# MITSUBISHI LSI DATA BOOK 

## MICROPROCESSORS

# MITSUBISHI <br> LSI <br> DATA BOOK 

All values shown in this catalogue are subject to change for product improvement.

The information, diagrams and all other data included herein are believed to be correct and reliable. However, no responsibility is assumed by Mitsubishi Electric Corporation for their use, nor for any infringements of patents or other rights belonging to third parties which may result from their use.

This data book is prepared to provide reference information on Mitsubishi microprocessors, IC memories and LSIs for peripheral circuits.

Mitsubishi has recently completed the development of a new concept in digital computer design. MELPS 8 (Mitsubishi Electric LSI Processor Series 8) is the family name of 8 -bit parallel CPU, IC memories and LSIs for their peripheral circuits incorporating these new concepts. The design and manufacture include proprietary technology developed over many years of experience as a leader in the electronics industry.

The MELPS 8 family has been developed with the total system in mind. This has resulted in a form of computer architecture with a built-in high degree of system modularity that will accommodate a large variety of I/O controllers and other commercial applications. A powerful applicationoriented instruction set has been incorporated. Most important, however, this approach of total design provides the user the opportunity to substantially reduce system costs while simultaneously expanding operational capabilities.

The MELPS 8 microprocessor M58710S is an 8-bit parallel central processing unit fabricated on a single chip using an N-channel silicon-gate process. While the latest state-of-the-art technology is used in this CPU, it is still compatible with the Intel 8080A in pin configuration, electrical characteristics, timing and software. A description and the specifications of the M58710S microprocessor are included in this data book. The user will find it easy to substitute this CPU in present systems and future systems being developed.

Mitsubishi's new MELPS 8 family represents more than just a continuing commitment to total coordinated hardware and software design. Because it is a full commitment to provide users with cost-effective hardware and a full range of software, the users can easily take full advantage of the powerful MELPS 8 family.

Software must be evaluated along with the hardware when selecting a microprocessor. Savings a user may anticipate if he selects cheap hardware will soon disappear when the cost of developing an application program is added. A full range of software has been developed to assist users in implementing their applications. This includes such aids as simulators, cross compilers, assemblers, cross assemblers and a full subroutine library. The software support has even been extended to automatic design programs to assist in the development of special mask-ROMs made to customers' specifications.

Mitsubishi Electric is a billion dollar high-technology corporation operating world-wide to supply a broad range of products for industries such as communications, information processing, automatic control and aerospace. We pioneered the development of microelectronic devices. Since
the introduction of our first MOS ICs in 1968, we have been producing a wide variety of products such as MOS LSIs for desk-top calculators, C-MOS LSIs for wrist watches and 16-digit P-channel silicon gate microprocessors for electric cash registers. Mitsubishi has played a significant role in the evolution of microprocessors for almost a decade.

Microelectronic technology has made giant strides since the introduction of the Intel 8080A. The performance of current devices has improved by magnitudes while the cost is a fraction of that of earlier devices. Manufacturing controls have been developed to increase the reliability of newer devices. The MELPS 8 is an industry leader in performance, reliability and cost because of advanced system architecture, manufacturing experience and quality control. A user would be well advised to consider Mitsubishi for their future needs of microelectronic devices.

Koji Suzaki, Mgr.
Semiconductor Marketing Div., Mitsubishi Electric Corp.

## MITSUBISHI LSIs

 CONTENTS1 INDEXES ..... Page
Index By Function ..... 1-2
Index By Type Designation ..... 1-4
Selection Guide ..... 1- 5
Guide to Interchangeabilities ..... 1-6
2 ordering information and package outlines
Ordering Information ..... 2- 2
Package Outlines ..... 2-3
TYPES 16P1, 16K1 ..... 2- 3
TYPES 16S1, 18P1 ..... 2-4
TYPES 22P1, 22S1 ..... 2-5
TYPES 24P1, 24S1 ..... 2-6
TYPES 24S10, 28K1 ..... 2-7
TYPES 40P1, 40B1 ..... 2-8
TYPE 40S1. ..... 2- 9
3 general information
Terminology ..... 3-2
Symbology ..... 3-7
Quality Assurance and Reliability Testing ..... 3-9
Precautions in Handling MOS ICs ..... 3-13
4 MICROPROCESSORS
M58710S 8-Bit Parallel CPU ..... 4-12
5 RANDOM-ACCESS MEMORIES
M58531P 256-Bit (256-Word by 1-Bit) Static Random-Access Memory ..... 5- 3
M58533P 1024-Bit (1024-Word by 1-Bit) Dynamic Random-Access Memory ..... 5-7
M58751P, M58751S 1024-Bit (1024-Word by 1-Bit) Static Random-Access Memory ..... 5-13
M-58755S-1, M58755S-2, M58755S-3 4096-Bit (4096-Word by 1-Bit) Dynamic Random-Access Memory ..... 5-17
M58721P, M58721S 1024-Bit (256-Word by 4-Bit) Static Random-Access Memory ..... 5-27
M58722P, M58722S 1024-Bit (256-Word by 4-Bit) Static Random-Access Memory ..... 5-31
M58723P, M58723S 1024-Bit (256-Word by 4-Bit) Static Random-Access Memory ..... 5-35
M58756K, M58756S 4096-Bit (4096-Word by 1-Bit) Dynamic Random-Access Memory ..... 5-41
6 READ-ONLY MEMORIES Page
Development of Custom Mask ROMs ..... 6-2
M58730-XXXS 8192-Bit (1024-Word by 8-Bit) Mask-Programmable ROM ..... 6-3
M58730-001S 8192-Bit (1024-Word by 8-Bit) Mask-Programmed ROM Subroutine 1: Integer Arithmetic Operations ..... 6- 8
M58731-XXXP, M58731-XXXS 16384-Bit (2048-Word by 8-Bit) Mask-Programmable ROM ..... 6-9
M58731-001S 16384-Bit (2048-Word by 8-Bit) Mask-Programmed ROM, MELPS 8 Basic Operating Monitor BOM-B ..... 6-14
M58563S, M58563S-1 2048-Bit (256-Word by 8-Bit or 512-Word by 4-Bit) Erasable and Electrically Reprogrammable ROM ..... 6-15
M58651S 4096-Bit (1024-Word by 4-Bit) Electrically Alterable ROM ..... 6-20
M54700K, M54700P, M54700S 1024-Bit (256-Word by 4-Bit) Field Programmable ROM ..... 6-26
M54730K, M54730P, M54730S 256-Bit (32-Word by 8 -Bit) Field Programmable ROM with Open Collector Outputs ..... 6-31
7 shift registers
M58502P 1024-Bit (256-Word by 4-Bit) Dynamic Shift Register ..... 7-3
M58503P 1024-Bit (512-Word by 2-Bit) Dynamic Shift Register ..... 7-3
M58504P 1024-Bit (1024-Word by 1-Bit) Dynamic Shift Register ..... 7-3
8 LSIs FOR PERIPHERAL CIRCUITS
M58609-XXS Keyboard Encoder ..... 8-3
M58609-04S Keyboard Encoder (JIS Code Standard Product) ..... 8-7
M58620- XXXS Keyboard Encoder ..... 8-9
M58620-001S Keyboard Encoder (JIS Code Standard Product) ..... 8-14
M58740P, M58740S Programmable Peripheral Interface ..... 8-17
M54550P Clock Generator and Driver for CPU M58710S ..... 8-21
M54551K System Controller and Bus Driver for CPU M58710S ..... 8-25
M54552P 8-Bit Input/Output Port with Three-State Outputs ..... 8-29
9 MELPS 8 SOFTWARE
Software Codes ..... 9-2
Available Materials ..... 9-3
General Description ..... 9-4
Development of Application Programs ..... -9-5
MELPS 8 PL/I $\mu$ Cross Compiler ..... 9-7
MELPS 8 Cross Assembler ..... 9-11
MELPS 8 Simulator ..... 9-17
10 applications
MELPS 8 Program Library ..... 10- 2
MELPS 8 Subroutine 1: Integer Arithmetic Operations Mask ROM M58730-001S ..... 10-6
CONTACT ADDRESSES FOR FURTHER INFORMATION
"
-
-

## MITSUBISHI LSIs INDEX BY FUNCTION

| Type | Alternative <br> designation | Circuit function and organization | Application notes | Ambient <br> Structure <br> operating <br> temp. <br> $\mathrm{Ta}\left({ }^{\circ} \mathrm{C}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |

## Microprocessors

| M58710S |  | 8080A | 8-Bit Parallel CPU | 78 instructions | N, Si | 0~70 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Static RAMs |  |  |  |  |  |  |
| M 58531P |  |  | 256-Bit (256 $\times 1$ ) Static RAM |  | P, Si | $-10 \sim 75$ |
| M58721P <br> M58721S | $\star \star$ | 2101A-4 | 1024-Bit ( $256 \times 4$ ) Static RAM |  | N, Si, ED | 0~70 |
| M58722P <br> M58722S | $\star \star$ | 2111A-4 | 1024-Bit (256 $\times$ 4) Static RAM |  | N, Si, ED | 0~70 |
| M58723P <br> M58723S | $\star \star$ | 2112A-4 | 1024-Bit (256 $\times 4$ ) Static RAM |  | N, Si, ED | $0 \sim 70$ |
| M58751P M58751S | $\star$ | 2102A-4 | 1024-Bit (1024 $\times 1$ ) Static RAM |  | N, Si, ED | $0 \sim 70$ |

Dynamic RAMs

| M58533P |  |  | 1024-Bit (256 $\times 1$ ) Dynamic RAM | P, Si | 0~70 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| M58755S-1 | $\star$ | 2107B | 4096-Bit (4096 $\times 1$ ) Dynamic RAM | N, Si | $0 \sim 70$ |
| M58755S-2 | $\star$ | 21078 | 4096-Bit (4096 $\times$ 1) Dynamic RAM | N, Si | $0 \sim 70$ |
| M58755S-3 | $\star$ | 2107B | 4096-Bit (4096 $\times 1$ ) Dynamic RAM | N, Si | $0 \sim 70$ |
| M58756K M58756S | $\begin{aligned} & \star \star \\ & \star \end{aligned}$ | 2104 | 4096-Bit (4096 $\times 1$ ) Dynamic RAM | $\mathrm{Ni}, \mathrm{Si}$ | $0 \sim 70$ |

## Mask ROMs

| M58730-XXXS |  | 8192-Bit (1024 $\times 8$ ) Mask-Programmable ROM | Custom product | N, SI | $0 \sim 70$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| M 58730-001S |  | 8192-Bit ( $1024 \times 8$ ) Mask-Programmed ROM | Subroutine 1: integer arithmetic operations | N, Si | $0 \sim 70$ |
| M58731-XXXP * * <br> M 58731-XXXS | 8316 | 16384-Bit (2048 $\times 8$ ) Mask-Programmable ROM | Custom product | N, Si, ED | $0 \sim 70$ |
| M58731-001S * |  | 1638-Bit (2048 $\times 8$ ) Mask-Programmed ROM | MELPS 8 basic operating monitor BOM-B | N, SI, ED | $0 \sim 70$ |

Field Programmable ROMs

| M58563S | $\star$ | 1702A | 2048-Bit ( $256 \times 8$ or $512 \times 4$ ) <br> Erasable and Electrically Reprogrammable ROM | $512 \times 4$-bit organization is also possible. Electrical programming. ultraviolet erasing | P, Si, FA | $0 \sim 70$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| M58563S-1 | $\star$ | 1702A | $2048 \text {-Bit ( } 256 \times 8 \text { or } 512 \times 4 \text { ) }$ <br> Erasable and Electrically Reprogrammable ROM | $512 \times 4$-bit organization is also possible. Electrical programming. ultraviolet erasing | P, Si, FA | 0~70 |
| M58651S | $\star \star$ | 2401 | 4096 -Bit ( $1024 \times 4$ ) Electrically Alterable ROM | Electrical programming and erasing | P, Al | 0~70 |
| M54700K <br> M54700P <br> M54700S |  | 6300 | 1024-Bit (256 $\times$ 4) Field Programmable ROM | $\mathrm{Ni}-\mathrm{Cr}$ fuse programming | B | 0~75 |
| M54730K <br> M54730P <br> M54730S |  | 6330 | 256 -Bit ( $32 \times 8$ ) Field Programmable ROM with Open Collector Outputs | Ni-Cr fuse programming | B | $0 \sim 75$ |

## Shift Registers

| M58502P |  | 1024 -Bit $(256 \times 4)$ Dynamic Shift Register |  | $\mathrm{P}, \mathrm{Si}$ |
| :--- | :--- | :--- | :--- | :--- |
| M58503P | 1024 -Bit $(512 \times 2)$ Dynamic Shift Register |  | $-10 \sim 75$ |  |
| M58504P |  | 1024 -Bit $(1024 \times 1)$ Dynamic Shift Register |  | -Si |

## LSIs for Peripheral Circuits

| M58609-XXS |  | Keyboard Encoder | for reed switch. 88 keys. 4 mode shifts 9-bit output | P, AI | $-20 \sim 75$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| M58609-04S |  | Keyboard Encoder (JIS code standard product) |  | P, AI | $-20 \sim 75$ |
| M 58620-XXXS |  | Keyboard Encoder | for solid-state switch. 91 keys, 4 mode shifts, 10 -bit output | P, Al | -20~75 |
| M58620-001S |  | Keyboard Encoder (JIS code standard product) |  | P, Al | $-20 \sim 75$ |
| M58740P $\star \star$ <br> M58740S $\star$ | 8255 | Programmable Peripheral Interface | I/O port for CPU M58710S. 24 I/O pins | N, Si, ED | 0~75 |
| M54550P $\quad$ * | 82.44 | Clock Generator and Driver for CPU M58710S | CPU M58710S | B | $0 \sim 75$ |
| M54551K ${ }^{\text {K }}$ | 8228 | System Controller and Bus Driver for CPU M58710S | Bidirectional bus driver for data bus isolation | B, S | 0-75 |
| M54552P | 8212 | 8 -Bit Input/Output Port with Three-State Outputs |  | B, S | 0-75 |

[^0]| Supply voltage |  |  |  |  | Electrical characteristics |  |  |  |  | Package outine | Interchangeable products |  | Page |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Vod | Vco | $\begin{aligned} & \mathrm{V}_{\mathrm{ss}} \\ & \text { GND } \end{aligned}$ | Vвв | Clock voltage $v_{\phi}$ | Typ pwr <br> dissipation <br> $(m w)$ (mW) | Max access time (ns) | Max cycle time (ns) | Max frequency (MHz) | TTL compatibility |  | Mfr. | Type |  |


| 122 $\pm 5 \%$ | 5V $\pm 5 \%$ | ov | \|-5v 5 \%/ | Voot.ov | 780 |  | - | 2 | YES | 2051 | ITTEL | $\underline{0880}$ | -2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | $-9 \mathrm{~V}+5 \%$ | 5V $\pm 5 \%$ |  |  | 330 | . 500 | . 500 |  | Yes | ${ }_{169}$ | NTEL | Prom |  |
| - | 5V $\pm$ 5 | ov | - |  | ${ }^{150}$ | ${ }^{450}$ | ${ }^{450}$ |  | yes |  | NTEL | ${ }^{\text {A.4 }}$ |  |
| - | 5V+5\% | ov | - |  | ${ }^{150}$ | ${ }^{450}$ | ${ }^{450}$ |  | Yes |  |  | ${ }^{\text {P2III }}$ A-4 |  |
|  |  |  |  |  |  |  |  |  |  | 1851 |  |  |  |
|  | $5 \cup \pm 5 \%$ | ov |  |  | ${ }^{150}$ | as0 | ${ }_{450}$ |  | ves | $\begin{aligned} & 1681 \\ & 1659 \end{aligned}$ | wite |  | 5-35 |
|  | 5v 5 5\% | ov |  |  | ${ }^{100}$ | ${ }^{450}$ | ${ }^{450}$ |  | yes | $\begin{aligned} & 1681 \\ & 1651 \end{aligned}$ | NTEL |  |  |


|  | 0 V | $16 \mathrm{~V} \pm 5 \%$ | $\begin{array}{r} \mathrm{Vss}+3.5 \mathrm{~V} \\ \pm 0.5 \mathrm{~V} \end{array}$ | $16 \mathrm{~V} \pm 5 \%$ | 270 | 300 | 580 | - | NO | 18P 1 | INTEL | P1103 | 5-7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $12 \mathrm{~V} \pm 10 \%$ | $5 \mathrm{~V} \pm 10 \%$ | 0 V | $-5 \mathrm{~V} \pm 10 \%$ | $V_{D D} \pm 1 \mathrm{~V}$ | 300 | 200 | 400 | - | YES | 22 S 1 | INTEL TI | $\mathrm{C} 2107 \mathrm{~B}$ <br> TMS4060-2 | 5-17 |
| $12 \mathrm{~V} \pm 10 \%$ | $5 \mathrm{~V} \pm 10 \%$ | 0 V | $-5 \vee \pm 10 \%$ | $V_{D D} \pm 1 \mathrm{~V}$ | 240 | 270 | 470 | -- | YES | 22S 1 | INTEL <br> TI | C2107B-4 <br> TMS4060 | 5-17 |
| $12 \mathrm{~V} \pm 10 \%$ | $5 \mathrm{~V} \pm 10 \%$ | 0 V | $-5 \mathrm{~V} \pm 10 \%$ | $V_{D D} \pm 1 \mathrm{~V}$ | 350 | 150 | 320 | - | YES | 2251 | INTEL TI | $\mathrm{C} 2107 \mathrm{~B}$ <br> TMS4060 2 | 5-17 |
| $12 \mathrm{~V} \pm 10 \%$ | $5 \mathrm{~V} \pm 10 \%$ | 0 V | $-5 \vee \pm 10 \%$ | 2.4 V | 450 | 300 | 425 | - | YES | $\begin{aligned} & 16 \mathrm{~K} 1 \\ & 16 \mathrm{~S} 1 \end{aligned}$ | INTEL MOSTEK | $\begin{array}{r} \mathrm{C} 2104 \\ 4096 \end{array}$ | 5-41 |


| $12 \mathrm{~V} \pm 5 \%$ | $5 \vee \pm 5 \%$ | $0 \vee$ | $-5 \vee \pm 5 \%$ | - | 250 | 850 | - | - | YES | 24S 1 | INTEL | C8308 | 6-3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $12 \mathrm{~V} \pm 5 \%$ | $5 \mathrm{~V} \pm 5 \%$ | $0 \vee$ | $-5 V \pm 5 \%$ | - | 250 | 850 | - | -- | YES | 24S 1 | - | - | 6-8 |
| - | $5 \vee \pm 5 \%$ | 0 V | - | - | 200 | 850 | - | - | YES | $\begin{aligned} & 24 \mathrm{P} 1 \\ & 24 \mathrm{~S} 1 \end{aligned}$ | INTEL | $\begin{aligned} & \text { P8316A } \\ & \text { C8316A } \end{aligned}$ | 6-9 |
| - | $5 \vee \pm 5 \%$ | 0 V | - | - | 200 | 850 | - | - | YES | 2451 | - | - | 6-14 |


| $-9 \vee \pm 5 \%$ | $-9 \vee \pm 5 \%$ | $5 \mathrm{~V} \pm 5 \%$ | Vss | -- | 300 | 1,000 | 1,000 | - | YES | 24S10 | INTEL | C1702A | 6-15 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $-9 \vee \pm 5 \%$ | $-9 \vee \pm 5 \%$ | $5 \mathrm{~V} \pm 5 \%$ | Vss | - | 300 | 1,500 | 1,500 | - | YES | 24S10 | INTEL | C1702A-6 | 6-15 |
| - | $-14 \mathrm{~V} \pm 1 \mathrm{~V}$ | $5 \mathrm{~V} \pm 5 \%$ | - | $-14 V_{-6}^{+1} \mathrm{~V}$ | 80 | 2,000 | 2,000 | - | YES | 24S 1 | NCR | 2401 | 6-20 |
| - | $5 \mathrm{~V} \pm 5 \%$ | 0 V | - | - | 450 | 60 | 60 | - | YES | $\begin{aligned} & 16 \mathrm{~K} 1 \\ & 16 \mathrm{P} 1 \\ & 16 \mathrm{~S} 1 \end{aligned}$ | MMI | 6300J <br> 6300N <br> 6300 | 6-26 |
| - | $5 \mathrm{~V} \pm 5 \%$ | 0 V | - | - | 450 | 50 | 50 | - | YES | $\begin{aligned} & 16 \mathrm{~K} 1 \\ & 16 \mathrm{P} \\ & 16 \mathrm{~S} 4 \end{aligned}$ | MMI | $\begin{aligned} & 6330 \mathrm{~J} \\ & 6330 \mathrm{~N} \\ & 6330 \end{aligned}$ | 6-31 |


| - | $-5 \vee \pm 5 \%$ | $5 \mathrm{~V} \pm 5 \%$ | - | $-11 \mathrm{~V} \pm 1 \mathrm{~V}$ | 15 | - | - | 31 | YES | 16P 1 | INTEL | P1402A | 7-3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | $-5 V \pm 5 \%$ | $5 \mathrm{~V} \pm 5 \%$ | - | $-11 \mathrm{~V} \pm 1 \mathrm{~V}$ | 15 | - | - | $3 \uparrow$ | YES | 16P 1 | - | - | 7-3 |
| - | $-5 \vee \pm 5 \%$ | $5 \vee \pm 5 \%$ | - | $-11 \mathrm{~V} \pm 1 \mathrm{~V}$ | 15 | - | - | $3 \dagger$ | YES | 16P 1 | - | - | 7-3 |


| $-12 \mathrm{~V} \pm 1 \mathrm{~V}$ | 0 V | $5 \mathrm{~V} \pm 10 \%$ | - | - | 70 | - | - | 0.1 | YES | 40B 1 | GI | AY-5-2376 | 8-3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $-12 \mathrm{~V} \pm 1 \mathrm{~V}$ | 0 V | $5 \mathrm{~V} \pm 10 \%$ | - | - | 70 | - | - | 0.1 | YES | 40 B 1 | - | - | 8-7 |
| $-12 \mathrm{~V} \pm 10 \%$ | 0 V | $5 \mathrm{~V} \pm 10 \%$ | - | - | 350 | - | -- | - | YES | 40B 1 | - | - | 8-9 |
| $-12 \mathrm{~V} \pm 10 \%$ | 0 V | $5 \mathrm{~V} \pm 10 \%$ | - | - | 350 | - | - | - | YES | 40B 1 | - | - | 8-14 |
| - | $5 \mathrm{~V} \pm 5 \%$ | 0 V | - | - | 200 | - | - | - | YES | $\begin{aligned} & 40 \mathrm{P} 1 \\ & 40 \mathrm{~S} 1 \end{aligned}$ | INTEL. | $\begin{aligned} & \text { P8255 } \\ & \text { C8255 } \end{aligned}$ | 8-17 |
| - | $5 \mathrm{~V} \pm 5 \%$ | 0 V | - | - | 450 | - | - | - | YES | 16P 1 | INTEL | P8224 | 8-21 |
| - | $5 \mathrm{~V} \pm 5 \%$ | 0 V | - | - | 550 | - | - | - | YES | 28K 1 | INTEL | D8228 | 8-25 |
| - | $5 \mathrm{~V} \pm 5 \%$ | 0 V | - | - | 450 | $25^{*}$ | - | - | YES | 24P 1 | INTEL | P8212 | 8-29 |

* : Propagation delay time $t$ : Data frequency

| Type | Structure | Function | Circuit function | Page |
| :---: | :---: | :---: | :---: | :---: |
| M54550P | B, S | 1/0 | Clock Generator and Driver for CPU M58710S | 8-21 |
| M54551K | B, S | 1/0 | System Controller and Bus Driver for CPU M58710S | 8-25 |
| M54552P | B, S | 1/0 | 8-Bit Input/Output Port with Three-State Output | 8-29 |
| M54700P | B | PROM | 1024-Bit (256 $\times 4$ ) Field Programmable ROM | 6-26 |
| M54700K |  |  |  |  |
| M54700S |  |  |  |  |
| M54730P | B | PROM | 256-Bit ( $32 \times 8$ ) Field Programmable ROM with Open Collector Outputs | 6-31 |
| M54730K |  |  |  |  |
| M54730S |  |  |  |  |
| M58502P | P, Si | S/R | 1024-Bit (256 $\times 4$ ) Dynamic Shift Register | 7-3 |
| M58503P | P, Si | S/R | 1024-Bit ( $512 \times 2$ ) Dynamic Shift Register | 7-3 |
| M58504P | P, Si | S/R | 1024-Bit (1024 $\times 1$ ) Dynamic Shift Register | 7-3 |
| M58531P | P, Si | RAM | 256 -Bit (256 $\times 1$ ) Static RAM | 5-3 |
| M58533P | P, Si | RAM | 1024-Bit ( $256 \times 1$ ) Dynamic RAM | 5-7 |
| M58563S | P, Si, FA | PROM | 2048-Bit ( $256 \times 8$ or $512 \times 4$ ) Erasable and Electrically Reprogrammable ROM | 6-15 |
| M58563S-1 | P, Si, FA | PROM | 2048-Bit ( $256 \times 8$ or $512 \times 4$ ) Erasable and Electrically Reprogrammable ROM | 6-15 |
| M58651S | P, AI | PROM | 4096-Bit (1024×4) Electrically Alterable ROM | 6-20 |
| M58609-04S | P, AI | 1/0 | Keyboard Encoder (JIS Code Standard Product) | 8-7 |
| M58609-XXS | P, AI | 1/0 | Keyboard Encoder | 8-3 |
| M58620-001S | P, AI | 1/0 | Keyboard Encoder (JIS Code Standard Product) | 8-14 |
| M58620-XXXS | P, AI | 1/0 | Keyboard Encoder | 8-9 |
| M58710S | N, Si | CPU | 8-Bit Parallel CPU | 4-2 |
| M58721P | N, Si, ED | RAM | 1024-Bit (256 $\times 4$ ) Static RAM | 5-27 |
| M58721S |  |  |  |  |
| M58722P | N, Si, ED | RAM | 1024-Bit (256 $\times 4$ ) Static RAM | 5-31 |
| M58722S |  |  |  |  |
| M58723P | N, Si, ED | RAM | 1024-Bit (256 $\times 4$ ) Static RAM | 5-35 |
| M58723S |  |  |  |  |
| M58730-001S | N, Si | ROM | 8192-Bit ( $1024 \times 8$ ) Mask-Programmed ROM | 6-8 |
| M58730-XXXS | $\mathrm{N}, \mathrm{Si}$ | ROM | 8192-Bit ( $1024 \times 8$ ) Mask-Programmable ROM | 6-3 |
| M58731-001S | N, Si, ED | ROM | 16384-Bit (2048×8) Mask-Programmed ROM | 6-14 |
| M58731-XXXP | N, Si, ED | ROM | 16384-Bit (2048 $\times$ 8) Mask-Programmable ROM | 6-9 |
| M58731-XXXS |  |  |  |  |
| M58740P | N, Si, ED | 1/0 | Programmable Peripheral Interface | 8-17 |
| M58740S |  |  |  |  |
| M58751P | N, Si, ED | RAM | 1024-Bit (1024 $\times 1$ ) Static RAM | 5-13 |
| M58751S |  |  |  |  |
| M58755S-1 | N, Si | RAM | 4096-Bit (4096 $\times 1$ ) Dynamic RAM | 5-17 |
| M58755S-2 | N, Si | RAM | 4096-Bit (4096 $\times$ 1) Dynamic RAM | 5-17 |
| M58755S-3 | $\mathrm{N}, \mathrm{Si}$ | RAM | 4096-Bit (4096 $\times 1$ ) Dynamic RAM | 5-17 |
| M58756K | $\mathrm{N}, \mathrm{Si}$ | RAM | 4096-Bit (4096 $\times$ 1) Dynamic RAM | 5-41 |
| M58756S |  |  |  |  |


| Words | Bits/word |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 4 | 8 |
| 32 |  |  |  | PROMs <br> M54730P/M54730S/ <br> M54730K |
| 256 | RAMs <br> M58531P |  | RAMS M58721P/M58721S M58722P/M58722S M58723P/M58723S PROMs M54700P/M54700S/ M54700K S/RS M58502P | PROMs <br> M58563S <br> M58563S-1 |
| 512 |  | $\begin{gathered} \text { S/Rs } \\ \text { M58503P } \end{gathered}$ | $\begin{aligned} & \text { PROMS } \\ & \text { M58563S } \\ & \text { M58563S-1 } \end{aligned}$ |  |
| 1024 | RAMs M58751 P/M58751 S M58533P S/Rs M58504P |  | EAROMS <br> M58651S | $\begin{aligned} & \quad \text { ROMS } \\ & \text { M58730-XXXS } \\ & \text { M58730-001S } \end{aligned}$ |
| 2048 |  |  |  | ROMs <br> M58731-XXXP / <br> M58731-XXXS <br> M58731-001S |
| 4096 | RAMs <br> M58755S-1 <br> M58755S-2 <br> M58755S-3 <br> M58756K <br> M58756S |  |  |  |

## MITSUBISHI LSIs GUIDE TO INTERCHANGEABILITIES

| Function | Mitsubishi Electric | Circuit organization | Advanced <br> Micro <br> Devices | American Microsystems | Electronic Arrays |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CPU | M58710 S | 8-bit parallel | AM9080A |  |  |
| Static <br> RAMs | M58531P | $256 \times 1$ bit |  |  |  |
|  | M58721P | $256 \times 4$ bit |  |  |  |
|  | M58721 S | $256 \times 4$ bit |  |  |  |
|  | M58722P | $256 \times 4$ bit |  |  |  |
|  | M58722S | $256 \times 4$ bit |  |  |  |
|  | M58723P | $256 \times 4$ bit |  |  |  |
|  | M58723S | $256 \times 4$ bit |  |  |  |
|  | M58751P | $1024 \times 1$ bit |  |  |  |
|  | M58751S | $1024 \times 1$ bit |  | S3102 |  |
| Dynamic <br> RAMs | M58533P | $1024 \times 1$ bit |  | S2103 |  |
|  | M58755S-1 | $4096 \times 1$ bit |  | S4021-1 |  |
|  | M58755S-2 | $4096 \times 1$ bit |  |  |  |
|  | M58755S-3 | $4096 \times 1$ bit |  | S4021-4 | $\mu$ PD411D-3 |
|  | M58756K | $4096 \times 1$ bit |  |  |  |
|  | M58756S | $4096 \times 1$ bit |  | S4096-3 |  |
| Mask ROMs | M58730-XXXS | $1024 \times 8$ bit |  |  |  |
|  | M58730-001S | $1024 \times 8$ bit |  |  |  |
|  | M58731-XXXP | $2048 \times 8$ bit |  |  |  |
|  | M58731-XXXS | $2048 \times 8$ bit |  |  |  |
|  | M58731-001S | $2048 \times 8$ bit |  |  |  |
| Field Programmable ROMs | M58563S | $256 \times 8$ or $512 \times 4$ bit FAMOS |  |  |  |
|  | M58563S-1 | $256 \times 8$ or $512 \times 4$ bit FAMOS |  |  |  |
|  | M58651S | $1024 \times 4$ bit EAROM |  |  |  |
| Fusible PROMs | M54700K | $256 \times 4$ bit |  |  |  |
|  | M54700P | $256 \times 4$ bit |  |  |  |
|  | M54700S | $256 \times 4$ bit |  |  |  |
|  | M54740K | $32 \times 8$ bit |  |  |  |
|  | M54730P | $32 \times 8$ bit |  |  |  |
|  | M54730S | $32 \times 8$ bit |  |  |  |
| Dynamic Shift Registers | M58502P | $256 \times 4$ bit | AM1402A |  |  |
|  | M58503P | $512 \times 2$ bit | AM1403A |  |  |
|  | M58504P | $1024 \times 1$ bit | AM1404A |  |  |
| 1/0 divices | M58609-XXS | Keyboard encoder |  |  |  |
|  | M58609-04S | Keyboard encoder |  |  |  |
|  | M58620-XXXS | Keyboard encoder |  |  |  |
|  | M58620-001S | Keyboard encoder |  |  |  |
|  | M54550P | Clock generator/driver |  |  |  |
|  | M54551K | System controller/bus driver |  |  |  |
|  | M54552P | 8-bit 1/O port | AM8212 |  |  |
|  | M58740P | Programmable periph. interface |  |  |  |
|  | M58740S | Programmable periph. interface |  |  |  |


| Fairchild Semiconductor | Fujitsu | Hitachi | Intel | Intersil | Monolithic <br> Memories | Mostek |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | C8080 |  |  |  |
|  |  |  | C1101A | \|M7501 |  | MK4007P |
|  |  | HM45102 | P2101A-4 |  |  |  |
|  | MB8 101 |  | C2101A-4 |  |  |  |
|  |  |  | P2111A-4 |  |  |  |
|  | MB8111 |  | C2111A-4 |  |  |  |
|  |  |  | P21112A-4 |  |  |  |
|  | MB8112 |  | C2112A-4 |  |  |  |
|  |  |  | P2102A-4 | IM7552-1CPE |  | MK4102P-1 |
|  |  |  | C2102A-4 | IM7552-1CDE |  |  |
| 3524-5 | MB8103 | HM3503 | C1103 |  |  | MK 4006-6P |
|  | MB8107 |  | C2107B |  |  |  |
|  |  |  | C2107B-4 |  |  |  |
|  | MB8108 |  | C2107B |  |  |  |
|  |  |  | D2104 |  |  |  |
| F4096DC | MB8214 |  | C2104 |  |  | MK4096 |
|  |  |  | C8308 |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  | P8316A |  |  |  |
|  |  |  | C8316A |  |  |  |
|  |  |  |  |  |  |  |
|  | MB8513 |  | C1702A |  |  |  |
|  |  |  | C1702A-6 |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  | 6300 N |  |
|  |  |  |  |  | 6300 |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  | 6330 N |  |
|  |  |  |  |  | 6330 |  |
|  |  |  | C1402 | IM7702 |  |  |
|  |  |  |  | IM7703 |  |  |
|  |  |  |  | IM7704 |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  | P8224 |  |  |  |
|  |  |  | D8228 |  |  |  |
|  | MB471 |  | P8212 |  |  |  |
|  |  |  | P8255 |  |  |  |
|  |  |  | C8255 |  |  |  |

As of April, 1976.

MITSUBISHI LSIs GUIDE TO INTERCHANGEABILITIES

| Function | Mitsubishi Electric | Circuit organization | $\begin{aligned} & \text { Motorola } \\ & \text { Semiconductor } \\ & \text { Products } \end{aligned}$ | National Semiconductor | Nippon <br> Electric |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CPU | M58710 S | 8-bit parallel |  | INS8080A | $\mu$ PD8080A |
| Static <br> RAMs | M58531P | $256 \times 1$ bit |  | MM1101AN | $\mu$ PD 402D |
|  | M58721P | $256 \times 4$ bit |  |  |  |
|  | M58721S | $256 \times 4$ bit |  |  | $\mu$ PD2101 |
|  | M58722P | $256 \times 4$ bit |  |  |  |
|  | M58722S | $256 \times 4$ bit |  |  | $\mu$ PD2111 |
|  | M58723P | $256 \times 4$ bit |  |  |  |
|  | M58723S | $256 \times 4$ bit |  |  |  |
|  | M58751P | $1024 \times 1$ bit |  |  |  |
|  | M58751 S | $1024 \times 1$ bit |  |  |  |
| Dynamic RAMs | M58533P | $1024 \times 1$ bit |  | MM1103D | $\mu$ PD 404D |
|  | M58755S-1 | $4096 \times 1$ bit |  |  | $\mu \mathrm{PD} 411 \mathrm{D}$ |
|  | M58755S-2 | $4096 \times 1$ bit | 6606L |  |  |
|  | M58755S-3 | $4096 \times 1$ bit |  |  | $\mu$ PD411D-3 |
|  | M58756K | $4096 \times 1$ bit |  |  |  |
|  | M58756S | $4096 \times 1$ bit | 6604 |  | $\mu$ PD414D |
| Mask <br> ROMs | M58730-XXXS | $1024 \times 8$ bit |  |  |  |
|  | M58730-001S | $1024 \times 8$ bit |  |  |  |
|  | M58731-XXXP | $2048 \times 8$ bit |  |  |  |
|  | M58731-XXXS | $2048 \times 8$ bit |  |  |  |
|  | M58731-001S | $2048 \times 8$ bit |  |  |  |
|  <br> Field <br> Program- mable ROMs | M58563S | $256 \times 8$ or $512 \times 4$ bit FAMOS |  | MM1702A |  |
|  | M58563S-1 | $256 \times 8$ or $512 \times 4$ bit FAMOS |  |  |  |
|  | M58651S | $1024 \times 4$ bit EAROM |  |  |  |
| Fusible PROMs | M54700K | $256 \times 4$ bit |  |  |  |
|  | M54700P | $256 \times 4$ bit |  |  |  |
|  | M54700S | $256 \times 4$ bit |  |  |  |
|  | M54740K | $32 \times 8$ bit |  |  |  |
|  | M54730P | $32 \times 8$ bit |  |  |  |
|  | M54730S | $32 \times 8$ bit |  |  |  |
| Dynamic <br> Shift <br> Registers | M58502P | $256 \times 4$ bit |  | MM1402A |  |
|  | M58503P | $512 \times 2$ bit |  | MM1403A |  |
|  | M58504P | $1024 \times 1$ bit |  | MM1404A |  |
| 1/0 divices | M58609-XXS | Keyboard encoder |  |  |  |
|  | M58609-04S | Keyboard encoder |  |  |  |
|  | M58620-XXXS | Keyboard encoder |  |  |  |
|  | M58620-001S | Keyboard encoder |  |  |  |
|  | M54550P | Clock generator/driver |  |  | $\mu$ PB8224D |
|  | M54551K | System controller/bus driver |  |  | $\mu$ PB8228D |
|  | M54552P | 8-bit 1/O port |  |  | $\mu \mathrm{PB8212D}$ |
|  | M58740P | Programmable periph. interface |  |  |  |
|  | M58740S | Programmable periph. interface |  |  | $\mu$ PD8255C |



As of April, 1976.

MITSUBISHI


## MITSUBISHI LSIs

ORDERING INFORMATION

## FUNCTION CODE

Mitsubishi integrated circuits may be ordered using a simplified alphanumeric type-code which defines the function of the ICs and the package style.

Example:


M: Mitsubishi integrated circuit prefix
Temperature range
5: Standard industrial/commercial ( 0 to $75^{\circ} \mathrm{C}$ or -20 to $85^{\circ} \mathrm{C}$ ).
9: High reliability (military)
Series designation using 1 or 2 alphanumeric characters.
$1 \sim 19$ : Linear circuit
3: TTL
$32 \sim 33$ : TTL (equivalent to Texas Instruments' SN74 series)
41 ~47: TTL
84: CMOS
85: $\quad$-channel silicon gate MOS
86: P-channel aluminum gate MOS
87: $\quad$-channel silicon gate MOS
9: DTL
S32~S33: Schottky TTL (equivalent to Texas Instruments' SN74S series)

Circuit function identification code using 2
digits.

## Package style

B: Resin-sealed ceramic dual in-line (DIL)
K: Glass-sealed ceramic dual in-line (DIL)
P: Molded plastic dual in-line (DIL)
S: Metal-sealed ceramic dual in-line (DIL)
Electrical characteristic identification code using 1 digit.

## PACKAGE CODE

Package style may be specified by using the following simplified alphanumeric code.
Example:


TYPE 16P1 16-PIN MOLDED PLASTIC DIL


TYPE 16K1 16-PIN GLASS-SEALED CERAMIC DIL


## MITSUBISHI

ELECTRIC

## PACKAGE OUTLINES

## TYPE 16S1 16-PIN METAL-SEALED CERAMIC DIL



TYPE 18P1 18-PIN MOLDED PLASTIC DIL


TYPE 22P1 22-PIN MOLDED PLASTIC DIL


TYPE 22S1 22-PIN METAL-SEALED CERAMIC DIL


TYPE 24P1 24-PIN MOLDED PLASTIC DIL


TYPE 24S1 24-PIN METAL-SEALED CERAMIC DIL


TYPE 24S10 24-PIN METAL-SEALED CERAMIC DIL WITH QUARTZ LID


## TYPE 28K1 28-PIN GLASS-SEALED CERAMIC DIL



TYPE 40P1 40-PIN MOLDED PLASTIC DIL


TYPE 40B1 40-PIN RESIN-SEALED CERAMIC DIL


TYPE 40S1 40-PIN METAL-SEALED CERAMIC DIL


## MITSUBISHI LSIs

 TERMINOLOGY
## GENERAL

Semiconductor A material with resistivity usually in the range between metals and insulators, in which the electrical charge carrier concentration increases with increasing temperature range.
Extrinsic semiconductor A semiconductor with charge carrier concentration dependent upon impurities or other imperfections.
N-type semiconductor An extrinsic semiconductor in which the conduction electron density exceeds the mobile hole density.
P-type semiconductor An extrinsic semiconductor in which the mobile hole density exceeds the conduction electron density.
Junction A region of transition between semiconducting regions of different electrical properties.
PN junction $A$ junction between $P$ - and $N$-type semiconductor materials.
Depletion layer A region in which the mobile charge carrier density is insufficient to neutralize the net fixed charge density of donors and acceptors.
Breakdown (of a reverse-biased PN junction) A phenomenon, the initiation of which is observed as a transition from a state of dynamic resistance to a state of substantially lower dynamic resistance for increasing the magnitude of a reverse current.
Semiconductor device A device whose essential characteristics are due to the flow of charge carriers within a semiconductor.
Reverse voltage The voltage across a junction or a diode when biased in the direction corresponding to the higher resistance.
Breakdown voltage The reverse voltage at which the reverse current through a junction becomes greater than a specified value.
Case temperature The temperature measured at a specified point on the case of a semiconductor device.
Storage temperature The temperature at which a semiconductor device is stored without any voltage applied.

## INTEGRATED CIRCUITS

Microelectronics The concept of the construction and use of highly miniaturized electronic circuits.
Microcircuit A microelectronic device, having a high equivalent circuit-element and/or component density, which is considered as a single unit.

Note: A microcircuit may be a microassembly or an integrated (micro) circuit.

Integrated circuit A circuit in which a number of circuit elements are inseparably associated and electrically inter-
connected, so that, for the purpose of specification, testing, commerce and maintenance, it is considered indivisible.

Note: For this definition, a circuit element does not have an envelope or external connection and is not specified or sold as a separate item.

Integrated microcircuit A microcircuit in which a number of circuit elements are inseparably associated and electrically interconnected, so that, for the purpose of specification, testing, commerce and maintenance, it is considered indivisible.

Note 1: For this definition, a circuit element does not have an envelope or external connection and is not specified or sold as a separate item.
2: Where no misunderstanding is possible, the term 'integrated microcircuit' may be abbreviated to integrated circuit
3: Further qualifying terms may be used to describe the technique used in the manufacture of a specific integrated microcircuit. Examples of the use of qualifying terms are: semiconductor monolithic integrated circuit, semiconductor multichip integrated circuit,
thin film integrated circuit,
thick film integrated circuit.
hybrid integrated circuit.

Microassembly A microcircuit consisting of various components and/or integrated microcircuits which are constructed separately and which can be tested before being assembled and packaged.

Note 1: For this definition, a component has external connections and possibly an envelope as well and it also can be specified and sold as a separate item.
2: Further qualifying terms may be used to describe the form of the components and/or the assembly techniques used in the construction of a specific microassembly.
Examples of use of qualifying terms are:
semiconductor multichip microassembly.
discrete component microassembly.
Integrated electronics The art and technology of the design, fabrication and use of integrated circuits.
Worst-case conditions (for a single characteristic) The values of the applied conditions which individually are chosen from within a specified range and together produce the most unfavorable value for a considered characteristic.

Note: Worst-case conditions for different characteristics may be different.

## DIGITAL INTEGRATED CIRCUITS

Digital signal The variation with time of a physical quantity that is used for the transmission of information or for information processing, and that has a finite number of nonoverlapping ranges of values.
Note 1: The physical quantity may be voltage, or current, or impedance, etc.
2: For convenience, each range of values can be represented by a single value-e.g., the nominal value.

## MITSUBISHI LSIs TERMINOLOGY

Binary signal A digital signal with only two possible ranges of values.
Note: For convenience, each range of values can be represented by a single value-e.g., the nominal value.

Low range (of a binary signal) The range of least positive (most negative) levels of a binary signal.

Note: This range is often denoted by 'L-range,' and any level in the range by 'L-level

High range (of a binary signal) The range of most positive (least negative) levels of a binary signal.

Note: This range is often denoted by ' H -range, and any level in the range by ' H level.
Digital circuit A circuit which is designed to operate by means of digital signals at the input(s) and at the output(s).
Note 1: In this definition, it is understood that 'inputs' and 'outputs' exclude static power supplies.
2: In some digital circuits-e.g., certain types of astable circuits-the inputs need not exist.
Binary circuit A digital circuit designed to operate with binary signals.
Note: The pairs of ranges of values of the binary signals may be different at different terminals.
Input configuration (input pattern) (of a binary circuit) A combination of the L-levels and H -levels at the input terminals at a given instant.
Output configuration (output pattern) (of a binary circuit) A combination of the L -levels and H -levels at the output terminals at a given instant.

Note: When there is no possibility of ambiguity, the output configuration (output pattern) may be represented by the level (expressed as L-level or H-level) of the signal at a stated output terminal of the circuit (the reference output terminal).

Input terminal A terminal by means of which an applied signal may modify the output configuration (output pattern) of the circuit-either directly or indirectlyby modifying the ways in which the circuit reacts to signals at other terminals.
Combinatorial (digital) circuit A digital circuit in which there exists one, and only one, combination of the digital signals at the outputs for each possible combination of digital signals at the inputs.
Sequential (digital) circuit A digital circuit in which there exists at least one combination of the digital signals at the inputs for which there is more than one corresponding combination of the digital signals at the outputs.
Note: These combinations at the outputs are determined by previous history-e.g.. as a result of internal memory or delay.

Elementary combinatorial circuit A binary combinatorial (digital) circuit which has only one output terminal, and in which the output signal accepts the value occurring only once in the function if, and only if, the signals applied to all the input terminals are either all in the H -range or all in the L-range.
Note 1: Because the output signal value (occurring only once in the function table) can lie either in the H -range or in the L-range, there are four types of elementary combinatorial circuits.
According to the assignment of the signal values $L$ and $H$ to the binary values 0 and 1 of Bootean algebra, the following 'logic operations can be realized by means of the four types of elementary combinatorial circuits: AND, OR, NAND, NOR.
2: Nonelementary combinatorial circuits can be formed by combining elementary combinatorial circuits or by combining elementary combinatorial circuits with inverters.

Function table A representation of the necessary or possible relations between the values of the digital signals at the inputs and the outputs of a digital circuit, these values of the digital signals being indicated either by using electrical values directly or by stating the electrical significance of the symbols-e.g., L and H for binary circuits. Generally, every column indicates the values of the digital signals at an input or at an output of the digital circuit; every row indicates the combination of values of the digital signals at the input(s) and the resulting values of the digital signals at the output(s); whenever the value of the digital signal at an output is not determined, it should be indicated by a question mark; whenever the value of a digital signal at an input has no influence, it should be indicated by the symbol L/H or X.

Truth table (for a relation between digital variables) A representation of the logic relationship between one or more independent digital variables and one or more dependent digital variables, by means of a table which, for each possible combination of the values of the independent variables, gives the appropriate values of the dependent variables.
Note: The distinction between 'function table' and 'truth table' is fundamentally necessary, because the same digital circuit may fulfill several different logic operations, according to the arbitrary assignment of the values of the digital variables to the values of the digital electrical quantities.

Input loading factor (of a bipolar digital circuit) A factor which indicates the ratio of the input current of a specified input terminal of a digital circuit to the input current of a particular circuit which is chosen as a reference load.
Note: The reference load should preferably be chosen in such a way that the input loading factor becomes an integer.

## MITSUBISHI LSIs

## TERMINOLOGY

Output loading capability (of a bipolar digital circuit) A factor which indicates the ratio of the maximum output current of a specified output terminal of a digital circuit to the input current of a particular circuit which is chosen as a reference load.

Note: The reference load should preferably be chosen in such a way that the output loading capability becomes an integer.

Excitation An input configuration (input pattern), or change in input configuration (input pattern), that can: cause the circuit to change its output configuration (output pattern), either directly, or in conjunction with an already existing state of preparedness; or put the circuit in a state of preparedness; or either cancel or modify an already existing state of preparedness.

Note 1: The repetition or reiteration of a given excitation will not necessarily produce the same effect.
2: In some cases, an excitation can also maintain an output configuration (output pattern) which it could have produced.

Expander circuit An auxiliary circuit which can be used to expand the number of inputs of equal influence of an associated circuit without modifying the function of the associated circuit.
Binary inverter A binary circuit which has only one input terminal and one output terminal, and in which a signal value L ( or H ) at the input produces a signal value H (or L) at the output.

Function (sequential) matrix A table having several inputs which gives the possible output configurations for each input configuration(s) and from which the output configuration(s) resulting from a transition from each individual input configuration to any other input configuration can be read directly.

Note: Where appropriate, a function (sequential) matrix may be completed by additional data or details concerning time conditions-e.g., transition times for the input levels, delay time, duration of the input configuration to produce a desired new output configuration.

## SEQUENTIAL CIRCUITS

Master-slave arrangement An arrangement of two bistable circuits such that one of them, called the 'slave,' reproduces the output configuration of the other circuit, called the 'master.' The transfer of information from the master to the slave is produced by means of an appropriate signal.
Register An arrangement of bistable circuits by means of which information may be accepted, stored and restituted.

Note: The register may form part of another memory and is of a specified capacity.

Shift Register A register that, by means of an appropriate control signal, can transfer information between consecutive bistable circuits with the sequence being preserved.
Counter A sequential circuit for storing numbers that permits such numbers to be incremented or decremented by a defined constant, including unity.

## TIME INTERVALS BETWEEN INPUT SIGNALS

Setup time (tsu) (of a digital circuit) The time interval between the application of a signal which is maintained at a specified input terminal and a consecutive active transition at another specified input terminal.
Note 1: The setup time is measured between the instants at which the magnitudes of the two signals pass through specified values within the transition of the signal levels.
2: The setup time is the actual time between two events and may be insufficient to accomplish the setup. A minimum value is specified which is the shortest interval for which correct operation of the digital circuit is guaranteed.
3: The setup time may have a negative value, in which case the minimum limit for which correct operation of the digital circuit is guaranteed defines the longest interval between the active transition and the application of the other signal

Hold time ( $t_{h}$ ) (of a digital circuit) The time interval during which a signal is retained at a specified input terminal after an active transition occurs at another specified input terminal.

Note 1: The hold time is measured between the instants at which the magnitudes of the two signals pass through specified values within the transitions of the signal levels.
2: The hold time is the actual time between two events and may be insufficient to accomplish the intended result.
A minimum value is specified which is the shortest interval for which correct operation of the digital circuit is guaranteed.
3: The hold time may have a negative value, in which case the minimum limit for which correct operation of the digital circuit is guaranteed defines the longest interval between the change of the signal and the active transition.

Resolution time ( $\mathbf{t}_{\text {res }}$ ) (of a digital circuit) The time interval between the cessation of one input pulse and the commencement of the next input pulse applied to the same input terminal.

Note 1: The resolution time is measured between the instants at which the magnitude of the input signal passes through specified values within the transitions of the signal levels.
2: The resolution time is the actual time between two pulses and may be insufficient to ensure that both pulses are recognized. A minimum value is specified which is the shortest interval for which correct operation of the digital circuit is guaranteed.

## SWITCHING TIMES OF BINARY CIRCUITS

High-level to low-level (low-level to high-level) propagation
time ( $\mathbf{t}_{\text {PHL }}$ and $\mathbf{t}_{\text {PLH }}$ ) The time interval between specified reference points on the input and on the output pulses, when the output is going to the low (high) level and when the device is driven and loaded by typical devices of stated type.

Note: The mean value between the upper limit of the input low range and the lower limit of the input high range is generally used as the specified reference level.

High-level to low-level (low-level to high-level) delay time ( $\mathbf{t}_{\mathrm{DHL}}$ and $\mathrm{t}_{\mathrm{DLH}}$ ) The time interval between specified reference points on the input and on the output pulses, when the output is going to the low (high) level and when the device is driven and loaded by specified networks.
High-level to low-level (low-level to high-level) transition time ( $\mathbf{t}_{\mathrm{THL}}$ and $\mathbf{t}_{\mathrm{TLH}}$ ) The time interval between specified reference points on the edge of the output pulse when the output is going to the low (high) level and when a specified input signal is applied through a specified network and the output is loaded by another specified network.

## INTEGRATED CIRCUIT MEMORIES

Memory cell (memory element) The smallest subdivision of a memory into which a unit of data has been or can be entered, in which it is or can be stored, and from which it can be retrieved.
Integrated circuit memory An integrated circuit consisting of memory cells (elements) and usually including associated circuits such as those for address selection, amplifiers, etc.
Read-only memory (ROM) A memory intended to be read only.

Note: Unless otherwise specified, the term 'read-only memory' implies that the content is unalterable, and defined by its structure.

Fixed-programmed read-only memory A read-only memory in which the data contents of each cell (element) are determined during manufacture and are thereafter unalterable.
Mask-programmed read-only memory A fixed-programmed read-only memory in which the data contents of each cell (element) are determined during manufacture by the use of a mask.
Field-programmable read-only memory A read-only memory that, after being manufactured, can have the data content of each memory cell (element) altered.
Programmable read-only memory (PROM) A read-only memory that can have the data content of each memory cell (element) altered once only.

Reprogrammable read-only memory A read-only memory that can have the data content of each memory cell (element) altered more than once.
Read/write memory A memory in which each cell (element) may be selected by applying appropriate electrical input signals, and in which the stored data may be either: a) sensed at appropriate output terminals; or b) changed in response to other similar electrical input signals.
Static read/write memory A memory in which the data are retained in the absence of control signals.
Note 1: The words 'read/write' may be omitted from the term when no misunderstanding will result.
2: A static memory may use dynamic addressing or sensing circuits.
Dynamic read/write memory A memory in which the cells (elements) require the repetitive application of control signals in order to retain the data stored.

Note 1: The words 'read/write' may be omitted from the term when no misunderstanding will result.
2. Such repetitive application of the control signals is normally called a refresh operation.
3: A dynamic memory may use static addressing or sensing circuits.
4: This definition applies whether the control signals are generated inside or outside the integrated circuit.

Volatile memory A memory whose data content is lost when the power supply is disconnected.
Random-access memory (RAM) A memory that permits access to any of its address locations in any desired sequence.

## MICROPROCESSOR INTEGRATED CIRCUITS

Microprocessor integrated circuit An integrated circuit capable of:

1. Accepting coded instructions at one or more terminals.
2. Carrying out, in accordance with the instructions received, all of:
a. the acceptance of coded data for processing and/or storage;
b. arithmetic and logical operations on the input data together with any relevant data stored in the microprocessor integrated circuit;
c. the delivery of coded data.
3. Accepting and/or delivering signals controlling and/or describing the operation or state of the microprocessor integrated circuit.

Note: The instructions may be fed in, built in, or held in an internal store

Note: The definitions of terms described here are extracted from IEC publication 147-0. Some of the terms for integrated circuit memories and microprocessors are under consideration.

## FOR DIGITAL INTEGRATED CIRCUITS

| Symbol | Parameter--definition |
| :---: | :---: |
| Ci | Input capacitance |
| $\mathrm{C}_{0}$ | Output capacitance |
| $\mathrm{Ci}_{\mathrm{i} / \mathrm{o}}$ | Input/output terminal capacitance |
| C 1 ( $\phi$ ) | Input capacitance of clock input |
| $f$ | Frequency |
| $f(\phi)$ | Clock frequency |
| 1 | Current-the current into an integrated circuit terminal is defined as a positive value and the current out of a terminal is defined as a negative value |
| $I_{B B}$ | Supply current from $\mathrm{V}_{\text {BB }}$ |
| $\operatorname{IbB}(\mathrm{AV})$ | Average supply current from $V_{B B}$ |
| ICC | Supply current from $V_{\text {CC }}$ |
| $\operatorname{IcC}(\mathrm{AV})$ | Average supply current from $V_{C C}$ |
| $\operatorname{ICC}(P D)$ | Power-down supply current from $V_{C C}$ |
| IDD | Supply current from $V_{\text {DD }}$ |
| IDD(AV) | Average supply current from $V_{\text {DD }}$ |
| Igg | Supply current from $\mathrm{V}_{\mathrm{GG}}$ |
| $1 \mathrm{GG}(\mathrm{AV})$ | Average supply current from $\mathrm{V}_{\mathrm{GG}}$ |
| 11 | Input current |
| $11{ }_{1}$ | High-level input current-the value of the input current when $\mathrm{V}_{O H}$ is applied to the input considered |
| IIL | Low-level input current-the value of the input current when $\mathrm{V}_{O L}$ is applied to the input considered |
| IOH | High-level output current-the value of the output current when $\mathrm{V}_{\mathrm{OH}}$ is applied to the output considered |
| lol | Low-level output current-the value of the output current when $\mathrm{V}_{\text {OL }}$ is applied to the output considered |
| l Oz | Off-state (high-impedance-state) output current-the current into an output having a three-state capability with input conditions so applied that it will establish. according to the product specification, the off (high-impedance) state at the output |
| 1 OZH | Off-state (high-impedance-state) output current, with high-level voltage applied to the output |
| lozl | Off-state (high-impedance-state) output current, with low-level voltage applied to the output |
| los | Short-circuit output current |
| I ss | V SS supply current |
| $\mathrm{Pd}_{\mathrm{d}}$ | Power dissipation |
| $R_{1}$ | Input resistance |
| $R_{L}$ | External load resistance |
| R off | Off-state output resistance |
| R ON | On-state output resistance |
|  | Access time-the time interval between the application of a specified input pulse during a read cycle and the availability of valid data signals at an output |
| ta (AD) | Address access time-the time interval between the application of an address input pulse and the availability of valid data signals at an-output |
| $t \mathrm{a}$ (CE) | Chip enable access time |
| ta (CS) | Chip select access time |
| $t_{c}$ | Cycle time |
| $t_{c}$ (REF) | Refresh cycle time-the time interval between successive signals that are intended to restore the level in a dynamic memory cell to its original level |
| $t_{0}$ (RD) | Read cycle time-the time interval between the start of a read cycle and the start of the next cycle |
| $\mathrm{t}_{\mathrm{c}}$ (RMW) | Read-modify-write cycle time-the time interval between the start of a cycle in which the memory is read and new data are entered, and the stait of the next cycle |
| $t_{c}$ (WR) | Write cycle time-the time interval between the start of a write cycle and the start of the next cycle |
| $t \mathrm{dv}(\mathrm{AD})$ | Data valid time with respect to address-the time interval following an initial change of address during which data stored at the initial address continues to be valid at the output |
| $t \mathrm{dv}(\mathrm{CE})$ | Data valid time with respect to chip enable-the time interval following chip enable during which output data continues to be valid |
| $t d v(C S)$ | Data valid time with respect to chip select-the time interval following chip selecı during which output data continues to be valid |
| $t_{d}$ | Delay time-the time between the specified reference points on two pulses |
| $\mathrm{t}_{\mathrm{d}}(\phi)$ | Delay time between clock pulses-e.g., symbology: delay time. clock 1 to clock 2 or clock 2 to clock 1 |
| $t_{\text {DHL }}$ | High-level to low-level delay time-the time interval between specified reference points on the input and on the output pulses, when the output is going to |
| ${ }_{\text {t DLH }}$ | Low-level to high-level delay time -the low (high) level and when the device is driven and loaded by specified networks |
| $\mathrm{tf}_{\mathrm{f}}$ | Fall time |
| th | Hold time-the time interval during which a signal is retained at a specified input terminal after an active transition occurs at another specified input terminal |
| $\operatorname{th}(A D)$ | Address hold time |
| th(CE) | Chip enable hold time |
| $\mathrm{th}_{\text {( }}^{\text {(CS) }}$ | Chip select hold time |
| $\operatorname{th}(D A)$ | Data hold time |

## MITSUBISHI <br> ELECTRIC

| Symbol | Parameter-definition |
| :---: | :---: |
| th (RE) | Read hold time |
| th(WR) | Write hold time |
| $t_{\text {PHL }}$ | High-level to low-level propagation time-the time interval between specified reference points on the input and on the output pulses when the output is |
| $t_{\text {PLH }}$ | Low-level to high-level propagation time-the going to the low (high) level and when the device is driven and loaded by typical devices of stated type |
| $\mathrm{t}_{\mathrm{r}}$ | Rise time |
| $\mathrm{t}_{\text {su }}$ | Setup time-the time interval between the application of a signal which is maintained at a specified input terminal and a consecutive active transition at another specified input terminal |
| $t_{\text {su }}(A D)$ | Address setup time |
| tsu(AD-WR) | Address setup time with respect to write |
| tsu(CE-P) | Chip enable setup time with respect to precharge |
| $\mathrm{t}_{\text {su(CS }}$ ) | Chip select setup time |
| tsu(CS-WR) | Chip select setup time with respect to write |
| $t_{\text {su }}(\mathrm{DA})$ | Data setup time |
| tsu(P-CE) | Precharge setup time with respect to chip enable |
| tsu(RD) | Read setup time |
| tsu(wR) | Write setup time |
| ${ }^{\text {t THL }}$ | High-level to low-level transition time-the time interval between specified reference points on the edge of the output pulse when the output is going to |
| $t_{\text {then }}$ | Low-level to high-level transition time-the low (high) level and when a specified input signal is applied through a specified network and the output is loaded by another specified network |
| $t_{w}$ | Pulse width-the time interval between specified reference points on the leading and trailing edges of the waveforms |
| tw (CE) | Chip enable pulse width |
| $t w(C E H)$ | Chip enable high pulse width |
| $\mathrm{t}_{\mathrm{w}}$ (CEL) | Chip enable low pulse width |
| $\mathrm{t}_{\mathrm{w}}$ (CS) | Chip select pulse width |
| $\mathrm{tw}_{\mathrm{w}}$ (RD) | Read pulse width |
| $t w(W R)$ | Write pulse width |
| $t_{w(\phi)}$ | Clock pulse width |
| $t_{w r}$ | Write recovery time-the time interval between the termination of a write pulse and the initiation of a new cycle |
| Ta | Ambient temperature |
| Topr | Operating temperature |
| Tstg | Storage temperature |
| $\mathrm{V}_{\text {BB }}$ | VBB supply voltage |
| $V_{\text {cC }}$ | VCC supply voltage |
| $V_{\text {DD }}$ | VDD supply voltage |
| $\mathrm{V}_{\mathrm{GG}}$ | VGG supply voltage |
| $V_{1}$ | Input voltage |
| $\mathrm{V}_{\text {IH }}$ | High-level input voltage-the value of the permitted high-state voltage at the input |
| $V_{\text {IL }}$ | Low-level input voltage-the value of the permitted low-state voltage range at the input |
| $\mathrm{V}_{0}$ | Output voltage |
| $\mathrm{V}_{\mathrm{OH}}$ | High-level output voltage-the value of the guaranteed high-state voltage range at the output |
| $\mathrm{V}_{\text {OL }}$ | Low-level output voltage-the value of the guaranteed low-state voltage range at the output |

Note: The symbols shown here are, with some exceptions, extracted from IEC publication 148.

## MITSUBISHI

## 1. PLANNING

In recent years, advances in integrated circuits have been rapid, with increasing density and speed accompanied by decreasing cost. Because of these advances, it is now practical and economically justifiable to use these devices in systems of greater complexity and in which they were previously considered too expensive. All of these advances add up to increased demand.

We at Mitsubishi foresaw this increased demand and organized our production facilities to meet it. We also realized that simply increasing production to meet the demand was not enough and that positive steps would have to be taken to assure the reliability of our products.

This realization resulted in development of our Quality Assurance System. The system has resulted in improved productus, and Mitsubishi is able to supply its customers' needs with ICs of high reliability and stable quality. This system is the key to future planning for improved design, production and quality assurance.

## 2. QUALITY ASSURANCE SYSTEM

The Quality Assurance System imposes quality controls on Mitsubishi products from the initial conception of a new product to the final delivery of the product to the customer. A diagram of the total system is shown in Fig. 1. For ease of understanding, the system is divided into three stages.

### 2.1 Quality Assurance in the Design Stage

The characteristics of the bread-board devices are carefully checked to assure that all specifications are met. Standard integrated circuits and high-quality discrete components are used. During the design stage, extensive use is made of a sophisticated CAD program, which is updated to always include the latest state-of-the-art techniques.

### 2.2 Quality Assurance in the LimitedManufacturing Stage

Rigid controls are maintained on the environment, incoming material and manufacturing equipment such as tools and test equipment. The products and materials used are subjected to stringent tests and inspections as they are manufactured. Wafer production is closely monitored.

Finally, a tough quality assurance test and inspection is made before the product is released for delivery to a customer. This final test includes a complete visual inspection, and electrical characteristics tests. A sampling technique is used to conduct tests under severe operating conditions to assure that the products meet reliability specifications. Pictures of some of the test equipment used are shown in Figs. $2 \sim 5$.

### 2.3 Quality Assurance in the Full Production Stage

 Full production of a product is not started until it has been confirmed that it can be manufactured to meet quality and reliability specifications. The controls, tests and inspectionprocedures developed in §2.2 are continued. The closest monitoring assures that they are complied with.

## 3. RELIABILITY CONTROL

### 3.1 Reliability Tests

The newly established Reliability Center for Electronic Components of Japan has established a qualification system for electronic components. Reliability test methods and procedures are developed to mainly meet MIL-STD-883 and EIAJ-IC-121 specifications. Details of typical tests used on Mitsubishi ICs are shown in Table 1.
Table 1 Typical reliability test items and conditions

| Group | Item | Test condition |
| :---: | :---: | :---: |
| 1 | $\begin{array}{l}\text { High temperature } \\ \text { operating life }\end{array}$ | Maximum operating ambient temperature 1000h |
|  | $\begin{array}{l}\text { High temperature } \\ \text { storage life }\end{array}$ | Maximum storage temperature 1000h |
|  | $\begin{aligned} & \text { Humidity (steady } \\ & \text { state) life } \\ & \hline \end{aligned}$ | $65^{\circ} \mathrm{C} \mathrm{95} \mathrm{\% RH} 500 \mathrm{~h}$ |
| 2 | Soldering heat | $260^{\circ} \mathrm{C} 10 \mathrm{~s}$ |
|  | Thermal shock | O~100 ${ }^{\circ} \mathrm{C} 15$ cycles, $10 \mathrm{~min} /$ cycle |
|  | Temperature cycle | Minimum to maximum storage temperature, 10 cycles of $1 \mathrm{~h} /$ cycle |
| 3 | Soldering | $230^{\circ} \mathrm{C}$. 5 s , use rosin flux |
|  | Lead integrity | Tension: 340 g 30s <br> Bending stress: 225 g . $\pm 30^{\circ}, 3$ times |
|  | Vibration | 20G, X, Y, Z each direction, 4 times $100 \sim 2000 \mathrm{~Hz}-4 \mathrm{~min} /$ cycle |
|  | Dropping | $75 \mathrm{~cm}, 3$ times, wood plate, $Y_{1}$ direction |
|  | $\begin{array}{\|l\|} \hline \text { Constant } \\ \text { acceleration } \\ \hline \end{array}$ | 20000G, $Y_{1}$ direction, 1 min |

### 3.2 Failure Analysis

Devices that have failed during reliability or acceleration tests are analyzed to determine the cause of failure. This information is fed back to the process engineering section and manufacturing section so that improvements can be made to increase reliability. A summary of failure analysis procedures is shown in Table 2.
Table 2 Summary of failure analysis procedures

| Step | Description |
| :---: | :---: |
| 1. External examination | O Inspection of leads, plating, soldering and welding <br> O Inspection of materials, sealing and package marking <br> O Visual inspection of other items of the specifications <br> O Use of stereo microscopes, metallurgical microseopes, X-ray photographic equipment, fine leakage and gross leakage testers in the examination |
| 2. Electrical tests | O Checking for open circuits, short circuits and parametric degradation by electrical parameter measurement <br> o Observation of characteristics by a synchroscope or a curve tracer and checking of important physical characteristics by electrical characteristics <br> Stress tests such as environmental or life tests, if required |
| 3. Internal examination | o Removal of the cover of the device, the optical inspection of the internal structure of the device Checking of the silicon chip surface Measurement of electrical characteristics by probes. if applicable Use of SEM, XMA and infrared microscanner if required |
| 4. Chip analysis | O Use of metallurgical analysis techniques to supplement analysis of the internal examination <br> Slicing for cross-sectional inspection <br> O Analysis of oxide film defects <br> O Analysis of diffusion defects |

Fig. 1 Quality assurance system


Fig. 2 Large-scale test system for LSIs


Fig. 3. Monitored temperature cycling tester


Fig. 4 Helium leakage tester


Fig. 5 Operating life tester

4. TYPICAL RESULTS OF RELIABILITY TESTS AND FAILURE ANALYSES

### 4.1 Results of Reliability Test

Formerly, sufficient reliability for memory MOS LSIs was obtained by using metal-sealed ceramic packages, but with the development of high reliability plastic molding technology, production has been shifted to plastic molded memory MOS LSIs.

The following tests were performed:

1. Operating life test: Durability is tested at high temperature under operating state conditions by applying clock pulse inputs as shown in Fig. 6.
2. DC biased test: Durability is tested at high temperature biasing DC voltage, as shown in Fig. 7.
3. High temperature storage: The durability of devices stored at high temperatures is tested.
Typical results of memory MOS LSI life tests are shown in Table 3. The failure rate computed from this reliability data using an appropriate acceleration factor is 0.1 FIT or less ( $1 \mathrm{FIT}=10^{-9} /$ hour) per bit, about the same as, or less than, for core memories.
Fig. 6 Operating life test procedure (for M58755 4K-bit dynamic RAM)


Fig. 7 DC biased test procedure (for M58751 1K-bit static RAM)


Table 3 Typical results of memory MOS LSI life tests

| Type number | Package | Test | Temp ${ }^{\circ} \mathrm{C}$ | No. of sample | Component hours | No. of failures | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| M58533S | 28-pin metal <br> sealed <br> ceramic DIL |  | $55^{\circ} \mathrm{C}$ | 38 | 114,000 | 0 |  |
|  |  | Operating life | $80^{\circ} \mathrm{C}$ | 20 | 20,000 | 0 |  |
|  |  |  | $125^{\circ} \mathrm{C}$ | 15 | 15,000 | 0 |  |
|  |  |  | $80^{\circ} \mathrm{C}$ | 20 | 20,000 | 0 |  |
|  |  | DC biased | $125^{\circ} \mathrm{C}$ | 15 | 20,000 | 0 |  |
|  |  | High iemp. stg $150^{\circ} \mathrm{C}$ |  | 38 | 15,000 | 0 |  |
| M58533P | 28-pin plastic molded DIL | Operating | $80^{\circ} \mathrm{C}$ | 20 | 20,000 | 0 | Functional |
|  |  | Operaing | $125^{\circ} \mathrm{C}$ | 55 | 74,000 | 1 | failure |
|  |  | DC biased | $80^{\circ} \mathrm{C}$ | 20 | 20,000 | 0 |  |
|  |  | DC biased | $125^{\circ} \mathrm{C}$ | 40 | 60,000 | 0 |  |
|  |  | High temp. stg. $150^{\circ} \mathrm{C}$ |  | 30 | 30,000 | 0 |  |
| M58531P | $\left\lvert\, \begin{aligned} & \text { 16-pin plastic } \\ & \text { molded DIL } \end{aligned}\right.$ |  | $80^{\circ} \mathrm{C}$ | 20 | 20,000 | 0 |  |
|  |  | Operating lire | $125^{\circ} \mathrm{C}$ | 20 | 20,000 | 0 |  |
|  |  |  | $80^{\circ} \mathrm{C}$ | 20 | 20,000 | 0 |  |
|  |  | DC biased | $125^{\circ} \mathrm{C}$ | 20 | 20,000 | 0 |  |
|  |  | High temp. stg. $150^{\circ} \mathrm{C}$ |  | 50 | 50,000 | 0 |  |
| M58751P | 16-pin plastic molded DIL |  | $80^{\circ} \mathrm{C}$ | 40 | 80,000 | 0 |  |
|  |  | Operaing If | $125^{\circ} \mathrm{C}$ | 120 | 160,000 | 0 |  |
|  |  | DC biased | $125^{\circ} \mathrm{C}$ | 40 | 80,000 | 0 |  |
|  |  |  | $150^{\circ} \mathrm{C}$ | 5 | 5,000 | 0 |  |
|  |  |  | $200^{\circ} \mathrm{C}$ | 5 | 5,000 | 0 |  |
| M58755S | $\begin{aligned} & 22 \text {-pin } \\ & \text { ceramic DIL } \end{aligned}$ |  | $80^{\circ} \mathrm{C}$ | 39 | 88,000 | 0 | Functional |
|  |  | Operating life | $125^{\circ} \mathrm{C}$ | 149 | 271,000 | 1 | (at 240h) |
|  |  | DC biased | $125^{\circ} \mathrm{C}$ | 66 | 137,000 | 0 |  |
|  |  |  |  |  | Total | 2 |  |

### 4.2 Typical Results of Failure Analyses

Accelerated testing under conditions more severe than normal operating conditions is used to observe failures of moisture resistance, of wire bonding, of surge voltage destruction and of vapor-deposited aluminum interconnection. Typical results are shown below.

### 4.2.1. Failure in Moisture Resistance

An example of the results of steam pressure testing, performed to evaluate the moisture resistance of a plastic molded package, is shown in Fig. 8. The vapor-deposited aluminum interconnection was corroded due to moisture penetration.

### 4.2.2. Failure of Wire Bonding

An example of a failure during the monitored temperature cycling test for evaluating the reliability of the wire bonding of the inner leads of the IC is shown in Fig. 9. The cause of this failure may have been the opening of the inner lead bonding because of a difference in thermal expanision coefficients of metal and resin producing a stress on the inner lead.

### 4.2.3. Failure Due to Surge Voltage

Many integrated circuits fail in the field due to a surge voltage. Surge voltage marginal tests have been performed to reproduce this failure for analysis of the destruction.

Examples of failures during this test are shown in Figs. $10 \sim 13$. Figs. 10 and 11 indicate the existence of a bridge that was confirmed by an X-ray microanalyzer. Figs. 12 and 13 indicate the existence of a hot spot that was confirmed by an infrared microscanner.

### 4.2.4. Failure of Vapor-Deposited Interconnections

Fig. 14 shows an open-circuit vapor-deposited aluminum


Fig. 9 Lift off of bonded gold inner lead, analyzed by metallurgical


Fig. 12 Hot spot at bonding head, analyzed by infrared microscanner

interconnection, at a high current density region, caused by the operating life test. This test is performed as a step stress test to investigate IC degradation and failure by temperature and voltage. This phenomenon is due to aluminum electromigration, which is observed when high-current loads are applied to a vapor-deposited aluminum interconnection.

## 5. CONCLUSION

Mitsubishi Electric's Quality Assurance System is being expanded to provide stronger emphasis on the following points:

1. Establishment of quality and reliability levels that satisfy customers' requirements.
2. Expansion of the reliability tests of wafers and assembly processes for better evaluation, and standardization of circuit and design rules.
3. Establishment of procedures for speeding up the introduction of new technology and improved methods that raise reliability and to improve the accelerated life tests for better failure analysis.
4. Establishment of a system for collecting data on failures in the field, which will then be analyzed to develop improved methods for increasing reliability.
We welcome and appreciate the cooperation of our customers in developing design specifications, establishing quality levels, controlling incoming inspections, developing assembly and adjusting processes and collecting field data. Mitsubishi is anxious to work with its customers to develop ICs of increased reliability that meet their requirements.

Fig. 10 Surge destruction, analyzed by metallurgical microscope


Fig. 13 Junction in Fig. 12 after removal of aluminum, analyzed by metallurgical microscope


Fig. 11 Enlargement of aluminum bridge in Fig. 10, analyzed by XMA-Al k $\alpha$


Fig. 14 Electromigration of aluminum interconnection, analyzed by SEM


## MITSUBISHI LSIs PRECAUTIONS IN HANDLING MOS ICs

A MOS transistor has a very thin oxide insulator under the gate electrode on the silicon substrate. It is operated by altering the conductance ( $\mathrm{g}_{\mathrm{m}}$ ) between source and drain to control mobile charges in the channel formed by the applied gate voltage.

If a high voltage were applied to a gate terminal, the insulator-film under the gate electrode could be dastroyed, and all Mitsubishi MOS IC/LSIs contain internal protection circuits at each input terminal to prevent this. It is inherently necessary to apply reverse bias to the P-N junctions of a MOS IC/LSI.

Under certain conditions, however, it may be impossible to completely avoid destruction of the thin insulator-film due to the application of unexpectedly high voltage or thermal destruction due to excessive current from a forward biased P-N junction. The following recommendations should be followed in handling MOS devices.

## 1. KEEPING VOLTAGE AND CURRENT TO EACH TERMINAL BELOW MAXIMUM RATINGS

1. The recommended ranges of operating conditions provide adequate safety margins. Operating within these limits will assure maximum equipment performance and quality.
2. Forward bias should not be applied to any terminal since excessive current may cause thermal destruction.
3. Output terminals should not be connected directly to the power supply. Short-circuiting of a terminal to a power supply having low impedance may cause burn-out of the internal leads or thermal destruction due to excessive current.

## 2. KEEPING ALL TERMINALS AT THE SAME POTENTIAL DURING TRANSPORT AND STORAGE

When MOS IC/LSIs are not in use, both input and output terminals can be in a very high impedance state so that they are easily subjected to electrostatic induction from AC fields of the surrounding space or from charged objects in their vicinity. For this reason, MOS IC/LSIs should be protected from electrostatic charges while being transported and stored by conductive rubber-foam, aluminum foil, shielded boxes or other protective precautions.

## 3. KEEPING ELECTRICAL EQUIPMENT, WORK TABLES AND OPERATING PERSONNEL AT THE SAME POTENTIAL

1. All electric equipment, work table surfaces and operat-
ing personnel should be grounded. Work tables should be covered with copper or aluminum plates of good conductivity, and grounded. One method of grounding personnel, after making sure that there is no potential difference with electrical equipment, is by the use of a wristwatch metallic ring, etc. attached around the wrist and grounded in series with a $1 \mathrm{M} \Omega$ resistor. Be sure that the grounding meets national regulations on personnel safety.
2. Current leakage from electric equipment must be prevented not only for personnel safety, but also to avert the destruction of MOS IC/LSIs, as described above. Items such as testers, curve-tracers and synchroscopes must be checked for current leakage before being grounded.

## 4. PRECAUTIONS FOR MOUNTING OF MOS IC/LSIs

1. The printed wiring lines to input and output terminals of MOS IC/LSIs should not be close to or parallel to high-voltage or high-power signal lines. Turning power on while the device is short-circuited, either by a solder bridge made during assembly or by a probe during adjusting and testing, may cause maximum ratings to be exceeded, which may result in the destruction of the device.
2. When input/output, or input and/or output, terminals of a MOS IC/LSIs (now open-circuits) are connected, we must consider the possibility of current leakage and take precautions similar to $\S 2$ above. To reduce such undesirable trouble, it is recommended that an interface circuit be inserted at the input or outpu't terminal, or a resistor with a resistance that does not exceed the output driving capability of the MOS IC/LSI be inserted between the power supply and the ground.
3. A filter circuit should be inserted in the AC power supply line to absorb surges which can frequently be strong enough to destroy a MOS IC/LSI.
4. Terminal connections should be made as described in the catalog while being careful to meet specifications.
5. Ungrounded metal plates should not be placed near input or output terminals of any MOS IC/LSIs, since destruction of the insulation may result if they become electrostatically charged.
6. Equipment cases should provide shielding from electrostatic charges for more reliable operation. When a plastic case is used, it is desirable to coat the inside of the case with conductive paint and to ground it. This is considered necessary even for battery-operated equipment.

## 8-BIT PARALLEL CPU

The M58710S is an 8 -bit parallel central processing unit (CPU) fabricated on a single chip using a high-speed N channet silicon-gate MOS process, in a ceramic DIL package.

## FEATURES

- Basic machine instructions: 78
- Execution time (at clock frequency 2 MHz ): $2 \mu \mathrm{~s}$
- Directly accessible memory capacity: 65536 bytes
- Number of input/output ports: 256 each
- Multi-level interruption
- Direct memory access (DMA) operation
- All outputs are fully TTL-compatible; $\mathrm{IOL}=1.9 \mathrm{~mA}$
- Unlimited subroutine nesting
- Interchangeable with the Intel's 8080A in pin-to-pin connections and machine instructions.


## PIN CONFIGURATION (TOP VIEW)




## PIN DESCRIPTIONS

| Pin | Name | Input or output | Function significance |
| :---: | :---: | :---: | :---: |
| $\begin{gathered} A_{0} \\ S_{15} \\ A_{15} \end{gathered}$ | Address bus | Out | Provides the address signal to external memory up to 65536 bytes or denotes the $1 / O$ device number for up to 256 input and 256 output devices. Address terminals are three-state, and remain in the floating state during the HLT instruction execute cycle. Tiwh or in the hold state. |
| $\begin{gathered} D_{0} \\ \vdots \\ D_{7} \end{gathered}$ | Data bus | In/Out | Provides bidirectional transfer of instructions and data between CPU and the external memory or the 1/0 ports. Status signals are also transferred. When $\overline{W R}$ is low, data goes to memory or output ports. When DBIN is high, the data is received by the CPU. The status signals are sent on the data bus, synchronizing with SYNC. Like the address bus; the data bus maintains the floating state during the HLT instruction execute cycle ( $T_{W H}$ ) and in the hold state. |
| SYNC | Synchronizing signal | Out | Indicates the beginning of machine cycles $\mathrm{M}_{1}$ through $\mathrm{M}_{5}$. The status signals for each cycle are sent out on the data bus while SYNC is active, and are latched in the external registers during SYNC. |
| DBIN | Data bus input control signal | Out | Indicates to the external circuits that the data bus is in the input mode, in which the CPU receives instructions or data from memory or input ports. The CPU receives instructions or data on the data bus when DBIN is high. |
| READY | Ready signal | In | Indicates to the CPU that data from memory or input/output ports is valid on the data bus. When the READY signal is not high in the $T_{2}$ state, the CPU will enter a waiting state ( $T_{W}$ ) and the WAIT signal goes high. When READY is high, its state advances from $T_{2}$ or $T_{W}$ to $T_{3}$. This READY signal is used to synchronize the CPU with slower memory or input/output ports. |
| WAIT | Wait state signal | Out | Indicates that the CPU has entered a waiting state. When the WAIT signal is high. the CPU is in a waiting state $\left(T_{w}\right)$ and the output on the address bus and the data bus is kept stable. |
| $\overline{W R}$ | Write control signal | Out | Indicates timing of a data write-in operation to memory or output ports. When $\overline{W R}$ is low, data on the data bus is valid; when the WAIT signalis high, it is kept low. |
| HOLD | Hold request signal | In | When READY is high, the CPU enters the hold state provided that: <br> - the CPU is in the HLD instruction execute state ( $T_{W H}$ ). <br> - the CPU is in the $T_{2}$ or $T_{W}$ state and the READY signal is high. <br> When the CPU is in the hold state, the data bus and the address bus will be in the floating state, and will be used with the memory or input/output ports regardless of CPU operation. |
| HLDA | Hold acknowledge signal | Out | When high, indicates that the CPU is in the hold state and the address bus and the data bus will be in the floating state. |
| INTE | Interrupt enable control signal | Out | When high, indicates that an interruption will be accepted by the CPU. It is set to high by instruction EI and is reset to low by instruction DI. It is automatically reset to low at state $T_{1}$ of machine cycle $M_{1}$ when an interrupt is accepted, and is also reset by the RESET signal. |
| INT | Interrupt request signal | in | Indicates to the CPU M58710S that an interrupt is being requested. When the INT is high, the interrupt request will be accepted by the CPU unless HLDA is high or INTE is low. If INT is accepted, INTE will go low and status information INTA will be transferred to the data bus as an interrupt request signal. |
| RESET | Reset signal | In | When high, the program counter is reset to 'O' and instruction NOP is set to the instruction register. INTE is reset to low, and the CPU will not accept interrupts. While RESET is high, the address bus and the data bus remain in the floating state; when RESET goes low, the program will start at location 0 . The data registers, accumulator, stack pointer and flag flip-flops are not reset by this signal. No synchronization is necessary for the RESET signal, but the high level must be kept for a minimum of 3 clock cycles. |

## 8-BIT PARALLEL CPU

## BASIC TIMING

Execution of instructions proceeds in two stages: 1) fetch, and 2) analyze and execute.

Fig. 1 shows the consecutive relationship between stages 1 and 2, after which it is determined whether or not there has been an interrupt request. If there has not, the next instruction is fetched immediately; if there has, it is fetched after completing the necessary interrupt processing. One cycle of this loop completes the execution of one instruction.

Fig. 1 Execution of basic instructions


There are five machine cycles ( $M_{1}, M_{2}, M_{3}, M_{4}$ and $M_{5}$ ) and the fetching, analysis, and execution of a single instruction requires from 1 to 5 machine cycles.

Each cycle consists of from three to five states ( $T_{1}, T_{2}, T_{3}$, $T_{4}$ and $T_{5}$ ), the actual number depending upon the instruction being executed. The duration of one state is defined by successive low-to-high transitions of the $\phi_{1}$ clock. ( 500 ns at a clock frequency of 2 MHz ).

There is also another state $T_{w}$, situated between $T_{2}$ and $\mathrm{T}_{3}$ (see Fig. 2) and controlled by the external signals READY and HOLD, and instruction HLT. The duration of $T_{W}$ is an integral multiple of the clock cycle.

The first machine cycle ( $\mathrm{M}_{1}$ ) in every instruction cycle is a fetch cycle, and the address for memory read is sent on the address bus. $M_{1}$ is composed of states $T_{1} \sim T_{4}$ or $T_{1} \sim T_{5}$, as shown in Fig. 2. Machine cycles $M_{2}, M_{3}, M_{4}$ and $M_{5}$ are
usually composed of three states ( $T_{1} \sim T_{3}$ ), with the exception of the instruction XTHL, which requires five states: $\mathrm{T}_{1} \sim \mathrm{~T}_{5}$.

When the clock period is 500 ns and there is no $T_{w}, M_{1}$ requires $2 \mu \mathrm{~s}$ or $2.5 \mu \mathrm{~s}$, and the other machine cycles require $1.5 \mu \mathrm{~s}$ to execute an instruction. When $\mathrm{T}_{\mathrm{w}}$ exists, the execution time increases accordingly. Since the minimum instruction cycle requires four states ( $\mathrm{T}_{1} \sim \mathrm{~T}_{4}$ ) of machine cycle $M_{1}$, the minimum instruction execution time is $2 \mu \mathrm{~s}$.

Fig. 2 Machine cycle states (hatched blocks indicate a state that may not be required)


## INTERRUPT

When an interruption is requested, the decision whether to accept it or not is taken after the instruction in progress is completed; that is, during the last state of the last machine cycle.

When interrupt is requested and the CPU is in the inter-rupt-enable state (signal INTE is high), the CPU accepts the interrupt and begins a special interrupt machine cycle $M_{1}$ in which the program counter is not incremented and the CPU sends out status information INTA (the interrup acknowledge signal). During state $T_{3}$ of special interrupt machine cycle $M_{1}$, the external interrupt control circuit sends the interrupt instruction corresponding to interrupt factors on the data bus, and the CPU fetches and executes this instruction. This instruction is a special onebyte call (instruction RST) or a special three-byte call (instruction CALL) which facilitates the processing of interrupts.

# MITSUBISHI LSIs M58710S 

Alternative Designation 8080A

Fig. 3 Basic instruction cycle


- Besides the states shown in Fig.3, there is a state $T_{H}$, in which the CPU stays in the hold state after the machine cycle.
- States $T_{W}, T_{4}$ and $T_{5}$ are optional.

Table 1 Status information

| $\begin{aligned} & \text { Data } \\ & \text { bus } \\ & \hline \end{aligned}$ | Signal symbol | Status information designation | Function |
| :---: | :---: | :---: | :---: |
| Do | INTA | Interrupt acknowledge | Goes high when the CPU accepts the interrupt request signal from the INT terminal. |
| D. | wo | Write mode | Goes high when the current machine cycle is in a read mode, and falls when ina write (output) mode. |
| $\mathrm{D}_{2}$ | StACK | Stack | Goes high when the address bus holds the pushdown stack address from the stack pointer. |
| $\mathrm{D}_{3}$ | HLTA | HLT instruction acknowledge | Goes high when the CPU executes the HLT instruction and maintains the halt state. |
| $\mathrm{D}_{4}$ | OUT | Output instruction acknowledge | Goes high when the address bus contains the address of an output device and the data bus contains the output data. (The address of an output device is contained simultaneously in the upper 8 bits and the lower 8 bits of the address bus.) |
| Ds | M | M status | Goes high when the CPU is in the fetoh cycle for the first byte of an instruction. |
| D6 | INP | Input instruction acknowledge | Goes high when the address bus contains the address of an input device and the data bus receives the input data. (The address of an output. device is contained simultaneously in the upper 8 bits and the lower 8 bits of the address bus). |
| $\mathrm{D}_{7}$ | MEMR | Memory read | Goes high when the data bus is used for memory read data. |

- Hatched portions indicate periods during which input data should be kept stable.
- The address data is valid during the period designated by solid lines.
- The period of $T_{w}$ depends on the condition of the READY signal.


## STATUS INFORMATION

The M58710S sends out 8 bits of status information on data bus ( $D_{7} \sim D_{0}$ ) at the first state of each machine cycle $\left(M_{i} \cdot T_{1}\right)$ synchronizing with signal SYNC that indicates the function of each machine cycle. The status signal will be latched in the external register by signal SYNC $\cdot \phi_{1}$. Table 1 gives the functions of the status information that will be sent out on the data bus.
Table 2 Status

| Statusinformation |  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { N } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$ |  |  |  |  |  |  |  |  |  |  |  |
| $\mathrm{D}_{0}$ | INTA | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 |
| $\mathrm{D}_{1}$ | WO | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
| $\mathrm{D}_{2}$ | STACK | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| $\mathrm{D}_{3}$ | HLTA | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 |
| $\mathrm{D}_{4}$ | OUT | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| $\mathrm{D}_{5}$ | $\mathrm{M}_{1}$ | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 |
| $\mathrm{D}_{6}$ | INP | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| $\mathrm{D}_{7}$ | MEMR | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |

## 8-BIT PARALLEL CPU

CPU STATE TRANSITION DIAGRAM
STATE

|  |  | 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F |
| 0000 | 0 | NOP | (NOP) | (NOP) | (NOP) | $\begin{aligned} & \text { MOV } \\ & \text { B, B } \end{aligned}$ | $\begin{aligned} & \text { MOV } \\ & \mathrm{D}, \mathrm{~B} \end{aligned}$ | $\begin{aligned} & \text { MOV } \\ & \mathrm{H}, \mathrm{~B} \end{aligned}$ | $\begin{aligned} & \text { MOV } \\ & \text { M, B } \end{aligned}$ | $\begin{gathered} \mathrm{ADD} \\ \mathrm{~B} \end{gathered}$ | $\begin{gathered} \text { SUB } \\ B \end{gathered}$ | ANA B | $\begin{gathered} \text { ORA } \\ \text { B } \end{gathered}$ | RNZ | RNC | RPO | RP |
| 0001 | 1. | $\begin{gathered} L \times 1 \\ B \end{gathered}$ | $\begin{gathered} L X I \\ D \end{gathered}$ | $\begin{gathered} \text { LXI } \\ H \end{gathered}$ | $\begin{aligned} & \text { LXI } \\ & \text { SP } \end{aligned}$ | $\begin{aligned} & \text { MOV } \\ & B, C \end{aligned}$ | $\begin{aligned} & \text { MOV } \\ & \text { D. C } \end{aligned}$ | $\begin{aligned} & \text { MOV } \\ & \mathrm{H}, \mathrm{C} \end{aligned}$ | $\begin{aligned} & \text { MOV } \\ & \mathrm{M}, \mathrm{C} \end{aligned}$ | $\begin{gathered} \text { ADD } \\ \mathrm{C} \end{gathered}$ | $\begin{gathered} \text { SUB } \\ \mathrm{C} \end{gathered}$ | $\begin{gathered} \text { ANA } \\ \mathrm{C} \end{gathered}$ | $\begin{gathered} \text { ORA } \\ \text { C } \end{gathered}$ | $\begin{gathered} \text { POP } \\ \mathrm{B} \end{gathered}$ | $\begin{gathered} \text { POP } \\ \mathrm{D} \end{gathered}$ | $\begin{gathered} \text { POP } \\ H \end{gathered}$ | $\begin{aligned} & \text { POP } \\ & \text { PSW } \end{aligned}$ |
| 0010 | 2 | $\begin{gathered} \text { STAX } \\ B \end{gathered}$ | $\begin{gathered} \text { STAX } \\ D \end{gathered}$ | SHLD | STA | $\begin{aligned} & \text { MOV } \\ & \text { B, D } \end{aligned}$ | $\begin{aligned} & \text { MOV } \\ & \mathrm{D}, \mathrm{D} \end{aligned}$ | $\begin{aligned} & \text { MOV } \\ & \text { H, D } \end{aligned}$ | $\begin{aligned} & \text { MOV } \\ & \text { M, D } \end{aligned}$ | $\begin{gathered} A D D \\ D \end{gathered}$ | $\begin{gathered} \text { SUB } \\ D \end{gathered}$ | $\begin{gathered} \text { ANA } \\ \mathrm{D} \end{gathered}$ | $\begin{gathered} \text { ORA } \\ D \end{gathered}$ | JNZ | JNC | JPO | JP |
| 0011 | 3 | $\begin{gathered} I N X \\ B \end{gathered}$ | $\begin{gathered} I N X \\ D \end{gathered}$ | $\begin{gathered} I N X \\ H \end{gathered}$ | $\begin{gathered} \text { INX } \\ \text { SP } \end{gathered}$ | MOV B, E | $\begin{gathered} \text { MOV } \\ \mathrm{D}, \mathrm{E} \end{gathered}$ | $\begin{aligned} & \text { MOV } \\ & \text { H, E } \end{aligned}$ | $\begin{aligned} & \text { MOV } \\ & \text { M, E } \end{aligned}$ | ADD E | $\begin{gathered} \text { SUB } \\ \mathrm{E} \end{gathered}$ | ANA $\mathrm{E}$ | $\begin{gathered} \text { ORA } \\ E \end{gathered}$ | JMP | OUT | XTHL | DI |
| 0100 | 4 | $\begin{gathered} \text { INR } \\ B \end{gathered}$ | $\begin{gathered} \text { INR } \\ D \end{gathered}$ | $\begin{gathered} \text { INR } \\ H \end{gathered}$ | $\begin{gathered} \text { INR } \\ M \end{gathered}$ | MOV B, H | MOV <br> D. H | $\begin{aligned} & \mathrm{MOV} \\ & \mathrm{H}, \mathrm{H} \end{aligned}$ | MOV <br> M, H | $\begin{gathered} A D D \\ H \end{gathered}$ | $\begin{gathered} \text { SUB } \\ H \end{gathered}$ | ANA H | $\begin{gathered} \text { ORA } \\ H \end{gathered}$ | CNZ | CNO | CPO | CP |
| 0101 | 5 | $\begin{gathered} \text { DCR } \\ B \end{gathered}$ | $\begin{gathered} D C R \\ D \end{gathered}$ | $\begin{gathered} \text { DCR } \\ \mathrm{H} \end{gathered}$ | $\begin{gathered} \text { DCR } \\ M \end{gathered}$ | MOV B, L | $\begin{aligned} & \text { MOV } \\ & \mathrm{D}, \mathrm{~L} \end{aligned}$ | $\begin{aligned} & \text { MOV } \\ & \mathrm{H}, \mathrm{~L} \end{aligned}$ | MOV <br> M, L | $\begin{gathered} \text { ADD } \\ \mathrm{L} \end{gathered}$ | $\begin{gathered} \text { SUB } \\ \llcorner \end{gathered}$ | ANA $\llcorner$ | $\begin{gathered} \text { ORA } \\ L \end{gathered}$ | $\begin{gathered} \mathrm{PUSH} \\ \mathrm{~B} \end{gathered}$ | $\left\lvert\, \begin{gathered} P U S H \\ D \end{gathered}\right.$ | $\begin{gathered} P \cup S H \\ H \end{gathered}$ | $\begin{aligned} & \text { PUSH } \\ & \text { PSWW } \end{aligned}$ |
| 0110 | 6 | $\begin{gathered} M v \\ B \end{gathered}$ | $\frac{M v}{D}$ |  | $\mathrm{Mvi}$ | $\begin{aligned} & \text { MOV } \\ & B, M \end{aligned}$ | $\begin{aligned} & \text { MOV } \\ & \mathrm{D}, \mathrm{M} \end{aligned}$ | $\begin{aligned} & \text { MOV } \\ & \mathrm{H}, \mathrm{M} \end{aligned}$ | HLT | $\begin{gathered} \text { ADD } \\ M \end{gathered}$ | $\begin{gathered} \text { SUB } \\ M \end{gathered}$ | $\begin{gathered} \text { ANA } \\ M \end{gathered}$ | $\begin{gathered} \text { ORA } \\ M \end{gathered}$ | ADI | sul | AN I | ORI |
| 0111 | 7 | RLC | RAL | DAA | STC | MOV <br> B, A | $\begin{aligned} & \text { MOV } \\ & \text { D, A } \end{aligned}$ | $\begin{aligned} & \text { MOV } \\ & \mathrm{H}, \mathrm{~A} \end{aligned}$ | $\begin{aligned} & \text { MOV } \\ & \text { M, A } \end{aligned}$ | $\begin{gathered} \text { ADD } \\ \mathrm{A} \end{gathered}$ | $\begin{gathered} \text { SUB } \\ \text { A } \end{gathered}$ | $\begin{gathered} \text { ANA } \\ \text { A } \end{gathered}$ | $\begin{gathered} \text { ORA } \\ A \end{gathered}$ | $\begin{gathered} \text { RST } \\ 0 \end{gathered}$ | $\begin{gathered} \text { RST } \\ 2 \end{gathered}$ | $\begin{gathered} \text { RST } \\ \mathbf{4} \end{gathered}$ | $\begin{gathered} \text { RST } \\ 6 \end{gathered}$ |
| 1000 | 8 | (NOP) | (NOP) | (NOP) | (NOP) | $\begin{aligned} & \text { MOV } \\ & \mathrm{C}, \mathrm{~B} \end{aligned}$ | $\begin{aligned} & \text { MOV } \\ & \text { E, B } \end{aligned}$ | $\begin{aligned} & \text { MOV } \\ & \mathrm{L}, \mathrm{~B} \end{aligned}$ | $\begin{aligned} & \text { MOV } \\ & \text { A, B } \end{aligned}$ | $\begin{gathered} \mathrm{ADC} \\ \mathrm{~B} \end{gathered}$ | $\begin{gathered} \text { SBB } \\ B \end{gathered}$ | $\begin{gathered} \text { XRA } \\ B \end{gathered}$ | $\begin{gathered} \text { CMP } \\ \text { B } \end{gathered}$ | RZ | RC | RPE | RM |
| 1001 | 9 | $\begin{gathered} \text { DAD } \\ \text { B } \end{gathered}$ | $\begin{gathered} \text { DAD } \\ D \end{gathered}$ | $\begin{gathered} \text { DAD } \\ H \end{gathered}$ | $\begin{gathered} \text { DAD } \\ \text { SP } \end{gathered}$ | $\begin{aligned} & \mathrm{MOV} \\ & \mathrm{C}, \mathrm{C} \end{aligned}$ | MOV <br> E, C | $\begin{aligned} & \text { MOV } \\ & \mathrm{L}, \mathrm{C} \end{aligned}$ | $\begin{aligned} & \text { MOV } \\ & \text { A, C } \end{aligned}$ | $\begin{gathered} \mathrm{ADC} \\ \mathrm{C} \end{gathered}$ | $\begin{gathered} \text { SBB } \\ \mathrm{c} \end{gathered}$ | $\begin{gathered} \text { XRA } \\ c \end{gathered}$ | $\begin{gathered} \text { CMP } \\ \mathrm{C} \end{gathered}$ | RET | (RET) | PCHL | SPHL |
| 1010 | A | $\begin{gathered} \text { LDAX } \\ B \end{gathered}$ | $\begin{gathered} \text { LDAX } \\ D \end{gathered}$ | LHLD | LDA | $\begin{aligned} & \text { MOV } \\ & \mathrm{C}, \mathrm{D} \end{aligned}$ | $\begin{aligned} & \text { MOV } \\ & \text { E, D } \end{aligned}$ | $\begin{aligned} & \text { MOV } \\ & \text { L, D } \end{aligned}$ | $\begin{aligned} & \text { MOV } \\ & \text { A, D } \end{aligned}$ | $\begin{gathered} A D C \\ D \end{gathered}$ | $\begin{gathered} \text { SBB } \\ \mathrm{D} \end{gathered}$ | $\begin{gathered} \text { XRA } \\ D \end{gathered}$ | CMP <br> D | J2 | JC | JPE | JM |
| 1011 | B | $\begin{gathered} \text { DC } X \\ B \end{gathered}$ | $\begin{gathered} D C X \\ D \end{gathered}$ | $\begin{gathered} \text { DCX } \\ H \end{gathered}$ | $\begin{gathered} \text { DCX } \\ \text { SP } \end{gathered}$ | $\begin{gathered} \text { MOV } \\ \mathrm{C}, \mathrm{E} \end{gathered}$ | MOV <br> E, E | $\begin{aligned} & \text { MOV } \\ & \text { L, E } \end{aligned}$ | MOV <br> A, E | $\begin{gathered} \mathrm{ADC} \\ \mathrm{E} \end{gathered}$ | $\begin{gathered} \text { SBB } \\ \mathrm{E} \end{gathered}$ | $\begin{gathered} \text { XRA } \\ E \end{gathered}$ | CMP $\mathrm{E}$ | (IMP) | in | XCHG | EI |
| 1100 | C | $\begin{gathered} \text { INR } \\ C \end{gathered}$ | $\begin{gathered} \text { INR } \\ E \end{gathered}$ | $\begin{gathered} \text { INR } \\ L \end{gathered}$ | $\begin{gathered} \text { INR } \\ A \end{gathered}$ | MOV $\mathrm{C}, \mathrm{H}$ | MOV <br> E, H | $\begin{aligned} & \text { MOV } \\ & \text { L, H } \end{aligned}$ | MOV <br> A, H | $\begin{gathered} \text { ADC } \\ H \end{gathered}$ | $\begin{gathered} \text { SBB } \\ H \end{gathered}$ | $\begin{gathered} \text { XRA } \\ H \end{gathered}$ | $\begin{gathered} \text { CMP } \\ \mathrm{H} \end{gathered}$ | $\mathrm{cz}$ | cc | CPE | $\mathrm{CM}$ |
| 1101 | D | $\begin{gathered} \text { DCR } \\ \mathrm{C} \end{gathered}$ | $\begin{gathered} \text { DCR } \\ E \end{gathered}$ | $\begin{gathered} \text { DCR } \\ L \end{gathered}$ | $\begin{gathered} \text { DCR } \\ \text { A } \end{gathered}$ | MOV <br> C, L | MOV <br> E, L | MOV <br> L, L | MOV <br> A, L | $\begin{gathered} A D C \\ L \end{gathered}$ | $\begin{gathered} \text { SBB } \\ \mathrm{L} \end{gathered}$ | $\begin{gathered} \text { XRA } \\ \mathrm{L} \end{gathered}$ | $\begin{gathered} \text { CMP } \\ \mathrm{L} \end{gathered}$ | OAL - | (CALE) | (CALL) | (CALL) |
| 1110 | E | $\begin{gathered} \mathrm{MVI} \\ \mathrm{C} \end{gathered}$ | MVI <br> E | $\begin{gathered} M v 1 \\ C \end{gathered}$ | $\begin{gathered} M v 1 \\ A \end{gathered}$ | $\begin{aligned} & \text { MOV } \\ & \mathrm{C}, \mathrm{M} \end{aligned}$ | MOV <br> E, M | $\begin{aligned} & \text { MOV } \\ & \text { L, M } \end{aligned}$ | $\begin{aligned} & \text { MOV } \\ & \text { A, M } \end{aligned}$ | $\begin{gathered} \text { ADC } \\ M \end{gathered}$ | $\begin{gathered} \text { SBB } \\ M \end{gathered}$ | $\begin{gathered} \text { XRA } \\ M \end{gathered}$ | $\begin{gathered} \text { CMP } \\ M \end{gathered}$ | ACI |  | XRI |  |
| 1111 | F | RRC | RAR | CMA | CMC | MOV $\mathrm{C}, \mathrm{~A}$ | MOV <br> E, A | MOV $\mathrm{L}, \mathrm{~A}$ | MOV <br> A, A | $\begin{gathered} A D C \\ A \end{gathered}$ | $\begin{gathered} \text { SBB } \\ \text { A } \end{gathered}$ | $\begin{gathered} \text { XRA } \\ \text { A } \end{gathered}$ | $\begin{gathered} \text { CMP } \\ \mathrm{A} \end{gathered}$ | $\begin{gathered} \text { RST } \\ 1 \end{gathered}$ | $\begin{gathered} \text { RST } \\ 3 \end{gathered}$ | $\begin{gathered} \text { RST } \\ 5 \end{gathered}$ | $\begin{gathered} \text { RST T } \\ 7 \end{gathered}$ |

This list shows the machine codes and corresponding machine instructions. $D_{3} \sim D_{0}$ indicate the lower 4 bits of the machine code and $D_{7} \sim D_{4}$ indicate the upper 4 bits. Hexadecimal numbers are also used to indicate this code. The instruction may consist of one, two, or three bytes, but only the first byte is listed.
indicates a three-byte instruction.
indicates a two-byte instruction.
is not a formal instruction, but if this code is accessed, the instruction in parentheses may be executed. This is not, however, guaranteed.

## 8-BIT PARALLEL CPU

MACHINE INSTRUCTIONS




MITSUBISHI LSIs
M58710S
Alternative Designation 8080A

8-BIT PARALLEL CPU

ABSOLUTE MAXIMUM RATINGS

| Symbol | Parameter | Conditions | Limits | Unit |
| :---: | :---: | :---: | :---: | :---: |
| V DD | Supply voltage | With respect to VBB (substrate) | $-0.3 \sim 20$ | V |
| $V \mathrm{Cc}$ | Supply voltage |  | $-0.3-20$ | V |
| V ss | Supply voltage |  | $-0.3-20$ | V |
| $V_{1}$ | Input voltage |  | $-0.3 \sim 20$ | $\checkmark$ |
| $\mathrm{Pd}_{\text {d }}$ | Maximum power dissipation | $\mathrm{Ta}=25^{\circ} \mathrm{C}$ | 1500 | mW |
| Topr | Operating free-air temperature |  | $0 \sim 70$ | ${ }^{\circ} \mathrm{C}$ |
| Tstg | Storage temperature |  | $-65 \sim 150$ | ${ }^{\circ} \mathrm{C}$ |

## RECOMMENDED OPERATING CONDITIONS

| Symbol | Parameter | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Nom | Max |  |
| $V \mathrm{BB}$ | Supply voltage | -4.75 | -5 | $-5.25$ | V |
| VCC | Supply voltage | 4.75 | 5 | 5.25 | V |
| VDD | Supply voltage | 11.4 | 12 | 12.6 | V |
| VSs | Supply voltage |  | 0 |  | V |
| VIH | High-level input voltage | 3.3 |  | $\mathrm{VCc}+1$ | V |
| VIL | Low-level input voltage | $-1$ |  | 0.8 | V |
| $\mathrm{VIH}_{\text {I }}(\phi)$ | High-level clock input voltage | 9 |  | VDD +1 | V |
| VIL ( $\phi$ ) | Low-level clock input voltage | -1 |  | 0.8 | V |
| Topr | Operating free-air temperature | 0 |  | 70 | ${ }^{\circ} \mathrm{C}$ |

ELECTRICAL CHARACTERISTICS ( $T a=0 \sim 70^{\circ} \mathrm{C}, \mathrm{VDD}=12 \mathrm{~V} \pm 5 \%, V C C=5 \mathrm{~V} \pm 5 \%, V B B=-5 \mathrm{~V} \pm 5 \%, V \mathrm{VS}=0 \mathrm{~V}$. unless otherwise noted)

| Symbol | Parameter | Test conditions |  | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Typ | Max |  |
| Vol | Low-level output voltage | $1 \mathrm{~L}=1.9 \mathrm{~mA}$. All output |  |  |  | 0.45 | V |
| VOH | High-level output voltage | $1 \mathrm{OH}=-150 \mu \mathrm{~A}$ |  | 3.7 |  |  | V |
| IBB | VBB supply current | Operating at $\mathrm{tc}(\phi)=480 \mathrm{~ns} . \mathrm{Ta}=25^{\circ} \mathrm{C}$ (Note 2) |  |  | -0.01 | -1 | mA |
| ICC | VCC supply current |  |  |  | 60 | 75 | mA |
| IDD | VDD supply current |  |  |  | 40 | 70 | mA |
| 11 | Input current, except clock and data bus | $0 \leqq \mathrm{VI} \leqq \mathrm{VCC}$ |  |  |  | $\pm 10$ | $\mu \mathrm{A}$ |
| $11(\phi)$ | Clock input current | $0 \leqq V_{I}(\phi) \leqq V_{D D}$ |  |  |  | $\pm 10$ | $\mu \mathrm{A}$ |
| II(DB) | Input current, data bus ( Note 3) | $\begin{aligned} & 0 \leqq V_{I}(D B) \leqq V_{I L} \\ & V_{I L} \leqq V_{I}(D B) \leqq V_{C C} \end{aligned}$ |  |  |  | $\begin{array}{\|c\|} \hline 10 \\ -100 \end{array}$ | $\mu \mathrm{A}$ |
| H(HOLD) | Input current during hold. address or data bus | At hold state $0.45 \mathrm{~V} \leqq \mathrm{Vo}^{\text {O }} \leqq \mathrm{VCC}$ |  |  |  | $\begin{array}{\|l\|} \hline 10 \\ -100 \\ -2 \\ \hline \end{array}$ | $\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$ |
| $\mathrm{Ci}\left(\phi_{1}\right)$ | Input capacitance, clock input ( $\phi_{1}$ ) | $\begin{aligned} & \left.\begin{array}{l} V\left(\phi_{1}\right)=0 V \\ V\left(\phi_{2}\right)=0 V \\ V_{1}=0 V \\ V_{0}=0 V \end{array}\right\} \end{aligned}$ | $\mathrm{f}=1 \mathrm{MHz}, 25 \mathrm{mVr} . \mathrm{m} . \mathrm{s}$ |  | 20 | 25 | pF |
| $\mathrm{Ci}\left(\phi_{2}\right)$ | Input capacitance, clock input ( $\phi_{2}$ ) |  |  |  | 15 | 20 | pF |
| Ci | Input capacitance, any input except clock |  |  |  | 5 | 10 | pF |
| Co | Output capacitance |  |  |  | 5 | 20 | pF |

Note 1: Current flowing into an IC is positive: out is negative.
$2: \operatorname{tc}\left(\phi_{)}=\operatorname{td}\left(\phi_{1} H^{\prime} \cdot \phi_{2}\right)+\operatorname{tr}\left(\phi_{2}\right)+\mathrm{t}_{\mathrm{w}}\left(\phi_{2}\right)+\operatorname{tf}\left(\phi_{2}\right)+\operatorname{td}\left(\phi_{2} \cdot \phi_{1}\right)+\operatorname{tr}\left(\phi_{1}\right)\right.$
3 : Active pull-up resistors will be switched on to the data bus when DBIN is high and data input voltage is more positive than $V_{I H}$ min.

TIMING REQUIREMENTS ( $\mathrm{Ta}=0 \sim 70^{\circ} \mathrm{C}, \mathrm{VDD}_{\mathrm{D}}=12 \mathrm{~V} \pm 5 \%, \mathrm{VCC}_{\mathrm{C}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$. unless otherwise noted)

| Symbol | Parameter | Limits |  |  | Unit. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |
| $t c(\phi)$ | Clock cycle time (Note 4) | 480 |  | 2000 | ns |
| $\operatorname{tr}(\phi)$ | Clock rise time | 0 |  | 50 | ns |
| $\mathrm{tf}(\phi)$ | Clock fall time | 0 |  | 50 | ns |
| $\mathrm{t}_{\mathrm{w}\left(\phi_{4}\right)}$ | Clock 1 pulse width | 60 |  |  | ns |
| $t_{w}\left(\phi_{2}\right)$ | Clock 2 pulse width | 220 |  |  | ns |
| $\operatorname{td}\left(\phi_{1} L-\phi_{2}\right)$ | Delay time, clock 1 to clock 2 | 0 |  |  | ns |
| td ( $\phi_{2}-\phi_{1}$ ) | Delay time. clock 2 to clock 1 | 70 |  |  | ns |
| $t d\left(\phi_{1}+H^{\prime} \phi_{2}\right)$ | Delay time, clock 1 high to clock 2 | 80 |  |  | ns |
| tsu(DA- $\phi_{1}$ ) | Data setup time with respect to clock 1 | 30 |  |  | ns |
| tsu(DA- $\phi_{2}$ ) | Data setup time with respect to clock 2 | 150 |  |  | ns |
| tsu(HOLD) | Hold setup time | 140 |  |  | ns |
| tsu(INT) | Interrupt setup time | 120 |  |  | ns |
| t su(RDY) | Ready setup time | 120 |  |  | ns |
| th (DA) | Data hold time | tPD(DBI) |  |  | ns |
| th (HOLD) | Hold input hold time | 0 |  |  | ns |
| th (INT) | Interrupt hoid time | 0 |  |  | ns |
| th (RDY) | Ready hold time | 0 |  |  | ns |

SWITCHING CHARACTERISTICS $\left(T a=0 \sim 70^{\circ} \mathrm{C}, V_{D D}=12 \mathrm{~V} \pm 5 \%, V_{C C}=5 \mathrm{~V} \pm 5 \%, V_{B B}=-5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{s \mathrm{~s}}=0 \mathrm{~V}\right.$, unless otherwise noted)

| Symbol | Parameter | Test conditions (Note 5) | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| tPD(AD) | Propagation delay time, clock 2 to address outputs | $\mathrm{R}_{\mathrm{L}}=2.1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ |  |  | 200 | ns |
| tPD(DA) | Propagation delay time, clock 2 to data bus | $\mathrm{R}_{L}=2.1 \mathrm{kS}, \mathrm{C}_{L}=100 \mathrm{pF}$ |  |  | 220 | ns |
| t PD (CONT) | Propagation delay time. clocks to control outputs | $\mathrm{R}_{\mathrm{L}}=2.1 \mathrm{k} \Omega, \mathrm{C}_{L}=50 \mathrm{pF}$ |  |  | 120 | ns |
| t PD(DBI) | Propagation delay time, clock 2 to DBIN output | $\mathrm{R}_{\mathrm{L}}=2.1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ | 25 |  | 140 | ns |
| t PD(INT) | Propagation delay time. clock 2 to INTE output | $\mathrm{R}_{\mathrm{L}}=2.1 \mathrm{k} \Omega, \mathrm{C}_{L}=50 \mathrm{pF}$ |  |  | 200 | ns |
| $\mathrm{t}_{\mathrm{PD}(\mathrm{DI})}$ | Time for data bus to enter input mode |  |  |  | tPD(DBI) | ns |
| t Pxz | Disable time to high-impedance state during hold address output and data bus |  |  |  | 120 | ns |
| $\operatorname{td}(\overline{W R}-A D)$ | Delay time, write signal to address output | $R_{L}=2.1 \mathrm{kS}, \mathrm{C}_{L}=100 \mathrm{pF}$ | td ( $\phi 1-\phi 2$ ) |  |  | ns |
| $\operatorname{td}(A D-\overline{W R})$ | Delay time, address output to write signal | $\mathrm{R}_{\mathrm{L}}=2.1 \mathrm{ks}$, $\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ | Note 6 |  |  | ns |
| td ( $\overline{W R}-D A$ ) | Delay time, write signal to data output | $R_{L}=2.1 \mathrm{kS}, \mathrm{C}_{L}=100 \mathrm{pF}$ |  |  |  | ns |
| td (DA- WR ) | Delay time, data output to write signal | $\mathrm{R}_{\mathrm{L}}=2.1 \mathrm{kS}$, $\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ | Note 7 |  |  | ns |

Note 5 : Load circuit

$6: \mathrm{t}_{\mathrm{d}}(\mathrm{AD}-\overline{W R})=2 \mathrm{t}_{\mathrm{c}}(\phi)-\mathrm{t}_{\mathrm{d}}\left(\phi \cdot \mathrm{H}-\phi_{2}\right)-\mathrm{t}_{\mathrm{r}}(\phi)-140 \mathrm{~ns}$
$7: \mathrm{t}_{\mathrm{d}}(\mathrm{DA}-\overline{\mathrm{WR}})=\mathrm{t}_{\mathrm{c}}(\phi)-\mathrm{t}_{\mathrm{c}}\left(\phi_{1} \mathrm{H}-\phi_{2}\right)-\mathrm{t}_{\mathrm{r}}(\phi)-170 \mathrm{~ns}$

## 8-BIT PARALLEL CPU

## TIMING DIAGRAM



Note 1: This timing diagram shows timing relationships only, it does not represent any specific machine cycle.
2: Time measurements are made at the following reference voltages: Clock voltage $H=8.0 \mathrm{~V}, \mathrm{~L}=1.0 \mathrm{~V}$; input voltage, $\mathrm{H}=3.3 \mathrm{~V}, \mathrm{~L}=0.8 \mathrm{~V}$; output voltage. $\mathrm{H}=2.0 \mathrm{~V}, \mathrm{~L}=0.8 \mathrm{~V}$
3 : Data on the data bus must be stable for this period in the input mode. Requirements $t_{\text {Su }}(D A-\phi 1)$. $t_{s u}(D A-\phi 2)$, $t_{h}(D A)$ must be satisfied.
4: The ready signal must be stable for this period during state $T_{2}$ or $T_{w}$. External synchronization is required.
5 : The hold signal must be stable for this period during state $T_{2}$ or $T_{W}$ when entering the hold mode and during states $T_{3}, T_{4}, T_{5}, T_{W H}$ and $T_{H}$ when in the hold mode. External synchronization is not required
6 : The interrupt signal INT must be stable for the period immediately before the last state of any instruction in order to be recognized on the following machine cycle $M_{1}$. External synchronization is not required

## MITSUBISHI LSIs

M58710S
Alternative Designation 8080A

8-BIT PARALLEL CPU

## APPLICATIONS

## A Basic System Using the M58710S

The configuration of a system using the M58710S will depend on the functions of the system. A typical basic
system is shown in Fig. 1, and a summary of its operation is as follows:

Fig. 1 An example of a basic system using the M58710S


1. After the CPU receives the two phase clocks $\phi_{1}$ and $\phi_{2}$ from the clock generator and the external reset signal, the address bus provides the address to memory location zero.
2. At the same time the CPU sends out status signals, which are latched temporarily in the status latch (flip-flops in which status information is latched). The status signals alert external circuits as to the state of the machine cycle that the CPU is ready to execute. When the CPU calls for data or instructions to be read from memory, status signal MEMR is applied to the multiplexer, and the 8 -bit data from memory is read into the CPU through the bidirectional data bus across the multiplexer.
3. The 8 -bit data coming from memory is decoded as an instruction. If it is a register-reference-arithmetic instruction, it is executed in the CPU; if it is a move-to-memory instruction, the CPU outputs the memory location to the address bus and data to be written on the data bus
in the next machine cycle (Note 1). The memory write in operation is executed by write control signal WR.
4. During input and output operation, the CPU outputs the I/O device number to the address bus, outputs a status signal (INP in the input mode; OUT in the output mode) and executes the read/write operation to the I/O devices using the bidirectional data bus.
5. If there is a signal from terminal INT to the CPU, the CPU is in the interrupt enable state, and it sends out status information INTA (Note 2), and an interrupt instruction is sent to the CPU from the interrupt instruction generator across the multiplexer. By executing this interrupt instruction, the CPU can jump to the interrupt processing subroutine.

Note 1: Each instruction may have five machine cycles. For register-to-register transfer or arithmetic instruction, instruction fetching and execution are carried out by machine cycle $M_{1}$ but memory access instructions, or 2-byte or 3-byte instructions require more than one machine cycle
2 : The interrupt acknowledge signal goes high when the CPU accepts an interrupt request (INT) signal.

## MITSUBISHI LSIs

## M58710S

Alternative Designation 8080A

## 8-BIT PARALLEL CPU

## Push-Down Stack Operation

The M58710S has a last-in first-out stack. This stack has a pointer that maintains the address of the next available stack location in memory and can be initialized to use any position of memory. Since the stack pointer has a 16 -bit register, it can locate any stack location up to 65536 bytes according to memory capacity. An example of the interrupt request is shown in Fig. 2 and the operation of the stack pointer in Fig. 3.
plained as follows:

Fig. 2 Processing an interrupt request


Fig. 2 is explained as follows:

1. An external interrupt request occurs when the CPU executes the instruction stored at location a in the main program.
2. Instruction RST is fetched, the content of the program counter is incremented and pushed onto the push-down stack. Then the CPU jumps to the first location $b$ of the interrupt operation program.
3. The contents of the register are pushed onto the stack. $F$ (in Fig. 3) indicates 8-bit data of flag flip-flops including $C Y_{2}, C Y_{1}, Z, P$ and $S$. These are, from the most to the least significant bit, $\mathrm{S}, \mathrm{Z}, 0, \mathrm{CY}_{1}, 0, \mathrm{P}, 1, \mathrm{CY}$.
4. Instruction EI is executed, enabling the CPU to accept the next interrupt request.
5. The interrupt operation is carried out.
6. The CPU enters the interrupt disable state.
7. The contents of registers are popped off the stack.
8. Instruction EI is executed, enabling the CPU to accept the interrupt request after return to the main program.
9. The content of the program counter is returned to location $a+1$ of the main program.

The operation of the push-down stack shown in Fig. 2 is described in Fig. 3, where SP indicates the content of the stack pointer before the interrupt is requested. Instruction LXI SP should be used to initialize the stack pointer. the stack pointer.

The content of the stack pointer is SP-4 at (3), but at (9), after the execution of instruction RET, it returns to the initial state, and the content of the stack point is SP.

Fig. 3 Operation of the push-down stack


## DESCRIPTION

The M58531P is a 256 -word by 1 -bit P-channel silicon-gate MOS static RAM, designed for applications where ease of use is the important design object. Both inputs and outputs are fully compatible with TTL.

## FEATURES

- Fast access time: 850ns (typ) $1,500 \mathrm{~ns}$ (max)
- Low standby power: $0.7 \mathrm{~mW} /$ bit (typ)
- Low operating power: $1.4 \mathrm{~mW} / \mathrm{bit}$ (typ)
- All inputs/outputs are fully compatible with TTL
- Three-state output and OR-tie capability
- Easy memory expansion by chip select signal
- Interchangeable with Intel's 1101A in pin configuration and electrical characteristics


## APPLICATION

- Small-capacity memory systems


## FUNCTION

Static design eliminates external clocks and refresh circuitry. All inputs and outputs are fully compatible with TTL.

In the write mode, address signals $A_{0} \sim A_{7}$ are used to select storage locations, and when signal R/W remains high the data of signal $D_{I N}$ are writeen.

In the read mode, address signals $A_{0} \sim A_{7}$ are used to select storage locations, and when signal R/W remains low the data of the selected location is read out to the DOUT terminals.

When signal $\overline{\mathrm{CS}}$ is high, the chip is deselected, disabling both read and write operations and enabling the OR-tie with other output terminals since the outputs are in the floating (high-impedance) state.

## PIN CONFIGURATION (TOP VIEW)



Outline 16P1

The M58531P has two power supply terminals, Vod for the memory cell part in which the data is stored, and $V_{0}$ for the read/write control circuit. Power dissipation is low since, during standby, current is supplied only to the memory cell part for data storage, and read/write operation is not performed.


## 256-BIT (256-WORD BY 1-BIT) STATIC RANDOM-ACCESS MEMORY

## ABSOLUTE MAXIMUM RATINGS

| Symbol | Parameter | Conditions | Limits | Unit |
| :---: | :---: | :---: | :---: | :---: |
| VDD | Supply voltage | With respect to $\mathrm{V}_{\mathrm{cc}}$ | 0.3~-20 | V |
| VD | Supply voltage |  | 0.3~-20 | V |
| $V_{1}$ | Input voltage |  | 0.3~-20 | V |
| $\mathrm{V}_{0}$ | Output voltage |  | 0.3~-20 | V |
| Pd | Power dissipation | $\mathrm{Ta}=25^{\circ} \mathrm{C}$ | 700 | mW |
| Topr | Operating free-air temperature range |  | $-10 \sim 75$ | ${ }^{\circ} \mathrm{C}$ |
| Tstg | Storage temperature range |  | $-40 \sim 125$ | ${ }^{\circ} \mathrm{C}$ |

RECOMMENDED OPERATING CONDITIONS ( $\mathrm{Ta}=-10 \sim 75^{\circ} \mathrm{C}$. unless otherwise noted)

| Symbol | Parameter | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Nom | Max |  |
| VDD | Supply voltage | $-9.45$ | $-9$ | $-8.55$ | V |
| $V \mathrm{D}$ | Supply voltage | $-9.45$ | $-9$ | $-8.55$ | V |
| VCC | Supply voltage | 4.75 | 5 | 5.25 | V |
| VIL | Low-tevel input voltage. | $\mathrm{V}_{\mathrm{cc}}-15$ |  | Vcc-4.5 | V |
| V IH | High-level input voltage | $\mathrm{V}_{\mathrm{cc}}{ }^{-2}$ |  | $\mathrm{Vcc}+0.3$ | V |

ELECTRICAL CHARACTERISTICS ( $\mathrm{Ta}=-10 \sim 75^{\circ} \mathrm{C}, . \mathrm{VCC}=5 \mathrm{~V} \pm 5 \%, \mathrm{VDD}_{\mathrm{D}}=-9 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{D}}=-9 \mathrm{~V} \pm 5 \%$, unless otherwise noted)

| Symbol | Parameter | Tesi conditions | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| VIH | High-level input voltage |  | Vco-2 |  | $\mathrm{Vcc}+0.3$ | V |
| VIL | Low-level input voltage |  | Vcc-15 |  | Vcc-4.5 | V |
| VOH | High-level output voltage | $10 \mathrm{H}=-100 \mu \mathrm{~A}$ | 3.5 | 4.9 |  | V |
| VOL | Low-level output voltage | $\mathrm{IOL}=2 \mathrm{~mA}$ |  |  | 0.45 | V |
| 11 | Input current | $V_{1}-V_{c c}=-15 \mathrm{~V}$ |  |  | $-1$ | $\mu \mathrm{A}$ |
| Ioz | Off-state input current | $V_{0}-V_{C c}=-5 V, V_{1}(C S)=V_{c c}-2 V$ |  |  | -1 | $\mu \mathrm{A}$ |
| IOH | High-level output current | $V D=0 V$ |  | $-2$ | -7 | mA |
| IOL | Low-level output current | $\mathrm{V} 0=0.45 \mathrm{~V}$ | 2 |  |  | mA |
| IDD | Supply current from VDD | $10=0 \mathrm{~mA} \quad \mathrm{Ta}=25^{\circ} \mathrm{C}$ |  | $-13$ | $-19$ | mA |
| ID | Supply current from VD | $10=0 \mathrm{~mA} \quad \mathrm{Ta}=25^{\circ} \mathrm{C}$ |  | $-12$ | -18 | mA |
| $\mathrm{Ci}_{\mathrm{i}}$ | Input capacitance | $\mathrm{V}_{1}=\mathrm{V}_{\mathrm{cc}} \mathrm{f}=1 \mathrm{MHz}$, Ta $=25^{\circ} \mathrm{C}$ |  | 7 | 10 | pF |
| Co | Output capacitance . | $\mathrm{VO}=\mathrm{V}_{\text {cc }} \mathrm{f}=1 \mathrm{MHzz}, \mathrm{Ta}=25^{\circ} \mathrm{C}$ |  | 7 | 10 | pF |
| $\mathrm{C}\left(\mathrm{V}_{\mathrm{D}}\right)$ | Capacitance. VD power supply | $\mathrm{Vc}=\mathrm{V}_{\mathrm{cc}} \mathrm{f}=1 \mathrm{MHz}, \mathrm{Ta}=25^{\circ} \mathrm{C}$ |  | 20 | 35 | pF |

Note 1 : Current flowing into an IC is positive; out is negative.

SWITCHING CHARACTERISTICS ( $\mathrm{Ta}=-10 \sim 75^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V} \pm 5 \%, \mathrm{VDD}=-9 \mathrm{~V} \pm 5 \%$, $\mathrm{VD}=-9 \mathrm{~V} \pm 5 \%$, unless otherwise noted) Read Cycle

| Symbol | Parameter | Test conditions | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Ma |  |
| to (RD) | Read cycle time | (Note 3) | 1.5 |  |  | $\mu \mathrm{S}$ |
| t su ( $\overline{C S}$ ) | Chip select setup time |  |  |  | 1.2 ( | $\mu \mathrm{s}$ |
| ta (AD) | Address access time |  |  | 0.85 | 1.5 | $\mu \mathrm{S}$ |

Note 2 : Maximum value of $\mathrm{t}_{\mathrm{su}}(\overline{\mathrm{CS}})$ measured at minimum read cycle $(1.5 \mu \mathrm{~s})$

Write Cycle

| Symbol | Parameter | Test conditions | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| tc (WR) | Write cycle time | (Note 3) | 0.8 |  |  | $\mu \mathrm{s}$ |
| tsu (WR) | Write setup time |  | 0.3 |  |  | $\mu \mathrm{s}$ |
| $t w(W R)$ | Write pulse width |  | 0.4 |  |  | $\mu \mathrm{s}$ |
| tsu (DA) | Data setup time |  | 0.3 |  |  | $\mu \mathrm{s}$ |
| $\operatorname{th}(\mathrm{DA})$ | Data hold time |  | 0.1 |  |  | $\mu \mathrm{S}$ |

## Chip Select and Deselect

| Symbol | Parameter | Test conditions | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| $t_{w(\overline{C S})}$ | Chip select pulse width | (Note 3) | 0.4 |  |  | $\mu \mathrm{S}$ |
| ta ( $\overline{\mathrm{CS}}$ ) | Chip select access time |  |  | 0.2 | 0.3 | $\mu \mathrm{S}$ |
| $t d v(\overline{\mathrm{CS}})$ | Data valid time with respect to chip select |  |  | 0.1 | 0.3 | $\mu \mathrm{S}$ |

Note 3 : Input voltage waveform has an amplitude of $0 \sim 5 \mathrm{~V}$ and $\mathrm{tr}=\mathrm{tf}=10 \mathrm{~ns}$ Output load is one TTL gate and a 20pF capacitance. Unless otherwise noted, the reference points are the 1.5 V level of the output of a TTL gate ( $\mathrm{tPD} \leqq 10 \mathrm{~ns}$ )

TIMING DIAGRAMS


Chip Select and Deselect


$V_{D}$ Power Supply Switching


## 256-BIT (256-WORD BY 1-BIT) STATIC RANDOM-ACCESS MEMORY

TYPICAL CHARACTERISTICS
ADDRESS ACCESS TIME VS.
SUPPLY VOLTAGE


SUPPLY VOLTAGE OPERATING
RANGE


DATA TERMINAL INPUT/OUTPUT TRANSITION CHARACTERISTICS


ADDRESS ACCESS TIME VS.
LOAD CAPACITANCE


OUTPUT CURRENT VS. OUTPUT VOLTAGE


OUTPUT VOLTAGE Vo (V)


SUPPLY Voltage Vd, Vdd (V)

## DESCRIPTION

The M58533P is a 1024 -word by 1 -bit P-channel silicon-gate MOS RAM, designed for applications where utilization of the high-speed low-power characteristics peculiar to dynamic circuitry is the important design object.

## FEATURES

- Fast access time: $\quad 300 \mathrm{~ns}$ (max) $\left(\mathrm{Ta}=0 \sim 70^{\circ} \mathrm{C}\right)$
- Fast cycle time: $\quad 580 \mathrm{~ns}(\mathrm{~min})\left(\mathrm{Ta}=0 \sim 70^{\circ} \mathrm{C}\right)$
- Refresh interval: $\quad 2 \mathrm{~ms}$ (max) ( $\mathrm{Ta}=0 \sim 70^{\circ} \mathrm{C}$ )
- Low standby power: $50 \mu \mathrm{~W} /$ bit (typ)
- Low operating power: $0.25 \mathrm{~mW} /$ bit (typ)
- Output terminal has OR-tie capability
- Easy memory expansion by chip enable input
- Interchangeable with Intel's 1103 in pin configuration and electrical characteristics


## APPLICATION

- Main memory of computers
- Memory for Chinese-character printer


## FUNCTION

The M58533P has the following four function cycles:
READ-when an address is designated by address signals $A_{0} \sim A_{9}$ and $R / W$ is turned high, data in the designated address is read out to the output.
WRITE-when an address is designated by address signals $A_{0} \sim A_{9}$ and the low-level write pulse is applied to the $R / W$ terminal, data input during that time is written.
READ/WRITE (READ-MODIFY-WRITE)-In the write cycle, if data that is read out from the output terminals is treated as effective data during the period before the write pulse is applied, both read and write operations are

## PIN CONFIGURATION (TOP VIEW)



## Outline 18P1

## performed in one cycle.

REFRESH-This cycle periodically refreshes the dynamically memorized data, and it is performed by designating the address of $A_{0} \sim A_{4}$ in the read cycle.

The output can go to the floating (high-impedance) state when chip enable goes high, and the output can then be OR-tied.


## ABSOLUTE MAXIMUM RATINGS

| Symbol | Parameter | Conditions | Limits | Unit |
| :---: | :---: | :---: | :---: | :---: |
| VDD | Supply voltage | With respect to VbB | 0.3--25 | V |
| V ss | Supply voltage |  | 0.3~-25 | V |
| VI | Input voltage |  | 0.3--25 | V |
| $V_{0}$ | Output voltage |  | 0.3~-25 | V |
| Pd | Power dissipation | Ta $=25^{\circ} \mathrm{C}$ | 700 | mW |
| Topr | Operating free-air temperature range |  | 0 ~ 70 | ${ }^{\circ} \mathrm{C}$ |
| Tstg | Storage temperature range |  | $-40-125$ | ${ }^{\circ} \mathrm{C}$ |

RECOMMENDED OPERATING CONDITIONS $\left(\mathrm{Ta}=0 \sim 70^{\circ} \mathrm{C}\right.$, unless otherwise noted)

| Symbol | Parameter | Conditions | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Nom | Max |  |
| $\mathrm{V}_{\text {SS }}$ | Supply voltage |  | 15.2 | 16 | 16.8 | V |
| $V_{\text {BB }}-V_{\text {SS }}$ | Supply voltage |  | 3 | 3.5 | 4 | V |
| Vod | Supply voltage | GND |  | 0 |  | V |
| VIH | High-level input voltage |  | Vss-1 |  | Vss +1 | V |
| VIL | Low-level input voltage |  | Vss-17 |  | Vss-15 | $\checkmark$ |
| RL | Load resistance | Between $\overline{\mathrm{DOUT}^{\text {a }}}$ and VDD | 0.1 |  | 1 | k $\Omega$ |

ELECTRICAL CHARACTERISTICS $\left(T a=0 \sim 70^{\circ} \mathrm{C}, \mathrm{VSS}=16 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{BB}}-\mathrm{VSS}=3 \mathrm{~V} \sim 4 \mathrm{~V}, \mathrm{VDD}=0 \mathrm{~V}\right.$. unless otherwise noted $)$

| Symbol | Parameter | Test conditions | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| VIH | High-level input voltage. all inputs |  | $\mathrm{V}_{s s}-1$ |  | $v_{s s}+1$ | V |
| VIL(P,CE.R/W) | Low-level input voltage, P. CE and R/W |  | $V_{s s}-17$ |  | $V_{s s}-15$ | V |
| VIL (AD, DA) | Low-level input voltage. AD and DA |  | Vss-17 |  | Vss-14.5 | V |
| 11 | Input leakage current, all inputs | $\mathrm{V}_{1}=0 \mathrm{~V}$ |  |  | -1 | $\mu \mathrm{A}$ |
| IOH | High-level output current | $\mathrm{Vo}=0 \mathrm{~V}$ | -500 | $-800$ | -4000 | $\mu \mathrm{A}$ |
| IOL | Low-level output current |  |  |  | - 1 | $\mu \mathrm{A}$ |
| IbB | Supply current fromVBB |  |  |  | 100 | $\mu \mathrm{A}$ |
| $100_{1}$ | Supply current from VDD | $\mathrm{V}_{1(A D)}=\mathrm{V}_{1(P)}=0 \mathrm{~V}, \mathrm{~V}_{1(\mathrm{CE})}=\mathrm{V}_{\text {SS }}, \mathrm{Ta}=25^{\circ} \mathrm{C}$ |  | -37 | -56 | mA |
| $1 \mathrm{DD}_{2}$ | Supply current from V $D$ D | $V_{1(A D)}=V_{1(P)}=V_{1(C E)}=0 V_{1}, \mathrm{Ta}=25^{\circ} \mathrm{C}$ |  | -38 | -59 | mA |
| $1 \mathrm{DD}_{3}$ | Supply current from V $D$ D | $V_{1(P)}=V_{\text {SS }}, V_{1(C E)}=0 V, T a=25^{\circ} \mathrm{C}$ |  | $-5.6$ | -11 | mA |
| $1 \mathrm{DD}_{4}$ | Supply current from V ${ }^{\text {d }}$ | $V_{1(P)}=V_{S S}, V_{1(C E)}=V_{S S}, T a=25^{\circ} \mathrm{C}$ |  | $-3$ | - 4 | mA |
| I DD(AV) | Average supply current fromVDD | $\mathrm{tc}=580 \mathrm{~ns}, \mathrm{tw}(\mathrm{P})=190 \mathrm{~ns}, \mathrm{Ta}=25^{\circ} \mathrm{C}$ |  | -17 | -25 | mA |
| $\mathrm{Ci}(\mathrm{Ao}-\mathrm{Ag})$ | Input capacitance. AD | $V_{1}=V_{s s}, V_{i}=25 \mathrm{mV} \mathrm{V}_{\text {ms }}, \mathrm{f}=1 \mathrm{MHz}$ |  | 5 | 7 | pF |
| Ci (P.CE) | Input capacitance, P and CE |  |  | 15 | 18 | pF |
| Ci(R/W) | Input capacitance. R/W |  |  | 11 | 15 | pF |
| Ci (DA) | Input capacitance. DA |  |  | 3 | 5 | pF |
| Co(DA) | Output capacitance | $\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{o}}=25 \mathrm{~m} \mathrm{~V}_{\mathrm{rms}}, \mathrm{f}=1 \mathrm{MHz}$ |  | 2 | 3 | pF |

Note 1 : Current flowing into an IC is positive: out is negative.
2 : Output voltage is defined as follows: $V O H=V O D-R L \cdot I O H, V O L=V D D-R L \cdot I O L$

TIMING REQUIREMENTS (For Read, Write, or Read-Modify-Write Cycle)
( $\mathrm{Ta}=0 \sim 70^{\circ} \mathrm{C}, V \mathrm{VS}=16 \mathrm{~V} \pm 5 \% . \mathrm{VBB}-\mathrm{VSS}=3 \sim 4 \mathrm{~V}, \mathrm{VDD}=0 \mathrm{~V}$, unless otherwise noted)

| Symbol | Parameter | Test conditions | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| tc (REF) | Refresh cycle time | See timing diagram for read, write and read-modify-write cycles |  |  | 2 | ms |
| t su (AD-CE) | Address setup time with respect to chip enable |  | 115 |  |  | ns |
| tsu(CE-AD) | Chip enable setup time with respect to address |  | 20 |  |  | ns |
| tsu (P-CE) | Precharge setup time with respect to chip enable |  | 125 |  |  | ns |
| td (PL-CEL) | Delay time, precharge low to chip enable low |  |  |  | 75 | n S |
| td(PH-CEH) | Delay time, precharge high to chip enable high |  |  |  | 140 | ns |
| t su(CE-P) | Chip enable setup time with respect to precharge |  | 85 |  |  | ns |

SWITCHING CHARACTERISTICS $\left(T a=0 \sim 70^{\circ} \mathrm{C}, \mathrm{V} s \mathrm{~S}=16 \mathrm{~V} \pm 5 \%, V B B-V \mathrm{VS}=3 \mathrm{~V} \sim 4 \mathrm{~V}, \mathrm{VDD}=0 \mathrm{~V}\right.$, unless otherwise noted) Read Cycle

| Symbol | Parameter | Test conditions | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| $t_{C}$ (RD) | Read cycle time | See timing diagram for read cycle $\mathrm{tr}=\mathrm{tf}=20 \mathrm{~ns}, \mathrm{C} L=100 \mathrm{pF}$ | 480 |  |  | ns |
| th (CE) | Chip enable hold time |  | 165 |  | 500 | ns |
| $\mathrm{ta}_{\mathrm{a}}(\mathrm{P}, \mathrm{LH})$ | Precharge low-to-high access time |  |  |  | 120 | ns |
| $\mathrm{ta}_{\mathrm{a}}(\mathrm{AD})$ | Address access time | RLOAD $=100 \Omega, \mathrm{VREF}=40 \mathrm{mV}$ | 300 |  |  | ns |
| $\mathrm{ta}_{\mathrm{a}}(\mathrm{P}, \mathrm{HL})$ | Precharge high-to-low access time |  | 310 |  |  | ns |

Write or Read-Modify-Write Cycle

| Symbol | Parameter | Test conditions | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| $\mathrm{t}_{\mathrm{C}}$ (WR) | Write-cycle time | See timing diagram for read. write and read-modify-write cycle. | 580 |  |  | ns |
| $\mathrm{t}_{\mathrm{C}}$ (RMW) | Read-modify-write cycle time |  | 580 |  |  | ns |
| $\mathrm{t}_{\text {su }}(\mathrm{P}-\mathrm{WR})$ | Precharge setup time with respect to write |  | 165 |  |  | ns |
| tw(WR) | Write pulse width | $\begin{aligned} & C_{L}=100 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=100 \Omega \\ & \mathrm{~V}_{\mathrm{REF}}=40 \mathrm{mV} \\ & \mathrm{tr}=\mathrm{tf}=20 \mathrm{~ns} \end{aligned}$ | 50 |  |  | ns |
| $\mathrm{t}_{\text {Su }}$ (WRHL) | Write setup time with respect to high-to-low output |  | 80 |  |  | ns |
| tsu (DA) | Data setup time |  | 105 |  |  | ns |
| $\mathrm{th}_{\mathrm{h}}(\mathrm{DA})$ | Data hold time |  | 10 |  |  | ns |
| $\mathrm{ta}_{\mathrm{a}(\mathrm{P}, \mathrm{LH})}$ | Precharge low-to-high access time |  |  |  | 120 | ns |
| tsu (WRLH) | Write setup time with respect to low-to-high output |  | 0 |  |  | ns |

## MITSUBISHI LSIs M58533P

## 1024-BIT (1024-WORD BY 1-BIT) DYNAMIC RANDOM-ACCESS MEMORY

TIMING DIAGRAMS


Write or Read-Modify-Write Cycle


Note 3 : The reference level of point (1) is $V_{S S}-2 V$, and point (2) is $V_{D D}+2 V$
4: $\boldsymbol{I}_{\mathrm{T}}$ is defined as the transition time between point (1) and point (2).
$5: t_{\text {su( } D A)}$ is referenced to point (2) of the rising edge of CE or R/W
$6: \operatorname{tn}_{n(D A)}$ is referenced to point (1) of the rising edge of CE or $R / W$.
$\left.: t_{a(A D)}=t_{\text {su }}(A D-C E) \min +t_{d(P L-C E L}\right)+t_{a(P, L H)} m a x+2 t_{T}$
$: \mathrm{t}_{\mathrm{a}(\mathrm{P}, \mathrm{HL})}=\mathrm{t}_{\mathrm{SU}(\mathrm{P}-\mathrm{CE})} \min +\mathrm{t}_{\mathrm{d}(\mathrm{PL}-\mathrm{CEL})}+\mathrm{t}_{\mathrm{a}(\mathrm{P}, L H)} \max +2 \mathrm{t}_{\mathrm{T}}$

TYPICAL CHARACTERISTICS
SUPPLY CURRENT WAVEFORM


HIGH-LEVEL OUTPUT CURRENT VS.
SUPPLY VOLTAGE VSS


ADDRESS ACCESS TIME VS. SUPPLY VOLTAGE VSS


AVERAGE SUPPLY CURRENT FROM VDD
VS. SUPPLY VOLTAGE VSS




## DESCRIPTION

The M58751P and M58751S are 1024-word by 1-bit Nchannel silicon-gate MOS static RAMs, designed for applications where ease of use is the important design object. Both operate by a single 5 V power supply, as does TTL, and all inputs and output are directly compatible with TTL.

## FEATURES

- Fast access time: 450ns (max)
- Low power dissipation: $100 \mu \mathrm{~W} /$ bit (typ)
- Single 5V power supply
- Data holding at 1.5 V supply voltage is possible
- Requires no external clock or refreshing
- All inputs and output are directly compatible with TTL
- Three-state output and OR-tie capability
- Easy memory expansion by chip select input
- Both M58751P and M58751S are interchangeable with Intel's 2102A-4 in pin configuration and electrical characteristics


## APPLICATION

- Small-capacity memory systems


## FUNCTION

Static design makes the M58751P and M58751S convenient to use as they require no external clocks or refreshing, and all inputs and output are directly compatible with TTL.

During writing operation, when a location is designated by address signals $A_{0} \sim A_{9}$ and $R / W$ goes low, $D_{1 N}$ at that time is written; during reading operation, when a location is designated by address signals $A_{0} \sim A_{9}$ and $R / W$ goes high, data of the designated address is taken from the DOUT

terminal.
When $\overline{\mathrm{CS}}$ is high, the chip is in the non-selectable state, disabling both reading and writing operations of the device. In this case the output is in the floating (high impedance) state enabling OR-tie to other outputs.

The memory data is held when supply voltage drops to 1.5 V , enabling battery back-up operation during power stoppages and low-power operation during standby.


1024-BIT (1024-WORD BY 1-BIT) STATIC RANDOM-ACCESS MEMORY

ABSOLUTE MAXIMUM RATINGS

| Symbol | Parameter |  | Conditions | Limits | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Vcc | Supply voltage |  | With respect to GND | $-0.3 \sim 7$ | V |
| VI | Input voltage |  |  | $-0.3-7$ | V |
| Vo | Output voltage |  |  | $-0.3 \sim 7$ | $\checkmark$ |
| Pd | Power dissipation | M58751P | $\mathrm{Ta}=25^{\circ} \mathrm{C}$ | 700 | mW |
|  |  | M58751S |  | 1000 | mW |
| Topr | Operating free-air temperature range |  |  | $0 \sim 70$ | ${ }^{\circ} \mathrm{C}$ |
| Tstg | Storage temperature range | M58751P |  | $-40-125$ | ${ }^{\circ} \mathrm{C}$ |
|  |  | M58751S |  | $-65-150$ | ${ }^{\circ} \mathrm{C}$ |

RECOMMENDED OPERATING CONDITIONS $\left(T a=0 \sim 70^{\circ} \mathrm{C}\right.$. unless otherwise noted)

| Symbol | Parameter | Limits |  |  | Unit |
| :---: | :--- | :--- | :--- | :---: | :---: |
|  |  |  | $\operatorname{Min}$ |  |  |
|  |  | Max |  |  |  |
| VCC | Supply voltage | 4.75 | 5.0 | 5.25 | V |
| VIL | Low-level input voltage | 0 |  | 0.65 | V |
| VIH | High-level input voltage | 2.2 |  | Vcc | V |

ELECTRICAL CHARACTERISTICS $\left(\mathrm{Ta}=0 \sim 70^{\circ} \mathrm{C}, \mathrm{Vcc}=5 \mathrm{~V} \pm 5 \%\right.$. unless otherwise noted)

| Symbol | Parameter | Test conditions | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| VIH | High-level input voltage |  | 2.2 |  | Vcc | V |
| VIL | Low-level input voltage |  | 0 |  | 0.65 | V |
| VOH | High-level output voltage | $10 \mathrm{H}=-200 \mu \mathrm{~A}$ | 2.4 |  |  | V |
| Vol | Low-level output voltage | $1 \mathrm{OL}=2.1 \mathrm{~mA}$ |  |  | 0.4 | V |
| 11 | Input current | $\mathrm{V}_{1}=0 \sim 5.25 \mathrm{~V}$ |  |  | 10 | $\mu \mathrm{A}$ |
| IozH | Off-state high-level output current | $\mathrm{V}_{1}(\overline{\mathrm{CS}})=2.2 \mathrm{~V}, \mathrm{~V}_{0}=2.4 \mathrm{~V}-\mathrm{Vcc}$ |  |  | 10 | $\mu \mathrm{A}$ |
| IozL | Off-state low-level output current | $\mathrm{V}_{1}(\overline{\mathrm{CS}})=2.2 \mathrm{~V}, \mathrm{~V}_{0}=0.4 \mathrm{~V}$. |  |  | -10 | $\mu \mathrm{A}$ |
| Icc | Supply current from Vcc | $\mathrm{V}_{1}=5.25$ (all inputs). output open |  | 20 | 40 | mA |
| Ci | Input capacitance., all inputs | $\mathrm{V}_{1}=\mathrm{GND}, \mathrm{V}_{\mathrm{i}}=25 \mathrm{~m} \mathrm{~V}_{\mathrm{rms}}, \mathrm{f}=1 \mathrm{MHz}$ |  | 3 | 5 | pF |
| Co | Output capacitance | $\mathrm{V}_{0}=\mathrm{GND}, \mathrm{V}_{0}=25 \mathrm{mV} \mathrm{rms}^{\text {, }} \mathrm{f}=1 \mathrm{MHz}$ |  | 7 | 10 | pF |

POWER-DOWN CHARACTERISTICS $\left(\cdot T a=0 \sim 70^{\circ} \mathrm{C}\right.$, unless otherwise noted)

| Symbol | Parameter | Test conditions | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| $\mathrm{VCC}(\mathrm{PD})$ | Power-down supply voltage |  | 1.5 |  |  | V |
| $V_{1}(\overline{\mathrm{CS}})$ | Power-down chip select voltage | $2.2 \mathrm{~V} \leqq \mathrm{VCC}(P \mathrm{D}) \leqq \mathrm{VCC}$ | 2.2 |  |  | V |
|  |  | $1.5 \mathrm{~V} \leqq \mathrm{VCC}(\mathrm{PD}) \leqq 2.2 \mathrm{~V}$ | $\mathrm{VCC}(\mathrm{PD})$ |  |  | V |
| $1 \mathrm{CCO}\left(\mathrm{PDI}_{1}\right)$ | Power-down supply current | $\mathrm{Vcc}=1.5 \mathrm{~V}$, all inputs $=1.5 \mathrm{~V}$ |  | 13 | 25 | mA |
| ICC(PD2) | Power-down supply current | $\mathrm{Vcc}=2.0 \mathrm{~V}$, all inputs $=2.0 \mathrm{~V}$ |  | 15 | 30 | mA |

[^1]SWITCHING CHARACTERISTICS ( $\mathrm{Ta}=0 \sim 70^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V} \pm 5 \%$, uniless otherwise noted)
Read Cycle


TIMING REOUIREMENTS ( $\mathrm{Ta}=0 \sim 70^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V} \pm 5 \%$. unless otherwise noted) Write Cycle

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Symbol} \& \multirow[b]{2}{*}{Parameter} \& \multirow[b]{2}{*}{Test conditions} \& \multicolumn{3}{|c|}{Limits} \& \multirow[b]{2}{*}{Unit} <br>
\hline \& \& \& Min \& Typ \& Max \& <br>
\hline $\mathrm{t}_{\mathrm{c}}(W R)$ \& Write cycle time \& \multirow[t]{7}{*}{Input pulse $\left.\quad \begin{array}{rl} \\ V I H\end{array}\right)=2.2$

$V I L$} \& 450 \& \& \& ns <br>
\hline t su (AD) \& Address setup time \& \& 20 \& \& \& ns <br>
\hline $t_{w(W R)}$ \& Write pulse width \& \& 300 \& \& \& ns <br>
\hline $t_{h}(D A)$ \& Data hold time \& \& 50 \& \& \& ns <br>
\hline $\mathrm{t}_{\text {su ( }}$ (DA) \& Data setup time \& \& 300 \& \& \& ns <br>
\hline $t_{\text {WR }}$ \& Write recovery time \& \& 0 \& \& \& ns <br>
\hline tsu( $\overline{\mathrm{CS}})$ \& Chip select setup time \& \& 300 \& \& \& ns <br>
\hline
\end{tabular}

## Power-Down Operation



| Symbol | Parameter | Test conditions | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| $\mathrm{t}_{\text {Su }}(\mathrm{PD})$ | Power-down setup time |  | 0 |  |  | ns |
| $t_{R(P D)}$ | Power-down recovery time |  | tc(RD) |  |  | ns |

TIMING DIAGRAMS
Read Cycle


## Write Cycle



## Power-Down Operation

Vcc
$\overline{\mathrm{CS}}$


TYPICAL CHARACTERISTICS
ADDRESS ACCESS TIME VS.


DATA INPUT-OUTPUT TRANSFER CHARACTERISTICS

dATA InPut VOltage Vi(DA) (V)

HIGH-LEVEL OUTPUT CURRENT VS.


ADDRESS ACCESS TIME VS.


LOW-LEVEL OUTPUT CURRENT VS. LOW-LEVEL OUTPUT VOLTAGE


SUPPLY CURRENT FROM VCC VS. SUPPLY VOLTAGE VCC


# MITSUBISHI LSIs <br> M58755S-1, M58755S-2, M58755S-3 

## DESCRIPTION

The M58755S series consists of three 4096 -word by 1 -bit dynamic RAMs, fabricated with the N -channel silicon-gate MOS process. These RAMs are designed for large-capacity memory systems where high speed, low power dissipation and low cost are important design objects.

## FEATURES

| Symbol | M58755S-1 | M58755S-2 | M58755S-3 |
| :--- | :---: | :---: | :---: |
| Access time (max) | 200 ns | 270 ns | 150 ns |
| Cycle time (min) | 400 ns | 470 ns | 320 ns |
| Minimum cycle power | 300 mW | 240 mW | 350 mW |

- Low standby power: $\quad 0.03 \mu \mathrm{~W} /$ bit (typ)
- Voltage range for all power
supplies ( $V_{D D}, V_{C C}, V_{B B}$ ): $\pm 10 \%$
- Refresh interval:
$2 \mathrm{~ms}\left(\mathrm{Ta}=0 \sim 70^{\circ} \mathrm{C}\right)$
- Refresh addresses:
$A_{0}, A_{1}, A_{2}, A_{3}, A_{4}, A_{5}$
- All input terminals except CE are directly TTL compatible
- Memory expansion is enabled by chip select input
- Output can be in the floating (high-impedance) state when CS is high or CE is low.
- Interchangeable with Intel's 2107B and TI's TMS4060


## APPLICATION

- Main memory unit for computers


## FUNCTION

A location is designated by address signals $A_{0} \sim A_{11}$, and reading from and writing to that location is controlled by

## PIN CONFIGURATION (TOP VIEW)


$N C=$ NO CONNECTION

Outline 22S1
$R / W$. When $\overline{C S}$ is high, the chip is in the non-selectable state, disabling both read and write operations.

The devices are dynamic RAMs, and must be refreshed every 2 ms to hold data stored in the memory cells. Refreshing is performed by reading sequentially the 64 locations designated by the 6 address signals $A_{0} \sim A_{5}$.


## 4096-BIT (4096-WORD BY 1-BIT) DYNAMIC RANDOM ACCESS MEMORY

ABSOLUTE MAXIMUM RATINGS

| Symbol | Parameter | Conditions | Limits | Unit |
| :---: | :---: | :---: | :---: | :---: |
| VDD | Supply voltage | With respect to VBB (substrate) | $-0.3 \sim 20$ | V |
| Vcc | Supply voltage |  | $-0.3 \sim 20$ | V |
| Vss | Supply voltage |  | $-0.3 \sim 20$ | V |
| $V_{1}$ | Input voltage |  | $-0.3 \sim 20$ | V |
| $\mathrm{V}_{0}$ | Output voltage |  | $-0.3 \sim 20$ | V |
| $\mathrm{Pd}_{\mathrm{d}}$ | Power dissipation | $\mathrm{Ta}=25^{\circ} \mathrm{C}$ | 1000 | mW |
| Topr | Operating free-air temperature range |  | 0~70 | ${ }^{\circ} \mathrm{C}$ |
| Tstg | Storage temperature range |  | $-55 \sim 150$ | ${ }^{\circ} \mathrm{C}$ |

RECOMMENDED OPERATING CONDITIONS $\left(\mathrm{Ta}=0 \sim 70^{\circ} \mathrm{C}\right.$, unless otherwise noted)

| Symbol | Parameter | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Nom | Max |  |
| VDD | Supply voltage | 10.8 | 12 | 13.2 | $\checkmark$ |
| Vcc | Supply voltage | 4.5 | 5 | 5.5 | V |
| V ss | Supply voltage |  | 0 |  | $\checkmark$ |
| Vbb | Supply voltage | -4.5 | -5 | -5.5 | V |
| $\mathrm{V}_{\text {IH }}(\mathrm{CE})$ | High-level chip enable input voltage | VDD-1 |  | $\mathrm{VDD}+1$ | V |
| VIH | High-level input voltage, all inputs except chip enable | 2.4 |  | $\mathrm{Vcc}+1$ | $\checkmark$ |
| VIL (CE) | Low-level chip enable input voltage | -1 |  | 1 | V |
| VIL | Low-level input voltage, all inputs except chip enable | -1 |  | 0.6 | V |

ELECTRICAL CHARACTERISTICS
( $\mathrm{Ta}=0 \sim 70^{\circ} \mathrm{C}, V D D=12 \mathrm{~V} \pm 10 \%, V C C=5 \mathrm{~V} \pm 10 \%, V S S=0 \mathrm{~V}, V_{B B}=-5 \mathrm{~V} \pm 10 \%$. unless otherwise noted)

| Symbol | Parameter |  | Test conditions | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| VIH(CE) | High-level chip enable input voltage |  |  |  | VDD-1 |  | VDD +1 | V |
| VIH | High-level input voltage, all inputs except chip enable |  |  | 2.4 |  | $V_{c c}+1$ | V |
| VIL(CE) | Low-level chip enable input voltage |  |  | -1 |  | 1 | V |
| VIL | Low-level input voltage, all inputs except chip enable |  |  | -1 |  | 0.6 | V |
| II (CE) | Input current, chip enable input |  | $V_{1}=V D D+1 V$ |  | 0.01 | 2 |  |
| 11 | Input current, all inputs except chip enable |  | $\mathrm{V}_{1}=6.5 \mathrm{~V}$ |  | 0.01 | 10 | $\mu \mathrm{A}$ |
| VOH | High-level output voltage |  | $1 \mathrm{OH}=-2 \mathrm{~mA}$ | 2.4 |  | Vcc | V |
| Vol | Low-level output voltage |  | $10 \mathrm{~L}=2 \mathrm{~mA}$ | 0 |  | 0.45 | V |
| Ioz | Off-state output current |  | Voz $=0 \sim V_{c c}$ | $-10$ |  | 10 | $\mu \mathrm{A}$ |
| IDDI | Supply current from VDD |  | VIL (CE) $=-1 \mathrm{~V} \sim 0.6 \mathrm{~V}$ |  | 10 | 200 | $\mu \mathrm{A}$ |
| IdD2 | Supply current from VDD |  | $\mathrm{V}_{\mathrm{IH}}(\mathrm{CE})=\mathrm{V}_{\text {IH }} \mathrm{VIL}(\overline{C S})=\mathrm{V}_{\text {IL }}$ |  | 10 | 25 | mA |
| ICC | Supply current fromi ${ }^{\text {c cc }}$ |  | $\mathrm{VIL}(\mathrm{CE})=\mathrm{V}_{\text {IL }}$ or $\left.\mathrm{VIH}_{\text {(CS }}\right)=\mathrm{V}_{\text {IH }}$ |  | 0.01 | 10 | $\mu \mathrm{A}$ |
| IBB | Supply current from V BB |  |  |  | 0.01 | 100 | $\mu \mathrm{A}$ |
| $\operatorname{IDD}(\mathrm{AV})$ | Average supply current from VDD | M 58755S-1 | $\mathrm{tw}(C E)=230 \mathrm{~ns}, \mathrm{tc}_{\mathrm{c}}=400 \mathrm{~ns}$ |  | 25 | 40 | mA |
|  |  | M58755S-2 | $\mathrm{tw}(C E)=300 \mathrm{~ns}, \mathrm{to}^{2}=470 \mathrm{~ns}$ |  | 20 | 35 | mA |
|  |  | M 58755S-3 | $\mathrm{tw}(\mathrm{CE})=180 \mathrm{~ns}, \mathrm{tc}_{\mathrm{c}}=310 \mathrm{~ns}$ |  | 29 | 45 | mA |
| Ci (CE) | Input capacitance, chip enable input |  | $V_{\text {IL }}=V_{\text {SS }}, V_{B B}=-5 \mathrm{~V}, \mathrm{f}=\mathrm{imHz}$ |  | 17 | 25 | pF |
| Ci | Input capacitance, all inputs except chip enable |  | $V_{\text {IL }}=V_{\text {SS }}, V_{B B}=-5 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$ |  | 5 | 7 | pF |
| Co | Output capacitance |  | $\mathrm{VOL}^{\prime}=\mathrm{VSS}^{\prime} \mathrm{V}_{\mathrm{BB}}=-5 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$ |  | 5 | 7 | pF |

Note 1 : Current flowing into an IC is positive: out is negative.

## TYPICAL CHARACTERISTICS (M58755S-1)

SUPPLY CURRENT FROM VDD VS.


AVERAGE SUPPLY CURRENT FROM VDD VS. AMBIENT TEMPERATURE


AVERAGE SUPPLY CURRENT FROM Vbb


Vdd VS. Vbb OPERATING REGION


SUPPLY VOLTAGE VbB ( V )

ADDRESS ACCESS TIME VS. AMBIENT TEMPERATURE


REFRESH CYCLE TIME VS.
AMBIENT TEMPERATURE


AMBIENT TEMPERATURE $\mathrm{Ta}\left({ }^{\circ} \mathrm{C}\right.$ )

## 4096-BIT (4096-WORD BY 1-BIT) DYNAMIC RANDOM-ACCESS MEMORY

TIMING REQUIREMENTS M58755S-1 $\left(T a=0 \sim 70^{\circ} \mathrm{C}, \mathrm{VDD}=12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%\right.$, $\mathrm{VSS}=0 \mathrm{~V}$, $\mathrm{VBB}_{\mathrm{VB}}=-5 \mathrm{~V} \pm 10 \%$, unless Read, Write or Read-Modify-Write Cycle
ctherwise noted)

| Symbol | Parameter | Test conditions | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| tc(REF) | Refresh cycle time |  |  |  | 2 | ms |
| tw(CEL) | Chip enable low pulse width |  | 130 |  |  | ns |
| $\operatorname{tr}$ (CE) | Chip enable putse rise time |  |  |  | 40 | ns |
| $t f(C E)$ | Chip enable pulse fall time |  |  |  | 40 | ns |
| tsu(AD) | Address setup time |  | 0 |  |  | ns |
| tsu( $\overline{\mathrm{CS}})$ | Chip select setup time |  | 0 |  |  | ns |
| th (AD) | Address hold time |  | 100 |  |  | ns |
| th ( $\overline{\mathrm{CS}}$ ) | Chip select hold time |  | 100 |  |  | ns |

## Read Cycle

| Symbol | Parameter | Test conditions | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| tc (RD) | Read cycle time | $\mathrm{tr}=\mathrm{t} \mathrm{f}=20 \mathrm{~ns}$ | 400 |  |  | ns |
| tw (CEH) | Chip enable high pulse width |  | 230 |  | 4000 | ns |
| tsu(RD) | Read setup time |  | -10 |  |  | ns |
| th (RD) | Read hold time |  | 0 |  |  | ns |

Write or Read-Modify-Write Cycle

| Symbol | Parameter | Test conditions | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| tc (WR) | Write cycle time | $t \mathrm{t}=\mathrm{tf}=20 \mathrm{~ns}$ | 400 |  |  | ns |
| to (RMW) | Reaa-modify-write cycle time |  | 520 |  |  | ns |
| tw (CEH) | Chip enable high pulse width, write cycle |  | 230 |  | 4000 | ns |
| tw (CEH) | Chip enable high pulse width, read-modify-write cycle | . | 350 |  | 4000 | ns |
| tsu(RD) | Read setup time |  | $-10$ |  |  | ns |
| $t_{\text {( }}(\mathrm{RD})$ | Read hold time |  | 180 |  |  | ns |
| tsu(WR) | Write setup time |  | 150 |  |  | ns |
| tw(WR) | Write pulse width |  | 50 |  |  | ns |
| $t d$ (WR) | Write delay time |  | 150 |  |  | ns |
| tsu(DA) | Data setup time |  | 0 |  |  | ns |
| th (DA) | Data hold time | . . | 0 |  |  | ns |

SWITCHING CHARACTERISTICS $\left(T a=0 \sim 70^{\circ} \mathrm{C}, \mathrm{VDD}=12 \mathrm{~V} \pm 10 \%, \mathrm{VCC}_{\mathrm{C}}=5 \mathrm{~V} \pm 10 \%, \mathrm{VSS}=0 \mathrm{~V}, \mathrm{VBB}_{\mathrm{BB}}=-5 \mathrm{~V} \pm 10 \%\right.$, unless othervise Read Cycle

| Symbol | Parameter | Test conditions | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| ta(CE) | Chip enable access time | $\begin{aligned} & \mathrm{CL}=50 \mathrm{pF}, \text { Load }=1 \mathrm{TTL}, \text { VREF }=2.0 \mathrm{~V} \\ & \mathrm{tsu}(\mathrm{AD})=0 \mathrm{~ns}, \mathrm{tr}=\mathrm{t} \mathrm{f}=20 \mathrm{~ns} \end{aligned}$ |  |  | 180 | ns |
| ta (AD) | Address access time |  |  |  | 200 | ns |
| tdv (CE) | Data valid time with respect to chip enable |  | 0 |  |  | ns |

## Read-Modify-Write Cycle

| Symbol | Parameter | Test conditions | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| ta (CE) | Chip enable access time | $\begin{aligned} & \mathrm{CL}=50 \mathrm{pF}, \mathrm{Load}=1 \mathrm{TTL} . V \mathrm{REF}=2.0 \mathrm{~V} \\ & \mathrm{tsu}(\mathrm{AD})=0 \mathrm{~ns}, \mathrm{tr}=\mathrm{tf}=20 \mathrm{~ns} \end{aligned}$ |  |  | 180 | ns |
| ta (AD) | Address access time |  |  |  | 200 | ns |
| $t d v(C E)$ | Data valid time with respect to chip enable |  | 0 |  |  | ns |

## MITSUBISHI LSIs <br> M58755S-1 <br> Alternative Designation 2107B

4096-BIT (4096-WORD BY 1-BIT) DYNAMIC RANDOM ACCESS MEMORY
TIMING DIAGRAMS


Write or Read-Modify-Write Cycle

Note 4 : Hatching indicates the state is unknown or changing
$5: \mathrm{V} s+0.6 \mathrm{~V}$ is the reference level for point (1), and $\mathrm{V} s \mathrm{~s}+2.4 \mathrm{~V}$ for point (2).
$6: V_{s s}+2.0 \mathrm{~V}$ is the reference level for point (3), and $V_{D D}-2.0 \mathrm{~V}$ for point (4).

7 : The transition time ( $\mathrm{t}_{\mathrm{T}}$ ) of the CE Pulse is defined as the transition time from (3) to (4) and from (4) to (3)
8 : The level of the dotted line should be kept high during read-modify-write cycle.
9 : Numbers in parentheses () indicate the minimum timing value in $n s$.

MITSUBISHI LSIs
M58755S-2
Alternative Designation 2107B

## 4096-BIT (4096-WORD BY 1-BIT) DYNAMIC RANDOM-ACCESS MEMORY

TIMING REQUIREMENTS M58755S-2 $\left(\mathrm{Ta}=0 \sim 70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 10 \%, \mathrm{VCC}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{B B}=-5 \mathrm{~V} \pm 10 \%\right.$, unless Read, Write or Read-Modify-Write Cycle

| Symbol | Parameter | Test conditions | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| tc (REF) | Refresh cycle time |  |  |  | 2 | ms |
| tw(CEL) | Chip enable low pulse width |  | 130 |  |  | ns |
| tr (CE) | Chip enable pulse rise time |  |  |  | 40 | ns |
| $t f(C E)$ | Chip enable pulse fall time |  |  |  | 40 | ns |
| tsu(AD) | Address setup time |  | 0 |  |  | ns |
| tsu ( $\overline{\mathrm{CS}})$ | Chip select setup time |  | 0 |  |  | ns |
| th (AD) | Address hold time |  | 100 |  |  | ns |
| $\operatorname{th}(\overline{\mathrm{CS}})$ | Chip select hold time |  | 100 |  |  | ns |

## Read Cycle

| Symbol | Parameter | Test conditions | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| tc (RD) | Read cycle time | $\mathrm{tr}=\mathrm{t} \mathrm{f}=20 \mathrm{~ns}$ | 470 |  |  | ns |
| tw (CEH) | Chip enable high pulse width |  | 300 |  | 4000 | ns |
| tsu(RD) | Read setup time |  | $-10$ |  |  | ns |
| th (RD) | Read hold time |  | 0 |  |  | ns |

Write or Read-Modify-Write Cycle

| Symbol | Parameter | Test conditions | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| to (WR) | Write cycle time | $\mathrm{tr}=\mathrm{tf}=20 \mathrm{~ns}$ | 470 |  |  | ns |
| to (RMW) | Read-modify-write cycle time |  | 590 |  |  | ns |
| tw (CEH) | Chip enable high pulse width, write cycle |  | 300 |  | 4000 | ns |
| tw (CEF) | Chip enable high pulse width, read-modify-write cycle |  | 420 |  | 4000 | ns |
| tsu(RD) | Read setup time |  | -10 |  |  | ns |
| th(RD) | Read hold time |  | 250 |  |  | ns |
| tsu(WR) | Write setup time |  | 150 |  |  | ns |
| tw(wR) | Write pulse width |  | 50 |  |  | ns |
| td (WR) | Write delay time |  | 150 |  |  | ns |
| tsu(DA) | Data setup time |  | 0 |  |  | ns |
| th (DA) | Data hold time |  | 0 |  |  | ns |

SWITCHING CHARACTERISTICS $\left(\mathrm{Ta}=0 \sim 70^{\circ} \mathrm{C}, \mathrm{VDD}=12 \mathrm{~V} \pm 10 \%, \mathrm{VCC}=5 \mathrm{~V} \pm 10 \%, \mathrm{Vss}=0 \mathrm{~V}, \mathrm{VBB}=-5 \mathrm{~V} \pm 10 \%\right.$, unless otherwise Read Cycle

| Symbol | Parameter | Test conditions | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| ta (CE) | Chip enable access time | $\begin{aligned} & \mathrm{CL}=50 \mathrm{pF}, \mathrm{Load}=1 \mathrm{TTL}, V \mathrm{REF}=2.0 \mathrm{~V} \\ & \mathrm{tsu}(\mathrm{AD})=0 \mathrm{~ns}, \mathrm{t}_{\mathrm{r}}=\mathrm{t} \mathrm{f}=20 \mathrm{~ns} \end{aligned}$ |  |  | 250 | ns |
| ta (AD) | Address access time |  |  |  | 270 | ns |
| tdv (CE) | Data valid time with respect to chip enable |  | 0 |  |  | ns |

## Read-Modify-Write Cycle

| Symbol | Parameter | Test conditions | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| ta (CE) | Chip enable access time | $\mathrm{CL}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{Load}=1 \mathrm{TTL}, \mathrm{V}_{\text {REF }}=2.0 \mathrm{~V}$ |  |  | 250 | ns |
| ta (AD) | Address access time | tsu $(A D)=0 \mathrm{~ns}, \mathrm{tr}=\mathrm{t} \mathrm{f}=20 \mathrm{~ns}$ |  |  | 270 | ns |
| tdv (CE) | Data valid time with respect to chip enable |  | 0 |  |  | ns |

## MITSUBISHI LSIs <br> M58755S-2 <br> Alternative Designation 2107B

4096-BIT (4096-WORD BY 1-BIT) DYNAMIC RANDOM-ACCESS MEMORY


Write or Read-Modify-Write Cycle


Note 4 : Hatching indicates the state is unknown or changing
$5: \mathrm{V} s \mathrm{~s}+0.6 \mathrm{~V}$ is the reference level for point (1) and $\mathrm{V} s \mathrm{~s}+2.4 \mathrm{~V}$ for point (2).
$6: \mathrm{Vss}+2.0 \mathrm{~V}$ is the reference level for point (3) and $\mathrm{V}_{\mathrm{DD}}-2.0 \mathrm{~V}$ for point (4).

7 : The transition time ( $\mathrm{t}_{\mathrm{T}}$ ) of the CE Pulse is defined as the transition time from (3) to (4) and from (4) to (3)
8 : The level of the dotted line should be kept high during read-modify-write cycle. 9 : Numbers in parentheses ( ) indicate the minimum timing value in ns.

## 4096-BIT (4096-WORD BY 1-BIT) DYNAMIC RANDOM-ACCESS MEMORY

TIMING REQUIREMENTS M58755S-3 $\left(T a=0 \sim 70^{\circ} \mathrm{C}, V \mathrm{VD}=12 \mathrm{~V} \pm 10 \%, V \mathrm{VC}=5 \mathrm{~V} \pm 10 \%, V \mathrm{Vs}=0 \mathrm{~V}, V_{B B}=-5 \mathrm{~V} \pm 10 \%\right.$. unless Read, Write or Read-Modify-Write Cycle
otherwise noted)

| Symbol | Parameter | Test conditions | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| tc(REF) | Refresh cycle time |  |  |  | 2 | ms |
| t w (CEL) | Chip enable low pulse width |  | 130 |  |  | ns |
| $\operatorname{tr}$ (CE) | Chip enable pulse rise time |  |  |  | 40 | ns |
| tf (CE) | Chip enable pulse fall time |  |  |  | 40 | ns |
| tsu(AD) | Address setup time |  | 0 |  |  | ns |
| tsu ( $\overline{\mathrm{CS}})$ | Chip select setup time |  | 0 |  |  | ns |
| th (AD) | Address hold time |  | 100 |  |  | ns |
| th ( $\overline{\mathrm{CS}}$ ) | Chip select hold time |  | 100 |  |  | ns |

## Read Cycle

| Symbol | Parameter | Test conditions | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| tc (RD) | Read cycle time | $\mathrm{tr}=\mathrm{t} \mathrm{f}=20 \mathrm{~ns}$ | 320 |  |  | ns |
| tw (CEH) | Chip enable high pulse width |  | 180 |  | 4000 | ns |
| tsu (RD) | Read setup time |  | -10 |  |  | ns |
| th (RD) | Read hold time |  | 0 |  |  | ns |

## Write or Read-Modify-Write Cycle

| Symbol | Parameter | Test conditions | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| to (WR) | Write cycle time | $t \mathrm{r}=\mathrm{tf}=20 \mathrm{~ns}$ | 320 |  |  | ns |
| to (RMW) | Read-modify-write cycle time |  | 470 |  |  | ns |
| tw (CEH) | Chip enable high pulse width. write cycle |  | 180 |  | 4000 | ns |
| tw (CEH) | Chip enable high pulse width, read-modify-write cycle |  | 300 |  | 4000 | ns |
| tsu(RD) | Read setup time |  | $-10$ |  |  | ns |
| $\operatorname{th}$ (RD) | Read hold time |  | 150 |  |  | ns |
| tsu(WR) | Write setup time |  | 150 |  |  | ns |
| tw(wR) | Write pulse width |  | 50 |  |  | ns |
| td (WR) | Write delay time |  | 150 |  |  | ns |
| tsu(DA) | Data setup time |  | 0 |  |  | ns |
| $\operatorname{th}(\mathrm{DA})$ | Data hold time |  | 0 |  |  | ns |

SWITCHING CHARACTERISTICS ( $\mathrm{Ta}=0 \sim 70^{\circ} \mathrm{C}, \mathrm{VDD}=12 \mathrm{~V} \pm 10 \%, V \mathrm{VC}=5 \mathrm{~V} \pm 10 \%$, $\mathrm{V} \mathrm{SS}=0 \mathrm{~V}$, $\mathrm{VBB}=-5 \mathrm{~V} \pm 10 \%$, unless otherwise Read Cycle

| Symbol | Parameter | Test conditions | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| ta (CE) | Chip enable access time | $\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{Load}=1 \mathrm{TTL}, V \mathrm{VEF}=2.0 \mathrm{~V} \\ & \mathrm{tsu}(\mathrm{AD})=0 \mathrm{~ns}, \mathrm{tr}=\mathrm{t} \mathrm{f}=20 \mathrm{~ns} \end{aligned}$ |  |  | 130 | ns |
| ta (AD) | Address access time |  |  |  | 150 | ns |
| $t d v(C E)$ | Data valid time with respect to chip ennable |  | 0 |  |  | ns |

Read-Modify-Write Cycle

| Symbol | Parameter | Test conditions | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| ta (CE) | Chip enable access time | $C_{L}=50 \mathrm{pF}$, Load $=1 \mathrm{TTL} . V_{\text {ref }}=2.0 \mathrm{~V}$ $\mathrm{tsu}(\mathrm{AD})=0 \mathrm{~ns}, \mathrm{tr}=\mathrm{t} \mathrm{f}=20 \mathrm{~ns}$ |  |  | 130 | ns |
| ta (AD) | Address access time |  |  |  | 150 | ns |
| $\operatorname{tdv}(C E)$ | Data valid time with respect to chip enable |  | 0 |  |  | ns |

## MITSUBISHI LSIs

M58755S-3
Alternative Designation 2107B
4096-BIT (4096-WORD BY 1-BIT) DYNAMIC RANDOM-ACCESS MEMORY
TIMING DIAGRAMS


Write or Read-Modify-Write Cycle


Note 4 : Hatching indicates the state is unknown or changing.
$5: \mathrm{V} s \mathrm{~s}+0.6 \mathrm{~V}$ is the reference level for point (1). and $\mathrm{V} s \mathrm{~s}+2.4 \mathrm{~V}$ for point (2).
$6 \cdot \mathrm{Vss}+2.0 \mathrm{~V}$ is the reference level for point (3), and $\mathrm{V}_{\mathrm{DD}}-2.0 \mathrm{~V}$ for point (4).

7 : The transition time ( $\mathrm{t}_{\mathrm{T}}$ ) of the CE Pulse is defined as the transition time from (3) to (4) and from(4) to (3).
8 : The level of the dotted line should be kept high during read-modify-write cycle.
9 : Numbers in parentheses () indicate the minimum timing value in ns .

MITSUBISHI LSIs
M58755S-1, M58755S-2, M58755S-3
Alternative Designation 2107B
4096-BIT (4096-WORD BY 1-BIT) DYNAMIC RANDOM- ACCESS MEMORY

## APPLICATION

## Method of Refreshing

Since 64 memory cells designated by the X address can be refreshed in 1 cycle, (either read, write or read-modifywrite), a read operation for all 64 addresses selected by the 6 address signals $A_{0} \sim A_{5}$ must be performed within 2 ms to refresh all 4096 memory cells. If the chip is refreshed during a write cycle or a read-modify-write cycle, then signal
$\overline{\mathrm{CS}}$ must be kept low; during a read cycle, $\overline{\mathrm{CS}}$ can be either high or low. If a read operation is executed when the chip is in the non-designated state with $\overline{\mathrm{CS}}$ high, refreshing can be performed with the output terminal $\overline{\mathrm{D}_{\mathrm{OUT}}}$ in the floating (high-impedance) state. Thus all the M58755Ss used in the memory system can be refreshed in only 64 cycles.

## Recommended Driver Circuit for Chip Enable Pulse



Note 1 : $R_{1}$ is determined according to a required rise time of the CE pulse. For example, when $C_{L}$ capacitance load for the CE pulse is 300 pF .
$R_{1}$ is set at $300 \Omega\left(\frac{1}{2} W\right)$ : then, rise time $t r=30 \mathrm{~ns}$; fall time $t f=30 \mathrm{~ns} ; t_{P H L}=20 \mathrm{~ns} ; t_{P L H}=20 \mathrm{~ns}$
2 : One M54601P dual peripheral positive AND driver circuit should be used for each CE driver circuit.

## MITSUBISHI LSIs

## DESCRIPTION

The M58721P and M58721S are 256 -word by 4 -bit static RAMs, fabricated with the N -channel silicon-gate MOS process and designed for simple interfacing. They operate by a single 5 V supply, as does TTL, and are directly TTLcompatible.
FEATURES

- Fast access time: 450ns (max)
- Low power dissipation: $150 \mu \mathrm{~W} /$ bit (typ)
- Single 5V supply voltage
- Data holding at 1.5 V supply voltage (optional)
- No clocks or refreshing required
- All inputs and outputs are directly TTL-compatible
- All outputs are three-state, with OR-tie capability
- Simple memory expansion by chip select input
- Separate data inputs and outputs
- Interchangeable with Intel's 2101A-4 in pin configuration and electrical characteristics.


## APPLICATION

- Small-capacity memory units


## FUNCTION

The M58721P and M58721S have 256 -word by 4 -bit organization and provide separate data input and output terminals. During a write cycle, when a location is designated by address signals $\mathrm{A}_{0} \sim \mathrm{~A}_{7}$ and signal $\mathrm{R} / \mathrm{W}$ goes low, the data of the IN signal at that time is written.

During a read cycle, when a location is designated by address signals $A_{0} \sim A_{7}$ and $R / W$ goes high, data of the designated address is taken from the DO terminal.

When signal $\overline{\mathrm{CS}}_{1}$ is high or $\mathrm{CS}_{2}$ is low, the chip is in the

## PIN CONFIGURATION (TOP VIEW)



## Outline 22P1 (M58721P) 22S1 (M58721S)

non-selectable state, disabling both reading and writing. In this case the output is in the floating (high-impedance) state useful for OR-ties with other output terminals.

When signal OD is high, the output is in the floating state, so that OD is used as an input/output select control signal for common input/output operation.

The memory data can be held at a supply voltage of 1.5 V , enabling battery back-up operation during power failure and power-down operation in the standby mode.


MITSUBISHI LSIs
M58721P, M58721S
Alternative Designation 2101A

## 1024-BIT (256-WORD BY 4-BIT) STATIC RANDOM-ACCESS MEMORY

ABSOLUTE MAXIMUM RATINGS

| Symbol | Parameter |  | Conditions | Limits | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Vcc | Supply voltage |  | With respect to GND | $-0.3 \sim 7$ | V |
| VI | Input voltage |  |  | $-0.3 \sim 7$ | V |
| Vo | Output voltage |  |  | $-0.3 \sim 7$ | $\checkmark$ |
| Pd | Maximum power dissipation | M 58721 P | $\mathrm{Ta}=25^{\circ} \mathrm{C}$ | 700 | mW |
|  |  | M58721S |  | 1000 | mW |
| Topr | Operatjing free-air ambient temperature |  |  | $0 \sim 70$ | ${ }^{\circ} \mathrm{C}$ |
| Tstg | Storage temperature | M 58721P |  | $-40 \sim 125$ | ${ }^{\circ} \mathrm{C}$ |
|  |  | M 58721 S |  | $-65 \sim 150$ | ${ }^{\circ} \mathrm{C}$ |

RECOMMENDED OPERATING CONDITIONS $\left(\mathrm{T}_{\mathrm{a}}=0 \sim 10^{\circ} \mathrm{C}\right.$, unless otherwise noted)

| Symbol | Parameter | Limits |  |  | Unit |
| :---: | :--- | :---: | :---: | :---: | :---: |
|  |  | Min | Nom | Max |  |
| $\mathrm{V}_{\text {CC }}$ | Supply voltage | 4.75 | 5 | 5.25 | V |
| $\mathrm{~V}_{I L}$ | Low-level input voltage | 0 |  | 0.8 | V |
| $\mathrm{~V}_{I H}$ | High-level input voltage | 2.2 |  | $\mathrm{~V}_{C C}$ | V |

ELECTRICAL CHARACTERISTICS $\left(\mathrm{Ta}=0 \sim 70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%\right.$, unless otherwise noted)

| Symbol | Parameter | Test conditions | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| VIH | High-level input voltage |  | 2.2 |  | Vcc | V |
| VIL | Low-level input voltage |  | 0 |  | 0.8 | V |
| VoH | High-level output voltage | $1 \mathrm{OH}=-200 \mu \mathrm{~A}$ | 2.4 |  |  | V |
| Vol | Low-level output voltage | $10 \mathrm{~L}=3.5 \mathrm{~mA}$ |  |  | 0.45 | V |
| 11 | Input current | $\mathrm{V}_{1}=0 \sim 5.25 \mathrm{~V}$ |  |  | 10 | $\mu \mathrm{A}$ |
| lozh | Off-state high-level output current | $V_{1(\overline{C S 1})}=2.2 \mathrm{~V}, \mathrm{~V}_{0}=2.4 \mathrm{~V} \sim \mathrm{~V}_{C C}$ |  |  | 10 | $\mu \mathrm{A}$ |
| lozl | Off-state low-level output current | $\mathrm{V}_{1}\left(\overline{\mathrm{CS}_{1}}\right)=2.2 \mathrm{~V}, \mathrm{~V}_{0}=0.4 \mathrm{~V}$ |  |  | -10 | $\mu \mathrm{A}$ |
| ICC | Supply current from $\mathrm{V}_{\text {cc }}$ | $\mathrm{V}_{1}=5.25 \mathrm{~V}$ (all inputs), output open |  | 30 | 60 | mA |
| Ci | Input capacitance, all inputs | $\mathrm{V}_{1}=\mathrm{GND}, \mathrm{f}=1 \mathrm{MHz}, 25 \mathrm{mVrms}$ |  | 3 | 5 | pF |
| Co | Output capacitance | $\mathrm{V}_{\mathrm{O}}=\mathrm{GND}, \mathrm{f}=1 \mathrm{MHz}, 25 \mathrm{mVrms}$ |  | 8 | 12 | pF |

Note 1 : Current flowing into an IC is positive; out is negative
TIMING REQUIREMENTS (For Write Cycle) ( $\mathrm{Ta}=0 \sim 70^{\circ} \mathrm{C}, \mathrm{Vcc}=5 \mathrm{~V} \pm 5 \%$, unless otherwise noted)

| Symbol | Parameter | Test conditions | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| $t \mathrm{c}(W R)$ | Write cycle time | $\begin{aligned} & \text { Input pulse } \begin{array}{l} V_{1 H}=2.2 \mathrm{~V} \\ V_{1 L}=0.8 \mathrm{~V} \\ \mathrm{t}_{\mathrm{r}}=\mathrm{t} f=20 \mathrm{~ns} \end{array} \\ & \text { Reference level }=1.5 \mathrm{~V} \\ & \text { Load }=2 \mathrm{TTL}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \end{aligned}$ | 350 |  |  | ns |
| $t_{w}(W R)$ | Write pulse width |  | 250 |  |  | ns |
| $t s u(A D)$ | Address setup time with respect to write |  | 20 |  |  | ns |
| $t$ wr | Write recovery time |  | 0 |  |  | ns |
| t su(OD) | Output disable setup time with respect to data in |  | 100 |  |  | $n \mathrm{~s}$ |
| t su(DA) | Data setup time |  | 170 |  |  | ns |
| th(DA) | Data hold time |  | 0 |  |  | ns |
| t su(cs) | Chip select setup time |  | 250 |  |  | ns |

SWITCHING CHARACTERISTICS (For Read Cycle) $/\left(\operatorname{Ta}=0 \sim 70^{\circ} \mathrm{C}, \mathrm{Vcc}=5 \mathrm{~V} \pm 5 \%\right.$, unless otherwise noted)

| Symbol | Parameter | Test conditions | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| $\mathrm{tc}_{\mathrm{C}}(\mathrm{RD})$ | Read cycle time | Input pulse $\begin{aligned} & \\ & V / H=2.2 \mathrm{~V} \\ & \mathrm{ViL}=0.8 \mathrm{~V} \\ & \\ & \mathrm{t}_{\mathrm{r}}=\mathrm{t}=20 \mathrm{n}\end{aligned}$ | 450 |  |  | ns |
| ta (AD) | Address access time |  |  |  | 450 | ns |
| ta (CS) | Chip select access time |  |  |  | 180 | ns |
| $\mathrm{ta}_{\mathrm{a}}$ (OD) | Output disable access time |  |  |  | 150 | ns |
| tpxz | Output disable time (Note 2) | $\begin{aligned} & \text { Reference level }=1.5 \mathrm{~V} \\ & \text { LOAD }=2 \mathrm{TTL}, C_{L}=100 \mathrm{pF} \end{aligned}$ |  |  | 100 | ns |
| $t \mathrm{dv}(\mathrm{AD})$ | Data valid time with respect to address |  | 40 |  |  | ns |

[^2]TIMING DIAGRAMS

## Read Cycle



Write Cycle


Note 3 : Hatching indicates the state is unknown
4: Indicates that during this period the data out is invalid for this definition of $\operatorname{tdv}(A D)$ and is in the floating state for this definition of $\operatorname{tpxz}$
5 : OD may be kept low for the full cycle except during common input/output operation.

POWER-DOWN OPERATION (OPTIONAL) These characteristics are guaranted only under custom specifications.
Electrical Characteristics ( $\mathrm{Ta}=0 \sim 70^{\circ} \mathrm{C}$, unless otherwise noted)

| Symbol | Parameter | Test conditions | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| $\mathrm{V}_{\mathrm{CC}}(\mathrm{PD})$ | Power-down supply voltage |  | 1.5 |  |  | V |
| $V_{1}(\overline{\text { cs1 }}$ ) | Power-down chip select input voltage | $\left.2.2 \mathrm{~V} \leqq \mathrm{VCC}^{\text {(PD }}\right) \leqq \mathrm{V}_{\text {CC }}$ | 2.2 |  |  | V |
|  |  | $1.5 \mathrm{~V} \leqq \mathrm{VCC}(\mathrm{PD}) \leqq 2.2 \mathrm{~V}$ | $\mathrm{V}_{\mathrm{CC}}(\mathrm{PD})$ |  |  | V |
| $1 \mathrm{CC}\left(\mathrm{PD}_{1}\right)$ | Power-down supply current from $\mathrm{V}_{\mathrm{CC}}$ | $\mathrm{VCC}=1.5 \mathrm{~V}$, all inputs $=1.5 \mathrm{~V}$ |  | 15 | 30 | mA |
| $1 \mathrm{CC}(\mathrm{PD2})$ | Power-down supply current from $V_{\text {CC }}$ | $\mathrm{Vcc}=2.0 \mathrm{~V}$, all inputs $=2.0 \mathrm{~V}$ |  | 20 | 40 | mA |

Timing Requirements ( $\mathrm{Ta}=0 \sim 70^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V} \pm 5 \%$, unless otherwise noted)

| Symbol | Parameter | Test conditions | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| $\mathrm{t}_{\mathrm{su}}(\mathrm{PD}$ ) | Power-down setup time |  | 0 |  |  | ns |
| $\mathrm{t}_{\text {R ( } \mathrm{PD} \text { ) }}$ | Power-down recovery time |  | $\mathrm{t}_{\mathrm{C}}$ (RD) |  |  | ns |

## Timing Diagram



## MITSUBISHI <br> ELECTRIC

## MITSUBISHI LSIs

## M58721P, M58721S

Alternative Designation 2101A

1024-BIT (256-WORD BY 4-BIT) STATIC RANDOM-ACCESS MEMORY

## TYPICAL CHARACTERISTICS



DATA INPUT/OUTPUT TRANSFER CHARACTERISTICS


ADDRESS ACCESS TIME VS. LOAD CAPACITANCE


SUPPLY CURRENT FROM Vcc VS. SUPPLY VOLTAGE Vcc


## DESCRIPTION

The M58722P and M58722S are 256 -word by 4 -bit static RAMs, fabricated with the $N$-channel silicon-gate MOS process and designed for simple interfacing. They operate on a single 5 V supply, as does TTL, and are directly TTL. compatible.

The input and output terminals are common, and an OD terminal is provided.

## FEATURES

- Fast access time: 450ns (max)
- Low power dissipation: $150 \mu \mathrm{~W} /$ bit (typ)
- Single 5V power supply
- Data holding at 1.5 V supply voltage (optional)
- No clocks or refreshing required
- All inputs and outputs are directly TTL-compatible
- All outputs are three-state, with OR-tie capability
- Simple memory expansion by chip select input
- Common data inputs and outputs
- Interchangeable with Intel's 2111A-4 in pin configuration and electrical characteristics


## APPLICATION

- Small-capacity memory units


## FUNCTION

The M58722P and M58722S have 256 -word by 4-bit organization and provide common data input and output terminals. During a write cyele, when a location is designated by address signals $A_{0} \sim A_{7}$, the $O D$ signal is kept high to keep the I/O terminals in the input mode, signal R/W goes low, and the data of the $I N$ signal at that time is written.

During a read cycle, when a location is designated by address signals $A_{0} \sim A_{7}$, the $O D$ signal is kept low to keep

the I/O terminals in the output mode, signal R/W goes high, and the data of the designated address is taken from the I/O terminals.

When signal $\overline{\mathrm{CS}}_{1}$ or $\overline{\mathrm{CS}}_{2}$ is high, the chip is in the nonselectable state, disabling both reading and writing. In this case the output is in the floating (high-impedance) state, useful for OR-ties with other output terminals.

The memory data can be held at a supply voltage of 1.5 V , enabling battery back-up operation during power failure and power-down operation in the standby mode.

## BLOCK DIAGRAM



## 1024-BIT (256-WORD BY 4-BIT) STATIC RANDOM-ACCESS MEMORY

ABSOLUTE MAXIMUM RATINGS

| Symbol | Parameter |  | Conditions | Limits | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Vcc | Supply voltage |  | With respect to GND | $-0.3 \sim 7$ | V |
| $V_{1}$ | Input voltage |  |  | $-0.3 \sim 7$ | V |
| Vo | Output voltage |  |  | $-0.3 \sim 7$ | V |
| Pd | Maximum power dissipation | M58722P | $\mathrm{Ta}=25^{\circ} \mathrm{C}$ | 700 | mW |
|  |  | M58722 S |  | 1000 | mW |
| Topr | Operating free-air ambient temperature |  |  | 0~70 | ${ }^{\circ} \mathrm{C}$ |
| Tstg | Storage temperature | M58722P |  | $-40 \sim 125$ | ${ }^{\circ} \mathrm{C}$ |
|  |  | M58722S |  | $-65 \sim 150$ | ${ }^{\circ} \mathrm{C}$ |

RECOMMENDED OPERATING CONDITIONS $\left(T_{a}=0 \sim 10^{\circ} \mathrm{C}\right.$. unless otherwise noted)

| Symbol | Parameter | Limits |  |  | Unit |
| :---: | :--- | :---: | :---: | :---: | :---: |
|  |  | Min | Nom | Max |  |
| $V_{C C}$ | Supply voltage | 4.75 | 5 | 5.25 | $V$ |
| $V_{I L}$ | Low-level input voltage | 0 |  | 0.8 | $V$ |
| $V_{I H}$ | High-level input voltage | 2.2 |  | $V_{C C}$ | $V$ |

ELECTRICAL CHARACTERISTICS ( $\mathrm{Ta}=0 \sim 70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$, unless otherwise noted)

| Symbol | Parameter | Test conditions | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| VIH | High-level input voltage |  | 2.2 |  | Vcc | V |
| VIL | Low-level input voltage |  | 0 |  | 0.8 | V |
| VOH | High-level output voltage | $1 \mathrm{OH}=-200 \mu \mathrm{~A}$ | 2.4 |  |  | V |
| Vol | Low-level output voltage | $1 \mathrm{OL}=3.5 \mathrm{~mA}$ |  |  | 0.45 | V |
| 1 | Input current | $\mathrm{V}_{1}=0 \sim 5.25 \mathrm{~V}$ |  |  | 10 | $\mu \mathrm{A}$ |
| lozh | Off-state high-level output current | $V_{1(\overline{C S 1})}=2.2 \mathrm{~V}, \mathrm{~V}_{0}=2.4 \mathrm{~V}-\mathrm{VCC}$ |  |  | 10 | $\mu \mathrm{A}$ |
| lozL | Off-state low-level output current | $\mathrm{V}_{1}\left(\overline{\mathrm{CS}_{1}}\right)=2.2 \mathrm{~V}, \mathrm{~V}_{0}=0.4 \mathrm{~V}$ |  |  | -10 | $\mu \mathrm{A}$ |
| ICC | Supply current from $V_{\text {CC }}$ | $\mathrm{V}_{1}=5.25 \mathrm{~V}$ (all inputs), output open |  | 30 | 60 | mA |
| Ci | Input capacitance, all inputs | $V_{1}=G N D, f=1 \mathrm{MHz}, 25 \mathrm{mVrms}$ |  | 3 | 5 | pF |
| Co | Output capacitance | $\mathrm{V}_{\mathrm{O}}=\mathrm{GND}, \mathrm{f}=1 \mathrm{MHz}, 25 \mathrm{mVrms}$ |  | 8 | 12 | DF |

Note 1 : Current flowing into an IC is positive: out is negative
TIMING REQUIREMENTS (For Write Cycle) ( $\mathrm{Ta}=0 \sim 70^{\circ} \mathrm{C}, \mathrm{VcC}=5 \mathrm{~V} \pm 5 \%$, unless otherwise noted)

| Symbol | Parameter | Test conditions | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| to (wR) | Write cycle time |  | 350 |  |  | ns |
| $t_{w}(W R)$ | Write pulse width |  | 250 |  |  | ns |
| $t$ su(AD) | Address setup time with respect to write |  | 20 |  |  | ns |
| $t$ wr | Write recovery time |  | 0 |  |  | ns |
| $t$ su. $O D$ ) | Output disable setup time with respect to data in |  | 100 |  |  | ns |
| $t$ su( $D A$ ) | Data setup time |  | 170 |  |  | ns |
| th (DA) | Data hold time |  | 0 |  |  | ns |
| $t$ su(Cs) | Chip select setup time |  | 250 |  |  | ns |

SWITCHING CHARACTERISTICS (For Read Cycle) ( $\mathrm{Ta}=0 \sim 70^{\circ} \mathrm{C}, \mathrm{Vcc}=5 \mathrm{~V} \pm 5 \%$, unless otherwise noted)


Note 2 : $\mathrm{t}_{\mathrm{PXZ}}$ is with respect to $\overline{\mathrm{CS}}, \overline{\mathrm{CS}}$, or OD . whichever occurs first.

## MITSUBISHI LSIs <br> M58722P, M58722S

TIMING DIAGRAM


Note 3 : Hatching indicates the state is unknown.
4 : Indicates that during this period the data out is invalid for this definition of $\operatorname{tdv}(A D)$ and is in the floating state for this definition of $\operatorname{tPXZ}$
5 : The input signals from the external circuits should not be applied to the I/O terminals, for during this period they are in output mode.

POWER-DOWN OPERATION (OPTIONAL) These characteristics are guaranted only under custom specifications.
Electrical Characteristics ( $\mathrm{Ta}=0 \sim 70^{\circ} \mathrm{C}$. unless . otherwise noted)

| Symbol | Parameter | Test conditions | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| $V_{C C}(P D)$ | Power-down supply voltage |  | 1.5 |  |  | V |
| $V_{1}(\overline{\mathrm{cs1}})$ | Power-down chip select input voltage | $2.2 V \leqq V_{C C}(P D) \leqq V_{C C}$ | 2.2 |  |  | V |
|  |  | $1.5 \mathrm{~V} \leqq \mathrm{VCC}(\mathrm{PD}) \leqq 2.2 \mathrm{~V}$ | $\mathrm{VCC}(P D)$ |  |  | V |
| $1 \mathrm{CC}(\mathrm{PD} 1)$ | Power-down supply current from $V_{\text {CC }}$ | $V C C=1.5 \mathrm{~V}$, all inputs $=1.5 \mathrm{~V}$ |  | 15 | 30 | mA |
| $1 \mathrm{CC}(\mathrm{PD} 2)$ | Power-down supply current from $\mathrm{V}_{\mathrm{CC}}$ | $\mathrm{VCC}=2.0 \mathrm{~V}$, all inputs $=2.0 \mathrm{~V}$ |  | 20 | 40 | mA |

Timing Requirements ( $\mathrm{Ta}=0 \sim 70^{\circ} \mathrm{C}, \mathrm{Vcc}=5 \mathrm{~V} \pm 5 \%$. unless otherwise noted)

| Symbol | Parameter | Test conditions | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| t su(PD) | Power-down setup time |  | 0 |  |  | ns |
| $\mathrm{t}_{\mathrm{R} \text { (PD) }}$ | Power-down recovery time |  | $\mathrm{t}_{\mathrm{c}}$ (RD) |  |  | ns |

## Timing Diagram



## 1024-BIT (256-WORD BY 4-BIT) STATIC RANDOM-ACCESS MEMORY

## Timing Diagram



TYPICAL CHARACTERISTICS


LOW-LEVEL OUTPUT CURRENT VS. LOW-LEVEL OUTPUT VOLTAGE


ADDRESS ACCESS TIME VS.
LOAD CAPACITANCE


SUPPLY CURRENT FROM VCc VS. SUPPLY VOLTAGE Vcc


## DESCRIPTION

The M58723P and M58723S are 256 -word by 4 -bit static RAMs fabricated with the N -channel silicon-gate MOS process and designed for simple interfacing. They operate from a single 5 V supply, as does TTL, and are directly TTLcompatible.

The input and output terminals are common.

## FEATURES

- Fast access time: 450ns (max)
- Low power dissipation: $150 \mu \mathrm{~W} /$ bit (typ)
- Single 5V supply voltage
- Data holding at 1.5 V supply voltage (optional)
- Requires no clocks or refreshing
- All inputs and outputs are directly TTL-compatible
- All outputs are three-state, with OR-tie capability
- Simple memory expansion by chip select input
- Common data inputs and outputs
- Interchangeable with Intel's 2112A-4 in pin configuration and electrical characteristics.


## APPLICATION

- Small-capacity memory units


## FUNCTION

The M58723P and M58723S have 256 -word by 4-bit organization and provide common data input and output terminals. During a write cycle, when a location is designated by address signals $\mathrm{A}_{0} \sim \mathrm{~A}_{7}$ and signal $\mathrm{R} / \mathrm{W}$ goes low, the data of the I/O signal at that time is written.

During a read cycle, when a location is designated by address signal $A_{0} \sim A_{7}$ and $R / W$ goes high, data of the designated address is taken from the I/O terminals.

When signal $\overline{C S}$ is high, the chip is in the non-selectable

PIN CONFIGURATION (TOP VIEW)


Output 16P1 (M58723P)
16S1 (M58723S)
state, disabling both reading and writing. In this case the output is in the floating (high-impedance) state, useful for OR-ties with other output terminals.

The memory data can be held at a supply voltage of 1.5 V , enabling battery back-up operation during power failure and power-down operation in the standby mode.


## 1024-BIT (256-WORD BY 4-BIT) STATIC RANDOM-ACCESS MEMORY

## ABSOLUTE MAXIMUM RATINGS

| Symbol | Parameter |  | Conditions | Limits | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Vcc | Supply voltage |  | With respect to GND | -0.3-7 | $\checkmark$ |
| $V_{1}$ | Input voltage |  |  | $-0.3 \sim 7$ | V |
| Vo | Output voltage |  |  | $-0.3 \sim 7$ | V |
| Pd | Maximum power dissipation | M58723P | $\mathrm{Ta}=25^{\circ} \mathrm{C}$ | 700 | mW |
|  |  | M58723S |  | 1000 | mW |
| Topr | Operating free-air ambient temperature |  |  | $0 \sim 70$ | ${ }^{\circ} \mathrm{C}$ |
| Tstg | Storage temperature | M58723P |  | $-40 \sim 125$ | ${ }^{\circ} \mathrm{C}$ |
|  |  | M58723S |  | -65-150 | ${ }^{\circ} \mathrm{C}$ |

RECOMMENDED OPERATING CONDITIONS $\left(\mathrm{Ta}=0 \sim 70^{\circ} \mathrm{C}\right.$. unless otherwise noted)

| Symbol | Parameter | Limits |  |  | Unit |
| :---: | :--- | :---: | :---: | :---: | :---: |
|  |  | Min | Nom | Max |  |
| $\mathrm{V}_{\mathrm{CC}}$ | Supply voltage | 4.75 | 5 | 5.25 | V |
| $\mathrm{~V}_{\mathrm{IL}}$ | Low-level input voltage | 0 |  | 0.8 | V |
| $\mathrm{~V}_{I H}$ | High-level input voltage | 2.2 |  | $\mathrm{~V}_{\mathrm{CC}}$ | V |

ELECTRICAL CHARACTERISTICS $\left(T a=0 \sim 70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%\right.$, unless otherwise noted)

| Symbol | Parameter | Test conditions | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| VIH | High-level input voltage |  | 2.2 |  | Vcc | V |
| VIL | Low-level input voltage |  | 0 |  | 0.8 | V |
| VOH | High-level output voltage | $1 \mathrm{OH}=-200 \mu \mathrm{~A}$ | 2.4 |  |  | V |
| VOL | Low-level output voltage | $1 \mathrm{LL}=3.5 \mathrm{~mA}$ |  |  | 0.45 | V |
| 11 | Input current | $\mathrm{V}_{1}=0 \sim 5.25 \mathrm{~V}$ |  |  | 10 | $\mu \mathrm{A}$ |
| IOZH | Off-state high-level output current | $\mathrm{V}_{1}(\overline{\mathrm{CS}})=2.2 \mathrm{~V}, \mathrm{Vo}_{0}=2.4 \mathrm{~V} \sim \mathrm{Vcc}$ |  |  | 10 | $\mu \mathrm{A}$ |
| lozl | Off-state low-level output current | $\mathrm{V}_{1}(\overline{\mathrm{CS}})=2.2 \mathrm{~V}, \mathrm{~V}_{0}=0.4 \mathrm{~V}$ |  |  | $-10$ | $\mu \mathrm{A}$ |
| ICC | Supply current from $\mathrm{V}_{\text {CC }}$ | $V_{1}=5.25 \mathrm{~V}$ (all inputs), output open |  | 30 | 60 | mA |
| Ci | Input capacitance, all inputs | $V_{1}=$ GND, $f=1 \mathrm{MHz}, 25 \mathrm{mVrms}$ |  | 3 | 5 | pF |
| Co | Output capacitance | $\mathrm{V}_{\mathrm{O}}=\mathrm{GND}, \mathrm{f}=1 \mathrm{MHz}, 25 \mathrm{mVrms}$ |  | 8 | 12 | pF |

Note : Current flowing into an IC is positive; out is negative.

TIMING REQUIREMENTS ( $\mathrm{Ta}=0 \sim 70^{\circ} \mathrm{C}, \mathrm{Vcc}=5 \mathrm{~V} \pm 5 \%$, unless otherwise noted)
Write Cycle 1

| Symbol | Parameter | Test conditions | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| tc (WR) 1 | Write cycle time | Input pulse $\begin{aligned} & V_{I H}=2.2 \mathrm{~V} \\ & V_{I L}=0.8 \mathrm{~V} \\ & t_{r}=t_{f}=20 \mathrm{~ns} \end{aligned}$ <br> Reference level $=1.5 \mathrm{~V}$. $\text { Load }=2 T T L, C_{L}=100 p F$ | 350 |  |  | ns |
| $t_{\text {su }}(\mathrm{AD}) 1$ | Address setup time with respect to write pulse |  | 20 |  |  | ns |
| $t w(W R) 1$ | Write pulse width |  | 250 |  |  | ns |
| twr 1 | Write recovery time |  | 0 |  |  | ns |
| tsu (DA) 1 | Data setup time |  | 170 |  |  | ns |
| $\operatorname{th}(\mathrm{DA}) 1$ | Data hold time |  | 0 |  |  | ns |
| $\operatorname{th}(\overline{\mathrm{CS}})_{1}$ | Chip select hold time |  | 0 |  |  | ns |
| tsu (WR) 1 | Write pulse setup time with respect to chip select |  | 0 |  |  | ns |
| $\left.\mathrm{tsu}_{\text {( }}^{\text {CS }}\right)_{1}$ | Chip select setup time |  | 170 |  |  | ns |

Write Cycle 2

| Symbol | Parameter | Test conditions | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| $\mathrm{t}_{\mathrm{C}}(\mathrm{WR}) 2$ | Write cycle time | Input pulse $\begin{aligned} & \mathrm{V}_{\mathrm{IH}}=2.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V} \\ & \mathrm{tr}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns} \end{aligned}$ <br> Reference level $=1.5 \mathrm{~V}$ $\text { Load }=2 \mathrm{TTL}, C_{L}=100 \mathrm{pF}$ | 350 |  |  | ns |
| $\mathrm{t}_{\mathrm{su}}(\mathrm{AD}) 2$ | Address setup time with respect to write pulse |  | 20 |  |  | ns |
| tw(WR)2 | Write pulse width |  | 250 |  |  | ns |
| twr 2 | Write recovery time |  | 0 |  |  | ns |
| tsu(DA)2 | Data setup time |  | 170 |  |  | ns |
| $\operatorname{th}(\mathrm{DA}) 2$ | Data hold time |  | 0 |  |  | ns |
| $\operatorname{th}(\overline{\mathrm{CS}}) 2$ | Chip select hold time |  | 0 |  |  | ns |
| $\mathrm{t}_{\text {Su }}(\overline{\mathrm{CS}}) 2$ | Chip select setup time |  | 0 |  |  | ns |
| $\mathrm{t}_{\text {PXZ }}$ (WR)2 | Output disable time with respect to write pulse |  |  |  | 80 | ns |

SWITCHING CHARACTERISTICS (For Read Cycle) ( $T a=0 \sim 70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$, unless othervise noted)

| Symbol | Parameter | Test conditions | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| $t \mathrm{C}$ (RD) | Read cycle time | Input pulse $\begin{aligned} & V_{I H}=2.2 V, V_{I L}=0.8 V \\ & t_{r}=t_{f}=20 \mathrm{~ns} \end{aligned}$ <br> Reference level 1.5 V $\text { Load }=2 \mathrm{TTL}, \quad C_{L}=100 \mathrm{pF}$ | 450 |  |  | ns |
| $\mathrm{ta}(\mathrm{AD})$ | Address access time |  |  |  | 450 | ns |
| $\mathrm{ta}(\overline{C S})$ | Chip select access time |  |  |  | 180 | ns |
| t PxZ ( $\overline{\mathrm{CS}})$ | Output disable time with respect to chip select |  |  |  | 100 | ns |
| $t d v(A D)$ | Data valid time with respect to address |  | 40 |  |  | ns |

TIMING DIAGRAMS Read Cycle


Note 1 : In this period, the data out is valid for a definition of $t d v(A D)$ and is in the floating state for a definition of $t p \times z(\overline{C S})$

## Write Cycle 1



Write Cycle 2


Note 2 : The input signals from the external circuits should not be applied to the $1 / O$ terminals (keeping them three-state) for during this period the $1 / O$ terminals are in the output mode
3.: The input signals from the external circuits can be applied to the I/O terminals since the signal $\overline{\mathrm{CS}}$ is delayed in relation to signal $\mathrm{R} / \mathrm{W}$.

MITSUBISHI LSIs
M58723P, M58723S
Alternative Designation 2112A

## 1024-BIT (256-WORD BY 4-BIT) STATIC RANDOM - ACCESS MEMORY

POWER-DOWN OPERATION (OPTIONAL) These characteristics are guaranted only under custom specifications.
Electrical Characteristics ( $\mathrm{Ta}=0 \sim 70^{\circ} \mathrm{C}$. unless otherwise noted)

| Symbol | Parameter | Test conditions | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| $\mathrm{V}_{\mathrm{CC}}(\mathrm{PD})$ | Power-down supply voltage |  | 1.5 |  |  | V |
| $V_{1}(\overline{c s})$ | Power-down chip select input voltage | $2.2 \mathrm{~V} \leqq \mathrm{VCC}(\mathrm{PD}) \leqq \mathrm{VCC}$ | 2.2 |  |  | V |
|  |  | $1.5 \mathrm{~V} \leqq \mathrm{VCC}(\mathrm{PD}) \leqq 2.2 \mathrm{~V}$ | Vcc(PD) |  |  | V |
| 1 CC (PDI) | Power-down supply current from V CC | $\mathrm{VCC}=1.5 \mathrm{~V}$, all inputs $=1.5 \mathrm{~V}$ |  | 15 | 30 | mA |
| 1 CC (PD2) | Power-down supply current from $\mathrm{V}_{\mathrm{CC}}$ | $\mathrm{Vcc}=2.0 \mathrm{~V}$, all inputs $=2.0 \mathrm{~V}$ |  | 20 | 40 | mA |

Timing Requirements ( $\mathrm{Ta}=0 \sim 70^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V} \pm 5 \%$. unless otherwise noted)

| Symbol | Parameter | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |
| tsu(PD) | Power-down setup time | 0 |  |  | ns |
| $t \mathrm{R}$ (PD) | Power-down recovery time | tc (RD) |  |  | ns |

## Timing Diagram



TYPICAL CHARACTERISTICS


LOW-LEVEL OUTPUT CURRENT VS. LOW-LEVEL OUTPUT VOLTAGE


SUPPLY CURRENT FROM Vcc VS. SUPPLY VOLTAGE Vcc


SUPPLY VOLTAGE $V_{C C}(V)$

ADDRESS ACCESS TIME VS LOAD CAPACITANCE


HIGH-LEVEL OUTPUT CURRENT VS. HIGH-LEVEL OUTPUT VOLTAGE


SUPPLY CURRENT FROM VCC VS. AMBIENT TEMPERATURE


4096-BIT (4096-WORD BY 1-BIT) DYNAMIC RANDOM-ACCESS MEMORY

## DESCRIPTION

The M58756S and M58756K are 4096 -word by 1 -bit dynamic RAMs, fabricated with the N-channel silicon-gate MOS process. As it is composed of a dynamic circuit, it requires refreshing every 2 ms .

## FEATURES

- Fast access time:
- Fast read cycle time:
- Refresh interval:
- Low standby power dissipation:

Low operating power dissipation: $130 \mu \mathrm{~W} /$ bit (typ)

- All inputs are directly TTL-compatible
- All outputs are three-state and directly TTL-compatible; data can be latched, effective until the next cycle
- Easy memory expansion by chip select signal ( $\overline{\mathrm{CS}}$ )
- Interchangeable with Intel's 2104 in pin configuration and electrical characteristics


## APPLICATION

- Main, memory systems for computers


## FUNCTION

Being dynamic RAMs, the M58756S and M58756K must be refreshed every 2 ms to hold data stored in the memory cells. Refresh must be performed by reading sequentially the 64 locations designated by the 6 address signals $A_{0} \sim A_{5}$ and clock signal RAS.

The output terminals of the M58756S and M58756K are kept in the floating (high-impedance) state by clock signal $\overline{\mathrm{CAS}}$, after which the data is read out from the output terminal during a read cycle.


Outline 16K1 (M58756K) 16S1 (M58756S)

## SUMMARY OF OPERATIONS

| Input |  |  |  | Output * |  | Refresh |
| :---: | :---: | :---: | :---: | :--- | :--- | :--- |
| Operations |  |  |  |  |  |  |
| $\overline{\text { RAS }}$ | $\overline{\text { CAS }}$ | $\overline{\text { CS }}$ | R/W |  |  |  |
| A | A | A | A | (Valid data)-Open-High-level | Can | Write cycle |
| A | A | A | I | (Valid data)-Open-(Valid data) | Can | Read cycle |
| A | A | I | DC | (Valid data)-Open-Open | Can | Refresh |
| I | A | DC | DC | (Valid data)-Open-Open | Can't | Standby <br> Output open |
| I | I | DC | DC | (Valid data)-(Valid data) <br> -(Valid data) | Can't | Standby |

* Previous cycle-between cycles-actual cycle

A: Operating states I: Nonoperating DC: Don't care

## BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

| Symbol | Parameter | Conditions | Limits | Unit |
| :---: | :---: | :---: | :---: | :---: |
| $V_{D D}$ | Supply voltage | With respect to $V_{\text {BB }}$ | $-0.3 \sim 20$ | V |
| $V_{C C}$ | Supply voltage |  | $-0.3 \sim 20$ | V |
| $v_{S S}$ | Supply voltage |  | $-0.3-20$ | V |
| $V_{1}$ | Input voltage |  | $-0.3 \sim 20$ | V |
| Vo | Output voltage |  | -0.3~20 | V |
| Pd | Maximum power dissipation | $\mathrm{Ta}=25^{\circ} \mathrm{C}$ | 1000 | mW |
| Topr | Operating free-air ambient temperature |  | $0 \sim 70$ | ${ }^{\circ} \mathrm{C}$ |
| Tstg | Storage temperature |  | $-55 \sim 150$ | ${ }^{\circ} \mathrm{C}$ |

RECOMMENDED OPERATING CONDITIONS $\left(T a=0 \sim 70^{\circ} \mathrm{C}\right.$. unless otherwise noted)

| Symbol | Parameter | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Nom | Max |  |
| $V_{\text {DD }}$ | Supply voltage | 10.8 | 12 | 13.2 | V |
| Vcc | Supply voltage | 4.5 | 5 | 5.5 | V |
| Vss | Supply voltage |  | 0 |  | V |
| VBB | Supply voltage | $-4.5$ | - 5 | $-5.5$ | V |
| VIH | High-level input voltage | 2.4 |  | 6.5 | V |
| VIL | Low-level input voltage | $-1.0$ |  | 0.6 | V |

ELECTRICAL CHARACTERISTICS $\left(T a=0 \sim 70^{\circ} \mathrm{C}, \mathrm{VDD}=12 \mathrm{~V} \pm 10 \%, \mathrm{VCC}_{\mathrm{CO}}=5 \mathrm{~V} \pm 10 \%, \mathrm{VSS}=0 \mathrm{~V}, \mathrm{VBB}=-5 \mathrm{~V} \pm 10 \%\right.$, unless otherwise

| Symbol | Parameter | Test conditions | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| $\mathrm{V}_{1 \mathrm{H}}$ | High-level input voltage |  | 2.4 |  | 6.5 | V |
| VIL | Low-level input voltage |  | -1.0 |  | 0.6 | V |
| VOH | High-level output voltage | $1 \mathrm{OH}^{=}=-5.0 \mathrm{~mA}$ | 2.4 |  | Vcc | V |
| VOL | Low-level output voltage | $10 \mathrm{~L}=2.0 \mathrm{~mA}$ | 0 |  | 0.4 | $\checkmark$ |
| 11 | Input current | $\mathrm{V}_{1}=-1.0-6.5 \mathrm{~V}$ |  |  | 10 | $\mu \mathrm{A}$ |
| loz | Off-state output current | $\mathrm{V}_{1}(\overline{\mathrm{CS}})=2.4 \mathrm{~V}$ |  |  | 10 | $\mu \mathrm{A}$ |
| IDD1 | Supply current fromV $V_{\text {DD }}$, when chip deselected | $V_{l}(\overline{C A S}), V_{l}(\overline{\text { RAS }})=V_{I H}$ |  | 1 | 2 | mA |
| $\mathrm{IDD}_{2}$ | Supply current from, $V_{\text {DD }}$, when chip selected |  |  | 1 | 2 | mA |
| $\operatorname{ldD}(\mathrm{AV})$ | Averge supply current from VDD | $\mathrm{t}_{\mathrm{c}}=425 \mathrm{~ns}, \mathrm{tw}(\overline{\mathrm{RAS}} \mathrm{H})=125 \mathrm{~ns}, \mathrm{Ta}=25^{\circ} \mathrm{C}$ |  | 43 | 56 | mA |
| Icc | Supply current from $V_{\text {CC }}$ | $\mathrm{V}_{0}=$ no load |  |  | 10 | $\mu \mathrm{A}$ |
| IbB | Supply current from $V_{B B}$ |  |  |  | 75 | $\mu \mathrm{A}$ |
| Ci(AD) | Input capacitance, address terminals | $\begin{aligned} & V_{1}=V \mathrm{Vs}, V_{B B}=-5 \mathrm{~V} \\ & f=1 \mathrm{MHz}, V_{i}=25 \mathrm{~m} V \mathrm{rms} \end{aligned}$ |  |  | 10 | pF |
| Ci(dA) | Input capacitance, data input terminals |  |  |  | 7 | pF |
| $\mathrm{C}_{\mathrm{i}}^{(\mathrm{R} / \mathrm{W}}$ ) | Input capacitance. R/W terminal |  |  |  | 7 | pF |
| $\mathrm{Ci}(\overline{\text { RAS }})$ | Input capacitance. $\overline{\text { RAS }}$ terminal |  |  |  | 7 | pF |
| $\mathrm{Ci}(\overline{\mathrm{CAS}})$ | Input capacitance. $\overline{\text { CAS }}$ terminal |  |  |  | 7 | pF |
| $\mathrm{Ci}(\overline{\mathrm{CS}})$ | Input capacitance, $\overline{\mathrm{CS}}$ terminal |  |  |  | 7 | pF |
| Co | Output capacitance | $\mathrm{V}_{0}=\mathrm{V}_{\text {SS }}, \mathrm{V}_{\text {BB }}=-5 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{i}}=25 \mathrm{~m} \mathrm{~V}_{\text {rms }}$ |  |  | 8 | pF |

[^3]
# MITSUBISHI LSIs <br> M58756K, M58756S 

TIMING REQUIREMENTS (For Read, Write or Read-Modify-Write Cycle)
( $\mathrm{Ta}=0 \sim 70^{\circ} \mathrm{C}, ~ V D D=12 \mathrm{~V} \pm 10 \%, V C C=5 \mathrm{~V} \pm 10 \%, V \mathrm{VS}=0 \mathrm{~V}, V \mathrm{VB}=-5 \mathrm{~V} \pm 10 \%$, unless otherwise noted)

| Symbol | Parameter | Conditions | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| to (REF) | Refresh cycle time |  |  |  | 2 | ms |
| $t_{\text {W }}(\overline{\text { RAS }} \mathrm{H})$ | $\overline{\mathrm{RAS}}$ high pulse width |  | 125 |  |  | ns |
| $\mathrm{t}_{\mathrm{d}}(\overline{\mathrm{RAS}}$ - $\overline{\mathrm{CAS}})$ | Delay time between $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$ |  | 90 |  | 2000 | ns |
| tsu(RA- $\overline{\text { PAS }}$ ) | Row address setup time with respect to $\overline{\text { RAS }}$ |  | 0 |  |  | ns |
| tsu(CA- $\overline{C A S})$ | Column address setup time with respect to $\overline{\text { CAS }}$ |  | 0 |  |  | ns |
| $\mathrm{tsu}(\overline{\mathrm{CS}}-\overline{\mathrm{CAS}})$ | Chip select setup time with respect to $\overline{C A S}$ |  | 0 |  |  | ns |
| $\mathrm{th}(\overline{\mathrm{RAS}}-\mathrm{RA})$ | Row address hold time with respect to $\overline{\mathrm{RA}} \overline{\mathrm{S}}$ |  | 50 |  |  | ns |
| $\operatorname{th}(\overline{\text { CAS }-C A) ~}$ | Column address hold time with respect to $\overline{\mathrm{CAS}}$ |  | 50 |  |  | ns |
| th ( $\overline{\mathrm{CAS}}-\overline{\mathrm{CS}})$ | Chip select hold time with respect to $\overline{\mathrm{CAS}}$ |  | 50 |  |  | ns |
| $t \mathrm{su}(\overline{\mathrm{CAS}}$ - $\overline{\mathrm{AAS}})$ | $\overline{\text { CAS }}$ setup time with respect to $\overline{\mathrm{RAS}}$ |  | $-50$ |  | 50 | ns |
| $t_{\text {P } ~}^{\text {P }}$ \% | Output invalid time from $\overline{\mathrm{CAS}}$ |  | 0 |  | 80 | ns |
| t T | Transition time |  | 5 |  | 50 | ns |

SWITCHING CHARACTERISTICS ( $T \mathrm{~T}=0 \sim 70^{\circ} \mathrm{C}, \mathrm{V}_{D D}=12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{C C} 5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{S S}=0 \mathrm{~V}, \mathrm{~V}_{B B}=-5 \mathrm{~V} \pm 10 \%$, unless otherwise noted) Read Cycle

| Symbol | Parameter | Test conditions | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| t c (RD) | Read cycle time |  | 425 |  |  | ns |
| $\mathrm{t}_{\mathrm{W}}(\overline{\mathrm{CAS}} \mathrm{L})$ | $\overline{\mathrm{CAS}}$ low pulse width |  | 200 |  | 10000 | ns |
| $\mathrm{t}_{\mathrm{W}}(\overline{\mathrm{RAS}} \mathrm{L})$ | $\overline{\text { RAS }}$ low pulse width |  | 300 |  | 32000 | ns |
| $\operatorname{th}(\overline{\text { CAS }}-\overline{R A S})$ | $\overline{\text { RAS }}$ hold time with respect to $\overline{\text { CAS }}$ |  | 200 |  |  | ns |
| th ( $\overline{\text { CAS }-R D) ~}$ | Read hold time with respect to $\overline{\text { CAS }}$ |  | 80 |  |  | ns |
| tsu(RD-CAS) | Read setup time with respect to $\overline{\text { CAS }}$ |  | 0 |  |  | ns |
| $\operatorname{th}(\overline{\mathrm{RAS}}-\overline{\mathrm{CAS}})$ | $\overline{\text { CAS }}$ hold time with respect to $\overline{\text { RAS }}$ |  | 300 |  |  | ns |
| $\mathrm{ta}(\overline{\mathrm{CAS}})$ | $\overline{\text { CAS }}$ access time | $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, Load $=1 \mathrm{TLL}$ |  |  | 200 | ns |
| $\mathrm{ta}(\overline{\mathrm{RAS}})$ | $\overline{\text { RAS }}$ access time | $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, Load $=1 \mathrm{TTL}$ ( Note 7) |  |  | 300 | ns |

## Write Cycle

| Symbol | Parameter | Test conditions | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| t C(WR) | Write cycle time |  | 425 |  |  | ns |
| $\mathrm{t}_{\mathrm{w}}(\overline{\text { CASL }}$ ) | $\overline{\mathrm{CAS}}$ low pulse width |  | 200 |  | 10000 | ns |
| $\mathrm{t}_{\mathrm{w}}(\overline{\text { RASL }}$ ) | $\overline{\mathrm{RAS}}$ low pulse width |  | 300 |  | 32000 | ns |
| $\mathrm{th}(\overline{\mathrm{CAS}}-\overline{\mathrm{RAS}})$ | $\overline{\mathrm{RAS}}$ hold time with respect to $\overline{\mathrm{CAS}}$ |  | 200 |  |  | ns |
| $\mathrm{t}_{\text {SU }}$ (WR-CAS ) | Write setup time with respect to $\overline{\text { CAS }}$ |  | 200 |  |  | ns |
| $\operatorname{th}(\overline{C A S}-W R)$ | Write hold time with respect to $\overline{\text { CAS }}$ |  | 130 |  |  | ns |
| $t w(W R)$ | Write pulse width |  | 200 |  |  | ns |
| $t_{\text {Su( }}$ ( $-\overline{C A S}$ ) | Data setup time with respect to $\overline{\mathrm{CAS}}$ |  | 0 |  |  | ns |
| $\mathrm{th}_{\text {( }}^{\text {CAS }}$-DA $)$ | Data hold time with respect to $\overline{\mathrm{CAS}}$ |  | 130 |  |  | ns |
| $t h(\overline{\mathrm{RAS}}-\overline{\mathrm{CAS}})$ | $\overline{\text { CAS }}$ hold time with respect to $\overline{\mathrm{RAS}}$ |  | 300 |  |  | ns |

MITSUBISHI LSIs
M58756K, M58756S
Alternative Designation 2104
4096-BIT (4096-WORD BY 1-BIT) DYNAMIC RANDOM-ACCESS MEMORY

Read-Modify-Write Cycle

| Symbol | Parameter | Test conditions | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| to (RMW) | Read-modify-write cycle time |  | 595 |  |  | ns |
| t'w(CASL) | $\overline{\text { CAS }}$ low pulse width |  | 320 |  | 10000 | ns |
| $t_{w}(\overline{\text { RAS }}$ L $)$ | $\overline{\text { RAS }}$ low pulse width |  | 450 |  | 32000 | ns |
| $t_{\text {S }}$ U(wR-PAS $)$ | Write setup time with respect to $\overline{\mathrm{RAS}}$ |  | 200 |  |  | ns |
| tsu(wr-CAS) | Write setup time with respect to $\overline{\mathrm{CAS}}$ |  | 200 |  |  | ns |
| $t w(W R)$ | Write pulse width |  | 200 |  |  | ns |
| $\mathrm{t}_{\text {Su }}$ (RD-CAS $)$ | Read setup time with respect to $\overline{\text { CAS }}$ |  | 0 |  |  | ns |
| t MOD | Modify time |  | 0 |  |  | ns |
| $t_{\text {su (DA-WR) }}$ | Data setup time with respect to write |  | 0 |  |  | ns |
| th(wh-DA) | Data hold time with respect to write |  | 170 |  |  | ns |

TIMING DIAGRAMS


Read-Modify-Write Cycle

$\overline{\text { RAS }}$ Only Refresh Cycle


Note 3 : Reference level for (1), (3) and (4) is 2.4 V .
4 : Reference level for (2) is 0.6 V .
5 : Reference level for (5) is 0.4 V .
6 : Both rise time $t_{r}$ and fall time $t f$ should be less than 10 ns .
: $\mathrm{ta}(\overline{\mathrm{RAS}})$ max. $=\mathrm{t}_{\mathrm{d}}(\overline{\mathrm{RAS}}-\overline{\mathrm{CAS}}) \min .+\mathrm{t} \mathrm{T}+\mathrm{ta}(\overline{\mathrm{CAS}}) \max$. when $\mathrm{t}_{\mathrm{d}}(\overline{\mathrm{RAS}}-\overline{\mathrm{CAS}})>\mathrm{t}_{\mathrm{d}}(\overline{\mathrm{RAS}}-\overline{\mathrm{CAS}}) \min$. $t a(\overline{R A S})$ increases by the amount of increase of $t d(\overline{R A S}-\overline{C A S})$

TYPICAL CHARACTERISTICS
Vdd VS. Vbb OPERATING REGION


SUPPLY VOLTAGE $V_{B B}(V)$

AVERGE SUPPLY CURRENT FROM VDD


ACCESS TIME FROM $\overline{C A S}$ VS. SUPPLY VOLTAGE VDD


SUPPLY VOLTAGE VDD (V)

SUPPLY CURRENT FROM VDD VS. TIME


## MITSUBISHI LSIs

## DEVELOPMENT OF CUSTOM MASK ROMs

## DESCRIPTION

Mitsubishi can provide the following mask ROMs made to a customer's specifications.

| M58730-XXXS | 1024-word by 8-bit mask ROM |
| :--- | :--- |
| M58731-XXXS | 2048-word by 8-bit mask ROM |
| M58609-XXS | Keyboard encoder |
| M58620-XXXS | Keyboard encoder |

An automatic mask design program has been developed to assure production of mask ROMs without errors, rapidly, in accordance with the specifications of the customer. On the basis of data supplied by the customer, the program automatically generates the following:

1. The plotter instructions for automatic mask production.
2. A check list for verifying that the customer's specifications have been met.
3. A test program to assure that the production ROMs meet specifications.

## 1. M58730-XXXS and M58731-XXXS Mask ROMs

The object program for mask encoding can be in MELPS 8 binary, hexadecimal or BNPF form. The object program format is the same as the produced by a MELPS 8 cross assembler or a PL// $\mu$ cross compiler. The standard medium used for transmitting an object program is paper tape; however, magnetic tape may also be used.

## 2. M58609-XXS and M58620-XXXS Keyboard Encoders

Submit the character codes, corresponding to each key, on the coding sheet in octal form.


## DESCRIPTION

The M58730-XXXS is an 8192 -bit static MOS mask-programmable read-only memory organized as 1024 words of 8 bits. It is fabricated using N -channel silicon-gate MOS technology, and is designed for fixed-memory applications such as program storage with an M58710S 8-bit parallel CPU. The inputs and outputs are TTL-compatible. Programming is performed by Mitsubishi in accordance with the customer's specifications by changing a single mask during the manufacturing cycle.

The $X X X$ in the type code stands for a 3-digit decimal number which is assigned by Mitsubishi to identify the customer's specifications to which the ROM has been programmed.

## FEATURES

- Fast access time: 850ns (max.)
- Two chip select inputs ( $\overline{\mathrm{CS}_{1}}, \mathrm{CS}_{2}$ ) for easy memory expansion
- Three-state output; OR-tie capability
- Inputs and outputs are TTL-compatible.
- Input protection circuits for all inputs
- Pins compatible with Intel's 8308


## APPLICATION

- Microcomputer memories


## FUNCTION

Address inputs $A_{0} \sim A_{9}$ are decoded to select one of the 1024 words, and the contents of that address are read out

## PIN CONFIGURATION (TOP VIEW)



Outline 24S1
to data outputs $\mathrm{B}_{1} \sim \mathrm{~B}_{8}$. Chip select $1 \overline{\left(\mathrm{CS}_{1}\right)}$ and chip select $2\left(\mathrm{CS}_{2}\right)$ are used to connect two or more M58730XXXS ROMs. When $\overline{\mathrm{CS}_{1}}$ is high or $\mathrm{CS}_{2}$ is low, all outputs are disabled and will assume a floating (high-impedance)


## 8192-BIT (1024-WORD BY 8-BIT) MASK-PROGRAMMABLE ROM

ABSOLUTE MAXIMUM RATINGS

| Symbol | Parameter | Conditions | Limits | Unit |
| :---: | :---: | :---: | :---: | :---: |
| VDD | Supply voltage | With respect to VBB | $-0.3 \sim 20$ | V |
| Vcc | Supply voltage |  | $-0.3 \sim 20$ | V |
| $V$ ss | Supply voltage |  | $-0.3 \sim 20$ | V |
| V I | Input voltage |  | $-0.3 \sim 20$ | V |
| Pd | Power dissipation | $\mathrm{Ta}=25^{\circ} \mathrm{C}$ | 1.0 | W |
| Topr | Operating free-air temperature |  | 0-70 | ${ }^{\circ} \mathrm{C}$ |
| Tstg | Storage temperature |  | $-65-150$ | ${ }^{\circ} \mathrm{C}$ |

RECOMMENDED OPERATING CONDITIONS ( $\mathrm{Ta}=0 \sim 70^{\circ} \mathrm{C}$. unless otherwise noted)

| Symbol | Parameter | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Nom | Max |  |
| $V \mathrm{DD}$ | Supply voltage | 11.4 | 12 | 12.6 | V |
| VCC | Supply voltage | 4.75 | 5 | 5.25 | V |
| $V \mathrm{SS}$ | Supply voltage |  | 0 |  | V |
| $V_{\text {BB }}$ | Supply voltage | $-4.75$ | -5 | $-5.25$ | V |
| VIH | High-level input voltage | 3.3 |  | $\mathrm{Vcc}+1$ | V |
| VIL | Low-level input voltage | Vss-1 |  | 0.8 | V |

ELECTRICAL CHARACTERISTICS ( $\mathrm{Ta}=0 \sim 70^{\circ} \mathrm{C}, \mathrm{VDD}=12 \mathrm{~V} \pm 5 \%, V \mathrm{VC}=5 \mathrm{~V} \pm 5 \%, V \mathrm{SS}=0 \mathrm{~V}, \mathrm{VBB}=-5 \mathrm{~V} \pm 5 \%$, unless otherwise noted).

| Symbol | Parameter | Test conditions | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| VOH | High-level output voltage | $1 \mathrm{OH}=-100 \mu \mathrm{~A}$ | $V_{c c}-1$ |  |  | V |
| VOL | Low-level output voltage | $1 \mathrm{OL}=1.9 \mathrm{~mA}$ |  |  | 0.45 | V |
| 11 | Input current | $\mathrm{VI}_{1}=0 \mathrm{~V}-\mathrm{Vcc}$ |  |  | $\pm 10$ | $\mu \mathrm{A}$ |
| IOZ | 'Off-state output current | $\mathrm{VO}=\mathbf{0 V} \sim \mathrm{VCc}\left(\overline{\mathrm{CS}} 1\right.$ and $\mathrm{CS}_{2}$ are in a floating condition. see Timing Diagram). |  |  | $\begin{gathered} 10 \\ -100 \end{gathered}$ | $\mu \mathrm{A}$ |
| IDD | V DD supply current |  |  |  | 60 | mA |
| ICC | $V \mathrm{CC}$ supply current | Output open |  |  | 100 | $\mu \mathrm{A}$ |
| IBB | $\checkmark$ BB supply current |  |  | $-0.01$ | -1 | mA |
| Ci | Input capacitance | $\begin{aligned} & \mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}, 4 \mathrm{MHz}, 25 \mathrm{mVrms} \\ & V_{D D}=\mathrm{VCC}=\mathrm{VSS}=0 \mathrm{~V} \quad \text { (Note 2) } \end{aligned}$ |  |  | 10 | pF |
| $\mathrm{Co}_{0}$ | Output capacitance | $\begin{aligned} & \mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{~V}_{1}=0 \mathrm{~V}, 1 \mathrm{MHz}, 25 \mathrm{mVrms} \\ & \mathrm{~V}_{\mathrm{DD}}=\mathrm{VCG}_{\mathrm{CG}}=\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} \quad \text { (Note 2) } \end{aligned}$ |  |  | 10 | pF |

Note 1 : The current flowing into an IC is positive; out is negative. The maximum and minimum are defined by absolute values.
2 : All terminals other than the test terminal are connected to V SS during measurement of input and output capacitance.

SWITCHING CHARACTERISTICS ( $T_{a}=0 \sim 70^{\circ} \mathrm{C}, V_{D D}=12 \mathrm{~V} \pm 5 \%, V_{C C}=5 \mathrm{~V} \pm 5 \%, V_{S S}=0 \mathrm{~V}, V_{B B}=-5 \mathrm{~V} \pm 5 \%$, unless otherwise noted).

| Symbol | Parameter | Test conditions | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| ta | Access time | $C_{L}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2.1 \mathrm{k} \Omega$ ( Note 3$)$ |  | 400 | 850 | ns |
| $\operatorname{ta}\left(\overline{c s}_{1}\right)$ | Chip select access time |  |  | 100 | 300 | ns |
| $\mathrm{ta}\left(\mathrm{cs}_{2}\right)$ | Chip select Access time |  |  | 100 | 300 | ns |
| $t d v\left(\overline{c s}_{1}\right)$ | Data valid time with respect to $\overline{\mathrm{CS}}_{1}$ |  |  | 100 | 300 | ns |
| $t d v\left(\mathrm{cs}_{2}\right)$ | Data valid time with respect to $\mathrm{CS}_{2}$ |  |  | 100 | 300 | ns |

Note 3 : Load circuit diagram:


TIMING DIAGRAM


| Chip select 1 <br> $\overline{\mathrm{CS}_{1}}$ | Chip select 2 <br> CS 2 | Data output <br> $\mathrm{B}_{1} \sim \mathrm{~B}_{8}$ |
| :---: | :---: | :---: |
| L | L | Z |
| H | L | Z |
| L | H | O |
| H | H | Z |



THE CENTER LINE indicates a floating (HIGH-IMPEDANCE) STATE
2 : H indicates high-level inputs: L indicates low-level inputs.
$3: Z$ indicates floating (off) state
4 : O indicates that outputs are enabled.
5 : Rise time $\mathrm{t}_{\mathrm{r}} \leqq 20 \mathrm{~ns}$,
Fall time $\mathrm{t}_{\mathrm{f}} \leqq 20 \mathrm{~ns}$.

Alternative Designation 8308

8192-BIT (1024-WORD BY 8-BIT) MASK-PROGRAMMABLE ROM

## ORDERING INFORMATION

This information covers the M58730-XXXS ROM and the object program required for the automatic mask design program. An automatic mask design program has been developed that accepts a customer's specifications and then automatically generates the following:

1. The plotter instructions for automatic mask production.
2. A check list for verifying that the customer's specifications have been met.
3. A test program to assure that the production ROMs meet specifications.

The object program for the automatic mask design program may be supplied in MELPS 8 binary, hexadecimal or BNPF form. The format of the data is the same as the output from a MELPS 8 cross assembler or a PL/I $\mu$ cross compiler. It accepts either standard punched paper tape or magnetic tape as the input medium.

A separate tape should be produced for each object program. The tape along with a printout of the truth table, for confirmation, should accompany each order.

## 1. Object Program Format

- Object program addresses are absolute.
- The data can be in either MELPS 8 binary, hexadecimal or BNPF form.
- The output tape from a MELPS 8 cross assembler, or PL $/ / \mu$ cross compiler can be used.
- The hexadecimal and BNPF formats are Intel-compatible.
- The character code can be ASCII or ISO, with or without parity.

2. Object Program Medium

- Paper tape: 8 -level, 25.4 mm (1 inch) wide
- Magnetic tape: 9-track, 800 BPI , odd parity


## 3. Items for Confirmation

- The format of the object program
- Type number of the M58730-XXXS (including the 3-digit number represented by XXX)
- A truth table printout of memory state

Note : Details for preparation of the object program tape and confirmation material are given in § 4 following.


## 8192-BIT (1024-WORD BY 8-BIT) MASK-PROGRAMMABLE ROM

4. Object Program Preparation and Format 1. MELPS 8 Binary


- A separate tape should be prepared for each object program. Two copies of the tape should be supplied.
- The final part code should be inserted at the end of each tape.
- The first address of the ROM should be indicated.
- The region outside the range from the first address to the first address +1024 is ignored.
- The ROM addresses may be non-sequential in the object program.
- The unused area within a chip will be filled with ' 1 's. If '1's are not suitable, appropriate digits should be indicated.
- It should be indicated whether the area to be programmed is the ROM only, the RAM only, or both.
- All parts except the text and final part are ignored.
- The levels of bit code ' 1 ' and ' 0 ' should be specified as low or high.
- At least 50 frames of sprocket holes should be punched at the start and the end of the tape.


## 2. BNPF

|  | Example of BNPF paper tape |
| :---: | :---: |
|  |  |
|  |  |
|  |  |
|  |  |

- This format is Intel-compatible.
- A separate tape should be prepared for each object program. Two copies of the tape should be supplied.
- The unused area within a chip should be filled with appropriate codes.
- When less than 1024 bytes are used, the unused area should be filled with appropriate codes, or a '\$' character may be inserted at the end of the used area. In the latter case, the remaining area is filled with 'L's.
- Comments, not containing any 'B' or '\$' characters, may be inserted between the ' $F$ ' and ' $B$ '.
- The character code is ASCII or ISO, with or without parity.
- The address is incremented in sequence by the data string.
- The magnitude of the bits between the ' $B$ ' and ' $F$ ' is defined as from high order to low order.
- At least 50 frames of sprocket holes should be punched at the start and the end of the tape.
- The levels of ' $P$ ' and ' $N$ ' should be specified as either low or high.


## 3. Hexadecimal



- This format is Intel-compatible.
- A separate tape should be prepared for each object program. Two copies of the tape should be supplied.
- A record of data length zero is considered the end of one chip's data.
- The first address of the ROM should be indicated.
- The region outside the range from the first address to the first address + 1024 is ignored.
- The ROM addresses may be non-sequential in the object program.
- The unused area within a chip will be filled with '0's. If ' 0 's are not suitable, appropriate digits should be indicated.
- The character code is ASCII or ISO code with or without parity.
- The levels of bit codes ' 1 ' and ' 0 ' should be specified as either low or high.
- At least 50 frames of sprocket holes should be punched at the start and the end of the tape.


## MITSUBISHI LSIs

M58730-001S

## 8192-BIT (1024-WORD BY 8-BIT) MASK-PROGRAMMED ROM SUBROUTINE 1 INTEGER ARITHMETIC OPERATIONS

## DESCRIPTION

- The M58730-001S is an M58730-XXXS that has been developed for use with an M58710S CPU.
- It includes 18 subroutines for an M58710S 8-bit parallel CPU.
- It can perform integer arithmetic operations, logical operations and shift operations with 16 -bit or 32 -bit data.


## UNIT OF INFORMATION

The basic unit of an M58710S is 8 bits, but with subroutines it has two operand lengths.

- Single word length:

An operand consisting of 2 bytes ( 16 bits). In binary form it is capable of expressing numbers from $-2^{15}$ to $2^{15}-1$.

- Double word length:

An operand consisting of 4 bytes ( 32 bits). In decimal form it is equivalent to 7 decimal digits. In binary form it is capable of expressing numbers from $-2^{31}$ to $2^{31}-1$.

## NUMERICAL EXPRESSIONS

## 1. Binary Numbers

1. Single Word Length (2 Bytes)

This binary number consists of 16 bits. Negative numbers are in 2's complement form. It is capable of expressing numbers from $-2^{15}$ to $2^{15}-1$.

2. Double Word Length (4 bytes)

This binary number consists of 32 bits. Negative numbers are in 2 's complement form. It is capable of expressing numbers from $-2^{31}$ to $2^{31}-1$.


## 2. Double Word Length Decimal Numbers

This decimal number consists of 32 bits. The numerical portion is seven digits and the sign is the most significant digit. It has a range of $-10^{7}+1$ to $10^{7}-1$.


SUBROUTINE REFERENCE


Note : The processing order is (1), (2), (3), (4), (5). A transfer vector is used to set the entry address of each subroutine.

## SUBROUTINE FUNCTIONS

- Load pseudo accumulator

The pseudo accumulator is loaded with the specified single word (2 bytes) or double word ( 4 bytes) data.

- Store pseudo accumulator

The contents of the pseudo accumulator, single word ( 2 bytes) or double word ( 4 bytes) data, is stored in the address location specified.

- Shift pseudo accumulator

The contents of the pseudo accumulator, 32 bits ( 2 words) of data, are shifted right or left $n$ positions.

- Arithmetic right shift of pseudo accumulator

The contents of the pseudo accumulator, 32 bits ( 2 words) of data, are arithmetically shifted right n positions.

- Logical operations

The specified single word (2 bytes) data is logically inclusive ORed, ANDed or exclusive ORed to the contents of the pseudo accumulator, and the result retained in the pseudo accumulator.

- Binary integer add or subtract

The specified single word (2 bytes) or double word (4 bytes) binary data is binarily added to or subtracted from the contents of the pseudo accumulator, and the result is retained in the pseudo accumulator.

- Decimal integer add or subtract

The specified double word (4 bytes) decimal data is decimally added to or subtracted from the contents of the pseudo accumulator, and the result is retained in the pseudo accumulator.

- Binary integer multiply

The single word (2 bytes) data in the pseudo accumulator is multiplied by a specified single word ( 2 bytes) data, and the result is retained in the pseudo accumulator.

- Binary integer divide

The double word (4 bytes) data in the pseudo accumulator is divided by a specified single word (2 bytes) data, and the result is retained in the pseudo accumulator.

## RESERVED MEMORY LOCATIONS

Memory locations $6000_{16}$ to $63 \mathrm{FF}_{16}$ are reserved by ROM. In addition, a 50-byte RAM region, locations $3 \mathrm{FCE}_{16}$ to $3 F F F_{16}$, is reserved for executing the ROM programs.

## DESCRIPTION

The M58731-XXXP, S are 16,384-bit parallel output, static read-only memories organized as 2048 words of 8 bits. They are fabricated using N -channel silicon-gate ED-MOS technology. They have a single supply voltage. The inputs and outputs interface with TTL circuits without additional circuits. The M58731-XXXP, S are designed for high-density fixed-memory applications such as program storage for an M58710S 8-bit parallel CPU. Programming is performed by Mitsubishi in accordance with the customer's specifications by changing a single mask during the manufacturing cycle.

## FEATURES

- 2048-word by 8 -bit organization
- Single 5V power supply
- Low power dissipation: $31.4 \mu \mathrm{~W} /$ bit (max.)
- Read access time: 850ns (max.)
- Three programmable chip select inputs $\left(\mathrm{CS}_{1}, \mathrm{CS}_{2}\right.$, $\mathrm{CS}_{3}$ ) for easy memory expansion
- Three-state output for OR-ties
- All inputs and outputs are TTL-compatible
- Input protection circuits at all inputs
- Electrical characteristics and pins are compatible with Intel's 8316A.


## APPLICATION

- High-density microcomputer memories


## FUNCTION

When any of the 2048 addresses are selected by positivelogic input signals ( $\mathrm{A}_{0} \sim \mathrm{~A}_{10}$ ), the contents of that address in the ROM are read out to the data outputs ( $B_{1} \sim B_{3}$ ). $A_{0}$ is the least-significant bit and $A_{10}$ is the most-significant bit

## PIN CONFIGURATION (TOP VIEW)



Outline 24P1 (M58731-XXXP) 24S1 (M58731-XXXS)
of the address. The three chip select inputs are programmable during the masking process, and any combination of active high-level and active low-level may be used for chip selection. When a chip is selected, the contents of the ROM are read out; and under other conditions, the data outputs ( $\mathrm{B}_{1} \sim \mathrm{~B}_{8}$ ) are in the floating (high-impedance) state.

The XXX in the type code stands for a 3-digit decimal number which is assigned by Mitsubishi to identify the customer's specifications to which the ROM has been programmed.


## 16384-BIT (2048-WORD BY 8-BIT) MASK-PROGRAMMABLE ROM

ABSOLUTE MAXIMUM RATINGS

| Symbol | Parameter |  | Conditions | Limits | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $V_{\text {cc }}$ | Supply voltage |  | With respect to GND | $-0.5 \sim 7.0$ | V |
| $\mathrm{V}_{1}$ | Input voltage |  |  | $-0.5 \sim 7.0$ | V |
| Vo | Output voltage |  |  | $-0.5 \sim 7.0$ | V |
| $\mathrm{Pd}_{d}$ | Power dissipation | M58731-XXXP | $\mathrm{Ta}=25^{\circ} \mathrm{C}$ | 500 | mW |
|  |  | M58731-XXXS |  | 1000 | mW |
| Topr | Operating free-air temperature range |  |  | 0~70 | ${ }^{\circ} \mathrm{C}$ |
| Tstg | Storage temperature range | M58731-XXXP |  | $-40 \sim 125$ | ${ }^{\circ} \mathrm{C}$ |
|  |  | M 58731-XXXS |  | $-65 \sim 150$ | ${ }^{\circ} \mathrm{C}$ |

RECOMMENDED OPERATING CONDITIONS $\left(\mathrm{Ta}=0 \sim 70^{\circ} \mathrm{C}\right.$, unless othervise noted)

| Symbol | Parameter | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Nom | Max |  |
| $\mathrm{V}_{\mathrm{CC}}$ | Supply voltage | 4.75 | 5.0 | 5.25 | V |
| GND |  |  | 0 |  | V |
| $\mathrm{V}_{\text {IH }}$ | High-level input voltage | 2.0 |  | $V_{C C}+1.0$ | V |
| $V_{\text {IL }}$ | Low-level input voltage | -0.5 |  | 0.8 | $\checkmark$ |

ELECTRICAL CHARACTERISTICS $\left(T a=0 \sim 70^{\circ} \mathrm{C}, V_{C C}=5 \mathrm{~V} \pm 5 \%\right.$, unless otherwise noted)

| Symbol | Parameter | Test conditions | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| VOH | High-level output voltage | $\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$ | 2.2 |  |  | V |
| VOL | Low-level output voltage | $1 \mathrm{OL}=2.0 \mathrm{~mA}$ |  |  | 0.45 | V |
| ICC | Supply current from VCC | All inputs $=5.25 \mathrm{~V}$, output open |  | 40 | 98 | mA |
| 11 | Input current | $\mathrm{V}_{1}=0 \mathrm{~V} \sim \mathrm{~V}_{\mathrm{CC}}$ |  |  | 10 | $\mu \mathrm{A}$ |
| loz | Off-state input current | Floating state, $\mathrm{V}_{1}=0.45 \mathrm{~V}-\mathrm{V}_{\mathrm{CC}}$ | $-20$ |  | 10 | $\mu \mathrm{A}$ |
| Ci | Input capacitance | 0 V except test terminal , 1 MHz , |  | 4 | 10 | pF |
| Co | Output capacitance | $\mathrm{Ta}=25^{\circ} \mathrm{C}$ |  | 8 | 15 | pF |

[^4]SWITCHING CHARACTERISTICS $\left(T a=0 \sim 70^{\circ} \mathrm{C}, V_{C C}=5 \mathrm{~V} \pm 5 \%\right.$, unless otherwise noted)

| Symbol | Parameter | Test conditions | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| ta | Access time | $\begin{aligned} \mathrm{CL}= & 100 \mathrm{pF} \\ R \mathrm{~L}= & 2.1 \mathrm{k} \Omega \\ & (\text { Note } 2) \end{aligned}$ |  | 400 | 850 | ns |
| ta (cs) | Chip select access time |  |  |  | 300 | ns |
| $t_{d v}(\mathrm{cs})$ | Data valid time with respect to chip select |  | 0 |  | 300 | ns |

TIMING DIAGRAM


Input pulse level
Input pulse rise time $\operatorname{tr}(10 \% \sim 90 \%)$
Input pulse fall time $t_{f}(10 \% \sim 90 \%)$
Referance voltage at timing measurement
Input
Output
$0.8 \sim 2.0 \mathrm{~V}$
20 ns
20 ns

1.5 V
$0.8 \sim 2.0 \mathrm{~V}$

Note 2 : Load circuit diagram


## MITSUBISHI LSIs

## 16384-BIT (2048-WORD BY 8-BIT) MASK-PROGRAMMABLE ROM

## ORDERING INFORMATION

This information covers the M58731-XXXS ROM and the object program required for the automatic mask design program. An automatic mask design program has been developed that accepts a customer's specifications and then automatically generates the following:

1. The plotter instructions for automatic mask production.
2. A check list for verifying that the customer's specifications have been met.
3. A test program to assure that the production ROMs meet specifications.

The object program for the automatic mask design program may be supplied in MELPS 8 binary, hexadecimal or BNPF form. The format of the data is the same as the output from a MELPS 8 cross assembler or a PL/I $\mu$ cross compiler. It accepts either standard punched paper tape or magnetic tape as the input medium.

A separate tape should be produced for each object program. The tape along with a printout of the truth table, for confirmation, should accompany each order.

## 1. Object Program Format

- Object program addresses are absolute.
- The data can be in either MELPS 8 binary, hexadecimal or BNPF form.
- The output tape from a MELPS 8 cross assembler, or PL/I $\mu$ cross compiler can be used.
- The hexadecimal and BNPF formats are Intel-compatible.
- The character code can be ASCII or ISO, with or without parity.


## 2. Object Program Medium

- Paper tape: 8 -level, 25.4 mm ( 1 inch ) wide
- Magnetic tape: 9-track, 800 BPI, odd parity


## 3. Items for Confirmation

- The format of the object program
- Type number of the M58731-XXXS (including the 3-digit number represented by XXX )
- The active logic level of the chip select $\mathrm{CS}_{1}, \mathrm{CS}_{2}$ and $\mathrm{CS}_{3}$
- A truth table printout of memory state

Note : Details for preparation of the object program tape and confirmation material are given in § 4 following

MASK ROM DEVELOPMENT FLOW CHART


# MITSUBISHI LSIs <br> M58731-XXXS 

Alternative Designation 8316A

## 16384-BIT (2048-WORD BY 8-BIT) MASK-PROGRAMMABLE ROM

4. Object Program Preparation and Format
5. MELPS 8 Binary
Example of MELPS 8 binary paper tape

- A separate tape should be prepared for each object program. Two copies of the tape should be supplied.
- The final part code should be inserted at the end of each tape.
- The first address of the ROM should be indicated.
- The region outside the range from the frist address to the first address +2048 is ignored.
- The ROM addresses may be non-sequential in the object program.
- The unused area within a chip will be filled with ' 1 's. If ' 1 's are not suitable, appropriate digits should be indicated
- It should be indicated whether the area to be programmed is the ROM only, the RAM only, or both.
- All parts except the text and final part are ignored.
- The levels of bit code ' 1 ' and ' 0 ' should be specified as low or high.
- At least 50 frames of sprocket holes should be punched at the start and the end of the tape.


## 2. BNPF



- This format is Intel-compatible.
- A separate tape should be prepared for each object program. Two copies of the tape should be supplied.
- The unused area within a chip should be filled with appropriate codes.
- When less than 2048 bytes are used, the unused area should be filled with appropriate codes, or a '\$' character may be inserted at the end of the used area. In the latter case, the remaining area is filled with ' $L$ 's.
- Comments, not containing any ' B ' or ' $\$$ ' characters, may be inserted between the ' $F$ ' and ' $B$ '.
- The character code is ASCII or ISO, with or without parity.
- The address is incremented in sequence by the data string.
- The magnitude of the bits between the ' $B$ ' and ' $F$ ' is defined as from high order to low order.
- At least 50 frames of sprocket holes should be punched at the start and the end of the tape.
- The levels of ' $P$ ' and ' $N$ ' should be specified as either low or high.


## 3. Hexadecimal



- This format is Intel-compatible.
- A separate tape should be prepared for each object program. Two copies of the tape should be supplied.
- A record of data length zero is considered the end of one chip's data.
- The first address of the ROM should be indicated.
- The region outside the range from the first address to the first address + 2048 is ignored.
- The ROM addresses may be non-sequential in the object program.
- The unused area within a chip will be filled with '0's. If ' 0 's are not suitable, appropriate digits should be indicated.
- The character code is ASCII or ISO code with or without parity.
- The levels of bit codes ' 1 ' and ' 0 ' should be specified as either low or high.
- At least 50 frames of sprocket holes should be punched at the start and the end of the tape.


## 16384-BIT (2048-WORD BY 8-BIT) MASK-PROGRAMMED ROM, MELPS 8 BASIC OPERATING MONITOR BOM-B

## DESCRIPTION

The M58731-001S is an M58731-XXXS that has been developed for use with an M58710S CPU. It contains the basic operating monitor BOM-B for an M58710S CPU. BOM-B is a monitor program that controls the execution and debugging of user's programs and is contained in 2 K bytes of memory.

## FEATURES

- A standard mask ROM useful for microcomputer control and program debugging
- Three macroinstructions and nine monitor commands
- User's monitor commands are easily added
- The BOM-B program cannot be destroyed by a user's program


## FUNCTION

The BOM-B has 9 monitor commands and 3 macroinstructions as shown in Table 1. They are used for the following functions:

1. Controlling program execution
2. Loading programs
3. Punching memory
4. Debugging programs
5. Controlling input and output

## Start of Execution of BOM-B Program

The execution is started at address $6800_{16}$. The following message is printed out and then a monitor command can be typed in: MELPS 8 BOM-B AO1
//

## Conditions for Hardware

1. Reserved Memory Locations

Memory locations $6800_{16}$ to $6 \mathrm{FFF}_{16}$ are reserved. In addition a 78-byte RAM region, locations $3 F$ FE $_{16}$ to $3 \mathrm{FFF}_{16}$, is reserved for executing the ROM programs.
2. Input/Output Device Number

PTR, for keyboard input $7 \mathrm{~B}_{16}$ (IN 7B\#)
PTP, for print output $\quad 7 \mathrm{~B}_{16}$ (OUT 7B\#)
Status input $\quad 3 B_{16}$ (IN 3B\#)
Where the status bits are defined as follows:


Table 1 A list of the 9 monitor commands and the 3 macroinstructions for BOM-B

| Names of monitor commands or macroinstructions |  | Function | Monitor command input format or calling sequence |  | Parameter |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Command | G | Go to program execution | $\begin{aligned} & / / \underline{\mathrm{G}} \\ & \operatorname{para1}(4) \quad\left[\operatorname{para2}(4)^{\mathrm{CRLLF}}\right. \end{aligned}$ |  | para 1(4): Start address <br> para 2(4): Change start address |
|  | R | Program restart | / / $\underline{\mathrm{R}}$ CRLF $^{\text {cher }}$ |  | - |
|  | L | MELPS 8 binary loader | / / L Crif |  | - |
|  | H | MELPS 8 hexadecimal loader | // HCRLF |  | - |
|  | T | MELPS 8 binary punch text block of memory data | / $/$ Tpar 21(4), para2 (4)CRLF |  | para 1(4): First address <br> para 2(4): End address |
|  | E | MELPS 8 binary punch end block | / $/ \underline{\mathrm{E}[\operatorname{paral}} \mathbf{( 4 )}]_{\text {CRLF }}$ |  | para 1(4): Start address |
|  | P | Print hexadecimal text block of memory data | / $/$ P para1 (4), para 2 (4) CRLF |  | para 1(4): First address <br> para 2(4): End address |
|  | S | Substitute memory | $/ /$ S para1(4)CRLF |  | para 1(4): Change address |
|  | M | Print and modify register data | / / $\mathrm{M}_{\text {cRLF }}$ |  |  |
| Macroinstruction | EXIT | Exit the end of a program | CALL 6806 \# |  |  |
|  | PAUSE | Pause program execution | CALL 6803\# |  |  |
|  | EXIO | Execution input/output control |  |  |  |
| Note 1: Para $n(m)$ : A hexadecimal number ( $0,1,2,3,4,5,6,7,8,9, A, B, C, D$, <br> $\mathrm{E}, \mathrm{F}$ ) of the $n$th parameter in one command (of an operator's input or a monitor's print-out). which has a valid length of 1 to m . If the length exceeds m , the least-significant digits are valid. <br> 2 : $\qquad$ (underline) : Indicates an input by an operator. <br> 3 : [ ]: The parameter may be omitted. <br> 4: \# : Indicates a hexadecimal number in assembler language. |  |  |  |  |  |

## DESCRIPTION

The M58563S are FAMOS (floating-gate avalancheinjection MOS) ultraviolet-light erasable and electrically reprogrammable 2048-bit ROMs. They incorporate P-channel silicon-gate MOS technology, are designed for microcomputer system applications, and have direct TTL compatibility for all inputs and outputs, without extra interface circuits.

Static circuity is adopted and the device is interchangeable with Intel's 1702A.

## FEATURES

- Full-decoded 256-word by 8-bit organization; 512-word by 4-bit organization is also available for reading.
- Easy memory expansion by chip-select ( $\overline{\mathrm{CS}}$ ) input.
- All inputs and outputs are directly TTL-compatible and have OR-tie capability. All outputs are 3 -state.
- Access time:

M58563S: $1 \mu \mathrm{~s}$ (max)
M58563S-1: $1.5 \mu \mathrm{~s}$ (max)

- No clocks required; the circuitry is entirely static.
- Interchangeable with Intel's 1702A.


## APPLICATION

- Computers and peripheral equipment


## FUNCTION

In the 256 -word by 8 -bit organization mode, $V_{\mathrm{CC}}$ to pins $22\left(\mathrm{~V}_{\mathrm{cc}} / \overline{\mathrm{MC}}\right)$ and $23\left(\mathrm{~V}_{\mathrm{cC}} / \mathrm{A}_{8}\right)$, low-level input to the chip-enable terminal $\overline{\mathrm{CS}}$ and address signals to the address inputs ( $A_{0} \sim A_{7}$ ) make the data contents of the designated address location available at the data outputs ( $\mathrm{D}_{1} \sim \mathrm{D}_{8}$ ). Applying low-level input to pin 22, using pin 23 as an

address input, and connecting the output terminals in pairs $\left(D_{1}, D_{2}\right),\left(D_{3}, D_{4}\right),\left(D_{5}, D_{6}\right)$ and ( $\left.D_{7}, D_{8}\right)$, gives the 512 -word by 4 -bit organization. In this case, if $\mathrm{V}_{\mathrm{CC}} / \mathrm{A}_{8}$ is kept at low level, the contents of $D_{1}, D_{3}, D_{5}$, and $D_{7}$ are available at the data-output terminals. If $\mathrm{V}_{\mathrm{CC}} / \mathrm{A}_{8}$ is kept at high level, the contents of $D_{2}, D_{4}, D_{6}, D_{8}$ are available at the data-output terminals.

Programming is performed individually at any bit location, by applying input patterns to $D_{1} \sim D_{8}$ at the specified timing, address inputs to $\mathrm{A}_{0} \sim \mathrm{~A}_{7}$ and the program-control signal to terminal PROG.


2048-BIT (256-WORD BY 8-BIT OR 512-WORD BY 4-BIT) ERASABLE AND ELECTRICALLY REPROGRAMMABLE ROM

ABSOLUTE MAXIMUM RATINGS Note 1

| Symbol | Parameter | Conditions | Limits | Unit |
| :---: | :---: | :---: | :---: | :---: |
| V11 | Input voltage, read input | With respect to Vcc (substrate) | 0.3~-20 | V |
| V12 | Input voltage, write input |  | 0.3~-48 | V |
| Topr | Operating free-air temperature |  | 0~70 | ${ }^{\circ} \mathrm{C}$ |
| Tstg | Storage temperature |  | $-65 \sim 125$ | ${ }^{\circ} \mathrm{C}$ |

Note 1 : Stresses above those listed above may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or at any other conditions above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended periods affects device reliability

## READ OPERATION

Recommended Operating Conditions ( $\mathrm{Ta}=0 \sim 70^{\circ} \mathrm{C}$. unless othervise noted)

| Symbol | Parameter | Conditions : | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Nom | Max |  |
| VDD | Supply voltage |  | -8.55 | $-9.0$ | -9.45 | V |
| VGG | Supply voltage |  | -8.55 | $-9.0$ | -9.45 | V |
| Vcc | Supply voltage |  | 4.75 | 5.0 | 5.25 | V |
| VBB | Supply voltage (Note 2) |  | 4.75 | 5.0 | 5.25 | V |
| VIL1 | Low-level input voltage, for TTL interface |  | $-1.0$ |  | 0.65 | V |
| VIL2 | Low-level input voltage, for MOS interface |  | VDD |  | $\mathrm{Vcc}-6$ | V |
| VIH | High-level input voltage |  | $\mathrm{VCG}-2$ |  | $\mathrm{Vcc}+0.3$ | V |

Note 2 : $V_{B B}$ should be connected to the same power supply as $V C C$

Electrical Characteristics ( $\mathrm{Ta}=0 \sim 70^{\circ} \mathrm{C}, \mathrm{VCC}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{VDD}_{\mathrm{D}}=-9 \mathrm{~V} \pm 5 \%, \mathrm{VGG}_{\mathrm{GG}}=-9 \mathrm{~V} \pm 5 \%$. unless otherwise noted)

| Symbol | Parameter |  | Test conditions |  | Limits |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| IIL | Low-level input current, address, chip-select input |  |  | $\mathrm{VIL}_{\text {IL }}=0 \mathrm{~V}$ |  |  | 1 | $\mu \mathrm{A}$ |
| Ioz | Off-state output current |  | $\mathrm{VIL}=0 \mathrm{~V}, \overline{\mathrm{CS}}=\mathrm{VCC}-2 \mathrm{~V}$ |  |  | 1 | $\mu \mathrm{A}$ |
| IDDo | VDD supply current | M 58563 S | $\begin{aligned} & \mathrm{VGG}=\mathrm{VCC}, \overline{\mathrm{CS}}=\mathrm{VCC}-2 \mathrm{~V} \\ & \mathrm{IOL}=0 \mathrm{~mA}, \mathrm{Ta}=25^{\circ} \mathrm{C} \end{aligned}$ |  | 2.4 | 6 | mA |
|  |  | M58563S-1 |  |  | 2.0 | 5 | mA |
| IDD, | VDD supply current | M58563S | $\begin{aligned} & \overline{\mathrm{CS}}=\mathrm{VCC}-2 \mathrm{~V} \\ & \mathrm{IOL}=0 \mathrm{~mA}, \mathrm{Ta}=25^{\circ} \mathrm{C} \end{aligned}$ |  | 24 | 42 | mA |
|  |  | M58563S-1 |  |  | 20 | 35 | mA |
| 1 $\mathrm{DD}_{2}$ | VDD supply current | M58563S | $\overline{\mathrm{CS}}=0 \mathrm{~V}, 1 \mathrm{~L}=0 \mathrm{~mA}, \mathrm{Ta}=25^{\circ} \mathrm{C}$ |  | 15 | 30 | mA |
|  |  | M58563S-1 |  |  | 12.5 | 25 | mA |
| $\mathrm{IDD}_{3}$ | VDD supply current | M58563S | $\overline{\mathrm{CS}}=\mathrm{VCC}-2 \mathrm{~V}, 1 \mathrm{OL}=0 \mathrm{~mA}, \mathrm{Ta}=0^{\circ} \mathrm{C}$ |  | 30 |  | mA |
|  |  | M58563S-1 |  |  | 25 |  | mA |
| Iosi | Output clamp current | M58563S | $\mathrm{Vo}=-1.0 \mathrm{~V}, \mathrm{Ta}=0^{\circ} \mathrm{C}$ |  | 6 |  | mA |
|  |  | M 58563S-1 |  |  | 5 |  | mA |
| losz | Output clamp current | M58563S | $\mathrm{Vo}=-1.0 \mathrm{~V} . \mathrm{Ta}=25^{\circ} \mathrm{C}$ |  | 4.8 | 9.6 | mA |
|  |  | M58563S-1 |  |  | 4 | 8 | mA |
| IGG | VGG supply current |  |  |  |  | 1 | $\mu \mathrm{A}$ |
| Iol | Low-level output current |  | $V \mathrm{O}=0.45 \mathrm{~V}$ | 1.6 | 4 |  | mA |
| IOH | High-level output current |  | $\mathrm{Vo}=0 \mathrm{~V}$ | -2 |  |  | mA |
| VOL | Low-level output voltage |  | $1 \mathrm{OL}=1.6 \mathrm{~mA}$ |  | -3 | 0.45 | V |
| VOH | High-level output voltage |  | $1 \mathrm{OH}=-100 \mu \mathrm{~A}$ | 3.5 | 4.5 |  | V |
| Ci | Input capacitance |  | $f=1 \mathrm{MHz}$ |  | 8 | 10 | pF |
| $\mathrm{Ci}\left(\mathrm{V}_{G G}\right)$ | Input capacitance, VGG input |  |  |  |  | 30 | pF |
| Co | Output capacitance |  |  |  | 10 | 15 | pF |

2048-BIT (256-WORD BY 8-BIT OR 512-WORD BY 4-BIT) ERASABLE AND ELECTRICALLY REPROGRAMMABLE ROM

Timing Requirements ( $\mathrm{Ta}=0 \sim 70^{\circ} \mathrm{C}, \mathrm{VCC}_{C C}=5 \mathrm{~V} \pm 5 \%, V_{D D}=-9 \mathrm{~V} \pm 5 \%, V_{G G}=-9 \vee \pm 5 \%$. unless otherwise noted)

| Symbol | Parameter |  | Conditions | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| fr | Repetition frequency | M 58563 S |  |  |  |  | 1.0 | MHz |
|  |  | M 58563S-1 |  |  |  | 0.66 | MHz |
| $\mathrm{t}_{\text {su }}(\mathrm{AD}-\mathrm{CS})$ | Address setup time with respect to chip select | M 58563S |  |  |  | 100 | ns |
|  |  | M 58563S-1 |  |  |  | 600 | n s |
| $t_{\text {su }}\left(A D-V_{G G}\right)$ | Address setup time with respect to clocked $\mathrm{V}_{\mathrm{GG}}$ (Note 1) |  |  | 1 |  |  | $\mu \mathrm{s}$ |

Switching Characteristics ( $\mathrm{Ta}=0 \sim 70^{\circ} \mathrm{C}, \mathrm{VCC}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{VDD}_{\mathrm{DD}}=-9 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{G G}=-9 \mathrm{~V} \pm 5 \%$. unless otherwise noted)

| Symbol | Parameter | Test conditions | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
|  | Address ${ }^{\text {a }}$ M 5853 S |  |  |  | 1 | $\mu \mathrm{s}$ |
|  | M 58563S-1 |  |  |  | 1.5 | $\mu \mathrm{s}$ |
| $t d v(A D)$ | Data valid time with respect to address | $V_{I H}=4 V, V_{I L}=0 \mathrm{~V}$ <br> $\mathrm{tr}, \mathrm{tf} \leqq 50 \mathrm{~ns}$ <br> Output load 50pF |  |  | 100 | n s |
| ta (CS) | Chip select access time |  |  |  | 900 | n s |
| tdv (CSLH) | Data valid time with respect to chip select low-to high-level |  |  |  | 300 | n s |
| $\mathrm{ta}(\overline{\mathrm{MC}})$ | Mode change access time |  |  |  | 400 | ns |
| $\mathrm{ta}(\mathrm{A} 8$ ) | Address $\mathrm{A}_{8}$ access time |  |  |  | 600 | n s |
| $t d v\left(V_{G G L H}\right)$ | Data valid time with respect to clocked $\mathrm{V}_{\mathrm{GG}}$ low-to-high-level (Note 1) |  |  |  | 5 | $\mu \mathrm{s}$ |

Note 1 : Power-down option.

## Timing Diagrams



Data Selection by $\mathrm{A}_{8}$


Note 2 : The output will be retained for $t_{d v}\left(V_{G G L H}\right)$ even if clocked $V_{G G}$ is at Vcc level.
3: If $\overline{\mathrm{CS}}$ makes a transition from $V_{\text {IL }}$ to $V_{\text {IH }}$ while clocked $V_{G G}$ is at $V_{G G}$ level, then deselection of output occurs at tdv (CSLH)

Data Selection by $\overline{M C}$


Clocked $\mathrm{V}_{\mathrm{GG}}$ (Power-Down Option) Operation


Deselection of Data Output in OR-Tie Operation


## MITSUBISHI LSIs

## M58563S, M58563S-1

Alternative Designation 1702A
2048-BIT (256-WORD BY 8-BIT OR 512-WORD BY 4-BIT) ERASABLE AND ELECTRICALLY REPROGRAMMABLE ROM

## PROGRAM OPERATION

Recommended Operating Conditions $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{BB}}=12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{CC}} / \overline{\mathrm{M}_{\mathrm{C}}}=\mathrm{V}_{\mathrm{CC}} / \mathrm{A}_{8}=\overline{\mathrm{CS}}=\mathbf{O V}$. unless otherwise noted)

| Symbol | Prameter | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Nom | Max |  |
| $\mathrm{V}_{\mathrm{IH}}(\mathrm{P})$ | High-levei input voltage |  |  | 0.3 | V |
| $V_{\text {ILI }}(\mathrm{P})$ | Low-level input voltage, data input | -46 |  | -48 | V |
| $V_{\text {IL2 }}(\mathrm{P})$ | Low-level input voltage, address input | -25 |  | -48 | V |
| $V_{\text {IL3(P) }}$ | Low-level imput voltage, $\mathrm{V}_{\text {DD }}$. program input | -46 |  | -48 | V |
| VIL4(P) | Low-level input voltage. VGG input | -30 |  | -40 | V |

Electrical Characteristics $\left(T_{a}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{BB}}=12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{CC}} / \overline{\mathrm{MC}}=\mathrm{V}_{\mathrm{CC}} / \mathrm{AB}_{\mathrm{B}}=\overline{\mathrm{CS}}=0 \mathrm{~V}\right.$, unless otherwise noted)

| Symbol | Parameter | Test conditions | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| IILI(P) | Low-level input current, address, data input | $\left\|V_{\text {IL }}\right\| \leqq 48 \mathrm{~V}$ |  |  | 10 | mA |
| 1/L2(P) | Low-level input current, program. $\mathrm{V}_{\text {GG }}$ input | $\|\mathrm{VIL}\| \leqq 48 \mathrm{~V}$ |  |  | 10 | mA |
| $1 \mathrm{BB}(\mathrm{P})$ | Supply current. $\mathrm{V}_{\text {BB }}$ input |  |  | 0.5 |  | mA |
| IDDM(P) | Supply current. $V_{\text {DD }}$ peak maximum current | $\mathrm{V}_{\mathrm{GG}}=-35 \mathrm{~V}, \mathrm{VDD}=\mathrm{V}$ IL2 $2(\mathrm{P})=-48 \mathrm{~V}$ |  | 200 |  | mA |

Timing Requirements ( $T_{a}=25^{\circ} \mathrm{C}, \mathrm{V}_{B B}=12 \mathrm{~V} \pm 10 \%, \overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{CC}} / \overline{\mathrm{MC}}=\mathrm{V}_{C C} / \mathrm{A}_{\mathrm{g}}=0 \mathrm{~V}$. unless otherwise noted)

| Symbol | Parameter | Test conditions | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
|  | Duty cycle Vag, VDD |  |  |  | 20 | \% |
| tw(PRO) | Programming pulse width | $\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{1 L 3}(\mathrm{P})=-48 \mathrm{~V}, \mathrm{~V}_{\mathrm{GG}}=-35 \mathrm{~V}$ |  | 1 | 3 | ms |
| $\mathrm{t}_{\text {su (DA-PRO) }}$ | Data setup time with respect to program |  | 25 |  |  | $\mu \mathrm{s}$ |
| $\operatorname{th}$ (DA-PROLH) | Data hold time w/ respect to program low-to-high-level |  | 10 |  |  | $\mu \mathrm{s}$ |
|  | VDD, $\mathrm{V}_{\mathrm{GG}}$ setup time with respect to program |  | 100 |  |  | $\mu \mathrm{s}$ |
|  | $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{GG}}$ time $\mathrm{w} /$ respect to program low-to-high-level |  | 10 |  | 100 | $\mu \mathrm{S}$ |
|  | Address setup time with respect to $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{GG}}$ |  | 25 |  |  | $\mu \mathrm{s}$ |
| $\operatorname{th}\left(A D \cdot V_{0 D}, V_{G G}\right)$ | Address hold time with respect to $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{GG}}$ |  | 25 |  |  | $\mu \mathrm{s}$ |
| $\mathrm{t}_{\text {su }}(\mathrm{AD}$ - PRO) | Address setup time with respect to program |  | 10 |  |  | $\mu \mathrm{s}$ |
| $\operatorname{th}(\mathrm{AD}$ - PRO) | Address hold time with respect to program |  | 10 |  |  | $\mu \mathrm{s}$ |

Timing Diagram


## PROGRAMMING PROCEDURE

Before programming, find the number of pulses that are necessary to complete programming, verifying the output after application of a single programming pulse.

To program, apply 3 to 5 times this number of programming pulses.

## ERASING PROCEDURE

The M58563S/S-1 can be erased by exposure to highintensity short-wave ultraviolet rays at a wave length of $2537 \AA$ through the transparent quartz lid provided.
The recommended exposure is approximately $5 \mathrm{Ws} / \mathrm{cm}^{2}$. Mitsubishi Electric's Model GL-10 short-wave ultraviolet sterilizing lamp can erase either device in 10 to 20 minutes at a distance of 2 cm . If the energy of the lamp used is unknown, find the total time ( $t_{E}$ ) required to erase all bits and use a short-wave ultraviolet light exposure time of 4 to 6 times this value.

## HANDLING PRECAUTIONS FOR FAMOS DEVICES

In addition to general handling precautions for MOS devices, the following points apply to FAMOS devices.

1. When programming, the programming voltage and duty cycle should be carefully held within the specified values. Exceeding the voltage and duty cycle may result in thermal destruction of the device.
2. Before erasing, clean the surface of the quartz lid to completely remove oily impurities, which may impede irradiation and affect the erasing characteristics. Also, scratches on the lid surface may act as refractors, and prevent erasing of some bits.
3. The electrical characteristics may be slightly affected by light entering through the transparent lid. Although in normal operation the programmed information would probably not be erased, to assure reliability it is desirable to cover the lid with opaque tape. Also, avoid programming in a brightly lit location.

## MITSUBISHI LSIs M58651S

## Alternative Designation 2401

## 4096-BIT (1024-WORD BY 4-BIT) ELECTRICALLY ALTERABLE ROM

## DESCRIPTION

The M58651S is a fully decoded electrically erasable and reprogrammable ROM organized as 1024 words of 4 bits. This ROM is fabricated using P-channel MNOS technology. Data is stored by selectively applying negative writing pulses that tunnel electrons through the gate insulation onto the $\mathrm{SiO}_{2}-\mathrm{Si}_{3} \mathrm{~N}_{4}$ interface of the MNOS memory transistors. Data is erased by applying a negative pulse to the erase substrate of the device.

## FEATURES

- Fully decoded memory with 1024 words of 4 bits
- Two chip select inputs for easy memory expansion
- Electrically reprogrammable: $10^{6}$ times (min)
- Access time: $3 \mu \mathrm{~s}$ (max)
- Program time: $20 \mathrm{~ms} / 4$ bits
- Simultaneous erasure of all data: 100 ms
- Minimum data retention: $2 \times 10^{11}$ read accesses per word (min) between refreshing
- Power-off nonvolatile data storage life: 10 years (min)
- Three-state outputs
- Interchangeable with NCR's 2401 in pin connections and electrical characteristics


## APPLICATION

- Read-only memories which require frequent and quick reprogramming, such as prototypes or field programmed microcomputer systems



## FUNCTION

The following voltages should be applied to each terminal for erase, program or read operations of memory. (Vss $=0 \mathrm{~V}$ is applicable.)

| Symbol | Parameter | Erase mode | Program mode | Read mode |
| :---: | :---: | :---: | :---: | :---: |
| VDD | Supply voltage | V ss | Vss-28V | Vss-19V |
| V ss | Substrate supply voltage | 5 V | 5 V | 5 V |
| VM | Memory voltage | $\mathrm{V}_{\text {SS }}$ | VDD | $\mathrm{VSS}-10 \mathrm{~V}$ |
| $V_{R}$ | Reference voltage | VSS | Vss | VDD |
| $V_{\text {EE }}$ | Erase substrate voltage | V SS-28V | Vss | $V_{\text {SS }}$ |
| W | Program control input | VSS-28V | VDD | Vss |



## FUNCTIONAL OPERATIONS Erasing

Data is erased by applying a $\mathrm{V}_{\mathrm{SS}}-28 \mathrm{~V} 100 \mathrm{~ms}$ pulse to the erase substrate voltage $\mathrm{V}_{\mathrm{EE}}$. All bits are electrically erased simultaneously.

## Programming

Apply a low-level input to the program control terminal $\bar{W}$, and VDD voltage to the memory voltage terminal $\mathrm{V}_{\mathrm{M}}$. Data is stored by selectively applying program pulses as designated by the address signals $A_{0} \sim A_{9}$. At this time from 100 to 300 pulses of approximately $100 \mu$ s pulse width should be applied to the clock $\phi_{1}$ input.

Data is stored, theoretically, by selectively applying negative programming pulses that tunnel electrons through the gate insulation onto the $\mathrm{SiO}_{2}-\mathrm{Si}_{3} \mathrm{~N}_{4}$ interface of the MNOS memory transistors.

When the programming voltage is removed, the charge trapped on the interface has changed the state from 0 to 1 (a ' 1 ' is stored).

Data to be programmed is supplied through input terminals $D_{1} \sim D_{4}$.

The programming time is $20 \mathrm{~ms} / 4$ bits. With pull-up resistors, address inputs $A_{0} \sim A_{9}$ and data' inputs $D_{1} \sim D_{4}$ are TTL-compatible.

## Read Operation

Data is read selectively by applying a $V_{S S}-10 \mathrm{~V}$ to the memory voltage terminal $\mathrm{V}_{\mathrm{M}}$ from the input/output terminals $D_{1} \sim D_{4}$ (operating now as output terminals.) Two modes can be used for read operations. In the strobed mode, the strobe input is used to sample and hold the output data. In the nonstrobed mode, the strobe terminal should be maintained as $V_{S S}-24 \pm 1 \mathrm{~V}$ throughout the entire read cycle.

The access time is less than $3 \mu \mathrm{~s}$ in the nonstrobed mode.
Strobed data may be accessed a minimum of $2 \times 10^{11}$ times without refreshing and is nonvolatile in excess of ten years in the power-off state and at an ambient temperature of $70^{\circ} \mathrm{C}$.

## Chip Select

Both chip select inputs $\mathrm{CS}_{1}$ and $\mathrm{CS}_{2}$ must be at $\mathrm{V}_{\text {ss }}$ level to enable the data at the output terminals to be programmed into memory. These chip select inputs allow easy memory expansion, and with pull-up resistors are TTLcompatible.

## Electrically Reprogrammable

Memory can be erased and rewritten up to $10^{6}$ times.

## INTERFACES

## With TTL



TTL-compatible terminals
Data input/output terminals ( $\mathrm{D}_{1} \sim \mathrm{D}_{4}$ )
Address input terminals ( $\mathrm{A} 0 \sim \mathrm{Ag}$ )
Chip select input terminals $\left(\mathrm{CS}_{1}, \mathrm{CS}_{2}\right)$

## With MOS



ABSOLUTE MAXIMUM RATINGS

| Symbol | Parameter | Conditions | Limits | Unit |
| :---: | :---: | :---: | :---: | :---: |
| $V_{\text {DD }}$ | Supply voltage | With respect to $\mathrm{V}_{\text {SS }}$ | $0.3 \sim-30$ | V |
| $\mathrm{V}_{\mathrm{M}}$ | Memory voltage |  | $0.3 \sim-30$ | V |
| $\mathrm{V}_{\mathrm{R}}$ | Reference voltage |  | $0.3 \sim-30$ | V |
| $\mathrm{V}_{\mathrm{EE}}$ | Erase substrate voltage |  | $0.3 \sim-30$ | V |
| $V_{1}$ | Input voltage |  | $0.3 \sim-30$ | V |
| Vo | Output voltage |  | 0.3--30 | V |
| Topr | Operating free-air temperature range |  | $0 \sim 70$ | ${ }^{\circ} \mathrm{C}$ |
| Tstg | Storage temperature range |  | $-65 \sim 150$ | ${ }^{\circ} \mathrm{C}$ |

RECOMMENDED OPERATING CONDITIONS ${ }_{(, T a}=0 \sim 70^{\circ} \mathrm{C}$. unless otherwise noted)

| Symbol | Parameter | Limits |  |  |  |  |  |  |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Erase mode |  |  | Program mode |  |  | Read mode |  |  |  |
|  |  | Min | Nom | Max | Min | Nom | Max | Min | Nom | Max |  |
| VDD | Supply voltage | 4.75 | Vss | $V_{S S}+0.3$ | Vss-29 | Vss-28 | Vss-27 | Vss-20 | Vss-19 | VSS-18 | V |
| Vss | Substrate supply voltage | 4.75 | 5.0 | 5.25 | 4.75 | 5.0 | 5.25 | 4.75 | 5.0 | 5.25 | V |
| $V_{M}$ | Memory voltage |  | Vss |  |  | $V_{\text {DD }}$ |  | Vss-10.5 | VSS -10 | VSs-9.5 | V |
| $\mathrm{V}_{\mathrm{R}}$ | Reference voltage |  | Vss |  | Vss | Vss | VSS |  | $V_{\text {DD }}$ |  | V |
| $V_{\text {EEH }}$ | High-level erase substrate voltage | VSS-0.4 | Vss | Vss +0.3 | Vss-0.4 | Vss | $V_{\text {Ss }}+0.3$ | VSS-0.4 | VSS | $\mathrm{V}_{\text {SS }}+0.3$ | V |
| VEEL | Low-level erase substrate voltage | $\mathrm{V}_{\text {SS }}-29$ | $V_{\text {SS }}-28$ | Vss-27 | $\mathrm{V}_{S S}-0.4$ | $V_{\text {Ss }}$ | Vss +0.3 | $\mathrm{V}_{\text {SS }}-0.4$ | Vss | Vss +0.3 | V |
| $\mathrm{V}_{1 H}(\bar{W})$ | High-level program input voltage | VSS-29 | Vss | $V_{S S}+0.3$ | VSS-1.5 | $\mathrm{V}_{\text {SS }}$ | $V_{s s}+0.3$ | $V_{S S}-1.5$ | Vss | $V_{S S}+0.3$ | V |
| $V_{\text {IL }}(\bar{W})$ | Low-level program input voltage | $\mathrm{V}_{\text {SS }}$-29 |  | $V_{S S}-4.4$ | VSS-29 |  | $V_{\text {SS }}-4.4$ | Vss-1.5 | Vss | Vss +0.3 | V |
| $\mathrm{V}_{\mathrm{IH}}\left(\phi_{1}\right)$ | High-level clock input voltage |  | $\mathrm{V}_{\mathrm{SS}}$ |  | $\mathrm{Vss}-0.8$ | $\mathrm{V}_{\text {ss }}$ | $\mathrm{V}_{\mathrm{SS}}+0.3$ | VSS-0.8 | Vss | Vss +0.3 | V |
| $V_{\text {IL }}\left(\phi_{1}\right)$ | Low-level clock input voltage |  | Vss |  |  | VDD |  | $V_{S S}-25$ | $V_{S S}-24$ | Vss-23 | V |
| $\mathrm{V}_{\text {IH(ST) }}$ | High-level strobe input voltage |  | Vss |  |  | VDD |  | $V_{S S}-0.8$ | Vss | $V s s+0.3$ | V |
| $V_{\text {IL }}(S T)$ | Low-level strobe input voltage |  | Vss |  |  | Vod |  | $V_{S S}-25$ | VSS-24 | Vss-23 | V |
| $\mathrm{V}_{\text {IH }}(\mathrm{AD}, \mathrm{CS})$ | High-level address, chip select input voltage |  | Don't care |  | VSs-1.5 | $V_{\text {Ss }}$ | $V_{s s}+0.3$ | VSS-1.5 | Vss | $V_{S S}+0.3$ | V |
| $V_{\text {IL }}(A D, C S)$ | Low-level address, chip select input voltage |  | Don't care |  | VDD |  | $V_{S S}-4.4$ | VDD |  | VSS-4.4 | V |
| $\mathrm{V}_{\text {IH }}(\mathrm{DA})$ | High-level data input voltage |  | Don't care |  | $V_{S S}-1.5$ | V ss | $V_{\text {SS }}+0.3$ |  |  |  | V |
| VIL(DA) | Low-level data input voltage |  | Don't care |  | VDD |  | Vss-4.4 |  |  |  | V |

Nóte 1: Can be used even when V ss $=0 \mathrm{~V}$
ELECTRICAL CHARACTERISTICS
( $\mathrm{Ta}=0 \sim 70^{\circ} \mathrm{C}, \mathrm{VSS}=\mathrm{GND}$. unless otherwise noted)

| Symbol | Parameter | Test conditions | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| 11 | Input leakage current (except pins $1,2,4,5,6,7,8,23,24$ ) | $\mathrm{V}_{1}=-15 \mathrm{~V}\left(\mathrm{~V}_{1}(\phi 1)=\mathrm{VDD}^{\text {a }}=-20 \mathrm{~V}\right.$, all other $\left.{ }_{\text {pins }}=\mathrm{GND}\right)$ |  |  | - 2 | $\mu \mathrm{A}$ |
| $11\left(\phi_{1}\right)$ | Clock input leakage current | $\begin{aligned} & V_{I}\left(\phi_{1}\right)=-29 \mathrm{~V}\left(V_{D D}=-29 \mathrm{~V}, V_{I}(\mathbb{W})=\right. \\ & \left.V_{I}(S T)=-25 \mathrm{~V}, \text { all other pins }=G N D\right) \end{aligned}$ |  |  | $-200$ | $\mu \mathrm{A}$ |
| $11\left(V_{M}\right)$ | Memory voltage leakage current | $\begin{aligned} & V_{1}\left(V_{M}\right)=-29 V\left(V_{D D}=-29 V, V_{1}(\mathbb{W})=\right. \\ & \left.V_{1}(S T)=-25 V, \text { all other pins }=G N D\right) \end{aligned}$ |  |  | - 200 | $\mu \mathrm{A}$ |
| 10 | Output leakage current | $\mathrm{V} 0=-15 \mathrm{~V}$ ( chip deselected) |  |  | $-10$ | $\mu \mathrm{A}$ |
| II(VEE) | Erase substrate leakage current | $V_{E E}=-28 V\left(V_{1}(\bar{W})=V_{1}(S T)=-25 V\right)$ |  |  | -1 | mA |
| I DDI | Supply current from V ${ }_{\text {OD }}$ ( read mode) | $V D D=-19 \mathrm{~V}$ ( no load) |  | $-8.5$ | -12 | mA |
| I DD2 | Supply current from VDD'(program mode) | $V D D=-28 \mathrm{~V}($ no load $)$ |  | -18 | -25 | $m \mathrm{~A}$ |
| VOH | High-level output voltage | $\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ | $\mathrm{V}_{\text {SS }} 1.5$ |  |  | V |
| VoL | Low-level output voltage | $\mathrm{CL}=100 \mathrm{pF}$ |  |  | $\mathrm{V}_{S S}-10$ | V |
| ts | Unpowered nonvolatile data storage time |  | 10 |  |  | year |
| $\mathrm{Ci}(A D, C S)$ | Address, chip select input capacitance |  |  | 6 | 10 | pF |
| $\mathrm{Ci}_{\mathrm{i}}(\mathrm{w})$ | Program input capacitance |  |  | 10 | 20 | pF |
| $\mathrm{C}_{\mathrm{i}}(\mathrm{ST}$ ) | Strobe input capacitance |  |  | 10 | 15 | pF |
| $\mathrm{Ci}_{\text {( } \text { ¢ }^{\prime} \text { ) }}$ | Clock input capacitance |  |  | 40 | 50 | pF |
| $\mathrm{Ci}\left(\mathrm{V}_{\mathrm{EE}}\right)$ | Erase substrate input capacitance |  |  | 600 | 700 | pF |
| Ci/o(DA) | Data input/output capacitance |  |  | 6 | 10 | pF |

Note 2 : Current flowing into an IC is positive; out is negative.
3 : Characteristics are shown at MOS load.

## 4096-BIT (1024-WORD BY 4-BIT) ELECTRICALLY ALTERABLE ROM

TIMING REQUIREMENTS
For Erase ( $\mathrm{Ta}=0 \sim 70^{\circ} \mathrm{C}$, unless otherwise noted)

| Symbol | Parameter | Test conditions | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| $t w\left(V_{E E}\right)$ | VEE erase pulse width |  | 100 |  | 1,000 | ms |
| $t \mathrm{r}$ | VEE rise time |  | 0.01 |  | 1.0 | ms |
| t f | VEE fall time |  | 0.01 |  | 1.0 | $\mu \mathrm{s}$ |
| $\operatorname{th}\left(V_{E E}-\bar{W}\right)$ | Erase puise hold time with respect to program |  | 10 |  |  | $\mu \mathrm{s}$ |
| $\mathrm{t}_{\text {su }}$ (VEE-W) | Erase pulse setup time with respect to program |  | 10 |  |  | $\mu \mathrm{s}$ |

For Programming ( $\mathrm{Ta}=0-70^{\circ} \mathrm{C}$, unless otherwise noted)

| Symbol | Parameter | Test conditions | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| $\mathrm{N}_{\boldsymbol{\phi}} \mathrm{W}$ | Number of one word programming clock pulses | $\mathrm{tw}_{\mathrm{W}}\left(\phi_{1}\right)=100 \mu \mathrm{~s} \pm 10 \%, 5 \mu \mathrm{~s}$ min dead interval 100 |  | 200 | 300 | pulses |
| $\operatorname{th}\left(\phi_{1}-\bar{W}\right)$ | Clock $\phi_{1}$ hold time with respect to program |  | 1, 000 |  |  | ns |
| $\operatorname{th}\left(\phi_{1}-A D . C S\right)$ | Clock $\phi 1$ hold time with respect to address. chip select |  | 1,000. |  |  | ns |
| $t \mathrm{tsu}\left(\phi_{1}-\mathrm{AD}, \mathrm{CS}\right)$ | Clock $\phi_{1}$ setup time with respect to address, chip select |  | 0 |  |  | $\mu \mathrm{s}$ |
| $\mathrm{tsu}\left(\mathrm{DA}-\phi_{1}\right)$ | Data input setup time with respect to clock $\phi 1$ |  | 0 |  |  | $\mu \mathrm{s}$ |
| $t h\left(D A-\phi_{1}\right)$ | Data input hold time with respect to clock $\phi_{1}$ |  | 0 |  |  | $\mu \mathrm{s}$ |

Read Cycle, For Nonstrobed Operation ( $\mathrm{Ta}=0 \sim 70^{\circ} \mathrm{C}, \mathrm{V}(\mathrm{ST})=\mathrm{VSS}-24 \pm 1 \mathrm{~V}$, unless otherwise noted)

| Symbol | Prameter | Test conditions | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| $t w\left(\phi_{1}\right)$ | Clock $\phi_{1}$ pulse width | $\operatorname{tr}\left(\phi_{1}\right), \mathrm{tf}\left(\phi_{1}\right) \leqq 50 \mathrm{~ns}$ | 850 |  | 2,000 | ns |
| $\operatorname{th}\left(\phi_{1}-A D\right)$ | Clock $\phi$ 1 hold time with respect to address |  | 400 |  |  | ns |
| $\operatorname{th}\left(A D-\phi_{1}\right)$ | Address hold time with respect to clock $\phi_{1}$ |  | 0 |  |  | $\mu \mathrm{s}$ |

Read Cycle, For Strobed Operation ( $\mathrm{Ta}=0 \sim 70^{\circ} \mathrm{C}$. unless othervise noted)

| Symbol | Parameter | Test conditions | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| $\mathrm{t}_{\mathrm{W}\left(\phi_{1}\right)}$ | Clock. $\phi_{1}$ pulse width | $\mathrm{tr}(\phi 1), \mathrm{t} f(\phi 1) \leqq 50 \mathrm{~ns}$ | 850 |  | 2,000 | ns |
| $\operatorname{th}\left(\phi_{1}-A D\right)$ | Clock $\phi_{1}$ hold time with respect to address |  | 400 |  |  | ns |
| $\operatorname{th}\left(S T-\phi_{1}\right)$ | Stobe hold time with respect to clock $\phi_{1}$ |  | 1.5 |  |  | $\mu \mathrm{S}$ |
| $t_{W}(S T)$ | Strobe pulse width | $\operatorname{tr}(\mathrm{ST}), \mathrm{tf}(\mathrm{ST}) \leqq 50 \mathrm{~ns}$ | 850 |  |  | ns |

## SWITCHING CHARACTERISTICS

For Erasing and Programming ( $\mathrm{Ta}=0 \sim 70^{\circ} \mathrm{C}$ unless otherwise noted)

| Symbol | Parameter | Test conditions | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| Nw | Number of times word may be rewritten |  |  |  | $10^{6}$ | times |

Read Cycle For Nonstrobed Operation ( $\mathrm{Ta}=0 \sim 70^{\circ} \mathrm{C}, \mathrm{V}(\mathrm{ST})=\mathrm{V}$ SS $-24 \pm \mathrm{V}$. unless otherwise noted)

| Symbol | Parameter | Test conditions | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| ta (AD) | Address access time |  |  |  | 3 | $\mu \mathrm{s}$ |
| $\mathrm{ta}\left(\phi_{1}\right)$ | Clock $\phi 1$ access time |  |  |  | 1,750 | ns |
| $t d v\left(\phi_{1}+H L\right)$ | Data valid time with respect to clock $\phi 1$ high-to-low-level input |  |  |  | 300 | ns |
| Nra | Number of read accesses per word between refreshings |  | $2 \times 10^{11}$ |  |  | times |

Read Cycle For Strobed Operation ( $\mathrm{Ta}=0 \sim 70^{\circ} \mathrm{C}$. unless otherwise noted)

| Symbol | Parameter | Limits |  |  | Unit |
| :--- | :--- | :--- | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |
| ta (ST) | Strobe access time |  |  | 2.25 | $\mu \mathrm{~s}$ |
| tdv (STHL) | Data valid time with respect to strobe high-to-low-level input |  |  | 300 | ns |
| NRA | Number of read accesses per word between refreshings | $2 \times 10^{11}$ |  |  | times |

## 4096-BIT (1024-WORD BY 4-BIT) ELECTRICALLY ALTERABLE ROM

TIMING DIAGRAMS
Erasing


Programming


Read Cycle for Nonstrobed Operation


Read Cycle for Strobed Operation


## APPLICATION

## Chip Select Circuit

Both chip selects $C S_{1}$ and $\mathrm{CS}_{2}$ must be low to keep the data outputs $D_{1} \sim D_{4}$ in the floating (high-impedance) state. These chip select inputs allow easy memory expansion. An example of a multichip memory with 4096 words of 4 bits is shown below.

Fig. 1 Expansion of number of words


# MITSUBISHI LSIs <br> M54700K, M54700P, M54700S <br> Alternative Designation 6300 

## 1024-BIT (256-WORD BY 4-BIT) FIELD PROGRAMMABLE ROM

## DESCRIPTION

The memory cells of the M54700K, P, S are a matrix of diodes and $\mathrm{Ni}-\mathrm{Cr}$ fuse links. Data can be electrically programmed by open-circuiting fuse in the field with simple programming equipment. These 1024 -bit field programmable ROMs (PROMs) are composed of an address decoder, memory, output and chip enable TTL circuits.

## FEATURES

- Field programmable ROM
- Low power dissipation: $0.40 \mathrm{~mW} / \mathrm{bit}$
- Fast access time: 50 ns (typ)
- $5 \mathrm{~V} \pm 5 \%$ single supply voltage
- Inputs and outputs TTL-compaticle
- Open collector outputs
- Two chip enable inputs ( $\overline{E_{1}}, \overline{E_{2}}$ ) for easy memory expansion
- Organized as 256 words of 4 bits
- 16-pin ceramic or plastic package
- Interchangeable with MMI's 6300 in pin configuration and electrical characteristics


## APPLICATION

- Programmable memory for the M58710S 8-bit parallel CPU. Used for prototype design, microprogramming and control storage.


## FUNCTION

The diode matrices of these 1024 -bit ROMs are organized as 256 words of 4 bits. Their memories are accessed by address inputs $A_{0} \sim A_{7}$, selecting one of 256 words. The 4 bits are

## PIN CONFIGURATION (TOP VIEW)



Outline 16K1 (M54700K)
16P1 (M54700P)
16S1 (M54700S)
read out in parallel on data outputs $0_{1} \sim 0_{4}$. All inputs are TTL-compatible. An external decoder is not necessary. All outputs are open-collector outputs, so it is possible to ANDtie them to other ROMs and TTL devices. The AND-tie fanout of each output can accommodate up to 10 standard TTL loads. The chip enables $\overline{E_{1}}$ and $\overline{E_{2}}$ are used to inhibit data outputs $\mathrm{O}_{1} \sim \mathrm{O}_{4}$.


ABSOLUTE MAXIMUM RATINGS $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right.$. unless otherwise noted)

| Symbol | Parameter | Conditions | Limits | Unit |
| :---: | :---: | :---: | :---: | :---: |
| Vcc | Supply voltage |  | 7 | V |
| VI | Input voltage |  | 5.5 | V |
| Vo | Output voltage |  | Vcc | V |
| Topr | Operating free-air temperature |  | 0~75 | ${ }^{\circ} \mathrm{C}$ |
| Tstg | Storage temperature |  | -55-125 | ${ }^{\circ} \mathrm{C}$ |
| Vo | Output apply voltage | In case of programming | 27 | V |
| VE | Chip enable apply voltage |  | 35 | V |
| tw (P)/tc (P) | Duty cycle |  | 25 | \% |

## READ OPERATION

Recommended Operating Conditions $\left(\mathrm{Ta}=0 \sim 75^{\circ} \mathrm{C}\right.$, unless otherwise noted)

| Symbol | Parameter | Limits |  |  | Unit |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Nom |  |  |
| Vcc | Supply voltage | 4.75 | 5 | 5.25 | V |  |

Electrical Characteristics $\left(\mathrm{Ta}=0 \sim 75^{\circ} \mathrm{C}\right.$, unless otherwise noted)

| Symbol | Parameter | Test conditions | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ(Note 1) | Max |  |
| Vol | Low-level output voltage | $1 \mathrm{OL}=16 \mathrm{~mA}$ |  | 0.3 | 0.45 | $\checkmark$ |
| IOH | High-level output voltage | $\mathrm{VOH}=5.25 \mathrm{~V}$ |  |  | 100 | $\mu \mathrm{A}$ |
| IIL | Low-level input current | $\mathrm{V}_{1}=0.4 \mathrm{~V}$ |  |  | -1.6 | mA |
| IIH | High-level input current | $\mathrm{V}_{1}=2.4 \mathrm{~V}$ |  |  | 40 | $\mu \mathrm{A}$ |
|  |  | $\mathrm{V}_{1}=4.5 \mathrm{~V}$ |  |  | 60 |  |
| Icc | Supply current from VCC |  |  | 85 | 125 | mA |
| VIC | Input clamped voltage | $\mathrm{I}_{1}=-10 \mathrm{~mA}$ |  |  | -1.5 | V |

Note 1: Typical values are at $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$
Switching Characteristics ( $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$. unless otherwise noted)

| Symbol | Parameter | Test conditions | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| ta (AD) | Address access time (Note 3) | See Timing Diagrams and Note 4 |  |  | 60 | ns |
| ta (CE) | Chip enable access time |  |  |  | 35 | ns |
| tdv (CE) | Data valid time with respect to chip enable |  |  |  | 35 | ns |

## Timing Diagrams



1024-BIT (256-WORD BY 4-BIT) FIELD PROGRAMMABLE ROM

PROGRAMMING OPERATION
Recommended Operating Conditions

| Symbol | Test conditions | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Nom | Max |  |
| $V_{1}$ (CEP) | Chip enable program input voltage | 29 |  | 33 | V |
| $\mathrm{V}_{0}(\mathrm{P})$ | Output apply voltage |  |  | 25 | V |
| $\mathrm{V}_{\mathrm{CC}(\mathrm{P})}$ | Program input voltage | 5.40 | 5.50 | 5.60 | V |
| $\mathrm{V}_{\mathrm{Cc}}(\mathrm{V})$ | Program verify input voltage | 4.10 | 4.20 | 4.30 | V |

## Timing Requirements

| Symbol | Test conditions | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |
| $t_{r}(P)$ | Pulse rise time | 10 | 25 | 100 | $\mu \mathrm{s}$ |
| $t_{w(P)}$ | Pulse width | 0.04 |  | 100 | ms |
| $\mathrm{t}_{\mathrm{w}(\mathrm{P}) / \mathrm{tc}(\mathrm{P})}$ | Duty cycle |  |  | 25 | \% |

## Timing Diagram


$\overline{E_{2}}$


## Programming (Writing) Procedure

All $1024 \mathrm{Ni}-\mathrm{Cr}$ fuse-link memory elements are manufactured in a high-logic-level (fuse closed) output conditon. To program:

1. Apply 5.5 V to the supply voltage $\mathrm{V}_{\mathrm{cc}}$ and select a fuse link to be programmed with address inputs $A_{0} \sim A_{7}$.
2. Apply a high-logic-level to the chip enable input $\overline{E_{2}}$.
3. After applying a program pulse $V_{l(C E P)}$ to the chip enable input $\bar{E}_{1}$ (see Timing Diagrams), apply an output pulse $V_{O(P)}$ to the fuse link of the output to be programmed. The output pulses should be separately applied to each output.
4. After programming, the fuse link is open and the output level is changed to a low-logic-level.

## Programming Circuit


5. After programming is completed, apply an additional three programming pulses.
6. Test the programmed memory to verify that the outputs are low-level or high-level as desired. Both chip enable inputs $\overline{E_{1}}$ and $\overline{E_{2}}$ must be low-level for testing.
The word decoder circuit selects any one of 32 columns, and sets the transistor $\mathrm{Tr}_{2}$ to the on state. The bit decoder circuit selects any four of 32 rows, and supplies the base current to transistor $\mathrm{Tr}_{1}$ from chip enable input $\overline{\mathrm{E}_{1}}$.

The fuse link is opened not by the base current, but by the collector current which is supplied to transistor $\operatorname{Tr}_{1}$ from the selected output $\mathrm{O}_{1} \sim \mathrm{O}_{4}$, plus the base current. At this time, the other three fuse links of the selected word line are in a half-selected stage and the remaining 1020 fuse links are in a non-selected state.

## Typical Programming Conditions

| Condition <br> sequence | Pulse <br> sequence | Pulse width <br> $\mathrm{t}_{w}(P)(\mathrm{ms})$ | Chip enable <br> program voltage <br> $V_{1}(C E P)(V)$ | Output <br> voltage <br> $(V)$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | $1 \sim 4$ | 0.5 | 29 | 25 |
| 2 | $5 \sim 8$ | 1 | 29 | 25 |
| 3 | $9 \sim 12$ | 5 | 30 | 25 |
| 4 | $13 \sim 19$ | 20 | 33 | 25 |

## APPLICATIONS

## Chip Enable Circuit

The chip enable inputs $\overline{E_{1}}$ and $\overline{E_{2}}$ are used for activating or inhibiting output $\mathrm{O}_{1} \sim \mathrm{O}_{4} . \overline{\mathrm{E}_{1}}$ and $\overline{\mathrm{E}_{2}}$ are NORed. Output is inhibited when any of the inputs are high-logic-level. Chip enable inputs $\overline{E_{1}}$ and $\overline{E_{2}}$ allow easy memory.expansion by one of the following procedures:

## 1. Expanding the Number of Bits in a Word

For example, using three 1024 -bit ROMs, each organized as 256 words of 4 bits, the number of bits in a word can be expanded as described below:

1. Apply a low-logic-level to both chip enable inputs $\overline{E_{1}}$ and $\overline{E_{2}}$ of each ROM.
2. Connect address inputs $A_{0} \sim A_{7}$ of each ROM in parallel. Memory is thus expanded and reorganized as 256 words of 12 bits.

Fig. 1 Expansion of number of bits


## 2. Expanding the Number of Words in Memory

For example, using three 1024-bit ROMs, each organized as 256 words of 4 bits, the number of words in memory can be expanded as described below:

1. Connect one of the chip enable inputs $\overline{E_{1}}$ or $\overline{E_{2}}$ of each ROM to the decoder while keeping the remaining input at low-logic-level.
2. Connect the outputs from each ROM with AND-tie connections so that each output is an open-collector output circuit or a three-state output. Memory is thus expanded and organized as 768 words of 4 bits.

Fig. 2 Expansion of number of words

3. Expanding the Number of Words in Memory and the Number of Bits in a Word
For example, using nine 1024 -bit ROMs, each organized as 256 words of 4 bits, and by combining procedures 1 and 2 above, the number of words in memory along with the number of bits in a word, can be expanded as described below:

1. The chip enable input $\overline{E_{2}}$ of all ROMs is connected in parallel for module selection.
2. The chip enable input $\overline{E_{1}}$ activates selected ROMs the same as 2 above.
Memory is thus expanded and reorganized as 768 words of 12 bits.

## 1024-BIT (256-WORD BY 4-BIT) FIELD PROGRAMMABLE ROM

Fig. 3 ROM module


Pull-up Resistors
The outputs are open collectors; therefore, AND-tie connections are also possible, and normal loads can be connected. The resistance of a pull-up resistor $R_{\mathrm{L}}$ that may be connected between the voltage supply and the collectors of the output transistors should be determined by equations (1) and (2) as shown below:
where, $M$ : number of AND-ties
N : number of fanouts (number of loads)
$\overline{\mathrm{VCC}}$ : maximum value of supply voltage
$\underline{\mathrm{VOH}_{\mathrm{O}}}$ : minimum value of high-level output voltage
$\stackrel{\text { ITH }}{*}$ : maximum value of high-level output current at the open collector output
$\overline{I_{1 H}}$ : maximum value of high-level input current

$$
R_{L}(\min )=\frac{V_{C C}-\overline{V_{O L}}}{\overline{O L}-N \cdot \sqrt{I L}}
$$

where, $\underline{V_{c c}}$ : minimum value of supply voltage
$\overline{\text { VoL }}$ : maximum value of low-level output voltage
$\overline{\overline{T o L}}$ : maximum value of low-level output current
TIL : maximum value of low-level input current then,

$$
\begin{equation*}
R_{L}(\min )<R_{L}<R_{L}(\max ) \tag{3}
\end{equation*}
$$

The resistance of a pull-up resistor $R_{L}$ should be within the range as shown in equation (3). $R_{L}$ ( $\min$ ) and $R_{L}(\max )$ should be calculated using the appropriate number of ANDties and fanouts. Calculation examples of TTL load are shown below:
(1) When
$M=4, N=3, \overline{V C c}=5.25 \mathrm{~V}, \underline{\mathrm{VOH}}=2.4 \mathrm{~V}, \quad \overline{{ }^{*} \mathrm{H}}=100 \mu \mathrm{~A}$, $\overline{1 I H}=40 \mu \mathrm{~A}$

$$
\begin{aligned}
R L(\max ) & =\frac{\overline{V_{C C}}-\underline{V_{0 H}}}{M \cdot \overline{\overline{F O}_{O H}^{H}}+\mathrm{N} \cdot \overline{\mathrm{IH}}} \\
& =\frac{5.25 \mathrm{~V}-2.4 \mathrm{~V}}{4 \times(100 \mu \mathrm{~A})+3 \times(40 \mu \mathrm{~A})} \\
& =5090 \Omega
\end{aligned}
$$

( 2 ) When
$N=3, \underline{V C C}=4.75 \mathrm{~V}, \overline{V O L}=0.45 \mathrm{~V}, \overline{\Gamma L}=16 \mathrm{~mA}, \overline{\Pi L}=1.6 \mathrm{~mA}$

$$
\begin{aligned}
R L(\min ) & =\frac{V \overline{V C C}-\overline{V O L}}{\overline{\overline{O L}}-N \cdot \overline{I L}} \\
& =\frac{4.75 \mathrm{~V}-0.45 \mathrm{~V}}{16 \mathrm{~mA}-3 \times(1.6 \mathrm{~mA})} \\
& =384 \Omega
\end{aligned}
$$

## DESCRIPTION

The memory cells of the M54730K, P, S are a matrix of diodes and $\mathrm{Ni}-\mathrm{Cr}$ fuse links. Data can be electrically programmed by open-circuiting fuse in the field with simple programming equipment. These 256 -bit field programmable ROMs (PROMs) are composed of an address decoder, memory, output and chip enable TTL circuits.

## FEATURES

- Field programmable ROM
- Low power dissipation: $1.5 \mathrm{~mW} / \mathrm{bit}$
- Fast access time: $45 n$ (typ)
- $5 \mathrm{~V} \pm 5 \%$ single supply voltage
- Inputs and outputs TTL-compatible
- Open-collector outputs
- Chip enable inputs (E) for easy memory expansion
- Organized as 32 words of 8 bits
- 16-pin ceramic or plastic package
- Interchangeable with MMI's 6300 in pin configuration and electrical characteristics


## APPLICATION

- Programmable memory for the M58710S 8-bit parallel CPU. Used for prototype design, microprogramming and control strage.


## FUNCTION

The diode matrices of these 256 -bit ROMs are organized as 32 words of 8 bits. Their memories are accessed by address inputs $A_{0} \sim A_{4}$, selecting one of 32 words. The 8 bits are

## PIN CONFIGURATION (TOP VIEW) <br>  <br> Outline 16K1 (M54730K) <br> 16P1 (M54730P) 16 S 1 (M54730S)

read out in parallel on data outputs $0_{1} \sim 0_{8}$. All inputs are TTL-compatible. An external decoder is not necessary. All outputs are open-collector outputs, so it is possible to ANDtie them to other ROMs and TTL devices. The AND-tie fanout of each output can accommodate up to 10 standard TTL loads. The chip enable $\bar{E}$ is used to inhibit data ouputs $\mathrm{O}_{1} \sim \mathrm{O}_{8}$.


## 256-BIT (32-WORD BY 8-BIT) FIELD PROGRAMMABLE ROM

ABSOLUTE MAXIMUM RATINGS $\left(\mathrm{Ta}=\mathbf{2 5 ^ { \circ }} \mathbf{C}\right.$, unless otherwise noted)

| Symbol | Parameter | Conditions | Limits | Unit |
| :---: | :---: | :---: | :---: | :---: |
| Vcc | Supply voltage |  | 7 | V |
| V | Input voltage |  | 5.5 | V |
| Vo | Output voltage |  | $\mathrm{V}_{\mathrm{CC}}$ | $\checkmark$ |
| Topr | Operating free-air temperature |  | $0 \sim 75$ | ${ }^{\circ} \mathrm{C}$ |
| Tstg | Storage temperature |  | $-55 \sim 125$ | ${ }^{\circ} \mathrm{C}$ |
| Vo | Output apply voltage | In case of programming | 27 | V |
| tw $(P) / \operatorname{tc}(P)$ | Duty cycle |  | 25 | \% |

## READ OPERATION

Recommended Operating Conditions $\left(\mathrm{Ta}=0 \sim 75^{\circ} \mathrm{C}\right.$. unless otherwise noted)

| Symbol | Parameter | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Nom | Max |  |
| Vcc | Supply voltage | 4.75 | 5 | 5.25 | V |

Electrical Characteristics ( $\mathrm{Ta}=0 \sim 75^{\circ} \mathrm{C}$ unless otherwise noted)

| Symbol | Parameter | Test conditions | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ(Note1) | Max |  |
| VOL | Low-level output voltage | $1 \mathrm{OL}=16 \mathrm{~mA}$ |  | 0.3 | 0.45 | V |
| IOH | High-level output voltage | $\mathrm{VOH}=5.25 \mathrm{~V}$ |  |  | 100 | $\mu \mathrm{A}$ |
| IIL | Low-level input current | $\mathrm{V}_{1}=0.4 \mathrm{~V}$ |  |  | $-1.6$ | mA |
| IIH | High-level input current | $\mathrm{V}_{1}=2.4 \mathrm{~V}$ |  |  | 40 | $\mu \mathrm{A}$ |
|  |  | $\mathrm{V}_{1}=4.5 \mathrm{~V}$ |  |  | 60 |  |
| ICC | Supply current from $V_{\text {cc }}$ |  |  | 85 | 125 | mA |
| VIC | Input clamped voltage | $1_{1}=-10 \mathrm{~mA}$ |  |  | $-1.5$ | V |

Note 1: Typical values are at $\mathrm{VCC}=\mathbf{5 V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$

Switching Characteristics ( $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$, unless otherwise noted)

| Symbol | Parameter | Test conditions | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| ta (AD) | Address access time | See Timing Diagrams |  |  | 50 | ns |
| ta (CE) | Chip enable access time |  |  |  | 30 | ns |
| $t d v$ (CE) | Data valid time with respect to chip enable |  |  |  | 30 | ns |

## Timing Diagrams


$\bar{E}$


Note 2 : Rise time $t_{r} \leqq 5 n s$; fall time $t_{f} \leqq 5 n s$
3 : The chip enable input E should be low-level at measurement time during address access time
4 : Load circuit: capacitance $\left(\mathrm{C}_{\mathrm{L}}\right)$ includes stray capacitance and input capacitance.


## PROGRAMMING OPERATION

Recommended Operating Conditions

| Symbol | Test conditions | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Nom | Max |  |
| $V_{1}$ (CEP) | Chip enable program input voltage | 29 |  | 33 | V |
| V (P) | Output apply voltage | 20 |  | 25 | V |
| $\mathrm{V}_{\mathrm{CC}}(\mathrm{P})$ | Program input voltage | 5.40 | 5.50 | 5.60 | V |
| $\mathrm{V}_{\mathrm{CC}}(\mathrm{V})$ | . Program verify input voltage | 4.10 | 4.20 | 4.30 | V |

Timing Requirements

| Symbol | Test conditions | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |
| $\operatorname{tr}(P)$ | Pulse rise time | 10 | 25 | 100 | $\mu \mathrm{S}$ |
| $t_{w}(P)$ | Pulse width | 0.04 |  | 100 | ms |
| $\mathrm{t}_{\mathrm{w}(\mathrm{P}) / \mathrm{tc}(\mathrm{P})}$ | Duty cycle |  |  | 25 | \% |

## Timing Diagram



## Programming (Writing) Procedure

All $256 \mathrm{Ni}-\mathrm{Cr}$ fuse-link memory elements are manufactured in a high-logic-level (fuse closed) output conditon. To program:

1. Apply 5.5 V to the supply voltage $\mathrm{V}_{\mathrm{cc}}$ and select a fuse link to be programmed with address inputs $A_{0} \sim A_{4}$.
2. Apply a high-logic-level to the chip enable input $\bar{E}$.
3. After applying a program pulse $\mathrm{V}_{1(C E P)}$ to the chip enable input $\overline{\mathrm{E}}$ (see Timing Diagram), apply an output pulse $V_{O(P)}$ to the fuse link of the output to be programmed. The output pulses should be separately applied to each output.
4. After programming, the fuse link is open and the output level is changed to a low-logic-level.
5. After programming is completed, apply an additional three programming pulses.

Programming Circuit

6. Test the programmed memory to verify that the outputs are low-level or high-level as desired. Chip enable input $\bar{E}$ must be low-level for testing.
As the chip enable input $\overline{\mathrm{E}}$ is kept high-level during programming, transistor $\operatorname{Tr}_{1}$ maintains the off state. The word decoder circuit selects any one of 32 words, and sets the transistor $\mathrm{Tr}_{1}$ to the on state. The collector current of the transistor $\mathrm{Tr}_{2}$, which is supplied from the selected output $\mathrm{O}_{1}$, opens the fuse links. At this time, the other seven fuse links of the selected word line are in a half-selected state and the other 248 fuse links are in a nonselected state.

## Typical Programming Conditions

| Condition <br> sequence. | Pulse <br> sequence | Pulse width <br> $\mathrm{t}_{\mathrm{w}}(\mathrm{P})(\mathrm{ms})$ | Chip enable <br> program voltage <br> $\mathrm{V}_{1(\mathrm{CEP})}(\mathrm{V})$ | Output <br> voltage <br> $(\mathrm{V})$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | $1-4$ | 0.5 | 29 | 25 |
| 2 | $5 \sim 8$ | 1 | 29 | 25 |
| 3 | $9-12$ | 5 | 30 | 25 |
| 4 | $13 \sim 19$ | 20 | 33 | 25 |

## MITSUBISHI LSIs

## 256-BIT (32-WORD BY 8-BIT) FIELD PROGRAMMABLE ROM

## APPLICATIONS

## Chip Enable Circuit

The chip enable input $\bar{E}$ is used for activating or inhibiting output $\mathrm{O}_{1} \sim \mathrm{O}_{8}$. Chip enable $\overline{\mathrm{E}}$ allows easy memory expansion by one of the following procedures:

1. Expanding the Number of Bits in a Word.

For example, using three 256 -bit ROMs, each organized as 32 words of 8 bits, the number of bits in a word can be expanded as described below:

1. Apply a low-logic-level to chip enable input $\bar{E}$ of each ROM.
2. Connect address inputs $A_{0} \sim A_{4}$ of each ROM in parallel. Memory is thus expanded and reorganized as 32 words of 24 bits.
3. Expanding the Number of Words in Memory

For example, using three 256 -bit ROMs, each organized as
32 words of 8 bits, the number of words in memory can be expanded as described below:

1. Connect the chip enable input $\bar{E}$ of each ROM to the decoder.
2. Connect the outputs from each ROM with AND-tie connections.
3. Connect each address input $\mathrm{A}_{0} \sim \mathrm{~A}_{4}$ commonly. Memory is thus expanded and organized as 96 words of 4 bits.

## 3. Expanding the Number of Words in Memory and

 the Number of bits in a WordFor example, using nine 256 -bit ROMs, each organized as 32 words of 8 bits, and by combining procedures 1 and 2 above, the number of words in memory along with the number of bits in a word, can be expanded as shown in the diagram below.

Memory is thus expanded and reorganized as 96 words of 24 bits.

( 1 ) When
$M=4, N=3, \overline{V C C}=5.25 \mathrm{~V}$,
$\underline{\mathrm{VOH}}=2.4 \mathrm{~V}, \overline{1^{*} \mathrm{H}}=100 \mu \mathrm{~A}$,
$\overline{I H}=40 \mu \mathrm{~A}$

$$
\begin{aligned}
\mathrm{RL}_{\mathrm{L}}(\max ) & =\frac{\overline{\mathrm{VCC}}-\underline{V_{O H}}}{\mathrm{M} \cdot \overline{10 \mathrm{I}}+\mathrm{N} \cdot \overline{\mathrm{IIH}}} \\
& =\frac{5.25 \mathrm{~V}-2.4 \mathrm{~V}}{4 \times(100 \mu \mathrm{~A})+3 \times(40 \mu \mathrm{~A})} \\
& =5090 \Omega
\end{aligned}
$$

( 2 ) When

$$
\begin{aligned}
& \mathrm{N}=3, \underline{\mathrm{VCC}}=4.75 \mathrm{~V}, \\
& \overline{\mathrm{VOL}}=0.45 \mathrm{~V}, \overline{1 O L}=16 \mathrm{~mA}, \\
& \overline{T L}=1.6 \mathrm{~mA}
\end{aligned} \begin{aligned}
\mathrm{RL}(\min ) & =\frac{\mathrm{VCC}-\overline{\mathrm{VOL}}}{\overline{\overline{O L}}-\mathrm{N} \cdot|\overline{\mathrm{IL}}|} \\
& =\frac{4.75 \mathrm{~V}-0.45 \mathrm{~V}}{16 \mathrm{~mA}-3 \times(1.6 \mathrm{~mA})} \\
& =384 \Omega
\end{aligned}
$$

## Pull-up Resistors

The outputs are open collectors; therefare, AND-tie connections are also possible, and normal loads can be
connected. The resistance of a pull-up resistor $R_{L}$ that may be connected between the voltage supply and the collectors of the output transistors should be determined by equations (1) and (2) as shown below:

$$
\begin{equation*}
R_{L}(\max )=\frac{\overline{V_{c C}}-\underline{V_{O H}}}{M \cdot \sqrt{\bar{\circ} \mathrm{H}}+\mathrm{N} \cdot \overline{\mathrm{IH}}} \tag{1}
\end{equation*}
$$

where $M$ : number of AND-ties
$N$ : number of fanouts (number of loads)
$\overline{V_{c c}}$ : maximum value of supply voltage
$\mathrm{VOH}_{\mathrm{OH}}$ : minimum value of high-level output voltage
ІІैн : maximum value of high-level output current at the open collector output
$\overline{I_{1 H}}$ : maximum value of high-level input current

$$
R_{L}(\text { min })=\frac{V C C-\overline{V O L}}{|\overline{O L}-N \cdot \sqrt{I L}|}
$$

where $\quad V_{C C}$ : minimum value of supply voltage
$\overline{\text { VoL }}$ : maximum value of low-level output voltage
$\overline{\text { IoL }}$ : maximum value of low-level output current
TIL : maximum value of low-level input current
then

$$
\begin{equation*}
R_{L}(\min )<R_{L}<R_{L}(\max ) \tag{3}
\end{equation*}
$$

The resistance of a pull-up resistor $R_{L}$ should be within the range as shown in equation (3). $R_{L}$ ( $\min$ ) and $R_{L}(\max )$ should be calculated using the appropriate number of ANDties and fanouts. Calculation examples of TTL load are shown below:

$$
\cdot \cdot
$$

## DESCRIPTION

The M58502P, M58503P and M58504P are 1024-bit dynamic shift registers which are fabricated with the $P$ channel silicon-gate MOS process and adopt capacitance pull-up circuits. The M58502P is organized as 256 words of 4 bits, the M58503P as 512 words of 2 bits, and the M58504P as 1024 words of 1 bit.

## FEATURES

- Fast data frequency:

3 MHz (max)

- Fast clock frequency:
1.5 MHz (max)

Low power dissipation:
$15 \mu \mathrm{~W} /$ bit (typ)

- Small input capacitance: 140 pF (typ)
- All inputs and outputs TTL-compatible
- M58502P interchangeable with Intel's 1402A in pin configuration and electrical characteristics


## APPLICATION

- Buffer memory for peripheral terminal equipment
- Small capacity memory system
- Analog delay line


## FUNCTION

The adoption of capacitance pull-up circuits provides fast operation at low power dissipation. The M58502P is interchangeable with Intel's 1402A in pin configuration and electrical characteristics. The M58503P and the M58504P are functionally interchangeable with Intel's 1403A, 1404A (TO-5 package). Power dissipation is only $15 \mu \mathrm{~W} /$ bit, about 1/20 or less the value for Intel's 1402A, 1403A and 1404A. The read/write data frequency is fast-up to 3 MHz at a clock frequency of 1.5 MHz . The minimum clock frequency is 500 Hz , allowing use over a wide range of frequencies. All inputs and outputs are directly compatible with TTL, so that no special interface circuit is required. The $V_{D D}$ supply voltage and the supply voltage for clock can be used in common.

PIN CONFIGURATION (TOP VIEW)


## 1024-BIT DYNAMIC SHIFT REGISTER

ABSOLUTE MAXIMUM RATINGS

| Symbol | Parameter | Conditions | Limits | Unit |
| :---: | :---: | :---: | :---: | :---: |
| Vod | Supply voltage | With respect to $\mathrm{V}_{\mathrm{cc}}$ | $0.3 \sim-20$ | V |
| $V_{1}$ | Input voltage |  | 0.3~-20 | V |
| $\checkmark \phi$ | Clock voitage |  | 0.3--20 | V |
| Vo | Output voltage |  | $0.3 \sim-20$ | V |
| Pd | Power dissipation | $\mathrm{Ta}=25^{\circ} \mathrm{C}$ | 600 | mW |
| Topr | Operating free-air 'temperature range |  | $-10 \sim 75$ | ${ }^{\circ} \mathrm{C}$ |
| Tstg | Storage temperature range |  | $-40 \sim 125$ | ${ }^{\circ} \mathrm{C}$ |

RECOMMENDED OPERATING CONDITIONS $\left(T a=-10 \sim 75^{\circ} \mathrm{C}\right.$. unless otherwise noted)

| Symbol | Parameter | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Nom | Max |  |
| $\mathrm{V}_{\mathrm{CC}}$ | Supply voltage | 4.75 | 5 | 5.25 | V |
| $V_{\text {DD }}$ | Supply voltage | -4.75 | -5 | $-5.25$ | V |
| $\mathrm{V}_{\mathrm{IH}}$ | High-level input\|voltage | $V_{C C}-1.5$ |  | VCC | V |
| VIL | Low-level input voltage | $V_{C C}-15$ |  | $V_{C C}-4.2$ | V |
| $\mathrm{V}_{1 \mathrm{H}}(\phi)$ | High-level clock input voltage | $V_{C C}-1$ |  | $V_{C C}$ | V |
| $\mathrm{V}_{\text {IL }}(\phi)$ | Low-level clock input voltage | $V_{C C}-17$ |  | $V_{C C}-15$ | V |



| Symbol | Parameter | Test conditions | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| V OH | High-level output voltage | $\mathrm{V}_{\mathrm{IH}}=3.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=3 \mathrm{~K}, 10 \mathrm{H}=100 \mu \mathrm{~A}$ | 2.4 | 3.5 |  | V |
| $\mathrm{VOL}^{\text {OL }}$ | Low-level output voltage | $\mathrm{V}_{\text {IL }}=0.8 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=3 \mathrm{~K}, 10 \mathrm{~L}=1.6 \mathrm{~mA}$ |  | $-0.3$ | 0.5 | V |
| Ron | ON output resistance | $\mathrm{V}_{\text {IL }}=3.5 \mathrm{~V}, 10=-1 \mathrm{~mA}$ |  | - 0.5 |  | k $\Omega$ |
| Roff | OFF output resistance | $\mathrm{V}_{\text {IL }}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}$ | 1 |  |  | $\mathrm{M} \Omega$ |
| 11 | Input current | $\mathrm{V}_{\text {IL }}=\mathrm{V}_{\text {CC }}-17 \mathrm{~V}$ |  |  | 1 | $\mu \mathrm{A}$ |
| $I_{\text {dD }}$ | Supply current from VDD | $f=1 \mathrm{MHz}, \mathrm{V}_{\text {IL }}(\phi)=\mathrm{V}_{\text {CC }}-17 \mathrm{~V}$ |  | -1.5 | -3 | mA |
| $\mathrm{C}_{i}$ | Input capacitance | $\mathrm{V}_{\text {IL }}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}, 25 \mathrm{mVrms}$ |  |  | 5 | pF |
| Co | Output capacitance | $\mathrm{V}_{\text {OL }}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}, 25 \mathrm{mVrms}$ |  |  | 5 | pF |
| $\mathrm{Ci}(\phi)$ | Clock input capacitance | $V_{\text {IL }}(\phi)=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}, 25 \mathrm{mVrms}$ |  | 140 | 200 | pF |
| Ci( $\boldsymbol{\phi}_{1}$ - $\phi 2$ ) | Capacitance between clock 1 and clock 2 | $\mathrm{V}_{\mathrm{IL}}(\phi)=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}, 25 \mathrm{mVrms}$ |  | 30 | 45 | pF |

Note 1 : Current flowing into an IC is positive: out is negative.

SWITCHING CHARACTERISTICS
$\left(\mathrm{Ta}=-10 \sim 75^{\circ} \mathrm{C}, \quad V_{C C}=5 \mathrm{~V} \pm 5 \%, V_{D D}=-5 \mathrm{~V} \pm 5 \%, V_{I L}(\phi)-V_{C C}=-15 \mathrm{~V} \sim-17 \mathrm{~V}\right.$ unless otherwise noted

| Symbol | Parameter | Test conditions | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| $f(D A)$ | Data frequency | $\mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega$ |  |  | 3 | MHz |
| $f(\phi)$ | Clock frequency |  | 0.0005 |  | 1.5 | MHz |
| $t w(\phi 1)$ | Clock 1 pulse width | See Timing Diagram | 220 |  | 10000 | n s |
| tw( $\mathbf{\phi}^{\text {2 }}$ ) | Clock 2 pulse width |  | 220 |  | 10000 | n s |
| $t_{\text {d }}(\phi)$ | Clock pulse delay time | $\mathrm{tw}(\phi 1), \mathrm{tw}(\phi 2)=220 \mathrm{~ns}$ | 60 |  |  | n s |
| $\operatorname{tr}(\phi)$ | Clock pulse rise time | See Timing Diagram |  |  | 1000 | n s |
| $t \mathrm{f}(\phi)$ | Clock pulse fall time |  |  |  | 1000 | n s |
| tsu(DA) | Data setup time |  | 40 |  |  | n s |
| $t h(D A)$ | Data hold time |  | 40 |  |  | n s |
| $t_{\text {PHL }}$ | High-to-low-level output propagation time |  |  |  | 90 | n s |
| tPLH | Low-to-high-level output propagation time |  |  |  | 90 | n s |

TIMING DIAGRAM


## INTERFACE WITH TTL



## 1024-BIT DYNAMIC SHIFT REGISTER

## TYPICAL CHARACTERISTICS

POWER DISSIPATION VS. LOW-LEVEL CLOCK OUTPUT VOLTAGE


LOW-LEVEL CLOCK OUTPUT VOLTAGE $V_{O L}(\phi)-V_{C C}(\mathrm{~V})$

LOW-LEVEL CLOCK INPUT VOLTAGE


EFFECTIVE INPUT CHARACTERISTICS


POWER DISSIPATION VS. SUPPLY VOLTAGE


LOW-LEVEL CLOCK INPUT VOLTAGE


MINIMUM FREQUENCY VS. AMBIENT TEMPERATURE


## MITSUBISHI LSIs M58609-XXS

## DESCRIPTION

The M58609-XXS is a keyboard encoder for reed switches of terminal equipment. It is fabricated using P -channel aluminum-gate MOS technology and is packaged in a 40 -pin DIL package. It contains a 3168 -bit mask-programmable read-only memory in which each key's code is stored. The 9 -bit code corresponding to any one of 88 keys, each of which can be in any one of 4 mode shifts, can be read out. The outputs are TTL/DTL-compatible. The output consists of an 8 -bit code and a parity bit. The address is selected by the 8 -bit and 11 -bit ring counters. Custom-programmed coding is available. The XX in the type code stands for a 2 digit decimal number that identifies the customer's specification to which the ROM has been programmed.

## FEATURES

- TTL/DLT-compatible (except $\mathrm{X}, \mathrm{Y}$ terminals)
- Two-key rollover operation
- N-key lockout operation
- Self-contained clock generator circuit
- Strobe delay circuit for eliminating key contact bounce
- External control for output polarity (positive or negative logic)
- External control for selecting odd or even parity


## APPLICATION

- Encoder for full-keyboard terminal equipment


## FUNCTION

Outputs ( $\mathrm{X}_{0} \sim \mathrm{X}_{7}$ ) of the 8 -bit ring counter and inputs ( $\mathrm{Y}_{0} \sim$ $\mathrm{Y}_{10}$ ) of the 11-bit comparator are wired to the keyboard to form an $8 \times 11$ ( 88 -cross points) switch matrix.

When the key connected with $X_{i}$ and $Y_{j}$ is depressed, a path is formed between them. When the level of $Y_{j}$ matches that of $X_{i}$, which comes from the 8 -bit ring counter, the

comparator generates a coincidence signal for clock control and delay circuit. This clock control stops the clock signals to the ring counter and data outputs ( $\mathrm{B}_{1} \sim \mathrm{~B}_{9}$ ) stabilizing the selected 9 -bit code. The stabilization is indicated by a valid signal on the strobe output. A strobe output signal is generated at the time set by the externally controlled delay circuit which receives the coincidence signal. Data outputs and strobe output remain stable until the key is released.


MITSUBISHI LSIs M58609-XXS

## KEYBOARD ENCODER

ABSOLUTE MAXIMUM RATINGS

| Symbol | Parameter | Conditions | Limits | Unit |
| :---: | :---: | :---: | :---: | :---: |
| VGG | Supply voltage | With respect to $\mathrm{V}_{\text {SS }}$ | 0.3~-20 | V |
| VDD | Supply voltage |  | 0.3~-20 | V |
| V I | Input voltage |  | 0.3~-20 | V |
| Topr | Operating free-air temperature range |  | $-20 \sim 75$ | ${ }^{\circ} \mathrm{C}$ |
| Tstg | Storage temperature range |  | $-40 \sim 125$ | ${ }^{\circ} \mathrm{C}$ |

RECOMMENDED OPERATING CONDITIONS ( $\mathrm{Ta}=-20 \sim 75^{\circ} \mathrm{C}$, unless otherwise noted)

| Symbol | Parameter | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Nom | Max |  |
| $V_{G G}$ | Supply voltage | -11 | - 12 | -13 | V |
| VDD | Supply voltage |  | 0 |  | V |
| Vss | Supply voltage | 4.5 | 5 | 5.5 | V |
| $V_{\text {IH }}$ | High-level input voltage | Vss-1 |  |  | V |
| $V_{\text {IL }}$ | Low-level input voltage |  |  | 0.8 | V |
| $\mathrm{f}(\phi)$ | Clock frequency | 20 | 50 | 100 | kHz |
| to(STO) | Strobe delay time |  | 1.5 |  | ms |
| Roff | Switch off resistance | 10 |  |  | $\mathrm{M} \Omega$ |
| Ron | Switch on resistance |  |  | 300 | $\Omega$ |

ELECTRICAL CHARACTERISTICS ( $T a=-20 \sim 75^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{GG}}=-12 \pm 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=5 \pm 0.5 \mathrm{~V}, \mathrm{VDD}=0 \mathrm{~V}$. unless otherwise noted)

| Symbol | Parameter | Test conditions | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| $\mathrm{VOH}(\mathrm{Bi}, \mathrm{STO})$ | High-level output voltage, $\mathrm{B}_{1} \sim \mathrm{Bg}_{9}$ and STO | $1 \mathrm{IOH}^{\prime}=-100 \mu \mathrm{~A}$ | Vss-1 |  |  | V |
| $\mathrm{VOH}\left(\mathrm{Xi}^{\text {) }}\right.$ | High-level output voltage, $\mathrm{X}_{0} \sim \mathrm{X}_{7}$ | $1 \mathrm{OH}=-100 \mu \mathrm{~A}$ | VSs-1.3 |  |  | V |
| $V \mathrm{OL}(\mathrm{Bi}, \mathrm{STO})$ | Low level output voltage, $\mathrm{B}_{1} \sim \mathrm{~B}_{9}$ and STO | $\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$ |  |  | 0.4 | V |
| VOL( $\mathrm{Xi}^{\text {) }}$ | Low-level output voltage, $\mathrm{X}_{0} \sim \mathrm{X}_{7}$ | $I_{O L}=1 \mu \mathrm{~A}$ |  |  | -3 | V |
| $R_{1}$ | Input resistance, S, C, DSI and PI | $V_{1}=-12 \mathrm{~V}$ | 1 |  |  | $M \Omega$ |
| Pd | Power dissipation | $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ |  | 70 | 200 | mW |
| Ci | Input capacitance | $\mathrm{V}_{1}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}, \quad \mathrm{Ta}=25^{\circ} \mathrm{C}$ |  |  | 15 | pF |

Note 1:Current flowing into an IC is positive; out is negative.

TIMING DIAGRAM


## FUNCTION TABLES

Data $\left(B_{1} \sim B_{9}\right)$ Invert

| DSI <br> $($ Pin (20) $)$ | Code table <br> $\left(\mathrm{B}_{1} \sim \mathrm{~B}_{9}\right)$ | Data output <br> $\left(\mathrm{B}_{1} \sim \mathrm{Bg}\right)$ |
| :---: | :---: | :---: |
| H | 1 | L |
| L | 1 | H |
| $H$ | 0 | H |
| L | 0 | L |

Strobe (STO) Invert

| DSI <br> (Pin (20) | Internal <br> strobe <br> (Note 3) | STO <br> (Pin (16) |
| :---: | :---: | :---: |
| $H$ | $H$ | L |
| L | $H$ | $H$ |
| $H$ | L | $H$ |
| L | L | L |

Parity ( $\mathrm{Bg}_{9}$ ) Invert

| $\begin{gathered} \mathrm{Pq} \\ \text { (Pin (6) } \end{gathered}$ | Code table <br> (Bg) | $\begin{gathered} \mathrm{Bg} \\ (\operatorname{Pin}(7)) \end{gathered}$ |
| :---: | :---: | :---: |
| H | 1 | L |
| L | 1 | H |
| H | 0 | H |
| L | 0 | L |

Mode Select

| $S$ <br> $(\operatorname{Pin}(4)$ | $C$ <br> $(\operatorname{Pin}(5)$ | Mode |
| :---: | :---: | :---: |
| $L$ | $L$ | $M_{1}$ |
| $H$ | $L$ | $M_{2}$ |
| $L$ | $H$ | $M_{3}$ |
| $H$ | $H$ | $M_{4}$ |

Note 3 : The internal signal of the strobe output (STO) becomes high-level when the strobe signal is generated.

## EXAMPLE OF APPLICATION CIRCUIT



Note 4: $R_{1}=1.5 \mathrm{M} \Omega, C_{1}=0.001 \mu \mathrm{~F}$ provides approximately 1.5 ms delay time.
$5: \mathrm{R}_{2}=75 \mathrm{k} \Omega, \mathrm{C}_{2}=50 \mathrm{pF}$ provides approximately 50 kHz clock frequency.

TYPICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{GG}}=-12 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=0 \mathrm{~V}, \mathrm{VSS}=5 \mathrm{~V}\right)$


ON RESISTANCE OF OUTPUT DRIVER VS. POWER SUPPLY VOLTAGE


CLOCK FREQUENCY VS. RESISTANCE


POWER DISSIPATION VS. AMBIENT TEMPERATURE


## DESCRIPTION

The M58609-04S is a standard product of the M58609XXS. the 8-bit codes specified in JIS C6220-1969 "Codes for Information Interchange" are stored in this ROM. The codes can be odd or even parity. The function, pin configuration and electrical characteristics are the same as those of an M58609-XXS.

## FUNCTION

## Data output and parity output

The relationships between $B_{1} \sim B_{8}$ in the code table and $B_{1}$ $\sim \mathrm{B}_{8}$ in data outputs are shown in Table 1, and those between the parity output $B_{9}$ and the parity bit, in Table 2. The parity bit in the table is defined as a ' 0 ' when the number of ' 1 's in the code $B_{1} \sim B_{8}$ is odd and a ' 1 ' when it is even.

Mode selection is shown in Table 3.

Table 1 Relationship between code table and data outputs

| $\mathrm{B}_{1} \sim \mathrm{~B}_{8}$ <br> Code table | Data strobe <br> invert input <br> DSI | Data output <br> $\mathrm{B}_{1} \sim \mathrm{~B}_{8}$ | Logic |
| :---: | :---: | :---: | :---: |
| 1 | L | H | Positive logic |
| 1 | H | L | Nogative logic |
| 0 | L | L | Positive logic |
| $\mathbf{0}$ | H | H | Negative logic |

Table 2 Parity output

| Parity bit | Parity invert input <br> PI | Parity cutput <br> B 9 |
| :---: | :---: | :---: |
| 1 | L | $H$ |
| 1 | $H$ | L |
| 0 | L | L |
| 0 | $H$ | $H$ |

Table 3 Mode selection

| Shift input <br> S | Control input <br> C | Selected mode |
| :---: | :---: | :---: |
| L | L | 1 |
| H | L | 2 |
| L | H | 3 |
| H | H | 4 |

CODE TABLE (JIS-C-6220-1969)


[^5]MITSUBISHI LSIs
M58609－04S

KEYBOARD ENCODER（JIS CODE STANDARD PRODUCT）

CODE ARRANGEMENT TABLE

|  | Mode | $\times 0$ | $X_{1}$ | X 2 | X 3 | X4 | X 5 | $\times 6$ | X 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Yo | 1 | NUL | DLE | $\cdots$ | 0 | ， | L | 0 | 9 |
|  | 2 | NUL | DLE | － | NUL | $+$ | NUL | NUL | ） |
|  | 3 | NUL | DLE | $\bigcirc$ | 7 | $\checkmark$ | リ | ラ | $\exists$ |
|  | 4 | NUL | DLE | NUL | 7 | NUL | NUL | NUL | 3 |
| Y 1 | 1 | SOH | 6 | 0 | － | ／ | K | 1 | 8 |
|  | 2 | SOH | 6 | 0 | ＝ | ？ | NUL | NUL | （ |
|  | 3 | SOH | 6 | 0 | ホ | ¢ | ノ | 二 | 7 |
|  | 4 | SOH | 6 | 0 | NUL | － | NUL | NUL | 2 |
| $Y_{2}$ | 1 | STX | 7 | 1 | P | ． | J | U | 7 |
|  | 2 | STX | 7 | 1 | NUL | $>$ | NUL | NUL | ， |
|  | 3 | STX | 7 | 1 | セ | ル | $\checkmark$ | ナ | ヤ |
|  | 4 | STX | 7 | 1 | NUL | － | NUL | NUL | ヤ |
| $Y_{3}$ | 1 | ETX | 8 | 2 | ［ | ， | H | Y | 6 |
|  | 2 | ETX | 8 | 2 | 1 | ＜ | NUL | NUL | \＆ |
|  | 3 | ETX | 8 | 2 | － | ネ | ク | ン | $才$ |
|  | 4 | ETX | 8 | 2 | 「 | ， | NUL | NUL | 才 |
| $Y_{4}$ | 1 | EOT | 9 | 3 | ¥ | M | G | T | 5 |
|  | 2 | EOT | 9 | 3 | 1 | NUL | NUL | NUL | \％ |
|  | 3 | EOT | 9 | 3 | － | モ | キ | カ | エ |
|  | 4 | EOT | 9 | 3 | NUL | NUL | NUL | NUL | 工 |
| Y 5 | 1 | ENQ | NAK | 4 | BS | N | F | R | 4 |
|  | 2 | ENQ | NAK | 4 | BS | NUL | NUL | NUL | \＄ |
|  | 3 | ENQ | NAK | 4 | BS | ミ | 八 | ス | ウ |
|  | 4 | ENQ | NAK | 4 | BS | NUL | NUL | NUL | ウ |
| Y 6 | 1 | ACK | SYN | 5 | NUL | B | D | E | 3 |
|  | 2 | ACK | SYN | 5 | － | NUL | NUL | NUL | \＃ |
|  | 3 | ACK | SYN | 5 | 口 | $コ$ | シ | 1 | ア |
|  | 4 | ACK | SYN | 5 | NUL | NUL | NUL | 1 | $\bigcirc$ |
| $Y_{7}$ | 1 | BEL | ETB | ＋ | J | V | S | W | 2 |
|  | 2 | BEL | ETB | ＋ | 1 | NUL | NUL | NUL | ＂ |
|  | 3 | BEL | ETB | ＋ | ム | 匕 | ト | テ | $フ$ |
|  | 4 | BEL | ETB | $+$ | 1 | NUL | NUL | NUL | NUL |
| $Y_{8}$ | 1 | ＝ | CAN | SP | CR | C | A | Q | 1 |
|  | 2 | ＝ | CAN | SP | CR | NUL | NUL | NUL | ！ |
|  | 3 | $=$ | CAN | SP | CR | ソ | チ | タ | ヌ |
|  | 4 | ＝ | CAN | SP | CR | NUL | NUL | NUL | NUL |
| $Y 9$ | 1 | So | EM | － | LF | X | FF | HT | （a |
|  | 2 | SO | EM | － | LF | NUL | FF | HT | ， |
|  | 3 | SO | EM | － | LF | サ | FF | HT | ＊ |
|  | 4 | SO | EM | － | LF | NUL | FF | HT | NUL |
| $Y_{10}$ | 1 | SI | SUB | － | DEL | Z | ESC | VT | ： |
|  | 2 | SI | SUB | － | DEL | NUL | ESC | VT | ＊ |
|  | 3 | SI | SUB | － | DEL | ツ | ESC | VT | ケ |
|  | 4 | SI | SUB | － | DEL | ツ | ESC | VT | NUL |

SYMBOLS AND THEIR NAMES

| Symbo | Code name | Col／Row <br> in <br> code table | X／Y／Mode in code <br> arrangement table |
| :---: | :--- | :---: | :--- |
| SP | Space | $2 / 0$ | $2 / 8 / 1 \sim 4$ |
| $!$ | Exclamation mark | $2 / 1$ | $7 / 8 / 2$ |
| $\prime \prime$ | Quotation mark，umlaut | $2 / 2$ | $7 / 7 / 2$ |
| $\#$ | Number sign | $2 / 3$ | $7 / 6 / 2$ |
| $\$$ | Dollar sign | $2 / 4$ | $7 / 5 / 2$ |
| $\%$ | Percentage | $2 / 5$ | $7 / 4 / 2$ |
| $\&$ | Ampersand | $2 / 6$ | $7 / 3 / 2$ |
| $!$ | Apostrophe，acute accent | $2 / 7$ | $7 / 2 / 2$ |
| $($ | beft parenthesis | $2 / 8$ | $7 / 1 / 2$ |
| $)$ | Right parenthesis | $2 / 9$ | $7 / 0 / 2$ |
| $*$ | Asterisk，multiplication sign | $2 / 10$ | $7 / 10 / 2$ |
| + | Positive sign，plus sign | $2 / 11$ | $2 / 7 / 1-4,4 / 0 / 2$ |
| , | Comma | $2 / 12$ | $4 / 3 / 1$ |
| - | Negative sign，subtraction sign | $2 / 13$ | $2 / 10 / 1 \sim 4,3 / 1 / 1$ |
| . | Period | $2 / 14$ | $2 / 9 / 1-4,4 / 2 / 1$ |
| $/$ | Slash，virgule，division sign，per | $2 / 15$ | $4 / 1 / 1$ |
| $:$ | Colon | $3 / 10$ | $7 / 10 / 1$ |
| $;$ | Semicolon | $3 / 11$ | $4 / 0 / 1$ |
| $<$ | Less than sign | $3 / 12$ | $4 / 3 / 2$ |
| $=$ | Equal sign | $3 / 13$ | $0 / 8 / 1 \sim 4,3 / 1 / 2$ |
| $>$ | Greater than sign | $3 / 14$ | $4 / 2 / 2$ |
|  |  |  |  |


| Symbol | Code name | Col／Row in code table | $X / Y /$ Mode in code arrangement table |
| :---: | :---: | :---: | :---: |
| ？ | Question mark | 3／15 | 4／1／2 |
| （a） | At mark | 4／0 | 7／9／1 |
| ¢ | Left bracket | $5 / 11$ | 3／3／1 |
| 7 | Yen sign | $5 / 12$ | 3／4／1 |
| ） | Right bracket | $5 / 13$ | 3／7／1 |
| $\wedge$ | Circumflex accent | $5 / 14$ | 2／0／1 |
| － | Underline | $5 / 15$ | 3／6／2 |
| ， | Grave accent | $6 / 0$ | 7／9／2 |
| \｛ | Left brace | 7／11 | 3／3／2 |
| 1 | Separate sign，logical add sign | $7 / 12$ | 3／4／2 |
| \} | Right brace | 7／13 | 3／7／2 |
|  | Overline，logical not sign | $7 / 14$ | 2／0／2 |
| － | Japanese period | 10／1 | 4／2／4 |
| $r$ | Japanese initial quotation mark | 10／2 | 3／3／4 |
| 1 | Japanese final quotation mark | 10／3 | 3／7／4 |
| ， | Japanese comma | 10／4 | 4／3／4 |
| － | Middle dot | 10／5 | 4／1／4 |
| － | Long vowel mark | 11／0 | 3／4／3 |
| － | Voiced consonant mark | 13／14 | 7／9／3 |
| － | Semi－voiced consonant mark | 13／15 | 3／3／3 |

## KEYBOARD ENCODER

## DESCRIPTION

The M58620-XXXS is a keyboard encoder for solid-state switches and is fabricated with P -channel aluminum-gate MOS technology.

All codes are stored in a 3640 -bit ROM. It can store codes for up to 91 keys, and each key can have 4 mode shifts. The mode shift is selected by the combination of shift input, control input and shift control input. The output consists of a 9 -bit plus parity bit code. All inputs and outputs are TTL-compatible.

Custom programming is available. The XXX in the type code stands for a 3 -digit decimal number that identifies the customer's specification to which the ROM has been programmed.

## FEATURES

- All inputs and outputs are TTL-compatible
- Output buffer register
- Strobe inhibit circuit for unused codes
- One shot output (the pulse width is variable) or static output for strobed output
- Chip enable terminal
- 2-key rollover capability ( N -key rollover is also available, if the logic output of the switches is pulsive)


## APPLICATION

- Encoder for full-keyboard terminal equipment


## FUNCTION

The output of each keyboard switch is connected to 2-key inputs selected from $K_{1} \sim K_{14}(2$ of 14) to form 91 ad dresses. Therefore, the character code for output is selected by 2 of 14 key inputs, shift input, control input and shift

## PIN CONFIGURATION (TOP VIEW)



## control input.

When a key is depressed, the output of that keyboard switch is applied to two key inputs selected from $\mathrm{K}_{1} \sim \mathrm{~K}_{14}$; the address ROM generates an address that is used for input to the 3640 -bit ROM. After the encoded data from the ROM is transferred to the buffer register, a strobed output is generated, validating the encoded data.


## MITSUBISHI LSIs

## KEYBOARD ENCODER

## OPERATION

## 1. 2-Key Rollover (N-Key Lockout)

When more than 2 keyboard switches are depressed at the same time, all outputs 1~91 of the address ROM go highlevel, and the 3640 -bit ROM is not addressed. The internal key input signal also is not applied to the timing circuit; as a result, a strobe signal is not generated. Also, the coded outputs hold the preceding state. Then, if any one key (key 1) is not released while the other keys are, key 1 becomes valid.

## 2. N-Key Rollover

If the key input signals are pulsive, the primary depressed key (key 1 ) is read; after the coded output of key 1 is transferred to the buffer register, a strobe signal is generated and the coded output becomes valid. Then, if a second key is depressed while key 1 is in the depressed state, the second key (key 2) is read; and the coded output of key 2 is transferred to the buffer register succeeding the coded output of key 1 described above. A strobe signal is generated, and the coded output becomes valid. Then if a third, fourth . . Nth key is depressed while preceding keys are still in the depressed state, its code will become valid as described above.

## 3. Any-Key-Down Output

When any one or more of the 91 keys are depressed, an internal any-key signal is transferred from the address ROM to the timing circuit where an any-key-down signal (AKD) is generated.

## 4. Strobe Inhibit When an Unused Code Is Addressed

If either an unused mode of the 4 modes or an unused key is selected (its ROM code is 0000000000 ), the strobe output is inhibited and it makes the key invalid. The data output still holds the preceding state.

## 5. Repeat Function

When a repeat signal is applied to the repeat control input ( RC ), a strobe signal is repeatedly generated so that any character can be repeated. The strobe signal is inhibited when the RC terminal is high.

## 6. Data Acknowledge Input

The strobe output is reset by applying a data acknowledge input. The pulse width of the strobe signal output can be adjusted with a resistor and a capacitor connected between the strobe output terminal (STO) and the data acknowledge input terminal (DAK).

## 7. Data Invert and Parity Invert Inputs

The level of each output $\mathrm{B}_{1} \sim \mathrm{~B}_{9}$ and $\mathrm{B}_{10}$ can be inverted when data invert input ( DI ) and parity invert input ( PI ) are high-level.

## 8. Chip Enable Input

Data outputs $\mathrm{B}_{1} \sim \mathrm{~B}_{10}$, strobe output and any-key-down output are in the floating state when chip enable input (CE) is high.

This floating state means a high-impedance state and is equivalent to an open-circuit output.

## 9. Input Control Input

When input control input (IC) is high, key inputs ( $\mathrm{K}_{1} \sim \mathrm{~K}_{14}$ ) can be operated with high-level signals.

## 10. Strobe Control Input

The strobe delay time can be set by the strobe control input STC terminal. The delay time is set to $\mathrm{t}_{\mathrm{d}(\mathrm{ST}-\mathrm{B})}$, which depends on the internal delay circuit when the strobe control input terminal is connected to $\mathrm{V}_{\text {ss. }}$.

## 11. Test Input

Data outputs ( $B_{1} \sim B_{10}$ ) can be independently set either high or low irrespective of the 3640 -bit ROM outputs. When test input (TEST) is high, $\mathrm{B}_{1} \sim \mathrm{~B}_{10}$ goes high if both DI and PI are low, and $\mathrm{B}_{1} \sim \mathrm{~B}_{10}$ goes low is both DI and PI are high.

## 12. Pull-up Resistors

External resistors are not required because pull-up resistors are built-in at all input terminals. But if the strobe control input terminal is not used, it should be connected to $V_{\text {ss }}$. To determine the value of the resistor required, see Electrical Characteristics.

## Pull-up resistors



Table 1 Data-output level in relation to data invert (DI), parity invert ( PI ) and chip enable (CE)

| ROM CODE | DI, PI | CE | $B_{1} \sim B_{10}$ |
| :---: | :---: | :---: | :---: |
| 1 | $H$ | $L$ | $L$ |
|  | $L$ | $L$ | $H$ |
| 0 | $H$ | $L$ | $H$ |
|  | $L$ | $L$ | $L$ |
| 1 | $H$ | $H$ | $Z$ |
|  | $L$ | $H$ | $Z$ |
| 0 | $H$ | $H$ | $Z$ |
|  | $L$ | $H$ | $Z$ |

Table 2 Function table of the mode select circuit

| $S$ | $C$ | $S C$ | $M O D E$ |
| :---: | :---: | :---: | :---: |
| $H$ | $H$ | $H$ | - |
| $L$ | $H$ | $H$ | - |
| $H$ | $L$ | $H$ | - |
| $L$ | $L$ | $H$ | $M_{4}$ |
| $H$ | $H$ | $L$ | $M_{4}$ |
| $L$ | $H$ | $L$ | $M_{3}$ |
| $H$ | $L$ | $L$ | $M_{2}$ |
| $L$ | $L$ | $L$ | $M_{1}$ |

Note 1 : Z indicates a floating state.
2 : The code table is described in positive logic, for outputs $B_{1}$ ~B10, when DI and PI are low.

## ABSOLUTE MAXIMUM RATINGS

| Symbol | Parameter | Conditions | Limits | Unit |
| :---: | :---: | :---: | :---: | :---: |
| VGG | Supply voltage | With respect to $V_{\text {S }}$ | 0.3--20 | V |
| VDD | Supply voltage |  | 0.3~-20 | V |
| $V_{1}$ | Input voltage |  | 0.3~-20 | V |
| $\mathrm{Pd}_{\mathrm{d}}$ | Power dissipation | $\mathrm{Ta}=25^{\circ} \mathrm{C}$ | 1.0 | W |
| Topr | Operating free-air temperature range |  | $-20 \sim 75$ | ${ }^{\circ} \mathrm{C}$ |
| Tstg | Storage temperature range |  | $-40 \sim 125$ | ${ }^{\circ} \mathrm{C}$ |

RECOMMENDED OPERATING CONDITIONS ( $\mathrm{Ta}=-20 \sim 75^{\circ} \mathrm{C}$, unless otherwise noted)

| Symbol | Parameter | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Nom | Max |  |
| $\mathrm{V}_{\mathrm{GG}}$ | Supply voltage | $-10.8$ | -12 | $-13.2$ | V |
| VDD | Supply voltage |  | 0 |  | V |
| VSS | Supply voltage | 4.5 | 5 | 5.5 | $\checkmark$ |
| VIH | High-level input voltage, all inputs except STC | Vss-1.5 |  | V ss | V |
| VIL | Low-level input voltage | V DD |  | Vss-3.5 | $\checkmark$ |
| $\mathrm{tr}_{r}$ | Rise time ( $10 \sim 90 \%$ ), all inputs except DAK |  |  | 1 | $\mu \mathrm{s}$ |
| $t_{f}$ | Fall time ( $10 \sim 90 \%$ ) |  |  | 1 | $\mu \mathrm{S}$ |
| $\operatorname{tr}$ (DAK) | Rise time ( $10-90 \%$ ). DAK |  |  | 100 | $\mu \mathrm{S}$ |
| tf (DAK) | Fall time ( $10-90 \%$ ). DAK |  |  | 100 | $\mu \mathrm{S}$ |

ELECTRICAL CHARACTERISTICS $\left(T a=-20 \sim 75^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{GG}}=-12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{DD}}=0 \mathrm{~V}, \mathrm{VSS}=5 \mathrm{~V} \pm 10 \%\right.$, unless otherwise noted)

| Symbol | Parameter | Test conditions | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| VOH | High-level output voltage | $\mathrm{IOH}=-100 \mu \mathrm{~A}$ | Vss-1 |  |  | V |
| VOL | Low-level input voltage | $\mathrm{IOL}=1.6 \mathrm{~mA}$, (Note 2) |  |  | 0.4 | $\checkmark$ |
| 11(1) | Input current, TEST, IC, DI, PI, and DAK | $\mathrm{V}_{1}=\mathrm{VGG}$ |  | -0.01 | - 10 | $\mu \mathrm{A}$ |
| $H_{1}(2)$ | Input current, $\mathrm{K}_{1} \sim \mathrm{~K}_{14}$ | $\mathrm{V}_{1}=\mathrm{VDD}, \mathrm{V}_{1}(\mathrm{IC})=\mathrm{V}_{1} \mathrm{H}$ |  | -0.02 | -20 | $\mu \mathrm{A}$ |
| $\mathrm{R}_{1}(1)$ | Input resistance, IC, PI, DI, DAK, and TEST | $\mathrm{V}_{1}=\mathrm{Vss}, \mathrm{Ta}=25^{\circ} \mathrm{C}$ | 100 | 180 | 300 | $k \Omega$ |
| $\mathrm{R}_{1}(2)$ | Input resistance, S, C, SC, CE, and RC | $\mathrm{V}_{1}=\mathrm{VDD}, \mathrm{Ta}=25^{\circ} \mathrm{C}$ | 5 |  | 30 | $k \Omega$ |
| $R_{1}(3)$ | input resistance, $\mathrm{K}_{1}$ - $\mathrm{K}_{14}$ | $\mathrm{V}_{1}=\mathrm{V}_{\text {SS }}, \mathrm{V}_{1}(\mathrm{IC})=\mathrm{V}_{1} \mathrm{H}, \mathrm{Ta}=25^{\circ} \mathrm{C}$ | 10 | 20 | 40 | k $\Omega$ |
| $\mathrm{R}_{1}(4)$ | Input resistance. $\mathrm{K}_{1}$ - $\mathrm{K}_{14}$ | $\mathrm{V}_{1}=\mathrm{V}_{\text {DD, }}, \mathrm{V}_{1}(\mathrm{IC})=\mathrm{V}_{1 \mathrm{~L}}, \mathrm{Ta}=25^{\circ} \mathrm{C}$ | 2 | 5 | 15 | $\mathrm{k} \Omega$ |
| Pd | Power dissipation | $\mathrm{Ta}=25^{\circ} \mathrm{C}$ |  | 350 | 500 | mW |
| Ci | Input capacitance | All terminals except the tested terminal are 0 V . $V_{1}=0 V, V r m s=25 \mathrm{mV}, f=1 \mathrm{MHz}$ |  |  | 15 | pF |

[^6]MITSUBISHI LSIs
M58620-XXXS

## KEYBOARD ENCODER

SWITCHING CHARACTERISTICS $\left(T_{a}=25^{\circ} \mathrm{C}, \mathrm{V}_{G G}=-12 \mathrm{~V} \pm 10 \%, \mathrm{VDD}^{2}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=5 \mathrm{~V} \pm 10 \%\right.$, unless otherwise noted)


Note 3 : See the Timing Diagram for ' $t w$ 'and ' $t \times$ '. Numbers 1 through 13 in the diagram correspond to $* 1$ through $* 13$ above.

TIMING DIAGRAM


DI, PI


Note 4


Center line indicates the floating state.

TYPICAL CHARACTERISTICS ( $\mathrm{V}_{\mathrm{GG}}=-12 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=0 \mathrm{~V}, \mathrm{~V}_{S S}=5 \mathrm{~V}$ )

StROBE DELAY TIME VS.



STROBE WIDTH VS.
CAPACITANCE


STROBE DELAY TIME VS.
RESISTANCE


RESISTANCE R (MS2)


TYPICAL APPLICATION CIRCUIT


## MITSUBISHI LSIs <br> M58620-001S

## KEYBOARD ENCODER (JIS CODE STANDARD PRODUCT)

## DESCRIPTION

The M58620-001S is a standard product of the M58620XXXS. The 7 -bit and 8 -bit codes specified in JIS publication C6220-1969 "Codes for Information Interchange" are stored in this ROM. Odd parity is available for the 7 -bit code, and either odd or even parity for the 8 -bit code. The function, pin configuration and electrical characteristics are the same as a M58620-XXXS.

## FUNCTION

The relationships between $B_{1} \sim B_{8}$ in the code table and $B_{1}$ $\sim B_{8}$ in data outputs are shown in Table 1, and those between the parity output ( $\mathrm{B}_{10}$ or $\mathrm{B}_{9}$ ) and the parity bit, in Tables 2 and 3 . The parity bit in the tables is defined as a ' 0 ' when the number of ' 1 's in the code ( $B_{1} \sim B_{8}$ or $B_{1} \sim B_{7}$ ) is odd and a ' 1 ' when it is even.

Mode selection is shown in Table 4.

Table 1 Relation between code table and outputs

| $\mathrm{B}_{1} \sim \mathrm{~B}_{8}$ <br> in code table | Data invert input <br> DI | Data output <br> $\mathrm{B}_{1} \sim \mathrm{~B}_{8}$ | Logic |
| :---: | :---: | :---: | :---: |
| 1 | L | H | Positive logic |
| 1 | H | L | Negative logic |
| 0 | L | L | Positive logic |
| 0 | H | H | Negative logic |

Table 2 Parity output of 8-bit code

| Parity bit | Parity invert output <br> Pl | Parity output <br> $\mathrm{B}_{10}$ |
| :---: | :---: | :---: |
| 1 | L | H |
| 1 | H | L |
| 0 | L | L |
| 0 | H | H |

Table 3 Parity output of 7-bit code

| Parity bit | Data invert input <br> DI | Data output <br> B 9 |
| :---: | :---: | :---: |
| 1 | L | H |
| 1 | H | L |
| 0 | L | L |
| 0 | H | H |

Table 4 Mode selection

| Shift input <br> S | Control input <br> C | Shift control input <br> SC | Selected mode |
| :---: | :---: | :---: | :---: |
| L | L | L | 1 |
| H | L | L | 2 |
| L | H | L | 3 |
| H | H | L | 4 |
| L | L | H | 4 |
| H | L | H | - |
| L | H | H | - |
| H | H | H | - |

CODE TABLE (JIS-C-6220-1969)

$* \mathrm{~B}_{9}$ is an odd parity bit for the 7-bit code $\left(\mathrm{B}_{1} \sim \mathrm{~B}_{7}\right)$.
$+\mathrm{B}_{10}$ is an odd parity bit for the 8 -bit code $\left(\mathrm{B}_{1} \sim \mathrm{~B}_{8}\right)$.
Note : When inputs DI and PI are low-level, a ' 1 ' in the code table indicates that the output level goes high, a ' 0 ' that it goes low.

MITSUBISHI LSIs M58620-001S

## CODE ARRANGEMENT TABLE



## SYMBOLS AND THEIR NAMES

| Symbol | Code name | $\begin{array}{\|c\|} \hline \text { Col/Row } \\ \text { in code table } \end{array}$ | $\mathrm{km} / \mathrm{kn} /$ Mode in code arrangement table | Symbol | Code name | Col/Row $\mathrm{km} / \mathrm{kn} /$ Mode in code in code table arrangement table |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SP | Space | 2/0 |  | ? | Question mark, | 3/15 | $\mathrm{K}_{11} / \mathrm{K}_{1} / 2$ |
| ! | Exclamation mark | 2/1 | $K_{14} / K_{3} / 2$ | ${ }^{(a)}$ | At mark | 4/0 | $\mathrm{K}_{12} / \mathrm{K}_{3} / 1$ |
| " | Quotation mark, umlaut | 2/2 | $\mathrm{K}_{5} / \mathrm{K}_{4} / 2$ | [ | Left bracket | 5/11 | $\mathrm{K}_{13} / \mathrm{K}_{3} / 1$ |
| \# | Number sign | 2/3 | $\mathrm{K}_{6} / \mathrm{K}_{4} / 2$ | 7 | Yen sign | $5 / 12$ | $\mathrm{K}_{7} / \mathrm{K}_{5} / 1$ |
| \$ | Dollar sign | 2/4 | $\mathrm{K}_{7} / \mathrm{K}_{4} / 2$ | ] | Right bracket | 5/13 | $\mathrm{K}_{12} / \mathrm{K}_{2} / 1$ |
| \% | Percentage | $2 / 5$ | $\mathrm{K}_{8} / \mathrm{K}_{4} / 2$ | $\wedge$ |  |  |  |
| \& | Ampersand | 2/6 | $K_{9} / K_{4} / 2$ |  | Circumflex accent | 5/14 | $\mathrm{K}_{6} / \mathrm{K}_{5} / 1$ |
|  | Apostrophe, acute accent | 2/7 | K $10 / \mathrm{K} 4 / 2$ |  | Underline | 5/15 | $\mathrm{K}_{12} / \mathrm{K}_{1} / 2$ |
| ( | Left parenthesis | 2/8 | $\mathrm{K}_{11} / \mathrm{K}_{4} / 2$ | ' | Grave accent | $6 / 0$ | $\mathrm{K}_{12} / \mathrm{K}_{3} / 2$ |
| ) | Right parenthesis | 2/9 | $\mathrm{K}_{12} / \mathrm{K}_{4} / 2$ | \{ | Left brace | 7/11 | $\mathrm{K}_{13} / \mathrm{K}_{3} / 2$ |
| * | Asterisk, multiplication sign | 2/10. | $K_{11} / K_{2} / 2$ | 1 | Separate sign, logical add sign | 7/12 | $\mathrm{K}_{7} / \mathrm{K}_{5} / \mathrm{l} 2$ |
| + | Positive sign, plus sign | 2/11 | $\mathrm{K}_{10} / \mathrm{K}_{2} / 2$ * | \} | Right brace | 7/13 | $\mathrm{K}_{12} / \mathrm{K}_{2} / 2$ |
| , | Comma | 2/12 | K9/K1/1 |  | Overline, logical not sign | 7/14 | $\mathrm{K}_{6} / \mathrm{K}_{5} / 2$ |
| - | Negative sign, subtraction sign | 2/13 | K 14 / K 4 / 1 * | - | Japanese period | 10/1 | $\mathrm{K}_{10} / \mathrm{K}_{1} / 4$ |
|  | Period | 2/14 | $K_{10} / K_{1} / 1$ * | 「 | Japanese initial quotation mark | 10/2 | $\mathrm{K}_{13} / \mathrm{K}_{3} / 4$ |
| 7 | Slash, virgule division sign, per | 2/15 | $\mathrm{K}_{11} / \mathrm{K}_{1} / 1$ | 」 | Japanese final quotation mark | 10/3 | $\mathrm{K}_{12} / \mathrm{K}_{2} / 4$ |
| : | Colon | 3/10 | $K_{11} / K_{2} / 1$ | , | Japanese comma | 10/4 | K9/K1/4 |
| ; | Semicolon | 3/11 | $K_{10} / K_{2} / 1$ | - | Middle dot | 10/5 | K $11 / \mathrm{K}, ~ / ~ 4 ~$ |
| < | Less than sign | 3/12 | K9/K1/2 | - | Long vowel mark | 11/0 | K7/K5/3 |
| $=$ | Equal sign | 3/13 | $\mathrm{K}_{14} / \mathrm{K}_{4} / 2 *$ | . | Voiced consonant mark | 13/44 | $K_{12} / K_{3} / 3$ |
| $>$ | Greater than sign | 3/14 | $\mathrm{K}_{10} / \mathrm{K}_{4} / 2$ | . | Semi-voiced consonant mark | 13/15 | $\mathrm{K}_{13} / \mathrm{K}_{3} / 3$ |

## DESCRIPTION

The M58740P and M58740S are general-purpose programmable input/output devices designed for use with an 8 -bit parallel M58710S CPU as input/output ports. This device are fabricated using N -channel silicon-gate ED-MOS technology for a single supply voltage. They are simple input and output interfaces for TTL circuits, having 24 input/ output pins which correspond to three 8 -bit input/output ports.

## FEATURES

- 24 programmable I/O pins
- Single 5V supply voltage
- TTL-compatible $\mathrm{I}_{\mathrm{OL}}=1.9 \mathrm{~mA}$ (max)
- Fully compatible with MELPS 8 microprocessor series
- Direct bit set/reset capability
- A source current of 1 mA at 1.5 V for Darlington transistor direct drive
- Interchangeable with Intel's 8255 in terms of function, electrical characteristics and pin configuration.


## APPLICATION

- Input/output ports for MELPS 8 microprocessor


## FUNCTION

The M58740P and M58740S have 24 input/output terminals which may be individually programmed in two 12 -bit groups A and B with mode control commands from a CPU. It is used in three major modes of operation, mode 0 , mode 1 and mode 2 .

Operating in mode 0 , each group of 12 pins may be programmed in sets of 4 to be inputs or outputs. In mode 1, the 24 I/O terminals may be programmed in two 12 -bit groups, group A and group B. Each group contains one 8-

bit data port, which may be programmed to be an input or an output, and one 4 -bit control-data port used for handshaking and interrupt control signals. Mode 2 is used with group A only, as one 8 -bit bidirectional bus port and one 5-bit control port.

Bit set and reset is controlled from a CPU. A high-level reset input (RESET) clears all internal registers, and they are set to the input mode (high-impedance state).


## PROGRAMMABLE PERIPHERAL INTERFACE

ABSOLUTE MAXIMUM RATINGS

| Symbol | Parameter |  | Conditions | Limits | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Vcc | Supply voltage |  | With respect to $\mathrm{V}_{\text {SS }}$ | $-0.5 \sim 7.0$ | V |
| $V_{1}$ | Input voltage |  |  | $-0.5 \sim 7.0$ | V |
| $\mathrm{V}_{0}$ | Output voltage |  |  | $-0.5 \sim 7.0$ | V |
| $\mathrm{Pd}_{\text {d }}$ | Power dissipation |  | $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ | 1000 | mW |
| Topr | Operating free-air temperature range |  |  | $0 \sim 70$ | ${ }^{\circ} \mathrm{C}$ |
| Tstg | Storage temperature range | M58740P |  | $-40-125$ | ${ }^{\circ} \mathrm{C}$ |
|  |  | M58740S |  | $-65 \sim 150$ | ${ }^{\circ} \mathrm{C}$ |

RECOMMENDED OPERATING CONDITIONS $\left(\mathrm{Ta}=0 \sim 70^{\circ} \mathrm{C}\right.$, unless otherwise noted)

| Symbol | Parameter | Limit |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Nom | Max |  |
| Voc | Supply voltage | 4.75 | 5.0 | 5.25 | V |
| Vss | Supply voltage |  | 0 |  | V |
| VIH | High-level input voltage | 2.0 |  |  | V |
| VIL | Low-level input voltage |  |  | 0.8 | V |

ELECTRICAL CHARACTERISTICS ( $\mathrm{Ta}=0 \sim 70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$, unless otherwise noted)

| Symbol | Parameter | Test conditions | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| V OH | High-level output voltage | $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, 10 \mathrm{H}=-50 \mu \mathrm{~A}$ (Note 2) | 2.4 |  |  | V |
| VOL | Low-level output voltage | $\mathrm{VSS}=0 \mathrm{~V}, 10 \mathrm{~L}=1.9 \mathrm{~mA}$ |  |  | 0.4 | V |
| 1 OH | High-level output voltage (Note 3) | $\mathrm{VSS}_{S S}=0 \mathrm{~V}, \mathrm{VOH}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{EXT}}=390 \Omega$ |  | 2.0 |  | mA |
| ICO | Supply current from Vcc | $V S S=0 \mathrm{~V}$ |  |  | 60 | mA |
| 1 H | High-level input voltage | $V S S=0 \mathrm{~V}, \mathrm{~V}_{1}=5.25 \mathrm{~V}$ | $-10$ |  | 10 | $\mu \mathrm{A}$ |
| IIL | Low-level input voltage | $\mathrm{V}_{S S}=0 \mathrm{~V}, \mathrm{~V}_{1}=0 \mathrm{~V}$ | -10 |  | 10 | $\mu \mathrm{A}$ |
| loz | Off-state output current | $\mathrm{V}_{S S}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0.4 \sim 5.25 \mathrm{~V}$ | -10 |  | 10 | $\mu \mathrm{A}$ |
| $\mathrm{C}_{\mathrm{i}}$ | Input capacitance | $V_{\text {IL }}=V_{\text {SS }}, \mathrm{f}=1 \mathrm{MHz}, 25 \mathrm{mVrms} \mathrm{Ta}=25^{\circ} \mathrm{C}$ |  |  | 10 | pF |
| $\mathrm{Ci} / \mathrm{O}$ | Input/output terminal capacitance | $\mathrm{V}_{1 / \mathrm{OL}}=\mathrm{VSS}^{\prime}, \mathrm{f}=1 \mathrm{MHz} 25 \mathrm{mVrms} \mathrm{Ta}=25^{\circ} \mathrm{C}$ |  |  | 15 | pF |

Note 1 : Current flowing into an IC is positive: out is negative.
$2: 10 H^{=}-100 \mu \mathrm{~A}$ for $\mathrm{D}_{7}$ through $\mathrm{Do}_{0}$
3 : It is valid only for any 8 input/output pins.
TIMING REQUIREMENTS ( $\mathrm{T}_{\mathrm{a}}=0 \sim 70^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{S S}=0 \mathrm{~V}$. unless otherwise noted)

| Symbol | Parameter |  | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| $\mathrm{t}_{\mathrm{W}}(\overline{W R})$ | Write pulse width |  | 450 |  |  | ns |
| tsu (DA- $\overline{W R}$ ) | Data setup time with respect to write |  | 10 |  |  | ns |
| $\operatorname{th}(D A-\overline{W R})$ | Data hold time with respect to write |  | 20 |  |  | ns |
|  | Address setup time with respect to write |  | 35 |  |  | ns |
| $\operatorname{th}(A D-\overline{W R})$ | Address hold time with respect to write |  | 20 |  |  | ns |
| $t_{\text {su }}(\overline{C S}-\overline{W R})$ | Chip select setup time with respect to write |  | 20 |  |  | ns |
| $\operatorname{th}(\overline{C S}-\overline{W R})$ | Chip select hold time with respect to write | * | 35 |  |  | ns |
| $\mathrm{t}_{\mathrm{W}}(\overline{\mathrm{RD}})$ | Read pulse width |  | 430 |  |  | ns |
| tsu (PE- $\overline{R D}$ ) | Peripheral setup time with respect to read |  | 50 |  |  | ns |
| $\operatorname{th}(P E-\overline{R D})$ | Peripheral hold time with respect to read |  | 50 |  |  | ns |
| $t$ Su $(A D-\overline{R D})$ | Address setup time with respect to read |  | 50 |  |  | ns |
| $\operatorname{th}(A D-\overline{R D})$ | Address hold time with respect to read |  | 380 |  |  | ns |
| tsu ( $\overline{\mathrm{CS}}-\overline{\mathrm{RD}})$ | Chip select setup time with respect to read |  | 50 |  |  | ns |
| $\operatorname{th}(\overline{\mathrm{CS}}-\overline{\mathrm{RD}})$ | Chip select hold time with respect to read |  | 5 |  |  | ns |
| $\mathrm{t}_{\mathrm{W}}(\overline{\mathrm{ACK}})$ | Acknowledge pulse width |  | 500 |  |  | ns |
| $\mathrm{t}_{\mathrm{w}}$ ( $\overline{\text { STB }}$ ) | Strobe pulse width |  | 350 |  |  | ns |
| tsu( $\mathrm{FE}-\overline{\mathrm{STB}}$ ) | Peripheral setup time with respect to strobe |  | 150 |  |  | ns |
| $\operatorname{th}(\mathrm{PE}-\overline{S T B})$ | Peripheral hold time with respect to strobe |  | 150 |  |  | ns |

## SWITCHING CHARACTERISTICS

( $\mathrm{Ta}=0 \sim 70^{\circ} \mathrm{C}, V \mathrm{VC}=5 \mathrm{~V} \pm 5 \%$, oad $=50 \mathrm{pF} 1 \mathrm{TTL}$, unless otherwise noted)

| Symbol | Parameter | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Nom | Max |  |
| $t_{\text {PHL }}(\bar{W} \bar{W}-P E)$ <br> tPLH( $\overline{W R}-P E)$ | Propagation time from write to output |  |  | 500 | ns |
| tPZX( $\overline{\text { RD-DA }}$ ) | Propagation time from read to output |  |  | 500 | ns |
| $\mathrm{t}_{\mathrm{PXZ}}(\overline{\mathrm{RD}}-\mathrm{DA})$ | Propagation time from read to output floating |  |  | 150 | ns |
| $t_{\text {PZX }}(\overline{A C K}-\mathrm{PE})$ | Propagation time from acknowledge to output |  |  | 500 | ns |
| tPXZ ( $\overline{\mathrm{ACK}}$-PE) | Propagation time from acknowledge to output floating |  |  | 350 | ns |
| $\mathrm{tPHL}^{\text {( } \overline{W R}-\overline{O B F})}$ | Propagation time from write to $\overline{\mathrm{OBF}}$ flag |  |  | 350 | ns |
| $\mathrm{t}_{\text {PLH }}(\overline{\mathrm{ACK}}-\overline{\mathrm{OBF}})$ | Propagation time from acknowledge to $\overline{O B F}$ flag |  |  | 500 | ns |
| $\mathrm{t}_{\mathrm{PLH}}(\overline{\mathrm{ST}} \times 1 \mathrm{BF})$ | Propagation time from strobe to IBF flag |  |  | 600 | ns |
| $\mathrm{t}_{\mathrm{PHL}}(\overline{\mathrm{RD}}-1 \mathrm{BF})$ | Propagation time from read to IBF flag |  |  | 300 | ns |

TIMING DIAGRAMS REFERENCE LEVEL $=1.5 \mathrm{~V}$


MITSUBISHI LSIs
M58740P, M58740S
Alternative Designation 8255

PROGRAMMABLE PERIPHERAL INTERFACE


Mode 2 Bidirectional


## DESCRIPTION

The M54550P is a clock generator/driver for M58710S or 8080A CPUs. It is controlled by a crystal, selected by the user, to meet a variety of system speed requirements. It is fabricated by using Schottky TTL technology.

## FEATURES

- Crystal controlled for stable clock frequency generation
- Clock outputs $\phi_{1}, \phi_{2}$, and $\phi_{2}$ (TTL. level), and an oscillator output are brought out
- Power-up reset for CPU auto-reset
- Status latch signal
- Synchronizing ready signal output
- Interchangeable with Intel's 8224 in terms of pin configuration and electrical characteristics


## APPLICATION

- Single chip clock generator/driver for M58710S and 8080A CPUs


## FUNCTION

When an 18 MHz crystal is connected between XTAL1 and XTAL2, clock outputs $\phi_{1}, \phi_{2}$, and $\phi_{2}$ (TTL level), along with oscillator output, are brought out for a CPU with a basic cycle time of 500 ns . At this time, $\phi_{1}$ pulse width is 110 ns ( $2 \times 55 \mathrm{~ns}$ ), $\phi_{2}$ pulse width is 275 ns ( $5 \times 55 \mathrm{~ns}$ ). When an overtone mode crystal is used, the external LC network is connected to the TANK input to provide additional gain.

If an external RC network is connected to $\overline{\text { RESIN }}$ at

## PIN CONFIGURATION (TOP VIEW)



## Outline 16P1

system power-up time, a reset signal is generated; and the system is reset automatically. When a signal from a CPU is applied to the SYNC, $\overline{\text { STSTB }}$ is generated. The RDYIN input sends a synchronous "wait request" signal to the internal D-type flip-flop, and a synchronized READY signal is generated.

## BLOCK DIAGRAM



## CLOCK GENERATOR AND DRIVER FOR CPU M58710S

ABSOLUTE MAXIMUM RATINGS ( $\mathrm{Ta}=0 \sim 75^{\circ} \mathrm{C}$, unless otherwise noted)

| Symbol | Parameter | Conditions | Limits | Unit |
| :---: | :---: | :---: | :---: | :---: |
| Vcc | Supply voltage |  | 7.0 | V |
| VCD | Supply voltage |  | 13.5 | V |
| V I | Input voltage |  | 7.0 | V |
| Vo | Output voltage, all outputs except $\phi_{1}$ and $\phi_{2}$ |  | Vcc | $V$ |
| $\mathrm{Pd}_{\text {d }}$ | Power dissipation |  | 800 | mW |
| Topr | Operating free-air temperature range |  | 0-75 | ${ }^{\circ} \mathrm{C}$ |
| Tstg | Storage temperature range |  | $-55 \sim 125$ | ${ }^{\circ} \mathrm{C}$ |

RECOMMENDED OPERATING CONDITIONS ( $\mathrm{Ta}=0 \sim 75^{\circ} \mathrm{C}$, unless otherwise noted)

| Symbol | Parameter | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Nom | Max |  |
| VCC | Supply voltage | 4.75 | 5.0 | 5.25 | V |
| VDD | Supply voltage | 11.4 | 12 | 12.6 | V |
| 1 OH | High-level output current, $\phi 1, \phi 2$, READY,RESET |  |  | -100 | $\mu \mathrm{A}$ |
| IOH | High-level output current, all other outputs |  |  | -1 | mA |
| IOL | Low-level output current. $\phi 1, \phi 2$, READY,RESET, $\overline{\text { STSTB }}$ |  |  | 2.5 | mA |
| IOL | Low-level output current, all other outputs |  |  | 16 | mA |
| frmax | Maximum repetition frequency |  |  | 27 | MHz |

ELECTRICAL CHARACTERISTICS ( $\mathrm{Ta}=0 \sim 75^{\circ} \mathrm{C}$. unless otherwise noted)

| Symbol | Parameter | Test conditions | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| $\mathrm{V}_{\text {IH }}$ | High-level input voltage, $\overline{\text { RESIN }}$ |  | 2.6 |  |  | V |
| VIH | High-level input voltage, all other inputs |  | 2.0 |  |  | V |
| VIL | Low-level input voltage |  |  |  | 0.8 | V |
| $V_{\text {IH }}-V_{\text {IL }}$ | Input hysteresis voltage. $\overline{\text { RESIN }}$ | $\mathrm{V}_{C C}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=12.0 \mathrm{~V}$ | 0.25 |  |  | V |
| $\mathrm{V}_{\text {IC }}$ | Input clamped voltage | $V_{C C}=4.75 \mathrm{~V}, 11 \mathrm{C}=-5 \mathrm{~mA}$ |  |  | $-1.0$ | V |
| VOH | High-level output voltage, $\phi 1, \phi 2$ | $\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=11.4 \mathrm{~V}, \mathrm{IOH}=-100 \mu \mathrm{~A}$ | 9.4 |  |  | V |
| VOH | High-level output voltage, READY, RESET | $\mathrm{V}_{C C}=4.75 \mathrm{~V}, \mathrm{~V}_{D D}=11.4 \mathrm{~V}, 1 \mathrm{OH}=-100 \mu \mathrm{~A}$ | 3.6 |  |  | V |
| VOH | High-level output voltage, other outputs | $\mathrm{V}_{C C}=4.75 \mathrm{~V}, \mathrm{~V}_{D D}=11.4 \mathrm{~V}, 1_{O H}=-1 \mathrm{~mA}$ | 2.4 |  |  | V |
| VOL | Low-level output voltage, $\phi 1, \phi 2$, READY, RESET, STSTB | $V_{C C}=4.75 \mathrm{~V}, \mathrm{~V}_{D D}=11.4 \mathrm{~V}, 1 \mathrm{OL}=2.5 \mathrm{~mA}$ |  |  | 0.5 | V |
| VoL | Low-level output voltage, all other outputs | $\mathrm{V}_{C C}=4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=11.4 \mathrm{~V}, 1 \mathrm{loL}=16 \mathrm{~mA}$ |  |  | 0.5 | V |
| IIH | High-level input current | $\mathrm{V}_{C C}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=12.6 \mathrm{~V}, \mathrm{~V}_{1}=5.25 \mathrm{~V}$ |  |  | 10 | $\mu \mathrm{A}$ |
| IIL | Low-level input current | $\mathrm{VCC}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {DD }}=12.6 \mathrm{~V}, \mathrm{~V}_{1}=0.5 \mathrm{~V}$ |  |  | -0.25 | mA |
| los | Short-circuit output current (Note 3) | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=12.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V} \end{aligned}$ | -10 |  | -60 | mA |
| Icc | Supply current from Vcc | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=12.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V} \end{aligned}$ |  |  | 115 | mA |
| IDD | Supply current from VDD |  |  |  | 12 | mA |

Note 1 : All voltages are with respect to GND terminal. Reference voltage ( pin 8 ) is considered as OV , and all maximum and minimum values are defined in absolute values.
: Current flowing into an IC is positive; out is negative. The maximum and minimum values are defined in absolute values.
: All measurements should be done quickly, and two outputs should not be measured at the same time. Outputs $\phi 1$ and $\phi 2$ should not be short-circuited to GND.

TIMING REQUIREMENTS ( $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~V}_{D D}=12 \mathrm{~V}$. unless otherwise noted)

| Symbol | Parameter | Test conditions | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| tsu(RDYIN) | RDYIN setup time with respect to STSTB | $\overline{\text { STSTB }}$ output terminal $C_{L}=15 \mathrm{pF}$ | $50-\frac{4 \mathrm{tc}}{9}$ |  |  | ns |
| th (RDYIN) | RDYIN hold time with respect to STSTB | $\begin{aligned} & R_{L 1}=2 k \Omega \\ & R_{L 2}=4 k \Omega \end{aligned}$ | $\frac{4 t c}{9}$ |  |  | ns |

SWITCHING CHARACTERISTICS $\left(T a=25^{\circ} \mathrm{C}, ~ V \mathrm{Cc}=5 \mathrm{~V}, \mathrm{VDD}=12 \mathrm{~V}\right.$. unless otherwise noted)

| Symbol | Parameter | Test conditions (Note 4) | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| tw ${ }^{\left(\phi_{1}\right)}$ | Clock $\phi$ \| puise width | $\begin{aligned} & \mathrm{C}_{\mathrm{L}}=20 \sim 50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L} 1}=\infty_{\Omega}, \quad \mathrm{R}_{\mathrm{L} 2}=\infty_{\Omega} \end{aligned}$ | $\frac{216}{9}-20$ |  |  | ns |
| tw( $\phi^{2}$ ) | Clock $\phi 2$ pulse width |  | $\frac{5 \text { ti }}{9}-35$ |  |  | ns |
| $t \mathrm{t}\left(\phi_{1} \mathrm{~L}-\phi \overline{2}\right)$ | Delay time from $\phi 1$ low-level to $\phi 2$ low-level |  | 0 |  |  | ns |
| td ( $\phi^{2 L-\phi L L}$ ) | Delay time from $\phi 2$ low-level to $\phi 1$ low-level |  | 216 ${ }^{\frac{210}{9}-30}$ |  |  | ns |
|  | Delay time from $\phi 1$ high-level to $\phi 2$ low-level |  | $\frac{2 \mathrm{tc}}{9}-5$ |  | $\frac{21 \mathrm{tc}}{9}+25$ | ns |
| $\mathrm{t}_{\text {TLH }}$ | Transition time. low-to-high-level $\phi 1$ and $\phi 2$ | $\begin{aligned} & \mathrm{C}_{\mathrm{L}}=20 \sim 50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L} 1}=\infty_{\Omega}, \quad \mathrm{R}_{\mathrm{L} 2}=\infty_{\Omega} \end{aligned}$ |  |  | 20 | ns |
| $\mathrm{t}_{\text {THL }}$ | Transition time, high-to-low-level $\phi 1$ and $\phi 2$ |  |  |  | 20 | ns |
| $\mathrm{td}_{\text {( } \phi^{2}-\phi^{2}(T T L)}$ | Delay time from $\phi 2$ to $\phi 2$ ( TTL ) | $\phi 2$ (TTL) output $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L} 1}=300 \Omega, \mathrm{R}_{\mathrm{L} 2}=600 \Omega$ | -10 |  | 20 | ns |
| $\mathrm{t}_{\mathrm{d}(\phi 2-\mathrm{STSTB})}$ | Delay time from $\phi 2$ to STSTB | STSTB output$C_{L}=15 \mathrm{pF}, R_{L 1}=2 \mathrm{k} \Omega, R_{L 2}=4 \mathrm{k} \Omega$ | $\frac{61 \mathrm{c}}{9}-30$ |  | $\frac{6 \mathrm{tc}}{9}$ | ns |
| tw( $\overline{\text { STSTB }}$ ) | STSTB pulse width |  | 年年-15 |  |  | ns |
| td (READY- $\phi^{2}$ ) | Delay time from READY to $\phi 2$ | READY, RESE Toutput $\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \mathrm{R}_{\mathrm{L} 1}=2 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L} 2}=4 \mathrm{k} \Omega$ | $\left\|\frac{4 \mathrm{tc}}{9}-25\right\|$ |  |  |  |
| $t \mathrm{~d}($ RESET - $\phi$ 2) | Delay time from RESET to $\phi 2$ |  |  |  |  | ns |



MITSUBISHI LSIs
M54550P
Alternative Designation 8224

## CLOCK GENERATOR AND DRIVER FOR CPU M58710S

TYPICAL APPLICATION CIRCUIT


## DESCRIPTION

The M54551K is a system controller and bus driver for M58710S or 8080A CPUs. It generates all signals required to directly interface the MELPS 8 series RAMs, ROMs and input/output devices. A bidirectional bus driver, along with system control signals, provides for high system TTL fanout. It is fabricated using Schottky TTL technology.

## FEATURES

- Built-in bidirectional bus driver for data bus isolation
- Built-in status signal
- High system TTL fan-out
- User selected single level interrupt vector (RST 7)
- Interchangeable with Intel's 8228 in terms of pin configuration and electrical characteristics


## APPLICATION

- Data bus driver and status signal generation for M58710S and 8080A CPUs


## FUNCTION

The bidirectional bus driver provides high system TTL fanout, as well as isolation for an M58710S or 8080A CPU data bus from memory and I/O devices.

Status signals from a CPU are latched in the internal status latch when the status strobe signal STSTB goes low. The gating array generates control signals (memory read $\overline{M E M R}$, memory write $\overline{M E M W}$, input/output read $\overline{\mathrm{I} O R}$, input/output write $\overline{\mathrm{I} / \mathrm{OW}}$, and interrupt acknowledge $\overline{\mathrm{INTA})}$ by gating the output of the status latch with the control signals DBIN, $\overline{W R}$ and HLDA from a CPU. The bus enable input $\overline{B U S E N}$ forces the data bus output buffers and con-

## PIN CONFIGURATION (TOP VIEW)

| $\begin{aligned} & \text { STROBE CONTROL } \\ & \text { NTPU STSTB } \rightarrow 1 \\ & \text { HOLD ACKNOWL- HLDA } \rightarrow 2 \\ & \text { EDGE } \\ & \text { WRITE CONTROL } \overline{W R} \rightarrow 3 \end{aligned}$ | $\begin{aligned} & \text { Z } \\ & \text { I } \end{aligned}$ | 28 VCC (5V) |
| :---: | :---: | :---: |
|  |  | $27 \rightarrow \overline{1 / O W}$ I/O WRITE CONTR |
|  |  | $26 \rightarrow \overline{\text { MEMW }}$ MEMORY WRITE |
| DATA BUS INPUT DBIN $\rightarrow 4$ |  | $25 \rightarrow \overline{1 / O R}$ I/O READ CONTROL |
| SYSTEM DATA BUS $\mathrm{DB}_{4} \leftrightarrow 5$ |  | $24 \rightarrow \overline{\text { MEMR }}$ MEMORY READ |
| data bus $\mathrm{D}_{4} \leftrightarrow 6$ |  | $23 \rightarrow$ INTA $\operatorname{INTERRUPT}$ ACKNOW |
| SYSTEM DATA BUS $\mathrm{DB}_{7} \leftrightarrow 7$ |  | $22 \leftarrow \overline{\text { BUSEN }}$ BUS ENABLE |
| data bus $\mathrm{D}_{7} \leftrightarrow \rightarrow 8$ |  | $21 \rightarrow D_{6}$ DATA BUS |
| SYSTEM DATA BUS $\mathrm{DB}_{3} \leftrightarrow 9$ |  | $20 \rightarrow \mathrm{DB}_{6}$ SYSTEM DATA BUS |
| DATA BUS $\mathrm{D}_{3} \leftrightarrow 10$ |  | 19 $\leftrightarrow \mathrm{D}_{5} \quad$ DATA BUS |
| SYSTEM DATA BUS $\mathrm{DB}_{2} \leftrightarrow 11$ |  | $18 \leftrightarrow B_{5}$ SYSTEM DATA BUS |
| DATA BUS $\mathrm{D}_{2} \leftrightarrow 12$ |  | $17 \rightarrow D_{1} \quad$ DATA BUS |
| SYSTEM DATA BUS $\mathrm{DB}_{0} \leftrightarrow 113$ |  | $16 \rightarrow B_{1}$ SYSTEM DATA BUS |
| (0V)GND 14 |  | $15 \leftrightarrow D_{0}$ DATA BUS |

Outline 28K1
trol signal buffers to high-impedance state if they are in the high-state.

An RST 7 instruction gated to the bus as an interrupt is acknowledged when the DBIN input is active and a 12 V supply in series with a $1 \mathrm{k} \Omega$ resistor is connected to the acknowledge output INTA.


## SYSTEM CONTROLLER AND BUS DRIVER FOR CPU M58710S

ABSOLUTE MAXIMUM RATINGS ( $\mathrm{Ta}=0 \sim 75^{\circ} \mathrm{C}$, unless otherwise noted)

| Symbol | Parameter | Conditions | Limits | Unit |
| :---: | :---: | :---: | :---: | :---: |
| Vcc | Supply voltage |  | 7.0 | V |
| $\mathrm{V}_{1}$ | Input voltage. $\mathrm{D}_{0} \sim \mathrm{D}_{7}$ and $\overline{\text { STSTB }}$ input |  | $\mathrm{V}_{\mathrm{cc}}$ | V |
| $\mathrm{V}_{1}$ | Input voltage, all other inputs |  | 7.0 | V |
| $\mathrm{V}_{0}$ | Output voltage |  | VCc | V |
| Pd | Power dissipation |  | 1.0 | W |
| Topr | Operating free-air temperature |  | 0~75 | ${ }^{\circ} \mathrm{C}$ |
| Tstg | Storage temperature |  | $-55 \sim 125$ | ${ }^{\circ} \mathrm{C}$ |

RECOMMENDED OPERATING CONDITIONS $\left(\mathrm{Ta}=0 \sim 75^{\circ} \mathrm{C}\right.$. unless otherwise noted)

| Symbol | Parameter | Limits |  |  | Unit |
| :---: | :--- | :---: | :---: | :---: | :---: |
|  |  |  | Min | Nom |  |
|  |  | 4.75 | 5.0 | 5.25 | V |
| $\mathrm{~V}_{\mathrm{CC}}$ | Supply voltage |  |  | -10 | $\mu \mathrm{~A}$ |
| IOH | High-level output current, D0 $\sim \mathrm{D}_{7}$ outputs |  |  | -1 | mA |
| IOH | High-level output current, all other outputs |  |  | 2 | mA |
| IOL | Low-level output current, Do D7 outputs |  |  |  |  |
| IOL | Low-level output current, all other outputs |  |  | 10 | mA |

ELECTRICAL CHARACTERISTICS ( $\mathrm{Ta}=0 \sim 75^{\circ} \mathrm{C}$, unless otherwise noted)

| Symbol | Parameter | Test conditions | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| $\mathrm{V}_{\mathrm{IH}}$ | High-level input voltage |  | 2.0 |  |  | V |
| $V_{\text {IL }}$ | Low-level input voltage |  |  |  | 0.8 | V |
| VIC | Input clamp voltage | $\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \quad \mathrm{IIC}=-5 \mathrm{~mA}$ |  |  | -1.0 | V |
| V OH | High-level output voltage. $\mathrm{D}_{0} \sim \mathrm{D}_{7}$ outputs | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V} \\ & \mathrm{IOH}^{2}=-10 \mu \mathrm{~A} \end{aligned}$ | 3.6 |  |  | V |
|  | High-level output vcltage, all other outputs | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$ | 2.4 |  |  |  |
| VoL | Low-level output voltage. Do D7 outputs | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OL}}=2 \mathrm{~mA} \end{aligned}$ |  |  | 0.5 | V |
|  | Low-level output voltage, all other outputs | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OL}}=10 \mathrm{~mA} \end{aligned}$ |  |  | 0.5 |  |
| loz | Three-state output current | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}=5.25 \mathrm{~V} \end{aligned}$ |  |  | 20 | $\mu \mathrm{A}$ |
|  | Three-state output current | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V} \end{aligned}$ |  |  | -20 |  |
| IIH | High-level input current, $\overline{\text { STSTB }}$ input | $\begin{aligned} & V_{\mathrm{CC}}=5.25 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{IH}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{I}}=5.25 \mathrm{~V} \end{aligned}$ |  |  | 100 | $\mu \mathrm{A}$ |
|  | High-level input current, $\mathrm{DB}_{0} \sim \mathrm{DB}_{7}$ inputs |  |  |  | 20 |  |
|  | High-level input current, all other inputs |  |  |  | 100 |  |
| IL | Low-level input current, डTTSTB input | $\begin{aligned} & V_{C C}=5.25 \mathrm{~V}, V_{I H}=4.5 \mathrm{~V}, V_{I L}=0 \mathrm{~V} \\ & V_{\mathrm{I}}=0.5 \mathrm{~V} \end{aligned}$ |  |  | -0.5 | mA |
|  | Low-level input current, $\mathrm{D}_{2}, \mathrm{D}_{6}$ inputs |  |  |  | -0.75 |  |
|  | Low-level input current, $\mathrm{D}_{0}, \mathrm{D}_{4}, \mathrm{D}_{4}, \mathrm{D}_{5}, \mathrm{D}_{7}$ inputs |  |  |  | -0.25 |  |
|  | Low-level input current, all other inputs |  |  |  | -0.25 |  |
| los | Short-circuit output current (Note 3) | $\mathrm{V}_{C C}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {IH }}=4.5 \mathrm{~V}, \mathrm{~V}_{\text {IL }}=0 \mathrm{~V}$ | -15 |  | - 90 | mA |
| $1 \mathrm{I}(\overline{\text { INTA }}$ ) | $\overline{\text { INTA }}$ terminal current | $\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}, \mathrm{RL}=1 \mathrm{k} \Omega \pm 10 \%$ |  |  | 5 | mA |
| Icc | Supply current from Vcc | $\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {IH }}=4.5 \mathrm{~V}, \mathrm{~V}_{\text {IL }}=0 \mathrm{~V}$ |  |  | 190 | mA |

Note 1 : All voltages are with respect to GND terminal. Reference voltage ( pin 14 ) is considered as 0 V , and all maximum and minimum values are defined in absolute values.
2 : Current flowing into an IC is positive; out is negative. The maximum and minimum values are defined in absolute values.
3 : All measurements should be done quickly, and two outputs should not be measured at the same time.
TIMING REQUIREMENTS ( $\mathrm{Ta}=0 \sim 75^{\circ} \mathrm{C}$, unless otherwise noted)

| Symbol | Parameter | Test conditions | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| $\mathrm{t}_{\mathrm{W}}$ ( $\overline{\text { STSTB }}$ ) | $\overline{\text { STSTB }}$ pulse width |  | 22 |  |  | ns |
| tsu(DA) | $\mathrm{D}_{0} \sim \mathrm{D}_{7}$ setup time with respect to $\overline{\text { STSTB }}$ |  | 8 |  |  | ns |
| tsu(DB) | $D B_{0} \sim \mathrm{DB}_{7}$ setup time with respect to HLDA |  | 10 |  |  | ns |
| th (DA) | $\mathrm{D}_{0} \sim \mathrm{D}_{7}$ hold time with respect to $\overline{\text { STSTB }}$ |  | 5 |  |  | ns |
| th (DB) | DB0 $\sim \mathrm{DB}_{7}$ hold time with respect to HLDA |  | 20 |  |  | ns |

SWITCHING CHARACTERISTICS $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}\right.$, unless otherwise noted)

| Symbol | Parameter | Test conditions (Note 4) | L.imits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| tPhl( $\overline{\text { STSTB }}$-MEMR $)$ | High-to-low-level output propagation time, from input $\overline{S T S T B}$ to output $\overline{M E M R}, \overline{1 / O R}$ and $\overline{\text { INTA }}$ | $\begin{aligned} & V_{I H}=4.5 \mathrm{~V}, V_{I L}=0 \mathrm{~V}, \\ & C L=100 \mathrm{pF}, R_{L 1}=500 \Omega, R_{L 2}=1 \mathrm{k} \Omega \end{aligned}$ | 20 |  | 70 | ns |
| tPLH(DBIN-MEMR) | Low-to-high-level output propagation time, from input DBIN to output $\overline{M E M R}, \overline{1 / O R}$ and $\overline{\text { INTA }}$ |  |  |  | 40 | ns |
| $\mathrm{t}_{\text {PZL (DBIN-D) }}$ <br> $t_{\text {PZH }}(\mathrm{DBIN} \cdot \mathrm{D})$ <br> $t_{\text {PHZ(DBIN-D) }}$ <br> $t_{\text {PLZ }}(D B I N-D)$ | Z-to-low-level, Z-to-high-level, high-to-Z-level and low-to-Z-level output propagation time, from input DBIN to outputs $\mathrm{D}_{0} \sim \mathrm{D}_{7}$ | $\mathrm{CL}_{\mathrm{L}}=25 \mathrm{pF}, \mathrm{R}_{\mathrm{L} 1}=4 \mathrm{k} \Omega, \mathrm{RL} 2=\infty \Omega$ |  |  | 55 | ns |
| $\mathrm{t}_{\text {PHL ( } \mathrm{DB}}$-D) <br> t PLH ( DB - D ) | High-to-low-level and low-to-high-level output propagation time, from inputs $\mathrm{DB}_{0} \sim \mathrm{DB}_{7}$ to outputs $\mathrm{D}_{0} \sim \mathrm{D}_{7}$ |  |  |  | 40 | ns |
| $\mathrm{t}_{\text {PHL }}(\overline{\mathrm{WR}}-\mathrm{MEMW})$ $\mathrm{t}_{\mathrm{PL}} \mathrm{H}(\overline{\mathrm{WR}}-\overline{\mathrm{MEMW}})$ | High-to-low-level and low-to-high-level output propagation time, from input $\overline{W R}$ to outputs $\overline{M E M W}$ and $\overline{1 / O W}$ | $\mathrm{CL}=100 \mathrm{pF}, \mathrm{RL}^{1}=500 \Omega, \mathrm{RL2}=1 \mathrm{k} \Omega$ | 5 |  | 55 | ns |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PZL}(\overline{\mathrm{STSTB}} \cdot \mathrm{DB})} \\ & \mathrm{t}_{\mathrm{PZH}(\overline{\mathrm{STSTB}} \cdot \mathrm{OB})} \end{aligned}$ | Z-to-low-level and Z-to-high-level output propagation time, from input $\overline{\text { STSTB }}$ to outputs $\mathrm{DB}_{0} \sim \mathrm{DB}_{7}$ |  |  |  | 40 | ns |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PHL}(0 \cdot \mathrm{DB})} \\ & \mathrm{t}_{\mathrm{PLH}(0 \cdot \mathrm{DB})} \end{aligned}$ | High-to-low-level and low-to-high-level output propagation time, from inputs $\mathrm{D}_{0} \sim \mathrm{D}_{7}$ to outputs $\mathrm{DB}_{0} \sim \mathrm{DB}_{7}$ |  | 5 |  | 50 | ns |
| $\mathrm{t}_{\text {PZL }}$ ( $\left.\overline{\mathrm{BUSEN}}-\mathrm{DB}\right)$ <br> tpZH(BUSEN-DB) <br> t PHZ(BUSEN-DB) <br> tplZ( $\overline{\operatorname{BUSEN}}-\mathrm{DB})$ | Z-to-low-level, Z-to-high-level, high-to-Z-level and low-to-Z-level output propagation time, from input $\overline{B U S E N}$ to outputs $D B_{0} \sim D B_{7}$ |  |  |  | 40 | ns |
| t PLH(HLDA-MEMR) | Low-to-high-level output propagation time, from input HLDA to outputs $\overline{M E M R}, \overline{1 / O R}$ and $\overline{\text { INTA }}$ |  |  |  | 35 | ns |

Note 4 : Measurement circuit:


TIMING DIAGRAM Reference Level $=1.5 \mathrm{~V}$


## MITSUBISHI LSIs

## SYSTEM CONTROLLER AND BUS DRIVER FOR CPU M587 10 S

## TYPICAL APPLICATION CIRCUIT



## DESCRIPTION

The M54552P is an input/output port consisting of an 8-bit latch with 3 -state output buffers along with control and device selection logic. Also included is a service request flipflop for the generation and control of interrupts to a microprocessor. It is fabricated using bipolar Schottky TTL technology.

## FEATURES

- Parallel 8 -bit data register and buffer
- Service request flip-flop for interrupt generation
- Three-state outputs
- Low input load current: $I_{\text {IL }}=$ absolute $250 \mu \mathrm{~A}(\max )$
- High output sink current: IOL $=16 \mathrm{~mA}$ (max)
- High-level output voltage for direct interface to a M58710S CPU: $\mathrm{V}_{\mathrm{OH}}=3.65 \mathrm{~V}(\mathrm{~min})$
- Interchangeable with Intel's 8212 in terms of electrical characteristics and pin configuration


## APPLICATION

- Input/output port for a M58710S CPU
- Latches, gate buffers or multiplexers
- Peripheral and input/output functions for microcomputer systems


## FUNCTION

Device select $1\left(\overline{\mathrm{DS}_{1}}\right)$ and device select $2\left(\mathrm{DS}_{2}\right)$ are used for chip selection when the mode input MD is low. When $\overline{\mathrm{DS}_{1}}$ is low and $\mathrm{DS}_{2}$ is high, the data in the latches is transferred to the data outputs $\mathrm{DO}_{1} \sim \mathrm{DO}_{8}$; and the service

## PIN CONFIGURATION (TOP VIEW)

| DEVICE SELECT $\overline{\mathrm{DS}} \rightarrow$ |  | 24 $\mathrm{V}_{\mathrm{CC}}(5 \mathrm{~V})$ |
| :---: | :---: | :---: |
| MODE INPUT MD $\rightarrow 2$ |  | $23 \rightarrow \overline{\text { INT }}$ INTERRUPT |
| DATA INPUT $\mathrm{DI}_{1} \rightarrow 3$ |  | 22-D18 DATA INPUT |
| data output $\mathrm{DO}_{1} \leftarrow 4$ |  | 21) $\rightarrow$ DO8 8 DATA OUTPUT |
| dATA InPut $\mathrm{DI}_{2} \rightarrow$ 5 |  | 20-DI7 DATA InPUT |
| data output $\mathrm{DO}_{2} \leftarrow 6$ | $\stackrel{\underset{\mathrm{c}}{\stackrel{\rightharpoonup}{\mathrm{G}}} .}{ }$ | $19 \rightarrow$ DO7 DATA OUTPUT |
| data input $\mathrm{DI}_{3} \rightarrow$ 7 |  | 18 -DI6 DATA INPUT |
| data output $\mathrm{DO}_{3} \leftarrow 8$ | 0 | $17 \rightarrow \mathrm{DO}_{6}$ DATA OUTPUT |
| DATA InPUT DI $4 \rightarrow 9$ |  | 16 $\leftarrow$ - $\mathrm{DI}_{5}$ DATA INPUT |
| data output $\mathrm{DO}_{4} 4$ |  | $15 \rightarrow$ DO5 ${ }^{\text {DATA }}$ OUTPUT |
| STROBE INPUTSTB $\rightarrow$ 11 |  | 14- $-\overline{\text { CLR }}$ CLEAR |
| (OV)GND 12 |  | 133-DS2 DEVICE SELECT |

## Outline 24P1

request flip-flop SR is set. Also, the strobed input STB is active, the data inputs $\mathrm{DI}_{1} \sim \mathrm{DI}_{8}$ are latched in the data latches, and the service request flip-flop SR is reset.

When MD is high, the data in the data latches is transferred to the data outputs. When $\overline{\mathrm{DS}_{1}}$ is low and $\mathrm{DS}_{2}$ is high, the data inputs are latched in the data latches. The low-level clear input $\overline{\mathrm{CLR}}$ resets the data latches and sets the service request flip-flop SR, but the state of the output buffers is not changed.


## 8-BIT INPUT/OUTPUT PORT

ABSOLUTE MAXIMUM RATINGS ( $\mathrm{Ta}=0 \sim 75^{\circ} \mathrm{C}$. unless otherwise noted)

| Symbol | Parameter | Conditions | Limits | Unit |
| :---: | :---: | :---: | :---: | :---: |
| VCC | Supply voltage |  | 7.0 | V |
| $\mathrm{V}_{1}$ | Input voltage. $\overline{\mathrm{DSI}}, \mathrm{MD}$ inputs |  | $V_{C C}$ | V |
| $V_{1}$ | Input voltage, all other inputs except $\overline{\text { DSI, }}$, MD |  | 5.5 | $\checkmark$ |
| Vo | Output voltage |  | $\mathrm{V}_{\mathrm{CC}}$ | V |
| $\mathrm{Pd}_{\mathrm{d}}$ | Power dissipation |  | 800 | mW |
| Topr | Operating free-air temperature range |  | 0~75 | ${ }^{\circ} \mathrm{C}$ |
| Tstg | Storage temperature range |  | $-55 \sim 125$ | ${ }^{\circ} \mathrm{C}$ |

## RECOMMENDED OPERATING CONDITIONS ( $\mathrm{Ta}=0 \sim 75^{\circ} \mathrm{C}$, unless otherwise noted)

| Symbol | Parameter |  | Limits |  |  |
| :---: | :--- | :---: | :---: | :---: | :---: |
|  |  | Min | Nom | Max |  |
| $V_{\text {CC }}$ | Supply voltage | 4.75 | 5.0 | 5.25 | V |
| IOH | High-level output current |  |  | -1 | mA |
| IOL | Low-level output current |  |  | 16 | mA |

ELECTRICAL CHARACTERISTICS ( $\mathrm{Ta}=0 \sim 75^{\circ} \mathrm{C}$, unless otherwise noted)

| Symbol | Parameter | Test conditions | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| $\mathrm{V}_{\mathrm{IH}}$ | High-level input voltage |  | 2 |  |  | V |
| $V_{\text {IL }}$ | Low-level input voltage |  |  |  | 0.85 | V |
| $V_{1 C}$ | Input clamp voltage | $\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{IIC}=-5 \mathrm{~mA}$ |  |  | -1 | V |
| VOH | High-level output voltage | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IL}}=0.85 \mathrm{~V}, \quad 1 \mathrm{OH}=-1 \mathrm{~mA} \end{aligned}$ | 3.65 |  |  | V |
| VoL | Low-level output voltage | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IL}}=0.85 \mathrm{~V}, \quad 10 \mathrm{~L}=16 \mathrm{~mA} \end{aligned}$ |  |  | 0.5 | V |
| loz | Three-state output current | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IL}}=0.85 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{C}}=5.25 \mathrm{~V} \end{aligned}$ |  |  | 20 | $\mu \mathrm{A}$ |
| Ioz | Three-state output current | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IL}}=0.85 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V} \end{aligned}$ |  |  | -20 | $\mu \mathrm{A}$ |
| IIH | High-level input current. STB, DS2, $\overline{\mathrm{CLR}}$, DI 1 ~ Dl 8 inputs | $V_{C C}=5.25 \mathrm{~V}, V_{1}=5.25 \mathrm{~V}$ |  |  | 10 | $\mu \mathrm{A}$ |
| IIH | High-ievel input current, MD input | $V_{C C}=5.25 \mathrm{~V}, V_{1}=5.25 \mathrm{~V}$ |  |  | 30 | $\mu \mathrm{A}$ |
| IIH | High-level input current. $\overline{\mathrm{SS} 1}$ input | $\mathrm{V}_{C C}=5.25 \mathrm{~V}, \mathrm{~V}_{1}=5.25 \mathrm{~V}$ |  |  | 40 | $\mu \mathrm{A}$ |
| IIL | Low-level input current, STB, DS2, $\overline{C L R}$, DI $1 \sim$ DI8 inputs | $\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{1}=0.5 \mathrm{~V}$ |  |  | -0.25 | mA |
| IIL | Low-level input current. MD input | $V_{C C}=5.25 \mathrm{~V}, V_{1}=0.5 \mathrm{~V}$ |  |  | -0.75 | mA |
| IIL | Low-level input current, $\overline{\mathrm{DS} 1}$ input | $\mathrm{V}_{C C}=5.25 \mathrm{~V}, \mathrm{~V}_{1}=0.5 \mathrm{~V}$ |  |  | -1 | mA |
| Ios | Short-circuit output current (Note 3) | $\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$ | -20 |  | -65 | mA |
| Icc | Supply current from Vcc | $\mathrm{V}_{C C}=5.25 \mathrm{~V}$ |  |  | 130 | mA |

Note 1: All voltages are with respect to GND terminal. Reference voltage (pin 12) is considered as OV, and all maximum and minimum values are defined in absolute values.
2 : Current flowing into an IC is positive; out is negative. The maximum and minimum values are defined in absolute values.
3 : All measurements should be done quickly. and two outputs should not be measured at the same time.

TIMING REQUIREMENTS $\left(T a=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}\right.$, unless otherwise noted)

| Symbol | Parameter | Test conditions | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| tw(DS2) | Input pulse width, $\overline{\mathrm{DS} 1}, \mathrm{DS} 2$ and STB |  | 30 |  |  | ns |
| tw(CLR) | Input pulse width $\overline{C L R}$ |  | 45 |  |  | ns |
| $t_{s u}(\mathrm{DA})$ | Data setup time with respect to $\overline{\mathrm{DS} 1}$. DS2 and STB |  | 15 |  |  | ns |
| $t h(D A)$ | Data hold time with respect to $\overline{\mathrm{DS1}}$, DS2 and STB |  | 20 |  |  | ns |

SWITCHING CHARACTERISTICS $\left(T a=25^{\circ} \mathrm{C}, \mathrm{VOC}=5 \mathrm{~V}\right.$. unless otherwise noted)

| Symbol | Parameter | Test conditions (Note 4) | Limits |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| tPHL(DI-DO) <br> tPLH(DI-DO) | High-to-low-level and low-to-high-level output propagation time, from input DI to output DO | $C L=30 \mathrm{pF}, \mathrm{RLL}^{\prime}=300 \Omega, \mathrm{RLL2}^{2}=600 \Omega$ |  |  | 35 | ns |
| $\begin{aligned} & \text { tpHL(DS2.00) } \\ & \mathrm{t}_{\text {PLH }}(\mathrm{DS} 2 \cdot \mathrm{DO}) \end{aligned}$ | High-to-low-level and low-to-high-level output propagation time, from inputs $\overline{\mathrm{DS} 1}, \mathrm{DS} 2$ and STB to output DO |  |  |  | 50 | ns |
| $\mathrm{t}_{\text {PHL }}(\mathrm{STB}$ - $\overline{\mathrm{NT}}$ ) | High-to-low-level output propagation time, from input STB to output $\bar{N} T$ |  |  |  | 40 | ns |
| $\begin{aligned} & \hline \text { tPZL(MD-DO) } \\ & \text { tPZH(MD-DO) } \\ & \hline \end{aligned}$ | Z-to-low-level and Z-to-high-level output propagation time, from inputs MD. $\overline{\mathrm{DS} 1}$ and DS2 to output DO | $C L=30 \mathrm{pF}, \mathrm{RLL}^{1}=1 \mathrm{k} \Omega, \mathrm{RLL}^{2}=1 \mathrm{k} \Omega$ |  |  | 70 | ns |
| $\begin{aligned} & \mathrm{t} \mathrm{PHZ}(\mathrm{MD}-\mathrm{DO}) \\ & \mathrm{tpLZ}(\mathrm{MD}-\mathrm{DO}) \end{aligned}$ | High-to-Z-level and low-to-Z-level output propagation time. from inputs MD. $\overline{\mathrm{DS} 1}$ and DS2 to output DO | $C_{L}=5 p F, R_{L 1}=1 k \Omega, R_{L 2}=1 k \Omega$ |  |  | 45 | ns |
| $\mathrm{t}_{\text {PHL }}(\overline{\mathrm{CLR}}$-DO $)$ | High-to-low-level output propagation time, from input $\overline{\mathrm{CLR}}$ to output DO | $\mathrm{CLL}^{\prime}=30 \mathrm{pF}, \mathrm{RLL}^{1}=300 \Omega, \mathrm{RLL2}=600 \Omega$ |  |  | 55 | ns |

Note 4 : Measurement circuit


TIMING DIAGRAMS Reference Level $=1.5 \mathrm{~V}$


DI $1 \sim \mathrm{Dl}_{8}$

DS1, DS2, STB

$D S_{1}, D S_{2}, M D$


STB
$\overline{\text { INT }}$

$\overline{C L R}$
$\mathrm{DO}_{1} \sim \mathrm{DO}_{8}$


## SOFTWARE CODES

Software products for Mitsubishi's MELPS microprocessors are designated by the following alphanumeric codes.

## 1. PROGRAMS

Example:


G: Mitsubishi MELPS microprocessor software
Kind of microprocessor
A: MELPS 88 -bit parallel CPU
Z: General
Operation system
1: For host computer systems
2: For target computer systems
Kind of program
AP: Application program
AS: Assembler
TL: Compiler
SB: Subroutine
SM: Simulator
Identifying serial number

## 2. MANUALS AND SUPPORT MATERIALS

Example:


## AVAILABLE MATERIALS

| Program | Program code number | Normal <br> shipping <br> media | Source language |
| :---: | :---: | :---: | :---: |

## HOST COMPUTER PROGRAMS

| MELPS 8 PL/ $/ \mu$ cross compiler on MELCOM 7000 (B-version) |  | GA1TL 0400 | Magnetic tape | FORTRAN N |
| :--- | :--- | :--- | :--- | :--- |
| MELPS 8 cross assembler | on MELCOM 70 (A-version) | GA1AS 0100 | Magnetic tape | FORTRAN N (parts in assembler) |
| MELPS 8 simulator | on MELCOM 70 (B-version) | GA1SM 0100 | Magnetic tape | FORTRAN N (parts in assembler) |


| ManualNumber <br> of pages | Manual number |
| :---: | :---: | :---: |

## PL/I $\mu$ CROSS COMPILER MANUALS

| MELPS 8 PL// $\mu$ Compiler Summary (B-version) | GAM-SR00-07A | 70 | $9-7$ |
| :--- | :---: | :---: | :---: |
| MELPS 8 PL/I $\mu$ Compiler Language Manual (B-version) | GAM-SR00-08A | 30 | $9-7$ |
| MELPS 8 PL/I $\mu$ Cross Compiler Operating Manual (B-version) | GAM-SR00-09A | 51 | $9-7$ |

CROSS ASSEMBLER MANUALS

| MELPS 8 Assembly Language Manual (A-version) | GAM-SR00-01A | 83 | $9-11$ |
| :--- | :---: | :---: | :---: |
| MELPS 8 Cross Assembler Operating Manual (A-version) | GAM-SR00-02A | 35 | $9-11$ |

SIMULATOR MANUALS

| MELPS 8 Simulator Operating Manual (B-version) | GAM-SR00-03A | 95 | $9-17$ |
| :--- | :--- | :--- | :--- |

HARDWARE MANUALS

| MELPS 8 Hardware Manual | GAM-HR00-01A |  |
| :--- | :---: | :---: | :---: |

## GENERAL DESCRIPTION

MELPS 8 software is the name used to designate a software series provided by Mitsubishi for developing application programs or operating systems for equipment in which a MELPS 8 CPU is used.

MELPS 8 software is divided into two parts. The first is software used as a tool to develop application programs,
and the second is software used as a part of application programs for MELPS 8 CPUs. MELPS 8 software can also be divided into two classifications: the first, 'host programs', which are developed to run on a host computer; and the second, 'target programs', which are developed to run on a MELPS 8 microcomputer.

SOFTWARE CONFIGURATION


## DEVELOPMENT OF APPLICATION PROGRAMS

The user can develop his application programs in any of three ways.

1. On a host computer: the MELPS 8 cross compiler or cross assembler is used for object program generation, and the simulator is used for program debugging.
2. On a microcomputer: the MELPS 8 assembler is used for object program generation, and the microcomputer is
<used for execution and implementation of programs.
3. On a combination of host computer and microcomputer: object programs are produced by the MELPS 8 cross compiler and/or the MELPS 8 cross assembler on a host computer. The object programs are debugged and implemented on a MELPS 8 microcomputer under control of the basic operating monitor.

The user can develop MELPS 8 programs using generalpurpose subroutines for functions such as arithmetic
operations, input/output control and logical operations.
Full utilization of these subroutines can facilitate program development, debugging and implementation. The final media of a developed program can be any of the following:

1. Paper tape: there are four basic forms of object programs on paper tape-MELPS 8 binary, simple (IPL) binary, hexadecimal and BNPF. Object programs on paper tape are stored in RAMs and are loaded by the appropriate loader.
2. PROM: the developed program is programmed in a PROM using the PROM writer; then this PROM is installed in the appropriate PROM socket of the microcomputer.
3. Mask ROM: Mitsubishi Electric is ready to produce a mask ROM to a user's specifications. The object program can be in MELPS 8 binary, hexadecimal or BNPF form.


## DESCRIPTION

Mitsubishi supplies this cross compiler on magnetic tape to users of MELPS 8 CPUs. The cross compiler is written in FORTRAN IV for execution on the MELCOM 7000 and can be easily run on other host computers with a FORTRAN IV compiler.

The PL/I $\mu$ language gives MELPS 8 microcomputer users the same advantages that users of mini and large computer systems have with the high level programming languages that are currently available. It has the same language structure as $\mathrm{PL} / \mathrm{I}$ and has been designed to take advantage of the system architecture of the microprocessor. System designers can use PL/I $\mu$ to quickly and easily implement new applications. In addition, programs written in $\mathrm{PL} / \mathrm{l} \mu$ are self-documenting so they can be easily changed and maintained. $\mathrm{PL} / / \mu$ is recognized as one of the best suited languages for programming microcomputer applications because the user retains the control and efficiency of an assembly language.

## FEATURES OF THE PL/I $\mu$ CROSS COMPILER

- Conditional compile with preprocessor
- Inline assembly
- Source program editing at compile-time
- Assignment of programs to ROM or RAM regions
- Generates a relocatable object program
- Linking function
- Easily understood error messages
- Flexibility in input/output media
- Execution computer: MELCOM 7000 (BPM/UTS monitor)
- Implementation computer: MELPS 8 microcomputer
- Implementation language: FORTRAN IV
$\mathrm{PL} / / \mu$ has a preprocessor that allows user to modify programs under development at compile-time through the use of conditional compile, exchange, exclude and include functions. A program is divided into fixed and variable segments, and these segments are automatically assigned to the appropriate memory (RAM or ROM) during compiling. The link editor can link up to 20 object programs (files).


## FEATURES OF THE PL/I $\mu$ LANGUAGE

- Bit operations
- Three-level structure
- One-dimensional arrays
- Allocation of variables to specified absolute addresses
- Multi-entry function
- Interrupt function

Fig. $1 \mathrm{PL} / \mathrm{I} \mu$ cross compiler processing system


ORDERING INFORMATION
Programs

| Program name | Ordering number | Program and software manuals included |  |
| :---: | :---: | :---: | :---: |
| MELPS 8 PL// $\mu$ cross compiler | GAITL0400 | Source Program <br> MELPS 8 PL// $\mu$ Compiler Summary Manual (B-version) MELPS 8 PL/ $/ \mu$ Compiler Language Manual ( B -version) MELPS $8 \mathrm{PL} / / \mu$ Cross Compiler Operating Manual (B-version) MELPS 8 MELCOM 7000 PL/ $/ \mu$ Cross Compiler Operating Manual | GAM-SR00-07A GAM-SR00-08A GAM-SR00-09A GAM-SR00-10A |

## Reference Manuals for Separate Ordering

| Manual name | Manual number |
| :--- | :---: |
| MELPS 8 PL/I $\mu$ Compiler Summary Manual (B-version) | GAM-SR00-07A |
| MELPS 8 PL/I $\mu$ Compiler Language Manual (B-version) | GAM-SR00-08A |
| MELPS 8 PL/ $\mu$ Cross Compiler Operating Manual (B-version) | GAM-SR00-09A |
| MELPS 8 Assembly Language Manual (A-version) | GAM-SR00-01A |
| MELPS 8 Cross Assembler Operating Manual (A-version) | GAM-SR00-02A |
| MELPS 8 Simulator Operating Manual (B-version) | GAM-SR00-03A |
| MELPS 8 Hardware Manual | GAM-HR00-01A |

## ASSOCIATED FUNCTION

Users of PL/I $\mu$ will find it flexible and easy to use because of its many special features such as the preprocessor, the link editor and the memory manager.

The preprocessor has 10 statements that can be used at compile-time to edit a $\mathrm{PL} / \mathrm{l} \mu$ source program. These can generate, exchange or delete program text, as well as modify definitions, references and macroinstructions.

The link editor is able to link up to 20 object programs that have been generated by MELPS 8 software. The memory manager divides PL/l $\mu$ programs into fixed and variable segments and assigns the segments to the appropriate memory. A fixed segment is assigned to a non-write area (ROM) while a variable segment is assigned to a write area (RAM) during compiling; at the same time, the starting address of each segment is recorded for linking (see Fig. 2).

Fig. 2 Linking of two programs


## PL/I $\mu$ LANGUAGE

The $\mathrm{PL} / / \mu$ language is a subset of the popular $\mathrm{PL} / /$ language with the addition of special functions to take advantage of the microprocessor's architecture. The main features of the $\mathrm{PL} / \mathrm{I} \mu$ language are as follows:

## Easy to Read and Write

The statements are written in free-format and are independent of columns and lines. The statements are formatted in natural language. It is easy to express, read and understand the programs. Programs written in PL/ $/ \mu$ are selfdocumenting.

## Block-Structured Language

Programs written in PL/I $\mu$ consist of one or more blocks which are called procedures. A procedure (block) can be thought of as a subroutine. The block structure of $\mathrm{PL} / / \mu$ simplifies modular programming. Each procedure can be conceptually simple and, therefore, easy to formulate and debug.

## BASIC LANGUAGE SPECIFICATIONS

## 1. Statements

The basic unit of the PL/I $\mu$ language is called a statement. A procedure (block) is composed of one or more statements, and a program is composed of one or more
procedures. The statements are categorized as follows:

$$
\begin{array}{ll}
\text { Statements - Procedure definition : } & \text { PROCEDURE } \\
& \text { statement } \\
\text { - Declaration } & : \begin{array}{l}
\text { DECLARATIVE } \\
\\
\text { - Condition }
\end{array} \\
\text { statement } \\
- & \text { Non-condition } \\
& \text { IF statement } \\
& \begin{array}{l}
\text { Assignment state- } \\
\text { ment, DO group, } \\
\text { and others }
\end{array}
\end{array}
$$

The last character of a statement must be a semicolon ' $;$ '. A statement may have a label (identifier) which is the name of the statement.
Example EXAMPLE: $\mathbf{X}=\mathbf{Y}+\mathbf{Z}$;

## 2. Identifiers

PL/l $\mu$ identifiers are used to name variables, procedures, macroinstructions and statements. An identifier may be up to 31 characters in length, and the first character must be an @, ? or alphabetic ( $\mathrm{A} \sim \mathrm{Z}$ ) character. The remaining 30 characters may be alphanumeric ( $A \sim Z, 0 \sim 9$ ), @ or ?.

Reserved words may not be used as identifiers in the $\mathrm{PL} / / \mu$ language.

## 3. Data Elements

The PL/I $\mu$ data elements represent constants or variables ( $1-16$ bits in length), arrays ( 1 dimension) and 3 -level structure. Constants can be expressed in several different
ways in $\mathrm{PL} / \mathrm{I} \mu$. PL/I $\mu$ accepts constants in binary, octal, decinal and hexadecimal bases and character strings (ASCII or ISO code).

Example of a PL/I $\mu$ program

(1). Comments are preceded by '/*' and followed by ${ }^{*} /$ '.
(2). The initial value of a type declared variable 'FOREVER' is 1 .
(3). DO-WHILE group.
(4). The device number of an input instruction is expressed using a number.
(5). DO-CASE group.
(6). 08 H used in the output instruction indicates a hexadecimal number of value $08_{16}$.

## MITSUBISHI LSIs

MELPS 8 PL/I $\mu$ CROSS COMPILER

LANGUAGE SPECIFICATIONS

| Item | Specification |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Character set | 55-character set <br> Alphabetic: $\mathbf{A} \sim \mathbf{Z}$, Currency unit (\$), Numeric: $\mathbf{0} \sim \mathbf{9}$ <br> Special: $=+-* /$, . : ; 〈〉 \% ( ) @ ? (b |  |  |  |
| Comments | $/ * * /$ |  |  |  |
| Identifiers | 31 or less alphanumeric characters |  |  |  |
| Reserved words | ADDRESS <br> ALIGNED <br> AND <br> BASED <br> BINARY <br> B Y <br> BYTE <br> CALL <br> CASE <br> DATA <br> DECLARE <br> DISABLE | D O <br> ELSE <br> ENABLE <br> END <br> ENTRY <br> EOF <br> EXTERNAL GENERATE GO <br> GOTO <br> HALT <br> IF | INITIAL INTERNAL I NTERRUPT LABEL <br> LIterally MAIN MINUS MOD NOT ON OPTIONS OR | $\begin{aligned} & \text { PLUS } \\ & \text { PROCEDURE } \\ & \text { RELOCATE } \\ & \text { RETURN } \\ & \text { THEN } \\ & \text { TOO } \\ & \text { UNALIGNED } \\ & \text { WHILE } \\ & \text { XOR } \end{aligned}$ |
| Constant types | Binary, octal. decimal, hexadecimal character string |  |  |  |
| Variable declaration option | BINARY(n) $1 \leqq n \leqq 15, ~ B I T(m) \quad 1 \leqq m \leqq 16$ <br> LABEL INITIAL BASED DATA BYTE ADDRESS <br> EXTERNAL INTERNAL ALIGNED UNALIGNED |  |  |  |
| Operators | $\begin{aligned} & * \mid \text { MOD }+- \text { PLUS MINUS } \\ & \langle\rangle\rangle=\rangle \\ & \text { NOT AND OR XOR } \end{aligned}$ |  |  |  |
| Arrays | One-dimensional, $1 \sim 255$ elements |  |  |  |
| Structures | Three-level, array structure |  |  |  |
| Expressions | Arithmetical expression, logical expression, structured expression |  |  |  |
| Statements | Insert statement, CALL statemant, DECLARE statemant, DISABLE statemant, D O group, E NABLE statemant, E NTRY statemant, GENERATE statement, GOT O statement, HALT statement, I F statement, NULL statement, ON statement, PROCEDURE statement, RELOCATE statement, RETURN statemant |  |  |  |
| DO group | DO WHILE, repeat DO, DO CASE |  |  |  |
| Library functions | CARRY <br> DEC <br> HIGH <br> INPUT <br> LAST | LENGTH LOW MEMORY OUTPUT PARITY | ROL <br> ROR <br> SHL <br> SHR <br> SIGN | TIME ZERO |
| Preprocessor statements | \% insert statement, \%ACT IVATE statement, \%DEACTIVATE statement, \%E ND statement, \%E XC LUDE statement, \%GOT O statement, \%I F statement, \%I NCLUDE statement, \%MACRO statement, \%NULL statement |  |  |  |

## DESCRIPTION

This cross assembler is used to convert source programs in assembly language to object programs in MELPS 8 format (8-bit binary format) on a host computer. The assembly language consists of mnemonic instructions (each mnemonic instruction corresponds to a machine language instruction), pseudo instructions and macroinstructions. It is obvious that the assembly language makes programming and modification of programs easy. The pseudo instructions and control commands in this cross assembler give the user flexibility and improve programming efficiency.

## FEATURES OF THE CROSS ASSEMBLER

- Generates a relocatable object program
- Linking function
- Multi-assembly
- Conditional assembly
- Flexibility in input/output media
- Output of symbolic table of the object program
- Execution computer: MELCOM 70 (memory capacity more than 24 K words, monitor BDOS)
- Implementation language: FORTRAN IV (parts are written in assembly language)

FEATURES OF THE ASSEMBLY LANGUAGE

- 13 pseudo instructions
- Algebraic expressions
- Character constants and strings
- Octal, decimal and hexadecimal numbers
- The mnemonic codes of the machine instructions are the same as Intel's.


## INPUT/OUTPUT MEDIA

- Source input : Punched card, paper tape, magnetic tape and magnetic disk
- Object input : Magnetic disk
- Control command input : Punched card
- Object output : Paper tape, magnetic tape and magnetic disk


## CROSS ASSEMBLER PROCESSING SYSTEM



## ORDERING INFORMATION

## Programs

| Program name | Ordering number | Program and software manuals included |
| :---: | :---: | :--- |
| MELPS 8 cross assembler |  | Source Program |
| . | GA1AS0100 | MELPS 8 Assembly Language Manual (A-version) |
| MELPS 8 Cross Assembler Operating Manual (A-version) |  |  |
| GAM-SR00-01A |  |  |
| MELPS 8 Cross Assembler \& Simulator Operating Manual (on MELCOM 70) GAM-SR00-04A |  |  |

Reference Manuals for Separate Ordering

|  | Manual name |
| :--- | :---: |
| MELPS 8 Assembly Language Manual (A-version) | Manual number |
| MELPS 8 Cross Assembler Operating Manual (A-version) | GAM-SR00-01A |
| MELPS 8 Simulator Operating Manual (B-version) | GAM-SR00-02A |
| MELPS 8 Hardware Manual | GAM-HR00-03A |

## FUNCTION

The control commands and pseudo instructions in this cross assembler give the user flexibility and improve the efficiency of programming. The cross assembler allows linking, multi-assembly and conditional assembly.

The control commands are shown in Table 1, and the features and their limitations are shown in Table 2.

Table 1 List of control commands

| Classification |  | Control command name | Mnemonic |
| :---: | :---: | :---: | :---: |
| Assembler control |  | Execution start | RUN |
|  |  | End | END |
| $\overline{0}$ <br> 0 <br> 0 <br> 0 <br> . <br> .0 <br>  <br>  <br> 义 | Assembly control command | Input/output assignment | A SMB 8 |
|  |  | Block assignment | BLOCK |
|  |  | File assignment | SDISK |
|  |  |  | ODISK |
|  | Link control command |  | BDISK |
|  |  | Link assignment | L I NKG |
|  |  | Link location assignment | LKLOC |

Table 2 Cross assembler features and their limitations

| Features | Limitations |
| :--- | :--- |
| Relocatable object programs |  |
| Link editor | Maximum 20 programs on the disk |
| Program segmented to non-write <br> area (ROM) and write area (RAM) |  |
| Multi-assembly | Maximum 9999 programs |
| Conditional assembly | Maximum 20 blocks. |
| Flexibility in I/O media selection | Card, disk, paper tape, magnetic tape |

## Multi-Assembly

Many programs can be batch-assembled in one run.

## SOURCE PROGRAMS CONTROL COMMANDS


$/ / /$ ASMB $8, L, C, S$
///RUN, n
n source programs
where $1 \leqq n \leqq 9999$

| NAM |
| :--- |
| END |

\$ \$

## Conditional Assembly

Only the designated blocks of a source program are assembled.


Linking of ROM/RAM regions
ROM and RAM regions are linked separately.


## CROSS ASSEMBLER OBJECT PROGRAM

The cross assembler object program is composed of many object modules, and each module is composed of a name, a symbolic part and a text part. A final part ends each object prograrn.

The symbolic part contains the symbolic name corresponding to symbols. It is possible to program using symbolic names because each module contains a symbolic part.

The object is composed of an 8-bit binary code, and one byte of the instruction code is expressed with one character (8 bits).
Fig. 1 Structure of object modules within an object program


## ASSEMBLY LANGUAGE FUNCTIONS

The assembly language consists of mnemonic instructions (each corresponding to a machine language instruction), pseudo instructions and macroinstructions.

Pseudo instructions are executed by the cross assembler when a source program is being assembled, and they modify the object program. Macroinstructions are converted to small segments of machine instructions that are then inserted in the object program. These inserted segments execute the functions of the macroinstruction.

Algebraic expressions, alphanumeric constants, character strings, octal numbers, decimal numbers, hexadecimal numbers and symbols may be used as an operand in instructions.

## 1. Machine Instructions:

There are 78 basic machine instructions. These are converted to their corresponding machine language instructions and then inserted in the object program.

A summary of the machine instructions is given in Table 3.

Table 3 Summary of machine instructions

| Classification | Instruction functions |
| :--- | :--- |
| Data transfer instructions | Direct data set <br> Between registers <br> Between memory and registers |
| Addition, subtraction, logical <br> operations and compare <br> instructions | Addition, subtraction, comparing and logical oper- <br> ations using the accumulator together with reg- <br> isters, memory or carry flag |
| Increment and decrement <br> instructions | Registers, register pairs and memory incremented <br> or decremented |
| Circulate and shift instructions | Circulate or shift the accumulator's contents |
| Accumulator adjust instructions | Complement, decimal adjust |
| Carry instructions | Complement, set |
| Jump instructions | Unconditional jump <br> Conditional jump |
| Subroutine call instructions | Unconditional subroutine call <br> Conditional subroutine call |
| Return instructions | Unconditional return <br> Conditional return |
| Input/output control instructions | Input and output control |
| Interrupt control instructions | Enable interrupts <br> Disable interrupts |
| Stack operation instructions | Saves the contents of registers <br> Restores the contents of registers |
| CPu halt <br> No operation |  |

## 2. Pseudo Instructions

Pseudo instructions control the execution of the cross assembler while source programs are being assembled. They are not assembled as instructions in the object programs. As shown in Table 4, there are 13 pseudo instructions.

Table 4 List of pseudo instructions

| Classification | Instruction <br> mnemonic <br> symbols | Names of instructions |
| :--- | :--- | :--- |
| Assembler control | N A M | Program name declaration |
| instructions | OR G | Program counter setting |
|  | R OM | ROM region declaration |
|  | R A M | RAM region declaration |
|  | B L K | Block declaration |
|  | E N D | End declaration |
| Link symbol assignment <br> instructions | E N T | Entry name declaration |
|  | E X T | External reference symbol declaration |
| Memory contents | E QU | Value symbol setting |
| Definition instructions | D E F* | Data setting |
|  | D A D R | Address setting |

* DEF and DADR pseudo instructions set the data or the address in the memory location where the instruction is. See Fig. 2.
** BSS pseudo instruction sets the program counter to the value of the operand.

Fig. 2 Example of DEF and DADR pseudo instructions


## 3. Macroinstructions

Macroinstructions are converted to object program segments in machine language that executes the macroinstruction functions. The following two macroinstructions are included in this cross assembler.

## Table 5 Macroinstructions

| Instructions |  | Name |
| :---: | :---: | :---: |
| $\mathbf{G E T} \mathbf{~ C o r r e s p o n d i n g ~ s t a t e m e n t ~}$ |  |  |
| $\mathbf{P U T} \mathbf{~} \mathbf{~}, \mathbf{j}$ | Data input instruction | I N $\quad \mathbf{n}$ |

where

$$
\overbrace{\begin{array}{|l|l|l|l|l|l|l|l|}
A_{7} & A_{6} & A_{5} & A_{4} & A_{3} & A_{2} & A_{1} & A_{0} \\
\hline
\end{array}}^{\substack{\text { n=64i+j} \\
\hline}}
$$




## MITSUBISHI LSIs

MELPS 8 CROSS ASSEMBLER

## CODING EXAMPLES

Examples of coding using control commands and the assembler language of the cross assembler follow.

## 1. Control Commands

1. Control commands are in the following general form:


2. Two source programs are read in from the card reader, and the assembly lists are printed.

3. Four object programs (files) F11, F12, F13 and F14 on the disk are linked together and a relocatable object program is generated and filed in RF11 on the disk.


## 2. Assembly Language

1. A statement is of the following general form:


Where, $\sqcup$ indicates a blank, and [ ] defines a field that is optional.
2. This example evaluates the data in address INDATA against the table at address TA01. It then jumps to the appropriate processing program according to the evaluation. The first address of the corresponding processing program is located at address SENS.

(1) An asterisk in the first column indicates that the entire statement is a comment.
(2) The program name is declared as 'PROM'.
(3) The external programs referenced by this program are declared.
(4) The external programs that reference this program are declared.
(5) The program segment from here to the next RAM pseudo instruction is regarded as a ROM region.
(6) The symbol MAIN refers to the value in the program location counter at this source program statement.
(7) Locations can be referred to by symbols.
(8) Octal numbers can be used.
(9) Expressions can be used in the operand field.
(10) The statement following a blank after an operand field is a comment.
(11) Declares the start of a RAM region.
(12) Hexadecimal numbers can be used.
(13) Character constants in ASCII code can be used.
(14) The address of symbol TAB 1 is set to the location of address SENS and SENS+1.

## MITSUBISHI LSIs

## DESCRIPTION

A pseudo CPU and a pseudo memory are modeled in the host computer by the simulator, and programs in the pseudo memory are executed by the pseudo CPU to debug and test programs.

The simulator contains a powerful set of 26 control commands for efficient program debugging.

## FEATURES

- Set of 26 powerful control commands
- Batch and conversational processing
- Symbolic addressing
- Execution time calculations
- Intermediate results saved in specified format
- Look-back option when tracing
- Binary, octal, decimal and hexadecimal numbers are selectable
- Assignment of program segments to ROM or RAM region
- Memory protection
- Interrupt function
- Flexibility in input/output media
- Continuous processing of input/output data
- Execution minicomputer: MELCOM 70 (memory capacity more than 24 K words, monitor BDOS)
- Programming language: FORTRAN IV (parts are written in assembly language)


## FUNCTION

The trace command function assigns a specific trace region so that it traces only the specified program steps. Execution of the simulation can be halted by a breakpoint which can be assigned to any location. Program debugging efficiency can be expected to increase by the use of these functions.

Memory protect and ROM regions are simulated. This means the simulator will not allow writing in a ROM region and will not allow either reading or writing in a memory protect region. Therefore, the program under simulation is completely simulated, including the state of the memory in the object computer system.

## Input/output media

- Object program input : Paper tape, magnetic tape and magnetic disk
- Control command input : Punched card and keyboard
- Simulation intermediate : Magnetic tape and magnetic results output disk
- Simulation result output : List
- Input/output data : Punched card, keyboard, paper tape and magnetic tape


## SIMULATOR PROCESSING SYSTEM



ORDERING INFORMATION
Programs

| Program name | Ordering number | Program and software manuals included |
| :---: | :---: | :--- |
| MELPS 8 simulator (B-version) | GA1SM0100 | Source Program <br> MELPS 8 Simulator Operating Manual (B-version) <br> MELPS 8 Cross Assembler \& Simulator Operating Manual (on MELCOM 70) GAM-SR00 -04A |

Reference Manuals for Separate Ordering

| Manual name | Manual number |
| :--- | :---: |
| MELPS 8 Assembly Language Manual (A-version) | GAM-SR00-01A |
| MELPS 8 Cross Assembler Operating Manual (A-version) | GAM-SR00-02A |
| MELPS 8 Simulator Operating Manual (B-version) | GAM-SR00-03A |
| MELPS 8 Hardware Manual | GAM-HR00-01A |

## MITSUBISHI LSIs <br> MELPS 8 SIMULATOR

## CODING METHOD OF CONTROL COMMANDS

The input formats for control commands are shown in Fig. 1.
Fig. 1 Input formats for control commands

| Column no. | 1 72 |  |  |  |  |  | 73 80 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Contents | Blank | Command | Blank | Parameter list | Blank | Comment |  | Sequence numbe |  |
| No. of columns | 1 or more columns | The number of characters in the command | 1 or more columns | The number of characters in the parameter list | 1 or more columns | Free |  | 8 columns |  |
| Remarks |  |  | The command, parameter list and comment must be less than 73 columns. |  |  |  | Not required if the command is typed in from the system typewriter |  |  |

## CONTROL COMMANDS

The simulator includes 26 control commands as shown in Table 1.

Table 1. List of control commands and their functions

|  |  | Control commands |  | Comments |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Action | Mnemonic command |  |
|  | Start | Start simulation Reinitialize | $\frac{\text { START }}{\text { REINIT }}$ | Starts simulation and designates the input unit for control commands. <br> Sets the state to the same state it was after the START command execution was completed. |
|  | End | End simulation | END | Returns to the monitor when executed during simulation. |
|  | Program loading or saving intermediate results | Load object program <br> Save intermediate results | $\begin{aligned} & \text { LOAD } \\ & \text { SAVE } \end{aligned}$ | The absolute object program or the saved intermediate partially executed program is loaded. <br> All information such as executed commands. contents of registers and flags, and so forth, are saved in external memory. |
|  | Changing control command input unit | Changes to card reader <br> Changes to system typewriter | $\begin{aligned} & \text { BATCH } \\ & \text { TYPE } \end{aligned}$ | The command input unit is changed to the card reader. <br> The command input unit is changed to the system typewriter. |
|  | Start | Starts execution of the object program <br> Starts execution of the object program | GO <br> RUN | The stop point can be designated by either an address or the number of instructions to be executed. <br> Continues execution until a HLT instruction is encountered. |
|  | Stop | Assigns a breakpoint <br> Releases an assigned breakpoint <br> Steps | BREAK NOBREAK STEP | A breakpoint is assigned by an address or a range. <br> A breakpoint assigned is released. <br> Breakpoints are assigned after every specified number of machine instructions. |
|  | Assigning memory regions | Assigns a ROM region <br> Releases an assigned ROM region <br> Assigns a memory protection region <br> Releases an assigned memory protect region | ROM NOR OM PROT NOPROT | It is declared that region assigned with this command is the ROM region. The assigned ROM region is released. <br> A memory protect (unaccessible) region is assigned. <br> An assigned memory protect region is released. |
|  | Trace | Assigns a trace region <br> Releases an assigned trace region | TRACE <br> NOTRACE | Printing out the contents of registers, the program counter and flip-flops along with the executed instruction codes while executing the instructions in a trace region. <br> The assigned trace region is released. |
|  |  | Set data | SET | Registers, stack pointers, program counter, flag flip-flops, I/O ports and the contents of memory are set. |
|  |  | Interrupt | 1 NTER | If interrupt is enabled, the 1-byte instruction associated with this command is executed. |
|  | Counts th | e number of cycles | TIME | Counts the total number of cycles of the machine instructions executed before this command is encountered. |
|  | Printing out | Assigns a base <br> Prints out | BASE <br> DISPLAY | A base for printing is assigned. <br> The contents of registers, stack pointers, program counter, flag flip-flops, I/O ports, and memory are printed according to the assigned base. Look-back is possible. |
|  | Conversion of values |  | CONV | The current program counter or the assigned value is printed out in binary, octal, decimal or hexadecimal. |
| $\begin{array}{\|c\|} \hline 0 \\ \hline \\ \hline \end{array}$ | Input/output simulation | input simulated Output simulated | $\begin{aligned} & 1 P \\ & O P \end{aligned}$ | Defines an input string for a machine instruction IN. <br> Defines an output string for a machine instruction OUT. |

Note 1 : The underlined part of the mnemonic command can be used as a short mnemonic.
2 : The control command 'START' is the first command, and its input unit must be the card reader

## MITSUBISHI LSIs MELPS 8 SIMULATOR

## EXAMPLE OF SIMULATION

The program shown in Fig. 2 is simulated using the control command in the sequence shown in Table 4. The program in Fig. 2 is named 'CON102'. It converts a decimal integer ( $0 \sim 65,535$ ) to a binary number.

The decimal number to be converted is stored in addresses DED1~DED5 in ASCII code, and the converted result is stored in addresses BID and BID+1 (see Table 2). Further, if characters other than $0 \sim 9$ are found in addresses DED1~DED5, the A register is set to ' 1 ' as an error flag; and if the converted result is more than 65,535 , the carry flip-flop is set to ' 1 ' as an error flag.

The simulation is executed in three segments as follows:

1. The test values are set in memory addresses DED1~ DED5.
2. The program is executed.
3. The simulator confirms that the contents of addresses BID and BID+1 are the correct value for the conversion of data in addresses DED1 (address 9113)~DED5 (address 9117). At the same time, it confirms that the contents of the A register and the carry flip-flop are correct.

The objective program listing is shown in Fig. 2, and explanations of the simulation control commands using this example are shown in Table 4.

Table 2 Memory location and contents

| Address | Contents | Explanation of contents |
| :---: | :---: | :---: |
| DED1 | a | The 5-digit decimal integer is $a \times 10^{4}+b \times 10^{3}+c$ $\times 10^{2}+\mathrm{d} \times 10+\mathrm{e}$, and a, b, c, d and e are set in ASCII code. |
| DED2 | b |  |
| DED3 | c |  |
| DED4 | d |  |
| DED5 | e |  |
| BID | Converted results | Low-order 8 bits are stored in BID and high-order 8 bits in BID+1. |
| $B I D+1$ |  |  |

Table 3. Error flags for conversion

| Number to <br> be converted | Error and no error display |  | Converted result |
| :---: | :---: | :---: | :---: |
|  | A register | Carry flip-flop |  |
| More than 65.535 | 0 | 0 | Correct |
| Character other than <br> decimal digits | 1 | 1 | Not correct |

Fig. 2 Assembly listing of the objective program "CON102"

| **CROSS ASSEMBLER OF 8-BIT MICROPROCESSOR |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0001 * |  |  | * |  |  | 0033 | 2365 | 3 À9A23 | COOO 3 | LDA | DED 2 |
| 0002 * |  | CON102 | * |  |  | 0034 | 2368 | D630 |  | SUI | 48 |
| 0003 * |  |  | * |  |  | 0035 | 236 A | 11 E 803 |  | LXI | D, 1000 |
| 0004 | 2328 |  |  | ORG | 9000 | 0036 | 236 D | CA7523 | CO103 | JZ | COOO4 |
| 0005 | 2328 | 219923 | CON 102 | LXI | H, DED1 | 0037 | 2370 | 19 |  | DAD | D |
| 0006 | 232 B | 0605 |  | MVI | B, 5 | 0038 | 2371 | 3 D |  | DCR | A |
| 0007 | 232 D | 7 E | CO100 | MOV | A, M | 0039 | 2372 | C36D23 |  | JMP | CO103 |
| 0008 | 232 E | FE3B |  | CPI | 48 | 0040 | 2375 | 3A9923 | C0004 | LDA | DED 1 |
| 0009 | 2330 | DA9423 |  | JC | ER | 0041 | 2378 | FE3 7 |  | CP I | 37 \# |
| 0010 | 2333 | FE3B |  | CPI | 59 | 0042 | 237 A | D29023 |  | JNC | OV |
| 0011 | 2335 | D29423 |  | JNC | ER | 0043 | 237 D | D630 |  | SUI | 48 |
| 0012 | 2338 | 23 |  | I NX | H | 0044 | 237 F | 111027 |  | LXI | D, 10000 |
| 0013 | 2339 | 05 |  | DCR | B | 0045 | 2382 | CABA2 3 | C0104 | JZ | COOO5 |
| 0014 | 233 A | C22C23 | D 23 | JN2 | CO100 | 0046 | 2385 | 19 |  | DAD |  |
| 0015 | 333 D | 3A9D23 | COOOO | LDA | DED 5 | 0047 | 2386 | 3 D |  | DCR | A |
| 0016 | 2340 | D630 |  | SUI | 48 | 0048 | 2387 | C38223 |  | JMP | CO104 |
| 0017 | 2342 | 2600 |  | MVI | H, O | 0049 | 238 A | 229 E 23 | C0005 | SHLD | BID |
| 0018 | 2344 | 6 F |  | MOV | L, A | 0050 | 238 D | C39723 |  | JMP | C0006 |
| 0019 | 2345 | 3 A9C23 | C0001 | LDA | DED4 | 0051 | 2390 | 37 | OV | STC |  |
| 0020 | 2348 | D630 |  | SUI | 48 | 0052 | 2391 | C39723 |  | JMP | COOO6 |
| 0021 | 234 A | 110400 |  | LXI | D, 10 | 0053 | 2394 | 3E01 | ER | MVI | $A, 11$ |
| 0022 | 234 D | CA5523 | C0101 | J Z | COOO2 | 0054 | 2396 | A 7 |  | ANA | A |
| 0023 | 2350 | 19 |  | DAD | D | 0055 | 2397 | 00 | C0006 | NOP |  |
| 0024 | 2351 | 3 D |  | DCR | A | 0056 | 2398 | 76 |  | HLT |  |
| 0025 | 2352 | C34D23 |  | JMP | CO101 | 0057 | 2399 | 00 | DED1 | DEF | 0 |
| 0026 | 2355 | 3A9B23 | COOO2 | LDA | DED3 | 0058 | 239 A | 00 | DED 2 | DEF | 0 |
| 0027 | 2358 | D630 |  | SUI | 48 | 0059 | 239 B | 00 | DED3 | DEF | 0 |
| 0028 | 235 A | 116400 |  | LXI | D, 100 | 0060 | 239 C | 00 | DED 4 | DEF | 0 |
| 0029 | 235 D | CA65 23 | CO102 | JZ | COOO3 | 0061 | 239 D | 00 | DED5 | DEF | 0 |
| 0030 | 2360 | 19 |  | DAD | D | 0062 | 239 E | 0000 | BID | DADR |  |
| 0031 | 2361 | 3D |  | DCR | A | 0063 | 2328 |  |  | END |  |
| 0032 | 2362 | C35D23 |  | JMP | CO102 |  |  |  |  |  |  |

Table 4 An example of the use of simulation control commands.

| STARTM70, CARD | MELCOM 70 is used as the host computer, and the input unit for the control commands is selected to be the card reader. |
| :---: | :---: |
| LOAD START, 5 | The object program is input from the paper tape reader (device number 5). |
| SET CPU SP=10000 PC=9000 | The stack pointer is set to the value 10,000, and the program counter is set to the value 9,000. |
| SET MEMORY,DED1=31\# SE M, DED2: DED5=32\#, 33\#, 35\#,37\# | Data is set in memory. 31\# is stored in location DED1, 32\# in DED2, 33\# in DED2 + 1, 35\# in DED2 + 2, and 37\# in DED5. |
| BREAK COOO2, COOO3, COOO4, COOO5 | Breakpoints are assigned. |
| DISPLAY CPU,SP, PC | Displays the contents of the stack pointer (SP) and the program counter (PC) for confirmation: |
| D M, DED1: DED5 | Confirms whether or not the correct value is set in memory. Here, D is the abbreviated command for DISPLAY and M for MEMORY. |
| GO * | The program is executed until the machine instruction HLT is encountered, printing out the contents of the PC and SP registers and flip-flops at each breakpoint that was assigned by BREAK above. |
| D M, 9119:9120(@) | Confirms whether the conversion is correct or not, displaying the result of the conversion in binary form. It can also be confirmed by finding the change of the contents of registers H and L in the list that is printed out during execution. |
| TIME | The number of cycles executed is counted. |
| NOBR COOO2, COOO3, COOO4, COOO5 | The breakpoints assigned with BREAK are released. |
| S M, DED1=36\# $S \quad M, D E D 2: D E D 5=35 \#$ $S \quad M, D E D 4=43 \#$ | $36 \#$ is set in address DED1, 35\# in addresses DED2~ DED5 and 43\# in address DED4. |
| S CP, PC=9000 | 9.000 is set in the program counter. |
| GO | Executes until a HLT instruction is encountered. |
| D M, 9113:9120 | The data and the result are printed in the hexadecimal because the BASE command is not used. In this case, including a character other than $0 \sim 9$ confirms whether or not a ' 1 ' is set in the A register after execution. |
| SAVE 2,SAV1 | Intermediate results are saved in file SAV1 of the disk. |


| START M ${ }^{\text {O,C }}$ | MELCOM 70 is used as the host computer, and the input unit for the control commands is selected to be the card reader. |
| :---: | :---: |
| LO CONT, 2, SAV1 TYPE | The intermediate results that were saved are loaded from the disk. The file name is 'SAV1' <br> The input unit for control commands is changed from the card reader to the keyboard. |
| S CUP, SP=10000,PC=9000 | The program counter and the stack pointer are set. |
| S M, DED1: DED5=37\#, 35\# | 37\# is set in address DED1, 35\# in DED1 + 1, 37\# in DED $1+2,35$ \# in DED $1+3$ and 37\# in DED5. |
| GO | Executes until a HLT instruction is encountered. Confirms whether or not a ' 1 ' is set in the carry flip-flop because the data exceeded 65,535 . |
| S CPU, PC=9000 | The start address is set. |
| S M, DED1: DED5=30\# | 30 \# is set in addresses DED1~ DED5. |
| GO | Executes until an HLT instruction is encountered. |
| D M, 9113:9120 | Confirms the conversion result. |
| S CPU, PC=9000 | The start address is set. |
| $\begin{aligned} & S \quad M, 9113=36 \# \\ & S \quad M, 9115=35 \# \end{aligned}$ | 36\# is set in address 9113, 35\# in address 9115. |
| GO | Execution starts. Executes until an HLT instruction is encountered. |
| D M, 9113:9120 | Confirms the conversion result. |
| END | Declares the end of simulation. |

## MITSUBISHI LSIs

## 1. CODE CONVERSION PROGRAMS

There are 4 code conversion programs for conversions between hexadecimal numbers and their corresponding ASCII code in binary notation. Details of these programs are given below.
Table 1 Correspondence of number formats

| Hexadecimal symbols | Machine language binary number | ASClI code in binary notation for hexadecimal symbols |
| :---: | :---: | :---: |
| 0 | 0000 | 00110000 |
| 1 | 0001 | 00110001 |
| 2 | 0010 | 00110010 |
| 3 | 0011 | 00110011 |
| 4 | 0100 | 00110100 |
| 5 | 0101 | 00110101 |
| 6 | 0110 | 00110110 |
| 7 | 0111 | 00110111 |
| 8 | 1000 | 00111000 |
| 9 | 1001 | 00111001 |
| A | 1010 | 01000001 |
| B | 1011 | 01000010 |
| C | 1100 | 01000011 |
| D | 1101 | 01000100 |
| E | 1110 | 01000101 |
| F | 1111 | 01000110 |

### 1.1 Binary (4 Bits) to ASCII (1 Character) Conversion (BTA)

This program converts the low order 4 bits in register $A$ ( $a$ hexadecimal number $0 \sim F$ ) to the corresponding 8 -bit ASCII-coded hexadecimal symbol ' $0^{\prime} \sim{ }^{\prime} F^{\prime}$. The result is retained in register A. Registers B, C, D, E, H and L are not affected.

## Register Status

| Register | Contents at start | Contents at return |
| :---: | :---: | :---: |
| A | Binary number to be converted <br> in the low order 4 bits | 8-bit ASCII code for the high <br> order hexadecimal symbol |
| B.C.D.E. H and L |  | Contents at start |



### 1.2 Binary (8 Bits) to ASCII (2 Characters) Conversion (BTA 2)

This program converts the 8 bits in register C (a 2 -digit hexadecimal number $00 \sim$ FF to the 2 corresponding 8 -bit ASCII-coded hexadecimal symbols ' 0 ' $\sim$ ' $F^{\prime}$. The results are retained in registers H (high order) and L (low order). Registers $B, D$ and $E$ are not affected.

## Register Status

| Register | Contents at start | Contents at return |
| :---: | :---: | :---: |
| A |  | 8-bit ASCII code for the high <br> order hexadecimal symbol |
| C | Binary number to be converted | Binary number to be converted <br> 8-bit ASCll code for the high <br> order hexadecimal symbol |
| H |  | 8-bit ASCII code for the low <br> order hexadecimal symbol |
| L |  | Contents at start |
| B, D and E |  |  |

Flow Chart


Program Listing


### 1.3 ASCII (1 Character) to Binary (4 Bits) Conversion (ATB)

This program converts the 8-bit ASCII code in register C (a hexadecimal symbol ' 0 '~ ${ }^{\prime} F^{\prime}$ ) to a 4 -bit binary number 0000 $\sim 1111$. The result is retained in the low order 4 bits of register $A$. If register $C$ contains a code for a character other than a hexadecimal symbol $0 \sim F$, it is recognized as an error; the carry flip-flop is set, and the program is exited. Registers $B, D, E, H$ and $L$ are not affected.

## Register Status

| Register | Contents at start | Contents at return |
| :---: | :--- | :--- |
| A |  | Hexadecimal number in binary <br> form in the low order 4 bits |
| C | ASCII coded hexadecimal symbol <br> to be converted | ASCII coded hexadecimal <br> symbol to be converted |
| B, D, E.H and L |  | Contents at start |

Flow Chart


## Program Listing



### 1.4 ASCII (2 Characters) to Binary (8 Bits) Conversion (ATB 2)

This program converts the two 8-bit ASCII codes in registers $H$ and $L$ ( 2 hexadecimal symbols ' 0 ' $\sim$ ' $F$ ', high order in register H and low order in register L ) to an 8 -bit binary number ( $0 \sim 255_{10}$ ). The result is retained in register $A$. If register H or L contains a code for a character other than a hexadecimal symbol ' $0^{\prime} \sim{ }^{\prime} F^{\prime}$, it is recognized as an error; the carry flip-flop is set, and the program is exited. Registers D and $E$ are not affected.

## Register Status

| Register | Contents at start | Contents at return |
| :---: | :---: | :---: |
| A |  | $\begin{array}{\|l} \hline \text { 8-bit binary number } \\ \text { (2 hexadecimal digits) } \\ \hline \end{array}$ |
| B | 4 -bit binary number in the high order 4 -bits conversion of high order hexadecimal symbol |  |
| C |  | Low order ASCII coded hexadecimal symbol to be converted |
| H | High order ASClI coded hexadecimal symbol to be converted | High order ASCII coded hexadecima symbol to be converted |
| L | Low order ASCll coded hexadecimal symbol to be converted | Low order ASCII coded hexadecima symbol to be converted |
| D and E |  | Contents at start |



## MITSUBISHI LSIs

MELPS 8 PROGRAM LIBRARY

## 2. SORTING PROGRAM (SORT)

This program sorts records (1 byte in length) in descending order. Up to 65535 records can be sorted. The binary number $\mathbf{2 5 5}_{10}$ cannot be used as data because it is reserved for the end-of-data mark. This data is stored in descending order according to the rank of its sort key.

The program sorts by comparing a data item with all other data items, thus determining its rank. The data associated with the sort key is then stored in descending order according to that rank.

This program can also recall the data associated with any record. If the rank $k(1 \leqq k \leqq 65535)$ is stored in memory locations ORD and ORD +1 , the 1 -byte data associated with that rank is stored in register $A$; and then control is returned to the user's program. If $\mathbf{k}$ is specified as zero, register $A$ is set to zero and control is returned to the user's program.

## Register Status

| Register | Use during execution | Contents changed at return |
| :---: | :--- | :---: |
| A | Calculates and recalls data of rank $k$ | yes |
| B | Data being compared is stored | yes |
| C | Not used | no |
| D | Memory address for storing data after | yes |
| E | ranking | yes |
| H | Memory address of data to be ranked | yes |
|  |  | yes |

## Symbolic Memory Address

| Symbolic address |  | Use during execution | No. of bytes | Contents changed at return |
| :---: | :---: | :---: | :---: | :---: |
|  | ORD | $k$ (the rank of data to be recalled) | 2 | no |
|  | PRO | Storage area for records to be sorted (PRO is the first address) | $n+1$ | no |
|  | MAX | Storage area for sorted data (MAX is the first address) | $n+1$ | yes |
|  | DADD | Address in PRO of record being sorted | 2 | no |
|  | RADD | Address in MAX for storing result | 2 | no |
|  | M 1 | Address of record to be ranked | 2 | yes |
|  | M2 . | Address of record being compare | 2 | yes |
|  | COUNT | Counter for number of records | 2 | yes |

Flow Chart


## Program Listing



|  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| R,5 | $1 \mathrm{~N} X$ | $\mathrm{D}_{1}$ |  |  |
| R, $\mathbf{6}_{1}$ | $\mathbf{I N} \mathrm{X}_{1} \ldots$ | $\mathrm{H}_{1}$ |  |  |
|  | JMP | R3 3 |  |  |
| * |  |  |  |  |
| R,7 | L.H, L, ${ }_{\text {, }}$ | M, 1 |  |  |
|  | $\underline{N} \mathrm{~N}_{1}$ | $\mathrm{H}_{1}$ |  |  |
|  | M, ${ }^{\text {, }}$, | A, B |  |  |
|  | STA, ${ }_{\text {a }}$ D | D. |  |  |
|  | XCH,G |  |  |  |
|  | L,H,LD ${ }_{\text {c }}$ | C, |  |  |
|  | JNX ${ }_{\text {L }}$ | $\mathrm{H}_{1}$ |  |  |
|  | JMP | R, 1 |  |  |
| * |  |  |  |  |
| R. 8 | L, H, L, ${ }_{\text {d }}$ | C,OU |  |  |
|  | X,CH,G |  |  |  |
|  | L,H,LD | R,AD | D |  |
|  | D,A, $\mathrm{D}_{1}$ D | $\mathrm{D}_{1}$ |  |  |
|  | M, OV | M, A |  |  |
| * 1 1 |  |  |  |  |
|  | L, H, L, ${ }_{\text {d }}$ | ORD |  |  |
|  | M, O, V | A, , L |  |  |
|  | ORA ${ }_{\text {a }}$, ${ }^{\text {a }}$ | $\mathrm{H}_{1}$ |  |  |
|  | J $\mathbf{Z}$ | R9 |  |  |
|  | DC. ${ }^{\text {d }}$ | $\mathrm{H}_{1}$ |  |  |
|  | X, C. $\mathrm{H}, \mathrm{G}$ |  |  |  |
|  | LH,LD. | R,AD | $\mathrm{D}_{1}$ |  |
|  | D.A, $\mathrm{D}_{1}$, D | D |  |  |
|  | MOV | A, ${ }^{\text {, }}$ |  |  |
| R, 9 | RES ${ }_{\text {, }}$ |  |  |  |

## Explanation Keyed to Program Listing

(1) The program name is defined as 'SORT'.
(2) If column 1 of a statement is '*', it is considered a comment.
(3) Defines the value of data.
(4) The '\#' in FF\# indicates that FF is a hexadecimal number.
(5) Reserves a region to store the results.
(6) The above program is defined as a RAM region because its contents are variable at time of execution, and this is a ROM region because its contents are fixed.

# MITSUBISHI LSIs <br> MELPS 8 SUBROUTINE 1 

## INTEGER ARITHMETIC OPERATIONS MASK ROM M58730-001S

## DESCRIPTION

The MELPS 8 Subroutine 1 'Integer Arithmetic Operation' is programmed on a standard M58730-001S mask ROM. It includes 18 subroutines for a MELPS 8 CPU. Although the basic unit of a MELPS CPU is 1 byte ( 8 bits), units of 2 bytes ( 16 bits) and 4 bytes ( 32 bits) can be easily processed using these subroutines.

These subroutines contain sections of common coding; therefore, when using the subroutines, the CPU must be running in interrupt disable mode.

These subroutines can be divided into the following general classifications:

- Addition routines
- Subtraction routines
- Multiplication routines
- Division routines
- Shift operation routines
- Logic operation routines


## FEATURES

- All programs implemented using a pseudo accumulator in a RAM region.
- Easy processing of 2-byte or 4-byte data.
- Jump to subroutines via transfer vectors.


## 1. SUBROUTINE REFERENCE

In a user's program, the subroutine calling sequence is as follows:

Fig. 1.1 Subroutine reference


[^7]
## 2. RESERVED MEMORY LOCATIONS

Memory locations $6000{ }_{16}^{\sim} \sim 63 F_{16}$ of the ROM region are reserved. In addition, a 50 -byte RAM region, locations $3 F C E_{16} \sim 3 \mathrm{FFF}_{16}$, is reserved for executing the ROM subroutines.

## 3. DATA PROCESSING UNITS OF SUBROUTINES

The MELPS 8 CPU processes data units of 8 bits (occasionally 16 bits) while these subroutines process data units of 2 bytes ( 16 bits) or 4 bytes ( 32 bits).

### 3.1 One Word Length (2 bytes)

A data unit of 2 bytes ( 16 bits) can be represent three binary coded decimal digits, 16 logical elements, a binary number with a range of $-2^{15} \sim 2^{15}-1$, or two characters. This data structure is shown in Fig. 3.1.

Fig. 3.1 Data structure of one word length (2 bytes)


### 3.2 Double Word Length (4 bytes)

A data unit of 4 bytes ( 32 bits) can represent seven binary coded decimal digits, a binary number with a range of $-2^{31}$ $\sim 2^{31}-1$, or four characters. The data structure is shown in Fig. 3.2.

Fig. 3.2 Data structure of double word length (4 bytes)


## 4. NUMERICAL EXPRESSIONS

Numbers can be organized in 16 -bit or 32 -bit units as shown below.

### 4.1 16-Bit Binary Number

This binary number of 16 bits is organized as one unit. Negative numbers are in 2's complement form. The number has a range of $-2^{15} \sim 2^{15}-1(-32768 \sim 32767)$.

Fig. 4.1 Organization of 16 -bit binary number


THE LEAST SIGNIFICANT BYTE IS IN LOCATION $M$. AND THE MOST SIGNIFICANT BYTE IS IN LOCATION $M+1$.

ADDRESS $\mathrm{M}+1$


### 4.2 32-Bit Binary Number

This binary number of 32 bits is organized as one unit. Negative numbers are in 2 's complement form. The number has a range of $-2^{31} \sim 2^{31}-1(-2147483648 \sim 2147483647)$.

Fig. 4.2 Organization of 32-bit binary number


### 4.3 32-Bit Decimal Number

This decimal number of 32 bits consists of a 7 decimal digit numerical part and a 1 digit sign part. The number has a range of $-10^{7}+1 \sim 10^{7}-1(-9999999 \sim 9999999)$.

Fig. 4.3 Organization of 32-bit decimal number


THE LEAST SIGNIFICANT BYTE IS IN LOCATION M. AND THE MOST SIGNIFICANT BYTE IS IN LOCATION M +3


MITSUBISHI LSIs MELPS 8 SUBROUTINE 1

## INTEGER ARITHMETIC OPERATIONS

## MASK ROM M58730-001S

## 5. SUBROUTINE FUNCTIONS

| Subroutine name | Function and error condition | Number of steps | Absolute address in hexadecimal (in decimal) | Transfer vector symbolic address | Processing time (max) in ms |
| :---: | :---: | :---: | :---: | :---: | :---: |
| LDAC | LOAD one word (2 bytes) data into the pseudo ACCUMULATOR. (Note 1) | 19 | $\begin{aligned} & 60 \mathrm{B7} \\ & (24576) \end{aligned}$ | TVTB (Note 2) | 0.2 |
| STAC | STORE one word (2 bytes) data of the pseudo ACCUMULATOR in the location specified by the operand address. | 14 | $\begin{aligned} & 60 \mathrm{CA} \\ & (24778) \end{aligned}$ | TVTB + 3 | 0.2 |
| LDDL | LOAD DOUBLE LENGTH (4 bytes) data into the pseudo accumulator. | 20 | $\begin{aligned} & \text { 60D8 } \\ & (24792) \end{aligned}$ | TVTB+6 | 0.3 |
| STDL | STORE DOUBLE LENGTH (4 bytes) data of the pseudo accumulator in the location specified by the operand address. | 20 | $\begin{aligned} & 60 E C \\ & (24812) \end{aligned}$ | TVTB+9 | 0.3 |
| SLDL | SHIFT LEFT DOUBLE LENGTH (4 bytes) data in the pseudo accumulator $n$ bits. When $n$ does not satisfy the inequality $1 \leqq n \leqq 32$, it is considered an error condition. Then register A is set to 1 . and the pseudo accumulator is not shifted. | 39 | $\begin{gathered} 6100 \\ (24832) \end{gathered}$ | TVTB+21 | 0.3 |
| SRDL | SHIFT RIGHT DOUBLE LENGTH (4 bytes) data in the pseudo accumulator $n$ bits. When $n$ does not satisfy the inequality $1 \leqq n \leqq 32$, it is considered an error condition. Then register A is set to 1 , and the pseudo accumulator is not shifted. | 39 | $\begin{aligned} & 6127 \\ & (24871) \end{aligned}$ | TVTB +24 | 0.3 |
| ARDL | ARITHMETIC shift RIGHT DOUBLE LENGTH (4 bytes) data in the pseudo accumulator $n$ bits. When $n$ does not satisfy the inequality $1 \leqq n \leqq 31$, it is considered an error condition. Then register A is set to 1 , and the pseudo accumulator is not shifted. | 64 | $\begin{aligned} & 614 \mathrm{E} \\ & (24910) \end{aligned}$ | TVTB +27 | 0.3 |
| XRAC | EXCLUSIVELY OR the pseudo ACCUMULATOR (2 bytes) data and the operand. The result is retained in the pseudo accumulator. | 18 | $\begin{aligned} & 618 \mathrm{E} \\ & (24974) \end{aligned}$ | TVTB+18 | 0.2 |
| NDAC | AND the pseudo ACCUMULATOR (2 bytes) data and the operand. The result is retained in the pseudo accumulator. | 18 | $\begin{aligned} & 61 \mathrm{AO} \\ & (24992) \end{aligned}$ | TVTB+12 | 0.2 |
| ORAC | Inclusive OR the pseudo ACCUMULATOR (2 bytes) data and the operand. The result is retained in the pseudo accumulator. | 18 | $\begin{gathered} 61 \mathrm{B2} \\ (25010) \end{gathered}$ | TVTB+15 | 0.2 |
| ADAC | ADD the contents of the pseudo ACCUMULATOR ( 2 bytes) and the operand. The sum is retained in the pseudo accumulator. If a carry is generated by the addition, register $A$ is set to 1 (overflow): otherwise, it is set to 0 . | $\begin{array}{r} 12+(20) \\ (\text { Note 3) } \end{array}$ | $\begin{gathered} 61 \mathrm{C} 4 \\ (25028) \end{gathered}$ | TVTB + 30 | 0.3 |
| ADDL | ADD the contents of the DOUBLE LENGTH pseudo accumulator (4 bytes) and the operand. The sum is retained in the pseudo accumulator. If a carry is generated by the addition, register A is set to 1 (overflow): otherwise, it is set to 0 . | $\begin{array}{r} 12+(22) \\ (\text { Note 3) } \end{array}$ | $\begin{gathered} 61 D 0 \\ (25040) \end{gathered}$ | TVTB + 36 | 0.3 |
| SBAC | SUBTRACT the operand from the contents of the pseudo ACCUMULATOR (2 bytes). The difference is retained in the pseudo accumulator. If a borrow is generated by the subtraction, register $A$ is set to 1 (overflow): otherwise, it is set to 0 . | $\begin{array}{r} 12+(20) \\ (\text { Note 3) } \end{array}$ | $\begin{aligned} & 61 \text { F0 } \\ & (25072) \end{aligned}$ | TVTB + 33 | 0.3 |
| SBDL | SUBTRACT the operand from the DOUBLE LENGTH pseudo accumulator (4 bytes). The difference is retained in the pseudo accumulator. If a borrow is generated by the subtraction, register $A$ is set to 1 (overflow): otherwise, it is set to 0 . | $\begin{array}{r} 12+(22) \\ (\text { Note 3) } \end{array}$ | $\begin{aligned} & 61 \text { FC } \\ & (25084) \end{aligned}$ | TVTB + 39 | 0.3 |
| MLAC | MULTIPLY the contents of the pseudo ACCUMULATOR (2 bytes) by the operand. The product is retained in the pseudo accumulator. | 67 | $\begin{aligned} & 621 \mathrm{E} \\ & (25118) \end{aligned}$ | TVTB+42 | 12.0 |
| DVAC | DIVIDE the contents of the pseudo ACCUMULATOR (4 bytes) by the 2 -byte operand. The quotient is retained in the high order 2 bytes, and the remainder in the low order 2 bytes of the pseudo accumulator. If the 2-byte operand (divisor) is greater than or equal to the high order 2 bytes of the dividend or is 0 , it is considered an error condition. Then register $\mathbf{A}$ is set to 1 , and the contents of the pseudo accumulator are unaltered. | 195 | $\begin{aligned} & 6261 \\ & (25185) \end{aligned}$ | TVTB+45 | 15.0 |
| DCAD | DECIMALLY ADD the contents of the pseudo accumulator (4 bytes) and the operand. The sum is retained in the pseudo accumulator. If a carry is generated by the addition (overflow), it is considered an error condition: and register $A$ is set to 1 . | $\begin{array}{r} 12+(155) \\ (\text { Note } 3) \end{array}$ | $\begin{aligned} & 6324 \\ & (25380) \end{aligned}$ | TVTB+48 | 0.7 |
| DCSB | DECIMALLY SUBTRACT the operand from the contents of the pseudo accumulator (4 bytes). The difference is retained in the pseudo accumulator. If a carry is generated by the subtraction (overflow), it is considered an error condition, and register A is set to 1 . | $\begin{array}{r} 12+(155) \\ \text { (Note 3) } \end{array}$ | $\begin{aligned} & 6330 \\ & (25392) \end{aligned}$ | TVTB+51 | 1.3 |

Note 1 : The pseudo accumulator is a double length (4 bytes) register reserved in the Note 4 : The subroutines occupy 800 bytes of memory. The transfer vector table RAM.
2 : The starting address of the transfer vector table (TVTB) is 24576. occupies 54 bytes of memory. The save registers B. C. D. E. H and L; and

3 : The number in () is the number of steps in common routines. return routines occupy 129 bytes of memory. Total memory requirement is 983 bytes.

## 6. BASIC CALLING SEQUENCE



In this example using this subroutine, the program adds two 4-byte binary numbers and stores the sum in locations WORK~WORK+3.


Electronic Overseas Division,<br>Mitsubishi Electric Corporation<br>2-3, Marunouchi 2-chome, Chiyoda-ku, Tokyo 100, Japan<br>Telex: MELCO J24532<br>Tel: (03) 218-2111<br>Cable: MELCO TOKYO<br>Melco Sales Inc.<br>7045 North Ridgeway Avenue<br>Lincolnwood, Illinois 60645, U.S.A.<br>Telex: 724493 MSI LCWD<br>Tel: (312) 973-2000

MITSUBISHI LSI DATA BOOK
Published by: Semiconductor Marketing Division Mitsubishi Electric Corporation 2-3, Marunouchi 2-chome, Chiyoda-ku, Tokyo 100, Japan
© in Japan under the International Copyright Convention by Mitsubishi Electric Corporation-Reproduction of this data book in whole or in part without the permission of Mitsubishi Electric is strictly prohibited.

## $' 77$ MITSUBISHI LSI DATA BOOK


[^0]:    Note $1 \star=$ New product: $\star \star=$ Under development
    $2 \mathrm{~N}=\mathrm{N}$-channel, $\mathrm{P}=\mathrm{P}$-channel; $\mathrm{Si}=$ Silicon gate, $\mathrm{AI}=$ Aluminum gate, $\mathrm{ED}=$ Enhancement depletion mode, $\mathrm{FA}=\mathrm{FAMOS} ; \mathrm{B}=\mathrm{Bipolar} \mathrm{S}=\mathrm{Schottkey}$

[^1]:    Note : Current flowing into an IC is positive ; out is negative.

[^2]:    Note 2: $\mathrm{t}_{\mathrm{P} X \mathrm{Z}}$ is with respect to $\mathrm{CS}_{1}, \mathrm{CS}_{2}$, or OD , whichever occurs first

[^3]:    Note 1 : Current flowing into an IC is positive; out is negative.

[^4]:    Note 1 : Current flowing into an IC is positive; out is negative

[^5]:    * Bgiparity is odd for an 8-bit code system.

    Note: A ' 1 ' or ' 0 ' in the code table indicates that the output level goes high for ' 1 ' and low for ' 0 ' when input DSI and PI are low-level.

[^6]:    Note 1: Current flowing into an IC is positive: out is negative
    2: When all outputs are at $I O L=1.6 \mathrm{~mA}, V_{O L m a x}=0.6 \mathrm{~V}$

[^7]:    Note 1 : The processing order is (1). (2). (3). (4) and (5). A transfer vector is used to set the entry address of each subroutine.
    2 : Transfer vectors are used for subroutine calls because they are not affected by changes in program size.
    3 : The absolute address of a subroutine or its transfer vector must be defined before it is called.
    4 : The absolute address of a subroutine or its transfer vector refers to the table of subroutine functions.

