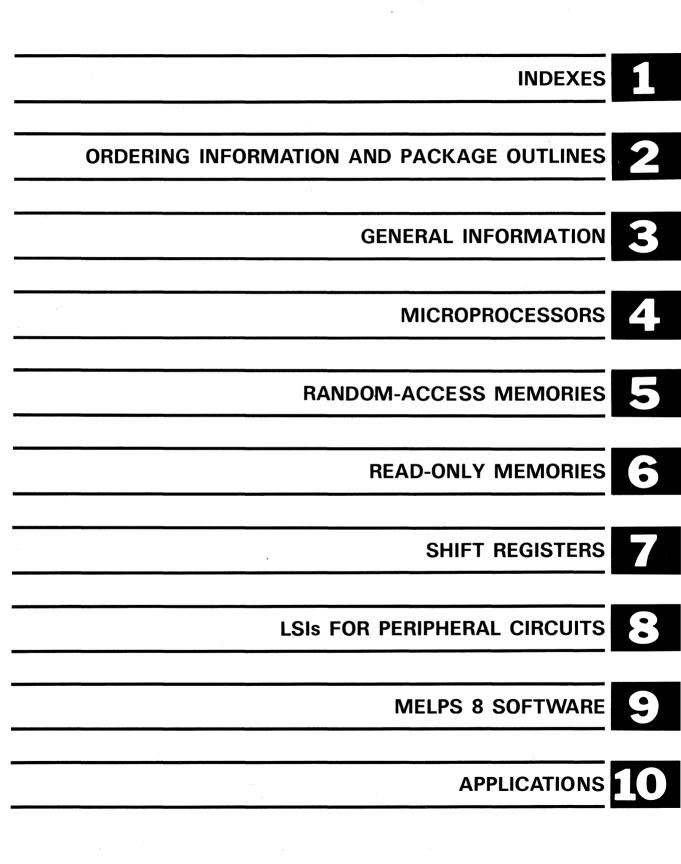
MITSUBISHI LSI DATA BOOK



MITSUBISHI ELECTRIC

'77

and the second of a

'77

MITSUBISHI LSI DATA BOOK

All values shown in this catalogue are subject to change for product improvement.

The information, diagrams and all other data included herein are believed to be correct and reliable. However, no responsibility is assumed by Mitsubishi Electric Corporation for their use, nor for any infringements of patents or other rights belonging to third parties which may result from their use.

This data book is prepared to provide reference information on Mitsubishi microprocessors, IC memories and LSIs for peripheral circuits.

Mitsubishi has recently completed the development of a new concept in digital computer design. MELPS 8 (Mitsubishi Electric LSI Processor Series 8) is the family name of 8-bit parallel CPU, IC memories and LSIs for their peripheral circuits incorporating these new concepts. The design and manufacture include proprietary technology developed over many years of experience as a leader in the electronics industry.

The MELPS 8 family has been developed with the total system in mind. This has resulted in a form of computer architecture with a built-in high degree of system modularity that will accommodate a large variety of I/O controllers and other commercial applications. A powerful application-oriented instruction set has been incorporated. Most important, however, this approach of total design provides the user the opportunity to substantially reduce system costs while simultaneously expanding operational capabilities.

The MELPS 8 microprocessor M58710S is an 8-bit parallel central processing unit fabricated on a single chip using an N-channel silicon-gate process. While the latest state-of-the-art technology is used in this CPU, it is still compatible with the Intel 8080A in pin configuration, electrical characteristics, timing and software. A description and the specifications of the M58710S microprocessor are included in this data book. The user will find it easy to substitute this CPU in present systems and future systems being developed.

Mitsubishi's new MELPS 8 family represents more than just a continuing commitment to total coordinated hardware and software design. Because it is a full commitment to provide users with cost-effective hardware and a full range of software, the users can easily take full advantage of the powerful MELPS 8 family.

Software must be evaluated along with the hardware when selecting a microprocessor. Savings a user may anticipate if he selects cheap hardware will soon disappear when the cost of developing an application program is added. A full range of software has been developed to assist users in implementing their applications. This includes such aids as simulators, cross compilers, assemblers, cross assemblers and a full subroutine library. The software support has even been extended to automatic design programs to assist in the development of special mask-ROMs made to customers' specifications.

Mitsubishi Electric is a billion dollar high-technology corporation operating world-wide to supply a broad range of products for industries such as communications, information processing, automatic control and aerospace. We pioneered the development of microelectronic devices. Since the introduction of our first MOS ICs in 1968, we have been producing a wide variety of products such as MOS LSIs for desk-top calculators, C-MOS LSIs for wrist watches and 16-digit P-channel silicon gate microprocessors for electric cash registers. Mitsubishi has played a significant role in the evolution of microprocessors for almost a decade.

Microelectronic technology has made giant strides since the introduction of the Intel 8080A. The performance of current devices has improved by magnitudes while the cost is a fraction of that of earlier devices. Manufacturing controls have been developed to increase the reliability of newer devices. The MELPS 8 is an industry leader in performance, reliability and cost because of advanced system architecture, manufacturing experience and quality control. A user would be well advised to consider Mitsubishi for their future needs of microelectronic devices.

> Koji Suzaki, Mgr. Semiconductor Marketing Div., Mitsubishi Electric Corp.

1 INDEX

l	INDEXES	Pag	е
	Index By Function	1	2
	Index By Type Designation	1	4
	Selection Guide	1-	5
	Guide to Interchangeabilities	1—	6

2 ORDERING INFORMATION AND PACKAGE OUTLINES

Ordering Information	2-	2
Package Outlines ·····	2-	3
TYPES 16P1, 16K1	2—	3
TYPES 16S1, 18P1	2-	4
TYPES 22P1, 22S1	2—	5
TYPES 24P1, 24S1	2-	6
TYPES 24S10, 28K1	2-	7
TYPES 40P1, 40B1	2—	8
TYPE 40S1	2—	9

3 GENERAL INFORMATION

Terminology ·····	3-	2
Symbology	3—	7
Quality Assurance and Reliability Testing	3-	9
Precautions in Handling MOS ICs	3-	13

4 MICROPROCESSORS

M58710S 8-Bit Parallel CPU

5 RANDOM-ACCESS MEMORIES

M58531P 256-Bit (256-Word by 1-Bit) Static Random-Access Memory 5- 3
M58533P 1024-Bit (1024-Word by 1-Bit) Dynamic Random-Access Memory
M58751P, M58751S 1024-Bit (1024-Word by 1-Bit) Static Random-Access Memory 5-13
M-58755S-1, M58755S-2, M58755S-3 4096-Bit (4096-Word by 1-Bit) Dynamic Random-Access Memory 5-17
M58721P, M58721S 1024-Bit (256-Word by 4-Bit) Static Random-Access Memory 5-27
M58722P, M58722S 1024-Bit (256-Word by 4-Bit) Static Random-Access Memory
M58723P, M58723S 1024-Bit (256-Word by 4-Bit) Static Random-Access Memory
M58756K, M58756S 4096-Bit (4096-Word by 1-Bit) Dynamic Random-Access Memory

6	READ-ONLY MEMORIES	Page
	Development of Custom Mask ROMs	6- 2
	M58730-XXXS 8192-Bit (1024-Word by 8-Bit) Mask-Programmable ROM······	6- 3
	M58730-001S 8192-Bit (1024-Word by 8-Bit) Mask-Programmed ROM	
	Subroutine 1: Integer Arithmetic Operations	6- 8
	M58731-XXXP, M58731-XXXS 16384-Bit (2048-Word by 8-Bit) Mask-Programmable ROM ······	6- 9
	M58731-001S 16384-Bit (2048-Word by 8-Bit) Mask-Programmed ROM,	
	MELPS 8 Basic Operating Monitor BOM-B	6-14
	M58563S, M58563S-1 2048-Bit (256-Word by 8-Bit or 512-Word by 4-Bit) Erasable and	
	Electrically Reprogrammable ROM	6-15
	M58651S 4096-Bit (1024-Word by 4-Bit) Electrically Alterable ROM ······	6-20
	M54700K, M54700P, M54700S 1024-Bit (256-Word by 4-Bit) Field Programmable ROM······	6-26
	M54730K, M54730P, M54730S 256-Bit (32-Word by 8-Bit) Field Programmable ROM with	
	Open Collector Outputs ·····	6-31

7 SHIFT REGISTERS

M58502P 1024-Bit (256-Word by 4-Bit) Dynamic Shift Register ·····	7—	3
M58503P 1024-Bit (512-Word by 2-Bit) Dynamic Shift Register ·····	7-	3
M58504P 1024-Bit (1024-Word by 1-Bit) Dynamic Shift Register	7-	3

8 LSIs FOR PERIPHERAL CIRCUITS

M58609-XXS	Keyboard Encoder ·····	8—	3
M58609-04S	Keyboard Encoder (JIS Code Standard Product)	8	7
M58620-XXXS	Keyboard Encoder ·····	8-	9
M58620-001S	Keyboard Encoder (JIS Code Standard Product)	8-1	4
M58740P, M58	740S Programmable Peripheral Interface	8-1	7
M54550P Clock	Generator and Driver for CPU M58710S ·····	8-2	1
M54551K Syste	m Controller and Bus Driver for CPU M58710S ·····	8-2	5
M54552P 8-Bit	Input/Output Port with Three-State Outputs	8-2	9

9 MELPS 8 SOFTWARE

Software Codes ······	Э—	2
Available Materials ······	Э—	3
General Description ······	9—	4
Development of Application Programs	9—	5
MELPS 8 PL/I μ Cross Compiler \cdots s	Э—	7
MELPS 8 Cross Assembler ······	9—1	11
MELPS 8 Simulator ······	9—1	17

10 APPLICATIONS

9

\$

MELPS 8 Program Library ······10	┝	2
MELPS 8 Subroutine 1: Integer Arithmetic Operations Mask ROM M58730-001S ······10)—	6

CONTACT ADDRESSES FOR FURTHER INFORMATION

INDEXES

MITSUBISHI LSIs INDEX BY FUNCTION

Туре		Alternative designation	Circuit function and organization	Application notes	Structure	Ambient operating temp. Ta (°C)
/licroproc	cesso	rs				
M58710S		8080A	8-Bit Parallel CPU	78 instructions	N, Si	0~70
static RA	Ms					L
M 58531P			256-Bit (256 × 1) Static RAM	T	P, Si	- 10~75
M58721P	*					
M58721 S	**	2101A-4	1024-Bit (256 × 4) Static RAM		N, Si, ED	0~70
M58722P M58722S	* **	2111A-4	1024-Bit (256 × 4) Static RAM		N, Si, ED	0 ~ 70
M58723P M58723S	* **	2112A-4	1024-Bit (256 × 4) Static RAM		N, Si, ED	0 ~ 70
M58751 P M58751 S	*	2102A-4	1024-Bit (1024 × 1) Static RAM		N, Si, ED	0 ~ 70
<u> Dynamic</u>	RAM	S				
M58533P			1024-Bit (256 × 1) Dynamic RAM		P, Si	0~70
M58755S-1	*	2107B	4096-Bit (4096 × 1) Dynamic RAM		N, Si	0 ~ 70
M58755S-2	*	2107B	4096-Bit (4096 × 1) Dynamic RAM		N, Si	0~70
M58755S-3	*	2107B	4096-Bit (4096 × 1) Dynamic RAM		N, Si	0~70
M58756K M58756S	** *	2104	4096-Bit (4096 × 1) Dynamic RAM		Ni, Si	0 ~ 70
Aask ROM	Ms					
M58730-XXXS	s		8192-Bit (1024 × 8) Mask-Programmable ROM	Custom product	N, Si	0~70
M 58730-001S	5		8192-Bit (1024 × 8) Mask-Programmed ROM	Subroutine 1 : integer arithmetic operations	N, SI	0~70
M58731-XXXF M58731-XXXS		8316	16384-Bit (2048 × 8) Mask-Programmable ROM	Custom product	N, Si, ED	0~70
M58731-001S	*		1638-Bit (2048 × 8) Mask-Programmed ROM	MELPS 8 basic operating monitor BOM-B	N, SI, ED	0 ~ 70
ield Proc	gram	mable R	DMs			
M58563S	*	1702A	2048-Bit (256 \times 8 or 512 \times 4) Erasable and Electrically Reprogrammable ROM	512 \times 4-bit organization is also possible. Electrical programming, ultraviolet erasing	P, Si, FA	0~70
			2048-Bit (256 × 8 or 512 × 4)	512 × 4-bit organization is also possible.		
M58563S-1	*	1702A	Erasable and Electrically Reprogrammable ROM	Electrical programming, ultraviolet erasing	P, Si, FA	0~70
M58651 S	**	2401	4096-Bit (1024 × 4) Electrically Alterable ROM	Electrical programming and erasing	P. AI	0~70
M54700K	*					
M54700₽ M54700S	*	6300	1024-Bit (256 $ imes$ 4) Field Programmable ROM	Ni-Cr fuse programming	в	0~75
M54730K	*					
M54730P	÷	6330	256-Bit (32 \times 8) Field Programmable ROM	Ni-Cr fuse programming	в	0~75
VI54730S	Ŷ	0330	with Open Collector Outputs			
Shift Regi	isters	i	1004 PA (050 MA) Durant Of 10 Parts			
111303021		· · · · · · · · · · · · · · · · · · ·	1024-Bit (256 × 4) Dynamic Shift Register 1024-Bit (512 × 2) Dynamic Shift Register		P, Si	-10~75
M58503D			1024-Bit (512 × 2) Dynamic Shift Register		P, Si	-10~75
		anal Cir			P, Si	-10~ 75
M58504P	Darini			for road quitab 00 kays 4		-20~75
M58504P SIs for F	Perip		Keyboard Encoder	for reed switch, 88 keys, 4 mode shifts 9-bit output	P, AI P, AI	-20~75
M58504P SIs for F M58609-XXS	Perip	a an	Kouboard Encodor / IIC and standard and the	1	[C, AI	
M58504P SIS for F M58609-XXS M58609-04S			Keyboard Encoder (JIS code standard product)	for solid-state switch, 91 kevs. 4 mode shifts	DAI	- 20 - 75
M58504P SIS for F M58609-XXS M58609-04S M58620-XXXS	s		Keyboard Encoder	for solid-state switch, 91 keys, 4 mode shifts, 10-bit output	P, AI	
M58609-04S M58620-XXXS M58620-001S M58740P	s **	8255		for solid-state switch. 91 keys, 4 mode shifts, 10-bit output 1/0 port for CPU M58710S. 24 1/0 pins	P, Al P, Al N, Si, ED	$-20 \sim 75$ $-20 \sim 75$ $0 \sim 75$
M58504P SIS for F M58609-XXS M58609-04S M58620-XXXS M58620-001S M58740P M58740S	s **	8255	Keyboard Encoder Keyboard Encoder (JIS code standard product)	10-bit output	P, AI N, Si, ED	-20~75 0~75
M58504P SIS for F M58609-XXS M58609-04S M58609-04S M58620-201S M58740P M58740S M58740S M54550P	s **	8255 8244	Keyboard Encoder Keyboard Encoder (JIS code standard product)	10-bit output	P, AI N, Si, ED B	-20~75 0~75 0~75
M58504P SIS for F M58609-XXS M58609-04S M58620-XXXS M58620-001S M58740P M58740S	s **		Keyboard Encoder Keyboard Encoder (JIS code standard product) Programmable Peripheral Interface	10-bit output	P, AI N, Si, ED	-20~75 0~75

٠

lote 1 ★=New product: ★★=Under development 2 N=N-channel, P=P-channel; Si=Silicon gate, AI=Aluminum gate, ED=Enhancement depletion mode, FA=FAMOS; B=Bipolar S=Schottkey

1

	Supply	voltage		Electrical characteristics						_	Interchangeable products			
VDD	Vec	Vss GND	Vвв	Clock voltage Vø	Typ pwr dissipatior (mW)			Max fre- quency (MHz)	TTL com- patibility	Package outline	Mfr.	Туре	Page	
		ditb	I		(111)	(ns)	(ns)		I			1		
12V±5%	5V±5%	0 V	- 5 V ± 5 %	V _{DD} ± 1.0V	780			2	YES	40S 1	INTEL	C8080	4	
	!			I	1	L	l				I			
	- 9∨± 5%	5 V ± 5 %			360	1,500	1,500		YES	16P 1	INTEL	P1101A	5 - 3	
	5 V ± 5 %	0 V	10 a.C		150	450	450		YES	22P 1	INTEL	P2101A-4	5 - 2	
										22S 1		C2101A-4		
	5 V ± 5 %	0 V			150	450	450		YES	18P 1	INTEL	P2111A-4	5-3	
										18S 1		C2111A-4		
	5 V ± 5 %	0 V			150	450	450		YES	16P 1 16S 1	INTEL	P2112A-4 C2112A-4	5 - 3	
										16P 1		P2102A-4		
	5 V ± 5 %	0 V			100	450	450		YES	165 1	INTEL	C2102A-4	5 - 1	
	ll								1					
	οv	16V±5%	Vss+3.5V	16V±5%	270	300	580		NO	18P 1	INTEL	P1103	5	
	ŰV	16V ± 5 %	±0.5V	16V ± 5 %	270	300	560		NO	101-1	INTEL	F1103	5	
12V±10%	5 V ± 10%	0 V	- 5 V ± 10%	V _{DD} ±1V	300	200	400		YES	22S 1	INTEL	C2107B	5 - 1	
	0.1 = 1070			100					120		ТІ	TMS4060-2		
12V±10%	5V±10%	0 V	- 5 V±10%	V _{DD} ±1V	240	270	470		YES	22S 1	INTEL	C2107B-4	5 - 1	
											TI	TMS4060		
12V±10%	5 V±10%	0 V	$-5V \pm 10\%$	$V_{DD} \pm 1 V$	350	150	320		YES	22S 1	INTEL	C2107B TMS4060 2	5 —	
										16K 1	TI	C2104		
12V±10%	5∨±10%	0 V	-5∨±10%	2.4∨	450	300	425		YES	165 1	MOSTEK	4096	5 - 4	
													L	
12V±5%	5 V ± 5 %	0 V	- 5 V ± 5 %		250	850		1	YES	24S 1	INTEL	C8308	6 - 3	
12V±5%	5 V ± 5 %	0 V	$-5V\pm5\%$		250	850	-		YES	24S 1			6 - 8	
	5V±5%	0 V			200	850			YES	24P 1	INTEL	P8316 A	6 - 9	
	JV _ J /0	0.0			200	850			123	24S 1	INTEL	C8316A	• •	
	5V±5%	0 V		-	200	850	_		YES	24S 1		-	6 - 1	
	<u>г</u>													
- 9 V ± 5 %	- 9 V± 5 %	5V±5%	Vss	-	300	1,000	1,000	_	YES	24510	INTEL	C1702A	6 - 1	
-9∨±5% [·]	−9∨±5%	5V±5%	Vss		300	1,500	1,500		YES	24S10	INTEL	C1702A-6	6 — I	
	-14V±1V	5V±5%		-14V ⁺¹ ₋₆ V	80	2,000	2,000		YES	24S 1	NCR	2401	6 - 2	
										16K 1		6300J		
-	5V±5%	0 V	-		450	60	60		YES	16P 1	ммі	6300N	6 - 2	
										16S 1		6300		
										16K 1		6330J		
	5 V ± 5 %	0 V		-	450	50	50	-	YES	16P 1	ммі	6330N	6-3	
										165 1		6330		
_	- 5 V ± 5 %	5 V± 5%		-11V±1V	15	-		3†	YES	16P 1	INTEL	P1402A	7 —	
	$-5V\pm 5\%$	5 V ± 5 %	-	-11V± + V	15	_		3†	YES	16P 1	-		7 -	
	$-5 \vee \pm 5\%$	5 V ± 5 %		-11V±1V	15	-	-	3†	YES	16P 1		_	7 - 3	
-12V±1V	0 V	5V±10%	_		70			0.1	YES	40B 1	GI	AV-5-2276	8 - 3	
$-12V \pm 1V$ $-12V \pm 1V$	0 V	5 V ± 10%			70			0.1	YES	40B 1		AY-5-2376	8 - 3	
-12V±10%	0 V	5 V±10%			350				YES	40B 1			8 - 9	
-12V±10%	0 V	5 V±10%	-	-	350	_			YES	40B 1		_	8 - 1	
										40P 1		P8255		
-	5 V ± 5 %	0 V	-	-	200			-	YES	40S 1	INTEL	C8255	8 - 1	
-	5V±5%	0 V		_	450		_		YES	16P 1	INTEL	P8224	8 - 2	
				_				VIENA		201/ 1	INTEL			
_	5V±5%	0 V		_	550	_		-	YES	28K 1	INTEL	D8228	8 - 25	

* : Propagation delay time t: Data frequency

Ą

6

.

Туре	Structure	Function	Circuit function	Page
M54550P	B, S	1/0	Clock Generator and Driver for CPU M58710S	8 - 21
M54551K	B, S	1/0	System Controller and Bus Driver for CPU M58710S	8-25
M54552P	B, S	1/0	8-Bit Input/Output Port with Three-State Output	8 - 29
M54700P				
M54700K	B PROM		1024-Bit (256 \times 4) Field Programmable ROM	6 - 26
M54700S				
M54730P				
M54730K	в	PROM	256-Bit (32×8) Field Programmable ROM	6 - 31
M54730S		with Open Collector Outputs		
M58502P	P, Si	S/R	1024-Bit (256 \times 4) Dynamic Shift Register	7 - 3
M58503P	P, Si	S/R	1024-Bit (512 \times 2) Dynamic Shift Register	7 - 3
M58504P	P, Si	S/R	1024-Bit (1024 × 1) Dynamic Shift Register	7 - 3
M58531P	P, Si	RAM	256-Bit (256 × 1) Static RAM	5 — 3
M58533P	P, Si	RAM	1024-Bit (256 × 1) Dynamic RAM	5 — 7
M58563S	P, Si, FA	PROM	2048-Bit (256 \times 8 or 512 \times 4) Erasable and Electrically Reprogrammable ROM	6 - 15
M58563S-1	P, Si, FA	PROM	2048-Bit (256 \times 8 or 512 \times 4) Erasable and Electrically Reprogrammable ROM	6 - 15
M58651S	P, Al	PROM	4096-Bit (1024 × 4) Electrically Alterable ROM	6 - 20
M58609-04S	P, AI	1/0	Keyboard Encoder (JIS Code Standard Product)	8 - 7
M58609-XXS	P, Al	1/0	Keyboard Encoder	8-3
M58620-001S	P, AI	1/0	Keyboard Encoder (JIS Code Standard Product)	8-14
M58620-XXXS	P, AI	1/0	Keyboard Encoder	8 - 9
	1,7,4	+		
M58710S	N, Si	CPU	8-Bit Parallel CPU	4 - 2
M58721P				
M58721S	N, Si, ED	RAM	1024-Bit (256 \times 4) Static RAM	5 - 27
M58722P				
M58722S	N, Si, ED	RAM	1024-Bit (256 \times 4) Static RAM	5 - 31
M58723P				F 05
M58723S	N, Si, ED	RAM	1024-Bit (256 × 4) Static RAM	5 - 35
M58730-001S	N, Si	ROM	8192-Bit (1024 × 8) Mask-Programmed ROM	6 - 8
M58730-XXXS	N, Si	ROM	8192-Bit (1024 \times 8) Mask-Programmable ROM	6 - 3
M58731-001S	N, Si, ED	ROM	16384-Bit (2048×8) Mask-Programmed ROM	6 - 14
M58731-XXXP		DOM	16294 Dit /2049 X 9) Mark Programmable DOM	6 - 9
M58731-XXXS	N, Si, ED	ROM	16384-Bit (2048 × 8) Mask-Programmable ROM	0 3
M58740P	N, Si, ED	1/0	Programmable Peripheral Interface	8 - 17
M58740S	IN, 31, EU	1/0		
M58751P	N, Si, ED RAM		1024-Bit (1024 × 1) Static RAM	5-13
M58751S				5 -17
M58755S-1	N, Si	RAM	4096-Bit (4096 × 1) Dynamic RAM	
M58755S-2	N, Si	RAM	4096-Bit (4096 × 1) Dynamic RAM	
M58755S-3	N, Si	RAM	4096-Bit (4096 × 1) Dynamic RAM	
M58756K	- N, Si RAM 409		4096-Bit (4096 × 1) Dynamic RAM	5 - 41
M58756S	, 0.			

•

1

Words		Bits	/word			
Words	t	2	4	8		
32				PROMs M54730P/M54730S/ M54730K		
256	RAMs M58531P		RAMS M58721P / M58721S M58722P / M58722S M58723P / M58723S PROMS M54700P / M54700S / · M54700K S/RS M58502 P	PROMs M58563S M58563S-1		
512		S/Rs M58503P	PROMS M58563S M58563S-1			
1024	RAMs M58751 P/M58751 S M58533P S/Rs M58504P		EAROMS M58651S	ROMs M58730-XXXS M58730-001S		
2048				ROMS M58731 - XXXP / M58731 - XXXS M58731 - 001 S		
4096	RAMs M58755S-1 M58755S-2 M58755S-3 M58756K M58756S					

4

G

MITSUBISHI LSIS GUIDE TO INTERCHANGEABILITIES

Function	Mitsubishi Electric	Circuit organization	Advanced Micro Devices	American Microsystems	Electronic Arrays
CPU	M58710 S	8-bit parallel	AM9080A		
	M58531P	256× 1 bit			
	M58721P	256× 4 bit			
	M58721S	256 imes 4 bit			
Static	M58722P	256 $ imes$ 4 bit			
RAMs	M58722S	256 $ imes$ 4 bit			
	M58723P	256 imes 4 bit			
	M58723S	256 $ imes$ 4 bit			
	M58751P	1024× 1 bit			
	M58751S	1024 $ imes$ 1 bit		S3102	
	M58533P	1024× 1 bit		S2103	
	M58755S-1	4096× 1 bit		S4021-1	
Dynamic	M58755S-2	4096× 1 bit			
RAMs	M58755S-3	4096× 1 bit		S4021-4	μPD411D-3
	M58756K	4096 $ imes$ 1 bit			
	M58756S	4096× 1 bit		S4096-3	
	M58730-XXXS	1024× 8 bit			
Mask	M58730-001S	1024× 8 bit			
ROMs	M58731-XXXP	2048× 8 bit			
	M58731-XXXS	2048× 8 bit			
	M58731-001S	2048×8 bit			
Field Program-	M58563S	256×8 or 512×4 bit FAMOS			
mable	M58563S-1	256×8 or 512×4 bit FAMOS			
ROMs	M58651S	1024× 4 bit EAROM			
	M54700K	256× 4 bit			
	M54700P	256×4 bit			
Fusible	M54700S	256×4 bit			
PROMs	M54740K	32× 8 bit			
	M54730P	32× 8 bit			
	M54730S	32× 8 bit			
Dynamic	M58502P	256× 4 bit	AM1402A		•
Shift Registers	M58503P	512× 2 bit	AM1403A		
Tregisters	M58504P	1024× 1 bit	AM1404A		
	M58609-XXS	Keyboard encoder			
	M58609-04S	Keyboard encoder			
	M58620-XXXS	Keyboard encoder			
1/0	M58620-001S	Keyboard encoder			
divices	M54550P	Clock generator/driver			
	M54551K	System controller/bus driver			
	M54552P	8-bit I/O port	AM8212		
	M58740P	Programmable periph. interface			
L	M58740S	Programmable periph. interface			

¢.

٠

1

GUIDE TO INTERCHANGEABILITIES

Fairchild Semiconductor	Fujitsu	Hitachi	Intel	Intersil	Monolithic Memories	Mostek
			C 8080			
			C1101A	IM7501	,	MK4007P
		HM45102	P2101A-4			
	MB8101		C2101A-4	-	·····	
			P2111A-4			
	MB8111		C2111A-4			
			P21112A-4			
	MB8112		C2112A-4			
			P2102A-4	IM7552-1CPE		MK4102P-1
			C2102A-4	IM7552-1CDE		
3524-5	MB8103	HM3503	C1103			MK4006-6F
	MB8107		C2107B			
			C2107B-4			
	MB8108		C2107B			
			D2104			
F4096DC	MB8214		C2104			MK4096
			C8308			
			P8316A			
			C8316A			
	MB8513		C1702A			
			C1702A-6			
					6300N	
					6300	
					C0001	
					6330N 6330	
			C1402	IM7702		
				IM7703		
				IM7704		
			P8224			
			D8228			
	MB471		P8212			
			P8255			
		·····	C8255			

As of April, 1976.

MITSUBISHI LSIS GUIDE TO INTERCHANGEABILITIES

Function	Mitsubishi Electric	Circuit organization	Motorola Semiconductor Products	National Semiconductor	Nippon Electric
CPU	M58710 S	8-bit parallel		INS8080A	μPD 8080 Α
	M58531P	256 imes 1 bit		MM1101AN	μPD 402 D
	M58721P	256× 4 bit			
	M58721S	256× 4 bit			μPD2101
0	M58722P	256× 4 bit			*****
Static RAMs	M58722S	256× 4 bit			μPD2111
N/AIVIS	M58723P	256× 4 bit			
	M58723S	256× 4 bit			
	M58751P	1024× 1 bit			
	M58751S	1024× 1 bit			
	M58533P	1024 $ imes$ 1 bit		MM1103D	μPD 404 D
	M58755S-1	4096× 1 bit			μPD411D
Dynamic	M58755S-2	4096 imes 1 bit	6606L		
RAMs	M58755S-3	4096 imes 1 bit			μPD 411 D- 3
	M58756K	4096 $ imes$ 1 bit			
	M58756S	4096 $ imes$ 1 bit	6604		μPD 414 D
	M58730-XXXS	1024 $ imes$ 8 bit	· · · · · · · · · · · · · · · · · · ·		
Maak	M58730-001S	1024 $ imes$ 8 bit			
Mask ROMs	M58731-XXXP	2048× 8 bit			
	M58731-XXXS	2048× 8 bit			
	M58731-001S	2048× 8 bit			
Field	M58563S	256×8 or 512×4 bit FAMOS		MM1702A	•
Program- mable	M58563S-1	256 $ imes$ 8 or 512 $ imes$ 4 bit FAMOS			
ROMs	M58651S	1024× 4 bit EAROM			
	M54700K	256× 4 bit			
	M54700P	256 × 4 bit			
Fusible	M54700S	256× 4 bit			
PROMs	M54740K	32×8 bit			
	M54730P	32× 8 bit			
	M54730S	32×8 bit			
Dynamic	M58502P	256× 4 bit		MM1402A	
Shift Registers	M58503P	512× 2 bit		MM1403A	
Registers	M58504P	1024× 1 bit		MM1404A	
I/O N divices	M58609-XXS	Keyboard encoder			
	M58609-04S	Keyboard encoder			
	M58620-XXXS	Keyboard encoder			
	M58620-001S	Keyboard encoder			DD00045
	M54550P	Clock generator/driver			μΡ B8224 D
	M54551K	System controller/bus driver			μPB8228D
-	M54552P	8-bit I/O port			μPB8212D
	M58740P	Programmable periph. interface			DDAAFEC
	M58740S	Programmable periph. interface			μPD8255C

P

MITSUBISHI LSIS GUIDE TO INTERCHANGEABILITIES

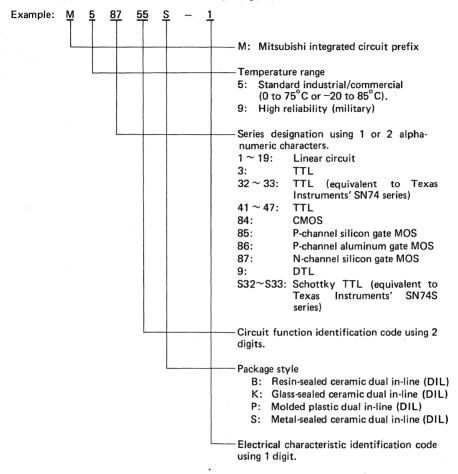
Texas Instruments	Toshiba	Signetics	General Instrument
TMS8080			
	T 3374		RA9-1101A
TMS4039			
TMS4042			
TMS4043			
TMS4033	T3382	2602	
		1103	RA9-1103D
TMS4060-2			
TMS4060			
TMS4060-2			
TMS4096			
TMS4700			
			ER2401
		2502	
		2502	
		2503	
			AY-5-2376

As of April, 1976.

1 — 9

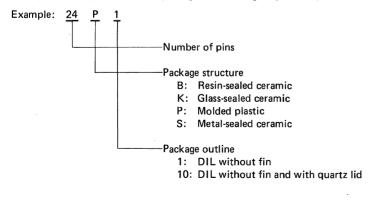
and the second second

(a) A set of the se

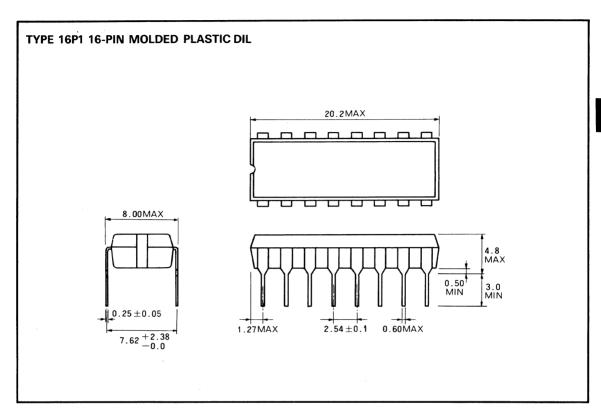

ORDERING INFORMATION AND PACKAGE OUTLINES

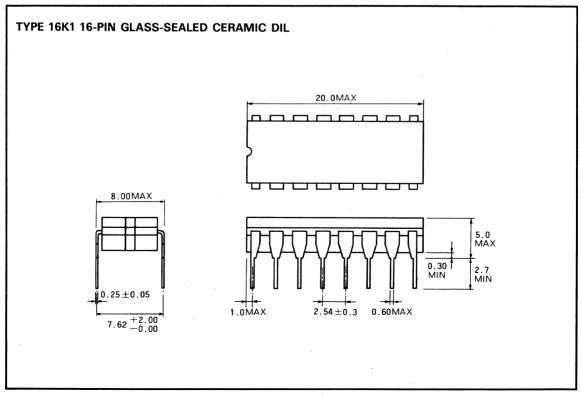
2

MITSUBISHI LSIS ORDERING INFORMATION

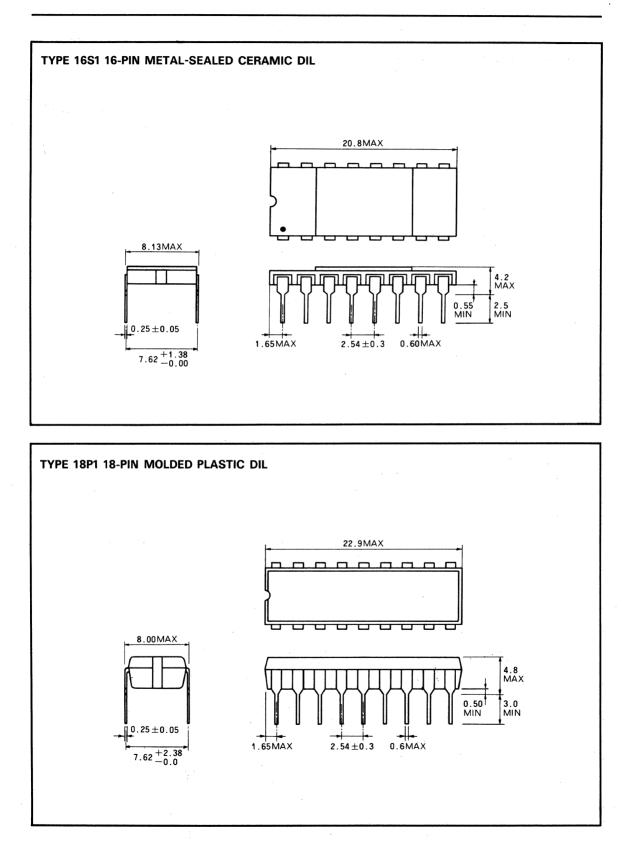

FUNCTION CODE

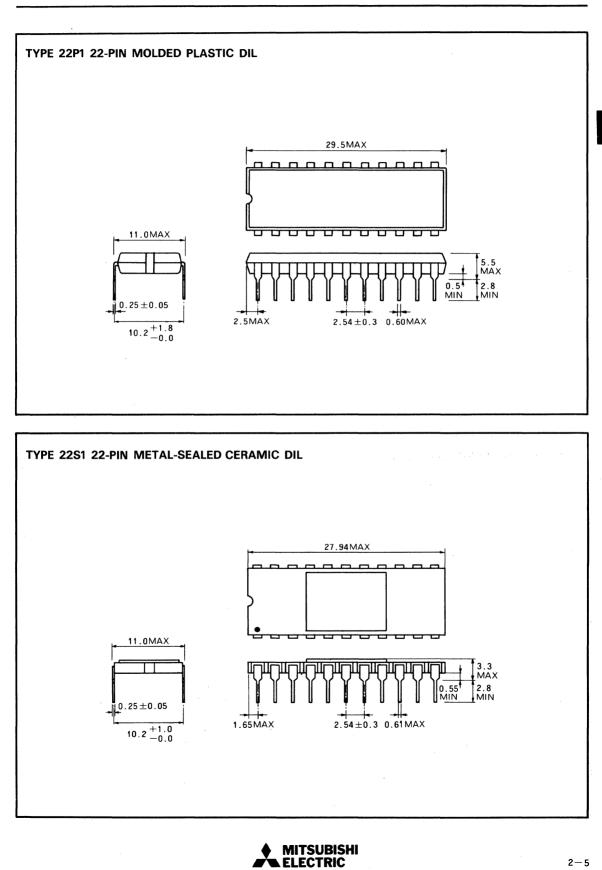
Mitsubishi integrated circuits may be ordered using a simplified alphanumeric type-code which defines the function of the ICs and the package style.



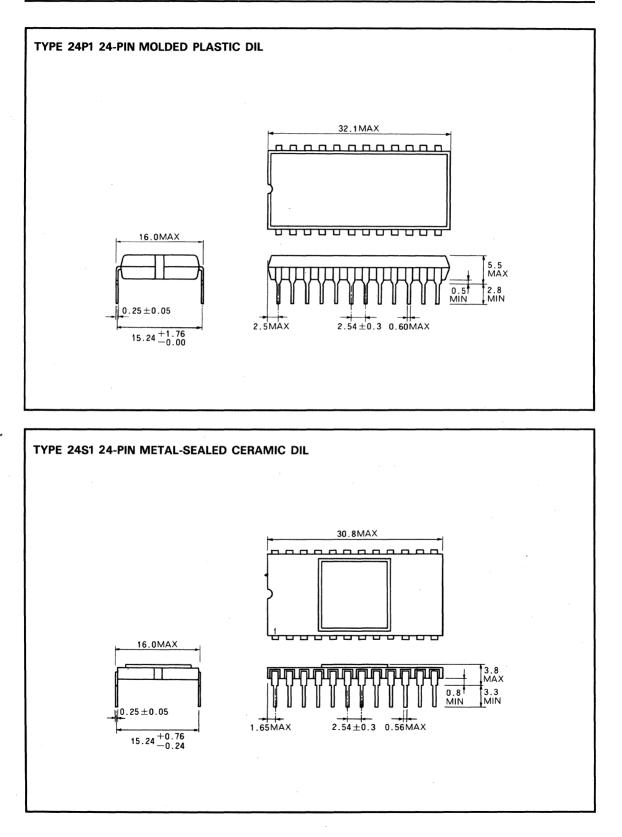

PACKAGE CODE

Package style may be specified by using the following simplified alphanumeric code.

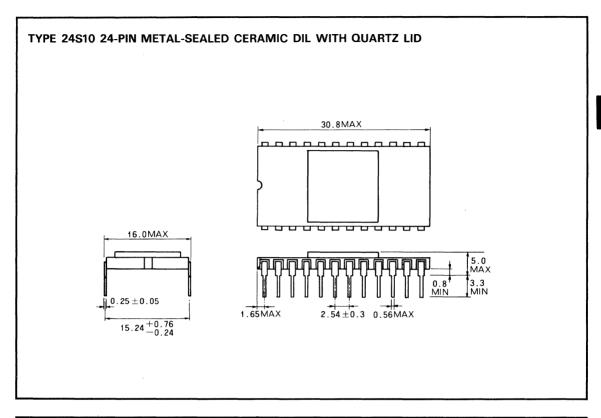



MITSUBISHI ELECTRIC

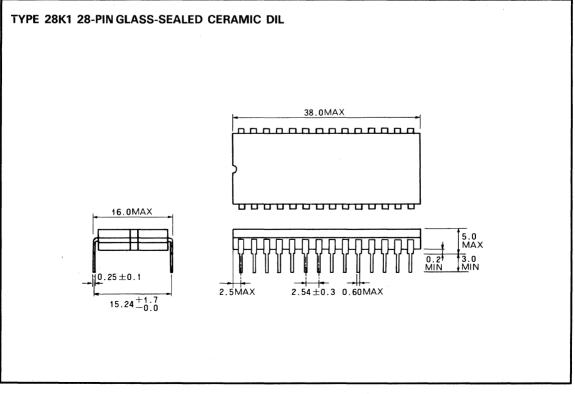
MITSUBISHI LSIS PACKAGE OUTLINES

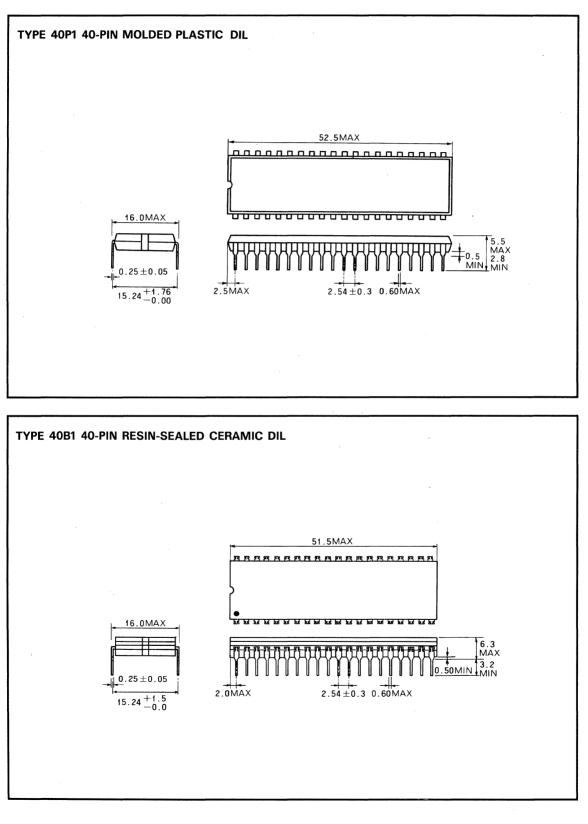


MITSUBISHI LSIs PACKAGE OUTLINES

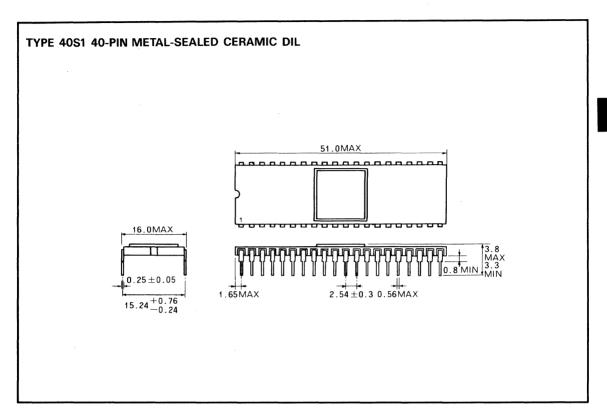


4


MITSUBISHI LSIS PACKAGE OUTLINES



4


MITSUBISHI

MITSUBISHI LSIS PACKAGE OUTLINES

MITSUBISHI LSIS PACKAGE OUTLINES

GENERAL INFORMATION

3

GENERAL

- Semiconductor A material with resistivity usually in the range between metals and insulators, in which the electrical charge carrier concentration increases with increasing temperature range.
- **Extrinsic semiconductor** A semiconductor with charge carrier concentration dependent upon impurities or other imperfections.
- N-type semiconductor An extrinsic semiconductor in which the conduction electron density exceeds the mobile hole density.
- P-type semiconductor An extrinsic semiconductor in which the mobile hole density exceeds the conduction electron density.
- Junction A region of transition between semiconducting regions of different electrical properties.
- **PN junction** A junction between P- and N-type semiconductor materials.
- **Depletion layer** A region in which the mobile charge carrier density is insufficient to neutralize the net fixed charge density of donors and acceptors.
- Breakdown (of a reverse-biased PN junction) A phenomenon, the initiation of which is observed as a transition from a state of dynamic resistance to a state of substantially lower dynamic resistance for increasing the magnitude of a reverse current.
- Semiconductor device A device whose essential characteristics are due to the flow of charge carriers within a semiconductor.
- **Reverse voltage** The voltage across a junction or a diode when biased in the direction corresponding to the higher resistance.
- Breakdown voltage The reverse voltage at which the reverse current through a junction becomes greater than a specified value.
- **Case temperature** The temperature measured at a specified point on the case of a semiconductor device.
- Storage temperature The temperature at which a semiconductor device is stored without any voltage applied.

INTEGRATED CIRCUITS

- **Microelectronics** The concept of the construction and use of highly miniaturized electronic circuits.
- **Microcircuit** A microelectronic device, having a high equivalent circuit-element and/or component density, which is considered as a single unit.

Note: A microcircuit may be a microassembly or an integrated (micro) circuit.

Integrated circuit A circuit in which a number of circuit elements are inseparably associated and electrically inter-

connected, so that, for the purpose of specification, testing, commerce and maintenance, it is considered indivisible.

Note: For this definition, a circuit element does not have an envelope or external connection and is not specified or sold as a separate item.

- Integrated microcircuit A microcircuit in which a number of circuit elements are inseparably associated and electrically interconnected, so that, for the purpose of specification, testing, commerce and maintenance, it is considered indivisible.
 - Note 1: For this definition, a circuit element does not have an envelope or external connection and is not specified or sold as a separate item.
 - Where no misunderstanding is possible, the term 'integrated microcircuit' may be abbreviated to 'integrated circuit
 - 3: Further qualifying terms may be used to describe the technique used in the manufacture of a specific integrated microcircuit.

Examples of the use of qualifying terms are: semiconductor monolithic integrated circuit, semiconductor multichip integrated circuit, thin film integrated circuit, thick film integrated circuit, hybrid integrated circuit.

- **Microassembly** A microcircuit consisting of various components and/or integrated microcircuits which are constructed separately and which can be tested before being assembled and packaged.
 - Note 1: For this definition, a component has external connections and possibly an envelope as well and it also can be specified and sold as a separate item.
 - Further qualifying terms may be used to describe the form of the components and/or the assembly techniques used in the construction of a specific microassembly.

Examples of use of qualifying terms are: semiconductor multichip microassembly, discrete component microassembly.

- Integrated electronics The art and technology of the design, fabrication and use of integrated circuits.
- Worst-case conditions (for a single characteristic) The values of the applied conditions which individually are chosen from within a specified range and together produce the most unfavorable value for a considered characteristic.

Note: Worst-case conditions for different characteristics may be different.

DIGITAL INTEGRATED CIRCUITS

- **Digital signal** The variation with time of a physical quantity that is used for the transmission of information or for information processing, and that has a finite number of nonoverlapping ranges of values.
 - Note 1: The physical quantity may be voltage, or current, or impedance, etc. 2: For convenience, each range of values can be represented by a single value—e.g., the nominal value.

Binary signal A digital signal with only two possible ranges of values.

Note: For convenience, each range of values can be represented by a single value.e.g., the nominal value.

Low range (of a binary signal) The range of least positive (most negative) levels of a binary signal.

Note: This range is often denoted by 'L-range,' and any level in the range by 'L-level.'

High range (of a binary signal) The range of most positive (least negative) levels of a binary signal.

Note: This range is often denoted by 'H-range,' and any level in the range by 'H-level.'

- **Digital circuit** A circuit which is designed to operate by means of digital signals at the input(s) and at the output(s).
 - Note 1: In this definition, it is understood that 'inputs' and 'outputs' exclude static power supplies.
 - 2: In some digital circuits-e.g., certain types of astable circuits-the inputs need not exist.
- Binary circuit A digital circuit designed to operate with binary signals.

Note: The pairs of ranges of values of the binary signals may be different at different terminals.

- Input configuration (input pattern) (of a binary circuit) A combination of the L-levels and H-levels at the input terminals at a given instant.
- Output configuration (output pattern) (of a binary circuit) A combination of the L-levels and H-levels at the output terminals at a given instant.
 - Note: When there is no possibility of ambiguity, the output configuration (output pattern) may be represented by the level (expressed as L-level or H-level) of the signal at a stated output terminal of the circuit (the reference output terminal).
- Input terminal A terminal by means of which an applied signal may modify the output configuration (output pattern) of the circuit—either directly or indirectly by modifying the ways in which the circuit reacts to signals at other terminals.
- **Combinatorial (digital) circuit** A digital circuit in which there exists one, and only one, combination of the digital signals at the outputs for each possible combination of digital signals at the inputs.
- Sequential (digital) circuit A digital circuit in which there exists at least one combination of the digital signals at the inputs for which there is more than one corresponding combination of the digital signals at the outputs.

Note: These combinations at the outputs are determined by previous history-e.g., as a result of internal memory or delay.

- Elementary combinatorial circuit A binary combinatorial (digital) circuit which has only one output terminal, and in which the output signal accepts the value occurring only once in the function if, and only if, the signals applied to all the input terminals are either all in the H-range or all in the L-range.
 - Note 1: Because the output signal value (occurring only once in the function table) can lie either in the H-range or in the L-range, there are four types of elementary combinatorial circuits.
 - According to the assignment of the signal values L and H to the binary values 0 and 1 of Boolean algebra, the following logic operations can be realized by means of the four types of elementary combinatorial circuits: AND, OR, NAND, NOR.
 - 2: Nonelementary combinatorial circuits can be formed by combining elementary combinatorial circuits or by combining elementary combinatorial circuits with inverters.
- Function table A representation of the necessary or possible relations between the values of the digital signals at the inputs and the outputs of a digital circuit, these values of the digital signals being indicated either by using electrical values directly or by stating the electrical significance of the symbols-e.g., L and H for binary circuits. Generally, every column indicates the values of the digital signals at an input or at an output of the digital circuit; every row indicates the combination of values of the digital signals at the input(s) and the resulting values of the digital signals at the output(s); whenever the value of the digital signal at an output is not determined, it should be indicated by a question mark; whenever the value of a digital signal at an input has no influence, it should be indicated by the symbol L/H or X.
- Truth table (for a relation between digital variables) A representation of the logic relationship between one or more independent digital variables and one or more dependent digital variables, by means of a table which, for each possible combination of the values of the independent variables, gives the appropriate values of the dependent variables.
 - Note: The distinction between 'function table' and 'truth table' is fundamentally necessary, because the same digital circuit may fulfill several different logic operations, according to the arbitrary assignment of the values of the digital variables to the values of the digital electrical quantities.
- Input loading factor (of a bipolar digital circuit) A factor which indicates the ratio of the input current of a specified input terminal of a digital circuit to the input current of a particular circuit which is chosen as a reference load.
 - Note: The reference load should preferably be chosen in such a way that the input loading factor becomes an integer.

MITSUBISHI LSIS TERMINOLOGY

Output loading capability (of a bipolar digital circuit) A factor which indicates the ratio of the maximum output current of a specified output terminal of a digital circuit to the input current of a particular circuit which is chosen as a reference load.

Note: The reference load should preferably be chosen in such a way that the output loading capability becomes an integer.

- **Excitation** An input configuration (input pattern), or change in input configuration (input pattern), that can: cause the circuit to change its output configuration (output pattern), either directly, or in conjunction with an already existing state of preparedness; or put the circuit in a state of preparedness; or either cancel or modify an already existing state of preparedness.
 - Note 1: The repetition or reiteration of a given excitation will not necessarily produce the same effect.

2: In some cases, an excitation can also maintain an output configuration (output pattern) which it could have produced.

- **Expander circuit** An auxiliary circuit which can be used to expand the number of inputs of equal influence of an associated circuit without modifying the function of the associated circuit.
- **Binary inverter** A binary circuit which has only one input terminal and one output terminal, and in which a signal value L (or H) at the input produces a signal value H (or L) at the output.
- Function (sequential) matrix A table having several inputs which gives the possible output configurations for each input configuration(s) and from which the output configuration(s) resulting from a transition from each individual input configuration to any other input configuration can be read directly.
 - Note: Where appropriate, a function (sequential) matrix may be completed by additional data or details concerning time conditions—e.g., transition times for the input levels, delay time, duration of the input configuration to produce a desired new output configuration.

SEQUENTIAL CIRCUITS

- Master-slave arrangement An arrangement of two bistable circuits such that one of them, called the 'slave,' reproduces the output configuration of the other circuit, called the 'master.' The transfer of information from the master to the slave is produced by means of an appropriate signal.
- Register An arrangement of bistable circuits by means of which information may be accepted, stored and restituted.

Note: The register may form part of another memory and is of a specified capacity.

- Shift Register A register that, by means of an appropriate control signal, can transfer information between consecutive bistable circuits with the sequence being preserved.
- **Counter** A sequential circuit for storing numbers that permits such numbers to be incremented or decremented by a defined constant, including unity.

TIME INTERVALS BETWEEN INPUT SIGNALS

Setup time (t_{su}) (of a digital circuit) The time interval between the application of a signal which is maintained at a specified input terminal and a consecutive active transition at another specified input terminal.

- Note 1: The setup time is measured between the instants at which the magnitudes of the two signals pass through specified values within the transition of the signal levels.
 - 2: The setup time is the actual time between two events and may be insufficient to accomplish the setup. A minimum value is specified which is the shortest interval for which correct operation of the digital circuit is guaranteed.
 - 3: The setup time may have a negative value, in which case the minimum limit for which correct operation of the digital circuit is guaranteed defines the longest interval between the active transition and the application of the other signal

Hold time (t_h) (of a digital circuit) The time interval during which a signal is retained at a specified input terminal after an active transition occurs at another specified input terminal.

- Note 1: The hold time is measured between the instants at which the magnitudes of the two signals pass through specified values within the transitions of the signal levels.
 - 2: The hold time is the actual time between two events and may be insufficient to accomplish the intended result. A minimum value is specified which is the shortest interval for which correct operation of the digital circuit is guaranteed.
 - 3: The hold time may have a negative value, in which case the minimum limit for which correct operation of the digital circuit is guaranteed defines the longest interval between the change of the signal and the active transition.
- **Resolution time (t**_{res}) (of a digital circuit) The time interval between the cessation of one input pulse and the commencement of the next input pulse applied to the same input terminal.
 - Note 1: The resolution time is measured between the instants at which the magnitude of the input signal passes through specified values within the transitions of the signal levels.
 - 2: The resolution time is the actual time between two pulses and may be insufficient to ensure that both pulses are recognized. A minimum value is specified which is the shortest interval for which correct operation of the digital circuit is guaranteed.

SWITCHING TIMES OF BINARY CIRCUITS

- High-level to low-level (low-level to high-level) propagation time (t_{PHL} and t_{PLH}) The time interval between specified reference points on the input and on the output pulses, when the output is going to the low (high) level and when the device is driven and loaded by typical devices of stated type.
 - Note: The mean value between the upper limit of the input low range and the lower limit of the input high range is generally used as the specified reference level.
- High-level to low-level (low-level to high-level) delay time $(t_{DHL} \text{ and } t_{DLH})$ The time interval between specified reference points on the input and on the output pulses, when the output is going to the low (high) level and when the device is driven and loaded by specified networks.
- High-level to low-level (low-level to high-level) transition time (t_{THL} and t_{TLH}) The time interval between specified reference points on the edge of the output pulse when the output is going to the low (high) level and when a specified input signal is applied through a specified network and the output is loaded by another specified network.

INTEGRATED CIRCUIT MEMORIES

- Memory cell (memory element) The smallest subdivision of a memory into which a unit of data has been or can be entered, in which it is or can be stored, and from which it can be retrieved.
- Integrated circuit memory An integrated circuit consisting of memory cells (elements) and usually including associated circuits such as those for address selection, amplifiers, etc.
- **Read-only memory (ROM)** A memory intended to be read only.
 - Note: Unless otherwise specified, the term 'read-only memory' implies that the content is unalterable, and defined by its structure.
- Fixed-programmed read-only memory A read-only memory in which the data contents of each cell (element) are determined during manufacture and are thereafter unalterable.
- Mask-programmed read-only memory A fixed-programmed read-only memory in which the data contents of each cell (element) are determined during manufacture by the use of a mask.
- Field-programmable read-only memory A read-only memory that, after being manufactured, can have the data content of each memory cell (element) altered.
- Programmable read-only memory (PROM) A read-only memory that can have the data content of each memory cell (element) altered once only.

- **Reprogrammable read-only memory** A read-only memory that can have the data content of each memory cell (element) altered more than once.
- **Read/write memory** A memory in which each cell (element) may be selected by applying appropriate electrical input signals, and in which the stored data may be either: a) sensed at appropriate output terminals; or b) changed in response to other similar electrical input signals.
- Static read/write memory A memory in which the data are retained in the absence of control signals.
 - Note 1: The words 'read/write' may be omitted from the term when no misunderstanding will result. 2: A static memory may use dynamic addressing or sensing circuits.
- **Dynamic read/write memory** A memory in which the cells (elements) require the repetitive application of control signals in order to retain the data stored.
 - Note 1: The words 'read/write' may be omitted from the term when no misunderstanding will result.
 - 2: Such repetitive application of the control signals is normally called a refresh operation.
 - 3: A dynamic memory may use static addressing or sensing circuits.
 - 4: This definition applies whether the control signals are generated inside or outside the integrated circuit.
- Volatile memory A memory whose data content is lost when the power supply is disconnected.
- Random-access memory (RAM) A memory that permits access to any of its address locations in any desired sequence.

MICROPROCESSOR INTEGRATED CIRCUITS

Microprocessor integrated circuit An integrated circuit capable of:

- 1. Accepting coded instructions at one or more terminals.
- 2. Carrying out, in accordance with the instructions received, all of:
 - a. the acceptance of coded data for processing and/or storage;
 - b. arithmetic and logical operations on the input data together with any relevant data stored in the microprocessor integrated circuit;
 - c. the delivery of coded data.
- Accepting and/or delivering signals controlling and/or describing the operation or state of the microprocessor integrated circuit.

Note: The instructions may be fed in, built in, or held in an internal store.

Note: The definitions of terms described here are extracted from IEC publication 147-0. Some of the terms for integrated circuit memories and microprocessors are under consideration.

FOR DIGITAL INTEGRATED CIRCUITS

4

4

Symbol	Parameter—definition
Ci	
Co	Input capacitance Output capacitance
C _{i/o}	Input/output terminal capacitance
C _{1(¢)}	Input capacitance of clock input
f	Frequency
f(φ)	Clock frequency
1	Current-the current into an integrated circuit terminal is defined as a positive value and the current out of a terminal is defined as a negative value
IBB	Supply current from V _{BB}
BB(AV)	Average supply current from VBB
ICC	Supply current from V _{CC}
ICC(AV)	Average supply current from V _{CC}
ICC(PD)	Power-down supply current from V _{CC}
	Supply current from V _{DD}
IDD(AV)	Average supply current from V _{DD}
IGG	Supply current from V _{GG}
IGG(AV)	Average supply current from V _{GG}
ti	Input current
цн	High-level input current—the value of the input current when V _{DH} is applied to the input considered
LIL.	Low-level input current—the value of the input current when V_{OL} is applied to the input considered
Тон	High-level output current—the value of the output current when V_{OH} is applied to the output considered
IOL	Low-level output current—the value of the output current when V_{OL} is applied to the output considered
loz	Off-state (high-impedance-state) output current—the current into an output having a three-state capability with input conditions so applied that it will establish,
	according to the product specification, the off (high-impedance) state at the output
OZH	Off-state (high-impedance-state) output current, with high-level voltage applied to the output
IOZL	Off-state (high-impedance-state) output current, with low-level voltage applied to the output
los	Short-circuit output current
I SS	Vss supply current
Pd	Power dissipation
R ₁	Input resistance
RL	External load resistance
ROFF	Off-state output resistance
R _{ON}	On-state output resistance
ta	Access time-the time interval between the application of a specified input pulse during a read cycle and the availability of valid data signals at an output
ta(AD)	Address access time-the time interval between the application of an address input pulse and the availability of valid data signals at an output
ta(CE)	Chip enable access time
ta(cs)	Chip select access time
tc	Cycle time
tc(REF)	Refresh cycle time-the time interval between successive signals that are intended to restore the level in a dynamic memory cell to its original level
tc(RD)	Read cycle time-the time interval between the start of a read cycle and the start of the next cycle
t _{c(RMW)}	Read-modify-write cycle time-the time interval between the start of a cycle in which the memory is read and new data are entered, and the start of the
	next cycle
t _{c(WR)}	Write cycle time-the time interval between the start of a write cycle and the start of the next cycle
t _{dv(AD)}	Data valid time with respect to address—the time interval following an initial change of address during which data stored at the initial address continues to
	be valid at the output
tdv(CE)	Data valid time with respect to chip enable-the time interval following chip enable during which output data continues to be valid
tdv(cs)	Data valid time with respect to chip select-the time interval following chip select during which output data continues to be valid
ta	Delay time-the time between the specified reference points on two pulses
td(φ)	Delay time between clock pulses-e.g., symbology: delay time, clock 1 to clock 2 or clock 2 to clock 1
t _{DHL}	High-level to low-level delay time
t _{dlh}	Low-level to high-level delay time
tf	Fall time
th	Hold time-the time interval during which a signal is retained at a specified input terminal after an active transition occurs at another specified input terminal
th(AD)	Address hold time
th(CE)	Chip enable hold time
th(CS)	Chip select hold time Data hold time
th(DA)	Data note ume

3

MITSUBISHI LSIs

SYMBOLOGY

Symbol	Parameter definition
th(RD)	Read hold time
th(WR)	Write hold time
PHL	High-level to low-level propagation time-the time interval between specified reference points on the input and on the output pulses when the output is
PLH	Low-level to high-level propagation time-the going to the low (high) level and when the device is driven and loaded by typical devices of stated type
tr	Rise time
su	Setup time the time interval between the application of a signal which is maintained at a specified input terminal and a consecutive active transition at
50	another specified input terminal
SU(AD)	Address setup time
SU(AD-WR)	Address setup time with respect to write
SU(CE-P)	Chip enable setup time with respect to precharge
su(CS)	Chip select setup time
su(CS-WR)	Chip select setup time with respect to write
su(DA)	Data setup time
SU(DA)	Precharge setup time with respect to chip enable
su(RD)	Read setup time
SU(WR)	Write setup time
THL	High-level to low-level transition time-the time interval between specified reference points on the edge of the output pulse when the output is going t
TLH	Low-level to high-level transition time-the low (high) level and when a specified input signal is applied through a specified network and the output is
1	loaded by another specified network
w	Pulse width-the time interval between specified reference points on the leading and trailing edges of the waveforms
W(CE)	Chip enable pulse width
W(CEH)	Chip enable high pulse width
W(CEL)	Chip enable low pulse width
w(CS)	Chip select pulse width
w(RD)	Read pulse width
w(WR)	Write pulse width
W(\$)	Clock pulse width
wr	Write recovery time-the time interval between the termination of a write pulse and the initiation of a new cycle
Ta l	Ambient temperature
- Г _{орг}	Operating temperature
Tstg	Storage temperature
VBB	VBB supply voltage
/cc	VCC supply voltage
	VDD supply voltage
/ GG	VGG supply voltage
/	Input voltage
/н	High-level input voltagethe value of the permitted high-state voltage at the input
/1L	Low-level input voltage-the value of the permitted low-state voltage range at the input
/o	Output voltage
/он	High-level output voltagethe value of the guaranteed high-state voltage range at the output
OL	Low-level output voltage-the value of the guaranteed low-state voltage range at the output

٨

•

MITSUBISHI LSIS QUALITY ASSURANCE AND RELIABILITY TESTING

1. PLANNING

In recent years, advances in integrated circuits have been rapid, with increasing density and speed accompanied by decreasing cost. Because of these advances, it is now practical and economically justifiable to use these devices in systems of greater complexity and in which they were previously considered too expensive. All of these advances add up to increased demand.

We at Mitsubishi foresaw this increased demand and organized our production facilities to meet it. We also realized that simply increasing production to meet the demand was not enough and that positive steps would have to be taken to assure the reliability of our products.

This realization resulted in development of our Quality Assurance System. The system has resulted in improved productus, and Mitsubishi is able to supply its customers' needs with ICs of high reliability and stable quality. This system is the key to future planning for improved design, production and quality assurance.

2. QUALITY ASSURANCE SYSTEM

The Quality Assurance System imposes quality controls on Mitsubishi products from the initial conception of a new product to the final delivery of the product to the customer. A diagram of the total system is shown in Fig. 1. For ease of understanding, the system is divided into three stages.

2.1 Quality Assurance in the Design Stage

The characteristics of the bread-board devices are carefully checked to assure that all specifications are met. Standard integrated circuits and high-quality discrete components are used. During the design stage, extensive use is made of a sophisticated CAD program, which is updated to always include the latest state-of-the-art techniques.

2.2 Quality Assurance in the Limited-Manufacturing Stage

Rigid controls are maintained on the environment, incoming material and manufacturing equipment such as tools and test equipment. The products and materials used are subjected to stringent tests and inspections as they are manufactured. Wafer production is closely monitored.

Finally, a tough quality assurance test and inspection is made before the product is released for delivery to a customer. This final test includes a complete visual inspection, and electrical characteristics tests. A sampling technique is used to conduct tests under severe operating conditions to assure that the products meet reliability specifications. Pictures of some of the test equipment used are shown in Figs. $2 \sim 5$.

2.3 Quality Assurance in the Full Production Stage

Full production of a product is not started until it has been confirmed that it can be manufactured to meet quality and reliability specifications. The controls, tests and inspection procedures developed in $\S2.2$ are continued. The closest monitoring assures that they are complied with.

3. RELIABILITY CONTROL

3.1 Reliability Tests

The newly established Reliability Center for Electronic Components of Japan has established a qualification system for electronic components. Reliability test methods and procedures are developed to mainly meet MIL-STD-883 and EIAJ-IC-121 specifications. Details of typical tests used on Mitsubishi ICs are shown in Table 1.

Table	1	Typical	reliability	test	items	and	conditions	
-------	---	---------	-------------	------	-------	-----	------------	--

Group	Item	Test condition						
	High temperature operating life	Maximum operating ambient temperature	1000h					
1	High temperature storage life	Maximum storage temperature	1000h					
	Humidity (steady state) life	65°C 95%RH	500h					
	Soldering heat	260°C 10s						
2	Thermal shock	0~100°C 15 cycles, 10min/cycle						
-	Temperature cycle	Minimum to maximum storage temperature, 10 cycles of 1h/cycle						
	Soldering	230°C, 5s, use rosin flux						
	Lead integrity	Tension: 340g 30s Bending stress: 225g, ±30°, 3 times						
3	Vibration	20G, X, Y, Z each direction, 4 times 100~2000Hz-4 min/cycle						
	Dropping	75cm, 3 times, wood plate, Y1 direction						
	Constant acceleration	20000G, Y ₁ direction, 1 min						

3.2 Failure Analysis

Devices that have failed during reliability or acceleration tests are analyzed to determine the cause of failure. This information is fed back to the process engineering section and manufacturing section so that improvements can be made to increase reliability. A summary of failure analysis procedures is shown in Table 2.

Table 2 Summary of failure analysis procedures

Step	Description
	O Inspection of leads, plating, soldering and welding
	O Inspection of materials, sealing and package marking
1. External	O Visual inspection of other items of the specifications
examination	O Use of stereo microscopes, metallurgical microscopes, X-ray
	photographic equipment, fine leakage and gross leakage
	testers in the examination
	O Checking for open circuits, short circuits and parametric
	degradation by electrical parameter measurement
2. Electrical tests	O Observation of characteristics by a synchroscope or a curve
z. Liectrical tests	tracer and checking of important physical characteristics
	by electrical characteristics
	O Stress tests such as environmental or life tests, if required
	O Removal of the cover of the device, the optical inspection
	of the internal structure of the device
3. Internal	O Checking of the silicon chip surface
examination	O Measurement of electrical characteristics by probes,
	if applicable
	O Use of SEM, XMA and infrared microscanner if required
	O Use of metallurgical analysis techniques to supplement analysis of the internal examination
	 Slicing for cross-sectional inspection
4. Chip analysis	O Analysis of oxide film defects
	O Analysis of diffusion defects

QUALITY ASSURANCE AND RELIABILITY TESTING

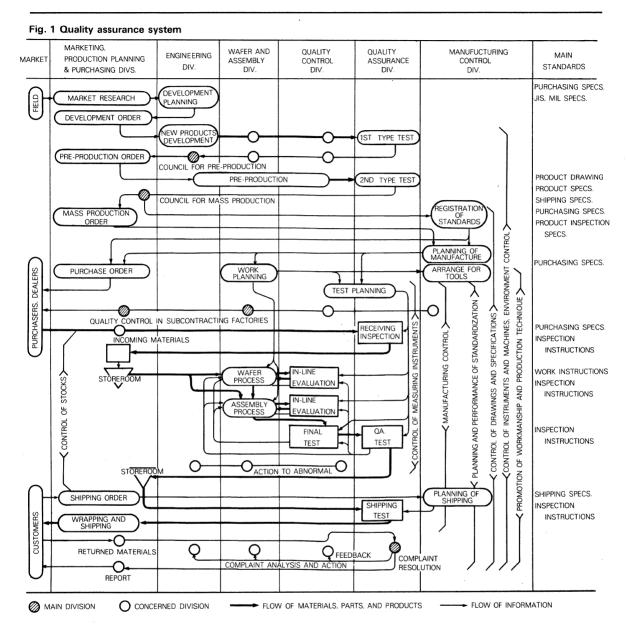


Fig. 2 Large-scale test system for LSIs

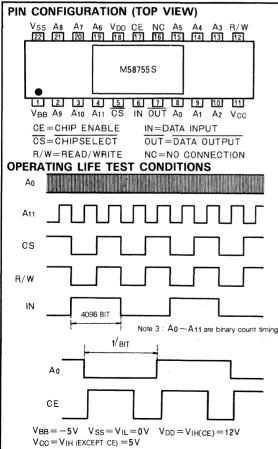
Fig. 3. Monitored temperature cycling tester

Fig. 4 Helium leakage tester

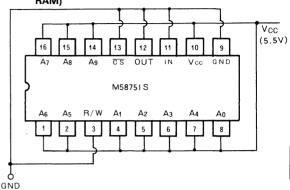
Fig. 5 Operating life tester

4. TYPICAL RESULTS OF RELIABILITY TESTS AND Fig. 7 DC biased test procedure (for M58751 1K-bit static FAILURE ANALYSES

4.1 Results of Reliability Test


Formerly, sufficient reliability for memory MOS LSIs was obtained by using metal-sealed ceramic packages, but with the development of high reliability plastic molding technology, production has been shifted to plastic molded memory MOS LSIs.

The following tests were performed:


- 1. Operating life test: Durability is tested at high temperature under operating state conditions by applying clock pulse inputs as shown in Fig. 6.
- 2, DC biased test: Durability is tested at high temperature biasing DC voltage, as shown in Fig. 7.
- 3. High temperature storage: The durability of devices stored at high temperatures is tested.

Typical results of memory MOS LSI life tests are shown in Table 3. The failure rate computed from this reliability data using an appropriate acceleration factor is 0.1 FIT or less (1 FIT=10⁻⁹/hour) per bit, about the same as, or less than, for core memories.

Fig. 6 Operating life test procedure (for M58755 4K-bit dynamic RAM)

RAM)

Table 3 Typical results of memory MOS LSI life tests

				-			
Type number	Package	Test	Temp. °C	No. of sample	Component s hours	No. of failures	Remarks
			55°C	38	114,000	0	
		Operating life	80°C	20	20,000	0	
	28-pin metal	-	125°C	15	15,000	0	
M58533S	sealed ceramic DIL		80°C	20	20,000	0	
	Ceramic Dic	DC biased	125°C	15	20,000	0	
		High temp.stg	150°C	38	15,000	0	
		Onersting life	80°C	20	20,000	0	Function
	20 min plantin	Operating life	125°C	55	74,000	1	failure
M58533P	28-pin plastic molded DIL		80°C	20	20,000	0	
	iniciada Diz	DC biased	125°C	40	60,000	0	
		High temp. stg	150°C	30	30,000	0	
		0	80°C	20	20,000	0	
	10 sis slastia	Operating life	125°C	20	20,000	0	
M58531P	16-pin plastic molded DIL	DC biased	80°C	20	20,000	0	
		DC Diased	125°C	20	20,000	0	
		High temp. stg	150°C	50	50,000	0	
		Opporationa life	80°C	40	80,000	0	
	16 nin plantia	Operating life	125°C	120	160,000	0	
M58751 P	16-pin plastic molded DIL	DC biased	125°C	40	80,000	0	
		Lich tomp, sta	150°C	5	5,000	0	
		High temp. stg	200°C	5	5,000	0	
	20	Opporation life	80°C	39	88,000	0	Functiona
M58755S	22-pin ceramic DIL	Operating life	125°C	149	271,000	1	failure (at 240h)
	Colarillo Dil	DC biased	125°C	66	137,000	0	
					Total	2	

4.2 Typical Results of Failure Analyses

Accelerated testing under conditions more severe than normal operating conditions is used to observe failures of moisture resistance, of wire bonding, of surge voltage destruction and of vapor-deposited aluminum interconnection. Typical results are shown below.

4.2.1. Failure in Moisture Resistance

An example of the results of steam pressure testing, performed to evaluate the moisture resistance of a plastic molded package, is shown in Fig. 8. The vapor-deposited aluminum interconnection was corroded due to moisture penetration.

4.2.2. Failure of Wire Bonding

An example of a failure during the monitored temperature cycling test for evaluating the reliability of the wire bonding of the inner leads of the IC is shown in Fig. 9. The cause of this failure may have been the opening of the inner lead bonding because of a difference in thermal expansion coefficients of metal and resin producing a stress on the inner lead.

4.2.3. Failure Due to Surge Voltage

Many integrated circuits fail in the field due to a surge voltage. Surge voltage marginal tests have been performed to reproduce this failure for analysis of the destruction.

Examples of failures during this test are shown in Figs. $10 \sim 13$. Figs. 10 and 11 indicate the existence of a bridge that was confirmed by an X-ray microanalyzer. Figs. 12 and 13 indicate the existence of a hot spot that was confirmed by an infrared microscanner.

4.2.4. Failure of Vapor-Deposited Interconnections

Fig. 14 shows an open-circuit vapor-deposited aluminum

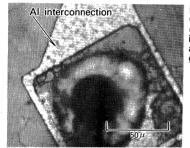


Fig. 8 Corrosion of vapordeposited aluminum interconnection, analyzed by metallurgical microscope interconnection, at a high current density region, caused by the operating life test. This test is performed as a step stress test to investigate IC degradation and failure by temperature and voltage. This phenomenon is due to aluminum electromigration, which is observed when high-current loads are applied to a vapor-deposited aluminum interconnection.

5. CONCLUSION

Mitsubishi Electric's Quality Assurance System is being expanded to provide stronger emphasis on the following points:

- 1. Establishment of quality and reliability levels that satisfy customers' requirements.
- Expansion of the reliability tests of wafers and assembly processes for better evaluation, and standardization of circuit and design rules.
- Establishment of procedures for speeding up the introduction of new technology and improved methods that raise reliability and to improve the accelerated life tests for better failure analysis.
- Establishment of a system for collecting data on failures in the field, which will then be analyzed to develop improved methods for increasing reliability.

We welcome and appreciate the cooperation of our customers in developing design specifications, establishing quality levels, controlling incoming inspections, developing assembly and adjusting processes and collecting field data. Mitsubishi is anxious to work with its customers to develop ICs of increased reliability that meet their requirements.

Fig.9 Lift off of bonded gold inner lead, analyzed by metallurgical microscope

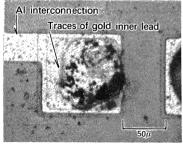


Fig.12 Hot spot at bonding head, analyzed by infrared microscanner

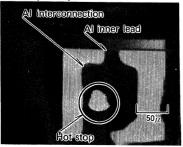


Fig. 10 Surge destruction, analyzed by metallurgical microscope

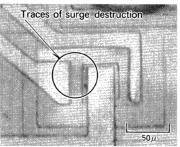


Fig. 13 Junction in Fig. 12 after removal of aluminum, analyzed by metallurgical microscope

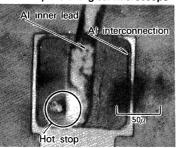


Fig.11 Enlargement of aluminum bridge in Fig. 10, analyzed by XMA-Al kα

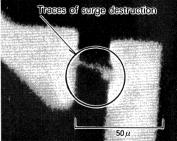
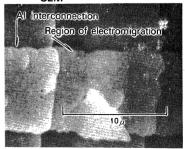



Fig. 14 Electromigration of aluminum interconnection, analyzed by SEM

MITSUBISHI LSIS PRECAUTIONS IN HANDLING MOS ICS

A MOS transistor has a very thin oxide insulator under the gate electrode on the silicon substrate. It is operated by altering the conductance (g_m) between source and drain to control mobile charges in the channel formed by the applied gate voltage.

If a high voltage were applied to a gate terminal, the insulator-film under the gate electrode could be destroyed, and all Mitsubishi MOS IC/LSIs contain internal protection circuits at each input terminal to prevent this. It is inherently necessary to apply reverse bias to the P-N junctions of a MOS IC/LSI.

Under certain conditions, however, it may be impossible to completely avoid destruction of the thin insulator-film due to the application of unexpectedly high voltage or thermal destruction due to excessive current from a forward biased P-N junction. The following recommendations should be followed in handling MOS devices.

1. KEEPING VOLTAGE AND CURRENT TO EACH TERMINAL BELOW MAXIMUM RATINGS

- 1. The recommended ranges of operating conditions provide adequate safety margins. Operating within these limits will assure maximum equipment performance and quality.
- 2. Forward bias should not be applied to any terminal since excessive current may cause thermal destruction.
- Output terminals should not be connected directly to the power supply. Short-circuiting of a terminal to a power supply having low impedance may cause burn-out of the internal leads or thermal destruction due to excessive current.

2. KEEPING ALL TERMINALS AT THE SAME POTENTIAL DURING TRANSPORT AND STORAGE

When MOS IC/LSIs are not in use, both input and output terminals can be in a very high impedance state so that they are easily subjected to electrostatic induction from AC fields of the surrounding space or from charged objects in their vicinity. For this reason, MOS IC/LSIs should be protected from electrostatic charges while being transported and stored by conductive rubber-foam, aluminum foil, shielded boxes or other protective precautions.

3. KEEPING ELECTRICAL EQUIPMENT, WORK TABLES AND OPERATING PERSONNEL AT THE SAME POTENTIAL

1. All electric equipment, work table surfaces and operat-

ing personnel should be grounded. Work tables should be covered with copper or aluminum plates of good conductivity, and grounded. One method of grounding personnel, after making sure that there is no potential difference with electrical equipment, is by the use of a wristwatch metallic ring, etc. attached around the wrist and grounded in series with a 1M Ω resistor. Be sure that the grounding meets national regulations on personnel safety.

 Current leakage from electric equipment must be prevented not only for personnel safety, but also to avert the destruction of MOS IC/LSIs, as described above. Items such as testers, curve-tracers and synchroscopes must be checked for current leakage before being grounded.

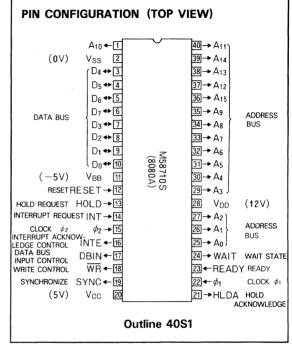
4. PRECAUTIONS FOR MOUNTING OF MOS IC/LSIs

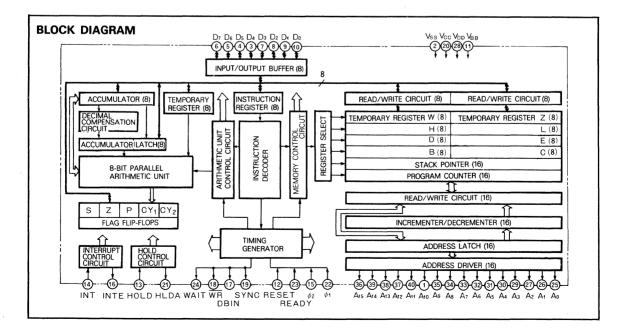
- The printed wiring lines to input and output terminals of MOS IC/LSIs should not be close to or parallel to high-voltage or high-power signal lines. Turning power on while the device is short-circuited, either by a solder bridge made during assembly or by a probe during adjusting and testing, may cause maximum ratings to be exceeded, which may result in the destruction of the device.
- 2. When input/output, or input and/or output, terminals of a MOS IC/LSIs (now open-circuits) are connected, we must consider the possibility of current leakage and take precautions similar to §2 above. To reduce such undesirable trouble, it is recommended that an interface circuit be inserted at the input or output terminal, or a resistor with a resistance that does not exceed the output driving capability of the MOS IC/LSI be inserted between the power supply and the ground.
- 3. A filter circuit should be inserted in the AC power supply line to absorb surges which can frequently be strong enough to destroy a MOS IC/LSI.
- 4. Terminal connections should be made as described in the catalog while being careful to meet specifications.
- Ungrounded metal plates should not be placed near input or output terminals of any MOS IC/LSIs, since destruction of the insulation may result if they become electrostatically charged.
- 6. Equipment cases should provide shielding from electrostatic charges for more reliable operation. When a plastic case is used, it is desirable to coat the inside of the case with conductive paint and to ground it. This is considered necessary even for battery-operated equipment.

MICROPROCESSORS

MITSUBISHI LSIs

M58710S


Alternative Designation 8080A


8-BIT PARALLEL CPU

The M58710S is an 8-bit parallel central processing unit (CPU) fabricated on a single chip using a high-speed N-channel silicon-gate MOS process, in a ceramic DIL package.

FEATURES

- Basic machine instructions: 78
- Execution time (at clock frequency 2MHz): 2µs
- Directly accessible memory capacity: 65536 bytes
- Number of input/output ports: 256 each
- Multi-level interruption
- Direct memory access (DMA) operation
- All outputs are fully TTL-compatible; I_{OL} = 1.9mA
- Unlimited subroutine nesting
- Interchangeable with the Intel's 8080A in pin-to-pin connections and machine instructions.

PIN DESCRIPTIONS

6

a,

Pin	Name	Input or output	Function significance
A0 § A15	Address bus	Out	Provides the address signal to external memory up to 65536 bytes or denotes the I/O device number for up to 256 input and 256 output devices. Address terminals are three-state, and remain in the floating state during the HLT instruction execute cycle. Ti _{WH} or in the hold state.
Do 5 D7	Data bus	In/Out	Provides bidirectional transfer of instructions and data between CPU and the external memory or the I/O ports. Status signals are also transferred. When WR is low, data goes to memory or output ports. When DBIN is high, the data is received by the CPU. The status signals are sent on the data bus, synchronizing with SYNC. Like the address bus; the data bus maintains the floating state during the HLT instruction execute cycle (T _{WH}) and in the hold-state.
SYNC	Synchronizing signal	Out	Indicates the beginning of machine cycles M1 through M5. The status signals for each cycle are sent out on the data bus while SYNC is active, and are latched in the external registers during SYNC.
DBIN	Data bus input control signal	Out	Indicates to the external circuits that the data bus is in the input mode, in which the CPU receives instructions or data from memory or input ports. The CPU receives instructions or data on the data bus when DBIN is high.
READY	Ready signal	In	Indicates to the CPU that data from memory or input/output ports is valid on the data bus. When the READY signal is not high ir the T_2 state, the CPU will enter a waiting state (T_W) and the WAIT signal goes high. When READY is high, its state advances from T_2 or T_W to T_3 . This READY signal is used to synchronize the CPU with slower memory or input/output ports.
WAIT	Wait state signal	Out	Indicates that the CPU has entered a waiting state. When the WAIT signal is high, the CPU is in a waiting state(T_W) and the output on the address bus and the data bus is kept stable.
WR	Write control signal	Out	Indicates timing of a data write-in operation to memory or output ports. When \overline{WR} is low, data on the data bus is valid; when the WAIT signalis high, it is kept low.
HOLD	Hold request signal	In	 When READY is high, the CPU enters the hold state provided that: the CPU is in the HLD instruction execute state (T_{W H}), the CPU is in the T₂ or T_W state and the READY signal is high. When the CPU is in the hold state, the data bus and the address bus will be in the floating state, and will be used with the memory or input/output ports regardless of CPU operation.
HLDA	Hold acknowledge signal	Out	When high, indicates that the CPU is in the hold state and the address bus and the data bus will be in the floating state.
INTE	Interrupt enable control signal	Out	When high, indicates that an interruption will be accepted by the CPU. It is set to high by instruction EI and is reset to low by instruction DI. It is automatically reset to low at state T_1 of machine cycle M_1 when an interrupt is accepted, and is also reset by the RESET signal.
INT	Interrupt request signal	In	Indicates to the CPU M58710S that an interrupt is being requested. When the INT is high, the interrupt request will be accepted by the CPU unless HLDA is high or INTE is low. If INT is accepted, INTE will go low and status information INTA will be transferred to the data bus as an interrupt request signal.
RESET	Reset signal	In	When high, the program counter is reset to 'O' and instruction NOP is set to the instruction register.INTE is reset to low, and th CPU will not accept interrupts. While RESET is high, the address bus and the data bus remain in the floating state; when RESET goes low, the program will start at location 0. The data registers, accumulator, stack pointer and flag flip-flops are not reset by this signal. No synchronization is necessary for the RESET signal, but the high level must be kept for a minimum of 3 clock cycles.

BASIC TIMING

Execution of instructions proceeds in two stages: 1) fetch, and 2) analyze and execute.

Fig. 1 shows the consecutive relationship between stages 1 and 2, after which it is determined whether or not there has been an interrupt request. If there has not, the next instruction is fetched immediately; if there has, it is fetched after completing the necessary interrupt processing. One cycle of this loop completes the execution of one instruction.

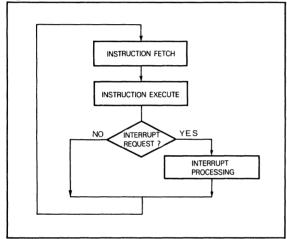
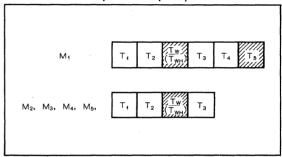


Fig. 1 Execution of basic instructions

There are five machine cycles (M_1 , M_2 , M_3 , M_4 and M_5) and the fetching, analysis, and execution of a single instruction requires from 1 to 5 machine cycles.

Each cycle consists of from three to five states $(T_1, T_2, T_3, T_4 \text{ and } T_5)$, the actual number depending upon the instruction being executed. The duration of one state is defined by successive low-to-high transitions of the ϕ_1 clock. (500ns at a clock frequency of 2MHz).

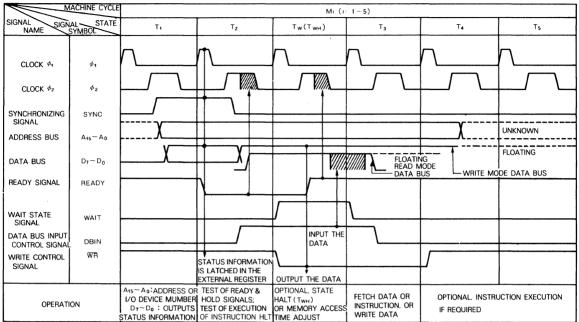

There is also another state T_w , situated between T_2 and T_3 (see Fig. 2) and controlled by the external signals READY and HOLD, and instruction HLT. The duration of T_w is an integral multiple of the clock cycle.

The first machine cycle (M_1) in every instruction cycle is a fetch cycle, and the address for memory read is sent on the address bus. M_1 is composed of states $T_1 \sim T_4$ or $T_1 \sim T_5$, as shown in Fig. 2. Machine cycles M_2 , M_3 , M_4 and M_5 are usually composed of three states $(T_1 \sim T_3)$, with the exception of the instruction XTHL, which requires five states: $T_1 \sim T_5$.

٠

When the clock period is 500ns and there is no T_W , M_1 requires 2 μ s or 2.5 μ s, and the other machine cycles require 1.5 μ s to execute an instruction. When T_W exists, the execution time increases accordingly. Since the minimum instruction cycle requires four states ($T_1 \sim T_4$) of machine cycle M_1 , the minimum instruction execution time is 2 μ s.

Fig. 2 Machine cycle states (hatched blocks indicate a state that may not be required)


INTERRUPT

When an interruption is requested, the decision whether to accept it or not is taken after the instruction in progress is completed; that is, during the last state of the last machine cycle.

When interrupt is requested and the CPU is in the interrupt-enable state (signal INTE is high), the CPU accepts the interrupt and begins a special interrupt machine cycle M_1 in which the program counter is not incremented and the CPU sends out status information INTA (the interrup acknowledge signal). During state T_3 of special interrupt machine cycle M_1 , the external interrupt control circuit sends the interrupt instruction corresponding to interrupt factors on the data bus, and the CPU fetches and executes this instruction. This instruction is a special onebyte call (instruction RST) or a special three-byte call (instruction CALL) which facilitates the processing of interrupts.

 Besides the states shown in Fig.3, there is a state T_H, in which the CPU stays in the hold state after the machine cvcle.

• States T_W , T_4 and T_5 are optional.

Table 1 Status information

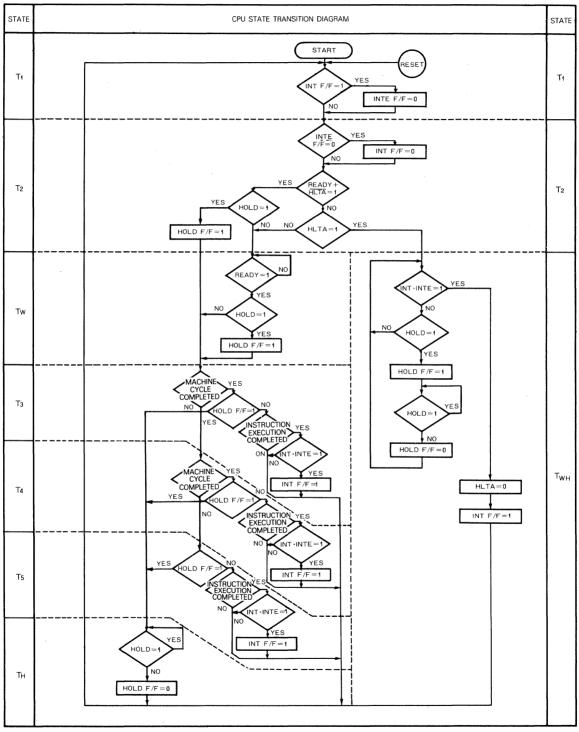
Data bus	Signal symbol	Status information designation	Function						
Do	INTA	Interrupt acknowledge	Goes high when the CPU accepts the interrupt request signal from the INT terminal.						
D٩	wo	Write mode	Goes high when the current machine cycle is in a read mode, and falls when in a write (output) mode.						
D₂	STACK	Stack	Goes high when the address bus holds the pushdown stack address from the stack pointer.						
D3	HLTA	HLT instruction acknowledge	Goes high when the CPU executes the HLT instruction and maintains the halt state.						
D4	OUT	Output instruction acknowledge	Goes high when the address bus contains the address of an output device and the data bus contains the output data. (The address of an output device is contained simulta- neously in the upper 8 bits and the lower 8 bits of the address bus.)						
Ds	Mı	M1 status	Goes high when the CPU is in the fetch cycle for the first byte of an instruction.						
Ds	INP	Input instruction acknowledge	Goes high when the address bus contains the address of an input device and the data bus receives the input data. (The address of an output. device is contained simulta- neously in the upper 8 bits and the lower 8 bits of the address bus).						
D7	MEMR	Memory read	Goes high when the data bus is used for memory read data.						

- Hatched portions indicate periods during which input data should be kept stable.
- The address data is valid during the period designated by solid lines.
- The period of T_W depends on the condition of the READY signal.

STATUS INFORMATION

The M58710S sends out 8 bits of status information on data bus $(D_7 \sim D_0)$ at the first state of each machine cycle $(M_i \cdot T_1)$ synchronizing with signal SYNC that indicates the function of each machine cycle. The status signal will be latched in the external register by signal SYNC $\cdot \phi_1$. Table 1 gives the functions of the status information that will be sent out on the data bus.

Status	Mode No.	4	2	3	4	5	6	7	8	9	10
Data bus bit	Status signal name	Instruction fetch	Memory read	Stack read	Input read	Interrupt acknowl.	Halt acknowledge	Interrupt acknowl. while halt	Memory write	Stack write	Output write
D₀	INTA	0	0	0	0	1	0	1	0	0	0
D1	WO	1	4	1	1	1	1	1	0	0	0
D₂	STACK	0	0	1	0.	0	0	0	C	1	0
D3	HLTA	0	0	0	0	0	1	1	0	0	0
D₄	OUT	0	0	0	0	0	0	0	0	0	1
D5	M	1	0	0	0	1	0	1	0	0	0
D ₆	INP	0	0	0	1	0	ò	0	0	0	0
D7	MEMR	1	1	1	0	0	1	0	0	0	0



MITSUBISHI LSIS

Alternative Designation 8080A

8-BIT PARALLEL CPU

CPU STATE TRANSITION DIAGRAM

MITSUBISHI LSIs M58710S Alternative Designation 8080A

8-BIT PARALLEL CPU

INSTRUCTION CODE LIST

	07 ~ D₄	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
D₃~ D₀ \	exadecimal notation	0	1	2	3	4	5	6	7	8	9	А	в	с	D	E	F
0000	0	NOP	(NOP)	(NOP)	(NOP)	MOV B, B	MOV D, B	моv н, в	МОV М, В	ADD B	SUB B	ANA B	ORA B	RNZ	RNC	RPO	RP
0001	1.	LXI B		LXI H	LXI SP	MOV B, C	MOV D, C	моv н. с	моv м. с	ADD C	SUB C	ANA C	ORA C	POP B	POP D	POP H	POP PSW
0010	2	STAX B	STAX D	SHLD	STA	MOV B, D	MOV D, D	моv н, р	MOV M, D	ADD D	SUB D	ANA D	ORA D	JNZ	JNC	JPO	JP
0011	3	INX B	INX D	INX H	INX SP	MOV B, E	MOV D, E	MOV H, E	MOV M, E	ADD E	SUB E	ANA E	ORA E	JMP	оит	хтн∟	DI
0100	4	INR B	INR D	INR H	INR M	моv в, н	моv D, н	моv н, н	моv м, н	ADD H	SUB H	ANA H	ORA H	GNZ	CNC	0P0	CP
0101	5	DCR B	DCR D	DCR H	DCR M	MOV B, L	MOV D, L	MOV H, L	MOV M, L	ADD L	SUB L	ANA L	ORA L	PUSH B	PUSH D	PUSH H	PUSH PSW
0110	6	MVI B	MVI D	MVI H	MVI M	М0V В, М	MOV D, M	моv н, м	HLT	ADD M	SUB M	ANA M	ORA M	AD1	SUI	ANI	ORI
0111	7	RLC	RAL	DAA	STC	MOV B, A	MOV D, A	моv н, а	MOV M, A	ADD A	SUB A	ANA A	ORA A	RST 0	RST 2	RST 4	RST 6
1000	8	(NOP)	(NOP)	(NOP)	(NOP)	М0V С, В	MOV E, B	MOV L, B	MOV A, B	ADC B	SBB B	XRA B	СМР В	RZ	RC	RPE	RМ
1001	9	DAD B	DAD D	DAD H	DAD SP	моv с, с	MOV E, C	MOV L, C	MOV A, C	ADC C	SBB C	XRA C	CMP C	RET	(RET)	PCHL	SPHI
1010	А	LDAX B	LDAX D	LHLD	LDA	MOV C, D	MOV E, D	MOV L, D	MOV A, D	ADC D	SBB D	XRA D	CMP D	JZ	JC	JPE	JM
1011	в	DCX B	DCX D	DCX H	DCX Sp	MOV C, E	MOV E, E	MOV L, E	MOV A, E	ADC E	SBB E	XRA E	CMP E	(JMP)	ſN	хснд	EI
1100	С	INR C	INR E	INR L	INR A	моv с, н	MOV E, H	MOV L, H	MOV A, H	ADC H	SBB H	XRA H	СМР Н	cz	cc	CPE	СМ
1101	D	DCR C	DCR E	DCR L	DCR A	MOV C, L	MOV E, L	MOV L, L	MOV A, L	ADC L	SBB L	XRA L	CMP L	GALL	(CALL)	(CALL)	(CALL
1110	E	MVI C	MVI E	MVI L	MVI A	МОV С, М	MOV E, M	MOV L, M	MOV A, M	ADC M	SBB M	XRA M	CMP M	ACI	SBI	XRI	CPI
1111	F	RRC	RAR	СМА	смс	MOV C, A	MÖV E, A	MOV L, A	MOV A, A	ADC A	SBB A	XRA A	CMP A	RST 1	RST 3	RST 5	RST 7

This list shows the machine codes and corresponding machine instructions. $D_3 \sim D_0$ indicate the lower 4 bits of the machine code and $D_7 \sim D_4$ indicate the upper 4 bits. Hexadecimal numbers are also used to indicate this code. The instruction may consist of one, two, or three bytes, but only the first byte is listed.

indicates a three-byte instruction.

indicates a two-byte instruction.

 is not a formal instruction, but if this code is accessed, the instruction in parentheses may be executed. This is not, however, guaranteed.

M58710S

Alternative Designation 8080A

8-BIT PARALLEL CPU

MACHINE INSTRUCTIONS

MACI	HINE	INST	RU	СТ	ION	١S				tates	ytes	ycles						
Item					truct					of	of b		E in the n	Flags	Address bus	Dat	a bu	
Instr. class.	Mne	monic	D7 D6	D5 I	D4 D3	Da	2 D 1	D0	16ma notatr	Š	, S	Ś	Functions	SZPCY2CY1	Contents Mach	Contents	ı/o	Mach cycle
	MOV MOV MOV MVI	r1,r2 M,r r,M r,n	0 1 0 1 0 1	1 D	D D 1 0 D D D D	S 1	5 S 5 S 1 1	S O		5 7 7 7	1 1 1 2	1 2 2 2	$\begin{array}{ccc} (r_1) \leftarrow (r_2) \\ (M) \leftarrow (r) \\ (r) \leftarrow (M) \end{array} \qquad $	X X X X X X X X X X X X X X X X X X X X	M M4 M M4	(r) (M) (B2>	0	M4 M4 M4
	MVI	M, n	0 0	1	B2> 10	1	1	0	36	10	2	3	(M) \leftarrow n Where, M=(H)(L)	x x x x x	M M5	<b2></b2>	Т	M5
	LXI	B,m	0 0	0	B2> OO B2>	0	0	1	0 1	10	3	3	(C) ← <b<sub>2> (B) ← <b<sub>3> Where, m = <b<sub>3> <b<sub>2></b<sub></b<sub></b<sub></b<sub>	× × × × ×		<b2> <b3></b3></b2>	1	M2 M3
	LXI	D,m	0 0	°	B3> 1 O B2>	0	0	1	1 1	10	3	3	(E) ← <b2> (D) ← <b3> Where, m = <b3> <b2></b2></b3></b3></b2>	* * * * *		<b2> <b3></b3></b2>	1	M2 M3
	LXI	H,m	0 0	'‹	B3> OO B2>	0	• •	1	21	10	3	3	$(L) \leftarrow \langle B_2 \rangle$ $(H) \leftarrow \langle B_3 \rangle$ Where, $m = \langle B_3 \rangle \langle B_2 \rangle$	× × × × ×		<b2> <b3></b3></b2>	1	M2 M3
	LXI	SP,m	0 0	1,	B3> 10 B2> B3>	0	0	1	31	10	3	3	(SP)←m	× × × × ×		<b2> <b3></b3></b2>	;	M2 M3
ster	SPHL	8	11	1	1 1 0 0	0	0		F9 02	5	1	1 2	$(SP) \leftarrow (H) (L)$ $((B).(C)) \leftarrow (A)$	x x x x x x x x x x	(B)(C) M4	(A)	0	M4
transfe	STAX LDAX		00		10		1		1 2 0 A	7	1	2	$\frac{((D)(E))\leftarrow(A)}{(A)\leftarrow((B)(C))}$	X X X X X X X X X X	(D)(E) M4 (B)(C) M4	(A) ((B)(C))	0	M4 M4
Data	LDAX STA	D	00	0	1 1 1 0 B ₂ >	0	1	0	1 A 3 2		1 3	2	$(A) \leftarrow ((D) (E))$ (m) \leftarrow (A)	x x x x x x x x x x x x	(D)(E) M4 m M4	((D)(E)) (A)	0	M4 M4
	LDA	m	0 0	1	BB3> 111 BB2>	0	1	0	3 A	13	3	4	$(A) \leftarrow (m)$	* * * * *	m M4	(m)	1	M4
	SHLD	m	0 0	1	B3> OO B2>	0	1	0	22	16	3	5	(m) ← (L) (m + 1) ← (H)	x x x x x	m M4 m + 1 M5	(L) (H)	0 0	M4 M5
	LHLD	m	0 0	1	B3> O 1 B2> B3>	0	1	0	2 A	16	3	5	(L) ← (m) (H) ← (m+1)	* * * * *	m M4 m + 1 M5	(m) (m+1)	1	M4 M5
	XCHG XTHL		1 1 1 1	1	0100		1		EB E3	4	1	1 5	(H) (L) ↔ (D) (E) (H) (L) ↔ ((SP) + 1) ((SP))	x x x x x x x x x x x x	(SP) M2 (SP)+1 M3	((SP)) ((SP)+1)	!	M2 M3
	ADD ADD AD1	r M n	10 10 11	0	0 0 0 0 0 0	1		0	86 C6	4 7 7	1 1 2	1 2 2	$(A) \leftarrow (A) + (r)$ $(A) \leftarrow (A) + (M)$ Where, $M = (H) (L)$ $(A) \leftarrow (A) + n$	000000000000000000000000000000000000000	M M4	(M) <b2></b2>	;	M4 M4
	ADC ADC ACI	r M n	10 10 11	0	B ₂ > 01 01 01	1	1 1	0	8 E C E	4 7 7	1 1 2	1 2 2	$(A) \leftarrow (A) + (r) + (CY_2)$ $(A) \leftarrow (A) + (M) + (CY_2)$ Where, M = (H) (L) $(A) \leftarrow (A) + n + (CY_2)$	00000	M M4	(M) <b2></b2>	!	M4 M4
	DAD DAD	B D	00	0	B ₂ > 01 11	0	0	1	09	10 10	1	3 3	$(H) (L) \leftarrow (H) (L) + (B) (C) (H) (L) \leftarrow (H) (L) + (D) (E)$	x x x o x x x x o x			-	
e	DAD DAD	H Sp	000	1	01	0	0	1	29 39	10 10	1	3 3	$(H) (L) \leftarrow (H) (L) + (H) (L) (H) (L) \leftarrow (H) (L) + (SP)$					
compar	SUB SUB SUI	r M n	10 10 11	0	10 10 10 B ₂ >	1	1 1	0	96 D6	4 7 7	1 1 2	1 2 2	$ \begin{array}{l} \textbf{(A)} \leftarrow \textbf{(A)} - (r) \\ \textbf{(A)} \leftarrow \textbf{(A)} - (M) \\ \textbf{(A)} \leftarrow \textbf{(A)} - n \end{array} \qquad \qquad$	000000000000000000000000000000000000000	M M4	(M) <b2></b2>		M4 M4
logical,	SBB SBB SBI	r M n	1 0 1 0 1 1	000	1 1 1 1 1 1	1	1 1	0	9 E D E	4 7 7	1 1 2	1 2 2	$ \begin{array}{l} (A) \leftarrow (A) - (r) - (CY_2) \\ (A) \leftarrow (A) - (M) - (CY_2) \\ (A) \leftarrow (A) - n - (CY_2) \end{array} \hspace{1.5cm} \textbf{Where,} \hspace{1.5cm} M = (H) (L) \\ \end{array} $	000000000000000000000000000000000000000	M M4	(M) (B2>	ł	M4 M4
Arithmetic,	ANA ANA ANI	r M n	10 10 11	1	B ₂ > O O O O O O	1	1 1	0	A 6 E 6	4 7 7	1 1 2	1 2 2	$ \begin{array}{c} (A) \leftarrow (A) \land (r) \\ (A) \leftarrow (A) \land (M) \\ (A) \leftarrow (A) \land n \end{array} \qquad \qquad$		M M4	(M) <b2></b2>	:	M4 M4
Ari	XRA XRA	r M	1 0 1 0	1	B ₂ > 01 01	S 1	5 1	S O	ΑE	4	1	1 2	$(A) \leftarrow (A) \forall (r)$ $(A) \leftarrow (A) \forall (M)$ Where, M = (H) (L)		M M4	(м)	1	M4
	XRI ORA ORA	n r M	1 1 1 0 1 0	- (01 B ₂ > 10	S	1 5 S 1	s	Е Е В 6	7 4 7	2	2 1 2	$(A) \leftarrow (A) \forall n$ $(A) \leftarrow (A) \setminus (r)$ $(A) \leftarrow (A) \setminus (M)$ Where, M = (H) (L)		M M4	(M)	-	M4
	OR I CMP	n r	11 10	1	10 B ₂ > 11	1 S	1	0 S	F 6	7	2	2	$(A) \leftarrow (A) \setminus n$ $(A) - (r)$	00000		(B2)	i	M4
	CMP CPI	n	1011	1	11 11 B ₂ >	1	1	0	B E F E	7 7	1 2	2	(A) - (M) Compare; Where, M = (H) (L) (A) - n	00000	M M4	(M) <b2></b2>	;	M4 M4
tent	INR INR DCR	r M r	00	1 D		1	0	0	34	5	1	1 3 1	$(r) \leftarrow (r) + 1$ $(M) \leftarrow (M) + 1$ $(r) \leftarrow (r) - 1$ Where, M = (H) (L)	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	M M4	(M)	-	M4
	DCR INX	M B	00	1	10	1	0	1	35 03	10	1 1 1	3	(r) \leftarrow (r) - 1 (M) \leftarrow (M) - 1 (B) (C) \leftarrow (B) (C) + 1 (Where, M = (H) (L)	$\begin{array}{c} 0 \\ 0 \\ x \\$	M M4	(M)	1	M4
Register increment/ decrer	I NX I NX	D H	00	0	1 0 0 0	0) 1	1	13 23	5 5	1	1 1	(D) (E) ← (D) (E) + 1 (H) (L) ← (H) (L) + 1	X X X X X X X X X X				
ister	DCX	SP B	00	0	10	0		1	3 3 0 B	5	1	1	$(SP) \leftarrow (SP) + 1$ (B) (C) \leftarrow (B) (C) - 1 (C) \leftarrow (B) (C) - 1	X X X X X X X X X X			+	
Register incremen	DCX DCX DCX	D H Sp	000000000000000000000000000000000000000	1	1101	0) 1) 1) 1	1	1 B 2 B 3 B	5 5 5		1	$(D) (E) \leftarrow (D) (E) - 1$ $(H) (L) \leftarrow (H) (L) - 1$ $(SP) \leftarrow (SP) - 1$	X X X X X X X X X X X X X X X X				
t t	BIC				00				07	4	h	1 i	Left shift CY2	× × × ô ×			1	
s of lator	RRC	· · · · ·	0 0	0	01	1	1,	1	0 F	4	1	.1	Right shift CY2	x x x o x			1	
Rotate & shift contents of accumulator	RAL		0 0	0	10	1	1	1	17	4	1	1	Left shift CY2 A7A6	x x x o x				
ac c g	RAR		0 0	0	1 1	1	1	1	1 F	4	1	1	Right shift CY2 A7A5	хххох				
Accumu. compen.	CMA DAA		00		0100		1		2 F 2 7			1	$(A) \leftarrow (A)$ Results of binary addition are adjusted to BCD	x x x x x 00000				
	STC		00	1	10	1	1		37 3F	4			$(CY_2) \leftarrow 1$ $(CY_2) \leftarrow (CY_2)$	X X X 1 X X X X O X				

MITSUBISHI LSIs **M58710S** Alternative Designation 8080A

8-BIT PARALLEL CPU

						_		star	bytes	cycles				_	_	A		Dat	. h.	
ltem	Mnen	nonio	ļ	Instructio			16	of	đ	of	Functions			ags		Addres	Mach.	Data	T	us Mach.
nstr. class.	winen	nonic	D7 D6	D5 D4 D3	DsD	Do r	mal	No.	Š	ġ.	- choichd	_	_			Contents	cycle *			cycle**
	JMP	m	11	000 (B2)	0	1 1	С 3	10	3	3	(PC)←m	X	X	x x	x			<b2> <b3></b3></b2>	1	M2 M3
	PCHL			(B3) 101	0 0		E 9	5	1	1	(PC)←(H) (L)	×	×	хx	x					
	JC	m	11	0 1 1		10	DA			3	(CY2) = 1	×	X	x x	x)				
				<b2> <b3></b3></b2>																
	JNC	m	11	010 <b2></b2>	0	10	D 2	10	3	3	$(CY_2) = 0$ If condition is true $(PC) \leftarrow m$	×	× .	х х	<u>^</u>	If cond	tion is t	rue.		
	JZ	m	11	<b3> 001</b3>	0	1 0	CA	10	3	3	(Z) = 1	x	x	x x	x			<b2></b2>		Mz
	-			<182> <183>														<b3></b3>	'	M3
dmul	JNZ	m	11	000 (B2)	0	10	C 2	10	3	3	(Z) = 0	х	X	хх	x					
ŗ	JP	m	1 1	(B3) 1 1 0	0 1		F 2	10	3	3	(s) = 0 If condition is false	x	x	x x	x	If cond	tion is f	alse.		
	JF			<b2></b2>	Ū				5	5	$(PC) \leftarrow (PC) + 3$	~	~		~					
	JM	m	11	<183> 1111	0	10	FA	10	3	3	(S) = 1	х	x	x x	х					
				<182> <183>																
	JPE	m	11	101 〈B2〉	0	10	EA	10	3	3	(P)= 1	х	X	хх	×					
	JPO	m	11	<83> 100	0	1 0	E 2	10	3	3	(P)=0)	х	x	x x	x					
			• •	<b2></b2>							······]				
	CALL	m	1 1	(B3) 0 0 1	1 (0 1	CD	17	3	5	((SP)-1)((SP)-2)←(PC)+3,(PC)←m	х	х	x x	х			<b2> <b3></b3></b2>	1	M2 M3
				<b2> <b3></b3></b2>							(SP) ← (SP) - 2					(SP)-1 (SP)-2	M4	<(PC)+3>15~8	0	M4
	RST	n	11	A A A	1 1	11		11	1	3	$((SP)-1)((SP)-2) \leftarrow (PC)+1, (PC) \leftarrow n \times 8,$	х	x	x x	х	(SP)-1	M5 M4	<(PC)+1>7~0 <(PC)+1>15~8 <(PC)+1>15~8	0	M5 M4
	cc	m	1 1	0 1 1	1 (0 0	DC	17 11	3	5/3	$(SP) \leftarrow (SP) - 2$ Where $0 \le n \le 7$ $(CY_2) = 1$	x	x	x x	x	(SP) 2	M5	<(PC)+D1~0	0	M5
				<b2> <b3></b3></b2>																
	CNC	m	11	0 1 0 (B2>	1 (0 0	D 4	17 11	3	5/3	(CY2) = 0 If condition is true.	х	x	хх	x	If condi	tion is t	i rue		
al				< B 3>						5 (2)		v	v	хx	~	in cond	001113-0	<b2></b2>		Mz
Subroutine call	cz	m	11	001 <b2></b2>	1.0	0 0		17.11	3	5/3	$(Z) = 1$ $((SP) - 1) ((SP) - 2) \leftarrow (PC) + 3$,^	^	^ ^	^	(<b3></b3>	i	Mз
outi	CNZ	m	11	<83> 000	1 (0 0	C 4	17 11	3	5/3	(Z) = 0 (PC) ← m	x	×	x x	x	(SP) – 1	M4	<(PC)+3>15∼8	0	M4
Subr				<b2> <b3></b3></b2>							(SP) ← (SP) - 2					(SP) – 2	M5	<(PC)+3>7~0	0	M5
•,	CP	m	11	110 (B2)	1 (0 0	F 4	17 11	3	5/3	(S) = 0	х	×	хх	×					
	см	m	1 1	<b3></b3>	1 0		5.0	17.11	2	5/3	(s) = 1 If condition is false	×	¥	хх	×					
				<b2> <b3></b3></b2>				[Ĵ	5.5	(PC)←(PC) + 3	î	^	~ ~	~					
	CPE	m	11	101	1 (0 0	EC	17/11	3	5/3	(P)=1	х	×	хх	х					
				<b2> <b3></b3></b2>																
	CPO	m	11	100 <b2></b2>	1 (0 0	E 4	17/11	3	5/3	(P)= 0)	х	×	хх	x					
	RET		1 1	<b3> 001</b3>	0 (0 1	C 9	10	1	3	(PC) ←((SP)+1)((SP)),(SP)←(SP)+2	x	x	x x	x) (SP)	M4	((SP))		M4
	RC		11	011		0 0	D 8	11 '5			(0)() ()			x x		(SP) + 1	Ms	((SP)+1)	1	M5
E	RNC		11	010	0 0		D O C B	11/5		3/1		х	х	x x x x	х	If condit (SP)	M4	((SP))		Ma
Return	RNZ		11	000	00	0 0	C O F O	11/5	i	3/1	$(Z) = 0$ (SP) \leftarrow (SP) $+ 2$ (SP) \leftarrow	х	х	x x x x	х	(SP)+1	M5	((SP)+1)	i	M5
u.	RM		11	110	0 0	0 0	F 8	11/5	1	3/1	(S) = 1 If condition is false	х	х	х х	х	If condi	tion is f	alse.		
	RPE RPO		1 1	101		0 0	E8 E0	11/5 11/5	1	3/1	(P) = 1 (PC)+-(PC) + 1 (P) = 0	х	х	x x x x	X	J				
Input/	IN	n	11	011 (B2>		1 1	DB		2	3	(A) ← (Input buffer) ← (Input device of number n) (Input data)			хх		<bz>Bz></bz>	M5 (<b2></b2>	0	M4 M5
output control	ουτ	n	11	010 <b2></b2>	0	1 1	D 3	10	2	3	(Output device of number n) ← (A)	х	x	хх	x	<b2><b2></b2></b2>	Ms	<b2> (A)</b2>	00	M4 M5
Interrupt control	EI		11	111	0	1 1	FB F3	4	1	1	(INTE) ← 1 (INTE) ← 0	××	x x	x x x x	X X					
Sontrol	PUSH	PSW	11	110		0 1	F 5	11	i	3	$\begin{array}{l} ((SP)-1) \leftarrow (A), ((SP)-2) \leftarrow (F) \\ (SP) \leftarrow (SP)-2 \end{array}$	X	X	x x	x	(SP) 1 (SP)-2	M4 M5	(A) (F)	0	M4 M5
	PUSH	в	11	000	1 (0 1	C 5	11	1	3	((SP)-1) + (B), ((SP)-2) ← (C)	x	x	x x	х	(SP)-1	M4	(B)	0	M5 M4
	PUSH	D	11	010	1 (0 1	D 5	11	1	3	$\begin{array}{l} (SP) & \leftarrow (SP) - 2 \\ ((SP) - 1) \leftarrow (D), ((SP) - 2) \leftarrow (E) \\ (SP) & \leftarrow (SP) - 2 \end{array}$	x	x	x x	x	(SP) - 2 (SP) - 1	M5 M4	(C) (D)	0	M5 M4
ō	PUSH	н	11	100	1.0	0 1	E 5	11	1	3	((SP)-1) ← (H), ((SP)-2) ← (L)	x	x	x x	х		M5 M4	(E) (H)	0 0	M5 M4
control	POP	PSW	11	110	0 0	0 1	F 1	10	1	3	$(SP) \leftarrow (SP)-2$ $(F) \leftarrow ((SP)), (A) \leftarrow ((SP)+1)$			o c		(SP)-2 (SP)	M5 M4	(<u>L</u>) (SP))	0	M5 M4
	POP	в	11	000			C 1	10	1	3	$(SP) \leftarrow (SP) + 2$ (C) $\leftarrow ((SP)), (B) \leftarrow ((SP) + 1)$		-	x x		(SP)+1	M5 M4	((SP)+1) ((SP))		M5 M4
Stack	POP	- D	11	010			DI	10	1	3	$ \begin{array}{l} (SP) \leftarrow (SP) + 2 \\ (E) \leftarrow ((SP)), (D) \leftarrow ((SP) + 1) \end{array} $			~ ^ x x		(SP)+1 (SP)	M5 M4	((SP)+1) ((SP))	i	M5 M4
	POP	н									(SP) ← (SP)+2					(SP)+1	M5	((SP)+1)		M5
		n	11	100			E 1	10	1	3	$(L) \leftarrow ((SP)), (H) \leftarrow ((SP)+1)$ $(SP) \leftarrow (SP)+2$			××		(SP) (SP)+1	M4 M5	((SP)) ((SP)+1)		M4 M5
	HL T NOP		01	110		10	7600	7	1	1	$\begin{array}{l} (PC) \leftarrow (PC) + 1 \\ (PC) \leftarrow (PC) + 1 \end{array}$			x x x x	X					
Others	NOF																			

Symbol	Meaning	Symbol	Mea	ning		Symbol	Meaning
r	Register		Dia sectore desire			-	Data is transferred in direction shown
m,	Two-byte data	1		Register	SSS	()	Contents of register or memory location
n	One-byte data		nating register	memory		V	Inclusive OR
<b2></b2>	Second byte of instruction	SSS	or memory.	B	0 0 0	*	Exclusive OR
<b3></b3>	Third byte of instruction	or		č	001	A	Logical AND
AAA	Binary representation for RST instruction n	ססס		D	010		1's complement
F	8-bit data from the most to the least significant			H	100	×	Content of flag is not changed after execution
	bit S, Z, 0, CY1, 0, P, 1, CY2			L	101	0	Content of flag is set or reset after execution
PC	Program counter	1	Where,	M	1 1 1	1	Input mode
SP	Stack pointer	1	M=(H)(L)			0	Output mode

3

MITSUBISHI LSIs **M58710S** Alternative Designation 8080A

8-BIT PARALLEL CPU

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Limits	Unit
VDD	Supply voltage		-0.3~20	V
Vcc	Supply voltage		-0.3~20	V
Vss	Supply voltage	With respect to VBB (substrate)	-0.3~20	V
Vi	Input voltage		-0.3~20	V
Pd	Maximum power dissipation	Ta = 25°C	1500	mW
Topr	Operating free-air temperature		0~70	°C
Tstg	Storage temperature		$-65 \sim 150$	°C

RECOMMENDED OPERATING CONDITIONS

0	Parameter		Limits		Unit	
Symbol	Parameter	Min	Nom	om Max -5 — 5.25 5 5.25		
Vвв	Supply voltage	- 4.75	- 5	-5.25	V	
Vcc	Supply voltage	4.75	5	5.25	V	
VDD	Supply voltage	11.4	12	12.6	V	
Vss	Supply voltage		0		V	
Vін	High-level input voltage	3.3		Vcc+1	V	
VIL	Low-level input voltage	-1		0.8	V	
Vih(¢)	High-level clock input voltage	9		V DD + 1	V	
VIL(¢)	Low-level clock input voltage	-1		0.8	V	
Topr	Operating free-air temperature	0		70	°C	

$\textbf{ELECTRICAL CHARACTERISTICS} (\texttt{Ta} = \texttt{0} ~ \texttt{70^{\circ}C}, \texttt{V}_{DD} = \texttt{12V} \pm 5\%, \texttt{V}_{CC} = \texttt{5V} \pm 5\%, \texttt{V}_{BB} = -\texttt{5V} \pm 5\%, \texttt{V}_{SS} = \texttt{0V}. \textit{ unless otherwise noted})$

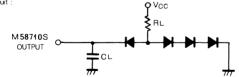
Symbol	Parameter	T		Limits		
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
Vol	Low-level output voltage	IOL=1.9mA, All output			0.45	V
Vон	High-level output voltage	I он=- 150 µА	3.7			V
IBB	VBB supply current			-0.01	-1	mA
lcc	VCC supply current	Operating at $tc(\phi) = 480$ n s. $Ta = 25^{\circ}$	с	60	75	mA
IDD	V DD supply current) (Note 2)		40	70	mA
h	Input current, except clock and data bus	0≤VI≦VCC			±10	μA
l1(ø)	Clock input current	$0 \leq \forall I(\phi) \leq \forall DD$	•		±10	μA
lı(db)	Input current, data bus (Note 3)	$0 \leq V_{1(DB)} \leq V_{1L}$ $V_{1L} \leq V_{1(DB)} \leq V_{CC}$			10 100	μΑ
II(HOLD)	Input current during hold, address or data bus	At hold state $0.45 V \leq V_0 \leq V_{CC}$			10 100 2	μA mA
Ci (ø1)	Input capacitance, clock input (øf)	$V(\phi_1) = 0V$		20	25	pF
Ci (¢2)	Input capacitance, clock input (ϕ_2)	$V(\phi_2)=0V$		15	20	pF
Ci	Input capacitance, any input except clock	$V_1 = 0V$ f = 1 MHz, 25mVr.m.s	·	5	10	pF
Co	Output capacitance	Vo=0V		5	20	pF

Note 1 : Current flowing into an IC is positive; out is negative.

2: $t_{C}(\phi) = t_{d}(\phi_{1H}, \phi_{2}) + t_{r}(\phi_{2}) + t_{w}(\phi_{2}) + t_{f}(\phi_{2}) + t_{d}(\phi_{2}, \phi_{4}) + t_{r}(\phi_{1})$

3 : Active pull-up resistors will be switched on to the data bus when DBIN is high and data input voltage is more positive than VIH min.

Symbol	Parameter		Limits		11-2
Symbol	Falameter	Min	Тур	Max	Unit
tc(ø)	Clock cycle time (Note 4)	480		2000	ns
t r (φ)	Clock rise time	0		50	ns
tf (φ)	Clock fall time	0		50	ns
tw(\$4)	Clock 1 pulse width	60			ns
tw(\$\phi_2)	Clock 2 pulse width	220			ns
td (#1L-#2)	Delay time, clock 1 to clock 2	0			ns
td (\$\$2-\$\$1)	Delay time, clock 2 to clock 1	70			ns
td (φ1H-φ2)	Delay time, clock 1 high to clock 2	80			ns
tsu(DA-∳1)	Data setup time with respect to clock 1	30			ns
tsu(DA-φ2)	Data setup time with respect to clock 2	150			ns
tsu(HOLD)	Hold setup time	1 40			ns
tsu(INT)	Interrupt setup time	120			ns
tsu(RDY)	Ready setup time	120			ns
th (DA)	Data hold time	(DBI)			ns
th (HOLD)	Hold input hold time	0			ns
th (INT)	Interrupt hold time	0			ns
th (RDY)	Ready hold time	0			ns


 $\textbf{TIMING REQUIREMENTS} (Ta = 0 \sim 70^{\circ}\text{C}, V_{DD} = 12V \pm 5\%, V_{CC} = 5V \pm 5\%, V_{BB} = -5V \pm 5\%, V_{SS} = 0V. \text{ unless otherwise noted} (Ta = 10 \sim 70^{\circ}\text{C}, V_{DD} = 12V \pm 5\%, V_{CC} = 5V \pm 5\%, V_{BB} = -5V \pm 5\%, V_{SS} = 0V. \text{ unless otherwise noted} (Ta = 10 \sim 70^{\circ}\text{C}, V_{DD} = 12V \pm 5\%, V_{CC} = 5V \pm 5\%, V_{BB} = -5V \pm 5\%, V_{SS} = 0V. \text{ unless otherwise noted} (Ta = 10 \sim 70^{\circ}\text{C}, V_{DD} = 12V \pm 5\%, V_{CC} = 5V \pm 5\%, V_{BB} = -5V \pm 5\%, V_{SS} = 0V. \text{ unless otherwise noted} (Ta = 10 \sim 70^{\circ}\text{C}, V_{DD} = 12V \pm 5\%, V_{CC} = 5V \pm 5\%, V_{BB} = -5V \pm 5\%, V_{SS} = 0V. \text{ unless otherwise noted} (Ta = 10 \sim 70^{\circ}\text{C}, V_{DD} = 12V \pm 5\%, V_{CC} = 5V \pm 5\%, V_{BB} = -5V \pm 5\%, V_{SS} = 0V. \text{ unless otherwise noted} (Ta = 10 \sim 70^{\circ}\text{C}, V_{DD} = 12V \pm 5\%, V_{CC} = 5V \pm 5\%, V_{SS} = 0V. \text{ unless otherwise noted} (Ta = 10 \sim 70^{\circ}\text{C}, V_{DD} = 12V \pm 5\%, V_{CC} = 5V \pm 5\%, V_{SS} = 0V. \text{ unless otherwise noted} (Ta = 10 \sim 70^{\circ}\text{C}, V_{DD} = 12V \pm 5\%, V_{SS} = 10V. \text{ unless otherwise noted} (Ta = 10 \sim 70^{\circ}\text{C}, V_{DD} = 12V \pm 5\%, V_{SS} = 10V. \text{ unless otherwise noted} (Ta = 10 \sim 70^{\circ}\text{C}, V_{DD} = 12V \pm 5\%, V_{SS} = 10V. \text{ unless otherwise noted} (Ta = 10 \sim 70^{\circ}\text{C}, V_{DD} = 12V \pm 5\%, V_{SS} = 10V. \text{ unless otherwise noted} (Ta = 10 \sim 70^{\circ}\text{C}, V_{SS} = 10V. \text{ unless otherwise noted} (Ta = 10 \sim 70^{\circ}\text{C}, V_{SS} = 10V. \text{ unless otherwise noted} (Ta = 10 \sim 70^{\circ}\text{C}, V_{SS} = 10V. \text{ unless otherwise noted} (Ta = 10 \sim 70^{\circ}\text{C}, V_{SS} = 10V. \text{ unless otherwise noted} (Ta = 10 \sim 70^{\circ}\text{C}, V_{SS} = 10V. \text{ unless otherwise noted} (Ta = 10 \sim 70^{\circ}\text{C}, V_{SS} = 10V. \text{ unless otherwise noted} (Ta = 10 \sim 70^{\circ}\text{C}, V_{SS} = 10V. \text{ unless otherwise noted} (Ta = 10 \sim 70^{\circ}\text{C}, V_{SS} = 10V. \text{ unless otherwise noted} (Ta = 10 \sim 70^{\circ}\text{C}, V_{SS} = 10V. \text{ unless otherwise noted} (Ta = 10 \sim 70^{\circ}\text{C}, V_{SS} = 10V. \text{ unless otherwise noted} (Ta = 10 \sim 70^{\circ}\text{C}, V_{SS} = 10V. \text{ unless otherwise noted} (Ta = 10 \sim 70^{\circ}\text{C}, V_{SS} = 10V. \text{ unless otherwise notherwise note$

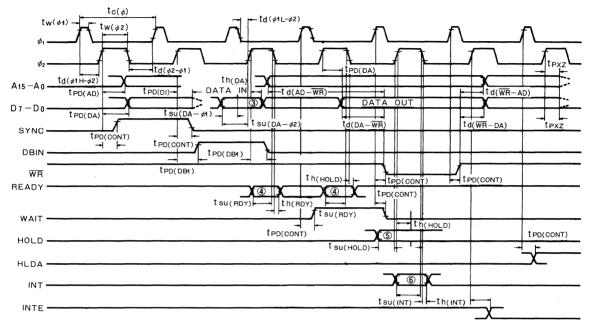
Note $4 : t_{c}(\phi) = td(\phi_{1} - \phi_{2}) + tr(\phi_{2}) + tw(\phi_{2}) + tr(\phi_{2}) + td(\phi_{2} - \phi_{1}) + tr(\phi_{1})$

SWITCHING CHARACTERISTICS (Ta = 0 ~ 70°C, V_{DD} = 12V ± 5%, V_{CC} = 5V ± 5%, V_{BB} = - 5V ± 10%, V_{SS} = 0V, unless otherwise noted)

Symbol		Test and distance (black D)		Limits		
Symbol	Parameter	Test conditions (Note 5)	Min	Тур	Max	Unit
tpd(ad)	Propagation delay time, clock 2 to address outputs	RL=2.1kΩ, CL=100pF			200	ns
tpd(da)	Propagation delay time, clock 2 to data bus	$R_L=2.1k\Omega$, $C_L=100 pF$			220	ns
tpd(cont)	Propagation delay time, clocks to control outputs	R _L =2.1kΩ, C _L =50pF			120	ns
tpd(dbi)	Propagation delay time, clock 2 to DBIN output	RL=2.1kΩ, CL=50pF	25		1 40	ns
tpd(INT)	Propagation delay time, clock 2 to INTE output	RL=2.1kΩ, CL=50pF			200	ns
tpd(DI)	Time for data bus to enter input mode				tpd(dbi)	ns
tpxz	Disable time to high-impedance state during hold address or	utput and data bus			120	ns
td (WR-AD)	Delay time, write signal to address output	RL=2.1k Q, CL=100pF	td (øн-φ2)			ns
td (AD-WR)	Delay time, address output to write signal	RL=2.1kΩ, CL=100pF	Note 6			ns
td (WR-DA)	Delay time, write signal to data output	RL=2.1kΩ, CL=100pF	td (#1H- #2)			ns
td (DA- WR)	Delay time, data output to write signal	RL=2.1kΩ, CL=100pF	Note 7			ns

Note 5 : Load circuit :

6: $t_{d(AD-\overline{WR})} = 2t_{c}(\phi) - t_{d}(\phi_{H-\phi_{2}}) - t_{r(\phi)} - 140$ ns


7: $t_d(DA-\overline{WR}) = t_c(\phi) - t_c(\phi_{1H}-\phi_2) - t_r(\phi) - 170 \text{ ns}$

MITSUBISHI LSIs M58710S Alternative Designation 8080A

8-BIT PARALLEL CPU

TIMING DIAGRAM

Note 1 : This timing diagram shows timing relationships only, it does not represent any specific machine cycle.

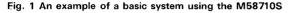
2 : Time measurements are made at the following reference voltages: Clock voltage H = 8.0V, L = 1.0V; input voltage, H = 3.3V, L = 0.8V; output voltage, H = 2.0V, L = 0.8V

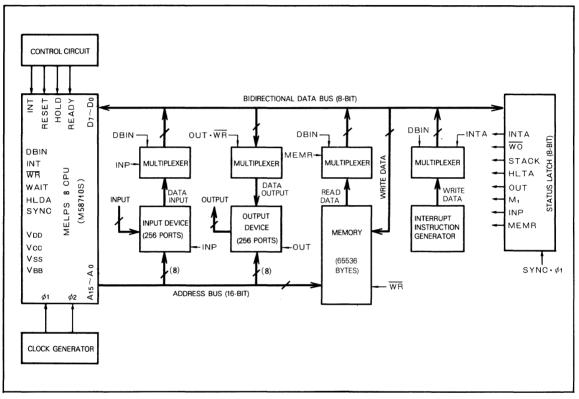
3: Data on the data bus must be stable for this period in the input mode. Requirements $t_{SU(DA-\phi1)}$, $t_{SU(DA-\phi2)}$, $t_{h(DA)}$ must be satisfied.

4 : The ready signal must be stable for this period during state T_2 or T_W . External synchronization is required.

5: The hold signal must be stable for this period during state T₂ or T_W when entering the hold mode and during states T₃, T₄, T₅, T_{WH} and T_H when in the hold mode. External synchronization is not required.

6 : The interrupt signal INT must be stable for the period immediately before the last state of any instruction in order to be recognized on the following machine cycle M₁ . External synchronization is not required.




APPLICATIONS

A Basic System Using the M58710S

The configuration of a system using the M58710S will depend on the functions of the system. A typical basic

system is shown in Fig. 1, and a summary of its operation is as follows:

- 1. After the CPU receives the two phase clocks ϕ_1 and ϕ_2 from the clock generator and the external reset signal, the address bus provides the address to memory location zero.
- 2. At the same time the CPU sends out status signals, which are latched temporarily in the status latch (flip-flops in which status information is latched). The status signals alert external circuits as to the state of the machine cycle that the CPU is ready to execute. When the CPU calls for data or instructions to be read from memory, status signal MEMR is applied to the multiplexer, and the 8-bit data from memory is read into the CPU through the bidirectional data bus across the multiplexer.
- 3. The 8-bit data coming from memory is decoded as an instruction. If it is a register-reference-arithmetic instruction, it is executed in the CPU; if it is a move-to-memory instruction, the CPU outputs the memory location to the address bus and data to be written on the data bus

in the next machine cycle (Note 1). The memory write in operation is executed by write control signal WR.

- 4. During input and output operation, the CPU outputs the I/O device number to the address bus, outputs a status signal (INP in the input mode; OUT in the output mode) and executes the read/write operation to the I/O devices using the bidirectional data bus.
- 5. If there is a signal from terminal INT to the CPU, the CPU is in the interrupt enable state, and it sends out status information INTA (Note 2), and an interrupt instruction is sent to the CPU from the interrupt instruction generator across the multiplexer. By executing this interrupt instruction, the CPU can jump to the interrupt processing subroutine.

^{2:} The interrupt acknowledge signal goes high when the CPU accepts an interrupt request (INT) signal.

Note 1: Each instruction may have five machine cycles. For register-to-register transfer or arithmetic instruction, instruction fetching and execution are carried out by machine cycle M₁ but memory access instructions, or 2-byte or 3-byte instructions require more than one machine cycle.

Push-Down Stack Operation

The M58710S has a last-in first-out stack. This stack has a pointer that maintains the address of the next available stack location in memory and can be initialized to use any position of memory. Since the stack pointer has a 16-bit register, it can locate any stack location up to 65536 bytes according to memory capacity. An example of the interrupt request is shown in Fig. 2 and the operation of the stack pointer in Fig. 3.

plained as follows:

Fig. 2 Processing an interrupt request

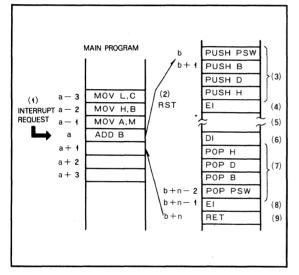
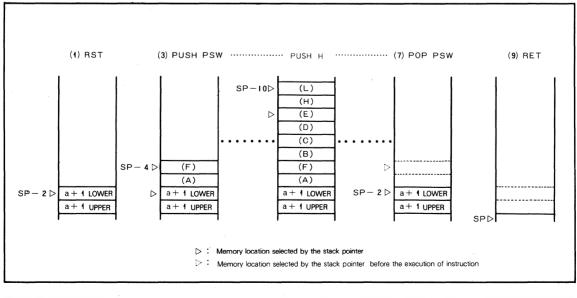



Fig. 2 is explained as follows:

- 1. An external interrupt request occurs when the CPU executes the instruction stored at location a in the main program.
- Instruction RST is fetched, the content of the program counter is incremented and pushed onto the push-down stack. Then the CPU jumps to the first location b of the interrupt operation program.
- The contents of the register are pushed onto the stack.
 F (in Fig. 3) indicates 8-bit data of flag flip-flops including CY₂, CY₁, Z, P and S. These are, from the most to the least significant bit, S, Z, 0, CY₁, 0, P, 1, CY₂.
- 4. Instruction EI is executed, enabling the CPU to accept the next interrupt request.
- 5. The interrupt operation is carried out.
- 6. The CPU enters the interrupt disable state.
- 7. The contents of registers are popped off the stack.
- 8. Instruction EI is executed, enabling the CPU to accept the interrupt request after return to the main program.
- 9. The content of the program counter is returned to location a+1 of the main program.

The operation of the push-down stack shown in Fig. 2 is described in Fig. 3, where SP indicates the content of the stack pointer before the interrupt is requested. Instruction LXI SP should be used to initialize the stack pointer. the stack pointer.

The content of the stack pointer is SP-4 at (3), but at (9), after the execution of instruction RET, it returns to the initial state, and the content of the stack point is SP.

Fig.3 Operation of the push-down stack

RANDOM-ACCESS MEMORIES

MITSUBISHI LSIS

256-BIT (256-WORD BY 1-BIT) STATIC RANDOM-ACCESS MEMORY

DESCRIPTION

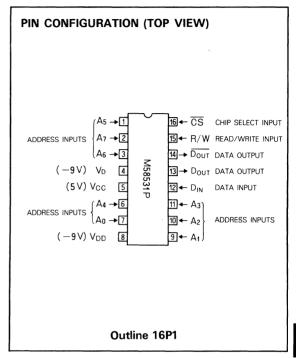
The M58531P is a 256-word by 1-bit P-channel silicon-gate MOS static RAM, designed for applications where ease of use is the important design object. Both inputs and outputs are fully compatible with TTL.

FEATURES

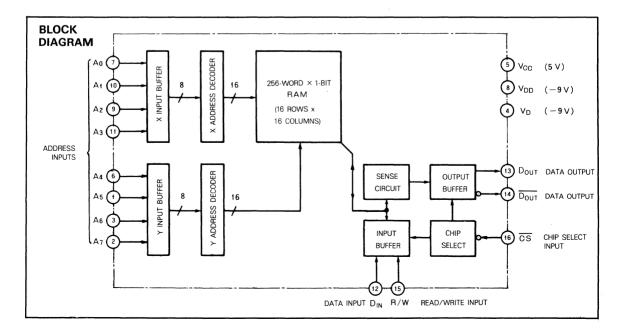
- Fast access time: 850ns (typ) 1,500ns (max)
- Low standby power: 0.7mW/bit (typ)
- Low operating power: 1.4mW/bit (typ)
- All inputs/outputs are fully compatible with TTL
- Three-state output and OR-tie capability
- Easy memory expansion by chip select signal
- Interchangeable with Intel's 1101A in pin configuration and electrical characteristics

APPLICATION

Small-capacity memory systems


FUNCTION

Static design eliminates external clocks and refresh circuitry. All inputs and outputs are fully compatible with TTL.


In the write mode, address signals $A_0 \sim A_7$ are used to select storage locations, and when signal R/W remains high the data of signal D_{IN} are writeen.

In the read mode, address signals $A_0 \sim A_7$ are used to select storage locations, and when signal R/W remains low the data of the selected location is read out to the D_{OUT} terminals.

When signal \overline{CS} is high, the chip is deselected, disabling both read and write operations and enabling the OR-tie with other output terminals since the outputs are in the floating (high-impedance) state.

The M58531P has two power supply terminals, V_{DD} for the memory cell part in which the data is stored, and V_D for the read/write control circuit. Power dissipation is low since, during standby, current is supplied only to the memory cell part for data storage, and read/write operation is not performed.

256-BIT (256-WORD BY 1-BIT) STATIC RANDOM-ACCESS MEMORY

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Limits	Unit
VDD	Supply voltage		0.3~-20	V
VD	Supply voltage	APAL	0.3~-20	V
V1	Input voltage	With respect to V _{CC}	0.3~-20	V
Vo	Output voltage		0.3~-20	V
Pd	Power dissipation	Ta=25°C	700	mW
Topr	Operating free-air temperature range		- 10~75	°C
Tstg	Storage temperature range		-40~125	°C

RECOMMENDED OPERATING CONDITIONS ($Ta = -10 \sim 75^{\circ}C$, unless otherwise noted)

Symbol	Parameter		Limits				
oyinboi	Farameter	Min	Nom	Max	Unit		
VDD	Supply voltage	- 9.45	- 9	-8.55	V		
VD	Supply voltage	- 9.45	- 9	-8.55	V		
Vcc	Supply voltage	4.75	5	5.25	V		
VIL	Low-level input voltage.	V _{cc} -15		Vcc - 4.5	V		
Vін	High-level input voltage	V cc-2		Vcc+0.3	V		

$\label{eq:constraint} \textbf{ELECTRICAL CHARACTERISTICS} ~ (\texttt{Ta}=-10 \sim 75^\circ\texttt{C}, \texttt{V}_{CC}=5\texttt{V}\pm5\%, \texttt{V}_{DD}=-9\texttt{V}\pm5\%, \texttt{V}_{D}=-9\texttt{V}\pm5\%, \texttt{v}_{$

			Limits			
Symbol	Parameter	Tês: conditions	Min	Тур	Max	Unit
Vін	High-level input voltage		Vcc-2		Vcc+0.3	V
VIL	Low-level input voltage		Vcc-15		Vcc-4.5	V
Vон	High-level output voltage	IOH=-100µA	3.5	4.9		V
VOL	Low-level output voltage	IOL=2mA			0.45	V
li li	Input current	VI-Vcc=-15V			- 1	μA
loz	Off-state input current	$V_0 - V_{CC} = -5V, V_{I(CS)} = V_{CC} - 2V$			-1	μA
Гон	High-level output current	VD=0V		- 2	-7	mA
IOL	Low-level output current	Vo=0.45V	2			mA
l dd l	Supply current from V DD	Io=0mA Ta=25°C		-13	- 19	mA
D	Supply current from VD	10=0mA Ta=25°C		-12	- 18	mA
Ci	Input capacitance	$V_1 = V_{CC} f = 1MHz, Ta = 25^{\circ}C$		7	10	рF
Co	Output capacitance	$V_0 = V_{CC} f = 1MHz, Ta = 25^{\circ}C$		7	10	pF
C(V _D)	Capacitance, V D power supply	$V_D = V_{CC} f = 1MHz, Ta = 25^{\circ}C$		20	35	pF

Note 1 : Current flowing into an IC is positive; out is negative.

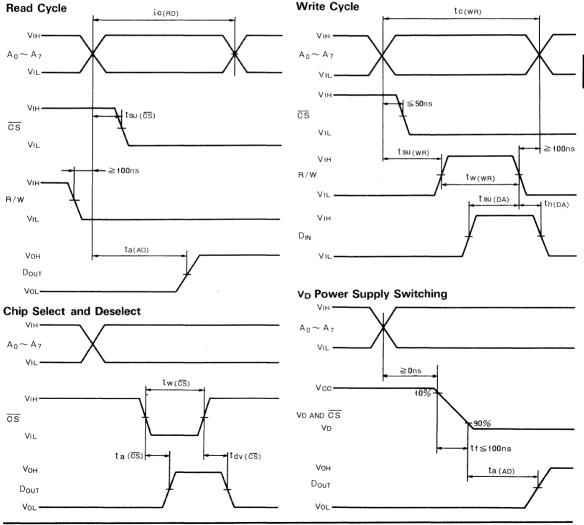
SWITCHING CHARACTERISTICS (Ta = $-10 - 75^{\circ}C$, Vcc = $5V \pm 5\%$, Vpp = $-9V \pm 5\%$, Vp = $-9V \pm 5\%$, unless otherwise noted) Read Cycle

	Parameter	Test conditions	Limits			Unit
Symbol	Faranteter		Min	Тур	Max	Unit
tc(RD)	Read cycle time		1.5			μs
t su (CS)	Chip select setup time	(Note 3)			1.2 (Note	2) µs
ta(AD)	Address access time			0.85	1.5	μs

Note 2 : Maximum value of $t_{\,SU}\,(\overline{cs})$ measured at minimum read cycle (1 , 5 $\mu\,s$)

256-BIT (256-WORD BY 1-BIT) STATIC RANDOM-ACCESS MEMORY

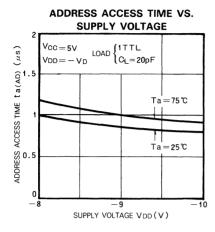
Write Cycle


Symbol	Parameter	Test conditions		Limits			
		Test contaitons	Min	Тур	Max	Unit	
tc(wR)	Write cycle time		0.8			μs	
tsu(wR)	Write setup time		0.3			μS	
tw(wR)	Write pulse width	(Note 3)	0.4			μs	
tsu(DA)	Data setup time		0.3			μS	
th(DA)	Data hold time		0.1			μS	

Chip Select and Deselect

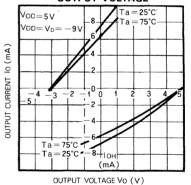
0	Descentes	Test conditions	Limits			Linit
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
tw(CS)	Chip select pulsé width		0.4			μS
ta(CS)	Chip select access time	(Note 3)		0.2	0.3	μs
tdv(CS)	Data valid time with respect to chip select			0.1	0.3	μS

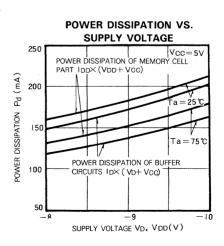
Note 3 : Input voltage waveform has an amplitude of 0~5V and tr=tf=10ns Output load is one TTL gate and a 20pF capacitance. Unless otherwise noted, the reference points are the 1.5V level of the output of a TTL gate(tpp≤10ns)

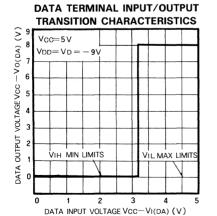

TIMING DIAGRAMS



256-BIT (256-WORD BY 1-BIT) STATIC RANDOM-ACCESS MEMORY


TYPICAL CHARACTERISTICS





SUPPLY VOLTAGE OPERATING RANGE 19 Та =0~75℃ 18 3 17 SUPPLY VOLTAGE V CC-V DD 16 TYPICAL OPERATING 15 RANGE 14 V LIMITS 13 12 11 10 9 7 9 10 11 12 13 14 15 16 17 8 SUPPLY VOLTAGE VCC-VDD (V)

OUTPUT CURRENT VS. OUTPUT VOLTAGE

MITSUBISHI LSIS

1024-BIT (1024-WORD BY 1-BIT) DYNAMIC RANDOM-ACCESS MEMORY

DESCRIPTION

The M58533P is a 1024-word by 1-bit P-channel silicon-gate MOS RAM, designed for applications where utilization of the high-speed low-power characteristics peculiar to dynamic circuitry is the important design object.

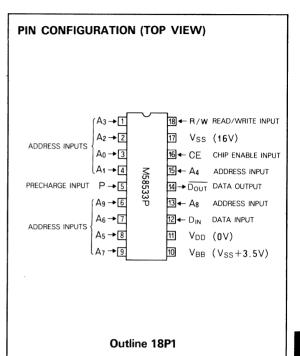
FEATURES

- Fast access time: 300ns (max) (Ta = $0 \sim 70^{\circ}$ C)
- Fast cycle time: 580ns (min) (Ta = $0 \sim 70^{\circ}$ C)
- Refresh interval: $2ms (max) (Ta = 0~70^{\circ}C)$
- Low standby power: 50μ W/bit (typ)
- Low operating power: 0.25mW/bit (typ)
- Output terminal has OR-tie capability
- Easy memory expansion by chip enable input
- Interchangeable with Intel's 1103 in pin configuration and electrical characteristics

APPLICATION

- Main memory of computers
- Memory for Chinese-character printer

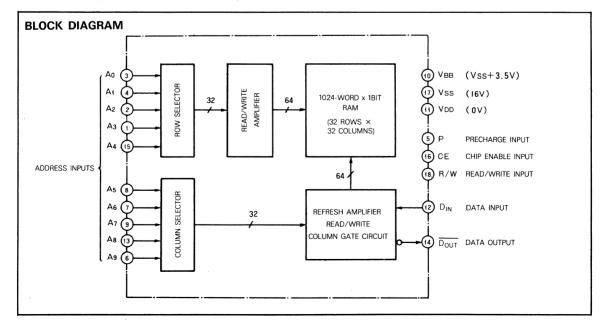
FUNCTION


The M58533P has the following four function cycles:

READ-when an address is designated by address signals $A_0 \sim A_9$ and R/W is turned high, data in the designated

address is read out to the output. WRITE-when an address is designated by address signals

 $A_0 \sim A_9$ and the low-level write pulse is applied to the R/W terminal, data input during that time is written.


READ/WRITE (READ-MODIFY-WRITE)—In the write cycle, if data that is read out from the output terminals is treated as effective data during the period before the write pulse is applied, both read and write operations are

performed in one cycle.

REFRESH-This cycle periodically refreshes the dynamically memorized data, and it is performed by designating the address of $A_0 \sim A_4$ in the read cycle.

The output can go to the floating (high-impedance) state when chip enable goes high, and the output can then be OR-tied.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Limits	Unit
VDD	Supply voltage		0.3~-25	V
Vss	Supply voltage	With respect to VBB	0.3~-25	V
Vi	Input voltage		0.3~-25	V
Vo	Output voltage		0.3~-25	V
Pd	Power dissipation	Ta=25°C	700	mW
Topr	Operating free-air temperature range		0~70	°C
Tstg	Storage temperature range		-40~125	°C

RECOMMENDED OPERATING CONDITIONS ($Ta = 0 \sim 70^{\circ}C$, unless otherwise noted)

Symbol	Parameter	Conditions	Limits			11.54
Symbol	Parameter		Min	Nom	Max	Unit
V _{SS}	Supply voltage		15.2	16	16.8	V
V _{BB} -V _{SS}	Supply voltage		3	3.5	4	V
VDD	Supply voltage	GND		0		V
Vін	High-level input voltage		Vss-1		Vss+1	V
VIL	Low-level input voltage		Vss-17		Vss-15	V
RL	Load resistance	Between DOUT and VDD	0.1		1	kΩ

$\label{eq:constraint} \textbf{ELECTRICAL CHARACTERISTICS} (\mbox{Ta}=0\sim70\mbox{°C},\mbox{ V}\mbox{SS}=16\mbox{ V}\pm5\%,\mbox{ V}\mbox{BB}-\mbox{V}\mbox{SS}=3\mbox{V}\sim4\mbox{V},\mbox{ V}\mbox{DD}=0\mbox{V},\mbox{ unless otherwise noted})$

Symbol	Parameter	Test and Billion	Limits			
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
Viн	High-level input voltage, all inputs		Vss-1		$V_{ss}+1$	V
VIL(P,CE,R/W)	Low-level input voltage, P, CE and R/W		Vss∸17		Vss-15	V
VIL(AD,DA)	Low-level input voltage, AD and DA		Vss-17		Vss-14.5	V
li li	Input leakage current, all inputs	VI=0V			- 1	μA
Тон	High-level output current	Vo=0V	- 500	800	- 4000	μΑ
IOL	Low-level output current				- 1	μA
Івв	Supply current from VBB				100	μA
I DD1	Supply current from VDD	V _{1(AD)} =V _{1(P)} =0V, V _{1(CE)} =V _{SS} , Ta=25°C		- 37	- 56	mA
I DD2	Supply current from V DD	V _{1(AD)} =V _{1(P)} =V _{1(CE)} = 0 V, Ta= 25° C		- 38	- 59	mA
I DD3	Supply current from VDD	V _{1(P)} =V _{SS} , V _{1(CE)} =0V, Ta=25°C		-5.6	-11	mA
I DD4	Supply current from VDD	$V_{1(P)} = V_{SS}, V_{1(CE)} = V_{SS}, Ta = 25^{\circ}C$		- 3	- 4	mA
I DD(AV)	Average supply current from VDD	$tc = 580$ ns, $t_{W(P)} = 190$ ns, $Ta = 25$ °C		- 17	-25	mA
Ci (Ao — A9)	Input capacitance, AD			5	7	pF
Ci(P.CE)	Input capacitance, P and CE	$V_1 = V_{SS}, V_1 = 25 \text{mV}_{rms}, f = 1 \text{MHz}$		15	18	pF
Ci(R/W)	Input capacitance, R/W	VI= V 55, VI= 2511VFms, I= 110112		11	15	pF
Ci(DA)	Input capacitance, DA			3	5	pF
Co(DA)	Output capacitance	$V_0 = V_{DD}$, $V_0 = 25 m V_{rms}$, $f = 1 M H z$		2	3	pF

Note 1 : Current flowing into an IC is positive; out is negative.

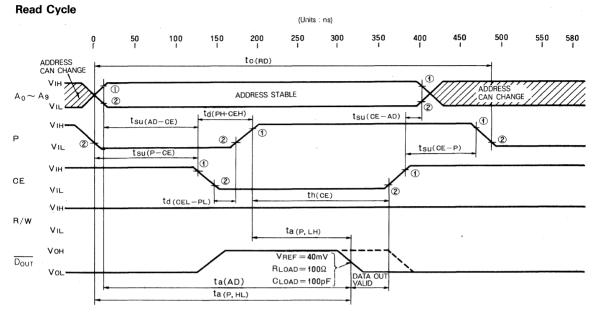
2 : Output voltage is defined as follows: VOH=VDD-RL · IOH, VOL=VDD-RL · IOL

TIMING REQUIREMENTS (For Read, Write, or Read-Modify-Write Cycle)

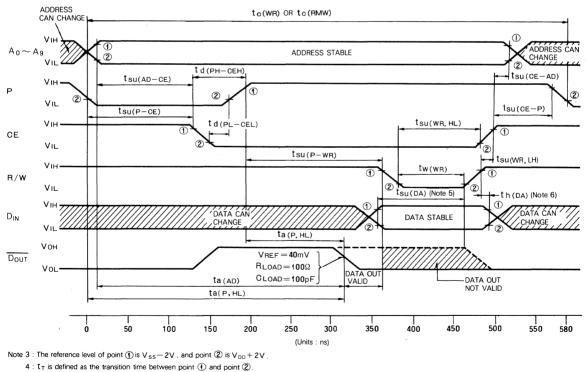
(Ta=0 ~70°C, Vss=16V \pm 5%, VBB-Vss=3~4V, VDD=0V. unless otherwise noted)

Cumulant	Parameter	T	Limits			11.5
Symbol		Test conditions	Min	Тур	Max	Unit
tc(ref)	Refresh cycle time				2	ms
tsu(AD-CE)	Address setup time with respect to chip enable		115			ns
tsu(ce-ad)	Chip enable setup time with respect to address		20			ns
tsu(P-CE)	Precharge setup time with respect to chip enable	See timing diagram for read, write and read-modify-write cycles	125			ns
td(PL-CEL)	Delay time, precharge low to chip enable low				75	ns
td(PH-CEH)	Delay time, precharge high to chip enable high				140	ns
tsu(CE-P)	Chip enable setup time with respect to precharge		85			ns

Symbol		T	Limits			
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
t _c (RD)	Read cycle time		480			ns
th (CE)	Chip enable hold time	See timing diagram for read cycle	165		500	ns
ta (P,LH)	Precharge low-to-high access time	tr = tf = 20 ns, CL = 100 pF			120	ns
t _{a (AD)}	Address access time	$R_{LOAD} = 100 \Omega$, VREF = 40mV	300			ns
ta (P, HL)	Precharge high-to-low access time		310			ns

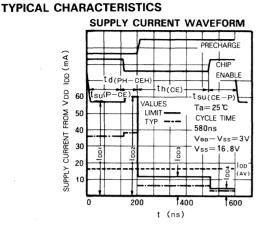

Write or Read-Modify-Write Cycle

Symbol	Barranatar	Tana and Ini		Unit		
Symbol	Parameter	Test conditions	Min	Тур	Max	
t _c (wr)	Write-cycle time		580			ns
t _c (RMW)	Read-modify-write cycle time	See timing diagram for read, write and	580			ns
tsu(P-WR)	Precharge setup time with respect to write	read-modify-write cycle.	165			ns
tw(wR)	Write pulse width	CL=100pF	50			ns
tsu(wRHL)	Write setup time with respect to high-to-low output	RL=100Ω	80			ns
tsu(DA)	Data setup time	VREF = 40mV	105			ns
t _{h(DA)}	Data hold time	tr = tf = 20ns	10			ns
ta(P,LH)	Precharge low-to-high access time				120	ns
tsu(WRLH)	Write setup time with respect to low-to-high output		0			ns

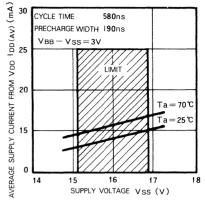


TIMING DIAGRAMS

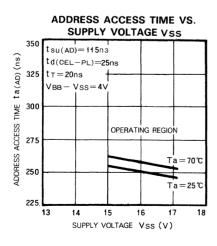
Write or Read-Modify-Write Cycle

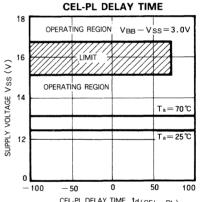

5: t_{su(DA)} is referenced to point ② of the rising edge of CE or R/W.

 $6: t_{n(DA)}$ is referenced to point (1) of the rising edge of CE or R/W.

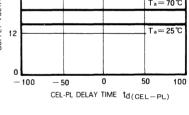

7: $t_{a(AD)} = t_{su(AD)-CE} \min + t_{d(PL-CEL)} + t_{a(P, LH)} \max + 2t_{T}$

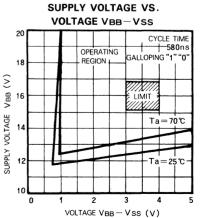
8: $t_a(P, HL) = t_{su(P-CE)} \min + t_{d(PL-CEL)} + t_{a(P, LH)} \max + 2t_T$





AVERAGE SUPPLY CURRENT FROM VDD VS. SUPPLY VOLTAGE VSS




HIGH-LEVEL OUTPUT CURRENT VS. SUPPLY VOLTAGE Vss 1.4 Ta = 25 ℃ HIGH-LËVËL OUTPUT CURRENT IOH (mA) 1.2 - 70℃ Га 1.0 LÍNAIT 0.8 0.6 04 13 14 15 16 17 18 SUPPLY VOLTAGE VSS (V)

SUPPLY VOLTAGE VS.

MITSUBISHI LSIS M58751P, M58751S

PIN CONFIGURATION (TOP VIEW)

A1 → 4

A2→5

A3 → 6

A4 → 7

l A0 → 18

Alternative Designation 2102A

16 🔶 A71

15 🔶 A8

14 + A9

10

9

16S1 (M58751S)

M58751 F

ADDRESS INPUTS

13 ← CS CHIP SELECT INPUT

12 - DOUT DATA OUTPUT

11 - DIN DATA INPUT

 V_{CC} (5V)

GND (0V)

1024-BIT (1024-WORD BY 1-BIT) STATIC RANDOM-ACCESS MEMORY

ADDRESS INPUTS

ADDRESS INPUTS

READ/WRITE INPUT R/W

DESCRIPTION

The M58751P and M58751S are 1024-word by 1-bit Nchannel silicon-gate MOS static RAMs, designed for applications where ease of use is the important design object. Both operate by a single 5V power supply, as does TTL, and all inputs and output are directly compatible with TTL.

FEATURES

- Fast access time: 450ns (max)
- Low power dissipation: 100μ W/bit (typ)
- Single 5V power supply
- Data holding at 1.5V supply voltage is possible
- Requires no external clock or refreshing
- All inputs and output are directly compatible with TTL
- Three-state output and OR-tie capability
- Easy memory expansion by chip select input
- Both M58751P and M58751S are interchangeable with Intel's 2102A-4 in pin configuration and electrical characteristics

APPLICATION

Small-capacity memory systems

FUNCTION


Static design makes the M58751P and M58751S convenient to use as they require no external clocks or refreshing, and all inputs and output are directly compatible with TTL.

During writing operation, when a location is designated by address signals $A_0 \sim A_9$ and R/W goes low, D_{IN} at that time is written; during reading operation, when a location is designated by address signals $A_0 \sim A_9$ and R/W goes high, data of the designated address is taken from the D_{OUT} terminal.

When \overline{CS} is high, the chip is in the non-selectable state, disabling both reading and writing operations of the device. In this case the output is in the floating (high impedance) state enabling OR-tie to other outputs.

Outline 16P1 (M58751P)

The memory data is held when supply voltage drops to 1.5V, enabling battery back-up operation during power stoppages and low-power operation during standby.

5 - 13

MITSUBISHI LSIS **M58751P, M58751S**

Alternative Designation 2102A

1024-BIT (1024-WORD BY 1-BIT) STATIC RANDOM-ACCESS MEMORY

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter		Conditions	Limits	Unit
Vcc	Supply voltage		-0.3~7	V	
Vi	Input voltage		With respect to GND	-0.3~7	V
Vo	Output voltage		1 "	-0.3~7	V
	Power dissipation M58751P M58751S	M58751P		700	· mW
Pd		M58751S	Ta=25°C	1000	mW
Topr	Operating free-air temperature range			0 ~ 70	°C
		M58751P		- 40~ 125	°C
Tstg	Storage temperature range M58751S		1	- 65~150	°C

RECOMMENDED OPERATING CONDITIONS ($Ta = 0 \sim 70^{\circ}C$, unless otherwise noted)

Symbol	Parameter		Limits		Unit
Symbol	Farameter	Min	Nom	Max	Onit
Vcc	Supply voltage	4.75	5.0	5.25	V
VIL	Low-level input voltage	0		0.65	V
ViH	High-level input voltage	2.2		Vcc	V

ELECTRICAL CHARACTERISTICS (Ta = 0 ~ 70°C, Vcc = 5V \pm 5%, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Unit
Зупьоі	Parameter	Test conditions	Min	Тур	Max	Unit
Vін	High-level input voltage		2.2		Vcc	v
VIL	Low-level input voltage		0		0.65	V
Vон	High-level output voltage	I он=-200 µ А	2.4			v
VOL	Low-level output voltage	IOL=2.1mA			0.4	v
h	Input current	VI = 0~5.25V			10	μA
Гогн	Off-state high-level output current	$V_1(\overline{CS}) = 2.2V, V_0 = 2.4V \sim V_{CC}$			10	μA
IozL	Off-state low-level output current	$V_{1}(\overline{CS}) = 2.2V, V_{0} = 0.4V.$			-10	μA
Icc	Supply current from VCC	VI = 5.25 (all inputs), output open		20	40	mA
Ci	Input capacitance, all inputs	$V_1 = GND$, $V_1 = 25mV_{rms}$, $f = 1MHz$		3	5	pF
Co	Output capacitance	$V_0 = GND$, $V_0 = 25mV_{rms}$, $f = 1MHz$		7	10	pF

POWER-DOWN CHARACTERISTICS ($\tau_a = 0 \sim 70^{\circ}$ C, unless otherwise noted)

Symbol	Parameter	Test conditions		Unit		
	Farameter		Min	Тур	Max	Offic
VCC(PD)	Power-down supply voltage		1.5			V
		$2.2V \leq V_{CC}(PD) \leq V_{CC}$	2.2			V
VI(CS)	Power-down chip select voltage	$1.5V \leq V_{CC(PD)} \leq 2.2V$	VCC(PD)			V
ICC(PD1)	Power-down supply current	$V_{CC} = 1.5V$, all inputs $= 1.5V$		13	25	mA
ICC(PD2)	Power-down supply current	VCC=2.0V, all inputs=2.0V		15	30	mA

Note : Current flowing into an IC is positive ; out is negative.

MITSUBISHI LSIS M58751P, M58751S

Alternative Designation 2102A

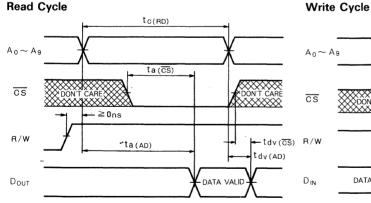
1024-BIT (1024-WORD BY 1-BIT) STATIC RANDOM-ACCESS MEMORY

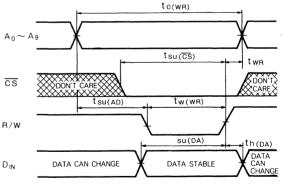
SWITCHING CHARACTERISTICS (Ta = $0 \sim 70^{\circ}$ C, Vcc = $5 \vee \pm 5\%$, unless otherwise noted)

Read Cycle

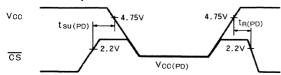
	Parameter			Limits			
Symbol	Farameter	Test conditions	Min	Тур	Max	Unit	
tc(RD)	Read cycle time	Input pulse VIH=2.2V	450			ns	
ta(AD)	Address access time	VIL=0.65V			450	ns	
ta(CS)	Chip select access time	tr=tf=20ns			230	ns	
tdv(AD)	Data valid time with respect to address	Reference level 1.5V	40			ns	
tdv(CS)	Data valid time with respect to chip select	Load = 1TTL, CL=100pF	0			ns	

TIMING REQUIREMENTS (Ta = 0 \sim 70°C, Vcc = 5 V $\pm 5\%$, unless otherwise noted) Write Cycle

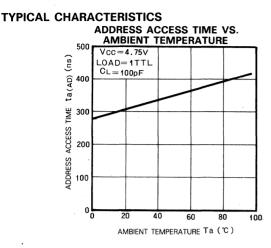

Symbol	Parameter	Test predition		Limits			
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit	
tc(wR)	Write cycle time	Input pulse VIH=2.2V	450			ns	
tsu(AD)	Address setup time	VIL=0.65V	20			ns	
tw(wr)	Write pulse width	tr=tf=20ns	300			ns	
th(DA)	Data hold time	Reference level = 1.5V	50			ns	
t _{su(DA)}	Data setup time	Load=1TTL, CL=100pF	300			ns	
t _{wn}	Write recovery time		0			ns	
tsu(CS)	Chip select setup time		300			ns	



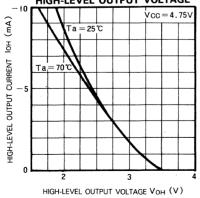
Power-Down Operation

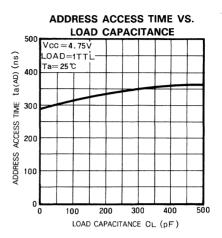

Symbol	Parameter	Test conditions	Limits			11-14
			Min	Тур	Max	Unit
t _{su(PD)}	Power-down setup time		0			ns
t _{R(PD)}	Power-down recovery time		tc(RD)			ns

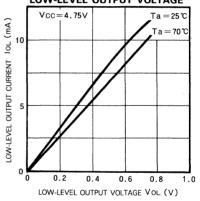
TIMING DIAGRAMS Read Cycle

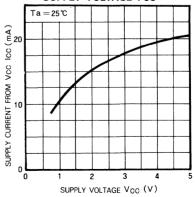

Power-Down Operation

Alternative Designation 2102A


1024-BIT (1024-WORD BY 1-BIT) STATIC RANDOM-ACCESS MEMORY







LOW-LEVEL OUTPUT CURRENT VS. LOW-LEVEL OUTPUT VOLTAGE

SUPPLY CURRENT FROM Vcc VS. SUPPLY VOLTAGE Vcc

MITSUBISHI LSIs

M58755S-1, M58755S-2, M58755S-3

Alternative Designation 2107B

4096-BIT (4096-WORD BY 1-BIT) DYNAMIC RANDOM-ACCESS MEMORY

DESCRIPTION

The M58755S series consists of three 4096-word by 1-bit dynamic RAMs, fabricated with the N-channel silicon-gate MOS process. These RAMs are designed for large-capacity memory systems where high speed, low power dissipation and low cost are important design objects.

FEATURES

Symbol	M 58755S - 1	M 58755S-2	M58755S-3
Access time (max)	200ns	270ns	150ns
Cycle time (min)	400ns	470ns	320ns
Minimum cycle power	300mW	240mW	350mW

 0.03μ W/bit (typ)

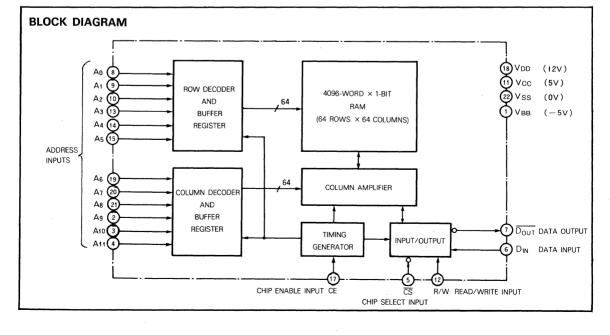
• Low standby power:

Voltage range for all power

- supplies (V_{DD} , V_{CC} , V_{BB}): ±10%
- Refresh interval: $2ms (Ta = 0 \sim 70^{\circ}C)$
- Refresh addresses: A_0 , A_1 , A_2 , A_3 , A_4 , A_5
- All input terminals except CE are directly TTL compatible
- Memory expansion is enabled by chip select input
- Output can be in the floating (high-impedance) state when CS is high or CE is low.
- Interchangeable with Intel's 2107B and TI's TMS4060

APPLICATION

Main memory unit for computers


FUNCTION

A location is designated by address signals $A_0{\sim}A_{11},$ and reading from and writing to that location is controlled by

PIN CONFIGURATION (TOP VIEW) (-5V) V_{BB} [1 22 V_{SS} (0V) A9 →2 21**4**-A8] (5V) ADDRESS INPUTS A10-3 20 - A7 ADDRESS INPUTS A11-4 19 - A6 CHIP SELECT INPUT CS→5 18 V_{DD} (12V) DATA INPUT DIN-6 755 S-1 17 ← CE CHIP ENABLE INPUT 16 NC DATA OUTPUT DOUT -7 A0 -> 8 15 - A5 ADDRESS INPUTS A1 -> 9 14 🕂 A4 } ADDRESS INPUTS A₂ → 10 13 ← A3 (5V) Vcc 11 12 ← R/W READ/WRITE INPUT NC= NO CONNECTION **Outline 22S1**

R/W. When \overline{CS} is high, the chip is in the non-selectable state, disabling both read and write operations.

The devices are dynamic RAMs, and must be refreshed every 2ms to hold data stored in the memory cells. Refreshing is performed by reading sequentially the 64 locations designated by the 6 address signals $A_0 \sim A_5$.

MITSUBISHI LSIS M58755S-1, M58755S-2, M58755S-3

Alternative Designation 2107B

4096-BIT (4096-WORD BY 1-BIT) DYNAMIC RANDOM ACCESS MEMORY

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Limits	Unit
VDD	Supply voltage		-0.3~20	V
Vcc	Supply voltage		-0.3~20	V
Vss	Supply voltage	With respect to VBB (substrate)	-0.3~20	V
Vi	Input voltage		-0.3~20	V
Vo	Output voltage		-0.3~20	V
Pd	Power dissipation	Ta=25°C	1000	mW
Topr	Operating free-air temperature range	,	0~70	°C
Tstg	Storage temperature range		- 55~150	°C

ż

RECOMMENDED OPERATING CONDITIONS (Ta = $0 \sim 70^{\circ}$ C, unless otherwise noted)

Symbol	Decementar		Limits			
Symbol	Parameter	Min	Nom	Max	Unit	
VDD	Supply voltage	10.8	12	13.2	V	
Vcc	Supply voltage	4.5	5	5.5	V	
Vss	Supply voltage		0		V	
Vвв	Supply voltage	-4.5	- 5	-5.5	V	
VIH(CE)	High-level chip enable input voltage	VDD-1		V DD +1	V	
Vін	High-level input voltage, all inputs except chip enable	2.4		Vcc+1	V	
VIL(CE)	Low-level chip enable input voltage	-1		1	V	
VIL	Low-level input voltage, all inputs except chip enable	-1		0.6	V	

ELECTRICAL CHARACTERISTICS

 $(Ta=0\sim70^\circ\text{C},\ \text{V}_{\text{DD}}=12\text{V}\pm10\%,\ \text{V}_{\text{CC}}=5\text{V}\pm10\%,\ \text{V}_{\text{SS}}=0\text{V},\ \text{V}_{\text{BB}}=-5\text{V}\pm10\%\text{. unless otherwise noted})$

Symbol	Parameter		Tant and Jilian		Limits		Unit
Symbol	Falanetei		Test conditions	Min	Тур	Max	Onit
VIH(CE)	High-level chip enable input voltage			VDD-1		VDD+1	V
Viн	High-level input voltage, all inputs exce	ot chip enable		2.4		Vcc +1	V
VIL(CE)	Low-level chip enable input voltage			- 1		1	V
VIL	Low-level input voltage, all inputs except	ot chip enable		-1 .		0.6	V
IT(CE)	Input current, chip enable input		$V_1 = V_{DD} + 1V$		0.01	2	
11	Input current, all inputs except chip en	able	VI = 6.5V		0.01	10	μA
Vон	High-level output voltage		IOH=-2mA	2.4		Vcc	V
Vol	Low-level output voltage		Io∟=2mA	0		0.45	V
loz	Off-state output current		Voz=0~Vcc	- 10		10	μA
I DDI	Supply current from VDD		VIL(CE)=-1V~0.6V		10	200	μA
DD2	Supply current from VDD		VIH(CE)=VIH, VIL(CS)=VIL		10	25	mA
Icc	Supply current from VCC		VIL(CE)=VIL or VIH(CS)=VIH		0.01	10	μA
IBB	Supply current from VBB				0.01	100	μA
	· · · ·	M58755S-1	tw(CE)=230ns, tc=400ns		25	40	mA
DD(AV)	Average supply current from VDD	M58755S-2	tw(CE)=300ns, to=470ns		20	35	mA
		M58755S-3	tw(CE)=180ns, to=310ns		29	45	mA
Ci(CE)	Input capacitance, chip enable input		$V_{IL} = V_{SS}, V_{BB} = -5V, f = 1MHz$		17	25	pF
Ci	Input capacitance, all inputs except chip	enable	$V_{IL} = V_{SS}, V_{BB} = -5V, f = 1MHz$		5	7	pF
Co	Output capacitance		$V_{OL}=V_{SS}$, $V_{BB}=-5V$, $f=1MHz$		5	7	ρF

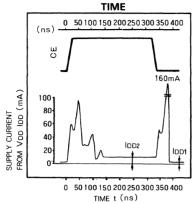
Note 1 : Current flowing into an IC is positive; out is negative.

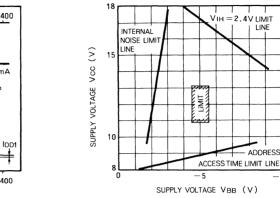
MITSUBISHI LSIs M58755S-1, M58755S-2, M58755S-3

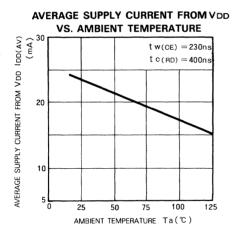
VDD VS. VBB OPERATING REGION

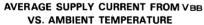
VIH = 2.4V LIMIT

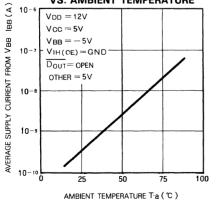
LINE

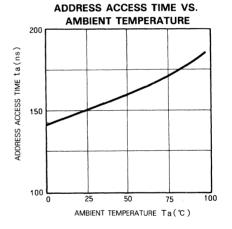

ADDRESS

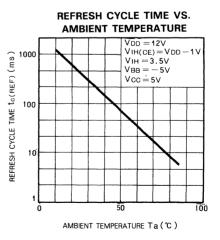

-10


Alternative Designation 2107B


4096-BIT (4096-WORD BY 1-BIT) DYNAMIC RANDOM-ACCESS MEMORY


TYPICAL CHARACTERISTICS (M58755S-1) SUPPLY CURRENT FROM VDD VS.





ELECTRIC

MITSUBISHI LSIs **M587555-1** Alternative Designation 2107B

4096-BIT (4096-WORD BY 1-BIT) DYNAMIC RANDOM-ACCESS MEMORY

TIMING REQUIREMENTS M58755S-1 (Ta=0 \sim 70°C, VDD=12V \pm 10%, Vcc=5V \pm 10%, Vss=0V, VBB=-5V \pm 10%, unless cherwise noted) cherwise noted

Cumhal	Parameter	Test conditions	Limits			Unit
Symbol	Parameter		Min	Тур	Max	
tc(REF)	Refresh cycle time				2	ms
tw(CEL)	Chip enable low pulse width		130			ns
tr (CE)	Chip enable pulse rise time				40	ns
tf(CE)	Chip enable pulse fall time				40	ns
tsu(AD)	Address setup time		0			ns
tsu(CS)	Chip select setup time		0			ns
th(AD)	Address hold time		100			ns
th(CS)	Chip select hold time		100			ns

Read Cycle

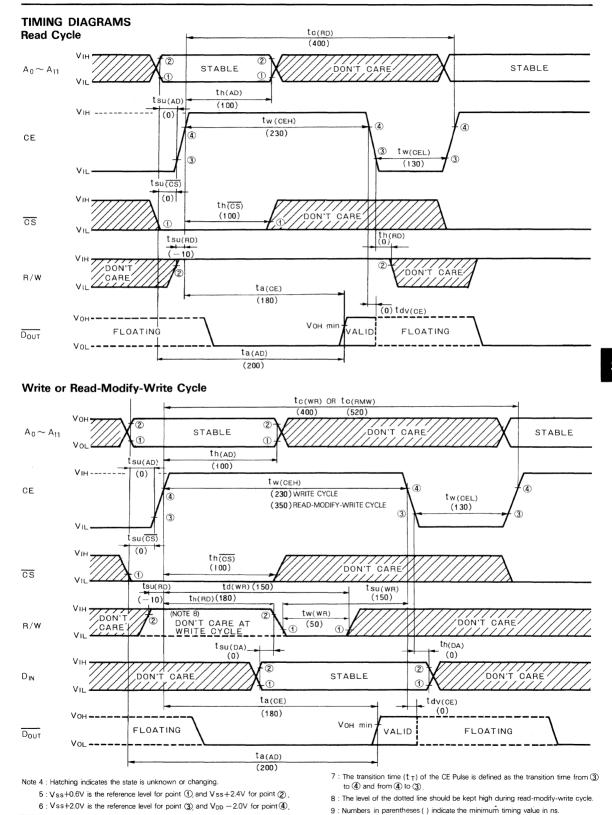
Symbol	Parameter	Test conditions	Limits			Unit
Symbol	Palatieter	Test conditions	Min	Тур	Max	Unit
tc(RD)	Read cycle time	tr=tf=20ns	400			ns
tw(CEH)	Chip enable high pulse width		230		4000	ns
tsu(RD)	Read setup time		-10			ns
th(RD)	Read hold time		0			ns

Write or Read-Modify-Write Cycle

Symbol	Parameter	Test conditions		Unit		
Symbol	Falameter	rest conditions	Min	Тур	Max	Ont
tc(WR)	Write cycle time	tr=tf=20ns	400			ns
tc(RMW)	Read-modify-write cycle time	tr = tf - 200s	52 0			ns
tw(CEH)	Chip enable high pulse width, write cycle		230		4000	ns
tw(CEH)	Chip enable high pulse width, read-modify-write cycle	· ·	350		4000	ns
tsu(RD)	Read setup time		-10			ns
th(RD)	Read hold time		180			ns
tsu(WR)	Write setup time		150			ns
tw(WR)	Write pulse width		50			ns
td(wR)	Write delay time		150			ns
tsu(DA)	Data setup time		Ö			ns
th(DA)	Data hold time		0		-	ns

SWITCHING CHARACTERISTICS (Ta = 0 \sim 70°C, V_{DD} = 12V ± 10%, V_{CC}=5V ± 10%, V_{SS}=0V, V_{BB}=-5V ± 10%, unless otherwise noted) read Cycle

	- .	Test conditions		Limits			
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit	
ta(CE)	Chip enable access time	CL=50pF, Load=1 TTL, VREF=2.0V			180	ns	
ta (AD)	Address access time	tsu(AD) = 0ns, $tr = tf = 20ns$			200	ns	
tdv(CE)	Data valid time with respect to chip enable		0			ns	


Read-Modify-Write Cycle

Currels al	Parameter	Test conditions	Limits			Unit
Symbol	Parameter		Min	Тур	Max	Unit
ta(CE)	Chip enable access time	CL=50pF, Load=1 TTL, VREF=2.0V			180	ns
ta (AD)	Address access time	$t_{su(AD)} = 0$ ns, $t_r = t_f = 20$ ns			200	ns
tdv(CE)	Data valid time with respect to chip enable		0			ns

MITSUBISHI LSIS

Alternative Designation 2107B

4096-BIT (4096-WORD BY 1-BIT) DYNAMIC RANDOM ACCESS MEMORY

5

4096-BIT (4096-WORD BY 1-BIT) DYNAMIC RANDOM-ACCESS MEMORY

TIMING REQUIREMENTS M58755S-2 (Ta = $0 \sim 70^{\circ}$ C, V_{DD} = $12V \pm 10\%$, V_{CC} = $5V \pm 10\%$, V_{SS} = 0V, V_{BB} = $-5V \pm 10\%$, unless otherwise noted) otherwise noted

ŝ

Symbol	Parameter	Test conditions	Limits			Unit
Symbol	Falaitietei		Min	Тур	Max	Unit
tc(REF)	Refresh cycle time				2	ms
tw(CEL)	Chip enable low pulse width		130			ns
tr (CE)	Chip enable pulse rise time				40	ns
tf(CE)	Chip enable pulse fall time			•	40	ns
tsu(AD)	Address setup time		0			ns
tsu(CS)	Chip select setup time		0			ns
th(AD)	Address hold time		100		.,	ns
th(CS)	Chip select hold time		100			ns

Read Cycle

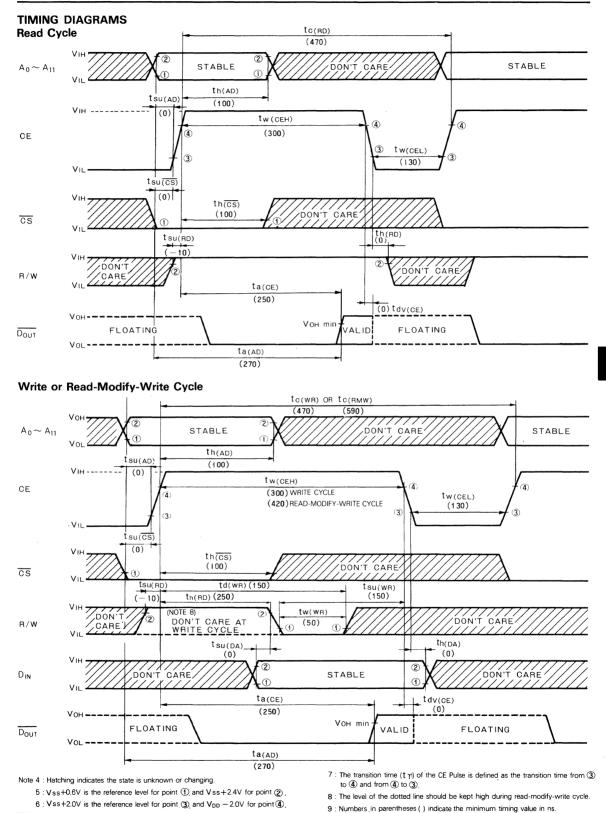
Symbol	Parameter	Test conditions		Limits		
0,1100	- and the con-	rest conditions	Min	Тур	Max	Unit
tc(RD)	Read cycle time	tr=tf=20ns	470			ns
tw(CEH)	Chip enable high pulse width		300		4000	ns
tsu(RD)	Read setup time		- 10			ns
th(RD)	Read hold time		0			ns

Write or Read-Modify-Write Cycle

Symbol	Parameter	Test conditions	Limits			Unit
Gyntoor	1 diditieter	. Test conditions	Min	Тур	Max	Unit
tc(WR)	Write cycle time	$t_r = t_f = 20$ ns	470			ns
tc(RMW)	Read-modify-write cycle time	- tr = tf = 20hs	590			ns
tw(CEH)	Chip enable high pulse width, write cycle		300		4000	ns
tw(CEH)	Chip enable high pulse width, read-modify-write cycle		420		4000	ns
tsu(RD)	Read setup time		-10			ns
th(RD)	Read hold time		250			ns
tsu(WR)	Write setup time		150			ns
tw(wR)	Write pulse width		50			ns
td(wr)	Write delay time		150			ns
tsu(DA)	Data setup time		0			ns
th(DA)	Data hold time		0			ns

SWITCHING CHARACTERISTICS (Ta = 0 \sim 70°C, VDD = 12V \pm 10%, Vcc = 5V \pm 10%, Vss = 0V, VBB = $-5V \pm 10\%$, unless otherwise Read Cycle noted

	Decomptor	Test conditions	Limits			Unit
Symbol Parameter	Parameter	rest conditions	Min	Тур	Max	0
ta(CE)	Chip enable access time	CL=50pF, Load=1 TTL, VREF=2.0V			250	ns
ta (AD)	Address access time	tsu(AD) = 0ns, $tr = tf = 20ns$			270	ns
tdv(CE)	Data valid time with respect to chip enable		0			ns


Read-Modify-Write Cycle

Symbol	Parameter	Test conditions	Limits			Unit
Symbol	Parameter		Min	Тур	Max	Unit
ta(CE)	Chip enable access time	CL=50pF, Load=1 TTL, VREF=2.0V			250	ns
ta(AD)	Address access time	$t_{su(AD)} = 0$ ns, $t_r = t_f = 20$ ns			270	ns
tdv(CE)	Data valid time with respect to chip enable		0			ns

MITSUBISHI LSIS M58755S-2

Alternative Designation 2107B

4096-BIT (4096-WORD BY 1-BIT) DYNAMIC RANDOM-ACCESS MEMORY

5

4096-BIT (4096-WORD BY 1-BIT) DYNAMIC RANDOM-ACCESS MEMORY

TIMING REQUIREMENTS M58755S-3 ($Ta = 0 \sim 70^{\circ}C$, $V_{DD} = 12V \pm 10\%$, $V_{CC} = 5V \pm 10\%$, $V_{SS} = 0V$, $V_{BB} = -5V \pm 10\%$. unless otherwise noted) otherwise noted

¢

	Parameter	Test conditions	Limits			Unit
Symbol	Faranteter		Min	Тур	Max	Offic
tc(REF)	Refresh cycle time				2	ms
tw(CEL)	Chip enable low pulse width		1 30			ns
tr(CE)	Chip enable pulse rise time				40	ns
tf(CE)	Chip enable pulse fall time				40	ns
tsu(AD)	Address setup time		0			ns
tsu(<u>CS</u>)	Chip select setup time		0			ns
th(AD)	Address hold time		100			ns
th(CS)	Chip select hold time		100			ns

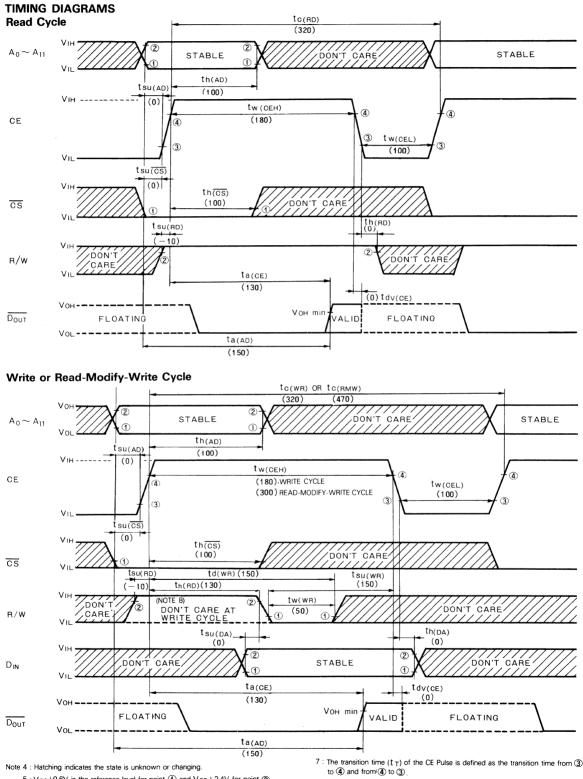
Read Cycle

Sumbol	Symbol Parameter	Test conditions	Limits			Unit
Symbol			Min	Тур	Max	Unit
tc(RD)	Read cycle time	tr = tf = 20ns	320			ns
tw(CEH)	Chip enable high pulse width		180		4000	ns
tsu(RD)	Read setup time		-10			ns
th (RD)	Read hold time		0			ns

Write or Read-Modify-Write Cycle

Symbol	Parameter	Test conditions	Limits			Unit
Symbol	Farameter		Min	Тур	Max	Unit
tc(WR)	Write cycle time	- tr=tf=20ns	320			ns
tc(RMW)	Read-modify-write cycle time	tr - tr - 2015	470			ns
tw(CEH)	Chip enable high pulse width, write cycle		180		4000	ns
tw(CEH)	Chip enable high pulse width, read-modify-write cycle		300		4000	ns
tsu(RD)	Read setup time		-10			ns
th(RD)	Read hold time		150			ns
tsu(WR)	Write setup time		150			ns
tw(wr)	Write pulse width	· · · · · · · · · · · · · · · · · · ·	50			ns
td(WR)	Write delay time		150			ns
tsu(DA)	Data setup time		0			ns
th(DA)	Data hold time		0			ns

SWITCHING CHARACTERISTICS (Ta = 0 \sim 70°C, VDD = 12V ± 10%, VCc = 5V ± 10%, VSS = 0V, VBB = -5V ± 10%, unless otherwise noted. Read Cycle


	Symbol Parameter	Test conditions	Limits			Unit
Symbol			Min	Тур	Ma×	
ta(CE)	Chip enable access time	CL=50pF, Load=1 TTL, VREF=2.0V			130	ns
ta (AD)	Address access time	tsu(AD) = 0ns, $tr = tf = 20ns$			150	ns
tdv(CE)	Data valid time with respect to chip ennable		0			ns

Read-Modify-Write Cycle

	Devenueter	Test conditions	Limits			Unit
Symbol Parameter	Parameter		Min	Тур	Max	
ta(CE)	Chip enable access time	CL=50pF, Load=1 TTL, VREF=2.0V			130	ns
ta(AD)	Address access time	tsu(AD) = 0ns, tr = tf = 20ns			150	ns
tdv(CE)	Data valid time with respect to chip enable		0			ns

MITSUBISHI LSIs **M58755S-3** Alternative Designation 2107B

4096-BIT (4096-WORD BY 1-BIT) DYNAMIC RANDOM-ACCESS MEMORY

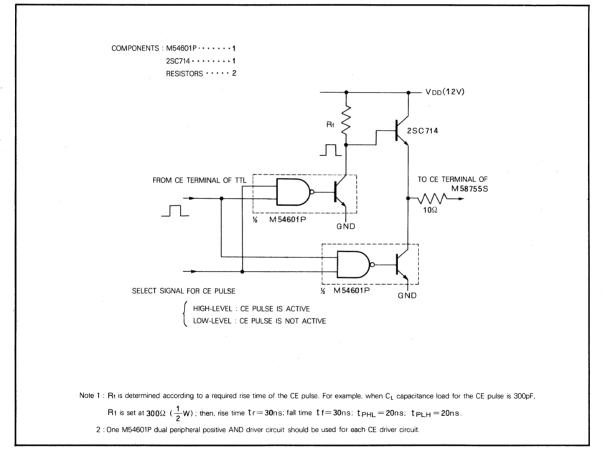
 $5:V_{\mbox{ss}}\mbox{+}0.6V$ is the reference level for point () and V $\mbox{ss}\mbox{+}2.4V$ for point ().

 $6\cdot V \text{ss+}2.0 \text{V}$ is the reference level for point (3), and $V_{\text{DD}}-2.0 \text{V}$ for point (4),

8 : The level of the dotted line should be kept high during read-modify-write cycle.

MITSUBISHI LSIS M587555-1, M587555-2, M587555-3

Alternative Designation 2107B


4096-BIT (4096-WORD BY 1-BIT) DYNAMIC RANDOM- ACCESS MEMORY

APPLICATION

Method of Refreshing

Since 64 memory cells designated by the X address can be refreshed in 1 cycle, (either read, write or read-modifywrite), a read operation for all 64 addresses selected by the 6 address signals $A_0 \sim A_s$ must be performed within 2ms to refresh all 4096 memory cells. If the chip is refreshed during a write cycle or a read-modify-write cycle, then signal $\overline{\text{CS}}$ must be kept low; during a read cycle, $\overline{\text{CS}}$ can be either high or low. If a read operation is executed when the chip is in the non-designated state with $\overline{\text{CS}}$ high, refreshing can be performed with the output terminal $\overline{D}_{\text{OUT}}$ in the floating (high-impedance) state. Thus all the M58755Ss used in the memory system can be refreshed in only 64 cycles.

Recommended Driver Circuit for Chip Enable Pulse

PIN CONFIGURATION (TOP VIEW)

A₃ → 1

A2->2

A1 →3

A₀ → 4

A₅ → 5

 $A_6 \rightarrow 6$

l A7 → 7

(0V) GND 8

DATA INPUT DI

DATA OUTPUT DO1 - 10

DATA INPUT DI2-11

Alternative Designation 2101A

Vcc (5V)

21 ← A 4 ADDRESS INPUT

20 - R/W READ/WRITE INPUT

19 ← CS1 CHIP SELECT INPUT 18 ← OD OUTPUT DISABLE

17 ← CS2 CHIP SELECT INPUT

16→ DO4 DATA OUTPUT

14 → DO3 DATA OUTPUT

13 ← DI3 DATA INPUT

12 → DO₂ DATA OUTPUT

1024-BIT (256-WORD BY 4-BIT) STATIC RANDOM-ACCESS MEMORY

ADDRESS INPUTS

DESCRIPTION

The M58721P and M58721S are 256-word by 4-bit static RAMs, fabricated with the N-channel silicon-gate MOS process and designed for simple interfacing. They operate by a single 5V supply, as does TTL, and are directly TTL-compatible.

FEATURES

- Fast access time: 450ns (max)
- Low power dissipation: 150μ W/bit (typ)
- Single 5V supply voltage
- Data holding at 1.5V supply voltage (optional)
- No clocks or refreshing required
- All inputs and outputs are directly TTL-compatible
- All outputs are three-state, with OR-tie capability
- Simple memory expansion by chip select input
- Separate data inputs and outputs
- Interchangeable with Intel's 2101A-4 in pin configuration and electrical characteristics.

APPLICATION

Small-capacity memory units

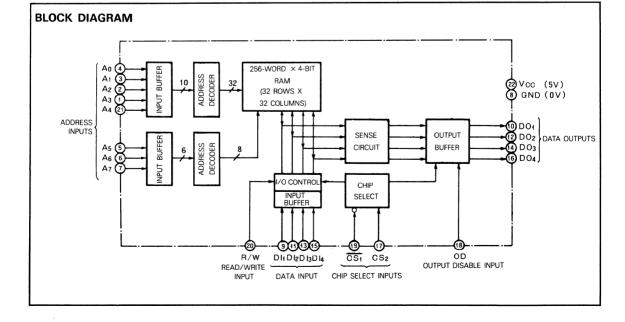
FUNCTION

The M58721P and M58721S have 256-word by 4-bit organization and provide separate data input and output terminals. During a write cycle, when a location is designated by address signals $A_0 \sim A_7$ and signal R/W goes low, the data of the IN signal at that time is written.

During a read cycle, when a location is designated by address signals $A_0 \sim A_7$ and R/W goes high, data of the designated address is taken from the DO terminal.

When signal $\overline{CS_1}$ is high or CS_2 is low, the chip is in the

non-selectable state, disabling both reading and writing. In this case the output is in the floating (high-impedance) state useful for OR-ties with other output terminals.


Outline 22P1 (M58721P)

22S1 (M58721S)

M58721 F

When signal OD is high, the output is in the floating state, so that OD is used as an input/output select control signal for common input/output operation.

The memory data can be held at a supply voltage of 1.5V, enabling battery back-up operation during power failure and power-down operation in the standby mode.

Alternative Designation 2101A

1024-BIT (256-WORD BY 4-BIT) STATIC RANDOM-ACCESS MEMORY

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter		Conditions	Limits	Unit
Vcc	Supply voltage			-0.3~7	V
Vi	Input voltage		With respect to GND	-0.3~7	V
Vo	Output voltage			-0.3~7	V
D.1	M58721P		- Ta=25°C	700	mW
Pd	Maximum power dissipation M58721S	1000		mW	
Topr	Operating free-air ambient temperatu	re		0~70	°C
- .		M58721 P		-40~125	°C
Tstg	Storage temperature M58721 S			-65~150	°C

RECOMMENDED OPERATING CONDITIONS ($T_a = 0 \sim 10^{\circ}C$, unless otherwise noted)

Symbol	Parameter		11-1		
Symbol		Min	Nom	Max	Unit
Vcc	Supply voltage	4.75	5	5.25	V
VIL	Low-level input voltage	0		0.8	V
ViH	High-level input voltage	2.2		Vcc	V

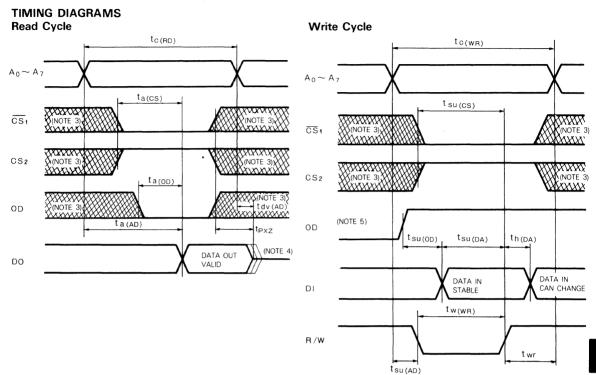
ELECTRICAL CHARACTERISTICS (Ta =0 ~70°C, V_{CC} =5V ±5%, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Unit
Symbol	Parameter	lest conditions	Min	Тур	Max	Unit
Vін	High-level input voltage		2.2		Vcc	V
VIL	Low-level input voltage		0		0.8	V
Vон	High-level output voltage	IOH=-200µA	2.4			v
Vol	Low-level output voltage	IOL=3.5mA			0.45	v
h	Input current	VI = 0~5.25V			10	μA
lozн	Off-state high-level output current	$V_1(\overline{CS1})=2.2V, V_0=2.4V \sim V_{CC}$			10	μA
lozl	Off-state low-level output current	$V_{1}(\overline{CS_1})=2.2V, V_0=0.4V$			-10	μA
lcc	Supply current from V _{CC}	Vi=5.25V (all inputs), output open	1	30	60	mA
Ci	Input capacitance, all inputs	VI=GND, f=1MHz, 25mVrms		3	5	pF
Co	Output capacitance	Vo=GND, f=1MHz, 25mVrms	1	8	12	pF

Note 1 : Current flowing into an IC is positive; out is negative.

TIMING REQUIREMENTS (For Write Cycle) ($Ta = 0 \sim 70^{\circ}C$, $VCC = 5V \pm 5\%$, unless otherwise noted)

Symbol	Parameter	Test conditions		Limits			
Symbol		rest conditions	Min	Тур	Max	Unit	
tc(wr)	Write cycle time	Input pulse VIH=2.2V	350			ns	
tw(wR)	Write pulse width	VIL=0.8V	250			ns	
tsu(AD)	Address setup time with respect to write	$t_r = t_f = 20_{ns}$	20			ns	
t wr	Write recovery time		0			ns	
tsu(oD)	Output disable setup time with respect to data in	Reference level == 1.5V	100			ns	
tsu(da)	Data setup time	Load = 2 T T L, CL=100 p F	170			ns	
th(da)	Data hold time		0			ns	
tsu(cs)	Chip select setup time		250			ns	


SWITCHING CHARACTERISTICS (For Read Cycle) (Ta=0~70°C, Vcc=5V±5%, unless otherwise noted)

Symbol	_	Test conditions		Limits		
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
t _{c(RD)}	Read cycle time	Input pulse VIH=2.2V	450			ns
ta(AD)	Address access time	ViL=0.8V			450	ns
t _{a(CS)}	Chip select access time	$t_r = t_f = 20 ns$			180	ns
t _{a(OD)}	Output disable access time				150	ns
texz	Output disable time (Note 2)	Reference level = 1.5V			100	ns
tdv(AD)	Data valid time with respect to address	LOAD = 2TTL CL=100pF	40			ns

Note 2 : t_{PXZ} is with respect to $\overline{CS_1}$, CS_2 , or OD, whichever occurs first.

Alternative Designation 2101A

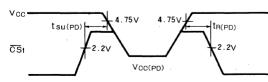
1024-BIT (256-WORD BY 4-BIT) STATIC RANDOM-ACCESS MEMORY

Note 3 : Hatching indicates the state is unknown

4 : Indicates that during this period the data out is invalid for this definition of tdv (AD) and is in the floating state for this definition of tpxz.

5 : OD may be kept low for the full cycle except during common input/output operation.

POWER-DOWN OPERATION (OPTIONAL) These characteristics are guaranted only under custom specifications.

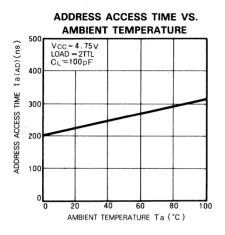

Electrical Characteristics (T $a = 0 \sim 70$ °C, unless otherwise noted)

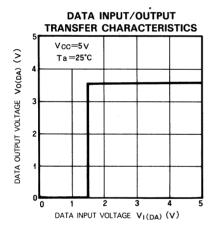
Currels al	Parameter Test conditions		Limits			11-14
Symbol	Parameter	rest conditions	Min	Тур	Max	Unit
VCC(PD)	Power-down supply voltage		1.5			V
VI(CSI)	Power-down chip select input voltage	$2.2V \leq V_{CC}(PD) \leq V_{CC}$	2.2			V
VI(CSI)	Power-down chip select input voltage	$1.5V \leq V_{CC(PD)} \leq 2.2V$	Vcc(pd)			v
CC(PD1)	Power-down supply current from V _{CC}	$V_{CC}=1.5V$, all inputs = 1.5V		15	30	mA
CC(PD2)	Power-down supply current from V _{CC}	V _{CC} =2.0V, all inputs=2.0V		20	40	mA

Timing Requirements (Ta=0 \sim 70°C, Vcc=5V $\pm5\%$, unless otherwise noted)

				Limits		
Symbol	Symbol Parameter	Test conditions	Min	Тур	Max	Unit
tsu(PD)	Power-down setup time		0			ns '
t _{R(PD)}	Power-down recovery time		t _{c(RD)}			ns

Timing Diagram




5

Alternative Designation 2101A

1024-BIT (256-WORD BY 4-BIT) STATIC RANDOM-ACCESS MEMORY

TYPICAL CHARACTERISTICS

LOAD CAPACITANCE 500 V_{CC}=4.75V LOAD = 2TTL ADDRESS ACCESS TIME t a (AD) (ns) Ta =25℃ 400 300 200 100 0 200 300 0 100 400 500 LOAD CAPACITANCE CL(pF)

ADDRESS ACCESS TIME VS.

SUPPLY CURRENT FROM Vcc VS. SUPPLY VOLTAGE Vcc 50 Ta =25℃ Icc (mA) 40 Vcc 30 SUPPLY CURRENT FROM 20 10 n č 2 3 4 SUPPLY VOLTAGE V_{CC} (V)

PIN CONFIGURATION (TOP VIEW)

A3→1

A2→2

A1→3

 $A_0 \rightarrow 4$

 $A_5 \rightarrow 5$

A6-+6

A7 → 7

(0V)GND 8

OUTPUT DISABLE OD → 9

M58722F

ADDRESS INPUTS

Alternative Designation 2111A

18 Vcc (5V)

ADDRESS INPUT

INPUTS/OUTPUTS

16 ← R/W READ/WRITE INPUT

15 ← CS1 CHIP SELECT INPUT

DATA

10 - CS2 CHIP SELECT INPUT

17 - A4

14 ↔ I/O4

13**↔**1/03

12**↔**1/02

11 **↔** I/O₁

1024-BIT (256-WORD BY 4-BIT) STATIC RANDOM-ACCESS MEMORY

DESCRIPTION

The M58722P and M58722S are 256-word by 4-bit static RAMs, fabricated with the N-channel silicon-gate MOS process and designed for simple interfacing. They operate on a single 5V supply, as does TTL, and are directly TTL-compatible.

The input and output terminals are common, and an OD terminal is provided.

FEATURES

- Fast access time: 450ns (max)
- Low power dissipation: 150µW/bit (typ)
- Single 5V power supply
- Data holding at 1.5V supply voltage (optional)
- No clocks or refreshing required
- All inputs and outputs are directly TTL-compatible
- All outputs are three-state, with OR-tie capability
- Simple memory expansion by chip select input
- Common data inputs and outputs
- Interchangeable with Intel's 2111A-4 in pin configuration and electrical characteristics

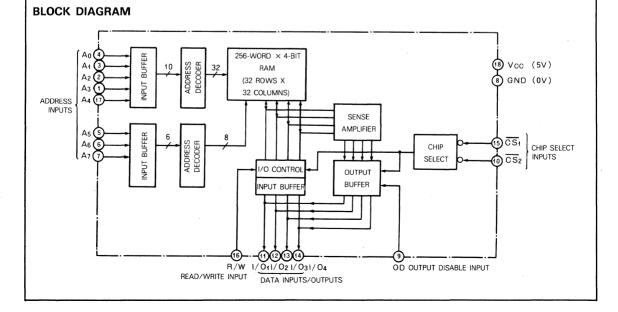
APPLICATION

Small-capacity memory units

FUNCTION

The M58722P and M58722S have 256-word by 4-bit organization and provide common data input and output terminals. During a write cycle, when a location is designated by address signals $A_0 \sim A_7$, the OD signal is kept high to keep the I/O terminals in the input mode, signal R/W goes low, and the data of the IN signal at that time is written.

During a read cycle, when a location is designated by address signals $A_0 \sim A_7$, the OD signal is kept low to keep


the I/O terminals in the output mode, signal R/W goes high, and the data of the designated address is taken from the I/O terminals.

Outline 18P1 (M58722P)

18S1 (M58722S)

When signal \overline{CS}_1 or \overline{CS}_2 is high, the chip is in the nonselectable state, disabling both reading and writing. In this case the output is in the floating (high-impedance) state, useful for OR-ties with other output terminals.

The memory data can be held at a supply voltage of 1.5V, enabling battery back-up operation during power failure and power-down operation in the standby mode.

Alternative Designation 2111A

1024-BIT (256-WORD BY 4-BIT) STATIC RANDOM-ACCESS MEMORY

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter		Conditions	Limits	Unit
Vcc	Supply voltage	Input voltage With respect to GND		-0.3~7	V
Vi	Input voltage			-0.3~7	V
Vo	Output voltage			-0.3~7	V
	Pd Maximum power dissipation	M58722P		700	mW
Pu		Maximum power dissipation M58722S	M58722S	Ta=25°C	1000
Topr	Operating free-air ambient temperatur	e		0~70	°C
T - + -	Starsas temperatura	M58722P		-40~125	°C
Tstg	Storage temperature	M58722S		-65~150	°C

RECOMMENDED OPERATING CONDITIONS ($T_a = 0 \sim 10^{\circ}C$, unless otherwise noted)

Symbol	Parameter		Limits		11-5
Gymbol	ratameter	Min	Nom	Max	Unit
Vcc	Supply voltage	4.75	5	5.25	V
VIL	Low-level input voltage	0		0.8	V
ViH	High-level input voltage	2.2		Vcc	V

ELECTRICAL CHARACTERISTICS (Ta = $0^{-70^{\circ}C}$, V_{CC} = $5V \pm 5\%$, unless otherwise noted)

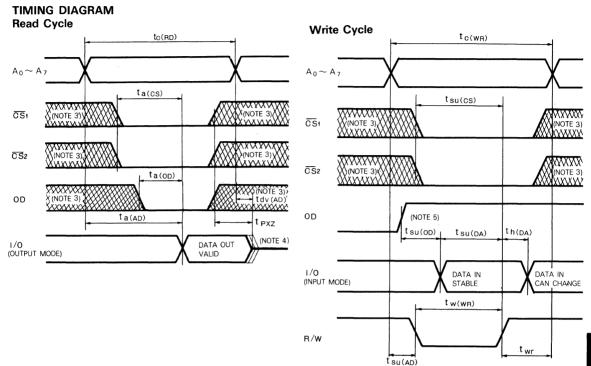
Symbol	Parameter	Test conditions		Limits		Unit
Symbol	Falaliete	Test conditions	Min	Тур	Max	Unit
Vін	High-level input voltage		2.2		Vcc	V
VIL	Low-level input voltage		0		0.8	v
Vон	High-level output voltage	IOH=-200µA	2.4			v
Vol	Low-level output voltage	IOL=3.5mA			0.45	V
h	Input current	V1=0~5.25∨			10	μA
юzн	Off-state high-level output current	$V_1(\overline{CS1})=2.2V, V_0=2.4V \sim V_{CC}$			10	μA
loz∟	Off-state low-level output current	$V_1(\overline{CS_1}) = 2.2 \vee, \vee_0 = 0.4 \vee$			-10	μA
lcc	Supply current from VCC	V1=5.25V (all inputs), output open		30	60	mA
Ci	Input capacitance, all inputs	VI=GND, f=1MHz, 25mVrms		3	5	pF
Co	Output capacitance	Vo=GND, f=1MHz, 25mVrms		8	12	pF

Note 1 : Current flowing into an IC is positive; out is negative.

TIMING REQUIREMENTS (For Write Cycle) ($Ta = 0 \sim 70^{\circ}C$, $Vcc = 5V \pm 5\%$, unless otherwise noted)

Symbol	Parameter	Test conditions		Limits		Unit
Symbol	Falaneter	rest conditions	Min	Тур	Max	Unit
tc(wR)	Write cycle time	Input pulse VIH=2.2V	350			ns
tw(wR)	Write pulse width	VIL=0.8V	250			ns
tsu(AD)	Address setup time with respect to write	$t_r = t_f = 20 n_s$	20			ns
t wr	Write recovery time		0			ns
tsu(op)	Output disable setup time with respect to data in	Reference level = 1.5V	100			ns
tsu(DA)	Data setup time	Load = $2 T T L$, $C_L = 100 p F$	170			ns
th(da)	Data hold time		0			ns
tsu(cs)	Chip select setup time		250			ns

SWITCHING CHARACTERISTICS (For Read Cycle) (Ta = $0 \sim 70^{\circ}$ C, Vcc= $5 \vee \pm 5\%$, unless otherwise noted)


Currele al	_	Test conditions		Limits		Unit
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
t _{c(RD)}	Read cycle time	Input pulse VIH=2.2V	450			ns
ta(AD)	Address access time	ViL=0.8V			450	ns
$t_a(\overline{CS})$	Chip select access time	$t_r = t_f = 20 \text{ ns}$			180	ns
ta(OD)	Output disable access time				150	ns
texz	Output disable time (Note 2)	Reference level = 1.5V			100	ns
t dv (AD)	Data valid time with respect to address	LOAD = 2TTL, $CL = 100 pF$	40			ns

Note 2 : t_{PXZ} is with respect to $\overline{CS_1}$, $\overline{CS_2}$, or OD, whichever occurs first.

Alternative Designation 2111A

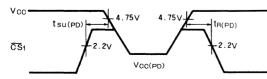
1024-BIT (256-WORD BY 4-BIT) STATIC RANDOM-ACCESS MEMORY

Note 3 : Hatching indicates the state is unknown.

4 : Indicates that during this period the data out is invalid for this definition of t dv (AD) and is in the floating state for this definition of tPXZ.

5 : The input signals from the external circuits should not be applied to the I/O terminals, for during this period they are in output mode.

POWER-DOWN OPERATION (OPTIONAL) These characteristics are guaranted only under custom specifications.

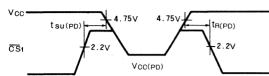

Electrical Characteristics (Ta = $0 \sim 70$ °C, unless otherwise noted)

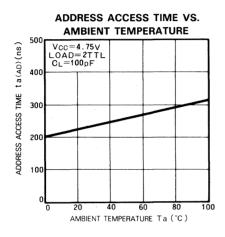
<u> </u>	Parameter			Limits	11.5	
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
VCC(PD)	Power-down supply voltage		1.5			v
VI(CSI)	Power-down chip select input voltage	$2.2V \leq V_{CC}(PD) \leq V_{CC}$	2.2			v
VI(CSI)	Power-down chip select input voltage	$1.5 \vee \leq V_{CC(PD)} \leq 2.2 \vee$	VCC(PD)			V
ICC(PD1)	Power-down supply current from V _{CC}	V _{CC} =1.5V, all inputs =1.5V		15	30	mA
CC(PD2)	Power-down supply current from V _{CC}	V _{CC} =2.0V, all inputs=2.0V		20	40	mA

Timing Requirements ($Ta\!=\!0\!\sim\!70^\circ\text{C}$, $V_{CC}\!=\!5V\pm\!5\%$, unless otherwise noted)

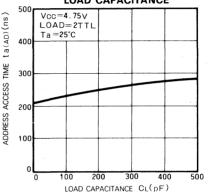
				Limits		11.55
Sympol	Symbol Parameter	Test conditions	Min	Тур	Тур Мах	Unit
t _{su(PD})	Power- down setup time		0			ns
t _{R(PD)}	Power- down recovery time		t _{c(RD)}			ns

Timing Diagram

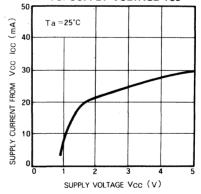



Alternative Designation 2111A

1024-BIT (256-WORD BY 4-BIT) STATIC RANDOM-ACCESS MEMORY


Timing Diagram

TYPICAL CHARACTERISTICS



ADDRESS ACCESS TIME VS. LOAD CAPACITANCE

LOW-LEVEL OUTPUT CURRENT VS. LOW-LEVEL OUTPUT VOLTAGE

SUPPLY CURRENT FROM V_{CC} VS. SUPPLY VOLTAGE V_{CC}

Alternative Designation 2112A

1024-BIT (256-WORD BY 4-BIT) STATIC RANDOM - ACCESS MEMORY

DESCRIPTION

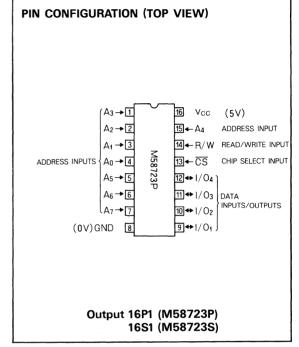
The M58723P and M58723S are 256-word by 4-bit static RAMs fabricated with the N-channel silicon-gate MOS process and designed for simple interfacing. They operate from a single 5V supply, as does TTL, and are directly TTL-compatible.

The input and output terminals are common.

FEATURES

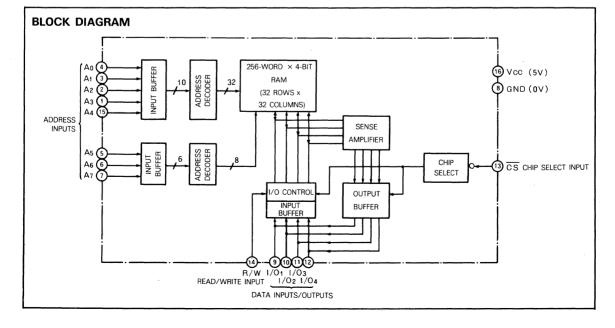
- Fast access time: 450ns (max)
- Low power dissipation: 150μ W/bit (typ)
- Single 5V supply voltage
- Data holding at 1.5V supply voltage (optional)
- Requires no clocks or refreshing
- All inputs and outputs are directly TTL-compatible
- All outputs are three-state, with OR-tie capability
- Simple memory expansion by chip select input
- Common data inputs and outputs
- Interchangeable with Intel's 2112A-4 in pin configuration and electrical characteristics.

APPLICATION


Small-capacity memory units

FUNCTION

The M58723P and M58723S have 256-word by 4-bit organization and provide common data input and output terminals. During a write cycle, when a location is designated by address signals $A_0 \sim A_7$ and signal R/W goes low, the data of the I/O signal at that time is written.


During a read cycle, when a location is designated by address signal $A_0 \sim A_7$ and R/W goes high, data of the designated address is taken from the I/O terminals.

When signal \overline{CS} is high, the chip is in the non-selectable

state, disabling both reading and writing. In this case the output is in the floating (high-impedance) state, useful for OR-ties with other output terminals.

The memory data can be held at a supply voltage of 1.5V, enabling battery back-up operation during power failure and power-down operation in the standby mode.

Alternative Designation 2112A

1024-BIT (256-WORD BY 4-BIT) STATIC RANDOM-ACCESS MEMORY

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter		Conditions	Limits	Unit
Vcc	Supply voltage	bly voltage		-0.3~7	V
Vi	Input voltage		With respect to GND	-0.3~7	V
Vo	Output voltage			-0.3~7	· V
Dd		M58723P	T- 05%0	700	mW
FU	Pd Maximum power dissipation	Maximum power dissipation I a M58723 S	Ta = 25°C	1000	mW
Topr	Operating free-air ambient temperatu	re		0~70	°C
Tstg	Storage temperature	M58723P		-40~125	°C
isig	Storage temperature	M58723S		-65~150	°C

RECOMMENDED OPERATING CONDITIONS ($Ta = 0 \sim 70^{\circ}C$, unless otherwise noted)

Symbol	Decomptor		Limits		11-5
Symbol	Parameter	Min	Nom	Max	Unit
Vcc	Supply voltage	4.75	5	5.25	V
VIL	Low-level input voltage	0		0.8	V
VIH	High-level input voltage	2.2		Vcc	V

ELECTRICAL CHARACTERISTICS (T a =0 \sim 70°C, V_{CC} =5V \pm 5%, unless otherwise noted)

Symbol	Parameter	T		Limits		Unit
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
Vін	High-level input voltage		2.2		Vcc	V
VIL	Low-level input voltage		0		0.8	v
Vон	High-level output voltage	IOH=-200µА	2.4			V
Vol	Low-level output voltage	IOL=3.5mA			0.45	V
11	Input current	VI=0~5.25∨			10	μA
lozн	Off-state high-level output current	$V_1(\overline{CS})=2.2V, V_0=2.4V \sim V_{CC}$			10	μA
lozl	Off-state low-level output current	$V_{1}(\overline{CS})=2.2V, V_{O}=0.4V$			-10	μA
lcc	Supply current from VCC	V1=5.25V (all inputs), output open		30	60	mA
Ci	Input capacitance, all inputs	VI=GND, f=1MHz, 25mVrms		3	5	pF
Co	Output capacitance	Vo=GND, f=1MHz, 25mVrms		8	12	pF

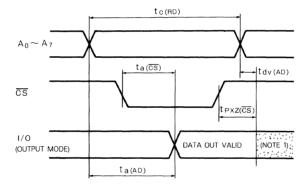
Note : Current flowing into an IC is positive; out is negative.

TIMING REQUIREMENTS ($\tau_a{=}0{\sim}70^{\circ}\text{C},\ \text{Vcc}{=}5\text{V}{\pm}5\%$, unless otherwise noted) Write Cycle 1

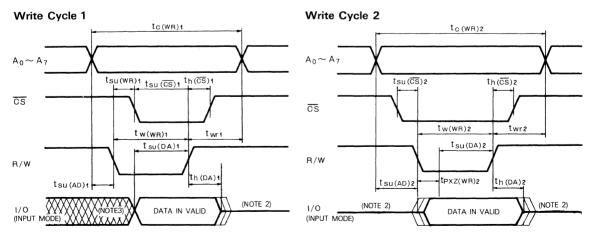
Symbol	Parameter	Test conditions			Unit	
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
tc(wr)i	Write cycle time	Input pulse	350			ns
tsu(AD)1	Address setup time with respect to write pulse	V _{IH} =2.2V	20			ns
tw(wR)1	Write pulse width	VIL=0.8∨	250			ns
twri	Write recovery time	$t_r = t_f = 20$ ns	0			ns
tsu(DA)1	Data setup time	Reference level =1.5V	170			ns
th(DA)1	Data hold time	Load = 2TTL, CL = 100pF	0			ns
th(CS)1	Chip select hold time		0			ns
tsu(wR)1	Write pulse setup time with respect to chip select		0			ns
tsu(CS)1	Chip select setup time		1 70			ns

Alternative Designation 2112A

1024-BIT (256-WORD BY 4-BIT) STATIC RANDOM-ACCESS MEMORY


Write Cycle 2

Symbol	Parameter	Test conditions		Limits		
Symbol	Farameter	Test conditions	Min	Тур	Max	Unit
t _{c(wr)2}	Write cycle time	Input pulse	350			ns
tsu(AD)2	Address setup time with respect to write pulse	V _{IH} =2.2V	20			ns
tw(WR)2	Write pulse width	V _{IL} =0.8V	250			ns
twr 2	Write recovery time	$t_{r} = t_{f} = 20$ ns	0			ns
tsu(DA)2	Data setup time	Reference level=1.5V	170			ns
th(DA)2	Data hold time	Load = 2TTL, CL = 100pF	0			ns
th(CS)2	Chip select hold time		0			ns
t _{su} (CS)2	Chip select setup time		0			ns
tpxz(WR)2	Output disable time with respect to write pulse				80	ns


SWITCHING CHARACTERISTICS (For Read Cycle) (Ta = 0 ~ 70°C, V_{CC} = 5V \pm 5%. unless otherwise noted)

Symbol	Parameter	Test conditions		Limits		Unit
Symbol	Falaneter	Test conditions	Min	Тур	Max	Unit
tc(RD)	Read cycle time	Input pulse	450			ns
ta(AD)	Address access time	VIH=2.2V, VIL=0.8V			450	ns
ta(CS)	Chip select access time	$t_r = t_f = 20$ ns			180	ns
tpxz(cs)	Output disable time with respect to chip select	Reference level 1.5V			100	ns
tdv(AD)	Data valid time with respect to address	Load = 2TTL, $C_L = 100 p F$	40			ns

TIMING DIAGRAMS Read Cycle

Note 1 : In this period, the data out is valid for a definition of t_{dv} (AD) and is in the floating state for a definition of $t_{PXZ}(\overline{CS})$

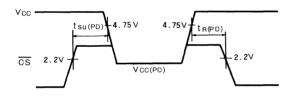
Note 2 : The input signals from the external circuits should not be applied to the I/O terminals (keeping them three-state) for during this period the I/O terminals are in the output mode.

3.: The input signals from the external circuits can be applied to the I/O terminals since the signal CS is delayed in relation to signal R/W.

Alternative Designation 2112A

1024-BIT (256-WORD BY 4-BIT) STATIC RANDOM-ACCESS MEMORY

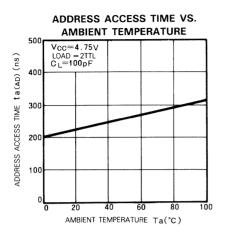
POWER-DOWN OPERATION (OPTIONAL) These characteristics are guaranted only under custom specifications.

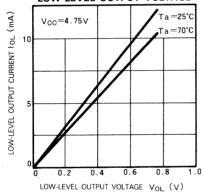

Electrical Characteristics (Ta=0~70°C, unless otherwise noted)

Symbol	Beremeter			Limits			
	Parameter	Test conditions	Min	Тур	Max	Unit	
V _{CC} (PD)	Power-down supply voltage		1.5			v	
	Power-down chip select input voltage	2.2V≦V _{CC} (PD)≦V _{CC}	2.2			v	
VI(CS)	Power-down chip select input voltage	1.5V≤V _{CC} (PD)≤2.2V	VCC(PD)			v	
CC(PD1)	Power-down supply current from V _{CC}	$V_{CC}=1.5V$, all inputs = 1.5V		15	30	mA	
CC(PD2)	Power-down supply current from V _{CC}	Vcc=2.0V, all inputs=2.0V		20	40	mA	

Timing Requirements (Ta=0~70°C, Vcc=5V±5%, unless otherwise noted)

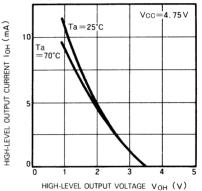
Symbol	Parameter		Unit		
	Falantelei	Min Typ Max	ont		
tsu(PD)	Power-down setup time	0			ns
tr(PD)	Power-down recovery time	tc(RD)	•		ns


Timing Diagram

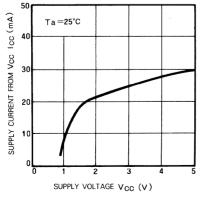


1024-BIT (256-WORD BY 4-BIT) STATIC RANDOM-ACCESS MEMORY

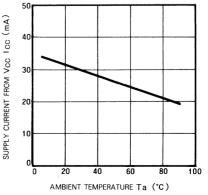
TYPICAL CHARACTERISTICS

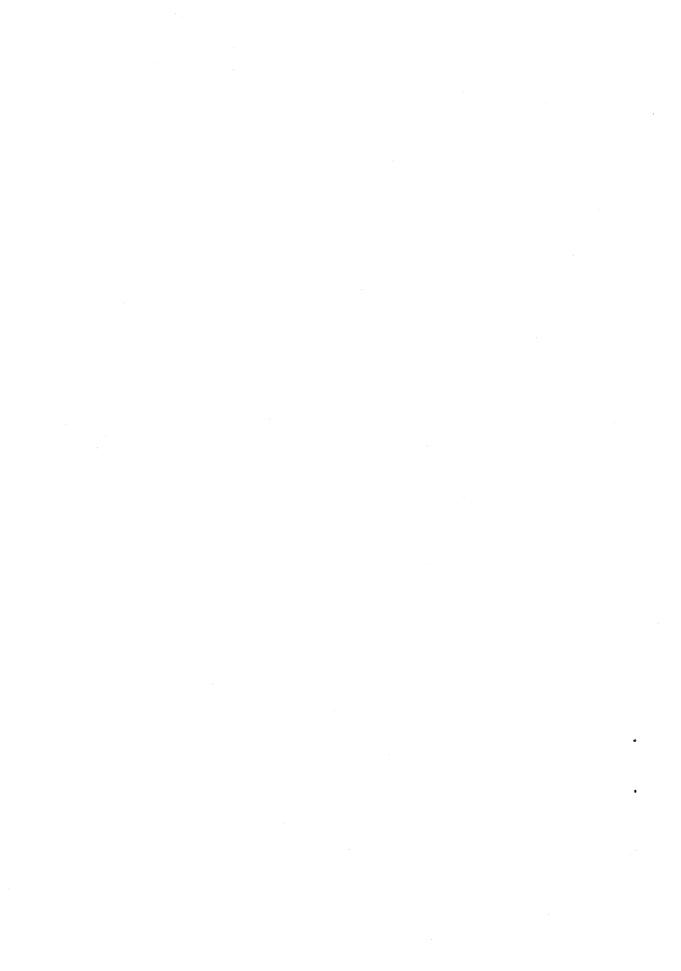


LOW-LEVEL OUTPUT CURRENT VS. LOW-LEVEL OUTPUT VOLTAGE



ADDRESS ACCESS TIME VS. LOAD CAPACITANCE 500 Vcc=4.75v ADDRESS ACCESS TIME ta(AD) (ns) LOAD = 2TTLT a = 25°C 400 300 200 100 0 ñ 100 200 300 400 500 LOAD CAPACITANCE CL(pF)


HIGH-LEVEL OUTPUT CURRENT VS. HIGH-LEVEL OUTPUT VOLTAGE


SUPPLY CURRENT FROM VCC VS. SUPPLY VOLTAGE VCC

SUPPLY CURRENT FROM Vcc VS. AMBIENT TEMPERATURE

Alternative Designation 2104

4096-BIT (4096-WORD BY 1-BIT) DYNAMIC RANDOM-ACCESS MEMORY

DESCRIPTION

The M58756S and M58756K are 4096-word by 1-bit dynamic RAMs, fabricated with the N-channel silicon-gate MOS process. As it is composed of a dynamic circuit, it requires refreshing every 2ms.

FEATURES

- Fast access time: 300ns (max)
- Fast read cycle time: 425ns (min)
- Refresh interval: 2ms (max)
- Low standby power dissipation: 3μ W/bit (typ)
- Low operating power dissipation: 130μ W/bit (typ)
- All inputs are directly TTL-compatible
- All outputs are three-state and directly TTL-compatible; data can be latched, effective until the next cycle
- Easy memory expansion by chip select signal (CS)
- Interchangeable with Intel's 2104 in pin configuration and electrical characteristics

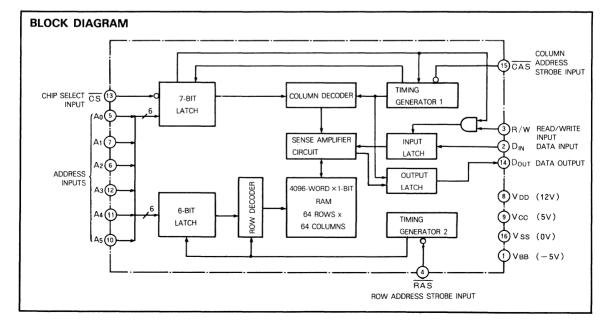
APPLICATION

Main, memory systems for computers

FUNCTION

Being dynamic RAMs, the M58756S and M58756K must be refreshed every 2ms to hold data stored in the memory cells. Refresh must be performed by reading sequentially the 64 locations designated by the 6 address signals $A_0 \sim A_5$ and clock signal RAS.

The output terminals of the M58756S and M58756K are kept in the floating (high-impedance) state by clock signal CAS, after which the data is read out from the output terminal during a read cycle.


PIN CONFIGURATION (TOP VIEW) (-5V)VBB 1 16 V_{SS} (OV) COLUMN ADDRESS DATA INPLIT D_{IN} →2 15 ← CAS STROBE INPUT READ/WRITE R/W→3 14-→DOUT DATA OUTPUT INPUT M58756k ROW ADDRESS RAS→4 13 ← CS CHIP SELECT INPUT STROBE INPUT A₀→5 12 - A3) ADDRESS INPUTS A2 → 6 111 - A4 ADDRESS INPUTS LA₁ → 7 10 + A5 (12V) $\mathsf{V}_{\mathsf{D}\mathsf{D}}$ 9 V_{CC} (5V) 8 Outline 16K1 (M58756K) 16S1 (M58756S)

SUMMARY OF OPERATIONS

	In	put		Output *	Refresh	Operations
RAS	CAS	CS	R/W	ouipai	nenean	Operations
А	А	А	А	(Valid data)—Open—High-level	Can	Write cycle
Α	А	А	I	(Valid data)—Open—(Valid data)	Can	Read cycle
А	А	I	DC	(Valid data)—Open—Open	Can	Refresh
1	А	DC	DC	(Valid data)—Open—Open	Can't	Standby Output open
1	ł	DC	DC	(Valid data)—(Valid data) —(Valid data)	Can't	Standby

* Previous cycle-between cycles-actual cycle

A : Operating states I: Nonoperating DC: Don't care

MITSUBISHI LSIs M58756K, M58756S Alternative Designation 2104

4096-BIT (4096-WORD BY 1-BIT) DYNAMIC RANDOM-ACCESS MEMORY

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Limits	Unit
V _{DD}	Supply voltage		-0.3~ 20	V
Vcc	Supply voltage		-0.3~ 20	v
VSS	Supply voltage	With respect to VBB	-0.3~ 20	V
Vi	Input voltage		-0.3~ 20	V
Vo	Output voltage		-0.3~ 20	V
Pd	Maximum power dissipation	⊤a=25°C	1000	mW
Topr	Operating free-air ambient temperature		0 ~70	°C
Tstg	Storage temperature		-55~150	°C

RECOMMENDED OPERATING CONDITIONS (Ta = 0 ~ 70°C, unless otherwise noted)

O	Parameter			Unit	
Symbol	Parameter	Min	Nom	Max	Unit
V _{DD}	Supply voltage	10.8	12	13.2	V
Vcc	Supply voltage	4.5	5	5.5	v
Vss	Supply voltage		0		V
Vвв	Supply voltage	- 4.5	- 5	- 5.5	V
νін	High-level input voltage	2.4		6.5	V
VIL	Low-level input voltage	- 1.0		0.6	V

$\label{eq:constructed} \textbf{ELECTRICAL CHARACTERISTICS} (Ta = 0 \sim 70^{\circ}\text{C}, \ \forall \text{DD} = 12 \text{V} \pm 10\%, \ \forall \text{CC} = 5 \text{V} \pm 10\%, \ \forall \text{SS} = 0 \text{V}, \ \forall \text{BB} = -5 \text{V} \pm 10\%, \ \text{unless otherwise} = -5 \text{V} \pm 10\%, \ \text{VBB} = -5 \text{V} \pm 10\%, \ \text{VB} = -5 \text{V} \pm 10\%,$

Sumbol	Deservator	Test conditions		Limits		
Symbol	Parameter	rest conditions	Min	Тур	Max	Unit
ViH	High-level input voltage		2.4		6.5	V
VIL	Low-level input voltage		-1.0		0.6	V
Voh	High-level output voltage	I _{OH} =-5.0mA	2.4		Vcc	V
Vol	Low-level output voltage	IOL= 2.0mA	0		0.4	v
h	Input current	V ₁ =−1.0~6.5V			10	μA
loz	Off-state output current	$V_1(\overline{CS})=2.4V$			10	μA
IDD1	Supply current from V_{DD} , when chip deselected	VI(CAS), VI(RAS)=VIH		1	2	mA
IDD2	Supply current from VDD, when chip selected			1	2	mA
IDD(AV)	Averge supply current from VDD	tc=425ns, tw(RASH)=125ns, Ta=25°C		43	56	mA
lcc	Supply current from VCC	$V_0 =$ no load			10	μA
Івв	Supply current from VBB				75	μA
Ci(AD)	Input capacitance, address terminals				10	pF
Ci(DA)	Input capacitance, data input terminals				7	pF
Ci(R/W)	Input capacitance, R/W terminal	$V_1 = V_{SS}, V_{BB} = -5V$ f=1 MHz, $V_1 = 25m$ Vrms			7	pF
Ci(RAS)	Input capacitance, RAS terminal				7	pF
Ci(CAS)	Input capacitance, CAS terminal				7	pF
Ci(CS)	Input capacitance, CS terminal				7	pF
Co	Output capacitance	V ₀ =V _{SS} , V _{BB} =-5V, f=1MHz, V ₁ =25mVrms			8	pF

Note 1 : Current flowing into an IC is positive; out is negative.

Alternative Designation 2104

4096-BIT (4096-WORD BY 1-BIT) DYNAMIC RANDOM-ACCESS MEMORY

TIMING REQUIREMENTS (For Read, Write or Read-Modify-Write Cycle)

 $(Ta = 0 \sim 70^{\circ}C, V_{DD} = 12V \pm 10\%, V_{CC} = 5V \pm 10\%, V_{SS} = 0V, V_{BB} = -5V \pm 10\%$ unless otherwise noted)

Question		Qualitization		Limits		
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
tç(ref)	Refresh cycle time				2	ms
tw(RASH)	RAS high pulse width		125			ns
td (RAS-CAS)	Delay time between RAS and CAS		90		2000	ns
tsu(RA-RAS)	Row address setup time with respect to RAS		0			ns
tsu(ca-cas)	Column address setup time with respect to $\overline{\text{CAS}}$		0			ns
tsu(CS-CAS)	Chip select setup time with respect to CAS		0			ns
th(RAS-RA)	Row address hold time with respect to RAS		50			ns
th(CAS-CA)	Column address hold time with respect to CAS		50			ns
th(CAS-CS)	Chip select hold time with respect to CAS		50			ns
t su(CAS-RAS)	CAS setup time with respect to RAS		- 50		50	ns
t _{PXZ}	Output invalid time from CAS		0		80	ns
tτ	Transition time		5		50	ns

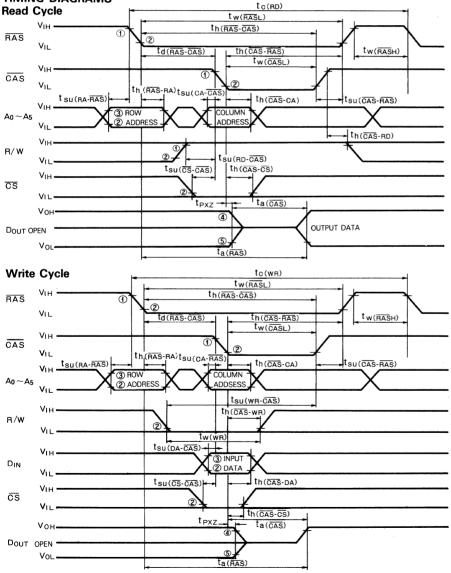
SWITCHING CHARACTERISTICS (Ta =0~70°C, V_{DD} =12V±10%, V_{CC} 5V±10%, V_{SS} =0V, V_{BB} =-5V±10%, unless otherwise noted) Read Cycle

Symbol	Parameter	Test conditions	Limits			Unit	
Symbol	ratameter		Min	Тур	Max	Unit	
t _{c(RD)}	Read cycle time		425			ns	
tw(CASL)	CAS low pulse width		200		10000	ns	
tw(RASL)	RAS low pulse width		300		32000	ns	
th(CAS-RAS)	RAS hold time with respect to CAS		200			ns	
th(GAS-RD)	Read hold time with respect to \overline{CAS}		80			ns	
tsu(RD-CAS)	Read setup time with respect to CAS		0			ns	
th(HAS-CAS)	CAS hold time with respect to RAS		300			ns	
ta(CAS)	CAS access time	CL=50pF, Load = 1TTL			200	ns	
ta(RAS)	RAS access time	$C_L = 50 pF$, Load = 1TTL (Note 7)			300	ns	

Write Cycle

Symbol	<u> </u>	Test conditions		Limits		Unit
Symbol	Parameter	Test conditions	Min	Тур	Max	Offic
tc(wr)	Write cycle time		425			ns
tw(CASL)	CAS low pulse width		200		10000	ns
tw(RASL)	RAS low pulse width	·	300		32000	ns
th(CAS-RAS)	RAS hold time with respect to CAS		200			ns
t _{su(wr-cas})	Write setup time with respect to CAS		200			ns
th(GAS-WR)	Write hold time with respect to CAS		130			ns
tw(wr)	Write pulse width		200			ns
t su(da-cas)	Data setup time with respect to CAS		0			ns
th(CAS-DA)	Data hold time with respect to CAS		130			ns
th (RAS-CAS)	CAS hold time with respect to RAS		300			ns

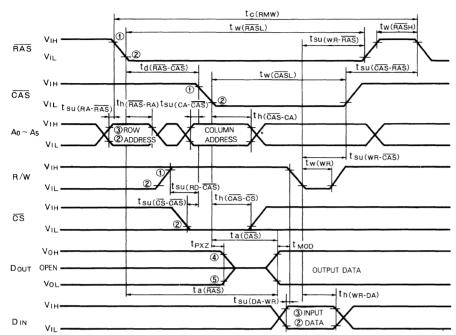
5 - 43

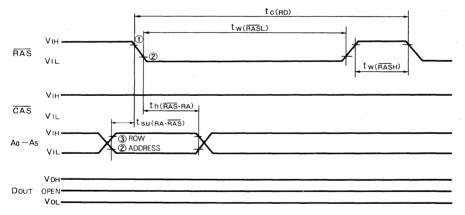

Alternative Designation 2104

4096-BIT (4096-WORD BY 1-BIT) DYNAMIC RANDOM-ACCESS MEMORY

Read-Modify-Write Cycle

Symbol	Parameter	Test conditions	Limits			
			Min	Тур	Max	Unit
,tc(RMW)	Read-modify-write cycle time		595			ns
ťw(CASL)	CAS low pulse width		320		10000	ns
tw(RASL) RAS low pulse width			450		32000	ns
t _{su(wr-RAS})	Write setup time with respect to RAS		200			ns
tsu(wr-CAS)	Write setup time with respect to CAS		200			ns
tw(wR)	Write pulse width		200			ns
t _{su(RD} -CAS)	Read setup time with respect to CAS		0			ns
t MOD	Modify time		0 .			ns
t _{su(da-wr})	Data setup time with respect to write		0			ns
th(wr-da)	Data hold time with respect to write		170			ns


TIMING DIAGRAMS


Alternative Designation 2104

4096-BIT (4096-WORD BY 1-BIT) DYNAMIC RANDOM-ACCESS MEMORY

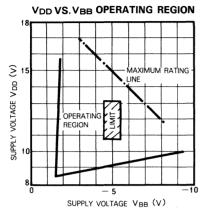
Read-Modify-Write Cycle

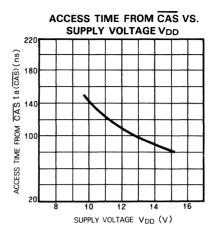
Note 3 : Reference level for 1 , 3 and 4 is 2.4V.

4 : Reference level for @is 0.6V.

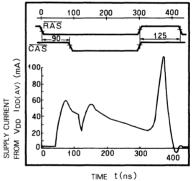
5 : Reference level for (5) is 0.4V.

6 : Both rise time $t_{\,\text{f}}$ and fall time $t_{\,\text{f}}$ should be less than 10ns.


7 : ta(RAS)max.=td(RAS-CAS)min.+tT+ta(CAS)max. when td(RAS-CAS)>td(RAS-CAS)min. ta(RAS) increases by the amount of increase of td(RAS-CAS)



Alternative Designation 2104


4096-BIT (4096-WORD BY 1-BIT) DYNAMIC RANDOM-ACCESS MEMORY

TYPICAL CHARACTERISTICS

SUPPLY CURRENT FROM V_{DD} VS. TIME

READ-ONLY MEMORIES

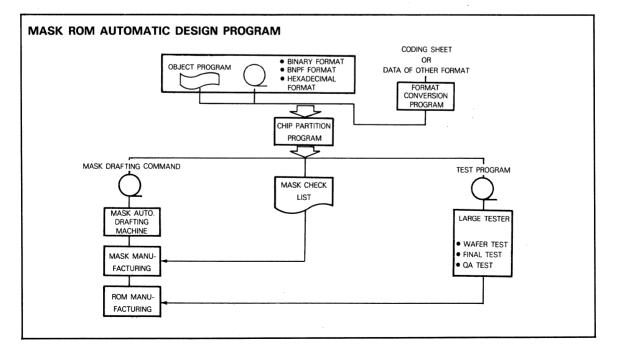
DESCRIPTION

Mitsubishi can provide the following mask ROMs made to a customer's specifications.

M58730-XXXS	1024-word by 8-bit mask ROM
M58731-XXXS	2048-word by 8-bit mask ROM
M58609-XXS	Keyboard encoder
M58620-XXXS	Keyboard encoder

An automatic mask design program has been developed to assure production of mask ROMs without errors, rapidly, in accordance with the specifications of the customer. On the basis of data supplied by the customer, the program automatically generates the following:

1. The plotter instructions for automatic mask production.


- 2. A check list for verifying that the customer's specifications have been met.
- 3. A test program to assure that the production ROMs meet specifications.

1. M58730-XXXS and M58731-XXXS Mask ROMs

The object program for mask encoding can be in MELPS 8 binary, hexadecimal or BNPF form. The object program format is the same as the produced by a MELPS 8 cross assembler or a PL/I μ cross compiler. The standard medium used for transmitting an object program is paper tape; however, magnetic tape may also be used.

2. M58609-XXS and M58620-XXXS Keyboard Encoders

Submit the character codes, corresponding to each key, on the coding sheet in octal form.

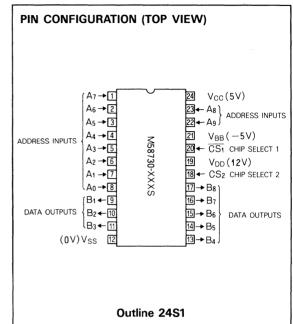
8192-BIT (1024-WORD BY 8-BIT) MASK-PROGRAMMABLE ROM

DESCRIPTION

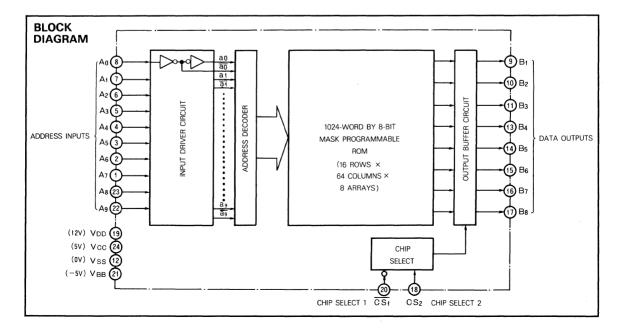
The M58730-XXXS is an 8192-bit static MOS mask-programmable read-only memory organized as 1024 words of 8 bits. It is fabricated using N-channel silicon-gate MOS technology, and is designed for fixed-memory applications such as program storage with an M58710S 8-bit parallel CPU. The inputs and outputs are TTL-compatible. Programming is performed by Mitsubishi in accordance with the customer's specifications by changing a single mask during the manufacturing cycle.

The XXX in the type code stands for a 3-digit decimal number which is assigned by Mitsubishi to identify the customer's specifications to which the ROM has been programmed.

FEATURES


- Fast access time: 850ns (max.)
- Two chip select inputs $(\overline{CS_1}, CS_2)$ for easy memory expansion
- Three-state output; OR-tie capability
- Inputs and outputs are TTL-compatible.
- Input protection circuits for all inputs
- Pins compatible with Intel's 8308

APPLICATION


• Microcomputer memories

FUNCTION

Address inputs $A_0 \sim A_9$ are decoded to select one of the 1024 words, and the contents of that address are read out

to data outputs $B_1 \sim B_8$. Chip select 1 ($\overline{CS_1}$) and chip select 2 (CS_2) are used to connect two or more M58730-XXXS ROMs. When $\overline{CS_1}$ is high or CS_2 is low, all outputs are disabled and will assume a floating (high-impedance) states.

MITSUBISHI LSIs **M58730-XXXS** Alternative Designation 8308

8192-BIT (1024-WORD BY 8-BIT) MASK-PROGRAMMABLE ROM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Limits	Unit
VDD	Supply voltage		-0.3~20	V
Vcc	Supply voltage	With respect to VBB	-0.3~20	V
Vss	Supply voltage	With respect to V BB	-0.3~20	V
Vi	Input voltage		-0.3~20	V
Pd	Power dissipation	Ta=25°C	1.0	w
Topr	Operating free-air temperature		0-70	°C
Tstg	Storage temperature		- 65~150	°C

RECOMMENDED OPERATING CONDITIONS ($Ta = 0 \sim 70^{\circ}C$, unless otherwise noted)

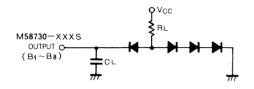
Symbol	Parameter	Limits			Unit
Gymbor	Falameter		Nom	Max	Onit
V DD	Supply voltage	11.4	12	12.6	V
Vcc	Supply voltage	4.75	5	5.25	V
Vss	Supply voltage		0		V
VBB	Supply voltage	-4.75	- 5	-5.25	V
ViH	High-level input voltage	3.3		Vcc+1	V
VIL	Low-level input voltage	Vss-1		0.8	V

$\label{eq:constraint} \textbf{ELECTRICAL CHARACTERISTICS} $ (T_a = 0 ~ 70^{\circ}C, V_{DD} = 12V \pm 5\%, V_{CC} = 5V \pm 5\%, V_{SS} = 0V, V_{BB} = -5V \pm 5\%, unless otherwise noted). $ (T_a = 0 ~ 70^{\circ}C, V_{DD} = 12V \pm 5\%, V_{CC} = 5V \pm 5\%, V_{SS} = 0V, V_{BB} = -5V \pm 5\%, unless otherwise noted). $ (T_a = 0 ~ 70^{\circ}C, V_{DD} = 12V \pm 5\%, V_{CC} = 5V \pm 5\%, V_{SS} = 0V, V_{BB} = -5V \pm 5\%, unless otherwise noted). $ (T_a = 0 ~ 70^{\circ}C, V_{DD} = 12V \pm 5\%, V_{CC} = 5V \pm 5\%, V_{SS} = 0V, V_{BB} = -5V \pm 5\%, unless otherwise noted). $ (T_a = 0 ~ 70^{\circ}C, V_{DD} = 12V \pm 5\%, V_{CC} = 5V \pm 5\%, V_{SS} = 0V, V_{BB} = -5V \pm 5\%, unless otherwise noted). $ (T_a = 0 ~ 70^{\circ}C, V_{DD} = 12V \pm 5\%, V_{CC} = 5V \pm 5\%, V_{SS} = 0V, V_{BB} = -5V \pm 5\%, unless otherwise noted). $ (T_a = 0 ~ 70^{\circ}C, V_{DD} = 12V \pm 5\%, V_{SS} = 0V, V_{BB} = -5V \pm 5\%, unless otherwise noted). $ (T_a = 0 ~ 70^{\circ}C, V_{DD} = 12V \pm 5\%, V_{SS} = 0V, V_{BB} = -5V \pm 5\%, U_{SS} = 0V, V_{BB} = -5V \pm 5\%, U_{SS} = 0V, V_{SS} = 0V, V$

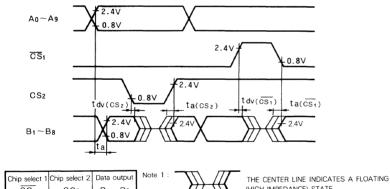
Symbol	Parameter	T	Limits			
		Test conditions	Min	Тур	Max	Unit
Vон	High-level output voltage	Iон=-100 µА	Vcc-1			V
Vol	Low-level output voltage	IOL = 1.9 mA			0.45	V
h	Input current	VI = 0V ~ VCC			±10	μA
107	'Off-state output current	$V_0 = 0V \sim V_{CC}$ (\overline{CS}_1 and CS_2 are in a			10	
loz		floating condition. see Timing Diagram).			-100 [/]	μA
IDD	V DD supply current				60	mA
lcc	V CC supply current	Output open			100	μA
IBB	V BB supply current			-0.01	-1	mA
Ci	Input capacitance	Ta=25°C, VI=0V, 1MHz, 25mVrms				- 5
		VDD=VCC=VSS=0V (Note 2)			10	pF
Co	Output capacitance	Ta=25°C, VI=0V, 1MHz, 25mVrms			10	
		VDD=VCQ=VSS=0V (Note 2)			10	pF

Note 1 : The current flowing into an IC is positive; out is negative. The maximum and minimum are defined by absolute values.

2 : All terminals other than the test terminal are connected to VSS during measurement of input and output capacitance.


MITSUBISHI LSIs **M58730-XXXS** Alternative Designation 8308

8192-BIT (1024-WORD BY 8-BIT) MASK-PROGRAMMABLE ROM


 $\textbf{SWITCHING CHARACTERISTICS} (\texttt{Ta}=0~70^\circ\texttt{C}, \texttt{V}_{DD}=12\texttt{V}\pm5\%, \texttt{V}_{CC}=5\texttt{V}\pm5\%, \texttt{V}_{SS}=0\texttt{V}, \texttt{V}_{BB}=-5\texttt{V}\pm5\% \text{, unless otherwise noted}).$

Symbol	Parameter	Test conditions		Limits		
		Test conditions	Min	Тур	Max	Unit
ta	Access time	$C_{\perp} = 100 pF$, $R_{\perp} = 2.1 k \Omega$ (Note 3)		400	85Ó	ns
ta(CSI)	Chip select access time			100	300	ns
ta(CS2)	Chip select Access time			100	300	ns
tdv(CS1)	Data valid time with respect to \overline{CS}_1			100	300	ns
tdv(CS2)	Data valid time with respect to CS2			100	300	ns

Note 3 : Load circuit diagram:

TIMING DIAGRAM

CS1	CS2	B1~B8	(HIGH-IMPEDANCE) STATE				
L	L	Z	2 : H indicates high-level inputs; L indicates low-level inputs.				
н	L	Z	3 : Z indicates floating (off) state				
L	н	0	4 : O indicates that outputs are enabled.				
н	н	Z	5 : Rise time $t_r \leq 20$ ns,				
			Fall time $t_f \leq 20$ ns.				

6

MITSUBISHI LSIS M58730-XXXS

Alternative Designation 8308

8192-BIT (1024-WORD BY 8-BIT) MASK-PROGRAMMABLE ROM

ORDERING INFORMATION

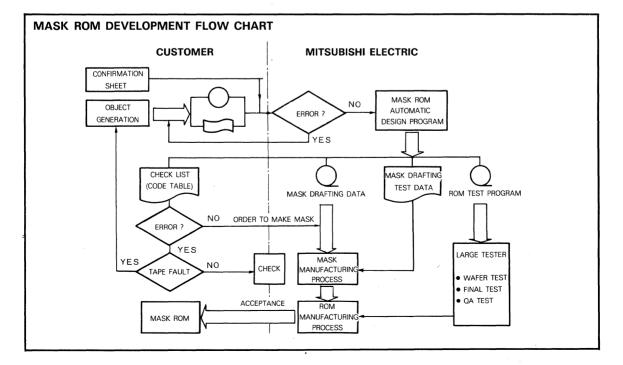
This information covers the M58730-XXXS ROM and the object program required for the automatic mask design program. An automatic mask design program has been developed that accepts a customer's specifications and then automatically generates the following:

- 1. The plotter instructions for automatic mask production.
- 2. A check list for verifying that the customer's specifications have been met.
- 3. A test program to assure that the production ROMs meet specifications.

The object program for the automatic mask design program may be supplied in MELPS 8 binary, hexadecimal or BNPF form. The format of the data is the same as the output from a MELPS 8 cross assembler or a PL/I μ cross compiler. It accepts either standard punched paper tape or magnetic tape as the input medium.

A separate tape should be produced for each object program. The tape along with a printout of the truth table, for confirmation, should accompany each order.

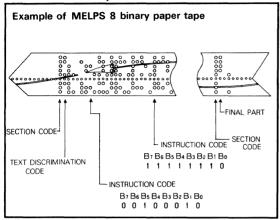
1. Object Program Format

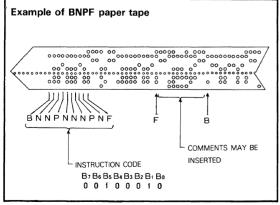

- Object program addresses are absolute.
- The data can be in either MELPS 8 binary, hexadecimal or BNPF form.
- The output tape from a MELPS 8 cross assembler, or PL/Iµ cross compiler can be used.
- The hexadecimal and BNPF formats are Intel-compatible.
- The character code can be ASCII or ISO, with or without parity.

2. Object Program Medium

- Paper tape: 8-level, 25.4mm (1 inch) wide
- Magnetic tape: 9-track, 800 BPI, odd parity

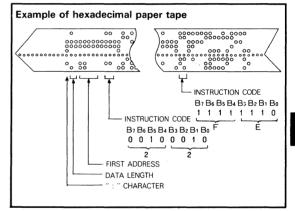
3. Items for Confirmation


- The format of the object program
- Type number of the M58730-XXXS (including the 3-digit number represented by XXX)
- A truth table printout of memory state
- Note : Details for preparation of the object program tape and confirmation material are given in § 4 following.


8192-BIT (1024-WORD BY 8-BIT) MASK-PROGRAMMABLE ROM

4. Object Program Preparation and Format 1. MELPS 8 Binary

- A separate tape should be prepared for each object program. Two copies of the tape should be supplied.
- The final part code should be inserted at the end of each tape.
- The first address of the ROM should be indicated.
- The region outside the range from the first address to the first address + 1024 is ignored.
- The ROM addresses may be non-sequential in the object program.
- The unused area within a chip will be filled with '1's. If '1's are not suitable, appropriate digits should be indicated.
- It should be indicated whether the area to be programmed is the ROM only, the RAM only, or both.
- All parts except the text and final part are ignored.
- The levels of bit code '1' and '0' should be specified as low or high.
- At least 50 frames of sprocket holes should be punched at the start and the end of the tape.


2. BNPF

- This format is Intel-compatible.
- A separate tape should be prepared for each object program. Two copies of the tape should be supplied.

- The unused area within a chip should be filled with appropriate codes.
- When less than 1024 bytes are used, the unused area should be filled with appropriate codes, or a '\$' character may be inserted at the end of the used area. In the latter case, the remaining area is filled with 'L's.
- Comments, not containing any 'B' or '\$' characters, may be inserted between the 'F' and 'B'.
- The character code is ASCII or ISO, with or without parity.
- The address is incremented in sequence by the data string.
- The magnitude of the bits between the 'B' and 'F' is defined as from high order to low order.
- At least 50 frames of sprocket holes should be punched at the start and the end of the tape.
- The levels of 'P' and 'N' should be specified as either low or high.

3. Hexadecimal

- This format is Intel-compatible.
- A separate tape should be prepared for each object program. Two copies of the tape should be supplied.
- A record of data length zero is considered the end of one chip's data.
- The first address of the ROM should be indicated.
- The region outside the range from the first address to the first address + 1024 is ignored.
- The ROM addresses may be non-sequential in the object program.
- The unused area within a chip will be filled with '0's. If '0's are not suitable, appropriate digits should be indicated.
- The character code is ASCII or ISO code with or without parity.
- The levels of bit codes '1' and '0' should be specified as either low or high.
- At least 50 frames of sprocket holes should be punched at the start and the end of the tape.

6

MITSUBISHI LSIS M58730-001S

8192-BIT (1024-WORD BY 8-BIT) MASK-PROGRAMMED ROM SUBROUTINE 1 INTEGER ARITHMETIC OPERATIONS

DESCRIPTION

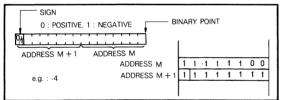
- The M58730-001S is an M58730-XXXS that has been developed for use with an M58710S CPU.
- It includes 18 subroutines for an M58710S 8-bit parallel CPU.
- It can perform integer arithmetic operations, logical operations and shift operations with 16-bit or 32-bit data.

UNIT OF INFORMATION

The basic unit of an M58710S is 8 bits, but with subroutines it has two operand lengths.

• Single word length:

An operand consisting of 2 bytes (16 bits). In binary form it is capable of expressing numbers from -2^{15} to 2^{15} -1.


• Double word length:

An operand consisting of 4 bytes (32 bits). In decimal form it is equivalent to 7 decimal digits. In binary form it is capable of expressing numbers from -2^{31} to 2^{31} -1.

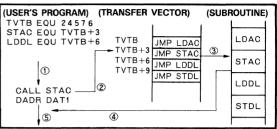
NUMERICAL EXPRESSIONS 1. Binary Numbers

1. Single Word Length (2 Bytes)

This binary number consists of 16 bits. Negative numbers are in 2's complement form. It is capable of expressing numbers from -2^{15} to $2^{15}-1$.

2. Double Word Length (4 bytes)

This binary number consists of 32 bits. Negative numbers are in 2's complement form. It is capable of expressing numbers from -2^{31} to 2^{31} -1.


SIGN 0 : POSITIVE			[DEC	IMA	AL F	nio	IT -		
		+ +		-	Ţ	4		+		
ADDRESS M + 3	ADDRESS M + 2 ADDF	IESS	S M	+	1	,	ADE)HE	SS	M
	ADDRESS M	0	0	0	0	0	1	0	0	
	ADDRESS M + 1	0	0	0	0	0	0	0	0	
	ADDRESS M + 2	0	0	Õ	0	0	0	0	1	
e.g. : +65540	ADDRESS M + 3	0	0	0	0	0	0	0	0	

2. Double Word Length Decimal Numbers

This decimal number consists of 32 bits. The numerical portion is seven digits and the sign is the most significant digit. It has a range of $-10^7 + 1$ to $10^7 - 1$.

O16 : POSITIVE, F16 : NEGATIVE	DE	CIMAL PO	
O16/F18 106 105 104 103	10²	101	10º
ADDRESS M + 3 ADDRESS M + 2 ADDRES	SS M + 1	ADDR	ESS M
ADDRESS M	0 0 1 0	0 1 0	
ADDRESS M + 1	1 0 0 1	0 0 1	1
ADDRESS M + 2	0000	000	0
e.g. : -9325 ADDRESS M + 3	1 1 1 1	000	0 0

SUBROUTINE REFERENCE

Note : The processing order is ①, ②, ③, ④, ⑤, A transfer vector is used to set the entry address of each subroutine.

SUBROUTINE FUNCTIONS

Load pseudo accumulator

The pseudo accumulator is loaded with the specified single word (2 bytes) or double word (4 bytes) data.

• Store pseudo accumulator

The contents of the pseudo accumulator, single word (2 bytes) or double word (4 bytes) data, is stored in the address location specified.

Shift pseudo accumulator

The contents of the pseudo accumulator, 32 bits (2 words) of data, are shifted right or left n positions.

• Arithmetic right shift of pseudo accumulator

The contents of the pseudo accumulator, 32 bits (2 words) of data, are arithmetically shifted right n positions.

• Logical operations

The specified single word (2 bytes) data is logically inclusive ORed, ANDed or exclusive ORed to the contents of the pseudo accumulator, and the result retained in the pseudo accumulator.

• Binary integer add or subtract

The specified single word (2 bytes) or double word (4 bytes) binary data is binarily added to or subtracted from the contents of the pseudo accumulator, and the result is retained in the pseudo accumulator.

• Decimal integer add or subtract

The specified double word (4 bytes) decimal data is decimally added to or subtracted from the contents of the pseudo accumulator, and the result is retained in the pseudo accumulator.

• Binary integer multiply

The single word (2 bytes) data in the pseudo accumulator is multiplied by a specified single word (2 bytes) data, and the result is retained in the pseudo accumulator.

Binary integer divide

The double word (4 bytes) data in the pseudo accumulator is divided by a specified single word (2 bytes) data, and the result is retained in the pseudo accumulator.

RESERVED MEMORY LOCATIONS

Memory locations 6000_{16} to $63FF_{16}$ are reserved by ROM. In addition, a 50-byte RAM region, locations $3FCE_{16}$ to $3FFF_{16}$, is reserved for executing the ROM programs.

MITSUBISHI LSIs

M58731-XXXP, M58731-XXXS

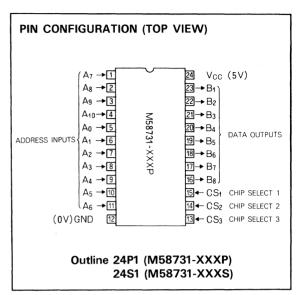
Alternative Designation 8316A

16384-BIT (2048-WORD BY 8-BIT) MASK-PROGRAMMABLE ROM

DESCRIPTION

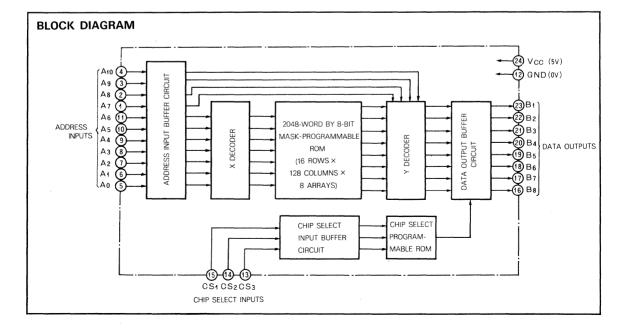
The M58731-XXXP, S are 16,384-bit parallel output, static read-only memories organized as 2048 words of 8 bits. They are fabricated using N-channel silicon-gate ED-MOS technology. They have a single supply voltage. The inputs and outputs interface with TTL circuits without additional circuits. The M58731-XXXP, S are designed for high-density fixed-memory applications such as program storage for an M58710S 8-bit parallel CPU. Programming is performed by Mitsubishi in accordance with the customer's specifications by changing a single mask during the manufacturing cycle.

FEATURES


- 2048-word by 8-bit organization
- Single 5V power supply
- Low power dissipation: 31.4µW/bit (max.)
- Read access time: 850ns (max.)
- Three programmable chip select inputs (CS_1 , CS_2 , CS_3) for easy memory expansion
- Three-state output for OR-ties
- All inputs and outputs are TTL-compatible
- Input protection circuits at all inputs
- Electrical characteristics and pins are compatible with Intel's 8316A.

APPLICATION

High-density microcomputer memories


FUNCTION

When any of the 2048 addresses are selected by positivelogic input signals $(A_0 \sim A_{10})$, the contents of that address in the ROM are read out to the data outputs $(B_1 \sim B_8)$. A_0 is the least-significant bit and A_{10} is the most-significant bit

of the address. The three chip select inputs are programmable during the masking process, and any combination of active high-level and active low-level may be used for chip selection. When a chip is selected, the contents of the ROM are read out; and under other conditions, the data outputs $(B_1 \sim B_8)$ are in the floating (high-impedance) state.

The XXX in the type code stands for a 3-digit decimal number which is assigned by Mitsubishi to identify the customer's specifications to which the ROM has been programmed.

6

MITSUBISHI LSIS M58731-XXXP, M58731-XXXS

Alternative Designation 8316A

16384-BIT (2048-WORD BY 8-BIT) MASK-PROGRAMMABLE ROM

ABSOLUTE MAXIMUM RATINGS

Symbol	Paramete	r	Conditions	Limits	Unit
V _{CC}	Supply voltage			$ \begin{array}{r} -0.5 \sim 7.0 \\ -0.5 \sim 7.0 \\ -0.5 \sim 7.0 \\ 500 \\ 1000 \\ 0 \sim 70 \\ -40 \sim 125 \end{array} $	V
Vı	Input voltage		With respect to GND	-0.5~7.0	V
Vo	Output voltage			-0.5~7.0	V
D .	D	M58731-XXXP	T 05°0	500	mW
Рd	Power dissipation	M58731-XXXS	Ta=25°C	1000	mW
Topr	Operating free-air temperature ran	ge		0~70	°C
T	Stores townset up rooms	M58731-XXXP		- 40~ 125	°C
Tstg	Storage temperature range	M 58731-XXXS		- 65~ 150	°C

RECOMMENDED OPERATING CONDITIONS ($Ta = 0 \sim 70^{\circ}C$, unless otherwise noted)

Symbol	Description		Limits			
Symbol	Parameter	Min	Nom	Max	Unit	
Vcc	Current unalitation	4.75	5.0	5.25	V	
GND	- Supply voltage		0		V	
VIH	High-level input voltage	2.0		V _{CC} +1.0	V	
VIL	Low-level input voltage	-0.5		0.8	V	

ELECTRICAL CHARACTERISTICS (Ta = 0 ~ 70°C, V_{CC} = 5V \pm 5%, unless otherwise noted)

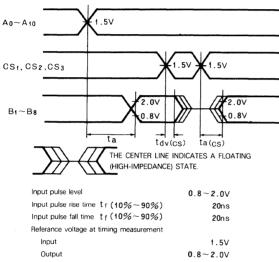
Symbol	Parameter	Test conditions		Limits			
Symbol	Parameter	rest conditions	Min	Тур	Max	Unit	
Vон	High-level output voltage	I _{0H} =-100μA	2.2			V	
VoL	Low-level output voltage	1 _{0L} =2.0mA			0.45	V	
Icc	Supply current from VCC	All inputs = 5.25V, output open		40	98	mÀ	
h	Input current	V _I =0V~V _{CC}			10	μA	
loz	Off-state input current	Floating state, $V_1 = 0.45 V \sim V_{CC}$	- 20		10	μA	
Ci	Input capacitance	0V except test terminal, 1MHz,		4	10	рF	
Co	Output capacitance	Ta=25°C		8	15	pF	

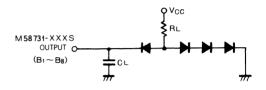
Note 1 : Current flowing into an IC is positive; out is negative.

MITSUBISHI LSIs

M58731-XXXP, M58731-XXXS

Alternative Designation 8316A


16384-BIT (2048-WORD BY 8-BIT) MASK-PROGRAMMABLE ROM


Note 2 : Load circuit diagram :

SWITCHING CHARACTERISTICS (Ta = 0 \sim 70°C, V_{CC} = 5V \pm 5%, unless otherwise noted)

Symbol	Parameter	Test conditions		Limits	Unit	
Symbol		rest conditions	Min	Тур	Max	Unit
ta	Access time			400	850	ns
ta(_{CS})	Chip select access time	CL=100pF RL=2.1kΩ			300	ns
t _{dv(cs)}	Data valid time with respect to chip select	(Note 2)	0		300	ns

TIMING DIAGRAM

6

16384-BIT (2048-WORD BY 8-BIT) MASK-PROGRAMMABLE ROM

ORDERING INFORMATION

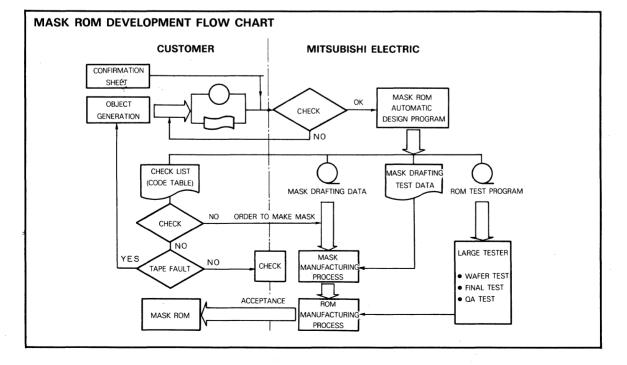
This information covers the M58731-XXXS ROM and the object program required for the automatic mask design program. An automatic mask design program has been developed that accepts a customer's specifications and then automatically generates the following:

- 1. The plotter instructions for automatic mask production.
- 2. A check list for verifying that the customer's specifications have been met.
- 3. A test program to assure that the production ROMs meet specifications.

The object program for the automatic mask design program may be supplied in MELPS 8 binary, hexadecimal or BNPF form. The format of the data is the same as the output from a MELPS 8 cross assembler or a PL/I μ cross compiler. It accepts either standard punched paper tape or magnetic tape as the input medium.

A separate tape should be produced for each object program. The tape along with a printout of the truth table, for confirmation, should accompany each order.

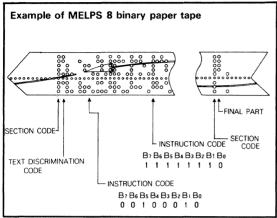
1. Object Program Format

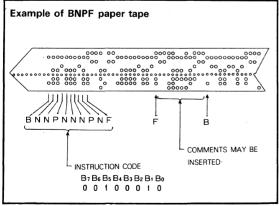

- Object program addresses are absolute.
- The data can be in either MELPS 8 binary, hexadecimal or BNPF form.
- The output tape from a MELPS 8 cross assembler, or PL/Iµ cross compiler can be used.
- The hexadecimal and BNPF formats are Intel-compatible.
 - The character code can be ASCII or ISO, with or without parity.

2. Object Program Medium

- Paper tape: 8-level, 25.4mm (1 inch) wide
- Magnetic tape: 9-track, 800 BPI, odd parity

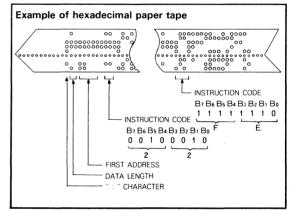
3. Items for Confirmation


- The format of the object program
- Type number of the M58731-XXXS (including the 3-digit number represented by XXX)
- The active logic level of the chip select CS₁, CS₂ and CS₃
- A truth table printout of memory state
- Note : Details for preparation of the object program tape and confirmation material are given in § 4 following.


16384-BIT (2048-WORD BY 8-BIT) MASK-PROGRAMMABLE ROM

4. Object Program Preparation and Format 1. MELPS 8 Binary

- A separate tape should be prepared for each object program. Two copies of the tape should be supplied.
- The final part code should be inserted at the end of each tape.
- The first address of the ROM should be indicated.
- The region outside the range from the frist address to the first address + 2048 is ignored.
- The ROM addresses may be non-sequential in the object program.
- The unused area within a chip will be filled with '1's. If '1's are not suitable, appropriate digits should be indicated
- It should be indicated whether the area to be programmed is the ROM only, the RAM only, or both.
- All parts except the text and final part are ignored.
- The levels of bit code '1' and '0' should be specified as low or high.
- At least 50 frames of sprocket holes should be punched at the start and the end of the tape.


2. BNPF

- This format is Intel-compatible.
- A separate tape should be prepared for each object program. Two copies of the tape should be supplied.

- The unused area within a chip should be filled with appropriate codes.
- When less than 2048 bytes are used, the unused area should be filled with appropriate codes, or a '\$' character may be inserted at the end of the used area. In the latter case, the remaining area is filled with 'L's.
- Comments, not containing any 'B' or '\$' characters, may be inserted between the 'F' and 'B'.
- The character code is ASCII or ISO, with or without parity.
- The address is incremented in sequence by the data string.
- The magnitude of the bits between the 'B' and 'F' is defined as from high order to low order.
- At least 50 frames of sprocket holes should be punched at the start and the end of the tape.
- The levels of 'P' and 'N' should be specified as either low or high.

3. Hexadecimal

- This format is Intel-compatible.
- A separate tape should be prepared for each object program. Two copies of the tape should be supplied.
- A record of data length zero is considered the end of one chip's data.
- The first address of the ROM should be indicated.
- The region outside the range from the first address to the first address + 2048 is ignored.
- The ROM addresses may be non-sequential in the object program.
- The unused area within a chip will be filled with '0's. If '0's are not suitable, appropriate digits should be indicated.
- The character code is ASCII or ISO code with or without parity.
- The levels of bit codes '1' and '0' should be specified as either low or high.
- At least 50 frames of sprocket holes should be punched at the start and the end of the tape.

MITSUBISHI LSIS M58731-001S

16384-BIT (2048-WORD BY 8-BIT) MASK-PROGRAMMED ROM, MELPS 8 BASIC OPERATING MONITOR BOM-B

DESCRIPTION

The M58731-001S is an M58731-XXXS that has been developed for use with an M58710S CPU. It contains the basic operating monitor BOM-B for an M58710S CPU. BOM-B is a monitor program that controls the execution and debugging of user's programs and is contained in 2K bytes of memory.

FEATURES

- A standard mask ROM useful for microcomputer control and program debugging
- Three macroinstructions and nine monitor commands
- User's monitor commands are easily added
- The BOM-B program cannot be destroyed by a user's program

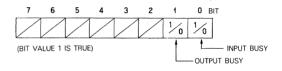
FUNCTION

The BOM-B has 9 monitor commands and 3 macroinstructions as shown in Table 1. They are used for the following functions:

- 1. Controlling program execution
- 2. Loading programs
- 3. Punching memory
- 4. Debugging programs
- 5. Controlling input and output

Start of Execution of BOM-B Program

The execution is started at address $6800_{16}.$ The following message is printed out and then a monitor command can be typed in: ${\tt MELPS8\ BOM-B\ A01}$


Conditions for Hardware

11

- 1. Reserved Memory Locations
 - Memory locations 6800_{16} to $6FFF_{16}$ are reserved. In addition a 78-byte RAM region, locations $3FCE_{16}$ to $3FFF_{16}$, is reserved for executing the ROM programs.
- 2. Input/Output Device Number

PTR, for keyboard input	7B ₁₆ (IN 7B#)
PTP, for print output	7B ₁₆ (OUT 7B#)
Status input	3B ₁₆ (IN 3B#)

Status input 3B₁₆ (IN 3B#) Where the status bits are defined as follows:

Names of monitor or macroinst		Function .	Monitor command input format or calling sequence	Parameter
	G	Go to program execution	// <u>G</u> para 1(4)[para 2 (4)] CR LF	para 1(4): Start address para 2(4): Change start address
	R	Program restart	// <u>R</u> CRLF	· —
	L	MELPS 8 binary loader	//L CR LF	
-	н	MELPS 8 hexadecimal loader	//H CR LF	
Command	Т	MELPS 8 binary punch text block of memory data	// <u>T par a 1(4), para2(4)CR L</u> F	para 1(4): First address para 2(4): End address
	E	MELPS 8 binary punch end block	// <u>E[paral(4)]</u> CRLF	para 1(4): Start address
	Р	Print hexadecimal text block of memory data	// P para 1 (4), para 2 (4) CR LF	para 1(4): First address para 2(4): End address
Ī	S	Substitute memory	//S para1(4)CRLF	para 1(4): Change address
	М	Print and modify register data	// <u>M</u> CRLF	
	EXIT	Exit the end of a program	CALL 6806 #	
Macroinstruction	PAUSE	Pause program execution	CALL 6803 #	
	EXIO	Execution input/output control	1	
E, F) of th a monitor's p exceeds m, th 2 :(un 3 : [] : The	e nth parameter rint-out), which e least-significar derline) : Indicat parameter may	imber (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, r in one command (of an operator's input or has a valid length of 1 to m. If the length nt digits are valid. es an input by an operator. be omitted. number in assembler language.	DADR DA for KEYBOA DADR DL Set the first	First address of data control block (DCB). is 52 #, for PTP is 50 #, RD is 4B #, for PRINT is 44 #.

Table 1 A list of the 9 monitor commands and the 3 macroinstructions for BOM-B

MITSUBISHI LSIS M58563S. M58563S-1

Alternative Designation 1702A

2048-BIT (256-WORD BY 8-BIT OR 512-WORD BY 4-BIT) ERASABLE AND ELECTRICALLY REPROGRAMMABLE ROM

DESCRIPTION

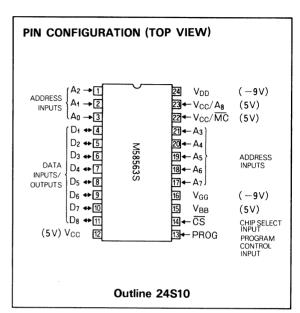
The M58563S are FAMOS (floating-gate avalancheinjection MOS) ultraviolet-light erasable and electrically reprogrammable 2048-bit ROMs. They incorporate P-channel silicon-gate MOS technology, are designed for microcomputer system applications, and have direct TTL compatibility for all inputs and outputs, without extra interface circuits.

Static circuity is adopted and the device is interchangeable with Intel's 1702A.

FEATURES

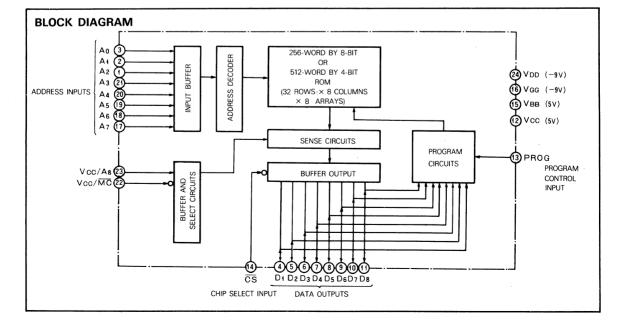
- Full-decoded 256-word by 8-bit organization; 512-word by 4-bit organization is also available for reading.
- Easy memory expansion by chip-select (CS) input.
- All inputs and outputs are directly TTL-compatible and have OR-tie capability. All outputs are 3-state.
- Access time:

M58563S: 1µs (max)


- M58563S-1: 1.5µs (max)
- No clocks required; the circuitry is entirely static.
- Interchangeable with Intel's 1702A.

APPLICATION

• Computers and peripheral equipment


FUNCTION

In the 256-word by 8-bit organization mode, V_{CC} to pins 22 (V_{CC}/ $\overline{\text{MC}}$) and 23 (V_{CC}/ A_8), low-level input to the chip-enable terminal $\overline{\text{CS}}$ and address signals to the address inputs ($A_0 \sim A_7$) make the data contents of the designated address location available at the data outputs ($D_1 \sim D_8$). Applying low-level input to pin 22, using pin 23 as an

address input, and connecting the output terminals in pairs (D₁, D₂), (D₃, D₄), (D₅, D₆) and (D₇, D₈), gives the 512-word by 4-bit organization. In this case, if V_{CC}/A₈ is kept at low level, the contents of D₁, D₃, D₅, and D₇ are available at the data-output terminals. If V_{CC}/A₈ is kept at high level, the contents of D₂, D₄, D₆, D₈ are available at the data-output terminals.

Programming is performed individually at any bit location, by applying input patterns to $D_1 \sim D_8$ at the specified timing, address inputs to $A_0 \sim A_7$ and the program-control signal to terminal PROG.

MITSUBISHI LSIS **M58563S, M58563S-1**

Alternative Designation 1702A

2048-BIT (256-WORD BY 8-BIT OR 512-WORD BY 4-BIT) ERASABLE AND ELECTRICALLY REPROGRAMMABLE ROM

ABSOLUTE MAXIMUM RATINGS Note 1

Symbol	Parameter	Conditions	Limits	Unit
Vн	Input voltage, read input	With respect to Mag. (substants)	0.3~-20	v
VI2	Input voltage, write input	With respect to VCC (substrate)	0.3~-48	V
Topr	Operating free-air temperature		0~ 70	°C
Tstg	Storage temperature		-65~125	°C

Note 1 : Stresses above those listed above may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or at any other conditions above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended periods affects device reliability.

READ OPERATION

Recommended Operating Conditions ($Ta = 0 \sim 70^{\circ}C$, unless otherwise noted)

Symbol	Parameter	Conditions :		Unit		
Symbol	raiainetei		Min	Nom	Max	Onic
VDD	Supply voltage		-8.55	- 9 .0	-9.45	V
Vgg	Supply voltage		-8.55	-9.0	-9.45	V
Vcc	Supply voltage		4.75	5.0	5.25	V
Vвв	Supply voltage (Note 2)		4.75	5.0	5.25	V
VIL1	Low-level input voltage, for TTL interface		-1.0		0.65	V
VIL2	Low-level input voltage, for MOS interface		VDD		Vcc-6	V
Vін	High-level input voltage		Vcc-2		Vcc+0.3	V

Note 2 : VBB should be connected to the same power supply as VCC.

$\label{eq:constraint} \textbf{Electrical Characteristics} (\ensuremath{\mathsf{Ta}}=0\ensuremath{\sim}70^\circ\ensuremath{\mathsf{C}}, \ensuremath{\mathsf{Vcc}}=5\%, \ensuremath{\mathsf{Vgg}}=-9\ensuremath{\mathsf{v}}\pm5\%, \ensuremath{\mathsf{vgg}}=-9\ensuremath{\mathsf{v}}\pm5\%, \ensuremath{\mathsf{vgg}}=-9\ensuremath{\mathsf{v}}\pm5\%, \ensuremath{\mathsf{vgg}}=-9\ensuremath{\mathsf{v}}\pm5\%, \ensuremath{\mathsf{vgg}}=-9\ensuremath{\mathsf{v}}\pm5\%, \ensuremath{\mathsf{vgg}}=-9\ensuremath{\mathsf{vgg}}\pm5\%, \ensuremath{vgg}=-9\ensuremath{vgg}\pm5\%, \ensuremath{vgg}=-9\ensuremath{vgg}\pm5\%, \ensuremath{vgg}=-9\ensuremath{vgg}\pm5\%, \ensuremath{vgg}=-9\ensuremath{vgg}\pm5\%, \ensuremath{vgg}=-9\ensuremath{vgg}\pm5\%, \ensuremath{vgg}=-9\ensuremath{vgg}\pm5\%, \ensuremath{vgg}=-9\ensuremath{vgg}\pm5\%, \ensuremath{vgg}=-9\ensuremath{vgg}\pm5\%, \ensuremath{vgg}\pm5\%, \ensuremath{vgg}\pm5\%, \ensuremath{vgg}\pm5\%, \ensuremath{vgg}\pm5\%$

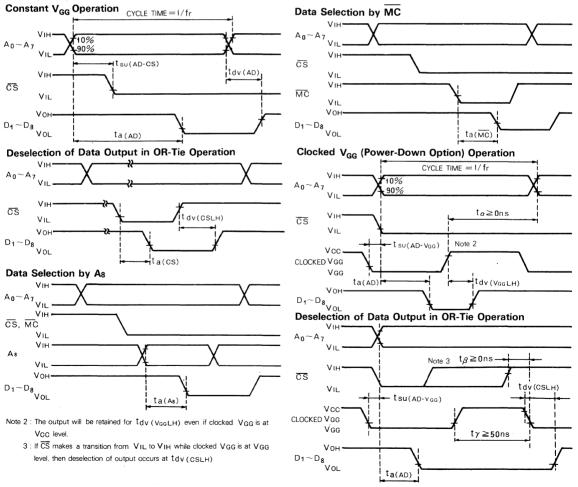
Symbol	Parameter		Test conditions		Limits	Limits Typ Max 1 2.4 6 2.0 5 24 42 20 35 15 30 12.5 25 30 25 25 6 5 4.8 9.6 4 8 1 1 4	Unit
Symbol	i didificici		, Test conditions	Min	Тур	Max	Unit
HL	Low-level input current, address, chip-se	lect input	VIL=OV			1	μΑ
loz	Off-state output current		$V_{1L} = 0V, \ \overline{CS} = V_{CC} - 2V$			1	μA
100	VDD supply current	M58563S	$V_{GG} = V_{CC}, \overline{CS} = V_{CC} - 2V$		2.4	6	mA
I DDo	V DD supply current	M58563S-1	Io∟=0mA, Ta=25°C		2.0	5	mA
	Voo	M58563S	$\overline{CS} = V_{CC} - 2V$		24	42	mA
IDDi	VDD supply current	M58563S-1	Io∟= 0 mA, Ta=25°C		20	35	mA
IDD2	Man analysis	M58563S			15	30	mA
1002	VDD supply current	M58563S-1	$\overline{CS} = 0V$, $I_{OL} = 0$ mA, $Ta = 25^{\circ}C$		12.5	25	mA
1	N	M58563S			30		mA
I DD3	VDD supply current	M58563S-1	$\overline{CS} = V_{CC} - 2V$. IOL = 0mA, Ta = 0°C		25		mA
losi	Output alarga auroat	M58563S			6		mA
1051	Output clamp current	M58563S-1	$V_0 = -1.0V$, $T_a = 0^{\circ}C$		5		mA
100		M58563S			4.8	9.6	mA
1052	Output clamp current	M58563S-1	Vo=-1.0V. Ta=25°C		4	8	mA
lgg	VGG supply current					1	μA
IOL	Low-level output current		Vo=0.45V	1.6	4		mA
Іон	High-level output current		Vo=0V	-2			mA
Vol	Low-level output voltage		IOL=1.6mA		- 3	0.45	V
Vон	High-level output voltage	<u></u>	IOH=-100µA	3.5	4.5		V
Ci	Input capacitance				8	10	pF
Ci(VGG)	Input capacitance, VGG input		f=1MHz			30	pF
Co	Output capacitance		1		10	15	pF

MITSUBISHI LSIS M58563S, M58563S-1

Alternative Designation 1702A

2048-BIT (256-WORD BY 8-BIT OR 512-WORD BY 4-BIT) ERASABLE AND ELECTRICALLY REPROGRAMMABLE ROM

Timing Requirements (Ta=0 ~70°C, V_{CC}=5V±5%, V_{DD}=-9V±5%, V_{GG}=-9V±5%, unless otherwise noted)


	Parameter		Conditions		Limits		Unit
Symbol	Falameter		Conditions	Min	Тур	Max	Unit
4		M 58563S				1.0	MHz
fr	Repetition frequency	M58563S-1				0.66	MHz
•	Address setup time with	M 58563 S				100	ns
t _{su(AD-CS)}	respect to chip select	M 58563S-1				600	ns
t _{su} (AD-V _{GG})	Address setup time with respect t	o clocked VGG (Note 1)		1			μS

Switching Characteristics (Ta=0~70°C, Vcc=5V±5%, VDD=-9V±5%, VGG=-9V±5%. unless otherwise noted)

	Parameter		Test conditions		Limits		
Symbol				Min	Тур	Max	Unit
ta (AD)	Address access time	M 58563S				1	μs
	M 58563S-1				1.5	μs	
tdv(AD)	Data valid time with respect to a	ldress				100	ns
ta(CS)	Chip select access time		VIH=4V, VIL=0V			900	ns
tdv(CSLH)	Data valid time with respect to ch	ip select low-to high-level	tr, tf≦50ns			300	ns
ta(MC)	Mode change access time		Output load 50pF			400	ns
ta(As)	Address As access time					600	ns
tdv(VggLH)	Data valid time with respect to cl	ocked V _{GG} low-to-high-le	vel (Note 1)			5	μs

Note 1 : Power-down option.

Timing Diagrams

MITSUBISHI LSIS M58563S, M58563S-1

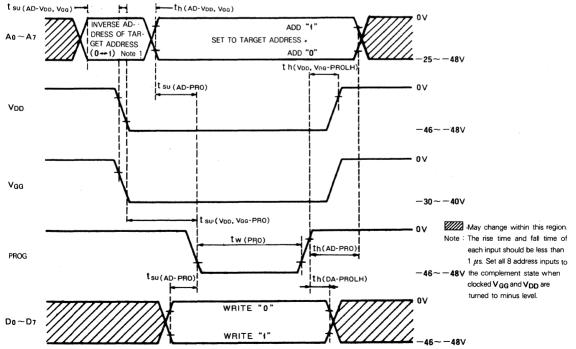
Alternative Designation 1702A

2048-BIT (256-WORD BY 8-BIT OR 512-WORD BY 4-BIT) ERASABLE AND ELECTRICALLY REPROGRAMMABLE ROM

PROGRAM OPERATION

 $\label{eq:commended_commended_commended_commended_commended_commended_commended} \textbf{P}_{commended_commend$

Complexit	Description			Unit	
Symbol	Prameter	Min	Nom	Max	Onic
VIH(P)	High-level input voltage			0.3	V
VILI(P)	Low-level input voltage, data input	- 46		- 48	V
VIL2(P)	Low-level input voltage, address input	- 25		- 48	V
VIL3(P)	Low-level input voltage, VDD, program input	- 46		- 48	V
VIL4(P)	Low-level input voltage, VGG input	- 30		- 40	V


$Electrical \ Characteristics \ (\mathsf{T}_a=25^\circ\mathsf{C},\ \mathsf{V}_{CC}=0\mathsf{V},\ \mathsf{V}_{BB}=12\mathsf{V}\pm10\%,\ \mathsf{V}_{CC}/\mathsf{MC}=\mathsf{V}_{CC}/\mathsf{As}=\overline{\mathsf{CS}}=0\mathsf{V}, unless \ otherwise \ noted)$

Symbol	Parameter	Test conditions		Unit		
			Min	Тур	Max	Onit
liLi(P)	Low-level input current, address, data input	VIL ≦48V			10	mA
IIL2(P)	Low-level input current, program, VGG input	VIL ≦48V			10	mA
1 BB(P)	Supply current, VBB input			0.5		mA
IDDM(P)	Supply current, VDD peak maximum current	$V_{GG} = -35V, V_{DD} = V_{1L2}(P) = -48V$		200		mA

Timing Requirements ($T_a = 25^{\circ}C$, $V_{BB} = 12V \pm 10\%$, $\overline{CS} = V_{CC} / \overline{MC} = V_{CC} / A_8 = 0V$, unless otherwise noted)

Symbol		T		Limits		Unit	
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit	
	Duty cycle VGG, VDD				20	%	
tw(PRO)	Programming pulse width	$V_{DD} = V_{1L3(P)} = -48V, V_{GG} = -35V$		1	3	ms	
tsu(DA-PRO)	Data setup time with respect to program		25			μs	
th(DA-PROLH)	Data hold time w/ respect to program low-to-high-level		10			μs	
t _{su(VDD,Vgg} -PRO)	VDD, V_{GG} setup time with respect to program		100			μs	
th(VDD,VGG-PROLH)	VDD, VGG time w/ respect to program low-to-high-level		10		100	μs	
t _{su(AD-VDD,VGG)}	Address setup time with respect to V_{DD} , V_{GG}		25			μs	
th(AD-VDD,VGG)	Address hold time with respect to VDD, VGG		25			μs	
t _{su(AD-PRO)}	Address setup time with respect to program	-	10			μs	
th(AD-PRO)	Address hold time with respect to program		10			μS	

Timing Diagram

MITSUBISHI LSIs

M58563S, M58563S-1

Alternative Designation 1702A

2048-BIT (256-WORD BY 8-BIT OR 512-WORD BY 4-BIT) ERASABLE AND ELECTRICALLY REPROGRAMMABLE ROM

PROGRAMMING PROCEDURE

Before programming, find the number of pulses that are necessary to complete programming, verifying the output after application of a single programming pulse.

To program, apply 3 to 5 times this number of programming pulses.

ERASING PROCEDURE

The M58563S/S-1 can be erased by exposure to highintensity short-wave ultraviolet rays at a wave length of 2537Å through the transparent quartz lid provided.

The recommended exposure is approximately $5Ws/cm^2$. Mitsubishi Electric's Model GL-10 short-wave ultraviolet sterilizing lamp can erase either device in 10 to 20 minutes at a distance of 2cm. If the energy of the lamp used is unknown, find the total time (t_E) required to erase all bits and use a short-wave ultraviolet light exposure time of 4 to 6 times this value.

HANDLING PRECAUTIONS FOR FAMOS DEVICES

In addition to general handling precautions for MOS devices, the following points apply to FAMOS devices.

- When programming, the programming voltage and duty cycle should be carefully held within the specified values. Exceeding the voltage and duty cycle may result in thermal destruction of the device.
- 2. Before erasing, clean the surface of the quartz lid to completely remove oily impurities, which may impede irradiation and affect the erasing characteristics. Also, scratches on the lid surface may act as refractors, and prevent erasing of some bits.
- 3. The electrical characteristics may be slightly affected by light entering through the transparent lid. Although in normal operation the programmed information would probably not be erased, to assure reliability it is desirable to cover the lid with opaque tape. Also, avoid programming in a brightly lit location.

6-19

4096-BIT (1024-WORD BY 4-BIT) ELECTRICALLY ALTERABLE ROM

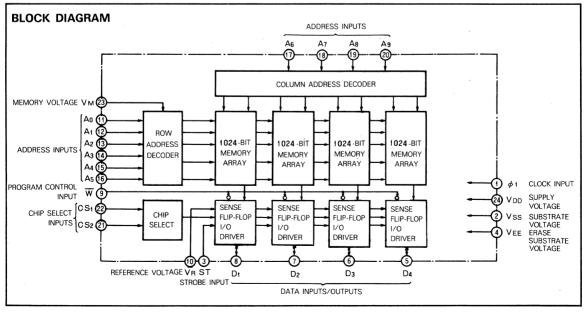
DESCRIPTION


The M58651S is a fully decoded electrically erasable and reprogrammable ROM organized as 1024 words of 4 bits. This ROM is fabricated using P-channel MNOS technology. Data is stored by selectively applying negative writing pulses that tunnel electrons through the gate insulation onto the $SiO_2-Si_3N_4$ interface of the MNOS memory transistors. Data is erased by applying a negative pulse to the erase substrate of the device.

FEATURES

- Fully decoded memory with 1024 words of 4 bits
- Two chip select inputs for easy memory expansion
- Electrically reprogrammable: 10⁶ times (min)
- Access time: 3µs (max)
- Program time: 20ms/4 bits
- Simultaneous erasure of all data: 100ms
- Minimum data retention: 2×10¹¹ read accesses per word (min) between refreshing
- Power-off nonvolatile data storage life: 10 years (min)
- Three-state outputs
- Interchangeable with NCR's 2401 in pin connections and electrical characteristics

APPLICATION


 Read-only memories which require frequent and quick reprogramming, such as prototypes or field programmed microcomputer systems

FUNCTION

The following voltages should be applied to each terminal for erase, program or read operations of memory. ($V_{ss} = 0V$ is applicable.)

Symbol	Parameter	Erase mode	Program mode	Read mode
VDD	Supply voltage	Vss	Vss-28V	V _{SS} -19V
Vss	Substrate supply voltage	5 V	5 V	5 V
Vм	Memory voltage	Vss	VDD	Vss-10V
VR	Reference voltage	Vss	Vss	VDD
VEE	Erase substrate voltage	V _{SS} -28V	Vss	Vss
W	Program control input	V _{SS} -28V	VDD	Vss

FUNCTIONAL OPERATIONS Erasing

Data is erased by applying a V_{SS} -28V 100ms pulse to the erase substrate voltage V_{EE} . All bits are electrically erased simultaneously.

Programming

Apply a low-level input to the program control terminal \overline{W} , and V_{DD} voltage to the memory voltage terminal V_M . Data is stored by selectively applying program pulses as designated by the address signals $A_0 \sim A_9$. At this time from 100 to 300 pulses of approximately 100 μ s pulse width should be applied to the clock ϕ_1 input.

Data is stored, theoretically, by selectively applying negative programming pulses that tunnel electrons through the gate insulation onto the $SiO_2 - Si_3N_4$ interface of the MNOS memory transistors.

When the programming voltage is removed, the charge trapped on the interface has changed the state from 0 to 1 (a '1' is stored).

Data to be programmed is supplied through input terminals $D_1 \sim D_4$.

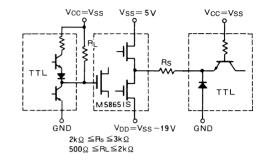
The programming time is 20ms/4 bits. With pull-up resistors, address inputs $A_0{\sim}A_9$ and data inputs $D_1{\sim}D_4$ are TTL-compatible.

Read Operation

Data is read selectively by applying a $V_{\rm SS}-10V$ to the memory voltage terminal $V_{\rm M}$ from the input/output terminals $D_1 \sim D_4$ (operating now as output terminals.) Two modes can be used for read operations. In the strobed mode, the strobe input is used to sample and hold the output data. In the nonstrobed mode, the strobe terminal should be maintained as $V_{\rm SS}-24\pm1V$ throughout the entire read cycle.

The access time is less than $3\mu s$ in the nonstrobed mode.

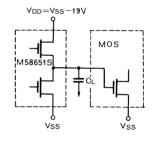
Strobed data may be accessed a minimum of 2×10^{11} times without refreshing and is nonvolatile in excess of ten years in the power-off state and at an ambient temperature of 70°C.


Chip Select

Both chip select inputs CS_1 and CS_2 must be at V_{SS} level to enable the data at the output terminals to be programmed into memory. These chip select inputs allow easy memory expansion, and with pull-up resistors are TTL-compatible.

Electrically Reprogrammable

Memory can be erased and rewritten up to 10⁶ times.


INTERFACES With TTL

TTL-compatible terminals

Data input/output terminals (D1~D4) Address input terminals (A0~A9) Chip select input terminals (CS1,CS2)

With MOS

6

4096-BIT (1024-WORD BY 4-BIT) ELECTRICALLY ALTERABLE ROM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Limits	Unit
VDD	Supply voltage		0.3~-30	v
Vм	Memory voltage	· · · ·	0.3~-30	V
VR	Reference voltage		0.3~-30	V
VEE	Erase substrate voltage	With respect to VSS	0.3~-30	V
Vi	Input voltage		0.3~-30	V
Vo	Output voltage		0.3~-30	V
Topr	Operating free-air temperature range	· · · · · · · · · · · · · · · · · · ·	0 ~70	°C
Tstg	Storage temperature range		-65~150	°C

RECOMMENDED OPERATING CONDITIONS (, $Ta = 0 \sim 70^{\circ}C$, unless otherwise noted)

						Limits					
Symbol	Parameter		Erase mode		F	rogram mod	e		Read mode		Unit
		Min	Nom	Max	Min	Nom	Max	Min	Nom	Max	
VDD	Supply voltage	4.75	Vss	Vss+0.3	Vss-29	Vss-28	Vss-27	Vss-20	Vss-19	Vss-18	V
Vss	Substrate supply voltage	4.75	5.0	5.25	4.75	5.0	5.25	4.75	5.0	5.25	v
Vм	Memory voltage		Vss			VDD		Vss-10.5	Vss-10	Vss-9.5	V
VR	Reference voltage		Vss		Vss	Vss	Vss		VDD		v
VEEH	High-level erase substrate voltage	Vss-0.4	Vss	√ss+0.3	Vss-0.4	Vss	Vss+0.3	Vss-0.4	Vss	Vss+0.3	v
VEEL	Low-level erase substrate voltage	V _{SS} -29	Vss-28	Vss-27	Vss-0.4	Vss	Vss+0.3	Vss-0.4	Vss	Vss+0.3	v
Vih(w)	High-level program input voltage	Vss-29	Vss	Vss+0.3	Vss-1.5	Vss	Vss+0.3	Vss-1.5	Vss	Vss+0.3	v
VIL(W)	Low-level program input voltage	Vss-29		Vss-4.4	Vss-29		Vss-4.4	Vss-1.5	Vss	Vss+0.3	V
Vih(øi)	High-level clock input voltage		Vss		Vss-0.8	Vss	Vss+0.3	Vss-0.8	Vss	Vss+0.3	V
VIL(øi)	Low-level clock input voltage		Vss			VDD		Vss-25	Vss-24	Vss-23	v
VIH(ST)	High-level strobe input voltage		Vss			VDD		Vss-0.8	Vss	Vss+0.3	V
VIL(ST)	Low-level strobe input voltage		Vss			VDD		Vss-25	Vss-24	Vss-23	V
VIH(AD,CS)	High-level address, chip select input	voltage	Don't care		Vss-1.5	Vss	Vss+0.3	Vss-1.5	Vss	Vss+0.3	v
VIL (AD, CS)	Low-level address, chip select input	voltage	Don't care		VDD		Vss-4.4	VDD		Vss-4.4	V
Vih(da)	High-level data input voltage		Don't care		Vss-1.5	Vss	Vss+0.3				v
VIL(DA)	Low-level data input voltage		Don't care		VDD		Vss-4.4				V

Note 1 : Can be used even when $V_{SS} = 0V$

ELECTRICAL CHARACTERISTICS (Ta=0 \sim 70°C, V_{SS}=GND, unless otherwise noted)

	_	T		Limits		Unit
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
h	Input leakage current (except pins 1, 2, 4, 5, 6, 7, 8, 23, 24)	$V_1 = -15V(V_1(\phi_1) = V_{DD} = -20V, all other gND)$			- 2	μA
li(ø1)	Clock input leakage current	$V_{I}(\phi_{4}) = -29V(V_{DD} = -29V, V_{I}(\overline{w}) = V_{I}(ST) = -25V, \text{ all other pins} = GND)$			- 200	μA
LI (VM)	Memory voltage leakage current	$V_{1}(V_{M}) = -29V(V_{DD} = -29V, V_{1}(\overline{w}) = V_{1}(ST) = -25V$, all other pins = GND)			- 200	μA
10	Output leakage current	$V_0 = -15V($ chip deselected $)$			-10	μA
II(VEE)	Erase substrate leakage current	$V_{EE} = -28V(V_{1}(\vec{w}) = V_{1}(ST) = -25V)$			-1	mA
IDDI	Supply current from VDD (read mode)	$V_{DD} = -19V(no load)$		- 8.5	-12	mA
DD2	Supply current from VDD (program mode)	$V_{DD} = -28V(\text{ no load })$		-18	-25	mA
Vон	High-level output voltage	CL=100pF	V _{SS} -1.5			V
VoL	Low-level output voltage	C∟=100pF			V _{SS} -10	v
ts	Unpowered nonvolatile data storage time		10			year
Ci(AD, CS)	Address, chip select input capacitance			6	10	рF
Ci(w)	Program input capacitance			10	20	pF
Ci(ST)	Strobe input capacitance	·		10	15	pF
Ci(ø1)	Clock input capacitance			40	50	pF
Ci(VEE)	Erase substrate input capacitance			600	700	pF
Ci/o(DA)	Data input/output capacitance	· · · · · · · · · · · · · · · · · · ·		6	10	pF

Note 2: Current flowing into an IC is positive; out is negative.

3: Characteristics are shown at MOS load.

MITSUBISHI LSIs M58651S Alternative Designation 2401

4096-BIT (1024-WORD BY 4-BIT) ELECTRICALLY ALTERABLE ROM

TIMING REQUIREMENTS

For Erase (Ta = 0 \sim 70°C , unless otherwise noted)

Symbol	Parameter	Test conditions		Unit		
	Farameter	Test conditions	Min	Тур	Max	Unit
tw(VEE)	VEE erase pulse width		100		1,000	ms
tr	VEE rise time		0.01		1.0	ms
tf	VEE fall time		0.01		1.0	μs
th(VEE-W)	Erase pulse hold time with respect to program		10			μs
tsu(vee-₩)	Erase pulse setup time with respect to program		10			μS

For Programming (Ta=0-70°C, unless otherwise noted)

Symbol		Test conditions		Unit		
Symbol	Parameter	Test conditions	Min	Тур	Max	Ont
NøW	Number of one word programming clock pulses	$t_W(\phi_1) = 100\mu s \pm 10\%$, 5 μs min dead interv	al 100	200	300	pulses
th(ø₁-₩)	Clock ϕ_1 hold time with respect to program		I, 0 0 0			ns
th(ø1-AD,CS)	Clock ϕ 1 hold time with respect to address, chip select		I, 000			ns
tsu(ø1-AD,CS)	Clock ϕ_1 setup time with respect to address, chip select		0			μs
tsu(DA-φ₁)	Data input setup time with respect to clock ϕ 1		0			μs
th(DA-ø1)	Data input hold time with respect to clock ϕ_1		0			μs

Read Cycle, For Nonstrobed Operation (Ta=0~70°C, $VI(ST) = VSS - 24 \pm 1 V$, unless otherwise noted)

Symbol	Prameter	Test conditions		Limits		
Symbol	rest conditions	Min	Тур	Max	Unit	
tw(ø1)	Clock ϕ_1 pulse width	$\operatorname{tr}(\phi_1)$, $\operatorname{tf}(\phi_1) \leq 50$ ns	850		2,000	ns
th(#1-AD)	Clock ϕ 1 hold time with respect to address		400			ns
th(AD-Ø1)	Address hold time with respect to clock ϕ_1		0			μs

Read Cycle, For Strobed Operation (Ta=0~70°C, unless otherwise noted)

Symbol	Parameter			Limits			
	Farameter	Test conditions	Min	Тур	Max	Unit	
t _{w (ø1})	Clock.	tr(¢1), tf(¢1)≦50ns	850		2,000	ns	
th(ø1-AD)	Clock ϕ_1 hold time with respect to address		400			ns	
th(st-ø1)	Stobe hold time with respect to clock ϕ_1		1,5			μS	
tw(st)	Strobe pulse width	tr(ST), tf(ST)≦50ns	850			ns	

SWITCHING CHARACTERISTICS

For Erasing and Programming (Ta = 0 \sim 70 $^{\circ}\text{C}$ unless otherwise noted)

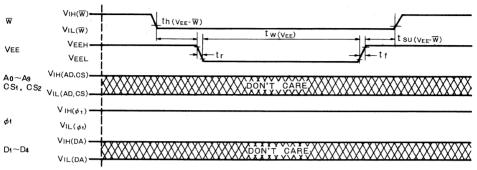
Symbol Parameter	T		11-1			
	Parameter	Test conditions	Min	Тур	Max	Unit
Nw	Number of times word may be rewritten				10 ⁶	times

Read Cycle For Nonstrobed Operation (Ta =0 \sim 70°C, VI(ST) = VSS -24 ±1 V. unless otherwise noted)

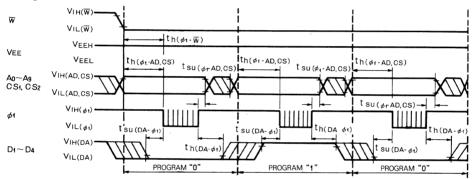
Symbol	Parameter	Test conditions	Limits			Unit
			Min	Тур	Max	Unit
ta(AD)	Address access time				3	μs
ta(ø1)	Clock ¢1 access time				1, 750	ns
tdv(ø₁HL)	Data valid time with respect to clock ϕ 1 high-to-low-level input	ut			300	ns
NRA	Number of read accesses per word between refreshings		2×1011			times

Read Cycle For Strobed Operation (Ta=0~70°C, unless otherwise noted)

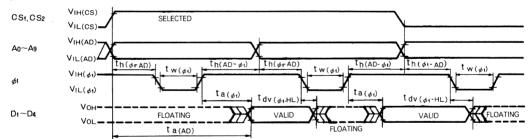
Symbol	Parameter		Limits			
			Тур	Max	Unit	
ta(s⊤)	Strobe access time			2.25	μs	
tdv(sthl)	Data valid time with respect to strobe high-to-low-level input			300	ns	
NRA	Number of read accesses per word between refreshings	2 ×10 ¹¹			times	

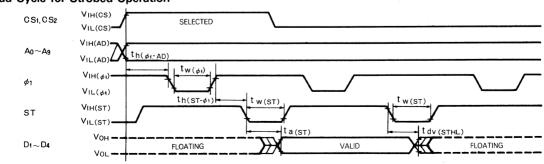

M58651S

Alternative Designation 2401.


4096-BIT (1024-WORD BY 4-BIT) ELECTRICALLY ALTERABLE ROM

TIMING DIAGRAMS


Erasing

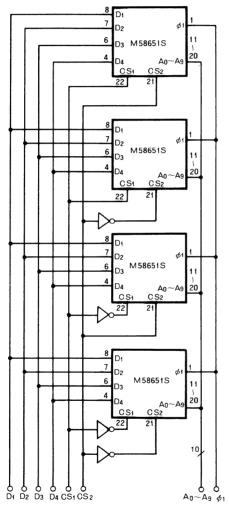


Programming

Read Cycle for Nonstrobed Operation

Read Cycle for Strobed Operation

4096-BIT (1024-WORD BY 4-BIT) ELECTRICALLY ALTERABLE ROM


APPLICATION

٤.

Chip Select Circuit

Both chip selects CS_1 and CS_2 must be low to keep the data outputs $D_1 \sim D_4$ in the floating (high-impedance) state. These chip select inputs allow easy memory expansion. An example of a multichip memory with 4096 words of 4 bits is shown below.

Fig. 1 Expansion of number of words

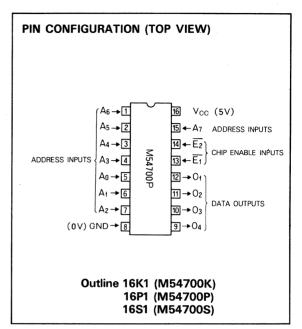
Alternative Designation 6300

1024-BIT (256-WORD BY 4-BIT) FIELD PROGRAMMABLE ROM

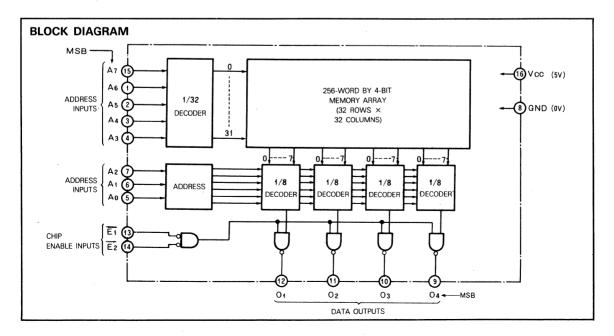
DESCRIPTION

The memory cells of the M54700K, P, S are a matrix of diodes and Ni-Cr fuse links. Data can be electrically programmed by open-circuiting fuse in the field with simple programming equipment. These 1024-bit field programmable ROMs (PROMs) are composed of an address decoder, memory, output and chip enable TTL circuits.

FEATURES


- Field programmable ROM
- Low power dissipation: 0.40mW/bit
- Fast access time: 50ns (typ)
- 5V±5% single supply voltage
- Inputs and outputs TTL-compaticle
- Open collector outputs
- Two chip enable inputs $(\overline{E_1}, \overline{E_2})$ for easy memory expansion
- Organized as 256 words of 4 bits
- 16-pin ceramic or plastic package
- Interchangeable with MMI's 6300 in pin configuration and electrical characteristics

APPLICATION


 Programmable memory for the M58710S 8-bit parallel CPU. Used for prototype design, microprogramming and control storage.

FUNCTION

The diode matrices of these 1024-bit ROMs are organized as 256 words of 4 bits. Their memories are accessed by address inputs $A_0 \sim A_7$, selecting one of 256 words. The 4 bits are

read out in parallel on data outputs $0_1 \sim 0_4$. All inputs are TTL-compatible. An external decoder is not necessary. All outputs are open-collector outputs, so it is possible to AND-tie them to other ROMs and TTL devices. The AND-tie fanout of each output can accommodate up to 10 standard TTL loads. The chip enables $\overline{E_1}$ and $\overline{E_2}$ are used to inhibit data outputs $O_1 \sim O_4$.

Alternative Designation 6300

1024-BIT (256-WORD BY 4-BIT) FIELD PROGRAMMABLE ROM

ABSOLUTE MAXIMUM RATINGS ($Ta = 25^{\circ}C$, unless otherwise noted)

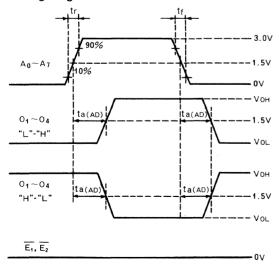
Symbol	Parameter	Conditions	Limits	Unit
Vcc	Supply voltage		7	V
Vi	Input voltage		5.5	V
Vo	Output voltage		Vcc	V
Topr	Operating free-air temperature		0~75	°C
Tstg	Storage temperature		-55~125	°C
Vo	Output apply voltage		27	V
VE	Chip enable apply voltage	In case of programming	35	V
w(P)/tc(P)	Duty cycle		25	%

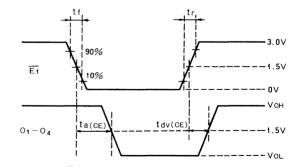
READ OPERATION

Recommended Operating Conditions ($Ta = 0 \sim 75^{\circ}C$, unless otherwise noted)

Symbol	Paramotor		Limits			
	Parameter	Min	Nom	Max	Unit	
Vcc	Supply voltage	4.75	5	5.25	V	

Electrical Characteristics ($Ta = 0 \sim 75^{\circ}C$, unless otherwise noted)

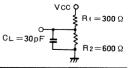

Symbol	Parameter	Test conditions		Limits		
		rest conditions	Min	Typ(Note 1)	Max	Unit
VOL	Low-level output voltage	IOL=16mA		0.3	0.45	V
Гон	High-level output voltage	Vон=5.25V			100	μA
ΗL	Low-level input current	V1 = 0.4V			-1.6	mA
Цн	Link land in a stand	V1 = 2.4V			40	•
пн	High-level input current	V1 = 4.5V			60	μA
loc	Supply current from V _{CC}			85	125	mA
Vic	Input clamped voltage	11 = - 10mA			-1.5	V


Note 1 : Typical values are at $V_{CC} = 5V$, $Ta = 25^{\circ}C$

Switching Characteristics (Vcc=5V, $Ta=25^{\circ}C$, unless otherwise noted)

Symbol	Parameter	Test and the se	Limits			Unit
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
ta(AD)	Address access time (Note 3)				60	ns
ta(CE)	Chip enable access time	See Timing Diagrams and Note 4			35	ns
tdv(CE)	Data valid time with respect to chip enable				35	ns

Timing Diagrams



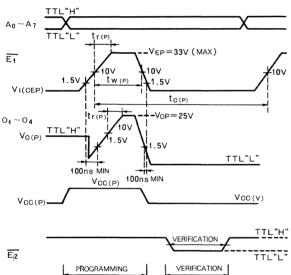
Note 2 : Rise time $t_r \leq 5ns$; fall time $t_f \leq 5ns$

3 : The chip enable inputs \overline{E}_1 and \overline{E}_2 should be low-level at measurement time during address access time

4 : Load circuit: capacitance (CL) includes stray capacitance and input capacitance.

Alternative Designation 6300

1024-BIT (256-WORD BY 4-BIT) FIELD PROGRAMMABLE ROM

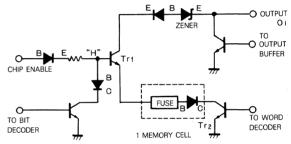

PROGRAMMING OPERATION Recommended Operating Conditions

Symbol	Test conditions		Limits			
		Min	Nom	Max	Unit	
VI(CEP)	Chip enable program input voltage	29		33	V	
V0(P)	Output apply voltage			25	V	
V _{CC(P)}	Program input voltage	5.40	5.50	5.60	V	
Vcc(v)	Program verify input voltage	4.10	4.20	4.30	V	

Timing Requirements

Symbol	Test conditions		Limits			
	Test conditions		Тур	Max	Unit	
t _{r(P)}	Pulse rise time	10	25	100	μs	
tw(P)	Pulse width	0.04		100	ms	
t _{w(P)/tc(P)}	Duty cycle			25	%	

Timing Diagram



Programming (Writing) Procedure

All 1024 Ni-Cr fuse-link memory elements are manufactured in a high-logic-level (fuse closed) output conditon. To program:

- 1. Apply 5.5V to the supply voltage V_{CC} and select a fuse link to be programmed with address inputs $A_0 \sim A_7$.
- 2. Apply a high-logic-level to the chip enable input $\overline{E_2}$.
- 3. After applying a program pulse V_{1(CEP)} to the chip enable input $\overline{E_1}$ (see Timing Diagrams), apply an output pulse V_{0(P)} to the fuse link of the output to be programmed. The output pulses should be separately applied to each output.
- 4. After programming, the fuse link is open and the output level is changed to a low-logic-level.

Programming Circuit

- 5. After programming is completed, apply an additional three programming pulses.
- 6. Test the programmed memory to verify that the outputs are low-level or high-level as desired. Both chip enable inputs $\overline{E_1}$ and $\overline{E_2}$ must be low-level for testing.

The word decoder circuit selects any one of 32 columns, and sets the transistor Tr_2 to the on state. The bit decoder circuit selects any four of 32 rows, and supplies the base current to transistor Tr_1 from chip enable input $\overline{E_1}$.

The fuse link is opened not by the base current, but by the collector current which is supplied to transistor Tr_1 from the selected output $O_1 \sim O_4$, plus the base current. At this time, the other three fuse links of the selected word line are in a half-selected stage and the remaining 1020 fuse links are in a non-selected state.

Typical Programming Conditions

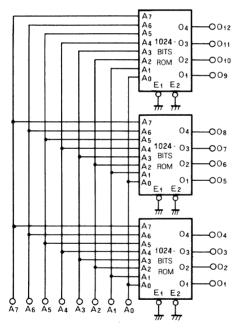
	-			
Condition sequence	Pulse sequence	Pulse width Chip enable tw(P)(ms) program voltage V I (CEP) (V)		Output voltage (V)
1	1~4	0.5	29	25
2	5~8	. 1	29	25
3	9~12	5	30	25
4	13~19	20	33	25

Alternative Designation 6300

1024-BIT (256-WORD BY 4-BIT) FIELD PROGRAMMABLE ROM

APPLICATIONS

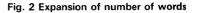
Chip Enable Circuit

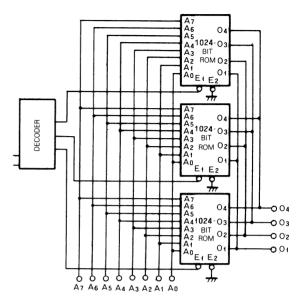

The chip enable inputs $\overline{E_1}$ and $\overline{E_2}$ are used for activating or inhibiting output $O_1 \sim O_4$. $\overline{E_1}$ and $\overline{E_2}$ are NORed. Output is inhibited when any of the inputs are high-logic-level. Chip enable inputs $\overline{E_1}$ and $\overline{E_2}$ allow easy memory.expansion by one of the following procedures:

1. Expanding the Number of Bits in a Word

For example, using three 1024-bit ROMs, each organized as 256 words of 4 bits, the number of bits in a word can be expanded as described below:

- 1. Apply a low-logic-level to both chip enable inputs $\overline{E_1}$ and $\overline{E_2}$ of each ROM.
- Connect address inputs A₀~A₇ of each ROM in parallel. Memory is thus expanded and reorganized as 256 words of 12 bits.


Fig. 1 Expansion of number of bits



2. Expanding the Number of Words in Memory

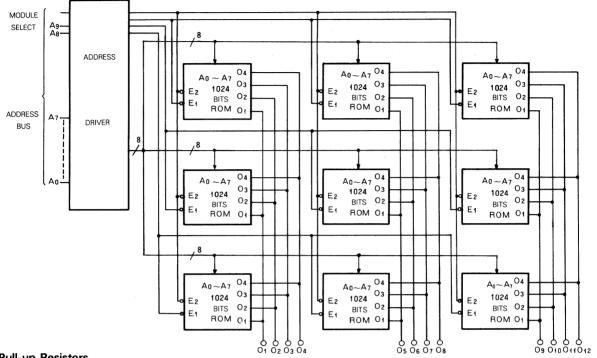
For example, using three 1024-bit ROMs, each organized as 256 words of 4 bits, the number of words in memory can be expanded as described below:

- 1. Connect one of the chip enable inputs $\overline{E_1}$ or $\overline{E_2}$ of each ROM to the decoder while keeping the remaining input at low-logic-level.
- Connect the outputs from each ROM with AND-tie connections so that each output is an open-collector output circuit or a three-state output. Memory is thus expanded and organized as 768 words of 4 bits.

3. Expanding the Number of Words in Memory and the Number of Bits in a Word

For example, using nine 1024-bit ROMs, each organized as 256 words of 4 bits, and by combining procedures 1 and 2 above, the number of words in memory along with the number of bits in a word, can be expanded as described below:

- 1. The chip enable input $\overline{E_2}$ of all ROMs is connected in parallel for module selection.
- 2. The chip enable input $\overline{E_1}$ activates selected ROMs the same as 2 above.


Memory is thus expanded and reorganized as 768 words of 12 bits.

Alternative Designation 6300

1024-BIT (256-WORD BY 4-BIT) FIELD PROGRAMMABLE ROM

Fig. 3 ROM module

Pull-up Resistors

The outputs are open collectors; therefore, AND-tie connections are also possible, and normal loads can be connected. The resistance of a pull-up resistor R_L that may be connected between the voltage supply and the collectors of the output transistors should be determined by equations (1) and (2) as shown below:

$$R_{L}(max) = \frac{\overline{V_{CC}} - \underline{V_{OH}}}{M \cdot \overline{10_{H}} + N \cdot \overline{1_{H}}}$$
(1)

: number of AND-ties where, M

- : number of fanouts (number of loads) Ν
- Vcc : maximum value of supply voltage
- <u>Voн</u> : minimum value of high-level output voltage
- 10H : maximum value of high-level output current at the open collector output
- TIH : maximum value of high-level input current

$$\mathsf{R}_{\mathsf{L}}(\mathsf{min}) = \frac{\underline{\mathsf{V}_{\mathsf{C}\mathsf{C}}} - \overline{\mathsf{V}_{\mathsf{O}\mathsf{L}}}}{\overline{\mathsf{I}_{\mathsf{O}\mathsf{L}}} - \mathsf{N} \cdot \overline{\mathsf{I}_{\mathsf{I}\mathsf{L}}}} \qquad \cdots \qquad (2)$$

where, Vcc : minimum value of supply voltage

Vol : maximum value of low-level output voltage

- ioL : maximum value of low-level output current
- TIL : maximum value of low-level input current

then,

 $R_{L}(min) < R_{L} < R_{L}(max)$ ------(3)

The resistance of a pull-up resistor R_L should be within the range as shown in equation (3). R_{L} (min) and R_{L} (max) should be calculated using the appropriate number of ANDties and fanouts. Calculation examples of TTL load are shown below:

(1) When

M = 4, N = 3, $\overline{V_{CC}} = 5.25V$, $V_{OH} = 2.4V$, $\overline{I_{OH}} = 100 \mu A$,

$$R_{L}(max) = \frac{\overline{V_{CC}} - \underline{V_{OH}}}{M \cdot \overline{10}H} + N \cdot \overline{HH}}$$
$$= \frac{5.25V - 2.4V}{4 \times (100 \mu A) + 3 \times (40 \mu A)}$$
$$= 5090 \Omega$$

(2) When

N=3,
$$\underline{V cc}$$
=4.75V, $\overline{V oL}$ =0.45V, \overline{IoL} =16mA, \overline{IIL} =1.6mA

$$R_{L}(\min) = \frac{\underline{Vcc} - \overline{VcL}}{\overline{IoL} - N \cdot \overline{IiL}}$$
$$= \frac{4.75V - 0.45V}{16MA - 3 \times (1.6MA)}$$
$$= 384 \Omega$$

MITSUBISHI LSIs

M54730K, M54730P, M54730S

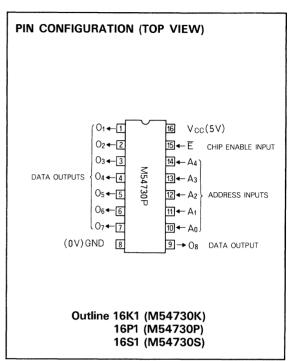
Alternative Designation 6330

256-BIT (32-WORD BY 8-BIT) FIELD PROGRAMMABLE ROM

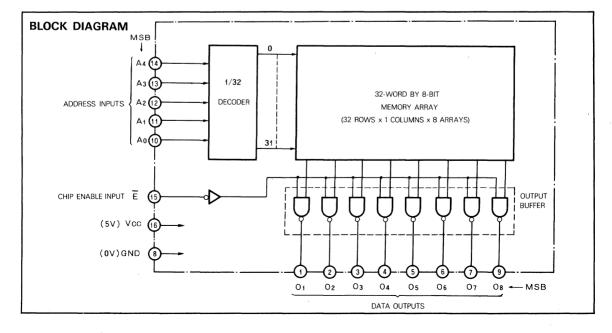
DESCRIPTION

The memory cells of the M54730K, P, S are a matrix of diodes and Ni-Cr fuse links. Data can be electrically programmed by open-circuiting fuse in the field with simple programming equipment. These 256-bit field programmable ROMs (PROMs) are composed of an address decoder, memory, output and chip enable TTL circuits.

FEATURES


- Field programmable ROM
- Low power dissipation: 1.5mW/bit
- Fast access time: 45ns (typ)
- 5V±5% single supply voltage
- Inputs and outputs TTL-compatible
- Open-collector outputs
- Chip enable inputs (E) for easy memory expansion
- Organized as 32 words of 8 bits
- 16-pin ceramic or plastic package
- Interchangeable with MMI's 6300 in pin configuration and electrical characteristics

APPLICATION


 Programmable memory for the M58710S 8-bit parallel CPU. Used for prototype design, microprogramming and control strage.

FUNCTION

The diode matrices of these 256-bit ROMs are organized as 32 words of 8 bits. Their memories are accessed by address inputs $A_0 \sim A_4$, selecting one of 32 words. The 8 bits are

read out in parallel on data outputs $0_1 \sim 0_8$. All inputs are TTL-compatible. An external decoder is not necessary. All outputs are open-collector outputs, so it is possible to AND-tie them to other ROMs and TTL devices. The AND-tie fanout of each output can accommodate up to 10 standard TTL loads. The chip enable \overline{E} is used to inhibit data ouputs $0_1 \sim 0_8$.

MITSUBISHI LSIS **M54730P, M54730S**

Alternative Designation 6330

256-BIT (32-WORD BY 8-BIT) FIELD PROGRAMMABLE ROM

ABSOLUTE MAXIMUM RATINGS ($Ta = 25^{\circ}C$, unless otherwise noted)

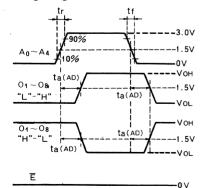
Symbol	Parameter	Conditions	Limits	Unit
Vcc	Supply voltage		7	V
Vi	Input voltage		5.5	V
Vo	Output voltage		Vcc	V
Topr	Operating free-air temperature		0~75	°C
Tstg	Storage temperature		- 55~ 125	°C
Vo	Output apply voltage	la and of programming	27	V
v(P)/tc(P)	Duty cycle	In: case of programming	25	%

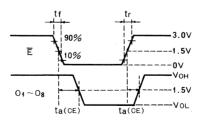
READ OPERATION

Recommended Operating Conditions (Ta = 0~75°C, unless otherwise noted)

Symbol Parameter	Limits				
	Parameter	Min	Nom	Max	Unit
Vcc	Supply voltage	4.75	5	5.25	V

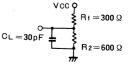
Electrical Characteristics ($Ta = 0 \sim 75^{\circ}C$ unless otherwise noted)


Symbol	Parameter	Test conditions		Limits		
	Falameter	Test conditions	Min	Typ(Note1)	Max	Unit
Vol	Low-level output voltage	IOL=16mA		0.3	0.45	V
Тон	High-level output voltage	VOH=5.25V			100	μA
ПL	Low-level input current	V1 = 0.4V			-1.6	mA
Цн		V1=2.4V			40	μA
	High-level input current	V1=4.5V			60	
lcc	Supply current from VCC			85	125	mA
Vic	Input clamped voltage	$I_1 = -10 mA$			-1.5	V


Note 1 : Typical values are at $V_{CC} = 5V$, $T_a = 25^{\circ}C$

Switching Characteristics (Vcc=5V, $Ta=25^{\circ}C$, unless otherwise noted)

	. .	T		Limits		Unit
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
ta(AD)	Address access time				50	ns
ta(CE)	Chip enable access time	See Timing Diagrams			30	ns
tdv(CE)	Data valid time with respect to chip enable				30	ns


Timing Diagrams

Note 2 : Rise time t_{f} ${\leq}5ns$; fall time t_{f} ${\leq}5ns$

- 3 : The chip enable input E should be low-level at measurement time during address access time $\hfill \cdot$
- 4 : Load circuit: capacitance (CL) includes stray capacitance and input capacitance.

Alternative Designation 6330

256-BIT (32-WORD BY 8-BIT) FIELD PROGRAMMABLE ROM

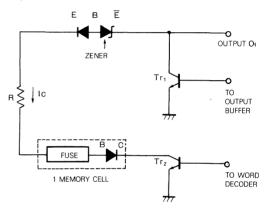
PROGRAMMING OPERATION Recommended Operating Conditions

Symbol	-		Limits			
	Test conditions	Min	Nom	Max	Unit	
VI(CEP)	Chip enable program input voltage	29		33	V	
V0(P)	Output apply voltage	20		25	V	
V _{CC(P)}	Program input voltage	5.40	5.50	5.60	V	
Vcc(v)	.Program verify input voltage	4.10	4.20	4.30	V	

Timing Requirements

Symbol	T		Limits			
	Test conditions	Min	Тур	Max	Unit	
t _{r(P)}	Pulse rise time	10	25	100	μs	
tw(P)	Pulse width	0.04		100	ms	
tw(P)/tc(P)	Duty cycle			25	%	

Timing Diagram



Programming (Writing) Procedure

All 256 Ni-Cr fuse-link memory elements are manufactured in a high-logic-level (fuse closed) output conditon. To program:

- Apply 5.5V to the supply voltage V_{CC} and select a fuse link to be programmed with address inputs A₀~A₄.
- 2. Apply a high-logic-level to the chip enable input \overline{E} .
- 3. After applying a program pulse V_{I(CEP)} to the chip enable input \overline{E} (see Timing Diagram), apply an output pulse V_{O(P)} to the fuse link of the output to be programmed. The output pulses should be separately applied to each output.
- 4. After programming, the fuse link is open and the output level is changed to a low-logic-level.
- 5. After programming is completed, apply an additional three programming pulses.

Programming Circuit

- 0
- Test the programmed memory to verify that the outputs are low-level or high-level as desired. Chip enable input E must be low-level for testing.

As the chip enable input \overline{E} is kept high-level during programming, transistor Tr₁ maintains the off state. The word decoder circuit selects any one of 32 words, and sets the transistor Tr₁ to the on state. The collector current of the transistor Tr₂, which is supplied from the selected output O₁, opens the fuse links. At this time, the other seven fuse links of the selected word line are in a half-selected state and the other 248 fuse links are in a nonselected state.

Typical Programming Conditions

		•		
Condition sequence.	Pulse sequence	Pulse width tw(P)(ms)	Chip enable program voltage V I (CEP) (V)	Output voltage (V)
1	1~4	0.5	29	25
2	5~8	1	29	25
3	9~12	5	30	25
4	13~19	20	33	25

Alternative Designation 6330

256-BIT (32-WORD BY 8-BIT) FIELD PROGRAMMABLE ROM

APPLICATIONS

Chip Enable Circuit

The chip enable input \overline{E} is used for activating or inhibiting output $O_1 \sim O_8$. Chip enable \overline{E} allows easy memory expansion by one of the following procedures:

1. Expanding the Number of Bits in a Word.

For example, using three 256-bit ROMs, each organized as 32 words of 8 bits, the number of bits in a word can be expanded as described below:

- 1. Apply a low-logic-level to chip enable input $\overline{\mathsf{E}}$ of each ROM.
- 2. Connect address inputs $A_0 \sim A_4$ of each ROM in parallel. Memory is thus expanded and reorganized as 32 words of 24 bits.
- 2. Expanding the Number of Words in Memory

For example, using three 256-bit ROMs, each organized as 32 words of 8 bits, the number of words in memory can be expanded as described below:

- 1. Connect the chip enable input $\overline{\mathsf{E}}$ of each ROM to the decoder.
- 2. Connect the outputs from each ROM with AND-tie connections.
- Connect each address input A₀∼A₄ commonly. Memory is thus expanded and organized as 96 words of 4 bits.
- 3. Expanding the Number of Words in Memory and the Number of bits in a Word

For example, using nine 256-bit ROMs, each organized as 32 words of 8 bits, and by combining procedures 1 and 2 above, the number of words in memory along with the number of bits in a word, can be expanded as shown in the diagram below.

Memory is thus expanded and reorganized as 96 words of 24 bits.

connected. The resistance of a pull-up resistor R_L that may be connected between the voltage supply and the collectors of the output transistors should be determined by equations (1) and (2) as shown below:

$$R_{L}(max) = \frac{\overline{Vcc} - \underline{VoH}}{M \cdot \overline{10H}}$$
(1)

where M : number of AND-ties

N : number of fanouts (number of loads)

 $\overline{V_{CC}}$: maximum value of supply voltage

VOH : minimum value of high-level output voltage

- IoH : maximum value of high-level output current at the open collector output
- THE : maximum value of high-level input current

$$R_{L}(\min) = \frac{V_{CC} - \overline{V_{OL}}}{\overline{I_{OL}} - N \cdot \overline{I_{IL}}}$$
 (2)

where <u>Vcc</u> : minimum value of supply voltage

 $\overline{V_{OL}}$: maximum value of low-level output voltage

IOL : maximum value of low-level output current

imaximum value of low-level input current

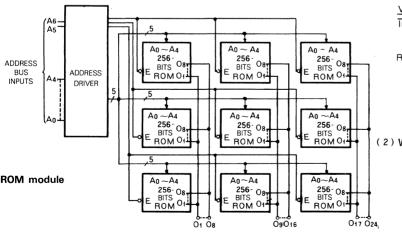
then

$$R_{L}(min) \le R_{L} \le R_{L}(max)$$
 ------(3)

The resistance of a pull-up resistor R_{L} should be within the range as shown in equation (3). R_{L} (min) and R_{L} (max) should be calculated using the appropriate number of AND-ties and fanouts. Calculation examples of TTL load are shown below:

(1) When

$$M = 4, N = 3, \overline{Vcc} = 5.25V,$$


$$\underline{V_{OH}} = 2.4V, \overline{1}\overline{6}H = 100\mu A,$$

$$\overline{1}\overline{H} = 40\mu A$$
BL (max) = $\overline{Vcc} - \underline{V_{OH}}$

$$\max(max) = \frac{1}{M \cdot 10^{+} H \cdot 10^{+} H \cdot 10^{-} H}$$
$$= \frac{5.25 V - 2.4 V}{4 \times (100 \mu A) + 3 \times (40 \mu A)}$$
$$= 5090 \Omega$$

Vhen
N=3,
$$\underline{V}_{CC}$$
=4.75V,
 \overline{V}_{OL} =0.45V, \overline{I}_{OL} =16mA,
 \overline{I}_{IL} =1.6mA

$$R_{L}(min) = \frac{\underline{V_{CC}} - \overline{V_{OL}}}{\overline{I_{OL}} - N \cdot \overline{I_{IL}}}$$
$$= \frac{4.75V - 0.45V}{16mA - 3 \times (1.6mA)}$$
$$= 384 \text{ Q}$$

Pull-up Resistors

The outputs are open collectors; therefore, AND-tie connections are also possible, and normal loads can be

SHIFT REGISTERS

MITSUBISHI LSIS M58502P, M58503P, M58504P

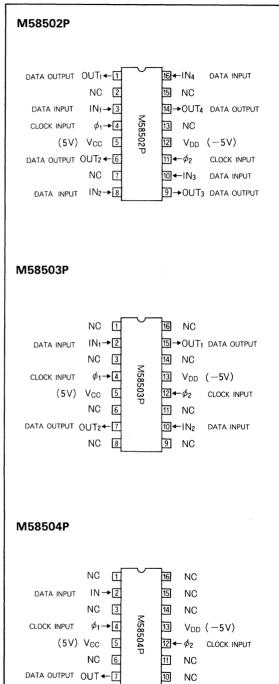
1024-BIT DYNAMIC SHIFT REGISTER

DESCRIPTION

The M58502P, M58503P and M58504P are 1024-bit dynamic shift registers which are fabricated with the P-channel silicon-gate MOS process and adopt capacitance pull-up circuits. The M58502P is organized as 256 words of 4 bits, the M58503P as 512 words of 2 bits, and the M58504P as 1024 words of 1 bit.

FEATURES

- Fast data frequency: 3MHz (max)
- Fast clock frequency: 1.5MHz (max)
 Low power dissipation: 15μW/bit (typ)
- Small input capacitance: 140pF (typ)
- All inputs and outputs TTL-compatible
- M58502P interchangeable with Intel's 1402A in pin configuration and electrical characteristics


APPLICATION

- Buffer memory for peripheral terminal equipment
- Small capacity memory system
- Analog delay line

FUNCTION

The adoption of capacitance pull-up circuits provides fast operation at low power dissipation. The M58502P is interchangeable with Intel's 1402A in pin configuration and electrical characteristics. The M58503P and the M58504P are functionally interchangeable with Intel's 1403A, 1404A (T0-5 package). Power dissipation is only 15 μ W/bit, about 1/20 or less the value for Intel's 1402A, 1403A and 1404A. The read/write data frequency is fast—up to 3MHz at a clock frequency of 1.5MHz. The minimum clock frequency is 500Hz, allowing use over a wide range of frequencies. All inputs and outputs are directly compatible with TTL, so that no special interface circuit is required. The V_{DD} supply voltage and the supply voltage for clock can be used in common.

PIN CONFIGURATION (TOP VIEW)

Outline 16P1

9 NC

NC 8

MITSUBISHI LSIS M58502P, M58503P, M58504P

1024-BIT DYNAMIC SHIFT REGISTER

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Limits	Unit
VDD	Supply voltage		0.3~-20	V
V ₁	Input voltage		0.3~-20	V
Vφ	Clock voltage	With respect to V _{CC}	0.3~-20	V
Vo	Output voltage		0.3~-20	V
Pd	Power dissipation	Ta=25℃	600	mW
Topr	Operating free-air temperature range		-10~75	r
Tstg	Storage temperature range		-40~125	°C

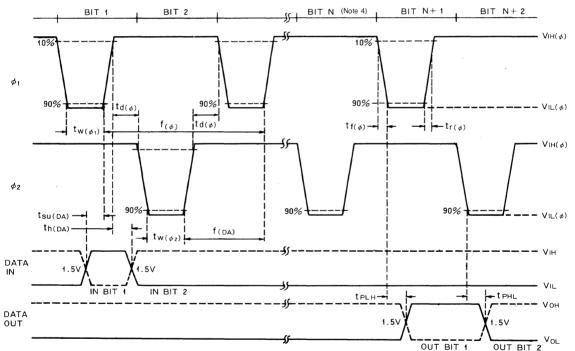
RECOMMENDED OPERATING CONDITIONS ($T_a = -10 \sim 75 \, \text{°C}$, unless otherwise noted)

Symbol	Description		Limits		Unit
Symbol	Parameter	Min	Nom	Max	Onat
V _{CC}	Supply voltage	4.75	5	5.25	V
VDD	Supply voltage	-4.75	- 5	-5.25	V
Vін	High-level input/voltage	V _{CC} -1.5		Vcc	v
VIL	Low-level input voltage	V _{CC} -15		V _{CC} -4.2	V
V _{IH(¢)}	High-level clock input voltage	Vcc-1		Vcc	V
$V_{IL}(\phi)$	Low-level clock input voltage	V _{CC} -17		V _{CC} -15	V

ELECTRICAL CHARACTERISTICS $(T_a = -10 \sim 75 \degree, V_{CC} = 5V \pm 5\%, V_{DD} = -5V \pm 5\%, V_{1L}(\phi) - V_{CC} = -15V \sim -17V.$

Symbol	Parameter	Test conditions	Limits		Unit	
Symbol		Test conditions	Min	Тур	Max	Onit
Voн	High-level output voltage	VIH=3.5V, RL=3K, IOH=100µA	2.4	3.5		v
VOL	Low-level output voltage	VIL=0.8V, RL=3K, IOL=1.6mA		-0.3	0.5	v
Ron	ON output resistance	V1L=3.5V, 10=-1mA		·0.5		kΩ
ROFF	OFF output resistance	VIL=0.8V, VO=0V	1			MΩ
4	Input current	VIL=VCC-17V			1	μA
IDD	Supply current from VDD	$f=1MHz$, $VIL(\phi)=VCC-17V$		-1.5	-3	mΑ
Ci	Input capacitance	$V_{IL} = 0V$, f=1MHz, 25mVrms			5	рF
Co	Output capacitance	$V_{OL} = 0V$, f=1MHz, 25mVrms			5	pF
Ci(ø)	Clock input capacitance	$V_{1L(\phi)} = 0V$, f=1MHz, 25mVrms		140	200	pF
Ci(Ø1-Ø2)	Capacitance between clock 1 and clock 2	$V_{IL}(\phi) = 0V$, f=1MHz, 25mVrms		30	45	ρF

Note 1 : Current flowing into an IC is positive; out is negative.

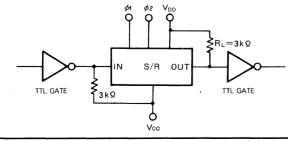

MITSUBISHI LSIS M58502P, M58503P, M58504P

1024-BIT DYNAMIC SHIFT REGISTER

SWITCHING CHARACTERISTICS (Ta = -10 ~ 75°, V_{CC} = 5V ± 5%, V_{DD} = -5V ± 5%, V_{IL(ϕ}) - V_{CC} = -15V ~ -17V unless otherwise noted

	Parameter	Total and the		Limits		
Symbol	Falainetti	Test conditions	Min	Тур	Max	Unit
f(da)	Data frequency	B 240			3	MHz
f(ø)	Clock frequency	R _L =3kΩ	0.0005		1.5	MHz
tw(ø1)	Clock 1 pulse width	See Timing Diagram	220		10000	ns
tw(ø2)	Clock 2 pulse width	See Timing Diagram	220		10000	ns
t _d (φ)	Clock pulse delay time	$t_{W}(\phi 1), t_{W}(\phi 2) = 220 \text{ ns}$	60			ns
tr(ø)	Clock pulse rise time				1000	ns
tf(φ)	Clock pulse fall time				1000	ns
tsu(DA)	Data setup time	See Timing Diagram	40			ns
th(DA)	Data hold time	See Timing Diagram	40			ns
t _{PHL}	High-to-low-level output propagation time				90	ns
t PLH	Low-to-high-level output propagation time				90	ns

TIMING DIAGRAM

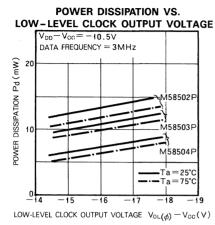


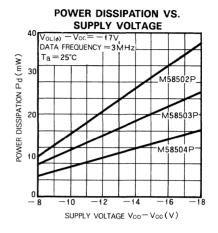
Note 2 : $t_{su(DA)}$ and $t_{h(DA)}$ have the same value concerning $t_{w(\phi 2)}$.

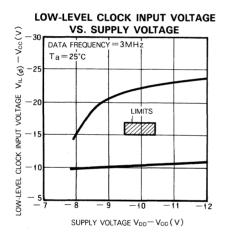
3 : The rise time and fall time of the input waveform are less than 10ns and the output load is one TTL gate.

4 : N equals 256 in the M58502P, 512 in the M58503P and 1024 in the M58504P.

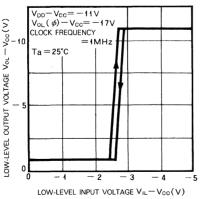
INTERFACE WITH TTL

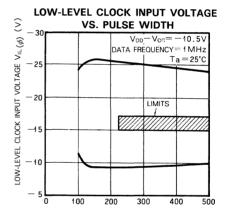


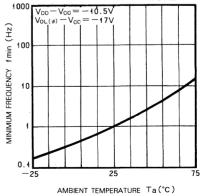



M58502P, M58503P, M58504P

1024-BIT DYNAMIC SHIFT REGISTER


TYPICAL CHARACTERISTICS




EFFECTIVE INPUT CHARACTERISTICS

CLOCK PULSE WIDTH $t_{w(\phi)}$ (ns)

MINIMUM FREQUENCY VS. AMBIENT TEMPERATURE

LSIs FOR PERIPHERAL CIRCUITS

*

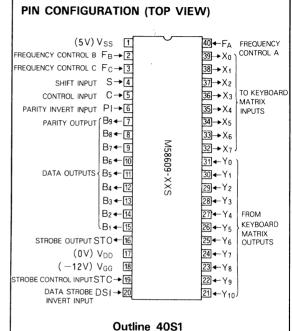
DESCRIPTION

The M58609-XXS is a keyboard encoder for reed switches of terminal equipment. It is fabricated using P-channel aluminum-gate MOS technology and is packaged in a 40-pin DIL package. It contains a 3168-bit mask-programmable read-only memory in which each key's code is stored. The 9-bit code corresponding to any one of 88 keys, each of which can be in any one of 4 mode shifts, can be read out. The outputs are TTL/DTL-compatible. The output consists of an 8-bit code and a parity bit. The address is selected by the 8-bit and 11-bit ring counters. Custom-programmed coding is available. The XX in the type code stands for a 2digit decimal number that identifies the customer's specification to which the ROM has been programmed.

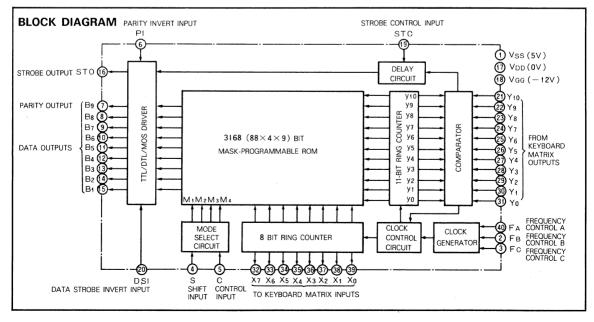
FEATURES

- TTL/DLT-compatible (except X, Y terminals)
- Two-key rollover operation
- N-key lockout operation
- Self-contained clock generator circuit
- Strobe delay circuit for eliminating key contact bounce
- External control for output polarity (positive or negative logic)
- External control for selecting odd or even parity

APPLICATION


Encoder for full-keyboard terminal equipment

FUNCTION


Outputs $(X_0 \sim X_7)$ of the 8-bit ring counter and inputs $(Y_0 \sim Y_{10})$ of the 11-bit comparator are wired to the keyboard to form an 8×11 (88-cross points) switch matrix.

When the key connected with X_i and Y_j is depressed, a path is formed between them. When the level of Y_j matches that of X_i , which comes from the 8-bit ring counter, the

comparator generates a coincidence signal for clock control and delay circuit. This clock control stops the clock signals to the ring counter and data outputs $(B_1 \sim B_9)$ stabilizing the selected 9-bit code. The stabilization is indicated by a valid signal on the strobe output. A strobe output signal is generated at the time set by the externally controlled delay circuit which receives the coincidence signal. Data outputs and strobe output remain stable until the key is released.

8 - 3

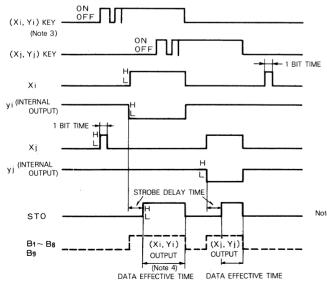
MITSUBISHI LSIS

KEYBOARD ENCODER

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Limits	Unit
Vgg	Supply voltage		0.3~-20	V
VDD	Supply voltage	With respect to VSS	0.3~-20	V
Vi	Input voltage		0.3~-20	V
Topr	Operating free-air temperature range		-20~75	°C
Tstg	Storage temperature range		-40~125	°C

RECOMMENDED OPERATING CONDITIONS ($Ta = -20 \sim 75^{\circ}C$, unless otherwise noted)


Symbol			11		
Symbol	Parameter	Min	Nom	Max	Unit
VGG	Supply voltage	-11	-12	-13	V
VDD	Supply voltage		0		V
Vss	Supply voltage	4.5	5	5.5	V
VIH	High-level input voltage	Vss-1			V
VIL	Low-level input voltage			0.8	V
f (ø)	Clock frequency	20	50	100	kHz
td(sto)	Strobe delay time		1.5		ms
ROFF	Switch off resistance	10			MΩ
Ron ·	Switch on resistance			300	Ω

$\label{eq:construction} \textbf{ELECTRICAL CHARACTERISTICS} (\texttt{Ta}=-20 \sim 75^\circ\texttt{C}, \texttt{V}_{\texttt{GG}}=-12 \pm 1\texttt{V}, \texttt{V}_{\texttt{SS}}=5 \pm 0.5\texttt{V}, \texttt{V}_{\texttt{DD}}=0\texttt{V}, \texttt{unless otherwise noted})$

	_			Limits					
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit			
VOH(Bi,STO)	High-level output voltage, B1 \sim B9 and STO	I _{OH} =-100μA	Vss-1			V			
Voн(xi)	High-level output voltage, X 0 ~ X 7	I _{OH} =-100μA	Vss-1.3			V			
Vol(Bi,STO)	Low level output voltage, B1~B9 and STO	I _{OL} = 1.6mA			0.4	V			
Vol(Xi)	Low-level output voltage, X0~X7	$I_{OL} = 1 \mu A$			- 3	V			
Ri	Input resistance, S, C, DSI and PI	$V_1 = -12V$	1			MΩ			
Pd	Power dissipation	T _a =25°C		70	200	mW			
Ci	Input capacitance	$V_1 = 0V, f = 1MHz, T_a = 25^{\circ}C$			15	pF			

Note 1 : Current flowing into an IC is positive; out is negative.

TIMING DIAGRAM

Note 2 : DSI="L"

3 : (Xi, Yi) KEY indicates the key switch that is located at the cross point of Xi and Yi of the keyboard matrix.

4

4 : (Xi, Yi) OUTPUT indicates the code output of the key that is selected by the (Xi, Yi) KEY.

FUNCTION TABLES

Data	(B1~B9)	nvert
DSI (Pin 200)	Code table (Bi~Bg)	Data output (B1~B9)
н	1	L
L	1	н
н	0	н
I	n	1

Strobe	(STO)	Invert

DSI Internal STO (Pin 20) (Note 3) (Pin 16)

L

н

н

L

н

н

L

L

 P1
 Code table

 (Pin (6))
 (B9)

 H
 1

L

н

L

Parity (B9) Invert

1

0

D

Вg

(Pin (1))

L

н

н

L

Mode Select

	S (Pin ④)	C (Pin (5))	Mode
	L	L	Mi
	н	L	M 2
1	L	н	M 3
	н	н	M 4

Note 3 : The internal signal of the strobe output (STO) becomes high-level when the strobe signal is generated.

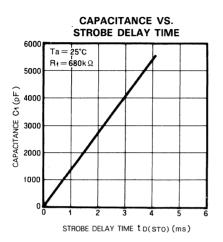
н

L

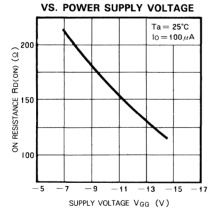
н

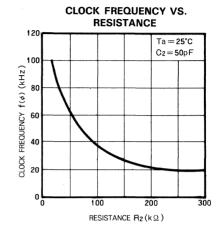
L

EXAMPLE OF APPLICATION CIRCUIT

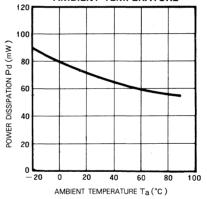


Note 4 : $R_1 = 1.5M \Omega$, $C_1 = 0.001 \mu$ F provides approximately 1.5ms delay time. 5 : $R_2 = 75k \Omega$, $C_2 = 50$ pF provides approximately 50kHz clock frequency.




8-5

TYPICAL CHARACTERISTICS ($V_{GG} = -12V$, $V_{DD} = 0V$, $V_{SS} = 5V$)



ON RESISTANCE OF OUTPUT DRIVER

POWER DISSIPATION VS. AMBIENT TEMPERATURE

MITSUBISHI LSIS

KEYBOARD ENCODER (JIS CODE STANDARD PRODUCT)

DESCRIPTION

The M58609-04S is a standard product of the M58609-XXS. the 8-bit codes specified in JIS C6220-1969 "Codes for Information Interchange" are stored in this ROM. The codes can be odd or even parity. The function, pin configuration and electrical characteristics are the same as those of an M58609-XXS.

FUNCTION

Data output and parity output

The relationships between $B_1 \sim B_8$ in the code table and $B_1 \sim B_8$ in data outputs are shown in Table 1, and those between the parity output B_9 and the parity bit, in Table 2. The parity bit in the table is defined as a '0' when the number of '1's in the code $B_1 \sim B_8$ is odd and a '1' when it is even.

Mode selection is shown in Table 3.

Table 1 Relationship between code table and data outputs

$B_1 \sim B_8$ Code table	Data strobe invert input DSI	Data output B₁ ~B8	Logic
1	L	н	Positive logic
1	н	L	Nogative logic
0	L	L	Positive logic
0	н	н	Negative logic

Table 2 Parity output

Parity bit	Parity invert input P1	Parity cutput Big
1	L	н
1	Н	L
0	L	L
0	Н	Н

Table 3 Mode selection

Shift input S	Control input C	Selected mode
L	L	1
Н	L	2
L	н	3
н	Н	4

								0	0	0	0	0	0	0	0	t	1	1	1	1	1	1	1
NUMBER								0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
OF BITS	-							0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
								0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
B9 B8 B7	B6	B ₅	B4	B ₃	B ₂	Bı	ROWCOL	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
PARITY BIT			0	0	0	0	0	NUL	DLE	SP	0	æ	Р	`						9	-		
			0	0	0	1	1	SOH		!	1	А	Q					0	ア	チ	4		
			0	0	1	0	2	STX		"	2	в	R					٢	1	ッ	×		
			0	0	1	1	3	ETX		#	3	С	S					L	ゥ	テ	モ		
			0	1	0	0	4	EOT		\$	4	D	Т					,	エ	1	ヤ		
			0	1	0	1	5	ENQ	NAK	%	5	E	U					•	オ	ナ	ユ		
			0	1	1	0	6	ACK	SYN	&	6	F	V					ヲ	カ	=	Э		
		i	0	1	1	1	7	BEL	ETB	'	7	G	W					7	+	R	ラ		
			1	0	0	0	8	BS	CAN	(8	н	х					1	2	ネ	リ		l
			1	0	0	1	9	HT	EM)	9	1	Y					ゥ	ケ	1	ル		
			1	0	1	0	10	LF	SUB	*	:	J	Z					т	⊐	~	L		
			1	0	1	1	11	VT	ESC	+	;	К	({			オ	サ	F			L
			1	1	0	0	12	FF		,	<	L	¥					ヤ	シ	7	7		
		1	1	1	0	1	13	CR		-	=	м)		}			고	ス	\sim	ン		
			1	1	1	0	14	SO			>	N	^		_			э	セ	ホ			
			1	1	1	1	15	SI			?	0			DEL				ソ	ੱਤ	•	1 1	1

CODE TABLE (JIS-C-6220-1969)

* Bal parity is odd for an 8-bit code system.

Note : A '1' or '0' in the code table indicates that the output level goes high for '1' and low for '0' when input DSI and PI are low-level.

8-7

KEYBOARD ENCODER (JIS CODE STANDARD PRODUCT)

CODE ARRANGEMENT TABLE

Yi	Mode	Xo	X 1	X 2	X 3	X 4	X 5	× 6	X 7
	1	NUL	DLE	~	0	;	L	0	9
	2	NUL	DLE		NUL	+	NUL	NUL)
Yo -	3	NUL	DLE	~	7	<u>۲</u>	IJ	7	в
	4	NUL	DLE	NUL	7	NUL	NUL	NUL	Э
	1	SOH	6	0	-	/	К	1	8
	2	SOH	6	0	=	?	NUL	NUL	(
Y1 -	3	SOH	6	0		×	1	Ξ	L L
-	4	SOH	6	0	NUL	•	NUL	NUL	
	1	STX	7	1	P		J	U	7
	2	STX	7	1	NUL	>	NUL	NUL	
Y 2	3	STX	7	1	セ	л	7	+	+
-	4	STX	7	1	NUL	•	NUL	NUL	t
	1	ETX	8	2	1102	,	Н	Y	6
-	2	ETX	8	2		<	NUL	NUL	æ
Y3 -	3	ETX	8	2	0	*	2		*
-	4	ETX	8	2	r	-1-	NUL	NUL	*
	1	EOT	9	3	¥	, M	G	T	5
}	2	EOT	9	3	+ +	NUL	NUL	NUL	%
Y4 -	3	EOT	9	3	<u> </u>		+	<u> </u>	70 I
	4	EOT	9	3	NUL	NUL	NUL	NUL	<u>_</u>
	1	ENQ	NAK	4	BS	N	F	R	4
-	2	ENQ	NAK	4	BS	NUL	NUL	NUL	\$
Y 5	3	ENQ	NAK	4	BS	i NOL			\$
-	4	ENQ	NAK	4	BS	NUL	NUL	NUL	
	1	ACK	SYN	5	NUL	B	D	E	· · · · · · · · · · · · · · · · · · ·
	2	ACK	SYN	5		NUL	NUL	NUL	#
Y6	3	ACK	SYN	5			- NOL シ		# 7
-	4	ACK	SYN	5		NUL	NUL		
	1	BEL	ETB	+		V	S NOL	r W	7 2
-	2	BEL	ETB	+	1	NUL	NUL	NUL	
¥7	3	BEL	ETB	+		- NOL E	hol h	- NOL テ	7
-	4	BEL	ETB	+		NUL	NUL	NUL	NUL
	1	=	CAN	SP	CR	C	A	0	
	2	=	CAN	SP	CR	NUL	NUL	NUL	<u> </u>
Y 8	3		CAN	SP	CR		F NOL	3	<u> </u>
	4		CAN	SP SP	CR	NUL	NUL	NUL	NUL
	4	 S0	EM		LF	X	FF	HT	(a
	2		EM	<u> </u>		NUL	FF FF	нт	ţu ,
Y9	3		EM	· · ·		10L	FF FF	HT	
-	4		EM	· · · ·		NUL	FF FF		
	4		SUB			NUL Z		HT VT	NUL :
		SI			DEL		ESC		
Y10	2	SI	SUB		DEL	NUL	ESC	VT	*
	3	SI	SUB		DEL	ッ	ESC	VT	5
	4	SI	SUB	-	DEL	ッ	ESC	VT	NUL

SYMBOLS AND THEIR NAMES

Symbo	Code name	Col/Row in code table	X/Y/Mode in code arrangement table
SP	Space	2/0	2/8/1~4
!	Exclamation mark	2/1	7/8/2
"	Quotation mark, umlaut	2/2	7/7/2
#	Number sign	2/3	7/6/2
\$	Dollar sign	2/4	7/5/2
%	Percentage	2 / 5	7/4/2
&	Ampersand	2/6	7/3/2
'	Apostrophe, acute accent	2 / 7	7/2/2
(left parenthesis	2 / 8	7/1/2
)	Right parenthesis	2/9	7/0/2
*	Asterisk, multiplication sign	2 / 10	7/10/2
+	Positive sign, plus sign	2/11	2/7/1~4.4/0/2
,	Comma	2 / 12	4/3/1
-	Negative sign, subtraction sign	2 / 13	2/10/1~4,3/1/1
	Period	2 / 14	2/9/1~4,4/2/1
/	Slash, virgule, division sign, per	2 / 15	4/1/1
:	Colon	3 / 10	7/10/1
;	Semicolon	3 / 11	4/0/1
<	Less than sign	3 / 12	4/3/2
==	Equal sign	3 / 13	0/8/1~4,3/1/2
>	Greater than sign	3/14	4/2/2

Symbol	Code name		X/Y/Mode in code
Symbol	Code Hame	in code table	arrangement table
?	Question mark	3 / 15	4/1/2
@	At mark	4/0	7/9/1
(Left bracket	5/11	3/3/1
¥	Yen sign	5/12	3/4/1
)	Right bracket	5 / 13	3/7/1
^	Circumflex accent	5 / 14	2/0/1
	Underline	5 / 15	3/6/2
``	Grave accent	6 / 0	7/9/2
{	Left brace	7 / 11	3/3/2
	Separate sign, logical add sign	7 / 12	3/4/2
}	Right brace	7 / 13	3/7/2
	Overline, logical not sign	7/14	2/0/2
•	Japanese period	10/1	4/2/4
Г	Japanese initial quotation mark	10/2	3/3/4
L	Japanese final quotation mark	10/3	3/7/4
,	Japanese comma	10/4	4/3/4
·	Middle dot	10/5	4/1/4
-	Long vowel mark	11/0	3/4/3
•	Voiced consonant mark	13/14	7/9/3
°	Semi-voiced consonant mark	13/15	3/3/3

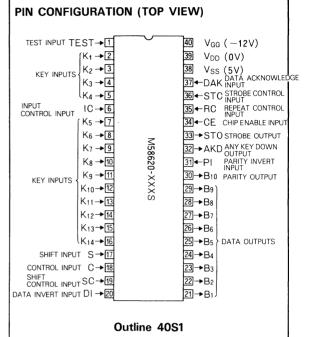
DESCRIPTION

The M58620-XXXS is a keyboard encoder for solid-state switches and is fabricated with P-channel aluminum-gate MOS technology.

All codes are stored in a 3640-bit ROM. It can store codes for up to 91 keys, and each key can have 4 mode shifts. The mode shift is selected by the combination of shift input, control input and shift control input. The output consists of a 9-bit plus parity bit code. All inputs and outputs are TTL-compatible.

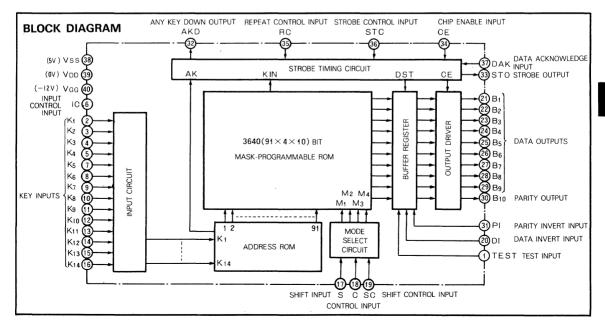
Custom programming is available. The XXX in the type code stands for a 3-digit decimal number that identifies the customer's specification to which the ROM has been programmed.

FEATURES


- All inputs and outputs are TTL-compatible
- Output buffer register
- Strobe inhibit circuit for unused codes
- One shot output (the pulse width is variable) or static output for strobed output
- Chip enable terminal
- 2-key rollover capability (N-key rollover is also available, if the logic output of the switches is pulsive)

APPLICATION

Encoder for full-keyboard terminal equipment


FUNCTION

The output of each keyboard switch is connected to 2-key inputs selected from $K_1 \sim K_{14}$ (2 of 14) to form 91 addresses. Therefore, the character code for output is selected by 2 of 14 key inputs, shift input, control input and shift

control input.

When a key is depressed, the output of that keyboard switch is applied to two key inputs selected from $K_1 \sim K_{14}$; the address ROM generates an address that is used for input to the 3640-bit ROM. After the encoded data from the ROM is transferred to the buffer register, a strobed output is generated, validating the encoded data.

MITSUBISHI

OPERATION

1. 2-Key Rollover (N-Key Lockout)

When more than 2 keyboard switches are depressed at the same time, all outputs $1\sim91$ of the address ROM go highlevel, and the 3640-bit ROM is not addressed. The internal key input signal also is not applied to the timing circuit; as a result, a strobe signal is not generated. Also, the coded outputs hold the preceding state. Then, if any one key (key 1) is not released while the other keys are, key 1 becomes valid.

2. N-Key Rollover

If the key input signals are pulsive, the primary depressed key (key 1) is read; after the coded output of key 1 is transferred to the buffer register, a strobe signal is generated and the coded output becomes valid. Then, if a second key is depressed while key 1 is in the depressed state, the second key (key 2) is read; and the coded output of key 2 is transferred to the buffer register succeeding the coded output of key 1 described above. A strobe signal is generated, and the coded output becomes valid. Then if a third, fourth ... Nth key is depressed while preceding keys are still in the depressed state, its code will become valid as described above.

3. Any-Key-Down Output

When any one or more of the 91 keys are depressed, an internal any-key signal is transferred from the address ROM to the timing circuit where an any-key-down signal (AKD) is generated.

4. Strobe Inhibit When an Unused Code Is Addressed

If either an unused mode of the 4 modes or an unused key is selected (its ROM code is 0000000000), the strobe output is inhibited and it makes the key invalid. The data output still holds the preceding state.

5. Repeat Function

When a repeat signal is applied to the repeat control input (RC), a strobe signal is repeatedly generated so that any character can be repeated. The strobe signal is inhibited when the RC terminal is high.

6. Data Acknowledge Input

The strobe output is reset by applying a data acknowledge input. The pulse width of the strobe signal output can be adjusted with a resistor and a capacitor connected between the strobe output terminal (STO) and the data acknowledge input terminal (DAK).

7. Data Invert and Parity Invert Inputs

The level of each output $B_1 \sim B_9$ and B_{10} can be inverted when data invert input (DI) and parity invert input (PI) are high-level.

8. Chip Enable Input

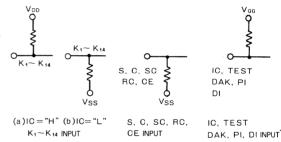
Data outputs $B_1 \sim B_{10}$, strobe output and any-key-down output are in the floating state when chip enable input (CE) is high.

This floating state means a high-impedance state and is equivalent to an open-circuit output.

9. Input Control Input

When input control input (IC) is high, key inputs ($K_1 \sim K_{14}$) can be operated with high-level signals.

10. Strobe Control Input


The strobe delay time can be set by the strobe control input STC terminal. The delay time is set to $t_{d(ST-B)}$, which depends on the internal delay circuit when the strobe control input terminal is connected to V_{SS} .

11. Test Input

Data outputs $(B_1 \sim B_{10})$ can be independently set either high or low irrespective of the 3640-bit ROM outputs. When test input (TEST) is high, $B_1 \sim B_{10}$ goes high if both DI and PI are low, and $B_1 \sim B_{10}$ goes low is both DI and PI are high. **12. Pull-up Resistors**

External resistors are not required because pull-up resistors are built-in at all input terminals. But if the strobe control input terminal is not used, it should be connected to V_{SS} . To determine the value of the resistor required, see Electrical Characteristics.

Pull-up resistors

Table 1 Data-output level in relation to data invert (DI), parity invert (PI) and chip enable (CE)

······································				
ROM CODE	DI, PI	CE	B1~B10	
	н	L	L	
1	L.	L	н	
0	н	L	н	
U	L	L	L	
	н	н	Z	
'	L	н	Z	
0	н	н	Z	
	L	н	Z	

Table 2 Function table of the mode select circuit

S	С	SC	MODE
н	н	н	-
L	н	н	-
н	L	н	-
L	L	н	M4
н	н	L	M 4
L	н	L	Mз
н	L	L	M 2
Ĺ	ι L	L	M1

Note 1 : Z indicates a floating state

2 : The code table is described in positive logic, for outputs B+

 \sim B 10, when DI and PI are low

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Limits	Unit
Vgg	Supply voltage		0.3~-20	V
VDD	Supply voltage	With respect to V _{SS}	0.3~-20	V
VI	Input voltage		0.3~-20	V
Pd	Power dissipation	Ta = 25°C	1.0	w
Topr	Operating free-air temperature range		- 20~ 75	°C
Tstg	Storage temperature range		- 40~125	°C

RECOMMENDED OPERATING CONDITIONS ($Ta = -20 \sim 75^{\circ}C$, unless otherwise noted)

Symbol	Parameter		Limits		
Syntool	i di di fieter	Min	Nom	Max	Unit
V _{GG}	Supply voltage	- 10.8	-12	-13.2	V
VDD	Supply voltage		0		V
Vss	Supply voltage	4.5	5	5.5	V
Vін	High-level input voltage, all inputs except STC	Vss-1.5		Vss	V
VIL	Low-level input voltage	VDD		Vss-3.5	V
tr	Rise time (10~90%), all inputs except DAK			1	μS
tf	Fall time (10~90%)			1	μS
tr (DAK)	Rise time (10~90%), DAK			100	μs
tf(DAK)	Fall time (10~90%), DAK			100	μs

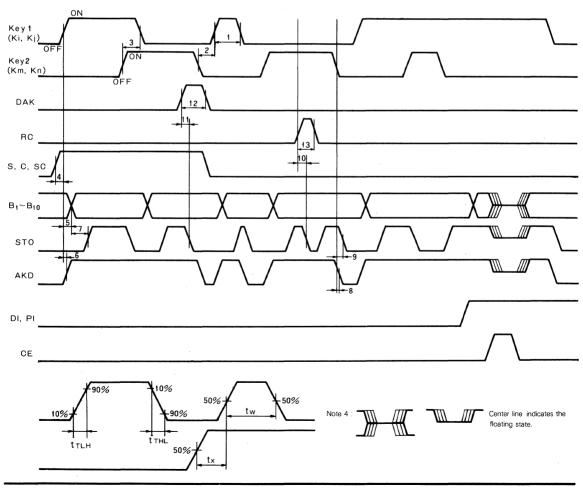
$\textbf{ELECTRICAL CHARACTERISTICS} (Ta = -20 ~ 75^{\circ}\text{C}, V_{GG} = -12V \pm 10\%, V_{DD} = 0V, V_{SS} = 5V \pm 10\%, unless otherwise noted)$

Symbol	Parameter	Test conditions	Limits			11-14
Зутноог	Farameter	rest contations	Min	Тур	Max	Unit
Vон	High-level output voltage	IOH=-100μA	Vss-1			V
Vol	Low-level input voltage	IOL=1.6mA, (Note 2)			0.4	V
11(1)	Input current, TEST, IC, DI, PI, and DAK	VI = VGG		-0.01	- 10	μA
11(2)	Input current, K1~K14	$V_1 = V_{DD}, V_1(IC) = V_{1H}$		-0.02	- 20	μA
R _I (1)	Input resistance, IC, PI, DI, DAK, and TEST	V₁=Vss, Ta=25℃	100	180	300	kΩ
R ₁ (2)	Input resistance, S, C, SC, CE, and RC	V1 = VDD, Ta = 25°C	5		30	kΩ
R1(3)	Input resistance, K1~K14	V1=VSS, VI(IC)=V1H, Ta=25°C	10	20	40	kΩ
R ₁ (4)	Input resistance, K1~K14	$V_I = V_{DD}, V_I(IC) = V_{IL}, Ta = 25^{\circ}C$	2	5	15	kΩ
Pd	Power dissipation	Ta=25℃		350	500	mW
Ci	Input capacitance	All terminals except the tested terminal are 0V. $V_1 = 0V$, $V_Tms = 25mV$, $f = 1MHz$			15	pF

Note 1 : Current flowing into an IC is positive; out is negative.

2: When all outputs are at IOL = 1.6 mA, VOLmax = 0.6 V

MITSUBISHI LSIS M58620-XXXS


KEYBOARD ENCODER

$SWITCHING \ CHARACTERISTICS \ (\texttt{T}_a=25^\circ\text{C},\ \texttt{V}_{GG}=-12\texttt{V}\pm10\%,\ \texttt{V}_{DD}=0\texttt{V},\ \texttt{V}_{SS}=5\texttt{V}\pm10\%,\ \texttt{unless otherwise noted})$

Symbol	Barantata	Toto IV AND O	Limits			
Symbol	Parameter	Test conditions (Note 3)	Min	Тур	Max	Unit
t _{TLH}	Low-to-high-level output transition time	CL=50pF, IOH=-0.1mA		0.7	2	μs
t⊤н∟	High-to-low-level output transition time	CL=50pF, IOL=1.6mA		0.5	1.5	μS
tw(KI)	Key input pulse width	*1, tw	30			μs
d(KILH-K2HL)	Delay time from key 1 low-to-high-level	*2 , tx	10			μs
th (K1-K2)	Key 1 hold time with respect to key 2	*3, tx	10			μs
su(M-KON)	S, C, SC setup time with respect to key input (ON)	* 4 , tx			1.5	μS
td(B-KON)	Delay time from key input (ON) to B1~B10	*5, tx	2	7	15	μs
td(ak-kon)	Delay time from key input (ON) to AKD	*6, tx		0.5	2	μs
td (sт-в)	Delay time from B1~B10 to STO	*7, tx, CL=50pF, STC-Vss shorted	1	5	12	μs
td(ak-kof)	Delay time from key input (OFF) to AKD	*8 , tx, C∟=50pF		0.5	2	μs
t D(ST-KOF)	Delay time from key input (OFF) to STO	*9 , tx, C∟=50pF		4	10	μS
t (ST-RC)	Delay time from RC to STO	*10 , tx,C∟=50pF		3.5	20	μs
td(st-dak)	Delay time from DAK to STO	* 11, tx,CL=50pF		4	10	μs
tw(dak)	DAK pulse width	*12 , tw	10			μs
tw(RC)	RC pulse width	*13, tw	15			μs
tw(sto)	STO pulse width	tw, CL=50pF, STO-DAK shorted	1	4	10	μS

Note 3 : See the Timing Diagram for 'tw' and 'tx'. Numbers 1 through 13 in the diagram correspond to *1 through *13 above.

TIMING DIAGRAM

MITSUBISHI LSIs M58620-XXXS

KEYBOARD ENCODER

STROBE DELAY TIME VS.

RESISTANCE

2

STROBE WIDTH VS.

RESISTANCE

20

RESISTANCE R $(k\Omega)$

RESISTANCE R (M Ω)

3

30

40

٨

10

ţ

0

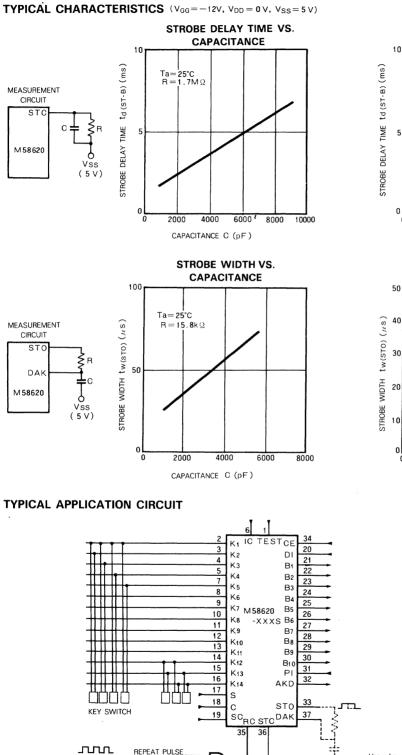
40

30

0

õ

Ta=25°C


C = 1000 p F

10

0

 $Ta = 25^{\circ}C$

C = 4700pF

L REPEAT COMMAND

Use a key switch having outputs that are open-collector, or mutually separated by diodes.

-~~~

÷⊖5∨

MITSUBISHI LSIS M58620-001S

KEYBOARD ENCODER (JIS CODE STANDARD PRODUCT)

DESCRIPTION

The M58620-001S is a standard product of the M58620-XXXS. The 7-bit and 8-bit codes specified in JIS publication C6220-1969 "Codes for Information Interchange" are stored in this ROM. Odd parity is available for the 7-bit code, and either odd or even parity for the 8-bit code. The function, pin configuration and electrical characteristics are the same as a M58620-XXXS.

FUNCTION

The relationships between $B_1 \sim B_8$ in the code table and $B_1 \sim B_8$ in data outputs are shown in Table 1, and those between the parity output (B_{10} or B_9) and the parity bit, in Tables 2 and 3. The parity bit in the tables is defined as a '0' when the number of '1's in the code ($B_1 \sim B_8$ or $B_1 \sim B_7$) is odd and a '1' when it is even.

Mode selection is shown in Table 4.

Table 1 Relation between code table and outputs

B1 ~ B8 in code table	Data invert input DI	Data output B1~B8	Logic
1	L	н	Positive logic
1	н	L	Negative logic
0	L	L	Positive logic
0	Н	Н	Negative logic

Table 2 Parity output of 8-bit code

Parity bit	Parity invert output PI	Parity output B10
1	L	н
1	Н	L
0	L	L
0	Н	Н

Table 3 Parity output of 7-bit code

Parity bit	Data invert input D1	Data output Be
1	L	н
1	н	L
0	L	L
0	Н	н

Table 4 Mode selection

Shift input	Control input	Shift control input	Selected mode
S	С	SC	
Ĺ	L	L	1
Н	L	L	2
L	н	L	3
н	Н	L	4
L	L	н	4
н	L	н	-
L	н	н	_
H.	Н	н	

CODE TABLE (JIS-C-6220-1969)

						0	Ó	0	0	0	0	0	0	1	1	1	1	1	1	1	1
OF BIT						0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
						0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
						0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
B10 [†] B9 [*] B8 B7 B6 B5	B4	B3	B2	B1	ROWCOL	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
PARITY	0	0	0	0	0	NUL	DLE	SP	0	(0)	Р	``					-	タ			
BIT	0	0	0	1	1	SOH	DC1	!	1	Α	Q					0	ア	チ	4		
ыт	0	0	1	0	2	STX	DC 2	"	2	В	R					Г	1	ッ	×		
	0	0	1	1	3	ETX	DC 3	#	3	С	S					۲.	ゥ	テ	Ŧ		
	0	1	0	0	4	EOT		\$	4	D	Т					,	I	٢	+		
	0	1	0	1	5	ENQ	NAK	%	5	E	U					•	オ	ナ	그		
	0	1	1	0	6	ACK	SYN	&	6	F	V					ヲ	カ	=	Э		
	0	1	1	1	7	BEL	ETB	'	7	G	W					7	+	7	ラ		
	1	0	0	0	8	BS	CAN	(8	н	X					1	2	ネ	IJ		
	1	0	0	1	9	HT	EM)	9	1	Y					ゥ	ケ	1	ル		
	1	0	1	0	10	LF	SUB	*	:	J	Z	1				т	П	~	L		
	1	0	1	1	11	VT	ESC	+	;	к	ſ		{			オ	+	F	П		
	1	1	0	0	12	FF		,	<	L	¥					+	シ	7	7		
	1	1	0	1	13	CR		-	=	М	1		}			д	ス	~	~		
	1	1	1	0	14	SO			>	N	~		_			а	セ	ホ	•		
	1	1	1	1	15	SI		1	?	0	_		DEL			"	Y	7	•		
							1	\													
						7-bit code															
	† B10) is an	odd p	barity I	bit for th	e 8-bit co	de(B₁~E	38).													

Note : When inputs DI and PI are low-level, a '1' in the code table indicates that the output level goes high, a '0' that it goes low.

MITSUBISHI LSIs M58620-001S

KEYBOARD ENCODER (JIS CODE STANDARD PRODUCT)

∕ Km	Mada	K2	Kз	K4	Kr	K6	K7	Ka	K9	Kan	K11	K12	K13	K14
.n 🔨	Widde				K5			K8	K9	K10	K11	K12		
	1	Z	Х	С	V	В	N	м	ļ,	· · · · · · · · · · · · · · · · · · ·	/		A	S
Кı	2								<	>	?			
	3	יא	サ	<u>у</u>	F	7	Ę	Ŧ	ネ	ル	*	P	チ	1
	4	<u>۳</u>							<u> </u>	•	:	<u> </u>		
	1		D	F	G	н	J	к	L	;	:		Q	w
K2	2		シ	~ ~	+	2	र र	;	IJ		* ケ	4	\$	- -
	4		~~~~		-			· · · · ·					,	- /
	1			E	R	т	Y	U	1	0	Р	@	ſ	1
	2			<u> </u>			· · · · · ·		1		;			i
Kз	3	1 `		1	ス	<u></u>	ン	+	=	ラ	セ			7
	4			1									Г	
	1	/			2	3	4	5	6	7	8	9	0	-
K4	2					#	\$	%	&	'	()		
K 4	3				フ	ア	ウ	I	オ	ヤ	그	Э	ワ	ホ
	4					7	ゥ	т	*	t		Е	7	
	1		_			^	¥	DEL	SP	SOH	STX	ETX	EOT	ENC
K5	2	4		_			1	DEL	SP	SOH	STX	ETX	EOT	ENG
	3	4				^		DEL	SP	SOH	STX	ETX	EOT	ENG
	4				\rightarrow	1	ACK	DEL	SP BS	SOH HT	STX LF	ETX VT	EOT FF	ENC CR
	2						ACK	BEL	BS	нт	LF	VT	FF	CF
K6	3	-			_		ACK	BEL	BS	нт	LF	VT	FF	CF
	4	-					ACK	BEL	BS	нт	LF	VT	FF	CR
	1		_				Aut	SO	SI	DLE	DC1	DC ₂	DC 3	NA
	2	1						SO	SI	DLE	DC1	DC ₂	DC 3	NA
K٦	3	1						SO	SI	DLE	DC1	DC ₂	DC 3	NA
	4	1						SO	SI	DLE	DC1	DC 2	DC 3	NA
	1								SYN	ETB	CAN	EM	SUB	ESC
K8	2]							SYN	ETB	CAN	EM	. SUB	ESC
1.0	3	4							SYN	ETB	CAN	EM	SUB	ESC
	4		Advantary of the second se						SYN	ETB	CAN	EM	SUB	ESC
	1	-								NUL	+	-		· ·
K۹	2	-								NUL	+			· ·
	3	-								NUL	+ +			· ·
	1									I NOL	1	2	3	4
	2	4									1	2	3	4
K10	3	1									1	2	3	4
	4	1									1	2	3	4
	1											5	6	7
K11	2]										5	6	7
N11	3											5	6	7
	4											5	6	7
	1	_											8	9
K12	2	4											8	9
	3	-										ł	8	9
	1												0	0
	2	1												0
K13	3	1												0
	4	1												- 0
YMR	OLS A	ND THE		MES										
	JLU A				ON 1. /1.	Mode in -	odo r					0.1/2		A
/mbol		Code nam	e	Col/F	table arra	n/Mode in c ngement tab	le s	Symbol	C	ode name			km/kn/N le arranger	
SP S	Space			2 /		/ K 5 / 1~		? Que:	stion mark,			3 / 15	K 11 / K	
	Exclamation	mark		2 /		/K3/2		@ Atr				4/0	K 11 / I	
	Quotation ma			2/		/ K 4 / 2			bracket			5/11	K13 / I	
	Number sign			2/		/K4/2	1 }		sign			5/12	K7 / I	
	Dollar sign			2/		/ K4 / 2	-1 F		t bracket			5/13	K 12 / I	
	Percentage			2 /		/ K 4 / 2		<u>^</u>						
8 1	Ampersand			2		14.12		L Circi	umflex accer			5 / 14	K6 / I	5 / 1

э

&

)

*

+

<

Ampersand

Comma

Period

Colon

Semicolon

Equal sign

Less than sign

Greater than sign

Left parenthesis

Right parenthesis

Apostrophe, acute accent

Asterisk, multiplication sign

Negative sign, subtraction sign

Slash, virgule division sign, per

Positive sign, plus sign

~

{

}

J

•

Separate sign, logical add sign

Japanese initial guotation mark

Japanese final quotation mark

Overline, logical not sign

Underline

Grave accent

Right brace

Middle dot

Japanese period

Japanese comma

Long vowel mark

Voiced consonant mark

Semi-voiced consonant mark

Left brace

2 / 6

2 / 7

K9 / K4 / 2

K10 / K4 / 2

2/8 K11/K4/2

2 / 9 K12 / K4 / 2 2 / 10 K11 / K2 / 2

2 / 15 K 11 / K 1 / 1 3 / 10 K 11 / K 2 / 1

3 / 11 K 10 / K 2 / 1 3 / 12 K 9 / K 1 / 2

3 / 13 | K 14 / K 4 / 2 * 3 / 14 | K10 / K4 / 2

* See K11~K14/K9/1~4

5/15 K12/K1/2

6/0 K12/K3/2

7/11 K13/K3/2

7/12 K7/K5/2

7 / 13 K 12 / K 2 / 2 7 / 14 K 6 / K 5 / 2

10/1 K 10 / K 1 / 4 10/2 K 13 / K 3 / 4

 10/2
 K13/K3/4

 10/3
 K12/K2/4

 10/4
 K9/K1/4

 10/5
 K11/K1/4

 11/0
 K7/K5/3

13/14 K 12 / K 3 / 3 13/15 K 13 / K 3 / 3

. ۲.....۴۴

MITSUBISHI LSIS M58740P. M58740S

Alternative Designation 8255

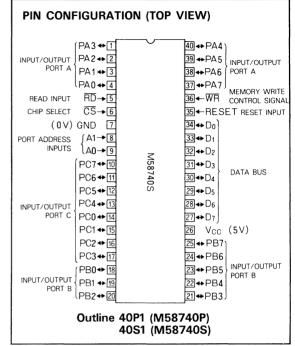
PROGRAMMABLE PERIPHERAL INTERFACE

DESCRIPTION

The M58740P and M58740S are general-purpose programmable input/output devices designed for use with an 8-bit parallel M58710S CPU as input/output ports. This device are fabricated using N-channel silicon-gate ED-MOS technology for a single supply voltage. They are simple input and output interfaces for TTL circuits, having 24 input/ output pins which correspond to three 8-bit input/output ports.

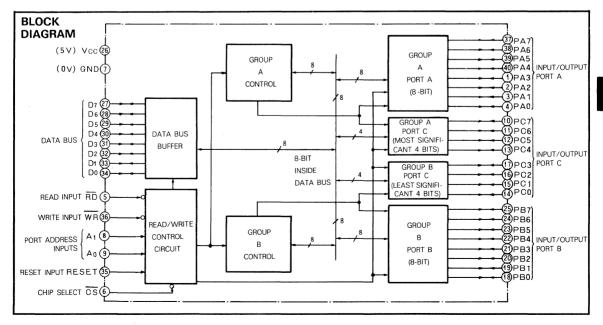
FEATURES

- 24 programmable I/O pins
- Single 5V supply voltage
- TTL-compatible I_{OL} = 1.9mA (max)
- Fully compatible with MELPS 8 microprocessor series
- Direct bit set/reset capability
- A source current of 1mA at 1.5V for Darlington transistor direct drive
- Interchangeable with Intel's 8255 in terms of function, electrical characteristics and pin configuration.


APPLICATION

Input/output ports for MELPS 8 microprocessor

FUNCTION


The M58740P and M58740S have 24 input/output terminals which may be individually programmed in two 12-bit groups A and B with mode control commands from a CPU. It is used in three major modes of operation, mode 0, mode 1 and mode 2.

Operating in mode 0, each group of 12 pins may be programmed in sets of 4 to be inputs or outputs. In mode 1, the 24 I/O terminals may be programmed in two 12-bit groups, group A and group B. Each group contains one 8-

bit data port, which may be programmed to be an input or an output, and one 4-bit control-data port used for handshaking and interrupt control signals. Mode 2 is used with group A only, as one 8-bit bidirectional bus port and one 5-bit control port.

Bit set and reset is controlled from a CPU. A high-level reset input (RESET) clears all internal registers, and they are set to the input mode (high-impedance state).

M58740P, M58740S Alternative Designation 8255

PROGRAMMABLE PERIPHERAL INTERFACE

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter		Conditions	Limits	Unit
Vcc	Supply voltage			- 0.5~7.0	V
Vi	Input voltage		With respect to VSS	- 0.5~7.0	V
Vo	Output voltage			- 0.5~7.0	V
Pd	Power dissipation		T _a =25°C	1000	mW
Topr	Operating free-air temperature range			0 ~70	°C
+	Storago tomporaturo rango	M58740P		-40~125	°C
Tstg	Storage temperature range	M58740S		-65~150	°C

RECOMMENDED OPERATING CONDITIONS ($Ta = 0 \sim 70^{\circ}C$, unless otherwise noted)

Sumbol	Deservator		Limit		Unit
Symbol	Parameter	Min	Nom	Max	
Vcc	Supply voltage	4.75	5.0	5.25	v
Vss	Supply voltage		0		V
Viн	High-level input voltage	2.0			V
VIL	Low-level input voltage			0.8	V

ELECTRICAL CHARACTERISTICS (Ta=0~70°C, V_{CC}=5V \pm 5%, unless otherwise noted)

	Parameter	T		Limits		
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
Vон	High-level output voltage	$V_{SS} = 0V, I_{OH} = -50 \mu A$ (Note 2)	2.4			v
Vol	Low-level output voltage	V _{SS} = 0V, 1 _{OL} =1.9mA			0.4	v
Іон	High-level output voltage (Note 3)	V _{SS} =0V, V _{OH} =1.5V, R _{EXT} =390Ω		2.0		mA
lcc	Supply current from VCC	V _{SS} =0V			60	mA
ЦН	High-level input voltage	$VSS = 0V, V_1 = 5.25V$	-10		10	μA
ЦĽ	Low-level input voltage	$V_{SS} = 0V, V_I = 0V$	-10		10	μA
loz	Off-state output current	V _{SS} =0V, V _I =0.4~5.25V	-10		10	μA
Ci	Input capacitance	V _{IL} =V _{SS} , f=1MHz, 25mVrms Ta=25°C			10	pF
Ci/o	Input/output terminal capacitance	V _{I/OL} =V _{SS} , f=1MHz,25mVrmsTa =25°C			15	pF

Note 1 : Current flowing into an IC is positive; out is negative.

2 : I_{OH}=-100µA for D₇ through D₀

3 : It is valid only for any 8 input/output pins.

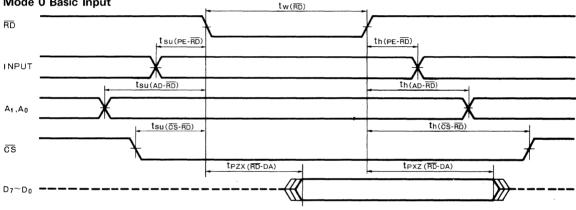
TIMING REQUIREMENTS (T a=0~70°C, V_{CC}=5V \pm 5%, V_{SS}=0V, unless otherwise noted)

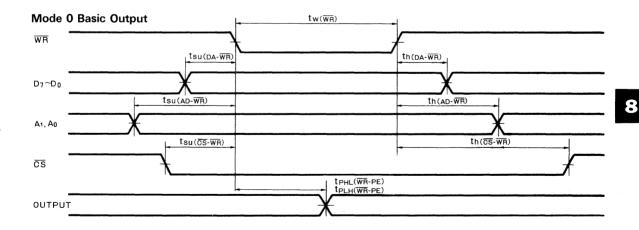
Symbol	Parameter		Limits		Unit
Symbol	Parameter	Min	Тур	Max	Unit
tw(WR)	Write pulse width	450			ns
tsu(DA-WR)	Data setup time with respect to write	10			ns
th(DA-WR)	Data hold time with respect to write	20			ns
tsu(AD-WR)	Address setup time with respect to write	35		÷	ns
th(AD-WR)	Address hold time with respect to write	20			ns
tsu(CS-WR)	Chip select setup time with respect to write	20			ns
th(CS-WR)	Chip select hold time with respect to write "	35			ns
tw(RD)	Read pulse width	430			ns
tsu(PE-RD)	Peripheral setup time with respect to read	50			ns
th(PE-RD)	Peripheral hold time with respect to read	50			ns
tsu(AD-RD)	Address setup time with respect to read	50			ns
th(AD-RD)	Address hold time with respect to read	380			ns
tsu(CS-RD)	Chip select setup time with respect to read	50			ns
th(CS-RD)	Chip select hold time with respect to read	5			ns
tw(ACK)	Acknowledge pulse width	500			ns
tw(stb)	Strobe pulse width	350			ns
tsu(PE-STB)	Peripheral setup time with respect to strobe	150			ns
th(pe-stb)	Peripheral hold time with respect to strobe	150			ns

MITSUBISHI LSIs M58740P, M58740S

Alternative Designation 8255

PROGRAMMABLE PERIPHERAL INTERFACE

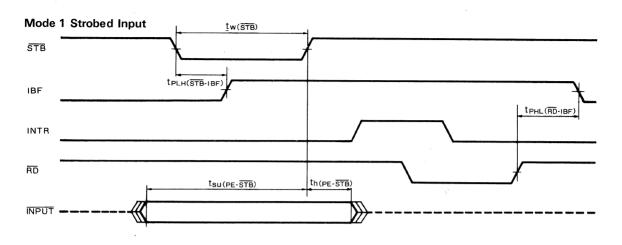

SWITCHING CHARACTERISTICS

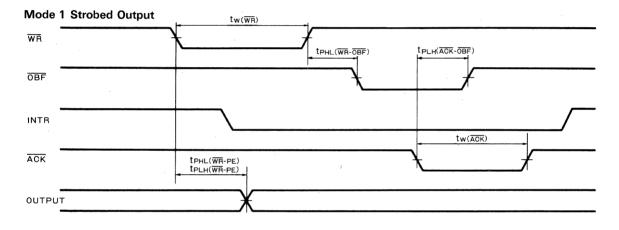

(Ta=0~70°C, Vcc=5V \pm 5%, oad =50pF1TTL, unless otherwise noted)

Symbol	Parameter		Limits		Unit
Symbol	Farameter	Min	Nom	Max	Onin
tphl(WR-PE) tplh(WR-PE)	Propagation time from write to output			500	ns
tpzx(RD-DA)	Propagation time from read to output			500	ns
tpxz(RD-DA)	Propagation time from read to output floating			150	ns
tpzx(ACK-PE)	Propagation time from acknowledge to output			500	ns
tpxz(ACK-PE)	Propagation time from acknowledge to output floating			350	ns
tphL(WR-OBF)	Propagation time from write to OBF flag			350	ns
t _{PLH} (ACK-OBF)	Propagation time from acknowledge to OBF flag			500	ns
t _{PLH} (STB+BF)	Propagation time from strobe to IBF flag			600	ns
tphL(RD-IBF)	Propagation time from read to IBF flag			300	ns

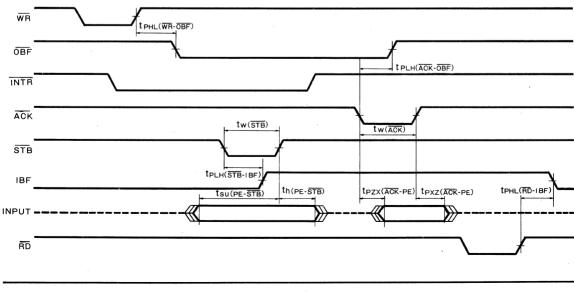
TIMING DIAGRAMS REFERENCE LEVEL = 1.5V

Mode 0 Basic Input





MITSUBISHI LSIS **M58740P, M58740S**


Alternative Designation 8255

PROGRAMMABLE PERIPHERAL INTERFACE

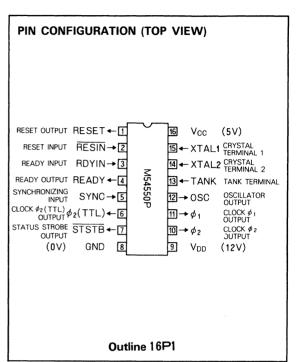
Mode 2 Bidirectional

DESCRIPTION

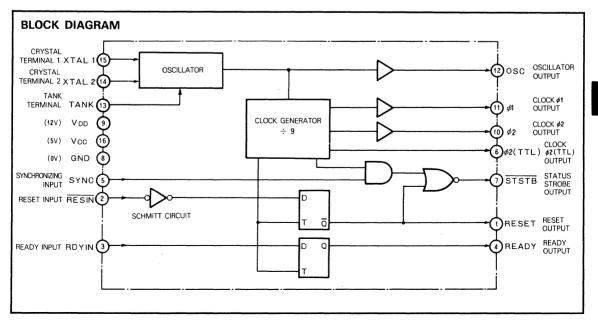
The M54550P is a clock generator/driver for M58710S or 8080A CPUs. It is controlled by a crystal, selected by the user, to meet a variety of system speed requirements. It is fabricated by using Schottky TTL technology.

FEATURES

- Crystal controlled for stable clock frequency generation
- Clock outputs φ₁, φ₂, and φ₂ (TTL level), and an oscillator output are brought out
- Power-up reset for CPU auto-reset
- Status latch signal
- Synchronizing ready signal output
- Interchangeable with Intel's 8224 in terms of pin configuration and electrical characteristics


APPLICATION

 Single chip clock generator/driver for M58710S and 8080A CPUs


FUNCTION

When an 18MHz crystal is connected between XTAL1 and XTAL2, clock outputs ϕ_1 , ϕ_2 , and ϕ_2 (TTL level), along with oscillator output, are brought out for a CPU with a basic cycle time of 500ns. At this time, ϕ_1 pulse width is 110ns (2×55ns), ϕ_2 pulse width is 275ns (5×55ns). When an overtone mode crystal is used, the external LC network is connected to the TANK input to provide additional gain.

If an external RC network is connected to RESIN at

system power-up time, a reset signal is generated; and the system is reset automatically. When a signal from a CPU is applied to the SYNC, STSTB is generated. The RDYIN input sends a synchronous "wait request" signal to the internal D-type flip-flop, and a synchronized READY signal is generated.

MITSUBISHI

ABSOLUTE MAXIMUM RATINGS (Ta=0~75°C, unless otherwise noted)

Symbol	Parameter	Conditions	Limits	Unit
Vcc	Supply voltage		7.0	V
VDD	Supply voltage	•	13.5	. V
Vi	Input voltage		7.0	V
Vo	Output voltage, all outputs except ϕ_1 and ϕ_2		Vcc	V
Рd	Power dissipation		800	mW
Topr	Operating free-air temperature range		0~75	°C
Tstg	Storage temperature range		-55~125	°C

RECOMMENDED OPERATING CONDITIONS (Ta=0 \sim 75°C, unless otherwise noted)

Combal	Demonster		Limits		
Symbol	Parameter	Min	Nom	Max	Unit
Vcc	Supply voltage	4.75	5.0	5.25	V
VDD	Supply voltage	11.4	12	12.6	V
Іон	High-level output current, \$\$1,\$\$2,READY,RESET			-100	μA
Іон	High-level output current, all other outputs			-1	mA
IOL	Low-level output current.			2.5	mA
IOL	Low-level output current, all other outputs			16	mA
frmax	Maximum repetition frequency			27	MHz

ELECTRICAL CHARACTERISTICS (Ta=0~75°C, unless otherwise noted)

Cumhal		T		Limits		
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
ViH	High-level input voltage, RESIN		2.6			·V
ViH	High-level input voltage, all other inputs		2.0			V
VIL	Low-level input voltage				0.8	V
VIH - VIL	Input hysteresis voltage, RESIN	V _{CC} =5.0V, V _{DD} =12.0V	0.25			V
VIC	Input clamped voltage	$V_{CC} = 4.75 V, I_{IC} = -5 mA$			-1.0	V
Vон	High-level output voltage, ϕ 1, ϕ 2	V _{CC} =4.75V, V _{DD} =11.4V, I _{OH} =-100 µA	9.4			V
Vон	High-level output voltage, READY, RESET	$V_{CC}=4.75V, V_{DD}=11.4V, I_{OH}=-100\mu A$	3.6			v
Vон	High-level output voltage, other outputs	V _{CC} =4.75V, V _{DD} =11.4V, I _{OH} =-1mA	2.4			V
Vol	Low-level output voltage. \$1,\$2,READY, RESET, STSTB	V _{CC} =4.75V, V _{DD} =11.4V, I _{OL} =2.5mA			0.5	V
Vol	Low-level output voltage, all other outputs	V _{CC} =4.75V, V _{DD} =11.4V, I _{OL} =16mA			0.5	V
Чн	High-level input current	V _{CC} =5.25V, V _{DD} =12.6V, V _I =5.25V			10	μA
hι	Low-level input current	Vcc=5.25V, VDD=12.6V, VI=0.5V			-0.25	mA
los	Short-circuit output current (Note 3)	$V_{CC} = 5.0 V, V_{DD} = 12.0 V$ $V_{O} = 0 V, V_{IH} = 4.5 V, V_{IL} = 0 V$	-10		-60	mA
loc	Supply current from VCC	$V_{CC} = 5.25V, V_{DD} = 12.6V, V_{IH} = 4.5V$			115	mA
IDD	Supply current from V DD				12	mA

Note 1 : All voltages are with respect to GND terminal. Reference voltage (pin 8) is considered as 0V, and all maximum and minimum values are defined in absolute values.

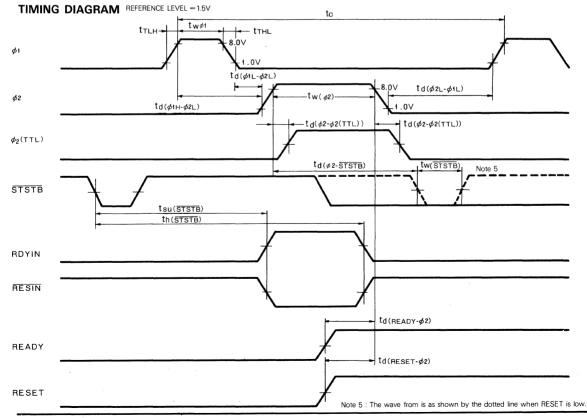
2 : Current flowing into an IC is positive; out is negative. The maximum and minimum values are defined in absolute values.

3 : All measurements should be done quickly, and two outputs should not be measured at the same time. Outputs \$1 and \$2\$ should not be short-circuited to GND.

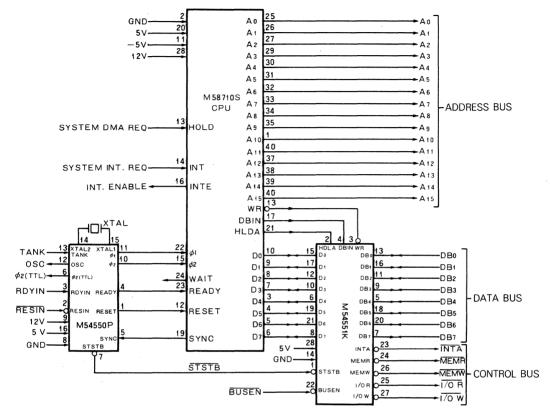
TIMING REQUIREMENTS (Ta = 25°C, V_{CC} = 5 V, V_{DD} = 12V, unless otherwise noted)

		T		Limits		Unit
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
tsu(RDYIN)	RDYIN setup time with respect to STSTB	STSTB output terminal CL=15pF	$50-\frac{4 \text{ tc}}{9}$			ns
t _{h (RDYIN)}	RDYIN hold time with respect to STSTB	R _{L 1} =2kΩ R _{L 2} =4kΩ	<u>4tc</u> 9			ns

SWITCHING CHARACTERISTICS (Ta=25°C, VCC=5V, VDD=12V, unless otherwise noted)


0	Parameter			Limits		Unit
Symbol	Parameter	Test conditions (Note 4)	Min	Тур	Max	Unit
tw(φι)	Clock ØI pulse width		$\frac{2tc}{9} - 20$			ns
tw(\$2)	Clock ϕ 2 pulse width	CL=20~50pF	$\frac{5tc}{9} - 35$			ns
td(ø1∟-ø2∟)	Delay time from ϕ 1 low-level to ϕ 2 low-level	$R_{L1} = \infty \Omega$, $R_{L2} = \infty \Omega$	0			ns
td(\$2L-\$1L)	Delay time from ϕ_2 low-level to ϕ_1 low-level		$\frac{2tc}{9} - 30$			ns
td(ø1H-ø2∟)	Delay time from ϕ 1 high-level to ϕ 2 low-level	·	$\frac{2tc}{9} - 5$		$\frac{210}{9} + 25$	ns
t _{tlh}	Transition time, low-to-high-level ϕ 1 and ϕ 2	CL=20~50pF			20	ns
t _{THL}	Transition time, high-to-low-level ϕ 1 and ϕ 2	$R_{L1} = \infty \Omega$, $R_{L2} = \infty \Omega$			20	ns
td(_{¢2-¢2} (⊤⊤∟))	Delay time from ϕ_2 to ϕ_2 (TTL)	$\phi_{2(TTL)}$ output CL=30pF, RL1=300 Ω , RL2=600 Ω	-10		20	ns
td(#2-STSTB)	Delay time from $\phi 2$ to $\overline{\text{STSTB}}$	STSTB output	$\frac{6tc}{9}$ - 30		<u>6tc</u> 9	ns
tw(ststb)	STSTB pulse width	$C_L=15pF, R_L1=2k\Omega, R_L2=4k\Omega$	$\frac{tc}{9} - 15$			ns
td(READY-ø2)	Delay time from READY to ϕ_2	READY, RESET output	$\frac{4t_{C}}{9}$ -25			
td(reset-ø2)	Delay time from RESET to ϕ_2	$C_L=10pF, R_{L1}=2k\Omega, R_{L2}=4k\Omega$	$\frac{410}{9} - 25$			ns

Note 4 : Measurement circuit:


PG

Voltage measurement points:

TYPICAL APPLICATION CIRCUIT

MITSUBISHI LSIS M54551K

Alternative Designation 8228

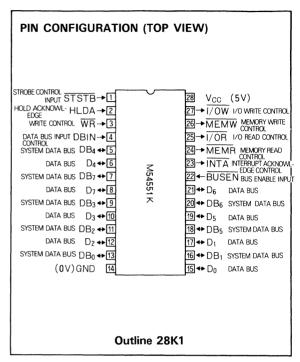
SYSTEM CONTROLLER AND BUS DRIVER FOR CPU M58710S

DESCRIPTION

The M54551K is a system controller and bus driver for M58710S or 8080A CPUs. It generates all signals required to directly interface the MELPS 8 series RAMs, ROMs and input/output devices. A bidirectional bus driver, along with system control signals, provides for high system TTL fanout. It is fabricated using Schottky TTL technology.

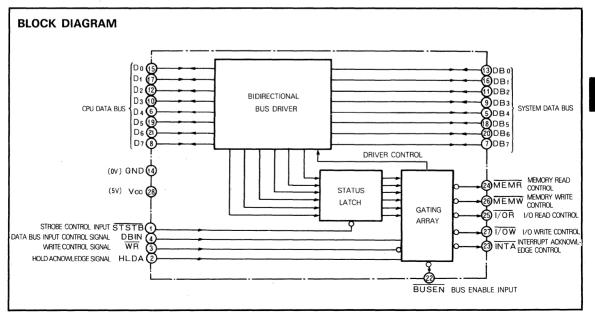
FEATURES

- Built-in bidirectional bus driver for data bus isolation
- Built-in status signal
- High system TTL fan-out
- User selected single level interrupt vector (RST 7)
- Interchangeable with Intel's 8228 in terms of pin configuration and electrical characteristics


APPLICATION

 Data bus driver and status signal generation for M58710S and 8080A CPUs

FUNCTION


The bidirectional bus driver provides high system TTL fanout, as well as isolation for an M58710S or 8080A CPU data bus from memory and I/O devices.

Status signals from a CPU are latched in the internal status latch when the status strobe signal \overline{STSTB} goes low. The gating array generates control signals (memory read \overline{MEMR} , memory write \overline{MEMW} , input/output read $\overline{I/OR}$, input/output write $\overline{I/OW}$, and interrupt acknowledge \overline{INTA}) by gating the output of the status latch with the control signals DBIN, \overline{WR} and HLDA from a CPU. The bus enable input \overline{BUSEN} forces the data bus output buffers and con-

trol signal buffers to high-impedance state if they are in the high-state.

An RST 7 instruction gated to the bus as an interrupt is acknowledged when the DBIN input is active and a 12V supply in series with a 1k Ω resistor is connected to the acknowledge output INTA.

MITSUBISHI ELECTRIC

SYSTEM CONTROLLER AND BUS DRIVER FOR CPU M58710S

ABSOLUTE MAXIMUM RATINGS ($Ta=0\sim75\,^{\circ}C$, unless otherwise noted)

Symbol	Parameter	Conditions	Limits	Unit
Vcc	Supply voltage		7.0	V
Vi	Input voltage, $D_0 \sim D_7$ and \overline{STSTB} input		Vcc	V
VI	Input voltage, all other inputs		7.0	V
Vo	Output voltage		Vcc	V
Pd	Power dissipation		1.0	w
Topr	Operating free-air temperature		0~75	°C
Tstg	Storage temperature		- 55~ 125	°C

RECOMMENDED OPERATING CONDITIONS ($Ta = 0 \sim 75^{\circ}C$, unless otherwise noted)

0 1 1	Deservator		1 Julia		
Symbol	Parameter		Nom	Max	Unit
Vcc	Supply voltage	4.75	5.0	5.25	V
I _{ОН}	High-level output current, Do~D7 outputs			-10	μA
Іон	High-level output current, all other outputs			- 1	mA
IOL	Low-level output current, Do~D7 outputs			2	mA
lo∟	Low-level output current, all other outputs			10	mA

ELECTRICAL CHARACTERISTICS (Ta = $0 \sim 7.5^{\circ}$ C, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Unit	
Symbol	Falainetei	Test conditions	Min	Тур	Max	Unit	
ViH	High-level input voltage		2.0			V	
VIL	Low-level input voltage				0.8	V	
VIC	Input clamp voltage	$V_{CC} = 4.75V$, $IIC = -5mA$			-1.0	V	
	High-level output voltage, $D_0 \sim D_7$ outputs	$V_{CC} = 4.75V, V_{H} = 2.0V, V_{IL} = 0.8V,$	3.6				
Ma.		Iон=-10 µА	3.0			v	
Voh	High-level output voltage, all other outputs	$V_{CC} = 4.75V, V_{IH} = 2.0V, V_{IL} = 0.8V,$	2.4			v	
		I _{OH} = - 1 mA	2.4				
		$V_{CC} = 4.75V, V_{IH} = 2.0V, V_{IL} = 0.8V,$			0.5		
N/-	Low-level output voltage, D0~D7 outputs	I _{OL} = 2mA			0.5	v	
VOL	Low-level output voltage, all other outputs	$V_{CC} = 4.75V, V_{IH} = 2.0V, V_{IL} = 0.8V,$		0.5	v		
		I _{OL} = 10 mA	1		0.5		
	Three-state output current	$V_{CC} = 5.25V, V_{IH} = 2.0V, V_{IL} = 0.8V,$			20		
1 m		V ₀ =5.25V			20	μA	
loz	Three-state output current	$V_{CC} = 5.25V, V_{IH} = 2.0V, V_{IL} = 0.8V,$			-20	μΑ	
		V ₀ =0.5V			-20		
	High-level input current, STSTB input	- V _{CC} =5.25V, V _{IH} =4.5V, V _{IL} =0V.			100		
ін	High-level input current , DB0~DB7 inputs	- V _C - 5.25V, V _H - 4.5V, V _L - 0V, - V ₁ = 5.25V			20	μA	
	High-level input current, all other inputs	v1=5.25v			100		
	Low-level input current, STSTB input				-0.5		
1	Low-level input current, D2, D6 inputs	$V_{CC} = 5.25V, V_{IH} = 4.5V, V_{IL} = 0V,$			-0.75	~ ^	
h∟	Low-level input current, Do, D1, D4, D5, D7 inputs	V ₁ =0.5V			-0.25	mΑ	
	Low-level input current, all other inputs				-0.25		
los	Short-circuit output current (Note 3)	$V_{CC} = 5.0V, V_{IH} = 4.5V, V_{IL} = 0V$	-15		- 90	mA	
li(INTA)	INTA terminal current	$V_{DD} = 12V$, $R_L = 1k\Omega \pm 10\%$			5	mA	
lcc	Supply current from VCC	$V_{CC} = 5.25V, V_{H} = 4.5V, V_{L} = 0V$			190	mA	

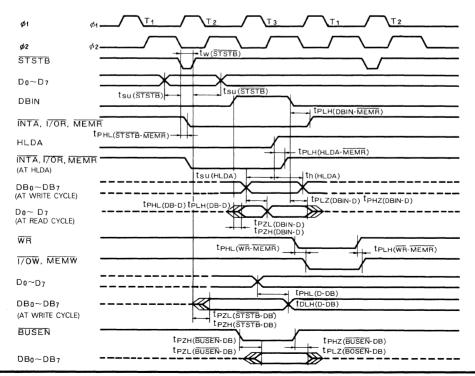
Note 1 : All voltages are with respect to GND terminal. Reference voltage (pin 14) is considered as 0V, and all maximum and minimum values are defined in absolute values.

2 : Current flowing into an IC is positive; out is negative. The maximum and minimum values are defined in absolute values.

 ${\bf 3}$: All measurements should be done quickly, and two outputs should not be measured at the same time.

TIMING REQUIREMENTS (Ta = $0 \sim 75^{\circ}$ C, unless otherwise noted)

Sumbol		1. 		Unit		
Symbol	Parameter	Test conditions	Min	Тур	Max	Onit
tw(STSTB)	STSTB pulse width		22			ns
tsu(DA)	Do~D7 setup time with respect to STSTB		8			ns
tsu(DB)	DB0~DB7 setup time with respect to HLDA		10			ns
th(DA)	Do~D7 hold time with respect to STSTB		5			ns
th(DB)	DB0~DB7 hold time with respect to HLDA		20			ns

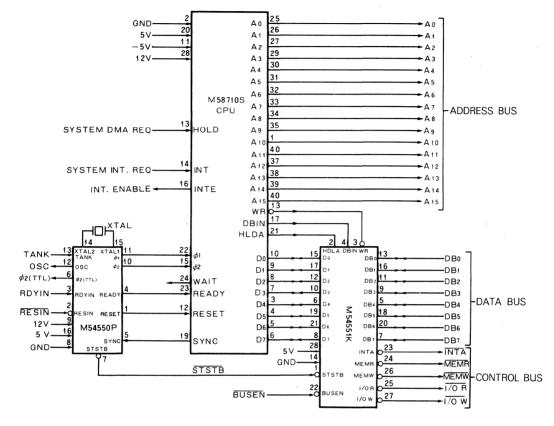

SYSTEM CONTROLLER AND BUS DRIVER FOR CPU M58710S

Symbol	Description		Limits			
e y mbor	Parameter	Test conditions (Note 4)	Min	Тур	Max	Unit
LPHL(STSTB-MEMR)	High-to-low-level output propagation time, from input STSTB to output MEMR, 1/0R and 1NTA	$V_{H} = 4.5V, V_{L} = 0V,$	20		70	ns
t PLH(DBIN-MEMR)	Low-to-high-level output propagation time, from input DBIN to output MEMR, T/OR and INTA	$C_{L} = 100 pF, R_{L1} = 500 \Omega, R_{L2} = 1 k \Omega$			40	ns
t pzl (dbin-d) tpzh(dbin-d) tphz(dbin-d) tplz(dbin-d)	Z-to-low-level, Z-to-high-level, high-to-Z-level and low-to-Z-level output propagation time, from input DBIN to outputs $D0\!\sim\!D7$	$C_L = 25pF, R_L = 4k\Omega, R_L = \infty\Omega$			55	ns
t _{PHL(DB-D)} tplh(DB-D)	High-to-low-level and low-to-high-level output propagation time, from inputs DB0 \sim DB7 to outputs D0 \sim D7				40	ns
t PHL(WR-MEMW) t PLH(WR-MEMW)	High-to-low-level and low-to-high-level output propagation time, from input \overline{WR} to outputs \overline{MEMW} and $\overline{1/OW}$		5		55	ns
t pzl(ststb.db) tpzh(ststb.db)	Z-to-low-level and Z-to-high-level output propagation time, from input STSTB to outputs DB0~DB7				40	ns
t _{PHL(D-DB)} t _{PLH(D-DB)}	High-to-low-level and low-to-high-level output propagation time, from inputs $D_0\!\sim\! D_7$ to outputs $DB_0\!\sim\! DB_7$. 5		50	ns
tpzl(busen-db) tpzh(busen-db) tphz(busen-db) tphz(busen-db) tplz(busen-db)	Z-to-low-level, Z-to-high-level, high-to-Z-level and low-to-Z-level output propagation time, from input $BUSEN$ to outputs $DB0\!\sim\!DB7$	CL=100pF.RL1=500Q.RL2=1kQ			40	ns
tplh(hlda-memr)	Low-to-high-level output propagation time, from input HLDA to outputs MEMR, I/OR and INTA				35	ns

SWITCHING CHARACTERISTICS ($Ta = 25^{\circ}C$, $V_{CC} = 5V$, unless otherwise noted)

Note 4 : Measurement circuit:

TIMING DIAGRAM REFERENCE LEVEL = 1.5V



8-27

SYSTEM CONTROLLER AND BUS DRIVER FOR CPU M58710S

TYPICAL APPLICATION CIRCUIT

M54552P

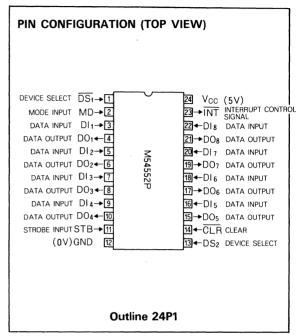
Alternative Designation 8212

8-BIT INPUT/OUTPUT PORT

DESCRIPTION

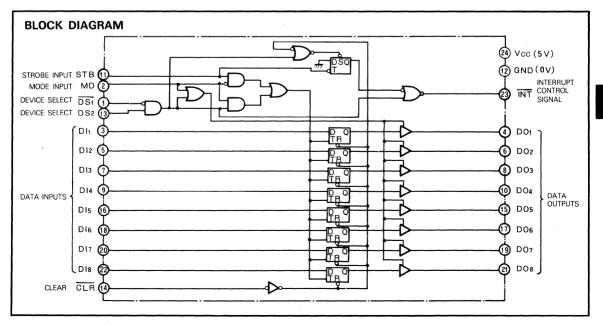
The M54552P is an input/output port consisting of an 8-bit latch with 3-state output buffers along with control and device selection logic. Also included is a service request flipflop for the generation and control of interrupts to a microprocessor. It is fabricated using bipolar Schottky TTL technology.

FEATURES


- Parallel 8-bit data register and buffer
- Service request flip-flop for interrupt generation
- Three-state outputs
- Low input load current: IIL = absolute 250µA (max)
- High output sink current: IoL = 16mA (max)
- High-level output voltage for direct interface to a M58710S CPU: V_{OH} = 3.65V (min)
- Interchangeable with Intel's 8212 in terms of electrical characteristics and pin configuration

APPLICATION

- Input/output port for a M58710S CPU
- Latches, gate buffers or multiplexers
- Peripheral and input/output functions for microcomputer systems


FUNCTION

Device select 1 ($\overline{DS_1}$) and device select 2 (DS_2) are used for chip selection when the mode input MD is low. When $\overline{DS_1}$ is low and DS_2 is high, the data in the latches is transferred to the data outputs $DO_1 \sim DO_8$; and the service

request flip-flop SR is set. Also, the strobed input STB is active, the data inputs $DI_1 \sim DI_8$ are latched in the data latches, and the service request flip-flop SR is reset.

When MD is high, the data in the data latches is transferred to the data outputs. When $\overline{DS_1}$ is low and DS_2 is high, the data inputs are latched in the data latches. The low-level clear input \overline{CLR} resets the data latches and sets the service request flip-flop SR, but the state of the output buffers is not changed.

MITSUBISHI ELECTRIC

8-BIT INPUT/OUTPUT PORT

ABSOLUTE MAXIMUM RATINGS ($T_a = 0 \sim 75^{\circ}C$, unless otherwise noted)

Symbol	Parameter	Conditions	Limits	Unit
Vcc	Supply voltage		7.0	V
Vi	Input voltage. DSI, MD inputs		Vcc	V
Vi	Input voltage, all other inputs except DSI, MD		5.5	V
Vo	Output voltage		Vcc	V
Pd	Power dissipation	,	800	mW
Topr	Operating free-air temperature range		0~75	°C
Tstg	Storage temperature range		- 55~125	°C

RECOMMENDED OPERATING CONDITIONS ($Ta = 0 \sim 75^{\circ}C$, unless otherwise noted)

Symbol	Parameter		Limits			
Symbol			Nom	Max	Unit	
Vcc	Supply voltage	4.75	5.0	5.25	V	
юн	High-level output current			-1	mA	
lo∟	Low-level output current			16	mA	

ELECTRICAL CHARACTERISTICS (Ta = $0 \sim 75^{\circ}$ C, unless otherwise noted)

Symbol	Parameter	Test conditions		Limits		11.3
0,1100		Test conditions	Min	Тур	Max	Unit
Vін	High-level input voltage		2			V
Vi∟	Low-level input voltage				0.85	V
VIC	Input clamp voltage	$V_{CC} = 4.75V$, $I_{IC} = -5mA$			-1	V
V _{OH}	High-level output voltage	$V_{CC} = 4.75V, V_{H} = 2V,$ $V_{IL} = 0.85V, I_{OH} = -1 mA$	3.65			V .
VOL	Low-level output voltage	$V_{CC} = 4.75V, V_{H} = 2V,$ $V_{IL} = 0.85V, I_{OL} = 16 \text{mA}$			0.5	v
loz	Three-state output current	$V_{CC} = 5.25V, V_{H} = 2V,$ $V_{IL} = 0.85V, V_{C} = 5.25V$			20	μA
loz	Three-state output current	$V_{CC} = 5.25V, V_{H} = 2V,$ $V_{IL} = 0.85V, V_{O} = 0.5V$		-	- 20	μA
лн -	High-level input current. STB, DS2, \overline{CLR} , D11 \sim D18 inputs	V _{CC} =5.25V, V _I =5.25V			10	μA
Ін	High-level input current , MD input	$V_{CC} = 5.25 V, V_1 = 5.25 V$			30	μA
Ιн	High-level input current , DS1 input	$V_{CC} = 5.25V, V_1 = 5.25V$			40	μA
hL.	Low-level input current, STB, DS2, CLR, DI1~DI8 inputs	$V_{CC} = 5.25 V, V_1 = 0.5 V$		-	-0.25	mA
liL.	Low-level input current, MD input	$V_{CC} = 5.25V, V_1 = 0.5V$			-0.75	mA
hι	Low-level input current, DS1 input	$V_{\rm CC} = 5.25 V$, $V_{\rm I} = 0.5 V$			-1	mA
los	Short-circuit output current (Note 3)	V _{CC} =5.25V	-20		- 65	mA
Icc	Supply current from VCC	V _{CC} =5.25V			130	mA

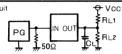
Note 1 : All voltages are with respect to GND terminal. Reference voltage (pin 12) is considered as 0V and all maximum and minimum values are defined in absolute values.

2 : Current flowing into an IC is positive; out is negative. The maximum and minimum values are defined in absolute values.

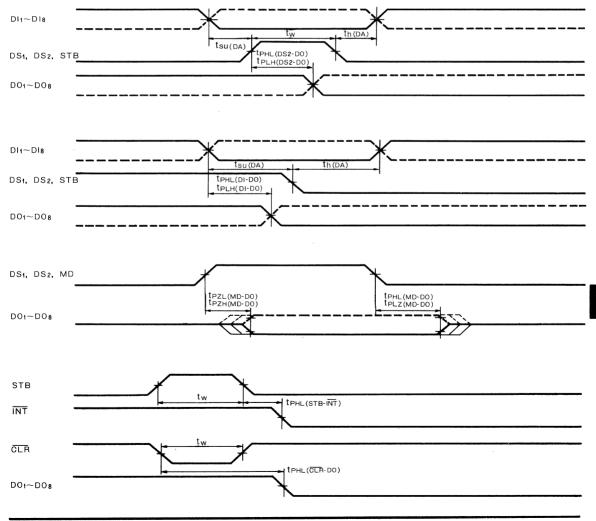
 $\ensuremath{\mathsf{3}}$: All measurements should be done quickly, and two outputs should not be measured at the same time.

TIMING REQUIREMENTS (Ta=25°C, $V_{CC}=5V$, unless otherwise noted)

Cumbral	Parameter	-	Limits			Unit
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
tw(DS2)	Input pulse width, DS1, DS2 and STB		30			ns
tw(clR)	Input pulse width CLR		45			ns
t _{su(DA)}	Data setup time with respect to $\overline{\text{DS1}}$, DS2 and STB		15			ns
th(DA)	Data hold time with respect to $\overline{\text{DS1}}$, DS2 and STB		20			ns



8-BIT INPUT/OUTPUT PORT


SWITCHING CHARACTERISTICS (Ta=25°C, Voc=5V, unless otherwise noted)

	Deservation	-	Limits			
Symbol	Parameter	Test conditions (Note 4)	Min	Тур	Max	Unit
tphl (DI-DO)	High-to-low-level and low-to-high-level output propagation				35	
tplh(DI-DO)	time, from input DI to output DO			1	35	ns
tphl(Ds2DO)	High-to-low-level and low-to-high-level output propagation	CL=30pF, RL1=300Ω, RL2=600Ω			50	
tplh(DS2DO)	time, from inputs DS1, DS2 and STB to output DO				50	ns
tphl(stb-int)	High-to-low-level output propagation time, from input STB to output INT				40	ns
tpzl(MD-DO)	Z-to-low-level and Z-to-high-level output propagation				70	ns
tpzh(MD-DO)	time, from inputs MD, DS1 and DS2 to output DO	$C_{\perp} = 30 \text{pF}, R_{\perp} = 1 \text{k} \Omega, R_{\perp} = 1 \text{k} \Omega$			/0	115
tphz(MD-DO)	High-to-Z-level and low-to-Z-level output propagation					
tplz(MD-D0)	time, from inputs MD, DS1 and DS2 to output DO	$C_{\perp} = 5pF, R_{\perp} = 1k\Omega, R_{\perp} = 1k\Omega$			45	ns
	High-to-low-level output propagation time, from input	0 20°E D 2000 D			55	
tphl(CLR-DO)	CLR to output DO	$C_{L} = 30 \text{pF}, R_{L1} = 300 \Omega, R_{L2} = 600 \Omega$			- 55	ns

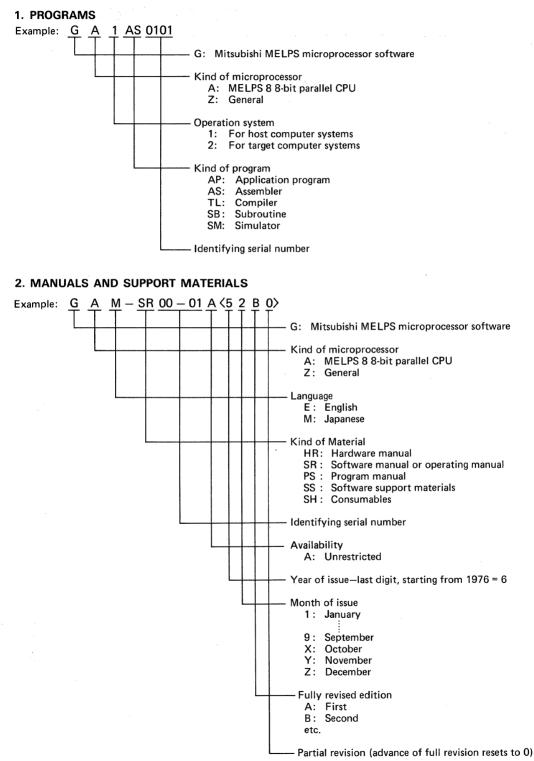
Note 4 : Measurement circuit

TIMING DIAGRAMS REFERENCE LEVEL = 1.5V

MITSUBISHI

8-31

8


MELPS SOFTWARE

9

MITSUBISHI LSIS

SOFTWARE CODES

Software products for Mitsubishi's MELPS microprocessors are designated by the following alphanumeric codes.

AVAILABLE MATERIALS

Program	Program code number	Normal shipping media	Source language	Page	
---------	---------------------	-----------------------------	-----------------	------	--

HOST COMPUTER PROGRAMS

MELPS 8 PL/I µ cross compiler on MELCOM 7000 (B-version)		GA1T L 0400	Magnetic tape	FORTRAN N	9-7
MELPS 8 cross assembler	on MELCOM 70 (A-version)	GA1AS 0100	Magnetic tape	FORTRAN IV (parts in assembler)	9-11
MELPS 8 simulator	on MELCOM 70 (B-version)	GA1SM 0 100	Magnetic tape	FORTRAN IV (parts in assembler)	9-17

PL/I μ CROSS COMPILER MANUALS

MELPS 8 PL/1µ Compiler Summary (B-version)	GAM-SR00-07A	70	9-7
MELPS 8 PL/1 μ Compiler Language Manual (B-version)	GAM-SR00-08A	30	9-7
MELPS 8 PL/I µ Cross Compiler Operating Manual (B-version)	GAM-SR00-09A	51	9-7

CROSS ASSEMBLER MANUALS

MELPS 8 Assembly Language Manual (A-version)	GAM-SR00-01A	83	9-11
MELPS 8 Cross Assembler Operating Manual (A-version)	' GAM-SR00-02A	35	9-11

SIMULATOR MANUALS

		0.5	
MELPS 8 Simulator Operating Manual (B-version)	GAM-SR00-03A	35	9-17

HARDWARE MANUALS

MELPS 8 Hardware Manual	GAM-HR00-01A	36	 l

GENERAL DESCRIPTION

MELPS 8 software is the name used to designate a software series provided by Mitsubishi for developing application programs or operating systems for equipment in which a MELPS 8 CPU is used.

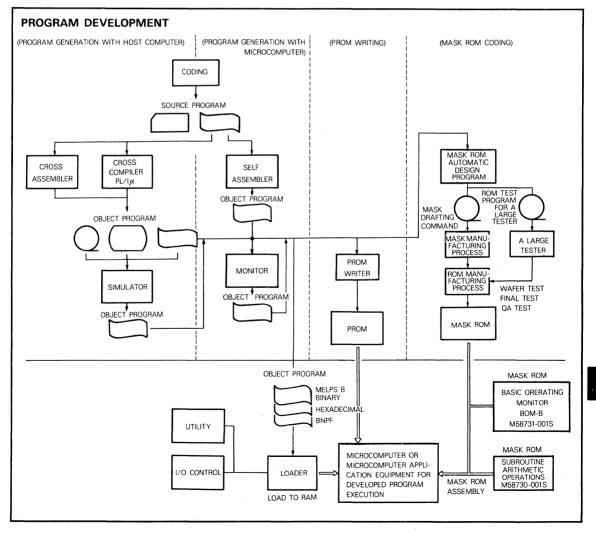
MELPS 8 software is divided into two parts. The first is software used as a tool to develop application programs,

and the second is software used as a part of application programs for MELPS 8 CPUs. MELPS 8 software can also be divided into two classifications: the first, 'host programs', which are developed to run on a host computer; and the second, 'target programs', which are developed to run on a MELPS 8 microcomputer.

SOFTWARE CONFIGURATION

	Language processor	Program debug	Mask ROM automatic generator	Execution computer
Host programs	PL/Iμ Cross compiler Compiles a source program written in PL/Iμ language and produces as output an object program in machine language. The compilete Intel PL/M language is a subset of PL/Iμ, therefore, any program written in PL/M can be compiled using a PL/Iμ compiler. Additional functions have been included in PL/Iμ that make it easy to use. Cross assembler Translates a symbolic source program written in assembly language and produces as output an object program in machine language. Parts of a program can be trans- lated and tested, after which they can be combined and linked because the indi- vidual outputs are relocatable. This makes it easy to develop modules and then com- bine them to form a complete program.	Simulator Executes and checks a user's program on the pseudo CPU in a host computer. This allows more efficient program debugging and provides more extensive checking than can be accomplished by hardware. FEATURES: • Provides simulated I/O operations • Provides simulated I/O operations • Provides simulated interrupt operations • Provides fiexibility for symbolic addresses • Provides data for evaluation of exe- cution time • Batch or conversational processing can be used	Mask read-only memories can be auto- matically programmed to a customer's specifications. M58730-XXXS 1024-word by B-bit mask ROM M58609-XXS 2048-word by B-bit mask ROM M58609-XXS keyboard encoder M58620-XXXS keyboard encoder The following are automatically generated by a host computer for customer. 1. The plotter instructions for automatic mask production 2. A check list for verifying that the customer's specifications have been met 3. A test program to assure that the pro- duction ROMs meet specifications	MELCOM 7000 large computer MELCOM 70 minicomputer It is easy to convert these programs for use on other host computers because they are written in FORTRAN IV and can easily be made transportable.
Target programs	Assembler Translates a source program written in assembly language to an object program written in machine language for execution on the microcomputer. Paper tape is used as the source program input medium. The assembled object program is in MELPS 8 binary object format and is punched out on paper tape. Functions and language specifications of the assembler are included in the specifi- cations of the cross assembler.	Basic operating monitor This is a basic operating monitor program to control execution of a program as well as to facilitate debugging a program. This program has a structure which makes it easy to expand or reduce the functions. The monitor can be used for a MELPS 8 CPU with any memory arrangement or organization. FUNCTIONS • Program execution control • Program debugging • Input/output control • Program loading • Memory readout	General subroutine integer arithmetic operation The M58730-00IS Mask ROM provides arithmetic operations for binary or decimal (16 bits or 32 bits) numbers as well as logical operations. Utility (loader, punch, print) Data can be represented in Three basic forms: 1. MELPS 8 binary 2. Hexadecimal 3. BNPF Input/output control Input/output macroinstructions are used to make it easy for users to develop I/O control sections of their application pro- grams.	MICROCOMPUTER Microcomputer: MELPS 8 CPUs or other CPUs encompassing the specifications of MELPS 8 CPUs. Memory allocation is free because the programs are relocatable.

DEVELOPMENT OF APPLICATION PROGRAMS


The user can develop his application programs in any of three ways.

- On a host computer: the MELPS 8 cross compiler or cross assembler is used for object program generation, and the simulator is used for program debugging.
- 2. On a microcomputer: the MELPS 8 assembler is used for object program generation, and the microcomputer is
- used for execution and implementation of programs.
- 3. On a combination of host computer and microcomputer: object programs are produced by the MELPS 8 cross compiler and/or the MELPS 8 cross assembler on a host computer. The object programs are debugged and implemented on a MELPS 8 microcomputer under control of the basic operating monitor.

The user can develop MELPS 8 programs using generalpurpose subroutines for functions such as arithmetic operations, input/output control and logical operations.

Full utilization of these subroutines can facilitate program development, debugging and implementation. The final media of a developed program can be any of the following:

- Paper tape: there are four basic forms of object programs on paper tape—MELPS 8 binary, simple (IPL) binary, hexadecimal and BNPF. Object programs on paper tape are stored in RAMs and are loaded by the appropriate loader.
- 2. PROM: the developed program is programmed in a PROM using the PROM writer; then this PROM is installed in the appropriate PROM socket of the micro-computer.
- Mask ROM: Mitsubishi Electric is ready to produce a mask ROM to a user's specifications. The object program can be in MELPS 8 binary, hexadecimal or BNPF form.

MITSUBISHI

DESCRIPTION

Mitsubishi supplies this cross compiler on magnetic tape to users of MELPS 8 CPUs. The cross compiler is written in FORTRAN IV for execution on the MELCOM 7000 and can be easily run on other host computers with a FORTRAN IV compiler.

The PL/I μ language gives MELPS 8 microcomputer users the same advantages that users of mini and large computer systems have with the high level programming languages that are currently available. It has the same language structure as PL/I and has been designed to take advantage of the system architecture of the microprocessor. System designers can use PL/I μ to quickly and easily implement new applications. In addition, programs written in PL/I μ are self-documenting so they can be easily changed and maintained. PL/I μ is recognized as one of the best suited languages for programming microcomputer applications because the user retains the control and efficiency of an assembly language.

FEATURES OF THE PL/I μ CROSS COMPILER

- Conditional compile with preprocessor
- Inline assembly
- Source program editing at compile-time

- Assignment of programs to ROM or RAM regions
- · Generates a relocatable object program
- Linking function
- Easily understood error messages
- Flexibility in input/output media
- Execution computer: MELCOM 7000 (BPM/UTS monitor)
- Implementation computer: MELPS 8 microcomputer
- Implementation language: FORTRAN IV

PL/I μ has a preprocessor that allows user to modify programs under development at compile-time through the use of conditional compile, exchange, exclude and include functions. A program is divided into fixed and variable segments, and these segments are automatically assigned to the appropriate memory (RAM or ROM) during compiling. The link editor can link up to 20 object programs (files).

FEATURES OF THE PL/I μ LANGUAGE

- Bit operations
- Three-level structure
- One-dimensional arrays
- Allocation of variables to specified absolute addresses
- Multi-entry function
- Interrupt function

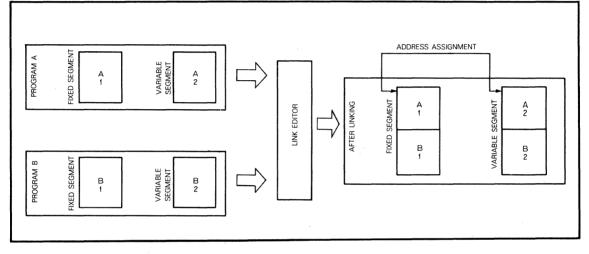
ORDERING INFORMATION Programs

A

Program name	Ordering number	Program and software manuals included	
		Source Program	
		MELPS 8 PL/I µ Compiler Summary Manual (B-version)	GAM-SR00-07A
MELPS 8 PL/I μ cross compiler	GAITL0400	MELPS 8 PL/I µ Compiler Language Manual (B-version)	GAM-SR00-08A
		MELPS 8 PL/I µ Cross Compiler Operating Manual (B-version)	GAM-SR00-094
		MELPS 8 MELCOM 7000 PL/1 µ Cross Compiler Operating Manual	GAM-SR00-10

Reference Manuals for Separate Ordering

Manual name	Manual number
MELPS 8 PL/1 μ Compiler Summary Manual (B-version)	GAM-SR00-07A
MELPS 8 PL/I µ Compiler Language Manual (B-version)	GAM-SR00-08A
MELPS 8 PL/I μ Cross Compiler Operating Manual (B-version)	GAM-SR00-09A
MELPS 8 Assembly Language Manual (A-version)	GAM-SR00-01A
MELPS 8 Cross Assembler Operating Manual (A-version)	GAM-SR00-02A
MELPS 8 Simulator Operating Manual (B-version)	GAM-SR00-03A
MELPS 8 Hardware Manual	GAM-HR00-01A


ASSOCIATED FUNCTION

Users of PL/I μ will find it flexible and easy to use because of its many special features such as the preprocessor, the link editor and the memory manager.

The preprocessor has 10 statements that can be used at compile-time to edit a PL/I μ source program. These can generate, exchange or delete program text, as well as modify definitions, references and macroinstructions.

The link editor is able to link up to 20 object programs that have been generated by MELPS 8 software. The memory manager divides $PL/I\mu$ programs into fixed and variable segments and assigns the segments to the appropriate memory. A fixed segment is assigned to a non-write area (ROM) while a variable segment is assigned to a write area (RAM) during compiling; at the same time, the starting address of each segment is recorded for linking (see Fig. 2).

Fig. 2 Linking of two programs

PL/I μ LANGUAGE

The PL/I μ language is a subset of the popular PL/I language with the addition of special functions to take advantage of the microprocessor's architecture. The main features of the PL/I μ language are as follows:

Easy to Read and Write

The statements are written in free-format and are independent of columns and lines. The statements are formatted in natural language. It is easy to express, read and understand the programs. Programs written in $PL/I\mu$ are selfdocumenting.

Block-Structured Language

Programs written in PL/I μ consist of one or more blocks which are called procedures. A procedure (block) can be thought of as a subroutine. The block structure of PL/I μ simplifies modular programming. Each procedure can be conceptually simple and, therefore, easy to formulate and debug.

BASIC LANGUAGE SPECIFICATIONS

1. Statements

The basic unit of the PL/I μ language is called a statement. A procedure (block) is composed of one or more statements, and a program is composed of one or more

procedures. The statements are categorized as follows:

Statements – Procedure definition	:	PROCEDURE
- Declaration	:	statement DECLARATIVE
 Condition Non-condition 		statement IF statement Assignment state-
	•	ment, DO group, and others

The last character of a statement must be a semicolon ';'. A statement may have a label (identifier) which is the name of the statement.

Example **EXA** MPLE : X = Y + Z;

2. Identifiers

PL/I μ identifiers are used to name variables, procedures, macroinstructions and statements. An identifier may be up to 31 characters in length, and the first character must be an @, ? or alphabetic (A~Z) character. The remaining 30 characters may be alphanumeric (A~Z, 0~9), @ or ?.

Reserved words may not be used as identifiers in the $PL/I\mu$ language.

3. Data Elements

The PL/I μ data elements represent constants or variables (1–16 bits in length), arrays (1 dimension) and 3-level structure. Constants can be expressed in several different

ways in PL/I μ . PL/I μ accepts constants in binary, octal, decimal and hexadecimal bases and character strings (ASCII or ISO code).

Example of a PL/I μ program

/* THIS IS A SAMPLE FOR A CATALOG */	1 2 3 4 5 6 7	7 8 9 10111213141516171819202122232425262728293031322334455667686970
DECLARE_IBINARY_(7,),	/*	T,H,I,S, I,S, A, SAMP,LE, F,OR, A CATALOG, */
<pre>/* .IF. VARIABLE FOREVER IS TRUE, THE STATEMENTS. UP. TO THE CORRESPONDING END ARE EXECUTED */ DO WHILE FOREVER; </pre>		DECLARE, I., B.I.NARY (7,),
		, , , , , , , , , , , , , , , , , , ,
		/*, , /*, , I,F, ,V,A,R,I,A,B,L,E, ,F,O,R,E,V,E,R, ,I,S, ,T,R,U,E,,, ,T,H,E, ,S,T,A,T,E,M,E,N,T,S,
I.=I.NP.UT (.1.0,);		, , , , , , , , , , , , , , , , , , ,
I.=I.NP.UT (.1.0,);		
I.=I.NP.UT (.1.0,);		, , ,D,Q, W,H,I,L,E, ,F;O,R,E,V,E,R,; , , , , , , , , , , , , , , , , , ,
I.=I.NP.UT (.1.0,);		, , , , / * , , , , , , , , , , , , , ,
/* T,H.I.S. VALUE, I. I.S. USED, T.O. SELECT, ONE, OF,		
D,O, CASE I, ;		
<pre>/* .1=0 *// D,O;; D,O;;</pre>		, T,H,E, S,T,A,T,E,M,E,N,T,S, O,F, D,O,-,C,A,S,E, T,O, E,X,E,C,U,T,E, ,*,/, , , , , , , , , , , , , , , , ,
<pre>/* .1=0 *// D,O;; D,O;;</pre>		
D,Q,; /.* WR,I,T,E & A,T ,QU,T,PU,T ,P,OR,T 5 AND ,H,A,L,T */ OU,T,P,U,T (5,)=0,8,H;		
D,Q,; /.* WR,I,T,E & A,T ,QU,T,PU,T ,P,OR,T 5 AND ,H,A,L,T */ OU,T,P,U,T (5,)=0,8,H;		
/* WRITE 8. AT. OUTPUT. 5. AND HALT. */.		/,*/,/*/, ,1,=0, , ,*,/, , , , , , , , , , , , , , , ,
/* WRITE 8. AT. OUTPUT. 5. AND HALT. */.		
OU,T,P,U,T, (,5,)=0,8,H;;,,(6,),=0,8,H;;,,(6,),=0,8,H;;,,(6,),=0,8,H;;,,(6,),=0,8,H;;,,(7,*,1,=1,*,7,),(7,*,1,*,1,*,1,1,1,1,1,1,1,1,1,1,1,1,1,1,		D,O;
OU,T,P,U,T, (,5,)=0,8,H;;,,(6,),=0,8,H;;,,(6,),=0,8,H;;,,(6,),=0,8,H;;,,(6,),=0,8,H;;,,(7,*,1,=1,*,7,),(7,*,1,*,1,*,1,1,1,1,1,1,1,1,1,1,1,1,1,1,		
H,A,L,T,; E,N,D,; /,* ,I = 1, *,/ OU,T,P,U,T, (,5,)=80,H; ,/* ,I = 2, *,/ OU,T,P,U,T, (,5,)=4,0,H; E,N,D;		/* WR.I.T.E. 8. A.T. OU.T.P.U.T. P.O.R.T. 5. A.N.D. H.A.L.T. *//
H,A,L,T,; E,N,D,; /,* ,I = 1, *,/ OU,T,P,U,T, (,5,)=80,H; ,/* ,I = 2, *,/ OU,T,P,U,T, (,5,)=4,0,H; E,N,D;		
END; 		QU,T,P,U,T, (,5,),=0,8,H,; ,
OU,T,P,U,T, (,5,)=8,0,H,; OU,T,P,U,T, (,5,)=8,0,H,; OU,T,P,U,T, (,5,)=4,0,H,; E,N,D;		H, H
OU,T,P,U,T, (,5,)=8,0,H,; ,/,*, I,=2, *,/, OU,T,P,U,T, (,5,)=4,0,H,; ,E,ND;		E,N,D,;
OU,T,P,U,T, (,5,)=8,0,H,; ,/,*, I,=2, *,/, OU,T,P,U,T, (,5,)=4,0,H,; ,E,ND;		1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
OU,T.P.U.T. (,5,)=4,0,H,;		│, , , ,/,*│ , Ⅰ = 1 , ;*,/, , , , , , , , , , , , , , , , , , ,
OU,T.P.U.T. (,5,)=4,0,H,;		
OU,T,P,U,T, (,5,),=4,O,H,;		OUTPUT ((,5,)=80H;
OU,T,P,U,T, (,5,),=4,O,H,;		
END;		│ , , , /,≉│ , Ⅰ =2 ,
END;		
E,ND;		E,N,D ;
END;		
		END;
		1
I LI LLI LLI LLI LI LI LI LI I I I I I		

- \bigcirc . Comments are preceded by '/*' and followed by '*/'.
- $\ensuremath{\mathfrak{C}}$. The initial value of a type declared variable 'FOREVER' is 1.
- ③. DO-WHILE group.

ŝ

- ④. The device number of an input instruction is expressed using a number.
- ⑤ . DO-CASE group.
- (6). 08H used in the output instruction indicates a hexadecimal number of value 08_{16} .

LANGUAGE SPECIFICATIONS

Item	Specification		
Character set	55-character set Alphabetic: A∼Z ,Currency unit (\$), Numeric: 0∼9 Special: = + - ★ / , • : ; < > % ' () @ ? (blank)		
Comments	/* */		
Identifiers	31 or less alphanumeric characters		
Reserved words	ADDRESSDOINITIALPLUSALIGNEDELSEINTERNALPROCEDUREANDENABLEINTERRUPTRELOCATEBASEDENDLABELRETURNBINARYENTRYLITERALLYTHENBYEOFMAINTOBYTEEXTERNALMINUSUNALIGNEDCALLGENERATEMODWHILECASEGONOTXORDATAGOTOONDECLAREHALTOPTIONSDISABLEIFOR		
Constant types	Binary, octal, decimal, hexadecimal character string		
Variable declaration option	BINARY(N) 1≦n≦15、BIT(M) 1≦m≦16 LABEL INITIAL BASED DATA BYTE ADDRESS External Internal Aligned Unaligned		
Operators	* / MOD + - PLUS MINUS $\langle \langle = \langle \rangle = \rangle = \rangle$ NOT AND OR XOR		
Arrays	One-dimensional, $1\sim 255$ elements		
Structures	Three-level, array structure		
Expressions	Arithmetical expression, logical expression, structured expression		
Statements	Insert statement, CALL statemant, DECLARE statemant, DISABLE statemant, DO group, ENABLE statemant, ENTRY statemant, GENERATE statement, GOTO statement, HALT statement, IF statement, NULL statement, ON statement PROCEDURE statement, RELOCATE statement, RETURN statemant		
DO group	DO WHILE, repeat DO, DO CASE		
Library functions	CARRY LENGTH ROL TIME DEC LOW ROR ZERO HIGH MEMORY SHL INPUT OUTPUT SHR LAST PARITY SIGN		
Preprocessor statements	% insert statement, %ACTIVATE statement, %DEACTIVATE statement, %END statement, %EXCLUDE statement, %GOTO statement, %IF statement, %INCLUDE statement, %MACRO statement, %NULL statement		

\$

MITSUBISHI LSIS MELPS 8 CROSS ASSEMBLER

DESCRIPTION

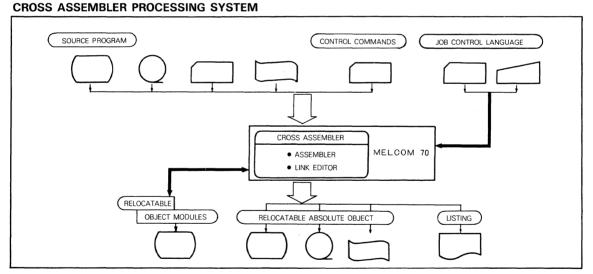
This cross assembler is used to convert source programs in assembly language to object programs in MELPS 8 format (8-bit binary format) on a host computer. The assembly language consists of mnemonic instructions (each mnemonic instruction corresponds to a machine language instruction), pseudo instructions and macroinstructions. It is obvious that the assembly language makes programming and modification of programs easy. The pseudo instructions and control commands in this cross assembler give the user flexibility and improve programming efficiency.

FEATURES OF THE CROSS ASSEMBLER

- Generates a relocatable object program
- Linking function
- Multi-assembly
- Conditional assembly
- Flexibility in input/output media
- Output of symbolic table of the object program
- Execution computer: MELCOM 70 (memory capacity more than 24K words, monitor BDOS)

Implementation language: FORTRAN IV (parts are written in assembly language)

FEATURES OF THE ASSEMBLY LANGUAGE


- 13 pseudo instructions
- Algebraic expressions
- Character constants and strings
- Octal, decimal and hexadecimal numbers
- The mnemonic codes of the machine instructions are the same as Intel's,

INPUT/OUTPUT MEDIA

Source input

Object output

- : Punched card, paper tape, magnetic tape and magnetic disk
- Object input : Magnetic disk
- Control command input : Punched card
 - : Paper tape, magnetic tape and magnetic disk

ORDERING INFORMATION Programs

\$

Program name	Ordering number	Program and software manuals included	
MELPS 8 cross assembler		Source Program	
		MELPS 8 Assembly Language Manual (A-version)	GAM-SR00-01
	GA1AS0100	MELPS 8 Cross Assembler Operating Manual (A-version)	GAM-SR00-0
		MELPS 8 Cross Assembler & Simulator Operating Manual (on MELCOM 70)	GAM-SR00-04

Reference Manuals for Separate Ordering

Manual name	Manual number
MELPS 8 Assembly Language Manual (A-version)	GAM-SR00-01A
MELPS 8 Cross Assembler Operating Manual (A-version)	GAM-SR00-02A
MELPS 8 Simulator Operating Manual (B-version)	GAM-SR00-03A
MELPS 8 Hardware Manual	GAM-HR00-01A

FUNCTION

The control commands and pseudo instructions in this cross assembler give the user flexibility and improve the efficiency of programming. The cross assembler allows linking, multi-assembly and conditional assembly.

The control commands are shown in Table 1, and the features and their limitations are shown in Table 2.

Table 1 List of control commands

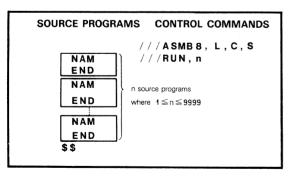
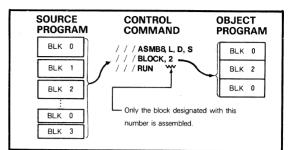
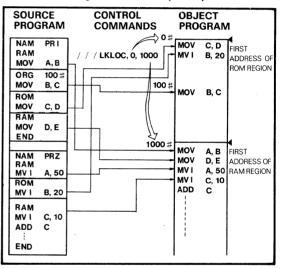

C	assification	Control command name	Mnemonic	
٨٥٥	ssembler control		RUN	
A556	empler control	End	END	
		Input/output assignment	A SMB8	
ō	O Assembly control	Assembly Block assig	Block assignment	BLOCK
contr				SDISK
on c	command	File assignment	ODISK	
ecuti	Control Command Command Command Command Command		BDISK	
Exe		Link assignment	LINKG	
	CONTINUE	Link location assignment	LKLOC	

Table 2 Cross assembler features and their limitations

Features	Limitations
Relocatable object programs	
Link editor	Maximum 20 programs on the disk
Program segmented to non-write area (ROM) and write area (RAM)	
Multi-assembly	Maximum 9999 programs
Conditional assembly	Maximum 20 blocks.
Flexibility in I/O media selection	Card, disk, paper tape, magnetic tape


Multi-Assembly

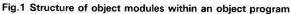
Many programs can be batch-assembled in one run.

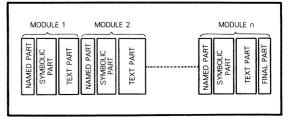

Conditional Assembly

Only the designated blocks of a source program are assembled.

Linking of ROM/RAM regions

ROM and RAM regions are linked separately.




CROSS ASSEMBLER OBJECT PROGRAM

The cross assembler object program is composed of many object modules, and each module is composed of a name, a symbolic part and a text part. A final part ends each object program.

The symbolic part contains the symbolic name corresponding to symbols. It is possible to program using symbolic names because each module contains a symbolic part.

The object is composed of an 8-bit binary code, and one byte of the instruction code is expressed with one character (8 bits).

ASSEMBLY LANGUAGE FUNCTIONS

The assembly language consists of mnemonic instructions (each corresponding to a machine language instruction), pseudo instructions and macroinstructions.

Pseudo instructions are executed by the cross assembler when a source program is being assembled, and they modify the object program. Macroinstructions are converted to small segments of machine instructions that are then inserted in the object program. These inserted segments execute the functions of the macroinstruction.

Algebraic expressions, alphanumeric constants, character strings, octal numbers, decimal numbers, hexadecimal numbers and symbols may be used as an operand in instructions.

1. Machine Instructions:

There are 78 basic machine instructions. These are converted to their corresponding machine language instructions and then inserted in the object program.

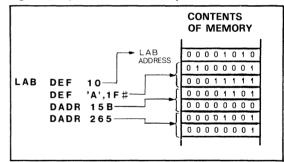
A summary of the machine instructions is given in Table 3.

Table 3 Summary of machine instructions

Classification	Instruction functions
Data transfer instructions	Direct data set Between registers Between memory and registers
Addition, subtraction, logical operations and compare instructions	Addition, subtraction, comparing and logical oper- ations using the accumulator together with reg- isters, memory or carry flag
Increment and decrement	Registers, register pairs and memory incremented or decremented
Circulate and shift instructions	Circulate or shift the accumulator's contents
Accumulator adjust instructions	Complement, decimal adjust
Carry instructions	Complement, set
Jump instructions	Unconditional jump Conditional jump
Subroutine call instructions	Unconditional subroutine call Conditional subroutine call
Return instructions	Unconditional return Conditional return
Input/output control instructions	Input and output control
Interrupt control instructions	Enable interrupts Disable interrupts
Stack operation instructions	Saves the contents of registers Restores the contents of registers
Others	CPU halt No operation

2. Pseudo Instructions

Pseudo instructions control the execution of the cross assembler while source programs are being assembled. They are not assembled as instructions in the object programs. As shown in Table 4, there are 13 pseudo instructions.

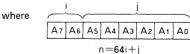

Table 4 List of pseudo inst	ructions
-----------------------------	----------

Classification	 Instruction mnemonic symbols 	Names of instructions
Assembler control	NAM	Program name declaration
instructions	ORG	Program counter setting
	ROM	ROM region declaration
	RAM	RAM region declaration
	BLK	Block declaration
	END	End declaration
Link symbol assignment	ENT	Entry name declaration
instructions	EXT	External reference symbol declaration
Memory contents	EQU	Value symbol setting
Definition instructions	DEF*	Data setting
	DADR*	Address setting
torage allocation instructions	BSS**	Storage allocation
List control instructions	EJE	Page eject declaration

* DEF and DADR pseudo instructions set the data or the address in the memory location where the instruction is. See Fig. 2.

**BSS pseudo instruction sets the program counter to the value of the operand.

Fig. 2 Example of DEF and DADR pseudo instructions


3. Macroinstructions

Macroinstructions are converted to object program segments in machine language that executes the macroinstruction functions. The following two macroinstructions are included in this cross assembler.

Table 5 Macroinstructions

Instructions	Name	Corresponding statement
GET i, j	Data input instruction	IN n
PUT i, j	Data output instruction	OUT n

n = 64i + i

MITSUBISHI LSIS MELPS 8 CROSS ASSEMBLER

MACHINE INSTRUCTIONS

Item		INS		Instr			ode			bytes		· · · · · · · · · · · · · · · · · · ·	r		lags		Address	bue	Dat	a hi	18
Instr.	Mne	monic						16ma	of le	1		Functions	-			0.2		Mach			Mach
classi.			_	Ds D4	_	_	_	nota		2	2 2		-				Contents	cycle *	Contents	1/0	cycle1
	MOV MOV	M, r	01	1 1		S S	5 S		5	1	1 2	$(r_1) \leftarrow (r_2)$ $(M) \leftarrow (r)$ Where, $M = (H) (L)$	X	X X	× × × ×	x	м	M4	(r)	0	M4
	MOV	r, M r, n	01	DD	D	1 1			7	1 2	2	$(r) \leftarrow (M)$ Where, $M = (H) (L)$ $(r) \leftarrow n$			x x x x		м	M4	(M) <b2></b2>		M4 M4
	MVI	M, n	0 0	<b2 1 1</b2 		1 1	1 0	3 6	10	2	3	(M) ← n Where, M=(H) (L)	x	x	x x	x	м	M5	<b2></b2>		M5
	LXI	B,m	0 0	<b2 0 0</b2 		0 0	0 1	0 1	10	3	3	(C) ← ⟨B₂⟩	x	x	x x	x			<b2></b2>	1	M2
		. ,		<b2 (B3</b2 								(B) ← <b<sub>3> Where, m = <b<sub>3> <b<sub>2></b<sub></b<sub></b<sub>							<b3></b3>	i	M3
	LXI	Ð, m	00	0 1 <b2< td=""><td>0</td><td>0 0</td><td>0 1</td><td>1 1</td><td>10</td><td>3</td><td>3</td><td>(E) ← <b2> (D) ← <b3> Where, m = <b3> <b2></b2></b3></b3></b2></td><td>x</td><td>x :</td><td>х х</td><td>x</td><td></td><td></td><td><b2> <b3></b3></b2></td><td>L</td><td>M2 M3</td></b2<>	0	0 0	0 1	1 1	10	3	3	(E) ← <b2> (D) ← <b3> Where, m = <b3> <b2></b2></b3></b3></b2>	x	x :	х х	x			<b2> <b3></b3></b2>	L	M2 M3
	LXI	H.m	0 0	(B3	3>	0 0	. 1	2 1	10	3	3	(L) ← <b2></b2>		~ ,	x x				<b2></b2>		M2
			00	<b2 <b3< td=""><td>2></td><td></td><td></td><td>- '</td><td>10</td><td>5</td><td>1</td><td>(H) ← <b<sub>3> Where, m = <b<sub>3> ⟨B₂></b<sub></b<sub></td><td>l^</td><td>^ /</td><td>~ ^</td><td>^</td><td></td><td></td><td><b<sub>3></b<sub></td><td></td><td>M3</td></b3<></b2 	2>			- '	10	5	1	(H) ← <b<sub>3> Where, m = <b<sub>3> ⟨B₂></b<sub></b<sub>	l^	^ /	~ ^	^			<b<sub>3></b<sub>		M3
	LXI	SP , m	0 0	1 1	0	0 0	0 1	3 1	10	3	3	(SP) ← m	x	x	х х	x			<b2></b2>	1	M2
				<b2 <b3< td=""><td>3></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><b3></b3></td><td>'</td><td>M3</td></b3<></b2 	3>														<b3></b3>	'	M3
transfer	SPHL STAX		11	1 1	0	0 1	1 0	0 2	7	1	1 2	$(SP) \leftarrow (H) (L)$ $((B) (C)) \leftarrow (A)$	X	X	<u>x x</u> x x	X	(B)(C)	M4	(A)	0	M4
	STAX LDAX	B	00	0 1		0 1		1 2 0 A	7	1	2	$((D)(E)) \leftarrow (A)$ $(A) \leftarrow ((B)(C))$	X	X	x x x x	X	(D)(E) (B)(C)	M4 M4	(A) ((B)(C))	0	M4 M4
Data	LDAX STA	D m	00	01				1 A 3 2		1	2	$(A) \leftarrow ((D)(E))$ $(m) \leftarrow (A)$	X	X	x x x x	x	(D)(E) m	M4 M4	((D)(E)) (A)	0	M4 M4
-				< B2 <b3< td=""><td>2></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td></b3<>	2>														1		
	LDA	m	0 0	1 1 <b2< td=""><td>1</td><td>0 1</td><td>1 0</td><td>3 A</td><td>13</td><td>3</td><td>4</td><td>(A) ← (m)</td><td>x</td><td>X</td><td>κх</td><td>x</td><td>m</td><td>M4</td><td>(m)</td><td>Т</td><td>M4</td></b2<>	1	0 1	1 0	3 A	13	3	4	(A) ← (m)	x	X	κх	x	m	M4	(m)	Т	M4
	SHLD	m	0 0	<b3 1 0</b3 	•>	0 1		2 2	16	3	5	(m) ← (L)	v	× .	< x		m	M4	(L)	0	M4
	SHED		00	<b2< td=""><td>?></td><td>0</td><td></td><td>~ ~</td><td>10</td><td></td><td>3</td><td>(m) ← (Ľ) (m + 1) ← (H)</td><td>Î.</td><td>^ ′</td><td>` ^</td><td>^ </td><td>m + 1</td><td>M5</td><td>(н)</td><td>0</td><td>M5</td></b2<>	?>	0		~ ~	10		3	(m) ← (Ľ) (m + 1) ← (H)	Î.	^ ′	` ^	^	m + 1	M5	(н)	0	M5
	LHLD	m	00	<b3 1 0</b3 	1	0 1	0	2 A	. 16	3	5	(L) ← (m)	x	x >	< x	x	m	M4	(m)	1	M4
				<b2 <b3< td=""><td>s></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td>(H) ← (m + 1)</td><td></td><td></td><td></td><td></td><td>m + 1</td><td>M5</td><td>(m + 1)</td><td>_</td><td>M5</td></b3<></b2 	s>				_			(H) ← (m + 1)					m + 1	M5	(m + 1)	_	M5
	XCHG XTHL	-	+++	10		0 1		E B E 3			1	$(H) (L) \leftrightarrow (D) (E)$ $(H) (L) \leftrightarrow ((SP) + 1) ((SP))$			< X < X		(SP)	M2	((SP))	1	M2
	ADD	r	10	0 0					4	1	1	$(A) \leftarrow (A) + (r)$	0	00	50	0	(SP)+1	M3	((SP)+1)		<u>M3</u>
	ADD AD1	M n	10	00		1 1		86 C6		1	22	$(A) \leftarrow (A) + (M)$ Where, $M = (H) (L)$ $(A) \leftarrow (A) + n$					м	M4	(M) <b2></b2>		M4 M4
	ADC	r	10	<b2 0 0</b2 		\$ S	5 S	-	4	$\frac{1}{1}$	1	$(A) \leftarrow (A) + (r) + (CY_2)$			0 0					_	
	ADC ACI	M	10	00	1	11	0	8 E C E	7	1 2	2	$(A) \leftarrow (A) + (M) + (CY_2)$ Where, $M = (H) (L)$ $(A) \leftarrow (A) + n + (CY_2)$	0	0 0	õõ	0	м	M4	(M) (B2>		M4 M4
	DAD	в	0.0	<b2 0 0</b2 	? >	0 0				1									1027		
	DAD	D	0 0	0 1	1	0 0	0 1	09	10	1	3	$(H) (L) \leftarrow (H) (L) + (B) (C) (H) (L) \leftarrow (H) (L) + (D) (E) (H) (L) \leftarrow (H) (L) + (D) (E) (H) (L) + (H) (L) + (H) (H) (H) (H) (H) (H) (H) (H) (H) (H)$	×	x)	č	X					
ø	DAD	H Sp	00	10	1	00) 1	29 39		1	3	(H) (L) ← (H) (L) + (H) (L) (H) (L) ← (H) (L) + (SP)	x	x)	$\langle \circ \rangle$	x					
compare	SUB SUB	м́.	10	01		S 5 1 1		96	4		1 2	$(A) \leftarrow (A) - (r)$ $(A) \leftarrow (A) - (M)$ Where, $M = (H) (L)$					м	M4	(M)	,	M4
con	SUI	n	11	0 1 <b2< td=""><td></td><td>1 1</td><td>0</td><td>D 6</td><td>7</td><td>2</td><td>2</td><td>$(A) \leftarrow (A) - n$</td><td>0</td><td>0 0</td><td>0 0</td><td>0</td><td></td><td></td><td><b2></b2></td><td>1</td><td>M4</td></b2<>		1 1	0	D 6	7	2	2	$(A) \leftarrow (A) - n$	0	0 0	0 0	0			<b2></b2>	1	M4
logical,	SBB SBB	r M	10	01		S 5 1 1		9 E	4	1	1 2	$(A) \leftarrow (A) - (r) - (CY_2)$ (A) $\leftarrow (A) - (M) - (CY_2)$ Where, $M = (H) (L)$					м	M4	(M)		M4
	SBI	n	11	0 1 <b2< td=""><td>1</td><td>1 1</td><td></td><td>DE</td><td></td><td>2</td><td>2</td><td>$(A) \leftarrow (A) - n - (CY2)$</td><td>ō</td><td>õ</td><td>ōō</td><td>õ</td><td></td><td></td><td><B2></td><td>-i j</td><td>M4</td></b2<>	1	1 1		DE		2	2	$(A) \leftarrow (A) - n - (CY2)$	ō	õ	ōō	õ			< B2>	-i j	M4
Arithmetic,		r M	10	10	0	S S 1 1		A 6	4	1	1 2	$(A) \leftarrow (A) \land (r) (A) \leftarrow (A) \land (M) $ Where, M = (H) (L)					м	M4	(M)		M4
rithu	ANI	n	11	1 0 <b2< td=""><td>0</td><td>1 1</td><td></td><td>E 6</td><td></td><td>2</td><td>2</td><td>(A) ← (A) ∧ n</td><td></td><td></td><td>5 õ</td><td></td><td></td><td>1914</td><td><b2></b2></td><td>i</td><td>M4</td></b2<>	0	1 1		E 6		2	2	(A) ← (A) ∧ n			5 õ			1914	<b2></b2>	i	M4
∢	XRA XRA	r M	10	10	1	SS			4	1	1	$(A) \leftarrow (A) \forall (r)$			2 0				(14)		
	XRI	n	1 1	10	1	1 1		A E E E		1 2	2 2	$(A) \leftarrow (A) \forall (M)$ Where, $M = (H) (L)$ $(A) \leftarrow (A) \forall n$					м	M4	(M) <b2></b2>		M≱ M4
	ORA	ŗ	10	<b2 1 1</b2 	0	S S			4	1	1	$(A) \leftarrow (A) \setminus (r)$			D 0						
	OR A OR I	M n	10	1 1		1 1		B 6 F 6		1 2	2	$(A) \leftarrow (A) \setminus (M)$ Where, $M = (H) (L)$ $(A) \leftarrow (A) \setminus n$	00	000	0 C 0 C	0	м	M4	(M) <b2></b2>		M4 M4
	CMP	r	10	<b2 1 1</b2 		S S	5 S		4	1	1	(A) - (r)	0	0 0	00	0					
	C MP C P I	M n	10	11		1 1		BEFE		1 2	2	(A) = (M) Compare; Where, M ∈ (H) (L) (A) = n	0	00	80	0	м	M4	(M) (B2>		M4 M4
	INB	r	0 0	< <u>82</u> D D	2>	1 0			5	1	1	(r) ← (r) + 1) x					-	
đ	I NR DCR	M	00	1 1 D D	0	10	0 0	34		1	3	$(M) \leftarrow (M) + 1$ Where, M - (H) (L) (r) \leftarrow (r) - 1	0	00	$\frac{2}{2}$ $\frac{2}{x}$	0	м	M4	(M)	1	M4
crement	DCR	M	0 0	1 1	0	1 0	D 1	3 5	10	1	3	(M) ← (M) - 1 Where, M = (H) (L)	0	00	D X	Ó	м	M4	(M)	1	M4
	I NX I NX	B D	00	0 1	0	0 1	1 1	03	5 5	1 1	1	(B) (C) ← (B) (C) + 1 (D) (E) ← (D) (E) + 1	x	x > x >	(X)	x					
Ę	I NX I NX	H Sp	00	10		0 1	11	23 33		1	1	(H) (L) ← (H) (L) + 1 (SP) ← (SP) + 1	X	х)	< X < X	X					
ster	DCX DCX	В	00	0 0	1	0 1	1 1	0 8	5	1	1	(B) (C) ← (B) (C) – 1	х	х)	(X	X					
Register increment/De	DCX	D H	00	1 0	1	0	1 1	1 B 2 B	5	1 T	1	(D) (E) ← (D) (E) - 1 (H) (L) ← (H) (L) - 1			(X)						
	DCX RLC	SP	00	1 1	1	1 1		3 B	5	1	+	(SP) ← (SP) 1			x						
v ≁ tit	RRC			0 0				OF			ļ.	Left shift CY2 47A6A1A0									
Rotate & shift contents of accumulator										1	1	Right shift CY2			< 0						
otate inter cum	RAL		0 0	0 1	0	1 1	1 1	17	4	1	1	Left shift CY2 A7 A6 A1 A0			< 0						
щ С С С С С С С С С	RAR		0 0	0 1	1	1 1	1 1	1 F	4	1	1	Right shift CY2 A7 A6	x	X)	0	×			•		
Accumu			0 0				1 1	2 F		1	1	$(A) \leftarrow (A)$			(X						
compen.	DAA STC		00	10			1 1	27	4	1	1	Results of binary addition are adjusted to BCD (CY2) ← 1			$\frac{0}{1}$	X					
Carry set	310											$(CY_2) \leftarrow \overline{(CY_2)}$			< 0						

6

ø

MITSUBISHI LSIS MELPS 8 CROSS ASSEMBLER

· · · · · ·	1		1	Inotaria		de		- states	bytes			1	Flags	Addro	ss bus	Det	a bu	IS
Item	Mnen	nonic		Instruction			16	15	5	đ	Functions				Mach		T	Mach
nstr. class	I III ICI		D7 D6					Ŝ		2 Z		1		1 Contents	cycle*	Contents		cycle
	JMP PCHL	m	1 1	000 (B2) (B3) 101		11 01	С 3 Е 9	10 5	3	3	(PC)• m (PC)← (H) (L)		× × × : × × × :			<b2> <b3></b3></b2>		M: M:
	JC	m	1 1	0 1 1 <b<sub>2> <b<sub>3></b<sub></b<sub>	0	10	DA	10	3	3	(CY2) = 1	X	x x x :					
	JNC	m	11	0 1 0 <b<sub>2> <b<sub>3></b<sub></b<sub>	0	10	D 2	10	3	3	(CYz) = 0 If condition is true (PC) · m	X	x x x	If conc	ition is t	rue		
	JZ	m	1 1	001 <b2></b2>	0	10	CA	10	3	3	(Z)=1	X	× × × :	<		<b2> <b3></b3></b2>		M: M:
dmnf	JNZ	m	1 1	<183> 000 `<182>	0	10	C 2	10	3	3	(Z)=0	x	x x x :	<				
,	JP	m	1 1	<1833> 1 1 0 <1822>	0	10	F 2	10	3	3	(S) = 0 If condition is false (PC)+ (PC) + 3	x >	× × × :	< }				
	JM	m	1 1	<1B3> 1 1 1 <1B2>	o	10	FA	10	3	3	(S)=1	x ;	x x x :	<				
	JPE	m	1 1	<b3> 101 <b2></b2></b3>	o	10	ΕA	10	3	3	(P)= 1	x >	x	<				
	JPO	m	1 1	<183> 100 <182>	o	10	E 2	10	3	3	(P)=0	x :	x x x :	<				
	CALL	m	1 1	<b3> 0 0 1 <b2></b2></b3>	1	0 1	CD	17	3	5	((SP) ~ 1)((SP) - 2) ← (PC) + 3,(PC) + m (SP) ← (SP) - 2	x ;	x x x :			<b2> <b3></b3></b2>		м
	RST	n	11	< 183> A A A	1	1 1		11	1	3	((SP)-1)((SP)-2)-(PC)+1,(PC)-n×8,	x >	x	(SP) 1 (SP) 2 (SP) 1	M4 M5 M4	<(PC)+3>1 4 <(PC)+3>3 0 <(PC)+1>1 4		M
	cc	m	11	0 1 1 <b2></b2>	1	0 0	DC	17 11	3	5/3	(SP) ← (SP) - 2 Where, 0 ≤ n ≤ 7 (CY2) = 1	l	x x x ;	(SP) 2	M5	<(PC) + 1> 3 0	0	N
	CNC	m	1 1	<b3> 0 1 0 <b2></b2></b3>	1	0 0	D 4	17 11	3	5/3	(CY2) = 0	x :	x		lition is :	rue		
e call	cz	m	1 1	<b3> 001 <b2></b2></b3>	1	0 0	сc	17 11	3	5/3	(Z) = 1 ((SP) - 1) ((SP) - 2) - (PC) + 3	x	x x x :			(B2) (B3)	1	N
Subroutine	CNZ	m	1 1	<b3> 0 0 0 <b2></b2></b3>	1	0 0	C 4	17 11	3	5/3	$(Z) \simeq 0$ $(PC) \leftarrow m$ $(SD) \simeq (SD) = 2$	x :	x	(SP) 1 (SP) 2	M4	<(PC)+3>1 4	ò	N
Sub	СР	m	11	<b3> 1 1 0</b3>	1	0 0	F 4	17 11	3	5/3	(SP)←(SP)-2	x :	x x x :	> ·	M5	<(PC)+3>3 8	0	
	см	m	1 1	<b2> <b3> 1 1 1</b3></b2>	1	0 0	FC	17 11	3	5 '3	(S)= 1 If condition is false	x :	x	<				
	CPE	m	1 1	<b2> <b3> 101</b3></b2>	1	0 0	ЕC	17 11	3	5/3	(P)= 1 (PC)←(PC) + 3	x :	x	<				
	CPO	m	11	<b2> <b3> 1 0 0</b3></b2>	1	0 0	E 4	17 11	3	573	(P)=0	x ;	x	<				
	RET		1 1	<b2> <b3> 0 0 1</b3></b2>	0	0 1	C 9	10	1	3	(PC) + ((SP)+1)((SP)),(SP)+(SP)+2	x ;	× × × :	((SP)	M4	((SP))	1	N
	RC		11	011	0	0 0	D 8	11 5	1	3/1	(CY2) 1 If condition is true	x	x	(SP) + 1	M5 ition is t	((SP) + 1) rue	1	N
£	RNC		1 1	010		00	D O C B	11 5 11 5		3/1 3/1	(CY2) = 0		× × × : × × × :	< []	M4	((SP))		N
Return	RNZ		1 1	000	0	0 0	CO	11 5	1	3/1	(Z)-0 (SP)+ (SP)+2	X	х х х	((SP)+1	M5	((SP)+1)	i	N
uL.	RP RM		11	110		00	F 0 F 8	11 5			(s) - 0 (s) - 1 If condition is false		× × × : × × × :		ition is f	alse		
	RPE		11	101	0	0 0	E 8		1	3.1	(P)=1 (PC)+ (PC)+1	X >	х х х :					
Innut/	RPO IN	n	++++	100		00	E O D B	11 5			(P) · 0 (A) ← (Input buffer) ← (Input device of number n)		<u>x x x :</u> x x x :	<u> </u>		(82)	0	N
Input/ output control		n	1 1	<b<sub>2> 0 1 0 <b<sub>2></b<sub></b<sub>	0		D3	10	2	3	(Output device of number n) ← (A)		x	<b2> B2></b2>	M5 M5	Input data <b<sub>2> (A)</b<sub>		N
nterrupt control	E I D I		11	111		1 1	FB F3	4	1	1	(INTE)←1 (INTE)←0		x x x x x x x x x x x x x x x x x x x	<]	1913			N
-الحيييين	PUSH	PSW	11	110	1	0 1	F 5	11	1	3	((SP)-1) • (A),((SP) 2) • (F)		X X X	((SP) 1	M4	(A)	0	N
	PUSH	в	11		1	01	С 5	11	1	3	(SP) ← (SP) - 2 ((SP) - 1) + (B).((SP) 2) + (C) (SP) + (SP) - 2	x	x x x :		M5 M4	(F) (B)	0	N
ō	PUSH		11	010	1	01	D 5	11	1	3	((SP)-1)+(D),((SP)+2)+(E) (SP) ←(SP)-2		ххх	(SP)-2	M5 M4 M5	(C) (D) (E)	0 0 0	N N N
control	PUSH		11	100			E 5	11	1	3	$((SP)-1) \cdot (H), ((SP)-2) \cdot (L)$ $(SP) \leftarrow (SP)-2$			(SP) - 1 (SP) - 2	M4 M5	(H) (L)	0	N
Stack		B	11			01	F 1 C 1	10 10	1	3 3	$ \begin{array}{rcl} (F) & \leftarrow ((SP)), (A) \leftarrow ((SP)+1) \\ (SP) & \leftarrow (SP)+2 \\ (C) & \leftarrow ((SP)), (B) \leftarrow ((SP)+1) \end{array} $		> > > > > > > > > > > > > > > > > > >	(SP)+1	M4 M5 M4	(SP)) ((SP)+1) ((SP))		N
		D	1 1				D 1	10	1	3	$ \begin{array}{l} (SP) \leftarrow (SP) + 2 \\ (E) \leftarrow ((SP)), (D) \leftarrow ((SP) + 1) \end{array} $	1	x x x :	(SP)+1 (SP)	M5 M4	((SP)+1) ((SP))		N
		н		100			E 1	10	1	3	$ \begin{array}{l} (SP) \leftarrow (SP) + 2 \\ (L) \leftarrow ((SP)), (H) \leftarrow ((SP) + 1) \\ (SP) \leftarrow (SP) + 2 \\ \hline \end{array} $		x x x :	(SP) + 1	M5 M4 M5	((SP)+1) ((SP)) ((SP)+1)		
Others	HL T NOP		01	110		10	7600	7	1	1	(PC) ← (PC) + 1 (PC) ← (PC) + 1	X	x	2				
						-		·		· · ·				5 II.	•			

Symbol	Meaning	Symbol	Mea	ning		Symbol	Meaning
r	Register		Du antina dana			-	Data is transferred in direction shown
m	Two-byte data			Register	SSS	()	Contents of register or memory location
n	One-byte data		nating register	memory		V	Inclusive OR
<b2></b2>	Second byte of instruction	SSS	or memory.	B	000	*	Exclusive OR
(B3)	Third byte of instruction	or		č	001	<u> </u>	Logical AND
AAA	Binary representation for RST instruction n	DDD		D	0 1 0		1 s complement
F	8-bit data from the most to the least significant			H	1 0 0	x	Content of flag is not changed after execution
1	bit S, Z, 0, CY1, 0, P, 1, CY2				101	0	Content of flag is set or reset after execution
PC	Program counter	1	Where,	Å	111	1	Input mode
SP	Stack pointer	1	M ~ (H) (L)	h	ليستنب	0	Output mode

£7

9

CODING EXAMPLES

Examples of coding using control commands and the assembler language of the cross assembler follow.

1. Control Commands

1. Control commands are in the following general form:

1	1	2	3	4	5	5	6	7	8	9	10	1	1 12	2 13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33
1	. /	Γ,	/	S	. 1	i r	n	b	ο	1	.[, ,	P	a	r	a	m	e	t	e	r		L	i	S	t								
	,	,		,	,	,				,	,	,	,	,		,	,						, .							h				
		1			1	1					1	1	1	1			1																	

2. Two source programs are read in from the card reader, and the assembly lists are printed.

1 2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	1	7 18	19	9 20	21	22	23	24	25	26	27	28	29	30	31	32	33
—																			1												
					-														;												
17	-7	Δ	S	M	R	8		1	•	c		S		L										L	L			· · · ·			
177	7	R	iii	N		2	L	-	1. <u> </u>	-	1.	-	L			-	1	-		-						_	L				-
11/	1/	1	0	_	,	-	L	L		L	J	-	L	1		1	l	.l	-	I	L	L	L	L	1	L	I	I	-		-
1	1	1	1	1	1	i	£	i	1		1		Ĺ.	L.	1.1	1	1	1	<u>.</u>	1		1	i	i	1	1		1		L 1	

3. Four object programs (files) F11, F12, F13 and F14 on the disk are linked together and a relocatable object program is generated and filed in RF11 on the disk.

1	2	:	3	4	5	6	7	8	9	10	11	1:	2 13	3 14	11	5 1 (51	7 1	8 1	9 20	21	22	23	24	25	26	27	28	29	30	31	32	33
	1	1				1			1			1	1	1		1		1	1		1					1					i.		
/	,/	'.	/	L	1	N	κ	G	,	R	,	N	Ι, ,	D), ,	,F	1	,1	, ,	,F	1	2	,	F	1	,3	, ,	F	1	4		1	
/	1	'.,	/	B	D	1	S	κ	,	R	F	1	, 1	i		1	1	1	1	1	1		1	1							i.	1	
/	1/	'.,	/	R	U	N					1	1				1		1	1			ı				1							
		1	1		ı				1	£	1	ī					1	1	i.				1					ł	1	ı		L.	1
											,			1						,	1	,											.]

2. Assembly Language

1. A statement is of the following general form:

																				24	25	26	27	28	29	30	31	32	33
I	S	yn	nb	0	I].	M	n	e	n	oŗ	[0	pe	era	aı	nc]		1			1						1	
			ŀ													ı			1						1			1	
																1						1			1	1	1	1	

Where, \hdow indicates a blank, and [] defines a field that is optional.

2. This example evaluates the data in address INDATA against the table at address TA01. It then jumps to the appropriate processing program according to the evaluation. The first address of the corresponding processing program is located at address SENS.

* *	* *				·
*. *** E.X.AMP.LE OF. C.ODI.N.G. ****	*. *** E.X.AMPLE OF. C.ODING.*** * NAM. P.R.OM * E.X.T. T.AB.1., T.AB.2., T.AB.3. * E.X.T. T.AB.4., T.AB.5., T.AB.6. * E.N.T. MA.1.N. * R.OM. * * H.Y.I. C., 0. * H.J.A. N.D.A.T.A. L.O.O.P.1 C.MP. M. * J.Z. L.O.OP.2. * I.N.X. H. * J.Z. L.O.OP.2. * J.NZ. *.7. * J.NZ. *.7. * I.N.N.H. *. * J.NZ. *.7. * J.NZ. *.7. * J.NZ. *.7. * J.NZ. *.7. * J.A.D. *. * J.A.D. *. *		1 2 3 4 5 6	7 8 9 10 11 12 13	3 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
* NA,M P,R,OM	* NAM P.R.OM 5 E,X.T. T.A.B.1., T.A.B.2., T.A.B.3. 6 E,X.T. T.A.B.4., T.A.B.5., T.A.B.6. 7 R,N.M. NAM, I.N. 7 MA.I.N. F.X.T. 8 N.A.M.I.N. 9 L.Z.X.I. 9 M.V.I. 9 G.C.P. 10 MV.I. 115 J.Z. 116 J.Z. 117 J.Z. 118 J.NZ. 119 J.NZ. 110 J.NZ. 111 J.NZ. 111 J.NZ. 11.N.R. C. 11.N.R. J.Y.Z. 11.N.R. J.Y.Z. 11.N.D.A.T.A J.Y.Z.		*		
* NA,M P,R,OM	* NAM P.R.OM 5 E,X.T. T.A.B.1., T.A.B.2., T.A.B.3. 6 E,X.T. T.A.B.4., T.A.B.5., T.A.B.6. 7 R,N.M. NAM, I.N. 7 MA.I.N. F.X.T. 8 N.A.M.I.N. 9 L.Z.X.I. 9 M.V.I. 9 G.C.P. 10 MV.I. 115 J.Z. 116 J.Z. 117 J.Z. 118 J.NZ. 119 J.NZ. 110 J.NZ. 111 J.NZ. 111 J.NZ. 11.N.R. C. 11.N.R. J.Y.Z. 11.N.R. J.Y.Z. 11.N.D.A.T.A J.Y.Z.		* ***	XAMPLE	OF CODING ***
10 NAM P.R.OM ?? 10 E,X,T. T,A,B,1,,T,A,B,2,,T,A,B,3	1 NAM P.R.OM 5 E,X,T T,A,B,1,,T,A,B,2,,T,A,B,3 1 E,X,T T,A,B,4,,T,A,B,5,,T,A,B,6 1 E,X,T T,A,B,4,,T,A,B,5,,T,A,B,6 1 R,OM				
5 E,X,T, T,A,B,1,,T,A,B,2,,T,A,B,3,	5 E,X,T, T,A,B,1,,T,A,B,2,,T,A,B,3, , 1 E,X,T, T,A,B,4,,T,A,B,5,,T,A,B,6, , 10 R,O,M, , , 10 MA,I,N, E,QU, *, , 10 MV,I, C,O,O, , 11 MV,I, B,G,B, , 12 L,D,A, I,ND,A,T,A, , 13 J,Z, L,OOP,2, , 14 I,N,X, H, , 15 I,N,X, H, , 16 J,N,Z, *, -7, , 17 J,MP, 1,0,0,0, E,R,R,,S,H,OR,I, 18 J,N,Z, *, -7, , 19 J,MP, 1,0,0,0, E,R,R,,S,H,OR,I, 19 J,MP, 1,0,0,0, E,R,R,S,H,OR,I, 10 J,MP, 1,0,0,0, E,R,R,S,H,OR,I, 10 J,A,D, H, , 10,A,D, B,S,S,N,S, , , 10,A,D, B,S,S,N,S, , , 10			NAM	PPON
5 E,X,T T,AB,4,,T,AB,5,,T,AB,6 (1) 10 R,OM (3) 10 L,X,I H,J,T,AO,I (3) 10 MV,I C,O (3) 11 L,X,I H,J,T,AO,I (3) 11 L,Z,I L,OOP,2 (3) 11 L,O,OP,2 (4) (4) 11 N,R (4) (4) 11 N,R (4) (4) 11 N,R (4) (4) 12 J,N,Z (4) (4) 13 J,N,Z (4) (4) 14 J,N,Z (4) (4) 15 J,N,Z (4) (4) 16 M,O,V L,O,O,O E,R,R,S,HO,R,I 17 D,A,D	5 E,X,T. T,AB,4,,T,AB,5,,T,AB,6 X R,NT. MA,I,N. R,OM. X MA,I,N. E,N,T. MA,I,N. X MA,I,N. E,QU. *. X MA,I,N. E,QU. *. X MA,I,N. E,QU. *. X MA,I,N. E,QU. *. X MV,I. C,O. X X L,DA. I,ND,A,T,A. X X L,OOP,I. CMP. M X J,Z. L,OOP,2. X X I,NX. H. X X J,NZ. *. T,AO,0. X J,NZ. *. T,AO,0. X J,NZ. *. T,AO,0. X J,MP. 1,0.0.0. E,R.N.S,HOR,I. X J,MP. 1,0.0.0. E,R.N.S,HOR,I. X L,OO,P.2. M,V.I. H, Y.O. X J,MP. 1,0.0.0. E,R.N.S,HOR,I. X L,OO,P.2. M,V.I. H, Y.O. X X <th></th> <th>┝╍┶╼┶╼┶╼┶╼┿╸</th> <th></th> <th></th>		┝╍┶╼┶╼┶╼┶╼┿╸		
E,N,T. MA,I,N.	E,N,T. MA,I,N. 7 MA,I,N. E,QU. *. III L,X,I. H, T,A,O,I. MV,I. E,O,O. 7 MV,I. B, 6,B. 7 L,D,A. I,N,D,A,T,A. 1 L,O,O,P.1 C,MP. M. J,Z. L,O,O,P,2. 1 I,N,X. H. 1 J,N,Z. *. 7 J,N,Z. *. 7 <tr< th=""><th>5</th><th></th><th></th><th></th></tr<>	5			
Image: Second system R,OM (S) Image: MA,I,IN E,QU, *,	Indicator R,OM Image: Constraint of the second			- I I I malende	
MA,1,N, E,QU, *,	MA,1,N, E,QU, *, III L,X,I, H,,T,A,O,1, MV,I, C,O,O, I MV,I, B,GB, I IL,DA, I,ND,A,T,A, I L,OOP,1, CMP, M IS I,NX, H, IS I,NX, H, IS I,NX, H, IS I,NZ, *, JNZ, *, 7. JNZ, *, 7. JMP, 1,000, ER,R,SHOR,I, V J,NZ, *, JNZ, *, 7. JMP, 1,000, ER,R,SHOR,I, V J,NZ, *, J,NZ, *, 7. MQ,V, L, 7. L,OOP,2, MV,I, H,O,O, M,OV, L, 7. L,OOP,2, MV,I, H,O,O, L,O,AD, B, 1. L,OOP,2, MV,I, H,O,O, L,N,I, B,SE,NS, 1. D,A,D, <t< th=""><th></th><th></th><th></th><th>MAIN,</th></t<>				MAIN,
10 L,X,I, H,,T,A,Q,I,	10 L,X,I H, T,A,O,I			ROM ·····	<u> </u>
10 L,X,I, H,,T,A,O,I,,() MV,I, C,O,,,,() MV,I, B,,6B,,() L,DA, I,NDA,T,A, L,DA, I,NDA,T,A, L,O,P,I, CMP, M,,,() JZ, L,OOP,2,,,() I,NX, H,,,,() J,NZ, *, 7,,,() J,NZ, *, 7,,,,() J,NZ, *, 7,,,,,() J,NZ, *, 7,,,,,,,	10 L,X,I, H,,T,A,O,1, MV,I C,O,O, I MV,I, B,G,B, I L,DA, I,ND,A,T,A, I L,DA, I,ND,A,T,A, I L,DA, I,ND,A,T,A, I L,O,OP,1, CMP, M Is J,Z, L,OOP,2, I,NX, H, I J,NZ, *,-7, J,MP, 1,0,0,0, E,R,S,S,HO,R,I, 1,0,0,0, L,X,I, B,S,S,NS, L,X,I, B,S,S,NS, J,A,D, B, L,X,I, B,S,S,NS, J,A,D, B, L,A,D, H, SE,NS, D,A,D,R,		M,A,I,N	EQU	*
MV,I, C, , 0, MV,I, B, , 6B, MV,I, B, , 6B, L,D,A, I,ND,A,T,A, L,D,A, I,ND,A,T,A, J,Z, L,OOP,2, I,N,X, H, J,Z, L,OOP,2, I,N,X, H, J,N,Z, *, -7, J,M,P, 1,0,0,0, E,R,R,S,H,OR,I, Y M,O,V, L, Y,C, L,OO,P,2, M,V,I, H, - L,O,A,D, H, L,O,A,D, B, H, H, H, L,O,A,D, H, H, L,O,O,P,2, M,V,I, H, Y, 0 L,O,O,P,2, M,V,I, H, Y, 0 L,O,O,P,2, M,V,I, H, Y, 0 L,O,O,	MV,I. C, 0,			LXI	
M,V,I B, , 6, B (3) L,D,A, I,N,D,A,T,A,	MV,I B, , 6, B L,D,A I,N,D,A,T,A L,O,OP,I CMP J,Z, L,OOP,2, I,N,X, H, I,N,X, H, J,Z, L,OOP,2, I,N,X, H, I,N,Z, *, -7, J,N,Z, *, -7, J,MP, 1,0,0,0, E,R,P,S,H,OR,I, , J,MP, 1,0,0,0, E,R,P,S,H,OR,I, , L,OO,P,2, MV,I, M,OV, L, P,C, L,O,A,D, H, L,X,I, B, SE,NS, D,A,D, H, B, SE,NS, , J,N,Z, Y, SE,NS, L,X,I, B, SE,NS, J,A,D, H, H, , L,X,I, B, SE,NS, J,A,D, H, L,A,D, H, L,X,I, B, SE,NS, J,A,D, H, L,X,I, B, SE,NS, J,A,D, H, H, H, H,	10		MVI	C, 0
L,D,A, I,N,D,A,T,A, L,O,O,P,1, C,MP, M, J,Z, L,O,O,P,2, I,N,X, H, I,N,R, C, J,N,Z, *,-7,,,,,,,,	L_D,A, I,N,D,A,T,A, L,O,O,P,1, C,MP, M, J,Z, L,O,O,P,2,				
L_O(O,P,1, C,MP, M, J,Z, L,O,OP,2, J, J,Z, L,O,OP,2, J, J,Z, L,O,OP,2, J, J,Z, J,Z, L,O,OP,2, J, J,Z, J,Z, J,Z, J,Z, J,Z, J,Z, J,Z	LOOP.1. CMP. M. J,Z., LOOP.2				
15 J,Z, L,OOP,2, 1,N,X, H, 1,N,R, C, 1,N,R, C, 1,N,Z, *, -7, J,R,Z, *, -7, J,N,Z, *, -7, J,MP, 1,0,0,0, E, N,S, J,A,D, B, S,S,E,N,S,	15 J,Z, L,O,OP,2, 1,N,X, H, 1,N,R, C, D,C,R, B, J,N,Z, *, -7, M,O,Y, L, O,O,O, E,R,N,S,HOR,I,				
15 I,N,X, H, I,N,R, C, J,N,Z, *,-7, , J,A,D, *, H, , J,A,D, *, H, , I,N,D,A,T,A , I,N,D,A,T,A ,	15 I,N,X, H, I,NR, C, J,R,Z, *, -7, J,N,Z, *, -7, , J,N,Z, *, -7, , J,N,Z, *, -7, , M,OV, L,,C, , L,X,I, B,',S,E,N,S, , D,A,D, H, , D,A,D, H, , N,O,A,D, H, , N,O,A,D, H, , N,O,A,D,R, T,A,S,*, T		LOOPII		
I.N.R. C. D.C.R. B. J.N.Z. *7. J.MP. 1.000. E.R.R., S.H.O.R.I.	1 N.R. C. D,C,R. B. J,N,Z. *7. J,MP. 1.0.0.0. E,R., S,HOR,I. * L,OO,P.2. M.V.I. MOV. L., C. L,X,I. B., S,E,N,S. D,AD. B. P,C,H,L. * R,AM. * R,AM. * ND,A,T,A D,E,F. 4,5,# * R,OM. * T,ÅO,1. D,A,D,R. T,ÅO,1. D,A,R. D,A,D,R. T,A,B,1. D,A,D,R. T,A,B,2. J. D,A,D,R. T,Å,B,3.,T,A,B,4. D,A,D,R. J,A,D,R. T,A,B,5., T,A,B,6.	15		the state of the second s	
20 D,C,R, B,	20 D,C,R, B, 31,N,Z, *, -7, J,MP, 1,0,0,0, E,R,r,s,H,OR,I, * J,MP, 1,0,0,0, E,R,r,s,H,OR,I, * J,MP, 1,0,0,0, E,R,r,s,H,OR,I, * J,MP, 1,0,0,0, E,R,r,s,H,OR,I, * J,MO,V, L,r,C, L,X,I, B, s,S,E,N,S, J,A,D, H, D,A,D, B, P,C,H,L, * R,AM, * R,OM, * * * * <t< th=""><th></th><th></th><th></th><th></th></t<>				
20 J,N,Z, *, -7,	20 J,N,Z, *,-7,			- j I du nede endem de	
20 JMP. 1,0,0,0, E,R,R, , S,H,OR,I,	20 JMP, 1,0,0,0, E,R,R,A,S,H,OR,I,				produced - A decider for the decider of the decider
20 20 20 20 20 20 20 20	20 *			J,N,Z	*-7,
* LOOP,2, M,V,I, H,,O, M,OV, L,,C, L,X,I, B,,SE,NS, D,AD, H, D,AD, H, R,AM, R,AM, R,AM, R,OM, T,AO,1, D,E,F, Y,ME,L,P,S,8,Y, SE,NS, D,AD,R, T,AB,1, (3)	*	~~		JMP.	1,0,0,0 ERR, SHORI
25 M,O,V, L, Y, I, B, Y,S,E,N,S,	25 M,O,V, L,Y,I, B, Y,S,E,N,S,	20	*		
25 M,O,V, L, Y, I, B, Y,S,E,N,S,	25 M,O,V, L,Y,I, B, Y,S,E,N,S,		LOOP 2	MVI	Н,, О
25 L,X,I, B, , S,E,N,S, 25 D,A,D, H, 26 D,A,D, B, 30 P,C,H,L, I, N,D,A,T,A, 31 R,A,M, I, I, N,D,A,T,A, 32 R,O,M, I, I, N,D,A,T,A, 33 R,O,M, I, I, D,E,F, 4,5,#, I, I, D,E,F, I, S,E,N,S, 5,E,N,S, D,A,D,R, T,A,B,1, 37 D,A,D,R, T,A,B,2,	25 L,X,I, B,,S,E,N,S, 25 D,A,D, H, 30 P,C,H,L, * R,AM, 30 R,AM, * R,AM, * N,D,A,T,A,D,E,F, * R,OM, * N,D,A,T,A,D,E,F, * R,OM, * D,A,D,R, * N,D,A,T,A,D,E,F, * N,B,1, * D,A,D,R, * H,A,B,S,,T,A,B,G,				
25 → → → → → → → → → → → → → → → → → → →	25 D,A,D, H, , D,A,D, B, , P,C,H,L, 30 R,A,M, , P,C,H,L, , P,C,H,L, , R,A,M, , N,D,A,T,A, D,E,F, 4,5,#, , N,A,D,R, T,A,B,1, , N,A,D,R, T,A,B,2, , D,A,D,R, T,A,B,2, , D,A,D,R, T,A,B,2, , D,A,D,R, T,A,B,5, , T,A,B,6, *				
25 → → → → → → → → → → → → → → → → → → →	25 D,A,D, B,				
P,C,H,L, * R,AM, 1,ND,A,T,A,D,E,F, 4,5,♯, * R,O,M, T,A,O,1, D,E,F, V,ME,L,P,S,8 V, S,E,NS, D,A,D,R, T,A,B,1, 1,0,1, D,A,T,A,D,R, T,A,B,1, 30,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	30 R,AM, 31 R,AM, 32 R,AM, 33 R,AM, 34 R,AM, 35 R,OM, 35 D,AD,R, 36 D,AD,R, 37 D,AD,R, 38 D,AD,R, 39 T,AB,1, 39 D,AD,R, 39 T,AB,3,*,T,AB,4, 39 D,AD,R, 39 T,AB,5,*,T,AB,6,	25			
* R,AM,	* R,A,M, 30 I,N,D,A,T,A D,E,F, 4,5,♯, * R,O,M, * * F,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A				₽
30 R,AM	30 R,AM, 1 N,D,A,T,A D,E,F, 4,5,♯, * R,OM, T,A,O,1, D,E,F, Y,ME,L,P,S,8,* SE,N,S, D,A,D,R, D,A,D,R, T,A,B,2, D,A,D,R, T,A,B,2, D,A,D,R, D,A,D,R, D,A,D,R, T,A,B,2, D,A,D,R, D,A,D,R, D,A,D,R, D,A,D,R, T,A,B,2, <th></th> <th></th> <th>PLCITIL</th> <th></th>			PLCITIL	
³⁰ I.N.D.A.T.A.D.E.F. 4.5. [♯]	30 I.N.D.A.T.A. D.E.F. 4.5,♯ R.O.M.		*		
30 * RiQM	30 * R,OM, I T,A,O,1, D,E,F, Y,ME,L,P,S,B,Y, SE,N,S, D,A,D,R, T,A,B,1, 35 D,A,D,R, T,A,B,2, 36 D,A,D,R, T,A,B,2, 37 D,A,D,R, T,A,B,2, 38 D,A,D,R, T,A,B,2, 39 D,A,D,R, T,A,B,2, 39 D,A,D,R, T,A,B,2, 39 D,A,D,R, T,A,B,3, ,T,A,B,4, 39 D,A,D,R, T,A,B,5, ,T,A,B,6,				
* ROM TAO1, DEF, YMELPS8Y, 33 SENS, DADR, TAB1, 33 DADR, TAB2, 34	* R,O,M, T,A,O,1, D,E,F, Y,ME,L,P,S,8 *, SE,N,S, D,A,D,R, T,A,B,1, J,A,D,R, T,A,B,2, J,A,D,R, T,A,B,3, T,A,B,3, D,A,D,R, T,A,B,3, T,A,B,3, T,A,B,3, T,A,B,5,	20	INDATA	D,E,F,	4,5,#,
T.A.O.1. D.E.F. T.M.E.L.P.S.8.	T.A.O.1. D.E.F. Y.M.E.L.P.S.8.Y SE.N.S. D.A.D.R. T.A.B.1. 35 D.A.D.R. T.A.B.2.		*		
SENS DADR TAB1	SENS DADR TAB1 35 DADR TAB2 1 DADR TAB2 1 DADR TAB2 1 DADR TAB6 1 DADR TAB6 1 DADR TAB6			R _i O _i M	
	35 D,A,D,R, T,A,B,2,		T,A,O,1	DEF.	* ME L P S 8 *
D,A,D,R, T,A,B,2	35 D,A,D,R, T,A,B,2,		SENS	DADR	T,AB,1,
	³⁵ D,A,D,R, T,A,B,3, , T,A,B,4, , D,A,D,R, T,A,B,5, , T,A,B,6, *, +			and the second s	
	* , , , , , , , , , , , , , , , , , , ,	35		and some state of the second states in some	
	*				
			*		
			<u></u>		
		40			

- An asterisk in the first column indicates that the entire statement is a comment.
- ② The program name is declared as 'PROM'.
- ③ The external programs referenced by this program are declared.
- ④ The external programs that reference this program are declared.
- (5) The program segment from here to the next RAM pseudo instruction is regarded as a ROM region.
- (6) The symbol MAIN refers to the value in the program location counter at this source program statement.
- 1 Locations can be referred to by symbols.
- (8) Octal numbers can be used.
- (9) Expressions can be used in the operand field.
- 1 The statement following a blank after an operand field is a comment.
- ① Declares the start of a RAM region.
- 12 Hexadecimal numbers can be used.
- (3) Character constants in ASCII code can be used.
- 1 The address of symbol TAB 1 is set to the location of address SENS and SENS+1.

DESCRIPTION

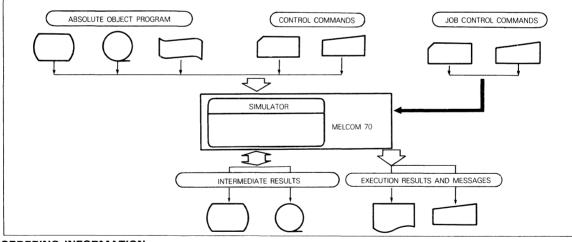
A pseudo CPU and a pseudo memory are modeled in the host computer by the simulator, and programs in the pseudo memory are executed by the pseudo CPU to debug and test programs.

The simulator contains a powerful set of 26 control commands for efficient program debugging.

FEATURES

- Set of 26 powerful control commands
- Batch and conversational processing
- Symbolic addressing
- Execution time calculations
- Intermediate results saved in specified format
- Look-back option when tracing
- Binary, octal, decimal and hexadecimal numbers are selectable
- Assignment of program segments to ROM or RAM region
- Memory protection
- Interrupt function
- Flexibility in input/output media
- Continuous processing of input/output data
- Execution minicomputer: MELCOM 70 (memory capacity more than 24K words, monitor BDOS)
- SIMULATOR PROCESSING SYSTEM

Programming language: FORTRAN IV (parts are written in assembly language)


FUNCTION

The trace command function assigns a specific trace region so that it traces only the specified program steps. Execution of the simulation can be halted by a breakpoint which can be assigned to any location. Program debugging efficiency can be expected to increase by the use of these functions.

Memory protect and ROM regions are simulated. This means the simulator will not allow writing in a ROM region and will not allow either reading or writing in a memory protect region. Therefore, the program under simulation is completely simulated, including the state of the memory in the object computer system.

Input/output media

- Object program input : Paper tape, magnetic tape and magnetic disk
 - Control command input : Punched card and keyboard
- Simulation intermediate : Magnetic tape and magnetic results output disk
 - Simulation result output : List
- Input/output data
- : Punched card, keyboard, paper tape and magnetic tape

ORDERING INFORMATION Programs

Program name	Ordering number	Program and software manuals included	
MELPS 8 simulator (B-version)		Source Program MELPS 8 Simulator Operating Manual (B-version) MELPS 8 Cross Assembler & Simulator Operating Manual (on MELCOM 70)	GAM-SR00-03A GAM-SR00-04A

Reference Manuals for Separate Ordering

Manual name	Manual number
MELPS 8 Assembly Language Manual (A-version)	GAM-SR00-01A
MELPS 8 Cross Assembler Operating Manual (A-version)	GAM-SR00-02A
MELPS 8 Simulator Operating Manual (B-version)	GAM-SR00-03A
MELPS 8 Hardware Manual	GAM-HR00-01A

MITSUBISHI LSIS MELPS 8 SIMULATOR

CODING METHOD OF CONTROL COMMANDS

The input formats for control commands are shown in Fig. 1.

Fig. 1 Input formats for control commands

Column no.	1					72	73	80
Contents	Blank	Command	Blank	Parameter list	Blank	Comment	Sequence number	
No. of columns	1 or more columns	The number of characters in the command	1 or more columns	The number of characters in the parameter list	1 or more columns	Free	8 columns	
Remarks				, parameter list and comme an 73 columns.	ent		Not required if the command typed in from the system typev	

CONTROL COMMANDS

The simulator includes 26 control commands as shown in Table 1.

Table 1. List of control commands and their functions

$\left \right $	ltem	Control comm	ands	
FL	unctions	Action	Mnemonic command	Comments
		Start simulation	START	Starts simulation and designates the input unit for control commands.
Simulator control commands	Start	Reinitialize	<u>RE</u> INIT	Sets the state to the same state it was after the START command execution was completed.
com	End	End simulation	<u>EN</u> D	Returns to the monitor when executed during simulation.
ntrol	Program loading or	Load object program	LOAD	The absolute object program or the saved intermediate partially executed program is loaded.
or 6	saving intermediate results	Save intermediate results	SAVE	All information such as executed commands, contents of registers and flags, and so forth, are saved in external memory.
mulat	Changing control	Changes to card reader	<u>BA</u> TCH	The command input unit is changed to the card reader.
ŝ	command input unit	Changes to system typewriter	<u>t y</u> p e	The command input unit is changed to the system typewriter.
	0	Starts execution of the object program	<u>G</u> O	The stop point can be designated by either an address or the number of instructions to be executed.
	Start	Starts execution of the object program	<u>RU</u> N	Continues execution until a HLT instruction is encountered.
		Assigns a breakpoint	BREAK	A breakpoint is assigned by an address or a range.
	Stop	Releases an assigned breakpoint	<u>NOBR</u> EAK	A breakpoint assigned is released.
		Steps	<u>St</u> ep	Breakpoints are assigned after every specified number of machine instructions.
		Assigns a ROM region	ROM	It is declared that region assigned with this command is the ROM region.
0	Assigning memory	Releases an assigned ROM region	<u>NORO</u> M	The assigned ROM region is released.
nand	regions	Assigns a memory protection region	<u>PR</u> OT	A memory protect (unaccessible) region is assigned.
comr		Releases an assigned memory protect region	<u>NOPR</u> OT	An assigned memory protect region is released.
Executive control commands	Trace	Assigns a trace region	TRACE	Printing out the contents of registers, the program counter and flip-flops along with the executed instruction codes while executing the instructions in a trace region.
ecutive		Releases an assigned trace region	<u>NOTR</u> ACE	The assigned trace region is released.
ŵ		Set data	<u>s</u> e t	Registers, stack pointers, program counter, flag flip-flops, I/O ports and the contents of memory are set.
		Interrupt	INTER	If interrupt is enabled, the 1-byte instruction associated with this command is executed.
	Counts th	ne number of cycles	<u>T I</u> ME	Counts the total number of cycles of the machine instructions executed before this command is encountered.
		Assigns a base	BASE	A base for printing is assigned.
	Printing out	Prints out	<u>D</u> I SPLAY	The contents of registers, stack pointers, program counter, flag flip-flops, I/O ports, and memory are printed according to the assigned base. Look-back is possible.
s	Conve	rsion of values	CONV	The current program counter or the assigned value is printed out in binary, octal, decimal or hexadecimal.
1/0 command	Input/output simulation	Input simulated	<u> P</u>	Defines an input string for a machine instruction IN.
comr,	mper/output sindlation	Output simulated	OP	Defines an output string for a machine instruction OUT.

Ť

Note 1 : The underlined part of the mnemonic command can be used as a short mnemonic.

2 : The control command 'START' is the first command, and its input unit must be the card reader.

EXAMPLE OF SIMULATION

The program shown in Fig. 2 is simulated using the control command in the sequence shown in Table 4. The program in Fig. 2 is named 'CON102'. It converts a decimal integer (0~65,535) to a binary number.

The decimal number to be converted is stored in addresses DED1~DED5 in ASCII code, and the converted result is stored in addresses BID and BID+1 (see Table 2). Further, if characters other than $0\sim9$ are found in addresses DED1~DED5, the A register is set to '1' as an error flag; and if the converted result is more than 65,535, the carry flip-flop is set to '1' as an error flag.

The simulation is executed in three segments as follows:

- 1. The test values are set in memory addresses $\mathsf{DED1}{\sim}$ $\mathsf{DED5}.$
- 2. The program is executed.
- 3. The simulator confirms that the contents of addresses BID and BID+1 are the correct value for the conversion of data in addresses DED1 (address 9113)~DED5 (address 9117). At the same time, it confirms that the contents of the A register and the carry flip-flop are correct.

Fig. 2 Assembly listing of the objective program "CON102"

The objective program listing is shown in Fig. 2, and explanations of the simulation control commands using this example are shown in Table 4.

Table	2	Memory	location	and	contents
Iable	~	INICITOL .		anu	COntenta

Address	Contents	Explanation of contents						
DED1	а							
DED2	b	The 5-digit decimal integer is a $ imes 10^4$ + b $ imes 10^3$ + c						
DED3	С	imes10² + d $ imes$ 10 + e , and a, b, c, d and e are set in						
DED4	d	ASCII code.						
DED5	е							
BID	Converted	Low-order 8 bits are stored in BID and high-order 8 bits						
BID+1	results	in BID +1.						

Table 3 Error flags for conversion

Item	Error and	d no error display	Commented and the				
Number to be converted	A register Carry flip-flop		Converted result				
Integer 0~65,535	0	Correct					
More than 65,535	0	1	Not correct				
Character other than decimal digits	1	0	Not converted				

					II CROPROC			349423	0003		DED2
0002*	(CON102	*		9000	0034	2368	D630	00000	SILL	48
0003*			*			0035	2364	115803		1 2 1	D,1000
0004 2	2328			ORG	9000	0036	2360	CA7523	00103	17	C0004
0005 2	2328	219923	CON102	IXI	H.DED1	0037	2370	19	00100		00004
0006 2	232B	0605		MVI	B 15	0038	2371	30		DCB	Δ
0007 2	232D	7 E	CO100	MOV	Δ.Μ	0039	2372	036023		IMP	C0103
0008 2	232E	FE3B		CPI	48	0040	2375	349923	C0004		DED1
0009 2	2330	DA9423		JC	FR	0041	2378	FF37	00004	CPI	37#
0010 2	2333	FE3B		CPI	59	0042	2374	D29023		JNC	ÖV
0011 2	2335	D29423		JNC	FR	0043	2370	D630		SILL	4.8
0012 2	2338	23		INX	н	0044	237F	111027		1 X 1	D,1000
0013 2	2339	05		DCR	в	0045	2382	CABA23	C0104	JZ	C0005
0014 2	233A	C22C23	D23	JN2	C0100	0046	2385	19		DAD	D
0015 2	233D	3 A 9 D 2 3	C0000	LDA	DED5	0047	2386	3 D		DCR	Ā
0016 2	2340	D630		SUI	48	0048	2387	C38223		JMP	CO104
0017 2	2342	2600		MVI	H O	0049	2384	229E23	C0005	SHID	BID
0018 2	344	6 F		MOV	9000 H,DED1 B,5 A,M 48 ER 59 ER H B CO100 DED5 48 H,0 L,A	0050	238D	C39723		JMP	C0006
0019 2	2345	3 A 9 C 2 3	C0001	LDA	DED4	0051	2390	37	ov		
0020 2	348	D630		SUI	48	0052	2391	C39723		JMP	CO006
0021 2	34A	110A00		LXI	48 D,10	0053	2394	3E01	ER .	MVI	A,11
0022 2	234D	CA5523	CO101	JZ	CO002	0054	2396	A 7		ANA	Α
0023 2	350	19		DAD	D	0055	2397	00	C0006	NOP	
0024 2	351	19 3D C34D23		DCR	Α	0056	2398	A7 00 76		HLT	
0025 2	352	C34D23		JMP	CO101	0057	2399	00	DED1	DEF	0
0026 2	355	3 A 9 B 2 3	CO002	LDA	DED3	0058	239A	00	DED2	DEF	0
0027 2	358	D630		SUI	48	0059	239B	00	DED3	DEF	0
0028 2	35A	116400		LXI	D,100	0060	239C	00	DED4	DEF	0
0029 2	35D	CA6523	CO102	JZ	A CO101 DED3 48 D,100 CO003 D A	0061	239D	00	DED5	DEF	0
0030 2	360	19 3D C35D23		DAD	D	0062	239E	0000	BID	DADR	
0031 2	361	3 D		DCR	Α	0063	2328	-		END	
0032 2	362	C35D23		JMP	CO102						

MITSUBISHI LSIS MELPS 8 SIMULATOR

Table 4 An example of the use of simulation control commands.

START M70,CARD	MELCOM 70 is used as the host computer, and the input unit for the control commands is select- ed to be the card reader.
LOAD START,5	The object program is input from the paper tape reader (device number 5).
SET CPU SP=10000 PC=9000	The stack pointer is set to the value 10,000, and the program counter is set to the value 9,000.
SET MEMORY,DED1=31# SE M,DED2:DED5=32#,33#,35#,37#	Data is set in memory. 31# is stored in location DED1, 32# in DED2, 33# in DED2 + 1, 35# in DED2 + 2, and 37# in DED5.
BREAK C0002, C0003, C0004, C0005	Breakpoints are assigned.
DISPLAY CPU, SP, PC	Displays the contents of the stack pointer (SP) and the program counter (PC) for confirmation.
D M,DED1:DED5	Confirms whether or not the correct value is set in memory. Here, D is the abbreviated command for DISPLAY and M for MEMORY.
GO *	The program is executed until the machine instruction HLT is encountered, printing out the contents of the PC and SP registers and flip-flops at each breakpoint that was assigned by BREAK above.
D M,9119:9120(@)	Confirms whether the conversion is correct or not, displaying the result of the conversion in binary form. It can also be confirmed by finding the change of the contents of registers H and L in the list that is printed out during execution.
ТІМЕ	The number of cycles executed is counted.
NOBR C0002, C0003, C0004, C0005	The breakpoints assigned with BREAK are released.
S M,DED1=36# S M,DED2:DED5=35# S M,DED4=43#	36# is set in address DED1, 35# in addresses DED2 \sim DED5 and 43# in address DED4.
S CP,PC=9000	9,000 is set in the program counter.
GO	Executes until a HLT instruction is encountered.
D M,9113;9120	The data and the result are printed in the hexadecimal because the BASE command is not used. In this case, including a character other than $0 \sim 9$ confirms whether or not a '1' is set in the A register after execution.
SAVE 2, SAV1	Intermediate results are saved in file SAV1 of the disk.

¢

×

START M70,C	MELCOM 70 is used as the host computer, and the input unit for the control commands is selected to be the card reader.
LO CONT, 2, SAV1	The intermediate results that were saved are loaded from the disk. The file name is 'SAV1'.
ТҮРЕ	The input unit for control commands is changed from the card reader to the keyboard.
S CUP, SP=10000, PC=9000	The program counter and the stack pointer are set.
S M,DED1:DED5=37#,35#	37# is set in address DED1, 35# in DED1 + 1, 37# in DED 1 + 2, 35 # in DED 1 + 3 and 37# in DED5.
GO	Executes until a HLT instruction is encountered. Confirms whether or not a $'1'$ is set in the carry flip-flop because the data exceeded 65,535.
S CPU,PC=9000	The start address is set.
S M,DED1:DED5=30#	30 # is set in addresses DED1 \sim DED5.
GO	Executes until an HLT instruction is encountered.
D M,9113:9120	Confirms the conversion result.
S CPU, PC=9000	The start address is set.
S M,9113=36# S M,9115=35#	36# is set in address 9113, 35# in address 9115.
GO	Execution starts. Executes until an HLT instruction is encountered.
D M,9113:9120	Confirms the conversion result.
END	Declares the end of simulation.

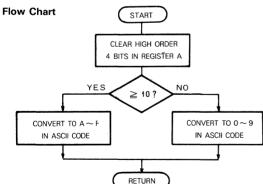
APPLICATIONS

10

1. CODE CONVERSION PROGRAMS

There are 4 code conversion programs for conversions between hexadecimal numbers and their corresponding ASCII code in binary notation. Details of these programs are given below.

Table 1 Correspondence of number formats


Hexadecimal symbols	Machine language binary number	ASCII code in binary notation for hexadecimal symbols
0	0000	00110000
1	0001	00110001
2	0010	00110010
3	0011	00110011
4	0100	00110100
5	0101	00110101
6	0110	00110110
7	0111	00110111
8	1000	00111000
9	1001	00111001
А	1010	0100001
В	1011	01000010
С	1100	01000011
D	1101	01000100
E	1110	01000101
F	1111	01000110

1.1 Binary (4 Bits) to ASCII (1 Character) Conversion (BTA)

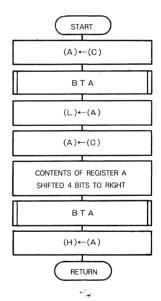
This program converts the low order 4 bits in register A (a hexadecimal number $0 \sim F$) to the corresponding 8-bit ASCII-coded hexadecimal symbol '0' \sim 'F'. The result is retained in register A. Registers B, C, D, E, H and L are not affected.

Register Status

Register	Contents at start	Contents at return
A	Binary number to be converted in the low order 4 bits	8-bit ASCII code for the high order hexadecimal symbol
B,C,D,E, H and L		Contents at start

Program Listing

	-			
123456	7 8 9 10 11 12 13	14 15 16 17 18	19 20 21 22 23 2	4 25 26 27 28 29 30 31 32 3
*				
* ***	SUB (BTA) */B	I.N.A.R.Y.	TOASCII
*				
B,T,A	ANI	0.F.#		
	CP I	1.0		
	JNC	B.1.		
		4 , 8 ,		
	R,E,T			
B ₁		5,5,		
	R,E,T,			


1.2 Binary (8 Bits) to ASCII (2 Characters) Conversion (BTA 2)

This program converts the 8 bits in register C (a 2-digit hexadecimal number $00\sim$ FF to the 2 corresponding 8-bit ASCII-coded hexadecimal symbols '0'~'F'. The results are retained in registers H (high order) and L (low order). Registers B, D and E are not affected.

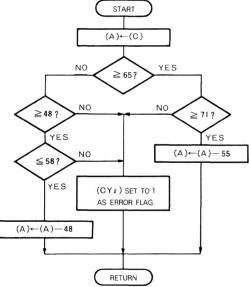
Register Status

Register	Contents at start	Contents at return
А		8-bit ASCII code for the high order hexadecimal symbol
С	Binary number to be converted	Binary number to be converted
н		8-bit ASCII code for the high order hexadecimal symbol
L		8-bit ASCII code for the low order hexadecimal symbol
B, D and E		Contents at start

Flow Chart

Program Listing

	_	_				_															-	_		· · ·	-	-		-	r -				_
	11	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	3 24	2	5 26	27	28	29	30	31	32	33
	*																						r	r	í.	ſ	í.	ſ			1		
	*		*	*	*		S	U	B	7	B	T	A	2	Т		*														1		
	*		-14	-	-	_		-		Ŀ	<u> </u>	1_1	_	_				A	-	5	-	-	I	-			-		-	-	-	R	0
	≞	_	*	в		N	A	ĸ	T	L	1	O	_	1	W	0		A	Э		1		L	5	, F	, A	n	A	1	1	E	n,	3
	*									L.,		ц		1					_			L	L.	1	1	1	L	1	1	1	:		
_	B	Τ,	A	2				M	0	V				Α,	,	C								1			F				1		. 1
5								C	A	L	L		1	Β.	Т	A									,	,					1		
								M					1	L	,	A															-		_
	F				L	L		M				11		-		C		L		L							L.,		1	ł	İ		
	H				<u> </u>	L	t	t	R		****	1	ť		-			ł		<u> </u>	-	<u> </u>	1	-	1		4	L		L	1		
	-				L	I	-	T			-		+					1	L	L	-	I	1	1	.	-	1	1	L	1	<u>+</u>		
0				_	L	L		R	R	\mathbf{C}	<u> </u>		_	_				1		L	<u>i</u>		1	١	1	1	L		1	L	<u>.</u>		
U								R	R	C											-		1		1	1	1	L	1	I	1		
								R	R	C												,		1		1	1	5					
								C	A	L	L		1	B,	Т	A					-										1		
									0					H.							1										1		
	-	L			I	L	┢	+	E	-		11	Ť					r	L	L	1										!	L	
		1 1				1	1	1	-		1	1.1				1 1		1			•	L	1	1	1	1		1	1	1	•		ł


1.3 ASCII (1 Character) to Binary (4 Bits) Conversion (ATB)

This program converts the 8-bit ASCII code in register C (a hexadecimal symbol '0'~'F') to a 4-bit binary number 0000 ~1111. The result is retained in the low order 4 bits of register A. If register C contains a code for a character other than a hexadecimal symbol 0~F, it is recognized as an error; the carry flip-flop is set, and the program is exited. Registers B, D, E, H and L are not affected.

Register Status

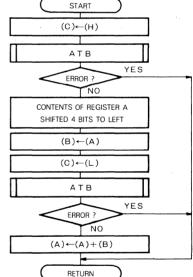
Register	Contents at start	Contents at return
А		Hexadecimal number in binary form in the low order 4 bits
С	ASCII coded hexadecimal symbol to be converted	ASCII coded hexadecimal symbol to be converted
B, D, E, H and L		Contents at start

Flow Chart

Program Listing

хđ

	1	2	T	3	1	5	6	7	8	9	10	1	121	3 1 4	1	5 1	61	7 18	3 1	9 21)2	12	2 2	3 2	4 2	5 2	6 2	28	3 2	9 3	03	1 32	2 33
	*													Τ		,		1		,		,						1					
	*		*	k ; ;	ĸ	*		S	U	В	()	41	(B)			2	K./	A	S	S,C	; 1	1	1	,1	,	D,	B	1	N	I,A	F	R Y	
	*												1.1					1										l	1	1	,		
	A	T	E	3	1				M	0	۷		1 1	A	,,	(2	-	,		1	1				1	1	ŀ	1	1	1	1	
				1					С	Ρ	I	1	1.1	6	5	5	1	1					1	1		1	1	1		1		1	1
5			,	1	,				J	С			1 1	A	,1	1		1	,		1				,	,	1	1		,		1	
		1		1	1				С	P	I		1 1	7	,1	1	1	1	,	,	1	1	,	1	1	1	1	1		,	1	1	
				1	-				J	N	С			A	3	5	1	1			1			1	ï	-		1					
				1					S	U	I			5	5	5	1	1			1				1	1	1	1		ł	1	1	
			1						R	E	T	,	1.1				1	1		'n.				1	1		1	I	'n.			1	1
10	A	,1			,				C	P	1	1	1 1	4	8	3	1	1		1			1		,		1	ł	i	1	ī	1	ſ
			1						J	С				A	3	B.				1		,	1	1	,		1	1	,		1	1	,
				1	,				С	P	I			5	8	8,	, i	ļ.	1	,	1	1			ï	1	1	ł	1			1	
		1	1	1	1		r		J	N	C		1.1	A	3	B.,	1	1		1	1	1	1		1	1	1	ł	i	1	1	I	1
15	A	2	1	1					S	U	I	1		4	8	B.	1	1		1	1	1	1	1	1	1	1	Ļ	1	1	1	1	1
10		1			_				R	E	T		de d		ı	ı		-	1		1	1		1		1	1	1	1	1	1	1	1
	A	3		1	_		_		S	Т	С		- I							1		1	1		1	1		1	1		1	1	
					,				R	E	T			T			,	1					,		,		1	1		1			


1.4 ASCII (2 Characters) to Binary (8 Bits) Conversion (ATB 2)

This program converts the two 8-bit ASCII codes in registers H and L (2 hexadecimal symbols '0'~'F', high order in register H and low order in register L) to an 8-bit binary number $(0\sim255_{10})$. The result is retained in register A. If register H or L contains a code for a character other than a hexadecimal symbol '0'~'F', it is recognized as an error; the carry flip-flop is set, and the program is exited. Registers D and E are not affected.

Register Status

Register	Contents at start	Contents at return
А		8-bit binary number (2 hexadecimal digits)
в	4-bit bina conversio	ary number in the high order 4-bits on of high order hexadecimal symbol
С		Low order ASCII coded hexadecimal symbol to be converted
н	High order ASCII coded hexadecimal symbol to be converted	High order ASCII coded hexadecimal symbol to be converted
L	Low order ASCII coded hexadecimal symbol to be converted	Low order ASCII coded hexadecimal symbol to be converted
D and E		Contents at start

Flow Chart

Program Listing

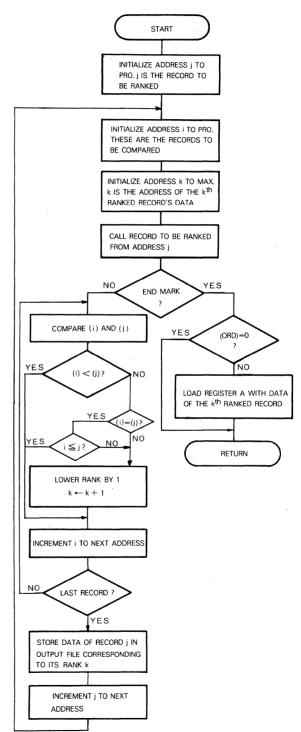
						_										_										_							
	1	2	3	4	5	6	7	8	9	10	П	12	13	14	15	16	17	18	19	20	21	22	2 23	3 24	4 2	5 2	62	72	82	9 30	31	32	33
	*			1	1	1			1				1			1		1							1	1	1			1			
	*		*	*	*	:	S	U	В	.(A	T	В	2)		*																
	*		1	T	Ń	io			S					С					С	т	F	R	S		1	Ċ)	E	3.1	N	Δ	R	Y
	*		Ľ.		1.	1	-	1		-	-		L	-					-		-			·		-	1						
		÷	Þ			4	-			1	L	1	L	~	<u> </u>	-	L	L	-		-	L		4-	-		1	-	1	1	÷		L
5	A	T	в	12	1			M	ļO	v	L	L		С	.,	п		L		<u> </u>		1	1	1	1	1	1	1	1	1		_	L
5						ı.		C	A	L	L	a -		A	Т	B								1	i.	ī.	i.	1	ī.		1		1
					,			R	C																							_	
								+	L	L				-													-				1		
			L	-		-			L					-		L	L				-	.	-L	-		-	-	-			-		
	\vdash	L	-	1	-	1	-					1	1			L	L	L	i		-	-	1	4	1	-	1	_	1	1		_	L
^				ı.	I.	1		R	L	C	ι	1	1			L						1	1	1	1	1	1	1	1	1	i.		ι
0					,	,		R	L	C																				,			
								M	0	V				в	,	A																	
			L	-	-		+		0		h	-		-					-		-		-	-	-		-	_	-	_	-		
		L	L	١	1	1		-				1	I	С	,	L	I	L	L	l		1	1	1	١			1	1	1	<u>.</u>		L
				1		1		C	A	L	L		1.	Α	T	B		1								1	1	1	1	1			
-								R	C													1								1			
5								A	D	D				в		,						,									!		
									E																		k				-		

2. SORTING PROGRAM (SORT)

This program sorts records (1 byte in length) in descending order. Up to 65 535 records can be sorted. The binary number 255_{10} cannot be used as data because it is reserved for the end-of-data mark. This data is stored in descending order according to the rank of its sort key.

The program sorts by comparing a data item with all other data items, thus determining its rank. The data associated with the sort key is then stored in descending order according to that rank.

This program can also recall the data associated with any record. If the rank k ($1 \le k \le 65535$) is stored in memory locations ORD and ORD+1, the 1-byte data associated with that rank is stored in register A; and then control is returned to the user's program. If k is specified as zero, register A is set to zero and control is returned to the user's program.


Register Status

Register	Use during execution	Contents changed at return
A	Calculates and recalls data of rank k	yes
В	Data being compared is stored	yes
С	Not used	no
D	Memory address for storing data after	yes
E	ranking	yes
н		yes
L	Memory address of data to be ranked	yes

Symbolic Memory Address

Sym	bolic address	Use during execution	No. of bytes	Contents changed at return
	ORD	k (the rank of data to be recalled	2	no
's area	PRO	Storage area for records to be sorted (PRO is the first address)	n+1	no
User's	мах	Storage area for sorted data (MAX is the first address)	n +1	yes
	DADD	Address in PRO of record being sorted	2	no
Control area	RADD	Address in MAX for storing result	2	no
ç	M1	Address of record to be ranked	2	yes
	M2 -	Address of record being compare	ed 2	yes
	COUNT	Counter for number of records	2	yes

Flow Chart

Program Listing

V4

ſ	rogram i		-																
	12345	6 7	891	0 1 1 1 2 1 3	14	15 16	17	18	9 20	21	22	23 2	4 25	26	27 2	28 2	9 30	31	32 33
	*							1			Ļ			L_1				<u>.</u>	
	* ***	S	UBF	ROUT	1,1	NE	(S,C	D R	Τ)	*	*	*				-	
	*							1					4_		1		1		
	*/_S,O	RT	1 N C	à ,P,R	Q	GR	A	M	_				1	11		1			
5	*			4-1-1-	Ι.	1										1		i.	
5			NAN	4	S	OR	Τ,		····	• • •		·····	· · · ·			····	· · · ·		Q
	* < U S	ER	S C	ATA		AR	E	A,	>_	*	;	···;·			••••		•••••		2
	ORD		DAD	R,	0												1		1
	PRO		DEF		1	1			1				1		,	,			
10		T	DE F		5 !	5												1	
10			DE F		1.0	0,0	Ţ	••••											3
			DEF		1.	5.							1						
													1			,			
		-						1								,	,		
45			DEF		F.I	F,#,													4
15	MAX		BSS			A X		P.F	10										(5)
	*																		
	* < C O	NT	ROL	D A	T.	A.	A	RE	EA	>									
	DADD	1	DAD			RO				÷.	LL					-		;	
	RADD		DAD			A X										- 4-		å	
20	M1.	+	DAD		0	_													
	M2	-	DAD		0									<u> </u>		- 1-			
	COUNT	1	DAD		0												<u> </u>		
	*	+				 								 					
	* ***	P	ROC	RAM		S,T	A	R 1	r.	*	*:	*	*	ii	l				
25	*	+			-13				<u>.</u>	_									
		1	RON	1															6)
	SORT,	+	LHL			A D		i		L			<u>ــــــــــــــــــــــــــــــــــــ</u>					1.1	9
			XCF		-1-	-	_									-	-		
		+	LXI		н	, 0		_					1	1				L	
30	R.1.		SHL			DUC	N	T.	_	_								<u> </u>	
		-	LHL	A shared and		A.D				I							I		
			XCH			-	-												
	*	+			-			_		-			1	1		-			
	R.2.	+-	MOV	I	B	, M		I	1				1				L		
35		+	CP I			F #	مانيون		1					÷	-	_		<u> </u>	
		+	JZ		R		l.				- 1							<u> </u>	l
		+-	SHL		M, 1		- 1	-					ι	1		1.		<u> </u>	
			LHL			٩D	n			1						1.			
	R.3.	+	MOV	A CONTRACTOR OF THE OWNER		, M								-i			- <u> </u>	Ll	
40			SHL		Ma			-				_				-L-	-H		
			CP I		F.F		L				L.					-	1		1
			J,Z		R,7													Land	_
		-	CMP		B,		k-			L	. L		1 1			-	1	L	
1			J.C.		R,e												_	L	
45			JNZ		R,S		-							1		-		l.	-
		+	PUS			SW			1	- (1	1		+	-1	1	لمصال		
	<u>L_I</u> L_I		LHL		M, 1	and second second	k-		4 - 4					1			1		
	━┸━┸━┸━┺	+	LDA		M2		ll			l	L			1				1	
			SUB		L					4		1				-			l
50	-	+	LDA			2+	1									1			_
			JC		R.4		•			-1	I			t					
	• <u> </u>		P,OP		_	SW	-1			1				+	l.		احماد	1	
		+	JMP		Re				11	1	I			÷	-	1		- 1	
ł	R.4.	+	POP			SW		I	1		l.		I	+	_ _	_	1		
55		-	- or	l-l-l-l	<u> </u>	2 88) -		_	11					<u> </u>		-	11		

123456	7 8 9 10 11 12	13 14 15 16 17 18 19 20 2 122 23 24 25 26 27 28 29 30 3	1323
R.5	INX	D	
R.6	INX	H	
	JMP,	R 3	
*			
60 R .7	L,H,L,D	M1	
	INX	H,	
	MOV	A,,B	1.1
	S,T,A,X		-
	XCHG		1.1.
5	L,H,L,D		
	J N X	H	11
	JMP	R,1, , , , , , , , , , , , , , , , , , ,	
*			1.1
R,8,	L,H,L,D,	, C,O,U'N,T,	
0	XCHG		
- I al a la da	LHLD	R , A , D , D , R , A , D , D , R , A , D , D , R , R , R , A , D , D , R , R , A , D , D , R , R , A , D , D , R , R , A , D , D , R , R , A , D , D , R , R , A , D , D , R , R , A , D , D , R , R , A , D , D , R , R , A , D , D , R , R , A , D , D , R , R , A , D , D , R , R , A , D , D , R , R , A , D , D , R , R , A , D , D , R , R , A , D , D , R , R , A , D , D , R , R , A , D , D , R , R , A , D , D , R , R , A , D , D , R , R , A , D , D , R , R , R , A , D , D , R ,	
	DAD	· P	
*	MOV	M, A	
<u>^</u>	LHLD		_LL
5	MOV	A, L	السط
	ORA	· · · · · · · · · · · · · · · · · · ·	
	JZ	R.9.	
	DCX	H.	
	XCHG		<u> </u>
	LHLD	RADD	1.1
	DAD	D	1 1
	MOV	A, M	
R,9	RET		1 1

Explanation Keyed to Program Listing

- ① The program name is defined as 'SORT'.
- ② If column 1 of a statement is '*', it is considered a comment.
- ③ Defines the value of data.
- ④ The '#' in FF# indicates that FF is a hexadecimal number.
- ⑤ Reserves a region to store the results.
- (6) The above program is defined as a RAM region because its contents are variable at time of execution, and this is a ROM region because its contents are fixed.

 \mathbf{O}

MITSUBISHI LSIS MELPS 8 SUBROUTINE 1

INTEGER ARITHMETIC OPERATIONS MASK ROM M58730-001S

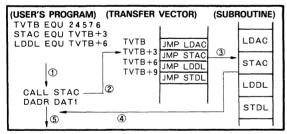
DESCRIPTION

The MELPS 8 Subroutine 1 'Integer Arithmetic Operation' is programmed on a standard M58730-001S mask ROM. It includes 18 subroutines for a MELPS 8 CPU. Although the basic unit of a MELPS CPU is 1 byte (8 bits), units of 2 bytes (16 bits) and 4 bytes (32 bits) can be easily processed using these subroutines.

These subroutines contain sections of common coding; therefore, when using the subroutines, the CPU must be running in interrupt disable mode.

These subroutines can be divided into the following general classifications:

- Addition routines
- Subtraction routines
- Multiplication routines
- Division routines
- Shift operation routines
- Logic operation routines


FEATURES

- All programs implemented using a pseudo accumulator in a RAM region.
- Easy processing of 2-byte or 4-byte data.
- Jump to subroutines via transfer vectors.

1. SUBROUTINE REFERENCE

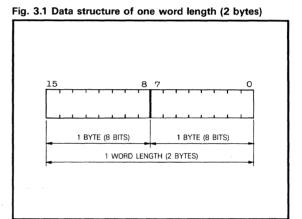
In a user's program, the subroutine calling sequence is as follows:

Fig. 1.1 Subroutine reference

Note 1 : The processing order is ①, ②, ③, ④ and ⑤. A transfer vector is used to set the entry address of each subroutine.

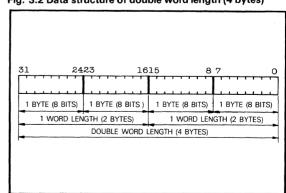
- 2 : Transfer vectors are used for subroutine calls because they are not affected by changes in program size.
- 3 : The absolute address of a subroutine or its transfer vector must be defined before it is called.
- 4 : The absolute address of a subroutine or its transfer vector refers to the table of subroutine functions.

2. RESERVED MEMORY LOCATIONS


Memory locations $6000_{16}^{\circ} - 63FF_{16}$ of the ROM region are reserved. In addition, a 50-byte RAM region, locations $3FCE_{16}^{\circ} - 3FFF_{16}$, is reserved for executing the ROM subroutines.

3. DATA PROCESSING UNITS OF SUBROUTINES

The MELPS 8 CPU processes data units of 8 bits (occasionally 16 bits) while these subroutines process data units of 2 bytes (16 bits) or 4 bytes (32 bits).

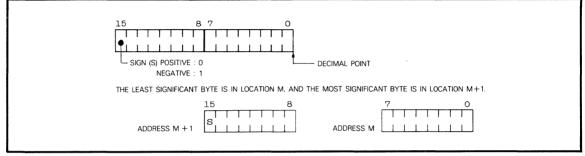

3.1 One Word Length (2 bytes)

A data unit of 2 bytes (16 bits) can be represent three binary coded decimal digits, 16 logical elements, a binary number with a range of $-2^{15} \sim 2^{15} - 1$, or two characters. This data structure is shown in Fig. 3.1.

3.2 Double Word Length (4 bytes)

A data unit of 4 bytes (32 bits) can represent seven binary coded decimal digits, a binary number with a range of -2^{31} $\sim 2^{31}-1$, or four characters. The data structure is shown in Fig. 3.2.

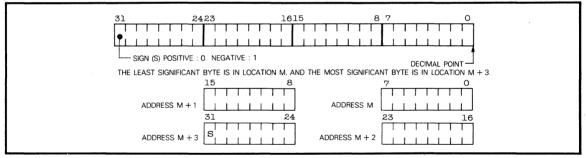
INTEGER ARITHMETIC OPERATIONS MASK ROM M58730-001S


4. NUMERICAL EXPRESSIONS

Numbers can be organized in 16-bit or 32-bit units as shown below.

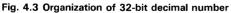
4.1 16-Bit Binary Number

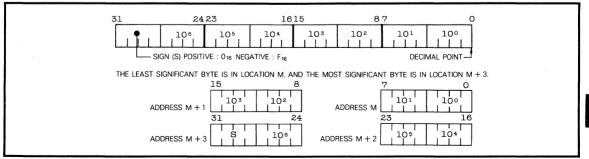
This binary number of 16 bits is organized as one unit. Negative numbers are in 2's complement form. The number has a range of $-2^{15}-2^{15}-1$ (-32768~32767).


Fig. 4.1 Organization of 16-bit binary number

4.2 32-Bit Binary Number

This binary number of 32 bits is organized as one unit. Negative numbers are in 2's complement form. The number has a range of $-2^{31} - 2^{31} - 1$ (-2147483648~2147483647).


Fig. 4.2 Organization of 32-bit binary number



4.3 32-Bit Decimal Number

13

This decimal number of 32 bits consists of a 7 decimal digit numerical part and a 1 digit sign part. The number has a range of $-10^7+1 \sim 10^7-1$ (-99999999-9999999).

MITSUBISHI LSIS MELPS 8 SUBROUTINE 1

INTEGER ARITHMETIC OPERATIONS MASK ROM M58730-001S

5. SUBROUTINE FUNCTIONS

Subroutine name	Function and error condition	Number of steps	Absolute address in hexadecimal (in decimal)	Transfer vector symbolic address	Processing tin (max) in ms
LDAC	LOAD one word (2 bytes) data into the pseudo ACCUMULATOR. (Note 1)	19	60B7 (24576)	TVTB (Note 2)	0.2
STAC	STORE one word (2 bytes) data of the pseudo ACCUMULATOR in the location specified by the operand address.	14	60CA (24778)	TVTB+ 3	0.2
LDDL	LOAD DOUBLE LENGTH (4 bytes) data into the pseudo accumulator.	20	60D8 (24792)	TVTB+ 6	0.3
STDL	STORE DOUBLE LENGTH (4 bytes) data of the pseudo accumulator in the location specified by the operand address.	20	60EC (24812)	TVTB+ 9	0.3
SLDL	SHIFT LEFT DOUBLE LENGTH (4 bytes) data in the pseudo accumulator n bits. When n does not satisfy the inequality 1≤n≤32, it is considered an error condition. Then register A is set to 1, and the pseudo accumulator is not shifted.	39	6100 (24832)	TVTB+21	0.3
SRDL	SHIFT RIGHT DOUBLE LENGTH (4 bytes) data in the pseudo accumulator n bits. When n does not satisfy the inequality 1≤n≤32, it is considered an error condition. Then register A is set to 1, and the pseudo accumulator is not shifted.	39	6127 (24871)	TVTB+24	0.3
ARDL	ARITHMET[C shift RIGHT DOUBLE LENGTH (4 bytes) data in the pseudo accumulator n bits. When n does not satisfythe inequality 1≤n≤31, it is considered an error condition. Then register A is set to 1, and the pseudo accumulator is not shifted.	64	614E (24910)	• TVTB+27	0.3
XRAC	EXCLUSIVELY OR the pseudo ACCUMULATOR (2 bytes) data and the operand. The result is retained in the pseudo accumulator.	18	618E (24974)	TVTB+18	0.2
NDAC	AND the pseudo ACCUMULATOR (2 bytes) data and the operand. The result is retained in the pseudo accumulator.	18	61A0 (24992)	TVTB+12	0.2
ORAC	Inclusive OR the pseudo ACCUMULATOR (2 bytes) data and the operand. The result is retained in the pseudo accumulator.	18	61B2 (25010)	TVTB+15	0.2
ADAC	ADD the contents of the pseudo ACCUMULATOR (2 bytes) and the operand. The sum is retained in the pseudo accumulator. If a carry is generated by the addition, register A is set to 1 (overflow); otherwise, it is set to 0.	12+(20) (Note 3)	61C4 (25028)	TVTB+30	0.3
ADDL	ADD the contents of the DOUBLE LENGTH pseudo accumulator (4 bytes) and the operand. The sum is retained in the pseudo accumulator. If a carry is generated by the addition, register A is set to 1 (overflow); otherwise, it is set to 0.	12+(22) (Note 3)	61D0 (25040)	TVTB+36	0.3
SBAC	SUBTRACT the operand from the contents of the pseudo ACCUMULATOR (2 bytes). The difference is retained in the pseudo accumulator. If a borrow is generated by the subtraction, register A is set to 1 (overflow); otherwise, it is set to 0.	12+ (20) (Note 3)	61F0 (25072)	TVTB+33	0.3
SBDL	SUBTRACT the operand from the DOUBLE LENGTH pseudo accumulator (4 bytes). The difference is retained in the pseudo accumulator. If a borrow is generated by the sub- traction, register A is set to 1 (overflow); otherwise, it is set to 0.	12+(22) (Note 3)	61FC (25084)	TVTB+39	0.3
MLAC	MULTIPLY the contents of the pseudo ACCUMULATOR (2 bytes) by the operand. The product is retained in the pseudo accumulator.	67	621E (25118)	TVTB+42	12.0
DVAC	DIVIDE the contents of the pseudo ACCUMULATOR (4 bytes) by the 2-byte operand. The quotient is retained in the high order 2 bytes, and the remainder in the low order 2 bytes of the pseudo accumulator. If the 2-byte operand (divisor) is greater than or equal to the high order 2 bytes of the dividend or is 0, it is considered an error condition. Then register A is set to 1, and the contents of the pseudo accumulator are unaltered.	195	6261 (25185)	TVTB+ 45	15.0
DCAD	DECIMALLY ADD the contents of the pseudo accumulator (4 bytes) and the operand. The sum is retained in the pseudo accumulator. If a carry is generated by the addition (overflow), it is considered an error condition; and register A is set to 1.	12+.(155) (Note 3)	6324 (25380)	TVTB+48	0.7
DCSB	DECIMALLY SUBTRACT the operand from the contents of the pseudo accumulator (4 bytes). The difference is retained in the pseudo accumulator. If a carry is generated by the subtraction (overflow), it is considered an error condition, and register A is set to 1.	12+(155) (Note 3)	6330 (25392)	TVTB+51	1.3

RAM.

ore 4 the subroutines occupy sour bytes of memory. The transfer vector table occupies 54 bytes of memory. The save registers B, C, D, E, H and L; and return routines occupy 129 bytes of memory. Total memory requirement is 983 bytes. ŧ

2 : The starting address of the transfer vector table (TVTB) is 24576. 3 : The number in () is the number of steps in common routines.

MITSUBISHI LSIS MELPS 8 SUBROUTINE 1

INTEGER ARITHMETIC OPERATIONS MASK ROM M58730-001S

6. BASIC CALLING SEQUENCE

3

ġ

Label	Instruction	Operand	
1 2 3 4 5 6	7 8 9 10 11 12 13	8 14 15 16 17 18 19 20	
	CALL	S,U,B	Describes the subroutine named 'SUB' being called.
		ABC	
	B,S,S		Defines the operand (ABC) and reserves memory for it.
			ė

In this example using this subroutine, the program adds two 4-byte binary numbers and stores the sum in locations WORK \sim WORK+3.

Label	7 8 9 10 11 12	Operand 13 14 15 16 17 18 19 20	
	ORG	3,7,0,0,#	Absolute address of the program's start.
ТИТВ	EQU	24567	Absolute address of the transfer vector table's start.
LDDL	EQU	T,V,T,B,+,6	Absolute address of subroutine LDDL's transfer vector.
STDL	E,QU,	T,V,T,B,+,9,	Absolute address of subroutine STDL's transfer vector.
ADDL	EQU	T,V,T,B,+,3,6	Absolute address of subroutine ADDL's transfer vector.
DATAI	DEF	9C#	
	DEF	2,A#	
	DEF	4,5,#	Operand
	DEF	0.3,#	
ABC	DEF	0,9,#	
	DEF	2,3,#	
	DEF	1,9,#	Operand
	DEF	0,A,#	
WORK	BSS	4	Reserves a 4-byte region to store the sum.
	CALL	L,D,D,L	
	D,A,D,R	D,A,T,A,I	Loads operand (DATA 1) into the pseudo accumulator.
	C,A,L,L	A,D,D,L, , 1	Adds operand (ABC) to the contents of the pseudo accumulator and retains the result in the pseu
	D,A,D,R	ABC	accumulator.
	CALL	STDL	Stores the sum in locations WORK \sim WORK $+ 3$.
	D,A,D,R	WORK	
1-1-1-1-1-1-1	END .		
Note : '#' flags	a hexadecimal	number	

10-9

x

•

CONTACT ADDRESSES FOR FURTHER INFORMATION

2

Electronic Overseas Division, Mitsubishi Electric Corporation 2-3, Marunouchi 2-chome, Chiyoda-ku, Tokyo 100, Japan Telex: MELCO J24532 Tel: (03) 218-2111 Cable: MELCO TOKYO

Melco Sales Inc. 7045 North Ridgeway Avenue Lincolnwood, Illinois 60645, U.S.A. Telex: 724493 MSI LCWD Tel: (312) 973-2000

MITSUBISHI LSI DATA BOOK

Published by: Semiconductor Marketing Division Mitsubishi Electric Corporation 2-3, Marunouchi 2-chome, Chiyoda-ku, Tokyo 100, Japan

© in Japan under the International Copyright Convention by Mitsubishi Electric Corporation—Reproduction of this data book in whole or in part without the permission of Mitsubishi Electric is strictly prohibited.

'77 MITSUBISHI LSI DATA BOOK

New publication, effective Nov. 1977. Specifications subject to change without notice.