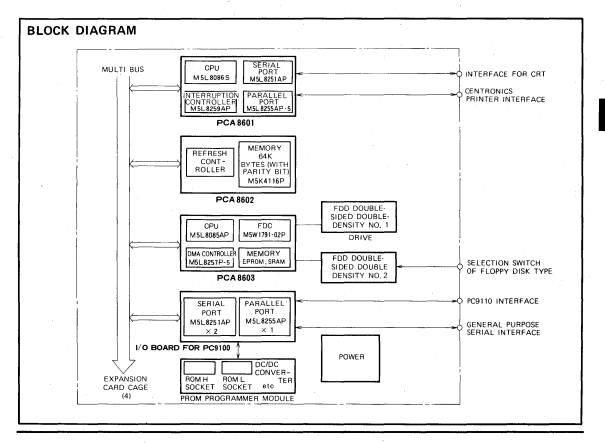


#### **16-BIT CPU SOFTWARE DEVELOPMENT SYSTEM**

#### FUNCTION

The PC9100 adopts multi bus as a system and mounts a PCA8601 CPU board, PCA8602 64K RAM board, PCA8603 floppy disk controller board (including M5L8085A) of PCA 8600 series and an I/O board for PC9100. 4 multi bus compatible boards are in the card cage slot for easy system's expansion and exclusive.

2 built-in double-sided double-density floppy disks are provided. The second drive (Drive B:) can select either double-sided single-density or single-sided single-density by the switch on the rear panel. After selecting either single density, the CP/M lets the BIOS work automatically by accessing each Drive as C:, D:.


The EPROM programmer consists of 2 DIL sockets for 28-pin and 2 EPROMs are programmed in a 16-bit microcomputer object. Programmable EPROMs are M5L2716K, M5L2732K, M5L2732A type and M5L2764K.

I/O functions are: (1) CRT interface (RS232C standard, Serial operation, 25-pin connector) (2) Printer interface (TTL level, Centronics 36-pin champ connector) (3) PC9110 interface (RS232C standard, Serial operation, 25-pin connector) (4) General purpose serial interface (RS 232C standard, Assignation to RDR: PUN: In CP/M, 25-pin connector)

After turning on the PC9100, the M5L8086S on the PCA8601 will be a bus master and executes a monitor program written in the ROM on the PCA8601. After this, if the G(GO) command is executed, the system will be in CP/M-86 or CP/M-80 mode. When it is the CP/M-86 mode, the system works considering the M5L8086S as master, and commands consist of the CP/M-86, 8086 assembler, 8086 debugger and application software for CP/M-86 which is on the market are able to execute.

When it is the CP/M-80 mode, the commands consist of the CP/M-80, 8080 assembler, 8080 debugger and application software for the CP/M-80 which is on the market are able to execute.

The operation from the OS to the monitor is executed by the reset switch.





•

# **16-BIT CPU SOFTWARE DEVELOPMENT SYSTEM**

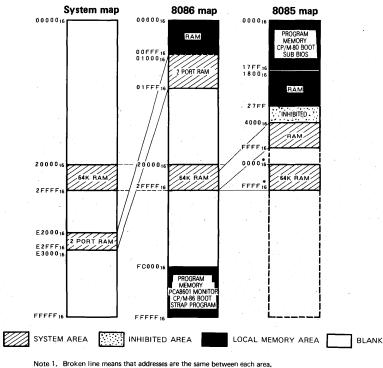
#### FUNCTION EXPLANATION (According to CP/M, CP/M86, Mitsubishi original utility S/W)

Function	Effects	Application devices	
Assembler	Source input: Source file created by key board input output: List, EPROM, Data communication with emulator	<ul><li>8086</li><li>8085A</li></ul>	
	Software debugger: Supporter in CP/M-86 For Application S/W in CP/M-86	• 8086	
Debugger	Software debugger: Supporter in CP/M-80 For Application S/W in CP/M-85	• 8085A	
RPOM programmer	Write, read, verification of EPROM (Capability of programming upper bytes and lower bytes at the same time for 8086)		
Data communication	Bi-directional data communication with an external device in file base	RS232C standard	
Editor	Supporter in CP/M	Applicable for all uses	
Execution of application S/W	Rich applicable S/W which on the market eg. "CIS COBOL86", "PASCAL/M-86" etc. which are on the market as the high quality language for 8086 can be executed in the PC9100. Likewise, the high quality editor (Word star etc.) on the market can be used beside the standard editor.	• 8086 • 8085A	

# SPECIFICATION

### Hardware Specification

Item	Specification		
Structure	Desk top, single cabinet (External CRT, Keyboard, printer)		
CPU	Mitsubishi M5L8086S 4.9152MHz Mitsubishi M5L8085AP 2.4576MHz		
	PCA8601 Program memory 16K bytes RAM 16K bytes		
IC memory	PCA8602 RAM 64K bytes PCA8603 Program memory 4K bytes RAM 2K bytes		
Memory device	2 double-sided double-density floppy disks (Single-sided single density is also used by setting the switch on the rear panel)		
CRT interface	Serial interface (The electrical characteristics and connector are compatible with the RS232C standard) Transmit speed 9600BPS standard		
Printer interface	Centronics parallel interface (The DDK unphenol 36-pin is used for a connector)		
Interface for PC9110 in-circuit emulator controller	Serial interface (The electrical characteristics and connector are compatible with the RS232C standard) Transmit speed 9600BPS		
General purpose serial I/O interface	One port (The electrical characteristics and connector are compatible with the RS232C standard) Transmit speed Selectable from 1200/2400/4800/9600BPS 9600BPS standard		
PROM programming device	2 multi devices Programmable into M5L2764K, M5L2732A type, M5L2732K, M5L2716K		
Applicable microcomputer	MELPS 86, MELPS 85		
Capable expansion area	4 of multi bus boards		
Outer dimensions	Desk top type 420(W) x 450(D) x 260(H) mm		
Operating temperature	5°C ~ 40°C		




#### **16-BIT CPU SOFTWARE DEVELOPMENT SYSTEM**

### **Software Specification**

Item	Specification		
Monitor program	Monitor for 8086 which is compatible with the one on the PCA8081		
	CP/M-86 General purpose O.S. for 8086 of Degital Research Inc.		
Operation system	CP/M-80 General purpose O.S. for 8080 of Degital Research Inc.		
	ASM86, CMD 8086 Assembler		
	DDT 86. CMD CP/M86 Debugger		
	STAT . CMD File status utility		
141114	SUBMIT, CMD Batch management utility		
Jtility software 8086 base)	PIP. CMD File exchange utility		
,	GENCMD. CMD CMD file generating utility		
	ED, CMD Editor for program generator		
	PROM. CMD PROM programmer controller program		
· ·	DDFMT Disk initialization and disk copy		
	ASM. COM 8080 Assembler		
	DDT. COM CP/M80 Debugger		
	STAT. COM File status utility		
	SUBMIT. COM Batch management utility		
Itility software	XSUB. COM Expansion of SUBMIT. COM utility		
3080 base)	PIP. COM File exchange utility		
	LOAD. COM COM file generating utility		
	ED. COM Editor for program generator		
	DUMP. COM Hex dump utility		
	MOVCPM. COM		
ibrary	BIOS.A86, DEBLOCK.LIB, BIOS.ASM, DUMP.ASM		

#### Memory Map



Solid line means that addresses are the same between each area. Solid line means that each area has the different address from others.

The area marked with * will be changed by an installation of a control register.



MITSUBISHI MICROCOMPUTERS PC9001CPM

#### CP/M SOFTWARE FOR PC9000

#### DESCRIPTION

The PC9001CPM is an option board to turn the cross assemble machine PC9000 to a CP/M  $^{\textcircled{M}}$  machine.

This is capable of developing the 8085 software and executions of a software for a CP/M and a user program with the PC9000. The CP/M of PC9001 is designed for 48K bytes CP/M Version 2.2.

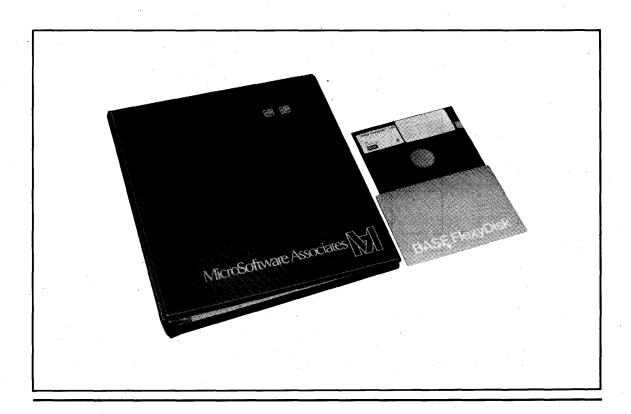
This software must be used following the software contract.

Note: (R) CP/M is a registered trade-mark of Digital Research Inc.

#### **FEATURES**

- Execution of a CP/M on the PC9000
- Functions of a debugger and an assembler of 8080A
- Application program which operates on a CP/M of which memory capacitor is below 48K
- Developing and operating of a user program on the PC9000
- Opened internal miniprinter as a user list device
- Selectable letters (CAPITAL/small) by F3 key
- Usable internal serial interface as RDR:, PUN:

- Functions of a standard CP/M editor and a PC9000 original screen editor
- Used for a high quality EPROM programmer by an internal EPROM programmer and an option control program


#### APPLICATIONS

- Supporting develop machine for MELPS 85
- Personal computer
- Data communication terminal

#### FUNCTIONS

The PC9001CPM contains the EPROM (M5L2716K or M5L2732K) that programs a boot strap program and a basic operation system (BIOS) for CP/M. A floppy disk programmed of a CP/M and an application software, and manuals are also packed in the PC9001 CP/M carton.

Following the manual, exchange the EPROM on the PC9000 main board. The CP/M then initiates when a system starts by the disk. The PC9000 original disk and prescribed disk are compatible after changing a ROM.



# MITSUBISHI MICROCOMPUTERS PC9001CPM

### **CP/M SOFTWARE FOR PC9000**

## SPECIFICATION

Item	Specification	
CP/M Version	Version 2.2	
RAM size	48K bytes	
Console (CON:)	Built-in CRT device and keyboard of the PC9000	
Paper tape reader (RDR:)	Built-in MELCOM 70 interface of the PC9000 (Hand shaking operation using a data terminal ready, DTR)	
Paper tape punch (PUN:)	Built-in PC4000 interface of the PC9000 (Hand shaking operation using a data set ready, DSR)	
List device (LST:)	Centronics external printer (LPT:) Built-in miniprinter of the PC9000 (UL1:) LPT: = standard assign	
Floppy disk storage	2 x 320K bytes (A: and B:)	
Key board	Capital/small letter selection by F3 key	
PROM programmer	<ul> <li>File load, file save, edit, PROM program, PROM read, verify, padding, block moving</li> <li>8K bytes work area</li> <li>Target ROM (2708/2716/2732)</li> </ul>	
Miscellaneous	<ul> <li>Time-out detector for printer ready</li> <li>Automatical warm boot operation by a key input when a programming is begun in the write protected disk</li> <li>Automatically effected DTR output of the MELCOM 70 interface by a warm boot</li> </ul>	

### APPLICATION SOFTWARE LIST IN THE PC9001CPM

Program	Function	Supplement
EDIT	Screen Editor	PC9000 original editor
ED*	Line Editor	
ASM*	Assembler for 8080	
LOAD *	Modification of execution style	
DDT*	Debugger for 8080	
PROM	Programming control for 2708/16/32	The program to transfer an assemble result to a PROM by a built-in PROM programmer of PC9000. (Functions of padding and block transfer are programmed.)
DUMP *	Hex Dump	Source program is attached
PIP *	File handling	
STAT *	System status indicator	
SUBMIT *	Submit file management	
XSUB *	Optional SUBMIT	
CMNA 1	MELCOM 70 communication	The communication of object codes by the MELCOM 70 in the Intel HEX format
CMNA 2	PC4000 communication	The communication of object codes by the PC4000 in the Intel HEX format
MSS	General purpose file communication	The communication of file data with another CP/M machine
DISKCOPY	Copy of disk contents	Copy the disk contents from A to B
DDBI	Disk initialize	Initialization of PC9000 formatting for a disk in the market

The program marked with * is the utility program for CP/M.



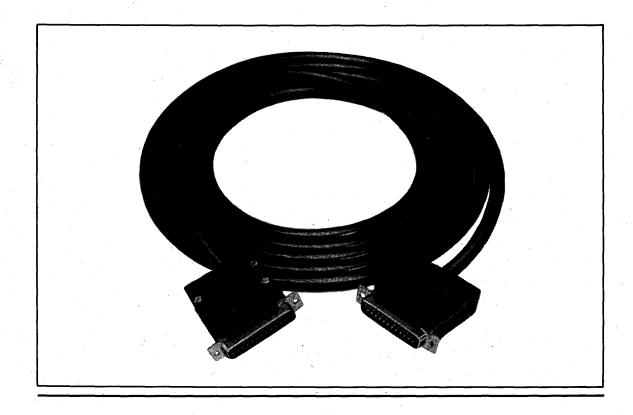
PC9004

## INTERFACE CABLE BETWEEN PC9000 AND PC4000

#### DESCRIPTION

The PC9004 is an interface cable to connect the cross assemble PC9000 and the debugging machine PC4000 by serial interface.

#### **FEATURES**


- High speed data communication for object codes of assembled and debugged results by connecting the PC9000 and the PC4000 with the serial interface.
- File communication by a serial interface between two PC9000s (when CP/M[®] option is used)

Note: (R) CP/M is a registered trade-mark of Digital Research Inc.

#### **FUNCTIONS**

The PC9004 makes it possible to execute a data communication used with built-in current loop interface of the PC9000 and the PC4000. For example, to send a 4K bytes object code in Intel HEX format (at 9600 baud), it takes approximately 17 seconds.

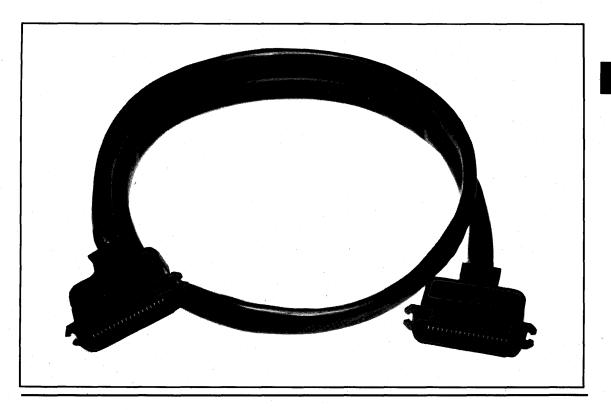
Item	Specification		
Connector	RS232C type connector		
Line	7 lines		
Pin connection	Connector A ————— Connector B		
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		



### PRINTER INTERFACE CABLE

#### DESCRIPTION

The PC9005 is an interface cable to connect the cross assemble machine PC9000 or the debugging machine PC4000 and a centronics printer.


#### FEATURES

- Capability of outputting an assembled list or a disassembled list by connecting the PC9000 and a printer.
- Capability of outputting a disassembled list or a traced result at the 8080 software debugging by DDT when a CP/M is converted to the PC9000.
- Capability of outputting a disassembled list which corresponds to each microcomputer, an internal memory dump list etc. by connecting the PC4000 and a printer.

#### **FUNCTIONS**

The PC9005 is designed based on the centronics specification and is used as an interface cable between the PC9000 or the PC4000 and a centronics printer.

Pin, No.	Signal	Content
1	STB	Strobe output signal of data
2~9	D0~D7	Data output signal to a printer
10	ACK	Input signal of data acknowledgement
11	BUSY	BUSY input signal from a printer
12	P.EMP	Input signal notifying a printer paper empty
31	RST	Output signal to initiate a printer
32	FAULT	Input signal to notify printer errors
19~29	GND	Ground





### MELPS 740 DEDICATED BOARD (M50740-XXXSP, M50741-XXXSP)

#### DESCRIPTION

The PCA4040 MELPS 740 dedicated board is for use with the PC4000 debugging machine for the M50740-XXXSP, and M50741-XXXSP single-chip 8-bit microcomputer, and it is used by inserting the board in the PC4000 cabinet.

### **FEATURES**

- Connection to user's system by a flat cable
- Single-step operation and breakpoint operation capability from the PC4000 debugging machine keyboard. Debugging functions such as confirmation and modification of internal register contents.

#### **APPLICATIONS**

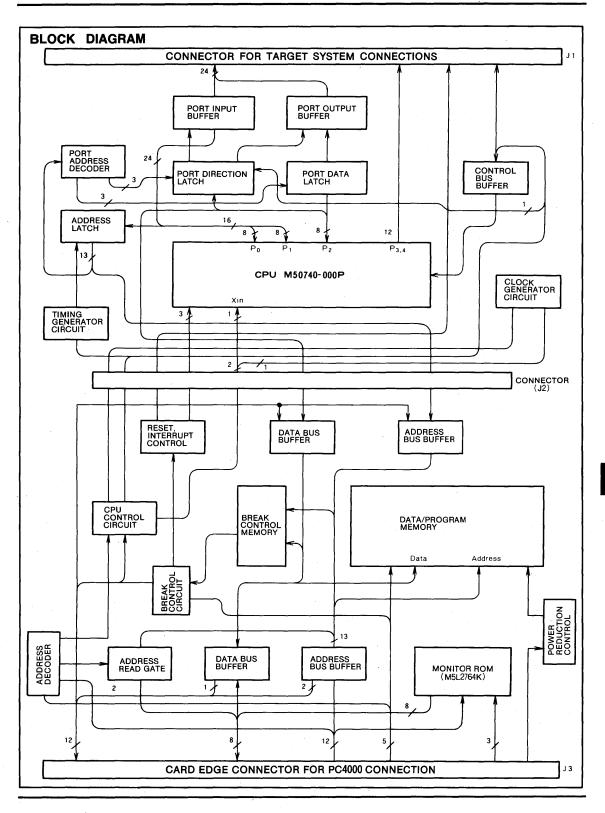
Development of hardware and software for systems using the MELPS 740 (M50740-XXXSP and M50741-XXXSP) single-chip microcomputer.

#### CONFIGURATION

As can be seen from the block diagram, the PCA4040 consists of the following hardware.

- (1) Evaluation chip (M50740-000SP) and peripheral circuit
- (2) EPROM with the PC4000 monitor program
- (3) Single-step and breakpoint control circuit
- (4) Program memory interface circuit
- (5) Input/output buffer/latch circuit

The board and user system can be connected by means of an accessory cable.


#### **FUNCTION**

The debugging machine PC4000 operates as a debugging machine for MELPS 740 microcomputers using the monitor program contents of a ROM mounted on the dedicated board. The evaluation chip (M50740-000SP) loaded on the board executes the program stored in the program memory. The internal status of the evaluation chip is read out under monitor CPU control when halted by single-step operation and breakpoint operation.

Item	·	Specification
Applicable microcomputer		M50740-XXXSP, M50741-XXXSP
Clock frequency	CF	4MHz
Applicable debugg	jing	PC4000
machine		(connected by a card edge connector J3)
Power supply		Supplied by PC4000
Connection to user system	ś	Accessory cable
Debugging function	ns	<ul> <li>Program execution from any address,</li> </ul>
(contents of monitor EF	ROM)	stop and single-step operation
		<ul> <li>Confirmation and change of program</li> </ul>
		RAM contents
		<ul> <li>Confirmation and modification of RAM data</li> </ul>
		in evaluation chip and verification and mod-
		ification of following registers and flags:
		Program counter
		<ul> <li>Index register X</li> </ul>
		Index register Y
		Stack pointer
		Accumulator
		Processor status register
		<ul> <li>Data programing to EPROM and reading</li> </ul>



# PCA4040



## MELPS 740 DEDICATED BOARD (M50740-XXXSP,M50741-XXXSP)



7—19

**PCA4060** 

#### MELPS 760 DEDICATED BOARD (M50760-XXXP, M50761-XXXP)

#### DESCRIPTION

The PCA4060 MELPS 760 dedicated board is for use with the PC4000 debugging machine for the M50760-XXXP and M50761-XXXP single-chip 4-bit microcomputers, and it is used by inserting the board in the PC4000 cabinet.

#### FEATURES

- Connection to user's system by a flat cable
- Single-step operation and breakpoint operation capability from the PC4000 debugging machine keyboard. Debugging functions such as confirmation of internal register contents.

#### **APPLICATIONS**

Development of hardware and software for systems using the MELPS 760 (M50760-XXXP, M50761-XXXP) single-chip microcomputer.

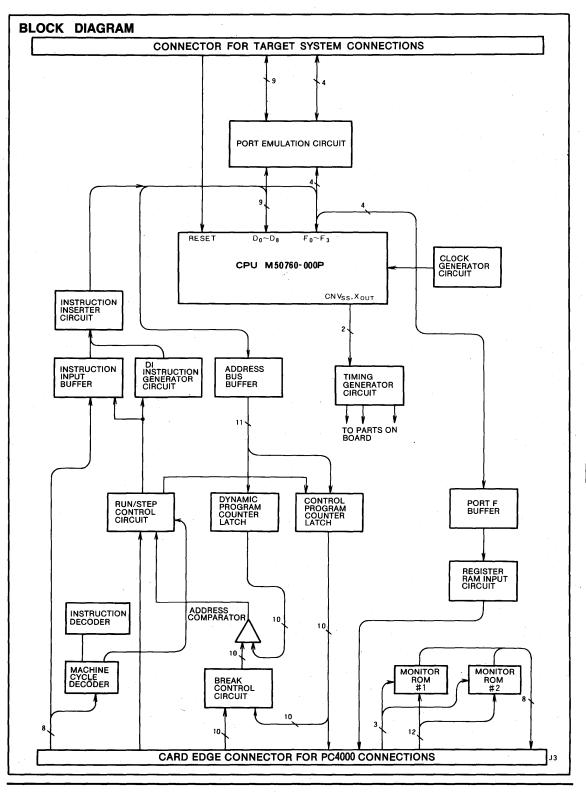
#### CONFIGURATION

As can be seen from the block diagram, the PCA4060 consists of the following hardware.

- (1) Evaluation chip (M50760-000P) and peripheral circuit
- (2) EPROM with the PC4000 monitor program
- (3) Single-step and breakpoint control circuit
- (4) Program memory interface circuit
- (5) Input/output buffer/latch circuit

The board and user system can be connected by means of an accessory cable.

#### **FUNCTION**


The debugging machine PC4000 operates as a debugging machine for MELPS 760 microcomputers using the monitor program contents of a ROM mounted on the dedicated board. The evaluation chip (M50760-000P) loaded on the board executes the program stored in the program memory in the PC4000 debugging machine.

The internal status of the evaluation chip is read out under monitor CPU control when halted by single-step operation and breakpoint operation.

Item	· .	Specification		
Applicable microcom	outer	M50760-XXXP, M50761-XXXP		
Clock frequency	CF	400kHz		
Clock frequency	CR	200~400kHz		
Applicable debugg	ing	PC4000		
machine		(connected by a card edge connector J3)		
Power supply		Supplied by PC4000		
Connection to user	ís –			
system		Accessory cable		
Debugging function	าร	<ul> <li>Program execution from any address,</li> </ul>		
(contents of monitor EP	ROM)	stop and single-step operation		
		<ul> <li>Confirmation and change of program</li> </ul>		
		RAM contents		
		Confirmation and modification of RAM data		
		in evaluation chip and verification and mod-		
		ification of following registers and flags:/		
		Program counter		
		<ul> <li>A register and carry</li> </ul>		
		B register		
		<ul> <li>Data pointers (X, Y)</li> </ul>		
		• Data programing to EPROM and reading		



# PCA4060



### MELPS 760 DEDICATED BOARD (M50760-XXXP, M50761-XXXP)



7-21

7

# PCA4340

# MELPS 740 EVALUATION BOARD (M50740-XXXSP, M50741-XXXSP)

#### DESCRIPTION

The PCA4340 evaluation board is used as an evaluation board for MELPS 740 8-bit single-chip computers.

When used in the external ROM mode, this board consists of the evaluation chip (M50740-000SP) and the program EPROM (M5L2732K) possessing equivalent functions to the masked ROM M50740-XXXSP and M50741-XXXSP. When creating the mask for a developed program, this board is suitable for verification and running tests.

#### FEATURES

- Board computer equivalent to M50740-XXXSP
- Simple program modification using an EPROM
- Connection to user's system by means of a cable
- Built-in clock generator

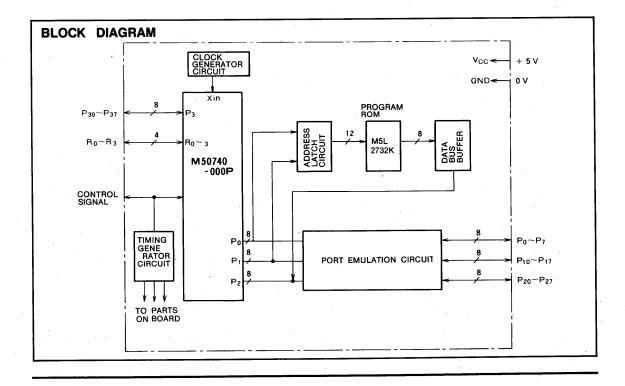
#### APPLICATIONS

Program and applications equipment development for MELPS 740 8-bit single-chip microcomputers

#### CONFIGURATION

As can be seen in the block diagram, the PCA4340 consists of the following hardware:

- (1) Evaluation chip and peripheral circuit
- (2) Program EPROM socket
- (3) EPROM power supply circuit


The board and user system can be connected by means of an accessory cable.

#### FUNCTION

The evaluation chip (M50740-000SP) outputs the value of the program counter, and reads and executes the instruction stored in the appropriate EPROM address.

It is possible to have this board emulate the operation of a single-chip microcomputer.

Item			Specification
Applicable microcomputer		ər	M50740-XXXSP, M50741-XXXSP
Clock frequence	y C	F	4MHz
Cycle time			1µs (with 4MHz clock)
Voltage		ge	5V±5%, single
Power supply	Power supply Curren		0.5mA typ. (J1 open, with NOP instruction execution)
Connection with user system			Accessory cable
	J1		For user system connection (60 pins)
Connectors	J2		2-pin angle pin header for power supply
Outer dimensions			200 (L) $\times$ 250 (W) $\times$ 20 (H) mm



# MELPS 760 EVALUATION BOARD (M50760-XXXP, M50761-XXXP)

#### DESCRIPTION

The PCA4360 evaluation board is used as an evaluation board for MELPS 760 4-bit single-chip computers.

When used in the external ROM mode, this board consists of the evaluation chip (M50760-000P) and the program EPROM (M5L2716K) possessing equivalent functions to the masked ROM M50760-XXXP and M50761-XXXP. When creating the mask for a developed program, this board is suitable for verification and running tests.

### FEATURES

- Board computer equivalent to M50760-XXXP, M50761-XXXP
- Simple program modification using an EPROM
- Connection to user's system by means of a cable
- Built-in clock generator

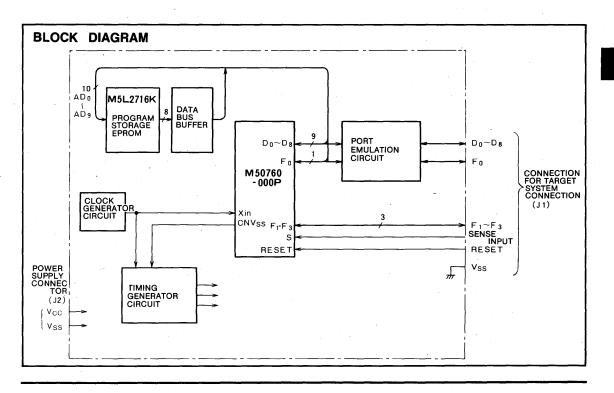
### **APPLICATIONS**

Program and applications equipment development for MELPS 760 4-bit single-chip microcomputers

#### CONFIGURATION

As can be seen in the block diagram, the PCA4360 consists of the following hardware:

- (1) Evaluation chip and peripheral circuit
- (2) Program EPROM socket


The board and user system can be connected by means of an accessory cable.

#### FUNCTION

The evaluation chip (M50760-000P) outputs the value of the program counter, and reads and executes the instruction stored in the appropriate EPROM address.

It is possible to have this board emulate the operation of a single-chip microcomputer.

Item			Specification		
Applicable microcomputer			M50760-XXXP, M50761-XXXP		
CF			400kHz		
Clock frequency C R		CR	200~400kHz		
Cycle time			10µs		
V		oltage	5V±5%, single		
Power supply	Cu	urrent	0.5mA typ.		
Connection with user system			Accessory cable		
0		J1	For user system connection (20pin)		
Connectors	.J2		2-pin angle pin header for power supply		
Outer dimensions			$100 (L) \times 150 (W) \times 20 (H) mm$		





**MELPS 8-48 DEDICATED BOARD** 

#### DESCRIPTION

The PCA8400 is a dedicated MELPS 8-48 board for use with the PC4000 debugging machine for the 8-bit singlechip microcomputers and is used by inserting the board in the PC4000 cabinet.

#### FEATURES

- Connection to user's system by means of a 40-pin DIL plug
- Control circuits and connectors for the i 8748 writing adaptor (PC4100)

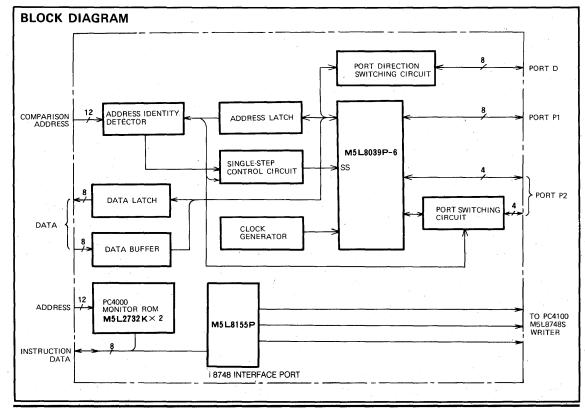
#### APPLICATIONS

The development of hardware and software for systems using the MELPS 8-48 8-bit single-chip microcomputers.

#### CONFIGURATION

As can be seen in the block diagram, the PCA8400 consists of the following hardware:

- (1) Evaluation chip (M5L8039P-6) and peripheral circuitry
- (2) ROM with the PC4000 monitor program
- (3) Single-step and breakpoint control circuit
- (4) Program memory interface circuit
- (5) Input/output buffer/latch circuit


The PC4000 is connected to this board using a card edge connector and this board is connected to the user system by means of an accessory cable.

#### FUNCTION

The debugging machine PC4000 operates as a debugging machine for the MELPS 8-48 using the contents of the monitor ROM mounted on the *dedicated board. The evaluation chip (M5L8039P-6) loaded on the board executes the program stored in the program memory in the PC4000 debugging machine.

The internal status of the evaluation chip is read out under monitor CPU control when single-step operation and breakpoint operation are halted.

An interface and connector to enable connection to the M5L8748S writing adaptor PC4100 has been provided, allowing programs to be written and read from the i 8748.





# **MELPS 8-48 DEDICATED BOARD**

lte	m	Specification			
Applicable microcomp	outers	M5L8048-XXXP M5L8049-XXXP M5M8050H-XXXP M5M8050L-XXXP			
Clock Package		6.144MHz			
frequency	Variable range	1~6.144MHz (By changing the oscillator crystal)			
Applicable machine	debugging	PC4000 (connected by a card edge connector)			
Power supp	lγ	Supplied from the PC4000 when inserted into the debugging machine			
Connection to user's system		By an accessory cable			
Debugging functions (contents of monitor EPROM)		<ul> <li>Program execution from any address and halt</li> <li>Data writing to EPROM and reading</li> <li>Confirmation and change of the contents of program RAM</li> <li>Serial data transfer to an external device</li> <li>Confirmation and modification of the RAM data in the evaluation chip</li> <li>(M5LB039P-6) and the contents of the following, registers and flags:</li> <li>Program counter</li> <li>Accumulator</li> <li>PSW</li> </ul>			
Other		By connecting the PC4100, read and write operations to the i 8748 can be performed.			



### **MELPS 8-48 EVALUTION BOARD**

#### DESCRIPTION

The PCA8403 evaluation board is used as an evaluation board for MELPS 8-48 8-bit microcomputers.

This board consists basically of the external ROM chip (M5L8039P-11) and EPROM (M5L2732K), possessing equivalent functions to the masked ROM M5L8048-XXXP and M5L8049-XXXP. When creating the mask for a developed program, this board is suitable for program verification and running tests.

#### **FEATURES**

- Board computer equivalent to the M5L8048-XXXP, M5L8049-XXXP.
- Simple program modification using an EPROM
- Connection to user's system socket by means of a 40-pin DIL plug
- Built-in clock generator
- Speed up of a CPU using the M5L2764K

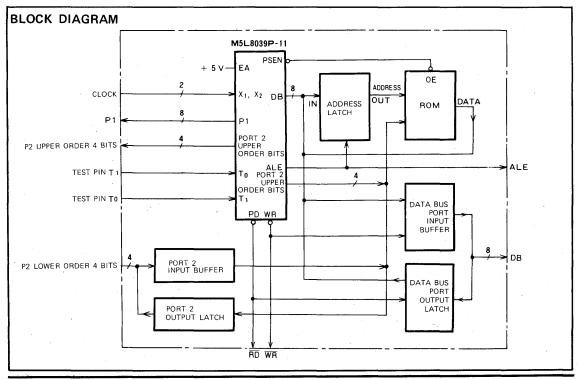
#### APPLICATIONS

Program and applications equipment development for MELPS 8-48 8-bit single-chip microcomputers.

#### FUNCTION

The evaluation chip (M5L8039P-11) outputs the value of the program counter and reads in instructions from ERROM and executes them.

The board is equivalent in operation to a single-chip microcomputer.


#### CONFIGURATION

As can be seen in the block diagram, the PCA8403 consists of the following hardware:

- (1) Evaluation chip and peripheral circuitry
- (2) Program EPROM socket
- (3) EPROM power supply circuit

The board and user system can be connected by means of an accessory cable.

Item	Specification				
Туре	8-bit parallel processor				
CPU	M5L8039P-11 (equivalent to Intel 8039)				
Cycle time `	Clock supplied by user system (maximum 11 MHz)				
Memory	Program memory: 4K bytes (M5L2732K) Data memory: 128 bytes (built-in M5L8039P-11)				
L/ <b>0</b>	8-bit parallel port x3 Test pin x2				
Interrupts	INT pin				
Power supply	5V ±5%, 600mA (max)				
Connector used	40-pin DIL accessary plag				
Outer dimensions	50 (L) x 170 (W) x 35 (H) mm				





# APPENDICES

8

# MITSUBISHI MICROCOMPUTERS MELPS 760 MASK ROM ORDERING METHOD

### MASK ROM ORDERING METHOD

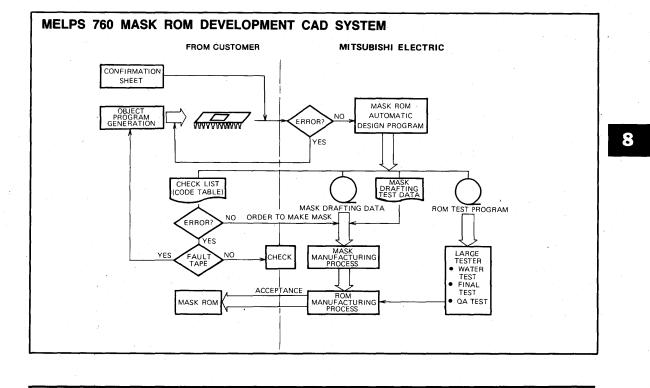
Mitsubishi Electric corp. receives via EPROMs the data for writing programs in the mask ROMs of single-chip 4-bit microcomputer.

When placing an order, submit three sets of one or more than one EPROMs in which the data for one pattern are written together with the prescribed confirmation document (s).

It use of different media is intended, make a request accordingly.

#### **EPROM SPECIFICATIONS**

- M5L2716K, M5L2732K, Intel's 2716 or 2732 may be used, but M5L2716K and M5L2732K are regarded as standard.
- 2. The data and address of EPROM are processed by regarding the content of "H" as "1".
- Write in the EPROMs to be submitted the kind of order to be placed as well as the distinction as to address assignment (the address to be assigned is given in the confirmation documents).
- 4. If a discrepancy (discrepancies) between the EPROMs submitted is found, a notice to that effect will be given.
- 5. Everything written from the start address of an EPROM onward is treated as data.


#### MASK ROM PROCESSING SYSTEM

Programs for automatic design of mask ROMs have been prepared and the followings are generated automatically :

- 1. Drawing data for mask ROM generation.
- 2. Proof lists for checking errors in making mask ROMs.
- 3. Test pograms for large-scale tester.
- A CAD system for this shown in the figure below.

#### **ITEMS TO CONFIRM FOR ORDERING**

- 1. Confirmation document for masking .....1 copy





# MELPS 760 MASK ROM ORDERING METHOD

### MELPS760 MASK-PROGRAMMABLE ROM CONFIRMATION MATERIAL

SINGLE-CHIP 4-BIT MICROCOMPUTERS M50760-XXXSP

# MITSUBISHI ELECTRIC

	· .		Signature
Customer			
Company name			Prepared
Company address	· · · · · · · · · · · · · · · · · · ·	Tel	
Company contact		Date	Approved
· · ·		•	

The single-chip microcomputer type number to order and the type of EPROMs to be supplied should be specified by

checking  $\checkmark$  in the boxes. Three sets of EPROMs should be supplied.

EPROM type number	□2716	□2732
Address of EPROM	□A (000 ₁₆ ~ 3FF ₁₆ )	□A (000 ₁₆ ~ 3FF ₁₆ )

Note 1 : The high-level data of both data outputs and address inputs of the supplied EPROM will be programmed as '1', and low-level as '0'.

- 2 Cleary indicate the type number of EPROMs and address designation letter symbols A and B on the supplied EPROMs.
- 3 : The data of the addresses in parentheses on the EPROM are programmed onto the ROM.
- 4 : The data from each PROM in the set is compared and if 2 of the 3 are equal, the equal value will be programmed into the ROM. When the 3 values are different programming is halted and the customer is notified of the error. The error report will show the address and data.

### CUSTOMER'S IDENTIFICATION MARK

If you require a special identification mark, please specify in the following format.

	1						
1							
			 	·		 	

#### Mitsubishi IC type number

Note 5 : A mark field should start with the box at the extreme right.

6 : The identification mard should be no more than 12 characters consisting of alphanumeric characters (except J.I. and O) or dashes.

### COMMENTS



# MITSUBISHI MICROCOMPUTERS MELPS 740 MASK ROM ORDERING METHOD

#### MASK ROM ORDERING METHOD

Mitsubishi Electric corp. receives via EPROMs the data for writing programs in the mask ROMs of single-chip 8-bit microcomputer.

When placing an order, submit three sets of one or more than one EPROMs in which the data for one pattern are written together with the prescribed confirmation document (s).

It use of different media is intended, make a request accordingly.

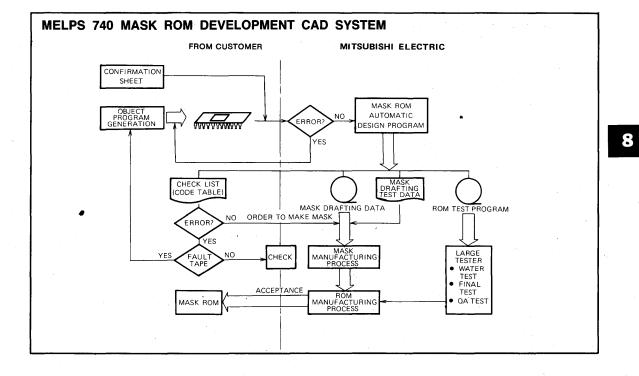
#### EPROM SPECIFICATIONS

- M5L2716K, M5L2732K, Intel's 2716 or 2732 may be used, but M5L2716K and M5L2732K are regarded as standard.
- 2. The data and address of EPROM are processed by regarding the content of "H" as "1".
- Write in the EPROMs to be submitted the kind of order to be placed as well as the distinction as to address assignment (the address to be assigned is given in the confirmation documents).
- If a discrepancy (discrepancies) between the EPROMs submitted is found, a notice to that effect will be given.
- 5. Everything written from the start address of an EPROM onward is treated as data.

#### MASK ROM PROCESSING SYSTEM

Programs for automatic design of mask ROMs have been prepared and the followings are generated automatically :

- 1. Drawing data for mask ROM generation.
- 2. Proof lists for checking errors in making mask ROMs.
- 3. Test pograms for large-scale tester.
- A CAD system for this shown in the figure below.


#### **ITEMS TO CONFIRM FOR ORDERING**

- 1. Confirmation document for masking .....1 copy
- 2. Data for ROMs ...... 3 sets in EPROMs

#### MASK OPTIONS

As for option, make entries in the confirmation documents by referring to the data book.

ROMs are made in accordance with the EPROMs and confirmation document submitted, then the EPROMs will be returned but the documents will not be returned.





# MELPS 740 MASK ROM ORDERING METHOD

#### MELPS740 MASK-PROGRAMMABLE ROM CONFIRMATION MATERIAL

SINGLE-CHIP 8-BIT MICROCOMPUTERS M50740-XXXSP

# MITSUBISHI ELECTRIC

			Signature
Customer			
Company name		<u></u>	Prepared
Company address		Tel	
Company contact		Date	Approved
1	1. A 1. A 1. A 1. A 1. A 1. A 1. A 1. A		

The single-chip microcomputer type number to order and the type of EPROMs to be supplied should be specified by

checking  $\checkmark$  in the boxes. Three sets of EPROMs should be supplied.

EPROM type number	□2716	□2732
Address of EPROM	□A (000 ₁₆ ~ 3FF ₁₆ )	□A (00016 ~ 3FF16)

Note 1 : The high-level data of both data outputs and address inputs of the supplied EPROM will be programmed as '1', and low-level as '0'.

- 2 : Cleary indicate the type number of EPROMs and address designation letter symbols A and B on the supplied EPROMs.
- 3 : The data of the addresses in parentheses on the EPROM are programmed onto the ROM.
- 4 : The data from each PROM in the set is compared and if 2 of the 3 are equal, the equal value will be programmed into the ROM. When the 3 values are different programming is halted and the customer is notified of the error. The error report will show the address and data.

# CUSTOMER'S IDENTIFICATION MARK

If you require a special identification mark, please specify in the following format.

<ul> <li>Mitsubishi IC type number</li> </ul>										
r										I
							,			

Note 5 : A mark field should start with the box at the extreme right.

6 The identification mard should be no more than 12 characters consisting of alphanumeric characters (except J.I. and O) or dashes.

#### COMMENTS

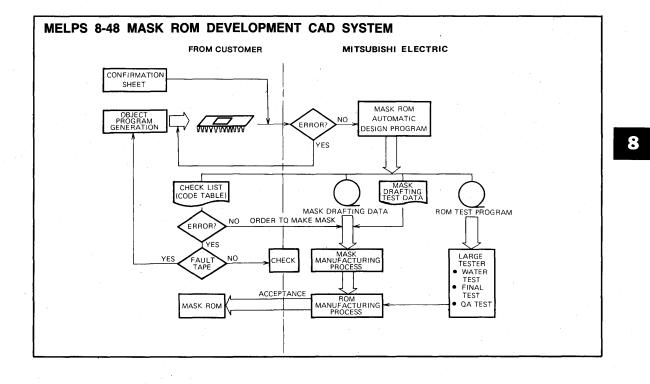




#### MASK ROM ORDERING METHOD

Described below is the ordering method applicable when programs submitted by the customer are written into the mask ROMs.

An automatic mask ROM design program is prepared for writing programs into mask ROMs, and (1) the drafting data for mask ROM generation, (2) the reference list for mask ROM preparation error checks and (3) an automatic test protram for the large-scale tester designed to test the mask ROMs are all automatically generated.


When the object program is stored in the MELPS8-48 single-chip microcomputer mask ROM, the order for the object program medium is received as an EPROM form. Consequently, the EPROM or EPROMs which have stored the object program equivalent to one single-chip micro-computer chip should be submitted accompanied by the prescribed confirmation sheets for 3 sets of EPROMs respectively.

## EPROM SPECIRICATIONS

- Usable EPROMs include Mitsubishi's M5L2716K, M5L2732K or Intel's 2716, 2732, 8748, 8749 or their equivalent. The M5L2716K, M5L2732 and Intel's 8748, 8749 are the standard EPROMs.
- 2. "High" is treated as 1 for the EPROM data and address.
- 3. All the data from the head address to the final address are treated as the EPROM's effective data.

#### **CHECKPOINTS**

1. Cleary indicate the type number of EPROM.





# MELPS 8-48 MASK ROM ORDERING METHOD

#### MELPS8-48 MASK-PROGRAMMABLE ROM CONFIRMATION MATERIAL

SINGLE-CHIP 8-BIT MICROCOMPUTERS M5L8048-XXXP, M5L8049-XXXP, P-8, P-6, M5L8049H-XXXP, M5M8050H-XXXP, M5M8050L-XXXP, M5M80C49-XXXP

# MITSUBISHI ELECTRIC

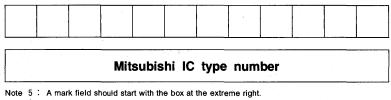
		Signature
Customer		
Company name		Prepared
Company address	 Tel	
Company contact	Date	Approved

The single-chip microcomputer type number to order and the type of EPROMs to be supplied should be specified by

checking  $\checkmark$  in the boxes. Three sets of EPROMs should be supplied.

EPROM type number microcomputer type number	□2716	□2732	
☐M5L8048-XXXP	$\Box A (000_{16} \sim 3FF_{16})$	$\Box A (000_{16} \sim 3FF_{16})$	⊡8748
□M5L8049-XXXP □M5L8049-XXXP-8 □M5L8049-XXXP-6	□A (000 ₁₆ ~ 7FF ₁₆ )	□A (000 ₁₆ ~ 7FF ₁₆ )	□8749
☐M5L8049H-XXXP	□A (000 ₁₆ ~ 7FF ₁₆ )	□A (000 ₁₆ ~ 7FF ₁₆ )	□8749
□м5M8050H-XXXP □м5M8050L-XXXP	$\Box A (000_{16} \sim 7FF_{16}) \Box B (800_{16} \sim FFF_{16})$	□A (000 ₁₆ ~ FFF ₁₆ )	-

Note 1: The high-level data of both data outputs and address inputs of the supplied EPROM will be programmed as '1', and low-level as '0'.


2 Cleary indicate the type number of EPROMs and address designation letter symbols A and B on the supplied EPROMs.

3 : The data of the addresses in parentheses on the EPROM are programmed onto the ROM.

4 : The data from each PROM in the set is compared and if 2 of the 3 are equal, the equal value will be programmed into the ROM. When the 3 values are different programming is halted and the customer is notified of the error. The error report will show the address and data.

### CUSTOMER'S IDENTIFICATION MARK

If you require a special identification mark, please specify in the following format.



6 : The identification mard should be no more than 12 characters consisting of alphanumeric characters (except J.I. and O) or dashes.

#### COMMENTS



# MELPS 8-48 MASK ROM ORDERING METHOD

#### MELPS8-48 MASK-PROGRAMMABLE ROM CONFIRMATION MATERIAL

SINGLE-CHIP 8-BIT MICROCOMPUTERS M5M80C49-XXXP

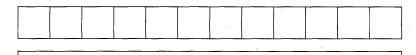
# MITSUBISHI ELECTRIC

		Signature
Customer		
Company name	-	Prepared
Company address	Tel	
Company contact	Date	Approved

The single-chip microcomputer type number to order and the type of EPROMs to be supplied should be specified by checking  $\checkmark$  in the boxes. Three sets of EPROMs should be supplied.

EPROM type number microcomputer type number	□2716	□2732	
□M5M80C49P-XXXP	□A (000 ₁₆ ~ 7FF ₁₆ )	□A (000 ₁₆ ~ FFF ₁₆ )	□8749

Note 1 . The high-level data of both data outputs and address inputs of the supplied EPROM will be programmed as '1', and low-level as '0'.


2 Cleary indicate the type number of EPROMs and address designation letter symbols A and B on the supplied EPROMs.

 $3\,\div\,$  The data of the addresses in parentheses on the EPROM are programmed onto the ROM.

4 : The data from each PROM in the set is compared and if 2 of the 3 are equal, the equal value will be programmed into the ROM. When the 3 values are different programming is halted and the customer is notified of the error. The error report will show the address and data.

#### CUSTOMER'S IDENTIFICATION MARK

If you require a special identification mark, please specify in the following format.



Mitsubishi IC type number

Note 5 A mark field should start with the box at the extreme right.

6 : The identification mard should be no more than 12 characters consisting of alphanumeric characters (except J.I. and O) or dashes.

COMMENTS

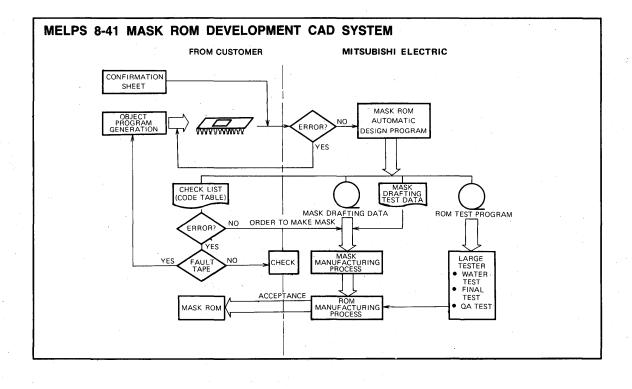


# MELPS 8-41 MASK ROM ORDERING METHOD

### MASK ROM ORDERING METHOD

Described below is the ordering method applicable when programs submitted by the customer are written into the mask ROMs.

An automatic mask ROM design program is prepared for writing programs into mask ROMs, and (1) the drafting data for mask ROM generation, (2) the reference list for mask ROM preparation error checks and (3) an automatic test protram for the large-scale tester designed to test the mask ROMs are all automatically generated.


When the object program is stored in the MELPS8-48 single-chip microcomputer mask ROM, the order for the object program medium is received as an EPROM form. Consequently, the EPROM or EPROMs which have stored the object program equivalent to one single-chip micro-computer chip should be submitted accompanied by the prescribed confirmation sheets for 3 sets of EPROMs respectively.

### EPROM SPECIRICATIONS

- Usable EPROMs include Mitsubishi's M5L2716K, M5L2732K, or Intel's 2716, 2732, 8741, 8741A, 8742 or their equivalent. The M5L2716K and M5L2732K are the standard EPROMs.
- 2. "High" is treated as 1 for the EPROM data and address.
- 3. All the data from the head address to the final address are treated as the EPROM's effective data.

### **CHECKPOINTS**

1. Cleary indicate the type number of EPROM.





### MITSUBISHI MICROCOMPUTERS

# MELPS 8-41 MASK ROM ORDERING METHOD

## MELPS8-41 MASK-PROGRAMMABLE ROM CONFIRMATION MATERIAL

SLAVE COMPUTERS M5L8041A-XXXP, M5L8042-XXXP

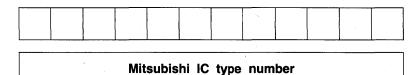
## MITSUBISHI ELECTRIC

		Signature
Customer		
Company name		Prepared
Company address	Tel	
Company contact	Date	Approved

The Slave computer type number to order and the type of  $\sqrt{}$  in the boxes. Three sets of EPROMs should be supplied. EPROMs to be supplied should be specified by checking

 EPROM Type number	□2716	□2732	
□M5L8041A-XXXP	$\Box A (000_{16} \sim 3FF_{16})$	□A (000 ₁₆ ~ 3FF ₁₆ )	□8741 □8741A
M5L8042-XXXP	□A (000 ₁₆ ~ 7FF ₁₆ )	$\Box A (000_{16} \sim 7 FF_{16})$	□8742

Note 1: The high-level data of both data outputs and address inputs of the supplied EPROM will be programmed as '1', and low-level as '0'.


2 : Cleary indicate the type number of EPROMs and address designation letter symbols A and B on the supplied EPROMs.

3 : The data of the addresses in parentheses on the EPROM are programmed onto the ROM.

4 : The data from each PROM in the set is compared and if 2 of the 3 are equal, the equal value will be programmed into the ROM. When the 3 values are different programming is halted and the customer is notified of the error. The error report will show the address and data.

### CUSTOMER'S IDENTIFICATION MARK

If you require a special identification mark, please specify in the following format.



Note 5 : A mark field should start with the box at the extreme right.

6 The identification mard should be no more than 12 characters consisting of alphanumeric characters (except J.I. and O) or dashes.

### COMMENTS



**,** 

# **CONTACT ADDRESSES FOR FURTHER INFORMATION**

#### JAPAN

Electronics Marketing Division Mitsubishi Electric Corporation 2-3, Marunouchi 2-chome Chiyoda-ku, Tokyo 100, Japan Telex: 24532 MELCO J Telephone: (03) 218-3473 (03) 218-3499 Facsimile: (03) 214-5570

### HONG KONG

Ryoden Electric Engineering Co., Ltd. 22nd fl., Leighton Centre 77, Leighton Road Causeway Bay, Hong Kong Telex: 73411 RYODEN HX Telephone: (5) 795-2427 Facsimile: (852) 123-4344

### TAIWAN

MELCO Taiwan Co., Ltd. Room 1303, 13th fl., Huel Fong Bldg. 27, Sec. 3, Chung Shan N. Road Taipei, R.O.C. Telex: 11211 MITSUBISHI Telephone: (597) 3111

#### U.S.A.

Mitsubishi Electronics America, Inc 777 North Pastoria Avenue Sunnyvale CA 94086, U.S.A. Telex: 172296 MELA SUVL Telephone: (408) 730-5900 Facsimile: (408) 730-4972

Mitsubishi Electronics America, Inc 200 Unicorn Park Drive Woburn, MA 01801, U.S.A. Telex: 951796 MELASB WOBN Telephone: (617) 938-1220 Facsimile: (617) 938-1075

Mitsubishi Electronics America, Inc. 3247 West Story Road, Los Colinas Business Park Irving, TX 75062, U.S.A. Telephone: (214) 258-1266 Facsimile: (214) 659-9313

Mitsubishi Electronics America, Inc. 799 North Bierman Circle, Mt. Prospect, ILL 60056, U.S.A. Telex: 270636 MESA CHI-MPCT Telephone: (312) 298-9223~8 Facsimile: (312) 298-9223~8

#### WEST GERMANY

Mitsubishi Electric Europe GmbH Brandenburger Str. 40 4030 Ratingen, West Germany Telex: 8585070 MED D Telephone: (02102) 4860 Facsimile: (02102) 486-115

#### U.K.

Mitsubishi Electric (U.K.) Ltd. 18th Floor, Centre Point, 103 New Oxford st. London WC1A1EB, U.K. Telex: 296195 MELCO G Telephone: (379) 7160 Facsimile: (836) 0699

#### AUSTRALIA

Mitsubishi Electric Australia Pty. Ltd. 73-75, Epping Road, North Ride, N.S.W. 2113 Australia P.O. Box 1567 Macquarie Centre Telex: MESYO AA 26614 Telephone: (888) 5777 Facsimile: (887) 3635



### MITSUBISHI DATA BOOK SINGLE-CHIP MICROCOMPUTERS

March, First Edition 1984

Editioned by

Committee of editing of Mitsubishi Semiconductor Data Book

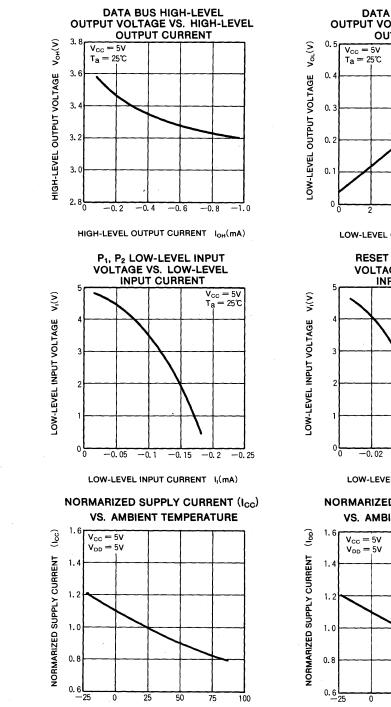
Published by

Mitsubishi Electric Corp., Semiconductor Division

This book, or parts thereof, may not be reproduced in any form without permission of Mitsubishi Electric Corporation.

# 1984 MITSUBISHI DATA BOOK

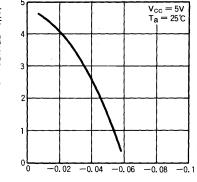
SINGLE-CHIP MICROCOMPUTERS




This book contains the typical characteristics of MITSUBISHI MICROCOMPUTER 8-48 series, which are omitted from the data book.

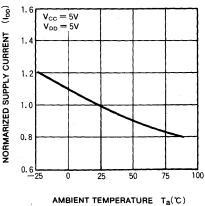
MITSUBISHI ELECTRIC

# MITSUBISHI MICROCOMPUTERS M5L8048-XXXP/M5L8035LP


### SINGLE-CHIP 8-BIT MICROCOMPUTER



### TYPICAL CHARACTERISTICS

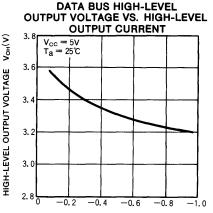

AMBIENT TEMPERATURE Ta(C)

RESET LOW-LEVEL INPUT VOLTAGE VS. LOW-LEVEL INPUT CURRENT

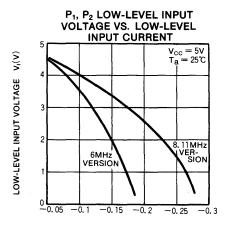


LOW-LEVEL INPUT CURRENT I(mA)

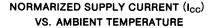
NORMARIZED SUPPLY CURRENT (IDD) VS. AMBIENT TEMPERATURE

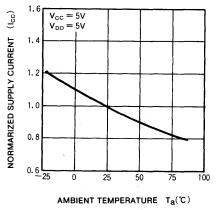


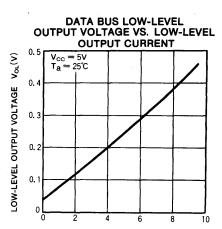




LOW-LEVEL OUTPUT CURRENT IOL(mA)

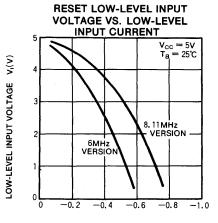



# TYPICAL CHARACTERISTICS



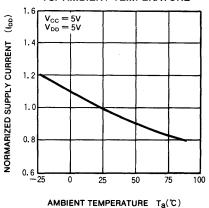


HIGH-LEVEL OUTPUT CURRENT IOH(mA)




LOW-LEVEL INPUT CURRENT I(mA)








LOW-LEVEL OUTPUT CURRENT IoL(mA)

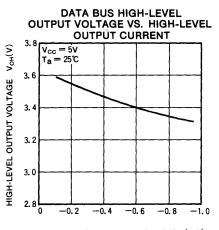


LOW-LEVEL INPUT CURRENT II(mA)

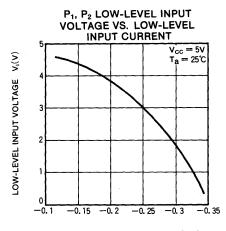
NORMARIZED SUPPLY CURRENT (I_{DD}) VS. AMBIENT TEMPERATURE



# MITSUBISHI MICROCOMPUTERS

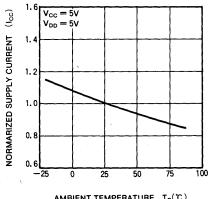

# M5L8049-XXXP,P-8,P-6 M5L8039P-11,P-8,P-6

SINGLE-CHIP 8-BIT MICROCOMPUTER

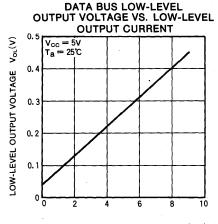

# MITSUBISHI MICROCOMPUTERS M5L8049H-XXXP/M5L8039HLP

### SINGLE-CHIP 8-BIT MICROCOMPUTER

### TYPICAL CHARACTERISTICS




HIGH-LEVEL OUTPUT CURRENT IOH(mA)




LOW-LEVEL INPUT CURRENT I(mA)

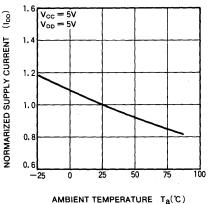
NORMARIZED SUPPLY CURRENT (Icc) VS. AMBIENT TEMPERATURE







LOW-LEVEL OUTPUT CURRENT IOL(mA) **RESET LOW-LEVEL INPUT** 


VOLTAGE VS. LOW-LEVEL INPUT CURRENT  $V_{cc} = 5V$  $T_a = 25^{\circ}C$ 3 2 0 ٥ -0.02 -0.04 -0.06 -0.08 -0.1

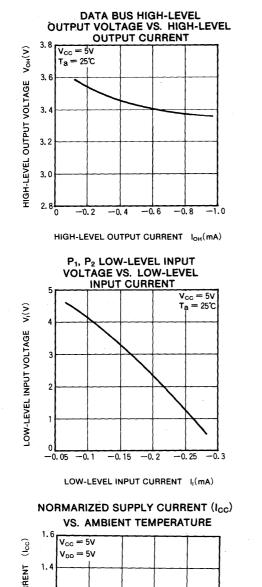
(<u>></u>)'>

**OW-LEVEL INPUT VOLTAGE** 

LOW-LEVEL INPUT CURRENT I(mA)

NORMARIZED SUPPLY CURRENT (IDD) **VS. AMBIENT TEMPERATURE** 




MITSUBISHI **ELECTRIC** 

# MITSUBISHI MICROCOMPUTERS M5M8050H-XXXP/M5M8040HP

DATA BUS LOW-LEVEL

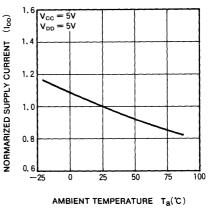
**OUTPUT VOLTAGE VS. LOW-LEVEL** 

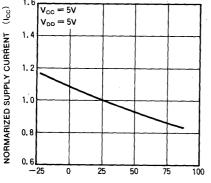
### SINGLE-CHIP 8-BIT MICROCOMPUTER



### **TYPICAL CHARACTERISTICS**

**OUTPUT CURRENT** 0.5  $V_{CC} = 5V$ Vol (V) т_а = 25°С 0.4 LOW-LEVEL OUTPUT VOLTAGE 0.3 0.2 0.1 0 4 6 8 10 2


VOLTAGE VS. LOW-LEVEL INPUT CURRENT  $V_{cc} = 5V$  $T_a = 25C$ 100-0.02 -0.04 -0.06 -0.08 -0.1


<u><</u>'(<

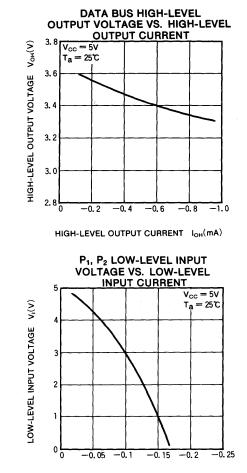
LOW-LEVEL INPUT VOLTAGE

LOW-LEVEL INPUT CURRENT I(mA)

NORMARIZED SUPPLY CURRENT (I_{DD}) VS. AMBIENT TEMPERATURE



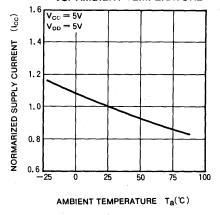


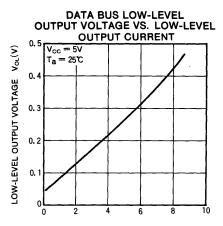

AMBIENT TEMPERATURE Ta(C)



LOW-LEVEL OUTPUT CURRENT IoL(mA)

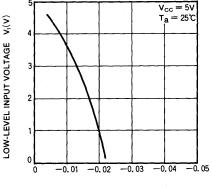
# MITSUBISHI MICROCOMPUTERS M5M8050L-XXXP/M5M8040LP


### SINGLE-CHIP 8-BIT MICROCOMPUTER



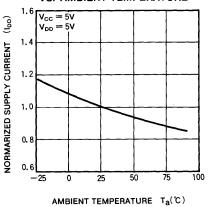

**TYPICAL CHARACTERISTICS** 

LOW-LEVEL INPUT CURRENT II(mA)







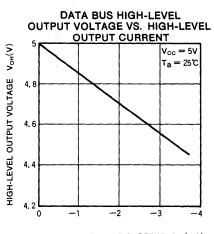


LOW-LEVEL OUTPUT CURRENT IOL(mA)

RESET LOW-LEVEL INPUT VOLTAGE VS. LOW-LEVEL INPUT CURRENT

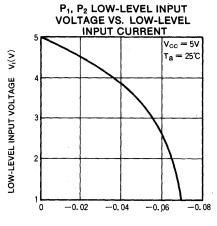


LOW-LEVEL INPUT CURRENT II(mA)

NORMARIZED SUPPLY CURRENT (I_{DD}) VS. AMBIENT TEMPERATURE

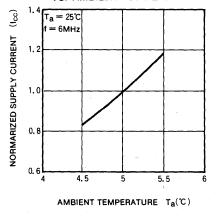


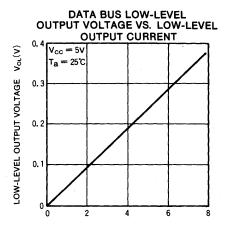




# MITSUBISHI MICROCOMPUTERS M5M80C49-XXXP/M5M80C39P-6

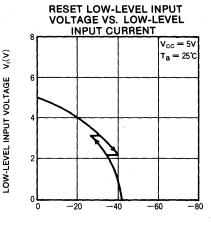
### SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

## TYPICAL CHARACTERISTICS



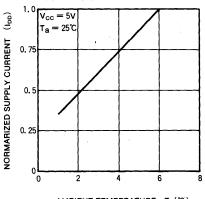


HIGH-LEVEL OUTPUT CURRENT IOH(mA)




LOW-LEVEL INPUT CURRENT I, (mA)








LOW-LEVEL OUTPUT CURRENT IOL(mA)



LOW-LEVEL INPUT CURRENT II(mA)

NORMARIZED SUPPLY CURRENT (I_{DD}) VS. AMBIENT TEMPERATURE



AMBIENT TEMPERATURE Ta(°C)

# MEMO

# CONTACT ADDRESSES FOR FURTHER INFORMATION

#### JAPAN

Electronics Marketing Division Mitsubishi Electric Corporation 2-3, Marunouchi 2-chome Chiyoda-ku, Tokyo 100, Japan Telex: 24532 MELCO J Telephone: (03) 218-3473 (03) 218-3499 Facsimile: (03) 214-5570

#### HONG KONG

Ryoden Electric Engineering Co., Ltd. 22nd fl., Leighton Centre 77, Leighton Road Causeway Bay, Hong Kong Telex: 73411 RYODEN HX Telephone: (5) 795-2427 Facsimile: (852) 123-4344

#### TAIWAN

MELCO Taiwan Co., Ltd. Room 1303, 13th fl., Huei Fong Bldg. 27, Sec. 3, Chung Shan N. Road Taipei, R.O.C. Telex: 11211 MITSUBISHI Telephone: (597) 3111

#### U.S.A.

Mitsubishi Electronics America, Inc. 777 North Pastoria Avenue Sunnyvale CA 94086, U.S.A. Telex: 172296 MELA SUVL Telephone: (408) 730-5900 Facsimile: (408) 730-4972

Mitsubishi Electronics America, Inc. 200 Unicorn Park Drive Woburn, MA 01801, U.S.A. Telex: 951796 MELASB WOBN Telephone: (617) 938-1220 Facsimile: (617) 938-1075

Mitsubishi Electronics America, Inc. 3247 West Story Road, Los Colinas Business Park Irving, TX 75062, U.S.A. Telephone: (214) 258-1266 Facsimile: (214) 659-9313

Mitsubishi Electronics America, Inc. 799 North Bierman Circle, Mt. Prospect, ILL 60056, U.S.A. Telex: 270636 MESA CHI-MPCT Telephone: (312) 298-9223~8 Facsimile: (312) 298-9223~8

#### WEST GERMANY

Mitsubishi Electric Europe GmbH Brandenburger Str. 40 4030 Ratingen, West Germany Telex: 8585070 MED D Telephone: (02102) 4860 Facsimile: (02102) 486-115

U.K.

Mitsubishi Electric (U.K.) Ltd. 18th Floor, Centre Point, 103 New Oxford st., London WC1A1EB, U.K. Telex: 296195 MELCO G Telephone: (379) 7160 Facsimile: (836) 0699

#### AUSTRALIA

Mitsubishi Electric Australia Pty. Ltd. 73-75, Epping Road, North Ride, N.S.W. 2113 Australia P.O. Box 1567 Macquarie Centre Telex: MESYO AA 26614 Telephone: (888) 5777 Facsimile: (887) 3635

